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“If I had an hour to solve a problem I'd spend 55 minutes thinking about the problem and five minutes 

thinking about solutions.” 

A. Einstein  
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Résumé 

L’adoption accélérée de l’Internet des objets (IoT) dans nos sociétés modernes a généré une production 

accrue des dispositifs connectés, et en même temps une augmentation significative des flux de données. 

C’est la raison pour laquelle, la communauté scientifique s’inquiète de plus en plus de l’impact 

environnemental de ce secteur, et de l’utilisation appropriée des ressources de fabrication des dispositifs. 

Par exemple, le platine (un matériel jugé critique) est hautement demandé pour la construction des 

mémoires modernes, car celles-ci sont considérées comme des éléments indispensables pour la 

performance et la manipulation des données produites par le système de capteurs, les serveurs et 

également par les Technologies de l'information et de la communication (TIC). De même, il convient 

mentionner que, d’ici quelques années, il faudra environ 17 fois plus d’énergie secondaire pour produire 

des circuits intégrés qu’il n’en fallait en 2016. Et que, malgré les développements technologiques dans 

les semi-conducteurs ayant permis de concevoir des systèmes plus efficaces ; les résultats des études 

dans le domaine montrent qu’à moyen et long terme, ces avancées ralentiront voire s'arrêteront 

complètement, entraînant ainsi une augmentation de la consommation d'énergie secondaire sans 

précédent, en raison du traitement de données qui ne cesse pas d’augmenter.  

Face à la crise environnementale, l’intérêt du milieu scientifique se concentre sur trois aspects 

importants : (a) mesurer l'impact environnemental lié au développement des systèmes IoT, (b) proposer 

des outils destinés à réduire ces impacts, notamment dans les premières étapes de conception, (c) et 

finalement proposer solutions innovantes.  

a) Concernant le premier point, la littérature montre qu’une grande partie des recherches mettent en 

évidence l’importance des dispositifs locaux (capteurs, systèmes de capteurs et dispositifs 

périphériques « edge »), mais l'architecture complète des systèmes IoT (équipements locaux, 

réseaux de communication et serveurs distants) est très peu envisagée. En effet, les travaux qui 

visent à estimer l'impact environnemental de ces architectures indiquent, en général, un impact 

moindre sur l'infrastructure mutualisée. Il est important de noter, que ces recherches admettent 

certaines limitations importantes dans les méthodes d'estimation, c’est le cas des simplifications 

(par exemple, en ce qui concerne les capacités des dispositifs locaux) et/ou également montrent de 

la difficulté à extrapoler les résultats qui seraient exclusifs à des cas d'étude spécifiques. De plus, 

on a constaté que dans les analyses de cycle de vie (ACV) il existe une absence insidieuse en ce 

qui concerne l’étude des flux de référence (identification correcte et définition) lequel devrait être 

construit sur la base du flux de données présent dans un système. En rapport aux systèmes IoT 

partiels, la littérature montre que la production et les remplacements de nœuds ont un impact 

environnemental significatif, mais les détails, tels que les raisons qui entraînent cet impact sont 

négligés. De la même façon, les études réalisées sur le périmètre des systèmes de capteurs 

attribuent des impacts environnementaux importants à certains matériaux pour la fabrication de 

composants électroniques, en particulier les cartes électroniques, circuits intègres, et autres 

composants.  Le peu d'intérêt porté sur ces derniers sujets dans la littérature limite l’évaluation 

adéquate des impacts environnementaux, et par conséquent, l’écoconception des systèmes IoT 

également.    

 

b) En ce qui concerne le deuxième point, les outils de conception et d’écoconception de systèmes IoT 

proposés par la littérature, présentent certaines défaillances, ce qui entrave considérablement leur 

application dans le développement de nouveaux dispositifs. En effet, les normes disponibles sont 

orientées vers le développement technique et non écologique, les guides d’écoconception sont très 

limités dans l’étape de conception et peu détaillés en ce qui concerne la sélection de composants 

et de technologies. En outre, les méthodologies d’écoconception ne précisent pas les techniques 

de conception électronique des équipements locaux. Par ailleurs, les outils d’écoconception 

mentionnés précédemment se concentrent dans la plupart des cas uniquement sur quelques aspects 
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de certaines phases du cycle de vie des dispositifs, notamment sur la consommation d’énergie dans 

la phase d’utilisation des systèmes IoT ou de l’empreinte carbone dans la fabrication des 

dispositifs. De plus, une faible partie de ces travaux font peu référence à l’infrastructure complète 

du système IoT.  

 

c) Finalement, le troisième point, les approches qui proposent des solutions dites innovantes, telles 

que le « Green IoT », les systèmes de récupération d’énergie, la computation intermittente, 

l’intégration de systèmes, le packaging avancé ou la conception modulaire, ont démontré qu’il y a 

possibilité de réduire l’impact environnemental. Cependant, ces approches peuvent être sources 

de dommages collatéraux. En effet, le « Green IoT » promeut souvent des techniques et procédures 

destinées à réduire la consommation énergétique des systèmes IoT, sans tenir compte des 

ressources supplémentaires (conceptions électroniques plus complexes ou réseaux de capteurs plus 

denses) qui garantissent la qualité de service des transmissions locales. En ce qui concerne les 

systèmes de récupération d’énergie, cette approche présente une limite par rapport aux composants 

électroniques dits fondamentaux, car ceux-ci peuvent se dégrader rapidement dans un contexte de 

fonctionnement intermittent. Certains travaux en rapport à l'intégration de systèmes et au 

packaging avancé montrent que de ces techniques, peuvent découler des avantages considérables 

en ce qui concerne les dispositifs hautement intégrés. Principalement, en ce qui concerne la 

simplification « back-end » de certains composants actifs, qui peuvent également augmenter la 

quantité de dioxyde de carbone (CO2) émise par densité fonctionnelle au stade de la fabrication 

(c'est-à-dire plus de CO2 émis par cm2 produit).  En matière de conception modulaire, les avantages 

écologiques présentés par cette approche ne sont effectifs que si les dispositifs sont réparés et 

préservés à moyen terme. De la même manière, on observera une perte potentielle de matériaux à 

faible recyclabilité fonctionnelle qui sont présents dans certains modules avec un haut taux de 

remplacement, par exemple l’Ytrium et l'Indium dans les écrans de smartphones. 

Ainsi, les recherches menées dans le domaine de l’écoconception de systèmes IoT et leur impact 

environnemental font face à des défis considérables au cours de la décennie à venir. En effet, ils 

présentent des inconvénients majeurs, tels que l’inexistence de données ACV, dans certaines phases du 

cycle de vie ou de l’architecture complète de systèmes IoT, notamment pour l’infrastructure mutualisée. 

De même, selon une recherche qualitative réalisée au sein des équipes de conception de la Direction des 

Systèmes du CEA-Leti, il a été constaté que l’application exhaustive des études ACV n'est pas toujours 

faisable. En effet, il requiert des efforts considérables qui sont liés à la disponibilité de temps des 

concepteurs, ingénieurs et manageurs. Il a été également observé qu’ils n’ont pas seulement besoin d’un 

outil simple et pratique d’évaluation des impacts environnementaux et d’écoconception facilitant la prise 

de décisions, mais, aussi d’un outil qui s’adapte subtilement au processus du développement de 

nouveaux prototypes.  

C’est dans ce contexte que, cette thèse répondra à deux questions de recherche. D’abord, comment les 

concepteurs peuvent-ils estimer l’impact environnemental de l’architecture entière de systèmes IoT? 

Ensuite, comment peuvent-ils minimiser cet impact au travers d’une méthodologie pratique de 

conception inscrite dans le processus de développement de nouveaux prototypes ? 

Ce travail s'articule autour de l'idée, qu’à partir de l’organisation et de la collecte efficiente de données 

brutes en une application IoT, il est possible d’obtenir de l’information substantielle. Ainsi, à partir 

d’une analyse fonctionnelle, il est possible de concevoir un flux de référence essentiel d’un système IoT.  

Dans ce sens, ce travail sera développé sur la base de deux points de réflexion. Premièrement, il énonce 

deux concepts éminents et indissociables « fonction-capacité » présents dans les composants 

électroniques et exécutés dans différentes phases opératives de données. À partir de ces deux concepts, 

ce travail a construit un outil-cadre d’évaluation d’impact environnemental, a contrario de ce que la 

littérature propose par rapport aux outils d’évaluation. Ce cadre met en évidence les éléments essentiels 
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de l’architecture complète des systèmes IoT, et fait également référence à ses interactions, facilitant une 

estimation rapide et adéquate du flux de référence réel d’un système IoT. Deuxièmement, il fait 

référence à l’idée de « dispositifs bien approvisionnés ». À l’aide de ce critère, ce travail propose un 

outil-cadre original d’écoconception inscrit dans le processus de développement de prototypes. Il 

guide la sélection de composants adéquats sous trois critères interdépendants : physique, technique et 

circulaire, à partir d’un pas préliminaire de conception de flux de données et d’information.   

Sur la base de ces deux nouveaux outils-cadres, qui en même temps se complémentent, ce travail 

présente une méthodologie unique d’éco-innovation facile à appliquer à partir des informations 

disponibles aux concepteurs (tel que des datasheets ou des déclarations de matériaux). Cette 

méthodologie a été implémentée en deux parties. 

Dans la première partie, l’outil-cadre d’évaluation d’impact environnemental a été implémenté à un 

modèle transversal de cycle de vie, selon une approche « Bottom-up », afin de dévoiler les flux de 

références complets. Cette implémentation a été illustrée par une étude de cas du système IoT complet 

destinée à surveiller la consommation d’eau dans une zone définie. Le but était de réaliser deux types 

d’évaluations, dans la phase d’usage du cycle de vie. D’un côté, une estimation théorique de flux de 

référence et un calcul de l’impact environnemental à long terme. Et de l’autre côté, une estimation 

empirique de flux de référence et un calcul de l’impact réel à partir de l’analyse du trafic global de 

données, tenant compte des aspects endogènes et exogènes (lesquels affectent les transmissions locales). 

Ces deux estimations (théorique et empirique) ont été effectuées sur la base des divers critères 

techniques, sous trois scénarios (pessimiste, typique, optimiste).  Les résultats montrent que dans 

l’estimation théorique, l’impact environnemental est d’environ 5 Kg CO2-eq émis sur deux années 

d’opération continue du système. Dans l’estimation empirique, l’impact est de plus de 6 Kg CO2-eq 

émis pour la même période d’usage. L’augmentation de l’impact environnemental de ce dernier est dû 

à un volume plus grand du trafic de données non-locales par rapport au volume qui a été calculé par 

l’estimation théorique.   

Dans la deuxième partie, l’outil-cadre d’écoconception a été implémenté en deux étapes. La première 

est considérée comme une étape préliminaire de l’identification de composants électroniques et implique 

la conception de flux de données. Cette étape est appliquée sur la base du cadre universel de sciences de 

l’information « Rationale of information Science » et dans leur analyse ont été identifiées deux types de 

versions. Une version est basée sur la Communication en champ proche ou « Near-Field 

Communication » (NFC) et considère 24 variantes à partir de la combinaison de 2 types de comparateurs 

de voltage, 4 types de microcontrôleurs et 3 types de mémoires; l’autre version est basée sur la 

technologie Bluetooth (BLE). La deuxième étape est adaptée au travers d’un modèle d’analyse de cycle 

de vie ACV bien détaillé, elle implique l’évaluation de composants électroniques conformément aux 

critères interdépendants introduits précédemment.   

L’implémentation de l’outil-cadre d’écoconception écologique a été illustré par l’étude de cas d’un 

prototype de système de capteurs autonomes qui fait partie d’un système IoT orienté à surveiller le taux 

d’usage d’un objet. Cette étude a été développée au sein de la Direction des Systèmes de CEA-Leti, dans 

le but de réaliser une évaluation comparative structurée en trois aspects: d’une part, une évaluation 

technique destinée à comparer l’impact environnemental de la version BLE avec celui de la version 

NFC, d’autre part, une évaluation physique et une évaluation circulaire destinées à comparer certaines 

variantes de la version NFC.  Ces évaluations sont expliquées dans les paragraphes ci-dessous: 

- Une évaluation physique a été réalisée sous le critère de réchauffement climatique (GW) et a 

constaté deux aspects. Premièrement, parmi les 24 variantes conçues, la pire des variantes a été 

construite par des circuits intégrés avec des grandes puces et une carte électronique avec une 

surface plus large. Cette dernière est directement affectée par le « land pattern » de certains types 

de composants électroniques. Deuxièmement, la présence d’or et d’argent dans les sub-parties des 
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composants électroniques contribue marginalement à l’impact GW. Ainsi, dans le cadre de ces 

deux derniers aspects, une première analyse de Monte Carlo a été effectuée, celui-ci montre qu’une 

réduction moindre d’or ou d’argent peut être un facteur déterminant, au moment d’élaborer des 

conceptions écologiques. Par ailleurs, afin de réduire l’impact environnemental des variantes avec 

de microcontrôleurs du type WLCSP, il est nécessaire de considérer des composants avec un ratio 

surface puce / mase IC bien réduit. 

 

- Une autre évaluation physique qui a été effectuée sous le critère d’épuisement des ressources 

abiotiques (AD) a constaté deux aspects importants. Premièrement, parmi les 24 variantes conçues, 

la pire des variantes a été construite par des circuits intégrés composés en grande partie de fils 

d’or. De plus, un quart des dommages de l’ensemble des impacts environnementaux est 

occasionnée par de signifiantes quantités d’argent, de cuivre et d’étain en différentes sub-parties 

du microcontrôleur TFBGA. Deuxièmement, les dommages des différents types de boîtiers 

peuvent varier significativement en fonction des matériaux avec lesquels ils sont construits. En 

effet, la quantité d’un matériel peut être déterminant selon la « relevance d’impact » de ce matériel 

dans une « catégorie d’impact environnemental ». C’est dans ce contexte, qu’une deuxième 

analyse Monte-Carlo a été réalisée. Elle a démontré qu’il existait une amélioration dans la 

conception écologique des cartes électroniques dans la catégorie d’impact AD, lorsqu’il y a une 

réduction des quantités des matériaux avec une haute relevance d’impact, ou lorsqu’il y a une 

réduction minimale des quantités significatives de matériaux avec faible relevance d’impact.  

 

- L’évaluation technique est réalisée en comparant le cycle de vie de deux versions, la version BLE 

et la version NFC. La première ne réalise aucun enregistrement de données dans une mémoire, 

elle les envoie directement aux téléphones mobiles. Au contraire, la deuxième (NFC) avant de les 

exporter par lots, les enregistre dans une mémoire (écriture). La démarche de cette dernière prend 

en compte le taux de vieillissement des blocs de la mémoire (en fonction de la fréquence de 

l’écriture), lequel est proportionnel au taux d’usage de l’objet de cas d’étude. C’est la raison pour 

laquelle, au moment d’analyser l’évaluation technique, la préférence d’usage des utilisateurs (BLE 

ou NFC) joue un rôle important. En effet, à une haute intensité d’usage, l’intensité des 

enregistrements dans la mémoire seront plus importants, donc plus la mémoire se dégrade, 

augmentant ainsi la possibilité de replacement du dispositif (prototype). Partant de ce constat, une 

troisième analyse Monte-Carlo a été réalisée, afin de comparer les deux versions, il a été observé 

que dans un contexte de faible utilisation de l’objet, une augmentation substantielle de la fréquence 

d’écriture n’affecte pas la fiabilité des mémoires de la version NFC et donc assure son avantage 

environnemental par rapport à la version BLE. Cependant, dans un contexte d’utilisation modérée 

de l’objet avec une augmentation substantielle de la fréquence d’écriture, ou dans un contexte 

d’utilisation intensive de l’objet avec une augmentation modérée de la fréquence d’écriture, dans 

les deux cas il y aura une dégradation importante de la mémoire et par conséquence le 

remplacement du dispositif avant de satisfaire son unité fonctionnelle. 

 

- L’évaluation circulaire a été réalisée sur la base de deux types analyses. D’une part, une analyse 

Monte Carlo qui tient compte des attributs circulaires de composants du type BGA, tels que la 

taille du boitier, l’épaisseur du « compound » et du substrat ; le diamètre et le « solder bump pitch » 

des pins. Cette analyse a montré que, dans la phase de sélection des composants, la probabilité de 

succès de séparer et réutiliser les microcontrôleurs BGA, augmente si les concepteurs priorisent 

les tailles de boitiers petits, et également des solder bump pitches larges. Mais, il est important de 

remarquer que d’après cette analyse, les boitiers extrêmement petits peuvent également entraver 

la séparation thermale. D’autre part, il a également été effectué une analyse comparative d’impact 

environnemental de deux variantes hétérogènes de la version NFC dans le contexte du recyclage. 

Dans cette analyse, on tient compte d’un attribut circulaire, la taille du boitier, et suggère que la 
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séparation manuelle des composants plastiques de la carte électronique, et la séparation mécanique 

de ses grands composants, peuvent offrir des bénéfices, mais seulement si on effectue un traitement 

correct des résidus non électroniques et si ses composants séparés contiennent une quantité 

significative de métaux cibles. 

Après avoir réalisé une analyse exhaustive et implémenté les deux outils-cadres dans les deux cas, cités 

précédemment, ce travail propose des recommandations qui sont traduites en 22 guides de conception. 

Ces directives doivent être adoptées, raffinées et complémentées à d’autres études, sous une approche 

critique et globale, en utilisant la méthodologie présentée dans ce travail de manière continue, cohérente 

et automatisée, notamment avec l’adaptation des systèmes d’information.  

 

Mots clefs : Internet of Things, IoT, Technologies de l'information et de la communication, TIC, 

écoconception, éco innovation, Analyse de Cycle de Vie, ACV, Computation Intermittente, Systèmes 

IoT, Systèmes de capteurs, Systèmes de récupération d’Energie, Green IoT.  
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Abstract 

The accelerated adoption of the Internet of Things by our modern societies has increased significantly 

the production of connected devices in recent years. In the face of the potential impacts of this tendency, 

researchers put more efforts on measuring the environmental impact of IoT systems, proposing tools to 

reduce this impact and offering innovative solutions. 

However, Life Cycle Assessment (LCA) literature focused on IoT systems shows that few authors cover 

the full architecture. In the scope of partial systems, some authors point out significant impacts from the 

production and replacement of nodes, without giving more details in terms of electronic design. 

Moreover, it is observed a lack of, or a poor definition of reference flows, which, according with 

evidence found in certain studies,   should be built on the basis of the data flow present in a system. On 

the other hand, the eco design tools found in literature suffer from shortcomings and some of the most 

innovating solutions —such as green-IoT, energy harvesting systems or intermittent computing — are 

projected promising, but also can cause collateral damage. Besides of all this, the research on impact 

estimation struggles with the absence of LCA data, and practice of eco design is hampered by the 

impracticability of applying exhaustive LCA modeling, within the typical design workflow of devices. 

It is in this context that this thesis aims to build a practical design methodology oriented to estimate the 

environmental impact of full IoT systems, and minimize this impact from the early steps of the 

development of new prototypes. To achieve this goal, this work starts from the idea that substantial 

information for an IoT application can be obtained from the efficient collection and organization of 

sufficient, yet meaningful raw data. In this manner, this thesis is developed on the basis of two points of 

reflection. The first one establishes two inexorable and indissociable concepts “function-capacity” that 

facilitate the definition of reference flows. Based on that, a framework for impact estimation is built. 

The second one promotes the approach of “right-provisioned-devices” that guides the selection of 

suitable components under three interdependent criteria (physical, technical and circular), considering a 

preliminary design step of data and information flow. Based on that, another framework for eco design 

is built. Both frameworks complement each other and compose a unique methodology for the eco 

innovation of IoT systems, applicable from basic information available to designers.  

In this work, this methodology has been implemented and illustrated in two parts. Firstly, the framework 

for impact estimation was implemented by a bottom-up, transversal life cycle model, which aims to 

illustrate the theoretical and empirical estimation of the reference flow and long-term impact of an IoT 

system oriented to smart metering. By taken into account technical criteria and endogenous and 

exogenous aspects that affects transmissions, the empirical estimate shows a greater impact than that 

one obtained from the theoretical estimate, which is explained by a greater volume of data traffic 

between local and cloud infrastructure. 

Secondly, the framework for eco design was implemented and illustrated by a preliminary design step 

of data and information flow of a prototype of a self-powered EH sensor system developed at the System 

Division of CEA-Leti; and by a LCA-based evaluation step, that involves two of its versions. In this 

sense, a physical-based analysis reveals the influence of the codependence of PCB surfaces and land 

patterns of electronic components on global warming, the significant contribution of ICs’ die surfaces 

to this impact category (especially those belonging to the CSP technology), and the marginal, yet 

decisive contribution of gold and silver. For the AD impact category, it was observed the central role of 

gold, silver, copper and tin for impact estimation and eco design, all in function of their quantities and 

their impact relevance (aspects that are capital when evaluating different technologies of packaging).  

Within the intermittent functioning of the prototype (which belongs to an IoT system oriented to monitor 

the usage rate of an object), a technical-based analysis showed that in a context of low use, a substantial 

increase in the writing frequency does not affect the reliability of the NFC-version’s memory (ensuring 
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an environmental advantage against the BLE-version).  However, in a context of moderate use of the 

object with a substantial increase in the writing frequency, or in a context of intensive use of the object 

with a moderate increase in the writing frequency, the probability of degrading the memory and 

consequently replacing the device before satisfying its functional unit augment considerably. 

Finally, a circular-based analysis showed that BGA components with small packages (mainly) and large 

solder bump pitches (additionally) are more likely to avoid bridging effects (one of the causes that 

interfere with their reuse), but very small packages can also interfere with the process of thermal 

separation. This circular-based analysis also suggests that the manual separation of the plastic 

components, and the mechanical separation of big electronic components, can both generate 

significantly benefits, but only if a proper treatment of non-electronic residues is applied, and if separate 

components contain significant amounts of target metals. 

These and other findings are synthetized into 22 guidelines that must be adopted with a critical and 

global approach. That is, they should be challenged, refined or complemented in the context of other 

case studies; and by using the proposed methodology in a continuous, coherent and automated manner, 

particularly with the adaptation of Information Systems.  

 

Keywords: Internet of Things, IoT, Information and Communication Technology, ICT, Eco design, Eco 

innovation, Life Cycle Assessment, LCA, Intermittent computing, IoT systems, sensor systems, Energy 

Harvesting systems, green-IoT. 
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Introduction 

The ongoing information age shapes our modern societies and paves the way to prosperity. In last 

decades, we have witnessed an accelerated progress from the development of Information and 

Communications Technologies (ICT), and specific advancements in modern semiconductors, materials, 

web scale analytics and Artificial Intelligence. At the same time, the fifth- and the upcoming sixth-

generation technologies presage a more connected world supporting colossal communications between 

sophisticated devices.  

In this context, the Internet of Things (IoT) emerges as one of the millstones of this bright reality. Only 

in 2018, the World Economic Forum found that 84% of more than 600 IoT worldwide projects support 

or have the potential to support 17 Sustainable Development Goals (SDG) including industry, innovation 

and infrastructure (SDG 9), sustainable cities and communities (SDG 11), affordable and clean energy 

(SDG 7), responsible production and consumption (SDG 12) and good health and well-being (SDG 3) 

[193]. What is more, from wearable and implantable devices to complex systems inside vehicles, the 

IoT has the potential to bring more than $11 trillion of benefits, contributing with more than 11% to the 

global economy by the end of 2025 [1].  

An evidence of this direction is the steady growth of IoT devices in last years. Estimations shows that, 

in 2020, the number of IoT devices overcame the number of humans and exceeded the regular electronic 

fleet by an approximate factor of 1,2 [2]. Others believe that in 2023, there will be 1,8 IoT-based 

connections for each member of the global population [194]. However, at the same time, there is an 

increasing concern that this rapid and uncontrollable expansion of IoT systems leads several ecological 

problems related to resource depletion, climate change and waste.  

In last decades, global extraction of essential metals for electronics and sensors such as copper has 

increased by a constant annual rate of 3% and it is expected a historic production record of 50 Mt/year 

in 2050, followed by a drastic decrease due to degradation on the quantity and quality of ores [3]. The 

global warming damage could be also significant, not only in the manufacturing phase of IoT and edge 

devices, but also in their use phases, assuming that they depends on mutualized infrastructure to work. 

As a matter of example, charging a smartphone in France contributes with only 0,3% of GHG emissions 

of its life cycle, but this contribution increase rapidly to 50% when mutualized infrastructures allowing 

multiple services (internet and datacenters) are included [4]. In the same way, researches expect similar 

impacts from IoT systems [6], according to sensor complexity and data application typology (i.e.: 

imaging). 

In addition to this, there is a significant asymmetry between WEEE growth and circularity. Currently, 

research and industry are confronted not only to low collection rates but also to inner design challenges 

related to disassembly issues. In 2018, Western European countries have not achieved the 85% WEEE 

collection target, probably due to several reasons including dissipation of waste flows in the environment 

(approximately 1,4 Kg per inhabitant (Kg/inh) of WEEE would be landfilled or incinerated), or informal 

WEEE flows (0,5 to 1,4 Kg/inh of WEEE would ended up in illegal flows) [195]. From the collected 

share, current technology falls short to separate efficiently components from waste electronic cards for 

recovering strategic metals such as gold, silver, copper, bismuth and tin [196]. 

All these issues reveals the unsustainable condition of IoT and the urge of change. At this moment, more 

than a hundred of solutions among standards, guidelines and customized eco-design tools were proposed 

to deal with the environmental load of electronics and recently, scientific communities started to focus 

their efforts to solve the impact of IoT devices, but, in general, all these efforts are either difficult to 

apply throughout the existing product development process or they are simply segregated or discordant. 

On the other hand, encouraging approaches oriented to specific IoT issues such as energy consumption 

and waste are found in specialized literature but, with some exceptions, they are devoid of a global and 

lifecycle perspectives.  
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It is in this context that this thesis emerges. It aims to build a simplified yet holistic methodology that 

not only facilitates sustainability of IoT systems, based on the integral environmental impact assessment 

of full IoT system and the ecological design of IoT prototypes, both feasible from the available 

information that a designer usually has; but also guide, complement and harmonize future research in 

promising domains. This objective is particularly challenging because, contrary to regular electronics, 

An IoT system facilitates human-to-human, human-to-machine and machine-to-machine (M2M) 

interactions by heterogeneous networks of local and edge devices; and mutualized infrastructure. 

Specifically, sensors or sensor systems embedded in regular objects captures raw data from 

environment, which is later processed or resending by intermediate devices toward remote servers.  

On the other hand, while this thesis is read, less than 1% of data generated by more than 30000 sensors 

in an oil ring is used [1] and sound sensors in Barcelona transmit raw data of noise pollution every 

minute [5]. Are the design of these IoT systems over- or under-sized? With this doubt in mind, the 

starting point of this research is recognizing data as the distinctive added value that establish referential 

flows; and as a design-driver of sustainable IoT systems. More specifically, the main presumptions being 

tested throughout this research is that (1) the appropriate analysis of data collection and flow reveals 

crucial aspects for accurate impact estimation, and for appropriate design alternatives for sustainable 

IoT prototypes; and that (2) such alternatives must be evaluated with a physical, technical, circular and 

lifecycle perspectives.  

Consider, for example, exploiting the implicit information from voltage outputs data of a wearable 

piezoelectric harvester to estimate the amount of calories expended instead of using accelometers, during 

specific human activities. With a Mean Absolute Percentage Error of 0,12 when walking and 0,16 when 

running, Lan, G. et al. [7] not only demonstrate that this is totally possible, but also put in evidence the 

potential of data, information and knowledge for sustainable IoT systems. Like this work, many other 

similar contributions proliferate around the world in the promising fields of data context sensing, Energy 

Harvesting (EH) systems, or intermittent computing but, what is the environmental and computational 

loads to implement such initiatives?  

Within this work, these doubts, together with fundamental challenges and tendencies such as design 

priorities and tradeoffs, computing offloading and electronic component interdependency are addressed. 

In addition, principal difficulties in impact estimation are considered and appropriate ways to integrate 

sustainability in the typical design workflow of IoT prototyping are explored. This is done with the 

collaboration of the System Division (DSYS) of the research institute CEA-Leti, and in the context of 

two case studies, that involves an energy-harvesting prototype and a commercial IoT system. The result 

is a referential methodology that is positioned as an eco-innovation tool that surmount the very often 

lack of information and laborious nature of Life Cycle Assessment (LCA) in the prototyping phase of 

IoT systems. 

The next chapters are oriented to answer the main interrogation: How can one estimate the potential 

impact of an IoT system and how can one minimize this impact by an efficient and practical design 

methodology?  

Chapter 1 explores the fundamental concepts of IoT systems, their potential impacts and the recent 

initiatives for their sustainability; aspects that all together reveal the inner research questions. Chapter 2 

addresses these questions by understanding the fundamental role of data and information for the impact 

estimation and design of  IoT systems. Chapter 3 present a critical and exhaustive review of the State of 

Art of impact estimation and eco-design of IoT systems. From the knowledge gaps identified in this 

chapter, a fieldwork on designers’ needs and the structured analysis of data design flow, specific 

capacities and attributes of electronic components, chapter 4 builds, proposes and positions a design 

methodology composed of two frameworks. Chapter 5 illustrate the use of this methodology and put in 

evidence its usefulness by generating 22 guidelines from the examination of two case studies. Chapter 

6 recall the main findings, limits and further perspectives identified so far and concludes this work.   
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Chapter 1.  Fundamentals of Internet of Things, potential impacts and trends 

Overview 

This chapter presents some fundamental concepts of Internet of things and establishes a common language for the 

development of the following chapters (section 1). Then, the section 2 presents a short reflection on the potential 

impacts of IoT systems to highlight the urgency of change. Finally, section 3 provides a brief, yet reasoning 

analysis of the benefits and shortcoming of current initiatives so that two research questions related to the main 

interrogation of this work can be stablished at the end.    

1. Definitions and concepts 

1.1.IoT Systems, sensor systems and other systems 

The generic term “Internet of Things” does not benefit from a clear definition because certain visionaries 

and earlier technologies coined the term along the years. For example, long before that the first allusions 

about “linking a company’s supply chain to the internet” were made by Kevin Ashton in 1999 [206]; 

Mark Weiser [207-208] had already been talking about “ubiquitous computing” or “ubicomp”, to refer 

to the way of allowing regular things benefit from the low-cost and computer miniaturization tendency, 

evidenced in 1990.  

Considering that an embedded-, sensor-based electronic device can connect to remote servers by means 

of edge devices and internet, a more specific term of “IoT systems” is proposed by Serpanos, D. & Wolf, 

M. [197]. Normally, IoT systems are specific-oriented application products that figure among the most 

sophisticated Information and Communication Technologies (ICT). It could be defined as “a global 

infrastructure for the information society, enabling advanced services by interconnecting things —

physical or virtual objects— based on existing and evolving interoperable information and 

communication technologies” [82].  

An IoT system is composed of a local infrastructure (equipment of one or more end-devices, edge-

devices and, optionally, fog-devices) and a mutualized infrastructure (telecom equipment and cloud 

resources). Figure 1.1 depicts these elements and their interactions in a basic architecture. 

 

 

Figure 1.1. The basic architecture of an IoT System composed of the local and mutualized infrastructure. It includes, for example, sensor 
systems as end-devices, a local server and database as fog resources, and a remote server and database as cloud resources. 

In Figure 1.1, an end-device could be a sensor component, an actuator or a sensor system. A sensor is 

an electronic component (EC) able to measure diverse phenomena from environment by a transduction 

process, and through specific techniques [198]. Conversely, actuators receive some type of control signal 
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(electric or digital) that triggers a physical effect [153]. Table 1.1 provides a classification of sensor 

types, built from the descriptions and details found in the comprehensive review conducted by McGrath, 

M. J., & Scanaill, C. N. [198]. 

 Sensor type Description off-the-shelf sensors Details 
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Mechanical 

Mechanical sensors measure changes  
in a device or materials as the result 
of an input that cause a mechanical  
deformation [209]. 

Microelectromechanical 
systems (MEMS) 

Consist of mechanical microstructures all integrated into a same silicon chip. They integrate  
electric and mechanical elements, such as sensor and actuators on a very small scale [153]. 

Accelometers 
Piezo-resistive accelometers consist of resistive materials bonded to a cantilever beam that  
bends under the influence of acceleration. 

Gyroscopes 
Gyroscope sensors use vibrating mechanical elements (proof-mass) to sense rotation based on the 
transfer of energy. Tuning fork gyroscopes contains a pair of masses that are driven to oscillate 
with equal amplitude but in opposite directions. 

Optical 

Optical sensors work by detecting waves  
or photons of light. They operated by  
measuring a change in light intensity related  
to light emission or absorption by a quantity  
of interest. 

Photodetectors 
Photodetectors are based on the principle of photoconductivity, where the target material  
changes its conductivity in the presence or absence of light. 

Infrared 
Active infrared sensors employs an infrared light source, which project a beam of light that is  
detected at a separate detector. Passive infrared sensors rely on detected heat from objects. 

Fiber optic 
Fiber optic sensors use multimode fibers with large core diameters, coated with materials  
that respond to changes in strain, temperature or humidity. 

Interferometers 
Interferometers use a light source (i.e.; laser LED) and two single fibers. The light is split and  
coupled into both of the fibers. The quantity being measured modulates the phase of the optical 
signal. 
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Semiconductor 
Semiconductor sensors modify the n- and/or p-  
structures to measures different phenomena. 

Gas sensors 
Gas sensors have a porous sensing layer made in thick-film metal oxide semiconductor layer  
such as SnO2 or tungsten trioxide, and a sensor base.    

Temperature sensors 
Temperature sensors are based on the change of voltage across a p-n junction, which exhibits  
strong thermal dependence. 

Magnetic sensors 
Hall-effect sensors consist of a thin layer of p- or n-type semiconductor material that carries a  
continuous current. They measure the voltage difference across the intensity of a magnetic field  
applied perpendicularly to the direction of the current flow. 
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Electrochemical 

Electrochemical sensors are composed of a  
sensing or working electrode and a reference and  
counter electrode. These electrodes are placed in  
contact with liquids or solid electrolytes to monitor  
different chemical properties (e.g., pH levels). 

Potentiometric sensors 
Potentiometric sensors measure difference in voltage between the working electrode and a  
reference electrode. 

Amperometric sensors 
Amperometric sensors measure changes in current. The potential of the working electrode is  
maintained at a fixed value and the current is measured at a time basis. 

Coulometric 
Coulometric sensors measure the quantity of electricity in coulombs by holding a working  
electrode at a constant potential and measuring the current that flows through an attached circuit. 

Conductometric sensors 
They operates on the principle that electrical conductivity can change in the presence or  
absence of some chemical species. 
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Biosensors 
Biosensors use biochemical mechanisms to 
identify an analyte of interest in samples. 

Transducers for biosensors 
Transducers for biosensors convert the biological activity —sensed by a bio receptor— into a  
quantifiable signal (For example changes in conductivity during enzymatic redox reactions). 

Table 1.1.  Classification of sensor types. According to McGrath, M. J., & Scanaill, C. N. [198], sensors can measure quantities of interest in 
three ways: contact or non-contact with the quantity of interest; or sample removal. 

On the other hand, a sensor system is a limited-resource device, composed of a sensor component, a 

microcontroller unit (MCU), a memory, a communication interface and a power subsystem, all 

integrated fully or partially in a same Printed Circuit Board (PCB) (see the sensor system anatomy 

showed in figure 1.1). It transforms the measured quantities obtained by its sensor component into data, 

and it could extend its capacities by augmented resources such as different wireless technologies, 

memories, or additional sensors and electronic components. Figure 1.2 shows a typical architecture of 

modern sensor systems.  
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Figure 1.2. A typical sensor system architecture (blue boxes). A “signal” from the environment is measured by a sensor component (e.g., the 

force caused by a change in motion sensed by an accelometer) and further transformed into a digital/analogic signal or data by the MCU 
(specifically, by its Analogic-to-Digital (ADC) converter). This digital/analogic signal or data flows physically by the Inputs/Outputs (I/O) 

peripherals of the MCU and other electronic components. Figure extracted from [198]. 

An electronic component can be classified as a passive component or an active component. A well-

extended definition of passive components (e.g., capacitors or resistors) says that it is an electronic 

device that requires nothing but alternating current to functioning; it is not capable of power gain and is 

not a source of energy [219]. Active components, on the other hand (e.g., semiconductor diodes, 

Integrated Circuits (IC), unipolar and bipolar transistors, etc.) have analog electronic filters able to 

amplify a signal or produce a power gain (they do this because their source of energy are separated from 

the electrical signal) [220]. 

On the other hand, an edge device is an extended-resource device (i.e.: a lithium-battery-based gateway, 

an internet relay or a smartphone), which mainly provides high-level connectivity between sensor 

systems and the rest of the IoT system; and optionally, performs some computations. In contrast, a fog 

device  is a nearby resource at the edge network (e.g., a local server or database) that performs different 

operations of a full or partial  IoT system. The core concept of a fog resource or fog computing in an 

IoT system is that some network devices handle some services of the cloud infrastructure, enabling 

massive traffic and high readiness by processing requests closer to where the data is generated [203]. 

On the other hand, cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., servers, storage and services) that can 

be rapidly provisioned and released with minimal effort [204]. In this sense, a cloud resource (e.g., a 

cloud server) is a powerful-, multiservice-server provided by a database system [197].  
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The telecom network showed in figure 1.1 can be further organized into different sub-networks. In fact, 

the International Telecommunication Union (ITU) establishes a basic model composed of an IoT area 

network, an access network and a core network (figure 1.3). 

 

Figure 1.3. Basic model of the network architecture of IoT systems. Figure extracted from [217]. 

In this way, this institution provides the following standard definitions [217]: 

 The IoT area network is a network of devices for the IoT and gateways interconnected through 

local connections. 

 The access network connects access technology (such as a radio access network) to the core 

network [218]. For example, a gateway —that is, any Internet Access Point (IAP) device, such 

as an internet box— may also belong to the access network because it “interconnects the devices 

with the core network”.  

 The core network is a portion of the delivery system composed of networks, systems equipment 

and infrastructures, connecting the service providers —the cloud resources— to the access 

network. For example, the Internet Protocol (IP) core network —that is, the Internet Service 

Provider (ISP) equipment which forms the regional, national and global networks [12]— can be 

considered as the core network because it “connects the service provider domain (i.e.; IoT 

application servers) to the access network”.  

In this thesis, the access and core networks, together with the cloud resources are understood generally 

as the “mutualized infrastructure” but, when necessary, distinctions will be made.  

Having established a unique language from the definitions above, table 1.2 provides a brief description 

of some approaches close to IoT systems that, although possess some of the features mentioned before, 

they might not be considered as such. 

Approach Description Example Why it could not be considered as an IoT system 

Wireless Sensor  
Networks (WSN) 

In the interpretation of Bonvoisin et al. [61], a WSN 
links together electronic devices that cooperates for 
obtaining and providing information about a system, 
by the monitoring of one of its relevant phenomenon 
[211]. 

A WSN oriented to monitoring the  
content level of a recipient, 
working with centralized gateways 
and a local server. 

A WSN may or may not be considered an IoT system. While WSNs can operates locally 
(only with end- and edge devices); IoT systems need to work with mutualized 
infrastructures (i.e.; internet and cloud servers). Indeed, IoT is not only a local 
infrastructure, but a global infrastructure to connect things through interoperable 
underlying communication networks [84]. 

Pervasive or 
ubiquitous computing 

"Pervasive computing uses small, battery-powered, 
wireless computing and sensing devices embedded 
in our environment to provide contextual information 
to new types of applications" [212]. 

A Home Energy Management 
System (HEMS) of embedded 
controllers oriented to manage the 
energy usage of home devices 
[214] 

In some cases, pervasive computing and IoT could be used interchangeably, as long as 
Internet connection in both approaches does exist. However, pervasive computing might 
be more oriented to Human Computer Interaction (HCI) issues —on making the 
connected things disappear from human attention; while IoT focuses more on 
connecting devices [215]. 

Mechatronics 

"Mechatronics is the result of applying Information 
Systems to physical systems [...] The physical 
system consists of mechanical, electrical and 
computer systems as well as actuators, sensors 
and real-time interfacing” [213]. 

A car with an Electronic Traction 
System (ETS) that uses individual 
wheel-speed sensors to detect 
when wheels slip. 

A mechatronic system belongs to a third level of intelligence: "physical products with 
embedeed sensors, memory and data processing capabilities" [216]. To gain the status 
of IoT system, identification and communication capabilities must be added it [108]. 

Table 1.2. Some approaches close to IoT systems. 
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1.2.Fundamentals on computer networking in the context of IoT systems 
From figure 1.1 and the later definitions, the connectivity-nature of all devices is evidenced. Indeed, any 

IoT device is a piece of computer equipment with the mandatory capability of communication; and the 

additional capabilities of sensing, actuation, data capture, data storage and data processing [82]. In 

broadly terms, for two or more computer devices communicate, common languages or “protocols” are 

needed. Typically, computer protocols deals with connection initialization, negotiation, data formatting, 

error detection/correction and connection termination tasks [156]. In order to address these functions 

and reduce the design complexity of computer networks, one use layered-based models (protocol 

hierarchies) and “protocol stacks”, which are lists of specific protocols used by a certain system (one 

protocol per layer) [210]. In this line, the Open System Interconnection (OSI) model provides a 

referential framework to facilitate communication between network systems based on seven layers: the 

application, presentation, session, transport, network, data link and physical layers (Figure 1.4). 

 

Figure 1.4. The layered-based protocol hierarchy and the protocol stack (dotted lines) of the OSI model. It shows a simple communication 
schema between host A and host B, both belonging to two different computer networks. Figure extracted and adapted from [210].  

In a simple communication from host A (the left down-flow), a protocol in every layer adds headers and 

footers to the data application, generating an aggregated message with a “protocol overhead” 

(accumulated headers and footers), which flows by an interface (primitive operations and services 

between layers). In the network layer, this message becomes a complete Protocol Data Unit (PDU) —

often called a “packet”, which is further organized in frames by the Data link layer, according to the 

carry capacity of the physical means. When the packet reaches the host B, the corresponding footers and 

headers in every layer are interpreted by a homologue protocol, so that the data application can be used 

in the application layer of host B (right up-flow). 

Because end devices in IoT systems exchange information in challenging contexts (variable distance 

ranges, energy-constrained designs, different frequency bands and network topologies, etc.), specific 

technologies and protocols were developed to addresses the complexity of wireless communication in 

the network, link and physical layers of the local infrastructure. Among the common protocols applied 

to the extended 802.15.4 access technology, one can mention the Zigbee, Zigbee IP, 6LoWPAN, 

ISA100.11a, WirelessHART, and Thread protocols. For the Low-Power Wide-Area (LPWA) 

technology, one can instance the Narrowband IoT (NB-IoT) and Long Range Wide Area Network 

(LoRaWAN) protocols. In the case of the application, presentation, session and transport layers, one can 

identified the Constrained Application Protocol (CoAP) and the Message Queuing Telemetry Transport 

(MQTT) protocol. The former is based on the User Datagram Protocol (UDP) and the latter on the 
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Transmission Control Protocol (TCP); both are protocols used not only in IoT systems but also in 

computer networking in general.  

2. Potential impacts of IoT systems 

2.1.Resources depletion 
The evidenced growth of sensors, sensor systems, internet networks and cloud infrastructures in recent 

years, together with the potential increase of ICT data in the short term, arise concerns related to 

depletion and criticality of specific materials. For example, in 2017, an approximate share of 8% of the 

global primary production of platinum (part of critical material list recognized by the European Union 

[205]), was attributed to the electronic sector (Ceramic capacitors, hard disks and memories) [199-200]. 

Considering a very low recycling rate of this metal in Waste Electrical and Electronic Equipment 

(WEEE) flows (from 0% to 5% according to Graedel, T. E., et al [221]), and its significant losses in 

manufacturing reported by Palomino, A. et al [201], it is expected not only a rapid decline of natural 

deposits but also supply chain disruptions, especially for ramping memory technologies. This crisis 

would be imminent in the case of production of Ferroelectric Random-Access Memories (FeRAM), 

because of incremental data generation rates of ICT in further years, as warned by Ku, A. Y. et al 

[202]. To understand why, the reader should consider his estimates in the material intensity of the 

platinum used only in the control gate subcomponent of these memories, that would amount to 236 

metric tons per Zetabyte (Mt/ZB) against to an insufficient annual production of 172 Mt in 2016 (without 

counting losses in manufacturing, and considering an estimate of 163 ZB/day by 2025, according to 

Reinsel, D. et al [222]). 

2.2.Embodied emissions and energy of IoT systems  
On the other hand, the primary energy used for the manufacturing of electronic components in sensor 

systems depends on several features such as package size or package technology, which require more-

in-deep analysis. A comprehensive study conducted by Das, S., & Mao, E. [8] showed, for example, 

that a same packaging technology might have different energy demands according to the number of pins 

of flash memories (see Figure 1.5a). Based on the global market forecasts of specific IoT ICs (sensors, 

MEMS, connectivity ICs, and processor ICs), these authors estimate that the total primary energy 

demanded for manufacturing IoT-specialized components will increase from 2 exajoules (EJ) in 2016 

to 35 EJ in 2025 (Fig. 1.5b) (This estimation does not include the energy required by the internet and 

cloud infrastructure).  

(a) (b) 

Figure 1.5. (a) Primary energy demand of 45 nm flash memories with different number of pins and packaging technologies (Wafer Level 

Chip Scale Packaging (WLCSP), Thin Small Outline Packaging (TSOP) and Think Shrink Small Outline Packaging (TSSOP)). (b) Primary 
energy footprint of IoT-specialized electronic components (sensors, MEMS and connectivity / processor ICs). The decreasing energy needs 

in operational stages would correspond to a constant improvement Kilowatt/hour, per year, per chip (kWh/year/chip). Figures extracted and 
adapted from [8]. 

2.3.Energy consumption of IoT systems 
In 2012, the electricity consumption of the global ICT fleet was estimated at 920 Terawatts/hour (TWh) 

[223-224] causing an estimate of 530 Mt of CO2 [225] (with one third of this damage attributed to end-

devices, one third to telecommunication networks and one third to data centers). Nowadays, estimations 

shows a moderate and controlled increase in electricity needs, mainly thanks to efficient innovations in 

technology. Fox example, Masanet, E. et al. [226] reported a low increase of only 6% in total electricity 

consumption of data centers between 2010 and 2018. According to Koot, M., & Wijnhoven, F. [227], 
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this improvement is due to efficient data processing, cooling and uninterrupted power supplies. 

Moreover, these authors argue that during the next 10 years, and regardless of the significant increase 

in both consumer and business workloads, the energy consumption of data centers will be constant, 

thanks to technological innovations. Figure 1.6a provides one of their simulation-based sensibility 

analysis, in which it is found that a projected electricity demand of only 364 TWh will be enough to 

cover the climbing industrial IoT in 2030. 

(a) (b) 

Figure 1.6. Monte Carlo-based, sensitivity analysis (10000 runs, including confidence intervals of 75%, 95% and 99%) of Electricity needs 
of data centers, considering (a) the climbing advent of industrial IoT and (b) Effect of both Industrial IoT and end of the Moore’s law on data 

center electricity consumption. Figures extracted and adapted from [227]. The legend is applied for both figures and the referential studies 
are available in Masanet, E. et al [226] and Andrae et al [228-231]. 

However, they also believe that these favorable circumstances may rapidly decay in the mid- and long-

term, as the computing efficiency rate (twice every two years, as established by the Moore’s law) slow 

down or totally stop in next years. With this concern in mind and by considering a declining trend of the 

Moore’s law (from an efficiency-increase rate of 25% in 2016 to 0% in 2030), they conducted another 

analysis in the context of industrial IoT, this time finding a significant augmentation of the data 

centers’ electricity needs going up to 752 TWh in 2030 (figure 1.6b).  

Unfortunately, there are few studies like this one that estimate the energy consumption of IoT systems 

at a global perspective. Instead, there is a growing body of literature that warn the urge of a holistic, life-

cycle perspective for estimating the impacts of global ICT [9]. Within this posture, a particular challenge 

is considering the global energy used in the operational phase of an ICT product [10] which often 

depends strongly on the application and use. The scarce research oriented to these aspects attempt to 

estimate the electricity consumption per data size (kWh per Gigabyte (GB)) of datacenters and internet 

infrastructure (core and access network). For example, based on empirical data Malmodin, J. et al [11] 

found that the electricity consumption of an efficient video-streaming datacenter is around of 0.01 

kWh/GB. Moreover, Aslan, J. et al. [12] estimate a value of 0,06 kWh/GB of electricity intensity of a 

fixed-line Internet transmission network in Sweden in 2015. Interestingly, three years before, the former 

authors concluded that the manufacturing and operational phases of end-user equipment, enterprise 

networks, data centers and access networks (in that order) contributes significantly to the global carbon 

foot of ICT [163]; clarifying that, the energy use and embodied carbon footprint per data transmitted 

can be used as intensity metrics in environmental studies of IP core networks but, in the case of end-

user equipment, a use-time basis is more relevant, because the energy consumption and the carbon 

footprint impact is not to the same extend related to transmit data volume. 

In this line, Belkhir, L., & Elmeligi, A. [6] projected a respective contribution of 31, 24 and 45% of 

user-devices, networks and data centers to the total GHG footprint of ICT, and recommend more 

vigilance for the sector, especially regarding the growth of IoT and crypto concurrencies. With this 

respect, tendencies to ubiquitous computing and constant miniaturization of sensor systems may lead to 

significant data generation rates, relocating computing intensity load to mutualized infrastructure 

as it is warned by Köhler, A., & Erdmann, L. [15] and reported in the work of Gossart, C. [16].  

Having recognized some of the potential impact of IoT systems, the next section present a number of 

discrepant yet promising approaches and solutions. 
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3. Promising yet segregated or discrepant initiatives  

3.1.Green-IoT 
Green-IoT is a recent, use-oriented perspective focused on reducing the impact of IoT systems in the 

use phase. According to Shaikh, F. K. et al. [18] and Arshad, R. et al. [99], Green IoT is defined as the 

energy efficient procedures adopted by IoT systems, oriented to reduce the environmental impact of 

existing applications and services, or the environmental impact of IoT systems themselves. Consider, 

for example, the set of practical green-IoT techniques summarized by Zhu, C. et al [17] applied on 

strategical sensor-based and IoT contexts (Table 1.3. present a brief view, as a matter of illustration). 

Context techniques 

WSN 
1) Make sensor nodes only work when necessary, while spending the rest of their lifetime in a sleep mode 
2) Radio optimization techniques (transmission power control, modulation optimization, etc.) 
3) Energy-efficient routing techniques (e.g., cluster architecture, multipath routing, node mobility, etc.) 

Cloud computing 
1) Power-saving Virtual Machine (VM) techniques (VM consolidation, migration, placement and allocation)  
2) Energy-efficient resource allocation mechanisms (e.g., auction-based and gossip-based resource allocation) 

M2M 
1) Smart adjustment of transmission power 
2) Efficient communication protocols (routing protocols) 

Data centers 
1) Dynamic power management techniques (e.g., Turboboost, vSphere) 
2) Energy-aware routing algorithms to consolidate traffic flows 

ICT 
1) Minimize the length of data path 
2) Advanced communication techniques (e.g., Multiple Input - Mulitple output (MIMO)) 

Table 1.3. Some techniques for green Wireless Sensor Networks (WSN), green Cloud Computing, green Machine-to-Machine (M2M), green 
Data centers and green-IoT proposed by Zhu, C. et al [17]. 

3.1.1. What is wrong with Green-IoT and other use-oriented approaches? 
Although practical, Zhu, C. et al. warn that some of the techniques showed in table 1.3 would be 

eclipsed, for example, by the extra resources needed to guarantee high Quality of Service (QoS1), or by 

the extra energy to cover additional complexity. Moreover, they advocate for (1) a reasoning design of 

green-IoT, tackled from an overall system energy consumption perspective and (2) a better understood 

of different characteristic of IoT applications (together with their service requirement). This 

recommendations gain more sense in particular, yet common situations. For example, benefits and 

drawbacks of the technique “make sensor nodes only work when necessary, while spending the rest of 

their lifetime in a sleep mode” would depend on (1) the density of a sensor network and the transmission-

receiving power configurations; and (2) the additional resources for switching between modes (as 

showed in the paragraph below). 

In general, researchers focused on reducing the energy consumption of sensor systems aim to develop 

reliable self-powered devices or avoid overconsumption of batteries. In this sense, a large and growing 

body of literature has investigated the management of hardware resource to avoid futile tasks in sensor 

systems. For example, Callebaut, G. et al. [19] propose a simple and potential approach known as “Think 

before talk”, “race to sleep” and “sleep as much as possible” for long range-communication, battery-

based sensor networks (Figure 1.7). 

 

(a)    (b)     (c)  

Figure 1.7. (a) “Think before talk” approach (requires validation of sensor measurements and data preprocessing before transmitting). (b) 

“Race to sleep” approach, (c) “sleeps as possible” approach (Figure extracted and adapted from [19]). Because computing is a less-energy-
demanding task than transmitting (wireless activity), data manipulation of these three approaches aim to preprocess and send the minimal 

and substantial data to edge devices. 

                                                           
1 Quality of Service or (QoS) refers to the capability of a network or networks to provide better service to selected network traffic over various 
technologies [106]. Specifically, it refers to concrete metrics such as packet loss rate that determine the quality of communication. 
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Unfortunately, this kind of approach would be very complex to implement, and it may highly depend 

on the application type. In addition, environmental gains would be seriously compromised, if the sleep-

active switching-modes require additional low dropout voltage regulators, as the authors admit.   

3.2.Self-powered IoT devices and intermittent computing 
An alternative to energy-saving approaches is using Energy Harvesting (EH) sensor systems and 

intermittent computing; in general, both initiatives aim to simplify the electronic design and solve the 

problem of overconsumption of batteries. By definition, an energy harvesting system collects the 

environmental energy and converts it into electricity [20]. It is usually composed of an energy 

transducer, used to convert ambient energy into electrical energy; a rectifier, and a main capacitor for 

energy management and storage. A voltage regulator is generally present too as a sort of control 

subsystem for adapting the voltage level to requirements of the powered device. An optional energy 

storage element and a load —the main electronic of the application— are also key components. Figure 

1.8 shows a basic architecture of an energy harvesting system. The key feature of energy harvesting 

system for IoT systems is that a transducer can be used to not only convert one type of energy into 

another, but also detect a physical phenomenon.  
 

 

 

 

Figure 1.8. Basic architecture of an Energy Harvesting (EH) 
system (Extracted from [20]). 

 

 

 

 

 

 

EH systems depends on available energy from environment. Because of that, modern EH sensor systems 

work under the principle of intermittent computing.  An intermittent computing device is characterized 

by short periods of program execution, interrupted by continuous reboots [21]. Figure 1.9 shows the 

basic mechanism of an intermittent computing device together with a practical application for EH 

systems. 

(a) 

 

 

Figure 1.9. (a) The basic mechanism of intermittent computing (Extracted from 

[22]). (b) An intermittent design for an EH system (E = Energy, C = capacitance 
of the main capacitor (Adapted from [23]). 

 

(b) 
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In figure 1.9a, the EH system collects and stores energy from the environment in the main capacitor 

until a superior threshold of voltage (𝑉𝑂𝑁) is achieved; and provides energy for program execution until 

energy level drops down to an inferior threshold of voltage (𝑉𝑡ℎ). From then on, the remaining energy 

is used for making a checkpoint of the program states and variables before the EH system shuts down 

at 𝑉𝑜𝑓𝑓. When 𝑉𝑂𝑁 is reached again, the EH system restore the previous program states and variables 

and the cycle repeats. Because EH systems provides nanowatt-to-microwatt energy ranges (table 1.4), 

running a program to completion is impossible and in-memory checkpointing strategies are crucial to 

avoid inconsistencies, performance and reliability issues such as violation of atomicity and event 

program crashes [21].  

   Sensor MCU Wireless transceiver 

Energy 
source 

Category 
Harvested power 

density 
component 

Power  
cons. 
(mW) 

component 
Power  
cons.  

(active mW) 
component 

power  
cons. 
(mW in 

Tx) 

data rate 
(Mb/s) 

Range  
(m) 

GSM/3G/4G Radio frequency 0,1 µW/cm2 [20]                 

WiFi Radio frequency 1 µW/cm2 [20]                 

Human Vibration/motion 
4 [a] - 1800 µW/cm2 
[232] 

Smoke alarm - DSW98A [232] 0,108 EM6603* [232] 0,0054 
Bluetooth 
class 2 [8] 

1,075 50 40 

    EM6605* [232] 0,012 
Bluetooth 
class 2 [8] 

1,075 50 40 

Industry Temperature 10 µW/cm2 [20]                 

Indoor Light 6 [b] - 10 µW/cm2 [20]                 

Human Temperature 25 µW/cm2 [20]     EM6605* [232] 0,012         

Thermoelectric 10°C gradient 40 µW/cm2 [232]                 

Industry Vibration/motion 100 µW/cm2 [20] Light sensor - SFH5711 [232] 0,09             

Piezoelectric Shoe inserts 330 µW/cm2 [232] Smoke alarm - DSW98A [232] 0,108             

Vibration Microwave oven 0,01 - 0,1 mW/cm2 [232] Light sensor - SFH5711 [232] 0,09             

Outdoor 
Light (cloudy 
day) 

0,15 mW/cm2 [232] Smoke alarm - DSW98A [232] 0,108             

Indoors 
Light  
(desk lamp < 
60W) 

0,57 mW/cm2 [232] 

Proximity - SFH7741 [232] 0,21             

Optical switch - SFH7740 [232] 0,21             

Light sensor - ISL29011 [232] 0,27             

Temperature sensor - STCN75 [232] 0,4             

Outdoor 
Light 
(sunny day) 10 [a] - 15 mW/cm2 [232] 

Light sensor - TSL2550 [232] 1,155 PIC16F877** [232] 1,8 
Bluetooth 
class 3 [8] 

0,8 50 10 

Accelerometer- ADXL202JE [232] 2,4 
MC68HC05PV8A** 
[232] 

4,4 ZigBee [8] 0,31 2 20 

Humidity/temper - SHT 11 [232] 2,75 AT90LS8535** [232] 15         

Barometric Pressure - MS55ER [232] 3 ATmega163L** [232] 15         

Touch sensor - QST108KT6 [232] 7             

Strain gauge - SG-LINK(1000Ω) [232] 9             

Table 1.4. Harvested power density ranges according to the main energy sources used by EH sensor systems.  They are arranged by the 

typical power consumption of the most energy-intensity components of a sensor system load (Sensor, MCU and wireless transceiver 
components) in their maximal power needs. * 4bit, ** 8bit.  

3.2.1. What is wrong with self-powered systems and intermittent computing? 
Bearing in mind the harvested power densities (the estimated harvested power per cm2 of a harvesting 

device) and the maximal power consumption requirements of some of the most energy-intensity 

components in table 1.4, one notices that almost all energy sources are insufficient to run continuously 

the main components of a sensor system at the same time (with the exception of solar-based EH sensor 

systems, but only in optimal conditions). Therefore, intermittent design, with checkpointing routines in 

Non-Volatile Memories (NVM) are necessary in most of the time. The problem is that, checkpointing 

schemes may exhaust writing cycles (the number of time that a memory block can be overwritten) of 

internal memories at a very fast pace, as Daulby, T. et al [24] argue. To defend their posture,  they 

demonstrated that the lifetime spans of Spin-Transfer-Torque, Magnetic RAM memories (STT-MRAM) 

and Resistive RAM memories (ReRAM) are seriously reduced to  less than 5 days, when a writing pace 

of 0,4 seconds (or, in other words, interruptions of 0,4 seconds) within a well-famous intermittent 

scheme called Hibernus++ [138] (figure 1.10) is applied.  



39 

 

 

Figure 1.10. Intermittent operating schema of Hibernus++. Figure extracted from [138]. Low energy provokes an interruption and an 
overwrite (a “Save snapshot to non-volatile memory” step) in a memory block. 

3.3.Less-material-oriented solutions and potential drawbacks 
The perspective of “Do more with less” has also attracted the attention of researchers in recent years. 

For instance, Wagner, E. et al. [26] presented an environmental analysis of three full-integrated versions 

of a WSN sensor system prototype, with the aim of demonstrating the ecological benefits of 

miniaturization and function integration. Although less impacts are evidenced in high integrated 

prototypes (a reduction of 89% in the total Global Warming Potential (GWP), obtained by a reduced 

design (version V1, showed in figure 1.11a)), the authors warn potential conflicts through 

miniaturization (e.g., on recycling) leading to resource dissipation, and recommend further efforts to 

tackle this aspect. Moreover, a GWP per footprint comparison (Kg/cm2) of the three versions shows that 

the GWP impact increase with the functional density, as figure 1.11b suggests (in other words, the 

environmental gains of using less active components and connections is eclipsed by the inclusion of 

more sophisticated packaging process that leads to higher concentration of impacts per surface unit). 

 (a)  (b) 

Figure 1.11. (a) High integration level of a sensor system. From left to right: V0 (customized open source solution), V1 (optimized design 

consisting of an implementation of selected functionalities, layouts and interfaces), V2 (full-integrated design consisting of advanced 

packaging through mixed-technology embedding of passives and active components). (b) GWP per footprint comparison (Kg/cm2) of V0, V1 
and V2; normalized to the impacts of an active microelectronic die (Si 130nm) and compared to a piece of an unpopulated PCB area. Figures 

extracted from [26]. 

In this line, Kasulaitis, B. et al. [114] advocates for a deep understanding of user-demanded functionality 

to achieve real impact reductions in a “doing more with less” perspective, and denounce a sort of 

technological capitalization within the established form factors in the semiconductor sector (see figure 

1.12). This means that, in recent years, electronic component manufacturers tends to add more efficiency 

but keep the typical packaging sizes; leading to a dematerialization utopia, and technical-oversized 

designs of sensor systems. 
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Figure 1.12. Technological capitalization of the stablished form-factors (typical packaging sizes in the sector) in DRAM memories. It shows 
that the gains in functional capacity (die area per function, left axis) are counteracted by increasing memory amount contained in each 

DRAM component (right axis). As a result, total DRAM die area per component is relatively constant (linear trend). Darker markers 
indicates multiple occurrences of the same combination. Figure extracted from [114]. 

3.4.End-of-Life Oriented solutions and potential drawbacks 
Despite of the potential benefits from circular strategies, little was proposed for the specific field of IoT 

systems. Instead, researches oriented their efforts to circularity of smartphones —an edge device, 

normally used as an internet gateway for sensor systems. In 2020, Proske, M. et al. [28] reported 

significant benefits on resources preservation from repairing modular smartphones (figure 1.13a). 

Nevertheless, they explain that the significant impacts in the production phase is caused by a more 

complex core module (figure 1.13b), and clarify that potential benefits (up to 42% of GWP damage drop 

per year) would be expected only if modular smartphones are used for at least 7 years (assuming 

reparations in which faulty modules are replaced by new ones (repair scenario A) or faulty modules are 

repaired at board-level (repair scenario B)).   
 

 (a)  (b) 

 

Figure 1.13. (a) Relative impacts per life cycle phase of a modular smartphone 

(Fairphone 3) showing a significant reduction of the Abiotic resource depletion 
(ADP) of elements. (b) Relative impacts of modular parts and assembly. (c) 

GWP impact per year use of modular smartphones (benefits from modularity 
and reparability are significant from year 5 and maximal benefits (42% of GWP 
damage drop per year) are obtained from year 7). Figures extracted from [28].  

 

(c) 
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In this same line, a Material Flow Analysis (MFA) conducted by Söderman, M. L., & André, H.  [112] 

demonstrates that losses of several metals can be reduced moderately when smartphones are repaired, 

with the exception of Indium (In) and Yttrium (Y), two metals whose losses increase in +9%, as it is 

showed in figure 1.14. This is explained by the fact that (1) Indium- and Yttrium-rich screens are the 

most replaced parts in repairing operations (that is, damaged screens are discarded and reemplaced 

constantly), (2) the lack of functional recycling of Indium and Yttrium in discarded screens and 

smartphones and (3) a short lifetime extension of repaired smartphones. 

 

Figure 1.14. Net losses of metals of a repaired smartphone (repaired SP) relative to Business As Usual (BAU) product content (new 
smartphone (New SP)) per period of use. Figure extracted from [112]. 

4. Research questions 
The uncontrolled increase of IoT devices and data that may posse stress not only to our environment (as 

suggested in section 2.3) but also to our resources (as seen in section 2.1), and the potential problems 

derived from green-IoT (section 3.1.1), EH systems and intermittent computing (section 3.2.1), and 

other interesting solutions (section 3.3 and 3.4); both reveal the difficulty of the main interrogation stated 

in the introduction section, and force its breakdown in the following research questions: 

 Research question 1: How a designer can consider data flow within an IoT system in order to 

harmonize and reduce the potential impacts of promising initiatives? 

 

 Research question 2: How a designer can disclose, measure and integrate key environmental 

aspects to the typical design of sensor systems and edge devices (local devices) in a practical, 

efficient and comprehensive way? 
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Chapter 2. Fundamentals of Data-driven design for sustainable IoT systems 

Overview 
This chapter is organized in five sections that shape the main approach for addressing the research questions 

presented in chapter 1. The first section dissects the data operational stages in IoT systems and infers essential 

aspects to be considered for sustainable design. The second section elucidates the concept of functional analysis 

in engineering design so that key functions in each data operational stages of IoT systems can be recognized. Based 

on that, this section recognizes the strong relationship between functions and capacities of electronic components 

and reveals the importance of right-provisioned design. On the other hand, the third section explores the data flow 

of a large-scaled IoT system to realize the prospective data volume magnitude in our current information age, 

contrasted with available data processing techniques; and the fourth section provides an example of the influence 

of data flow in sustainable IoT systems. The fifth Section concludes this chapter by presenting a Data-, 

information-driven design approach, based on supporting literature and on all the key aspects seen so far. All the 

findings of these sections will guide the literature review in chapter 3, and will help to build a design methodology 

for sustainable IoT Systems in chapter 4.  

1. Data operational stages and relevant aspects regarding sensor system design  
In general, the main operational stages of a sensor system include a data acquisition phase, a data 

processing phase (or pre-processing phase), a data storage phase and a data transmission phase [30]. 

Figure 2.1 shows these steps together with their possible interactions. 

 

Figure 2.1. Main data operation stages of a sensor system. It could involves other devices and mutualized infrastructure. For sensor systems, 
the first and the last stages are present in all applications while the second and the third stages may or may not exist, depending on the data 

flow design of the application, available resources, etc. Figure extracted from [30]. 

In an on-board process, data is collected, processed and transmitted by the sensor system. A real-time 

on-board process usually involves some preprocessing routines over raw data while in a raw data 

transmission, bunch of raw data are saved in memory and transmitted periodically. A real-time raw data 

transmission describes scenarios where external sensor components are connected to the rest of a sensor 

system by physical means (i.e.: wired temperature probes). 

1.1.Data acquisition 
Data acquisition refers to collecting data from a number of analogue resources and converting it to digital 

form, suitable for transmission to a computation device [31]. One of the essential components of data 

acquisition is an Analog-to-Digital Converter (ADC) and alternatively, yet less commonly, a Digital-to-

Analog Converter (DAC). Both converters use a reference voltage. The process of converting analog 

signals into digital formats involves two steps: quantifying (representing the continuous values of an 

analog signal using a set of discrete values) and codifying (representing discrete values by bit sequences) 

[32]. Figure 2.2a shows the Analog-to-Digital conversion of a 10V wave with a 3 bits sequence 

resolution. 

(a) (b) 

Figure 2.2. (a) ADC conversion of a 10V wave with a 3 bits sequence resolution [32]. The number of bit sequences determines the number 
of possible discrete values of the conversion, and the ADC resolution level. (b) A sampling rate of 1 Hz for an analog signal (1 signal sample 

per 1 Sec, assuming T = 1sec) [33]. 
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One of the important aspects to consider in design the data collection step is the relationship between 

ADC capacities and the appropriated sampling rate of the application. A sampling rate is the number of 

digital samples that are obtained from an analog signal in one second and is commonly measured in 

Hertz (Hz) (see Figure 2.2 b). High accuracy applications (such as sound- or image-based applications) 

require high sampling rates and high resolutions. Unfortunately, the higher the sampling rate, the more 

volume of data generated. 

1.2.Data processing 
Data processing refers to the preliminary or main processing, storing or pre-transmission tasks over raw 

data. MCUs are fundamental components in this operational stage. Figure 2.3, shows some of the 

essential resources of modern MCUs that allows data processing tasks. 

 

Figure 2.3. Hardware resources of modern MCUs for sensor systems [198]. Important aspects of all these elements are summarized in the 
three paragraphs below, according to the descriptions provided by the authors. 

The Central Process Unit (CPU) or microprocessor makes calculations in a period of time (processor 

speed/frequency) and with a certain quantity of energy. As microprocessors work concurrently, 

interrupts (software- or hardware-based calls) are needed, to stop the normal execution of a program 

periodically. In this sense, microprocessors also use Watchdog Timers (WDT) to ensure that a program 

does not get trapped in an inconsistent state. On the other hand, ADC conversion (A/D) processes may 

require additional calculations such as filtering and signal isolation; or waveform modulations (which 

is usually performed by Capture Compare Pulse (CPP) and Pulse Width Modulated (PWM) modules).   

Serial communications are bus-typed synchronous (i.e.: I²C or Serial Peripheral Interfaces (SPI)) or 

asynchronous (i.e.: RS232/RS485) interfaces that communicate MCUs with other components of a 

sensor system (such as wireless communication modules or external memories). Additionally, 

Input/Output (I/O) ports facilitates full connectivity and may include General Purpose Input/Output 

(GPIO) programmable pins to act as input interfaces for sensor data, or as output interfaces to control 

external components.  

Timers are commonly used to generate precise time delays by counting fixed intervals of time, or to act 

as a real-time clocks, or to initiate specific events (e.g., interruptions). In this sense, internal oscillators 

use quartz crystal to generate precise, stable time pulses and generate time signals. Also, 

microcontrollers usually integrate crystal-based Real Time clocks (RTC) to keep accurate time. Finally, 

internal MCU’s memories store program codes, raw or processed data of the application in NVM 

memories. Common NVM technology includes some emerging non-volatile RAM, ROM, Flash and 

EEPROM memories (described later in the next section). 

In a sensor system, MCUs coexist with other electronic components within the main PCB. However, 

emerging technologies such as System-in-package (SiP) or System-On-Chip (SoC) tends to integrate all 

or some of these components in a single package or chip. SoC integrates ICs with different functions 
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such as CPU, GPU (Graphic Processing Unit), memory, etc. into a single chip for a system or a 

subsystem, while SiP uses packaging technology to integrate dissimilar chips with different materials 

and functions, and from different design houses, foundries, wafer sizes, features sizes and companies 

into a single package [34]. Figure 2.4 illustrated the difference between a SoC and SiP products. 

(a) (b) 

Figure 2.4. (a) A photograph of a SoC die after processing of the third level metallization. (b) SiP for Apple Watch series 4. Both figures 
were extracted from [35] 

Such integration degree may avoid additional components and related materials, but would lead to an 

increase of damage with an increase of functional density, as seen in the section 3.3 of chapter 1. On the 

other hand, several studies in the context of IoT [26], [73-75], attribute significant environmental loads 

to semiconductors.  This is the reason why selection of right-provisioned MCU is of paramount 

importance, as it will be further evidenced in section 2. 

1.3.Data storage 
Data storage refers exclusively to the storage of data application and usually use additional memories. 

Basic rewriteable NVM types consists of Flash and EEPROM memories and some of the emerging 

technologies includes Magnetic Random Access Memories (MRAM), Resistive Random Access 

Memories (ReRAM or RRAM), Phase Change Memories (PCM) and Ferroelectric Random Access 

Memories (FeRAM). Typical Flash memories are low-cost devices with moderate and high storage 

capacity. They are faster in writing but slower in erasing routines and suffer from fast degradation. On 

the contrary, EEPROM memories have high endurance and, in general, they are faster than Flash 

memories but more expensive, with low storage capacity. Emerging memory technologies have emerged 

precisely to overcome these and other shortcomings. Some of the most relevant features of NVMs are 

the writing cycle time and the writing endurance rate [36]. Designer of sensor systems usually considers 

these two aspects, together with cost, memory densities and other requirements and constraints of IoT 

systems (See Figure 2.5).  

 (a) (b) 

Figure 2.5. (a) Write endurance versus write time for different types of memories. (b) A 2-transistor-2-capacitor-based (2T2C) embedded 
FeRAM memory for a commercial ultralow power MCU oriented to EH systems. Both figures are extracted from [36]. 
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Bad decisions on write endurance criteria may lead to the early replacement of a device due to writing-

reading errors, as it will be further discussed on chapter 4. 

1.4.Data transmission 
Data transmission refers to specific tasks oriented to transmitting raw data or refined data to edge, fog 

or cloud resources. To do this, wireless, and less common wired means are used; and several 

technologies, together with technical and networking aspects are taken into account. For example, figure 

2.6 compares different wireless technologies, on the basis of two technical aspects (i.e.; Power-

consumption and data rate) and a network aspect (distance range).   

 

Figure 2.6. Power Consumption versus Distance range for different wireless technology used in IoT systems: Near Field Communication 
(NFC), 802.11a/b/g/n (WiFi), 802.11ac (WiFi 5), WiFi 802.11ah (WiFi HaLow), 802.15.4 (Low-Rate Wireless Personal Area Networks 

(LR-WPANs) such as Zigbee), Bluetooth Low Energy (BLE) and Long-Term Evolution (LTE) wireless broadhand communication 

technology (i.e.: GSM, 4G, 5G). Figure adapted from [37].  

The data rate can be seen as the speed at which two computer devices, over a link or channel, transfer 

data. On the other hand, the required power to do that may vary according to several parameters, 

depending of the selected transmission channel. In wireless communication, three of the many 

parameters that affects significantly the power consumption of a wireless interface  are its power 

consumption for transmitting (Tx), the power consumption for hearing a channel and receiving a 

transmission (Rx), and also the period of time within these actions are executed (usually called Active, 

Idle and Sleep states).   

Thus, for this operational stage, fundamental questions in design includes which communication 

technology select (according to several criteria such as data rates, Tx and Rx power consumption, or 

distance ranges) , and what tradeoffs between quality of service (QoS) and energy consumption; or 

between on-board processing and computing offloading should be made [30]. Answers to these 

questions may extremely affect the environmental impact of and IoT system as is further explained in 

section 5. 

2. Functional analysis and right-provisioning design 
The idea of function and functional analysis in design are widespread and there is no seminal definitions 

in literature. However, a generally accepted notion found in engineering manuals and textbooks says 

that a function is an action made by a product, expressed by a goal to be achieved. In general, there are 

three types of functions: main functions (essential functions of a product that justify its creation, for 

example “monitor water consumption”), complementary functions (supporting functions related to main 

functions, for example “connect to internet”) and constraint functions (for example “RoHS certified”). 

On the other hand, a functional analysis aims to summary, characterize, order, rank and weight the 

functions of a product. Some of the classic tools to conduct a functional analysis are octopus diagrams, 
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Function-Analysis-System-Techniques (FAST), and Structured Analysis Design Techniques (SADT). 

Figure 2.7 illustrate an octopus diagram. 

 

 

Figure 2.7. The basic elements of an octopus diagram. The blue circle represents the product 

and the yellow circles external elements of its operational environment. Links passing through 

the product represent main functions (FP) and directional links represent complementary, and 
constraint functions (FC). Figure extracted from [233]. 

 

 

 

The outcomes of the functional analysis is saved in a list of specifications that may or may not contain 

technical details. In the context of IoT systems; all sensors, sensor systems, edge and cloud devices 

should be designed to cover these specifications with the right-provisioned resources. A right-

provisioned device is a neither under- nor over-provisioned device that executes specific functions [38]. 

Figure 2.8 shows the idea behind right-provisioning design, which involves allowing for some kind of 

“provisioning slack”. 
 

 

 

Figure 2.8. The provisioning slack of right-provisioning design.  

Figure extracted from [38]. 

 

 

In figure 2.8, a device is under-provisioned when is unable to satisfy the application’s functional 

requirements such as deadlines or response time constraints. On the contrary, a device may be over-

provisioned with out-of-order execution resources if, for example, the application has limited Instruction 

Level Parallelism (ILP) and the application’s instructions execute necessarily in order [39]. Sometimes 

over-provisioned resources could be leveraged for other applications while in other cases; they are 

simple wasted [38]. 

2.1.Functions and capacities of electronic components 
The development of a right-provisioned IoT devices would start from an exhaustive functional analysis, 

which should be decomposed in specific tasks-functions within each data operational stage of a specific 

application. This would dictate later critical specifications to take into account for design (figure 2.9). 

 

Figure 2.9. An instance of a hypothetical right-provisioned IoT device from the analysis of specific functions in the data processing stage 
(for example Fast Fourier Transform (FFT)) and data transmission stage (for example Advanced Encryption Standard (AES 

encryption/decryption), of the application “Video surveillance”. It assumes a device composed of only one component (MCU) and it 

considers the typical functions (F1, F2 and F3), parameters (e.g., Frequency cycles, time execution) and specifications suggested in [30]. The 
figure summarizes the key idea of right-provisioned electronic components found in current literature (blue elements) and adds the suggested 

idea of right-provisioned IoT Devices in terms of functions and data operational stages (purple elements). 
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This postulate was partially, and implicitly assumed but only for electronic components. For example, 

based on the typical data resolution and sampling rates of common applications presented in previous 

work [40-41]; and on experimental data of Central Process Unit (CPU) cycles and execution times seen 

in specific functions (operations) of a commercial microcontroller oriented to sensor systems (see table 

2.1), Samie, F. et al. [30] derived the maximal data rate generation and the minimal MCU frequencies 

to consider in different IoT applications (Figure 2.10). 

 

Table 2.1. Atmega328 MCU execution times and number of cycles for typical data processing functions on raw data (FFT and Finite 

Impulse Response (FIR)); and data transmission operations (Advanced Encryption Standard (AES) and Cyclic Redundancy Check (CRC)). 
Table extracted from [30]. 

(a) 

 

(b) 
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(c) 

Figure 2.10. (a) Data rate generation of different sensor applications and suitable communication technology. (b) Required MCU frequency 
to fully process sensors raw data together with their typical power source and suitable microprocessor cores. (c) Required MCU frequency to 

encrypt and transmit data. All figures were extracted from [30]. 

For their part, Adegbija, T. et al. [42] present a set of four high-level microarchitecture configurations 

for sensor computing, on the basis of processing power and four kinds of commercial microprocessors 

(MCU configurations, as showed in table 2.2).  

  

Table 2.2. IoT microprocessor configurations for sensor computing. The configuration 1 (config1) represents a low-power and low-

performance MCU, the configuration 2 (config2); a recently-developed IoT targeted CPU, the configuration 3 (config3); a mid-range CPU 
and configuration 4 (config4); a high-end, high-performance embedded system CPU. Table extracted from [42].   

Based on this classification, on a six-step design method that includes seven key functions (including 

sensing, communication, image processing, compressions, security and fault tolerance) and on typical 

computational kernels (atomic, basic processing tasks presented in table 2.3), Adegbija, T. et al. [39] 

conducted a simulation-based, comparative study on the basis of four criteria: execution time, energy 

consumption, performance and efficiency (see figure 2.11).  

 

 Table 2.3. Common IoT Application functions and representative computational kernels for comparison (benchmarks). Table extracted from 
[39] 

 

(a) 
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(b) 

(c) 

(d) 

Figure 2.11. Comparison of four configurations (config 1, 2, 3, 4) of commercial IoT microprocessors on the basis of computational kernels 

and four criteria: (a) Execution time. (b) Energy consumption. (c) Performance (in Giga Operations Per Second (GOPS)). (d) Efficiency (in 
GOPS per Watt (GOPS / W)). Config4 is the base configuration for comparisons due to its high resource availability. All figures are 

extracted from [39]. 

In this way, the authors found that compared to config4; config1, config2 and config3 increased the 

average execution time by a factor of 202x, 23x, and 9x (figure 2.11a); and increased the energy 

consumption by a factor of 35x, 4.6x, and 4.7x respectively (figure 2.11b). Config4 had the lowest 

energy consumption because of its significant reduction in execution time. For performance, their results 

show that config1, config2, and config3 degraded the performance by a factor of 171x, 17x, and 8x 

(figure 2.11c). For efficiency, conf1 degraded the degree of effectiveness by a factor of 33x. Config2 

and config3 degraded the efficiency by a factor of 4x (figure 2.11d). On the other hand, the authors 

clarify that the significant benefits from config4 are only viable in systems that are not energy-

constrained (e.g., MCUs that are constantly connected to a power source) and conclude, interestingly, 

that key aspects like clock frequency and execution order, together with input data size, are of a 

paramount importance for the design of IoT microprocessors.  

So far, the evidence shows that the appropriated analysis of functions, involved specifications and 

tradeoffs of available capacities (i.e.; configurations) of electronic components along the data 

operational stages allows the design of right-provisioned sensor systems. The further interactions of 

these right-provisioned sensor systems with the rest of the edge, fog and cloud devices compose the 

global dataflow design of IoT system.  

3. Dataflow issues in IoT Systems and common solutions 
In the last years, the growing deployment of sensor systems and the increasingly consumer demands for 

high-performance IoT applications involving acquisition and transmission of complex data have posed 

significant bandwidth and latency challenges [42]. In this context, the mutualized infrastructures face 

particular problems including scalability, energy consumption and availability [30] that force rethinking 
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data management in IoT systems. For example, from an experimental study based on a data collection 

platform called Sentilo [42-43] that centralized data from more than 1800 sensor devices in a region of 

Barcelona, researchers estimated a total data generation rate of 8GB per day [5], and advocated for clear 

and stable long-term data management solutions if whole coverage of the city were envisioned (which 

means a colossal deployment of more than 320M of sensor devices). Such management solutions could 

be oriented to reduce the data transfer volume by reducing transmission frequencies or applying specific 

data manipulation preprocessing techniques in edge devices and fog resources (e.g., data aggregation, 

data compression or approximate computing). 

Data aggregation consists of combining and summarizing the data coming from different sources in 

order to eliminate redundancy and minimize transmissions [45]. Figure 2.12 show two typical data 

aggregation scenarios applied on raw sensor data (temporal and spatial correlations). 

(a)   (b) 

Figure 2.12. (a) Temporal correlation: raw data value of one or more sensor systems normally keep constant in a specific period. (b) Spatial 
correlation: raw data values of nearby sensor systems is often similar. Both figures are extracted from [46]. 

Aggregating data is about computing-memory intensity algorithms involving mathematical 

computations (addition, minimum, maximum, mean, etc.) or energy-expensive complex routines such 

as fusion vector data like video streams from multiple sources [42]. In the same way, data compression 

and approximate computing techniques are two energy-intensity techniques. The former removes 

statistically redundant data in order to present concisely data, and the latter allows non-exact, inaccurate 

results for resilient applications that can produce outputs of sufficient quality, despite some imprecise 

computations [42, 47].  

Although approximate computing and data aggregation and compression may reduce significantly the 

data transfer volume of IoT systems, such techniques demand more energy and higher capacities locally. 

Unfortunately, IoT device makers tend to address these issues by developing more complex and 

unnecessary over-provisioned products, which usually results in impact transfers to manufacturing 

phases and/or complications on the redesign of low-energy-oriented devices. 

4. Dataflow design and information science theory for IoT systems 
In a sustainable IoT system, tasks in all data operational stages depend not only on the available 

resources of electronic components, but also on specific aspects of the information that is required by 

the application. For example, Bonvoisin, J. et al. [10] reconsidered the needed information of an IoT 

system oriented to urban garbage collection application (here called service), and demonstrated 

significant impact reductions based on hardware, data and information redesign (Figure 2.13).  

 (a) (b) 

Figure 2.13. (a) Raw Material Depletion (RMD) and Global Warming (GW) impacts comparison of an IoT system baseline (V0), a hardware 

level eco-designed version (V1), a hearing-sensibility eco-designed version (V2), an information eco-designed version (V3) and a 
combination of all alternatives (V4). (b) The deployment of the IoT system baseline. Both figures are extracted from [10].  
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In figure 2.13a, V0 represents the impacts of the baseline design of an IoT system that adapt truck routes 

in function of the waste containers levels in the city of Grenoble (France). In this baseline design, a 

battery-based sensor system is embedded into a garbage container and it is isolated with resin. Also, 

40% of its energy consumption is due to overhearing (hearing message not intended to reach it) 

increasing its potential replacement in a period of 10 years (because of its drained battery). V1 represents 

an alternative design in which the isolation resin is replaced by hermetic insulation, facilitating the reuse 

or recyclability of embedded sensor systems. V2 suggests auto-reducing the hearing sensibility so that 

a sensor system be able to hear and understand only 95% of messages sent by its neighbors. V3 proposes 

using the average fill rate of containers in order to adapt the message transmission frequency of sensor 

systems (if the container level is below 50%, the sensor calculates the expected time at which the level 

should reach 50%. Above 50%, new and more frequent measurements are planned, based on historical 

data and simple calculations). V4 combines V1, V2 and V3. 

V1 can lead to a recovery of 85% of raw materials in end-of-life phases of sensor systems and brings a 

reduction of 40% in the GWP damage if applying repairing or remanufacturing strategies. V2 reduces 

the RMD and GWP impacts in 31% and 21% respectively because sensors decrease their energy 

consumption and increase their batteries lifetime. V3 leads to low data traffic and energy consumption 

by sensors, which contributes to a reduction of 44% and 36% for the RMD and GWP impacts 

respectively (there are no device replacements in this alternative).  

In this study, V2 and V3 design alternatives were obtained from applying a specialized ICT service 

design framework that involves rethinking the appropriateness of data and information in an information 

eco-design step (figure 2.14a). This framework was developed on the basis of a rationale of Information 

Science, which is showed in figure 2.14b. 

 

 (a) (b) 

 
Figure 2.14. (a) Eco-design method for optimization of ICT services. (b) Rationale of Information Science canon. Both figures are extracted 

from [10]  

In figure 2.14b, the data, information and knowledge structural canon refers to the widespread Data 

Information Knowledge Wisdom (DIKW) pyramidal model of information science. Although there exist 

many definition for each of the elements of this model in literature; here, data could be defined as a 

sensory stimuli, which we perceive by our senses —or sensor components, and information is just 

organized data that infers facts, figures and other forms of meaningful representations that are used to 

enhance the understanding of something [49]. In figure 2.14b, while data and information are objectives 

elements, knowledge depends on a human or machine interpretation.  In the next sections, the subjacent 

data, information and knowledge structure of IoT systems is disclosed, together with its central role in 

technical and ecological design.  
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5. Data- and Information-driven design 
As it is mentioned early in chapter 1, raw data of IoT systems is perceived by sensor components through 

a transduction step, either by direct contact with the object in which the phenomena is produced (i.e.: 

liquid, gases, human body, etc.) or indirect contact (i.e.: passive infrared) or sample removal [198]. 

Depending on the way by which this data is collected and organized, essential yet substantial information 

can be obtained. For example, consider a float-switch-based and an ultrasonic-based IoT systems for 

liquid content level monitoring, both depicted in figure 2.15. 

 (a) (b) 

Figure 2.15. (a) A float-switch-based IoT system. (b) An ultrasonic-based IoT system. Both systems are oriented to measure the liquid level 
of a recipient. 

The float-switch-based IoT system uses floats that raise or lower, opening or closing circuits, as the 

liquid level raises or lowers. On the other hand, the ultrasonic-based IoT system uses ultrasonic sensors 

like that one in figure 2.15b, which are piezoelectric-based components that work by emitting and 

receiving ultrasonic waves. Essential information of both systems can be obtained from the organization 

of raw data: in the float-switch-based IoT system, time (T3) can be estimated from historical data (T1 

and T2) while in the ultrasonic-based IoT system, the same information can be obtained approximately 

by considering the Distance (D) as a function of the time it takes for the waves to reflect back (time of 

flight): 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐷) =
𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑 𝑖𝑛 𝐴𝑖𝑟∗𝑇𝑖𝑚𝑒 𝑜𝑓 𝑓𝑙𝑖𝑔ℎ𝑡 

2
  (2.1) 

Obviously, both systems have their advantages and disadvantages and selecting one over the other will 

depend on the functional analysis of the system adapted to different data operational stages, its 

requirements and the application type (here, point level measurement versus continuous level 

measurement). For example, for the float-switch-based system described in figure 2.15a, an electronic 

design based on an open collector circuit with a pull-up resistor may be sufficient to storage the counts 

of electrical signals, later interpreted as the liquid level of the recipient. In contrast, the ultrasonic-based 

system (figure 2.15b) may require embedding the computation of equation 2.1 into the microprocessor 

of an ultrasonic sensor component.   

5.1.Relevance of data- and information-driven design for technical design 
There is evidence showing that only a thoughtful analysis on essential data and information allows a 

correct design of IoT systems. For example, by considering the acceleration of gravity and the rotation 

angular velocity (essential Data) of MEMS sensors (accelerometer and gyroscope), Ishida, K. [50] 

obtained essential information (user motions) for an IoT system oriented to smart training. Specifically, 

he developed a sport-service-oriented IoT system based on an analysis phase for skills and a service 

phase for training of a complex sport (skateboarding) (Figure 2.16). In the analysis phase, high-

sampling-rate data needs to be collected from wearable sensors. The raw data collected in this phase is 

later sent to a cloud server, which evaluates important indexes such as motion amplitude or counter-

motion (basic information). On the contrary, in the service phase, low-sampling-rate data is processed 

on the wearable sensors or other edges devices, based on evaluation indexes already obtained in the 

analysis phase.  
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Figure 2.16. A Sport-service-oriented IoT system for skill analysis and skill acquisition and improvement of skateboarding [50]. The IoT 
system provides service for two specific techniques: Swing and lean motions (basic skills) and flipping the board (advanced technique).  

As showed in Table 2.4, the proposed data- and information-design would mobilize only the sufficient 

resources and reveals two aspects. Firstly, it determines (1) where the computing load will be placed 

(edge or cloud computing), accordingly to the data generation rates and computation complexity (see 

table 2.5); and (2) the use of additional resources such as SD memories (temporary storage). 

Secondly, it demonstrates the relevance of functions and capacities of electronic components. For 

example, the electronic design of the proposed IoT system highly depends on the data transfer rate 

capacities of available technology (i.e.: WiFi in the case of the analysis phase and Bluetooth in the case 

of the service phase); and on specific features of raw data (such as sample rates of the inertial sensors, 

transfer rates of UDP/Bluetooth packets, maximum number of Bluetooth connections, and the needed 

sampling rates for different sport techniques (50Hz for basic skills and 200Hz for advanced skills)).  

 

Table 2.4. Design of sensor systems and edge devices providing sufficient resources for the sport-service-oriented IoT system. Table 
extracted from [50]. To gain an idea of the power consumption of Bluetooth and WiFi, the reader can consult the figure 2.6 in section 1.4. 
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Table 2.5. Edge and cloud computing allocation (computation complexity) and temporary storage design based on data transfer rates and 
information in the analysis and service phases (motion amplitude and counter motion). Table extracted from [50]. 

5.2.Relevance of data- and information-driven design for sustainable design 
There is also evidence showing that abundant data affects negatively the ecological design of IoT 

systems, providing insignificant contributions to information requirements. For example, Lelah, A. et 

al. [51] reported a respective increase of 62%, 27%, 24% and 17% in the Energy Depletion (ED), GWP, 

Hazardous Waste Production (HWP) and Air Toxicity (AT) impacts categories of a garbage-collection 

IoT System when increasing data transmission frequency of sensor systems from 1 to 24 transmissions 

per day (see figure 2.17b).  

(a)

(b) 

Figure 2.17. (a) A solar-, battery-based IoT system for urban garbage collection. (b) Impact comparison of a daily transmission versus an 
hourly transmission design. Both figures were extracted from [51]. 

Such impacts are explained by the increase in size of the photovoltaic cells, cases and accumulators of 

gateways; and the battery and case scale up of sensor nodes to support additional transmissions. Not 

surprisingly, the authors advocate for more attention for data dimensioning needs in early design stages 

of IoT systems.    
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5.3.Relevance of data- and information-driven design for context sensing  
On the other hand, the concept of data- and information-driven design are fundamental aspects for 

energy harvesting systems and context-sensing design. Context sensing refers to the detection of a wide 

variety of contexts (e.g., kinetic activity) by reusing energy harvesting patterns [23]; for example the 

voltage signals (See figure 2.18). 

 (c) 

Figure 2.18. (a) A typical EH system. The energy consumption of sensors significantly affects the operation lifetime of the system. (b) An 
EH system using context sensing. The charging and discharging pattern of the energy harvester (i.e.: voltage variations in the main capacitor) 

detects a variety of contexts as it showed in figure (c). Figures extracted from [23].   

Meaningful Information obtained from context sensing depends on sober data, and the appropriated way 

to organize this data. As a matter of example, a study conducted by Lan, G. et al. [7] compares the 

human Calorie Expenditure Estimation (CEE, expressed in Kj / Min) provided by a typical 

accelerometer-based sensor system (Figure 2.19a) with the CEE provided by an EH sensor system based 

on context-sensing (Figure 2.19b). 

(a) (b) 

Figure 2.19. (a) Accelometer-base sensor system. The CEE is based on the work of Chen, K. Y., & Sun, M. [54] whose use a regression 

model composed of accelometer signals x, y and z; and anthropometric data of user. (b) EH sensor system based on context-sensing. The 
regression model of this system is composed of the anthropometric data of the user and the output AC voltage signals from the transducer. 

By organizing the signal voltage variations with the anthropometric features of the user (weight, height 

and age) in a regression model, the context-sensing-based EH sensor system obtains the CEE average 

(information) with a Mean Absolute Percentage Error (MAPE) of 0,12 for walking and 0,16 for running 

(compared with the typical accelometer-based sensor system). Figure 2.20 shows the accuracy of both 

systems. 

(a) (b) 

Figure 2.20. Comparison of the CEE of ten subjects provided by an accelometer-based EH sensor system VS the average CEE provided by 
an EH sensor system using context-sensing. (a) For walking. (b) For running. Both figures are extracted from [7]. 
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As showed, context-sensing would allow for more sober, ecological devices with acceptable accuracy 

based on essential data and information. In the example above, although authors do not mentioned it, 

dispensing with a MEMS accelerometer would mean an environmental saving of 147g CO2-eq, as it is 

suggested in [55]. In this line, Ma, D. et al. [23] also conclude that context-sensing allows potential 

replacement of energy-intensive sensor components such as accelerometers and gyroscopes, reducing 

impacts of sensor systems in use phases. 

6. Conclusions 
By recalling the main interrogation of this work: “How can one estimate the potential impact of an IoT 

system and how can minimize this impact by an efficient and practical design methodology?”; and the 

research question 1 that it involves: “How a designer can consider data flow within an IoT system in 

order to harmonize and reduce the potential impacts of promising initiatives?”, one observe in the related 

literature that: 

 From the performance perspective, some techniques such as data aggregation, compression or 

approximate computing were proposed to reduce bandwidth and latency problems of modern 

IoT systems; such initiatives would help to reduce indirectly the environmental impact of the 

mutualized infrastructure of IoT systems but would also demand more energy-intensity 

computation in the local infrastructure. 

 

 From the environmental perspective, there is evidence that suggest that a sober yet effective 

right-provisioned IoT system would depend not only on its available resources but also on 

specific aspects of the information that is required by its application (i.e.; appropriateness and 

quantity); and on the ways that this information is obtained. However, although there exist 

pioneer work showing the relevance of these aspects and innovative ways to gains meaningful 

information from raw data (i.e.; context-sensing), no methods nor detailed tools to apply these 

approaches systematically in the design workflow of full IoT systems were found in literature. 

Thus, the following insights for addressing the aforementioned shortcomings in next chapters can be 

stated for now: 

 Firstly, as a phenomenon can be captured and acknowledged by different methods (as seen 

in chapter 1, table 1.1), the kind of raw data that an IoT designer chose, as well as the way 

by which such data is collected and organized into information is of a paramount of 

importance for sustainable design of IoT systems. 

 

 Secondly, the transitions from raw data to information and from information to knowledge 

depend on local, edge and cloud resources. The analysis and design of such transitions help 

to establish the referential flow for impact estimation and eco-design of multiple devices in 

an IoT system. 

 

 Finally, a right-provisioned device is designed according to the capacities of its electronic 

components, which are related to specific functions supporting acquisition, processing, 

storing and transmission tasks.  

These insights will frame the state of art of chapter 3 and help to construct the proposed methodology 

in chapter 4. 
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Chapter 3. State-of-Art of environmental studies and eco-design methods for 

IoT systems 

Overview 
Dealing with the research questions seen in chapter 1 requires the revision of two primary aspects in literature: (1) 

the representative studies regarding impact estimation of IoT systems and (2) the potential methodologies and 

current tools oriented to their eco-design. In this chapter, the first aspect will be preceded by a review of the 

fundamental concepts of the Life Cycle Assessment (LCA) methodology. This permits gaining a better 

understanding not only of the main findings (i.e.; big impact contributors) and usual solutions; but also of the 

methodological shortcomings (i.e.; underestimation of dataflow and ambiguous reference flows), common 

difficulties, and general lack of LCA data observed in literature. For the second aspect, this chapter begins with 

important definitions and concepts regarding eco-design, and a brief description of the stages inside the New 

Product Development (NPD) procedure. This allows to assimilate the pioneer work reveling the relevance of data 

as an eco-design driver on the one hand, and the limitations, the convergence, complementary and discrepancies 

of current eco-design instruments for sensor-based systems on the other hand. Both parts identify relevant work 

related the two research questions stated before, and explain key findings in a structured manner to facilitate, 

together with the outcomes of chapter 2, the proposition of a design methodology in chapter 4. 

1. Life Cycle Assessment and environmental studies of IoT systems 

1.1.Fundamentals of Life Cycle Assessment 
In order to facilitate the review and interpretation of representative LCA studies of sensors, sensor-based 

systems and IoT systems, the definition and description of some essential concepts of Life cycle 

Assessment found in the ISO 14040 standard [56] are summarized in the following subsections. 

1.1.1. Life Cycle Assessment procedure 
Life Cycle Assessment (LCA) is a standard quantification method that facilitates the estimation of 

multiple impact categories related to a product. Specifically, a LCA study considers several life cycle 

phases (i.e.; extraction and acquisition of raw materials, production, use and waste treatments), including 

all the energy and additional materials, products and emissions involved in these phases. By this 

perspective, the transfer of potential impacts between life cycle phases, impact categories, or particular 

processes can be identified and avoided. The steps for conducting a LCA study are presented in figure 

3.1. 

 

 

 

 

 

Figure 3.1. Fundamental steps for 
conducting a LCA study. Figure 
extracted from [56]. 

 

 

 

 

 

1.1.1.1.Goal and scope 

The goal must define clearly the intended application of the study because it will frame the further steps 

of the methodology. The goal may be showing the environmental impact of a product based on an 

individual or comparison analysis, evaluating it based on a norm or a standard, evaluating its redesign 

alternatives, or facilitating the construction of ecological policies around it. On the other hand, the scope 

definition or the system boundary includes the limits of the product system and the level of details of 

the environmental assessment.  
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i) Product system 

A product system refers to the life cycle model of a product in terms of unit processes; and elementary, 

product and intermediate flows (figure 3.2).  

 

 

 

 

Figure 3.2. An example of a product system 

framed in its system boundary. It includes 

typical unit processes (inner small boxes); and 
elementary, intermediate and product flows. 

Notice that a product system can be linked to 

other product systems by product flows. 
Figure extracted from [56]. 

 

 

 

A unit process is the smallest element considered in the life cycle inventory analysis for which input and 

output data is quantified. An elementary flow represents material or energy entering a product system 

that has been drawn from the environment without previous human transformation; or material / energy 

leaving a product system that is released into the environment without subsequent human 

transformation. A product flow represents products entering from, or leaving to another product system. 

Intermediate flows (flows within a system boundary) represent product, material or energy occurring 

between unit processes. 

ii) Functional unit 

A product may perform one or many functions. The functional unit defines the quantification of selected 

function or functions in a LCA study and guide the definition of a product system. More specifically, it 

quantifies the performance characteristics of a product to provide a reference to which the inputs and 

outputs are related. This reference is necessary to ensure comparability of results. Comparability of LCA 

results is particularly critical when different product systems and when different versions of a product 

system are being assessed; the functional unit ensure that such comparisons are made on a common 

basis. In this sense, it is important to determine the reference flow in each product system, or in each 

version of a product system being compared.  

iii) Reference flow 

The reference flow is the quantity of product systems, material, energy, or even additional products 

needed to fulfill the functional unit as it is expressed. A common example provided in the ISO 14040 

standard [56] illustrates perfectly the relevance of defining clearly the functional unit and the reference 

flow of a product. This example presents the specific function “drying hands” which can be performed 

by two different product systems: a paper towel or an electrical air-dryer. For these two systems, the 

selected functional unit is the same —drying an identical number of pairs of hands; whereas their 

reference flows could be very different (the average paper mass for the former and the average volume 

of hot air for the latter). In this sense, notice that, for both product systems, it is possible to compile 

different input inventories (i.e.: quantity of paper or electricity) and outputs (i.e.:  quantity of waste 

paper or electronic waste).   

1.1.1.2.Inventory analysis and Impact Assessment 

The inventory analysis step involves the description and the data collection processes needed to model 

a product system, according to the functional unit evaluated by a LCA study. It includes the calculation 

procedures to quantify relevant inputs and outputs of a product system and its outcome catalogues the 

flows crossing the system boundary. The Impact Assessment step consists of applying a Life Cycle 

Impact Assessment (LCIA) method to estimate the environmental impacts of a product system by 
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associating the outcome of the inventory analysis with specific impact categories and impact 

characterization factors (usually according to Equation 3.12).  

𝐼𝑐 =  ∑ (𝑚𝑖 × 𝐶𝐹𝑐,𝑖)
𝑛
𝑖   (3.1) 

Where: 

𝐼𝑐 = 𝐼𝑚𝑝𝑎𝑐𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑛 𝐼𝑚𝑝𝑎𝑐𝑡 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑐) 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑙𝑜𝑤  𝑜𝑓 𝑛 𝑠𝑢𝑏𝑡𝑎𝑛𝑐𝑒𝑠  

𝑚𝑖 = 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑎 𝑠𝑢𝑏𝑡𝑎𝑛𝑐𝑒 (𝑖) 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 

𝐶𝐹𝑐,𝑖 = 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑐) 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑎 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖) 

There exist LCIA methods that cover several impact categories in common impact groups (midpoint 

methods) and other LCIA methods that provide additionally unique impact indicators (endpoint 

methods), usually by applying weighting procedures. Typically, These procedures consists of two steps: 

(1) multiplying the LCIA results with normalization factors that represent the overall inventory of a 

reference (for example an average citizen) and (2) multiplying these normalized results with a set of 

weighting factors, that indicate the different relevance that different impact categories, or areas of 

protection may have [234]. All these indicators are reported and interpreted in the last step of the LCA 

methodology (Interpretation).  

1.1.2. Characterization factors and environmental impact categories 
A characterization factor is a factor derived from a characterization model used to convert one instance 

of the inventory analysis outcome to a common unit to compute an impact category indicator. An impact 

category indicator is a quantifiable representation of an impact category that represent an environmental 

issue. For example, to compute the impact of the environmental issue “abiotic resource depletion” of a 

specific raw material used by a product system, certain characterization models (included in LCIA 

methods such as CML-IA [235] and Anthropogenic stock extended Abiotic Depletion Potential 

(AADP)) construct a characterization factor by contrast the run-out rate of this resource with the run-

out rate of a reference resource (equation 3.2).  

𝐴𝐷𝑃𝑖 =

𝐷𝑅𝑖
(𝑅𝑖)2

𝐷𝑅𝑠𝑏
(𝑅𝑠𝑏)2

  (3.2) 

Where: 

𝐴𝐷𝑃𝑖 = 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 Abiotic Resource Depletion Potential (𝐴𝐷𝑃) 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (𝑖).  

𝑅𝑖 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑜𝑟𝑒 𝑠𝑡𝑜𝑐𝑘𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑖 

𝐷𝑅𝑖 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑖 

𝑅𝑠𝑏 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑜𝑟𝑒 𝑠𝑡𝑜𝑐𝑘 𝑜𝑓 𝑎 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (𝐴𝑛𝑡𝑖𝑚𝑜𝑛𝑦) 

𝐷𝑅𝑠𝑏 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 

In equation 3.2, the run-out rate of both resources could be expressed as the ratio between their 

extractions rate and their available ore stocks, and the characterization factor of the resource (i) could 

be expressed in terms of the reference source (kg Sb-eq). Notice that equation 3.2 is framed in function 

of the rarity of the resource or, in other words, it concerns a particular feature of inputs flows in the 

inventory analysis outcome. Regarding the output flows, characterization factors could be also 

constructed by considering impact equivalences between specific output flows affecting specific impact 

categories, for example “Global Warming Potential” (table 3.1).  

 

 

                                                           
2 According to Guinée et al. 2002 [57]. 
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  Characterization factors (Equivalence)  
for GWP in 100-year time horizon 

Emission 
(Output flow) 

Formula 
IPCC AR4  
Report [58] 

IPCC AR5 
Report [59] 

Carbon dioxide CO2 1 1 

Methane CH4 25 28 

Nitrous oxide N2O 298 265 

Table 3.1. Characterization factors for the impact category Global Warming Potential (GWP) in a 100-year horizon. Here, the common unit 

is expressed in terms of CO2 mass equivalence. For example, emitting of 1gram of methane is equivalent to emitting 25 or 28 grams of CO2 
(CO2 g-eq). Both substance contribute to the GWP impact category. 

1.2. LCA studies of IoT systems  
With an emerging number of publications [10, 26, 60-61, 72-77, 240], the impact estimation of sensors 

and sensor systems has attracted the interest of LCA communities in recent years. On the other hand, 

the impact estimation of full IoT systems gains more adepts [51, 69, 71, 143, 227, 236], as the number 

of publications showing the impacts not only of sensor systems but also of edge computing and 

mutualized infrastructure increases at a moderate pace. The next sections will detail these studies from 

a perspective of data and information flows, as fundamental instruments for defining the reference flow 

for environmental impact assessment; and later, from a structural perspective: LCA studies of full IoT 

systems (with an special emphasis on impact estimation of transmitting and processing data over the 

internet and cloud servers) and partial IoT systems (including edges devices, sensor systems and sensor 

components). Each of these sections provides useful aspects for the next chapter. 

1.2.1. LCA studies of IoT systems reveling the importance of data and information for 

establishing reference flows 
According to the conclusions of previous chapter, the functional unit of an IoT system could be defined 

as the production of information, which depends on the collection and the unique way to treat specific 

types of raw data. In this sense, two IoT systems with a common functional unit may have different 

reference flows —different sensors, sensor systems, mutualized infrastructure or even different energy 

consumption patterns— depending on the way by which data is transformed into information.   

With this in mind, dimensioning differently the needs of data may originate different reference flows 

and impact results, as Lelah et al. [51] point out. In their cost-benefit LCA-based study, they describe a 

baseline version of an IoT system oriented to optimize the glass collection service system of a city, 

providing information of glass-level-content of bins once a day (Figure 3.3).  

 

 

 

 

Figure 3.3. A full IoT system for glass 

waste-collection. Authors organized the 

IoT system in elements that belongs to the 

optimization service system (M2M and 

Product Service System (PSS) provider) 

and elements that belong to the regular 
service system (Local waste management). 

The scope of the LCA study covers only the 

M2M PSS Provider system. Figure 
extracted from [51].  
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The baseline version is composed of a network of sensors systems, which are placed in waste bins and 

communicate with nearby solar-powered gateways by a low power radiofrequency protocol (Wavenis). 

This IoT system use the gateways to send the information to the global telecom infrastructure by Global 

System Mobile (GSM) communication in order to centralize data and generate information in a cloud 

server (M2M platform). This information is later presented to the end user though regular computers 

(PC). The gateways, the M2M platform and the PC elements compose the Product Service System (PSS) 

of the system. 

Thus, under these conditions, this LCA study (that does not indicate explicitly its reference flow) 

demonstrate the influence of different data transmission frequencies on (1) the reference flow in terms 

of additional resources in local devices, and energy consumption in mutualized infrastructure; and (2) 

on the environmental impacts of the entire IoT system. Starting from its functional unit defined as 

“collecting waste glass in the Voiron County (France) during ten years”, this study considered changing 

the baseline design of the data transmission frequency (in which each sensor system transmits content-

level data of containers once a day) to an hourly frequency (each sensor system executes 24 

transmissions per day), with the aim of reducing the danger of overflowing bins. This change would 

modify the reference flow of the baseline version because capacities of current equipment would be 

scaled-up (bigger photovoltaic cells, accumulators and casings for gateways, and augmented batteries 

and casing of sensors systems); contributing to a significant increase of environmental impacts in almost 

all categories. Especially, it is observed an increase of 62% for the Energy depletion and an increase of 

27% for the global warming impact categories (figure 3.4). 

  

 

 

Figure 3.4. Environmental impact of the IoT 

system with a daily and hourly frequency 

transmission rate. Figures extracted from 
[51]. 

 

 

 

 

Interestingly, the second impact contributor of the hourly data transmission design is the global telecom 

infrastructure (with a corresponding impact contribution of 31% and 10% for the Energy Depletion and 

the Global Warming impact categories). Regarding these results, the authors propose allocating 24 

similar IoT applications in the local equipment (PSS system) and the mutualized infrastructure (Global 

Telecom Infrastructure). In this way, the impact would be 1/24 for each service separately. The impact 

evaluation of this hypothetical scenario reveals a drastic reduction of almost 45% and 31% for the Raw 

Material Depletion and Global Warming impacts categories respectively (Figure 3.5).  

  

  

 

Figure 3.5. Effects of mutualizing local and 
Telecom infrastructure along 24 similar services. 
Figure extracted from [51]. 
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Another LCA study conducted by Köhler, A. R. et al. [60] shows that a reduction of the data sampling 

resolution of a textile-based IoT system induces a proportional reduction on its reference flow in terms 

of required material and energy. With two different scenarios involving two functional units: “energy 

management and safety for an elderly person home for 20 years (sensing floor size 30 m2)” (scenario 

A), and “Presence monitoring for a lecture room for 20 years (sensing floor size 4 m2)” (scenario B), 

the system boundary of this LCA study describes a partial IoT system composed of a transceiver and 

capacitive proximity sensors grouped in microelectronic modules distributed in a floor area (figure 3.6).  

 

 

 

Figure 3.6. A basic schematic of a textile-based IoT system. Inside the 

floor underlay, proximity sensors are installed in conductive textile-

based triangular areas (Polyester fleece). Eight sensors are connected to 
a microelectronic module, which communicates with a transceiver 
wirelessly (in 868 MHz frequency). Figure extracted from [60]. 

 

 

Baseline endpoint Ecocost impact results for scenario A and scenario B amounts to more to 700 Euros 

and 200 Euros respectively (Figure 3.7a). As much of these impacts are explained by a continuous power 

dissipation along the use phase of the microelectronic modules, authors propose reducing the sensing 

floor’s spatial resolution from 4 to 2 modules per square meter (motivated by the low-data-resolution 

needs of both scenarios). Figure 3.7b shows the power saving from this modification on the reference 

flow, together with some alternative settings on the data operational stages of the IoT system: switching 

off the radio receiver of the sensor modules (sub scenario 2), putting the MCU in sleep mode when 

capacitance measurement and data transmission are not required (sub scenario 3); and reducing the 

frequency of measurements (sampling rate) from 10Hz down to 2Hz to prolong sleeping states (sub 

scenario 4). 

(a)   (b) 

Figure 3.7. (a) Baseline Ecocost impact results of a textile-based IoT system (Scenario A and B). Manufacturing (materials and production) 
of microelectronic modules contributes only with 4.9% in scenario A, and with 3.6% in scenario B. (b) Power dissipation decrease from 

reducing the sensing floor’s spatial resolution from 4 to 2 microelectronic modules per m2. Figures in sub scenario 1 show the power 
dissipation of the IoT system without additional settings. Figures extracted from [60]. 

Unfortunately, in spite of the evident benefits (a reduction on the power dissipation of more than 66%, 

93% and 98% for sub scenarios 2, 3 and 4 respectively), the authors of this study do not provide further 

details about the implementation of the aforementioned settings. 

On the other hand, the reference flow of IoT systems may include significant replacements of local 

devices too, depending on the functional unit and operational conditions in data transmission stages. For 

example, in a complementary LCA study conducted by Bonvoisin, J. et al. [61], the functional unit 

“centralized ten-year hourly provision of glass level values for all waste containers in Grenoble 

(France)” mobilizes the deployment of 288 sensor systems, all of them replaced approximately once 

during ten years because of battery lifetime limitations (7.5 years). In the same period, it is also required 

installing 72 repeaters whose replacements amount to 156 devices, mainly due to their limited battery 
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lifetimes of 4 years. The impact contribution of such context would range from 63% to 83% for sensors 

systems, and from 15% to 35% for repeaters in different impact categories (Figure 3.8).  

 

 

Figure 3.8. Environmental impact of a WSN oriented to 

optimizing the urban garbage collection of a city. Raw 

Material Depletion (RMD), Energy Depletion (ED) Water 
Depletion (WD), Global Warming (GW), Ozone Depletion 

(OD), Air Toxicity (AT), Photochemical Oxidation (POC), 

Air Acidification (AA), Water Toxicity (WT), Water 
Eutrophication (WE), Hazardous Waste Production (HWP), 

Residual WEEE Production (RWP). Figure extracted from 
[61]. 

 

Much of these impacts are explained by the early replacement of sensor systems and repeaters, whose 

batteries drain quickly due to energy-intensive communication tasks. For example, in the case of sensors, 

40% of the energy consumed is attributed to overhearing and 28% to radio bandwidth scanning (see 

figure 3.9). In the case of repeaters, the energy consumption is distributed between overhearing (30%) 

and communication (64%).    

 

 

 

Figure 3.9. Energy consumption share of communication tasks of sensors 
systems and repeaters. Figure extracted from [61]. 

 

 

 

Overhearing would be produced by certain factors such as the data rate generation of the network and 

the hearing sensibility of receivers. Because very high levels of sensibility produce overhearing and very 

low levels degrades the quality of communication, the authors of this study propose restricting the 

hearing sensibility of each sensor system to the strict necessary as a first redesign alternative (Alternative 

1). Specifically, they propose decreasing the hearing sensibility of each sensor system so that the 

probability of successful reception of messages achieve 95%. Based on this alternitve, they also propose 

doubling the battery capacity of repeaters (Alternative 2). Figure 3.10 shows the environmental saves of 

both strategies. 

 

 

 

 

Figure 3.10. Comparison of impacts for the baseline design; 
and alternative 1 (Alt 1) and alternative 2 (Alt 2) redesign 
options. Figure extracted from [61]. 

 

 

 

In figure 3.10, the environmental saves of the redesign alternative 1 are explained by a reduction of 10% 

in the energy consumption of sensor systems, which extends the lifetime of their batteries and avoid 

replacements. However, in this scenario, repeaters consumes more energy than before because of poorer 

communication links and they are more often replaced (188 replacements instead of 156). In this sense, 

scaling-up their battery capacities (Alternative 2) leads to less replacements (73 instead of 188) and 
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environmental saving compensations with respect to the first redesign alternative (from 4% for RMD to 

12% for RWP impact categories). 

 As observed, in this section Lelah, A. et al. [51] and Bonvoisin J. et al. [61] show respectively 

clear increments and reductions of environmental impacts from modifications in reference 

flows, which is the result of direct changes in the data intensity, addressed by IoT systems. 

Specially, redesign alternative 1 proposed by Bonvoisin J. et al. [61] shows that a little 

degradation in data quality (5% of messages lost) can influence positively and/or negatively the 

impact of IoT systems (i.e.: less replacement of sensor systems but more repeaters to support 

poorer communication links). On the other hand, Köhler, A. R. et al. [60] shows that considering 

data requirements according to IoT application types may lead to drastic reductions on reference 

flows (in terms of number of devices and energy).  

 

 However, although this evidence shows that variations in reference flows from data 

manipulation should be analyzed before conducting LCA studies; all authors in this section do 

not recognize explicitly the relevance of this previous step. 

 

 In this sense, in this work it is acknowledged the relevance of a preliminary analysis of data (its 

requirements, meaning, manipulation and flow) and the derived information from it; and the 

next chapter will aim to construct a novel design methodology that explicitly integrates this 

preliminary analysis to better define or redefine the reference flow of IoT systems. 

1.2.2. LCA studies of full IoT systems and impact estimation of mutualized 

infrastructures 
Estimating the impact related to the use of cloud servers and mutualized networks of IoT systems is 

challenging. As a starting point, one can consider the work carried out in the broader field of ICT for 

gaining understanding of the inner complexity of mutualized infrastructures and later apply this 

knowledge to the literature review of full IoT systems.  

According to Malmodin, J. et al.  [62], the available literature of impact estimation of mutualized 

infrastructure in ICT products and services presents a dichotomy between environmental studies based 

on economic and environmental data (that is later allocated to specific ICT sectors) [63], and 

environmental studies based on the analysis of specific ICT products or services (that are later related 

to generic ICT sectors) [64]. These approaches are usually known as “top-down” and “bottom-up” 

approaches respectively. 

In the context of IoT systems, top-down LCA literature includes the aforementioned study conducted 

by Lelah, A. et al. [51]. This study uses data from a French telecom operator to allocate the necessary 

energy for running the GSM and internet communication. Table 3.2 presents some aspects and a 

description of the operational phase of these elements. 

 

Element Description 
Life cycle phase considered in the study 

Manufacturing Transportation Use 

GSM  Local network (sensor & gateways) ↔ Telecom network No No Electricity grid only 

Internet Telecom network ↔ M2M platform No No Electricity grid only 

M2M Platform (cloud server) Server, rack, air cooling Electricity grid only Yes Electricity grid only 

Internet M2M platform ↔ Collection service No No Electricity grid only 

PC end-user PC at the collection service Electricity grid only Yes Electricity grid only 

 
Table 3.2. Elements considered in the LCA study of an IoT-based glass collection system presented by Lelah, A. et al. [51].  

 

Basically, this study calculates the energy consumption part of the GSM and internet infrastructure by 

dividing the total energy use of the telecom infrastructure (during the use phase) into running the 

facilities and actual communication. Then, parts were allocated to specific services such as telephony 

and internet; and finally the estimated impact of the energy allocated to particular communication such 

as GSM and internet involved in the IoT application was calculated according to the number and types 
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of subscriptions concerned. In this way, the estimated impacts summarized in figure 3.11 suggest little 

damage attributed to the use of mutualized infrastructure of the IoT system (far less than 10% in the 

Energy Depletion impact category). 

 

 

 

Figure 3.11. Environmental impact of 

the glass collection IoT system 
presented by Lelah, A. et al. [51] for 

sensors systems transmitting once a day. 

The mutualized infrastructure (Global 
Telecom Infrastructure) includes the 

GSM and internet communication. The 

M2M platform (cloud server) is not 
included into the Global Telecom 

Infrastructure but into the PSS 
infrastructure. 

 

 

On the other hand, a distinctive characteristic of bottom-up LCA studies oriented to ICT products and 

services [11], [62], [65-68], [237] is the common method used to calculate the energy consumption of 

mutualized infrastructure involved in use phases, which consist on estimating the electricity required by 

cloud servers and telecom networks for processing data generated on the local side (kWh per Gigabyte 

generated).  

This approach is applied in a bottom-up LCA study of an IoT system oriented to monitoring the use of 

truck tires [69]. It considers an energy used per data volume ratio (kWh / GB) to calculate the global 

impact of the system. Table 3.3 and equations 3.3 and 3.4 show the aspects considered in this study for 

modeling the energy requirements of mutualized infrastructure (cloud servers and internet 4G 

connection). 
 Data flow and assumptions How total was calculated Unit 

Energy requirements 
data collection by sensors 

1 W typical  
power * 

1 / 1000 [kW] * total hours of tire use [h] kWh 

Gateway energy requirements  
for data transmission 

Sends data every 2 minutes  
via 4G LTE network * 

Equation 3.3 kWh 

Cloud-side energy requirements 
Sends data every 2 minutes * 

4 bytes per transfer ** 
Equation 3.4 kWh 

Table 3.3. Aspect considered for modeling the energy requirements of an IoT system oriented to monitoring the use of truck tires. (*) 

Technical data from de IoT system manufacturer. (**) Estimations by authors. Adapted from [69]. 

 

𝐺𝐸 =
1 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

2 𝑚𝑖𝑛
×

4 𝐵𝑦𝑡𝑒𝑠

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
 ×

10−9𝐺𝐵

𝐵𝑦𝑡𝑒
×

0,3 𝑘𝑊ℎ

𝐺𝐵
× 𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑜𝑓 𝑡𝑖𝑟𝑒 𝑢𝑠𝑒 [𝑚𝑖𝑛]    (3.3) 

 

𝐸𝐶𝑙𝑜𝑢𝑑 =  
𝐵𝑑∙𝐷

3600
× (𝐸𝑇 + 1.5

𝑃𝑠𝑡,𝑆𝑅

𝐶𝑠𝑡 ,𝑆𝑅
) + 2𝐵𝑑

1,5 𝑃𝑆𝐷

𝐵𝑆𝐷
 [𝑊] ∙ 𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑡𝑖𝑟𝑒 𝑢𝑠𝑒 [ℎ]   (3.4) 

 
Where: 

𝐺𝐸 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑡𝑒𝑤𝑎𝑦 𝑓𝑜𝑟 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑖𝑚𝑖𝑠𝑠𝑖𝑜𝑛 

𝐸𝐶𝑙𝑜𝑢𝑑 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑜𝑢𝑑 𝑠𝑒𝑟𝑣𝑒𝑟 

𝑃𝑠𝑡 , 𝑆𝑅 = 𝑃𝑜𝑤𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑎 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑠𝑒𝑟𝑣𝑒𝑟, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑜 0,225 𝑘𝑊 

𝐶𝑠𝑡, 𝑆𝑅 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑠𝑒𝑟𝑣𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑜 800 𝑀𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 

𝑃𝑆𝐷 = 𝑃𝑜𝑤𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 ℎ𝑎𝑟𝑑 𝑑𝑖𝑠𝑘 𝑎𝑟𝑟𝑎𝑦𝑠, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑜 4,9 𝑘𝑊 

𝐵𝑆𝐷 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑎𝑟𝑑 𝑑𝑖𝑠𝑘 𝑎𝑟𝑟𝑎𝑦𝑠, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑜 604,8 𝑇𝑏𝑖𝑡𝑠 

𝐵𝑑 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 
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𝐷 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠/𝑢𝑝𝑙𝑜𝑎𝑑𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟  

𝐸𝑇 = 𝐶𝑙𝑜𝑢𝑑 𝑠𝑖𝑑𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 1 𝑏𝑖𝑡, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 2,7 µ𝐽/𝑏𝑖𝑡  

For developing equation 3.3, Ingemarsdotter, E., et al [69] uses the ratio of 0,3 kWh / GB for internet 

4G connections reported in [67]; as well as the cloud-side energy needed to transfer 1 bit (2,7 µJ / bit), 

and the estimated power required by a content server and hard disk arrays (0,225 and 4,9 kW 

respectively), all reported in [70]. The capacity of the content server (800 Mbits/s) and the capacity of 

the hard disk arrays (604,8 Tbits) in equation 3.3 comes from this latter reference too.  

The purpose of the study is contrasting the benefits provided by the IoT system (reduction in fuel 

consumption, extension of the lifetime and retreading of tires) with its associated impact: manufacturing 

of piezoelectric-based sensor systems, gateways and RFID tags; and energy consumption for data 

transmission through internet, and treatment by cloud servers. Together with additional inventory 

analysis including the tires and treat production, the drive distance before tire exchange, and the fuel 

consumption of trucks; the authors found that monitoring the wearing rate of tires through the IoT system 

gives a 4% lower weighted life cycle impact than the current state, explained by a reduction of tires used 

by a tractor/semi-trailer truck along 2x106 km (table 3.4).  

 Number of tires 

 Current state IoT scenario 

New tires 4,9 3,6 

One time retreaded tires 3,1 2,5 

Two time retreaded tires 2 1,8 

Three time retreaded tires 1,2 1,2 

Total number of tires 11,2 9,1 

 
Table 3.4. Number of tires under the current state scenario (manual checking of tires every 8 weeks) and the IoT scenario (constant smart 

checking). The functional unit is “enabling a tractor/semi-trailer (10-tires-tracted) truck to drive 2x106 Km”. Adapted from [69]. 

According to the authors, this reported benefit may vary based on variations in tires and trucks (i.e.; 

rolling resistance of tires, type of truck, etc.) and to a lesser extent on the weight of the sensor systems 

and gateways. Moreover, the production of these devices and, specially, the required energy for using 

the mutualized infrastructures involved in the operational phase of the IoT system (“IoT Energy use data 

transmission 4G” and “IoT energy use cloud”) would not contribute significantly to the impacts as the 

objects do (“abrasion” or “manufacturing” of tires, and “fuel” for trucks) (Figure 3.12). 

 

Figure 3.12. Impact comparison of the current state and IoT-based systems for truck tires monitoring. It presents results according to 

weighted single scores of impact (kPt) of the LCIA method ReCiPe 2016 (total and per life cycle phases for the current state and IoT-based 
scenario) [69]. The manufacturing phase of mutualized infrastructure is not taken into account. 
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However, this conclusion must be interpreted prudently since the weighted impact of producing and 

using the IoT-based system could be underestimated. Indeed, if one considers the difference in impact 

between the current state and the IoT scenario by categories (figure 3.13), on observe that using the IoT-

based system can be counterproductive for certain impact types (in freshwater eutrophication and 

toxicity, marine ecotoxicity, and Human non-carcinogenic toxicity).  

 

Figure 3.13. Difference in impact between the current state and the IoT scenario, by impact categories (as percent of current state impact). 
Figure extracted from [69]. 

Unfortunately, the authors do not provide detailed results in terms of the different phases of the life cycle 

of the IoT system (including the use of mutualized infrastructure) and further interpretations are not 

possible. 

Dekoninck, E., & Barbaccia, F. [71] for their part, present a bottom-up LCA study of an IoT system 

based on the amount of data generated from a smart fridge. In this cost-benefit study, the authors focused 

on the ten-year use-phase impacts comparison of a regular fridge versus a smart fridge within four 

scenarios (average use of the normal fridge; and least, average, and intensive use of the smart fridge). 

For estimating the use of local and mutualized infrastructure in the case of the smart fridge, the 

construction of the average use scenario was based on surveys and literature (Table 3.5), and the least 

and intensive use scenarios were derived hypothetically from it. Table 3.6 shows the estimated data 

generation for the different smart functions and their associated impacts derived from Malmodin, J. et 

al. [11], and table 3.7 shows the carbon footprint comparison of the four scenarios. 

Smart functions Frequency (per week) Source 

Look inside remotely 3 Surveys 

Browse internet 3 Lit. review 

Table 3.5. Partial construction of average use scenario of a smart fridge concerning the functions that involves the use of local and 
mutualized resources. Adapted from [71]. 

 

Smart functions Data use (GB/hr)  Impact* 

Look inside remotely 0,6 2,1x10-5 Kg CO2-eq / photo 

Internet browse 0,6 1,48 Kg CO2-eq / GB 

App use (3G connection) 0,4 2,77 Kg CO2-eq / GB 

Table 3.6. Data generation rate and associated impacts for some smart functions. (*) Derived from literature. Adapted from [71]. 
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  Smart fridge 

System Stage Normal fridge  Least use Average use Intensive use 

Product use 2400 2500 4200 8000 

     Fridge 2438 2438 2438 2438 

     Screen   39 72 132 

     Cameras   3 3 2 

     Speakers     16 44 

     Internet      1657 5396 

Grocery shopping 10700 10700 10300 7600 

     Brick 1 mortar 10700 10700 9400   

     Grocery shopping (Online)     920 7600 

Loading groceries into fridge 55 55 55 55 

Use the app     220 500 

Food wasted 9800 9800 6800 3900 

Opening door during week 140 140 130 110 

Total 36233 36375 36211 35777 

Table 3.7. Impact comparison of the four scenarios expressed in CO2 kg-eq terms. Adapted from [71]. 

Unfortunately, although this study reveals interesting reductions on the global impact for the average 

and intensive use scenarios on the one hand, and an augmented contribution of the internet use in the 

intensive use scenario (approximately 15%) on the other; it is not clear the way by which the authors 

computes these results from the provided data generation rate per smart functions (according to table 

3.6) and the use frequency of these smart functions (according to table 3.5). 

Alternatively, Sarkar, S. et al. [143] conducted a simulation-based, comparative analysis of impacts of 

cloud and fog computing in the context of IoT. Based on a mathematical model of the service latency 

(computation and transmission delays) of different-sized IoT systems composed of several devices  

(terminal nodes); they estimated the power consumption of fog and cloud computing under specific data 

operational stages (data forwarding, computation, storage and transmission) (Figure 3.14b); and 

concluded that, for numerous latency-sensitive applications, fog computing outperforms cloud 

computing, both in terms of provisioned QoS and ecological benefits (Figure 3.14c-d).  

(a) (b) 

(c) (d) 

Figure 3.14. (a) Service latency VS number of terminal nodes simulation results and (b) Overall power consumption (including power 
consumption for data forwarding, computation and transmission) VS number of terminal nodes. ϴ represents the ratio of the total bytes 

transmitted to the fog computing tier to the number of bytes referred to the cloud computing tier. (c) and (d) shows the total CO2 emissions 

for non-renewable and renewable energy sources respectively (according to the CO2 emission rates found in [239]). All figures were 
extracted from [143].  
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Motivated by these results, the authors eventually justify fog computing as an improved, eco-friendly 

platform compared to cloud computing and announce future work based on fog computing prototypes 

to support real-time implementations.  

 As observed, in this section, the top-down LCA study presented by Lelah, A. et al. [51] shows 

that the use of the French telecom infrastructure does not contribute significantly to the global 

impact of IoT systems (on a daily data transmission basis). If one compare their results with 

results provided by Ingemarsdotter, E. et al. [69], one could conclude preliminary that impact 

from energy consumption of mutualized infrastructures is negligible. 

 

 In the latter work, however, the impact contribution of the mutualized infrastructure cannot be 

distinguished, nor can its results be generalized to IoT systems (the authors clarify that their 

results may vary in other data-intensive contexts). Furthermore, the second bottom-up LCA 

study presented by Dekoninck, E., & Barbaccia, F. [71] shows a non-negligible impact 

contribution of around 15% attributed to the intense use of internet, an impact whose survey-

based calculations would not be clear. 

 

 Finally, although interesting, the work of Sarkar S. et al [143] relies in several assumptions on 

terminal nodes such as self-awareness-geo-spatial location capabilities, that would not reflect 

the reality of modern, energy-constrained IoT systems. 

 

 In this sense one can neither conclude whether the impact coming from the use of mutualized 

infrastructure of IoT systems is negligible or not (regardless of the method used for estimating 

the energy needs), nor extrapolate results presented in this section to other studies due to the 

case-by case nature of the literature. 

 

 The next chapter will try to propose a generic and transparent method that easily models the 

generation of data and calculates approximately the global impact of heterogeneous IoT 

systems. 

1.2.3. LCA studies of partial IoT systems (sensor systems and edge/fog devices) 
The environmental study of partial IoT systems is usually carried out in a context of cost-benefit 

comparisons of specific IoT applications. For example, the aforementioned work carried out by 

Bonvoisin, J. et al. [10] presents a comparison of benefits and environmental impacts of using a WSN 

(composed of content-level sensors systems, repeaters and gateways) for optimizing the routes of 

municipal garbage collectors of a city. 

Specifically, the results of this study show a reduction of 25% in the Global Warming (GW) potential 

thanks to the optimization of the collector truck routes (-19% of travelled distance), less containers to 

collect (41% more full containers treated) and fuel savings (-26% less diesel consumption). However, 

these environmental savings are eclipsed by a significant increase of impacts in the Resource Material 

Depletion (RMD) impact category (figure 3.15a), which would be explained by the deployment and 

replacements of numerous off-ground sensors systems in the operational period of ten years (figure 

3.15b). 

(a)  (b) 

Figure 3.15. (a) Impact comparison of the optimized system for municipal garbage collection including the WSN (optimization system, 

composed of sensor systems, repeaters and gateways) and the regular garbage collection service (Non-optimized system). (b) RMD Impact 
estimation of the deployment, operation and dismantling phases of the WSN (oS = off-ground sensor systems, uS = Underground sensor 

systems, iR = intermediary repeaters, R = Repeaters, G = Gateways). Figures extracted from [10]. 
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The impact on the deployment and operational stages of the WSN is explained not only by the rapid 

extinction of the battery of the off-ground sensor systems that causes numerous replacements, but also 

by the use of raw materials and emissions in the manufacturing phase of deployed all sensor systems, 

repeaters and gateways. Specifically, the RMD impact is distributed between the manufacturing phases 

of the gateways’ battery and the electronic components of sensor systems and repeaters; and the GW 

impact comes mainly from their mechanical parts (casing and resins) (figure 3.16). 

 

 

 

 

Figure 3.16. RMD and GW impact 

contribution of sensors systems, 

repeaters and gateway. (An auxiliary 
battery equips the gateway and its 

average power consumption is 6,6 
Watts). Figure extracted from [10]. 

 

 

 

 

 

Another cost-benefit study provides a comprehensive review of the ecological efficiency of Home 

Energy Management System (HEMS) in four versions [72]. The first version consists of an energy 

monitor composed of a sensor, a transmission unit and a display (Figure 3.17a). The second version 

consists of an “old” multifunctional HEMS composed of an 8" LCD touchscreen, two sensors (gas and 

electricity) with two data transmission units, an adapter and repeaters (Figure 3.17b). The third version 

consists of a “new” multifunctional HEMS composed of a 7” LCD-touchscreen, switching adapters, 

wiring displays to the heater, and no-additional WiFi router. The fourth version consists of an energy 

management system made up of individual plugs in a zigbee mesh network (Figure 3.17c). 

(a) (b) 

(c) 

Figure 3.17. The product system boundaries of (a) the energy monitor version, (b) the multifunctional HEMS and (c) the Zigbee-based, 
energy management system. All figures are extracted from [72]. 

This cradle-to-grave study combines a Cumulative Energy Demand (CED) analysis with an Ecocost 

LCA-based analysis to determine whether the amount of energy saved by each of the four HEMS 

versions exceeds the energy required to produce, use and dispose them in eight different scenarios. 
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Results show (1) that the total impact depends on the type of HEMS, and (2) an approximate impact 

reduction of 45% from reducing the energy consumption (to 44 kWh) and the number and size of the 

components of the multifunctional HEMS version (see detailed results of the “new” HEMS version in 

table 3.8). Unfortunately, authors do not give further details about these interesting findings. 

 

Table 3.8. Cumulative Energy Demand (CED) results and Ecocost impacts for production, use and disposal of the four HEMS versions, 
calculated over 5 years. Table extracted from [72]. 

 As observed in their cost benefit study, Bonvoisin, J. et al. [10] shows minor benefits and 

significant impacts from using IoT systems. Unfortunately, although this great difference is 

explained by the replacements of sensor systems and repeaters, and more specifically by their 

electronic components, authors does not provide further details. This lack of detailed results 

regarding electronic composition is also observed in the work of Van Dam, S. S. et al. [72]. 

 

 In this sense, in the next chapter a methodology will be designed to facilitate the transparent 

impact evaluation of local devices based on electronic components. 

1.2.4. LCA studies of partial IoT systems (sensor systems and sensor components) 
The LCA literature oriented exclusively to sensor systems identifies specific electronic components with 

high contributions in different environmental impact categories. For example, in an LCA comparative 

study of sensor systems belonging to an Intelligent Lighting IoT System (ILS) for buildings, Dubberley, 

M. et al.  [73] found that the PCB and the integrated circuits components contribute significantly to 

several impacts categories. In addition, it was concluded that the sensors systems’ batteries has large 

impacts on Ozone depletion and Acidification; and moderate impacts on human health (Carcinogenicity) 

and Photochemical smog. Table 3.9 synthetize these results together with the impacts of other less 

relevant electronic components. 

 
 Acidification Eco toxicity Eutrophication 

Fossil fuel 
Depletion 

Global 
Warming 

Carcinogenicity 
Non 

carcinogenicity 
Ozone 

depletion 
Photochemical 

smog 

Ballast transformer (Inductor 
Cu) 25,7%                 

Ballast transformer (Inductor Si 
steel) 

            2,4%     

Integrated circuits (ballast)   4,0%   24,6%           

Integrated circuits (sensor 
systems)   7,9% 32,4% 49,1% 27,2% 18,7% 3,7%   6,4% 

Li Battery (sensor systems) 37,8%   25,2%   18,0% 28,8%   94,3% 13,0% 

Paint (ballast)               1,8%   

PCB (sensor systems) 32,8% 82,8% 25,7% 15,6% 29,7% 40,7% 87,6% 2,8% 70,8% 

 
Table 3.9. Highest (red), second highest (orange) and third highest (green) impact contributors of sensor systems belonging to an ILS IoT 

system. Adapted from [73]. 

As table 3.9 shows, the prevalent contributors in almost all categories are the IC components, the PCB 

and the battery. In this sense, authors suggest prioritizing the size reduction of the PCB and electronic 

circuits in redesign stages, mainly by functions simplifications of each component. It is also proposed 

replacing the battery with a connection to the ballast (which converts the building's AC electricity to DC 

and steps down the voltage), and minimizing the use of plastic in the housing of the sensor systems. 

Unfortunately, impact estimations of these initiatives are unavailable. 

In another LCA study [74], it was also concluded that the PCB and the IC components contribute 

significantly to the environmental impact of different sensor systems, depending on their complexity 

(figure 3.18). 



72 

 

 

Figure 3.18. Endpoint Carbon footprint impact of (a) a Philips HUE occupancy sensor, (b) a Google Home mini home connected assistant, 
(c) a DJI MAVIC mini light weight drone and (d) a smart watch from Apple and Garmin. The LCA functional unit of all these IoT devices is 

defined as “production and transport to the use location of a single device”. Figures adapted from [74]. 

Indeed, if only impacts of production are taken into account, all types of sensor systems present relevant 

impacts from either the PCB component (i.e.; occupancy sensor or Home connected assistant) or certain 

integrated circuit components (i.e.: the memory for the home-connected assistant and the smart watch). 

Beside of this, it is also observed a persistent contribution of microcontrollers (processing components) 

in all types of sensor systems and, interestingly; and special contributors such as casing parts in 

occupancy sensors and actuators in drones.  

In another LCA study [75], it is observed that significant environmental loads can be also identified in 

specific components subparts made by specific materials. Specifically, in this cradle-to-grave LCA 

study that introduce an anticounterfeit label (ACL) sensor system based on electrochromic display 

(ECD) and a piezo-based (PS) shock-detection-tag sensor system (SDT) (figure 3.19-3.20), it is 

observed that much of the environmental impact can be attributed to the production of NFC chip and 

Radio-Frequency Identification (RFID) antenna components.  

 

 

Figure 3.19. Basic schematic of the electronic design of the ACL and SDT sensor systems. The ACL is attached to a product to enable 

authentication during its transportation and storage. The SDT detects and record damages in goods when exposed to shocks, falls, or 
vibrations during transportation. Figure extracted from [75]. 

 

 

Figure 3.20. Basic schematics of the ECD and PS components. The ACL sensor system uses the changes of color of the ECD display 

induced by a redox reaction in the electrochromic material. The SDT sensor system uses piezoelectric materials embedded in the PS 
component, which generates electrical charges whenever a mechanical stress is produced. Figure extracted from [75]. 
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By considering that both sensor systems use either microparticle- or nanoparticle-based silver ink for 

the construction of the RFID antenna, which is printed on paper substrate together with the ECD and PS 

subparts, Figure 3.21 and figure 3.22 show the impact contribution of this component in both sensor 

systems, which ranges from more than 20% to almost 100% in different impact categories. 

 

Figure 3.21. Impact results of the ACL sensor system. the functional unit is defined as “producing at least 20 times visible chromaticity 

change after receiving a 13,56 MHz signal (from the smartphone) over a period of 2 years”. For this, a single ACL sensor system is defined 
as the reference flow. Figure extracted from [75]. 

 

Figure 3.22. Impact results of the SDT sensor system. the functional unit is defined as “detecting and recording any frequency above 13,56 

MHz over the product’s transportation, translating into a voltage signal readable by a smartphone”. For this, a single SDT sensor system is 
defined as the reference flow. Figure extracted from [75] 

As observed, the silver content in the RFID antenna component leads to different impact contributions 

in all categories, especially in the mineral resource scarcity. Regarding these results, two main redesign 

strategies were proposed: (1) reduce the amount of silver in the antenna through the use of flexography 

printing of silver nanoparticles and (2) replace the silver ink with copper nanoparticles by using 

screeening-printing techniques. Apart from alleviating the ecological burden in the resource scarcity 

category (with mineral resources savings ranging from 60% to 90%), these alternatives contribute to an 

combined impact reduction of 64% and 85% respectively in toxicity (terrestrial, marine and freshwater) 

and human health (carcinogenic and non-carcinogenic impact categories) (see figure 3.23). 
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Figure 3.23. Impact comparison of the default design of the ACL sensor system and its redesing based on flexography printing silver ink and 
screening printing copper ink. Results are almost similar for the SDT sensor system. Figure extracted from [75]. 

On the other hand, Wagner, E. et al. [26] identified significant impacts in active components in different 

versions of a sensor system for prognostic health monitoring of structures (figure 3.24b). 

 

(a) (b) 

Figure 3.24. (a) A sensor system for prognostic health monitoring of structures. From left to right: Version 0 (V0) of the sensor system 
(customized Arduino Uno version), V1 (lean, customized system version), V2 (full integrated advance packaging version). (b) GWP impact 

of the production of the three versions. Figures extracted from [26].   

Indeed, while much of the environmental impact of the open source version (V0) is allocated to the 

assembly of 41 components (including 11 active components), connectors, large and less densely 

populated PCB areas and large electronic components (Big dual-inline-package processors); much of 

the environmental impact of the lean, customized version (V1) is allocated almost exclusively to active 

components (a MSP 430 microcontroller, a CC2520 transceiver and three types of sensors) (figure 

3.24b). In addition, this study concludes that the environmental savings of the full integrated version 

(V2) are attributed to the avoidance of back-end production processes of integrated circuits 

(incorporation of lead frames, gold connections, molding compounds and die attach).  

In the context of sensor components, LCA literature shows that impacts are mainly attributed to the use 

of specific materials. For example, in a LCA study [76] of a wearable self-care health actuator described 

in figure 3.25, it is showed that the impact is attributed, to a greater extent, to the use of large amounts 

of silver in the production of a special textile wire (Elektrisola wire) and, to a lesser extent, to the 

production of the PCB component (figure 3.26). 
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Figure 3.25. Essential components of the “Vibe-ing” system for providing vibration health therapy. From left to right (top): Motor printed 

circuit board, 2000mAh 3.7V battery, Elektrisola textile wire and DC Vibration motor. Bottom: Casing shells (left) and textile body (right). 

The casing shells accommodate the DC vibration motor, which reacts to capacity touches or specific therapy programs. Figures extracted 
from [76]. 

 

(a)  (b) 

(c) (d) 

 

Figure 3.26. LCA results for the “vibe-ing” system. (a) Ecocost impact of the life cycle phases, (b) impact contribution in the production 
phase, (c) impact contribution of the electronic system and (d) impact of specific materials in the Elektrisola textile wire. Figures extracted 

from [76]. 

Based on these results, the authors propose (1) the use of an alternative version of the textile wire with 

high copper content or (2) reduce the use of the current silver-based wire by 75%. Option 1 would 

generate an impact reduction of 45%, with the potential risk of affecting the final appearance of the 

garment (copper has a different coloration than silver). On the other hand, option 2 would reduce the 

impact in more than 50%, with the risk of compromising communication and connections between the 

different modules of the system. 

In this line, another comparative study conducted by Le Brun, G. & Raskin, J. P. [77], shows the 

ecological advantages of using promising and eco-friendly materials in innovative sensors for specific 

applications. Specifically, this study shows that the environmental impact of using paper-based 
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electrochemical sensors (figure 3.27) would be much lower than the impact of using regular silicon-

based biosensors for water quality detection. 

(a) (b) 

Figure 3.27. (a) Basic schematic of the paper-based electrochemical sensor oriented to detect bacteria in water. The water sample is guided 

through the paper by natural capillarity. Electrodes on the paper surface sense the paper volume and electrical impedance is used as a volume 
detection mean to probe the dielectric changes of the system corresponding to bacteria presence. (b) Cross-sectional view of the sensor. 

Antibody bio receptors are required in the device to specifically detect bacteria cells. Figures adapted from [77]. 

With a functional unit defined as “performing 1000 water quality measurements in terms of pathogen 

presence” that includes an equivalent reference flow of 1000 single-use sensors, the author compares 

the environmental impact of Silicon-PDMS microfluidic (Si-PDMS) sensors and Carbon NanoTubes / 

Aluminum microfluidic Paper-based Electrochemical Devices (CNT-µPED and Al-µPED). Based on 

the material composition and energy consumption in the manufacturing phases of this three types (table 

3.10) and in literature [238], they show that CNT-µPED sensor type contributes the less to the Embodied 

energy and carbon footprint loads (figure 3.28).  

Material (in Kg) or  
Energy (in kWh) 

CNT-µPEDs Al-µPEDs Si-PDMS 

Electricity 2,25 390 226 

Paper 16 16   

CNTs 0,04     

Water 22     

Surfactant 0,9     

Al   0,15 0,003 

Ar   6,03 0,27 

N2   3,465 88,75 

H2   0,225 0,01 

He   0,405 0,018 

Ag   0,2   

HNO3   0,2   

Ethanol   0,2   

Formaldehyde   0,02   

Wafer     0,08 

Al2O3     0,001 

PDMS     1,5 

H2O2     4,6 

H2SO4     16 

TMAH     0,02 

Ethyl Lactate     0,186 

HDMS     0,154 

C4F8     0,003 

CHF3     0,001 

CH4     2,5 

NF3     0,06 

NH3     0,11 

HF     4,6 

IPA     12 

H3PO4     12 

Total 38,94 26,90 142,87 

Table 3.10. Materials and energy used in the fabrication of 1000 paper-based sensors (CNT-µPEDs and Al-µPEDs) and 1000 Si-PDMS 

sensors. Adapted from [77]. The electrodes of the paper-based sensors are made of carbon nanotubes-based aqueous conductive inks on 
different paper substrates. 
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Figure 3.28. Embodied energy and carbon footprint of the 

materials and manufacturing processes of 1000 CNT-µPEDs, 
Al-µPEDs and Si-PDMS sensors. The specific embodied 

energy and carbon footprint of each material and energy 
supply are available in [238]. Figure extracted from [77]. 

 

 

 

 

 In this section, Dubberley, M. et al. [73] and Pirson, T. et al. [74] reveal the significant 

contribution of PCBs, integrated circuits and other components to the environmental impact of 

IoT devices and Glogic, E. et al. [75] suggest that impact of specific components would be 

explained to the use of specific materials (i.e.: silver). Furthermore, Wagner, E. et al. [26] even 

point out specific subparts in back-end production processes of active components with high 

impact potentials. 

 

 In this sense, some authors propose substitution-, or reduction-innovative techniques without 

delving into the technical or commercial viability of these modifications (for example, Van der 

Velden, N. et al. [76] warn that a poorer concentration of silver, or a rich concentration of copper 

in specialized wirings could affect the internal connectivity or the final appearance of E-

wearables respectively). On the other hand, all the authors do not analyze whether or not these 

modifications affect other life cycle stages of IoT devices (i.e.: use and end of life). 

 
 In this sense, in the next chapter a lifecycle framework will be proposed to estimate the potential 

impacts of replacing or modifying electronic components, as well as to facilitate the integration 

an interdependency analysis of such changes in redesign stages of IoT devices. 

1.3.Summary of key aspects and shortcomings of LCA studies of IoT systems 
Annex 15 provides a synthesis of all LCA studies presented so far together with some additional aspects 

that are worth mentioning. From it, it can be observed —regardless of the system boundaries and the 

limited results that some authors provide— that significant impacts are attributed mostly to sensor 

systems and, specifically, to inner electronic components (such as PCB, electronic circuits and batteries). 

These electronic components would be made with unfavorable materials (silver, copper, silicone, etc). 

In this sense, specific redesign strategies suggest replacing and reducing certain materials; or decreasing 

the number of sensor systems in IoT systems, depending on their operational contexts and functional 

units. 

Significant impacts are also attributed to the energy consumption of sensor systems in the operational 

stage of IoT systems. This is related to the required number of local devices for covering functional units 

on the one hand, and to energy consumption patterns on the other hand. The redesign strategies proposed 

in this sense vary from a resource managing perspective (mutualizing edge devices for enabling different 

applications; or prolonging sleep states) to a hardware perspective (i.e .: increase the capacity of the 

batteries) to avoid early replacements. In this context, although some authors demonstrate the relevance 

of the reference flow for obtaining accurate impact results, much of the LCA literature suffer from either 

ambiguous or nonexistent definitions of reference flows. In addition to this, reference flows of all LCA 

studies are not defined on the basis of essential resources oriented to collect, process and transmit data 

and information. 
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On the other hand, although most of the studies attempt to address the complete life cycle of IoT systems, 

the impact estimation of certain stages falls short due to specific problems related to lack of data, the 

difficulty of life-cycle-phase modeling, or uncertainties. For example, in the study carried out by Glogic, 

E. et al. [75], the modeling of the end-of-life phase of both devices (the ACL and SDT sensor systems) 

presents several simplifications and uncertainties associated to assumptions in the landfilling scenario 

(related to inclusion of paper fractions) and recycling rates of paper substrates that would depend on the 

use location of the devices. In this line, Lelah, A. et al [51] do not take into account the end-of-life 

modeling for two reasons: the lack of a consistent E-o-L database and the difficulty of modeling realistic 

maintenance scenarios for wireless sensor networks. In this manner, their work would be extended to 

the E-o-L of the sensor systems one year later, but using an independent methodology (ReSICLED [78]). 

In this extended work [61], they would justify this decision due to the lack of environmental data on E-

o-L processing techniques in databases. 

This problem of missing data is also recurrent for other life cycle phases of IoT systems such as 

manufacturing and, specifically, the use phase; where the lack or scarcity of data related to mutualized 

infrastructure (telecoms) forces researchers to limit the system boundaries of their studies to local 

devices to avoid interpretation problems on results (as in the case of the LCA study presented by Lelah, 

A. et al. [51]). In this sense, certain authors recommend improving the availability of comprehensive 

and updated LCI databases related to the manufacturing process of sensor systems (i.e.: typical materials 

or sub-assemblies) [60], investing more efforts to deal with uncertainties during LCA analysis [61], and 

including the use of networks and cloud resources in the operational phase of IoT systems within LCA 

system boundaries [61], [71], [74]. 

However, although a comprehensive impact estimation of the entire life cycle of an IoT system is 

essential to avoid impact transfers not only between different impacts but also between different life 

cycles [79], Wagner, E. et al. [26] warn that the exhaustive application of a LCA analysis in the early 

design of sensor systems could become inefficient, because designers are faced additionally with further 

decisions and challenges in different contexts (e.g., choosing the suitable antenna and the optimal 

protocol for specific communication tasks or solve radio frequency interference problems and high 

energy consumption). 

2. New Product Development process, Eco-design and eco-design tools for IoT systems 

2.1. Fundamentals of eco-design and New Product Development Process 

In order to better explain the particularities and contribution of current tools for sustainable IoT systems, 

the definition of eco-design, as well as a brief description of its implementation on the New Product 

Development (NPD) process, found in the ISO standard 14062 [80] and the ISO standard 14006 [81], 

are synthetized and presented in the following sections. 

2.1.1. Eco design 

The integration of environmental aspects into the design and development process of a product, by 

considering its entire lifecycle could be termed as eco-design. An environmental aspect is any element 

of an organization’s activities, product or services that can interact with the environment (surroundings 

in which an organization operates, including air, water, land, resources, flora and fauna, humans and 

their interrelations). Eco-design may include aspects related to environmental aspects in general (i.e.; 

Design for Environment (DfE)) or aspects that concern specific processes in specific lifecycle phases 

(e.g., Design for Recyclability (DfR) or Design for Disassembly (DfD)) but, in general, for electronics, 

it aims to reduce emissions and the quantity of direct and indirect resources; and avoid toxicity [113].   

2.1.2. New Product development Process 

New Product Development (NPD) is a sequential process that considers a product idea from planning 

to market launch. For this, several aspects such as business strategies, marketing considerations, research 

methods and design are taken into account. The NPD process is applied for new products, as well as for 

improvements or modifications to existing products or services. Figure 3.29 shows the typical steps in 

NPD together with the common environmental aspects considered for eco design. 



79 

 

 

Figure 3.29. Generic environmental aspects taken into account in a typical product development process. Figure adapted from [80]. 

In figure 3.29, the introduction of environmental aspects into early phases of the NPD process facilitates 

more flexibility for considering specific demands (i.e.: environmental directives) together with other 

requirements. (i.e.: technical specifications). The planning stage includes the planning and formulation 

of requirements applied to the product by considering the available time and budget. This step can start 

by an analysis of external factors with significant influence on the product such as the client’s 

expectations and requirements, environmental demands (such as ensuring resources optimization and 

human health, or reducing hazardous substances, emissions and waste) and internal factors (such as 

availability of components, subcomponents, and materials).  

The conceptual design stage aims to cover the requirements defined in the planning stage. In this phase, 

the design ideas and the identified requirements gives indications of the environmental objectives related 

to the product, which are addressed by different tools such as guidelines, checklists or manuals. These 

tools can be generic or customized for an organization and its products. The conceptual design stage 

generates technical and environmental specifications that are later addressed in the detailed design stage. 

A detailed design has specific information related to the product, its life cycle, and its potential 

environmental impacts.   

In the testing prototype stage, the construction and tests of prototypes facilitates the evaluation of the 

detailed design by comparing it with environmental targets and other specifications. Different technical 

tests related to material properties, use wearing, functions, quality and lifespan of specific elements, 

processes and components could be performed at different levels before or during the evaluation of 

prototypes. In the same line, different properties and environmental aspects such as usage modes, mass, 

disassembly, recycling potential, energy and material consumption efficiency can be evaluated in this 

NPD stage. 

Finally, the market lunch phase puts the product in the market through the presentation and the 

communication of its environmental features and advantages; and the product review phase aims to 
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verify whether the product respond or not to the expectations of the organization or customers (i.e.: 

expectations including the product and its environmental performance). 

2.2.Instruments for the design and eco design of IoT systems 
This section presents the current instruments that facilitate the design and eco-design of IoT systems as 

follows: Firstly, it presents the current standards that facilitate essential definitions and frameworks for 

the regular design of IoT systems and then the emerging standards that frames the design of IoT systems 

to ensure the technical and ecological development in specific domains. Then, it presents the general 

guidelines in different life cycle phases of IoT systems. Finally, it presents specific tools applied in 

different stages of the NPD process of sensor systems and IoT systems. Each of the following sections 

ends with a synthesis in terms of advantages, disadvantages, shortcomings, contribution, and difficulty 

of application in the NPD process. 

2.2.1. Standards 
In the technical area, the International Telecommunications Union (ITU) published the seminal standard 

Y.2060 [82] that provides a technical overview of IoT systems (figure 3.30), and a reference model 

composed of four main layers: the application layer, the support layer, the network layer and the device 

layer (see figure 3.31). 

 

 
 

Figure 3.30. Technical overview of IoT systems according to the ITU standard Y.2060 [82]. A device can be understood as a sensor system, 

and a gateway as an edge device. A physical thing can be represented in the information world through one or more virtual things (mapping), 
but disassociations may be possible. Although only physical interactions (communication between devices) are depicted here, information 

interactions (exchanges between virtual things) are possible. 

 

 

 

Figure 3.31. IoT reference model according to the ITU standard Y.2060 [82]. The complementary management and security layers are 

related to common capabilities for resource management and security of sensor systems (i.e. software update or authentication). 
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As observed in figure 3.31, the Service Support / Application Support layer is categorized into generic 

capabilities that every IoT system must meet and specific capabilities oriented to particular applications. 

On the other hand, while the network layer differentiates the needed network capabilities to connect 

things (for example, access control or routing) from the basic data transport capabilities (connectivity 

and control management information); the device layer makes a distinction between the required 

capabilities of sensor systems (i.e.: Ad-hoc networking and sleeping-, awaking-states) and Internet 

gateways (i.e.: multiple interface support or protocol conversion).  

Future publications use this referential model to define specific requirements in other domains such as 

M2M and smart sustainable buildings. The M2M ITU Focus group (FG M2M) [83] establishes, for 

example, the specific and essential capabilities for sensor systems (i.e.: device identification, naming, 

discovery and registration capabilities) and the support layer (i.e.: diagnostics, fault recovery and device 

group management capabilities) to ensure resilient connectivity (figure 3.32). 

 

 

Figure 3.32. An adapted version of the FG M2M ITU deliverable oriented to the M2M support layer (service). Due to the lack of human 

intervention in the context of M2M, specific capabilities such as discovery and registration in sensor systems and support layer are essential. 

Figure extracted from [84]. 

 

The work done in the M2M focus group is later harmonized with other domains including common 

recommendations for IoT (Y.2066) [85], edge computing (Y.4208)[86] and internet gateways 

(Y.2067)[87]. This study group includes also the ITU-T L.1370 recommendations [88] that establishes 

the needed services (support capacities), data, functional features and technical requirements for 

enabling sustainable smart buildings. The following list presents some of the technical features that 

every of the mandatory sensor systems (energy consumption meters, flowmeter for water consumption, 

fire, flooding carbon oxide detectors, air quality and pollution sensors systems) of a smart building 

should have: 

 An IoT device should include a processor with at least two cores of at least 1 Ghz processing 

speed. 

 An IoT device should include a low-latency and solid-state drive mass memory up to 8 Gb. 

 An IoT device should provide wireless local area network connectivity by at least two protocols 

and by at least one interface (i.e.: 3G, 4G, etc). 

 An IoT device should provide wired local area network connectivity by at least two protocols 

and by at least one interface (i.e.: Ethernet). 
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 An IoT device should provide specific frameworks for third-parties application and service 

deployment (i.e.: Java OSGI framework). 

 

 As observed, all standards presented in this section could facilitate the identification of external 

factors related to the operational context of IoT systems in generic contexts or particular 

domains. In this sense, the IoT referential model presented in the standard Y.2060 [82] could be 

used as a starting point in the planning stage of the NPD process of IoT systems. 

 

 In the detailed design stage, the recommendation for supporting sustainable building [ITU-T 

L.1370] could facilitate the identification of minimal technical specifications in this particular 

context. 

 

 However, the use of these standards are very limited because they are not oriented to the 

environmental design of the IoT systems themselves. For example, they are not effective in the 

conceptual design stage because they do not provide environmental targets in the life cycle 

phases of sensors systems or mutualized infrastructure. 

 

 In the next chapter, one will attempt to (1) benefit from the abstractions they provide (especially 

IoT referential model) and (2) extend these abstractions for the eco-design of IoT systems itself. 

2.2.2. Guidelines 
Beginning of Life (B-o-L) Guidelines are scarce and oriented mainly to the manufacturing of sensor 

systems or sensor components. For example, Zhu, C. et al. [17] propose reducing the size of RFID tags 

to decrease the amount of non-biodegradable materials and Gurova, O. et al. [89] compile a series of 

guidelines found in literature related to raw materials and production process of smart wearables, which 

do not differ much from guidelines found in the sector of electronics. Table 3.11 presents some of the 

guidelines found in these works that could have an influence in early design, within the NPD process of 

IoT systems. 

Author Guidelines 

Zhu, C. et al. [17] 1. Reduce the sizes of RFID tags to decrease the amount of non-degradable material used in manufacturing. 

Gurova, O. et al. [89] 

1. Avoid alloys that are difficult to separate at the end of life of a product [90]. 
2. Avoid dangerous plastics and consider safer, biodegradable alternatives [91]. 
3. Consider new materials for circuits that can be disassembled (i.e.: Use thermoplastic substrates and novel adhesive systems 
for bonding dielectric layers and component attachment [92]) 
4. Use components that are certified as less harmful (Reach and RoHS) [93-94] 
5. Optimize the design to use less energy in production (i.e.: by designing more efficient cooling) [95] 
6. Use existing production platforms that benefits from scale instead of buying production equipment [96] 
7. Consider shifting or replacing parts, if these parts contains rare earth elements (REEs), and use parts made by plentiful raw 
materials [97]. 

 
Table 3.11. Summary of guidelines oriented to reduce the impact of the B-o-L of sensor and sensor systems. 

Guidelines related to the use phase of IoT systems are more focused on reducing the energy consumption 

of sensor systems. For example, Zhu, C. et al. [17] presents a series of guidelines for the low energy 

consumption of RFID tags, wireless sensor networks, cloud computing, M2M, data centers and generic 

ICT. Gurova, O. et al. [89] continue its synthesis of guidelines now related to the use of low energy 

consumption for smart wearables. Nivethitha, V. and Aghila, G. [98] propose guidelines for efficient 

and resilient edge computing design. Arshad, R. et al. [99] and Bonvoisin, J. et al. [10] for their parts, 

argue for more efforts in finding the just-enough quantity and quality of data with the appropriate 

computing placing. On the other hand, the End of Life (E-o-L) phase is only covered by Gurova, O. et 

al. [89] in the context of smart wearables. Some of these guidelines with potential influence on the 

technical and eco-design of IoT systems are presented in table 3.12. 
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Zhu, C. et al. [17] 

1. Develop energy-efficient algorithms and protocols for optimizing tag estimation, adjusting transmission power level 
dynamically, avoiding tag collision, overhearing, etc. 
2. Make sensor systems only work when necessary (and switching to sleep mode as soon as possible). 
3. Analyze energy depletion patterns and use energy harvesting mechanism. 
4. Use radio optimization techniques (i.e.: transmission power control, directional antennas, etc.). 
5. Use data reduction mechanisms (i.e.: data aggregation, adaptive sampling, etc.). 
6. Use energy-efficient routing techniques (i.e.: cluster techniques multipath routing, node mobility). 
7. Use Power-saving virtual machine techniques (i.e.: consolidation, migration, placement, etc.). 
8. Use energy-efficient allocation algorithms (i.e.: auction-based resource allocation, gossip-based resource allocation. 
9. Adjust the transmission power (to the minimal necessary level). 
10. Design efficient communication protocols (i.e.: routing protocols). 
11. Use renewable or green source of energy for data centers and efficient dynamic power-management technologies 
(i.e.: Turboboost, vSphere) and energy-efficient hardware (i.e.: Dynamic Voltage and Frequency Scaling (DVFS)) 
12. Send only data that are needed (i.e.: predictive data delivery). 
13. Minimize length of data and wireless path (routing schemes and cooperative relaying). 
14. Use advance communication techniques (i.e.: multiple-input multiple-output). 

Gurova, O. et al. [89] 

1. Consider registering with ecolabels (i.e.: Energy star [100] EPEAT [101]) 
2. Take into account not only local but also remote energy use of backbone infrastructure and cloud servers [6]. 
3. During product design, decisions of whether computation or storage happening on-device or remotely have to be 
considered concerning energy efficiency. 

Nivethitha, V. and 
Aghila, G. [98] 

1. Architecture should be adaptive and elastic (with respect to growth of users, data traffic or data size) without 
compromising performance [102]. 
2. Treat servers as disposable resources [102]. 
3. The computational element should be made available near to the users/data source. 

Arshad, R. et al. [99] 

1. Reduce the network size (by efficient placement of sensor systems or ingenious routing mechanisms). 
2. Use selective sensing (collect only data that is required in a particular situation). 
3. Find intelligent trade-offs (according to particular scenarios) between processing or transmit data to save energy like 
compressive sensing [103] and data fusion. 

Bonvoisin, J. et al [10]  

1. Interpret data as soon as possible in the transmission chain in order to send light and high-level information instead of 
heavy low-level data. 
2. Find the device coverage that minimize the number of devices deployed. 
3. Reduce the power consumption in the idle state to a minimum. 

E
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Gurova, O. et al. [89] 
1. Use Design for Disassembly (DfD) approach, enhancing recyclability of ICT [104]. 
2. Apply techniques that will allow separation of materials [105]. 

Table 3.12. Summary of guidelines oriented to reduce the impact of the use and E-o-L life cycle phases of sensor systems. 

 

 As observed, this section present some energy-efficiency guidelines that could be used as a 

starting point to establish measurable targets in the conceptual planning stage. For example, the 

guidelines “minimize length of data and wireless path” proposed by Zhu, C. et al. [17] forces 

designer to establish concrete sampling rates or minimal QoS thresholds depending of the IoT 

application and its operational context. 

 

 However, the usefulness of all the guidelines presented in this section is limited concerning 

further decisions in the detailed design stage of the product development process. For example, 

they fall short on the selection of specific technologies and technical specifications. 

 

 Moreover, many guidelines have already been proposed in the literature. Since applying them 

all in an IoT system would be difficult or impractical, a method to evaluate their significance, 

according to the context and the requirements of applications, is needed. 
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 By taking into account all these aspects, and by considering the findings of section 1.2, in the 

next chapter one will study more carefully some guidelines concerning data and information 

flows for the construction of a design methodology. A special attention will be given also to 

guidelines concerning modifications on the physical attributes of devices and electronics 

components too, as the relevance of these aspects was clearly highlighted in previous sections. 

 

 On the other hand, the proposed methodology in the following chapter will aim, among other 

aspects, to evaluate the appropriateness and efficiency of existing guidelines. 

2.2.3. Design and eco design methodologies for IoT systems 
In the context of typical design of IoT systems, Chakravarthi, V. S. [107] adapts the three-layer classical 

architecture for IoT systems into a basic framework (Figure 3.33) and uses it to describe specific aspects 

of IoT devices, which could be aligned with certain stages of the product development process of IoT 

systems. 

 

 

 

 

Figure 3.33. An adaptation of the classical architecture for IoT systems 

proposed by Chakravarthi, V. S. [107]. According to this author, the cloud 

element in the application layer is used not only for data processing tasks but 
also for controlling, configuring and triggering events at devices that belong to 
the network layer. 

 

 

 

 

With this basic framework (which recall to some extend to the IoT referential model found in the ITU-

T standard Y.2060 [82]), the author highlights the relevance of well defining —in her words, the 

“problem definition” of the IoT application. This could be understood as the establishment of essential 

requirements identified by specific questions. For example, in the context of an IoT application oriented 

to monitoring human-body temperature, relevant requirements could arise by answering the questions 

“what is the accuracy needed?” or “what should be the maximum form factor of the device”. As 

observed, this process could be aligned with the planning stage of the NPD process of IoT systems.  

This author shows later that answer of these questions could lead to spot concrete technologies with 

particular specifications. For example, by considering a high accuracy level for human-body temperature 

monitoring, IR-based temperature sensors could be chosen, and specific quality ranges (i.e.: 0,3-0,6 °C) 

could be stablished. Based on this, specific electronic components could be selected preliminary and 

evaluated according to their features and capacities. With respect to the NPD process, these aspects 

could be related to the conceptual and detailed stages.  

Finally, the author suggests that a proof-of-concept development could be carried out by considering (1) 

A Software development Environment (guided by 4 basic sequential elements depicted in figure 3.34), 

and some considerations regarding the PCB (The programmability limits of the processor or processors, 

the Input / Output interfaces of electronic components and standard bus interfaces). As observed, these 

aspects could be aligned with the testing and prototyping stage of the NPD process of IoT systems. 
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Figure 3.34. Layered-diagram for the embed software system development proposed by 

Chakravarthi, V. S. [107]. The hardware abstraction layer (HAL) provides basic software functions 

called boot loader. The device drivers may work through HAL functions or directly. The operating 
system allows sequential or virtual concurrency execution of functional tasks. Figure extracted 
from [107]. 

 
 

Heinis, T. et al. [108] for their part, propose a methodology composed of three parts: the analysis of the 

physical object (the object that will benefit from the IoT application), the analysis of data processing 

functions, and the analysis of the added value resulting from data processing (see figure 3.35). 

 

Figure 3.35. Proposed methodology based on the analysis of a physical object, data processing functionalities and added value. Figure 
extracted from [108]. 

Starting from the definition of the physical object, this methodology consists firstly on defining the user 

and the benefits that he or she will receive from an IoT application (the added value of the IoT system). 

For example, Table 3.13 shows this analysis in the context a case study (a mechatronic device), 

expressing the potential added value of the IoT application by user stories or Voice of Customer (VoC) 

instances. 

 Definitions 

Physical 
objects 

Object: Jarvis Mechatronic Kit (JMK) 
Purpose: Project-based engineering education 
Definition: A mechatronic object is a physical product with embedded sensors, memory and data processing capabilities. It lacks of identification and 
communication capabilities. 
Potential IoT application: Integrate connectivity and smartness to the JMK prototype. 

Potential  
added 
Value  

"As a student, I want to reflect on my prototyping activities with the JMK and compare it to others in order to accelerate my learning progress" 
"As an educator and researcher, I Want to compare the performance of students with their mechatronics prototyping activities to check for correlations" 
"As the developer of JMK, I want to see how the product is used and when it fails in order to improve it" 

Table 3.13. Analysis of the object and the potential added value of integrating an IoT system to it. As observed, the added value depends on 
the type of user. Adapted from [108]. 

From this analysis, generic but relevant aspects of the design of data processing functionalities are 

considered (like those shown in table 3.14), and then essential and specific technical aspects for the 

development of a prototype are identified (see table 3.15).  

 Relevant aspects Critical questions 

Added 
value 

User orientation, value meaning 
Data security, privacy 

Who is the user addressed with the IoT application? How does he benefit from it? 
How to avoid drawbacks on added value due to unsecure data or privacy? 

Data 
processing 

functionalities  

Integral VS add-on solution 
Data sensing 
Data transmission 
Data evaluation 

How do the data processing functionalities influence the physical object? 
What kind of data needs to be sensed? What is the approach to get the data? 
How is the data communicated? How is an internet connection established? 
Where is the data collected? How is it evaluated to derive meaning? 

Table 3.14. Relevant aspects and critical questions for the main subtasks of aggregating connectivity and smartness to the JMK object. 
Adapted from [108]. 
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Thing 
features 

Variable 
Data to be collected  

(Measured signal - wiretapped) 
Signal manipulation Signal reading 

DC-Motor 
Direction 
Speed 
Torque 

Digital state (High / Low) 
PWM (duty cycle, 5000Hz) 
Analogue voltage (525mV per amp) 

None 
— 2nd order RC filter — ADC — 
— ADC — 

GPIO using polling 
SPI 
SPI 

Servo motor Position PWM (duty cycle, 50Hz) — 2nd order RC filter — ADC — SPI 

Stepper 
motor 

Direction 
steps 

Digital state (High / Low) 
Digital impulses (Low) 

None 
None 

GPIO using polling 
GPIO using interrupts (edge detection) 

Solenoids Activation state Digital state (High / Low) None GPIO using polling 

Thing Smart thing (IoT system integration) 

 
Table 3.15. Appropriated techniques and technologies from integrating connectivity and smartness to a JMK object oriented to educators. 

Adapted from [108]. 

Notice that answers to questions in table 3.14 depends on the added value of a specific type of user, 

which later shapes the specificities of table 3.15. For example, to follow the activities of the engineering 

students (added value oriented to educators and researchers), the IoT system must sense the activities of 

the JMK’s actuators (DC, servo, stepper motors and solenoids). From this, the most appropriate 

techniques and technologies to collect specific data (i.e.: direction, speed and torque for the DC motor) 

are identified. Interestingly, after applying this methodology, its authors found that design decisions are 

interdependent (concretely, they found that early decisions in the design of data processing subtasks 

limits future decisions due to choices compatibility).  

In the context of eco-design of IoT systems, the limited literature of sensors, sensor systems and IoT 

systems can be classified into two approaches: an approach oriented to the potential impact reduction 

by data flow analysis and resources management; and an approach oriented to the evaluation and 

planned reduction of impacts from hardware redesign. The aforementioned work of Bonvoisin, J. et al. 

[61] falls into the first category. With the conviction that a WSN composed of numerous sensor systems 

manifest complex behavior depending on specific functions and particular contexts, they proposed 

defining a WSN as a dynamic system, where the life cycle of a device must be clearly differentiated 

from the life cycle of the node that it represents (see figure 3.36). 

   

Figure 3.36. Representation of a dynamic WSN system according to Bonvoisin, J. et al [61]. Notice that the installation of a new device and 
the removal of the replaced one match in a common activity, represented by the roadwork pictogram. 

In figure 3.36, the device life cycle is defined by four main life cycle phases (extraction of raw materials, 

manufacturing, use and end of life). The node life cycle is defined by the deployment stage (the device 

is installed), the operation and maintenance stage (the device is used and replaced n times until the end 

of life of the entire WSN), and the dismantling stage. Notice that the extraction of raw materials and 

manufacturing life cycle phases of the first device coincides with the extraction of raw materials and 

manufacturing stage of the first node that it represents in the system; and that the end of life phase of 

the last used device coincides with the dismantling stage of the last node, where the whole network is 

dismantled.  In this way, the estimated impact of the WSN is established with the help of equation (3.5). 
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𝐼 =  ∑ (𝐷𝐸𝑃𝑛𝑛 𝜖 𝛺 + (𝑁𝑛 ×  𝑅𝐸𝑃𝑛 +  𝐶𝑂𝑁𝑛 +  𝑀𝐴𝐼𝑛) +  𝐷𝐼𝑆𝑛)  (3.5) 

Where: 

𝐼 = 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

𝛺 = 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

𝐷𝐸𝑃𝑛 = 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑝ℎ𝑎𝑠𝑒 

𝑁𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡ℎ𝑎𝑡 𝑎 𝑑𝑒𝑣𝑖𝑐𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑎 𝑛𝑜𝑑𝑒 𝑖𝑠 𝑟𝑒𝑚𝑝𝑙𝑎𝑐𝑒𝑑 

𝑅𝐸𝑃𝑛 = 𝑖𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑑𝑒𝑣𝑖𝑐𝑒 (𝑟𝑎𝑤 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠, 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔, 𝑒𝑛𝑑 𝑜𝑓 𝑙𝑖𝑓𝑒) 

𝐶𝑂𝑁𝑛 = 𝐺𝑟𝑖𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑎𝑙𝑙 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 𝑖𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝ℎ𝑎𝑠𝑒 (𝑖𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑏𝑎𝑠𝑒𝑑 𝑑𝑒𝑣𝑖𝑐𝑒𝑠, 𝑡ℎ𝑖𝑠 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0)   

𝑀𝐴𝐼𝑛 = 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑎𝑙𝑙 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑛 

𝐷𝐼𝑆𝑛 = 𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑖𝑠𝑚𝑎𝑛𝑡𝑒𝑙𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒 

Notice that the power consumption of a device in the operational phase combines two factors: power 

(which can be determined deterministically by the designers) and lifetime (which, in the case of a 

battery-based device, is determined by its energy consumption linked to its activities). In this way, the 

following impact estimation methodology based on four components is established (figure 3.37). 

 

 

 

Figure 3.37. Impact estimation 

methodology proposed by Bonvoisin, 
J. et al. [61] for estimating the impacts 

of WSNs. The implementation of this 

methodology would depend on the 
network being examined. 

 

 

 

 

In figure 3.37, the definition of the context refers to defining the neighborhood of each node, which 

would consist of considering the geographic location and the communication range between nodes. The 

second step tries to define the activities of a node by considering the reactions of the system as events 

that generate communication (for example, a request from the application server for a measurement at 

a particular node). The third step “Define device consumptions” consist of determining the power 

required for all activities of a device and the time that these activities takes, as explained above. Finally, 

the step four consists of calculating the total impact by equation (3.5). 

A subsequent methodology presented by the same authors [10] may fall into the group of data-driven 

methodologies too. This methodology proposes estimating the environmental impact and facilitating the 

eco-design of WSNs at three levels of analysis: equipment, infrastructure and information (Figure 3.38). 
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Figure 3.38. Methodology for the 

optimization of services through WSNs 
proposed by Bonvoisin, J. et al. [10]. M 

represents the total impact of the WSN 

equipment and infrastructure; Ω represents the 
impacts of a regular version of a service and 

Ω’ represents the reduced impact of an WSN-

based version of the service. This 
methodology was applied to the optimization 
of urban waste collection. 

 

 

 

In figure 3.38, the goal definition step establishes the impact categories to be taken into account with 

their respective weights (equation 3.6).  

𝑊 =  ∑ 𝑊𝑖
𝑖=0
𝑛 ∗ (𝜔𝑖 , 𝜔′

𝑖 +  𝑚𝑖)   (3.6) 

Where: 

𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑎𝑐𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 𝑡𝑎𝑘𝑒𝑛 𝑖𝑛𝑡𝑜 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 

𝑊𝑖 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑛 𝑖𝑚𝑝𝑎𝑐𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 

𝜔𝑖 , 𝜔′𝑖  𝑎𝑛𝑑 𝑚𝑖  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑚𝑝𝑎𝑐𝑡𝑠 𝑜𝑓 𝛺, 𝛺′ 𝑎𝑛𝑑 𝑀 𝑜𝑛 𝑎𝑛 𝑖𝑚𝑝𝑎𝑐𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 

Depending on the goal of the designer —avoiding impact transfers (W = 0) or reducing impacts of a 

specific category (W < 0), the condition that would end the iterative process of eco-design is established. 

The equipment assessment step corresponds to the evaluation of the life cycle of a device and the 

infrastructure assessment step corresponds to the evaluation of the life cycle of all the nodes in the 

network over a period of time, as established in the former methodology [61], previously described. On 

the other hand, the application domain assessment step corresponds to the evaluation of impacts of a 

traditional service (Ω), and the estimation of using the WSN-based optimized-version of this service 

(Ω’). For example, in the case study presented by the authors, the impact of the traditional garbage 

collection system and the benefits of the implementation of the WSN are determined on the basis of the 

reduced distance in kilometers and fuel savings.  

The most interesting contribution of this methodology is the information eco-design step, which refers 

to reducing the reference flow (the use of infrastructure and equipment) through a prior analysis of the 

data flow in the network (i.e.; volume, geographic location, criticality and temporality); and the 

appropriate information that would generate the minimum computational load on the local and 

mutualized infrastructure. When they applied this methodology, this step was carried out by applying 

the well-known rationale information science framework (figure 3.39) but other similar frameworks 

could be used. 
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Figure 3.39. Adapted version of the rationale information science framework used in [10]. 

Interestingly, although the case study shows relevant impacts attributed to electronic components of 

sensor systems and repeaters (see figure 3.16), the authors claim that further impact reduction on this 

aspect is impossible, convinced by the idea that energy consumption of these devices is already be quite 

optimized.  

With a more technical approach oriented exclusively to reducing energy consumption, Huang, J. et al. 

[109] proposes a scheme for the massive deployment of sensors systems and edge devices in IoT 

systems. Their methodology is composed of a hierarchical scheme (figure 3.40), and a mixed algorithm 

oriented to reduce the energy consumption of sensor systems and the number of Edges devices (Relay 

nodes) in an IoT system. 

 

Figure 3.40. Hierarchical IoT systems framework proposed by Huang, J. et al. [109]. In the relay and convergence layers, two or more 

devices can communicate with each other. The base stations are oriented to internet connection and the object/thing components represent 
objects equipped with sensor systems. 

The hierarchical scheme in figure 3.40 recalls in some extend the technical overview of  IoT systems 

presented in the standard Y.2060 [82] and the layered architecture proposed by Chakravarthi, V. S. 

[107], with the difference that the sensor systems in the sensing layer cannot communicate with each 

other (in order to save power and balance the computational load). 

The algorithm, on the other hand, seeks to find the minimal distance between repeaters and sensor 

systems. It establishes a connection graph between repeaters and base stations in a first stage; and 

calculate the minimal energy consumption by applying a Steiner tree algorithm in a second stage. The 

authors apply this methodology to a WSN deployment simulation in an area of 100 x 100 m2 (figure 

3.41a) and conclude that (1) the minimum number of repeaters (RNs) increase with the size of the 

network, (2) the number of repeaters reduces with larger communication radii (R), and (3) the minimum 

number of repeaters is affected by the density of the global network (figure 3.41b). 
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(a) (b) 

Figure 3.41. (a) Simulated WSN topology for numerical experiments (low network density). (b) Number of repeaters required for different 
network densities (50, 150, 300, 600 and 1000 sensor nodes with different communication radii (R). Figure extracted from [109]. 

To demonstrate the efficiency of the proposed hierarchical scheme, the authors compare the energy 

consumption of the optimized hierarchical topology with a non-hierarchical (hybrid) topology, where 

neighboring sensor systems can communicate with each other. The results are showed in figures 3.42 in 

terms of lifetime of the networks. 

 

Figure 3.42. Network lifetime comparison for the hierarchical topology and the hybrid topology. In a hybrid schema, the sensor systems near 
to relay nodes are overloaded and consumes more energy that bordering sensor systems. Figure extracted from [109]. 

Regarding the methodologies oriented to the evaluation and planned reduction of impacts from hardware 

redesign, Pirson, T. et al. [74] proposes a parametric framework based on hardware profiles, Hardware 

Specification Levels (HSLs) and functional blocks to estimate the cradle-to-gate impact of IoT devices. 

In this framework (figure 3.43), a functional block brings together components that perform a specific 

function (which would recall directly the typical architecture of sensor systems seen in chapter 1, and 

indirectly the operational stages of sensor systems seen in chapter 2). Also, a HSL would provide a 

hardware-resource profile oriented to a specific functional block (Table 3.16 shows some examples of 

these resources categorized by specific HSLs). Impact estimation is applied on these hardware-resources 

to obtain hardware impact profiles characterized by different HSLs related to specific functional blocks 

(figure 3.44). 

 

Figure 3.43. Representation of an IoT device in terms of its functional blocks and linked HSLs. Figure extracted from [74]. 
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  Hardware Specification Levels (HSLs) 

Functional block Definition HSL 0 HSL 1 HSL 2 HSL - 3 

Connectivity 
Components which  
are involved in data 
transmission 

Printed antenna  
(PCB) 

Connectivity IC (c)  
(5 / 10 / 20 mm2) 

Connectivity IC (d) 
(20 / 30 / 45 mm2) 

Connectivity IC (d) 
(45 / 50 / 60 mm2) 

Memory 
Components that  
storage data 

Flash RAM 
(Embedded in  
processing) 

DRAM (g) 
(32 / 128 / 512 MB) 

DRAM (g) 
(0.5 / 1 / 2 GB) 

DRAM (g) 
(0.5 / 1 / 2 GB) 
(31.5 / 61.5 / 123.1 mm2) 

Power supply 
Energy source and  
energy management  

Miniature coil 
(2 / 3 / 4) 

Coil cell Li-Po 
Li-on battery (i) 
(10 / 50 / 100 g) 

Radial capacitor 
(0 / 1 / 2) 

Processing 
Components involve  
in data processing and 
control tasks 

MCU (c) 
(5 / 10 / 17 mm2) 

Auxiliary MCU (c) 
(5 / 10 / 17 mm2) 

Application processor 
(e) 
(50 / 60 / 75 mm2) 

Application processor (e) 
(75 / 100 / 125 mm2) 

Sensing 

Components involving  
in measuring physical 
quantities from 
environment 

No sensor 
microphone 
(0.05 / 0.1 / 0.2g) 

Multiple sensors (a) 
(0 / 3 / 5 mm2) 

Single CMOS imager (b) 
(8 / 30 / 58 mm2) 

Table 3.16. Some examples of hardware resources (low / typical / upper) classified by HSLs and some functional blocks. (a: CMOS 0.25µm, 
b: CMOS 0.13µm, c: CMOS 90nm, d: CMOS 22nm, e: CMOS 14nm, g: DRAM 57nm, i: Data from [74]). LCA is applied for each resource 

of each HSL. Adapted from [74]). 

 

(a)  (b) 

Figure 3.44. (a) An example of a hardware impact profile for a complex IoT device type (Smart watch). (b) The resulting impact obtained by 
the proposed framework for the hardware impact profile seen in (a). Figures adapted from [74]. 

In figure 3.44b, the total impact is given by the sum of the carbon footprint contributions for a given 

hardware profile. In this way, different combinations of HSLs in different functional blocks generate 

unique impacts attributed to specific types of IoT devices. For example, the total impact of a simple 

device with simple functionalities such as an occupancy sensor is relatively low (1,4 kg CO2-eq) in 

relation to a complex device with multiple functionalities (i.e.: a connected home assistant, that 

generates a maximum impact of 23,4 Kg CO2-eq). 

On the other hand, Middendorf, A. et al. [110] report that LCA studies are normally made at the review 

stage (post-design stage) of the product development process and highlight the absence of design tools 

aimed at integrating environmental analysis to early stages. With this in mind, they propose a 

methodology consisting of a mix of indicators (grouped in a tool called EE-toolbox [111]) deployed in 

three parts for the eco-design of mechatronics (Table 3.17). 

 Stage Tool / Methodology Indicator Description 

P
ar

t I
 

Stage 1a: Based on  
product Material 
content 

EE-Toolbox [111] 

Toxic Potential Indicator (TPI) 
Recycling Potential Indicator (RPI) 
Energy Intensity (Erm) 

Toxicity based on product content 
Sustainability of product contents for specific recycling paths 
Energy intensity based on raw materials  

Stage 1b: Base on 
product information 

Energy for the product Usage (EPU)   

P
ar

t I
I 

Stage 2: Based on 
Specific Process Data 

Process Toxicity Screening (ProTox) 
Energy for Production steps (EP) 

Toxicity indicator for process oriented material flows and 
Related Energy Production steps 

P
ar

t I
II 

Stage 3: With further 
 LCI data 

LCA     

Table 3.17. Description of the methodology consisting of a mix of indicators proposed by Middendorf, A. et al. [110]. 
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The first part consists of evaluating a mechatronic device based on the material content and its energy 

consumption in the use phase. The second part evaluates the device on the basis of specific data of 

manufacturing processes and toxicity. The third part would be oriented to a more detailed analysis 

whenever LCI data is available (suggested by the authors, but not included in the methodology). For 

illustration, the part I of this methodology is applied to the environmental evaluation of a mechatronic 

robot composed of image sensors, a main and a secondary PCBs, a data processing unit, an energy 

accumulator, a motor-gearbox-combination, drive  chains and casing (figure 3.45). 

 
 

Figure 3.45. Simple description of the mechatronic device analyzed in Middendorf, A. et al. [110] and its ecological impact in terms of its 

raw materials and their respective TPI indicators (scaled from 1 to 100). 

 

To illustrate the integration of the environmental design (here, on the basis of TPI indicators) to the NPD 

process, the authors consider replacing the rigid epoxy FR4 material of the main PCB (with an impact 

of 1.1 TPI / mg) by polyamide (with a TPI impact equal to Zero). This strategy would further reduce the 

overall weight of the device but would also increase its price by a factor of 5x. 

 

 In the context of regular design of IoT systems, Chakravarthi, V. S. [107] makes more explicit 

the basic architecture and the product development process stages of IoT systems by concrete 

examples and Heinis, T. et al. [108] realize that early decisions in the conceptual design stage 

(i.e.: selection of specific technologies) influence further steps in the detailed design stage. 

 

 Unfortunately, although one could say that both works make a comprehensible review of 

relevant aspects within the NPD process, it is evident that both methodologies are limited to the 

technical design of IoT systems. 

 

 In the context of eco-design of IoT systems, Bonvoisin, J. et al. [61] contribute significantly to 

the eco-design of WSNs by making explicit the distinction between sensor systems and the 

nodes they represent; and their subsequent work [10] is capital because it recognize the 

fundamental, driving role of data and information for eco-design of WSNs. 

 

 However, although the former considers the impact assessment of manufacturing phases of 

sensor systems and nodes and the latter includes an equipment assessment step, both works do 

not gives more details on how one can redesign sensor devices, when further iterations of the 

proposed methodologies occur. In addition, the application of these methodologies within the 

product development process is not clear and they would not include mutualized infrastructure. 

 

 On the other hand, although Huang, J. et al. [109], Pirson, T. et al. [74] and Middendorf, A. et 

al. [110] propose promising methodologies whose application into the NPD process of IoT 

systems could vary according to designers’ needs, they fall short because they are focused on 

single life cycle phases of IoT systems.  
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 Furthermore, any methodology presented in this section (with the exception of the methodology 

proposed by Bonvoisin, J. et al. [10]) considers the impact estimation of full IoT systems (local 

and mutualized infrastructure). 

 

 In the next chapter, the previous concepts of data-information design will be extended in a novel 

methodology for sustainable IoT systems, which will include a detailed life cycle eco-design 

procedure for devices, electronic components and energy consumption. This methodology will 

also benefit from some aspects of the reference frameworks seen so far and will be integrated 

explicitly into the product development process of full IoT systems. 

2.3.Summary of design and eco-design instruments for IoT systems 
As observed in this section, Bonvoisin, J. et al. [10] recalls that the eco-design of WSNs should not be 

limited to physical devices, but extended to data and information design. More precisely, they are in 

favour of starting the eco-design process by reflecting on the essential information that an WSN needs; 

which would later reduce the energy consumption and the number of end- and edge-devices. This would 

be possible by questioning the information required by the application and collecting only the essential 

data for it. They illustrates this idea clearly when considering a system oriented to monitoring a 

phenomenon; in this context, it is not necessary to send data for normal behavior, but only for anomalies. 

The authors of certain guidelines indirectly share this perspective (i.e.: the guideline “Use selective 

sensing (collect only data that is required in a particular situation)” proposed by Arshad, R. et al. [99]). 

On the other hand, the contributions of certain authors are complementary. For example, the guidelines 

“Find the device coverage which minimize the number of devices deployed” proposed by Bonvoisin, J. 

et al. [10], “Reduce the network size by efficient placement of sensor systems or ingenious routing 

mechanisms” proposed by Arshad, R. et al. [99]; and the methodology presented by Huang, J. et al. 

[109] complement each other. In addition to this, the conclusions generated by the latter resemble the 

conclusions presented by Bonvoisin, J. et al. [61] regarding the premature battery depletion of sensor 

systems due to overhearing and intense data traffic.  

On the other hand, the energy-based methodology proposed by Huang, J. et al. [109] could be completed 

with the lifecycle-based methodology presented by Bonvoisin, J. et al. [61] (where not only the entire 

life cycle of a device is taken into account, but also the life cycle of the node which it represents). 

However, there are also certain postures that could distance these last two works. For example, while 

Huang, J. et al. [109] highlights the importance of increasing the number of repeaters and their 

communication range to extend the lifetime of IoT systems, Bonvoisin, J. et al. [61] advocates for 

reducing the number of all devices through the analysis of data flow and information; and the search of 

appropriate communication ranges between devices. 

Another aspect that stand out in literature is the lack of pragmatism of certain standards and guidelines. 

For example, the guideline “The computational element should be made available near to the user / data 

source” proposed by Nivethitha, V. and Aghila, G. [98] and the recommendation “An IoT devices should 

include a processor with at least two cores of 1Ghz processing speed” included in the ITU-T L.1370 

recommendation would not simply apply to energy-constrained sensor systems (i.e.: self-powered 

sensors systems) or inaccessible devices (devices whose changing batteries is difficult). 

On the other hand, certain non-Life-cycle methodologies such as those proposed by Heinis, T. et al. 

[108], Huang, J. et al. [109] and Middendorf, A. et al. [110] must be used judiciously in order to avoid 

impact transfers. Finally, it is also envisaged that authors of certain LCA-based methodologies extend 

their study boundaries beyond the life cycle of local devices in further works. Beside of all this, it is also 

important to highlight that all authors cited in this section generally report the lack of environmental 

data regarding IoT devices, IoT systems and electronics in general. 
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Chapter 4: Proposition of the methodology 

Overview 
From a qualitative research reveling the current workflow and needs of design teams, this chapter present two 

frameworks oriented to solve the research questions 1 and 2 stated in chapter 1. Both frameworks address the 

issues found so far in literature and are built by a reasonable and structured analysis based on electronic 

components to avoid impacts transfers, and ensure proper impact estimation and eco-design of full IoT systems. 

The next sections present this analysis, which reveals the significance of specific types of attributes, functions and 

capacities of electronic components for the eco design of local equipment and the practical impact estimation of 

mutualized infrastructure. The proposed frameworks then recall the essential elements to be considered for 

integrating ecological aspects into the planning, conceptual / detailed design and prototyping stages of the NPD 

process of IoT systems, facilitates the construction or evaluation of sharp guidelines, and compose a methodology 

covering the essential needs and expectations of designers and project leaders. At the end, a suggested 

implementation for both frameworks is presented, and the full methodology is positioned with respect to other 

contributions.  

1. Qualitative research 
To guarantee the adoption of the new eco-design methodology that will be proposed in this thesis and 

its proper integration into the NPD process, a qualitative research was carried out in two parts, with the 

participation of project leaders and IoT designers of the System Department (DSYS) of CEA-Leti. The 

first part aims to understand their usual design workflow in five steps, and the second part investigates 

their needs, expectations and attempts (if any) to integrate environmental aspects into real projects. 

Tables 4.1 and 4.2 summarize the relevant findings of these two parts respectively (for a more detailed 

description of the methodology used for this qualitative investigation, as well as the research instruments 

used, see Annex 16). 
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  How can you design a rapid IoT prototype ready for demonstration in 5 steps? 

IoT  
application 

Participant Step 1 Step 2 Step 3 Step 4 Step 5 

Medical  
monitoring 

Participant 1 
(IoT designer) 

Define the architecture of the complete  
system 
 
Define the means of information tranfer 
      Multisensor device 
      Data recovery relay 
      Data storage element 
      Information interface 

Design the multisensor device 
 
Sensor test 

Building up the complete information 
chain 

Integration of the multisensor  
device to the information chain 

Preparation of a demonstration 

Sport  
monitoring 

Participant 2 
(IoT designer) 

Design a sensor system (sensor, 
memory, battery or EHS and wireless  
interface) 

Embeed the sensor system into the 
object (skateboard) 

Collecting statistics of data sport 
Build up a machine learning  
algorithm 

Recyclability evaluation of the  
sensor system 

Participant 3 
(Project leader) 

Identify technical specifications together  
with the client 

State of art of the available technology 
in the context of sport monitoring 

Technology comparison in the context  
of the specifications 

Develop a hardware prototype (TRL4 
level)and implement the software in  
the MCU 

Laboratory tests 
On field tests 

Participant 4 
(IoT designer) 

Interviews with the client and  
end-users to find the right concept 

Identify the functional and technical  
requirements in a priority way  

Select the electronic components of a  
prototype that cover these requirements 
 
Design the architecture 
 
Define the data management strategy 
 
Estimate energy consumption and, if 
necesary redesign 

Build a hardware prototype 
Test the prototype and obtain the  
end-user feedback 

Participant 5 
(IoT designer) 

Brainstorming of crucial variables  
of the sport activity and client validation 

Define the suitable sensor components  
considering additional aspects such as  
Robustness, minimal integration and  
energy consumption 

Define energy supply, data flow and  
processing, computing placing (edge or 
cloud) and user interface 

Design and build a prototype 
 
Develop a database and obtain  
data from atlets 

Redesign if necessary 
 
considering extending more 
services 

 

Table 4.1. Adapted results of the first part of the qualitative research. Some answers were shorted and translated from French to English. 



96 

 

In Table 4.1, it can be seen that both, project leaders and IoT designers generally begin the design process 

of IoT devices with a functional analysis based on customer requirements. Also, there is a tacit attention 

to the IoT architecture (local and mutualized infrastructure) and to the data flow within it, but after the 

conceptual design (usually in a third or fourth step, after the selection of electronic components). On the 

other hand, although the questionnaires of this part did not address the eco design topic, only one 

participant (participant 2) considered that an analysis on recyclability should be carried out in the final 

design stage (step 5). This would confirm the tendency to apply eco-design procedures late in the product 

development process, as it is reported in the literature.  

Participant 
a. What is your knowledge 

 about eco-design? 

b. Did you propose 
 eco-design initiatives  

in your projects?  

c. What do you expect from an eco-design tool and what 
 would be the main barriers for its implementation? 

Participant 1 
(Lead project) 

Little 
Little: only research on EoL  
treatment. 

A tool that reduces the use of rare materials 
A tool that takes into account recycling (disassembly) 
A tool that takes into account reparability (replacement of pieces/components) 
A tool that takes into account supply chains of materials 

Participant 2 
(Lead project) 

Poor knowledge: We started to integrate  
knowledge on eco-design for electronic  
system design. 

Non A toot oriented to environmental impact assessment and eco-design 

Participant 3 
(Lead project) 

Life cycle Analysis and eco-design are  
a step for reducing environmental impact  
of all kind of products (textile, IoT, etc.).  

Yes, in one project proposal.  
 
Main barriers: funding. 

General guidelines. 
 
Define clearly wording: LCA, eco-design, circular economy and associate  
methodology. 

Participant 4 
(IoT designer) 

None Non 
knowing the country of origin of products/components/materials or elements  
and their associated impacts 

Participant 5 
(IoT designer) 

Reduce the power consumption, the  
number of components, the size of  
the PCB, use components that have  
the lowest environmental footprint. 

Non 

Two tools would be interesting: 
One guide of components selection based on big families and their  
associated impact. 
One tool for calculation of the global impact of the electronic card from  
the bill of materials. 

Participant 6 
(Lead project) 

General notions about eco design. 

We try to minimize global energy 
consumption and limit critical  
material (not specified)  
 
Main barriers lack of time or  
budget. 

simplicity, maybe by using archetype  cases in order to quickly notice 
important points 
 
applying eco design without too much changing current work  procedures 

Participant 7 
(IoT designer) 

Only knowledge about material and  
energy requirements in mechanical  
fabrication processes. 

Non 

Quick to use (i.e.: present clear “design rules” instead of conducting  
exhaustive LCA).  
 
Facilitate “design rules” addressing 80% of the sustainability improvement  
on all designs instead of address 100% of sustainable improvements of  
few designs. 

Participant 8 
(IoT designer) 

Only ideas: reparability, recyclability,  
optimization of the energy consumption 

Sometimes questioning the  
usefulness 
 
Store less data in the long-term.  
 
Main barrier: lack of eco-design  
willingness from clients 

A tool that helps to identify and to repair the failures of components or  
devices 
 
A tool that documents these failures (and their reparation procedures)  
and facilitates the sharing of knowledge  
 
A tool that shows the ecological gains of new designs as added value 

Participant 9 
(IoT designer) 

Basic notions of eco design.  
Knowledge on several guidelines for 
 efficient, reusable, or clean programming 
code.  

Tried to deliver efficient software 
code for  
projects.  
 
Tried to apply good coding 
practices. 

A tool that takes into account bill of materials, energy consumption, CO2  
emissions at use and data flow (especially in the processing case). 
 
In the software case, I expect to have an idea of where the processing  
should take place to mitigate the environmental impact of the system. 

 

Table 4.2. Adapted results of part two of the qualitative research. Some answers were shorted and translated from French to English. 

In table 4.2, it is observed that most of the participants have basic notions of eco-design and some of 

them would even identify some aspects of it in the context of electronic design. For example, participant 

5 already considers specific components (i.e.: PCB) with specific physical characteristics (ie: size) to be 

analyzed, and participant 9 already considers good practices for programming and management of edge 

or cloud resources for data processing. 
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In conclusion, in the typical design flow of IoT systems (results from part one of the qualitative 

research), it was found that 3 of the 5 participants start with an analysis of the customer needs and 

application requirements. Between steps two and three, there is no clear design procedures: while some 

participants consider searching and comparing the most appropriate electronic components for the 

requirements identified in step 1, others consider analyzing other preliminary aspects such as identifying 

functional and technical requirements; or analyzing the flow and processing of data through the IoT 

architecture, together with energy consumption. In step 4, the design and development of a prototype 

are considered mainly, and the development of system software (e.g., development of the MCU's 

embedded software, databases and Artificial Intelligence algorithms) additionally. Step 5 would be 

oriented to obtain the customer feedback by conducting demonstrations and laboratory / field tests.  

Thus, the current workflow of design team could be synthetized according to the NPD stages suggested 

in figure 4.1. 

 

 

Figure 4.1. A representation of the current 

design workflow of IoT systems embedded into 
a suggested NPD process (gray boxes). The 

planning stage would consist of collecting and 

analyzing the customer requirements. Activities 
in the conceptual and detailed stages would range 

from conducting technical and functional 

analysis to selecting and comparing electronic 
components. The prototyping stage would be 

oriented to developing prototypes (mainly) and 
conducting tests (secondary). 

 

 

 

On the other hand, the results of part two of the qualitative research show an awareness of general 

aspects (i.e.: life cycle thinking) and specific strategies of eco-design (reparability, recyclability, 

reduction of energy consumption, of materials, of components, etc.). In this context, some initiatives 

(independent research, Project proposals, etc.) would have been carried out, but with limited 

effectiveness due to limited resources (time and economical investment). Concerning the expectations 

of an eco-design methodology for IoT systems, project leaders and designers would need a methodology 

that: 

 Facilitate design decisions (by using guidelines, classical use cases, type or families of 

components, and design rules). 

 Be simple, fast and non-exhaustive; oriented to the estimation of impacts and eco-design but 

without disturbing the current design workflow. 

 Consider materials, energy and emissions in the production phase and the use phase. 

 Consider the quantities and origins of materials; and facilitate device circularity. 

While the first requirement can be understood as a preliminary step helping the decision making 

processes (a step that could be placed before the selection process of electronic components), the last 

two requirements can be seen as an evaluation step oriented to devices and / or full systems (a step that 

could be placed before the development of prototypes). Figure 4.2 provides a synthesis of this 

preliminary interpretation. 
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Figure 4.2. Placing potential eco-design steps into the 

current design workflow of IoT systems for 
integrating ecological aspects into the NPD process. 

 

 

 

 

 

2. Building a design methodology for sustainable IoT systems 
To solve the research question 1: "How a designer can consider data flow within an IoT system in order 

to harmonize and reduce the potential impacts of promising initiatives?”, from chapter 2, it has been 

established that: 

 A physical phenomenon can be sensed and acknowledged in different ways, and that the 

information produced by an IoT system depends on the transformation of raw data throughout 

its data operational stages. 

 A right-provisioned device would be one whose electronic components cover specific functions 

with sufficient capacities. 

To solve the research question 2: “How a designer can disclose, measure and integrate key 

environmental aspects to the typical design of sensor systems and edge devices (local devices) in a 

practical and efficient way so that to develop sustainable IoT systems?”, from  Chapter 3, it was 

established that an appropriate eco-design methodology of IoT systems should: 

 Include a preliminary analysis of data and its flow, since the way by which it is manipulated to 

become useful information determines the reference flow of full IoT systems. 

 Include a transparent and detailed analysis of electronic components (especially ICs and PCBs), 

including their critical characteristics with high influence on environmental evaluations (such 

as content of certain materials); and on the electronic design of local devices (e.g., 

interdependence of components), under a lifecycle perspective. 

Apart from this, in previous chapters it was also observed that: 

 There are generic standards and frameworks for the design of IoT systems that could be aligned 

with early NPD stages (for typical and environmental applications). However, there are not 

standards nor frameworks for the eco-design of IoT systems themselves.  

 There are some guidelines that, although they also can be aligned with certain stages of the 

NPD, they offer, unfortunately, generic, limited, impractical and sometimes contradictory 

solutions. 

 Capital work reveling the importance of data and information for eco-design of WSN do not 

give further instruments to redesign the electronic composition of sensor devices, nor its 

integration into the NPD is clear, nor its scope include mutualized infrastructures.  

 In general, Current eco-design tool do not consider mutualized infrastructures and certain tool 

would be concentrated only in specific aspects (i.e.; in specific life cycle phases). 

 The impact assessment of mutualized infrastructures is ambiguous and the impact related to the 

energy consumption of local and edge devices is significant. 

 Much of the environmental data necessary for impact assessment is not available or difficult to 

calculate. 
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Bearing in mind these aspects, the following sections develop a structured analysis on certain electronic 

components to study  

 Their critical characteristics that influence the most the environmental impacts (section 2.1) and 

savings (section 2.2) of IoT system. 

 Their potential influence on reference flows (section 2.3). 

 Their capacities to collect meaningful raw data and process substantial information with the 

sufficient resources (section 2.4).  

The goal is gathering the necessary knowledge to build a practical, yet comprehensive eco-design 

methodology that can (1) cover the most essential needs of design teams reported in section 1, (2) be 

applied to the any IoT project from the electronic design of local devices to the appropriated impact 

estimation of mutualized infrastructure, (3) be integrated in the current the NPD process of IoT systems 

and (4) overcome the eventual lack of LCA data. 

However, before starting, it should be clarified that this analysis is developed on the basis of some 

prominent clues found in literature, that orient the attention to some primary features of electronic 

components for eco-design (physical, technical and circular features), with the aim of abstracting some 

relevant aspects from it and guiding the construction of a reasonable and complete design methodology 

for IoT systems. Beside of that, the following sections tries to harmonize the insights from previous 

chapters to the research questions of this thesis (e.g., impacts of materials in electronic components 

affecting the environmental loads and eco design of local equipment; or data rates of wireless IC 

affecting not only the lifetime of sensor systems but also the network traffic and the estimated impact 

of mutualized infrastructure of IoT systems). Finally, although the sections below are developed on the 

basis of literature related to consumer electronics and ICT, they do not intend to cover, for any reason, 

an exhaustive treatise on these fields. 

2.1.Physical features 

The analysis of physical features of electronic components and devices is capital for this work. For 

example, one observed in chapter 3 that disparate impacts can be obtain not only from the use of different 

materials oriented to the same function (i.e.; copper and silver), but also from their quantities. In this 

sense, considering physical features involving these and other potential aspects may facilitate 

significantly the impact estimation of local equipment of IoT systems and consequently their eco-design.   

The environmental impact of a product is understood not only on terms of its resources consumption 

and emissions involved in its production, use and disposal, but also on terms of its intrinsic attributes 

(e.g., materials, dimensions, etc.) summarized in its Bill of Materials (BoM); and in its Bill of Attributes 

(BoA), which is a generalization that categorize the impact contribution of each of its components or 

subcomponents [114].  
 

 

Figure 4.3. Use of the Bill of Attributes (BoA) and the Bill 
of Materials (BoM) for LCA and MFA analysis. Figure 
extracted from [114]. 
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For example, while the BoM facilitates material flow data for MFA analysis and provides quantitative 

information for the LCI step in LCA studies, the BoA organizes the information of the BoM into physical 

characteristics and processes to estimate the environmental impact of components and / or specific 

subcomponents of products (figure 4.3). 

In this sense, and considering the role of the BoA in the context of the sustainable electronics, a 

considerable amount of evidence shows the significant contribution of the front-end manufacturing 

process of ICs to the environmental impact of ICT products, which can be expressed through the area 

of ICs’ dies. For example, the front-end production of ICs in a smartphone represent approximately 42% 

of the total impact of its manufacturing phase (Figure 4.4). This impact is usually explained by the die 

surfaces of ICs (approximately 2,2 kg CO2-eq, corresponding to a total die area of 7,3 cm2 according to 

Andrae & Andersen [247]). 

 

Figure 4.4. GWP100 impact contribution in the manufacturing phase of a smartphone according to Andrae & Andersen [247]. 

Thus, different methods oriented to measuring the die surface of ICs in electronics were proposed 

recently and show the capital importance of this physical attribute for the environmental impact of 

modern electronics. Consider, for example, the work conducted by Kasulaitis, B. V. et al. [114] in which 

different techniques oriented to estimate the die areas of different ICT products were presented and 

dissected exhaustively (from destructive and visual approaches (i.e.: grinding or X-ray imaging), to 

estimations based on ratios involving additional attributes of ICs and other components (e.g., the area 

and weight of IC packages, the area of PCBs, etc.). However, beside the technique, the authors of this 

work concludes, like implicitly others [246], that small differences in die areas affect significantly the 

results of environmental evaluations of ICT products. 

On the other hand, other studies demonstrate the significant impact not only of dies but also of certain 

materials present in specific subcomponents of ICs. For example, Andrae & Andersen [116] identified 

significant impacts from the gold-plated solder balls of Ball Grid Array (BGA) components, and Kuo, 

C. H. et al. [117] report a great impact of gold content not only in wires of BGA components, but also 

in wires of Flip Chip (FC) and Lead-Frame-based (LF) components. Moreover, they found a positive 

correlation between the environmental impact, the packet volume and the number of pins of BGA 

components; and proposed two regression models based on these physical attributes (Figure 4.5). 
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(a) (b) 

Figure 4.5. Regression model for the environmental impact (single score Pt) of BGA components based on the number of pins (lead count) 
and the volume of the package. (a) For gold-wiring version, (b) for a copper-wiring version. Figures extracted from [117]. 

Das, S. & Mao, E. [8] for their parts, are also oriented in this direction by revealing, by means of a 

comparative LCI analysis, a positive correlation between the number of pins and the embodied energy 

demand (MJ / Chip) of different ICs (Figure 4.6). 

(a) (b) 

Figure 4.6. Embodied energy demand of (a) 45nm flash memories and (b) 57nm DRAM memories. Both with different packaging 
technologies. For the acronyms, consult the glossary. Figures extracted from [8]. 

Consequently, in principle, to reduce the embodied emissions and primary energy of IoT devices one 

should (1) meticulously quantify ICs’ die surfaces and reduce them as much as possible when selecting 

electronic components and (2) discriminate electronic components on the basis of individual physical 

attributes such as the number of pins or the size of packages. While point 1 will be approached in the 

next chapter, point 2 presents some underlying difficulties, as it could be intuited by inspecting figure 

4.7. 

 

Figure 4.7. Embodied energy of 130 nm microprocessors (MPU) with different packaging technology and different number of pins. Figure 
adapted from [8]. 

Indeed, if IoT designers base their decisions on the number of pins exclusively, they (1) might believe 

reduce the impact of an IoT device by choosing a 100-pin TQFP component instead of a 150-pin BGA 

component; and (2) make no difference between a BGA and WLCSP component with the same number 
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of pins (e.g., 50 pins). However, they might be wrong, as these technologies cannot be evaluated only 

from the point of view of a single physical attribute (as it is showed in figure 4.7). For example, the 

advantage of the 50-pin WLCSP component over the equal-pin BGA component in figure 4.7 could be 

explained by the additional impact of using a PCB-typed substrate on the BGA component, or by using 

more ecological materials (e.g., copper) in its Under Bump Metallurgy (UBM) subparts, compared to 

the lead frame or wires subparts of a TQFP component with almost the same number of pins. 

Furthermore, decision-making in eco-design can become even more complicated when analyzing certain 

physical features of electronic components in the context of the general electronic design. For example, 

Andrae & Andersen [116] warns that, although WLCSP components show clear ecological advantages 

at an individual level compared to other components with different packaging technologies, they would 

not be convenient at a system level, since they would require the use of more PCB layers (figure 4.8a) 

due to their pin densities (pins number per package mass) (figure 4.8b). 

(a) (b) 

Figure 4.8. (a) Basic PCB layout design guidelines for Area Array Package components according to [118]. (b) An Area Array Package 
component (WLCSP). The number of PCB layers would increase proportionally to the number of pin arrays of the WLCSP component (from 

the outer array (blue one) to the inner array (violet one)). 

 Therefore, the estimation of the potential impacts and the eco-design of an IoT device would be framed, 

among other aspects, both by physical characteristics of its electronic components (eg, number of pins, 

dimensions, mass, specific materials, etc.), and by the influence of these characteristics over other 

components and the rest of the electronic design (interdependency). 

2.2.Circularity features 

As the reported impact of producing sensor systems is high (see section 1.2.3 and 1.2.4 of chapter 3), 

studying the features of electronic components and devices that partially or fully avoid (or increase) 

such impact is fundamental in this work. As a matter of example, the reader may recall from chapter 1 

the potential drawbacks of full systems integration affecting recyclability because of resource 

dissipation. By taking into account this and others potential aspects, one can construct a more reasoned 

yet practical methodology for impact estimation and eco-design of IoT systems.  

The application of circular strategies on electronic components reduce the impact of local devices. 

However, Söderman & André [112] put designers on guard against the potential risk of strictly applying 

these strategies without first analyzing certain aspects. For example, Bovea, M. D. et al. [119] shows 

that repairing electronic cards of small electronic devices such as hand blenders causes more 

environmental impacts than replacing them (regardless of their age); and agrees with Pini, M. et al. [120] 

by concluding that repairing is convenient depending on the parts to be replaced; and with Lu, B. et al. 

[121] by concluding that a reuse strategy is suitable only for certain components, but not for entire 
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devices. Below, two of the most common circular approaches of consumer electronics; the recycling of 

devices and the reuse of electronic components will be explored in more detail, under the lens of specific 

features.   

2.2.1. Circularity features affecting recyclability 

Recycling Waste Printed Circuit Boards (WPCBs) would reduce significantly the amount of emissions, 

waste and above all, raw materials involved in the production of IoT devices. Indeed, WPCBs contain 

important shares of copper, gold and silver (table 4.3), which could be recovered with known techniques 

(e.g., by metallurgical or chemical processes). However, for the recycling of these metals to be 

economically viable (that is, in basic terms, so that the amount recovered of these metals from electronic 

waste exceeds the amount that would be obtained from natural deposits) it is basically necessary to reach 

certain dilution levels of these metals in electronic scrap (e.g., more than 400 grams in one ton or 400 

ppm in the case of gold3), which is possible only through a design that facilitates the separation of 

specific parts rich in these materials. 

 

Table 4.3. Material content share in one ton of WPCBs. Abundant materials are expressed in percentages, and precious and toxic materials 
(such as Cd, Au and Ag) are expressed in ppm. Table adapted by Kaya, M. [128]. 

Indeed, an efficient separation would increase the gold concentration per ton of separated ICs scrap or 

the silver concentration per ton of bare WPCBs as shown in table 4.3; recovering more resources in 

recycling processes and obtaining more economic benefits than if we treated them without prior 

separation. This is understood by analyzing the relationship between the dilution of metals in natural ore 

and their refining prices (Figure 4.9); and it could be illustrated by comparing the recycling of a whole 

car (Figure 4.10a) versus the recycling of its separated parts (figure 4.10b). 

 

 

Figure 4.9. Relationship between dilution of 

metals in ore (the width of the bar) and 2004 price 

ranges (the height of the bar) for refined metals, 
with dilutions ranging from the lowest ore grade 

being mined (the rightmost side of the bars) to the 

highest (the leftmost side of the bars). The metal-
specific Sherwood Plot is a regression line fitted to 

the average 2004 refined metal prices and the 

lowest profitable ore grades. Metals whose dilution 
and refining prices are placed above the line are 
profitable exploited. Figure extracted from [129]. 

 

                                                           
3 E-scrap (PCBs, laptop and handheld computers, and some mobile phones) has gold contents range from 100 to 400 ppm; and High value e-
crap (Circuit boards from main frames, some mobile phones, ICs and MLCCs) has contents above 400 ppm [130]. 
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 (a) (b) 

Figure 4.10. Adapted Sherwood Plots for (a) metals dilution in waste automobiles in relation to recycling price. (b) Metal dilution in 
disassembled automobile parts in relation to recycling price. Both figures were extracted from [129]. 

If one contrast the dilution of different metals in ores and their refining prices shown in figure 4.9; with 

their dilutions in waste automobiles in figure 4.10a, and in dismantled parts (figure 4.10b); A 

considerable increase in the concentration and profitability from recycling can be noticed when efficient 

separation of homogeneous parts of products is applied. This aspect is of paramount importance and 

could explain the reason by which many metals present in WPCBs are not currently recycled (Figure 

4.11). 

 

 

 

 

Figure 4.11. Adapted Sherwood Plot for metals 

dilution in WPCBs in relation to recycling price. 
Figure extracted from [129]. 

 

 

 

 

 

Furthermore, the low concentration and separability of specific metals in WPCBs would not only 

prevent their recycling (although their extraction and refinement prices would be similar to their 

recycling prices, as seen for germanium4 in figure 4.11), but also make difficult the recovery and 

purification of other metals. Indeed, according to Söderman & André [112], unlike metals with high 

functional recyclability5 (gold, silver, palladium and cobalt), other metals with non-functional 

recyclability6 are ignored at an industrial level and are simply dissipated into the environment. To 

illustrate their posture, they present the material flow analysis of repaired smartphones, demonstrating 

a loss of more than 9% for Indium and Ytrium (Figure 4.12). 

                                                           
4 Germanium content in electronic products is extremely low; for example, less than 0.001 grs in a smartphone according to Bookhagen, B. et 

al. [131]. 
5 Functional recyclability: term coined by Guinée et al. [132] that defines the recovery of metals or metal alloys that are returned to the raw 
material production processes through separation and classification procedures. 
6 Non-Functional recyclability: part of recycling in which a metal is collected with old scrap, normally considered as an impurity in the 

recuperation process of other metals or alloys (for example, small amounts of copper in recycled iron that are incorporated into the carbon steel 
recovery process) [133]. 
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Figure 4.12. Metal net loss relative to Business as Usual (BAU) content of a new smartphone (SP) (shorter lifetime and recycling) VS a 
repaired smartphone (repaired SP). Figure adapted from [112]. 

This loss would be explained by the constant replacement of broken screens, rich in Indium and Ytrium 

(non-functional-recyclable metals) in almost all repairs, on the one hand; and by the usual short lifetime 

extension of repaired smartphones on the other hand (see figure 4.13). 

 

Figure 4.13. Indium and Ytrium metal flows relative to new Smartphone content (BAU) per period of use from gate-to-grave. The additional 
quantities of Indium and yttrium in replacement screens (bottom figure) are depicted as “Component content”. Figure extracted from [112]. 

2.2.2. Circularity features affecting re-use 
The reuse of electronic components faces reliability constraints. Fortunately, the scientific community 

is beginning to consider the importance of this aspect for the sustainability of electronics and new studies 

demonstrate the reliability of reusing electronic components obtained through thermal disassembly 

processes. For example, in an experimental study conducted by Sitek, J. et al. [122], six BGA memories 

were extracted from, and reassembled to electronic cards applying several cycles of different thermal 

reflow profiles (figure 4.14a-b); and then subjected to a visual inspection and functional test in order to 

check their integrity and operational reliability. While only two memories presented a common defect 

known as bridging7 in their solder balls in the visual inspection (figure 4.14c); all memories, after 

reballing corrections, passed the functional test (consisting on reading their stored data test using a 

specific algorithm). 

                                                           
7 Bridging is a condition in which the adjacent solder balls of Area Array Package components (e.g., BGA components, WLCSP, etc.) come 
into contact and form a solder bridge. 
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(a)  (b) 

(c) 

Figure 4.14. (a) A typical thermal reflow profile schema for assembly or disassembly electronic components [123]. (b) Different reflow 

profiles applied in disassembly experiments in [122]. (c) Bridging defects in solder balls in two of six BGA memories: the one was exposed 
to 3 thermal cycles under profile 2 (P2) and the other to 9 cycles under profile 4 (P4). Figures b and c were extracted from [122]. 

In this way, the authors of this study conclude that the thermal resistance of BGA memories goes beyond 

what is established in their datasheets; and explain that their reliability for reusing would be conditioned 

only to the bridging effect, which would be produced by the mechanical force applied when extracting 

the components from PCBs (e.g., manually lifted). Although this study offers solid evidence regarding 

the reliability of reusing BGA components (once solving the bridging defect through a process called 

reballing), the causes for which its authors explain the bridging defects in thermal separation processes 

should be questioned. Indeed, more research is needed in this regard and the scientific community is 

providing more and more information about the phenomenon. For example, there is a growing body of 

evidence suggesting that the bridging defect is related to the deformation (warpage) that a component 

suffers under thermal stress (Figure 4.15a), which is intensified by some physical attributes. 

(a) (b) 

Figure 4.15. (a) Excessive warpage resulting in shorted solder balls (bridging). (b) Experimental warpage (downward and upward bending) 
obtained for a PBGA 35 x 35 mm2 component according to Grossmann & Zardini [124]. Both figure were extracted from this work. 

Indeed, one of the main causes of warpage is attributed to the difference in the Coefficients of Thermal 

Expansion (CTE) of the different materials that compose the homogeneous internal parts of ICs that, 

under thermal stress, exert different mechanical forces causing deformations in the packages. Thus, high 

temperatures that exceed the solder melting point would cause extreme deformations, like those shown 

in figure 4.15b; and shorted solder balls (bridging), like those shown in figure 4.15a [124]. Beside of 

that, the warpage effect would be also intensified by other physical attributes of ICs such as the size of 

the package and the molding compound thickness [124-125]; and the substrate thickness and the solder 

bump pitch [125]. 
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Regarding these last attributes, another study conducted by Kang, J. S. [125] examines their levels of 

influence on the warpage of different Plastic Ball Grid Array (PBGA) components (Figure 4.16). By 

using 16 combinations of different form factor values for the solder bump pitch —feature or factor 1 

(F1), package size (F2), compound thickness (F3) and substrate thickness (F4) in Finite Element 

Analysis (FEA), this study obtains the maximal deformations (𝑊𝑚𝑎𝑥) of four commercial PBGA 

components, which are subsequently analyzed by an Analysis of Variance (ANOVA) test to determine 

the level of significance of each of the aforementioned attributes. 

(a) (b) 

Figure 4.16. (a) Mean effect plots of specific features (F1-F4) on the maximal warpage (in µm) of four commercial PBGA components 
according to Kang, J. S. [125]. The dotted horizontal line depicts an intact component and the left and right number in each factor represent 

its lowest and highest values. (b) p values from an ANOVA test applied to the maximal warpage (𝑊𝑚𝑎𝑥) obtained from 16 FEA simulations. 
The smaller the p value of a physical factor, the more its significance for warpage. 

In this way, the authors conclude that the most influential features are (in order of importance) the size 

of the package (F2), the molding compound thickness (F3), the solder bump pitch (F1) and the substrate 

thickness (F4). From this, they construct a regression model for the maximal warpage (𝑊𝑚𝑎𝑥) prediction 

of PBGA components (equation 4.1). 

𝑊𝑚𝑎𝑥  =  12 −  80,7 𝐹1 +  9,29 𝐹2 −  44,4 𝐹3 +  88,7 𝐹1𝐹3 −  3,532 𝐹2𝐹3 −  0,92 𝐹2𝐹4 −  1,597 𝐹1𝐹2𝐹3 (4.1) 

Returning to the premise that the warpage effect triggers bridging, another study held by Grossmann & 

Zardini [124] demonstrate the influence of critical warpages, the volume of the solder balls and the 

distance between them (the solder bump pitch) on the bridging defects of BGA components (figure 

4.17). 

 

Figure 4.17. Intact solder balls spheres (left) separated by a “solder bump pitch” distance; and deformed solder balls ellipsoids (right) whose 

IC package suffered a critical warpage (𝑊𝑐𝑟𝑖𝑡). Figure extracted from [124] 

Indeed, in normal conditions, the solder balls have sphere forms with radius (𝑟𝑏𝑎𝑙𝑙) and volume 

(𝑉𝑠𝑝ℎ𝑒𝑟𝑒), which are later deformed by a critical warpage (𝑊𝑐𝑟𝑖𝑡) in compressed ellipsoids with volume 

(𝑉𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑) causing bridging. More specifically, according to Grossmann & Zardini [124], as the critical 

warpage at which the two adjacent ellipsoids in figure 4.17 touch each other is achieved only when 𝑎 is 

equal to half of the solder bump pitch, and 𝑏 to 𝑟𝑏𝑎𝑙𝑙 minus half of the 𝑊𝑐𝑟𝑖𝑡 (equation 4.2); and as the 

volume of a deformed ellipsoid (𝑉𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 in equation 4.3) is equal to the volume of a perfect sphere 

(𝑉𝑠𝑝ℎ𝑒𝑟𝑒 in equation 4.4), the critical warpage (𝑊𝑐𝑟𝑖𝑡) at which adjacent solder balls do not touch is 

given by equation 4.5 as follows. 

 

𝑎 =
𝑝𝑖𝑡𝑐ℎ

2
→ 𝑏 = 𝑟𝑏𝑎𝑙𝑙 −

𝑊𝑐𝑟𝑖𝑡

2
     (4.2) 
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𝑉𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 =  
4𝜋

3
𝑎2𝑏 =  

4𝜋

3
(

𝑝𝑖𝑡𝑐ℎ

2
)

2

(𝑟𝑏𝑎𝑙𝑙 −
𝑊𝑐𝑟𝑖𝑡

2
)   (4.3) 

𝑉𝑠𝑝ℎ𝑒𝑟𝑒 =
4𝜋

3
𝑟𝑏𝑎𝑙𝑙

3
       (4.4) 

𝑊𝑐𝑟𝑖𝑡 = 𝐵𝑎𝑙𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 × (1 − (
𝐵𝑎𝑙𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑝𝑖𝑡𝑐ℎ 
)

2

)   (4.5) 

Thus, by taking into account the diameter of the solder balls (which is equal to 2 times their radius) and 

the solder bump pitch, these authors obtain analytically the critical warpages of different BGA 

components (figure 4.18); that are only 40µm higher than the empirical warpage values seen in figure 

4.15b. 

 
Figure 4.18. Estimated critical warpages of different BGA components depending on the diameter of their solder balls (𝑑𝑏𝑎𝑙𝑙) and the 

distance of their solder bump pitches. Figure extracted from [124]. 

On the other hand, low temperatures in desoldering processes may avoid warpage and bridging effects, 

but provoke other issues that would harm the reuse of electronic components. About it, for example, 

Layiding, W. et al. [126] demonstrate empirically that low temperatures in thermal separation processes 

cause disbonding damages on the pins of different electronic components (Figure 4.19). These damages 

(e.g., bending in lead-typed components and bonding breaks, especially in BGA components) could be 

explained by premature separation of electronic components before the solder melts (usually due to 

lower-temperature reflow profiles). 

(a) (b) 

Figure 4.19. (a) Disbonding types of a gull-wing-typed IC component (left) and a BGA component (right). A common damage occurs when 

a lead or a solder ball breaks from a component (C-L bond breaks). (b) Counts of different disbonding types of BGA components in 
disassembly tests profiles experiments (1), (2) and (3). Both figures were extracted from [126]. 

Therefore, to minimize damages and achieve only good separations (i.e.: Solder-Solder (S-S), Lead-

Solder (L-S) or Solder-Pad (S-P) disbonding types), it would be necessary that the WPCB be heated to 

temperatures above the melting point for long enough, but avoiding extreme temperatures that trigger 

warpages (consider, for example, the disassembly conditions or experiment 3 in figure 4.19b, in which 

any C-L break occurs). 

Regarding the optimal conditions for thermal disassembly, Chen, M. et al. [127] obtained high 

disassembly rates (the ratio of the number of intact, separated components to the total components in 

WPCBs) under specific conditions of preheat temperature, maximum temperature and incubation time 

(figures 4.20a-c). By applying an automatic heated-air disassembling equipment on 13 different types 

of WPCBs, they concluded, interestingly, that small components (side length < 3mm) are the 
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components with the lowest probability to be successfully separated (with a disassembly rate range from 

40 to 50%). 

(a) (b) 

 

 

 

 

Figure 4.20. (a) Optimal preheat temperature (120 C°), (b) maximal 

temperature (280 C°), and (c) incubation time  (2 min) to achieve high 

disassembling rates in WPCBs. Values below these thresholds reduce 
the disassembling rate and values above these thresholds damage the 

components and fuse the smaller ones with the WPCB. Figures extracted 
from [127]. 

 

 
 

(c) 

 
 

 

 In the light of all the previous works, it could be stated that the estimation of the potential 

impacts, or benefits of circular strategies (like recycling) applied to IoT devices would be 

framed, among other aspects, by (1) individual features of electronic components (for example, 

the content of specific materials in components subparts), (2) interdependent features (similar 

service times between components (as seen for screens of smartphones); and even (3) external 

factors such as a correct design oriented to easy separation, or refining prices of raw materials. 

  

 On the other hand, the benefits of other circular strategies (like reusing) applied to electronic 

components would be limited by reliability, which is also conditioned by specific features (e.g., 

size of the component, specific dimensions of the pins, types packaging technology, etc.), and 

by external factors in disassembly processes (e.g., the appropriate desoldering temperature). 

2.3.Technical features 

Understanding the influence of technical features on the data operational stages and the reference flow 

of IoT systems is critical for their impact estimation and right-provisioned design. For example, one 

observed the crucial role of writing cycles of memories for the lifetime of modern intermittent system 

(chapter 1, section 3.2.1), or the primary purpose of collecting and treating meaningful raw data in 

chapter 2 (section 4 and 5), together with the essential features of electronic component to do it (section 

1). This section aims to aware the reader the relevance of this kind of features and invites him or her to 

consider them under different operational contexts. 

As seen in the work of Bonvoisin et al. [61], the environmental impact of a network of sensor devices 

will depend on the operational lifetime of each of the nodes that composes the network. In this sense, 

the failure rate8 of each electronic component that shapes a sensor device linked to a network node will 

necessarily depend on its operational time, on the one hand; and on environmental conditions (e.g., 

                                                           
8 Considering a failure as an important variation of the nominal value of an operating parameter; for example, capacitance in capacitors or 
reading errors in memories. 
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ambient temperature, pressure, humidity, radiation or mechanical stress) and operational conditions 

(e.g., functional loads such as current, power dissipation and voltage) on the other hand [134]. For 

example, under normal conditions, electronic components generally have a very low failure rate; but 

degradations in functionalities arise as these conditions change over time (figure 4.21). 

(a) (b) 

Figure 4.21. (a) Base failure rate B (ratio of number of failures to number of test units in time (h)) of tantalum capacitors in function of 
temperature [135]. (b) Safe writing cycling operating conditions (per byte) VS temperature of an EEPROM memory [136]. 

Indeed, one of these conditions is ambient temperature, which universally affects all electronic 

components without exception. For example, it can be seen how a progressive increase in ambient 

temperature increases exponentially the failure rate of tantalum capacitors in figure 4.21a; or reduces 

the lifetime (in terms of writing cycles) of EEPROM IC memories in figure 4.21b. These aspects, 

together with other more technical factors, may affect the reference flow of IoT systems (i.e.; in terms 

of failure devices) and are of paramount important for their eco design. 

For example, the failure rate (mainly linked to use intensity and additionally affected by ambient 

temperature) of memories become a relevant aspect for the eco-design of intermittent EH sensor 

systems. In these devices, as seen in chapter 1, the states of the program execution must be saved 

continuously in a NVM memory (a routine known as check pointing) every time the accumulated energy 

is nearly exhausted, and restored each time there is sufficient energy for reinitializing the main processor 

[137]. Depending on a variety of operating conditions, such as the complexity of the program execution 

or the frequency by which an EH sensor system accumulates and depletes energy, these checkpoints can 

quickly wear out the writing cycles available in main memory.  

(a)      (b) 

Figure 4.22. (a) Main program execution of Hibernus++ (a well-known main operating algorithm for EH intermittent systems proposed by 
Balsamo, D. et al. [138]). Interruptions after the normal execution step (“Normal operation until supply drops”) trigger check pointing 

routines (“save snapshot to non-volatile memory”). (b) Technical features of NVM memories including writing endurances [24]. 

Consider, for example, the work of Daulby, T. et al. [24] who study the lifetime of a Seiko smart watch, 

executing a well-known algorithm for EH intermittent systems (Hibernus++) with FRAM, STT-RAM 

and ReRAM memories. Assuming a check pointing frequency of 2,5Hz (interruptions of 0,4 seconds, 

figure 4.22a) and normal ambient temperature, they show that FRAM memories (with an approximate 
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write cycle rate greater than 1015 per memory block) guarantee an approximate device’s lifetime of 6,37 

Million years, while STT-MRAM or ReRAM memories (both with a write cycle rate of only 105), only 

4,63 days.  

Furthermore, in addition to the environmental conditions and writing cycles, other technical attributes, 

such as the granularity and density of memories (according to Colin, A. [137]), as well as the energy 

and time required in writing and reading operations (according to Daulby, T. et al [24] and Colin A. 

[137]) would complicate the design and eco-design of sensor systems, especially in contexts of 

constricting energy and / or applications with high readiness requirements (to have an approximate order 

of magnitude of this technical features in eco-design of IoT devices, see figure 4.22b). 

 Consequently, the technical features of electronic components play an important role in the 

accurate definition of reference flows and impact estimation of IoT systems; and in the 

ecological design of sensor systems (especially in the use phase).  

 

 The performance of these technical features depends, among other aspects, on operational 

conditions such as the use intensity of a component, and/or external factors such as 

environmental conditions (e.g., ambient temperature).  

 

 By taking into account these and other technical features of different electronic components of 

an IoT device, together with their probable incompatibilities and their possible tradeoffs, one 

can guarantee a more appropriate functional and ecological design. 

2.4.Data flow 

Understanding how and under what conditions raw data is generated, converted and delivered is capital 

for answering the main interrogation reported in this work and solve its related research questions. From 

chapter 3 (section 1.2.1), for example, it was established that the data volume transmitted from local to 

mutualized infrastructures (in terms of sampling rate, size and frequency) affects enormously the 

reference flow and, consequently, the impact of IoT systems. This section aims to extend the study of 

these aspects under the lens of certain electronic components, some technical features, and specific 

technologies. 

Das, S. & Mao, E. [8] show that design decisions when selecting sensor components should be guided 

through an analysis of the type of signal, range and data resolution they generate, and Morin, E. et al. 

[139] show, for their parts, that the lifetime of an IoT device —in terms of the depletion rate of its 

available energy (13.5 Kj corresponding to two AAA batteries), is drastically conditioned not only by 

the energy needs in the data transmission (Tx) and receiving (Rx) activities, or in idle and sleep states; 

but also by a combination of additional factors linked to data manipulation and quality, including the 

data size required by the application, the data rate, and even the distance range at which its 

communication interface operates in relation to another device (see table 4.4 and Figure 4.23). 
 

 
Power 

P_Tx 
(mW) 

P_Rx 
(mW) 

P_Idle 
(mW) 

P_Sleep 
(µW) 

80
2.

11
 P

S
M

 

G2M5477 699.6 170 66 13.2 

RTX4100 1050 350 9.1 9.45 

MAX2830 699.6 204.6 92.4 66 

STM SPWF01SA 1135 346.5 85.8 141.9 

B
LE

 nRF51822 37.2 42.3 13.2 7.8 

BLE112 97.2 90 27.4 3.24 

BlueNRG 31.7 29 7.104 6.4 

80
2.

15
.4

 GreenNet 25.024 19.26 7.104 5.76 

SmartMeshIP 24.11 20.87 4.67 4.32 

TelosB 76 79 41 15 

Table 4.4. Power needs for transmission, reception, idle and sleep states of specific SoC communication interfaces. Adapted from [139]. 
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(a) (b) 

Figure 4.23. (a) Lifetime estimations of an IoT device transmitting different data sizes (𝑆𝑎, in bytes B) every 100 seconds (low data rates), 
and (b) every 1 second (high data rates). The legend is applied for both figures, which were adapted from [139]. 

Indeed, Figure 4.23a shows, for example, that many of the components with high-energy consumption 

for transmitting and receiving data are more efficient than the component with the lowest energy 

consumption in this activities (see column Tx and Rx for the SoC component Telos B in table 4.4). This 

phenomenon, only evident in low data rate conditions, is explained by the power consumption of the 

sleep state of the Telos B component, higher than that of the other components (except for MAX2830 

and STM SPWF01SA components). On the other hand, in figure 4.23b it can also be seen that the gap 

between all components of the 802.11PSM and 802.15.4 standards (the latter containing the Telos B 

component) is narrowing, in a context of intense data traffic (transmissions every 1 second). The authors 

explain that, while the power consumption of the sleep state becomes an important technical attribute 

for the lifetime of a device with low activity (transmitting at low data rates, such as those in figure 

4.23a), The energy needs for  transmitting and receiving data become relevant for a busy device 

communicating at high data rates. 

What’s more, they demonstrate the influence of data size on the lifetime of devices using modern 

wireless technology; in figure 4.24, it is observed that with very low data rates (1 transmission per day), 

Sigfox and LoRa technologies consume more energy as data size increases, reducing drastically the 

lifetime of an IoT device. This is explained by the large amount of energy required to transmit over long 

distances, the significant data fragmentation and the protocol overhead; all distinctive features of these 

technologies. 

 

 

Figure 4.24. Different data sizes (𝑆𝑎, in bytes B) transmitted in fragmented packets per day. As Sigfox and LoRa handle only small packets, 

these technologies significantly fragment large data sizes in small, numerous messages, resulting in additional energy consumption for 
transmission and protocol overhead. Figure taken from [139]. 

In this manner, by taking into account all these aspects, these authors generate a reference table of 

approximate lifetime of different IoT devices, operating with two AAA batteries under different 

technologies and specific operational conditions, to facilitate the selection of the most appropriate 

technology depending on the data flow and data quality requirements of specific IoT applications (Table 

4.5). 
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Table 4.5. Lifetime estimation of different IoT devices under certain applications, in terms of data rate (Sa / Ta), and considering a clock 
drift of 40 ppm, a packet error rate of 20%, and the maximum European available rates. Table extracted from [139]. 

 In this sense, the appropriate impact estimation of full IoT systems and the eco-design of IoT 

devices would be guided, initially, by the type and generation of data originated in the sensor 

components of sensor systems. Having a clear idea of how an IoT system demands and uses this 

data later, to transform it into useful information, together with understanding the technical and 

operational context in which this data will be transmitted, would facilitate the selection of more 

suitable electronic components on the basis of its technical features. 

3. Proposed methodology for sustainable IoT systems 
Alternatively, this thesis advocates for a more thoughtful design of data, information, and knowledge 

for right-provisioned, sustainable IoT systems.    

From chapter 2, it was evidenced the potential of IoT systems for generating massive data (as observed 

in the experimental work of Sinaeepourfard, A. et al. [5]), with the implicit risk of increasing damage 

from the production and/or the use of devices with extended capacities (as demonstrated by Lelah, A. et 

al. [51]). By considering this, and by taking into account the conclusions of the previous sections 2.4 of 

this chapter, this thesis advocates for a more reasoned design of data and information for right-

provisioned, sustainable IoT systems (figure 4.25). 

 

Figure 4.25. The proposed approach for impact estimation and eco-design of IoT systems, making explicitly the design of data and 
information flows (data-information-knowledge design) along the full IoT architecture.  

In this sense, and by considering the results of the qualitative research presented before, the contributions 

of section 2.2 of chapter 3, and the conclusions of sections 2.1, 2.2, and 2.3 of this chapter; a novel 

methodology for the eco-design of IoT systems consisting of two frameworks is proposed below. 

3.1.Framework for eco design  
The first framework (figure 4.26), aims to reduce the ecological impact of IoT systems through a 

preliminary analysis of raw data (e.g., type of signals, quantity, etc.), its flow and its planned 

transformation from the study of customer requirements (customer’s needs). This step would help to 

identify the computational load on the mutualized infrastructure, on the one hand, and the right-

provisioned electronic components to construct local devices on the other. Subsequently, certain 
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parameters of specific environmental, physical, and technical attributes of these electronic components 

should be considered for rapid LCA impact analysis, sensitivity analysis, or uncertainty tests. 

 

Figure 4.26. Framework for the integration of ecological aspects in the NPD process of local IoT devices. The white boxes show the usual 
design workflow of IoT devices revealed by the qualitative study of section 1 and the blue boxes show the integration of ecological aspects. 

In this framework, if the impact does not reduce, the replacement of the most problematic components 

should be considered in a new design iteration, previously analyzing their interdependence with the rest 

of the electronic design (i.e.: interdependencies of technical features) and in the ecological design (i.e.: 

impact transfers in different lifecycle phases). Once the impact is reduced, designers can move on to the 

prototyping stage. This framework could work simultaneously and, with the support of the framework 

for impact estimation described below (framework for the global impact estimation of IoT system). 

3.2.Framework for impact estimation 
This framework is built from the basic three-layered architecture of IoT systems (sensing-, edge- and 

cloud-layers) seen on different works [86], [107], [140-143]; together with a novel representation of 

electronic components of local devices and their interactions. In this framework (figure 4.27), one or 

more devices (D) compose the sensing and edge layers. Each of these devices is composed of one or 

more electronic components (C), which fulfill specific functions of the data operational stages of an IoT 

system through specific capacities (FC) (a specific value of a technical parameter). Such Function-

Capacity association allows identifying the reference flow of a full IoT system and facilitates its lifecycle 

modeling. 
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Figure 4.27. Framework for the global impact estimation of IoT systems. Each component (C) of a device (D) in a layer contributes directly 
or indirectly to a data operational stage function by a specific capacity (FC) linked to a technical attribute. 

Build on the basis of the most relevant findings seen before, these two frameworks recall the essential 

elements in eco-design (framework for eco design), and global impact estimation (framework for impact 

estimation) to avoid potential impact transfers in local devices and facilitate the rapid but appropriate 

environmental assessment of full IoT systems respectively. Therefore, both frameworks are 

complementary and compose a compound methodology oriented to facilitate the construction of 

concrete LCA implementations and more effective eco-design guidelines, as it will be demonstrated in 

next chapter.  

4. Proposed Implementations of the frameworks 
On the basis of these frameworks, specific implementations for environmental analysis and eco-design 

can be built, according to the available resources and goals of design teams. For example, designers can 

study different combinations of electronic components with different features and parameters through 

the framework for eco design; or observe the long-term impact of data, flowing along the local and 

mutualized infrastructures through the framework for impact estimation. Two implementations oriented 

to this suggested goals are proposed below and are illustrated by two case studies in the next chapter. 

4.1.LCA Implementation for the framework for eco design 
In the framework for eco design, the data & information design step could be implemented by using the 

rationale information science scheme showed in figure 3.39 of chapter 3; and the remain steps by a 

suggested LCA model considering physical, technical and environmental attributes of electronic 

components, for the corresponding manufacturing, use and E-o-L phases of local devices (figure 4.28).  

 

Figure 4.28. Suggested LCA Implementation for the framework for eco design. Life cycle phases may consider specific and/or generic 
electronic components. Designers should define the attributes and the related parameters of those that would be further dissected in specific 

analysis (e.g., sensibility or uncertainty analysis) according to their goals. This implementation considers the inclusion of other non-

electronic components (i.e.: casings) and specific manufacturing processes (e.g., Assembly of the electronic card) of local devices. For the E-
o-L modeling, this implementation considers recycling and reusing. 
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For sensitivity or uncertainty analysis in the manufacturing phase, the materials of ICs; and the PCB, 

die and ICs packages areas are considered according to the schema below. 

 

Figure 4.29. Detailed process modeling of the manufacturing life cycle phase of an IoT device (including assembly of the electronic card). 

Production of specific ICs is normalized to 1 kg, and blue text inputs are values of suggested attributes that should be applied in further 
sensibility or uncertainty analysis. 

As small differences in estimated die areas of ICs would provokes large impacts of ICT products [114], 

this implementation includes a detailed modeling of internal die areas, which considers the footprint 

area of the component (𝐴𝐼𝐶) and the share of the processed wafer (𝑆𝐼𝐶) in the total packaged IC weight 

(𝑊𝐼𝐶). These physical attributes are used to obtain the die area to package mass ratio of the IC component 

(area-mass ratio) according to equation 4.6, which is found in the LCI methodology of the Ecoinvent 

database (Hischier, R. et al. [174]). 

𝐴𝑑 =  
𝐴𝐼𝐶

𝑊𝐼𝐶
× 𝑆𝐼𝐶    (4.6) 

Where: 

𝐴𝑑 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑖𝑒 (𝑖𝑛 𝑚2, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 1 𝐾𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑖𝑒𝑑 𝐼𝐶) 

𝐴𝐼𝐶 = 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑖𝑒𝑑 𝐼𝐶 (𝑖𝑛 𝑚2) 

𝑊𝐼𝐶 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑖𝑒𝑑 𝐼𝐶 (𝑖𝑛 𝐾𝑔) 

𝑆𝐼𝐶 = 𝑆ℎ𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑤𝑎𝑓𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝐼𝐶 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑖𝑛 %) 

In figure 4.29, the white processes could be modeled from known LCA databases (e.g., Ecoinvent) and 

gray customized process from the material declarations and production reports of electronic components 

provided by manufacturers. In this implementation, energy heat, electricity consumption and IC factory 

infrastructure used for the production of 1 kg of ICs could be taken from Ecoinvent literature [144] (493 

MJ, 668,6 kWh and 2x10-8 units of factory infrastructure respectively). Notice that a subpart represents 

a homogeneous subcomponent of a specific IC (e.g., lead frame, wires, die attach, etc.), unable to be 

further separated manually or mechanically. On the other hand, for the use phase, designers can consider, 

for example, the energy consumption; and the time and use intensity of specific electronic components 

(e.g., communication interfaces and memories). 

Finally, the E-o-L phase of the proposed implementation may consider key attributes affecting the 

recycling and reuse of electronic components according to the basic waste flow described in figure 4.30.  
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Figure 4.30. Suggested E-o-L implementation for the framework for eco design showing the best scenario for waste IoT devices. The 

manual separation process generates the waste flow “full WPCB” which will be treated with mechanical disassembly (e.g., thermal 
desoldering), generating two waste flows: intact components that are successfully separated from WPCBs and partial WPCBs with 

components that were not extracted.  The recycling process “Metallurgical recovery of precious metals” uses copper metal fractions from 
shredding process. 

It is composed of the minimal steps for recycling precious metals from waste devices and a reliability 

test for reusing electronic components. This reliability test may involves visual inspection or functional 

test such as those conducted by Sitek, J. et al. [122]; or analytical estimations of specific situations that 

decrease the reliability of recovered components (e.g., critical warpages and bridging), by taking into 

account circularity  attributes of electronic components such as package sizes or pins dimensions, as 

saw in section 2.2. Green processes in figure 4.30 depict environmental benefits, which could be 

discount from calculated impacts (avoiding manufacturing of electronic components or recovery of 

precious metals). Blue texts represent waste flows whose quantities may vary according to specific 

attributes of electronic components that affect the disassembly rate of WPCBs (e.g., length of the sizes 

of electronic components, as shown in Chen, M. et al. [127]). All attributes mentioned so far should be 

further applied in sensibility or uncertainty analysis. 

In the proposed EoL implementation, the recycling process may include the following waste scenarios: 

 Worst: The full device goes to shredding process (not showed in figure 4.30). 

 Regular: Before shredding process, the electronic card is separated manually from other device 

parts (e.g., plastic casings) and it is recycled entirely (not showed in figure 4.30) 

 Best: Before shredding process, the electronic card is separated manually from other device 

parts (e.g., plastic casings) and it is recycled together with some electronic components that 

were not disassembled successfully (Intact separated components that fail reliability tests may 

be recycled separately too). 

Notice that the metal fraction flows increase from the worst to the best recycling scenarios above and, 

for simplicity, in this implementation other non-electronic parts (e.g., casings parts) are incinerated. To 

determine the exact metal fractions obtained from shredding processes and the amount of precious 

metals recovered from it, one can use the basic shredding and separation schemes for electronic products 

proposed by Huisman et al. [145] (figure 4.31); and the estimated recovery percentage of gold and silver 

from the separated copper fraction (table 4.6). 



118 

 

 

Figure 4.31. Shredding and electrostatic / magnetic separation processes applied to WEEE (browngoods). After shredding, three metal 
fractions (Aluminum, Ferro, Copper) and Residue waste streams are obtained. Figure extracted from [145]. 

 

 

Table 4.6. Transfer coefficients of the important content to the metal and residue fractions. Adaptation by Hischier, R. et al. [146]. It shows 
the mean recovery percentage of specific metals from metal fractions obtained by shredding process (Ferro, Aluminum or Copper). 

4.2.Cross-typed lifecycle modeling implementation for the framework for impact 

estimation 
From the framework for impact estimation, it can be deducted that every electronic component 

contributes (through the execution of specific functions, and within its capacities) not only to the 

functional unit, but also to the environmental impact of an entire IoT system. On the other hand, 

Wellsandt, S. et al. [147] recall that the increasingly complexity of products and services (such as IoT 

applications based on multiple devices) require a multiple lifecycle modeling approach, in which 

impacts from every element is correctly represented. By considering the former aspect and by applying 

the latter approach to the electronic components of local equipment (representing common processes —

functions on data or raw information— in which they interact); the following cross-typed, multiple life 

cycle model is proposed for the implementation of the framework for impact estimation (figure 4.32). 

 

 

Figure 4.32. Suggested cross-

typed life cycle modeling 

implementation for the 
framework for impact 

estimation of full IoT systems. 

Blue and green boxes represent 
one or many sensing and edge 

devices respectively. Black 

arrows represent physical flows 
(i.e.: raw materials, energy, 

supplies or intermediate 

products flows) and red arrows 
represent data flow generated 

by specific functions in the data 

operational stages of an IoT 
system (the common process in 

which electronic components 

interact). Modeling or impacts 
of dotted elements may or may 

not be simplified. 
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Indeed, these common processes are specific functions of the data operational stages seen in section 1 

of chapter 2 but with a system level perspective. They are linked to specific capacities of electronic 

components (FC relationships in the framework for impact estimation), and define the reference flow of 

the IoT system. In this sense, the proposed implementation could represent, for example, the most basic 

interaction in which a sensor component of a sensor system collects raw data (data acquisition function 

in the blue process) at a specific sampling rate, that will be later treated by a specific electronic 

component (e.g., a MCU) of an edge device to obtained information (data processing function in the 

green process). This information could be later transmitted (information transmission) to mutualized 

infrastructures by a specific communication interface of the edge device (e.g., through a LoRa or a BLE 

modules) at a specific data rate.  

In figure 4.32, although all data operational stages are possible in a sensing or edge device, the suggested 

implementation simplifies the use phase modeling by abstracting the essential functions —within the 

data operational stages— that characterize every layer.  

Furthermore, notice that: 

 An important distinction is made between data and information in edge devices, as they could 

simply retransmit data to mutualized infrastructures or transform data into information, 

depending of their available resources (e.g., abounding energy from Li-ion batteries or powerful 

computing available in fog servers). 

 Cloud servers may storage data apart from information for further use.   

 Although the lifecycle modeling of electronic components of sensing and edge devices may 

include processes for their B-o-L and E-o-L phases (the dotted elements in figure 4.32), 

modeling of the internet and cloud servers are strictly limited to the use phase for simplicity. 

This is due to the current difficulties of determining the precise reference flow in the cloud layer 

(in terms of the exact number of network devices in the access and core networks and cloud 

servers).  

In the proposed implementation, it could assumed a bottom-up approach to calculate the impact of 

transmitting and processing data in the internet and cloud infrastructures, based on data generation of 

local devices. The environmental impacts of the dotted lifecycle phases (B-o-L and E-o-L) of electronic 

components in figure 4.32 could be also simplified (by assumptions) or aggregated to the total impact 

by using reported LCA results in literature (for example, by using reported LCA results of a similar 

electronic component in the simplified lifecycle phase(s)), provided that such impacts are compatible 

with the rest of the implementation (i.e.: same impact categories and indicators). 

5. Positioning of the methodology 

To position the proposed methodology with respect to the other methodologies seen in chapter 3, its 

contribution and its area of action within the NPD process of IoT systems is established (Figure 4.33). 

Its position regarding its specific eco-design intention is also recognized in figure 4.34. In both cases, 

its level of difficulty for its application is presented in terms of the required investment in time and effort 

for data collection. This is done by placing the State-of-Art and the proposed methodology in the eco-

design-tools taxonomy proposed by Bovea & Pérez-Belis [148], with a variant that indicates their main 

approach (LCA or non-LCA), and their scope regarding the full IoT architecture (the sensing, edge and 

cloud layers). The benefits of the proposed methodology reported in this section will be demonstrated 

in the next chapter. 
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Figure 4.33. Positioning of the proposed methodology with respect to its integration in the NPD process (From planning to prototyping) and its level of difficulty for its application.
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In figure 4.33, the proposed methodology is integrated smoothtly into the typical NPD process of IoT 

systems by implementing a preliminary step of data and information flow analysis before the selection 

of electronic components of local devices. The result of this analysis is adapted to the requirements 

generated by a functional analysis; unlike the standards [88] and the impact assessment [61] and eco-

design [61],[10] methodologies found in the state-of-art. The proposed methodology also generates 

more specific design alternatives that can be later evaluated and compared on the basis of specific 

aspects of the electronic components of local devices (i.e.: technical, physical and circularity attributes); 

and on the basis of data and information flows along the entire lifecycle of complete IoT systems, unlike 

other methodologies [10], [74], [109-110]; and guides [89], [17], [99] found in literature. Thus, under 

an iterative workflow, the proposed methodology would identify the best design alternatives for the 

prototyping of local devices and the deployment of mutualized resources. However, its implementation 

would require a moderate effort from IoT designers (especially in pilot phases) to recognize the proper 

type and quantity of data for specific applications; and/or certain physical, technical and circularity 

characteristics of specific electronic components. This investment in time and effort could be recovered 

in the short and medium term depending on the continuous and documented use of the proposed 

methodology (i.e .: with its automation through an information system). 

 

 
 

Figure 4.34. Positioning of the proposed methodology with respect to its eco-design intention and its level of difficulty for its 
implementation. 
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In figure 4.34, unlike the generic guidelines [89], [17], [99] and standards [88] found in the literature, 

the proposed methodology aims to facilitate not only the construction of more specific guidelines 

oriented to the proper selection of electronic components based on concrete attributes, but also the 

recognition of inefficient guidelines and weak design (e.g., over- or under-provisioned electronic 

components) according to specific functions within the data operational stages of IoT systems. This last 

aspect is fundamental for the definition of reference flows and generation of design alternatives, never 

seen before in other works ([61] or [10]). However, its implementation would require an investment of 

time and effort a little higher than the application of standards and generic guides, especially in the first 

design iterations of specific projects. These efforts would be related to the collection of descriptive and 

technical information of electronic components, easily found in basic documentation (e.g., datasheets, 

material declarations, product environmental profiles, etc.). However, such labor would be also 

simplified in the long term through the automation of the proposed methodology. 
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Chapter 5: Case studies 

Overview  

This chapter presents two case studies to illustrate the application of the proposed methodology by employing the 

two implementation seen in the previous chapter.  One implementation aims to estimate the long-term impacts of 

data, which flows along the local and mutualized resources of a mature IoT system. The other implementation 

aims to evaluate different alternatives for the electronic design of a self-powered, intermittent sensor system. In 

this sense, this chapter is organized in three main sections. The first section offers a detailed description of the first 

case study —“smart metering” of water consumption; and presents the implementation of a cross-typed lifecycle 

modeling of its local and mutualized equipment in terms of functions in specific data operational stages and 

electronic components capacities. This allows estimating the total volume of data generated by the entire IoT 

system, so that its appropriated LCI can be built and its long-term impact can be estimated. Thereupon, this result 

is contrasted with the impact estimated from the real data traffic portrait of the deployed IoT system. After this 

section, the reader will realize the relevance of the function-component-capacity relationship, and will be able to 

conceive quick calculations of impacts coming from the use phase of mutualized devices, considering the data 

generation and transmission capacities of specific electronic components of local devices.  

The second section offers a detailed description of the second case study —“smart monitoring” of an object’s 

deterioration. It focuses entirely on a prototype and presents a LCA implementation that evaluates two design 

versions and three types of electronic components (voltages comparators, MCUs, and NFC-EEPROM memories) 

on the basis of two data flow strategies and several features. After this section, the reader will fix in mind the 

essential and undissociated concepts for conducting efficient eco-design, not only for reducing impacts in the 

manufacturing phase of IoT devices (by appropriate electronic and data design), but also for identifying inefficient 

design that compromise the environmental performance of and IoT system in the use and EoL life cycle phases 

(for example due to under- or over-provisioned components, unfavorable components for reusing or recyclability, 

etc.). At the end of each section, key findings and specific recommendations —from the evaluation of existing 

guidelines when possible— are given for both case studies.  

The third section synthetize these outcomes through the construction of sharp guidelines, which must be 

complemented by other ones that will emerge progressively with the continuous use of the design frameworks of 

the proposed methodology, in the context of other case studies.  

1. Case study “Smart metering” 
This case study describes a mature IoT system oriented to smart metering, commercialized to track water 

consumption in domestic environments (it was chosen because of collaborations between CEA-Leti and 

the manufacturer Solem on part of this system for further evolutions). Its local infrastructure is composed 

of a sensor system [149] equipped by an inductive pulse emitter [150], and a LoRa/Internet gateway 

[152]. The inductive pulse emitter is isolated from the sensor system and its manufacturer (bmeters) is 

different from that one of the sensor system and the gateway (Solem). The inductive pulse emitter is a 

battery-powered device flooded in transparent resin to resist humidity and it plays the role of the sensor 

component in the IoT system. It is wired to the sensor system and, although it is difficult to determine 

its specific method for generating pulses (technical documentation is unavailable and visual inspection 

of the bottom side of the electronic card is not possible); in this work one assumes that it generates pulses 

by the bank of low voltage capacitors found in its electronic card (Figure 5.1a), which would storage 

energy and discharge it into an inductor, in a hypothetical closing switch schema, as that one showed in 

figure 5.1b. 

(a) (b) 

Figure 5.1. (a) The electronic card of the pulse emitter showing the bank of capacitors (red frame), which would be used in a closing 

switching schema to generate pulse. (b) The possible induction generator used in the pulse emitter of case study “Smart metering” (figure 
extracted from [152]). 
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The sensor system is a battery-powered device that has to be located no more than 30 meters from the 

pulse emitter to minimize malfunctioning or imprecise metering. It is protected from humidity by an 

opaque resin (figure 5.2a) and it is mainly equipped with a RN2384 LoRa module [160] and a Bluetooth 

module [162] (figure 5.2b). As observed in figure 5.2b, the electronic card lacks of an MCU and memory 

components, which makes one hypothesizing that the device uses at least a microprocessor (embedded 

in the SoC component of the LoRa or Bluetooth modules) to manage at least processing and 

transmissions tasks; and at least an embedded memory to keep metering configuration settings.  

(a)   (b) 

Figure 5.2. (a) The resin-flooded sensor system. (b) Electronic card of the sensor system (with its Bluetooth module in top and its LoRa 
module in bottom).  

On the other hand, the gateway is a device powered by the electric grid and play the role of the edge 

device of the IoT system. It is mainly equipped with the same LoRa and Bluetooth modules of the sensor 

system, a WiFi ESP8266EX module [161], an ARM Microcontroller and a Flash memory (figure 5.3). 

According to the manufacturer, this device can centralize data of at most 25 sensor system devices, and 

it must be placed to a maximal distance (range) of 800 meters from them (in a star topology). 

(a) (b) 

Figure 5.3. Electronic card of the gateway. (a) Top-side showing its Bluetooth module (left) and its LoRa module (right). (b) Bottom-side 
showing its WiFi module (left), its microcontroller (right bottom) and its flash memory component (right top).  

The most basic functioning of the IoT system of the case study is described as follows. The inductive 

pulse emitter is attached to a conventional jet meter and sends electrical signals (pulses) to the sensor 

system whenever the inductive interface of the jet meter indicates water consumption. In this sense, the 

sensor system plays the role of a flowmeter, tracking the electrical signals generated by the inductive 

pulse emitter. Periodically, this flowmeter communicates with the gateway wirelessly using LoRa 

technology. On the other hand, the gateway communicates with the cloud server by an Internet Access 

Point (IAP) device (e.g., an internet modem) via its WiFi module. Figure 5.4 shows a basic deployment 

of the IoT system in term of the proposed framework for impact estimation (layers, devices (D) and 

components (C)). 
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Figure 5.4. A basic deployment of the full IoT system of the case study “Smart metering” in terms of the proposed framework for impact 

estimation (Solid and dotted arrows indicate wired and wireless communication respectively). According to Aslan, J. et al [12] and to the 
standardized network architecture of IoT systems seen in the section 1.1 of chapter 1, the IAP device would belong to the cloud layer because 

it interconnects the local devices with Internet Service Providers (ISPs) and internet core networks.  

According to technical documentation, periodic, LoRa-based transmissions between the flowmeter and 

the gateway occur every 3 minutes. The flowmeter, meanwhile, transform the tracked signals (raw data) 

into information (count of pulses), which is saved every 15 minutes. In this way, it is believed that the 

gateway accumulates the periodic LoRa packets transmitted by the flowmeter and update the cloud 

server every 15 minutes, to keep synchronized the water consumption statistics in the local and the cloud 

sides. On the other hand, the smartphone stablish Bluetooth connections with the flowmeter and the 

gateway to either set/modify their initial configurations (e.g., security settings and sampling rate 

accuracy) or consult water consumption locally. Consultations and metering configuration changes can 

be also held through the online user’s dashboard, available in cloud server (mySolem.com). Section 1.2 

and 1.3 adapts the implementation of the framework for impact estimation to estimate theoretically and 

empirically the data flow within this IoT system and from that, the reference flow and impact of its use 

phase in the long-term. 

1.1.Some basic principles on local/remote transmissions and environmental implications 
To follow sections 1.2 and 1.3 of this chapter and understand the implementation of the framework for 

impact estimation in terms of the function-capacity relationships of the electronic components included 

in the case study “smart metering”; the next sections provide a basic, yet useful explanation of how 

LoRa- and Internet-based communications occur, extending the fundamental concepts given in section 

1.2 of chapter 1. 

1.1.1. LoRa modulation 
In its more basic definition, LoRa is a modulation technique optimized for long-range, low-power-

consumption communications in IoT environments [153]. In Europe, this modulation technique uses the 

433 MHz, 868 MHz or 2.4GHz frequency bands to provide wireless communication. A frequency band 

is the physical mean by which data signals travel through the air and it can be subdivided in frequency 

channels (figure 5.5a), that have a defined capacity or bandwidth (figure 5.5b). 

  (a) 
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 (b) 

Figure 5.5. (a) Illustration of a frequency band splited into multiple channels. (b) A bandwidth (BW) defined around a frequency channel 

(𝐹𝑐ℎ𝑎𝑛𝑛𝑒𝑙). Both figures were extracted from [154]. 

On the other hand, a LoRa modulator takes data and transform it into a “symbol” or “chirp” that, in 

simple words, is nothing more than a piece of data that can be transmitted sequentially in a defined 

bandwidth. To better understand this concept, consider the time-frequency graph (spectrogram) 

presented in figure 5.6, which is an adapted example of LoRa symbols transmissions that can be found 

in Montagny, S. [154].  
 

Figure 5.6. Theoretical example of a 

binary data sequence “00011011” 
modulated under a Spreading Factor 2 

(4 symbols or chirps), and transmitted 

under a 125 kHz bandwidth in the 
868.1 MHz frequency channel. Figure 
Adapted from [154]. 

 

 

As observed, a data sequence is “divided” into symbols according to a defined number of bits. The 

number of bits transmitted per symbol is known as the Spreading Factor (SF). As the reader may notice, 

the time at which a sized-defined symbol is transmitted (𝑇𝑠𝑦𝑚𝑏𝑜𝑙) depends on the Spreading Factor and 

the Bandwidth, as illustrated in figure 5.7 and clarified in equation 5.1. 

 

 

 

Figure 5.7. Relative time at which a symbol is 

transmitted at different Spreading Factors in a 

defined bandwidth (𝑇𝑠𝑦𝑚𝑏𝑜𝑙). Figure extracted 

from [154]. 

 

 

 

 

𝑇𝑠𝑦𝑚𝑏𝑜𝑙 =  
2𝑆𝐹

𝐵𝑎𝑛𝑑𝑤𝑖𝑡𝑑𝑡ℎ
    (5.1)  

Where: 

𝑇𝑠𝑦𝑚𝑏𝑜𝑙 = 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑎 𝑠𝑦𝑚𝑏𝑜𝑙 𝑖𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 𝑎𝑛𝑑 𝑎 𝑏𝑎𝑛𝑑𝑤𝑖𝑡ℎ 

2𝑆𝐹 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 𝑜𝑓 𝑎 𝑑𝑎𝑡𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑎 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 

In this way, the time at which a entire data sequence composed of several symbols is transmitted from 

a LoRa transceiver to a LoRa gateway (Time on Air) is determined by the product between the number 

of symbols (𝑛𝑠𝑦𝑚𝑏𝑜𝑙) and 𝑇𝑠𝑦𝑚𝑏𝑜𝑙 (equation 5.2). 
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𝑇𝑖𝑚𝑒 𝑜𝑛 𝑎𝑖𝑟 = 𝑛𝑠𝑦𝑚𝑏𝑜𝑙  × 𝑇𝑠𝑦𝑚𝑏𝑜𝑙   (5.2) 

On the other hand, since each symbol consists on a number of bits determined by the SF, the rate at 

which a data sequence is encoded (Bitrate) is given by: 

𝐵𝑖𝑡𝑟𝑎𝑡𝑒 = 𝑆𝐹 ×
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

2𝑆𝐹    (5.3) 

Thus, in a determined bandwidth, the higher the Spreading Factor (SF), the higher the Time on Air and 

the lower the Bitrate, which means the more the transceiver of the LoRa modulator works, consuming 

energy. This is one of the several reasons by which the LoRa protocol implements an Adaptive Data 

rate Routine (ADR) in LoRa gateways. ADR allows regulating automatically the SF value in the LoRa 

gateway as well as the power output of the transceiver according to certain factors such as the receiving 

sensibility, the minimal Signal-to-Noise Ratio (SNR), and the packet loss estimation. All this parameters 

are highly affected by the distance at which the LoRa modulator (the transceiver) and the gateway are 

placed, as observed in Figure 5.8).  
 

 

 

 

 

Figure 5.8. Bitrate VS Energy 

consumption/ Time on air. The 
dimensionless vertical axis may represent 

maximal or minimal values for the time on 

air of a data sequence (which depends on 

𝑛𝑠𝑦𝑚𝑏𝑜𝑙 and 𝑇𝑠𝑦𝑚𝑏𝑜𝑙); or the bitrate ( in bits 

per second (bps)) in a determined 

bandwidth (for example consider the 
values for a 125kHz bandwidth in the 

provided table). Figure adapted from 

[155]. 

 

 

 

Indeed, as the distance increase, the established link between a LoRa transceiver and a LoRa gateway 

degrades (long distance may increase the signal-to-noise ratio or the packet loss rate). This force the 

LoRa gateway to regulate the Spreading Factor to high values to assure quality in transmissions, which 

means fewer data encoded per second, extending the time on air of a data sequence. In this sense, limiting 

the size of data sequences —or in other words, the data of the application— is a paramount of 

importance. Table 5.1 gives the maximum data application size that a LoRa packet can carry in a 

125MHz bandwidth, according to a given SF related to a distance range, together with the affected 

bitrate.   
Spreading factor Bandwidth Data application (payload) Bitrate Range 

SF12 125 kHz 51 Bytes 290 bps 14 Km 

SF11 125 kHz 51 Bytes 440 bps 11 Km 

SF10 125 kHz 51 Bytes 980 bps 8 Km  

SF9 125 kHz 115 Bytes 1760 bps 6 Km 

SF8 125 kHz 242 Bytes 3125 bps 4 Km 

SF7 125 kHz 242 Bytes 5470 bps 2 Km 

SF7 250 kHz 242 Bytes 11000 bps 2 Km 

Table 5.1. Maximum data application size (payload, in bytes) that a LoRa packet can carry according to different Spreading Factors in a 125 
MHz bandwidth (the affected bitrate and the maximal distance range are also provided). 



128 

 

1.1.2. LoRa protocol stack and data frames 
The concept of data payload introduced by table 5.1 refers to one of the elements that the structure of a 

LoRa packet has. As seen in chapter 1, a packet is a complete Protocol Data Unit (PDU) that includes 

additional header- and footer- information from all layers of a protocol stack [156]. In the case of LoRa, 

the headers and footers are added and appended respectively to the data application (frame Payload), 

according to the LoRa protocol stack showed in Figure 5.9. 

 

 

Figure 5.9. Headers and footers 

added to a frame payload in a 

LoRa protocol stack. Figure 
extracted from [154]. 

 

 

 

In figure 5.9, the Frame Payload contains the data application, which is encrypted and may vary in size, 

depending on the application, the SF and the bandwidth (see table 5.1). The Media Access Control 

(MAC) Layer adds to the Frame Payload, a MAC header indicating the type of message; a device address 

field, and a frame header (control, counter, and option port flags). The MAC layer also appends a 

Message Integrity Control (MIC) to be authenticated by the receiving device. In the Physical layer, the 

preamble field adds typically 8 supplementary symbols to maintain the receiver device synchronized; 

and an optional header that indicates the size of data and the coding rate (CR) of the LoRa packet. The 

Physical Layer also appends a Check Redundancy Cycle (CRC) field to allow detecting errors in the 

LoRa packet, which becomes a LoRa data frame ready to be sent through the physical mean of 

transmission. By considering all these additional elements, the maximal size of a LoRa data frame would 

be estimated as follows: 

𝑀𝑎𝑥 𝐿𝑜𝑟𝑎 𝑑𝑎𝑡𝑎 𝑓𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒 =  𝑃𝑟𝑒𝑎𝑚𝑏𝑙𝑒 + 𝑃ℎ𝑦𝐻𝐹 + 𝑀𝐴𝐶𝐻𝐹 + 𝐹𝑟𝑎𝑚𝑒𝐻 + 𝐹𝑟𝑎𝑚𝑒𝑃𝑎𝑦𝑙𝑜𝑎𝑑  (5.4) 

Where: 

𝑃𝑟𝑒𝑎𝑚𝑏𝑙𝑒 = 8 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

𝑃ℎ𝑦𝐻𝐹 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑎𝑑𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐻𝑒𝑎𝑑𝑒𝑟𝑠 𝑎𝑛𝑑 𝐹𝑜𝑜𝑡𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑙𝑎𝑦𝑒𝑟 (5 𝐵𝑦𝑡𝑒𝑠) 

𝑀𝐴𝐶𝐻𝐹 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑎𝑑𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐻𝑒𝑎𝑑𝑒𝑟𝑠 𝑎𝑛𝑑 𝐹𝑜𝑜𝑡𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑀𝐴𝐶 𝑙𝑎𝑦𝑒𝑟 (5 𝐵𝑦𝑡𝑒𝑠) 

𝐹𝑟𝑎𝑚𝑒𝐻 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑎𝑑𝑑𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑓𝑟𝑎𝑚𝑒 𝐻𝑒𝑎𝑑𝑒𝑟 (23 𝐵𝑦𝑡𝑒𝑠) 

𝐹𝑟𝑎𝑚𝑒𝑃𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

For example, in a LoRa connection established between two devices, with a maximal data payload 

defined by a Spreading Factor of 7, and in a bandwidth of 125 MHz, the total size of a LoRa packet 

would be: 

𝑀𝑎𝑥 𝐿𝑜𝑅𝑎 𝑑𝑎𝑡𝑎 𝑓𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒 = 7 𝑏𝑦𝑡𝑒𝑠 + 5 𝐵𝑦𝑡𝑒𝑠 + 5 𝐵𝑦𝑡𝑒𝑠 + 23 𝐵𝑦𝑡𝑒𝑠 + 242 𝐵𝑦𝑡𝑒𝑠 = 282 𝐵𝑦𝑡𝑒𝑠    

1.1.3. TCP/IP Protocol stack and data frames 
In basic terms, The Transport Control Protocol / Internet Protocol (TCP/IP) model provides networking 

to enable seamless interoperability across media and computing hardware platforms [157]. It simplifies 

the Application, Presentation and session layers of the referential OSI model seen in chapter 1, into one 

layer called the Application Layer. It also simplifies the Data Link and Physical layers into one layer 

known as the Network Access layer. Figure 5.10 provides a contrasted view between the OSI referential 

model and the TCP/IP model, together with the typical protocols used in each layer of a TCP/IP protocol 

stack. 
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Figure 5.10. Application, 

Transport, Network, and 

Network access layers of 

the TCP/IP model 

contrasted to the OSI 

referential model showing 

a one-way transmission 

from a client to a server. 

The Network Access layer 

facilitates wired 

(Ethernet) or wireless 

communication 

depending on the physical 

mean of transmission. 

Adapted from [156]. 

 

 

In the application layer, the TCP/IP protocol stack usually uses the Hypertext Transfer Protocol (HTTP) 

to transmit a packet. The HTTP protocol is oriented to facilitate data sharing in distributed, collaborative, 

hypermedia information systems [158]. It includes the user data (frame payload), whose size may vary 

depending on the attended application. HTTP uses two request types that indicate the kind of action that 

a transmitting device wants to perform with a cloud server; a POST request to upload user data to the 

cloud server or a GET request to download data from the cloud server (after responding any of these 

requests, the cloud server sends an acknowledgement-typed message to the transmitting device).  

In the transport layer, the TCP/IP protocol stack adds a TCP header with a maximal size of 160 bits (20 

Bytes) to the HTTP frame to ensure data delivery and provide end-to-end reliability for data reliability 

or error recovery (figure 5.11a). Later, the Network layer adds to it an IP header (figure 5.11b) with a 

maximal size of 20 bytes to allow communication between remote networks. At the end, the Network 

access layer adds information about the physical address (e.g., MAC address) to identify devices in a 

physical transmission mean (e.g., wired / wireless environments). Figure 5.11c provides a generic 

802.11 header format with a maximal size of 30 Bytes in the context of wireless communication.  

(a)  (b) 

(c) 

Figure 5.11. TCP (a), IP (b), and 802.11 (c) header formats. Figure a and b were adapted from [154] and figure c was extracted from [159]. 

Thus, the total size of a TCP/IP data frame could be estimated as follows: 

𝑀𝑎𝑥 𝑇𝐶𝑃 𝐼𝑃 𝑑𝑎𝑡𝑎 𝑓𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒 = 𝑀𝐴𝐶𝐻 + 𝐼𝑃𝐻 + 𝑇𝐶𝑃𝐻 + 𝐹𝑟𝑎𝑚𝑒𝑃𝑎𝑦𝑙𝑜𝑎𝑑   (5.5) 

Where: 

𝑀𝐴𝐶𝐻 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑎𝑑𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐻𝑒𝑎𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐴𝑐𝑐𝑒𝑠𝑠 𝐿𝑎𝑦𝑒𝑟 (𝑀𝐴𝐶 𝑎𝑑𝑟𝑒𝑠𝑠𝑒𝑠) (30 𝐵𝑦𝑡𝑒𝑠) 

𝐼𝑃𝐻 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑎𝑑𝑑𝑠 𝑏𝑦 𝑡ℎ𝑒 𝐼𝑃 𝐻𝑒𝑎𝑑𝑒𝑟 (20 𝐵𝑦𝑡𝑒𝑠) 
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𝑇𝐶𝑃𝐻 = 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑎𝑑𝑑𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑇𝐶𝑃 𝐻𝑒𝑎𝑑𝑒𝑟 (20 𝐵𝑦𝑡𝑒𝑠) 

𝐹𝑟𝑎𝑚𝑒𝑃𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)  

For example, the total size of a TCP/IP data frame whose contains a data payload of 1410 bytes may be: 

𝑀𝑎𝑥 𝑇𝐶𝑃 𝐼𝑃 𝑑𝑎𝑡𝑎 𝑓𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒 = 30 𝐵𝑦𝑡𝑒𝑠 + 20 𝐵𝑦𝑡𝑒𝑠 + 20 𝐵𝑦𝑡𝑒𝑠 + 1410 𝐵𝑦𝑡𝑒𝑠 = 1480 𝐵𝑦𝑡𝑒𝑠 

1.1.4. A Simple data transmission event with TCP/IP 
Although computer communications are more complex than the schemes described below, they describe 

ones of the basic networking mechanisms that allow a basic and reliable data transfer between two 

devices, which is capital for this work. 

1.1.4.1.TCP three-way handshake mechanism 
The three-way handshake (ths) is a mechanism that allows a transmitting device know if a receiving 

device is available and ready to process incoming data. It stablishes and assures a reliable connection 

before and during data transmission and it is composed of three basic and sequential steps (Figure 5.12). 

 

Figure 5.12. The three basic steps of a TCP three-way handshake (ths) 
mechanism. Figure extracted from [156]. 

 

1. Synchronization (SYN): the transmitting device (Host A) sends a TCP packet with a 

synchronization request (SYN) that includes an initial sequence number to the target device 

(Host B), demanding connection establishment. This TCP packet is empty, but includes its 

header together with the ones of lower layers (those of the network and network access layers). 

2. Synchronization / Acknowledgement (SYN / ACK): The target device (B) responds to this 

request by sending another TCP packet with a SYN and ACK responses containing its initial 

sequence number and an acknowledgement number respectively. This TCP packet is empty, but 

includes its header together with the ones of lower layers. 

3. Acknowledgement (ACK): The transmitting device (A) sends to the target device (B) a last 

empty TCP packet with and acknowledgement number. 

Consequently, the maximal number of bytes in a TCP three-way handshake mechanism would amount 

to 210 bytes, which correspond to 3 empty packets containing TCP, IP and MAC headers with their 

maximal size (20, 20 and 30 Bytes respectively, according to figure 5.11), including SYN, SYN/ACK, 

and ACK request and responses. After this mechanism, both devices have all the necessary information 

to start and exchange data transmissions reliably. 

1.1.4.2.TCP teardown mechanism 
When the full data transfer from device A to device B is completed, another mechanism to close the 

stablished connection begins. This mechanism is called TCP teardown and it is composed by three 

sequential steps (Figure 5.13). 
 

 

Figure 5.13. The three basic steps of a TCP teardown mechanism. Figure extracted 
from [156]. 

 

 

1. End transmission request and acknowledgement (FIN / ACK): the transmitting device (A) 

send to the target device (B) an ampty TCP packet with an end request (FIN) and an 

acknowledgement number ACK. 
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2. Acknowledgements (ACK) and End transmission confirmation (FIN / ACK): the target B 

responds with another acknowledgement (ACK), and sends to transmitting device (A) an empty 

TCP packet with a FIN response and an acknowledgment number ACK. 

3. Acknowledgement (ACK): Finally, the transmitting device (A) sends to the target device (B) 

a last empty TCP packet with a closing acknowledgement number (ACK). 

Consequently, the number of bytes in a TCP teardown mechanism would amount to 280 bytes, which 

correspond to 4 empty packets containing TCP, IP and MAC headers with FIN/ACK and ACK requests 

and responses. 

1.2.Implementation of the framework for impact estimation: Theoretical impact estimation 

of the use phase of the case study “Smart metering” 
The previous section 1.1, as well as the technical aspects seen in its subsections permit the construction 

of the table 5.2 according to the framework for impact estimation presented in the previous chapter 

(section 4.2), in the context of a one-way transmission from local devices to the cloud infrastructure of 

the case study. 

Device (D) Electronic component (C) Data operational stages Function Capacity related to the function (FC) 

Inductive pulse emitter Capacitors and inductors Data collection Generating pulses Maximal Sampling rate* 10 Pulses per Sec 

Flow controller LoRa module 

Data processing Counting pulses 

Maximal Sampling rate* 10 Pulses per Sec 

current consumption sleep mode* 0,0016 mA 

Information transmission Sending count 
Maximal data payload in 800m (SF7, 125 MHz)** 242 Bytes 

current consumption transmit mode* 44,5 mA 

Gateway 

LoRa Module Information reception Receiving counts Maximal data payload received in 800m (SF7, 125 MHz)** 1410 Bytes 

Microcontroller Information processing Preparing TCP/IP packet Unknown Unknown 

WiFi module Information retransmission Resending counts Maximal data frame size** 1480 Bytes 

Table 5.2. Theoretical capacities of key technical features of electronic components for building the reference flow in the use-phase of the 

IoT system of the case study “Smart metering”. *Technical data provided by manufacturers (available in references). ** Deducted or 
estimated from technical documentation. 

For consistency with the proposed framework, Table 5.2 presents the sensing devices in light-blue lines 

and edge devices in light-green lines; and the function column shows only those essential tasks assumed 

in different data operational stages described in chapter 2.  Due to the lack of documentation about the 

data design of the IoT system and because of the inductive pulse emitter and the flow meter come from 

different manufacturers, it is not possible to confirm whether the maximal sampling rate showed in table 

5.2 is an effort to adapt the inductive pulse emitter to the electronic design of the flowmeter, or it is an 

effort to adapt the flowmeter to the optimal sampling rate of the pulse emitter, to assure a lifespan of 10 

years suggested in its datasheet. Here, this maximal sampling rate is attributed to both devices. It is also 

assumed that, in sleep mode, the flowmeter uses the microprocessor of its LoRa module to count the 

pulses generated by the inductive pulse emitter. Moreover, because the manufacturer recommends a 

maximal distance of 800 meters between the flowmeter and the gateway, it is assumed that the flowmeter 

and the gateway are design to run with a spreading factor 7 (according to figure 5.8), allowing a maximal 

data payload of 242 Bytes for LoRa transmissions (according to table 5.1). It is assumed that LoRa 

transmissions happen in a 125 kHz bandwidth. 

On the other hand, the maximal data payload received by the LoRa module of the gateway is presumed 

to be 1410 Bytes, which corresponds to 5 complete accumulated LoRa packets in 15 minutes (including 

LoRa protocol headers and footers as defined in equation 5.4 and assuming that the gateway do not 

modify these packets sent by the flowmeter). In the gateway, It is assumed that its microcontroller add 

to these 1410 bytes the TCP/IP and MAC headers, obtaining a final packet of 1480 bytes (according 

equation 5.5), that is sent to the cloud server via its WiFi module (every 15 minutes, assuming a 

simultaneous synchronization updating of the flowmeter and the cloud server). Figure 5.14 schematizes 

these aspects in the terms of the proposed crossed-typed, life cycle modeling implementation of the 

framework for impact estimation, seen in previous chapter. 
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Figure 5.14. Cross-typed lifecycle modeling for the case study “Smart metering” in the use phase (implementation of the framework for impact estimation). Notice that, although the two batteries for the corresponding 
inductive pulse emitter and flowmeter may be considered as electronic components (Power supply), here it is consider as reference flows whose quantities depends on the number of batteries needed to power both 

devices in a period of time. Because this analysis is oriented to estimate the impact of the case study in the use phase, the element allowing the operational functioning of the system (the dotted elements) are depicted, 
but their BoL and EoL impacts of are not taken into account. 
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Figure 5.14 shows only those electronic components involved in the data operational stages functions 

stated in table 5.2, together with the energy source for each device or layer. This model helps to estimate 

the GW impact of the IoT system in the use phase in terms of energy used per function. In the case of 

the inductive pulse emitter, the impact of generating pulses is directly related to the number of batteries 

used for this purpose. In the same way, the impact of counting the pulses and sending the counts in the 

flowmeter is related to the number of batteries needed to execute these tasks in a sleep and transmit 

mode, respectively. In the case of the gateway, the impact of updating the cloud server is directly related 

to its energy needs and the kind of source (electric grid supply). Finally, the impact of using the cloud 

server, as well as the access network (IAP device) and the internet core network is related to the energy 

needed to process and transmit a specific amount of data respectively (in kWh per GB).   

On the other hand, although one-way transmissions from the gateway to the cloud server are believed 

in theory; in practice, there exists round-trip transmissions to establish a reliable connection between 

both devices (depicted by the double-sided red arrows in figure 5.14). These round-trip transmissions 

concern the three-way handshake and teardown TCP and acknowledgement mechanisms mentioned 

before and they are also present between the smartphone and the cloud server, to allow online 

consultations of water consumption. Figure 5.15 shows the theoretical TCP/IP packets transiting along 

the internet and cloud infrastructure of the IoT system of the case study. 

 

Figure 5.15. Theoretical TCP/IP packets (horizontal arrows) in a single tranmission bewteen an edge device (flowmeter or smartphone) and 

the cloud server. In the top, the TCP/IP three-way handshake mechanism. In the middle, the actual packets sent to the cloud server (an typical 

HTTP POST request, within the regular operation of the IoT system; or a HTTP GET request from a smartphone to the cloud server. In the 
bottom, the TCP teardown mechanism.  

In this way, if one assumes the functional unit “facilitating the hourly monitoring of water 

consumption of an area of 1 Km2, during 2 years”, the total data circulating in the internet 

infrastructure and cloud server can be organized into three scenarios: a worst scenario in which the 

maximal data payload of 5 accumulated LoRa packets is resend constantly (242 Bytes per LoRa packet, 

which together with all the protocol overheads makes TCP/IP packets of 1480 bytes, as explained 
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before), a regular scenario assuming the median data payload (121 bytes, resulting in TCP/IP packets of 

875 bytes) and a best scenario assuming a minimal data payload (1 byte, resulting in TCP/IP packets of 

275 bytes).  

(sender ↔ receiver) Function 
Transmissions 

events 
Packets 

Data traffic (GB) 

Worst scenario 
(1480 Bytes) 

Regular scenario 
(875 Bytes) 

Best scenario 
(275 Bytes) 

Gateway ↔ Cloud server (GC) Resending counts 70066 630594 0,1331 0,0891 0,0499 

Smartphone ↔ Cloud server (SC) Hourly consultations 17520 157680 0,0103 
   Total 0,1434 0,0994 0,0602 

Table 5.3. Three hypothetical scenarios of the data traffic of the case study “Smart metering” in 2 years. Every scenario assumes a variable 
data payload per LoRa packet, which is accumulated together with other 4 packets, as it is explained in above. 

In table 5.3, the number of packets involved in the resending of counts are obtained by considering the 

number of transmissions events stablished between the gateway and the cloud server according to 

equation 5.6. 

𝑃𝐺𝐶 = 𝑃𝐺𝐶𝑡ℎ𝑠
+ 𝑃𝐻𝑇𝑇𝑃𝑝𝑜𝑠𝑡

+ 𝑃𝐻𝑇𝑇𝑃𝐴𝐶𝐾
+ 𝑃𝐺𝐶𝑡

    (5.6) 

Where: 

𝑃𝐺𝐶 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑐𝑖𝑟𝑐𝑢𝑙𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑔𝑎𝑡𝑒𝑤𝑎𝑦 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑙𝑜𝑢𝑑 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑛 𝑡𝑤𝑜 𝑦𝑒𝑎𝑟𝑠  

𝑃𝐺𝐶𝑡ℎ𝑠
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑖𝑛 𝑎 𝑇𝐶𝑃 𝑡ℎ𝑟𝑒𝑒𝑤𝑎𝑦 ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑒𝑣𝑒𝑛𝑡𝑠  

𝑃𝐻𝑇𝑇𝑃𝑝𝑜𝑠𝑡
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑢𝑝𝑙𝑜𝑎𝑑 𝑑𝑎𝑡𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑒𝑣𝑒𝑛𝑡𝑠  

𝑃𝐻𝑇𝑇𝑃𝐴𝐶𝐾
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝑚𝑒𝑛𝑡 𝑡𝑦𝑝𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡 𝑏𝑦 𝑡ℎ𝑒 𝑐𝑙𝑜𝑢𝑑 𝑠𝑒𝑟𝑣𝑒𝑟  

𝑃𝐺𝐶𝑡
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑖𝑛 𝑎 𝑇𝐶𝑃 𝑡𝑒𝑎𝑟𝑑𝑜𝑤𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑒𝑣𝑒𝑛𝑡𝑠  

Assuming a frequency of four transmissions events established every hour (one every 15 minutes), the 

number of transmission events between the gateway and the cloud server amounts to 70066 in two years. 

In each of this transmissions events, TCP three-way handshake and teardown mechanisms happen before 

and after sending one HTTP packet (𝑃𝐻𝑇𝑇𝑃𝑝𝑜𝑠𝑡
), oriented to upload data to the cloud server. According 

to the message exchange chart in figure 5.15, these mechanisms generates 3 and 4 additional packets for 

𝑃𝐺𝐶𝑡ℎ𝑠
 and 𝑃𝐺𝐶𝑡

 respectively. Thus, 𝑃𝐺𝐶𝑡ℎ𝑠
 amounts to 210198 packets (70066 transmission events 

multiplied by 3 TCP threeway handshake packets) and 𝑃𝐺𝐶𝑡
 to 280264 packets (70066 transmission 

events multiplied by 4 TCP teardown packets). On the other hand, both 𝑃𝐻𝑇𝑇𝑃𝑝𝑜𝑠𝑡
 and 𝑃𝐻𝑇𝑇𝑃𝐴𝐶𝐾

 amount 

to 70066 packets (70066 transmission events multiplied by 1 HTTP packet for the post request and the 

acknowledgement respectively). 

Similarly, the number of TCP/IP packets involved in an online consultation of water consumption is 

obtained by considering the number of transmissions events stablished between the smartphone and the 

cloud server according to equation 5.7. 

𝑃𝑆𝐶 = 𝑃𝑆𝐶𝑡ℎ𝑠
+ 𝑃𝐻𝑇𝑇𝑃𝑔𝑒𝑡

+ 𝑃𝐻𝑇𝑇𝑃𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
+ 𝑃𝑆𝐶𝑡

    (5.7) 

Where: 

𝑃𝑆𝐶 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑐𝑖𝑟𝑐𝑢𝑙𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 𝐶𝑙𝑜𝑢𝑑 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑛 𝑡𝑤𝑜 𝑦𝑒𝑎𝑟𝑠   

𝑃𝑆𝐶𝑡ℎ𝑠
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑖𝑛 𝑎 𝑇𝐶𝑃 𝑡ℎ𝑟𝑒𝑒𝑤𝑎𝑦 ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑒𝑣𝑒𝑛𝑡𝑠  

𝑃𝐻𝑇𝑇𝑃𝑔𝑒𝑡
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑠𝑒𝑛𝑑 𝑎 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑙𝑜𝑢𝑑 𝑠𝑒𝑟𝑣𝑒𝑟  

𝑃𝐻𝑇𝑇𝑃𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑎 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑒𝑠𝑡  

𝑃𝑆𝐶𝑡
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑖𝑛 𝑎 𝑇𝐶𝑃 𝑡𝑒𝑎𝑟𝑑𝑜𝑤𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑒𝑣𝑒𝑛𝑡𝑠  

Assuming a frequency of 24 transmissions events per day (one every 1 hour), the number of transmission 

events stablished between the Smartphone and the Cloud server amounts to 17520 in two years. In each 
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of this transmissions events, it is assumed that only one packet for a water consumption request 

(𝑃𝐻𝑇𝑇𝑃𝑔𝑒𝑡
) and one packet for the response (𝑃𝐻𝑇𝑇𝑃𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

) are needed. As in the case of regular 

operation, the online consultation of water consumption includes 3 additional packets for the TCP three-

way handshake mechanism and 4 additional packets for the TCP teardown mechanism. In this way, the 

total data traffic for the case study in a specific scenario (last line of table 5.3) includes the total data 

generated to resend the pulse counts from the gateway to the cloud server (𝐷𝑎𝑡𝑎𝐺𝐶) plus the total data 

generated to consult water consumption from a smartphone to the cloud server (𝐷𝑎𝑡𝑎𝑆𝐶). Both parts are 

estimated according to equation 5.8 and 5.9 respectively: 

𝐷𝑎𝑡𝑎𝐺𝐶 = (𝑃𝐺𝐶𝑡ℎ𝑠
× 210 𝐵𝑦𝑡𝑒𝑠) + (𝑃𝐻𝑇𝑇𝑃𝑝𝑜𝑠𝑡

× 𝐵𝑦𝑡𝑒𝑠𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜) + (𝑃𝐺𝐶𝑡
× 280 𝐵𝑦𝑡𝑒𝑠)    (5.8) 

𝐷𝑎𝑡𝑎𝑆𝐶 = (𝑃𝑆𝐶𝑡ℎ𝑠
× 210 𝐵𝑦𝑡𝑒𝑠) + (𝑃𝐻𝑇𝑇𝑃𝑔𝑒𝑡

× 1 𝐵𝑦𝑡𝑒) + (𝑃𝐻𝑇𝑇𝑃𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
× 1 𝐵𝑦𝑡𝑒) + (𝑃𝑆𝐶𝑡

× 280 𝐵𝑦𝑡𝑒𝑠)  (5.9) 

Where: 

𝐵𝑦𝑡𝑒𝑠𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑡𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠 𝑜𝑓 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐿𝑜𝑅𝑎 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑢𝑛𝑑𝑒𝑟 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 5.3  

In both equations, the constants of 210 Bytes and 280 Bytes correspond to the maximal number of bytes 

generated by a TCP three-way handshake and teardown mechanisms respectively, as seen in sections 

1.1.4.1 and 1.1.4.2. On the other hand, 𝐵𝑦𝑡𝑒𝑠𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 in equation (5.8) correspond to the total number 

of bytes to be sent from the gateway to the cloud server, which varies according to the data payload in 

a LoRa transmission. For example, for the worst scenario, it was assumed that every LoRa packet has 

the maximal data payload for the specific Spreading Factor of 7 and bandwidth 125 kHz (242 bytes, 

according to table 5.1) plus the LoRa protocol headers (40 Bytes, according to equation 5.4). This gives 

LoRa Packets of 282 Bytes which are sent (1 every 3 minutes) and accumulated in the gateway (5 every 

15 min). Assuming no modifications on them, it is believed that the gateway resent these grouped LoRa 

packets (5 times 282 Bytes = 1410 Bytes) to the cloud server by adding them a TCP, IP and MAC 

headers (30, 20, and 20 bytes respectively), giving a total HTTP post packet of 1480 Bytes. In this same 

line, the regular scenario would involve an assumed LoRa data payload of 121 Bytes (a median value), 

and the best scenario 1 Byte (an assumed, minimal value), both give a total of 875 and 275 Bytes HTTP 

post packets to be sent every quarter hour.  

 Thus, by considering the studied functions and key capacities of electronic devices and 

electronic components seen in table 5.2, the life-cycle modeling implementation seen in figure 

5.14, and the theoretical data traffic obtained in table 5.3; the impact of the use phase of case 

study amounts approximately to 5,72, 5,48 and 5,47 Kg CO2-eq for the worst, regular and best 

scenarios respectively, according to the reference flow detailed in table 5.4. 

Device 
Electronic 

component 
Functions 

Capacity* Reference flow Impact (Kg CO2-eq)** 

Feature Value Worst Regular Best Worst Regular Best 

Pulse emitter 

Capacitors & 
 inductors 

Generating pulses Maximal sampling rate 10 Pulse / sec  
1 Li-ion battery 0,0382 

Li-ion Battery Power supply Typical capacity 1650 mAh 

Flow meter 

LoRa  
module 

Counting pulses 
Current consumption  

sleep mode  
0,0016 mA 

2 Li-ion 9V  
Batteries 

1 Li-on 9V  
Battery 

1 Li-on 9V  
Battery 

0,458 0,229 0,229 
Sending counts 

Bitrate  
(SF7, 125 KHz) 

5470 bps 

Current consumption  
Transmission mode 

44,5 mA 

Li-ion 9V Battery Power supply Typical capacity 1200 mAh 

Gateway 

LoRa module Receiving counts 

Energy consumption 0,006 kW 105,12 kWh 5,150 
WiFi module 

Preparing TCP/IP packets 

Resending counts 

Smartphone WiFi module 
Hourly consultations of  
water consumption 

Energy consumption  
(sending in 700 kB /sec) 

1629 mW 0,50 kWh 

0,045 
Energy consumption  

(Receiving) 
1375 mW 0,423 kWh 

Internet & 
Access 

networks 
    Energy consumption 0,15 kWh / GB 0,0215 kWh 0,0149 kWh 0,0090 kWh 0,017 0,012 0,007 

Cloud server     Energy consumption 0,14 kWh / GB 0,0201 kWh 0,0139 kWh 0,0084 kWh 0,016 0,011 0,007 
     Total 5,7235 5,4846 5,4758 

Table 5.4. Estimated impact of the use phase of the case study “Smart metering” under the worst, regular and best scenario. *data available 

in respective technical documentation or literature found in previous and reference sections. **According to CML-IA 2001 LCIA method 
(Global warming 100a). 
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To understand the reference flow and the impact columns in table 5.4, consider the following aspects. 

Firstly, it is believed that only 1 Li-ion battery is needed for running the pulse emitter under 10 pulse 

per sec in the three scenarios (as suggested by manufacturer, whose claims a lifetime of 10 years under 

regular conditions of usage). On the other hand, it is assumed that the number of batteries required by 

the flowmeter would depend on the current consumption and the time of its operational states (sleep and 

transmitting). The later aspect depends at the same time on the bitrate of its LoRa module working under 

a Spreading Factor of 7 in a bandwidth of 125 kHz. To explain this idea, consider figure 5.16. 

 

 

Figure 5.16. Assumed schema for the sleep and 

transmission states of the flowmeter during one LoRa 
transmission event. 

 

 

In figure 5.16, a LoRa transmission event involves a sleep and a transmission state. As a LoRa 

transmission happens every 3 minutes (or 180 seconds, according to the technical documentation of the 

flowmeter), the time at which the flow meter is in transmission (𝑡𝑡𝑟𝑎𝑛𝑠) and sleep mode (𝑡𝑠𝑙𝑒𝑒𝑝) during 

a LoRa transmission event depends on the bitrate capacity of the LoRa module, according to equation 

5.10 and 5.11. 

𝑡𝑡𝑟𝑎𝑛𝑠 =
𝑃𝑆𝐿𝑜𝑅𝑎

𝐵𝑅𝑆𝐹
           (5.10)  

𝑡𝑠𝑙𝑒𝑒𝑝 = 180 𝑠𝑒𝑐𝑠 − 𝑡𝑡𝑟𝑎𝑛𝑠         (5.11)  

Where: 

𝑃𝑆𝐿𝑜𝑅𝑎 = 𝑆𝑖𝑧𝑒 𝑜𝑓 𝑎 𝐿𝑜𝑅𝑎 𝑃𝑎𝑐𝑘𝑒𝑡 (𝑖𝑛 𝑏𝑖𝑡𝑠)   

𝐵𝑅𝑆𝐹 = 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝐿𝑜𝑅𝑎 𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤𝑚𝑒𝑡𝑒𝑟 𝑖𝑛 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 𝑎𝑛𝑑 𝑏𝑎𝑛𝑑𝑤𝑖𝑡ℎ  

Thus, if one transform 𝑡𝑡𝑟𝑎𝑛𝑠 and 𝑡𝑠𝑙𝑒𝑒𝑝 in hours, the number of batteries required by the flow meter 

(𝐵𝑓𝑚) working in a specific scenario is given by: 

𝐵𝑓𝑚 = (𝐵𝐿𝑇𝑡𝑟𝑎𝑛𝑠 × 𝑡𝑡𝑟𝑎𝑛𝑠  × 𝑇𝑇𝐸𝐿𝑜𝑅𝑎) + (𝐵𝐿𝑇𝑠𝑙𝑒𝑒𝑝  × 𝑡𝑠𝑙𝑒𝑒𝑝 × 𝑇𝑇𝐸𝐿𝑜𝑅𝑎)    (5.12) 

Where: 

𝐵𝐿𝑇𝑡𝑟𝑎𝑛𝑠 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒 𝑇𝑖𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑚𝑜𝑑𝑒 (𝑖𝑛 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟)  

𝐵𝐿𝑇𝑠𝑙𝑒𝑒𝑝 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒 𝑇𝑖𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑠𝑙𝑒𝑒𝑝 𝑚𝑜𝑑𝑒 (𝑖𝑛 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟)  

𝑇𝑇𝐸𝐿𝑜𝑅𝑎 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑜𝑅𝑎 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐸𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡𝑤𝑜 𝑦𝑒𝑎𝑟𝑠  

To obtain the Battery Life Time factors for the sleep and transmission states, one divide the nominal 

capacity of a Li-ion 9V battery (mAh) by the current consumption of both states respectively, all 

multiplied by a performance efficiency of the battery, that considers its natural discharging rate. For 

example, to obtain the Battery Life Time factor for the transmission mode of the specific LoRa module 

of the flowmeter, one consider 95% of nominal capacity of a battery (to include natural discharging rate 

of 5%) and the current consumption of 44,5 mA for the transmission state  in the following way: 

𝐵𝐿𝑇𝑡𝑟𝑎𝑛𝑠 = (
1200 𝑚𝐴ℎ

44,5 𝑚𝐴
) × 95% = 25,6 ℎ   𝑜𝑟  1 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑓𝑜𝑟 25,6 ℎ𝑜𝑢𝑟𝑠 𝑖𝑛 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒 

Secondly, the total electricity needed for dealing with the internet traffic in each scenario is obtained by 

multiplying the total data traffic found in table 5.3 by electricity to gigabyte (kWh/GB) ratios for the 

internet core networks and data centers, available in literature. In this work, one uses a 0,15 kWh/GB 

ratio for the Access and Internet core networks, which considers the median value between the proposed 

ratios found in Malmodin, J. et al. [163] and Krug, L. et al [164]; and the 0,14 kWh/GB ratio for the 
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cloud infrastructure, proposed by Andrae, A. S., & Edler, T.  [165], who collected and analyzed several 

works oriented to estimate the energy needs of data centers. 

Finally, for the smartphone side, one considers the energy required for powering its WiFi module in the 

transmitting and receiving mode (0,001629 and 0,001375 kW respectively, according to Perrucci, G.P. 

et al. [166]) multiplied by the total time that the WiFi module is in these correspondent modes (it is 

assumed that the user turns on the WiFi function of his or her phone during one minute to consult his or 

her water consumption, which is equal to 292 hours during 2 years). The power output of the battery is 

assumed to 95%.  

In this manner, the impact column of table 5.4 shows the impact of a one-cell-based Li-ion battery for 

the inductive pulse emitter (Production of one Li-ion battery cell (GLO)), and the impact of a six-cell-

based Li-ion battery, in the case of the flowmeter. For calculations, one consider the impact of producing 

a dry cell Li-ion battery (6,7675 Kg CO2-eq 100a, according to the CML-IA 2001 LCIA method); and 

the weight of a battery cell, assuming that a typical six-cell-based battery of 9V weights 33,9 grams (so 

one cell = 33,9 / 6 = 5,65 grams or 0,00565 kg)). The impacts of the gateway and smartphone consider 

the electricity mix in France (Market for electricity, medium voltage (FR)) and the impacts of the cloud 

server as well as the internet and access networks (including the IAP device) take into account an 

international electricity mix (Market for electricity, medium voltage (GLO)). The LCIA methodology 

used is CML-IA 2001 (Global warming 100a).  Figure 5.17, shows the relative impacts for the three 

studied scenarios. 

(a) (b) (c) 

Figure 5.17. Relative GW impact results of the use phase of the case study “Smart metering” under a worst scenario (transmitting a HTTP 
post packet of 1480 Bytes containing 5 accumulated LoRa of 282 Bytes) (a), a regular scenario (875 Bytes containing 5 LoRa packets of 161 

Bytes) (b), and a best scenario (275 Bytes containing 5 LoRa packets of 41 Bytes) (c). 

1.3.Implementation of the framework for impact estimation: environmental assessment of 

the use-phase of the case study “Smart metering” from empirical tracking of data flow 
This section present an experimental analysis of the data flow within the case study “Smart metering”. 

It aims to contrast the theoretical results obtained in the previous section and provide insights for 

evaluating the use-phase impact of an IoT system in more detail by following the framework for impact 

estimation, and the packet exchange seen in the respective figures 5.14 and 5.15. 

1.3.1. Experimental settings and methodology 
To do this, a packet traffic analysis is carry out by implanting two network analyzers (sniffers) equipped 

with specialized software, according to the schema below. 
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Figure 5.18. Experimental network deployment of the IoT system of the case study “Smart metering” including packet sniffers A and B. The 
IP addresses and domain name (mySolem.com) of the devices involved in the internet data traffic are showed. According to Aslan, J. et al 

[12] and to the standardized network architecture of IoT systems seen in the section 1.1 of chapter 1, the IAP device would belong to the 
cloud layer because it interconnects the local devices with Internet Service Providers (ISPs) and internet core networks. 

A packet traffic analysis refers to the technique of capturing and interpreting live data as it flows along 

different segments of a network, and a sniffer is a hardware/software tool used to capture and analyze 

raw network data going across a physical transmission mean [156]. In figure 5.18, a Wireshark-based 

sniffer (packet sniffer A) equipped with a RTL2832U-based Software-Defined-Radio (RTL-SDR) 

bundle (figure 5.19a) and GNU-radio companion software running in a Linux PC is placed between the 

flowmeter and the gateway to capture and analyze LoRa transmissions of both devices. A specific GNU-

radio companion model based on gr-lora implementation [167] was developed to allow the RTL-SDR 

device intercept LoRa Transmissions (details available in Annex 1).    

(a) (b) 

Figure 5.19. (a) The RTL2832U-based Software Defined Radio (RTL-SDR) USB bundle used for the LoRa traffic analysis in this work 

(Datasheet available in [168]). (b) An example of a LoRa transmission in the 868.1 MHz frequency captured by a RTL-SDR bundle and the 
gr-lora GNU-radio implementation. 

The second packet sniffer B in figure 5.18, is a Wireshark-based sniffer using the wireless Network 

Interface Controller (NIC) of a desktop PC (in promiscuous mode) running in windows 7. It was 

implanted between the gateway and the IAP device to capture and analyze WiFi transmissions intended 

to the cloud server. In figure 5.18, the distance between the flow meter and the gateway is 4 meters. 

1.3.2. Experimental Procedure 
The experimental network described above operated approximately 10 hours (from 11h40 to 22h20) in 

which regular water consumption was emulated by applying compressed air to the jet meter. During this 

time, hourly consultation of water consumption were made, by acceding the cloud server via a 

smartphone equipped with a WiFi module. Sniffer A and B were initialized before the starting up the 
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network. To capture the LoRa packets, the GNU-Radio companion model considered a spreading factor 

of 7, a frequency band of 868 MHz hearing in three frequency channels, and a bandwidth of 125kHz. 

The LoRa packets were intercept by the RTL-RDS bundle and broken down into User Datagram 

Protocol (UDP) packets, which were reoriented to the Wireshark interface by the ports 40868, 40869 

and 40870 of sniffer A (one for every frequency channel). In the data traffic reported by sniffer B, 

specific Wireshark filters were applied to obtain every packet circulating between the gateway and the 

cloud server (Annex 3 presents an extract of the filtered data traffic between the gateway and the cloud 

server). 

1.3.3. Results 
Figure 5.20 shows a sample of the last LoRa transmissions between the flow meter and the gateway in 

minute resolution (from 21h06 to 22h06).  

 
Figure 5.20. LoRa traffic between the flow meter and the gateway (excluding UDP headers, from 21h06 to 22h06, minute resolution). Each 

point represent the aggregate data size of LoRa transmissions in one minute. 

As observed, transmissions between both devices occurs every 3 minutes as stated by the manufacturer 

(with some exceptions, in which packet loss is assumed) and, besides some outliers, It could be said that 

the typical size of LoRa packets is 57 Bytes (as it is documented in annex 2). Under this condition, there 

is consistent evidence that reality is close to the best scenario described in section 1.2, in which the size 

of a LoRa packet was assumed 41 Bytes (1 byte of data payload + 40 bytes of LoRa headers, according 

to equation 5.4).   

On the other hand, figure 5.21 shows a sample of the data traffic per second generated from the gateway 

to the cloud server occurred in approximately two minutes (from 21:58:03 to 21:59:51). 
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Figure 5.21. Data traffic between the gateway and the cloud server (from 21:58:03 to 21:59:51) in second resolution. Each point represent 
the aggregate data size of DNS, TCP and HTTP transmissions occurred in one second. 

Contrary to the assumptions stated in previous section, figure 5.21 shows that, in normal conditions, the 

transmission events between the gateway and the cloud server —transmissions events that includes TCP 

three-way handshake / teardown routines and HTTP post requests— occurs every 18 seconds 

approximately. The mean TCP three-way handshake traffic (SYN, SYN/ACK or ACK type messages 

indistinctly) and the mean TCP teardown traffic (FIN, FIN/ACK or ACK typed-messages indistinctly) 

range from 54 to 58 bytes, which would indicate that the TCP, IP or MAC headers do not include certain 

optional fields showed in figure 5.11.  

Moreover, the HTTP traffic —traffic that contains POST request packets with data application— is 

fixed to 200 Bytes, which would suggest that the gateway transform the incoming LoRa packets into 

formatted packets with constant size. Another important aspect to be mentioned is that the cloud server 

generates HTTP timeout requests of almost 468 bytes before starting a TCP teardown routine. A timeout 

request (HTTP code 408) allows a server announce and close an unused connection and its continuous 

presence after uploading an acknowledging  the data application would indicates that the gateway waits 

for this request to start a TCP teardown routine. On the other hand, the Intensive HTTP traffic observed 

in figure 5.21 from 21h59m13s to 21h59m31s during a water consultation request via the cloud server 

(by acceding the user dashboard at www.mySolem.com) would suggest extra transmissions events in 

which the server demands additional data from the gateway (data that probably differs from counts). 

This generates high volumes of data that seems to be fragmented on packets of less than 800 Bytes, as 

it is observed in annex 3). 

Finally, it can be observed recurrent Domain Name System (DNS) packets too. DNS is an upper-layer 

protocol in charge of finding the IP address from a Uniform Resource Locator (URL), in this case 

www.mySolem.com. When a device need to find and save the IP address of a remote server from an 

URL, it sends a query request to a DNS server —in the cloud, which sends the response information in 

a query response [156]. This operation takes place usually in early connections and the recurrent 

presence of DNS requests (with a mean size of 71 bytes) and DNS responses (each with approximately 

87 bytes) in the regular operation of the case study (sending counts every 18 secs) would suggest that 

the gateway do not keep in memory the IP address of the cloud server (generating extra traffic in 

mutualized infrastructures).  

To visualize all these aspects, figure 5.22 shows the LoRa, DNS, TCP and HTTP traffic of the case 

study during the full experiment (approximately 10 hours).  

http://www.mysolem.com/
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Figure 5.22. Local and internet traffic of the IoT system of the case study “Smart metering” (from 11h50 to 22h20, minute resolution). Each 
peak represents the aggregated data size of respective LoRa, DNS, TCP and HTTP transmissions in one Minute and every high peak depicts 

a hourly user consultation through the cloud server. 

Under these conditions, a new impact estimation of the use-phase of the case study can be performed, 

according to table 5.5, 5.6 and 5.7 below. 

 

Transmission events Packet type # of Packets 
Approximate size packet  

(Bytes) 

Gateway ↔ Cloud server (GC) 

DNS Request 1 71 

DNS Response 1 87 

TCP ths 3 58 

HTTP post GC 1 200 

TCP Ack 1 54 

HTTP Request timeout (408) 1 468 

TCP t  4 58 

Smartphone ↔ Cloud server (SC) 

TCP ths 3 58 

HTTP post GC 7 787 

HTTP OK (200) 1 572 

HTTP GET 1 71 

HTTP response 1 71 

TCP t  4 58 

Table 5.5. Empirical Internet traffic captured from the regular operation of the IoT system (Gateway ↔ Cloud server (GC)) and from the 

online consultation of water consumption (Smartphone ↔ Cloud server (SC)) in terms of number of packets and real data size. The gray cells 
show the new traffic revealed in the data traffic analysis of the network. 

 

(sender ↔ receiver)  Function Transmissions events Packets Internet Data traffic (GB) 

Gateway ↔ Cloud server (GC) Resending counts (every 18 sec) 3503888 42046656 4,197 

Smartphone ↔ Cloud server (SC) Hourly consultations of water consumption 17520 297840 0,108 

   Total 4,305 

 

Table 5.6. Real internet traffic of the case study “Smart metering” in 2 years. 
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Device 
Electronic 

component 
Functions 

Capacity* 
Reference flow 

Impact  
(Kg CO2-eq)** 

Feature Value 

Pulse emitter 

Capacitors &  
inductors 

Generating pulses Maximal sampling rate 10 Pulse / sec  
1 Li-ion battery 0,0382 

Li-ion Battery Power supply Nominal capacity 1650 mAh 

Flow meter 

LoRa  
module 

Counting pulses 
Current consumption  

sleep mode  
0,0016 mA 

1 Li-ion 9V  
Batteries 

0,229 Sending count 

Bitrate  
(SF7, 125 KHz) 

5470 bps 

Current consumption  
Transmission mode 

44,5 mA 

Li-ion 9V Battery Power supply Nominal capacity 1200 mAh 

Gateway 

LoRa module Receiving counts 

Energy consumption 0,006 kW 105,12 kWh 5,150 
WiFi module 

Preparing TCP/IP packet 

Resending counts 

Smartphone WiFi module 
Hourly consultations of  
water consumption 

Energy consumption  
(sending in 700 kB /sec) 

1629 mW 0,501 kWh 

0,045 
Energy consumption  

(Receiving) 
1375 mW 0,423 kWh 

Internet     Energy consumption 0,15 kWh / GB 0,6457 kWh 0,500 

Cloud server     Energy consumption 0,14 kWh / GB 0,6027 kWh 0,467 

     Total 6,4296 

Table 5.7. Estimated impact of case studied A considering experimental data of local and internet traffic. *data available in respective 
technical documentation found in the reference section. **According to CML-IA 2001 LCIA method (Global warming 100a). 

 By considering a data size of 41 Bytes for LoRa packets, it is only necessary 1 Li-ion 9V battery 

for local transmissions (according to equation 5.12) and the impact of the rest of the local 

equipment is the same. However, there is an evident increase of the impacts related to the 

internet infrastructure and cloud server (figure 5.23a). This is explained mainly by the new data 

traffic observed between the gateway and the cloud server in the normal (sending counts) and 

the water consumption operations (figure 5.23b and 5.23c respectively). As a result, the total 

impact of the system increases by 17,42% (approximately to 6,43 Kg CO2-eq) with respect to 

the theoretical estimation of the best scenario seen in section 1.2). 

 (a) (b) (c) 

Figure 5.23.  (a) Relative GW impacts of the IoT system of the case study “Smart metering” in the use phase. (b) Internet traffic for sending 

counts (regular operation state of the IoT system). (c) Internet traffic for consulting water consumption. Figure b and c are depicted in terms 

of data traffic and types of packets generated during 2 years. 

1.4.Recommendations for the case study “Smart metering” 
According to the estimations made in section 1.2 and the evidence presented in the previous section, the 

uncontestable priority for the redesign of the IoT system of the case study Smart metering should be 

considering an alternative source of renewable energy for the gateway, as it contributes the most to the 

impact of the IoT system in the use phase. However, if this change is adopted, it must be accompanied 

by a redesign of the data flow, which need to be oriented to cover only the necessary transmissions with 

sufficient quality, depending on the context of use. Indeed, although the data traffic in the internet 

infrastructure and the cloud server does not provoke the biggest impacts (according to both, the 

theoretical and experimental estimations), it contributes indirectly to the impact of the gateway, since 

this device is in charge of treating all this traffic exclusively (the fabricant do not report additional 
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functionalities). In other words, the data traffic affects directly the load and energy needs of the gateway 

and, indirectly, its impact.   

 Thus, the potential guideline “Analyze energy depletion patterns and use energy harvesting 

mechanisms” [17] gains more relevance in this case, and an urgent redesign action in this sense 

would be analyzing the reasons behind the high frequency of transmission events so that 

designers can reduce it (by remodeling the data flow, whenever manufacturers disclose further 

information). Beside of this, there is additional work to do to avoid (1) unnecessary internet 

traffic in each transmission event (i.e.; DNS traffic) and (2) unnecessary internet traffic for 

closing a transmission event (HTTP timeout requests).  

The first aspect may be solved by keeping in memory the IP address of the cloud server and triggering 

an auxiliary mechanism to obtain it, whenever its IP address changes. The second aspect could be 

addressed by forcing the gateway starting a TCP teardown routine immediately after uploading the data 

application (after sending a HTTP post request), preventing the server from sending timeout requests. 

 In this line, a drastic yet interesting solution would be using User Datagram Protocol (UDP) to 

sending the counts instead of using TCP/IP and HTTP. UDP is a connectionless protocol 

oriented to speed and not to reliability (a packet may not be delivered, delivered twice or in the 

wrong order). Bearing in mind the data simplicity and the redundant nature of the transmissions 

between the gateway and the cloud server in regular operating conditions (sending counts); UDP 

should be considered to alleviate not only the traffic load for stablishing connections (i.e.; by 

avoiding TCP three-way handshake loads) but also the heavy load for closing them (i.e., 

avoiding TCP teardown and HTTP timeout loads). However, this would depend on the 

reliability and security requirements of the application. 

The impact of the internet infrastructure and the cloud server could be reduced too if data aggregation 

or reduction techniques were applied in the gateway, whenever an online consultation of water 

consumption happens. Indeed, although knowing the specific content circulating in the big peaks of 

figure 5.22 is not possible (with the available information sources reviewed in this work), one knows 

that either other data beside counts is sent, or accumulated information are sent, or both.   

 In this sense, simplifications in whatever of these potential contents may be very beneficial, 

provided that designer proceed with caution, as the synthesis or reduction of data or information 

could require more energy in the gateway’s side. In this sense, the potential guideline “Use data 

reduction mechanisms” [17] could be adopted by designers, as long as they also challenge their 

solutions, in the light of the guideline “During product design, decisions of whether computation 

or storage happening on-device or remotely have to be considered concerning energy 

efficiency” [89].  

On the other hand, it is intriguing to see that the manufacturer suggests a maximal distance range of 800 

meters between the flowmeter and the gateway, when the LoRa technology offers longer communication 

ranges (from 2 km to 14 km, depending to the Spreading Factor). Although revealing the reasons why 

the manufacturer suggests this distance is beyond the scope of this work, it is believed that some 

probable reasons is assuring reliability and maximizing the lifetime of the flowmeters’ batteries (by 

avoiding long transmission periods, as it was seen and explained in section 1.1.1). However, this would 

cause a greater environmental impact, since the number of gateways deployed in a network could rapidly 

increase, depending on their positions and especially on the extension of the studied area, as shown in 

Figure 5.24c and 5.24d. 
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(a)  (b)  (c) 

 

(d) 

 

Figure 5.24. (a) The coverage area of a gateway (the central point) covering perfectly an area of 1 km2 (as defined by the functional unit). (b) 

Maximal area (1.28 km2) covered by one gateway, according to the manufacturer (the diagonal of the squared area is equal to the diameter of 
the maximal coverage area supported by a gateway, that is, 2 times 800 meters or 1,6 km. (c) coverage shortcomings of one gateway in an 

area of 1.6 x 1.6 km or 2,56 km2 (the shadow spots). (d) Possible network deployment for assuring full connectivity for and area of 2,56 km2, 

if the designer follows the recommendation of the manufacturer (two gateways would be insufficient and four would be too much). Figure a-
c is in scale 1:50000, figure d in scale 1:100000. 

Indeed, although the study of the manufacturing phase of the local equipment was not addressed in 

previous sections, it can be observed in figure 5.24d that, to guarantee the coverage of a larger area (i.e.; 

2,56 km2), a minimal deployment of three gateways is required. However, this does not necessarily have 

to be so. From the operational point of view, the experimental results show that the flowmeter does not 

generate significant volumes of data (i.e.; 57 Bytes per LoRa transmission); by considering that this load 

was perfectly managed by one gateway in a SF of 7 (as evidenced in experiments), there is no reasons 

to think that a gateway could not provide the same level of reliability for longer distance ranges for 

years, as estimations in table 5.8 suggest.    

Distance 
range 

SF Bandwidth 
Bitrate  In a transmission event In two years 𝑩𝒇𝒎 

(in 2 years) 

Lifetime of one 
9V battery (years)  

in bits / s in Bytes / s 𝒕𝒕𝒓𝒂𝒏𝒔 (s) 𝒕𝒔𝒍𝒆𝒆𝒑 (s) 𝒕𝒕𝒓𝒂𝒏𝒔 (h) 𝒕𝒔𝒍𝒆𝒆𝒑 (h) 

2 Km SF7 250 kHz 11000 1375 0,041 179,96 4 17513 0,18 10,98 

2 Km SF7 125 kHz 5470 684 0,083 179,92 8 17509 0,34 5,86 

4 Km SF8 125 kHz 3125 391 0,146 179,85 14 17502 0,58 3,45 

6 Km SF9 125 kHz 1760 220 0,259 179,74 25 17491 1,01 1,98 

8 Km SF10 125 kHz 980 123 0,465 179,53 45 17471 1,79 1,12 

11 Km SF11 125 kHz 440 55 1,036 178,96 101 17416 3,96 0,50 

14 Km SF12 125 kHz 290 36 1,572 178,43 153 17364 6,00 0,33 

Table 5.8. Estimation of the maximal lifetime of one 9V Li-ion battery (gray cells) used by the flowmeter for transmitting periodic LoRa 

packets of 57 Bytes, under different Spreading Factors, distance ranges and bandwidths. The light blue line shows the technical features and 

calculations for the conditions taken in the experimental procedure described in sections 1.3.1 and 1.3.2. Descriptions of the Total number of 

LoRa Transmission Event (𝑇𝑇𝐸𝐿𝑜𝑅𝑎),  and calculation procedures for the time elapsed in the different states of the LoRa transceiver of the 

flowmeter (𝑡𝑡𝑟𝑎𝑛𝑠, 𝑡𝑠𝑙𝑒𝑒𝑝), and the number of batteries that it requires (𝐵𝑓𝑚) are available in equations 5.10, 5.11 and 5.12 respectively. 

As observed, the current IoT system can potentially support LoRa transmissions in a range of 2 km for 

more than 5 years and, in the best scenario, for more than 10 years, if a bandwidth of 250 kHz is rather 

considered.  

 However, although promising, this suggestion should be taken into account with caution as more 

variables influencing the quality of LoRa transmission between the flowmeter and the gateway 

may exits (further research and estimations should be conducted, as long as documentation 

about the design of the flowmeter, gateway or the dataflow between them is publicly available). 

An useful guideline to consider in this context would be “Reduce the network size” [99], which 

could be complemented by the guideline “find the device coverage that minimize the number 

of device deployed” [10].  
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On the other hand, the recommendation of replacing the battery-powered design of the flowmeter by 

another self-powered or even hybrid-powered design could be interested in specific contexts. For 

example, designer should prioritize a self-powered design in context that involves extends areas (11 or 

14 km), since under these conditions, a single battery would cover the operation of the IoT system only 

for less than 1 year (according to the last column of table 5.8). On the contrary, focusing on a self-

powered design in an operational context involving short distance ranges (2 or 4 Km) would provide 

only marginal benefits (one would avoid changing batteries every 5 or 3 years) or worst; one could 

transfer impacts from the use-phase to the manufacturing phase of the flowmeter (depending on the 

complexity of its self-powered design). 

Finally, although the Bluetooth functionality was not addressed in this study, it is believed that the use 

of the Bluetooth modules of the flowmeter and the gateway would not be frequent, as the main purpose 

of this component is providing first configuration settings on these devices. Indeed, a strong hypothesize 

is that once the full IoT is deployed; configuration changes would be done through the user’s dashboard 

in the cloud server most of the time. Similarly, for the water consultation locally (by connecting a 

smartphone to the flowmeter or the gateway via Bluetooth), it is very likely that the end-user tends to 

consults his or her water consumption directly by internet as this method is more practical than getting 

around close to several and/or distant flowmeters. In this way, This latter believe gains even more sense 

from an environmental point of view, if one consider the additional impact generated by traveling long 

distances in extended areas (i.e.; cultivatable lands).  

 If all these hypothesizes are confirmed, designers should consider removing the Bluetooth 

module for further design and facilitating a wired-typed connection design for initial 

configurations of both devices. This option need further research in terms of additional impacts 

and potential gains in comparative studies (e.g., Bluetooth VS USB ports) by considering 

physical, technical and circularity attributes of the alternatives (e.g., materials, additional 

passive components, additional energy consumption or other drivers and barriers affecting 

ecological design and circular strategies). 
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2. Case study “Smart monitoring”  
The case study “Smart monitoring” consists of a prototype of an EH sensor system developed at the 

System Division (DSYS) of CEA-Leti. The Technology Readiness Level (TRL) of maturity of this 

prototype is level 6 (proof of concept validated in relevant environment) and it is currently in the stage 

4 (testing) of the Product development process. The specific application of the IoT system to which it 

belongs is confidential. However, for the purpose of this work, suffice it to say that the end-user of this 

IoT system needs to keep track of the wearing rate of an ordinary object without affecting its 

employment and in a full autonomous way. The DSYS design teams are in charge of the design of the 

electronic card of the EH sensor system, and partner firms are in charge of developing all the additional 

parts of the device, such as plastic chassis and cases that allow embedding the device into the object. 

These partners are also in charge of the edge- and cloud-side software design. Depending on the design 

of the EH sensor system, the edge device could be a modern smartphone equipped with NFC or BLE 

technologies. The cloud infrastructure consist on a regular remote server.  

From the aforementioned end-user need, a functional analysis identifies two main functions:  

 Function 1: Recovering energy from the environment  

 Function 2: Presenting statistical data of the usage rate of the object. 

From these two functions, and from the data design step later described in section 2.1.1, the DSYS 

engineers have developed two versions of the EH sensor system device; a memory-based version and a 

BLE-based version. Annex 4 provides a list of the electronic components (Bill of Materials or BoM) 

that shapes the memory-based version. This BoM becomes the referential electronic design for further 

LCA comparison in this work and it is referred to from now on as set 13. Table 5.9 presents a description 

of the relevant criteria, selection ranges and minimal capacities (related to data operational stage 

functions) of some principal electronic components that were taken into account for the development of 

set 13. 

Electronic  
component 

Criteria 

Wholesale price Size Energy consumption Capacities 

Microcontroller From 0,6 to 3,06 €  From 9 to 49 mm2 
Active mode: 163 µA/MHz 
Stop mode: 1 µA 

RAM > 8 KB 
Flash > 32 KB 
Frequency: 32 KHz 
ADC: 12-bit ADC 1,14Msps 

Voltage detectors From 0,13 to 1,63 €  
  

From 0,5 to 0,55 µA 
  

Voltage comparator From 0,299 to 0,819 €  From 0,3 to 1,5 µA (@ 25 C°) 

Capacitor 1210   Height < 2,5 mm   Capacitance: 10 µF 

Table 5.9. Criteria of electronic component selection for the referential design set (set 13). 

In this case study, reducing the load of the system by selecting the less energy-demanding component 

is crucial because the capacity of the EH sensor system to recovery energy is minimal. Moreover, the 

size of every electronic component is relevant since that will influence the final size of the PCB and, 

consequently the final size of the device, whose need to be embedded into the object. On the other hand, 

the price is also important, since mass production of the EH sensor system is planned. 

2.1.Implementation of the framework for eco design 
In the context of the case study “Smart monitoring”, the implementation of the proposed methodology 

through the framework for eco design (seen in chapter 4, section 4.1) is developed in two parts: Section 

2.1.1 describes the design of data and information originated in the EH sensor system and section 2.1.2, 

2.1.3 and 2.1.4; the sequential analysis of key parameters of electronic components, which will be 

applied on a LCA-based specific analysis to reveal sharp recommendations for the eco-design of the EH 

sensor system device.  

2.1.1. Data and information design 

This section presents an analysis on data and the ways that it can be further transformed and exploited 

within the IoT system of the case study. Specifically, this analysis is conducted under the Rationale of 
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Information Science framework seen in chapter 2 (section 4) and chapter 3 (section 2.2.3)  by consider 

(1) the type of meaningful data that can be collected and (2) the type of meaningful information that can 

be extracted from it so that it can be later interpreted as the use wearing degree of the object. This 

analysis is described in two steps as follows.    

Step 1: Finding meaningful data 

The object of the case study “Smart monitoring” is constantly deformed during its use and energy can 

be harvested from this mechanical stress, by using an embedded piezoelectric ceramic-based transducer 

(figure 5.25), as it is explained in figure 5.26. 

 

Figure 5.25. Modern piezo electronic buzzer with an in-between piezoelectric ceramic material that recover energy from mechanical stress 
(e.g., compression, deformation, etc.). 

 

 

 

(a)  (b) 

Figure 5.26. (a) A cylinder made by a piezoelectric ceramic material embedded into an object (the outer, dotted cylinder). Piezoelectric 
ceramics may be seen as a mass of minute crystallites with dipoles randomly oriented (one showed here, for simplicity). (b) Deformation 

stress on the object and the piezoelectric material (in this case compression) causes a change in dipole orientation so that a voltage appears 
between electrodes. Figures adapted and simplified from [169]. 

In the context of the case study “Smart monitoring”, this recovered energy can be accumulated and 

stored in a main capacitor, which —depending on the intensity and frequency of deformations— supply 

energy intermittently to the sensor system (as showed in figure 5.27); making the device fully 

autonomous. 
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Figure 5.27. Simplified 

representation of the 

intermittent power supply 

schema of the EH sensor system 

of the case study “Smart 

monitoring”. When a maximal 

stored voltage threshold (𝑉𝑚𝑎𝑥) 

is achieved, the system uses the 

available energy to run the 

program of the sensor system. 

When the system depletes the 

available energy until a minimal 

voltage threshold (𝑉𝑚𝑖𝑛), the 

sensor system stops to consume 

energy, enters to a sleep mode, 

and a new charging cycle 

begins. 

 

Step 2: Exploiting meaningful data into useful information (Data and information design) 

As deducted from figure 5.27, the frequency at which the main capacitor charges and discharges energy 

in a period of use of the object is proportional to the mean power generated by the system, as expressed 

by equation 5.13.  

𝑃𝛼
̅̅ ̅ = 𝑃𝑠 + (

𝑁𝐸𝛼𝑛

𝑇𝛼
 × ∆𝐸)    (5.13) 

Where:  

𝑃�̅� = 𝑚𝑒𝑎𝑛 𝑝𝑜𝑤𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑢𝑠𝑒 𝛼 

𝑃𝑠 = 𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑣𝑖𝑐𝑒 𝑖𝑛 𝑆𝑡𝑎𝑛𝑑𝑏𝑦 𝑠𝑡𝑎𝑡𝑒 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

𝑁𝐸𝛼𝑛
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔|𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒𝑠 (𝑛) 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑢𝑠𝑒 𝛼  

𝑇𝛼 = 𝑇𝑖𝑚𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑢𝑠𝑒 𝛼 

∆𝐸  =  
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 × (𝑉𝑚𝑎𝑥

2 − 𝑉𝑚𝑖𝑛
2 )

2
 

In this sense, large and small power mean values could be interpreted as high- and low-intensity use 

rates of the object respectively, as it is illustrated in figure 5.28. 

 

Figure 5.28. Example of an 
interpreted high-intensity 

use (Running) and a low-

intensity use (walking) of an 
object (for example a sole) 

under deformation stress, in 

terms of their mean power 

values (𝑃𝑤𝑎𝑙𝑘𝑖𝑛𝑔 and 

𝑃𝑟𝑢𝑛𝑛𝑖𝑛𝑔 respectively). The 

mean power values are 

obtained from the number of 

charging\discharging cycles 
n of a main capacitor (4 for 

walking, 8 for running, as is 
depicted by the respective 

voltage peaks above) and the 

elapsed time in a period of 

use (𝑇𝛼).  

In ideal conditions, the frequency of charging\discharging cycles of the main capacitor is constant, but 

in real conditions, it is variable (in the example above, walking and running schemas may be mixed in 

normal use). Consequently, 𝑇𝛼 can only be estimated by aggregating the time elapsed in each of the 

charging\discharging cycles that occur between the initialization of the system (INIT) and the device 

shutdown. In this sense, the differentials of time (∆𝑡) for each of the n charging\discharging cycles, and 
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the number of these cycles in a period 𝛼 (𝑁𝐸𝛼𝑛
) become the essential, meaningful raw data of the IoT 

system of the case study “Smart monitoring”. These raw data is used to calculate the time elapsed (𝑇𝛼) 

and consequently the mean power (𝑃𝛼
̅̅ ̅); which at the same time becomes the useful information to be 

interpreted as the mean wear of the object in a period of use of the object, according to Figure 5.29. 

  

Figure 5.29. The essential raw data, 
information, and knowledge of the IoT 

system of the case study “Smart 

monitoring” (left), contrasted with the 
rationale Information Science framework 

reviewed in previous chapters (right). 

Notice that, while ∆𝑡 and 𝑁𝐸𝛼𝑛
 are raw data 

exclusively collected in the sensing layer 

(green boxes), their organization and further 

interpretation can be made in the sensing, 
edge or even cloud layers. 

 

 

With this in mind, the manipulation of the essential raw data (data collection and storage) and the 

generation of information (data processing) for further interpretation could be designed in two ways. In 

a first alternative, only the differentials of time in each charging cycle (∆𝑡) and counts of these cycles 

(𝑁𝐸𝛼𝑛
) could be collected and saved in different blocks of a NVM memory in the sensor system, so that 

they can be further organized in an edge device to obtain 𝑇𝛼, and 𝑃𝛼
̅̅ ̅, as it is illustrated in figure 5.30 and 

5.31.  

 
Figure 5.30. Illustration of the essential raw data for the intermittent functioning of the EH sensor system of the case study “Smart 

monitoring”. 

 

 

 

 

Figure 5.31. First alternative of data manipulation 

and information design for the IoT system of the case 

study “Smart monitoring”. The user starts using the 
object at time = 0 s, and the main program initializes 

(INIT) the system and saves respectively the counts 

𝑁𝐸𝛼𝑛
 and differential times ∆𝑡𝑖

 in a fix and sequential 

blocks of a NVM memory, using the accumulated 

energy in the main capacitor, whenever the 𝑉𝑚𝑎𝑥 

threshold is achieved. Notice that, in this schema, 

organization of the raw data (computing of 𝑇𝛼 and 𝑃�̅�) 
happens exclusively in the edge layer (blue box). 
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In a second alternative, the value of 𝑇𝛼𝑛
 and 𝑁𝐸𝛼𝑛

 are updated constantly by aggregation of the 

individual values of ∆𝑡 in each charging\discharging cycle and the last registered count 𝑁𝐸𝛼𝑛−1
 

respectively. For this, only four memory blocks of a NVM memory are used, as is illustrated in figure 

5.32. 
 

 

 

Figure 5.32. Second alternative of data manipulation 

and information design for the IoT system of the case 
study “Smart monitoring”. The user starts using the 

object at time = 0 s and the main program initializes 

(INIT) the system and updates constantly the values 

of ∆𝑡, 𝑇𝛼𝑛
, 𝑁𝐸𝛼𝑛−1

 and 𝑁𝐸𝛼𝑛
 in four fixed blocks of 

a NVM memory, using the accumulated energy of 

the main capacitor, whenever the 𝑉𝑚𝑎𝑥 threshold is 

achieved. When the system initializes for the first 

time, values of 𝑇𝛼𝑛
 and 𝑁𝐸𝛼𝑛

 are zero. When the 

system wake-up for the second time, data is not reset, 

but continue to be incremented. Notice that, in this 

schema, organization of part of the raw data 

(computing of 𝑇𝛼𝑛
) happens in the sensing layer 

(green box). 

 

 

From the two design alternatives described above, the following design aspects arise: 

 The first alternative could make use of all available blocks of a memory, and the risk of over 

flooding is high.    

 In the first alternative, the memory density and the reading speed may or may not be crucial, 

depending on the readiness requirements of the application. 

 High readiness can be assured from the second alternative (only 4 memory blocks need to be 

read), but it may (or may not) drain the recommended number of writing cycles per block of a 

memory component.    

To deal with these aspects, two versions of the EH sensor system were developed in the DSYS division 

of CEA-Leti: an NFC, memory-based version working under the second alternative and an alternative 

Bluetooth-Low-Energy (BLE) version. The next section provides a complete description of the 

electronic design of both versions.  

2.1.2. Electronic component alternatives according to the data and information design 

The central approach of the memory-based version is using the accumulated energy of the EH sensor 

system to write ∆𝑡, 𝑇𝛼𝑛
, 𝑁𝐸𝛼𝑛

 and 𝑁𝐸𝛼𝑛−1
 directly in an EEPROM memory. This EEPROM memory 

would be embedded into a System on Chip (SoC) device equipped with NFC technology. On field tests 

show that this version has high readiness and there is no risk of over flooding the memory, since data 

would be uploaded constantly (according to the data design alternative 2, described in figure 5.32). This 

version describes a typical energy harvesting subsystem as like as the one showed in the figure 1.8 of 

chapter 1, in charge of powering a microcontroller and a NFC-EEPROM memory. Figure 5.33 shows 

the basic electronic design and operation in terms of the framework for impact estimation (IoT system 

layers, devices, components, functions and capacities) and physical and data flows.
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Figure 5.33. Basic electronic design of the NFC-memory-based version of the EH sensor system in terms of the proposed framework for impact estimation. The black arrows depicts energy flows and the red arrows, 

data flow. The image shows the system boundary applied for the LCA modeling that will be described in next sections. Each component shows the critical function(s) that it provides, together with the critical capacity 
for it. 
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Basically, in this version the main capacitor accumulates energy from a piezoelectric transducer and 

provides energy to execute a writing cycle of the four aforementioned values whenever a maximal 

voltage threshold is achieved. Specifically, a voltage comparator (VC) authorizes the distribution of the 

available energy to the microcontroller and to the bottom voltage detector (VD) showed in figure 5.33. 

The red arrow between them represents a data flow, because the microcontroller consider the time at 

which it is awakened by the voltage detector (writing trigger function). In this way, the microcontroller 

aggregates this time (∆𝑡) and a count (+1) to the corresponding previous values (𝑇𝛼𝑛−1
 and 𝑁𝐸𝛼𝑛−1

 

respectively, saved in the EEPROM-NFC memory). After this, a new charging cycle begins.  

Because of their fundamental roles observed in figure 5.33, 2 voltage comparator types (SC70-5 and 

SOT23-5 [170]) 4 microcontroller types (LQFP32, TFBGA64, UFQFPN32 and WLCSP36 [171]) and 

3 NFC-EEPROM memory types (TSSOP8, UFDFPN8 and SO8 [172]) were considered to illustrate the 

further eco-design steps in the context of the framework for eco design of the proposed methodology, 

and challenge the referential design presented before (set 13). These components were selected 

according to their functions and critical capacities in relation to the data flow showed in figure 5.33.  

Figure 5.33 also shows the functioning of the edge and cloud resources. For the edge side, a smartphone 

collects 𝑇𝛼𝑛
 and 𝑁𝐸𝛼𝑛

 from the NFC memory whenever it is closed enough to the EH sensor system 

device (the black arrow indicates that the smartphone provides additional energy to the NFC memory to 

do this via the antenna on the PCB). From 𝑇𝛼𝑛
 and 𝑁𝐸𝛼𝑛

, the processor of the smartphone computes 𝑃𝛼
̅̅ ̅. 

This information is further interpreted as the mean object’s intensity use on the cloud server side.  

On the other hand, the BLE-based version derives from the NFC-memory-based version. It describes 

the same EH subsystem with the difference that in this version, the accumulated energy is used to power 

a BLE module instead to a microcontroller (the bottom voltage detector is kept and its works identically 

as from the NFC-memory-based version). The central approach of this version is sending the raw data 

generated in an ith charging\discharging cycle (∆𝑡𝑖
 and 𝑁𝐸𝛼𝑖

) directly to the smartphone via Bluetooth, 

instead of save it in a memory. On field tests show that this version would also have high readiness and 

reliability. Figure 5.34 shows its basic electronic design and operation under the terms of the framework 

for impact estimation (components, functions and capacities and IoT layers). 
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Figure 5.34. Basic electronic design of the BLE-based version of the EH sensor system in terms of the proposed framework for impact estimation. The black arrows depict energy flows and the red arrows data flow. 
The image shows the system boundary applied for the LCA modeling that will be described in next sections. Each component shows the critical function(s) that it provides, together with the critical capacity for it. 
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Figure 5.34 shows almost the similar energy and data flows seen as for the NFC-memory-based version 

with the difference that raw data (∆𝑡𝑖
 and 𝑁𝐸𝛼𝑖

) is sent directly to the smartphone via the Bluetooth 

interface of the SoC component of the BLE module (there is not protocol overhead, because data 

application is embedded in a BLE advertising packet, as Morin, E. et at [139] recommend). In the edge 

side, the smartphone uses its BLE module to receive this data, in order to obtain 𝑃𝛼
̅̅ ̅, information that is 

later interpreted as the mean intensity use of the object in the cloud side. Annex 5 provides a detailed 

description of the electronic design (BoM) of this BLE-based version. 

2.1.3. Evaluation of electronic component alternatives through physical attributes 

By considering that only one type of IC for specific functions should be selected and combined to shape 

the electronic design of the NFC-memory version showed in figure 5.33 (one type of voltage comparator 

for energy distribution, one type of MCU for counting time and aggregation, and one type of NFC 

EEPROM memory for data writing and transmission); 24 possible combinations or electronic design 

sets (including the referential set 13) were identified. Table 5.10 shows all these possible alternatives.  

Set 
1 

Set 
2 

Set 
3 

Set 
4 

Set 
5 

Set 
6 

Set 
7 

Set 
8 

Set 
9 

Set 
10 

Set 
11 

Set 
12 

Set 
13 

Set 
14 

Set 
15 

Set 
16 

Set 
17 

Set 
18 

Set 
19 

Set 
20 

Set 
21 

Set 
22 

Set 
23 

Set 
24 Component  

1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 VC SC70-5 Voltage 
comparators 

0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 VC SOT23-5 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LQFP32 

MCUs 
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 TFBGA64 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 UFQFPN32 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 WLCSP36 

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 TSSOP8 
EEPROM 
Memories 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 UFDFPN8 

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 SO8 

Table 5.10. All possible electronic component combinations or “sets” for the design of the NFC-memory-based version. A “1” indicates that 

a specific electronic component (line) was selected for that particular electronic design set (column). The referential design set (set 13) is 
marked in gray. 

Because of this diversity, the evaluation of design alternatives though physical attributes will be leaded 

in the context of the NFC-memory-based version. The following section shows how to conduct this 

analysis on alternative electronic components in two ways: it studies the influence of materials on the 

Abiotic Depletion (AD) impact category on the one hand, and the influence of physical features (i.e.; 

surface areas of internal dies), interdependencies (i.e., PCBs area variation according to IC land 

patterns), and materials on the Global Warming (GW) impact category on the other. For this, the LCA 

implementation suggested in the section 4.1 of the previous chapter is applied by taking into account 

the following aspects. 

Firstly, from the reference electronic design (Set 13), one stablishes a referential PCB size (704 mm2) 

and derives its size variation for the other design combinations presented in table 5.10, based on the 

surface (landing pattern) of the electronic components that compose such combinations. For simplicity 

and illustrative purposes, the standard IPC-7351B [173] in this most penalizing mode (0,5 mm) is taken 

into account for determining the area that every electronic component under study will occupied in the 

electronic card. This standard is applied on them, by considering their land patterns or PCB footprints 

including all their pins, as is showed in figure 5.35. 

 
 

 

Figure 5.35. Standard IPC-7351B (the purple perimeter, that leaves 
a free space of 0,5 mm in its most penalizing version), applied to 

the land pattern (PCB footprint) of three SMD electronic 

components in a PCB instance of 3,96 cm x 4,64 cm. The standard 
allows keeping minimal distances among components in the PCB 

surface to avoid production fails in reflow soldering processes 

(Annex 6 provides all the PCB size variation in function of the 
combined electronic components proposed in table 5.10).  

 

Notice that the PCB size is considered for the impact contribution analysis in the GW category, but not 

in the AD category. This is for practicality reasons: since all design combinations and versions used the 

same kind of PCB (a six-layered FR4 type), impact contribution analysis by elementary flows is 
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unproductive (impact difference would be explained uniquely by material quantities in PCBs —which 

is directly proportional to their dimensions— but not by their material variety. In this sense, the reader 

will find a complete description of the material composition of all electronic components under study 

from annex 7 to 9. (For the material composition of the invariable components (e.g., passive 

components), he or she should consult the correspond Ecoinvent process modeling used in this work 

[174]). 

Secondly, The LCA model implementation proposed in previous chapter is applied in SimaPro using 

the Ecoinvent V3.6 LCA database. In this line, electronic components under analysis are modeled in 

detailed, according to the proposed manufacturing lifecycle model of figure 4.26 of chapter 4, and the 

rest of the electronic components are modeled from default Ecoinvent processes. The assembly step 

(including the solder paste, energy and assembly facilities) is modeled on the basis of electronic 

components surfaces. Because of its significant contribution to all design sets and versions, the detailed 

LCA modeling of the SOT23-5 typed voltage detector (VD SOT23-5) [175] is also applied, although it 

contributes the same to all versions (this is an invariable component). Full material declaration and 

further impact analysis of this component is provided in annex 10. 

Thirdly, For the impact assessment, the CML-IA LCIA methodology is used, considering only two 

impact categories: Global Warming potential in a period of 100-year (GW-a100) and Abotic Depletion 

(AD) (following the research methodology of the reported work of Bonvoisin, J. et al. [10], who found 

contrasted behaviors of both impact categories in the context of ICT products. 

Finally, the functional unit defined for the specific analysis of physical attributes of electronic 

components considers the production of the EHS sensor system (in different design sets), whereas the 

functional unit for specific analysis of technical and circularity attributes adds the use and the EoL 

phases of the device. On the other hand, as the design combination involves variations only on three 

component types (voltages comparators, microcontrollers and memories), detailed impact contribution 

including all components in an electronic design is given only in initial impact results and / or when 

necessary (i.e.: in comparison analysis of different versions, but not in comparison of different design 

combination or sets). 

2.1.3.1.Importance of materials and physical attributes for the AD impact category 
Figure 5.36 shows the relative AD impact of all possible design sets for the NFC-memory-based version. 

 

Figure 5.36. Relative AD impacts of all design sets for the NFC-memory-based version (24 combinations). The functional unit is defined as 
“production of one EHS sensor system device in its NFC-memory-based version”  

For the AD impact category, the best and the worst design alternatives are set 20 and set 12 respectively 

(the latter with an impact of more than 45% with respect to the former, as showed in figure 5.36). A 

detailed inspection of the impact contribution of the interchangeable components of set 12 (figure 5.37a) 

shows that the biggest contributors are its TFBGA64-typed microcontroller and its SOT23-5 typed 

voltage comparator (VC SOT23-5). Both with an approximate impact of more than 31% and 12% 

respectively.   
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 (a)  (b) 

Figure 5.37. Detailed AD impact contributors of (a) the worst design alternative (Set 12), and (b) the best design alternative (Set 20). Notice 
that electronic components are specified by packaging type. 

Moreover, an initial elementary flow analysis on raw material extractions on these electronic 

components reveals that the impact is mainly explained by the presence of gold in wires (0,351 mg in 

the case of the TFBGA64-typed microcontroller and 0,157 mg in the case of the SOT23-5 typed voltage 

comparator). 

On the other hand, the convenient design of set 20 (whose impact contributors are detailed in figure 

5.37b) is mainly explained by the relative low presence of (1) gold in the wires of its SC70-5 typed 

voltage comparator (0,033 mg); and (2) silver in the die attach of its UFDFPN-typed memory (1,108 

mg), which only contribute respectively with less than 5% and 2% to the total AD impact of the set. 

Furthermore, the environmental performance of Set 20 would be also explained by the null presence of 

neither gold nor silver in its WLCSP-typed MCU component (of which the predominant material is 

copper).   

To better understand the relevance of these later aspects and their potential for eco-design of IoT devices, 

and with the aim to spot further unfavorable materials in homogeneous electronic components subparts, 

an iterative examination on set 12 and set 20 is conducted as follows. Firstly, an elementary flow analysis 

is conducted to identify and remove materials with high impacts on both sets. Secondly, an impact 

comparison of these modified sets is done; if the impact gap between the best and the worst sets 

disappears, it means that all relevant substances in specific electronic components’ subparts were 

identified; otherwise, an individual elementary flow analysis on modified sets is relaunched an another 

iteration restart (sensibility analysis). Figure 5.38 shows the absolute impact of both sets as a reference 

for this combined analysis, and Table 5.11 shows its results, starting from the elimination of gold 

(iteration 0) in different subparts of electronic components of both sets. 
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(a)  (b) 

Figure 5.38. Absolute AD impacts of set 12 (a) and set 20 (b).  

  Set 12 Set 20 

Iteration Element 
Electronic 
component 

Subpart 
Abs impact 
(Kg Sb-eq) 

mass in IC 
(mg) 

mass in IC 
(mg) 

Abs impact 
(Kg Sb-eq) 

Subpart 
Electronic 
component 

0 
Gold 

6,7E-4% 
in ore 

VC SOT23-5 
Wires 2,07E-06 0,157 0,033 4,34E-07 Wires 

VC SC70-5 
Lead frame 1,31E-08 0,001       

TFBGA64 
Wires 4,62E-06 0,351       

  
Substrate 2,76E-07 0,021       

SO8 
Wires 8,16E-07 0,062       

  
Lead frame Coat 4,00E-08 0,003       

1 
Silver 

4,2E-3% 
in ore 

VC SOT23-5 
      0,016 3,08E-08 Lead frame 

VC SC70-5 
Die Attach 1,10E-08 0,057       

TFBGA64 
Die Attach 4,02E-07 2,085       

WLCSP36 
Solder Balls 1,54E-08 0,08 0,014 2,70E-09 Solder Balls 

SO8 Die Attach 1,78E-07 0,925 1,108 2,13E-07 Die Attach UFDFPN8 

2 
Copper 
0,99% 

in sulfide 

VC SOT23-5 Lead frame 1,62E-09 6,651 2,829 6,88E-10 Lead frame 
VC SC70-5 

TFBGA64 

Substrate 2,57E-09 10,586       

Solder Balls 8,03E-12 0,033 0,018 4,38E-12 Solder Balls 

WLSCP36 

      0,003 7,29E-13 RDL Target 

      0,062 1,51E-11 RDL Anode 

      0,002 4,86E-13 UBM Target 

      0,073 1,77E-11 UBM Anode 

SO8 
Lead frame 5,92E-09 24,347 2,918 7,09E-10 Lead frame 

UFDFPN8 
      0,018 4,38E-12 Wires 

3 Tin TFBGA64 Solder Balls 1,23E-07 6,513 1,146 2,17E-08 Solder Balls WLCSP36 

Table 5.11. Results of the combined analysis (Elementary flow and sensibility analysis) to find the elements that influence the most to the 

AD impact results of set 12 and set 20. For simplicity, only high concentrations in ore in the mixed market of metals is showed. After 
iteration 3, high contents of other materials in common components for both sets (i.e., Palladium in ceramic capacitors and resistors) appear. 

Because these components are invariable in all sets, their materials influences are not presented in this comparative table. 

In table 5.11, the presence of gold in the wires and substrate, silver in the die attach and solder balls, tin 

in the solder balls and  copper in the substrate and solder balls of the TFBGA-type MCU of set 12 

provoke almost 25% of its  absolute impact (5,44 x 10-06 of the 2,21 x 10-05 Kg Sb-eq impact presented 

in figure 5.38a); and almost the same share (23,73%) can be obtained for the SOT23-5 typed voltage 
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comparator (2,10 x 10-06 of the 8,85 x 10-06 Kg Sb-eq impact) whose wires are rich in gold and lead 

frame in copper.  

On the other hand, notice the confronting-styled presentation of table 5.11 to contrast these and other 

electronic components’ subparts of both sets. The central columns permits discerning the following 

relevant aspects of electronic components in the context of physical properties. Firstly, dissimilar 

packaging technology may generate significant differences, depending on the impact relevance of 

materials from which they are made. For example, while TFBGA64-typed MCUs uses typically 

unfavorable materials such as gold and silver in wires and die attaching subparts respectively, WLCSP-

typed MCUs uses convenient materials such as copper in distinctive and massive subparts (DRL and 

UBM subparts). Secondly, the quantity of a material in an electronic component subpart may or may 

not be determinant for eco-design, depending on the impact relevance of this material for a particular 

impact category.  

Although this later aspect may be evident when selecting simple design alternatives (those options in 

which differences lie only on a single component); the application of this clue may become very hard, 

special when one consider contradictory alternatives and / or heterogeneous electronic design (mixed 

electronic card with different electronic components for each of the functions identified). Consider, for 

example, the material content of set 1 and set 18 presented on Table 5.12.  

  Set 1 Set 18 Set 1 Set 18 Set 1 Set 18 

Subparts Materials 
VC SC70-5 
(Mass mg) 

VC SOT23-5 
(Mass mg) 

LQFP32 
(Mass mg) 

UFQFPN32 
(Mass mg) 

TSSOP8 
(Mass mg) 

SO8 
(Mass mg) 

Die attach 
Silver   0,057 0,643 0,198  0,925 

Palladium   0,001     

Lead frame 
Coating 

Palladium      0,002 0,007 

Gold      0,002 0,003 

Lead frame 

Copper  2,829 6,651 51,148 24,288 14,147 24,347 

Palladium  0,003 0,007     

Silver  0,016  3,528 1,701   

Gold   0,001     

Wires 
Silver    0,289 0,188   

Gold  0,033 0,157   0,019 0,062 

Anode Ball Tin    1,209 1,659   

Solder (mm2) Tin  2,97 4,64 51,84 26,01 13,95 20 

 
Table 5.12. Summary of relevant material content (according to elementary flow analysis) in set 1 and set 18. Convenient and inconvenient 

material quantities of corresponding subparts of confronting components are marked in green and red respectively. 

As observed, choosing between a TSSOP8- and a SO8-typed memory is not difficult (the latter use more 

materials in more quantities than the former). Moreover, the SC70-5 typed voltage comparator 

belonging to set 1 would be convenient because the quantities of palladium and copper of its lead frame 

and gold in its wires (all marked in green) are less than the quantities of the corresponding subparts of 

the SOT23-5 typed voltage comparator in set 18 (marked in red). However, the lead frame of the SC70-

5 typed voltage comparator contains silver whereas the other does not. On the other hand, contents of 

silver and copper in the die attach and lead frame; and silver in the wires of the UFQFPN32-typed 

microcontroller component of set 18 are fairly less than those of the LQFP32-typed microcontroller 

component of set 1. Under these conditions, it is difficult to say at a glance what design alternative (set 

1 or set 18) is the best and only a further analysis considering not only the impact relevance of materials 

but also its quantities in the global design is required, to facilitate further decision making (table 5.13). 

Material Impact CF (Kg Sb-eq) Total in Set 1 (mg) Total in Set 18 (mg) Set1 Set18 

Gold 52,043 0,054 0,223 1,00 4,13 

Silver 1,184 4,476 3,069 1,46 1,00 

Palladium 0,571 0,005 0,015 1,00 3 

Copper 0,016 68,124 55,286 1,23 1,00 

Tin 0,001 1,209 1,659 1,00 1,37 

 

Table 5.13. Impact relevance of materials (in terms of Impact Characterization Factors (CF) of the CML-IA LCIA method) and their 

absolute and relative contents in set 1 and set 18 (middle and rightmost columns) to be consider for knowing which of the two sets is the best. 
The lowest content for each material is taken as the content reference (1,00). 

Indeed, by observing the high relevance of gold, and its dominant presence in set 18 (4 times more than 

set 1), it could be concluded that the AD impacts of set18 overcomes those of set 1, (Regardless the 
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superior content of silver and copper in Set1). This intuition is confirmed by calculating and comparing 

the relative impact for both sets in SimaPro (figure 5.39a). 

(a) (b) (c) 

Figure 5.39. (a) Relative AD impacts of set 1 and Set 18. (b) Absolute impacts of the electronic design of set 1. (c) Absolute impacts of the 

electronic design of set 18. Notice not only the superior impact of the SO8-typed memory and the SOT23-5 typed voltage comparator of set 
18, but also the impact of the LQFP32-type MCU component of set 1, caused by the silver and copper contents in its lead frame. 

However, this conclusion is only valid as long as the gold content of the SO8-typed memory and the 

SOT23-5 typed voltage comparator overcome that of the corresponding TSSOP8-typed memory and the 

SC70-5 typed voltage comparator; or as long as the silver content in the SC70-5 typed voltage 

comparator or the LQFP32-typed microcontroller of set 1 does not increase (consider, for example, the 

impact of silver in the LQFP32 MCU component showed in figure 5.39b). This analysis could get even 

more complex yet interesting, if one consider more electronic components with different subparts made 

with more materials (e.g., copper, palladium, tin, etc), in different quantities and with different impact 

relevance. 

In this work, this material-based analysis on electronic components’ subparts is further extended to a 

parametric uncertainty analysis to find at which extended, quantities of different materials may vary 

until (1) benefits from an optimal design alternative disappears or (2) a worst design enhance to a 

referential. Bearing this in mind, and in regard of the insights found so far in the context of this case 

study; this parametric-uncertainly analysis is firstly conducted only on the gold content in the wires of 

the SOT23-5 typed voltage comparator of set 18, and secondly on other relevant material contents in 

different subparts of other electronic components altogether. The goal is showing at which extend 

quantities of this materials may vary until enhanced environmental profile of set 18 with respect of set 

1 disappears.     

2.1.3.1.1. Analysis of material content shares influence on AD impacts 
The proposed uncertainty analysis is conducted with Monte Carlo test by proving different material 

content share variabilities in several electronic components’ subparts. However, before seeing the results 

from this study, consider figures 5.40 and 5.41 to gain understanding of the mechanism of analysis 

employed in this section, as well as in next sections. Assuming the gold content percentage in wires of 

0,96% of the studied SOT23-5 typed voltage comparator (according to annex 7b) as the typical gold 

content share in wires of SOT23-5 typed voltage comparators, and a null variation of this share in a 

sample of different SOT23-5 typed voltage comparators, selected for completing the design of set 18 

(defaults conditions); AD impacts of set 18 never enhance to the degree of those of set 1 (Figure 5.40a-

b).  
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(a)  (b) 

Figure 5.40. AD impact distributions of (a) set 1 and (b) set 18 obtained by separated Monte Carlo tests, including only default uncertain 
variables in Ecoinvent processes (Data points were fitted to Gaussian function by minimizing the Root of Sum of Squares error (RSS)). Both 

results show the probability of obtaining the calculated impact of both sets presented in figures 5.39b-c under default conditions. Henceforth, 
the dotted line depicts the assumed mean impact of sets and the two solid lines represents an interval of confidence of 95%. 

Indeed, the probability at which both sets have the same impact —for example 4.50 x 10-05 Kg Sb-eq— 

is null. Now consider a sample of different SOT23-5 voltage comparators whose gold content shares in 

wires vary slightly from the mean share content of 0,96% (e.g., with a standard deviation (𝜎) of 0,005%), 

holding all their others physical attributes such as their other materials or their total packaging weights 

constant (ceteris paribus). With a 95% of confidence, figure 5.41 shows that under these conditions, 

there exists an increased likelihood that both sets have the same impact (e.g., 4.35 x 10-05 Kg Sb-eq); in 

the overlapping area generated by their confidence intervals. 

 

Figure 5.41. Overlapped distributions of AD impacts of set 1 and set 18 (the latter with a little variability of gold content share in wires of its 
SOT23-5 typed voltage comparator (standard deviation of the gold content share = 0,005%)); showing a likelihood of almost 0,01 that both 

sets have the same impact (4.35 x 10-05 Kg Sb-eq) with 95% of confidence. 

Note that the Monte Carlo test of both sets in figure 5.41 were conducted individually and its 

interpretation should be taken with prudence. However, it illustrates very well the effects of physical 

features and their variations on the AD impacts of a design (i.e.; variations in the material content shares 

on specific components subparts). Figure 5.42 shows a simultaneous Monte Carlo test for both sets with 

the aforementioned variability on the gold content share of wires (𝜎 = 0,005%) of the SOT23-5 typed 

voltage comparator of set 18. Yet this time, impact calculation of both sets runs side by side and the 

probability that the design of set 18 outperforms (or not) that one of set 1 is calculated instead (in other 

words, each Monte Carlo run calculates the impact difference between set 1 and set 18 (impacts of set 

1 minus impacts of set 18); if these differences are all (or almost all) positive, it would indicate high 
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probability that design of set 18 enhances design of set 1). This is the way by which uncertainty is 

examined from now on in this work. 

 

 

 

 

 

Figure 5.42. AD impact distribution of set 18 outperforming that 
one of set 1 with 95% of confidence (Orange area).  

 

 

 

 

 

Figure 5.42 shows a little probability that design of set 18 —with a sample of potential SOT23-5 typed 

voltage comparators with a mean gold content share of 0,96% in wires and a variability of σ = 0,005%— 

outperforms that one of set 1 (the differences between the AD impacts of design of set 1 and set 18 are 

mostly negative). Concretely, that means that an alternative SOT23-5 typed voltage comparator, whose 

gold content share of wires is less than 0,955% (0,005% less than a typical gold content share of wires 

of 0.96%) will, ceteris paribus, rise the chances of design of set 18 to outperform design of set 1. 

Although promising, the later variation does not allows design of set 18 to achieve high probabilities to 

outperform design of set 1, at least with a 95% of certainty. Figure 5.43 shows the chances of set 18 to 

outperform set 1, considering combined variations on content shares not only of gold, but also of silver, 

palladium, Tin and copper in selected subparts of its electronic components (see table 5.14); they were 

chosen according to the relevance and high contents of their materials, as showed by the red cells in 

table 5.15. 
 

 

 

Figure 5.43. AD impact distribution of set 18 (with samples of 

potential SOT23-5 typed voltage comparators, UFQFPN32-
typed microcontrollers and SO8-typed memories, with different 

variations in the material content share of their subparts) 

outperforming that one of set 1, with 95% of confidence (Orange 
area, showing the probability that AD impacts of set 1 overcome 

those of set 18). The probability distribution was obtained by 

Monte Carlo test on the variations proposed in table 5.14 (10000 
test iterations). 

 

 

 

 

 

 

 

Electronic 
component 

subpart Material  
% in IC 

(consider as the mean 
shares) 

 variations 
(SD) 

VC SOT23-5 
Wires Gold 0,96% 0,042% 

Lead frame Palladium 0,04% 0,013% 

UFQFPN32 
Anode Ball Tin 3,38% 0,002% 

Lead frame Copper 49,49% 0,012% 

SO8 
Die Attach Silver 1,16% 0,046% 

Lead frame Coat Palladium 0,01% 0,005% 

 

Table 5.14. Proposed variations for different material content shares in subparts of electronic components of set 18. The variations were 

obtained by trial and error tests, considering the dispersion (standard variation (SD)) of material content shares in relation to typical mean 
values (in this work, assuming the reported content shares seen in annexes 7 to 9 as the typical mean values). 
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  Set 18 

Subparts Materials 
VC SOT23-5 
(Weight mg) 

UFQFPN32 
(Weight mg) 

SO8 
(Weight  mg) 

Die attach Silver 0,1 0,2 0,9 

Lead frame coating Palladium   0,01 

Lead frame 
Copper 6,7 24,3 24,3 

Palladium 0,01   

Wires Gold 0,16  0,06 

Anode Ball Tin  1,7  

Table 5.15. Material quantities of electronic components’ subparts of set 18. The red cells show the highest content of a material among all 

the common subparts of the different electronic components studied in set 18, or material content that is presented only in one electronic 

component. They were selected for applying the material content share variations showed in table 5.14. 

As observed in table 5.14 and 5.15, by using electronic components with small content share variations 

on materials with high relevance in set 18 (e.g., gold in the wires of the SOT23-5 typed voltage 

comparator,  or silver in the die attach of the SO8-typed memory); and very low content share variations 

on materials with low relevance, but with high contents in set 18 (e.g., copper in the lead frames of the 

UFQFPN32-typed MCU), designers can be sure, with 95% of confidence, that design of set 18 have 

almost the same chances (45,87%) of having the same impact of design of set 1, as it is showed in figure 

5.43.  

Concretely, this means that designers wanting to improve set 18 should look for alternative SOT23-5 

typed voltage detectors, UFQFPN32-typed MCUs, and SO8-typed memories with similar attributes that 

those of the studied electronic component (i.e.; similar in the majority of their materials, similar in their 

total weight, etc.); but different with respect of the material content shares of certain of their subparts, 

as it is suggested in Table 5.16.  

Electronic 

component 
subpart Material 

Eco-design targets 

(With respect to initial content shares) 

VC SOT23-5 
Wires Gold Less than 0,919% 

Lead frame Palladium Less than 0,027% 

UFQFPN32 
Anode Ball Tin Less than 3,378% 

Lead frame Copper Less than 49,475% 

SO8 
Die Attach Silver Less than 1,110% 

Lead frame Coat Palladium Less than 0,004% 

Table 5.16. Recommended variations that alternative SOT23-5 typed voltage comparators, UFQFPN32-typed microcontroller and SO8-

typed memories should pursue to improve the design of set 18 facing up to the design of set 1. The eco-design targets were obtained by 

subtracting the proposed variations in table 5.14 (the standard variation values) from the typical material content shares (The reported content 
shares seen in annexes 7 to 9). 

2.1.3.2.Importance of materials and physical attributes for the GW impact category 
For illustration purposes and because the significant relevance of the PCB in the GW impacts of ICT 

devices, evidenced in literature; the following analysis consider the land patterns of the studied 

electronic components to observe the size variations and the GW impacts of the PCB component of the 

different design sets seen previously. This analysis focuses on the internal die of the studied electronic 

components too, as different works in literature point out the significant contribution of this subpart to 

the final GW impact of ICT devices. This is done by using the LCA implementation proposed in 

previous chapter (section 4.1), which contains a method to find the surface of the internal die, based on 

the Ecoinvent methodology. Figure 5.44 shows the results of this analysis (the relative GW impacts of 

all possible design set combinations of the memory-based version with different PCB sizes). 
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Figure 5.44. Relative GW impact of all design sets for the NFC-memory-based version (24 combinations) with a variable PCB component. 
The functional unit is defined as “production of one EHS sensor system device in its memory-based version”  

This time, for the GW impact category, the best and the worst design alternatives are set 14 and set 6 

respectively (the latter with a relative impact of more than 25% with respect to the former, as showed in 

figure 5.44). A detailed inspection of impacts of set 6 in figure 5.45a shows that its biggest impact 

contributors are its PCB, its LQFP32-typed microcontroller and its SO8-typed memory components 

(With an approximate impact contribution of more than 46%, 24% and 8% respectively).   

 (a)  (b) 

Figure 5.45. Detailed GW impact contributors of (a) the worst design alternative (Set 6), and (b) the best design alternative (Set 14). Notice 
that electronic components are specified by packaging type. 

While the land patterns of these electronic components, together with that one of the SOT23-5 typed 

voltage comparator, increase the PCB size of set 6 in approximately 11,8% (786,81 mm2, with respect 

to the PCB size of the referential design of set 13 (704 mm2)); the land patterns of the SC70-5 typed 

voltage comparator, the UFQFPN32-typed MCU and the UFDFPN8-typed memory reduce the PCB size 

of the design set 14 in almost 2,7% (685,55 mm2). Such variations explain to some extent the impact 

gap between set 6 and set 14 (Figure 5.46).  

70,

75,

80,

85,

90,

95,

100,

%

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Set 12

Set 13 Set 14 Set 15 Set 16 Set 17 Set 18 Set 19 Set 20 Set 21 Set 22 Set 23 Set 24

2,0674

24,4712

8,8457

46,2769

0,

10,

20,

30,

40,

50,

60,

70,

80,

90,

100,

%

PlasticCase

PCB

SO8

LQFP32

VD STM1831

VC SOT23-5

Transistors SOT323

LED 0603

Diodes SOT666

Resistors 0402

Capacitor 1812

Capacitors 0402

1,3386

15,0497

5,0577

53,9957

0,

10,

20,

30,

40,

50,

60,

70,

80,

90,

100,

%

PlasticCase

PCB

UFDFPN8

UFQFPN32

VD STM1831

VC SC70-5

Transistors SOT323

LED 0603

Diodes SOT666

Resistors 0402

Capacitor 1812

Capacitors 0402



164 

 

 (a)  (b) 

Figure 5.46. Absolute GW impact of set 6 (a) and set 14 (b). 

Besides of this, an initial analysis on the relevant emissions involved in the production of electronic 

components of set 6 shows that another of its big impact contributors is the internal die of its LQFP32-

typed microcontroller (with an absolute impact of 5,40 x 10-02 Kg CO2-eq, according to table 5.17). 

From these findings, the iterative analysis seen previously in section 2.1.3.1 is applied again to reveal 

further impact contributors for the GW impact category, but this time, focusing on the relevant emissions 

(CO2 and CH4) generated in specific production processes of the studied components of set 6 and set 14. 

Table 5.17 shows the results of this analysis. 

  Set 6 Set 14 

Iteration Process 
Electronic 
component 

Subpart 
Abs impact CH4 

(Kg CO2-eq) 
Abs impact  

CO2 
Weight (mg) 

or area  
Weight (mg) 

or area 
Abs impact 

CO2 
Abs impact CH4 

(Kg CO2-eq) 
Subpart 

Electronic 
component 

1 

Wafer  
production 

VC SOT23-5 Die (mm2) 1,64E-04 2,05E-03 0,072 0,088 2,51E-03 2,02E-04 Die (mm2) VC SC70-5 

LQFP32 Die (mm2) 4,33E-03 5,40E-02 1,885 1,527 4,19E-02 3,36E-03 Die (mm2) UFQFPN32 

SO8 Die (mm2) 9,72E-04 1,21E-02 0,425 0,500 1,42E-02 1,14E-03 Die (mm2) UFDFPN8 

Electricity PCB PCB (mm2) 1,48E-02 1,71E-01 787 686 1,49E-01 1,29E-02 PCB (mm2) PCB 

2 Gold 

VC SOT23-5 
Wires 1,22E-04 2,21E-03 0,157 0,033 4,65E-04 2,56E-05 Wires 

VC SC70-5 
Lead frame 7,73E-07 1,41E-05 0,001         

SO8 
Wires 4,80E-05 8,73E-04 0,062         

UFDFPN8 
Lead frame coat 2,35E-06 4,28E-05 0,003         

3 Silver 

VC SOT23-5 
Die Attach 1,73E-07 4,47E-06 0,057         

VC SC70-5 
        0,016 4,64E-06 3,63E-07 Lead frame 

LQFP32 

Die Attach 1,46E-05 1,86E-04 0,643 0,198 5,74E-05 4,49E-06 Die attach 

UFQFPN32 Lead frame 8,00E-05 1,02E-03 3,528 1,701 4,93E-04 3,86E-05 Lead frame 

Wires 6,55E-06 8.38E-5 0,289 0,188 5,45E-05 4,26E-06 Wires 

SO8 Die Attach 2,10E-05 2,68E-04 0,925 1,108 3,21E-04 2,51E-05 Die attach UFDFPN8 

Table 5.17. Results of the combined analysis (Elementary flow and sensibility analysis) showing the big GW impact contributors of set 6 

and set 14, according to the CO2 and CH4 emissions involved in the production processes of the studied electronic components or subparts. 
For simplicity, mixed market (GLO) for gold, silver, electricity and wafer production is showed. 

As observed in table 5.17, the main GW impact contributors of sets are attributed to the electricity 

(mixed market for medium voltage) used for the PCB production and for the wafer production of internal 

dies. Mixed markets for gold and silver used in several electronic components subparts appear too, but 

this time, their contributions to the total GW impacts of both sets are marginal. However, notice that 

gold is a decisive substance when internal dies in confronted IC components are almost identical. For 

example, the great GW impact difference between the SO8- and the UFDFPN-typed memories (both 

with an absolute GW impact of 6,02 x 10-02 and 2,57 x 10-02 Kg CO2-eq respectively, as showed in figure 

5.46a-b); is explained by the exclusive presence of gold in the former, and not by the surface of its 

internal die (which differs from that one of the latter only in a factor of 1,17, as observed in table 5.17). 

In the case of silver, observe how its low content in the lead frame of the SC70-5 typed voltage 

comparator (0,016 mg) generates a reduced total impact of 6,81 x 10-03 Kg CO2-eq, compared to the 
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impact caused by the silver content (0,057 mg) in the die attach of the SC70-5 typed voltage comparator 

(1,41 x 10-02 Kg CO2-eq according to figure 5.46a). Notice that both components have internal die sizes 

almost identical (different only in a factor of 1,22).   

With the aim of applying these findings in heterogeneous electronic designs (mixed electronic cards 

with different electronic components for each of the functions identified), the next section presents an 

analysis on the die surfaces; and the gold and silver contents variability of different electronics 

components proposed for set 12 and set 20. However, before starting with this, consider first some useful 

aspects of these sets detailed in table 5.18 and figure 5.47. 

  Set 20 Set 12 Set 20 Set 12 Set 20 Set 12 

Subparts Materials 
VC SC70-5 
(Mass mg) 

VC SOT23-5 
(Mass mg) 

WLCSP36 
(Mass mg) 

TFBGA64 
(Mass mg) 

UFDFPN8 
(Mass mg) 

SO8 
(Mass mg) 

Die Die area (mm2 / mg) 0,015 0,004 0,952 0,030 0,031 0,005 

Wires Gold (Au) 0,55% 0,96%   0,548%   0,078% 

Solder 
balls 

Silver (Ag)     0,24% 0,125%     

 

Table 5.18. Relevant material content shares and internal die area to weight ratios of the studied electronic components’ subparts of set 20 
and set 12. The red cells mark the highest internal die surface ratios or material content shares among all the common subparts of the 

different electronic components studied in both sets. They were selected for suffering further variations in the analysis presented in the next 
section (table 5.19).  

By bearing in mind that the land patterns of the electronic components of set 12 increase the PCB size 

in 2,36% (720,6 mm2, with respect to the PCB size of the referential set 13 (704 mm2)), and that the land 

patterns of the electronic components of set 20 reduces the PCB size in almost 6% (662,5 mm2) on the 

one hand and, considering that the die area ratios of all the electronic components of set 20 overcome 

those of set 12 (specially that one of the WLCSP36 MCU component, as showed in table 5.18) on the 

other hand; one cannot deduct at a first glance which set outperforms the other and further impact 

calculations are required (Figure 5.47). 

(a) (b) (c) 

Figure 5.47. (a) Relative GW impacts of set 12 and Set 20. (b) Absolute GW impact of set 12. (c) Absolute GW impact of set 20.  

The figure 5.47 shows that the impact of the larger PCB in set 12 (figure 5.47b) is counterbalanced by 

the impact of the internal die of the WLCSP-typed microcontroller in set 20 (figure 5.47c), making the 

GW impacts of both sets almost identical (figure 5.47a). As observed, the large die area ratio of the 

WLCSP-typed Microcontroller component (0.952 mm2 per mg) makes the design of set 20 slightly 

unfavorable with respect to the design of set 12 (in despite of its reduced PCB size). Moreover, the 

relative gains of set 12 could be easy lost, if one consider disadvantageous variations in the quantity of 

gold in the wires, and silver in the solder balls of its TFGBA-typed microcontroller component (both 

substance with a share of 0,548% and 0,125% respectively, according to table 5.18 and annex 8b). In 
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this way, a two-part uncertainty analysis is conducted in the next section to find (1) at which extend the 

content of gold and silver in wires and solder balls of alternative TFBGA-typed microcontrollers for set 

12 may vary, until its favorable design disappears and (2) at which extend the internal die area ratio in 

the WLCSP-typed microcontroller may reduce, so that the design of set 20 enhance to the degree of set 

12. 

2.1.3.2.1. Analysis of material content shares and die area influence on GW impacts  
As stated before, this analysis is conducted in two parts. The first part considers gold and silver content 

uncertainties in wires and solder balls of the TFBGA-typed microcontroller component of set 12 and the 

second part considers a variation in the area-mass ratio of the internal die of the WLCSP-Typed 

microcontroller component of set 20. Variations of the aforementioned features are summarized in table 

5.19 and effects of applying them are shown in figure 5.48. 

Electronic 
component 

Subparts 
Physical  
features 

Internal die are ratio 
or material content share (mean) 

Variations 
(SD) 

WLCSP36 Die (ratio mm2 / mg of IC) Area 0,952 0,1 

TFBGA64 
Wires Gold 0,548% 0,5% 

Solder balls Silver 0,125% 1,0% 

 

Table 5.19. Proposed variations for different internal die area ratios of WLCSP-Typed microcontrollers of set 20, and variations of material 
content shares of TFBGA-Typed microcontrollers for set 12. The variations were obtained by trial and error tests, considering a data 

dispersion (standard variation) in relation to a typical mean value (here assuming the reported values in annexes 8b and 8d). 

 (a) (b) 

Figure 5.48. (a) GW impact distribution of the design of set 12, with a sample of potential TFBGA-typed microcontrollers with different 

variations in the material content shares of their subparts, getting worse to the point of being an inconvenient design compared with the 

design of set 20 (blue area). (b) GW impact distribution of the design of set 20, with a sample of potential WLCSP36-typed microcontrollers 
with different variations in their internal die area ratios, outperforming that one of set 12 (blue area). The probability distributions were 

obtained by Monte Carlo test (10000 test iterations) applied with the proposed variations of typical values showed in table 5.19. 

Figure 5.48a shows high probabilities (almost 50%), that the slight advantage of the design of set 12 

may be compromised if the gold content share in the wires and the silver content share in the solder balls 

of its TFBGA-typed microcontroller component increase to 1,048% and 1,125% respectively (with 95% 

of confidence). Moreover, Figure 5.48b shows a little, yet promising probability (more than 8%) that 

the design of the set 20 outperforms that one of set 12, if its area-mass ratio die ratio reduce only in 10% 

(0,852 mm2 per mg). These aspects can be adapted in eco-design targets that designers need to look for 

in the context of the case study “Smart monitoring” (table 5.20); but always being cautious that other 

physical attributes such as the total weight and the land patterns of the alternative components, or the 

size of the PCB do not change or do not vary much (ceteris paribus). 
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Electronic 

component 
Subparts 

Physical  

features 

Eco-design targets 

(With respect to initial die area ratios or content shares) 

WLCSP36 Die (ratio mm2 / mg of IC) Area Less than 0,852 

TFBGA64 
Wires Gold At most 1,048% 

Solder balls Silver At most 1,125% 

Table 5.20. Variations that alternative WLCSP-typed microcontrollers should pursue to improve the design of set 20 over the design of set 
12; and limits in the gold and silver content shares in wires and solder balls of alternative TFBGA-typed microcontrollers should respect at 

most, in order to keep the convenient design of set 12 in relation to the design of set 20. The eco-design target for the die area ratio of the 

WLCSP36-typed MCU component was obtained by subtracting the proposed variations in table 5.19 (the standard variation values) from the 
typical die area ratio of the component (detailed in annex 8d). The eco-design target for the gold and silver content shares were obtained by 

adding the proposed variations in table 5.19 (the standard variation values) to the typical material content shares presented in table 5.19 and 
found in annex 8b. 

2.1.3.3.Recommendations for the case study “Smart monitoring” in the context of 

physical attributes 
The analysis of materials and physical attributes facilitates partially the decision making process and/or 

the establishment of eco-design targets. As observed in previous sections, two components may do the 

same function with the same performance, but their materials and physical attributes may provokes very 

different results. This is due to few yet key variations that designer should look for sensibility analysis 

whenever the information of these attributes is available. 

In the context of the case study “Smart monitoring”, designers should explore these aspects in relevant 

design sets, confront their advantages and disadvantages, and find a good balance of both. For instance, 

figure 5.49 contrasts the worst and best design sets for the AD and the GW impact categories with the 

referential design of this case study (set 13).  
 

 

 

 

Figure 5.49. AD and GW relative impacts of the respective worst and best design sets 

(set 12 and 20 for AD; and set 6 and 14 for GW) contrasted with the AD and GW 
relative impacts of the referential design set (set 13).  

 

 

 

 

As observed in figure 5.49, the referential set 13 has already an ecofriendly design, compared to the 

worst cases in both impact categories.  

 In order to improve it and avoid further laborious redesign, designer should consider the 

alternative design of set 14, and replace only the current EEPROM memory component in set 

13 (a TSSOP8-typed memory) by a UFDFPN-typed EEPROM memory (that one that shapes 

the design set 14).  

Table 5.21 compares both components in the contexts of the studied physical attributes analyzed in 

previous sections. 
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Subparts Materials or physical attributes TSSOP8 UFDFPN8 

Die Die area ratio (mm2 / mg) 0,6975 0,4997 

Package Land pattern (Including standard IPC1753B in mm2) 7,6 x 4,1 4,1 x 3,1 

Die attach Silver (mg)  1,108 

Lead frame 
Coating 

Palladium (mg) 0,002 0,001 

Gold (mg) 0,002  

Lead frame Copper (mg) 14,147 2,918 

Wires 
Copper (mg)  0,018 

Gold (mg) 0,019  

 TOTAL Gold (mg) 0,021 0,000 
 TOTAL Silver (mg) 0,000 1,108 
 TOTAL Palladium (mg) 0,002 0,001 
 TOTAL Copper (mg) 14,147 2,936 
 IC weight (mg) 34,00 16,00 

Table 5.21. Physical attributes of the TSSOP8- and the UFDFPN8-typed memories of the referential set 13 and alternative set 14 (both 
design sets are identical except from these components. For a detailed overview of both components, see annex 9a and 9b). 

For the AD impact category, table 5.21 shows that benefits of the studied UFDFPN8-typed memory 

come from the null use of gold in its lead frame coat and wires. Also, it contains only half of palladium 

on its lead frame coat and almost a fifth of the copper content in its lead frame compared to the 

corresponding subparts of the TSSOP8-typed memory used in set 13. On the other hand, notice the 

exclusive presence of silver in the die attach subpart of the UFDFPN-typed memory; Designers should 

pay attention on this content since it could be penalizing in design alternatives pretty different from that 

of set 13 (i.e.; different microcontrollers or voltages detectors). 

For the GW impact category, the benefits of the studied UFDFPN8-typed memory come from its 

reduced die area ratio compared to that one of the TSSOP8-typed memory and mainly from its reduced 

land pattern area (almost half of that one of the TSSOP8-typed memory). This later aspects leads to use 

a smaller PCB than that one used in the referential set 13 (685,55 mm2 instead of 704 mm2, according 

to annex 6). However, designer should also be cautious with the reduced packaging size of the 

UFDFPN8-typed memory, as it could be more difficult to separate it from the PCB in the EoL phase, as 

it was saw for similar-sized components in previous chapter.  

 On the other hand, although there exists a clear advantage of set 20 over set 14 in the AD impact 

category (both with similar electronic design except from their microcontroller components), 

designers who would be considering replacing the microcontroller component of set 13 should 

avoid using the WLCSP-typed microcontroller used in set 20, as its internal die causes 

significant impacts in the GW category, as showed in figure 5.49. Alternatively, they should 

consider alternative components of this packaging technology, by evaluating several variations 

of their die area to mass ratio in order to see, for example, at what extend the die surface should 

reduce to compete with the enhanced design of set 14 in the GW category. 

This later aspect leads to discriminatory strategies based on physical features of dissimilar packaging 

technology, depending on the designers’ goals and especially when information is very limited. For 

example, while BGA-typed components usually use unfavorable materials such as gold and silver in 

wires and die attach subparts respectively (figure 5.50a), Chip Scale Package (CSP) typed components 

use advantageous materials such as copper in distinctive subparts (DRL and UBM subparts, figure 

5.50b).  

(a)  (b) 

Figure 5.50. Cross section views showing the basic subparts of (a) a BGA-typed component, and (b) a CSP-typed component. Figures 
extracted and adapted from [176]. 
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However, the CSP technology is also characterized by the dominant presence of the internal die, which 

usually covers more than 80% of the total packaging size (Figure 5.51). 

 

 

Figure 5.51. Cross section view of a BGA and CSP 

components. Both devices has the same die size, but the 

latter differs mainly in the reduced package size and 
weight, which implies that bigger die areas are needed per 
mass produced. Figure extracted from [177]. 

 

 

 thus, designers wanting to improve the environmental profile of a design in the AD impact 

category should consider not only replacing directly certain conflicting components by CSP-

typed components, but also trying to reduce the GW impacts of other components; for example 

by trying to gains marginal benefits from reducing their gold and silver contents or by using 

their reduced land patterns, so that the final size of the PCB can be reduced.  

In line with this later aspect, another recommendation would be optimizing the arrangement of electronic 

components according to more convenient IPC-standard versions, as it is showed in figure 5.52. 

(a)   (b) 

Figure 5.52. Arrangement of three SMD electronic components under the IPC1753B standard (a), and the IPC1753C standard (b). Notice 

that the particular perimeter of the latter gives more flexibility for reducing the final size of the PCB component of a design. Both figure are 
in scale 1:1. 

In any case, designers should be cautious when using BGA-typed components in general, since high pin 

densities per mm2 may lead to the necessity of using more PCB layers, as it was pointed out in the 

section 2.1 of the previous chapter.  

2.1.4. Evaluation of electronic component alternatives through technical attributes 

This section focuses on the endurance rate of EEPROM memories to illustrate the relevance of this 

technical feature to the eco-design of intermittent IoT devices. It considers the previous section 2.1.1 

focused on the data and information design  of the case study “Smart monitoring”, and the endurance 

rate (writing cycle per memory block) of NFC-EEPROM memories. Specifically, this section compares 

the life cycle (manufacturing, use and recycling phases (worst scenario)) of the NFC-memory-based 

version (referential design or set 13) with the life cycle of the alternative Bluetooth-based version 

presented in section 2.1.2; and determines the limits by which one could be better to the other, on the 

basis of an uncertainty analysis of the intensity use of the object. The functional unit is defined as 

“Monitoring the usage rate of an object (unspecified) during 300 hours (or 1,08 x 106 seconds)”. 

For this, two essential aspects need to be explained: the writing cycling schema in the EEPROM memory 

for the NFC-memory-based version, and the energy consumption of the BLE module of the smartphone 

for the BLE-based version (energy consumption that considers only the discovering mode, as data 

application in this version is embedded in advertising BLE packets). For the first aspect, the reader 

should recall the data & information flow design presented in the previous section 2.1.1 (second 

alternative), and consider the memory block organization of the NFC-EEPROM memory component in 

figure 5.53b. 
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(a) (b) 

Figure 5.53. (a) Recalling of the intermittent routines (second alternative) for the NFC-memory-based version seen in section 2.1.1. (b) 

Actual organization of the memory blocks of the studied EEPROM memory used in set 13. Each block (line) is composed of 4 bytes; gray 

blocks contain fixed, referential data of the application (e.g., identifiers of the application) and white blocks represent the actual data of the 
application. 

As observed, the memory-based version needs four memory blocks to work. Each memory block 

represents a variable of the main program (𝑇𝛼𝑛
, ∆𝑡, 𝑁𝐸𝛼𝑛

, and 𝑁𝐸𝛼𝑛−1
), which is updated (rewritten) in 

every charging-discharging cycle of the sensor system, as is showed in figure 5.53b (whenever energy 

is sufficient, the program updates the differential of time variable (∆𝑡) on the block of the 36th byte with 

a new value and later the value of 𝑁𝐸𝛼𝑛−1
 on the block of the 40th byte, with the previous value of 𝑁𝐸𝛼𝑛

 

in the ith charging-discharging cycle; so that the microcontroller of the device calculates new values for 

𝑇𝛼𝑛
 and 𝑁𝐸𝛼𝑛

 by executing recursive routines, making use of the block of the 28th byte and the block of 

the 32sd byte sequentially, as showed by the right arrows in figure 5.53b).  

In this sense, and by considering the functional unit defined above: “Monitoring the usage rate of an 

object (unspecified) during 300 hours (or 1,08 x 106 seconds)”, the number of writing cycles executed 

in a block of the EEPROM memory component of set 13 could be determined as follows: 

𝑊𝐶 𝐵𝑙𝑜𝑐𝑘 =  
 𝑊𝑟 ×1,08 ∙106 𝑠𝑒𝑐𝑠

4
    (5.14) 

Where: 

𝑊𝐶𝐵𝑙𝑜𝑐𝑘 = 𝑊𝑟𝑖𝑡𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒𝑠 𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎 𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑙𝑜𝑐𝑘 𝑖𝑠 𝑟𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛 

𝑊𝑟 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑟𝑒𝑤𝑟𝑖𝑡𝑒𝑠 𝑑𝑎𝑡𝑎 𝑖𝑛 𝑎 𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑙𝑜𝑐𝑘 (𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠)   

 

For the second aspect, the energy required by the BLE module of the smartphone for accomplish the 

aforementioned functional unit could be calculated as follows: 

𝐸𝑅𝑥 (𝐵𝐿𝐸)
= ( 

𝑃𝑅𝑥   ×  300 ℎ𝑟𝑠

𝐵𝑝
) × 1%    (5.15) 

Where: 

𝐸𝑅𝑥 (𝐵𝐿𝐸)
= 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓𝑡ℎ𝑒 𝐵𝐿𝐸 𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑚𝑜𝑑𝑒 (𝑖𝑛 𝑘𝑊ℎ) 

𝑃𝑅𝑥
= 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑏𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ 𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝑎 𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑚𝑜𝑑𝑒 (𝑖𝑛 𝑘𝑊) 

𝐵𝑝 = 𝑅𝑒𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑜𝑓 𝑎 𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑎 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 (𝑖𝑛 %)  

 

Due to the lack of studies showing the energy consumption of the Bluetooth technology in its specific 

BLE version and in its different states, Equation 5.15 estimates the energy consumption of the BLE 

module of the smartphone (𝐸𝑅𝑥(𝐵𝐿𝐸)
) by multiplying the typical power consumption of the classical 

Bluetooth technology in the discovering state (𝑃𝑅𝑥 = 223 mW or 2,23 x 10-04 kW, according to Perrucci, 

G.P. [166]) with the reduced energy consumption rate of 1%, claimed in technical specifications of BLE 

[178]. Also, 𝐵𝑝 consider only 95% of the power output of a Li-ion battery, as 5% would be lost due self-

discharging, as suggested by Tarkoma, S. et al [179].   
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2.1.4.1. Influence of memory endurance on environmental design 

The uncertainty analysis for this section considers the life cycle of the NFC-memory- and BLE-based 

versions. Although several technical features may exist in the context of the case study, in this work, 

one focuses on the memory endurance as a critical feature that determines the lifetime of the whole 

prototype.  

The use phases of both versions consider equation 5.14 and 5.15 respectively, and imposes a condition: 

if the writing cycles of a memory block (𝑊𝐶𝐵𝑙𝑜𝑐𝑘) overcome the maximal writing cycles reported in the 

technical specifications of the memory component of set 13 (1MM of writing cycles, as reported in its 

datasheet [136]), before accomplishing the use period defined in the functional unit; it is assumed that 

this memory is no longer reliable, provoking the early replacement of the device.  Thus, this section 

examines the variations of the writing frequency (𝑊𝑟) of memory blocks for the referential design (set 

13), according to empirical data of different use intensities of the object presented in table 5.22.  

Use 
intensity 

𝑾𝒓 (writings / Sec) 
Variations (%) 

Minimum Maximum Mean SD 

Very low 0,57 1,94 1,17 0,47 40,2% 

Low 0,81 4,52 1,88 0,95 50,5% 

Moderate 1,44 7,59 2,96 1,51 51,0% 

High 2,59 7,96 3,6 1,29 35,8% 

Table 5.22. Empirical writing rate values (𝑊𝑟) obtained from different use intensities of the object (field tests under controlled environment). 

The proposed variations consider the typical writing frequency of different use intensity scenarios (mean) ± the correspondent standard 
variation (SD). 

Figure 5.54 presents the distribution of the GW impact difference of the BLE version (with an estimated 

energy consumption of the smartphone of 7,04 x 10-04 kWh for 300 hrs) and the referential memory-

based version (set 13) with a very low, low, moderate and high use intensity of the object (AD impact 

comparison shows similar behavior).  

 (a)  (b) 
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 (c)  (d) 

Figure 5.54. GW Impact distribution for the writing rate (𝑊𝑟) variation of the referential design of set 13 with (a) very low use intensity of 

the object, (b) low use intensity, (c) moderate use intensity and (d) High use intensity. As explained in previous sections, the uncertainty 
analysis is based on Montecarlo test (10000 runs) that calculates the probability that the impact of the BLE version overcomes that one of 

referential set 13 (the blue area), or the contrary situation (orange area).  

Figures 5.54b, 5.54c and 5.54d present bimodal impact distributions, as Monte Carlo runs test for two 

mutually exclusive events (the writing cycle of the memory of the set 13 (𝑊𝑟) overcomes the writing 

cycles of a block (𝑊𝐶𝐵𝑙𝑜𝑐𝑘) of its memory component or not). As observed in figure 5.54a, an increasing 

variation of more than 40% in the mean writing frequency of a very low use intensity scenario do not 

provoke the depletion of a memory block, and no further replacement of the device is required (with 

95% of confidence). This is also the case for the low use intensity scenario, with the difference that —

with a very low probability— a maximum value for the writing frequency (i.e.: 4,52 writings per second) 

would lead to an early depletion of a memory block. On the other hand, the variation of the writing 

frequency in a moderate use intensity scenario becomes relevant, especially if the typical writing 

frequency mean increase in 51%, as observed in figure 5.54c. Moreover, the probability that the impact 

of set 13 overcomes that one of the BLE version (that is, that the set 13 is replaced once) increase 

considerably, when the typical writing frequency mean in a high use intensity scenario increases in 

35,8%, as observed in figure 5.54d. 

Concretely, this means that under the data design flow showed in the previous section 2.1.1 (second 

alternative), and a constant energy consumption of 2,23 x 10-04 kWh for discovering BLE messages in 

the smartphone; it is improbable that a typical very low, or low use intensity scenario of the object lead 

to the early replacement of the device and, consequently, that the impact of the NFC-memory-based 

version never overcomes that one of the BLE version. However, this conclusion should be adopted 

carefully, as combined use patterns (mixed low-high intensities) may occurs in reality. 

2.1.4.2.Recommendations for the case study “Smart monitoring” in the context of 

technical attributes 
The section above use on-field data to illustrate the relevance of data design for the referential flow of 

IoT systems in terms of technical features of EEPROM memories (writing cycle rates) and BLE modules 

(in this case, energy consumption of the BLE module of a smartphone in the discovery state).  

 For a very low and low use intensities of the object, it is recommended keeping the NFC-

memory-based version, and for a moderate intensity scenario, designer should consider 

advanced memory management, software-based routines such as Wear Leveling9, in order to 

benefit from unused memory blocks and assure the optimal functioning of the device within the 

use period of the object defined in the functional unit.  

 

 For a high use intensity, it is recommended redesign the data flow of the IoT system, or 

switching to the BLE-version. In the case of adopting the BLE alternative, designers should 

                                                           
9 Wear-Leveling (WL) is a software-based technique that evenly distribute the burden of repeated writing cycles over a larger set of memory 

block [248].  
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consider redesign this version by focusing on its electronic design, since its relative impact 

(figure 5.55) is explained by few components (figure 5.56) and not by its energy needs in the 

use phase (less than 0,001% and 0,1% for the AD and GW impacts categories respectively). 

 

 

 

 

 

Figure. 5.55. Relative impact of the life cycle of the BLE version 

(REF) and the memory-based version (set 13) with a low and high 

use intensities. In a high-use intensity scenario, the device under the 
referential design (set 13) is replaced once to fulfill the defined 
functional unit.  

 

 

 

 

Indeed, with an absolute impact of 7,16 x 10-05 Kg Sb-eq, attributed mainly to its BLE module (figure 

5.56a), the relative AD impact of the BLE version almost doubles that one of the memory-based version 

(only with an absolute impact of 4,01 x 10-05 Kg Sb-eq). By inspecting the big contributors of the BLE 

module (BlueNRG2) in figure 5.56b, a preliminary recommendation would be conducting a sensibility 

analysis on the silver and gold content shares of the respective die attach and wires subparts of the BLE 

SoC-QFN32 component, as both metals would be present in high quantities (5,51% in the case of silver 

and 1,32% in the case of gold, according to annex 11).  

 (a) (b) 

Figure 5.56. (a) AD and GW impact contributors of the BLE version. (b) Detailed impact contributors of the BLE module (BlueNRG2). The 

absolute impact of the BLE SoC QFN32 component amounts to 2,9 x 10-05 Kg Sb-eq and 0,11 Kg CO2-eq for the respective AD and GW 
categories.  

On the other hand, with an absolute impact of 0,625 Kg CO2-eq for the BLE version and 0,575 Kg CO2-

eq for the memory-based version, there is not big impact differences between both designs and little 

modifications in key features of the BLE version may lead to significant benefits in the GW category. 

For example, a preliminary recommendation would be conducting a sensibility analysis on the die 

surface ratio of the BLE SoC component as seen in section 2.1.3.2.1 and, simultaneously, another 

sensibility analysis on the gold content share of its wires and silver content share of its die attach, as it 

was proposed previously, to gain marginal benefits in the GW category. 

0,

10,

20,

30,

40,

50,

60,

70,

80,

90,

100,

Abiotic depletion Global warming
(GWP100a)

%

PCB

PlasticCase

BlueNRG2 module

VD_STM1831

VC SC70-5

Transistor SOT323

Diodes SOT363

Resistors 0805

Resistor 0603

Capacitor 0805

Capacitor 1210

Capacitors 0603

0,

10,

20,

30,

40,

50,

60,

70,

80,

90,

100,

Abiotic depletion Global warming
(GWP100a)

%

Ceramic antenna

RF Inductor 1608

 RF Inductor 1005

Capacitors 0603

Inductors 1005

Inductor 0603

Metal Lid

PCB

BLE SoC QFN32

Balun Filter

 -

 20

 40

 60

 80

 100

 120

 140

 160

 180

Abiotic depletion Global Warming (GWP100a)

%

BLE

Set13 Low use intensity

Set 13 High use intensity



174 

 

2.1.5. Evaluation of electronic component alternatives through circularity attributes 

To illustrate the relevance of certain features of electronic components to generate significant 

environmental savings (in this work, features that are known as “circularity features” or “circularity 

aspects”), an uncertainty analysis on the reusability and recyclability benefits and impacts of set 8 and 

set 20 is conducted. Specifically, this section contrasts the lifecycle of both sets (whose differ only in 

the microcontroller component) to study (1) the conditions that facilitates the successful separation and 

reuse of the studied TFBGA-typed microcontroller and (2) the benefits from three different recycling 

scenarios (on the basis of component sizes). These scenarios consist of a best scenario that includes 

mechanical separation before shedding (thermal separation), to maximize gold and silver recovery; a 

regular scenario, which applies a manual separation of the waste device before shredding (manual 

separation of the electronic card from the PCB); and a worst scenario, which involves shredding of the 

entire device without separation. Figure 5.57 recalls the waste flows of the regular and best recycling 

scenarios, together with the waste flow of the reuse scenario under the LCA implementation for the 

framework for eco design, presented in the previous chapter. 

 

Figure 5.57. Recall of the EoL LCA modeling proposed in the framework for eco design. It is applied on the EoL phase modeling of set 8 
and set 20. Each equipped with a TFBGA64- and a WLCSP36-typed microcontrollers respectively. 

The motivation of considering worst, regular and best recycling scenarios in terms of separability comes 

from the importance of metal concentrations in electronic scraps, seen in the previous chapter (section 

2.2.1); and the relevance of gold and silver, evidenced in the section 2.1.3 of this chapter. In this line, 

the thermal separation step (mechanical disassembly) considers the size of electronic components as the 

unique circularity feature facilitating successful separation. that is, components whose any side measure 

more than 3 mm are assumed to be separated successfully, adopting the posture of Chen, M. et al [127] 

(Electronic components below this threshold, would be considered as component melted with the PCB 

(partial WPCB waste flow). Annexes 12 and 13 provide the normalized quantities of the recycled 

contents for set 8 and Set 20 applied in this section. 

2.1.5.1.Analysis of circularity features favoring electronic component reuse 
To consider a separated TFBGA-type microcontroller as a reliable component to be reused, this section 

analyzes the limits within the bridging effect in its solder balls could be avoided in thermal separation, 

as it was described by equation 4.1 and 4.5 in the section 2.2.2 of the previous chapter (Here recalling 

them in the adapted equation 5.16 and 5.17, for the convenience of the reader). 

𝑊𝑚𝑎𝑥  =  12 −  80,7 𝐹1 +  9,529 𝐹2 −  44,4 𝐹3 +  88,7 𝐹1𝐹3 −  3,532 𝐹2𝐹3 −  0,92 𝐹2𝐹4 −  1,597 𝐹1𝐹2𝐹3  (5.16) 

𝑊𝑐𝑟𝑖𝑡 = 𝐵𝑎𝑙𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 × (1 − (
𝐵𝑎𝑙𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑝𝑖𝑡𝑐ℎ 
)

2

)        (5.17) 

Where:  

𝑊𝑚𝑎𝑥 = 𝑀𝑎𝑥𝑖𝑚𝑎𝑙 𝑤𝑎𝑟𝑝𝑎𝑔𝑒 𝑡ℎ𝑎𝑡  𝑎 𝐵𝐺𝐴 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑠𝑢𝑓𝑓𝑒𝑟, 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑖𝑡𝑠 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐹1 𝑡𝑜 𝐹4) 

𝑊𝑐𝑟𝑖𝑡 = 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑤𝑎𝑟𝑝𝑎𝑔𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑏𝑜𝑣𝑒 𝑤ℎ𝑖𝑐ℎ 𝑏𝑟𝑖𝑑𝑔𝑖𝑛𝑔 𝑜𝑐𝑐𝑢𝑟𝑠  

That is, by considering the ball diameter, the solder ball pitch (F1), the largest packaging size (F2), the 

compound thickness (F3) and the substrate thickness (F4) features of the TFBGA-typed MCU 
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component of set 8, one can say that its reuse is only possible only if its maximal warpage (𝑊𝑚𝑎𝑥) does 

not overcome the critical warpage (𝑊𝑐𝑟𝑖𝑡) beyond of which, bridging occurs or, in other words, when 

the following condition is met: 

𝑊max  − 𝑊𝑐𝑟𝑖𝑡 ≤ 0   (5.18)     

In this way, the equation 5.18 becomes a non-linear objective function composed of 5 variables that 

could be minimized to a value (zero) by a gradient method, to obtained the threshold values for F1, F2, 

F3, F4 and ball diameter below which bridging of the separated TFBGA64-typed microcontroller 

component is avoid (Table 5.23).  

Environmental 
features 

TFBGA-Typed MCU 

Variation 
Current value (mm) 

threshold value (mm) 
Eco design targets 

SD 

Solder ball pitch (F1) 0,5 0,52751 0,027506112 5,214% 

Largest sized side (F2) 5 4,43254 0,56745712 -12,802% 

Compound thickness (F3) 0,6 0,62629 0,026285358 4,197% 

Substrate thickness (F4) 0,2 0,20062 0,000619041 0,309% 

Solder balls diameter 0,3 0,29998 2,4224E-05 -0,008% 

Table 5.23. Current and threshold values of the studied circularity features of the TFBGA64-typed microcontroller with which bridging does 

not occur (they were obtained by the Gradient Reduced generalized method). For the uncertainty analysis, each of the studied features adopts 

a random variable of a normal distribution with its current value as the mean, and the absolute difference between the current value and its 
optimized value (threshold value) as the standard deviation. The current values of the circularity features of the studied component are 

available in its datasheet [171]. 

As observed, designers wanting to assure the reuse of the TFBGA-typed microcontroller of set 8 should 

make sure that the alternative components they consider be at least 12% small and have an increase of 

more than 5% in the solder ball pitch, with respect to the studied TFBGA-typed microcontroller. In this 

way, Monte Carlo tests are conducted, running two mutually exclusive events: a reuse-recycling event 

in which the TFBGA-typed MCU component of set 8 is reused, allowed by favorable variations of its 

solder balls diameter and circularity features F1-F4 (the rest of the device is recycled); or a full-recycling 

event, in which unfavorable variations of the aforementioned features of the component provokes either 

its unavailable separation or its unreliable reuse. Both events consider a best recycling scenario (optimal 

separation of the plastic case, electronic card and electronic components whose any side exceed 3 mm, 

as described in annexes 12 and 13) for a fair comparison with the lifecycle of set 20 (which also consider 

a best recycling scenario). Results are showed in figure 5.58. 

(a) (b) 

Figure 5.58. Impact distributions of the random values of the studied features showing the probability that the AD impact of the lifecycle of 
Set 8 is greater than that one of set 20 (a); and that the GW impacts of the lifecycle of set 20 is greater than that one of set 8 (b).   

Although figure 5.58a shows an unfavorable result in the AD impact category for the lifecycle of set 8 

in a reuse scenario, the reader should be cautious in his or her interpretations. Indeed, the reader should 

keep in mind that the uncertainty analysis calculates the probability that the impact of a lifecycle of a 
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design set is inferior or superior to another, but not at what extend. To explain this tricky aspect for eco-

design, consider figure 5.59a-b. 

(a)  (b) 

Figure 5.59. (a) Relative AD and GW impacts of set 8 and set 20, both with a best recycling scenario (unsuccessful separation and 
unsuccessful reuse). Here, the AD impact of set 20 is inferior to that one of set 8 (approximately in more than 35% of less damage or, in 

absolute terms, 2,21 x 10-05 Kg Sb-eq less than a best recycling scenario of set 8 with an approximate 6 x 10-05 Kg Sb-eq). (b) Relative AD 

and GW impacts of set 8 with a reuse scenario and set 20 with a best recycling scenario. Here, the AD impact of set 20 is slightly inferior to 
that of set 8 (in less that 0,4%) and the relative GW impact of set 8 is significant reduced. 

As observed, the relative environmental savings of reusing the TFBGA-typed MCU component of set 8 

are evident for both AD and GW impact categories. However, for the AD impact category, the problem 

is that the significant benefits from reusing the TGBGA-type microcontroller component are not simply 

enough to allow design of set 8 overthrows that one of set 20 (as observed in the slightly difference 

between both sets in the AD impact category of figure 5.59b). Designers should bear in mind this 

methodological issue, whenever the use of similar Monte Carlo-based uncertainty analysis are planned.   

2.1.5.2.Benefits from optimized separation according to component size 
Table 5.24 and 5.25 presents the gold and silver recovery rates of set 8 and set 20 respectively, which 

consider the weight of waste flows and the recovered content from both design sets. These recovered 

quantities are obtained from the gold and silver content in shredded copper fractions (mg / kg of waste 

flow) as is detailed in annexes 12 and 13. The information of both tables is organized by the 

correspondent waste flows of the worst, regular and best recycling scenarios. 

 Worst Regular Best 

Waste flow Full device WPCB WPCB Waste components Total (best) 

Waste flow weight (mg) 1,71E+04 1,27E+03 9,97E+02 2,75E+02 1,27E+03 

Au recovery rate (mg / Kg waste flow) 2,91E-04 1,08E-03 6,79E-04 3,09E-03 
  

Ag recovery rate (mg / Kg waste flow) 3,50E-03 1,30E-02 8,17E-04 7,44E-02 

Au recovered from the device (mg) 4,96E+00 1,37E+00 6,77E-01 8,50E-01 1,53E+00 

Ag recovered from the device (mg) 5,97E+01 1,65E+01 8,14E-01 2,05E+01 2,13E+01 

Au recovery rate of the device (%) 0,029% 0,108% 
  

0,120% 

Ag recovery rate of the device (%) 0,350% 1,298% 1,673% 

Table 5.24. Gold and silver recovery rates of the different recycling scenarios of set 8. For the Regular and the Best scenarios, the plastic 

case is separated manually from the PCB and incinerated without energy recovery, as is proposed in the LCA implementation of the 

framework for eco design (in chapter 4, section 4.1). The waste flow weight in the worst scenario includes the plastic case of the device. 

 
 Worst Regular Best 

Waste flow Full device WPCB WPCB Waste components Total (best) 

Waste flow weight (mg) 1,66E+04 8,68E+02 6,57E+02 2,11E+02 8,68E+02 

Au recovery rate (mg / Kg waste flow) 1,64E-04 8,29E-04 1,01E-03 0,00E+00 
  

Ag recovery rate (mg / Kg waste flow) 2,91E-03 1,47E-02 1,19E-03 7,60E-02 

Au recovered from the device (mg) 2,73E+00 7,20E-01 6,65E-01 0,00E+00 6,65E-01 

Ag recovered from the device (mg) 4,84E+01 1,28E+01 7,82E-01 1,60E+01 1,68E+01 

Au recovery rate of the device (%) 0,016% 0,083% 
  

0,077% 

Ag recovery rate of the device (%) 0,291% 1,472% 1,939% 

Table 5.25. Gold and silver recovery rates of the different recycling scenarios of set 20. For the Regular and the Best scenarios, the plastic 
case is separated manually from the PCB and incinerated without energy recovery, as is proposed in the LCA implementation of the 

framework for eco design (in chapter 4, section 4.1). The waste flow weight in the worst scenario includes the plastic case of the device.  
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In both tables, the waste flow “Waste components” of the best scenario consider all the electronic 

components in the design set whose any side exceed 3 mm, according to the proposed LCA 

implementation of the framework for eco design, seen in previous chapter. Notice that the total weight 

of the waste flow in the best scenario is the same as the one of the regular scenario, but the gold and 

silver recovered contents and recovery rates are different, as thermal separation processes in the best 

scenario increases the metal concentration in the “WPCB” and “Waste components” waste flows. The 

benefits from this aspect can be observed by comparing the relative AD impacts of all recycling 

scenarios of set 8 in figure 5.60a, and set 20 in figure 5.60b. 

(a) (b) 

Figure 5.60. Relative AD Impact comparison of the worst, regular and best recycling scenarios of set 8 (a) and set 20 (b).  

The slight benefits from manual separation is evidenced for both sets, as it can be observed impact 

differences between the worst scenario and the other two scenarios. On the other hand, with the small 

recovery rates described in table 5.24 and 5.25, one can barely glimpse the beneficial effects of thermal 

separation of big components. Indeed, although the TFBGA-typed MCU and UFDFPN-typed memory 

components of set 8 are separated successfully from WPCB (both, with packaging sides greater than 3 

mm, as reported in their respective datasheets), the best scenario for this design set provides insignificant 

benefits, in relation to its regular scenario (in which the entire PCB is treated by a shredding process). 

This fact is also observed in set 20, with the difference that in this set, its MCU component (the studied 

WLCSP-typed component) is treated together with the waste PCB, and only its silver-richest UFDFPN-

typed memory is separated and recycled independently.  

On the other hand, the GW impact comparison of all the recycling scenarios for both sets in figure 5.61 

shows that it is convenient recycling IoT devices in separated waste flows only when: 

 Incineration of separated plastic casings (without energy recovery) does not occur.  

 The relative contents of recycling target materials in separated components are significant.  
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(a)  (b) 

Figure 5.61. Relative GW Impacts of the worst, regular and best recycling scenarios of (a) set 8 and (b) set 20 (with an impact contribution 

of 99,017%, the relative impact of the worst scenario of set 20 practically does not appear). The gap between the worst and the other two 

recycling scenarios is explained by the fact that, in the latter, incineration of the plastic casing occurs, together with independent, 
metallurgical-recovery processes for every waste flow.   

With respect of the first aspect, the incineration of the plastic parts after manual separation causes a 

significant impact of 0,0158 Kg CO2-eq for both sets (with an impact contribution of more than 99% for 

the EoL phase). The second aspect is illustrated, for example, by comparing the waste flows and the 

metal recovery rates of the best recycling scenarios of set 8 and set 20. In the case of set 8, the waste 

flow “waste components” separates the gold- and silver-richest TFBGA-typed MCU and UFDFPN8-

typed memory components from the waste PCB, increasing the recovered gold and silver  per kg of 

waste flow (3,09 x 10-03 and 7,44 x 10-02 mg / Kg for gold and silver respectively, according to table 

5.24); on the contrary of the best scenario of set 20, whose separates only the UFDFPN-typed memory 

component, obtained null recovery rates of gold and moderate recovery rates for silver (7,60 x 10-02 mg 

/ Kg of waste flow, as is showed in table 5.25).  The results of this is that one can recovered more gold 

in the best scenario of set 8 (alleviating the additional impact from a separated, metallurgical process 

recovery for treating the waste flow “waste components” independently); but not in the best scenario of 

set 20. In this line, notice that treating the UFDFPN-typed memory component together with the waste 

PCB of set 20 (“WPCB” waste flow of the regular scenario in table 5.25) is very slight convenient than 

treating it separately, as it is showed in figure 5.61b.  

2.1.5.3.Recommendations for the case study “Smart monitoring” in the context of 

circularity attributes 
According to figure 5.59b, a design facilitating the reuse of the TFBGA component studied in this work 

would improve even more the environmental performance of set 8 against set 20 in the GW category, 

and reduce significantly the AD impact of the set 8, to such an extent that almost match the AD impacts 

of set 20, who uses the more advantageous MCUs component for the AD impact category. Thus, if 

designers want to improve the design of set 8 against set 20 by considering the reuse of similar TFBGA-

typed MCU components, they should conduct a mixed uncertainty analysis consisting in two 

simultaneous parts. 

 The first part would consider little variations for reduced gold, silver, palladium, tin or copper 

contents shares in other electronic components of set 8, as it was seen in section 2.1.3.1.1; for 

example resistors and voltage detectors (the former with a gold content share of more than 0,5% 

and the latter with 0,9% only in wires, according to annex 12).  

 

 The second part would consider optimal variations of all the circularity features of TFBGA-type 

microcontrollers, as seen in section 2.1.5.1 (solder ball pitch and diameters; packaging sizes, 

and compound and substrate thickness) to find the limits at which, the separability and reliability 

of alternative wasted TFBGA-type MCU would be warranted. 

On the other hand, a reliability analysis on WLCSP-typed microcontrollers, similar to that one presented 

in this work for evaluating resuse of waste components could be promising, if further research on key 
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feature predicting warpage and bridging effects in WLSCP-typed components is developed (the studied 

WLCSP component has great probabilities to be successfully separated, because one of its sides made 

almost 3 mm (2,9 mm, according to technical documentation)). However, for a recycling approach, the 

use of similar but bigger WLSCP-typed microcontroller components is not recommended, because the 

benefits from their poor silver recoveries from their solder balls would be immediately eclipsed by the 

additional impact of treating separated waste flows, as showed in section 2.1.5.2.    

Finally, designer should also consider circular strategies for the plastic case in the all scenarios presented 

in this section, as its incineration generates significant damage in the GW category.  

3. Guidelines 
The design methodology proposed in chapter 4 helps fixing in mind the ancillary entities (devices, 

components, functions and capacities) and angles of analysis (physical, technical and circularity 

features) for the eco design of IoT systems or further design tools. These pillars must be translated in 

key aspects that have to be analyzed simultaneously, under the perspective of data that originates, flows, 

transforms and interprets throughout the local and mutualized infrastructure of an IoT system. In this 

chapter, this methodology was used in the context of some key aspects identified for the case studies 

“Smart metering” and “Smart monitoring” (e.g., materials, performance and endurance, package 

dimensions, etc.), to inspire the following hierarchical guidelines: 

1. Consider several aspects of the operational context that may affect not only the efficiency of 

electronic components, but also the data flow design (and consequently the reference flow) of 

an IoT system. For example, in the context of LoRa-based IoT Systems, long distance ranges 

would force designers to consider energy intensive data preprocessing routines in a MCU, or 

change the planned sampling rate of a sensor component when designing an IoT prototype, to 

align the data volume generated in the acquisition stage to the low bitrate impose to its projected 

LoRa transceiver, working with ADR. 

 

2. Study technical features under unfavorable contexts to see at what extend the environmental 

profile of a device, or an IoT system is guaranteed. For example, low endurances of memories 

may compromise the lifetime of intermittent devices under high use intensities; or extreme 

temperatures may affect differently the reliability of ceramic and tantalum capacitors, according 

to their Temperature Coefficient of Capacitance (TCC). 

 

3. When estimating the reference flow of an IoT system for its (re)design, consider not only the 

energy that devices need in different states, but also other technical features (e.g., bitrate, data 

payloads, parameters of the transmission means such as frequency bandwidths, etc.) that can 

affect these energy requirements. 

 

4. Consider technical features and capacities in a comprehensive way, so that to propose 

reasonable designs. For example, in the context of LoRa-based IoT systems, selecting 

communication interfaces with high bitrates makes sense only when the application type allows 

big data payloads (i.e.; in short-range transmissions). 

 

5. The size of internal dies of IC components is of a paramount importance. If possible, apply X-

ray techniques to determine the actual die surfaces, in order to have an initial idea of the GW 

impact of IC components. However, this estimation must be rethought, whenever information 

of the technology node of the internal die is available. 

 

6. Apply variations on the internal die sizes of different IC components (whenever this information 

is available), to challenge the GW savings or impacts of heterogeneous electronic designs. 

Challenge your conclusions, when technical information of the technology node of the studied 

components is available. 

 

7. When heterogeneous designs are confronted, and depending on the material quantities on their 

electronic components’ subparts, apply little variation on material contents with high impact 

relevance; or big variations on material content with low impact relevance to challenge benefits 

or address unfavorable design. 
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8. When dissimilar packaging technology is compared, designer can analyze the impact of 

materials on the basis of total contents and not on the basis of subparts. In this sense, if there 

exist large gaps in relevant materials (gold and silver), designers can directly discriminate 

certain technologies. If there exist small or moderate gaps, designer need to conduct sensibility 

analysis.  

 

9. A visual inspection of specific features may give and rough idea of the environmental impact of 

certain components. For example, electronic components with high pin densities could be 

consider as less convenient, as every pin is probably connected with a wire made in gold. 

However, first intuitions should be valid with an inspection of the material declaration of the 

studied components (wires of modern IC can be made in gold, silver or less often in copper). 

 

10. When designing for Recyclability (DfR), make sure that high contents of target materials be 

concentrated in few electronic components, likely to be separated from WPCBs; so that benefits 

from recovery overcome impacts from treatment of independent waste flows. This guideline is 

not exclusive for high-impact materials (i.e.; gold or silver), but for all target materials 

depending on their quantities (for example substantial contents of copper in lead frames or 

substantial contents of tin in solder balls), and the available recycling technology. 

 

11. When heterogeneous designs are confronted, and depending on the selected IPC-7351 standard, 

analyze small variations to the biggest electronic components ‘ sides; or big variations to the 

smallest electronic components’ sides to observe at what extend the arrangement of land patterns 

and the PCB size can be optimized. Complete this analysis by considering different separation 

processes techniques in the EoL phase of the studied designs, bearing in mind that the packaging 

sizes may compromise the disassembly rate of the electronic card and/or the estimation of other 

critical physical features such as the internal die area ratio of electronic components.  

 

12. When significant GW impacts from the PCB size of an electronic design, and significant GW 

impacts from the internal die of one or many irreplaceable ICs composing another electronic 

design are almost identical, consider possible variations on gold and silver content shares in 

other electronic components (e.g., passive components) to grant marginal and significant 

advantages to one alternative, in the GW and AD categories respectively. 

 

13. A physical, technical or circularity feature can be beneficial for one life cycle phase, but 

unfavorable for another one. For example, Ferroelectric RAM memories (FeRAM) has high 

writing endurance (an advantage for the use phase), but they usually required platinum (a 

disadvantage for the manufacturing phase, in the AD impact category). This platinum content 

could just be lost, depending on its functional recyclability (a potential disadvantage for the EoL 

phase).  

 

14. Different physical, technical or circularity features of an electronic component can be beneficial 

for one impact category, but unfavorable of another one. For example, copper-rich subparts of 

CSP-type components are beneficial for reducing impacts in the AD category, but the typical 

area to mass ratio of their dies performs bad for the GW impact category.  

 

15. When invariable behavior characterizes an application (for example uniform water 

consumption, unchanging lighting in a household, etc.) information can be extrapolated from 

historical or redundant data in the cloud infrastructure so that massive local-to-cloud 

transmissions can be avoid. 

 

16. The protocol overhead may be relevant, depending on the transmission frequency and the 

reliability requirement of an application. When low accuracy characterizes an IoT system, high 

frequency is not necessary and approximate computing can be applied. 

 

17. When high transmission frequency is necessaire, consider connectionless protocols and 

reinforce end-to-end security (for example by using message authentication, rate throttling, 

robust encryption, etc.). However, evaluate simultaneously the additional energy requirements 

and find a balanced solution distributed over the sensing, edge and cloud layers. 



181 

 

 

18. When estimating the impact of an IoT device whose design documentation is not available, the 

presence of BGA components may indicates an elevated number of PCB layers, as high pin 

densities require complex circuitry. 

 

19. When estimating the impacts of the use phase of an IoT system whose design documentation 

is unavailable, consider that additional communication between IoT layers may occurs when 

the user access directly to cloud resources. 

 

20. Designer should consider at least the AD and GW impact categories for essential LCA analysis 

and find optimal tradeoffs in these two categories. 

 

21. Design efforts should be oriented to enable and guarantee circularity of plastic parts, if their 

content shares in a device is significant. 

 

22. Designers should privilege electronic components with full documentation (at least detailed 

material declarations (standard IPC-1752A), full technical notes such as datasheets and land 

pattern PCB design, and minimal documentation involved conformity with directives (Reach, 

RoHs, etc.)). They should also privilege manufacturers that usually provides this information. 

For practicality purpose, every guideline of the list above focuses on one or at most two aspects. 

However, designer should adopt them with a global perspective, by trying to confront ones with others 

in the context of their own designs. In this sense, they should challenge this list, improve it, enlarge it, 

etc. through the continuous and simultaneous use of the design frameworks that shape the proposed 

methodology. 
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Conclusion 

Overview 
This last chapter provides a discussion on the main findings and limits of this work; and presents future research 

perspectives. It provides also final words that highlights the contributions of the proposed methodology, to answer 

to the main interrogation seen in the introduction section and solve the research questions stated in chapter 1. 

1. Findings 
The review of the literature, the construction of the methodology and its illustration through the case 

studies, all allow for the following findings. 

 First, in most of the current environmental studies there is a strong emphasis on impacts from 

local devices and partial IoT systems. In these works, it is observed that such impacts are 

attributed to the energy consumption and the early replacement of devices. However, no more 

details for electronic design are given beyond these conclusions. This is unfortunate, as other 

studies within the perimeter of sensor systems would attribute significant impacts to certain 

electronic components. This work provides specific evidence that explains the negative 

contribution of different electronic components from different perspectives, which facilitates at 

the same time the practice of eco-design of prototypes. 

Indeed, in this work a positive correlation between the global warming damage and the area of 

the electronic card of a design is found (which is explain mainly in term of the embodied energy 

per mm2). In this line, one observes that the surface of the PCB is in turn directly affected by 

the land pattern of electronic components in a specific design. In addition, this work found a 

significant contribution of the internal chip in specific types of ICs (such as LQFP, SO, BGA 

and CSP); and a marginal contribution of different electronic components’ subparts due to 

specific materials (mainly gold in wires and silver in die attaches). In this sense, it is observed 

that considering small reductions of gold and silver contents is capital in comparative-based eco 

design of heterogeneous electronic designs with almost similar impacts, where the replacement 

of one or more big-die ICs is restrictive. It is also noted that the use of CSP-type components 

could hamper the eco design of devices. That is, their high pin densities may provoke complex 

circuitry and increase the number of PCBs’ layers on the one hand, and on the other hand, they 

may require considering several form factors with minimal area/mass ratio of internal dies, in 

the context of comparative analysis.  

In the category of abiotic resource depletion, the LCA results obtained in this work show that a 

significant damage is generated from the presence of gold in the wires of specific types of 

electronic components (BGA-type microcontrollers and SOT23-type voltage comparators). On 

the other hand, other materials such as silver, tin, and copper would be concentrated in certain 

characteristic subparts of these components (die attaches, solder balls, and substrates) and would 

cause impacts at different levels. In this sense, it is observed that (1) very dissimilar packaging 

types can cause very different damages, depending on the relevance of the impact that each of 

the materials with which they are made, and (2) the amount of a material may or may not be 

relevant to the eco design of a device, depending on the impact relevance of this material to a 

specific impact category. Thus, this work found that small reductions in the content of materials 

with high relevance in the depletion of abiotic resources (gold and silver) and very small 

reductions in significant content of materials with little relevance (copper) allow both to improve 

the environmental profile of electronic components and consequently, the ecological design of 

electronic cards. 

On the other hand, the review of the academic and technical literature suggests that the reliable 

performance of electronic components is strongly conditioned to operational and environmental 

contexts (e.g., temperature). With this in mind and based on field tests of a prototype, this work 

demonstrates that, under normal conditions of temperature and use, a very high frequency of 

overwriting can significantly degrade the blocks of EEPROM memories, shortening the lifetime 

of intermittent, self-powered devices. However, this mainly depends on the design of the data 

and information flow design of the IoT systems to which they belong. 
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Previous works also denounce the inefficiency of recovery of certain materials in recycling 

processes. This work produced results that complements this body of literature: firstly, it found 

that the manual separation of electronic cards from the plastic parts, and the mechanical 

separation of big components both offer interesting advantages, only when there is a correct 

treatment of non-electronic waste. Secondly, it found that Design-for-Recycling is convenient 

only when the amounts of target metals in the separated streams is significant (otherwise, more 

global warming damage is generated when treating separated parts in individual waste flows). 

On the other hand, the literature also reveals potential barriers to the reuse of specific electronic 

components, imposed because of certain physical attributes. In this sense, this work found that, 

to increase the probabilities of successfully separating and reusing BGA-type components, in 

the component selection stage it is necessary to prioritize small packages sizes, mainly; and big 

solder bump pitches, additionally. However, it is also noted that very small packages would 

potentially frustrate thermal separation. 

 Secondly, in the LCA literature of sensors, sensor systems, partial and/or complete IoT systems, 

an absence or a vague definition of reference flows is evidenced. On the other hand, few 

emerging authors would suggest implicitly that such reference flows should be built on the basis 

of data circulating in local and mutualized infrastructure. 

By considering this last aspect, this work affirms the central role of data and information for IoT 

systems. Specifically, this work built a framework and proposed an implementation for 

estimating theorethically and empirically the data traffic of a mature IoT system. Once this has 

been done, its reference flow and its long-term impact were calculated. During this process, it 

was found that the frequency at which the local infrastructure connects with the cloud 

infrastructure, the volume of data transmitted, and the protocol overhead of transmissions in 

regular and / or user-driver operations are all fundamental aspects that affect the reference flow, 

the impact and the eco design of full IoT systems. 

It was also observed that the data and information flow managed by specific capacities of 

sensing and edge devices, under specific operational parameters (e.g., transmission bandwidths, 

spreading factors or distance range) are as relevant as the use time for environmental impact 

estimation. This finding challenges the conclusions of Malmodin, J. et al. [11] and Coroama, V. 

C. et al [249], who claim that for end-user ICT equipment, the use time is more relevant because 

the energy consumption and embodied carbon footprint is not to the same extent related to 

transmitted data volume. 

On the other hand, the State-of-the-Art suggests that a detailed analysis of the data and 

information required by the applications facilitates effective eco-design strategies for sensor 

systems. From the pragmatic perspective applied to the development of prototypes, some works 

would show that this last aspect is essential, since it would allow not only the most appropriate 

and right-provisioned design of local devices, but also the most optimal allocation of all 

available and complementary resources. In this work, a preliminary analysis of the flow of data 

and information, adjusted to the main functions of an autonomous sensor system oriented to 

smart monitoring was applied. In this context, it was observed that simple modifications in the 

design of the data operational stages of an IoT system (for example transmitting data 

continuously rather than recording and transmitting it in batches) can generate different versions 

of prototypes, with very different environmental impacts. 

2. Limits 

The reader should consider that the impact analysis of the case studies presented in this work was limited 

to the AD and/or GW categories because of their opposing behavior evidenced in literature. However, 

although the other impact categories do not present this peculiarity, designers should be always 

conscious that some materials or substances might affects these categories significantly. Moreover, in 

this work relevance of materials was pointed-out only from the ecological point of view (nothing was 

said from the performance point of view). 

 

Also, it should be clarified that some simplification were applied to the LCA implementation seen in 

this work. Firstly, the estimated AD damage calculated for all design instances of the case study “Smart 
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monitoring” considers only scarcity of materials; nothing was done for criticality. This is a weak of 

current LCIA methodologies; designers and LCA practitioners should include this aspect whenever new 

methodologies appears. Secondly, the LCA implementation assumes a collection rate of waste 

prototypes of 100%. In reality, this rate depends of inner factors such as the size of the device and / or 

external factors such as the price of raw materials. Thirdly, few materials and electronic components 

were excluded from the LCA implementation seen in chapter 5 because of different reasons. A detailed 

list of these reasons is provided in annex 14. 

 

On the other hand, the interdependencies of some features of electronic components were explored 

rapidly (i.e.; interdependency of ICs’ land patterns and PCB sizes) and, unfortunately, potential changes 

in the number of layers of the PCB in the case study “Smart monitoring” were not explored. However, 

this later aspect does not penalize the obtained results, because not all pin outputs of the studied high 

pin-density components (TFBGA64-type and WLCSP microcontrollers) were used. 

 

For illustration and simplicity, the analysis of the different attributes suggested for the case study “Smart 

monitoring” focuses on specific life cycle phases individually (manufacturing phase for the physical 

attributes, use phase for the technical attributes and EoL phase for circularity attributes). However, the 

idea of applying the framework for eco design of the proposed methodology is consider these and more 

attributes altogether in sensibility/uncertainty analysis along several life cycle phases, in order to avoid 

impact transfers and spot key aspects for sounding design of IoT systems. Bearing this in mind, further 

use of the proposed framework under the context of the case study “Smart monitoring” may produce 

even more findings, eco-design hints and/or sharp guidelines.  

Finally, high order impacts of IoT systems were only analyzed in the context of the mutualized 

infrastructure and, disquieting aspects, such as rebound effects were not covered in this work.   

3. Further research 

With the aim of refine the proposed methodology, the following research perspectives could be 

considered.  

Firstly, advance data manipulation techniques, such as approximate computing, need to be investigated 

in the context of IoT systems and specially, in the context of intermittent EH devices. Also, further work 

focusing on new approaches for improving the extraction of substantial information from minimal data 

(i.e.; information entropy) could be very beneficial, especially for upgrading the data-information-

knowledge-based design approach presented in this work. 

Secondly, more parameters in the context of (1) physical attributes, such as the technology node of 

integrated circuits; (2) technical attributes, such as right-provisioned microprocessors; and (3) circularity 

attributes, such as thermomechanical properties of materials need to be considered in further research. 

The in-depth analysis of the technology node feature of ICs will refine the impact estimation step in the 

GW category. What is more, the technology node may become a useful physical feature for eco-design, 

provided that this information is more accessible to designers. The study of right-provisioned 

microprocessors on the other hand, will permit not only evaluating more judiciously IoT prototypes, but 

also facilitate the component selection process according to sober data and information flow design. 

Lastly, analyzing the thermo-expansion mismatch of adjacent materials in IC packaging would help to 

anticipate potential barriers —beyond bridging— that difficult the reuse of waste components (for 

example, delamination).  

 

Thirdly, particular aspects of emerging technologies and materials need to be further investigated under 

the lens of physical, technical and circularity properties. For example, shape-memory polymers of 

polyurethane used in electronics are stable and robust while in use, and they can be triggered to 

decompose when a device is to be taken apart for recycling [128]. This could be an obvious 

advantageous property for the circular design of IoT devices, whose electronic cards are embedded into 

their casing parts (specifically in active disassembly procedures, in which one aims to access electronic 

parts using an all-encompassing stimulus, rather than a fastener-specified tool or machine [128]). 

However, no studies show the advantages (or disadvantages) of these emerging materials in the physical 

dimension (e.g., embodied emissions) or technical dimensions (e.g., influence on performance or 

lifetime span).  
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Finally yet importantly, more research on criticality of materials in the context of electronics and IoT 

need to be done, and results from it need to be translated in terms of concrete attributes or capacities of 

electronic components. 

4. Final words 
In a context in which the accelerate adoption of the Internet of Things threats our environment, 

promising solutions emerges, trying to alleviate the impacts of IoT systems from different perspectives. 

However, these initiatives fall short facing the paramount complexity of IoT systems, and the urge of a 

comprehensive, lifecycle-based design methodology for sustainable design becomes more and more 

evident.  

On the other hand, the existing literature reveals disperse works oriented to the environmental 

assessment of IoT systems and devices; and the scarce contributions for eco-design suffer from several 

issues. In this context, the main interrogation “How can one estimate the potential impact of an IoT 

system and how can one minimize this impact by an efficient and practical design methodology?” 

emerges, and the specific research questions “How a designer can consider data flow within an IoT 

system in order to harmonize and reduce the potential impacts of promising initiatives?” and “How a 

designer can disclose, measure and integrate key environmental aspects to the typical design of sensor 

systems and edge devices (local devices) in a practical, efficient and comprehensive way?” are rapidly 

identified. 

This thesis proposes a structured and efficient methodology oriented to (1) facilitate simple, yet more 

precise impact estimation of full IoT systems and (2) facilitate thoughtful design of sensor and edge 

devices from the available information that designers may have (i.e.; datasheets, material declarations, 

installation manuals, etc.), so that collateral damage in both local equipment and mutualized 

infrastructures can be avoided. Based on data and on the analysis and design of its further transformation 

into information within the sensing, edge and cloud resources of IoT systems, two framework are built. 

The first framework, unlike the device-centered literature; identifies the essential entities (devices, 

electronic component, functions and capacities) and their interrelations within full IoT systems, so that 

reference flows can be clearly identified and real damage can be easily calculated. The second 

framework, unlike the limited standards, generic guidelines and non-lifecycle methodologies found in 

previous works; proposes a lifecycle-based design procedure that discloses, evaluates and integrates key 

environmental aspects to the product development process of local devices (physical, technical and 

circularity features of electronic components). Such integration facilitates the decision-making process 

in early design and the identification of clear environmental targets.  

Both frameworks were illustrated by two implementations applied on two case studies, showing their 

efficacy in impact estimation and eco-design and generating sharping guidelines. Designers should 

apply both frameworks simultaneously in the context of their own projects, as a sort of roadmap that 

recall that every element (i.e.; data, information, knowledge, devices, components, functions, capacities; 

and physical, technical and circularity attributes) must be reviewed carefully. 
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Annexes 

1. GNU-radio companion implementation for the Lora sniffer A 
The GNU-radio companion implementation runs in a Docker instance and uses the RTL-SDR source 

block of the gr-lora repository [167]. This block is configured to work in the 868 MHz frequency and 

from it; three LoRa receiver blocks are created. Every of these blocks capture LoRa transmissions in 

three main channel frequency (channel list), under a 125 kHz bandwidth and a Spreading Factor of 7.  

 

 

 

To analyze the captured packets, Message Socket Sink blocks are configured to warp up them in UDP 

packets, which are later transmitted to localhost through 40868, 40869 and 40870 ports. The localhost 

has the IP address 172.17.0.1 and runs Wireshark under Ubuntu 14. It is equipped with a RTL-RDS 

bundle connected by USB. 
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2.  Data traffic in the local equipment of the case study “Smart metering” 

The following table show an extract of the data traffic between the flowmeter and the gateway of case 

study “Smart metering”, obtained in the last hour of the experiment (from 21:06 to 22:06). The data 

traffic happens in the 868.1 frequency channel. The IP source 172.17.0.2 correspond to the Docker 

instance that runs the GNU-radio implementation seen in annex 1 and the IP destination 172.17.0.1 

correspond to the IP addresses of the localhost that runs the Wireshark instance. For facilitating the 

visualization, a filter in the latter is applied, so that only UDP packets containing the data application of 

the case study “Smart metering” are showed. The actual data application (the LoRa packet less the UDP 

headers) is show in the “Info” column (Len = X bytes). The total size of LoRa messages is obtained 

from the sum of the individual packets in minute resolution. For example, the first two packets 

happening on 21:06:18 and 21:06:18 are consider a complete LoRa message whose size is 57 Bytes (28 

Bytes + 29 Bytes). In this sense, the complete LoRa messages are highlighted in alternate tones. 

capture 
time 

Source Destination Protocol Length Info 

21:06:18 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:06:18 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:09:14 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:09:14 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:12:12 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:12:12 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:15:17 172.17.0.2 172.17.0.1 UDP 72 34537  >  40868 Len=30 

21:15:17 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:15:17 172.17.0.2 172.17.0.1 UDP 85 34537  >  40868 Len=43 

21:15:17 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:18:15 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:18:15 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:21:19 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:24:21 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:24:21 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:30:19 172.17.0.2 172.17.0.1 UDP 72 34537  >  40868 Len=30 

21:30:19 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:30:19 172.17.0.2 172.17.0.1 UDP 74 34537  >  40868 Len=32 

21:30:19 172.17.0.2 172.17.0.1 UDP 85 34537  >  40868 Len=43 

21:30:20 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:33:23 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:33:23 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:36:19 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:42:23 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:45:20 172.17.0.2 172.17.0.1 UDP 72 34537  >  40868 Len=30 

21:45:20 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:45:21 172.17.0.2 172.17.0.1 UDP 85 34537  >  40868 Len=43 

21:45:21 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:48:18 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:51:18 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:51:18 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:54:16 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

21:54:16 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

21:57:11 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

22:00:08 172.17.0.2 172.17.0.1 UDP 72 34537  >  40868 Len=30 

22:00:08 172.17.0.2 172.17.0.1 UDP 78 34537  >  40868 Len=36 

22:00:09 172.17.0.2 172.17.0.1 UDP 85 34537  >  40868 Len=43 

22:03:05 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

22:03:05 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

22:06:03 172.17.0.2 172.17.0.1 UDP 70 34537  >  40868 Len=28 

22:06:03 172.17.0.2 172.17.0.1 UDP 71 34537  >  40868 Len=29 

Notice that complete LoRa message happens once every 3 minutes, as stated by the manufacturer 

(with some exceptions, which are assumed as events in which LoRa messages were lost). 
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3. Data traffic between the local and mutualized infrastructure of the case study “Smart 

metering” 
The following table show an extract of the data traffic between the gateway and the cloud server of the 

case study “Smart metering”, obtained in just under the last three minutes of the experiment (from 

21:58:03 to 22:00:08). The main traffic type identified was DNS request from the gateway (IP address 

192.168.137.47) to the IAP device (IP address 192.168.137.1) and roundtrip TCP and HTTP traffic 

between the gateway and the cloud server (www.mySolem.com). The green cells shows an instance of 

a regular transmission event for uploading the counts of the flow meter in the cloud server (HTTP post 

message in bold text). It start by a DNS request to obtain the IP address of the cloud server 

(www.mySolem.com) and finish by a TCP teardown routine (the table shows red frames to highlight 

this behavior). The red cells shows the mechanisms that are activated in the gateway and the cloud server 

when the user consults his or her water consumption (the three red sections shows the three peaks seen 

in the figure 5.21, presented in the section 1.3.3 of the chapter 5). It is assumed that the gateway send 

this information by the HTTP post messages (showed by the red bold text). Sometimes the IP source 

changes as the gateway reassign a new IP in the local network. 

capture 
time 

Source Destination Protocol Length Info 

21:58:03 mysolem.com 192.168.137.47 HTTP 466 HTTP/1.1 408 Request Timeout  

21:58:03 192.168.137.47 mysolem.com TCP 54 33626  >  80 [ACK] Seq=147 Ack=413 Win=2508 Len=0 

21:58:03 192.168.137.47 mysolem.com TCP 54 33626  >  80 [FIN, ACK] Seq=147 Ack=413 Win=2508 Len=0 

21:58:03 mysolem.com 192.168.137.47 TCP 54 80  >  33626 [FIN, ACK] Seq=413 Ack=148 Win=30016 Len=0 

21:58:03 192.168.137.47 mysolem.com TCP 54 33626  >  80 [RST, ACK] Seq=148 Ack=414 Win=2920 Len=0 

21:58:04 192.168.137.47 192.168.137.1 DNS 71 Standard query 0xf6c7 A mysolem.com 

21:58:04 192.168.137.1 192.168.137.47 DNS 87 Standard query response 0xf6c7 A mysolem.com A 51.159.17.150 

21:58:04 192.168.137.47 mysolem.com TCP 58 9167  >  80 [SYN] Seq=0 Win=2920 Len=0 MSS=1460 

21:58:04 mysolem.com 192.168.137.47 TCP 58 80  >  9167 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 

21:58:04 192.168.137.47 mysolem.com TCP 54 9167  >  80 [ACK] Seq=1 Ack=1 Win=2920 Len=0 

21:58:04 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:58:04 mysolem.com 192.168.137.47 TCP 54 80  >  9167 [ACK] Seq=1 Ack=147 Win=30016 Len=0 

21:58:22 mysolem.com 192.168.137.47 HTTP 466 HTTP/1.1 408 Request Timeout  

21:58:22 192.168.137.47 mysolem.com TCP 54 9167  >  80 [ACK] Seq=147 Ack=413 Win=2508 Len=0 

21:58:22 192.168.137.47 mysolem.com TCP 54 9167  >  80 [FIN, ACK] Seq=147 Ack=413 Win=2508 Len=0 

21:58:22 mysolem.com 192.168.137.47 TCP 54 80  >  9167 [FIN, ACK] Seq=413 Ack=148 Win=30016 Len=0 

21:58:22 192.168.137.47 mysolem.com TCP 54 9167  >  80 [ACK] Seq=148 Ack=414 Win=2507 Len=0 

21:58:23 192.168.137.47 192.168.137.1 DNS 71 Standard query 0x2555 A mysolem.com 

21:58:23 192.168.137.1 192.168.137.47 DNS 87 Standard query response 0x2555 A mysolem.com A 51.159.17.150 

21:58:23 192.168.137.47 mysolem.com TCP 58 12306  >  80 [SYN] Seq=0 Win=2920 Len=0 MSS=1460 

21:58:24 192.168.137.47 mysolem.com TCP 58 [TCP Retransmission] 12306  >  80 [SYN] Seq=0 Win=2920 Len=0 MSS=1460 

21:58:24 mysolem.com 192.168.137.47 TCP 58 80  >  12306 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 

21:58:24 192.168.137.47 mysolem.com TCP 54 12306  >  80 [ACK] Seq=1 Ack=1 Win=2920 Len=0 

21:58:24 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:58:24 mysolem.com 192.168.137.47 TCP 54 80  >  12306 [ACK] Seq=1 Ack=147 Win=30016 Len=0 

21:58:42 mysolem.com 192.168.137.47 HTTP 468 HTTP/1.1 408 Request Timeout  

21:58:42 192.168.137.47 mysolem.com TCP 54 12306  >  80 [FIN, ACK] Seq=147 Ack=415 Win=2506 Len=0 

21:58:42 mysolem.com 192.168.137.47 TCP 54 80  >  12306 [FIN, ACK] Seq=415 Ack=148 Win=30016 Len=0 

21:58:42 192.168.137.47 mysolem.com TCP 54 12306  >  80 [ACK] Seq=148 Ack=416 Win=2505 Len=0 

21:58:43 192.168.137.47 192.168.137.1 DNS 71 Standard query 0x21d5 A mysolem.com 

21:58:43 192.168.137.1 192.168.137.47 DNS 87 Standard query response 0x21d5 A mysolem.com A 51.159.17.150 

21:58:43 192.168.137.47 mysolem.com TCP 58 9468  >  80 [SYN] Seq=0 Win=2920 Len=0 MSS=1460 

21:58:43 mysolem.com 192.168.137.47 TCP 58 80  >  9468 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 

21:58:43 192.168.137.47 mysolem.com TCP 54 9468  >  80 [ACK] Seq=1 Ack=1 Win=2920 Len=0 

21:58:43 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:58:43 mysolem.com 192.168.137.47 TCP 54 80  >  9468 [ACK] Seq=1 Ack=147 Win=30016 Len=0 

21:59:01 mysolem.com 192.168.137.47 HTTP 466 HTTP/1.1 408 Request Timeout  

21:59:01 192.168.137.47 mysolem.com TCP 54 9468  >  80 [FIN, ACK] Seq=147 Ack=413 Win=2508 Len=0 

21:59:01 mysolem.com 192.168.137.47 TCP 54 80  >  9468 [FIN, ACK] Seq=413 Ack=148 Win=30016 Len=0 

21:59:01 192.168.137.47 mysolem.com TCP 54 9468  >  80 [ACK] Seq=148 Ack=414 Win=2507 Len=0 

21:59:02 192.168.137.47 192.168.137.1 DNS 71 Standard query 0xfa18 A mysolem.com 

21:59:02 192.168.137.1 192.168.137.47 DNS 87 Standard query response 0xfa18 A mysolem.com A 51.159.17.150 

21:59:02 192.168.137.47 mysolem.com TCP 58 7695  >  80 [SYN] Seq=0 Win=2920 Len=0 MSS=1460 

21:59:03 192.168.137.47 mysolem.com TCP 58 [TCP Retransmission] 7695  >  80 [SYN] Seq=0 Win=2920 Len=0 MSS=1460 

21:59:03 mysolem.com 192.168.137.47 TCP 58 80  >  7695 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 

21:59:03 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=1 Ack=1 Win=2920 Len=0 

21:59:03 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:59:03 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [ACK] Seq=1 Ack=147 Win=30016 Len=0 

21:59:13 mysolem.com 192.168.137.47 HTTP 551 HTTP/1.1 200 OK  (application/json) 

21:59:13 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=147 Ack=498 Win=2423 Len=0 

21:59:13 192.168.137.47 mysolem.com HTTP 390 POST /v2/response/0500000506F80001/B0ACD6FAE59147DFBDE8ECD2B34085BB HTTP/1.1  (application/json) 

21:59:13 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [ACK] Seq=498 Ack=483 Win=31088 Len=0 

21:59:13 mysolem.com 192.168.137.47 HTTP 420 HTTP/1.1 200 OK  

21:59:13 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:59:13 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [ACK] Seq=864 Ack=629 Win=32160 Len=0 

21:59:16 mysolem.com 192.168.137.47 HTTP 570 HTTP/1.1 200 OK  (application/json) 

21:59:17 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=629 Ack=1380 Win=1541 Len=0 

21:59:17 192.168.137.47 mysolem.com HTTP 346 POST /v2/response/0500000506F80001/CF5856A5567A4AA7B2E7DB0A9CAC8A60 HTTP/1.1  (application/json) 

21:59:17 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [ACK] Seq=1380 Ack=921 Win=33232 Len=0 

http://www.mysolem.com/
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21:59:17 mysolem.com 192.168.137.47 HTTP 420 HTTP/1.1 200 OK  

21:59:17 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=921 Ack=1746 Win=2920 Len=0 

21:59:17 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:59:17 mysolem.com 192.168.137.47 HTTP 572 HTTP/1.1 200 OK  (application/json) 

21:59:17 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=1067 Ack=2264 Win=2402 Len=0 

21:59:17 192.168.137.47 mysolem.com HTTP 787 POST /v2/response/0500000506F80001/74F9D612DF944AE3A97A6139602EBA7E HTTP/1.1  (application/json) 

21:59:17 mysolem.com 192.168.137.47 HTTP 420 HTTP/1.1 200 OK  

21:59:17 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=1800 Ack=2630 Win=2036 Len=0 

21:59:17 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:59:17 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [ACK] Seq=2630 Ack=1946 Win=37383 Len=0 

21:59:17 mysolem.com 192.168.137.47 HTTP 563 HTTP/1.1 200 OK  (application/json) 

21:59:17 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=1946 Ack=3139 Win=1527 Len=0 

21:59:17 192.168.137.47 mysolem.com HTTP 398 POST /v2/response/0500000506F80001/50F7A8B8433F4EC6A4FF8ECE619233DA HTTP/1.1  (application/json) 

21:59:17 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [ACK] Seq=3139 Ack=2290 Win=38849 Len=0 

21:59:17 mysolem.com 192.168.137.47 HTTP 420 HTTP/1.1 200 OK  

21:59:17 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=2290 Ack=3505 Win=2920 Len=0 

21:59:17 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:59:18 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [ACK] Seq=3505 Ack=2436 Win=40315 Len=0 

21:59:30 mysolem.com 192.168.137.47 HTTP 570 HTTP/1.1 200 OK  (application/json) 

21:59:30 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=2436 Ack=4021 Win=2404 Len=0 

21:59:30 192.168.137.47 mysolem.com HTTP 346 POST /v2/response/0500000506F80001/57218E3CBDC74FDEA213E444A1BDE558 HTTP/1.1  (application/json) 

21:59:30 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [ACK] Seq=4021 Ack=2728 Win=41781 Len=0 

21:59:30 mysolem.com 192.168.137.47 HTTP 424 HTTP/1.1 200 OK  

21:59:31 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:59:31 mysolem.com 192.168.137.47 HTTP 574 HTTP/1.1 200 OK  (application/json) 

21:59:31 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=2874 Ack=4911 Win=1514 Len=0 

21:59:31 192.168.137.47 mysolem.com HTTP 787 POST /v2/response/0500000506F80001/0C572E37CA0148BA82BE9D4BD62BA48D HTTP/1.1  (application/json) 

21:59:31 mysolem.com 192.168.137.47 HTTP 420 HTTP/1.1 200 OK  

21:59:31 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=3607 Ack=5277 Win=2920 Len=0 

21:59:31 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:59:31 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [ACK] Seq=5277 Ack=3753 Win=46179 Len=0 

21:59:31 mysolem.com 192.168.137.47 HTTP 565 HTTP/1.1 200 OK  (application/json) 

21:59:31 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=3753 Ack=5788 Win=2409 Len=0 

21:59:31 192.168.137.47 mysolem.com HTTP 398 POST /v2/response/0500000506F80001/618B4FB6FFA845F7A815CB3F095168FC HTTP/1.1  (application/json) 

21:59:31 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [ACK] Seq=5788 Ack=4097 Win=47645 Len=0 

21:59:31 mysolem.com 192.168.137.47 HTTP 422 HTTP/1.1 200 OK  

21:59:31 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=4097 Ack=6156 Win=2041 Len=0 

21:59:31 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:59:31 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [ACK] Seq=6156 Ack=4243 Win=49111 Len=0 

21:59:49 mysolem.com 192.168.137.47 HTTP 464 HTTP/1.1 408 Request Timeout  

21:59:50 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=4243 Ack=6566 Win=1631 Len=0 

21:59:50 192.168.137.47 mysolem.com TCP 54 7695  >  80 [FIN, ACK] Seq=4243 Ack=6566 Win=1631 Len=0 

21:59:50 mysolem.com 192.168.137.47 TCP 54 80  >  7695 [FIN, ACK] Seq=6566 Ack=4244 Win=49111 Len=0 

21:59:50 192.168.137.47 mysolem.com TCP 54 7695  >  80 [ACK] Seq=4244 Ack=6567 Win=1630 Len=0 

21:59:50 192.168.137.47 192.168.137.1 DNS 71 Standard query 0x4a0e A mysolem.com 

21:59:50 192.168.137.1 192.168.137.47 DNS 87 Standard query response 0x4a0e A mysolem.com A 51.159.17.150 

21:59:50 192.168.137.47 mysolem.com TCP 58 47749  >  80 [SYN] Seq=0 Win=2920 Len=0 MSS=1460 

21:59:50 mysolem.com 192.168.137.47 TCP 58 80  >  47749 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 

21:59:50 192.168.137.47 mysolem.com TCP 54 47749  >  80 [ACK] Seq=1 Ack=1 Win=2920 Len=0 

21:59:50 192.168.137.47 mysolem.com HTTP 200 POST /v2/periodic/0500000506F80001/ HTTP/1.1  (application/json)Continuation 

21:59:50 mysolem.com 192.168.137.47 TCP 54 80  >  47749 [ACK] Seq=1 Ack=147 Win=30016 Len=0 

22:00:08 mysolem.com 192.168.137.47 HTTP 468 HTTP/1.1 408 Request Timeout  

Notice that regular transmissions for uploading the data application happens every 18 seconds (with 

some exceptions, which are assumed as events in which messages were lost). 
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4.  Bill of Materials of the EH sensor system in its memory-based version (referential 

design) 
The following table shows the Bill of Materials of the referential electronic design of the memory-based 

version (set 13). The other sets vary only in the other electronic components studied in this work (voltage 

comparators, Microcontroller, NFC-EEPROM memory and PCB). They are marked in the blue cells 

and their technical and material declaration documentation are available in the reference section. The 

piezoelectric buzzer is excluded from the LCA analysis due to the lack of LCA data. All components 

have SMD-typed packages. 

Quantity Electronic component 
Package type 

or material 
Dimensions mm 

(L or Diameter x W x H) 
Weight per  

component (g) 
Total Weight per  

component type (g) 
Number of pins 
or solder points  

7 Ceramic capacitors 0402 1.10 x 0.6 x 0.6 0.0014 0,0098 2 

1 Ceramic capacitor 1812 4.8 x 3.4 x 1.7 0.1952 0,1952 2 

9 Resistors 0402 1.05 x 0.55 x 0.40 0.00108 0,00972 2 

2 Schottlky diodes SOT666 1.7 x 1.3 x 0.6 0.0029 0,0058 6 

1 Light Emitting Diode 0603 1.6 x 1.15 x 0.55 0.001 0,001 2 

2 Transistors SOT323  2.2 x 1.35 x 1.1 0.006 0,012 3 

1 Voltage comparator [170] [180] SC70-5 2.2 x 1.35 x 1 0.006 0,006 5 

2 Voltage detectors [175] [189] SOT23-5 2.9 x 1.6 x 1.3 0.0165 0,033 5 

1  Microcontroller [171] [184] UFQFPN32 5.1 x 5.1 x 0.6 0.04908 0,04908 32 

1 NFC-EEPROM Memory [172] [186] TSSOP8 4.5 x 3.1 x 1.05 0.034 0,034 8 

2 Piezo electronic buzzers n.a. 35 x 0.3 3,35 3,35 4 

1 Plastic case 
Acrylonitrile Butadiene  

Styrene (ABS) 
83.5 x 48 x 7 15,78 15,78 n.a. 

1 PCB FR4 - 4 layers 32 x 22 x 1 1,1533 1,1533 n.a. 

 Total weight of the device (g) 20,6389  

  Total weight of the electronic card  
(excluding the piezo electric buzzer) (g) 

1,5089  
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5. Bill of Materials of the EH sensor system in its BLE-based version 
The following table shows the Bill of Materials of the electronic design of the BLE-Version. It includes 

a BLE module, which is described by its subcomponents (type and quantity). Non-conventional parts 

(e.g., Balun filter, metal lid, etc.) and special soldering types are presented with their material 

composition in percentages (xx,xxYY format, were xx,xx depicts the percentage share and YY the 

symbol element). To facilitate the LCA modeling of the SoC sub component of the BLE module, it is 

consider the unique available material declaration of an BlueNRG-2 SoC in a QFN32 package version 

[190] [191]. The piezoelectric buzzer is excluded from the LCA analysis due to the lack of LCA data. 

All components have SMD-typed packages. For the LCA modeling of the ceramic antenna, one use a 

LCA data proxy (market of RF inductor (GLO)).  

Quantity Electronic component Sub components 
Package type 

or material 
Dimensions mm 

(L or Diameter x W x H) 
Weight per 

component (g) 
Total Weight per 

component type (g) 
Number of pins  
or solder points 

5 Ceramic capacitors n.a. 0603 1.6 x 0.8 x 0.9 0.0061 0,0305 2 

1 Ceramic capacitor n.a. 1210 3.2 x 2.5 x 1.7 0.1185 0,1185 2 

1 Ceramic capacitor n.a. 0805 2 x 1.25 x 1.3 0.0168 0,0168 2 

1 Resistor n.a. 0603 1.7 x 0.9 x 0.6 0.00183 0,00183 2 

3 Resistors n.a. 0805 2.1 x 1.35 x 0.65 0.00471 0,00471 2 

2 Schottky diodes n.a. SC70-6 2.2 x 1.35 x 0.6 0.006 0,012 6 

1 Transistor n.a. SOT323  2.2 x 1.35 x 1.1 0.006 0,006 3 

1 Voltage comparator [170] [180] n.a. SC70-5 2.2 x 1.35 x 1 0.006 0,006 5 

2 Voltage detectors [175] [189] n.a. SOT23-5 2.9 x 1.6 x 1.3 0.0165 0,033 5 

1 BLE module [192] 

1 Balun filter 
(100Si) 

n.a. n.a. 0.0032 0,0032 n.a. 

1 BlueNRG-2 SoC [190] [191] QFN32 5 x 5 x 1 0.036 0,036 32 

1 PCB n.a. 13.5 x 11.5 x 0.8 0.2484 0,2484 20 

1 Metal lid 
(64,08Cu18,82Zn17Ni0,1Mn) 

n.a. n.a. 0,198 0,198 n.a. 

Solder type 1 
(95Sn5Sb) 

n.a. n.a. 0.015159 0,015159 n.a. 

Solder type 2 
(Not specific) 

n.a. n.a. 0.0045 0,0045 n.a. 

1 Inductor 0603 0.6 x 0.3 x 0.3 0.0002 0,0002 2 

2 Inductors 1005 1 x 0.5 x 0.35 0,0004 0,0008 2 

14 Capacitors 0603 0.6 x 0.3 x 0.3 0.00033 0,00462 2 

2 Crystal oscillators 0805 2.05 x 1.2 x 0.55 0.005538 0,011076 2 

1 Inductor 1005 1 x 0.5 x 0.5 0.00098 0,00098 2 

1 Inductor 1608 1.6 x 0.8 x 0.8 0.004 0,004 2 

1 Ceramic Antenna Undetermined 3.2 x 1.6 x 1.3 0.019791 0,019791 2 

2 Piezo electric buzzers n.a. n.a. 35 x 0.3 3,35 3,35 4 

1 Plastic case n.a. 
Acrylonitrile 
Butadiene  

Styrene (ABS) 
83.5 x 48 x 7 15,78 15,78 n.a. 

1 PCB n.a. FR4 - 4 layers 32 x 22 x 1 1,1533 1,1533 n.a. 

       Total weight of the device(g) 21,06  

    Total weight of the electronic card  
(excluding the piezo electric buzzer) (g) 

1,9294  
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6. Variations of the PCB area according to the design sets of the memory-based version 
The following table present the variations of the PCB surface of the memory-based version of the EH 

sensor system, with respect to the referential PCB size of set 13 (rightest column). One calculates these 

variations by adding to the referential PCB size (704 mm2), the difference of the aggregated land pattern 

area of the components that shapes a set with the aggregated land pattern area of the components that 

compose the referential set 13. The land pattern areas consider the IPC-7351 standard in its most 

penalizing version (0,5 mm), which add 1 mm to the length and width sides. The reference set is showed 

in gray; the smallest and the biggest PCB sizes appear in the green and red cells respectively. 

  Land patterns 
 (mm) 

Including the IPC-7351B standard 
(mm) Land pattern areas 

(mm) 
Aggregated land pattern 

area (mm) 
PCB sizes 

(mm) 
 Components L W L W 

S
et

 1
 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

146,08 770,83 LQFP32 9,2 9,2 10,2 10,2 104,04 

TSSOP8 6,6 3,1 7,6 4,1 31,16 

S
et

 2
 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

127,63 752,38 LQFP32 9,2 9,2 10,2 10,2 104,04 

UFDFPN8 3,1 2,1 4,1 3,1 12,71 

S
et

 3
 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

158,12 782,87 LQFP32 9,2 9,2 10,2 10,2 104,04 

SO8 6,2 5,0 7,2 6,0 43,20 

S
et

 4
 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

150,02 774,77 LQFP32 9,2 9,2 10,2 10,2 104,04 

TSSOP8 6,6 3,1 7,6 4,1 31,16 

S
et

 5
 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

131,57 756,32 LQFP32 9,2 9,2 10,2 10,2 104,04 

UFDFPN8 3,1 2,1 4,1 3,1 12,71 

S
et

 6
 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

162,06 786,81 LQFP32 9,2 9,2 10,2 10,2 104,04 

SO8 6,2 5,0 7,2 6,0 43,20 

S
et

 7
 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

79,86 704,61 TFBGA64 5,2 5,2 6,2 6,2 37,82 

TSSOP8 6,6 3,1 7,6 4,1 31,16 

S
et

 8
 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

61,41 686,16 TFBGA64 5,2 5,2 6,2 6,2 37,82 

UFDFPN8 3,1 2,1 4,1 3,1 12,71 

S
et

 9
 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

91,90 716,65 TFBGA64 5,2 5,2 6,2 6,2 37,82 

SO8 6,2 5,0 7,2 6,0 43,20 

S
et

 1
0 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

83,80 708,55 TFBGA64 5,2 5,2 6,2 6,2 37,82 

TSSOP8 6,6 3,1 7,6 4,1 31,16 

S
et

 1
1 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

65,35 690,10 TFBGA64 5,2 5,2 6,2 6,2 37,82 

UFDFPN8 3,1 2,1 4,1 3,1 12,71 

S
et

 1
2 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

95,84 720,59 TFBGA64 5,2 5,2 6,2 6,2 37,82 

SO8 6,2 5,0 7,2 6,0 43,20 

S
et

 1
3 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

79,25 704,00 UFQFPN32 5,1 5,1 6,1 6,1 37,21 

TSSOP8 6,6 3,1 7,6 4,1 31,16 

S
et

 1
4 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

60,80 685,55 UFQFPN32 5,1 5,1 6,1 6,1 37,21 

UFDFPN8 3,1 2,1 4,1 3,1 12,71 

S
et

 1
5 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

91,29 716,04 UFQFPN32 5,1 5,1 6,1 6,1 37,21 

SO8 6,2 5,0 7,2 6,0 43,20 

S
et

 1
6 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

83,19 707,94 UFQFPN32 5,1 5,1 6,1 6,1 37,21 

TSSOP8 6,6 3,1 7,6 4,1 31,16 

S
et

 1
7 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

64,74 689,49 UFQFPN32 5,1 5,1 6,1 6,1 37,21 

UFDFPN8 3,1 2,1 4,1 3,1 12,71 

S
et

 1
8 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

95,23 719,98 UFQFPN32 5,1 5,1 6,1 6,1 37,21 

SO8 6,2 5,0 7,2 6,0 43,20 

S
et

 1
9 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

56,21 680,96 WLCSP36 2,9 2,6 3,9 3,6 14,17 

TSSOP8 6,6 3,1 7,6 4,1 31,16 

S
et

 2
0 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

37,76 662,51 WLCSP36 2,9 2,6 3,9 3,6 14,17 

UFDFPN8 3,1 2,1 4,1 3,1 12,71 

S
et

 2
1 VC SC70-5 2,2 2,4 3,2 3,4 10,88 

68,25 693,00 WLCSP36 2,9 2,6 3,9 3,6 14,17 

SO8 6,2 5,0 7,2 6,0 43,20 

S
et

 2
2 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

60,15 684,90 WLCSP36 2,9 2,6 3,9 3,6 14,17 

TSSOP8 6,6 3,1 7,6 4,1 31,16 

S
et

 2
3 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

41,70 666,45 WLCSP36 2,9 2,6 3,9 3,6 14,17 

UFDFPN8 3,1 2,1 4,1 3,1 12,71 

S
et

 2
4 VC SOT23-5 2,9 2,8 3,9 3,8 14,82 

72,19 696,94 WLCSP36 2,9 2,6 3,9 3,6 14,17 

SO8 6,2 5,0 7,2 6,0 43,20 
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7. Material content shares of the studied voltage comparators 
The following information is an adaptation of the Full Material Declaration (FMD) of the voltage 

comparators studied in this work. The values in the rightest column “Content share in the IC” are 

considered as the typical material content shares used in the uncertainty analysis of section 2.1.3, seen 

in chapter 5. To obtain the internal die area ratio factor, one divides the product of the IC packaging 

surface and the die share with its total weight (following the Ecoinvent method described in [174], which 

is explained in section 4.1 of chapter 4). To obtain the die area of the component, one multiplies this 

factor with the total weight of the integrated circuit. For a detailed review, the reader can consult the 

FMD document provided by the manufacturer, which appears in the reference near to the name of the 

component. 

a) Rail-to-rail 0.9 V nanopower comparator, SC70-5 type [180] 

Subpart mg % subpart Material mg 
Content share in  

the subpart 
Content share  

in the IC 

Die 0,178 2,967% Die 0,178 100,000% 2,967% 

Lead frame 2,954 49,233% 

Iron (Fe) 0,067 2,268% 1,117% 

Copper (Cu) 2,829 95,768% 47,150% 

Phosphorus (P) 0,001 0,034% 0,017% 

Zinc (Zn) 0,004 0,135% 0,067% 

Nickel (Ni) 0,034 1,151% 0,567% 

Palladium (Pd) 0,003 0,102% 0,050% 

Silver (Ag) 0,016 0,542% 0,267% 

Die attach 0,005 0,083% 

Carbocyclic Acrylates 0,002 40,000% 0,033% 

Bismaleimide resin 0,002 40,000% 0,033% 

2-preponoic acid, 2-methyl 0,001 20,000% 0,017% 

Bonding wires 0,033 0,550% Gold (Au) 0,033 100,000% 0,550% 

Encapsulation 2,830 47,167% 

Epoxy Resin-1 0,056 1,979% 0,933% 

Epoxy Resin-2 0,056 1,979% 0,933% 

Epoxy Resin-3 0,056 1,979% 0,933% 

Phenol resin 0,114 4,028% 1,900% 

Silica 2,542 89,823% 42,367% 

Carbon black 0,006 0,212% 0,100% 

TOTAL 6,000 100,000%     
       

Packaging Length (mm): 2,2      
Packaging Width (mm): 1,35      

Internal die area ratio (mm2 / mg): 0,0147      
Internal die (mm2): 0,0881      

b) Rail-to-rail 0.9 V nanopower comparator, SOT23-5 type [181] 

Subpart mg % subpart Material mg 
Content share in  

the subpart 
Content share  

in the IC 

Die 0,253 1,546% Die 0,253 100,000% 1,546% 

Lead frame 6,923 42,296% 

Copper (Cu) 6,651 96,071% 40,634% 

Iron (Fe) 0,167 2,412% 1,020% 

Iron Phosphide (FeP) 0,002 0,029% 0,012% 

Zinc (Zn) 0,009 0,130% 0,055% 

Nickel (Ni) 0,086 1,242% 0,525% 

Palladium (Pd) 0,007 0,101% 0,043% 

Gold (Au) 0,001 0,014% 0,006% 

Die attach 0,079 0,483% 

Silver (Ag) 0,057 72,152% 0,348% 

methylene diacrylate 0,013 16,456% 0,079% 

Dicyclopentenyloxyethyl methacrylate 0,003 3,797% 0,018% 

Bismaleimide resin 0,003 3,797% 0,018% 

Palladium (Pd) 0,001 1,266% 0,006% 

Dicumlyl peroxide 0,002 2,532% 0,012% 

Bonding wire 0,157 0,959% Gold (Au) 0,157 100,000% 0,959% 

encapsulation 8,956 54,717% 

Epoxy Resin 0,354 3,953% 2,163% 

Biphenyl epoxy resin 0,133 1,485% 0,813% 

Phenol resin 0,37 4,131% 2,261% 

Silica 7,179 80,159% 43,860% 

Carbon Black 0,017 0,190% 0,104% 

Zinc hydroxide 0,165 1,842% 1,008% 

VARIOUS NOT DECLARED 0,738 8,240% 4,509% 

TOTAL 16,368 100,000%     
       

Packaging Length (mm): 2,9      
Packaging Width (mm): 1,6      

Internal die area ratio (mm2 / mg): 0,0044      
Internal die (mm2): 0,0717      
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8. Material content shares of the studied microcontrollers 
The following information is an adaptation of the Full Material Declaration (FMD) of the 

microcontrollers studied in this work. The values in the rightest column “Content share in the IC” are 

considered as the typical material content shares used in the uncertainty analysis of section 2.1.3, seen 

in chapter 5. To obtain the internal die area ratio factor, one divides the product of the IC packaging 

surface and the die share with its total weight, following the Ecoinvent method described in [174], which 

is explained in section 4.1 of chapter 4). To obtain the die area of the component, one multiplies this 

factor with the total weight of the integrated circuit. For a detailed review, the reader can consult the 

FMD document provided by the manufacturer, which appears in the reference near to the name of the 

component. 

a) Access line ultra-low-power 32-bit MCU Arm®-based Cortex®-M0+, LQFP32 type [182] 

Subpart mg % subpart Material mg 
Content share in  

the subpart 
Content share  

in the IC 

Die or dies 6,674 3,636% Die 6,674 100,000% 3,636% 

Die Attach Epoxy_ABLEBOND 
3230_H 

0,908 0,495% 

Silver 0,643 70,815% 0,350% 

2,2'-[Methylenebis(phenyleneoxymethylene)] 0,044 4,846% 0,024% 

Dihydro-3-(tetrapropenyl)furan-2,5-dione 0,044 4,846% 0,024% 

Epoxy resin 0,044 4,846% 0,024% 

Dodecyloxirane 0,044 4,846% 0,024% 

1,3-Isobenzofurandione, hexahydro-5-methyl- 0,044 4,846% 0,024% 

1,4-Bis(2,3-epoxypropoxy)butane 0,044 4,846% 0,024% 

EMC_G631SHQ_Sumitomo 
(Encapsulation) 

118,466 64,536% 

Epoxy Resin A 2,488 2,100% 1,355% 

Epoxy Resin B 2,488 2,100% 1,355% 

Phenol Resin 6,634 5,600% 3,614% 

Silica(Amorphous)A 92,457 78,045% 50,367% 

Silica(Amorphous)B 13,662 11,532% 7,443% 

Carbon Black 0,738 0,623% 0,402% 

BondingWire_Ag_MKE 0,301 0,164% 
Silver 0,289 96,013% 0,157% 

Others 0,012 3,987% 0,007% 

Anode Ball_Tin_Asahi 1,209 0,659% Tin 1,209 100,000% 0,659% 

Leadframe_C9+Ag_HDS 56,007 30,511% 

Iron 1,225 2,187% 0,667% 

Phosphorus 0,041 0,073% 0,022% 

Zinc 0,063 0,112% 0,034% 

Copper 51,148 91,324% 27,864% 

Silver 3,528 6,299% 1,922% 

Lead 0,003 0,005% 0,002% 

TOTAL 183,565 100,000%     

       
Packaging Length (mm): 7,2      
Packaging Width (mm): 7,2      

Internal die area ratio (mm2 / mg): 0,0103      
Internal die (mm2): 1,8848      

 

b) Access line ultra-low-power 32-bit MCU Arm®-based Cortex®-M0+, TFBGA64 type 

[183] 

Subpart mg % subpart Material mg 
Content share in  

the subpart 
Content share  

in the IC 

Die or dies 4,675 7,305% Silicon (Si) 4,675 100,000% 7,305% 

Substrate 17,112 26,738% 

Bismaleimide (B) 0,774 4,523% 1,209% 

Triazine (T) 0,774 4,523% 1,209% 

Fiber glass 2,31 13,499% 3,609% 

metal hydroxide 0,053 0,310% 0,083% 

Zinc hydroxide 0,016 0,094% 0,025% 

Thermosetting resin 1,297 7,579% 2,027% 

Calcium sulfate 0,026 0,152% 0,041% 

Baryum sulfate 0,243 1,420% 0,380% 

(2-methoxymethylethoxy)propanol 0,04 0,234% 0,063% 

Talc containing no asbestiform fibers 0,135 0,789% 0,211% 

Quartz 0,135 0,789% 0,211% 

Acrylates derivative 0,559 3,267% 0,873% 

aromatic hydrocarbon 0,054 0,316% 0,084% 

amine compound 0,008 0,047% 0,013% 

Copper (Cu) 10,586 61,863% 16,541% 

Nickel (Ni) 0,08 0,468% 0,125% 

Gold (Au) 0,021 0,123% 0,033% 

Die Attach 2,344 3,663% 

Silver (Ag) 2,085 88,951% 3,258% 

Neopentyl glycol dimethacrylate 0,117 4,991% 0,183% 

2,6-Diglycidyl phenyl allyl ether 0,129 5,503% 0,202% 

palmitic acid 0,002 0,085% 0,003% 

4-tert-butylcyclohexanol 0,007 0,299% 0,011% 

Hexamethyltetracosa-hexaene 0,002 0,085% 0,003% 

Fluorine trace 0,001 0,043% 0,002% 

Wires 0,351 0,548% Gold (Au) 0,351 100,000% 0,548% 

Encapsulation 32,891 51,392% 

Biphenyl epoxy resin 2,742 8,337% 4,284% 

Phenol resin 1,371 4,168% 2,142% 

Quartz 0,686 2,086% 1,072% 
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Silica, vitreous 27,818 84,576% 43,466% 

Carbon Black 0,247 0,751% 0,386% 

Magnesium dihydroxide 0,027 0,082% 0,042% 

Solder Balls 6,627 10,355% 

Tin (Sn) 6,513 98,280% 10,177% 

Silver (Ag) 0,08 1,207% 0,125% 

Copper (Cu) 0,033 0,498% 0,052% 

Nickel (Ni) 0,001 0,015% 0,002% 

Lead (Pb) 0,001 0,015% 0,002% 

TOTAL 64,000 100,000%     
       

Packaging Length (mm): 5,15      
Packaging Width (mm): 5,15      

Internal die area ratio (mm2 / mg): 0,0303      
Internal die (mm2): 1,9374      

 

c) Access line ultra-low-power 32-bit MCU Arm®-based Cortex®-M0+, UFQFPN32 type 

[184] 

Subpart mg % subpart Material mg 
Content share in  

the subpart 
Content share  

in the IC 

Die or dies 2,881 5,870% Die 2,881 100,000% 5,870% 

Die Attach Epoxy _ABLEBOND 
8290_ 

0,281 0,573% 

Silver 0,198 70,463% 0,403% 

Bisphenol-F, epoxy resin 0,014 4,982% 0,029% 

Fatty acids, polymers with epichlorohydrin 0,014 4,982% 0,029% 

Gamma Butyrolactone 0,014 4,982% 0,029% 

Epoxy Resin 0,014 4,982% 0,029% 

Poly(Oxy(methyl-1, 2-ethanediyl) 0,014 4,982% 0,029% 

Copper Oxide 0,014 4,982% 0,029% 

1,4-Bis(2,3-epoxypropoxy) butane 0,001 0,356% 0,002% 

Mold Compound_EME-
G770_Sumito 

(Encapsulation) 
17,061 34,763% 

Epoxy Resin A 0,364 2,134% 0,742% 

Epoxy Resin B 0,364 2,134% 0,742% 

Phenol Resin A 0,364 2,134% 0,742% 

Phenol Resin B 0,364 2,134% 0,742% 

Silica(Amorphous)A 12,153 71,233% 24,761% 

Silica(Amorphous)B 2,986 17,502% 6,084% 

Metal Hydroxide 0,364 2,134% 0,742% 

Carbon Black 0,103 0,604% 0,210% 

Bonding wire_WIRE Ag SI 
TYPE_MKE 

0,196 0,399% 
Silver 0,188 95,918% 0,383% 

Others 0,008 4,082% 0,016% 

Anode Ball_Pure Tin_Nuonengda 1,659 3,380% Tin 1,659 100,000% 3,380% 

Lead frame_C7+Ag_HDS 27,000 55,014% 

Nickel 0,793 2,937% 1,616% 

Silicon 0,176 0,652% 0,359% 

Magnesium 0,042 0,156% 0,086% 

Silver 1,701 6,300% 3,466% 

Copper 24,288 89,956% 49,486% 

TOTAL 49,078 100,000%     

       
Packaging Length (mm): 5,10      
Packaging Width (mm): 5,10      

Internal die area ratio (mm2 / mg): 0,0311      
Internal die (mm2): 1,5269      

 

d) Access line ultra-low-power 32-bit MCU Arm®-based Cortex®-M0+, WLCSP36 type 

[185] 

Subpart mg % subpart Material mg 
Content share in  

the subpart 
Content share  

in the IC 

Die or dies 4,411 74,147% Die 4,411 100,000% 74,159% 

RDL-Ti Target 0,001 0,017% Titanium 0,001 100,000% 0,017% 

RDL-Cu Target 0,003 0,050% Copper 0,003 100,000% 0,050% 

RDL-Cu Anode 0,062 1,042% Copper 0,062 100,000% 1,042% 

UBM-Cu Target 0,002 0,034% Copper 0,002 100,000% 0,034% 

UBM-Cu Anode 0,073 1,227% Copper 0,073 100,000% 1,227% 

SOLDER BALLS SACN125 0,23mm 1,179 19,818% 

Tin 1,146 97,201% 19,267% 

Silver 0,014 1,187% 0,235% 

Copper 0,018 1,527% 0,303% 

Backside Tape - LC2850 0,218 3,664% 

Polyethylene terephthalate 0,154 70,642% 2,589% 

Silica 0,034 15,596% 0,572% 

Acrylic ester co-polymer 0,014 6,422% 0,235% 

Epoxy resin 0,014 6,422% 0,235% 

Carbon black 0,001 0,459% 0,017% 

Additive 0,001 0,459% 0,017% 

TOTAL 5,949 100,000%     

       
Packaging Length (mm): 2,631      
Packaging Width (mm): 2,903      

Internal die area ratio (mm2 / mg): 0,9520      
Internal die (mm2): 5,6632      
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9. Material content shares of the studied NFC-EEPROM memories 
The following information is an adaptation of the Full Material Declaration (FMD) of the memories 

studied in this work. The values in the rightest column “Content share in the IC” are considered as the 

typical material content shares used in the uncertainty analysis of section 2.1.3, seen in chapter 5. To 

obtain the internal die area ratio factor, one divides the product of the IC packaging surface and the die 

share with its total weight, following the Ecoinvent method described in [174], which is explained in 

section 4.1 of chapter 4). To obtain the die area of the component, one multiplies this factor with the 

total weight of the integrated circuit. For a detailed review, the reader can consult the FMD document 

provided by the manufacturer, which appears in the reference near to the name of the component. 

a) Dynamic NFC/RFID tag IC with 4-Kbit, 16-Kbit or 64-Kbit EEPROM, TSSOP8 type 

[186] 

Subpart mg % subpart Material mg 
Content share in  

the subpart 
Content share  

in the IC 

Die or dies 1,700 5,000% Die 1,700 100,000% 5,000% 

Lead-frame 14,517 42,696% 

Copper (Cu) 14,147 97,451% 41,608% 

Iron (Fe) 0,341 2,349% 1,003% 

Zinc (Zn) 0,017 0,117% 0,050% 

Iron Phosphide (FeP) 0,012 0,083% 0,035% 

Lead-frame Coating 0,062 0,182% 

Nickel (Ni) 0,058 93,548% 0,171% 

Palladium (Pd) 0,002 3,226% 0,006% 

Gold (Au) 0,002 3,226% 0,006% 

Die Attach 0,049 0,144% 

Poly(tetrafluoroethylene) 0,025 51,020% 0,074% 

Synthetic resin 0,010 20,408% 0,029% 

Bismaleimide resin 0,010 20,408% 0,029% 

Titanium dioxide 0,002 4,082% 0,006% 

Silica, amorphous 0,002 4,082% 0,006% 

Wires 0,019 0,056% Gold (Au) 0,019 100,000% 0,056% 

Encapsulation 17,653 51,919% 

Epoxy Resin 1,434 8,123% 4,218% 

Phenol Resin 0,956 5,416% 2,812% 

Silica, vitreous 15,091 85,487% 44,384% 

Carbon black 0,096 0,544% 0,282% 

Bismuth (Bi) 0,076 0,431% 0,224% 

Finishing 0,001 0,003% Nickel (Ni) 0,001 100,000% 0,003% 

Total 34,001 100,000%     

       
Packaging Length (mm): 4,5      
Packaging Width (mm): 3,1      

Internal die area ratio (mm2 / mg): 0,0205      
Internal die (mm2): 0,6975      

 

b) Dynamic NFC/RFID tag IC with 4-Kbit, 16-Kbit or 64-Kbit EEPROM, UFDFPN8 type 

[187] 

Subpart mg % subpart Material mg 
Content share in  

the subpart 
Content share  

in the IC 

Die or dies 1,228 7,675% Die 1,228 100,000% 7,675% 

Lead-frame 2,994 18,714% 

Copper (Cu) 2,918 97,462% 18,236% 

Iron (Fe) 0,07 2,338% 0,437% 

Zinc (Zn) 0,004 0,134% 0,025% 

 Iron Phosphide (FeP) 0,003 0,100% 0,019% 

Lead-frame Coating 0,013 0,081% 
Nickel (Ni) 0,012 92,308% 0,075% 

Palladium (Pd) 0,001 7,692% 0,006% 

Die Attach 1,266 7,913% 

Silver (Ag) 1,108 87,520% 6,925% 

polymer 0,101 7,978% 0,631% 

aniline 0,013 1,027% 0,081% 

Epoxy resin 0,038 3,002% 0,237% 

 Epoxy resin molecular weight <= 700 0,006 0,474% 0,037% 

Wires 0,018 0,113% Copper (Cu) 0,018 100,000% 0,112% 

Encapsulation 10,480 65,504% 

Silica, vitreous 9,229 88,063% 57,678% 

 Biphenyl epoxy resin 0,521 4,971% 3,256% 

Phenolic resin 0,407 3,884% 2,544% 

epoxy resin 0,209 1,994% 1,306% 

carbon black 0,021 0,200% 0,131% 

 other 0,094 0,897% 0,587% 

TOTAL 15,999 100,000%     

       
Packaging Length (mm): 2,1      
Packaging Width (mm): 3,1      

Internal die area ratio (mm2 / mg): 0,0312      
Internal die (mm2): 0,4997      
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c) Dynamic NFC/RFID tag IC with 4-Kbit, 16-Kbit or 64-Kbit EEPROM, SO8 type [188] 

Subpart mg % subpart Material mg 
Content share in  

the subpart 
Content share  

in the IC 

Die or dies 1,700 2,125% Die 1,700 100,000% 2,125% 

Lead-frame 24,984 31,230% 

Copper (Cu) 24,347 97,450% 30,434% 

Iron (Fe) 0,586 2,346% 0,733% 

Zinc (Zn) 0,030 0,120% 0,038% 

 Iron Phosphide (FeP) 0,021 0,084% 0,026% 

Lead-frame Coating 0,124 0,155% 

Nickel (Ni) 0,114 91,935% 0,143% 

Palladium (Pd) 0,007 5,645% 0,009% 

Gold (Au) 0,003 2,419% 0,004% 

Die Attach 1,027 1,284% 

Silver (Ag) 0,925 90,068% 1,156% 

 acrylate 0,062 6,037% 0,078% 

 Methacrylate 0,039 3,797% 0,049% 

 acrylate 0,002 0,195% 0,003% 

Wires 0,062 0,078% Gold (Au) 0,062 100,000% 0,078% 

Encapsulation 52,101 65,127% 

Epoxy Resin 3,938 7,558% 4,923% 

Phenol Resin 2,625 5,038% 3,281% 

Silica, vitreous 45,065 86,495% 56,331% 

Carbon-black 0,263 0,505% 0,329% 

 Bismuth 0,210 0,403% 0,263% 

Finishing 0,001 0,001% Nickel (Ni) 0,001 100,000% 0,001% 

TOTAL 79,999 100,000%     

       
Packaging Length (mm): 5,00      
Packaging Width (mm): 4,00      

Internal die area ratio (mm2 / mg): 0,0053      
Internal die (mm2): 0,4250      
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10. Material content shares of the unique type of Voltage Detector 
The following information is an adaptation of the Full Material Declaration (FMD) of the unique type 

of voltage detector presented in this work. This component type was modeled by the LCA 

implementation proposed in the section 8.1 of the chapter 4 because of its significant contribution to the 

AD impacts of all design sets and versions. To obtain the internal die area ratio factor, one divides the 

product of the IC packaging surface and the die share with its total weight, following the Ecoinvent 

method described in [174], which is explained in section 4.1 of chapter 4). To obtain the die area of the 

component, one multiplies this factor with the total weight of the integrated circuit. For a detailed 

review, the reader can consult the FMD document provided by the manufacturer, which appears in the 

reference near to the name of the component. 

Voltage detector with sense input and external delay capacitor STM 1831, SOT23-5 type [189] 

Subpart mg % subpart Material mg 
Content share in  

the subpart 
Content share  

in the IC 

die 0,380 2,303% Die 0,380 100,000% 2,303% 

Lead-frame 7,200 43,636% 

Copper (Cu) 6,936 96,333% 42,036% 

Iron (Fe) 0,162 2,250% 0,982% 

Phosphorus (P) 0,002 0,028% 0,012% 

Zinc (Zn) 0,009 0,125% 0,055% 

Nickel (Ni) 0,083 1,153% 0,503% 

Palladium (Pd) 0,007 0,097% 0,042% 

Gold (Au) 0,001 0,014% 0,006% 

Die attach 0,070 0,424% 

Aluminium oxide 0,021 30,000% 0,127% 

Diethylene glycol monoethyl ether acetate 0,028 40,000% 0,170% 

Epoxy resin 0,005 7,143% 0,030% 

Epoxy resin 0,014 20,000% 0,085% 

Aromatic amine 0,002 2,857% 0,012% 

Bonding Wire 0,150 0,909% Gold (Au) 0,150 100,000% 0,909% 

encapsulation 8,700 52,727% 

Silica, vitreous 7,421 85,299% 44,976% 

phenolic resin 0,305 3,506% 1,848% 

epoxy resin 0,348 4,000% 2,109% 

Biphenyl epoxy resin 0,174 2,000% 1,055% 

carbon black 0,017 0,195% 0,103% 

Zinc hydroxide 0,087 1,000% 0,527% 

Magnesium hydroxide 0,348 4,000% 2,109% 

TOTAL 16,500 100,000%     

       
Packaging Length (mm): 2,90      
Packaging Width (mm): 1,60      

Internal die area ratio (mm2 / mg): 0,0065      
Internal die (mm2): 0,1069      
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11. Material content shares of the SoC component of the BLE module 
The following information is an adaptation of the Full Material Declaration (FMD) of the BLE SoC 

component presented in this work. This component was modeled by the LCA implementation proposed 

in the section 8.1 of the chapter 4 because of its significant contribution to the AD and GW impacts of 

the BLE module of the BLE-based version. To obtain the internal die area ratio factor, one divides the 

product of the IC packaging surface and the die share with its total weight, following the Ecoinvent 

method described in [174], which is explained in section 4.1 of chapter 4). To obtain the die area of the 

component, one multiplies this factor with the total weight of the integrated circuit. For a detailed 

review, the reader can consult the FMD document provided by the manufacturer, which appears in the 

reference near to the name of the component. 

Bluetooth® Low Energy wireless system-on-chip BlueNRG-2, QFN32 type [191] 

Subpart mg % subpart Material mg 
Content share in  

the subpart 
Content share  

in the IC 

Die 3,494 9,642% Die 3,494 100,000% 9,642% 

Leadframe 10,628 29,330% 

Copper (Cu) 10,185 95,832% 28,107% 

Chromium (Cr) 0,028 0,263% 0,077% 

Tin (Sn) 0,026 0,245% 0,072% 

Zinc (Zn) 0,021 0,198% 0,058% 

Silver (Ag) 0,369 3,472% 1,018% 

Die attach 2,452 6,767% 

Silver (Ag) 1,998 81,485% 5,514% 

(Octahydro-4,7-methano-1 H-indenediyl)bis(m 0,147 5,995% 0,406% 

exo-1,7,7-trimethylbicyclo[2,2,1]hept-2-yl met 0,147 5,995% 0,406% 

Isobornyl acrylate 0,147 5,995% 0,406% 

2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilane 0,012 0,489% 0,033% 

Bonding wires 0,482 1,330% 

Gold (Au) 0,479 99,378% 1,322% 

Platinum (Pt) 0,003 0,622% 0,008% 

Palladium (Pd) 0,001 0,207% 0,003% 

Encapsulation 17,020 46,970% 

Epoxy Resin 0,851 5,000% 2,348% 

Phenol Resin 0,391 2,297% 1,079% 

Silica(Amorphous)A 14,467 85,000% 39,924% 

Silica(Amorphous)B 0,851 5,000% 2,348% 

Metal Hydroxide 0,391 2,297% 1,079% 

Carbon Black 0,068 0,400% 0,188% 

connections coating 2,160 5,961% Tin (Sn) 2,160 100,000% 5,961% 

TOTAL 36,236 100,000%     

       
Packaging Length (mm): 5,00      
Packaging Width (mm): 5,00      

Internal die area ratio (mm2 / mg): 0,0665      
Internal die (mm2): 2,4106      
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12. Recycled material content from waste flows of design set 8 
The following information presents the normalization of the recoveries of copper, gold and silver in 

wastes flows of design set 8, which make part of the LCA implementation for the framework for eco 

design, presented in the section 8.1 of chapter 4. It considers the total content shares of aluminum, 

copper, Glass, plastic, silver, gold, lead and ferroelectric materials in specific waste flows of the EH 

sensor system device; and the transfer coefficients suggested by Huisman, J. [145]. The recycled 

material contents in respective scraps are obtained from the metals fractions output of shredding and 

separation processes, and serve as input for the metallurgical recovery of precious metals, as proposed 

in the LCA implementation of chapter 4. In this work, one focuses on gold and silver that can be 

recovered from copper metal fractions. For simplicity, the content shares for the waste flow “WPCB” 

of the regular scenario is not presented as it only differs from that one of the waste flow “Full device” 

in that the plastic case share does not exits (in the regular scenario, the plastic case is separated 

manually). 

a) Recycled material content in the waste flow “Full device” (Worst recycling scenario) 

Component type Quantity 
Weight  

(mg) 
Total weight  

(mg) 
% components  

type 
Material mg 

Content share in the  
component type 

Content share in the  
EH sensor system device 

Capacitor 0402 7 1,4 9,8 0,057% 

Copper (Cu) 0,0931 0,950% 0,000546% 

Nickel (Ni) 1,32986 13,570% 0,007799% 

Palladium (Pd) 0,00882 0,090% 0,000052% 

Silver (Ag) 0,2597 2,650% 0,001523% 

Tin (Sn) 0,1617 1,650% 0,000948% 

glass 0,0147 0,150% 0,000086% 

Titane dioxide (TiO2) 2,6969208 27,520% 0,015816% 

Barite 5,2351992 53,420% 0,030701% 

Capacitor 1812 1 195,2 195,2 1,145% 

Copper (Cu) 1,8544 0,950% 0,010875% 

Nickel (Ni) 26,48864 13,570% 0,155338% 

Palladium (Pd) 0,17568 0,090% 0,001030% 

Silver (Ag) 5,1728 2,650% 0,030335% 

Tin (Sn) 3,2208 1,650% 0,018888% 

glass 0,2928 0,150% 0,001717% 

Titane dioxide (TiO2) 53,7182592 27,520% 0,315022% 

Barite 104,2766208 53,420% 0,611514% 

Resistors 0402 9 1,08 9,72 0,057% 

Lead (Pb) 0,042768 0,440% 0,000251% 

Iron (Fe) 0,22842 2,350% 0,001340% 

Nickel (Ni) 0,16038 1,650% 0,000941% 

Copper (Cu) 0,035964 0,370% 0,000211% 

Tin (Sn) 0,113724 1,170% 0,000667% 

Chromium (Cr) 0,008748 0,090% 0,000051% 

Silicium (Si) 0,000972 0,010% 0,000006% 

Palladium (Pd) 0,013608 0,140% 0,000080% 

Silver (Ag) 0,0972 1,000% 0,000570% 

Gold (Au) 0,049572 0,510% 0,000291% 

Aluminium oxide (Al2O3) 6,79914 69,950% 0,039872% 

SiO2 1,945944 20,020% 0,011412% 

CaCO3 0,00486 0,050% 0,000029% 

Glass 0,064152 0,660% 0,000376% 

Epoxy resin 0,091368 0,940% 0,000536% 

Polyacrylate 0,062208 0,640% 0,000365% 

Diode SOT666 2 2,9 5,8 0,034% 

Lead (Pb) 0,09106 1,570% 0,000534% 

Iron (Fe) 2,51372 43,340% 0,014741% 

Copper (Cu) 1,31138 22,610% 0,007690% 

Nickel (Ni) 0,02146 0,370% 0,000126% 

Tin (Sn) 0,25926 4,470% 0,001520% 

Molybdanum (Mo) 0,11716 2,020% 0,000687% 

Glass 0,90596 15,620% 0,005313% 

Encapsulation insulator (SiO2) 0,55216 9,520% 0,003238% 

Epoxy resin 0,00058 0,010% 0,000003% 

Doted silica 0,0261 0,450% 0,000153% 

Diode 0603 1 1 1 0,006% 

Lead (Pb) 0,0157 1,570% 0,000092% 

Iron (Fe) 0,4334 43,340% 0,002542% 

Copper (Cu) 0,2261 22,610% 0,001326% 

Nickel (Ni) 0,0037 0,370% 0,000022% 

Tin (Sn) 0,0447 4,470% 0,000262% 

Molybdanum (Mo) 0,0202 2,020% 0,000118% 

Glass 0,1562 15,620% 0,000916% 

Encapsulation insulator (SiO2) 0,0952 9,520% 0,000558% 

Epoxy resin 0,0001 0,010% 0,000001% 

Doted silica 0,0045 0,450% 0,000026% 

Transistors SOT-323 2 6 12 0,070% 

Aluminium (Al) 0,0252 0,210% 0,000148% 

Iron (Fe) 0,1248 1,040% 0,000732% 

Copper (Cu) 4,356 36,300% 0,025545% 

Nickel (Ni) 0,096 0,800% 0,000563% 

Lead (Pb) 0,5292 4,410% 0,003103% 

Tin (Sn) 0,9132 7,610% 0,005355% 

Encapsulation insulator (SiO2) 5,8956 49,130% 0,034574% 

Doped silicium 0,0612 0,510% 0,000359% 
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PCB 1 919,688 919,688 5,393% 

Copper (Cu) 530,3154382 57,663% 3,109952% 

Glass 349,2321178 37,973% 2,048017% 

Gold (Au) 0,028640729 0,003% 0,000168% 

Nickel (Ni) 0,143203646 0,016% 0,000840% 

Phenolic resin 39,35790534 4,279% 0,230808% 

Silver (Ag) 0,095161133 0,010% 0,000558% 

Tin (Sn) 0,515533126 0,056% 0,003023% 

Plastic case 1 15780 15780 92,539% AcrylonitrileButadieneStyrene (ABS) 15780 100,000% 92,539342% 

Voltage Detectors  
SOT23-5 type 

2 16,5 33 0,194% 

Die 0,76 2,303% 0,004457% 

Copper (Cu) 13,872 42,036% 0,081350% 

Iron (Fe) 0,324 0,982% 0,001900% 

Phosphorus (P) 0,004 0,012% 0,000023% 

Zinc (Zn) 0,018 0,055% 0,000106% 

Nickel (Ni) 0,166 0,503% 0,000973% 

Palladium (Pd) 0,014 0,042% 0,000082% 

Gold (Au) 0,002 0,006% 0,000012% 

Aluminium oxide (Al2O3) 0,042 0,127% 0,000246% 

Diethylene glycol monoethyl ether acetate 0,056 0,170% 0,000328% 

Epoxy resin 0,01 0,030% 0,000059% 

Epoxy resin 0,028 0,085% 0,000164% 

Aromatic amine 0,004 0,012% 0,000023% 

Gold (Au) 0,3 0,909% 0,001759% 

Silica, vitreous 14,842 44,976% 0,087039% 

phenolic resin 0,61 1,848% 0,003577% 

epoxy resin 0,696 2,109% 0,004082% 

Biphenyl epoxy resin 0,348 1,055% 0,002041% 

Carbon black 0,034 0,103% 0,000199% 

Zinc hydroxide 0,174 0,527% 0,001020% 

Magnesium hydroxide 0,696 2,109% 0,004082% 

Voltage comparator  
SC70-5 type 

1 6 6 0,035% 

Die 0,178 2,967% 0,001044% 

Iron (Fe) 0,067 1,117% 0,000393% 

Copper (Cu) 2,829 47,150% 0,016590% 

Phosphorus (P) 0,001 0,017% 0,000006% 

Zinc (Zn) 0,004 0,067% 0,000023% 

Nickel (Ni) 0,034 0,567% 0,000199% 

Palladium (Pd) 0,003 0,050% 0,000018% 

Silver (Ag) 0,016 0,267% 0,000094% 

Carbocyclic Acrylates 0,002 0,033% 0,000012% 

Bismaleimide resin 0,002 0,033% 0,000012% 

2-preponoic acid, 2-methyl 0,001 0,017% 0,000006% 

Gold (Au) 0,033 0,550% 0,000194% 

Epoxy Resin-1 0,056 0,933% 0,000328% 

Epoxy Resin-2 0,056 0,933% 0,000328% 

Epoxy Resin-3 0,056 0,933% 0,000328% 

Phenol resin 0,114 1,900% 0,000669% 

Silica 2,542 42,367% 0,014907% 

Carbon black 0,006 0,100% 0,000035% 

MCU  
TFBGA64 type 

1 64 64 0,375% 

Die 4,675073048 7,305% 0,027416% 

Bismaleimide (B) 0,774012094 1,209% 0,004539% 

Triazine (T) 0,774012094 1,209% 0,004539% 

Fiber glass 2,310036094 3,609% 0,013547% 

metal hydroxide 0,053000828 0,083% 0,000311% 

Zinc hydroxide 0,01600025 0,025% 0,000094% 

Thermosetting resin 1,297020266 2,027% 0,007606% 

Calcium sulfate 0,026000406 0,041% 0,000152% 

Baryum sulfate 0,243003797 0,380% 0,001425% 

(2-methoxymethylethoxy)propanol 0,040000625 0,063% 0,000235% 

Talc containing no asbestiform fibers 0,135002109 0,211% 0,000792% 

Quartz 0,135002109 0,211% 0,000792% 

Acrylates derivative 0,559008735 0,873% 0,003278% 

aromatic hydrocarbon 0,054000844 0,084% 0,000317% 

amine compound 0,008000125 0,013% 0,000047% 

Copper (Cu) 10,58616541 16,541% 0,062081% 

Nickel (Ni) 0,08000125 0,125% 0,000469% 

Gold (Au) 0,021000328 0,033% 0,000123% 

Silver (Ag) 2,085032579 3,258% 0,012227% 

Neopentyl glycol dimethacrylate 0,117001828 0,183% 0,000686% 

2,6-Diglycidyl phenyl allyl ether 0,129002016 0,202% 0,000757% 

palmitic acid 0,002000031 0,003% 0,000012% 

4-tert-butylcyclohexanol 0,007000109 0,011% 0,000041% 

Hexamethyltetracosa-hexaene 0,002000031 0,003% 0,000012% 

Fluorine trace 0,001000016 0,002% 0,000006% 

Gold (Au) 0,351005484 0,548% 0,002058% 

Biphenyl epoxy resin 2,742042844 4,284% 0,016080% 

Phenol resin 1,371021422 2,142% 0,008040% 

Quartz 0,686010719 1,072% 0,004023% 

Silica, vitreous 27,81843466 43,466% 0,163137% 

Carbon Black 0,247003859 0,386% 0,001449% 

Magnesium dihydroxide 0,027000422 0,042% 0,000158% 

Tin (Sn) 6,513101767 10,177% 0,038195% 

Silver (Ag) 0,08000125 0,125% 0,000469% 

Copper (Cu) 0,033000516 0,052% 0,000194% 

Nickel (Ni) 0,001000016 0,002% 0,000006% 

Lead (Pb) 0,001000016 0,002% 0,000006% 
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EEPROM memory 
UFDFPN8 type 

1 16 16 0,094% 

Die 1,227923255 7,675% 0,007201% 

Copper (Cu) 2,917817636 18,236% 0,017111% 

Iron (Fe) 0,069995625 0,437% 0,000410% 

Zinc (Zn) 0,00399975 0,025% 0,000023% 

 Iron Phosphide (FeP) 0,002999813 0,019% 0,000018% 

Nickel (Ni) 0,01199925 0,075% 0,000070% 

Palladium (Pd) 0,000999938 0,006% 0,000006% 

Silver (Ag) 1,107930754 6,925% 0,006497% 

polymer 0,100993688 0,631% 0,000592% 

aniline 0,012999188 0,081% 0,000076% 

Epoxy resin 0,037997625 0,237% 0,000223% 

 Epoxy resin molecular weight <= 700 0,005999625 0,037% 0,000035% 

Copper (Cu) 0,017998875 0,112% 0,000106% 

Silica, vitreous 9,228423224 57,678% 0,054119% 

 Biphenyl epoxy resin 0,52096744 3,256% 0,003055% 

Phenolic resin 0,406974564 2,544% 0,002387% 

epoxy resin 0,208986938 1,306% 0,001226% 

carbon black 0,020998688 0,131% 0,000123% 

 other 0,093994125 0,587% 0,000551% 

  TOTAL 17052,208 100,000%     

 

  Metal fractions (per Kg of waste flow) 

Materials that can be obtained from  
shredding and separation steps 

Aggregated 
content shares 

Ferro Aluminum Copper Residue 

Aluminium (Al) 0,040% 2,01E-06 3,33E-04 1,98E-05 4,83E-05 

Copper (Cu) 3,334% 3,13E-04 1,67E-03 2,61E-02 5,28E-03 

Ferro (Fe, Ni, Co) 0,189% 1,80E-03 1,89E-05 1,89E-05 5,68E-05 

Glass 2,070% 1,16E-04 1,16E-04 2,07E-03 1,84E-02 

Plastics (Thermosets, Thermoplastics) 92,827% 1,12E-02 4,64E-03 9,28E-02 8,20E-01 

Silver (Ag) 0,052% 5,18E-06 5,18E-06 4,44E-04 6,85E-05 

Gold (Au) 0,005% 4,56E-07 4,56E-07 3,68E-05 8,30E-06 

Lead (Pb) 0,004% 4,70E-07 4,70E-07 3,19E-05 7,04E-06 

Others 1,479% 1,02E-04 9,91E-05 5,22E-03 9,37E-03 

TOTAL 100,000% 1,36E-02 6,88E-03 1,27E-01 8,53E-01 

 

Recycled materials content  in respective scraps  
(per Kg of metal fraction) 

In Ferro fraction In Aluminium fraction In Copper fraction 

1,48E-04 4,83E-02 1,56E-04 

2,31E-02 2,42E-01 2,06E-01 

1,33E-01 2,75E-03 1,49E-04 

8,54E-03 1,68E-02 1,63E-02 

8,28E-01 6,75E-01 7,32E-01 

3,81E-04 7,52E-04 3,50E-03 

3,36E-05 6,63E-05 2,91E-04 

3,47E-05 6,84E-05 2,52E-04 

7,52E-03 1,44E-02 4,12E-02 

 

b) Recycled material content in the waste flow “WPCB” (Regular recycling scenario) 

  Metal fractions (per Kg of waste flow) 

Materials that can be obtained from  
shredding and speartion steps 

Aggregated 
content shares 

Ferro Aluminum Copper Residue 

Aluminium (Al) 0,540% 2,70E-05 4,46E-03 2,66E-04 6,48E-04 

Copper (Cu) 44,682% 4,20E-03 2,23E-02 3,49E-01 7,08E-02 

Ferro (Fe, Ni, Co) 2,539% 2,41E-02 2,54E-04 2,54E-04 7,62E-04 

Glass 27,745% 1,55E-03 1,55E-03 2,77E-02 2,47E-01 

Plastics (Thermosets, Thermoplastics) 3,850% 4,66E-04 1,93E-04 3,85E-03 3,40E-02 

Silver (Ag) 0,701% 6,94E-05 6,94E-05 5,95E-03 9,18E-04 

Gold (Au) 0,062% 6,11E-06 6,11E-06 4,94E-04 1,11E-04 

Lead (Pb) 0,053% 6,30E-06 6,30E-06 4,27E-04 9,43E-05 

Others 19,828% 1,37E-03 1,33E-03 7,00E-02 1,26E-01 

TOTAL 100,000% 3,18E-02 3,02E-02 4,58E-01 4,80E-01 

 

Recycled materials content  in respective scraps  
(per Kg of metal fraction) 

In Ferro fraction In Aluminium fraction In Copper fraction 

8,48E-04 1,48E-01 5,79E-04 

1,32E-01 7,40E-01 7,62E-01 

7,58E-01 8,40E-03 5,54E-04 

4,88E-02 5,14E-02 6,05E-02 

1,46E-02 6,37E-03 8,40E-03 

2,18E-03 2,30E-03 1,30E-02 

1,92E-04 2,02E-04 1,08E-03 

1,98E-04 2,09E-04 9,32E-04 

4,30E-02 4,40E-02 1,53E-01 
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c) Recycled material content in the waste flow “WPCB” (Best recycling scenario) 

Component type Quantity 
Weight  

(mg) 
Total weight  

(mg) 
% components  

type 
Material mg 

Content share in the  
component type 

Content share in the  
EH sensor system device 

Capacitor 0402 7 1,4 9,8 0,983% 

Copper (Cu) 0,0931 0,950% 0,009338% 

Nickel (Ni) 1,32986 13,570% 0,133385% 

Palladium (Pd) 0,00882 0,090% 0,000885% 

Silver (Ag) 0,2597 2,650% 0,026048% 

Tin (Sn) 0,1617 1,650% 0,016219% 

glass 0,0147 0,150% 0,001474% 

Titane dioxide (TiO2) 2,6969208 27,520% 0,270502% 

Barite 5,2351992 53,420% 0,525092% 

Resistors 0402 9 1,08 9,72 0,975% 

Lead (Pb) 0,042768 0,440% 0,004290% 

Iron (Fe) 0,22842 2,350% 0,022911% 

Nickel (Ni) 0,16038 1,650% 0,016086% 

Copper (Cu) 0,035964 0,370% 0,003607% 

Tin (Sn) 0,113724 1,170% 0,011407% 

Chromium (Cr) 0,008748 0,090% 0,000877% 

Silicium (Si) 0,000972 0,010% 0,000097% 

Palladium (Pd) 0,013608 0,140% 0,001365% 

Silver (Ag) 0,0972 1,000% 0,009749% 

Gold (Au) 0,049572 0,510% 0,004972% 

Aluminium oxide (Al2O3) 6,79914 69,950% 0,681955% 

SiO2 1,945944 20,020% 0,195179% 

CaCO3 0,00486 0,050% 0,000487% 

Glass 0,064152 0,660% 0,006434% 

Epoxy resin 0,091368 0,940% 0,009164% 

Polyacrylate 0,062208 0,640% 0,006239% 

Diode SOT666 2 2,9 5,8 0,582% 

Lead (Pb) 0,09106 1,570% 0,009133% 

Iron (Fe) 2,51372 43,340% 0,252127% 

Copper (Cu) 1,31138 22,610% 0,131532% 

Nickel (Ni) 0,02146 0,370% 0,002152% 

Tin (Sn) 0,25926 4,470% 0,026004% 

Molybdanum (Mo) 0,11716 2,020% 0,011751% 

Glass 0,90596 15,620% 0,090868% 

Encapsulation insulator (SiO2) 0,55216 9,520% 0,055382% 

Epoxy resin 0,00058 0,010% 0,000058% 

Doted silica 0,0261 0,450% 0,002618% 

Diode 0603 1 1 1 0,100% 

Lead (Pb) 0,0157 1,570% 0,001575% 

Iron (Fe) 0,4334 43,340% 0,043470% 

Copper (Cu) 0,2261 22,610% 0,022678% 

Nickel (Ni) 0,0037 0,370% 0,000371% 

Tin (Sn) 0,0447 4,470% 0,004483% 

Molybdanum (Mo) 0,0202 2,020% 0,002026% 

Glass 0,1562 15,620% 0,015667% 

Encapsulation insulator (SiO2) 0,0952 9,520% 0,009549% 

Epoxy resin 0,0001 0,010% 0,000010% 

Doted silica 0,0045 0,450% 0,000451% 

Transistors SOT-323 2 6 12 1,204% 

Aluminium (Al) 0,0252 0,210% 0,002528% 

Iron (Fe) 0,1248 1,040% 0,012517% 

Copper (Cu) 4,356 36,300% 0,436908% 

Nickel (Ni) 0,096 0,800% 0,009629% 

Lead (Pb) 0,5292 4,410% 0,053079% 

Tin (Sn) 0,9132 7,610% 0,091594% 

Encapsulation insulator (SiO2) 5,8956 49,130% 0,591330% 

Doped silicium 0,0612 0,510% 0,006138% 

PCB 1 919,688 919,688 92,245% 

Copper (Cu) 530,3154382 57,663% 53,190751% 

Glass 349,2321178 37,973% 35,028055% 

Gold (Au) 0,028640729 0,003% 0,002873% 

Nickel (Ni) 0,143203646 0,016% 0,014363% 

Phenolic resin 39,35790534 4,279% 3,947606% 

Silver (Ag) 0,095161133 0,010% 0,009545% 

Tin (Sn) 0,515533126 0,056% 0,051708% 

Voltage detectors 
SOT23-5 type 

2 16,5 33 3,310% 

Die 0,76 2,303% 0,076228% 

Copper (Cu) 13,872 42,036% 1,391365% 

Iron (Fe) 0,324 0,982% 0,032497% 

Phosphorus (P) 0,004 0,012% 0,000401% 

Zinc (Zn) 0,018 0,055% 0,001805% 

Nickel (Ni) 0,166 0,503% 0,016650% 

Palladium (Pd) 0,014 0,042% 0,001404% 

Gold (Au) 0,002 0,006% 0,000201% 

Aluminium oxide (Al2O3) 0,042 0,127% 0,004213% 

Diethylene glycol monoethyl ether acetate 0,056 0,170% 0,005617% 

Epoxy resin 0,01 0,030% 0,001003% 

Epoxy resin 0,028 0,085% 0,002808% 

Aromatic amine 0,004 0,012% 0,000401% 

Gold (Au) 0,3 0,909% 0,030090% 

Silica, vitreous 14,842 44,976% 1,488656% 

phenolic resin 0,61 1,848% 0,061183% 

epoxy resin 0,696 2,109% 0,069809% 

Biphenyl epoxy resin 0,348 1,055% 0,034904% 
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Carbon black 0,034 0,103% 0,003410% 

Zinc hydroxide 0,174 0,527% 0,017452% 

Magnesium hydroxide 0,696 2,109% 0,069809% 

Voltage comparator 
SC70-5 type 

1 6 6 0,602% 

Die 0,178 2,967% 0,017853% 

Iron (Fe) 0,067 1,117% 0,006720% 

Copper (Cu) 2,829 47,150% 0,283749% 

Phosphorus (P) 0,001 0,017% 0,000100% 

Zinc (Zn) 0,004 0,067% 0,000401% 

Nickel (Ni) 0,034 0,567% 0,003410% 

Palladium (Pd) 0,003 0,050% 0,000301% 

Silver (Ag) 0,016 0,267% 0,001605% 

Carbocyclic Acrylates 0,002 0,033% 0,000201% 

Bismaleimide resin 0,002 0,033% 0,000201% 

2-preponoic acid, 2-methyl 0,001 0,017% 0,000100% 

Gold (Au) 0,033 0,550% 0,003310% 

Epoxy Resin-1 0,056 0,933% 0,005617% 

Epoxy Resin-2 0,056 0,933% 0,005617% 

Epoxy Resin-3 0,056 0,933% 0,005617% 

Phenol resin 0,114 1,900% 0,011434% 

Silica 2,542 42,367% 0,254963% 

Carbon black 0,006 0,100% 0,000602% 

  TOTAL 997,008 100,000%     

 

  Metal fractions (per Kg of waste flow) 

Materials that can be obtained from  
shredding and separation steps 

Aggregated 
content shares 

Ferro Aluminum Copper Residue 

Aluminium (Al) 0,689% 3,44E-05 5,69E-03 3,39E-04 8,26E-04 

Copper (Cu) 55,470% 5,21E-03 2,77E-02 4,34E-01 8,79E-02 

Ferro (Fe, Ni, Co) 0,566% 5,38E-03 5,66E-05 5,66E-05 1,70E-04 

Glass 35,142% 1,97E-03 1,97E-03 3,51E-02 3,12E-01 

Plastics (Thermosets, Thermoplastics) 4,161% 5,04E-04 2,08E-04 4,16E-03 3,67E-02 

Silver (Ag) 0,047% 4,65E-06 4,65E-06 3,99E-04 6,15E-05 

Gold (Au) 0,041% 4,10E-06 4,10E-06 3,32E-04 7,47E-05 

Lead (Pb) 0,068% 8,03E-06 8,03E-06 5,45E-04 1,20E-04 

Others 3,815% 2,63E-04 2,56E-04 1,35E-02 2,42E-02 

TOTAL 100,000% 1,34E-02 3,59E-02 4,88E-01 4,62E-01 

 

Recycled materials content  in respective scraps 

In Ferro fraction In Aluminium fraction In Copper fraction 

2,57E-03 1,58E-01 6,94E-04 

3,90E-01 7,72E-01 8,89E-01 

4,02E-01 1,58E-03 1,16E-04 

1,47E-01 5,48E-02 7,20E-02 

3,76E-02 5,79E-03 8,52E-03 

3,47E-04 1,29E-04 8,17E-04 

3,07E-04 1,14E-04 6,79E-04 

6,00E-04 2,24E-04 1,12E-03 

1,97E-02 7,11E-03 2,76E-02 

 

d) Recycled material content in the waste flow “Waste components” (Best recycling scenario) 

Component type Quantity 
Weight  

(mg) 
Total weight  

(mg) 
% components  

type 
Material mg 

Content share in the  
component type 

Content share in the  
EH sensor system device 

Capacitor 1812 1 195,2 195,2 70,930% 

Copper (Cu) 1,8544 0,950% 0,673837% 

Nickel (Ni) 26,48864 13,570% 9,625233% 

Palladium (Pd) 0,17568 0,090% 0,063837% 

Silver (Ag) 5,1728 2,650% 1,879651% 

Tin (Sn) 3,2208 1,650% 1,170349% 

glass 0,2928 0,150% 0,106395% 

Titane dioxide (TiO2) 53,7182592 27,520% 19,519716% 

Barite 104,2766208 53,420% 37,891214% 

MCU  
TFBGA64 type 

1 64 64 23,256% 

Die 4,675073048 7,305% 1,698791% 

Bismaleimide (B) 0,774012094 1,209% 0,281254% 

Triazine (T) 0,774012094 1,209% 0,281254% 

Fiber glass 2,310036094 3,609% 0,839403% 

metal hydroxide 0,053000828 0,083% 0,019259% 

Zinc hydroxide 0,01600025 0,025% 0,005814% 

Thermosetting resin 1,297020266 2,027% 0,471301% 

Calcium sulfate 0,026000406 0,041% 0,009448% 

Baryum sulfate 0,243003797 0,380% 0,088301% 

(2-methoxymethylethoxy)propanol 0,040000625 0,063% 0,014535% 

Talc containing no asbestiform fibers 0,135002109 0,211% 0,049056% 

Quartz 0,135002109 0,211% 0,049056% 

Acrylates derivative 0,559008735 0,873% 0,203128% 

aromatic hydrocarbon 0,054000844 0,084% 0,019622% 

amine compound 0,008000125 0,013% 0,002907% 

Copper (Cu) 10,58616541 16,541% 3,846717% 
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Nickel (Ni) 0,08000125 0,125% 0,029070% 

Gold (Au) 0,021000328 0,033% 0,007631% 

Silver (Ag) 2,085032579 3,258% 0,757643% 

Neopentyl glycol dimethacrylate 0,117001828 0,183% 0,042515% 

2,6-Diglycidyl phenyl allyl ether 0,129002016 0,202% 0,046876% 

palmitic acid 0,002000031 0,003% 0,000727% 

4-tert-butylcyclohexanol 0,007000109 0,011% 0,002544% 

Hexamethyltetracosa-hexaene 0,002000031 0,003% 0,000727% 

Fluorine trace 0,001000016 0,002% 0,000363% 

Gold (Au) 0,351005484 0,548% 0,127546% 

Biphenyl epoxy resin 2,742042844 4,284% 0,996382% 

Phenol resin 1,371021422 2,142% 0,498191% 

Quartz 0,686010719 1,072% 0,249277% 

Silica, vitreous 27,81843466 43,466% 10,108443% 

Carbon Black 0,247003859 0,386% 0,089754% 

Magnesium dihydroxide 0,027000422 0,042% 0,009811% 

Tin (Sn) 6,513101767 10,177% 2,366679% 

Silver (Ag) 0,08000125 0,125% 0,029070% 

Copper (Cu) 0,033000516 0,052% 0,011991% 

Nickel (Ni) 0,001000016 0,002% 0,000363% 

Lead (Pb) 0,001000016 0,002% 0,000363% 

EEPROM  memory 
UFDFPN8 type 

1 16 16 5,814% 

Die 1,227923255 7,675% 0,446193% 

Copper (Cu) 2,917817636 18,236% 1,060254% 

Iron (Fe) 0,069995625 0,437% 0,025434% 

Zinc (Zn) 0,00399975 0,025% 0,001453% 

 Iron Phosphide (FeP) 0,002999813 0,019% 0,001090% 

Nickel (Ni) 0,01199925 0,075% 0,004360% 

Palladium (Pd) 0,000999938 0,006% 0,000363% 

Silver (Ag) 1,107930754 6,925% 0,402591% 

polymer 0,100993688 0,631% 0,036698% 

aniline 0,012999188 0,081% 0,004724% 

Epoxy resin 0,037997625 0,237% 0,013807% 

 Epoxy resin molecular weight <= 700 0,005999625 0,037% 0,002180% 

Copper (Cu) 0,017998875 0,112% 0,006540% 

Silica, vitreous 9,228423224 57,678% 3,353351% 

 Biphenyl epoxy resin 0,52096744 3,256% 0,189305% 

Phenolic resin 0,406974564 2,544% 0,147883% 

epoxy resin 0,208986938 1,306% 0,075940% 

carbon black 0,020998688 0,131% 0,007630% 

 other 0,093994125 0,587% 0,034155% 

  TOTAL 275,2 100,000%     

 

 

 

 

  Metal fractions (per Kg of waste flow) 

Materials that can be obtained from  
shredding and separation steps 

Aggregated 
content shares 

Ferro Aluminum Copper Residue 

Aluminium (Al) 0,000% 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Copper (Cu) 5,599% 5,26E-04 2,80E-03 4,38E-02 8,87E-03 

Ferro (Fe, Ni, Co) 9,686% 9,20E-02 9,69E-04 9,69E-04 2,91E-03 

Glass 0,946% 5,30E-05 5,30E-05 9,46E-04 8,41E-03 

Plastics (Thermosets, Thermoplastics) 2,724% 3,30E-04 1,36E-04 2,72E-03 2,41E-02 

Silver (Ag) 3,069% 3,04E-04 3,04E-04 2,61E-02 4,02E-03 

Gold (Au) 0,135% 1,34E-05 1,34E-05 1,08E-03 2,44E-04 

Lead (Pb) 0,000% 4,29E-08 4,29E-08 2,91E-06 6,41E-07 

Others 77,841% 5,37E-03 5,22E-03 2,75E-01 4,93E-01 

TOTAL 100,000% 9,86E-02 9,49E-03 3,50E-01 5,42E-01 

 

Recycled materials content  in respective scraps 

In Ferro fraction In Aluminium fraction In Copper fraction 

0,00E+00 0,00E+00 0,00E+00 

5,34E-03 2,95E-01 1,25E-01 

9,33E-01 1,02E-01 2,77E-03 

5,37E-04 5,58E-03 2,70E-03 

3,34E-03 1,44E-02 7,78E-03 

3,08E-03 3,20E-02 7,44E-02 

1,36E-04 1,41E-03 3,09E-03 

4,35E-07 4,52E-06 8,30E-06 

5,45E-02 5,50E-01 7,84E-01 
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13. Recycled material content from waste flows of design set 20 

The following information presents the normalization of the recoveries of copper, gold and silver in 

wastes flows of design set 20, which make part of the LCA implementation for the framework for eco 

design, presented in the section 8.1 of chapter 4. It considers the total content shares of aluminum, 

copper, Glass, plastic, silver, gold, lead and ferroelectric materials in specific waste flows of the EH 

sensor system device; and the transfer coefficient suggested by Huisman, J. [145]. The recycled material 

contents in respective scraps are obtained from the metals fractions output of shredding and separation 

processes, and serve as input for the metallurgical recovery of precious metals, as proposed in the LCA 

implementation of chapter 4. In this work, one focuses on gold and silver that can be recovered from 

copper metal fractions. For simplicity, the content shares for the waste flow “WPCB” of the regular 

scenario is not presented as it only differs from that one of the waste flow “Full device” in that the plastic 

case share does not exits (in the regular scenario, the plastic case is separated manually). 

a) Recycled material content in the waste flow “Full device” (Worst recycling scenario) 

Component type Quantity 
Weight  

(mg) 
Total weight  

(mg) 
% components  

type 
Material mg 

Content share in the  
component type 

Content share in the  
EH sensor system device 

Capacitor 0402 7 1,4 9,8 0,059% 

Copper (Cu) 0,0931 0,950% 0,000559% 

Nickel (Ni) 1,32986 13,570% 0,007988% 

Palladium (Pd) 0,00882 0,090% 0,000053% 

Silver (Ag) 0,2597 2,650% 0,001560% 

Tin (Sn) 0,1617 1,650% 0,000971% 

glass 0,0147 0,150% 0,000088% 

Titane dioxide (TiO2) 2,6969208 27,520% 0,016200% 

Barite 5,2351992 53,420% 0,031447% 

Capacitor 1812 1 195,2 195,2 1,173% 

Copper (Cu) 1,8544 0,950% 0,011139% 

Nickel (Ni) 26,48864 13,570% 0,159113% 

Palladium (Pd) 0,17568 0,090% 0,001055% 

Silver (Ag) 5,1728 2,650% 0,031072% 

Tin (Sn) 3,2208 1,650% 0,019347% 

glass 0,2928 0,150% 0,001759% 

Titane dioxide (TiO2) 53,7182592 27,520% 0,322677% 

Barite 104,2766208 53,420% 0,626373% 

Resistors 0402 9 1,08 9,72 0,058% 

Lead (Pb) 0,042768 0,440% 0,000257% 

Iron (Fe) 0,22842 2,350% 0,001372% 

Nickel (Ni) 0,16038 1,650% 0,000963% 

Copper (Cu) 0,035964 0,370% 0,000216% 

Tin (Sn) 0,113724 1,170% 0,000683% 

Chromium (Cr) 0,008748 0,090% 0,000053% 

Silicium (Si) 0,000972 0,010% 0,000006% 

Palladium (Pd) 0,013608 0,140% 0,000082% 

Silver (Ag) 0,0972 1,000% 0,000584% 

Gold (Au) 0,049572 0,510% 0,000298% 

Aluminium oxide (Al2O3) 6,79914 69,950% 0,040841% 

SiO2 1,945944 20,020% 0,011689% 

CaCO3 0,00486 0,050% 0,000029% 

Glass 0,064152 0,660% 0,000385% 

Epoxy resin 0,091368 0,940% 0,000549% 

Polyacrylate 0,062208 0,640% 0,000374% 

Diode SOT666 2 2,9 5,8 0,035% 

Lead (Pb) 0,09106 1,570% 0,000547% 

Iron (Fe) 2,51372 43,340% 0,015100% 

Copper (Cu) 1,31138 22,610% 0,007877% 

Nickel (Ni) 0,02146 0,370% 0,000129% 

Tin (Sn) 0,25926 4,470% 0,001557% 

Molybdanum (Mo) 0,11716 2,020% 0,000704% 

Glass 0,90596 15,620% 0,005442% 

Encapsulation insulator (SiO2) 0,55216 9,520% 0,003317% 

Epoxy resin 0,00058 0,010% 0,000003% 

Doted silica 0,0261 0,450% 0,000157% 

Diode 0603 1 1 1 0,006% 

Lead (Pb) 0,0157 1,570% 0,000094% 

Iron (Fe) 0,4334 43,340% 0,002603% 

Copper (Cu) 0,2261 22,610% 0,001358% 

Nickel (Ni) 0,0037 0,370% 0,000022% 

Tin (Sn) 0,0447 4,470% 0,000269% 

Molybdanum (Mo) 0,0202 2,020% 0,000121% 

Glass 0,1562 15,620% 0,000938% 

Encapsulation insulator (SiO2) 0,0952 9,520% 0,000572% 

Epoxy resin 0,0001 0,010% 0,000001% 

Doted silica 0,0045 0,450% 0,000027% 

Transistors SOT-323 2 6 12 0,072% 

Aluminium (Al) 0,0252 0,210% 0,000151% 

Iron (Fe) 0,1248 1,040% 0,000750% 

Copper (Cu) 4,356 36,300% 0,026166% 

Nickel (Ni) 0,096 0,800% 0,000577% 

Lead (Pb) 0,5292 4,410% 0,003179% 

Tin (Sn) 0,9132 7,610% 0,005485% 

Encapsulation insulator (SiO2) 5,8956 49,130% 0,035414% 

Doped silicium 0,0612 0,510% 0,000368% 

PCB 1 573,312 573,312 3,444% Copper (Cu) 330,5862472 57,663% 1,985779% 
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Glass 217,7031384 37,973% 1,307708% 

Gold (Au) 0,017853961 0,003% 0,000107% 

Nickel (Ni) 0,089269805 0,016% 0,000536% 

Phenolic resin 24,53479814 4,279% 0,147377% 

Silver (Ag) 0,059321226 0,010% 0,000356% 

Tin (Sn) 0,3213713 0,056% 0,001930% 

Plastic case 1 15780 15780 94,787% AcrylonitrileButadieneStyrene (ABS) 15780 100,000% 94,787949% 

Voltage Detectors 
SOT23-5 type 

2 16,5 33 0,198% 

Die 0,76 2,303% 0,004565% 

Copper (Cu) 13,872 42,036% 0,083327% 

Iron (Fe) 0,324 0,982% 0,001946% 

Phosphorus (P) 0,004 0,012% 0,000024% 

Zinc (Zn) 0,018 0,055% 0,000108% 

Nickel (Ni) 0,166 0,503% 0,000997% 

Palladium (Pd) 0,014 0,042% 0,000084% 

Gold (Au) 0,002 0,006% 0,000012% 

Aluminium oxide (Al2O3) 0,042 0,127% 0,000252% 

Diethylene glycol monoethyl ether acetate 0,056 0,170% 0,000336% 

Epoxy resin 0,01 0,030% 0,000060% 

Epoxy resin 0,028 0,085% 0,000168% 

Aromatic amine 0,004 0,012% 0,000024% 

Gold (Au) 0,3 0,909% 0,001802% 

Silica, vitreous 14,842 44,976% 0,089154% 

phenolic resin 0,61 1,848% 0,003664% 

epoxy resin 0,696 2,109% 0,004181% 

Biphenyl epoxy resin 0,348 1,055% 0,002090% 

Carbon black 0,034 0,103% 0,000204% 

Zinc hydroxide 0,174 0,527% 0,001045% 

Magnesium hydroxide 0,696 2,109% 0,004181% 

Voltage comparator 
SC70-5 type 

1 6 6 0,036% 

Die 0,178 2,967% 0,001069% 

Iron (Fe) 0,067 1,117% 0,000402% 

Copper (Cu) 2,829 47,150% 0,016993% 

Phosphorus (P) 0,001 0,017% 0,000006% 

Zinc (Zn) 0,004 0,067% 0,000024% 

Nickel (Ni) 0,034 0,567% 0,000204% 

Palladium (Pd) 0,003 0,050% 0,000018% 

Silver (Ag) 0,016 0,267% 0,000096% 

Carbocyclic Acrylates 0,002 0,033% 0,000012% 

Bismaleimide resin 0,002 0,033% 0,000012% 

2-preponoic acid, 2-methyl 0,001 0,017% 0,000006% 

Gold (Au) 0,033 0,550% 0,000198% 

Epoxy Resin-1 0,056 0,933% 0,000336% 

Epoxy Resin-2 0,056 0,933% 0,000336% 

Epoxy Resin-3 0,056 0,933% 0,000336% 

Phenol resin 0,114 1,900% 0,000685% 

Silica 2,542 42,367% 0,015269% 

Carbon black 0,006 0,100% 0,000036% 

MCU  
WLCSP36 type 

1 5,949 5,949 0,036% 

Die 4,411741594 74,159% 0,026501% 

Titanium 0,001000168 0,017% 0,000006% 

Copper 0,003000504 0,050% 0,000018% 

Copper 0,062010424 1,042% 0,000372% 

Copper 0,002000336 0,034% 0,000012% 

Copper 0,073012273 1,227% 0,000439% 

Tin 1,14619267 19,267% 0,006885% 

Silver 0,014002354 0,235% 0,000084% 

Copper 0,018003026 0,303% 0,000108% 

Polyethylene terephthalate 0,154025891 2,589% 0,000925% 

Silica 0,034005716 0,572% 0,000204% 

Acrylic ester co-polymer 0,014002354 0,235% 0,000084% 

Epoxy resin 0,014002354 0,235% 0,000084% 

Carbon black 0,001000168 0,017% 0,000006% 

Additive 0,001000168 0,017% 0,000006% 

EEPROM memory 
UFDFPN8 type 

1 16 16 0,096% 

Die 1,227923255 7,675% 0,007376% 

Copper (Cu) 2,917817636 18,236% 0,017527% 

Iron (Fe) 0,069995625 0,437% 0,000420% 

Zinc (Zn) 0,00399975 0,025% 0,000024% 

 Iron Phosphide (FeP) 0,002999813 0,019% 0,000018% 

Nickel (Ni) 0,01199925 0,075% 0,000072% 

Palladium (Pd) 0,000999938 0,006% 0,000006% 

Silver (Ag) 1,107930754 6,925% 0,006655% 

polymer 0,100993688 0,631% 0,000607% 

aniline 0,012999188 0,081% 0,000078% 

Epoxy resin 0,037997625 0,237% 0,000228% 

 Epoxy resin molecular weight <= 700 0,005999625 0,037% 0,000036% 

Copper (Cu) 0,017998875 0,112% 0,000108% 

Silica, vitreous 9,228423224 57,678% 0,055434% 

 Biphenyl epoxy resin 0,52096744 3,256% 0,003129% 

Phenolic resin 0,406974564 2,544% 0,002445% 

epoxy resin 0,208986938 1,306% 0,001255% 

carbon black 0,020998688 0,131% 0,000126% 

 other 0,093994125 0,587% 0,000565% 

  TOTAL 16647,781 100,000%     
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  Metal fractions (per Kg of waste flow) 

Materials that can be obtained from  
shredding and speartion steps 

Aggregated 
content shares 

Ferro Aluminum Copper Residue 

Aluminium (Al) 0,041% 2,06E-06 3,41E-04 2,03E-05 4,95E-05 

Copper (Cu) 2,152% 2,02E-04 1,08E-03 1,68E-02 3,41E-03 

Ferro (Fe, Ni, Co) 0,193% 1,84E-03 1,93E-05 1,93E-05 5,80E-05 

Glass 1,316% 7,37E-05 7,37E-05 1,32E-03 1,17E-02 

Plastics (Thermosets, Thermoplastics) 94,957% 1,15E-02 4,75E-03 9,50E-02 8,38E-01 

Silver (Ag) 0,040% 4,00E-06 4,00E-06 3,43E-04 5,29E-05 

Gold (Au) 0,002% 2,39E-07 2,39E-07 1,93E-05 4,36E-06 

Lead (Pb) 0,004% 4,81E-07 4,81E-07 3,26E-05 7,20E-06 

Others 1,293% 8,93E-05 8,67E-05 4,57E-03 8,20E-03 

TOTAL 100,000% 1,37E-02 6,35E-03 1,18E-01 8,62E-01 

 

Recycled materials content  in respective scraps  
(per Kg of metal fraction) 

In Ferro fraction In Aluminium fraction In Copper fraction 

1,51E-04 5,36E-02 1,72E-04 

1,48E-02 1,69E-01 1,43E-01 

1,34E-01 3,04E-03 1,64E-04 

5,38E-03 1,16E-02 1,11E-02 

8,39E-01 7,48E-01 8,04E-01 

2,92E-04 6,30E-04 2,91E-03 

1,75E-05 3,77E-05 1,64E-04 

3,51E-05 7,58E-05 2,76E-04 

6,52E-03 1,37E-02 3,87E-02 

 

b) Recycled material content in the waste flow “WPCB” (Regular recycling scenario) 

  Metal fractions (per Kg of waste flow) 

Materials that can be obtained from  
shredding and speartion steps 

Aggregated 
content shares 

Ferro Aluminum Copper Residue 

Aluminium (Al) 0,791% 3,96E-05 6,53E-03 3,89E-04 9,50E-04 

Copper (Cu) 41,289% 3,88E-03 2,06E-02 3,23E-01 6,54E-02 

Ferro (Fe, Ni, Co) 3,707% 3,52E-02 3,71E-04 3,71E-04 1,11E-03 

Glass 25,255% 1,41E-03 1,41E-03 2,53E-02 2,24E-01 

Plastics (Thermosets, Thermoplastics) 3,242% 3,92E-04 1,62E-04 3,24E-03 2,86E-02 

Silver (Ag) 0,775% 7,67E-05 7,67E-05 6,58E-03 1,02E-03 

Gold (Au) 0,046% 4,59E-06 4,59E-06 3,71E-04 8,36E-05 

Lead (Pb) 0,078% 9,23E-06 9,23E-06 6,26E-04 1,38E-04 

Others 24,816% 1,71E-03 1,66E-03 8,76E-02 1,57E-01 

TOTAL 100,000% 4,27E-02 3,09E-02 4,47E-01 4,79E-01 

 

Recycled materials content  in respective scraps  
(per Kg of metal fraction) 

In Ferro fraction In Aluminium fraction In Copper fraction 

0,000925587 0,211619118 0,000870281 

0,09079161 0,66852963 0,721817765 

0,823830355 0,01200458 0,000828632 

0,033084576 0,045799249 0,056452731 

0,009176174 0,00524903 0,007246423 

0,001795459 0,002485469 0,014716272 

0,00010741 0,000148688 0,000829364 

0,000215923 0,000298905 0,001398798 

0,040072905 0,05386533 0,195839733 

 

c) Recycled material content in the waste flow “WPCB” (Best recycling scenario) 

Component type Quantity 
Weight  

(mg) 
Total weight  

(mg) 
% components  

type 
Material mg 

Content share in the  
component type 

Content share in the  
EH sensor system device 

Capacitor 0402 7 1,4 9,8 1,493% 

Copper (Cu) 0,0931 0,950% 0,014180% 

Nickel (Ni) 1,32986 13,570% 0,202544% 

Palladium (Pd) 0,00882 0,090% 0,001343% 

Silver (Ag) 0,2597 2,650% 0,039553% 

Tin (Sn) 0,1617 1,650% 0,024628% 

glass 0,0147 0,150% 0,002239% 

Titane dioxide (TiO2) 2,6969208 27,520% 0,410753% 

Barite 5,2351992 53,420% 0,797344% 

Resistors 0402 9 1,08 9,72 1,480% 

Lead (Pb) 0,042768 0,440% 0,006514% 

Iron (Fe) 0,22842 2,350% 0,034789% 

Nickel (Ni) 0,16038 1,650% 0,024427% 

Copper (Cu) 0,035964 0,370% 0,005477% 
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Tin (Sn) 0,113724 1,170% 0,017321% 

Chromium (Cr) 0,008748 0,090% 0,001332% 

Silicium (Si) 0,000972 0,010% 0,000148% 

Palladium (Pd) 0,013608 0,140% 0,002073% 

Silver (Ag) 0,0972 1,000% 0,014804% 

Gold (Au) 0,049572 0,510% 0,007550% 

Aluminium oxide (Al2O3) 6,79914 69,950% 1,035539% 

SiO2 1,945944 20,020% 0,296376% 

CaCO3 0,00486 0,050% 0,000740% 

Glass 0,064152 0,660% 0,009771% 

Epoxy resin 0,091368 0,940% 0,013916% 

Polyacrylate 0,062208 0,640% 0,009475% 

Diode SOT666 2 2,9 5,8 0,883% 

Lead (Pb) 0,09106 1,570% 0,013869% 

Iron (Fe) 2,51372 43,340% 0,382851% 

Copper (Cu) 1,31138 22,610% 0,199729% 

Nickel (Ni) 0,02146 0,370% 0,003268% 

Tin (Sn) 0,25926 4,470% 0,039486% 

Molybdanum (Mo) 0,11716 2,020% 0,017844% 

Glass 0,90596 15,620% 0,137982% 

Encapsulation insulator (SiO2) 0,55216 9,520% 0,084096% 

Epoxy resin 0,00058 0,010% 0,000088% 

Doted silica 0,0261 0,450% 0,003975% 

Diode 0603 1 1 1 0,152% 

Lead (Pb) 0,0157 1,570% 0,002391% 

Iron (Fe) 0,4334 43,340% 0,066009% 

Copper (Cu) 0,2261 22,610% 0,034436% 

Nickel (Ni) 0,0037 0,370% 0,000564% 

Tin (Sn) 0,0447 4,470% 0,006808% 

Molybdanum (Mo) 0,0202 2,020% 0,003077% 

Glass 0,1562 15,620% 0,023790% 

Encapsulation insulator (SiO2) 0,0952 9,520% 0,014499% 

Epoxy resin 0,0001 0,010% 0,000015% 

Doted silica 0,0045 0,450% 0,000685% 

Transistors SOT-323 2 6 12 1,828% 

Aluminium (Al) 0,0252 0,210% 0,003838% 

Iron (Fe) 0,1248 1,040% 0,019008% 

Copper (Cu) 4,356 36,300% 0,663438% 

Nickel (Ni) 0,096 0,800% 0,014621% 

Lead (Pb) 0,5292 4,410% 0,080599% 

Tin (Sn) 0,9132 7,610% 0,139084% 

Encapsulation insulator (SiO2) 5,8956 49,130% 0,897926% 

Doped silicium 0,0612 0,510% 0,009321% 

PCB 1 573,312 573,312 87,318% 

Copper (Cu) 330,5862472 57,663% 50,349739% 

Glass 217,7031384 37,973% 33,157145% 

Gold (Au) 0,017853961 0,003% 0,002719% 

Nickel (Ni) 0,089269805 0,016% 0,013596% 

Phenolic resin 24,53479814 4,279% 3,736758% 

Silver (Ag) 0,059321226 0,010% 0,009035% 

Tin (Sn) 0,3213713 0,056% 0,048946% 

Voltage detectors 
SOT23-5 type 

2 16,5 33 5,026% 

Die 0,76 2,303% 0,115751% 

Copper (Cu) 13,872 42,036% 2,112767% 

Iron (Fe) 0,324 0,982% 0,049347% 

Phosphorus (P) 0,004 0,012% 0,000609% 

Zinc (Zn) 0,018 0,055% 0,002741% 

Nickel (Ni) 0,166 0,503% 0,025283% 

Palladium (Pd) 0,014 0,042% 0,002132% 

Gold (Au) 0,002 0,006% 0,000305% 

Aluminium oxide (Al2O3) 0,042 0,127% 0,006397% 

Diethylene glycol monoethyl ether acetate 0,056 0,170% 0,008529% 

Epoxy resin 0,01 0,030% 0,001523% 

Epoxy resin 0,028 0,085% 0,004265% 

Aromatic amine 0,004 0,012% 0,000609% 

Gold (Au) 0,3 0,909% 0,045691% 

Silica, vitreous 14,842 44,976% 2,260502% 

phenolic resin 0,61 1,848% 0,092906% 

epoxy resin 0,696 2,109% 0,106004% 

Biphenyl epoxy resin 0,348 1,055% 0,053002% 

Carbon black 0,034 0,103% 0,005178% 

Zinc hydroxide 0,174 0,527% 0,026501% 

Magnesium hydroxide 0,696 2,109% 0,106004% 

Voltage comparator 
SC70-5 type 

1 6 6 0,914% 

Die 0,178 2,967% 0,027110% 

Iron (Fe) 0,067 1,117% 0,010204% 

Copper (Cu) 2,829 47,150% 0,430869% 

Phosphorus (P) 0,001 0,017% 0,000152% 

Zinc (Zn) 0,004 0,067% 0,000609% 

Nickel (Ni) 0,034 0,567% 0,005178% 

Palladium (Pd) 0,003 0,050% 0,000457% 

Silver (Ag) 0,016 0,267% 0,002437% 

Carbocyclic Acrylates 0,002 0,033% 0,000305% 

Bismaleimide resin 0,002 0,033% 0,000305% 

2-preponoic acid, 2-methyl 0,001 0,017% 0,000152% 

Gold (Au) 0,033 0,550% 0,005026% 

Epoxy Resin-1 0,056 0,933% 0,008529% 

Epoxy Resin-2 0,056 0,933% 0,008529% 

Epoxy Resin-3 0,056 0,933% 0,008529% 

Phenol resin 0,114 1,900% 0,017363% 
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Silica 2,542 42,367% 0,387158% 

Carbon black 0,006 0,100% 0,000914% 

MCU  
WLCSP36 type 

1 5,949 5,949 0,906% 

Die 4,411741594 74,159% 0,671928% 

Titanium 0,001000168 0,017% 0,000152% 

Copper 0,003000504 0,050% 0,000457% 

Copper 0,062010424 1,042% 0,009444% 

Copper 0,002000336 0,034% 0,000305% 

Copper 0,073012273 1,227% 0,011120% 

Tin 1,14619267 19,267% 0,174570% 

Silver 0,014002354 0,235% 0,002133% 

Copper 0,018003026 0,303% 0,002742% 

Polyethylene terephthalate 0,154025891 2,589% 0,023459% 

Silica 0,034005716 0,572% 0,005179% 

Acrylic ester co-polymer 0,014002354 0,235% 0,002133% 

Epoxy resin 0,014002354 0,235% 0,002133% 

Carbon black 0,001000168 0,017% 0,000152% 

Additive 0,001000168 0,017% 0,000152% 

    TOTAL 656,581 100,000%     

 

  Metal fractions (per Kg of waste flow) 

Materials that can be obtained from  
shredding and separation steps 

Aggregated 
content shares 

Ferro Aluminum Copper Residue 

Aluminium (Al) 1,046% 5,23E-05 8,64E-03 5,15E-04 1,25E-03 

Copper (Cu) 53,835% 5,06E-03 2,69E-02 4,21E-01 8,53E-02 

Ferro (Fe, Ni, Co) 0,852% 8,09E-03 8,52E-05 8,52E-05 2,56E-04 

Glass 33,331% 1,87E-03 1,87E-03 3,33E-02 2,96E-01 

Plastics (Thermosets, Thermoplastics) 4,089% 4,95E-04 2,04E-04 4,09E-03 3,61E-02 

Silver (Ag) 0,068% 6,73E-06 6,73E-06 5,77E-04 8,90E-05 

Gold (Au) 0,061% 6,07E-06 6,07E-06 4,90E-04 1,10E-04 

Lead (Pb) 0,103% 1,22E-05 1,22E-05 8,27E-04 1,82E-04 

Others 6,615% 4,56E-04 4,43E-04 2,33E-02 4,19E-02 

TOTAL 100,000% 1,60E-02 3,82E-02 4,84E-01 4,62E-01 

 

Recycled materials content  in respective scraps  
(per Kg of metal fraction) 

In Ferro fraction In Aluminium fraction In Copper fraction 

3,26E-03 2,26E-01 1,06E-03 

3,15E-01 7,05E-01 8,69E-01 

5,04E-01 2,23E-03 1,76E-04 

1,16E-01 4,89E-02 6,88E-02 

3,08E-02 5,36E-03 8,44E-03 

4,19E-04 1,76E-04 1,19E-03 

3,78E-04 1,59E-04 1,01E-03 

7,60E-04 3,20E-04 1,71E-03 

2,84E-02 1,16E-02 4,82E-02 

 

d) Recycled material content in the waste flow “Waste components” (Best recycling scenario) 

Component type Quantity 
Weight  

(mg) 
Total weight  

(mg) 
% components  

type 
Material mg 

Content share in the  
component type 

Content share in the  
EH sensor system device 

Capacitor 1812 1 195,2 195,2 92,424% 

Copper (Cu) 1,8544 0,950% 0,878421% 

Nickel (Ni) 26,48864 13,570% 12,547554% 

Palladium (Pd) 0,17568 0,090% 0,083219% 

Silver (Ag) 5,1728 2,650% 2,450333% 

Tin (Sn) 3,2208 1,650% 1,525679% 

glass 0,2928 0,150% 0,138698% 

Titane dioxide (TiO2) 53,7182592 27,520% 25,446107% 

Barite 104,2766208 53,420% 49,395383% 

EEPROM memory 
UFDFPN8 type 

1 16 16 7,576% 

Die 1,227923255 7,675% 0,581662% 

Copper (Cu) 2,917817636 18,236% 1,382158% 

Iron (Fe) 0,069995625 0,437% 0,033157% 

Zinc (Zn) 0,00399975 0,025% 0,001895% 

 Iron Phosphide (FeP) 0,002999813 0,019% 0,001421% 

Nickel (Ni) 0,01199925 0,075% 0,005684% 

Palladium (Pd) 0,000999938 0,006% 0,000474% 

Silver (Ag) 1,107930754 6,925% 0,524822% 

polymer 0,100993688 0,631% 0,047840% 

aniline 0,012999188 0,081% 0,006158% 

Epoxy resin 0,037997625 0,237% 0,017999% 

 Epoxy resin molecular weight <= 700 0,005999625 0,037% 0,002842% 

Copper (Cu) 0,017998875 0,112% 0,008526% 

Silica, vitreous 9,228423224 57,678% 4,371464% 

 Biphenyl epoxy resin 0,52096744 3,256% 0,246780% 

Phenolic resin 0,406974564 2,544% 0,192782% 

epoxy resin 0,208986938 1,306% 0,098996% 
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carbon black 0,020998688 0,131% 0,009947% 

 other 0,093994125 0,587% 0,044525% 

  TOTAL 211,2 100,000%     

 

  Metal fractions (per Kg of waste flow) 

Materials that can be obtained from  
shredding and separation steps 

Aggregated 
content shares 

Ferro Aluminum Copper Residue 

Aluminium (Al) 0,000% 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Copper (Cu) 2,269% 2,13E-04 1,13E-03 1,77E-02 3,59E-03 

Ferro (Fe, Ni, Co) 12,588% 1,20E-01 1,26E-03 1,26E-03 3,77E-03 

Glass 0,139% 7,76E-06 7,76E-06 1,39E-04 1,23E-03 

Plastics (Thermosets, Thermoplastics) 0,607% 7,34E-05 3,03E-05 6,07E-04 5,36E-03 

Silver (Ag) 2,975% 2,94E-04 2,94E-04 2,53E-02 3,90E-03 

Gold (Au) 0,000% 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Lead (Pb) 0,000% 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Others 81,422% 5,62E-03 5,46E-03 2,87E-01 5,16E-01 

TOTAL 100,000% 1,26E-01 8,18E-03 3,32E-01 5,34E-01 

 

 

Recycled materials content  in respective scraps 

In Ferro fraction In Aluminium fraction In Copper fraction 

0,00E+00 0,00E+00 0,00E+00 

1,70E-03 1,39E-01 5,34E-02 

9,51E-01 1,54E-01 3,79E-03 

6,17E-05 9,49E-04 4,17E-04 

5,84E-04 3,71E-03 1,83E-03 

2,34E-03 3,60E-02 7,60E-02 

0,00E+00 0,00E+00 0,00E+00 

0,00E+00 0,00E+00 0,00E+00 

4,47E-02 6,67E-01 8,65E-01 
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14. Materials, components and other aspects excluded from the LCA implementation (case 

study “Smart monitoring”) 

The following materials were excluded from the LCA implementation because of lack of LCA data or 

because of confidential reasons (Proprietary labels). Notice that a material is not taken into account only 

if it does not exist in Ecoinvent database and its relative quantity in the studied component is very low. 

Missing materials CAS number Occurrence in component(s) 

1,3-Isobenzofurandione, hexahydro-5-methyl- 19438-60-9 LQFP32 

1,4-Bis(2,3-epoxypropoxy)butane 2425-79-8 LQFP32, UFQFPN32 

2,2'-[Methylenebis(phenyleneoxymethylene)] 39817-09-9 LQFP32 

2,6-Diglycidyl phenyl allyl ether EC 417-470-1 TFBGA64 

2-preponoic acid, 2-methyl 68586-19-6 VC_SC70-5 

2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilane 3388-04-3 BlueNRG2 (SoC) 

4-tert-butylcyclohexanol 98-52-2 TFBGA64 

acrylate Proprietary SO8 

Acrylates derivative 407-47-6 TFBGA64 

Acrylic ester co-polymer Proprietary WLCSP36 

amine compound Proprietary TFBGA64 

Aromatic amine Proprietary VD_SOT23-5 

aromatic hydrocarbon Proprietary TFBGA64 

Bisphenol-F, epoxy resin 9003-36-5 UFQFPN32 

Biphenyl epoxy resin 85954-11-6 UFDFPN8, TFBGA64, VD_SOT23-5 

Bismaleimide (B) 13676-54-5 TFBGA64 

Bismaleimide resin 35325-39-4 VC_SC70-5 

Bismaleimide resin Proprietary VC_SOT23-5, TSSOP8 

Bismuth 7440-69-9 SO8, TSSOP8 

Carbocyclic Acrylates Proprietary VC_SC70-5 

Dicumlyl peroxide 80-43-3 VC_SOT23-5 

Dicyclopentenyloxyethyl methacrylate 68586-19-6 VC_SOT23-5 

Dihydro-3-(tetrapropenyl)furan-2,5-dione 26544-38-7 LQFP32 

Dodecyloxirane 3234-28-4 LQFP32 

Epoxy resin molecular weight <= 700 Proprietary UFDFPN8 

exo-1,7,7-trimethylbicyclo[2,2,1]hept-2-yl met 7534-94-3 BlueNRG2 (SoC) 

Fatty acids, polymers with epichlorohydrin 68475-94-5 UFQFPN32 

Hexamethyltetracosa-hexaene 111-02-4 TFBGA64 

Iron Phosphide (FeP) 26508-33-8 VC_SOT23-5, UFDFPN8, TSSOP8 

Isobornyl acrylate 5888-33-5 BlueNRG2 (SoC) 

Magnesium hydroxide 1309-42-8 VD_SOT23-5, TFBGA64 

Metal Hydroxide Proprietary UFQFPN32, BlueNRG2 (SoC) 

Methacrylate Proprietary SO8 

methylene diacrylate OR (Octahydro-4,7-methano-1 H-indenediyl)bis(m 42594-17-2 VC_SOT23-5, BlueNRG2 (SoC) 

Neopentyl glycol dimethacrylate 1985-51-9 TFBGA64 

Phenolic resin 205830-20-2 UFDFPN8, TFBGA64 

Poly(Oxy(methyl-1, 2-ethanediyl) 9046-10-0 UFQFPN32 

Synthetic resin Proprietary TSSOP8 

Talc containing no asbestiform fibers (Magnesium silicate monohydrate - talc) 14807-96-6 TFBGA64 

Thermosetting resin Proprietary TFBGA64 

Zinc hydroxide 20427-58-1 VC_SOT23-5, TFBGA64, VD_SOT23-5 

 

Also, Because of their absence in Ecoinvent database, lack of data proxies, or the difficulty of modeling 

from specialized materials, the following components were excluded from the LCA implementation: 

 2 Piezoelectric buzzers (no LCA data nor proxy. lack of specialized material (piezoelectric 

ceramics)). 

 2 Crystal oscillators type 0805 (BLE module) (no LCA data nor proxy. Material declaration 

unavailable). 

Finally, losses in the manufacturing phase of all PCB components were not taken into account. 
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15. Summary of LCA studies of sensors, sensor systems, partial IoT systems and full IoT systems 
 

Title Goal Case study description Functional unit 
Reference  

flow 
Results Scope and limits 

Eco-design  
strategies 

Recommendations for  
the LCA study 

Contributions to eco-
design of machine-to-
machine product service 
systems: the example of 
waste glass collection. 
Lelah, A. et al (2011) [51] 

Identifying the main 
environmental  
impact contributors 

An IoT system oriented to urban waste 
glass collection (composed of solar-
based powered repeaters). It adapts the 
truck routes accordingly to containers' 
level [51] 

centralized ten-year hourly 
provision of glass-level 
values for all the waste glass 
containers 

not  
specified 

Big contributors (baseline) 
 
PSS infrastructure (gateways, M2M platform and PC(end-
user)) (60% GW, 47% RMD) 
 
Sensors (53% RMD, 14% WP) 

The EoL phase is  
not taken into account 
 
The cloud servers, end-user 
devices and telecom 
infrastructures are included 

1. Mutualize PSS infrastructure 
for similar  
services 

Examine other M2M PSS cases  
 
Consider more advanced 
prototypes or cases of wide scale 
implantations. 

An integrated method for 
environmental 
assessment and 
ecodesign of ICT-based 
optimization services. 
Bonvoisin, J. et al (2014) 
[10] 
 
And  
 
An environmental 
assessment method for 
wireless sensor networks. 
Bonvoisin, J. et al (2012) 
[61] 
 

Impact estimation for 
determining the most influential 
parameters and suggest eco-
design alternatives  

An IoT system oriented to urban waste 
glass collection (composed of 
electricity-grid powered gateways). It 
adapts trucks routes accordingly to 
containers' level [10][61] 

centralized ten-year hourly 
provision of glass-level 
values for all the waste glass 
containers 

not  
specified 

Big contributors (baseline) 
 
sensors (63% WE, 83% RMD) 
 
Repeaters (35% WE, 15% RMD) 

The LCIA step does not consider 
the EoL Phase  
(It is considered by another  
assessment tool for EoL of 
electronics (reSICLED[78])) 
 
The cloud servers, end-user 
devices and the telecom 
infrastructures are excluded 

1. Replacement of materials 
2. Decrease energy consumption 
3. Double battery capacity 
4. A combination of alternatives 
1, 2, and 3 

1. The LCA scope should include 
mutualized  
infrastructure and end-user 
equipment. 
2. uncertainty analysis should be 
taken into account 

Life-cycle assessment of 
an intelligent lighting 
system using a distributed 
wireless mote network. 
Dubberley, M. et al. 
(2014) [73] 

comparison of a  
smart lighting system versus a 
traditional system  

An Intelligent Light System composed of 
a battery-based wireless sensor 
network (sensors include dimmable 
ballasts and housings cases) [73] 

Meet the lighting needs of 
an office building of 5000  
square feet for one year. 

not  
specified 

The impacts of the ILS are 18-344 smaller than those of 
conventional lighting systems  
 
Big contributors (sensors) 
PCB (82,8% E, 29,7% GW, 40,7% H, 70,8% P) 
Integrated circuit components (32,4% E, 49,1% FD) 
Lithium battery (37,8% A, 94,3% OD) 

Edge and cloud infrastructure  
are excluded from the study 

1. Replace the battery with a 
connection to the ballast 
3. Reduce PCB and IC sizes 
(electronic redesign) 
4. Limiting paint in ballasts and 
reduce plastic materials 

Not  
specified 

Life cycle assessment and 
eco-design of smart 
textiles: The importance of 
material selection 
demonstrated through e-
textile product redesign. 
Van der Velden, N. M. et 
al (2015) [76] 

Impact estimation 

Self-care health sensors in the form of a 
garment, which 
invite the body to feel, move, and heal 
through vibration therapy [76] 

Facilitates the self-care  
treatment of a woman —who 
is in need for  
vibration therapy— by 
means of the product, for a 
use  
period of one year; 5 times 
per week; 30 min per time 

Not  
specified 

Big Ecocost contributors 
Production phase (74% of the total impact), on which the 
electronic  
system accounts for a significant contribution (71%) (Due to 
the silver  
content of the conductive wire). The PCB contributes with 32% 

The packaging process of the 
product is excluded. 

1. Replace silver in wires with 
copper 
2. Reduce wires content (may 
affected connectivity among 
components)  

The development of smart textiles 
and PSS  
should be further included 
 
Relaunch a second LCA for 
estimating the eco-design 
alternatives 
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Life cycle assessment and 
eco-design of a textile-
based large-area sensor 
system. Köhler, A. R. 
(2012) [60] 

Impact estimation to support 
environmentally conscious  
decision-making in the course of 
product development 

A textile-based sensing floor underlay 
with integrated  
microelectronic modules and capacitive 
proximity sensors [60] 

Scenario 1: safety and 
energy management for an 
elderly  
person home for 20 years 
(sensing floor size 30m2) 
 
Scenario 2: Presence 
monitoring system for a 
lecture room for 20 years 
(sensing floor size 4m2) 

not  
specified 

The big ecocost contributor (for scenario 1 and scenario 2 
respectively) is   
use phase (Energy consumption) (92,67% and 95,11%)   
 
Impacts in the sensing floor (for scenario 1 and scenario 2 
respectively) 
Polyester base-layer (72,8% and 53,4%) 
Sensor modules (4 per m2) (4,9% and 3,6%) 
Transceiver (3,2% and 17,8%) 

It only consider the sensor 
network 
 (modules) and transceiver (edge 
device) 

1. Reduce spatial resolution (2 
modules per m2 instead of 4) for  
avoiding power dissipation 
2. Switch off the radio receiver 
(Rx) of sensor modules about 10 
min after power up 
3. Reduce sampling rate from 
10Hz to 2Hz to prolong sleep 
phases (Two capacitance 
measurements per second are 
sufficient for both applications) 

Improve the availability of 
comprehensive  
and well-updated secondary LCI 
datasets 

Do home energy 
management systems 
make sense? Assessing 
their overall lifecycle 
impact. Van Dam, S. S. et 
al. (2013) [72] 

LCA and CED comparison of 
three distinct types of products 
on the  
basis of energy invested and 
energy saved 

Device 1: An energy monitor system 
(sensor, transmitting unit and a display) 
Device 2: A multifunctional HEMS (a 
touchscreen device and a thermostat) 
Device 3: An energy management 
system (plugs in a zigbee mesh 
network) [72] 

Not specified 
not  

specified 

Ecocost calculations and CED results over 5 years 
(respectively) 
 
Energy monitor: 9€ and 765 MJ 
Multifunctional HEMS (old): 82€ and 7028 MJ 
Multifunctional HEMS (new): 49€ and 3852 MJ 
Energy management system: 48€ and 3924 MJ 

The energy monitor system 
excludes the smart electricity 
meter (edge device) 
 
The multifunctional HEMS 
excludes edge devices (router and 
meters) 
 
The energy management system 
excludes edge devices 
(centralized PC)   

1. Avoid design alternatives of 
HEMS with unnecessarily  
elaborate parts or functionalities. 
2. minimize the own energy 
consumption of HEMS devices 

Not  
specified 

Advanced packaging for 
wireless sensor nodes in 
cyber-physical systems-
impacts of 
multifunctionality and 
miniaturization on the 
environment. Wagner, E. 
et al. (2017) [26] 

LCA comparison of three 
integration level versions of a 
sensor  
system 

A sensor system for prognostic 
structure health monitoring [26] 
 
Version 0: Customized open source 
design (i.e.: Arduino) 
Version 1: A customized electronic 
design 
Version 2: Advanced packaging (wafer- 
and panel level integration)  

Not specified 
not  

specified 

Version 0 has the most impacts (more than 15Kg CO2 eq) 
 
Version 1 and version 2 has moderate impacts (less than 5Kg 
CO2 eq) 

It only includes the  
production phase of sensor 
systems 

Not  
specified 

Not  
specified 

Streamlined assessment 
to assist in the design of 
Internet-of-Things (IoT) 
Enabled Products: a case 
study of the smart fridge. 
Dekoninck, E., & 
Barbaccia, F. (2019) [71] 

LCA comparison of 4 use-
scenarios. The paper aims to 
show how to 
include the user behavior and 
the service system in the impact  
estimation of IoT-enabled 
products  

A typical fridge with a wider system 
versus a smart fridge with screen, 
cameras, speakers, internet connection 
and online delivery (service) [71] 
 
Scenario 1: normal use of a fridge 
Scenario 2: least use of a smart fridge 
Scenario 3: average use of a smart 
fridge 
Scenario 4: intensive use of a smart 
fridge 

Not specified 
not  

specified 

Impacts over a period of 15 years 
 
Impact of scenario 1: 23100 Kg eq CO2  
Impact of scenario 2: 23200 Kg eq CO2  
Impact of scenario 3: 21700 Kg eq CO2  
Impact of scenario 4: 20200 Kg eq CO2  

it only consider the use phase 
(including impacts from mutualized 
infrastructure and transportation 
(grocery chopping or online 
delivery) use of apps, food wasted 
and waste energy from opening 
doors) 

1. Understand how the internet-
browsing feature can be used to  
replace other browsing rather 
than creating additional browsing 
for the household 
2. Understand how the internet-
browsing feature could reduce 
other  
impacts like "shopping miles" by 
enabling more efficient delivery-
based shopping 
3. Understand how the use-by-
date tracking system can to be 
designed to change  
user behavior around food 
stocking and cooking in order to 
reduce food waste 

Not  
specified 
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Material and 
manufacturing process 
selection for electronics 
eco-design: Case study 
on paper-based water 
quality sensors. Le Brun, 
G., & Raskin, J. P. (2020) 
[77] 

LCA Comparison of two sensors 
in terms of  
materials and processes 

A paper-based electrochemical device 
for bacteria detection (µPEDs) versus 
A silicon-based biosensor [77] 

1000 water quality 
measurements 
(Both sensor solutions are 
assumed to be single-use) 

specified 

Embodied energy for CNT-µPEDs , Al-µPEDs and Si-PDMS 
sensors exceed 1000, 5000 and 4500 MJ respectively. 
 
Carbon footprint for CNT-µPEDs sensors amount to almost 50 
Kg CO2-eq while carbon footprint of Al-µPEDs and Si-PDMS 
sensors exceed both 200 Kg CO2-eq  

It considers impacts of raw 
materials and manufacturing 
processes of sensors. 

Not  
specified 

Not  
specified 

Assessing the embodied 
carbon footprint of IoT 
edge devices with a 
bottom-up life-cycle 
approach. Pirson, T., & 
Bol, D. (2021) [74] 

Get a better understanding of 
the carbon footprint of the 
production of a wide range of 
IoT devices 

Device 1: an occupancy sensor  
Device 2: a light-weight drone of less 
than 250 gr 
Device 3: a light-weight connected 
home assistant 
Device 4: a smart watch [74] 

Production and transport to 
the use location of a single 
IoT device defined by its 
hardware profile 

n.a. 

Carbon footprint results 
 
Device 1: from 0.6 to 3.2 Kg CO2 eq 
Device 2: from 6.1 to 23.4 Kg CO2 eq 
Device 3: from 3.8 to 14.9 Kg CO2 eq 
Device 4: from 5.4 to 19.5 Kg CO2 eq 

It consider raw material extraction, 
production and transportation of 
IoT devices 
(the use phase  and the EoL 
phases are not taken into account) 

Not  
specified 

Take into account the use and EoL 
phases  
(including the mutualized 
infrastructure)  
 
Take into account more impact 
indicators  

Quantifying the Net 
Environmental Impact of 
Using IoT to Support 
Circular Strategies—The 
Case of Heavy-Duty Truck 
Tires in Sweden. 
Ingemarsdotter, E. et al. 
(2021) [69] 

Cost-Benefits LCA analysis to 
gain insights into when and how 
it 
makes sense to embed IoT 
hardware into products to 
support circularity 

A tire-pressure-monitoring (TPM) IoT 
system composed of piezoelectric-
based  
sensors systems and RFID tags [69] 

Enabling a tractor/semi-
trailer-typed truck to drive a 
distance of  
2 * 10^6 tire-Kms (assuming 
that tractor/semi-trailer-typed 
truck have 10 tires) 

not  
specified 

The TPM IoT system leads to a net impact reduction of 
approximately 4%  

It consider the whole life cycle of 
tires (including maintenance and 
multiple use phases) as well as 
the fuel used by trucks. It also 
considers the production, use and 
disposal of sensor systems and 
the use phase of mutualized 
infrastructure. It excludes 
packaging. 

Not  
specified 

Not  
specified 

Development of eco-
efficient smart electronics 
for anticounterfeiting and 
shock detection based on 
printable inks. Glogic, E. 
et al. (2021) [75] 

Impact estimation of  
two printable sensor systems 

An anticounterfeit label (ACL) based on 
electrochromic display (device 1) and  
a Shock-detection tag (SDT) based on a 
piezoelectric sensor (device 2) [75] 

Device 1: Producing at least 
20 times visible chromacity 
change after  
receiving a 13.56 MHz 
signal (from the smartphone) 
over  2 years 
 
Device 2: Detecting and 
recording any frequency 
above 13.56 MHz in 
transportation operations, 
translating into a voltage 
signal readable by a 
smartphone 

A single ACL 
device 

 
A single SDT 

device 

The big contributors in both devices are NFC chip and the 
Radio-Frequency  
Identification antenna. Impacts of solvents, process energy, 
electrochromic  
display/piezoelectric sensor, Li-on battery and substrate are 
comparative small.  
In terms of global warming both devices embody around 0,23 
Kg of CO2 -eq. 

It only covers the production of 
sensor systems 

1. Replace silver by copper-
based nanoparticle ink 
2. use flexography printing 
techniques 

Not  
specified 

Environmental impacts 
related to the 
commissioning and usage 
phase of an intelligent 
energy management 
system. Gangolells, M. et 
al. (2015) [240] 

Impact estimation  

An urban-scale intelligent energy 
management system composed of a 
core  
subsystem (edge devices for managing 
the other subsystems), a monitoring and 
controlling subsystems, and an 
environmental, energy and occupancy 
subsystems,  (all composed by wireless 
sensor networks) [240] 

Manufacturing and usage of 
the intelligent energy 
management system over a 
period of 5 years (scenario 
1) and 10 years (scenario 2) 

not  
specified 

Single point impact Eco-indicator 99 for the 5-year and 10-year 
scenarios (respectively) 
 
Significant impacts attributed to the operational phase (53.93% 
and 69.9%) followed by the assembly phase (45.69%  
and 29.61%).  

It consider the manufacturing 
phase (material extraction and 
assembly of all  
component devices), transport and 
functional lifespan (usage and 
maintenance). 
 
The mutualized infrastructure is 
excluded 

Not  
specified 

Not  
specified 
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16. Design methodology and questionnaires used in the qualitative research 
The qualitative research presented in chapter 4 was conducted in two parts. the first part aims to reveal 

the current workflow of design teams and the second part aims to investigate the needs, expectations 

and attempts (if any) of designers and project leaders for integrating environmental aspects into their 

projects. This qualitative research was conducted at the System Division of CEA-Leti. 

a. First part: current design workflow of IoT systems 

The design of this part is composed of 5 elements (see figure below). 

 

Design of the qualitative research oriented to acknowledge and understand the current design workflow of IoT systems (part I). This is an 
adaptation of the design methodology for qualitative research proposed by Maxwell, J. A. [241].  

From the main goal of the thesis “Building a design methodology for sustainable IoT systems”, one 

derives the main question of the qualitative research that helps to achieve this goal: “what is the current 

design workflow of IoT designers”. Both aspects build the conceptual framework that contains key 

finding in the literature that partially answer this question (theoretical framework composed of the 

proposed design workflows seen in [10] and [107-108].  

The relevant aspects found in the conceptual framework are: 

 Design workflow of sustainable WSN (according to Bonvoisin, J. et al [10]) would consist on 

defining the design goal on the basis of impact targets (step 1), designing the service which will 

be optimized by the WSN (step 2), estimating the impact of the equipment, infrastructure and 

application domain (step 3); redesigning the equipment, infrastructure or application domain 

(step 4), and restart the workflow if the established goal is not achieved (step 5).   

 Design workflow of sensor devices and mechatronics (according to Heinis, T. et al [108]) would 

consist on analyzing the object that will benefit from an IoT application (step 1), analyzing the 

data operational stages of devices (step 2), and finally analyzing the added value of the IoT 

application according to types of users (step 3).  

 Design workflow of IoT systems (according to Chakravarthi, V. S. [107]) would consist on 

analyzing the user requirements by specific questions (step 1), selecting the suitable technology 

according these requirements (step 2), selecting electronic components within these 

technologies (step 3), and software/hardware prototyping of devices (step 4).  

From this, and by reconsidering the main question of the study, one determines the instruments for 

conducting the qualitative research, which consists of semi structured surveys oriented to acknowledge 

and understand the current design workflow of designers in 5 steps, assuming that that number of steps 

would cover sufficiently the design process from the analysis of the object, added value and customer 

requirements, to the development and redesign of IoT prototypes. 
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The construction of these surveys depends on three main sequential aspects: (1) identification of typical 

customer requirements and fundamental design challenges, (2) identification of representative 

applications including these user requirements and design challenges and (3) creation of fictive “IoT 

projects” based on these representative applications (case studies). The customer requirements and the 

design challenges identified in an exhaustive survey conducted by Asghari, P. et al. [242] were 

summarized here in service availability, readiness, energy consumption, cost and reliability. Because 

finding all these aspects in only one kind of application is impossible, the aforementioned authors 

propose a series of application types with a high probability of containing most of these aspects (table 

below). 

Application types Availability Readiness Energy Cost Reliability 

Health care   
 

 

 

  

Monitoring environment   

 

  

 

 

Smart cities   
  

    

Commercial applications 

  

  
 

  

In this manner, 4 fictitious “IoT projects” around the themes of heatlh care, monitoring environment, 

Smart cities and commercial applications were created. These projects were integrated into semi-

structured surveys (showed below), which were distributed later among all members of design teams. 

The idea is that the designers describe the typical design flow that they would adopt in the context of 

these fictional projects (which they were presented as they would be presented to designers in reality). 
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a.1. Designed survey for the IoT application “Health care” (inspired by the case study presented by Jimenez, F., & Torres, R. [243] and Ding, Y. et al. [244]). 
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a.2. Designed survey for the IoT application “Monitoring environment” (inspired by the case study presented by Li, H. et al. [245]). 
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a.3. Designed survey for the IoT application “Smart cities” (inspired by the case study presented by Bonvoisin, J. et al. [10]). 
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a.4. Designed survey for the IoT application “Commercial applications” (inspired by the case study presented by Ishida, K. [50]). 
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Finally, the replies of surveys were summarize in a manner to give an answer to the main question of the study (conclusions of the qualitative study, available in the 

section 1 of chapter 4). This is later validated by observing the design workflow adopted for developing the case study “Smart monitoring” of this thesis (section 2 of 

chapter 5). Unfortunately, only 2 kinds of the 4 IoT projects were considered by designers (Health care and commercial IoT)).   

b. Second part: current knowledge of eco-design, attempts to integrate ecological aspects, and expectations of a design methodology for sustainable IoT 

systems  

To know the current knowledge of IoT designers about eco-design, their attempts to integrate it into their projects, and their expectations about a design methodology, 

the second part of this qualitative research use an open survey model described below. 
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