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GENERAL INTRODUCTION 

Most mechanical applications rely on a gearing arrangement to transmit power from one shaft 

to another. The aim is usually to extract high speed from a low-speed application or obtain high 

torque from a low torque input. Mechanical gears and gearboxes are mostly used for this purpose 

and can be found in almost any mechanical application. Like other applications, energy 

conversion systems for renewable energy rely on mechanical gearboxes to transmit mechanical 

power to the electrical machine at higher speeds and to avoid having very large generators. The 

main issue and problem with mechanical gears is their low reliability and requirement for regular 

lubrication and maintenance, which increases the operation and maintenance costs for 

renewable energy applications especially those installed in remote locations like offshore wind 

sites. In addition, the low reliability of the mechanical gears would lead to possible failures and 

service interruptions of the energy conversion system. These problems that are associated with 

mechanical gears are mostly caused by the frictional forces, and this is where the search for 

frictionless alternatives started. 

Since the beginning of the 20th century, electromagnetic devices called magnetic gears were 

proposed to transmit power between two ports through the frictionless interaction of magnetic 

forces. This idea didn’t receive enough attention for a long time because of the poor torque 

capability of the proposed designs back then. Then, near the end of the 20th century, the 

development of the magnets and the appearance of strong rare-earth permanent magnets 

provided the magnetic gearing idea with huge potential, where suddenly magnetic gear designs 

with impressive torque densities comparable to those of mechanical gears appeared. Therefore, 

the development and research on magnetic gears have been ever rising and increasing for twenty 

years now. Meanwhile, renewable energy conversion systems found huge potential in the high 

torque density magnetic gears because on one hand magnetic gears are suitable for low-speed 

high torque applications, and on the other hand they could provide some remarkable advantages 

over mechanical gears that would improve the system’s reliability and performance. Some of the 

potential advantages of using magnetic gears are reduced maintenance and increased reliability, 

possible isolation between input and output shafts, inherent overload protection, possibility of 

integration into electrical machines to provide a compact and high efficiency design. In the 

meantime, there is still a substantial room for improvements and contributions that can be added 
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to the development and research of magnetic gears. For example, the development of the 

methods and techniques that could be used for modeling magnetic gears is very important and 

interesting as modeling forms the foundation that directs any improvement or practical 

implementation of an application. Moreover, acquiring lightweight modeling tools that could 

provide good estimations for low computational cost is very important for any optimization 

problem where different parameters are varying.  

Therefore, multiple objectives could be defined for this work which would serve as a 

contribution to the development of magnetic gears in specific and electromagnetic devices in 

general. First, laying out and analyzing the literature on magnetic gears to understand the current 

state of the technology. Second, the proposition and implementation of lightweight numerical 

modeling techniques that could be used to describe important physical aspects in magnetic gears. 

Then, briefly studying the literature on marine renewable energy as it stands as a very good 

potential candidate for magnetic gear application, and then attempting to propose a magnetic 

gear design that could be suitable for marine energy applications. Furthermore, analyzing the 

impact of a mechanical defect on the electromagnetic performance of tubular linear machines 

and magnetic gears, as this type of machines is being widely proposed and researched for the 

application in marine renewable energy like wave energy.  

The first chapter will seek to provide an up-to-date overview of magnetic gears. It will begin 

with a historical overview of magnetic gears to demonstrate how this technology has developed 

through time. It will then explain the rationale and benefits of utilizing magnetic gears. After 

that, the operating concept of typical contemporary magnetic gears together with major design 

characteristics and terminologies will be discussed. Next, the various magnetic gear types and 

topologies will be presented which will serve as a presentation for the existing literature on 

magnetic gears as well as a showcase for the suggested new and old designs. Finally, the acquired 

data from the literature will be compiled and examined in order to summarize and draw some 

observations.  

The purpose of the second chapter will be to describe and implement modeling approaches 

for magnetic gears, with a particular emphasis on modeling axial field magnetic gears. Its ultimate 

objective is to develop a modeling tool for early design phases that can account for the 3D 

characteristics of axial field magnetic gears while maintaining a quick calculation time. First, a 

quick introduction of the behaviors and classes of magnetic materials will be provided. Next, a 

theoretical presentation for the modeling approaches that will be employed will be done, 
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illustrating the implementation of the finite element method and presenting the formulations of 

the magnetic equivalent circuit method. The implementation details of the magnetic equivalent 

circuit approach are then detailed in numerous parts. Then, the provided modeling technique is 

assessed by evaluating and comparing its nonlinear solvers, where a comparison between the 

fixed-point and Newton-Raphson methods is done to assess the practicality and performance 

of each method when applied to magnetic equivalent circuit.  Afterwards, the end-effects of axial 

field magnetic gears are investigated and modeled using a 3D magnetic equivalent circuit model, 

and two magnetic gear designs are compared. The chapter is then concluded with the 

presentation and evaluation of an alternate quasi-3D technique for simulating also the end-

effects in axial field magnetic gears.  

The next chapter begins with an introduction to marine renewable energy systems. First, 

diverse conversion technologies and energy sources will be discussed briefly, and offshore wind 

energy will be studied in more depth. The difficulties and requirements of offshore wind 

conversion systems will be investigated. Next, an overview of the uses of magnetic gears in 

maritime energy systems will be presented, including the implementations of magnetic gears and 

magnetically geared machines documented in the literature. Lastly, a parametric sweep analysis 

will be performed employing the modeling techniques given in the preceding chapter, with the 

objective of proposing an axial field magnetic gear design appropriate for deployment in a 

maritime renewable energy conversion system.  

The final chapter will address the topic of eccentricity in tubular linear constructions. The 

eccentricity problem is first defined and described. Next, the 3D FEM model used for 

eccentricity impact analysis is explained. Then, two tubular linear permanent magnet machines 

with distinct architectures are evaluated and compared under varying eccentricity and operation 

circumstances. Next, a quasi-3D FEM modeling approach for assessing eccentricity in tubular 

linear machines will be presented and evaluated, and it will be applied to the previously 

mentioned structures and compared with the 3D FEM. Finally, to conclude the chapter, the 

eccentricity in two tubular linear magnetic gear systems will studied using 3D FEM. 
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C h a p t e r    I  -   M a g n e t i c  G e a r s :  A n  O v e r v i e w  

Introduction 

This chapter aims at providing a state-of-the-art presentation on magnetic gears. It will start 

by a historical background section on magnetic gears to discover how this technology evolved 

over the years. Then, it will go on with showing the motivation and advantages of using and 

developing magnetic gears. Afterwards, the principle of operation of the standard modern 

magnetic gears will be presented alongside some key design aspects and terms. Next, the 

different magnetic gear types and topologies will be presented which will serve as a presentation 

for the literature published on magnetic gears as well as a showcase for the new and old designs 

proposed. Finally, the data collected from the literature will be gathered and analyzed to 

summarize some key points and conclusions on magnetic gears. 

1. Historical Background 

In 1901, one of the first works about geared power transmission using electromagnetic forces 

was published as a patent by C. G. Armstrong [1]. The device, shown in Fig. I-1, represents the 

electromagnetic device proposed by Armstrong, and which he described as capable of 

transmitting rotary motion of a driving-wheel to a driven wheel through the effect of magnetic 

forces without actual contact of the wheels or without any mechanical wear or noises. The whole 

device resembles an electromagnetic frictionless analogy to the operation of mechanical spur 

gears. It used electromagnets to generate the magnetic field at the teeth of the driving-wheel 

which in turn will cause the ferromagnetic teeth on the driven wheel to interact with the induced 

electromagnetic forces and rotate. The device suffered from multiple issues, first the small 

contact area between the two wheels limited the torque capability and density of the device. 

Then, generating the required magnetic fields required a large current which reduced the total 

efficiency of the system. Hence, although this device was a breakthrough in terms of the 

advantages its frictionless power transmission could provide, it couldn’t rival mechanical gears 

in terms of practicality and efficiency. A couple years later, A. H. Neuland patented another 

electromagnetic apparatus that may transfer power between two rotatable components rotating 
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at the same or different speeds and in the same or opposite directions [2]. Unlike the device 

proposed by Armstrong, this apparatus, shown in Fig. I-2, is composed of two rotating elements 

and a stationary member arranged between the surfaces of the rotating elements. The shafts of 

the elements are aligned together, and the coupling and interaction is done through the magnetic 

field generated by the electric current flowing through the coils wound around the teeth of the 

stationary member. The direction of the current in the coils is varied to obtain consecutive 

magnetic north and south poles. By changing the number of teeth on each element the rotating 

elements can be configured to rotate at the same speed or with different speed ratios. 

 

Fig. I-1 The electromagnetic device proposed by Armstrong in 1901 [1]. 
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Fig. I-2 The electromagnetic apparatus proposed by Neuland in 1916 [2]. 

Thus, this device provided an advantage by utilizing the full contact surface between the 

elements improving the possibility of acquiring high torque densities, and its construction was 

compact and cheap. However, it still suffered from the issue of requiring large current values for 

higher powers, and the use of permanent magnets was possible but limited only to low power 

applications due to the low coercivity of the permanent magnets back then, so it still couldn’t 

compete with mechanical gears. Many years later, the term “magnetic gearing” appeared, 

probably for the first time, in the patent established by G. A. Reese in 1967 [3]. It is based on 

the same principles operating the former devices presented but with a modified structure and 

arrangement. Again, the key advantages proposed were the frictionless and vibration free 

operation and the cheap manufacturing costs. As can be seen in Fig. I-3, the device is composed 

of three coaxial members a high-speed rotor, a low-speed rotor, and a fixed stator. Only the 

high-speed rotor contains magnetic flux sources which were realized using permanent magnets. 

In contrast to the design proposed by Neuland, the fixed member is now enclosing and 

surrounding the high and low speed rotors, and the magnetic flux source is on one of the rotors 

and not on the fixed member. This work also demonstrated the relationship between the number 

of teeth on each member and illustrated the magnetic gear behavior in torque overload 

situations. One year later, T. B. Martin established a patent on a magnetic transmission device 

[4] whose design could be considered as the closest to modern high-torque density magnetic 

gear designs. 
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Fig. I-3 The magnetic gearing arrangement proposed by Reese in 1967 [3]. 

 

Fig. I-4 The magnetic transmission device proposed by Martin in 1968 [4]. 

The device illustrated in Fig. I-4 consisted of three coaxial members: an inner high-speed rotor 

with magnetic excitation; a middle structure that has fixed radially-directed, magnetically-

permeable bar, having curved ends so that they are in close proximity to the rotors at the 

opposite ends; and an outer ring magnet with multiple north and south pole pairs considered as 

the low-speed rotor.  

Some years later, the magnetic gearing concept started to gain rising interest, and multiple 

research papers started to emerge on the subject, each presenting a proposal on how magnetic 

gears should be operated and implemented. For example, in 1980 Hesmondhalgh proposed a 
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structure based on cascading multiple elementary magnetic gears [5].The multielement magnetic 

gear is shown in Fig. I-5, and the teeth of its adjacent elements are shifted by certain angle. This 

system was designed so that it doesn’t have large changes of stored magnetic energy in the 

exciting coil if the inner and outer rotors are rotated at speeds inversely proportional to their 

numbers of teeth. The overall efficiency of the device wasn’t satisfactory providing a total 

efficiency of 34% where the main reason for this was the core loss occurring at a very large 

volume in the device. Taking advantage of the advances in the permanent magnet technology, a 

new magnetic gear design using rare-earth magnets was proposed in [6]. The magnetic gear, 

shown in Fig. I-6, resembled an analogy to a mechanical internal gear set (gear and pinion) where 

magnetic interaction forces operated the device without direct contact between the pinion and 

gear. 

 

Fig. I-5 A multielement magnetic gear using three 4-pole elements [5]. 

 

Fig. I-6 A new magnetic gear set (pinion and gear) using permanent magnets [6] 
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Fig. I-7 Configuration of the magnetic worm gear proposed in [7] 

A rotary speed converter implemented in a small-scale application for a record player was 

proposed in [8]. The device used magnetic interaction forces and Samarium-Cobalt magnets to 

operate, but it suffered from durability and wear issues because direct contact through a thin 

rubber film was used to transfer motion. Another application for magnetic gears was proposed 

in [9] for a micro-transmission mechanism. This miniature device was deemed suitable for some 

medical and home robots where high-speed and precision are not important criteria, but highly 

safe, silent, and clean mechanisms are required, but it couldn’t be used for industrial applications 

due to its low torque capability. A magnetic worm gear using permanent magnets [7] was 

proposed by Kikuchi (see Fig. I-7). Although the design used rare-earth magnets (SmCo5), it had 

a low torque density due to the mechanical resonance of the gear and the poor mating between 

the worm and worm wheel. Finally, an improvement for the design proposed by T. Martin was 

patented by B. Ackermann and L. Honds in 1997 [10] (see Fig. I-8), and a variation of the design 

was provided by Ackermann in 1999 [11]. 

Essentially, all the designs that tried to mimic a certain mechanical gear type, by replacing the 

contact teeth with magnets, didn’t succeed in competing with their mechanical counterparts in 

terms of torque density and efficiency. However, the potential advantages from the magnetic 

gearing concept remained highly anticipated and sought after until eventually more successful 

designs that could rival mechanical gears started to emerge. The key was in thinking about the 

design from an electromagnetic perspective, finding the best way to optimize the magnetic 

circuit, and taking full advantage of the magnetic components, rather than trying to mimic the 

operation and structure of mechanical gears. 
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Fig. I-8 The magnetic drive arrangement proposed by Ackermann and Honds in 1997 [10]. 

Moreover, the advancement in the permanent magnet technology, manufacturing and 

machining technologies, and the introduction of rare-earth magnets with high coercivity and 

remanence, like the Neodymium magnet, all contributed to improving the performance of the 

magnetic gears and achieving high torque densities comparable to mechanical gears. This section 

tried listing some of the main contributions that paved the way to researchers working on this 

topic and laid the foundation to some works that came later and formed the cornerstone of the 

research in this domain. 

2. Magnetic Gears: Motivation and Advantages 

Gears are used to transmit power while increasing or decreasing the speed and decreasing or 

increasing the torque. Mechanical gears and gearboxes are very widely used and can be found in 

almost any mechanical application or device. The term “mechanical” is added to distinguish 

them from magnetic gears and to describe the nature of their operation, where it depends on 

the physical engagement of the gears’ teeth in some sort of sliding contact. Precision machined 

teeth are required to provide a perfect fit, but even in the most expensive and well machined 

gears, the matching of the different teeth causes significant noise and vibrations in the driving 
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and driven parts. In addition, the gears will need to be lubricated and serviced on a regular basis 

and are vulnerable to wear and fatigue failure. Furthermore, when the mechanical gears are fully 

loaded, it has been shown to be difficult or impossible to release them from each other. Due to 

the fact that gears must be in direct contact, if the driven member experiences a significant 

overload or stall, then the whole system (including the gear train, load and/or motor) will be 

similarly over-loaded and/or stalled. In the worst-case scenario, this might cause irreparable 

damage to the system and/or the motor to explode. Moreover, high gear ratios can only be 

achieved by using a large number of gears or by using an elaborate gear system. 

 

Fig. I-9 Some typical failure classes: (a) destructive pitting, (b) rim and web failure, (c) beam bending 

fatigue, and (d) abrasive wear [12]. 
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Fig. I-10 The evolution of the number of contributions on mechanical gear failures over the years. 

Material-wise, steel's strength, durability, and cost efficiency make it the most used mechanical 

gear-making material. Carbon and alloy content affect steel hardness and hardenability. Heat-

treat reaction and surface treatment affect a gear material's microstructure, wear, and fatigue. 

Gear performance relies on metallurgical variables, lubrication, contamination, misalignment, 

surface quality, machining damage, and severe loading or impact loading [13], [14]. Some of the 

classes and types of mechanical gear failures are wear, scuffing, hertzian fatigue, cracking, 

fracture, and bending fatigue [15]. All these failures could pose a hazard in safety critical 

applications and would, in best case scenarios, cause a service interruption in the system. Some 

mechanical gear failure types are summarized in Fig. I-9. Due to the importance and criticality 

of this issue, investigating mechanical gear failure causes and searching for methods to avoid 

them has been a research topic of rising interest for the past few decades. Fig. I-10 shows how 

the number of papers published about mechanical gear failures has been increasing throughout 

the past few decades. 

All these issues drove researchers into searching for and an alternative to mechanical gears, 

and magnetic gears, with their contact-less power transmission, proved to be a very good 

candidate that could solve most of the problems encountered with mechanical gears.  
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Fig. I-11 The variation of the number of contributions on magnetic gears over the past two decades. 

Eventually, the interest in researching and developing magnetic gears increased through the 

past two decades (see Fig. I-11). A magnetic gear was found to be easier to manufacture, reliable, 

and less prone to failures. It may ensure a silent and vibration-free operation, and it could be 

arranged in a compact spatial configuration including axial and coaxial even while providing 

relatively high gear ratios. Another very important benefit of a magnetic gear is its inherent 

overload protection. It could be easily clutched and declutched even under full load, and during 

operation if the load torque exceeds a maximum torque value, the rotors will just slip and 

mitigate the damaging overload. In summary, some of the main advantages and features of 

magnetic gears are listed as follows: 

 Silent noiseless running 

 Vibration-less operation 

 No need for oil or lubrication 

 No backlash 

 Can operate in harsh environments (better resistivity to water and dust) 

 Robustness against large torque fluctuations 

 Better overall reliability and reduced maintenance requirements 
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  Inherent overload protection and easy clutching/declutching 

 Could be designed in a small and compact volume 

 Could be embedded into electric machines or coupled to them 

All these advantages and more are potentially obtainable by using a magnetic gear, but there 

are also a lot of challenges and difficulties to overcome in order to unlock the full potential of 

this device. 

3. Principle of  Operation of  Magnetic Gears 

In 2001, K. Atallah published one of most important and popular works on magnetic gears 

[16], and although the concept behind this work is not new, it was considered a breakthrough in 

this domain at that time. The main element that gave this work a great value was the remarkable 

torque density that was deemed achievable by the magnetic gear proposed (i.e., 100 ���/��). 

In addition, this paper illustrated the fundamental equations to be used for determining the gear 

ratio and number of poles, and it introduced the concept of magnetic modulation through the 

ferromagnetic pieces as an essential factor to obtain a high-performance magnetic gear. Three 

years later Atallah established an extended version of his original work including a design study 

and experimental realization of the magnetic gear [17].  

 

 

Fig. I-12 The high-performance magnetic gear proposed by K. Atallah [17]. 
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The proposed magnetic gear, shown in Fig. I-12, is a coaxial magnetic gear with three main 

members or elements: an inner rotor, an intermediary member composed of ferromagnetic 

segments that will perform the job of magnetic modulation, and an outer rotor, where  

permanent magnets are mounted on the inner and outer rotors. The power is transmitted from 

the inner to the outer rotor at a different rotational speed and torque, whereas the member 

holding the ferromagnetic pieces is held fixed. In practice, depending on the application and the 

required gear ratio, the outer rotor could be held fixed, and the intermediary member can be 

rotated instead, so all three members can be practically called “rotors”. The number of poles on 

each member should be chosen to properly match the appropriate space harmonics, and hence 

they are bound by a specific relationship and equation. 

The modulation of the magnetic fields produced by each of the permanent magnet rotors is 

done through the ferromagnetic segments located in the intermediary member, and it is essential 

to obtain a high torque density and performance. In simple terms, it makes the interaction 

between the magnetic fields produced at the inner and outer rotors more efficient, and hence 

the modulating ferromagnetic pole-pieces became an indispensable part for the operation of any 

high-performance magnetic gear. 

To properly choose the number of poles on each member in accordance with a relationship 

that will allow the gearing action to occur, a simplified expression of the magnetomotive force 

(MMF) produced by either permanent magnet rotor could be used. The MMF function of either 

permanent magnet rotor, which is a function of the angular position (�), could be expressed in 

Fourier series. Then, using these expressions multiplied by the modulation function representing 

the ferromagnetic modulating pieces, one can determine the spatial harmonics of the MMF 

functions and their relative angular velocities. The space harmonics are split in two groups: a 

synchronous group having angular velocities same as the magnetic angular velocity of the rotor 

they belong to, and an asynchronous group with different angular velocities. Below are the 

equations expressed in Fourier series with �� and �� being the MMF forces produced by the 

inner and outer permanent magnet rotors respectively. The permeance change caused due to the 

presence of the modulating ferromagnetic pieces is represented through the function ��. 

 

��(�) = � ��,� cos (� ��(� − �� �) + � �� ��,�)

���,�,�,…,� 

 (I-1) 
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��(�) = � ��,� cos (� ��(� − �� �) + � �� ��,�)

���,�,�,…,� 

 (I-2) 

��(�) = ��,� + � ��,� cos (� ���� − �� �� + � �� ��,�)

���,�,�,…,� 

 (I-3) 

The terms �� and �� represent the number of pole-pairs on the permanent magnet inner and 

outer rotors respectively, and �� represents the number of ferromagnetic pole pieces of the 

intermediary member. The angular velocities (mechanical rotational speeds) ��, ��, and �� 

belong to the inner, outer, and modulating rotors respectively. After multiplying the MMF 

functions by the modulation function, a set of spatial asynchronous harmonics will appear, and 

to achieve the magnetic gearing, a set of synchronous spatial harmonics from the inner rotor 

should match a set of asynchronous spatial harmonics from the outer rotor, and similarly, a set 

of synchronous spatial harmonics from the outer rotor should match a set of asynchronous 

spatial harmonics from the inner rotor. The expressions of the spatial synchronous and 

asynchronous harmonics for the inner and outer rotors are summarized in Table I-1. Based on 

the harmonics’ expressions and the required coupling between the inner and outer rotors, the 

equation relating the number of poles on each member could be seen in (I-4) , and similarly, an 

equation relating the angular velocities of the three members could be obtained (I-5). To reach 

the proper relationship, the harmonics indices should be substituted by the values that represent 

the fundamental asynchronous harmonic for both rotors (i.e., � = 1, � = 1, ±� = −1). 

Hence, the resulting equations that relate the number of poles on each member and the angular 

velocities of each member are shown in (I-6) and (I-7) respectively. 

� �� = |� �� ± � ��| (I-4) 

�� �� ± � ��� �� = � �� �� ± � �� �� (I-5) 

Table I-1 Summary of the spatial synchronous and asynchronous harmonics from the MMF 

produced by the inner and outer rotors. 

 Inner Rotor Outer Rotor 

Synchronous Spatial Harmonics � �� � �� 

Asynchronous Spatial Harmonics |� ��  ± � ��| |� ��  ± � ��| 
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�� + �� = �� (I-6) 

�� �� + �� �� = �� �� (I-7) 

Using the above equations and depending on which member is chosen as the fixed member, 

the gear ratio and direction of rotation of the elements could be determined. The three rotors 

could practically rotate at the same time resulting in what is called a magnetic continuously 

variable transmission device [18], [19], but for this work only two rotors will be rotating, and 

one will be fixed. 

4. Key Design Factors for Magnetic Gears 

Before classifying and identifying the different types and structures of magnetic gears, it is 

important to list some of the important factors and variables that are considered when designing 

or evaluating a magnetic gear: 

 Gear ratio which is the quantity on which a magnetic gear design is based, and it is chosen 

to satisfy the torque/speed transformation requirements for the application in which the 

gear is being installed. It is the transformation ratio for the speed and torque between the 

input and output shafts and can be determined directly from (I-7). Depending on which 

rotor is chosen to be fixed, the gear ratio formula can have two forms: 

o If the ferromagnetic pole pieces rotor is fixed (�� = 0):  

��� =  −
��

��
, with �� = ��� ��. (I-8) 

o If the outer rotor holding the magnets is fixed (�� = 0): 

��� =  
��

��
, with �� = ��� ��. (I-9) 

It can be seen from the above equations that, for the same number of pole-pairs on all the 

rotors, a higher gear ratio could be achieved by fixing the outer rotor instead of the 

modulating rotor, but in this case more attention should be paid to the rigidity and stiffness 

of the ferromagnetic pieces structure since it will be rotating and transmitting torque. Also, 

for applications where the direction of rotation matters, it should be noted that the equation 

of ��� contains a negative sign which signifies that the input and output shafts will rotate in 

opposite directions. 
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 Cogging torque factor which represents the influence of some design parameters on the 

cogging torque value and the torque ripple. It was first established by Z. Q. Zhu in [20] for 

permanent magnet machines, and according to them, the factor is used to indicate how good 

a combination of slot and pole numbers is from the perspective of cogging torque. In the 

same fashion, this factor could be used for magnetic gears to determine how good a 

combination of magnetic pole pairs (��) and ferromagnetic pole-pieces (��) will be from 

the point of view of cogging torque. The equation of the cogging torque factor is given by: 

�� =  
2 �� ��

���(2 ��, ��)
 (I-10) 

From the above equation, it can be seen that the larger the least common multiple between 

the number of poles on the high-speed rotor (inner rotor) and the number of ferromagnetic 

pieces, and the smaller the number of poles, the smaller will be the amplitude of the cogging 

torque. In addition, the cogging torque factor doesn’t change for the same gear ratio value. 

An ideal cogging torque factor would be 1, and hence, when choosing the number of poles 

or the gear ratio, minimizing the cogging torque factor should be an essential consideration. 

It is worth noting that to acquire a small cogging torque factor and to minimize the torque 

ripple, a rational non-integer gear ratio should be chosen for the system in a lot of situations, 

which could be challenging when modeling the magnetic gear because it might eliminate any 

possible symmetry or periodicity which will increase the total size of the model. 

 Stall torque which represents the highest torque the low-speed rotor could withstand before 

slipping out of synchronization. Depending on which structure is chosen to be fixed, the 

low-speed rotor could be either the structure with the higher number of magnetic poles or 

the structure holding the ferromagnetic pole-pieces. This quantity is very important because 

it can help in evaluating the performance of the magnetic gear and determining its torque 

capability and density. It is also essential for the mechanical and structural study and design 

of the magnetic gear because the rotor should be mechanically structured and supported to 

bear the maximum torque value without any mechanical failure or deformation. 

 Torque density is probably the most important quantity that is being used to evaluate the 

performance of a magnetic gear and its suitability for a certain application. It provides an 

insight on how effective a certain magnetic gear design is from the perspective of volume, 

materials used, or cost. In addition, it allows to perform a comparison with mechanical gears 
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and whether a magnetic gear can replace the mechanical gear installed in the application. 

There are two types of densities: volumetric torque density which is used more often, and 

the mass torque density. The volumetric torque density (VTD) depends on the stall torque 

value and the active region volume of the magnetic gear. Some references even suggest 

calculating two volumetric torque densities: one depends on the active region volume, and 

another depends on the total volume (including magnetically inactive components like 

bearings or housing). Throughout this work, and unless mentioned otherwise, the term 

volumetric torque density will refer to the torque density that depends on the active region 

volume. On the other hand, the mass torque density (MTD) depends on the stall torque and 

the active region mass. This leads to the equations below expressing the VTD and MTD: 

��� =
����� ������

������ ������ ������
 [� ⋅ �/�] (I-11) 

��� =
����� ������

������ ������ ����
 [� ⋅ �/��] 

(I-12) 

5. Magnetic Gear Types and Topologies 

With the increasing research interest magnetic gears have gained over the past few decades, a 

variety of structures and types were proposed for different application. Some were conventional 

known structures and others tried to provide an innovative and new design, and the main goal 

was to always achieve the best and most efficient performance. There are a lot of criteria from 

which one can choose for the classification of magnetic gears, but there are no absolute rules 

for nomenclature, as different names or definitions might appear in different references. Multiple 

contributions could be found providing a literature overview on magnetic gears and listing the 

different types and structures [21]–[26]. Fig. I-13 list some criteria and types that could be used 

to identify and classify magnetic gears where any combination of the listed criteria could form a 

unique magnetic gear type or structure. Some might consider that the majority of rotational 

magnetic gears could be split into two main types: a radial field type (i.e., coaxial radial field 

structure), and an axial field type (i.e., coaxial discoidal structure). 
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Fig. I-13 Main criteria used for classifying and identifying magnetic gears. 

Moreover, if one wants to pick two main criteria to classify magnetic gears from the list shown 

in Fig. I-13 Main criteria used for classifying and identifying magnetic gears., they will probably 

choose the field orientation and the magnetic arrangement of the rotors. In the following 

sections, the main magnetic gear types and structures will be identified and presented, in addition 

to some special structures and types that could not clearly fit into a single category or scheme. 

• Rotational [16] [17] [29]   

• Linear [71]

Type of Motion

• Coaxial [16] [17] [29] 

• Shifted Axis [62]

Axis Position

• Radial [16] [17] [29] 

• Axial [46]

• Transversal [54]

Main Field Orientation

• Rare-earth permanent magnets

• Neodymium (Nd2Fe14B) [33]

• Samarium-Cobalt (Sm-Co5) [8]

• Permanent ferrite magnets (hard ferrites) [30]

Type of the Magnetic Field Source

• Surface-mounted magnets [16] [17] 

• Interior magnets [34]

• Flux focusing configuration [30] [31] [32]

• Halbach-array configuration [36]

• Reluctance rotors [44]

Magnetic Arrangement of the Rotors 
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5.1. Coaxial Radial Field Magnetic Gears 

The coaxial radial field structure is the most popular and used structure among magnetic gears 

as well as electric machines. The term “radial field” defines the magnetic flux main orientation 

which aligns with the radial direction with respect to the center of rotation of the device, and 

the term coaxial signifies that all the structures of the device share the same axis or center of 

rotation, and in the case of magnetic gears, the three rotors are aligned at single axis of rotation. 

One of the most popular contributions about magnetic gears, the high-performance magnetic 

gear that was presented in the “Principle of Operation of Magnetic Gears” section was a coaxial 

radial field magnetic gear with surface-mounted permanent magnet rotors [16], [17]. The surface- 

mounted PM rotors define the magnetic arrangement of the magnetized rotors, meaning that 

the permanent magnets are placed on top of the surface of the rotor back iron which is usually 

composed of a ferromagnetic lamination, and the polarities of the permanent magnets are 

alternating between north and south poles (see Fig. I-14). The same magnetic gear type but with 

a modified ferromagnetic pole-pieces shape was proposed in [27], [28]. The idea there was to 

add a supporting bridge for the ferromagnetic pieces and optimize their shape to achieve the 

desired performance (see Fig. I-15). 

 

Fig. I-14 A coaxial radial field magnetic gear with surface-mounted permanent magnets. 
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Fig. I-15 A cross-section of the modified ferromagnetic pole-pieces rotor with a support bridge [28]. 

It has been demonstrated that the support bridge would simplify the mechanical construction 

and eliminate some high-order unwanted harmonics. In fact, using the bridge is the most 

common practice to support the modulating pieces, but it might provide a leakage path for flux 

which would reduce the stall torque and affect the overall performance. 

In one of the original publications about magnetic gears [29], the authors proposed a radial 

field structure with a spoke type flux focusing inner rotor and a surface-mounted PM outer rotor 

(see Fig. I-16). The simulation of the structure was very promising providing a volumetric torque 

density of 92 �. �/�, but the performance of the prototype was underwhelming due to end-

effects and mechanical issues. 

 

Fig. I-16 The spoke-type inner rotor coaxial radial field magnetic gear proposed in [29]. 
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Similarly, a flux-focusing radial field magnetic gear (see Fig. I-17) was proposed and studied 

throughout multiple works testing different magnet types [30]–[32]. The works tested using 

ferrite magnets for cost reduction, neodymium magnets, and a hybrid combination of 

neodymium magnets on the inner rotor and ferrite magnets on the outer rotor. The predicted 

and experimentally verified VTDs of the magnetic gear using ferrite magnets only were 

56 �. �/� and 33 �. �/� respectively. For the magnetic gear using the hybrid combination, 

the predicted and experimentally verified VTDs were 81 �. �/� and 66.3 �. �/� respectively. 

Finally, the magnetic gear using neodymium magnets only provided predicted and 

experimentally verified VTDs of 154 �. �/� and 151.2 ��/� respectively. This illustrates 

the performance-boost acquired when using rare-earth magnets and highlights their importance 

for magnetic gears aiming to achieve high torque densities. Subsequently, after optimizing the 

design, shown in Fig. I-17, using a parametric sweep analysis and while using neodymium 

permanent magnets, the authors have managed to experimentally achieve an impressive VTD 

of 239 �. �/�, knowing that the predicted value through simulations was 245 �. �/� [33]. 

A radial field design, shown in Fig. I-18, with interior PM inner rotor and surface-mounted 

PM outer rotor was proposed in [34]. The work also proposed three possible configurations for 

the ferromagnetic pole-pieces support bridge and compared between them. The experimental 

prototype for this design had a torque density of 42 �. �/� while the calculated value was 

66 �. �/�.  

 

Fig. I-17 The flux-focusing radial field magnetic gear proposed in [30]. 
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Fig. I-18 The interior permanent magnet radial field magnetic gear proposed in [34]. 

Another radial field interior PM magnetic gear was proposed in [35], but for this design the 

PMs on the outer rotor were interior and were surface mounted on the inner rotor (see Fig. 

I-19). Moreover, instead of the traditional alternating polarity, the permanent magnets on the 

outer rotor were homopolar. While the predicted VTD value of this design was 55.3 �. �/�, 

the reported experimental value was 53.3 �. �/�. 

 

Fig. I-19 The interior PM outer rotor radial field homopolar magnetic gear proposed in [35]. 
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Fig. I-20 A coaxial radial field magnetic gear with Halbach array rotors [36]. 

An additional popular magnetic arrangement of the rotors is the Halbach array configuration. 

A coaxial radial field magnetic gear using neodymium Halbach array permanent magnets was 

proposed in [36] (see Fig. I-20). The design was computed to obtain a VTD of 284 �. �/� 

using just a 120mm outside diameter for the active region, and the experimental prototype 

achieved a VTD of 261.4 �. �/�. More studies and works on radial field coaxial magnetic 

gears using Halbach array could be found in [37]–[43]. 

For high-speed applications, reluctance type magnetic gears are proposed where the inner 

rotor is completely passive, and the permanent magnets only exist on the outer rotor. In [44], 

the authors proposed such a design (see Fig. I-21), but it suffered from a very low torque density 

both through simulation and experimentally (19.49 �. �/� and 12.66 �. �/� respectively). 

Nevertheless, the advantages shown for this design were the ability to operate in high-speed 

region due to the simplicity and robustness of the inner rotor, and, in comparison with the 

surface-mounted PM magnetic gear, the reluctance design have shown higher efficiencies in the 

high-speed region. 
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Fig. I-21 The reluctance type coaxial magnetic gear proposed in [44]. 

5.2.  Coaxial Axial Field Magnetic Gears 

The axial field topology has gained significant research interest in the domain of electric 

machines in the past few decades. This topology could be also applied to magnetic gears, and, 

eventually, works have been established on studying axial field magnetic gears and their 

performance. There are multiple advantages and situations that could make the axial field 

structure more favorable than the radial field one. For example, in applications where spatial 

restrictions limit the stack length of the device but allow radial expansion, axial field structures 

could be a perfect fit, and this discoidal structure could facilitate the implementation of multi-

stage systems. In addition, they could be very suitable for systems that require isolation between 

the input and output shafts or where the mechanical power should be transmitted through a flat 

barrier. Despite all the mentioned advantages, the radial field topology might still be the more 

favorable in most applications due to the unbalanced axial forces that the axial field structure 

experience on each rotor. These forces could cause different mechanical problems and most of 

the times will lead to a non-uniform air gap between the rotors, so more consideration should 

be given to the rigidity and strength of an axial field structure which might increase the cost and 

complexity of the device. An interesting study comparing axial and radial field surface-mounted 

PM magnetic gears could be found in [45]. 

One of the first contributions about axial field magnetic gears was the work established by S. 

Mezani in 2006 [46]. The proposed design was an axial field surface-mounted PM magnetic gear 

utilizing neodymium magnets (see Fig. I-22). After performing a basic optimization study, the 

calculated VTD of the structure with the optimal parameters was shown to be around 

70 �. �/�, and the calculated axial forces on the rotors were shown to be relatively small.  
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Fig. I-22 The high-performance axial field magnetic gear proposed in [46]. 

A flux focusing axial field magnetic gear was proposed in [47]. The study proposed using 

ferrite magnets and included only simulation results (see Fig. I-23). The study performed a 

parametric sweep analysis to determine the values that maximize the torque densities, and the 

calculated VTD of the final design was 65 �. �/�. In the same work, the calculated VTD of a 

surface-mounted PM axial field magnetic gear with similar size and properties was 41 �. �/� 

which highlights the advantage of using the flux focusing configuration especially when using 

ferrite magnets. Another study by the same team was proposed in [48], where it kept the same 

configuration and used neodymium magnets instead of ferrite. The design parameters were 

optimized to obtain minimal torque ripple and high torque density, where the calculated VTD 

of the final design was 257.6 �. �/�. Afterwards, the team finally realized an experimental 

setup for their design and presented it in [49]. The design was meant for an ocean generator 

application, and it was experimentally verified that it could achieve a VTD of 152.3 �. �/� 

knowing that the simulated value was 173 �. �/�. 

Likewise, an axial field surface-mounted PM magnetic gear was designed and experimentally 

realized in [50]. According to the authors, this work presented the first known experimental 

prototype of an axial field magnetic gear and during the design phase they faced a lot of 

challenges to make the construction feasible, so they had to consider some design choices that 

weren’t necessarily optimal for obtaining a high torque density like having an air gap of 5 mm. 
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Fig. I-23 The axial field flux focusing magnetic gear proposed in [47]. 

Eventually, the calculated and experimentally reported VTDs from the magnetic gear in [50] 

were 21.1 �. �/� and 22.4 �. �/�. Subsequently, the same team proposed an axial field 

magnetic gear with Halbach array rotors in [51]. The work included an analysis study, where 

multiple advantages of using Halbach array were demonstrated like decreasing iron losses and 

lowering the torque ripple. It was shown also that using the Halbach array could increase the 

torque density of the structure. For example, for a gear ration of 4.14, the calculated VTD 

increased from 128 ��/� to 183.9 ��/� when using Halbach arrays on both rotors. 

Furthermore, an interesting new design of an axial field flux focusing magnetic gear with L-

shaped ferromagnetic pieces was proposed in [52]. The unique L shape of the ferromagnetic 

pieces was suggested to reduce the flux leakage (see Fig. I-24). However, this design might not 

be easy to fabricate using traditional techniques, so the 3D printing was proposed to overcome 

this difficulty. Nevertheless, the authors still faced difficulties when making the prototype, and 

its performance at the end turned out to be very underwhelming. The authors reported that the 

3D-printed design might not also withstand high axial attraction forces. Finally, it was reported 

that the calculated VTD of the design using neodymium magnets was 74 �. �/�, but the 

prototype, which used ferrite magnets, achieved a torque density of 2 �. �/� only. 
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Fig. I-24 The axial field flux focusing magnetic gear with L-shaped ferromagnetic pieces [52]. 

5.3.  Transverse Flux Magnetic Gears 

Despite the potential that the transverse flux MG might hold, it is still one of the immature 

types that not a lot of research has been put into it and still requires much more investigation. 

The potential mainly lies around obtaining higher torque densities similar to transverse flux 

motors that were shown to have the potential for significantly higher torque densities than their 

radial counterparts [53]. A transverse flux magnetic gear enables the 3D circulation of magnetic 

flux which necessitates the use of 3D modeling techniques to study and analyze the 

structure[54]–[57]. In [58], the analysis of a flux focusing transverse flux magnetic gear was done 

(see Fig. I-25). After properly sizing the structure and optimizing the parameters, the calculated 

VTD was 20.2 �. �/� when using ferrite magnets and 80.6 �. �/� when using neodymium 

magnets. In comparison with a radial field magnetic gear, the VTD of the transverse flux design 

was much lower. Afterwards, an experimental prototype of a transverse flux magnetic gear was 

presented in [59]. This prototype was based on the original design shown in [60] which used 

surface-mounted PM rotors (see Fig. I-26). The work suggested using neodymium magnets and 

implemented an instrumentation setup to measure the electromotive force induced in the 

ferromagnetic pole-pieces. However, the measured VTD of the prototype was only 

14.9 �. �/�, and it has been reported that large iron losses are occurring in the ferromagnetic 

segments independent of the load. 
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Fig. I-25 The transverse flux focusing magnetic gear from [58]. 

 

(a) 
 

(b) 

Fig. I-26 The (a) transverse flux magnetic gear with (b) the 3D flow of its magnetic flux [59], [60]. 

A novel design which could be considered as a hybrid axial transverse flux type was proposed 

in [61]. The work discussed a flux focusing magnetic gear with special T-shaped ferromagnetic 

pole pieces (see Fig. I-27). It was shown that the special shape of the pole pieces reduced the 

saturation and flux leakage in the modulating rotor as compared to conventional axial field 

magnetic gears. In addition, it was demonstrated that the proposed design could achieve higher 

torque density than an axial field structure, where the calculated VTD using optimized 

parameters was evaluated at 282.5 �. �/�. However, it is yet to be proven how practical and 

plausible the fabrication of this design will be. 
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Fig. I-27 The axial transverse flux focusing magnetic gear with T-shaped pole pieces proposed in 

[61]. 

5.4.  Special Magnetic Gears 

This section is concerned with magnetic gears that don’t clearly fit into any of the previous 

mentioned categories, and especially, MG topologies that try to imitate their mechanical 

counterparts. It has been shown that a lot of these implementations didn’t succeed because of 

the poor utilization of the magnetic energy like the spur magnetic gear for example, but there 

are some topologies that were proven to have some great potential. 

The planetary magnetic gear, shown in Fig. I-28, is one of the types that have shown some 

potential and are being studied. It consists of an outer rotor ring gear, an inner rotor sun gear, 

and a set of planet gears where the numbers of pole-pairs on each member are ��, ��, and �� 

respectively. According to [62], which is one of the first works on planetary magnetic gears, the 

relationship between the number of poles on each member could be given as �� = �� + 2 ��, 

and if the ring gear is kept stationary, the gear ratio would be expressed as �� = (�� + ��)/��. 

In [62], the calculated VTD of the planetary magnetic gear was 97.3 �. �/�, but the 

experimentally measured VTD decreased significantly to 15.8 �. �/�. More works on 

planetary magnetics gears were proposed, where it has been shown that the predicted VTD of 

some designs could reach values as high as 300 �. �/� [63]–[65]. 



 

29 

 

Fig. I-28 The planetary magnetic gear proposed in [62]. 

Then, there is the cycloidal magnetic gear that is inspired by the cycloidal mechanical drive or 

gear. This type is one of the more interesting and sought-after types due to its capability of 

providing very high gear ratios using minimal volume and number of poles. Its operation 

principle is similar to its mechanical counterpart, where the outer ring gear is kept fixed while 

the inner rotor is forced to rotate with two different rotary motions. The first cycloidal magnetic 

gear was proposed by F. Jørgensen in [66]. With the previously described operation, if the 

number of poles on the inner and outer rotors is �� and �� respectively, the gear ratio between 

the two rotary motions becomes �� = �1/(�1 − �2). According to [66], for a cycloidal 

magnetic gear with a gear ratio of -21, the calculated VTD was 141.9 �. �/�, and the measured 

value through the experimental prototype made was 106.6 �. �/�. 

 

Fig. I-29 The concept of an (a) axial and (b) radial cycloidal magnetic gear [67]. 
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In addition, an axial cycloidal magnetic gear was first proposed in [68] with the purpose of 

countering the problems caused by the bearing wear issues occurring in the radial cycloidal 

magnetic gears due to the non-uniform air gap radial forces. In [67], a cycloidal magnetic gear 

design combining both axial and radial field topologies was presented (see Fig. I-29). The authors 

have done an analysis study on the structure and constructed a proof-of-concept prototype. 

Furthermore, three configurations for the design were studied, where the configuration 

combining both the radial and axial topologies had a calculated VTD of 20.6 �. �/� and an 

experimentally measured one of 17.6 �. �/�. More theoretical studies and simulations on 

cycloidal magnetic gears could be found in [69]–[74].  

5.5.  Linear Magnetic Gears 

Different types and topologies of magnetic gears have been presented in the previous few 

sections, but they all performed rotary motion transformation or transmission, and likewise there 

are also magnetic gears that could perform linear motion transmission. In other words, linear 

magnetic gears would transform the linear motion from one moving part while changing the 

speed of motion and force, and, of course, without any physical contact. Similar to linear electric 

machines, one could obtain the linear magnetic gear in a flat or tubular configuration, but the 

tubular configuration has gained more attention because it could be more practically valid. The 

principle of operation of the linear magnetic gear is the same as the conventional rotary magnetic 

gear having three main members, where two members hold the magnet poles and a member 

holds the modulation ferromagnetic segments, and the equations for the number of poles and 

gear ratio could be applied in the same manner. The first tubular linear magnetic gear was 

proposed by K. Atallah in 2005 [75], where the design has shown that it could achieve a 

volumetric thrust force density of 1.7 ��/� when using rare-earth magnets (see Fig. I-30). A 

year later, the same author proposed an improved and optimized design [76] that used quasi-

Halbach array magnetization on the high-speed mover which attained a volumetric thrust force 

density of 2 ��/�. Later, the authors of the original design constructed a prototype for their 

design and presented it in [77], [78]. The comparison of the calculated and measured values from 

the prototype, whose schematic can be seen in Fig. I-31, has shown that the spacing between 

the pole-piece rings has a significant impact on the transmitted force, where the measured 

transmitted force decreased by 30% from the simulated value. Finally, a novel tubular linear MG 

topology that uses high temperature superconductor (HTS) bulks in the modulating mover was 
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proposed in [79]. The structure, shown in Fig. I-32, could achieve remarkable improvement in 

the thrust force density as compared the conventional structures. 

 

Fig. I-30 The first tubular linear magnetic gear proposed in [75]. 

 

Fig. I-31 The tubular linear magnetic gear prototype cross-section presented in [77]. 

 

Fig. I-32 The HTS tubular linear magnetic gear shown in [79]. 



 

32 

5.6.  Magnetically Geared Machines 

A magnetic gear is a transmission device with no electrical connection (unless it is excited 

using coils which is not typical), and conveniently, it can be designed to replace a mechanical 

gear operating in a certain application in a simple manner, where no changes have to be made 

to the system and only the mechanical gear is to be replaced by a magnetic gear. An alternative 

proposal for utilizing a magnetic gear is to integrate it with an electrical machine forming what 

could be called a pseudo-direct drive system (PDD). This refined proposal could be very 

beneficial and useful for acquiring compact volume, low cost, high-performance devices for 

energy conversion applications which are defined in the literature as magnetically geared 

machines (MGMs). An MGM is said to be smaller, lighter, and more efficient than the standard 

direct drive machine while still using less magnet material [80]. The opportunities and advantages 

proposed by MGMs lead many researchers to pursue and study this idea over the past decade, 

which made the literature rich with many unique designs and structures. The classification of 

MGMs is rather complex and different identifications could be found in different references, 

however, a main aspect that could classify an MGM design is whether the combined magnetic 

gear and electrical machine are magnetically coupled or not. Some designs require magnetic 

coupling, while others leave it optional, and some can only operate when magnetically 

decoupled. In addition, the radial and axial field topologies are also possible for MGMs and the 

position of the stator, and the windings could also change the type and operation of the device.  

 

Fig. I-33 A disc-type magnetically geared machine [81]. 
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Fig. I-34 Radial field magnetically geared machines with (a) outer stator and (b) inner stator 

configurations [82]. 

In Fig. I-33, an axial field magnetically geared machine can be shown which was proposed in 

[81]. The proposed topology integrated an axial field permanent magnet machine into the bore 

of an axial field magnetic gear, where for this topology to function properly the magnetic gear 

and the electrical machine should be magnetically decoupled. Additionally, a radial field MGM 

with an outer stator configuration was proposed in [83], and another with an inner stator 

configuration was presented in [84] (see Fig. I-34). One of the differences between the inner and 

outer stator configurations is the magnetic coupling where the inner stator configuration can be 

magnetically coupled or decoupled whereas the outer stator configuration should be 

magnetically decoupled. Another difference is related to the volume of the MGM where in the 

inner stator configuration the electrical machine doesn’t increase the total volume of the system 

unlike the outer stator configuration. On the other hand, some of the disadvantages of the inner 

stator configuration is that it possesses three air gaps instead of two, and the cooling of its inner 

stator could be hard to achieve. These are some of the popular MGM types, and since this work 

will be mainly focused on pure MGs, the discussion was limited to these few types. In fact, to 

properly cover the subject of the MGMs a full chapter might be required due to the wide variety 

of designs available and the different aspects to discuss. Finally, more works and revisions on 

MGMs can be found in [85]–[92]. 
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6. Magnetic Gears Volumetric Torque Density Analysis 

To properly summarize and review the designs and topologies that have been presented in 

the previous section, a comparative study for the torque capability of the different designs should 

be done. In addition, since one of the goals of developing magnetic gears was to rival or replace 

mechanical gears, it is good to take a look at the torque densities that some mechanical gears 

possess. There are multiple design factors to look at and consider when comparing between 

magnetic gears and mechanical gears like:  

 Gear ratio 

 Torque and speed 

 Safety level required 

 Ease of accessibility to the installation or application for maintenance 

 Cost and total mass 

 Volume and spatial constraints 

 System operating temperature and installation environment temperature 

Each one of these factors plays a role in deciding which is better for the application in hand. 

In general, and from what have been discussed previously, the magnetic gear can “potentially” 

have the upper hand and advantage with respect to most of the factors, but, to this date, there 

are still a lot of practical design challenges that continue to form an obstacle in the way of widely 

implementing and using magnetic gears, and here’s where comes the incentive to continuously 

develop and improve magnetic gears.  

For this work, the main factors that will be used to compare mechanical and magnetic gears 

are the volumetric torque density and the gear ratio. However, other factors that could be related 

to material, mass, cost, efficiency, etc., are equally important, and especially when discussing the 

practical implementation in a live application, the economic feasibility, the mass production of 

the device, etc. Interesting studies discussing the optimization of magnetic gears with respect to 

the cost, mass, gear ratio, magnet material grade, and temperature could be found in  [93]–[95]. 

Before listing the VTD summary of the magnetic gears that have been proposed, a table listing 

the VTD of some mechanical gear types and models with different gear ratios is good for the 

comparison (see Table I-2), and this table is mainly summarized and extracted from multiple 

previous works that addressed this subject [96]–[98]. It is important to note that the VTDs listed 

in Table I-2 for mechanical gears are calculated with respect to a rough estimation of the 
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mechanical gear’s volume [98], unlike the VTDs of the magnetic gears, which are usually 

calculated with respect to a definite active magnetic region volume. In addition, the output rated 

torque of a mechanical gear is dependent on the input speed, and hence the values mentioned 

in the table are provided by the manufacturers for a specified input speed and could vary with 

varying the speeds. For instance, the output torque specified for a certain input speed could 

decrease with the increase of the input speed, so the VTD value for one magnetic gear model 

mentioned in the table below could vary depending on multiple factors. 

Table I-2 Summary of the torque capabilities of some commercial mechanical gears with different 

types and gear rations 

Topology Stages Model 
Gear 
Ratio 

Rated 
Torque 
(�. �) 

VTD 
(�. �/�) 

Spur 2 
Bonfiglioli C11 2P-

4.9-P90 
4.9 48 16 

Spur 2 
Bonfiglioli C11 2P-

20,6_P80 
20.6 82 27 

Spur 2 
Bonfiglioli C41 2P-

44,8-P90 
44.8 500 51 

Spur 3 
Bonfiglioli C100 3P-

150,4-P132 
150.4 12000 83 

Planetary 1 Neugart PLS90 HP 5 220 265 

Planetary 2 
Neugart PLS90 HP, 

2 stage 
20 220 189 

Planetary 2 
Neugart PLS60 HP, 

2 stage 
64 120 103 

Cycloidal 1 Nabtesco RV-6E 31 58 131.9 
Cycloidal 1 Nabtesco RV-20E 57 167 204.9 
Cycloidal 1 Nabtesco RV-40E 81 412 256.1 

Harmonic 1 
HarmonicDrive 
CSD-50-50-2UH 

50 172 142.1 

Harmonic 1 
HarmonicDrive 
CSD-50-80-2UH 

80 260 214.9 

Harmonic 1 
HarmonicDrive 

CSD-50-100-2UH 
100 329 271.9 

Worm 1 
Winsmith DB961 

Series 
5 2274 33 

Worm 1 
Winsmith DB961 

Series 
20 3386 49 

Worm 1 
Winsmith DB961 

Series 
100 2588 38 
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Furthermore, large differences can be observed between the different mechanical gear types 

listed in Table I-2, and a unique trend for the relationship of the “gear ratio vs VTD” couldn’t 

be specified. However, some observations could be made like the poor VTD values recorded 

by the spur and worm gear types with respect to the other types. In essence, the list of the torque 

and VTD values is only to provide an overview on the specifications of some mechanical gears 

and to have a perspective that could be useful when observing the VTDs of different magnetic 

gears. On the other hand, to perform a systematic comparison and to deduce the general trends 

and relationships of the quantities, a larger collection of mechanical gears should be presented, 

and the mechanical and magnetic gears used for the comparison should be rated for the same 

speed and designed for similar applications. 

Table I-3 Summary of the volumetric torque densities of magnetic gears available in the literature 

Magnetic Gear 
Type 

Magnet 
Type 

Gear 
Ratio 

Simulated 
VTD 

(�. �/�) 

Experimental VTD 
(�. �/�) 

Ref. 

Radial field – 
Halbach array 

Neodymium 5.67 284 261.4 [36] 

Radial field – flux 
focusing 

Neodymium 4.25 245 239 [33] 

Axial field – flux 
focusing 

Neodymium 4.16 173 152.3 [49] 

Radial field – flux 
focusing 

Neodymium 4.25 154 151.2 [32] 

Radial field – 
Halbach array and 

flux focusing 
Neodymium 4.25 152 112 [99] 

Radial field – 
SMPM 

Neodymium 10.5 115.7 110 [28] 

Radial field – 
Halbach array 

Neodymium 4.25 110.7 108.3 [100] 

Radial field – 
cycloidal 

Neodymium 21 141.9 106.64 [66] 

Radial field – 
SMPM 

Neodymium 4.25 97.1 95.4 [100] 
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Radial field – flux 
focusing 

Neodymium 4.25 126.67 95 [101] 

Axial field – 
cycloidal 

Neodymium 30 - 91.5 [68] 

Radial field – 
SMPM 

Neodymium 5.75 111.2 77.9 [17] 

Radial field – 
harmonic – dual 

stage 
Neodymium 360 78 75 [74] 

Radial field – flux 
focusing 

Neodymium 
and Ferrite 

4.25 81 66.3 [32] 

Radial field – 
SMPM 

Neodymium 10.33 - 60 [102] 

Radial field – 
Halbach array 

Neodymium 4.25 148.6 57.2 [103] 

Radial field – 
SMPM and flux 

focusing 
Neodymium 5.5 92 54.6 [29] 

Radial Field – IPM 
and SMPM 
(homopolar) 

Neodymium 7.33 55.3 53 [35] 

Radial field – 
SMPM 

Neodymium 10.5 80.8 49 [104] 

Radial field – IPM 
and SMPM 

- 5.5 66 42 [34] 

Radial field – 
SMPM 

Neodymium 5.5 53.1 41.6 [105] 

Radial field – 
SMPM 

Neodymium 5.5 - 36.9 [42] 

Radial field – flux 
focusing 

Ferrite 4.25 56 33 [30] 

Axial field – SMPM Neodymium 8 21.1 22.4 [50] 

Radial and axial 
field – cycloidal 

Neodymium 20 20.6 17.6 [67] 

Radial field – 
planetary 

Neodymium 3 97.3 15.8 [62] 
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Transverse flux – 
SMPM 

Neodymium 3.25 - 14.9 [59] 

Radial field – 
reluctance rotor 

Neodymium 6 19.49 12.66 [44] 

Axial field – flux 
focusing with L-
shaped segments 

Ferrite 4.16 74 2 [52] 

 

Fig. I-35 The experimental VTD of magnetic gears with different types and gear ratios. 

A summary of the characteristics of magnetic gears that have been experimentally realized is 

shown in Table I-3. The table describes the type of each magnetic gear, the gear ratio, and the 

calculated and measured VTDs. Most of the entries were presented in the previous sections, and 

in this table, they have been arranged and sorted in decreasing order with respect to the 

experimental VTD value. In addition, to better visualize the interesting and important 

relationship between the gear ratio and the VTD of the magnetic gears, the values from the 

columns of the gear ratio and experimental VTD from Table I-3 have been used to realize a 

scatter plot shown in Fig. I-35. Also, the table only mentioned the magnetic gears that had a 

prototype and experimental measurements to increase the validity of the analysis and 

comparison, but there are still much more theoretical designs and concepts that have been 

presented in the literature and could hold a lot of potential. After reviewing the literature and 
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analyzing the data presented, some of the main points and takeaways that could be mentioned 

are: 

 To this date, the radial field topology seems to be the dominant structure for magnetic gears 

where the majority of the successful prototypes constructed are of the radial field type, and 

the highest measured VTDs are for radial field magnetic gears. However, this doesn’t mean 

that the axial field topology isn’t receiving enough research interest. In fact, the axial field 

topology has received a lot of attention from researchers and several designs have been 

proposed, but the main challenge lied always in successfully constructing a prototype and 

applying the design. The axial attraction forces in the axial field topology cause multiple 

issues, challenge the structural integrity of the device, and complicate the fabrication process. 

In addition, aligning the three discoidal rotors of an axial field structure and maintaining the 

alignment in the presence of the attraction forces is a big challenge, where most of the times 

the structure ends up having non-uniform air gaps between the rotors which increases the 

severity of the attraction forces even more. Hence, more research is still required for the 

axial field topology, whether it is by optimizing the structure itself from a magnetic point of 

view to improve its performance, or by improving the design structurally and mechanically 

to overcome the construction challenges. 

 Among the different magnetic arrangements of the rotors, the flux focusing and the Halbach 

array seem to be the best performing arrangements, where currently the highest and second 

highest measured VTDs are for magnetic gears with Halbach array and flux focusing 

arrangements respectively. This doesn’t exclude any other possible arrangement or 

configuration from having a high-performance when properly designed and optimized, 

where every arrangement has its advantages and disadvantages, and the design should be 

ultimately tailored to properly suit the application and constraints in hand. Moreover, it has 

been demonstrated that the design and shape of the ferromagnetic pole-pieces have an 

impact on the overall performance, and the method to support the modulating segments 

should be properly investigated during the design process.  

 By checking the values of the VTDs in Table I-3, one can see a significant discrepancy 

between the simulated and experimental VTD values in most of the cases where only a few 

of the designs have managed to keep the expected and measured values close enough. One 

of the most reported causes for this discrepancy is the end-effects which weren’t properly 

taken into account in the simulation. In addition, another cause reported by a lot of works 
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was the difference between the design values used in the simulation and the experimental 

values realized in the prototype where many values had to be changed during the 

construction process to make the fabrication possible. In essence, before going into the 

construction phase, it is always important to use proper modeling methods that could take 

into account different phenomena and predict the performance accurately. Moreover, 

developing proper and efficient modeling tools could always form a positive contribution to 

the whole design process. It is not to be ignored also that the current measured performances 

of the available magnetic gears are coming from prototypes constructed at laboratories for 

testing and experimentation, so it is not fair to strictly compare them to mechanical gear 

technologies that have been manufactured and mass produced for over a century. Hence, as 

the magnetic gears technology evolve and develop over the next few years, their 

performance will continue to rise, especially when the designs start to be practically 

implemented into systems and manufactured by industrial societies that could optimize the 

fabrication of the product for maximal performance. 

 After observing Fig. I-35, it seems that predicting a general trend for the gear ratio vs the 

VTD relationship might not be straightforward. For the conventional magnetic gear types 

which have been presented in the previous sections, one can assume that the VTD is 

decreasing with the increase of the gear ratio, which is in agreement with what have been 

presented in [106], where the authors tried to compare between mechanical and planetary 

magnetic gears. According to [106], this trend is also true for planetary mechanical gears, but 

the two gear types react differently to varying the external diameter, where the mechanical 

gear had almost the same torque density no matter what the value of the external diameter 

while the magnetic gears VTD increase with the increase of the external diameter. On the 

other hand, this trend might not fully stand when discussing special magnetic gear types that 

are designed to achieve higher gear ratios like the cycloidal magnetic gear, where multiple 

works on this type have shown that it could achieve high VTD with high gear ratios. An in-

depth investigation is required to identify the variation trend for some of the special magnetic 

gear types. 

 It has been reported by multiple works that the losses occurring in a magnetic gear depend 

primarily on the speed of rotation rather than the load [107]. In addition, the losses appear 

to be lower at full torque load than at no load or reduced load, where the losses can be 

divided into two types: electromagnetic losses related to iron core and permanent magnet 
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losses, and mechanical losses related to bearings and friction. Therefore, magnetic gears 

could be considered more suitable and efficient for low-speed high-torque applications. 

Conclusion 

A literature overview and state-of-the-art presentation on magnetic gears were shown in this 

chapter. The potential advantages provided by magnetic gears were presented to clarify the 

motives behind researching and developing this technology. After presenting the principle of 

operation of modern magnetic gears, the different types and topologies of magnetic gears were 

presented. Finally, a summarizing analysis has been conducted by gathering and analyzing the 

data available in the literature, then the result of this analysis is summarized in some key points. 

The principles and information discussed and presented in this chapter are supposed to provide 

the reader with an orientation towards the type of the problem this work is tackling and should 

serve as an important reference for next the chapters. 
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C h a p t e r    I I  -   M a g n e t i c  E q u i v a l e n t  C i r c u i t  f o r  

M o d e l i n g  M a g n e t i c  G e a r s   

Introduction 

In this chapter, the objective is to present and implement modeling methods for magnetic 

gears, where the main focus is directed towards the modeling of axial field magnetic gears. The 

ultimate goal behind this is to obtain a modeling tool for early design stages, which can consider 

the 3D aspects of axial field magnetic gears while having a short computation time. First, a brief 

overview on magnetic materials behaviors and types is done. Next, a theoretical presentation for 

the modeling techniques that are going to be used is conducted which illustrates the 

implementation of the finite element method technique and presents the formulations of the 

magnetic equivalent circuit method. Then, the details of the implementation of the magnetic 

equivalent circuit method are illustrated through multiple sections. Furthermore, the presented 

modeling method is evaluated through testing its nonlinear solvers and comparing between 

them. Additionally, the end-effects in axial field magnetic gears are analyzed and modeled using 

a 3D magnetic equivalent circuit model, and a comparison between two magnetic gear 

configurations is conducted. Finally, an alternative quasi-3D method for modeling the end-

effects is presented and evaluated. 

1. Magnetic Materials 

Understanding the magnetic material properties and behavior is essential for the design of 

electric machines and magnetic gears. Ignoring some magnetism principles and phenomena 

while modeling an electromagnetic device will definitely lead to an inaccurate model and wrong 

predictions. Hence, some of the practical aspects for magnetism and magnetic materials, that 

will be mostly useful for the modeling approaches to be presented later, will be presented in a 

rather compact fashion because diving into the details of magnetism might be out of the scope 

of this work.  

The following categories may be used to classify magnetic materials: diamagnetic 

paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic (see Fig. II-1). Diamagnetic 

materials don’t have a net magnetic moment at the atomic or molecular level. As for the 
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paramagnetic materials, they have a net magnetic moment at the atomic level, but the coupling 

between proximity moments is weak. On the other hand, ferromagnetic materials have a net 

magnetic moment at the atomic level, and, in contrast to paramagnetic materials, there is a tight 

coupling between neighboring moments. The moments spontaneously align across macroscopic 

areas known as domains as a result of this interaction. When the material is exposed to an applied 

field, the domains further align. Finally, atomic moments in ferrimagnetic and antiferromagnetic 

materials are arranged such that they are antiparallel to one another [108]. This makes the 

ferromagnetic materials the best candidate for creating flux tubes, storing magnetic energy, and 

transferring it across the different regions of an electromagnetic device. Therefore, the 

discussion will be limited to the behavior and nature of the ferromagnetic materials. 

1.1. The B-H relationship 

The relationship between the magnetic flux density and the magnetic field intensity defines 

the macroscopic properties of the material. It is called the constitutive relationship and is given 

by: 

� =  � � (II-1) 

where � is the magnetic flux density expressed in (� or ��. ���), � is the magnetic field 

intensity expressed in (�. ���), and � is the permeability expressed in (�. ���). 

 

Fig. II-1 Magnetic materials classification showing the orientation of the magnetic moments of each 

category [109]. 
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The permeability � is scalar for isotropic media but might become tensor for anisotropic 

materials. This is due to the fact that anisotropic materials have different magnetic properties in 

different directions. In other words, magnetic anisotropy is the characteristic of a material that 

maximizes certain magnetic properties in a favored direction. It is unlike isotropic materials 

which have the same magnetic properties regardless of the direction. Moreover, if the behavior 

of the material is magnetically nonlinear, the value of the permeability becomes dependent on 

the intensity field value. In addition, a material is called non-homogeneous if the permeability is 

a function of position [110]. Finally, another important and more general form of the 

constitutive equation is given by: 

� =  �� (� + �) (II-2) 

This equation is expressed according to the Sommerfeld convention where �� =

4�. 10�� �. ��� is the vacuum or free space permeability, and � is called the Magnetization 

which is a measure of the net magnetic dipole moment per unit volume. From (II-1) and (II-2), 

the following equation can be derived: 

� =  �� � (II-3) 

where �� is the susceptibility of the material and its relationship with the permeability is given 

by: 

�� =
�

��
− 1 (II-4) 

Plotting the magnetic flux density � or the magnetization � as a function of � is a very good 

way to represent graphically the macroscopic properties of a magnetic material. The B-H plot is 

used more often, knowing that it is based on the constitutive equations presented in (II-1) and 

(II-2), so the M-H plot also could be easily deduced using these equations. A demonstrative B-

H plot is shown in Fig. II-2, the plot is nonlinear, and it is usually called a hysteresis loop or 

magnetization curve. It reveals the hysteresis phenomenon attributed to the ferromagnetic 

materials which basically means that the present state of a material depends on its prior 

magnetization state. To understand some of the useful information that could be extracted from 

a hysteresis loop, it is useful to briefly present the magnetization cycle. 
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Fig. II-2 A typical B-H plot or hysteresis loop. 

Referring to the points shown in Fig. II-2, starting at point O with an unmagnetized specimen, 

an �-field is applied. As the magnetic field intensity value increases in the plus direction, the 

domains having the same alignment as � expand which eventually increases the value of the 

magnetic flux density. As the magnitude of � gradually increases from weak to moderate then 

from moderate to high, the magnetic moments that were not initially aligned with the direction 

of � start to gradually align depending on the strength of the applied field and the extent of their 

initial misalignment. The magnitude of � will in turn gradually increase until eventually reaching 

the saturation point S, and afterwards the increase rate of the magnitude of � becomes much 

slower no matter how high the magnitude of � reaches. Reaching the saturation phase indicates 

that the majority of the magnetic moments are aligned or close to alignment with the direction 

of �. This phenomenon is called magnetic saturation, and it is essential to understand and 

consider when analyzing electromagnetic devices that use soft magnetic materials.  

After tracing the segment OS which is called the initial magnetization curve, the magnetic 

field intensity value is decreased gradually to zero. However, some of the magnetic moments 

retain their orientation, and others that were initially aligned in an opposite direction to the 

magnetic field don’t return to their initial opposite alignment. This will form a net positive 

alignment for the magnetic moments in the plus direction which will remain even when the 
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magnetic field is reduced to zero, so the material at this stage will exhibit a residual induction 

value �� which will be called magnetic remanence. Then, the direction of � is reversed to trace 

the remaining part of the loop starting from the residual induction point. As the magnetic field 

value is increased in the negative direction, the moments flip their orientation and try to align 

themselves with the new direction of the magnetic field until eventually cancelling out the 

positive net magnetic moment and reducing the magnitude of  � to zero. At the point where 

this occurs the value of the magnetic field is denoted ��, and it is called the coercivity. After the 

magnitude of �  is increased beyond −��, a similar behavior to what has been seen in the initial 

magnetization segment occurs but in the negative direction, until consequently reaching the 

saturation point S’ attributed to the same saturation induction value the point S had but in the 

negative direction. In a similar fashion, when the magnitude of � is returned to zero, and it is 

reversed to the positive direction again, the path (��, �) is traced in a symmetrical fashion 

passing through the point (0, −��) which closes and completes the hysteresis loop. It is worth 

noting that the loop that has been described is called the major hysteresis loop where minor 

hysteresis loops could be obtained by cycling through magnetic field values such that −�� <

� < ��. 

1.2. Soft Magnetic Materials 

Considered as a class of ferromagnetic materials, the soft magnetic materials serve as the 

magnetic core for a wide variety of applications. Their “soft” label originated from the fact that 

they could be easily magnetized and demagnetized. These materials are characterized by their 

low coercivity (�� < 1000 �/�) and high permeability making them perfect for magnetic flux 

conduction and channeling. Their hysteresis loop could be distinguished by its thin body and 

small enclosed area as compared to the loop of hard magnetic materials which are the second 

family of ferromagnetic materials (see Fig. II-3). These properties make soft magnetic materials 

substantially used in electric machines, transformers, inductors, transducers, electromagnets, etc. 

There are different types of soft magnetic materials suitable for different applications and 

possess different qualities and responses to frequency, temperature, and magnetic field intensity. 

Some of the important quantities that play a role in the choice and classification of soft magnetic 

materials are the saturation magnetization, coercivity, permeability, and resistance. High 

permeability and saturation magnetization are preferred for applications where high magnetic 

field values are anticipated. 
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Fig. II-3 Illustrative hysteresis loops for soft and hard magnetic materials. 

On the other hand, high-frequency applications might prioritize having very low coercivity 

and high resistivity values. Low coercivity and high resistivity mean reducing losses caused by 

hysteresis and eddy currents respectively. In addition, as shown in Fig. II-4, a linear segment 

could be identified in the magnetization curve of almost every soft magnetic material. This 

segment represents the state of the material before hitting the magnetic saturation, and the 

relative permeability along it is constant. The relative permeability �� which is normalized to the 

free space permeability �� is given by: 

�� =
�

��
 (II-5) 

Whether it is purified from any impurities then used in its pure form or mixed with other 

elements to form alloys, iron (Fe) constitutes the main chemical element of almost all soft 

magnetic materials. Different alloys and compositions possess different chemical and physical 

properties. For example, silicon steel (Fe-Si) is mostly used in motors and transformers due to 

its high permeability and increased resistivity and hence reduced eddy current losses and 

improved magnetic flux conduction. 
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Fig. II-4 The B-H curves for different soft magnetic materials [111]–[116]. 

In addition, it can be divided into two types: grain-oriented (GO) Fe-Si and non-grain-

oriented (NO) Fe-Si, where it is known that the grain-oriented Fe-Si is used for static 

applications like transformers whereas the non-grain-oriented Fe-Si is used for rotating 

applications like motors and generators. Nickel-iron alloys (Fe-Ni) are another kind of alloys 

that have very high permeability values but lower saturation magnetization than silicon steel or 

soft iron. Applications for Fe-Ni alloys include the cores of audio frequency transformers, 

magnetic amplifiers, and inductors [108], [117]. Moreover, there is the cobalt-iron alloys which 

are characterized by their very high saturation induction (up to 2.4 T), so they are considered 

very suitable for all applications that require high flux density like, for example, applications with 

flux focusing configuration, but they can be quite expensive.   

The magnetization BH curves of a variety of magnetic materials from different manufacturers 

are shown in Fig. II-4. It is worth noting that these are presented just for illustration and not 

necessarily for strict comparison because each curve is traced under different conditions, and 

the user should always refer to the data sheet of the manufacturer to identify the key quantities 

of the material they are aiming to use and decide whether or not it can fit their specific 
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application. In general, for magnetic gears, the main priority is having a soft magnetic material 

with high saturation induction, permeability, and resistivity. In addition, reducing hysteresis 

losses might become a priority if the magnetic gear is designed to operate at very high speeds. 

Hence, the situation is similar to electric machines, so silicon steel, cobalt-iron alloy, carbon steel, 

or pure iron could all serve as good candidates for the use in the magnetic core of a MG. 

1.3. Hard Magnetic Materials 

Unlike soft magnetic materials, hard magnetic materials are identified by their high coercivity 

and low permeability, and, as their name suggest, the high coercivity makes it “hard” to 

magnetize and demagnetize them. They are also called permanent magnets since once 

magnetized they can maintain their magnetization and act as a magnetic field source. Permanent 

magnets are essential for the functioning of many applications, and they are extensively used in 

electric machinery. For magnetic gears, it has been demonstrated in the first chapter that the 

development of the PM materials and capabilities played the biggest role in improving the 

performance of magnetic gears and rising the interest in them.  

Permanent magnets operate in the second quadrant of the magnetization curve (Fig. II-2), 

and it is due to what is called the demagnetization field which is a self-field that opposes the 

magnetization field, where it develops inside the material when the material is magnetized. Some 

of the main properties that should be inspected when selecting a magnet are the remanence ��, 

the coercivity, the shape of the BH curve in the second quadrant, the Curie temperature, and 

the energy density. The remanence has been identified in the previous section as the intersection 

of the hysteresis loop with the H-axis (� = �� at � = 0), and similarly the coercivity was 

defined as the magnetic field value at � = 0. However, since the coercivity values in permanent 

magnets tend to be very high, two types of coercivities are defined corresponding to the B-H 

and J-H curves. First, there is the normal coercivity ��� which is the point at which the magnetic 

flux density is nullified, and it corresponds to the magnetic field value in the B-H curve at which 

� = 0. Then, the value that corresponds to the J-H curve is known as the intrinsic coercivity 

��� which is the point at which the polarization of the magnet reaches zero. This is knowing 

that the polarization � is attributed to the magnetization � and defined as � =  �� �. After 

reaching one of the coercivity points, the magnet is completely demagnetized and can be re-

magnetized if it hasn’t endured any physical damage. 
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Fig. II-5 The B-H demagnetization curve of a permanent magnet with a knee point P1. 

In addition, the Curie temperature is the temperature value at which the ferromagnetic 

material loses its magnetic properties and becomes paramagnetic, and usually permanent 

magnets manufacturers will set a maximum operating temperature below the curie temperature 

point. Furthermore, the energy density is represented as the product of the values of � and � 

acquired at any point along the B-H demagnetization curve. There appears a maximum value 

for the energy density among the points of the demagnetization curve denoted (��)���, and 

it is used usually to grade the hard magnetic materials. 

Finally, the B-H curve in the second quadrant is usually linear or possesses a large linear 

segment with a knee point at which the B-H relationship turns nonlinear. By looking into Fig. 

II-5, the original linear segment of the B-H demagnetization curve is identified by the points Br 

and P1, where the relative permeability of along this segment is constant denoted as the “recoil 

permeability”, and its value is usually close to unity. It is good to note that even with low relative 

permeability, the hard magnetic materials are still considered ferromagnetic because their internal 

structure is designed to have the maximum energy storage capability. The operating point of the 

permanent magnet is determined by the geometry of the magnet and the geometry and 

properties of the magnetic circuit it is placed in. In static systems, the structure can be designed 

to choose an operating point for the magnet at the maximum energy density position, but in 

dynamic systems like rotating machine it should be kept along the linear segment of the 

magnetization curve. If the operating point of the magnet passes below the knee point P1, 

irreversible losses occur. As can be seen in Fig. II-5, if the operating point passes from P1 to P2 



 

51 

then shifts upward, it will not return to its initial line connecting Br and P1, but it will trace a new 

demagnetization path passing through P3 and Bp with the new remanence value being smaller 

than the original one (�� < ��). 

Different chemical compositions significantly change a permanent magnet properties and 

usages. Some of the commercially available and used hard magnetic materials are alnico, 

samarium cobalt (SmCo), hard ferrites, and neodymium-iron-boron (NdFeB). A summary of 

some of the main properties of these magnets can be found in Table II-1. It is worth noting that 

properties can differ even for magnets the have the same type and chemical elements, and this 

difference depends on many factors like heat treatment, whether it was prepared by sintering or 

casting, and the magnetic orientation of its particles which determines if the magnet is isotropic 

or anisotropic. For example, alnico magnets can have excellent stability over a wide temperature 

range higher than 500 °C, strong corrosion resistance, but relatively low coercivity and energy 

density. On the other hand, hard ferrites are the most commonly used and least expensive hard 

magnetic material. They are produced by powder metallurgical methods and are usually called 

ceramic magnets. In addition, they are characterized by good temperature stability, high 

coercivity, high electrical resistivity, and excellent corrosion resistance.  

Then, there are the rare-earth permanent magnets which are known to have the highest energy 

density, coercivity, and remanence among all the magnets. The two most known rare-earth 

magnets are the neodymium iron (NdFeB) and the samarium cobalt (SmCo), where they both 

possess very high energy density and coercivity, so they are amongst the best in terms of 

resistance to demagnetization, and they are both produced using powder metallurgical methods. 

The main difference between them is in the optimum operating temperature, where the 

neodymium magnets possess the highest energy density and remanence but at low temperatures 

(below 200 °C). At high temperatures, the strength of the neodymium magnets decreases rapidly, 

and the samarium cobalt magnets gain the advantage of having excellent thermal stability (SmCo 

magnets possess excellent temperature coefficients). Additionally, another important difference 

is the corrosion resistance, where the neodymium magnets are among the most vulnerable 

magnets to corrosion and require special treatment and coating if they are meant to be installed 

in harsh environments, but SmCo magnets have excellent corrosion resistance thanks to the 

large percentage of cobalt. Finally, some neodymium and samarium cobalt magnets grades and 

properties are summarized in Table II-2 and Table II-3 respectively. For magnetic gears, it 

should be clear by now that the neodymium magnets are the preferred choice to obtain a high 
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torque density design due to their superiority in terms of energy density and remanence, but 

their limitations in terms of the operating temperatures are not to be disregarded. Eventually, it 

will all depend on the application environment and conditions. 

Table II-1 The physical properties of some of the commercially available permanent magnets [118]. 

Magnet Type 
Curie 

Temperature 
(°C) 

Maximum 
Operating 

Temperature 
(°C) 

Density 
(g/cm3) 

Relative 
Recoil 

Permeability 

Alnico 860 525-550 6.9-7.3 1.7-4.7 
Hard Ferrites 

(Ceramic) 
450 250 4.8-4.9 1.05-1.2 

SmCo 700-800 250-350 8-8.5 1.1 
NdFeB 310-370 80-240 7.4 1.05 

Table II-2 Neodymium (NdFeB) magnets grades and properties [118]. 

Magnet 
Grade 

Max. 
Operating 

Temperature 
(°C) 

Remanence 
�� (T) 

Normal 
Coercivity 

��� 
(kA/m) 

Intrinsic 
Coercivity 

��� 
(kA/m) 

Max. energy 
product 

(��)��� 
(J/m^3) 

N35 80 1.22 925 955 279 
N42 80 1.33 925 955 334 
N50 80 1.43 860 875 398 

N38H 120 1.26 960 1353 303 
N45H 120 1.37 1036 1353 358 
N48H 120 1.4 1047 1353 382 

N30EH 200 1.14 862 2387 239 
N33EH 200 1.17 900 2387 263 
N40EH 200 1.28 1000 2387 318 

Table II-3 Samarium cobalt magnets grades and properties [118]. 

Material 
Composition 

Magnet 
Grade 

Remanence 
�� (mT) 

Normal 
Coercivity 

��� (kA/m) 

Intrinsic 
Coercivity 

��� (kA/m) 

Max. energy 
product 

(��)��� 
(J/m^3) 

SmCo5 S16  790-840  612-660  1830 118-135   
S20  890-930  684-732  1830 150-167   
S24  960-1000  740-788  1830 183-199  

Sm2Co17 S220  930-970  676-740  1433 160-183   
S240  950-1020  692-764  1433 175-191   
S280  1030-1080  756-812  1433 207-220   
S320  1100-1130  812-860  1433 230-255  
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2. Finite Element Method 

The finite element method (FEM) is the most widely used numerical method for solving 

electromagnetic problems. In the FEM, a given domain is considered as a collection of 

subdomains, called “finite elements”, and the governing equation is estimated across each 

subdomain using any of the conventional variational methods. The primary motivation for 

finding approximate solutions on a collection of subdomains is that it is simpler to describe a 

complex function as a collection of simple polynomials. Obviously, each segment of the solution 

must link with its neighbors in the sense that the function and, if desired, its derivatives are 

continuous at the connecting points. It may be used to solve static and transient, linear and 

nonlinear, isotropic and anisotropic, homogeneous and inhomogeneous electromagnetic 

problems. Some of the advantages that make this method powerful are linked to the concept of 

subdivision of the whole domain, where this subdivision allows for accurate representation of 

complex geometries and easy treatment of dissimilar material properties. In addition, the 

subdivision facilitates the representation of the total solution through functions defined within 

each element that detect local effects. On the other hand, the FEM is only useful for 

computations in bounded regions but is inconvenient when the region is unbounded.  Moreover, 

a factor that really makes the FEM quite popular and practical amongst researchers and 

engineers is the availability of a large number of numerical implementations for the method 

through software packages and applications [108], [110], [119]. This provides the user with 

readily available and powerful FEM software tools for modeling electromagnetic problems but 

without worrying about the underlying complex mathematics of the FEM. It is worth noting 

that the terms finite element method (FEM) and finite element analysis (FEA) are used 

interchangeably in references, where some references consider that they point to the same thing, 

but others consider that the FEA represents the simulation created by applying the mathematical 

equations behind the FEM. For this work, the term FEM will be used exclusively to point to 

both the technique and the numerical model. 

As previously mentioned, there are so many excellent FEM commercial software, and they all 

provide a trusted and powerful tool for researchers and engineers to solve all kinds of physical 

problems, and in the context of this work, to model and design electrical machines and 

electromagnetic devices. 
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Fig. II-6 A flowchart demonstrating the basic steps for constructing a FEM model using the FLUX 

software. 

Geometry 
Construction

• Define the domain properties, coordinate systems, periodicity, and symmetry.

• Define geometrical parameters, variables, and transformations.

• Use the different geometrical transformations and CAD tools to construct points, lines, faces, 
and volumes.

• Check the geometry for any conflicting intersections or unbounded regions using an 
automated functionality provided by the software.

Mesh Construction

• Every geometrical element is assigned, by default, "Aided Mesh" and "Aided Relaxation" 
properties which are provided by the software.

• Define and assign custom discretization types to points, lines, surfaces, volumes.

• Adjust the "Aided Mesh" options according to the need.

• Define and assign custom relaxation lines, faces, and volumes.

• Adjust the "Aided Relaxation" options according to the need.

• Using the custom discretization and relaxation types already defined, intervene to adjust 
the mesh properties to acquire a higher quality mesh, if the mesh proposed by the software 
is not satisfactory.

• If needed, modify the existing mesh generator, or create a new one to control the shape or 
type of the mesh elements (triangles, rectangles, etc.).

• Generate the mesh.

• Check the mesh quality using an automated functionality provided by the software. If the 
quality is unsatisfactory go back to the previous steps and tune the mesh properties.

Physical Definition

• Specify the physical nature of the problem: magnetostatic, transient magnetic, etc.

• Define the materials used through analytical equations or by importing material data from a 
rich material library provided by the software.

• Define the mechanical sets of the problem and assign motion types and references.

• Define the line, surface, and volume regions. Every region has different properties that 
should be specified: material type, mechanical set, boundary condition. 

• Assign the regions to the geometrical entities.

• If the problem has electrical components, set up and define these components.

Solving and Post-
Processing

• Define the solving scenario, and if needed manually edit the solver options and preferences.

• Define the sensors to capture any data required from certain specific regions.

• Define spatial paths or grids to be used to extract curves of quantities with respect to spatial 
positions.

• Solve the problem.

• Computation of quantities is done by the software, so the user should only specify which 
quantity they would like to visualize and specify the curve type.

• Generate the curves of the quantities computed by the sensors predefined.

• Export the results and curves to any desired format like excel, text, xml, etc.
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As the main goal of this chapter is to present an implementation of a certain modeling 

technique, a trusted modeling method should be always present to validate the results from the 

proposed implementation, so the FEM fits perfectly in this slot to provide a perspective for 

comparison and validation. The software that was used to create the FEM models throughout 

this work was the Altair FLUX which is a popular and powerful product that contains CAD 

tools to create 2D and 3D geometries, and of course the FEM numerical implementation. A 

flowchart showing the steps followed to create an FEM model using FLUX is shown in Fig. 

II-6. One of the most important steps while creating an FEM model is the mesh creation step 

because the quality of the mesh will decide the accuracy and performance of the model. If the 

mesh is bad, the generated results will be random or inaccurate, and if the mesh elements are 

too small across the whole domain, the system size will become too large and the time to solve 

the problem will increase significantly. Hence, it is all about tuning the mesh to keep a good 

balance between the accuracy and the computation time which might not be very easy or simple 

to achieve especially for inexperienced users. Furthermore, an essential meshing aspect that is 

provided by the FLUX software and almost any other FEM software is the mesh relaxation.   

Mesh relaxation allows to have different element sizes in different regions which is very 

suitable and practical for most applications. For example, the air gap is a usually a small but very 

important region for calculating quantities, and it hosts a lot of flux variations and orientations 

which should be detected, so usually multiple layers of small and equally sized elements are 

utilized to mesh this region in order to get the most accurate estimation of the quantities in it. 

On the other hand, big regions that don’t hold a lot of flux variations and transitions could be 

meshed using larger mesh elements because there might not be any important local flux 

variations to detect, so having small mesh elements, as the size of the elements used in the air 

gap for example, will significantly increase the number of nodes and the size of the system 

without adding any benefits or gains. Hence, it is generally more suitable and practical to 

implement the mesh relaxation by to changing the mesh density and size elements in the regions 

throughout the whole domain in accordance with nature and size of the region. In the FLUX 

software, this feature is already implemented by default and could be easily adjusted and edited 

by the user to help in tuning the quality and size of the mesh. The mesh of a 2D cross-section 

of a flux focusing magnetic gear where the mesh relaxation is implemented is shown in Fig. II-7, 

and it can be seen how the size of the mesh elements is gradually increased as the distance away 

from the air gap increases. Another important feature offered by FLUX and many other FEM 
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software, is the ability to create sketches and even animations to visualize the flux lines, induction 

arrows and many other quantities that are useful for understanding and analyzing the functioning 

of a device (see Fig. II-8). 

 

Fig. II-7 A 2D-cross section of a flux focusing magnetic gear meshed using FLUX. 

 

Fig. II-8 A sketch generated using FLUX showing the magnetic potential vector isolines and the 

magnetic induction arrows distribution. 
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3. Magnetic Equivalent Circuit 

Magnetic equivalent circuit (MEC) is a very well established and known technique for 

modeling and representing the magnetic aspect of an electromagnetic device. It can be 

considered a branch of the more general “lumped parameter network” concept which is based 

on representing a certain physical aspect of a device using connected parameters that form a 

circuit or a network. In MEC, the lumped parameter represents the reluctance or permeance of 

a flux tube, and, hence, the network is formed by dividing the domain into elementary flux tubes 

and then representing them using a circuit of reluctances or permeances. An analogy between 

this “magnetic circuit” and an electrical circuit can be created, where the basic electrical circuital 

laws could be translated into magnetic circuital laws. The theory and equations of the MEC can 

be also derived directly from basic magnetism laws like Ampere’s and Gauss’s laws but 

mentioning the analogy with electrical circuits is done to aid with understanding the concept.  

Generating enough elements to reflect all properties of a device on the one hand, while 

avoiding having too many elements that could unnecessarily slow down the computation 

without significantly gaining in accuracy, is the central idea in creating a magnetic equivalent 

circuit for a given electromagnetic device [120]. The compromise between the two contradictory 

requirements is a magnetic circuit that reduces calculation time for a given level of precision. In 

addition, the ultimate goal and motivation is not to completely replace the FEM but rather to 

provide an alternative method that can perform quicker computations with a decent level of 

accuracy. Usually, the computation time is not a serious concern if only one or two calculations 

are to be performed, but, practically, when designing an electromagnetic device an optimization 

study is performed to find the parameters that can provide the best performance. Conducting 

such studies means sweeping through multiple parameter values, and consequently there will be 

a lot of computations to be done; one for each set of values. Therefore, it is preferred to have a 

lightweight and quick method to perform the large number of calculations, and then when the 

parameters are fixed the FEM can be used to perform the final accurate predictions. Moreover, 

as shall be seen in the coming sections, nonlinear calculations are usually needed to take the 

magnetic saturation into account, and with large enough systems, the nonlinear calculations 

using FEM could take an extensive amount of time which rises another incentive to search for 

quicker methods to perform such calculations. Then, it is well known that when the size of the 

FEM model is large enough, the computer specification requirements increase significantly, so 
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when the computational resources are limited, another advantage arises from using the MEC 

method. Eventually, when using the term “lightweight” to describe the MEC method, the 

description not only points to the short computation time but also to the ability to run the model 

on personal computers with average specifications. 

Flux tubes are the foundation of the MEC method, and it is assumed that the flux is constant 

throughout an elementary flux tube. They are considered as geometrical figures where no lines 

of flux cross their sides and all lines of flux are perpendicular to their bases (see Fig. II-9). 

Because lines of equal magnetic scalar potential, �, are perpendicular to lines of flux, �, the bases 

of flux tubes are equipotential planes. The MMF drop is equivalent to the magnetic scalar 

potential difference between the bases. In general, in a flux tube with no current, the ratio of 

potential difference at the ends of the flux tube to the flux through it is a function of flux tube 

shape and medium properties. This ratio can be defined as the magnetic reluctance of the flux 

tube connecting equipotential planes holding nodes � and � and is equal to: 

��� =
�� − ��

���
=  �

��

�(�) �(�)

�

�

 (II-6) 

where � is the cross-sectional area of the flux tube and it can be either constant throughout the 

whole tube or as a function of a position parameter, � is the total length of the tube, and � is the 

magnetic permeability of the flux tube, where it can be constant, a function of position if the 

element’s medium is nonhomogeneous, or a nonlinear function of the magnetic field in case of 

magnetic saturation. The magnetic permeance is the inverse of the reluctance and is given by: 

��� =
1

���
 (II-7) 

The magnetic sources, like permanent magnets or coils with current, are also represented as 

circuit elements and are connected to the reluctance elements either in series as MMF sources 

or in parallel as flux sources. Consider the permanent magnet shown in Fig. II-10, where it has 

a rectangular shape with a cross-section �, perpendicular to its magnetization, and length �, and 

it can be represented using either a flux source ��� in parallel with its leakage reluctance ��� 

or using an MMF source ��� in series with ���. It is worth noting that the PM will be 

considered operating in the linear region of the 2nd magnetization quadrant. 
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Fig. II-9 A flux tube delimited by two nodes and its equivalent circuital element representation. 

 

Fig. II-10 A permanent magnet and its equivalent circuital elements representations. 

The equations of the circuit parameters related to the permanent magnet are given by: 

��� = �� ⋅ � (II-8) 

��� =
�

�� ⋅ ���� ⋅ �
 (II-9) 
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��� = ��� ��� =
�� �

������
 (II-10) 

where �� is the magnetic remanence of the PM, �� is the vacuum’s magnetic permeability, and 

���� is the relative permeability of the PM or the recoil permeability (refer to section 1.3).  

Eventually, after getting introduced to the main elements that form the MEC, the study 

domain of the structure that is being modeled is divided or meshed into elementary elements, 

where the number of elements is chosen to be sufficient for obtaining results with good 

accuracy. As this work is mainly concerned with modeling magnetic gears, Fig. II-11 shows a 

2D cross-section of a surface-mounted permanent magnet magnetic gear meshed using 

elementary reluctance elements and MMF sources. Some observations can be made when first 

looking at the sketch in Fig. II-11, for example, different regions hold different number of 

elements, and the elements at the air gaps seem to be not fully conformal. However, these 

questions will be tackled in the following sections, but for now, the next step is to introduce the 

formulations used to construct the system of equations and solve the problem. The work is 

aiming at constructing a 3D MEC model, and the next sections will try to treat the problem as 

so. Finally, a 3D MEC implementation and evaluation for a radial field magnetic gear has been 

proposed in [121], [122]. 

 

Fig. II-11 A 2D cross-section of a surface mounted PM magnetic gear meshed using reluctance 

elements. 
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3.1. The Nodal Formulation 

Consider the sketch of a simple 3D MEC, shown in Fig. II-12, with nodes connected using 

permeances ��� , and a magnetic scalar potential value is assigned to each node. The equivalent 

of Kirchhoff’s Current Law for magnetics is given by: 

� ���

�

���

= 0 (II-11) 

In other words, the sum of the magnetic fluxes entering or exiting a node � through a � number 

of branches is zero. Applying this law, in addition to the equivalent of ohm’s law for magnetism 

(II-6), to each node of the magnetic circuit will generate a set of equations which will be used to 

get the magnetic potential value at each node of the defined domain. The permeances are the 

main parameters that characterize the flux tubes, and the unknowns to be found are the values 

of the magnetic scalar potential at each node, and since permeances are used for this formulation, 

a magnetic equivalent circuit using the nodal formulation will be called a Permeance Network 

(PN). The system of equations to be assembled and solved is given by: 

[�]�����[�]���� = [�]���� (II-12) 

where [P] is the permeance matrix containing all the permeance values constituting the flux 

connections across the whole network, [U] is the vector of unknowns representing the magnetic 

scalar potential at each node where the magnetic potential difference between two adjacent 

nodes � and � forming a flux tube equals to the MMF drop across this flux tube. Finally, [�] is 

the excitation vector representing the flux of the magnetic sources in the network (i.e., the flux 

of permanent magnets). The total number of nodes is represented by “��”, where a row “�” in 

the permeance matrix represents the nodal equation at node “�”. This system of equations can 

be depending on the type of the permeances a linear or nonlinear system. For example, if the 

magnetic saturation is ignored and the values of the relative permeability in the regions are 

considered constant, the system can be treated as a linear system of equations. The nodal 

equation at node “�” is given by: 

�� � ���

�

���
���

− � �����

�

���
���

= � ���
������

�

���
���

 (II-13) 
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where ��� is the permeance connecting nodes � and �, ���
������ is the flux source, if present, in 

the branch connecting nodes � and �, and “�” is the number of the nodes directly adjacent to 

node � where it might vary depending on the position of node i.  

For instance, if a tangential magnetic field border condition is present, then all nodes on the 

boundary will have fewer connections than nodes inside the network (see Fig. II-11). Usually, 

for rotating or moving machines, tangential magnetic field boundary conditions are applied two 

the lateral surfaces of the domain across two directions, and a cyclic periodic or anti-periodic 

boundary condition is applied to the lateral surfaces of the remaining direction. For example, 

taking the sketch in Fig. II-12, if a cyclic boundary condition is applied to the nodes on the ends 

of the circumferential � direction, nodes 1 and 4 will be connected to nodes 3 and 6 respectively 

using permeances, and the same goes for all the nodes on the circumferential ends. The total 

number of nodes in a 3D PN then becomes equal to: 

��� = ��� ⋅ ��� ⋅ ��� (II-14) 

where ���, ��� , and ��� represent the number of divisions in the radial, circumferential, and 

axial directions respectively. It is worth noting that the system followed for numbering the nodes 

in the network and the matrix is described in the sketch shown in Fig. II-12, and it will be 

adopted for the 3D PN models that will be presented throughout the work. 

 

Fig. II-12 A simple sketch for a 3D PN with 18 nodes. 
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Fig. II-13 A simple sketch for a 2D RN showing its numbered flux loops. 

3.2. The Mesh Formulation 

Similarly, the equivalent of Kirchhoff’s Voltage Law for magnetics is given by: 

� ��

�

���

= 0 (II-15) 

where �� = �� − �� , is the FMM drop across a branch in the network. Namely, the sum of 

magnetic potential differences around any closed loop is zero. Consider the sketch of a simple 

2D network of reluctances shown in Fig. II-13, and by applying the laws in (II-6) and (II-15), a 

system of equations can be generated with the unknowns being the flux values around the loops, 

and the main matrix being composed of the reluctances that characterize the branches 

throughout the network. Since reluctances form the main parameter of this formulation, the 

term Reluctance Network (RN) will be used to describe an MEC that uses the mesh formulation. 

It is good to note that many references use the term “reluctance network” to name any MEC 

regardless of the formulation. Then, the system of equations for a RN can have the form: 

[�]�����[�]���� = [�]���� (II-16) 

where [R] is the permeance matrix containing all the permeance values constituting the flux 

connections across the whole network, [�] is the vector of unknowns representing the magnetic 

flux around any closed loop of the network. Finally, [�] is the excitation vector representing the 

MMF of the magnetic sources in the network. The total number of nodes of the system is “��”, 



 

64 

where a row “�” in the reluctance matrix represents the mesh equation at loop “�”. The mesh 

equation at loop “�” is given by: 

�� � ���

�

���

− � �����

�

���

= � �����
������

�

���

 (II-17) 

where ��� is the reluctance bordering both loops � and �, �����
������ is the flux source (if 

present) in the branch adjacent to both loops � and �, and “�” is the number of the loops directly 

adjacent to loop � where it might vary depending on the position of loop �. The boundary 

conditions could be applied similar to the nodal formulation case. The 3D implementation of 

the mesh formulation is a little bit less trivial than the nodal formulation because flux loops 

should be assigned to certain surfaces in the third dimension, whereas for the nodal formulation 

it is just connecting the nodes of different planes. Under the assumption that a tangential 

magnetic field boundary condition is applied to the lateral surfaces of two axes directions, and a 

cyclic boundary condition is applied to the lateral surfaces of the remaining axis direction, the 

number of nodes of a 3D RN can be expressed as: 

��� = ��� ⋅ (��� − 1) ⋅ (2��� − 1) (II-18) 

Hence, for a large number of divisions across the three directions, the number of nodes of a 

3D RN becomes significantly greater than that of a 3D PN and that is for the same accuracy. 

Therefore, the nodal formulation approach will be adopted for creating 3D models in the 

following sections, and a quasi-3D approach using the mesh formulation will be presented at 

the end of this chapter. It is important to mention that this work’s focus is more directed towards 

3D modeling because it will tackle the modeling of structures with an axial field topology, where 

3D effects are much more relevant and important usually. Before moving on to the next sections, 

some in-depth references that could be referred to on the subject of MEC are [120], [123]–[126]. 

In addition, a pedagogical reference on 2D MEC that includes a comparison between the two 

formulations and a full simulation code using MATLAB could be found in  [127]. Finally, a 

comparison between the mesh and nodal formulations can be found in [128]. 

4. The Aspects of  Implementing a 3D MEC 

After presenting the theoretical basics and formulations of the MEC, it is important to discuss 

the actual implementation of this method. For simple small networks, the implementation is 
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quite straightforward and easy, but for the case of 3D modeling of axial field magnetic gears, the 

network can be quite complex with significantly large size. Hence, many numerical aspects 

should be addressed to optimize the code because the goal is still to acquire a lightweight 

modeling method. In addition, the treatment of many other important aspects like motion 

simulation, mesh sizing, and most importantly magnetic saturation should be conducted. The 

following sub-sections will try to address the implementation of all the important aspects, and 

although most of the details that will be mentioned are valid for the two MEC formulations, the 

following parts will mainly suppose the nodal formulation as the one that is being used. 

Moreover, the numerical implementation of the 3D MEC has been done exclusively using the 

MATLAB coding environment. 

4.1. Non-Conformal Meshing and Motion Simulation 

Similar to the principle of mesh relaxation presented previously for the FEM, changing the 

size of the MEC elementary blocks may be required to fit the components properly or to create 

a denser mesh in certain areas. In addition, there’s something specific to MEC to facilitate the 

equations generation and permeances identification, one elementary block can’t be a part of two 

regions at the same time, it should perfectly fit into a region with homogeneous medium 

properties. In this way the boundary between two regions can be treated easily as the series 

connection of two permeances of known values. Therefore, in structures like magnetic gears 

where there are three rotors where each rotor possesses different poles dimensions, it will be 

hard to find a single elementary dimension that fits all the regions, and if this element is found 

it will be so small where the total number of nodes of the system will be extremely high.  

For the magnetic gear application, its geometry was divided into three zones corresponding 

to the three different rotors (i.e., the low-speed rotor, the high-speed rotor, and the fixed 

member). Each zone has a different number of circumferential and axial elements, and it is 

important to note that to maintain the mesh conformality in a single zone, all the elements in 

that zone should share the same dimension values in at least two directions. To illustrate, 

consider the example of an axial field magnetic gear whose 2D cross section is shown in Fig. 

II-11, the mesh elements of the same zone have the same length across the radial and 

circumferential directions, but different lengths across the axial direction could be found while 

still respecting the boundaries and conformality of the mesh in that zone. Eventually, this will 

create different meshes in the regions that don’t conform at the interface surface, which is the 
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air gap that separates the rotors, and the mesh now is considered a non-conformal mesh across 

the circumferential direction. Having a non-conformal mesh is definitely not a weak point in the 

method, instead if treated properly it can be a very powerful technique to tune the size of the 

mesh and optimize the problem similar to the mesh relaxation in FEM. In fact, it might be even 

more optimal to have a non-conformal mesh across the two other directions, but the complexity 

of the method will increase in turn.  

Now, the challenge becomes in connecting the permeance blocks at the air gap interface 

surface, and multiple approaches can be found in the literature on how to treat this issue. In 

[129], the authors proposed creating an interpolation surface at the interface between the two 

regions, with the nodes on both sides projected on it, then, compute the potential values using 

flux continuity equations and first-order interpolation. The issue with this method is that the 

system size will vary (slightly) at each motion step where the positions of the nodes will change, 

and its use is exclusive for the nodal formulation. The method proposed in [130] is what has 

been adopted for this work to treat the non-conformal interface. It is based on overlapping the 

permeances between immediately adjacent elements. Overlapping is done by multiplying the 

connecting permeance by a coefficient that depends on the overlapping distance (or angle) 

between the elements in contact. Fig. II-14 shows the air gap representing the interface between 

two regions with different element sizes. The position of every element at each side is defined 

by an interval ([��, ����] and [��, ����]) where the intervals are in the range of [0, ����]. Then, 

according to this position, the overlapping intervals, or the nodes that are in contact, from both 

sides can be determined. Finally, the permeance between any two nodes in contact (� and �) can 

be determined using the equations below: 

��� = (2���) ⋅
���� − ��

���� − ��
 (II-19) 

��� = (2���)] ⋅
���� − ��

���� − ��
 (II-20) 

��,� =
��� ⋅ ���

��� + ���
 (II-21) 

where ��� and ��� are the permeances in the axial direction for zones 1 and 2 respectively. 
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Fig. II-14 Interface between two regions with non-conformal meshes. 

To simulate the motion of one of the rotors or even both, the connections between the two 

regions should be reset, and then the intervals defining the position of each node are edited 

according to the new position of the rotor. Consequently, the overlapping intervals are 

determined again, and the connection is done using the same equations defined. It is possible to 

apply this method to the mesh formulation approach by detecting the closed loops formed by 

the interpolated permeances connecting the two zones and treating them as new unknowns to 

be found. However, since the number of the closed loops at the interface will vary depending 

on the position of the two zones, the size of the system will vary slightly at each step which can 

be easily handled. 

4.2. Choosing the 3D MEC Mesh Parameters 

To choose the number of divisions in each region and direction, some testing is required to 

realize the satisfying results and performance. The three parameters to choose for the mesh of 

the network are the number of divisions in the radial direction (���), circumferential direction 

(���), and axial direction (���). Depending on the type and structure of the device, the 

configuration and the importance of each parameter will vary. For example, in an axial field flux 

focusing configuration, the most important and the largest of the three parameters is the number 
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of divisions in the circumferential direction, and the lower this number is the worse is the 

accuracy of the predicted torques and forces. On the other hand, for a surface-mounted PM 

axial field structure, ��� and ��� are equally important for the quality of the results. The number 

of divisions in the radial direction is the least of the three (���, ��� ≫ ���), but it will gain 

more importance and will increase when considering the air envelope surrounding the structure 

which is required to model the end-effects. A small increase in ��� increases massively the total 

size of the system, so it is required to choose it as small as possible for any of the cases. To 

compare the effects of the 3D PN mesh size on the quality of the results, four mesh 

configurations are chosen to compute the torques developed in an axial field flux focusing 

magnetic gear, and values generated using a 3D FEM model were used as a reference for the 

comparison. The four mesh configurations are described in Table II-4, where it can be seen that 

the number of divisions in the axial and radial directions were maintained the same for the four 

meshes, and the variation parameter was the number of divisions in the circumferential direction 

which will highlight the importance of this parameter. The torques generated by the models with 

different meshes are shown in Fig. II-15. 

Table II-4 The configuration of four different 3D PN meshes with the time consumed to compute 

31 motion steps. 

 ��� ��� ��� ���� 
Time 

consumed 
(sec) 

Mesh 1  

Zone 1 240 28 

3 61056 43.16 Zone 2 200 18 

Zone 3 304 33 

Mesh 2  

Zone 1 480 28 

3 287640 293.9 Zone 2 400 18 

Zone 3 2280 33 

Mesh 3 

Zone 1 1080 28 

3 359640 566.4 Zone 2 800 18 

Zone 3 2280 33 

Mesh 4 

Zone 1 1800 28 

3 775440 2664.26 Zone 2 3200 18 

Zone 3 4560 33 
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Fig. II-15 A comparison of the torques generated by multiple 3D PN models with different mesh 

configurations. 

The results from Mesh 1 are totally unacceptable, and for the other meshes the results are all 

acceptable and slightly improving with the increase of the number of nodes. However, the 

increase in the number of nodes escalated rapidly the computation times, but, beyond the 

number of nodes of Mesh 2, the increase didn’t provide a significant improvement in the results. 

4.3. Maxwell Stress Tensor 

The Maxwell Stress Tensor (MST) is used to calculate the total electromagnetic forces acting 

on a volume, and it is a very well-known and established method for calculating forces and 

torques in electromagnetic devices [131]–[134]. The tensor is a symmetric second-order tensor 

and can be derived by developing Maxwell’s equations and Lorentz’s force law. The tensor is 

expressed using 3D polar coordinates and shown in (II-22). Physically, �⃡ is the force per unit 

area or stress acting on a surface, and the entry ��� is the force per unit area in the ��� direction 

acting on the element of surface oriented in the ��� direction, so diagonal elements represent 

pressures, off-diagonal elements represent shears. The more general form of the tensor contains 

elements related to the electric field, but they have been excluded considering the tensor will be 

applied on surfaces free of electric charges.  
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The force per unit volume acting on a body can be expressed (while excluding the Poynting 

vector) as: 

�⃗ = ∇. �⃡ (II-23) 

Then, by applying the divergence theorem, the total electromagnetic force acting on a volume � 

becomes: 

�⃗ =  ��⃡. ��⃗  ��
�

 (II-24) 

The torque developed by the total forces can expressed similarly as: 

�⃗ =  �� × (�⃡. ��⃗  ��)
�

 (II-25) 

  Now consider the disc volume shown in Fig. II-16, where this volume represents a rotor of an 

axial field magnetic gear (or any other axial field discoidal electric machine). It is supposed that 

the magnetic flux density values at the lateral surfaces ��, ��, and �� are either zero due to 

boundary conditions or are negligible. Hence, the surface at which the magnetic induction 

should be evaluated is only the air gap surface ��. Thus, the elementary electromagnetic force 

can be developed in the polar coordinates as: 

�� = �
���

���

���

� = ��⃡�
��

. ���� =
1

��
� 

����

����

��
� − ��

� − ��
�

2

�

��

 (II-26) 

Then, surface integration is performed on every component of the elementary forces shown in 

(II-26), and since the force in the circumferential direction will develop a torque, the equation 

of the torque will be immediately applied to get the torque developed on this rotor structure. 

Finally, the equations of the forces and the torque are expressed in the following equations.  
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Fig. II-16 A discoidal structure representing a rotor of an axial field magnetic gear. 

�� =  
1

��
����(�, �)��(�, �)�

��
����� (II-27) 

�� =  
1

��
����(�, �)��(�, �)�

��
������ (II-28) 

�� =  � �
��

�(�, �) − ��
�(�, �) − ��

�(�, �)

2��
�

��

����� (II-29) 

Eventually, these equations can be applied numerically by using numerical integration and 

computing the magnetic induction components at a set of points on the air gap surface ��, and 

the smaller the elementary surfaces are (i.e., the smaller the MEC mesh elements), the more 

accurate the results become. This method can be applied on the surfaces of the two air gaps of 

a magnetic gear to get the forces and torques on each rotor but by paying attention to the 

orientation of the air gap surface related to each rotor. It is worth noting that in axial field 

structures, the force acting in the radial direction is usually negligible and doesn’t hold a great 

importance as compared to the forces in the circumferential and axial directions, where the force 

acting in the circumferential direction determine the torque developed by the rotor, and the force 

in the axial direction represents the attraction force between the rotors which holds a great 
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importance for the analysis of axial field structures. The torques and attraction forces acting on 

each rotor can be linked using the expressions: 

��� + ��� + ��� = 0 (II-30) 

��� + ��� + ��� = 0 (II-31) 

It is known that the MST is sensitive to the mesh quality especially at the air gap region which 

is one of the reasons that makes many people prefer using the virtual works method over it to 

calculate the forces. However, the main advantage that is acquired by using the MST is that the 

user is required calculate the magnetic induction values at one surface only and perform a surface 

integral to get the total forces, but in the virtual works method the computation of the magnetic 

induction and a volume integral is required over the whole domain. Hence, the easy 

implementation of the MST during the post-processing is one of the main reasons on why it has 

been chosen to be used in this work over the virtual works method. 

4.4. Magnetic Saturation Consideration: Nonlinear Iterative Solvers 

Design criteria should include consideration of magnetic saturation of the soft magnetic 

materials. It can have a significant impact on the estimation of specific quantities, and its 

significance varies according to the structure under study, the type of permanent magnets, the 

air gap length, and the materials being employed in the model. For example, in the case of 

magnetic gears using strong rare-earth magnets with small air gap length to acquire the highest 

torque, the magnetic saturation can have a large effect on the overall performance because the 

modular pieces of the middle member become highly saturated, and hence it can’t be simply 

ignored. Another example is that in the flux focusing configuration the magnetic saturation can 

have a larger impact than in a surface-mounted PM configuration because the length magnetic 

equivalent air gap in the latter is much larger.  

As a first step, a model for the B(H) curve has to be selected so that the relative permeability 

may be determined for any given magnetic field value H. An analytical B(H) curve model is 

selected to make the numerical implementation of the 3D MEC easier where the B(H) curve is 

plotted in Fig. II-17, and thus the relative magnetic permeability of the soft magnetic materials 

may be calculated using the formula shown in (II-32). This formula is provided by the FLUX 

software as well, and it has been used for the FEM models. Its parameters have been chosen to 

make the magnetic properties of the modeled material close to that of an isotropic silicon steel. 
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Fig. II-17 The adopted analytical B(H) curve used for representing the soft magnetic materials. 

��� = 1 +
2��

����
arctan �

�(��� − 1)���

2��
� (II-32) 

where �� = 1.99� is the saturation magnetization and ��� = 2000 is the relative permeability 

at the origin. Moreover, if the user wants to use experimental B(H) data plots, they can import 

the plot and use some form of interpolation like spline to get the relative permeability value for 

any magnetic field value. Meanwhile, implementing the nonlinear material properties into the 

MEC will turn the main system of equations into a nonlinear system that will require an iterative 

nonlinear solver because now the permeance values depend on the value of the magnetic field 

and eventually the value of the magnetic potential in the nodes. The development of the 

equations in the following sections will mainly treat the nodal formulation. Thus, the multivariate 

nonlinear function that is derived from (II-12) is given by: 

�(�) = P(�) ⋅ � − φ(�) = 0 (II-33) 

An important aspect to note and not miss is that the excitation vector φ is also dependent on 

the value of the magnetic potential which is not the case when developing the mesh formulation. 

The two nonlinear solvers that are selected for solving the problem and are discussed in the 

following subsections are the fixed-point iteration method and the Newton-Raphson method. 

Some in-depth references on the subject of nonlinear solvers can be found in [135]–[138]. 
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4.4.1. Fixed-Point Iteration Method 

 When using the fixed-point iteration approach, the nonlinear system in (II-33) is rearranged 

to have the form U =  γ(U) where γ(U) is a nonlinear function in the components of the vector 

of unknows U. An initial solution or guess for the vector of unknowns is then chosen and the 

iteration starts by solving the system: 

���� = γ(��) = P��(��)�(��), � ≥ 0 (II-34) 

where the initial solution �� is determined by solving the system in (II-12) as a linear system of 

equations through setting a constant initial value into ���. The choice of the initial starting point 

in the fixed-point method is not very crucial and might not impact the convergence unlike the 

situation in Newton’s method, but it has been found that different starting points can change 

slightly the total computation time. Hence, after doing multiple tests with multiple starting 

points, the chosen initial value of ��� was 1. Then, the convergence of the method is determined 

when a chosen error value drops below a certain threshold. There are several error equations 

that can be chosen as a stopping criterion, and usually depending on the problem the user 

chooses the error equation and threshold value that best suit the requirements. For the problem 

in this work, two error criteria could be possibly used: 

�� =
‖���� − ��‖

‖����‖
<  ��� (II-35) 

�� = ‖�(��) ‖ <  ��� (II-36) 

Both criteria worked properly with the fixed-point method, but it has been found that using 

�� as the error equation of the fixed-point method provided more stability. To illustrate, after 

running multiple simulations and trying the two criteria, the error value provided by �� reflected 

the accuracy state of the system in a better fashion because usually the lower the error value is 

the better the accuracy of the results, but this wasn’t always the case when using �� with the 

fixed-point method. The value of the error threshold was chosen at ��� = 10��, and it was the 

most reasonable value that provided relatively decent accuracy with good computation times. 

This method will be tested, and the results with computation times will be shown in the 

following sections. A flowchart of the process of using the fixed-point method to solve the 

nonlinear PN problem is shown in Fig. II-18. 
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Fig. II-18 Flowchart of the algorithm to implement the fixed-point method for solving a nonlinear 

PN problem. 
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4.4.2. Newton-Raphson Method 

The Newton-Raphson method or simply Newton’s method is probably the most popular and 

efficient method for solving nonlinear systems of equations, and it will start by approximating 

the function �(∙) by its first-order Taylor expansion around ��: 

�(�)  ≈ �(��) + �(��) ⋅ (� − ��) (II-37) 

where �(��) is the (�� x ��) Jacobian matrix of �(∙) evaluated at ��: 

�(��) =  
��

���
(��) (II-38) 

with entries: 

j�,� =  
���

���
 (II-39) 

Consider the sketch shown in Fig. II-19 describing the connections of a node present in a 3D 

PN to its neighbors with an MMF source ��� present at one of the branches.  The development 

of the equations on node 1 of this sketch is just for demonstration, but the number of 

connections to the node and the number of excitation elements present might all vary 

throughout the network and the equations should be edited accordingly. Using (II-33), the 

elementary function � at node 1 can be expressed as: 

��(�) =  �� � ���

�

���
���

− � �����

�

���
���

− ������ = 0 (II-40) 

The row number 1 of the Jacobian matrix has only 7 nonzero elements corresponding to the 

number of magnetic potential elements present in ��(�). The first nonzero element 

corresponding to the potential of node 1 can be expressed as: 

���

���
= � ���

�

���
���

+ �
����

���
⋅ (�� − ��)

�

���
���

−
����

���
��� (II-41) 
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Fig. II-19 A magnetic potential node in a 3D PN connected to its neighbors. 

Consider the partial derivative of the permeance ��� with respect to ��, using the chain rule this 

term can be expressed as: 

����

���
=

����

�����

�����

����

����

����

����

���
 (II-42) 

where ����
, ���, and ��� are the relative permeability, magnetic field, and magnetic flux 

through branch connecting nodes 1 and 2.  

Each one of these partial derivatives can then be calculated starting with the term 
����

�����

 which 

is a constant that can expressed as: 

����

�����

=
���

����

= � (II-43) 

Then, the derivative of the relative permeability with respect to the magnetic field can be 

deduced from the �(�) relationship. If this relationship is not available analytically, the 

derivative can be found numerically from the data plot of the material. Hence, this term will be 

also a constant and will be called �. The derivative of the magnetic field with respect to the flux 

can be expressed as: 
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����

����
=

1

��� ⋅  �
 (II-44) 

where � is the length of the permeance corresponding to the connection of nodes 1 and 2. 

Finally, the derivative of the flux through branch 1-2 with respect to the potential at node 1 is 

given by: 

����

���
=

����

���
⋅ (�� − ��) + ��� (II-45) 

At this stage combining the equations (II-42) to (II-45) leads to the final equation: 

����

���
=  

� � ���

� ��� − � �(�� − ��)
 (II-46) 

Similarly, all the terms of the 
���

���
 equation can be calculated, and consecutively all the elements 

of the Jacobian can be found but considering the position of each node and the nature of each 

equation while paying attention to the treatment of the permeances connecting the iron regions 

to the PM regions.  

The following step in Newton’s method is considering that the next evaluation point ���� 

should be chosen so that the right-hand side of (II-37) equals to zero. Thus, the computation 

done at each iteration is: 

���� = �� − ���(��)�(��)   (II-47) 

The Jacobian matrix is not directly inverted, and the following linear system is solved instead: 

�(��)∆�� =  −�(��). (II-48) 

where ∆�� = ���� − ��. The conditioning of the Jacobian matrix is very important for this 

method and so is the choice of the initial solution. To improve the convergence rate of the 

system and avoid any divergence, a damping factor was introduced into the update equation. 

The damping factor � was chosen separately at each iteration ensuring that the norm of �(�) is 

being minimized at each step (‖�(����)‖ < ‖�(��) ‖). With 0 < � ≤ 1 the update equation 

becomes: 

���� =  �� + � ∆�� (II-49) 



 

79 

Concerning the stopping criterion for this method, it has been found that the error �� wasn’t 

consistently decreasing with each step leading to divergence most of the times even with the 

damping factor. Hence, since the damping method is already ensuring the minimization of the 

norm of �(�) at each step, it was more suitable to use error equaiton �� as the stopping criterion. 

The error threshold is again chosen to be at 10��. Meanwhile, the choice of the initial solution 

for the problem, or the initial value of the relative permeability of the soft magnetic materials. 

was trickier than the case of the fixed-point method because the convergence rate of the 

Newton’s method is known to be dependent and sensitive to the initial solution value. Hence, 

after performing multiple simulations, it was found that a value between 500 and 1000 is the 

best choice for the value of the initial relative permeability, where a value in this range ensures 

convergence in the minimal number of iterations per step. Finally, the initial relative permeability 

value that was chosen to perform the simulations using the Newton’s method was 500. 

Furthermore, one of the more concerning issues with the Newton’s method usually is the 

evaluation of the Jacobian matrix because for some problems the derivation of the functions 

can be sometimes impossible or very hard to achieve numerically, and even if its computation is 

possible, sometimes the conditioning of the Jacobian matrix can be poor so its inversion can’t 

be easily achievable. Hence, quasi-Newton approaches are proposed to evaluate an estimation 

of the Jacobian matrix, and to make the implementation of the whole method feasible. One of 

the more popular quasi-Newton approaches is the Newton-Broyden method which proposes 

an estimation of the Jacobian based on an initial guess. For this work and for the PN problem, 

the computation of the Jacobian matrix was feasible, but its conditioning was poor, so the use 

of Broyden’s method was investigated to see the possibility of acquiring and inverting the 

Jacobian with a lower computational effort. However, the original Newton-Broyden method is 

not designed for sparse matrices and will not maintain the sparsity of the Jacobian which is very 

important for this work’s problem (check section 4.6), so using it was not possible. Nevertheless, 

a modified Newton-Broyden method for sparse matrices was proposed in [138], and it was 

implemented to hopefully overcome the problems caused by the poor conditioning of the 

original Jacobian, but it didn’t converge at all even when tried under different conditions and 

with different initial Jacobian guesses. Therefore, the original damped Newton’s method 

described in this section was used and implemented for the nodal formulation, and a flowchart 

describing the implementation is shown in Fig. II-20. 
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Fig. II-20 A flowchart for the algorithm to adapt the damped Newton's method to solve a nonlinear 

PN problem. 
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4.5. The End-Effects in Magnetic Gears 

Depending on the application and the structure of the device, the "end-effects" might take on 

different forms and be caused by various elements, and it has been studied in magnetic gears by 

some references [139], [140]. End-effects will be described in this study as the flux leakages of 

the permanent magnets at the structure's lateral surfaces via the surrounding air area. In other 

words, the flux leakage can be considered as a form of wasted magnetic energy and thus causes 

reduction in the torque capability of the magnetic gear. End-effects occur along two directions 

and in two regions: a radial direction corresponding to the air regions at the inner and outer radii 

(Fig. II-21(a)), and an axial direction corresponding to the air regions at the axial ends of the 

structure (Fig. II-21(b)). The axial boundary air region could be represented through a 2D model, 

but the radial boundary air region requires a 3D model which reassures the importance of using 

3D models for axial field structures. As for the significance of considering the end-effects in 

magnetic gears, it has been seen in the first chapter that some researchers reported poor 

performances from their prototypes as compared to what was predicted through calculations 

due to doing only 2D simulations and omitting the end-effects in their calculations. In addition, 

the importance of the end-effects consideration will be illustrated in a following section through 

a set of simulations and comparisons. 

  

(a) (b) 
Fig. II-21 2D projections of an axial field MG with the air envelope on the (a) (�, �) plane and (b) 

(�, �) plane. 
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4.6. Numerical Aspects 

The concept and equations of the MEC method are simple but applying them on a large scale 

and in a complex domain will introduce some serious numerical challenges that should be 

addressed. With having significantly large systems and matrices in the 3D MEC, it is very 

essential to consider optimizing the code and structuring it properly because if the programming 

of the MEC model is done without considering the numerical optimizations that accommodate 

the huge size of the system and the large number of operations, the whole purpose of the MEC 

method will be defied as it might become very slow or even seize to operate. Hence, below are 

some of the considerations that were followed to achieve a lightweight implementation of the 

MEC method knowing that the programming environment was MATLAB coding. 

 Matrix conditioning and rank deficiency: one of the challenging numerical aspects 

is the bad conditioning of the matrix [�] (or [�]), and the cause of this is the large 

difference between the singular values of these matrices. For example, in a 3D PN the 

largest singular value can be in the order of 10��, but the smallest singular value can 

reach values as small as 10���. This is due to the difference in the values of the 

permeances between the flux tubes with different medium properties and dimensions. 

The reciprocal condition number is a good way for estimating the condition of a matrix, 

where the closer this number is to 1 the better and the closer it is to zero the worse. The 

direct solver of MATLAB given by the function “��������” was found to be able to 

deal with the matrices generated by MEC that have a reciprocal condition number in the 

range of 10��~10��. The algorithm of this solver was designed to treat matrix solving 

in a robust and efficient way, where it can treat each matrix according to its properties 

and apply suitable factorizations. For the [�] (or [�]) matrix, the solver performs LU 

factorization as a form of preconditioning then proceed to solving. Moreover, an 

important detail that is good to mention for the solution of the PN models is the 

importance of defining a potential node that represents the ground of the network. If 

this step is omitted the matrix [�]����� will have a rank of �� − 1 which is not very 

good for an already poorly conditioned matrix. Hence, it is important to specify the 

potential of one of the nodes as zero which will make the matrix full rank. For example, 

the first row of matrix [�] can be defined using the equation 10�� ⋅ �� = 0 which sets 

the node number one as the ground point, and the use of the factor 10�� is just to bring 
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the singular value of the first row closer to the range of the other singular values. In fact, 

the definition of a ground potential point doesn’t contradict with the main PN theory 

because what is important is not the actual potential values of each node but rather the 

potential difference between the nodes which represents the MMF. 

 Sparse matrices and memory pre-allocation: sparse matrices are frequently used in 

scientific computing, particularly for large-scale optimization, structural and circuit 

analysis [141]. Data with a large number of zero-valued elements may be stored more 

efficiently and processed faster in sparse matrices because when a matrix is stored as 

sparse, it allows the software to store only the nonzero elements and their indices and to 

eliminate the operations on zero elements. In the case of the 3D MEC, each row of the 

matrix will have a maximum of 8 to 10 nonzero elements out of �� number of total 

elements per row and given that �� could be in the order of hundreds of thousands, 

storing the permeance or reluctance matrix in full storage will be a complete waste if not 

impossible. For example, a matrix of size (500000 x 500000) will have 2.5 ⋅ 10�� total 

number of elements, which if stored as single-precision variables will require 4 ⋅ 2.5 ⋅

10�� = 931.32 Gigabytes of RAM which is not available in the majority of PCs, and 

the memory requirement will increase rapidly with the increase of the size of the matrix 

and in case of using double-precision variables. Therefore, using sparse allocation is 

crucial for 3D MEC as it will allow to save a tremendous amount of memory and boost 

the overall performance of the model. It is worth noting that it is not enough to just do 

the default sparse declaration of the matrix in MATLAB because even though it will not 

use the full storage, it will reserve the space in memory required to store all the matrix 

elements. Hence, in addition to declaring the matrix as sparse in MATLAB, the expected 

number of nonzero elements should be specified, which is a form of memory pre-

allocation that instructs the software to reserve only the space required for storing the 

nonzero elements. Thus, let’s consider again the (500000 x 500000) matrix, but this time 

stored with double-precision variables and as a sparse matrix with memory pre-

allocation, the amount of RAM memory required for storing this matrix becomes 

500000 ⋅ 8 ⋅ 8 = 30.52 Megabytes which is a monumental decrease in memory 

requirements. Finally, it is also a good practice to pre-allocate the memory for all the 

other arrays and matrices in the program even if their sizes are not significant. 
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 Vectorization and matrix partitioning: MATLAB is designed and optimized for 

treating vectors and matrices and replacing loop-based processes with vectorized 

operations can have a great impact on the overall performance of the program especially 

when operating on very large matrices. Then, there is the idea of matrix portioning which 

is very useful when working with large matrices. The concept is to operate on only a 

portion of the matrix at once, by extracting that portion from the original matrix storing 

it in a new matrix, performing the desired operations and edits, then returning it to its 

original place. The use of this concept necessitates that the algorithm treats only a 

specific part of the matrix at a time because if each operation requires the access of all 

the data in the matrix the portioning will not be possible. Moreover, matrix portioning 

is especially useful for the assembly of the permeance matrix in the 3D PN, where there 

are two levels of partitioning. The first level is extracting all the matrix rows for one 

radial mesh layer and putting them into a sub-matrix of size (�������� � ��) where 

�������� = ��� ⋅ ��� is the number of nodes in one radial layer. Then, the second 

partitioning level is by extracting from the sub-matrix the rows corresponding to one 

row of mesh nodes and putting it into a sub-sub-matrix that will have the size of 

(��� � ��) which will be operated on and returned it to its place in the sub-matrix. The 

second level of partitioning is done for all the mesh rows in one radial layer, then the 

sub-matrix of this layer is returned to the original matrix. Finally, the two-leveled 

partitioning process is repeated for all the radial mesh layers. This whole process might 

feel overcomplicated or wasteful, but in fact it improves the overall computation time 

significantly when treating large matrices �� > 100000. 

5. Nonlinear 3D PN Modeling of  an Axial Field Magnetic Gear 

Now that the MEC method is properly presented and established, it can be put to the test by 

applying it to a magnetic gear structure and comparing its performance with respect to a typical 

3D FEM model. Thus, a series of case studies will be presented through this section and the 

following sections to evaluate the potential of the MEC method as a lightweight alternative of 

the FEM for the 3D modeling of axial field magnetic gears. This section will be mainly 

concerned in evaluating a 3D nonlinear PN model for an axial field flux focusing magnetic gear 

(AFFMG) that takes into account the saturation of the soft magnetic materials, and at the same 
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time a comparison between the fixed-point and Newton’s methods will be conducted. The end-

effects will not be considered, and its study will be left for the next sections. Fig. II-22 shows 

the elementary flux tube that was used in the 3D PN models of the axial field magnetic gear 

structures. It is a six-directional flux tube where the flux is allowed to make an orthogonal contact 

with its lateral surfaces. The expressions of the permeances that characterize this elementary 

element are given by: 

��(�) =
�����

ln �
� + ��

� �
 (II-50) 

��(�) =
���

��
ln �

� + ��

�
� (II-51) 

��(�) =
���(2. �. �� + ��

�)

2��
 (II-52) 

The modeled AFFMG, shown Fig. II-23, has �� = 6 PM pole pairs on rotor 1, �� = 19 PM 

pole pairs on rotor 3, and �� = 25 modulating segments on rotor 2. Supposing that rotor 1 is 

chosen as the high-speed rotor (HSR) , rotor 2 is chosen as the low-speed rotor (LSR), and the 

rotor holding the modulating segments (rotor 2) is chosen as the fixed member, the gear ratio  

of the structure becomes �� =
��

��
= 3.166̇. The parameters of the AFFMG were chosen based 

on an optimization study done in [48] and are summarized in Table II-5. 

 

Fig. II-22 The elementary flux tube used in the MEC modeling of the axial field magnetic gear. 
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Fig. II-23 The modeled AFFMG with an illustration to the 3D meshing of its domain. 

Table II-5 Geometrical dimensions and parameters of the studied AFFMG (design 1) 

Rotor 1 
(HSR) 

Steel/magnet pole span ���/��� 15 ° 

Axial Length ��� 25 mm 

Airgap 1.5 mm 

Rotor 2 
(Stationary) 

Steel pole span ��� 9 ° 

Axial Length ��� 8 mm 

Rotor 3 
(LSR) 

Steel/magnet pole span ���/��� 4.74 ° 

Axial Length ��� 15 mm 

Airgap 1.5 mm 

Radii 
Inner Radius �� 80 mm 

Outer Radius �� 140 mm 

 An HSR pole-slipping motion test was simulated using the 3D PN and the 3D FEM. This 

test is done to observe the complete cycle of the forces on the three rotors, and it is achieved by 

fixing the LSR and rotating the HSR, knowing that the middle member is already fixed.  The 

magnetic induction in the airgaps was computed at each step, and the test was conducted in a 

multi-static fashion, with each step evaluating the system and quantities independently of the 

preceding steps. Then, the magnetic induction values were fed to the MST to obtain the torque 
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sand attraction forces on each rotor. The magnetic saturation of the soft magnetic materials was 

taken into consideration where both the fixed-point and Newton’s method were tested. The 

permanent magnets were considered as neodymium magnets with a linear demagnetization 

curve, a magnetic remanence �� = 1.2 �, and a relative permeability µ�� = 1. Finally, because 

the air outside the structure was ignored, a tangential magnetic induction boundary condition 

was imposed on all of the structure's lateral surfaces. 

Calculated at a static position, Fig. II-24 and Fig. II-25 show the axial and circumferential 

components of the magnetic induction respectively calculated at the middle of the air gap 

splitting rotors 1 and 2 and at the mean radius position in the radial direction. Fig. II-26 and Fig. 

II-27 show the same components and at the same radial position but at the middle of the air gap 

splitting rotors 2 and 3. The results generated by the two nonlinear solving methods of the 3D 

PN and those generated from a 3D FEM nonlinear model are all presented in these figures. 

There can be seen a very good conformation between the curves generated using the 3D FEM 

and 3D PN, but with a slight difference in amplitudes at certain points especially noticeable in 

the axial induction component of Fig. II-26 where the saturation is higher and hence the slight 

accuracy deficiency will be observed. Moreover, an observation can be made regarding the 

circumferential components where there can be seen certain spikes in the values from the 3D 

PN at certain angular points, and these spikes might seem insignificant but can have some impact 

on the calculated torques. In addition, the severity of these spikes is dependent mainly on the 

number of the mesh divisions in the circumferential direction. 

 

Fig. II-24 Axial magnetic induction component expressed as function of spatial angular position in 

the air gap between rotors 1 and 2. 
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Fig. II-25 Circumferential magnetic induction component expressed as function of spatial angular 

position in the air gap between rotors 1 and 2. 

The torques and axial attraction forces on the three rotors were evaluated and displayed in 

Fig. II-28 and Fig. II-29 when rotors 2 and 3 were fixed and rotor 1 was rotating. The differences 

are more noticeable for these quantities, nevertheless, the accuracy of the 3D PN is still 

acceptable. The results from the two nonlinear solvers of the PN were very close with the values 

provided by Newton’s method slightly higher in amplitude at certain points. 

 

Fig. II-26 Axial magnetic induction component expressed as function of spatial angular position in 

the air gap between rotors 2 and 3. 
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Fig. II-27 Circumferential magnetic induction component expressed as function of spatial angular 

position in the air gap between rotors 2 and 3. 

The LSR stall torques evaluated by the 3D PN were 774.5 N m using the fixed-point method 

and 788 N m using Newton’s method, whereas this value was 720.7 N m for the curve from the 

3D FEM. Hence, the torque densities corresponding to the values from the MEC were 246.66 

N m/L and 250.96 N m/L for the fixed-point method and Newton’s method respectively, and 

the torque density estimated by the 3D FEM model was 229.52 N m/L. It is worth noting that 

the torque density estimated using a linear 3D PN supposing a constant permeability was 270.57 

N m/L which shows a remarkable impact of the saturation on the performance. 

 

Fig. II-28 Torques developed by the three MG rotors during HSR pole-slipping. 
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Fig. II-29 Attraction forces acting on the three MG rotors during HSR pole-slipping. 

Table II-6 shows the size of each model and the time consumed to complete 31 motion steps. 

First, a comparison between the two nonlinear solving methods utilized by the 3D PN shows 

that the results obtained were very close but with the fixed-point method computation time 

being 1.84 times greater than the Newton’s method computation time. This is an expected result 

considering the nature of the two methods, where the fixed-point method provided more 

stability but slower convergence rates than Newton’s method. It is worth noting that the error 

used for the stopping criterion of the fixed-point method was ��, and for Newton’s method it 

was ��. Fig. II-30 shows the variation of the error values  �� and �� in function of time for one 

motion step. By comparing the two figures, one might suggest using �� as an error criterion for 

the fixed-point method to reduce its computation time, and in this case the computation times 

of the two methods will get closer eliminating the significant gain from the use of Newton’s 

method, but as mentioned earlier some reliability issues might be countered when using �� with 

the fixed-point method which the user should be aware of. Hence, in the general case, Newton’s 

method saved a good amount of time and provided almost the same level of accuracy as the 

fixed-point method, so it can be considered as the preferable choice, but using it also comes at 

a cost which is the complexity of constructing the Jacobian, so the use of each method is 

situational. Eventually, for the regular use, the user might prefer the fixed-point method when 

applying the 3D PN to a new structure because its implementation is much simpler and the gain 

from Newton’s method might not appeal to everyone. 
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Table II-6 A summary of the characteristics and performance of the implemented 3D models. 

Comparing the 3D PN and the 3D FEM shows that the 3D PN probably achieved its goal of 

being a lightweight and fast model that provided relatively acceptable results. In terms of speed 

the 3D FEM, which uses Newton-Raphson as its numerical solver, consumed 65.2% more time 

than the 3D MEC with Newton’s method. As for the computational resources, knowing that 

the models were running on a computer with 3.4 GHz CPU and 64 GB of RAM capacity, the 

1240574 nodes 3D FEM model consumed up to 40 GB of RAM whereas the 3D PN required 

less than 1 GB of RAM, and even if the size of the 3D PN system increases to over a million 

nodes, it will still require much lower RAM capacity than the 3D FEM thanks to the efficient 

sparse storage of the matrices. The main disadvantage of the 3D PN model was the poorly 

conditioned system and Jacobian matrices, where the estimate for the 1-norm condition number 

of these two square matrices was in the order of 10�. This explains why the nonlinear solvers 

used were stalling after a certain number of iterations, and very small error values were not 

possible to acquire without conducting a large unacceptable number of iterations. 

  

(a) (b) 

Fig. II-30 The variation of the error values (a) �� and (b) �� in function of the elapsed time. 

 Total no. of nodes Total time consumed 

Linear 
3D PN 345240 239 s 

3D FEM 1240574 5 h 

Nonlinear 

3D PN fixed-point 345240 19.69 h 

3D PN Newton-Raphson 345240 10.87 h 

FEM 949464 22.5 h 
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6. End-Effects Modeling in Magnetic Gears using 3D PN 

Following the presentation of the end-effects concept in section 4.5, this section presents a 

3D PN implementation for evaluating this aspect. In fact, a comparison between two magnetic 

gears topologies will be carried out concerning the magnetic saturation and the end-effects 

physical aspects. Therefore, an AFFMG and an axial field surface-mounted PM magnetic gear 

(SMPMG) were modeled using 3D PN under different physical conditions, and the comparison 

was carried out focusing on mainly comparing the variation of the torques and attraction forces 

of each structure with respect to the different operating conditions. In addition, accompanying 

every 3D PN model there will be a 3D FEM model serving as a reference for the comparison. 

Meanwhile, to study the end-effects through the 3D PN or 3D FEM, an air envelope was 

considered around the magnetic gear structure as described in Fig. II-21. Concerning the 

dimensions of the envelope, there are many recommendations that are usually proposed by the 

FEM software to choose the dimensions of what could be called an “infinite box”, but for this 

study a consideration should be made to the MEC method where it is better to choose the 

envelope as small as possible to reduce the total size of the system. Hence, a testing process was 

done running multiple simulations starting from a small thickness for the surrounding air region 

and increasing it gradually until the increase is no longer affecting the torque value significantly. 

Thus, the outer radius of the air envelope in the radial direction was chosen such that ������� =

1.2 ⋅ ����, and the interior radius was chosen such that the thickness of the air layer on the inner 

radial side is equal to that on the outer radial side. As for the air region in the axial direction, the 

defined axial length of that region on both axial sides was 30 mm. A tangential magnetic field 

boundary condition is set on the lateral surfaces of the air envelope. 

Regarding the modeled structures, only two changes have been made to the studied AFFMG 

that was already presented in the previous section (check Fig. II-23 and Table II-5). Specifically, 

the two air gaps have now an axial length of 1 mm, and the relative magnetic permeability of the 

PMs is now 1.05. On the other hand, the studied SMPMG is shown in Fig. II-31, where it has 

the same number of pole pairs and gear ratio as the AFFMG, and it possesses the same material 

properties. The complete dimensions of the SMPMG are listed in Table II-7, and to keep the 

comparison valid, the dimensions were chosen such that the SMPMG has the same PM and 

iron volumes as the AFFMG. In addition, the permeance flux tube shape and permeance 

equations were the same for both structures (see Fig. II-22). 
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Fig. II-31 A drawing for the SMPMG that is being studied and modeled. 

Table II-7 Geometrical dimensions and parameters of the studied SMPMG 

Rotor 1 
(HSR) 

Magnet pole span ��� 30 ° 

Back iron axial Length ��� 12.5 mm 

Magnets axial length ��� 12.5 mm 
Airgap 1 mm 

Rotor 2 
(Stationary) 

Steel pole span ��� 9 ° 

Axial Length ��� 8 mm 

Rotor 3 
(LSR) 

Magnet pole span ��� 9.47 ° 

Back iron axial Length ��� 7.5 mm 

Magnets axial length ��� 7.5 mm 
Airgap 1 mm 

Radii 
Inner Radius �� 80 mm 

Outer Radius �� 140 mm 

In essence, the two structures were modeled with and without considering the magnetic 

saturation; and with and without considering the end-effects. However, before going into the 

details of the evaluation and the results, a brief presentation of the meshes used for the 3D FEM 

models is good for the analysis. The elements used for the mesh of both structures were first-

order regular tetrahedron elements, and a visualization for the mesh of the two structures can 

be seen in Fig. II-32. The mesh was constructed to have a good quality which could provide 

accurate results that will serve as a reference for judgement. The main mesh rules that were 
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applied for the two structures were having a double layered mesh in the air gaps and applying 

zero relaxation for all the volumes, surfaces, and lines that form the air gaps which is to try 

making all the mesh elements in the air gaps have uniform sizes. An evaluation of the 3D FEM 

meshes for the two structures generated by the FLUX software is shown in Fig. II-33. 

6.1. Linear Case Results 

In this case the magnetic saturation was ignored, and the relative permeability of the soft 

magnetic materials was constant at 10000. The torques and forces acting on the rotors of the 

two structures were calculated during HSR pole-slipping. 

  

(a) (b) 

Fig. II-32 A visualization of the 3D FEM mesh for the (a) AFFMG and (b) SMPMG. 

  

(a) (b) 

Fig. II-33 The 3D FEM mesh evaluations generated by the FLUX software for the (a) AFFMG and 

(b) SMPMG. 
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The two cases of considering and ignoring the end-effects were evaluated for both structures. 

Fig. II-34 and Fig. II-35 show the torques and attraction forces experienced by the AFFMG 

during the HSR pole-slipping. In this case, the LSR stall torque decreased by 54.14%, only due 

to the end-effects, which is a significant drop, and the accuracy of the 3D PN slightly degraded 

in the case of the end-effects consideration especially the accuracy of the attraction forces. 

 

Fig. II-34 Torques experienced by the rotors of the AFFMG during HSR pole-slipping (linear case). 

 

Fig. II-35 Attraction forces acting on the rotors of the AFFMG during HSR pole-slipping (linear 

case). 
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For the SMPMG linear case, the torques and attraction forces calculated are shown in Fig. 11 

and Fig. 12. Here, the impact of the end-effects on the maximum torque is remarkably lower 

than what was observed with the AFFMG, where the maximum torque here decreased by 

16.88%. The common between the two structures is that the accuracy of the 3D PN decreased 

when modeling the end-effects. 

 

Fig. II-36 Torques experienced by the rotors of the SMPMG during HSR pole-slipping (linear case). 

 

Fig. II-37 Attraction forces acting on the rotors of the SMPMG during HSR pole-slipping (linear 

case). 
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6.2. Magnetic Saturation Case Results 

The magnetic saturation of the soft magnetic materials was considered for this case (see 

section 4.4). The nonlinear iterative solver chosen for the 3D PN was the fixed-point method 

where �� was chosen as the error value for the stopping criterion. Moreover, for both structures, 

the two cases of considering and disregarding the end-effects were investigated. 

 

Fig. II-38 Torques experienced by the rotors of the AFFMG during HSR pole-slipping (saturation 

case). 

 

Fig. II-39 Attraction forces on the rotors of the AFFMG during HSR pole-slipping (saturation case). 
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Starting with the results from the AFFMG structure, the torques and attraction forces 

experienced by the AFFMG rotors during HSR pole-slipping are shown in Fig. II-38 and Fig. 

II-39. Two observations can be made here, first, the impact of the magnetic saturation on the 

AFFMG is significant and can’t be ignored whether the end-effects are considered or not. Then, 

the end-effects affected remarkably the maximum torque where it decreased by 46.97%. 

 

Fig. II-40 Torques experienced by the rotors of the SMPMG during HSR pole-slipping (saturation 

case). 

 

Fig. II-41 Attraction forces on the rotors of the SMPMG during HSR pole-slipping (saturation case). 
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Fig. II-40 and Fig. II-41 show the torques and axial forces estimated for the SMPMG in the 

magnetic saturation case, and with the presence and absence of the end-effects. By comparing 

these figures with those from the linear case, the magnetic saturation effect is not as severe as it 

was in the AFFMG. And due to the end-effects, the LSR stall torque dropped by 15.99% which 

is similar to the linear case and lower than the drop that occurred for the AFFMG. 

6.3. Analysis and Discussion 

The proper analysis of the results should address three main aspects: the magnetic saturation, 

the end-effects, and the accuracy and validity of the 3D PN model. The LSR stall torques of the 

two structures predicted by the 3D PN and 3D FEM models and the resulting VTDs for all the 

cases are summarized in Table II-8 and Table II-9. It is important to recall that the two studied 

structures, the AFFMG and the SMPMG, have the same active volume. Moreover, the 

percentage error between the stall torque values predicted by the 3D PN and their reference 

values generated by the 3D FEM is added in these tables for all cases. Furthermore, to enhance 

the analysis of the values in these two tables, Table II-10 is added to show the percentage 

decrease in the LSR stall torques of the two structures due to the different conditions. The values 

in Table II-10 show clearly how the two MG types are affected differently by the imposed 

conditions. Regarding the magnetic saturation, the SMPMG is only slightly affected by this 

aspect and hence, if a compromise is needed to cut off the computation time, magnetic 

saturation could be ignored for the SMPMG. 

Table II-8 The AFFMG LSR stall torque predictions by the 3D PN and 3D FEM models for all the 

cases. 

Simulation Conditions (AFFMG) 

LSR Stall 
Torque (N m) 

VTD (N m/L) 
Percentage 
Error (%) 

3D PN 
3D 

FEM 
3D PN 

3D 
FEM 

Linear 
Ignoring End-Effects 1000.7 978.6 324.9 317.7 2.26 

With End-Effects 509.8 448.7 165.5 145.7 13.62 

Saturation 
Ignoring End-Effects 845.7 794.1 274.6 257.8 6.49 

With End-Effects 490.9 421.1 159.4 136.7 16.57 
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Table II-9 The SMPMG LSR stall torque predictions by the 3D PN and 3D FEM models for all the 

cases. 

Simulation Conditions (SMPMG) 

LSR Stall 
Torque (N m) 

VTD (N m/L) 
Percentage 
Error (%) 

3D PN 
3D 

FEM 
3D PN 

3D 
FEM 

Linear 
Ignoring End-Effects 497 492.64 161.4 159.95 0.89 

With End-Effects 445.1 409.46 144.5 132.94 8.7 

Saturation 
Ignoring End-Effects 473.6 471.66 153.8 153.14 0.4 

With End-Effects 430.1 396.21 139.6 128.64 8.6 

Table II-10 Percentage decrease of the LSR stall torque caused by the different conditions for the 

two structures. 

Simulation Conditions 
3D FEM 3D PN 

AFFMG SMPMG AFFMG SMPMG 

Magnetic Saturation Only 18.86% 4.26% 15.49% 4.71% 

End-Effects Only 54.14% 16.89% 49.06% 10.44% 

End-Effects & Saturation 56.97% 19.57% 50.94% 13.46% 

On the other hand, the effect of the magnetic saturation on the AFFMG is more noticeable 

and can’t be easily disregarded. This difference is caused by the nature of the two MG types, 

where the length of the effective magnetic air gap is much smaller in the case of the AFFMG 

which allows for higher magnetic field values to develop leading to the saturation region. 

Regarding the end-effects impact on the two structures, the impact on the AFFMG is much 

more severe where it lost over 50% of its potential torque density only due to the flux leakage 

at the outside air boundaries. Nonetheless, the end-effects influence on the SMPMG is higher 

than the magnetic saturation, but still much lower than the end-effects impact on the AFFMG.  

This goes back to the arrangement of the PMs in the two structures, where the AFFMG is prone 

to the magnetic flux leakage at both the axial and radial ends, whereas the flux leakage in the 

SMPMG is more likely to occur at the radial ends only. To illustrate, a heatmap of the magnetic 

induction in the two structures generated by FLUX 3D can be seen in Fig. II-42 and Fig. II-43. 

By observing the heatmaps, the two structures exhibit different magnetic flux activity patterns 

at their ends, where higher magnetic induction values can be observed at the ends of the 
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AFFMG structure. When observing the percentage drop of the stall torques due to both the 

end-effects and magnetic saturation, the same conclusions could be drawn out. 

 

Fig. II-42 Magnetic induction heatmap illustrating the flux leakage at the ends of an AFFMG. 

 

Fig. II-43 Magnetic induction heatmap illustrating the flux leakage at the ends of an SMPMG 
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For the evaluation concerning the performance of the 3D PN model in comparison to the 

3D FEM model, Table II-11 and Table II-12 summarize the number of nodes and computation 

time for each case, knowing that all the models were run on a PC with 3.4 GHz CPU with 64 

GB of RAM. The detailed 3D PN mesh dimensions for the two structures are described and 

summarized in Fig. II-44 and Table II-13. In an attempt to improve the accuracy of the AFFMG 

3D PN model in the case of the end-effects, the mesh of each radial layer was redistributed by 

decreasing the number of divisions in the axial direction and increasing it in the circumferential 

direction while approximately maintaining the same mesh density in that layer, and this 

redistribution helped in slightly improving the results. 

In general, from the results shown previously and summarized in Table II-8 and Table II-9, 

the accuracy of the 3D PN decreased when modeling the end-effects. In the AFFMG case, the 

mesh density in each layer was maintained the same after considering the air envelope, but the 

accuracy still deteriorated. A hypothesis to explain this behavior could be directly related to the 

distribution of the flux leakage paths at the ends of the AFFMG because it could be seen from  

Fig. II-42 that high magnetic induction values are appearing in small areas at some of the edges 

of the rotor, and this suggests that only a fine mesh around these edges could detect the flux 

leakage paths. In the current configuration of the 3D PN mesh, acquiring fine flux tubes around 

the edges of the rotors will increase the system size massively, but it is possible to acquire such 

a fine mesh without significantly affecting the system size if a more complex mesh configuration 

is implemented which will increase the complexity of the whole method and reduce its 

practicality. In fact, it has been noticed that increasing the number of radial divisions (����) 

improves the results, but increasing these divisions comes at the cost of remarkably increasing 

the system size. On the other hand, the accuracy of the 3D PN SMPMG models were better in 

general even though the mesh density per layer was reduced when modeling the end-effects, and 

it might be because the SMPMG is not too much affected by the end-effects.  

Furthermore, the computation times of the models for the SMPMG are generally lower than 

those of the AFFMG, and it is mainly due to the fact that the PM rotors regions of the SMPMG 

are uniform in the circumferential direction. This property of the SMPMG structure is more 

suitable for the matrix assembly algorithm, and it facilitates the navigation of the nodes inside 

the structure. 
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Table II-11 Characteristics and performance of the models implemented for the AFFMG 

 

Number of Nodes 
Computation 

Time 

3D PN 
3D 

FEM 
3D PN 

3D 
FEM 

Linear 
Ignoring End-Effects 345240 1858781 0.126 h 9 h 

With End-Effects 1464840 2744797 0.78 h 17 h 

Saturation 
Ignoring End-Effects 345240 1858781 13.94 h 37 h 

With End-Effects 1464840 2744797 17.90 h 60 h 

Table II-12 Characteristics and performance of the models implemented for the SMPMG 

 

Number of Nodes 
Computation 

Time 

3D PN 
3D 

FEM 
3D PN 

3D 
FEM 

Linear 
Ignoring End-Effects 794820 2427805 0.35 h 5 h 

With End-Effects 991440 2512444 0.54 h 6 h 

Saturation 
Ignoring End-Effects 794820 2427805 13.85 h 31.5 h 

With End-Effects 991440 2512444 16.80 h 48 h 

  

(a) (b) 
Fig. II-44 2D cross-sections of an axial field MG illustrating the 3D PN mesh parameters on the (a) 

(�, �) plane and (b) (�, �) plane. 
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Table II-13 Characteristics and performance of the models implemented for the SMPMG 

 �� ��� �� ��� �� �� ��� �� ��� �� ��� ������� ���� 

AFFMG 

Ignoring End-
Effects 

480 n/a 50 3 800 16 1 2280 n/a 30 3 3 n/a 

With End-Effects 720 4 25 3 800 16 1 3420 4 15 3 3 5 

SMPMG 

Ignoring End-
Effects 

540 n/a 100 3 1600 32 1 2280 n/a 60 3 3 n/a 

With End-Effects 360 3 26 3 1600 16 1 1710 3 30 3 3 3 

The main advantage obtained from using the 3D PN is the significant time saving achieved 

across all the cases and especially in the linear case. Then, the accuracy of the 3D PN was 

relatively acceptable across the different cases, and even though the error percentage became 

noticeable in the end-effects case, the time saving was still important which could mitigate the 

deficiency in the accuracy. In essence, the 3D PN could be considered a good candidate for early 

design optimization studies where it can perform very quick linear estimations, in addition to 

nonlinear estimations that can be faster than the nonlinear 3D FEM predictions. Hence, 

depending on the application and tools in hand, the user should choose the method that suits 

his constraints the most, knowing that a trade-off should be always done between accuracy and 

speed. 

Finally, the comparison study has shown that the AFFMG is much more affected by the end-

effects than the SMPMG, and, even if this aspect could be disregarded under certain conditions 

for the SMPMG, it might be highly important to consider for the AFFMG structures. The 

magnetic saturation, on the other hand, could be possibly ignored in the SMPMG structures, 

but it is better to always perform evaluations before ignoring such a condition. These 

conclusions were mainly derived from the case study that was presented, and a general 

conclusion on this subject that covers all the pole-pair combinations and structure dimensions 

requires more testing and investigation. 

7. Quasi-3D RN for Modeling the End-Effects in Axial Field MGs 

In addition to the 3D PN implementations, a quasi-3D RN (Q3D RN) approach is proposed, 

and the motivations behind using this approach were implementing the mesh formulation and 

testing a very well know technique that combines the simplicity of 2D modeling and the 
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advantages 3D modeling [142], [143]. In fact, the proposed Q3D RN model will be tested for 

the prediction of the quantities of an AFFMG considering the end-effects.  

This approach can be considered as a multi-slice technique where the axial field structure is 

divided into several radial layers and each layer is treated as a standalone 2D RN model (see Fig. 

II-45). The reluctance values at each layer are dependent on the radial position of that layer, and 

the expressions for the axial and circumferential reluctances could be deduced as the reciprocal 

of the permeance equations in (II-51) and (II-52). The results from each layer are then combined 

using an activation function which will represent the radial dependence of the magnetic 

induction in the structure, and eventually this representation will mean the consideration of the 

end-effects in the axial field structure. Hence, the process to construct the quasi-3D multi-slice 

approach that can take into account both the radial and axial end-effects is as follows: first, the 

structure is divided into multiple layers in the radial direction. Next, each layer is solved as an 

independent 2D reluctance network model using the formulation presented in section 3.2. Then, 

the magnetic induction in the airgaps is calculated at the mean radius of each layer and then 

provided to the MST to compute the torques and axial forces applied on each layer. Finally, 

using the predetermined activation function, a weighted sum is performed on the obtained 

torques and forces to obtain the total quantities. The equations of the torques and axial forces 

acting on the whole structure are given in (II-53). 

 

Fig. II-45 An illustration of the multi-slice approach applied to an axial field structure. 
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 (II-53) 

 �� and �� are the total torque and axial force, respectively, acting on rotor � such that � ∈

{1,3}, � is the total number of slices, ��� is the mean radius of slice �,  ��� and ��� are the 

elementary torque and axial force, respectively, from slice � acting on rotor �, and ��(�) is the 

activation function related to the airgap adjacent to rotor �. Thus, there will be two activation 

functions related to each air gap of the magnetic gear, and this is required since the behavior of 

the magnetic induction in the two airgaps is not the same and using one activation function for 

both will affect the accuracy. The determination or the choice of the activation function depends 

on the type of the structure. For this work, the approach followed in [143] was used to obtain 

the two activation functions required. The curves of the estimated activation functions for the 

two air gaps are shown in Fig. II-46. 

The structure that is going to be modeled using the Q3D RN is again an AFFMG with a 

different gear ratio. The complete dimensions and specifications of the design are listed in Table 

II-14. Furthermore, the number of pair poles of the HSR is �� = 4, the number of pole pairs 

of the LSR is �� = 15, and the number of the ferromagnetic modulation segments of the fixed 

member is �� = �� + �� = 19. Moreover, as it is being supposed that the middle rotor (rotor 

2) is going to be the fixed member, the gear ratio of this design becomes �� =
��

��
= 3.75, where 

and the relation between the angular velocities of the rotors is �� = −����. 

 

Fig. II-46 The activation functions for the two air gaps used for the Q3D RN model. 
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Table II-14 Geometrical dimensions and parameters of the studied AFFMG (design 2) 

Rotor 1 
(HSR) 

Steel/magnet pole span ���/��� 22.5 ° 

Axial Length ��� 25 mm 
Airgap 1.5 mm 

Rotor 2 
(Stationary) 

Steel pole span ��� 12 ° 

Axial Length ��� 8 mm 

Rotor 3 
(LSR) 

Steel/magnet pole span ���/��� 6 ° 

Axial Length ��� 15 mm 
Airgap 1.5 mm 

Radii 
Inner Radius �� 80 mm 

Outer Radius �� 140 mm 

The same performance tests that were performed in the previous sections were repeated for 

this model and device, and the results were accompanied by reference results generated using a 

3D FEM model for validation and comparison. In the linear case, the soft magnetic materials 

were considered linear isotropic with a constant relative permeability of 10000, and in the 

magnetic saturation case the B(H) curve presented in section 4.4 was adopted, and the fixed-

point iteration method was used as a nonlinear solver with �� being the error equation of the 

stopping criterion. In addition, the permanent magnets were considered as neodymium magnets 

with a linear demagnetization curve, a relative permeability µ�� = 1, and a magnetic remanence 

�� = 1.2 �. 

First, to test the impact of the end-effects on this structure and to support the conclusion that 

was made in the previous chapter, two linear 3D FEM models were constructed for this design: 

one considers the end-effects through a surrounding air envelope, and another ignores the end-

effects by applying tangential magnetic field boundary conditions to the lateral surfaces of its 

structure. Then, the torques generated by these models during HSR pole-slipping are shown in 

Fig. II-47. For this different AFFMG design also, it can be seen that the impact of the end-

effects on the torque of the structure is significant where the LSR stall torque decreased by over 

50.3%. 

Meanwhile, the evaluation of the Q3D RN method will be carried out by comparing its results 

to results from 3D FEM models that consider the end-effects through an air envelope. While 

having rotors 2 and 3 fixed and moving rotor 1, the torques and attraction forces on the three 

rotors were evaluated and shown for the linear and saturation cases in Fig. II-48 and Fig. II-49. 
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Fig. II-47 Torques experienced by the rotors of the AFFMG (design 2) during HSR pole-slipping 

and generated using 3D FEM models. 

 

Fig. II-48 Torques experienced by the rotors of the AFFMG (design 2) during HSR pole-slipping 

(linear and saturation cases, end-effects considered). 

A comparison between the results generated using the Q3D RN and 3D FEM shows that 

there is a noticeable but not significant difference between the amplitudes of the torques, 

whereas a much better agreement between the two models can be seen in the attraction forces 

curves. The values of the LSR stall torques and the respective VTDs are listed in Table II-15, 

and in addition to the percentage error between the stall torque values predicted using the 3D 
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FEM and Q3D RN. The difference in the values of the torque is mainly related to the nature of 

the activation functions, where the functions have been obtained using a method that depends 

only on the variation of the values of the axial induction component and doesn’t consider how 

the circumferential components are being affected by the end-effects. Eventually, this leads to 

less accurate predictions for the circumferential components which affected the accuracy of the 

torque values knowing how it plays an important role in the formula of the torque derived from 

the MST. Nevertheless, the difference could be justified when observing the amount of time 

saved by using the Q3D RN. The computation times and number of nodes of the Q3D RN and 

3D FEM models implemented are summarized in Table II-16.   

 

Fig. II-49 Attraction forces on the rotors of the AFFMG (design 2) during HSR pole-slipping (linear 

and saturation cases, end-effects considered). 

Table II-15 The AFFMG (design 2) LSR stall torque predictions by the Q3D RN and 3D FEM 

models. 

Simulation 
Conditions 

LSR Stall Torque 
(N m) 

VTD (N m/L) 
Percentage Error 

(%) 
Q3D 
RN 

3D FEM 
Q3D 
RN 

3D FEM 

Linear 453 388.9 144.3 123.9 16.48 

Saturation 403.6 357.6 128.5 113.9 12.86 
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Table II-16 Characteristics and performance of the Q3D RN model and the reference 3D FEM 

models. 

Simulation 
Conditions 

Q3D RN 3D FEM 

Nodes per 
2D Layer 

No. of 
Layers 

Computation 
Time 

No. of 
nodes 

Computation 
Time 

Linear 155700 9 0.417 h 1439817 7 h 

Saturation 125100 5 8.375 h 1439817 29 h 

In essence, the Q3D RN served as a good lightweight model that can provide relatively good 

results in a short time, where the compromise between speed and accuracy is always there to be 

considered. Moreover, there is still a room for improvement for this method by upgrading the 

activation functions to be able to consider the variations of the both the axial and circumferential 

induction components, and this upgrade will require a change or improvement for the original 

method used to obtain these functions. Finally, a proper comparison between the Q3D RN 

method and 3D PN method presented in the previous sections might not be valid due to the 

slight differences in their application. However, if some observations are to be done, then it has 

been seen that in the linear case the 3D PN performed better than the Q3D RN in terms of 

lower percentage error and shorter computation time, but in the saturation case the Q3D RN 

saved almost half the time consumed by the 3D PN and still provided lower percentage error. 

Conclusion 

The chapter started with an overview on the behaviors and kinds of magnetic materials. Then, 

a theoretical presentation for the modeling approaches that were employed was done. The 

implementation details of the magnetic equivalent circuit approach were then detailed through 

multiple sections. In addition, the MEC modeling technique was assessed by evaluating and 

comparing its nonlinear solvers. Then, the end-effects of axial field magnetic gears were 

investigated and modeled using a 3D MEC, and two magnetic gear types were compared. The 

chapter concluded with the presentation and evaluation of an alternate quasi-3D technique for 

modeling the end-effects. The evaluation and results of the MEC models have satisfied the main 

goal of this chapter which was to obtain a lightweight 3D modeling tool for axial field magnetic 

gears. Across the different cases and studies, the MEC provided quicker computation times than 
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the 3D FEM and maintained relatively good accuracy. The consideration of the end-effects in 

axial field magnetic gears was also possible using the MEC method but with decreased accuracy. 

Hence, there is a compromise to be made between the constraints, where the MEC could be 

used for early design optimization studies where multiple parameters are varying, and then the 

verification in the final stage could be done by using the FEM. Finally, the case studies have 

shown that the SMPMG and AFFMG structures were affected by magnetic saturation and end-

effects differently, where the evaluation has shown the AFFMG could be severely affected by 

these aspects especially the end-effects. 
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C h a p t e r    I I I  -   M a g n e t i c  G e a r s  f o r  M a r i n e  

R e n e w a b l e  E n e r g y  

Introduction 

This chapter starts with an overview of the marine renewable energy technologies. Different 

conversion systems and energy sources will be briefly introduced, and a more detailed study will 

be done on offshore wind energy. The challenges and criteria of the offshore wind conversion 

systems will be explored. Next, an overview of the applications of magnetic gears in marine 

energy systems will be done showing the implementations reported in the literature of both 

magnetic gears and magnetically geared machines. Finally, a parametric sweep analysis will be 

done utilizing the modeling methods presented in the previous chapter, where the goal is to 

propose an axial field magnetic gear design that can be suitable for implementation in a marine 

renewable energy conversion system.  

1. An Overview on Marine Renewable Energy Conversion Systems 

Problems related to the use of fossil fuels have encouraged the societies to find viable and 

reliable alternatives for energy production. The controversial nuclear energy has lower 

greenhouse gases emissions but treating its radioactive wastes is rather complicated. Therefore, 

renewable energy sources are constituting a viable solution sought after by most countries. The 

French Agency for Ecological Transition (ADEME) ensures that France could produce, by 

2050, 100% of its electrical energy from renewable sources at economically acceptable costs 

[144]. In addition, water covers more than 70% of the surface of our planet, so the potential of 

renewable marine energy is enormous. Different types of marine energy could be distinguished, 

and types that include electromechanical conversion systems could be tidal stream, tidal 

impoundment, wave, and offshore wind. Fig. III-1 shows resource maps from AQUARET of 

Europe for tidal stream and wave energy. The electromechanical conversion in these systems is 

usually done through an electric generator which could have linear or rotational motion. In 

addition, the generator could be connected directly to the energy source forming a direct drive 

system (DD) or through a gearbox. 
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(a) (b) 
Fig. III-1 Marine renewable energy potential in Europe (a) tidal stream (b) wave energy [145]. 

1.1. Tidal Stream Energy 

Tidal stream technologies produce power by using the water flow caused by the tides and 

accelerated by the terrain of the shore. As is the case with wind and wave technologies in their 

development, several tidal stream designs have been and continue to be presented. Horizontal 

or vertical-axis rotors are used in the majority of turbines. Several devices have been or are being 

tested on a small scale, while others have been evaluated as full-scale prototypes. In the UK, 

Norway, Ireland, Italy, Sweden, Canada, and the United States, corporate, government, and 

university research initiatives on tidal power during the last half-decade have laid an essential 

basis for the burgeoning tidal power sector. Wind and tidal current generating systems share 

numerous elements and driving forces. Borrowing technology, components, and expertise from 

horizontal axis wind turbines is the easiest approach to develop tidal stream energy. A tidal 

stream turbine is comparable to a wind turbine, except seawater is 800 times denser than air and 

has one-fifth the flow rate. A properly rated tidal turbine would have half the rotor diameter of 

a comparable wind turbine. Tidal stream energy harnessing devices could be categorized into 

three types [145]–[147] (see Fig. III-2): 

 Horizontal axis systems like the Free Flow Turbine designed by Verdant Power and 

installed in the USA as part of the RITE project [148], or those installed in the Bristol 

Channel between England and Wales [149]. 
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Fig. III-2 Tidal current turbines different types [146]. 

 Vertical axis systems like the GCK Gorlov Helical Turbine designed in the US [150] 

or the turbine of the ENERMAR project located along Sicilian coast [151]. 

 Oscillating hydrofoil systems such as the Stingray tidal stream energy device installed 

in the Shetland, UK [152]. 

1.2. Wave Energy 

Wave energy technologies are meant to harvest energy from the wave motion. Wave energy 

systems are often categorized into shoreline (or coastal), near-shore, and offshore devices based 

on the features of their deployment areas. The physical factors pertinent to wave energy 

conversion vary based on ocean depth and distance from the coast. It is anticipated that floating 

systems anchored in deep water will have the greatest potential for large-scale application, since 

waves in deep water move across the ocean nearly without energy loss.  

The Pelamis wave energy converter was the offshore wave energy technology that is closest 

to park-scale deployment, but the company was disbanded in 2014. Current wave energy clients 

that are working on wave energy technologies are like AWS Ocean Energy, Mocean Energy, 

SEABSED, Wello OY [153]. Wave energy technology types could be classified into different 

types like attenuator, axisymmetric point absorber, oscillating wave surge converters, oscillating 

water column, overtopping device, and submerged pressure differential. Each one of these 

categories might have typical power take-off (PTO) options, but the other options might also 

be suitable for them. An overview on wave energy conversion devices can be found in [154]. 
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1.3. Tidal Impoundment Energy 

Tidal impoundment power plants work by impounding enormous quantities of water at a 

location that may generate a head difference, and then directing the flow of this water into or 

out of the impoundment using low-head hydroelectric turbines. The plants may function on 

either ebb or flood tide, or both. The most prevalent technique is ebb generation. At this 

position, water would enter via sluice gates as the tide rises. Then, the sluices are shut, and the 

tide starts to recede. When the water level outside the barrage is low enough to provide a proper 

head, the sluices are opened and the water in the impoundment is released back into the sea 

through turbines. Like wind energy, this technology has achieved industrial and commercial 

maturity. However, there are few tidal power plants owing to the limited number of appropriate 

locations and the concerns on the potential harmful impact on the ecosystem. Table III-1 lists 

tidal power stations in operation around the world [155], [156]. The tidal power station in La 

Rance, France was the first in the world that was put in service in 1966, and it remains to this 

day one of the most important in the world. The electromechanical conversion systems used for 

this energy are like those used with wind turbines, and the electric machine structures are 

rotational. 

1.4. Offshore Wind Energy 

The offshore wind energy is probably the most mature and most developed out of the 

different marine renewable energy sources. This is mostly because this source of energy is 

basically the same as normal wind energy but with different conditions and constraints, and wind 

energy is a very well established and now widely used renewable energy source around the world. 

The literature is full of state-of-the-art reviews and discussions on wind energy and some 

important and interesting studies could be found in [157]–[164]. 

Table III-1 Tidal power centers in operation around the world. 

Center Power (MW)  Country 
Sihwa  254  South Korea 

La Rance  240  France 
Annapolis Royal  20  Canada 

MeyGen  6  USA 
Jiangxia  3.2  China 

Kislaya Guba  1.7  Russia 
Uldolmok  1.5  Sout Korea 

Eastern Scheldt  1.2  Netherlands 
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Some of the major criteria that wind power systems should address are: 

 Reliability and ease of maintenance 

 Total weight of the nacelle 

 Total cost 

 Energy efficiency and grid integration 

These criteria should be considered when looking into increasing the unit power of wind 

turbines. 

The 2022 Global Wind Report [165] has highlighted that 2021 was the second-best year for 

the global wind industry where almost 94 GW capacity was added. Europe, Latin America, and 

Africa & the Middle East experienced record-breaking years for new onshore installations, but 

the overall number of onshore wind installations in 2021 was 18% fewer than the previous year. 

The reduction was mostly attributable to the slowdown of onshore wind growth in China and 

the United States, the world's two biggest wind power markets. Last year, 21.1 GW of offshore 

wind capacity was installed, three times as much as in 2020. Making 2021 the greatest year in the 

history of offshore wind and increasing its market share of new installations worldwide to 22.5% 

in 2021. China contributed 80% of the world's offshore wind capacity additions in 2021, 

increasing its total offshore wind installations to 27.7 GW (see Fig. III-3). It took Europe 30 

years to reach a comparable level of offshore wind capacity. The total worldwide wind power 

capacity has now reached 837 GW, allowing the world to avoid almost 1.2 billion tons of CO2 

per year.  

 

Fig. III-3 The distribution of the total onshore and offshore wind energy installations around the 

world [165]. 
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A report from 2017 [166] summarized the principle manufacturers for offshore wind turbines 

(see Fig. III-4) and estimated the top 5 suppliers of wind turbines with over 5 MW of unitary 

power (see Fig. III-5). The aforementioned criteria support the construction of wind turbines 

with the highest feasible unitary power, essentially to reduce installation and maintenance costs. 

In fact, it is more economical to install a limited number of turbines with high unit power, than 

a larger number of turbines with lower power [167], [168].  

  

(a) (b) 
Fig. III-4 Top 10 offshore wind turbine suppliers for (a) newly installed turbines in 2017 and for (b) 

the total turbines installed by the end of 2017 [166]. 

 

Fig. III-5 Top 5 suppliers for wind turbines with unitary power of over 5 MW in the year of 2017 

[166]. 
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The Haliade-X offshore wind turbines from GE Renewable Energy are the most powerful 

wind turbines in operation to date. The Haliade-X 14 MW was the industry’s first offshore wind 

turbine to operate, and the only 12+MW offshore wind turbine platform that has been operating 

for over two years. It has a 220-meter radius rotor with three blades each measuring 107 meters. 

In addition, it uses a single direct drive permanent magnet synchronous generator  [169]. Other 

powerful offshore wind turbines (14+ MW) are being developed currently by different 

manufacturers like bewind, Vestas, aerodyn Energiesysteme, Siemens Gamesa Renewable 

Energy, and Mingyang Defeng Energy Systems. For example, the V236-15.0 is a 15 MW 

offshore wind turbine that is being developed by Vestas, where it uses an indirect drive 

synchronous generator through a three-stage planetary gearbox, and the installation of its 

prototype is set to take place in the second half of 2022 [170]. Finally, the largest announced 

offshore wind turbine is the 16 MW MySE 16.0-242 from the Chinese manufacturer Mingyang. 

This wind turbine has a hybrid drive topology with a medium-speed planetary gearbox, and the 

installation of its prototype is scheduled for the first half of 2023 [171]. In the following 

subsections the criteria related to the wind turbines are discussed based on the overview 

presented in [159]. 

1.4.1. Reliability and ease of maintenance 

Several recent studies have been devoted to the problem of the reliability of wind turbine 

systems [172]–[177]. This problem has a direct link with the operation and maintenance costs 

(O&M) of wind systems. 

 

Fig. III-6 GE Haliade-X 14 MW offshore wind turbine prototype [169]. 
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These studies are based on databases collected on wind turbine systems already installed 

"onshore" and "offshore". Note that the first offshore wind farm is the Vindeby wind farm in 

Denmark. This park was dismantled in 2017, the year in which the first floating wind farm 

"Hywind Scotland" was commissioned [178]. Moreover, a European project "RELIAWIND" 

bringing together players from the industrial and academic worlds has been devoted to this issue 

[179]. Detailed analyzes are made of the data collected. Some studies are also devoted to defining 

the best reading indicators of its bases in order to draw the right lessons [172], [173], [180]–[182]. 

Eventually, these studies make it possible to refine the monitoring campaigns. Some 

components like the generator are complex electromechanical systems that should not be treated 

as a single component, but as a set of subcomponents (bearings, windings, etc.) that should each 

be monitored [183]. 

Overall, data on power generation systems [173], [175], [176], [184] show that mechanical 

gearboxes, for the drive systems where they are present, are the components with the highest 

O&M costs. especially when they are implemented with multiple stages. On the other hand, for 

direct drive systems, where no mechanical gearboxes are installed, the failure rate for the 

generator increases [175], [176].  Essentially, the elimination of gearboxes shifts the problems to 

the level of the generator which is subjected to much greater mechanical stresses, and the current 

load increases at the same time (torque machines). In the direct drive systems, where the speed 

of rotation is relatively low, and thus the torque produced by the machine becomes relatively 

high, as well as the current of the armature (torque machines), and this causes mechanical 

problems and heating of the windings. In this situation, the use of magnetic gears is very plausible 

and could solve a lot of the reliability problems. Most of the marine energy types listed before 

in addition to the onshore and offshore wind energy systems are considered as applications with 

high torque and low speed, and as discussed in the first chapter, the magnetic gears are best 

suited for such operation because most of their losses are dependent on their rotational speed. 

However, there are still concerns raised around the heavy dependance of magnetic gears on rare-

earth magnets which affects the availability of the materials and the economic feasibility of the 

devices. 

1.4.2. Weight of the Nacelle 

The weight of the nacelle is an important indicator of the technical and economic feasibility 

of a wind turbine concept. From the perspective of using direct drive generators, which are 

much heavier than those associated with gearboxes, and the inclusion of step-up transformers 
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in the nacelle, for offshore wind turbines, the mechanical load of the tower will be too high and 

may therefore compromise the technical and economic feasibility of higher power wind turbines. 

Regarding the reduction of the weight of the power transformer, some studies propose replacing 

it by a lighter power electronics converter. A state of the art concerning this aspect is presented 

in [185]. For the generator, innovative solutions that are more compact, and therefore less heavy, 

such as PDD systems, or generators based on superconductors are still being heavily 

investigated. These two solutions have been explored within the framework of the "InnWind" 

project. The development of a low-cost and lightweight superconducting generator 

demonstrator was recently carried out within the framework of the European "EcoSwing" 

project, which ended in April 2019. This prototype was placed in a wind turbine and tested with 

success [186]. 

1.4.3. Total Cost 

Another aspect to consider when designing wind turbines is related to the investment and 

operating costs. The cost of the generator represents a non-negligible part of the total cost of 

the nacelle [187], [188], which itself constitutes a significant part of the investment and operating 

costs. 

Permanent magnet generators have relatively high capital costs but are offset by relatively low 

O&M costs. Given the fluctuating prices of permanent magnets, one solution is to use wound 

excitation, or double excitation generators [189]. However, this would lead to an increase in 

O&M costs, given the additional excitation system. This issue of offshore wind costs is the 

subject of the European "ROMEO" project [190]. 

1.4.4. Energy efficiency and grid integration 

The direct-drive fault-tolerant permanent magnet generator is probably the best solution for 

increasing the energy yield of a wind turbine. The direct drive concept allows mechanical gearbox 

losses to be eliminated, and permanent magnet generators have relatively higher efficiency than 

other machine technologies. Fault tolerance of the machine improves its availability and 

therefore its energy efficiency. 

The spread of wind energy in the electrical energy system continues to increase, which implies 

that large wind farms are changing from the status of a simple energy source to the status of 

power plant with characteristics of support to the electricity network. The main grid code 

requirements can be summarized as follows: control of active and reactive power, control of the 

voltage quality (frequency and harmonics), and the voltage dip management [191]. While in 
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conventional thermal power plants the ability of the units to respond to the "grid code" is 

ensured by controlling the drive system, in the case of wind turbines this is not possible because 

the direction and intensity of the wind can’t be controlled. The proposed solutions, to meet the 

requirements of electrical network operators, consist of adding power electronics systems often 

associated with energy storage systems [192]. 

2. Applications of  Magnetic Gears in Marine Renewable Energy 

Some literature overview studies have been done on the application of magnetic gears or 

magnetically geared machines in marine and wind energy [82], [193], [194]. In [82], the authors 

presented the different magnetically geared machines or PDD technologies that could be applied 

to wind energy whether onshore or offshore. The study started first by presenting the popular 

drive train topologies for wind energy systems and then made a comparison between these 

systems based mainly on their mass and cost, where the result of the comparison agrees with 

what have been discussed in the previous section concerning the high mass and cost of direct 

drive PM generators. Next, the study went on to present different magnetic gear and 

magnetically geared machine types, and then present their potential advantages like the compact 

size of the MGM with respect to a PM machine with a one-stage gearbox. Finally, the challenges 

associated with the MGMs were discussed like the complex mechanical structure of MGs and 

MGMs which might increase their manufacturing costs, the complexity of the optimization 

process required to match between the magnetic gear and the PM generator where the modeling 

of magnetic gears is already complicated and requires 3D modeling methods due to the severity 

of the end-effects which agrees with what have been presented in chapter 2 of this work. 

Moreover, another reported challenge was related to the low torsional stiffness of the mechanical 

parts which could lead to undesired oscillations [82]. 

A dedicated study to demonstrate the potential of MGs in marine energy was presented in 

[194]. The study first provided a brief overview on MGs in general and then discussed in detail 

the forms of implementation for magnetic gears in marine energy, specifically wave and tidal 

energy. One of the applications that was proposed for magnetic gears was to use it in oscillating 

wave surge converters (see Fig. III-7), where this proposed application was a high torque low 

speed one and required a gear ratio of around 10 [194], [195]. Furthermore, multiple gear ratio 

values of the MGs that could be proposed for wind energy applications, where the torque ripple 

was investigated for each individual value [193]. 
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Fig. III-7 An oyster design proposed with two MGs connected to two generators [195]. 

Consequently, many MG and MGM designs were proposed for marine energy with different 

types and structures, and a briefing for some of these designs will be done in the following 

paragraphs. 

1.5. Rotational Radial Field Structures 

In [196], L. Shah proposed a coaxial radial field magnetic gear to be used for contra-rotating 

tidal turbine system which is a double rotor turbine system (see Fig. III-8). The proposed MG 

is a basic surface mounted PM but with no fixed rotor, where the outer and the pole pieces 

rotors rotate simultaneously at the same low speed in opposite directions while the inner rotor 

is the high-speed output shaft, and the resulting gear ratio for this mode of operation is 1:12. 

The design was theoretically supposed to provide a VTD of 74 N m/L, but the constructed 

prototype delivered 47.08 N m/L which according to the authors was due to the non-uniform 

air gaps of the constructed prototype. 

A 1:63.3 dual-stage magnetic gearbox designed for a hydrokinetic generator application was 

presented through two studies [197], [198] (see Fig. III-9). The first study addressed the 

electromagnetic and mechanical design of the first stage of the magnetic gearbox which was 

chosen with a gear ratio of 6.67:1. The design requirements for the first stage were low torque 

ripple, high efficiency, input speed of less than 40 rpm (which is suitable for a hydrokinetic 

turbine), and a rated power of 5 kW (at 40 rpm) [198].    
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Fig. III-8 The MG prototype designed for a contra-rotating tidal turbine [196]. 

The study first investigated using flux focusing configuration on the inner and outer rotors 

and performed a parametric sweep analysis to determine the optimal parameters for a high mass 

and volume torque densities. Then, to increase the torque capability of the design without 

increasing the axial length, Halbach array configuration was used on the outer rotor. 

Furthermore, the study performed a deflection analysis to measure the feasibility of the 

mechanical design. The final estimated VTD using 3D FEM was 306.4 N m/L [198]. 

 

Fig. III-9 A sketch showing the proposed dual stage hermetically sealed magnetic gearbox designed 

for marine hydrokinetic applications [198] 
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Fig. III-10 The prototype constructed in [198] showing the (a) full assembly of the inner Halbach 

rotor, (b) the cage rotor, and (c) the half assembly of the outer Halbach rotor. 

The design and prototyping of the second stage of the magnetic gearbox was done in [197]. 

The proposed design had a gear ratio of 9.5:1 and Halbach array configuration for the PM rotors, 

where the authors used for the Halbach rotor a new type of isosceles trapezoidal magnet shape 

to facilitate the assembly and manufacturing. The optimization study was done for two 

configurations regarding the multistage implementation: a nested configuration where the 

generator is included within the 2nd stage MG as shown in Fig. III-9, and a series configuration 

where the generator is cascaded externally to the magnetic gearbox. The comparison between 

the two configurations has shown that while the series MG design delivered greater volumetric 

torque density, both the series and nested configurations had comparable volumetric torque 

density characteristics. Eventually, a prototype was constructed testing the MG on its own in 

addition to testing it while in the series configuration with an off-the-shelf generator (see Fig. 

III-10). The experimental VTD for the MG was measured to be 236 N m/L while the measured 

VTD of the MG generator combination was 66 N m/L. 

In their work [199] the authors investigated the possibility of using magnetically geared 

machines to harvest wave energy, and then demonstrated the design, analysis, and construction 

of a large scale magnetically decoupled inner stator radial flux magnetically geared machine 

prototype (see Fig. III-11). It was shown that the prototype could attain a significant stall torque 

of 3870 N m which matched the estimated values and corresponded to a VTD of 82.8 N m/L 

and an MTD of 14.5 N/kg. Furthermore, while running in steady state near its rated torque, the 

prototype was around 90% efficient with negligible torque ripple. As a result, the technology 

was reported to have enormous promise for high torque, low speed applications such as wave 
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and wind energy harvesting, traction, and oil and gas extraction. Additionally, the authors left 

some observations on their experience with this design like the necessity of the simultaneous 

evaluation for the magnetic gear and the generator when choosing the optimal gear ratio, and 

the severity of the end-effects where it was evaluated that it decreased the maximal VTD by 

21%. On the other, the authors recommended that significant future work is still ahead to 

develop this technology, where the main concern is investigating the transient response of the 

device to oscillating input motion. In fact, studies on the transient response of MGMs are already 

starting to emerge [200], [201]. 

Additionally, a magnetically geared PDD generator for a floating tethered marine current 

turbine was proposed in [202]. The device was designed to have a rating of 6 kW at a speed of 

100 rpm. The study first started by investigating different pole-pair combinations and different 

gear ratios where the selection criteria were obtaining a high pull-out torque, low torque ripple, 

and acceptable attraction forces (see Fig. III-12). After choosing the gear ratio to be 7.75:1, an 

optimization study aiming at maximizing the PDD efficiency at the rated operation point and 

reducing the total PM mass while limiting the 2-D active length of the machine to a maximum 

of 180 mm. Then, following the choice of the right parameters a prototype of the PDD 

generator was constructed and validated first using a dynamometer test setup, and later by 

integrating it into a marine current turbine where the outer case of the PDD was in direct contact 

with water flow (see Fig. III-13). 

 

Fig. III-11 Cross-section view of the MGM proposed in [199] for wave energy harvesting. 
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Fig. III-12 The PDD generator proposed for floating marine current turbine in [202]. 

The study has shown that this design exhibited high efficiency in a compact form that can be 

easily integrated into the marine turbine, and in addition it will assure a reduced maintenance 

rate due to the integration of the magnetic gear element. Finally, the study has discussed the 

effect of the unbalanced attraction forces on the machine performance [202].  

 

Fig. III-13 The PDD tidal turbine demonstrator presented in [202]. 
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1.6. Rotational Axial Field Structures 

There are some studies that discussed the use of axial field structures for wind or marine 

renewable energy, but the number of prototyped and experimentally tested axial field structures 

is still very little because the axial field topology still has a lot of challenges to address mainly 

related to the attraction forces. In[203], the authors designed and experimentally tested an axial 

field magnetically geared generator for wind energy applications (see Fig. III-14). The rated 

power of the machine was 4 kW, and the chosen gear ratio was 6.667:1 which for a rated input 

speed of 150 rpm could ensure an output frequency for the generator of 50 Hz. A prototype 

was constructed for the design after performing an optimization study and choosing the right 

parameters. It has been shown the active MG part could achieve a VTD of over 100 N m/L. In 

addition, two configurations were tested for the MGM, one where the MG is magnetically 

coupled to the generator and another when the two are magnetically decoupled. Moreover, the 

inherent overload protection was demonstrated for the device. On the other hand, high losses 

occurred at the LSR side caused by the flux leakage in the steel back plate which led to a poor 

overall efficiency for the prototype. Additionally, the axial field flux focusing MG of the study 

in [49] which was presented in the first chapter was designed for ocean generator applications, 

where the authors first performed a parametric sweep analysis to get the design parameters then 

constructed a prototype that was evaluated to have a VTD of 152.3 N m/L. 

 

 

Fig. III-14 The layout of the axial field MGM proposed in [203]. 
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1.7. Tubular Linear Structures 

Linear magnetically geared machines were proposed for heaving buoy wave energy 

converters. A linear magnetic gear cascaded with a linear PM generator was proposed in [204] 

for such an application. The proposed system was serially integrated which enabled the gear's 

high-speed mover and the generator's translator to use the same shaft. The suggested design 

couples the MG's low-speed mover with the heaving buoy structure (see Fig. III-15). The speed 

of the high-speed mover linked to the linear generator is increased by a factor of the gear ratio 

when the buoy rises and falls with wave propagation. A comparably rated machine without the 

MG system would have a volume four times that of the proposed system and would cost much 

more due to increased quantities of PMs, iron cores, and copper windings (167, 214, and 271%, 

respectively). Furthermore, the copper losses for the gearless machine were projected to be 

greater. As a result, the suggested machine has higher efficiency and power density while 

drastically decreasing cost and bulk [194], [204]. 

 

Fig. III-15 A linear MGM proposed for a heaving buoy converter ((a) 3D solid model (b) cross-

section schematic) [204]. 
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An adjustable gear ratio linear MGM design for wave energy extraction was proposed in [205], 

where the design used Alnico magnets (see Fig. III-16). The gear ratio variation was done by 

magnetizing and demagnetizing some of the Alnico magnet poles using DC excitation fields. 

The work included evaluation of the electromagnetic performance of the proposed design 

through FEM modeling. It was suggested that the variable gear ratio property of the MG would 

allow the wave energy converter to operate in resonance with the waves at different sea states 

to maximize the captured power.  

Finally, some studies have discussed the use of trans-rotary MG or magnetic lead screw design 

for the wave energy convertors [206]–[209]. 

 

Fig. III-16 A drawing of the possible installation of the variable gear ratio linear MG proposed in 

[205]. 
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3. Proposal of  a MG for Marine Energy Conversion 

To wrap up the investigation and put the modeling methods proposed in the previous chapter 

to practice, this section will carry out a parametric sweep analysis to determine the design 

parameters of an axial field flux focusing magnetic gear. This proposed design could be useful 

for multiple applications including tidal current, wave surge oscillator, and offshore wind 

turbines, and since there is no specific application certain criteria will be defined just to direct 

the selection of the parameters. The criteria defined were as follows: 

 Gear ratio greater than 7 and smaller than 11 

 Output torque greater than 600 N m 

 Virtually ripple free torque transmission (i.e., the cogging torque factor = 1) 

Based on these criteria, the first step is to choose the appropriate pole-pair combinations and 

gear ratio. The choice will be done by running simulations for the different combinations while 

fixing the main parameters of the magnetic gear (axial length, inner and outer radii, air gap 

length), and then doing the selection such as maximizing the output torque and minimizing the 

attraction forces. The simulations of this step and all the following steps will be done using the 

linear 3D PN method while considering the end-effects. The magnetic saturation was not 

considered to ensure the rapidity of the calculations, so the relative permeability of the soft 

magnetic materials was chosen constant at 10000. At each simulation step the rotors were moved 

into the maximum torque position and the torques and forces on each rotor were calculated. 

Regarding the choice of the fixed and rotating members, to maximize the gear ratio for a given 

set of pole-pairs, the rotor with the higher number of magnetic pole-pairs was chosen as the 

fixed member, the modulation pole pieces rotor (PPR) was chosen as the LSR, and eventually 

the rotor with the lower number of magnetic pole-pairs becomes the HSR. The minimal number 

of the magnetic pole-pairs for the HSR was chosen at 4 according to the recommendation 

provided by the authors in [210]. The initial parameters that were used throughout this first step 

are summarized in Table III-2. It is worth noting that the chosen soft magnetic material was the 

laminated non-grain-oriented silicon steel M600-50A, and the chosen PM material was the 

sintered neodymium iron boron N35. Throughout the parametric sweep analysis, when using 

the 3D PN, only the mass density of the M600-50A steel will be considered but not its magnetic 

saturation behavior as mentioned earlier, and regarding the PM, the N35 has a linear 
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demagnetization curve, so its magnetic properties as well as its mass density can be considered 

by the 3D PN. 

For different pole-pair combinations and gear ratios, the per unit stall torque of the LSR and 

the per unit attraction force on the LSR (at the maximum torque position) are shown in  Fig. 

III-17 and Fig. III-18 respectively. From the figures below, the maximum stall torque is 

attributed to the gear ratio 8.25 and the HSR pole-pairs 4, but at the same time this combination 

also inherits the highest attraction force, so it can be chosen especially that there are other 

combinations that have reduced attraction force but slightly lower stall torque. Thus, this 

compromise between the maximum output torque and the attraction force can lead to choosing 

the gear ratio 8.1667:1 with ��  =  6. The output torque of this combination is 4.2% less than 

the maximum possible output torque, but its attraction force is 36% less the attraction force of 

the combination that has the maximum output torque which is a very good trade-off. Hence, 

the number of pole pairs on each rotor becomes  ��  =  6, ��  =  49, and ��  =  43. 

Table III-2 The initial chosen parameters of the AFFMG for the parametric sweep analysis. 

Rotor 1 
(HSR) 

Number of pole-pairs p� 

Steel/magnet pole span θ�� = θ�� 180° 2p�⁄  

Axial Length l�� 20 mm 

Air gap 1mm 

Rotor 2 
(LSR) 

Number of modulating pole pieces n� 

Steel/slot pole span θ�� = θ�� 180° n�⁄  

Axial Length l�� 10 mm 

Rotor 3 
(Stationary) 

Number of pole-pairs p� 

Steel/magnet pole span θ�� = θ�� 180° 2p�⁄  

Axial Length l�� 20 mm 

Air gap 1 mm 

Radii 
Inner Radius R� 80 mm 

Outer Radius R� 140 mm 

Materials 

Steel mass density 7750 Kg/m� 

PM mass density 7400 Kg/m� 

PM relative permeability 1.05 

PM magnetic remanence 1.2 T 
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Fig. III-17 The LSR stall torque of the different tested pole-pair combinations and gear ratios. 

 

Fig. III-18 The maximum attraction force on the LSR for different gear ratios and pole-pair 

combinations. 

After choosing the suitable gear ratio and pole-pair numbers, a parametric sweep analysis will 

be carried out to determine a good set of parameters. The two objectives are maximizing the 

active region volumetric torque density and mass torque density, where certain parameters will 
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be varied consecutively to satisfy the objectives. The equations of the VTD and MTD can be 

given by: 

��� =
��

(��� + ��� + ��� + 2 ⋅ ������) ⋅ � ��
�  

 (III-1) 

��� =
��

���� + ���
 (III-2) 

where �� is the stall torque of the LSR, ����, and ��� are the total steel and PM masses. The 

first two parameters that will be varied are the inner and outer radii where all the other remaining 

parameters will remain constant according to the values of Table III-2. 

The variation of the VTD and MTD with respect to the different inner and outer radii values 

is shown in Fig. III-19. By observing the figures, the VTD seems to be always increasing as the 

inner radius value decrease and the outer radius value increase. However, the MTD attains a 

peak value at a certain point and starts to decline beyond it. Thus, the inner and outer radii values 

at which the MTD attains its maximum will be chosen and specifying R� = 70 mm and R� =

 150 mm. 

Consequently, the axial lengths of each rotor will be varied consecutively while fixing the other 

parameters including the newly chosen radii values. First, the axial length of the HSR (���) is 

varied, and  Fig. III-20 shows the variation of the VTD and MTD with respect to the different 

values of ���. 

  

(a) (b) 
Fig. III-19 The variation of the (a) VTD and (b) MTD as a function of the varying inner and outer 

radii. 
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(a) (b) 
Fig. III-20 The variation of the (a) VTD and (b) MTD as a function of the axial length of the HSR. 

As the axial length of the HSR increases the VTD and MTD increase until they reach a certain 

maximum after which the MTD especially starts to decrease. Hence, the value chosen that 

corresponds to the maximum MTD was ��� = 32 ��.  

Furthermore, after fixing the new value of ���, next the axial length of the fixed rotor ��� is 

varied. The variation of the torque densities with respect to the multiple ��� values is shown in 

Fig. III-21. With the increase of the axial length ���, the VTD and MTD start increasing and 

quickly attain their maximum values and then start to decrease and continue declining 

afterwards. Thus, the chosen value for the axial length of the fixed rotor which corresponds to 

the maximum VTD and MTD values was ��� = 15 ��. 

  

(a) (b) 
Fig. III-21 The variation of the (a) VTD and (b) MTD as a function of the axial length of the fixed 

rotor. 
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Then, after choosing the axial lengths for the HSR and the fixed rotor and fixing them, the 

axial length of the LSR ��� is varied.  The figure showing the evolution the MTD and VTD as 

function of ��� is Fig. III-22. The value of ��� starts at 5 mm and as this value increases both 

the VTD and MTD decrease. This means that the increase in the axial length of the LSR is not 

significantly affecting the maximum torque of the structure, but it increases the active volume 

and mass of the device, so both the torque densities will decrease. Eventually, the value of 5 mm 

seems the best in terms of maximizing the torque densities, but because having such a small axial 

length for the LSR might risk the structural integrity of the rotor which will be subjected to high 

attraction forces. Thus, the value  ��� = 10 �� was chosen as a compromise. However, in any 

case a mechanical study that tests the structural integrity of the device and simulates the possible 

deflection under the attraction forces should be done on all the MG components before 

prototyping to test the feasibility of all the dimensions. 

Finally, the last parameter to vary is the angle opening of the modulating pole-pieces of the 

LSR. A filling factor will be defined to control this angle opening and consequently the angle 

opening of the air slots in the LSR. The equation of θ�� controlled by the filling factor is given 

by: 

��� =
��� ⋅ 360°

��
 (III-3) 

where  0 < ��� < 1. Up until now this factor was set to 0.5 meaning that the angle opening of 

the modulating pieces is equal to the angle opening of the slots. 

  

(a) (b) 
Fig. III-22 The variation of the (a) VTD and (b) MTD as a function of the axial length of the LSR. 
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By varying the filling factor value around 0.5 while fixing all the other parameters that have 

been obtained until now, a variation curve for the VTD and MTD could be created (see Fig. 

III-23). By observing the curves, the VTD and MTD reach their maximum values for a filling 

factor of 0.575 which will be chosen to obtain the angle opening of the modulating pole pieces. 

By this choice, the sweep analysis is done where all the parameters were obtained. It is worth 

noting that the angle opening of the PMs of rotors 1 and 3 was kept equal to the angle opening 

of the steel in those rotors. Studies that are concerned with reducing the PM volume in a MG 

might have to investigate this parameter. Therefore, the final parameters obtained from this 

parametric sweep analysis are summarized in Table III-3. For the final parameters, the estimated 

VTD and MTD using the linear 3D PN (with end-effects) were 254.5 N m/L and 48 N m/kg 

respectively.  

These parameters are expected to decrease when using the final parameters to create a 3D 

FEM that takes the end-effects and the magnetic saturation into account. Even though the end-

effects were already considered in the parametric analysis, there is still a margin of error to be 

expected between the 3D PN and the 3D FEM which was illustrated in chapter 2. Additionally, 

the magnetic saturation will have its impact on the performance as well.  

Therefore, to validate the design a nonlinear 3D FEM (with end-effects) was created using 

the final obtained parameters (see Fig. III-24).  The torques and attraction forces experienced 

by the rotors during the pole-slipping of the HSR are shown in Fig. III-25 and Fig. III-26 

respectively. The evaluated LSR stall torque using the 3D FEM was 768.9 N m which yields 

184.35 N m/L VTD and 34.7 N m/kg MTD. The error between this value and the value 

estimated by the linear 3D PN is 27.6% which is an anticipated value. 

  

(a) (b) 
Fig. III-23 The variation of the (a) VTD and (b) MTD as a function of the LSR pole pieces filling 

factor.  
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Table III-3 Final chosen parameters of the AFFMG after the parametric sweep analysis. 

Rotor 1 
(HSR) 

Number of pole-pairs 6 

Steel/magnet pole span θ�� = θ�� 15° 

Axial Length l�� 32 mm 

Air gap 1mm 

Rotor 2 
(LSR) 

Number of modulating pole pieces 49 

Steel pole span θ�� 4.22° 

Axial Length l�� 10 mm 

Rotor 3 
(Stationary) 

Number of pole-pairs 43 

Steel/magnet pole span θ�� = θ�� 2.09° 

Axial Length l�� 15 mm 

Air gap 1 mm 

Radii 
Inner Radius R� 70 mm 

Outer Radius R� 150 mm 

 

Fig. III-24 A drawing of the final proposed AFFMG design. 

Although the error between the two methods might be considered relatively high, it was 

expected because the 3D PN didn’t take the saturation into account, and, from the previous 

chapter, it was observed that an error of around 20% was present between the estimations of 

the 3D PN and the 3D FEM when modeling the end-effects. Thus, overall, the results achieved 
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could be considered satisfactory given that the 3D PN allowed to perform a large amount of 

simulations with changing parameters for a low computational cost  

Finally, the torques on each rotor during the normal operation (rotation of the HSR and LSR) 

of the MG at maximum torque are shown in Fig. III-27. The torque transmission is as expected 

virtually ripple free, where the torque ripple was 0.76% for the HSR and 0.09% for the LSR. 

 

Fig. III-25 Torques experienced by the rotors of the proposed MG during HSR pole-slipping and 

estimated using 3D FEM. 

 

Fig. III-26 Attraction forces acting on the rotors of the proposed MG structure during HSR pole-

slipping and estimated using 3D FEM. 
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Fig. III-27 Loaded operation of the proposed MG showing the estimated torques on the HSR and 

LSR. 

Conclusion 

The chapter began with an overview of sustainable marine energy technologies. Diverse 

conversion technologies and energy sources were described briefly, and offshore wind energy 

was analyzed in depth because it could be considered currently as the most mature out of the 

other marine technologies due to the similarities it has with the developed onshore wind energy 

systems. Then, an overview of the uses of magnetic gears in maritime energy systems was 

presented, highlighting the literature-reported implementations of both magnetic gears and 

magnetically geared machines. Knowing that magnetic gears best operate in high torque low 

speed applications, it was found that MGMs could provide a very good alternative for direct 

drive marine renewable energy systems, where they can reduce the total mass and volume of the 

system and provide very high efficiency. Magnetic gears were also proposed in multiple studies 

to replace mechanical gears to improve the reliability of the system while avoiding the direct 

drive solutions.  Lastly, a parametric sweep analysis was conducted employing the modeling 

techniques given in the preceding chapter. The objective of this study was to propose an axial 

field magnetic gear design appropriate for deployment in a maritime renewable energy 

conversion system. During the sweep analysis the structure was modeled using the 3D PN while 

taking the end-effects, and after all the parameters were found, a nonlinear 3D FEM model was 

constructed, where it has been found that an error of 26% was present between the estimations 

done by the 3D PN and the 3D FEM which was an expected value.  
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C h a p t e r    I V  -   T r a n s l a t o r  E c c e n t r i c i t y  i n  T u b u l a r  

L i n e a r  S t r u c t u r e s  

Introduction 

The problem of eccentricity in tubular linear structures is addressed in this chapter. First, the 

eccentricity issue is defined and specified. Next, the 3D FEM model used to analyze the 

eccentricity impact is discussed. Then, two tubular linear permanent magnet machines with 

different structures are analyzed under different eccentricity and operating conditions, and a 

comparison between the structures is carried put. Afterwards, a quasi-3D FEM modeling 

technique for analyzing eccentricity in tubular linear machines is presented and explained. Then, 

it is applied to the structures that were already introduced and compared with the 3D FEM. 

Finally, eccentricity is analyzed in two tubular linear magnetic gear structures using 3D FEM.   

1. Tubular Linear Machines and Eccentricity 

Tubular linear permanent magnet machines (TLPM) have gained increasing popularity over 

the past years due to their versatile nature. Whether used as actuators for linear motion 

applications or as generators for energy production applications, these machines can provide 

accurate and precise motion with relatively compact structures and simpler control systems 

[211]–[218]. This made them perfect for high-precision industrial applications and even 

applications where pneumatic and hydraulic linear actuators are being used but not inherently 

required. As generators, TLPMs are also very popular among different energy conversion and 

production applications especially renewable energy applications. For instance, ocean and wave 

energy applications use TLPMs translational motion to extract energy directly without the need 

for an intermediary motion conversion system.  

Like any other mechanical device, TLPMs might suffer from different structural deformations 

during either operation or assembly. The moving part of the machine called the translator is the 

most vulnerable to such mechanical deformations. One commonly occurring deformation 

happens at the level of the translator shaft and is usually called a translator eccentricity where 

the translator shaft is no longer aligned perfectly with the central axis of the machine's cylindrical 

structure. 
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In tubular linear structures the translator eccentricity can take different forms as can be shown 

in Fig. IV-1 [219]. The work in this chapter is concerned only by static translator eccentricity 

where the axis of the primary (stator) and the secondary (translator) are parallel but offset by 

constant distance � Fig. IV-1(a) and Fig. IV-2. The value of this offset distance determines the 

level of impact of the translator eccentricity on the machine. Greater � values mean that the air 

gap is getting very small across a certain area and very large at the radially opposite area. 

 

Fig. IV-1 Different forms of translator eccentricity in tubular linear structures [219]. 
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Fig. IV-2 Illustration showing a 2D plane view of a tubular linear machine with the eccentricity form 

that is considered in this chapter. 

In normal and simple situations where no eccentricity is present, tubular linear structures 

could be modeled using 2D axisymmetric models which are computationally cheap and 

effective. However, with eccentricity the symmetry in the structure is lost which necessitates the 

use of 3D methods to model and analyze the effect of the eccentricity on the performance of 

the structure. 

Eccentricity for linear or rotational structures has been studied previously by some authors 

[219]–[223]. In [220], [221], eccentricity analysis was done using analytical and 3D FEM 

modeling, and the calculated results were compared and validated by experimental results. Then, 

a superposition-based modeling method targeting eccentricity in rotary machines was presented 

in [222]. In [219], the authors analyzed the eccentricity in a tubular linear surface-mounted PM 

machine using 3D FEM modeling. Different eccentricity values were studied, and the impact of 

eccentricity on quantities like the electromotive forces (EMF), cogging force, and attraction 

forces was investigated. 

2. Eccentricity Analysis in TLPM using 3D FEM 

This section will be a continuation and extension of the work done in [219]. Two TLPM 

structures will be modeled under different eccentricity, load, and saturation conditions, and then 

a comparison between the two structures will be carried out to show how eccentricity and other 

conditions affect their performance. 
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The two TLPM structures are shown in Fig. IV-3. Structure A is a surface-mounted PM 

tubular linear machine, and Structure B is a flux focusing inserted PM tubular linear machine. 

Both structures have the same stator and armature windings specifications. The windings are 

installed as distributed windings, so for one pole pitch with three stator teeth, there is one coil 

for each phase, and the coils are oriented and positioned in such a way to maintain a 3-phase 

balanced system. Also, both structures have the same PM grades and volumes, where the PMs 

are considered to have a linear demagnetization curve with relative permeability equal to 1 and 

magnetic remanence equal to 1 T. The dimensions and specifications of the two structures were 

kept similar to make the comparison valid and reasonable. Fig. IV-4 shows the dimensions of 

the two structures in (mm) illustrated on 2D cross-sections for one pole-pitch.  

The stator and rotor cores for the two structures (colored in grey in Fig. IV-3) are built from 

a soft magnetic material. This material will be studied in two cases: the ideal case considering a 

linear magnetization curve with constant relative magnetic permeability (µ�� = 10000), and a 

more realistic case that takes the magnetic saturation into account and treats the material as 

M330-35A silicon-steel. 

The modeling method to be used to analyze the eccentricity in the two structures is the 3D 

FEM. The FLUX software is again used, and the calculations were performed on a couple of 

high-end PCs with a RAM capacity varying from 64 GB to 767 GB. 

  

  

Structure A Structure B 

Fig. IV-3 The two TLPM structures studied. 
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Fig. IV-4 2D axial cross-section views of structures A and B with the dimensions shown in (mm). 

In order to reduce the computation cost as much as possible, only one pole pitch was modeled 

for the two structures. Four eccentricity values (�) were studied: 0 mm eccentricity (no 

eccentricity), 0.25 mm, 0.5 mm, and 0.75 mm. For each eccentricity value, open circuit and on-

load conditions were studied, as well as linear and non-linear (taking magnetic saturation into 

account) behaviors of the soft magnetic material. Studying the linear and nonlinear cases can 

measure the effect of the magnetic saturation on the performance of the two machines in 

general, and whether the assumption of the linear magnetization could be considered as valid 

for modeling these machines. The end-effects were ignored for this study. 

The 3D meshing of both structures was done by extruding a 2D mesh (see Fig. IV-5). 

Extrusion meshes are usually easier to manage and control but can’t be applied to all structures. 

The mesh technique used for these structures was already tested and verified in [219]. The air 

gap mesh in the zero-eccentricity model had two layers which are the minimum to ensure the 

model accuracy. As the eccentricity value increase, the air gap thickens at one side and thins at 

the radially opposite side (see Fig. IV-6) which means more fine layers are required to mesh the 

air gap region resulting in a higher number of nodes for the models representing higher 
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eccentricity values. For example, the different number of nodes in structure B models for each 

eccentricity value are shown in Table IV-1. As the number of nodes increases in a FEM model, 

the size of the linear/nonlinear system to be solved increases, and hence the computation time 

increases. It took 33 calculation steps around one week to be solved for the on-load 3D FEM 

model of structure B with 0.75 mm translator eccentricity while considering the magnetic 

saturation. Knowing that this model was running on a high-end computer (48 cores CPU and 

767 GB of RAM). This shows the huge computation resources that should be reserved in order 

to solve such models, and the amount of time required to get the results. 

 

 

(a) (b) 
Fig. IV-5 The (a) 2D mesh that has been extruded to obtain the (b) 3D mesh of the whole structure.  

  

(a) (b) 
Fig. IV-6 Air gap thickness variation in the case of 0.5 mm eccentricity with the (a) minimum and (b) 

maximum air gap thickness sides. 
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Table IV-1 Number of nodes in a 3D FEM model for structure B for different eccentricity values. 

Eccentricity value 
(mm) 

Number of nodes 

0 1 468 484 

0.25 2 079 188 
0.5 3 172 788 
0.75 6 569 684 

2.1. Open-Circuit Case 

This section will present the performance of structures A and B for open circuit conditions 

and under the effect of different eccentricity. Both the linear and magnetic saturation cases will 

be presented. 

2.1.1. Linear Case 

Fig. IV-7 shows the EMF waveforms of the two structures for the different eccentricity 

values. As the eccentricity value increased, a very slight increase in the EMF amplitude can be 

observed for Structure A, this increase is more noticeable for Structure B where the EMF 

amplitude for the 0.75 mm eccentricity case increased by 24.95 % w.r.t the reference model (no 

eccentricity). Similarly, the variation of the cogging forces of the two structures with respect to 

the increasing eccentricity is shown in Fig. IV-8. The increasing tendency of the cogging forces 

can be noted for both structures, but for Structure B the cogging force increased by 36.65% for 

the 0.75 mm eccentricity case. 

  

(a) Structure A (b) Structure B 

Fig. IV-7 EMF waveforms comparison for the two structures under open-circuit conditions (linear 

case). 
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(a) Structure A (b) Structure B 

Fig. IV-8 Cogging forces comparison for the two structures under open-circuit conditions (linear 

case). 

  

(a) Structure A (b) Structure B 
Fig. IV-9 Attraction forces between the translator and stator for the two structures under open-

circuit conditions (linear case). 

Finally, Fig. IV-9 shows the attraction force between the stator and translator acting along the 

axis that holds the minimum and maximum air gap thicknesses which in this case is the y-axis 

(see Fig. IV-2). For structure A, the attraction force almost doubles (increased by 100%) when 

the eccentricity value increased from 0.25 mm to 0.5 mm, but it increased by 50% when the 

eccentricity value increased from 0.5 mm to 0.75 mm. However, for structure B, a larger 

increasing jump can be observed when the eccentricity increases from one value to another 

where the increase rate is around 150% between two consecutive eccentricity values. 
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2.1.2. Magnetic Saturation Case 

For different eccentricity values, the EMF, cogging force, attraction force waveforms for the 

case of the open-circuit magnetic saturation are shown in Fig. IV-10, Fig. IV-11, and Fig. IV-12 

respectively. For structure A, the increasing tendencies and rates are the same as the linear case, 

where only a slight decrease in amplitude is observed for all the quantities. However, for 

structure B, the magnetic saturation affected the behavior of the EMF waveforms with the 

increase of the eccentricity value. Unlike the noticeable increase seen in the linear case, here the 

maximum EMF values increased slightly with the increase of the eccentricity value. 

 
 

(a) Structure A (b) Structure B 

Fig. IV-10 EMF waveforms comparison for the two structures under open-circuit conditions 

(saturation case). 

 
 

(a) Structure A (b) Structure B 

Fig. IV-11 Cogging forces comparison for the two structures under open-circuit conditions 

(saturation case). 
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(a) Structure A (b) Structure B 

Fig. IV-12 Attraction forces between the translator and stator for the two structures under open-

circuit conditions (saturation case). 

Additionally, compared to the linear case, the cogging force values increased remarkably. A 

kind of exponential increasing behavior for the maximum cogging force values with the increase 

of the eccentricity values can be observed. The maximum cogging force value for the 0.75 mm 

eccentricity model reached 60.28 N and it increased by 110.82 % w.r.t the reference model (these 

values were 37.227 N and 36.65 % in the linear case). The values of the attraction force decreased 

w.r.t the linear case and showed a clear oscillation behavior. The maximum value of the 

attraction force for the 0.5mm eccentricity model increased by 112.52% w.r.t the 0.25mm one, 

and for the 0.75mm eccentricity model, it increased by 47.78% w.r.t 0.5mm one. 

2.2. On-Load Case 

On-load performances of structures A and B under the effect of different eccentricity values 

are presented in this section. The eccentricity values and the reference model will be the same 

as values used for the open circuit performance. The on-load computations are conducted with 

a maximum armature current density of 5 A/mm2, while the maximum force control strategy is 

adopted, i.e., a null phase shifting between phase EMF and armature phase current. The 

quantities that were computed for this case were the thrust forces and the attraction forces.  

2.2.1. Linear Case 

The linear magnetization case is first considered. The computed thrust forces and attraction 

forces are shown in Fig. IV-13 and Fig. IV-14 respectively. The quantities of structure A have 
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the same increasing tendencies and rates as the open-circuit case. In fact, the attraction forces 

are almost the same as in the open circuit case. 

Changes in the increasing rates and behaviors occurred again for structure B as compared to 

the linear open-circuit case. The maximum value of the thrust force for structure B increased in 

an exponential manner, which is eventually an increase in the force ripple. The maximum thrust 

force value for the 0.75 mm eccentricity model increased by 25.37 % with respect to the 

reference model. The maximum value of the attraction force for the 0.5 mm eccentricity model 

increased by 147.87 % w.r.t the 0.25 mm one, and for the 0.75 mm eccentricity model, it 

increased by 151.21 % w.r.t the 0.5 mm one. These increasing rates are similar to the linear case, 

but here significant change in the shape can be observed as the eccentricity value increased.  

  

(a) Structure A (b) Structure B 

Fig. IV-13 Thrust forces comparison for the two structures under load conditions (linear case). 

  

(a) Structure A (b) Structure B 
Fig. IV-14 Attraction forces between the translator and stator for the two structures under load 

conditions (linear case). 



 

151 

2.2.2. Magnetic Saturation Case 

In the case of the magnetic saturation consideration the variations of the thrust and attraction 

forces with different eccentricity values are shown in Fig. IV-15 and Fig. IV-16. 

For structure A, the thrust force waveforms were affected by magnetic saturation. The thrust 

force maximum value of the reference model decreased compared to the linear case, while the 

general behavior of the thrust waveforms with the eccentricity increase is still similar to the linear 

case. The maximum value of the thrust force for the 0.75 mm eccentricity model increased by 

5.66 % with respect to the reference model. On the other hand, the amplitudes of the attraction 

forces and the increasing tendencies remained almost the same for all the cases that have been 

discussed till now. 

Concerning structure B, the exponential increase of the thrust forces amplitudes is still there 

but the maximum attained value is now lower than the linear case. The maximum thrust force 

ripple recorded in the saturation case was 31.18%, which is lower than the linear case value 

36.29%. The attraction forces are similar to the open-circuit magnetic saturation case, where 

only the maximum values decreased with respect to the linear case, but the increasing rates 

remained the same. 

2.3. Discussion and Comparison of the Results  

It was noticed that the magnetic saturation didn’t have a noticeable effect on the different 

results generated from the eccentricity models of structure A. 

(a) Structure A (b) Structure B 

Fig. IV-15 Thrust forces comparison for the two structures under load conditions (saturation case). 
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(a) Structure A (b) Structure B 

Fig. IV-16 Attraction forces between the translator and stator for the two structures under load 

conditions (saturation case). 

To be more specific, there were no noticeable effects for the magnetic saturation on the open 

circuit performance of structure A. However, for the on-load performance, the thrust force 

values slightly decreased due to the magnetic saturation. Mainly, the maximum thrust force value 

of the reference model decreased from 184.862 N in the linear case to 180.197 N in the 

saturation case. So, assuming linear magnetization behavior for structure A instead of magnetic 

saturation behavior would decrease the computation time while maintaining a high level of 

accuracy. 

In contrast, the magnetic saturation had a remarkable effect on the results generated for 

structure B. The shapes and maximum values of the waveforms changed significantly between 

the linear and saturation cases (especially when talking about the attraction forces waveforms). 

For example, for the on-load performance the maximum value of the attraction forces in the 

linear case was 2563.6 N, and in the magnetic saturation case it decreased to 868.74 N. Another 

important observation for structure B was the increase of the maximum cogging force values in 

the open circuit performance from 37.23 N in the linear case to 60.28 N in the magnetic 

saturation case. Thus, ignoring magnetic saturation for this structure should be considered 

carefully by the user. 

Eccentricity didn’t noticeably affect the EMF values for both structures A and B, but if an 

observation is to be made, then the EMF of structure B was slightly more affected.  
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For both structures A and B, the cogging force increased with the increase of the eccentricity 

value. When taking the magnetic saturation into account, the recorded maximum cogging force 

value for structure A was 41.85 N for the 0.75 mm eccentricity model with an increase of 13.86 

% w.r.t the reference model, while the maximum cogging force value for structure B reached 

60.28 N for the 0.75 mm eccentricity model where it increased by 110.82 % w.r.t the reference 

model. Hence, the impact of the eccentricity value increase on the cogging force values of 

structure B was remarkably higher than it was on structure A.  

The attraction forces along the y-direction increased with the increase of the eccentricity value 

for both the structures. However, it reached much higher values in structure B than in structure 

A. For example, in the open-circuit magnetic saturation case, for 0.75 mm eccentricity, the 

maximum value of the attraction force corresponding to structure B was 930.55 N, whereas it 

was 193.58 N for structure A. 

Moreover, the thrust force increased with the increase of the eccentricity value for both 

structures. The increase rate and maximum thrust force values for structure B were higher than 

they were for structure A. For the 0.75 mm eccentricity model, the maximum thrust force value 

for structure A was 190.39 N where it increased by 5.66 % w.r.t the reference model, while these 

numbers were 252.48 N and 10.69 % respectively for structure B. 

In essence, the impact of eccentricity on structure B was remarkably higher than on structure 

A across all the cases. This might be mainly due to the fact that the magnetic equivalent air gap 

for structure B is much smaller than that of structure A. In structure A, the magnetic equivalent 

air gap can be considered as the thickness of the mounted PMs and the mechanical air gap 

combined as the relative permeability of the PM are very close to 1. In contrast, the equivalent 

air gap for structure B is only equal to the mechanical air gap, and thus with the increase of the 

eccentricity this value becomes very small. In fact, the eccentricity values considered are 

theoretical only, and their investigation is only to provide some insight that helps in dealing with 

any case, but realistically, many tubular linear designs might fail mechanically even at low 

eccentricity values due to the attraction forces that will occur. 

3. Eccentricity Analysis in TLPM using Quasi-3D FEM  

Very high computation times were observed for the 3D FEM models from the previous 

section, and with the need to have multiple models to span all operating conditions, using 3D 

FEM on its own to study eccentricity in a certain structure might be very time extensive and 
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require a lot of resources. Thus, the idea is to propose a quasi-3D FEM method that can model 

eccentricity in tubular linear structures for a low computational cost. 

The proposed quasi-3D model is achieved by dividing the 3D structure in the tangential 

direction (θ direction) into a certain number of sections (see Fig. IV-17). Since the air gap is non-

uniform around the translator in the tangential direction, there is a different air gap value � for 

each θ along the tangential direction where θ ∈ [0, 2π]. Hence, each section in the tangential 

direction is modeled as a standalone 2D linear machine having an air gap equal to the air gap 

value at the central angle of the corresponding section. Then, for each 2D linear machine model, 

the magnetic induction in the air gap is calculated where it will have two components x and y 

corresponding to the axial (z-direction) and radial (r-direction) cylindrical components of the 3D 

model respectively. The tangential component (��) can’t be associated with a component from 

the 2D model, so it can’t be represented and will be considered as zero. It will be seen later that 

the nullification of the tangential component will affect the accuracy and a correction function 

will be required to compensate for that. 

The total number of sections in the tangential direction was chosen to be 32. When increasing 

the number of sections beyond this value, no significant increase in accuracy was noticed. Due 

to the symmetry with respect to the eccentricity axis, there will be only 17 unique air gap values 

and hence reducing the total number of 2D models to 17 instead of 32. 

 

Fig. IV-17 A 3D TLPM structure divided in the tangential direction with a 2D axial cross-section 

view. 
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After gathering the results from all the 2D modeled sections, the total electromagnetic force 

acting on the translator is calculated using Maxwell’s Stress Tensor. The attraction force to be 

calculated acts along the y-axis which is the axis that contains the maximum and minimum air 

gap values. The cogging and thrust forces act along the z-axis which is the axis of translation. 

The two structures that will be studied are the same as the ones studied in the previous section 

and will have the same dimensions and physical properties (see Fig. IV-3 and Fig. IV-4). In 

addition, the linear and magnetic saturation cases will be considered as well as the open circuit 

and on-load operations. The on-load operation will have the same conditions it had from the 

previous section. Moreover, the same eccentricity values will be imposed: 0.25 mm, 0.5 mm, and 

0.75 mm. It is worth noting that the curves of the linear magnetization case will be omitted and 

not shown as the comparison between the two magnetization conditions was done in the 

previous section. However, for the purpose of evaluating the proposed model, the linear results 

will be summarized in a table later. 

2.4. Modeling of Structure A 

Under the open-circuit conditions, Fig. IV-18 shows the curves of the cogging forces and 

attraction forces calculated using the 3D and the quasi-3D models for all the eccentricity cases 

and while considering the magnetic saturation. The amplitudes of the cogging forces calculated 

using the quasi-3D model seem to be higher than the values from the 3D models, but the results 

from both models seem to have the same tendencies. For all the eccentricity cases, the average 

error rate between the amplitudes of the two models was 13.3%. 

  

(a) (b) 

Fig. IV-18 Results evaluated using the proposed models with open-circuit and magnetic saturation 

conditions: (a) cogging forces, (b) attraction forces. 
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Regarding the attraction forces, a very good conformation can be observed between the two 

models can be observed. The average error rate between the amplitudes was 3.16%. 

For the on-load performance, the generated thrust and attraction forces are shown in Fig. 

IV-19. Similar to the open-circuit case, the amplitudes, as well as the DC components of the 

thrust forces calculated using the quasi-3D model, seem to be higher than the 3D calculated 

ones. The average error rate between the amplitudes of the thrust forces of the two models is 

7.67%. However, the quasi-3D model curves maintained the same tendencies observed in the 

3D model. For structure A, the attraction forces don’t seem to be affected in general by the on-

load conditions, and the quasi-3D attraction force calculations in this case also provided very 

good confirmation with the 3D model calculated values with the average error rate being 1.35% 

only.   

Under the load conditions, the combined computation time of these 3D models (for all the 

eccentricity cases) is around 7 days whereas it’s only about an hour for the quasi-3D models. So, 

the quasi-3D approach, with a much lower computation time and a low error rate, provided the 

same thrust force curve tendencies and predicted accurately the attraction forces.  

Table IV-2 summarizes the error rates between the quasi-3D and 3D models of the cogging, 

thrust, and attraction forces calculated for structure A for all the conditions. 

2.1. Modeling of Structure B 

For structure B, the quasi-3D model had to be improved to compensate for the tangential 

magnetic components that have been nullified. 

  

(a) (b) 

Fig. IV-19 Results evaluated using the proposed models with on-load and magnetic saturation 

conditions: (a) thrust forces, (b) attraction forces. 



 

157 

Table IV-2 Error rates between the quasi-3D and 3D models for the quantities generated for 

structure A. 

 
Eccentricity 

(mm) 

Open Circuit On-Load 

Linear 
Non-
Linear 

Linear 
Non-
Linear 

Cogging/Thrust 
Forces 

0.25 10.34% 12.69% 7.81% 7.63% 

0.5 10.32% 13.53% 8.09% 7.92% 

0.75 9.69% 13.66% 7.51% 7.47% 

Attraction 
Forces 

0.25 6.96% 3.71% 7.04% 2.34% 

0.5 6.56% 3.27% 6.82% 1.41% 

0.75 5.98% 2.49% 5.80% 0.30% 

The first calculation campaign carried out for structure B followed the same methodology 

described till now and applied for structure A. The generated results showed some relatively 

high error rates and inconsistent tendencies across the different running conditions and 

eccentricity cases. The error rates of the cogging, thrust, and attraction forces calculated during 

the first campaign are summarized in Table IV-3. 

The error rates represent the difference between the amplitudes of the calculated quantities 

by the 3D and the quasi-3D models with the 3D model considered as the reference. It can be 

seen that some error rates are pretty high, especially for the attraction forces. The error rates of 

the cogging and thrust forces were in general acceptable except for the open circuit non-linear 

case. 

Table IV-3 Error rates between the quasi-3D and 3D models for the quantities generated for 

structure B (without correcting coefficients). 

 
Eccentricity 

(mm) 

Open Circuit On-Load 

Linear 
Non-
Linear 

Linear 
Non-
Linear 

Cogging/Thrust 
Forces 

0.25 13.61% 45.32% 9.77% 10.17% 

0.5 6.04% 33% 7.20% 8.72% 

0.75 -15.48% 9.51% 2.08% 7.88% 

Attraction 
Forces 

0.25 -44.40% -44.16% -39.67% -45.99% 

0.5 -49.06% -43.99% -44.56% -44.00% 

0.75 -60.60% -36.78% -54.98% -39.72% 
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A solution to the high error rates was found by introducing correcting coefficients to the radial 

magnetic induction (��) values. The correcting coefficients serve as compensation to the 

neglected component (Bt) and help in estimating the true behavior of the magnetic field in the 

air gap affected by eccentricity. It is the same as the “activation function” concept that has been 

used for the quasi-3D RN model in chapter 2. The determination of the correcting coefficients 

was done using another 2D FEM model (correction model) which happened to be a model for 

a radial field flux focusing machine suffering from rotor eccentricity. Eccentricity can be 

modeled in this structure using a simple 2D model and hence the reason why it was chosen. By 

observing the behavior of �� in the air gap of the correction model, a series of correcting 

coefficients can be generated and used to compensate for the absence of the �� component 

from the quasi-3D model. The method for finding the correcting coefficients is summarized in 

Fig. IV-20.  

After multiplying the �� values that were acquired from the quasi-3D model by the correcting 

coefficients, another calculation campaign was done, and the cogging and attraction forces were 

calculated using the same formulas as before except that now each �� value is now multiplied 

by a correcting coefficient. Error rates of the cogging and thrust forces haven’t improved in the 

second computation campaign due to the nature of the equation related to their calculation 

(Maxwell Stress Tensor), so the results from the first campaign were maintained. However, the 

error rates of the attraction forces have improved significantly, so the values calculated from the 

second campaign were the ones adopted. 

Table IV-4 Error rates between the quasi-3D and 3D models for the quantities generated for 

structure B (with correcting coefficients). 

 Eccentricity 
(mm) 

Open Circuit On-Load 

Linear 
Non-
Linear 

Linear Non-Linear 

Cogging/Thrust 
Forces 

0.25 13.61% 45.32% 9.77% 10.17% 

0.5 6.04% 33% 7.20% 8.72% 

0.75 -15.48% 9.51% 2.08% 7.88% 

Attraction Forces 

0.25 9.01% 16.11% 11.90% 18.32% 

0.5 3.93% 22.25% 7.53% 26.48% 

0.75 -8.07% 57.24% 1.10% 57.05% 
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Fig. IV-20 The process to obtaining and applying the correcting coefficients to the quasi-3D FEM 

model. 

The correcting coefficients method was good in improving the accuracy of the attraction 

forces but was not enough for some of the cogging and thrust forces. Table IV-4 summarizes 

the error rates of the attraction forces calculated using the correcting coefficients method. 

Eventually, for open-circuit magnetic saturation conditions the final obtained cogging and 

attraction forces are shown in Fig. IV-21. The increasing rates of the cogging forces calculated 

using the quasi-3D models have changed to what they have been at in the 3D models, but the 

values from the quasi-3D model can be still considered as acceptable. Meanwhile, for the 
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attraction forces it can be seen that the error rate for the ε = 0.75 mm case is very high, but for 

the other cases the estimation is acceptable. 

Concerning the on-load performance, Fig. IV-22 shows the estimated thrust and attraction 

forces. The tendencies and increasing rates of the thrust forces from the quasi-3D model are 

very similar to the tendencies and increasing rates recorded for the 3D model. The average error 

rate between the amplitudes of the thrust forces of the two models is 8.92%. The quasi-3D 

attraction forces seem to have a behavior similar to the ones observed for the open circuit case. 

  

(a) (b) 

Fig. IV-21 Results evaluated using the proposed models with open-circuit and magnetic saturation 

conditions: (a) cogging forces, (b) attraction forces. 

 
 

(a) (b) 

Fig. IV-22 Results evaluated using the proposed models with on-load and magnetic saturation 

conditions: (a) thrust forces, (b) attraction forces. 
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The non-linear 3D FEM model of the ε = 0.75 mm on-load case took more than 7 days to 

finish computing 33-time steps with a huge number of computational resources allocated. 

However, the quasi-3D model can be computed in around an hour only and with fewer 

computational resources. By observing the error rates, the accuracy-time tradeoff is worth it, and 

it makes the quasi-3D approach a plausible choice even for structure B. 

2.2. Discussion and Evaluation 

After presenting the error rates and analyzing the results from the two structures and for the 

different operating conditions, a judgment can be passed on our quasi-3D model. First, the 

computation times and efforts are massively reduced from what was required by the 3D 

modeling approach. Second, non-linear computations can be done easily at no significant cost 

when using the quasi-3D approach. It follows that the quasi-3D approach provided pretty 

accurate results for structure A, and it provided results with relatively acceptable accuracy for 

structure B. The difficulties that might face the user when using this modeling technique are 

mainly the investigation and testing needed to find the best way to estimate the results, especially 

for structures similar to structure B where ignoring the tangential components might have a huge 

impact on the accuracy of the model. The quasi-3D modeling technique itself is based on the 

simple superposition principle, but its usage for the TLPM eccentricity analysis application is 

much more complicated. There’s still a lot of room for improving the proposed quasi-3D model 

but it might, as it stands, serve as a good starting point and an effective tool for modeling 

eccentricity in different tubular linear structures. 

4. Eccentricity Analysis in Tubular Linear Magnetic Gears 

Tubular linear magnetic gears (TLMG) might be even more susceptible to translator 

eccentricity due to the presence of two air gaps and two moving parts. Thus, it might be also 

very interesting to analyze the impact of eccentricity on the performance of a TLMG. 

The analysis will be carried out using 3D FEM modeling, where the performance of two 

different TLMG structures will be studied for different eccentricity values. The structures to be 

studied are presented in Fig. IV-23, where “Structure C” has a surface-mounted PM 

configuration, and “Structure D” has a flux focusing inserted PM configuration. The dimensions 

and parameters of structure C and D are summarized in Table IV-5 and Table IV-6 respectively. 
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Fig. IV-23 The two TLMG structures under study. 

Table IV-5 The parameters and dimensions of structure C. 

HSM 

Number of pole-pairs 4 

Magnet axial length ��� 18.75 mm 

Steel radial thickness h�� 5 mm 

Magnet radial thickness of  h�� 5 mm 

Air gap 1mm 

Fixed Member 

Number of modulating pole pieces 14 

Steel/slot axial length ��� = ��� 5.36 mm 

Radial thickness ℎ� 5 mm 

LSM 

Number of pole-pairs 10 

Magnet axial length ��� 7.5 mm 

Steel radial thickness h�� 5 mm 

Magnet radial thickness of  h�� 5 mm 

Air gap 1 mm 

General Parameters 

Inner radius R� 18 mm 

Outer radius R� 45 mm 

Axial length 150 mm 

PM relative permeability 1.05 

PM magnetic remanence 1.2 T 
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Table IV-6 The parameters and dimensions of structure D. 

HSM 

Number of pole-pairs 4 

Steel/magnet axial length ��� = ��� 9.375 mm 

Radial thickness h� 10 mm 

Air gap 1mm 

Fixed Member 

Number of modulating pole pieces 14 

Steel/slot axial length ��� = ��� 5.36 mm 

Radial thickness ℎ� 5 mm 

LSM 

Number of pole-pairs 10 

Steel/magnet axial length ��� = ��� 3.75 mm 

Radial thickness h� 10 mm 

Air gap 1 mm 

General Parameters 

Inner radius R� 18 mm 

Outer radius R� 45 mm 

Axial length 150 mm 

PM relative permeability 1.05 

PM magnetic remanence 1.2 T 

The dimensions of the two structures were kept similar to compare between them, where they 

both have similar PM volume and type. The PM magnetic properties are listed in the tables 

above where they are considered neodymium PMs with linear demagnetization curve. In 

addition, the soft magnetic material in the two structures will be studied in two cases: linear 

magnetization case with constant relative magnetic permeability (µ�� = 10000), and a magnetic 

saturation case treating the material as M330-35A silicon-steel. 

In addition, the eccentricity type that will be considered is similar to the one considered in the 

previous sections, where the axes of the three magnetic gear members will remain parallel but 

will have a constant offset between them denoted as the eccentricity value �. Fig. IV-24 illustrates 

the eccentricity value and the state of the air gaps surrounding each member. The center of the 

fixed member which carries the modulating pole-pieces remains in its place, whereas the two 

moving members: the high-speed mover (HSM) and the low-speed mover (LSM) have their 

centers move in a way forming a minimum and maximum air gap regions aligned along the y-

axis. Thus, when considering the members that carry the PM as moving and fixing the 

modulating member, the gear ratio becomes 2.5:1 with an opposite translation movement for 
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the HSM and LSM. This gear ratio and pole-pair combination allowed to have periodicity in the 

structure, so only one half of the total structure will be modeled using the 3D FEM. Moreover, 

this combination allowed for having zero attraction forces between the members when no 

eccentricity is present. Thus, the attraction forces will only appear when there is eccentricity 

where it will be acting along the axis that holds the minimum and maximum air gap regions (y-

axis). 

The methodology followed with the 3D FEM is the same as the previous sections except for 

the 3D mesh, where no extrusion was done and instead regular tetrahedrons were used to mesh 

the whole domain. A snapshot of the mesh used for structure C is shown in Fig. IV-25. 

The eccentricity values that will be considered in this section are different from the previous 

sections, where the values investigated will be 0.2 mm, 0.4 mm, and 0.6 mm. A reference model 

with no eccentricity will be used also for the comparison. 

The performance of the TLMGs for different eccentricity values was evaluated during the 

HSM pole-slipping (HSM moving and the LSM and modulating member being fixed). The 

moving forces of the HSM and LSM acting along the x-direction (motion direction) for 

structures C and D are summarized in Fig. IV-26 and Fig. IV-27 respectively. The figures show 

the results from both the linear and saturation cases. It can be observed that the moving forces 

of structure C are only very slightly affected by both the magnetic saturation and the eccentricity.  

 

Fig. IV-24 An illustration on the eccentricity consideration in a TLMG. 
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(a) (b) 
Fig. IV-25 The 3D meshing of the TLMG (structure C): (a) 2D and (b) 3D views. 

 

Fig. IV-26 The forces in the x-direction experienced by the HSM and LSM of structure C under 

different eccentricity values during the HSM pole-slipping (linear and saturation cases). 

Fig. IV-28 reports the maximum values of the forces in the x-direction as function of the 

eccentricity value. The figure confirms the observations made for structure C as the values from 

linear and saturation cases are close and have the same linear increasing rate. In addition, the x-

force of the HSM is barely affected by the eccentricity and saturation. 



 

166 

 

Fig. IV-27 The forces in the x-direction experienced by the HSM and LSM of structure D under 

different eccentricity values during the HSM pole-slipping (linear and saturation cases). 

 

Fig. IV-28 Variation of the maximum moving forces acting in the x-direction for structure C as 

function of eccentricity. 

The estimated increasing rates of structure C HSM and LSM moving forces per mm of 

eccentricity were 6.72 N/mm and 45.25 N/mm respectively. In addition, an interesting 

observation for structure C is that the moving forces in the saturation case were higher than the 

linear case. 
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For structure D it seems from Fig. IV-27 that eccentricity and saturation affected the moving 

forces maximum values and increasing tendencies. The variation of the maximum HSM and 

LSM moving forces as function of eccentricity is shown in Fig. IV-29. In the linear case, the 

moving forces had higher amplitudes and were increasing in an exponential fashion with the 

increase of eccentricity, but in the saturation case the increasing tendencies became closer to 

linear. For the saturation case in structure D, the estimated increasing rates of the HSM and 

LSM moving forces per mm of eccentricity were 196.22 N/mm and 388.28 N/mm respectively. 

Moving to the more important quantity which is the attraction force that is occurring due to 

eccentricity and might lead to different mechanical and wear problems. The attraction forces 

caused by eccentricity and acting along the axis that holds the minimum and maximum air gap 

regions (y-axis) for structure C and D are shown in Fig. IV-30 and Fig. IV-31 respectively. 

The attraction forces in structure C had a linear increasing tendency with the increasing 

eccentricity, and the saturation had a small but noticeable impact on these values as compared 

to the impact it had on the moving forces of structure C. The variation of structure C’s maximum 

attraction force as a function of eccentricity is shown in Fig. IV-32. The increasing tendencies 

are linear and almost the same for the saturation and linear magnetization cases. The estimated 

increasing rates of the attraction forces in structure C acting on the HSM and LSM per mm of 

eccentricity were 634.7 N/mm and 1594.6 N/mm respectively. 

 

Fig. IV-29 Variation of the maximum moving forces acting in the x-direction for structure D as 

function of eccentricity. 
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Fig. IV-30 The attraction forces in the y-direction acting on the HSM and LSM of structure C under 

different eccentricity values during the HSM pole-slipping (linear and saturation cases). 

 

Fig. IV-31 The attraction forces in the y-direction acting on the HSM and LSM of structure D under 

different eccentricity values during the HSM pole-slipping (linear and saturation cases). 

Concerning structure D, almost the same observations done for the moving forces can be 

repeated for the attraction forces. The saturation seems to have a big impact on the estimation 

of these forces. Fig. IV-33 shows the variation of the maximum attraction force for each 
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eccentricity case. In the linear case, the attraction forces were increasing exponentially, but the 

increasing tendency in the saturation case was linear. For the saturation case, the estimated 

increasing rates of the attraction forces in structure C acting on the HSM and LSM per mm of 

eccentricity were 4355.5 N/mm and 6868 N/mm respectively. 

 

Fig. IV-32 Variation of the maximum attraction forces acting along the y-direction for structure C as 

function of eccentricity. 

 

Fig. IV-33 Variation of the maximum attraction forces acting along the y-direction for structure D 

as function of eccentricity. 
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Fig. IV-34 The moving forces in the x-direction of the HSM and LSM of structure C during loaded 

operation at maximum force for different eccentricity values. 

 

Fig. IV-35 The moving forces in the x-direction of the HSM and LSM of structure D during loaded 

operation at maximum force for different eccentricity values. 

Finally, a loaded performance at maximum force was simulated for the two structures to 

evaluate the impact of eccentricity on the force ripple. In other words, the LSM and HSM were 
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shifted to maximum moving force position, then they were simulated while moving according 

to the gear ratio while having the modulating pieces fixed. For multiple eccentricity values, the 

evaluated moving forces during this operation for structure C and D are shown in Fig. IV-34 

and Fig. IV-35. It appears by observing the figures that the general shape of the forces was not 

affected by eccentricity, as only an increase in the mean value of the waveforms was happening 

when the eccentricity is applied. 

Therefore, once again it has been shown that the flux focusing configuration is more affected 

by saturation than the surface mounted PM. Additionally, unlike the TLPM case, it seems that 

the two structures are affected similarly by eccentricity when considering the realistic saturation 

case because when normalizing the increasing rates for the two structures they become relatively 

close. It is worth noting that although the two structures had similar dimensions, the forces 

recorded by the flux focusing structure were much higher, and this is mainly due to ignoring the 

end-effects in that structure because the end-effects are also ignored in structure C but are 

expected to have much lower impact than the impact they could have on structure D. Thus, a 

future study could be done by considering the end-effects in both structures and then attempting 

the eccentricity analysis. 

Conclusion 

This chapter addressed the issue of eccentricity in tubular linear machines. First, the problem 

of eccentricity was defined and described alongside the 3D FEM modeling used for its analysis. 

The eccentricity in two tubular linear permanent magnet machines with different structures was 

then analyzed then compared under varying operating conditions. It was found that the flux 

focusing configuration is more affected by eccentricity and magnetic saturation than the surface 

mounted PM. Following that, a quasi-3D FEM modeling approach was shown and discussed 

for assessing eccentricity in tubular linear machines. It was then applied to the previously 

mentioned structures and compared to the 3D FEM. The proposed quasi-3D model performed 

well when applied to structure A, but it required special modification through a correcting 

function to improve its accuracy when modeling structure B. Finally, eccentricity in two tubular 

linear magnetic gear systems was investigated using 3D FEM, where it was found that the two 

different structures were affected similarly by eccentricity, but the flux focusing structure much 

more affected by magnetic saturation.  
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GENERAL CONCLUSION 

Many observations and deductions could be drawn out from this work. Starting with the first 

chapter which included a literature overview on magnetic gears and an analysis of the data 

extracted. First, to this date, radial field topology appears to be the prevalent structure for 

magnetic gears, since most successful prototypes are of this kind, and they have the highest 

observed VTDs. This doesn't imply axial field topology isn't studied. Researchers have paid a lot 

of attention to axial field topology and offered numerous solutions, but the key problem has 

been building a successful prototype and implementing the concept. More effort is needed to 

enhance the structural and mechanical integrity of the design to overcome construction 

obstacles. Moreover, among the several magnetic arrangements, flux focusing and the Halbach 

array appear to be the best. This doesn't prohibit any other potential arrangement or 

configuration from having high-performance when properly modeled and optimized. In 

addition, the design and shape of the ferromagnetic pole-pieces affect total performance, and 

the way to support them should be considered throughout the design process. Next, by 

comparing the simulated and experimental VTD, one can observe that only a few designs have 

kept the predicted and measured values near enough. Unaccounted-for end-effects are a 

common reason of this difference. Additionally, there is a trend for standard magnetic gear 

structures where the torque density would decrease with the increase of the gear ratio. However, 

some investigations have shown that cycloidal magnetic gears might be a solution for achieving 

a high gear ratio while maintaining a high torque density. Finally, it was reported that losses in a 

magnetic gear depend on rotational speed rather than torque load. Losses which could be split 

into mechanical related to bearings and friction and electromagnetic losses related to iron core 

and PM losses, seem lower at full torque load than at no load or decreased load. Thus, this makes 

magnetic gears more suited for low-speed high-torque applications. 

In the second chapter where the magnetic equivalent circuit method was presented and its 

implementation was illustrated for modeling axial field magnetic gears, it has been shown that 

this method could achieve an important time gain against 3D FEM and perform calculations for 

low resources allocation. A nonlinear implementation of the MEC to consider the magnetic 

saturation was presented where two nonlinear solving methods were tested: the fixed-point 

iteration method and Newton’s method. After presenting the details of the implementation of 
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the two methods in the 3D MEC, they were tested to model an axial field magnetic gear while 

comparing their results to a 3D FEM.  The two methods achieved lower computation time, but 

a slightly reduced accuracy as compared to the 3D FEM. On the other hand, the fixed-point 

method was slower than the Newton’s method but achieved better accuracy. Hence, with the 

complexity that comes with the implementation of Newton’s method as compared to the 

simplicity of the fixed-point method, the question rises on whether using Newton’s method is 

worth it, especially that the time gain against the fixed-point method was marginal. In addition, 

in the linear magnetization case the MEC provided very good accuracy with a significant time 

gain against the 3D FEM. Thus, to evaluate the practicality of using the MEC for the 3D 

modeling of magnetic gears, it can be said that in the linear case the use of the MEC is 

undoubtedly a good choice due to the significant time saving it can provide, but in the nonlinear 

case it is considered situational. To illustrate, if the user has the time and resources required to 

create and use nonlinear 3D FEM modeling, they could start with the linear MEC to perform 

the largest number of computations for a low computational cost and effort, and then when 

most of their parameters are fixed, they could use the nonlinear 3D FEM. However, in case the 

computational resources or time are not available, the nonlinear MEC could provide relatively 

good results at a low computational cost and in reduced time. 

Then, the issue of end-effects in axial field magnetic gears is addressed by proposing a 3D and 

quasi-3D MEC to model it. The proposed 3D MEC is applied to two axial field magnetic gear 

structures: flux focusing and surface mounted PM. This served as an evaluation for the 3D MEC 

model and as a comparison between the two structures. The evaluation of the 3D MEC has 

shown that it can achieve lower computation times but when considering the end-effects its 

accuracy drops. An error margin of around 15% was observed between results estimated using 

the 3D MEC and the 3D FEM when modeling the end-effects. This error was mainly attributed 

to the fact that very fine meshing elements are needed at the radial ends of the axial field magnetic 

gear to model properly the end-effects, and the 3D MEC that was proposed couldn’t acquire 

such a fine mesh at the edges without significantly increasing the total size of the systems which 

affects the computation time. Regarding the comparison between the modeled structures, the 

influence of the end-effects and the magnetic saturation was measured. It was found that the 

axial field flux focusing configuration was significantly more affected by the end-effects and the 

magnetic saturation. In fact, the impact of the end-effects on that structure was greater than the 

impact of the magnetic saturation which makes the end-effects a very important aspect to 
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consider when modeling. Finally, the quasi-3D MEC model that was proposed to model the 

end-effects in axial field utilized an activation function that compensates for the radial 

dependence of the magnetic induction in the air gaps. In terms of accuracy and computation 

time, it performed similarly to the 3D MEC. 

The next chapter began with an overview of renewable marine energy conversion systems. 

Diverse conversion methods and energy sources were briefly presented, and offshore wind 

energy was investigated in more detail since it is one of the quickly growing and prominent 

marine energy technologies. It has been found that most of the marine energy conversion 

systems could benefit from a magnetic gear implementation to improve their reliability and 

maybe reduce their mass and volume by replacing the direct drive topologies. However, the 

heavy dependance of magnetic gears on rare-earth magnets introduces a set of concerns on the 

economic feasibility and availability of the materials for mass producing and adopting this 

technology. Furthermore, an overview of the applications of magnetic gears in marine energy 

systems was provided, emphasizing the implementations of magnetic gears and magnetically 

geared machines documented in the literature. Knowing that magnetic gears perform best in 

low-speed, high-torque situations, it was discovered that MGMs might serve as an excellent 

option for direct-drive maritime renewable energy systems, where they can lower the system's 

overall mass and volume while increasing its efficiency. Also, multiple studies have 

recommended magnetic gears to replace mechanical gears in order to increase system reliability 

while avoiding direct drive solutions. Using the modeling approaches described in the prior 

chapter, a parametric sweep analysis was then performed. Its purpose was to develop an axial 

field magnetic gear suitable for use in a marine renewable energy conversion system. During the 

sweep analysis, the structure was modeled using the 3D PN while considering the end-effects. 

Once all the parameters were determined, a nonlinear 3D FEM model was constructed to 

predict the performance as accurately as possible. The proposed MG which had a gear ratio of 

8.1667:1 and an outer radius of 150 mm was shown to be capable of delivering an active region 

volumetric torque density of 184.35 N m/L with virtually torque ripple free operation. 

This last chapter covered the topic of eccentricity in linear tubular structures. First, the 

problem of eccentricity was presented in addition to the 3D FEM model that was used to analyze 

the impact of eccentricity on the performance of the structures. Next, under various operating 

conditions, the eccentricity in two tubular linear permanent magnet machines with distinct 

structures was analyzed and compared. The flux focusing design was shown to be remarkably 
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more affected by eccentricity and magnetic saturation than the surface mounted PM. In addition, 

the 3D modeling of eccentricity was reported to be time extensive, as the computation time of 

a single model was high and multiple models were required to cover all the cases. Hence, this 

motivated the development of a quasi-3D FEM modeling technique for analyzing eccentricity 

in tubular linear machines for a low computation cost and time. The proposed method was then 

applied to the structures previously specified and compared to the 3D FEM. The suggested 

quasi-3D model functioned well when applied to the surface-mounted PM structure, but it 

needed particular adjustment by means of a correction function in order to improve its accuracy 

when modeling the flux focusing structure. Overall, the proposed quasi-3D method showed a 

lot of potential, but it could still benefit from a lot of improvements. Finally, eccentricity in two 

tubular linear magnetic gear systems was explored using 3D FEM. The two structures studied 

were also surface-mounted PM and flux focusing. It was discovered that both structures were 

equally impacted by eccentricity, but the flux-focusing structure was much more influenced by 

magnetic saturation. Thus, the work in this chapter and the previous chapters might have 

provided more insight for the user when choosing between the surface mounted PM and flux 

focusing configurations. To illustrate, the flux focusing configuration seems to have higher 

overall performance, but to properly estimate its performance, it requires more complex 

modeling methods that consider the magnetic saturation and the end-effects aspects. This 

doesn’t mean that these aspects can be simply disregarded when modeling surface-mounted PM 

structures, but if they are to be ignored due to time or resources limitation, their impact on the 

predicted performance will not be as significant. 

Finally, many perspectives can be listed which might be directly related to parts of this work 

or to the magnetic gears in general. First, although a brief overview on magnetically geared 

machines was done in the first and third chapters, a more detailed investigation on all the 

literature available on this subject could be done. Then, for the MEC method a couple of 

improvements could be listed: the investigation of another approach for the consideration of 

the magnetic saturation to see if its implementation could be more numerically adequate than 

the current used method, the implementation of a more advanced meshing method for the 3D 

MEC that will allow it to have fine elements at the radial edges without significantly affecting 

the system’s size, the use of an alternative or more advanced method to get the activation 

function used in the quasi-3D MEC model to improve its overall accuracy, and finally 

investigating methods or approaches that can improve the conditioning of the MEC matrices. 
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Next, in the third chapter, the proposal of the MG design can benefit from more advanced 

optimization methods to find the optimal designs. In addition, the proposal was only concerned 

with maximizing the torque densities which is only one aspect to be considered when modeling 

MGs, so more aspects like minimizing the losses and reduction of PM volume could be 

considered. Furthermore, multiple aspects could be improved and addressed in the last chapter 

regarding the topic of eccentricity. First, the work could benefit from the consideration of a 

different eccentricity type and linking the electromagnetic model with a mechanical model to 

detect exactly how the eccentricity shape could be. Second, the utilization of the MEC to model 

the eccentricity whether through a 3D or a quasi-3D approach is very plausible and could indeed 

help in solving the problem of the high computation time needed. Then, studying the 

eccentricity effects in tubular linear magnetically geared machines might be appealing, especially 

that this type of structures is being proposed in different configurations and considered seriously 

for renewable energy applications. 

Additionally, the study of the non-uniform air gap or rotor deflection in axial field structures 

is very interesting, and it might be a good idea to apply the 3D MEC to model such a state. 

Moreover, transient behavior of magnetic gears seems to be really important as reported by 

some authors, thus an investigation into modeling this aspect could be done. The thermal 

behavior of magnetic gears is another important topic that needs investigation and might make 

use of the lumped parameters network approach. Equally important, more efforts should be 

made into designing high-performance magnetic gear structures that don’t heavily rely on rare-

earth magnets by using hybrid excitation or ferrite magnets, where the ultimate aim is to 

overcome some of the economical obstacles currently facing the wide integration of magnetic 

gears. Finally, an interesting topic for investigation might be the magnetic noise and vibration in 

magnetic gears. 
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Haidar DIAB 

Contribution à l'étude 
des engrenages 

électromagnétiques 
pour les applications 

énergies renouvelables 

 

Résumé 

Les systèmes de conversion d'énergie pour les énergies renouvelables reposent 

sur des boîtes de vitesses mécaniques pour transmettre la puissance mécanique 

à la machine électrique à des vitesses plus élevées et pour éviter d'avoir de très 

gros générateurs. Le principal problème des engrenages mécaniques est leur 

faible fiabilité et la nécessité d'une lubrification et d'un entretien réguliers. Les 

engrenages magnétiques assurent la transmission de puissance entre deux ports 

grâce à l'interaction sans frottement des forces magnétiques. Certains avantages 

potentiels de l'utilisation d'engrenages magnétiques sont une maintenance 

réduite, une isolation possible entre les arbres d'entrée et de sortie et une 

protection inhérente contre les surcharges. Afin de couvrir l'ensemble des objectifs 

définis, le travail a été divisé en quatre chapitres. L'aperçu de la littérature du 

premier chapitre a montré que des engrenages magnétiques remarquablement 

performants ont été développés. Dans le deuxième chapitre, des modèles de 

circuits équivalents magnétiques efficaces en calcul 3D et quasi-3D qui pourraient 

prendre en compte la saturation magnétique et les effets de bord ont été 

présentés. Il a été constaté que ces méthodes pouvaient réaliser un gain de temps 

important par rapport à la méthode des éléments finis, mais avec une légère 

réduction de la précision. Le troisième chapitre comprenait un aperçu des 

systèmes d'énergie marine renouvelable et des applications des engrenages 

magnétiques dans ce domaine, puis une étude d'optimisation a été réalisée pour 

proposer une conception d'engrenage magnétique qui pourrait convenir aux 

applications des énergies marines renouvelables. Le quatrième chapitre a 

présenté une étude et une analyse sur le défaut d'excentricité qui pourrait se 

produire dans les machines linéaires tubulaires, où un modèle de méthode 

d'éléments finis 3D a d'abord été utilisé, puis pour réduire le temps de calcul un 

élément fini quasi-3D outil méthodologique a été développé. 

Mots clés: Engrenages magnétiques, modélisation électromagnétique, circuit 

magnétique équivalent, méthode des éléments finis, énergies marines 

renouvelables, machines linéaires tubulaires. 
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Résumé en anglais 

Energy conversion systems for renewable energy rely on mechanical gearboxes 

to transmit mechanical power to the electrical machine at higher speeds and to 

avoid having very large generators. The main issue with mechanical gears is their 

low reliability and requirement for regular lubrication and maintenance. Magnetic 

gears perform power transmission between two ports through the frictionless 

interaction of magnetic forces. Some potential advantages of using magnetic gears 

are reduced maintenance, possible isolation between input and output shafts, and 

inherent overload protection. To cover all the objectives defined, the work was 

divided into four chapters. The literature overview of the first chapter has shown 

that remarkably high-performance magnetic gears were developed. In the second 

chapter, 3D and quasi-3D computationally efficient magnetic equivalent circuit 

models that could consider the magnetic saturation and the end-effects were 

presented. It was found that these methods could achieve an important time gain 

against the finite element method, albeit with a slight reduction in the accuracy. 

The third chapter included an overview of the marine renewable energy systems 

and the magnetic gear applications in this field, and then an optimization study was 

done to propose a magnetic gear design that could be suitable for marine 

renewable energy applications. The fourth chapter presented a study and analysis 

on the eccentricity defect that could occur in tubular linear machines and magnetic 

gears, where a 3D finite element method model was used in the analysis first, and 

then to reduce the computation time a quasi-3D finite element method tool was 

developed. 

 

Keywords: Magnetic gears, electromagnetic modeling, magnetic equivalent 

circuit, finite element method, marine renewable energy, tubular linear machines. 

 
 


