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Résumé: Le besoin croissant de puissance de
calcul imposé par la complexité des algorithmes
de traitement et la taille des problèmes nécessite
l’utilisation d’accélérateurs matériels pour répondre
aux contraintes de temps et d’énergie. Les architec-
tures FPGA sont connues pour être parmi les plate-
formes les plus économes en énergie, notamment
pour les systèmes embarqués à travers les langages
de description matérielle. L’apparition des nouveaux
outils de synthèse de haut niveau a été un facteur
majeur dans la prise en compte des FPGAs pour
les applications complexes, comme c’est le cas avec
les processeurs manycores. Les outils de synthèse
de haut niveau génèrent une conception de descrip-
tion matérielle à partir de langages de haut niveau
tels que C, C++ ou OpenCL. Les derniers FPGAs
sont équipés de plusieurs unités de calcul à virgule
flottante capables de répondre aux exigences de pré-
cision d’un large éventail d’applications. Cepen-
dant, l’exploitation du plein potentiel de ces ar-

chitectures a toujours été une préoccupation ma-
jeure. Cette thèse vise à explorer les méthodologies
d’accélération des algorithmes de problèmes inverses
mal posés sur les architectures FPGA grâce à de nou-
veaux outils de synthèse de haut niveau appliqués
à la reconstruction tomographique et à la radioas-
tronomie. En effet, de nombreux algorithmes pour
ces applications sont limités par la mémoire. Une
architecture sur-mesure dérivée d’une méthodologie
d’adéquation algorithme-architecture a été proposée
pour surmonter le goulot d’étranglement de la mé-
moire. Nous avons appliqué cette méthodologie à
l’opérateur de rétroprojection 3D dans le contexte de
la reconstruction itérative. L’architecture du rétro-
projecteur 3D tire parti d’une stratégie d’accès à la
mémoire pour atteindre un débit de calcul élevé.
Ensuite, nous prenons en compte la parallélisation
de l’algorithme d’optimisation complet sur FPGA.
Nous discutons également de la place des FPGAs
en radioastronomie, notamment pour le système
d’imagerie du pipeline SKA.

Title: High-Level Synthesis (HLS) on FPGA for Inverse Problems: application to Tomography
and Radioastronomy
Keywords: Algorithm Architecture Co-design, FPGA, High-Level Synthesis (HLS), Inverse Problem,
Radioastronomy, Tomography.

Abstract: The increasing need for computing
power imposed by the complexity of processing al-
gorithms and the size of problems requires using
hardware accelerators to meet time and energy con-
straints. FPGA architectures are known to be
among the most power-efficient platforms, especially
for embedded systems using hardware description
languages. The appearance of the new high-level
synthesis tools has been a major factor in the con-
sideration of FPGAs for complex applications, as is
the case with the many-core processors. The high-
level synthesis tools generate a hardware description
design from high-level languages such as C, C++, or
OpenCL. The recent FPGAs are equipped with sev-
eral floating-point computing units capable of meet-
ing the precision requirements of a wide range of
applications. However, exploiting the full poten-
tial of these architectures has always been a ma-

jor concern. This thesis aims to explore methodolo-
gies for accelerating inverse problem algorithms on
FPGA architectures through new high-level synthe-
sis tools applied to tomographic reconstruction and
radioastronomy. Indeed, many algorithms for these
applications are memory-bound. A custom archi-
tecture derived from an algorithm-architecture co-
design methodology has been proposed to overcome
the memory bottleneck. We applied this method-
ology to the 3D back-projection operator in the
context of iterative reconstruction. The 3D back-
projector architecture takes advantage of a custom
memory access strategy to reach a full computa-
tional throughput. Then we consider the paral-
lelization of the complete optimization algorithm on
FPGA. We also discuss the position of FPGAs in
radio astronomy, particularly for the SKA pipeline
imaging system.
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Introduction

The increasing need for computing power imposed by the complexity of processing
algorithms and the size of these problems requires the use of hardware accelerators
to meet time and energy constraints. However, as a consequence of the decline of
Moore’s Law, it is impossible to reduce the processing size of transistors at a certain
limit. Currently hardware accelerators such as GPUs or FPGAs are being use to
increase performance. For example, since the appearance of CUDA language, GPUs
have been the preferred architecture over the past decade for HPC applications
because of their massively parallel computing pattern. At the same time, FPGAs
have recently experienced multiple technological advances and can be considered
an alternative for computationally-intensive applications. These advances concern
both emergence of more mature high-level synthesis tools, and the technology and
number of recent DSPs present in FPGAs capable of performing floating point
operations as required in HPC applications.

FPGAs have been used for several decades and have proven themselves in the
field of embedded systems, particularly for their energy efficiency and meeting real-
time constraints of the applications. When FPGAs are considered for intensive
computing, these same advantages should be preserved while meeting the comput-
ing needs of these applications. In the context of this thesis, the considered HPC
applications are computed tomography and radioastronomy. Indeed, for a long
time FPGA technology has been only reserved for hardware designers using hard-
ware description languages. This level of abstraction requires a strong knowledge
of FPGA architectures and their programming tools. Also, FPGA development is
very time-consuming using these languages compared to general-purpose processor
programming models. The necessity to reduce the development time and alleviate
the complexity of FPGA programming has motivated the emergence of high-level
synthesis tools. The main vendors of FPGAs have contributed considerably by
proposing more mature tools that allow the use of FPGAs through high-level lan-
guages. Thanks to high-level synthesis tools, the development time of FPGAs has
been considerably reduced and made accessible to a wide audience of developers
and complex applications.

1
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Motivation

Reducing the processing time for large-scale problems is a topic of interest in high-
performance computing and image processing domains. In computed tomography,
it is essential to reduce the radiation dose for the patient during the acquisition
without affecting the image quality. Iterative reconstruction methods are used
to reconstruct the image from this low-dose tomography. According to the lit-
erature, iterative reconstruction algorithms take several minutes to several hours.
For instance, the computation time of the Expectation Maximization (EM) algo-
rithm for 500 projections of 736 × 64 pixels of projection data in the CPU is 1.52
hours [Chen 2012a]. An important axis to accelerate these computations relies on
the exploration and the use of hardware accelerators. GPUs have been the preferred
architecture for the past decade due to their massively parallel computing pattern.
Our objective is to emphasize the position of FPGAs for compute-intensive appli-
cations since the emergence of high-level synthesis tools. FPGA architectures can
be an alternative to the GPU thanks to their cycle accuracy and power efficiency.
However, systematic use of software languages on FPGAs does not guarantee good
performance. A specific focus is then required to perform FPGA-specific optimiza-
tions in order to assist the high-level compiler in synthesizing an efficient pipeline.
User expertise is essential to exploit FPGAs’ full potential and make them compet-
itive with GPUs for HPC acceleration. Indeed, despite recent advances in FPGA
technology, this architecture is still behind GPU architecture in a wide range of
applications, mainly because of the substantial computing power of GPUs as well
as their high global memory bandwidth.

Radioastronomical imaging algorithms could also benefit from the high energy-
efficiency of FPGA devices through HLS tools. The supercomputer for the Square
Kilometre Array (SKA) radio telescope should use hardware accelerators to meet
the different constraints of this project. SKA is the largest radio telescope in the
world, using streaming data to generate multidimensional images of the sky at
7.2 Terabit/s without any storage capabilities. The Science Data Processor (SDP)
generates the sky images in the SKA pipeline, and this SDP is highly energy-
constrained. Currently, GPUs are the candidate with the most potential to meet the
computing needs of SDP. However, these many-core GPUs are very power-hungry
in order to meet the energy consumption budget. Another alternative must be
explored and since the emergence of the new high-level synthesis tools, FPGAs have
proven to be a power-efficient platform. Thus, FPGAs could be a more practical
alternative for the SKA SDP system.

Thesis Outline

This thesis aims to explore methodologies for accelerating inverse problem algo-
rithms on FPGAs through new high-level synthesis tools with an application to the
field of tomographic reconstruction and radioastronomy. The main contribution of
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this dissertation is the design of a custom architecture of the 3D back-projection
algorithm. This architecture takes advantage of a specific methodology based on
offline memory access analysis to alleviate the memory bottleneck.

The manuscript is organized as follows:

• Chapter 1 introduces computer architectures and the acceleration requirement
for compute-intensive applications. The position of FPGAs is discussed as an
accelerator and the evolution of HLS tools for their programming. Then,
particular attention is paid to Intel’s HLS tools used in this study.

• Chapter 2 presents the imaging system of the SKA pipeline and the iterative
algorithms used to reconstruct the sky image. The chapter uses the decon-
volution use-case to illustrate the design of the algorithm on FPGA using
OpenCL HLS tool.

• Chapter 3 highlights the tomography reconstruction problem as an inverse
problem. We present the operators used in iterative reconstruction algorithms
and the related work about their acceleration on CPU, GPU, FPGA. The first
hardware acceleration results of the projector and back-projector operators are
also discussed in this chapter.

• Chapter 4 presents our adopted methodology for algorithm-architecture co-
design in order to accelerate computationally-intensive applications to over-
come the memory bottleneck. We also present several advanced FPGA-aware
optimizations using high-level tools to fully harness the device. Then, the
adopted methodology is applied to a simple use-case of 2D convolution in
order to illustrate the prefetching impact on the design performance using
OpenCL HLS.

• Chapter 5 proposes a custom architecture of the 3D back-projection opera-
tor used in iterative image reconstruction. The memory access strategy that
increased the algorithm’s data reuse rate is presented. The roofline model is
used to profile and guide the optimization steps of the design, and the scala-
bility strategy to higher-end FPGA is discussed. This chapter also compares
the OpenCL and oneAPI tools for the back-projection use case. Furthermore,
this Chapter discusses the different strategies for porting this iterative algo-
rithm to the FPGA board. The gradient descent algorithm is considered in
the context of CT reconstruction.
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Processor architectures have undergone enormous advances over time to meet
large-scale applications’ increasing demands for computing power. These advances
in internal processor architectures have improved the raw performance of these ma-
chines over many years by adding more transistors while decreasing process sizes, as
predicted by Moore’s Law. However, Moore’s Law is reaching its end with increas-
ing technological complexity. Thus, increasing processor performance by increasing
chip density was no longer a viable solution. Other strategies have been employed
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to fill the gap created by stagnant performance. These strategies included increas-
ing the operating frequencies and expressing parallelism (ILP, pipelining, ...) of
general-purpose processors. However, improving internal architectures with out-
of-order execution or deeper pipelines has become counterproductive. In addition,
increasing the clock frequency has come up against issues with power dissipation
in the circuits. The multiplication of computing cores within a single processor
has been adopted to address the concern of energy dissipation caused by increased
frequency. Multi-core and manycore processors, e.g., GPUs, were thus developed.
In addition, other types of architectures continued to evolve in parallel, such as
FPGAs and ASICs, both used for custom application-based design. The most sig-
nificant difference between the two is that ASICs are not reprogrammable, and their
development cost is higher than FPGAs. The increasing maturity of high-level syn-
thesis tools for FPGAs and ASICs and the evolution of their internal architectures
with more computational resources make them potential hardware accelerators for
large-scale applications.

However, the multiplication of computational units in general-purpose proces-
sors and specific circuits has added a layer of complexity to these circuits’ program-
ming to exploit better the computational potential offered by these architectures.
The programming paradigm is not the same for these distinctive processors. Some
will excel better in applications with more control than computation, while others
do better with the expression of parallelism on extensive data. For example, FPGAs
are well known for their efficiency in executing control- or data-flow applications
in a well-elaborated pipeline. Thus, the choice of architecture should depend on
the underlying application in order to perform an algorithm-architecture co-design
approach to leverage better the full computational capacity offered by the device.

This chapter will present an overview of the most commonly used computing
accelerators, from general-purpose processors to specific circuits, before focusing on
FPGAs, which are at the heart of this thesis work. We will then present the high-
level synthesis tools on FPGAs by presenting their evolution and the different tools
developed since the emergence of this technology. The FPGA devices used in our
work come from Intel corporation. Therefore, we will discuss the Intel-specific tools
and detail those used during our experiments. The OpenCL tool will be presented
in detail, starting with its programming model and ending with the various basic
optimizations offered by this tool to take advantage of the FPGAs.

1.1 Computer architectures

The requirement of sustainable computing power relies on the constant growth
of high-performance application complexity. The development of hardware archi-
tecture has been evolving to address compute-intensive problems from single-core
processors to parallel processors. The well-known Moore’s Law [Moore 1965] and
Dennard scaling [Dennard 1974] have driven the advances in computer technology
regarding performance and energy efficiency.
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1.1.1 General-purpose processors

1.1.1.1 CPU

Central Processing Unit (CPU) is the reference architecture in computer systems.
The first generation of CPUs was presented with sequential architecture and exe-
cuted software as a set of instructions. This architecture is well established for its
versatility and ease of use through software programming languages. Therefore, to
push the limit of Moore’s Law, the operating frequency was increased, and multiple
enhancements were provided to the architecture, such as pipelining, out-of-order
execution, speculative execution, etc. Multi-core microprocessors have emerged
to improve performance and overcome the limits of architectural improvement to
CPUs. The multi-core processors use two or more compute cores to execute a set of
instructions. These multi-core processors delivered better performance than single-
core ones thanks to the exploitation of all the compute cores via parallel program-
ming languages. The versatility of CPUs lies in the management of control in their
architecture, which leaves less room for calculations. This makes CPUs dominant
in multitasking but hard for them to excel in compute-intensive applications.

1.1.2 Specific-purpose co-processors

Hardware accelerators are used as co-processors in order to meet the need for com-
puting power. These accelerators offer high computing power compared to tra-
ditional CPUs for a large number of applications. We will briefly look at these
hardware accelerators in this section.

1.1.2.1 GPU

Used for 3D rendering since the 1990s, Graphical Processing Units (GPUs) archi-
tectures have been democratized as General Purpose GPU (GPGPU) and are now
adopted as the most privileged architecture for compute-intensive applications in
various domains. Their massively parallel computing model using thousands of
cores explains this preference [Xu 2007]. Indeed, GPUs are considered as many-
core processors and can perform thousands of computations simultaneously. The
compute cores of GPUs are grouped into Streaming Multiprocessors (SM) with a
reduced instruction set compared to CPU, and each core in the same SM executes
the same program in parallel.

In 2006, Nvidia introduced its Common Unified Device Architecure (CUDA)
API to leverage their GPU architectures as hardware accelerators through a software
language based on C. GPUs are based on massive parallelism of elementary tasks
called threads, where each thread represents a set of instruction sequences. Threads
execute the same instructions for the same CUDA kernel. GPU programming model
organizes threads into warps consisting of a group of 32 threads. Threads in the
same warp have the same context of execution. A group of warps constitutes a
block, and multiple blocks form a grid. Each block is mapped to a GPU SM during
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execution.
CUDA is a proprietary framework only supported on Nvidia’s GPUs. OpenCL,

initiated by Apple and maintained by KHRONOS GROUP since 2008, has been
released in order to provide a programming framework supported by all vendors’
devices [Khronos 2009]. OpenCL enables cross-vendor portability for heterogeneous
platforms and devices. The programming paradigm of OpenCL and CUDA are
relatively similar. However, OpenCL is supposed to support devices other than
GPU, such as CPU, DSP, or FPGA.

1.1.2.2 MPPA manycore processor

The Massively Parallel Processor Array (MPPA), launched by Kalray in 2012, is
an embedded manycore architecture for high performance and low power purposes.
The processor consists of 16 compute clusters communicating through a Network
on Chip (NoC). Each cluster comprises 16 VLIW application cores sharing the
same local memory. The compute core in MPPA has a fully pipelined 32-bit VLIW
processor that performs up to five instructions per cycle. The MPPA processor
is connected to a host CPU using high-speed interfaces such as PCIe. Multiple
programming models based on standard C/C++ are available to program the het-
erogeneous MPPA processor, such as OpenCL, OpenMP, POSIX, etc.

1.1.2.3 Digital Signal Processor

Digital Signal Processors are specialized circuits designed to perform specific com-
putations in digital signal processing such as Discrete Fourier Transform (DFT),
Fast Fourier Transform (FFT), filtering, correlation, convolution, etc. Like tradi-
tional microprocessors, a DSP device contains several units to perform arithmetic or
logical operations and on-chip memories object. DSP devices also contain multipli-
ers and Multiply and ACcumulate (MAC) units which are required for most signal
processing applications. In addition, they are also equipped with several address
generators to handle separate memory spaces. While general-purpose processors
are based on Von Neumann architecture, DSPs use Harvard architecture so that
they can fetch data and program instructions at the same time.

1.1.3 Specific circuits

Other types of hardware accelerators based on specific circuits are also used to speed
up applications. These accelerators are renowned for their energy efficiency and
computing performance, particularly in embedded systems and real-time systems.
However, the development of these circuits is not accessible to the general public,
as is the case with general-purpose and specific-purpose processors.
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1.1.3.1 ASIC

Application Specific Integrated Circuits (ASICs) are an integrated circuit designed
for a particular application. The ASIC technology offers the best trade-off between
performance and power efficiency. ASICs are not reprogrammable, and their design
cycle is time-consuming. Thus, their manufacturing process is costly, making them
viable only from large volumes of production.

1.1.3.2 FPGA

Field Programmable Gate Arrays (FPGAs) have been developed since the mid-
1980s. In contrast to general-purpose fixed architectures (CPUs and GPUs), FPGAs
are reconfigurable circuits that offer designers the ability to build a custom archi-
tecture driven by the underlying application. The strength of FPGAs lies in the
flexibility they offer to build an efficient pipeline architecture. This flexibility posi-
tions FPGAs as a mid-range architecture between general-purpose processors and
ASICs. In addition, the energy and cyclic efficiency of FPGAs make them excel-
lent candidates for embedded system applications with real-time constraints and a
limited power budget.

FPGA architecture:

I/O Blocks

Switch

Interconnects

Configurable
Logic Blocks

Matrix

Figure 1.1 – FPGA architecture

The internal architecture of FPGAs is presented in Fig. 1.1. FPGAs are com-
posed of several Adaptive Logic Module (ALM) (or Configurable Logic Blocks
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(CLB) in Xilinx terminology), routing switch matrix, and different I/O blocks.
An ALM is made of:

• Several Look-up Tables (LUT) with four to six inputs.

• Several registers

• Multiple adders and multiplexers

The interconnection of ALMs and configurable memory cells (e.g., SRAM) can
perform several arithmetical and logic operations. The switch matrix is used to
interconnect the selected logic block to implement a given application. The I/O
blocks are for communication between the FPGA chip and the external components.

In addition to more logic elements, modern Intel FPGAs provides several hard-
IPs primitives such as dedicated memory blocks, e.g., Block RAM (BRAM), Digital
Signal Processing (DSP) units, etc. These floating-point units provide high design
flexibility and are optimized to support high-performance DSP applications in IEEE
754 compliant floating-point single precision. One such example is the Intel Stratix
10 architecture presented in Fig. 1.2. This FPGA device is a 14 nm technology
with millions of logic cells and more than five thousand DSP based on Hyperflex
core architecture [Intel Corporation 2021a]. The Hyperflex device contains registers
everywhere throughout the FPGA core to enable aggressive optimizations, retiming,
or pipelining. However, hyperflex architecture comes with several problems. Firstly,
routing on these devices is tedious and extremely slow, which is accentuated when
using HLS tools. Secondly, a fairly deep pipeline through multiple registers is
required to achieve correct frequencies.

FPGA Synthesis:

Basically, an FPGA application is described using Hardware Description Lan-
guages (HDL) such as VHDL or Verilog. The use of these languages allows the
designer to control the generated pipeline but requires strong knowledge of the
FPGA architecture and the synthesis tools. The design flow includes different steps
before the bitstream generation for the target FPGA, as illustrated in Fig. 1.3. The
first step is to specify the Register Transfer Level (RTL) specifications of the design
using HDLs. This step contains several behavioral simulations for the correctness
of the application. The RTL description is then translated into a netlist made of
registers and logic cells. The netlist is mapped into FPGA primitives and placed on
the FPGA fabric. The placement step is iterative to find the best combination that
minimizes the propagation delay and maximizes the operating frequency. The final
step before bitstream generation consists to route the placed netlist which ensures
that all resources are connected accordingly to meet all the timing constraints. The
place-and-route steps are the most time-consuming ones and are likely to fail when
there are unmet constraints.

This traditional design flow is time-consuming and only accessible by strong-
skilled hardware designers. In order to reduce the development time of FPGAs
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Figure 1.2 – Stratix 10 Hyperflex core architecture from [Intel Corporation 2021c]

and make them accessible to a wide audience of programmers, High-Level Synthe-
sis (HLS) tools have been developed for decades and have only recently reached
maturity.

Figure 1.3 – FPGA Design flow with HDL languages

1.2 High-Level Synthesis

HLS is a discipline that attempts to provide more productivity to designers by of-
fering synthesis tools at a high abstraction level than the traditional HDLs. The
principle is to automatically generate a hardware circuit from the behavioral de-
scriptions of a given application. A high-level design is entitled to meet several
criteria to be effective. The design efficiency, the quality of implementation and
the Quality of Results (QoR) in terms of area, performance, and accuracy, should
be as good as those obtained with HDL tools. HLS tools provides high design
productivity than HDL languages. As illustrated in figure 1.4, the polygon should
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be as small as possible to provide both good design efficiency and implementation
quality [Pelcat 2016]. Several HLS tools have been developed over four decades,
driven by substantial research results and industrial works.

Figure 1.4 – Design efficiency from [Pelcat 2016]

1.2.1 HLS history

The early research in HLS has taken place since the 1970s [Barbacci 1973]. Academic
research has led to many advances and tools development, as it can be found in
[Gupta 2008, Coussy 2008]. An overview of HLS evolution has been presented
in [Martin 2009], and they provided a categorization of the evolution of HLS in
three generations preceded by a prehistoric period. A global view of different HLS
tools was detailed in [Nane 2015,Numan 2020], including academic and commercial
ones. As explained by the authors, the first and second generations (till the early
2000s) of HLS have failed, mainly because the expectations placed on them were
too ambitious. Among those expectations, we can find the choice of the right input
languages, the guarantee of good QoR, high productivity, etc. The developed tools
hardly addressed software developers for these generations and became a commercial
failure.

Nevertheless, the third generation of HLS tools succeeds on many levels com-
pared to the previous ones. Many major vendors proposed several tools with a
strong focus on the domain of application, the input languages, the target users,
the synthesis process, etc. The design entry of an HLS tool could be a Domain-
Specific Language (DSL) or a General Purpose Language (GPL). The QoR has
seen a significant increase for this generation allowed by the exploitation of most
compiler-based optimizations, as is the case for general-purpose languages.
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Table 1.1 – An overview of HLS tools

Availability Tool Design entry Target architecture Year Owner

C
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al
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s
(L
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se
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qu

ire
d)

Bluespec Compiler BSV ASIC, FPGA 2007 BlueSpec
Catapult-C C/C++, SystemC ASIC, FPGA 2004 Calypto

CHC Compiler C/C++, SystemC FPGA 2008 Altium
CoDeveloper Impulse-C FPGA 2003 Impulse Accelerated
C-to-Silicon C/C++, SystemC ASIC, FPGA 2008 Cadence

CyberWorkBench C, SystemC ASIC, FPGA 2011 NEC
Cynthesizer SystemC ASIC, FPGA 2004 FORTE

DK Design Suite Handel-C ASIC, FPGA 2009 Mentor Graphics
HDL Coder Matlab, Simulink ASIC, FPGA 2012 MathWorks
HerculeS C/NAC ASIC, FPGA 2012 Ajax Compiler

Intel HLS Compiler C/C++ FPGA 2017 Intel
Intel oneAPI DPC++ FPGA 2019 Intel

Intel SDK for OpenCL OpenCL FPGA 2013 Intel
LabView FPGA G FPGA 2003 National Instruments
MaxCompiler MaxJ, OpenSPL FPGA 2010 Maxeler Tech.

Merlin Compiler C/C++ FPGA 2017 Falcon Comp Sol.
SDAccel C/C++, OpenCL FPGA 2014 Xilinx
SPIRAL SPL ASIC, FPGA 2008 U. Carnegie Mellon

Synphony C C/C++ ASIC, FPGA 2010 Synopsys
Stratus HLS C++, SystemC ASIC, FPGA 2015 Cadence
Vivado HLS C/C++, SystemC FPGA 2013 Xilinx

A
ca
de

m
ic

to
ol
s
(O

pe
n-
so
ur
ce
)

Bambu C ASIC, FPGA 2012 Politec. Milano
DEFACTO C FPGA 1999 U. South California
DWARV C subset FPGA 2012 TU. Delft
CHiMPS C FPGA 2008 U. Washington
CtoVerilog C ASIC, FPGA 2008 U. Haifa

Garp C subset FPGA 2000 U. Berkeley
GAUT C ASIC, FPGA 2010 U. Bretagne-Sud

gcc2verilog C FPGA 2011 U. Korea
HIPAcc C FPGA 2014 U. Erlangen-Nürnberg
Kiwi C# FPGA 2008 U. Cambridge
LegUp C FPGA 2011 U. Toronto
MATCH MATLAB FPGA 2000 U. Northwest
Napa-C C subset FPGA 1998 Sarnoff Corp.
PARO PAULA FPGA 2008 U. Erlangen-Nürnberg

PipeRench Compiler DIL PipeRench 2000 U.Carnegie M.
ROCCCC C FPGA 2010 U. California

SA-C SA-C FPGA 2003 U. Colorado
Sea Cucumber Java FPGA 2002 U. Brigham Y.

SPARK C ASIC, FPGA 2003 U. Cal. Irvine
Trident C FPGA 2007 Los Alamos NL

1.2.2 High-Level Synthesis Tools

The emergence of the new high-level synthesis tools for FPGA has been a significant
factor in their consideration in complex applications. We present in Table 1.1 a
non-exhaustive list of HLS tools, updated with the new tools developed, including
academic and commercial ones. Several research works [Koch 2016, Nane 2015,
Numan 2020] have provided a complete description of each tool in this table.

Among these tools, the CHiMPS compiler is an academic HLS framework, de-
veloped for hybrid CPU-FPGA platform for High-Performance Computing (HPC)
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applications [Putnam 2008]. The tool takes an input described in C language to
generate a synthesizable VHDL for FPGAs. GAUT is also an academic tool from
Université de Bretagne-Sud designed for DSP applications. The GAUT compiler
generates the VHDL description from an input C language and also handles the
communication and memory management. The ROCCC compiler [Villarreal 2010],
an open-source HLS framework, is developed at the University of California for
compute-intensive applications. Another academic tool is LegUp [Canis 2011] based
on Low-Level Virtual Machine (LLVM) compiler. From an input C language, LegUp
can generate the desired custom accelerators as well as the general purpose proces-
sor. It is worth mentioning other academic frameworks depending on the domain of
application or target architecture, such as Kiwi [Singh 2008], DWARV [Nane 2012],
BAMBU [Pilato 2013], etc. In addition to open-source frameworks, several com-
mercial HLS tools have emerged. Catapult-C [Calypto 2004] was developed by
Mentor Graphics1 to generate HDL descriptions to target ASICs and FPGAs from
a High-Level programming Language (HLL). C-to-Silicon, developed by Candence,
is a commercial HLS tool aimed for ASICs and FPGAs.This tool generates Verilog
code by using a HLL for the target devices mentioned above.

There was a massive surge of interest when major vendors started offering more
mature tools for different audiences. Vivado HLS, formerly AutoPilot, developed
initially by AutoESL, was proposed by Xilinx in 2011. Vivado HLS allows to
synthesize a custom design from an input C, C++ or SystemC to target Xilinx
FPGAs. The output of Vivado HLS compiler will be Verilog or VHDL IP cores
ready to be programmed into the FPGA. Xilinx also proposed their OpenCL-based
HLS tool SDAccel for software programmers. OpenCL Software Development Kit
(SDK) enables FPGA programming for software developers through HLLs such as
C, C++, or OpenCL without a strong knowledge of FPGA architectures. The Xilinx
SDAccel was motivated by the Altera OpenCL released one year early. Indeed,
the Intel FPGA (formerly Altera) SDK for OpenCL was developed by Altera in
20132. Both Intel OpenCL SDK and Xilinx SDAccel are LLVM-based compilers
that produce RTL level design from HLLs and then perform the full synthesis. In
2017, Intel released a new HLS tool called Intel HLS Compiler which is an IP-
driven synthesis tool for Intel FPGAs addressed to hardware designers like Vivado
HLS. This tool allows traditional HDL designers to describe their applications using
C or C++ languages allowing them to gain productivity while having the control
to tune the design. The high-level design is converted to a LLVM Intermediate
Representation (IR), which will be subject to multiple aggressive optimizations by
expressing parallelism, pipelining, etc.

However, exploiting the full potential of these architectures using high-level
tools has always been a significant concern. Therefore, an algorithm-architecture
co-design approach is necessary in order to use these parallel architectures better.
For FPGAs with custom architecture, HLS tools provide the guidelines required

1Before its acquisition by Calypto Design Systems
2Intel acquired Altera in 2015
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to implement applications efficiently and thus produce an efficient pipeline. The
efficiency of these pipelines has not yet reached that obtained through HDL de-
scriptions, but their development time is drastically reduced.

Nevertheless, a strong knowledge of the architecture of the FPGAs and the
functioning of these compilers are essential to help the compiler efficiently synthesize
the design and ensure good performance. Besides, an algorithm analysis is critical
to choose the architecture that best matches the application. In this work, we only
focus on HLS tools from Intel corporation to accelerate our applications.

1.3 Intel HLS Tools

Intel has proposed several tools depending on the target audience to open up the
field of FPGA development to software developers and allow hardware designers
to gain productivity. Among these HLS tools, we have Intel HLS Compiler, Intel
FPGA SDK for OpenCL, and Intel oneAPI, which all use a HLL to synthesize a
design on Intel FPGAs.

1.3.1 Intel HLS Compiler

The Intel HLS Compiler is an HLS tool that produces an RTL level design optimized
for Intel FPGAs from an input of C/C++ languages. The tool aims to quicken the
design for traditional FPGA designers and allow them to integrate their accelerator
into a larger system. The tool is IP-driven which means that it synthesizes a
C/C++ function into an RTL design as an IP that can be used along with HDL
designed IPs in a more complex system. Intel HLS Compiler design flow includes an
emulation step to verify the component functionality and allow a quick hardware
verification of the accelerator by generating a testbench in the cosimulation step. In
summary, the design flow of an Intel HLS Compiler application consists of multiple
iterations of functional correctness and architectural verification followed by the
placement and routing of the generated IP and then the integration into the FPGA
system. The HLS design can benefit from several basic compiler optimizations.
The designer may explore these optimizations to better harness the FPGA through
multiple pragmas and attributes.

1.3.2 Intel FPGA SDK for OpenCL

Open Computing Language (OpenCL) is an open royalty-free standard parallel
programming API for heterogeneous processing platform (CPU, GPU, FPGA)
[Khronos 2009]. The purpose is to give software developers the ability to exploit the
parallelism potential of modern processors with code portability. In 2013, Altera
presented their OpenCL SDK to allow software developers to target their FPGAs
using HLLs.
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1.3.2.1 Programming model

OpenCL allows cross-vendor and cross-platform portability, which was a reaction
to CUDA. Therefore, the programming model OpenCL is similar to CUDA based
on massive threads parallelism. Each thread is called a work-item in OpenCL
terminology, and multiple work-items are organized to form a work-group. Work-
items within the same work-group are synchronized using barriers to ensure memory
consistency. The local memory allows work-items within the same work-group to
share data. Data stored into global memory is visible by all work-items within the
work-groups.

Based on the C99 standard, OpenCL supports both data- and task-parallel
programming models known as Single Work-Item (SWI) and NDRange (NDR) ker-
nels [Khronos 2009] in OpenCL terminology. The former, called SWI kernel, models
the design as a deep pipeline to exploit the parallelism at the finest granularity. This
execution model uses only one work-item within a single work-group to execute the
program through the pipeline. The challenge is to feed the pipeline with incoming
data efficiently. A new piece of result is produced, as long as the pipeline stages
are full, in a regular interval called Initiation Interval (II). The latter, NDR
kernel, exploits thread-level data parallelism to achieve better throughput. The
NDR model on FPGA is different from the GPU-like model. Indeed, to exploit the
multiple compute cores available on GPU devices, multiple work-items are created
to run simultaneously on these cores. However, the compiler generates, for an NDR
design on FPGAs, a single pipeline as a compute unit, and all the work-item passes
through it to complete the execution. The attempt, in this case, is to launch a new
thread at regular II cycles. One can infer SIMD unit or compute unit replication
to achieve thread-level parallelism.

The programming model of OpenCL is based on the host and devices paradigm.
The application is composed of two programs: a host part and the kernel compiled
separately using Just-In-Time (JIT). The JIT compilation is not supported due
to the long-time placement and routing step for bitstream generation for FPGAs.
Therefore the OpenCL kernel is compiled offline using a vendor-specific compiler
followed by the full synthesis flow. The host program is run on the host device and
the kernel by the accelerator device. The OpenCL API handles the communications
between the host and the device.

An overview of the OpenCL memory model is presented in Fig. 1.5. OpenCL
has four memory models regardless of the underlying device. The first one is the
global memory which is a large-sized long latency off-chip memory visible to
all work-items. Then, a small part of global memory is configured as read-only
memory with a high cache hit rate called the constant memory. This read-only
memory acts like cache memory, and data stored in it should fit in the constant
memory once. A cache miss in constant memory is extremely expensive. The third
memory is local memory with low access latency and small in size compared to
the external memory. The local memory is used to prefetch data and is visible to
all work-items within a work-group. The last one is private memory only visible
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by one work-item. After OpenCL kernel synthesis, the global memory space resides
in the external off-chip memory of the board (DDR or HBM memory), while the
local memory space is mapped to the on-chip memory of the FPGA (made of M20K
BRAM). Private memory can be implemented using on-chip BRAMs or registers.

Figure 1.5 – OpenCL Memory Model

The major FPGA manufacturers have proposed their OpenCL SDK to program
their FPGAs. This work only deals with Intel FPGA SDK for OpenCL. This Intel
OpenCL SDK provides all necessary components to run an application on Intel
FPGA devices, including Altera Offline Compiler (AOC) to compile the kernel,
host libraries (for host applications), and all utilities related to the Board Support
Package (BSP).

1.3.2.2 Board Support Package

The generated bitstream programs the FPGA after compiling the compute kernel
using a vendor-specific compiler. A BSP is used to interface the FPGA with the ex-
ternal devices to run the OpenCL kernel. Therefore, the BSP provides all necessary
interfaces between the FPGA and external components (memory, host, etc.). The
BSP, as shown in Fig. 1.6, provided by the board manufacturers, allows program-
mers to run the kernel executable on the target FPGA. It packages features such
as IP Cores, DDR controllers, PCIe controllers, and DMA drivers to establish com-
munication between the host and the FPGA device. Many manufacturers of boards
based on Intel FPGAs provide boards with their specific BSP to quickly design and
run applications using Intel FPGA SDK for OpenCL. The main concern is that
the vendor updates of BSPs do not necessarily follow OpenCL compiler updates.
This prevents the programmer from taking advantage of some of the new compiler
features. However, Intel ensures a minimum of two years of backward compatibility
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between BSP and the compiler. In addition, designers can implement their cus-
tom BSP and, in particular, add additional functions to their application. OpenCL
SDK also provides, besides OpenCL directives, many FPGA-specific optimizations
to fully harness the device’s potential.
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Figure 1.6 – Intel FPGA SDK for OpenCL platform

1.3.3 Intel oneAPI

OneAPI [Intel Corporation 2021b] is Intel’s new unified and standardized toolkit
that allows targeting multiple platforms using a single-source C++ programming
language. Intel oneAPI is based on the DPC++ (Data Parallel C++) language,
which is an extension of standard C++ incorporating the SYCL standard [Keryell 2020].
DPC++ is a modern C++ extended HLL based on the OpenCL programming
model, and the purpose is to target different architectures (such as CPU, GPU,
FPGA, etc.) at a higher level abstraction than OpenCL. The main advantage of
the oneAPI framework is that it alleviates programming complexity and allows code
reuse across different platforms while ensuring performance. The DPC++ compiler
builds the oneAPI project for the target architecture. The JIT compilation can be
used when targeting CPU or GPU devices, as is the case for OpenCL. However,
JIT compilation is not supported on FPGAs as explained in Section 1.3.2.1. Unlike
OpenCL, oneAPI supports single-source compilation for the host and the device ap-
plication. A BSP, to ensure the interface and communications between the FPGA
chip and external hard-IP, is required to run oneAPI application on FPGAs.

Intel plans to replace OpenCL with oneAPI in the next few years. In this case,
this tool must be able to offer the same level of performance as the OpenCL tool or
offer better performance for FPGAs to make it into the HPC world. This manuscript
will also focus on the oneAPI framework to accelerate our compute-intensive algo-
rithms and compare the two languages for the same types of applications.

OneAPI is a superset of OpenCL in terms of kernel programming directives.
The problems and optimization solutions are based on the same concepts. However,
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the names of the attributes and pragmas are usually different. In the rest of this
document, the optimizations presented are universal to both tools, but we will
present them using OpenCL terminology.

1.4 OpenCL Optimizations

This section deals with OpenCL kernel optimization techniques to leverage the
FPGA architecture. In fact, the use of the tools allows reducing the development
time on FPGA considerably without however any guarantee of performance. The
HLS compilers implement different optimizations based on their particular IR, such
as pipelining or expressing data-level parallelism. However, they suffer from a lack
of support for many other unexploited FPGA-specific optimizations for arithmetic
operations [Uguen 2019] for instance. In order to exploit their full potential, it is
essential to apply some advanced optimizations in addition to the basic compiler op-
timizations. The OpenCL tool has been evaluated for many HPC applications such
as the Rodinia benchmark [Zohouri 2019] or computed tomography [Martelli 2019].
In this section, we will present the optimizations applicable to an FPGA compute
kernel to have an efficient pipeline.

1.4.1 Compiler-aided Optimizations

The use of FPGAs through HLS tools such as OpenCL requires careful attention
to optimizations for efficient pipeline generation. Compilers for general-purpose
processors can apply some advanced optimizations without much developer inter-
vention. This is not the case for the new HLS compilers for FPGAs. To take
advantage of the FPGA architecture, the designer must assist the HLS compiler by
providing FPGA-specific optimizations such as concurrent execution, pipelining,
data representation, etc. Several basic optimizations are presented in programming
guides [Intel Corporation 2019a, Intel Corporation 2019b]. We will look here at
some optimizations relevant to FPGA design.

1.4.1.1 Floating-point optimizations

Intel’s new FPGAs are equipped with DSPs to perform floating-point operations.
However, the cost of these floating-point operations can be reduced for applications
with a tolerance for arithmetic precision by relaxing or balancing these floating-
point calculations.

The order of arithmetic floating-point operations can be relaxed using the -fp-
relaxed option in the aoc command. The relaxing is done by implementing balanced
tree hardware as described in [Langhammer 2008]. The -fpc option directs the
compiler to remove intermediary floating-point rounding operations and conversions
whenever possible and to carry additional bits to maintain precision. The rounding
is performed only at the end of the chain of floating-point operations. Using these
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floating-point optimizations may introduce numerical variations in the computation
results.

1.4.1.2 Global memory interleaving

The offline compiler, by default, interleaves global memory (1024 bytes interleaved)
across the external memory banks to efficiently share the bandwidth between all the
memory objects. This configuration leads to poor memory bandwidth utilization
for compute-intensive algorithms due to the problem size and the non-contiguous
memory access pattern. Therefore, using interleaved memory may result in high
stall performance. In order to avoid this automatic memory interleaving, the offline
compiler may be invoked with -no-interleaving flag in the aoc command. This
makes it possible to perform read and write operations in different memory banks
for high throughput. In the case where the board support package includes different
memory types (DDR, QDR, HBM), the memory which has to be prevented from
the interleaving must be specified in the aoc command (-no-interleaving=DDR, for
instance). In our case, we notice that non-interleaved global memory access can
reduce the worst-case stall percentage by half.

1.4.2 NDR kernels

Several optimizations must be applied to an NDR kernel to achieve high throughput.
This programming kernel must avoid multiple barriers when using local memory and
reduce stalls due to data dependencies.

Listing 1.1 – NDR kernel
1 __kernel void NDR_kernel (// kernel arguments
2 ){
3 // get index of the work item
4 int index = get_global_id (0);
5 // Some computations
6 }

1.4.2.1 Specifying work-group size

Intel provides an attribute to set work-group size in order to minimize the BRAM
consumption. If not specified, the default work-group size is set at 256, leading to a
potential waste of BRAM resources. This optimization can save valuable resources
on the FPGA that could be used to increase the overall design performance. Spec-
ifying work-group does not impact the performance in all cases. However, when
the kernel contains barriers and if a value is not determined, the compiler sets the
work-group size to one at runtime even though the default value was set to 256 at
compile time. This behavior can significantly degrade the design performance. The
impact of work-group size on the performance has been evaluated in [Shata 2019].
They presented cases for their benchmark where the performance can be improved
by setting a specific or a maximum value.
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1.4.2.2 Parallelism

To achieve data parallelism for NDR kernels, SIMD inference or compute unit repli-
cation can be used through adequate attributes. The num_simd_work_items
attribute is also used to allow kernel vectorization in a SIMD fashion. This enables
work-item-level parallelism and allows more computation per work-item without
modifying the kernel’s body. The use of the SIMD attribute requires to specify the
work-group size. The num_compute_units attribute is used to generate multiple
compute units to increase the kernel throughput. Each work-group will be mapped
to a compute unit. Therefore, all the work-items in a work-group may share the
same resources. Both attributes increase throughput by increasing the number of
FPGA resources. However, the SIMD attribute only replicates the data path of
the pipeline while the compute unit attribute implements each instance as a single
sufficient pipeline leading to more resource usage. Hence, the SIMD attribute is
more area efficient than the other. Nevertheless, in practice, combining these two
attributes will potentially give a good trade-off between resource consumption and
throughput.

1.4.3 Single Work-Item (SWI) kernels

FPGAs have proven a strong ability to express fine-grained parallelism through
pipelining. Therefore, it is encouraged by the major vendors of FPGAs to choose
a SWI kernel instead of NDR kernel to better leverage the full potential of their
architecture. A given function is designed as a deep pipeline with multiple stages.
A key point in pipeline parallelism is to avoid memory stalls due to data or mem-
ory dependencies. A stall will hold a computation when the required data is not
available, making some stages of the pipeline idle at some clock cycles. Also, the II
optimization is another key for this kind of kernel. It should be noted that the ideal
value of II is 1, which means that the design produces a new result at every clock
cycle once the pipeline is filled. For a SWI kernel, particular attention is given to
loops for optimization purposes since loops are vastly present in compute-intensive
applications.

Listing 1.2 – SWI kernel
1 __kernel void SWI_kernel (// kernel arguments
2 ){
3 for(int index = 0; index <N; index ++){
4 // Some computations
5 }
6 }

1.4.4 Loop optimizations

In compute-intensive applications, we have a nest of nested loops to perform pro-
cessing on large data. For simplicity of illustration, the following optimizations are
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often applied to a single loop but are equally applicable to nested loops. One of
these loop optimizations consists of merging the nested loops into one.

1.4.4.1 Loop pipelining

Loop pipelining consists of subdividing a loop’s body into several micro-operations
(called pipeline stages) that can be executed concurrently, as shown in Fig. 1.7.
The aim is to overlap the loop iterations so that one iteration can start before the
completion of its predecessor. A new iteration has to start as soon as possible to
reduce the overall clock cycles of the loop. The number of clock cycles between two
consecutive iterations is the II value of the pipeline. The same concept is present in
general-purpose processors, allowing one to use the available resources on the device
at its full potential. This is even more interesting on FPGAs as the synthesis tools
synthesize custom designs based on the user’s input description. Instead of using
a fixed architecture, as is the case with general-purpose processors, HLS tools can
generate a custom pipeline for each loop of a program according to the operations
performed on FPGA. Loop pipelining uses FPGA hardware efficiently and avoids
resource under-utilization. Therefore, loop pipelining improves the area usage and
the design performance simultaneously. The AOC compiler attempts to pipeline,
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Figure 1.7 – Loop pipelining

by default, all the loops in the kernel for SWI with an II value of one (the optimal
value). Loop-carried dependencies must be avoided to achieve the optimal II value.
When the dependency is not avoidable, the designer should manage to handle it in
one clock cycle by inferring shift register, for instance, or any other relevant opti-
mizations. One important limitation of loop pipelining on FPGAs is the necessity
to know the loop trip count at compile time to generate an efficient pipeline. When
the loop trip count cannot be determined at compile-time, the compiler will not
be able to analyze the loop and evaluate the loop exit condition, which will lead
to the generation of a loop pipeline with high II value. Consequently, some recent
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works have focused on source-level compiler-based optimization for loop pipelining
using HLS compilers. The authors of [Liu 2018] have proposed a compiler-based
loop optimization technique for uncertain and non-uniform memory dependencies.
The pipeline benefits from the compile-time analysis and optimizes the runtime
dependencies in order to improve the loop II and the overall performance. Also, a
speculative loop pipelining technique has been proposed in [Derrien 2020] to handle
dependencies in the pipeline and improve throughput. Their source-level approach
is based on decoupling the data path and the control of the pipeline, and is meant to
be included in HLS compilers without adding any complexity for the programmers.

1.4.4.2 Loop unrolling

Loop unrolling consists of partially or fully replicating the loop’s body. The loop
unrolling replicates the hardware resources within the loop scope to maximize the
throughput. Fig. 1.8 shows an example of a loop where five iterations are running
in parallel. Unrolling a loop maximizes the number of memory access per cycle
leading to good exploitation of the memory bandwidth. Memory accesses for each
parallel instance of the loop can be coalesced in burst mode when the access is
contiguous in memory or if the compiler can statically analyze the access pattern.
The loop trip also should be known at compile-time to effectively unroll the loop
and ensure good throughput without wasting valuable hardware resources. Also, to
apply a partial unrolling, the trip count should be divisible by the unrolling factor
to reduce the resource overhead.
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Figure 1.8 – Loop Unrolling

Unrolled loops still get pipelined and therefore benefit all the advantages of
pipelining. Hence, a combination of these two techniques is widely used in SWI
kernels on FPGAs to achieve good performance.
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1.4.4.3 Nested loops fusion

Compute-intensive applications contain several nested loops. Loops with such con-
figurations consume significant FPGA hardware resources with relatively long la-
tencies. It is possible to merge these nested loops into a single loop in order to
minimize pipeline latency and reduce the FPGA area. The loop_coalesce pragma
is used to do this as in the code below:

Listing 1.3 – Loop interleaving
1 # pragma loop_coalesce
2 for( size_t j = 0; j < M; j++){
3 for( size_t i = 0; i < N; i++){
4 // Computation on (i,j)
5 }
6 }

The compiler then converts the code above into the following one:

Listing 1.4 – Loop interleaving
1 size_t i = 0, j = 0;
2 while(j < M){
3 // Computation on (i,j)
4 i++;
5 if(i == N){
6 i = 0;
7 j++;
8 }
9 }

In case of multiple loops, one can specify a value (e.g., #pragmaloop_coalesce 2)
to assert to the compiler how many loops are being coalesced (no value means all
loops are merged). This pragma must be used with caution for some kernels because
it might result in longer latencies and II values.

1.4.4.4 Initiation Interval (II)

The II value represents the number of the cycle between the launch of two con-
secutive loop iterations applied to SWI kernels. This parameter is a valuable key
for optimization when dealing with pipeline execution on FPGAs. The compiler’s
main objective is to achieve an II value of one whenever possible, even at the cost of
lower operating frequency. The performance model in (1.1) determines the number
of clock cycles a pipeline might take to complete the execution.

cycles = P + II(N − 1). (1.1)

Where P represents the pipeline depth, N the loop trip count, and II the initiation
interval of the loop (or the function). We can notice that a high II value may
result in a longer execution time for the design. The optimization of this parameter
goes through the relaxing of the loop-carried dependencies, the reduction of the
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accesses to the global memory, and ensuring stall-free memory accesses without
any conflict. The compiler implements several basic optimizations through static
analysis to optimize this parameter.

The ii pragma is available to tune the loop initiation interval value manually.
Since the first priority of the compiler is to achieve the optimal II value, using this
pragma to reduce the compiler-specified value may drastically degrade the operating
frequency or cause synthesis failure due to unmet user constraints. Therefore, the
pragma is only used to increase the compiler-specified II value in order to prioritize
the operating frequency over non-crucial loops in the design. Indeed, the design
may contain loops that are not in the critical path. These loops can have an II
value higher than the optimal value without impacting the design performance.
The next code shows the use of this pragma:

Listing 1.5 – ii pragma
1 # pragma ii <desired_value >
2 for( size_t i = 0; i < N; i++){
3 //Do something on vect
4 }

1.4.4.5 Other loop pragmas

There are many other loop optimizations detailed in Intel documents. Some of them
are automatically applied by the compiler, while others request user intervention.
However, the user can control them through pragmas to enable or disable them.
The OpenCL compiler generates an HTML report for each kernel in order to allow
the designer to go through the design information.

The ivdep pragma:

The ivdep pragma is used to assert to the compiler that there will be no load/store
dependency between two particular instructions, even though his static analysis
is unable to prove so. In the case of actual load/store dependencies, using this
pragma can result in functional incorrectness. This pragma can also be used with
the safelen parameter to specify the number of iterations that can execute before
the dependencies appear.

The max_concurrency pragma:

The max_concurrency pragma enables concurrent loop iterations in parallel for
significant throughput. Unlike loop unrolling, the loop body is not replicated when
applying the max_concurrency pragma but only the memory objects that are
private to the loop. This pragma creates several copies of local memory to store
data for consecutive iterations required for concurrent computation. This pragma
intends to keep a compute unit in the design occupied so all of them can perform
a valid operation at each clock cycle. However, using this pragma on a loop that
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contains a local memory object may result in extra BRAM usage due to the private
copies created to support concurrent execution of the loop. Hence, one may use
this pragma to control FPGA resource usage especially BRAM.

Listing 1.6 – Loop concurrency
1 # pragma max_concurrency M
2 for( size_t i = 0; i < N; i++){
3 float vect[size ]; //Do something on vect
4 }

The max_intereaving pragma:

Themax_intereaving pragma is applied to nested loops and it is used to interleave
the pipelined nested loop’s iterations. This is applied when the compiler is unable
to achieve an II of 1 for the inner loop. In order to increase the pipeline occupancy,
the compiler interleaves the inner loop iterations with the outer loop to minimize
the design II. For instance, for a given nested loops (j, i) as presented in the code
below, the innermost loop having an II value greater than one (e.g., II=2) will lead
to a pipeline inefficiency. A new iteration of i loop is launched every two clock
cycles.

Listing 1.7 – Loop interleaving
1 for( size_t j = 0; j < M; j++){ // Loop with II=1
2 # pragma max_interleaving 1
3 for( size_t i = 0; i < N; i++){ // Loop with II=2
4 //Do something
5 }
6 }
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Figure 1.9 – Loop interleaving
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In order to fully harness the pipeline, one could interleave the iterations of the
two loops. Fig.1.9 shows the execution pattern of such (j,i) loop when applying
interleaving or not. At the first clock cycle, the iteration (j = 0, i = 0) will be
initiated. Under normal pipeline execution (without the pragma) the second clock
cycle is idle due to the loop II. However, thanks to the interleaving iteration (j =
1, i = 0) can be launched. Then, at the third cycle the execution of iteration
(j = 0, i = 1) starts which is followed by (j = 1, i = 1). The execution is performed
this way until complete invocation of loop iterations. All stages of the pipeline are
occupied by cycle 5 with no idle stages.

1.5 Conclusion

In this chapter, we have presented an overview of the computing architectures
usually used in HPC as well as the development tools. Of particular interest are
the FPGA architectures used in this work. FPGA technology used to be accessible
only by a handful of hardware designers. Thanks to the HLS tools, this technology
is now available to a large number of developers. Considering the advances in
their internal architecture, FPGAs have become a potential candidate for HPC
applications. However, to take advantage of their architecture using HLS tools,
several FPGA-specific optimizations, some of which have been presented in this
chapter, need to be applied. In the rest of this manuscript, we will present other
more advanced optimizations and the application of these optimizations to real-
world applications.
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Radioastronomical imaging aims to produce an image of the sky from the in-
coming signals delivered by radio-telescopes. Radio-telescopes produce high dimen-
sional data requiring powerful computing systems in order to reconstruct the sky
images under performance and energy efficiency constraints. Therefore, FPGAs are
a potential alternative to GPUs to accelerate the complex algorithm chain. In this
chapter, we present an overview of the imaging system used in radio interferometry
and then focus on the acceleration of one of the steps of the imaging system, decon-
volution. Square Kilometre Array (SKA) is the largest radio telescope in the world
aimed at generating multidimensional images of the sky from a data stream at 7.2
Terabit/s without any storage capabilities. The data collected from the antennas
will go directly into the SKA pipeline for real-time processing in several stages. In
this pipeline, we are interested in the Science Data Processor (SDP) stage for the
reconstruction of the sky image. Indeed, the data from each pair of antennas are
correlated and calibrated before being processed by the imaging system. The input
to the imaging system is the calibrated visibilities. This chapter presents the imag-
ing system of the SKA pipeline and the iterative algorithms used to reconstruct the

29
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sky image. The chapter uses the deconvolution use-case to illustrate the design of
the algorithm on FPGA using OpenCL HLS tool.

2.1 Square Kilometre Array (SKA) imaging

This section deals with iterative optimization algorithms for solving inverse ill-
posed problems and image reconstruction in radio astronomy. The sky image re-
construction problem is indeed an ill-posed inverse problem whose imaging system
is presented here.

2.1.1 Iterative algorithms

Iterative methods are used to solve ill-posed inverse problems. The linear model of
the reconstruction problem is modeled as:

g = Hf + ε (2.1)

where g denotes measurements from an observation system, f is the unknown
object, H is the linear model describing the response of the observation system,
and ε represents the additive noise. The solving method can minimize the cri-
terion without constraint, which does not guarantee the optimal solution due to
the character of ill-conditioning of the system matrix H. Iterative methods with
regularization are used to correct this ill-conditioning of the matrix by introducing
regularization terms to impose constraints in order to penalize undesired solutions.
The cost function J to be minimized is described as:

J(f) = 1
2 ||g −Hf ||

2 + λ||Df ||2,

J(f) = JLS + JReg,
(2.2)

where 1
2 ||g −Hf ||

2 is the data fidelity term, and λ||Df ||2 is the regularization
term with λ as the regularization parameter. The first term intends to minimize
the distance between the observation and estimation. The second introduces a prior
knowledge in order to penalize certain solutions to the problem.

f̂ = arg min
f
J(f). (2.3)

Several least-square regularization approaches have been proposed in the liter-
ature such as the Total Variation regularization [Rudin 1992] or Tikhonov regular-
ization [Tikhonov 1995].

The optimization algorithm used to minimize the cost function is the gradient
descent:

f (n+1) = f (n) − α.∇J(f (n)), (2.4)
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with

∇J(f (n)) = −2Ht(g −Hf) + λDtDf. (2.5)
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Figure 2.1 – Block diagram of iterative image reconstruction

Fig. 2.1 describes the bloc diagram of the iterative gradient descent optimization
algorithm with regularization. The iterative nature of such optimization algorithms
makes them costly in terms of time and computational resources. The method of
solving this inverse problem without regularization does not guarantee the optimal
solution, so it is more appropriate to solve the problem with regularization to impose
constraints in order to penalize undesired solutions. The implementation of the
iterative algorithm on hardware accelerators is also a major concern. An algorithm-
architecture co-design approach is required to efficiently implement the algorithm
to accelerators and respect the application’s constraints. We discuss in this section
the imaging system of the SKA pipeline. The different strategies for porting the
iterative algorithm to the FPGA board will be presented in Chapter 5 for the
tomography use-case.

2.1.2 SKA imaging

The purpose of the imaging system is to produce the sky image from the visibilities.
Gridding and degridding operations are therefore used in this step. Indeed, the
visibilities are in the Fourier space. However, these visibilities are rarely distributed
on regular grids, which makes it impossible to use the inverse FFT (iFFT) to
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produce a dirty image. Thus the purpose of the gridding operator is to place the
calibrated visibilities onto regular grids followed by the iFFT to produce the dirty
image. Since the process is iterative, the degridding allows restoring visibilities from
the dirty image preceded by the FFT.

-

Deconvolution

Major

Cycle

Minor

Cycle

Figure 2.2 – Bloc diagram of radio astronomical imaging

Fig. 2.2 presents the bloc diagram of the imaging step, which is also an inverse
problem g = Hf + ε solved by iterative algorithms. The diagram has two levels of
iteration: the major iteration and minor iteration. Indeed, the deconvolution step
in the iterative algorithm is also an inverse problem that requires an iterative op-
timization algorithm to estimate the solution. The deconvolution which represents
the minor loop is detailed in section 2.2. The forward model H = FS consists of
consecutive operations of 2D FFT and degridding. The operator F corresponds to
the 2D FFT of the estimated cleaned image, which then passes through the de-
gridding step S. The degridding step produces the predicted visibilities, which are
then compared to the calibrated visibilities g. Then, the remaining visibilities are
gridded by the gridding operator S†. The gridding is used to place the calibrated
visibilities onto regular grids to allow the use of the 2D FFT algorithm instead of
the expensive discrete Fourier transform. The iFFT operator F † is applied to the
calibrated visibilities in order to produce the dirty image. The dirty image is then
deconvolved in the deconvolution step representing the minor loop.

The gridding and degridding steps are the most computationally intensive oper-
ators. These algorithms have a high parallelism potential on GPUs with substancial
acceleration factors. Nevertheless, despite of the powerful computation offer by the
GPUs, these devices are also very power-hungry. With this in mind, FPGAs seem



2.2. Deconvolution 33

to be a strong potential candidate due to their energy efficiency. For this reason,
the Image Domain Gridding (IDG) algorithm [Van der Tol 2018] has been widely
evaluated on FPGAs using HLS tools. For instance, an FPGA implementation
of the IDG algorithm using OpenCL has been presented in [Veenboer 2019]. The
authors showed that FPGAs perform better than optimized CPU implementation.
However, GPUs perform better than FPGAs for the gridding and degridding algo-
rithms regarding throughput and energy consumption. The same IDG algorithm
have been designed using Xilinx FPGAs by exploring different precisions in data
representation [Corda 2022]. Indeed, FPGAs can support several levels of precision
other than floating-point data type, and the authors have investigated the use of
fixed-point for sky image reconstruction. They proceeded to the evaluation of the
minimal precision requirement for data representation in radio astronomy in order
to perform the design with a customized precision on FPGAs. Their work on preci-
sion evaluation has improved the performance of the IDG on FPGAs, particularly
those from Xilinx. However, these performances still do not reach those obtained
on GPUs for gridding and degridding algorithms. In this manuscript, we will only
consider deconvolution, which is also an ill-posed inverse problem representing the
minor loop. The deconvolution is an inverse problem, which is used to illustrate
the FPGA design through OpenCL tool.

2.2 Deconvolution

The dirty image produced from the visibilities suffers from high artefacts because the
sky image is convolved with a Point Spread Function (PSF). Image deconvolution
intends to remove this convolution effect and produces an accurate image of the
sky. Fig. 2.3 shows a PSF, a dirty image, and the corresponding deconvolved
image. The deconvolved image has a smaller noise level than the dirty image.
Several deconvolution algorithms are reported in the literature, mostly based on
least square or CLEAN variant methods. In this manuscript, as the gridding and
degridding steps have been actively explored on FPGA, we are interested in the
step of dirty image deconvolution to restore the sky image. We will present in this
section the deconvolution based on the least-square and CLEAN methods. We will
highlight our interest in the CLEAN algorithm due to its simplicity compared to
the least-square method.

2.2.1 Least square deconvolution

The image deconvolution is an ill-posed inverse problem which can be solved by
regularized least-square approach. The cost function to be minimized is given by:

J(f) = 1
2 ||g −Hf ||

2 + λ||Df ||2, (2.6)

The solution is then:
f̂ = (HtH + λDtD)−1Htg. (2.7)
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(a) PSF

(b) Dirty image (c) CLEAN image

Figure 2.3 – Image deconvolution

The gradient descent optimization is used to estimate the next image from the
current estimation iteratively as shown in the diagram presented in Fig. 2.1.

The least-square deconvolution using the gradient descent method, as shown in
Algorithm 1, can be parallelized on FPGA. Indeed, the deconvolution invokes sev-
eral convolution operations iteratively. The computation of δLS (in Algorithm 1 line
4) requires convolution where the image and the mask sizes are large. This convo-
lution is performed in the Fourier domain by element-wise multiplication using the
convolution theorem. However, the convolutions required in the δReg computation
involve small kernels which can be efficiently performed in the image domain. The
rest of the computation (∇J, f (n+1)) can also be implemented on FPGA, which
reduces the data transfer rate between the host and the kernel considerably. The
complete gradient descent optimization can thus be performed on the FPGA in
order to deconvolve the dirty image. However, due to its computation overhead,



2.2. Deconvolution 35

Algorithm 1 Least square deconvolution
1: Set f (0)

2: n← 0
3: repeat
4: δLS ← −Ht(g −Hf (n))
5: δReg ← λDtDf (n)

6: ∇J ← δLS + δReg
7: f (n+1) ← f (n) − α∇J
8: n← n+ 1
9: until Convergence is reached

10: return f (n)

the least square deconvolution is not widely used in sky image reconstruction. The
implementation of the gradient descent algorithm will be discussed in Section 5.6
in the context of tomography reconstruction. Alternatively, other deconvolution
algorithms are used in radioastronomy for their efficiency. These algorithms are the
so-called CLEAN variants, and we consider the original CLEAN algorithm due to
its simplicity.

2.2.2 CLEAN deconvolution

The simplest and most commonly used deconvolution algorithm is the Högbom
CLEAN [Högbom 1974]. The CLEAN algorithm intends to find iteratively the
brightest peaks in a dirty image and subtract its contribution from the dirty image.
The algorithm converges when a certain user-specified threshold is reached. The
CLEAN algorithm is not a computational burden compared to gridding and degrid-
ding in the imaging pipeline. However, the CLEAN algorithm is memory-bound
and the iterations of the procedure are sequential which cannot be parallelized.
Within each iteration, the operation can be performed independently on each pixel
of the image presenting a parallelism potential. The procedure of this algorithm is
described in Algorithm 2.

The candidate image Î (or model image) is empty and the dirty image ID
is copied in the residual image Ires as initialization. The intensity (intensityp,q)
and position (p,q) of the peak in the residual image (Ires) is searched in the first
place (line 5). The procedure consists of building a candidate image Î with the
peak intensity scaled by the factor γ (line 6). Then, subtract from the residual
image the PSF convolved (or multiplied in the Fourier domain) by Î (line 7). The
peak intensity of the updated residual image is searched again. This procedure is
performed iteratively until the intensity is below a user-specified threshold or when
a maximum number of iterations is reached. After convergence, the image Î is
convolved with an ideal clean beam, which is usually a 2D elliptical Gaussian fitted
to the central lobe of the dirty beam.

Several variants of the CLEAN algorithm have been proposed in the littera-
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Algorithm 2 Högbom CLEAN procedure
Require: ID, PSF , γ, threshold, itermax
Ensure: Î, Ires

1: n← 0
2: Îp,q ← 0
3: Ires ← ID

4: while intensityp,q > threshold and n < itermax do
5: intensityp,q ← find_ peak(Ires)
6: Î(p, q)← Î(p, q) + γ.intensityp,q
7: Ires ← Ires − PSF ∗ Î
8: n← n+ 1
9: end while

10: Îp,q ← convolve(Î, clean_beam)

ture in order to accelerate the deconvolution. For instance, the Clark CLEAN
[Clark 1980] is an improvement of the original Högbom CLEAN for large image.
The algorithm performs the deconvolution by searching the peak as in the original
algorithm but working on a sub-region of the image. This peak search is called the
minor iteration. The major iteration in this case consist of Fourier transforming the
CLEAN components using FFT and sustracting it from the dirty image. Another
variant of CLEAN is presented by [Schwab 1984] which includes the degridding
step in the major iteration. The subtraction is performed at the visibility level
which is more accurate than the Clark CLEAN. A multi-scale CLEAN algorithm,
which is an extension the original Högbom CLEAN, has been proposed by [Corn-
well 2008]. The multi-scale CLEAN also includes the degridding step in the major
iteration. It uses different scale sizes to convolve the dirty image. The multi-scale
algorithm operates simultaneously on all scales under consideration. Indeed, the
dirty beam is convolved with each scale size which is precomputed before the pro-
cedure. Therefore, the peak search is performed on a set of images for different
scales. An extension of the multi-scale CLEAN has been developped as multi-scale
multi-frequency CLEAN variant [Rau 2011]. Nevertheless, we only consider the
original Högbom CLEAN in this manuscript in order to avoid the use of gridding
and deggriding operators in the variants that include the major iteration.

2.2.3 FPGA-based CLEAN using OpenCL

We implement the Högbom CLEAN presented in Algorithm 2 on Intel FPGA using
OpenCL. The iterative loop of the algorithm is entirely carried out on FPGA instead
of CPU. The crucial steps of this algorithm are the search for the peak intensity,
the construction of the CLEAN map, and the update of the dirty image. This
algorithm does not use many DSP blocks on the FPGA board. The algorithm has
been described using the SWI and NDR model in OpenCL.



2.2. Deconvolution 37

2.2.3.1 SWI design

The most crucial parts of the algorithm, which are the peak search (Algorithm 2,
line 5), and the residual image update (line 7), can be synthesized in the same
bitstream into different kernels. However, we merge these parts into one deeply
pipelined kernel. The full iterative algorithm runs on FPGA. The host CPU is in
charge of transferring data into the device memory, launching the kernel, and then
transferring the results back. The peak search is a memory intensive operation
which can be easily parallelized on multiple data. Also the access to the external
memory is performed contiguously which is better to take advantage of memory
coalescence and maximize the throughput. The reference version corresponds to the
sequential version without any advanced OpenCL optimization. This version is an
implementation designed for FPGA, considering the specificity of its architecture
to have pipelined loops. Indeed, all loops are pipelined with a II of 1 in this
implementation which is crucial for the SWI model. The peak search and the
dirty image update are pipelined blocks with no data parallelism expression. The
optimized version exploits OpenCL basic optimizations presented in Section 1.4.
This pipelined version is then optimized by expressing parallelism to maximize
the global memory bandwidth. The peak search has the potential for parallelism,
where each pixel can be considered separately to evaluate the maximum value of the
image. We therefore apply loop unrolling within this block to maximize bandwidth.
Similarly, the image update, which requires some arithmetic operations (subtraction
and multiplication), is also parallelized with loop unrolling. Each image pixel is
updated independently of the others because there is no data dependency. The
peak search does not require several computations and therefore has no impact on
the DSPs consumption, but the update of the dirty image may slightly affect the
number of DSPs used which is still very low for this algorithm.

The iterative nature of the algorithm, whose exit condition depends on a value
calculated within the loop (intensityp,q calculated at line 5), means that the while
loop loop is not pipelined. The iterations of the while loop in Algorithm 2 are
executed sequentially. This is a limitation for the SWI execution model, which may
well achieve better performance in the case of full pipelining. However, all other
pipeline blocks, such as the peak search, are pipelined deeply to achieve better
throughput. However, this is still better than launching the iterative loop from the
host processor regarding the design throughput.

2.2.3.2 NDR design

The NDR version of the algorithm has also been described in order to compare it
with the SWI version. The reference version is the parallel implementation of the
sequential version of the algorithm where multiple work-items deal with different
image pixels. The reference version only contains one compute unit and one work-
group. Each work-item passes through this compute unit to process the algorithm.
The pipelining is then at work-item level where the aim is to launch a new work-item
every clock cycle. The optimized version is then designed to express parallelism
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and use local memory to speed up the algorithm. In this version, parallelism is
expressed using replication of the compute unit and loop unrolling to maximize
bandwidth utilization. Multiple compute unit allows to execute different work-
group on different compute unit which contributes in the reduction of memory
stall. As the algorithm is memory-bound, it is essential to ensure that the memory
is accessed stall-free. We use multiple work-groups to perform the peak search
by reduction. The peak search is performed partially within each work-group and
then we select highest peak among all the partial maximum intensity values from
all work-groups. The work-items from the same work-group have access to the same
data in the local memory. This NDR version does not suffer from the while loop
problem because none of the loops are pipelined for this kernel model.

Parallelism is expressed at the thread or work-item level. The peak intensity
search must be well managed because there is a need for communication between the
work-items. In order to express parallelism, several work-items work simultaneously
to search for the peak intensity, and it is necessary to synchronize them at a given
moment. To better parallelize this task, we proceed to a search by reduction.
This means that a partial peak search is performed within each work-group using
local memory. This way, all work-items share the same data in local memory.
Then a reduction between each work-group must be performed to keep only the
maximum intensity. It is then necessary to have synchronization barriers to ensure
that all work-items have finished before proceeding to the reduction among different
work-groups. In this case, it is essential to specify the work-group size to allow
the compiler to better manage the sharing of FPGA resources and ensure good
performance. Another synchronization barrier is necessary between the update of
the dirty image and the peak intensity search to avoid computational errors. We also
apply loop unrolling to the non-pipelined loops in the design in order to increase the
number of memory requests per clock cycle and maximize the bandwidth. Indeed,
this could have been achieved by SIMD vectorization but due to the reduction, some
conditional branching are thread ID-dependent. Therefore, the SIMD vectorization
cannot be applied. The work-group size is then fixed with caution to reduce the
BRAM consumption while delivering good performance.

2.2.3.3 Results

We have evaluated these designs on the DE10-Pro board equipped with the Intel
Stratix 10 device (1SG280HU2F50E2VG). The parameters of the CLEAN algorithm
are shown in Table 2.1. The sizes of the input dirty image and the PSF used in
this experiment are 1280 × 1280 and 2560 × 2560, respectively. The PSF should
be at least twice as large as the dirty image (in both directions). The dirty image
is cleaned after 436 iterations when the use-specified threshold is reached. The
computations are performed using single-precision floating-point data. We discuss
the performance of the CLEAN deconvolution as presented in Table 2.2.

We compared the reference and the optimized versions regarding performance
and design efficiency. Compared to the reference versions, the optimized versions
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Table 2.1 – The CLEAN algorithm parameters

Parameter γ Threshold itermax Dirty image PSF

Value 0.2 0.1 1280 1280× 1280 2560× 2560

show an acceleration of the CLEAN algorithm. The resource usage shows that the
designs do not use a high number of DSPs (less than 1%) because the computa-
tional intensity is very low. The CLEAN algorithm performs much more memory
operations than computations, which explains the slightly high usage of BRAM
memory. The SWI version achieves better performance than the NDR version for
several reasons. This design’s loops are fully pipelined with an initiation interval of
one except for the while loop, which is not pipelined. However, updating the dirty
image step contains loops whose exit condition could not be statically determined
by the compiler resulting in high II values. Those loops have been modified with

Table 2.2 – Performances of the Högbom CLEAN deconvolution on Intel Stratix 10
device.

Design Kernel BRAM DSP Stall Occ Freq. Time Energy
(%) (%) (%) (%) (Mhz) (s) (mWh)

Reference SWI 4 < 1 11.3 28.8 361 22 140.5
NDR 8 < 1 10.75 24.7 162.5 52.3 334

Optimized SWI 9 1 7.2 3.2 256.2 1.37 8.8
NDR 16 < 1 30.57 11.7 173.8 13 83

fixed exit conditions to help the compiler to achieve a good II value. This design
is efficient in terms of execution time as shown in Table 2.2, with a low stall per-
centage. The occupancy of the design is not very high due to the use of multiple
computation units and the non-pipelining of the outer loop (while loop). However,
with more aggressive pipelining the design occupancy can be increased for more
performance.

Loops are not pipelined in NDR kernels. Thus this design does not suffer from
the non-pipelining of the while loop. The NDR design should have achieved better
performance than the SWI version. Nevertheless, this is not the case for this use
case. The NDR design suffers from a high stall percentage due to the usage of
several synchronization barriers. Also, the compute unit replication in the design
is very resource-consuming because of the local memory overhead. Loop unrolling
is used to maximize memory requests. We use loop unrolling instead of SIMD
vectorization because the design contains thread ID-dependent branches due to the
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peak search by reduction.
The optimizations have allowed us to significantly improve the CLEAN algo-

rithm’s overall performance. The NDR version suffers from the use of multiple
synchronization barriers. The SWI kernel provides the best performance in terms
of execution time and energy efficiency despite the non-pipelining of the outer loop.
Also the SWI versions achieve better operating frequency than the NDR version.
The stall percentage of the SWI version is relatively low. However, the occupancy
rate of our compute units remains low, which shows that there is room for fur-
ther optimization. With an adequate adaptation of the algorithm to the FPGA
architecture, this occupancy rate could be increased and thus improve the pipeline
performance.

The hardware resource usage is not very high for these implementations. There
is no point in duplicating these pipelines further, as the bandwidth limitations mean
there will be no performance improvement. Indeed, bandwidth congestion will
increase the percentage of stalls, degrading the design throughput. Nevertheless,
the remaining FPGA resources can be used for other operations like porting the
whole sky image reconstruction algorithm with major and minor loops.

2.3 Conclusion

This chapter deals with the acceleration of the Högbom CLEAN deconvolution
algorithm on FPGA using OpenCL. The OpenCL language significantly reduces the
development time on FPGAs compared to HDL languages. OpenCL optimizations
are applied to assist the compiler to generate an efficient pipeline. The results of
the CLEAN for radioastronomical imaging are discussed. The generated pipeline
of the SWI version is more deep and efficient than the NDR. Therefore, The SWI
achieves better performance than NDR for this algorithm. The main bottleneck
of this algorithm is the memory accesses which impacts the performance. We take
advantage of memory coalescence to leverage the bandwidth and maximize the
design throughput. The OpenCL optimizations presented in Section 1.4 allows to
increase the design performance. However, more aggressive FPGA optimizations,
in the concept of algorithm-architecture co-design, are required to exploit the full
potential of FPGA devices. The CLEAN algorithm is a simple use case. In the
next chapter, we discuss more complex algorithms for illustrating OpenCL-based
FPGA design in the case of tomography reconstruction.
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Image reconstruction in tomography is an inverse problem solved by analytical
or iterative methods. Iterative methods use several operators to reconstruct the
3D image. This chapter presents the different methods used in the literature to
solve these problems. The approaches used to model the forward and backward-
projection operators are discussed in this chapter. We present an overview of the
acceleration of tomographic algorithms on hardware accelerators. The chapter also
presents some first results on the acceleration of projection and back-projection
operators on FPGA using the OpenCL HLS tool.
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3.1 Tomography reconstruction algorithms

3.1.1 Image reconstruction

X-ray Computed Tomography (CT) is an imaging technique that initially found
its application in the medical field. It has been extended to industrial applica-
tions such as non-invasive human body investigation and non-destructive testing
of industrial materials. 3D CT aims to acquire the internal density f of 3D ob-
jects from external measurements g called sinogram or projection data. The 3D
object is placed between an X-ray source and a detector plane, as illustrated in
Fig. 3.1. The source and the detector move around the object along the ϕ axis
to collect the sinogram. The local density of the object attenuates the radiations
emitted from the source. Therefore, the reconstruction problem is to restore the
volume object f from the measured projection data. Initially, analytical methods
were used to reconstruct the image based on the Radon transform [Radon 1917].
One such algorithm is the well-established Filtered Back-Projection (FBP) [Feld-
kamp 1984], which can provide acceptable image quality and reconstruction time
for clinical routine. However, the FBP algorithm has a considerable drawback re-
garding the image quality due to its sensitivity to noise producing images with
artefacts [Ziegler 2007,Pan 2009,Baek 2010,Nelson 2011]. Iterative algorithms have
emerged since the early 1970s [Gordon 1970] in order to improve image quality
and reduce the radiation dose [Willemink 2013]. The idea of iterative reconstruc-
tion is not new, though its use was unfeasible because of the computational cost
before GPU arrival [Geyer 2015]. Model-Based Iterative Reconstruction (MBIR)
algorithms [Fessler 2000,Thibault 2007] are proved to produce better image qual-
ity at the cost of expensive computational time. These methods have become the
most widely used methods for image reconstruction nowadays. Their mathematical
foundations based on the resolution of inverse problems offer better modeling of the
acquisition and geometry system. As a result, these MBIR methods overcome the
limitations induced by analytical methods with the improvement of image quality,
the removal of artefacts, the reduction of radiation dose in the patient’s body, etc.

The direct model of the problem can be expressed as:

g = Hf + ε (3.1)

where g represents the projection data, f the volume to be reconstructed (object
of interest), H the system matrix, and ε the additive noise. Due to the additional
noise, the inverse of the H matrix cannot be calculated. In addition, there is not
enough projection data to compute the exact solution f . Therefore, the reconstruc-
tion problem is characterized as ill-posed in Hadamard’s sense.

The 3D image f is estimated by minimizing a quadratic criterion J :

f̂ = arg min
f
J(f) = arg min

f
(1
2 ||g −Hf ||

2 + λ||Df ||2). (3.2)

Iterative methods of reconstruction are used to solve this linear problem by
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Figure 3.1 – X-RAY CT Projection.

performing several computations of the forward and backward projection using
J(f) the quadratic error and performing a gradient descent:

f (n+1) = f (n) − α.∇J(f (n)) (3.3)

where ∇J(f (n)) represents the gradient of J(f (n)):

∇J(f (n)) = −2Ht(g −Hf) + λDtDf. (3.4)

The solution f is approximated using the iterative algorithm until convergence is
reached. Starting from an initial image f (0) computed from the measured sinogram,
a new volume f (n+1) is calculated from the current estimation f (n) , the gradient
of the cost function and the function decreasing step size α.

The large size of the system matrix makes the storage of the matrix H and Ht

impossible. Consequently, the coefficients of these matrices are computed on the fly
by the forward and the backward projections, which are the most time-consuming
steps in MBIR CT.

3.1.2 Projection/back-projection pairs

3.1.2.1 Unmatched pairs

As mentioned in the previous section, the matrix multiplication operations are not
performed as presented in the equations due to the difficulty of storing the system
matrix. Instead, the elements Hij and Ht

ij of the system matrix are estimated
on the fly by the projection and back-projection operators, respectively. These
two operators are constantly invoked in MBIR methods. Several approaches have
been proposed for the forward and back-projection, providing a trade-off between
accuracy and computational cost. The voxel-driven and ray-driven approaches [Her-
man 1980,Zhuang 1994] have been first proposed to model the forward and back-
projection for CT algorithms and are widely used in most applications. The voxel-
driven approach traces the ray from the X-ray source through the center of the
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voxel. The voxel-driven projection consists of accumulating each voxel’s contribu-
tion in the corresponding detector cells. Its adjoint back-projection aims to update
each voxel by the detector’s cells that have contributed to it. A parallel imple-
mentation of a voxel-driven projection and back-projection pair will be problematic
due to the access conflict in the projector. Indeed, multiple voxels might try to
write in the same detector cell at a time, causing access conflict and leading to
poor performance. However, its adjoint back-projector does not have such a limi-
tation making it more convenient. Alternatively, the ray-driven approach is based
on the ray-tracing technique from the source through the center of the detector.
This approach is based on calculating the integral line along the ray with a specific
weighting. Similarly, the ray-driven back-projector also follows the ray path and
updates all the intersected voxels by the value of the corresponding detector cells.
The ray-driven projection and back-projection present some limitations for paral-
lel implementations. Like the voxel-driven projector, the ray-driven back-projector
suffers from access conflict when several rays try to write in the same voxel at a
time. Additionally, voxel-driven projection and ray-driven back-projection can also
induce high-frequency solid artefacts in the reconstructed image, degrading the im-
age quality [De Man 2002]. To address these issues, it has become common to use
an unmatched ray-driven/voxel-driven pair of projector and back-projector in order
to have a better between trade-off speed and accuracy. However, the reconstruc-
tion using unmatched projection and back-projection is subject to an additional
problem because the matrix Ht is not the exact transpose of the forward matrix
H. This approximation may lead to sub-optimal reconstruction and cause conver-
gence concerns and, therefore, constitutes a drawback for their utilization in MBIR
algorithms.

3.1.2.2 Matched pairs

Several methods have been proposed to overcome the issues mentioned above, using
a matched projection and back-projection pair. The state of the art distance-driven
approach [De Man 2002,De Man 2004] is one of such method. The distance-driven
method allows a matched pair to perform the reconstruction while improving the
image quality and avoiding artefacts. With acceptable computational complexity,
the distance-driven approach combines the advantage of voxel-driven and ray-driven
methods without their limitations. Another approach called separable footprint
[Long 2010] has been proposed to enable the use of matched pairs. The separable
footprint methods deal with separable functions to approximate the voxel footprint.
The separable footprint methods are more computationally expensive due to the
high complexity while ensuring better image accuracy than the distance-driven
approach. The voxel footprint is approximated in the case of distance-driven by a
rectangle covering the delimited region in the axial and the transaxial directions.
However, the separable footprint performs this approximation using a rectangle
in the axial direction and a trapeze in the transaxial direction for the Separable
Footprint Trapezoidal-Rectangular (SFTR) projector. A trapeze is used in both
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directions for the Separable Footprint Trapezoidal-Trapezoidal (SFTT) projector.
Other approaches based on splines have been recently proposed, such as spline-

driven [Momey 2015] and magnification-driven [Savanier 2021] using cubic B-spline
as the basis function to represent the object instead of the cubic voxel. These
approaches use a more accurate mathematical model depending on the beam geom-
etry to reconstruct the object with minimum projections number. These methods
provide better image quality than the separable footprint methods at the cost of
high computation complexity for a higher degree of B-splines.

Despite all these proposals for matched pairs, the unmatched pair (ray-driven
projectors/voxel-driven back-projector) is still the most widely used in industrial CT
reconstruction systems due to the trade-off between accuracy and computational
cost offered by this pair. Therefore, in this work, we only focus on the unmatched
pair by considering the ray-driven forward and voxel-driven backward projectors.

3.1.2.3 3D Projection algorithms

This section deals with ray-driven projectors used in iterative image reconstruction
methods. The projection algorithms considered are those proposed by Siddon [Sid-
don 1985] and Joseph [Joseph 1982], and we will present them in this section.

Siddon projector

δx

δy

αmax

αmin

y

X

g(u, ϕ)

D(xd, yd)

S(xs, ys)

l(x, y;u)

Figure 3.2 – 2D representation of Siddon ray-tracing method



46 Chapter 3: X-ray Computed Tomography Acceleration

Algorithm 3 Siddon projector SWI
Require: α[dimϕ], β[dimϕ], volume
Ensure: 3D sinogram

1: for all ϕ, un, vn do
2: Compute ray length L
3: Compute deltaλ
4: sinoray ← 0
5: if deltaλ ≥ 0 then
6: Compute λmin
7: Compute λmax
8: λ← λmin
9: while λ ≤ λmax do

10: Compute coordinates of the intersection
11: Compute intersection length l
12: Compute Voxels coordinates (xn, yn, zn)
13: sinoray+ = l ∗ volume[xn, yn, zn]
14: Update λ

15: end while
16: end if
17: sinogram[un, vn, ϕ] = sinoray
18: end for

In order to compute the radiological path of a ray, the forward projection is
expressed as follow:

gu,v,ϕ =
∑
x,y,z

l(x, y, z;u, v, ϕ)f(x, y, z) (3.5)

where l(x, y, z;u, v, ϕ) is the intersection length between the ray (u, v, ϕ) and
the voxel (x, y, z), and f(x, y, z) the attenuation coefficient at voxel (x, y, z).

Siddon pointed out most voxels of the system matrix are zero [Siddon 1985], so
instead of summing over all voxels, it is much more efficient to follow the path of
each ray, from the X-ray source S(xs, ys, zs) to the detector D(xd, yd, zd), through
the volume and summing over only the non-zero values. Siddon’s approach is bur-
densome on the computation of intersection coordinates for each voxel. To reduce
the computational cost, more efficient methods for this algorithm have been de-
veloped by Jacob [Jacobs 1998] and Han [Han 1999]. Therefore, The adopted fast
ray-tracing method is a combination of these two approaches [Jacobs 1998,Han 1999]
based on Siddon’s initial algorithm [Siddon 1985].

Algorithms 3 and 4 corresponds to the OpenCL SWI and NDR kernels for
Siddon projector respectively. The SWI version is the fully pipelined version with
sequential execution pattern. The parallelism is extrated in this programming model
at the finest granularity with loop pipelining and concurrent execution. The NDR
version extract thread-level parallelism to express data parallelism. As explained
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Algorithm 4 Siddon projector NDR
Require: α[dimϕ], β[dimϕ], volume
Ensure: 3D sinogram

1: __attribute__((num_simd_work_items(M)))
2: __attribute__((num_compute_units(N)))
3: __attribute__((reqd_work_group_size(X,Y, Z)))
4: un = get_global_id(0)
5: vn = get_global_id(1)
6: ϕ = get_global_id(2)
7: Compute ray length L
8: Compute deltaλ
9: sinoray ← 0

10: if deltaλ ≥ 0 then
11: Compute λmin
12: Compute λmax
13: λ← λmin
14: while λ ≤ λmax do
15: Compute coordinates of the intersection
16: Compute intersection length l
17: Compute Voxels coordinates (xn, yn, zn)
18: sinoray+ = l ∗ volume[xn, yn, zn]
19: Update λ

20: end while
21: end if
22: sinogram[un, vn, ϕ] = sinoray

in Chapter 1, the NDR execution model on FPGAs is different from the GPU one.
This is because the number of compute unit on FPGAs is decided by the designers
while GPUs have a fixed number of compute cores. Therefore, the designer must
use OpenCL attributes to fix the number of compute units and vectorisation level in
order to express data parallelism. The details of these kernels are given in Section
3.3.1.

Joseph projector

The principle of Joseph’s algorithm [Joseph 1982] is to compute the line integral
following the radiological ray along the axis x or y, which is the closest to the ray.
The forward projector, depending on both axis, can be expressed as follows:

gu,v,ϕ = δx
sin(ϕ)

∑
x

f(x, y(u, ϕ;x), z(u, v, ϕ;x)) for ϕ <
π

4

= δy
cos(ϕ)

∑
y

f(x(u, ϕ; y), y, z(u, v, ϕ; y)) otherwise.
(3.6)
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Figure 3.3 – 2D representation of Joseph ray-tracing method

The closest axis to the ray is considered as the primary (or major) axis and
interpolation is used for non-primary axis (the orthogonal plan to the primary axis
in 3D). The image is considered as a smooth function and bi-linear interpolation
between voxels is used to approximate the image voxels.

We present the pseudo code of Joseph’s projector in algorithms 5 and 6 rep-
resenting the OpenCL SWI and NDR kernels respectively. The implementation
details are discussed in Section 3.3.2.

3.1.2.4 3D back-projection algorithm

Backward projection is one of the most time-consuming steps in MBIR CT. The
back-projection operator is also used in analytical reconstruction algorithm such
as FBP [Feldkamp 1984]. The back-projection operator considered is the voxel-
driven one illustrated in Fig.3.4. The 3D back-projection algorithm used in iterative
reconstruction algorithm is given by:

f(c) =
∫
g(u(ϕ, c), v(ϕ, c), ϕ).w(ϕ, c)2dϕ (3.7)

where c = (x, y, z) are the voxel coordinates, (u, v) are the cone beam coordi-
nates, ϕ is the angular trajectory of the detector and w is the distance weight.
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Algorithm 5 Joseph projector SWI
Require: α[dimϕ], β[dimϕ], volume
Ensure: 3D sinogram

1: for all ϕ, un, vn do
2: sinoray ← 0
3: for all xn do
4: // Constant required for yne and zne computations
5: Compute constant values (A,B,C,D)
6: Compute (yne, zne)
7: Compute ray length L
8: Compute interpolation coefficients (C00, C01, C10, C11)
9: sinoray+ = C00 ∗ volume[xn, yne, zne]

10: sinoray+ = C01 ∗ volume[xn, yne + 1, zne]
11: sinoray+ = C10 ∗ volume[xn, yne, zne + 1]
12: sinoray+ = C11 ∗ volume[xn, yne + 1, zne + 1]
13: end for
14: sinogram[un, vn, ϕ] = sinoray
15: end for

Algorithm 6 Joseph projector NDR
Require: α[dimϕ], β[dimϕ], volume
Ensure: 3D sinogram

1: __attribute__((num_simd_work_items(M)))
2: __attribute__((num_compute_units(N)))
3: __attribute__((reqd_work_group_size(X,Y, Z)))
4: un = get_global_id(0)
5: vn = get_global_id(1)
6: ϕ = get_global_id(2)
7: sinoray ← 0
8: for all xn do
9: // Constant required for yne and zne computations

10: Compute constant values (A,B,C,D)
11: Compute (yne, zne)
12: Compute ray length L
13: Compute interpolation coefficients (C00, C01, C10, C11)
14: sinoray+ = C00 ∗ volume[xn, yne, zne]
15: sinoray+ = C01 ∗ volume[xn, yne + 1, zne]
16: sinoray+ = C10 ∗ volume[xn, yne, zne + 1]
17: sinoray+ = C11 ∗ volume[xn, yne + 1, zne + 1]
18: end for
19: sinogram[un, vn, ϕ] = sinoray
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Figure 3.4 – Voxel-driven back-projector

u(ϕ, c) = x ∗ cos(ϕ) + y ∗ sin(ϕ) (3.8)

v(ϕ, c) = x ∗ sin(sinϕ)− y ∗ cos(ϕ) + z (3.9)

For each voxel (x, y, z), the projection of its contribution is located at a posi-
tion (u(x, y, ϕ), v(x, y, z, ϕ)) on the detector. The contribution on the detector is
calculated using the bi-linear interpolation.

This voxel-driven back-projector is expressed in OpenCL for acceleration pur-
pose. The SWI and NDR kernels are presented in Algorithms 7 and 8 respectively.
OpenCL optimizations will be applied to these kernel in order to speed up the
computation. The implementation details are discussed in Section 3.3.3.

3.2 Acceleration of CT algorithms

According to the literature, iterative reconstruction algorithms take several minutes
to several hours. For instance, the computation time of the EM algorithm for
500 projections of 736 × 64 pixels of projection data in the CPU is 1.52 hours
[Chen 2012a]. Hardware accelerators are required to reduce the reconstruction time
of these routines. GPUs have been the preferred architecture for the past decade
due to their parallel computing pattern.
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Algorithm 7 Voxel-driven back-projector SWI
Require: α[dimϕ], β[dimϕ], sinogram
Ensure: 3D volume

1: for all zn, yn, xn do
2: voxelsum ← 0
3: #pragma unroll factor
4: for all ϕ do
5: Compute(un, vn)
6: voxelsum+ = sinogram[un, vn, ϕ]
7: end for
8: volume[xn, yn, zn] = voxelsum
9: end for

Algorithm 8 Voxel-driven back-projector NDR
Require: α[dimϕ], β[dimϕ], sinogram
Ensure: 3D volume

1: __attribute__((num_simd_work_items(M)))
2: __attribute__((num_compute_units(N)))
3: __attribute__((reqd_work_group_size(X,Y, Z)))
4: xn = get_global_id(0)
5: yn = get_global_id(1)
6: zn = get_global_id(2)
7: voxelsum ← 0
8: #pragma unroll factor
9: for all ϕ do

10: Compute(un, vn)
11: voxelsum+ = sinogram[un, vn, ϕ]
12: end for
13: volume[xn, yn, zn] = voxelsum

3.2.1 Acceleration on parallel architectures

Several works have focused on the acceleration of CT algorithms using parallel ar-
chitectures. The unmatched ray-driven projector and voxel-driven back-projector
have been largely explored in order to reduce the execution time. The Cell pro-
cessor has been used in [Scherl 2007b] to optimize the FBP focusing on the most
time-consuming filtering and back-projection steps. Also, the voxel-driven back-
projection algorithm based on the Cell processor has been proposed by the authors
of [Kachelriess 2006]. Before the apparition CUDA, GPU implementations of to-
mography algorithms were done through graphic languages [Mueller 2007]. How-
ever, the release of CUDA changed the situation by making the GPU much more at-
tractive in the community with the proposition of some early work using CUDA lan-
guage [Scherl 2007a,Knaup 2008]. Hence, in [Scherl 2007a], they proposed CUDA-
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based FBP implementation on GPU where the back-projection was highly optimized
due to the hardware support for bilinear interpolation on Nvidia GPU. Several other
works have addressed the acceleration of the back-projector on the GPU architec-
ture over time [Xu 2007, Rohkohl 2009, Zinsser 2013, Okitsu 2010, Jia 2014]. The
Siddon projector combined with the voxel-driven back-projector were accelerated on
the GPU using different iterative algorithms and offered a good trade-off between
performance and image quality [Xu 2010a]. A branchless variant of the ray-driven
Joseph projector is implemented on GPU taking advantage of their texture mem-
ories in [Dittmann 2016, Dittmann 2017]. Their approach was GPU-friendly and
delivered good reconstruction time. Despite the high-frequency artefacts concern
for matched ray-driven or voxel-driven pair of projector and back-projector, several
GPU implementations of these matched pairs have been proposed in the literature.
The authors of [Nguyen 2015] proposed a GPU acceleration of the ray-tracing pro-
jection and back-projection operators to increase the iterative algorithm throughput
significantly. Also, the ray-tracing projector and back-projector have been widely
optimized for GPU computation in order to avoid thread divergences due to mul-
tiple conditional branching [Xiao 2011,Xiao 2012,Gao 2012,Thompson 2014]. Hao
Gao proposed a highly parallelizable ray-driven projector and back-projector with
reduced computational complexity in [Gao 2012]. The 3D Siddon (Jacob’s version)
forward and back-projection has been adapted to the GPU architecture avoiding
threads divergence within a warp in [Thompson 2014]. The authors exploit the
cone-beam geometry and manage to have all the threads in the same execution
context in a given warp.

The distance-driven and the separable footprint pairs have been evaluated on
GPU architectures. The original distance-driven method presents an irregularity in
the inner loop for pixel and detector boundaries computations causing conditional
branching and cannot be efficiently parallelized on GPU. In [Basu 2006], the authors
proposed a branchless version of the Distance-Driven (DD) which is suitable for
GPU computation. This led to efficient GPU implementations of the DD pairs
with significant improvement of the throughput [Schlifske 2016,Liu 2017] and also
multi-GPU version [Mitra 2017]. Similarly to DD pairs, the matched Separable
Footprint (SF) forward and back-projector have been accelerated on GPU. The first
implementation of SF pairs have been proposed by Wu et al. [Wu 2011] followed by
a faster version in [Xie 2017]. These implementations suffer from high data transfer
amounts between the CPU and the GPU, making the PCIe bus the main bottleneck.
This memory transfer bottleneck have been alleviated with newer implementations
for the SF pair [Chapdelaine 2018,Georgin 2019].

3.2.2 Acceleration on specific circuits

Specific circuits such as ASICs and FPGAs are also considered in tomography recon-
struction systems [Wu 1991]. These circuits allow to perform custom design based
on the application and provide flexibility in the design. One ASIC-based multi-
processor implementation has been proposed in [Agi 1993] for parallel and fan beam
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back-projection. However, FPGAs have more flexibility than ASICs, making them
candidates for rapid prototyping and reducing time-to-market. In the past, these
various parallelisms on FPGAs were extracted for tomography through the HDL
requiring a strong hardware skills [Gac 2008,Pfanner 2011,Coric 2002,Kim 2012].
Gac et al. designed a 3D back-projector accelerator for Positron Emission Tomog-
raphy (PET) based on an adaptive cache to improve the memory accesses. Their
HDL design was efficient and performed a voxel update per clock cycle. This level of
abstraction can be a heavy and time-consuming development based on the complex-
ity of specific algorithms. A highly pipelined version of the SF forward projection
algorithm with a two-memory level has been proposed in [Kim 2012]. The two-level
memory allows to reduce the off-chip memory access and consequently increases
the design throughput. Unfortunately, using FPGAs through HDLs is not viable as
these languages are only accessible by traditional hardware designers. Furthermore,
the development flow of these languages is highly time-consuming, as presented in
Chapter 1, creating a barrier for complex applications. Hence, the emergence of
tools with a high level of abstraction allows a broader audience to use FPGAs
through HLL languages and make FPGAs attractive for computed tomography
acceleration.

FPGAs with HLS have recently been subject of evaluation in CT reconstruc-
tion for many algorithms such as Maximum Likelihood Expectation Maximiza-
tion [Cilardo 2020,Ravi 2019], 3D back-projection [Martelli 2018] or CT data align-
ment in memory [Wen 2020]. The industrial HLS tools that were the most mature
began to be used for faster development. The authors of [Xu 2010b] provided an
implementation of the 3D back-projection algorithm and compared it to the hand-
written VHDL design regarding throughput and productivity. It is also worth men-
tioning the implementation of the matched ray-driven pair on FPGAs [Chen 2012b]
using the AutoESL tool before the tool’s company was acquired by Xilinx and be-
came Vivado HLS. Forward and back-projection operators are the most expensive
in tomography reconstruction. The memory access pattern of these algorithms is
not regular, which makes them difficult for HLS compilers to analyze. Therefore
these operators are characterized as memory-bound as memory access constitutes
the main bottleneck. Due to the low bandwidth available on FPGAs, an irregu-
lar memory access pattern will strongly affect the application’s performance. For
this reason, special care must be paid to memory accesses to make them regular
enough and thus take advantage of the FPGA’s bandwidth. Choi et al. [Choi 2016]
proposed a Ray-driven voxel-tile parallel approach that maximizes the data reuse
rate to take advantage of FPGA BRAM. Their approach uses ray-tracing pair
for helical CT reconstruction. With their new parallelism strategy, they avoid the
bank conflict in the parallel scheme when multiple rays may try to update the same
voxel [Huaxia Zhao 2003]. Zhang et al. [Zhang 2020] also proposed a parallel beam-
based hardware implementation on FPGA to exploit on-chip BRAM intensively.
The works of Choi and Zhang use Vivado HLS to synthesize the FPGA kernel. The
authors of [Qiao 2021] proposed an FPGA design of iterative reconstruction for
Transmission Electron Tomography (TET) by improving data locality to optimize
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memory accesses.
The HLS tools have made it possible for FPGAs to be considered again as po-

tential accelerators alongside GPUs. An algorithm-architecture co-design approach
is necessary to take better advantage of FPGA architectures. This adaptation effort
is even more substantial for HLS tools because HLS compilers are not as efficient
as those used for general-purpose processors. In [Martelli 2019], the author ex-
plored the potential of high-level implementation on FPGAs based on OpenCL
SDK applied to image processing applications such as computed tomography. The
acceleration of forward and back-projection operators is also at the heart of this
thesis. We have been interested in the unmatched ray-driven projector and the
voxel-driven back-projector for hardware acceleration.

3.3 FPGA implementations with OpenCL HLS

This section presents the results of the first implementations of our operators to
identify the main bottlenecks of FPGAs using OpenCL HLS tool. These implemen-
tations focus on the exploration of the SWI and NDR kernels by applying OpenCL
relevant optimizations. The operators considered in this study are the Siddon and
Joseph ray-driven projectors and the voxel-driven back-projector.

3.3.1 Siddon

The 3D Siddon projector has been described in OpenCL. Algorithm 3 corresponds
to the SWI execution model and Algorithm 4 the NDR version. The critical path
of the algorithm lies in the ray-tracing computation (the while loop).

The SWI version contains 4 nested loops following the order ϕ → vn → un →
while loop as presented in the algorithm 3. These loops are all fully pipelined on
FPGA in order to achieve maximum throughput. The while loop is the innermost
loop in the design. The trip count of this inner loop1 is not known at compile-time
and differs from one iteration to the other of the outer loops. Therefore, achieving
an II value of one is challenging for this loop. This is problematic because a high
II value of an inner loop affects all the outer loops resulting in high latency for
the design. The number of iterations of the innermost loop of this algorithm (the
while loop) is different for different iterations of the outer loop ′un′. This is because
the number of iterations of the while loop depends on the length of the radiological
ray. The loop exit condition is evaluated by comparing the value λ to λmax which
represents the end of the ray. The II value of this loop depends on the latency of
updating λ which involves the computation of λ in x, y and z directions followed
by some conditional branching to select the right direction. The offline compiler
successfully pipelined all the loop in the design with an II value of one except for
the while loop. This loop has an II value of 3 due to data dependency on λ. This
is the best of what the compiler can do after all the optimizations we have applied

1This kind of loop is called an out-of-order loop in OpenCL terminology.
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to the loop. Therefore, due to the high II value, loop unrolling cannot be applied
to this loop in order to increase the design throughput because the unrolling may
degrade the II by further increasing its value. The unrolling is then applied to the
un loop for more parallelism.

The NDR implementation of this projector has also been evaluated as presented
in Algorithm 4. The ϕ, vn and un loops are handled by work items in this execution
model. The remaining loop is only the ray-tracing loop which is computed by each
single work item. The exit condition issue present in SWI version is not present here
because loops in NDR kernel are not pipelined. In order to achieve data parallelism,
optimizations such as compute unit replication and SIMD vectorization are applied
to this kernel.

Figure 3.5 – 3D projection memory access pattern

In addition to the computation issues, the memory access pattern of this algo-
rithm remains a critical concern. As illustrated in Fig.3.5, the ray passes through
the 3D volume. The projection algorithm need to compute the sinogram pixel for
each ray. For each traversed voxel, the intersection length is multiplied by the voxel
intensity and the result is accumulated in the sinogram. The (xn, yn, zn) coordi-
nates change for each voxel crossed by the ray resulting in non-consecutive memory
access pattern with low data locality. The implementations take advantage of Intel
automatic cache mechanism to optimize the memory access of the algorithm and
reduce global access latency. However, due to irregular access pattern, memory
coalescence is not possible which leads to high memory footprint for implementing
the caches. Moreover, the SIMD vectorization cannot be applied to the NDR kernel
due to the non-consecutive memory access pattern, and the parallelism is achieved



56 Chapter 3: X-ray Computed Tomography Acceleration

by compute unit replication.
The loop unrolling factor in the SWI and the compute unit replication depend

on the memory usage of each design because the resources available on the FPGA
must not be exceeded. Therefore, an unrolling factor of eight is applied to the un
loop in the SWI kernel which represents a design with a single compute unit with
eight processing elements. Each processing element is responsible of one ray-tracing
at the time. The NDR kernel contains eight compute units in the design. The work
group size has been specified to (64, 1, 1) which means that each work group has
64 work items. The resource usage of the NDR version may be high because each
compute unit performs several computations before the ray-tracing step.

3.3.2 Joseph

The Joseph projector has been described in OpenCL for x axis as the primary
one. The Joseph projector performs the sampling following the primary axis (x
or y depending on ϕ). Then, the bilinear interpolation is used for the remaining
axis. The memory access pattern is irregular where the coordinates yne, zne change
constantly following the radiological because they are computed on the fly. This
irregularity makes the access prediction hard for the compiler as explained for the
Siddon projector. Therefore, global memory access cannot be coalesced, and the
compiler will infer multiple private caches for each memory access leading to the
waste of valuable BRAM resources. The memory footprint is even more critical,
with the bi-linear interpolation requiring more memory accesses.

In order to compute a sinogram pixel, this algorithm performs several operations
at each sampling point including voxels coordinates, constant values required for
the length of the ray and interpolation coefficients computations followed by the
interpolation. These floating-point operations are expensive and required access to
the volume data in global memory making the algorithm highly computationally-
intensive. The projector is evaluated by applying the two execution models of
OpenCL and their specific optimizations.

The SWI version of the Joseph projector is presented in Algorithm 5. We have
four loops in this kernel in the order ϕ → vn → un → xn which are all fully
pipelined. The sampling axis x representing the ray-tracing axis corresponds to the
loop xn with a known number of iterations. Therefore, the exit condition evaluation
is handled in one clock cycle. The trip count issue noticed with the kernel of Siddon
projector is not problematic in the case of Joseph because the sampling axis remains
constant. The II of all the loop in the design is one. In this condition the static
design of the pipeline is efficient. However, the performance is highly affected by
the memory access latency. The global accesses cannot be coalesced due to non-
consecutive access pattern for the ray-tracing as mentioned above. Furthermore,
the Joseph projector uses bilinear interpolation which has much higher memory
footprint and more computationally expensive. In addition to basic optimizations
applied to this kernel such as floating point optimization, caching memory accesses,
etc, we applied loop unrolling to the xn loop in order to maximize the throughput.
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The unrolling factor applied is eight, putting higher unrolling factor results in extra
BRAM utilization.

Algorithm 6 represents the NDR version of Joseph projector. The ϕ, vn and un
loops are handled by work items in this version. The xn loop which corresponds to
the ray-tracing is not pipelined in the NDR kernel. The number of compute unit
inferred in the design is four and SIMD vectorization cannot be applied due the
memory access irregularity. The NDR version extracts the parallelism at data-level.
However, due to the gap between the memory bandwidth on GPUs and FPGAs, this
execution model is very limited on FPGAs in term of performance. Furthermore,
the compute unit on FPGAs are instantiated by the designer depending on the
application complexity and the hardware resources because they do not have several
computing cores as is the case of GPUs.

3.3.3 Back-projection

The voxel-driven back-projector has been described in OpenCL from [Martelli 2019].
The SWI version is described in Algorithm 7 and the NDR version in Algorithm 8.
The principle is to accumulate the elementary contribution of each detector pixel in
line with the voxel under consideration for all angular projections. It is a massively
parallelizable algorithm because each voxel can be considered independently of the
others making it suitable for GPU architectures. The coordinates of the detector
pixels are rarely aligned with the voxels, so the voxel contributions are calculated by
interpolation. Bi-linear interpolation is often used to perform this approximation,
but in our case, we use nearest-neighbor interpolation to reduce the computational
complexity and save FPGA hardware resources.

We have evaluated this operator with the NDR and SWI execution models on
FPGA. In the SWI version, there are four nested loops in the order zn → yn →
xn → ϕ. We applied several loop optimizations to this kernel, such as pipelining,
unrolling, and coalescence, using Intel automatic cache to optimize global memory
access. The loops in the design are all pipelined with an II value of one. Then,
loop unrolling is applied to the innermost loop to achieve higher throughput. The
accumulation of voxel intensity is performed by following the angular variations ϕ,
which is the innermost loop. Loop unrolling is applied to this loop to achieve higher
throughput. However, unrolling the ϕ loop does not mean that several voxels are
computed simultaneously, but the accumulation of a single voxel is performed in
parallel. Loop unrolling here does not imply that all the computations are per-
formed simultaneously due to the necessity of reduction for this operation. The
unrolling only means that all the data required for the computation is available
at the same time. Therefore, the unrolling concerns mainly the memory accesses
in this case. Once the data is available, a tree-based approach is used to perform
the accumulation. The unrolling factor applied to this loop is 32 on Intel Arria 10
device. The NDR version uses the compute unit replication to express parallelism
for the back-projector like the projectors. The zn, yn and xn are handled by work
items in the design. This algorithm with a high parallelism potential is also affected
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by the low bandwidth available on the FPGA for massive data parallelism.

Figure 3.6 – 3D back-projector memory access pattern for reconstruction a single
voxel

Similarly to the projector algorithms, the voxel-driven back-projector also has a
strong memory access issue. As illustrated in Fig. 3.6, a single voxel is crossed by
different rays from different projection angles corresponding to different detector
planes. During back-projection of a voxel, we look for the contributions in the
detector planes for each projection angle in order to reconstruct this voxel. Since
the detector plane are spatially spaced in memory, the lack of data locality may
strongly affect the design performance. This irregular memory access pattern is
difficult to analyze and optimize by the offline compiler, even when using the Intel
automatic cache. In addition, the coordinates of the projection pixels are computed
on the fly, making the static prediction of the memory access further challenging.

3.4 Performance evaluation

3.4.1 Experiment setup

The experiment setup of this work is presented in this section. This setup will
remain the same for the entire manuscript.

3.4.1.1 Dataset

We used in this experiment the 3D Shepp-Logan phantom in a cone-beam X-ray
CT system with 256 × 256 detector cells. The detector pixel size is 14.2 mm in
each dimension, and the acquisition produced 256 projections distributed between
0 and 2π. The size of the considered volume is a 2563 voxels, and the voxel size is
(x = 6.05 mm, y = 6.05 mm, z = 5.86 mm). The Focus-Object Distance (FOD) is
98 mm, and the Focus-Detector Distance (FDD) is 230 mm.
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3.4.1.2 Software

The Arria 10 device was part of the FLIK platform, which is a compact, all-in-one,
and portable accelerator platform for laptops. The OpenCL release was the Intel
FPGA SDK for OpenCL version 18.1.2.227 and the BSP 18.1.

The OpenCL release of the Stratix 10 device was the Intel FPGA SDK for
OpenCL version 19.1.0.240 with the BSP 19.1. For both devices, their host machine
were based on Linux OS.

Each kernel execution is monitored through the Intel FPGA dynamic Profiler
for OpenCL. For each kernel, this tool provides, amongst other things, operating
frequency, execution time, logic utilization, latency, bandwidth, and stall of most
memory access.

3.4.1.3 Hardware devices

Table 3.1 – Platforms used in the experiment

Board Compute Freq External Peak float
resources (MHz) Memory (TFLOPS)

CPU i7-3820 8 cores 3600 DDR3 0.88
GPU Jetson TX2 256 Cuda cores 1465 DDR4 0.75

GPU A100 6912 Cuda cores 1410 HBM2 19.5
FLIK Arria 10 1518 DSPs 480 DDR4 1.45

DE10-Pro Stratix 10 5760 DSPs 800 DDR4 9.2

We used the FLIK and the DE10-Pro boards for this experiment as shown in
Table 3.1. The FLIK Arria 10 GX FPGA (10AX115N2F45E1SG), with 1150K logic
elements, comes with 8 GB of DDR4-2133 memory, with a maximum frequency of
480 MHz. The FPGA is connected in PCIe connection (via Thunderbolt 3) to the
host system. The FPGA was connected to the host via Thunderbolt 3 because the
FLIK card is a compact, all-in-one, and portable accelerator platform for laptops.
The DE10-Pro board is based on Intel Stratix 10 GX (1SG280HU2F50E2VG) with
32GB arranged in 2 banks DDR memory. The Stratix 10 device is the high-end
FPGA with 5760 DSP slices. The performance presented in Table 3.1 corresponds
to the theoretical peak performance in single-precision floating-point operations.

In this experiment we do not consider the data transfer between the host and the
device; therefore the considered runtimes do not include memory transfer. However,
to speed up the memory transfer, the allocated data must be aligned at least 64 bytes
to allow for Direct Memory Access (DMA) transfer. To allocate an aligned memory,
the posix function posix_memalign can be used by the host. In our experience the
aligned memory achieves better transfer rate than the non-aligned memory in all
cases. The AOC compiler allows designers to specify a seed value to relax the
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routing constraints or solve the timing violations due to the design complexity.
After validating the architecture on Stratix 10, we perform a seed sweep to choose
the best design configuration that reaches the maximum frequency. The seed sweep
permits determining an optimal seed value for a design without any change in the
initial pipeline characteristic.

3.4.2 Results

The results of our implementations are presented in Table 3.2. For each operator, we
have evaluated both NDR and SWI kernels on Intel Arria 10 device using OpenCL
language. To fairly compare different implementations with different problem sizes,
we use the Giga Updates Per Second (GUPS) indicator, which is unaffected by the
size of the problem, using the formula given in [Chou 2011]:

GUPS = GU

Timekernel
with GU =

Nvoxel ∗Nacc/voxel

10243 (3.10)

with Nvoxel the size of volume and Nacc/voxel the number of accumulations per
voxel.

3.4.2.1 Designs evaluation

Table 3.2 – Performances of forward and back-projection operators on Arria 10

Operator Kernel BRAM DSP Stall Occ Freq. Time GUPS GUPS/Watt(%) (%) (%) (%) (Mhz) (s)

Siddon SWI 60 56 87.7 29 188 10.8 0.37 0.025
NDR 91 71 90 42 225 3.8 1.08 0.072

Joseph SWI 29 9 86.2 12.6 216 22 0.18 0.012
NDR 65 22 80.7 4.1 210 77.8 0.05 0.003

VD-BP SWI 72 27 71 24.6 150 3.5 1.14 0.077
NDR 94 31 79 18.7 168 28 0.14 0.009

In the case of Siddon, the SWI version is less optimal due mainly to the memory
access pattern and the inefficient pipeline. The inefficiency of the pipeline is caused
by the innermost loop with a non-fixed trip count, which penalizes the generated
pipeline with a high II value. However, an NDR kernel does not suffer from this
pipelining problem because the loops are not pipelined in this programming model.
Instead, the pipeline is at the global function level, and the work items are executed
through this pipeline one after the other. Therefore, the NDR version achieves
the highest performance with eight compute units and the required work-group
(64,1,1). Specifying the work-group size at compile-time helps the compiler build
the hardware without extra resource utilization and may significantly improve the
speedup. The NDR version achieves better performance than SWI version. Since
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the sampling is done along one axis or the other depending on the projection angle
for the Joseph projector, the trip count concern is avoided. However, the irregularity
of the memory access persists due to the ray-tracing. For this reason, the compiler
has no problem generating an efficient pipeline with all loops having an optimal II
value. With such a pipeline, loop unrolling is applied to the innermost loop in order
to enhance the design throughput up to the limit of the global memory bandwidth.
We also evaluated the NDR version of the Joseph projector. Due to the non-
contiguous memory access, we cannot apply SIMD vectorization to the NDR kernel
to save hardware resources. Instead, we used compute unit replication to achieve
parallelism. However, the performance of the NDR kernel is 3-fold slower than the
SWI kernel because the pipelining in the latter is effective. Thus the SWI version
is much more efficient and effective than the NDR version for Joseph’s projector.
However, these results are still far from the state-of-the-art implementations for
these projectors reported in the literature.

The observation is the same for the voxel-driven back-projector, which is also
strongly affected by irregular memory accesses. This voxel-driven operator has a
strong potential for parallelism, especially on architectures with high computing
units (e.g., GPU). As the NDR model on GPU is different from the one on FPGA,
this operator does not exploit this parallelism well on FPGA using an NDR exe-
cution model because the memory bandwidth capacity is not sufficient enough to
provide data to the computational units in order to reach the highest performance.
Thus, the SWI kernel is more efficient than the NDR kernel for the voxel-driven
back-projector. In the SWI kernel, all loops are fully pipelined with an optimal
II. Then, we apply loop unrolling to achieve parallelism at the finest granularity
possible.

The most important question when using FPGAs through the OpenCL tool
is the choice of the programming model (NDR or SWI). Since FPGAs are more
efficient in pipeline processing, the SWI model is recommended by all major vendors
of this technology. This SWI execution model has many advantages in managing
control and data flow execution model and is suitable for many applications. On the
other hand, an NDR implementation can be convenient, especially in cases where
it is impossible to have a pipeline whose inner loops cannot be efficiently pipelined,
as with the Siddon projector.

3.4.2.2 Comparison

Table 3.3 shows the comparison of our work to other works on GPU and FPGA.
Several works are presented in this table using GPU and FPGA architectures to
accelerate CT algorithms. We notice that our implementations using OpenCL HLS
are far behind other FPGA implementations regarding the design throughput when
considering the same algorithm. For example, the Siddon projection accelerated
in [Choi 2016] is 17.5× faster than our OpenCL design in terms of GUPS. Sim-
ilarly for the voxel-driven back-projector, our implementation is outperformed by
the ray-driven back-projector accelerated in [Choi 2016,Wen 2020]. Therefore, as
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Table 3.3 – Performance comparison with other works

Accelerator Kernel Reference Volume Number of Platform Time GUPS
projections (s)

FPGA
Siddon This work 2563 256 Arria 10 3.8 1.08
Joseph This work 2563 256 Arria 10 22 0.18
VD-BP This work 2563 256 Arria 10 3.5 1.14

Other FPGAs

Siddon [Choi 2016] 5122 × 372 831 Virtex-6 4.0 18.9
VD-BP [Gac 2008] 1282 × 63 96 Virtex-4 0.526 0.18
RD-BP [Choi 2016] 5122 × 372 831 Virtex-6 3.7 20.4
RD-BP [Wen 2020] 10242 × 128 502 ZCU102 2.10 29.9

GPU

Siddon [Thompson 2014] 5123 720 Quadro 6000 5.9 15.25
BP [Chou 2011] 5123 360 Tesla C1060 2.47 18.2
BP Ours 2563 256 V100 0.011 364

mentioned above, the results of our early work are not comparable to the current
state-of-the-art works on CT reconstruction using FPGAs. All operators suffer from
their memory access pattern preventing the designs to achieve the best possible per-
formance. By using the automatic caching mechanism offered by Intel OpenCL, we
are able to improve performance slightly at the cost of using memory resources.
Despite using these caches, memory remains the main bottleneck of these algo-
rithms resulting in high stall percentages accompanied by an under-utilization of
computational resources (e.g., DSPs).

We have also compared our results with those of GPUs and the performance
gap is even greater than that observed on other FPGAs. All our operators are
outperformed by the equivalent GPU implementation. The Siddon projector ac-
celerated on GPU in [Thompson 2014] is 14.1× faster than our Siddon design on
FPGA. The work of [Chou 2011] on GPU for the voxel-driven back-projector out-
performs our implementation on FPGA by a factor of 16. It should be noted that
these GPU are old generation devices and are not the latest powerful GPU. By
comparing with more recent GPU device like Nvidia V100, the GPU outperforms
the FPGA design by two order of magnitude. This performance gap is very large
between FPGAs and GPUs especially since this is not what was noticed about
15 years ago. Indeed, a performance gap of one order of magnitude was noticed
by [Gac 2008] when comparing GPU with FPGAs using HDLs. The major concern
is now to enhance the performance of our OpenCL designs to fill this performance
gap. We should at least reach the same efficiency as for HDL designs on FPGAs
to reduce the gap as it was 15 years ago. Also, our OpenCL designs should be
competitive with the state-of-the-art works on FPGAs as well. In order to achieve
these goals, an algorithm-architecture co-design approach must be developed to
better take advantage of FPGAs through the OpenCL tool.This approach must
consider the specificities of FPGAs to apply advanced optimizations and an in-
depth analysis of the algorithm, particularly on memory accesses. The projection
and back-projection operators used in the IR methods have a strong potential for
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data reuse that will have to be vigorously exploited to reduce their reconstruction
time. In the rest of this manuscript, we will present how to take advantage of this
data locality to implement a custom architecture for tomography algorithms using
HLS tools. We will also use profiling tools to better depict our algorithm better,
and the roofline model will also be used in this approach’s analysis and optimization
steps.

3.5 Conclusion

This chapter presents the tomographic reconstruction problem and its acceleration
on hardware architectures. We also offer the first results of our attempts to acceler-
ate forward and back-projection operators on FPGAs using the HLL OpenCL lan-
guage. The results showed that directly implementing these algorithms on FPGAs
does not guarantee a significant speedup even by applying OpenCL optimizations.
The operators used in iterative image reconstruction methods are memory-bound.
Since FPGAs’ memory bandwidth is very low, there is a need to pay particular
attention to optimizing memory accesses to take advantage of FPGAs. These al-
gorithms’ extensive memory footprint prevents using as many DSPs as possible to
express more parallelism, as shown by the resource consumption. In order to im-
prove the performance, We need to avoid using automatic caches and use the on-chip
memory of the FPGA, which may reduce the memory access latency. To this end,
we will develop a methodology for accelerating compute-intensive applications on
FPGAs using HLS tools. This methodology aims to overcome the abovementioned
concerns, such as memory bottleneck, high stall percentage, and inefficient use of
hardware resources.
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The previous chapter highlighted the need for an FPGA acceleration methodol-
ogy to take advantage of this architecture through HLS tools. This chapter proposes
an architectural study based on an algorithm-architecture co-design approach in or-
der to use FPGAs to accelerate compute-intensive applications. The objective is to
propose a custom architecture for a given algorithm on FPGA. Such architecture
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will result from a methodology to better characterize the algorithm by adapting it
to the architecture as well as possible. This methodology will guide the design of
the application on the hardware using standard profiling tools. In this chapter, we
present the Berkeley roofline model used in this study as a profiling tool. Then
the adopted methodology for custom architecture on FPGA is detailed with all the
steps. After presenting advanced OpenCL optimizations to fully harness the FPGA
device, the methodology is applied to a simple use-case of 2D convolution in order
to illustrate the prefetching impact on the design performance.

4.1 Roofline model

The roofline model has been used in this work as a profiling tools to guide the design
steps. The section presents the principle of the roofline model for general-purpose
multicore CPU, manycore GPU and FPGA architectures.

4.1.1 Basic roofline model

The roofline model [Williams 2009] is a tool for visually and quickly observing the
possible limitations of an algorithm relative to theoretical maximum performance on
a target architecture. Thus the purpose of the model is to visually represent an ap-
plication on a graph and identify potential bottlenecks. The model is characterized
by two key parameters which defines two roofs: the device peak Computational Per-
formance (CP) and the attainable bandwidth (BW). The CP is expressed in FLOPs
and represents the maximum floating-point operations performed per second by the
underlying device.

The basic roofline model is presented in Fig. 4.1 representing the attainable
performance (in FLOP/s) as function of the Computational Intensity (CI) (in
FLOP/Byte). The attainable performance for an application is expressed as follows:

Attainable Performance (FLOP/s) = min(CP,CI ×BW ). (4.1)

The CI indicates the algorithm’s complexity and represents the number of op-
erations divided by the number of memory accesses.

CI = #Operations
#Memory access (4.2)

The CI entitles to position a given algorithm either in the memory-bound or in the
compute-bound area. This will identify the possible bottlenecks of the application
and highlight the different ways to improve performance.

We illustrate two algorithms representing two cases in Fig. 4.1. The first algo-
rithm with a low CI is located in the memory-bound area, i.e., the main bottleneck
for this application is memory. Therefore, for this application, an increase in the CI
would allow to bypass this memory lock and improve the performance. The second
algorithm is in the compute-bound area, and the main bottleneck is the computa-
tional capacity. In this case, to optimize, it will be necessary to express different
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Figure 4.1 – Basic roofline representation with two applications: memory-bound
and compute-bound examples

levels of parallelism both at the software and hardware level through instruction,
data, or task parallelisms, etc. An important thing to note about roofline is that
an application can be in the compute-bound area and still suffer from memory ac-
cesses, especially latencies. Indeed, one of the limitations of the roofline model is
that it does not take into account memory latencies. However, applications that
suffer from memory latency can still take advantage of the different levels of cache
memory on CPUs.

The original roofline model was developed for multicore processors. These pro-
cessors have a fixed architecture, making it trivial to determine their effective band-
width and peak performance. Like multicore processors, GPUs with a fixed archi-
tecture have benefited from an extension of the roofline model to better exploit
their full potential. Other works have focused on extending the roofline model to
reconfigurable architectures like FPGAs. In the following section we present the
roofline for FPGAs and the benefit of using them to optimize FPGA-based designs.

4.1.2 Roofline model for FPGAs

The work of Williams et al. [Williams 2009], focused on CPU multicore architec-
tures, was extended to the FPGA architectures in [da Silva 2013] through HLS
tools and taking into account the resource utilization of the device. For FPGAs,
the model is both architecture- and application-dependent, so they introduced the
scalability parameter determined by the available resources on the target FPGA for
pipeline replication. The scalability gives us an indication of the replication poten-
tial of the elementary pipeline. Therefore, the computational roof is influenced by
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Figure 4.2 – Roofline representation on Intel Arria 10. The higher roof represents
the FPGA capacity and the second roof is the ceiling for a design using 65% of DSP
running at 300 MHz

the scalability factor and is given by the available resources on the target FPGA.
The paradigm of the FPGA roofline is more complex regarding the bandwidth and
the computational ceiling. The theoretical limits provided by vendors are far from
those obtained after synthesis. We need to use the profiling tools available to collect
data, which allows us to have more design information such as effective bandwidth,
operating frequency, and runtime.

An example of roofline for a design occupying 65% of available DSPs running at
300 MHz on an Arria 10 device is presented in Fig. 4.2. The higher roof corresponds
to the theoretical computational ceiling when the design uses the full DSP capability
running at the maximum frequency. The second roof is the computational ceiling of
the design with respect to the actual DSP usage and frequency. This second roof is
the maximum attainable performance for the given pipeline. The applications will
be plotted on that roofline regarding their CI. Depending on the CI, an application
could be bounded by the memory ceiling or the computational ceiling. The goal is
to have an application in the compute-bound area and get close to the roof.

In the original roofline model, among the key parameters, the CP and the band-
width depend on the target architecture, and the CI depends on the algorithm.
These parameters are all influenced by the architecture and the application for FP-
GAs. For example as illustrated in Fig. 4.2 the computational ceiling varies accord-
ing to the amount of DSP consumed by the design. For this reason, the extended
model for FPGAs has to take into consideration the specificity of their architectures
to better characterize the application. For instance, one should not only consider
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floating-point operations in the FPGA roofline because there are other alternatives
for data representation on FPGA such as fixed-point representation. Determining
peak performance on FPGAs can be complex because many types of resources such
as LUTs, FFs, or DSPs can be used to perform arithmetic operations.

4.2 Adopted Methodology

We take advantage of a specific methodology for our algorithm-architecture co-
design purpose. The methodology described in Fig. 4.3 has been adopted to take
advantage of FPGAs in the acceleration of compute-intensive applications. This
methodology consists of three main steps, from a thorough analysis of the applica-
tion to its implementation on the target device. We first analyze the algorithm to
have a clear vision of its memory access pattern, followed by an iterative evaluation
of the roofline model. The methodology’s last step concerns the design’s scaling
up, especially for high-end devices. In this section, we detail the main steps of this
methodology in order to obtain a custom architecture for a specific algorithm.

    
 

Roofline

Scalability

Device Capability

    Stall
    Occupancy
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Figure 4.3 – Adopted methodology of acceleration on FPGA devices using HLS
tools
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4.2.1 Prefetch

Our methodology’s first step consists of analyzing the algorithm with particular
attention to memory accesses. Indeed, as indicated by the roofline model, HPC ap-
plications have two main bottlenecks: they are either limited by memory accesses
or limited by computation. Therefore, we first focus on memory accesses in order
to develop a memory access strategy. The memory access strategy makes accesses
regular enough to allow the compiler to take advantage of the global memory band-
width available on the target board. The regularity of memory accesses makes it
possible to coalesce in burst mode and load data from external memory. Next, an
offline analysis is performed based on the algorithm under consideration to maxi-
mize the data reuse rate by reducing the invocation of external memory as much
as possible. This is done by limiting memory accesses to other types of memory
with lower latency (e.g., local memory) or by taking better advantage of the caching
mechanisms on the processors used. For FPGA devices, the purpose will consist of
extensively harnessing the on-chip BRAM, and the offline access analysis enables
to manage the resources accordingly.

From this study, one can start elaborating the algorithm’s pipeline architecture
on FPGA. Once again, the main idea is to optimize memory accesses to reduce
global memory stalls. One way to do this is to separate the global memory accesses
from the computations and use the on-chip BRAMs between the computational
units and the global memory. This makes the data closer to the calculations with
low and optimized access latencies. Nevertheless, inefficient use of local memory
may result in worse performance than without using it. It is essential to ensure
stall-free access to FPGA local memory in order to avoid arbitration. Otherwise,
the compiler may have to arbitrate accesses, increasing the II of the pipeline. It
is the responsibility of the designer to better elaborate the architecture in order to
avoid all these concerns. In our methodology, a thorough knowledge of the internal
architecture of FPGAs and the HLS development tools are required to adapt the
algorithm better. Thus, applying advanced optimizations for pipeline and data
parallelism, while exploiting the temporal and spatial localities made possible by
the offline study should ensure performance enhancement of the FPGA design.

The pipeline architecture is thus developed in this step. This pipeline is there-
fore made up of one or several Processing Elements (PEs) that are in charge of
performing specific operations. The function of the PE can vary from elementary
arithmetic operations to more complex functions depending on the algorithm con-
sidered. The designer should efficiently design the PE within the compute unit to
ensure the initiation interval and the memory access policy. The number of PEs in
a compute unit is discussed in section 4.2.3.

4.2.2 Roofline

The roofline model is essential in this approach. The model guides the optimization
steps to ensure good performance and better utilization of the underlying architec-
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ture. At the end of the first step, we can determine the different parameters of the
roofline model, namely the computational intensity, peak performance, and memory
bandwidth. The determination of the computational intensity is not a trivial task
for complex algorithm. Several profiling tools exist to determine its value depending
on the target architecture such as CPU and GPU. For FPGAs, some HLS tools offer
these information as well, while other HLS tools are not mature enough to provide
basic information about the algorithm or even take into account multiple compiler-
assisted optimizations. Nevertheless, the offline analysis performed in the first step
of our methodology help to analyze the algorithm and compute the computational
intensity accordingly. This information is then used to represent the algorithm on
the roofline model. In the case of a memory-bound algorithm, increasing the data
reuse rate of the algorithm increases the arithmetic intensity. Therefore the same
algorithm must move from memory-bound zone to compute-bound area. Once in
the compute-bound zone, the challenge is to exploit the computational units exten-
sively to get close to the computational roof. This is done by expressing data, task,
or pipeline parallelism. Hence, we analyze the performance iteratively using the
roofline model to notice the impact of the different optimizations on the occupancy
of our computational units and the stall percentage of memory accesses.

4.2.3 Scalability

Once the pipeline is efficient and meets all the performance and energy consumption
constraints, we need to evaluate how scalable the pipeline is on the FPGA board
used and deal with scaling on high-end boards. This step is necessary, especially
on FPGA architectures because the hardware resources must be handled with cau-
tion. Furthermore, with various modes of expression of parallelism on FPGAs (i.e.,
coarse-grained and fine-grained parallelism), the use of one or the other may give
different results concerning circuit synthesis, operating frequency, and computa-
tional throughput. Therefore, the designer must consider the capacity of the target
FPGA as well as the synthesis tools used in order to express more parallelism with
a deep pipeline without sacrificing the operating frequency of the pipeline. It is
difficult for the HLS compiler to generate a deep pipeline with massive parallelism
at the finest possible granularity and at the same time ensure adequate frequency.
In order to limit routing congestion and have an efficient design, it is essential to
make a trade-off in the choice of parallelism, especially with the use of HLS tools.

FPGA generations do not have the same computational resources and mem-
ory bandwidth. Therefore, the scaling up to higher-end devices must be under
considerations by taking into account the device related characteristics for better
deployment. Indeed, to scale a given design onto the FPGA die, one can proceed
by several approach depending on the compute kernel and also the parallelism po-
tential. An optimized pipeline designed for a low-end device can be scaled up to a
higher-end FPGA using various strategies as illustrated in Fig. 4.4. An OpenCL
kernel represents a compute unit that contains one or more PEs to perform a spe-
cific task. The PEs are fully pipelined on FPGA, and the replication allows for
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(a) Single FPGA Single Pipeline (b) Single FPGA Multiple Pipeline

(c) Multiple FPGA

Figure 4.4 – Design scalability on FPGA

higher parallelism. The replication factor depends on the hardware resources avail-
able on the FPGA and the global memory bandwidth. The goal of deep pipelining
of the compute unit and parallelism with multiple PEs is to have an optimized,
high-performance design on FPGA boards. However, high-end FPGA boards offer-
ing more computing power are continuously made available by the main vendors.
Porting an optimized design from a low-end FPGA to a higher-end FPGA by gain-
ing more performance due to the additional resources of the higher-end FPGA is a
significant concern.

In order to overcome this issue, we discuss the scalability approach of an opti-
mized design in our methodology. The low-end FPGA’s optimized design can be
deepened to express more parallelism as a single pipeline, as shown in Fig. 4.4a.
The extra resources made available by the high-end device are used in this case to
scale more PEs in the pipeline. Another way to express parallelism is to keep the
initial optimized pipeline with its configuration and duplicate this kernel to have
multiple instances running in parallel, as presented in Fig. 4.4b. This multiker-
nel solution uses more logic resources than the first because all kernel objects are
replicated instead of the PEs. Fig. 4.4c illustrates the multi-FPGA configuration
for more computation power. A cluster with several FPGAs is used to perform a
compute-intensive task. In this scenario, the communication topology of the FPGA
cluster must be chosen with caution so that the communication between the FPGA
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devices and the host devices is performed accordingly to achieve the best perfor-
mance, depending on the underlying application.

4.3 Advanced optimizations

Our adopted methodology requires getting the best out of both the algorithm and
the architecture to ensure efficiency. Therefore, the exploitation of advanced opti-
mizations on FPGAs is essential to ensure performance and overcome the various
bottlenecks on the FPGA architecture. It is even more critical for HLS compilers
to benefit from these optimizations. These compilers are not as mature in static
algorithm analysis as the standard compilers used for general-purpose processors.
In this section, we will present advanced optimizations for FPGAs to guaranty an
efficient pipeline, reduce the stall percentage and make the best use of the available
computation units.

4.3.1 Reduce access to local memory

Table 4.1 – Memory access latencies on Intel Arria 10

Memory Memory Latency Throughput Capacity
type implementation (clock cycles) (GB/s) (MB)
Global DDR 240 34 8000
Local BRAM 4/1 8000 66
Private BRAM 4/1 8000 66
Private Registers 1 240 0.2

We presented in Chapter 1 the four memory types available in OpenCL. Table
4.1 general information about OpenCL main memory types. A good application
should make good use of these types of memory. The performance of a design is
strongly impacted by its memory access policy. Global memory is the one that offers
the most storage space but is the one with the longest access latency. It is essential
to reduce access to this memory space as much as possible. There are several
cache mechanisms on general-purpose processors to exploit data reuse. However,
on FPGAs, it is up to the programmers to utilize dedicated on-chip memory blocks
to store data on the chip. Local memory is the ideal candidate for this as it has
low latency and very high bandwidth compared to global memory. The FPGA
local memory is made of several M20K block to store data and each block memory
contains two ports of access as shown in Fig. 4.5.
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Port 0

Port 1

Figure 4.5 – The internal structure of Intel FPGA local memory

In order to lighten the global memory bandwidth, we are going to take advan-
tage of the on-chip BRAMs. FPGA does not support cache hierarchy, as we can
observe on general-purpose or specific-purpose processors such as CPU or GPU.
Nevertheless, one can implement dedicated on-chip memory blocks based on the
application memory access pattern. The accesses to local memory are mapped to
a physical port. Each local memory has only two read/write ports. It is possible
to use double pumping to have twice as many ports. The double pumping allows
the compiler to run the memory clock twice the maximum frequency of the kernel.
Thus, each local memory object can have at most four ports for simultaneous ac-
cesses. Intel recommends having four or fewer read/write accesses to local memory
for stall-free access without arbitration [Intel Corporation 2019a].

In order to perform more than four concurrent accesses, the offline compiler
performs memory banking or replication to avoid access conflict. The memory
replication consists of replicating the memory object as many as possible to have
enough access port. Each replicate memory contains exactly the same data.

Once the local memory is well configured with the right number of ports with no
arbitration, one could create private copies for this local memory object. The goal
of these private copies is to allow concurrent execution across different iterations
of a given loop. Unlike replication, each memory copy contains different data for
different loop iterations. However, the increase of number of copies will consume
more BRAM resources.

4.3.2 Shift register

The shift register is one of the most essential optimization techniques used for
FPGA. Indeed, FPGAs have several registers available for temporal data storage.
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The advantage of register storage over BRAM is that their access latency is one
clock cycle. However, storing high amount of data in register will lead to high
FPGA resources utilization while BRAM resources are suitable for this kind of
storage. Many HPC applications are suitable for shift register optimization such
as image convolution, stencil computation, and the optimization can also be used
to handle floating point computation. For instance, due to the latency of floating-
point multiplication or reduction, loop-carried dependency may occur and lead to
high II value (II will be the operation latency). Shift register can be used to store
intermediate results of computation relaxing this dependency and therefore reduce
the loop II to the ideal value. Nevertheless, the shift register optimization can only
be applied to the SWI kernels on FPGAs.

4.3.3 Conditional branches balancing

FPGAs are known to efficiently handle conditional branching because they excel in
concurrent execution. However, one can balance the conditional branches in the de-
sign to enhance the overall performance. To do this, care must be taken not to have
global memory accesses or loops inside conditional branches. It makes more sense
to put conditional branches inside loops and not the other way around to better
manage the design initiation interval. As for global memory accesses, putting them
outside the branching scope would allow the compiler to analyze them efficiently
and to have a valid access address no matter the outcome of the conditional branch.
Nevertheless, local memory accesses are not penalized by conditional branches as
long as the accesses are stall-free and, therefore, will have no impact on the II.

4.3.4 Initiation Interval and operating frequency

One of the most significant limitations of OpenCL on FPGAs is the absence of
multiple clock levels, as is the case with hardware description languages. Therefore,
the entire OpenCL design is subject to a single global clock. However, there is a
substantial trade-off between the operating frequency and the value of II for SWI
kernels. The OpenCL compiler’s highest priority is to ensure an II value of 1 for each
loop without worrying about the frequency of the design. Depending on the target
FPGA device and the BSP, the OpenCL compiler has a default fmax that one can
change by using fmax attribute or the compiler option to manually fixed the target
frequency. Yet, increasing this frequency beyond the default value will increase the
initiation interval, which may degrade performance. Similarly, achieving an II of 1
for some of the non-critical loops in the design could reduce the overall frequency,
which would also degrade performance. We can tune with the different OpenCL
pragmas and attributes to handle these different parameters manually. We can
increase the II of some loops that are not in the critical path of the design by the ii
pragma for higher fmax or decrease the target frequency to have an optimal II for
the critical loops of the design. However, it is not ingenious to specify a frequency
above the default value or decrease the II value manually through the pragma at
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the risk of routing troubles and synthesis failure.

4.3.5 Arithmetic operations overhead

The reconfigurability of FPGAs implies good management of their hardware re-
sources. The arithmetic operations require thorough analysis and consideration to
save logic [Uguen 2019]. Most HPC applications require intensive floating-point
computations, hence reducing the number of complex and heavy operations (such
as division, square root, and trigonometric calculations) is crucial. For instance, on
the Arria 10 device, while a floating-point multiply-accumulation costs one DSP, a
floating-point divide must cost 3.5 DSPs. So for a given algorithm, we should try to
have fewer division as much as possible. For example, performing three divisions by
the same value will cost 10.5 DSP slices. However, it will be more advantageous to
compute the inverse of that value and then achieve three multiplications instead (3.5
+ 3 DSPs). One division and three multiplication are better than three divisions
in terms of both resource usage and latency. This particular attention is required
for all the optimization steps for an FPGA design. Another important practice
is to avoid modulo operation because the modulo computation requires a division
and, therefore, is resource-consuming. One could replace the modulo with a bit-wise
"and" operation, which is much more efficient on FPGA regarding resources and
latency. Indeed, a modulo operation N%M can be replaced by N&(M − 1) if M is
a power of two.

4.4 Prefetch benefits illustrated for 2D Convolution

The methodology presented in Section 4.2 is applied to real-world applications. We
applied this methodology to a simple use-case in order to illustrate the prefetching
impact on the design performance. Indeed, the first step of the adopted method-
ology consists of an memory access analysis and prefetching to generate a pipeline
that takes advantage of FPGA local memory. The considered use-case is the 2D
convolution operator.

Convolution is one of the most used operators in signal and image processing
applications such as edge detection, image blurring, noise reduction [Burger 2016].
The operator is very compute-intensive, mainly used in iterative algorithms for in-
verse problems such as deconvolution [Idier 2013]. It is essential to have significant
computing power and a consequent bandwidth to meet the high computational
demand. This section introduces an FPGA-based implementation of the 2D convo-
lution operator. This operator is optimized for small convolution kernel sizes.

4.4.1 2D Convolution

The 2D convolution represents a multiply-accumulation operation between a mask
(convolution kernel) and the pixels of a given image as presented in Fig. 4.6.
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Let f be a 2D image of size (H, W) and h a mask of size (K,K), the convolution
of f by h noted F is given by:

F (x, y) =
K−1∑
j=0

K−1∑
i=0

f(x− (i− bK2 c), y − (j − bK2 c))h(i, j) (4.3)

For K = 3, this equation can be written as:

F (x, y) = f(x+ 1, y + 1)h(0, 0) + f(x, y + 1)h(1, 0) + f(x− 1, y + 1)h(2, 0)
+ f(x+ 1, y)h(0, 1) + f(x, y)h(1, 1) + f(x− 1, y)h(2, 1)
+ f(x+ 1, y − 1)h(0, 2) + f(x, y − 1)h(0, 2) + f(x− 1, y − 1)h(2, 2).

(4.4)

To deal with the problem of image edge, we use the zero-padding method, which
allows us to maintain the size of the input image. The pixel padding technique is
often the acceptable solution to handle image edges, and zero-padding is the simplest
to implement among the different types of padding used [Ström 2016].

* =

Input image

Kernel

Output image

* =

Input image

Kernel

Output image

Figure 4.6 – 2D Convolution with a 3×3 mask. The ’∗’ is the convolution operator.

4.4.2 OpenCL-based convolution on FPGA

The convolution operator (4.3) has been described in a pipeline (SWI). The par-
allelism is expressed at each elementary output pixel computation level, where the
multiplications between image pixels and the mask are performed in parallel, fol-
lowed by the reduction. We can then express more parallelism by computing several
output image pixels in parallel. This parallelism is implemented through loop un-
rolling, which replicates a loop’s body for concurrent execution. Several output
pixels are computed in parallel to increase the pipeline throughput if the number
of DSPs allows it. The only drawback, in this case, is the FPGA global memory
bandwidth, which will lead to high pipeline stalls during the execution due to the
high number of access. The unrolling is applied to the loops over the pixels of the
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image in order to calculate several output pixels simultaneously. In order to reduce
the pressure on the memory bus with the parallelism degree, we use the on-chip
local memory of the FPGA, whose access latency is very low compared to the global
memory, to store the input data. The input data will be held in a local buffer using
FPGA BRAM resources. Therefore, we reduce the number of external memory
accesses because we load, at once, in local memory the required data to compute
a line of pixels of the output image. Buffer data is replaced with new data after
calculating each line of pixels for the output image. The loading of all these data in
global memory will then be done in burst aligned mode because the required data
are contiguous in memory. The global memory access rate can be further reduced
by keeping the prefetched data into BRAM as long as possible. To do so, we only
add a new line of data at the time and not replace all the data in the buffer. The
incoming data should be stored at the bottom line of the on-chip buffer, which
will require shifting the buffer’s content. The buffer size is large, and shifting its
contents is expensive and may slow the computations. In order to avoid this costly
shift cost, we insert the new data at the least recently used line of the buffer and
apply a circular shift register to the convolution mask buffer as illustrated in Fig.
4.7.

Traditionally, the shift register method is used on FPGA to perform the con-
volution using Hardware Description Languages (HDL). In that case, the shift is
applied to the local buffer for the input data to add new incoming data at the bot-
tom of the buffer. Therefore, the buffer size cannot be too large to avoid expensive
shift costs. In our implementation, the shift is only applied to the mask buffer,
which is implemented into FPGA registers. The data from the input image is in-
serted line by line into the local buffer and at a line that will not be used for the
next computations. Moreover, our implementation is performed using high-level
languages, leading to a faster development time than HDL.

The circular shift intends to switch the lines of the convolution mask so that
the image and the mask coefficients may correspond. As shown in Fig. 4.7, at
a given iteration n, the circular buffer contains all the input data to compute a
line of the output image without access to global memory. However, for the next
iteration n+1, the line at the top of the buffer is no longer required to convolve the
following line of the output image. Therefore this line is replaced by new data from
the input image, and then the bottom line of the mask buffer becomes the top to
match coefficients. Then, for iterations n+ 2, the new input data is inserted at the
second line of the local buffer and at the same time the mask buffer is shifted. The
convolution is performed this way until the output image is completely calculated.
The mask buffer is small compared to the prefetched data buffer and is implemented
using registers instead of BRAM resources. Therefore, this circular shift register
is less expensive and energy-efficient for the overall design. In order to make the
better use of the FPGA device, we then replicate the compute unit to improve
the overall throughput. By applying these different optimizations in the OpenCL
kernel, we are able to evaluate the efficiency of our convolution design on Intel
Stratix 10 device.
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Figure 4.7 – Memory access strategy with circular shift applied to the mask. The
’∗’ is the convolution operator

4.4.3 Performance evaluation

The execution times of OpenCL design for five different convolution mask sizes is
presented in Fig. 4.8. We evaluate the the performance of four different versions

Figure 4.8 – OpenCL execution time of 2D convolution on Intel Stratix 10 FPGA

of the convolution operator from the naive version to our optimized version. These
versions are as follows:

• Naive: This version describes the direct implementation of the operator in
a pipeline execution model. The parallelism is expressed at each elementary
output pixel computation level, where the multiplications between image pix-
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els and the mask are performed in parallel, followed by the reduction. The
computation of a new pixel starts at each clock cycle for an efficient pipeline.

• Unroll: This version uses loop unrolling to achieve higher throughput. Sev-
eral output pixels are computed simultaneously in order to maximize the
bandwidth.

• Local memory: This version uses on-chip BRAM to prefetch the input data
in order to reduce the number of global memory access. The required data
to compute a line of pixels of the output image are stored into a local buffer.
Buffer data is replaced with new data to compute the new line of the output
image.

• Optimized: This represents our optimized version presented in section 4.4.2
which combines loop unrolling, BRAM usage and a shift register mechanism.
A shift register mechanism is applied to further reduce the global memory
access and speed up the computation.

The optimizations have led to higher computational performance compared to
the naive version. The naive version suffered from high pipeline stalls due to the
high data demand from global memory for non-aligned memory accesses. The global
bandwidth remains the main bottleneck by applying the loop unrolling on several
pixels, but the performances are better than the naive version due to the parallelism
degree and the cache mechanism implemented by the high-level compilers. Thus,
the algorithm is characterized as memory-bound. Using FPGA on-chip memory
to store data relieved the pressure on the memory bus by overcoming the global
bandwidth bottleneck.

This bandwidth relief is made possible by prefetching into on-chip memory and
accessing data contiguously. By analyzing Intel’s profiling tool, we notice that the
percentage of pipeline stall due to memory accesses has been significantly reduced.
The occupancy rate of our compute units remains relatively low, which shows that
there is still room for further optimization. Indeed, for the Local memory version,
the data prefetched into local memory is only reused by the pixels of the same line,
whereas the following lines should also use a part of this data. We make more
memory accesses than necessary, which penalizes the performance of some versions
using local memory, especially for large mask sizes (7×7, 9×9, 15×15). Therefore,
we applied more advanced optimizations to the Local memory versions in order
to improve the arithmetic intensity. The optimized versions presented above have
allowed to enhance the arithmetic intensity of the design by reducing the number of
memory access. Thus, we express more parallelism in the design by compute unit
replication and achieving better throughput regardless of the convolution mask size.

We also performed a performance comparison of our convolution design using
the OpenCL and oneAPI tools. The results showed a substantial performance
loss for a large number of kernel sizes when using the oneAPI tool. Indeed, we
noticed a significant difference in these two tools’ global memory access latency.
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This memory latency impacts the number of pipeline stages, especially in blocks
requiring access to global memory. This behavior impacts the design performance
slightly for an ideal pipeline as long as the pipeline can produce a result at each
clock cycle. Regardless of the depth of the pipeline, once it is filled, it can perform
an update at every clock cycle (or at regular intervals). However, all the pipeline
stages will be impacted if the computation is stalled due to memory accesses (high
stall percentage). The difference in the memory access latency for the two tools
is strange because their compilers are both based on the same back-end. We have
discussed the issue with Intel, and more investigations are required to elucidate the
issue.

4.5 Conclusion

This chapter presents an acceleration methodology on FPGA intending to syn-
thesize a custom architecture based on a given algorithm. The necessity of an
algorithm architecture co-design approach is highlighted in order to get the best
out of FPGAs using HLS tools. We present the different steps of this adopted
methodology and show how we used the Berkeley roofline to guide our optimization
steps. As highlighted in the previous chapter, this custom architecture makes it
possible to overcome the various concerns of accelerating computationally intensive
algorithms. We also presented some advanced optimizations to consider in order to
better exploit the full potential of FPGAs in the compute-intensive world. The 2D
convolution is accelerated on FPGA using the OpenCL language to illustrate the
value of prefetching and its impact on the design throughput. However, since con-
volution is a simple case study, in the next chapter, the methodology is applied to
the 3D back-projection algorithm used in MBIR algorithms for CT reconstruction.





Chapter 5
BP-Prefetch Architecture for CT
Reconstruction

Contents
5.1 BP-Prefetch design . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Back-projection algorithm . . . . . . . . . . . . . . . . . . . . 84
5.1.2 Memory access strategy . . . . . . . . . . . . . . . . . . . . . 85
5.1.3 Reconstruction by voxel blocks . . . . . . . . . . . . . . . . . 86
5.1.4 BP-Prefetch architecture . . . . . . . . . . . . . . . . . . . . . 87

5.2 Architecture tuning . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.1 Offline Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.2 Design on Arria 10 . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.3 Replication potential on Stratix 10 . . . . . . . . . . . . . . . 93

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.1 Design evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 Image Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Comparison and discussion . . . . . . . . . . . . . . . . . . . . 101
5.4.1 Implementation on general-purpose processors . . . . . . . . 101
5.4.2 Performance comparison . . . . . . . . . . . . . . . . . . . . . 102
5.4.3 Resource and power analysis . . . . . . . . . . . . . . . . . . 104

5.5 Tomography oneAPI . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.2 Performance analysis and comparison . . . . . . . . . . . . . 106

5.6 Iterative reconstruction algorithm . . . . . . . . . . . . . . . 107
5.6.1 TomoGPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.6.2 CPU-FPGA strategy . . . . . . . . . . . . . . . . . . . . . . . 108
5.6.3 Full FPGA strategy . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

83



84 Chapter 5: BP-Prefetch Architecture for CT Reconstruction

In this chapter, we will apply our acceleration methodology to the case study of
tomographic reconstruction. The voxel-driven back-projection operator presented
in Chapter 3 is considered to evaluate this methodology. This operator is very time-
consuming and is frequently invoked in the iterative reconstruction algorithm. The
algorithm is accelerated and evaluated on Intel FPGA using HLLs. The results
are compared to our embedded GPU and workstation GPU implementations to
highlight the FPGA efficiency. We also performed a full comparison with the state-
of-the-art GPU and FPGA designs reported in the literature1.

5.1 BP-Prefetch design

3D back-projection is one of the most time-consuming steps in iterative reconstruc-
tion. In this section, we explain the memory access strategy to avoid the main
bottleneck of this algorithm. Then, we describe our BP-Prefetch architecture on
FPGA along with all its main stages.

5.1.1 Back-projection algorithm

The 3D back-projector described in Section 3.1.2.4 is considered to apply our
methodology of acceleration. The principle of the voxel-driven back-projector is
to accumulate over the ϕ angle the contribution of all detectors (u, v) in line with
the voxel (x, y, z).

f(c) =
∫
g(u(ϕ, c), v(ϕ, c), ϕ).w(ϕ, c)2dϕ (5.1)

u(ϕ, c) = x ∗ cos(ϕ) + y ∗ sin(ϕ) (5.2)

v(ϕ, c) = x ∗ sin(sinϕ)− y ∗ cos(ϕ) + z (5.3)

where c = (x, y, z) are the voxel coordinates, (u, v) are the cone beam coordi-
nates, ϕ is the angular trajectory of the detector and w is the distance weight. The
detector coordinates are computed using nearest neighbor interpolation. We use
lookup table implementation for the trigonometric computation in order to save
FPGA resources. This is done by saving into BRAM memory pre-computed values
for all the sine and cosine required for our reconstruction.

1The contents of this chapter have been partially published in [Diakite 2021] and submitted in
a journal[Under review].
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5.1.2 Memory access strategy

The detector planes (u, v) are stored in memory following the projection angles (ϕ).
The voxel-driven back-projector accumulates, for each voxel, the elementary contri-
bution of each projection pixel in line with the given voxel under consideration for
all angular projections. The reconstruction of a single voxel thus requires sinogram
pixels located in different detector planes (ϕ = 0, ϕ = 1, ..., ϕ = Nϕ). These projec-
tion data, also called sinogram, are stored in the long latency global memory of the
FPGA board and cannot be fully transferred in FPGA on-chip memory because of
their tremendous size. During each voxel back-projection, sinogram pixels accessed
in memory are deterministic but discontinuous with high and irregular strides, as
illustrated in Fig. 5.1. The coordinates of these pixels cannot be precomputed in
practice because of the unsustainable storage cost it would require. Hence each
voxel back-projection implies on-fly projection coordinate computations with irreg-
ular jumps in memory, making standard cache mechanisms inefficient in predicting
the memory accesses for the next ϕ angles.

u

ϕ

Source

y

u

x
ϕ

2D image

Detector

g(φ, u)

2D data in (ϕ,u) space

1D data in memory
@= u+ ϕ ∗Wu

ACCESS TO PROJECTION DATA g(ϕ, u)

Figure 5.1 – Memory accesses for the voxel-driven back-projection in the 2D case.
The red and yellow neighboring pixels draw close sinusoids in the 2D sinogram. This
spatial locality is exploited during a voxel block reconstruction. Wu corresponds to
the number of projection pixels
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The Intel FPGA automatic on-chip cache implementations are, above all, effi-
cient for contiguous and repetitive global memory access. Regarding non-sequential
and random accesses, these automatic caches are inferred by the Intel compiler and
are much less relevant for speeding up the application on FPGAs efficiently. Their
inference is counterproductive and wastes valuable BRAM resources with a high
risk of memory stalling. The acceleration of CT algorithms suffers from this mem-
ory stalling and consumption, which has been pointed out by [Diakite 2020] for the
3D back-projection algorithm, thus remaining a significant concern. An efficient
prefetching memory strategy must be found facing this memory wall.

5.1.3 Reconstruction by voxel blocks

Performing a reconstruction by voxel blocks, i.e., having an inner loop on neighbored
voxels on algorithm 9, increases the spatial and temporal locality compared to voxel
by voxel reconstruction. The projection of a block (Bx, By, Bz) corresponds to a
rectangle shape (localu, localv) in the detector plane for a given projection angle
ϕi as represented in Fig. 5.2. Inside this sinogram tile, a high data re-utilization
exists during a voxel block reconstruction. Indeed, as illustrated in Fig. 5.1, a single
ray may pass through several neighboring voxels in the 3D volume. Therefore, the
re-utilization of projection data stored in BRAM can be exploited because all these
voxels will read this single projection during the back-projection. Voxels in the
same block will access the same sinogram tile for each projection angle. The main
concern is to capture the projection data footprint without loss of information and
calculate the coordinates of its boundary. For each voxel (x, y, z), its reconstruction
depends on its Nϕ angular projections. These projections are spatially distant due
to their storage in the projection data following the order (u, v, ϕ).

Figure 5.2 – Voxel block (in blue) and its projection (in red)

During a block reconstruction, prefetching in BRAM the sinogram tile associ-
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ated with the voxel block allows a high reuse data rate for moderate costs in local
memory for the storage of the sinogram tile required at the current ϕ iteration and
the voxel block, but also in computation with the simple sinogram tile shape calcu-
lation. In order to identify the projection data footprint, we perform the following
operations. The edge voxel in the bloc is projected in the detector plane, and its
coordinates (u, v) are computed. Then the dimension of the projection data foot-
print is determined by the computation of localu and localv depending on block size
(Bx, By, Bz) : localu =

√
B2
x +B2

y and localv =
√

2 ∗ Bz. The projection pixels in
the located footprint (red rectangular shape in Fig. 5.2) are accessed with a regular
memory access pattern. With this strategy, we gain in the temporal and spatial
locality for memory accesses and consequently make these accesses contiguous for
coalescence.

The use of FPGA BRAM provides higher bandwidth than the global memory
bandwidth. Moreover, the access latency will be considerably reduced with a low
stall percentage. This approach’s advantage remains in reducing the memory access
to local memory. Because the block size and shape decision is crucial for the data
reuse rate and contributes to the DRAM transfer reduction, an offline memory
access analysis is presented in Section 5.2.1.1.

5.1.4 BP-Prefetch architecture

The BP-cache design is the baseline version of the 3D back-projection using burst-
coalesced cached Load Store Units (LSU) (algorithm 7) presented in [Diakite 2020].
OpenCL optimizations such as loop pipelining and unrolling were applied to this
version to leverage the FPGA. The use of Intel automatic cache became a bottleneck
when loop unrolling was applied to algorithm 7. Loop unrolling consists of fully or
partially replicating the loop body, and consequently increases the BRAM usage,
thus preventing DSPs’ maximum use. Usually, loop unrolling does not increase
BRAM usage. However, when using Intel’s automatic cache with irregular access
pattern, the offline compiler will have trouble coalescing memory accesses. This
leads to the generation of a private cache for every global memory access. The
cache is implemented using FPGA BRAM, hence several privates copies may result
in a waste of valuable on-chip memory blocks. In our new BP-Prefetch design, data
locality is manually managed. Therefore, unrolling does not affect the BRAM usage
in a critical way.

The architecture of the BP-Prefetch design (algorithm 9) is presented in Fig.
5.3. The main stages of the architecture are made of a prefetching module and a
compute unit. The compute unit is local-memory related and is placed after the
prefetching module. The compute unit is based on multiple Processing Element
(PE) for parallelism. In the proposed architecture, the critical path consists of
reconstructing the block of voxels with the innermost loop over the voxels. The loop
body, considered as PE, can be replicated for parallel voxel intensity computation
by loop unrolling with a factor N . This number of PEs depends on the target
FPGA available resources. To express fine-grained parallelism, a PE is designed as
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Algorithm 9 BP-Prefetch algorithm
1: for all Bk do
2: #pragma max_concurrency M
3: for all ϕj do
4: Pretching projection data

5: #pragma unroll N
6: for all V oxeli ∈ Bk do
7: Compute(u, v)
8: blockBk

[V oxeli]+ = projections[u, v]
9: end for

10: end for
11: volume← blockBk

12: end for

a pipeline for good efficiency. Each PE is responsible for the calculation of u, v,
and voxel accumulation. The occupancy rate of the compute unit depends heavily
on the ability of the prefetcher to provide the data. We inferred multiple copies of
the prefetched data for concurrent computation and therefore increased the pipeline
occupancy.

The N PEs must have stall-free access to local memory when reading the pro-
jection data. We use memory replication as explained in Section 4.3.1 to ensure
stall-free access. The memory replication amount depends on the number of PEs
N in the design. Depending on the resource available, we may also infer M private
copies to lunch multiple iterations of loop ϕ.

The architecture’s input is the projection data in the detector plane as shown
in Fig. 5.3. For each projection angle ϕi, we prefetch all projection data required
(red rectangle) for the voxels accumulation in the block. We load more data, from
global memory, than required to ensure correct reconstruction and take advantage
of memory coalescence. After the accumulation over all projections angle ϕi, the
reconstructed block of voxels (blue cube) is written back to the volume stored into
the global memory.

5.1.4.1 Memory prefetcher module

The PEs in the design are fed in data by the prefetcher. The global access is a
long latency operation, so we leverage the global bandwidth by making accesses
in burst mode thanks to the offline memory analysis. When the kernel and the
memory controller run at the same frequency, FPGAs external memory can perform
512-bit access per cycle per memory bank to saturate the bandwidth. With this
in mind, the prefetcher module uses memory coalescence by performing multiple
accesses simultaneously. Indeed, the projection pixels to prefetch are located in the
same tile, which allows multiple pixels to be merged into a wider access from global
memory. The number of accesses per cycle is chosen with caution because overusing



5.1. BP-Prefetch design 89

PE

PE

PE

PE

PE

PE

PE

PE

PE PE

PE PE

PE PE

PE PE

Prefetcher

Compute Unit

N PEs

      Compute u

      Compute v

Voxel accumulation

DDR

DDR

BRAM

BRAM

O
ve

r 

Projection dataM Private

  copies

       R/W port

(N * 32 bits wide)

..
..

Figure 5.3 – BP-Prefetch pipeline

the bandwidth could lead to worse fmax for the kernel. In order to preserve the
kernel operating frequency, we perform the memory accesses with respect to the
available bandwidth on the target FPGA device.

The FPGA boards used in this work are equipped with two DDR memory banks
offering a memory bus 1024-bit wide. The memory access pattern is regular, thanks
to our access strategy. The prefetcher module computes the edge coordinates of the
projection data footprint based on our offline analysis to identify the data to be
fetched, as presented in Section 5.1.3. We use memory coalescence in order to fill
the local memory with the projection data and maximize the bandwidth. Therefore,
the prefetcher module performs a wide access of 16 floating-point values per clock
cycle. The module does not exploit the full bus capacity because of the additional
memory operations, such as the global volume updates.

The private copies as mentioned above in subsection 5.1.4 inferred for concurrent
execution helped to hide memory accesses latency in the pipeline, hence maximizing
the design throughput.



90 Chapter 5: BP-Prefetch Architecture for CT Reconstruction

5.1.4.2 Pipeline Initiation Interval (II)

A compute-intensive application optimization requires a specific focus on loops. The
FPGAs excel in the loop pipelining for greater cyclic efficiency, and this is combined
with loop unrolling to maximize throughput. The 3D back-projection algorithm has
four nested loops zn, yn, xn (V oxeli coordinates) and ϕ (see Algorithm 7). The new
method (Algorithm 9) allows us to have a specific tiling in our design thanks to the
reconstruction by block. The computation of detector coordinates u and v for the
image edge could prevent the compiler from achieving the best II for the innermost.
The compiler assumes false dependency due to conditional branching scope. We
move this computation out of the branching scope and use a temporal register to
avoid this false dependency to address this problem. Therefore, the compiler can
achieve an II value of one for all the loops in the design. Each PE has to compute
the coordinates of the detector (u, v) and the voxel accumulation.

5.2 Architecture tuning

This section discusses the design scalability on Intel Arria 10 and Stratix 10 devices.
In order to take advantage of our design, the offline memory access analysis is
performed to choose the block size and shape with optimal data reuse rate. The
study of the CI is also presented for the roofline model.

5.2.1 Offline Analysis

5.2.1.1 Offline Memory Access Analysis

The prefetched projection data depend on the shape of the block of voxels as de-
scribed in Section 5.1.3. The data reuse rate is computed by the following formula
and illustrated in Fig. 5.4:

Data reuse = Bx ∗By ∗Bz
#Memory access I/O

(5.4)

where the #Memory access I/O represents the number of actual projection pixels
used and is obtained by a static analysis of the CPU code.

Memory accesses are no longer irregular thanks to our access strategy presented
in Section 5.1.2. The objective is to further reduce access to the external memory of
the FPGA by exploiting the data reuse potential. Indeed, a single pixel in projection
data is used by several voxels during the back-projection. The offline analysis first
locates the footprint of the projection data required for a given voxel block and
a given projection angle. Then, the algorithm is run on the CPU, and a counter
is assigned to the projection data to identify the pixels that are used during the
back-projection of the block for a projection angle. These pixel numbers are used
in the calculation of the data reuse rate. This allows us to ignore some of the
pixels present in the projection data footprint at the time of the memory accesses,
especially those at the edges of the footprint, so as not to fall back into memory
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accesses with irregular strides. In order to evaluate the data reuse rate, the size of
the voxel block and the number of pixels used in the projection data are required,
as presented in (5.4).

The block size and shape decision depends on the BRAM consumption, the
#Memory access I/O and the data reuse rate. A larger block may require a larger
sinogram tile during back-projection. This large-size sinogram tile may consume
several BRAM resources. Therefore, a trade-off between the data reuse rate and
resource consumption must be done in order to avoid synthesis failure.
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Figure 5.4 – Data reuse rate with 3 different shapes with Bz variation

The data reuse rate regarding different block shape is illustrated on Fig. 5.4 .
The size of the BRAM needed to store the prefetched projection data is mentioned
in order to choose to best (Bx, By, Bz) configuration. For a fixed number of voxels
reconstructed, this requested memory size varies greatly : a (32,32,8) block requires
twice as much as BRAM than a (64,64,2) block to store their projection data. This
offline memory access analysis helps to manage the memory resource which is critical
for this design. Indeed, with the replication and private copies overhead allowing
concurrent execution, the BRAM size indicated in Fig. 5.4 have to be multiplied
by the replication factor and the number of private copies. Assuming that we
have three read ports per replicated memory and M private copies for concurrent
execution, the required memory size will be multiplied by N

3 (the replication factor)
and M (number of copies). For instance for a N

3 ∗M ∗ 4 MB available on BRAM,
this offline study points that the highest data reuse rate is obtained for (256,256,2)
blocks.
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5.2.1.2 Offline Computational Intensity analysis

We use the roofline model to iteratively analyze our algorithm and guide the opti-
mizations. Each algorithm results in a specific roofline for FPGAs. The performance
roof is determined by the number of resources consumed and the effective operating
frequency. The dynamic profiler gives the effective (measured) DRAM bandwidth
achieved. Table 5.1 lists the number of operations Giga Bytes Operations Per Sec-
ond (GBOPS) and the number of global memory accesses of the 3D back-projection
in GB. We determine the CI for different versions of the algorithm. The BP-Cache
design is memory-bound with low CI (see Table. 5.1) due to the lack of spatial and
temporal data locality in the projection data. The CI of this version is very low,
elaborating another strategy to access off-chip memory might substantially increase
the CI and allow the use of more DSP slices to improve the performance.

Table 5.1 – Static analysis of CI for different blocks

Block #Operations #Memory CI
size (GBOPS) accesses (GB)

BP-cache N/A 236 17.2 13.7

BP-
Prefetch

64× 64× 1 253 1.1 236
32× 32× 16 253 0.67 377
64× 64× 8 253 0.6 419

128× 128× 4 253 0.57 443
256× 256× 2 253 0.55 456

We can see that CI increases as long as the block size grows until it reaches
the maximum data reuse rate, and at the same time, the DRAM transactions are
decreased. This variation is because of the data reuse potential of our memory
access strategy. The total number of operations remains the same. In contrast,
the global memory invocations are considerably reduced. Therefore we perform the
same number of computations for fewer access to the global memory. The CI of our
design is improved by the new strategy and it is no longer in the memory bound
area on the roofline.

The memory operations presented in Table 5.1 take into account memory coa-
lescence allowed by loop unrolling. The bytes operations in Table 5.1 include arith-
metic operations (multiply-accumulate, divide...), and logic comparison performed
in our design. Some computations are floating-point related, and other operations
involve integer operations.

5.2.2 Design on Arria 10

The possible number of PEs on Arria 10 device is N = 64 PEs in our architec-
ture without exceeding available resources. Each PE must have free access to local
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memory, which requires a physical port for each memory read. In the case of insuf-
ficient ports, the memory requests are made with arbitration which causes a severe
performance problem for the pipeline by increasing the II [Intel Corporation 2019a].
We perform memory replication for multiple accesses in order to avoid arbitration.
Our architecture requires N read-ports (32 bits wide) for all the PEs to read projec-
tion data in local memory. Thanks to the memory access strategy, global memory
accesses are contiguous and are coalesced when loading projection data. Hence,
only one write-port is needed to write the projection data from global into BRAM
memory. The total number of memory replications will depend on the number N
of PEs in the architecture. Each replicate has four ports due to double pumping
(three reads and one write) and contains the same projection data for the block
reconstruction. In this configuration, the total replication will be at least bN3 = 22c

In addition, we place M = 8 private copies of the local memory for concurrent
execution of loop iterations (ϕ loop in algorithm 2). This reduces the overall latency
and increases the pipeline efficiency at the cost of additional BRAM consumption.

5.2.3 Replication potential on Stratix 10

We also use the Intel Stratix 10 device for our design in order to express more
parallelism. The Stratix 10 is a high-end FPGA with thousands of DPS slices and
more BRAM resources than the Arria 10 device. Consequently, our pipeline could
benefit from more PEs and achieves better throughput. The replication factor N
of our architecture is fixed to 256 for the Stratix 10 devices. We have two ways of
synthesizing this design: as a single kernel pipeline with all the PEs or multikernel
model with several compute units running in parallel.

The single kernel represents the architecture presented in Fig. 5.3 with N=256
PEs. The throughput of this version will depend heavily on the ability of the
prefetcher module to provide the data to the PEs. By having 256 PEs running
in parallel, the number of physical read ports must increase, which leads to local
memory replication overhead. In this scenario, all the PEs compute voxels in the
same block at a time. The challenge to best leverage the pipeline is to feed it with
data and maximize the throughput. The issue is that all 256 PEs are fed with data
from the same prefetcher module. The higher number of PEs in the design makes the
compute unit more efficient than the prefetcher module. This imbalance between
the compute unit and the prefetcher module will result in degrading the pipeline
efficiency. In order to balance between the compute unit and the prefetcher module,
a multikernel approach has been proposed. We split the 256 PEs into several kernels,
where each kernel has its own prefetcher module for more balance. The prefetcher
module designed in Section 5.1.4.1 is able to keep 64 PEs sufficiently occupied to
ensure high efficiency. However, increasing the number of PEs requires an increase
in the capacity of the prefetcher module. Although, as explained in Section 5.1.4.1,
increasing the prefetcher module capacity strongly affects the kernel’s operating
frequency. We can have multiple prefetcher modules in the design without sacrificing
the kernel frequency. Indeed, several prefetcher modules do not affect the kernel
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frequency because the compiler considers them separately and schedules their use
of the memory bus in various clock cycles during the pipeline execution.

We replicate our SWI kernel four times to have multiple kernels in concurrent
execution in order to further improve the design efficiency as illustrated in Fig. 5.5.
Therefore we have the same pipeline architecture with four instances, and each ker-
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Figure 5.5 – The multikernel architecture of the 3D back-projection algorithm

nel has 64 PEs. The kernel replication is quite identical to compute unit replication
available in the NDR kernel. However, the replication of the kernel consumes addi-
tional hardware resources because the whole kernel object is replicated. On Stratix
10, the multikernel model is not recommended as optimization, especially if there
is a data exchange between the kernels. Nevertheless, if there are no dependencies
between the kernels, the only concern is the resource consumption overhead. The
available resources on the Stratix 10 device are enough to support this replication
overhead. This is good for our design because the four kernels run concurrently on
different portions of the 3D volume without any communication.

5.3 Results

We evaluated in this section the performance of our design on Intel FPGA devices
guided by the roofline analysis. The performance metrics such as the execution
time, the pipeline stall, and the occupancy are discussed. The dataset used in this
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work and the software and hardware platforms have been described in Section 3.4.1.
For the sake of reproducibility, the source code of this project is publicly available2.

5.3.1 Design evaluation

5.3.1.1 Arria 10 results and roofline

Table 5.2 shows the results of our implementation using the Arria 10 device. The
performance metrics such as operating frequency, execution time, stall percentage,
and occupancy are presented in this table. The stall percentage represents the
amount of time memory access causes pipeline stall. In contrast, occupancy repre-
sents the percentage of time when a work item (thread) performs a valid memory
instruction. The more the occupancy is, the more the compute units are active
during the execution. The BP-cache version suffers from a high pipeline stall per-
centage because of the memory access pattern, making the global bandwidth the
main bottleneck. The execution time of this version is not acceptable for CT re-
construction routine. The DSP usage was very low because of high BRAM usage
to implement the cache. Therefore, extra compute unit replication was impossible,
and the BP-cache design could not achieve higher throughput.

Table 5.2 – Block size variation effect on the performance on Arria 10

Version BRAM DSP Stall Occ Freq Time GUPS
(%) % (%) (%) (Mhz) (s)

BP-Cache 72 27 71.27 24.6 150 3.5 1.14
322 × 16 73 58 0.2 74.7 179.2 0.502 7.97
642 × 8 72 63 0.06 84.1 189 0.425 9.4

Prefetch 1282 × 4 68 63 0.56 90.2 176 0.423 9.45
2562 × 2 73 62 0.06 94 180 0.396 10.1

The BP-Prefetch design (Algorithm 9) achieved better performance compared
to the BP-Cache version. It overcomes the issue mentioned above by providing a
good design with acceptable memory access pattern. The results show the effect
of block shape and size variation. We saw in Fig. 5.4 that the reuse rate varies
with the number of voxels in the block, i.e., high block size results in a high reuse
rate. However, the BRAM resource consumption should be considered concerning
the available resources on the target FPGA. A block size that consumes at most 4
MB has been used to store the projection data for our architecture configuration,
and the data reuse rate is high enough for this amount of memory. The results
of our architecture on Arria 10 are presented in Table 5.2 for different block sizes
and shapes. The stall percentage is very low for all the chosen blocks, and the

2The source code is available at https://github.com/nicolasgac/tomoGPI
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occupancy is high to ensure good execution time. The change in the data reuse
rate is noticed in the increase of the occupancy of the architecture.

In this design, all loops are successfully pipelined with an II value of 1. There
is no memory access conflict, and the data dependencies are handled in one clock
cycle. We tune the block sizes and shapes to have the best performance possible for
our architecture. We have obtained a better execution time with the 256× 256× 2
block, which corroborates the static study performed on the data reuse. Compared
to the previous BP-cache design, we achieved a speedup of 9.2 at 180 MHz.

The roofline plots are presented in Fig. 5.6 for four different blocks using the
Arria 10 device. The chosen blocks are the ones that provided a high reuse rate,
therefore the shapes and sizes are different. These high reuse rates will result in
high CI moving the algorithm out of the memory-bound area. Since the algorithm
is no longer in the memory-bound zone, the challenge is to get as close as possible to
peak performance, i.e., the computational ceiling. This can be problematic because
even if the application is not limited by memory on the roofline, it can be prevented
from having the maximum performance because of the impact of the memory access
latency. Unfortunately, the effect of these memory latencies is not directly visible
on the roofline. For this different optimization techniques are used such as the
access latencies hiding or the maximization of concurrent executions to occupy the
compute units. As shown in roofline, by increasing the size of our blocks, the CI
also increases, allowing us to have a better occupancy rate and get close to the
computational ceiling. The computational ceiling of our architecture is not affected
by the algorithm’s CI because our block size does not affect our design’s compute
configurations. The BRAM usage is concerned by the block size variation while the
DSP consumption is slightly impacted.
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A 100% occupancy rate would be on the horizontal line of our computational
ceiling. However, our best design on Arria 10 has an occupancy of 94% which is
close to computational ceiling.

5.3.1.2 Scalability to Stratix 10

Our design is then implemented and evaluated on Intel Stratix 10 device as a single
kernel and multikernel. In the multikernel version, we replicated this design with the
same block size on our Stratix 10. Therefore we have four compute units working on
four blocks of voxels concurrently. The BSP ensures the OpenCL device bandwidth.
In practice, the effective design bandwidth is low compared to the BSP’s maximum

Table 5.3 – Single kernel versus multikernel on Stratix 10

Design Block BRAM DSP Stall Occ Freq Time
(%) (%) (%) (%) (MHz) (s)

642 × 8 50 49 8.28 61.5 127 0.32
Single kernel 1282 × 4 31 50 4.01 60 87 0.47

2562 × 2 40 57 3.89 60.2 117.2 0.24
642 × 8 33 57 13.91 82.3 172.5 0.12

Multikernel 1282 × 4 36 57 1.45 83.1 133 0.84
2562 × 2 40 57 2.28 85.1 127 0.51

capability. The bandwidth follow-up is primordial for an acceleration equivalent to
the parallelism factor (the ideal speedup). We use the bandwidth to its full capacity
without sacrificing operating frequency.

The roofline model of the single kernel and multikernel designs is presented in
Fig. 5.7 on the Stratix 10 device. The single pipeline version contains 256 PEs
working on the same block of voxels at the time. Despite the concurrent execution
of the loops, the pipeline occupancy rate was not optimal. The prefetcher module
could not efficiently feed the pipeline for better throughput. Furthermore, the
operating frequency of this version was slightly low, as shown in Table 5.3 due to the
complexity of the single compute unit. Compared to the Arria 10 implementation,
the Stratix 10 results were not as good as expected, even though the design used a
high number of PEs for a single kernel. However, the block 256× 256× 2 provided
the best execution time with a 1.6× speedup using 4× as much PEs as the Arria
10 design.

The multikernel configuration allows the design to achieve a better operating
frequency. This improved frequency enables further saturation of the global mem-
ory bandwidth and the occupancy rate of each kernel. The routing constraints
are relaxed with this strategy of splitting the compute unit. Another main differ-
ence between the two designs is that the multikernel version runs on four blocks in
parallel. The volume was divided into four subvolumes reconstructed by the four
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compute units. The reconstruction is performed block by block within each sub-
volume. Therefore the multikernel version is preferred over the single kernel, which
achieves the best operating frequency and the optimal design occupancy. Despite
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Figure 5.7 – Roofline of BP-Prefetch on Stratix 10

the high occupancy for blocks 256×256×2 and 128×128×4, their execution times
are worse than the single kernel version. This is due to a prediction mechanism
implemented by the AOC compiler on FPGAs. The computations of the projection
data coordinates are performed on the fly, and the hardware tries to predict these
computations to optimize the design. By analyzing the dynamic profiler, we notice
that the percentage of prediction hit was very low for these two blocks, which means
most of the computations performed were invalid. The success of prediction rate
was given by the activity metric in the dynamic profiler. The best execution time
was obtained for the block 64× 64× 8 with high occupancy and a good prediction
rate. It should be noted that the prediction failed when the number of PEs is lower
than the number of voxels per line in the block. This is the reason we do not have
the failed prediction for a single kernel because the number of PEs (256) is equal to
or greater than the voxels per line of the block (64, 128, or 256). For multikernel
we had 64 PEs, and for blocks with more than 64 voxels per line, the predictions
failed several times. Therefore, a good consistency is required between the chosen
block and the number of PEs.

Thus, the multikernel has achieved an execution time of 0.12 s at 172.5 MHz
and preserved the pipeline occupancy for each compute unit with a block size of
64×64×8. However, the stall percentage of the multikernel version is slightly high
because we have multiple kernels with multiple prefetcher modules soliciting the
global bandwidth. Nevertheless, this increase in memory stall does not impact the
overall performance that much, and yet the design achieved significant throughput.
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(a) Reconstructed by GPU. (b) Reconstructed by FPGA.

(c) Reconstructed by GPU. (d) Reconstructed by FPGA.

Figure 5.8 – Shepp-Logan phantom reconstructed image slice 128. Fig. 5.8a-5.8b:
The reconstructed image using single back-projection. Fig. 5.8c-5.8d: The recon-
structed image after the full MBIR algorithm.

5.3.2 Image Accuracy

We use Shepp-Logan phantom and XCAT phantom [Segars 2008] test cases to
evaluate our design. Slices of the 2563 volume of Shepp-Logan phantom and 10242×
256 on XCAT phantom are illustrated in Fig. 5.8 and Fig. 5.9, respectively. The
image slices are reconstructed by GPU and FPGA using single-precision floating-
point representation. We used the nearest neighbor method for interpolation on
FPGA, while the GPU version used the bi-linear interpolation method. Table
5.4 shows the evaluation of the FPGA reconstructed images with respect to GPU
ones.The Universal Quality Index (UQI) [Wang 2002], the Correlation Coefficient
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(a) Reconstructed by GPU. (b) Reconstructed by FPGA.

(c) Reconstructed by GPU. (d) Reconstructed by FPGA.

Figure 5.9 – XCAT phantoms reconstructed image slice 128. Fig. 5.9a-5.9b: The
reconstructed image using single back-projection. Fig. 5.9c-5.9d: The reconstructed
image after the full MBIR algorithm.

(CC), the Normalized Root Mean Squared Error (NRMSE), and the Signal to
Noise Ratio (SNR) metrics have been used in order to evaluate our design accuracy
compared to the GPU reconstructed image. According to these metrics, the FPGA
reconstructed images are accurate enough for CT application compared to the GPU
reconstructed images. The slight loss of accuracy is due to the lack of bilinear
interpolation.

Table 5.4 – Image quality evaluation between GPU and FPGA reconstructed images
on different datasets

Dataset Algorithm UQI CC NRMSE SNR

Shepp-Logan Back-projection 0.999 0.999 0.0162 37.5
MBIR (100 iterations) 0.996 0.996 0.099 25.9

XCAT Back-projection 0.999 0.999 0.0659 35.4
MBIR (100 iterations) 0.999 0.999 0.0457 37.9
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5.4 Comparison and discussion

We compare the results of our design with the state-of-the-art tomography imple-
mentations on GPU and FPGA. In this comparison, the overall throughput, design
efficiency, power consumption, and resource consumption are assessed.

5.4.1 Implementation on general-purpose processors

In this section, we will talk about the CPU and GPU implementations of the 3D
the back-projection algorithm. Indeed, the CPU and GPU architectures are used
as the reference platforms for comparison in our work.

5.4.1.1 CPU implementation

The CPU implementation is the reference version of the 3D back-projector. It is
the sequential execution mode of the algorithm with three major loops over voxels
within the 3D volume as illustrated in Algorithm 10. The loops order will have an
impact on the overall performance on CPU because the memory access pattern will
not be same. Indeed, the CPU processors are recipient of advanced cache mechanism
that extensively exploit the spatial and temporal data locality.As mentioned above,
this algorithm has an irregular memory access pattern which strongly impact the
performance. However, the multiple cache level on CPU processors can optimize
these memory accesses with the right loop ordering (Algorithm 10).

Algorithm 10 Voxel-driven back-projector on CPU
Require: α[dimϕ], β[dimϕ], sinogram
Ensure: 3D volume

1: for all zn, yn, xn do
2: voxelsum ← 0
3: for all ϕ do
4: Compute(un, vn)
5: voxelsum+ = sinogram[un, vn, ϕ]
6: end for
7: volume[xn, yn, zn] = voxelsum
8: end for

5.4.1.2 GPU implementation

An optimized CUDA implementation from [Gac 2014] is used for our embedded
and HPC GPUs. The voxel-driven 3D back-projection algorithm can be massively
parallelized on GPU architecture since the computation of each voxel is independent
of the others. GPUs with their multiple CUDA cores are therefore used to accelerate
this algorithm. The bi-linear interpolation is used in this case thanks to the texture
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units presented on the GPU. Indeed, the GPU textures are read-only cache including
hardware that can perform filtering and interpolation.

5.4.2 Performance comparison

Table 5.5 – Performance comparison of our work and other works.

Update Cycle
Ref. Back-projectora Arch. Platform Time GUPS /cycle PE /update

(geometry, volume) (Year, Freq., Process size, Cores) (s) /opb /PE

This work

FPGA Arria 10 (2014, 189 Mhz, 20 nm, 1518) 0.396 10.1 0.030 64 1.12
Stratix 10 (2016, 172 Mhz, 14 nm, 5760) 0.12 33.3 0.032 256 1.23

VD-float, 256 updates/voxel

GPU

C2050 (2011, 1.15 Ghz, 40 nm, 448) 0.129 31.1 0.032 448 15.4
(CT circular, 2563) P100 (2016, 1.46 Ghz, 16 nm, 3584) 0.017 237 0.027 3584 18.7

V100 (2017, 1.38 Ghz, 12 nm, 5120) 0.011 364 0.028 5120 18.1
A100 (2020, 1.41 Ghz, 7 nm, 6912) 0.009 424 0.023 6912 21.4
TX2 (2016, 1.46 Ghz, 16 nm, 256) 0.25 16.0 0.023 256 21.8

[Chou 2011] VD-float, 360 updates/voxel GPU C1060 2.47 18.2 0.031 240 15.9(CT circular, 5123) (2008, 1.30 Ghz, 55 nm, 240)

[Gac 2008] VD-fix, 480 updates/voxel

FPGA

Virtex-4 0.526 0.88 0.025 8 1.70(PET, 1282×63) (2004, 200 Mhz, 90 nm, 160)

[Choi 2016] RD-fix, 831 updates/voxel Virtex-6 14.8 5.1 0.052 64 1.17(CT helical, 5122×372) (2009, 100 Mhz, 40 nm, 3456)

[Wen 2020] RD-fix, 502 updates/voxel ZCU102 2.10 29.9 0.024 - -(CT helical, 10242×128) (2018, 300 Mhz, 16 nm, 2520)
a The back-projector studied in our work is Voxel-Driven with floating point
computation (VD-float). Back-projectors studied by Choi [Choi 2016] and
Wen [Wen 2020] are Ray-Driven with fixed-point computation (RD-fix).

b op. : hardware operators (adders and multipliers). GPU cores have two FP32
(Floating Point on 32 bits) op. with one multiplier accumulator; DSP Intel FPGA

have two FP32 op. with one multiplier accumulator; DSP Xilinx have three
fixed-point op. with a pre-adder and a multiplier accumulator.

Several works on CT algorithm acceleration on hardware architectures have been
reported. These different works use different approaches such as ray-driven, voxel-
driven or separable footprint. Choi et al. [Choi 2016] has proposed a ray-driven
voxel-tile parallel approach to accelerate the EM algorithm on FPGA. They exploit
the data reuse to leverage the BRAM memory by minimizing global memory access
and expressing a high parallelism. Gac et al. [Gac 2008] has proposed a pipelined
architecture exploiting the spatial and temporal locality of the back-projection al-
gorithm. Their method overcomes the memory bottleneck by loop reordering to
take advantage of cache memory using HDL language. FPGA designs with HDL,
as in [Gac 2008], are known to provide efficient pipeline architecture, and this
same efficiency can also be seen when using HLS tools. An asynchronous beam-
based parallelism to accelerate the Mumford-Shah (MS) algorithm with a high data
reuse rate and low external memory transactions has been proposed by Zhang et
al. [Zhang 2020]. Their approach reduces the computational cost of the backward
projection to a lightweight operation. Wen et al. [Wen 2020] has proposed a data
management strategy to achieve a best reuse rate and exploit the FPGA on-chip
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memory to accelerate the forward and backward projections. A forward projection
parallel architecture on FPGA has been proposed by Kim et al. [Kim 2012]. Their
projector architecture was fully pipelined, and exploited loop-level parallelism for
high performance. In [Chou 2011], the authors proposed a GPU-based reconstruc-
tion algorithm to accelerate the forward and backward projections. Their approach
takes advantage of the GPU architectures to perform multiple rays computation
with multiple threads while avoiding thread divergence.

Table 5.5 shows that our embedded GPU implementation achieved slightly bet-
ter performance than the Arria 10 design in terms of GUPS. Vivado HLS is com-
monly used as HLS tool for FPGA accelerations as in [Choi 2016,Wen 2020], al-
though we use Intel FPGA SDK for OpenCL in this work. OpenCL SDK is at a
somewhat higher level of abstraction than Vivado HLS, giving the designer more
control over the pipeline by using HLS compilers such as Vivado HLS or Intel HLS
compiler. Choi et al. [Choi 2016] used the Convey HC-1ex platform based on helical
geometry. This platform runs at 100 Mhz of operating frequency with four FPGAs,
and the authors’ design consumes 1408 DSP slices. Wen et al. [Wen 2020] targeted
the Xilinx ZCU102 platform based on an UltraScale FPGA and with an overall
DSP utilization of 1476 at 299.97 Mhz.

Our Stratix 10 design with four compute units and a total of 256 PEs achieved
an overall throughput of 33.3 GUPS at 172.5 Mhz. We compared the results to
our GPU implementation using an embedded GPU and a powerful desktop GPU.
The Stratix 10 design outperforms our embedded GPU implementation on the
same dataset. However, the GPU A100 was the most efficient platform regard-
ing throughput. The DSP usage of the four kernels is 3282 slices. The results show
better performance compared to all the implementations in Table 5.5. Our design
achieves a 6.5× speedup of throughput in terms of GUPS compared to the back-
projector of Choi et al.. The Convey HC-1ex platform of Choi et al. [Choi 2016]
contains four FPGAs. However, The results reported here are for one FPGA in
order to make a fair comparison since we use a single FPGA platform. However,
their back-projector is a ray-driven approach, and their PE is responsible for ray
tracing. Our PE performs a voxel update since the back-projector used in this work
is a voxel-driven approach. Moreover, each ray traverses an average of 168 voxels
in our dataset, while it traverses 1004 voxels in their dataset. They have a higher
potential for data re-utilization in their dataset than ours. Nevertheless, our design
exploits more parallelism and concurrent computations to achieve high throughput.

We then evaluated the design efficiency of all the FPGA implementations by
comparing the number of updates performed per cycle by each hardware operator
(adder and multiplier ). Our OpenCL implementation on Arria 10 and Stratix has
approximately the same design efficiency as the HLS ones (Table 5.5). It should
be noted that the work on FPGA related in the literature used fixed-point repre-
sentation to perform the reconstruction while we use floating-point single-precision
for our design. Potentially, performances could be improved by a factor of two if
Intel DSP is used as two fixed-point Multiplier ACcumulator (MAC) instead of one
floating point MAC.
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Finally, we have evaluated the pipeline efficiency of each PE. Our FPGA archi-
tectures on Arria 10 and Stratix 10, Gac et al. [Gac 2008] HDL design and Choi et
al. [Choi 2016] have an efficiency close to the optimal of one cycle per update per
PE. Conversely, GPU cores have an efficiency of around 20 cycles per update. It
highlights the strength of FPGA technology which allows the design of customized
architectures with a high computation efficiency even if its lower frequency clock
and hardware resources density make it, at the end, slower than GPU.

5.4.3 Resource and power analysis

5.4.3.1 Resource consumption

Table 5.6 shows the resource usage of the 64× 64× 8 block version . As mentioned
above, our design on Arria 10 contains 64 PEs on Arria 10 device and 256 PEs
on Stratix 10. The BRAM usage also includes the memory replication overhead
in order to support concurrent access within the pipeline. The resources that are
consumed by the design on Stratix 10 are shown in Table 5.6 for our four compute
units. The table reveals that the extra logic consumption is due to the kernel
replication overhead in terms of LUT and DSP. It should be noted that the LUTs
are larger in Xilinx devices (6-input) than in Intel devices (4-input). Therefore it
is the percentage of usage that matters.

Table 5.6 – FPGA resources consumption

Reference FF LUT BRAM DSP
Ours 407183 184616 1967 949

Arria 10 (25%) (23%) (73%) (63%)
Ours 1338708 604963 3898 3282

Stratix 10 (36%) (32%) (33%) (57%)

Choi et al. 1263716 1142380 3680 1408
(33%) (60%) (64%) (40%)

Wen et al. 200062 235928 1352 1476
(36%) (86%) (74%) (58%)

Our design consumed more DSP slices than other FPGA designs due the high
level of parallelism exploited by our method. The complexity of our pipeline is not
identical with the ray-tracing PE for other works because our approach is based on
voxel-driven. Moreover, this work uses single-precision floating-point numbers for
the volume image and the projection data, while other works [Choi 2016,Wen 2020]
use fixed-point values. Floating-point computations are more expensive than fixed-
point regarding latency and hardware resources.
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5.4.3.2 Power consumption

Table 5.7 shows the power consumption of our design on different architectures.
Intel Arria 10 and Stratix 10 boards contain a power sensor that reads the actual
power consumed by the board using a software API provided by the vendor. We
used the Intel power monitor to read the sensor and measure the power consumption
of the FLIK Arria 10 board. The fpgainfo tool from the Open Programmable
Acceleration Engine (OPAE) C toolkit was used to measure the power sensor on
Intel Stratix 10 board. Therefore, The power values reported in Table 5.7 are the
actual power consumption of the FPGA board. The reported values correspond to
the maximum Thermal Design Power (TDP) of 250W for the GPU boards.

Table 5.7 – Design energy efficiency

Device Process (nm) Power(W) Time (s) GUPS/Watt
GPU P100 16 250 0.017 0.95
GPU V100 12 250 0.011 1.45
GPU A100 7 250 0.009 1.70
Jetson TX2 16 12.9 0.25 1.22
Arria 10 20 14.9 0.396 0.68
Stratix 10 14 23.5 0.12 1.42

The embedded Jetson is more energy-efficient than our architecture on Arria
10 FPGA, which was designed using OpenCL for the back-projection algorithm.
Conversely, the Stratix device is more efficient than Arria 10 and the embedded
GPU. We can say that the Stratix 10 is as energy-efficient as the GPUs except for
the A100 device. However, the difference in the process size between Stratix 10 and
A100 devices (14 nm versus 7 nm) is quite significant. The FPGA can potentially
become advantageous than GPUs because there is still room to reduce the process
size. By exploiting this technological gap, FPGAs can benefit from more computing
resources and be more energy efficient.

5.5 Tomography oneAPI

We built our BP-prefetch architecture using the oneAPI HLS tool. As oneAPI
is Intel’s new higher abstraction framework based on the SYCL standard, using it
would allow us to evaluate the design and compare the results with OpenCL design.

5.5.1 Design

The oneAPI design took advantage of the methodology applied to the 3D back-
projector and the underlying FPGA devices. The difference relies in the change
of the design tool. The same BP-Prefetch architecture has been designed on Intel
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Arria 10 and Stratix 10 devices. As explained in Section 1.3.3, the oneAPI frame-
work inherited from the OpenCL specification with additional features enabling
the full design on FPGA through DPC++ language. The OneAPI and OpenCL
tools are very similar in terms of kernel design. The optimizations are the same,
with some differences in the names of attributes and pragmas. In addition, the
OpenCL compiler is encapsulated in the DPC++ compiler, meaning there should
not be much difference in the architecture synthesis. Nonetheless, the host code of
oneAPI is much shorter in terms of lines of code than OpenCL. The reduction of
these lines of code is interesting because OpenCL is much more verbose on the host
side. Initializing the OpenCL platform to run a kernel on an FPGA is a tedious
task that requires the developer to handle everything by hand from start to finish.
OneAPI automates a good part of these tasks, which the compiler handles with
little developer intervention. Furthermore, data transfer between host and kernel,
which can be implicit or explicit, is also simplified with the oneAPI tool. By en-
suring the same level of performance as OpenCL, oneAPI seems more user-friendly
and capable of attracting most software developers in order to use FPGAs to speed
up their applications.

5.5.1.1 Arria 10 design

The algorithm is implemented on Arria 10 as a multi-stage deep pipeline similarly to
the OpenCL design with 64 PEs running in parallel. Each PE has stall-free access
to BRAM memory for reading and writing into the projection data. The local
memory is double-pumped to reduce the replication overhead. Multiple private
copies of local memory are also used to express maximum concurrency and keep
up the PEs during the design execution. Buffers are used to contain data from
the host to the device. Then, the compiler creates the appropriate LSU depending
on the kernel access pattern to perform the global memory accesses. The same
pipeline optimizations that have been applied to the OpenCL kernel are applied
to the oneAPI kernel as well. In the oneAPI kernel, all loops are fully pipelined
efficiently with an II value of one. The local memory accesses are all stall-free
without arbitration because no access ports are shared. The global memory access
remains a long latency operation, but thanks to our memory access strategy and
the exploitation of the data reuse potential, these accesses are made consecutive
and reduced in number. In addition, the private copies of local memory for the
concurrent execution of the different loop iterations make it possible to hide the
latency of the global memory accesses.

5.5.2 Performance analysis and comparison

Table 5.8 presents the comparison of oneAPI results with OpenCL in terms of design
efficiency, throughput and resource consumption. Both tools were used to imple-
ment the architecture of the back-projector on FPGA. An architecture based on the
non-optimized version (BP-Cache) and one for the optimized version (BP-Prefetch)
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Table 5.8 – Comparison between oneAPI and OpenCL on Arria 10

Design Tool BRAM DSP #PEs Freq (MHz) Time (s) GUPS

BP-Cache
OpenCL 1958 406 32 150 3.5 1.14(72%) (27%)

OneAPI 2088 374 32 163 6.43 0.62(77%) (25%)

BP-Prefetch
OpenCL 1952 949 64 189 0.396 10.1(71%) (63%)

OneAPI 1041 878 64 229 0.51 7.84(38%) (58%)

with our algorithm-architecture co-design strategy. Analyzing the performance of
both designs, we see a performance loss of the oneAPI tool compared to OpenCL.
The difference lies in the efficiency of the pipeline generated for each tool. By ana-
lyzing the pre-compilation report files, the pipeline generated by oneAPI is slightly
deeper than that of OpenCL due to their memory management. For a very deep
pipeline with a large percentage of stalls, the number of idle stages is very high
per clock cycle, which makes the pipeline inefficient. However, in terms of operat-
ing frequencies, the oneAPI tool manages to reach higher frequencies. Moreover,
oneAPI seems to better handle the hardware resources of the FPGA by using fewer
DSPs for the same number of PEs and sometimes much less BRAM compared to
OpenCL. The development time of oneAPI have been slightly reduced because it
requires fewer lines of code compared to OpenCL. A trade-off between performance,
resource consumption and development time is necessary to choose one tool over
another.

However, oneAPI and OpenCL offer a more valuable reduction of development
time and simplicity of use than traditional HDLs. This substantially increases de-
sign productivity when using HLS tools. Nevertheless, the full synthesis for the HLS
tools is still time-consuming (several hours depending on the design complexity) due
to the long placement and routing steps, unlike CPU and GPU architectures. Both
tools allow code portability between different architectures such as CPU, GPU, and
FPGA. Similar to OpenCL, the portability of oneAPI does not ensure performance,
and the algorithm might be rethought according to the underlying architecture. The
number of lines of codes of oneAPI is reduced compared to OpenCL on the host
side. However, the number is approximately the same on the kernel side because
oneAPI is encapsulated in OpenCL.

5.6 Iterative reconstruction algorithm

In this section, we present the TomoGPI reconstruction toolkit developed at the
L2S laboratory and the additions to the software made during this thesis. We
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present the different strategies for parallelizing the iterative loop of the optimization
algorithm on FPGA for tomography. Indeed, so far we have only considered the two
computational burdens of the algorithm, which are the projector and back-projector.
We consider two implementation strategies for the algorithm: CPU-FPGA and full
FPGA implementations.

5.6.1 TomoGPI

TomoGPI is the iterative reconstruction software developed in L2S laboratory at
partnership with Safran for 3D computed tomography used in medical imaging and
non-destructive testing. This software makes it possible to read raw data coming
from the scanners and to reconstruct them by the methods conventionally used
(analytical and iterative methods). The TomoGPI software allows an acceleration
of the reconstruction algorithms thanks to its use of single and multi-GPU servers.
Indeed, in its initial version, TomoGPI only supports the mono-GPU acceleration
of iterative algorithms. Then multi-GPU parallelization was added to the software.
The work of this thesis has allowed TomoGPI to have support for FPGA boards
with HLS tools. Several operators have been accelerated on FPGA and added to
the software.

Several other reconstruction toolkits exist in the literature, such as Astra [Palen-
stijn 2017], RTK [Rit 2014], or TIGRE [Biguri 2016]. These toolkits use non-dual
pairs for reconstruction, whereas TomoGPI has matched and unmatched pairs. Fur-
thermore, unlike TomoGPI, these toolkits do not support the FPGA-based recon-
struction of iterative algorithms.

5.6.2 CPU-FPGA strategy

The first implementation strategy is to run the iterative loop on the host processor
and delegate the computation of the projection (Hf) and back-projection (Htδg)
operators to the accelerator card, often GPUs or FPGAs. In this approach, all data
resides on the host processor, and memory transfers are made at each iteration to
perform the calculations and retrieve the results via the PCIe bus. For large-scale
problems such as tomography, the bandwidth of the PCIe bus is a bottleneck for this
algorithm. Fig. 5.10 highlights the block diagram of the iterative reconstruction
algorithm with regularization for a CPU-FPGA platform. The strategy employed
here is to run the iterative algorithm on the CPU host processor. The FPGA
device handles the most computationally expensive operators. As illustrated in the
figure, there is a need to transfer data to and from the FPGA device to execute
the algorithm correctly. Each step on the block diagram is highlighted, whether
it is a computation or a memory transfer. We can see that only the two most
expensive operations are accelerated on FPGAs, and the CPU handles everything
else. CPU operations can also be accelerated on FPGA, even if they are not the
most crucial ones, such as regularization or gradient calculation. In addition to these
two bottlenecks (memory transfer and iterative algorithms run on the CPU), there
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Figure 5.10 – Block diagram of iterative image reconstruction using CPU and
FPGA. Data transfers (black), blocks run on CPU (red) and FPGA (green) are
highlighted.

is another issue related to FPGAs partial reconfiguration time during execution.
Indeed, the FPGA being a reconfigurable circuit, it is necessary to reconfigure

it with the bitstream during the runtime of the host processor program. There
are two possible scenarios for projection and back-projection: the two operators
are synthesized in a single bitstream, or each operator is synthesized in a separate
bitstream. Each case has its advantages and disadvantages.

5.6.2.1 Separate bitstream scenario

The projector and the back-projector kernels are compiled and synthesized sepa-
rately in this case. Therefore, during the iterative algorithm, it will be necessary at
each iteration to configure the FPGA for forward projection and do the same for
back-projection until the algorithm’s convergence. The FPGA reconfiguration time
is of the order of a few seconds as we observed on Intel Arria 10 and Stratix 10
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devices. Although OpenCL allows partial reconfiguration (about 5 seconds) using
the PCIe bus instead of JTAG, the reconfiguration time is still significant compared
to general-purpose processors. However, this iterative reconfiguration strongly im-
pacts the overall reconstruction time and will be challenging to accept in the clinical
routine. This makes FPGAs less competitive with GPUs for computationally in-
tensive applications as the latter do not suffer from this reconfiguration delay nor
longer compilation times.

It is possible to use two FPGAs in the system so that each operator resides on
a separate FPGA. Each FPGA will be configured once, and the application is no
longer penalized by reconfiguration time. However, even with two FPGAs, it is only
possible to use one FPGA at a time because the sequential aspect of the algorithm.
Therefore, both FPGA boards are not fully utilized, resulting in low efficiency.

5.6.2.2 Single bitstream scenario

The other scenario consists of synthesizing the kernels in the same bitstream for the
FPGA. In this case, we have to reconfigure the FPGA only once at the beginning of
the iterative algorithm. As long as the bitstream on the board does not change, there
is no need to reconfigure it. The disadvantage of this approach is that the resources
of the FPGA are shared between the two operators, which could cause a loss of
performance due to the low level of parallelism for each operator. Furthermore,
only half of the hardware resources will be active at any time due to the sequential
launch of the operators in the iterative algorithm. This dramatically reduces the
efficiency of the FPGA and results in poor performance. The scenario is similar to
the case of separate bitstreams with two FPGAs. The efficiency of the pipeline is
strongly impacted.

5.6.3 Full FPGA strategy

In order to overcome the aforementioned issues, it is possible to launch the full
iterative algorithm on FPGA instead of the host processor. Therefore, all the steps
at each iteration are performed on FPGA device. The reconfiguration is performed
only one time in this case whether using a single or multiple FPGAs device for the
reconstruction. This allows to avoid the multiple data transfer between the host
and the device through PCIe as is the case when the gradient descent is performed
on CPU. This also means that all data reside on the FPGA global memory and not
the host memory. The least square regularization δregf (n), the difference δg(n), the
scaling by α and the f (n) computations are now performed on the FPGA. All these
computations can benefit from pipelining and parallelism on FPGA. Furthermore,
we take advantage of our convolution operator optimized on FPGA to perform the
regularization step because this convolution is performed with small mask sizes.
Our FPGA-based convolution presented in Section 4.4.2 performs well for small
mask sizes thanks to the memory optimization.

However, having the whole iterative loop on the FPGA device does not nec-
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essarily solve the problem of sub-optimal use of the FPGA. Indeed, despite the
projection and back-projection operators being both on the same bitstream, their
execution is purely sequential because of the iterative nature of the optimization
algorithm. This iterative nature makes it impossible to take advantage of pipelin-
ing on FPGA, which is a strong potential of this architecture. Nevertheless, the
pipelining is strongly exploited within each step of the optimization algorithm.

5.7 Conclusion

This chapter presents a hardware acceleration of the back-projection algorithm for
CT reconstruction using FPGA local memory efficiently. A fully OpenCL-based
custom pipeline architecture using memory prefetching to reduce global memory
transactions is designed to accelerate the algorithm. The prefetching of the pro-
jection data into the local memory, allowed by the offline memory access analysis,
permits us to leverage the global memory bandwidth. Our architecture performs
better throughput based on an efficient pipeline with no stall on Intel FPGA devices
for the back-projection algorithm. Furthermore, we present a multikernel approach
to maximize the Stratix 10 design throughput and operating frequency. We have
ensured the bandwidth follow-up by the prefetcher module to keep up occupying
the compute units as much as possible. The systematic use of the Berkeley roofline
model highlighted the optimization steps in our development. We achieved 0.6×
and 2.1× throughput against our embedded GPU implementation on Arria 10 and
Stratix 10, respectively. FPGAs could be more competitive against GPUs by re-
ducing the process size and gaining computational power and energy efficiency.
The OpenCL designs have been compared to the new oneAPI. We notice that the
OpenCL tool offers better performance than oneAPI. Our design with OpenCL
outperforms the related CT reconstructions using Vivado HLS on FPGA.





Chapter 6
Conclusion and Perspectives

6.1 Conclusion

This thesis deals with the exploration of new high-level synthesis tools on FPGA
boards for tomographic reconstruction and radioastronomy. The enormous resur-
gence in the internal technology of FPGAs has positioned them as a potential
candidate for resolving large-scale problems more quickly. Added to this architec-
tural improvement is the emergence of mature HLS tools, which facilitate custom
architecture synthesis over HDL languages. Although HLS tools allow development
time to be considerably reduced while offering higher productivity, significant effort
is still needed to exploit FPGAs to their full potential. Indeed, a thorough knowl-
edge of the FPGA architecture and programming paradigm is required to assist
HLS compilers in producing efficient designs. In this thesis, we present several ad-
vanced optimizations to leverage FPGA devices. Such FPGA-aware optimizations
are essential for compilers to synthesize an optimal design. Although the technical
designs of HLS tools are improving, the compilers still struggle to exploit some
optimizations due to their inability to integrate the underlying architecture’s speci-
ficities, as is the case with standard compilers. The designer must therefore assist
the compiler in analyzing and synthesizing the algorithm.

Chapter 2 and 3 showed that a direct implementation of compute-intensive
algorithms on FPGAs does not guarantee a significant speedup even by applying
OpenCL optimizations. The OpenCL results do not reach the performance level
of HDL designs in terms of throughput and efficiency. The hardware resources
are not efficiently exploited. The algorithms should extensively exploit the FPGA
BRAM to overcome the memory bottleneck and take advantage of multiple DSP
slices in order to achieve coarse grained parallelism. The need of an algorithm-
architecture co-design approach for FPGAs in order to accelerate memory-bound
algorithms has been highlighted. Therefore, we proposed a custom architecture of
the 3D back-projector based on a customized memory access strategy to reach a
full computational throughput.

The proposed architecture derives from a specific methodology in order to ex-
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tensively exploit the FPGA’s BRAM memory. This methodology is based on elabo-
rating a suitable memory access strategy for a memory-bound algorithm, a roofline
analysis to guide the design steps, and the design scalability. The proposed ar-
chitecture significantly improved the overall performance of the 3D back-projection
algorithm. We notice that the scaling up of the design to a higher-end FPGA device
is not a trivial task in order to preserve pipeline efficiency. The scaling up from
Arria 10 device to Stratix 10 has been studied to balance the design’s computa-
tional units and the prefetcher modules. The scalability study allows to preserve
the pipeline efficiency and improves the design’s overall performance.

The performance gap between FPGAs through HLS tools and GPUs is still
wide. GPUs are now one order of magnitude faster than FPGA with HLS tools,
as was the case 15 years ago [Gac 2008]. Nevertheless, thanks to HLS tools, the
development time of FPGAs has been considerably reduced compared to HDL de-
sign time. There is hope for FPGAs regarding the design power consumption. In
our study, our architecture on FPGA consumes as much energy as the GPU im-
plementation. However, FPGAs are still better than GPUs in terms of worst-case
power consumption. Furthermore, considering the technology gap between the two
architectures, there is a large room for improvement in the transistor process for
FPGA.

HLS tools like OpenCL and oneAPI are addressed to software developers, ac-
cording to Intel. However, these tools are still not easy-to-use compared to other
high-level languages. The use of these tools also requires a deep knowledge of FPGA
architectures and their programming models in order to guarantee performance.
FPGA vendors are expected to make these tools more user-friendly and improve
their static analysis of algorithms to generate more efficient pipelines. These tools
may include several research insights, such as the work of [Derrien 2020] to enhance
their efficiency. In order to substitute OpenCL with oneAPI, as Intel wants, the
oneAPI tool must be further enhanced and offer the same level of performance as
the OpenCL tool.

6.2 Perspectives

Several research perspectives can be followed from work presented in this manuscript
in order to better position FPGAs for acceleration in HPC applications. Firstly,
the main vendors can make improvements to the cards for process size and the
tools for their ease of use and efficiency in generating designs. Secondly, developers
must properly select the algorithms used for FPGA acceleration and be aware of
the specificities of FPGA architecture in their design approach.

There is much hope for FPGA technology because there is still room for improve-
ment in its architecture. In order for FPGAs to catch up with GPUs, improvements
are needed in both internal architecture and synthesis tools. For example, the global
memory bandwidth of FPGAs is much lower than that of graphics processors, which
constitutes a colossal design gap. However, the latest FPGAs are equipped with
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High-Bandwidth Memory 2 (HBM2) memory (already available on GPU), which
could give this technology another boost in the acceleration of HPC applications.
Intel Stratix 10 MX and Xilinx Alveo U50 both contain an FPGA with two HBM2
memories that reach a theoretical memory bandwidth of 410GB/s and 460GB/s,
respectively. The achievable bandwidth of these boards is close to Nvidia GPU with
HBM2, which is about 650GB/s. Hence, FPGA-based HBM2 has been evaluated
for several memory-bound applications using HLS tools in [Choi 2020]. Regarding
computational resources, FPGAs are also struggling to compete despite the ever-
increasing number of DSPs. This is due to CUDA cores’ high operating frequency
and more specific units on GPUs, such as tensor cores. Regardless, the new up-
coming Intel Agilex device based on HBM2 is supposed to offer up to 40% higher
performance and 40% lower power than its predecessor Stratix 10 family.

FPGAs struggle to compete with GPUs for regular algorithms with fewer con-
trols and conditional branches. However, algorithms with several control and
branching could benefit from the high flexibility of the FPGA to design a custom
pipeline that best fits the algorithm. It is then necessary to identify the algorithms
that are not suitable for GPUs in order to implement them on FPGAs by designing
a custom architecture. The methodology adopted in this algorithm-architecture
co-design approach can be applied to ray-driven projectors allowing them to ben-
efit from the same acceleration as the voxel-driven back-projector. Indeed, several
adjacent rays traverse the same voxels in the 3D volume. By identifying a set of
adjacent rays, their computation is performed at the local memory level by stor-
ing the voxels traversed along the rays in BRAM memory. The matched separable
footprint pair could also be accelerated on FPGA. This SF pair contains several
conditional branching making it non-suitable for GPU acceleration. In addition,
using a matched pair allows to share the same FPGA architecture for the projector
and back-projector since they require the same computations but on different data.
Also, the parallelization of the iterative loop to overcome the various concerns has
been highlighted in Chapter 5. An important axis of research would be to explore
this parallelization further to alleviate the concern of partial reconfiguration time
of the FPGA or its sub-optimal use. This issue is avoided for a matched pair be-
cause the same architecture is used for forward and back-projection resulting in full
pipeline efficiency. However, a pipelining mechanism can be elaborated for the op-
timization algorithm to efficiently use the FPGA for the acceleration of unmatched
pair. In this case, the pipelining can be appropriate for both single bitstream or
two FPGAs cases for forward and back-projection.

Exploring a multi-FPGA design, especially in the radioastronomy use case, is
also essential. FPGAs are well established in the correlator in the SKA pipeline.
However, the imaging system requires more computational power and is dominated
by the GPU. Multi-FPGA platforms can show a considerable advantage in the SKA
context for dataflow processing for several reasons. FPGAs can receive data through
multiple peripherals other than the PCIe bus, such as Ethernet. Also, the inter-
FPGA communication using channels or pipes results in more efficiency because
there is no host processor intervention. Finally, the SKA project’s energy constraints



116 Chapter 6: Conclusion and Perspectives

could be met by the FPGAs due to their low worst-case power consumption.
The interest of using profiling tools such as the roofline model has been high-

lighted in this study. The roofline model is generated automatically for general-
purpose processors. The dynamic profiler of the OpenCL compiler is not mature
enough to produce the roofline on FPGA. Hence, this work performs the roofline
analysis manually thanks to our offline algorithm analysis. The automatic gener-
ation of the roofline model on FPGA using HLS tools could be more appropriate
and save valuable time in the design process. This model could also be further
extended to better suit FPGAs by considering different memory models (global,
constant, local), data representation (float-, fixed-point, custom precision), or a
peak performance evaluation that includes DSPs, LUTs, etc.
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Résumé en Français

Les architectures FPGA ont été pendant longtemps utilisé à travers les langages de
description matérielle (HDL) comme le VHDL ou le Verilog. L’utilisation de ces lan-
gages HDL a fait que les FPGAs étaient accessible uniquement par les développeurs
matérielles ce qui a contribué à la non-consideration des FPGAs dans diverses ap-
plications de calcul intensif. L’apparition des nouveaux outils de synthèse de haut
niveau (HLS) pour FPGA a été un facteur majeur pour leur prise en compte dans
des applications complexes. Ces outils HLS permettent de réduire considérablement
le temps de développement des FPGAs par rapport à l’utilisation des langages HDL.
Cependant, l’exploitation du plein potentiel de ces architectures à travers les out-
ils HLS a toujours été une préoccupation majeure. Par conséquent, une approche
d’adéquation algorithme-architecture est nécessaire pour mieux tirer parti de ces
architectures reconfigurables. Les outils HLS fournissent les directives nécessaires
pour implémenter efficacement les applications et ainsi produire un pipeline effi-
cace. Toutefois l’efficacité de ces pipelines n’atteint pas encore celle obtenue par les
langages HDL, mais leur temps de développement est drastiquement réduit. Cette
thèse vise à explorer les méthodologies d’accélération des algorithmes de problèmes
inverses mal posés sur les architectures FPGA grâce à de nouveaux outils HLS
appliqués à la reconstruction tomographique et à la radioastronomie.

La tomographie à rayon X vise à acquérir la densité interne f d’objets 3D de
mesures externes g appelé sinogramme. Un objet (volume 3D) est placé entre une
source de rayons X et un plan de détecteur. La reconstruction du volume est un
problème inverse souvent mal posé au sens de Hadamard. La matrice système étant
de taille très grande dont le stockage est non envisageable, les coefficients de cette
matrice sont approchées à la volée par le projecteur et le rétroprojecteur. Les méth-
odes itératives de reconstruction sont utilisées pour résoudre ce problème linéaire
en effectuant plusieurs calculs des opérateurs de projection et de rétroprojection par
la minimisation de l’erreur quadratique en utilisant l’algorithme d’optimisation de
descente de gradient. La reconstruction par des méthodes itératives prend plusieurs
minutes à plusieurs heures, selon la littérature. Pour réduire le temps de calcul de
ces routines, des accélérateurs matériels sont requis. Dans la communauté de calcul
haute performance, les GPUs ont été l’architecture préférée de la dernière décennie
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en raison de leur architecture massivement parallèle et leur facilité d’utilisation via
le langage de programmation parallèle CUDA. Notre objectif est de mettre en évi-
dence l’utilisation des FPGA en utilisant les outils de synthèse de haut niveau. Les
architectures de FPGA peuvent être une alternative au GPU grâce à leur dernière
technologie de DSP, leur efficacité cyclique du pipeline et de leur faible consomma-
tion énergétique.

Dans le passé, les FPGAs pour la tomographie à rayon X étaient configurés en
utilisant les langages HDL, l’objectif étant de construire un pipeline et d’effectuer
une mise à jour des voxels à chaque cycle d’horloge. Le principal problème de
l’implémentation HDL est le temps de développement très long, même si les ré-
sultats étaient significatifs en termes de temps d’exécution. Plus récemment, de
nouvelles approches basées sur des outils HLS pour FPGA ont été développées,
afin d’obtenir de meilleurs temps de reconstruction et une meilleure efficacité én-
ergétique tout en réduisant le temps de développement. Cette thèse présente tout
d’abord une vue d’ensemble de ces outils HLS avant de se focaliser sur les outils
d’Intel. Nous présentons des optimisations basiques et avancées dont le compilateur
peut bénéficier du développeur pour assurer une efficacité du pipeline généré.

Nous présentons la méthodologie d’adéquation algorithme-architecture que nous
avons adoptée pour la conception d’une architecture sur-mesure sur FPGA. Cette
méthodologie est basée sur l’élaboration d’une stratégie d’accès à la mémoire ap-
propriée pour un algorithme limité par la mémoire (memory-bound). Une analyse
hors ligne de l’algorithme permet d’augmenter son intensité arithmétique resultant
à un allègement substantiel de la bande passante de la mémoire. Nous exploitons
le potentiel des FPGAs à exprimer le pipelining et le parallelisme de données pour
atteindre des performances meilleures. Cette étude tire également parti de la mé-
moire sur puce des FPGAs pour stocker des données temporairement et réduire le
nombre d’accès à la mémoire externe. Les accès à la mémoire locale sont complète-
ment stall-free afin de ne pas pénaliser l’efficacité du pipeline. Cette thèse traite
également la mise à l’échelle de l’algorithme sur des FPGAs haut de gamme dans
le but d’assurer la portabilité des performances et préserver l’efficacité du pipeline.

Cette méthodologie est appliquée à l’opérateur de rétroprojecteur 3D utilisé en
reconstruction tomographique. L’architecture sur-mesure de ce rétroprojecteur tire
profit d’une stratégie d’accès à la mémoire bien adaptée. En effet, cette stratégie
d’accès mémoire permet d’exploiter le potentiel de réutilisation des données de cet
algorithme, augmentant ainsi l’intensité arithmétique de l’algorithme. Les résul-
tats expérimentaux montrent que les FPGAs atteignent des performances élevées
en terme de temps d’exécution et d’efficacité du pipeline. Une etude comparative
a été effectué pour évaluer nos designs avec d’autres travaux sur FPGA basé sur
les outils HLS. Les résultats sont également comparé aux implementations sur des
GPUs HPC et embarqué. Nous discutons également des différentes stratégies de
parallélisation de l’algorithme d’optimisation itératif avec régularisation des moin-
dres carrés sur FPGA. Les cas d’études de resolution de problèmes inverses sont
présentés notamment en reconstruction tomographique et en radioastronomie (e.g.,
déconvolution). En effet l’algorithme d’optimisation peut être lancer complètement
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sur FPGA au lieu d’avoir des étapes de calcul sur le processeur hôte. Une telle
stratégie permet d’éviter les transferts mémoire coûteux entre l’hôte et la carte
accélératrice. En revanche ceci peut soulever d’autres problématiques de paralléli-
sation qui sont discutées dans ce manuscrit.
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