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Résumé : Les applications et les technologies des véhicules connectés
envisagées dans le cadre des Systèmes de Transport intelligent (ITS) doivent
pouvoir répondre à une grande variété de besoins. En particulier, elles assistent
les conducteurs pour anticiper les accidents potentiels et elles aident les utilisateurs
et les opérateurs du système de transport à effectuer des choix intelligents,
économiques voire écologiques, réduisant ainsi les retards de voyage, diminuant
les embouteillages, et fournissant des services de sécurité et de divertissement aux
personnes sur la route. Les besoins en communication nécessaires aux applications
liées aux véhicules connectés sont supportés par des réseaux véhiculaires, qui
combinent différentes technologies dŠaccès et dŠarchitectures réseau.

Parmi lŠensemble des services de communication utilisables, nous nous sommes
focalisés sur ceux requis par les applications de sécurité telles que la sensibilisation
coopérative (par exemple, alerte en cas dŠaccident, etc.). Ces services nécessitent
une diffusion de messages dŠalerte efficace, sans perte et avec une couverture
suffisamment importante. A lŠorigine, la dissémination des messages dŠalerte
était effectuée en invitant les véhicules à rediffuser à lŠaveugle les messages
dŠalerte. Cependant, cette inondation inefficace provoque une quantité massive de
retransmissions et de collisions inutiles, gaspille la bande passante, augmente le délai
de diffusion et réduit au Ąnal le taux de livraison des paquets. Face à ce problème,
diverses approches coordonnant la dissémination de messages dŠurgence ont été
proposées. Notre travail de thèse sŠinscrit dans ce cadre. Nous développons une
nouvelle procédure de dissémination des messages dŠalerte basée sur la localisation
pour les futurs réseaux véhiculaires. Trois contributions sont développées. La
première déĄnit notre nouvelle procédure de dissémination des messages dŠalerte.
Cette procédure se base sur la déĄnition de zones de diffusion. Dans chaque zone,
notre algorithme se charge dŠélire un véhicule relai en fonction de sa localisation.
La seconde contribution améliore la précédente en affinant le calcul du placement
des relais et en le rendant plus dynamique. Nous développons une approche
basée sur lŠapprentissage par renforcement. Cette approche est capable dŠajuster
le placement optimal des points/zones de rediffusion où les véhicules peuvent
relayer le message aĄn dŠatteindre les véhicules roulant dans des zones qui souffrent
dŠune mauvaise/absence de couverture réseau (zones grises) et donc conduire à
une couverture dŠinformation le plus optimale possible. La troisième contribution
propose un service dŠestimation de la qualité de liens basé sur des techniques
dŠapprentissage automatique (Machine Learning). Ce service vise à offrir une vision
potentielle de lŠétat futur du réseau, ce qui permet aux fonctions de contrôle réseau
de mettre à jour au besoin les points relais aĄn dŠassurer une meilleure couverture
dŠinformation.

Mots clés : Réseaux véhiculaires, Système de Transport Intelligent (ITS),
Dissémination, Application de sécurité routière, Machine Learning (ML)



Abstract: The connected vehicle applications and technologies envisaged
for Intelligent Transport Systems (ITS) must be able to meet various needs.
In particular, they assist drivers in anticipating potential accidents and help
users and operators of the transportation system make intelligent, economical,
and environmentally friendly choices, reducing travel delays, decreasing traffic
congestion, and providing safety and entertainment services to people on the road.
Vehicular supports communication requirements for connected vehicle applications,
combining different access technologies and network architectures.

Among the set of usable communication services, we focused on those required
by safety applications such as cooperative awareness (e.g., accident alert, etc.)
because these services require effective, lossless broadcast and dissemination of alert
messages with sufficient coverage. Historically, alert message dissemination was
performed by blindly inviting vehicles to rebroadcast alert messages. However, this
inefficient Ćooding causes massive unnecessary retransmissions and collisions, wastes
bandwidth, increases broadcast delay, and ultimately reduces packet delivery rate.
In response to these issues, various approaches have been proposed. Our thesis work
is part of this context. We develop a new location-based alert message dissemination
procedure for future vehicular networks. Three contributions are proposed. The
Ąrst deĄnes our new procedure for disseminating alert messages. This procedure is
based on the rebroadcast zones deĄnition method, where relay vehicles are selected
according to their location to rebroadcast the message. The second contribution
improves the previous by reĄning and optimizing the relay placement computation.
We develop an approach based on reinforcement learning. This approach can adjust
the optimal placement of the relay points/areas where vehicles can relay the message
to reach vehicles driving in areas that suffer from poor/no network coverage (grey
areas) and thus lead to the most optimal information coverage possible. The third
contribution proposes a link quality estimation service based on Machine Learning
techniques. This service aims at providing a potential vision of the future state of
the network, allowing network control functions to update relay points as needed
to ensure better information coverage.

Keywords: Vehicular network, Intelligent Transport System (ITS),
Dissemination, Road safety application, Machine Learning (ML)
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Chapter 1

Introduction

1.1 Context and motivation

Despite technological and strategic advances in road safety, most transport systems
worldwide still suffer from serious safety and efficiency problems. For example,
the last report published by the FrenchŠs National Observatory of Road Safety
(ONISR) [ONISR 2022] shows that in 2019, the death rate on the road in France
increased for the third consecutive year, an increase that mainly affects cyclists and
pedestrians, with over 9% and 19% respectively compared to 2018. Another study
shows that in 2019, French motorists spent 163 hours in traffic jams in the Paris
region [TOMTOM 2022]. In addition, drivingŠs ways affect fuel consumption by up
to 20% compared to 2018[Försterling 2015].

In order to overcome these issues, Intelligent Transport Systems (ITS)
are developed to provide communication capabilities to vehicles and transport
infrastructures. More speciĄcally, Cooperative ITS (C-ITS) aims to enable
communications between vehicles (V2V: Vehicle-to-Vehicle), vehicles, and
infrastructure (V2I: Vehicle-to-Infrastructure), and more generally, vehicles and
all their surroundings (V2X: Vehicles-to-everything). These systems aim to offer
reliable (fewer accidents on the road), optimal (less time on the road and less
polluting), and much more comfortable (passenger entertainment: multimedia,
infotainment, etc.) mobility.

The combination of communication capabilities with vehicle sensorsŠ sensing
and perception capabilities opens the way to developing countless C-ITS services
and use cases. A wide range of C-ITS services has been proposed in the literature,
including traffic warning/information dissemination, traffic guidance, electronic toll
collection, parking spot Ąnding, etc. They are designed to support the main C-ITS
objectives. For example:

• The emergency vehicle warning service aims to warn vehicles of an emergency
vehicle (e.g., ambulance) by disseminating an alert message to neighboring
vehicles on the road.

• The Cooperative Collision Avoidance (CCA) service allows vehicles to avoid
accidents by exchanging some mobility information.

• The birdŠs-eye view service allows each vehicle to build a global vision of its
surroundings by combining the neighboring vehiclesŠ local images to make
efficient decisions (e.g., planning future trajectories).
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• The cooperative driving service (Platonning) aims to group vehicles in
platoons, or road convoys, composed of several closely spaced vehicles to save
fuel consumption, prevent accidents and optimize road use.

As a result, the next generation of vehicles will be connected and equipped
thanks to one or more interfaces to communicate with other intelligent
transportation system elements, including other vehicles, pedestrians, and
infrastructure (Roadside Units (RSU), Base Stations (BS), cloud, etc.). Therefore,
these communication capabilities open the opportunity for next-generation
connected vehicles to have centralized network control and the availability of
vehicles-to-infrastructure network connectivity supporting traffic control.

Under this assumption, several works suggest developing a hybrid multi-access
vehicular network based on Software DeĄned Network (SDN) to take advantage
of the various access networksŠ capacities and bring Ćexibility in their control
and management. This Ćexibility is necessary to efficiently manage the network
resources and provide communication services adapted to the requirements of C-
ITS services [Toufga 2017, He 2016, Salahuddin 2014]. For these reasons, this work
considers SDN-based vehicular networks.

On the other hand, an SDN controller would maintain visibility of the vehicular
networkŠs current state, which usually suffers from connection issues due to changing
vehicle mobility and traffic conditions. Therefore, it could identify areas that suffer
from a poor or no network connection (gray zones), thus proacting and warning the
network entities to react in order to provide the required network connectivity with
the level of performance required by the various C-ITS services.

Alert Message (AM) dissemination is a core C-ITS safety service that, upon an
emergency or a risky situation (accident or vehicle breakdown), alert messages are
generated for some time and spread over a geographical area of interest as fast as
possible to allow other vehicles to react quickly and adequately [Salim 2007]. This
service is very demanding in terms of QoS; it requires full information coverage
(all vehicles in the region must be informed), a fast dissemination time, and
high reliability. Historically, message alert dissemination was carried out by a
Direct Short Range Communication (DSRC) based Vehicular Adhoc NETworks
(VANET) operating on a dedicated communication channel by inviting vehicles to
rebroadcast the alerts blindly. However, this method, known as simple Ćooding,
causes a huge amount of unnecessary re-transmissions and collisions (known as the
broadcast storm problem), thus wasting bandwidth, increasing dissemination delay,
and lowering packet delivery ratio [Tseng 2002]. Many proposals from the literature
tried to mitigate the broadcast storm problem by controlling the vehicles allowed
to rebroadcast (using a random selection or clustering techniques to group vehicles)
or reducing the contention. But, most are complex and designed for VANETs, and
neither assume the presence of V2I links nor take advantage of the beneĄts that a
global view of the network at a centralized controller can bring to the dissemination
scheme.

From this perspective, this Ph.D. aims to develop a new efficient location-based
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alert message dissemination scheme for future infrastructure as SDN-based vehicular
networks.

1.2 Thesis contributions

This thesis addresses the following research problems.

"Q1: How to ensure efficient dissemination of alert messages through the

infrastructure to avoid broadcast storm problems while providing full message

coverage with low delays?"

Location-based Alert Message Dissemination (LAMD) procedure.
To answer this question, the Ąrst contribution introduces an efficient alert messages
dissemination scheme that primarily exploits V2I transmissions and complements
with V2V transmissions in order to reach vehicles in areas that are poorly or not
covered (gray zones) by transmissions from the infrastructure. More precisely, the
network controller computes rebroadcast locations (or rebroadcast zones) to ensure
that V2I broadcasts and V2V rebroadcasts lead to the full coverage of an area
of interest. The selection process allows vehicles to rebroadcast an alert message
based on their close vicinity to rebroadcast zones, which can be placed statically
(considering network planning) or dynamically. The number and the location of
rebroadcast zones are inputs to the LAMD dissemination procedure.

"Q2: How do optimally place the rebroadcast zones to cover thoroughly gray

zones when applying LAMD?"

Q-learning-based rebroadcast zones placement for an effective alert

message dissemination.
In the second contribution, we propose a novel reinforcement learning-based method
for V2V rebroadcast zone placement to enhance and ensure the dissemination
procedureŠs efficiency. This latter consists in optimally adjusting the rebroadcast
zone placement according to the evolution of gray zones caused by changing traffic
conditions. Our algorithm takes as input the observed link quality, consisting of
gray zone delimitations. These can be either static (based on network planning) or
dynamic (based on link quality estimation methods).

"Q3: How to predict link quality in the area of interest and the delimitations of

gray zones to update rebroadcast zones proactively?"

SDN-enabled machine learning road link quality estimation

The last contribution introduces an intelligent link quality estimation solution to
predict gray zone positions. We propose a prediction model based on Machine
Learning techniques. This model aims to estimate vehiclesŠ Packet Reception Ratio
(PRR) of RSUŠs messages by zone according to the current traffic conditions on
the road. Then, through the estimated PRR per zone, we can identify gray zone
positions.

Figure 1.1 summarizes the proposed LAMD scheme. First, an SDN controller
identiĄes gray zones in its geographic map coverage by applying the "Road link

quality estimation" algorithm (contribution 3). Then it uses the position of
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Figure 1.1: Location-based Alert Message Dissemination (LAMD) scheme

these zones as input to the "Q-learning rebroadcast zone placement" algorithm
(contribution 2) in order to place or update the rebroadcast zones, which are shared
with vehicles proactively during handover. Finally, when receiving an alert message,
vehicles run the "LAMD procedure" (contribution 1) using rebroadcast zones as
input.

1.3 Thesis organization

This thesis is composed of four chapters and is structured as follows:
Chapter 2 provides the key concepts of the C-ITS system and its services and

vehicular networks and a literature overview of data dissemination to give the
background information underlying this thesis work. The chapter also introduces
the alert message dissemination problem and thesis assumptions to identify the
thesis scope.

Chapter 3 addresses the problem of alert message dissemination. Assuming
the availability of the central view of an SDN controller, we present our efficient
location alert message dissemination procedure for SDVN, which collaboratively
incorporates V2I links broadcasts and V2V rebroadcasts. The SDN controller drives
V2V rebroadcast selection, where a simple default method is proposed to place
rebroadcast zones.
First, we present the global vision of this work and its positioning compared to the
scientiĄc literature. Then, we deĄne the key principles of our system model and the
default rebroadcast zone placement. We next describe the proposed dissemination
algorithm. Finally, we evaluate and discuss our simulation results.

In Chapter 4, a novel rebroadcast zone placement solution is presented. We
propose an optimal rebroadcast zone placement method capable of adjusting their
placement according to the evolution of the gray zones due to traffic Ćuctuations in



1.3. Thesis organization 5

order to ensure more efficient dissemination and full coverage of alert messages as
quickly as possible. This method is based on reinforcement learning algorithms.
First, we present the problem of rebroadcast zone placement and position our
solution regarding those existing in the scientiĄc literature. Then, we highlight the
weaknesses of our default placement proposed in Chapter 2. Next, the proposed
placement method has been developed. Finally, its experimental evaluation results
are presented, analyzed, and compared with the default method by applying the
proposed dissemination algorithm.

Chapter 5 is dedicated to the link quality estimation algorithm based on
Machine Learning techniques. It aims to identify and update gray zones in response
to traffic condition changes.
First, we present our proposalsŠ quality link estimation and positioning with those
existing in the scientiĄc literature. Then, we deĄne this modelŠs various stages of
development, from data collection through training to performance evaluation.

To conclude, the manuscript Ąnally exposes a global vision of the work done
during this thesis and the perspectives of evolution and improvements of the results.





Chapter 2

Background and Thesis Scope

2.1 Introduction

Extensive transportation expectations and advances in modern technology have
led to rapid growth in the usage of vehicles in todayŠs world [KL 2017]. However,
with this rapid increase in the number of vehicles together with many additional
factors, such as limited space in road infrastructure and bad driving habits, the
transportation industry has been facing various problems such as an increase in
traffic accidents, prolonged traffic congestion, damages to public property and
human lives, inability in Ąnding parking spots, etc. [Sudheer 2017]. In order to
overcome these problems and make the transportation systems more efficient, much
research is done to contribute to the evolution of vehicular networks toward an
Intelligent Transport System (ITS). Their goal is to provide vehicles with ubiquitous
on-road network connectivity (anytime and anywhere) with the level of performance
required by various ITS services. These services are designed around the main
objectives of ITS to reduce road accidents and improve the driving experience.
Some services have stringent requirements considering network quality of service,
mainly latency and transmission reliability.

The two leading complementary communication access technologies considered
for future vehicular networks are Dedicated Short Range Communication (DSRC),
based on Vehicular Ad hoc NETwork (VANET) and cellular communications. The
former is foreseen for rapid dissemination and delivery of critical safety messages in
a limited area of interest. At the same time, the latter is more suited for heavier and
less stringent message exchanges [Xu 2017]. Also, in line with the recent trends in
communication networks with the progressive adoption of network softwarization,
Software DeĄned Networking (SDN) is considered a promising paradigm for future
vehicular networks. In addition, SDN paves the way for effective network control
applications to unify the control of heterogeneous multi-access vehicular networks:
it can leverage the vehicular networkŠs centralized, multi-level and multi-access view
with complementary vehicles road and route traffic-related information brought
from the cloud. Moreover, SDN is a key paradigm for supporting the diverse Quality
of Service (QoS) expectations (some being very stringent) of C-ITS services.

In this thesis, we consider such an SDN-enabled multi-access vehicular network.
Under this assumption, Vehicle to Infrastructure (V2I) wireless connectivity is
nominally available, with infrequent and time-limited connectivity losses. This
holds for LTE and DSRC-based access networks where the V2I connectivity is
achieved thanks to the Road-Side Units (RSUs), as it is a prerequisite for supporting
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control traffic exchange between the SDN controller and the vehicles. The presence
of viable V2I wireless links is an appealing opportunity to reconsider how some core
ITS services are implemented. This is, for instance, the case of the Alert Message
(AM) dissemination service in an emergency or a risky situation (accident or vehicle
breakdown) that we consider in this work.

In this chapter, we introduce the context of this thesis by presenting some
preliminary notions, the motivations of this work, and a synthesis of data
dissemination in vehicular networks. Then, we introduce our thesis scope by
presenting vehicular networksŠ alert message dissemination problem and the general
assumptions of this work. Finally, the last section concludes the chapter.

2.2 Background information

2.2.1 Cooperative Intelligent Transport System (C-ITS)

Intelligent Transport Systems (ITS) have been considered one of the main pillars
of smart cities [Arroub 2016]. They are deĄned by The ETSI standardization
organization as integrating information and communication technologies into
transport infrastructures and vehicles to improve their safety, reliability, efficiency,
and quality [ETSI 2020].

Cooperative Intelligent Transport System (C-ITS) refers to transport systems
where the cooperation between two or more ITS subsystems (pedestrian, vehicle,
and infrastructure) enables and provides an ITS service that offers better quality
and an improved level of service compared to the same ITS Service provided by
only one of ITS subsystems, E.g., Connected vehicles are a new paradigm of the
cooperative intelligent transport system (C-ITS) aiming to improve road traffic
safety and efficiency through wireless communications.

C-ITS have four main connected subsystems (Figure 2.1) [Casademont 2019]:

• Vehicular ITS station: Device equipped in vehicles called On Board Unit
(OBU).

• Personal ITS station: Smartphones and other devices that aim to assist the
road users (cyclists, pedestrians, ...). Frequently, these stations are called
personal OBU.

• Roadside ITS station: Devices installed next to the road and called Road Side
Unit (RSU).

• Central ITS station: Traffic management centers and back-office of service
providers.

The cooperation of those subsystems mainly aims to reduce the number of road
accidents and optimize transport time and fuel consumption to offer greener and
safer transport. However, the deployment of these systems is not limited only to
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Figure 2.1: C-ITS infrastructure subsystems [Casademont 2019]
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Figure 2.2: Vehicle to Everything (V2X) communications [Kawser 2019]

road transport (considered in our studies) but includes other areas such as rail, air,
and maritime transport[ETSI 2020].

C-ITS advocates for enriching the perception that vehicles have of their
surrounding world and enlarging their perception horizon are pushing toward
enabling all kinds of vehicle connectivity under the umbrella of Vehicles-to-
everything (V2X) communications[Sato 2020]. These latter notably include Vehicle-
to-Vehicle (V2V) (e.g., to share information about the vehicle’s mobility (speed,

direction, etc.)), Vehicle-to-Infrastructure (V2I) and Infrastructure-to-Vehicle (I2V)
when communication is limited to Road Side Units (RSU) (e.g., to share

information related to road conditions (warning of a danger on the road)), and
Vehicle-to-Network (V2N) communications when the vehicle communicates with an
entity in the network(e.g., a server connected to the network, or a traffic information

system, cloud, etc.). In addition, the system can also integrate exchanges between
vehicles and other actors (i.e., other than the infrastructure), for example, between
vehicles and pedestrians [3rd Generation Partnership Project 2015]; Vehicle-to-
Pedestrian (V2P) communication occurs to signal to a pedestrian the passage of
a vehicle. Figure 2.2 illustrates these various types of communications established
between a vehicle and its surroundings.

2.2.2 C-ITS services

Various services and use cases have been proposed in the literature [ETSI 2009]
[Network 2015]. Most of these services are deĄned by the ETSI standardization
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organization and the 3GPP working group. We present in the following sections
some examples of services. These services are generally classiĄed into two major
categories, depending on their purpose and whether or not they are related to road
safety [ETSI 2009]:

2.2.2.1 Safety services

Figure 2.3 presents three services of two types of safety applications (each
application includes a set of uses cases);

• Cooperative awareness services to warn and increase environmental awareness:
two use cases: a) Emergency vehicle warning and b) Cooperative collision
avoidance.

• cooperative maneuver services to coordinate the trajectories among vehicles:
one use case: c) Platooning.

The Ąrst use case (cf. Figure 2.3, (a)) aims to warn current vehicles of an emergency
vehicle (e.g., ambulance, Ąre department, etc.) by disseminating an alert message
to all vehicles in the area. This is to inform neighboring vehicles to allow each driver
to take the right actions (e.g., free the way, etc.).

The goal of the second use case (cf. Figure 2.3, (b)) is to help vehicles to avoid
accidents. Each vehicle constantly transmits information about its path and state
(position, speed, acceleration, etc.) and receives information from nearby vehicles.
These exchanges are ensured via a V2V communication or passing through an RSU
entity. The vehicles use this information to determine considered actions to avoid
accidents cooperatively.

The third service (cf. Figure 2.3, (c)) allows vehicles in autonomous driving
mode to provide automated overtaking while avoiding accidents. Vehicles exchange
information on their trajectories and states (position, speed, etc.) in order to
coordinate overtaking without accident risk in various conditions (e.g., direct road,
crossroad, a road in the opposite direction).

2.2.2.2 Non-safety services

Figure 2.4 illustrates three uses cases of three non-safety applications;

• Cooperative sensing services to exchange sensor data and object information
that increases vehiclesŠ environmental perception: a) BirdŠs-eye view.

• Cooperative traffic efficiency services to update of routes and map: b)
Itinerary recommendation.

• Cooperative local services to advertise and provide on-demand information to
passing vehicles: c) Passenger entertainment.
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Figure 2.3: Safety use cases

In the Ąrst service (cf. Figure 2.4, (a)), vehicles share their local visions (constructed
via information from onboard sensors) with neighboring vehicles; e.g., vehicles
equipped with cameras can share their images with their neighbors. This allows
vehicles to build a global vision of the environment (birdŠs-eye view) and effectively
plan their future trajectories. For example, as shown in Ągure 2.4, the blue vehicle
detects, thanks to the vision shared by the neighboring entities (RSU, vehicles),
pedestrians on the road and traffic jams on its initially planned path and therefore
decides to change its trajectory.

The second service (cf. Figure 2.4, (b)) makes it possible to recommend to
vehicles the road to take according to a given criterion of optimality. For example,
we cite the network connectivity criterion for choosing the correct route, called
the most connected road [Wegner 2018]. For example, the red vehicle will receive
information on the path to follow (red path), offering the best quality of network
service (e.g., less overloaded network in this area).

The third use case (cf. Figure 2.4, (c)) proposes an infotainment service to
improve driver and passenger comfort, where vehicles can download entertainment
information via V2I/V2N communications. This multimedia content can be
available locally or downloaded from a server on the Internet.

2.2.3 C-ITS service requirements

The standardization organization ETSI based on expertsŠ recommendations
and simulation results, has already deĄned and described key functional
and performance requirements to ensure the proper functioning of C-ITS
services[ETSI 2009]. These requirements are service-dependent and are expressed
using the following metrics:

• End-to-End Latency (ms): Maximum delay between the moment the source
application generates a data packet and the destination application receives
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Figure 2.4: Non-Safety use cases

it.

• Reliability (%): Maximum tolerable packet loss rate measured at the
application layer. A packet not received by the destination application within
the maximum wait time allowed is considered lost. It is expressed in %
to indicate the minimum packet success rate required (e.g., 90% means the
number of received packets per the number of sent packets must be greater
than or equal to 90%).

• Periodic message frequency (Hz): A sending frequency is required and
expressed in Hz for services requiring periodic messages.

• Throughput (Mbit/s): Minimum throughput required by the application to
work correctly.

• Security: Some services require speciĄc security measurements. These include
user authentication, data integrity, conĄdentiality, and user privacy.

Safety services are based on periodic (e.g., Cooperative Awareness
Message (CAM) [ETSI 2014]) or event-driven (e.g., Decentralized Environmental
NotiĄcation Message (DENM)[ETSI 2013]) broadcast messages with a repetition
rate as high as 10 Hz (e.g., emergency vehicle warning) or lower (e.g., road works
warning). For example, cooperative awareness services presented above require
messages to be delivered with a maximum latency of 100 ms. The payload of each
message ranges from 60 to 1500 Bytes [ETSI 2009], affected by the road and traffic
conditions. Due to the dynamic nature of cooperative awareness applications, the
data rate is between 5 kbps to 40 kbps, and the required reliability is 90-95%.

However, non-safety services are generally less strict than safety services. For
example, traffic efficiency use cases are supported using the V2N or the V2I modes
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Application V2X
Mode

Latency Reliability Throughput
(Kbps)

Cooperative
Awareness

V2V/V2I 100ms 90− 95% 5-96

Cooperative
Maneuver

V2V/V2I < 3ms −
100ms

> 99% 10- 5000

Cooperative
Sensing

V2V/V2I 3ms− 1sec > 95% 5-25000

Cooperative
Traffic Efficiency

V2N/V2I > 1sec < 90% 10-2000

Cooperative local
services

V2N 500ms 95− 99% > 25000

Table 2.1: Performance requirements of different C-ITS services derived from
[Festag 2014]

without strict delay or reliability requirements since there is no need for prompt
(re-)action at the vehicle side. Each vehicle updates the Traffic Management server
(uplink) every few seconds with location, status, and road information, which are
required for more efficient route selection (the payload of this type of message is 1500
Bytes [ETSI 2009]). The response from the Traffic Management servers (downlink)
includes digital map updates (2 MBytes).

Table 2.1 presents the main applications of C-ITS use cases and their key
performance requirements in terms of reliability, latency, and the expected data
rate per vehicle.

The cooperative awareness safety services are mainly considered in our studies
to illustrate the contribution of the proposed approaches.

To conclude, vehiclesŠ communication capability and road infrastructure have
opened up a wide Ąeld for the imagination of new services and use cases for
ITS systems. They involve various communications; some only use V2V type
communications, and others combine several types. Their requirements in terms
of QoS vary depending on the kind of service and aim sought.

All C-ITS entities and their interactions form communication networks called
vehicular networks, which are essential for the proper functioning of the C-ITS
system. Those networks are based on norms and standards deĄned by international
standardization organizations. Their purpose is to provide the required network
connectivity with the level of performance required by the various C-ITS services.

2.2.4 Norms and standards

Two main standards are considered to support the communication needs of ITS
services. Direct communication technologies are known as DSRC (802.11p in the
United States and ITS-G5 in Europe) based VANET and cellular technologies (e.g.,
Long Term Evolution (LTE)/5G).
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2.2.4.1 Dedicated Short Range Communication (DSRC) and 802.11p

The IEEE 802.11p standard is an adapted version of 802.11 wireless networks for
vehicular communications. It integrates, with some modiĄcations, the physical
layer of the IEEE 802.11a standard, based on Orthogonal Frequency Division
Multiplexing (OFDM), and the MAC layer of the IEEE 802.11e standard based on
the Enhanced Distributed Channel Access (EDCA). It relies on the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA). EDCA provides priority-
based differentiated access to the transmission channel. It is enforced by controlling
CSMA/CA parameters, namely the Arbitration Inter-frame Space (AIFS), which
sets the free channel listening period, as well as the size of the min (resp. max)
contention window size (resp. CWmin and CWmax) from which the random back-off
times are derived. Compared to traditional Wi-Fi networks, one of the signiĄcant
changes is removing the BSS (Basic Service Set) association step, which allows
vehicles to transmit data without prior exchange of control information immediately.
As a result, communication can be done in a distributed manner without dedicated
network coverage. However, RSU (Road Side Unit) entities can be deployed
to increase network coverage, especially in situations where direct visibility is
obstructed (e.g., intersections in an urban environment), and to beneĄt from other
network management and security services (e.g., certiĄcate management), as well
as gateways to internet access.

The DSRC standard uses multiple channels to support safety applications
and other intelligent transport services. It dedicates a single Control CHannel
(CCH) for safety services. In addition, six Service CHannel (SCHs) handle non-
safety/infotainment serviceŰrelated transmissions (e.g., video calling). Each channel
exhibits 10 MHz of bandwidth within 5.9 GHz of spectrum, supporting data rates
of up to 27 Mbps. Using multiple channels for data delivery is deĄned under the
multichannel medium access control (MAC) operation of the IEEE 1609.4 standard
in Wireless Access in Vehicular Environment (WAVE)[Rasool 2017].

The main advantage of DSRC is the very low latency time, under 100
milliseconds, which is ideal for safety applications that require a delay in this
range. Although this technology is desirable to support V2V communications, it
has limitations. Works in [Hassan 2011] [Ma 2009] show that performance drops
drastically under high-density conditions. One of the main reasons for these
degradations is the CSMA/CA collision avoidance mechanism. This mechanism
introduces a signiĄcant delay in channel access in dense environments based on the
principle of listening before transmitting (listen before talk). In addition, it suffers
from the collision of hidden nodes (hidden nodes).
On the other hand, the narrow communication range of RSU entities limits their
deployment for total coverage of a given area. The ITS-G5 standard is the European
variant of the 802.11p standard speciĄed by ETSI [ETSI 2019].
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2.2.4.2 Cellular communications (C-V2X)

The 3GPP working group has recently been interested in developing vehicular
communications, which are the core of the 3GPP Release 14 standard. Two main
directions are studied. The Ąrst one concerns the LTE technology in its initial
version [3rd Generation Partnership Project 2015] (already implemented by various
mobile operators) to support ITS services. The second one mainly concerns the
extension of this technology for direct V2V communication support (work on release
14), commonly known as LTE-V or LTE-V2X.

LTE - infrastructure based communication This involves using the
infrastructure of the LTE mobile network to support vehicular communications.
Each vehicle represents a User Equipment (UE) that communicates with the base
station (BS) to join another entity in the network, for example, a road manager
server (i.e., to retrieve information on road traffic) or another vehicle connected to
the network.

Among the signiĄcant advantages of this technology for the support of ITS
services, we mention:

• A large communication range of the BS entities reduces the frequency of
handovers compared to RSU entities based on 802.11p.

• A high capacity network can support services with high bandwidth
requirements.

• Mature technology with multiple mechanisms, for example, Multimedia
Broadcast and Multicast Services (MBMS) broadcast and multicast functions
that many security messaging services can use, e.g., services aimed at warning
a danger on the road (i.e., accident).

However, this technology has some limitations, mainly due to the design choices
initially proposed to support mobile traffic (MBB) and not vehicular traffic. Among
these limitations: i) A unique radio interface connects the UE to the BS. Indeed, any
data transmission (even between two vehicles close to each other) involves crossing
the infrastructure, following an uplink transmission (UL) followed by a downlink
transmission (DL). This limits its applicability to V2V communications, especially
for safety-type services with strict latency requirements. ii) The unavailability of
communications outside network coverage. Indeed, several areas are not considered
initially during the deployment of LTE networks and need to be covered to support
vehicular communications, for example, rural areas, mountains, etc.

LTE-V2X/ C-V2X To improve LTE technology and enhance its ability
to support V2X communications effectively, release 14 (LTE-V2X) focuses on
supporting direct V2V communications. In addition, a new radio interface has
been speciĄed. The PC5 interface with which two UEs (vehicles) can communicate
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without resorting to the infrastructure. The standard deĄnes two modes: V2V
communication assisted or not assisted by the infrastructure.

In the Ąrst mode, the base station coordinates the communication between the
vehicles. It provides vehicles with control information, specifying the resources and
radio parameters to be used for their direct communications. It can also handle
traffic prioritization if multiple applications are running simultaneously by the
same vehicle. In this mode, signaling (control) messages are transmitted using the
spectrum of mobile network operators, while data between vehicles is transmitted
in a dedicated frequency spectrum in the 5.9 GHz band.

In the second mode, vehicles can conĄgure their communications without
assistance from the cellular network. They select radio resources autonomously,
whether or not they are under network coverage. This mode is necessary when
the vehicles are out of network coverage. They use pre-conĄgured settings.
In addition, they implement distributed algorithms for network management
(scheduling, interference, etc.).

New technology improvements are being studied as part of the 5G V2X. They
offer new services and use cases with more stringent requirements. The term C-
V2X for Cellular-V2X has been proposed to refer to all current work and future
improvements within the 5G speciĄcations.

2.2.5 Vehicular networks

2.2.5.1 Vehicular Ad-hoc NETwork (VANET)

The main objective of VANET is to build coordination between vehicles through
a distributed communication mechanism to reduce potential accidents and provide
practical traffic information to passengers [Dressler 2011]. The main entities in a
VANET are vehicle nodes and Road Side Units (RSUs), and they are further bridged
by Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Infrastructure-to-
Vehicle (I2V), and Infrastructure-to-Infrastructure (I2I) communications. The
theoretical communication range is 1000 meters, but in reality, it is around 400
meters for RSU, and 200 meters for vehicle [Bishop 2005]. Vehicle nodes are
equipped with GPS devices and Dedicated Short Range Communication (DSRC)
radios (described above). Recently, many studies have been on integrating multiple
wireless technologies such as 5th Generation (5G), Long-Term Evolution (LTE),
WiMax, Wi-Fi, ZigBee, etc., in the On Board Unit (OBU) of vehicles[Dressler 2011,
Ku 2014, Ge 2017]. In addition, VANET employs a periodical broadcasting of Basic
Safety Messages (BSMs - also referred to as hello messages) primarily used for the
safety operations such as collision avoidance. VANET further holds the luxury of
unique stationary RSUs in the system, whose purpose is to disseminate important
information such as road conditions, traffic light status, etc., to passing vehicles
and act as a relay station [Ali 2016]. The base stations connected with RSUs will
provide access to the Internet. The appearance of VANETs has opened a challenge
for searching for new reliable dissemination protocols and schemes with real-time
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constraints intended to serve several applications related to public security. The
goal is to design a protocol to broadcast a message from a single source to every
node within its transmission range with the highest possible reliability and minimal
latency.

VANET is a subset of Mobile Ad-hoc Network (MANET). But, in contrast
to MANET, VANET exhibits several unique characteristics, such as predictable
mobility patterns, frequent disconnections, high topology changing rates, no power
constraints, and strict delay requirements. Moreover, VANET has often been much
more extensive than MANET in network size and comprises thousands of nodes.

Even though the research on VANET has been going on for nearly two
decades, it is still facing a lot of challenges such as inefficiencies in information
dissemination and resource utilization, security and privacy issues, unbalanced
Ćow traffic, unreliable connectivity, inability to cope with dynamic topology
changes, which collectively result in low Packet Delivery Ratios (PDRs), high
end-to-end delays and packet overheads, lack of support for QoS provisioning, etc
[Dressler 2011, Jerbi 2011].

2.2.5.2 Multi-RAT vehicular networks

Each network that combines at least two diverse access technologies is called a
multi-RAT network.
In vehicular networks, the C-ITS system and its various components are still under
development. Indeed, the network architecture and the adopted technologies are the
subjects of much work and discussion. Therefore, several criteria impact this choice.
Among these criteria, we cite the maturity of each technology and its performance.
The 802.11p standards are the Ąrst studied for this system, and several prototypes
and products are already available. However, in contrast, it suffers from some
performance limitations, reducing its ability to support a wide range of ITS services.
Indeed, its latency and reliability (critical performance criteria for ITS services)
decrease in case of high density and mobility of vehicles [Hassan 2011, Ma 2009,
Hameed Mir 2014]. Moreover, this technology is prone to interference and collisions
due to hidden nodes.

On the other hand, cellular communications represent a promising technology
to support ITS services, especially those requiring V2N communication. They are
characterized by high network capacity and wide coverage. Performance tests of
LTE technology for vehicular communication support show that it mostly meets
the constraints of reliability, throughput, and network coverage [Hameed Mir 2014,
Liu 2018b]. However, its performance also degrades under high density conditions
[Hameed Mir 2014, Liu 2018b, ETSI ].
Several works conclude on the limit of this technology to support safety applications
with stringent requirements in terms of latency. This limitation is mainly because
the communications must pass through the base station before arriving at their Ąnal
destination (the main subject of release 14 with the proposed direct communication
mode). Several improvements are under development, including support for direct
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communication or V2V (from release 14) and other features as part of the 5G
speciĄcations.

The main vision shared by the community is to adopt a hybridization of
the two complementary technologies, namely DSRC and cellular communications,
given the complementary nature expressed by most of the performance analysis
work [Hameed Mir 2014, Liu 2018b]. Hence, what is called multi-RAT diversity,
combines at least two diverse access technologies. This makes it possible to take
advantage of the complementary beneĄts of the two technologies. Therefore, it
is possible to favor DSRC for V2V communications and cellular technology for
V2I/V2N communications. However, this hybridization presents some challenges,
notably the coexistence of these technologies since various actors should manage
them and the choice of the network to be used when considering the latterŠs various
characteristics and the ITS servicesŠ needs.

2.2.5.3 Software Defined Vehicular Network (SDVN)

Recently, researchers have focused on incorporating Software DeĄned Networking
(SDN) into vehicular networks to address problems mentioned above, enable
Ćexibility and programmability, and encourage innovation [Ku 2014, He 2016].

In a network, each network device comprises a data plane and a control plane.
The main purpose of the data plane is to route data, while the control plane takes
care of all network control decisions, such as deciding which interface to route data.
In a conventional network, the data plane and control plane are integrated within
the same device, and each device decides locally. However, the SDN paradigm
advocates the idea of separating the data plane and the control plane. Indeed,
network control functions are externalized from the network devices and arranged
in software components on dedicated external devices called SDN controllers, as
illustrated in Ągure 2.5.

In this architecture, the SDN controller is the central element. It communicates
with the different nodes of the network through a SouthBound Interface (SBI)
protocol - the most widespread is the OpenFlow standard - while the applications
express their needs to the SDN controller using the NorthBound Interface (NBI).

The controller provides an abstraction of the underlying network to network
applications and services and implements various network policies. The data plane
comprises forwarding nodes, often called Packet Forwarding Elements (PFEs).
They forward packets according to the rules proactively or reactively installed by
the SDN controllers.

This paradigm has initially revolutionized wired network architectures and has
been widely adopted in most infrastructures (e.g., data center networks, campuses,
etc.). The success and achievements it has shown in these networks have attracted
the communityŠs attention, and several works are interested in its adoption in other
types of networks. It is notably true for vehicular networks. These networks
form the fundamental basis of an intelligent transport system. Various scientiĄc
research organizations, industries, and standardization organizations are interested
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Figure 2.5: Global architecture of the SDN paradigm, ONF [Foundation 2012]

in improving them by proposing new architectures and new mechanisms in order to
support ITS services effectively. SDN paves the way for effective network control
applications to unify the control of heterogeneous multi-access vehicular networks:
it can leverage the vehicular networkŠs centralized, multi-level, and multi-access
view with complementary vehicles, roads, and routes traffic-related information
brought from the cloud. SDN can handle the dynamic nature of networks with
intelligent applications while lowering operational costs through simpliĄed hardware
and software. Moreover, SDN is a key paradigm for supporting the diverse QoS
expectations (some very stringent) of C-ITS services.

2.2.6 Data dissemination strategies in vehicular networks

C-ITS services improve driversŠ and passengersŠ security and comfort on roads
by notifying dangerous situations and entertainment (e.g., parking, hotel, etc.),
sharing multimedia content, etc. Generally, these services are based on periodic
data dissemination as point-to-multi-point communications and geo-Broadcasting.
This is to enable the state of the road and surrounding vehicles.

An effective dissemination solution for Vehicular networks must consider the
latterŠs characteristics, such as the size of the network, the speed of vehicles, the
intermittent connection of the network, and the different needs of the applications
in terms of QoS, whatever the service type (safety or non-safety) and the data to
be disseminated.

All data dissemination schemes should satisfy all the following objectives
[ETSI 2009]: (1) High reliability: high reception rate; (2) Low latency: the duration
from the Ąrst transmission attempt to the end of the broadcast step, should be as
low as possible; (3) Low probability of collision: the protocol should suffer from
collisions to the minimum possible; (4) Hidden node problem: avoiding the hidden
node caused by the receiving collisions.

In the literature, several strategies have been proposed. Each of them may
require one or more hops for routing its data, as well as the deployment or not of
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infrastructure, such as roadside units (RSUs). However, all strategies rely on the
cooperation of network vehicles to relay messages. Below, we will detail a general
classiĄcation of dissemination strategies encountered.

2.2.6.1 Flooding

One of the most used approaches for disseminating data in VANETs is Ćooding. It
can be used with a single hop and several hops. A message sent by a transmitting
vehicle by broadcasting is transmitted to all its direct neighbors, then retransmitted
once again by each receiver until reaching all intended receivers. This approach does
not require any prior information about the neighbors of the vehicle, which allows it
to ignore the non-existence or inaccuracy of information about the network topology.
Furthermore, it increases the delivery rate and improves data transmission speed
because a receiver vehicle receives several copies of the message, arriving through
several routes. However, this approach also increases competition for access to the
communication channel and bandwidth utilization, which does not allow it to be
scaled up at the risk of generating intense network congestion [Tseng 2002]. Citing
some examples:

The studyŠs authors [Korkmaz 2004] propose a multi-hop broadcast protocol for
urban environments to remedy the problems associated with the massive broadcast.
A transmitting vehicle broadcasts the message to its direct neighbors; only the
furthest vehicle rebroadcasts it. When meeting an intersection, vehicles are selected
as relays and rebroadcast information on the different segments of the intersection.

The authors of the solution [Sun 2000] adopt the same dissemination approach.
First, a message is broadcasted to reach a certain group of vehicles. However, from
the second transmission of the message, only the vehicles on the edges are selected
as re-broadcasters.

The criteria for selecting re-broadcasters in these two approaches mainly concern
their geographical positions from the sender. However, this does not respond to
VANETs issues, such as adapting to the changing density of the network, because
no relationship between the number of relays and the density is given.

2.2.6.2 Probabilistic

This approach attempts to reduce the redundant messages generated by calculating
the probabilities of encounters between two vehicles before deciding on the
information dissemination path without requiring knowledge of the network
topology. Instead, a vehicle using this approach can rely on its knowledge of the
network, its history of encounters with other vehicles, and the information it has
collected on the mobility and locations of other vehicles in the network.

For example, the solution [Palazzi 2012] uses this probabilistic approach; the
decisions concerning the choice of relay vehicles for the retransmission of a
message are based on the probabilities of encounters with the recipient vehicle(s).
In solutions [Wisitpongphan 2007] and [Slavik 2010], the receiving vehicles of a
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message calculate their retransmission probability based on the distance separating
them from the transmitting vehicle. The greater the distance is, the greater the
probability of retransmission. The authors of the solution [Busanelli 2009] use the
criterion of the distance between a receiver vehicle and a source vehicle to calculate
the probability of retransmission and add a parameter concerning the local density
of the network, i.e., the number of direct neighbors of the receiver vehicle, to reduce
the number of relay vehicles when the density is high.

2.2.6.3 Geographic

This dissemination approach is based on geographic routing protocols, where
the location information of the vehicles in the control messages is periodically
broadcasted in the network when it follows a pro-active approach [Bakhouya 2009]
or broadcasted on demand when it follows a reactive approach [Lee 2010]. Each
vehicle regularly updates a table containing its neighborsŠ location history to route
its messages by the shortest path and, thus, reduce their routing delay. For this
reason, during dissemination, the vehicle closest to the receiver(s) is selected at each
hop. This approach also makes it possible to target a group of vehicles thanks to
their geographical coordinates, as is done in applications designed to warn drivers
of the risk of collision at intersections, for example.

2.2.6.4 Channel resource oriented

As the resources of the communication channel are limited, accessing the channel
and allocating its resources becomes an optimization problem. However, this
problem is likely NP-complete, considering all the variants that must be considered
and the limited network information available to the vehicle.

Some solutions propose algorithms based on heuristics, such as the study
[Palma 2012], which proposes a routing of access data by considering the history
of encounters of the transmitting vehicle with other vehicles in the network. The
aim is to estimate potential congestion and network density and then consider
them to improve the delivery rate and limit the number of duplicate messages.
In the solution [Liu 2007], each node maintains a table with information about
the throughput and channel conditions in order to choose which relaying node
is preferable to transmit its message through. However, these solutions require
message exchanges between vehicles to maintain control over the use of channel
resources.

Another solution [Peng 2007] improves the reception rate of emergency messages
by allocating a part of the available bandwidth to them. In this solution, each node
Ąrst sends a signal as a pulse, then transmits its emergency message.

2.2.6.5 Message priority oriented

In order to meet the different QoS needs for the multiple applications of VANETs,
dissemination solutions propose an adaptation of the dissemination with the
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importance of the content of the messages exchanged. For example, do not
systematically delete all new incoming messages in case of network congestion.
The solution [Torrent-Moreno 2004] solves this problem by setting priorities for
access to the communication channel according to the access categories ACs, set
by EDCA [Committee 1999], for each message. Another solution [Gerharz 2003]
allocates tokens to the queues formed by messages wishing to access the channel.
It manages channel access by weighing the number of tokens offered against the
channel density and message priority. Like the latter, the solution [Rahim 2009]
schedules the messages to be sent based on the channelŠs available resources and
the messageŠs importance, using a system of waiting queues where a higher priority
is given to the most urgent messages.

2.2.7 Synthesis

VANETs are constrained by memory space, computing capacity, and energy issues.
However, they suffer from a large amount of data to be sent and the large
geographical areas to be covered. These, combined with the dispersion and high
mobility of vehicles, the lack or insufficient infrastructure, and the variable density
of the network, create several problems for disseminating data. Therefore, they
cannot meet the high demands of C-ITS services, especially safety services such
as cooperative awareness services, which require, in most cases, effective and
reliable information dissemination. In order to address these problems, researchers
have recently focused on incorporating SDN into VANET to enable and facilitate
hybridization with cellular networks. As mentioned above, this incorporation allows
for managing these networks and optimizes their performance.

We consider such an SDN-enabled multi-access vehicular network in our work
to propose an efficient dissemination scheme for critical safety services. Under
this assumption, Vehicle to Infrastructure (V2I) wireless connectivity is nominally
available, with infrequent and time-limited connectivity losses. This holds for LTE
and DSRC-based access networks where the V2I connectivity is achieved thanks to
the RSUs, as it is a prerequisite for the support of control traffic exchange between
the SDN controller and the vehicles.

The presence of viable V2I wireless links is an appealing opportunity to
reconsider how some core ITS services are implemented. This is, for instance, the
case of the Alert Message (AM) dissemination service in an emergency or a risky
situation (accident or vehicle breakdown) that we consider throughout our work.
This service will be detailed in the following section.

2.3 Thesis scope

The objective of this thesis work is to deĄne a new solution for alert message
dissemination in Software DeĄned Vehicular networks (SDVN) architecture with
QoS, such as reliability, delay, and information coverage, as well as the analysis of
the performance of this solution.
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This section introduces the problem of alert message dissemination, an overview
of the proposed solution, and general assumptions.

2.3.1 Alert message dissemination in vehicular networks

The Alert Messages (AM) are used to urgently warn vehicles heading into a
geographic area that hosts a hazardous situation or event (an accident, tricky
weather/road condition, sudden break, etc. AM service broadcasts on an area
of interest alarm messages for some period to let close-by vehicles react quickly and
adequately to the risky situation [Salim 2007].

AMs belong to the Decentralized Environmental NotiĄcations Message (DENM)
class of messages deĄned to convey the information related to different road events
that need to be delivered to road safety applications of nearby vehicles [ETSI 2013].
They usually include the type of event, the coordinates of the eventŠs position, an
indication of the geographic area of the distributed message localization, and the
sender. Their sizes are short (between 200 to 1200 bytes) to ensure the rapidity of
their transmission. A road event is typically detected by one or multiple vehicles;
multiple DENM messages related to the same event can be sourced from different
vehicles. Also, an ITS application running behind the road infrastructure can
detect the event and send DENMs to vehicles. When a road event is detected,
the corresponding DENM is periodically generated in an average of 10 messages
per second for the period where the event remains present. The dissemination
requirements of a DENM message are typically expressed in terms of a geographic
area of interest, which delimits the area within which all the vehicles should receive
the message, and delivery/dissemination delays [ETSI 2009]. For instance, for AMs,
the area of interest is a few kilometers from the eventŠs location, meaning that
multiple wireless transmission hops could be needed to cover the entire area, while
the dissemination delay requirement is a few hundred milliseconds.
Such reliability and delay expectations heavily depend on the performance of
the wireless technology. Therefore, the DSRC protocol is the leading vehicular
communication technology recommended for supporting this kind of service
[ETSI 2019] [Kenney 2011]. As explained above, it operates on a dedicated 5.9
GHz unlicensed band, split into one control channel (CCH) and 6 (or 5) Service
channels (SCH). The CCH is used for DENM transmissions with another critical
class of Cooperative Awareness Message (CAM) messages. CAMs are periodically
broadcasted by each vehicle to inform all their wireless one-hop away neighbors
(vehicles and RSUs) of their current status, e.g., position, speed, heading, etc.

Usually, AMs are relayed over multiple wireless hops to reach all vehicles within
the geographic area of interest. However, rebroadcasting AMs leads to increased
medium contention, transmission collisions among neighboring nodes, and useless
duplicate transmissions because of the shared wireless medium. This leads to
inefficient use of radio resources and increased dissemination delays. High vehicle
density exacerbates these problems due to excessive redundant and contending
rebroadcasts (named in the literature as the broadcast storm problem). As a result,
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AMs delivery can be compromised for some time, disrupting the service provided
by road safety applications.

In our work, we propose a novel Location-Alert Message Dissemination scheme
for future vehicular networks that exploit V2I links to widely broadcast alert
messages complemented with parsimonious V2V rebroadcasts. The centralized
network controller drives V2V rebroadcast selection to reach the vehicles suffering
from a potential loss of V2I connectivity while drastically controlling and reducing
the number of rebroadcasts. It relies on the centralized view that the SDN controller
builds on its coverage area and information related to road traffic and vehicles (their
characteristics and potentially their road trip).

2.3.2 Assumptions

This section presents the assumptions and key principles of the considered
architecture in this work.

The network controller represents the central part of the architecture. It
holds the networkŠs intelligence, manages the RSU/BS network, and implements
the various network policies. A network controller can be an SDN controllers as
described in [Toufga 2017], a centralized location server [Katsaros 2013], a fog/cloud
computing [Ning 2019], or a simple central RSU/BS controller.

In our work, we have considered the architecture proposed in [Toufga 2017],
whose data plane comprises vehicles, RSU entities, and base stations, all
programmable via SDN. The SDN controllers represent the central part of the
architecture. They host all the network control functions to deĄne the various
rules communicated to the data plane nodes. They consider three main controllers:
the Ąrst to manage the cellular network, another to manage the RSU network,
and the last one (the main) to ensure the coordination between the different
controllers. Indeed, the main second-level controller builds a global view of the
communication infrastructure using the information sent by the controller of each
network. It deĄnes and sends to each controller the global rules that describe
the general behavior of the network, while the local Ąrst-level controllers (BS and
RSU controllers) deĄne the speciĄc rules to be implemented by each network node.
However, some network control decisions can be made by local controllers and do
not require directives from the global controller, for example, horizontal handover
operations (change of attachment point within the same network, e.g., RSU<-
>RSU).

As mentioned above, throughout this work, we consider only safety services
that require disseminating Alert Messages (AM) with very low latency and high
reliability. As a result, all vehicles will communicate with the same network interface
to share the message. Preferably, the DSRC interface, thanks to its very low latency
for sending this kind of small-size critical safety message, as explained above.
For this and other technical reasons, we have only considered the RSU network
architecture (DSRC) in this work. The idea behind the presentation and choice of
a hybrid and centralized architecture is to avoid neglecting other communication
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Figure 2.6: Considered architecture overview

technologies because they are complementary, and each can serve a speciĄc type of
service effectively. However, the proposed solutions can be applied to other services
and networks, such as cellular networks.
Figure 2.6 illustrates the overall vision of the considered architecture.

We consider vehicles can be equipped with one or more network interfaces. For
example, one interface is to access the RSU network (DSRC) (by default) for the
exchange of CAMs and DENMs messages, and another one is to access the cellular
network (LTE/ 5G) for the exchange of multimedia content, itinerancy, etc.

2.4 Conclusion

This chapter has introduced an overview of the background landscape necessary for
understanding the thesis scope. After, we studied the techniques used for general
data dissemination to ensure more or less the QoS required. Further, we have
explicitly presented the alert message dissemination in vehicular networks and their
strong requirements.

In this context, it is fundamental to introduce the different vehicular
communication technologies to address the above-mentioned limitations of
disseminating these critical messages. To this end, disseminating alert messages
must offer highly controlled (ideally full) information coverage while reducing the
number of rebroadcasts. In addition, the dissemination scheme should drastically
reduce collisions and signiĄcantly save network resources, as useless rebroadcasts
are avoided. Last, this scheme needs to induce insigniĄcant signaling and network
overhead.

In the following chapter, we present our contributions to these primary
challenges.



Chapter 3

LAMD: Location-based Alert

Message Dissemination Scheme

3.1 Introduction

Point-to-multi-point communications and, more speciĄcally, Geo-Broadcasting are
at the heart of many C-ITS services. Alert Message (AM) dissemination is such
a service which, upon an emergency or a risky situation (accident or vehicle
breakdown), alert messages are generated for some time and spread over a
geographical area of interest as fast as possible to allow other vehicles to react
appropriately very quickly [Salim 2007]. Historically, AM dissemination was
carried out by a DSRC-based VANET operating on a dedicated communication
channel, inviting vehicles to rebroadcast the alerts blindly. This method, known
as simple Ćooding, causes a huge amount of unnecessary re-transmissions and
collisions (known as the broadcast storm problem), thus wasting bandwidth,
increasing dissemination delay, and lowering packet delivery ratio [Tseng 2002].
Many proposals from the literature tried to mitigate the broadcast storm problem
by controlling the vehicles allowed to rebroadcast (using some form of random
selection or clustering techniques to group vehicles) or reducing the contention.
But, most were designed for VANETs and neither assume the presence of V2I links
nor take advantage of the beneĄts that a global view of the network at a centralized
controller can bring to the dissemination scheme.

The fundamental objective of this chapter is to develop a novel Location-Alert
Message Dissemination scheme called LAMD for future vehicular networks that
primarily exploits V2I links to widely broadcast alert messages complemented with
parsimonious V2V rebroadcasts in order to reach vehicles located in areas that
are poorly or not covered (gray zones) by transmissions from the infrastructure.
A centralized network controller drives V2V rebroadcasts selection to reach the
vehicles suffering from a potential loss of V2I connectivity while drastically
controlling and reducing the number of rebroadcasts. It relies on the centralized
view that the network controller builds on its coverage area and control as
well as information related to road traffic and vehicles (their characteristics and
potentially their road trip). More precisely, the network controller computes
rebroadcast locations (or rebroadcast points) to ensure that V2I broadcasts and
V2V rebroadcasts lead to the full coverage of an area of interest. The selection
process of vehicles allowed to rebroadcast an AM is Ąnally based on their close
vicinity to rebroadcast points. This alert message dissemination scheme offers highly
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controlled (ideally full) information coverage while drastically reducing the number
of rebroadcasts compared to existing techniques. This considerably reduces the
number of collisions and signiĄcantly saves network resources; useless rebroadcasts
are avoided. Finally, our proposal induces insigniĄcant network signaling overhead.

The rest of the chapter is organized as follows: Section 3.2 presents an overview
of existing work that aims at improving AM dissemination. Section 3.3 describes the
proposed location-based dissemination algorithm and the system model. Section 3.4
evaluates and discusses our simulation results. Section 3.5 concludes the paper.

3.2 Related work

Alert message dissemination has been widely studied in a VANET/V2V
context as referenced by survey papers [Ullah 2018, Sanguesa 2016, Ibrahim 2020,
Shahwani 2021]. All aim to address the "broadcast storm" problem and ensure high
information coverage. The way they handle the problem can be broadly classiĄed
as follows. Either by controlling the Ćooding procedure or preventing systematic
blind rebroadcasts from each receiving vehicle. Or by organizing vehicles in clusters
and structuring the alarm message dissemination along these clusters avoiding the
broadcast logic. Or Ąnally, by using routing protocols to compute point-to-multi-
point routes along which alarm messages are forwarded.
Below, we dive further into the details of our classiĄcation and present, without
being exhaustive, some representative papers that fall in each class.

3.2.1 Control of the flooding procedure

A lot of the proposed schemes try to control the Ćooding procedure of AMs either
by reducing the number of rebroadcasters or by reducing the contention between
transmitting vehicles. They are described hereafter.

3.2.1.1 Relay selection

In these methods, only part of the vehicles is selected to relay the AMs. This
selection is typically based on a combination of vehiclesŠ characteristics, distance
from the sender, local density, interests (e.g., the destination district), transmission
power, etc., and helps to limit re-transmissions and contention at the cost of reduced
information coverage.

Adaptive Data Dissemination Protocol (AddP) [Oliveira 2017] selects
forwarding nodes based on the local density of the forwarder and the positions
of neighboring nodes. Since forwarding nodes are chosen during the dissemination
of each multicast packet, the nodes closest to the boundaries of the communication
range and the highest local density have priority for broadcasting the message.
AddP helps mitigate the broadcast storm problem (by reducing redundant messages
and the hidden node problem) and frequent disconnections. However, the proposed
mechanism may not be suitable for highly mobile and dense V2V networks in which
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local density and neighborhood of vehicles keep changing rapidly, and many vehicles
are multicast recipients.

The idea of Liu and al. in [Liu 2015] is to combine the advantages of various
communications and cloud communication technologies to address the downlink
data dissemination strategy from a remote server to a targeted area by ensuring
reduced delays and high packet delivery rates. They propose a framework for
the dissemination of alert messages within an integrated system which comprises
a Hybrid VANET-Cellular architecture where the buses act as mobile gateways
(vehicles with dual DSRC and Cellular interfaces, registered in the cloud) and a
cloud infrastructure which enables rapid data acquisition of road traffic Ćow and
the geographical position of all mobile gateways. This choice efficiently provides
essential traffic information (accident, route recommendation, etc.) to the vehicles
in the targeted area. Gateways play the role of rebroadcasters by relaying back and
forth to the farthest receivers ensuring that remote vehicles can immediately get
the alert message. Since some gateways may broadcast the message simultaneously,
the gateway relay selection process must be interrupted when the vehicles ahead
detect that they have already received the message; thus, the data redundancy can
be considerably reduced. But this method remains restrictive because it requires
that the nodes be spread over the targeted coverage area.

Black-burst and Multi-channel-based Multi-hop Broadcast protocol BMMB
[Wu 2017] runs on different channels simultaneously. The black burst is based
on splitting the communication range of the sender of the message into several
segments via reiterative partitions; then, using the Request to Broadcast and Clear
to Broadcast (RTB / CTB) mechanisms, a single relay vehicle is selected in the
outermost non-empty segment to broadcast the emergency message on the next
hop. This protocol minimizes the unwanted effects of the broadcast storm but
assumes non-standard wireless technologies.

3.2.1.2 Adjusting of MAC layer parameters

In this second sub-class of methods, MAC level protocol parameters are adjusted
on a vehicle basis for statistically assigning different back-off periods to vehicles.
This choice reduces node contention and collisions with no impact on information
coverage. However, useless transmissions are not avoided.

In [Virdaus 2017], Virdaus and al. propose a new model to calculate the
survival probability of a single-hop broadcast packet. This model uses a forwarding
mechanism in an emergency message dissemination application based on counting
all the cases of contention window allocations to all the nodes simultaneously
receiving a broadcast message. Their scheme communicates a single-hop broadcast
survival probability as a function of the size of a contention window and the number
of broadcasting nodes. The proposed model improves the messages reception ratio.
However, there is a signiĄcant increase in the dissemination delay.

In [Balon 2006], the authors propose a protocol that minimizes the collision rate
and increases the broadcast reliability. A node can detect collisions and congestion
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by simply analyzing the sequence numbers of the recently received packets. Each
node periodically broadcasts its status to its neighbors, e.g., relevant information
on its position, speed, acceleration, etc.) and, notably, a report on the portion
of packets it successfully received from each neighbor. Accordingly, based on this
feedback mechanism, each node dynamically adjusts its parameters, such as its
Contention Window (CW) size and transmission rate.

In [Gawas 2017], an efficient time-slotted multi-hop broadcast protocol is
proposed. This protocol selects a segment leader responsible for forwarding the
alert message on a particular road segment. It allocates separate time slots for alert
messages to avoid interference and ensures reliable delivery through the signaling
mechanism while maintaining a high reception rate and low end-to-end delay for
single-hop safety messages. This protocol also reduces the number of transmissions
and ensures the timely delivery of warning messages.

3.2.2 Vehicle clustering techniques

Another class of proposals set aside the Ćooding logic and guide AMs dissemination
by organizing vehicles into clusters (groups of nodes) and deĄning how messages
are propagated between and within clusters. Authors use many speciĄc
criteria for cluster formation and Cluster-Head (CH) selection as neighborhood,
direction/destination, relative velocity, etc.

In [Liu 2018a], clusters are vehicles traveling in the same direction, with similar
speeds (for cluster stability) and mutual radio coverage. The node with the highest
link quality in the cluster is elected as CH, receiving messages from other CHs and
retransmitting them to other cluster members. The proposed method considerably
improves the emergency message delivery ratio. However, there is a signiĄcant
increase in the delivery time.

In [Ali 2019], they deĄne clusters as a set of vehicles around a nearby CH vehicle
(i.e., with mutual radio coverage with CH), having the same direction, the same
destination, and the same interests. Each CH maintains a list of neighboring CHs,
including clusters from other roads. When a CH receives an emergency message
with the same road ID as its own, it sends it to all its cluster members and all
neighboring CHs (within its transmission range R) moving in the opposite direction
or on a different road ID. The information is exchanged through beacons with no
beacon congestion control mechanism.

Cheng and al. [Cheng 2019] have proposed a new Center-Based Stable
Clustering algorithm (CBSC). They assume all vehicles have LTE and DSRC
interfaces for communication. The main idea of their proposal is to detect the
center of the ranges where the density of vehicles is much higher than in other
areas with the help of receiving beacon messages. For stable cluster formation,
the vehicle grouping is based on these detected center ranges with the help of the
blob detection method [Lindeberg 1998]. An improved highest-degree algorithm
is applied where the density of vehicles is low. A new relative mobility metric is
introduced for the CH election that evaluates the speed, position, and maximal
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acceleration differences between one vehicle and all remaining vehicles of the same
cluster. A vehicle with a smaller value of relative mobility metric works as CH. The
LTE-enabled infrastructure unit (eNodeB) manages many of the formed clusters
due to the high coverage radius of LTE.

3.2.3 Routing protocols

The third class is based on routing protocols that proactively or re-actively compute
point-to-multi-point routes to all known vehicles. As a result, they exhibit the most
predictable information coverage and efficient resource usage, but their use creates
a higher network overhead and an increased complexity embedded in vehicles.

The ZoomOut Broadcast Routing Protocol (ZBRP) broadcast routing protocol
developed in [Aldabbagh 2016] provides security details to the VANET driver with
a rear sensor. It detects messages for the neighbors with a simple procedure: to
use one-hop intelligently depending on vehiclesŠ speed and distance to deĄne a front
and a rear vehicle. As multicast security message delivery occurs, an entry or relay
is received when unrelated parties lose a safety note. During processing multi-hop
safety messages, only a front or a rear relative vehicle rebroadcasts a safety message,
whereas non-relatives drop it.

The Ad hoc On-Demand Distance Vector (AODV) routing protocol
[Narang 2015] supports on-demand, unicast, and multicast routing, using a
sequence number for each route. AODV responds to link failure in the network
because it is responsive. However, its major drawback is that this type of network
can determine a route that is not necessarily optimal. Therefore, an enhancement to
AODV, Ad hoc On-demand Multipath Distance Vector Routing (SD-AOMDV), is
proposed in [Maowad 2012] to address the characteristics of VANETs. SD-AOMDV
adds additional criteria (speed and direction) to the Ąeld that determines the next
hop during Ąnding and building routes; when a source node wants to send a packet
to destination nodes, the routing protocol gets the direction and speed of the source
node. Then, it gets the direction and speed of the destination nodes. Finally,
intermediate nodes taking part in the route between source and destination are
speciĄed based on the direction and speed of both source and destination.

Preferred Group Broadcasting (PGB) [Naumov 2006] is a greedy forwarding
technique that signiĄcantly improves geographic routing protocols to prevent
broadcast storms and hidden node problems while disseminating messages. PGB
addresses these problems by allowing only speciĄc nodes to rebroadcast a message.
The PGB algorithm selects relay nodes and classiĄes each node that receives a
packet into one of the three groups: PG (Preferred) group that is composed of
pre-deĄned nodes, such as ambulance, police vehicles, etc.; IN group composed of
nodes with a signal stronger than PG nodes; and OUT group composed of nodes
with a signal weaker than PG nodes. Nodes from PG have the highest priority to
be chosen as relays, nodes from the OUT group, and Ąnally from the IN group.
PGB uses signal strength to calculate waiting-timeouts. The highest priority relays
will set shorter waiting- timeouts. One of problems of this protocol is that it lacks
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a mechanism to avoid message duplications. Another disadvantage is that, in low-
density scenarios, the message rebroadcasting can be discontinued in case of an
empty vehicle group (network partition).

Our proposed method, LAMD, is a relay selection technique that differs
signiĄcantly from other previous works because it considers only one parameter: the
location of vehicles, making our method more efficient and simple. In addition, and
as mentioned above, our dissemination scheme primarily exploits V2I transmissions
and complements V2V re-transmissions to reach vehicles in gray areas, while most
of the other work is solely concerned with V2V communications. Table 3.1 presents
a comparison of reliable protocols, considering the following characteristics: (1)
communication support; (2) class of method used to disseminate the message; (3)
parameters considered to select relay and cluster head/member or Adjust Mac
parameters (4) the primary requirement metrics to disseminate an alert message:
Information coverage (to ensure that all vehicles in the region have received the
message), Dissemination Delay (to ensure that the message has been received by all
vehicles quickly), Collision ratio (to ensure that the broadcast storm problem has
been mitigated and contention are reduced). Conversely, to all previously analyzed
work, Table 3.1 clearly shows that our LAMD protocol signiĄcantly improves the
information coverage, dissemination delay, and collision ratio.
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Table 3.1: Comparison of related research

Selected work Communi
-cation

Dissemination
technique

Considered parameters Information
coverage

Dissemina
-tion
Delay

Collision
Ratio

ZBRP
[Aldabbagh 2016]

V2V Routing vehiclesŠ speed and distance

D-AOMDV
[Maowad 2012]

V2V Routing vehiclesŠ speed, direction and
distance

PGP
[Naumov 2006]

V2V Routing vehiclesŠ type and signal
strength

Liu and al.
[Liu 2018a]

V2V Clustering vehiclesŠ link quality and
distance

Ali and al.
[Ali 2019]

V2V Clustering vehiclesŠ distance, direction
and interests

CBCS
[Cheng 2019]

V2V Clustering vehiclesŠ speed, position, and
maximal acceleration

Virdaus and al.
[Virdaus 2017]

V2V Adjusting MAC
Layer parameters

Contention window

Balon and al.
[Balon 2006]

V2V Adjusting MAC
Layer parameters

Contention window and
vehiclesŠ transmission rate

Gawas and al.
[Gawas 2017]

V2V Adjusting MAC
Layer parameters

Time slot and vehiclesŠ
transmission rate

BMMB
[Wu 2017]

V2V Relay Selection distance, vehiclesŠ distance
and position vs sender

Liu and al.
[Liu 2015]

V2I/V2V Relay Selection vehiclesŠ distance and position
vs sender

Addp
[Oliveira 2017]

V2V Relay selection vehiclesŠ distance and local
density

LAMD V2I/V2V Relay Selection vehiclesŠ Location

( ) : Slightly enhanced ; ( ) : Moderately enhanced; ( ) : Highly enhanced
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3.3 Location-based Alert Messages Dissemination

scheme (LAMD)

3.3.1 System model

An SDN network controller is assigned to each region; it manages all the RSUs that
provide V2I wireless connectivity within its region. Each controller identiĄes gray
zones in its region and selects K rebroadcast zones where vehicles can rebroadcast
an AM sent by an RSU to extend the V2I coverage and reach all the vehicles located
in gray zones. These rebroadcast zones are deĄned by a rebroadcast point Pi(xi, yi),
i ∈ [1, K], where xi and yi are the GPS coordinates of Pi, and a radius dmax in the
order of a few meters from the rebroadcast point.
For illustration, Figure 3.1 depicts a road section involving two RSUs led by an SDN

Figure 3.1: Location-based alert messages dissemination scenario

controller. The red dash ellipses represent RSUsŠ wireless coverage. All the other
road portions are considered gray zones. Three rebroadcast zones (delimited by
the blue dashed ellipses) are deĄned. Vehicle transmissions from these rebroadcast
zones are expected to cover the gray zones.

3.3.2 LAMD key principles

LAMD is an alert message dissemination procedure designed for network-
infrastructure-based vehicular networks, typically SDVN. It relies on V2I broadcasts
from the network infrastructure (i.e., RSUs) complemented with V2V rebroadcasts
aiming to reach and cover all vehicles in a geographical area of interest, notably
those that do not fall under the coverage of the RSUs. The key principles of LAMD
are as follows:

The network controller computes rebroadcast points/zones used to select
vehicles allowed to undertake V2V retransmissions effectively. It shares these zones
with vehicles during handover. LAMD is focused on dissemination, so it doesnŠt
preclude any particular rebroadcast point placement method. This latter can be
based on network planning, radio site surveying, or any form of prediction to cope
with the dynamic nature of radio channels. At Ąrst, a general simple default method
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is, however, proposed in the next section. Later, we offer a more optimal rebroadcast
point placement approach in the following chapter.

LAMD implements a distributed relay-vehicle selection method, which chooses
among the vehicles that have received an AM the most appropriate to ensure the
full distribution of the alert message within the area of interest. This selection
acts as a Ąlter to avoid useless retransmissions. More precisely, on the advent
of an alert message broadcasted by an RSU, a receiving vehicle individually
decides whether it is eligible for rebroadcast by checking its location regarding
the rebroadcast points. The closer a vehicle is from a rebroadcast point, the
better candidate it is for a rebroadcast. This distributed distance-based priority
scheme is implemented by enforcing different waiting times before rebroadcast to
vehicles, i.e., linearly increase as a function of the distance vehicles have to their
closest rebroadcast point. More precisely, vehicles sitting within a rebroadcast
zone (which we name Candidate Relay (CR) vehicle) are invited to compute a
waiting time as a function of their position with respect to the corresponding
rebroadcast point within a time interval of [0, Wmin ∗ Ts], where Ts is the time slot
duration as deĄned in IEEE 802.11p and Wmin is the minimum number of time slots.

To guard against road traffic situations where no vehicle is ideally positioned
within a rebroadcast zone when an AM is broadcasted, as backup, vehicles outside
the broadcast zones but at a distance less than Rmax from the corresponding
point (which we name Candidate Relay Backup (CRB) vehicle) are invited to
wait for a time period within the [Wmin ∗ Ts, Wmax ∗ Ts] (where Wmax is the
maximum number of slots) time interval before a rebroadcast attempt. When
the vehicle with the shortest waiting time rebroadcasts the AM, all the CRs and
CRBs vehicles that receive the AM cancel their rebroadcast attempt. For those
that have already Ąnished their waiting process and requested transmission from
the MAC layer, this request is resumed using the MLMEX-CANCELTX" service
primitive [Kuffermann 2014]. This avoids redundant retransmissions once a relay
vehicle is notiĄed that the AM was rebroadcasted by a better-positioned relay
vehicle.

A last feature of LAMD is using a TTL (Time To Live) mechanism. Each AM
conveys a TTL value initially set by the RSU when broadcasting the AM and then
decremented at each rebroadcast. It hinders any rebroadcast when an AM message
is received with a TTL equal to zero. The controller sets the initial value of the
TTL for each RSU and allows extending the delivery coverage of an AM by allowing
more than two-hops wireless paths. Indeed, in the case of a vehicle receiving an AM
from a relay vehicle having no wireless connectivity with the network infrastructure
(i.e., RSUs), the vehicle is elected as an opportunistic relay (that we call Candidate
Relay Exceptional (CRE). If the received TTL is not null, it enters the waiting
time process with a time period set as a function of its distance to the sending
vehicle and rebroadcasts the AM. This TTL mechanism can be tuned on an RSU
or an AM message basis, allowing the network controller to dynamically adjust the
dissemination according to the wireless channelŠs sudden and transient degradation.
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Figure 3.2: Rebroadcast zones

It can also be useful in case of ineffective or incomplete placement of rebroadcast
points.

Figure 3.1 presents some examples of CR, CRB, and CRE vehicles with an
illustration of their role in disseminating AMs.

3.3.2.1 Rebroadcast point placement

The number and the location of rebroadcast points and zones are inputs to
the LAMD dissemination procedure. Therefore, different techniques could be
considered for deriving, either a static placement or even a dynamic one, that adapts
the placement to the wireless channel conditions (number of vehicles, weather, etc.).
We describe hereafter a general and simple static placement method, which takes
as input performance measures of each RSU. These can be derived from some site
surveying or simulation studies.

Real experiments in [Xu 2017] show that the packet loss rate and delay
signiĄcantly increase when the distance between vehicles and RSU exceeds a
threshold Rth. We assume the controller can deĄne a threshold distance Rth for
each RSU. From this threshold, the controller builds a regular polygon with r

equal sides (5 ≤ r ≤ 17), each with a length greater than 2Rmax ± 100m, where
Rmax is the maximum transmission range of vehicles (as shown in Ągure 3.2). This
ensures reduced interference between relay vehicles associated with two adjacent
rebroadcast zones. For each polygon vertices, the controller derives the closest
point on a roadside that falls within a distance of dmax. If such a point exists, it is
added to the set of rebroadcast points.

3.3.3 Dissemination procedure

The proposed AM dissemination scheme combines relay selection and contention
management. Algorithm 1 describes the behavior of a vehicle when receiving an
AM. In this scheme, each node Vj maintains a list of rebroadcast zones in its
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Algorithm 1: Alert message dissemination
Input:
AM : Alert Message
Pi, i ∈ [1, k], dmax : rebroadcast zones
Vj : current node, Pos(Vj) : its position, Pos(Vj) : its direction
S : Sender

1 AM.Reception() /* AM received */

2 if S = RSU then
3 Pi ← F (Pos(Vj), dir(Vj)) /* find the nearest rebroadcast zone

*/

4 if d(Pi, Vj) ≤ dmax then
5 Vj ← CR /* Vj is a Candidate Relay */

6 T ← T1 /* Calculate time to wait T */

7 else if dmax < d(Pi, Vj) ≤ Rmax then
8 Vj ← CRB /* Vj is a Candidate Relay Backup */

9 T ← T2

10 else
11 if (AlreadyReceive (AM) = True) and (Vj = CR or Vj = CRB) then
12 if d(Pi, S) < d(Pi, Vj) then
13 Stop (t) and Discard()

14 else if ( AlreadyReceive (AM) = True ) and (Vj = CRE) then
15 Stop (t) and Discard()

16 else if Vj /∈ ¶RSU♢ and TTL ̸= 0 then
17 Vj ← CRE /* Vj is a Candidate Relay Exceptional */

18 T ← T3

19 else
20 Discard ()

21 LaunchTimer (T) /* start timer */
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direction, shared by the controller during the handover. An AM is broadcasted with
the senderŠs position, and a time to live TTL is used to control the rebroadcasts of
vehicles located in gray zones, as explained above.

Let Pi = F (pos(Vj), dir(Vj)) a function which takes the GPS position of
vehicle pos(Vj) = (xj , yj) and its direction as parameters, and returns the closest
rebroadcast zone in its direction.

As mentioned in Algorithm 1, if a vehicle Vj receives an AM, Ąrst, it checks the
sender:

Step 1 [Lines 2-3] If the sender is an RSU, the node Ąnds the closest rebroadcast point
Pi from its location, and it checks its position according to the rebroadcast
zone; otherwise, the message is received from a relay vehicle, go to step 4

Step 2 [Lines 4-6] If Vj is in the rebroadcast zone, the node concludes that it is a
Candidate Relay (CR) and

then computes its waiting time T1 as follows :

T1 = Wmin
d(Vj , Pi)

dmax
Ts (3.1)

with d(Vj , Pi) being the distance between vehicle Vj and rebroadcast point Pi,
dmax is the radius of the rebroadcast zone, and Wmin and Ts are respectively
the minimum number of time slots and the time slot duration. As cited above,
T1 lies between 0 and Wmin ∗ Ts. Go to step 7, otherwise, go to step 3

Step 3 [Lines 7-9] If Vj is beyond dmax but still within a distance Rmax from the
rebroadcast point, then, the node concludes that it is as Candidate Relay
Backup (CRB) and computes the waiting time T2 as follows :

T2 = [Wmin + (Wmax −Wmin)
d(Vj , Pi)

Rmax
]Ts (3.2)

where Wmax is the maximum number of Time slots. T2 is set between Wmin∗Ts

and Wmax∗Ts to avoid collisions with nearby CR vehicles. This is particularly
useful when the road traffic is low or sparse since, in case of no vehicle in a
broadcast zone, a close-by vehicle is given the opportunity to rebroadcast the
AM. Go to step 8, Otherwise discard the message

Step 4 [Lines 10-11] If Vj receives the same message another time, and Vj is a CR or
a CRB go to step 5, otherwise, go to step 6

Step 5 [Lines 12-13] If Vj and the sender node are in the same rebroadcast zone, i.e.,
the distance between the rebroadcast point and the sender is less than the
distance between the rebroadcast point and Vj , if the waiting process has not
elapsed yet, it is stopped, and the AM is discarded. Otherwise, it cancels the
MAC layer transmission request. Then, the procedure exits.
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This condition ensures that once a CR has rebroadcasted an AM, no other
CR from the same rebroadcast zone is allowed to retransmit the AM. It also
avoids cases where a CR (or CRB) associated with a rebroadcast point is
prevented from rebroadcasting if it receives a rebroadcast AM related to
another rebroadcast point.

Step 6 [Lines 14-15] If Vj receives the same message another time, and Vj is a
Candidate Relay Exceptional (CRE), stop the timer, the procedure exits,
otherwise, go to Step 7

Step 7 [Lines 16-18] If Vj is not attached to any RSU and the TTL > 0, Vj is
declared as CRE. In this case, the farthest vehicle from the sender, but still in
its transmission range, has the highest priority to rebroadcast, so the waiting
time T3 is given by :

T3 = Wmin(1−
d(Vj , S)

Rmax
)Ts (3.3)

Otherwise, discard message

Step 8 [Line 21] Start the timer T

For completeness, it is worth noting that when Vj experiences a timeout, it updates
the AMŠs TTL and then requests its transmission to the MAC layer.

3.3.4 Discussion

As explained above, LAMD focuses on message dissemination and takes a set of
positioned rebroadcast points as input. Therefore, rebroadcast point placement is
crucial to achieving the full performance of LAMD. But computing the optimal
placement is difficult, as it requires an accurate propagation channel model on the
area of interest, with varying characteristics and performance. One naive approach
would resort to abusing the number of rebroadcast points, which raises scalability
issues as the list of rebroadcast points that are reachable from an RSU must be
provided to each vehicle during handover. It also adds contention between relay
vehicles associated with nearby rebroadcast points as it is likely that they would
be in the transmission range of each other.

Besides the TTL mechanism, which can be helpful for a non-optimal placement,
we argue that thanks to the centralized control and the overall view of the network
with additional information related to vehicles (their attributes, trip, etc.) brought
from the cloud, effective dynamic placement can be devised and implemented by the
controller. For instance, the controller could adjust the number and placement of
rebroadcast points according to the number of available vehicles and their expected
road trip (if available). Furthermore, at some rebroadcast points, the controller may
instruct relay vehicles to transmit with a given transmission power or to direct the
transmission towards a speciĄc direction to increase the area of reach reliably. Such
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instructions could even be applied to a speciĄc AM, as they can be piggybacked with
the AM. Finally, the controller could also learn from its experience, reported by past
vehicles, by employing reinforcement learning techniques to adjust its placement
according to the current context.

Another salient feature of LAMD is nominally allowing one retransmission by
a CR or CRB per rebroadcast point. This implicitly assumes that this single
transmission or the next AMs of the same road event are expected to be delivered
successfully for any vehicle in the targeted gray area within a brief delay. Nominally,
this is the case, but it may take some time to notify the event when vehicle density
is low in some cases. When the controller identiĄes such a situation, this latter may
proactively adjust AMs dissemination to the situation by, for instance, allowing
more than one single retransmission per rebroadcast point. In other words, a CR
or CBR would resume its AM rebroadcast attempt only if it receives a pre-deĄned
number of rebroadcasts.

This work focuses on the downlink dissemination procedure (i.e., from the
network infrastructure to the vehicles) since most performance gains lie there. In
some scenarios, the vehicle may issue the AM that detects a road event. Then,
the AM needs to be conveyed uplink toward the network infrastructure to beneĄt
from the gains brought by the downlink dissemination. The uplink transmission in
LAMD works as follows. If the vehicle has recently exchanged with an RSU (CAM
or DENM messages or any other message on the SCH channels), it Ąrst invokes a
unicast transmission to the RSU. If it fails or the vehicle has lost connectivity with
its RSU, it broadcasts the AM stating that it is meant for uplink. Following the
same logic as in downlink dissemination, any receiving vehicle computes its waiting
time as a function of its distance to its RSU and then starts its waiting process as
part of a rebroadcast attempt. The closer a vehicle is to its RSU, the shorter its
waiting time is.

3.4 Performance evaluation

The goal is to assess the performance of LAMD regarding its ability: (1) to reach
all the vehicles in the area of interest in a short time, (2) to avoid collisions and
redundancy, and (3) to use network resources effectively. Also, our proposal is
compared to the Ćooding technique [Ciccarese 2009], V2I broadcasts (with no V2V
rebroadcasts) and the AddP [Oliveira 2017] protocol.

This section details the simulation environment, the performance metrics, and
the obtained results.

3.4.1 Simulation setup

In the experiments, an event-based network simulator Netsim is used. Simulation
of Urban Mobility (SUMO) bi-directionally coupled with Netsim as described in
[Weber 2021] is used to make the most realistic simulations. SUMO is a microscopic
road traffic simulator that allows creating a scenario by converting an existing map
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Table 3.2: Simulation conĄguration parameters

Parameter Value

Simulation time 500 s
AM generation start 10 s
AM generation rate 10 packets/s
AM packet size 1024 bytes
Propagation model Nakagami m = 3
Slot time 10 µs
Wmin 30
Wmax 1023
dmax 16 m

or using one of the external tools provided by the SUMO project itself (for example,
NETGEN or NETCONVERT) [Busanelli 2013]. Netsim includes implementations
of IEEE 1609.4 and IEEE 802.11p communication standards. It also includes Basic
Safety Message (BSM) handling and beaconing for cooperative awareness messages
(CAMs).

In this work, we consider two urban scenarios with sparse, normal, and dense
traffic conditions: in the Ąrst one, the roads form a symmetric Manhattan grid, while
the second one corresponds to a part of a European-like city (namely, Toulouse,
France) where the road structure is irregular. The vehicle density varied between
30 to 500 vehicles in the two scenarios. The duration of the simulation runs is
500 seconds. An average of 50 simulation runs is reported. The speed of vehicles
is varied from 0 to 20 m/s, i.e., vehicles have different accelerations at different
timestamps. We set the maximum transmission range of each vehicle to Rmax =
250m.

In urban scenarios, signal shadowing effects heavily affect radio transmissions.
The Netsim framework includes a log normal shadowing model. This model
accurately captures large buildingsŠ effect by blocking transmissions. For example,
small walls block weak transmissions, while buildings only slightly hinder strong
transmissions in the line of sight [Oliveira 2017]. We use this model in our
experiments. In all simulated scenarios, there were two RSUs separated by a
distance of 1 to 2 km. Each one handles the transmission of alert messages to
vehicles in its transmission range. The other simulation parameters are shown in
table 3.2.

3.4.1.1 Manhattan grid model

We generate a 12*4 Manhattan Grid scenario with a SUMO simulator covering
an area of 2km × 1.5km with road segments of 300 meters long and two lanes in
each direction. This scenario is commonly used to evaluate network protocols in
urban environments [de Sousa 2018, de Sousa 2015, Milojevic 2014, Araujo 2014,
Garip 2015]. This type of network is called Manhattan Grid because its road
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topology reproduces the Manhattan borough in New York City, USA. When
reaching an intersection, a node can turn left, right, or go straight on, as in real life.
So, in the Manhattan model, when the nodes reach the intersections, they move
with 50% probability on the same street, 25% turning to left and 25% turning to
the right, according to the scheme presented in [Meneguette 2014].

Inter-Vehicle Communication (IVC) algorithms easily handle data dissemination
in Manhattan Grid scenarios since predesigned algorithms can efficiently recognize
the orthogonal road topology. Therefore, Manhattan Grid scenarios are usually
used in the Ąrst experiment to verify the validity of our algorithm. If an IVC
algorithm cannot handle Manhattan Grid scenarios, it will be impossible to handle
more complex ones. Moreover, due to the simple road topology of Manhattan Grid
scenarios, some design issues can be clearly exposed [Tian 2016].

3.4.1.2 Toulouse city’s scenario

In this scenario, we assume a cross-section of Toulouse, France, with an area
equal to 2km × 2km. The map has been retrieved from Open Street Map (OSM)
project. Here, the roads are characterized by an irregular shape, and there are
junctionsŮnote that the number of junctions is slightly higher than in the regular
scenario.

3.4.2 Rebroadcast point placement

We proceed as follows. We Ąrst identify the gray zones for both considered city
maps. Then, we apply the default placement method of section 3.3.2.1.
A wireless transmissionŠs success depends on multiple factors: transmitter power,
path loss, fading, receiver sensitivity, etc. Moreover, depending on the environment
(highway, Urban, Obstructions, Line of sight), the transmission coverage of an
RSU may vary widely, for example, from 100 to 700 meters, for the same
transmission power as shown in [Gozálvez 2012, Böhm 2010]. On the other hand,
road safety applications, especially those concerning cooperative awareness, require
high reliability, i.e., a PDR between 90 and 95% [Boban 2017]. Therefore, for this
study, the transmission coverage of a RSU is calculated as the maximum distance
from the RSU where the PDR remains greater than 90% [Meireles 2010]. All
the geographic areas that fall outside the transmission coverage of all RSUs are
considered gray zones.
We have run several simulations to compute these zones where each RSU broadcasts
a control message every 100 ms for 500s. After each packet, we record the distance
of each vehicle from the sending RSU, the vehicles that received the message, and
the packet status (success or error).

Figure 3.3 shows the computed Packet Delivery Ratio (PDR) as a function of
the distance to the RSU for both scenarios. It can be observed that the PDR
falls below 90% when the distance between the vehicle and the RSU is strictly
greater than RT

th ≃ 600m for the ToulouseŠs scenario and RM
th ≃ 500m for the
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Figure 3.3: Packet Delivery Ratio (PDR) versus the distance between vehicles and
RSU

ManhattanŠs scenario. From there, Ąrst, for the ToulouseŠs scenario, we build a
regular octagon for each RSU with 8 sides of 459m(0.765RT

th [Rezaei 2015]) in length
and 8 vertices representing our rebroadcast points. Then, for ManhattanŠs scenario,
we build a regular heptagon for each RSU with 7 sides of 434m lengths and 7 vertices
representing the rebroadcast points in the Manhattan map. In fact, as mentioned
above, we have placed the rebroadcast points at the edge of the road closest to each
vertex. Also, we do not consider all the rebroadcast points as the RSUs are in the
corners. As a result, we get 13 rebroadcasts zones in both ToulouseŠs scenario and
ManhattanŠs scenario, as shown in Figure 3.4 and 3.5.

3.4.3 Performance metrics

The following three performance metrics are used to assess the effectiveness of
LAMD in disseminating AMs.

• Information Coverage (IC): computed as the total number of vehicles that
successfully receive (NumVehRecMsg) an AM at the end of the simulation
divided by the number of vehicles (TotalNumVeh) averaged on all generated
AMs. This metric shows how successful the dissemination is after a decent
period of time.

IC =
NumV ehRecMsg

TotalNumV eh
(3.4)

• Packet Delivery Ratio (PDR): is the ratio between the number of
AMs (NumRecMsg) successfully received by each vehicle and all transmitted
AMs (NumTransMsg) during the vehicle lifetime within the area of interest
averaged on all the vehicles of the area of interest. This metric is important
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Figure 3.4: ToulouseŠs city scenario Figure 3.5: ManhattanŠs city scenario

since it measures the sustained effectiveness of the dissemination.

PDR =
NumRecMsg

NumTransMsg
(3.5)

• Dissemination delay: The dissemination delay is the total time required to
deliver the AM to all the vehicles in the area of interest that receive the AMs.
The vehicles that do not receive any AM are excluded from the computation.
This metric measures how fast the dissemination can reach the vehicles within
the area of interest.

The following two performance metrics measure the network overhead induced by
the dissemination in terms of collisions and redundant successful transmissions.

• Collision Ratio (CR): The collision ratio is the percentage of MAC
collisions (NumCollisionPkts) divided by the number of packets sent
(NumSentPkts) computed over the simulation duration.

CR =
NumCollisionPkts

NumSentPkts
(3.6)

• Redundancy Rate (RR): The average number of AM rebroadcasts or
duplicate transmissions (i.e., NumDuplicPkts) out of all sourced (generated)
AM (NumSPkts) [Panichpapiboon 2011].

RR =
NumDuplicPkts

NumSPkts
(3.7)

3.4.4 Performance analysis

This section details the performance results for Toulouse and Manhattan scenarios
under various vehicle densities.



3.4. Performance evaluation 45

3.4.4.1 Effectiveness of LAMD dissemination procedure

i. Information Coverage

Figures 3.6 presents the Information Coverage as a function of vehicle density for
LAMD, Ćooding, V2I, and AddP when applied to the scenario of Toulouse city. The
results show that starting from a vehicle density of 225 vehicles, LAMD achieves
full vehicle coverage at the end of simulation time. In comparison, AddP achieves
full coverage with the same vehicle mobility, starting from a vehicle density of 420
vehicles (almost twice the density with LAMD). This is because LAMD combines
V2I and V2V transmissions while AddP relies exclusively on V2V transmissions.
These latter depend on the vehicle density as vehicles must be in mutual radio
coverage to support a V2V transmission.
For the considered experiments, the Ćooding dissemination never achieves a full-
coverage even under high densities, despite all vehicles being allowed to rebroadcast
an AM. Worse, when the density increases, the IC decreases. In fact, the increase in
vehicle density increases transmission collisions, and redundant rebroadcasts. Both
consume the scarce radio resources in place of constructive rebroadcasts. This is a
typical illustration of the negative effect broadcast storm problem cited above.
The IC of V2I also decreases when vehicle density increases. By increasing density,
more vehicles are likely to be located outside of the RSU coverage. The results
show that with the vehicle mobility generated by SUMO on average, more than
20% of the vehicles do not fall within reach of an RSU for the entire simulation
period (500s) or their lifetime. Despite this important portion of far away from
vehicles, even under very low vehicle densities where the presence of vehicles within
or around rebroadcast zones is not guaranteed, LAMD achieves an IC of more than
92%. Moreover, as shown in Figure 3.7, which plots the IC as a function of time
for low vehicle density scenarios (35, 75, 225 vehicles), the maximum achievable IC
is reached in less than 500ms.

As shown in Ągure 3.8, the evolution of IC as a function of vehicle density for
ManhattanŠs scenario is quite similar to ToulouseŠs scenario. However, we notice
an expected slight difference because the road layout is different. Notably, with
LAMD, full vehicle coverage is achieved starting from a lower density of vehicles,
i.e., with a density of 125 vehicles (vs. 225 vehicles for ToulouseŠs scenario).

ii. Packet Delivery Ratio

Figure 3.9 and Figure 3.10 present the PDR for all dissemination procedures,
respectively, for ToulouseŠs city scenario and ManhattanŠs city scenario under
different vehicle densities. The results show that LAMD sustainably delivers AM
messages to almost all vehicles (with a PDR of 96%). Notably, in comparison,
AddP exhibits a signiĄcantly lower PDR (around 70%). This shows that LAMD
distributes AMs more effectively by presumably selecting more suitably relay
vehicles and inducing fewer packet losses over the overall simulation period. This
comparison also holds with Ćooding, whose poor packet delivery ratio is caused by
the collisions generated by the broadcast storm.



46
Chapter 3. LAMD: Location-based Alert Message Dissemination

Scheme

50 100 200 300 400 500
Vehicle density

30

40

50

60

70

80

90

100

In
fo

rm
at

io
n 

Co
ve

ra
ge

 (%
)

V2I
Flooding
Proposed
AddP

Figure 3.6: Information coverage -
Toulouse

	� ��� ��� ��� ��� 	��
���������


	

��

�	

��

�	

���

���
��

��
��
��

�

��
��
��

���
�

35 vehicules
75 vehicules
225 vehicules

Figure 3.7: Information coverage -
Toulouse

	� ��� ��� ��� ��� 	��
��������������!

��

��

	�


�

��

��


�

���

��
��
��

��
��
��
��

 �
��
��
���

�

V2I
Flooding
Proposed
AddP

Figure 3.8: Information coverage - Manhattan
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Figure 3.9: Packet Delivery Ratio -
Toulouse
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Figure 3.10: Packet Delivery Ratio -
Manhattan

iii. Dissemination Delay

Figure 3.11 and Figure 3.12 show the dissemination delays versus vehicle density
respectively in ToulouseŠs city and ManhattanŠs city scenario. The results show
that the dissemination delays with LAMD and AddP are signiĄcantly lower than
the delays observed with Flooding and V2I approaches, especially for high traffic
densities.
The results show that LAMD delivers the Ąrst copy of an AM to all vehicles within
a few AM periods. For high vehicle densities, relay vehicles always exist, which
quickly rebroadcast the AM to the vehicles outside the RSUs coverage, leading
to a dissemination delay below twice the AM period. For low vehicle densities,
fewer vehicles are available in the network, the presence of vehicles around each
rebroadcast zone is hence not guaranteed for the Ąrst AMs. Nevertheless, LAMD
can still deliver an AM to all the vehicles within 5 AM periods (i.e., 500ms). For
instance, for a vehicle density of 30 vehicles, the total time required is 315.28ms in
ManhattanŠs city scenario, with over 75% of vehicles served within 100ms.
AddP exhibits similar results thanks to its relay selection method, which favors far
away relay vehicles with the highest neighborhood. This helps speeding the full
dissemination of AMs.

Even if all vehicles are allowed to rebroadcast an AM with the potential of
fastly reaching all the vehicles, the Ćooding dissemination procedure suffers from the
effect of the broadcast storm. AM rebroadcasts experience collisions and increased
contention, delaying their successful delivery.

For the V2I approach, it takes quite a long time to reach all the vehicles in the
area of interest, as these latter need to be under the coverage of an RSU to receive
an AM. As the average speed of vehicles is between 7 and 13 m/s, i.e., the vehicle
can only move approximately 1m in 100ms. So, it may take some time before a
vehicle comes under the coverage of an RSU. This is the reason why V2I offers by
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Figure 3.11: Dissemination delay -
Toulouse
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Figure 3.12: Dissemination delay -
Manhattan

far the worst dissemination delays.

3.4.4.2 LAMD network overhead

i. Collision Ratio

Figure 3.13 and Figure 3.14 show the collision ratio as a function of vehicle density
respectively for ToulouseŠs city scenario and ManhattanŠs city scenario. The results
are similar in both scenarios. It is worth noting that even for high vehicle densities,
the collision ratio remains very low with LAMD (about 0.001%). In comparison,
we observe that the collision ratio reaches 59% for Ćooding and ranges from 22%
to 34% for AddP (yet AddP also relies on some form of relay selection to limit
contention to the wireless medium).

This is obviously an important advantage of LAMD since radio resources are
saved and made available to other AMs or CAM messages. This is achieved
thanks to the selection method, which limits the set of candidate relays to those
close to rebroadcast points and then further reduces rebroadcast contention by
assigning different waiting periods to candidate relays. However, some rare collisions
may still occur, either because of a simultaneous transmission from two or more
nearby candidate relays associated to different rebroadcast points, or the back-off
procedure of the CSMA/CA technique, which if the wireless medium was sensed
busy, introduces a random back-off time when the vehicle accesses the medium.

ii. Redundancy Ratio

Figure 3.15 and Figure 3.16 show the number of duplicated AM transmissions for
all techniques successively in ToulouseŠs city scenario and ManhattanŠs city scenario
under different vehicle densities. As expected, Flooding is the protocol with the
highest redundancy because no mechanism limits AM rebroadcasts. Compared
to other techniques, LAMD induces the smallest redundancy ratio (below 50%).
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Figure 3.13: Collision ratio - Toulouse
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Figure 3.14: Collision ratio - Manhattan
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Figure 3.15: Redundancy ratio - Toulouse
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Figure 3.16: Redundancy ratio -
Manhattan

The redundancy gain with respect to the other dissemination schemes increases
as the vehicle density increases and reaches one third less redundancy than AddP
(as explained above, also uses a relay selection method that reduces transmission
redundancy).
This low redundancy is achieved thanks to the ability of LAMD to correctly select
only a small set of relay vehicles to fully disseminate an AM, and also to the fact
that a candidate relay that observes an AM rebroadcast resumes its rebroadcast
attempt.
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3.5 Conclusion

This chapter proposes an alert message dissemination procedure based on
vehicle locations to provide high coverage, fast delivery, and minimal network
overhead. The main peculiarities of our solution are: First, the combination of
V2I transmissions and V2V re-transmissions, where Ąrst, RSUs broadcast alert
messages, and then, some selected relay vehicles rebroadcast the messages after a
personalized waiting time. Second, the deĄnition of broadcast zones by the SDN
controller where relay vehicles may rebroadcast the message to reach all vehicles
that are located in the area of interest, particularly those in gray areas. To that
end, we have proposed a static default method that computes rebroadcast points.
The performance results prove the effectiveness of our procedure by providing a
high delivery ratio, limiting packet collisions, minimizing redundancy, and ensuring
rapid dissemination and high information coverage.

In this chapter, we have detailed and highlighted the advantages of our proposed
dissemination procedure. In the next chapter, we will focus on a new reinforcement
learning technique of rebroadcast point placement that adapts to radio channel
conditions, the actual locations of the gray zones, and road traffic conditions.



Chapter 4
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Effective Alert Message

Dissemination

4.1 Introduction

The Alert message dissemination procedure is the basis of the approach proposed in
this thesis. First, we have shown this approachŠs advantages and beneĄts. Then, we
have highlighted issues that need improvement to make this scheme more efficient
and accurate.

Among these issues, we mention the placement of the rebroadcast zones/points.
Indeed, as described in the previous chapter, the network controller computes
rebroadcast zones (or rebroadcast points), and only the vehicles that sit in their
close vicinity (i.e., rebroadcast zones) are allowed to rebroadcast an AM. The
computation of these rebroadcast zones takes advantage of the centralized view that
the network controller builds on the wireless network coverage, radio propagation
environment, as well as of the information related to road traffic and vehicles (their
characteristics and potentially their road trip).

In this chapter, we propose to use a new dynamic approach, which consists of
adjusting the placement of the rebroadcast zones/points according to the evolutions
of the gray zones due to the regular changes in the traffic conditions. We Ąrst
describe the problem and the method adopted. Then, we present our placement
algorithm based on reinforcement learning. Finally, we consider the same map of
the city of Toulouse to evaluate the performance gains of our method compared to
the Ąrst default method proposed in the previous chapter.

The rest of the chapter is organized as follows: Section 4.2 presents an overview
of existing works in the literature. Section 4.3 describes the problem. Section 4.4
presents an overview of reinforcement learning. Section 4.5 details the proposed
method. Section 4.6 evaluates and discusses our simulation results. Section 4.7
concludes the chapter.
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4.2 Related work

In the literature, no work directly deals with rebroadcast zone placement problems
because the relay selection technique initially proposed in the previous chapter
differs signiĄcantly from other previous works, considering only the location
of vehicles (so its presence or not in one of the rebroadcast zones). In the
same way, service placement is an entirely different subject that should not be
confused with the rebroadcast zone placement proposed in this work. Another
problem close to our work is the optimal RSU placement for vehicular networks.
Instead, RSU placement is a location optimization problem that aims to Ąnd the
optimal positions to cover all nodes while considering several constraints, such as
deployment cost and application requirements.

In [Aslam 2012, Cavalcante 2012, Sun 2010, Liu 2013], the authors consider
the problem of optimal RSU placement in urban areas. Their goal is to place
RSUs optimally to enhance connectivity. They consider intersections as the best
locations in urban scenarios since the density in junctions is usually higher, and
information can disseminate in all directions. In [Aslam 2012], Aslam and al.
propose two optimization methods to resolve the problem of minimizing the average
reporting delay of safety messages propagation for a given number of RSUs and
area coverage: The Binary Integer Programming (BIP) method using a branch and
bound approach to Ąnd the best delay to broadcast in the entire region and the
Balloon Expansion Heuristic (BEH) method using balloon expansion analogy to
Ąnd the best delay in each route. In [Cavalcante 2012], the goal is to improve data
dissemination in an urban area. They use a genetic heuristic to solve the Maximum
coverage with Time Threshold Problem (MCTTP [Trullols 2009]) that models the
location problem and gets the best RSUs placement to cover the maximum number
of vehicles on the road. In [Sun 2010], a cost-efficient RSUs deployment scheme
is proposed, where authors aim to update security certiĄcates within a brief delay
using the deployed RSUs. In this scheme, the authors suppose that each vehicle
can exchange with RSUs in bounded time, and the overhead time is used to adjust
routes to update certiĄcates. The problem is modeled as a set-covering problem
and solved by the polynomial-time approximation algorithm called ŞGreed Set
CoverŤ [Aslam 2011]. In [Liu 2013], Liu and al. model the road network as a
weighted undirected graph where each edge represents the average passing time on
the corresponding road. They use the depth-Ąrst traversal algorithm to get optimal
placement to deploy RSUs. In [Mehar 2015], the authors use a genetic algorithm
and Dijkstra algorithm to reduce the number of RSUs based on the deliverance
time applications requirement and the deployment cost. However, all those works
consider only V2I communications, which introduce a signiĄcant delay for vehicles
not available to drive toward the RSUs.

Unlike the existing works, our work makes contributions by considering the
dynamic rebroadcast points placement problem with no need to deploy new RSUs



4.3. Problem description 53

or any network components (so, no additional cost). Furthermore, developing an
RL-based solution provides an optimal number and placement of rebroadcast zones
with a low delay while keeping the server resource utilization low.

4.3 Problem description

We consider the location-based alert message dissemination (LAMD) scheme
detailed in the previous chapter; starting from the AM broadcast from the network
infrastructure, each RSU selects a set of relay vehicles that can re-transmit the
AM to reach vehicles in areas that are poorly or not covered (gray zones) by
the transmissions from the network infrastructure. Indeed, a vehicle that receives
an AM individually decides whether it is eligible for rebroadcast by checking its
location with respect to pre-deĄned rebroadcast points sent to the vehicle during
handover. The closer a vehicle is from a rebroadcast point, the higher its priority is
to rebroadcast the AM. Therefore, rebroadcast zonesŠ placement is crucial for the
efficiency of such dissemination schemes, as the selection of rebroadcasters is based
on those zones.

We consider a rebroadcast zones placement problem in a geographic map with
gray areas having poor or no coverage. Given a geographical map represented
by a matrix of small squares of 40 × 40m2, we can distinguish gray areas, road
areas, and non-road areas in each square. While considering the gray squareŠs
position, the problem is to Ąnd the optimal number and placement of rebroadcast
zones. The aim is to select the regionŠs optimal rebroadcast squares that maximize
the gray squaresŠ total coverage. The number of gray zones can be dynamic by
considering several factors (weather, traffic conditions, etc.). The default method
with Ąxed rebroadcast points is insufficient for a vehicular networkŠs mobile and
dynamic scenario. Therefore, the real-time environment must be considered while
placing rebroadcast points. With this goal, we improve the previous default solution
by using a Reinforcement Learning (RL) rebroadcast points placement algorithm
adapted to the changing vehicular environment. Our solution uses a classic model-
free Q-learning algorithm that Ąnds the optimal rebroadcast zones based on gained
experience from interactions with the environment.

4.4 Background

4.4.1 Reinforcement Learning (RL)

RL is the science of decision-making or the optimal way of making decisions in
a deĄned environment (e.g., a Freecell game) with which an agent (what we will
program an RL algorithm into. e.g., a player) can interact. The agent seeks to
select actions (e.g., to play moves) to maximize a reward throughout an episode
(e.g., a game). Each time the agent chooses an action, the environment changes,
and the agent receives a reward and moves to a new state where new actions are
possible. The environment is modeled mathematically in RL by adopting Markov
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Decision Process (MDP) formalism, and the agent as a decision rule (or policy)
that selects actions based on the history of its previous interactions and knowledge
about the current state of the environment.

A key challenge in RL is that the agent has limited or no prior knowledge about
the impacts of its actions on the environment: it can only collect samples from
the environment by taking actions and observing their effects. The RL algorithm
performance is usually measured regarding how many samples are required from
the environment to learn a good policy or the intensity of the ŞerrorsŤ it makes
during learning. To achieve optimal performance, it must handle two objectives
simultaneously; learn how the environment behaves and how to act optimally while
interacting with the environment. The Ąrst objective is called exploration, and the
second is exploitation. Balancing these objectives is referred to as the exploration-

exploitation dilemma. RL algorithms must use a similar dilemma to maximize
rewards in an unknown environment with limited resources.

At every time step, the environment is described by a state variable s belonging
to a state set S. The complexity of exploration is related to the size of the set
S, which can be its cardinality (if it is Ąnite) or some notion of dimension. For
instance, if S is Ąnite and no prior information is given about the environment, an
agent must visit every reachable state s ∈ S to learn a good policy. Otherwise, it
might miss a state with very high rewards.

Figure 4.1: Abstract Markov Decision Process model
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4.4.2 Markov Decision Process (MDP)

The environment with which an agent interacts is modeled as a Markov decision
process (MDP) [Puterman 2014]. An MDP is deĄned as a (S, A, P, r) tuples, where
S stands for the set of possible states, Ast is the set of possible actions from state
st ∈ S to st+1 ∈ S, Pa(st, st+1) is the probability to go from state st to st+1

performing an action a ∈ A, ra(st, st+1) is the immediate reward, earned from the
transition from state st to state st+1 by performing an action a, as seen in Figure
4.1. The reward is a stimulus, positive or negative, that the agent seeks to maximize
in the long term.

The decision policy π is a function that maps state to action (the agentŠs brain);
basically, a policy function says what action to perform in each state. The ultimate
objective with an MDP lies in Ąnding the optimal policy π∗ which speciĄes the
correct action π(s) ∈ A to perform in each state s ∈ S, which maximizes the sum
of reward. In other words, we would like our agent to learn a function that enables
it to map S to A (π : S ← A).

A Q-value function determines how good it is to end up in a particular state
with a policy (π). This function gives a score according to the sum of predicted
future rewards, also called the expected return. Accurately, the expected return
can only be determined if the agent is deterministic in choosing an action and if
the agent uses the same policy through an episode. Mathematically, a policy is
just a mapping between states and actions on the one hand and the probability of
selecting this action in this state on the other hand. A Q-value function is often
denoted by Q(s).

4.4.3 Bellman optimality equation

Bellman equation is the basic block of solving reinforcement learning and is
omnipresent in RL. It helps us to solve MDP. To solve means Ąnding the optimal

policy that has the best expected return denoted Q∗(s) in all states. This policy can
be calculated using the Bellman optimality equation :

Q∗(st) = max
a∈A(st)

Qπ∗(st, a) = max
a∈A(st)

∑

st+1,r

p(st+1, r♣st, a)[r + Q∗(st+1)] (4.1)

Where

• Q∗(st) is the Q-value function of state s under optimal policy

• Qπ∗(st, a) is the Q-value of taking action a in state st under optimal policy

• p(st+1, r♣st, a) is the probability of an action a in state st to end in state st+1

with reward r

• r + Q∗(st+1) is the recursive return of st under optimal policy

• A(st) is the set of all possible actions in state st
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Using this equation, we can write down a system and solve it. The main problem
is that the system has as many equations and unknowns as there are different
states. For many practical problems, there are too many states, and the system is
too complex to be solved. A solution is to use another approach to approximate
the optimal policy, a policy that is good enough to play the game near optimally
[Castiaux 2021].

4.4.4 Policy iteration

One of those different approaches to solving an RL problem is via experience. First,
the agent is placed in the environment and simulates a full episode according to a
policy π. When the episode is Ąnished, the return Q-value is determined and can be
back-propagated to all state-action pairs throughout this episode. The operation
must be repeated in many episodes in order to gain knowledge and improve the
approximation of Qπ. This stage is the evaluation of Qπ for π.

When the evaluation of Qi
π gets precise enough, it is possible to determine a new

π
′

policy that always selects the best action according to Qπ. This stage is known
as the improvement of π. It is possible to keep improving a policy until it reaches a
local maximum, a local best policy, by continuously evaluating then improving the
current policy.

4.5 Proposed RL-based rebroadcast zones placement

This section details the features of the proposed RL algorithm to solve the
rebroadcast zone placement problem. We Ąrst summarize the environment
representation, the state space, reward function, and the action space used in our
RL framework.

4.5.1 Environment, States, Actions, and Rewards

• Environment: Our environment is represented by the geographical map
covered by the SDN controller as a matrix of size L × M (L and M

depend on the size of the geographic map) of small squares of 40 × 40m2

in order to manage the quality of reception links in each small square area
ŤFigure 4.2Ť. The area of the square could be enlarged or reduced according
to each zone of interest covered by the controller (urban area with many
intersections/buildings or highways). Five values are assigned to deĄne each
squareŠs type as mentioned in table 4.1.

• State Space S: The state space contains the number and
positions of rebroadcast zones, e.g., for state s at iteration t,
st = ¶N, (x1, y1), ..., (xN , yN )♢, where, N is the number of rebroadcast
zones at the current state and, (xi, yi) is the coordinate of the ith rebroadcast
zone at the current state.
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Figure 4.2: Environment representation

• Action Space A: The number of rebroadcast zones can be incremented by
adding (A(xj , yj)) a new rebroadcast zone j(xj , yj), decremented by removing
an existing rebroadcast zone, or maintained (A). The position of each
rebroadcast zone in a current state can be deleted (DL), maintained (M),
or moved up (U), down (D), right (R), or left (L). The number and positions
of rebroadcast zones are updated in each iteration by performing one of the
following actions.

st+1
N×ai∈{DL,M,U,D,R,L}∪a∈{A(xj ,yj),A}
←−−−−−−−−−−−−−−−−−−−−−−−−−− st

We add a constraint to avoid collisions between two adjacent rebroadcast
zones. The distance between two rebroadcast zones must be greater than or
equal to a threshold φ that depends on a vehicleŠs average coverage in the
rebroadcast zone.

• Reward Function: The reward for each square that can be elected as a
rebroadcast zone (value: Ť0Ť) is calculated according to its communication
range in meters (the communication range of a vehicle in the center of this
zone), where we can estimate the number of gray squares covered by this
area. So, for a square i(value = 0), the reward is: ri = number of gray
squares covered by i. For state st = ¶∪N

i=1(xi, yi)♢ at iteration t, the reward
rt is the sum of rewards of all elected rebroadcast zones: rt =

∑N
i=1 ri.

A gray square already covered by an elected rebroadcast zone cannot be
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Table 4.1: SquaresŠ values

Square’s type Value

Road zone could be elected as rebroadcast zone 0
Non-road zone or zone X which could not be elected as rebroadcast zone 1
Gray zone 0.5
Gray zone covered by a rebroadcast zone elected 1.5
Rebroadcast zone elected 2

covered by another rebroadcast zone, thatŠs why we change its value from
0.5 to 1.5 (in other words, a newly elected rebroadcast zone cannot consider
a square of value 1.5 as a gray zone).

The objective is to select the optimal rebroadcast zones in the region that maximize
the total coverage of the gray areas(squares = 0.5).

4.5.2 Q-learning and problem formulation

There are many practical scenarios, such as the placement problem studied in this
work, for which the transition probability Pa(st, st+1) is unknown, which makes it
difficult to evaluate the policy. Q-learning is an effective and popular algorithm
for learning from delayed reinforcement to determine an optimal policy without the
transition probability. It is model-free reinforcement learning that allows agents to
learn how to act optimally in Markovian domains by experiencing the consequences
of their actions without requiring maps of these domains.

Following the above system description, we can model the problem as a discrete-
state MDP, where an agent (SDN Controller) in a state st takes action at ∈ A

and transitions to another state st+1. As a result of the execution of this action,
the environment returns a rebroadcast zoneŠs position dependant reward rt, which
allows the local update of a Q-value, Q(st, at), indicating the appropriateness
of selecting action at in-state st.The Q-value is computed according to the rule
[Sutton 2018]:

Q(st, at)← Q(st, at) + α[rt + γ max
a∈A

Q(st+1, at+1)−Q(st, at)] (4.2)

where α quantiĄes to what extent the newly acquired information will override the
old information. An agent with α = 0 will learn nothing, while with α = 1 it would
consider only the most recent information, and γ ∈ [0, 1] is the discount factor that
determines the current value of the future state costs.

The RL algorithm proposes to converge to an optimum solution in terms of the
rebroadcast zoneŠs number and position. Authors in [Watkins 1992] proved that
Q-learning converges to the optimum action-values with probability "1" as long
as all actions are repeatedly sampled in all states and the action-value pairs are
represented discreetly. First, the algorithm randomly selects N rebroadcast zones
(N is approximately calculated as the ratio of the total number of gray squares
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and the average number of gray squares that a rebroadcast zone can cover). Then,
the greedy policy regarding the Q-values tries to exploit continuously. During the
learning phase, the agent selects the corresponding action based on the ε-greedy
policy, i.e., it selects with probability 1−ε the action associated with the maximum
Q-value, and with probability, ε selects less frequently (ε = 0.1) a random action
(here, y ∈ [0, 1] is a random variable):

at =

{
arg maxa∈A Q(st, at), if y > ε

rand(A), otherwise
(4.3)

This means that the controller uses the optimum Q_value 90% of the time
and makes exploratory actions 10% to gain new experience. This balancing
between exploitation and exploration can guarantee convergence and often good
performance. This is because the controller will have explored all possible actions
and avoided local minima [Sutton 2018].

4.5.3 Q-learning algorithm

Algorithm 2: Q-learning-based Rebroadcast zone placement
Input:
L×M Environment Matrix
N : Initial number of rebroadcast zones
Output:
L×M Environment Matrix with optimal rebroadcast zones placement and
gray zones covered

1 Initialize the Ąrst state with N positions of rebroadcast zones randomly
selected, Q0(s, a) = 0,∀s ∈ S and ∀a ∈ A at iteration t = 0

2 while Learning do
3 Visit state st = (¶∪N

i=1(xi, yi)♢)
4 for (xi, yi) ∈ st do
5 Select an action ai using ε-greedy rule in (4.3)
6 Update The values of Environment Matrix elements
7 Calculate the reward ri

t

8 Observe next state si
t+1

9 Update the Q-value Q(si
t, ai) from (4.2)

10 Select an action a /* to increment or not N */

11 if a = A(xj , yj) /* add a new broadcast zone j */ then
12 Update The values of Environment Matrix elements
13 Calculate the reward rt

14 Observe next state st+1

15 Update the Q-value Q(st, a)

As described above, the environment is represented as a L×M matrix of 40×
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40m2 small squares. Indeed, we initialize matrix elements with only one of the three
Ąrst values in Table 4.1 ("0", "1", and "0.5"). Then, at each iteration, the value of
elements Ť0Ť and Ť0.5Ť can be updated respectively to rebroadcast zone elected (Ť2Ť)
and gray zone already covered by a rebroadcast zone elected (Ť1.5Ť) and vice versa.
A gray zone (value = Ť0.5Ť) can only be covered by one rebroadcast zone (value =
Ť2Ť). In order to limit the number of rebroadcast zones and the collision between
two adjacent rebroadcast zones, we add a constraint when performing actions. The
minimum distance between two adjacent rebroadcast zones is 5 squares (200m,
knowing that the maximum coverage of a vehicle in the center of a rebroadcast area
is 250m (≈ 6 squares)).

The Q-Learning algorithm is described in Algorithm 2. The set of gray squares
is taken as input as we assume that the controller has a prior and updated vision
of the quality of links in each road segment. This can be achieved thanks to
some wireless site surveying, simulations, or predictions as in [Benrhaiem 2020].
The Ąrst step of the algorithm randomly selects N feasible rebroadcast points.
After that, at each iteration t, the position of each rebroadcast zone ((xi, yi), for
all i ∈ N) and then the number of rebroadcast zones make an exploratory move
with probability ε or picks the best-known action to date (highest Q-value) with
probability 1− ε. The algorithm explores different states during the learning phase
(a Ąxed simulation/iteration run) to Ąnd the optimal policy that maximizes the
expected action-value function (Q-value) and, hence, the total coverage of gray
zones. The distance between a new candidate and other elected rebroadcast zones
is always checked before choosing and executing an action.

If n is the number of states and e is the number of actions (6 in our case),
empirical results in [Koenig 1992] show that the Q-learning algorithm ends in O(en)
steps; hence, the computational complexity of our algorithm is O(6nN), where N is
the number of rebroadcast points. Furthermore, the complexity is further reduced
if the domain has additional properties, such as constraints between two adjacent
rebroadcast points [Koenig 1992].

In conclusion, our method exhibits the following advantages while using
decent memory and computational resources compared to traditional approaches.
First, RL algorithms are applicable to environments where no prior information,
assumptions, or requirements about the region considered are available (e.g.,
heuristic methods wait to receive triggers before taking a decision, and are effective
for enabling agents to explore unrecognized state spaces and learn information
pertinent to performing tasks. Second, learning-based methods are used when
there is a possibility of further optimizing the system based on learning from the
history of the triggers mentioned above). Third, the decision-making process of
Q-placement is on-demand. Unlike traditional algorithms with Ąxed optimization
levels, Q-learning lets one decide the optimization level. This is achieved by tuning
the number of iterations the algorithm runs. It is a desirable feature because
the controller can determine precisely how much computation power it commits
to achieving a certain performance level. This Ćexibility is essential, especially
in situations where the controller is time-constrained. Moreover, the Q-learning
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algorithm is fully compatible with a centralized architecture, e.g., the Q-learning
algorithm itself can be regarded as an application running on the controller. Finally,
all the information needed by Q-learning is collected during routine network status
updates between the controller and vehicles [Zhang 2018].

4.6 Performance analysis

This section details the performance results of our algorithm and compares its
performance to the proposed default one using the location-based dissemination
procedure described in the previous chapter. First, we describe the experimental
setup before diving into the performance analysis of our placement method taken
alone and combined with the location-based dissemination procedure.

4.6.1 Simulation setup

The simulation environment is based on the microscopic road traffic simulator
SUMO coupled with the event-based network simulator NETSIM as described in
the previous chapter. An area of 2× 2km2 of an European-like city center (namely,
Toulouse, France) using Open Street Maps (OSM) is considered. It exhibits an
irregular road structure and the presence of large buildings affecting the quality of
wireless transmissions. The vehicle density is varied between 30 to 500 vehicles.
The maximum transmission range of each vehicle is set to Rmax = 250m. The
number of RSUs is varied from 2 to 8, as well as their position. Our algorithm is
implemented using the Python language and is run on an Intel Corei5 2GHz and
8GB RAM system. The convergence time of all simulations is below 0.7s. Table
4.2 lists the parameters used in the evaluation.
Finally, gray zones in the considered map are identiĄed by simulation as follows.
First, RSUs are conĄgured to broadcast alert messages every 100ms for 500s. Next,
the average Message Delivery Ratio (MDR) is computed for each square. As road
safety applications require high reliability between 90% and 95% [Boban 2017],
squares with an MDR below 90% are considered gray.

Table 4.2: Simulation conĄguration parameters

Parameter Value

Discount rate γ 0.9
Learning rate α 0.1

Epsilon ε 0.1
Simulation time 500 s

AM generation start 10 s
AM generation rate 10 packets/s

AM packet size 1024 bytes
Propagation model Nakagami m = 3

dmax 16 m
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Figure 4.3: Initial environment matrix

We start by converting the geographic map in Figure 4.2 into a matrix of 50×50
of 40 × 40m2 squares, with values Ť0Ť (road zone could be elected as rebroadcast
zone) and Ť1Ť (non-road zone or zone X) for each square as mentioned in Figure 4.3.
Then, we insert the gray zones resulting from the simulations explained above in the
concerned road zones (switch values from Ť0Ť to Ť0.5Ť (gray zone)), as presented in
Figure 4.4a. Next, we implement and apply our environmentŠs Q-learning algorithm
described above. The initial number of rebroadcast zones ŤNŤ is calculated as the
ratio of gray squares and the average number of gray squares that a rebroadcast
zone can cover (6× 6 squares: approximately the transmission range of a vehicle in
a rebroadcast zone center).

4.6.2 Performance evaluation of our Q-learning placement method

Three scenarios are considered with 2, 4, and 8 RSUs to address three different
situations: an insufficient number of RSUs to decently cover the whole area (with
numerous large gray zones), a decent number of RSUs, and Ąnally, a high number
of RSUs leading to multiple scattered small gray zones.

Figure 4.4b and 4.4d shows the positions of the ŤNŤ optimal rebroadcast zones
(red squares: we have enlarged the size of the rebroadcast zones in the Ągure for
visibility) for scenario 1 and 2; after the convergence of the algorithm and the gray
squares (light gray squares) covered by these latter.

The Ąrst scenario (S1) corresponds to the simulation settings in the previous
chapter with 2 RSUs. Our RL algorithm computes 11 rebroadcast points covering
≈ 84% of gray zones, while with the default method, 13 are obtained with a coverage
of ≈ 80%. Full coverage is not achieved as 2 RSUs are insufficient to reach all gray
zones, assuming one rebroadcast from a relay vehicle.
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(a) Environment Matrix with gray zones -
Scenario 1 (S1)

(b) Environment Matrix with optimal
rebroadcast zones placement

(c) Environment Matrix with gray zones -
Scenario 2 (S2)

(d) Environment Matrix with optimal
rebroadcast zones placement

Figure 4.4: Rebroadcast points placement with our Q-learning method
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(a) Initial RSU placement
(Scenario3)

(b) With the default method (c) With our Q-learning
method

Figure 4.5: Rebroadcast points placement

The second scenario (S2) considers 4 RSUs placed at different locations.
Our Q-learning algorithm leads to the full coverage of gray zones with only 9
rebroadcast zones, while 17 are needed with the default one.

As illustrated in Figure 4.5a, the last scenario (S3) considers 8 RSUs. The
transmission power (i.e., transmission range) of RSUs and vehicles is reduced. With
the default method, we have 48 rebroadcast zones (Figure 4.5b) vs. 15 (Figure 4.5c)
with our algorithm, which achieves a better coverage than the default placement,
around ≈ 93% of gray squares.

4.6.3 Performance evaluation

This section details the performance results for Toulouse scenarios (S1 and S2) under
various vehicle densities using the LAMD dissemination procedure, comparing both
techniques (the default placement and the Q-learning proposed placement).

4.6.3.1 Performance metrics

• Information Coverage (IC): computed as the total number of vehicles that
successfully receive an AM at the end of the simulation (NumVehRecMsg)
divided by the number of vehicles (TotalNumVeh) averaged on all generated
AMs. This metric shows how successful the dissemination is after a decent
period of time.

IC =
NumV ehRecMsg

TotalNumV eh
(4.4)

• Dissemination delay: The dissemination delay is the total time required to
deliver the AM to all the vehicles in the area of interest that receive the AMs.
The vehicles that do not receive any AM are excluded from the computation.
This metric measures how fast the dissemination can reach the vehicles within
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the area of interest.

• Collision Ratio (CR): The collision ratio is the percentage of MAC
collisions (NumCollisionPkts) divided by the number of packets sent
(NumSentPkts) computed over the simulation duration.

CR =
NumCollisionPkts

NumSentPkts
(4.5)

• Redundancy Rate (RR): The average number of AM rebroadcasts or
duplicate transmissions (i.e., NumDuplicPkts) out of all sourced (generated)
AM (NumSPkts) [Panichpapiboon 2011] .

RR =
NumDuplicPkts

NumSPkts
(4.6)

4.6.3.2 Performance analysis

Information Coverage: Figure 4.6 presents the Information Coverage as a
function of vehicle density for the LAMD technique in both scenarios (S1 and S2),
comparing the default and RL-based rebroadcast zones placement. For scenario
n°1, results are almost similar, with a slight shift of 0.2 to 0.5% between the
default and the new RL methods. However, for scenario n°2, we notice that the
RL method is signiĄcantly better than the default method with low traffic density
due to the accurate and optimal placement of rebroadcast zones; as cited above,
only 9 rebroadcast zones are needed with the RL algorithm vs. 17 with the default
one, despite requiring approximately half the number of zones. When the density
increases, we achieve maximum coverage in both methods. The results show that the
RL method ensures an accurate placement with a minimum number of rebroadcast
zones required to achieve full coverage by applying the LAMD. However, with the
default method, we also have good results. Still, it remains a theoretical method
with an inaccurate placement and an approximate number of rebroadcast zones,
which could be much by increasing the number of RSUs.

Dissemination Delay: This effective placement also affects the dissemination
delays, as shown in Figure 4.7. For low vehicle densities, where the rebroadcast zone
placement particularly matters, the difference between the dissemination delays of
the two methods is at least 100ms, meaning that at least one additional rebroadcast
(i.e., of the next instance of an AM) is needed with the default method compared to
our method. When the traffic density increases, the probability of the presence of
vehicles in or around the rebroadcast zones increases. As the RL-based placement
ensures the full coverage of gray zones, more vehicles are reached from the Ąrst
AM rebroadcast. Indeed, starting from a vehicle density of 100, with the RL-based
placement, on average, all vehicles are reached within 100ms. In comparison, more
than twice this density is needed to achieve such performance with the default
method.
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coverage
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Figure 4.8: Redundancy
ratio

Redundancy Ratio: Figure 4.8 shows the number of duplicated AM
transmissions versus vehicle density for LAMD technique in both scenarios (S1
and S2), comparing the default and RL-based rebroadcast zones placement. As
expected, with the RL-based placement, the redundancy is signiĄcantly limited,
by choosing the minimum number and the optimal location of the rebroadcast
zones to serve the gray zones, especially in Scenario n°2, where theoretically, we
cover 99% of the rebroadcast zones (as explained above) with just 9 rebroadcast
zones. However, by increasing the number of RSUs in scenario 2, rebroadcast zones
increase respecting the default method, which increases the number of relay vehicles
in the different rebroadcast zones, hence the redundant number of messages (Several
vehicles can receive the same message more than once from different relay vehicles).
Indeed, fewer relay vehicles are eligible for an AM rebroadcast by minimizing the
number of rebroadcast zones and optimally choosing their locations to serve the
gray zones. This avoids useless redundant rebroadcasts.

Whatever the placement method, in all the considered scenarios, the collision
ratio remains very low (< 0.03% vs. < 0.0001% with the RL-based method), even
for high vehicle densities. This is mainly due to the AM dissemination procedure,
which drastically limits the contention when rebroadcasting an AM. Indeed, the
relay vehicle selection limits the set of vehicles that can act as a relay to those
in close vicinity to rebroadcast points. In addition, it further manages contention
between nearby eligible relay vehicles by assigning different back-off waiting periods
before pursuing a rebroadcast attempt.

4.7 Conclusion

This chapter has introduced a new Q-learning-based method that provides the
location-based AM dissemination procedure with the minimum number and optimal
locations (rebroadcast zones) where vehicles are invited to rebroadcast an AM
in order to deliver it on a pre-deĄned region, which may include multiple gray
zones. As a result, our method provides the best possible AM coverage, fast
AM delivery, and very limited redundant and useless AM re-transmissions (i.e.,
network overhead). Our simulations assess the performance gains of our placement
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method on a real portion of a European city center with realistic road traffic models.
However, we can apply our algorithm to larger maps (e.g., in the case of cellular
networks, where the coverage of the Base Station (BS) controller is more important),
as the complexity remains practically the same.

In this chapter, the gray zones were inputs for our algorithm. In the next
chapter, we will propose a new method based on machine learning algorithms to
approximately locate these zones by estimating the quality of links in each square,
considering several factors.





Chapter 5

SDN-enabled Machine learning

Road Link Quality Estimation

5.1 Introduction

In order to support ITS services with strict QoS requirements, despite rapidly
changing traffic conditions, the network must be able to anticipate possible changes
in the performance of some of its links (changes related to the evolution of traffic,
such as the increase in the density of nodes in a given area, etc.) and take the
required actions, to optimize its operation and performance and to work towards
guaranteeing continuity of services with the required QoS. Hence, we speak of
anticipatory/proactive control of the network [Bui 2017].
Such control requires an estimated view of the networkŠs future state, allowing one
to consider and realize a proactive and intelligent network control.

In this chapter, we propose a Infrastructure to Vehicle (I2V) link quality
estimation technique on the road, which constitutes the Ąrst essential step for
our alert message dissemination schemeŠs efficiency, speciĄcally for rebroadcast
zone placement. The latter relies on Machine Learning techniques to estimate
the link quality (Packet Reception Rate (PRR)) in each zone (deĄned by a square
as described in the previous chapter), which allows us to determine the gray areas
to place our relay zones. A supervised learning model has been proposed, with
the particularity of using traffic information and "Hello" default exchange messages
between vehicles and infrastructure, thus limiting transmissionsŠ overhead.

In order to train and evaluate the proposed model, a dataset was generated,
as the ones available online do not Ąt the needs of our study. This dataset was
generated using mainly the NETSIM framework and based on mobility traces.

This chapter is organized as follows. Section 5.2 presents general motivations
for link quality estimation problem. Then, we present a synthesis of existing works
in the scientiĄc literature in Section 5.3. Section 5.4 gives a general overview
of the proposed link quality estimation model. Section 5.5 details the proposed
models, while the next section describes the dataset used. Section 5.7 focuses on
the experimental part. It Ąrst presents the metrics considered, then analyzes the
evaluation results for the proposed model. Finally, the last section concludes this
chapter.
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5.2 Link quality estimation: motivations

In vehicular networks, the conditions of the radio signal propagation channel can
vary considerably in time and space, which affects the link quality on the road.
In order to ensure reliable and durable performance in such networks, efficient
estimation of the link quality on the road is required by some dissemination
techniques so that the parameters of the link and the choice of relays can be
adapted and an alternative or more reliable route/area can be selected for data
retransmission. In other words, the better the link quality is, the higher the
successful reception rate and the more reliable the communication are. However,
challenging factors that directly affect the quality of a link, such as channel
variations, send/receive problems, and complex interference patterns, to name a
few, can inevitably lead to unreliable links [Cerar 2021].

On the one hand, it is difficult to incorporate these changing factors into an
analytical model. Therefore, such models cannot be easily adopted in realistic
networks due to the design environmentŠs highly arbitrary and dynamic nature.
On the other hand, effective link quality prediction can provide signiĄcant
performance, such as improving network throughput due to reduced packet loss,
extending network lifetime due to limiting retransmissions, limiting topology
outages, improving reliability, etc. Finally, variations in the link quality can
signiĄcantly inĆuence the overall connectivity of the network. Therefore, the
efficient estimation or prediction of the link quality can provide the best-performing
link from a set of candidates to be used for data transmission.

5.3 Related work

During the last decade, wireless link quality estimation and characterization
have been studied in wireless mobile networks and considered crucial for reliable
communication [Tang 2007, Cerar 2021]. Due to the dynamic nature of the
vehicular environment, the statistical channel models do not predict wireless
link quality with high accuracy [Tang 2007]. Therefore, advanced methodsŠ link
quality prediction has become popular among researchers. Due to the increasing
computational ability of network nodes and the data handling capacity of clouds,
artiĄcial intelligence algorithms have found new application domains. The term link
quality can be generally thought of as a link description derivative of throughput
or reliability. Unfortunately, there is no standard deĄnition for link quality nor a
standard unit of measure for the metric [Baccour 2012]. Depending on the context,
it can be a qualitative or quantitative link description.
In most cases, link quality is expressed in a probabilistic sense of the linkŠs reliability
in the past or expected packet delivery. Naturally, the measure of such a probability
would range from 0 to 1. In other cases, link quality may be described as a
percentage of maximum throughput potential or packet reception and may vary
from 0 to 100. And Ąnally, link conditions are often categorically described using
natural languages such as Šgood,Š Šintermediate,Š or Šbad.Š The link quality measure
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depends on the application and its intended use [Lowrance 2017].
Some comprehensive surveys have been conducted to prove the potential of

machine learning techniques in solving various problems and predicting link quality
in wireless communications [Mao 2018, Cerar 2021].

Most link quality estimation techniques in vehicular networks are proposed
to reactively estimate the quality of the V2V links in order to select the next
hop/broadcaster between the sender and its neighboring nodes [Bauza 2013,
Okada 2009, Cai 2014, Wang 2012], where the received signalŠs strength or packet
reception rates over a given nodeŠs link have been used to characterize the quality of
its forward link. However, such mechanisms have assumed a Ąxed communication
range among the nodes, which is not realistic [Amoroso 2011, Wang 2015]. In
addition, the rebroadcaster linksŠ qualities can considerably vary for a given node
in time for several reasons, such as varying surrounding node densities and fading
channel effects [Rak 2013].

Machine learning (ML) based techniques have recently emerged as an alternative
to link quality estimation techniques based on predeĄned models [Ye 2018]. This
avoids simplifying assumptions. In [Turan 2021, Ramya 2019], authors propose ML-
based algorithms to predict V2V path loss, proving that such modelsŠ application
offers better performance than traditional analytical models utilization (e.g., log
distance path loss model). Benrhaim and al. [Benrhaiem 2020], also focus on V2V
links. Their method relies on beacons periodically generated message exchanges
between vehicles to estimate V2V link reception quality. They propose a Bayesian
network-based scheme at different locations in the zone covered by the transmission
range of the sender for the estimation. They model the network as a grid-like city
streets plan and suppose that the length of a road segment and the transmission
range of vehicles are the same. First, a training data collection phase is executed
by regular vehicles and a coordinator (a vehicle located around the center of a
road segment) to collect instantaneous reception status (whether beacon reception
is successful or not) information in the transmission range. Next, each coordinator
processes the received beacons of the vehicles in the current road segment and then
executes a Graphical Model Learning (GML) to estimate V2V link reception quality
in the transmission range (road segment) using Bayesian networks. A Bayesian
network is a directed, acyclic graph that discovers and deĄnes relationships among
random variables from observational data for prediction. This is the only work that
estimates the road linksŠ quality. Estimation results show good accuracy. However,
they only consider the reception messages status exchanged between vehicles and
used the same parameters in all simulations for data collection. But in reality, other
parameters can inĆuence the road linkŠs quality, such as traffic density, the distance
between nodes, etc. In addition, the estimation is done in a distributed way by a
road coordinator (vehicle in the center), which is unreliable with the mobility of the
vehicles; the position changes rapidly.

Most of the works proposed in the literature to estimate the vehicular
communication linksŠ quality assume simpliĄcations of vehicle mobility. We note
these works concern V2V links, where only one is interested in estimating V2V link
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quality on the road, and approaches based on machine learning techniques generally
present the best performances for both problems.

Our work is the Ąrst one that focuses on I2V wireless quality links on the
road. The proposed method for estimating road linksŠ quality excludes any vehicle
mobility or communication range assumption. Instead, each entity (SDN controller)
runs its machine learning model trained using the road traffic data of the area
covered by that entity. The proposed approach is detailed in the following sections.

5.4 Proposed model overview

In our work, we propose a model based on machine learning techniques MP RR,
allowing us to estimate the quality of Infrastructure to Vehicles (I2V) links on the
road, precisely, the Packet Reception Ratio (PRR) of RSUsŠ transmission for each
zone in a predeĄned region. This zone is deĄned by a small square, as described in
the previous chapter. As described in Chapter 3, these squares are used to identify
gray zones in the region where their PRR is less than a predeĄned PRR threshold
(90% in our case) [Meireles 2010]. The model mainly combines the information
reported by the RSUs and the vehicles during the exchange of periodic beacon
messages (or "Hello" messages) between the two entities and road traffic conditions
(Vehicles density on the road). Furthermore, this model is executed by each SDN
controller, which manages a collection of nearby RSUs, allowing it to learn the link
quality variations in its coverage area. Finally, this information is combined with
other data to extract features used as input to the model to estimate PRR in each
small zone. The design of the model is detailed in the next section.

Figure 5.1 shows the key elements of the proposed approach. First, we assume
all vehicles are equipped with a GPS module and can send information, such as their
position (P (x, y)) and the packet response of the "Hello" message received from the
RSU at the time of association and beacon messages exchanges. This information
is periodically collected by each RSU and hosted in the cloud or shared directly
with the network controller to extract features used as input to the model in order
to estimate the PRR. Finally, we assume that an RSU entity reports information
about each newly associated vehicle to the SDN controller.

5.5 SDN-enabled machine learning road I2V link

quality prediction

This section brieĆy introduces the main principles of Machine learning (ML)
techniques and then details the proposed modelŠs design.

5.5.1 Machine learning techniques

In 1959, Arthur Samuel, a Machine Learning (ML) pioneer, deĄned ML as "the
Ąeld of study that gives computers the ability to learn without being explicitly
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Figure 5.1: Key elements of the proposed approach

programmed." From this deĄnition, we understand that an ML system, unlike a
computer program, is not programmed with a set of instructions to execute based
on inputs. But instead, a system learns the best actions to take (decision, prediction,
etc.), usually from a set of data or past experiences.

These systems are classiĄed according to several criteria. Among these criteria,
we cite the nature and importance of the supervision provided to the system
during the training process. We distinguish three main categories: supervised
learning, unsupervised learning, and reinforcement learning (described in the
previous chapter) [Kotsiantis 2007].

• Supervised learning: learning is performed from a labeled dataset, so the
training data contain the desired solutions. An example of a supervised system
is classiĄcation; consider a spam detection system. The training data contain
many examples of emails with a label for each mail, indicating whether or not
it is spam. After the training phase, the system can predict each new mailŠs
corresponding label (spam or not).

• Unsupervised learning: unlike the supervised type, the dataset is not labeled.
For example, a dataset listing the information of the customers of an e-
commerce site (age, gender, time of visit, category of items seen and/or
purchased, etc.). The systemŠs objective is to identify similarities between the
various customers and to group them into clusters, for example, for advertising
purposes (personalized offers/discounts, etc.). These techniques are known as
"clustering" in the literature.
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Figure 5.2: The typical workĆow of machine learning for networking [Wang 2017]

• Reinforcement learning: learning is run from previous experiences, not from
a data set. We talk about an agent that evolves in an environment and makes
decisions. In return, it gets a reward (or a penalty, as a negative reward).
The model aims to Ąnd the best policy to maximize the cumulative excepted
return. An example is a robot that tries to reach a given destination while
avoiding obstacles on its way.

In our study, we consider supervised learning, where training is performed using
a labeled dataset. Formally, in a dataset D deĄned by D(x1, y1), ...(xn, yn), the
training of the model M aims to Ąnd the best relationship between the inputs X,
called predictors, and the outputs y, called label, y = M(X), such that, for new
input data Xn whose outputs are unknown, the model can predict the corresponding
output ŷn = M(Xn) with good accuracy.

We distinguish two types of supervised learning: regression, when the value to be
predicted is a continuous real number, y ⊂ R and classiĄcation, when y belongs to a
Ąnite set C = c1, c2, ..., cn called classes. In the spam detection example (presented
earlier), two classes are considered (spam and normal).

Several supervised learning techniques have been proposed in the literature.
Some are speciĄc to regression (i.e., polynomial regression), others are dedicated
to classiĄcation (e.g., K-Nearest Neighbor K-NN), and others are adapted for both
categories (e.g., decision tree). Each technique has advantages and disadvantages
(type of data processed, sensitivity to noise in the data (e.g., anomalies), training
time, resource consumption, etc.). A detailed comparative study is presented in
[Kotsiantis 2007, Klaine 2017].

The typical ML application to networking workĆow is presented in Figure 5.2
speciĄed in this work [Wang 2017].

In addition, we consider the so-called ensemble learning techniques [Sagi 2018],
allowing us to train several models (of the same or different techniques) and combine
their predictions. This technique represents one of the most popular and powerful
supervised algorithms. It allows for the design of a generalized model and avoids
overĄtting (when the model has understood the problem taught during the training
phases, but it is based only on this initial training data. It then suffers from a
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generalization problem and cannot recognize other data). The model proposed
in our studies is based on this technique. In particular, we use the Random Forest

technique [Breiman 2001], which trains a set of decision tree models. This technique
is used for both regression and classiĄcation problems. Despite its interpretability
(i.e., it has a simple structure to explain (in terms of relations between inputs and
outputs), compared to a neural network, for example), it offers several advantages
that motivated our choice. First, it allows dealing with problems with several
classes, compared to other techniques focusing only on binary classiĄcation (i.e.,
two classes). This is called multivariate classiĄcation. Furthermore, it integrates
a feature to select the best predictors to consider, called "feature importance."
From the constructed trees (a process explained in detail later), the most important
features are likely to appear in the nodes near the treeŠs root, while the others are
often closer to the leaves (or do not appear in the tree).
Moreover, it is less sensitive to outliers and is fast in execution. Indeed, its
complexity depends on the depth of the trees used. But it can handle non-linear
data with a large number of features. Besides, it is less sensitive to data overĄtting
and exposes some parameters limiting the growth of the trees (detailed later).

As presented above, our problem concerns the Packet Reception Ratio (PRR)
estimation. This problem has been modeled as a regression problem. The estimated
variable is the PRR in each mapŠs little zone (square) under the SDN controller
coverage. In the following sections, we present the considered training variables
(or features) to design our models. These features are designed according to the
objectives, i.e., i) features that require a minimum of information from the vehicles
and ii) features that are independent of the network technology used. Next, we
detail the techniques used to train and calibrate the model parameters.

5.5.2 Proposed framework

The propagation channel characteristics of vehicular networks differ signiĄcantly
from other wireless systems. The physical environment in vehicular channels is
expected to experience random variations caused by several factors, including
mobility patterns and rapid changes in traffic density, path loss effects, and
environmental effects. The rapid temporal variability and non-stationary channels
are rationales for developing a unique framework for predicting the link quality of
vehicular networks. In this work, we aim to build a machine learning model capable
of predicting the PRR on the road with minimum error. Machine learning models
are ideally suitable for classiĄcation and pattern recognition problems.

By following the typical Machine learning workĆow speciĄed in [Wang 2017] and
leveraging SDN [Feamster 2014, Foster 2020], we come up with the SDN-enabled
machine learning PRR prediction framework in Figure 5.3. The machine learning
workĆow includes six stages: Problem formulation, Data Collection, Data Analysis,
Model Construction, and Model Validation, and the last stage is Deployment and
Inference.

The framework is based on two main pillars: SDN and the power of suitable
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Figure 5.3: Packet Reception Ratio (PRR) inference framework

machine learning algorithms to learn some properties of an historical dataset and
leverage the learned proprieties to provide good estimations on new observations.
From Figure 5.3, the frameworkŠs workĆow is as follows. Firstly, the prediction
model is constructed offline by training and parameter tuning the historical data.
The historical dataset may be composed of a large number of samples. Each sample
represents a combination of featuresŠ values and the associated target value since we
are in a supervised learning conĄguration. Collected data include the transmission
power of RSUs (T ), vehicle position (P ) (to identify the zone identiĄer (Zi) and
calculate the distance to the RSU), the distance between the vehicle and RSU (D)
(to identify the average distance between the concerned zone and the RSU), and
packet status (Status) to calculate the target by zone (whether or not the vehicle
has received the "Hello" messages from RSU). The featuresŠ description, collection,
and processing will be detailed in the next section.

The designed model is then deployed (1) as the Inference Agent. The model is
deployed to be used for PRR inference. The PRR is used to predict gray zones in the
region to update the rebroadcast zones for disseminating alert messages according to
traffic needs and conditions, as described in the previous chapter. We can suppose
that this approach can be used proactively, i.e., we assume the controller has a
historical idea about traffic conditions change (e.g., traffic density at peak hours),
so it updates these zones according to these schedules (e.g., every two hours or three
times a day).

The online input for each zone after processing (2), composed of
(Zi, T, Ploss, Vd, D) (where Vd is the vehicle density in the concerned zone Zi,
calculated according to the real-time number of vehicles in the zone/square, and
Ploss is the packet loss in the zone calculated with respect to real-time parameters
and traffic conditions), is got when the controller launches the updates of gray
zones for the geographic map under its coverage. Taking this input, an inference
of the PRR in each zone (small square) is made, so gray zones are identiĄed (3).
The information will then be used as input by the Q-learning placement Agent to
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update rebroadcast zones as described in the previous chapter.
Finally, when the process is complete, its observed output is also collected

efficiently, and the historical dataset can be updated with the newly collected data
(4). Therefore, having the database up-to-date is essential and will allow considering
new dynamics from the traffic changes. The historical data gathering and online
update of the historical data with the newly collected data form a base for our
framework. The historical data could be enriched from the cloud.

5.6 Learning-based modeling

According to the workĆow from [Wang 2017] this section begins with the problem
formulation. For the PRR inference, the target metric is a continuous variable; its
prediction is a regression problem.

5.6.1 Dataset and analysis

As indicated above, our model based on supervised learning requires a training
phase using a dataset. In our study, we focus on the case of VANET in an urban
environment. In order to evaluate the proposed model in a realistic framework, it
is necessary to have a data set that meets the following requirements:

• Network coverage: Consider cells with varied communication ranges (small
and large coverage) by manipulating the transmission power of RSUs. In
addition, it is necessary to know the geographical positions of these entities
to calculate the distance.

• Road traffic: Have vehicle data (location) driving on most roads (main and
secondary) covered by a given RSU.

• Size of the dataset: A collection of data for a long duration by varying the
density of the vehicles, the transmission powers, the position of the RSUs,
and the coefficients of path loss, allowing to explore the temporal variations
of the measured metrics.

In vehicular networks, various data collection campaigns have been realized by
the scientiĄc community in order to produce usable data sets (e.g., to study the
performance of these networks). However, very few of these data sets are available
in open access. Moreover, they do not consider urban mobility and do not have all
the parameters required by our model.

Since no dataset carried out by the scientiĄc community fully corresponds to our
prerequisites, we generated our dataset. However, technical constraints and time
limit the realization of a data collection campaign. Therefore, we move towards an
approach based on simulation tools/mobility emulation and VANET networks.
The dataset used in this work was generated using the microscopic road traffic
simulator SUMO [Busanelli 2013] coupled with the event-based network simulator
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NETSIM as described in [Weber 2021]. NETSIM simulates the DSRC protocol
stack (signal strength, handover, connectivity), while SUMO handles vehicle
mobility. The global framework provides a realistic simulation of DSRC connectivity
for vehicles. Our simulation setup comprises two main parts: the Ąrst concerns
implementing the DSRC network, and the second concerns the implementation of
vehicle mobility. In this work, we extract the area of 2× 2km2 of a European-like
city (namely, Toulouse, France) using Open Street Maps (OSM). The choice of the
area is signiĄcant as it is present in the center of the city with high traffic densities
(Urban environment), large buildings affecting the quality of signals on the road,
and irregular road structures. The random Trip application of the SUMO package
is used to auto-generate the trips for the vehicles with mobility over the given
map area. We assume that all vehicles are equipped with wireless communication
modules DSRC. Regarding the DSRC network, we place 4 RSUs in the selected
region, as shown in the Figure 5.4.

A wireless transmissionŠs success depends on multiple factors: distance,
transmitter power, path loss, fading, receiver sensitivity, etc. Moreover, depending
on the environment (Highway, Urban, Obstructions, Line of Sigh), the transmission
coverage of an RSU may vary widely, for example, from 100 to 700 meters, for
the same transmission power shown in [Gozálvez 2012, Böhm 2010]. For network
simulation parameters, we run 196 simulations where each RSU broadcasts a control
message every 100 ms for 500s (27 hours in total), varying each time the transmission
power, the positions of the RSUs, vehicle densities, and the path loss coefficients.
Table 5.1 lists different manipulated parameter values. Path loss is the reduction
in the power density of an electromagnetic wave as it propagates through space.
It may be due to many effects, such as free reĆection, aperture-medium coupling
loss, and absorption. The path loss exponent varies between 2Ű5 depending on
the surrounding environment coherence bandwidth and Doppler shift. In reality,
the path loss exponent can be calculated according to several parameters (e.g., the
transmission power, the distance from the sender, the wavelength of the carrier wave
(which depends on whether and obstacles), etc.), but as we work with data collected
by a simulator, we use this parameter directly from the simulator. However, an SDN
controller can use its global view and knowledge to calculate this parameter based
on the real-time information (distance between RSUs and zones, urban or other
environments, weather, etc.) shared by the RSUs and the cloud [Zakaria 2021].
After each packet, we record the vehicle position (to identify the zone identiĄer),
the vehicles that received the message, and the packet status (success or error). The
results of simulations generate a dataset of 52007 observations. Figure 5.5 shows
the number of samples generated for each PRR range. The data set generated and
collected after each simulation are described in Table 5.2.

We represent the geographical map as a 50 × 50 grid matrix of 40 × 40m2

(Figure 5.4). Thus, we predict the PRR by a small road zone/square (only squares
containing road areas are considered) instead of a road because the quality of links
at the beginning of the road could differ from the end and the center. Hence,
predicting the PRR by zone (a small portion of the road) is more precise and
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Figure 5.4: Map with geographic locations of RSUs

Table 5.1: Simulation conĄguration parameters

Parameter Value

Vehicle Density from 5 to 500 vehicles/zone(square)/hour
Path loss coefficient from 2 to 5

Distance from 0 to 2 km
Transmission power from 10 to 50 dbm

accurate. We realize some data processing to have our dataset suitable for our
model, which allows us to predict the PRR in each zone as described in Table 5.3.
First, we consider the vehicleŠs position to deĄne the concerned zone. Then for
each simulation, we calculate the density of vehicles per zone and hour, the average
distance between the zone and the sender, and the PRR (the number of packets
received by vehicles in the zone compared to the number sent by RSUs to those
vehicles).

5.6.2 Model training

In the previous section, we presented the different learning variables used by our
model MP RR. MP RR mainly uses vehicle density, distance, transmission power,
and path loss exponent features. These features are designed according to two
main criteria i) features requiring a minimum of information from the vehicles and
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Figure 5.5: Number of samples generated for each PRR range

Algorithm 3: Road PRR Estimation
Input:
Zi, i ∈ 0, .., N List of road zone ID
Ploss(i) per zone: path loss per zone
T (i) : Transmission power of the RSU that covers the zone
Vd(i) : Vehicle density in the concerned zone
Output:
P̂RR(Zi) : the Packet reception ratio by zone

1 for i = 0 to i = N do
2 D(i) =

√
((xRSU − xi)2 − (yRSU − yi)2) /* distance between the

zone i of coordinates (xi, yi) and the RSU that covers it of

coordinates (xRSU , yRSU ) */

3 P̂RR(Zi) = MP RR (D(i), Ploss(i), T (i) , Vd(i) )
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Table 5.2: Generated and collected data set

Feature Name Feature Description

Packet Id sent packet identiĄer
RSU ID sender RSU identiĄer
Vehicle ID receiver vehicle identiĄer
Vehicle position coordinates (x,y), which can be converted

a GPS coordinates
Transmission
power

Transmission power of the sender RSU

Path loss
exponent

Power density of an electromagnetic wave

Packet status Packet Status "received" or "not-received"

Table 5.3: Parameters and notations

Feature Name Feature Description

Zone Id Zone identiĄer
Vehicle density the density of vehicles per hour in the

concerned zone
Distance to the
sender RSU (m)

Average distance between the sender and
the zone

Transmission
power

Transmission power of the sender RSU

Path loss
exponent

Power density of an electromagnetic wave

PRR Packet Reception ratio in the concerned
zone

ii) independent of the network technology used.

̂PRR(Zi) = MP RR(Vd(i), D(i), T, Ploss(i)) (5.1)

where,
Zi : Zone identiĄer or zone position
Vd(i) : The density of vehicles in the concerned zone
D(i) : Distance between the RSU covering the zone, and the zone
T : Transmission power of the RSU
Ploss(i): Path loss in the concerned zone

Algorithm 3 summarizes the information used as input and the features
considered by the MP RR model to estimate the packet reception ratio for each road
zone covered by the SDN controller. Note that the zone ID list and distance from
the RSU are already saved in the controller database as they have Ąxed positions.

From a dataset composed of the various attributes listed below, labeled by the
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Figure 5.6: SimpliĄed example of decision trees (D.T)

desired results (PRR), a training of the models is performed offline to Ąnd the
best representation between features and labels. As mentioned above, our models
is based on the Random Forest (R.F) technique. This technique combines several
Decision Tree models (D.T). In a decision tree, data are structured as a tree from
which the model makes predictions for new data. Then, according to the input data,
the predictions are made by traversing the tree from its root to a terminal node
(i.e., node without a leaf), called a leaf. These contain the values of the predictions
(packet reception ratio PRR of the model MP RR. In our case (a regression case),
the average of the node observation values is used as a prediction. Figure 5.6
represents an example of a decision tree 1. The Ąrst condition of the root node is
veriĄed. It concerns the distance from the RSU (D); if it is less than or equal to 300,
the predicted value of the PRR is the average of the observations of the left child
node (i.e., a terminal node), which is 99% (average calculated with 80 observations).
Otherwise, the right child node is traversed if the distance D is strictly greater than
300 meters. Since it is not a terminal node, a new condition is checked. This time,
it checks if the path loss exponent is less than 2.5. If this case, the predicted value
is 98% (terminal node on the left); otherwise, the child node on the right is crossed
to check new conditions, and so on.

The treesŠ construction is the basis of the predictions. This is the main task of

1This is a simplified example. The values are provided for explanation purposes and do not

represent the data used by our model.
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the training phase. During this phase, the model deĄnes the nodes, the number of
observations (samples) per node, and the rules to check for each node. For each
node, the model looks for the pair (k,tk) (with k the attribute to consider (distance,
density, transmitter power, etc.) and tk the value of this attribute) that minimizes
the mean square error (MSE) using the cost functions represented by equation 5.2.

j(k, tk) =
mleft

m
MSEleft +

mright

m
MSEright (5.2)

Where,





MSEnode =
∑

i∈node(ŷnode − y(i))2

ŷnode = 1
mnode

∑
i∈node y(i)

(5.3)

p2
i,k : represents the percentage of observations of class k among all training

observations in the ith node,
mleft/right : represents the number of instances of the left/right subset.
Our Random Forest model trains a set of decision tree models. First, each tree is

trained with a randomly chosen subset of the dataset (size speciĄed in parameter).
Furthermore, during the training of each tree, the attribute k is randomly chosen
when splitting a node. Finally, predictions made by each tree are aggregated to
produce a global prediction at the end: the average of the values estimated by all
the trees is used in the regression case.

The model deĄnes some parameters, called hyper-parameters, to guide the
construction of trees. Among these parameters, we mention :

• The number of trees n_estimators: it deĄnes the number of trees trained
by the model. Generally, the higher this number is, the more accurate the
predictions will be, but this increases processing cost, especially in large
datasets.

• Tree depth max_depth: it deĄnes the maximum depth of the tree, i.e., the
number of levels starting from the root to the last terminal leaf node. A large
depth allows for representing maximum information from the dataset, but the
model risks overĄtting the data.

• The minimum number of observations per node min_samples_leaf : it deĄnes
the minimum number of observations required for a terminal node. It
represents the minimum size of leaves. For a small size, the model can capture
the noise in the data.

• The maximum number of features max_features: it gives the number of
elements of the list K from which the model chooses the pair (k,tk) (as
explained previously). It allows controlling the randomness of the model.
The maximum value is the number of features of the dataset (default value).
The larger this number is, the less randomness is introduced in the model,



84
Chapter 5. SDN-enabled Machine learning Road Link Quality

Estimation

Figure 5.7: Cross validation (K = 5)

but this generates an additional processing cost during the training (choice of
the pair (k,tk)), especially with a very large number of trees.

Generally, these parameters control the growth of the trees. Therefore, opting
for deeper trees with small leaves provides a better representation of the data, but
the model will probably overĄt the data. However, restricting the growth of these
trees creates a generalized model, but small trees with large leaves can lead to
underĄtting (when the model only performs well on training data but performs
poorly on testing data) data and thus degrading model performance. Therefore,
choosing these parameters is a crucial step in model training for a better-performing
generalized model.

One way to calibrate these parameters is to train various models with different
values and choose the combination with the best accuracy.
In order to minimize the processing overhead of exploring multiple possibilities, we
Ąrst use a randomized search using the RandomizedSearchCV technique to Ąnd an
initial value for each parameter (from a large range of input values). Then, we use a
grid search using GridSearchCV to try all possible combinations (from small ranges
of values that bound the previously found values) to Ąnd the best combination with
the best accuracy. These techniques are based on cross-validation, which uses the
Training-Set for training and validation. Indeed, the training subset is randomly
divided into k distinct blocks. At each iteration (k times), the model reserves a
different block for evaluation and performs the training using the other parts (k−1
blocks). This avoids using a part of the dedicated dataset for validation (validation
set). Figure 5.7 shows an example of cross-validation with k = 5.

5.7 Performance evaluation

The goal is to evaluate the modelŠs capabilities (MP RR) to estimate the packet
reception ratio in each square to identify the regionŠs gray zones. We analyze the
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results based on the data visualization of the studied scenario. In addition, we
identify the strengths and limitations of the proposed model.

We use 75% of the dataset for model training and the remaining 25% for testing,
a commonly used ratio. Then, for each input i in the test set X, we compute the
corresponding output ŷi = M(Xi) using the model M (model after the training
phase). Then we compare this output with the real value yi. In this way, we compute
the prediction accuracy of each model using the performance metrics presented
below.

5.7.1 Performance metrics

To evaluate the accuracy of the proposed ML performance models, we consider two
evaluation metrics:

• The prediction score R2 (Eq. 5.4): it represents which part of the variance
in the dependent variable is predictable from the independent variables. In
other words, it is the proportion of correctly predicted samples. The most
precise regression model would be the one with a relatively high R squared,
close to 100 when expressed in percentage. We will represent the score in
percentage.

• Normalized Mean Absolute Error (NMAE) (Eq. 5.5): it deĄnes the
average of the absolute differences between the estimated and observed values
of PRR. We want the NMAE to be as small as possible.

R2(y, ŷ) = 1−

∑n
i=1(yi − ŷi)∑n
i=1(yi − ȳ)

, with ȳ =

∑n
i=1 yi

n
(5.4)

NMAE(y, ŷ) =

∑n

i=1
|yi−ȳ|

n

ȳ
, with ȳ =

∑n
i=1 yi

n
(5.5)

5.7.2 Results

For a subset with n_samples of 10000, where 7500 samples are used to train the
random forest model, we obtain a score R2 = 90.70% and NMAE = 5.20%

on the 2500 remaining sets. Using all the datasets (52007 samples) generated
through NETSIM simulations gives scores around 95%, with NMAE of around
5%. These results prove the ability of the ML-performance approach to provide
accurate predictions.

Figure 5.8 shows the real observed test points and their corresponding
predictions with the random forest model for K = 10000 samples. But, of course,
when the subset contains all the initial dataset (K = 52007 samples), the prediction
accuracy is better, with a score almost equal to 0.95, as shown in Figure 5.9.

The performance of the proposed model mostly meets the needs of a proactive
network control based on the estimation of the quality of I2V links on the road,
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Figure 5.8: Predicted vs. real observations (K = 10000 samples)
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Figure 5.9: Predicted vs. real observations (K = 52007 samples)
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Figure 5.10: Feature importance using Mean Decrease in Impurity (MDI)

which allows deĄning and updating gray zones periodically in the region in order
to update the rebroadcast zones, thus allowing efficient dissemination of alert
messages. Now, let us consider the case of a network control function that computes
routing paths. Some approaches in the literature consider the quality of a link
as a criterion for choosing routing paths. The estimation error (PRR larger or
smaller than the estimated duration) may cause an inefficient link selection and,
therefore, affect the performance of proactive routing. Most link quality-based
routing approaches seek to discard links with low PRR and therefore require a
more accurate estimation regarding a poor quality link. The proposed model fully
satisĄes this point.

Figure 5.10 represents the featuresŠ importance, where the Mean Decrease in
Impurity (MDI) is used to calculate each featureŠs importance. It is calculated
as the sum over the number of splits (across all trees) that includes the feature,
proportionally to the number of samples it splits. This shows that the distance and
the packet loss coefficient (where we consider the geographic area, urban/non-urban,
the size and presence of the buildings in the area, the weather, etc., that inĆuence
communication channels) are the most important feature. Indeed, the absence or
disregard of these features will signiĄcantly decrease the model score accuracy on
the test set (e.g., by removing the path loss from the features, the score accuracy
can decrease up to 55%).
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(a) Initial RSU placement (b) Q-learning without
MP RR

(c) Q-learning with MP RR

Figure 5.11: Rebroadcast points placement

5.7.3 Application

The intelligent PRR inference framework (see Figure 5.3) can manage mixed PRR
inference with the Q-learning rebroadcast zone placement (described in the previous
chapter). Indeed, by separating the networkŠs control plane from its data plane,
SDN introduces Ćexibility in network management and facilitates map updates
(gray and rebroadcast zones). Moreover, it simpliĄes the use of machine learning
techniques in the management plane.

In this section, We respectively applied the two proposed techniques, MP RR

and Q-learning placement, in order to update the rebroadcast zones periodically
according to traffic conditions change (hence the road linkŠs quality and gray zone).

We use the same last scenario (S3) presented in the previous chapter, considering
8 RSUs Figure 5.11a, the same RSUsŠ position and transmission power, path loss
model, and traffic density are initially used to measure the PRR to deĄne the
gray zones (where squares with a PRR below 90% are considered gray). First, we
estimate the position of the gray zones using MP RR and then apply the Q-learning
placement algorithm. As a result, we have the same rebroadcast zone numbers (15
rebroadcast zones as described in the previous chapter results Figure 5.11b) but
with a slight difference (1 to 2 squares of shift) in the position of six green circled
zones Figure 5.11c. This has practically no impact on the performance of our
dissemination procedure, as it remains in the order of a few meters difference and is
due to the 4.63% error prediction rate of our model. This shows our PRR modelŠs
success in estimating the PRR. Therefore, it is convenient for the SDN controller
to update whenever it wants rebroadcast zonesŠ positions considering only some
parameters (path loss coefficient, traffic density, and transmission power).

5.8 Synthesis

Estimating link quality on the road paves the way for intelligent and efficient
network control. In the proposed approach, we mainly exploited the road packet
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reception ratio identiĄcation as our modelŠs main learning variable. We chose that
this occurs during the update of the rebroadcast zones in our case to ensure efficient
and reliable alert messages dissemination, allowing these zones to adapt to the traffic
and mobility conditions changes. Indeed, this does not imply any overload on the
network. The performance tests showed excellent results in the vast majority of
cases.

The model is trained offline using data collected under varying traffic conditions
to approximate real mobility and traffic conditions that differ from one hour to
another daily. However, the trends captured by the models during real-world
training can vary even more when considering new installations and reconstructions
in the area (new buildings, facades, parking, etc.), thus changing several parameters
such as the communication medium and path loss. Therefore, the controller must
be updated by these changes in order to update its road zones and be able to
recalculate the path loss by each zone efficiently.

On the other hand, the service provider (ITS) can modify the network
parameters in order to optimize its network (modiĄcation of the cell coverage,
addition, or deletion of a cell). This can affect the model performances. Re-training
can occur if the prediction error exceeds a certain threshold (set according to the
service using the predictions) with the new data collected and obviously considering
these new conditions.

5.9 Conclusion

In this chapter, we presented the prediction model that we propose for road
quality link estimation, speciĄcally the PRR on the road. The proposed model
is based on supervised machine learning techniques. The main particularity of our
approach is that the predictions are triggered while updating the rebroadcast zones
in order to adapt to the regular changes in traffic conditions, thus ensuring reliable
dissemination of alert/emergency messages.

Due to the lack of datasets meeting the requirements of our study environment
and containing the features considered by our model, we generated our dataset.
This dataset is derived from a realistic mobility scenario. Training and evaluation
of our models are performed using the generated dataset. Performance test results
are promising in terms of prediction accuracy.

Even if the experiments are based on DSRC technology, the proposed approach
applies to BS entities using cellular networks or any other new network access
technology. Indeed, the considered features are independent of any network
technology.

This work represents the Ąrst step toward developing our scheme for efficient
and reliable dissemination of alert messages, which considers all traffic conditions
changes and vehicular mobility but not only. Indeed, our model can also be
deployed to estimate I2V link quality based on cellular networks in order to meet
the requirements of other services, such as multimedia content sharing.





Chapter 6

Conclusion and Perspectives

6.1 Conclusion

The global transportation industry considers C-ITS systems a major technological
breakthrough that will revolutionize future mobility. They are counting on
deploying these systems to reduce accidents, manage traffic efficiently and improve
the driving experience.

Many C-ITS services have been proposed in the literature, combining various
interactions between vehicles and their surroundings. Among these services are
alert message dissemination services historically based on VANETs. However, these
services are very demanding in terms of QoS, and this latter remains a challenge
for VANET.

In this context, we have proposed a novel location-based alert message
dissemination scheme for Software DeĄned Vehicular Network (SDVN) to meet
low dissemination delay, high-reliability, and full vehicle coverage of such services.

The contributions proposed in this work aim to develop this new dissemination
scheme. The summary of the thesis contributions is presented below.

1. For the Ąrst contribution, we propose a novel Location-Alert Message
Dissemination scheme called LAMD for SDVN that primarily exploits V2I
links to widely broadcast alert messages complemented with parsimonious
V2V rebroadcasts. V2V rebroadcasts selection is driven by a centralized
network controller, which computes rebroadcast locations (or rebroadcast
zones). The selection process of vehicles allowed to rebroadcast the message is
Ąnally very simple based on their close vicinity to rebroadcast points. We have
shown that this alert message dissemination scheme offers highly controlled
(ideally full) information coverage while drastically reducing the number of
rebroadcasts compared to existing techniques. This considerably reduces the
number of collisions and signiĄcantly saves network resources. Finally, our
proposal induces insigniĄcant network signaling overhead and unimportant
vehicle acts.

2. Then, for a second contribution, we improve the performance of our
dissemination procedure by optimally placing relay zones. To this end, we
propose a new reinforcement learning-based method for optimal dynamic
rebroadcast zone placement. This method takes the gray zones of a geographic
map under the coverage of the SDN controller as input. It then identiĄes the
number and location of rebroadcast zones. As a result, this method offers an
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optimal rebroadcast zone placement by ensuring maximum coverage of the
gray zones, which improves the performance of LAMD considerably.

3. In the third contribution, we deploy a machine-learning-based I2V quality link
estimation technique on the road to identify gray zones in order to update
dynamically rebroadcast zones depending on traffic change conditions. The
training and evaluation of this model are done using a dataset that we have
generated mainly using the NETSIM framework. The results show a good
prediction accuracy rate. This allows updating rebroadcast zones according
to regular changes in traffic conditions, thus ensuring reliable dissemination
of alert messages.

6.2 Future work

6.2.1 Short-term potentials work

The evaluation results of the proposed dissemination procedure showed signiĄcant
performance gains and adaptability to traffic Ćuctuations. However, this work only
applies this procedure to alert message dissemination services. One of this projectŠs
future developments is to adjust and apply this dissemination strategy to other
services, such as multimedia content sharing with different requirements and access
technologies (e.g., cellular networks).

Adopting a dynamic approach to place rebroadcast zones according to the gray
zonesŠ updates is very promising. However, this technique is currently tested on
small maps due to technical constraints. Therefore, we aim to apply our placement
and estimation algorithm on large-scale maps by collecting or getting real road
traffic data under different traffic conditions.

The link quality estimation technique proposed in the last contribution
represents a Ąrst step towards developing a global view of the potential state of
networks. The proposed approach focuses mainly on I2V links. A short-term
perspective of this work is to address the case of V2V links to have a complete
view of the potential connectivity of the network nodes.

6.2.2 long-term research directions

As highlighted several times in the thesis, the SDVN architecture positively disrupts
the conventional distributed attitude on vehicular networks. It opens a new
perspective by enabling a logically centralized network view. Therefore, we are
interested in this global view that SDN controllers must build to enable rich and
efficient network control. Such a view is established and maintained by the topology
discovery service.

The topology discovery service in SDN is a service whose main objective is to
build and maintain an up-to-date view of the underlying network topology. This
view is primarily used to discover nodes and their links.
A long-term perspective is to combine this service with the quality link estimation
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service. This future approach enhances our dissemination procedure to have a
relevant view of the network from which the relevant links are selected. Moreover,
this view is enriched with the selected linksŠ potential quality. The whole will
undoubtedly form a rich representation of the underlying network and will allow
for informed and efficient network control, despite the mobility of the vehicles.
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