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Abstract The asymmetric simple exclusion process (ASEP) is a
stochastic model featuring particles with contact interactions hopping
randomly on a one dimensional lattice. Despite its simplicity, it pos-
sesses many interesting theoretical characteristic, as a generically non
equilibrium steady state, complex hydrodynamics properties and con-
nections with the KPZ universality class. The fact that it is exactly
solvable by various methods makes it a model of choice to further our
understanding of out-of-equilibrium statistical physics. If many results
are known for the ASEP on a infinite lattice, much less is known for the
process in finite volume. In this thesis we consider the totally asym-
metric case (TASEP) with open boundary conditions of the process.
We obtain exact expressions for the spectral gaps of an operator giv-
ing access to the fluctuations of the current of particle in regimes of
the model relevant to KPZ universality in the large system size limit.
Our derivation of the eigenstates of the TASEP is based on the system-
atic construction of the analytic continuations of expressions previously
known for the ground state of the process, and are validated by Bethe
ansatz. Connections are made with existing results for the exclusion
process with periodic boundary conditions.

Résumé Le processus d’exclusion simple asymétrique (ASEP) est un
modèle stochastique dans lequel des particules présentant des interac-
tions de contact se déplacent aléatoirement sur un réseau unidimen-
sionel. Malgré la simplicité de sa définition, de nombreuses propriétés
théoriques telles que le fait qu’il présente un état stationnaire hors-
équilibre ou les liens qui le relient à la classe d’universalité KPZ en font
un des modèles les plus étudiés en physique statistiques. Il est de plus
intégrable par ansatz de Bethe et son état stationnaire peut être calculé
explicitement par ansatz matriciel, de sorte qu’il permet de dériver des
résultats exacts pour la classe d’universalité KPZ. Dans cette thèse nous
considérons le cas totalement asymétrique (TASEP) du processus avec
des conditions aux bords ouvertes. Nous obtenons des expressions ex-
actes pour les premiers états excités d’un opérateur donnant accès aux
fluctuations du courant de particules en temps fini dans la limite ther-
modynamique, pour des régimes du système présentant des propriétés
universelles caractéristiques de la classe KPZ. Notre méthode de calcul
des états propres du TASEP ouvert est fondée sur le calcul systématique
du prolongement analytique d’expressions déjà connues pour l’état sta-
tionnaire du processus, obtenue par une généralisation de l’ansatz ma-
triciel. Ces résultats sont ensuite validés et partiellement démontré par
l’étude asymptotiques des équations de Bethe du processus.
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Introduction

In the endeavour to derive general laws and methods to understand physical systems composed of
many interacting elements, statistical physics has come to identify two general categories of systems
namely equilibrium and non-equilibrium ones. The first category encompasses all systems which in
the long time limit evolve freely into a steady state that is macroscopically at rest, meaning that all
macroscopic quantities do not evolve anymore. These equilibrium steady states can be characterized
at the microscopic level by the detailed balance condition : the net probability fluxes between any
microscopic configurations of the system vanish. As a consequence of detailed balance, the probability
distribution of the system’s microscopic configuration depends only on a few macroscopic quantities
such as energy, temperature, or the value of various external fields. Moreover, the general form of this
probability distribution is universal, and can be cast for any equilibrium system into a Gibbs-Boltzmann
law. On the other hand, non-equilibrium systems breaking detailed balance have a much more com-
plex steady state distribution. The existence of net probability fluxes manifest itself notably through
macroscopic currents of energy or particle within the system, which makes their phenomenology much
richer and complex. The pursuit of a generalization of the equilibrium formalism to non-equilibrium
system is the object of considerable work, which produced several result of great generality, as fluctua-
tion relations, or the introduction of large deviation functions and functionals as generalization of the
Gibbs-Boltzmann distribution.

Another general problematic of statistical physics is to determine to what extent systems and
models with different microscopic behaviour can be considered as essentially similar at macroscopic
scales, considering that a proper description of statistical systems should be as independent as possible
of their microscopic details. This idea was made precise and quantitative with the introduction by
Kadanov and Wilson of the renormalization group formalism. It appears that under a systematic
coarse-graining procedure, large sets of different models become similar at large scale to a single
renormalization fixed point capturing their essential macroscopic behaviour. All models converging to
the same fixed point are then said to belong to the same universality class. The idea of universality
is best illustrated, for equilibrium systems, by the two dimensional Ising model which is arguably
the simplest representative of a vast universality class encompassing many two dimensional systems
of particles with local interactions. Typically universal properties which manifest for all models in
the same class are the scaling laws of macroscopic quantities in the vicinity of critical points or the
normalized statistics of the fluctuations of fields describing the coarse-grained state of a model.

Among the continuum of models of a given universality class, some outstanding cases occupy a
favored position, being exactly solvable by a happy mathematical accident. These so-called integrable
models are characterized by a large number of conserved quantities which considerably constrains their
behaviour and allows the exact computation of their dynamics by more or less systematic methods.
Among these models one finds several well known classical or quantum one dimensional models like
the Lieb-Liniger model and the XXX and XXZ spin chains, or two-dimensional models like the six and
eight vertex models or the Ising model. The identification of an integrable model within a universality
class allows the derivation of very general results from a single mathematically tractable representative.

In regards of what was just said, the asymmetric simple exclusion process (ASEP), which will be
the object of all attention in the present work, appears as an object of choice to further our under-
standing of statistical physics beyond equilibrium. The exclusion process is a purely stochastic model
in which particles randomly hop, with a preferred direction, from one site to another of a discrete
lattice with the unique constraint that a site is occupied by at most one particle, resulting in particle-
particle interactions. It is indeed one the simplest statistical models breaking the detailed balance
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condition, and displays, despite the simplicity of its definition, complex hydrodynamics features and
non-trivial statistical properties. ASEP also belongs to the Kardar-Parisi-Zhang (KPZ) universality
class, a large category of non-equilibrium models in which a growing height function can be defined
(typically describing an interface between two phases of the system). All models in the KPZ class are
characterized by common scaling properties of their associated height functions, as well as common
non-Gaussian distributions of the local fluctuations of this function. The number of models known to
belong to the KPZ class or experimental systems exhibiting KPZ behviour has been steadily growing
until now, coming from as seemingly unrelated contexts as cell colony growing, disordered quantum
systems, integrable non-linear oscillator chains, deposition models of growing interfaces, phase tran-
sitions in liquid crystals, slow combustion of paper or quantum-gate circuits. The exclusion process
being integrable by Bethe ansatz, it is an ideal tool to derive exact results for the whole KPZ class.

If many results have been established for the ASEP on a infinite lattice, much less is known about
the ASEP in finite volume with periodic or open boundary conditions. The purpose of this work is to
contribute to fill this gap by computing the eigenstates of the infinitesimal generator of the exclusion
process in the regime relevant to KPZ universality. More precisely, we compute the eigenvalues of an
operator M(µ), called throughout this work the deformed Markov matrix of the process related to the
cumulant generating function of the current of particles. This quantity is of special interest as the
mapping from the exclusion process to an interface growth model translating properties of the ASEP
into universal KPZ properties is done by considering the time integrated local currents of particles
through the lattice of sites.

In terms of method, our approach relies crucially on the analyticity of the eigenstates of an operator
with respect to a given parameter upon which it depends. More specifically, the main results of this
thesis, which are exact expressions for higher eigenstates of the above-mentioned operator M(µ), will
be obtained by analytic continuation of a given ground-state eigenvalue of this operator.

Let us briefly outline the content of this thesis
Chapter 1 is devoted to a general presentation of the exclusion process and its relations with the

KPZ universality class. After providing a formal definition of the model and reviewing the physical
application and issues related to it, we introduce the mathematical tools and concepts needed to study
the fluctuations of the current through the chain. We then briefly introduce the KPZ universality class
to set the scene for our results and justify their relevance

In chapter 2 we focus on the integrable techniques used to compute the eigenvalues and eigenstates of
the evolution operators of the exclusion process. After presenting the Matrix product ansatz of Derrida
Evans Hakim and Pasquier for the steady state of the open ASEP, we go one with the derivation of
the Bethe ansatz equation for the periodic exclusion process as a warm up, and then the derivation of
the Bethe equation for the open TASEP by the algebraic Bethe ansatz. We give some justification for
a second set of Bethe equations for the open TASEP, that is used in the rest of the thesis, although
strictly speaking these equation (and the results derived from them) are conjectural.

Chapter 3 is essentially a technical preparation for the result stated in the next chapter. Starting
with a mathematical introduction to the notions of analytic continuation and Riemann surfaces which
are their natural domain of definition, we gather the rather lengthy computations of the analytic
continuations of the functions related to the eigenstates of the operators we are interested in.

In chapter 4 we state our own results, published in [41] and [40], namely the explicit and exact
expressions of the spectral gaps of the deformed Markov operator M(µ) for different scalings of the
boundary parameters of the model, in terms of the functions constructed in chapter 3.

8



Chapter 1

The totally asymmetric simple exclusion
process - presentation and general results

In this chapter the reader is introduced to the asymmetric simple exclusion process. After defining the
model and some of its variants in first section 1.1, we start by providing some motivations for our work
coming from various context in physics in section 1.2. We then set up the formalism used throughout
this thesis to study the fluctuations of the current, introducing notably the deformed matrix M(µ) of
the current for the exclusion process, and give an overview of the phenomenology of the open chain in
the totally asymmetric cases by a mean field approach in 1.3. Note that the exact computation of the
stationary state of the open ASEP will be done in chapter 2.

The second part of the chapter consists of a brief introduction to the KPZ equation and universality
class and its connection with the exclusion process in section 1.5. We finally give an overview of the
results currently known about the fluctuations of the density and current of particles in the periodic
in section 1.6 and open TASEP in section 1.7.

1.1 Definition of the model and variants

The open ASEP and TASEP

The open asymmetric simple exclusion process [84, 31, 81] is a continuous time Markov process defined
on a one dimensional lattice. Each site of the lattice can be in two states, empty or occupied by one
particle. Each particle in the system may hop from site i to the site i + 1 on its right with rate p
and to the site i− 1 on its left with rate q, if the destination sites are empty. The hopping processes
occur independently for each particle with exponential waiting time. More precisely, each particle is
associated with a Poisson process with unit rate which triggers a hopping event. The direction of the
hop is then selected with probabilities p and q and the particle then moves only if the destination site
is empty.

Several geometries of the lattice can be considered. One can first define the exclusion process on
an infinite chain of sites, in which case the system has an infinite number of possible configurations.
The large time behaviour of the model in this case typically depends on the initial configuration of
the chain, see figure 1.1 for a representation of the most commonly used initial conditions for the
infinite ASEP. The exclusion process can also be defined on a finite size lattice of L site with periodic
boundary condition. In the exclusion process on a ring (or with periodic boundary conditions), the site
L is connected to the site 1 and the number of particles N on the chain is fixed, so that the system has(
L
N

)
possible configurations corresponding to the choices of position of the particles on the lattice. One

can finally define the exclusion process with open boundaries. Each end of the chain is then connected
to a reservoir of particles, so that a particle may enter site 1, if empty, with rate α and a particle at
site 1 may exit the system with probability γ. Similarly, a particle at site L may exit the system with
rate β or enter site L from the right reservoir with rate δ. Several special cases can also be considered
depending on the values of the parameters. The case p = q = 1/2 – with α = β = γ = δ = 1/2 for
the open chain – defines the symmetric exclusion process (SSEP) which is special as in this case the

9



CHAPTER 1. THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS -
PRESENTATION AND GENERAL RESULTS

......

i = 0.

(a)

......

i = 0.

(b)

......

i = 0.

(c)

Figure 1.1: Several initial conditions for the infinite line TASEP. (a) Poisson (or stationary), sites are
randomly occupied of free with a density of particle of one half (b) domain wall, all sites on the left of
0 are occupied (c) alternating, sites are alternatively occupied or free.

q

p

q

p

Figure 1.2: Rules of the dynamics of the ASEP with periodic boundary conditions

β

δ

α

γ

pqpq

Figure 1.3: Rules of the dynamics of the open ASEP with open boundaries

system evolves to an equilibrium steady state (see below). The totally asymmetric case, which is the
object of attention of the present work, is obtained when the motion of the particles is unidirectional.
The backward hopping, entry and exit rates q, δ, γ are then set to zero. Up to a rescaling of the time
variable t, the forward hopping rate can be set to p = 1.

The exclusion process is a purely stochastic process, and has no underlying Hamiltonian structure
for instance. It is described by a set of configurations S, each configuration C ∈ S being defined by
the sequence of of occupation numbers (ni)i∈lattice with ni = 1 if the i-th site is occupied and ni = 0
if its is empty. For the infinite line ASEP, the infinite configuration space is thus S = {0, 1}Z, while
S = {0, 1}L for the periodic or open ASEP on a chain of L sites. The dynamics of the model is fully
encoded by the data of the transition rates W (C → C′) which are the probabilities per unit time for
the system in configuration C to switch to configuration C′. The state of the system at any time is
fully characterized by the probabilities Pt(C) of being in configuration C at time t. Given an initial
probability distribution Pt=0(C), the time evolution of the probabilities Pt(C) is given by the master

10



1.2. MOTIVATIONS AND BACKGROUND

equation

d

dt
Pt(C) =

∑
C′
W (C′ → C)Pt(C′)−W (C → C′)Pt(C) . (1.1)

The exclusion process reaches in the long time limit a unique stationary distribution P ∗(C) satisfying∑
C′
W (C′ → C)P ?(C′)−W (C → C′)P ?(C) = 0 , (1.2)

The existence and unicity of the stationary distribution is guaranteed by the ergodicity or irreducibility
of the process, that is by the fact that any configuration of the system can be reached from any other in
finite time along a trajectory in configuration space with non zero probability. This property implies
in turn that the time average of any function of the system’s state over a single realization of the
process coincides with the ensemble average of the same function at fixed t over many realization of
the process.

The stationary distribution of the periodic ASEP will be computed in 1.3.2. The exact station-
ary distribution on configurations of the open ASEP will be derived in 2.1. Let us first give some
motivations for the study of the exclusion process

1.2 Motivations and background

Non-equilibrium steady states

Statistical physics is broadly concerned with the study of systems possessing a large number of possible
internal configurations, called microstates – so large a number that the resolution of the full dynamics
of these systems down to the elementary level is not feasible in practice. However, the physical
quantities of interest which are accessible to observation are typically many-to-one functions on the
set of microstates, so that it is often possible to elucidate the macroscopic behavior of the system
by adopting a probabilistic description of the microstate level, once it settles into a time-independent
stationary state. This is done by surmising a probability measure on the configuration space (or set of
microstates), the values of macroscopic observables being then obtained as an ensemble average over
the configuration space of the value realized by each configuration.

The first step in that direction was taken in the 1860s when Boltzmann conjectured that all accessi-
ble microstates of an isolated system – constrained by the value of globally conserved quantities – have
the same probability in the long time limit, which defines the microcanonical ensemble. The general-
ization of this approach to the case of systems weakly coupled to thermal baths and particles reservoirs
led to the introduction of the canonical and grand-canonical ensembles with the corresponding Gibbs
measure on configuration space, which are since the backbone of equilibrium statistical physics.

However, not all physical systems are amenable to this approach. In order to apply the powerful
ensemble formalism to a given system, it has to settle into an equilibrium steady-state. Let us consider
a system with a finite set of possible (microscopic) configurations S = {C}, following a Markovian
dynamics. Assuming that the system reaches a unique stationary state characterized by a stationary
distribution P ∗(C), its state is an equilibrium state if it satisfies the additional detailed balance property

W (C → C′)P ?(C) = W (C′ → C)P ?(C′) , (1.3)

which is a sufficient but much stronger condition for the stationarity of P ∗(C). The detailed balance
condition can be defined in a more general way directly from the transition rates of the process [51].
Let

L : C1 → C2 → ... → CN − 1→ C1 (1.4)
Lrev : C1 → CN−1 → ... → C2 → C1 (1.5)

be a loop in configuration space and its reversed analogue. Considering the product of the transition
rates along the loop Π[L] =

∏N−1
i=1 W (Ci → Ci+1), the set of rates defining the Markov process is said

11



CHAPTER 1. THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS -
PRESENTATION AND GENERAL RESULTS

to satisfy the detailed balance condition if Π[L] = Π[Lrev] for all loops, in which case the stationary
distribution of the process is at equilibrium.

No general framework comparable to the ensembles of equilibrium statistical mechanics exists
at the time for system exhibiting non-equilibrium steady states. Yet these systems are ubiquitous in
nature, and possess a much richer phenomenology than the all in all very narrow category of equilibrium
systems. A way of dealing with non-equilibrium statistical systems in the absence of unified theoretical
framework is to build one’s intuition by closely studying toy models.

In this regard, (T)ASEP is one the simplest interacting many-body models breaking detailed-
balance 1, yet it displays many features broadly characteristic of non-equilibrium models, including long
range correlations in the steady state (while the dynamics only relies on nearest neighbour interactions),
finite currents of particles in the steady state and non-Gaussian fluctuations of the observables (current
and density of particles).

Biological transport and traffic modeling

The asymmetric exclusion process and its generalizations find direct applications in the modeliza-
tion of several transport phenomena involving interacting particles.

The first ASEP-like model was introduced in 1968 [59] to study the dynamics of ribosomes on a
mRNA chain in order to understand the kinetic of the translation of genetic code into proteins. This
physical situation contains indeed the main ingredients that define the exclusion process. The particles,
here ribosomes, are bound to a one dimensional chain (the mRNA) which is discrete by nature as it is
divided into codons. Ribosomes cannot overtake each others and move along the mRNA in a preferred
direction imposed by the direction of reading of the gene encoded by the mRNA. The mRNA threads
being finite and bounded, one has to consider the ASEP with open boundaries specifically. Some
refinement can be added to the vanilla ASEP to make it more realistic in regard of its application
to genetic translation [18]: particle may be longer than one site to take into account the fact that
ribosomes occupy a space larger that one codon; the translation of some segments can be longer than
others, so that one has to consider inhomogeneous hopping rates, i.e site-dependent p and q. One can
also consider dynamics with random attachment and evaporation of particles in the bulk of the chain
[67].

Another prominent application in biology is the transport of ions or light molecules through pores
across cell walls [18]. This phenomenon raises interesting theoretical questions as the transport in
these channel is known to be sudiffusive, i.e. the the mean square displacement of a particle scales
like 〈x2〉 � t. Pores can be considered as one dimensional as they often have a diameter close to
the typical size of the particles they carry. Apart from their diffusive behaviour, the particles are
subject to a driving by a difference of electrical potential between the two ends of the channel, hence
the asymmetry of their motions, and short range repulsion between each others, hence the exclusion
constraint. Relevant generalizations in this context include the several species ASEP to describe the
transport of protons in ionic channels through the water wire model [19].

Among direct applications of the exclusion process one can also mention traffic modeling. An
important feature of traffic flow is the formation and long time stability of shocks, that is abrupt
transitions between zones of low and high density of vehicles (which typically mark the end of a traffic
jam). Shocks are also found in the phenomenology of the exclusion process, and are known to generally
emerge from a non-linear relation between the local density and current of particles on a chain. In
the case of the TASEP, the exact phase diagram and density profiles are known as a function of the
boundary rates which makes it an appropriate toy model to study traffic flow [46, 80].

KPZ universality

The KPZ equation is a stochastic differential equation first introduced in 1986 by Kardar, Parisi
and Zhang [50] that describes the evolution of a height field h(x, t) defined on a one dimensional space.

1for generic values of the parameters, with the exception of the cases where αβ = γδqL−1 see section 1.4.4
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1.2. MOTIVATIONS AND BACKGROUND

A more thorough summary on KPZ universality will be given in section 1.5, here we just present briefly
the context of the KPZ class and its connection with the exclusion process. The KPZ equation writes

∂h

∂t
= ν

∂2h

∂x2
+
λ

2

(
∂h

∂x

)2

+ η(x, t) (1.6)

where η(x, t) is a Gaussian white noise with average zero and correlation 〈η(x, t)η(x′, t′)〉 = 2Dδ(x −
x′)δ(t−t′). The KPZ equation describes the growth of a one dimensional interface between two phases,
subject to random fluctuations and diffusive smoothing. The non linear term accounts for the fact that
the interface grows in the direction locally normal to the surface. The KPZ equation describes a large
variety of discrete interface growth model and is observed experimentally in many different contexts.
The KPZ equation itself is actually the prototype of a wide class of models, the KPZ universality
class[86, 21]. All models in this class are associated with height functions h(x, t) which are known
or conjectured to converge to a unique fluctuation field h(x, t), the KPZ fixed point, under the KPZ
so-called 1 : 2 : 3 scaling 2

εαh(ε−zt, ε−1x)− Cεt with ε→ 0 (1.7)

where Cε is some model dependent drift velocity, α = 1/2 is the roughness exponent and z = 3/2 is
the dynamic exponent. These last two exponent are universal and characterize the KPZ class. From
a more phenomenological point of view, if we denote by w(L, t) the root-mean-square of the height
function of some growth model in the KPZ class defined on an interval of size L

w(L, t) =

√
1

L

∫ L

0
(h(x, t)− h(t))2dx where h(t) =

1

L

∫ L

0
h(x, t)dx (1.8)

then w follows a scaling relation of the Family-Vicsek type :

〈w(L, t)〉 ∼ Lαf
(
t

Lz

)
(1.9)

where the scaling functions f is such that

f(u) ∼ uβ for u� 1 and β =
α

z
f(u) ∼ const for u� 1

In other word, the roughness of the interface described by the model first grows like w ∼ tβ before
saturating at a value wsat ∼ Lα after a typical time tsat ∼ Lz. Equivalently, starting from an uncor-
related initial height function h(x, t = 0), the typical correlation length ξ increases as ξ ∼ t1/z before
saturating at the whole system’s size L for t � tsat. Besides these scaling exponent, models in the
KPZ class are also characterized by universal probability distributions of their fluctuations connected
to the theory of random matrices, see 1.5

The exclusion process can be mapped to an interface growth model belonging to the KPZ uni-
versality class, known in the literature as the corner growth model (see figure 1.4). In fact, most
results known about the KPZ class come from the study of discrete particle models, among which
ASEP occupy a prominent place. Apart from ASEP, the KPZ equation is known to describe the limit
behaviour of several other discrete models of interface growth like the polynuclear growth model or the
Eden deposition model [45, 2]. In terms of experimental realization, KPZ behaviour has been observed
in various contexts. Historically, the scaling exponents α and z have first been observed in the case
of mutant bacteria colonies [48] - the interface being the limit of the growing colony, see figure 1.5.
The non-Gaussian character of the fluctuations of an interface associated with KPZ scaling was then
observed for the combustion front in the case of the flame-less combustion of paper [63]. More recently,
observations of the boundary between two turbulent phases in nematic liquid crystal flows [87] gave
access not only to the dynamic exponents but also to the predicted universal probability distribution
functions of the KPZ class, see figure 1.5 From a broader theoretical point of view, KPZ behaviours

2The scaling exponents of h:x:t indeed have a 1 : 2 : 3 ratio
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Figure 1.4: Schematic representation of the corner growth model corresponding to open ASEP. Each
site is associated with a segment of slope −1 if the site is occupied and 1 if the site is empty. When a
particle hops to the right, the local minimum above the bounds that is crossed is filed with a square
and becomes a local maximum, and conversely a square is removed above a bound when it is crossed
by a particle hopping to the left (if q 6= 0). The value of the height function h(0, t) at the left boundary
is set to twice the number of particle created at site 1 (with rate α) minus the number of particle
annihilated (with rate γ), so that the height function on the interior of the interval is not affected by
the transitions occurring at the boundary.
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Figure 1.5: Two experimental realization of KPZ behaviour. Left : sketch of the boundary between
a stable (inside) and metastable (outside) turbulent phase in a thin layer of nematic liquid crystal
excited by an oscillating electric field at time intervals of 5s (reproduced from [87]). This experiment
by Takeuchi and Sano was the first to recover the statistics of the KPZ fluctuation for a flat and
circular interface. Right: time evolution of a colony of cancerous cell on a flat substrate (reproduced
from [86]). The roughness of the front of cells follows a KPZ scaling.
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1.3. DYNAMICS OF THE MODEL AND STATIONARY STATE

Figure 1.6: Schematic representation of the random quantum circuit considered in [64]. At each time
step, two neighbours on a chain of spin-1

2 are randomly selected and are coupled through a random
unitary operator. The height function considered is the Von Neumann entanglement entropy S(x)
which measures the entanglement between the part of the chain on the left of site x and the part
on the right. This height function follows KPZ universal fluctuations, which can be understood by
mapping the quantum circuit dynamics to an interface growth model.

are encountered in the theory of generalized hydrodynamics for integrable models. The purpose of
generalized hydrodynamics is to describe the large scale behaviour of integrable systems by studying
fields and current of conserved quantities [33]. In particular, it is possible to combine the several lo-
cally conserved charge of an integrable system into normal modes which evolves independently. In this
context, it has been shown for instance that the normal modes of the current of conserved quantities
in generic chains of non-linear oscillators satisfies the KPZ equation [85].

As for specifically quantum manifestations of KPZ physics, numerical evidences show that the
entanglement entropy of a chain of spins-1

2 coupled by random unitary operators displays KPZ fluctu-
ations[64], see figure 1.6. The Heisenberg XXZ spin chain also displays KPZ scaling of the correlations
of the average magnetization in the high temperature limit, which has been observed both in simula-
tions and experimentally [58, 79, 43]. The conductance of a sample of atoms described by the Anderson
model [69] also follows KPZ scaling and fluctuations in the strongly localized limit.

1.3 Dynamics of the model and stationary state

1.3.1 Markov matrix of the ASEP and general properties of the steady state

As mentioned in the first section of this chapter, the time evolution of the system’s probability distri-
bution is described by the master equation

d

dt
Pt(C) =

∑
C′
W (C′ → C)Pt(C′)−W (C → C′)Pt(C) (1.10)

with transition rates W (C → C′) given by the dynamics of the model. The configuration of the system
and the master equation can be represented in a more convenient way. Considering the case of the
open TASEP, we associate with each site a vector space C2

i with basis {|0〉 , |1〉}, where |0〉 represent
an empty site and |1〉 an occupied site. The full state space of the system is thus the 2L dimensional
tensor product

⊗L
i=1 C2

i , and a configuration is represented by a tensor product of local configuration
|C〉 = |n1〉 ⊗ |n2〉 ... ⊗ |nL〉. The state of the system at any time t is then fully characterized by the
state vector

|Pt〉 =
∑
C∈S

Pt(C) |C〉 (1.11)

where S is the set of all configurations. A basis B of the configuration space of the whole system is
given by the family of all vector corresponding to a single configuration, with the corresponding list of
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occupation numbers ordered in lexicographic order:

B =
{
|00, ...., 00〉 , |00, ...., 01〉 , |00, ...., 10〉 , ..., |11, ...., 10〉 , |11, ..., 11〉

}
(1.12)

In the case of the open ASEP, defining the local matrices

C1 =

(
−α γ
α −γ

)
m =


0 0 0 0
0 −q p 0
0 q −p 0
0 0 0 0

 DL =

(
−δ β
δ −β

)
(1.13)

one defines the Markov matrix 3

M = C1 +
L−1∑
i=1

mi,i+1 +DL , (1.14)

where the matrices mi,i+1 act as m on the local spaces C2
i ⊗ C2

i+1 and as the identity elsewhere, and
matrices C1 and DL act only on sites 1 and L respectively.

mi,i+1 = Id⊗ ... ⊗ Id︸ ︷︷ ︸
i−1

⊗m⊗ Id⊗ ... ⊗ Id︸ ︷︷ ︸
L−i−1

. (1.15)

The matrix m is understood here as acting on the tensor product of two local spaces C2 ⊗ C2, with
basis {|00〉 , |01〉 , |10〉 , |11〉}. Equivalently, the Markov matrix can be written as

M =
∑
C6=C′

W (C′ → C) |C〉
〈
C′
∣∣−∑

C
r(C) |C〉 〈C| (1.16)

where

r(C) =
∑
C′ 6=C

W (C → C′) (1.17)

is the exit rate from the configuration C, so that the probability of the waiting time tw(C) for the
system in configuration C to hop to another configuration is exponentially distributed as

P (tw(C) = t) = e−r(C)t (1.18)

The master equation of the process then writes

d

dt
|Pt〉 = M |Pt〉 (1.19)

Note that up to a rescaling of the time variable, it is always possible to set p = 1 and q < 1, which is
the convention that we will use in what follows 4. In the totally asymmetric case, the Markov matrix
writes

C1 =

(
−α 0
α 0

)
m =


0 0 0 0
0 0 1 0
0 0 −1 0
0 0 0 0

 DL =

(
0 β
0 −β

)
. (1.20)

The solution of the master equation (1.19) for any t ≥ 0 formally writes

|Pt〉 = etM |P0〉 (1.21)

3Properly speaking, M is referred to, in the mathematics literature as the transition rate matrix or infinitesimal
generator of the process, as the entries of a proper Markov matrix are supposed to add up to one. However, by a slight
abuse of language, we will designate it as a Markov matrix

4the reverse case with q = 1 and p < 1 is completely equivalent by left right symmetry

16



1.3. DYNAMICS OF THE MODEL AND STATIONARY STATE

A first property of the ASEP with finite size is that, starting from any configuration Ci it is possible
to reach any other configuration Cf in a finite number of transition with non-zero ratesW (C → C′). This
property, namely the irreducibility of the Markov process, implies by the Perron-Frobenius theorem
that the open ASEP is ergodic: the evolution of the system with any initial probabilities will converge
in the long time limit to a unique steady states with stationary probability vector |P ?〉 (or stationary
measure) satisfying the condition.

M |P ?〉 = 0 (1.22)

As explained in the first section, this stationary state is in general 5 a non-equilibrium steady state,
which breaks the detailed balance condition. Indeed, the asymmetry of the hopping rates implies that
even for the one particle case, the process is not reversible, i.e. trajectories in the configuration space
do not have the same probabilities as their reversed counterparts. A direct consequence of this fact is
that, since the Markov matrix M is not symmetric or similar to a symmetric matrix, its spectrum is
complex.

The stationary state corresponds to the eigenvalue 0 of M , all other eigenvalues of M having
negative real part. Of special interest is the the eigenvalue with second largest real part, referred to as
the gap of the process. Indeed, designating the eigenvalues of M (ordered by decreasing real part) by
{En} and the corresponding eigenvectors by {|ψn〉}, the time evolution of the probability vector (1.21)
writes

|Pt〉 =

2L−1∑
n=0

|ψn〉 〈ψn| eEnt
 |P0〉 (1.23)

= 〈P ∗|P0〉 |P ?〉+ eE1t 〈ψ1|P0〉 |ψ1〉+ o
(
eE1t

)
(1.24)

so that the gap controls the relaxation to the stationary state. In particular, the typical relaxation
time to the stationary state is 1/E1. In the case of the periodic TASEP of size L, the gaps scales like

1
L3/2

in the maximal current phase (see 1.3.3 so that the relaxation time scales like L3/2, in accordance
with the facts that it belongs to the KPZ universality class. As for the open TASEP, several scaling
are found for the gap depending on the values of the boundary rates.

We also define two time dependent macroscopic variables of the system’s state. Let Nt be number
of particles present on the chain at time t (of course it is a fixed quantity in the case of the periodic
ASEP), an Q(i)

t the number of particle which have algebraically crossed the bond between site i and
site i+ 1 up to time t, with Q(0)

t the number of particle entering at site 1 minus the number of particle
removed and similarly for Q(L)

t . One can also conveniently define the total number of particle having
crossed any bond in the system

Qt =

L∑
i=0

Q
(i)
t . (1.25)

The time integrated current Q(i)
t is also interpreted as the value of the height function of the corner

growth model over site i (see figure 1.4), so the study of this observable is of primary interest in relation
with KPZ universality. With these definitions, the stationary average density ρ and average current J
are then defined as

ρ = lim
t→∞

〈Nt〉
t

(1.26)

J = lim
t→∞

〈Q(0)
t 〉
t

(1.27)

Note that the bound i where the number of crossing is counted has no effect on the value of J . For the
ring ASEP, it is implied by the translation symmetry of the chain. In the case of open ASEP, since

5with the exception of the symmetric case, with p = q and α/γ = δ/β
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the number of particle is conserved in the bulk (outside boundary sites), the number of particle having
crossed any bond in the system in the long t limit is equal to Q(0)

t .
The stationary probabilities of configurations can be computed exactly for the exclusion process.

Before describing the stationary state of the open TASEP in detail, let us work out the much simpler
case of the periodic TASEP

1.3.2 Steady state of the periodic ASEP

In order to compute the stationary measure for the ASEP on a ring, let us first define Nc(C) as the
number of clusters in the configuration C, that is the number of set of adjacent particles separated
by empty sites on the chain. Starting from any configuration, the possible transition exiting this
configuration are, for each cluster, the ones where the rightmost particle of the cluster hops to the
right, with rate p and where the leftmost particle hops to the left, whit rate q. Thus the probability
per unit time of exiting the configuration C is (p + q)Nc(C). By counting in the same fashion the
number of configurations from which a configuration C with a given Nc(C) can be reached, we see that
(p+ q)Nc(C) is also equal to the sum of the incoming rates to configuration C, that is∑

C6=C′
W (C → C′) =

∑
C6=C′

W (C′ → C) = (p+ q)Nc(C) (1.28)

Thus, equation (1.2) is satisfied for a uniform probability measure P (C) = 1
Card(S) :∑

C6=C′
(W (C → C′)−W (C′ → C)) 1

Card(S)
= 0 (1.29)

The Perron-Frobenius theorem then ensures that this solution is the unique stationary measure of the
periodic ASEP. The stationary measure for the periodic ASEP with L sites and N particles is:

P ∗(C) =
1(
L
N

) . (1.30)

In particular, the non-equilibrium character of the stationary distribution is obvious, as the net prob-
ability current pP (C) − qP (C′) between two configuration C and C′ related through the dynamics by
a single hop of one particle is non-zero if p 6= q. We can now compute the stationary average current
J in the system. Let us denote by ni the occupation number of site i, such that ni = 1 if the site is
occupied and ni = 0 if the site is empty. During a infinitesimal time interval dt, the average increase
of the integrated current through the bond 1→ 2 is

〈dQ(1)
t 〉 = Jdt = dt

[
pP (n1 = 1, n2 = 0)− qP (n1 = 0, n2 = 1)

]
(1.31)

J = p〈τ1(1− n2)〉 − q〈(1− n1)τ2〉 (1.32)

the average current is thus expressed as a function of the stationary correlation of the occupation
numbers of adjacent sites. Since the stationary measure of the periodic ASEP is uniform, they are
easily computed. The number of configuration with (n1 = 1, n2 = 0) is the same as the one with
(n1 = 0, n2 = 1) and is

(
L−2
N−1

)
, so that (1.32) writes

J = (p− q)
(
L−2
N−1

)(
L
N

) = (p− q)N(L−N)

L(L− 1)
(1.33)

In the large L and N limit, with ρ = N/L the density of particle, the current has limit

lim
L,N→∞

J = (p− q)ρ(1− ρ) . (1.34)
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1.3. DYNAMICS OF THE MODEL AND STATIONARY STATE

Writing the conservation of the number of particles as a continuity equation on the fields ρ(x, t) and
J(x, t) with x = i/L, the evolution of the density as L→∞ is given by the inviscid Burger equation

∂ρ

∂t
= (p− q) ∂

∂t
[ρ(1− ρ)] (1.35)

Which is the leading order deterministic part of the evolution of the density. The study of the fluctu-
ations of the current around its average value in the stationary state, as well as its relaxation to this
value requires much more involved techniques, that will be sketched in section 1.6.

1.3.3 Steady state of the open ASEP in the thermodynamic limit

The stationary measure on configurations of the ASEP with open boundaries is more complex than
the one of the periodic model, and we will outline its computation in chapter 2. It is however possible
to compute the stationary values of the current and density, as well as the density profile in the chain
in large system size limit by a mean field approach [10], which we will do here following [55].

Let us write 〈1| the vector with all coordinates set to 1 in the configuration basis. A configuration
is represented by a the sequence {ni}i≤L of the occupation numbers. By tracing the master equation
(1.19) on all configuration for which ni = 1 for a given site i we obtain the evolution of the average
density at site i. We also set p = 1 for convenience. Projecting on the vector 〈1| δni,1 we obtain

d

dt
〈ni〉 = 〈1| δni,1M |Pt〉 (1.36)

= Ji−1 − Ji (1.37)

with local currents (setting p = 1)

J0 = α〈1− n1〉 − γ〈n1〉 (1.38)
Ji = 〈ni−1(1− ni)〉 − q〈ni(1− ni−1)〉 (1.39)
JL = β〈nL〉 − δ〈1− nL〉 (1.40)

which simply expresses the conservation of particles in the system. Here again, the computation of the
local currents requires the knowledge of the correlations between the occupation numbers of adjacent
sites. In order to obtain a closed equation for the evolution of the average density, we will make the
mean field approximation that neighbouring densities are uncorrelated

〈nini+1〉 = 〈ni〉〈ni+1〉 (1.41)

This bold assumption is obviously wrong, as the exclusion interaction between neighbouring particles
is expected to introduce strong correlations between local densities. However it gives the correct result
for the stationary values of average quantities up to subleading terms with respect to the system size 6,
so that our approach is valid in the limit L→∞. Equation (1.37) implies, since all derivatives vanish
in the stationary state, that all local current Ji are identical. Equation (1.39) then writes

J = 〈ni−1〉(1− 〈ni〉)− q〈ni〉(1− 〈ni−1〉) (1.42)

In order to compute the thermodynamic limit, we write 〈ni〉 = ρ(x) with x = i−1/2
L and rescale the

time as t→ Lt so that in the limit L→∞ equations (1.37) and (1.42) become

dρ

dt
= −∂J

∂x
= 0 (1.43)

J = (1− q)ρ(1− ρ)− 1 + q

2L

∂ρ

∂x
(1.44)

where we kept the second term in 1/2L in the expression of the current because the equation would
otherwise yield a homogeneous density profile, incompatible with unequal boundary rates. We now

6The correlation functions have been exactly computed in [32]
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have an autonomous system of equations for ρ and J that needs to be completed with appropriate
boundary conditions. Assuming that the boundary values ρ0 = ρ(0) and ρ1 = ρ(0) of ρ(x) depend
only on the value of the transition rates at end sites, we consider a density locally uniform at the ends
of the chain, so that equations (1.38) and (1.40) write

α(1− ρ0)− γρ0 = (1− q)ρ0(1− ρ0) (1.45)
βρ(1)− δ(1− ρ1) = (1− q)ρ1(1− ρ1) (1.46)

and the the boundary conditions for the density write

ρ0 =
1

1 + a
ρ1 =

1

1 + b
(1.47)

with

a =
1

2α

[
1− q − α+ γ +

√
(1− q − α+ γ)2 + 4αγ

]
(1.48)

b =
1

2β

[
1− q − β + δ +

√
(1− q − β + δ)2 + 4βδ

]
(1.49)

In the totally asymmetric case, these expressions reduce to

a =
1

α
− 1 b =

1

β
− 1 (1.50)

These boundary densities can be interpreted as the effective density of particle reservoirs connected
at both ends of the system. We can now solve equations (1.43) and (1.44) by fixing the current J ,
determining the corresponding density profiles ρ(x) and then use boundary conditions to find out the
values of boundary rates compatible with these ρ and J .

From equation (1.44) we see that ∂xρ has to be of order L if the difference between (1− q)ρ(1− ρ)
and J is finite, which is only possible on a region of size scaling like L−1, otherwise it would imply a
diverging density. Thus, these equations describe the formation of a shock, that is a steep transition (a
discontinuity as L→∞) between regions of unequal density. As we will see, these shocks are located
at the boundaries in most case except on a specific line of the phase diagram.

The maximum of (1− q)ρ(1− ρ) is 1−q
4 attained for ρ = 1

2 thus the current is bounded between 0

and 1−q
4 and there is a value ρ− < 1

2 of the density such that

J = (1− q)ρ−(1− ρ−) . (1.51)

Outside the regions where its gradient is extensive, the density is then approximately equal to ρ− or
ρ+ = (1− ρ−) from equation (1.44). When the gradient term is finite, its sign depends on the value of
the density:

∂ρ

∂x
< 0 when ρ < ρ− (1.52)

∂ρ

∂x
> 0 when ρ− < ρ < ρ+ (1.53)

∂ρ

∂x
< 0 when ρ+ < ρ (1.54)

Thus, the value ρ+ is an attractive point for the variation of the density with respect to x and ρ− is
repulsive. Integrating equation (1.44), we find(

ρ− ρ+

ρ− ρ−

)(
ρ0 − ρ−
ρ0 − ρ+

)
= exp

(
−2L(ρ+ − ρ−)

1− q
1 + q

x

)
(1.55)

Checking this expression against the boundary conditions, the only possible cases - which correspond
to different phases of the system, are the following
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Figure 1.7: Phase diagram of the open ASEP with respect to the boundary parameters (1.47), with the
corresponding values of current J and bulk average density ρ̄. The phases are: MC maximal current,
HD high density, LD low density, SL shock line.

• ρ0 = ρ− and ρ1 < ρ+, which implies ρ < 1
2 and ρ1 < 1− ρ0. This is the low density phase. The

rate of particle creation at the left boundary is significantly lower than the rate of annihilation
at the right boundary, so that the left reservoir impose its density to the system with a low
value and a steep boundary layer on the right interpolates between the bulk density ρ− and the
reservoir density ρ1.

• ρ0 > ρ− and ρ1 = ρ+, which implies ρ1 >
1
2 and ρ0 > ρ+. This the high density phase. Here the

rate of particle creation at the left boundary is larger than the rate of annihilation at the right so
the right reservoir imposes its density to the system, with a large value and the boundary layer
is located at the left end of the chain.

• ρ0 >
1
2 and ρ1 <

1
2 . In this case, since the density must increase between ρ− and ρ+ by (1.53),

one is left with ρ+ = ρ− = 1
2 . This is the maximal current phase, as J = q−1

4 is the largest value
allowed for the current. The density is uniformly equal to ρ = 1

2 apart from boundary layers at
both ends of the system

• ρ0 = ρ− and ρ1 = ρ+, which requires ρ0 = ρ1 <
1
2 . This is the shock line, as the domain wall

between the low density region with ρ(x) = ρ− and the high density region with ρ(x) = ρ+ is
located (anywhere) in the bulk of the system. A more refined analysis shows that the position
of this shock follows a Brownian random walk.

The others cases are ruled out by the constraints on the sign of ∂xρ. All this is summarized in the the
phase diagram 1.7. Note that in the totally asymmetric case, the boundary conditions reduce to

ρ0 = α 1− ρ1 = β (1.56)

In parameter space (ρ0, ρ1), the transition between the maximal current and the high/low density
phases are continuous in both the current and the average density. The transition across the shock line
is continuous in the current and discontinuous in the average density. The mean-field approximation
allowed us to obtain the correct values for the mean current and density of the stationary state in the
large system size limit. However it cannot give us any information on the statistics of the fluctuations
around these values or on the relaxation to the steady state.

1.4 Fluctuations of the current and deformed Markov matrix

We will now introduce the tools needed to study the fluctuations of the current, and more specifically
the deformed Markov matrix of the exclusion process. The following computations are classical results
from the theory of large deviations of Markov processes, which are introduced in references [90] and
[89] and that we present here following [55].
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1.4.1 Deformed Markov matrix of a time additive observable

For the sake of generality, let us first consider a time additive observable Ot = O[C(t)] 7 of a Markov
process, where C(t) is the configuration of the system at time t. If the trajectory C(t) of the system is
the time-concatenation of two trajectories C1 and C2 up to time t′

C(t) =

{
C1(t) if 0 ≤ t ≤ t1
C2(t) if t1 ≤ t ≤ t′

t ≤ t′ (1.57)

the time additivity of Ot means that O′t = O[C1(t)] + O[C2(t)]. We are interested in the statistics of
Ot at any time and more specifically in deriving the scaled cumulant generating function of Ot as a
random variable, defined by

E(µ) =
1

t
log〈eµOt〉 . (1.58)

Let us moreover assume that Ot is modified only when the system undergoes a transition between
two configuration, i.e. that Ot remains constant on time interval where the system stays in the same
configuration C. Denoting by I(C, C′) the increment of Ot caused by the transition C → C′. We can
then write Ot as

Ot =

N∑
i=1

I(Ci−1, Ci) (1.59)

where (C0, ...CN ) is the sequence of the configuration occupied by the system up to time t. The moment
generating function of Ot writes

〈eµOt〉 =

∫
eµO[C(t)]P [C(t)]D[C(t)] (1.60)

where D[C(t)] is the measure on the space of trajectories. Denoting by (t0, ..., tN ) the sequence of
waiting time in the configurations (C0, ..., CN ), the probability of a given trajectory writes

P [C(t)] = etNr(C)
N∏
i=1

W (Ci−1 → Ci)er(Ci−1)ti−1 (1.61)

where the exit rate r(C) is as defined by (1.17). The integrand of the path integral (1.60) then writes

eµO[C(t)]P [C(t)] = e−
∫ t
τ=0 r(C(τ))dτ

N−1∏
i=1

W (Ci → Ci+1)eµI(Ci,Ci+1) . (1.62)

We now introduce the deformed Markov matrix M(µ) defined by 8

M(µ) =
∑
C′ 6=C

eµI(C,C′)W (C → C′)
∣∣C′〉 〈C| −∑

C
r(C) |C〉 〈C| . (1.63)

Let |Pt(µ)〉 be the vector solution to the master equation (1.19) where M has been replaced by M(µ).
Then the coordinates 〈CN |Pt(µ)〉 are the probabilities of the trajectories ending in configuration |CN 〉
multiplied by a factor eµOt (which is the quantity averaged in the expression (1.60):

|Pt(µ)〉 = etM(µ) |P0(µ)〉 =
∑
C

∫
eµO[C(t)]P [C(t)]D[C(t)] |C〉 (1.64)

7The square brackets indicate that O is a functional of the trajectory of the system in configuration space, i.e. the
value of Ot depends on the whole history of the system up to time t.

8One should note that M(µ) is not the infinitesimal generator of a stochastic process anymore, as the sum of its
column elements do not add up to zero.

22



1.4. FLUCTUATIONS OF THE CURRENT AND DEFORMED MARKOV MATRIX

Thus, the moment generating function of Ot is obtained by averaging this last expression over the
configurations of the system at time t, that is by projecting |Pt(µ)〉 on the uniform vector |1〉:

〈eµOt〉 = 〈1|Pt(µ)〉 = 〈1| etM(µ) |P0〉 (1.65)

Denoting by {En(µ)}0≤n<2N the eigenvalues of M(µ) ordered by decreasing real part and {|ψn(µ)〉}
the associated eigenvectors, this last expression writes

〈eµOt〉 = 〈1|

2L−1∑
n=0

|ψn(µ)〉 〈ψn(µ)| eEn(µ)t

 |P0〉 (1.66)

Although the matrix M(µ) is not a stochastic matrix for µ 6= 0, it is still a positive matrix for real
values of µ, so that the Perron-Frobenius still ensures that the eigenvalue E0(µ) with largest real part
is real and non-degenerate. Taking the logarithm, we obtain in the limit t→∞

1

t
log〈eµOt〉 = E0(µ) +

1

t
log (〈1|ψn(µ)〉) 〈P0|ψn(µ)〉) + o(

1

t
) (1.67)

lim
t→∞

1

t
log〈eµOt〉 ≈ E0(µ) . (1.68)

We have shown that the eigenvalue with largest real part of the deformed Markov matrix is the scaled
generating function of the cumulants of its associated observable Ot in the steady state. In what
follows, we will designate the eigenstate with eigenvalue E0 as the ground state of the process, and the
variable µ as the fugacity.

1.4.2 Deformed Markov matrix of the current

Let us now specify this construction in the case of the time and space integrated current Qt of the open
ASEP defined by (1.25). The increment I(C, C′) of Qt during a transition is +1 if a particle hops to the
right during the transition and −1 if it hops to the left. Since any transition from one configuration
to another involves a particle crossing a bond in the system, the current counting deformed Matrix
associated to Qt writes

M(µ) = M0 + eµM+ + e−µM− (1.69)

where M+ is the matrix whose non-zero coordinates are the rates MC,C′ of transition where a particle
hops to the right in the chain, M− gathers similarly the rates of the transitions implying of a particle
hoping to the left and M0 is the diagonal matrix of exit rates from each configuration, so that the
original Markov matrixM = M0 +M+ +M− is obtained for µ = 0. In terms of local update operators,
M(µ) is also the tensor product of the following deformed local matrices

C1(µ) =

(
−α γe−µ

αeµ −γ

)
m(µ) =


0 0 0 0
0 −q peµ 0
0 qe−µ −p 0
0 0 0 0

 DL(µ) =

(
−δ βeµ

δe−µ −β

)
(1.70)

One can also define the deformed Markov matrix associated to the integrated current Q(i)
t through a

specific bond in the chain in a similar way as

M (i)(µ) = M
(i)
0 + eµM

(i)
+ + e−µM

(i)
− (1.71)

where the matrices M (i)
+ and M

(i)
− contain the elements of M accounting for a particle crossing the

bond between site i and i + 1 (from the left and the right respectively) and M (i)
0 all other elements.

Defining Ri(λ) as the diagonal matrix with coefficients

Ri(λ)C,C =

{
eλ if ni = 1 with C = (n1, ..., nL)
1 otherwise (1.72)
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It is straightforward to show that

[Ri+1(µ)...Rj(µ)]−1M (i)(µ) [Ri+1(µ)...Rj(µ)] = M (j)(µ) if j > i (1.73)

U−1M (i)(µ)U = M

(
µ

L+ 1

)
(1.74)

with U =

(
L∏

k=i+1

Rk

(
L− i− k
L− i

µ

))( i∏
k=1

Rk

(
−k − 1

i
µ

))

so that all Markov matrices deformed with respect to local currents are related to one another and
to the deformed Markov matrix of the space integrated current (up to a rescaling of the variable µ)
by similarity transformations. Being interested in the eigenstates of these matrix, we are then free to
choose the most convenient to work with, as the fluctuations of the total integrated currents are similar
to those on a single site.

1.4.3 Interpretation of the eigenvectors and large deviations of the current

We showed that the generating function of the cumulants of the current in the steady state can be
obtained as the eigenvalue ofM(µ) with largest real part. The corresponding eigenvector |P (µ)〉 is also
physically relevant. For µ = 0 the coordinates of |Pt〉 are simply the stationary probabilities of each
configuration. For finite values of µ, |P (µ)〉 is also the probability distributions of the configurations
conditioned on the value of the average current realized during the evolution of the system. To show
this, we need to introduce some notions from the theory of large deviations.

A parameter dependent random variable At (typically a stochastic process) is said to follow a large
deviation principle with rate function g(s) if its probability distribution satisfies

lim
t→∞

1

t
logP (At = s) = g(s) . (1.75)

In other words, for large values of the parameter t, the best approximation of the probability distribu-
tion of At is given by the exponential of the rate function P (At = s) ≈ e−tg(s). It is then a classical
result of the theory, known as the Gärtner-Ellis theorem, that the scaled cumulant generating function
of At defined by

E(µ) =
1

t
log〈eµAt〉 (1.76)

is the Legendre transform of g(s), that is

E(µ) = max
s

[µs− g(s)] (1.77)

or equivalently, if g is strictly convex

E(µ) = µs∗ − g(s∗) where g′(s∗) = µ . (1.78)

The Legendre transform is involutive (again, provided g and E are strictly convex), so that

g(s) = sµ∗ − E(µ∗) where E′(µ∗) = s . (1.79)

Assuming now that the time averaged current qt = Qt/t
9 follows a large deviation principle with rate

function g, let us consider trajectories of the system during which the average current has value qt = ̄,
so that Qt = ̄t. The joint probability that the system is at time t in configuration C with qt = ̄ writes

P
[
C(t) = C & qt = ̄

]
= P

[
C(t) = C|qt = ̄

]
P
[
qt = ̄

]
(1.80)

≈ P
[
C(t) = C|qt = ̄

]
e−tg(̄) (1.81)

9We reserve the notation J for the ensemble average of qt in the steady state over all histories of the system. Here,
we are considering fluctuations of the current, that is values of qt departing from J for an extensive period of time
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where the second equality comes from the large deviation principle. The probability P
[
C(t)

]
in ex-

pression (1.64) can be written by tracing out the conditional probability P
[
C(t) = C | qt = ̄

]
over the

realizations of ̄:

P
[
C(t)

]
=

∫ ∞
−∞

P
[
C(t)|̄

]
d̄ (1.82)

so that (1.64) (in the case where the observable is the current) writes

|Pt(µ)〉 = etM(µ) |P0(µ)〉 =
∑
C

∫
D[C(t)]

∫ ∞
−∞

d̄ et(µ̄−g(̄))P
[
C(t)|̄

]
|C〉 . (1.83)

Evaluating the integral of ̄ with a saddle point approximation, we obtain∫ ∞
−∞

d̄ et(µ̄−g(̄))P
[
C(t)|̄

]
≈ etE(µ)P

[
C(t)|̄

]
with ̄ = E′(µ) (1.84)

Taking the limit t→∞ in (1.83) we finally get

〈C|P (µ)〉 = P

(
Cstat = C | ̄ = E′(µ)

)
(1.85)

so that the coordinates of |P (µ)〉 are the probability of the configurations Cstat in the stationary state
conditioned on the fact the current during the evolution of the process was equal to E′(µ).

In particular, it is possible to show that the function E(µ) is convex [11], so that imposing a large
value of µ amounts to condition the evolution to a large value of the current.

1.4.4 Gallavoti-Cohen symmetry

As we mentioned earlier, the out-of-equilibrium character of the asymmetric exclusion process originates
in the lack of time reversibility of the dynamics. More precisely, considering a trajectory C(t) of the
system in configuration space, let is define its time reversal CR(t):

C(t) : C0, t0 → C2, t2 → ... → CN , tN (1.86)

CR(t) : CN , tN → CN−1, tN−1 → ... → C0, t0 . (1.87)

then in general P [C(t)] 6= P [CR(t)]. The lack of time-reversibility can be measured quantitatively by
introducing the entropy production of the process as

S [C(t)] = log

(
P [C(t)]
P [CR(t)]

)
(1.88)

The entropy creation is a time-additive observable that can be treated by the approach we presented
in 1.4.1, from which one can deduce the celebrated fluctuation theorem [34]

P (s)

P (−s)
= e−ts (1.89)

for t → ∞ where s is the time intensive entropy creation s = S [C(t)] /t. The fluctuation theorem
can be seen as a generalization of the second principle of thermodynamics, stating that the relative
probability of a negative entropy creation is finite but vanishes in the long time limit. It is in fact a
consequence of a general Gallavoti-Cohen symmetry which is valid for any time additive observable of
any stochastic process. With M(σ) the Markov matrix of the exclusion process deformed with respect
to the entropy creation [55],

M(σ) =
∑

W (C → C′)1+σW (C′ → C)−σ |C〉
〈
C′
∣∣ , (1.90)
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one checks that M(σ) = M(−1−σ)T, so that the spectrum {En(µ)}n globally satisfies the Gallavotti-
Cohen symmetry

{En(σ)}n = {En(−1− σ)}n . (1.91)

The Gallavotti-Cohen symmetry is arguably one of the most general and foundational results known
for non-equilibrium statistical systems. Let us consider now the integrated current through the left
boundary of the ASEP chain Q(0)

t = Q(0) [C(t)]. Q is odd under time reversal so that it also quantifies
the irreversibility of the process,

Q(0) [C(t)] = −Q(0)
[
CR(t)

]
. (1.92)

A result similar to (1.91) can be derived for the current counting Markov matrix M(µ). For the open
ASEP, the Gallavotti-Cohen symmetry writes [29]

E(µ) = E(µ0 − µ) with µ0 = log

(
γδ

αβ

)
+ (L− 1) log(q) . (1.93)

This relation is most easily derived from the Bethe ansatz equations, derived in 2.3 which are symmetric
under the transformation µ → µ0 − µ. The condition γδ

αβ q
L−1 = 1 implies detailed balance for the

process, in which case µ0 = 0. It encompasses notably the SSEP case.

1.5 KPZ universality

In this section we will summarize some results currently known about the KPZ universality class.
Starting with the KPZ equation itself, we will then define the KPZ universality class. After outlining
the connection between the exclusion process and the KPZ class (first in the case of the infinite lattice),
we will recall the probability distributions found for the fluctuations of the KPZ class and finally present
the connections of the ASEP in finite volume (periodic and open) with the KPZ class.

1.5.1 The KPZ equation and fixed point

We gave the expression of the KPZ equation in the first section of this chapter (1.6). Let us briefly give
some motivations for this expression. One is interested in obtaining a dynamic equation for the growth
of an interface on some d-dimensional substrate, described by a height function h(x, t) with x ∈ Rd

and t ∈ R+. The growth of the interface is driven by an uncorrelated random noise η(x, t) which may
correspond to, say, random deposition of particles in solution above the interface, or nucleation events
occurring independently on the interface (in the case of a biological system for instance). The interface
is also assumed to be subject to some kind of surface tension which tend to smoothen irregularities. We
expect moreover the equation to be invariant under time translation, space rotations, space translation
and global height shift h → h + h0. The simplest equation compatible with these conditions is the
Edward-Wilkinson equation (EW) [2]

∂

∂t
h(x, t) = v0 + ν0∇2h+ η(x, t) (1.94)

with

〈η(x, t)〉 = 0 and 〈η(x, t)η(x′, t′)〉 = 2Dδ(x− x′)δ(t− t′) . (1.95)

The constant drift v0 can be eliminated from the equation by a Galilean transformation h→ h+ v0t.
The equation could include higher (even order) space derivatives, however they are not relevant under
rescaling. As we mentioned in introduction, the universality of such an equation is expressed through
its invariance under rescaling

x→ εx t→ εzt δh→ εαδh with δh = h(x, t)− h̄(t) (1.96)
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Figure 1.8: Sketch of the direction of growth of an interface described by the Edwards-Wilkinson
equation (left) in the vertical direction only, and by the KPZ equation (right), in the direction locally
orthogonal to the surface. On the right, sketch of the the local normal coordinates (xloc, hloc) used in
the derivation of the KPZ equation (1.98).

where h̄ is the mean height and z and α are the dynamics exponents that characterize a given univer-
sality class. Imposing this invariance on the Edward-Wilkinson equation we find

α =
2− d

2
z = 2 , (1.97)

which are the exponents of the EW universality class. Although many models do indeed belong to this
class, the applications of the EW equation in the context of interface growth are rather limited as it
describes an interface growing solely in the vertical direction. However, one expects a growing surface
to grow in the direction locally normal to the interface, which is not vertical if the interface possesses a
slope. Let us then consider a small piece of interface with tangential and normal coordinates (xloc, hloc),
which grows locally by the EW equation, see figure 1.8. These local coordinates relate to the global
ones (x, h) as

dh =
dhloc
cos θ

= dhloc
√

1 + (∇h)2 dx =
xloc√

1 + (∇h)2
(1.98)

where θ is the angle of the interface with the horizontal axis. Inserting the change of coordinate
(xloc, hloc) into the EW equation (1.94) and keeping only the lowest order non linear term, i.e. setting√

1 + (∇h)2 ≈ 1 + 1
2(∇h)2 one gets

∂

∂t
h(x, t) = v0 + ν∇2h+

λ

2
(∇h)2 + η(x, t) (1.99)

which is precisely the KPZ equation in any dimension, with a constant drift v0 which can also be
removed by a Galilean transformation. We justified the introduction of a non linear term (∇h)2 by a
geometric argument, however it may have other physical origins, so that the factor λ is a free parameter
of the equation. Higher order non-linearities are not relevant under rescaling, as Kardar, Parisi and
Zhang showed in their 1986 paper [50] which introduced the equation. Let us now determine the
scaling exponents of the KPZ class by inserting the height function hε(x, t) = εαh(ε−1x, ε−zt) rescaled
according to the transformation (1.96) in equation (1.99). We find:

∂

∂t
hε(x, t) = εz−2ν∇2hε +

λ

2
εα+z−2 (∇hε)2 + ε

z
2
− d

2
−αη(x, t) . (1.100)

There is no way to have all powers of ε vanish, so that the KPZ equation is not invariant under rescaling.
However one can define the exponents α and z such that the height function has a non-trivial limit
under rescaling, different from the Edward-Wilkinson solution. It can be shown that for d = 1, the
following probability distribution of the height is a stationary measure for the KPZ equation:

P [h(x, t)] ∝ exp

[
−
∫

dx
ν

D
(∇h)2

]
(1.101)
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which is the probability distribution function of a spatial two-sided Brownian motion, which rescales as
h→ ε1/2h under the scaling transformation x→ ε−1x, so that α = 1

2 . Then, the only choice ensuring
that no term in (1.100) blow up and that not all term vanish as ε→ 0 is to set z = 3

2 . Thus we recover
the values

α =
1

2
z =

3

2
(1.102)

of the KPZ universality class. Note that no exact values are known for d = 2, as the distribution
(1.101) is not a stationary measure anymore for d > 1 [86]. The limit of the KPZ height function
under rescaling with these exponents is the KPZ fixed point [21, 62]

h(x, t) = lim
ε→0

εα
(
h(ε−1x, ε−zt)− Cεt

)
(1.103)

where Cε depends on the initial and boundary conditions 10. The renormalized height function (1.103)
satisfies the KPZ equation with rescaled parameter ν → ε1/2ν and D → ε1/4. One should be aware
that the limit of (1.100) when ε→ 0

∂

∂t
h(x, t) =

λ

2
(∇h)2 , (1.104)

called the inviscid Burger equation, is not satisfied by the KPZ fixed point h(x, t). The KPZ equation
itself should be thought about as a crossover between two universality class, the EW class where λ→ 0
and the KPZ one where λ→∞, meaning that the non-linearity is primarily relevant, over the diffusion
term. These two universality class correspond to both fixed point of the renormalization procedure of
the KPZ equation and height function, with the EW fixed point being repulsive while the KPZ fixed
point is attractive.

Finally, as a consequence of the Brownian nature of the stationary solution, the KPZ equation
as defined by (1.99) is in fact ill-defined, since the derivative of a Brownian motion is a singular
distribution, whose square (∂xh)2 is not defined. Thus, most results known about the KPZ equation
and its scaling limits are actually rigorously derived from its mapping to the stochastic heat equation
(SHE). Given a height function h(x, t) we define its Hopf-Cole transform as

Z(x, t) = exp

[
λ

2ν
h(x, t)

]
. (1.105)

Then if Z(x, t) is solution to the stochastic heat equation with multiplicative noise writing

∂

∂t
Z(x, t) = ν

∂2

∂x2
Z(x, t) +

λ

2ν
Z(x, t)η(x, t) , (1.106)

the function h(x, t) is formally solution to the KPZ equation. Interestingly, evaluating the the n-point
functions 〈Z(x1, t)Z(x2, t)...Z(xn, t)〉 (where the brackets denote ensemble averages over realizations of
the noise) of the solution of the stochastic heat equation using the Feynman-Kac formula, one finds that
the n-point function can be computed as the wave function of the n particles δ-Bose gas, or attractive
Lieb-Liniger model, which is exactly solved by coordinate Bethe ansatz. This method, known as the
replica Bethe ansatz, was used in [15] to compute the exact probability distribution of the KPZ height
function with narrow wedge initial conditions (see below).

1.5.2 Connection of the exclusion process with the KPZ equation and universality
class

We will now briefly present the link between the ASEP and KPZ equation and universality class. More
precisely we will show that the asymmetric exclusion process can be mapped to an interface growth
model, with the corresponding height function hASEP(x, t) defined below being solution, in the large

10More generally, Cε is a non-universal parameter : if the height function is constructed as the large system size limit
of a discrete model in the KPZ class, Cε will depend on the model
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system size limit, of the KPZ equation under the weak asymmetry scaling σ = p− q = ε1/2 and usual
1:2:3 scaling [8]. Explicitly, the rescaled function

hε(x, t) = ε1/2

(
hASEP
σ

(
ε−1x,

ε−3/2t

σ

)
− t

2

)
with σ = p− q = ε1/2 (1.107)

is solution to the KPZ equation with ν = 1/2 and λ = D = 1, when ε → 0. When the asymmetry
parameter σ is fixed to σ = 1, that is in the totally asymmetric case, the plain 1:2:3 scaling is recovered
and the height function is described by the KPZ fixed point.

The height function hASEP is defined by mapping the ASEP to the corner growth model, that was
defined in figure 1.4 for the open ASEP. It is possible to define the corner growth model in a similar
way for the infinite line ASEP on Z by setting at 0 the initial height above the bond from site −1
to 0. In this case, the fluctuation of the height profile around its mean value depends on the initial
condition.

The connection of ASEP to the KPZ class was first conjectured when exact results on the fluctuation
of the current for the exclusion process became available. The fact that it provides an exact solution
to the KPZ equation was later proved by Bertini and Giacomin in [8]. In what follows, we will just
give a non-rigorous proof that the Hopf-Cole transform of the ASEP height function is solution to a
discrete version of the stochastic heat equation, following [21].

Let us consider the ASEP on the infinite line. We denote the occupation numbers by the centered
variables ηt(x) such that

ηt(x) =

{
−1 if site x is occupied
1 if site x is empty . (1.108)

The height function above bond i− 1→ i can then be written as

hASEP
σ (i, t) =


2N(t) +

∑
0<y≤i ηt(y) i > 0

2N(t) i = 0
2N(t)−

∑
0<y≤i ηt(y) i < 0

(1.109)

where N(t) is the net number of particle having crossed the bond between sites −1 and 0 and the
index σ = p − q indicates that the function depends on the asymmetry through the dynamics. We
then introduce the rescaled variable under KPZ scaling

x = ε−1X t = ε−3/2T (1.110)

and the Hopf-Cole transform of the height function

Zε(X,T ) = exp

[
λεh

ASEP
σ

(
ε−1X,

ε−3/2T

σ

)
− νε

ε−3/2T

σ

]
(1.111)

where λε and νε are parameters that we leave undefined for now. This function is affected by three
different factors during an instant dT :

i) a particle hops to the right, and the height function is increased as hσ(x, t) → hσ(x, t) + 2 so
that Zε → e2λεZε. The rate at which this event happens, in term of rescaled time T , is

r+
ε (X,T ) =

ε−3/2

σ

p

4
(1− ηt(x))(1 + ηt(x+ 1)) . (1.112)

ii) A particle hops to the left, so that Zε → e−2λεZε with rate

r−ε (X,T ) =
ε−3/2

σ

q

4
(1 + ηt(x))(1− ηt(x+ 1)) . (1.113)
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iii) The function Zε is subject to a constant drift because of the added term −νε ε
−3/2T
σ so that during

any instant dT ,

Zε → Zε − Zενε
ε−3/2

σ
dT . (1.114)

Thus, the increment of Zε during dT (which is a random variable) writes

dZε = −Zενε
ε−3/2

σ
dT + Zε(e

2λε − 1) dP+
ε (X,T ) + Zε(e

−2λε − 1) dP−ε (X,T ) . (1.115)

where dP±ε (X,T ) are independent Poisson processes with rates r±ε (X,T ), which simply mean that the
forward (resp. backward) hopping events occur independently for any X with probabilities r+

ε (X,T )
(resp. r−ε (X,T )) during a time interval dT . The increment (1.115) can be rewritten as

dZε = ΩεZεdT + ZεdMε (1.116)

with

Ωε(X,T ) = −νε
ε−3/2

σ
+ (e2λε − 1) r+

ε (X,T ) + (e−2λε − 1) r−ε (X,T ) (1.117)

dMε(X,T ) = (e2λε − 1)dM+
ε + (e−2λε − 1)dM−ε (1.118)

where we defined the new stochastic processes

dM±ε = dP±ε (X,T )− r±ε (X,T )dT (1.119)

which are the same as dP±ε , centered by removing their average constant drift. Expression (1.116) is
strongly reminiscent of the SHE (1.106): the time variation of Zε is the sum of a deterministic part
ΩεZεdT involving spatial variations of Zε and a random multiplicative term ZεdMε.

Let us first make sense out of the deterministic part. It is indeed possible to choose values of λε
and νε such that the first term in (1.116) writes

ΩεZε =
1

2
Dε∆εZε (1.120)

where Dε is some new parameter that we will set later, and ∆ε is the discrete Laplacian operator
defined by its action on a function f(X) as

∆εf =
1

ε2
[f(X + ε) + f(X − ε)− 2f(X)] . (1.121)

To fix the values of our parameters, we remark that from definition (1.109) of the height function, we
can write

Zε(X + ε, T ) = Zε(x+ 1, t) = Zε(x, t)e
−ληt(x+1) (1.122)

Zε(X − ε, T ) = Zε(x− 1, t) = Zε(x, t)e
ληt(x) (1.123)

Thus, developing the action of the discrete laplacian, equation (1.119) gives four equations on param-
eters νε, λε and ε corresponding to the four possible combination of the values of ηt(x) = ±1 and
ηt(x + 1) = ±1. Two of these equations are in fact identical and it is straightforward to check that
they are solved with

λε =
1

2
log

(
p

q

)
νε = p+ q −√pq Dε =

ε1/2

σ

√
pq (1.124)

so that (1.116) writes

dZε =
1

2
Dε∆εdT + ZεdMε . (1.125)
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Let us now consider the random multiplicative noise dMε. It follows from the definition of a Poisson
process that

〈P±ε (X,T )〉 =

∫
r±ε (X,T )dT (1.126)

so that 〈dM±ε 〉 = 0 and thus 〈dMε〉 = 0. Regarding the space and time correlations, the local
occupation numbers ηt(x) being strongly correlated by the exclusion interaction only a few sites apart
(at least assuming that the initial configuration was flat or Brownian), the space correlation of the
processes dM±ε (X,T ) are expected to vanish under the scaling X = ε−1x, and the absence of time
correlation follows from the independence of processes dP±ε (X,T ), so that dM can be considered as
an uncorrelated white noise 11.

Finally, setting σ = ε1/2 in (1.124), Dε is finite when ε→ 0 and in this limit, (1.125) is exactly the
SHE written in terms of the stochastic differentials of Zε and the noise term.

For finite values of the asymmetry σ = p−q, the scaling (1.107) is essentially the plain KPZ scaling
and the corresponding height function converges to the KPZ fixed point, with a value of the parameter
λ depending on the ratio p/q.

1.5.3 Exact expressions for KPZ fixed point fluctuations

Beyond the values of the dynamic exponents α and z, the models in the KPZ universality class are
also characterized by the common probability distributions of their rescaled and centered fluctuations,
which are known exactly. Before stating their expression, we need to introduce some notions from the
theory of random matrices.

Eigenvalue probability distribution for matrix ensembles

A matrix ensemble is defined by a matrix space endowed with a probability measure. Here, we
consider a Gaussian probability defined for any N ×N matrix X = (xij)i,j≤N as

PN [X]dX =
1

ZN
eTr(X2)

N∏
i=1

dxii
∏
i<j

d Rexijd Imxij (1.127)

where ZN is a normalization constant. The weight eTr(X2) depends only of the spectrum of the matrix
M and is independent of its eigenvectors. The set of orthogonal matrices {M ∈ Mn(R),MTM =
MMT = Id} with elements independently drawn with this probability measure is called the Gaussian
Orthogonal Ensemble (GOE). Its analogue with unitary matrices {M ∈Mn(C),M∗M = MM∗ = Id}
is the Gaussian Unitary Ensemble (GUE).

With this probability measure on matrix elements, the joint probability distribution of the eigen-
values of a random matrix drawn from these ensemble writes

P (λ1, ..., λN ) =
1

BN
exp

−β
2

 N∑
i=1

λ2
i −

∑
i 6=j

log (|λi − λj |)

 (λi, ...λN ) ∈ RN (1.128)

with β = 1 for the GOE and β = 2 for the GUE. Interestingly, (1.128) is also the partition function of
a one dimensional gas of N particles with Coulomb interactions. Taking various marginal distributions
out of (1.128), one can compute several interesting distributions. For instance the average eigenvalue
density for both orthogonal and unitary matrices – that is the probability ρ(λ,N)dλ that any eigenvalue
lies in the interval [λ, λ+ dλ] – follows the celebrated Wigner’s semi-circle law for large N :

ρ(λ,N) =

∫ +∞

−∞
dλ2...dλNP (λ, λ2, ..., λN ) ≈

{ √
2

Nπ2

√
1− λ2

2N if λ ∈ [−
√

2N,
√

2N ]

0 otherwise
(1.129)

11This last point requires a much more careful treatment from a mathematical point of view see [8, 21]
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Figure 1.9: Plot of the Tracy-Widom distribution for the orthogonal (β = 1) and unitary (β = 2)
ensemble (with logarithmic scale on a wider interval in the inset). They divert significantly from a
Gaussian distribution. In particular, they are steeper on the left than on the right, which reflects the
fact than in order for λmax to have a low value, all other eigenvalues of the matrix have to be pushed
toward low values also.

Thus, the maximum eigenvalue of a matrix from GOE or GUE for large N is of order 2N . What
is the complete probability distribution for the largest eigenvalue λmax of random matrices in these
ensembles ? One observes that λmax typically fluctuates around 2N in a window of size N−1/6 (much
larger than the average eigenvalue spacing N−1/2 on the interval [−

√
2N,
√

2N ] ). More precisely the
centered and scaled fluctuations of the λmax of random matrices have limit probability distributions
for large N :

Fβ(s) = lim
N→∞

P
[√

2N1/6
(
λmax −

√
2N
)
≤ s
]

(1.130)

where Fβ is the Tracy-Widom distribution, with β = 1 for the GOE and β = 2 for the GUE. The
functions Fβ have several explicit expressions in terms of Fredholm determinants of kernel operators
related to the Airy function, or solutions of Painlevé differential equations, that we do not write here
(see figure 1.9 for a plot of the functions).

KPZ fixed point fluctuations on the infinite line

We can now write down the one-point fluctuation functions of the KPZ fixed point height on the
real line. The precise form of the scaling – apart from the dynamic exponents and the scaled probability
distribution – depends on the model considered, so we will specify it for the ASEP height function
h = hASEP defined by (1.109) [37]. We will consider two different initial conditions. First, the flat
initial height function h(x, 0) = 0, which correspond to alternating initial conditions for the exclusion
process (see figure 1.1). Then the probability distribution of the fluctuations of the height at x = 0 in
the large time limit is [49]

lim
t→∞

P

[
h(0, t)− t/2

t1/3
≥ −s

2

]
= F1(s) (1.131)

The factor t1/3 comes from the fact that for ε−3/2t finite, the fluctuations scale like ε1/2 ∼ t1/3. We
can also consider the narrow wedge initial condition, defined by

h(x, 0) = lim
δ→0

|x|
δ

=

{
0 if x = 0
∞ elsewhere (1.132)

it corresponds to the step initial configuration of the ASEP, in which all particles are stacked to the
left of bound 0. It is also called the droplet initial condition, as it corresponds (up to the sign of h) to a
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curved interface which, under proper rescaling, grows in the radial direction with origin (x, h) = (0, 0).
In this case, the fluctuations of the height at x = 0 are distributed [68] as

lim
t→∞

P

[
h(0, t)− t/2

(t/2)1/3
≥ −s

]
= F2(s) . (1.133)

The GUE fluctuations are universally observed for KPZ growth on curved surfaces [86]. Exact expres-
sions for the fluctuations are also known for a random Brownian initial height – that is Poisson initial
conditions for the ASEP) and follows the so-called Baik-Rains distribution F0 (which has no known
connection to random matrices), as well as for domain wall combinations of flat, wedge, and Brownian
joined at x = 0 12

1.6 KPZ fluctuations of the TASEP in finite volume

In this section we will summarize the main results currently known about the fluctuations of the current
and local density in the periodic TASEP. As we just saw, the behaviour that one observes crucially
depends on the scaling of time, system size and the limit considered. Let us consider the periodic
TASEP on L sites with N particles and average density ρ̄ = N/L and occupation numbers {ni}i≤L.
The characteristic relaxation time to the steady state for a finite system of size L within the KPZ
class is tsat ∼ L3/2, which is the time it takes for the correlation length to reach L. Thus three time
scales have to be considered: the sub-relaxation scale t � L3/2, the crossover scale t ∼ L3/2 and the
super-relaxation scale t� L3/2.

For x = i/L, τ = t/L, and density ρ(x, τ) = ni(Lt), at leading order (with respect to L) the density
on the hydrodynamic (sub-relaxation) time scale t ∼ L is described by the inviscid Burger equation

∂ρ

∂τ
+

∂

∂x
(ρ(1− ρ)) = 0 . (1.134)

For uniform ρ(x, 0) = ρ̄ and Brownian ρ(x, 0) = ρ̄ + (1/
√
L)ξ(x) initial conditions (where ξ(x) is a

normalized Brownian bridge), the density profile converges to ρ(x, t) = ρ̄ in finite time τ . For step
initial conditions where ρ(x, 0) = 1 on an interval of size ρ̄ and 0 elsewhere, the density profile develops
a shock in finite τ traveling at velocity 1 − 2ρ̄ with the density following a linear ramp joining both
sides of the discontinuity. Beyond the deterministic hydrodynamic density profile, the exact transition
probabilities from the initial configurations we just mentioned to any other configuration are known
[1]

On the crossover scale, setting τ = t/L3/2, the fluctuations of the current observed for finite τ
belong to the KPZ universality class [72]. As can be seen from (1.23) and (1.66), the functions of
interest in a given scaling of time are obtained as sums over the eigenstates corresponding to that
scaling, hence the relevant eigenstates of the Markov matrix and its current-counting deformation
for the crossover scale are the ones with eigenvalues of real part scaling like O(1/L3/2), so that the
factors eEnt in the decomposition over eigenstates are finite when L → ∞. These states include the
gap and all other eigenstates parametrized by a finite set of indices. One defines the rescaled density
fluctuation time-integrated current fluctuation (or equivalently the fluctuations of the height function
defined above the chain)

ξ(τ) =
Qi(τ)− t/4√

L/2
(1.135)

12These initial data are the only ones to be invariant under space rescaling x→ ε−1x, so they presumably account for
all relevant cases
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Introducing the functions

χr(v) = − 1

2π−1/2
Li5/2(−ev) +

∑
a∈Pr

ω3
a(v)

3
+
∑
a∈Hr

ω3
a(v)

3
(1.136)

ωa(v) = 2(sgn(a)iπ)1/2

(
|a|+ sgn(a)

iv

2π

)1/2

(1.137)

Dr(ν) =
(iπ/2)m

2
r

(2π)mr

 ∏
a,b∈Pr

(a− b)

 ∏
a,b∈Hr

(a− b)

 exp

[
lim

Λ→∞

∫ ν

−Λ
dv
χ′′r(v)2

2
−m2

r log Λ

]
(1.138)

where Li5/2 is the polylogarithm function defined (where the power series is convergent) as Lis =∑
k≤1

zk

ks . The index sets Pr and Hr are finite sets of half-integers which fully characterize the r-th
eigenstate of the matrices M and M(µ), and mr the number of positive (resp. negative) elements in
P (resp. H). The function χr is the scaling function of the eigenvalues while Dr gather the contribu-
tion from the scalar product of eigenvectors. The physical quantities defined above have then exact
expressions in the large system size limit in terms of these functions for different initial conditions. In
particular, the moment generating functions of ξ(τ) are

〈esξ(τ)〉stat =
√

2πs2
∑
r

D2
r(νr)e

τχr(νr)

eνrχ′′r(νr)
(1.139)

〈esξ(τ)〉flat = s
∑

r | P=H

imrDr(νr)e
τχr(νr)

eνr/4(1 + e−νr)1/4χ′′r(νr)
(1.140)

〈esξ(τ)〉step =
√

2πs
∑
r

D2
r(νr)e

τχr(νr)

eνrχ′′r(νr)
e2iπ(

∑
Pr
a−

∑
Hr

a)x (1.141)

where the sums run over all relevant finitely generated eigenstates, that is all finite Hr and Pr such that
|H+| = |P+| and |H−| = |P−| where H± and P± denote the subset of positive and negative elements of
H and P respectively . The parameter νr satisfies moreover χ′r(νr) = s. The generating function are
computed for flat, stationary Brownian (stat) and step initial condition. In the latter case, all sites
in the initial configuration are filled for xL− L/2 ≤ i ≤ xL+ L/2 and empty elsewhere. In the limit
τ → 0, or equivalently in the limit L→∞ for finite t, the generating functions 〈esξ(τ)〉step, 〈esξ(τ)〉flat,
and 〈esξ(τ)〉stat have been shown numerically to converge to the generating functions of the distribution
F2, F1 and F0 respectively, thus connecting KPZ fluctuations in finite volume and on the infinite line.

Let us give an interpretation of the form of these expressions. The sums appearing in expressions
(1.139)–(1.141) are sums over all relevant excited states eigenvalues of the deformed Markov matrix
M(µ) indexed by r ∈ R, according to the generic expression (1.66). The sets Hr and Pr describing these
eigenstates can be interpreted as the positions in momentum space of holes and excitations respectively
removed from and added above a Fermi sea of fermionic quasi-particles from which eigenstates ofM(µ)
are constructed. We will present in detail in chapter 2 and chapter 4 how these quasi-particle emerge
from the Bethe ansatz diagonalization of M(µ) for the open TASEP which has a similar structure.
The eigenvalue themselves scale like L−3/2χr where the function χr given by (1.136) is the sum of a
term corresponding to the filled Fermi sea and additional terms ω3

a/3 which accounts for holes and
excitations, see figure 1.10.

Finally, in the super-relaxation regime t � L3/2, the average density profile converges to the
stationary solution of the Burger equation, while the fluctuations saturates to an amplitude L1/2 with
Gaussian one-point distribution.

1.7 Toward fluctuation of the density and current in the open TASEP

In contrast with the infinite and periodic cases, exact results for the fluctuations of the open (T)ASEP
are more sparse. It is the object of the present work to contribute to extend the results just stated
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kF−kF

9
2

3
2

1
2

3
2

7
2

1
2− 3

2− 5
2 − 7

2− 1
2

P+H+P− H−

Figure 1.10: Representation of the excitation pattern corresponding to a pair Hr, Pr of a term in
sums (1.139)–(1.141), or equivalently to a spectral gap of M(µ). The filled square outside the interval
[−kF , kF ] are the elements of P corresponding to added terms in expression (1.136) and the empty
squares within the interval to the elements of H. The total number of momenta in the Fermi sea
corresponding to H = P = ∅ is equal to N .

Figure 1.11: Dynamic phase diagram of the open TASEP as function of the boundary parameters α
and β. With a = 1

α − 1, b = 1
β − 1, αc = (1 + b−1/3)−1, βc = (1 + a−1/3)−1, the curve with the hight

(resp. low) density phase have equation α = αc (resp. β = βc). Regions in the diagram correspond
to different scaling of the gap E1 (eigenvalue of M with second largest real part) with respect to the
system size L.
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for the periodic TASEP to the open case. The stationary measure on configurations in the stationary
state for the open ASEP is known exactly from matrix product ansatz, and yields the same stationary
values of J and ρ̄ as the mean-filed approach, however, it gives no useful insight on the fluctuations of
density and current on the relaxation scale t ∼ L3/2 where KPZ fluctuations are expected.

In the stationary state, the large deviation functions of the steady current have been computed
from the deformed Markov M(µ) [55] of the ASEP conditioned on large (µ → ∞) and low current
(µ → −∞) leading to simplified high and low currents phase diagrams. Exact expressions are also
known for the first cumulants of the current in finite size [56, 44]. Regarding the fluctuations of the
stationary density profile, the macroscopic fluctuation theory [12] has been used to compute large
deviation functionals of the steady density function, which has additional local minima, besides the
stationary hydrodynamic solution. The principle of macroscopic fluctuation theory is to generalize the
mean field approach used in 1.3.3 beyond the deterministic evolution. Adding a random term of the
form

√
ρ(1− ρ)ξ(x, t) to the hydrodynamic current (1.44), the long time limit of the probability of a

given density profile is obtained by evaluating the probability of the realization of the noise that gives
rise to it, minimizing a large deviation functional of the density. One finds several other optimizing
profiles [55] which are interestingly in correspondence with the relaxation modes identified by Bethe
ansatz, see below.

For finite values of the current on the crossover scale, exact results have been obtained by Bethe
ansatz, see chapter 2. De Gier and Essler computed [28] the gap E1 of the Markov matrix of the
TASEP for all values of the parameters α and β, giving different types of scaling of E1 with respect to
the system size in different regions of the parameter space. In particular, the KPZ universal regime,
corresponding to E1(α, β, L) ∼ L−3/2 is found in the maximal current phase. Considering the scaling of
E1 along with the stationary values of the density and current, several dynamical phases are identified
(see figure 1.11):

(MC) Maximal current −E1 = e1L
−3/2 + O(L−2), with e1 ≈ 3.56. The characteristic relaxation time

1/L3/2 of the KPZ class is recovered in the maximal current phase.

(LDI) Massive low/high density phases −E1 = α + β − 2
1+
√
ab

+ O(L−2). In these phases, the gap is
finite in the thermodynamic limit so that the relaxation to the stationary state is exponential in
time. Identical (except for the value of the mean density) to HDI.

(LDII) Second low density phase, −E1 = α + βc − 2
1+
√
abc

+ O(L−2), the gap is independent of β. The
gap in the second hight density phase (HDII) is obtained by the exchange α↔ β, αc ↔ βc.

(SL) shock line, −E1 = π2α(1−α)
1−2α L−2 +O(L−2). The scaling exponent z = 2 correspond to a diffusive

system, coherent with the phenomenology of the shock line (domain wall following a Brownian
random walk).

As in the case of the infinite ASEP, the height function constructed from the open ASEP is also solution
to the KPZ equation in the weak asymmetry limit p− q ∼ 1/

√
L (that is close from LD/MC transition

line), with Neumann boundary conditions on the slope of the height function fixed by the boundary
parameters [66, 23]. More precisely, with the following scaling of the parameters

α =
p3/2(p1/2 − µÃq

1/2)

p− q
, β =

p3/2(p1/2 − µB̃q
1/2)

p− q
, (1.142)

γ =
q3/2(q1/2 − µÃp

1/2)

q − p
, δ =

q3/2(q1/2 − µB̃p
1/2)

q − p
,

(1.143)

with µÃ = 1 − Ãε and µB̃ = 1 − B̃ε, p = 1
2e
√
ε and q = 1

2e−
√
ε, the rescaled corner growth model

height function (see figure 1.4)

Hε(x, t) = ε1/2hASEP(ε−1X, ε−2T )−
(

1

2
ε−1 +

1

24

)
T (1.144)
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is solution in the limit ε → 0 to the KPZ equation with ∂XH(X = 0) = Ã and ∂XH(X = 1) = B̃.
Thus, the finite asymmetry case, with the above scaling for the boundary rates can be interpreted
as the KPZ fixed point limit in finite volume with fixed boundary conditions. Some other results
are also known about the KPZ equation height function with Neumann boundary conditions [22, 20].
In particular it was recently shown [3] that the stationary height function h(x) solution to the KPZ
equation (that is for finite λ) could be written as the sum of a Brownian motion and some other
independent random process with known measure. These results however do not apply to the KPZ
fixed point and do not allow to recover one point statistics.
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Chapter 2

Integrability of the exclusion process

In this section, we review the methods used to perform exact computations of the eigenstates and
eigenvalues of the exclusion process. Starting with the matrix product ansatz that yields exact ex-
pressions for the ground state of the open ASEP, we will validate the results recalled in 1.3.3 obtained
by mean-field approximation. We will then introduce the Bethe ansatz formalism, from which most
results obtained in this work are directly derived or checked numerically. The reader will be given some
intuition on its operation principle by treating the periodic ASEP with the coordinate Bethe ansatz,
before moving to the modified algebraic Bethe ansatz formalism and its setting in the open TASEP
case. Finally, we will present the so-called Q-operator computation of the ground state eigenvalue of
the deformed Markov matrix of the TASEP.

2.1 Matrix product ansatz for the open ASEP

The matrix product ansatz is a method that allows for exact computation of the steady state probability
distribution or ground state of various classical and quantum non-equilibrium statistical systems, of
which ASEP is the first historical example. Matrix product states are in fact a general category of
steady states beyond equilibrium.

In the case of equilibrium steady states, the probability of the microstates of the system depends
only on the value of some macroscopic quantity (energy, temperature, total magnetization, etc.).

In the case of some non-equilibrium models defined on a discrete lattice (most notably for the
zero-range processes [35]) of size L, probability can be expressed as a product of simple scalar func-
tions depending on each site states, as Pstat =

∏L
i=1 f(ni). These factorized steady states can be

generalized one step further by considering the case where the configuration probabilities are ex-
pressed as matrix elements of a product of local operators that depend on the state of each state,
as Pstat = 〈W |

∏L
i=1Xni |V 〉, which are matrix product states. An elementary example of a matrix

product steady states is given by the computation of the partition function of the 1D Ising model by
the transfer matrix method, in which case the matrix product reduces in fact to a dependency on the
average magnetization (see for instance [4]).

The matrix product ansatz as a computation method was first introduced by Derrida, Evans, Hakim
and Pasquier in [30] to compute the stationary density profile of the open ASEP, and has been since
generalized to many other models [10].

Let us see how this construction works in the case of the open ASEP. Let us define two vectors
〈〈W‖ and ‖V 〉〉 and operators E and D acting on them, satisfying the following algebra

DE − qED = (1− q)(D + E) (2.1)
〈〈W‖(αE − γD) = (1− q)〈〈W‖ (2.2)
(βD − δE)‖V 〉〉 = (1− q)‖V 〉〉 . (2.3)

where α,β,γ, δ and q are the usual parameters of the open ASEP, and p is set to 1 for convenience.
The auxilary space A in which 〈〈W‖ and ‖V 〉〉 live is not physical and should be distinguished from
the configuration space of the system (of dimension 2L). Then the probability of a configuration
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C = {ni}1≤i≤L in the steady state is

P ∗(C) =
1

ZL
〈〈W‖

L∏
i=1

(niD + (1− ni)E) ‖V 〉〉 (2.4)

where the normalization factor ZL writes

ZL = 〈〈W‖(D + E)L‖V 〉〉 (2.5)

which contains indeed the terms of the form (2.4) for all 2L configurations, as a configuration is
represented by a product of operators D et E, standing respectively for an occupied or an empty site.
Several explicit representations of the algebra (2.1)-(2.3) exist; note that there is no need to dispose
of an explicit representation to perform computations for small system size, simply using the relations
between E, D, ‖V 〉〉, 〈〈W‖.

Proof of the matrix product ansatz

Let us now give of proof of the matrix product ansatz, following [54]. We look for an expression of the
probability distribution in the stationary state P ∗(n1, ...nL) such that(

B1 +
L−1∑
i=1

mi,i+1 +BL

)
|P ∗(n1, ...nL)〉 = 0 . (2.6)

Let us assume that we dispose of operators {X0 = D,X1 = E} and {X̃0 = D̃, X̃1 = Ẽ} and vectors
〈〈W‖ and ‖V 〉〉 such that the scalar function P ∗(n1, ...nL) writes

P ∗(n1, ..., nL) = 〈〈W‖Xn1 ...XnL‖V 〉〉 . (2.7)

Operators E and D are indeed the ones appearing in expressions (2.1)–(2.3) while D̃ and Ẽ are
auxiliary operators needed for the proof. Defining moreover the vectors (with operators on A as
elements) X, X̃ ∈ C2 ⊗ End(A) by

X =

(
E
D

)
X̃ =

(
Ẽ

D̃

)
(2.8)

and denoting by X(i) the vector corresponding to site i, (2.7) rewrites

|P ∗〉 = 〈〈W‖
L∏
i=1

X(i)‖V 〉〉 (2.9)

where the product of the X(i) is understood as a tensor product on the configuration spaces C2 and
as an matrix product on the auxilary space A, i.e.

X(i)X(i+1) =


EE
ED
DE
DD

 (2.10)

Let us assume that E and D are such that the the following relations are satisfied

mi,i+1X
(1)...X(2)X(i+1)...X(L) = X(1)...[X̃(i)X(i+1) −X(i)X̃(i+1)]...X(L) (2.11)

B1X
(1)...X(L) = −X̃(1)...X(L) (2.12)

BLX
(1)...X(L) = X(1)...X̃(L) . (2.13)
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Inserting vector (2.9) in the master equation with X(i) satisfying these relations, we see that the sum
in (2.6) telescopes to zero from site 2 to site L − 1. Besides, writing explicitely in coordinates the
actions of the local update operators on (pairs) of X(i), one finds

mi,i+1X
(i)X(i+1) =


0

DE − qED
qED −DE

0

 (2.14)

B1〈〈W‖X(1) =

(
〈〈W‖(γD − αE)
〈〈W‖(αE − γD)

)
(2.15)

BLX
(L)‖V 〉〉 =

(
(βD − δE)‖V 〉〉
(δE − βD)‖V 〉〉

)
(2.16)

so that (2.11)–(2.13) are indeed satisfied if

D̃D −DD̃ = ẼE − EẼ = 0 (2.17)

DE − qED = ẼD − ED̃ = −D̃E +DẼ (2.18)

〈〈W‖(γD − αE)) = −〈〈W‖Ẽ = 〈〈W‖D̃ (2.19)

(δE − βD)‖V 〉〉 = D̃‖V 〉〉 = −Ẽ‖V 〉〉 . (2.20)

Setting D̃ = −Id and Ẽ = Id, these relations are exactly (2.1)-(2.3) and (2.11)–(2.13) are satisfied, so
that the relations defining the matrix ansatz algebra are indeed necessary conditions for the distribution
P ∗ as defined by (2.7) to be stationary, which proves the validity of the matrix ansatz.

Phase diagram and correlation functions of the open TASEP from matrix ansatz

Let us first give the expression of the current in terms of the matrix product ansatz objects. Recalling
equations (1.42), the steady state current writes

J = 〈ni−1(1− ni)〉 − q〈ni(1− ni−1)〉 . (2.21)

Since for any k ≥ 0, the sum of all words in E or D of length k representing all configurations of a
section of k sites in the chain writes

(E +D)k =
∑

{Xi}∈{E,D}k
X1...Xk , (2.22)

the mean value can be computed by inserting powers of (D + E) on the portions of the chain which
are averaged, so that

J =
1

ZL

(
〈〈W‖(D + E)i−2DE(D + E)L−i‖V 〉〉 − q〈〈W‖(D + E)i−2ED(D + E)L−i‖V 〉〉

)
(2.23)

=
1− q
ZL
〈〈W‖(D + E)i−2(D + E)(D + E)L−i‖V 〉〉 (2.24)

= (1− q)ZL−1

ZL
(2.25)

where we used (2.1) in the second equality. The computation of the normalization constant ZL can be
done by diagonalizing the matrix E +D. Let us first define the operators

e = E − Id d = D − Id (2.26)

so that (2.1) can be written as

de− qed = (1− q)Id . (2.27)
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This operator identity happens to be the defining relation satisfied by the creation operator e and
annihilation operator d of the q-deformed harmonic oscillator [77] 1.

Several representations exist for these operators and the boundary vectors 〈〈W‖ and ‖V 〉〉 that we
can use to compute ZL. They are built by considering basis of orthogonal polynomials [78] satisfying
some recursion relations implied for the coordinate of 〈〈W‖ and ‖V 〉〉 by the algebraic relations (2.1)-
(2.3). The simplest of them is the representation based on the q-deformed Hermite polynomials that
we present now. Denoting by {‖0〉〉, ‖1〉〉, ‖2〉〉, ....} the infinite orthonormal basis of the representation
space with 〈〈m‖n〉〉 = δm,n, one can write operators e and d as

e =
∞∑
n=0

‖n+ 1〉〉〈〈n‖ , (2.28)

d =

∞∑
n=1

(1− qn)‖n− 1〉〉〈〈n‖ . (2.29)

Writing the boundary vectors ‖V 〉〉 and 〈〈W‖ as

‖V 〉〉 =
∞∑
n=0

Vn‖n〉〉 , 〈〈W‖ =
∞∑
n=0

Wn〈〈n‖ , (2.30)

the relations (2.2) and (2.3) rewrite as recursion relations on the coefficients Vn and Wn

αWn+1 + (α− γ − 1 + q)Wn − γ(1− qn)Wn−1 = 0 , (2.31)

β(1− qn+1)Vn+1 + (β − δ − 1 + q)Vn − δVn−1 = 0 . (2.32)

Defining, along with the parameters a and b (1.48)–(1.49), the new boundary parameters

ã =
1

2α

[
1− q − α+ γ −

√
(1− q − α+ γ)2 + 4αγ

]
, (2.33)

b̃ =
1

2β

[
1− q − β + δ −

√
(1− q − β + δ)2 + 4βδ

]
, (2.34)

these expressions write

Wn+1 − (a+ ã)Wn + aã(1− qn)Wn−1 = 0 (2.35)

(1− qn+1)Vn+1 − (b+ b̃)Vn + bb̃Vn−1 = 0 . (2.36)

We introduce the following notation

(x)n =
n−1∏
k=0

(1− qkx) (2.37)

and its limit for n→∞ defined for q < 1

(x)∞ =

∞∏
k=0

(1− qkx) . (2.38)

(•)n is called the q-Pochhammer symbol. We will use besides the notation (a, b)n = (a)n(b)n for the
product of two Pochhammer symbols. We now introduce the q-deformed Hermite polynomials

Hn(x, y) =

n∑
k=0

(q)n
(q)k(q)n−k

xkyn−k (2.39)

1In the limit q → 1, operators d, e and N = ed satisfy the usual commutation relations of the ladder operators of the
quantum oscillator harmonic – or of any bosonic algebra [d, e] = 1, [N, e] = e and [N, d] = −d.
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which are defined such that in the limit q → 1,

Hn(x, y) = ynH

(
x

y
, 1

)
= xnH

(
1,
y

x

)
→ Hn

(
x

y

)
(2.40)

where Hn is the usual Hermite polynomial of order n, defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
(2.41)

which are orthogonal for the probability measure with Gaussian weight e−x
2/2dx. It can be shown

besides that the q-Hermite polynomials satisfy the following identity known as the q-Mehler formula
[14]

∞∑
n=0

Hn(x, y)Hn(z, t)
un

(q)n
=

(xyztu2)∞
(xzu, xtu, yzu, ytu)∞

. (2.42)

which is valid when xz, xt, yz, yt < 1/u. The q-deformed Hermite polynomials also satisfy the following
recursion relation

Hn+1(x, y)− (x+ y)Hn(x, y) + xy(1− qn)Hn−1(x, y) = 0 (2.43)

which is the same as (2.35) and (2.36) by setting x, y = a, ã and x, y = b, b̃ respectively, so that

Wn = Hn(a, ã) , (2.44)

Vn =
Hn(b, b̃)

(q)n
. (2.45)

Now that we have an explicit representation of the matrix ansatz algebra, we are left with computing
ZL = 〈〈W‖(2+d+e)L‖V 〉〉. The eigenstates of operator (e+d) can be interpreted as the coherent states
of a q-deformed harmonic oscillator, whose ladder operators satisfy the aforementioned q-deformed
bosonic algebra. Such eigenstates are known [78] and form a basis of the representation state writing

‖z〉〉 =

∞∑
n=0

Hn(z, z−1)

(q)n
‖n〉〉 , (2.46)

〈〈z‖ =
∞∑
n=0

Hn(z, z−1)〈〈n‖ . (2.47)

with closure relation

Id =
(q)∞

2

∮
|z|=1

dz

2iπz
(z2, z−2)∞‖z〉〉〈〈z‖ . (2.48)

The action of (e+ d) on these states write

(e+ d)‖z〉〉 = (z + 1/z)‖z〉〉 , (2.49)
〈〈z‖(e+ d) = 〈〈z‖(z + 1/z) . (2.50)

Inserting the closure relation (2.48) in the expression of ZL one gets

ZL = 〈〈W‖(e+ d)Id‖V 〉〉 (2.51)

=
(q)∞

2

∮
|z|=1

dz

2iπz
(z2, z−2)∞(2 + z + z−1)L〈〈W‖z〉〉〈〈z‖V 〉〉 . (2.52)

Using (2.42), one gets

〈〈W‖z〉〉 =
∞∑
n=0

Hn(a, ã)Hn(z, z−1)

(q)n
=

(aã)∞
(az, az−1, ãz, ãz−1)∞

, (2.53)

〈〈z‖V 〉〉 =

∞∑
n=0

Hn(b, b̃)Hn(z, z−1)

(q)n
=

(bb̃)∞

(bz, bz−1, b̃z, b̃z−1)∞
(2.54)
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Figure 2.1: Plot of the poles a,b,and 0 of the function F (z) defined in (2.57) for the totally asymmetric
case and the corresponding integration contours of (2.55) at two different points of the phase diagram.
The integral has to be taken around the poles which are inside the unit disk |z| < 1 when |a| < 1 and
|b| < 1, which are trivially a,b and 0 for the TASEP. The red and blue contours are thus equivalent on
the figure. In the general case for q 6= 0, the set of contributing poles is

⋃
k∈N{0, aqk, ãqk, bqk, b̃qk}

so that finally the normalization constant writes

ZL =
1

2

∮
S

dz

2iπ

F (z)

z
(2.55)

with

F (z) =
(1 + z)L(1 + z−1)L(z2, z−2)∞

(az, az−1, ãz, ãz−1, bz, bz−1, b̃z, b̃z−1)∞
. (2.56)

This derivation is only rigorous in the case |a|, |b|, |ã|, |b̃| < 1 as it is needed to apply the formula (2.42).
In this case, the integration contour S in (2.55) is simply the unit circle |z| = 1. However the validity
of (2.55) can be extended beyond these conditions by analytic continuation, in which case one has to
change the integration contour of the integral S so as to include the poles that exit the unit circle, see
figure 2.1. In the totally asymmetric case, the function F (z) takes a much simpler form

F (z) =
(1 + z)L(1 + z−1)L(1− z2)(1− z−2)

(1− az)(1− az−1)(1− bz)(1− bz−1)
. (2.57)

In particular, the function F has only a finite number of poles. This integral can be computed in
the large L limit by saddle point approximation, and the computation of the current J according to
expression (2.21) gives the same phase diagram as the one obtained by the mean field approach of
section 1.3.3.

Validity of the mean-field approximation in the thermodynamic limit

The fact that the mean field derivation gives the exact result for the stationary values arise from
the vanishing of nearest neighbour correlations in the thermodynamic limit. The two point correlation
density on the ASEP chain of size L writes

〈ninj〉 = 〈〈W‖(D + E)i−1E(D + E)j−i−1E(D + E)L−j‖V 〉〉 . (2.58)

This expression has been computed exactly with another representation of the matrix ansatz alge-
bra using the Askey-Wilson orthogonal polynomials [91]. The connected nearest-neighbor correlation
function at leading order in the system size writes

〈nini+1〉 − 〈ni〉〈ni+1〉 '
L→∞

1

πL1/2

[
i− L/2√
i(L− i)

i+ 1− L/2√
(i+ 1)(L− i− 1)

(2.59)

− 1− i2 + i(L− i− 1)− (L− i− 1)2

4
√
i(L− i− 1)(i− 1)(L− i)

]
.
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Casting this expression into (1.44) and taking the large system size limit, one finds

J = (1− q)ρ(1− ρ)− 1 + q

2L

∂ρ

∂x
+
c(x)√
L

(2.60)

where c(x) is a bounded function of order 1 2 gathering the dependency of the correlation function on the
position on the chain. The contribution of nearest neighbors correlations vanishes in the limit L→∞
so that the mean field approximation is indeed exact for the stationary state in the thermodynamic
limit.

2.2 Coordinate Bethe ansatz for the periodic ASEP

We will now present the coordinate Bethe ansatz diagonalization of the periodic ASEP [31], in order
to get an intuitive understanding of the Bethe ansatz formalism. The coordinate Bethe ansatz is the
first historical form of the Bethe ansatz and was originally applied in [9] to the diagonalization of the
Hamiltonian of the XXX spin chain. It consists, roughly speaking, in looking for the wavefunctions
of a N -body system under the form of a sum over all permutations of positions and pseudo-momenta
of individual particles.

Let us consider the periodic ASEP with L sites and N particle, with current counting deformation
on every bond of the system. We denote by ψ(x1, ..., xN ) the coordinates of the eigenvectors in
the configuration basis, or wavefunctions and E the associated eigenvalues, with particle positions
1 ≤ x1 ≤ ... ≤ L. In particular, for the ground states eigenvalue, the ψ(x1, ..., xN ) are the stationary
probabilities of the configurations. Our goal is to find exact expressions for ψ and E for all eigenstates.
The eigenvalue equation M(µ) |ψ〉 = E |ψ〉 in coordinates writes

Eψ(x1, ...xN ) = p
∑
i

[eµψ(x1, ..., xi − 1, ..., xN )− ψ(x1, ..., xi, ..., xN )]ex (2.61)

+q
∑
i

[
e−µψ(x1, ..., xi + 1, ..., xN )− ψ(x1, ..., xi, ..., xN )

]ex

where the terms in brackets [...]ex are zero when the terms ψ({xi}) contain two xi which are equals,
so that the exclusion constraint is satisfied. If the particle on the chain were non-interacting, a nat-
ural ansatz for the eigenvectors would be to look for them as a linear combination of plane waves
ψ(x1, ..., xN ) =

∏
i eipixi with momentum pi fixed by the periodic boundary conditions. However, it

is straightforward to check that this ansatz fails due to the exclusion constraint, thus we need a more
sophisticated form for the eigenvectors. By analogy with elastic scattering in one-dimension 3, the
interaction of particles at adjacent positions is expected to exchange their momenta. The essence of
the Bethe ansatz then consists in looking for the eigenvectors under the form

ψ(x1, ..., xN ) =
∑
σ∈SN

Aσ

N∏
i=1

zxiσ(i) (2.62)

which is invariant by construction under particle - momentum permutations. The amplitudes {Aσ}
and the Bethe roots {zi}1≤i≤N are parameters that we need to set and SN is the N -th symmetric
group, so that the sum runs over all permutations σ of the positions and the Bethe roots zi. The
factors zi can be equivalently written as eipi to make the analogy quantum scattering more apparent.
In order to completely determine the expression of the wavefunctions and eigenvalues, we will proceed
as follow:

i) Solve the eigenvalue equation (2.61) assuming that the particle are well separated, that is 1 ≤
x1 < x2 < ... < xN < x1 +L with xi < xi+1 − 1 for all pairs of consecutive particles, so that one
does not have to bother with adjacency cases on the positions. This will yield a value of E in
terms of the Bethe roots.

2Assuming that i = xL is of order L. In fact, the predictions of the mean-field approximation for the density profile
do break down at the boundaries.

3A typical example of a model – also solved by Bethe ansatz – featuring this type of hard-core interaction is the
δ-Bose gas, consisting of N bosons on a circle with Hamiltonian H = −

∑
i ∂

2
xi +

∑
i<j δ(xi − xj)
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ii) Instead of restricting the sums in (2.61) to non-overlapping xi, we will set the parameters Aσ
so as to ensure that the sum of all the terms on the RHS of (2.61) accounting for prohibited
transition – i.e. those containing wavefunctions ψ(x1, ..., xi, xi, ..., xN ) with equal positions –
cancel. Several cases have to be considered, depending on the number of adjacent particles on
the LHS of (2.61). The crucial observation at the heart of the integrability of the exclusion process
is that the cancellation condition for any k-collision with ψ(x1, ..., xi, xi + 1, ..., xi + k, ..., xN ) is
expressed as a sum of independent 2-collision conditions.

iii) Finally, we will impose the boundary conditions ψ(x1, ..., xL) = ψ(x2, ..., xN , x1 + L) which will
yield N independent polynomial equations on the zi, referred to as the Bethe equations. The
momenta corresponding to Bethe roots zi = eipi are thus quantized for a finite size system.
Different solutions of the Bethe equations will correspond to different eigenstates of the Markov
matrix.

Let us first work out the cases N = 1, 2 and 3, from which the generalization to N particle is straight-
forward.

The one particle case

For N = 1, injecting the Bethe-ansatz wavefunction ψ(x) = A1z
x
1 in (2.61), one finds immediately

E =
eµp

z1
+ e−µqz1 − (p+ q) . (2.63)

The periodicity condition reads zL1 = 1 so that the unique Bethe root is simply a L-th root of unity, and
A1 is a global normalization constant. The L eigenstates of M(µ) then correspond to the L possible
values of z1 and the matrix M(µ) is completely diagonalized

The two particle case

For N = 2, the wavefunction is now

ψ(x1, x2) = A12z
x1
1 zx22 +A21z

x2
1 zx12 (2.64)

and the eigenvalue equation, in the generic case where x2 > x1 + 1, writes

Eψ(x1, x2) = peµ [ψ(x1 − 1, x2) + ψ(x1, x2 − 1)]

+ qe−µ [ψ(x1 + 1, x2) + ψ(x1, x2 + 1)] (2.65)
− 2(p+ q)ψ(x1, x2)

which yields the eigenvalue expression

E = eµp

(
1

z1
+

1

z2

)
+ e−µq(z1 + z2)− 2(p+ q) . (2.66)

Considering now the 2-collision case x2 = x1 + 1, the eigenvalue equation restricted on allowed transi-
tions reduces to

Eψ(x1, x1 + 1) = peµψ(x1 − 1, x1 + 1) + qe−µψ(x1, x1 + 2)− (p+ q)ψ(x1, x1 + 1) . (2.67)

In order for the expression (2.66) to hold, we can equivalently impose the generic eigenvalue equation
(2.65) on ψ and the cancellation of the terms missing in (2.67), that is

peµψ(x1, x1) + qe−µψ(x1 + 1, x1 + 1)− (p+ q)ψ(x1, x1 + 1) = 0 . (2.68)

This 2-collision cancellation condition is satisfied for

A21

A12
= −pe

µ + qe−µz1z2 − (p+ q)z2

peµ + qe−µz1z2 − (p+ q)z1
, (2.69)
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so that the amplitudes are fixed up to a global normalization factor. Imposing the periodicity
ψ(x1, x2) = ψ(x2, x1 + L), one find

zx11 zx22 +
A21

A12
zx21 zx12 = zx21 zx1+L

2 +
A21

A12
zx1+L

1 zx22 (2.70)

which has to be satisfied for any values of x1 and x2 so that A12/A21 = zL2 = z−L1 . Using expression
(2.69), the Bethe equations for N = 2 write

zL1 = −pe
µ + qe−µz1z2 − (p+ q)z1

peµ + qe−µz1z2 − (p+ q)z2
, (2.71)

zL2 = −pe
µ + qe−µz1z2 − (p+ q)z2

peµ + qe−µz1z2 − (p+ q)z1
, (2.72)

and all free parameters in the wavefunction are set.

The three particle case

The generic eigenvalue equation for well-separated particles is similar to the case with N = 2 so let us
focus directly on the adjacency case. Two types of collision can occur

• 2-collisions, with two adjacent particles and the third one apart. There are two cases, for positions
(x1, x2 = x1 + 1, x3 > x2 + 1) and (x1, x2 > x1 + 1, x3 = x2 + 1). The case (x1, x2 > x1 + 1, x3 =
x1 +L− 1) is in fact equivalent to the second one by periodicity. Canceling the missing terms in
(2.61) for these types of configuration then yields two equations

(A) eµpψ(x, x, x3) + qe−µψ(x+ 1, x+ 1, x3)− (p+ q)ψ(x, x+ 1, x3) = 0

(B) eµpψ(x1, x, x) + qe−µψ(x1, x, x)− (p+ q)ψ(x1, x, x+ 1) = 0

• 3-collision, with particle positions (x1, x1 + 1, x1 + 2) leading to the cancellation condition

peµ
[
ψ(x, x, x+ 2) + ψ(x, x+ 1, x+ 1)

]
+ qe−µ

[
ψ(x+ 1, x+ 1, x+ 2) + ψ(x, x+ 2, x+ 2)

]
− 2(p+ q)ψ(x, x+ 1, x+ 2) = 0

which rewrites as

peµψ(x, x, x+ 2) + qe−µψ(x+ 1, x+ 1, x+ 2)− (p+ q)ψ(x, x+ 1, x+ 2)︸ ︷︷ ︸
(A)

(2.73)

+ peµψ(x, x+ 1, x+ 1) + qe−µψ(x, x+ 2, x+ 2)− (p+ q)ψ(x, x+ 1, x+ 2)︸ ︷︷ ︸
(B)

= 0 .

Thus, the 3-collision cancellation condition is in fact expressed as the sum of the 2-collision conditions,
so that all cancellation conditions are compatible with each other, and our ansatz on the form of the
wavefunction is valid. In the parlance of quantum integrability, the 3-body scattering factors into the
product of commuting 2-body scattering. This property is the fundamental ingredient needed to apply
the Bethe ansatz, and is not satisfied by non-integrable models on lattice. We will now present the
rest of the derivation of the Bethe equation for the general case of N particles.

The N particle case

For any value of N , the eigenvalue obtained by solving the generic eigenvalue equation is

E =
N∑
i=1

(
peµ

1

zi
+ qe−µzi

)
−N(p+ q) . (2.74)
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Let us derive the 2-collision conditions on the amplitudes Aσ. They consist of N − 1 independent
equations

peµψ(x1, ..., xi, xi, ..., xL) + qe−µψ(x1, ..., xi + 1, xi + 1, ..., xL) (2.75)
− (p+ q)ψ(x1, ..., xi + 1, xi + 1, ..., xL) = 0

for 1 ≤ i ≤ L− 1. Developing these equations with the wavefunction (2.62) one obtains

∑
σ∈SN

Aσ

 ∏
k 6=i,i+1

zxkσ(k)

(peµzxσ(i)z
x
σ(i+1) + qe−µzx+1

σ(i) z
x+1
σ(i+1) − (p+ q)zxσ(i)z

x+1
σ(i+1)

)
= 0 . (2.76)

Denoting by τ = (i i+ 1) the transposition permuting i and i+ 1, the sum over the symmetric group
can be split in two: the set SN/τ of permutations such that σ(i) < σ(i+ 1) and the set (SN/τ) ◦ τ of
inversions the pair of indices {i, i + 1} such that σ(i) > σ(i + 1). These two sets differ globally by a
right composition with τ , which leaves the factor

∏
k 6=i,i+1 z

xk
σ(k) invariant. Equation (2.76) then writes

∑
σ∈SN/τ

Aσ

(
peµzxσ(i)z

x
σ(i+1) + qe−µzx+1

σ(i) z
x+1
σ(i+1) − (p+ q)zxσ(i)z

x+1
σ(i+1)

)
(2.77)

+ Aσ◦τ

(
peµzxσ(i)z

x
σ(i+1) + qe−µzx+1

σ(i) z
x+1
σ(i+1) − (p+ q)zx+1

σ(i) z
x
σ(i+1)

)
= 0 .

A sufficient condition for the cancellation is then to have for any σ ∈ SN the following relation on
amplitudes differing by a transposition

Aσ◦τ
Aσ

= −
peµ + qe−µzσ(i)zσ(i+1) − (p+ q)zσ(i+1)

peµ + qe−µzσ(i)zσ(i+1) − (p+ q)zσ(i)
∀σ ∈ SN . (2.78)

Since any permutation can be written as the product of transpositions of consecutive numbers, these
conditions set all amplitudes Aσ up to a global normalization factor. Note that this result was derived
for generic values of the positions {xk} besides xi and xi+1 so it is still valid if several 2-collisions occur
in the same configuration.

We now have to show that the cancellation conditions for k-collision are implied by the conditions
we just derived for 2-collisions, as in expression (2.73). Using the shorthand notations

ψ̃k(i, j, r) = ψ(x1, ..., xi, xi + 1, ..., xi + j + r, ..., xi + k, ..., xN ) (2.79)

ψ̃k(i) = ψ(x1, ..., xi, xi + 1, ..., xi + k, ..., xN ) (2.80)

where the dependency of ψ̃k on the position of the particles outside the cluster of particles j to j + k
(underlined) is implicit, the cancellation condition for k-collisions write

p

k−1∑
j=1

[eµψ̃k(i, j + 1,−1)− ψ̃k(i)] + q

k−1∑
j=1

[e−µψ̃k(i, j,+1)− ψ̃k(i)] = 0 1 ≤ i ≤ N − k + 1 .

(2.81)

Since the ψ̃k are in fact special cases of the 2-collisions wave functions ψ̃2 evaluated for specific values
of the remainder particle positions (outside the two stacked or adjacent particles), the LHS of (2.81)
is actually the sum of k− 1 of the conditions (2.75) shifted in particle indices i. Thus, the k-collisions
cancellation conditions are indeed the sum of 2-collision conditions and are automatically satisfied.

Bethe equations
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We can finally exploit the periodicity of the wavefunction to obtain the Bethe equations. Expanding
the periodicity condition ψ(x1, ..., xN ) = ψ(x2, ..., xN , x1 + L), we obtain∑

σ∈SN

Aσz
x1
σ(1)...z

xN
σ(N) =

∑
σ∈SN

Aσz
x2
σ(1)...z

xN
σ(N−1)z

x1+L
σ(N) (2.82)

∑
σ∈SN

(
Aσ −Aσ◦CzLσ(1)

)
zx1σ(1)...z

xN
σ(N) = 0 (2.83)

where C = (2 3 ... L 1) is the circular permutation that shifts Bethe roots indices by 1. The last
expression being satisfied for generic values of the positions, it implies

Aσ◦C
Aσ

= z−Lσ(1) . (2.84)

The permutation C can be decomposed as a product of transposition C = (1 2)◦ (2 3)◦ ...◦ (N −1 N),
so we can write

Aσ◦C
Aσ

=

N−1∏
k=1

Aσ◦(1 2)◦(2 3)◦...◦(k−1 k)

Aσ◦(1 2)◦(2 3)◦...◦(k−2 k−1)

Aσ◦(1 2)

Aσ
. (2.85)

Using relation (2.78) to eliminate the successive transpositions, each factor in the product is equal to
the ratio Aσ(1)◦(1 k)/Aσ, and with (2.84), setting σ(1) = i we obtain the Bethe equations

zLi = (−1)N−1
N∏
j=1

peµ + qe−µzizj − (p+ q)zi
peµ + qe−µzizj − (p+ q)zj

1 ≤ i ≤ N . (2.86)

We have finally obtained a complete expression for the wavefunction and eigenvalues of the periodic
exclusion process. The Bethe equation that we just derived have discrete sets of solutions for the zi,
some unphysical, the other being in one-to-one correspondence with eigenstates of M(µ).

Several points should be noted. Regarding the completeness of our derivation of the eigenstates,
there is a priori no reason for the Bethe ansatz approach to yield all the

(
L
N

)
eigenstates of M(µ). It

was only shown recently in [13] to be the case in the undeformed case µ = 0 for generic values of p and
q (which might exclude some special cases), and in general, the problem of the completeness of the
Bethe ansatz equations is still open for most of the models solved by Bethe ansatz [53, 88], including
the open TASEP that we will consider latter.

In order to determine the eigenstates of the system, one still has to solve a system of N polynomial
equation of the Lth degree which is analytically not feasible in general. However daunting the task may
look, it is yet a huge simplification of the diagonalization problem. First, it is computationally much
easier to solve a system of degree L polynomials than to find the roots of the 2L-th degree characteristic
polynomial of M(µ). The fact that Bethe equation have a fixed form for any system size and number
of particle allows for the computation of exact expressions in the thermodynamic limit. As we will see
in chapter 4, solving the Bethe equations also leads to a natural classification of eigenstates which is
physically meaningful

Simplifications occur in the Bethe equations for some limit cases. Considering the totally asym-
metric case p = 1, q = 0, the Bethe equations become

zLi
(eµ − zi)N

= (−1)N−1
N∏
j=1

(eµ − zi)−1 . (2.87)

They have the form f(zi) = C where C is a parameter that depends symmetrically on all Bethe roots
and f is a simple rational function. This separated form is especially convenient to work with as it
allows to treat C as a free parameter from which Bethe roots can be obtained directly by inverting
function f , and then set by writing down its definition in self-coherent form. It is also insightful to
look a the limit µ→∞, where the Bethe equations simply become

zLi = (−1)N−1 (2.88)
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and the Bethe roots are L-th roots of unity or −1 depending on the parity of N , as one would expect
for non-interacting particles. Indeed, as already seen in paragraph 1.4.3, solving the dynamics for
large values of µ amounts to conditioning the evolution of the system on large values of the current.
Since the main limitation to the current comes from the exclusion interaction, which tends to jam the
flow of particles, the likely configurations for µ→∞ are the ones with all particles well separated, so
that the exclusion constraint virtually does not play any role, hence this simplification of Bethe roots
expressions.

2.2.1 Ground state eigenvalue E(µ) from Bethe equations

We can now compute a near explicit expression of the ground state eigenvalue E(µ) of M(µ) from the
Bethe ansatz equations and the expression of E(µ) in terms of the Bethe roots. Under the change of
variable zi = eµ(1 + yi), the eigenvalue and the Bethe equations for the periodic TASEP rewrite

E(µ) =
N∑
i=1

(
1

1 + yi
− 1

)
, (2.89)

eµ
(1 + yi)

L

yNi
= (−1)N−1

 N∏
j=1

yj

−1

. (2.90)

We also introduce the notations

B = (−1)N−1eµ
N∏
j=1

yj , (2.91)

h(y) =
(1 + y)L

yN
, (2.92)

so that the Bethe roots {yi, 1 ≤ i ≤ N} are roots of the polynomial 1−Bh(y) of degree L, treating B as
a free parameter. We know that the ground state eigenvector of the undeformed Markov matrix µ = 0
(i.e. the stationary probability distribution on configurations) has uniform entries, which correspond
from (2.62) and (2.85) to all yi = 1, so that the corresponding eigenvalue is indeed 0. Considering the
small B asymptotic behaviour of the L roots of 1−Bh(y)

yN = B(1 + y)L when B → 0 (2.93)

we see that the roots have the following scaling 4

yj ∼ B1/Ne
2iπj
N for 1 ≤ j ≤ N , (2.94)

yj ∼ B−
1

L−N e
2iπj
L−N for N < j ≤ L . (2.95)

Thus exactly N roots of 1−Bh(y) go to zero, which are then precisely the Bethe roots corresponding
to the ground state. In particular for µ and B small enough, they are located within the open unit
disk {z, |z| < 1}. Both E(µ) and

µ =

N∑
i=1

log
(
−B1/N/yi

)
(2.96)

are expressed as sums of functions of the Bethe roots. We can then, for µ small enough, write these
sums as contour integrals on the unit circle, using the fact that for yi roots of P (y) = 1− Bh(y) and
any function f ,

N∑
i=1

f(yi) =

∮
{yi}

dy

2iπ
f(y)

P ′(y)

P (y)
. (2.97)

4We choose here the simplest labeling of the yj for our purpose. See [73] for a detailed study of the Bethe ansatz
equation of the periodic TASEP in finite size
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After integration by part we obtain

µ =

∮
|z|=1

dz

2iπz
log(1−Bh(z)) , (2.98)

E(µ) =

∮
|z|=1

dz

2iπ(1 + z)2
log(1−Bh(z)) . (2.99)

Expanding these expressions in series of B we obtain

µ = −
∞∑
k=1

Ck
Bk

k
(2.100)

E(µ) = −
∞∑
k=1

Dk
Bk

k
(2.101)

with

Ck =

∫
|z|=1

dz

2iπz
h(z)k =

(
kL

kN

)
, (2.102)

Dk =

∫
|z|=1

dz

2iπ(1 + z)2
h(z)k =

(
kL− 2

kN − 1

)
. (2.103)

We finally obtained a parametric expression of E(µ), the cumulant generating function of the stationary
current in the periodic TASEP.

Algebraic Bethe ansatz for the periodic ASEP

There is an alternative and more general route the the above-derived Bethe equations through the
algebraic Bethe ansatz. The algebraic Bethe ansatz formalism was first elaborated for integrable spin
chains and vertex models [4, 36, 52] with periodic boundary conditions. The method is based on the
existence of a familly of commuting operators t(x) called the transfer matrix, which is a generating
function of the operators associated to conserved charges of the model, from which the hamiltonian,
partition function or stochastic generator of the model (depending on the setting) can be recovered.
The transfer matrix is built from a monodromy matrix constructed as a product of local operators
satisfying themsleves compatibility relations known as the Yang-Baxter equation and RTT relations.
The monodromy matrix also defines an algebra of operators acting on the configuration space of the
model such that eigenvectors of t(x) can be built systematically by application of these operators.
The Bethe equations then appear as cancelation conditions on parameters upon which the operators
depend for unwanted terms in the spectral equality between t(x), its eigenvalues and eigenvectors.

Concerning the exclusion process specifically, the algebraic Bethe ansatz was first formulated for the
periodic ASEP [42], relying on the fact that the local update operators (1.13) satisfy the Temperley-Lieb
algebra, which also plays an important role in the integrability of the XXZ model.

2.3 Modified Algebraic Bethe ansatz for the open TASEP

We have just seen that one can determine all eigenstates of the periodic ASEP by means of the Bethe
ansatz. However, the coordinate approach that we used and the usual algebraic Bethe ansatz rely
crucially on the conservation of the number of particles and periodicity of the system, features which
are absent from the ASEP with open boundary conditions. It is however possible to formulate the
Bethe ansatz in a more general framework that allows to account for general boundary conditions, this
is the modified algebraic Bethe ansatz.

Following the introduction by Sklyanin of the the so-called boundary algebra [82], the algebraic
Bethe ansatz was extended to systems with open diagonal boundary conditions presenting a U(1)
symmetry, understood in our context as conservation of the number of particles. The usual algebraic
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Bethe ansatz formalism requires indeed the existence of a unique reference state (or pseudo-vacuum),
which cannot be properly defined in the absence of such symmetry. This problem was circumvented
with the introduction of the modified algebraic Bethe ansatz by Belliard and Crampé [5] that allowed to
treat spin chains, and incidentally the exclusion process, with generic non-diagonal boundary condtions.

A generalized coordinate Bethe ansatz was also proposed in [24] for the open ASEP, which allowed
the construction of the full set of eigenvectors of M(µ), although with constraints of the values of the
parameters of the model of the form ±(γ/α)ε(δ/β)ε

′
= eµ(p/q)n with ε, ε′ = 0, 1 and 1 ≤ n ≤ L − 1.

With this method, the higher eigenstates are obtained by adding excitations on the groundstate of the
matrix product ansatz of section 2.1.

In what follows we will first connect the ASEP with open boundaries to the XXZ-chain to justify
the applicability of the algebraic Bethe anstaz. We will then construct the transfer matrix of the open
ASEP by means of the modified algebraic Bethe ansatz, following [25] and obtain exact expressions for
the eigenvalues and eigenvectors of the deformed Markov matrix along with a set of Bethe equations.
Finally, we will see that a reformulation the Bethe ansatz in terms of TQ-relations yields Bethe
equations in a separated form similar to (2.87).

2.3.1 Mapping to the XXZ spin chain

The XXZ spin chain is one of the most studied system in quantum statistical mechanics and arguably
the prototype of integrable models on one-dimensional lattices. It is defined as follow. Consider a
lattice of L sites each carrying a spin-1/2, that is a local two dimensional Hilbert space Hi = C2.
Those spins are coupled through a nearest neighbour interaction which is isotropic in the directions X
and Y and has a different coupling strength in the Z direction. The boundary sites H1 and HL are
moreover subject to local boundary Hamiltonians B1 and BL which have to satisfy some conditions
to preserve the integrability of the model. The global Hamiltonian acting on the whole chain Hilbert
space H =

⊗L
i=1Hi with integrable boundaries then writes

HXXZ = K1 +KN −
1

2

L−1∑
j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1 − cos η σzjσ

z
j+1

)
(2.104)

with

K1 =
sin η

cosω− + cos δ−

(
i
2(cosω− cos δ−)− sinω− e−iθ1

eiθ1 i
2(cosω+ cos δ+)− sinω+

)
(2.105)

KL =
sin η

cosω+ + cos δ+

(
− i

2(cosω+ − cos δ+)− sinω+ e−iθ2

eiθ2 i
2(cosω+ cos δ+)− sinω+

)
(2.106)

where the matrices σx, σy and σz are the Pauli matrices, and the subscripts indicate on which sites
the operators act non-trivially. The Markov matrix M(µ) of the open TASEP with current counting
deformation on the first bond is then related to HXXZ by the similarity transformation [27]

M(µ) = −√pq U−1HXXZ U with U =
L⊗
j=1

(
1 0

0 ξ
(√

q
p

)j−1

)
(2.107)

where the parameters of both models are related by√
α

γ
= −ieiω−

√
β

δ
= −ieiω+ (2.108)√

p

q
= −eiη

√
α

γ
eµ = eiθ1 (2.109)√

δ

β

(√
q

p

)L−1

= eiθ2 . (2.110)

Due to this mapping, the diagonalization of the open spin chain is then essentially equivalent to that of
the exclusion process. One should note that although the mapping is singular in the totally asymmetric
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limit q = 0, the Bethe equations obtained from the Bethe ansatz on the XXZ chain are still well defined
and give the correct expression for the eigenstates. These equations allowed de Gier and Essler 5 to
compute the exact value of the gap of the open TASEP in [28]. Let us note moreover that the totally
asymmetric case of the ASEP correspond to the infinite anisotropy case of the XXZ chain where the
coefficient of the spin interaction on the z-axis goes to infinity.

By analogy with the idea of classical integrability, expressed by Liouville’s theorem, that a system
is integrable if it possesses enough conserved quantities, the algebraic Bethe ansatz consist in building
and diagonalizing a more general, parameter dependent operator t(x) called the transfer matrix, of
which M(µ) itself is a special case, that is essentially a generating function of the conserved charges of
the system. In what follows we will write this construction directly in terms of the ASEP parameters,
following [26].

2.3.2 Transfer matrix of the open TASEP

Since we will be interested only in the totally asymmetric case in the rest of this work, we will concen-
trate on the TASEP with p = 1 to keep the notations light. The protocol for deriving Bethe equations
and eigenstates expression by Bethe ansatz unfold as follow

i) Local operators acting on (pairs of) local configuration spaces C2 are defined: the R-matrix
and the boundary operators K and K. These operators are related, but not equal, to the bulk
and boundary jump operators w, B1 and BL. They are constructed to satisfy compatibility
conditions: the Yang-Baxter equation and reflection equations, which ensure the integrability of
the model.

ii) Global operators, the monodromy matrix T and the transfer matrix t(x) are constructed as
tensor products of the aforementioned local operators. As a consequence of the Yang-Baxter and
reflection equations, the transfer matrix t(x) satisfies the commutation relation [t(x), t(y)] = 0
for generic values of its variable. In particular one has also −(1/2)t′(1) = M(µ), so that the
diagonalization of M(µ) follows from the derivation of the eigenstates of t(x).

iii) The operators A, B, C and D are defined as block entries of the monodromy matrix T . These
operators satisfy a specific algebra, and their defining relation are used to construct the eigenstates
of t(x).

R-matrix and the Yang-Baxter equation

Let us first define the R-matrix of the open TASEP as

R(x) =


1 0 0 0
0 0 x 0
0 1 1− x 0
0 0 0 1

 (2.111)

This matrix acts on the tensor product C2 ⊗ C2 with basis (|00〉 , |01〉 , |10〉 , |11〉) and depends on a
variable x called the spectral parameter, that we leave free for now. The operator R can act non-trivially
on two sites i and j of the TASEP chain and as the identity else where, which is denoted by Rij(x).
Along with the sites of the chain for 1 ≤ i, j ≤ L, we consider an additional site with index 0, called
the auxiliary space 6. Considering a generic three sites space C2 ⊗ C2 ⊗ C2, the R-matrix satisfies the
Yang-Baxter equation

R12

(
z1

z2

)
R13

(
z1

z3

)
R23

(
z2

z3

)
= R23

(
z2

z3

)
R13

(
z1

z3

)
R12

(
z1

z2

)
(2.112)

5It should be noted that the Bethe ansatz equations for the XXZ chain used by de Gier and Essler were obtained by
different routes to the generalization of the algebraic Bethe ansatz than the one reviewed in the present work [65]. In
particular, they are valid under constraints on the XXZ parameters which account however for all relevant cases in the
asymptotics computations of the spectrum of the ASEP.

6The introduction of the auxiliary space might seem arbitrary in this context, it has however a natural physical
interpretation when considering the Bethe ansatz computation of the partition function of vertex models, see [4, 52]
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Figure 2.2: Diagrammatic representation of the R-matrix of the open ASEP. Each diagram represent
a non-zero entry of operators R(q)

ij (x1/x2), with each leg of the diagram representing the state of the
sites on which the operator acts. Thick lines indicate occupied site and dashed lines empty sites. Lines
marked with incoming arrows represent the input states of the operators, while outgoing lines represent
output states. In what follows, the horizontal lines while represent states belonging to the auxiliary
space, while vertical lines will represent the physical states of spaces 1 to L from left to right. The
R-matrix satisfies the so-called line conservation property: the number of incoming lines is equal to
the number of outgoing lines.

for any values of z1, z2, z3 ∈ C. As we will see, the Yang-Baxter equation encodes the integrability of
the model in the bulk. If we denote by P12 the permutation operator acting on the tensor product of
two sites as P12(|u〉 ⊗ |v〉) = |v〉 ⊗ |u〉, the R-matrix also satisfies the following properties

• unitarity : R12(z)R21(1/z) = Id

• regularity : R(1) = P

• recovering of the local jump operator : P12R
′
12(1) = −mId

The last property connects the R-matrix to the Markov matrix of the process. In the course of the
computation, we will also need the R matrix of the general ASEP with finite q, writing (with p = 1)

R(q)(x) =


1 0 0 0

0 (x−1)q
qx−1

(q−1)x
qx−1 0

0 q−1
qx−1

x−1
qx−1 0

0 0 0 1

 (2.113)

The R-matrix has a nice pictorial representation that can be used to represent the calculations in a
more intuitive way, see figure 2.2. The R-matrix encodes the integrability of the process in the bulk.
We also need operators accounting for the behaviour of the model at the boundaries of the chain.

Matrices K, K and the reflection equation

We define the boundary matrices, also know as reflection operators, K for the left boundary and K
for the right:

K(x) =

(
x(x+a)
ax+1 0
1−x2
ax+1 1

)
K(x) =

(
1 x2−1

x(x+b)

0 bx+1
x(x+b)

)
. (2.114)

where the boundary transition rates are parametrized as

a =
1

α
− 1 b =

1

β
− 1 (2.115)

These matrices act on a single state space C2. As for the R-matrix, when considering the state space
of the whole chain (along with the auxiliary space), the sites on which they act non-trivially will be
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denoted by an index. Considering a generic tensor product of two sites C2 ⊗ C2, the matrix K for the
left boundary satisfies the reflection equation

R12

(
x1

x2

)
K1(x1)R21(x1x2)K2(x2) = K2(x2)R12(x1x2)K1(x1)R21

(
x1

x2

)
. (2.116)

Regarding the right boundary matrix K, a similar relation, the inverse reflection equation, holds for
the general ASEP case but not in the totally asymmetric limit:

R12

(
x2

x1

)−1

K1(x1)R21(x1x2)−1K2(x2) = K2(x2)R12(x1x2)−1K1(x1)R21

(
x2

x1

)−1

(2.117)

with

K
(q)

(x) =

 x(p−q−β+x(β−δ)+δ)
βx2+(p−q−β+δ)x−δ

(x2−1)β
βx2+(p−q−β+δ)x−δ

(x2−1)δ
βx2+(p−q−β+δ)x−δ

β−δ+x(p−q−β+δ)
βx2+(p−q−β+δ)x−δ

 . (2.118)

The computation will thus be made with this matrix K and the limit δ, q → 0 will be taken at the end,
as we need the inverse reflection equation in the course of the construction. The reflection equations
generalizes the Yang-Baxter equation for an open system, and are needed to ensure the integrability
of the system at the boundaries. The boundary matrices satisfy additional properties:

• unitarity : K(x)K(1/x) = K(x)K(1/x) = Id

• regularity (for the general ASEP K): K(1) = K(1) = Id

• recovering of the boundary jump operators : −1
2K
′(1) = B1 and 1

2K
′
(1) = BL.

Here also, the boundary operators K and K are related to the physical Markov jump operators at the
boundaries of the chain. From the right boundary matrix K, one also defines the matrix K̃ as

K̃1(x) = Tr0

[
K0(−x)

(
RT1

01 (2x)−1
)T1

P01

]
(2.119)

=
1

bx+ 1

(
1 1
0 bx

)
. (2.120)

The matrix K̃ satisfies the dual reflection equation

K̃2(x)
(
RT1

21 (x1x2)−1
)T1

K̃1(x1)R21

(
x2

x1

)
= R12

(
x2

x1

)
K̃1(z1)

(
RT2

12 (x1x2)−1
)T2

K̃2(x2)

(2.121)

where �T1 and �T2 denote the partial transposition on spaces 1 and 2. We now dispose of the local
operators needed to construct the monodromy and transfer matrices of the TASEP. These operators
admit a diagrammatic representation that eases computations. A local operator acting on one or two
sites is represented by a set of respectively two or four leged vertices, the form of the legs indicating
the state of the considered site.

Mondromy and transfer matrices

The monodromy matrix is defined as

T0(x) = R0L(
x

zL
)...R01(

x

z1
)K0(x)R10(z1x)...RL0(zLx) (2.122)

where index 0 indicates action on the auxiliary space. The parameters (z1, ..., zL) are called inhomo-
geneities. They are needed to derive the eigenstates of the Markov matrix, which are recovered when
taking the limit (z1, ..., zL) = (1, ..., 1). In general, we will not write explicitly the dependency of our
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Figure 2.3: Diagrammatic representation of the boundary operators K and K̃.

expression on the inhomogeneity parameters (assuming that they are pairwise distinct), except when
needed in the computations. From the monodromy matrix, one also defines the transfer matrix

t(x) = Tr0

[
K̃(x)T (x)

]
. (2.123)

where the partial trace is taken on the auxiliary space. The main property of the transfer matrix is
the commutation relation

[t(x), t(y)] = 0 ∀x, y ∈ C . (2.124)

The proof of this commutation relation [92] is a direct consequence of the reflection equations and of
the cyclic property of the trace. Denoting by the index a and b two different copies of the auxiliary
space, let us prove (2.124):

t(x)t(y) = Tra

[
K̃a(x)Ta(x)

]
Trb

[
K̃b(y)Tb(y)

]
(2.125)

= Tra

[
K̃a(x)TaTa(x)Ta

]
Trb

[
K̃b(y)Tb(y)

]
(2.126)

= Tra,b

[
K̃a(x)TaK̃b(y)Ta(x)TaTb(x)

]
(2.127)

= Tra,b

[
K̃a(x)TaK̃b(y)

(
Rb,a(xy)Ta

)−1 (
Rb,a(xy)Ta

)
Ta(x)TaTb(x)

]
(2.128)

= Tra,b

[(
K̃b(y)

((
Rb,a(xy)Ta

)−1
)Ta

K̃a(x)

)Ta

(Ta(x)Rb,a(xy)Tb(y))Ta

]
(2.129)

= Tra,b

[(
K̃b(y)

((
Rb,a(xy)Ta

)−1
)Ta

K̃a(x)Rba

(y
x

))(
Rab

(
x

y

)
Ta(x)Rb,a(xy)Tb(y)

)]
(2.130)

where we have used the fact that operators acting on different spaces commute, and inserted the
unitarity relation of the R-matrix in the last equality. Besides, one shows by applying several times
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(2.116) that the monodromy matrix also satisfies the reflection equation

Rab

(
x

y

)
Ta(x)Rba(xy)Tb(y) = Tb(y)Rab(xy)Ta(x)Rba

(
x

y

)
. (2.131)

By applying (2.121) and (2.131) to equality (2.130), we can exchange the position of matrices Ta(x)
with Tb(y) and K̃a(x) with K̃b(y). Applying the equalities (2.125)-(2.130) in reverse order, we finally
obtain t(x)t(y) = t(y)t(x).

Besides commutation relation (2.124), the Markov matrix is also recovered as the derivative of the
transfer matrix:

−1

2
t′(1) = M(µ) . (2.132)

This is proved by using the regularity property of reflection andR-matrices and the identities connecting
them to local update operators:

t′(1) = Tr0

[
K̃ ′0(1)P0L...P01 K0(1) P10...PL0

]
(2.133)

+

L−1∑
k=1

(
Tr0

[
Id...P0(k+1)R

′
0k(1)...Id...

]
+ Tr0

[
Id...Id...P(k+1)0R

′
k0(1)...

])
+ Tr0

[
Id R′0L(1)...

]
+ Tr0

[
...R′L0(1)

]
+ Tr0

[
K̃0(1)...K ′0(1)...

]
= Tr0

[
K̃0(1)

]
P01K

′
1(1) + 2

L−1∑
k=1

(
Tr0

[
K̃0(1)

]
Pk,k+1Rk,k+1(1)

)
(2.134)

− d

dx
Tr0

[
K̃0

(
1

z

)
R0L

(
1

z2

)
P0L

]∣∣∣∣
x=1

= K1(1) + 2
L−1∑
k=1

Pk,k+1R
′
k,k+1(1)−K ′L(1) (2.135)

−1

2
t′(1) = B1 +

L−1∑
k=1

mk,k+1 +BL = M(µ) . (2.136)

Deriving equation (2.124) with respect to one variable, we see that the Markov matrix commutes with
the transfer matrix for any value of the spectral parameter, so that they are diagonalizable in the same
basis of eigenvectors. We will see that the Bethe ansatz offers a systematic way of constructing the
eigenstates of the transfer Matrix. Moreover, defining the operators

Qk =
dk

dxk
log t(x)

∣∣∣∣
x=1

, (2.137)

commutation relation (2.124) implies that the operators Qk commute with M(µ) and commute with
each other so that their eigenvalues are independent conserved charges of the system. Thus we dispose of
a large family of conserved quantities in analogy with the Liouville integrability of classical Hamiltonian
systems. We are now left with diagonalizing the transfer matrix.

2.3.3 Modified Bethe ansatz for the transfer matrix of open TASEP

Recalling the definition of the monodromy matrix, we can write it as a Kronecker product over the
auxiliary site 0 with block entries A,B,C and D:

T0(x) =

(
A(x) B(x)
C(x) D(x)

)
. (2.138)
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i = 1 i = 2 i = L

t(x) =

i = 1 i = 2 i = L

A(x) =

i = 1 i = 2 i = L

B(x) =

i = 1 i = 2 i = L

C(x) =

i = 1 i = 2 i = L

D(x) =

Figure 2.4: Diagrammatic representation of the transfer matrix and block operators of the monodromy
matrix. Summation is implied over the possible states of blue edges. The exterior edges are the input
and output states of the sites of the chain on which these operators act. Each diagram represents an
element of the operators acting on the tensor product C⊗L, whose value is the product of the values
of the elementary vertices
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As we mentioned earlier, the monodromy matrix satisfies the reflection equation (2.131), from which
one can deduce the following relations between the block operators:

[C(x), C(y)] = 0 (2.139)

D(x)C(y) =
x(xy − 1)

y − x
C(y)D(x)− y(xy − 1)

y − x
C(y)D(x)− C(y)A(x) . (2.140)

In the usual formalism of the algebraic Bethe ansatz for periodic systems, operators B and C are
naturally interpreted as respectively creation and annihilation operators of one particle excitations
and eigenstates are then built by applying repeatedly B(x) on some vacuum state. Here however this
approach cannot be used straightforwardly as the open TASEP lacks a proper vacuum state, because
the number of particle is not conserved by the evolution.

The modified algebraic Bethe ansatz for the open ASEP as developed in [26] consists in looking for
the eigenvectors of t(x) under the form

|Ψ(u1, ..., uL)〉 = C(u1)C(u2)...C(uL) |Ω〉 (2.141)

where the pseudo-vacuum state |Ω〉 is the state corresponding to the full occupation of the system with
probability 1:

|Ω〉 = |1〉1 ⊗ |1〉2 ⊗ ... ⊗ |1〉L . (2.142)

The parameters (u1, ..., uL) are the Bethe roots of the algebraic Bethe ansatz, and satisfy a set of
polynomial equations that we will derive. As in the case of the periodic ASEP, several sets of solution
correspond to different eigenstates of the transfer matrix (or equivalently of the Markov matrix), and
the corresponding eigenvalue is expressed as a rational function of the uj . The transfer matrix writes

t(x) = Tr0

[
K̃0(x)T0(x)

]
=

1

bx+ 1
(A(x) + bxD(x) + C(x)) . (2.143)

We will first compute the action of t(x) by determining the action operators A, B, C and D on |Ψ〉
with generic values of (u1, ..., uj), and then find conditions on them to ensure that |Ψ〉 is indeed an
eigenvector of t(u0) for a given value of the spectral parameter u0, which will take the form of the
Bethe equations.

Action of operators A, C and D on vector |Ψ〉

Starting with A(x), there is no convenient relation similar to (2.139) and (2.140) allowing to permute
A(x) and C(x) up to additional terms in the totally asymmetric limit. However, there is one for q 6= 0.
Using now the general ASEP R-matrix

R(q)(x) =


1 0 0 0

0 (x−1)q
qx−1

(q−1)x
qx−1 0

0 q−1
qx−1

x−1
qx−1 0

0 0 0 1

 (2.144)

we denote by T (q)
0 (x) the monodromy matrix defined using R(q)(x) in place of the totally asymmetric

R(x), and A(q)(x), B(q)(x), C(q)(x) the corresponding block operators. From the reflection equation
(2.131) which is still satisfied by T (q)

0 (x), one deduces the following relation

A
(q)

(x)C(q)(x) =
(q2xy − 1)(qx− y)

q(x− y)(qxy − 1)
C(q)(y)A

(q)
(x)− (q − 1)(q2xy − 1)x

q(x− y)(qx2 − 1)
C(q)A

(q)
(y) (2.145)

+
xy(q − 1)(y2 − 1)(q2x2 − 1)

(qxy − 1)(qx2 − 1)(qy2 − 1)
C(q)(x)D(q)(y) (2.146)
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with

A
(q)

= A(q)(x) +
(1− q)x2

qx2 − 1
D(x) . (2.147)

Relation (2.146) is indeed singular when q → 0. Similarly, the generalization of identity (2.140) for
q 6= 0 writes

D(q)(x)C(q)(y) =
(x− qy)(xy − 1)

(qxy − 1)(x− y)
C(q)(y)D(q)(x) +

(q − 1)(y2 − 1)y

(x− y)(qy2 − 1)
C(q)(x)D(q)(y) (2.148)

+
q − 1

qxy − 1
C(q)(x)A(q)(y)

which has (2.140) as limit when q → 0. Let us now compute the action of these operators on |Ω〉. It is
convenient to use the diagrammatic representation of the operators, see figure 2.4. One easily checks
that the only non zero diagram contributing to the action of D(x) on |Ω〉 is such that

Similarly, the action of the operator A(q) can be computed by suming all contributing diagrams, as

Finally one gets

D(x) |Ω〉 = |Ω〉 (2.149)

A
(q) |Ω〉 = qL

x(x2 − 1)(qx+ a)

(xa+ 1)(qx2 − 1)

(
(1− x)2

(1− qx)2

)L
|Ω〉 . (2.150)

As a side note, using the same diagrammatic reasoning, one easily checks that operator B(x) is in fact
0, so that

B(x) |Ω〉 = 0 . (2.151)

Knowing the action of A(x) and D(x) on |Ω〉 and the relations (2.140) and (2.146), one gets in the
limit q → 0:

A(u0) |Ψ(u1, ...uL)〉 =

L∑
p=0

u0up(u
2
p − 1)

upu0 − 1

L∏
k=0
k 6=p

(
up(upuk − 1)

uk − up
C(uk)

)
|Ω〉 (2.152)

−
L∑
p=0

aup(u
2
p − 1)

aup + 1
(up − 1)2L

L∏
k=0
k 6=p

uk
uk − up

C(uk) |Ω〉 (2.153)

D(u0) |Ψ(u1, ..., uL)〉 =

L∑
p=0

u2
p − 1

upu0 − 1

L∏
k=0
k 6=p

up(upuk − 1)

uk − up
C(uk) |Ω〉 . (2.154)
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The computation of the action of C(x) on |ψ(u1, ..., uL)〉 is more involved as many diagrams con-
tribute to the action on |Ω〉. In particular, |Ω〉 is not an eigenstate of C(x). In order to compute
C(u0) |Ψ(u1, ..., uL)〉, let us first define the vector

V(x) = eµ
1− x2

x(ax+ 1)

L∏
j=1

(x− zj)
(
x− 1

zj

) L∏
l=0

(
ul

ul − x
C(ul)

)
C(x)−1 |Ω〉 . (2.155)

The inhomogeneity parameters (z1, ..., zL) are assumed here to be all distinct. Computing the residues
of V(x), we will use the fact the sum of all residues of a rational function is zero to obtain the expression
of C(u0) |Ψ(u1, ..., uL)〉. We first need to introduce a similarity transformation, or factorizing twist of
the operator C(x), depending on the inhomogeneities 7. With

Fj,j+1...L = 1− n̂j + n̂jRjL(zj/zL) ... Rjj+1(zj/zj+1) with n̂ =

(
0 0
0 1

)
(2.156)

one defines the operator

F12...L = FL−1,LFL−2,L−1L ... F1,23...L (2.157)

acting on (C2)⊗L, and the transformed C(x) operator

CF(x) = F12...LC(x)F−1
12...L . (2.158)

One can show from the results of [60], which originally introduced this change of basis, that CF(x)
and CF(x)−1 have the following explicit coordinate expression

CF(x) =
1− x2

ax+ 1

[
L∑
i=1

x(zi + a)σ+
i

∏
j=1
j 6=i

(
(1− zix)n̂j +

x− zj
zi − zj

(1− n̂j)
)

(2.159)

+ eµ
L∏
j=1

(
(1− zjx)n̂j +

x− zj
zj

(1− n̂j)
)]

CF(x)−1 |Ω〉 =
(ax+ 1)e−µ

(1− x2)
∏L
j=1(x− zj)(x− 1/zj)

(2.160)

×
∑

{ni}∈{0,1}L

 L∏
j=1

[
(ni − 1)e−µ(a+ zi)x+ ni

(zi − x)

zi

] L⊗
i=1

eni .

One checks besides that F12...L |Ω〉 = |Ω〉. Replacing C(x) by CF(x) in expression (2.155), one finds

F1...LV(x) = eµ
1− x2

x(ax+ 1)

L∏
j=1

(x− zj)
(
x− 1

zj

) L∏
l=0

(
ul

ul − x
CF(ul)

)
CF(x)−1 |Ω〉 . (2.161)

As we can see from (2.159) and (2.160), the only poles of F1...LV(x) – or equivalently of V(x) – are
x = 0 and (u0, ..., uL), while 1,−1,−1/a, zj , 1/zj are non-essential singularities and there is no pole at
infinity.

The residues of F1...LV(x) thus write

Resx=0 V(x) = eµ
L∏
l=0

C(ul)C(0)−1 |Ω〉 (2.162)

Resx=up V(x) = −eµ
1− u2

p

aup + 1

L∏
j=1

[
(up − zj)

(
up −

1

zj

)]∏
k=0
k 6=p

(
uk

uk − up
C(uk)

)
|Ω〉 . (2.163)

7It is necessary to have distinct inhomogeneity parameters in order for the matrix F1...L to be invertible
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Finally, using the fact that V(x) vanishes at infinity, one gets

lim
R→∞

1

2iπ

∫
|z|=R

V(r)dz =
∑

x=0,u1,...,up

ResxV(x) = 0 . (2.164)

Then, using the fact that

F−1
12...LC

F (0) |Ω〉 = C(0)−1 |Ω〉 = e−µ |Ω〉 , (2.165)

one deduces, taking all inhomogeneities to 1,

C(u0) |Ψ(u1, ..., uL)〉 = eµ
L∑
p=0

1− u2
p

aup + 1
(up − 1)2L

L∏
k=0
k 6=p

(
uk

uk − up
C(uk)

)
|Ω〉 . (2.166)

Now that the action of all non-zero block entries of T0(x) on the putative eigenvector |Ψ(u1, ..., uL)〉
are known, we can compute the action t(x) |Ψ〉 of the transfer matrix and derive the Bethe equations.

Action of the transfer matrix on |Ψ〉 and Bethe equations

Using (2.143), the action of the transfer matrix on |Ψ〉 writes

t(u0) |Ψ(u1, .., uL)〉 =
1

bu0 + 1
(A(u0) + bu0D(u0) + C(u0)) |Ψ(u1, ..., uL)〉 (2.167)

= Λ(u0) |Ψ〉+

L∑
p=1

u0(u2
p − 1)

(u0 − up)(bu0 + 1)
Up

L∏
k=0
k 6=p

C(uk) |Ω〉 (2.168)

where

Λ(u0) = uL+1
0

b+ u0

bu0 + 1

L∏
k=1

u0uk − 1

uk − u0
− (au0 + eµ)(u2

0 − 1)

(au0 + 1)(bu0 + 1)
(u0 − 1)2L

L∏
k=1

uk
uk − u0

, (2.169)

Up = (b+ up)u
L
p

L∏
k=1
k 6=p

upuk − 1

uk − up
− aup + eµ

aup + 1
(up − 1)2L

L∏
k=0
k 6=p

uk
uk − up

. (2.170)

Thus, a necessary condition for |Ψ(u1, ..., uL)〉 to be indeed an eigenvector of t(u0) is the vanishing of
all Up, that is

(auj + eµ)(uj − 1)2L = uLj (uj + b)(auj + 1)
L∏
k=1
k 6=j

(
uj −

1

uk

)
∀ 1 ≤ j ≤ L (2.171)

which are the Bethe ansatz equations for the open TASEP. In particular, deriving the polynomial
Λ, the expression of the eigenvalue of the deformed Markov matrix M(µ) corresponding to a given
solution of the Bethe equations (u1, ..., uL) writes

E(µ) = −β −
L∑
p=1

up
up − 1

. (2.172)

The main difference between these equation and those of the periodic case (2.86) is the absence of the
separability property, which makes their resolution much harder. It is however possible to derive a
more convenient set of Bethe equation to work with, by means of the so-called TQ-relation formalism.
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2.3.4 Polynomial TQ-relation for the open TASEP

The TQ-relation is a way of formulating the Bethe ansatz which allows to compute the eigenvalues
of an integrable operator, without however providing a systematic construction of the eigenvectors.
The TQ-relation method was originally introduced by Baxter to compute the partition function of
the 8-vertex model [76]. We saw that the integrability of the process is essentially expressed by the
commutation property of the transfer matrix [t(x), t(y)] = 0. Let us suppose that there exists another
operator q(z) depending on another spectral parameter such that

[t(x), q(z)] = [q(x), q(z)] = 0 ∀x, z ∈ C (2.173)

Let us suppose moreover that the eigenvalues of q(z) and t(z) are polynomial in z – or equivalently that
the entries of q(z) and t(z) are rational functions of z – and that the following algebraic TQ-relation,
written here in its most general form, holds

t(z)q(z) = q(z)t(z) = F (z, q(z), q(z−1)) (2.174)

where F is an operator-valued functional of z and q which has entries meromorphic in z. If we denote
by T (z) and Q(z) the eigenvalues of t(z) and q(z) respectively, which are polynomial functions of z,
the fact that q(z) and t(z) are commuting operators and thus can be diagonalized in a common basis
implies, with relation (2.174), that

T (z)Q(z) = F (z,Q(z), Q(z−1)) (2.175)

which is the polynomial TQ-relation. In particular, denoting by {z1, ..., zM} the roots of Q(z), the
residues of T (z) at the zi are zero by analyticity, so that one gets

f(zi, Q(zi), Q(z−1
i )) = 0 ∀ 1 ≤ i ≤M , (2.176)

which are precisely the Bethe equations in this formalism. The explicit construction of an operator
Q satisfying these properties is possible for some integrable models, most notably for the eight-vertex
model to which it was first applied. As we will see in next section, it is possible to construct a Q-
operator for the open TASEP, however one can immediately cast the expression of the eigenvalue Λ
(2.169) and the Bethe equations (2.171) into the form of the polynomial TQ-relation

Λ(x)Q(x) = x2L+1 b+ x

bx+ 1
Q(1/x)− (x− 1)2L(ax+ eµ)(x2 − 1)

(ax+ 1)(bx+ 1)
(2.177)

with

Q(x) =
L∏
k=1

(
1− x

uk

)
(2.178)

where the {uj}1≤j≤L are the Bethe roots derived by algebraic Bethe ansatz. The right hand side of this
relation is indeed the zero term in the Bethe equations (2.171). As Crampé and Nepomechie pointed
out in [25], there exists another TQ-relation satisfied by the polynomial Λ and a second polynomial Q
defined by

Q(x) =

L+2∏
k=1

(x− uk) (2.179)

writing

Λ(x)Q(x) = xL(x+ b)(x+ a)e−µ +Q(0)
(1− x)2L+2(x+ 1)2

(ax+ 1)(bx+ 1)
eµ (2.180)
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Λ(1) Λ(2) Λ(3) Λ(4)

L = 1 x3

2
− x2 − x

2
+ 1 3x3

8
− x2

2
− 3x

8
+ 1

2
7x3

48
− x2

6
− 7x

48
+ 1

6
5x3

128
− x2

24
− 5x

128
+ 1

24

L = 2 4x3

5
− 4x2

5
− 4x

5
+ 1 78x3

125
− 38x2

125
− 78x

125
+ 1

2
2366x3

9375
− 686x2

9375
− 2366x

9375
+ 1

6
2189x3

31250
− 1187x2

93750
− 2189x

31250
+ 1

24

L = 3 13x3

14
− 4x2

7
− x + 1 1965x3

2744
− 85x2

1372
− 157x

196
+ 1

2
229399x3

806736
+ 20609x2

403368
− 4789x

14406
+ 1

6
8131699x3

105413504
+ 4521569x2

158120256
− 2132863x

22588608
+ 1

24

Table 2.1: First coefficients of the expansion of polynomial Λ(x) in powers of µ for different system
sizes, obtained by solving TQ relation (2.177) or (2.180) for a = b = 0.

and corresponding to the Bethe roots {uj}1≤j≤L+2 and the L+ 2 Bethe equations

uLj (uj + b)(uj + a)(auj + 1)(buj + 1) = (−1)L+1e2µ(1− uj)2L+2(uj + 1)2
L+2∏
k=1

uk . (2.181)

We see that that these Bethe equation can be written in separated form

f(uj) = (−1)L+1e2µ
L+2∏
k=1

uk , (2.182)

f(x) =
xL(x+ a)(x+ b)(ax+ 1)(bx+ 1)

(1− x)2L+2(x+ 1)2
. (2.183)

The equivalence between these two relations has not been rigorously proven, but it can be verified by
looking at the first orders of the expansion of both relations in powers of µ. We look for the polynomial
Λ(x) under the form

Λ(x) = 1 +
∞∑
k=1

µkΛ(k)(x) (2.184)

Λ(j)(x) =
1

(ax+ 1)(bx+ 1)

L+2∑
k=0

`
(j)
k xk (2.185)

By taking the limit x→ 0 in the first TQ relation (2.177), one checks that Λ(0) = eµ so that `(j)0 = 1
j! .

We also write the series expansion of Q and Q as follow

Q(x) =
∞∑
k=0

µkQ(k)(x) Q(x) =
∞∑
k=0

µkQ(k)(x) , (2.186)

Q(0)(x) =

L∑
k=0

q
(0)
k xk Q

(0)
(x) =

L+2∑
k=0

q
(0)
k xk , (2.187)

Q(j)(x) =
L∑
k=1

q
(0)
k xk Q

(j)
(x) =

L+2∑
k=0

q
(j)
k xk . (2.188)

This choice of expansion is not the only one possible, yet in the case µ = 0, one gets Λ(x) = 1 and the
corresponding eigenvalue of the Markov matrix is E = 0, so that this choice corresponds to the ground
state solution of the Bethe equations. Injecting these expression in TQ relations (2.177) and (2.180),
one can determine coefficients `(j)k , q(j)

k and q(j)
k respectively by solving linear equations. The solution

of both TQ relations for the coefficients `(j)k of the polynomial Λ(x) are indeed the same for the first
orders j in µ and small system size (see table 2.1). We thus dispose of a second set of Bethe equations
(2.181) which we can exploit to write down an explicit expression of the ground state eigenvalue of
M(µ).

2.3.5 Ground state eigenvalue E(µ) from Bethe equations

In what follows, we will only use the second set of Bethe equations (2.181) so that the Bethe roots
uj will be written uj for 1 ≤ j ≤ L + 2 in the rest of this work unless stated otherwise. Let us first
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compute the explicit expression of E(µ) as a function of the Bethe roots. From the second TQ-relation
(2.180) one gets

E(µ) =
xL(x+ a)(x+ b)

eµQ(x)
+ eµ

Q(0)

Q(x)

(1− x)2L+2(x+ 1)2

(ax+ 1)(bx+ 1)
. (2.189)

Besides, one obtains Λ(1) = 1 from the first TQ-relation (2.177), which implies

Q(1) =
e−µ

αβ
(2.190)

so that the ground state eigenvalue writes

E(µ) = 1− α+ β

2
+

1

2

L+2∑
j=1

u1

1− uj
. (2.191)

From here, we can compute E(µ) under a more explicit form, following the same procedure as in 2.2.1.
We define the following functions and parameters

h(z) =
(1− z)2L+2(z + 1)2

zL(az + 1)(bz + 1)(z + a)(z + b)
(2.192)

B = (−1)L+1e2µ
L+2∏
k=1

uj (2.193)

so that the Bethe roots {uj}j≤L+2 and the definition of parameter B give the following equations

1−Bh(uj) = 0 1 ≤ j ≤ L+ 2 , (2.194)

µ =
1

2

L+2∑
i=1

log

(
−B

1/(L+2)

yi

)
. (2.195)

Note that the function h defined above is actually equal to h(z) = −F (−z) where F is the function
(2.57) that was obtained by matrix ansatz. We see that both E(µ) and µ are expressed as a sum over
the set of Bethe roots. A careful study of the Bethe ansatz equations (that will be done in chapter 3)
shows that for µ small enough, the roots of 1−Bh(z) which are indeed the Bethe roots for the ground
state are the L + 2 roots located within the unit disk. For now, we will admit this fact to compute
E(µ), so that these sum may be rewritten as contour integrals on the unit circle:

µ =
1

2

L+2∑
i=1

f(ui) = −1

2

∫
|z|=1

dz

2iπ
f(z)

−Bh′(z)
1−Bh(z)

with f(z) = log

(
−B

1/(L+2)

z

)
, (2.196)

E(µ) =
1

2

L+2∑
i=1

g(ui) = −1

2

∫
|z|=1

dz

2iπ
g(z)

−Bh′(z)
1−Bh(z)

with g(z) =
z

1− z
+

2− α− β
L+ 2

. (2.197)

Integrating by part, we get

µ =
1

2

∫
|z|=1

dz

2iπz
log(1−Bh(z)) , (2.198)

E(µ) =
1

2

∫
|z|=1

dz

2iπ(1 + z)2
log(1−Bh(z)) . (2.199)

Expanding these expression in series of B we obtain the following parametric expressions

µ = −
∞∑
k=1

Ck
Bk

2k
with Ck =

∫
|z|=1

dz

2iπz
h(z)k (2.200)

E(µ) = −
∞∑
k=1

Dk
Bk

2k
with Dk =

∫
|z|=1

dz

2iπ(1 + z)2
h(z)k (2.201)
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In the case α = β = 1, the coefficients Ck and Dk can be computed exactly for finite values of L. The
integrand in the expression of coefficient Ck has a single pole of order k(L + 2) + 1 at z = 0 and can
be computed easily with residues theorem

Ck =

∫
|z|=1

dz

2iπz
h(z)k (2.202)

= Resz=0

(
h(z)k

)
(2.203)

=
1

[k(L+ 2)]!

dk(L+2)

dzk(L+2)

[
(1− z)k(2L+2)(z + 1)2k

]∣∣∣∣∣
x=0

(2.204)

= (−1)k(L+1) (2k)!

k!

[2k(L+ 1)]!

[k(L+ 1)]![k(L+ 2)]!
. (2.205)

Similarly, the integrand of coefficient Dk has a pole of order k(L+ 2) at z = 0 and the computation of
Dk gives

Dk = Resz=0

(
(1− z)k(2L+2)(z + 1)2(k−1)

zk(L+2)

)
(2.206)

=
1

[k(L+ 2)− 1]!

dk(L+2)−1

dzk(L+2)−1

[
(1− z)k(2L+2)(z + 1)2(k−1)

]∣∣∣∣∣
x=0

(2.207)

= (−1)k(L+1) (2k)!

k!

[2k(L+ 1)− 2]!

[k(L+ 1)− 1]![k(L+ 2)− 1]!
. (2.208)

Since B in expressions (2.200)-(2.201) is a dummy parameter that has to be eliminated between the
two equations to get E as a function of µ, the factor (−1)k(L+1) can be incorporated in Bk, so that
the parametric expression of E(µ) writes

µ = −
∞∑
k=1

(2k)!

k!

[2k(L+ 1)]!

[k(L+ 1)]![k(L+ 2)]!

Bk

2k
(2.209)

E(µ) = −
∞∑
k=1

(2k)!

k!

[2k(L+ 1)− 2]!

[k(L+ 1)− 1]![k(L+ 2)− 1]!

Bk

2k
(2.210)

From these expressions, the exact values of the first cumulant of the current can be obtained, see
chapter 4. Let finally us make a remark that relates the open TASEP to the periodic one. Making
the change of variables yj = 1 − e−µzj in the Bethe equations (2.86) of the periodic case and the
corresponding expression of E(µ), setting the number of particle to N = L + 2 and the size of the
periodic system to L′ = 2L + 2, it is straightforward to check that for α = 1 and β = 1/2, the
expression of the eigenvalue and the Bethe roots (i.e. the second set of equations (2.181) obtained by
the TQ-relation in the open case) are identical for the open TASEP of size L with fugacity µ/(L+ 1)
8 and for the periodic TASEP of size 2L + 2 with L + 2 particles. Thus, the spectrum of the open
TASEP on the boundary between the maximal current and the low density phase is a subset of that
of the periodic TASEP with appropriate size and number of particles.

2.4 Q operator method for the ground state of the TASEP

In this section we outline the so-called Q-operator construction used by Lazarescu and Pasquier in [57]
to compute the exact expression of the ground state eigenvalue of the deformed Markov matrix M(µ)
in an alternate way. This construction is essentially a generalization of the matrix product ansatz to
the deformed Markov matrix. Instead of giving an expression for the stationary distribution however,

8We recall that the Bethe equation were obtained with a current counting deformation on all bonds for the periodic
ASEP and on a single bond for the open case, so that this rescaling of the fugacity by the system size is expected from
the similarity relation between both deformations, see equation (1.74)
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it will yield an new TQ relation for the ground state eigenvalue of M(µ). Generalizing operators e and
d defined by (2.1) from the matrix product ansatz for the non-deformed Markov matrix, we introduce
the following algebra

de− qed = (1− q)(1− x2A2) (2.211)
dA− qAd = 0 (2.212)
Ae− qeA = 0 (2.213)

where A is an additional operator and x is a free parameter. One also introduce the current counting
deformation of operator A defined by the relations

dAµ − e−µAµd = 0 , (2.214)
eAµ − eµAµe = 0 . (2.215)

These operators have the following infinite dimensional representation

d =
∞∑
n=1

(1− qn)‖n− 1〉〉〈〈n‖ , (2.216)

e =

∞∑
n=0

(1− x2qn)‖n+ 1〉〉〈〈n‖ , (2.217)

A =
∞∑
n=0

qn‖n〉〉〈〈n‖ , (2.218)

Aµ =

∞∑
n=0

e−nµ‖n〉〉〈〈n‖ . (2.219)

Let us define the matrix

X(x) =

(
1 + xA e
d 1 + xA

)
(2.220)

which can be thought of as acting on the tensor product C2⊗A of a single local space of the chain and
the infinite representation space A of the algebra satisfied by d,e,A and Aµ. Generalizing the boundary
vectors of the matrix ansatz we introduce two pairs of vectors ‖V 〉〉, 〈〈W‖ and ‖Ṽ 〉〉, 〈〈W̃‖ such that
the following relations hold

〈〈W‖ [α(e+ 1 + xA)− γ(d+ 1 + xA)− (1− q)Id] = 0 , (2.221)
[β(d+ 1 + xA)− δ(e+ 1 + xA)− (1− q)Id] ‖V 〉〉 = 0 , (2.222)

〈〈W̃‖ [α(e− 1− xA)− γ(d− 1− xA) + (1− q)xA] = 0 , (2.223)

[β(d− 1− xA)− δ(e− 1− xA) + (1− q)xA] ‖Ṽ 〉〉 = 0 , (2.224)

which generalize (2.1)-(2.3) for x 6= 0. For each of the two aforementioned pairs of boundary vectors
we now introduce so-called transfer matrices Uµ(x) and Tµ(x) defined as

Uµ(x) = 〈〈W‖Aµ
L∏
i=1

X(i)(x)‖V 〉〉 , (2.225)

Tµ(x) = 〈〈W̃‖Aµ
L∏
i=1

X(i)(x)‖Ṽ 〉〉 , (2.226)

with X(i) = Id ⊗ ... ⊗X
i

(x) ⊗ ... ⊗ Id acting on the tensor product
(
C2
)⊗L ⊗ A. The matrices Uµ(x)

and Tµ(x) act on the configuration space of the chain. If C = {n1, ..., nL} and C′ = {n′1, ..., n′L} are
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two configurations the chain with different sets of occupation numbers, the entries of Uµ(x) and Tµ(x)
as product of matrix ansatz operators are

〈
C′
∣∣Uµ(x) |C〉 = 〈〈W‖Aµ

L∏
i=1

Xn′i,ni
(x)‖V 〉〉 , (2.227)

〈
C′
∣∣Tµ(x) |C〉 = 〈〈W̃‖Aµ

L∏
i=1

Xn′i,ni
(x)‖Ṽ 〉〉 . (2.228)

The transfer matrices Uµ and Tµ satisfy the following commutation relations

[Uµ(x)Tµ(y), Uµ(x′)Tµ(y′)] = 0 ∀ x, y ∈ C (2.229)
[Uµ(x)Tµ(y),M(µ)] = 0 (2.230)

which are analogous to the commutation relations satisfied by the transfer matrix of the algebraic
Bethe ansatz. The proof of these relations is rather lengthy and can be found in [57]. From Tµ(x) and
Uµ(x) one defines two matrices P (x) and Q(x) as

P (x) = Uµ(x)Uµ(0)−1 (2.231)

Q(x) = (1− e−µ)−1Uµ(0)Tµ(x) (2.232)

which are such that

[P (x), Q(y)] = 0 , (2.233)
Uµ(x)Tµ(x) = (1− e−µ)P (x)Q(x) . (2.234)

By construction, P (x) and Q(x) also commute with M(µ). Moreover, it is possible to derive a TQ-
relation from these two operators as

P (x)Q(1/x) = F (x)Id + e−2µP (qx)Q(q/x) (2.235)

where F (x) is in fact the same function as (2.56). One recovers the deformed Markov matrix from
operator Q(x) as

M(µ) =
1

2
(1− q) d

dx
log

(
Q(q/x)

Q(1/x

)∣∣∣∣
x=−1

. (2.236)

The commutation of P (x), Q(x) and M(µ) allows us to diagonalize them in a common basis. We now
restrict the expressions obtained above to the sector of the ground state eigenvalue, denoting by P(x),
Q(x) and E the eigenvalues of P (x), Q(x) and M(µ) respectively. We also denote by B the eigenvalue
in the ground-state sector of operator −e−µQ(0)−1. Parameter B plays a similar role as in the previous
section. Defining the function

W(x) = −1

2
log

(
P(x)Q(1/x)

e−2µP(qx)Q(q/x)

)
. (2.237)

It can be shown that the function W can be written as a solution to the functional equation

W(x) = −1

2
log

(
1−BF (x) exp

[∮
|y|=1

dy

2iπy
W(y)K(x, y)

])
(2.238)

with the convolution kernel

K(x, y) = 2
∞∑
k=1

qk

1− qk

((
x

y

)k
+

(
x

y

)−k)
. (2.239)
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Relation (2.236) can be rewritten as a contour integral for the ground state eigenvalue as

E(µ) =
1

2
(1− q)

∮
|z|=1

dz

2iπ(1 + z)2
log

(
Q(q/z)

Q(1/z)

)
(2.240)

with µ = −W(0) fixed by considering the limit x → 0 in the closed form expression (2.237) of W(x).
Here, W is an unknown function that has to be determined for each value of µ. Assuming now that
P(x) is holomorphic and has no zero within the unit circle, the term log(P (x)/P (qx)) in (2.237) does
not contribute in the last integral so that E(µ) finally has the parametric expression

µ = −
∮
|z|=1

dz

2iπz
W(z) , (2.241)

E(µ) = −(1− q)
∮
|z|=1

dz

2iπ(1 + z)2
W(z) . (2.242)

As in last section, formulas have a much simpler form in the totally asymmetric case. In particular,
the convolution kernel K(x, y) is zero when q = 0 and the function W can be computed explicitly by
developing (2.238) in series of B :

W(x) =
∞∑
k=1

F (x)k

2k
Bk . (2.243)

Casting this expansion of W in (2.241) and (2.242), one recovers the expressions (2.200) and (2.201)
that where obtained by Bethe ansatz.9

2.5 Determination of the eigenvectors

Our discussion so far has been essentially focused on the computation of the eigenvalues of matrix
M(µ). Recalling the expression of the scaled cumulant generating function of the current at finite time
with initial state |P0〉 obtained in section 1.4.1

〈eµOt〉 =
2L−1∑
n=0

〈1|ψn(µ)〉 〈ψn(µ)|P0〉 eEn(µ)t (2.244)

where the {|ψn〉} are the eigenvectors associated with the eigenvalues {En}, we see that the expression
of the coordinates of the eigenvectors are needed to compute the statistics of the current. These
expressions were already computed for the periodic case, as expressions (2.62) and (2.84) give the
coordinate of the eigenvectors (or wavefunctions) up to a global normalizing factor. In the totally
asymmetric case, the coordinates of the right and left eigenvectors of the periodic M(µ) corresponding
to a given set of Bethe roots ~z = (z1, ..., zN ) also have the following expression [61] in terms of
determinants

〈x1, ..., xN |ψ~z(µ)〉 = det
[
(1− zje−µ)−kzxkj

]
j,k∈J1,NK

(2.245)

〈ψ~z(µ)|x1, ..., xN 〉 = det
[
(1− zje−µ)kz−xkj

]
j,k∈J1,NK

(2.246)

where |x1, ..., xN 〉 is the basis vector of the configuration space corresponding to particles in the posi-
tions 1 < x1 < ... < xN .

Such expressions are currently missing for the eigenvectors of the open TASEP. Our first attempt
at getting an expression for the wavefunctions in the open case was to look at the case β = 1, α = 1/2
where the spectrum ofM(µ) for the open chain is as subset of the one of the periodic chain. It appeared
however that the eigenvectors corresponding to common eigenvalues do not coincide for generic values

9One should note however that the result obtained in [57] where stated some years before the equivalent TQ relation
from [25], and have been rigorously derived in the totally asymmetric case.
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of µ. In the large fugacity limit µ→∞, numerical computations showed that a partial correspondence
exist between some coordinates in the configuration basis of the open and periodic systems eigenvectors,
but this correspondence could not be exploited in any meaningful way as the Bethe equations in the
limit µ→∞ are highly degenerate and do not provide a precise enough insight on the expressions for
general µ.

The modified algebraic Bethe ansatz construction used above yields an explicit expression of the
eigenvectors under the form10

|Ψ(u1, ..., uL)〉 = C(u1)C(u2)...C(uL) |Ω〉 (2.247)

where the pseudo-vacuum state is taken in fact as the configuration where all sites are occupied,
|Ω〉 = |1〉1 ⊗ ... ⊗ |1〉L. Note that as a result of the non-conservation of the number of particles, this
general form for the eigenvectors differs significantly from the expressions obtained with the standard
algebraic Bethe ansatz, where the number of so-called creation operators applied on the pseudo-vacuum
is equal to the number of physical particles in the system.

Looking at the diagrammatic representation of operator C(x) in figure 2.4, and using the line con-
servation property of the bulk vertices (broken by the left boundary vertex corresponding to operator
K(x)) sketched in figure 2.2, we see the operator C(x) acts on |Ω〉 by removing at most one particle on
the chain, returning a superposition of configurations with L or L−1 particles. Applying recursively L
times the operators C(uj) will thus yield a vector |Ψ(u1, ..., uL)〉 with finite coordinates for all config-
uration for generic values of the uj . It is in principle possible to obtain these coordinates by carefully
enumerating and summing all diagrams contributing to a given coordinate 〈n1, ..., nL|Ψ(u1, ..., uL)〉 in
the configuration basis, but the computation still has to be done.

This would provide an expression of the eigenvectors in terms of the Bethe roots {u1, ..., uL}
solutions to equations (2.171), however our derivation of the asymptotics of the Bethe ansatz ex-
pressions, that will be presented in chapter 4 relies crucially on the mean-field-like character of the
equations (2.181), with Bethe roots {u1, ...uL+2}. It would thus be necessary to obtain an expression
of |Ψ(u1, ..., uL)〉 directly in terms of the roots uj . In this regard, both sets of Bethe root can be related
using the TQ-relations (2.177) and (2.180). The polynomial Λ appearing in both relations is the same,
so that one can write a direct relation between polynomials Q and Q

Q(x)
(
xL+2e−µ +Q(0)(1− x)2L+2(x+ 1)2eµ

)
= Q(x)

(
x2L+2Q

(
1

x

)
− (x− 1)2L(x2 − 1)eµ

)
(2.248)

where

Q(x) =

L∏
k=1

(
1− x

uk

)
, Q(x) =

L+2∏
k=1

(x− uk) . (2.249)

Introducing now the elementary symmetric polynomials {sk}1≤k≤n in n variables (X1, ..., Xn) defined
by

sk(X1, ...Xn) =
∑

1≤j1<j2<...<jk≤n
Xj1 ...Xjk 1 ≤ k ≤ n , (2.250)

any factorized polynomial P (X) =
∏n
k=1(X − rk) can be written in terms of elementary symmetric

polynomials of its roots as

P (x) = Xn +

n∑
k=1

(−1)ksk(r1, ..., rn)Xn−k . (2.251)

Equality (2.248) thus provides us with relations between elementary symmetric functions of the roots
{uj}1≤j≤L and of the roots {uj}1≤j≤L+2. Using the notation sk = sk(u1, ..., uL) and sk = sk(u1, ..., uL+2),

10In this paragraph we reintroduce the difference in notation between the roots {uj}1≤j≤L of the modified Bethe ansatz
and the roots {uj}1≤j≤L+2 intervening in the alternate polynomial TQ-relation
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computation for small system sizes suggest that functions sk have the following expression in terms of
the sk

sk =



( bL+2
2
c− k

2∑
i=1

sk+2i

)/( bL+2
2
c∑

j=1

s2j

)
k even

( bL+2
2
c− k−1

2∑
i=k+2

sk+2i

)/( bL+2
2
c∑

j=1

s2j

)
k odd

(2.252)

Note that although the degree of (2.248) is larger that the number of symmetric functions sk, all
relation obtained are compatible with each others when the {uj}1≤j≤L+2 are solutions to the Bethe
equations (but not for generic values).

Since the wavefunctions and in fact all physical observable of the system are by construction sym-
metric functions of the Bethe roots, the knowledge of the symmetric elementary polynomials {sk}1≤k≤L
is enough to write the eigenstates |ψ(u1, ..., uL)〉 directly in terms of the roots {uj}1≤j≤L+2, as any
symmetric rational function of several variable is also a rational functions of the elementary symmetric
polynomial in these variables.

As a side note, exact expressions have been conjectured for the ground state eigenvector of the
transfer matrix of the deformed open TASEP, using an alternate formulation of the modified algebraic
Bethe ansatz on a twice deformed version of the process [38, 16]. It appears that in the undeformed
limit (with respect to the second deformation), the ground state can be expressed in terms of symmetric
Koornwinder polynomials, although no closed form expression for the coordinate of the eigenvector is
provided in [38].
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Chapter 3

Analytic continuation and Riemann
surfaces

Anticipating the results of next chapter, where the asymptotics of the ground state eigenvalues of the
periodic and open TASEP will be derived from the Bethe ansatz expressions, the object of this chapter
is to compute the analytic continuation of the scaling functions of these eigenvalues with respect to
the system size. More precisely, assuming for now that the ground state eigenvalues of M(γ) is given
for large L under the general parametric form

E(µ)− f(L)µ = k1L
−3/2χ(v) , (3.1)

µ = k2L
−1/2η(v) . (3.2)

We will compute the analytic continuation of χ and η, as higher eigenvalues of M(γ) will be obtained
in chapter 4 by substituting in equations (3.1)–(3.2) the functions χ and η with other branches of
their analytic continuation. We can note that the scaling of the eigenvalue given by (3.1) is indeed in
accordance with the KPZ time scale t ∼ L3/2 over which the spectral gaps that we will compute are
relevant. The relevance of this study comes from the fact that the eigenvalues of any parameter de-
pendant operatorM(µ) are expected to be generically related to one another by analytic continuation,
as can be seen by considering the characteristic polynomial det[M(µ)− λId] of such operator which
defines, as a two variable complex polynomial, an algebraic curve of which the eigenvalues of M(µ) are
local parametrizations, see paragraph 3.1.4.

After a concise mathematical introduction to analytic functions, analytic continuation and Riemann
surfaces, we construct the analytic continuation of the ground-state scaling function of the TASEP
deformed Markov matrix in different settings. In section 3.2, we present the common features of the
functions studied in this chapter and introduce the formalism used afterward to construct their analytic
continuation. In section 3.3, we recall the results obtained by Prolhac in [74] for the scaling function
of the gaps of the periodic TASEP in the large system size limit. We next compute in section 3.4
the analytic continuation of a different function χ (in the notation of (3.1) involved in the expression
of the gaps of the TASEP in the maximal current phase. We finally generalize this computation to
the case of the crossover between the low density and maximal current phases of the open TASEP in
3.5. Note that the expressions of the original functions whose analytic continuations are introduced
without physical motivation at this stage, and we will make sense of these in chapter 4. The Riemann
surfaces upon which these analytic continuation are properly defined are built systematically for each
function.
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3.1 Mathematical introduction

3.1.1 Analytic and meromorphic functions

A holomorphic function f : U → C on some open set U ⊂ C is a function such that its derivative
defined as

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
(3.3)

exists for all z0 ∈ U . Looking at f as mapping (x, y) 7→ (u, v) from the real plane to itself defined
by f(x+ iy) = u(x, y) + iv(x, y), f is holomorphic if the real functions u and v are differentiable and
satisfie the additional Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
(3.4)

so that the differential of f at any point is the composition of a scaling and a rotation, or equivalently
that f is a conformal transformation of the plane. Complex differentiable, or holomorphic functions are
thus much more constrained in their behaviour than their real counterpart. A fundamental consequence
of their definition is the fact that holomorphic functions are analytic, that is they coincide with their
Taylor series on any disk lying in U . Intuitively, the data of f on any open set contains all the
information needed to restitute it on its largest possible domain of definition – a notion that will be
made precise in what follows. This rigidity property of holomorphic functions is at the heart of the
analytic continuation protocol that we will use extensively.

A function is said to be meromorphic if it is holomorphic everywhere on a domain U except on a
countable set of separated points {zi} ⊂ U which are poles of f , that is points where f can be locally
factorized as f(z) = g(z)(z − zi)−k where g is holomorphic at zi and k is called the order of the pole.

It is often convenient to define meromorphic functions on the Riemann sphere, Ĉ = C∪{∞} which
is the usual complex plane compactified by adding a point at infinity. In particular, a meromorphic
function f is said to have a pole at infinity if f(1/z) has a pole at z = 0.

3.1.2 Analytic continuation

We will now consider functions which are not meromorphic on C. This is the case if these functions have
discontinuities or non-analyticities on lines or curve in the complex plane, which typically happens for
multivalued inverse functions of non injective analytic functions. Such lines will be called branch cuts
and their end points, (which may be the point at infinity) branch points. The latters are singularities of
the considered function. Given such a function f defined and analytic on an open domain Ω, it is often
possible to find a new analytic function f1 defined on a new domain Ω1 that intersect Ω, such that the
function f1 coincide with f on Ω ∩Ω1. The function f1 is then said to be the analytic continuation of
f on Ω1. One can iterate this procedure by continuing a function along a path on successive domains,
however, it does not generally yields a unique value of the function f (see 3.1) at the same point, thus
giving rise to several branches of f . The function obtained by analytic continuation are said to be
multivalued.

Let us first consider the prototypical example of the complex nth root function. A complex number
z = reiθ has n different nth roots, so that one can define n different branches of the nth root function

fk(z) = r1/neiθ/n+2ikπ/n 0 ≤ k < n

analytic on C \ R−, with the usual determination of the argument −π < θ ≤ π. These branches are
not continuous on the negative real half-line R−, however one has

fk(−r + i0+) =

{
fk+1(−r + i0−) if k ≥ 1
f0(−r + i0−) if k = n− 1

r > 0 (3.5)
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Figure 3.1: A function f defined on a original domain Ω0 is analytically continued step by step along
a path γ into functions fi defined on domains Ωi, here open disks centered on points of γ. If γ circles
around a branch points zb of f , then the analytic continuation f3 on Ω3 in general does not coincides
with f0 on Ω0 ∩ Ω3

Figure 3.2: Schematic representation of the analytic continuation pattern of the nth root function. The
blue labels indicate the analytic continuation of the corresponding branch when crossing the branch
cut R− in the direction indicated by the arrow.

were the terms i0± denote the limits taken from above or below the branch cut, so that the function
defined as

f(z) =

{
fk(z) if Im z ≤ 0
fk−1(z) if Im z > 0

(3.6)

is continuous and in fact analytic on the open domain Re z < 0 , and fk−1 is said to be the analytic
continuation of fk when crossing the cut R− from below. Continuing the branch fk from above the cut
yields the branch fk+1 (see figure 3.2). Thus it is always possible to find a determination of the nth
root function which is locally analytic around any point in C∗, but not globally.

The reader should be aware there is no reason for the branches obtained by analytic continuation
to have the same branch points and branch cuts as the original function. This however will be the
case in all the examples considered in the present work. One should also note that the position of the
branch cut of the fk on the negative real line comes from the choice of determination of the argument
in the interval [−π, π], which is arbitrary. This is a general fact that branch cuts of a multivalued
function are in fact arbitrary an can be moved in the complex plane by changing the definition of the
branches (but not the set of values they take altogether at a given point), however their ending branch
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Figure 3.3: Schematic representation of a section of a branched covering. Generically (as shown here
for points p and p′), any point p ∈ M0 have a discrete set of points as preimage, with distinct open
neighborhoods such that the projection π is locally a homeomorphism upon each. In contrast,there
is no open neighborhood Vb, Vb′ of the branch branch points b and b′ so that the restrictions of the
projection π|Vb and π|Vb′ are homeomorphisms ontoM0.

points are fixed.
Another way of dealing with multivalued functions is, instead of considering various branches

defined on the complex plane, to define a larger domain of definition upon which the functions is
analytic and single-valued, namely, a Riemann surface.

3.1.3 Riemann surfaces

A Riemann surface M is a complex manifold of complex dimension one, that is a topological space
endowed with a collection of open sets Ui such that M =

⋃
i Ui and applications φi : Ui → C called

charts which are homeomorphism (continuous and bijective) onto their images. One requires moreover
that for any two open sets Ui and Uj of the open cover with non-empty intersection, the transition
map

φi ◦ φ−1
j : φj(Ui ∩ Uj) ⊂ C→ φi(Ui ∩ Uj) ⊂ C (3.7)

are bijective and holomorphic. Intuitively,M is a space which locally looks like C but not globally. In
what follows we will be interested in Riemann surfaces which are branched (or ramified) coverings of
the complex plane. A Riemann surfaceM is a branched covering of a given base space M0 if there is
a map π : M →M0 such that for any point p ∈ M0 except a for a discrete subset of branch points
in M0, there is an open neighborhood Up of p such that π−1(Up) is the union of disjoint open sets
ofM, so that π is a homeomorphism upon each of them. One can think of a branched covering as a
collection of distinct sheets, which are copies of M0 stacked one upon the other and glued together
along common lines, the branch points being the points where several sheets come together (see figure
3.3).

On any open set of U ⊂ M away from a branch point, the points of U can be parametrized by
a complex coordinate z = φ(p) by choosing an appropriate chart φ : U → C. On a neighborhood of
a branch point U 3 b, several situations may occur. If the branch point is algebraic, then there exist
an integer eb ∈ N∗ such that points p ∈ U can be parametrized with a coordinate y ∈ C and points
π(p) ∈ π(U) with a coordinate z, so that z = yeb . If the branch point is logarithmic, then on can
choose y and z such that z = log(y).

Branched covering of the complex plane C are the natural domain of definition of multivalued
functions obtained by analytic continuations. The original domain of definition of a function f0 is
identified with a sheetM0 of a Riemann surfaceM, biholomorphic to the base space of the covering
that definesM 1. If the domains of definition of the other branches fk of the analytic continuation of
f0 are identical toM0 (that is if the other branches fk have the same branch cuts and branch points
as the original function), the Riemann surfaceM is constructed by considering a copyMk ofM0 for

1By a slight abuse of notation we identify the base space of the covering π :M→M0 with a specific sheet ofM, in
such way that the covering map can be seen as a projection onto the sheet acting base space
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Figure 3.4: Construction of the Riemann surface associated to the analytic continuation of a function
f with branches fk having a branch point b and a single branch cut.

each branch fk, and gluing them along the branch cuts in such way that two sheets are connected if the
corresponding branches are related to one another by analytic continuation across the cut (see figure
3.4). In the process, the branch points lying in several sheets are identified as one point inM.

If the original domain of f is D, we will denote by [z, k] ∈ M the unique point belonging to the
sheet Dk labeled by the index k that projects itself onto D as π([z, k]) = z. Then, one can define a
single valued function of the Riemann surface

F : M → C

[z, k] 7→ fk(z)

The function F is then the analytic continuation of f on M, which is the largest possible domain of
definition of f . Here again, given a Riemann surface M, its partitions into sheets Mk is somewhat
arbitrary, however its topology is of course an intrinsic characteristic. In particular ifM is obtained as
the domain of definition of a multivalued function, the sheets are in correspondence with the branches
of the function, and different partitions correspond to different choices of branch cut, but the topology
ofM is uniquely defined by the function itself.

Before moving forward to the actual computation of the eigenstate scaling functions of the exclusion
process, let us mention another general result of importance that justifies our interest in analytic
continuations.

3.1.4 Analytic continuations of eigenvalues

Let P ∈ C[X,Y ] be a two variable complex polynomial, then the algebraic curve

V (P ) = {(y, z) ∈ C2 | P (y, z) = 0}

defines a Riemann surface. More precisely if P is such that there is no singular point (x0, y0) such that

P (x0, y0) =
∂P

∂x
(x0, y0) =

∂P

∂y
(x0, y0) = 0 , (3.8)

then V (P ) is said to be smooth, and is a Riemann surface that can be endowed with various sets of
charts, see [17]. If P has singular points, then it is possible to construct a smooth algebraic curve
V ′(P ) – thus a Riemann surface – that maps properly onto V (P ) by various methods of resolutions
of singularities [83, 13]. If the polynomial P can be factorized into a product of non-trivial factors in
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C[X,Y ], then in general V (p) will possess several disjoint connected components (in correspondence
with irreducible factors in P ).

As a consequence, given a parameter dependent matrix M(u) with entries polynomial in u, its
characteristic polynomial χ(z, u) defines a Riemann surface, so that its eigenvalues Ek(u) seen as
functions of the parameter u are all related to one another by analytic continuations, provided χ(z, u)
does not have a non-trivial factorization.

Thus, if one disposes of an expression for a single eigenvalue Ei(u) of M(u), it is possible in some
cases to obtain the full spectrum ofM(u) by computing the analytic continuation of the function Ei(u).
To illustrate this, let us consider the simplest example of a 2 × 2 matrix with parameter dependent
complex coefficients

M(u) =

(
a(u) b(u)
c(u) d(u)

)
. (3.9)

Its two eigenvalues write

λ±(u) =
1

2
(a(u) + d(u))±

√
∆(u) . (3.10)

with ∆(u) = (TrM(u))2 − 4 detM(u). If the entries of the matrix M are analytic in u, and ∆(z)
has a single zero for z ∈ C, then both functions λ+ and λ− have a single branch cut in the u-plane
on the curve {u | ∆(u) ∈ R−} due to the square root function. Since the analytic continuation of
the square root across its cut is obtained by flipping its sign

√
z → −

√
z, we see that λ+ and λ− are

analytic continuation of each other across their common branch cut. In the case c(u) = b(u) = 0, the
characteristic polynomial of M(u) is factorized as χ(u,X) = (X − a(u))(X − d(u)), with eigenvalues
a(u) = d(u) unrelated by analytic continuation.

Considering now the block-diagonal matrix

N(u) =

 a(u) b(u) 0
c(u) d(u) 0

0 0 µ(u)

 (3.11)

with eigenvalues λ±(u) and µ(u), then µ(u) is generically not related by analytic continuations to the
two other eigenvalues, and the Riemann surface defined by the spectrum of N(u) is disconnected. Thus
we expect the various connected components of the Riemann surface associated to an operator to be
in correspondence with its physical sectors characterized, for instance, by conserved quantities. The
Riemann surface of the eigenstates of the deformed Markov matrix M(µ) of the periodic TASEP with
finite size L (with fixed number of particle) is indeed split [73] into connected components corresponding
to states with different values of the total momentum, in the case where the Markov matrix is deformed
with respect to all bonds (see 1.4.2) of the chain. In the case where the current counting deformation is
added on a single bond, the translation invariance of the system is broken and eigenstates of M(µ) are
no longer momentum eigenstates, so that all eigenvalues do belong to a connected Riemann surface.

One should note that although the argument we outlined above is valid only for operators acting on
finite dimensional spaces, this underlying analytic structure of eigenvalues may also exist for infinite
dimensional operators. The idea that the analytic continuation of some eigenstate of an operator
– typically the ground state of a Hamiltonian or stochastic generator – can be used to compute its
spectrum has seen several applications in Physics. A first historical example is the partial computation
by Bender and Wu in [6, 7] of the excited energies of the quantum quartic oscillator, with Hamiltonian

H(λ) =
p2

2m
+

1

2
kx2 +

1

4
λx4 (3.12)

by analytic continuation of the perturbative expansion of the ground-state with respect to the coefficient
λ of the quartic term.
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Figure 3.5: Sketch of the domains D and DA

3.2 Continuable functions with singularities on the imaginary line

In this work, we will consider special classes of functions analytic on the domains

D = C \ (i(−∞,−π] ∪ i[π,∞)) (3.13)

DA = C \ (i(−∞,−π] ∪ i[π,∞) ∪ (ψ(A) + i(−∞,−π])) ∪ (ψ(A) + i[π,∞)) (3.14)

where A ∈ R and ψ(A) is a negative decreasing function of A. These functions moreover have their
singularities in the respective sets

S = 2iπ

(
1

2
+ Z

)
(3.15)

SA = 2iπ

(
1

2
+ Z

)
∪
(
ψ(A) + 2iπ

(
1

2
+ Z

))
(3.16)

some of these singularities being branch points, although not all in general. The branch cuts of these
functions are in general the intervals between two consecutive branch points

2iπ

[
n− 1

2
, n+

1

2

]
for n ∈ J−∞,−1K ∪ J1,∞K (3.17)

ψ(A) + 2iπ

[
n− 1

2
, n+

1

2

]
for n ∈ J−∞,−1K ∪ J1,∞K (3.18)

We will denote by F (respectively FA) the set of functions defined on the domain D (respectively DA)
such that each of their branches obtained by analytic continuation have the same branch points and
branch cuts, i.e. are also defined on D or DA.

Given a function f ∈ F , we will denote by Anl f (respectively Anr f) the function obtained by
analytic continuation from the left (respectively from the right) through the cut 2iπ

[
n− 1

2 , n+ 1
2

]
.

Similarly, given a function f ∈ FA, we will denote by An0,lf (respectively An0,rf) the function ob-
tained by analytic continuation from the left (respectively from the right) through the cut 2iπ

[
n− 1

2 , n+ 1
2

]
and by Anψ,lf (respectively Anψ,rf) the function obtained by analytic continuation from the left (respec-
tively from the right) through the cut ψ(A) + 2iπ

[
n− 1

2 , n+ 1
2

]
, see figure 3.5. It will be useful in

what follows to consider translations of their domain parallel to the imaginary axis. For f ∈ F , we
define the translation operators acting on f as

T nr f(v) = f(v + 2iπn) if Re v > 0 , (3.19)
T nl f(v) = f(v + 2iπn) if Re v < 0 . (3.20)
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where the action of these operators outside the domains specified by expressions (3.19) and (3.20) fol-
lows by analytic continuation as T nr f and T nl f are required to be in F also, which uniquely determines
T nl f for Re v > 0 and T nr f for Re v < 0. Similarly for a function f ∈ FA, we define the translation
operators

T nr f(v) = f(v + 2iπn) if Re v > 0 (3.21)
T nmf(v) = f(v + 2iπn) if ψ(A) < Re v < 0 (3.22)
T nl f(v) = f(v + 2iπn) if Re v < ψ(A) . (3.23)

We will see that the branches of multivalued functions in F and FA – or equivalently the sheets of the
Riemann surfaces upon which they are defined – are conveniently indexed by sets of integers P ⊂ Z
or half integers P ⊂ Z + 1/2, so that the analytic continuation and translation operators defined
above amount to set theoretical operations on the indexing sets. The operations on indexing sets
corresponding to the function operators A and T will be denoted in Latin font A and T such that for
a given branch fP ∈ F of a multivalued function f with branch indexing set P ⊂ Z,

AfP = fAP , (3.24)
T fP = fTP . (3.25)

Finally, the translation operators T nr|l and analytic continuation operators T nr|l are connected by the
identities

Am+n
l = T −mr Anl T ml (3.26)
Am+n

r = T −ml Anr T mr . (3.27)

Since the function in F are analytic for −π < Im v < π, operators A0
r|l is are fact identity, so that

Anl = T −nr T nl (3.28)
Anr = T −nl T nr . (3.29)

Thus we can express the analytic continuations of F functions in terms of translations, which will make
the actual computations much easier. Similarly for FA functions,

T −nr Am0,lT nm = Am+n
0,l (3.30)

T −nm Am0,rT nr = Am+n
0,r (3.31)

T −nm Amψ,lT nl = Am+n
ψ,l (3.32)

T −nl Amψ,rT nm = Am+n
ψ,r . (3.33)

and for the same reason we obtain

An0,l = T −nr T nm (3.34)

An0,r = T −nm T nr (3.35)

Anψ,l = T −nm T nl (3.36)

Anψ,r = T −nl T nm . (3.37)

3.3 Riemann surface of the periodic TASEP

In this section we will recall – without physical motivation at this stage, the construction of the Riemann
surfaceRPer associated with the computation of the spectral gaps of the TASEP with periodic boundary
conditions in the thermodynamic limit by analytic continuation of the ground state eigenvalue of its
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deformed Markov matrix, following [74]. The physical meaning of this function will be explained in
chapter 4. Explicitly, we will compute the analytic continuation of the function

χ∅(v) =
Li5/2 (−ev)
√

2π
(3.38)

where Lis is the polylogarithm function defined for |z| < 1 by its series expansion as

Lis(z) =
∞∑
k=1

zk

ks
. (3.39)

In the notations of (3.1)-(3.2), the role of the function η(v) is played by χ′(v).

The polylogarithm function

The Taylor expansion (3.39) defining the polylogarithm function is not convergent for |z| ≥ 1. However
the function Lis can be analytically continued beyond the unit disk into a function on C \ [1,∞) with
a single branch point at z = 1 and a branch cut usually taken as the half line of real numbers larger
than 1. The analytic continuation of the the polylogarithm function across the cut [1,∞) is

Lis(z)→ Lis(z)− 2iπ
log(z)s−1

Γ(s)
from below , (3.40)

Lis(z)→ Lis(z) + 2iπ
log(z)s−1

Γ(s)
from above . (3.41)

The introduction of the logarithm function adds a branch point at z = 0 and a branch cut (−∞, 0].
This is not the case however when considering the function Lis (−ev). This function has an infinite
number of branch points 2iπ(n + 1/2) and branch cuts 2iπ(n + 1/2) + [0,∞), corresponding to all
the points mapped by v 7→ −ev on the conventional cut of Lis(z). Of course this setting of cuts is
arbitrary and depends on the original choice of branch cuts of the polylogarithm. We will choose
rather a determination of the polylogarithm which makes χ∅(v) belong to the class F of analytically
continuable functions defined on D.

The function χ∅(v) admits another representation

χ∅(v) =
8π3/2

3

(
eiπ/4ζ

(
−3

2
,
1

2
+

v

2iπ

)
+ e−iπ/4ζ

(
−3

2
,
1

2
− v

2iπ

))
(3.42)

where ζ(s, a) is the Hurwitz zeta function defined as

ζ(a, z) =

∞∑
n=0

1

(n+ a)z
, (3.43)

which is known to be analytically continuable as a function of z on the domain C \ R− for any s 6= 1.
The equality (3.42) between the original function Li5/2/

√
2π and the right hand side with ζ functions is

only satisfied for Re v > 0, however choosing this definition of χ∅ simply amounts to change its branch
cuts, so that it belongs to F . It is now left to compute the analytic continuation of χ∅ across its cuts.

The square root function κa(v)

The other branches of χ∅ when crossing its cuts are obtained as a sum of χ∅ and a finite numbers
of additional terms depending of which cut is crossed. These additional terms essentially consist in
shifted and scaled square roots of v defined by

κa(v) =
√

sgn(a)i
√
|4πa|+ sgn(a)2iv =

{ √
4iπa− 2v if Re v < 0

sgn(a)i
√

2v − 4iπa if Re v > 0
(3.44)
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where the square root is understood as its principal value with branch cut R−, so that κa(v) has a
single branch point 2iπa and a branch cut sgn(a)[|a|,∞), and κa is a class F function.

Shifting v by ±2niπ is equivalent to shifting a by n, up to a change in sign if Re v > 0 that is if
the branch cut of the square root is crossed in the process, so that

Tnl κa = κa−n (3.45)
Tnr κa = σa(Bn)κa−n (3.46)

with

Bn =


{1/2, 3/2, ..., n− 1/2} if n > 0
{n+ 1/2, ...− 3/2,−1/2} if n > 0
∅ if n = 0

(3.47)

σa(P ) =

{
−1 if a ∈ P
1 if a /∈ P (3.48)

Using relations (3.28)-(3.29) we obtain

Anl κa = Anr κa = σa(Bn)κa (3.49)

where the equality between left and right analytic continuation comes from the fact that the complex
square root has only two branches. We can now compute the whole analytic continuation of χ∅.

Analytic continuation of function χ∅

Using the fact that ζ(a, z + 1) = ζ(a, z) − z−1 (which is true wherever ζ(a, z) is defined, and outside
the domain of definition of (3.43)) along with appropriate asymptotic expansion of the ζ function, it
is possible to show that

χ∅(v) = lim
M→∞

−4(2πM)5/2

15π
− 2v(2πM)3/2

3π
+

(π2 + 3v2)
√

2πM

6π
−

M−1/2∑
a=−M+1/2

κ3
a(v)

3

 . (3.50)

Thus, analytically continuing χ∅ across any branch cut amounts to changing the sign of a finite number
of κ3

a function according to (3.49) so that the difference between χ∅ and its analytic continuation consist
of the sum of the κa functions whose sign were flipped, indexed by a set P 3 a. Again, there is no
difference between analytic continuation from the left and from the right of any cut.

Anl χ∅ = Anr χ∅ = χP = χ∅ +
∑
a∈P

κ3
a

3
. (3.51)

The set P indexing additional terms is determined by (3.49), and writing the action of Anl|r on any
branch χP of χ as the action of Anl|r on its indexing set P one obtains

Anl P = Anr P = P 	Bn (3.52)

where 	 is the symmetric difference operator defined for two sets A and B as

A	B = (A \B) ∪ (B \A) . (3.53)

The functions χP for any P ⊂ Z + 1/2 thus describes all branches of the analytic continuation of
χ∅. Since any set P of half-integers can be built by iterated applications of An, each finite set of half
integers correspond to a branch of χ. One can similarly work out the action of the translation operators
Tl|r on χP as

T−nl P = P + n , (3.54)
T−nr P = (P + n)	Bn (3.55)
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Riemann surface RPer

As explained above, the analytic continuation of the multivalued scaling function χ can be defined on
a Riemann surface RPer whose sheets are in one-to-one correspondence with the branches of χ, that
will be denoted χPer

P from now on to differentiate it from its analogues in other settings. The Riemann
surface is constituted of an infinite number of copies of D̂ = D ∪ {∞}, the domain D compactified by
adding a point at infinity. This point being a branch point of all branches of χPer, it is identified as a
single point in RPer. Defining

χ : RPer → Ĉ (3.56)

[z, P ] 7→ χPer
P (z)

where [z, P ] ∈ RPer is the only point on sheet P that projects to z ∈ D under the covering map
π : RPer → D, the structure of RPer understood as the connectivity pattern of its sheets is determined
by above-defined analytic continuation operators Anl = Anr . Every point 2i(n + 1/2) ∈ S is a branch
point, and one checks that for any n ∈ Z, and P ⊂ (Z + 1/2),

(Anl A
n+1
r )2 P = (Anr A

n+1
l )2 P = P (3.57)

so that every branch point of RPer is of square root type 2. As a side note, RPer is, from a purely
topological point of view, the limit with infinite genus of a family of surfaces which are homeomorphic
to the graphs of N -dimensional hypercubes thickened by replacing the edges with cylinder and vertices
by spheres.

As we will explain in chapter 4, the relevant physical quantities obtained from the function χ are
in fact the solutions E(µ) to the parametric equations (3.1)-(3.2), with these solution being invariant
under the shift v → v + 2iπ for Re v > 0. Equivalently, we know from (3.54)-(3.55) that translating a
branch χP amounts to consider another branch χP ′ . Thus replacing functions χ and η in (3.1)-(3.2)
by any of their branches obtained by right translation will yield the same solutions for E(µ).

The translation operator Tr generates a group acting on the branches of χPer or equivalently on
the sheets of RPer. Thus, the relevant objects to consider are not the sheets of surface RPer itself
but rather equivalence classes under the group or right translation tr = {T nr , n ∈ Z}. Looking at
expressions (3.55), one easily checks that for any P ∈ (Z + 1/2),

|(P +m)	Bm|+ − |(P +m)	Bm|− = |P |+ − |P |− +m (3.58)

where |P |+ and |P |− denote respectively the the number of positive and negative elements of P . Thus,
the set P ∗ = T

|P |+−|P |−
r P has as much positive elements as negative elements. There is a unique

element in each orbit under tr such that |P |+ = |P |− that will be used to represent the corresponding
orbit, and we will denote by P ∗ the unique element in the orbit of P satisfying this property.

3.4 Riemann surface of the open TASEP in the maximal current
phase

We now move on to the computation of the analytic continuation of the scaling function of the spectral
gaps of the deformed matrix of the open TASEP in the maximal current phase, with α = β = 1. We
use the same notation for χ in this section as in the previous one for its analogue for the periodic case.
If the two functions need to be distinguished, we will write χPer for the eigenvalue scaling function of
the periodic case and χMC for the function that we are considering now. The role of function η in the
notation of (3.1) is played again by χ′. The derivation of its expression will be done in chapter 4. For
now, we just write its explicit form 3

χ(v) =
1

3π

∫ ∞
−∞

dy
(1− y2)(3− y2)

1 + y−2 ey2−v−1
. (3.59)

2meaning that their ramification index is ep = 2, which is in general unrelated to the presence of actual square root
functions, as we will see in next section

3In the notations of (3.2), the role of function η(v) is again played by χ′(v)
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Figure 3.6: Plot of the images of the first Lambert functions in the complex plane. The red lines
separate the codomains of Wj with consecutive indices j, expect for W−1 and W1 which are directly
related to one another by analytic continuation

The first step of the computation will be to construct a new determination χ∅ of this function χ that
will be a class F function. Then, we will compute the analytic continuation of χ∅ and its various
branches χP in the same way we did for the function χPer.

Before, we need to introduce the Lambert Wj functions, which plays a role analogue to square root
functions of last section.

The Lambert Wj functions and functions wj

The Lambert functions Wj(z) are the branches of the multivalued inverse function of z 7→ zez or
equivalently the solutions to the equation

Wj(z)e
Wj(z) = z , (3.60)

There is generically an infinite number of such solutions so that the Wj are defined such that

Wj(z) + logWj(z) = log z + 2iπj (3.61)

with log denoting the principal value of the complex logarithm with branch cut R−. The codomains
Wj(D) of allWj functions form a partition of the complex plane (see figure 3.6) The Lambert functions
for j 6= 0 have a branch cut (−∞, 0] and a branch point at z = 0. Moreover, W−1 and W1 have an
additional branch point at z = −1/e. Since this branch point lies on the cut (−∞, 0], one has to
pay attention to which side of the cut the branch point is on. As for W1, the branch point lies on
the bottom side of the cut at −1/e + i0− while for W−1 it lies on the top side at −1/e + i0+. W0

has a single branch point −1/e and a corresponding cut (−∞,−1/e]. For any j 6= −1, 1, the analytic
continuation of Wj when crossing the cut from below is Wj−1 while crossing from above yields Wj+1.
For W1, crossing the cut from above leads to W2, while crossing from below gives W0 across the cut
(−∞,−1/e] and W−1 across the segment [−1/e, 0]. Similarly, analytically continuing W−1 from below
the cut (−∞, 0] yields W−2, from above across (−∞,−1/e] gives W0 and from above across [−1/e, 0]
gives W1. All this is summarized in figure 3.7 We now introduce the functions wj(v), j ∈ Z, defined
from Lambert functions for j = 0 as

w0(v) =

{
W−[ Im v

2π
](e
−1−v) if Re v < 0

W0(e−1−v) if Re v > 0
(3.62)

and for j ∈ Z∗ as

wj(v) =

{
Wj−[ Im v

2π
]−sgn(j)(e

−1−v) if Re v < 0 and sgn(j) Im(v) > 2π(|j| − 1
2)

W[ Im v
2π

](e
−1−v) otherwise . (3.63)
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Figure 3.7: Sketch of the analytic continuation structure of the Lambert Wj functions (left column)
and their generalized analogues ΩA

j (right column) in the complex plane across their cuts on the real
axis. Red lines represent the cuts and red dots branch points. Half red dots indicate that a branch
point lies only on the corresponding side of the cut. Blue labels indicate the function obtained by
analytic continuation when crossing the cut in the direction indicated by the corresponding arrow.
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where the square brackets [•] denote rounding to the nearest integer. The functions wj are F functions
which coincides with Wj(e

−1−v) for −π < Im v < π. By construction, they transform under the action
of Tl and Tr as

Tlwj = wj−1 (3.64)

Trwj =


w0 j = 0
w−1 j = 1
wj−1 j /∈ {0, 1}

. (3.65)

Using relations (3.28)-(3.29), one can then deduce the action of Anl and Anr

From function χ to χ∅

The function χ defined by (3.59) has horizontal branch cuts which correspond to the values of v for
which the poles of the integrand of (3.59) take real values, that is

y2ey
2−1 = −e−v . (3.66)

Since 0 ≤ y2ey
2−1 ≤ 1 for y ∈ R, the branch cuts of χ are the half-lines 2iπ(n+ 1/2) + R−.

In order to relate χ to its analogue for the periodic case, and to make the computation of its analytic
continuation easier and more systematic, we will now construct a new determination of χ analytic on
D by rotating its cuts of ±π/2 around the branch points 2iπ(n+ 1/2). Defining

fv(y) =
(1− y2)(3− y2)

1 + y−2 ey2−v−1
(3.67)

the integrand of expression (3.59), the poles of fv(y) can be expressed as square roots of Lambert
functions

− y2e−y
2

= e−v−1 (3.68)

⇒ y =
√
−Wj(e−v−1) . j ∈ Z . (3.69)

As these roots will appear in the final expression of χ∅, we need first to relabel them in such way that
the solutions of equation (3.68) are analytic on D. We define the functions yj(v) as

yj(v) =


sgn(Im v − 2πj)

√
−wj(v) Re v < 0

(−1)−[ Im v
2π

]
√
−w0(v) Re v > 0 and j = 0

−sgn(j)
√
−wj(v) Re v > 0 and j 6= 0

, (3.70)

which are F functions. They transform under translation as

Tlyj = yj−1 (3.71)

Tryj =


−y0 j = 0
−y−1 j = 1
yj−1 j /∈ {0, 1}

. (3.72)

so that their analytic continuations across their cuts on the imaginary line write

Anl yj =


(−1)ny0 if j = n
−yj+sgn(n) if j ∈ {0} ∪Bn−sgn(n)

yj if j /∈ {0} ∪Bn
(3.73)

Anr yj =


(−1)nyn if j = 0
−yj−sgn(n) if j ∈ Bn
yj if j /∈ {0} ∪Bn

(3.74)
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Figure 3.8: Plot of the poles yj(v) of fv(y) given by (3.67) in the complex plane for v = r + iπt with
r < 0 (left) and r > 0 (right). The yj(v) move along the solid black line as t is varied, the red arrows
represent the direction in which yj(v) move for increasing t.

where

Bn


{1, . . . , n} if n > 0
∅ if n = 0

{n, . . . ,−1} if n < 0
. (3.75)

Now that we have analytic expressions of the poles, we can define a function χ∅ analytic on D. In
order to construct it from χ we need to perform the analytic continuation of χ across its horizontal
cuts along path v + it, t ∈ R. χ is analytic for Re v < 0 and one observe that for Re v > 0, when
Im v = 2iπ(j + 1/2), the four poles ±y0(v) and ±yj(v) of fv(y) take real values, see figure 3.8.

Taking the analytic continuation of χ across the cut 2iπ(j + 1/2) + R+ then simply consist in
continuously deforming the integration contour in (3.59) so as to avoid the poles or equivalently to
add the residues of fv(y) at these poles while keeping the same integration path, see figure 3.9. The
discontinuity of χ when crossing the cut 2iπ(j + 1/2) + R+ thus writes

lim
ε→0

χ(v + iε)− χ(v − iε) = 2iπ
(

res(fv, yj(v))− res(fv,−y0(v)) (3.76)

+res(fv, y0(v))− res(fv,−yj(v))
)
. (3.77)

The computation of these residues is straightforward and adding the appropriate terms on each sector
2iπ(n− 1/2) < Im v < 2iπ(n+ 1/2) we obtain for Re v > 0

χ∅(v) = χ(v)− 2i

(
1− (−1)[Im v

2π
]

2
η0(v) +

∑
j∈B[Im v

2π ]

ηj(v)

)
, (3.78)

with

ηj(v) =
yj(v)3

3
− yj(v) . (3.79)

For Re v < 0, one simply has χ∅(v) = χ(v). Let us stress once more that the difference between χ and
χ∅ is merely a different convention choice for its branch cuts. We are now in position to compute the
analytic continuation χ∅ across the cuts [2iπ(n− 1/2), 2iπ(n+ 1/2)]

Analytic continuation of χ∅
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Figure 3.9: Deformation of the integration contour of the integral in (3.59) when crossing the cut
2iπ(j + 1/2) + R+ along a path v + it for increasing t. The dots represent the four poles that take
real value on the cut. The analytic continuation of function χ across this cut is obtained by adding
the residues of the integrand at these poles, corresponding to the loop of the integration path circling
around them

The function χ is analytic for Re v < 0 and on all strips 2iπ(n − 1/2) < Im v < 2iπ(n + 1/2), j ∈ Z,
so the analytic continuation of χ∅ from the left is obtained by removing all the additional terms from
(3.78):

Al
nχ∅ = χ∅ + 2i

(
1− (−1)n

2
η0 +

∑
j∈Bn

ηj

)
. (3.80)

Considering now the analytic continuation from the right, one has to take care of all terms ηj on the
right hand side of (3.78), and one gets

Ar
nχ∅ = χ∅ + 2i

(
η0 −

1 + (−1)n

2
ηn +

∑
j∈Bn

ηj

)
. (3.81)

Applying repeatedly the operators Anl and Anr on χ∅ for any path avoiding the branch points, we obtain
in any case a function of the form

χP = χ∅ + 2i
∑
j∈P

ηj(v) (3.82)

where P ⊂ Z is a finite set indexing the branch of the analytic continuation of χ∅. The function χ∅
belongs to the class F , so we can use again the expression of the analytic continuation operators in
terms of translation by multiples of 2iπ. The translation to the left of the imaginary axis writes, in
terms of operations on indexing sets

T −nl P = P + n . (3.83)
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Similarly, the action of the right translation operator on the right writes

T−nr P =


((P + n) \ Cn) ∪ (Bn \ (P + n+ sgn n)) ∪ {0} 0 ∈ P & n even

0 /∈ P & n odd

((P + n) \ Cn) ∪ (Bn \ (P + n+ sgn n))
0 ∈ P & n odd
0 /∈ P & n even

(3.84)

with Cn = Bn∪{0}. Using (3.28)-(3.29), we obtain the analytic continuation operators Anl χP = χAnl P
and Anr χP = χAnr P for n 6= 0 as

Al
nP =


(P \ Cn) ∪ (Bn \ (P + sgn n)) ∪ {0} n ∈ P & n even

n /∈ P & n odd

(P \ Cn) ∪ (Bn \ (P + sgn n))
n ∈ P & n odd
n /∈ P & n even

(3.85)

Ar
nP =


(P \ Cn) ∪ (Cn−sgn n \ (P − sgn n)) ∪ {n} 0 ∈ P & n even

0 /∈ P & n odd

(P \ Cn) ∪ (Cn−sgn n \ (P − sgn n))
0 ∈ P & n odd
0 /∈ P & n even

. (3.86)

The structure of the branches of χP is more complex here than in the periodic case. In particular, the
left and right analytic continuation are not identical.

Riemann surfaces RMC

Using the same definition as (3.56), we can lift the function χ (that we will denote by χMC to distinguish
it from its analogue χPer for the periodic TASEP) to a Riemann surfaceRMC whose structure is entirely
determined by the analytic continuation of χMC encoded in the operators Anl|r. It appears that RMC

has a more complex structure than that of RPer. Not all points in S are branch points depending on
the branch χMC

P ; for instance points 2iπ(n + 1/2) with odd n are not branch points for the branch
P = ∅.

As in the case of χPer, the solutions E(µ) of (3.1)-(3.2) in the MC case are invariant under translation
v → v + 2inπ for Re v, so we will consider, instead of the sheets of RMC, equivalence classes of sheets
constituted of orbits under the action of the group tr of discrete translations on the right of the cuts.
We will first check that there exist in each orbit a unique element P? such that |P |+ = |P |−, then that
if P is the index of a sheet connected to ∅ (that is if χP is obtained from χ∅ by analytic continuation),
then 0 /∈ P?. This way, solutions to the parametric equations (3.1)-(3.2) will be uniquely characterized
by a sets P ∈ Z∗ with |P |+ = |P |−.

Let P ⊂ Z be a finite set of integers, with positive elements P+ = {k+
1 , . . . , k

+
h }, 0 < k+

1 < . . . < k+
h

and negative elements P− = {k−` , . . . , k
−
1 }, k

−
` < . . . < k−1 < 0. Then, the action on P of the operator

Tr computed with (3.84) writes

TrP =


{k−` + 1, ..., k−2 + 1, k+

1 + 1, ..., k+
h + 1} if 0 ∈ P & − 1 ∈ P

{k−` + 1, ..., k−1 + 1, 1, k+
1 + 1, ..., k+

h + 1} if 0 ∈ P & − 1 /∈ P
{k−` + 1, ..., k−2 + 1, 0, k+

1 + 1, ..., k+
h + 1} if 0 /∈ P & − 1 ∈ P

{k−` + 1, ..., k−1 + 1, 0, 1, k+
1 + 1, ..., k+

h + 1} if 0 /∈ P & − 1 /∈ P

. (3.87)

In any case, the application of Tr increases the excess number of positive elements in P by exactly 1,
so that for any P , the set P ∗ = T

|P−|−|P+|
r P is such that |P ∗+| = |P ∗−|. Moreover, there is a unique

element P ∗ satisfying this property in the orbit trP by construction.
With P ∗ the unique representative with |P ∗+| = |P ∗−| in the orbit of any finite set P ⊂ Z under the

action of Tr, we want to show that for any P such that the function χP may be obtained from χ∅ by
analytic continuations, i.e. any P that can be obtained from the empty set ∅ by repeated action of the
operators Al|r

n , n ∈ Z, the corresponding set P ∗ does not contain 0.
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Since by construction (Tnr P )∗ = P ∗, the identities

Al
n = T−nr Tnl (3.88)

Ar
n = T−nl Tnr ,

imply that we only need to prove that the collection of all P ⊂ Z such that 0 /∈ P ∗ is globally stable
under the action of Tl, defined by Tnl P = P −n. But we observe from (3.87) that 0 ∈ P ∗ is equivalent
to 0 ∈ P (respectively 0 /∈ P ) if |P+| − |P−| is even (resp. odd). The fact that under the replacement
P → TlP , |P+|− |P−| is left unchanged if 0 /∈ P and is decreased by one otherwise concludes the proof.

The fact that all sheets indexed by P such that 0 ∈ P ∗ is stable under Al|r
n means that these sheets

belong to a (not necessarily connected) component RMC
∗ of RMC. We will now prove that RMC

∗ is in
fact constituted of an infinite number of connected components Ck. Defining

Ck =

{
P ⊂ Z,

∣∣∣∣|P ∗odd| − |P ∗even|
∣∣∣∣ = 2k

}
(3.89)

where Podd and Peven are the subsets of respectively odd and even elements of P ⊂ Z∗, one easily
checks that the action of Tnr and Tnl on a set P do not change the excess number of elements of a given
parity | |P ∗odd| − |P ∗even| | in the corresponding set P ∗. Each Ck is then stable under Tnr and Tnl , and
thus under Al

n and Ar
n. The corresponding components Ck gathering the sheets indexed by all P ∈ Ck

are thus disconnected from one another for different k ∈ N. It is now left to prove that the Ck are
connected. Let

Pk = {2j − 1, 1 ≤ j ≤ 2k} ∪ {−2j + 1, 1 ≤ j ≤ 2k} . (3.90)

Pk is an element of Ck which can be constructed by repeated applications of operators Anl and Anr on
any set P ∈ Ck. This is proved by remarking that the action of Anl on P 3 n removes the element
n if n − 1 ∈ P while the action of Anr removes n from P if 0 ∈ P (respectively 0 /∈ P ) if n is odd
(respectively n is even). Hence, starting from P ∗ in the orbit OP , one can reach Pk by successive
substitutions P → Anl|rP , so that the components Ck are indeed connected.

One should note that, strictly speaking, most spectral gaps (i.e. relevant solutions to the parametric
equations (3.1)-(3.2)) are not obtained by analytic continuation of the ground state, as RMC

∗ is not
connected. For instance, the sheet P = {−1, 1} , corresponding to the gap of M(µ), does not belong
to the same connected component as P = ∅ which is the ground-state sheet. However, our systematic
construction of the branches of χMC does provide us exact expression for all spectral gaps of M(µ).

3.5 Riemann surface of the open TASEP in the MC/HD crossover

We have computed the analytic continuation of the eigenvalue scaling function of the periodic TASEP
and that of the open TASEP in the maximal current phase, and constructed the Riemann surface upon
which these functions are defined. We will now consider the eigenvalue scaling function of the TASEP
in the crossover regime between the maximal current and the high density phases, which interpolates
between the two former cases. These functions depend now on an additional parameter A > 0 related
to the scaling of the left boundary rate α. Defining

ηA(v) =

∫ ∞
−∞

dy
(A+ 4)y2

(
4A
(
y2 − 4

)
+ y4

)
2 (4A+ y2)

(
(4A+ y2) e−v−v

A
0 + y2

4 + (A+ 4)y2
) , (3.91)

χA(v) =
1

16

∫ ∞
−∞

dy
(A+ 4)y4

(
4A
(
y2 − 4

)
+ y4

)
2 (4A+ y2)

(
(4A+ y2) e−v−v

A
0 + y2

4 + (A+ 4)y2
) . (3.92)

where

vA0 =
2
√
A√

A+
√
A+ 4

− 2 log
( 2

√
A+ 4√

A+
√
A+ 4

)
, (3.93)
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we now compute the full analytic continuation of both χA and ηA for 0 ≤ A ≤ ∞. The function χPer

is recovered (up to a constant factor) as the limit of χA when A → 0 and one obtains similarly χMC

when A→∞. We will show that the family of Riemann surfaces parametrized by A corresponding to
the analytic continuation of χA is a continuous deformation of the Riemann surface RPer into RMC.

The following computation is mostly a generalization of the χMC case, and we will use the same
approach. First we will construct determinations of ηA and χA in the class FA of functions analytically
continuable on the domain DA defined by (3.14), then we will construct their various branches with
the help of the above defined translation operators. Since ηA and χA have very similar structure, we
will denote by ϕA(v) any of the two functions when an expression is valid for both.

Generalized Lambert functions WA
j (z) and ΩA

j (z) and functions wAj (v)

We first introduce the generalized Lambert functions WA
j as the solutions to

eW
A
j (z) WA

j (z)

A−WA
j (z)

= z , (3.94)

for A > 0. As in the case of plain Lambert functions, the branches are indexed by taking the logarithm
of (3.94) so that for j ∈ Z, WA

j is the unique solution to

WA
j (z) + log

( WA
j (z)

A−WA
j (z)

)
= log z + 2iπj (3.95)

with the same convention as before for the branch cuts of the logarithm. For any j ∈ Z,

lim
A→∞

WA
j (z/A) = Wj(z) (3.96)

where Wj is a regular Lambert function, while for A→ 0, WA
j (v) converge to a branch of the complex

logarithm equal to the principal value of the log shifted by 2iπj.
The WA

j can be seen equivalently as the branches of the multivalued inverse function of f(y) =
ey y
A−y . It is a general result that for a meromorphic function f , the branch points z∗ of the inverse

functions f−1 are equal to z∗ = f(y∗) where y∗ is one of the solution to f ′(y∗) = 0 4 . There are three
solution y∗ = −∞, y∗ = 1

2(A±
√
A
√
A+ 4) corresponding to three possible branch points on the real

axis z∗ = 0, z∗ = bA1 and z∗ = bA2 with

bA1 =− 1
4(
√
A+ 4−

√
A)2 e

1
2

(A−
√
A
√
A+4) (3.97)

bA2 =− 1
4(
√
A+ 4 +

√
A)2 e

1
2

(A+
√
A
√
A+4) . (3.98)

In order to make the correspondence with the function χMC clearer, we will work instead with the
modified functions

ΩA
k (z) = WA

j

(
z

4 +A

)
, (3.99)

which have branch points among 0, βA1 = (4 +A)bA1 and βA2 = (4 +A)bA2 .
For j /∈ {−1, 0, 1}, ΩA

j has a single branch point z = 0 and a corresponding branch cut that we
choose to be the negative real axis. The function ΩA

0 has branch points βA1 and βA2 and we set the
branch cut on the real interval [βA1 , β

A
2 ]. Finally the function ΩA

1 (respectively) ΩA
−1) has branch points

0, βA1 − i0+ and β2− i0+ (respectively βA1 +i0+ and β2 +i0+) meaning that βA1 and βA2 are only branch
points when analytically continuing the function from below (respectively above) the cut. The way
the ΩA

j relate to one another by analytic continuation is more complex than in the case of the plain
Lambert functions and is summarized in figure 3.7.

4More precisely, the branch points of each of the branches of f−1 are among the set of the f(y∗) where y∗ is a singular
point of f , however, not all branches have the same branch points and not all singular points of f correspond to branch
points of f−1 in general
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Figure 3.10: Images in the complex plane of the branches of the modified Lambert functions ΩA
j for

A = 10.

In the limit A → ∞, one has βA2 → ∞ and βA1 → −1
e so that the analytic structure of the usual

Lambert Wj functions is recovered. Similarly, when A→ 0, both branch points βA1 and βA2 goes to 0,
and the branch ΩA

0 is uniformly 0 so that the structure of the analytic continuation of functions ΩA is
that of the logarithm, as expected.

In a similar way we defined the functions wj in section 3.4 as analytic determination of Wj(e
−v−1)

in the space F , we now define the functions wAj (v) as functions in the space FA analytic on DA which
coincide with ΩA

j (e−v−v0) on the strip −π < Im v < π. They write

wA0 (v) =

{
ΩA

−[
Im{v}

2π
]
(e−v−v

A
0 ) ψ(A) < Re{v} < 0

ΩA
0 (e−v−v

A
0 ) otherwise

(3.100)

wAj (v) =

 ΩA

j−[
Im{v}

2π
]−sgn(j)

(e−v−v
A
0 ) ψ(A) < Re{v} < 0 & sgn(j) Im{v} > 2π

(
|j| − 1

2

)
ΩA

j−[
Im{v}

2π
]
(e−v−v

A
0 ) otherwise

The translation operators act on the wAj as follow

Tm wAj = wAj−1 , (3.101)

Tr wAj = Tl wAj =


wA0 j = 0
wA−1 j = 1
wAj−1 j /∈ {0, 1}

, (3.102)

The wAj have two sets of branch points and branch cuts at Re v = 0 and Re v = ψ(A) = log
(
βA1 /β

A
2

)
,

where ψ writes explicitly

ψ(A) = −
√
A
√
A+ 4− 4 log

(√A+
√
A+ 4

2

)
, (3.103)

corresponding to the branch points βA1 and βA2 of the ΩA
j mapped by v → e−v−v

A
0 , since vA0 defined

in (3.93) is actually equal to vA0 = − log
(
−βA1

)
. From expressions (3.101)-(3.102), we see that the

behaviour of the wAj at these cuts is in fact identical under left ↔ right symmetry. We can now get
back to the analytic continuation of χA and ηA

From function χA and ηA to χA∅ and ηA∅

Let us first construct determination ηA∅ and χA∅ of ηA and χA analytic and analytically continuable on
DA. The function χA and ηA are analytic for Re v < 0 and have branch cuts for v ∈ 2iπ(Z + 1/2). As
in the case of χMC, branch cuts of η(v) and χ(v) correspond to values of v for which the integrands
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fA,vη (y) and fA,vχ (y) of (3.91) and (3.92) given by

fA,vη (y) =
(A+ 4)y2

(
4A
(
y2 − 4

)
+ y4

)
2 (4A+ y2)

(
(4A+ y2) e−v−v

A
0 + y2

4 + (A+ 4)y2
) (3.104)

fA,vχ (y) =
y2

16
fA,vη (v) (3.105)

have real poles. The two points ±2i
√
A do not take real values, and the other poles of fA,vη (y) and

fA,vχ (y) are the solutions to(
4A+ y2

)
e−v−v

A
0 + y2

4 + (A+ 4)y2 = 0 . (3.106)

These poles are given by the square roots of modified Lambert functions as

±2

√
−WA

j

(e−v−v
A
0

4 +A

)
= ±2

√
−ΩA

j (e−v−v
A
0 ) . (3.107)

Again, we construct FA determinations yAj (v) of these poles from functions wAj , defined by

yA0 (v) =


(−1)−[ Im v

2π
]
√
−wA0 (v) Re{v} > 0

sgn(Im v − 2πj)
√
−wA0 (v) ψ(A) < Re{v} < 0√

−wA0 (v) Re{v} < ψ(A)

, (3.108)

yAj (v) =

 −sgn(j)
√
−wAj (v) Re{v} > 0

sgn(Im v − 2πj)
√
−wAj (v) Re{v} < 0

. (3.109)

From the properties of the square root and function wAj we deduce the action of translation operators

Tm yAj = yAj−1 , (3.110)

Tr yAj =


−yA0 j = 0
−yA−1 j = 1
yAj−1 j /∈ {0, 1}

, (3.111)

Tl yAj =


yA0 j = 0
yA−1 j = 1
yAj−1 j /∈ {0, 1}

, (3.112)

from which the action of the analytic continuation operators across the cuts i[2π(n−1/2), 2π(n+1/2)]
and ψ(A) + i[2π(n− 1/2), 2π(n+ 1/2)] follows as

An0,l yAj =


(−1)nyA0 if j = n
−yAj+sgn(n) if j ∈ {0} ∪Bn−sgn(n)

yAj if j /∈ {0} ∪Bn
(3.113)

An0,ryAj =


(−1)nyAn if j = 0
−yAj−sgn(n) if j ∈ Bn
yAj if j /∈ {0} ∪Bn

, (3.114)

Anψ,l yAj =


yAn if j = 0
−yAj−sgn(n) if j ∈ Bn
yAj if j /∈ {0} ∪Bn

(3.115)

Anψ,ryAj =


yA0 if j = n
−yAj+sgn(n) if j ∈ {0}∪ ∈ Bn−sgn(n)

yAj if j /∈ {0} ∪Bn
. (3.116)
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The poles yAj take real values when v ∈ R+ + 2iπ(Z + 1/2) which correspond to the cuts of χA and ηA,
with corresponding branch points in the set S of (3.15). As in the case of χMC, only the four poles
±yA0 (v) and ±yAj (v) take real values for Im v = 2iπ(j + 1/2). We can now construct the functions ηA∅
and χA∅ from analytic continuation of χA and ηA by adding the residues of fA,vη and fA,vχ at these poles
using the fact that

lim
ε→0

ϕA(v + iε)− ϕA(v − iε) = 2iπ
(

res(fA,vη|χ (v), yAj (v))− res(fA,vη|χ (v),−yA0 (v)) (3.117)

+res(fA,vη|χ (v), yA0 (v))− res(fA,vη|χ (v),−yAj (v))
)
. (3.118)

where fA,vη|χ (v) stands for either fA,vη (v) or fA,vχ (v). Adding this discontinuities on each strip 2iπ(n +

1/2) < Im v < 2iπ(n+ 3/2) above the corresponding cut, we obtain for Re v > the expressions

ηA∅ (v) = ηA(v)− 2i

(
1− (−1)[Im v

2π
]

2
yA0 (v) +

∑
j∈B[Im v

2π ]

yAj (v)

)
(3.119)

χA∅ (v) = χA(v)− 2i

(
1− (−1)[Im v

2π
]

2
yA0 (v)3 +

∑
j∈B[Im v

2π ]

yAj (v)3

)
(3.120)

which belong to the space FA. For Re v < 0, ηA∅ (v) and χA∅ (v) are equal to ηA(v) and χA(v).

Analytic continuation of functions ηA∅ and χA∅ : functions χAP and ηAP

We can now compute the analytic continuation of χAP and ηAP across the cuts 2iπ(n− 1/2, n+ 1/2) and
ψ(A) + 2iπ(n − 1/2, n + 1/2), n ∈ Z∗ 5. Both functions have the same analytic structure, so we will
denote by ϕA either ηA and χA and by λA the additional terms yAj (respectively (yAj )3) appearing in
the analytic continuation of ηA (respectively χA) in expressions (3.119) and (3.120).

The structure of the analytic continuation of ϕA∅ across the cuts on the imaginary line Re v = 0 is
identical to that of the function χMC

∅ (v) so we can directly transpose expressions (3.80) and (3.81) in
this context

An0,l ϕA∅ (v) = ϕA∅ (v) + 2i

(
1− (−1)[Im v

2π
]

2
λA0 (v) +

∑
j∈B[Im v

2π ]

λAj (v)

)
, (3.121)

An0,r ϕA∅ (v) = ϕA∅ (v) + 2i

(
1 + (−1)[Im v

2π
]

2
λAn (v) +

∑
j∈B[Im v

2π ]

λAj (v)

)
. (3.122)

The set of functions λAj being, by construction, closed under analytic continuation, the continuation
of all branches of ϕA∅ across theirs cuts are obtained under the form

ϕAP = ϕA∅ (v) + 2i
∑
j∈P

λAj (v) (3.123)

where P ⊂ Z, similar to (3.82). Knowing the action of translations operators Tl|m|r from (3.110),
(3.111), and (3.112), we can painstakingly compute the action of translation operators on ϕAP in terms

5The functions χA and ηA originally have their branch points on the imaginary line Re v = 0. The branch points at
Re v = ψ(A) of ηA∅ (v) and χ

A
∅ (v) are the result of the introduction of the additional terms ±yAj (v)
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of set-theoretic operation on the indexing set P :

T−nm P = P + n (3.124)

T−nr P =


((P + n) \ Cn) ∪ (Bn \ (P + n+ sgn n)) ∪ {0} 0 ∈ P & n even

0 /∈ P & n odd

((P + n) \ Cn) ∪ (Bn \ (P + n+ sgn n))
0 ∈ P & n odd
0 /∈ P & n even

(3.125)

T−nl P =

{
((P + n) \ Cn) ∪ ((P ∩B−n) + n+ sgn n) ∪ {0} 0 ∈ P
((P + n) \ Cn) ∪ ((P ∩B−n) + n+ sgn n)& 0 /∈ P . (3.126)

Using the relations (3.34)-(3.37) between translation operators and analytic continuations on FA, we
obtain

An0,lP =


(P \ Cn) ∪ (Bn \ (P + sgn n)) ∪ {0} n ∈ P & n even

n /∈ P & n odd

(P \ Cn) ∪ (Bn \ (P + sgn n))
n ∈ P & n odd
n /∈ P & n even

(3.127)

An0,rP =


(P \ Cn) ∪ (Cn−sgn n \ (P − sgn n)) ∪ {n} 0 ∈ P & n even

0 /∈ P & n odd

(P \ Cn) ∪ (Cn−sgn n \ (P − sgn n))
0 ∈ P & n odd
0 /∈ P & n even

(3.128)

Anψ,lP =

{
(P \ Cn) ∪ ((P ∩Bn)− sgn n) ∪ {n} 0 ∈ P
(P \ Cn) ∪ ((P ∩Bn)− sgn n) 0 /∈ P , (3.129)

Anψ,rP =

{
(P \ Cn) ∪ ((P ∩ Cn−sgn n) + sgn n) ∪ {0} n ∈ P
(P \ Cn) ∪ ((P ∩ Cn−sgn n) + sgn n) n /∈ P . (3.130)

Riemann surface RA

We now consider the Riemann surface RA, covering the domain DA, to which the branches of χA and
ηA are lifted as single valued functions. As we can see, operators Anl|r (3.85)-(3.86) for the maximal
current phase and An0,l|r (3.127)-(3.128) for the MC/HD crossover are in fact identical. The same
symmetry of the solutions of (3.1) and (3.2) under translations on the right sector Re v > 0 mentioned
in the two previous cases also exist for χA and ηA. Thus, we look for a canonical representative of the
orbits of finite subsets of integer under the right translation group tr.

Using the shorthand notations Tr = T−1
r , Tm = T−1

m , Tl = T−1
l , we also denote by OP = hrP the

orbit of set P . The existence for any P ⊂ Z of a single P ∗ ∈ OP such that |P ∗|+ = |P ∗|− has already
been proved for the case of RMC, as operators Tr have the same expression in both contexts. Defining

P0 = {P ⊂ Z, 0 ∈ P ∗} , (3.131)
P∗ = {P ⊂ Z, 0 /∈ P ∗} . (3.132)

we now prove that P∗ is globally stable under the action of analytic continuation operators Anψ|0,r|l.
Due to the relations (3.34)-(3.37) connecting translation and analytic continuations, we only need to
prove that P∗ is stable under the action of Tm and Tl.

We observe from (3.87) that 0 ∈ P ∗ is equivalent to 0 ∈ P (respectively 0 /∈ P ) if |P+| − |P−| is
even (resp. odd). Under the replacement P → T−1

m P , |P+| − |P−| is left unchanged if 0 /∈ P and is
decreased by one otherwise, which proves the stability under Tm.

Similarly, writing down the action of Tl on a set P ∈ P∗, wee see that in every case, under the
replacement P → T−1

m P , |P+|− |P−| is left unchanged or decreased by two, which concludes the proof.
The collections of sets P0 and as a consequence its complement P∗ are thus stable under the action of
analytic continuation operators so that the associated Riemann surfaces RA0 and RA∗ form two disjoint
components of RA. We can thus, as in the MC case, index solutions for the eigenvalue E(µ) by finite
sets P ⊂ Z∗ with as many positive as negative elements, corresponding to sheets of RA∗ .
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Figure 3.11: Representation of the path corresponding to the action of operator Ln (3.133)
.

We will now prove that the Riemann surface RA∗ representing physical solutions to equations (3.1)
and (3.2) is connected for 0 ≤ A < ∞. Since the structure of the Riemann surface RA is similar to
that of RMC in the vicinity of the cuts at Re v = 0, the connected components Ck, indexed by sets
P ∈ Ck defined by (3.89) are also defined by the same sets of integers in RA∗ and are each connected.
To prove that RA∗ itself is connected, we just need to prove that the base domain P = is connected to
a sheet in each Ck. Let us define the operator

Ln = An0,lA
n
ψ,lA

−n
ψ,rA

−n
0,r (3.133)

which correspond to the analytic continuation of χAP along a path represented in figure 3.11. Recaling
the definition of Pk from (3.90), we know that Pk ∈ Ck so that the corresponding sheet belongs the
collection of sheets Ck. The set Pk is obtained from the empty set as

Pk = L1 ◦ L2 ◦ ... ◦ Ln ∅ , (3.134)

so that all components Ck are connected to each other, which proves the connectedness of RA∗ .

Limits of χA, ηA and RA for A→ 0 and A→∞

We expect the family of Riemann surfaces {RA, 0 ≤ A <∞} to interpolate between the two surfaces
RPer for A→ 0 and RMC for A→∞ 6.

Let us first consider the case A → 0. We make the change of variable y = 2
√
t in the integrals

(3.91) and (3.92) defining functions ηA and χA. Using the identity∫ ∞
0

dt
ts−1

et−v − 1
= Γ(s)Lis(e

v) (3.135)

where Γ is the Euler gamma function, we obtain for A = 0 in terms of the variable c = v/(2π)

η0(c) = 2
√
π Li3/2(−e2πc) (3.136)

χ0(c) = 12
√
π Li5/2(−e2πc) . (3.137)

6These two cases corresponding respectively to the periodic TASEP and the open TASEP in the maximal current.
This correspondence is expected from the similarity of the Bethe equations of the periodic TASEP at half filling and of
the open TASEP on the MC/HD boundary
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For A = 0, the functions ΩA
j become

Ω0
j (z) = log(−z/4) + 2iπ(j + 1/2) . (3.138)

For j 6= 0 the functions yAj (v) write

y0
j (c) = −sgn(j)

√
2π

√
c+ i

(
j − sgn(j)

1

2

)
, (3.139)

and for j = 0, y0
j (v)→ 0. Thus, the function χA∅ (v) (resp. ηA∅ (v)) have limits χPer

∅ (v) (resp. χPer′(v))
when A→ 0. Looking now at the structure of the Riemann surface RA, the function ψ(A) defined in
(3.103) is negative and monotonically goes to 0 when A→ 0, so that the two lines of branch cuts of ηAP
and χAP collapse into one. Analytic continuations across the resulting cuts are realized by the product
of operators An0,rAnψ,r and Anψ,lA

n
0,l corresponding to continuations along a path crossing to successive

branch cuts. For any finite P ⊂ Z, one gets

An0,rA
n
ψ,rP = Anψ,lA

n
0,lP =

{
P 	 Cn n odd
P 	Bn otherwise , (3.140)

where 	 is the symmetric difference, and Cn = Bn ∪ {0}. Since yA0 (v) → 0 when A → 0, then the
branches χAP∪{0} (respectively η

A
P∪{0}) are equal to χAP (respectively ηAP ) in this limit, so that (3.140)

coincides with the action of Anr = Anl on the branches of χPer for A = 0.
Considering now the limit A → ∞, we saw that the analytic continuation through the cuts at

Re v = 0 is similar for RMC and RA. Since ψ(A) → −∞ when A → ∞, the second set of branch
cuts of χAP (v) and ηAP (v) disappears (it gets identified as the point at infinity on each sheet), and the
structure of RMC is recovered. Since the path through the cuts at Re v = ψ(A) do not exist anymore
when A → ∞, the Riemann surface indeed get split in an infinite number of connected components
Ck.
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Chapter 4

Asymptotics computation of the spectral
gaps of the exclusion process

We have reviewed in chapter 2 the methods used to obtain, both in the periodic and open cases, exact
expressions for the eigenvalues and eigenstates of the TASEP deformed Markov matrix M(µ) in finite
size. These expressions are written in terms of the solutions to the polynomial Bethe equation. We
dispose moreover of explicit expressions for the ground state eigenvalue of M(µ). In this chapter, we
will compute the asymptotic of these expression in the large system size limit.

In the first part of the chapter we compute the large system size limit of the ground state eigenvalues
(2.209)–(2.210) of the open TASEP in the maximal current phase and at the MC/HD boundary. We
will in particular recover the expressions of functions χPer, χMC and χA which were the object of
all attention in chapter 3. The second part of the chapter is devoted to the asymptotic analysis of
the Bethe roots solutions to the Bethe equations (2.181), from which a complete classification of the
spectral gaps ofM(µ) in the thermodynamic limit will be deduced, and related to the analytic structure
constructed in chapter 3.

4.1 Asymptotics of the ground state eigenvalues

4.1.1 Ground state of the periodic TASEP

We have recalled in section 2.2 the expression of the ground state eigenvalue E(µ) of the deformed
Markov matrix E(µ) of the periodic TASEP under the form of a parametric equation involving two
series in a parameter B:

µ = −
∞∑
k=1

(
kL

kN

)
Bk

k
, (4.1)

E(µ) = −
∞∑
k=1

(
kL− 2

kN − 1

)
Bk

k
. (4.2)

We mentioned in 2.3.5 that the spectrum of the open TASEP at the boundaries of the maximal current
phase is a subset of that of the periodic TASEP at half-filling, so we will restrict ourselves to the case
N = L/2 to keep notations light. Being interested in the large system size limit of E(µ), as it is
the case relevant to KPZ universality, we first compute the asymptotic equivalent of the coefficients
of these sums using the Stirling equivalent of the factorial n! ∼

√
2πnnne−n. It is straightforward to

check that for L→∞,

µ ' − 1

2
√
πL

∞∑
k=1

Bk

k3/2
, (4.3)

E(µ)− µ

4
' 1
√
πL3/2

∞∑
k=1

Bk

k5/2
. (4.4)
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We recognize the polylogarithm functions Lis(z) =
∑∞

k=1 z
k/ks. With the change of variable B = −ev,

we define the function that we already studied in chapter 3,

χPer(v) =
1√
2π

Li5/2(−ev) , (4.5)

so that the parametric expression of E(µ) writes

µ =
1√
2L
χPer′(v) , (4.6)

E(µ)− µ

4
=

√
2

L3/2
χPer(v) . (4.7)

4.1.2 Ground-state of the open TASEP in the maximal current phase

We recall the parametric expression of the ground state eigenvalue E(µ) of the open TASEP for
α = β = 1 stated in section 2.3

µ = −
∞∑
k=1

(2k)!

k!

[2k(L+ 1)]!

[k(L+ 1)]![k(L+ 2)]!

Bk

2k
, (4.8)

E(µ) = −
∞∑
k=1

(2k)!

k!

[2k(L+ 1)− 2]!

[k(L+ 1)− 1]![k(L+ 2)− 1]!

Bk

2k
. (4.9)

This expression was obtained in two different ways. First, using the separability 1 of the conjectural
Bethe equations (2.181), its was possible to write E(µ) and µ as contour integrals on the unit circle,
assuming that all Bethe roots were located therewithin. The same expression was also obtained before
[44, 56] by explicit construction of a Q operator in [57]. As explained in the introduction, E(µ) is
by construction the scaled cumulant generating function of the current in the TASEP chain. One
can immediately use these expression to compute the first cumulants of the integrated current Qt by
eliminating the parameter B at the appropriate order between equations (4.8) and (4.9). One obtains
for instance [56]

lim
t→∞

〈Qt〉
t

=
L+ 2

2(2L+ 1)
(4.10)

lim
t→∞

〈Q2
t 〉 − 〈Qt〉2

t
=

3

2

(4L+ 1)![L!(L+ 2)!]2

[(2L+ 1)!]3(2L+ 3)!
(4.11)

lim
t→∞

1

t

〈(
Qt − 〈Qt〉
〈Q2

t 〉 − 〈Qt〉

)3
〉

= 12
[(L+ 1)!]2[(L+ 2)!]4

(2L+ 1)[(2L+ 2)!]3

[
9

(L+ 1)!(L+ 2)!(4L+ 2)!(4L+ 4)!

(2L+ 1)![(2L+ 2)!]2[(2L+ 4)!]2

(4.12)

− 20
(6L+ 4)!

(3L+ 2)!(3L+ 6)!

]
Aiming at the computation of the cumulant generating function of the current in the thermodynamic
limit, we will take the asymptotic equivalent when L → ∞ of these expressions. We compute the
asymptotic equivalent of the coefficients in sums (4.8) and (4.9) using again Stirling’s equivalent of the
factorial:

µ = −L
−1/2

2
√
π

∞∑
k=1

(2k)!

k!kk+3/2
Bk (4.13)

E − µ

4
=
L−3/2

8
√
π

∞∑
k=1

(2k)!(k + 1/2)

k!kk+5/2
Bk (4.14)

E −
(

1

4
+

1

4L

)
µ =

L−3/2

8
√
π

∞∑
k=1

(2k)!k

k!kk+5/2
Bk (4.15)

1Also sometimes referred to as the mean-field or decoupled character of the Bethe equations, as each root depends
solely on a global symmetric functions of all others.
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where all common powers to the k in both equalities have been incorporated into B. Using the change
of variable 2 B = −ev+1/4, we define the function

χ(v) = − 1

4
√
π

∞∑
k=1

(2k)!

k!kk+5/2
(−ev+1/4)k , (4.16)

so that at leading order when L → ∞, the parametric equation giving the ground state eigenvalue
writes

µ ' 2χ′(v)√
L

, (4.17)

E −
(1

4
+

1

4L

)
µ ' χ(v)

4L3/2
. (4.18)

The series (4.16) is convergent only for Re v < 0. A first step in the analytic continuation of χ is then
to find an alternate representation of the function coinciding with (4.16) on the negative complex half
plane. The combinatoric coefficients in the series expansion of χ can be written in terms of a Gaussian
integral. Using the fact that for even n ∈ N∗,∫ ∞

−∞
yne−ay

2
dy =

Γ
(
n+1

2

)
a
n+1
2

(4.19)

one gets, wherever the left hand side is defined

−
∞∑
k=1

(2k)!

k!kk+5/2
(−ev+1/4)k = 2

∞∑
k=1

∫ ∞
−∞

(1− y2)y2ke−ky
2
dy (−ev+1/4)k (4.20)

and, permuting the sum and integral,

χ(v) = − 1

2π

∫ ∞
−∞

dy (1− y2) log
(

1 + y2e1−y2+v
)

(4.21)

where the integral on the right hand side is well defined and analytic for v ∈ C\{R+ +2iπ(n+1/2), n ∈
Z}. Finally, integrating by part, χ(v) writes

χ(v) =
1

3π

∫ ∞
−∞

dy
(1− y2)(3− y2)

1 + y−2 ey2−v−1
(4.22)

which is the representation used in chapter 3, from which function χ∅ is computed.

4.1.3 Ground-state of the open TASEP at the edge of the maximal current phase

As explained in 1.7, a solution of the KPZ equation on a finite interval is built from the ASEP with
open boundary conditions under the weak asymmetry scaling p− q ∼ 1/

√
L. The Neumann boundary

conditions for the KPZ height function are fixed by the boundary parameters of the ASEP as specified
by the scaling (1.142). The scaling of the boundary parameters α, β and of the bulk parameters p and
q can be in fact set independently, so that taking the totally asymmetric q = 0 limit within the bulk
and keeping a dependency in L in the boundary rates, we choose the following scaling

α =
1

2
+

√
A

4L
, β =

1

2
+

√
B

4L
. (4.23)

It corresponds, on the phase diagram of TASEP to a crossover between the maximal current phase
and the triple point α, β = 1/2 joining the three phases of the system. One should note that the
parameters A and B are not directly related to the parameters Ã and B̃ of (1.142). In terms of the
ASEP height function, the slope at the left and right boundaries ∂Xh(X = 0, T ) and ∂Xh(X = 1, T )

2The shit +1 in the exponential ensures, for convenience, that the branch points of χ are on the imaginary line.
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are increasing functions of A and B respectively. This choice of parameters correspond to a height
function described by the KPZ fixed point with general Neumann boundary conditions.

As explained in chapter 2, the general form of E(µ), valid whenever the parameters a = 1/α − 1,
b = 1/β − 1 and 0 are located within the unit disk is

µ =
1

2

∮
|z|=1

dz

2iπz
log(1− ZF (z)) , (4.24)

E =
1

2

∮
|z|=1

dz

2iπ(1 + z)2
log(1− ZF (z)) . (4.25)

The function F here is defined by (2.57), and these expression were independently obtained by modified
Bethe ansatz and Q-operator method (the same function F appears in both derivations, up to a sign)3.
Parameters a and b are indeed in the interior of the integration contour as A,B > 0. Integrating by
part and using changing the parameter Z → 4LZ, one gets

µ = −1

2

∫
|z|=1

dz

2π
log(z)

−ZF ′(z)
4L − Z

, (4.26)

E(µ) = −1

2

∫
|z|=1

dz

2π(1 + z)

−ZF ′(z)
4L − Z

. (4.27)

These integrals are dominated in the large L limit by the value they take close to z = 1 on a support
scaling like z − 1 ∼ L−1/2, so that with the change of variable z = 1 + iy/

√
L, and function F being

asymptotically equivalent to

F (z) ' − 4y2e
y2

4

(y − 4A)(4A+ y)(y − 4B)(4B + y)
(4.28)

these integrals can be evaluated at leading order for L→∞ as

µ ' − 1

4π
√
L

∫ ∞
−∞

dy

(
1 +

y2

3L

) ( 16i
√
A

y−4i
√
A
− 16i

√
A

y+4i
√
A

+ 16i
√
B

y−4i
√
B
− 16i

√
B

y+4i
√
B

+ 2y2 + 8
)

e
y2

4 ((4
√
A−iy)(4

√
A+iy)(4

√
B−iy)(4

√
B+iy))

Zy2
− 4

(4.29)

E(µ) ' − 1

4π
√
L

∫ ∞
−∞

dy

(
1

4
+

y2

16L

) ( 16i
√
A

y−4i
√
A
− 16i

√
A

y+4i
√
A

+ 16i
√
B

y−4i
√
B
− 16i

√
B

y+4i
√
B

+ 2y2 + 8
)

e
y2

4 ((4
√
A−iy)(4

√
A+iy)(4

√
B−iy)(4

√
B+iy))

Zy2
− 4

.

(4.30)

In order to make further computation simpler, we take the limit B → ∞, so that we consider the
system in the vicinity of the low density/maximal current phase boundary. In terms of KPZ height
function, we let the left boundary slope take any value. We also make the change of parameter

Z = −16B2(1 +A2)ev+vA0 , (4.31)

with

vA0 =
2
√
A√

A+
√
A+ 4

− 2 log
( 2

√
A+ 4√

A+
√
A+ 4

)
, (4.32)

to ensure that our expressions have a finite limit in both limits A→ 0 and A→∞ and that the final
functions χA and ηA have their branch points on the imaginary line as in the MC case. Defining

ηA(v) =

∫ ∞
−∞

dy
(A+ 4)y2

(
4A
(
y2 − 4

)
+ y4

)
2 (4A+ y2)

(
(4A+ y2) e−v−v

A
0 + y2

4 + (A+ 4)y2
) , (4.33)

χA(v) =
1

16

∫ ∞
−∞

dy
(A+ 4)y4

(
4A
(
y2 − 4

)
+ y4

)
2 (4A+ y2)

(
(4A+ y2) e−v−v

A
0 + y2

4 + (A+ 4)y2
) . (4.34)

3We denote by Z the dummy parameters in equations (4.24)–(4.25) that was previously written B to avoid ambiguities
with the scaling parameter corresponding to the boundary rate β
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Figure 4.1: Plot of the first spectral gaps of the open TASEP for α = β = 1 in the complex plane with
the corresponding labeling set P of the branch of χMC appearing in equations (4.37)-(4.38).

the asymptotic expression of the ground state eigenvalue in the phase crossover scaling of the left
boundary rate is

µ ' ηA(v)

4π
√
L
, (4.35)

E − µ

4
' χA(v)

12πL3/2
, (4.36)

so that we recover the functions ηA and χA studied in chapter 3. One also checks that when A→∞,
the relations (4.29) and (4.30) reduce to their analogue (4.17) and (4.18) in the maximal current phase.
Similarly, considering the limit A → 0, up to a change of parameter v → 2πv, (4.29) and (4.30) have
limits expressions (4.6) and (4.7) which are their analogue for the periodic TASEP at half-filling with
zero total momentum. This result is expected from the fact, noted in section 2.3.5, that the spectral
gaps of the open TASEP on the transition line between low density and maximal current phases is a
subset of that of the periodic TASEP.

4.1.4 Spectral gaps from analytic continuation

We now dispose of the ground state eigenvalues of matricesM(µ) in the large L limit. In this limit, the
eigenvalues of M(µ) follow various scaling with respect to the system size. Among the eκL eigenstates
of M(µ) – where κ depends on the geometry and filling of the system – the extensive part scales
proportionally to L, forming the bulk of the eigenvalues [75]. Other subsets of the spectrum of M(µ)
follow different scaling. Of special interest to us are the spectral gaps of M(µ), which are the first
eigenvalues larger than the ground state in real part and scaling like L−3/2. They form a discrete
subset of the spectrum M(µ), and as noted in chapter 1, they are the relevant eigenstates on the KPZ
time scale t ∼ L3/2.

We observe that all spectral gaps of M(µ) in the three contexts considered can be obtained by
solving the above-derived parametric equations, substituting the functions χPer, χMC and χA by other
branches χPer

P , χMC
P and χAP respectively of their analytic continuations. The ground state corresponds,

given the way we defined these functions, to the indexing set P = ∅. Let us consider the example of
the open TASEP in the maximal current phase. For any P ⊂ Z∗ with the same number of positive and
negative elements and µ ∈ R, we observe that there exist a single solution to the parametric equation

µP '
2 χMC

P ′(v)√
L

, (4.37)

EP (µ)−
(1

4
+

1

4L

)
µP '

χMC
P (v)

4 L3/2
. (4.38)

such that EP (µ) is a higher spectral gap of M(µ) for L→∞, see figure 4.1. In particular the first gap
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Figure 4.2: Plot of the value of the first gap e1 of the deformed Markov matrix in the LD/MC crossover
for P = {−1, 1} as a function of A. The horizontal dashed lines are the asymptotic values of e1 for
A → 0 (left) and A → ∞ (right) corresponding respectively to the second largest real value of the
periodic M(µ) (which is not strictly speaking the gap of the process as the eigenvalues with second
largest real part are two complex conjugates) and the gap of the maximal current TASEP, also solution
to (4.37)–(4.38) with P = {−1, 1}.

E1 of the process is obtained with the label P = {−1, 1}, with functions χ and χ′ writing explicitly

χ{−1,1}(v) = χ(v) + 2
((W1(e−1−v))3/2

3
+
√
W1(e−1−v)

)
(4.39)

+ 2
((W−1(e−1−v))3/2

3
+
√
W−1(e−1−v)

)
χ′{−1,1}(v) = χ′(v)−

√
W1(e−1−v)−

√
W−1(e−1−v) . (4.40)

Solving (4.37) and (4.38) with these branches for µ = 0 gives E1 = e1L
−3/2 with e1 ≈ −3.5780646,

which matches perfectly the numerical value obtained by de Gier and Essler in [39] by solving numer-
icaly the Bethe ansatz equations. Similarly, the spectral gaps of M(µ) on the edge of the maximal
current phase satisfy the following equations

µP '
ηAP (v)

4π
√
L
, (4.41)

EP −
µP
4
'

χAP (v)

12πL3/2
. (4.42)

They are continuous functions of A and are converging to spectral gaps of the periodic ASEP with zero
momentum when A→ 0 and to the spectral gaps on the maximal current open TASEP with α = 1/2,
β = 1 for A→∞. See figure 4.2 for a plot of the gap of M(µ) as a function of A. In what follows, we
will justify these results from Bethe ansatz in the maximal current open TASEP case.

Analogous result were already known [70] for the periodic case in terms of the function χPer. The
spectral gaps with zero total momentum ofM(µ) for the periodic TASEP at half-filling N = L/2 verify

µP =
1√
2L
χPer
P ′(v) , (4.43)

EP (µ)− µ

4
=

√
2

L3/2
χPer
P (v) . (4.44)

with sets P ⊂ Z + 1
2 satisfying the same constraint |P+| = |P−|. Note that this constraint specifi-

cally ensures that the eigenstates obtained have zero total momentum. These eigenstates are the one
contributing to the cumulant generating function of the current (1.140). Other spectral gaps may
be obtained by allowing more general sets P , however, the branches corresponding to these sets are
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not directly related to χPer
∅ by analytic continuation, as expected from the fact, noted in 3.1.4 that

sectors conserved by the dynamics should belong to different connected components of the analytic
continuation of eigenstates. Only these gaps are recovered by taking the limit A → 0 in equations
(4.41)–(4.42).

4.2 Asymptotics of the Bethe roots for the open TASEP in the max-
imal current phase

We now compute the Bethe roots uj , solutions to the Bethe equations (2.181) in the large system size
limit, in order to prove the results just stated in terms of analytic continuation. Starting from the
Bethe equation obtained by TQ-relation for 1 ≤ j ≤ L+ 1

uLj (uj + b)(uj + a)(auj + 1)(buj + 1) = (−1)L+1e2µ(1− uj)2L+2(uj + 1)2
L+2∏
k=1

uk , (4.45)

we will first study their solutions for finite L, writing the roots of (4.45) uj = uj(C) as a function of the
parameter C = −e2µ

∏L+2
k=1 uk. We will study the analytic continuation structure of functions uj and

find a consistent labeling of the eigenstates for any system size, in correspondence with the labeling of
the sheets of RMC. The value of E(µ) corresponding to a given set of solutions of the Bethe equation
will be obtained by fixing C as a function of µ. As a byproduct, we will show that this indexing of
eigenstates has a physical interpretation in terms of fermionic pseudo-particle, as customary for Bethe
ansatz integrable models. Finally, we will study the large L asymptotics of the Bethe ansatz expression
of the eigenvalues E(µ), allowing us to recover (4.37)–(4.38).

Labeling of Bethe roots in finite size : functions uj(C) and u∗j (C)

Let us define the polynomial

R(u,C) = uL(u+ a)(u+ b)(au+ 1)(bu+ 1)− (−1)LC(1− u)2L+2(u+ 1)2 , (4.46)

the L+ 2 Bethe roots describing an eigenstate of the system are among the solutions to R(u,C) = 0,
which has generically 2L+ 4 solutions. All roots belong to the curve

ΓC : |u|L|u+ a| |u+ b| |au+ 1| |bu+ 1| = |C| |1− u|2L+2|u+ 1|2 . (4.47)

The curve ΓC has self intersection points in the complex u plane when R(u,C) = 0 and ∂uR(u,C) = 0
simultaneously. For finite C, the solutions for u verify

L

u
+

1

u+ a
+

1

u+ b
+

1

u+ a−1
+

1

u+ b−1
=

2L+ 2

u− 1
+

2

u+ 1
. (4.48)

There are six solutions in u, corresponding to pairs of double points occurring for three critical values
C± and C∗ of the parameter C, see figure 4.3. For α = β = 1, the points C± are zero, and the the
critical point C∗ has the following scaling with respect to the system size

C∗ ' −
e (1− a)2(1− b)2

4L+2

(
L+

3

2
+

4a

(1− a)2
+

4b

(1− b)2

)
, (4.49)

which reduces to

C∗ = − (L+ 2)L+2

4L+2(L+ 1)L+1
(4.50)

when α = β = 1. We observe moreover that for any α, β ≥ 1/2, C± < C and C± → 0 when L → ∞.
As we will see next, the values of C corresponding to eigenstates of M(µ) in the large system size limit
will be of order C∗ so we will restrict ourselves to the case α = β = 1 in what follows, as the other
self-intersections points C± are irrelevant for our purpose.

105



CHAPTER 4. ASYMPTOTICS COMPUTATION OF THE SPECTRAL GAPS OF THE
EXCLUSION PROCESS

-1 0 1 2 3 4

-3

-2

-1

0

1

2

3

-1 0 1 2 3 4

-3

-2

-1

0

1

2

3

-1 0 1 2 3 4

-2

-1

0

1

2

3

Figure 4.3: Curve ΓC defined in (4.47), plotted for L = 7, α = β = 1, with C = 0.9C∗ (left), C = C∗

(middle) and C = 1.1C∗ (right).

For 0 ≤ j ≤ L + 1 we now introduce the functions uj(C) and u∗j (C) as the the 2L + 4 roots of
R(u,C) = 0, see figure 4.4. These functions are not analytic as varying C will lead to permutations
of roots (in particular, changing the phase of C for constant |C| causes a circular permutations of the
roots along the closed components of ΓC). The branch points of uj and u∗j correspond to the multiple
points of ΓC , which happen for C ∈ {∞, C∗, 0}, where C∗ < 0, so that we can take the branch cuts of
the uj and u∗j to be the intervals (−∞, C∗] and [C∗, 0].

To fix the labeling of the roots we first consider the small C behaviour of the Bethe roots for
α = β = 1. Considering (4.45) in the limit C → 0, L + 2 roots go to zero while L + 2 go to infinity
with a phase that is a roots of unity. We choose to set

uj '
C→0

C
1

L+2 e
2iπj
L+2 (4.51)

u∗j '
C→0

C−
1

L+2 e−
2iπj
L+2 (4.52)

where fractional powers are understood with branch cut R−. Away from the branch cuts, these asymp-
totic expressions can be extended for any α, β > 1

2 by continuity. Considering now the large C
asymptotics of the roots,

1 + u0(C) '
C→∞

(1− a)(1− b)
2L+1

√
C

1 + u∗0(C) '
C→∞

−(1− a)(1− b)
2L+1

√
C

(4.53)

1− uj(C) '
C→∞

e−
2iπ(j−1−L/2)

2L+2

(4α2β2C)
1

2L+2

for j = 1, . . . , L+ 1

1− u∗j (C) '
C→∞

e−
2iπ(j+L/2)

2L+2

(4α2β2C)
1

2L+2

for j = 1, . . . , L+ 1 .

We can now explicit the analytic continuations of the uj and u∗j across their branch cuts. We denote
by Ain the analytic continuation from above the cut [C∗, 0] and by Aout from above (−∞, C∗]. We
obtain

Aoutuj = uj+1 0 ≤ j ≤ L (4.54)
AoutuL+1 = u0 j = L+ 1 (4.55)

Aoutu
∗
j = u∗j+1 0 ≤ j ≤ L (4.56)

Aoutu
∗
L+1 = u∗0 j = L+ 1 (4.57)
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and

Ainu0 = u∗0 j = 0 (4.58)
Ainu

∗
0 = u0 j = 0 (4.59)

Ainuj = uj+1 1 ≤ j ≤ L (4.60)
AinuL+1 = u∗1 j = L+ 1 (4.61)
Ainu

∗
j = u∗j+1 1 ≤ j ≤ L (4.62)

Ainu
∗
L+1 = u1 j = L+ 1 (4.63)

Construction of spectral gaps

Now that we have an identification for all L of the roots of polynomial R(u,C), we can determine the
expression of the various spectral gaps of M(µ) in terms of the uj(C) and u∗j (C). An eigenstate is
characterized by the choice of L+ 2 Bethe roots {uj}0≤j≤L+1 among the 2L+ 4 roots {uj(C), u∗j (C)},
with the eigenvalue

E = 1− α+ β

2
+

1

2

L+1∑
j=0

uj
1− uj

. (4.64)

There are
(

2L+4
L+2

)
such choices and only 2L eigenstates of M(µ) so the relevant choices of roots have to

be identified. We take the 2L+ 2-th root of the Bethe equations (4.45),

(1− uj)(1 + uj)
1

L+1C
1

2L+2

u
L

2L+2

j (uj + a)
1

2L+2 (uj + b)
1

2L+2 (1 + auj)
1

2L+2 (1 + buj)
1

2L+2

= e−
2iπkj
2L+2 , 0 ≤ j ≤ L+ 1 (4.65)

where kj is an integer if L is even and half-integer if L is odd. The fractional powers are still considered
with their branch cuts on R−. The choice of the numbers kj for each of the L + 2 Bethe equation
thus determines the choice of Bethe roots in the set {uj(C), u∗j (C)}. Considering the large C of (4.65)
limit 4 we can relate the numbers {kj}0≤j≤L+1 to the labels of roots uj and u∗j . In particular, the
ground-state eigenvalue for large C writes, for α = β = 1,

E '
C→∞

2
1

L+1
−1C

1
2L+2

L+1∑
j=0

e−
iπkj
L+1 . (4.66)

The sum in this expression is real and has maximal real part for {kj , j = 1...L+ 1} = {−L/2,−L/2 +
1, ..., L/2 − 1, L/2} (see figure 4.5), in which case it yields the ground state of M(µ). It corresponds
to a choice of roots u0 = u0(C) and uj = uj(C) 5. Interpreting the {kj} as pseudo-momenta of L+ 2
fermionic quasi-particles, the ground state corresponds to a filled Fermi sea where the momenta are
stacked one upon the other. More generally, every eigenstate of M(µ) for finite L is defined in terms
of a finite set P ⊂ Z∗ corresponding to the following choice of Bethe roots

u0 = u0(C)

uj = uj(C) for j ∈ [1, L+ 1] \ ((−P−) ∪ (L+ 2− P+))

uj = u∗j (C) for j ∈ (−P−) ∪ (L+ 2− P+)

4This is equivalent to take the large µ limit where Bethe roots are known to simplify to roots of (minus) unity, as we
noted in section 1.4.3

5Since the roots {uj(C)} are the L + 2 roots going to zero for small C, the ansatz we made in 2.3.5 on the position
of the Bethe roots for the computation of the ground state is validated.
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Figure 4.4: Plot of the 2L + 2 solutions u of R(u,C) = 0 in terms of functions uj(C) and u∗j (C),
j = 0, . . . , L + 1 for L = 7 and α = β = 1. The images uj(C \ R−) and u∗j (C \ R−) are delimited by
the black curves. The lighter, blue, grey and red curves correspond to the curves ΓC for |C/C∗| ∈
{1/20, 1/2, 1, 2, 100} respectively, with C∗ defined by (4.50). The dots represent the corresponding
solutions of R(u,C) = 0 with C > 0.
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Figure 4.5: Position on the unit circle of the terms e−2iπkj/(2L+2) for even L. The ground state (left)
correspond to the choice {kj , j = 1...L+ 1} = {−L/2,−L/2 + 1, ..., L/2− 1, L/2} maximizing the real
part of the sum (4.66). The gap (right) is obtained by inverting the extremal kj at both end of the
interval.
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Figure 4.6: Choices of momenta kj corresponding to some eigenstates of M(µ). The filled gray square
represent the kj corresponding to selected Bethe roots, and the vertical bars represent the limits ±L

2
of the Fermi sea.

where P+ and P− are the subsets of respectively positive and negative elements of P . Thus, the set of
the momenta {−k1, j = 1...L+ 1} of the quasi-particles is(

{−L/2, . . . , L/2} ∪ (L/2 + P+) ∪ (−L/2 + P−)
)
\
(

(−L/2− 1 + P+) ∪ (L/2 + 1 + P−)
)
.

(4.67)

The elements of P index pairs of excitations and holes in the Fermi sea. We observe moreover from
numerical computations (see next section) that in the limit L→∞, the spectral gaps contributing to
the KPZ part of the spectrum scaling in L−3/2 are obtained for sets P such that |P+| = |P−|. This
condition implies that the total pseudo-momentum of the quasi particles constituting the eigenstates
is zero:

L+1∑
k=1

kj = 0 mod 2L+ 2 . (4.68)

We see that the spectral gaps of TASEP are obtained as the sum of two contributions, one coming
from the filled Fermi sea corresponding to the ground state and the other from the hole-excitations
pairs defining higher eigenstates. Splitting the sum (4.64) into both contributions we obtain

E = 1− α+ β

2
+

1

2

L+1∑
j=0

uj(C)

1− uj(C)
+

1

2

∑
j∈L+2−P+

( u∗j (C)

1− u∗j (C)
− uj(C)

1− uj(C)

)
(4.69)

+
1

2

∑
j∈−P−

( u∗j (C)

1− u∗j (C)
− uj(C)

1− uj(C)

)
.
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Taking the logarithm of the parameter C = −e2µ
∏L+1
k=0 uk, we obtain a similar expression for the

fugacity µ

µ = − log(αβ)−
L+1∑
j=0

log(1− uj(C)) (4.70)

−
∑

j∈L+2−P+

(
log
(
1− u∗j (C)

)
− log(1− uj(C))

)
−

∑
j∈−P−

(
log
(
1− u∗j (C)

)
− log(1− uj(C))

)
.

We remark at this stage that these expressions are reminiscent of the expressions obtained by analytic
continuation where the eigenvalue corresponding to some excited state is obtained as the sum of the
ground state branch χ∅ and additional functions ηj indexed by a set of integers. We now compute the
large L asymptotics of the sums (4.69) and (4.70)

Large L asymptotics

Considering first the contribution of the filled Fermi sea for the eigenvalue

1− α+ β

2
+

1

2

L+1∑
j=0

uj(C)

1− uj(C)
(4.71)

and the fugacity

− log(αβ)−
L+1∑
j=0

log(1− uj(C)) , (4.72)

these expressions have been already evaluated by residues in section 2.3 an their large L asymptotics
at the beginning of this chapter for α = β = 1. We can perform the same computation for general
values of α, β > 1/2 by expanding the summands of the last expressions in series of L, obtaining

L+1∑
j=0

uj(C)

1− uj(C)
' α+ β − 2 +

χ′(v)√
L
−
( 2a

(1− a)2
+

2b

(1− b)2

)χ′(v)

L3/2
+

3χ(v)

8L3/2
, (4.73)

L+1∑
j=0

log(1− uj(C)) ' − log(αβ)− 2χ′(v)√
L

+
(

2 +
4a

(1− a)2
+

4b

(1− b)2

)χ′(v)

L3/2
+

χ(v)

4L3/2
, (4.74)

with the change of variable C = ev|C∗|, so that the relevant values of C for the eigenvalues under the
KPZ scaling are indeed scaling like |C∗|. Of course χ stands here for the specific function χMC.

We consider now the contribution of the particle-hole excitations. We observe that for large system
size L, the Bethe roots at the edge of the Fermi asymptotically get closer to −1 with uj + 1

∑
1/
√
L.

Setting C = ev|C∗| as above and casting u = −1 − λ√
L

in the equation R(u,C) = 0, we obtain at
leading order in L the following condition on λ

λ2

4
eλ

2/4 = e−v−1 (4.75)

so that λ is expressed as the square root of a Lambert function of e−1−v, that is in terms of the
functions ±yj(v) defined in chapter 3. Tracking the roots uj and u∗j from their large C asymptotic
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behaviour, we obtain the following asymptotics at leading order

uj(C) ' −1− 2i
y−j(v)√

L
for j > 0 (4.76)

u∗j (C) ' −1 + 2i
y−j(v)√

L
for j > 0 (4.77)

uL+2+j(C) ' −1− 2i
y−j(v)√

L
for j < 0 (4.78)

u∗L+2+j(C) ' −1 + 2i
y−j(v)√

L
for j < 0 (4.79)

Pushing the expansion of the equation R(u,C) = 0 up to order L−3/2 we find that the cancellation
of the higher order terms implies only algebraic expressions in λ so that the roots have the following
expansion for j < 0

u−j(C) ' −1− 2iyj(v)√
L

+
2yj(v)2

L
+

3iyj(v)3

2L3/2
+

iyj(v)

L3/2

(3

2
+

4a

(1− a)2
+

4b

(1− b)2

)
(4.80)

u∗−j(C) ' −1 +
2iyj(v)√

L
+

2yj(v)2

L
− 3iyj(v)3

2L3/2
− iyj(v)

L3/2

(3

2
+

4a

(1− a)2
+

4b

(1− b)2

)
. (4.81)

For j > 0 one finds the same expressions for uL+2−j(C) and u∗L+2−j(C) respectively. Casting these
expansions into (4.69) and (4.70) and subtracting the term (1/(4L) + 1/4)µ to E(µ), one checks that
we recover equations (4.37) and (4.38).

4.3 Numerical checks by extrapolation

In order to check the validity of the results we just stated, they have to be compared with the numerical
computation of the eigenvalues of matrixM(µ). This comparison is also needed to establish some more
conjectural results in the absence of a priori theoretical reason. Most notably, the fact, for the maximal
current TASEP, that only excitations parametrized by sets P ⊂ Z∗ with |P+| = |P−| lead to actual
spectral gaps for L→∞ has no clear physical explanation at the time. The diagonalization of a 2L×2L

matrix being practically impossible on a conventional computer for a system size larger than a few sites,
the asymptotic values of the eigenvalues of M(µ) cannot be inferred from its direct diagonalization
large L. These eigenvalues can be obtained by solving Bethe ansatz equations numerically in finite size
with Newton’s method. Writing the Bethe equation in separate form

uj(b) = g−1

(
e

2iπkj
2L+2 + b

)
1 ≤ j ≤ L+ 2 (4.82)

b =
2µ

2L+ 2
+

1

2L+ 2

L+2∑
k=1

log uk (4.83)

with

g(y) =
y

L
2L+2 [(y + a)(y + b)(ay + 1)(by + 1)]

1
2L+2

(1− y)(y + 1)
1

L+1

(4.84)

One compute recursively numerical approximations b(n) of b

b(n+1) = b(n) −
b(n) − 2µ/(2L+ 2)− 1/(2L+ 2)

∑L+2
k=1 log uk(b)

1− 1
2L+2

∑L+2
k=1

u′j(b)

uj(b)

(4.85)

where uj(b) is computed at each step by inverting the function g also using Newton’s method. Note
that the numbers kj have to be fixed prior to the computation of the numerical solution
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In order to compute efficiently the asymptotic values of the spectral gaps EP (µ) = eP (µ)L−3/2,
one can make use of the Richardson extrapolation to accelerate the convergence of a sequence to its
limit from a sample of its first terms. Its working principle is the following. Let A(h) be a function
with limit A∗, behaving at leading order in h as

A(h) = A∗ − a0h
k0 +O(hk1) with k1 > k0 > 0 (4.86)

Let r > 0 be some real parameter. One has

A

(
h

r

)
= A∗ − a0

(
h

r

)k0
+O(hk1) (4.87)

so that

A∗ =
rk0A(h/r)−A(h)

rk0 − 1
+O(hk1) . (4.88)

Thus, computing A1(h) = rk0A(h/r)−A(h)

rk0−1
in place of A(h), the rate of convergence is increased to the

next order. Considering the full expansion of the function A(h) = A∗ −
∑

i aih
ki , one can define

recursively the functions

Ai+1(h) =
rkiAi(h/r)−Ai(h)

rki − 1
(4.89)

so that A∗ = Ai+1(h) +O(hki+1). It is thus computationally more efficient and reliable to compute the
limit A∗ from the Ai for some reasonable value of h than directly from A(h) for small values of h.

We consider now the case where the limit quantity one is interested in has the form

A(h) = A∗ −
∞∑
k=1

akz
θk (4.90)

which applies indeed to the rescaled spectral gaps eP of TASEP in the variable z = 1/L with θ = 1.
The Richardson extrapolation method described above can be adapted to this case by using a more
general recursion known as the Bullirsch-Stoer algorithm [47, 71]. Starting with a finite sequence of
values h0 < h1 < ... < hn and defining A(0)

i = A(hi), one construct recursively the array

A
(0)
0 A

(0)
1 · · · A

(0)
n−1 A

(0)
n

A
(1)
0 A

(1)
1 · · · A

(1)
n−1

· · · · · · · · ·

A
(n)
0

with

A(p)
m = A

(p−1)
m+1 +

A
(p−1)
m+1 −A

(p−1)
m( hm+1

hm+p+1

)θ(
1− A

(p−1)
m+1 −A

(p−1)
m

A
(p−1)
m+1 −A

(p−2)
m+1 −1

) . (4.91)

The extrapolated value of A∗ is then A(n)
0 . An estimation of the order of magnitude of the error is

|A∗ −A(n)
0 | ∼ |A

(n)
1 −A(n−1)

1 |+ |A(n)
1 −A(n−1)

2 |+ |A(n−1)
1 −A(n−1)

2 | . (4.92)

Note that the absence of convergence of the Bullirsch-Stoer algorithm on some numerical quantity is also
a good indicator of the presence of subleading terms of the form zk log(z)l in the asymptotic expansion
of A(h). See table 4.1 for an illustration of the difference in speed of convergence between the finite size
computation of eigenvalue and their extrapolated values. Using the Bullirsch-Stoer extrapolation, all
other gaps can be computed and checked against their expression obtained by analytic continuation.
See table 4.2 for the numerical values of the first gaps in the maximal current phase
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L e1(L) e1 extrapolated
3 −3.15590 −0.
4 −3.31254 −0.
5 −3.39823 −4.
6 −3.44972 −4.
7 −3.48286 −3.58
8 −3.50533 −3.578
9 −3.52119 −3.5780

10 −3.53277 −3.5781
· · · · · ·

15 −3.56073 −3.578064664
· · · · · ·

20 −3.57038 −3.5780646644761799
· · · · · ·

25 −3.57460 −3.5780646644761798418219
· · · · · ·

30 −3.57672 −3.57806466447617984182187036
· · · · · ·

35 −3.57787 −3.57806466447617984182187035823267
· · · · · ·

40 −3.57854 −3.5780646644761798418218703582326693543

Table 4.1: Numerical evaluation of the spectral gap e{−1,1} of the open TASEP with α = β = 1 from
solutions of the Bethe ansatz equation by Newton’s method, directly computed for a given size of the
system (left column) and extrapolated (right column). The extrapolated values are obtained by from
a sample of values {A(0)

i } ranging from L = 3 to the system size of the current line. The values are
truncated at the order of magnitude of the error estimator (4.92).
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P v χP (v)

∅ −∞ 0

{−1, 1} 4.22823 −3.57806

{−2, 1} 6.02264 − 0.593574i −8.46731− 1.64993i
{−1, 2} 6.02264 + 0.593574i −8.46731 + 1.64993i

{−2, 2} 7.47802 −13.782
{−3, 1} 7.28709 − 1.07616i −14.2212− 4.34068i
{−1, 3} 7.28709 + 1.07616i −14.2212 + 4.34068i

{−2,−1, 1, 2} 8.96685 −19.1775
{−3, 2} 8.58003 − 0.505733i −19.8304− 2.67093i
{−2, 3} 8.58003 + 0.505733i −19.8304 + 2.67093i
{−4, 1} 8.29833 − 1.49364i −20.6905− 7.8732i
{−1, 4} 8.29833 + 1.49364i −20.6905 + 7.8732i

{−3,−1, 1, 2} 9.94552 − 0.418264i −25.4766− 2.56307i
{−2,−1, 1, 3} 9.94552 + 0.418264i −25.4766 + 2.56307i
{−3, 3} 9.59118 −26.1022
{−4, 2} 9.48765 − 0.946301i −26.5289− 6.17958i
{−2, 4} 9.48765 + 0.946301i −26.5289 + 6.17958i
{−5, 1} 9.15505 − 1.86586i −27.788− 12.1323i
{−1, 5} 9.15505 + 1.86586i −27.788 + 12.1323i

Table 4.2: Numerical values when L → ∞ of higher gaps 4L3/2EP ' χMC
P (v), χ′P (v) = 0 in the

maximal current phase with fugacity µ = 0, with corresponding indexing sets. The ground state
eigenvalue cannot be obtained as a solution of equations (4.37)–(4.38) for µ = 0 as the corresponding
value of v goes to −∞. We observe however that for all other branches of χMC the exist a single finite
value of v for which the equations are satisfied for finite µ.
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Conclusion

We have studied the totally asymmetric exclusion process, focusing on the process with open boundary
conditions. We have derived exact expressions for the first excited eigenvalues (spectral gap) of its
deformed Markov matrix in the maximal current phase [41] and on the boundaries between the maximal
current and high/low density phases [40], the later case connecting the results derived for the maximal
current phase and previously known for the periodic ASEP chain. These expressions were obtained
under the form of parametric expressions involving a multivalued complex function, whose branches
were found to be in correspondence with eigenstates. Although these results were obtained directly
from Bethe ansatz equation in the periodic case [75], or justified a posteriori by Bethe ansatz in the
open case, the expressions themselves could be derived by a purely analytic method, simply computing
the analytic continuation of a previously known expression for the ground state eigenvalue.

Strictly speaking, the completeness of this approach, i.e. the fact that all spectral gaps can be
obtained this way, is still a conjecture based on numerical computations; yet the existence of this nice
analytic structure appears to be a common feature of the exclusion process in finite volume in all
settings.

The interest we have in spectral gaps is justified by the fact they control the relaxation of the
system on the time scale t ∼ L3/2 over which the KPZ universal behaviour is observed for finite
volume variants of the ASEP. In this regard, the present work is only a partial contribution to a better
understanding of the KPZ fixed point on a interval since exact expressions for the fluctuations and
correlation of the KPZ height function would require the knowledge of the eigenvectors of the deformed
matrices, which we were not able to determine until now for the open process. In particular, one would
need as simple as possible scalar expressions for the coordinates of these eigenvectors 〈C|ψn〉 in the
configuration basis, as well as for the scalar products of two eigenvectors 〈ψn|ψm〉.

The Riemann surfaces we constructed in chapter 3 were introduced as the natural domains of
functions χPer, χMC and χA, ηA. However, the interest of explicitly constructing these surfaces would be
eventually to express various probability distributions of the KPZ height function as contour integrals
over these surfaces. Such results were obtained in [73] for the KPZ fixed point with periodic boundary
conditions for several classes of initial conditions. For instance, the one-point probability distributions
of the fluctuations of the KPZ height functions, recalled here in section 1.6, were obtained as contour
integrals over the base space of covering maps constructed from the Riemann surface RPer considered
in chapter 3, involving the sum over all branches of generalizations of the function χPer. The extension
of this construction to KPZ with open boundary conditions would be the next step after the complete
determination of the spectral gaps eigenstates of the open exclusion process.

The Neumann boundary conditions of the corner-growth height function constructed from the open
ASEP under weak asymmetry scaling are fixed by relations (1.142). In the totally asymmetric limit,
that is for a height function corresponding to the KPZ fixed point, we justified that the boundary
parameters of the exclusion process were expected to scale like α, β − 1/2 ∼ 1/

√
L, without however

a precise relation between TASEP and KPZ parameters in the phase crossover considered in section
4.1.3. Such connection would be needed to obtain exact expression for KPZ fluctuations on an interval
with variable Neumann boundary condition.

Another interesting problem would be the generalization of our computation to the partially asym-
metric case q 6= 0. It is conjectured in [54] that the parametric equations for the eigenvalues of the
deformed Markov matrix are essentially similar, up to constant numerical factors, which would not
impact the analytic structure derived in this work for the totally asymmetric case. The structure of the
Bethe equations is however expected to be much more involved, in particular no decoupled equations
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are known.
A striking feature of the expressions presented or derived in chapter 4 for the gaps of the periodic

and open TASEP is that, for the undeformed case µ = 0, the eigenvalues are obtained by evaluating a
function χ(v) at a point such that χ′(v) = 0, which is reminiscent of the evaluation of an integral by the
saddle point approximation. What is more, this presumed saddle point approximation here is exact,
meaning that in the development over spectral gaps of the generating function 〈eµQt〉 =

∑
nKneEnt

where the coefficients Kn gather the contributions of the eigenstates, no subleading factors polynomial
in t−1 are found, which would be expected if the saddle-point evaluation was the leading term of a
more general asymptotic expansion. It would be interesting to understand the reason for this structure
to appear.
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Résumé de la thèse

Introduction

L’objet de cette thèse est l’étude du proccessus d’exclusion simple asymétrique (ASEP) avec conditions
aux bords ouvertes et plus spécifiquement dans le cas particulier du processus totalement asymétrique
(TASEP). Le processus d’exclusion est un modèle stochastique défini sur un réseau unidimensionel [84,
31, 81] dans lequel des particules présentant des interactions de contact se déplacent aléatoirement,
avec une direction privilégiée.

Le processus d’exclusion est devenu un objet d’étude central en physique statistique. Il s’agit en
effet d’un des modèles les plus simples évoluant vers un état stationnaire hors équilibre, caractérisé
par des courants de probabilités non-nuls entre les configurations du système. Le modèle d’exclusion
peut également être interprété comme un modèle de croissance d’interface appartenant à la classe
d’universalité KPZ, un ensemble de modèles décrivant l’évolutions d’une fonction de hauteur définie
sur un substrat unidimensional, caractérisés par des lois d’échelle et des distributions de probabilité
communes pour les fluctuations de ces fonctions de hauteurs. Le processus d’exclusion est de plus
intégrable par ansatz de Bethe, ce qui permet en principe le calcul exact de son état stationnaire et de
la dyamique de sa relaxation en temps fini.

Si de nombreux résultats sont connus pour le processus d’exclusion sur un réseau infini, les connais-
sances disponibles sur le processus en volume fini, avec conditions aux bords périodiques ou ouvertes,
sont plus parcellaires. Le but de cette thèse est de dériver des expressions exactes pour les fluctuations
du courant de particules en temps fini dans le cas du TASEP ouvert.

Considérant un opérateurM(µ) appellé matrice de Markov déformée du modèle donnant accès aux
fluctuations du courant de particules, nous calculons dans ce qui suit les valeurs propres de M(µ) pour
différentes valeurs des paramètres du modèles dans la limite des grandes tailles de système, et plus
particulèrement la partie du spectre de M(µ) correspondant au régime universel KPZ.

Ce expressions sont obtenues par prolongement analytique d’expressions déjà connues pour la valeur
propre E(µ) de plus grande partie réelle de M(µ). Les différentes branches des fonctions complexes
multivaluées obtenues par prolongement analytique de la valeur propre fondamentale sont mises en
correspondance avec les valeurs propres des états excités de la matrice de Markov déformée.

Le modèle d’exclusion totalement asymétrique, état stationnaire, fluc-
tuations du courant

Définition du modèle

Le modèle d’exclusion simple asymétrique est un modèle stochastique dans lequel des particules sautent
aléatoirement d’un site à l’autre sur une chaîne discrète de taille L avec des taux de transitions définis
(voir fig. 4.7). Ces particules sont en interaction, en effet un site ne peut être occupé par plus d’une
particule (contrainte d’exclusion, ou interaction de type sphères dures) Nous nous intéresserons dans
la suite exclusivement au cas totalement asymétrique (TASEP), où le mouvement des particules est
unidirectionnel. On peut alors sans perte de généralité fixer la probabilité de transition dans le bulk
(hors des sites extrémaux) à p = 1.

Une configuration C de la chaîne est donnée par l’ensemble des nombres d’occupations des sites
C = (τ1, ..., τL), avec τi = 0 si le site est vide ou 1 s’il est occupé. Par analogie avec les modèles
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β

δ

α

γ

pqpq

Figure 4.7: ASEP avec conditions aux bords ouvertes. Sur une chaine discrète de L site, chaque
particule à l’intérieur de la chaîne (en dehors des sites extrémaux) a une probabilité par unité de temps
p de sauter sur le site voisin de droite, et q de sauter sur le site de gauche, si le site d’arrivée est libre
(un site est occupé par au plus une particule). Pour les sites extrémaux une particule peut entrer au
premier site avec un taux α si il est libre et en sortir avec un taux δ s’il est occupé. De même pour le
L-ième site avec des taux β et δ. Dans le cas particulier du TASEP, p = 1 et q = δ = γ = 0. On peut
également définir le processus pour des conditions aux limites périodiques, le nombre de particules est
alors conservé, et les sites L et 1 sont considérés comme liés.

quantiques sur réseau comme les chaînes de spin, on peut représenter l’état local de chaque site par un
espace de dimension 2 C2

i dont une base est (|0〉i , |1〉i) (site vide/site occupé). L’espace des états du
systèmes est donc un espace de dimension 2L

Ω =
L⊗
i=1

C2
i

On prend comme base de cet espace l’ensemble des suites binaires de longueur L (suite des nom-
bres d’occupations) rangées dans l’ordre lexicographique. A un instant t donné, l’état du système est
représenté par un vecteur d’état |St〉 dont les coordonées sont les probabilités de chaque configura-
tion. On note Pt(C) = 〈C|St〉 la probabilité que le système soit dans la configuration C à l’instant t.
L’évolution des probabilités de chaque configuration est donnée par l’équation maitresse

d

dt
Pt(C) =

∑
C′ 6=C

M(C, C′)Pt(C′) (4.93)

=
∑
C6=C′

(
w(C′ → C)Pt(C′)− w(C → C′)Pt(C)

)
(4.94)

où M est la matrice de Markov du modèle. Ses coordonées M(C, C′) sont les taux de transition C′ → C
d’une configuration à une autre, avec M(C, C) = −

∑
C6=C′M(C, C′). Dans le formalisme quantique

décrit plus haut, la matrice de Markov est analogue à un hamiltonien effectif du système. Au temps
long, la mesure de probabilité des configurations tend vers une mesure stationnaire P∞(C) (le processus
d’exclusion étant ergodique, cette distribution est unique et toutes les configuration initiales convergent
vers elle). Une caractéristique de l’état stationnaire du TASEP est qu’il ne vérifie pas la condition de
bilan détaillé, c’est-à-dire qu’en général

M(C, C′)
M(C′, C)

6= P∞(C′)
P∞(C)

Ceci a notamment pour conséquence que le spectre de M n’est pas réel. On définit par ailleurs la
variable aléatoire Qt égale au nombre total de particule étant entrée de l’extérieur vers le site 1 au
temps t depuis t = 0. Aucune particule n’étant créée ou détruite dans le bulk, Qt est aussi égale,
quand t → ∞, au nombre de particules sorties du système par le site L, ou ayant traversé n’importe
quelle liaison entre deux sites consécutifs. On peut ainsi définir le courant stationnaire dans le système
comme

J(α, β, L) = lim
t→∞

〈Qt〉
t

. (4.95)

118



4.3. NUMERICAL CHECKS BY EXTRAPOLATION

On définit également la densité moyenne de particule dans la chaîne

ρ = lim
t→∞

Nt

L
(4.96)

où Nt est le nombre de particule dans le système à l’instant t. Selon les valeurs des paramètres de
bords α et β, le système peut se trouver dans trois phases, caractérisées par des valeurs distinctes de
ρ et J (discontinues dans l’espace des paramètres), voir fig. 4.8.

−12

|
1
2

α

β
COURANT MAXIMAL

〈ρ〉 = 1/2

〈J〉 = 1/4

BASSE
DENSITÉ

〈ρ〉 = 1− β
〈J〉 = β(1− β)

HAUTE DENSITÉ

〈ρ〉 = α

〈J〉 = α(1− α)

Figure 4.8: Diagramme de phase du TASEP ouvert en fonction des taux d’entrées sorties. Les transi-
tions entre la phase de courant maximal et les phases de haute et basse densité sont du second ordre.
La transition entre la phase de haute et la phase de basse densité (dite ligne de choc) est continue
pour le courant et discontinue pour la densité. Pour cette dernière transition, le système est divisé en
une phase de basse densité et une phase de haute densité, la discontinuité entre les deux suivant un
mouvement brownien le long de la chaîne.

Fluctuations du courant, matrice de Markov déformée

Nous allons maintenant introduire la matrice de Markov déformée du système, qui sera l’objet principal
considéré dans la suite. Toute l’information sur la statistique du courant stationnaire est contenue dans
la suite des moments de sa distribution de probabilité. On peut calculer l’ensemble des moments de
la variable Qt grace à sa fonction génératrice 〈exp(γQt)〉. Pour la déterminer, on sépare la matrice de
Markov du processus en deux termes

M(C′, C) = M0(C′, C) +M1(C′, C)

Où la matriceM1 contient tous les éléments correspondant à des transitions C′ → C au cours desquelles
une particule rentre dans le système par le site 1. On appelle M(γ) la matrice de Markov déformée du
modèle. On peut alors montrer que la fonction génératrice des moments du courant pour tout temps
t s’écrit

〈eµQt〉 = 〈1|

2L−1∑
n=0

|ψn(µ)〉 〈ψn(µ)| eEn(µ)t

 |P0〉 . (4.97)

où les {En(µ)} sont les valeurs propres de M(µ) et {|ψn〉} les vecteurs propres correspondants. Pour
t → ∞, cette expression est dominé par l’état propre de plus grande valeur propre en partie réelle
E0(µ), de sorte que

lim
t→∞

1

t
log〈eµOt〉 ≈ E0(µ) . (4.98)
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La valeur propre fondamentale est donc la fonction génératrice des cumulants du courant dans l’état
stationnaire :

E(γ) =
〈Qt〉
t
γ +
〈Q2

t 〉 − 〈Qt〉2

t
γ2 + ...

Pour obtenir des informations sur la dynamique du courant hors de l’état stationnaire, il est nécessaire
de diagonaliser entièrement M(γ). On trouvera une introduction détaillée au processus d’exlcusion et
une démonstration de ces résultats dans chapitre 1 de la thèse, sections 1 à 4.

Universalité KPZ

Figure 4.9: Correspondance entre le processus d’exclusion et un modèle de croissance d’interface. Pour
chaque lien entre deux sites consécutifs de la chaine de l’ASEP, la fonction h(x, t) au dessus du lien
considéré est égale au nombre de particule ayant traversé ce lien: on ajoute un bloc carré dans un
minimum local pour un saut vers la gauche et on enlève un bloc d’un maximum local pour un saut
vers la droite. Chaque site est associé à une pente positive ou négative, la pente totale de la chaîne
étant conservée par l’évolution.

L’équation KPZ est une équation différentielle stochastique introduite en 1986 par Kardar, Parisi
et Zhang pour décrire les fluctuations d’une fonction de hauteur h(x, t) modélisant la dynamique d’une
interface à une dimension entre une phase stable croissant dans une phase métastable d’un même
milieu.

∂h

∂t
= ν

∂2h

∂x2
+ λ

(
∂h

∂x

)2

+ η(x, t) (4.99)

où η est un bruit blanc gaussien en temps et en espace: 〈η(x, t)η(x′, t′)〉 = 2Dδ(x − x′)δ(t − t′).
L’équation KPZ décrit une large classe de modèles de croissance de surfaces (la classe d’universalité
KPZ [21]), qui se caractérisent par une même distribution de probabilité stationnaire pour h, et par des
exposants critiques communs pour le comportement de h(x, t) aux temps longs: exposant dyamique
z = 3/2, exposant de rugosité α = 1/2. Si l’on note w(`, t) l’écart-type des fluctuations de h(x, t) sur
une fenêtre x ∈ [x0, x0 + `], on a les lois d’échelles suivantes:

w(`, t) ∼
{
`α pour `� t1/z

`α/z pour `� t1/z
(4.100)

Il existe un mapping permettant de définir une fonction hASEP (x, t) à partir de l’ASEP ouvert en
intégrant le courant de particule à travers chaque liaison entre deux sites adjacents (voir fig. ??).
Cette fonction est solution de l’équation KPZ dans la limite faiblement asymétrique de l’ASEP: on
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fixe q − p =
√
ε, et on note hεASEP (x, t) le profil de hauteur obtenu. Alors

√
εhεASEP (ε−1x, ε−2t) est

solution de KPZ dans la limite ε ∼ 1/L, L→∞ [66], pour ν = 1/2, λ = D = 1.
Dans le cas du TASEP, pour t ∼ L3/2 les fluctuations du courant (donc de de la hauteur h définie à

partir du processus) suivent le régime KPZ à la limite thermodynamique, dans le cas où le paramètre
correspondant au terme non-linéaire de l’équation KPZ λ tend vers l’infini. Dans la limite λ → ∞,
les distributions de probabilités pour h(x, t) existent. De façon équivalente, cette valeur du paramètre
correspond à un point fixe de l’équation KPZ pour la renormalisation de la fonctions de hauteur
h(x, t) = limε→0 ε

1/2h(ε−1x, ε−3/2t), appelé point fixe KPZ. L’ensemble des modèles convergeant vers
ce point fixe sous renormalisation forment la classe d’universalité KPZ.

Ainsi, en considérant (4.97), les états propres correspondant à ce régime sont ceux associé à des
valeurs propres suivant la loi d’échelle E ∼ 1/L3/2 quand L→∞. Ce sont ces valeurs propres, ou gaps
spectraux, que nous allons calculer explicitement dans la limite thermodynamique.

Outre le modèle d’exclusion, de nombreux modèles sont désormais connus pour appartenir à la classe
d’universalité KPZ, issus de domaines variés de la physique. On peux notamment citer des modèles
de croissance d’interface comme le modèle de déposition ballistique ou de croissance polynucléaire [2],
des chaines de spin intégrables dans certains régimes [58], des réseau de spins désordonnés [69], ou
des chaines d’oscillateurs classiques non-linéaires [85]. Les statistiques universelles des fluctuations des
quantités pertinentes pour ces modèles sont connues, et issues de la théorie des matrices aléatoires. Du
point de vue des réalisations expérimentales, des comportements caractéristique de l’univeralité KPZ
sont observés dans des contextes variés, tels que la croissance de colonies de cellules cancéreuses [48], la
combustion lente de feuilles de papier [63], ou la croissance de phase turbulentes dans des écoulements
bidimensionels de cristaux liquides.

Une brève introduction à l’universalité KPZ dans le contexte du processus d’exclusion est donnée
dans la section 1.5 du manuscrit.

Ansatz de Bethe pour le processus d’exclusion

Le processus d’exclusion possède la propriété d’être intégrable par ansatz de Bethe, c’est-à-dire que que
sa dynamique peut-être calculée de façon exacte. Plus spécifiquement, il est possible de diagonaliser
la matrice M(µ) et d’en déduire des résultats sur toutes les quantités physiquement intéressante du
modèle pour tout temps.

La distribution de probabilité des configurations du modèle dans l’état stationnaire peut-être calculé
au moyen de l’ansatz matriciel introduit par Derrida et al. [30], d’où l’on peut déduire notamment le
diagramme de phase 4.8. Ici cependant, nous cherchons à obtenir les valeurs propres contribuant à la
relaxation du processus vers l’équilibre, donc en temps fini.

Ces valeurs propres peuvent être obtenues au moyen de l’ansatz de Bethe algébrique. Nous utilisons
en particulier une version récente des équations de l’ansatz de Bethe pour le processus d’exclusion ouvert
obtenue par Crampé et Nepomechie [25] qui présente plusieurs avantages calculatoires. Ces équations
de Bethe sont obtenues au moyen de relations TQ qui permet le calcul direct des valeurs propres de
M(µ), sans toutefois fournir de construction systématique des vecteurs propres comme l’ansatz de
Bethe algébrique usuelle, développée par exemple dans [26].

On peut montrer qu’il existe L+ 2 paramètres (u1, ..., uL+2) appelés racines de Bethe vérifiants le
système d’équations polynomiales

uLj (uj + b)(uj + a)(auj + 1)(buj + 1) = (−1)L+1e2µ(1− uj)2L+2(uj + 1)2
L+2∏
k=1

uk . (4.101)

pour 1 ≤ j ≤ L+ 2 tel que la valeur propre correspondant à une solution de ces équations s’écrit

E(µ) = 1− α+ β

2
+

1

2

L+2∑
j=1

u1

1− uj
, (4.102)

avec a = 1/α − 1 et b = 1/β − 1. Les solutions de ces équations conduisant à des états propres de
M(µ) sont indicées par des ensembles d’entier ou demi-entiers (k1, ..., kL+2) définis modulo 2L+2 (voir
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stationary state P = ∅

gap P = {−1, 1}

P = {−4,−1, 2, 4}
−1−4 2 42 4−1−4

P− P+P+P−

Figure 4.10: Choix de nombres kj correspondant à quelques états propres de M(µ). Les cases
grises représentent les nombres kj correspondant à une solution. Le fondamental est obtenu pour
(k1, ..., kL+2) = (−L/2, ..., L/2). On peut de façon équivalente indexer les états excités par des ensem-
bles P± représentantes les nombres enlevés de cet intervalle (trous) et ajoutés en dehors (excitations).
On remarque l’analogie avec un système de fermions, dont les barres verticale sur ce schéma représen-
tent le niveau de Fermi.

fig. 4.10. L’indexation des états propres exposée dans la figure 4.10 au moyen des ensembles d’entiers
P± est en particulier indépendante de la taille du système, on peut donc identifier un même état propre
dans la limite L → ∞. Les gaps spectraux dont nous allons donner l’expression dans la suite sont
obtenus dans cet limite pour un nombre fini d’excitations, c’est-à-dire pour P+, P− ⊂ Z finis.

Une propriété remarquable des équations (4.101) est qu’une racine de Bethe uj ne dépend des autres
que par leur produit global, ce qui facilite grandement le calcul de leur expressions asymptotiques pour
L → ∞. La dérivation complète des équations de Bethe se trouve dans le chapitre 2 du présent
document.

Expression de états excités par prolongement analytique

Prolongements analytiques et fonctions complexes multivaluées

Les principaux résultats énoncés dans cette thèse sont obtenus par prolongement analytique de fonc-
tions complexes analytiques sur un sous-ensemble du plan complexe. Plus précisément, les valeurs
propres sont obtenues sous la forme d’équations paramétriques faisant intervenir une fonction χ ana-
lytique sur C privés de segments (coupures) correspondant aux discontinuités de χ dont les extrémités
(points de branchement) sont des singularités de χ.

En utilisant les propriétés des fonctions holomorphes, il est possible de construire de nouvelles fonc-
tions, ou prolongements analytiques, holomorphes au voisinage d’une coupure de la fonction originale
correspondant avec la fonction originale sur une partie de son domaine. Cette procédure conduit à la
construction de plusieurs déterminations (branches) de la fonction χ, prenant des valeurs différentes en
un même point de C. L’exemple le plus simple d’une telle fonction multivaluée est celui de la fonction
racine n-ième complexe, voire figure 4.11. Considérant des fonctions χ analytique sur D ⊂ C et χA

analytique sur DA correspondant respectivement à la valeur fondamentale de M(µ) dans la phase de
courant maximal et dans le crossover entre la phase de basse densité et de courant maximal, nous
construisons systématiquement toutes les branches χP et χAP de ces fonctions, indicées par des ensem-
bles d’entiers P ⊂ Z. La résolution des équations paramétriques donant la valeur propre fondamentale
obtenues en substituant à χ une des branches de son prolongement analytique permet d’obtenir toutes
les autres valeurs propres de M(µ) suivant la loi d’échelle En ∼ enL−3/2.

Le domaine de définition naturel d’une fonction complexe multivaluée est une surface de Riemann
R, c’est-à-dire une variété complexe de dimension 1 localement homéomorphe à C mais pas globalement.
Etant donné une partition de R en feuillets, copies du domaine de définition D original de chaque
branche, et soit [z, k] ∈ R le point appartenant au k-ième feuillet de R se projetant en z ∈ D où D, on
peut relever les différentes branches fk d’une fonction complexe multivaluée en une unique fonction f
définie sur R par f([z, k]) = fk(z).
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Figure 4.11: Représentation schématique du prolongement analytique des fonctions racines n-ièmes
complexes fn(reiθ) = r1/nei(

θ
n

+ 2πk
n ). Il existe n déterminations différentes de la fonction racine n-

ième, discontinues sur l’axe réel négatif. La fonction définie par fk(z) pour Re z > 0 et fk+1(z)
pour Re z < 0 est localement holomorphe sur l’axe réel négatif pour k < n, on dit que fk+1 est le
prolongement analytique de fk en franchissant la coupure par le haut.

On trouvera au chapitre 3 une introduction détaillé au formalisme des fonctions complexes multi-
valuées.

Premiers états excités dans la phase de courant maximal

En utilisant les equations de Bethe (4.101), on peut montrer que la valeur propre fondamentale E(µ) =
E0(µ) pour le TASEP ouvert de taille L avec taux de bords α = β = 1 (soit dans la phase de courant
maximal) a l’expression paramétrique suivante

µ = −
∞∑
k=1

(2k)!

k!

[2k(L+ 1)]!

[k(L+ 1)]![k(L+ 2)]!

Bk

2k
(4.103)

E(µ) = −
∞∑
k=1

(2k)!

k!

[2k(L+ 1)− 2]!

[k(L+ 1)− 1]![k(L+ 2)− 1]!

Bk

2k
(4.104)

Ce résultat avait déjà été dérivé dans [44] au moyen d’une généralisation de l’ansatz matriciel. Pour
L→∞, cette expression devient pour B = −e−v−1/4

µ =
2√
L
χ′(v) (4.105)

E(µ)−
(

1

4
+

1

4L

)
µ =

L−3/2

4
χ(v) (4.106)

avec

χ(v) =
1

3π

∫ +∞

−∞
dy

(1− y2)(3− y2)

1 + y−2ey2−1e−v
(4.107)

où le paramètre v doit être éliminé entre les deux équations pour obtenir l’expression de E en fonction
de µ.

La fonction χ n’est pas holomorphe sur l’ensemble du plan complexe, elle possède des discontinuités
(coupures) sur l’axe imaginaire, correspondant aux intervalles i[2π(n− 1/2), 2π(n+ 1/2)] séparées par
les points 2iπ(n+ 1/2), pour n ∈ Z (points de branchements). Il est cependant possible de prolonger
la fonction χ(v) à travers ses coupures en une nouvelle fonction Aχ(v) analytique sur un voisinage
de la coupure franchie. Schématiquement, le prolongement analytique de χ au franchissement d’une
coupure est obtenu en ajoutant les résidus aux poles de l’intégrande de (4.107) qui prennent des valeurs
réelles pour v situés sur une coupure On peut montrer qu’en itérant cette procédure en prolongeant la
fonction χ le long d’un chemin traversant plusieurs coupures, on obtient de nouvelles déterminations
(ou branches) de χ de la forme

χP (v) = χ(v) + 2i
∑
j∈P

ηi(v) (4.108)
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Figure 4.12: Représentation des coupures de la fonction χ dans le plan complexe exclues du domaine D
(gauche) et de la fonction χA pour le domaine DA. On note Anl|r l’opérateur de prolongement analytique
agissant sur une fonction à travers la coupure i[2π(n− 1/2), 2π(n+ 1/2)] depuis la gauche ou la droite
de la coupure. Ainsi pour une f fonction discontinue sur l’axe imaginaire, la fonction définie par
F (v) = f(v) pour Re v > 0 et F (v) = Anr f(v) pour Re v < 0 est continue au voisinage de l’intervalle
i[2π(n−1/2), 2π(n+1/2)]. Dans le cas d’une fonction analytique sur DA possédant un second ensemble
de coupure en Re v = ψ(A) on définit de façon analogue des opérateurs de prolongement analytique
An0,l|r et Anψ,l|r.
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où les termes additionnels ηi sont construit à partir de la racine des fonctionsWj de Lambert, solutions
de l’équation Wj(z)e

Wj(z) = z telle que

logWj(z) +Wj(z) = log z + 2ijπ .

Plus précisément, les fonctions ηj sont des déterminations analytiques sur D de la fonction
√
−Wj(e−1−v).

On peut montrer qu’en remplaçant la fonction χ par une de ces branches χP dans les équations (4.105)–
(4.106), on obtient une solution E(µ) correspondant à l’état excité deM(µ) indexé par des pairs trous-
excitations P+ et P− (voir figure 4.10) correspondant aux éléments positifs et négatifs respectivement
de l’ensemble P caractérisant la branche de χ choisie. L’ensemble d’indice P ′ = A

l|r
n caractérisant le

prolongement analytique χP ′ d’une branche χP lors du franchissement d’une coupure est obtenu par
des opérations ensemblistes sur l’ensemble original P ⊂ Z, dont les expressions explicites sont

Al
nP =


(P \ Cn) ∪ (Bn \ (P + sgn n)) ∪ {0} n ∈ P & n even

n /∈ P & n odd

(P \ Cn) ∪ (Bn \ (P + sgn n))
n ∈ P & n odd
n /∈ P & n even

(4.109)

Ar
nP =


(P \ Cn) ∪ (Cn−sgn n \ (P − sgn n)) ∪ {n} 0 ∈ P & n even

0 /∈ P & n odd

(P \ Cn) ∪ (Cn−sgn n \ (P − sgn n))
0 ∈ P & n odd
0 /∈ P & n even

. (4.110)

Ce resultat a fait l’objet d’une publication dans [41], où l’on démontre les expressions précédente
directement à partir de l’ansatz de Bethe. Voir aussi les chapitres 3 et 4 de la thèse.

Premiers états excités dans le crossover courant maximal/basse densité

Dans un second temps de la thèse, nous avons généralisé ces résultats (valable pour α, β à l’intérieur de
la phase de courant maximal) à limite entre les phases de courant maximal et de haute/basse densité.
Selon le scaling exact des paramètres de bords α, β en fonction de la taille du système, le modèle de
croissance de la figure 4.9 est également décrit par l’universalité KPZ avec des conditions aux bords
variables sur la fonction de hauteur. Ces résultats ont été publiés dans [40] et sont détaillés dans le
chapitre 4. Nous considérons ici le scaling des taux de bords

α =
1

2
+

1

2
√
A

β =
1

2
+

1

2
√
B

(4.111)

de sorte que les conditions aux bords de Neumann sur la pente de la fonction de hauteur associées au
TASEP sont des fonctions affines des paramètres A et B, d’après [66]. En prenant la limite B → ∞
pour simplifier les calculs, on obtient à partir des expressions obtenues par ansatz de Bethe (ou de
façon équivalente par ansatz matriciel généralisé) les équations suivantes, analogue de (4.105)–(4.106)

µ ' ηA(v)

4π
√
L
, (4.112)

E − µ

4
' χA(v)

12πL3/2
, (4.113)

où l’on a défini les fonctions

ηA(v) =

∫ ∞
−∞

dy
(A+ 4)y2

(
4A
(
y2 − 4

)
+ y4

)
2 (4A+ y2)

(
(4A+ y2) e−v−v

A
0 + y2

4 + (A+ 4)y2
) , (4.114)

χA(v) =
1

16

∫ ∞
−∞

dy
(A+ 4)y4

(
4A
(
y2 − 4

)
+ y4

)
2 (4A+ y2)

(
(4A+ y2) e−v−v

A
0 + y2

4 + (A+ 4)y2
) . (4.115)
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Le prolongement analytique des fonctions χA et ηA et la détermination de l’ensemble de leurs branches
peuvent être réalisés de façon essentiellement analogue au cas α = β = 1, en considérant cette fois ci
des fonctions de Lambert généralisées, solutions multivaluées de l’équation

eW
A
j (z) WA

j (z)

A−WA
j (z)

= z . (4.116)

La structure du prolongement analytique (c’est-à-dire la connectivité des différentes branches au travers
des coupures) des fonctions χA et ηA sont similaires. On obtient pour les branches de ces prolongements
des expressions analogues à (4.108):

ηAP (v) = ηA(v) + 2i
∑
j∈P

λAi (v) (4.117)

χAP (v) = χA(v) + 2i
∑
j∈P

(
λAi (v)

)3 (4.118)

En substituant ces fonctions à χA et ηA dans (4.112) et (4.113), on obtient de nouvelles valeurs propres
de M(µ). On obtient également des expressions similaires à

De façon remarquable, le spectre du TASEP ouvert à L sites sur la ligne de transition basse den-
sité/courant maximal est un sous ensemble de celui du TASEP avec conditions aux bords périodiques
pour 2L + 2 sites et L + 1 particules, de sorte que la famille de surfaces de Riemann RA fournit une
déformation continue de la surface RPer précédement construite dans pour le TASEP avec conditions
aux bords périodiques pour A → 0 en la surface de Riemann RMC correspondant au cas courant
maximal. Il est donc vraisemblable que les expressions dérivées dans [73] pour les distributions de
probabilités des fluctuations de la fonction de hauteur KPZ avec conditions au bords périodiques en
terme d’intégrale de contour sur la surface RPer se généralisent au cas ouvert.

Correspondance avec l’ansatz de Bethe

Les expressions dérivées par prolongement analytique peuvent être partiellement démontrées directe-
ment à partir du calcul des racines des Bethe pour des grandes tailles de système dans le cas α = β = 1.
On peut en effet exprimer les racines de Bethe {uj , 1 ≤ j ≤ L + 2} en fonctions du paramètre global
C = eµ

∏L+2
k=1 uk,

uj = uj(C) 1 ≤ j ≤ L+ 2 , (4.119)

D’où l’on peut ensuite déduire des expressions asymptotique à l’ordre voulu en la taille du système,
faisant intervenir les fonctions de Lambert Wj , de sorte que l’expression de la valeur propre (4.102)
est effectivement égale pour L → ∞ à l’expression (4.106), et les termes additionnels obtenus par
prolongement analytique s’interprètent naturellement comme des contributions des pairs trou excita-
tions ajouté à un état fondamental. L’expression (4.105) est ensuite obtenue simplement en écrivant
le paramètre C sous forme auto-cohérente.

Conclusion et perspectives

Nous avons au cours de cette thèse dérivé des expressions exactes pour les valeurs propres de la
matrice de Markov déformée du TASEP ouvert contribuant au régime universel KPZ. Ce travail n’est
cependant qu’une première étape vers le calcul des statistiques des fluctuations du courant, ou de
façon équivalente de la fonction hauteur autour du profil moyen associée au processus d’exclusion via
le modèle de croissance présenté à la figure 4.9. En effet, d’après (4.97), la détermination complète de
la fonction génératrice des cumulants du courant intégré requiert également la conaissance des vecteurs
propres, qui sont encore inconus à la fin de cette thèse. Il devrait ensuite être possible de reformuler
ces résultats sous forme plus compact au moyen d’intégrales sur les surfaces de Riemann construites
par le calcul du prolongement analytiques des fonctions χ et χA.
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