
HAL Id: tel-03924437
https://theses.hal.science/tel-03924437v1

Submitted on 5 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Efficient Transport Mechanisms in Mobile
Internet : Measurement and Optimization

Furong Yang

To cite this version:
Furong Yang. Towards Efficient Transport Mechanisms in Mobile Internet : Measurement and Opti-
mization. Networking and Internet Architecture [cs.NI]. Sorbonne Université; University of Chinese
academy of sciences, 2022. English. �NNT : 2022SORUS341�. �tel-03924437�

https://theses.hal.science/tel-03924437v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ

Spécialité
Informatique

Laboratoire d’Informatique de Paris 6
Ecole Doctorale Informatique, Télécommunications et Electronique

Présentée par

Furong YANG

Pour obtenir le grade de
DOCTEUR de SORBONNE UNIVERSITÉ

Sujet de la thèse :

Towards Efficient Transport Mechanisms in Mobile Internet:
Measurement and Optimization

soutenue le 02 Novembre 2022

devant le jury composé de :

M. Giovanni PAU Università di Bologna Directeur de thèse
M. Gaogang XIE CNIC, Chinese Academy of Sciences Directeur de thèse
M. Ke XU Tsinghua University Rapporteur
M. Kavé SALAMATIAN Université de Savoie et du Mont Blanc Rapporteur
M. Zhenyu LI ICT, Chinese Academy of Sciences Examinateur
M. Serge FDIDA Sorbonne Université Président du jury
Mme. Silvia MIRRI Università di Bologna Examinatrice
Mme. Kanchana KANCHANASUT Asian Institute of Technology Examinatrice

Curriculum Vitae

First Name/Name: Furong YANG Gender: Man Nationality: China

Education

[1] May. 2018 – Present, Cotutelle Ph.D., Sorbonne Université, France.
[2] Sept. 2014 – Present, Ph.D., Institute of Computing Technology, Chinese Academy of

Sciences and University of Chinese Academy of Sciences, China.
[3] Sept. 2010 – June 2014, B.E., Hunan University, China.

Publications

[1] Yang F, Ferlini A, Aguiari D, et al. Revisiting WiFi offloading in the wild for V2I
applications [J]. Computer Networks, 2022, 202: 108634.

[2] Yang F, Wu Q, Li Z, et al. BBRv2+: Towards balancing aggressiveness and fairness
with delay-based bandwidth probing [J]. Computer Networks, 2022, 206: 108789.

[3] Zheng Z, Ma Y, Liu Y, Yang F, Li Z, et al. XLINK: QoE-driven multi-path QUIC
transport in large-scale video services [C]//SIGCOMM 21: Proceedings of the 2021
ACM SIGCOMM 2021 Conference. New York, NY, USA: Association for Computing
Machinery, 2021: 418-432.

Manuscripts

[1] Yang F, Li Z, Zhou J, et al. Data-driven Dynamic Selection of Multipath Congestion
Control Algorithm, Under Preparation.

Patents

[1] CN202111240113.5, “A delay-based BBRv2 bandwidth probing method and system”,
Yang F, Wu Q, Li Z, Xie G (Chinese Patent).

[2] CN201610805579.8, “A cache-coloring based memory allocation method and apparatus
for lookup trees”, He P, Yang F, Xie G (Chinese Patent).

I would like to dedicate this dissertation to my loving parents . . .

Acknowledgements

There were many challenges presented in the way of accomplishing my Ph.D. I would
like to thank all of the people who have helped me to overcome all the challenges that I have
encountered both in my life and in research during my Ph.D.

First, I would like to thank my advisors, Giovanni and Gaogang, for accepting me as
a doctoral student. They not only taught me the things related to doing research but also
provided a lot of help in my life.

I would like to thank Zhenyu for his guidance and constructive advice on doing research
and writing papers. I would like to thank Qinghua and Peng for sharing their technical
expertise with me.

I want to thank Serge and Kavé for helping me find accommodation in Paris, which made
my life much easier. It is never easy to find an appropriate residence in Paris, especially for a
foreigner who comes to the city for the first time.

I would like to thank my colleagues, Émilie, Luca, Andrea, Davide, Wei, Boris, Preechai,
Yiu Quan, etc., in the LIP6-NPA team for their help on my life and research project. A special
thanks to Émilie, you saved me many times from administrative paperwork. Of course, I
will remember the “French apéro time” that we experienced together. It is a part of my nice
memories of Paris.

I would like to thank my colleagues, Xian, Xinyi, Ye, Ru, Gerui, Donghui, etc., in the
ICT/CAS team. The discussions with you have inspired me in both research and life.

I also want to thank Yanmei for providing me the opportunity to work at Alibaba as a
research intern. I have learned so much from this journey.

Last but not least, I would like to thank my family members and my girlfriend who have
supported me for years. You were the incentive that motivated me to put myself together
when I was down.

After a long period of working on my Ph.D., I have finally arrived at the end. Although
the process was not easy at all, luckily, I have been through these days with these helpful
people. Therefore, the experience has been great. A special thanks to all of you again. I will
miss these days.

Abstract

The transport performance in Mobile Internet is crucial to user experience and directly
affects the revenue of providers for Internet applications and services. Measuring the
transport characteristics of Mobile Internet and implementing efficient transport mechanisms
are essential for improving transport performance. This dissertation focuses on network
access and congestion control, two key factors affecting the transport performance in Mobile
Internet, and conducts research from three aspects: network access measurement, single-path
congestion control, and multipath congestion control. The main innovative work is as follows.

WiFi performance measurement in mobile scenarios: WiFi is widely deployed in
cities. Measuring and analyzing WiFi performance in mobile scenarios underpins the
optimization of network system design. We designed and implemented a WiFi performance
measurement and analysis system based on in-vehicle devices to measure and analyze
transport characteristics such as link connectivity, throughput, delay, and packet loss, and
carried out measurement experiments in four typical cities including Los Angeles, Macao,
Bologna, and Paris. The measurement results include connectivity availability, transport
performance, network characteristics, and factors correlated with these metrics. Based on the
results, optimization mechanisms such as access point selection and transport protocols are
discussed.

An enhanced BBRv2 congestion control algorithm based on delay information: To
address the dynamics of network quality such as high packet loss rate, high delay jitter, and
fluctuation of available bandwidth in Mobile Internet, an enhanced BBRv2 congestion control
algorithm based on delay information is designed and implemented. The algorithm preserves
BBRv2’s advantages in fairness, improves BBRv2’s bandwidth probing mechanism with
delay information, and adopts a window compensation mechanism based on jitter to handle
the performance degradation caused by high jitter. The experimental results show that the
proposed algorithm can improve the throughput by 25% compared with BBRv2 in mobile
scenarios.

A data-driven multipath congestion control algorithm selection mechanism: To
address the heterogeneity and dynamics of multipath network environments, a data-driven
multipath congestion control algorithm selection mechanism is designed and implemented.

x

The mechanism is implemented based on a lightweight multipath congestion control algo-
rithm selection framework. It mainly uses Machine Learning tools to capture the correlation
between network environments and suitable congestion control algorithms. The mecha-
nism dynamically selects the suitable congestion control algorithm for different subflows
at runtime, aiming at enhancing transport performance. The experimental results show that
compared with state-of-the-art multipath congestion control schemes, the proposed mecha-
nism can improve the average throughput by 19% – 25%, and reduce the average queuing
delay by up to 21%.

Keywords: Mobile Internet, Network measurement, Congestion control, BBR, Multipath
transport, MPTCP

Résumé

Les performances de transport dans l’Internet mobile sont cruciales pour l’expérience
utilisateur et affectent directement les revenus des fournisseurs d’applications et de services
Internet. Mesurer les caractéristiques de transport de l’Internet mobile et mettre en œuvre
des mécanismes de transport efficaces sont essentiels pour améliorer les performances de
transport. Cette thèse se concentre sur l’accès au réseau et le contrôle de la congestion, deux
facteurs clés affectant les performances de transport dans l’Internet mobile, et mène des
recherches sous trois aspects : la mesure de l’accès au réseau, le contrôle de la congestion
à trajet unique et le contrôle de la congestion à trajets multiples. Les principaux travaux
innovants sont les suivants.

Mesure des performances WiFi dans les scénarios mobiles: Le WiFi est largement
déployé dans les villes. La mesure et l’analyse des performances WiFi dans des scénarios
mobiles sous-tendent l’optimisation de la conception du système de réseau. Nous avons
conçu et mis en œuvre un système de mesure et d’analyse des performances WiFi basé sur
des appareils embarqués pour mesurer et analyser les caractéristiques de transport telles
que la connectivité de liaison, le débit, le retard et la perte de paquets, et avons réalisé des
expériences de mesure dans quatre villes typiques, dont Los Angeles, Macao , Bologne et
Paris. Les résultats de mesure incluent la disponibilité de la connectivité, les performances
de transport, les caractéristiques du réseau et les facteurs corrélés à ces métriques. Sur la
base des résultats, des mécanismes d’optimisation tels que la sélection du point d’accès et le
protocole de transport sont discutés.

Un algorithme de contrôle de congestion BBRv2 amélioré basé sur les informations
de retard: Pour répondre à la dynamique de la qualité du réseau, comme le taux de perte
de paquets élevé, la gigue de retard élevée et la fluctuation de la bande passante disponible
dans l’Internet mobile, un algorithme de contrôle de congestion BBRv2 amélioré basé sur les
informations de retard sont conçues et mises en œuvre. L’algorithme préserve les avantages
de BBRv2 en matière d’équité, améliore le mécanisme de détection de bande passante de
BBRv2 avec des informations de retard et adopte un mécanisme de compensation de fenêtre
basé sur la gigue pour gérer la dégradation des performances causée par une gigue élevée.

xii

Les résultats expérimentaux montrent que l’algorithme proposé peut améliorer le débit de
25% par rapport à BBRv2 dans les scénarios mobiles.

Un mécanisme de sélection d’algorithme de contrôle de congestion multi-chemins
basé sur les données: Pour répondre à l’hétérogénéité et à la dynamique des environnements
de réseau multi-chemins, un mécanisme de sélection d’algorithme de contrôle de congestion
multi-chemins basé sur les données est conçu et mis en œuvre. Le mécanisme est implémenté
sur la base d’un cadre de sélection d’algorithme léger de contrôle de congestion par trajets
multiples. Il utilise principalement des outils d’apprentissage automatique pour capturer
la corrélation entre les environnements réseau et les algorithmes de contrôle de congestion
appropriés. Le mécanisme sélectionne dynamiquement l’algorithme de contrôle de conges-
tion approprié pour différents sous-flux au moment de l’exécution, dans le but d’améliorer
les performances de transport. Les résultats expérimentaux montrent que, par rapport aux
schémas de pointe de contrôle de la congestion par trajets multiples, le mécanisme proposé
peut améliorer le débit moyen de 19% à 25% et réduire le délai moyen de mise en file
d’attente jusqu’à 21%.

Mots-clefs: Internet mobile, Mesure du réseau, Contrôle de la congestion, BBR, Transport
multivoie, MPTCP

Contents

List of Figures xvii

List of Tables xxi

1 Introduction 1
1.1 Background . 1
1.2 Problems and challenges . 3
1.3 Research contents . 7
1.4 Contributions . 10
1.5 Struture of chapters . 11

2 State of the art 13
2.1 Network access measurement in Mobile Internet 13

2.1.1 Cellular access measurement in mobile scenarios 13
2.1.2 WiFi access measurement in mobile scenarios 15
2.1.3 Summary . 16

2.2 Single-path CCAs . 16
2.2.1 CCAs for wireless networks . 17
2.2.2 Learning-based CCAs . 20
2.2.3 Related work of BBR . 21
2.2.4 Summary . 23

2.3 Multipath CCAs . 24
2.3.1 Coupled multipath CCAs . 24
2.3.2 Dynamically coupled multipath CCAs 26
2.3.3 Learning-based multipath CCAs 27
2.3.4 Summary . 28

2.4 Conclusion . 28

xiv Contents

3 WiFi performance measurement in mobile scenarios 31
3.1 Introduction . 31
3.2 Measurement system design . 33

3.2.1 X-Fi design . 34
3.2.2 X-Perf design . 36

3.3 Measurement methodology . 38
3.3.1 Cities selected for measurement 38
3.3.2 Measurement apparatus setup . 39
3.3.3 Metrics of interests . 40

3.4 Dataset Summary . 41
3.5 Connectivity analysis . 43

3.5.1 Time for connectivity setup . 43
3.5.2 Connectivity duration and holes 45
3.5.3 Impact of moving speed, ISS, and frequency 48
3.5.4 IP address roaming support . 51

3.6 Transport performance analysis . 52
3.6.1 Goodput and data volume . 52
3.6.2 Impact of CCA and flow number 54
3.6.3 Impact of moving speed, ISS, and frequency 55
3.6.4 The characteristics of connectivity quality 57

3.7 Conclusion . 58

4 BBRv2+: Enhancing BBRv2 with delay information 59
4.1 Introduction . 59
4.2 Background . 62

4.2.1 BBR overview . 62
4.2.2 BBRv2 overview . 64

4.3 A deep dive into BBRv2 . 66
4.3.1 Methodology . 67
4.3.2 Fairness . 67
4.3.3 Retransmission and throughput 69
4.3.4 Resilience to random losses . 71
4.3.5 Responsiveness to bandwidth dynamics 73
4.3.6 Resilience to network jitter . 74
4.3.7 Summary and implication . 75

4.4 Design and implementation of BBRv2+ 76
4.4.1 Overview . 76

Contents xv

4.4.2 Redesign of the ProbeBW state 77
4.4.3 Dual-mode mechanism . 79
4.4.4 Compensation for BDP estimation 80
4.4.5 Implementation . 80

4.5 Evaluation of BBRv2+ . 81
4.5.1 Evaluation setup . 81
4.5.2 Responsiveness to bandwidth dynamics 82
4.5.3 Resilience to network jitter . 84
4.5.4 Inter-protocol fairness . 84
4.5.5 RTT fairness . 85
4.5.6 Retransmissions in shallow-buffered networks 86
4.5.7 Real-world trace driven emulation 87
4.5.8 Summary of experimental results 88

4.6 Conclusion . 88

5 Data-driven dynamic selection of multipath CCAs 91
5.1 Introduction . 91
5.2 Motivation and challenges . 95

5.2.1 The limitation of existing multipath CCAs 95
5.2.2 Motivation and problem . 96
5.2.3 Technical challenges . 97

5.3 The core ideas . 98
5.4 Design and implementation . 99

5.4.1 System overview . 99
5.4.2 Dynamic Coupling Module . 101
5.4.3 Data Collection Module . 104
5.4.4 CC Selection Module . 105
5.4.5 CC Switch Module . 109
5.4.6 System implementation . 109

5.5 Evaluation . 111
5.5.1 Testbed . 111
5.5.2 Multipath fairness . 113
5.5.3 The demonstration of CCA switching 117
5.5.4 Performance evaluation in emulated networks 118
5.5.5 Performance evaluation in real networks 120
5.5.6 System overhead . 121

5.6 Conclusion . 122

xvi Contents

6 Conclusion 125

Bibliography 129

List of Figures

1.1 Transport mechanisms in Mobile Internet 2
1.2 The framework of research contents . 7

3.1 Connection procedure handled by X-Fi/X-Perf 34
3.2 X-Fi vs vanilla wpa_supplicant+dhcpcd 36
3.3 The flowchart of X-Perf . 37
3.4 The illustration of part of the metrics . 40
3.5 The distribution of average speed per assoc. and AP coverage 42
3.6 The distribution of association setup time and DHCP time 44
3.7 The breakdown of the overhead before establishing the IP connectivity . . . 44
3.8 The CDF of time until the first TCP ACK 44
3.9 The average ratio of time until the first TCP ACK over the association duration 45
3.10 The CCDF of link-layer connectivity duration 46
3.11 The CCDF of IP connectivity duration and TCP connectivity duration . . . 46
3.12 The CDF of link-layer connectivity holes and IP connectivity holes 47
3.13 The CDF of TCP connectivity holes . 48
3.14 The correlation between average speed per association and connectivity

duration . 49
3.15 The CDF of ISS . 49
3.16 The correlation between ISS and connectivity duration 50
3.17 The CCDF of average TCP goodput . 52
3.18 The CCDF of the transfer size per association 53
3.19 The CCDF of average TCP goodput under different TCP configurations . . 54
3.20 The correlation between average speed per association and average TCP

goodput . 56
3.21 The correlation between ISS and average TCP goodput 56
3.22 The CDF of jitter, loss rate, and standard deviation of throughput 57

xviii List of Figures

4.1 The architecture of BBR and BBRv2 . 63
4.2 The illustration of the BBR life-cycle . 64
4.3 The illustration of BBRv2 life-cycle . 65
4.4 Mininet testbed . 67
4.5 Inter-protocol fairness of BBR and BBRv2 under different buffer sizes . . . 68
4.6 RTT fairness of BBR and BBRv2 under different buffer sizes 69
4.7 The heatmap of the retransmission rate of BBR or BBRv2 under various

network conditions . 70
4.8 The heatmap of Tput_Gain . 71
4.9 Average throughput against different random loss rates 71
4.10 Retransmission rates vs α values under networks with different buffer sizes 72
4.11 Inter-protocol fairness of BBRv2(20%, 0.3) 73
4.12 Responsiveness to bandwidth variations 74
4.13 Average throughput against different levels of jitter 75
4.14 BBRv2+ architecture . 77
4.15 Mahimahi testbed . 81
4.16 BBRv2+’s responsiveness to bandwidth variations 82
4.17 An example of synthesized bandwidth traces 83
4.18 Normalized throughput and queuing delay of different CCAs 83
4.19 Resilience to jitter . 84
4.20 BBRv2+’s inter-protocol fairness . 85
4.21 BBRv2+’s RTT fairness . 86
4.22 BBRv2+’s retransmission rates in shallow-buffered networks 86
4.23 Examples of bandwidth traces . 87
4.24 Normalized throughput and queuing delay of different CCAs 87

5.1 An example of data tranmission with MPTCP 92
5.2 The architecture of MPTCP . 92
5.3 The architecture of MPTCP-SSCC . 100
5.4 The diagram of Dynamic Coupling Module 101
5.5 An example of frequency calculation . 103
5.6 The SBD grouping algorithm . 103
5.7 Data Collection Module . 104
5.8 Congestion Control Selection Module . 106
5.9 Congestion Control Switch Module . 109
5.10 The testbed based on the multipath extension of Mahimahi 112
5.11 The testbed based on real devices . 113

List of Figures xix

5.12 The network topology of the static bottleneck link scenario 113
5.13 The bandwidth sharing result in the static bottleneck link scenario 114
5.14 The impact of buffer size on multipath fairness in the static bottleneck link

scenario . 114
5.15 The network topology of the dynamic bottleneck link scenario 115
5.16 The bandwidth sharing result in the dynamic bottleneck link scenario 116
5.17 The impact of buffer size on multipath fairness in the dynamic bottleneck

link scenario . 116
5.18 The demonstration of CCA switching . 117
5.19 The performance comparison results in emulated network environments . . 119
5.20 The performance comparison results in different types of emulated network

environments . 119
5.21 The performance comparison results in real network environments 120
5.22 The performance comparison results in different types of real network envi-

ronments . 121
5.23 The results of system overhead comparison 122

List of Tables

3.1 Dataset summary . 42
3.2 The correlation between WiFi Frequency and connectivity duration 51
3.3 IP Address Roaming Support in different WiFi networks 51
3.4 The correlation between WiFi Frequency and average TCP goodput 57

4.1 BBRv2+’s variables capturing delay information and network jitter 76
4.2 Summary of the parameters of BBRv2+ 81

5.1 The parameters of SBD algorithm [36] . 104
5.2 The structure of Data Unit . 105
5.3 The list of congestion control algorithm candidates 110
5.4 The parameters of network environments used in the initial model training

phase . 111
5.5 The impact of subflow number on multipath fairness in the static bottleneck

link scenario . 115
5.6 The impact of subflow number on multipath fairness in the dynamic bottle-

neck link scenario . 116

Chapter 1

Introduction

1.1 Background

With the popularization of mobile broadband networks such as 4G and 5G in recent
years, and the continuous development of the computing performance of mobile devices
such as mobile phones, tablet computers, smart watches, and in-vehicle devices, Mobile
Internet services and applications have been deeply integrated into the various aspects of
human society. According to the statistics of investigation agencies [117], the current Mobile
Internet traffic has occupied 56.89% of the total Internet traffic share, becoming the most
important traffic contributor on the Internet. As an indispensable part of users’ access to
Mobile Internet services, network transmission will directly affect the quality of experience
(QoE) of users, which in turn affects the revenue of the providers of Internet applications
and services. For example, Akamai reports that every 100 ms increase in the delay of web
page access will lead to a 7% decrease in the advertisement conversion rate of e-commerce
platforms [6], and a Google survey shows that every 0.5 s increase in returning time of search
results will cause them to lose 20% of the traffic [33]. Therefore, for the applications and
services in Mobile Internet, it is very important to ensure efficient network transmission.

This paper mainly focuses on the two key parts of the transport mechanisms in Mobile
Internet, namely, the network access and the congestion control of transport protocols. As
shown in Figure 1.1, in order to access Internet applications, users must first select one or
several networks to access the Internet from mobile devices, and then use transport protocols
such as TCP and QUIC [62] to communicate with the application servers deployed by the
application providers in their CDN (Content Delivery Network) or datacenters. Therefore,
the choice of the network access affects the upper bound of the transport performance and the
transmission cost. Then, under a specific network access, the key component in the transport

2 Introduction

Figure 1.1 Transport mechanisms in Mobile Internet

protocols that determines the sending rate is congestion control, which affects whether the
capacity of network can be fully utilized.

In Mobile Internet, there are currently two main types of networks that can be accessed,
namely cellular networks including 4G and 5G, and WiFi networks. There is a big difference
in the transmission capabilities provided by these two types of networks: (1) the wide
coverage of the cellular network can provide high network availability and support user
mobility in a large area. However, due to the complex infrastructure including base stations
and core networks, and the high costs of infrastructure construction and operation, users
are also required to pay according to the amount of traffic used; (2) the coverage of WiFi
networks is usually limited, concentrated indoors or in urban areas, so the support for user
mobility is poor. However, the infrastructure of WiFi is relatively simple, so the deployment
and operation costs are low. Thus, users are generally not charged according to the amount
of traffic. For users, the transmission cost is relatively low. For the selection of network
access, there is no silver bullet to solve the problem once-for-all. Users should make full
use of all transmission opportunities provided by all available network access types [26, 93].
Therefore, it is very valuable to measure and analyze the transmission capabilities of various
network accesses, because the measurement results can provide important guidance for the
design of network access strategies, transport protocols and congestion control algorithms
(CCAs).

Due to the introduction of user mobility, no matter which network users choose to access,
they may face complicated network dynamics, such as delay jitter, packet losses caused by
base station handover, frequent changes in available network bandwidth caused by resource
competition, and connectivity interruption caused by signal coverage holes. Therefore, in
order to make full use of the transmission capacity of these networks, it is of great importance
to implement efficient congestion control algorithms.

1.2 Problems and challenges 3

In addition, many current mobile devices are equipped with multiple network interfaces.
For example, smartphones usually have a cellular network interface and a WiFi network inter-
face, connected vehicles can communicate with Internet services through built-in cellular and
WiFi network interfaces [72], and the WiFi gateway device on high-speed rails can provide
Internet services to high-speed rail passengers via multiple cellular network interfaces [124].
When such devices are in an environment where multiple networks are available at the
same time, multipath transport protocols can be used to aggregate bandwidth and improve
reliability, thereby optimizing performance. In multipath transport protocols, it is also the
congestion control algorithm that determines the transmission rate. However, compared with
single-path transport protocols, multipath transport protocols face more complicated network
environments: different paths may be heterogeneous, and the network dynamics on different
paths may not be synchronized. These bring great challenges to designing efficient multipath
congestion control algorithms. Therefore, it is also extremely important to conduct research
on multipath congestion control.

1.2 Problems and challenges

In this dissertation, our research work focuses on three important aspects: network access
measurement, single-path congestion control, and multipath congestion control in Mobile
Internet. Specifically, the research problems to be addressed in this dissertation are as follows.

1) What kind of transmission capability can the in-situ WiFi networks provide in
mobile scenarios?

There are many measurement studies in academia [64, 121, 124, 100, 131] showing
that, including 5G, cellular networks often face some network dynamics caused by mobility,
such as large delay jitter, high packet loss rate, and large bandwidth fluctuations, which
prevent users to get consistent high transport performance, thus, in turn affecting QoE. In
addition, due to the explosive growth of Mobile Internet traffic, the capacity of the cellular
network itself is also under great pressure, and users are also faced with high traffic costs and
restrictions on data usage [73, 151].

Currently, in many urban areas, public WiFi networks are readily available, inexpensive
to use, and often without traffic restrictions. In this dissertation, such public WiFi networks
are referred to as provider-managed WiFi networks. Therefore, a natural thought is whether
these provider-managed WiFi networks could be used to complement cellular networks,
thereby offering the possibility to improve transport performance and reduce transmission
costs. For this reason, it is necessary to measure and analyze the availability, transmission
capabilities, and network characteristics of network access based on the provider-managed

4 Introduction

WiFi networks. However, the existing measurement studies [9, 13, 34, 116, 115] are mostly
based on open WiFi networks1 more than ten years ago. These open WiFi networks have
almost disappeared [72, 103, 108], and are very different from provider-managed WiFi
networks in terms of deployment strategies, connection establishment overhead, and transport
performance. Therefore, the above measurement results do not reflect the current real
situation of using public WiFi networks in mobile scenarios.

In order to fill the above gap, we need to conduct measurement study on the availability,
transmission capabilities, and network characteristics of the connectivity based on provider-
managed WiFi networks in mobile scenarios. However, due to the lack of measurement
tools and the differences in the deployment of provider-managed WiFi networks in different
cities, there are certain technical difficulties and it needs a lot of time and manpower to carry
out the measurement experiments. How to properly design a measurement tool to avoid
underestimating the transmission capabilities provided by provider-managed WiFi networks
in mobile scenarios is a technical challenge that needs to be addressed.

2) How well does BBRv2 [18] adapt to the dynamics of network environments? If
there is a problem, how can it be improved?

Since the Internet infrastructure is built on packet-switched networks based on statistical
multiplexing, congestion control in transport protocols is necessary to avoid congestion
collapse on the Internet [63]. Congestion control aims to efficiently utilize available network
resources while ensuring that bottleneck bandwidth is fairly shared among multiple flows.
However, efficient congestion control in Mobile Internet faces two challenges. First of all,
the network quality in Mobile Internet is often very dynamic, which is reflected in large
bandwidth changes, high delay jitter, and high packet loss rate. Therefore, congestion control
algorithms need to be able to quickly adapt to the above situations. The traditional congestion
control algorithms based on packet losses are difficult to meet the demand. Secondly, since
there are a large number of traditional congestion control algorithms based on packet loss on
the Internet, for the consideration of incremental deployment, any newly designed congestion
control algorithm also needs to consider the fairness against traditional algorithms.

More than three decades of congestion control research have produced a large num-
ber of congestion control algorithms, including some specifically designed for wireless
environments or cellular networks, such as Sprout [131], Westwood [19], Verus [146], and
C2TCP [1]. Although the above algorithms provide better performance in cellular or wireless
environments than traditional loss-based algorithms such as Cubic [107], due to the problem
of fairness and strict assumptions about the network environment, they are hardly deployed
on the Internet [89]. In recent years, with the development of Machine Learning (ML) tech-

1“Open” means no authentication required.

1.2 Problems and challenges 5

niques, many scholars have proposed learning-based congestion control algorithms, such as
Remy [130], Aurora [65], PCC-Vivace [29], Indigo [138], and Orca [2]. Although this type
of learning-based algorithms can quickly adapt to different network environments through
self-learning, due to problems in computational overhead, fairness, and generalization ability
in unseen network environments [2, 32, 152], they are not mature enough for large-scale
deployment on the Internet.

In 2016, Google proposed a new congestion control algorithm BBR [16] (Bottleneck
Bandwidth and Round Trip Propagation Time), which alternately measures the bottleneck
bandwidth (BtlBW) and round trip propagation time (RTprop) and actively tries to run at
Kleinrock’s optimal operating point [69] to maximize throughput and minimize queuing
delay. Since BBR abandons the idea of using packet loss as a congestion signal, it can
also achieve good performance in a network environment with a high packet loss rate.
Due to its advantages in packet loss resilience and low latency, BBR has been widely
used in Mobile Internet scenarios [16, 89, 122]. Nevertheless, some recent measurement
studies [14, 56, 70, 82, 111, 127] show that BBR has problems in fairness and in dealing
with network jitter.

In order to solve these problems in BBR, Google proposed BBRv2 [18], and plans to
gradually replace BBR and deploy it in various Google products [144]. Therefore, BBRv2 is
promising to cope with the network dynamics in Mobile Internet. Since BBRv2 is still in its
early stage, the related works [17, 44, 66, 90, 114] are only aimed at measuring whether it
solves the problems of BBR. There is no comprehensive analysis about how BBRv2 deal
with the network dynamics.

To fill the above gaps, we firstly conduct a comprehensive measurement analysis of
BBRv2. Based on the measurement results of BBRv2, we find that although BBRv2 solves
the fairness problem of BBR, it still has some defects, including low packet loss resilience,
slow response speed to bandwidth changes, and throughput degradation when network jitter is
large. We also find that a part of the defects is the cost of addressing the fairness issue. Then,
how to optimize the defects of BBRv2 to make it suitable for Mobile Internet scenarios is a
problem to be solved. The key technical challenge here is how to optimize the performance
of BBRv2 while retaining its advantage in fairness.

3) How to design a congestion control algorithm selection mechanism to improve
the performance of multipath congestion control in Mobile Internet?

In Mobile Internet, the heterogeneous and dynamically changing multipath network
environment brings great challenges to multipath congestion control. Multipath congestion
control algorithms not only need to be able to adapt to the network environment on each path

6 Introduction

but also need to satisfy multipath fairness (i.e. when a multipath connection and a single-path
connection share the same bottleneck link, they must be able to share the bandwidth fairly).

However, none of the existing MPTCP congestion control algorithms can cope with the
above challenges well. First of all, although any congestion control algorithm in traditional
TCP, such as Cubic [107], can be independently applied to the subflow of MPTCP, this type
of uncoupled multipath congestion control algorithms can not achieve multipath fairness.
Secondly, the classic coupled congestion control algorithms[105, 67, 102, 30, 15, 48, 119]
are too conservative when paths do not share bottleneck links [36], and they also do not
consider the problem of path heterogeneity. In order to solve the problem that the per-
formance of the above coupled algorithms is too conservative in the case of non-shared
bottleneck links, some scholars have proposed some dynamically coupled congestion control
algorithms [36, 49, 51, 120, 128, 143]. But, these algorithms are still not carefully designed
for the scenario of heterogeneous paths, and can not adapt to the heterogeneous and dynami-
cally changing multipath network environment in Mobile Internet scenarios. In recent years,
some researchers have also proposed some learning-based multipath congestion control algo-
rithms [52, 76, 104, 135, 137, 145, 43] to adapt to different network environments. However,
these algorithms generally have a series of problems preventing them to be deployed at scale
in reality. For example, their ways to implement multipath fairness are either too conservative
to cause performance degradation or not guaranteed at all, their performance experiences
degradation in unseen network environments, they introduce large system overhead, the
convergence speed of them is slow, and the deployment of them is complicated [145].

In terms of traditional single-path TCP congestion control, existing research work [2, 152]
has shown that existing congestion control algorithms can often only achieve good transport
performance in specific network environments that meet their design assumptions. Therefore,
some scholars[20, 94, 152] propose that appropriately choosing congestion control algorithms
for TCP connections by sensing network environments is able to improve TCP transport
performance. Inspired by this research thread, we consider whether we can design a multipath
congestion control algorithm selection mechanism to dynamically select appropriate CCAs
for subflows while achieving multipath fairness.

To implement this mechanism, there are three technical challenges. First of all, there are
many kinds of congestion control algorithms, and new congestion control algorithms are
constantly being proposed. The mechanism must be extensible to facilitate the integration
of new congestion control algorithms. In addition, from the perspective of deployability,
the implementation overhead of this mechanism should not be too high, and it should be
transparent to applications and compatible with legacy MPTCP applications. Finally, because
the relationship between the data reflecting the network path quality and the appropriate

1.3 Research contents 7

congestion control algorithm is very complicated, there is currently no clear guiding principle
to explain what rules should be used to map the data to the corresponding CCA. Thus, it is
also a technical challenge to select an appropriate congestion control algorithm based on the
data of the network environment.

1.3 Research contents

Figure 1.2 The framework of research contents

As shown in Figure 1.2, this dissertation mainly focuses on the important problems
and technical challenges in the three aspects of network access measurement, single-path
congestion control, and multipath congestion control in Mobile Internet. Specifically, the
research contents are as follows.

1) WiFi performance measurement in mobile scenarios
In this dissertation, a measurement system is designed, including: (1) a WiFi client

that quickly completes the connection establishment to avoid wasting the transmission
opportunities offered by provider-managed WiFi networks as much as possible. The client
adopts a series of best practice heuristics to accelerate the WiFi association process and
DHCP process. Compared with the current open source wpa_supplicant+dhcpcd, the client
shortens the 90% percentile of the time of WiFi association and DHCP process from 10 s to
2 s; (2) a TCP performance measurement tool. Then, the measurement system is deployed
on in-vehicle devices and the measurement experiments are conducted in four typical cities
in Europe, Asia and North America, accumulating the measurement data of about 5620 km
of moving mileage, including tens of thousands of WiFi associations.

8 Introduction

Based on the above dataset, the transmission capability provided by provider-managed
WiFi networks for mobile users is analyzed in detail from various aspects. The main
measurement results and some insights are as follows: (1) compared with the measurement
results based on open WiFi network [9, 13, 34, 116, 115], the availability of provider-
managed WiFi networks does not change significantly. The average duration of connectivity
and connectivity holes is around 16 – 29 s and 5 – 112 s respectively; (2) the TCP goodput
(∼1 GB/h) offered by provider-managed WiFi networks is an order of magnitude higher than
most of the measurement results in open WiFi networks [9, 13, 34, 116, 115]. The average
goodput during WiFi connection is 2.97 – 13.36 Mbps (excluding Paris); (3) compared with
that of open WiFi networks, the connectivity setup overhead of provider-managed WiFi
networks is higher, however, it is only a small fraction of the entire WiFi association duration
(10% – 18%); (4) in terms of AP selection, the existing strategy solely based on signal
strength is sub-optimal; as 5 GHz APs usually provide better performance than 2.4 GHz APs
in this scenario, from the perspective of AP selection, 5 GHz AP can be given priority; (5)
provider-managed WiFi networks usually do not guarantee that the IP address can remain
unchanged across different APs. Therefore, from the perspective of applications and transport
protocols, the ability to support IP handover is necessary; (6) during WiFi associations, high
latency jitter, high packet loss rates, and large bandwidth changes are likely to occur; (7) in
terms of congestion control, BBR [16] that provides high loss resilience does not show better
transport performance than Cubic [107], the main reason may be high delay jitter affects the
transport performance of BBR; (8) concurrent TCP flows can provide better goodput than a
single TCP flow.

2) An enhanced BBRv2 congestion control algorithm based on delay information
We first measure BBRv2 from various aspects under various network conditions and

compare it with BBR. It is found that the improvement of BBRv2 in fairness will bring
some additional costs, including low resilience to random packet losses and the response
speed to bandwidth changes is slow, which is not conducive to its good performance in the
network environment in some Mobile Internet scenarios. In addition, BBRv2 still suffers
from high jitter, which can degrade transport performance. For the problem of low packet
loss resilience, the measurement results show that the problem can be effectively mitigated by
carefully adjusting the packet loss threshold parameter in BBRv2 without losing its fairness
advantage.

To address the problems of the responsiveness to bandwidth dynamics and the resilience
to jitter, we propose a new congestion control algorithm BBRv2+ based on BBRv2. First,
BBRv2+ integrates delay information into its path model, using delay information as feedback
from the network environment to guide its aggressiveness in bandwidth probing. Second,

1.3 Research contents 9

BBRv2+ partially refactors the BBRv2 state machine to use delay information to guide the
aggressiveness of BBRv2+ bandwidth probing. By doing this, BBRv2+ strikes a balance
between the aggressiveness of bandwidth probing and fairness to loss-based congestion
control algorithms. Third, to avoid bandwidth starvation problems caused by the use of delay
information when coexisting with loss-based congestion control algorithms, BBRv2+ uses a
dual-mode mechanism: it decides whether to enable the new bandwidth probing mechanism
based on if there are loss-based CCAs co-exist. Finally, for the issue of jitter resilience,
BBRv2+ compensates the Bandwidth Delay Product (BDP) estimation based on the observed
delay jitter to reduce the misleading effect of delay jitter on congestion window size so that it
can adapt to the network environment with high jitter.

The experimental results show that, compared with BBRv2, BBRv2+ successfully bal-
ances the aggressiveness of bandwidth probing and the fairness to loss-based congestion
control algorithms and improves the resilience to jitter. Compared with BBRv2, BBRv2+
can achieve a throughput improvement of about 25% in mobile scenarios, and the queuing
delay is close to that of BBRv2.

3) A data-driven multipath congestion control algorithm selection mechanism
We design the MPTCP-SSCC (MPTCP Smart Selection of Congestion Control) sys-

tem based on the de-facto multipath transport protocol, MPTCP [38] (Multipath TCP),
to implement a data-driven multipath congestion control algorithm selection mechanism.
MPTCP-SSCC continuously perceives the quality and bottleneck link sharing situation of
subflows in kernel space, collects data from MPTCP kernel in user space, and then uses a
data-driven approach to dynamically adjust the congestion control algorithm for each subflow
in user space. This design of the congestion control algorithm selection in user space makes
the system have good extensibility.

In order to be compatible with legacy MPTCP applications, efficiently transfer data
between kernel and user space, and adjust the congestion control algorithm of each subflow
at runtime, we design and implement a lightweight congestion control algorithm selection
framework based on eBPF [11, 60] (extended Berkeley Packet Filter). Due to the complex
relationship between the network environment data and the suitable congestion control
algorithm, it is difficult to map network environment data to a specific CCA with a limited
number of human-designed rules. Therefore, the congestion control algorithm selection
is abstracted as a classification task. We use the XGBoost [133] algorithm to train an ML
model that is combined with some fixed rules to accomplish the CCA selection task in the
MPTCP-SSCC system.

The experimental evaluation of MPTCP-SSCC in emulated and real environments shows
that the system can dynamically select an appropriate congestion control algorithm for

10 Introduction

each subflow and satisfy multipath fairness according to the network conditions of each
path. Compared with some mainstream coupled CCAs, such as LIA [105], OLIA [67],
BALIA [102], and wVegas [15], or a state-of-the-art learning-based multipath congestion
control algorithm, MPCC [43], MPTCP-SSCC system can improve 19% – 25% average
throughput and reduce average queuing delay by up to 21%.

1.4 Contributions

This paper makes innovative contributions in three aspects of the Mobile Internet transport
mechanism.

1) Network access measurement in Mobile Internet
The core contributions of this part are as follows. We designed and implemented a

measurement and analysis system to measure the transmission capabilities provided by
provider-managed WiFi networks in mobile scenarios. We conducted measurement experi-
ments in four typical cities to collect data and analyzed the availability, transport performance,
and network characteristics of the connectivity based on provider-managed WiFi networks. In
terms of optimization, we provide some insights for AP selection, connection establishment
process optimization, and the optimization of transport protocols and congestion control
algorithms.

2) Single-path congestion control
The core contributions of this part are as follows. We conducted in-depth measurement

and analysis of BBRv2, summarized its advantages and disadvantages compared with BBR,
and explained the reasons behind the disadvantages. We propose BBRv2+ to mitigate
the problems of BBRv2, which improves the transport performance of BBRv2 in mobile
scenarios, and hardly sacrifices the advantages of BBRv2.

3) Multipath congestion control
The main contributions of this part are as follows. We designed and immplemented the

MPTCP-SSCC system to realize the data-driven multipath congestion control algorithm
selection mechanism. MPTCP-SSCC consists of two novel parts: (1) an eBPF-based
lightweight multipath congestion control algorithm selection framework, which allows to
continuously sense the network environment and transport status of subflows in an application-
transparent manner in userspace and dynamically adjust the congestion control algorithm for
subflows. The framework has good extensibility, which is convenient to integrate various
congestion control algorithms; (2) based on the above framework, we use Machine Learning
with a few artificial rules to capture the relationship between the network environment and
the appropriate congestion control algorithm. With this design, we are able to dynamically

1.5 Struture of chapters 11

select the suitable CCA for subflows to improve transport performance and achieve multipath
fairness.

1.5 Struture of chapters

The rest of this dissertation is organized as follows.
Chapter 2 summarizes the background knowledge and related research work of network

access measurement, single-path congestion control algorithms and multipath congestion
control algorithms in Mobile Internet respectively.

Chapter 3 elaborates on WiFi performance measurement in mobile scenarios. First, the
background of this study is introduced. Then, the design of the measurement system is
explained. Next, the measurement methodology is described. After that, the summary of
the collected dataset is outlined. Thereafter, a detailed analysis is carried out based on the
dataset, and the implications of the measurement results are elaborated. Finally, the chapter
is concluded.

Chapter 4 focuses on the enhanced BBRv2 congestion control algorithm based on delay
information. First, the background and an overview of this chapter is presented. Then,
the principles and mechanisms of BBR and BBRv2 are elaborated and analyzed in detail.
Next, an in-depth measurement analysis of BBRv2 is presented. Afterwards, the design and
implementation of BBRv2+ are described, along with a detailed experimental evaluation of
BBRv2+. Finally, the content of this chapter is concluded.

Chapter 5 introduces the data-driven multipath CCA selection mechanism. First, the
background and an overview of this part are introduced. Then, the motivation and the
technical challenges are analyzed in detail. After that, the core idea of our solution is
introduced. Next, the design and implementation of the MPTCP-SSCC system are introduced.
Thereafter, the experimental evaluation of the MPTCP-SSCC system is presented. Finally,
the content of this chapter is concluded.

Chapter 6 concludes this dissertation and briefly introduces the future research plan.

Chapter 2

State of the art

This chapter mainly introduces the background knowledge and the state quo of the
three parts of the research content described in Chapter 1: network access measurement,
single-path CCA, and multipath CCA in Mobile Internet.

2.1 Network access measurement in Mobile Internet

There are two main types of network access in Mobile Internet, namely, cellular network
access and WiFi network access. In stationary or quasi-stationary scenarios, a large number
of scholars [21, 25, 57, 91, 95, 136] have carried out measurement research on these two
types of network access. Therefore, in this dissertation, we mainly focus on performance
measurement of network access in mobile scenarios.

2.1.1 Cellular access measurement in mobile scenarios

Measuring the transport performance of cellular networks in mobile scenarios has always
been a research hotspot. Litjens [78] measured the performance of the UMTS/HSDPA
network in scenarios involving terminal mobility and found that transport performance does
not simply monotonically decrease as moving speed increases. Yao et al. [142] measured
the bandwidth of the HSDPA network in the scenario of vehicular mobility, and found
that the network bandwidth is less predictable in the temporal dimension, but has a certain
predictability in the spatial dimension. Jang et al. [64] measured the 3G/3.5G cellular
network in Hong Kong at the moving speed of cars and high-speed rails of 300 km/h, and
found that the transport performance was much lower than that of stationary situations. In
addition, spurious retransmissions, delay jitter, and the degree of bandwidth variation are
also higher than stationary cases. Tso et al. [121], measured the performance of HSDPA

14 State of the art

network at different degrees of mobile speed, and found that mobility would have a great
impact on network service quality, even interrupting service. At the same time, they also
observed the nonmonotonic relationship between transport performance and moving speed.
Merz et al. [86] measured the physical layer performance of LTE network at the moving
speed of 100 – 200 km/h, and found that the moving speed will lead to a certain degree of
performance degradation. But it is possible to mitigate negative effects by reasonably setting
the signal-to-noise coverage. Xiao et al. [134] measured the transport performance of TCP in
the LTE network on the Beijing-Tianjin intercity high-speed rail in China, and found that
the throughput and RTT (Round Trip Time) were significantly negatively affected, and the
fluctuation was higher than that of stationary or driving situations. Liu et al. [79] measured
and analyzed the TCP transport performance of 3G/4G networks in the case of high-speed
rail mobility, and found that the packet loss rate during timeout retransmission is very high,
and the ACK packet loss rate can reach 0.66% leading spurious timeouts to increase. Li et
al. [75] also conducted long-term measurements of TCP performance in 3G/4G networks in
high-speed rail scenarios, and found that mobility leads to significant packet loss and RTT
increases, and greatly reduces throughput. Li et al. [74] measured the TCP performance
of cellular networks of multiple operators at the same time in the high-speed rail scenario,
and found that the transmission quality degradation between different operators’ networks is
likely to be asynchronous. Wang et al. [124] measured the LTE network in the high-speed
rail scenario and found that the failure of base station handover will have a significant impact
on TCP performance, and this impact also has a certain degree of retention. In additioon,
high loss rate, high delay jitter, and frequent bandwidth changes are also common. Recently,
Pan et al. [100] conducted a long-term measurement study on 5G networks in high-speed
rail scenarios. Compared with 4G networks, although 5G increases throughput and reduces
access layer latency, the negative impact of base station handover on transport performance
is more significant. In addition, there will still be network conditions with high packet loss
rate, delay jitter, and large bandwidth changes.

The above research shows that mobility will inevitably cause various issues related to
network dynamics, such as high packet loss rate, high latency jitter, connection interruption,
and large bandwidth changes. Therefore, it is impossible to rely solely on cellular networks
to get consistent high transport performance. It is a promising research direction to use all
available network transmission opportunities as much as possible [93] to compensate each
other for the performance loss when their own network quality declines.

2.1 Network access measurement in Mobile Internet 15

2.1.2 WiFi access measurement in mobile scenarios

The performance measurement of WiFi in mobile scenarios can be traced back to the
Drive-thru project [97]. In this study, the authors placed several APs on the side of the
road and then measured whether they can associate with the APs from a moving car and
whether TCP or UDP transmission is possible. According to their results: (1) the coverage
supported by a single AP is quite large (more than 10 s of connection time even when moving
at 180 km/h); (2) the quality of connections is good in the middle of the connection but
degrades at the fringes; (3) it is able to transmit data to some extent via UDP and TCP, but
the transport performance is worst than that of stationary cases. Since then, Gass et al. [40]
and Hadaller et al. [47] also conducted similar measurements in a controlled environment,
focusing on the impact of backhaul network quality on the overall transport performance.
In addition, Hadaller et al. [47] also pointed out some performance problems in the WiFi
protocol stack, and provide some practical guidelines on how to optimize the WiFi protocol
stack for mobile scenarios. Mahajan et al. [83] analyzed the characteristics of the link layer
of this type of WiFi connections through a self-built small-scale testbed, and found that there
are often "bad" periods of poor quality during the connection and it is difficult to predict
these periods in the temporal dimension. The above measurement research mainly focuses
on the wireless access part.

Another category of measurement studies focuses on the availability and performance
of transmissions in mobile scenarios using open WiFi networks already deployed in cities.
Typical representatives of this type of research include [9, 13, 116, 34, 115]. According to
these measurement studies, the median connection duration that mobile users can obtain each
time and the median duration of connection holes are in seconds or tens of seconds level, and
the long-term throughput is generally tens of MB per hour. However, currently, open WiFi
networks have almost disappeared [72, 103], and they are replaced by provider-managed
WiFi networks, which are very different from open WiFi networks in terms of deployment
strategies and AP capabilities. Therefore, the conclusions of the previous measurement
studies can not represent the current situation of using provider-managed WiFi networks in
mobile scenarios.

There are also a few recent research works based on provider-managed WiFi networks [27,
72]. However, their focus is not on measuring the transmission capabilities provided by
provider-managed WiFi networks. Thus, only a few metrics are analyzed.

16 State of the art

2.1.3 Summary

Fully considering and leveraging available network access opportunities has the potential
to opportunistically compensate for the performance problems of cellular networks due to
mobility. In urban areas, the in-situ provider-managed WiFi network is one opportunity to
consider. But so far, there is no measurement work to measure the availability, transport
performance, and network characteristics of such connectivity offered by provider-managed
WiFi networks in mobile scenarios.

2.2 Single-path CCAs

Congestion control of transport protocols was introduced in the 1980s. It was originally
designed to allow distributed senders to fairly share network resources and avoid the per-
formance of the Internet that is based on statistical multiplexing packet-switched networks
to collapse due to congestion [63]. The early congestion control algorithms follow the
principle of "Additive Increase Multiplicative Decrease" (AIMD), taking packet loss as the
congestion signal and adjusting the congestion window according to Equation (2.1), where
W (t) represents the congestion window (in packets) at time t, α > 0, and 0 < β < 1. For
example, for the most classic Reno [98], α is 1 in the slow start phase (Slow Start) and
1/W (t) in the congestion avoidance phase (Congestion Avoidance), and β is 1/2.

W (t) =

{
W (t)+α, i f a packet is ACked
W (t)×β , i f a loss happens

(2.1)

With the continuous evolution of network infrastructures, relatively simple early con-
gestion control algorithms such as Reno are gradually unable to fully utilize the available
network resources. Therefore, new congestion control algorithms are proposed to adapt to
new network environments and to improve transport performance. Among them, the most
typical example is Cubic [107], which no longer uses the additive method to increase the
congestion window, but uses the cubic function defined by Equation (2.2) to increase the
congestion window, where C is a predefined constant, β is the MD (Multiplicative Decrease)
coefficient, Tloss is the time of the last packet loss, and Wmax is the congestion window before
the last packet loss. This window growth approach enables Cubic to have good scalability
and to achieve good bandwidth utilization in high-speed networks. Therefore, Cubic is also
adopted as the default congestion control algorithm in Linux, and has become the most
widely used congestion control algorithm [89] on the Internet.

2.2 Single-path CCAs 17

W (t) =C(t−Tloss− 3
√

β ·Wmax/C)3 +Wmax (2.2)

With the popularization of various wireless broadband networks and the start of the era
of Mobile Internet, such wireless networks with dynamic changes in bandwidth, delay, and
packet loss pose new challenges to congestion control algorithms. Therefore, researchers
have also begun to design the corresponding congestion control algorithms for wireless
environments, which will be introduced in § 2.2.1. Recently, due to the prosperity of Machine
Learning (ML), some research works have considered using ML methods for congestion
control, hoping to make CCAs adapt to network environments, instead of designing specific
CCAs for different environments. § 2.2.2 will introduce the status quo of learning-based
congestion control algorithms. In addition, § 2.2.3 will introduce the related work of a
relatively special congestion control algorithm, BBR [16]. Because BBR can tolerate high
packet loss rates and actively avoid queuing to mitigate bufferbloat [41] to reduce queuing
delay, it has been widely used in Mobile Internet [16, 89, 122].

2.2.1 CCAs for wireless networks

In a wireless environment, congestion is not the only reason for packet loss. Radio
frequency interference, channel errors, and short-term signal interruptions can also lead
to packet loss. Usually, this type of packet loss is called random loss, differentiated from
congestion loss. Ideally, when encountering random packet loss, the transport protocol
only needs to recover the lost packets, and should not actively reduce the sending rate [4].
However, traditional loss-based CCAs, such as Reno and Cubic, are designed for wired
networks. They assume that all packet losses are due to congestion, so when random packet
loss happens, the congestion window will also be reduced, causing performance degradation.

In order to solve the above problems, Mascolo et al. [19] designed the Westwood al-
gorithm. The core idea is that when packet loss is detected, the sender does not blindly
decrease the congestion window according to the MD method, but sets the window to the
BDP calculated from the recently measured bandwidth, B. The calculation method of B is
shown in Equation (2.3), where B−1 is the last estimated B, ∆ is the time interval between
the current ACK and the last ACK, α(∆) is the coefficient function with ∆ as the parameter,
d represents the data amount of this ACK, and b and b−1 represents the bandwidth samples
calculated at the current and previous ACK. Because in some environments, there may
be severe ACK compression [147], Westwood’s bandwidth estimation method will lead
to over-estimation. Grieco et al. [46] proposed the Westwood+ algorithm alleviates this
problem. Westwood+ uses the amount of confirmed data in a complete RTT to calculate the

18 State of the art

bandwidth sample b, and estimates the bandwidth B according to the exponential moving
average. The specific calculation method is shown in Equation (2.4), where d represents
the amount of data confirmed in one RTT, and α is the smoothing coefficient. For the same
motivation as Westwood+, Wang et al. proposed TCP CRB [126] and TCP ABSE [125] to
revise Westwood’s bandwidth estimation method. In TCP CRB, the author will calculate
two kinds of bandwidth estimates, in which the short-term estimates are calculated in the
Westwood way, and the long-term estimates are calculated in a similar way to Westwood+,
but the predefined time interval T is used instead of Westwood+. Then, when packet loss
occurs, if the difference between the BDP calculated based on the long-term estimate and
the current congestion window is too large, the TCP CRB will use the short-term bandwidth
estimate, otherwise, the long-term estimate will be used. TCP ABSE improves TCP CRB.
The author adapts the bandwidth sampling interval T , as shown in Equation (2.5), where
V E is the quotient of the congestion window and the minimum RTT, RE is similar to B in
Westwood+, and Tmin is a predefined minimum sampling interval. In addition, TCP ABSE
also adapts the smoothing coefficient α for calculating the exponential moving average
to react to frequent changes in available bandwidth faster. Yang et al. [140] found that
Westwood’s packet loss recovery strategy has performance problems when there are many
random packet losses, so they propose a more aggressive retransmission recovery strategy
when random packet loss is detected. Since Westwood and the above algorithms do not
use the MD window reduction method, there is a problem in fairness when coexisting with
Reno. For this reason, Shimonishi et al. [112] proposed TCPW BBE to improve the fairness
of Westwood. The idea is to add a window reduction coefficient in Westwood’s window
reduction method, and the coefficient is negatively related to queuing delay. Although all of
the above Westwood-like algorithms can effectively improve the transport performance in
networks with random packet loss, they also have some problems. For instance, they still use
packet loss as the congestion signal, which leads to bufferbloat, and the congestion window
growth of AI (Additive Increase) is too slow in Long Fat Networks.

b = d/∆

B = α (∆) ·B−1 +[1−α (∆)] ·
(

b+b−1

2

)
(2.3)

b = d/RT T
B = α ·B−1 +(1−α) ·b

(2.4)

T = max
(

Tmin,
RT T · (V E−RE)

V E

)
(2.5)

2.2 Single-path CCAs 19

In Mobile Internet, there are many interactive applications that require high throughput
and low latency, such as real-time audio and video applications such as Skype, Zoom, and
live streaming. Their requirements on network transmission pose great challenges to how to
design CCAs in cellular networks. Cellular networks have certain particularities. Due to the
high retransmission cost, the base station usually maintains a separate buffer for each user to
reduce packet loss, and, especially in the scenario where the user moves, the bandwidth of
the cellular network changes rapidly [131]. These characteristics make loss-based congestion
control algorithms difficult to achieve high performance because they cause bufferbloat
and are relatively slow to react to bandwidth changes. To address these issues, Winstein et
al. [131] proposed Sprout. Sprout is an active congestion control algorithm that predicts
the amount of data that the sender can send without leading the queuing delay to exceed a
certain threshold. It calculate the prediction by observing the arrival time of packets at the
receiver. Experimental results show that Sprout improves throughput by 2.2× compared to
Skype, while reducing latency by 7.9×. However, Sprout has some limitations as follows.
First, Sprout makes strong assumptions about the network environment. It requires that the
bottleneck link of the network must be the wireless access to the cellular base station and
there are no other background flows. Second, it requires the application to have enough data
to send and does not support on-off mode transfers. Also, intra-protocol fairness among
Sprout flows is not verified. These limitations result in very limited applicable scenarios for
Sprout.

Zaki et al. [146] believe that it is very difficult to accurately predict the bandwidth on
the wireless access part of a cellular network, because the complex state transition between
the base station and the user will affect the channel availability, the packet scheduling
strategy in the cellular network will cause the traffic to appear bursty mode, competition for
base station resources by different users also affects the available bandwidth, and mobility
amplifies the impact of these factors. For the above reasons, Zaki et al. designed the Verus
algorithm that does not rely on channel quality prediction, and the goal is to achieve high
throughput and low latency transport in cellular networks. Verus is a delay-based congestion
control algorithm based on the AIMD framework, replacing AI with a delay-based function.
Specifically, it continuously captures the relationship between the end-to-end delay and the
congestion window, and then determines how the congestion window changes based on this.
In addition, when encountering packet loss, Verus, similar to loss-based algorithms, performs
MD window reduction to quickly react to congestion signals. Experimental results show that
Verus achieves a throughput improvement of up to 30% with slightly higher latency than
Sprout. However, Verus also has strong assumptions about the network environment, that
is, the random packet loss rate of the network should be low enough, otherwise, Verus will

20 State of the art

frequently respond to random packet loss in the way of MD window reduction, which will
greatly reduce throughput.

Abbasloo et al. [1] also proposed a congestion control algorithm, C2TCP, for cellular
networks. Unlike Sprout and Verus, C2TCP does not require any complex bandwidth
prediction, network state analysis, and rate adjustment mechanisms. C2TCP is designed
on the algorithm based on packet loss. The core idea is to maintain a virtual Active Queue
Management (AQM) module on the sender side to judge the state of the network, and then to
tune the congestion window of the basic algorithm based on this. Specifically, C2TCP will
set an explicit delay target according to the network delay information, and then the virtual
AQM will judge whether the current network state is good (RTT is lower than the delay
target), medium (RTT slightly exceeds the delay target), or bad (RTT continuously exceeds
the delay target) according to the comparison between the current RTT and the delay target.
The window correction operations corresponding to these states are increasing the congestion
window, maintaining the congestion window, and resetting the congestion window to the
minimum value (similar to handling timeout). Experiments show that C2TCP trades for
lower latency than Sprout and Verus at the cost of lower throughput. However, similar to
Sprout and Verus, C2TCP also has some strong assumptions about the network environment.
For example, the bottleneck of the network must be on the cellular wireless access side, the
path delay must be low enough, and the random packet loss rate must be low enough.

2.2.2 Learning-based CCAs

Considering the congestion control algorithms designed for cellular networks, Sprout,
Verus, and C2TCP, it can be seen that there is a trade-off between the performance and
generality when designing congestion control algorithms for new network environments. In
order to make CCAs have better adaptability, some scholars have introduced some ML tools
and methods to design CCAs.

Winstein et al. [130] proposed a congestion control algorithm framework, Remy, based
on offline learning. Remy accepts network characteristics, traffic models, and performance
objective functions as input, and then uses brute force search to find the most appropriate
mapping relationship between the sender’s current state and congestion control actions
through simulation to optimize the objective function. Dong et al. [29] proposed PCC-Vivace
based on online learning, which uses a delay-sensitive utility function framework and an
online learning algorithm based on gradient ascent to adjust the transmission speed. Yan et
al. [138] proposed Indigo, which uses a Long Short Term Memory (LSTM) neural network
to store the relationship between the sender’s current state and congestion control actions,
and uses Imitation Learning to train the model. Jay et al. [65] proposed the Aurora algorithm,

2.2 Single-path CCAs 21

which uses Deep Reinforcement Learning (DRL) to generate policies that map network
states to congestion control actions. Li et al. [77] proposed the AUTO algorithm based on
Multi-Objective Reinforcement Learning to improve the generalization ability of the model
to different environments, and allow the application to express the performance preferences
such as more throughput-oriented or more delay-oriented.

Abbasloo et al. [2] proposed a hybrid learning-based congestion control algorithm, Orca.
Orca divides the connection into multiple time slices (control cycles). At the beginning of
each time slice, the model trained by DRL is used to predict the basic congestion window
value. During the time slice, Orca uses the congestion window adjustment mechanism of a
traditional congestion control algorithm (Cubic) to tune the underlying congestion control
window. Due to the introduction of the Cubic-based window adjustment mechanism, which
adds some disturbance, Orca is easier to get out of some locally optimal equilibrium states
than pure learning-based congestion control algorithms. On the basis of Orca, Abbasloo
et al. [3] designed the DeepCC framework, which can integrate other types of traditional
congestion control algorithms, such as BBR, and can specify the target delay by the applica-
tion to adjust the performance preferences. Du et al. [32] also proposed a hybrid algorithm,
Libra, which combines traditional algorithms and DRL. The differences between Libra and
Orca are that Libra is based on the sending rate instead of the congestion window, it uses a
different reward function, and it chooses the maximum between the rate calculated by the
traditional algorithm and the rate predicted by DRL as the base sending rate at the start of
the control cycle.

Although the above algorithms can achieve good performance in scenarios with a certain
similarity to the training environment, they also have some general problems, such as
fairness problems, slow convergence speed and degraded performance in unseen network
environments, the complexity of implementation and deployment, large overhead, and
etc. [2, 32, 139, 152]. As such, these algorithms are currently not mature enough to be
practically deployed at scale.

2.2.3 Related work of BBR

BBR [16] is a model-based congestion control algorithm proposed by Google in 2016.
Unlike traditional loss-based or delay-based congestion control algorithms, BBR does not
use packet loss or delay as a signal to passively respond to congestion. Instead, BBR actively
measures the BtlBW and RTprop of the network path, operating at the Kleinrock’s best
operation point [69] to maximize throughput while avoiding the accumulation of packet
queues on bottleneck links. Since BtlBW and RTprop can not be measured at the same time,
BBR uses a state machine-based method to measure BtlBW and RTprop alternately (for

22 State of the art

more details of BBR’s operation, refer to § 4.2.1). Since BBR does not respond passively
to packet loss, it can also achieve good transport performance on links with some random
packet loss. In addition, the implementation of BBR is not complicated, and it only needs
to be implemented at the sender. At present, many transport protocols already support
BBR. Due to the features of packet loss resilience, low latency, and easy-to-deploy, BBR is
widely deployed on the Internet. According to a CCA census [89], BBR currently has a 22%
deployment share of Alexa Top 20K websites, second only to Cubic’s 36%, and, from the
perspective of traffic amount, the BBR traffic on the Internet has exceeded 40%.

Since BBR [16] was released by Google in 2016, due to its promising performance re-
ported in [16], it has attracted lots of researchers and practitioners to evaluate its performance
under various network conditions. Hock et al. [56] conducted an extensive experimental
evaluation of BBR at high link-speeds (≥1Gbps). They found that BBR is unfair when
sharing a bottleneck link with Cubic flows or BBR flows with different RTTs. In addition,
they also found that BBR can lead to massive retransmissions when the bottleneck buffer is
small. Ma et al. [82] observed that the RTT fairness issue of BBR exist even if the disparity
of RTTs of different flows are relatively small, and, revealed the root cause of this issue.
Scholz et al. [111] reproduced the results from Hock et al. [56] via the network emulation
framework proposed by them. In particular, they found that BBR flows are always able to
claim at least 35% of the total bandwidth in deep-buffered networks when competing with
Cubic flows. To demystify the aforementioned phenomenon observed in [111], Ware et
al. [127] modeled BBR’s behaviors when it competes with loss-based CCAs. They found
that BBR’s share of link capacity only depends on the link capacity and delay, the bottleneck
buffer size, and the number of BBR flows. Cao et al. [14] compared BBR with Cubic under
various network conditions to understand what are the applicable scenarios for BBR. They
identified that the scenarios where BBR outperforms Cubic are also the scenarios where BBR
is unfair to Cubic. Kumar et al. [70] observed that the throughput of BBR collapses when
network jitters are high in an experimental evaluation of BBR. A similar phenomenon was
also observed by Wang et al. [124] in a TCP performance measurement campaign conducted
on high-speed rails where the network connectivity is very dynamic.

The issues of BBR identified by these empirical studies motivated many researchers
to optimize the performance of BBR from various perspectives. For instance, [70, 124]
proposed several modifications in the RTprop estimation of BBR to counter network jitters,
[68, 82, 141] enhanced BBR’s RTT fairness, [113, 149] improved BBR’s inter-protocol
fairness with loss-based CCAs, and [84] reduced BBR’s aggressiveness in shallow-buffered
networks to limit its retranmissions.

2.2 Single-path CCAs 23

To solve the problems of BBR disclosed by the experiences from both academia and
industry, Google proposed an upgrade of BBR, BBRv2 [18]. In Google’s early tests [17, 18],
compared with BBR, BBRv2 showed better inter-protocol fairness with loss-based CCAs and
reduced retransmissions in shallow-buffered networks. The tests also showed that BBRv2’s
resilience to random losses is worse than that of BBR, but it is still better than that of Cubic.
Besides the tests done by Google, there are also a few independent measurement studies from
academia. Gomez et al. [44] and Nadagiri et al. [90] conducted experiments in emulated
environments to study the inter-protocol fairness of BBRv2. Their experiments corroborated
Google’s results. The evaluation from Gomez et al. [44] also showed that BBRv2 is better
than BBR in terms of RTT fairness. Kfoury et al. [66] conducted a more detailed emulation-
based evaluation of BBRv2 for wired broadband networks. They also found that BBRv2
eliminates the massive retranmissions in shallow-buffered networks, and improves the inter-
protocol fairness and the RTT fairness over BBR. Song et al. [114] compared BBRv2 with
BBR to understand the pros and cons of BBRv2. In addition to the aforementioned findings
from the previous studies, they found that BBRv2 can not quickly utilize free link capacity
when the bottleneck bandwidth increases. However, they did neither disclose the root cause
of this phenomenon nor provide means to solve this problem.

2.2.4 Summary

The network environment in Mobile Internet scenarios poses new challenges to conges-
tion control algorithms. The current congestion control algorithms designed for wireless
environments have strong assumptions about the network environment, resulting in very
limited applicable scenarios. In addition, some algorithms also have fairness problems, which
prevents them from being deployed at scale [89]. Although learning-based algorithms have
achieved relatively good performance in some environments, these algorithms have some
general problems, namely, fairness problems, slow convergence speed and low transport
performance in unseen network environments, the complexity of implementation and deploy-
ment, and large overhead. These practical issues suggest that they are not yet mature enough
for large-scale deployment. Although the new algorithm BBR proposed by Google has been
widely used in practice, recent measurement studies have shown that it has issues such as
fairness. For this reason, BBRv2 is proposed to optimize the problems of BBR. However, at
present, the performance of BBRv2 in Mobile Internet scenarios where high latency jitter,
high packet loss rate, and large bandwidth fluctuation are common is still unclear.

24 State of the art

2.3 Multipath CCAs

In Mobile Internet scenarios, many mobile devices are usually equipped with multiple
network interfaces. Therefore, multipath transport protocols can be used to improve transport
performance. Congestion control is also essential in multipath transport protocols. For
multipath congestion control, there are two main goals. First, multipath congestion control
algorithms need to utilize the available resources on each path as much as possible to
maximize transport performance. In addition, the multipath congestion control algorithm
should also ensure multipath fairness. That is, when sharing the bottleneck link with a single-
path connection, a multipath connection should be able to share the bandwidth with it fairly.
In order to achieve the above two goals, a plethora of multipath congestion control algorithms
have been proposed in academia. According to the method of realizing multipath fairness,
they can be divided into two categories: coupled multipath CCA and dynamically coupled
multipath CCA. In addition, ML methods have also been applied in multipath congestion
control to improve the ability of multipath congestion control algorithms to adapt to different
network environments. Next, the research progress of the three types of multipath congestion
control algorithms is introduced respectively.

2.3.1 Coupled multipath CCAs

For the coupled congestion control algorithm, the way to achieve multipath fairness
is also called “Network Fair [49]”. That is, all multipath flows and single-path flows in
the network need to share resources fairly. This strong fairness constraint guarantees that
multipath and single-path flows can use bandwidth fairly on shared bottleneck links. The
coupled congestion control algorithms in MPTCP are all based on “Network Fair”, and their
design follows three basic goals [105]: (1) “Improve Throughput”, a multipath flow should
at least provide the same throughput as a single-path flow when using the best path; (2)
“Do No Harm”, the obtained network bandwidth by a multipath flow should not exceed the
bandwidth that would be obtained by a single-path flow using the best path, which ensures
that the performance of single-path flows on the same bottleneck link with multipath flows
will not be compromised under any circumstances; (3) “Balance Congestion”, multipath
flows should try to avoid sending traffic on the most congested paths.

LIA [105] is the earliest proposed multipath congestion control algorithm that satisfies
the above three goals. It is based on the NewReno [54] algorithm that follows the AIMD
principle, and couples the window growth factor of the AI stage, as shown in Equation (2.6),
where W∗ represents the congestion window of a subflow, τ∗ represents the RTT of a subflow,
and R represents the set of subflows.

2.3 Multipath CCAs 25

Wr =Wr +min
(

max(Wr/τ2
r)

[∑k∈R(Wk/τk)]2
,

1
Wr

)
(2.6)

Although LIA can provide multipath fairness, it may lead to non-Pareto-optimal prob-
lems [67]. That is, after upgrading a TCP flow in the network to a MPTCP flow, no flow will
get gains, and some flows may even get penalty on their performance. To this end, Khalili
et al. [67] analyzed the problems of LIA and found that in order to respond to changes in
available bandwidth, LIA makes a trade-off between balancing congestion and responding to
changes in bandwidth, which would lead to sending excessive probing traffic on congested
paths. Based on the above analysis, they proposed the OLIA algorithm. The core idea
of OLIA is to probe more on good paths and to probe less on poor paths. The specific
changes of OLIA only involve the window growth function of the AI part of LIA, as shown
in Equation (2.7), where B represents the set of subflows with the most amount of data
transmitted between the last two packet losses, and M represents the set of subflows with the
largest congestion window.

Wr =Wr +

(
Wr/τ2

r
[∑k∈R(Wk/τk)]2

+
αr

Wr

)

αr =

1/|R|
|B−M|

i f r ∈ B−M ̸= /0

− 1/|R|
|M|

i f r ∈M and B−M ̸= /0

0 otherwise

(2.7)

Peng et al. [102] found that OLIA has a slower response speed to changes in network
bandwidth when paths experience similar RTTs. Therefore, the BALIA algorithm is proposed
to achieve a better trade-off between response speed and balancing congestion. Based on
theoretical analysis, they modeled the impact of algorithm design parameters on fairness and
response speed, and then changed the window adjustment methods of NewReno’s AI and MD
stages, as shown in Equation (2.8) and Equation (2.9), where αr = maxk∈R(Wk/τk)/(Wr/τr).
Melki et al. [85] based on the BALIA framework, adjusted the relevant parameters of the AI
and MD stages to make the algorithm prioritize fairness.

Wr =Wr +
Wr/τ2

r
[∑k∈R(Wk/τk)]2

+
αr

Wr

(
1+αr

2

)(
4+αr

5

)
(2.8)

Wr =Wr−
Wr

2
min(αr,1.5) (2.9)

26 State of the art

Cao et al. [15] implemented a delay-based multipath CCA, wVegas, by coupling the
delay-based Vegas [12] algorithm. wVegas can achieve more fine-grained load balancing than
loss-based multipath congestion control algorithms, but it also faces the problem of Vegas, i.e.
bandwidth starvation will happen when coexisting with loss-based algorithms. Han et al. [48]
proposed Coupled-BBR that is based on BBR[16]. Specifically, Coupled-BBR modifies
the pacing_gain of BBR in the cruise phase from a fixed 1.0 to Equation (2.10) to achieve
multipath fairness. Dong et al. [30] coupled the Veno [22] algorithm to design mVeno to
improve the performance of MPTCP in a wireless environment with random packet loss.
Thomas et al. [119] proposed an eNMCC algorithm based on the window growth rate, which
uses the window growth rate instead of the absolute rate to calculate the window adjustment
coefficients for the AI and MD stages.

pacing_gainr =
4βr−1

3
, βr =

BtlBWr ·maxk∈R(BltBWk)

∑k∈R BtlBW 2
k

(2.10)

2.3.2 Dynamically coupled multipath CCAs

Coupled congestion control algorithms based on “Network Fair” always couple the
congestion window of subflows even when there is no shared bottleneck link, resulting in
a performance loss of up to about 50% [36]. Therefore, some scholars [36, 49, 51, 120,
128, 143] believe that the multipath fairness should be implmented based on the principle of
“Bottleneck Fair” that only couples subflows across a common bottleneck link to improve
throughput when subflows are independent.

Hassayoun et al. [49] proposed a DWC algorithm, which detects whether subflows share
a bottleneck link through packet loss and delay signals, and then couples the subflows
sharing a bottleneck link while allowing other subflows to grow their own congestion window
independently. Based on the same idea, Ferlin et al. [36] designed MPTCP-SBD. MPTCP-
SBD uses a method based on One Way Delay (OWD) statistical features to detect whether
subflows share a bottleneck link, which can improve the accuracy of shared bottleneck link
detection compared to DWC. Hayes et al. [51] tried to replace the threshold-based subflow
grouping method in MPTCP-SBD with a clustering-based method in their follow-up work,
but experiments show that these two methods have no absolute advantages and disadvantages.
Ye et al. [143] and Wei et al. [128] both proposed the use of ECN (Explicit Congestion
Notification) to achieve a more accurate shared bottleneck link detection. As ECN is mostly
supported in proprietary networks, e.g. datacenter networks, it can not be used for multipath
congestion control on the Internet. Thomas et al. [120] proposed the NMCC algorithm,
which uses network topology information to detect shared bottleneck links. However, the

2.3 Multipath CCAs 27

implementation of this algorithm requires Software Defined Networking (SDN) or Multiple
Protocol Label Switching (MPLS). Thus NMCC is not applicable for multipath congestion
control on the Internet.

Although the above algorithms achieve multipath fairness more flexibly and improve the
performance of multipath congestion control in the case of non-shared bottleneck links, they
still perform homogeneous congestion control actions on all paths, without considering the
problem of path heterogeneity and the possibility of dynamic change of path quality.

2.3.3 Learning-based multipath CCAs

In order to be able to adapt to the heterogeneous and dynamically changing network
environment, some research works have introduced tools and methods in the field of ML
to design multipath congestion control algorithms. Gilad et al. [43] proposed a multipath
congestion control algorithm, MPCC, based on the PCC [28] online learning framework,
using a utility function that satisfies the LMMF (Lexicographic Max-Min Fairness) condition
to achieve multipath fairness in “Network Fair” way. Experiments show that MPCC can
achieve better performance than traditional algorithms in some highly dynamic environments.
However, in short-flow scenarios, MPCC’s performance may not be as good as traditional
algorithms, because online learning requires a certain startup time. Li et al. [76] designed
SmartCC, a multipath congestion control algorithm based on Reinforcement Learning (RL).
SmartCC collects the transport performance data of all subflows in each control cycle, and
then uses the RL model to predict the control parameters of the window adjustment on each
subflow. In terms of model training and deployment, SmartCC adopts an asynchronous
method. That is, the model is trained offline through the Q-Learning algorithm, and then
the trained model is directly used in the online prediction stage. Xu et al. [137] proposed
DRL-CC based on DRL to use a single agent to perform congestion control for all subflows
of all MPTCP connections on a host. In order to solve the problem of dynamic changes in
the number of MPTCP connections, DRL-CC uses LSTM to learn the state representation of
all MPTCP connections, and integrates LSTM into the DDPG (Deep Deterministic Policy
Gradient) framework to achieve end-to-end model training. Pokhrel et al. [104] proposed
an algorithm DQL-MPTCP based on DQL (Deep Q-Learning) to jointly control congestion
control and packet scheduling. He et al. [52] argue that using a single agent for the congestion
control of MPTCP connections has some shortcomings, such as performance loss or the
need to retrain the model when the number of subflows changes. To tackle the above issues,
they proposed DeepCC based on MADRL (Multi-Agent DRL). Different from the previous
work, DeepCC uses an agent independently for each subflow, and, in order to correlate
with other subflows, DeepCC uses two self-attention mechanisms to relate the states and

28 State of the art

reward functions of different subflows. Xu et al. [135] designed an RL-PSD algorithm for
Augmented Reality (AR) or Virtual Reality (VR) scenarios. The main idea is to consider the
Power Spectrum Density (PSD) of the video stream into the state in the RL-based algorithm.
Yu et al. [145] designed a multipath congestion control algorithm, MPLibra, which combines
DRL-based algorithms and traditional coupled algorithms, which can be regarded as the
coupled version of the learning-based single-path congestion control algorithm, Libra [32].
Similar to MPCC, MPLibra also uses a utility function that satisfies the LMMF condition to
achieve multipath fairness.

The above learning-based multipath congestion control algorithms can achieve good
performance in scenarios that are similar to the training environment. However, similar
to learning-based single-path congestion control algorithms, they also have some general
problems, such as unable to achieve multipath fairness, performance degradation and slow
convergence speed in unseen network environments, large system overhead, and complicated
deployment in reality [145]. In addition, in order to achieve multipath fairness, some
algorithms usually use a utility function that satisfies the LMMF condition to implement
"Network Fair", which negatively affects the transport performance in the scenario of non-
shared bottleneck links.

2.3.4 Summary

Although traditional coupled congestion control algorithms can guarantee multipath
fairness, they may face a large performance loss in the case of non-shared bottleneck
links, and their homogeneous congestion control actions on all paths can not adapt to
heterogeneous and dynamically changing multipath network environments. The dynamically
coupled congestion control algorithms can reduce the performance loss caused by coupling
congestion windows of all subflows in the case of non-shared bottleneck links, but still do
not consider the problem of path heterogeneity. Learning-based multipath congestion control
algorithms have the potential to adapt to network environments, but they still have some
general problems, which make it difficult to deploy them in production environments.

2.4 Conclusion

This chapter mainly introduces the background knowledge and the status quo related to
network access mode measurement, single-path congestion control algorithm, and multipath
congestion control algorithm in Mobile Internet, and summarizes some existing problems. In

2.4 Conclusion 29

the next three chapters, this dissertation will elaborate on the work that we have done for the
three aspects.

Chapter 3

WiFi performance measurement in
mobile scenarios

3.1 Introduction

In the era of Mobile Internet, users usually expect to enjoy good Internet services
anytime, anywhere. The cellular network has a wide coverage and high network availability
and is generally the first choice for users to access Internet services in mobile scenarios.
However, only relying on the cellular network for data transmission cannot fully meet the
requirements of transport performance, and there are still many problems. There are many
related measurement studies [64, 121, 124, 136, 131] show that, including 5G, cellular
networks in mobile scenarios often experience large delay jitter and many packet losses
(retransmissions), and large bandwidth fluctuations, resulting in impaired user experience
of Internet services. In addition, due to the explosive growth of mobile Internet traffic, the
capacity of the cellular network itself is also under great pressure, resulting in the need for
operators to invest a lot of costs in infrastructure construction and impose limits of data usage
on users [73, 151].

In a real environment, there may be other networks available besides cellular networks.
Some research work [93] indicates that users need to fully consider all available network
access opportunities to improve transport performance in mobile scenarios. Currently, many
operators deploy in-situ public WiFi networks in urban areas, and the economic cost of using
these networks is low and usually has no restriction on data usage. For example, public WiFi
built by Mobile Network Operators (MNOs) is generally free for the subscribers of MNOs.
Therefore, this chapter considers whether these provider-managed WiFi networks can be

32 WiFi performance measurement in mobile scenarios

used to complement cellular networks in mobile scenarios, thereby offering the possibility to
improve transport performance and reduce transmission costs.

Therefore, in mobile scenarios, it is very necessary to measure and analyze the availability,
transmission capability, and network quality characteristics of the network access based
on the above WiFi network. However, the existing related measurement research [9, 13,
34, 116, 115] are mostly based on open WiFi networks more than ten years ago, and these
open WiFi networks have almost disappeared [72, 103, 108] and are very different from the
current provider-managed WiFi networks. For example, provider-managed WiFi networks
requires identity authentication and encrypts the channel. The authentication server and the
DHCP server of provider-managed WiFi networks are usually deployed in core networks.
Compared with open WiFi networks, additional connection establishment delay may be
introduced. Moreover, with the upgrade of the 802.11 standard, today’s access points
(APs) should provide better transmission capabilities than APs in out-dated open WiFi
networks. To sum up, there is no publicly available measurement data that can indicate the
availability, transmission capability, and network quality characteristics of provider-managed
WiFi networks in mobile scenarios.

To fill the above gap, we need to conduct large-scale measurement research. However,
due to the lack of measurement tools and the differences between the deployment of provider-
managed WiFi networks in different cities, there are certain technical difficulties and a lot
of time and manpower to carry out the above measurement study. To this end, this chapter
designs an automated measurement system based on in-vehicle devices, and then deploys
and collects data in four typical cities in Europe, Asia, and North America. The collected
measurement data feature about 5620 km of moving mileage and contain tens of thousands
of WiFi associations.

Based on the collected dataset, we analyze in detail the transmission capability provided
by provider-managed WiFi networks for mobile users from the aspects of connection avail-
ability, transport performance, network quality characteristics, and the related influencing
factors of the above metrics. The main measurement results and observations are as follows:
(1) compared with the measurement results based on open WiFi network [9, 13, 34, 116, 115],
the availability of provider-managed WiFi networks does not change significantly. The aver-
age duration of connectivity and connectivity holes is around 16 – 29 s and 5 – 112 s
respectively; (2) the TCP goodput (∼1 GB/h) offered by provider-managed WiFi net-
works is an order of magnitude higher than most of the measurement results in open WiFi
networks [9, 13, 34, 116, 115]. The average goodput during WiFi connection is 2.97 –
13.36 Mbps (excluding Paris); (3) compared with that of open WiFi networks, the connec-
tivity setup overhead of provider-managed WiFi networks is higher, however, it is only a

3.2 Measurement system design 33

small fraction of the entire WiFi association duration (10% – 18%); (4) in terms of AP
selection, the existing strategy solely based on signal strength is sub-optimal; as 5 GHz APs
usually provide better performance than 2.4 GHz APs in this scenario, from the perspective
of AP selection, 5 GHz AP can be given priority; (5) provider-managed WiFi networks
usually do not guarantee that the IP address can remain unchanged across different APs.
Therefore, from the perspective of applications and transport protocols, the ability to support
IP handover is necessary; (6) during WiFi associations, high latency jitter, high packet loss
rates, and large bandwidth changes are likely to occur; (7) in terms of congestion control,
BBR [16] that provides high loss resilience does not show better transport performance than
Cubic [107], the main reason may be high delay jitter affects the transport performance of
BBR; (8) concurrent TCP flows can provide better goodput than a single TCP flow.

To summarize, the main contributions of this chapter are: (1) a measurement system
for measuring the transmission capability provided by provider-managed WiFi networks in
mobile scenarios; (2) a unique dataset that presents the availability, transmission capability,
and network quality characteristics of the connectivity offered by provider-managed WiFi
networks in mobile scenarios; (3) the observations extracted from the above dataset, which
provide some insights on AP selection, the optimization of the connectivity setup process,
the design and optimization of transport protocols and congestion control algorithms. In
addition, the measurement system 1 and the dataset 2 are open sourced on Github for further
exploration by the research community.

The rest of this chapter is organized as follows. First, § 3.2 describes how the measurement
system is designed. Next, the measurement methodology is introduced in § 3.3. Afterwards,
§ 3.4 presents some overviews of the collected dataset. After that, the measurement data are
analyzed in detail in § 3.5 and § 3.6 respectively. Finally, § 3.7 concludes this chapter.

3.2 Measurement system design

The measurement system includes two components — X-Fi (§ 3.2.1) and X-Perf (§ 3.2.2).
X-Fi incorporates a set of optimizations to provide fast access to provider-managed WiFi
networks in mobile scenarios. X-Perf is a measurement tool to study transport performance
of intermittent connectivity. Figure 3.1 illustrates the workflow of the toolkit. Auth., assoc.,
req., resp., ack., and disc. are abbreviations for authentication, association, request, response,
acknowledgement, and discovery respectively. MAC auth. represents the authentication with
APs, while access auth. means the authentication with the central authentication server via

1https://github.com/yangfurong/X-Fi-code
2https://github.com/yangfurong/X-Fi_dataset

https://github.com/yangfurong/X-Fi-code
https://github.com/yangfurong/X-Fi_dataset

34 WiFi performance measurement in mobile scenarios

the EAP protocol [123]. If the connection is interrupted at any stage, the system goes back to
the scanning stage.

X-Fi/X-Perf

AP
Time

L2 conn. setup
IP conn.

setup
TCP conn.

setup
TCP bulk data transfer

scan … scan
EAP-PEAP/

EAP-SIM

Figure 3.1 Connection procedure handled by X-Fi/X-Perf

3.2.1 X-Fi design

Given that the encounters between moving clients and APs are probably short, a WiFi
system that can quickly set up connectivity with encountered APs is of great importance.
Although Cabernet [34] proposed a vehicular WiFi client tuned for open WiFi networks via
a set of heuristics, it does not support EAP authentication [123] that is prevalent in current
provider-managed WiFi networks and is more suitable for mobile scenarios than WEB-based
authentication. On the other side, the mainstream WiFi systems for connectivity setup, such
as wpa_supplicant and dhcpcd on Linux, support EAP authentication, but, they are not
well-tuned for mobile scenarios, which may waste some transmission opportunities offered
by provider-managed WiFi networks. Therefore, we propose X-Fi that consolidates the
advantages from the two sides above. X-Fi consists of two different pieces: (1) an enhanced
wpa_supplicant, which uses a number of best-of-practice heuristics to speed up the WiFi
association process; (2) an enhanced DHCP client (based on dhcpcd) customized for mobile
scenarios.

WiFi association setup

The WiFi association process consists of a series of packet exchanges between the
WiFi client, the AP, the EAP authentication server, and the DHCP server as shown in
Figure 3.1. Given that the vehicular WiFi connectivity has high loss rates in the fringe area
of an AP’s coverage [47], the WiFi client needs to retransmit the lost packets as fast as
possible. As wpa_supplicant uses the timeout/retry mechanism to detect and retransmit lost
packets, the proper setting of the timeouts is crucial. Therefore, we shortened the timeouts in
wpa_supplicant to 100 ms and the max retry limit to 5 times, as suggested by Cabernet [34].

3.2 Measurement system design 35

Besides the changes on timeouts, the AP scanning strategy of wpa_supplicant is also
optimized via opportunistic active scans. X-Fi normally uses passive scans where the WiFi
client dwells on each channel for around 80 – 100 ms to listen for beacons from nearby
APs to get a full list of nearby APs. Then it tries to associate with the AP with the highest
Signal-to-Noise Ratio (SNR). If this association fails, X-Fi will try to launch an active scan
on the channels that have other APs with target ESSIDs3 (this information was learned from
the previous passive scan). The rationale behind this heuristic is that the vehicle is likely
still in the range of those APs’ coverage, thus, no need to waste time on scanning other
channels. If this active scan does not find any AP with a target ESSID, X-Fi goes back to a
full passive scan. Otherwise, X-Fi tries to associate with the AP with the highest SNR. If this
association still fails, X-Fi can repeat the active scan and association process as long as there
still are channels that have untried APs with target ESSIDs and the time since the last passive
scan has not exceeded a threshold. In our experiments, we configured this threshold to 5 s,
considering that the median AP coverage is 50 – 100 m (see Figure 3.5b) and 30 km/h is a
typical speed of cars running in urban areas.

IP acquisition

Once the supplicant has established link-layer (L2) connectivity to the access point, it
is necessary for the client to obtain an IP address in order to communicate with other hosts
on the Internet. This is done through the DHCP. The off-the-shelf DHCP client, i.e. dhcpcd
on Linux, is not tuned for vehicular environments. Specifically, the inefficiency of dhcpcd
mainly comes from two perspectives: (1) the timeouts for DHCP messages are too long
for vehicular scenarios as demonstrated by Cabernet [34]; (2) the ARP probing mechanism,
sending ARP probe packets to check whether the assigned address is in-use by other clients
in the same LAN [31], is enabled by default, which may lengthen the IP acquisition process
by several seconds. Therefore, we implemented a custom DHCP client based on dhcpcd that
has shortened timeouts and disables the APR probing mechanism. We note that the timeouts
are set to 100 ms in our DHCP client, as it is the value recommended by Cabernet [34].

Evaluation of X-Fi

The off-the-shelf WiFi system for connectivity setup, wpa_supplicantdhcpcd, is compared
with X-Fi to demonstrate the efficiency of X-Fi. The experiments were done as follows. We
equipped a car with an on-board computer (see § 3.3.2 for more details about the hardware).

3Like wpa_supplicant, X-Fi allows users to supply a configuration file to specify the ESSIDs of the WiFi
networks that it wants to connect to.

36 WiFi performance measurement in mobile scenarios

0.1 1 10
Time until IP acquisition (s)

0

0.2

0.4

0.6

0.8

1

Fr
ac

. o
f a

ss
oc

.

NoARP
Vanilla
X-Fi

Figure 3.2 X-Fi vs vanilla wpa_supplicant+dhcpcd

Then, we drove the car for 10 laps following a fixed route in Bologna (the driving time is
around 6 hours in total), where we used X-Fi for connectivity setup for half of the laps and
the wpa_supplicant/dhcpcd suite for the other half of the laps.

For every WiFi association, we recorded the “time until IP acquisition” which means
the time spent on the WiFi association and DHCP process in total. The results are shown
in Figure 3.2: X-Fi is significantly faster than the vanilla wpa_supplicant/dhcpcd suite with
default configurations. The major improvement comes from disabling the ARP probing
mechanism in DHCP, while the other heuristics, e.g. shortened timeouts, improve the tail
latency of connectivity setup. To sum up, X-Fi is able to finish WiFi association setup and IP
acquisition within 2 s for 90% of the time in our tests.

3.2.2 X-Perf design

TCP underpins the vast majority of internet applications. Therefore, studying TCP
performance in mobile scenarios is of paramount importance. The popular TCP performance
measurement tool, iPerf, lacks intermittent networks support4. Specifically, iPerf has two
problems: (1) it can not continue the transmission session if an IP handover caused by an AP
handoff happens; (2) even if the client’s IP address does not change after the interruption
caused by an AP handoff, iPerf can take a very long time to resume the transmission because
the TCP RTO timer may increase to a very large value. Therefore, to make full use of the
transient transmission window of the intermittent connectivity offered by provider-managed
WiFi networks to test the TCP performance without assuming that the WiFi networks support
IP roaming, we designed a dedicated performance measurement tool, X-Perf .

4https://github.com/esnet/iperf/issues/835

https://github.com/esnet/iperf/issues/835

3.2 Measurement system design 37

Figure 3.3 The flowchart of X-Perf . For the readability of the flowchart, the terminal state is
removed from the flowchart.

The working process of X-Perf is illustrated in Figure 3.3. Once X-Perf is up and
running, it executes gpxlogger and X-Fi, respectively to track GPS coordinates and to start
the attempts to associate with WiFi hotspots. Then, X-Perf monitors the status of the WiFi
interface operated by X-Fi. Once the network interface obtains an IP address, X-Perf starts
to probe the performance of TCP over the wireless link. Specifically, it first decides the
transmission configuration for the following TCP bulk transfer, which is randomly selected
from a predefined configuration pool. We note that the transmission configuration includes
the direction of the transfer (upload or download), the TCP congestion control algorithm
(CCA), and the number of concurrent TCP flows (flow number). By supplying different
configurations to the configuration pool, X-Perf allows us to study the impact of different
parameters on TCP performance. Thereafter, it measures the TCP throughput by performing
data bulk transfers between a remote server and the local onboard computer. During the
TCP transmission, all exchanged TCP packets are recorded by tcpdump at the client-side.
As soon as X-Perf finds that the WiFi interface has lost its IP address, which means that
the WiFi connectivity is interrupted, X-Perf stops the TCP throughput measurement and
archives all data collected in this measurement run. The collected data contain a wealth of
information from L2 to the application layer including packet-level traces, and all information
is also geo-referenced and synced with GPS. X-Perf repeats the above process each time
X-Fi connects to an AP until the end of the experiment or until the system is turned off.

38 WiFi performance measurement in mobile scenarios

3.3 Measurement methodology

In this section, we detail our the methodology of our measurement study. First, an
overview of the cities selected for our measurement activities is presented in § 3.3.1. Next,
we describe our measurement apparatus setup in § 3.3.2. Thereafter, the metrics used for
data analysis are introduced in § 3.3.3.

3.3.1 Cities selected for measurement

As different traffic patterns and networking infrastructures may present in different cities,
we conducted our measurement activities across four different cities in Europe (Bologna and
Paris), in Asia (Macao), and in North America (Los Angeles). The diversity of the cities
enables us to collect measurements in radically different urban scenarios, traffic patterns, and
viability. Specifically, Bologna is a good sample of a medium-size touristy medieval city with
narrow streets, which have an unpredictable traffic pattern. Macao is, again, a medium-size
city characterized by a number of high-rise buildings as skyscrapers and casinos. Paris is an
extremely touristy and crowded metropolis with a well-defined city center. Los Angeles (LA)
is a very populated megalopolis, with an alternating of residential areas, working districts,
and rural regions.

In each city, we subscribed to one or more local providers offering access to urban WiFi
APs. This gave us the WPA credentials/SIM cards needed to authenticate and connect while
driving. Different cities, and different providers, have different authentication strategies:
PEAPv0/EAP-MSCHAPv2 [101] in Bologna, LA, and Macao; EAP-SIM [109] in Paris.
Besides, the access point deployment strategies that we encountered during our data collection
can be grouped into two main approaches: (1) leveraging existing hardware installed in
customers’ premises; (2) installing new dedicated APs. In the first approach, the providers
rent the APs to their subscribers. The rented APs present two different ESSIDs when in
operation. While one is exclusively used by the customers and secured with WPA/WPA2-
PSK [129], the other serves as a WiFi hotspot for public users. Therefore, both the physical
capacity of the 802.11 channel and the available bandwidth of the connection, result to be
shared between private customers and public users. Quality of Service rules, as token-bucket
algorithms, may be applied to prioritize the customers. On the other hand, the second
deployment strategy consists of the installation, done by the network providers, of dedicated
APs at either indoor or outdoor spots.

3.3 Measurement methodology 39

3.3.2 Measurement apparatus setup

Hardware: The computer used for the data collection is a Slimpro SP675FP Fanless
Mini PC. It features an Intel x64 3rd Gen Core processor, a 3x3 MIMO full-size Mini PCIe
802.11n card (WLE350NX-7A), an u-Blox EVK-7N GPS unit, 16 GBs of RAM, and 300GBs
of SSD for storage. While for the deployment in Macao we adopted three dipole antennas,
in Bologna, Los Angeles, and Paris, we opted for three multi-polarised antennas. Using
different antennas in Macao was not possible due to constraints imposed by the vehicle
supplier; it is noteworthy that this limitation slightly affected the X-Fi performance in the
Macao scenario.

Software: The onboard computer runs Ubuntu 16.04.1 with 4.10.0-33-generic Linux
kernel. At the computer boot, systemd launches X-Perf (§ 3.2.2). Once up, it executes
gpxlogger and X-Fi (§ 3.2.1), respectively to track the GPS coordinates and to start the
association and connection attempts with nearby WiFi hotspots. Thereafter, X-Perf starts
measuring the performance of WiFi offloading and collecting measurement results as ex-
plained in § 3.2.2. We configured X-Perf to use the following configuration pool (explained
in § 3.2.2): CCA ∈ {BBR, CUBIC}, direction ∈ {upload, download}, flow number ∈ [1, 16].
BBR [16] and CUBIC [107] are chosen because the two are now the predominant CCAs on
the Internet [89]. BBR is a recent work adopted by many Google services and outperforms
classic window-based CCAs across various scenarios, especially over lossy links. CUBIC is
window based and is the default Linux congestion control. This configuration pool enables
us to compare different CCAs and study the impact of concurrent flows. It is noteworthy that
system parameters related to Linux TCP stack (e.g. buffer size, etc.) are set by the operating
system to the default values.

Long-term deployment in Macao: In Macao, we placed the Slimpro Mini PC under
the back seats of a granted van. Two WiFi antennas and the GPS antenna were installed on
its roof and one extra WiFi antenna under the back seats for space concerns. The van runs
errands on behalf of the granting institution and transport staff. For the whole duration of the
experiment, the mobility pattern of the van remained unaltered from its usual one, allowing
us to collect in-the-wild samples representative of transporters’ real-world mobility. The
TCP server was hosted in a virtual machine (VM) based in Singapore to reduce latency.

Short-term trial in Paris: In Paris, we instrumented a vehicle with: three WiFi antennas
and one GPS antenna placed on the roof of the vehicle, the Slimpro Mini PC located on the
front seat and powered by the vehicle. A Dekart SIM card reader is used for the EAP-SIM
authentication required by Free [39]. We deployed the TCP server on a machine located in
Paris. The driving routes covered more than half of the districts in Paris downtown.

40 WiFi performance measurement in mobile scenarios

Short-term trial in LA and Bologna: The vehicle used in LA was equipped as the one
in Paris, except for the SIM card reader. Here, we methodically mapped both residential and
commercial areas. We deployed the TCP server used for our tests on a cloud VM in LA. In
Bologna, we replicated the LA setup, but with the server in Paris.

3.3.3 Metrics of interests

Figure 3.4 The illustration of part of the metrics. In the figure, A1, A2, A3, and A4 stand for
four successive associations.

Connectivity: Here now follows the list of metrics used to understand the characteristics
of the V2I WiFi connectivity. We note that the first nine metrics are also illustrated via
Figure 3.4 to make them more intuitive.

• Association setup time: The time needed for the association setup process.

• DHCP time: The time for the DHCP process, reflecting the overhead for IP acquisition.

• Time until the first TCP ACK: The time between the start of the association and the
first TCP ACK received from the server, reflecting the total time spent for establishing
end-to-end Internet connectivity.

• Link-layer connectivity duration: The time that an association lasts.

• IP connectivity duration: The duration that an association has an IP address.

• TCP connectivity duration: The time between the start and termination of a TCP session5.
X-Perf stops a TCP session right after the WiFi interface loses its IP. Hence, the end of a
TCP session coincides with that of IP connectivity.

5A TCP session represent one or multiple TCP flows (X-Perf may launch multiple concurrent flows to
measure transport performance).

3.4 Dataset Summary 41

• Link-layer connectivity hole: The idle period between two successive associations.

• IP connectivity hole: The idle period without an IP address between associations.

• TCP connectivity hole: The idle period between two successive TCP sessions.

• Initial signal strength (ISS): The signal strength sensed during the WiFi scanning phase.
It is the only metric considered by stock WiFi implementations during the AP selection.
In a stationary case, selecting the AP with the highest ISS works well. We investigate
whether this works as well, for mobile scenarios

• Average speed per association: The average vehicle speed during an association, which
is calculated based on GPS traces and may affect the transport performance.

• WiFi frequency: We seek to understand the impact of 5 GHz and 2.4 GHz APs on
transport performance in mobile scenarios.

• IP address roaming support: We seek to analyze if clients are able to keep IP address
across different APs from a provider-managed WiFi network. This may affect the design
and choice of transport protocols.

Transport performance: We now present a list of the metrics used to assess the transport
performance.

• Average TCP goodput: The aggregated average goodput of a TCP session calculated
based on pcap traces.

• Data volume: The total number of bytes that have been successfully transferred during a
TCP session.

3.4 Dataset Summary

The salient features of our dataset are summarized in Table 3.1. The WiFi networks we
connected to in Bologna and Paris (Fastweb, Emilia Romagna regional provider, ALMAWIFI
and Free) present a higher AP density than the ones in LA and Macao (Spectrum, eduroam,
TWCPasspoint, CableWiFi and Companhia de Telecomunicações de Macau (CTM)). This
leads to, on average, more associations per hour: 160, 117, 57, and 17 respectively for Paris,
Bologna, LA, and Macao. Remarkably, we observed a lower ratio of IP acquisitions over
associations in Paris than in the other cities (43.6% in Paris, 86.7% in Bologna, 85.3% in
LA, and 93.1% in Macao). This much lower DHCP success rate in Paris is caused by failures
in responding to the DHCP requests, even with good link-layer connectivity (−40 dBm). We
confirmed that by connecting to some of these APs which failed to respond to the DHCP
requests at locations where their signal strength was decent, between−40 dBm and−50 dBm.

42 WiFi performance measurement in mobile scenarios

Table 3.1 Dataset summary

Paris Bologna LA Macao Total
Driving time analyzed 11h18m08s 12h48m29s 32h38m06s 311h53m8s 368h37m51s
Driving distance analyzed (km) 144.71 197.12 707.91 4570.89 5620.63
Avg. driving speed (km/h) 12.8 15.39 21.69 14.66 N/A
of distinct days analyzed 4 5 7 334 350
of assoc. attempts 4525 5559 6746 21555 38385
of link-layer assoc. 1812 1501 1856 5412 10581
of 2.4 GHz assoc. 1812 1218 479 1336 4845
of 5 GHz assoc. 0 283 1377 4076 5736
of IP acquisitions. 790 1302 1583 5042 8717
of TCP tests 664 1179 1490 4736 8069
of distinct associated APs 1610 917 1385 1013 4925
of distinct 2.4 GHz APs 1610 796 391 332 3129
of distinct 5 GHz APs 0 121 994 681 1796
of WiFi operators 1 3 4 1 9
Total TCP download (GB) 0.7 7 33.1 97.03 137.83
Total TCP upload (GB) 1.3 8.7 13.8 132 155.8

As we have no control nor inside knowledge of the network infrastructure used in Paris, we
could not go further explaining the root cause of that. Although the ratios of IP acquisitions
over associations are much different across the four cities, the ratios of TCP sessions over
IP acquisitions are similar. Therefore, in each of the analyzed cities, once a moving client
obtains an IP address it is very likely able to establish TCP connections.

0 25 50 75 100
Avg. speed (km/h)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

. o
f a

ss
oc

.

Bologna
LA
Macao
Paris

(a) The CCDF of average speed per assoc.

0 200 400 600 800 1000
Avg. coverage of an AP (m)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

. o
f A

Ps

Bologna
LA
Macao
Paris

(b) The CDF of AP coverage

Figure 3.5 The distribution of average speed per assoc. and AP coverage (failed association
attempts are excluded)

The complementary CDF (CCDF) of the average speed per association in every city is
shown in Figure 3.5a. Given the diversity of APs density and traffic conditions across the
four cities, the distributions of average speed per association are also dissimilar. In Paris,
Macao, as well as in the downtown area of Bologna, where the speed limits are stricter, most
of the associations happened at speeds lower than 30 km/h. Instead, outside the center of

3.5 Connectivity analysis 43

Bologna, as in LA, we had the chance to connect with outdoor APs placed along the main
roads, driving at higher speed (40 – 62.5 km/h).

Figure 3.5b reports the CDF of AP coverage, which is the diagonal length of the smallest
bounding box enclosing all GPS points collected during the associations with that AP. The
APs in LA present, on average, a much wider coverage (180.17 m) than the ones in the other
cities, denoting how the providers placed several outdoor APs along roads and intersections.
Our results indicate that the coverage of a single provider-managed AP is generally similar
to that of a single open AP [13].

3.5 Connectivity analysis

This section presents the measurement results from the connectivity perspective. We first
analyze the time needed for connectivity setup in § 3.5.1. Next, the duration of connectivity
and holes without connectivity is considered in § 3.5.2. Thereafter, we analyze the impact of
moving speed, ISS, and WiFi frequency on connectivity in § 3.5.3. Finally, the IP address
roaming support of each provider-managed WiFi network is analyzed in § 3.5.4.

3.5.1 Time for connectivity setup

Association setup time: The CDFs of association setup time is reported in Figure 3.6a.
In Bologna, Macao, and Paris, 90% of the association setup processes terminate in less than
one second. On the other hand, on average, the association setup process in LA takes slightly
longer than in the other cities. None of the distributions is heavy-tailed, with the means only
lightly skewed from the medians. The data points with relatively longer association setup
time are due to the re-transmissions of the packets (i.e. authentication packets) necessary for
association setup.

DHCP time: The CDF of DHCP time is plotted in Figure 3.6b. In Bologna, Macao, and
Paris, the 90% of DHCP processes terminiate within 1 s. As the association process, also
the DHCP process in LA is slightly longer than in the other cities. The differences between
cities might be caused by the ways how operators deploy their DHCP servers.

A more detailed breakdown of the phases prior to gaining IP is shown in Figure 3.7. As
expected, the DHCP and EAP authentication account for the major part of the overhead.
The reasons for this are two-fold: (1) the DHCP and EAP authentication cause more packet
exchange between clients and APs than the other two; (2) during the DHCP and EAP
authentication phase, clients communicate with DHCP and authentication servers normally
in core networks, which causes longer latency than communication between clients and APs.

44 WiFi performance measurement in mobile scenarios

0 1 2 3 4
Wi-Fi association time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

. o
f a

ss
oc

.

Bologna
LA
Macao
Paris

(a) The CDF of association setup time

0.01 0.1 1 10
DHCP time (s)

0

0.2

0.4

0.6

0.8

1

Fr
ac

. o
f a

ss
oc

.

Bologna
LA
Macao
Paris

(b) The CDF of DHCP time

Figure 3.6 The distribution of association setup time and DHCP time (failed attempts are
excluded).

Bologna LA Macao Paris
0

20

40

60

80

100

%
 o

f t
im

e
ov

er
he

ad

AP Auth.
AP Assoc.

EAP Auth.
DHCP

Figure 3.7 The breakdown of the overhead before establishing the IP connectivity. All the
values of each phase are averaged over all associations having IP connectivity.

0.1 1 10
Time until first TCP ACK (s)

0

0.2

0.4

0.6

0.8

1

Fr
ac

. o
f a

ss
oc

.

Bologna
LA
Macao
Paris

Figure 3.8 The CDF of time until the first TCP ACK (failed attempts are excluded).

3.5 Connectivity analysis 45

Time until the first TCP ACK: Figure 3.8 presents the CDF of the time until the first
TCP ACK. On average, it takes 1.09 s in Bologna, 2.76 s in LA, 1.48 s in Macao, and 1.11 s in
Paris. We note that these numbers are larger than the one (0.37s) in open WiFi networks [34].
This is due to the fact that provider-managed WiFi networks require clients to interact with
the authentication and DHCP server located in core networks, which leads to lengthened
process. Nevertheless, the time to obtain TCP connectivity only counts for a very small part
of the entire association (10% – 18%, Figure 3.9), meaning that, for more than the 80% of
the time of an association, it is possible to transfer data.

Bologna LA Macao Paris
0

20

40

60

80

100

%
 o

f w
ho

le
 a

ss
oc

. d
ur

at
io

n TCP conn. Conn. setup

Figure 3.9 The average ratio of time until the first TCP ACK over the association duration.

Takeaway: The time spent for establishing end-to-end Internet connectivity in provider-
managed networks is larger than the one in open WiFi networks because of the more
complicated and lengthened interactions with the authentication and DHCP server in core
networks. Therefore, optimizations, such as adopting authentication methods for faster
handoffs [5, 153] and granting extended DHCP leases to clients to retain its IP address, may
reduce this time. Nonetheless, on average, this overhead only counts for a small part (10% –
18%) of the whole duration of an association.

3.5.2 Connectivity duration and holes

Link-layer connectivity duration: Figure 3.10 shows the CCDF of the link-layer
connectivity duration. Mean values are 16.74 s in Bologna, 29.28 s in LA, 21.27 s in Macao,
and 16.58 s in Paris. The distributions are heavy-tailed, with a few long-lasting associations
due to traffic lights and traffic jams, typical of urban mobility.

IP connectivity duration: Figure 3.11a depicts the CCDF of the IP connectivity duration.
Mean values are 17.47 s in Bologna, 31.91 s in LA, 21.97 s in Macao, and 15.84 s in Paris.
As for the link-layer, also these are heavy-tailed. In Bologna, LA, and Macao, both mean
and median IP connectivity duration are slightly longer than the ones at link-layer. This is

46 WiFi performance measurement in mobile scenarios

0 20 40 60
Link-layer connectivity duration (s)

0.2

0.4

0.6

0.8

1.0

Fr
ac

. o
f a

ss
oc

.

Bologna
LA
Macao
Paris

Figure 3.10 The CCDF of link-layer connectivity duration (failed attempts are excluded)

due to the exclusion of failed IP acquisitions (Table 3.1), likely to have shortened link-layer
connectivity duration.

0 20 40 60
IP connectivity duration (s)

0.2

0.4

0.6

0.8

1.0

Fr
ac

. o
f a

ss
oc

.

Bologna
LA
Macao
Paris

(a) The CCDF of IP connectivity duration

0 20 40 60 80
TCP connectivity duration (s)

0.2

0.4

0.6

0.8

1.0
Fr

ac
. o

f a
ss

oc
.

Bologna
LA
Macao
Paris

(b) The CCDF of TCP connectivity duration

Figure 3.11 The CCDF of IP connectivity duration and TCP connectivity duration (failed
attempts are excluded).

TCP connectivity duration: The CCDF of the TCP connectivity duration is reported
in Figure 3.11b. Mean values are 18.08 s in Bologna, 33.57 s in LA, 23.24 s in Macao, and
17.24 s in Paris. The mean and median values of the TCP connectivity duration are slightly
higher than the ones of the IP connectivity duration due to the exclusion of associations
unable to establish TCP connectivity, which tend to have shorter connectivity duration.

Link-layer connectivity holes: Due to the limited coverage of the existing urban WiFi
deployments, there are gaps between successive associations. The CDF of the duration
of the link-layer connectivity holes (Figure 3.12a) reflects the frequency at which vehicles
encounter APs, denoting their density in the region. Both in Bologna and in Paris, the AP
density is capillary, with a mean inter-arrival time between two consecutive associations of
12.23 s and 5.7 s, respectively. On the other hand, APs in LA and Macao are rarer, with
longer mean inter-arrival time (33.08 s and 112.27 s). Since in Paris we only drove through

3.5 Connectivity analysis 47

densely populated neighborhoods, the mean is not too far from the median, with no sudden
nor significant changes in the AP density across different locations. For all the other cities,
the mean values are skewed from their median by a factor of 4x, meaning the holes at the tail
of the CDF are particularly long. This denotes how the AP distribution changes significantly
across different regions in Bologna, LA, and Macao. The presence of a few extremely short
holes (tens of milliseconds) is due to de-authentication packets sent by some APs to force
the disassociation from them.

0.1 10 1000
Duration of link-layer conn. holes (s)
0

0.2

0.4

0.6

0.8

1

CD
F

Bologna
LA
Macao
Paris

(a) The CDF of link-layer connectivity holes

0.1 1 10 100 1000
Duration of IP conn. holes (s)

0

0.2

0.4

0.6

0.8

1

CD
F

Bologna
LA
Macao
Paris

(b) The CDF of IP connectivity holes

Figure 3.12 The CDF of link-layer connectivity holes and IP connectivity holes.

IP connectivity holes: As not every association succeeds in acquiring the IP address
(refer to Table 3.1), we expect the duration of IP connectivity holes to be enlarged by failed
IP acquisitions. The results are shown in Figure 3.12b. The mean values are 15.69 s, 40.70 s,
120.72 s and 34.42 s in Bologna, LA, Macao, and Paris respectively. For Bologna, LA, and
Macao, the mean duration of IP connectivity holes is just marginally longer than that of
the link-layer connectivity holes. This is because only a small fraction of associations in
Bologna, LA, and Macao did not acquire the IP. Though, in Paris, the mean duration of the
IP connectivity holes is greater than that at the link-layer. This is due to the DHCP issue
discussed in § 3.4.

TCP connectivity holes: From Figure 3.13 we observe how the duration of the TCP
connectivity holes is slightly longer if compared to that of IP. This is because of the exclusion
of the fraction of associations that failed to establish a TCP connection, i.e. 15.9% in Paris,
9.4% in Bologna, 5.9% in LA, and 6% in Macao. The mean values are 18.13 s, 43.45 s,
124.39 s and 42.45 s in Bologna, LA, Macao, and Paris respectively.

Takeaway: The connectivity offered by provider-managed WiFi networks is generally
similar to that provided by open WiFi networks [13, 34]. Mobile clients can expect to offload
data for tens of seconds via an encounter with a provider-managed AP, and, are likely to have
several such encounters every few minutes.

48 WiFi performance measurement in mobile scenarios

0.1 1 10 100 1000
Duration of TCP conn. holes (s)

0

0.2

0.4

0.6

0.8

1

CD
F

Bologna
LA
Macao
Paris

Figure 3.13 The CDF of TCP connectivity holes.

3.5.3 Impact of moving speed, ISS, and frequency

Next, we study the factors that may affect WiFi connectivity in mobile scenarios. Specifi-
cally, we analyze the impact of moving speed, ISS, and WiFi frequency on the duration of
link-layer connectivity. In the interest of space, we do not present the impacts on the duration
of L3/L4 connectivity, as they are similar to the link-layer connectivity’s ones.

Average speed per association: The first factor that we consider is the moving speed.
Intuitively, higher speeds lead to shorter connectivity duration, as the client leaves the area
covered by APs quicker. Figure 3.14 confirms the correlation between the moving speed and
the link-layer connectivity duration.

Initial signal strength: Now, we consider ISS. In the stationary case, choosing the AP
with the highest ISS works well. However, due to the continuous changes of the clients’
position caused by mobility, the ISS alone is not enough to infer the network performance.

In all the cities, the ISS ranges from being very weak (−80 dBm) up to an excellent signal
level (greater than −50 dBm) as shown in Figure 3.15. This allows us to analyze the impact
of ISS on connectivity duration.

We plot the correlation between the ISS and the link-layer connectivity duration in
Figure 3.16. From the figure, we can not evince any obvious pattern confirming how
associations with higher ISS last longer when mobility is involved. Surprisingly, some
associations with a higher ISS are shorter than those with a lower ISS. This may be due to
the client moving from one extremity to the other of the AP coverage when it senses a weak
ISS; while the vehicle could be already leaving the middle of the AP coverage when it senses
a strong ISS. Hence, more sophisticated AP selection strategies, based on not only ISS, are
called for improving connectivity duration.

WiFi frequency: The last factor we take into account is the frequency of the WiFi
APs. Since Free has only 2.4 GHz APs available in Paris, we omit it. Table 3.2 reports the

3.5 Connectivity analysis 49

0 20 40
Avg. speed (km/h) [R=-0.38]

0

25

50

75

100

125

co
nn

. d
ur

at
io

n
(s

)

(a) Bologna

0 20 40 60
Avg. speed (km/h) [R=-0.34]

0

50

100

150

co
nn

. d
ur

at
io

n
(s

)

(b) LA

0 10 20 30
Avg. speed (km/h) [R=-0.35]

50

100

150

co
nn

. d
ur

at
io

n
(s

)

(c) Macao

0 10 20 30
Avg. speed (km/h) [R=-0.44]

25

50

75

100

125

co
nn

. d
ur

at
io

n
(s

)

(d) Paris

Figure 3.14 The correlation between average speed per association and connectivity duration:
associations are partitioned into 2.5 km/h bins according to their Average Speed. In each
bin, red lines, green diamonds, lower box edges, upper box edges, lower whiskers, and upper
whiskers are medians, means, Q1 (the 1st quartile), Q3 (the 3rd quartile), Q1−1.5× IQR,
and Q3+1.5× IQR respectively, where IQR (Interquartile Range) equals to Q3−Q1. R
denotes the Pearson’s Correlation Coefficient.

80 60 40 20
ISS of associations (dBm)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

. o
f a

ss
oc

.

Bologna
LA
Macao
Paris

Figure 3.15 The CDF of ISS.

50 WiFi performance measurement in mobile scenarios

correlations between the APs frequency and the connectivity duration. Interestingly, from
our results, the duration of the connectivity offered by 5 GHz APs is sometimes better or at
least comparable to the one offered by 2.4 GHz APs. This is likely because 2.4 GHz band
has fewer independent channels than 5 GHz band, thus, leading to severer radio interference,
which further causes bursty beacon losses and interrupts connectivity.

Takeaway: (1) The AP selection algorithm of stock WiFi client implementations, which
solely relies on ISS, is not sufficient when it comes to mobility. Applying location-aware
AP selection approaches based on GPS history [93] is a good direction, which is likely to
achieve better performance as of today since the provider-managed WiFi APs are very likely
more stable and predictable than open APs; (2) 5 GHz APs often offer longer connectivity
than 2.4 GHz APs in mobile scenarios likely due to the less severe radio interference.

80 70 60 50
ISS (dBm) [R=0.09]

0
10
20
30
40
50

co
nn

. d
ur

at
io

n
(s

)

(a) Bologna

80 60 40
ISS (dBm) [R=0.05]

0
20
40
60
80

100
co

nn
. d

ur
at

io
n

(s
)

(b) LA

80 70 60 50
ISS (dBm) [R=-0.10]

0

20

40

60

80

co
nn

. d
ur

at
io

n
(s

)

(c) Macao

80 70 60 50 40
ISS (dBm) [R=-0.06]

0
10
20
30
40
50

co
nn

. d
ur

at
io

n
(s

)

(d) Paris

Figure 3.16 The correlation between ISS and connectivity duration: associations are par-
titioned into 2.5 dBm bins according to their ISS. We draw the box-whisker plot as in
Figure 3.14. R denotes the Pearson’s Correlation Coefficient.

3.5 Connectivity analysis 51

Table 3.2 The correlation between WiFi Frequency and connectivity duration.

City WiFi Frequency
Link-layer duration (s)
Mean Stdev

Bologna
5 GHz 26.22 39.62

2.4 GHz 14.54 19.56

LA
5 GHz 30.09 33.38

2.4 GHz 26.94 30.67

Macao
5 GHz 20.22 40.33

2.4 GHz 24.52 41.57

3.5.4 IP address roaming support

Lastly, we investigated how the IP address (the local IP of the vehicle) assigned by a
provider-managed WiFi network changes across different APs during a continuous drive.
Usually, the IP address roaming (the ability of a host to retain the same IP address when
roaming across APs) is not supported when a WiFi client switches to another operator’s WiFi
network unless the operators have a particular agreement. Hence, we focus on the IP address
roaming inside WiFi networks operated by the same provider. Specifically, we investigate:
(1) Can a vehicle keep its IP address unchanged during a continuous drive? (2) If not, for
how long can a vehicle keep the same IP address?

Table 3.3 reports the data collected for every WiFi network6 used in our measurement
campaign. The column IP duration reports the average time during which clients keep an IP
address unchanged when moving. The IP duration values shown are formatted as average ±
standard deviation.

Table 3.3 IP Address Roaming Support in different WiFi networks.

City Wifi network IP changed? IP duration (s)

Bologna
ALMAWIFI ✓ 687 ± 1153

Fastweb ✗ N/A
EmiliaWifi ✓ 184 ± 594

LA
Spectrum ✓ 1644 ± 2653
CableWifi ✓ 3105 ± 5097
Eduroam ✓ 106 ± 156

Macao CTM ✗ N/A
Paris Free ✓ 216 ± 384

From our results, as only two networks apparently support it, we could not find any strong
evidence of provider-managed WiFi networks supporting, by default, IP address roaming.
Hence, either applications or transport layer protocols should take care of it as, otherwise,
switching AP may break the connections established by connection-oriented protocol like
TCP.

6As we only get 12 associations from the TWCPasspoint WiFi network, we are not able to analyze it.

52 WiFi performance measurement in mobile scenarios

Takeaway: The IP address roaming in provider-managed WiFi networks is not a must
implemented by operators by default. Therefore, application designers must bear the caveat
in mind if they want to leverage provider-managed WiFi networks in mobile scenarios.
That said, transport protocols like QUIC [71, 62], Multipath QUIC [24, 81], and Multipath
TCP [38], which supports IP handover, thus, hiding the IP changes from applications, are
good options for applications using provider-managed WiFi networks.

3.6 Transport performance analysis

In this section, we first present: (1) the average goodput a moving client can experience
from an association; (2) the amount of data that can be transmitted during a single association.
These results in § 3.6.1 demonstrate that today’s provider-managed WiFi networks can
provide decent throughput in mobile scenarios. Then, in § 3.6.2, we compare the results
between different CCAs, and study the impact of flow number on TCP goodput. Next,
the impact of moving speed, ISS, and WiFi frequency is analyzed in § 3.6.3. Finally, we
analyze the characteristics of the quality of the connectivity offered by provider-managed
WiFi networks in § 3.6.4.

3.6.1 Goodput and data volume

Here, we seek to understand the capabilities of today’s provider-managed WiFi networks
in the V2I context from a high-level point of view. Therefore, we do not distinguish between
TCP sessions with different flow number and CCA. It is also noteworthy that applications
also use various TCP configurations in reality.

0.01 1 100
Average download goodput (Mbit/s)
0

0.2

0.4

0.6

0.8

1

Fr
ac

. o
f a

ss
oc

.

Bologna
LA
Macao
Paris

(a) Download

0.01 1 100
Average upload goodput (Mbit/s)

0

0.2

0.4

0.6

0.8

1

Fr
ac

. o
f a

ss
oc

.

Bologna
LA
Macao
Paris

(b) Upload

Figure 3.17 The CCDF of average TCP goodput (associations without TCP connectivity are
excluded).

3.6 Transport performance analysis 53

Average TCP goodput: To support real world applications, a connection with decent
goodput is fundamental. In Figure 3.17 we plot the CCDF of the average goodput per
association, for both upload and download. The results in Macao seems very promising:
for every association able to establish TCP connections, the mean goodput is 13.36 Mbps
in upload and 8.66 Mbps in download; with peaks up to 103.44 Mbps and 90.48 Mbps,
respectively. Peak performances are likely to be achieved when vehicles, due to traffic jams
or lights, stop at places with good APs. Further, while the results from LA and Bologna are
also quite encouraging, TCP does not perform as well in Paris, with 90% of the associations
providing less than 2 Mbps for both upload and download. Like in the other cities, also
the CCDF of Paris is heavy-tailed, biased by the vehicle stops by good APs. Notice, the
maximum average goodput both in upload and download is ∼14 Mbps.

Data volume: To gauge clearer insights on the network capabilities in such a scenario,
we consider the actual amount of data uploaded/downloaded per association. Figure 3.18
shows the CCDF of the data volume transmitted during each association. In LA, Macao, and
Bologna, it is possible to transmit a considerable amount of data during every association (the
mean data volume downloaded per association is 45.22 MB, 40.31 MB, and 12.46 MB, up to
1.04 GB, 2.26 GB, and 0.81 GB, respectively). On the other hand, on average, the amount
of data uploaded per association is 19.15 MB in LA, 55.05 MB in Macao, and 14.67 MB
in Bologna, with a maximum of 1.01 GB, 1.86 GB, and 0.5 GB. Once again, in Paris, the
results are less attractive, with only 3.88 MB uploaded and 2.39 MB downloaded on average.
These figures are skewed by the outliers at the tail of the distribution.

0.01 1 100
Download data volume (MB)

0.2

0.4

0.6

0.8

1

Fr
ac

. o
f a

ss
oc

.

Bologna
LA
Macao
Paris

(a) Download

0.01 1 100
Upload data volume (MB)

0.2

0.4

0.6

0.8

1

Fr
ac

. o
f a

ss
oc

.

Bologna
LA
Macao
Paris

(b) Upload

Figure 3.18 The CCDF of the transfer size per association (associations without TCP connec-
tivity are excluded).

The reasons for the discrepancies between Paris and the other cities could be multi-folds.
Firstly, the AP density in Paris is considerably higher than in the other cities and, therefore,
we could suffer from higher radio interference in Paris. Secondly, only 2.4 GHz APs are

54 WiFi performance measurement in mobile scenarios

provided by Free. In general, 5 GHz APs offer better performance, as they have more
independent channels. Lastly, the APs in Paris are shared between private customers and
public users, with customers who are often prioritized by the providers. Besides, in the other
cities, there are also dedicated APs, which are with better hardware and friendlier to public
users.

From the perspective of long-term goodput, our results from Bologna, LA, and Macao
confirm that clients are likely able to download or upload around 1 GB (1.23 GB in Bologna,
1.44 GB in LA, and 0.73 GB in Macao) per hour by using stock TCP implementations, while
on-the-go. Furthermore, this figure could improve with more APs coming into operation,
and with a more capillary diffusion of 802.11ax APs. Moreover, as TCP is known to be
inefficient when it comes to intermittent connectivity, this could get even better by using
novel, alternative, transport protocols, such as QUIC [62, 71].

Takeaway: Compared with the numbers provided by open WiFi networks in the past [9,
13, 34, 116, 115], the TCP goodput (∼1 GB/h) offered by provider-managed WiFi networks
is an order of magnitude higher, which shows the great potential of using provider-managed
WiFi networks to complement cellular networks in mobile scearios.

3.6.2 Impact of CCA and flow number

Next, we compare the average TCP goodput per association of different TCP configura-
tions to investigate the impact of CCA and flow number. It is noteworthy that the following
analysis is based on the data collected from Macao, as it has more data for us to draw the
relationships in a statistically significant way. Figure 3.19 shows the CCDF of average TCP
goodput per association under different TCP configurations.

0 20 40 60 80
Average download goodput (Mbit/s)

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

BBR-S
CUBIC-S
BBR-M
CUBIC-M

(a) Download

0 25 50 75 100
Average upload goodput (Mbit/s)

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

BBR-S
CUBIC-S
BBR-M
CUBIC-M

(b) Upload

Figure 3.19 The CCDF of average TCP goodput under different TCP configurations: S
denotes single flow, and M denotes multiple flows.

3.6 Transport performance analysis 55

First, from Figure 3.19, we observe that no obvious differences between BBR and CUBIC,
despite the superiority of BBR in conventional scenarios reported by previous studies [16].
The most likely reason is that BBR underestimates the round-trip propagation time (RTprop)
in such a dynamic environment, which leads to an inappropriate estimation of congestion
window size, thus, counterbalancing the merits of BBR. We note that this phenomenon is
also reported by a TCP measurement study in high-speed rail scenarios [124].

Another observation made from Figure 3.19 is that multiple TCP flows often deliver
better performance than a single TCP flow. The reasons are two folds: (1) uncongestional
packet losses have a severer impact on single flow than multiple flows as it is likely that
only a part of flows is affected in the case of multiple flows; (2) multiple flows are more
competitive in bandwidth contention than single flow.

Takeaway: (1) BBR and CUBIC perform close to each other in terms of TCP goodput
when used for the connectivity offered by provider-managed networks in mobile scenarios;
several techniques [70, 124, 139] that compensates the underestimation of RTprop may be
applied to boost BBR’s performance; (2) applications can benefit from the use of concurrent
TCP flows when offloading traffic via provider-managed WiFi networks.

3.6.3 Impact of moving speed, ISS, and frequency

Now, we consider how moving speed, ISS, and frequency would impact TCP goodput.
As in the previous subsection, we conduct our analysis based on the data collected from
Macao due to its’ larger scale.

First, the correlation between average speed per association and average TCP goodput
per association is drawn in Figure 3.20. We notice that, unlike the correlation between
moving speed and connectivity duration in Figure 3.14, the TCP goodput is not strongly
related to the speed: for download and upload, the R between speed and TCP goodput is only
−0.12 and −0.08 respectively. On the other hand, we also acknowledge that the maximum
goodput achieved in each speed bin tends to be higher when the speed is lower. We note that
our results may be limited to the fact that the moving speeds were relatively slow in Macao,
0 – 35 km/h.

Then, we draw the correlation between ISS and average TCP goodput per association in
Figure 3.21. Similar to the correlation between ISS and connectivity duration in Figure 3.16,
we do not find any evidence indicating that stronger ISS leads to higher TCP goodput. The
results again call for more sophisticated AP selection algorithms that consider more factors
rather than just ISS.

Lastly, we investigate how different APs with different WiFi frequencies could perform.
Table 3.4 summarizes the average goodput achieved from 5 GHz and 2.4 GHz APs in both

56 WiFi performance measurement in mobile scenarios

0 10 20 30
Avg. speed (km/h) [R=-0.12]

0

10

20

30

Av
g.

 g
oo

dp
ut

 (M
bi

t/s
)

(a) Download

0 10 20 30
Avg. speed (km/h) [R=-0.08]

0
10
20
30
40
50

Av
g.

 g
oo

dp
ut

 (M
bi

t/s
)

(b) Upload

Figure 3.20 The correlation between average speed per association and average TCP goodput:
associations are partitioned into 2.5 km/h bins according to their average vehicle speed. The
box-whisker plot is drawn as in Figure 3.14. R denotes the Pearson’s Correlation Coefficient.

upload and download scenarios. We can observe that 5 GHz APs provide higher TCP goodput
than 2.4 GHz APs, which comes from the fact that the 5 GHz band has more independent
channels, and, therefore, more chances to use 40 MHz channel and less radio interference
than the 2.4 GHz band.

80 70 60 50
ISS (dBm) [R=0.11]

0

10

20

30

40

Av
g.

 g
oo

dp
ut

 (M
bi

t/s
)

(a) Download

80 70 60 50
ISS (dBm) [R=-0.02]

0

10

20

30

40

50

Av
g.

 g
oo

dp
ut

 (M
bi

t/s
)

(b) Upload

Figure 3.21 The correlation between ISS and average TCP goodput: associations are par-
titioned into 2.5 dBm bins according to their ISS. The box-whisker plot is drawn as in
Figure 3.14. R denotes the Pearson’s Correlation Coefficient.

Takeaway: (1) TCP goodput is not correlated with ISS, which corroborates that ISS alone
is not sufficient for the AP selection; (2) 5 GHz APs provide notably higher goodput than
2.4 GHz APs. Thus, from the perspective of AP selection, 5 GHz APs can be prioritized to
have more chance to get higher performance.

3.6 Transport performance analysis 57

Table 3.4 The correlation between WiFi Frequency and average TCP goodput.

Trans. direction WiFi Frequency
Goodput (Mbps)
Mean Stdev

Upload
5 GHz 16.25 13.21

2.4 GHz 4.33 5.63

Download
5 GHz 10.26 10.92

2.4 GHz 3.71 4.22

0 1 2 3
RTT_stdev / RTT_avg

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

. o
f T

CP
 c

on
n.

Bologna
LA
Macao
Paris

(a) The CDF of jitter (ratio)

0 20 40
Loss rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

. o
f T

CP
 c

on
n.

Bologna
LA
Macao
Paris

(b) The CDF of loss rate

0 1 2 3 4
Tput_stdev / Tput_avg

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

. o
f T

CP
 c

on
n.

Bologna
LA
Macao
Paris

(c) The CDF of throughput stan-
dard deviation (ratio)

Figure 3.22 The CDF of jitter, loss rate, and standard deviation of throughput.

3.6.4 The characteristics of connectivity quality

Finally, we analyze the characteristics of the quality of connectivity offered by provider-
managed WiFi network in mobile scenarios, which could help to design efficient transport
protocols for this use-case. Specifically, three metrics are mainly concerned, i.e., the degree
of delay jitter, the packet loss rate, and the degree of bandwidth variation. We calculate the
following values based on the pcap file of each TCP flow: the standard deviation of RTT
(RTT_stdev), the average value of RTT (RTT_avg), the loss rate (Loss Rate), the standard
deviation of the “real-time throughput” over 1 s interval (Tput_stdev), and the average
throughput (Tput_avg). Then, the degree of delay jitter is measured by RTT_stdev/RTT_avg,
and the degree of bandwidth change is measured by Tput_stdev/Tput_avg. Figure 3.22 shows
measurements related to network quality characteristics. In terms of delay jitter, for Bologna,
Los Angeles, Macau and Paris, the proportion of TCP connections with a standard deviation
of RTT more than half of the average RTT is 27%, 30%, 32%, and 60%. From the perspective
of packet loss rate, the ratio of packet loss rate over 5% in the above-mentioned four cities is
26%, 13%, 78%, and 82% respectively. Moreover, the packet loss rate of some connections
even exceeds 20%. From the perspective of bandwidth variation, the proportion of TCP
connections whose throughput standard deviation exceeds half of the average throughput in
the four cities is 85%, 73%, 85%, and 94%, respectively. The above data shows that it is

58 WiFi performance measurement in mobile scenarios

common in this scenario that the network quality exhibits high latency jitter, high packet loss
rate, and large bandwidth changes.

Takeaway: In mobile scenarios, the quality of the connectivity offered by provider-
managed WiFi networks often exhibits the characteristics of high latency jitter, high packet
loss rate, and large bandwidth changes. Therefore, in the design of transport protocols and
congestion control algorithms, these situations need to be considered in order to obtain better
transport performance.

3.7 Conclusion

At present, many operators have deployed public WiFi networks in urban areas on a large
scale, giving mobile users in urban areas the opportunity to use WiFi networks to complement
cellular networks, thereby reducing transmission costs and improving transport performance.
We designed a measurement system based on in-vehicle devices to measure and analyze the
availability, transport performance, network quality characteristics, and related influencing
factors of provider-managed WiFi networks in mobile scenarios in four typical cities in
Europe, Asia, and North America. Based on the above measurement results, we provide
some guidance and insights for AP selection, connection establishment process optimization,
and the optimization of transport protocols and congestion control algorithms.

Chapter 4

BBRv2+: Enhancing BBRv2 with delay
information

4.1 Introduction

Transport protocols are the key components for accessing various Internet application
services in Mobile Internet. Since the Internet infrastructure is constructed based on the
packet-switched network of statistical multiplexing, in order to avoid the network congestion
collapse [63], it is necessary to carry out congestion control in transport protocols. Congestion
control in transport protocols aims to efficiently utilize available network resources while
ensuring that bottleneck bandwidth is fairly shared among multiple flows. Implementing
efficient congestion control in Mobile Internet faces two main challenges. First, as shown in
the previous chapter and some measurement results [64, 121, 124], whether using cellular or
WiFi for network access, due to the introduction of mobility, there are often strong dynamics,
such as large bandwidth changes, high delay jitter, and high packet loss rates. Second,
since there are a large number of traditional congestion control algorithms (CCAs) based
on packet loss on the Internet, for the consideration of incremental deployment, the newly
designed congestion control algorithm also needs to consider the TCP fairness to traditional
algorithms.

Congestion control has been one of the active research topics in computer networks since
it was introduced in the 1980s [63]. More than three decades of research on congestion
control have brought us a plethora of congestion control algorithms and TCP variants, aiming
at efficient utilization of available bandwidth while fairly sharing the bottleneck bandwidth
among multiple flows. For instance, Linux kernel alone has more than 15 different CCAs [2].
While we see many recent proposals on learning-based CCAs (e.g. Remy [130], Aurora [65],

60 BBRv2+: Enhancing BBRv2 with delay information

PCC-Vivace [29], Indigo [138], Orca [2]), the widely deployed CCAs today are still classic
ones (e.g. Cubic [107], BBR [16]). Among them, BBR has also been widely used in Mobile
Internet scenarios due to its advantages in packet loss resilience and low latency [16, 89, 122].

In this chapter, we focus on BBR and its upgrade, BBRv2, as BBR has been used by 22%
of the Alexa Top 20K websites [89] and BBRv2 will likely replace BBR in the near future1.
BBR is a model-based CCA that sets its sending rate based on the measured bottleneck
bandwidth (BtlBW) and round trip propagation time (RTprop). That said, instead of reacting
to congestion signals such as packet losses or delay dynamics, BBR tries to actively operate at
Kleinrock’s optimal operating point [69] to maximize throughput without incurring standing
queues at the bottleneck link. Previous empirical studies [14, 56, 70, 82, 111, 127] have
disclosed several shortcomings of BBR: (1) it introduces excessive retransmissions in shallow-
buffered networks2; (2) it is not fair when competing with flows using loss-based CCAs
(e.g. Cubic) and BBR flows with different Round Trip Times (RTTs); (3) its performance
degrades when network jitter is high.

To address these issues in BBR, Google proposed BBRv2 [18] that inherits most of the
design principles from BBR, but reacts to packet losses and Explicit Congestion Notification
(ECN) marks for better co-existence with loss-based CCAs and being less aggressive in
shallow-buffered networks. Given that BBRv2 may eventually replace BBR, understanding
how BBRv2 actually performs is of great importance for its deployment. We have also
seen several studies [17, 44, 66, 90, 114] on measuring BBRv2, which have shown that, in
comparison with BBR, BBRv2 improves inter-protocol fairness against loss-based CCAs
and reduces retransmissions in shallow-buffered networks. Nevertheless, we found in this
paper, these improvements come with several costs, including low resilience to random
packet losses and slow responsiveness to bandwidth dynamics. However, these studies do not
comprehensively consider the network environment that BBRv2 may face in Mobile Internet
scenarios (e.g. large bandwidth changes, high delay jitter, and high packet loss rates, and
etc.).

Therefore, we first evaluate BBRv2 in various network conditions. We find that the
improvements of BBRv2 come with several costs, including low resilience to random packet
losses and slow responsiveness to bandwidth dynamics. These costs makes BBRv2 unable to
achieve high performance in some Mobile Internet scenarios. Our key observations from the
empirical study of BBRv2 are as follows:

1As of March 2021, Google had finished the roll-out of BBRv2 for internal TCP traffic [144].
2According to previous studies [56, 111, 114], a buffer smaller than 2×BDP (Bandwidth Delay Product) is

considered shallow.

4.1 Introduction 61

• Due to its conservative strategies in bandwidth probing and congestion window (cwnd)
estimation, BBRv2 achieves better inter-protocol fairness against loss-based CCAs in
shallow-buffered networks than BBR. On the other hand, these strategies also make
BBRv2 less competitive than BBR in terms of throughput under moderate buffers.
BBRv2 also improves fairness among flows of different RTTs, compared with BBR.

• In shallow-buffered networks, BBRv2 significantly reduces retransmissions, compared
with BBR. However, the throughput of BBRv2 is 13% – 16% lower than that of BBR.
This is because BBRv2 limits its cwnd to about 0.85× Bandwidth Delay Product (BDP)
for most of the time in these networks.

• BBRv2 is less resilient to random packet losses than BBR. Interestingly, we find that care-
fully tuning the loss threshold parameter in BBRv2 according to bottleneck buffer sizes
can enhance BBRv2’s loss resilience without sacrificing its advantages in retransmission
and fairness.

• BBRv2 is less responsive to bandwidth dynamics than BBR, which leads to low band-
width utilization and high queuing delay in networks with bandwidth dynamics. The
long bandwidth probing interval and the long expiry time of BtlBW estimation are the
two major contributors.

• Like BBR, BBRv2’s performance still suffers from cwnd exhaustion in high-jitter net-
works that are not rare in wireless scenarios [10, 23, 70, 124, 148].

The results of our empirical study of BBRv2 raise an important question: are we able to
improve BBRv2’s performance while keeping its advantages in retransmission and fairness?
If so, how do we achieve this goal?

BBRv2’s shortcomings lie in lower loss resilience and slower responsiveness to bandwidth
dynamics. The issue of loss resilience can be mitigated by carefully tuning the loss threshold
parameter in BBRv2. But, the aggressiveness of BBRv2 in bandwidth probing needs
to be adjusted to improve its responsiveness to bandwidth dynamics. However, how to
avoid blindly adjusting the aggressiveness of bandwidth probing is a challenging problem.
Currently, the aggressiveness of bandwidth probing in BBR and BBRv2 is either hard-coded
or pre-configured according to designers’ experience without the perception of the network
environment. Such unguided aggressiveness may make the bandwidth probing either over-
aggressive (like BBR) or over-conservative (like BBRv2) in certain environments. Thus,
we argue that BBRv2 needs to consider the feedback from the network environment to
dynamically adjust the aggressiveness of bandwidth probing.

To address the above gap, we propose BBRv2+. Firstly, BBRv2+ integrates delay in-
formation into its path model, which serves as the feedback to guide its aggressiveness in

62 BBRv2+: Enhancing BBRv2 with delay information

bandwidth probing. Secondly, BBRv2+ partially redesigns the state-machine of BBRv2
in order to utilize the delay information to guide the aggressiveness of BBRv2+’s band-
width probing. In doing so, BBRv2+ balances between the aggressiveness in bandwidth
probing and the fairness against loss-based CCAs. Thirdly, to avoid being suppressed when
co-existing with loss-based CCAs in deep-buffered networks because of using the delay
information, BBRv2+ incorporates a dual-mode mechanism — it dynamically switches
between BBRv2+’s state-machine and BBRv2’s state-machine depending on whether loss-
based CCAs co-exist. Finally, BBRv2+ addresses the cwnd exhaustion problem in high-jitter
networks by compensating its estimated BDP according to observed jitter; the compensation
mechanism improves the estimation accuracy of BDP in high-jitter networks3.

Extensive experiments in networks emulated by Mininet [88] and Mahimahi [92] with
real-world traces are conducted. The results show that compared with BBRv2, BBRv2+
succeeds to balance the aggressiveness of bandwidth probing and the fairness against loss-
based CCAs, improves the resilience to network jitter, and achieves 25% higher throughput
and comparable queuing delay in mobile scenarios where the bandwidth is very dynamic.

To sum up, the contributions of this paper are three-fold: (1) we make a detailed investi-
gation of BBRv2 to examine its benefits and shortcomings in comparison with BBR; (2) we
propose BBRv2+ to addresses the shortcomings of BBRv2 while barely sacrificing BBRv2’s
advantages; (3) we show through extensive experiments that BBRv2+ meets its design goal.

The remainder of this chapter is organized as follows. We first give an overview of
BBR and BBRv2 in § 4.2. Then, a deep dive into BBRv2 is presented in § 4.3. Next, § 4.4
describes the design and implementation of BBRv2+, followed by the evaluation of BBRv2+
in § 4.5. Finally, the chapter is concluded in § 4.6.

4.2 Background

4.2.1 BBR overview

BBR is designed to operate near Kleinrock’s optimal point [69]. Operating at this optimal
point depends on accurate measurements of BtlBW and RTprop (as BDP=BtlBW×RT prop).
Since these two variables cannot be measured simultaneously, BBR introduces a state-
machine-based method that alternatively estimates BtlBW and RTprop.

The overall architecture of BBR is illustrated in Figure 4.1. BBR takes a set of measure-
ments as the inputs of its state-machine, builds a path model based on the state-machine,
and outputs control parameters to a TCP sending engine that controls how much data can

3This mechanism can also be applied to BBR and BBRv2

4.2 Background 63

Figure 4.1 The architecture of BBR and BBRv2.

be sent (i.e. setting cwnd) and at what speed (i.e. setting pacing_rate). The path model
of BBR includes BtlBW (stored in a 10-RTT-windowed max_filter that keeps bandwidth
measurements in recent 10 RTTs and returns the maximum), RTprop (calculated as the mini-
mum RTT measured in recent 10 s), and ACK aggregation degree (for compensating cwnd
when network paths have severe ACK decimation, e.g. WiFi paths). The output parameters,
cwnd and pacing_rate, are computed based on Equation (4.1). BBR sets its cwnd_gain and
pacing_gain according to which state it operates in to control whether to probe for more
available bandwidth, or drain the buffer at a bottleneck link, or cruise at the speed of BtlBW.

cwnd = cwnd_gain×BDP

pacing_rate = pacing_gain×BtlBW
(4.1)

As illustrated in Figure 4.2, there are four states in the BBR life-cycle. Firstly, BBR
starts with the Startup state, in which it exponentially increases the cwnd size and sending
rate by setting pacing_gain and cwnd_gain to 2/ln(2). BBR transits to the Drain state if it
is in the plateau of BtlBW for three RTTs. In the Drain state, BBR reduces pacing_gain to
ln(2)/2 to drain the standing queue at the bottleneck link induced during Startup. After the
above two stages, BBR has successfully built the path model, with RTprop measured at the
beginning of Startup and BtlBW measured at the end of Startup. After that, BBR switches to
a steady phase where BBR alternatively runs in the ProbeBW and ProbeRTT state. During
the ProbeBW state, BBR sets pacing_gain to 1.0 to cruise at the Kleinrock’s optimal point for
6 cycles, then sets pacing_gain to 1.25 to explore more bandwidth for 1 cycle, and thereafter
sets pacing_gain to 0.75 to drain the possible standing queue for 1 cycle. It is noteworthy
that BBR always sets cwnd_gain to 2.0 during the ProbeBW state to allow sending an extra
BDP-sized data during loss recovery. If BBR discovers that its RTprop has not been updated
for 10 s, it enters the ProbeRTT state. During the ProbeRTT state, BBR reduces its inflight

64 BBRv2+: Enhancing BBRv2 with delay information

size to 4×MSS (Max Segment Size) and waits for max{RT T,200 ms} to obtain an updated
value of RTprop.

Figure 4.2 The illustration of the BBR life-cycle.

4.2.2 BBRv2 overview

As observed in numerous previous studies [14, 56, 70, 111, 127], BBR has two key
issues: unfairly sharing bandwidth with loss-based CCAs and high retransmission rates in
shallow-buffered networks. The reasons behind these issues are that BBR is congestion
signal agnostic and is over-aggressive when probing for more bandwidth. To mitigate the
problems above, Google proposed BBRv2 [18], which inherits most of BBR’s design yet
redesigns the ProbeBW state, as shown in Figure 4.1.

To avoid being congestion signal agnostic like BBR, BBRv2 reacts to packet loss and
DCTCP-style ECN marks [8] for building a tight estimation of the capacity of a bottleneck
link. Specifically, BBRv2 adds three variables (inflight_lo, inflight_hi, and bw_lo). inflight_lo
and bw_lo are the short-term lower bounds of inflight size (i.e. cwnd) and sending rate
respectively, in order to capture the temporary status of network paths (e.g. cross-traffic takes
a share of capacity); inflight_hi, on the other hand, is the long-term upper bound of cwnd to
reduce the likelihood of packet losses due to bandwidth probing.

BBRv2 calculates pacing_rate and cwnd as in Equation (4.2). The reason for having
non-zero headroom values is to reserve spare capacity for other flows to quickly grab some
bandwidth, improving its friendliness [45]. As bounded by inflight_lo and inflight_hi, the
estimation of cwnd in BBRv2 is more conservative than that of BBR.

4.2 Background 65

pacing_rate = pacing_gain× min(BtlBW,bw_lo)

cwnd = min((1−headroom)× in f light_hi,

in f light_lo,cwnd_gain×BDP)

headroom =

0.15, ProbeCruise or ProbeRT T

0, Otherwise

(4.2)

The BBRv2 life-cycle is shown in Figure 4.3. Firstly, besides the condition that BBR
uses, BBRv2 also exits from Startup if the current loss/ECN mark rate is above a predefined
threshold (e.g. 2% for the current loss rate). If BBRv2 exits from Startup because of a
high loss/ECN mark rate, it sets inflight_hi to the current inflight size, otherwise, inflight_hi
remains at its initial value (+∞). Secondly, BBRv2 decomposes BBR’s ProbeBW state into
four sub-states, ProbeCruise, ProbeRefill, ProbeUp, and ProbeDown.

Figure 4.3 The illustration of BBRv2 life-cycle.

ProbeCruise: In the ProbeCruise state, BBRv2 sets pacing_gain to 1.0. If any loss
or ECN mark occurs during this state, BBRv2 updates inflight_lo and bw_lo to max{(1−
β)× in f light_lo,BtlBWcurr} and max{(1− β)× bw_lo, in f lightcurr} respectively, where
BtlBWcurr and in f lightcurr are the current measurements of bandwidth and inflight size. It is
noteworthy that β is either pre-configured4 or calculated based on ECN mark rates.

ProbeRefill: When BBRv2 has been in ProbeCruise for a period of T (T is determined in
ProbeDown), BBRv2 transits to ProbeRefill, by setting inflight_lo and bw_lo to +∞ to refill
the “pipe” with BDP-sized inflight data, which lasts for one RTT. The goal of this state is to
avoid early packet losses before the capacity is fully utilized in shallow-buffered networks
since BBRv2 will accelerate in the following ProbeUp state.

ProbeUp: In ProbeUp, BBRv2 sets pacing_gain to 1.25 to probe for more available
bandwidth. If BBRv2 has increased its inflight size all the way up to inflight_hi without

4The default value 0.3 is for BBRv2 to co-exist with Cubic [45]

66 BBRv2+: Enhancing BBRv2 with delay information

seeing a loss/ECN mark rate exceeding the threshold, it starts to exponentially increase
inflight_hi. This state ends either when the current loss/ECN mark rate exceeds the threshold,
or when the inflight size reaches 1.25× BDP for at least one RTprop. In the former case,
BBRv2 sets inflight_hi to the current inflight size.

ProbeDown: In ProbeDown, BBRv2 drains the potential queue at the bottleneck link
by setting pacing_gain to 0.75. BBRv2 also sets the duration (T) for the next ProbeCruise
state to min{rand(2,3), BDP

MSS ×RT T} s, where rand(2,3) means a number between two and
three. The intention of T is to match the interval between loss recovery epochs of Reno for
TCP fairness. It is noteworthy that T is usually longer than the bandwidth probing interval
of BBR (8×RT prop). Therefore, BBRv2 probes for bandwidth in a more-conservative
way. The ProbeDown state ends when BBRv2 cuts its inflight size below min{BDP,0.85×
in f light_hi}. Thereafter, BBRv2 transits to the next ProbeCruise state.

Moreover, BBRv2 no longer uses a 10-RTT-windowed max_filter for the estimation of
BtlBW; rather, it takes the maximum bandwidth measured in the recent two ProbeBW stages
as the estimated BtlBW.

Summary of BBRv2: BBRv2 is more conservative in cwnd estimation and bandwidth
probing than BBR, in order to reduce the excessive retransmissions in shallow-buffered
networks and improve the fairness of BBR. However, incorporating loss or ECN information
in BBRv2 degrades its performance under random losses. More importantly, because of less
frequent bandwidth probing in BBRv2, it may not respond to bandwidth dynamics as quickly
as BBR. We will quantify the benefits and shortcomings of BBRv2 in the next section.

4.3 A deep dive into BBRv2

In this section, we empirically investigate the improvements and overheads of BBRv2,
in comparison with BBR. We especially pay attention to the performance of BBRv2 under
bandwidth variations, jitter, and random packet losses that are very common in Mobile
Internet scenario. Our key observations include: (1) BBRv2 improves inter-protocol fairness
and RTT fairness, and also reduces retransmissions in shallow-buffered networks; this
observation reaffirms the findings in the previous studies [17, 44, 66, 90, 114]; (2) the
improvements of BBRv2 come with the cost of low resilience to random loss and slow
responsiveness to bandwidth dynamics. That said, it fails to achieve a balance between the
aggressiveness in bandwidth probing and the fairness against loss-based CCAs; (3) like BBR,
BBRv2 experiences low throughput in high-jitter networks because of underestimation of
BDP.

4.3 A deep dive into BBRv2 67

4.3.1 Methodology

We rely on Mininet [88] that runs on a server with 8 Intel Xeon Platinum cores and 32GB
memory for empirical analysis. The operating system is Ubuntu 18.04.5 with BBR and
BBRv2 [45] installed. Figure 4.4 shows the network topology. Linux tc-netem [53] is used
to emulate different network conditions by varying buffer size, link speed, delay, random
loss rates, jitter. We use iPerf3 [35] to generate TCP traffic between senders and receivers.
All packets are captured via tcpdump [118] and analyzed by tcptrace [96] to get various
performance metrics (e.g. RTTs, throughput, retransmissions, inflight bytes). Besides, the
values of internal variables (e.g. cwnd, pacing_rate, RTprop, BtlBW) in BBR and BBRv2 are
recorded in Linux kernel logs. Finally, the queue length at the bottleneck link between R2 and
R3 is reported by tc [58]. As in previous studies [14, 56, 111] did, each set of experiments is
repeated five times and the average results (along with variations if possible) are reported.

Figure 4.4 Mininet testbed: the bottleneck link is the link between R2 and R3 (marked in
red); delay and packet loss are configured on the link between R1 and R2; network jitter is
configured at R3’s outgoing interfaces towards H3 and H4.

4.3.2 Fairness

We investigate two types of fairness: the inter-protocol fairness against loss-based CCAs
and RTT fairness. In this set of experiments, two flows start simultaneously, one from H1
to H3 and the other from H2 to H4; both flows last for three minutes for the throughput
convergence. The bottleneck bandwidth was fixed at 40 Mbps without network jitter or
random packet losses.

We use Jain’s fairness index [37] (F) of the two flows to evaluate the fairness. The
index is calculated as F = [(T1 +T2)

2]/[2∗ (T 2
1 +T 2

2)], where Ti is the i-th flow’s average
throughput over the last 60 s of the flow’s lifetime. F = 1 indicates the maximum fairness
where two flows have identical average throughput, and F = 0.5 represents that one flow’s
throughput is zero and the fairness is minimized. We also vary the bottleneck buffer size as it
also impacts fairness results.

68 BBRv2+: Enhancing BBRv2 with delay information

Inter-protocol fairness

In the experiment, the flow from H1 to H3 uses either BBR or BBRv2, and that from H2
to H4 uses Cubic, which is the default CCA in Linux. The RTTs of the two paths are 40 ms.

Figure 4.5 shows the inter-protocol fairness results for both BBR and BBRv2, where we
vary the buffer size (expressed in multiples of BDP) at the bottleneck link. We can observe
that compared with BBR, BBRv2 significantly improves Jain’s fairness index when the buffer
is shallow (i.e., less than 2× BDP). This is due to the fact that BBRv2 reacts to losses caused
by buffer overflow and bounds the inflight size by using inflight_hi and inflight_lo. When the
bottleneck buffer gets deeper, Cubic obtains more bandwidth than BBR or BBRv2. This is
because that the inflight size of both BBR and BBRv2 is upper-bounded by about 2× BDP,
while Cubic’s inflight size can go beyond this value under deep buffers. As the two flows
experience similar RTTs, a larger inflight size means higher throughput. We also note that
BBRv2 is less competitive than BBR under moderate buffers. The reason lies in the fact that
BBRv2 is more conservative in bandwidth probing and cwnd estimation.

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (# of BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBR
Cubic

(a) BBR vs Cubic

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (# of BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBRv2
Cubic

(b) BBRv2 vs Cubic

Figure 4.5 Inter-protocol fairness of BBR and BBRv2 under different buffer sizes (markers:
averages, bars: standard deviations).

RTT fairness

In this experiment, two flows use the same CCA, either BBR or BBRv2. The RTT is
40 ms for the path between H1 and H3, and 150 ms for the path between H2 and H4.

We can see from Figure 4.6 that when the buffer is quite shallow (i.e., 0.2× BDP), BBR
has good RTT fairness. However, when the buffer size becomes larger, the BBR flow with
longer RTT gradually occupies all the bandwidth and starves the flow with shorter RTT. The
reason for the poor RTT fairness of BBR is well documented by the previous studies [56, 82].
Specifically, the aggregated sending rate of two BBR flows exceeds bottleneck bandwidth
because of bandwidth probing. As such, a persistent queue forms at the bottleneck link.

4.3 A deep dive into BBRv2 69

50
75

100
 (%

)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (# of BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBR/40ms
BBR/150ms

(a) BBR

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (# of BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBRv2/40ms
BBRv2/150ms

(b) BBRv2

Figure 4.6 RTT fairness of BBR and BBRv2 under different buffer sizes (markers: averages,
bars: standard deviations).

As the cwnd of BBR is proportional to RTprop, the flow with longer RTT pours more data
into the bottleneck buffer, thus having a larger share of the bottleneck link’s capacity. This
problem is not severe under shallow buffers, as excess packets are mostly dropped instead of
forming a persistent queue.

Compared with BBR, BBRv2 has better RTT fairness, especially under deep buffers. The
reason is three-fold. First, when the buffer size is moderate, losses are triggered due to buffer
overflow, and then both flows reduce their cwnd proportional to BDP. As the flow with longer
RTT has a larger BDP, it reduces its cwnd more than the flow with shorter RTT. Second,
when BBRv2 flows are cruising at the speed of BtlBW, they always try to leave headroom
for other flows to explore the bandwidth. Third, BBRv2 flows yield occupied capacity more
frequently because it enters the ProbeRTT state more often than BBR.

4.3.3 Retransmission and throughput

As one of BBRv2’s design goals is to reduce unnecessary retransmissions in shallow-
buffered networks, next we investigate whether BBRv2 achieves this design goal. The
experimental setup is similar to that in the previous work [14], where the bottleneck band-
width varies in 10 – 750 Mbps and the path RTT varies in 5 – 150 ms as these values are
commonly employed in modern networks [14, 56, 59]. The buffer size at the bottleneck link
is set to 100 KB to emulate shallow-buffered networks5. For each setup, we launch a TCP
flow for 30s and record its retransmission rate.

The heatmaps in Figure 4.7 show the retransmission rates of BBR and BBRv2 under
various network conditions. We can observe that the retransmission rate of BBRv2 is

5100 KB is less than the BDP of most bandwidth-RTT combinations in our setup

70 BBRv2+: Enhancing BBRv2 with delay information

5 10 25 50 75 10
0

15
0

RTT ms ->

750
500
250
100

50
20
10

BW
 M

bp
s -

>

0

2

4

6

8

Re
tx

 R
at

e
%

(a) BBR

5 10 25 50 75 10
0

15
0

RTT ms ->

750
500
250
100

50
20
10

BW
 M

bp
s -

>

0

2

4

6

8

Re
tx

 R
at

e
%

(b) BBRv2

Figure 4.7 The heatmap of the retransmission rate of BBR or BBRv2 under various network
conditions.

significantly reduced compared with that of BBR, especially when the BDP is larger than
400KB (i.e. the buffer size ≤ 0.25× BDP).

The lower retransmission rate of BBRv2 in shallow-buffered networks stems from the
fact that BBRv2 reacts to packet losses, while BBR does not. In the Startup and ProbeUp
state, BBRv2 tries to send at a rate higher than the bottleneck bandwidth, which leads to
excessive losses (i.e. loss rate ≥ 2%). The excessive losses trigger inflight_hi to be set as the
current inflight size that is likely close to BDP in shallow-buffered networks. As shown in
Equation (4.2), BBRv2’s cwnd is bounded below 0.85× inflight_hi in ProbeCruise. Since
BBRv2 flows spend most of their time in ProbeCruise, the average throughput of BBRv2 is
expected to be 15% lower than the available bandwidth in shallow-buffered networks.

That said, BBRv2 trades off throughput against retransmission in shallow-buffered net-
works. To verify this, we compute the throughput gain of BBR over BBRv2 (Tput_Gain),
which is defined in Equation (4.3), where T putBBR (resp. T putBBRv2) is the average through-
put of a BBR (resp. BBRv2) flow over 30 s.

T put_Gain =
T putBBR−T putBBRv2

T putBBRv2
(4.3)

From Figure 4.8a, we can observe that under the network conditions where BBRv2
reduces the retransmission rate (when BDP exceeds 400 KB), BBRv2 achieves lower through-
put than BBR. Specifically, the throughput of BBRv2 is 13% – 16% lower than that of BBR
in these cases. In deep-buffered networks, however, packet losses are much less often. It is
thus expected that the throughput of BBR and BBRv2 are comparable. This is confirmed
by the results in Figure 4.8b, where the buffer size is configured at 10 MB, larger than the
BDP of most of the bandwidth-RTT combinations in our setup. The throughput differences
between BBR and BBRv2 are indeed marginal in these networks.

4.3 A deep dive into BBRv2 71

5 10 25 50 75 10
0

15
0

RTT ms ->

750
500
250
100

50
20
10

BW
 M

bp
s -

>

20

10

0

10

20

Tp
ut

 G
ai

n
%

(a) 100 KB buffer

5 10 25 50 75 10
0

15
0

RTT ms ->

750
500
250
100

50
20
10

BW
 M

bp
s -

>

20

10

0

10

20

Tp
ut

 G
ai

n
%

(b) 10 MB buffer

Figure 4.8 The heatmap of Tput_Gain (in percentage): (a) shallow-buffered network, (b)
deep-buffered networks.

4.3.4 Resilience to random losses

Several early tests [17, 66, 114] have shown that BBRv2 is less resilient to random losses
than BBR, since BBRv2 limits its cwnd by inflight_lo and inflight_hi, which both react to
all types of losses. In BBRv2, there are two parameters that decide how inflight_lo and
inflight_hi react to losses. One is the explicit loss threshold (α) and the other one is the
inflight_lo reduction factor (β). To study how α and β impact BBRv2’s loss resilience, we
investigate BBRv2 variants with different α and β under random losses, where each specific
BBRv2 variant is referred as BBRv2(α , β). For α , we cap it at 20% to match the maximum
loss rate that BBR can tolerate; for β , we only evaluate the difference between the case with
(i.e. β = 0.3 by default) and without it (i.e. β = 0). In this set of experiments, the bottleneck
bandwidth is set to 40 Mbps, and the path RTT is 40 ms. The buffer size is 32× BDP to
avoid packet losses due to buffer overflow. The random loss rate ranges from 0% to 30%.

10 4 10 3 10 2 10 1 100 101

Random loss rate (%)

0

10

20

30

40

Tp
ut

. (
M

bp
s) Cubic

BBR
BBRv2
BBRv2(5%,0.3)
BBRv2(10%,0.3)
BBRv2(15%,0.3)
BBRv2(20%,0.3)
BBRv2(20%,0.0)

Figure 4.9 Average throughput against different random loss rates (buffer size = 32× BDP).

Figure 4.9 reports the average throughput of each CCA against random loss rates. We
observe that the throughput of BBRv2 drops significantly when the random loss rate goes

72 BBRv2+: Enhancing BBRv2 with delay information

beyond 2%. Moreover, as α increases, the loss resilience of BBRv2 is improved. For
instance, with a 10% random loss rate, BBRv2(20%, 0.3) occupies around half of the
maximum bandwidth while the default BBRv2’s throughput nearly drops to zero. The
impact of β is also remarkable: the loss resilience of BBRv2(20%, 0.3) is lower than that of
BBRv2(20%, 0), which performs similar to BBR.

The above results indicate that BBRv2’s loss resilience can be improved via raising
α . Yet, there is a concern on its effectiveness in alleviating the retransmission issue in
shallow-buffered networks, because BBRv2 reduces its cwnd when the loss rate exceeds α

(see § 4.3.3).

0 20 40 60 80 100
BBRv2 loss threshold () (%)

0.0

0.2

0.4

0.6

Re
tx

 ra
te

 (%
) 0.2xBDP

0.5xBDP
1.0xBDP

1.5xBDP
2.0xBDP

Figure 4.10 Retransmission rates vs α values under networks with different buffer sizes. The
errorbars in the figure represent the standard deviations of retransmission rate. β is fixed at
0.3 for all experiments; the default value of α in BBRv2 is 2% (the first data point of every
line).

To investigate the aforementioned concern, we extend the experiments by considering
more BBRv2 variants (α ∈ [2%, 100%], β = 0.3) and more configurations on buffer sizes
(buffer size ∈ {0.2, 0.5, 1.0, 1.5, 2.0}× BDP). Figure 4.10 plots the retransmission rates of
all considered BBRv2 variants under a random loss rate of 0% (to eliminate the impact of
random losses on retransmission rates). Two observations are notable. Firstly, we observe
that the retransmission rate increases when α exceeds a certain point, which depends on
the bottleneck buffer size. α values beyond the turning points are too high to be reached by
temporary loss rates, thus, limiting the effect of inflight_hi. Secondly, if the buffer size is
large enough (i.e. 2× BDP in our experiments), the retransmissions are eliminated, so the
value of α becomes irrelevant.

Another concern about lifting α is the impact on the inter-protocol fairness because the
larger α is, the slower reaction of BBRv2 to losses is, which makes BBRv2 more aggressive
to loss-based CCAs. To investigate this concern, we test the inter-protocol fairness of
BBRv2(20%, 0.3) using the same setup as in § 4.3.2, and plot the results in Figure 4.11. In
comparison with Figure 4.5b, the inter-protocol fairness of BBRv2 is indeed worsened in the
case of extremely shallow buffer (0.2× BDP) due to the increased aggressiveness caused by

4.3 A deep dive into BBRv2 73

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (# of BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBRv2
Cubic

Figure 4.11 Inter-protocol fairness of BBRv2(20%, 0.3) (markers: averages, bars: standard
deviations).

a larger α . Nevertheless, the fairness index is improved under moderate buffers because the
increased aggressiveness also makes BBRv2 less vulnerable to Cubic when the bottleneck
buffer becomes larger.

Summary of random loss resilience: The loss resilience of BBRv2 can be improved
by raising the loss threshold, α . Nevertheless, α should be carefully tuned according to the
bottleneck buffer size in order to avoid increasing retransmissions and being too aggressive
to loss-based CCAs in extremely shallow-buffered networks.

4.3.5 Responsiveness to bandwidth dynamics

Next, we investigate BBRv2’s responsiveness to bandwidth changes. The experiments
are designed as follows. The bandwidth of the bottleneck link is configured to increase or
decrease 5 Mbps every 2 s, the path delay is set to 40 ms, and the buffer size is set to 32×
BDP. The internal variables during flow transmission (including pacing_rate and BtlBW,
instantaneous throughput, and the queue length at the bottleneck link) are sampled at an
interval of 100 ms.

Figure 4.12 shows how BBR and BBRv2 adapt to bandwidth increases or decreases
respectively. The red line represents the BtlBW estimation of BBR/BBRv2, and the green
line indicates the real bandwidth of the bottleneck link. The dark line shows the dynamics of
the bottleneck link’s queue length. Note that the spikes of queue length in Figure 4.12a and
Figure 4.12c are caused by the periodical bandwidth probing of BBR and BBRv2, and the
sudden drops of queue length around 10 s in Figure 4.12b and Figure 4.12d are because of
probing minimum RTT values. We can observe that BBRv2 is less effective than BBR in
terms of responsiveness to bandwidth dynamics, resulting in the low utilization of bandwidth
and long queuing delay.

74 BBRv2+: Enhancing BBRv2 with delay information

5 10 15
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s)

BltBW
real bw.

queue_len

0

20

40

Qu
eu

e
Le

ng
th

 (p
kt

)

(a) BBR (bw. increasing)

5 10 15
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s)

BltBW
real bw.

queue_len

0

100

200

300

Qu
eu

e
Le

ng
th

 (p
kt

)

(b) BBR (bw. decreasing)

5 10 15
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s)

BltBW
real bw.

queue_len

0

20

40

Qu
eu

e
Le

ng
th

 (p
kt

)

(c) BBRv2 (bw. increasing)

5 10 15
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s)

BltBW
real bw.

queue_len

0

100

200

300

Qu
eu

e
Le

ng
th

 (p
kt

)

(d) BBRv2 (bw. decreasing)

Figure 4.12 Responsiveness to bandwidth increases (a, c) and decreases (b, d).

As we discussed in § 4.2.2, to match the interval between two Reno loss recovery epochs
for better inter-protocol fairness, BBRv2 sets its probing interval to min{rand(2,3), BDP

MSS ×
RT T} s. This interval can be tens of RTTs, which is too conservative in dynamic environ-
ments. That said, BBRv2 improves inter-protocol fairness, at the cost of poorer responsive-
ness to bandwidth dynamics.

4.3.6 Resilience to network jitter

In Mobile Internet scenarios, high jitter is not uncommon in many widely deployed
wireless networks, e.g. WiFi and 5G networks operating in mmWave band [23, 70, 148],
and cellular networks [10, 70], especially when high-mobility involves such as high-speed
rails [124]. Several works [70, 124] have shown that throughput collapse occurs when BBR
operates in high-jitter networks. Therefore, it is interesting to investigate whether BBRv2
operates well in networks with high jitter.

In this experiment, the bottleneck bandwidth is 40 Mbps and the path RTT is 40 ms. The
bottleneck buffer size is set to 32× BDP to avoid buffer overflow. To emulate jitter, tc is
used to add jitter following Gaussian distribution at R3’s interface that connects to H3. The
mean value of the Gaussian distribution varies from 0 – 120 ms to emulate different degrees
of jitter.

4.3 A deep dive into BBRv2 75

0 20 40 60 80 100 120
Jitter (ms)

0

10

20

30

40

Tp
ut

. (
M

bp
s)

BBR
BBRv2
Cubic

Figure 4.13 Average throughput against different levels of jitter. X = 0 is equivalent to no
jitter.

Figure 4.13 shows the average value and the standard deviation of throughput of Cubic,
BBR, and BBRv2 under various levels of jitter. Compared with Cubic, both BBR and BBRv2
experience low throughput under high jitter. As documented by Kumar et al. [70], BBR
underestimates RTprop in such networks because it uses the minimum RTT of last 10 s to
approximate RTprop, which causes cwnd exhaustion. This problem still exists in BBRv2,
even if BBRv2 updates RTprop 2× frequently than BBR (i.e. BBRv2 uses the minimum RTT
in recent 5 s to estimate RTprop). We also note that the significant throughput degradation
starts when the average jitter reaches the path RTT (i.e. 40 ms).

4.3.7 Summary and implication

We observe that BBRv2 improves inter-protocol fairness and RTT fairness, and reduces
retransmission rates under shallow buffers, at the cost of slow responsiveness to bandwidth
dynamics and low resilience to random losses.

First, the root cause for the slow responsiveness is that BBRv2 is over-conservative in
bandwidth probing. That said, it fails to balance between the aggressiveness in probing for
more bandwidth and the fairness against loss-based CCAs. However, recklessly increasing
BBRv2’s aggressiveness in bandwidth probing may lead BBRv2 to generate overwhelming
retransmissions and unfairly share bandwidth with loss-based CCAs. In the next section,
we propose BBRv2+, which incorporates delay information to cautiously guide the aggres-
siveness of bandwidth probing to avoid reducing the fairness against loss-based CCAs. The
challenge is how to effectively use this signal and how to avoid being suppressed by other
loss-based CCAs in deep-buffered networks as other delay-based CCAs.

Second, the resilience to random losses can be improved by raising the loss threshold, α ,
where the value of α needs to be carefully set according to the bottleneck buffer size.

Last, the throughput degradation of BBR and BBRv2 in high-jitter networks is owned
to the underestimation of RTprop, which in turn leads to a smaller estimation of BDP. We

76 BBRv2+: Enhancing BBRv2 with delay information

propose a compensation mechanism of BDP that makes the estimated BDP close to the real
BDP.

4.4 Design and implementation of BBRv2+

Table 4.1 BBRv2+’s variables capturing delay information and network jitter.

Variable Functionality
MinRTTprev_rtt The minimum RTT measured in the previous RTT round.
MinRTTcurr_rtt The minimum RTT measured in the current RTT round.
MinRTTbefore_probe Saving the MinRTTcurr_rtt before entering ProbeUp.
MinRTTcurr_cruise The minimum RTT measured in the current ProbeCruise state.
Max4RTT(jitter) The max_filter tracking the maximum jitter in recent four RTT

rounds. Here, the jitter is equivalent to the RTT variation main-
tained by TCP.

Motivated by our measurement results, we design and implement BBRv2+, in order to
address the pitfalls of BBRv2 to improve the performance in Mobile Internet scenarios while
maintaining its advantages over BBR (i.e. improved fairness and reduced retransmissions in
shallow-buffered networks). The basic idea is to incorporate delay information in BBRv2+’s
path model to balance between the aggressiveness in probing for more bandwidth and the
fairness against loss-based CCAs. BBRv2+ also compensates the estimated BDP in case of
high jitter for improved performance.

4.4.1 Overview

The architecture of BBRv2+ is shown in Figure 4.14. BBRv2+ incorporates delay
information in its path model. Specifically, the delay information consists of three state
variables (the first three variables listed in Table 4.1) of minimum RTTs, which reflect the
change of queuing delay over time. The delay information facilitates quick responsiveness to
bandwidth dynamics. Particularly, a new sub-state, ProbeTry, is added into the ProbeBW
state. In ProbeTry, BBRv2+ slightly speeds up to examine if this acceleration will lead to
increased RTTs. In the case of increased RTTs, BBRv2+ quits this probing and moves to the
ProbeDown state to drain the queue at the bottleneck link; otherwise, it moves to the ProbeUp
state to further explore available bandwidth. BBRv2+ also uses the delay information to
quickly adapt to bandwidth decreases; it quickly updates its bottleneck bandwidth estimation
to the current bandwidth measurement if an obvious increase of RTT is observed when
BBRv2+ is not probing for bandwidth.

4.4 Design and implementation of BBRv2+ 77

Like other CCAs that use delay-based signals, BBRv2+ will be suppressed when co-
existing with loss-based CCAs under deep buffers [7], as the loss-based CCAs constantly
fill the buffer at a bottleneck link, leading BBRv2+ to falsely yield up obtained bandwidth.
BBRv2+ uses a dual-mode mechanism that forces BBRv2+ to use BBRv2’s state-machine
when loss-based CCAs co-exist.

Finally, BBRv2+ uses a BDP compensation mechanism to address the cwnd exhaustion
problem caused by network jitter. Our key observation is that in high-jitter networks,
BDP will be underestimated because of the underestimation of RTprop. The mechanism
compensates BDP by taking the recent RTT variations into consideration; this compensation
mitigates the underestimation issue significantly.

Figure 4.14 BBRv2+ architecture. The parts that differ from BBRv2 are highlighted in red
color.

4.4.2 Redesign of the ProbeBW state

In the case of bandwidth increments, BBRv2+ needs to start probing for more bandwidth
quickly instead of spending time cruising at the speed of the current estimated BtlBW. Thus,
the probing interval needs to be reasonably shortened, which is set to approximately match
the probing interval of BBR (8 rounds of RTT). However, if BBRv2+ already sends data at
the speed close to bottleneck bandwidth, the probing interval above may result in increased
packet losses.

BBRv2+ introduces a two-step probing mechanism by incorporating the delay informa-
tion as shown in Figure 4.14. A new sub-state ProbeTry, which lasts for two RTTs, is inserted
before entering ProbeUp in the state machine. In the first RTT of ProbeTry, BBRv2+ slightly
increases its pacing_rate by increasing pacing_gain to 1.1. In the second RTT, BBRv2+

78 BBRv2+: Enhancing BBRv2 with delay information

reduces pacing_gain to 1.0 and monitors if MinRTTcurr_rtt is larger than γ×MinRTTprev_rtt,
where MinRTT is measured on the ACKs for the packets sent in the previous round (see
Table 4.1). The rationale of using γ > 1 is to introduce a relaxing factor to tolerate noises
in RTT measurements, where a small γ may lead BBRv2+ to miss some chances to explore
bandwidth while a large γ may make BBRv2+ over-aggressive. It is noteworthy that γ is
a design parameter and can be tuned by designers6. In our current implementation, we set
γ = 1.02, as such a slight increment (2%) of RTT likely comes from the noises of RTT
measurements. If MinRTTcurr_rtt > γ ×MinRTTprev_rtt, BBRv2+ transits to ProbeDown
with pacing_gain as 0.9 to drain the queue accumulated during the first RTT of ProbeTry.
Otherwise, it enters ProbeUp to probe for more bandwidth.

To further boost the speed of bandwidth exploration, BBRv2+ also incorporates a contin-
uous probing mechanism based on the delay information. Specifically, at the end of ProbeUp,
if the MinRTTcurr_rtt ≤ γ×MinRTTbefore_probe, BBRv2+ re-enters ProbeUp. The rationale
behind this is that there is possibly more free bandwidth capacity as no significant increment
of queuing delay arises in the current ProbeUp sub-state.

Algorithm 1: Advance BtlBW max_filter
Input :conn: BBRv2+ TCP connection

1 target_rtt←− θ ∗ conn.RTprop
2 should_advance←− (conn.MinRTTcurr_rtt > target_rtt)
3 if should_advance then
4 expire_the_oldest_value(conn.BtlBW)

We also leverage the delay information to detect bandwidth decrements. If BBRv2+ is in
ProbeCruise or ProbeDown, on the receipt of a new ACK in an RTT round, Algorithm 1 is
called7. The reason that the algorithm is only applicable in ProbeCruise or ProbeDown is
to eliminate the impact on delay variations caused by ProbeTry and ProbeUp sub-states. In
Algorithm 1, BBRv2+ expires its current BtlBW estimation if MinRTTcurr_rtt is larger than
the recently measured minimum RTT by θ times. θ is a parameter to balance the speed to
converge to new bandwidth and the resistance to noises in bandwidth measurements. A small
θ may lead to throughput oscillation, while a large θ may reduce BBRv2+’s responsiveness
to bandwidth dynamics. We recommend θ ∈ [1.05,1.15] according to our experiences.

6All the design parameters of BBRv2+ in our current implementation are exposed to user-space through the
/sys/module interfaces, enabling designers to change the parameters without recompiling the kernel module.

7It is called once at maximum for every RTT round to avoid expiring the BtlBW estimation too frequently.

4.4 Design and implementation of BBRv2+ 79

4.4.3 Dual-mode mechanism

Due to the use of delay information to guide the aggressiveness in bandwidth probing,
BBRv2+ will be starved by loss-based CCAs under deep buffers, suffering from the similar
problem of delay-based CCAs [7]. The root cause is that loss-based CCAs constantly fill
the bottleneck buffer, where BBRv2+ falsely treats the increments of RTT as the signals of
bandwidth decrements.

As BBRv2+ periodically drains the bottleneck buffer, MinRTTcurr_cruise (see Table 4.1),
the measured minimum RTT during ProbeCruise, should be close to RTprop if no loss-based
competitor exists. By comparing MinRTTcurr_cruise with the recorded RTprop value, BBRv2+
estimates the existence of loss-based competitors. If loss-based competitors co-exist, BBRv2+
switches to use BBRv2’s ProbeBW state, which enables BBRv2+ to co-exist with loss-based
CCAs in the same way as BBRv2. Further, if the loss-based competitors no longer exist,
BBRv2+ returns back to use the redesigned ProbeBW state. Note that the BBRv2+ does not
switch to BBRv2’s ProbeBW state if the bottleneck buffer is very shallow, because loss-based
CCAs cannot bloat the bottleneck buffer and BBRv2+ will not be starved.

Algorithm 2: The dual-mode mechanism
Input :conn: BBRv2+ TCP connection

1 if conn.probe_bw_mode = BBRv2+ then
2 switch_thld← λ1 ∗ conn.RTprop
3 if conn.MinRT Tcurr_cruise > switch_thld then
4 conn.buffer_filling++
5 else
6 conn.buffer_filling← 0
7 if conn.buffer_filling ≥ η1 then
8 conn.probe_bw_mode← BBRv2
9 restart_from_startup(conn)

10 else
11 switch_thld← λ2 ∗ conn.RTprop
12 if conn.MinRT Tcurr_cruise ≤ switch_thld then
13 conn.buffer_empty++
14 else
15 conn.buffer_empty← 0
16 if conn.buffer_empty ≥ η2 then
17 conn.probe_bw_mode← BBRv2+

The dual-mode mechanism is detailed in Algorithm 2, which runs at the end of Probe-
Cruise. If the sender is running in BBRv2+’s ProbeBW state and has not seen RTT samples
close to RTprop for a number of (η1) successive ProbeCruise sub-states, it switches to

80 BBRv2+: Enhancing BBRv2 with delay information

use BBRv2’s ProbeBW state and restarts itself from Startup (line 1 – 9). We note that
restart_from_startup(conn) in line 9 is a heuristic to quickly regain the bandwidth that
has been potentially yielded up to loss-based competitors by BBRv2+ recently. If the sender
is using BBRv2’s ProbeBW state and it has seen low RTTs for η2 successive ProbeCruise
sub-states, it returns back to use BBRv2+’s ProbeBW state because the competitors are most
likely gone. We note that the four parameters in Algorithm 2, λ1, λ2, η1, and η2, are to
control the sensitivity of BBRv2+ to the co-existence of loss-based CCAs. In practice, we
used 1.1, 1.05, 2, and 4 for λ1, λ2, η1, and η2 respectively. Nevertheless, these parameters
can be easily tuned in user space in our current implementation.

4.4.4 Compensation for BDP estimation

To boost BBRv2+’s performance under high network jitter, BBRv2+ takes network jitter
into account when estimating the BDP of a network path. BBRv2+ compensates the BDP
estimation with a component proportional to RTT variations when network jitter is high.
The compensation mechanism is detailed in Algorithm 3. As instantaneous RTT variations
could be very dynamic, to ensure that BBRv2+ can tolerate jitter up to the maximum extent,
we use the recently measured maximum RTT variation, Max4RTT(jitter) in Table 4.1, as the
estimation of recent jitter. When Max4RTT(jitter) exceeds µ×RTprop, the estimated RTprop
is increased to RT prop+Max4RTT(jitter) to mitigate the underestimation of RTprop. We
recommend to set µ around 0.5 because the performance of BBRv2 starts to degrade when
jitter approaches half of RTprop as observed in § 4.3.6.

Algorithm 3: Compensating BDP
Input :conn: BBRv2+ TCP connection
Output : the BDP estimation of BBRv2+

1 Function get_compensated_BDP (conn) :
2 jitter←− conn.Max4RTT(jitter)
3 threshold←− µ ∗ conn.RTprop
4 fixed_RTprop← conn.RTprop
5 if jitter > threshold then
6 fixed_RTprop← fixed_RTprop + jitter
7 return conn.BtlBW ∗ fixed_RTprop

4.4.5 Implementation

BBRv2+ is implemented as a Linux kernel module (∼2100 LoCs), based on Google’s
BBRv2 alpha kernel module [45]. The parameters of BBRv2+ (summarized in Table 4.2) are

4.5 Evaluation of BBRv2+ 81

Table 4.2 Summary of the parameters of BBRv2+.

Parameter Functionality Default value

γ control the aggressiveness of bandwidth probing 1.02
θ control the sensitivity to the decrease of bandwidth [1.05, 1.15]

λ1,λ2,η1,η2 control the sensitivity to detect if loss-based CCAs co-
exist

1.1, 1.05, 2, 4

µ control the sensitivity to network jitter 0.5

exposed to user-space through the /sys/module interfaces, which allows users to change
the parameters according to their need without recompiling the kernel module.

4.5 Evaluation of BBRv2+

In this section, we evaluate BBRv2+ based on both Mininet-based emulation and real-
world trace driven emulation. First, we describe our experiment setup in § 4.5.1. We then
evaluate the benefits of BBRv2+ from the perspectives of the responsiveness to bandwidth
dynamics (§ 4.5.2) and the resilience to network jitter (§ 4.5.3). Next, we demonstrate that
BBRv2+ is able to keep the advantages of BBRv2 in inter-protocol fairness (§ 4.5.4), RTT
fairness (§ 4.5.5), and low retransmission rates (§ 4.5.6). Finally, we evaluate the performance
of BBRv2+ through real-world trace driven emulation in § 4.5.7.

4.5.1 Evaluation setup

Figure 4.15 Mahimahi testbed: the client connects to the server through the network emulated
by Mahimahi.

Two testbeds are used for the evaluation of BBRv2+. One is the Mininet-based testbed
used in § 4.3, as a controlled environment to evaluate BBRv2+ from various perspectives.
The other is based on Mahimahi [92], a trace-driven network emulator that can emulate

82 BBRv2+: Enhancing BBRv2 with delay information

networks with dynamic bandwidth by replaying bandwidth traces either collected from
real-world networks (e.g. Figure 4.23) or synthesized manually (e.g. Figure 4.17). Other
settings of Mahimahi, including delay, packet loss and buffer emulation, are similar to those
in Mininet. As shown in Figure 4.15, in the Mahimahi-based testbed, a client connects to a
server through the emulated network. The physical server running the two testbeds is the
same one as that used to evaluate BBRv2 in § 4.3. The toolset for data analysis and traffic
generation is also the same as that in § 4.3.

In all experiments, α (the loss threshold) in BBRv2+ is set to 20% as the value is suitable
for most of the buffer sizes according to the results in § 4.3.4. Unless specified otherwise,
each set of experiments is repeated five times and the averaged results are reported.

4.5.2 Responsiveness to bandwidth dynamics

We use the same settings as that in § 4.3.5 to have a microscopic view on how BBRv2+
reacts to bandwidth dynamics. Figure 4.16 shows the results.

5 10 15
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s)

BltBW
real bw.

queue_len

0

20

40

Qu
eu

e
Le

ng
th

 (p
kt

)

(a) bw. increasing

5 10 15
Time (s)

0

10

20

30

40

BW
 /

Th
ro

ug
hp

ut
 (M

bp
s)

BltBW
real bw.

queue_len

0

100

200

300

Qu
eu

e
Le

ng
th

 (p
kt

)

(b) bw. decreasing

Figure 4.16 BBRv2+’s responsiveness to bandwidth increases (a) and decreases (b).

In Figure 4.16a, when there is no bandwidth increment, BBRv2+ only enters ProbeTry
for a very short duration and finishes bandwidth probing very soon, which leads to an
instantaneous short standing queue. However, when the bandwidth is increased, BBRv2+ can
timely adapt its BtlBW estimation to the real bandwidth. Compared with the results of BBR
(Figure 4.12a) and BBRv2 (Figure 4.12c), BBRv2+ is capable of utilizing newly available
bandwidth as quick as BBR, while the delay information guided probing strategy reduces
queuing delay.

In Figure 4.16b, when bandwidth decreases, BBRv2+ notices that the queuing delay is
obviously rising up via increased RTTs (see § 4.4.2). It expires the old BtlBW estimation
and adapts its BtlBW estimation to the available bandwidth. Compared with the results of

4.5 Evaluation of BBRv2+ 83

BBR and BBRv2 in Figure 4.12, BBRv2+ adapts its sending rate to the decreased bandwidth
much faster, which leads to lower queuing delay.

Next, we compare the responsiveness of Cubic, BBR, BBRv2, and BBRv2+ to bandwidth
dynamics in the Mahimahi testbed, using five synthesized traces where the bandwidth changes
as step functions, as illustrated in Figure 4.17. Following the settings in [2], we set the buffer
size to 1.5 MB, the delay to 20 ms, and the loss rate to 0%. For each CCA, we conducted
experiments in the five emulated networks. In each experiment, a bulk-transfer TCP flow
from the server to the client runs for 30 s and the flow throughput, as well as the sojourn time
of each packet in the buffer at the bottleneck link (denoted as queuing delay), are recorded.

0 5 10 15 20
Time (s)

20

Ca
pa

cit
y

(M
bp

s)

Figure 4.17 An example of synthesized bandwidth traces with bandwidth changing as a step
function.

1510152025303540
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

BBR
BBRv2
BBRv2+
Cubic

Figure 4.18 Normalized throughput and queuing delay of different CCAs (marker: average
throughput and queuing delay, left end of each line: 95%tile of queuing delay, ellipse:
standard deviation).

Figure 4.18 compares the performance of all considered CCAs. In the figure, for a
CCA, we normalize its average queuing delay (over several runs) to the minimum average
queuing delay among all considered CCAs in the same emulated network; we also normalize
its average throughput (over several runs) to the maximum average throughput among all
considered CCAs. In addition, we report the 95%tile queuing delay of each CCA, which
is also normalized to the minimum average queuing delay observed in the same network.
Then, the averages and deviations of the normalized values across all emulated networks
are plotted. We can see from the figure that, compared with BBRv2, BBRv2+ achieves

84 BBRv2+: Enhancing BBRv2 with delay information

significantly higher throughput and lower queuing delay. On the other hand, compared with
BBR, BBRv2+ achieves lower queuing delay at the cost of slightly lower throughput. These
observations stem from the facts that: (1) BBRv2+ probes for bandwidth at a frequency
similar to BBR’s one, thus, achieving high bandwidth utilization as BBR does; (2) BBRv2+
adapts its sending rate to decreased bandwidth faster than BBR as it quickly updates its
BtlBW estimation upon increased queuing delay.

4.5.3 Resilience to network jitter

Next, we evaluate how network jitter affects BBRv2+’s performance, using the same
settings as in § 4.3.6. The throughput of BBRv2+, Cubic, BBR and BBRv2 under various
levels of jitter are shown in Figure 4.19a. Different from BBR and BBRv2, the throughput
of BBRv2+ does not degrade when the network jitter becomes larger. Figure 4.19b further
plots the average inflight bytes of four CCAs; the results confirm that the BDP compensation
mechanism succeeds to compensate cwnd in high-jitter networks. Nevertheless, the through-
put of BBRv2+ is slightly lower than Cubic. The reason is that our compensation to BDP is
conservative; in contrast, Cubic’s cwnd can grow far beyond the real BDP as it is not affected
by network jitter.

0 20 40 60 80 100 120
Jitter (ms)

0

10

20

30

40

Tp
ut

. (
M

bp
s) BBR

BBRv2
BBRv2+
Cubic

(a) Throughput vs jitter

0 20 40 60 80 100 120
Jitter (ms)

0

2

4

6

Av
g.

 in
fli

gh
t b

yt
es

 (M
B)

BBR
BBRv2
BBRv2+
Cubic

(b) Avg. inflight bytes

Figure 4.19 Resilience to jitter (markers: averages, bars: standard deviations).

4.5.4 Inter-protocol fairness

The inter-protocol fairness of BBRv2+ is evaluated using the same settings as in § 4.3.2.
We test BBRv2+ with and without the dual-mode mechanism (see § 4.4.3) to study the impact
of this mechanism on inter-protocol fairness. The results are shown in Figure 4.20. Several
observations are notable.

Firstly, the results demonstrate the efficacy of the dual-mode mechanism. In Figure 4.20a,
we can observe that BBRv2+ without the dual-mode mechanism is starved by Cubic in

4.5 Evaluation of BBRv2+ 85

50
75

100
 (%

)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (# of BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s)

BBRv2+
Cubic

(a) W/O the dual-mode mechanism

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (# of BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s) BBRv2+

Cubic

(b) W/ the dual-mode mechanism

Figure 4.20 BBRv2+: Inter-protocol fairness under different buffer sizes (markers: averages,
bars: standard deviations).

deep-buffered cases. This is because BBRv2+ falsely treats the RTT increments caused by
Cubic as the signals of bandwidth shrinking. The problem is eliminated by the dual-mode
mechanism as shown in Figure 4.20b.

Second of all, compared with the results of BBRv2(20%, 0.3) in Figure 4.11, we can
observe that: (1) BBRv2+ provides better inter-protocol fairness than BBRv2(20%, 0.3)
under an extremely shallow buffer (i.e. 0.2× BDP); (2) BBRv2+’s inter-protocol fairness
is similar to that of BBRv2(20%, 0.3) under other buffer sizes. The reason for the better
inter-protocol fairness of BBRv2+ under an extremely shallow buffer is that BBRv2+ does
not enter ProbeUp, which is more aggressive than ProbeTry, due to the two-step probing
mechanism (see § 4.4.2) while BBRv2(20%, 0.3) periodically enters ProbeUp.

Lastly, compared with the results of BBR (Figure 4.5a) and BBRv2 (Figure 4.5b),
BBRv2+ performs no worse than the better one among BBR and BBRv2 under different
buffer sizes. The reasons are three-fold: (1) under shallow buffers, BBRv2+ achieves similar
inter-protocol fairness to that of BBRv2 thanks to its cautiously aggressive bandwidth probing
strategy (see § 4.4.2); (2) under moderate buffers, BBRv2+ is close to BBRv2(20%, 0.3) that
has better inter-protocol fairness than BBRv2 in these cases as explained in § 4.3.4; (3) under
deep buffers, the three CCAs perform closely as they all upper bound cwnd around 2× BDP,
thus, unable to beat loss-based CCAs.

4.5.5 RTT fairness

Next, we evaluate the RTT fairness of BBRv2+ using the same setting as in § 4.3.2.
The results are presented in Figure 4.21. Compared with the results of BBR (Figure 4.6a)
and BBRv2 (Figure 4.6b), BBRv2+ has better RTT fairness than BBR and behaves close

86 BBRv2+: Enhancing BBRv2 with delay information

to BBRv2. The results are expected as the mechanisms in BBRv2 that improves the RTT
fairness over BBR (see § 4.3.2) remain unchanged in BBRv2+.

50
75

100

 (%
)

0.2 0.5 1 2 3 4 8 16 32
Buffer Size (# of BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s) BBRv2+/40ms

BBRv2+/150ms

Figure 4.21 BBRv2+: RTT fairness under different buffer sizes (markers: averages, bars:
standard deviations).

4.5.6 Retransmissions in shallow-buffered networks

Using the same setting as in § 4.3.3, we evalute the retransmissions in shallow-buffered
networks in Figure 4.22. We observe that when the buffer is extremely shallow (e.g. 0.02×
BDP when the bandwidth is 500 Mbps and the RTT is 75 ms), BBRv2+ incurs more
retransmissions than BBRv2. This is because the bandwidth probing frequency of BBRv2+
is higher than that of BBRv2. Although BBRv2+ uses a relatively small pacing_gain (1.1),
when it starts to probe for more bandwidth in ProbeTry, it still causes buffer overflow if
the network buffer is extremely shallow. However, compared with the results of BBR in
Figure 4.7a, BBRv2+ reduces retransmissions significantly.

5 10 25 50 75 10
0

15
0

RTT ms ->

750
500
250
100

50
20
10

BW
 M

bp
s -

>

0

2

4

6

8

Re
tx

 R
at

e
%

Figure 4.22 BBRv2+: retransmission rates (100 KB buffer).

4.5 Evaluation of BBRv2+ 87

4.5.7 Real-world trace driven emulation

Finally, we evaluate BBRv2+ in the Mahimahi testbed, where the input bandwidth traces
are collected in real-world networks. We compare BBRv2+ with Cubic, BBR, BBRv2, and
Orca [2]. Orca8 is used for comparison as a representative of the state-of-the-art learning-
based CCAs.

Trace collection: We collected bandwidth traces from WiFi and LTE networks, using
saturatr [131]. In total, 20 bandwidth traces are collected, half of which were collected when
the collector was stationary to the base station (LTE) or the Access Point (WiFi), and the
other half were collected when the collector was moving (i.e. in a vehicle or on a high-speed
rail). In stationary scenarios, the network bandwidth was usually stable, while in mobile
scenarios, the bandwidth fluctuated greatly. Examples of stationary and mobile traces are
shown in Figure 4.23. For each bandwidth trace, we also measured the packet loss rate and
delay of its corresponding network via ping.

0 10 20 30 40 50
Time (s)

50

Ca
pa

cit
y

(M
bp

s)

(a) An example of stationary traces

0 50 100 150 200 250 300
Time (s)

10

20

Ca
pa

cit
y

(M
bp

s)

(b) An example of mobile traces

Figure 4.23 Examples of bandwidth traces used in our trace-driven evaluation.

1.02.55.07.510
.0

12
.5

15
.0

17
.5

20
.0

Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

BBR
BBRv2
BBRv2+

Cubic
Orca

(a) Stationary traces

151015202530
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

BBR
BBRv2
BBRv2+

Cubic
Orca

(b) Mobile traces

Figure 4.24 Normalized throughput and queuing delay of different CCAs (marker: average
throughput and queuing delay, left end of each line: 95%tile of queuing delay, ellipse:
standard deviation of the throughput and queuing delay).

8We directly used the model trained by the authors in our experiments.

88 BBRv2+: Enhancing BBRv2 with delay information

Experimental setup: Using the collected bandwidth traces along with the information
of packet loss rates and delays, we emulate various network environments, where their buffer
sizes are fixed at 1.5 MB as the setup in [2]. In each run of the experiments, a bulk-transfer
TCP flow from the server to the client runs for 30 s.

Results: Using the same metrics as in § 4.5.2 (normalized throughput and queuing delay),
the results for the stationary and mobile scenarios are shown in Figure 4.24a and Figure 4.24b
respectively.

In stationary scenarios, BBR, BBRv2, and BBRv2+ perform very close to each other
because the bandwidth is usually stable. Cubic shows slightly better throughput for most of
the time at the cost of high queuing delay. Orca has the lowest throughput probably because
the network scenario where the model was trained is different from the emulated network
environments in our experiments, which also demonstrates the limitation of learning-based
CCAs.

In mobile scenarios, BBR and BBRv2+ achieve the highest and the second-highest
throughput respectively. Meanwhile, BBRv2 and Cubic fail to achieve consistently high
throughput across different mobile environments. Compared with BBRv2+, BBR achieves
higher throughput at the cost of higher queuing delay as it is more aggressive. Orca fails to
achieve consistently high throughput and low queuing delay in high-mobility scenarios; the
results of Orca raise a concern on the generalization ability of learning-based CCAs.

4.5.8 Summary of experimental results

We can conclude from the above experiments that BBRv2+ succeeds to balance the
aggressiveness of bandwidth probing and the fairness against loss-based CCAs. With such
a balance, BBRv2+ achieves higher throughput and lower delay than BBRv2 in scenarios
where the bandwidth fluctuates, while keeping the advantages of BBRv2 with regard to
inter-protocol fairness and reduced retransmissions under shallow buffers. Moreover, the
dual-mode mechanism enables BBRv2+ to co-exist with loss-based CCAs under deep buffers
and the compensation mechanism for BDP estimation efficiently enhances the performance
of BBRv2+ under high network jitter.

4.6 Conclusion

To realize efficient congestion control in Mobile Internet scenarios, it is necessary to
comprehensively consider the strong dynamics of network quality brought by mobility (such
as large bandwidth changes, high latency jitter, and high packet loss rate) and TCP fairness.

4.6 Conclusion 89

This chapter conducts detailed measurements on the successor of BBR, BBRv2, which
is widely used in Mobile Internet scenarios, observes some performance problems, and
analyzes the causes of performance problems. On this basis, BBRv2+ is proposed. BBRv2+
successfully balances the aggressiveness of bandwidth probing and the TCP fairness to
loss-based congestion control algorithms, resulting in higher throughput than BBRv2 in
mobile scenarios, and also retaining BBRv2’s advantages in the TCP fairness.

Chapter 5

Data-driven dynamic selection of
multipath CCAs

5.1 Introduction

With the continuous development of various mobile devices in Mobile Internet scenarios,
more and more devices now support access to the Internet through multiple network interfaces.
For example, smartphones usually have both cellular and WiFi network interfaces, connected
vehicles can communicate with Internet services via built-in cellular and WiFi network
interfaces [72], and the WiFi gateway on high-speed rails can provide Internet access services
for passengers through multiple cellular network interfaces [124]. Therefore, for these mobile
devices with multiple network interfaces, it is possible to obtain higher bandwidth and better
transmission reliability by using multiple network interfaces to access Internet services at the
same time.

In order to make full use of the transmission capabilities provided by multiple network
interfaces on these mobile devices, multipath transport protocols are indispensable. At
present, the most widely used standardized multipath transport protocol is Multipath TCP [38]
(MPTCP), which is implemented in iOS and Linux (as the kernel of Android system)
operating systems and is widely used in smartphone devices. Currently, MPTCP has been
officially merged into the mainstream Linux kernel since Linux 5.6 [61].

As shown in Figure 5.1, in an MPTCP connection, the mobile device and the server
establish a few TCP subflows on the multiple network paths existing between them. The
sender of the MPTCP connection schedules the data to different subflows for transmission.
Then, MPTCP reassembles the data received from different subflows at the receiver. Finally,
MPTCP delivers the reassembled data to the application layer.

92 Data-driven dynamic selection of multipath CCAs

Figure 5.1 An example of data tranmission with MPTCP

In MPTCP, multipath transport involves three key components, namely: path manage-
ment, packet scheduler, and congestion control. As shown in Figure 5.2, path management
determines which paths MPTCP needs to establish TCP subflows on, data scheduling de-
termines how application data is allocated to different subflows, and congestion control
determines the rate at which each subflow sends data. Among them, the impact of congestion
control on multipath transport performance is of great importance.

Figure 5.2 The architecture of MPTCP

There are two challenges in designing an efficient congestion control algorithm for
MPTCP in Mobile Internet scenarios. First of all, in this scenario, the network environments
of different paths may be quite different [132], and due to the introduction of mobility, the
quality of these paths could undergo frequent and large dynamic changes [139]. Therefore,
running a single type of congestion control algorithm on every subflow can not adapt to the
heterogeneous and dynamic multipath network environments, resulting in degraded network
transport performance [152]. Secondly, even if the network access types of different paths
may be different, there may be shared bottleneck links between them, so MPTCP congestion
control needs to implement multipath fairness. That is, when MPTCP connections share

5.1 Introduction 93

a bottleneck link with traditional TCP connections, the bandwidth is fairly allocated to all
types of connections [36].

However, none of the existing MPTCP congestion control algorithms can cope with
the above challenges well. First of all, although any congestion control algorithm in tradi-
tional TCP, such as Cubic [107], can be independently applied to the subflow of MPTCP,
this type of uncoupled multipath congestion control algorithms can not achieve multipath
fairness. Secondly, the classic coupled congestion control algorithms, LIA [105], OLIA [67],
and BALIA [102], which are based on NewReno’s [54] "Additive Increase Multiplicative
Decrease" principle, can implement multipath fairness well, but their performance is too
conservative when paths do not share bottleneck links [36], and they also do not consider the
problem of path heterogeneity. Then, coupled congestion control algorithms based on other
types of TCP congestion control algorithms, such as mVeno[30] for wireless packet loss
environments, delay-based wVegas [15], model-based Coupled-BBR [48], and eNMCC [119]
based on throughput growth rate also have the above problems. In order to solve the prob-
lem that the performance of the above coupled algorithms is too conservative in the case
of non-shared bottleneck links, some scholars have proposed some dynamically coupled
congestion control algorithms [36, 49, 51, 120, 128, 143]. But, these algorithms are still
not carefully designed for the scenario of heterogeneous paths, and can not adapt to the
heterogeneous and dynamically changing multipath network environment in Mobile Internet
scenarios. In addition, in recent years, with the continuous prosperity of ML, some re-
searchers have also proposed some learning-based multipath congestion control algorithms to
adapt to different network environments, such as several algorithms based on Reinforcement
Learning [52, 76, 104, 135, 137, 145] and MPCC [43] based on online learning. However,
these algorithms generally have a series of problems preventing them to be deployed at scale
in reality. For example, their ways to implement multipath fairness are either too conservative
to cause performance degradation or not guaranteed at all, their performance experiences
degradation in unseen network environments, they introduce large system overhead, the
convergence speed of them is slow, and the deployment of them is complicated [145].

In view of the shortcomings of existing work, we believe that it is very difficult to design
an efficient and easy-to-deploy multipath congestion control algorithm that can adapt to
heterogeneous paths and dynamically changing environments while achieving multipath
fairness at the same time. In terms of traditional single-path TCP congestion control, existing
research work [2, 152] has shown that existing congestion control algorithms can often only
achieve good transport performance in specific network environments that meet their design
assumptions. Therefore, some scholars[20, 94, 152] propose that appropriately choosing
congestion control algorithms for TCP connections by sensing network environments is

94 Data-driven dynamic selection of multipath CCAs

able to improve TCP transport performance. Inspired by this research thread, we design the
MPTCP-SSCC (MPTCP Smart Selection of Congestion Control) system based on MPTCP
to implement a data-driven multipath congestion control algorithm selection mechanism,
which can dynamically select an appropriate congestion control algorithm for each subflow
according to the network condition of each subflow and also implement multipath fairness.
This system enables MPTCP better adapt to the heterogeneous and dynamically changing
network environment, thereby improving the transport performance of MPTCP.

MPTCP-SSCC continuously perceives the quality and bottleneck link sharing situation
of subflows in kernel space, collects data from MPTCP kernel in user space, and then uses a
data-driven approach to dynamically adjust the congestion control algorithm for each subflow
in user space. Note, MPTCP-SSCC makes the decision for CCA selection in user space for
two reasons. First, there are a large number of available tools and libraries (such as various
ML libraries) in user space. On the other hand, this design makes the modification of the
decision-making module independent of the kernel, which ensures the extensibility of the
system.

In order to be compatible with legacy MPTCP applications, efficiently transfer data
between kernel and user space, and adjust the congestion control algorithm of each subflow
at runtime, we design and implement a lightweight congestion control algorithm selection
framework based on eBPF [11, 60]. Due to the complex relationship between the network
environment data and the suitable congestion control algorithm, it is difficult to map net-
work environment data to a specific CCA with a limited number of human-designed rules.
Therefore, the congestion control algorithm selection is abstracted as a classification task.
We use the XGBoost [133] algorithm to train an ML model that is combined with some fixed
rules to accomplish the CCA selection task in the MPTCP-SSCC system. The experimental
evaluation of MPTCP-SSCC in emulated and real environments shows that the system can
dynamically select an appropriate congestion control algorithm for each subflow and satisfy
multipath fairness according to the network conditions of each path.

To sum up, the core contributions of this chapter are as follows:

• We design and implement a lightweight multipath congestion control algorithm selection
framework based on eBPF, which allows to continuously perceive the network envi-
ronment, transport quality, and coupling requirements of subflows in user space in an
application-agnostic manner and to dynamically adjust the CCA for each subflow at
runtime. As the decision module of CCA selection is in user space, the framework has
good extensibility;

• Based on the above framework, MPTCP-SSCC is designed to implement a data-driven
multipath congestion control algorithm selection mechanism, in which a combination of

5.2 Motivation and challenges 95

ML models and artificial rules is used to capture the relationship between the network
environment data and suitable congestion control algorithms;

• We conducted a large number of experiments based on both emulated and real environ-
ments. The results show that MPTCP-SSCC can achieve multipath fairness. At the same
time, compared with several popular coupled CCAs, such as LIA [105], OLIA [67],
BALIA [102], and wVegas [15], or a state-of-the-art learning-based multipath congestion
control algorithm, MPCC [43], MPTCP-SSCC system can improve 19% – 25% average
throughput and reduce average queuing delay by up to 21%.

The remainder of this chapter is organized as follows. First, the research motivation
and the technical challenges are further described in § 5.2. After that, § 5.3 introduces
the core ideas. Then, the design and implementation of the MPTCP-SSCC system and the
experimental evaluation results are described in § 5.4 and § 5.5. Finally, § 5.6 concludes this
chapter.

5.2 Motivation and challenges

5.2.1 The limitation of existing multipath CCAs

In MPTCP, multipath congestion control determines the sending rate of each subflow by
estimating the available bandwidth on each path, which is a key component affecting the
transport performance of MPTCP. Different from the congestion control in traditional single-
path TCP, multipath congestion control needs to satisfy multipath fairness in addition to
efficiently utilizing the available network resources on paths. That is, when multiple MPTCP
subflows of a MPTCP connection share the same bottleneck link with a TCP connection, the
MPTCP connection needs to fairly share the bandwidth with the TCP connection. Therefore,
independently applying a congestion control algorithm of TCP on each subflow can not meet
the goal of multipath fairness.

To implement multipath fairness, several coupled multipath CCAs, such as LIA [105],
OLIA [67], BALIA [102], and Coupled-BBR [48], are proposed. The key idea of coupled
CCAs is to couple the growth coefficient of congestion window or the bandwidth probing
gain of subflows as stated in § 2.3.1. However, the fairness constraints implemented by
the above CCAs are too strong, causing subflows to be coupled even when they do not
share a common bottleneck link, resulting in a performance loss of up to 50% [36]. In
order to alleviate this problem, some scholars proposed dynamically coupled multipath
CCAs [36, 49, 51, 120, 128, 143]. The core idea of them is to couple subflows only when
necessary, which improves the transport performance of MPTCP when subflows do not share

96 Data-driven dynamic selection of multipath CCAs

a common bottleneck link. For example, MPTCP-SBD [36] decides to run the coupled
algorithm, OLIA [67], or the uncoupled algorithm, NewReno [54], on subflows depending
on whether the subflows share a common bottleneck link.

On the premise of satisfying multipath fairness, multipath congestion control needs
to be able to efficiently utilize the available network resources on each path for efficient
data transmission. In Mobile Internet scenario, the complex network environment poses
severe challenges to the realization of efficient multipath congestion control. First of all,
whether the multiple network interfaces are homogeneous (e.g. two cellular interfaces)
or heterogeneous (e.g. a cellular interface and a WiFi interface), the heterogeneity of
path quality is ubiquitous [21, 25, 74, 110]. Secondly, the network environment of these
paths could constantly change due to factors such as mobility, routing changes, and the
load changes of base stations. However, the aforementioned coupled and dynamically
coupled congestion control algorithms perform homogeneous congestion control actions on
each path. Thus, they can not adapt to the heterogeneous and dynamic multipath network
environments [43, 137, 76], which inevitably cause them to fail to provide high performance
in Mobile Internet scenarios.

In order to improve the adaptability of multipath congestion control to the network
environment, some scholars have proposed a series of congestion control algorithms based on
Machine Learning. Although these learning-based algorithms have achieved a certain degree
of performance improvement in some dynamically changing network environments, they still
have some problems. Algorithms based purely on Reinforcement Learning [52, 76, 104, 135,
137] (RL) usually do not implement multipath fairness. In addition, their performance and
convergence speed have problems in unseen network environments, and the system overhead
of them is large [145]. Therefore, it is difficult to deploy them in production environments at
scale. The hybrid algorithm, MPLibra [145], based on RL and coupled algorithms adopts
similar multipath fairness constraints to the classical coupled algorithms, resulting in its
performance being compromised in the scenario of non-shared bottleneck links. MPCC [43]
based on online learning also has the problem related to strict multipath fairness constraints.
In addition, it also has shortcomings in system overhead and convergence speed.

Therefore, so far, there is no practically deployable multipath congestion control al-
gorithm that can adapt to the complex, heterogeneous and dynamically changing network
environment in Mobile Internet scenarios and implement multipath fairness at the mean time.

5.2.2 Motivation and problem

Through the analysis of the existing MPTCP congestion control algorithms in § 5.2.1,
we believe that either based on the idea of coupled CCAs or learning-based CCAs, it is very

5.2 Motivation and challenges 97

difficult to design a general multipath congestion control algorithm to satisfy both multipath
fairness and adaptability to the complex, heterogeneous and dynamically changing network
environment in Mobile Internet scenarios. First, to achieve multipath fairness via coupling
the sending rate of subflows, it is usually required to perform homogeneous congestion
control on subflows. Therefore, on multiple heterogeneous and dynamically changing paths,
the homogeneous congestion control inevitably lead to performance loss. On the other hand,
learning-based CCAs lack flexibility when implementing multipath fairness, and also have
problems in terms of system overhead, deployment complexity, and generalization ability in
unseen network environments.

In recent years, many single-path congestion control algorithms have been proposed. They
usually achieve good performance in a network environment that conforms to their own design
assumptions [2, 152].Thus, some researchers propose that appropriate congestion control
algorithms can be selected for TCP flows by sensing the network environment to improve
transport performance [20, 94, 152]. Inspired by this research thread, we consider whether
it is possible to implement a multipath congestion control algorithm selection mechanism
that can sense the network environment where each subflow is located, and dynamically
select the most appropriate congestion control algorithms for subflows to improve transport
performance while also achieving multipath fairness. For example, when it is perceived that
multiple subflows share a common bottleneck link, a coupled congestion control algorithm
is selected for them to satisfy multipath fairness; when subflows are perceived to be in a
non-shared bottleneck link situation, they independently select a congestion control algorithm
(e.g. BBR [16], Cubic [107], C2TCP [1], and etc.) that best suits their current network
environment to improve transport efficiency as much as possible.

5.2.3 Technical challenges

There are several technical challenges to implement the above mentioned congestion con-
trol algorithm selection mechanism for MPTCP. First, dynamically adjusting the congestion
control algorithms of subflows by sensing their network environment requires a multipath
congestion control algorithm selection framework that provides the ability to collect perfor-
mance statistics for each subflow, to indicate if a subflow shares a common bottleneck link
with other subflows within the same MPTCP connection, and to adjust congestion control
algorithms for subflows at runtime. Then, considering that there are many kinds of congestion
control algorithms, and new congestion control algorithms are constantly being proposed,
the framework should have good extensibility to facilitate the integration of new congestion
control algorithms. In addition, from the perspective of deployability, the implementation
overhead of the framework should not be too high, and it should be transparent to applications

98 Data-driven dynamic selection of multipath CCAs

and compatible with legacy MPTCP applications. At present, MPTCP does not provide
corresponding tools and interfaces to meet the above requirements. A subflow’s information
is stored in the corresponding struct sock in the kernel. Currently, the only way provided
by MPTCP to obtain the information of a subflow is to call the getsocketopt API in the
application using the MPTCP connection, which does not meet the goal of being transparent
to applications. For setting CCAs for subflows, although Hesmans et al. [55] proposed to add
socket options to use the setsocketopt API to set the congestion control algorithm individually
for each subflow, this proposal is not transparent to applications and implemented in any
existing MPTCP version. Second, after having the above framework, how to choose an
appropriate congestion control algorithm for subflows based on the collected data is also a
very challenging problem. The relationship between the network environment reflected by
the information of a subflow and its suitable congestion control algorithm is very complicated,
and there is currently no clear guidance on the rules to map the subflow information to a
suitable congestion control algorithm.

5.3 The core ideas

First, we consider how to design and implement the multipath congestion control algo-
rithm selection framework. A complete multipath congestion control algorithm selection
framework should include two parts of functions, namely, collecting the information of sub-
flows to provide input for the selection of CCAs, and providing interfaces for the adjustment
of the CCA of a subflow at runtime. To make the framework transparent to applications
and extensible, it is necessary to reduce the modification in MPTCP kernel as much as
possible, and avoid any modification on the socket interfaces of MPTCP. According to the
above requirements, we consider building a multipath congestion control algorithm selection
framework based on eBPF, because eBPF allows to monitor various types of information in
the kernel safely and efficiently, modify the data structure in the kernel, and flexibly configure
the network protocol stack in the kernel [11, 60, 87] without modifying and recompiling the
kernel.

For collecting subflow information, the eBPF-based BCC [60] (BPF Compiler Collection)
framework can efficiently read the struct sock structure corresponding to each subflow in the
kernel in user space without any modification to the application. For the adjustment of the
congestion control algorithm of a subflow, TCP-eBPF [11] can be used, which is application
transparent and only needs to add a small number of hooks in the kernel. Based on the
above design, the decision-making part of the congestion control algorithm selection can be
completely implemented in user space, enabling it to use a rich software tool library, and the

5.4 Design and implementation 99

subsequent modification and expansion of this part can be completely independent of the
kernel. It is worth noting that, based on the existing MPTCP implementation in the kernel,
the structure of struct sock corresponding to each subflow does not include information about
whether the subflow shares a common bottleneck link with other subflows. To solve this
problem, MPTCP-SBD [36] can be used to implement shared bottleneck link detection of
subflows in the kernel, and then save the state in struct sock. To sum up, in order to realize
the framework, only a small amount of code with fixed functions needs to be added to the
kernel, and the rest can be independent of the kernel. Therefore, the framework has good
extensibility and deployability.

Secondly, as mentioned above, the relationship between the network environment re-
flected by the information of a subflow and the congestion control algorithm it is suitable for
is very complicated. Therefore, it is considered to introduce ML techniques to capture the
relationship between them, and let ML models to choose the appropriate congestion control
algorithm for each subflow based on the subflow information provided by the framework.
However, simply using ML models leads to the problem that multipath fairness can not be
satisfied. Therefore, for situations where multipath fairness needs to be satisfied, that is, when
subflows share a bottleneck link, artificial rules are adopted to select coupled congestion
control algorithms for them.

Finally, the above two parts are integrated into a complete system MPTCP-SSCC to
realize the data-driven multipath congestion control algorithm selection mechanism.

5.4 Design and implementation

This section will elaborate the design and implementation of the MPTCP-SSCC system.
First, it explains how the overall architecture of the whole system is designed. Then, in the
next few sections, the design of each module in the system is explained respectively. Finally,
it is briefly explained how the system is implemented.

5.4.1 System overview

The overall architecture of the entire system is shown in Figure 5.3. The system includes
four main modules: (1) the Dynamic Coupling Module based on the SBD (Shared Bottleneck
Detection) algorithm [36] to detect if subflows share a common bottleneck link; (2) the
Data Collection Module based on eBPF-BCC [60] to collect the information of subflows;
(3) the CC (Congestion Control) Selection Module to dynamically predict and select the
CCAs of subflows in a data-driven way; (4) the CC Switch Module based on TCP-eBPF [11]

100 Data-driven dynamic selection of multipath CCAs

to enforce selected CCAs of subflows in kernel. Among them, except for the CC Switch
Module, the remaining modules together constitute the eBPF-based multipath congestion
control algorithm selection framework.

Figure 5.3 The architecture of MPTCP-SSCC

The workflow of the whole system is as follows:

• First, when an MPTCP subflow is established, it belongs to the uncoupled group. During
the lifetime of the MPTCP connection, the Dynamic Coupling Module dynamically
adjusts each subflow to the coupled or uncoupled group via the SBD algorithm;

• The Data Collection Module periodically reports the grouping state and performance
statistics of each subflow to the user space;

• The CC Selection Module reads the data of each subflow, and then predicts the most
suitable congestion control algorithm for each subflow in the following period of time
through artificial rules and ML models; in addition, this module also stores the data of
each subflow for training and retraining ML models;

• The decisions made by the CC Selection Module (i.e. the congestion control algorithm
predicted for each subflow) are forwarded to the CC Switch Module, which passes these
decisions to kernel space and calls the corresponding eBPF APIs to enforce the selected
CCAs on each subflow.

5.4 Design and implementation 101

5.4.2 Dynamic Coupling Module

The Dynamic Coupling Module mainly adopts the approach in MPTCP-SBD [36]. The
core idea is that if multiple subflows pass through the same bottleneck link, the queuing
situation that they experience is similar. As the queuing situation can be reflected by one-way
delay (OWD), the temporal shapes of the OWDs of subflows that share a common bottleneck
link should have a certain similarity. Then, it is possible to split subflows into different groups
based on whether they have the similarity in the temporal shape of OWDs. The flowchart of
the entire module is shown in Figure 5.4.

Figure 5.4 The diagram of Dynamic Coupling Module

As the step ① in Figure 5.4 shows, on the sender side, the Dynamic Coupling Module
adds the MPTCP Timestamp option that records a packet’s sending time to every packet.
Therefore, the sending time of every packet can be received by the MPTCP receiver. In
addition, the L field in the MPTCP timestamp option incrementally updates the packet loss
information from the sender to the receiver, so that the receiver can calculate the sender’s
loss rate of each subflow.

On the MPTCP receiver side, the Dynamic Coupling Module calculates OWDs by parsing
the MPTCP timestamp options carried by packets to get the sending time of packets and
computing the difference between the local time and the sending time. Using the collected
OWD samples, the statistical features of the OWD of a subflow that reflects the temporal
shape of OWDs are calculated (the step ② in Figure 5.4). The way of calculating these
statistical features refers to RFC-8382 [50], which is explained by Equation (5.1) – (5.7).
In Equation (5.1), OWDc represents an OWD sample obtained in the k-th measurement
interval with duration T , Ck represents the number of samples obtained in this measurement
interval, and OWDk is the average OWD of the k-th measurement interval. By recording the
data collected for the last N measurement intervals, Equation (5.2) is used to estimate the
long-term average OWD. Next, using the collected OWD-related data, three key statistical

102 Data-driven dynamic selection of multipath CCAs

features need to be estimated: skewness, variability, and frequency, which are defined by
Equation (5.3) – (5.4), Equation (5.5) – (5.6), and Equation (5.7). Here, the frequency
indicates the average times of that the short-term average of OWD (OWDk) deviates from
the long-term average (OWD) by more than a certain threshold (p_v×var_est). Figure 5.5
gives an example of how the frequency is calculated. It should be noted that the Dynamic
Coupling Module calculates the relevant statistical features at the end of each measurement
interval, and uses the results for the SBD grouping algorithm. That is, a grouping decision is
made once at the end of every measurement interval with duration T .

OWDk =
∑

Ck
c=1 OWDc

Ck
(5.1)

OWD =
∑

N
k=1 OWDk

N
(5.2)

skew_basek =
Ck

∑
c=1

[OWDc < OWD]−
Ck

∑
c=1

[OWDc > OWD] (5.3)

skew_est = ∑
N
k=1 skew_basek

∑
N
k=1Ck

(5.4)

var_basek =
Ck

∑
c=1
|OWDc−OWDk−1| (5.5)

var_est = ∑
N
k=1 var_basek

∑
N
k=1Ck

(5.6)

freq_est =
number_of_crossing

N
(5.7)

After obtaining the OWD-related statistical features of subflows each time, the MPTCP
receiver makes a grouping decision for subflows by comparing the similarity of these
statistical features of the subflows (the step ③ in Figure 5.4). The specific grouping algorithm
adopts the basic algorithm in RFC-8382 [50], as shown in Figure 5.6. The algorithm
eventually divides the subflows into several different groups. Among them, the subflows in
the non-congested group and the subflows that belong to a group with only one member are
considered to not share a common bottleneck link with other subflows. Because the network
conditions and bottleneck link congestion levels may fluctuate, the result of a single grouping
decision may also change over time. Therefore, the Dynamic Coupling Module records the
latest D grouping decision results (D = 10), and selects the most popular grouping decision

5.4 Design and implementation 103

Figure 5.5 An example of frequency calculation: freq_est = 2 / 5

(the decision appeared in more than half of the recent D decisions) as the final subflow
grouping result. It should be noted that since the OWD-related statistical features used by
the grouping algorithm do not depend on the absolute value of OWD, it is not necessary to
perform high-precision clock synchronization on the sender and receiver.

Figure 5.6 The SBD grouping algorithm: p_* are parameters of the algorithm, and PB
indicates if a subflow does NOT belong to the non-congested group in a previous grouping
decision

After the grouping state is updated, the MPTCP receiver synchronizes the grouping infor-
mation to the MPTCP sender through the MPTCP Group option (the step ④ in Figure 5.4).
The grouping information mainly includes group ID and flow ID, which indicates which

104 Data-driven dynamic selection of multipath CCAs

subflow belongs to which group. It should be noted that all the subflows belonging to the
non-congested group have the same reserved default group ID.

After the MPTCP sender receives the grouping information, it assigns the subflows in the
non-congested group and the subflows that belong to a group with only one member to the
uncoupled group, and asssigns all other subflows into the coupled group (the step ⑤ and ⑥

in Figure 5.4).
For the parameters related to the SBD algorithm, we adopt the same values as MPTCP-

SBD [36], as shown in Table 5.1.

Table 5.1 The parameters of SBD algorithm [36]

T(ms) N c_s c_h p_f p_s p_v p_mad p_d p_l
350 50 -0.01 0.3 0.1 0.1 0.7 0.1 0.1 0.1

5.4.3 Data Collection Module

Figure 5.7 Data Collection Module

The Data Collection Module is shown in Figure 5.7. When each subflow of the sender
receives a TCP ACK (tcp_ack), it will trigger the eBPF program based on BCC [60] in the
kernel to collect relevant information of the corresponding subflow, such as the four-tuple
composed of source/destination IP and source/destination port, RTT, the number of lost
packets, sending rate, the group that the subflow belongs to (coupled or uncoupled), and etc.
The information is then reported to the Data Processor sub-module in user space through
eBPF for further processing. The Data Processor records the per-ACK subflow information,

5.4 Design and implementation 105

and then aggregates the per-ACK subflow information for N consecutive ACKs to generate
a performance summary over the period of N ACKs (Data Unit). The specific information
contained in the Data Unit is shown in Table 5.2, including the four-tuple of the subflow,
whether the subflow belongs to a coupled group, throughput, packet loss rate, delay, and the
timestamp when the Data Unit is generated.

Table 5.2 The structure of Data Unit

Field Description
SF 4-tuple The (sip, sport, dip, dport) tuple of a subflow
is_coupled The latest is_coupled collected in this period

ts The timestamp of generating this summary
tput The average delivery rate of this period
loss The loss rate of this period

delay The average packet delay of this period
delaymin The minimum value of delay so far
tputmax The maximum value of delivery rate so far

It should be noted that the reason for using N consecutive ACKs as the time interval for
computing the subflow performance summary rather than a fixed time interval is that the
RTTs of different subflows may vary greatly. Therefore, a fixed time interval may be too
large or too small for different subflows. When the system is actually deployed, the value of
N will affect the computational overhead and the timeliness of switching congestion control
algorithms. We refer to the settings in Antelope [152] to set the default value of N to 20 for a
good balance between computational overhead and the timeliness of switching congestion
control algorithms.

5.4.4 CC Selection Module

The CC Selection Module is shown in Figure 5.8, which contains two sub-modules: (1)
Training Data Collector; (2) Prediction Model.

The specific workflow of the Training Data Collector is as follows. First, for the n-th Data
Unit of a subflow, DUn, the Training Data Collector calculates the transport performance score
(Reward) of the CCA used by the subflow within the duration of this Data Unit. It should
be noted that the Reward calculated according to DUn reflects the transport performance of
the congestion control algorithm selected at DUn−1, so it is Rn−1 instead of Rn (i.e. the score
of the CCA selected at the beginning of the duration of DUn using the data from DUn−1).
Then, the module stores the data in the format of {DUn, CC, Rn} (meaning that according to
the current state DUn, selecting CC as the congestion control algorithm of the subflow for
the next period of Data Unit gets the performance score of Rn). It should be noted that if

106 Data-driven dynamic selection of multipath CCAs

the subflow corresponding to DUn belongs to the coupled group at that time, the Prediction
Model will inevitably select a coupled congestion control algorithm for it (see below), so
there is no need for collecting data related to DUn.

Figure 5.8 Congestion Control Selection Module

The specific way of Reward calculation refers to the literature [2, 152], as shown in
Equation (5.8) and Equation (5.9). In Equation (5.8), R is an item based on Power [42]. Its
intention is to maximize throughput, minimize packet loss rate (loss) and delay, where R max

is the maximum Power achieved by the subflow so far and is used to normalize R. It should
be noted that the denominator in the R item does not directly use the delay but uses the delay′

defined by Equation (5.9). The main reason is that it allows the delay to exceed the minimum
delay a bit for probing the maximum bandwidth. Therefore, in this case, the penalty on
Reward caused by this part of the extra delay needs to be excluded [2]. In Equation (5.8) and
Equation (5.9), the two parameters ζ and β adjust the sensitivity of Reward to packet loss
and delay, respectively. They are set to 5 and 1.25, respectively, based on empirical values in
the literature [2].

Reward =
R

Rmax
=

(
tput−ζ × loss

delay′

)
/

(
tputmax
delaymin

)
(5.8)

delay′ =

{
delaymin (delaymin ≤ delay≤ β ×delaymin)

delay otherwise
(5.9)

In the Prediction Model, the congestion control algorithm selection of subflows is similar
to a multi-classification problem. We use a hybrid approach which combines artificial rules

5.4 Design and implementation 107

Algorithm 4: Subflow-level prediction algorithm

Input :a data_unit of a subflow
Output : the predicted CC for the next decision period

1 Function predict_at_subflow_level (DUn) :
2 if DUn.is_coupled == true then
3 return “olia∗”
4 rewardmax←− 0
5 predicted_cc←− None
6 for CC in list_of_available_CCs do
7 R̂←−MCC(DUn)
8 if R̂ > rewardmax then
9 predicted_cc←− CC

10 rewardmax←− R̂

11 return predicted_cc

and ML models to solve the above multi-classification problem. First of all, if the current
input DUn indicates that the subflow currently belongs to a coupled group, it is necessary to
select a coupled CCA for it in order to achieve the multipath fairness. Therefore, OLIA [67]
is selected as the output for this case1. If DUn indicates that the subflow belongs to an
uncoupled group, for the consideration of transport performance, it is necessary to select an
uncoupled congestion control algorithm suitable for the current network environment for this
subflow. Since there are many types of congestion control algorithms to choose from, and
the relationship between network environments and the suitable CCAs is very complicated,
we use ML to do the job. Specifically, for each congestion control algorithm candidate, CC,
a model MCC needs to be trained to output the predicted Reward, R̂, given the input DUn.
Then, in the prediction stage, for a given input, we compare the outputs of all models, and
select the CC corresponding to the model with the largest output Reward as the prediction
result. A pseudocode description of the above process is presented in Algorithm 4. The
details of the way to train the ML models will be introduced in 5.4.6.

For the Prediction Model, in addition to the selection of congestion control algorithms
during the operation of subflows, it is also necessary to consider the selection of congestion
control algorithms during the initialization of subflows, which is crucial for improving
the performance of short flows. Since there is no data to generate Data Unit when the
subflow is just established, the aforementioned method can not be used to predict which
congestion control algorithm should be used. In order to solve this problem, we add a

1We made a slight change to the original OLIA algorithm, i.e., only all subflows belonging to the coupled
group are considered when calculating the window growth factor. So in Figure 5.8, we use olia∗ instead of olia.

108 Data-driven dynamic selection of multipath CCAs

destination IP prefix2 based mechanism to predict the initial congestion control algorithms
for subflows. This destination IP prefix-based prediction mechanism calculates the weight of
each congestion control algorithm for each IP prefix that has appreared based on the historical
data generated by the aforementioned ML-based prediction mechanism. Then it outputs the
congestion control algorithm with the highest weight for a given IP prefix. The weight update
algorithm is shown in Algorithm 5, where α is an attenuation coefficient (0 < α < 1) to
gradually reduce the proportion of historical weights in the total weight calculation. As such,
it is more inclined to assign a higher weight to the most recently selected congestion control
algorithm to better adapt to the recent network environment. It should be noted that Zhou et
al. [152] adopted a similar approach to predict the initial congestion control algorithm for
single-path TCP connections.

Algorithm 5: CC prediction for a given IP prefix

Input : ip_prefix: destination IP masked by 0xFFFFFF00
predicted_cc: the output of predict_at_subflow_level(DUn)

Output : the predicted CC for the given ip_prefix
1 Function predict_at_ip_prefix_level (ip_prefix, predicted_cc) :

// Initialization for unseen IP prefixes
2 if ip_prefix not in cc_weight_map then
3 cc_weight_map[ip_prefix] = {CC1:0, CC2:0, CC3:0, ...}
4 weight_map←− cc_weight_map[ip_prefix]

// Reduce the weight of old data
5 for CC in list_of_available_CCs do
6 weight_map[CC]←− weight_map[CC] × α

// Increase the weight of the predicted_cc
7 weight_map[predicted_cc]←− weight_map[predicted_cc] + 1

// Return the CC with the maximum weight
8 return argmaxCC(weight_map)

To briefly summarize the function of the Prediction Model, for each Data Unit, it predicts
the congestion control algorithm that should be selected in the next Data Unit period of the
subflow (the SF_CC in Figure 5.8), and outputs the recently most used congestion control
algorithm (the IP_CC in Figure 5.8) for the destination IP prefix corresponding to the Data
Unit. Then, these results will be passed to the CC Switch Module (see § 5.4.5).

2If the sender has multiple network interfaces and source IP addresses, we can encode the low bits of source
IP addresses in the low bits of IP prefixes to handle the situation where different source IP addresses correspond
to one destination IP address. As we deploy the system on servers that usually have only one source IP address,
only the IP prefix is used.

5.4 Design and implementation 109

5.4.5 CC Switch Module

Figure 5.9 Congestion Control Switch Module

The CC Switch Module is shown in Figure 5.9, which mainly includes the Decision
Receiver running in user space and the eBPF-based congestion control algorithm setting
sub-module running in kernel space (eBPF-based CC Setter). After the Decision Receiver
sub-module receives the output of the CC Selection Module (§ 5.4.4), it will pass it to the
eBPF-based CC Setter through ebpf_hash_map. For each subflow, the eBPF-based CC Setter
is called when the subflow is established (tcp_init_transfer). At this time, the eBPF-based
CC Setter looks up the IP prefix-based congestion control algorithm table to find the initial
congestion control algorithm for the subflow. If the search fails, the default initial congestion
control algorithm (e.g. Cubic [107]) is set for the subflow. After the subflow is established,
the eBPF-based CC Setter is called every time when it receives a TCP ACK (tcp_ack) to
set the CCAs of subflows based on the four-tuple-based CCA table. When a subflow is
closed (tcp_close), the eBPF-based CC Setter is also called. At this time, it deletes the entry
corresponding to the subflow in the four-tuple-based CCA table.

5.4.6 System implementation

We implement the system on the Linux platform based on MPTCP v0.95 (the kernel
version is Linux 4.19). The Dynamic Coupling Module is directly implemented in the kernel.
The Data Collection Module is a Python program based on the BCC framework [60]. The
CC Switch Module is implemented based on TCP-eBPF [11] and two hooks of tcp_bpf_call
are added to the two kernel functions, tcp_ack and tcp_close. The CC Selection Module is
implemented in userspace as a Python program.

110 Data-driven dynamic selection of multipath CCAs

In the above implementation, except for the Dynamic Coupling Module and the added
tcp_bpf_call hooks, the modifications and extensions of other parts do not need to recompile
the kernel. Since the Dynamic Coupling Module and the added tcp_bpf_call hooks are
relatively stable, almost no modifications are needed. Therefore, the system has good
extensibility. In addition, it should be emphasized that we do not make any changes to the
socket interfaces, and the whole system is transparent to applications. Therefore, any legacy
applications using MPTCP can use this system without any modification.

To implement the ML models in the CC Selection Module (see § 5.4.4), we use the
XGBoost [133] algorithm. The main reason for choosing XGBoost is that the decision
tree has advantages in interpretability and lower training complexity compared with some
algorithms based on Deep Neural Network, which is more practical for the actual deployment
of the system. It should be noted that the congestion control algorithm selection framework
also supports replacing XGBoost with other types of ML or Deep Learning (DL) algorithms.
In terms of congestion control algorithm selection, six representative congestion control
algorithms are selected as candidates, as shown in Table 5.3. It should be noted that this
system is not limited to these congestion control algorithms, and any other congestion control
algorithms implemented in Linux can be easily integrated into this system.

Table 5.3 The list of congestion control algorithm candidates

CC Category Performance Objective
BBR [16] model-based high speed, low delay, and resilient to losses

Cubic [107] loss-based high speed in long-fat networks (with low loss rates)
Vegas [12] delay-based low delay
C2TCP [1] loss-based high speed and low delay in cellular networks

Westwood [19] loss-based high speed in wireless networks
Illinois [80] delay/loss-based high speed and low delay

In terms of training the XGBoost models, an iterative approach is used. When no training
data has been collected in the first place, the prediction mechanism in the CC Selection
Module is disabled, and the congestion control algorithm to be used by the subflow is
randomly selected from Table 5.3 upon the establishment of the MPTCP connection. By this
way, the initial training data for a particular congestion control algorithm can be obtained
without the Prediction Model. Then, the initial XGBoost models for every CCA is trained
with the initial training data. After the initial models are obtained, they are integrated into
the CC Selection Module, and the Prediction Model is enabled, allowing the initial models
to complete the selection of the congestion control algorithm. At this stage, we continue
to collect training data for later retraining of the models. It should be noted that the above-

5.5 Evaluation 111

mentioned iterative training process can be repeated, and the models can be continuously
optimized and improved.

During the training of the initial model, a testbed based on the Mahimahi multipath
extension [26, 106] (described in § 5.5.1) is used to emulate various network environments.
In these environments, all the congestion control algorithms in Table 5.3 are used for the
collection of initial training data. Specifically, at this stage, according to the parameters
listed in Table 5.4, 200 different network environments are randomly generated. In each
environment, for each CCA, a 30 s MPTCP connection is repeatedly launched 5 times for
data transfer.

Table 5.4 The parameters of network environments used in the initial model training phase

Bandwidth (Mbps) RTT (ms) Buffer (MB) Loss Rate (%) Background Traffic (MB)
5 – 100 20 – 400 0.1 – 50 0 – 2 0.1 – 50

In the iterative model training phase, 50 network traces in the real environment were
collected by using saturatr [131] and ping. We used these traces with the testbed based on
the Mahimahi multipath extension to emulate various real network environments. These
network traces include the bandwidth, packet loss rate, and delay of each path when using
"cellular + WiFi" or "cellular + cellular" to transmit data. For each network trace, 5 different
background flow sizes were randomly generated from 0.1 - 50 MB. Therefore, we finally got
250 configurations. Then, for each configuration, we repeated the MPTCP data transmission
of 30 s 5 times to obtain new training data. After the training data was acquired, the training
data collected in the initial stage and the training data collected in this stage were combined,
and the XGBoost model of each congestion control algorithm was retrained. Finally, the
model obtained at this stage was used in the system for subsequent experimental evaluation.

5.5 Evaluation

This section describes the evaluation of the system. First, the environment used for
the evaluation is introduced. Next, the multipath fairness, congestion control algorithm
switching, transport performance, and system overhead are evaluated in detail.

5.5.1 Testbed

In this section, three types of testeds are used to complete the evaluation of different
aspects of the system.

112 Data-driven dynamic selection of multipath CCAs

The first is a testbed based on Mininet [88]. This testbed can emulate different network
topologies, and set the link bandwidth, delay, packet loss rate and routers’ buffer size through
tc-netem [53], so it is mainly used to evaluate multipath fairness. We deployed the first
testbed on an Alibaba Cloud server with an 8-core Intel Xeon Platinum CPU, 32 GB memory,
a Ubuntu 18.04 that uses a modified Linux MPTCP v0.95 kernel with the Dynamic Coupling
Module and tcp_bpf_call hooks in tcp_ack and tcp_close implemented. Hereafter, we refer
this MPTCP kernel as MPTCP-SSCC kernel.

The second is a testbed based on the Mahimahi multipath extension [26, 106], as shown
in Figure 5.10. This testbed mainly provides an environment for a client to communicate
with a server through two emulated independent network paths. In addition to setting fixed
network bandwidth, delay, packet loss rate and routers’ buffer size, it also supports to replay
dynamically changing network bandwidth traces collected from real networks, which can
better emulate real network environments. In addition, background traffic can be injected on
two paths by using TCP to transmit files of a certain size on a certain path. These background
TCP flows use Cubic [107] as the congestion control algorithm. We deployed this testbed on
the same cloud server used by the first testbed. We mainly use it to collect training data (see
§ 5.4.6) and evaluate the performance gain of MPTCP-SSCC in non-shared bottleneck link
scenarios.

Figure 5.10 The testbed based on the multipath extension of Mahimahi

The third is a testbed based on real devices, as shown in Figure 5.11. In this testbed, the
client is a laptop whose operating system is Ubuntu 18.04 using the MPTCP-SSCC kernel,
and the server is an Alibaba Cloud server where the first two testbeds are deployed. The client
can connect to the MPTCP server in two ways: “cellular + cellular” or “cellular + WiFi”.
Note, the cellular interfaces of the laptop are provided by tethering smartphones to the laptop
via USB and both smartphones support 5G access. We mainly use this testbed to evaluate the
performance of the MPTCP-SSCC system in real network environments. Different from the
testbed based on the Mahimahi multipath extension, in the real environments, subflows on
different paths may share a common bottleneck link.

5.5 Evaluation 113

Figure 5.11 The testbed based on real devices

5.5.2 Multipath fairness

First, we evaluate if MPTCP-SSCC is able to implement multipath fairness. Here,
two scenarios are considered, namely, the static bottleneck link scenario and the dynamic
bottleneck link scenario.

In the static bottleneck link scenario, the network topology is shown in Figure 5.12. In
this scenario, an MPTCP client accesses the network through M network interfaces and
connects to an MPTCP server with a single network interface, so an MPTCP connection will
create M subflows for data transmission. In addition, there are a pair of TCP client and server,
the TCP connection between them will share the bottleneck link between R1 and R2 with the
MPTCP connection. The MPTCP-SSCC system is deployed on the MPTCP server, and the
bandwidth of the bottleneck link is set to 40 Mbps, the RTT is set to 40 ms, the packet loss
rate is set to 0%, and the router’s buffer size is set to η× BDP.

Figure 5.12 The network topology of the static bottleneck link scenario

First, the multipath fairness of the MPTCP-SSCC system is evaluated under the conditions
of M = 2 and η = 2. Here, an MPTCP connection is initiated on the MPTCP client to
download data from the MPTCP server. The duration of the connection is 180 s. At 20 s,
a TCP connection is initiated on the TCP client to download data from the TCP server. In
the experiment, the congestion control algorithm of each subflow of MPTCP connection is
automatically selected by the MPTCP-SSCC system, and the congestion control algorithm of
TCP connection is NewReno [54]. The experimental results are shown in Figure 5.13. It can
be observed that after the TCP connection is started, the MPTCP connection is able to give

114 Data-driven dynamic selection of multipath CCAs

up bandwidth and fairly share the available bandwidth of 40 Mbps with the TCP connection.
This shows that MPTCP-SSCC can successfully detect the situation where subflows share a
common bottleneck link, and select the coupled congestion control algorithm, OLIA [67], to
achieve multipath fairness.

0 50 100 150
Time (s)

0

10

20

30

40

Tp
ut

. (
M

bp
s) MPTCP-SSCC TCP

Figure 5.13 The bandwidth sharing result in the static bottleneck link scenario

Further, by changing the values of M and η , the above experiments are repeated to
evaluate the influence of the number of subflows and the router’s buffer size on multipath
fairness. Here, Jain’s Fairness Index [37] (F) is used as the measure of multipath fairness. F

is calculated as F = (∑n
i=1 Ti)

2/(n×∑
n
i=1 T 2

i), where Ti represents the average throughput
of MPTCP connections or TCP connections, and the closer the value of F is to 1, the better
the fairness. It is worth noting that F is calculated using the average throughput after the
bandwidth contention has converged (i.e. 120 – 180 s). The experimental results are shown
in Figure 5.14 and Table 5.5. In Figure 5.14, the number of subflows is fixed to 2, and in
Table 5.5, the router’s buffer size is fixed at 2× BDP. It can be observed that MPTCP-SSCC
can correctly detect if subflows share the same bottleneck link under different buffer sizes
and different numbers of subflows, and select the OLIA algorithm for subflows to satisfy
multipath fairness.

50
75

100

 (%
)

1 2 4 8 16 32
Buffer Size (# of BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s) MPTCP-SSCC

TCP

Figure 5.14 The impact of buffer size on multipath fairness in the static bottleneck link
scenario

5.5 Evaluation 115

Table 5.5 The impact of subflow number on multipath fairness in the static bottleneck link
scenario

of SF 2 3 4 5 6
F (%) 96.33 93.55 91.21 92.48 88.78

In the dynamic bottleneck link scenario, the network topology is shown in Figure 5.15.
Here, the MPTCP client accesses the network through M paths and communicates with the
MPTCP server. On each path, there is a corresponding TCP client and server pair to compete
for bandwidth with the subflow on the path. Here, the bandwidth of the LS link is set to
50 Mbps, the RTT is set to 40 ms, the packet loss rate is set to 0%, and the router’s buffer
size is set to η×BDP (here, 40 Mbps is used for BDP calculation). For link L1 – LM, the
bandwidth is set to 40/M Mbps. With the above setup, it is possible to inject UDP traffic on
the LS link to shift the bottleneck link of the network from L1 – LM to LS.

Figure 5.15 The network topology of the dynamic bottleneck link scenario

First, in the dynamic bottleneck link scenario, the multipath fairness of the MPTCP-SSCC
system is also evaluated under the conditions of M = 2 and η = 2. In this set of experiments,
an MPTCP connection is first initiated on the MPTCP client to download data from the
MPTCP server. The duration of the connection is 180 s, and then, at 20 s, in the download
direction of the LS link, 20 Mbps UDP traffic is injected to shift the bottleneck link to
LS. Afterwards, at 40 s, a TCP connection is created on each TCP client to download data
from its corresponding TCP server. In the experiments, the congestion control algorithm
of each subflow is automatically selected by the MPTCP-SSCC system, and the congestion
control algorithm of TCP connection is NewReno [54]. The experimental results are shown
in Figure 5.16. It can be observed that when the bottleneck link changes, the MPTCP-SSCC
system can still detect the situation that the subflows share the same bottleneck link, and then
select the OLIA congestion control algorithm to achieve multipath fairness.

116 Data-driven dynamic selection of multipath CCAs

0 50 100 150
Time (s)

0

10

20

30

40

Tp
ut

. (
M

bp
s) MPTCP-SSCC TCP1 TCP2

Figure 5.16 The bandwidth sharing result in the dynamic bottleneck link scenario

As in the static bottleneck link scenario, the influence of the number of subflows and
the router’s buffer size on the multipath fairness in the dynamic bottleneck link scenario
is evaluated by changing the values of M and η . The experimental results are shown in
Figure 5.17 and Table 5.6. In Figure 5.17, the number of subflows is fixed to 2, and in
Table 5.6, the router’s buffer size is fixed at 2× BDP. In the dynamic bottleneck link scenario,
it can also be observed that MPTCP-SSCC can correctly detect whether subflows share the
same bottleneck link under the conditions of different buffer sizes and different numbers of
subflows, and select the OLIA algorithm for subflows to satisfy multipath fairness.

50
75

100

 (%
)

1 2 4 8 16 32
Buffer Size (# of BDP)

0
10
20
30
40

Tp
ut

. (
M

bp
s) MPTCP-SSCC

TCP1
TCP2

Figure 5.17 The impact of buffer size on multipath fairness in the dynamic bottleneck link
scenario

Table 5.6 The impact of subflow number on multipath fairness in the dynamic bottleneck
link scenario

of SF 2 3 4 5 6
F (%) 92.29 90.31 90.97 87.15 85.44

5.5 Evaluation 117

5.5.3 The demonstration of CCA switching

In this section, on the testbed based on the Mahimahi multipath extension, it is demon-
strated that the MPTCP-SSCC system can indeed dynamically select the appropriate conges-
tion control algorithm for the subflow to improve the performance. The specific experimental
configuration is as follows. We use saturatr [131] to collect the cellular and WiFi bandwidth
trace. Then, we input the traces into the testbed to emulate a network environment with both
cellular and WiFi network access. The bandwidth trace of the cellular path and the WiFi
path is shown in Figure 5.18. For the cellular path, we set its RTT to 40 ms and the packet
loss rate to 0%. For the WiFi path, we set its RTT to 100 ms, and set its packet loss rate to
5% during 10 – 20 s and 0% during the rest of time. Then, the MPTCP-SSCC system is
deployed on the server, and an MPTCP connection is initiated from the client to download
data from the server. During this process, the instantaneous throughput of each subflow and
the congestion control algorithm used are recorded.

cubic
bbr

c2tcp
illinois

westwood
vegas

CCA

0 5 10 15 20 25 30
Time (s)

0

5

10

15

Tp
ut

. (
M

bp
s) Capacity Tput.

(a) Cellular path

cubic
bbr

c2tcp
illinois

westwood
vegas CCA

0 5 10 15 20 25 30
Time (s)

0

10

20

30

Tp
ut

. (
M

bp
s)

loss = 0% loss = 5% loss = 0%
Capacity Tput.

(b) WiFi path

Figure 5.18 The demonstration of CCA switching

The experimental results are shown in Figure 5.18. First, because the server where
the MPTCP-SSCC system is located has not accumulated any historical data before, its IP
prefix-based initial congestion control algorithm selection mechanism does not take effect.
Therefore, the initial congestion control algorithm for each subflow is the default Cubic
algorithm. Then, it can be observed that the MPTCP-SSCC system dynamically selects the
appropriate congestion control algorithm for the subflow. For the cellular path, the MPTCP-
SSCC system chooses the C2TCP algorithm most of the time because it can maintain high
throughput and low queuing delay in the case of frequent bandwidth changes. For the WiFi
path, it can be clearly observed that between 10 – 20 s, the MPTCP-SSCC system selects

118 Data-driven dynamic selection of multipath CCAs

the BBR algorithm that is more resilient to packet losses to avoid transport performance
degradation.

5.5.4 Performance evaluation in emulated networks

Next, we quantitatively evaluate the improvement in performance brought by MPTCP-
SSCC on the testbed based on the Mahimahi multipath extension. The CCAs for compar-
ison are coupled MPTCP congestion control algorithms, including LIA [105], OLIA [67],
BALIA [102], and wVegas [15], and a state-of-the-art learning-based multipath congestion
control algorithm, MPCC [43].

We use saturatr [131] and ping to collect 50 dual-path network traces (“cellular + WiFi”
or “cellular + cellular”) from real network environments. These traces include bandwidth
time-series, packet loss rate, and delay of each path. It should be noted that the 50 traces are
different from the 50 traces used to train the XGBoost models in the § 5.4.6.

In the above 50 network environments, we compare MPTCP-SSCC with LIA, OLIA,
BALIA, wVegas, and MPCC in short flow transmission (100 KB – 2 MB), long flow
transmission (5 MB – 50 MB), and mixed flow transmission (100 KB – 50 MB) scenarios.
Each time we randomly select the amount of data to be transmitted from the short flow or
long flow scenarios, and then randomly select the value in the range of 0.1 – 50 MB as the
size of the TCP background flow on the two paths. According to the above method, a total of
20 sets of test configurations (flow size and background flow size) in short-flow scenarios and
20 sets of test configurations in long-flow scenarios are generated. Finally, in each network
environment, for each test configuration, the transport performance of each congestion control
scheme is tested in random order and the process is repeated 5 times. It should be noted that
the MPTCP-SSCC system is deployed on the server, and the transmission direction of the
flow is the download direction. During the test, the total average throughput per transfer is
recorded, as well as the queuing delay of each packet on each path via the log files of the
Mahimahi multipath extension.

The experimental results are plotted in Figure 5.19, where the data of the mixed flow
scenario aggregate the data of the short flow and long flow scenarios. In Figure 5.19,
the X-axis shows the normalized packet queuing delay, the Y-axis shows the normalized
average throughput, the dots in the figure represent the normalized average throughput and
queuing delay, the tail of the line in the figure shows the normalized 95% percentile queuing
delay, and the ellipse shadow in the figure shows the standard deviation. The normalization
approach of each indicator is as follows. For throughput, under each test configuration in
each network environment, the average throughput of 5 tests for each congestion control
scheme is normalized to the maximum among them. For the average queuing delay, under

5.5 Evaluation 119

1123456789
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

MPCC
MPTCP-SSCC
balia

lia
olia
wvegas

(a) Short flows

1510152025
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

MPCC
MPTCP-SSCC
balia

lia
olia
wvegas

(b) Long flows

1246810121416
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

MPCC
MPTCP-SSCC
balia

lia
olia
wvegas

(c) Mixed flows

Figure 5.19 The performance comparison results in emulated network environments

each test configuration in each network environment, the average queuing delay (including
the queuing delay of all packets on both paths) of 5 tests for each congestion control
scheme is normalized to the minimum among them. For the 95th percentile queuing delay,
the normalization baseline is the same as that of the average queuing delay. Finally, the
normalized metrics of each congestion control scheme under all test configurations in all
network environments are averaged to obtain the results in Figure 5.19.

1246810121416
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

MPCC
MPTCP-SSCC
balia

lia
olia
wvegas

(a) Stationary scenarios

124681012141618
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

MPCC
MPTCP-SSCC
balia

lia
olia
wvegas

(b) Mobile scenarios

Figure 5.20 The performance comparison results in different types of emulated network
environments

There are several observations from Figure 5.19. First, due to the existence of Cubic
background flows, wVegas has disadvantages in competing bandwidth, so the throughput of
wVegas is generally low. Second, the performance of LIA, OLIA, and BALIA is close. Third,
the throughput MPCC is even lower than LIA, OLIA, and BALIA in short flow scenarios,
because the online learning method needs some time to startup [43]. Fourth, no matter in
short flow, long flow, or mixed flow scenarios, MPTCP-SSCC achieves good throughput
and delay. The main reason for the performance improvement is to decouple the subflows
when possible and dynamically select suitable congestion control algorithms for subflows.
In the mixed flow scenario, compared with LIA, OLIA, BALIA, and MPCC, the average

120 Data-driven dynamic selection of multipath CCAs

throughput of MPTCP-SSCC is increased by 21% – 32%, and the average queuing delay is
reduced by 3% – 28%.

Considering the network environment in mobile scenarios is usually more dynamic than
that in stationary scenarios, we further compare the results between staionary and mobile
scenarios. Figure 5.20a and Figure 5.20b show the mixed flow performance of MPTCP-SSCC
in staionary scenarios and in mobile scenarios. In staionary scenarios, compared with LIA,
OLIA, BALIA, and MPCC, MPTCP-SSCC improves the throughput by 18% – 26% in the
case of mixed flows. In mobile scenarios, compared with LIA, OLIA, BALIA, and MPCC,
MPTCP-SSCC improves the throughput by 26% – 38% in the case of mixed flows. The
above results show that the improvement of MPTCP-SSCC is more significant when the
network environment is more dynamic.

5.5.5 Performance evaluation in real networks

The emulated network environment in the testbed based on Mahimahi multipath extension
is the case where subflows do not share the same bottleneck link. In order to better evaluate
the performance of MPTCP-SSCC in the real environment where there may be a shared
bottleneck link between subflows, we conducted performance evaluation experiments on the
testbed based on real devices.

12468101214
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

MPCC
MPTCP-SSCC
balia

lia
olia
wvegas

(a) Short flows

15101520253035
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

MPCC
MPTCP-SSCC
balia

lia
olia
wvegas

(b) Long flows

1.02.55.07.510
.0

12
.5

15
.0

17
.5

20
.0

22
.5

Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

MPCC
MPTCP-SSCC
balia

lia
olia
wvegas

(c) Mixed flows

Figure 5.21 The performance comparison results in real network environments

A total of 10 different scenarios were considered in real-world environments including
being stationary or moving in the scenarios of residences, restaurants, outdoors, vehicles, and
subways. The types of dual-path network access include “cellular + cellular” or “cellular
+ WiFi”. Since there are background flows in real networks, we did not inject background
flows intentionally. The rest of the experimental setup is similar to that in subsection § 5.5.4.
It should be noted that in real environments, the queuing delay of each data packet can not be
accurately obtained. Therefore, we used tcpdump [118] to capture all of the packets during

5.5 Evaluation 121

data transfers, and then use the RTT of each packet minus the minimum RTT of the subflow
to which the packet belongs to estimate the queuing delay of each packet.

The experimental results are shown in Figure 5.21. In the figure, a similar conclusion
to that in subsection § 5.5.4 can be observed. In the mixed flow scenario, compared with
LIA, OLIA, and BALIA, the average throughput of MPTCP-SSCC is increased by 19% –
21%, and the average queuing delay is reduced by 13% – 21%. Compared with MPCC,
MPTCP-SSCC improves the average throughput by 25% in the mixed flow scenario, and
the average queuing delay is similar. In addition, Figure 5.22a and Figure 5.22b show
the performance comparison of mixed flows between MPTCP-SSCC and other schemes
in stationary and mobile scenarios, respectively. Compared with LIA, OLIA, BALIA and
MPCC, the throughput improvement of MPTCP-SSCC in stationary and mobile scenarios is
13% – 26% and 25% – 28%, respectively. Similar to the experimental results in the emulated
network environment in the previous subsection, this part of the experimental results further
verifies that MPTCP-SSCC can achieve more performance improvements when the network
environments are more dynamic.

1.02.55.07.510
.0

12
.5

15
.0

17
.5

20
.0

22
.5

Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

MPCC
MPTCP-SSCC
balia

lia
olia
wvegas

(a) Stationary scenarios

1510152025
Normalized queuing delay

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

Bett
er

MPCC
MPTCP-SSCC
balia

lia
olia
wvegas

(b) Mobile scenarios

Figure 5.22 The performance comparison results in different types of real network environ-
ments

5.5.6 System overhead

Finally, the overhead of the MPTCP-SSCC system is evaluated. The specific evaluation
method is as follows. First, we recorded the server’s system CPU and memory utilization
while conducting the performance experiments in § 5.5.4. Then, the average CPU and
memory utilization of MPTCP-SSCC and several traditional coupled congestion control
algorithms are calculated. Finally, normalized average CPU and memory utilization are
displayed in Figure 5.23. Here, the normalization is done by normalizing the average CPU
and memory utilization of all schemes to the minimum value among them. In Figure 5.23, it

122 Data-driven dynamic selection of multipath CCAs

can be observed that compared to using the traditional coupled congestion control algorithms,
MPTCP-SSCC only increases the CPU utilization by 7% at most, and the memory utilization
by 5% at most. The main source of extra overhead here is the CC Selection Module in
user space, because it needs to save the performance statistics related to subflows and
call the trained XGBoost models to predict the congestion used in the next decision cycle
for subflows. The performance overhead here has an impact on the maximum number
of concurrent MPTCP connections that the server can support. However, considering the
improvement in transport performance brought by MPTCP-SSCC, we believe that this part
of the system overhead is within an acceptable range.

olia balia lia wvegas
MPTCP-SSCC

1.0

1.1

1.2

1.3

No
rm

al
ize

d
ov

er
he

ad Avg. CPU utilization
Avg. memory utilization

Figure 5.23 The results of system overhead comparison

5.6 Conclusion

There are many opportunities in Mobile Internet to utilize multipath transport protocols to
improve transport performance. As an important component in multipath transport protocols,
the efficiency of congestion control is crucial to achieve good performance. To address
the problem that the existing multipath congestion control algorithms can not adapt to
the complicated, heterogeneous and dynamically changing network environment in Mobile
Internet scenarios under the premise of satisfying multipath fairness, resulting in performance
degradation, we propose a MPTCP-SSCC system to implement a data-driven multipath
congestion control algorithm selection mechanism. By sensing the network conditions of
subflows, the MPTCP-SSCC system dynamically adjusts the appropriate congestion control
algorithm for subflows in a data-driven approach, which can make the congestion control of
subflows more adaptable to the network environments while achieving multipath fairness.
The experimental results show that the MPTCP-SSCC system can select a coupled congestion
control algorithm for subflows when necessary to satisfy multipath fairness, and choose
appropriate independent congestion control algorithms for subflows in other cases. Compared

5.6 Conclusion 123

with the state-of-the-art multipath congestion control algorithms, MPTCP-SSCC improves
the average throughput by 19% – 25%, and reduces the average queuing delay by up to 21%.

Chapter 6

Conclusion

In the era of Mobile Internet, people hope to enjoy high-quality Internet services anytime
and anywhere. To meet this expectation, efficient network transport is essential. This paper
conducts an in-depth study of the transport mechanism in Mobile Internet, focusing on two
key parts that affect the transport performance, namely, the network access and the congestion
control of transport protocols, because the network access affects the upper bound of the
transport performance and the congestion control of transport protocols is a key factor in
determining whether the transmission capacity provided by the network access can be fully
utilized.

From the perspective of network access, users should consider all possible network access
opportunities and make full use of all of them to improve transport performance and reduce
costs [26, 93]. Since various network access types may be quite different, it is necessary
to measure their availability, transport performance, and network characteristics. These
measurement results are of great value for network access type selection and the optimization
of transport protocols and congestion control algorithms. From the perspective of congestion
control, whether single-path transport protocols or multipath transport protocols is used, it
is very challenging to implement efficient congestion control when the network quality is
highly dynamic due to the introduction of mobility in Mobile Internet. To this end, this
dissertation carries out the following three research work from the three aspects of network
access measurement, single-path congestion control, and multipath congestion control in
Mobile Internet, with the goal of improving transport performance.

1) WiFi performance measurement in mobile scenarios: Mobile users have the oppor-
tunity to utilize provider-managed WiFi networks in urban areas to supplement the transport
capabilities of cellular networks, thereby reducing transmission costs and improving overall
transport efficiency. However, so far, there is no relevant measurement research to measure
the availability, transport performance, and network characteristics of this type of access.

126 Conclusion

In order to fill this gap, we designed a measurement system based on in-vehicle devices
to measure and analyze the transport capabilities provided by the provider-managed WiFi
networks in mobile scenarios in four typical cities in Europe, Asia, and North America. In
addition, our measurement results have certain implications for AP selection, connection es-
tablishment process optimization, and the optimization of transport protocols and congestion
control algorithms.

2) An enhanced BBRv2 congestion control algorithm based on delay information: In
Mobile Internet scenarios, high jitter, high packet loss rates, and large bandwidth changes are
inevitable in the network. This dissertation starts from BBRv2 that has good TCP fairness
and resilience to packet losses to study how to implement efficient congestion control. For
this reason, we firstly compare and analyze BBR and BBRv2 through measurement, find the
problems of BBRv2 in dealing with the dynamic network conditions, and explain the reasons
for the problems. Then, we propose a new congestion control algorithm BBRv2+ based on
BBRv2, which adopts the bandwidth probing based on the delay information to enhance
the ability to follow bandwidth changes, and the window compensation mechanism based
on jitter to deal with the performance issue caused by high jitter. The experimental results
show that BBRv2+ improves the throughput by 25% in the mobile scenarios, compared with
BBRv2.

3) A data-driven multipath congestion control algorithm selection mechanism:
Many mobile devices currently support simultaneous access to multiple networks to enhance
transport performance using multipath transport protocols. However, the multipath network
environments usually face the problems of path heterogeneity and network quality dynamics,
which challenges the adaptability of congestion control algorithms to the environments.
To this end, we design a lightweight system MPTCP-SSCC to implement a data-driven
multipath congestion control algorithm selection mechanism, in which a combination of ML
and artificial rules is used to dynamically select appropriate congestion control algorithms for
subflows on different paths. In this way, MPTCP-SSCC can enhance transport performance
on the premise of satisfying multipath fairness. Compared with the traditional multipath
congestion control algorithms or the latest learning-based multipath congestion control
algorithm, the system can improve the average throughput by 19% – 25%, and reduce the
average queuing delay by up to 21%.

On the basis of the above research work, we will try to conduct research from the
following aspects in the future.

1) WiFi and cellular cooperative transmission optimization in mobile scenarios: In
this dissertation, we mainly measure the transmission capability provided by provider-
managed WiFi networks in mobile scenarios. The future plan is to study how to use

127

multipath transport protocols such as MPTCP and MPQUIC to use cellular and WiFi for
cooperative transmission. In this scenario, the connectivity provided by WiFi is highly
dynamic. Therefore, how to make multipath transport protocols to quickly utilize the
transmission capacity when WiFi is available and how to properly schedule data on cellular
and WiFi paths are challenging research problems.

2) Design and optimization of transport protocols with cross-layer information: In
this dissertation, we mainly optimize the transport performance from the perspective of the
transport layer. With the wide adoption of userspace protocol stacks such as QUIC [62] in
Mobile Internet scenarios, it has become a research trend to tightly integrate the require-
ments of applications and the design of transport protocols [99, 150]. Taking application
requirements into consideration is helpful for the on demand fine-grained control in transport
protocols, such as choosing aggressive or conservative congestion control strategies, different
packet loss recovery strategies, different network coding strategies, and different packet
scheduling strategies based on application requirements.

Bibliography

[1] Abbasloo, S., Xu, Y., and Chao, H. J. (2019). C2TCP: A Flexible Cellular TCP to Meet
Stringent Delay Requirements. IEEE Journal on Selected Areas in Communications,
37(4):918–932.

[2] Abbasloo, S., Yen, C.-Y., and Chao, H. J. (2020). Classic Meets Modern: A Pragmatic
Learning-Based Congestion Control for the Internet. In Proceedings of the Annual Con-
ference of the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication, pages 632–647,
Virtual Event USA. ACM.

[3] Abbasloo, S., Yen, C.-Y., and Chao, H. J. (2021). Wanna Make Your TCP Scheme Great
for Cellular Networks? Let Machines Do It for You! IEEE Journal on Selected Areas in
Communications, 39(1):265–279.

[4] Afanasyev, A., Tilley, N., Reiher, P., and Kleinrock, L. (2010). Host-to-Host Congestion
Control for TCP. IEEE Communications Surveys & Tutorials, 12(3):304–342.

[5] Aissaoui, H., Urien, P., and Pujolle, G. (2013). Low Latency of Re-authentication during
Handover - Re-authentication using a Signed Token in Heterogeneous Wireless Access
Networks:. In Proceedings of the 10th International Conference on Signal Processing
and Multimedia Applications and 10th International Conference on Wireless Information
Networks and Systems, pages 248–254, Reykjavík, Iceland. SCITEPRESS - Science and
and Technology Publications.

[6] Akamai (2017). Akamai Online Retail Performance Report: Milliseconds Are Critical.
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of
-online-retail-performance-report.

[7] Al-Saadi, R., Armitage, G., But, J., and Branch, P. (Fourthquarter 2019). A Survey of
Delay-Based and Hybrid TCP Congestion Control Algorithms. IEEE Communications
Surveys Tutorials, 21(4):3609–3638.

[8] Alizadeh, M., Greenberg, A., Maltz, D. A., Padhye, J., Patel, P., Prabhakar, B., Sengupta,
S., and Sridharan, M. (2010). Data Center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, pages 63–74, New York, NY, USA. ACM.

[9] Balasubramanian, A., Mahajan, R., and Venkataramani, A. (2010). Augmenting mobile
3G using WiFi. In Proceedings of the 8th International Conference on Mobile Systems,
Applications, and Services - MobiSys ’10, page 209, San Francisco, California, USA.
ACM Press.

https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report

130 Bibliography

[10] Beshay, J. D., Nasrabadi, A. T., Prakash, R., and Francini, A. (2017). Link-Coupled
TCP for 5G networks. In 2017 IEEE/ACM 25th International Symposium on Quality of
Service (IWQoS), pages 1–6.

[11] Brakmo, L. (2019). TCP-BPF: Programmatically tuning TCP behavior through BPF.
Technical report.

[12] Brakmo, L. and Peterson, L. (Oct./1995). TCP Vegas: End to end congestion avoidance
on a global Internet. IEEE Journal on Selected Areas in Communications, 13(8):1465–
1480.

[13] Bychkovsky, V., Hull, B., Miu, A., Balakrishnan, H., and Madden, S. (2006). A mea-
surement study of vehicular internet access using in situ Wi-Fi networks. In Proceedings
of the 12th Annual International Conference on Mobile Computing and Networking -
MobiCom ’06, page 50, Los Angeles, CA, USA. ACM Press.

[14] Cao, Y., Jain, A., Sharma, K., Balasubramanian, A., and Gandhi, A. (2019). When to
use and when not to use BBR: An empirical analysis and evaluation study. In Proceedings
of the Internet Measurement Conference, pages 130–136, Amsterdam Netherlands. ACM.

[15] Cao, Y., Xu, M., and Fu, X. (2012). Delay-based congestion control for multipath TCP.
In 2012 20th IEEE International Conference on Network Protocols (ICNP), pages 1–10,
Austin, TX, USA. IEEE.

[16] Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., and Jacobson, V. (2016). BBR:
Congestion-Based Congestion Control: Measuring bottleneck bandwidth and round-trip
propagation time. Queue, 14(5):20–53.

[17] Cardwell, N., Cheng, Y., Yeganeh, S. H., Jha, P., Seung, Y., Swett, I., Vasiliev, V., Wu,
B., Mathis, M., and Jacobson, V. (2019a). BBR v2: A Model-based Congestion Control
IETF 105 Update.

[18] Cardwell, N., Cheng, Y., Yeganeh, S. H., Swett, I., Vasiliev, V., Jha, P., Seung, Y.,
Mathis, M., and Jacobson, V. (2019b). BBR v2 A Model-based Congestion Control.

[19] Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M., and Wang, R. (2002). TCP West-
wood: End-to-End Congestion Control for Wired/Wireless Networks. Wireless Networks,
8(5):467–479.

[20] Chen, K., Shan, D., Luo, X., Zhang, T., Yang, Y., and Ren, F. (2020). One Rein to Rule
Them All: A Framework for Datacenter-to-User Congestion Control. In 4th Asia-Pacific
Workshop on Networking, APNet ’20, pages 44–51, New York, NY, USA. Association for
Computing Machinery.

[21] Chen, Y.-C., Lim, Y.-s., Gibbens, R. J., Nahum, E. M., Khalili, R., and Towsley,
D. (2013). A measurement-based study of MultiPath TCP performance over wireless
networks. In Proceedings of the 2013 Conference on Internet Measurement Conference,
pages 455–468, Barcelona Spain. ACM.

[22] Cheng Peng Fu and Liew, S. (2003). TCP Veno: TCP enhancement for transmission
over wireless access networks. IEEE Journal on Selected Areas in Communications,
21(2):216–228.

Bibliography 131

[23] Chitimalla, D., Kondepu, K., Valcarenghi, L., Tornatore, M., and Mukherjee, B. (2017).
5G fronthaul-latency and jitter studies of CPRI over ethernet. IEEE/OSA Journal of
Optical Communications and Networking, 9(2):172–182.

[24] De Coninck, Q. and Bonaventure, O. (2017). Multipath QUIC: Design and Evaluation.
In Proceedings of the 13th International Conference on Emerging Networking EXper-
iments and Technologies - CoNEXT ’17, pages 160–166, Incheon, Republic of Korea.
ACM Press.

[25] Deng, S., Netravali, R., Sivaraman, A., and Balakrishnan, H. (2014). WiFi, LTE, or
Both?: Measuring Multi-Homed Wireless Internet Performance. In Proceedings of the
2014 Conference on Internet Measurement Conference, pages 181–194, Vancouver BC
Canada. ACM.

[26] Deng, S., Sivaraman, A., and Balakrishnan, H. (2016). Delphi: A Software Controller
for Mobile Network Selection. Technical report.

[27] Deshpande, P., Hou, X., and Das, S. R. (2010). Performance comparison of 3G and
metro-scale WiFi for vehicular network access. In Proceedings of the 10th Annual
Conference on Internet Measurement - IMC ’10, page 301, Melbourne, Australia. ACM
Press.

[28] Dong, M., Li, Q., Zarchy, D., Godfrey, P. B., and Schapira, M. (2015). PCC: Re-
architecting congestion control for consistent high performance. In 12th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 15), pages 395–408,
Oakland, CA. USENIX Association.

[29] Dong, M., Meng, T., Zarchy, D., Arslan, E., Gilad, Y., Godfrey, B., and Schapira, M.
(2018). PCC Vivace: Online-Learning Congestion Control. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), pages 343–356, Renton,
WA. USENIX Association.

[30] Dong, P., Wang, J., Huang, J., Wang, H., and Min, G. (2016). Performance Enhancement
of Multipath TCP for Wireless Communications With Multiple Radio Interfaces. IEEE
Transactions on Communications, 64(8):3456–3466.

[31] Droms, R. (1997). Dynamic Host Configuration Protocol. Technical Report RFC2131,
RFC Editor.

[32] Du, Z., Zheng, J., Yu, H., Kong, L., and Chen, G. (2021). A unified congestion control
framework for diverse application preferences and network conditions. In Proceedings of
the 17th International Conference on Emerging Networking EXperiments and Technolo-
gies, CoNEXT ’21, pages 282–296, New York, NY, USA. Association for Computing
Machinery.

[33] Einav, Y. (2022). Amazon found every 100ms of latency cost them 1% in sales.
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-
in-sales.

https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales

132 Bibliography

[34] Eriksson, J., Balakrishnan, H., and Madden, S. (2008). Cabernet: Vehicular content
delivery using WiFi. In Proceedings of the 14th ACM International Conference on Mobile
Computing and Networking - MobiCom ’08, page 199, San Francisco, California, USA.
ACM Press.

[35] Esnet (2021). Esnet/iperf. https://github.com/esnet/iperf.

[36] Ferlin, S., Alay, O., Dreibholz, T., Hayes, D. A., and Welzl, M. (2016). Revisiting con-
gestion control for multipath TCP with shared bottleneck detection. In IEEE INFOCOM
2016 - The 35th Annual IEEE International Conference on Computer Communications,
pages 1–9, San Francisco, CA, USA. IEEE.

[37] Floyd, S. (2008). Metrics for the Evaluation of Congestion Control Mechanisms.
Request for Comments RFC 5166, Internet Engineering Task Force.

[38] Ford, A., Raiciu, C., Handley, M., and Bonaventure, O. (2013). TCP Extensions for
Multipath Operation with Multiple Addresses. Technical Report RFC6824, RFC Editor.

[39] Free (2022). Free. https://www.free.fr/freebox/.

[40] Gass, R., Scott, J., and Diot, C. (2006). Measurements of In-Motion 802.11 Networking.
In Seventh IEEE Workshop on Mobile Computing Systems & Applications (WMCSA’06),
pages 69–74, Orcas Island, WA, USA. IEEE.

[41] Gettys, J. and Nichols, K. (2012). Bufferbloat: Dark buffers in the internet. Communi-
cations of the ACM, 55(1):57–65.

[42] Giessler, A., Hänle, J., König, A., and Pade, E. (1978). Free buffer allocation — An
investigation by simulation. Computer Networks (1976), 2(3):191–208.

[43] Gilad, T., Rozen-Schiff, N., Godfrey, P. B., Raiciu, C., and Schapira, M. (2020). MPCC:
Online learning multipath transport. In Proceedings of the 16th International Conference
on Emerging Networking EXperiments and Technologies, pages 121–135, Barcelona
Spain. ACM.

[44] Gomez, J., Kfoury, E., Crichigno, J., Bou-Harb, E., and Srivastava, G. (2020). A
Performance Evaluation of TCP BBRv2 Alpha. In 2020 43rd International Conference
on Telecommunications and Signal Processing (TSP), pages 309–312, Milan, Italy. IEEE.

[45] Google (2021). Google/bbr. https://github.com/google/bbr/tree/v2alpha.

[46] Grieco, L. A. and Mascolo, S. (2004). Performance evaluation and comparison of
Westwood+, New Reno, and Vegas TCP congestion control. ACM SIGCOMM Computer
Communication Review, 34(2):25–38.

[47] Hadaller, D., Keshav, S., Brecht, T., and Agarwal, S. (2007). Vehicular opportunistic
communication under the microscope. In Proceedings of the 5th International Conference
on Mobile Systems, Applications and Services - MobiSys ’07, page 206, San Juan, Puerto
Rico. ACM Press.

[48] Han, J., Xue, K., Xing, Y., Li, J., Wei, W., Wei, D. S. L., and Xue, G. (2021). Leveraging
Coupled BBR and Adaptive Packet Scheduling to Boost MPTCP. IEEE Transactions on
Wireless Communications, 20(11):7555–7567.

https://github.com/esnet/iperf
https://www.free.fr/freebox/
https://github.com/google/bbr/tree/v2alpha

Bibliography 133

[49] Hassayoun, S., Iyengar, J., and Ros, D. (2011). Dynamic Window Coupling for
multipath congestion control. In 2011 19th IEEE International Conference on Network
Protocols, pages 341–352, Vancouver, AB, Canada. IEEE.

[50] Hayes, D., Ferlin, S., Welzl, M., and Hiorth, K. (2018). Shared Bottleneck Detection for
Coupled Congestion Control for RTP Media. Request for Comments RFC 8382, Internet
Engineering Task Force.

[51] Hayes, D. A., Welzl, M., Ferlin, S., Ros, D., and Islam, S. (2020). Online Identifi-
cation of Groups of Flows Sharing a Network Bottleneck. IEEE/ACM Transactions on
Networking, 28(5):2229–2242.

[52] He, B., Wang, J., Qi, Q., Sun, H., Liao, J., Du, C., Yang, X., and Han, Z. (2021).
DeepCC: Multi-Agent Deep Reinforcement Learning Congestion Control for Multi-Path
TCP Based on Self-Attention. IEEE Transactions on Network and Service Management,
18(4):4770–4788.

[53] Hemminger, S. (2021). Tc-netem(8) - Linux manual page. https://www.man7.org/linux
/man-pages/man8/tc-netem.8.html.

[54] Henderson, T., Floyd, S., Gurtov, A., and Nishida, Y. (2012). The NewReno Modifica-
tion to TCP’s Fast Recovery Algorithm. Technical Report RFC6582, RFC Editor.

[55] Hesmans, B., Bonaventure, O., and Duchene, F. (2018). A socket API to control
Multipath TCP. Internet Draft draft-hesmans-mptcp-socket-03, Internet Engineering Task
Force.

[56] Hock, M., Bless, R., and Zitterbart, M. (2017). Experimental evaluation of BBR
congestion control. In 2017 IEEE 25th International Conference on Network Protocols
(ICNP), pages 1–10.

[57] Huang, J., Qian, F., Guo, Y., Zhou, Y., Xu, Q., Mao, Z. M., Sen, S., and Spatscheck, O.
(2013). An in-depth study of LTE: Effect of network protocol and application behavior on
performance. ACM SIGCOMM Computer Communication Review, 43(4):363–374.

[58] Hubert, B. (2021). Tc(8) - Linux manual page. https://man7.org/linux/man-pages/man
8/tc.8.html.

[59] Huffaker, B., Fomenkov, M., Plummer, D. J., Moore, D., Claffy, K., et al. (2002).
Distance metrics in the Internet. In Proc. of IEEE International Telecommunications
Symposium (ITS).

[60] IO-Visor-Project (2022). BPF Compiler Collection (BCC). https://github.com/iovisor
/bcc.

[61] IP-Networking-Lab-UCLouvain (2022). MultiPath TCP. https://multipath-tcp.org/.

[62] Iyengar, J. and Thomson, M. (2021). QUIC: A UDP-Based Multiplexed and Secure
Transport. Request for Comments RFC 9000, Internet Engineering Task Force.

[63] Jacobson, V. (1988). Congestion avoidance and control. In Symposium Proceedings on
Communications Architectures and Protocols - SIGCOMM ’88, pages 314–329, Stanford,
California, United States. ACM Press.

https://www.man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://multipath-tcp.org/

134 Bibliography

[64] Jang, K., Han, M., Cho, S., Ryu, H.-K., Lee, J., Lee, Y., and Moon, S. B. (2009). 3G
and 3.5G wireless network performance measured from moving cars and high-speed trains.
In Proceedings of the 1st ACM Workshop on Mobile Internet through Cellular Networks -
MICNET ’09, page 19, Beijing, China. ACM Press.

[65] Jay, N., Rotman, N., Godfrey, B., Schapira, M., and Tamar, A. (2019). A Deep
Reinforcement Learning Perspective on Internet Congestion Control. In Proceedings of
the 36th International Conference on Machine Learning, pages 3050–3059. PMLR.

[66] Kfoury, E. F., Gomez, J., Crichigno, J., and Bou-Harb, E. (2020). An emulation-based
evaluation of TCP BBRv2 Alpha for wired broadband. Computer Communications,
161:212–224.

[67] Khalili, R., Gast, N., Popovic, M., and Le Boudec, J.-Y. (2013). MPTCP Is Not
Pareto-Optimal: Performance Issues and a Possible Solution. IEEE/ACM Transactions on
Networking, 21(5):1651–1665.

[68] Kim, G.-H. and Cho, Y.-Z. (2020). Delay-Aware BBR Congestion Control Algorithm
for RTT Fairness Improvement. IEEE Access, 8:4099–4109.

[69] Kleinrock, L. (1979). Power and deterministic rules of thumb for probabilistic prob-
lems in computer communications. In Proceedings of the International Conference on
Communications, volume 43, pages 1–43.

[70] Kumar, R., Koutsaftis, A., Fund, F., Naik, G., Liu, P., Liu, Y., and Panwar, S. (2019).
TCP BBR for Ultra-Low Latency Networking: Challenges, Analysis, and Solutions. In
2019 IFIP Networking Conference (IFIP Networking), pages 1–9.

[71] Langley, A., Iyengar, J., Bailey, J., Dorfman, J., Roskind, J., Kulik, J., Westin, P.,
Tenneti, R., Shade, R., Hamilton, R., Vasiliev, V., Riddoch, A., Chang, W.-T., Shi, Z.,
Wilk, A., Vicente, A., Krasic, C., Zhang, D., Yang, F., Kouranov, F., and Swett, I. (2017).
The QUIC Transport Protocol: Design and Internet-Scale Deployment. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication - SIGCOMM

’17, pages 183–196, Los Angeles, CA, USA. ACM Press.

[72] Lee, H., Flinn, J., and Tonshal, B. (2018). RAVEN: Improving Interactive Latency
for the Connected Car. In Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking - MobiCom ’18, pages 557–572, New Delhi, India.
ACM Press.

[73] Lee, K., Lee, J., Yi, Y., Rhee, I., and Chong, S. (2013). Mobile Data Offloading: How
Much Can WiFi Deliver? IEEE/ACM Transactions on Networking, 21(2):536–550.

[74] Li, L., Xu, K., Li, T., Zheng, K., Peng, C., Wang, D., Wang, X., Shen, M., and Mijumbi,
R. (2018). A measurement study on multi-path TCP with multiple cellular carriers on high
speed rails. In Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication - SIGCOMM ’18, pages 161–175, Budapest, Hungary. ACM Press.

[75] Li, L., Xu, K., Wang, D., Peng, C., Zheng, K., Mijumbi, R., and Xiao, Q. (2017). A
Longitudinal Measurement Study of TCP Performance and Behavior in 3G/4G Networks
Over High Speed Rails. IEEE/ACM Transactions on Networking, 25(4):2195–2208.

Bibliography 135

[76] Li, W., Zhang, H., Gao, S., Xue, C., Wang, X., and Lu, S. (2019). SmartCC: A Rein-
forcement Learning Approach for Multipath TCP Congestion Control in Heterogeneous
Networks. IEEE Journal on Selected Areas in Communications, 37(11):2621–2633.

[77] Li, X., Tang, F., Liu, J., Yang, L. T., Fu, L., and Chen, L. (2021). AUTO: Adaptive
congestion control based on multi-objective reinforcement learning for the satellite-ground
integrated network. In 2021 USENIX Annual Technical Conference (USENIX ATC 21),
pages 611–624. USENIX Association.

[78] Litjens, R. (2005). HSDPA flow level performance and the impact of terminal mobility.
In IEEE Wireless Communications and Networking Conference, 2005, volume 3, pages
1657–1663, New Orleans, LA, USA. IEEE.

[79] Liu, Q., Xu, K., Wang, H., Shen, M., Li, L., and Xiao, Q. (2016). Measurement,
Modeling, and Analysis of TCP in High-Speed Mobility Scenarios. In 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS), pages 629–638.

[80] Liu, S., Başar, T., and Srikant, R. (2006). TCP-Illinois: A loss and delay-based conges-
tion control algorithm for high-speed networks. In Proceedings of the 1st International
Conference on Performance Evaluation Methodolgies and Tools - Valuetools ’06, page 55,
Pisa, Italy. ACM Press.

[81] Liu, Y., Ma, Y., Huitema, C., An, Q., and Li, Z. (2021). Multipath Extension for QUIC.
Internet Draft draft-liu-multipath-quic-04, Internet Engineering Task Force.

[82] Ma, S., Jiang, J., Wang, W., and Li, B. (2017). Fairness of Congestion-Based Congestion
Control: Experimental Evaluation and Analysis. arXiv:1706.09115 [cs].

[83] Mahajan, R., Zahorjan, J., and Zill, B. (2007). Understanding wifi-based connectivity
from moving vehicles. In Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement - IMC ’07, page 321, San Diego, California, USA. ACM Press.

[84] Mahmud, I., Kim, G.-H., Lubna, T., and Cho, Y.-Z. (2020). BBR-ACD: BBR with
Advanced Congestion Detection. Electronics, 9(1):136.

[85] Melki, R., Mansour, M. M., and Chehab, A. (2018). A fairness-based congestion control
algorithm for multipath TCP. In 2018 IEEE Wireless Communications and Networking
Conference (WCNC), pages 1–6, Barcelona. IEEE.

[86] Merz, R., Wenger, D., Scanferla, D., and Mauron, S. (2014). Performance of LTE in a
high-velocity environment: A measurement study. In Proceedings of the 4th Workshop
on All Things Cellular: Operations, Applications, & Challenges - AllThingsCellular ’14,
pages 47–52, Chicago, Illinois, USA. ACM Press.

[87] Miano, S., Bertrone, M., Risso, F., Tumolo, M., and Bernal, M. V. (2018). Creating
Complex Network Services with eBPF: Experience and Lessons Learned. In 2018 IEEE
19th International Conference on High Performance Switching and Routing (HPSR),
pages 1–8.

[88] Mininet (2021). Mininet: An Instant Virtual Network on Your Laptop (or Other PC) -
Mininet. http://mininet.org/.

http://mininet.org/

136 Bibliography

[89] Mishra, A., Sun, X., Jain, A., Pande, S., Joshi, R., and Leong, B. (2019). The Great
Internet TCP Congestion Control Census. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 3(3):1–24.

[90] Nandagiri, A., Tahiliani, M. P., Misra, V., and Ramakrishnan, K. K. (2020). BBRvl vs
BBRv2: Examining Performance Differences through Experimental Evaluation. In 2020
IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN,
pages 1–6, Orlando, FL, USA. IEEE.

[91] Narayanan, A., Zhang, X., Zhu, R., Hassan, A., Jin, S., Zhu, X., Zhang, X., Rybkin,
D., Yang, Z., Mao, Z. M., Qian, F., and Zhang, Z.-L. (2021). A variegated look at 5G in
the wild: Performance, power, and QoE implications. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, pages 610–625, Virtual Event USA. ACM.

[92] Netravali, R., Sivaraman, A., Das, S., Goyal, A., Winstein, K., Mickens, J., and
Balakrishnan, H. (2015). Mahimahi: Accurate record-and-replay for HTTP. In 2015
USENIX Annual Technical Conference (USENIX ATC 15), pages 417–429, Santa Clara,
CA. USENIX Association.

[93] Nicholson, A. J. and Noble, B. D. (2008). BreadCrumbs: Forecasting mobile connec-
tivity. In Proceedings of the 14th ACM International Conference on Mobile Computing
and Networking - MobiCom ’08, page 46, San Francisco, California, USA. ACM Press.

[94] Nie, X., Zhao, Y., Li, Z., Chen, G., Sui, K., Zhang, J., Ye, Z., and Pei, D. (2019).
Dynamic TCP Initial Windows and Congestion Control Schemes Through Reinforcement
Learning. IEEE Journal on Selected Areas in Communications, 37(6):1231–1247.

[95] Nikravesh, A., Guo, Y., Qian, F., Mao, Z. M., and Sen, S. (2016). An in-depth
understanding of multipath TCP on mobile devices: Measurement and system design.
In Proceedings of the 22nd Annual International Conference on Mobile Computing and
Networking, pages 189–201, New York City New York. ACM.

[96] Ostermann (2021). Tcptrace(1): TCP connection analysis tool - Linux man page.
https://linux.die.net/man/1/tcptrace.

[97] Ott, J. and Kutscher, D. (2004). Drive-thru internet: IEEE 802.1 1b for "automobile"
users. In IEEE INFOCOM 2004, volume 1, pages 362–373, Hong Kong, PR China. IEEE.

[98] Padhye, J., Firoiu, V., Towsley, D., and Kurose, J. (2000). Modeling TCP Reno
performance: A simple model and its empirical validation. IEEE/ACM Transactions on
Networking, 8(2):133–145.

[99] Palmer, M., Appel, M., Spiteri, K., Chandrasekaran, B., Feldmann, A., and Sitaraman,
R. K. (2021). VOXEL: Cross-layer optimization for video streaming with imperfect trans-
mission. In Proceedings of the 17th International Conference on Emerging Networking
EXperiments and Technologies, CoNEXT ’21, pages 359–374, New York, NY, USA.
Association for Computing Machinery.

[100] Pan, Y., Li, R., and Xu, C. (2022). The First 5G-LTE Comparative Study in Extreme
Mobility. Proceedings of the ACM on Measurement and Analysis of Computing Systems,
6(1):1–22.

https://linux.die.net/man/1/tcptrace

Bibliography 137

[101] PEAP (2021). Protocol/EAP PEAP. https://wiki.freeradius.org/protocol/EAP-PEAP.

[102] Peng, Q., Walid, A., Hwang, J., and Low, S. H. (2016). Multipath TCP: Analysis,
Design, and Implementation. IEEE/ACM Transactions on Networking, 24(1):596–609.

[103] Pesavento, D., Grassi, G., Pau, G., Bahl, P., and Fdida, S. (2015). Demo: Car-Fi:
Opportunistic V2I by Exploiting Dual-Access Wi-Fi Networks. In Proceedings of the 21st
Annual International Conference on Mobile Computing and Networking, pages 173–175,
Paris France. ACM.

[104] Pokhrel, S. R. and Walid, A. (2021). Learning to Harness Bandwidth with Multipath
Congestion Control and Scheduling. IEEE Transactions on Mobile Computing, pages
1–1.

[105] Raiciu, C., Handley, M., and Wischik, D. (2011). Coupled Congestion Control for
Multipath Transport Protocols. Technical Report RFC6356, RFC Editor.

[106] Ravinet (2022). Mpshell. https://github.com/ravinet/mahimahi/tree/old/mpshell_scrip
ted.

[107] Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and Scheffenegger, R. (2018).
CUBIC for Fast Long-Distance Networks. Technical Report RFC8312, RFC Editor.

[108] Rodrigues, A. (2019). Improving Vehicular WiFi Performance with Data-driven
Brokerage. Technical report, Carnegie Mellon University, Pittsburgh, PA 15213.

[109] Salowey, J. A. and Haverinen, H. (2006). Extensible Authentication Protocol Method
for Global System for Mobile Communications (GSM) Subscriber Identity Modules
(EAP-SIM). Request for Comments RFC 4186, Internet Engineering Task Force.

[110] Sathyanarayana, S. D., Lee, J., Lee, J., Grunwald, D., and Ha, S. (2021). Exploiting
Client Inference in Multipath TCP Over Multiple Cellular Networks. IEEE Communica-
tions Magazine, 59(4):58–64.

[111] Scholz, D., Jaeger, B., Schwaighofer, L., Raumer, D., Geyer, F., and Carle, G. (2018).
Towards a Deeper Understanding of TCP BBR Congestion Control. In 2018 IFIP Net-
working Conference (IFIP Networking) and Workshops, pages 1–9.

[112] Shimonishi, H., Sanadidi, M., and Gerla, M. (2005). Improving efficiency-friendliness
tradeoffs of TCP in wired-wireless combined networks. In IEEE International Conference
on Communications, 2005. ICC 2005. 2005, volume 5, pages 3548–3552 Vol. 5.

[113] Song, Y.-J., Kim, G.-H., and Cho, Y.-Z. (2020). BBR-CWS: Improving the Inter-
Protocol Fairness of BBR. Electronics, 9(5):862.

[114] Song, Y.-J., Kim, G.-H., Mahmud, I., Seo, W.-K., and Cho, Y.-Z. (2021). Understand-
ing of BBRv2: Evaluation and Comparison with BBRv1 Congestion Control Algorithm.
IEEE Access, pages 1–1.

[115] Soroush, H., Banerjee, N., Corner, M., Levine, B., and Lynn, B. (2012). A retrospective
look at the UMass DOME mobile testbed. ACM SIGMOBILE Mobile Computing and
Communications Review, 15(4):2–15.

https://wiki.freeradius.org/protocol/EAP-PEAP
https://github.com/ravinet/mahimahi/tree/old/mpshell_scripted
https://github.com/ravinet/mahimahi/tree/old/mpshell_scripted

138 Bibliography

[116] Soroush, H., Gilbert, P., Banerjee, N., Levine, B. N., Corner, M., and Cox, L. (2011).
Concurrent Wi-Fi for mobile users: Analysis and measurements. In Proceedings of
the Seventh COnference on Emerging Networking EXperiments and Technologies on -
CoNEXT ’11, pages 1–12, Tokyo, Japan. ACM Press.

[117] Statista (2022). Mobile internet usage worldwide - statistics & facts. https://www.stat
ista.com/topics/779/mobile-internet/#dossierKeyfigures.

[118] The-Tcpdump-Group (2021). TCPDUMP/LIBPCAP public repository. https://www.
tcpdump.org/.

[119] Thomas, Y., Karaliopoulos, M., Xylomenos, G., and Polyzos, G. C. (2020a). Low La-
tency Friendliness for Multipath TCP. IEEE/ACM Transactions on Networking, 28(1):248–
261.

[120] Thomas, Y., Xylomenos, G., and Polyzos, G. C. (2020b). Multipath congestion control
with network assistance. Computer Communications, 153:264–278.

[121] Tso, F. P., Teng, J., Jia, W., and Xuan, D. (2012). Mobility: A Double-Edged Sword
for HSPA Networks: A Large-Scale Test on Hong Kong Mobile HSPA Networks. IEEE
Transactions on Parallel and Distributed Systems, 23(10):1895–1907.

[122] Vargas, S., Drucker, R., Renganathan, A., Balasubramanian, A., and Gandhi, A. (2021).
BBR Bufferbloat in DASH Video. In Proceedings of the Web Conference 2021, pages
329–341, Ljubljana Slovenia. ACM.

[123] Vollbrecht, J., Carlson, J. D., Blunk, L., Aboba, B. D., and Levkowetz, H. (2004).
Extensible Authentication Protocol (EAP). Request for Comments RFC 3748, Internet
Engineering Task Force.

[124] Wang, J., Zheng, Y., Ni, Y., Xu, C., Qian, F., Li, W., Jiang, W., Cheng, Y., Cheng, Z.,
Li, Y., Xie, X., Sun, Y., and Wang, Z. (2019). An Active-Passive Measurement Study
of TCP Performance over LTE on High-speed Rails. In The 25th Annual International
Conference on Mobile Computing and Networking, pages 1–16, Los Cabos Mexico. ACM.

[125] Wang, R., Valla, M., Sanadidi, M., and Gerla, M. (2002a). Adaptive bandwidth share
estimation in TCP Westwood. In IEEE Global Telecommunications Conference, 2002.
GLOBECOM ’02, volume 3, pages 2604–2608 vol.3.

[126] Wang, R., Valla, M., Sanadidi, M., Ng, B., and Gerla, M. (2002b). Effi-
ciency/friendliness tradeoffs in TCP Westwood. In Proceedings ISCC 2002 Seventh
International Symposium on Computers and Communications, pages 304–311.

[127] Ware, R., Mukerjee, M. K., Seshan, S., and Sherry, J. (2019). Modeling BBR’s Inter-
actions with Loss-Based Congestion Control. In Proceedings of the Internet Measurement
Conference, pages 137–143, Amsterdam Netherlands. ACM.

[128] Wei, W., Xue, K., Han, J., Wei, D. S. L., and Hong, P. (2020). Shared Bottleneck-Based
Congestion Control and Packet Scheduling for Multipath TCP. IEEE/ACM Transactions
on Networking, 28(2):653–666.

https://www.statista.com/topics/779/mobile-internet/#dossierKeyfigures
https://www.statista.com/topics/779/mobile-internet/#dossierKeyfigures
https://www.tcpdump.org/
https://www.tcpdump.org/

Bibliography 139

[129] Wikipedia (2021). Wi-Fi Protected Access. https://en.wikipedia.org/w/index.php?title
=Wi-Fi_Protected_Access&oldid=1031381932.

[130] Winstein, K. and Balakrishnan, H. (2013). TCP ex machina: Computer-generated con-
gestion control. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
pages 123–134, Hong Kong China. ACM.

[131] Winstein, K., Sivaraman, A., and Balakrishnan, H. (2013). Stochastic forecasts achieve
high throughput and low delay over cellular networks. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages 459–471, Lombard, IL.
USENIX Association.

[132] Wu, H., Alay, Ö., Brunstrom, A., Ferlin, S., and Caso, G. (2020). Peekaboo: Learning-
Based Multipath Scheduling for Dynamic Heterogeneous Environments. IEEE Journal
on Selected Areas in Communications, 38(10):2295–2310.

[133] XGBoost (2022). XGBoost Documentation — xgboost 1.5.2 documentation. https:
//xgboost.readthedocs.io/en/stable/index.html.

[134] Xiao, Q., Xu, K., Wang, D., Li, L., and Zhong, Y. (2014). TCP Performance over
Mobile Networks in High-Speed Mobility Scenarios. In 2014 IEEE 22nd International
Conference on Network Protocols, pages 281–286, Raleigh, NC, USA. IEEE.

[135] Xu, C., Qin, J., Zhang, P., Gao, K., and Grieco, L. A. (2021). Reinforcement Learning-
based Mobile AR/VR Multipath Transmission with Streaming Power Spectrum Density
Analysis. IEEE Transactions on Mobile Computing, pages 1–1.

[136] Xu, D., Zhou, A., Zhang, X., Wang, G., Liu, X., An, C., Shi, Y., Liu, L., and Ma,
H. (2020). Understanding Operational 5G: A First Measurement Study on Its Coverage,
Performance and Energy Consumption. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 479–494, Virtual Event
USA. ACM.

[137] Xu, Z., Tang, J., Yin, C., Wang, Y., and Xue, G. (2019). Experience-Driven Congestion
Control: When Multi-Path TCP Meets Deep Reinforcement Learning. IEEE Journal on
Selected Areas in Communications, 37(6):1325–1336.

[138] Yan, F. Y., Ma, J., Hill, G. D., Raghavan, D., Wahby, R. S., Levis, P., and Winstein, K.
(2018). Pantheon: The training ground for Internet congestion-control research. In 2018
USENIX Annual Technical Conference (USENIX ATC 18), pages 731–743, Boston, MA.
USENIX Association.

[139] Yang, F., Wu, Q., Li, Z., Liu, Y., Pau, G., and Xie, G. (2022). BBRv2+: Towards
balancing aggressiveness and fairness with delay-based bandwidth probing. Computer
Networks, 206:108789.

[140] Yang, G., Wang, R., Sanadidi, M., and Gerla, M. (2003). TCPW with bulk repeat in
next generation wireless networks. In IEEE International Conference on Communications,
2003. ICC ’03., volume 1, pages 674–678 vol.1.

https://en.wikipedia.org/w/index.php?title=Wi-Fi_Protected_Access&oldid=1031381932
https://en.wikipedia.org/w/index.php?title=Wi-Fi_Protected_Access&oldid=1031381932
https://xgboost.readthedocs.io/en/stable/index.html
https://xgboost.readthedocs.io/en/stable/index.html

140 Bibliography

[141] Yang, M., Yang, P., Wen, C., Liu, Q., Luo, J., and Yu, L. (2019). Adaptive-BBR:
Fine-Grained Congestion Control with Improved Fairness and Low Latency. In 2019
IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6.

[142] Yao, J., Kanhere, S. S., and Hassan, M. (2008). An empirical study of bandwidth
predictability in mobile computing. In Proceedings of the Third ACM International
Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization -
WiNTECH ’08, page 11, San Francisco, California, USA. ACM Press.

[143] Ye, J., Liu, R., Xie, Z., Feng, L., and Liu, S. (2019). EMPTCP: An ECN Based
Approach to Detect Shared Bottleneck in MPTCP. In 2019 28th International Conference
on Computer Communication and Networks (ICCCN), pages 1–10, Valencia, Spain. IEEE.

[144] Yeganeh, S. H., Jha, P., Seung, Y., Hsiao, L., Mathis, M., and Jacobson, V. (2021).
BBR Updates: Internal Deployment, Code, Draft Plans.

[145] Yu, H., Zheng, J., Du, Z., and Chen, G. (2021). MPLibra: Complementing the
Benefits of Classic and Learning-based Multipath Congestion Control. In 2021 IEEE 29th
International Conference on Network Protocols (ICNP), pages 1–11, Dallas, TX, USA.
IEEE.

[146] Zaki, Y., Pötsch, T., Chen, J., Subramanian, L., and Görg, C. (2015). Adaptive
Congestion Control for Unpredictable Cellular Networks. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, pages 509–522,
London United Kingdom. ACM.

[147] Zhang, L., Shenker, S., and Clark, D. D. (1991). Observations on the dynamics of a
congestion control algorithm: The effects of two-way traffic. ACM SIGCOMM Computer
Communication Review, 21(4):133–147.

[148] Zhang, M., Polese, M., Mezzavilla, M., Zhu, J., Rangan, S., Panwar, S., and Zorzi, M.
(2018a). Will TCP work in mmWave 5G Cellular Networks? arXiv:1806.05783 [cs].

[149] Zhang, Y., Cui, L., and Tso, F. P. (2018b). Modest BBR: Enabling Better Fairness for
BBR Congestion Control. In 2018 IEEE Symposium on Computers and Communications
(ISCC), pages 00646–00651.

[150] Zheng, Z., Ma, Y., Liu, Y., Yang, F., Li, Z., Zhang, Y., Zhang, J., Shi, W., Chen, W., Li,
D., An, Q., Hong, H., Liu, H. H., and Zhang, M. (2021). XLINK: QoE-driven multi-path
QUIC transport in large-scale video services. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM ’21, pages 418–432, New York, NY, USA. Association for
Computing Machinery.

[151] Zhou, H., Chen, X., He, S., Chen, J., and Wu, J. (2020). DRAIM: A Novel Delay-
Constraint and Reverse Auction-Based Incentive Mechanism for WiFi Offloading. IEEE
Journal on Selected Areas in Communications, 38(4):711–722.

[152] Zhou, J., Qiu, X., Li, Z., Tyson, G., Li, Q., Duan, J., and Wang, Y. (2021). Antelope:
A Framework for Dynamic Selection of Congestion Control Algorithms. In 2021 IEEE
29th International Conference on Network Protocols (ICNP), pages 1–11, Dallas, TX,
USA. IEEE.

Bibliography 141

[153] Zrelli, S., Okabe, N., and Shinoda, Y. (2012). EAP-Kerberos: A Low Latency
EAP Authentication Method for Faster Handoffs in Wireless Access Networks. IEICE
Transactions on Information and Systems, E95-D(2):490–502.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Problems and challenges
	1.3 Research contents
	1.4 Contributions
	1.5 Struture of chapters

	2 State of the art
	2.1 Network access measurement in Mobile Internet
	2.1.1 Cellular access measurement in mobile scenarios
	2.1.2 WiFi access measurement in mobile scenarios
	2.1.3 Summary

	2.2 Single-path CCAs
	2.2.1 CCAs for wireless networks
	2.2.2 Learning-based CCAs
	2.2.3 Related work of BBR
	2.2.4 Summary

	2.3 Multipath CCAs
	2.3.1 Coupled multipath CCAs
	2.3.2 Dynamically coupled multipath CCAs
	2.3.3 Learning-based multipath CCAs
	2.3.4 Summary

	2.4 Conclusion

	3 WiFi performance measurement in mobile scenarios
	3.1 Introduction
	3.2 Measurement system design
	3.2.1 X-Fi design
	3.2.2 X-Perf design

	3.3 Measurement methodology
	3.3.1 Cities selected for measurement
	3.3.2 Measurement apparatus setup
	3.3.3 Metrics of interests

	3.4 Dataset Summary
	3.5 Connectivity analysis
	3.5.1 Time for connectivity setup
	3.5.2 Connectivity duration and holes
	3.5.3 Impact of moving speed, ISS, and frequency
	3.5.4 IP address roaming support

	3.6 Transport performance analysis
	3.6.1 Goodput and data volume
	3.6.2 Impact of CCA and flow number
	3.6.3 Impact of moving speed, ISS, and frequency
	3.6.4 The characteristics of connectivity quality

	3.7 Conclusion

	4 BBRv2+: Enhancing BBRv2 with delay information
	4.1 Introduction
	4.2 Background
	4.2.1 BBR overview
	4.2.2 BBRv2 overview

	4.3 A deep dive into BBRv2
	4.3.1 Methodology
	4.3.2 Fairness
	4.3.3 Retransmission and throughput
	4.3.4 Resilience to random losses
	4.3.5 Responsiveness to bandwidth dynamics
	4.3.6 Resilience to network jitter
	4.3.7 Summary and implication

	4.4 Design and implementation of BBRv2+
	4.4.1 Overview
	4.4.2 Redesign of the ProbeBW state
	4.4.3 Dual-mode mechanism
	4.4.4 Compensation for BDP estimation
	4.4.5 Implementation

	4.5 Evaluation of BBRv2+
	4.5.1 Evaluation setup
	4.5.2 Responsiveness to bandwidth dynamics
	4.5.3 Resilience to network jitter
	4.5.4 Inter-protocol fairness
	4.5.5 RTT fairness
	4.5.6 Retransmissions in shallow-buffered networks
	4.5.7 Real-world trace driven emulation
	4.5.8 Summary of experimental results

	4.6 Conclusion

	5 Data-driven dynamic selection of multipath CCAs
	5.1 Introduction
	5.2 Motivation and challenges
	5.2.1 The limitation of existing multipath CCAs
	5.2.2 Motivation and problem
	5.2.3 Technical challenges

	5.3 The core ideas
	5.4 Design and implementation
	5.4.1 System overview
	5.4.2 Dynamic Coupling Module
	5.4.3 Data Collection Module
	5.4.4 CC Selection Module
	5.4.5 CC Switch Module
	5.4.6 System implementation

	5.5 Evaluation
	5.5.1 Testbed
	5.5.2 Multipath fairness
	5.5.3 The demonstration of CCA switching
	5.5.4 Performance evaluation in emulated networks
	5.5.5 Performance evaluation in real networks
	5.5.6 System overhead

	5.6 Conclusion

	6 Conclusion
	Bibliography

