

Emission rythmique des cercaires de Schistosoma mansoni: du phénotype au(x) gène(s)

Chrystelle Lasica

► To cite this version:

Chrystelle Lasica. Emission rythmique des cercaires de Schistosoma mansoni: du phénotype au(x) gène(s). Interactions entre organismes. Université de Perpignan, 2022. Français. NNT: 2022PERP0019. tel-03924870

HAL Id: tel-03924870 https://theses.hal.science/tel-03924870v1

Submitted on 5 Jan 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NIH National Institutes of Health

Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA

Préparée au sein de l'école doctorale **ED 305** Et de l'unité de recherche UMR5244 Interactions Hôtes Pathogènes Environnements (IHPE)

Spécialité : Biologie

Présentée par Chrystelle Lasica

Emission rythmique des cercaires de *Schistosoma* mansoni : du phénotype au(x) gène(s)

Soutenue le 21 Septembre 2022

devant le jury composé de

Mme. Nolwenn DHEILLY, Directrice de recherche	Rapportrice
Mme. Sylvie HURTREZ-BOUSSÈS, Professeure UM,	Rapportrice
MIVEGEC, Montpellier	
M. Timothy J.C ANDERSON, Directeur de recherche,	Examinateur
Texas Biomedical Research Institute (USA)	
M. François-Yves BOUGET, Directeur de recherche	Examinateur
CNRS, LOMIC, Banyuls sur mer	
M. Thierry LAGRANGE, Directeur de recherche CNRS,	Examinateur
LGDP, UPVD, Perpignan	
M. Christoph GRUNAU, Professeur UPVD, IHPE,	Examinateur
Perpignan	
Mme. Hélène MONÉ, Directrice de recherche CNRS,	Directrice de thèse
IHPE, UPVD, Perpignan	
M. Cristian CHAPARRO, Ingénieur d'étude CNRS, IHPE,	Co-directeur de thèse
UPVD, Perpignan	
M. Gabriel MOUAHID, Maître de Conférences-HDR UM,	Invité
IHPE, UPVD, Perpignan	

Remerciements

Je tiens tout d'abord à remercier très sincèrement Mesdames Nolwenn Dheilly et Sylvie Hurtrez-Boussès d'avoir accepté d'être les rapportrices de mes travaux de thèse. Je souhaite aussi remercier les membres du jury : Messieurs Tim Anderson, François-Yves Bouget et Thierry Lagrange (également membres de mon CSI) mais aussi Monsieur Christoph Grunau et Monsieur Gabriel Mouahid (invité). Les précieux conseils de chacun m'ont permis d'affiner ma réflexion scientifique.

Je remercie également mes directeurs de thèse, Madame Hélène Moné et Monsieur Cristian Chaparro. Personne ne peut rêver d'avoir un meilleur encadrement que celui que vous m'avez donné. Vous m'avez témoigné confiance, bienveillance, liberté, soutien, pédagogie et inculqué l'exigence de bien faire jusqu'au bout. Je suis très heureuse d'avoir eu des personnes aussi investies que vous comme directeurs de thèse (s'îl y a une prolongation, je signe tout de suite !). Votre humour et votre bonne humeur ont été un vrai plus dans cette thèse !

Mes remerciements s'adressent aussi au laboratoire IHPE et aux deux directeurs qui se sont succédés Messieurs Guillaume Mitta et Christoph Grunau. Les équipes Ecoevi et Trev auxquelles j'ai appartenu m'ont apporté des échanges scientifiques de grande qualité ainsi que des moments de convivialité de grande complicité ! J'associe à ces remerciements le bureau des doctorants de l'IHPE, les anciens, maintenant docteurs, et les actuels qui, par leur sympathie et leur générosité, ont fait de ce lieu un endroit amical et divertissant.

Many thanks to all the members of Tim Anderson's team at the Texas Biomedical Research Institute who warmly welcomed me during three months in San Antonio and greatly contributed to this thesis.

Je souhaite aussi remercier Monsieur Jean-François Allienne alias Jeff pour le soutien technique au travers notamment de la plateforme bioenvironnement. Je remercie également Monsieur Bernd Schuttengruber de l'institut de génétique humaine de Montpellier pour le don d'embryons de drosophile qui ont servi pour mes travaux pour le spike-in.

Ces travaux de thèse ont été rendus possibles grâce aux différents financements accordés par : la région Occitanie, l'ANR ChronoGET (ANR-17-CE12-0005-01) et le NIH (N° : 1R01-AI133749-01 ; Subaward No. 53409).

Enfin, remerciements pleins de gratitude à ma famille et mes amis qui, de près et même de loin, ont veillé sur moi et m'ont soutenue dans cette aventure !

TABLE DES MATIÈRES

Intr	oductio	n générale	. 1
1	. Ryth	nmes biologiques	. 1
	1.1.	Origine	. 1
	1.2.	Expériences historiques et congrès fondateur de la chronobiologie moderne	. 2
	1.3.	Rythmes exogènes	. 3
	1.4.	Rythmes endogènes	. 3
2	. Bilha	arziose	. 5
	2.1.	Cycle de vie des schistosomes : l'exemple de Schistosoma mansoni	. 7
	2.2.	Rythme d'émission des cercaires	. 8
	2.3.	Schistosoma mansoni : De Porto Rico à Oman	10
3	. Prob	plématiques et enjeux	12
Mat	ériel et	méthodes	L3
1	. Mat	ériel biologique	13
	1.1.	Les schistosomes	13
	1.2.	Les mollusques (hôtes intermédiaires)	13
	1.3.	Les rongeurs (hôtes définitifs)	13
2	. Mét	hodes et techniques d'entretien des cycles	14
	2.1.	Infestation des mollusques	14
	2.2.	Infestation des souris	14
	2.3.	Récupération des adultes, des œufs et des miracidia	15
3	. Mét	hode de chronobiologie de l'émission cercarienne	16
4	. Mét	hode du sexage des parasites Schistosoma mansoni et Schistosoma rodhaini au stade	
C	ercaire.		17
	4.1. Ec	hantillonnage des cercaires	17
	4.2. Ex	traction ADN	18
	4.3. PC	R multiplex	19
	4.4. Ele	ectrophorèse et diagnostic	20
5	. Mét	hode des croisements de schistosomes	20
6	. Mét	hode histologique	20
7	. Mét	hode d'analyse statistique	22
	7.1. Sta	atistiques descriptives	22
	7.2. Co	omparaison de deux moyennes	22
Part	ie I Des	cription des profils d'émission journaliers des cercaires chez Schistosoma mansoni 2	23
І. е [.]	1. Descr t noctur	iption des profils d'émission journaliers des cercaires chez les deux chronotypes, diurne ne, de <i>Schistosoma mansoni</i>	23

I.1.1. Les paramètres de description	24
I.1.2. Présentation des chronotypes diurne et nocturne	27
I.1.2.1. Protocole	27
I.1.2.2. Chronotype diurne	27
I.1.2.3. Chronotype nocturne	28
I.1.2.4. Comparaison des chronotypes diurne et nocturne	29
I.1.3. Influence du mollusque	29
I.1.3.1. Protocole	29
I.1.3.2. Comparaison des profils issus de Biomphalaria pfeifferi et Biomphalaria glabrata	29
I.1.4. Influence du sexe du parasite	31
I.1.4.1. Protocole	31
I.1.4.2. Chronotype diurne	31
I.1.4.3. Chronotype nocturne	33
I.1.5. Discussion	34
I.2. Nature des profils d'émission journaliers des cercaires chez les deux chronotypes, diurne e nocturne, de <i>Schistosoma mansoni</i>	t 35
I.2.1. Inversion de la photopériode	36
I.2.1.1. Protocole lumière inversée chronotype diurne	37
I.2.1.2. Résultats chronotype diurne	37
I.2.1.3. Discussion et conclusion chronotype diurne	41
I.2.1.4. Protocole lumière inversée chronotype nocturne	42
I.2.1.5. Résultats chronotype nocturne	42
I.2.1.7. Comparaison des chronotypes diurne et nocturne avec inversion de la photopério	de
	47
I.2.2. Zeitgeber constant	47
I.2.2.1. Chronotype diurne	48
I.2.2.1.1. Protocole lumière continue	48
I.2.2.1.2. Résultats. Expérience de lumière continue	48
I.2.2.1.4. Expérience d'histologie	56
I.2.2.1.5. Résultats histologie après 13 jours de photopériode équilibrée	57
I.2.2.1.6. Résultats histologie après 13 jours de lumière continue	57
I.2.2.1.7. Discussion expérience lumière continue et histologie	58
I.2.2.2. Chronotype nocturne (expérience d'obscurité continue)	62
I.2.2.2.1. Protocole obscurité continue	62
I.2.2.2.2. Expérience d'obscurité continue	62
I.2.2.2.3. Discussion et conclusion	69

I.3. Discussion	0
Partie II : Déterminants moléculaires du rythme d'émission des cercaires chez Schistosoma	
mansoni	7
II.1. : Linkage mapping	8
II.1.1. Méthode du linkage QTL mapping8	0
II.1.2. Croisement intraspécifique : <i>Schistosoma mansoni</i> diurne X <i>Schistosoma mansoni</i> nocturne	3
II.1.2.1. Protocole	3
II.1.2.2. Présentation des phénotypes	3
II.1.2.2.1. Les phénotypes F08	3
II.1.2.2.2. Le croisement A (Figure_42)8	4
II.1.2.2.3. Le croisement B (Figure_43)	6
II.1.2.3. QTL mapping	8
II.1.2.4. Gènes candidats	9
II.1.2.4.1. Les gènes de l'horloge et le domaine Basic Helix-Loop-Helix	0
II.1.2.4.2. Les rhodopsines et autres gènes impliqués dans la phototransduction	0
II.1.2.4.3. Les gènes impliqués dans l'acétylation des histones	4
II.1.2.4.4. Enrichissement GO : Processus biologiques	5
II.1.2.4.5. Kegg pathway	6
II.1.2.5. Conclusion	7
II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini	
II.1.3. Croisement interspécifique : <i>Schistosoma mansoni</i> (diurne) X <i>Schistosoma rodhaini</i> (nocturne)9	9
II.1.3. Croisement interspécifique : <i>Schistosoma mansoni</i> (diurne) X <i>Schistosoma rodhaini</i> (nocturne)	9 9
 II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne)	9 9 9
 II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne)	9 9 9
 II.1.3. Croisement interspécifique : <i>Schistosoma mansoni</i> (diurne) X <i>Schistosoma rodhaini</i> (nocturne)	9 9 9 9
 II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne)	9 9 9 0 2
 II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne)	9 9 9 0 2 4
 II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne)	9 9 9 0 2 4
II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne)	9 9 9 0 2 4 6
II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne)	9 9 9 0 2 4 6 8
II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne)	9 9 9 9 0 2 4 6 8 8
II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne) 9 II.1.3.1. Protocole 9 II.1.3.2. Présentation des phénotypes 9 II.1.3.2.1. Les phénotypes F0 9 II.1.3.2.2. Le croisement A 10 II.1.3.2.3. Le croisement B 10 II.1.3.3.1. Croisement A 10 II.1.3.3.2. Croisement A 10 II.1.3.4. Gènes candidats 10 II.1.3.4.1. Les gènes de l'horloge (Basic Helix-Loop-Helix) 10 II.1.3.4.2. Les rhodopsines et autres gènes impliqués dans la phototransduction 10	9 9 9 0 2 4 4 6 8 9
II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne) 9 II.1.3.1. Protocole 9 II.1.3.2. Présentation des phénotypes. 9 II.1.3.2.1. Les phénotypes F0. 9 II.1.3.2.2. Le croisement A 10 II.1.3.2.3. Le croisement A 10 II.1.3.4. Croisement B 10 II.1.3.5.1. Croisement A 10 II.1.3.2.2. Croisement B 10 II.1.3.3.1. Croisement A 10 II.1.3.4. Gènes candidats 10 II.1.3.4.1. Les gènes de l'horloge (Basic Helix-Loop-Helix) 10 II.1.3.4.2. Les rhodopsines et autres gènes impliqués dans la phototransduction 10 II.1.3.4.3. Les gènes impliqués dans l'acétylation et la méthylation des histones 11	9 9 9 0 2 4 4 6 8 9 2
II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne) 9 II.1.3.1. Protocole 9 II.1.3.2. Présentation des phénotypes 9 II.1.3.2.1. Les phénotypes F0 9 II.1.3.2.2. Le croisement A 10 II.1.3.3. QTL mapping 10 II.1.3.3.1. Croisement A 10 II.1.3.3.2. Croisement A 10 II.1.3.3.2. Croisement B 10 II.1.3.4. Gènes candidats 10 II.1.3.4.1. Les gènes de l'horloge (Basic Helix-Loop-Helix) 10 II.1.3.4.2. Les rhodopsines et autres gènes impliqués dans la phototransduction 10 II.1.3.4.3. Les gènes impliqués dans l'acétylation et la méthylation des histones 11 II.1.3.4.4. Enrichissement GO : Processus biologiques 11	9 9 9 9 0 2 4 4 6 8 8 9 2 3
II.1.3. Croisement interspécifique : Schistosoma mansoni (diurne) X Schistosoma rodhaini (nocturne) 9 II.1.3.1. Protocole 9 II.1.3.2. Présentation des phénotypes 9 II.1.3.2.1. Les phénotypes F0 9 II.1.3.2.2. Le croisement A 10 II.1.3.2.3. Le croisement A 10 II.1.3.3. QTL mapping 10 II.1.3.3.1. Croisement A 10 II.1.3.3.2. Croisement A 10 II.1.3.4. Gènes candidats 10 II.1.3.4.1. Les gènes de l'horloge (Basic Helix-Loop-Helix) 10 II.1.3.4.2. Les rhodopsines et autres gènes impliqués dans la phototransduction 10 II.1.3.4.3. Les gènes impliqués dans l'acétylation et la méthylation des histones 11 II.1.3.4.4. Enrichissement GO : Processus biologiques 11 II.1.3.4.5. Kegg pathway 11	9 9 9 9 0 2 4 4 6 8 8 9 2 2 3 4

II.2. Recherche des marqueurs rythmiques	
II.2.1. Echantillonnage commun pour les expériences d'épigénétique et de transci	riptomique 121
II.2.1.1. Méthode d'échantillonnage pour les expériences d'épigénétique et de transcriptomique	
II.2.1.2. Chronobiologie	
II.2.1.2.1. Protocole	124
II.2.1.2.2. Chronotype diurne	124
II.2.1.2.3. Chronotype nocturne	125
II.2.1.2.4. Comparaison des chronotypes	125
II.2.2. ChIPmentation	126
II.2.2.1. Méthode et optimisations	127
II.2.2.1.1. Méthode	
II.2.2.1.2. Optimisations	
II.2.2.1.3. Article ChIPmentation	132
II.2.2.2. H3K4me3	132
II.2.2.2.1. Rythme des pics	133
II.2.2.2.2. Gènes associés aux marques H3K4me3	135
II.2.2.2.3. Les gènes de l'horloge (Basic Helix-Loop-Helix)	135
II.2.2.2.4. Les rhodopsines et autres gènes impliqués dans la phototransduct	ion 135
II.2.2.2.5. Les gènes impliqués dans l'acétylation et la méthylation des histon	es 138
II.2.2.2.6. Enrichissement GO : Processus biologique	139
II.2.2.2.7. Kegg pathway	141
II.2.2.2.8. Analyses DEseq2	143
II.2.2.2.8.1. Comparaison des chronotypes	143
II.2.2.2.8.2. Gènes différentiellement marqués par H3K4me3 issus du DEse deux chronotypes	eq2 entre les 144
II.2.2.3. H3K9ac	148
II.2.2.3.1. Rythme des pics	149
II.2.2.3.2. Gènes associés aux marques H3K9ac	150
II.2.2.3.3. Les gènes de l'horloge (Basic Helix-Loop-Helix)	150
II.2.2.3.4. Les rhodopsines et autres gènes impliqués dans la phototransduct	ion 150
II.2.2.3.5. Les gènes impliqués dans l'acétylation et la méthylation des histon	es 151
II.2.2.3.6. Enrichissement GO : Processus biologique	151
II.2.2.3.7. Kegg pathway	152
II.2.2.3.8. Analyses DEseq2	152
II.2.2.2.8.1. Comparaison des chronotypes	

II.2.2.3.8.2. Gènes différentiellement marqués par H3K9ac entre les deux chronotypes
II.2.3. RNA-seq
II.2.3.1. Méthode
II.2.3.2. Gènes rythmiques158
II.2.3.2.1. Les gènes communs aux deux chronotypes
II.2.3.2.2. Les gènes diurnes rythmiques162
II.2.3.2.2.1. Les gènes de l'horloge (Basic Helix-Loop-Helix)
II.2.3.2.2.2. Les rhodopsines et autres gènes impliqués dans la phototransduction 162
II.2.3.2.2.3. Les gènes impliqués dans l'acétylation des histones
II.2.3.2.2.4. Enrichissement GO : Processus biologique
II.2.3.2.2.5. Kegg pathway165
II.2.3.2.2.6. Les gènes rythmiques communs en photopériode classique et inversée 166
II.2.3.2.3. Les gènes nocturnes169
II.2.3.2.3.1. Les gènes de l'horloge (Basic Helix-Loop-Helix)
II.2.3.2.3.2. Les rhodopsines et autres gènes impliqués dans la phototransduction 170
II.2.3.2.3.3. Les gènes impliqués dans l'acétylation des histones
II.2.3.2.3.4. Enrichissement GO : Processus biologique
II.2.3.2.3.5. Kegg pathway173
II.2.3.2.3.6. Les gènes rythmiques communs en photopériode classique et inversée 174
II.2.3.3. Comparaison des chronotypes177
II.2.3.4. Intégration des résultats de génétique et épigénétique179
Discussion et conclusion générales 181
Participation aux congrès, manifestations scientifiques et Distinctions 189
Références 190
Annexes

LISTE DES FIGURES

Figure_01 : Schéma des mouvements des corps célestes et leur cycle environnemental associé 2
Figure_02 : Eskinogramme d'un rythme endogène synchronisé par un cycle jour/nuit
Figure_03 : Exemples de rythmes circadiens connus dans différents règnes du vivant
Figure_04 : Mécanisme commun des horloges internes (oscillateurs) avec des exemples de différentes espèces
Figure_05 : Carte de la répartition de la schistosomiase dans le monde6
Figure_06 : Exemple du cycle de vie de <i>Schistosoma mansoni</i> 7
Figure_07 : Photo d'une coquille de mollusque <i>Biomphalaria</i> infesté par des sporocystes de schistosomes (à gauche) et photo d'une cercaire (à droite)8
Figure_08 : Dessins des stades de différenciation des cercaires issus des observations de coupes histologiques de mollusque <i>Biomphalaria</i> infestés par <i>Schistosoma mansoni</i>
Figure_09 : Schéma de la répartition de l'émission cercarienne sur 24 heures par espèce de schistosome
Figure_10 : Carte du Sultanat d'Oman avec un zoom sur les sites de Sheer et Tibraq de la région du Dhofar d'où sont issus les deux chronotypes de <i>S. mansoni.</i>
Figure_11 : Infestation des souris (photos)14
Figure_12 : Etapes de la chronobiologie (photos)16
Figure_13 : Détail des filtres utilisés pour le comptage17
Figure_14 : Exemple de répartition d'une plaque 96 puits pour le sexage
Figure_15 : Détail des coupes 21
Figure_16 : Exemple d'un histogramme issu d'une expérience fictive de chronobiologie
Figure_17 : Présentation de quatre des sept paramètres de description avec un exemple fictif de chronobiologie
Figure_18 : Illustrations du coefficient d'asymétrie (skewness)
Figure_19 : Illustrations du coefficient d'aplatissement (kurtosis)
Figure_20 : Chronobiologie des chronotypes diurne (orange) et nocturne (violet) de S. mansoni 27
Figure_21 : Chronobiologie du chronotype diurne de <i>S. mansoni</i> à partir de <i>B. pfeifferi</i> et de <i>B. glabrata</i>
Figure_22 : Profils moyens d'émission de <i>S. mansoni</i> de chronotype diurne entre mâles (bleu) et femelles (rose)
Figure_23 : Chronobiologie de <i>S. mansoni</i> nocturne mâle (bleu) et femelle (rose)
Figure_24 : Histogrammes de l'expérience de chronobiologie en lumière inversée pour le chronotype diurne
Figure_25 : Histogramme de l'expérience de chronobiologie en lumière inversée pour le chronotype nocturne

Figure_26 : Histogramme de l'expérience de chronobiologie en lumière continue pour le chronotype diurne (1/2), phase lumière continue
Figure_27 : Histogramme de l'expérience de chronobiologie en lumière continue pour le chronotype diurne (2/2) : phase retour de la photopériode équilibrée
Figure_28 : Coupe histologique d'hépatopancréas de <i>B. glabrata</i> infesté avec le chronotype diurne de <i>S. mansoni</i> (Oman) après 13 jours de photopériode équilibrée (L-O)
Figure_29 : Coupe histologique d'hépatopancréas de <i>B. glabrata</i> infesté avec le chronotype diurne de <i>S. mansoni</i> (Oman) après 13 jours de lumière continue
Figure_30 : Corrélation entre la taille des mollusques et la production cercarienne aux 2ème et 3ème jours du retour de la photopériode équilibrée
Figure_31 : Schéma de l'hypothèse du devenir des cercaires en lumière continue dans les mollusques de grande taille
Figure_32 : Schéma de l'hypothèse du devenir des cercaires en lumière continue dans les mollusques de petite taille
Figure_33 : Histogramme de l'expérience de chronobiologie d'Obscurité continue pour le chronotype nocturne (1/2), phase obscurité continue
Figure_34 : Histogramme de l'expérience de chronobiologie d'Obscurité continue pour le chronotype nocturne (2/2), phase retour à la photopériode équilibrée
Figure_35 : Schéma du modèle du sablier (« hourlgass »)
Figure_36 : Schéma du modèle de la coïncidence externe à travers l'exemple simplifié de la floraison d' <i>Arabidopsis thaliana</i>
Figure_37 : Résumé des principaux résultats de la première partie
Figure_38 : Parallèle entre la partition musicale et l'approche moléculaire tri-disciplinaire (Génétique, Epigénétique et Transcriptomique)
Figure_39 : Schéma de la ségrégation de chromosomes autosomiques dans le cas d'un rétrocroisement et d'un croisement test
Figure_40 : Schéma de l'analyse QTL avec les fonctions utilisées dans R/qtl
Figure_41 : Chronobiologie des chronotypes diurne (orange) et nocturne (violet) de <i>S. mansoni</i> pour l'expérience de QTL mapping
Figure_42 : Chronobiologie du croisement A intraspécifique, avec F0 diurne (orange), F0 nocturne (violet) et une sélection d'individus F2 hybrides (vert)
Figure_43 : Chronobiologie du croisement B intraspécifique, avec F0 diurne (orange), F0 nocturne (violet), F1 et une sélection d'individus F2 hybrides (vert)
Figure_44 : LOD score pour les croisements intraspécifiques de <i>Schistosoma mansoni</i> obtenu avec l'algorithme EM (Espérance-Maximisation) de la fonction scanone
Figure_45 : Transmission allélique pour les QTLs identifiés pour le croisement intraspécifique entre les deux chronotypes de <i>Schistosoma mansoni</i>
Figure_46 : Schéma de la phototransduction du signal dans les bâtonnets rétiniens
Figure_47 : Treemap des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes QTLs du croisement intraspécifique

Figure_48 : Chronobiologie du chronotype diurne de <i>S. mansoni</i> (orange) et de <i>S. rodhaini</i> nocturne (violet) pour l'expérience de QTL mapping
Figure_49 : Chronobiologie du croisement A interspécifique, avec F0 diurne (orange), F0 nocturne (violet) et F1 et une sélection d'individus F2 hybrides (vert)
Figure_50 : Chronobiologie du croisement B interspécifique, avec F0 diurne (orange), F0 nocturne (violet) et F1 et une sélection d'individus F2 hybrides (vert)
Figure_51 : LOD score QTL pour le croisement A interspécifique entre <i>Schistosoma mansoni</i> et Schistosoma rodhaini obtenu avec l'algorithme EM de la fonction scanone
Figure_52 : Effet plot pour le QTL du chromosome 3 pour le croisement A interspécifique <i>entre</i> Schistosoma mansoni et Schistosoma rodhaini obtenu avec l'algorithme EM de la fonction scanone. 105
Figure_53 : LOD score QTL pour le croisement B interspécifique de <i>Schistosoma mansoni</i> et <i>Schistosoma rodhaini</i> obtenu avec l'algorithme EM de la fonction scanone
Figure_54 : Effet plot pour le QTL du chromosome 3 pour le croisement B interspécifique entre Schistosoma mansoni et Schistosoma rodhaini obtenu avec l'algorithme EM de la fonction scanone. 107
Figure_55 : Effet plot pour le QTL du chromosome 4 pour le croisement B interspécifique entre Schistosoma mansoni et Schistosoma rodhaini obtenu avec l'algorithme EM de la fonction scanone.
Figure_56 : Treemap revigo des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes QTL du croisement interspécifique
Figure_57 : Bilan des QTL mapping intra et interspécifiques117
Figure_58 : Schéma de l'expression d'un gène de la transcription jusqu'à la traduction 119
Figure_59 : Schéma de la transcription d'un gène et des acteurs de la régulation
Figure_60 : Les quatre principaux types de modification épigénétique
Figure_61 : Répartition de l'échantillon entre les expériences de ChIPmentation et de RNA-seq. 122
Figure_62 : Description des deux séries d'échantillonnage pour les expériences d'épigénétique et transcriptomique
Figure_63 : Chronobiologie des chronotypes diurne (orange) et nocturne (violet) de <i>S. mansoni</i> pour les échantillons d'épigénétique et transcriptomique
Figure_64 : Les quatre types de modification d'histone avec des exemples de marque 126
Figure_65 : Schéma récapitulatif des différentes optimisations pour l'étude des modifications d'histone chez <i>S. mansoni</i>
Figure_66 : Profils méta-gènes pour les marques H3K4me3 et H3K9ac sur le génome <i>de S. mansoni,</i> avec 0µL, 5µL, 10µL ou 15µL de spike-in drosophile. A) Marque H3K4me3, B) Marque H3K9ac 129
Figure_67 : Pipeline bioinformatique utilisé pour l'analyse finale des échantillons de ChIPmentation avec Snakepipe
Figure_68 : Profils des deux marques H3K4me3 rythmiques chez le chronotype nocturne
Figure_69 : Treemap revigo des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes associés à la marque H3K4me3

Figure_70 : Analyse en composante principale (ACP) issue de l'analyse DEseq2 entre les chronotypes diurne et nocturne de <i>S. mansoni</i> (sexe confondu)
Figure_71 : MA-plots issus des analyses DEseq2 diurnes Vs nocturnes pour H3K4me3 144
Figure_72 : Bilan de la marque H3K4me3 pour les chronotypes diurne et nocturne de <i>S. mansoni</i> . 147
Figure_73 : Profil de la marque H3K9ac rythmique chez le chronotype nocturne
Figure_74 : Treemap revigo des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes associés à la marque H3K9ac
Figure_75 : Analyse en composante principale (ACP) issue de l'analyse DEseq2 entre les chronotypes diurne et nocturne de <i>S. mansoni</i> (sexes confondus) pour la marque H3K9ac 152
Figure_76 : MA-plots issus des analyses DEseq2 diurnes Vs nocturnes pour H3K9ac 153
Figure_77 : Bilan de la marque H3K9ac pour les chronotypes diurne et nocturne de <i>S. mansoni</i> . 157
Figure_78 : Diagramme des gènes rythmiques en fonction des logiciels et des chronotypes 159
Figure_79 : Exemple de profils d'expression de gène commun aux deux chronotypes (pic d'expression à la même heure)
Figure_80 : Exemple de profils d'expression de gène commun aux deux chronotypes (pic d'expression avant le pic d'émission des cercaires)162
Figure_81 : Treemap des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes diurnes rythmiques
Figure_82 : Exemple de profils d'expression de gène commun aux chronotypes Diurnes L-O et O-L (pic d'expression inversé)
Figure_83 : Treemap des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes nocturnes rythmiques
Figure_84 : Exemple de profils d'expression de gène commun aux chronotypes Nocturnes L-O et O- L (pic d'expression inversé)
Figure_85 : Bilan des gènes rythmiques 178
Figure_86 : MA-plots issus des analyses DEseq2 diurnes Vs nocturnes pour les gènes candidats et les 28 « rhodopsine-like »
Figure_87 : Proposition d'un modèle chronobiologique et moléculaire du rythme de l'émission des cercaires chez les deux chronotypes de <i>S. mansoni</i>

LISTE DES TABLEAUX

Tableau_01 : Dénomination des rythmes exogènes en fonction de leur période
Tableau_02 : Dénomination des rythmes endogènes en fonction de leur période
Tableau_03 : Composition de la solution d'anesthésique 15
Tableau_04 : Composition de la solution de perfusion 15
Tableau_05 : Composition de la solution de Lugol 16
Tableau_06 : Composition de la solution de neutralisation
Tableau_07 : Séquence des amorces pour le sexage19
Tableau_08 : Composition du mix PCR multiplex pour le sexage 19
Tableau_09 : Composition du mix des couples d'amorce pour le sexage (10X)
Tableau_10 : Programme du thermocycleur pour PCR multiplex avec les couples d'amorces ScaffoLO_02739 et Rhodopsine_3 (utilisés pour le chronotype diurne de <i>S. mansoni</i>)
Tableau_11 : Programme du thermocycleur pour PCR multiplex avec les couples d'amorcesScaffoLO_02739 et Rhodopsine_3_BIS (utilisés pour le chronotype nocturne de S. mansoni et S.rodhaini)20
Tableau_12 : Composition de la solution de Halmi 21
Tableau_13 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites diurne et nocturne de S. mansoni
Tableau_14 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites diurnes de <i>S. mansoni</i> à partir de <i>B. pfeifferi</i> et de <i>B. glabrata</i>
Tableau_15 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites mâles et femelles du chronotype diurne de S. mansoni
Tableau_16 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites mâles et femelles du chronotype nocturne de S. mansoni
Tableau_17 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites du chronotype diurne de S. mansoni de l'expérience inversion de photopériode
Tableau_18 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites du chronotype nocturne de <i>S. mansoni</i> de l'expérience inversion de photopériode
Tableau_19 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites du chronotype diurne de <i>S. mansoni</i> de l'expérience de lumière continue (1/2) 50
Tableau_20 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites du chronotype diurne de <i>S. mansoni</i> de l'expérience de lumière continue (2/2) 52
Tableau_21 : Corrélation entre la taille des mollusques et la production cercarienne du jour 1 et 2 de la photopériode équilibrée, du 1 ^{er} jour de la lumière continue et des 2 ^{ème} jour et 3 ^{ème} jour de la photopériode équilibrée après 15 jours de lumière continue

Tableau_22 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites du chronotype nocturne de S. mansoni de l'expérience d'obscurité continue (1/2)
Tableau_23 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites du chronotype nocturne de <i>S. mansoni</i> de l'expérience d'obscurité continue (2/2) (2/2) 66
Tableau_24 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites diurne et nocturne de S. mansoni pour l'expérience de QTL mapping
Tableau_25 : Liste des gènes QTLs avec un motif BHLH (Basic Helix Loop Helix)
Tableau_26 : Liste des gènes QTLs rhodospine et rhodospine_like
Tableau_27 : Liste des gènes QTLs en lien avec la phototransduction 93
Tableau_28 : Liste des gènes QTLs en lien avec les histones et l'acétylation/désacétylation des histones
Tableau 29 : Liste des gènes OTLs correspondant aux Kegg pathways sélectionnés
Tableau 30 : Paramètres des profils movens d'émission, accompagnés des variations individuelles.
pour les parasites diurne <i>S. mansoni</i> et nocturne <i>S. rodhaini</i> pour l'expérience de QTL mapping 100
Tableau_31 : Tableau récapitulatif du scantwo pour déterminer l'interaction (épistasie et l'effet additif) des QTLs pour le croisement B interspécifique106
Tableau_32 : Explication de la variance du phénotype (moyenne du pourcentage de cercaires nocturne) par le modèle additif des QTLs et les QTLs séparés pour le croisement B interspécifique
Tableau_33 : Liste des gènes QTLs avec un motif BHLH (Basic Helix Loop Helix) pour les QTLs des croisements interspécifiques 109
Tableau_34 : Liste des gènes QTLs rhodopsine et rhodopsine-like pour le QTL interspécifique 109
Tableau_35 : Liste des gènes QTLs potentiellement liés à la phototransduction
Tableau_36 : Liste des gènes QTLs en lien avec les histones, l'acétylation des histones et la méthylation/déméthylation des histones
Tableau 37: Liste des gènes OTLs correspondant aux Kegg pathways sélectionnés. 114
Tableau_38 : Description des deux séries d'échantillonnage pour les expériences d'épigénétique et de transcriptomique. 123
Tableau_39 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites diurne et nocturne de <i>S. mansoni</i> pour les échantillons de l'expérience épigénétique et transcriptomique
Tableau_40 : Profondeur moyenne des pics uniques à <i>Drosophila melanogaster</i> en fonction du volume de spike-in pour la marque H3K4me3130
Tableau_41 : Profondeur moyenne des pics uniques à <i>Drosophila melanogaster</i> en fonction du volume de spike-in pour la marque H3K9ac 130
Tableau_42 : Nombre et pourcentage d'alignement des reads moyens, accompagnés des variations individuelles, pour les parasites diurne et nocturne de <i>S. mansoni</i> pour les échantillons de l'expérience épigénétique H3K4me3

Tableau_43 : Nombre de pics H3K4me3 détectés comme rythmiques et nombre de gènes associé en fonction du logiciel et du chronotype du parasite (p < 0,05)
Tableau_44 : Liste des gènes associés aux pics H3K4me3, rhodopsine et rhodopsine-like 135
Tableau_45 : Liste des gènes associés aux pics H3K4me3 potentiellement liés à la phototransduction
Tableau_46 : Liste des gènes associés avec la marque H3K4me3 en lien avec les histones, l'acétylation/désacétylation des histones et la méthylation/déméthylation des histones
Tableau_47 : Liste des gènes associés avec la marque H3K4me3 en lien avec l'annotation GOprocessus métabolique des pigments et processus de synthèse des pigments
Tableau_48 : Liste des gènes associés avec la marque H3K4me3 en lien avec les Kegg pathwaysélectionnés141
Tableau_49 : Tableau récapitulatif des analyses DEseq2 entre les chronotypes diurne et nocturne de S. mansoni pour la marque H3K4me3
Tableau_50 : Liste des gènes associés aux marques H3K4me3 différentiellement présentes entre lesdeux chronotypes et communs aux gènes QTL
Tableau_51 : Nombres et pourcentages d'alignement des reads moyens, accompagnés desvariations individuelles, pour les parasites diurne et nocturne de S. mansoni pour les échantillonsde l'expérience épigénétique H3K9ac
Tableau_52 : Nombre de pics H3K9ac détectés comme rythmiques et nombre de gènes associés enfonction du logiciel et du chronotype du parasite ($p < 0,05$)
Tableau_53 : Tableau récapitulatif des analyses DEseq2 entre les chronotypes diurne et nocturnede S. mansoni pour la marque H3K9ac153
Tableau_54 : Liste des gènes associés aux marques H3K9ac différentiellement présentes entre les deux chronotypes et communs aux gènes QTL et/ou sélectionnés dans les points précédents 154
Tableau_55 : Liste des gènes associés aux marques H3K9ac différentiellement présentes entre lesdeux chronotypes qui sont co-marqués avec H3K4me3 154
Tableau_56 : Nombre de gènes détectés comme rythmiques en fonction du logiciel et du chronotype du parasite (<i>p</i> < 0,05) pour les échantillons en photopériode équilibrée
Tableau_57 : Liste des gènes communs aux chronotypes diurne et nocturne avec le pic d'expressiondes gènes160
Tableau_58 : Répartition des pics d'expression des gènes rythmiques dans les deux chronotypes 161
Tableau 59 : Liste des gènes diurnes rythmiques rhodopsine-like
Tableau_60 : Liste des gènes diurnes rythmiques liés à la phototransduction
Tableau_61 : Liste des gènes diurnes rythmiques issus des annotations GO sélectionnées 164
Tableau_62 : Liste des gènes diurnes rythmiques issus des Kegg pathways sélectionnées 166
Tableau_63 : Liste des gènes diurnes rythmiques communs aux échantillons photopériodeclassique (L-O) et photopériode inversée (O-L). Les gènes aux pics d'expression diamétralementopposés sont marqués en rouge.167
Tableau_64 : Répartition des pics d'expression des gènes rhythmiques aux deux photopériodes du chronotype diurne 169

ableau_65 : Liste des gènes nocturnes rythmiques BHLH
ableau_66 : Liste des gènes nocturnes rythmiques rhodopsine-like
ableau_67 : Liste des gènes nocturnes rythmiques liés à la phototransduction
ableau_68 : Liste des gènes nocturnes rythmiques issus des annotations GO sélectionnées 172
ableau_69 : Liste des gènes diurnes rythmiques issus des Kegg pathways sélectionnés 173
ableau_70 : Liste des gènes nocturnes rythmiques communs aux échantillons photopériode lassique (L-O) et photopériode inversée (O-L)
ableau_71 : Répartition des pics d'expression des gènes rhythmiques aux deux photopériodes du hronotype nocturne
ableau_72 : Répartition des pics d'expression des gènes rhythmiques des deux chronotypes en photopériode classique (L-O)
ableau_73 : Tableau récapitulatif des analyses DEseq2 entre les chronotypes diurne et nocturne le <i>S. mansoni</i> pour les gènes candidats sélectionnés180

LISTE DES ANNEXES

Annexe 1 : Article sur la chronobiologie comme outil de mise en évidence d'un événement d'hybridation

Annexe 2 : Test de la PCR multiplex pour le sexage avec les couples d'amorces Scaff_02739 et Rhodospine 3_BIS

Annexe 3 : Répartition des profils chronobiologiques des générations F0, F1 et F2 des croisements intraspécifiques

Annexe 4 : Liste des gènes candidats issus du QTL mapping des croisements intraspécifiques

Annexe 5 : Répartition des profils chronobiologiques des générations F0, F1 et F2 des croisements interspécifiques

Annexe 6 : Liste des gènes candidats issus du QTL mapping des croisements interspécifiques

Annexe 7 : Article méthodologique sur la technique de ChIPmentation sur échantillons S. mansoni

Annexe 8 : Liste des gènes différentiellement marqués par H3K4me3 issus du DEseq2 entre les chronotypes diurne et nocturne de S. mansoni

Annexe 9 : Liste des gènes différentiellement marqués par H3K9ac issus du DEseq2 entre les chronotypes diurne et nocturne de S. mansoni

Annexe 10 : Liste des gènes diurnes rythmiques

Annexe 11 : Liste des gènes nocturnes rythmiques

Annexe 12 : Liste des gènes candidats sélectionnés pour être potentiellement impliqués dans le rythme d'émission des cercaires

Annexe 13 : Liste des gènes candidats différentiellement exprimés

Introduction générale

1. Rythmes biologiques

1.1. Origine

L'environnement est soumis à des phénomènes physiques cycliques causés par les mouvements et attractions des corps célestes. La rotation de la terre autour du soleil entraîne un cycle annuel de 365 jours, c'est-à-dire le temps pour effectuer une révolution complète. La combinaison de cette révolution autour du soleil ainsi que de l'angle de rotation de la terre sur elle-même (23,5°) entraîne les cycles saisonniers (Figure_01_A). En fonction de la position de la terre par rapport au soleil et de l'angle d'arrivée des rayons du soleil, leur diffusion sur la surface de la terre diffère. L'angle d'arrivée des rayons du soleil, leur diffusion sur la surface de la terre. Plus l'angle est droit, plus les rayons sont concentrés et plus la chaleur est importante. La saison la plus chaude correspond donc au moment où les rayons du soleil sont le plus concentrés sur la surface donnée et inversement pour la période la plus froide.

La rotation de la terre sur elle-même entraîne un cycle journalier de 24h correspondant au temps pour effectuer cette révolution. Ce cycle voit succéder une alternance entre la période d'éclaircissement (jour) et de non-éclaircissement (nuit) de la surface terrestre (Figure_01_B). Cette alternance s'accompagne par des variations de la température causées par la présence ou l'absence des rayons du soleil.

La rotation de la lune autour de la terre ainsi que les attractions mutuelles entre la lune, le soleil et la terre, entraînent le cycle tidal (Figure_01_C). Les forces d'attractions exercées entraînent une légère déformation de la terre avec un flux et reflux des marées. Un cycle tidal dure environ 12h, avec 6h de montée des eaux et 6h de descente, entraînant ainsi des modifications importantes des rivages.

<u>Figure 01</u>: **Schéma des mouvements des corps célestes et leur cycle environnemental associé.** Les distances entre les différents corps célestes ne sont pas à l'échelle. A) La révolution de la terre autour du soleil entraîne le cycle saisonnier. B) La rotation de la terre sur elle-même entraîne le cycle jour/nuit. C) Les forces d'attraction de la terre, de la lune et du soleil entraînent le cycle tidal.

L'ensemble de ces continuelles variations cycliques de l'environnement ont imposé aux êtres vivants de toute forme de s'y adapter pour optimiser leur survie. Certains se sont émancipés de cette contrainte en vivant dans des environnements stables comme les profondeurs océaniques ou les caves naturelles. Les autres se sont adaptés à ces contraintes en adoptant des rythmes biologiques synchronisés avec leur environnement leur permettant ainsi d'anticiper les changements (Sharma, 2003). On définit alors comme rythme biologique tous les phénomènes biologiques qui se répètent à intervalles réguliers. Il se caractérise par une période, une phase et une amplitude. Ces phénomènes peuvent être présents à toutes les échelles, allant d'un trait d'histoire de vie à une fonction physiologique jusqu'au niveau cellulaire avec des interactions biochimiques (Marsaudon, 2006).

1.2. Expériences historiques et congrès fondateur de la chronobiologie moderne

La discipline scientifique qui étudie les phénomènes de rythme chez les êtres-vivants se nomme chronobiologie. Ce mot qui tire son étymologie du grec, se compose des racines $\chi p \circ v \circ \zeta$ (*khronos*) le temps, de $\beta(\circ \zeta (bios) la vie$ et de $\lambda \circ \gamma \circ \zeta$ (*logos*) étude. Par définition, la chronobiologie va rassembler l'étude de l'organisation temporelle des êtres-vivants ainsi que ses altérations et l'étude des mécanismes impliqués (Reinberg, 2003).

Si la discipline à proprement parler est récente puisque le premier emploi du terme « chronobiologie » date de 1967 (Klarsfeld, 2013), les premières observations rapportées de rythme chez des êtres vivants remontent au IVe siècle avant J-C. Ainsi, Androsthène qui servit sous le règne d'Alexandre le grand, rapporte les premières observations d'un rythme journalier dans l'ouverture et la fermeture des feuilles d'un arbre (Dunlap, Loros & DeCoursey, 2004). Il faudra attendre 1729 et l'astronome français Jean-Jacques Dortous de Mairan pour qu'une réelle expérience soit consacrée aux rythmes des êtresvivants (Dortous de Mairan, 1729). C'est avec l'espèce Mimosa pudica que l'astronome observe que les mouvements journaliers des feuilles persistent en obscurité prolongée. Il pose ainsi les premières bases scientifiques qui permettront d'aboutir à l'existence d'un rythme biologique ne dépendant pas uniquement de l'alternance jour/nuit. En 1832, les travaux du botaniste suisse Augustin-Pyramus de Candolle complètent les observations de Dortous de Mairan en montrant que non seulement ces mouvements journaliers persistent aussi en condition d'éclairage continu mais que le rythme de ces mouvements foliaires ne fait pas exactement 24h comme la rotation terrestre mais plutôt 22-23h (McClung, 2006 ; Klarsfeld, 2013). C'est en 1932 qu'Erwin Bünning, biologiste allemand, va mettre en évidence chez des feuilles de haricots que les mouvements foliaires persistants en l'absence de cycle jour/nuit sont héréditaires et sont donc déterminés génétiquement (Queiroz, 1979). Il faudra attendre 1959 pour que Franz Halberg, biologiste roumain travaillant à l'université du Minnesota, propose le terme de circadien pour qualifier ce genre de rythme (in Erren, 2018). Issu du latin, le mot circadien, signifie presque (*circa*) une journée (*diem*).

Le milieu du XX^{ème} siècle marque l'explosion des expériences sur les rythmes biologiques et met en lumière le manque de terminologie commune. Le 25^{ème} "Cold Spring Harbor Symposium of Quantitative Biology" consacré aux horloges biologiques («biological clocks») va y remédier. Ce

congrès est considéré comme fondateur de la chronobiologie moderne puisqu'il a réuni au même endroit tous les futurs grands noms du domaine comme Jügen Aschoff, Erwin Bünning, Franz Halberg et Colin Pittendrigh. C'est aussi et surtout lors de ce congrès qu'ont été conceptualisées et définies la notion d'horloge biologique mais aussi la distinction entre les rythmes endogènes et exogènes (Dunlap, Loros & DeCoursey, 2004; Erren, 2018; Kuhlman, Craig & Duffy, 2018). Ces concepts, notions et définitions, sont toujours valables aujourd'hui.

1.3. Rythmes exogènes

Les rythmes biologiques exogènes sont l'ensemble des rythmes causés exclusivement par un *zeitgeber* ou synchroniseur environnemental. Ce terme allemand démocratisé par Aschoff peut être traduit par « donneur de temps ». Le principal zeitgeber est le cycle jour/nuit mais il existe des zeitgebers non photiques. C'est le cas de la température, de l'humidité ou encore des interactions sociales (Dunlap, Loros & DeCoursey, 2004). La période du rythme exogène correspond à celle du zeitgeber (Tableau_01) (Aschoff, 1960; Queiroz, 1979). Dès lors qu'il est privé de son zeitgeber, le rythme biologique exogène cesse.

Tableau	01:1	Dénomination	des rythmes	exogènes en	fonction d	e leur péi	riode
10.0.000	<u> </u>						

Période	1 an	24h	1 mois	12h
Rythme exogène	Annuel	Nycthéméral	Mensuel	Tidal

1.4. Rythmes endogènes

Les rythmes endogènes sont l'ensemble des rythmes sous le contrôle d'une horloge interne (Figure _02) ; c'est-à-dire des rythmes qui sont dus à l'organisme et pas seulement à l'environnement (Aschoff, 1960).

<u>Figure 02</u>: **Eskinogramme d'un rythme endogène synchronisé par un cycle jour/nuit.** Dans sa représentation la plus simplifiée, un rythme endogène est déclenché par l'action conjointe du zeitgeber et de l'horloge interne. L'horloge interne ou oscillateur va se synchroniser avec le zeitgeber (ici le cycle jour/nuit) et commander le rythme endogène (output, exemple mouvement des feuilles).

Ces rythmes reposent sur trois caractéristiques fondamentales (Queiroz, 1979; Rijo-Ferreira, Takahashi & Figueiredo, 2017).

- Les rythmes endogènes persistent en l'absence de synchroniseurs environnementaux (zeitgebers). On parle alors de « free running period » (FRP) ou période de libre cours. C'est-àdire la période que va prendre le rythme endogène lorsque l'organisme est dans un environnement constant.
- 2) Les rythmes endogènes sont entraînables. C'est-à-dire que l'horloge interne se synchronise avec les zeitgebers. C'est par exemple l'adaptation à un décalage horaire.
- 3) Les rythmes endogènes font une compensation de la température. C'est-à-dire que la période de rythme endogène restera la même à différentes températures.

Les rythmes endogènes sont divisés en plusieurs types en fonction de leur période (Tableau_02). Pour cette thèse nous allons uniquement nous intéresser au rythme de type circadien. Le rythme circadien est un rythme endogène avec une FRP d'environ 24 heures et existe dans tous les règnes du vivant (Figure_03).

Tableau_02 : Dénomination des rythmes endogènes en fonction de leur période

Période	Environ 1an	De 28h à 1 an	Environ 24h	Inférieur à 20h	Environ 12h
Rythme endogène	Circannuel	Infradien	Circadien	Ultradien	Circatidal

<u>Figure 03</u>: **Exemples de rythmes circadiens connus dans différents règnes du vivant.** (Dortous de Mairan, 1729; Konopka & Benzer, 1971; Morgan & Last, 1982; Merrow, Brunner & Roenneberg, 1999; King & Takahashi, 2000; Saigusa, Ishizaki et al., 2002; Xu, Mori & Johnson, 2003; Thommen, Pfeuty et al., 2012; Rijo-Ferreira, Acosta-Rodriguez et al., 2020).

Si c'est vers le second quart du XXème siècle que la base génétique du rythme circadien a été mise en évidence, il faut attendre la fin du XXème avec les progrès de la biologie moléculaire pour que les gènes responsables commencent à être identifiés. La toute première découverte revient à Ronald Konopa et Seymour Benzer en 1971 avec le gène *PERIOD* chez *Drosophila melanogaster* (Konopka & Benzer, 1971). D'autres gènes sont découverts à travers l'arbre du vivant, comme le gène *FREQUENCY* chez *Neurospora crassa* (Feldman & Hoyle, 1973), le gène CLOCK chez la souris (King, Zhao et al., 1997) ou encore les gènes KAI chez les cyanobactéries (Nishimura, Nakahira et al., 2002). Tous ces gènes, dits de l'horloge ou gènes « clock », ont permis de faire ressortir un schéma commun de boucle de rétrocontrôle durant approximativement 24h (Figure_04). De façon générale, ces boucles se composent d'éléments positifs qui activent les gènes de l'horloge qui activent eux-mêmes les éléments négatifs qui inhibent l'activité des éléments positifs. La phosphorylation des éléments négatifs entraîne leur dégradation et ainsi le retour des éléments positifs pour démarrer un nouveau cycle (Bell-Pedersen, Cassone et al., 2005).

<u>Figure 04</u>: Mécanisme commun des horloges internes (oscillateurs) avec des exemples de différentes espèces. (Figure modifiée à partir de Bell-Pedersen, Cassone et al., (2005)). Les principaux éléments des horloges sont indiqués pour chaque espèce. Les éléments positifs, indiqués par des (+), sont KaiA, WHITE COLLAR-1 (WC-1), WHITE COLLAR-2 (WC-2), CLOCK (CLK pour *D. melanogaster*), CYCLE (CYC) et brain and muscle Anrt-like protein 1 (BMAL1). Les éléments négatifs, indiqués par des (-), sont KaiC, FREQUENCY (FRQ), PERIOD (PER), TIMELESS (TIM) et CRYPTOCHROME (CRY).

2. Bilharziose

L'hématurie d'Egypte représentée sur les bas-reliefs de l'époque par le dieu égyptien Seth (Ziskind, 2009) est aujourd'hui connue sous le nom de bilharziose ou schistosomiase. Cette parasitose toujours d'actualité est la plus importante maladie causée par un helminthe avec plus de 230 millions de personnes infestées dans le monde (WHO, 2022). Le schistosome, parasite sanguin responsable, a été découvert en 1851 par Théodore Bilharz qui a ainsi donné son nom à la pathologie (Tan & Ahana, 2007). La plus ancienne trace de cette infestation parasitaire a été découvert en 1910 sur une momie

égyptienne datant de plus de 10 siècles avant notre ère (XXème dynastie). L'auteur de cette découverte, Sir Marc Armand Ruffer, posera ainsi les bases d'une nouvelle discipline scientifique, la paléoparasitologie (Ziskind, 2009).

Il existe deux formes de bilharziose chez l'Homme causées par six espèces de schistosomes. L'espèce *Schistosoma haematobium* cause la forme urinaire. Cette forme se caractérise par la présence de sang dans les urines (hématurie) ainsi qu'une fibrose des voies urinaires. Les cinq autres espèces, *S. guineensis, S. intercalatum, S. japonicum, S. mansoni* et *S. mekongi* causent la forme intestinale. Cette forme se caractérise par du sang dans les fèces (rectorragie), des douleurs abdominales, de la fièvre et une hépatomégalie. Dans les deux formes, les symptômes de la maladie sont causés par l'accumulation des œufs du parasite à l'intérieur du système urogénital (forme urinaire) ou du foie et des intestins (forme intestinale). Les pathologies les plus avancées peuvent évoluer en cancer. Côté traitement, si à l'époque des pharaons le remède préconisé était une incantation rituelle et une perle de coraline en guise de suppositoire, aujourd'hui nous pouvons compter sur l'efficacité du Praziquantel. Cette molécule, dont le mécanisme d'action est inconnu, agit sur la perméabilité des membranes des schistosomes en provoquant une entrée de Ca2+ et une paralysie du parasite (Cupit & Cunningham, 2015). Elle reste à l'heure actuelle le traitement curatif le plus efficace pour se débarrasser des schistosomes.

La bilharziose étant une parasitose plus handicapante que mortelle, elle entraîne ainsi des conséquences négatives sanitaires mais aussi économiques et sociales. Ces conséquences sont d'autant plus importantes que la bilharziose sévit principalement dans les zones tropicales et subtropicales incluant des pays émergents et des pays en développement (Figure_05). Considérée comme une maladie tropicale négligée, la bilharziose touche pourtant aussi l'Europe depuis 2013 avec l'émergence de cas en Corse dans la rivière du Cavu (Holtfreter, Moné et al., 2014; Berry, Moné et al., 2014).

<u>Figure 05 : Carte de la répartition de la schistosomiase dans le monde</u> (Figure modifiée à partir de Boissier, Mouahid & Moné (2019) et de WHO (2021)). Indiqués par dégradé de vert, les pays dont la population nécessite une prise en charge thérapeutique contre la bilharziose. Les pays en violet foncé indiquent les pays où le statut de la transmission est à déterminer. Les pays en violet pâle sont les pays où l'interruption de la transmission est à confirmer. Le rouge indique la Corse où a eu lieu une émergence de la bilharziose en 2013.

2.1. Cycle de vie des schistosomes : l'exemple de Schistosoma mansoni

Les parasites du genre *Schistosoma* sont des vers trématodes gonochoriques. Leur cycle de vie nécessite deux hôtes : un hôte mammifère dans lequel le parasite fait sa reproduction sexuée et un hôte mollusque d'eau douce dans lequel le parasite se multiplie de façon clonale (multiplication asexuée) (Figure_06).

<u>Figure 06 :</u> **Exemple du cycle de vie de** *Schistosoma mansoni***. Figure issue de Boissier, Mouahid & Moné (2019)** (cf description ci-après).

Au stade vers adulte, les parasites sont dans l'hôte mammifère. Le mâle, accroché à la paroi de la veine porte de l'hôte, porte dans son canal gynécophore la femelle avec laquelle il se reproduit. Le couple va migrer jusqu'aux veinules mésentériques pour que la femelle puisse pondre. Vingt à trente pourcents des œufs vont passer la barrière intestinale et se retrouver dans la lumière où ils seront excrétés avec les fèces de l'hôte. Une fois arrivé dans un milieu aquatique favorable, un œuf va éclore en un miracidium. Cette larve nageante va partir à la recherche de l'hôte mollusque. Une fois le mollusque trouvé, le miracidium va pénétrer activement à l'intérieur et se transformer en sporocyste primaire. Le sporocyste va effectuer une reproduction clonale pour donner des sporocystes secondaires qui vont migrer vers le centre du mollusque au niveau de l'hépatopancréas. Les sporocystes secondaires génèrent des cercaires qui sortent du mollusque pour se retrouver dans le milieu aquatique. La cercaire est le stade larvaire nageant qui infeste l'hôte mammifère. La cercaire pénètre activement la peau de l'hôte en contact direct avec l'eau infestée. Lors de ce processus la cercaire laisse sa queue à l'extérieur de l'hôte et se transforme en schistosomule. Le schistosomule va passer dans le système circulatoire sanguin où il va évoluer morphologiquement pour se transformer en ver adulte mâle ou femelle et ainsi recommencer le cycle.

2.2. Rythme d'émission des cercaires

Cette thèse s'intéresse à l'une des étapes critiques du cycle de vie des schistosomes, la transmission à l'hôte mammifère, au travers du rythme d'émission des cercaires. La cercaire est une larve nageante composée d'une tête et d'une queue bifurquée (furcocercaire) (Figure_07). Elle est issue d'un sporocyste secondaire qui est composé d'une suite de chambres blanchâtres contenant des cercaires à différents stades de différenciation : cellules germinales, cellules embryonnaires, cercaires matures (Figures_07 et _08).

<u>Figure 07 :</u> Photo d'une coquille de mollusque *Biomphalaria* infesté par des sporocystes de schistosomes (à gauche) et photo d'une cercaire (à droite). Les sporocystes sont les agglomérats blancs au centre de la coquille ; ils contiennent les cercaires.

<u>Figure 08</u> : Dessins des stades de différenciation des cercaires issus des observations de coupes histologiques de mollusque *Biomphalaria* infestés par *Schistosoma mansoni*. (Figure issue de Théron (1982)). L'évolution de la cercaire va du stade embryonnaire (en haut à gauche) jusqu'au stade de la cercaire mature (en bas à droite). Pour les trois types de stades, la forme la moins différenciée est à gauche et la plus différenciée à droite.

L'émission des cercaires est donc la sortie des cercaires matures des sporocystes et de l'hôte mollusque pour se retrouver dans l'environnement aquatique à la recherche de l'hôte mammifère. Afin de maximiser la rencontre parasite-hôte, les schistosomes, et plus largement les trématodes, ont adopté un rythme d'émission des cercaires journalier, calqué sur la présence de l'hôte dans le milieu. En d'autres termes, le pic d'émission des cercaires est synchronisé avec le pic d'activité aquatique de l'hôte mammifère correspondant. Chaque espèce de schistosome possède son propre rythme d'émission des cercaires (Figure_09).

<u>Figure 09</u> : Schéma de la répartition de l'émission cercarienne sur 24 heures par espèce de schistosome. Figure issue de Boissier, Mouahid, & Moné (2019). Chaque couleur correspond à une espèce de schistosomes. (Traduction de l'anglais : 24 hour clock = les 24 heures de la journée, Night = nuit et Day = jour).

Un schistosome qui infeste les bovins aura son pic d'émission tôt le matin, période à laquelle les bovins vont s'abreuver (cas de *S. bovis*). Dans le cas d'un schistosome qui infeste les humains, son pic aura lieu en fin de matinée début après-midi, période à laquelle les humains vont se baigner (cas de *S. haematobium*). Enfin un schistosome qui infeste les rongeurs aura son pic la nuit (cas de *S. rodhaini*), période à laquelle les rongeurs sont actifs. Une exception est *Schistosoma japonicum* qui a un spectre d'hôtes très large, et pourra avoir une émission cercarienne diurne ou nocturne en fonction de l'hôte visé.

2.3. Schistosoma mansoni : De Porto Rico à Oman

Sur la figure_09, le schéma d'émission cercarienne journalier de *S. mansoni* s'étend de la fin de matinée au milieu de la nuit. Le premier *Schistosoma mansoni* a été découvert chez l'Homme en 1904 par Isaac Gonzalez-Martinez à Maraguez (Puerto Rico) (Ritchie, Jachowski & Ferguson, 1960). L'émission cercarienne de cette souche était strictement diurne et le pic avait lieu entre 10h et 13h (Asch, 1972; Nojima & Sato, 1982). Cette émission diurne a été considérée comme le chronotype classique de l'espèce *S. mansoni*. De plus, c'est la souche NMRI Porto Rico qui sert de génome de référence pour *S. mansoni* (Protasio, Tsai et al., 2012). En 1984, André Théron découvre un nouveau chronotype dit « tardif » (Théron, 1984) : isolé en Guadeloupe à partir de *Rattus rattus* dans la région des Trois-Rivières, ce chronotype se différencie par un pic d'émission à 16h et un nouvel hôte mammifère. Cette découverte illustre la capacité d'adaptation de *S. mansoni* au comportement

aquatique de son hôte. En 2012, Gabriel Mouahid découvre à Oman, dans la région du Dhofar, deux chronotypes diamétralement opposés de *S. mansoni* (Mouahid, Idris et al., 2012): le premier chronotype, isolé chez l'Homme à Sheer (Figure_10), correspond au chronotype classique diurne de *S. mansoni*, avec un pic d'émission à 11h ; le second chronotype, isolé chez le rat à Tibraq (Figure_10), a une émission cercarienne nocturne avec un pic d'émission à 19h.

<u>Figure 10 :</u> **Carte du Sultanat d'Oman avec un zoom sur les sites de Sheer et Tibraq de la région du Dhofar d'où sont issus les deux chronotypes de** *S. mansoni***. (Figure modifiée à partir de Mouahid, Idris et al., (2012)). Le sultanat d'Oman correspond à la partie grisée (carte du haut). Les rivières sont symbolisées par des traits bleus (carte du bas).**

La découverte ces deux chronotypes opposés appartenant à la même espèce (*S. mansoni*) dans une zone géographique proche (Dhofar, Oman) est un modèle biologique idéal pour comprendre l'écologie et les mécanismes impliqués dans le rythme d'émission des cercaires. En effet, le rythme d'émission des cercaires de *S. mansoni* est déterminé génétiquement (Théron & Combes, 1988) et leur gonochorisme rend possible les croisements intra- et inter-espèces permettant des analyses moléculaires.

3. Problématiques et enjeux

Le traitement curatif de la bilharziose est un traitement efficace pour tuer les parasites. Toutefois il s'avère inutile sur le long-terme si les populations humaines continuent d'être perpétuellement en contact avec les eaux contaminées. A ceci s'ajoute la capacité de certaines espèces de schistosomes à pouvoir s'hybrider entre elles et ainsi à faire tomber la barrière de l'espèce hôte. C'est l'exemple du parasite responsable de l'émergence des cas en Corse qui est un hybride entre *S. haematobium* (parasite de l'Homme) et *S. bovis* (parasite des bovins) (Moné, Holtfreter et al., 2015). Les autres mammifères sauvages (rongeurs) ou domestiqués (bétails) présentent ainsi le risque d'être des réservoirs de la maladie et des lieux d'hybridation.

Pour traiter efficacement cette maladie tropicale négligée, la stratégie One Health est préconisée par l'OMS. Elle vise à mettre un terme à la vision anthropocentrée et à appréhender la maladie comme l'interaction d'un environnement avec l'Homme et les animaux (sauvages et domestiques). La meilleure stratégie de lutte contre la bilharziose est donc l'association du traitement curatif avec une stratégie de prévention pour rompre le cycle de vie du parasite.

La compréhension de la transmission du schistosome à l'hôte mammifère au travers du rythme d'émission des cercaires sera l'objet de cette thèse. Elle vise entre autres à mettre en lumière la chronobiologie comme paramètre écologique à prendre en compte dans les stratégies de prévention notamment comme outil pour identifier les hybrides (Savassi, Mouahid, Lasica et al., 2020 (Annexe 1) ; Savassi, Dobigny et al., 2021). A l'image de la stratégie One Health et de la chronobiologie, la transversalité des approches sera le fil conducteur de ce manuscrit. Comme le titre l'indique, l'émission rythmique des cercaires y sera étudiée de son phénotype jusqu'aux gènes.

La première partie de cette thèse aura pour but de décrire le rythme des profils d'émission journaliers des cercaires chez les deux chronotypes de *Schistosoma mansoni* (Oman) et de déterminer quelle est la nature de ces rythmes. La deuxième partie aura pour but d'identifier les déterminants moléculaires impliqués, au travers d'approches génétique, épigénétique et transcriptomique.

Matériel et méthodes

Le Matériel et méthodes, présenté ci-dessous, regroupe les techniques communes aux divers points abordés dans ce manuscrit. Pour les besoins de cette thèse, certaines techniques ont dû être optimisées et/ou améliorées. Le détail de ces techniques et améliorations fera ainsi l'objet d'un matériel et méthodes spécifique dans les parties dédiées plus tard dans ce manuscrit.

1. Matériel biologique

1.1. Les schistosomes

Deux espèces de schistosomes ont été utilisées pour les travaux de cette thèse : l'espèce *Schistosoma mansoni*, avec les deux chronotypes, diurne et nocturne, originaires de la région du Dhofar à Oman (Mouahid, Idris et al., 2012) et l'espèce *Schistosoma rodhaini* originaire du Burundi. Les cycles de vie de ces parasites sont maintenus en animalerie au laboratoire, en utilisant des mollusques du genre *Biomphalaria (B. pfeifferi* et *B. glabrata)* comme hôtes intermédiaires et des souris Swiss OF1 comme hôtes définitifs.

1.2. Les mollusques (hôtes intermédiaires)

Deux espèces de mollusques ont été utilisées pour les expérimentations de cette thèse, *Biomphalaria pfeifferi* et *Biomphalaria glabrata*. L'espèce *B. pfeifferi* est originaire de la région du Dhofar à Oman et l'espèce *B. glabrata* est originaire de Guadeloupe. Les mollusques sont élevés dans des pièces climatisées sous une température maintenue constante à 26°C afin de se rapprocher au maximum des conditions du terrain (climat tropical) et sous photopériode équilibrée (Lumière Obscurité (LO) 12-12). Ils sont nourris avec de la laitue fraîche pour les mollusques adultes, et de la laitue déshydratée pour les jeunes mollusques ; quelques copeaux de spiruline sont rajoutés une fois par semaine. L'eau utilisée provient d'un forage situé sur le site de l'UPVD. Toutes les expériences ont été réalisées avec des mollusques *B. pfeifferi*. Seule l'expérience de chronobiologie pour tester les conditions lumière continue et lumière inversée pour le chronotype diurne ont été réalisées sur des *B. pfeifferi* ET des *B. glabrata*.

1.3. Les rongeurs (hôtes définitifs)

Pour maintenir le cycle de vie des parasites, des souris femelles Swiss OF1 ont été utilisées. Les souris sont dans des cages de maximum 10 individus et sont nourries avec des granulés. L'élevage, le soin et ainsi que les protocoles sur les animaux ont été approuvés par l'agence vétérinaire française de la DRAAF (Direction Régionale de l'Alimentation, de l'Agriculture et de la Forêt) Languedoc-Roussillon (Numéros d'agrément 007083 puis E6613601). Les autorisations éthiques sur l'expérimentation animale ont été délivrées par le Ministère de l'Éducation Nationale, de la Recherche et de la Technologie, du Ministère de l'Agriculture et de la Pêche (convention n° A 66040), et de la Direction Départementale de la Protection des Populations (n° C 66-136-01 avec arrêté préfectoral n° 2012- 201-0008). Ma co-directrice de thèse, Hélène Moné, possède le Certificat d'autorisation d'expérimenter sur animaux vertébrés vivants numéro C 66.11.01.

2. Méthodes et techniques d'entretien des cycles

2.1. Infestation des mollusques

Les *B. pfeifferi* sont répartis individuellement dans des plaques de 24 puits contenant 1 miracidium et de l'eau de forage (la présence du, et d'un seul, miracidium est vérifiée). Les *B. glabrata* sont répartis individuellement dans de petits piluliers contenant 10 miracidia et de l'eau de forage ; les mollusques sont mis en contact avec le ou les miracidia durant 24 heures. Les mollusques sont ensuite placés dans des bacs et nourris *ad libitum*. Trente jours post-infestation, les mollusques sont transférés dans de petits piluliers individuels remplis d'eau de forage. Les mollusques positifs à l'infestation, c'est-à-dire les mollusques à partir desquels des cercaires ont pu être observées à la loupe binoculaire, sont isolés.

2.2. Infestation des souris

L'infestation consiste à mettre des souris en contact avec des cercaires pour obtenir une nouvelle génération de parasite. Les cercaires sont comptées (80 cercaires par souris pour le cycle) et déposées dans un cristallisoir contenant de l'eau de forage à 26°C. Les cristallisoirs sont ensuite insérés dans un grand portoir en plastique (Figure_11). Chaque souris est pesée pour déterminer le volume d'anesthésique (Tableau_03) à lui injecter (0,11mL pour 10 g). Une fois les souris anesthésiées, leur ventre est rasé et humidifié ; les souris sont placées, ventre en bas, au-dessus d'un cristallisoir pour que leur peau nue soit directement en contact avec l'eau et ainsi faciliter la pénétration des cercaires. Les souris sont ainsi laissées 1h en contact avec l'eau infestée avant d'être réintégrées à leur cage.

<u>Figure 11 : Infestation des souris (photos)</u>. Les souris anesthésiées dont le ventre est rasé sont déposées sur un portoir en plastique percé contenant les cristallisoirs d'infestation. Les cristallisoirs contiennent de l'eau de forage et des cercaires.

Solution anesthésiante	Pour 50mL
NaCl physiologique	42,5mL
Rompun®	2,5mL
Imalgène®	5mL

Tableau 03 : Composition de la solution d'anesthésique

2.3. Récupération des adultes, des œufs et des miracidia

A partir des semaines 7 et 8 post-infestation, on peut procéder à la récupération des adultes et des œufs. Pour cela, la souris subit une injection de 0,05mL d'héparine (anticoagulant) puis est euthanasiée avec une injection intrapéritonéale d'une dose léthale de 1ml/kg de doléthal® (pentobarbital sodique dilué). Lorsque la souris arrête de respirer (poumons totalement immobiles), son ventre est rasé. Elle est alors suspendue dos à une potence par les pattes avant et arrière gauches. Les organes digestifs sont mis à nu et la cage thoracique est ouverte afin de laisser l'accès au cœur et aux poumons. La veine cave est coupée et la solution de perfusion (Tableau_04) est injectée aussitôt dans le ventricule gauche grâce à une pompe péristaltique.

Tableau 04 : Composition de la solution de perfusion

Solution perfusion	Pour 1L d'eau milliQ
Chlorure de sodium	8,5g
Citrate de sodium	7,5g

Le sang qui contient les parasites est recueilli à l'aide d'un verre à pied placé sous la souris. La perfusion est arrêtée dès que les poumons sont totalement décolorés, signe qu'il n'y a plus de sang dans l'animal. Les organes sont rincés puis les intestins et le foie qui contiennent les œufs sont alors réservés dans un cristallisoir avec la solution de perfusion. Le sang recueilli est filtré à travers un filtre de polyamide nitrile de 25 µm qui retient les parasites. Les vers sont alors transférés dans un verre de montre contenant une solution de NaCl physiologique (0,9%). Pour récupérer d'éventuels autres adultes pris dans les organes, le foie est décortiqué à l'aide de pinces à dissection et les vers sont transférés dans le verre de montre. Les adultes sont amalgamés en boule puis introduits dans des cryotubes pour ensuite être conservés à -80°C. Pour la récupération des œufs, le broyat de foie est passé à travers une série de tamis (425, 180, 106 et 45µm) à l'aide d'un pulvérisateur à pompe contenant une solution physiologique de NaCl à 0,9%. Les œufs sont récupérés sur le tamis 45µm et réservés dans la solution saline pour empêcher l'éclosion. Il est aussi possible de récupérer des œufs dans les intestins. Pour cela ces derniers sont vidés, découpés et transférés dans un mortier, puis broyés. Comme pour le foie, le broyat d'intestin est passé à travers la série de filtres et les œufs sont récupérés sur le tamis 45µm. Pour déclencher l'éclosion des œufs, les œufs sont transférés dans de l'eau de forage à 26°C sous une source de lumière (lampe). Les œufs sont laissés entre 30 à 60 minutes afin de laisser éclore les miracidia qui pourront être utilisés pour l'infestation des mollusques.

3. Méthode de chronobiologie de l'émission cercarienne

La chronobiologie se divise en 4 étapes : Le transfert, la filtration, la coloration et le comptage des cercaires (Figure_12). Les mollusques positifs aux cercaires sont maintenus individuellement dans des piluliers remplis de 40mL d'eau de forage. Chaque heure, chaque mollusque et sa salade sont transférés dans un nouveau pilulier à l'aide d'une pince souple, c'est l'étape de transfert. Les piluliers de l'heure précédente sont alors récupérés. L'étape de filtration consiste à passer au travers d'un filtre de polyamide de nitrile de 25µm le contenu des piluliers. Les filtres sont ensuite déposés dans des boites de pétri (150mm de diamètre) et colorés avec quelques gouttes de Lugol, c'est l'étape de coloration (Tableau_05). Chaque filtre contient trois cercles quadrillés (Figure_13) et chaque cercle correspond au contenu d'un pilulier. Le comptage des cercaires s'effectue pour chaque mollusque et à chaque heure en comptant toutes les cercaires qui sont contenues dans un cercle.

<u>Figure 12</u>: **Etapes de la chronobiologie (photos).** A) Transfert : Les mollusques ont été transférés du bac de gauche à celui de droite. Le bac de gauche est récupéré pour passer à l'étape suivante. B) Filtration : L'eau contenue dans chaque pilulier est passée au travers d'un cercle du filtre. C) Coloration : Chaque cercle du filtre est coloré avec quelques gouttes de Lugol. D) Comptage des cercaires : Chaque filtre est observé sous la loupe binoculaire. Ces quatre étapes sont répétées toutes les heures.

Tableau 05. composition de la solution de Lugo	Tableau	05 : C	Composition	de la	solution	de Lug	ol
--	---------	---------------	-------------	-------	----------	--------	----

Solution de Lugol	Pour 1 L d'eau milliQ
lodure de potassium	20g
lode	10g

<u>Figure 13</u>: **Détail des filtres utilisés pour le comptage.** A) Filtre entier. B) Cercle de comptage pour un profil. C) Détail de ce qui est observé à la loupe binoculaire : cercaires en rose et 3 fèces de mollusque en marron.

Pour chaque expérience de chronobiologie, il y a une réserve de mollusques remplaçants pour éventuellement changer un mollusque qui décèderait au cours de l'expérience. Les remplaçants subissent l'expérience de chronobiologie en même temps que les autres individus, sans que leurs cercaires ne soit comptées, jusqu'à ce qu'ils intègrent l'expérience.

4. Méthode du sexage des parasites *Schistosoma mansoni* et *Schistosoma rodhaini* au stade cercaire

La détection du sexe des cercaires nécessite plusieurs étapes qui sont : l'échantillonnage des cercaires, l'extraction de l'ADN, la préparation et réalisation de la PCR multiplex puis le diagnostic par gel d'électrophorèse.

4.1. Echantillonnage des cercaires

Les mollusques utilisés sont infestés avec un seul miracidium. En d'autres termes, un mollusque correspond à un seul génome de parasite. Les cercaires sont récupérées directement dans l'eau des mollusques à l'aide d'une pipette pasteur munie d'une poire. Une à 3 cercaires sont prélevées pour chaque test et déposée(s) dans le puit d'une plaque 96 puits. Pour chaque mollusque on réalise dans la mesure du possible quatre prélèvements (quatre tests) afin de n'avoir aucun doute sur le résultat de la réaction PCR (Figure_14).

Figure_14 : Exemple de répartition d'une plaque 96 puits pour le sexage. Un puit, symbolisé par un cercle gris, contient de 1 à 3 cercaires. Un parasite correspond à 4 puits, à l'exception du 24^{ème} qui en a seulement trois car le dernier puit correspond au contrôle négatif de la plaque (puit sans cercaire). Avec une plaque 96 puits, on réalise les tests pour 23 parasites avec 4 réactions PCR, 1 parasite avec 3 réactions PCR et un contrôle négatif (puit sans cercaire).

4.2. Extraction ADN

Une fois les cercaires déposées dans la plaque 96 puits, 20 μ L de NaOH 250mM stérile sont ajoutés par puits pour perméabiliser les membranes. Après 20 minutes à température ambiante, la plaque est mise 3 minutes à 99°C dans un thermocycleur. 20 μ L de la solution de neutralisation (Tableau_06) sont ensuite ajoutés et la plaque est une nouvelle fois incubée dans un thermocycleur durant 3 minutes à 99°C. Dans une nouvelle plaque, on dépose 54 μ L d'eau milliQ par puit et on ajoute 6 μ L de l'ADN extrait (dilution au 10^{ème}). La plaque d'ADN « mère » est conservée à -20°C.

Solution de neutralisation	Pour 1 puit d'une plaque 96 puits
HCl (250 mM)	10µL
Tris/HCl (500 mM)	5μL
Triton 2%	5μL

Tableau	06:	Composition	de la	solution	de	neutrali	sation

4.3. PCR multiplex

Chaque test de sexage repose sur le principe de la PCR multiplex, c'est-à-dire une PCR qui implique plusieurs couples d'amorces avec différentes cibles en une seule réaction. Pour le sexage, deux couples d'amorces sont utilisés. Un premier couple d'amorces cible la rhodopsine_3, gène autosomal (témoin positif de la réaction PCR) dont le produit mesure 200 pb. Le second couple d'amorces cible le scaffoLO_02739 qui est spécifique au chromosome W (femelle) dont le produit mesure 400pb (Tableau_07). L'ADN utilisé pour les réactions PCR est dilué au 10^{eme} . Pour préparer la PCR multiplex, 6 µL de mix PCR (Tableau_08 et Tableau_09) sont déposés dans une troisième plaque 96 puits avec 4 µL de l'ADN dilué au 10^{eme} . La plaque est ensuite mise dans le thermocycleur (Tableau_10 et Tableau_11). Suite à des problèmes de puits vides positifs à la Rhodopsine_3, le couple d'amorces Rhodopsine_3 a été remplacé par un nouveau couple d'amorces appelé Rhodopsine_3_BIS (cf Annexe 2 : test de la PCR multiplex pour le sexage avec les couples d'amorces Scaff_02739 et Rhodopsine_3_BIS).

Amorce	Séquence
Scaff_02739_F	TGTTTCGAATTTCACACTTCA
Scaff_02739_R	CATTCACAGTTTGGCGAACA
Rhodopsin_3_F	GACGGCCACACTAAAG
Rhodopsin_3_R	AGTAAAATGGTCACTGCTAT
Rhodopsin_3_F BIS	GGAATTGGTACCGTCAGC
Rhodopsin_3_R BIS	AGGTTCACTTTAGTGTGGC

Tableau_07 : Séquence des amorces pour le sexage

Tableau 08 : Composition du mix PCR multiplex pour le sexage

Mix PCR multiplex pour le sexage	Pour 1 puit d'une plaque 96 puits
Qiagen multiplex PCR master mix (2X)	5μL
Mix couples d'amorces (cf tableau m&m_07)	1μL
ADN dilué au 10ème	4μL

Tableau 09 : Composition du mix des couples d'amorce pour le sexage (10X)

Mix couples amorces pour le sexage (10X)	Pour 500µL
Scaff_02739_F	10µL
Scaff_02739_R	10µL
Rhodopsin_3_F ou Rhodopsin_3_F BIS	10µL
Rhodopsin_3_R ou Rhodopsin_3_R BIS	10µL
H ₂ O milliQ	460µL

<u>Tableau_10 :</u> Programme du thermocycleur pour PCR multiplex avec les couples d'amorces ScaffoLO_02739 et Rhodopsine_3 (utilisés pour le chronotype diurne de *S. mansoni*)

Température	Temps	Nombre de cycles
95°C	15min	
94°C	30s	
56°C	1min	45X
72°C	40s	
72°C	2min	
10°C	8	

Température	Temps	Nombre de cycles
95°C	15min	
94°C	30s	
54°C	40s	40X
71°C	40s	
71°C	2min	
10°C	x	

<u>Tableau_11 :</u> Programme du thermocycleur pour PCR multiplex avec les couples d'amorces ScaffoLO_02739 et Rhodopsine_3_BIS (utilisés pour le chronotype nocturne de *S. mansoni* et *S. rodhaini*)

4.4. Electrophorèse et diagnostic

Pour faire le gel, 2g d'agarose sont ajoutés à 100mL de solution de TBE (Tris/Borate/EDTA) et portés à ébullition jusqu'à totale dissolution de la poudre. Tandis que le mélange tiédit, 10µL de Midori green [®] (coloration d'acide nucléique) sont ajoutés. Le gel coloré est ensuite coulé dans un portoir puis des peignes sont ajoutés pour creuser les puits. Lorsque le gel est totalement solidifié, les peignes sont retirés puis le gel est déposé dans une cuve d'électrophorèse remplie de TBE. Une fois la PCR terminée, 2µL de tampon de charge sont ajoutés à chaque puit de la plaque 96 puits. Les puits du gel sont chargés avec 8µL du mélange échantillon-tampon de charge. La migration du gel se fait à 135V pendant 40 minutes. Enfin, la lecture du gel se fait grâce à une table à UV. Pour le diagnostic, les parasites mâles présentent une seule bande à 200 pb (Rhodopsine_3/_BIS) dans le gel d'électrophorèse. Les femelles présentent 2 bandes, une à 200 pb (Rhodopsine_3/_BIS) et une à 400 pb (scaff_02739).

5. Méthode des croisements de schistosomes

Le croisement s'opère lors de la reproduction sexuelle du parasite qui a lieu dans l'hôte mammifère. Pour éviter un biais sexuel, les croisements et leurs réciproques ont été faits. La méthode expérimentale reste la même entre le croisement et son réciproque mais aussi entre les croisements intra et interspécifique. Un croisement se divise en plusieurs étapes : l'infestation des mollusques, le sexage des cercaires, la chronobiologie des cercaires, l'infestation des souris puis la récupération des œufs de la nouvelle génération. Toutes les méthodes employées ont été détaillées précédemment dans le « Méthodes et techniques d'entretien des cycles » et le « Méthode de chronobiologie de l'émission cercarienne ». Pour les besoins de ces travaux, il y a trois générations de parasites par croisement. La génération F0, la génération F1 (descendance hybride de F0) et la génération F2 (descendance issue du croisement entre deux individus F1). Seule la génération F2 du croisement (*S. mansoni X S. rodhaini*) a été générée pendant cette thèse.

6. Méthode histologique

La technique se divise en plusieurs étapes qui sont la fixation, la déshydratation, l'inclusion dans la paraffine, la coupe, la confection des lames, la coloration puis le montage des lames. Dans un premier temps les mollusques entiers sont transférés dans un pilulier rempli de 10mL de solution de Halmi (Tableau_12) pendant 10 jours (fixation). Ils subissent ensuite une série de bains d'éthanol à 70% jusqu'à la disparition de toute trace de Halmi (déshydratation). La coquille des mollusques est ensuite

retirée ainsi que la tête, le pied et l'estomac pour garder uniquement l'hépatopancréas et l'ovotestis pour les coupes histologiques. Ces tissus sont inclus dans la paraffine, mis en bloc et coupés (coupes sagittales, Figure_15).

Tableau_12 : Composition de la solution de Halmi

Solution de Halmi	Pour 100mL
Solution aqueuse saturée d'acide picrique	10ml
Susa de Heidenhain	90ml

Biomphalaria infesté

<u>Figure 15</u>: **Détail des coupes.** A) La zone grisée représente où se situent l'hépatopancréas et l'ovotestis dans le mollusque. B) Photographie de la coquille d'un *Biomphalaria* infesté au niveau de l'hépatopancréas et de l'ovotestis. Les granulomes blancs visibles au travers de la coquille sont les sporocystes. C) L'axe vertical représente la coupe sagittale effectuée pour les échantillons.

Les lames sont ensuite confectionnées, déparaffinées et subissent une coloration HES (Hématoxyline Eosine Safran). L'ultime étape consiste à faire le montage lame/lamelle puis de procéder à l'observation au microscope. L'inclusion paraffine jusqu'au montage des lames a été faite par la plateforme RHEM (Réseau d'histologie expérimentale de Montpellier).

7. Méthode d'analyse statistique

7.1. Statistiques descriptives

Les statistiques descriptives telles que la moyenne, l'écart-type, l'écart-standard, le coefficient d'asymétrie et le coefficient d'aplatissement sont calculées à partir d'Excel version 2201.

7.2. Comparaison de deux moyennes

Les moyennes sont données avec l'écart standard. Elles ont été comparées avec la fonction wilcox.test et la fonction t.test de R (version 4.04). Préalablement à cela, la normalité des données a été testée avec la fonction shapiro.test. Si la *p*-value est significative (*p*-value < 0.01), les données ne sont pas normales et le test non-paramétrique de Wilcoxon-Mann-Whitney (wilcox.test) est réalisé. Dans le cas contraire, le test paramétrique de Student ou de Welch (t.test) est effectué. Si l'effectif est inférieur à 30, le test non-paramétrique de Wilcoxon-Mann-Whitney (wilcox.test) est directement réalisé.

Partie I Description des profils d'émission journaliers des cercaires chez

Schistosoma mansoni

Les travaux de cette thèse reposent principalement sur l'étude des chronotypes diurne et nocturne de *Schistosoma mansoni* découverts dans la région du Dhofar à Oman (Mouahid, Idris et al., 2012). Cette proximité géographique, leurs phénotypes bien distincts ainsi que leur gonochorisme sont des avantages pour comprendre et décortiquer les déterminants moléculaires impliqués dans les profils d'émission journaliers des cercaires. L'étude de cette émission est critique puisque c'est l'étape de transmission du parasite aux mammifères. Il est donc essentiel de caractériser dans un premier temps le profil d'émission avant de vouloir chercher à comprendre les mécanismes moléculaires sous-jacents.

Cette première partie de thèse vise à établir la base des phénotypes des émissions journalières qui serviront de point de départ pour les études moléculaires. Cela se fera au travers de deux chapitres avec des objectifs bien distincts.

Le premier chapitre sera consacré à la présentation des caractéristiques des profils d'émission journaliers de chaque chronotype. Il permettra de mettre en lumière ce qui distingue et rassemble ces deux comportements d'émission en condition classique.

Le deuxième chapitre de cette partie servira à déterminer la nature endogène ou exogène du rythme d'émission et ainsi orienter les recherches des mécanismes moléculaires impliqués.

I.1. Description des profils d'émission journaliers des cercaires chez les deux chronotypes, diurne et nocturne, de *Schistosoma mansoni*

L'étude des profils d'émission se fait au travers des expériences de chronobiologie. Elles consistent à observer le comportement du rythme d'émission en fonction de différentes conditions expérimentales.

Un grand nombre d'expériences de chronobiologie ont été menées dans la littérature chez *S. mansoni* diurne. Toutefois, la description des rythmes d'émission des cercaires et la méthodologie répondent à la discrétion de chaque auteur. Cette diversité se retrouve dès l'étape de comptage des cercaires et peut ainsi influer sur la finesse des analyses. Par exemple, le comptage peut être effectué toutes les 12 (Valle, Pellegrino et al., 1973), 6 (Glaudel & Etges, 1973), 2 (Williams, Wessels & Gilbertson, 1984 ; Wang, Zhu et al., 2015) ou 1 heure(s) (Nojima & Sato 1982 ; Théron, Mouahid & Moné, 1997 ; Mouahid, Idris et al., 2012) avec des méthodes différentes, à partir d'aliquots (Luttermoser, 1955 ; Nojima & Sato 1982), à partir de récipient contenant plusieurs mollusques (Asch, 1972), à partir de mollusques individuels (Mouahid, Idris et al., 2012) ou encore avec une machine (Williams, Wessels & Gilbertson, 1984 ; Théron, 1989 ; Théron, Mouahid & Moné, 1997).

En plus de cette disparité dans les méthodes, il est naturel de s'interroger sur les composantes des variabilités biologiques qui pourraient entrer en compte dans l'étude des profils d'émission des

cercaires. La première inhérente à l'étude d'un parasite est de s'interroger sur l'influence de l'hôte. Un certain nombre d'études ont été menées à ce sujet et tendent à montrer que l'influence de l'hôte est négligeable. C'est le cas d'études menées sur le couple *S. mansoni/Biomphalaria* qui montrent que ni la perturbation du rythme de l'hôte (activité locomotrice et battements de cœur de *B. glabrata*) (Williams & Gilbertson, 1983), ni la pigmentation de l'hôte (*B. glabrata* pigmenté Vs albinos) (Théron, 1980), ni l'espèce d'hôte (*Biomphalaria sudanica* et *Biomphalaria stanleyi*) (Kazibwe, Makanga et al., 2010), n'ont d'effet sur le rythme d'émission des cercaires. L'autre composante biologique, cette foisci propre au parasite, est la potentielle influence du sexe sur le rythme d'émission des cercaires. Toutefois aucune étude ne s'est penchée spécifiquement sur cette problématique.

L'objectif de ce premier chapitre va être d'établir un profil clair d'émission journalier des cercaires pour chaque chronotype de *S. mansoni* et de définir les variations biologiques à prendre en compte ou non pour les expériences suivantes.

Pour pallier à la variation dans les études, le premier point de ce chapitre sera consacré à la définition des paramètres de description qui servira tout au long de la thèse. Le second point sera une présentation des chronotypes diurne et nocturne de *Schistosoma mansoni* Oman avec ces nouveaux paramètres. Le troisième point servira à déterminer l'influence de l'hôte mollusque sur le rythme d'émission des cercaires. Enfin, le quatrième et dernier point s'intéressera à l'influence du sexe du parasite sur le rythme d'émission des cercaires.

I.1.1. Les paramètres de description

Les résultats des expériences de chronobiologie sont représentés sous la forme d'histogrammes (Figure_16). Les abscisses indiquent les 24 heures de la journée avec une alternance d'un jour et d'une nuit correspondant à un cycle biologique de 24 heures (nycthémère). Le jour est symbolisé par un fond blanc commençant à 6h et se terminant à 18h. La nuit est symbolisée par un fond gris qui commence à 18h et finit à 6h. Ces horaires d'alternance 12-12 correspondent aux horaires retrouvés dans les pays tropicaux. Les ordonnées de l'histogramme représentent les pourcentages moyens d'émission des cercaires.

<u>Figure 16</u>: **Exemple d'un histogramme issu d'une expérience fictive de chronobiologie**. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit et début du jour suivant. L'axe des ordonnées représente la moyenne du pourcentage des cercaires émises \pm écart standard. L'arrière-plan gris correspond à l'obscurité (de 18h à 6h). La ligne noire marque le début de l'obscurité à 18h.

Toutes les expériences de chronobiologie de cette thèse reposent sur un comptage des cercaires toutes les heures pour chaque individu. Les résultats présentés sont la moyenne de l'émission de tous les profils ± l'écart-standard (ES). Pour la significativité des analyses, seuls les profils d'émission basés sur un minimum de 20 cercaires émises par 24h sont utilisés. Le pallier des 5%, abordé ci-après, correspond au minimum à l'émission d'une cercaire.

La description des profils d'émission se fera en utilisant sept paramètres : deux liés directement au(x) pic(s) : le nombre de pics et l'heure du pic (Figure_17) ; quatre autres paramètres liés à la forme du profil : la plage horaire d'émission (Figure_17), l'intensité de la plage horaire d'émission, le coefficient d'asymétrie (Figure_18) et le coefficient d'aplatissement (Figure_19) ; et enfin un dernier paramètre lié au positionnement dans le nycthémère : le pourcentage de cercaires émises la nuit (Figure_17).

Pour le besoin de certaines expériences, le nombre total de cercaires émises sur 24h pourra être pris compte comme un huitième paramètre de description.

Figure 17 : Présentation de quatre des sept paramètres de description avec un exemple fictif de chronobiologie. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit et début du jour suivant. L'axe des ordonnées représente la moyenne du pourcentage des cercaires émises ± écart standard. L'arrière-plan gris correspond à l'obscurité (de 18h à 6h). La ligne noire marque le début de l'obscurité à 18h. Les paramètres présentés de haut en bas sont la plage d'émission, le nombre de pics, le pourcentage de cercaires nocturnes et l'heure du pic. Dans cet exemple, le profil moyen d'émission se caractérise par un seul pic d'émission à 15-16h. La plage d'émission (hachure rouge) dure 5 heures. L'intensité de la plage est de 91,5%. Elle se calcule en additionnant les pourcentages compris dans la zone hachurée (13-14h à 17-18h compris). Le pourcentage de cercaires nocturnes est 4,5%. Il se calcule en additionnant les pourcentages des cercaires émises entre 18h et 6h (période d'obscurité).

Une explication plus approfondie de ces paramètres suit :

- Nombre de pics : le chronotype pourra être soit unimodal soit multimodal.
- Heure du pic : heure d'émission durant laquelle le pourcentage de cercaires émises est le plus élevé ; en d'autres termes, l'heure à laquelle les risques de transmission du parasite sont les plus fortes. L'heure moyenne du pic se détermine en sélectionnant l'heure où le plus de profils ont eu leur pic, et non pas en sélectionnant l'heure où la moyenne des pourcentages d'émission est le plus élevé.
- La plage horaire d'émission : correspond au nombre d'heures entourant le pic pendant lesquelles le pourcentage des cercaires émises est supérieur à 5%.

- Intensité de la plage horaire d'émission : elle se calcule en additionnant les pourcentages d'émission compris dans la plage d'émission. Cela comprend le pic, l'heure avant le pic, l'heure après le pic et toutes les heures entourant le pic où la production cercarienne dépasse 5%.
- Coefficient d'asymétrie ou skewness (Figure_18) : mesure le degré d'asymétrie d'un profil. Cela permet de déterminer si plus de cercaires sont émises avant ou après le pic d'émission. Si le coefficient est nul, il y a autant de cercaires qui sont émises avant et après le pic (distribution symétrique). Un coefficient positif indique que plus de cercaires sont émises après le pic (distribution étalée sur la droite). A l'inverse, un coefficient négatif indique que plus de cercaires sont émises avant le pic (distribution étalée sur la gauche). Il est convenu que les coefficients d'asymétrie dont les valeurs se situent entre -0,5 et +0,5, -1 et +1 et <-1 et >+1 rendent compte respectivement d'une symétrie d'émission, d'une asymétrie modérée et d'une asymétrie élevée. Ce coefficient se calcule uniquement sur la plage d'émission.

<u>Figure 18</u> : **Illustrations du coefficient d'asymétrie (skewness).** Chaque schéma représente l'allure de la distribution en fonction de la valeur du coefficient d'asymétrie. La ligne pointillée représente le mode de la distribution. A) La distribution s'étale sur la gauche (coefficient d'asymétrie < 0). B) La distribution est symétrique (coefficient d'asymétrie = 0). C) La distribution s'étale sur la droite (coefficient d'asymétrie > 0).

 Coefficient d'aplatissement ou kurtosis (Figure_19) : détermine le centrage des données autour du pic. Dans le cas d'une distribution normale, la valeur de la statistique est égale à zéro. Un coefficient positif indique ainsi que l'émission des cercaires est concentrée autour du pic. A l'inverse, un coefficient négatif indique que l'émission des cercaires se fait de façon plus étalée autour du pic. Ce coefficient se calcule uniquement sur la plage d'émission.

<u>Figure 19 :</u> **Illustrations du coefficient d'aplatissement (kurtosis).** Chaque schéma représente l'allure de la distribution en fonction de la valeur du coefficient d'asymétrie. A) Distribution aplatie (coefficient d'aplatissement < 0). B) Distribution normale (coefficient d'aplatissement = 0). C) Distribution centrée (coefficient d'aplatissement> 0).

 Le pourcentage de cercaires émises la nuit : ce sont les cercaires émises entre 18h et 6h. Pour les expériences de photopériode continue, nous parlerons de « nuit subjective », c'est-à-dire les douze dernières heures d'une journée qui correspondraient à la nuit en condition de photopériode équilibrée L-O (12-12).

I.1.2. Présentation des chronotypes diurne et nocturne

Les deux chronotypes de *S. mansoni* utilisés dans cette thèse ont été décrits pour la première fois dans l'article de Mouahid, Idris et al. (2012). L'objectif de ce point est de décrire ces deux chronotypes avec nos paramètres de description des profils et de poser les bases pour la suite de la thèse.

I.1.2.1. Protocole

La chronobiologie a été effectuée à partir de *B. pfeifferi* infestés avec 1 miracidium de *S. mansoni* diurne ou nocturne *et de B. glabrata* infestés avec 10 miracidia de *S. mansoni* diurne. Nous avons analysé, pendant deux jours consécutifs, les profils de 42 infestations pour chaque chronotype ; soit au total 84 profils diurnes (60 à partir de *B. pfeifferi* et 24 à partir de *B. glabrata*) et 84 profils nocturnes à partir de *B. pfeifferi*.

I.1.2.2. Chronotype diurne

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_20 et le Tableau_13. Sur les 84 profils diurnes réalisés, 74 ont pu être utilisés car leurs émissions totales sur les 24 heures étaient égales ou supérieures à 20 cercaires (50 profils à partir de *B. pfeifferi* et 24 à partir de *B. glabrata*). Chez le chronotype nocturne, 75 profils sur 84 ont rempli cette condition des 20 cercaires.

<u>Figure 20</u> : Chronobiologie des chronotypes diurne (orange) et nocturne (violet) de *S. mansoni*. Chaque histogramme a, en ordonnées, la moyenne du pourcentage des cercaires émises ± écart standard. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit. L'arrièreplan gris correspond à l'obscurité. La ligne noire marque le début de l'obscurité à 18h.

	Moyenne ± ES		Test de Wilcoxon-
Paramètres	Variations individuelles		Mann-Whitney
	Diurne	Nocturne	
Effectif	N=74	N=75	
Photopériode	L-0	L-0	
Nombro do piss	1	1	
Nombre de pics	1	1	
Houro du pic	11-12h	19-20h	+
Heure du pic	10-11h à 14-15h	18-19h à 22-23h	+
Blago d'émission (b)	$4,1 \pm 0,1$	4,1 ± 0,1	W = 2696 = 0.72
Flage d enfission (II)	3 à 7	3 à 6	vv = 2080, p = 0,72
Intensité de la plage (%)	90,1 ± 0,9	93,2 ± 0,6	$W = 2003 \ n = 0.003$
Intensite de la plage (70)	57,1 à 100	71,3 à 100	νν = 2003, <i>μ</i> = 0,003
Asymétrie	+0,7 ± 0,1	+0,5 ± 0,1	$W = 3069 \ n = 0.27$
Asymethe	-1,4 à +2,1	-1,8 à +1,9	νν = 300 <i>3</i> , <i>μ</i> = 0,27
Aplatissement	+0,3 ± 0,3 (N=57)	-0,3 ± 0,4 (N=55)	$W = 1777 \ n = 0.22$
	-5,9 à +4,6	-5,7 à +4	νν = 1777, <i>μ</i> = 0,23
Corcairos la puit (%)	1,06 ± 0,2	98,3 ± 0,3	W = 0 n < 2.20-16
	0,0 à 10,1	89,3 à 100	vv = 0, p < 2,2e-10

<u>Tableau 13 :</u> Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites diurne et nocturne de *S. mansoni*

Le chronotype diurne a une émission unimodale dont l'heure du pic moyen est à 11-12h. La plage horaire moyenne d'émission est de 4h avec une intensité de 90%. La plage d'émission a une asymétrie modérée sur la droite et une distribution normale. L'émission nocturne est quasi inexistante, avec en moyenne 1% des cercaires émises la nuit. Du point de vue de la transmission, cela signifie que le risque le plus fort se concentre sur 4 heures de la journée, avec le pic à 11-12h, puisque 90% des cercaires sont émises sur cette période. La nuit est une période de risque faible puisque uniquement 1% de cercaires sont émises.

I.1.2.3. Chronotype nocturne

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_20 et_le Tableau_13. Sur les 84 profils nocturnes réalisés, 75 profils sur 84 ont rempli cette condition des 20 cercaires.

Le chronotype nocturne a une émission unimodale dont l'heure du pic moyen est à 19-20h. La plage horaire moyenne d'émission est de 4h avec une intensité de 93%. La plage d'émission moyenne est symétrique avec une distribution normale. L'émission nocturne est majoritaire avec en moyenne 98% des cercaires émises la nuit. Du point de vue de la transmission cela signifie que le risque le plus fort se concentre sur 4 heures de la journée avec le pic à 19-20h, puisque 93% des cercaires sont émises sur cette période. La nuit est la période de risque la plus élevée puisque 98% de cercaires sont émises. Le jour est donc une période de risque faible.

I.1.2.4. Comparaison des chronotypes diurne et nocturne

Les comparaisons sont présentées dans le Tableau_13. Les profils moyens des deux chronotypes se différencient par l'heure du pic (11-12h pour les diurnes et 19-20h pour les nocturnes), et le pourcentage de cercaires émises la nuit (autour de 1% pour les diurnes et autour de 98% pour les nocturnes ; p<0,01). Il est à noter que l'intensité de la plage horaire d'émission est significativement plus forte chez le chronotype nocturne (p<0,01); ce qui signifie que l'émission cercarienne du chronotype nocturne est plus concentrée vers l'heure du pic que chez le diurne. Les deux chronotypes ont tout de même en commun la présence d'un seul pic. De plus, les plages d'émission et leurs coefficients d'asymétrie et d'aplatissement ne sont pas significativement différents entre les diurnes et les nocturnes (p>0,01).

En conclusion, les résultats pour les deux chronotypes sont en accord avec Mouahid, Idris et al. (2012). Malgré quatre paramètres non discriminants, les périodes de haut et faible risques de transmission sont inversées (jour et nuit), ce qui illustre la singularité des chronotypes étudiés.

I.1.3. Influence du mollusque

L'hôte mollusque naturel des deux chronotypes de *S. mansoni* Oman est *Biomphalaria pfeifferi. In natura,* certaines espèces de schistosomes peuvent utiliser comme hôtes intermédiaires des mollusques d'espèces (*S. mansoni* en Ouganda *avec B. stanleyi et B. sudanica*) (Kazibwe, Makanga et al., 2010) et même de genres différents (*S. bovis* avec *Bulinus truncatus* et *Planorbarius metidjensis*) (Mouahid & Théron, 1986). En laboratoire, il est possible de maintenir les parasites dans des mollusques non naturellement présents pour peu qu'ils soient compatibles. L'enjeu de ce point est de déterminer si l'utilisation d'un hôte non naturellement présent mais compatible (ici *B. glabrata*) a une influence sur le profil d'émission des cercaires, en comparaison avec un hôte naturel (*B. pfeifferi*).

I.1.3.1. Protocole

La chronobiologie a été effectuée à partir de *B. pfeifferi* infestés avec 1 miracidium de *S. mansoni et de B. glabrata* infestés avec 10 miracidia de *S. mansoni.* Nous avons analysé, pendant deux jours consécutifs, les profils de 42 infestations pour le chronotype diurne ; soit au total 84 profils diurnes (60 à partir de *B. pfeifferi* et 24 à partir de *B. glabrata*).

I.1.3.2. Comparaison des profils issus de Biomphalaria pfeifferi et Biomphalaria glabrata

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_21 et le Tableau_14. Sur les 84 profils diurnes réalisés, 74 ont pu être utilisés car leurs émissions totales sur les 24 heures étaient égales ou supérieures à 20 cercaires (50 à partir de *B. pfeifferi* et 24 à partir de *B. glabrata*). La même expérience n'a pas pu être effectuée avec le chronotype nocturne car les parasites nocturnes ont été incapables de se développer dans les mollusques *B. glabrata*.

<u>Figure 21 :</u> **Chronobiologie du chronotype diurne de** *S. mansoni* à partir de *B. pfeifferi* et de *B. glabrata*. Chaque histogramme a, en ordonnées, la moyenne du pourcentage des cercaires émises ± écart standard. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit. L'arrièreplan gris correspond à l'obscurité. La ligne noire marque le début de l'obscurité à 18h.

	Moyen	ne ± ES	Test de Wilcoxon-Mann-
Paramètres	Variations i	Whitney	
	Diurne <i>B. pfeifferi</i>	Diurne <i>B. glabrata</i>	
Effectif	N=50	N=24	
Photopériode	L-O	L-O	
Nombro do nice	1	1	
Nombre de pics	1	1	
Houro du pic	11-12h	12-13h	
	10-11h à 14-15h	10-11h à 13-14h	
Plage d'émission (h)	3,9 ± 0,1	4,6 ± 0,2	W = 329 $p = 0.0008$
	3 à 6	3 à 7	W = 323, β = 0,0008
Intensité de la plage (%)	89,9 ± 1,2	90,3 ± 1,1	$W = 660 \ n = 0.50$
Intensite de la plage (76)	57,1 à 100	72,5 à 97,6	W = 000, <i>μ</i> = 0,30
Asymétrie	+0,8 ± 0,1	+0,5 ± 0,2	W = 758 $p = 0.07$
	-1,4 à +2,1	-1,3 à +2	w = 738, β = 8,87
Anlatissement	+0,8 ± 0,3 (N=34)	-0,4 ± 0,5 (N=23)	W = 484 $p = 0.13$
Aplatissement	-3,1 à +4,6	-5,9 à +3,9	<i>w</i> = +0+, <i>β</i> = 0,13
Cercaires la nuit (%)	0,6 ± 0,2	1,9 ± 0,4	W = 223 $p = 4.61e-06$
Cercalles la fluit (76)	0 à 10,1	0 à 7,4	W = 223, β = 4,018-00
Nombre total de	194,8 ± 37,8	672,8 ± 72,6	$W = 119 \ n = 2.79 \ -0.08$
cercaires	21 à 1371	126 à 1589	νν - 115, ρ - 2,75e-08

<u>Tableau 14 :</u> Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites diurnes de *S. mansoni* à partir de *B. pfeifferi* et de *B. glabrata*

Les profils moyens issus de *B. pfeifferi* et issus de *B. glabrata* ont en commun la présence d'un seul pic dont l'heure moyenne varie d'une heure (respectivement 11-12h et 12-13h). Ils partagent aussi un coefficient d'asymétrie modéré positif et une émission nocturne quasi inexistante (moins de 2%). L'intensité de la plage et les coefficients d'asymétrie et d'aplatissement ne sont pas significativement différents entre les profils issus de *B. pfeifferi* et ceux issus de *B. glabrata* (*p*>0,01).

A l'inverse, la plage horaire d'émission des cercaires et le nombre total de cercaires émises sur 24h sont significativement plus grands dans les profils issus de *B. glabrata* (*p*<0,01). A noter que, même si le nombre de cercaires nocturnes est significativement plus grand chez les profils issus de *B. glabrata*, cette émission moyenne reste anecdotique puisqu'elle représente moins de 2% d'émission.

La différence majeure entre les deux types de profils s'observe au travers d'un paramètre qui n'était pas pris en compte jusque-là, le nombre total de cercaires émises sur 24h. Cette différence peut s'expliquer par le fait que les *B. glabrata* sont naturellement plus grands que les *B. pfeifferi*. Les parasites ayant plus de place pour se développer sont plus nombreux à sortir. Cette différence quantitative de production cercarienne ne modifie en rien l'heure de sortie des cercaires.

D'un point de vue de la transmission, le risque est plus grand avec *B. glabrata* car plus de cercaires sont émises. Cependant, la période de risque ne change pas entre les deux espèces de mollusques. En effet, la différence d'une heure dans l'heure du pic moyen n'est pas importante, car ce genre d'écart est observé entre les profils appartenant à une même espèce.

En conclusion, le changement d'hôte ne change pas le rythme d'émission du chronotype diurne. Seule la production cercarienne (paramètre quantitatif) varie significativement mais n'a pas d'influence sur le rythme en lui-même. De ce fait, l'espèce de l'hôte mollusque n'est pas un paramètre qui influence le rythme des profils d'émission des cercaires.

I.1.4. Influence du sexe du parasite

Les parasites du genre *Schistosoma* sont gonochoriques. Contrairement au stade ver adulte, il n'est pas possible de distinguer morphologiquement le sexe du parasite pour les autres stades. Même s'il n'y a pas de différence sur la morphologie des cercaires et sporocystes, il est nécessaire d'explorer si des différences comportementales existent entre les deux formes. L'objectif de ce point va être de déterminer si le sexe du parasite a une influence sur le profil d'émission des cercaires des deux chronotypes de *S. mansoni*.

I.1.4.1. Protocole

La chronobiologie a été effectuée à partir de *B. pfeifferi* infestés individuellement avec 1 miracidium de *S. mansoni*. Nous avons analysé les profils d'émission de 15 infestations mâles et de 15 infestations femelles pour chaque chronotype diurne et nocturne de *S. mansoni*, pendant deux jours consécutifs ; soit au total 30 profils mâles et 30 profils femelles.

I.1.4.2. Chronotype diurne

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_22 et le Tableau_15. Sur les 30 profils mâles réalisés, 25 ont pu être utilisés car leurs émissions totales sur les 24 heures étaient égales ou supérieures à 20 cercaires. Chez les femelles, 25 profils sur 30 remplissaient cette condition des 20 cercaires.

Mâles

Femelles

<u>Figure 22</u>: **Profils moyens d'émission de** *S. mansoni* **de chronotype diurne entre mâles (bleu) et femelles** (**rose**). Chaque histogramme a, en ordonnées, la moyenne du pourcentage des cercaires émises ± écart standard. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit. L'arrière-plan gris correspond à l'obscurité. La ligne noire marque le début de l'obscurité à 18h.

	Moyenne ± ES		Test de Wilcoxon-
Paramètres	Variations individuelles		Mann-Whitney
	Mâle diurne	Femelle diurne	
Effectif	N=25	N=25	
Photopériode	L-O	L-0	
Nombro do nico	1	1	
Nombre de pics	1	1	
Houro du pic	11-12h	11-12h	
Heare du pic	10-11h à 14-15h	10-11h à 12-35h	
Plage d'émission (b)	3,8 ± 0,1	4,0 ± 0,2	$W = 190 \ n = 0.64$
ridge d ennission (n)	3 à 5	3à6	νν = 150, <i>p</i> = 0,04
Intensité de la nlage (%)	92,5 ± 1,1	87,3 ± 2,1	$W = 420 \ n = 0.039$
Intensite de la plage (70)	76,3 à 100	57,1 à 100	νν = 420, <i>p</i> = 0,035
Asymétrie	+0,9 ± 0,2	+0,8 ± 0,2	W = 312 n = 1
Asymethe	-1,4 à +2,1	-1,4 à +2	νν – 312, <i>p</i> – 1
Aplatissement	+0,5 ± 0,6 (N=17)	+1,2 ± 0,6 (N=17)	$W = 121 \ n = 0.43$
	-3,1 à +4,6	-3,1 à +4,1	νν = 121, <i>p</i> = 0,45
Corregings la puit (%)	$0,4 \pm 0,1$	0,9 ± 0,5	$W = 307 \ n = 0.90$
	0 à 2,7	0 à 10,1	νν – 307, <i>μ</i> – 0,90

Tableau_15 : Paramètres des profils moyens d'émission, accompagnés des variatio	ns individuelles, p	our les
parasites mâles et femelles du chronotype diurne de <i>S. mansoni</i>		

Les profils moyens, mâle et femelle, ont en commun la présence d'un seul pic situé à 11-12h et une plage d'émission d'environ 4h avec une intensité moyenne supérieure à 87%. Ils partagent aussi un coefficient d'asymétrie modéré positif et un coefficient d'aplatissement positif, ainsi qu'une émission nocturne quasi inexistante. La plage d'émission, son intensité, les coefficients d'asymétrie et d'aplatissement et le pourcentage de cercaires nocturnes ne sont pas significativement différents entre les mâles et les femelles (*p*>0,01).

En conclusion, les résultats montrent qu'il n'y a pas d'influence du sexe sur le profil d'émission des cercaires chez le chronotype diurne de *S. mansoni*.

I.1.4.3. Chronotype nocturne

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_23 et le Tableau_16. Sur les 30 profils mâles réalisés, 29 ont pu être utilisés car leurs émissions totales sur les 24 heures étaient égales ou supérieures à 20 cercaires. Chez les femelles, 26 profils sur 30 remplissent cette condition des 20 cercaires.

<u>Figure 23</u> : Chronobiologie de *S. mansoni* nocturne mâle (bleu) et femelle (rose). Chaque histogramme a, en ordonnées, la moyenne du pourcentage des cercaires émises ± écart standard. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit. L'arrière-plan gris correspond à l'obscurité. La ligne noire marque le début de l'obscurité à 18h.

Paramètres	Moyen Variations i	ne ± ES ndividuelles	Test de Wilcoxon- Mann-Whitney		
	Mâle nocturne	Femelle nocturne			
Effectif	N=29	N=26			
Photopériode	L-0	L-0			
Nombre de nics	1	1			
Nombre de pics	1	1			
Houro du pic	19-20h	19-20h			
Heare du pic	18-19h à 21-22h	18-19h à 21-22h			
Plage d'émission (b)	4,2 ± 0,2	4,1 ± 0,1	$W = 206 \ p = 0.74$		
Flage d enfission (II)	3 à 6	3 à 4	vv – 590, <i>p</i> – 0,74		
Intensité de la plage (%)	94,4 ± 0,7	92,3 ± 1,3	$W = 162 \ n = 0.15$		
Intensite de la plage (76)	83,4 à 100	71,3 à 100	vv = 402, p = 0, 15		
Asymétrie	+0,5 ± 0,2	+0,7 ± 0,2	W = 326 n = 0.30		
Asymethe	-1,7 à +1,7	-1,2 à +1,9	νν – 320, <i>p</i> – 0,39		
Anlatissement	-0,6 ± 0,6 (N=19)	-0,1 ± 0,6 (N=20)	$W = 166 \ n = 0.51$		
Aplatissement	-5,7 à +2,7	-5,7 à +4	vv = 100, p = 0.51		
Corcaires la puit (%)	98,6 ± 0,3	97,8 ± 0,6	$W = 280 \ p = 0.07$		
Cercaires la fluit (%)	92,7 à 100	89,3 à 100	vv – 360, <i>p</i> – 0,97		

<u>Tableau 16 :</u> Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites mâles et femelles du chronotype nocturne de *S. mansoni*

Les profils moyens mâles et femelles ont en commun la présence d'un seul pic situé à 19-20h et une plage d'émission d'environ 4h avec une intensité moyenne au-dessus de 92%. Ils partagent aussi un coefficient d'asymétrie positif, un coefficient d'aplatissement négatif, ainsi qu'une forte émission nocturne. La plage d'émission et son intensité, les coefficients d'asymétrie et d'aplatissement et le pourcentage de cercaires nocturnes ne sont pas significativement différents entre les mâles et les femelles (p>0,01).

En conclusion, les résultats montrent qu'il n'y a pas d'influence du sexe sur le profil d'émission des cercaires chez le chronotype nocturne de *S. mansoni* (Oman).

I.1.5. Discussion

Afin d'éliminer toute potentielle variation expérimentale, une méthodologie et des paramètres d'analyses communs ont été adoptés pour toutes les expériences de chronobiologie de cette thèse. Afin de refléter au mieux les caractéristiques des profils journaliers d'émission de cercaires, sept paramètres ont été choisis. Ces paramètres visent, en plus de la description du pic de l'émission (heure et nombre), à caractériser la forme du profil (plage horaire, intensité, coefficients d'asymétrie et d'aplatissement) et la position dans le nycthémère (pourcentage de cercaires nocturnes). En effet, en fonction des espèces et chronotypes de schistosomes l'émission des cercaires peut être plus ou moins concentrée autour du pic d'émission. Par exemple un schistosome qui infeste l'Homme a un intérêt stratégique à émettre des cercaires sur une plage horaire plus longue qu'un schistosome qui infeste les rongeurs ; en effet, l'Homme, de par la multitude de ses activités aquatiques (baignade, pêche, élevage, lavage, etc.) est en contact avec l'eau sur des périodes plus longues que les rongeurs. De plus, les rongeurs sauvages ont un contact avec l'eau plus court pour éviter les prédateurs. Voilà pourquoi il est important d'un point du vue écologique, sanitaire et aussi expérimental de ne pas uniquement s'intéresser au pic mais d'aussi prendre en compte la variabilité de la forme et la position de l'émission.

Le nombre de cercaires est un huitième paramètre qui n'est pas directement lié à la notion de rythme d'émission. Bien qu'il faille tout de même un nombre conséquent de cercaires pour caractériser correctement un profil d'émission (fixé à un minimum de 20 cercaires), ce paramètre n'est utilisé que lorsque son analyse est pertinente dans l'expérimentation.

Les résultats obtenus avec l'utilisation des sept paramètres pour décrire les profils d'émission journalière des cercaires des chronotypes diurne et nocturne de *S. mansoni* (Oman) sont en accord avec ce qui avait été décrit par Mouahid, Idris et al. (2012). Les différences observées entre les deux chronotypes sont l'heure du pic (11-12h pour les diurnes et 19-20h pour les nocturnes), la place de l'émission dans le nycthémère avec le pourcentage de cercaires nocturnes (autour de 1% pour les diurnes et autour de 98% pour les nocturnes ; *p*<0,01). Une autre différence observée est l'intensité de plage d'émission qui est significativement plus élevée chez le chronotype nocturne. Les quatre autres paramètres n'ont pas montré de différence significative. D'autres similitudes et différences ont été rapportées entre les deux chronotypes (Mouahid, Mintsa Nguema et al., 2019) ; par exemple, le taux d'infestation chez les mollusques et le taux de survie chez les souris sont similaires entre les deux chronotypes. Ces deux chronotypes diffèrent aussi par la morphologie de leurs œufs (légère courbure à l'opposé de l'éperon latéral chez le chronotype nocturne). De plus, le chronotype diurne présente une période pré-patente chez le mollusque plus courte et une production cercarienne significativement plus élevée. Ces observations supplémentaires confirment la singularité de ces deux chronotypes de *S. mansoni* (Oman).

Avec les profils d'émission établis, les potentiels paramètres biologiques (hôte et parasite) qui pourraient influencer le rythme en dehors des conditions expérimentales ont été testés. Cette expérience sur l'influence de l'hôte a uniquement pu être menée sur le chronotype diurne. Les différentes tentatives d'infestation sur *B. glabrata* par le chronotype nocturne se sont révélées infructueuses, illustrant ainsi l'incompatibilité du couple *S. mansoni* nocturne/ *B. glabrata* et la singularité du chronotype diurne. La comparaison entre les profils d'émission issus de *B. glabrata* et *B. pfeifferi* chez le chronotype diurne a montré qu'il n'y avait pas de différence significative dans le rythme d'émission des cercaires. Ces résultats sont en accord avec ceux qui avaient été montrés chez d'autres souches de *S. mansoni* (Théron, 1980 ; Williams & Gilbertson, 1983 ; Kazibwe, Makanga et al.,

2010). Si l'hôte mammifère associé au parasite joue un rôle crucial dans le rythme d'émission des cercaires des schistosomes (adaptation à l'hôte définitif), l'hôte mollusque n'exerce pas une influence notable. Cette observation est appuyée par une étude menée sur *Schistosoma bovis* qui infeste naturellement des mollusques de genres différents (*Planorbarius* et *Bulinus*) et montre que le rythme d'émission des cercaires n'est pas impacté (Mouahid & Théron, 1986). Nous pouvons donc conclure que ni le genre, ni l'espèce, ni la pigmentation, ni la perturbation du rythme cardiaque et de l'activité locomotrice de l'hôte intermédiaire n'ont d'influence sur le rythme d'émission des cercaires chez les schistosomes.

S'il n'y pas de différence pour le rythme, nos résultats ont tout de même montré une différence significative pour le nombre de cercaires émises et la plage horaire d'émission qui sont plus élevées chez *B. glabrata*. Cette différence peut s'expliquer par la taille des *B. glabrata* qui sont plus grands. Les parasites ont plus d'espace pour se développer et la plage d'émission s'agrandit. Cette différence de plage horaire n'est pas assez importante (moins d'une heure) pour être considérée comme un paramètre biologique de variation dans l'étude des profils d'émission des cercaires.

Si une potentielle influence de l'hôte mollusque est écartée, des conclusions similaires ont été trouvées pour le sexe du parasite. En effet, que ce soit pour le chronotype diurne ou nocturne, aucun des sept paramètres de description ne s'est montré significativement différent entre les sexes. Cette non-différence entre les sexes vient s'ajouter à d'autres traits de vie déjà répertoriés comme l'éclosion des œufs, la durée de vie et l'infectivité des miracidia ou encore la période pré-patente dans le mollusque (Boissier, Morand & Moné, 1999). Cette similitude biologique s'explique naturellement d'un point de vue de la transmission puisqu'il n'y a pas d'intérêt écologique à ce que les partenaires sexuels sortent à des heures différentes. Au contraire, l'intérêt du parasite est de faire en sorte que les formes mâles et femelles infestent le même hôte mammifère et donc sortent du mollusque à la même heure. A noter qu'il existe tout de même un biais sexuel dans l'infectivité des cercaires (en infestation unisexe) et leur durée de vie (Boissier & Moné, 2000).

Ce chapitre illustre bien la singularité des deux chronotypes de *S. mansoni* Oman et écarte l'influence de l'hôte mollusque et du sexe du parasite dans le rythme des profils journaliers d'émission des cercaires.

I.2. Nature des profils d'émission journaliers des cercaires chez les deux chronotypes, diurne et nocturne, de *Schistosoma mansoni*

Les schistosomes et plus largement les trématodes ne sont pas les seuls parasites à avoir développé des comportements basés sur un rythme journalier. Par exemple, chez les nématodes filaires agents de filarioses lymphatiques (*Brugia malayi* et *Wuchereria bancrofti*), le nombre de microfilaires des parasites est plus élevé dans la circulation périphérique sanguine de l'hôte humain la nuit (Hawking, 1967). Ce comportement rythmique augmente les chances de rencontre avec le vecteur anophèle qui pique les humains la nuit. Chez les parasites sanguins du genre *Plasmodium* (agents du paludisme), le développement intra-érythrocytaire suit un rythme de 24h (Hawking, Worms & Gammage, 1968) créant ainsi des fièvres rythmiques chez l'hôte. Ces rythmes journaliers ne se limitent pas aux parasites de mammifères. En effet, le parasite des plantes, *Botrytis cinerea*, augmente sa virulence au crépuscule pour esquiver le système immunitaire de la plante (Hevia, Canessa et al., 2015).

De façon générale ces divers comportements rythmiques chez les parasites leur permettent d'optimiser les conditions de rencontre avec l'hôte, d'optimiser l'infestation ou encore d'échapper au système immunitaire de l'hôte (Reece, Prior & Mideo, 2017). Le questionnement naturel est donc de savoir si ces avantages évolutifs rythmiques sont dus à la présence d'une horloge interne chez le parasite (rythme endogène) ou sont dépendants du rythme de l'hôte en tant que zeitgeber et/ou directement de l'environnement extérieur (rythme exogène).

Cette question a été résolue pour quelques espèces puisqu'une horloge interne a été découverte, entre autres, pour les parasites *Trypanosoma brucei* (Rijo-Ferreira, Pinto-Neves et al., 2017), *Plasmodium chabaudi* (Rijo-Ferreira, Acosta-Rodriguez et al., 2020) et *Botrytis cinerea* (Hevia, Canessa et al., 2015). Chez les helminthes, et plus particulièrement les nématodes, des rythmes circadiens dans la locomotion et la résistance au stress hyperosmotique ont été identifiés chez *Caenorhabditis elegans* (organisme libre), sans pour autant clairement identifier les acteurs (Hasegawa, Saigusa & Tamai, 2005).

L'objectif de ce deuxième chapitre va être de déterminer quelle est la nature du rythme journalier d'émission des cercaires des deux chronotypes du plathelminthe *Schistosoma mansoni* ?

Le rythme d'émission des cercaires est génétiquement déterminé (Théron & Combes, 1988). Pour savoir si le rythme est endogène, il doit remplir trois caractéristiques ; être entraînable par un zeitgeber, persister en conditions constantes et avoir une compensation à la température. Dans la littérature, seule l'entraînabilité du rythme et la persistance du rythme en condition constante ont été testées pour la souche Porto Rico de *S. mansoni*. Pour répondre à la question sur la nature du rythme, comparer nos résultats avec la souche Porto Rico et agrandir la connaissance sur le chronotype nocturne de *S. mansoni*, nous avons testé les deux mêmes caractéristiques du rythme circadien (entraînabilité et persistance). Le premier point sera consacré à déterminer si le rythme d'émission suit les variations du synchroniseur (zeitgeber). Le deuxième point étudiera le comportement du rythme d'émission des cercaires en conditions constantes.

I.2.1. Inversion de la photopériode

Une des caractéristiques du rythme circadien est qu'il est entraînable par les synchroniseurs environnementaux. Pour le rythme d'émission des cercaires, le zeitgeber principal est la photopériode (Asch, 1972 ; Valle, Pellegrino & Alvarenga, 1973). La variation de température peut maintenir le rythme en obscurité continue, en entraînant toutefois une augmentation des cercaires émises en période de nuit subjective par rapport au rythme en condition de photopériode équilibrée (Valle, Pellegrino, & Alvarenga, 1973). L'influence de la température reste moins importante que la photopériode équilibrée comme zeitgeber car la température interne du mollusque varie d'à peine 0,25°C entre obscurité et pleine lumière (Asch, 1972).

Les expériences d'inversion de la photopériode qui ont été menées uniquement sur la souche *S. mansoni* de Porto Rico (chronotype diurne classique) montrent que le rythme d'émission des cercaires s'adapte très rapidement au changement de photopériode (Luttermoser, 1955 ; Asch, 1972 ; Glaudel & Etges, 1973).

L'objectif de ce point, au travers des expériences de chronobiologie, va être de déterminer en combien de temps s'adapte le rythme d'émission des cercaires à l'inversion de photopériode pour les deux chronotypes de *S. mansoni* (Oman).

I.2.1.1. Protocole lumière inversée chronotype diurne

L'expérience de chronobiologie en lumière inversée a été effectuée sur une période de 15 jours et réalisée sur 6 *Biomphalaria glabrata* infestés par le chronotype diurne de *S. mansoni*. Ces jours se divisent en deux phases d'expérimentation. Les jours 1 et 2 représentent les conditions classiques avec une photopériode équilibrée L-O 12-12 ; la lumière s'allumant à 6h du matin et s'éteignant à 18h le soir. A partir du jour 3 et jusqu'à la fin de l'expérimentation la photopériode est inversée. Le jour 3 correspond au 1^{er} jour d'inversion de la photopériode.

I.2.1.2. Résultats chronotype diurne

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_24 et le Tableau_17. Tous les profils réalisés ont été utilisés car leurs émissions totales sur les 24 heures étaient égales ou supérieures à 20 cercaires. Pour cette expérience, le paramètre du nombre total de cercaires émises est pris en compte.

<u>Figure 24 :</u> **Histogrammes de l'expérience de chronobiologie en lumière inversée pour le chronotype diurne.** L'expérimentation voit se succéder deux conditions : Photopériode équilibrée L-O 12-12 (jours 1 et 2) et photopériode inversée (1^{er} au 13^{ème} jour d'inversion). L'inversion (flèche rouge) se fait après 24h d'obscurité et l'allumage de la lumière à 18h. En blanc, période de lumière (indiquée de 6h à 18h), en gris, période d'obscurité (indiquée de 18h à 6h).

Tableau 17: Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites du chronotype diurne de S. mansoni de l'expérience inversion de photopériode

Paramètres	Moyenne ± ES Variations individuelles													
Parametres	Jour 1	Jour 2	1 ^{er} Jour d'inversion	2 ^{ème} Jour d'inversion	3 ^{ème} Jour d'inversion	7 ^{ème} Jour d'inversion	8 ^{ème} Jour d'inversion	12 ^{ème} Jour d'inversion	13 ^{ème} Jour d'inversion					
Effectif	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6					
Photopériode	L-O	L-O	O-L	O-L	O-L	O-L	O-L	0-L	0-L					
Nombre de	1	1	1	1	1	1	1	1	1					
pics	1	1	1	1	1	1	1	1	1					
Heure du pic	11-12h 10-11h à 13-14h	11-12h 10-11h à 13-14h	11-12h 9-10h à 12-13h	11-12h <i>10-11h à 13-14h</i>	11-12h 10-11h à 12-13h	11-12h 9-10h à 11-12h	1-12h 11-12h 9-10h h à 11-12h 9-10h à 13-14h 9-10h à 11-12h		11-12h 9-10h à 12-13h					
Plage	4,7 ± 0,4	4,5 ± 0,2	5,7 ± 0,2	4,3 ± 0,5	4,8 ± 0,3	5,5 ± 0,2	4,7 ± 0,2 5,3 ± 0,5 4 à 5 4 à 7		4,8 ± 0,2					
d'émission (h)	4 à 6	4 à 5	5 à 6	3 à 6	4 à 6	5 à 6			4 à 5					
Intensité de la plage (%)	90,4 ± 1,7	87,3 ± 3,6	90,5 ± 2,5	87,9 ± 4,3	93,6 ± 0,9	95,6 ± 1	94,6 ± 1	92,7 ± 1,5	93,9 ± 1,2					
	<i>84,9 à 94,6</i>	72,5 à 95,7	<i>81,5 à 96,6</i>	70,0 à 95,8	<i>91,3 à 95,7</i>	<i>91,6 à 98</i>	91,0 à 97,1	<i>88,0 à 97,6</i>	88,6 à 95,9					
Asymétrie	+0,8 ± 0,5	+0,8 ± 0,3	+1,3 ± 0,3	+0,6 ± 0,5	+0,8 ± 0,4	+0,3 ± 0,4	+0,7 ± 0,3	+0,5 ± 0,3	+0,1 ± 0,5					
	-0,6 à +2	0 à +1,4	+0,8 à +2,4	-1,1 à +1,7	-0,1 à +2	-0,8 à +1,3	-0,3 à +1,8	-0,2 à +1,6	-0,9 à +1,9					
Aplatissement	-0,2 ± 1,6 -4,5 à +3,9	-0,6 ± 1,4 <i>-5,9 à +2</i>	+1,1 ± 1,2 -1,4 à +5,7	-0,7 ± 1,5 (N=4) -2,9 à +3,5	+0,7 ± 1,5 <i>-2,8 à +4,8</i>	-0,3 ± 0,9 -2,9 à +1,8	-0,4 ± 0,9 -2,6 à +3,2	-0,9 ± 1,2 -2,8 à +3,4	-0,3 ± 1,1 -3,1 à +3,7					
Cercaires la	1,9 ± 0,5	2,5 ± 1,3	0,2ª ± 0,2	2,4 ± 1,1	0,3 ± 0,2	0,7 ± 0,1	0,3 ± 0,2	0,6 ± 0,3	0,6 ± 0,4					
nuit (%)	<i>0,2 à 3,6</i>	<i>0,1 à 7,4</i>	0 à 1	0,5 à 5,7	0 à 1,1	<i>0,3 à 1,2</i>	0 à 1	0 à 2	0 à 1,8					
Nombre total de cercaires	711,8 ± 156,1	550,3 ± 155,6	3361,7 ^b ± 649,6	394,3° ± 80,9	302,3 ± 51,4	939,5 ^d ± 169,9	684,5 ± 176	1091 ± 360,2	303,7 ± 83,5					
	<i>167 à 1194</i>	<i>126 à 1009</i>	<i>1785 à 5026</i>	194 à 663	156 à 488	<i>510 à 1478</i>	250 à 1284	<i>83 à 2191</i>	57 à 589					

ES : Ecart-standard

L-O : Lumière-Obscurité (12-12) ; O-L : Obscurité-Lumière (12-12)

Tests Wilcoxon Mann Whitney significatifs (p-value<0,01) pour les effectifs supérieurs à 4 individus :

Comparaisons avec le jour précédent : ^a W = 34, p = 0,009; ^b w=0, p = 0,0022; ^c W = 36, p = 0,0022; ^d W = 0, p = 0,0022

Chacun des paramètres d'un jour a été comparé avec le même paramètre du jour précédent et les résultats sont présentés ci-dessous.

Jour 1 versus Jour 2

L	6h	18h	6h	18h	

Aucun des paramètres de description n'est significativement différent entre le profil du jour 1 et le profil du jour 2 (p > 0,01). Ces profils ont les caractéristiques du chronotype diurne avec la présence d'un seul pic à 11-12h et une plage d'environ 4h avec une intensité moyenne supérieure à 87%. Ils partagent aussi un coefficient d'asymétrie modéré positif et un coefficient d'aplatissement négatif, ainsi qu'une émission nocturne quasi inexistante. Le nombre total de cercaires émises est d'environ 600.

Jour 2 versus 1er jour d'inversion

L'inversion de photopériode (flèche rouge) entraîne une différence significative sur deux des neuf paramètres de description qui sont le nombre total de cercaires émises et le pourcentage de cercaires nocturnes (p < 0,01). Le profil du 1er jour d'inversion a émis en moyenne 6 fois plus de cercaires que celui du jour 2 (respectivement 3362 et 550) et presque aucune cercaire sur la période nocturne. Même si le pourcentage de cercaires nocturnes est significativement plus grand dans le profil du jour 2, il reste faible (moins de 2,5% d'émission). Tout comme les profils des jours 1 et 2, l'heure du pic moyen a lieu 6h après le début de la lumière, soit à 11-12h.

1^{er} jour d'inversion versus 2^{ème} jour d'inversion

Le nombre de cercaires est le seul paramètre qui est significativement différent avec le 1er jour d'inversion (p<0,01). Le profil du 2ème jour d'inversion a émis en moyenne 8,5 fois moins de cercaires que celui du 1er jour d'inversion (respectivement 394 et 3361). L'heure du pic moyen a lieu 6h après le début de la lumière comme pour les jours précédents, soit à 11-12h.

2^{ème} jour d'inversion versus 3^{ème} jour d'inversion

18h 6h	18h 6h

Aucun des paramètres de description n'est significativement différent entre le 2ème jour d'inversion et le 3ème jour d'inversion (p > 0,01). L'heure du pic moyen se situe 6h après le début de la lumière, comme pour les jours précédents, soit à 11-12h.

3^{ème} jour d'inversion versus 7^{ème} jour d'inversion

Le nombre total de cercaires est le seul paramètre qui est significativement différent avec le 3ème jour d'inversion (p < 0,01). Le profil du 7ème jour d'inversion a émis en moyenne 3 fois plus de cercaires

que celui du 3ème jour d'inversion (respectivement 939 et 302). L'heure du pic moyen se situe 6h après le début de la lumière comme pour les jours précédents, soit à 11-12h.

7^{ème} jour d'inversion versus 8^{ème} jour d'inversion

Aucun des paramètres de description n'est significativement différent entre le 7ème jour d'inversion et le 8ème jour d'inversion (p > 0,01). L'heure du pic moyen se situe 6h après le début de la lumière comme pour les jours précédents, soit à 11-12h.

8^{ème} jour d'inversion versus 12^{ème} jour d'inversion

18h 6h	18h 6h

L'heure du pic est le seul paramètre qui est différent avec les profils des autres jours. Le profil du 12ème jour d'inversion a eu son pic moyen 2 heures avant celui des jours précédents (respectivement à 9-10h et 11-12h).

12^{ème} jour d'inversion versus 13^{ème} jour d'inversion

18h 6h	18h 6h

L'heure du pic est le seul paramètre qui est différent avec le 12ème jour d'inversion. Le profil du 13ème jour d'inversion a eu son pic moyen 6h après le début de la lumière comme pour les jours précédents à l'exception du 12ème jour d'inversion, soit à 11-12h.

I.2.1.3. Discussion et conclusion chronotype diurne

Les jours 1 et 2 représentent le chronotype classique de *S. mansoni*. Le profil du 1er jour d'inversion a eu 24h d'obscurité (12h du jour 2 suivies des 12 premières heures du 1er jour d'inversion). Durant cette période, significativement moins de cercaires nocturnes ont été émises par rapport aux conditions normales. L'inversion de la photopériode a entraîné une adaptation directe au changement du rythme car le pic moyen d'émission des cercaires a eu lieu 6h après le début de la lumière comme pour les profils en condition classique (Jours 1 et 2).

Cette inversion a aussi eu des effets sur le nombre total de cercaires puisque 6 fois plus de cercaires ont été émises le 1er jour d'inversion par rapport au jour 2 (L-O). Le 2^{ème} jour d'inversion diffère du 1er jour d'inversion par le nombre total de cercaires qui est cette fois-ci 8,5 fois inférieur à celui de la veille. Ces différentes variations en termes de nombre de cercaires peuvent s'expliquer par le fait que les cercaires prêtes pour le 1er jour d'inversion ont dû attendre 12h supplémentaires le retour de la lumière. Ce temps d'attente supplémentaire aurait induit un stress qui aurait poussé les parasites à émettre un maximum de cercaires (celles prêtes pour l'émission du jour et celles en préparation pour les jours suivants). Ceci est appuyé par le fait que le profil du 2ème jour d'inversion (O-L) voit une chute drastique du nombre total de cercaires émises. Toutefois cette production cercairenne du 2ème jour d'inversion n'est pas significativement différente des jours 1 et 2 de photopériode classique (Jour 1 : W = 28, p = 0,13 et Jour 2 W = 22, p = 0,59). Le profil du 3ème jour d'inversion (O-L) montre une stabilisation du rythme et de la production cercairenne puisqu'aucun paramètre ne diffère avec le 2ème jour d'inversion (O-L).

A partir du 7ème jour d'inversion, le nombre total de cercaires connait une augmentation significative ce qui illustre que les parasites se sont adaptés et remis du stress d'inversion de la photopériode. Ce nombre total de cercaires n'est pas différent significativement des jours 1, 2 (L-O) et 2^{ème} jour d'inversion (Jour 1 : W = 13, p = 0,49; Jour 2 W = 8, p = 0,13; 2^{ème} jour d'inversion W = 3, p = 0,02). Le nombre total de cercaires reste par la suite stable jusqu'à la fin de l'expérience (p > 0.01). L'heure du pic moyen se situe 6h après le début de la lumière pour tous les jours de l'expérience à l'exception du 12ème jour d'inversion (9-10h). Cet écart de deux heures avec le 12ème jour d'inversion n'est pas important car des écarts similaires sont vus au sein des profils de même jour.

En conclusion, le rythme d'émission des cercaires du chronotype diurne s'adapte immédiatement à l'inversion de photopériode lorsque celle-ci est déclenchée après 24h d'obscurité.

I.2.1.4. Protocole lumière inversée chronotype nocturne

L'expérience de chronobiologie en lumière inversée a été effectuée sur une période de 10 jours et réalisée sur 6 *Biomphalaria pfeifferi* infestés par le chronotype nocturne de *S. mansoni*. Ces jours se divisent en deux phases d'expérimentation. Les jours 1 et 2 représentent les conditions classiques avec une photopériode équilibrée LO 12-12 ; la lumière s'allumant à 6h du matin et s'éteignant à 18h le soir. A partir du jour 3 et jusqu'à la fin de l'expérimentation la photopériode est inversée. Le jour 3 correspond au 1^{er} jour d'inversion de la photopériode.

I.2.1.5. Résultats chronotype nocturne

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_25 et le Tableau_18. Pour les jours 1 et 2, seuls les profils avec une émission supérieure à 20 cercaires sont pris en compte. Pour les autres jours, les profils avec une émission inférieure à 20 cercaires sont pris en compte pour la caractérisation des comportements mais sont exclus des analyses statistiques.

<u>Figure 25</u>: Histogramme de l'expérience de chronobiologie en lumière inversée pour le chronotype nocturne. L'expérimentation voit se succéder deux conditions : Photopériode équilibrée L-O 12-12 (jours 1 et 2) et photopériode inversée (1^{er} au 8^{ème} jour d'inversion). L'inversion (flèche rouge) se fait après 24h d'obscurité et l'allumage de la lumière à 18h. En blanc, période de lumière (indiquée de 6h à 18h), en gris, période d'obscurité (indiquée de 18h à 6h).

Tableau 18 : Paramètres des	profils m	noyens d'	'émission,	accompagnés	des	variations	individuelles,	pour	les	parasites	du	chronotype	nocturne	de <i>S.</i>	mansoni	de
l'expérience inversion de phot	opériode															

		Moyenne ± ES													
Paramètres			1			,	Variations ir	ndividuelle	s .						
i di di licei es	Jour 1	Jour 2	1 ^{er} .	Jour d'in	version	2 ^{eme} Jo	2 ^{eme} Jour d'inversion			^{ne} Jour d'i	nversion		7 ^{eme} Jour	8 ^{eme} Jour	
													d'inversion	d'inversion	
Effectif	4/4	5/5	4/6	2	/6	5/6	<u>5</u>	1/6	3/6	2/6		1/6	6/6	6/6	
Photopériode	L-0	L-0		O-L			0-L			0-L			O-L	O-L	
Nombre de	1	1			2	2		1	1	2			1	1	
pics	1	1			2	2		1	1	2			1	1	
Heure du pic	19-20h 19-20h à 20-21h	18-19h 18-19h à 19-20h		19-20h 19-20h	6-7h et 7-8h 6-7h à 7- 8h	20-21h 20-21h à 6-7h	6-7h 19-20h à 6- 7h	20-21h 20-21h	18-19h 18-19h à 22-23h	18-19h et 20-21h <i>18-19h à</i> <i>20-21h</i>	6-7h <i>6-7h</i>		18-19h 18-19h à22- 23h	19-20h 19-20h à 20- 21h	
Plage d'émission (h)	4,5 ± 0,6 <i>4 à 6</i>	3,6 ± 0,2 3 à 4		3,5 ± 0,7 3 à 4	3 <i>3</i>	4 ± 1,2 3 à 6	3 3	4 4	4,0 ± 0,6 2 à 6	3,5 ± 0,7 3 à 4	3±0 3		4,0 ± 0,6 2 à 6	4,0 ± 0,9 3 à 5	
Intensité de la plage (%)	91,7 ± 2,3 <i>86,2 à 95,2</i>	89,8 ± 3,4 78,7 à 97,8		59,5 ± 6,1 55,2 à 63,8	29,3 ± 2,4 27,7 à 31,0	61,4 ± 5,0 46,6 à 72,6	26,6 ± 5 15,1 à 41,7	69,7 <i>69,7</i>	88,5 ± 4 71,8 à 96,3	68,3 ± 19,1 ± 16,9 3,8 56,4 à 16,4 à 80,3 21,8			88,5 ± 4 71,8 à 96,3	91,3 ± 3,4 77,6 à 98,9	
Asymétrie	+0,6 ± 0,6 -0,8 à +1,8	+0,8 ± 0,4 -0,1 à +1,6		+1,6 ± 0,2 +1,5 à +1,7	-0,6 ± 1,3 <i>-1,5 à</i> +0,3	+0,6 ± 0,4 -0,3 à +1,4	+0,9 ± 0,7 -1,4 à +1,7	+1 +1	+0,7 ± 0,3 -0,3 à +1,5	-0,6 ± 1,6 <i>-1,7 à</i> +0,5	0 ± 2,4 -1,7 à +1,7		+0,7 ± 0,3 -0,3 à +1,5	+0,9 ± 0,3 0 à +1,6	
Aplatissement	+0,5 ± 1,5 -2,7 à +3,5	0 ± 3,3 (N=3) -5,4 à +2,9		2,6 (N=1) <i>2,6</i>	(N=0)	-2,1 ± 2,8 (N=3) -5,5 à +2,3	(N=0)	+0,9 <i>+0,9</i>	0 ± +1,1 (N=5) -2,9 à +2,2	-3,1 (N=1) <i>-3,1</i>	(N=0)		0 ± +1,1 (N=5) -2,9 à +2,2	+0,5 ± 0,9 (N=4) -1,1 à +2,4	
Cercaires la nuit (%)	97,2 ± 0,8 95,5 à 98,5	100 ± 0 <i>100</i>		64 : 62,1	± 2,7 : à 66	68,6 ± 47,5 à	7,1 83,6	89,9 <i>89,9</i>	96,3 ± 2,1 92,9 à 98,8	79,2 76,4	± 4 à 82		92,6 ± 3,1 81,3 à 99,4	96,3 ± 2 87,9 à 100	

ES : Ecart-standard

L-O : Lumière-Obscurité (12-12) ; O-L : Obscurité-Lumière (12-12)

Tests Wilcoxon-Mann-Whitney significatifs (p-value<0,01) pour les effectifs supérieurs à 4 individus : comparaison avec le jour précédent.

Chacun des paramètres d'un jour a été comparé avec le même paramètre du jour précédent et les résultats sont présentés ci-dessous.

Jour 1 versus Jour 2

I					
				<u> </u>	
	6h	19h		6h	18h
	011	1011		011	1011

Aucun des paramètres de description n'est significativement différent entre le profil du jour 1 et le profil du jour 2 (p > 0,01). Ces profils ont les caractéristiques du chronotype nocturne avec la présence d'un seul pic et une plage d'environ 4h avec une intensité moyenne aux alentours de 90%. Ils partagent aussi un coefficient d'asymétrie modéré positif ainsi qu'une émission nocturne dépassant les 97%.

Jour 2 versus 1er jour d'inversion

L'inversion de photopériode entraîne une différence de comportement au sein des profils du 1er jour d'inversion. Sur les 6 profils, 4 ont émis moins de 20 cercaires. Les deux profils restants sont multimodaux. Le pic avec la plus grande intensité est à 19-20h (obscurité) et le second pic a lieu à 6-7h ou 7-8h (lumière) en fonction du profil. Aucun paramètre des deux profils multimodaux du 1er jour d'inversion n'est significativement différent avec le profil du jour 2 (p > 0,01).

1^{er} jour d'inversion *versus* 2^{ème} jour d'inversion

Sur les 6 profils du 2ème jour d'inversion, tous ont émis plus de 20 cercaires avec deux comportements qui se distinguent. La majorité (5 sur 6) a une émission multimodale avec le pic principal moyen à 20-21h et le second pic à 6-7h en période de lumière. Le profil restant du 2ème jour d'inversion est unimodal avec son pic à 20-21h. Cette heure de pic principal est décalée d'une à deux heures par rapport aux jours 1 et 2 mais est comprise dans leur variabilité individuelle. Aucun paramètre des profils unimodal et multimodal du 2ème jour d'inversion n'est significativement différent du profil multimodal du 1er jour d'inversion (p > 0,01).

2^{ème} jour d'inversion versus 3^{ème} jour d'inversion

18h 6h	18h 6h

Sur les six profils du 3ème jour d'inversion, trois comportements différents sont observés. Trois profils sur six sont unimodaux avec le pic à 18-19h. Deux profils sur six sont encore multimodaux avec le pic principal à 18-19h ou 20-21h en fonction du profil et le pic secondaire à 6-7h. Le dernier profil a émis moins de 20 cercaires. Aucun des paramètres de description n'est significativement différent entre le 2ème jour d'inversion et le 3ème jour d'inversion (p > 0,01).

3^{ème} jour d'inversion versus 7^{ème} jour d'inversion

18h 6h	18h 6h

Les six profils du 7ème jour d'inversion sont unimodaux avec le pic moyen à 18-19h. Aucun des paramètres de description n'est significativement différent entre le 7ème jour d'inversion et le 3ème jour d'inversion (p > 0,01) ni entre le jour 2 de photopériode classique et le 7ème jour d'inversion (p > 0,01). Tout comme le jour 2, l'heure du pic moyen du 7^{ème} jour d'inversion se fait dès le début de l'obscurité (18-19h).

7^{ème} jour d'inversion versus 8^{ème} jour d'inversion

Tout comme le 7ème jour d'inversion, les six profils du 8ème jour sont unimodaux avec le pic moyen à 19-20h. Aucun des paramètres de description n'est significativement différent entre le 7^{ème} jour d'inversion et le 8ème jour d'inversion (p > 0,01) ni entre le jour 2 de photopériode classique et le 8ème jour d'inversion (p > 0,01). Tout comme le jour 2, l'heure du pic moyen du 8^{ème} jour d'inversion se fait une heure après le début de l'obscurité (19h-20h).

I.2.1.6. Discussion et conclusion chronotype nocturne

Les jours 1 et 2 représentent le chronotype classique de *S. mansoni* nocturne. Les profils du 1^{er} jour d'inversion ont eu 24 heures d'obscurité (12h du jour 2 suivies des 12 premières heures du 1^{er} jour d'inversion).

L'inversion de la photopériode a mis en lumière des différences de comportement dans l'adaptation au changement de photopériode. Le premier comportement suivi par la majorité des profils du 1^{er} jour d'inversion est une réduction de l'émission en dessous de la limite des 20 cercaires. Tandis que le second comportement est l'apparition d'un profil d'émission multimodal. Le pic principal (intensité aux alentours de 60%) s'adapte immédiatement au changement puisqu'il apparaît dès la deuxième heure d'obscurité du 1^{er} jour d'inversion (19-20h). Le second pic a lieu dans les deux premières heures de lumière qui correspond à l'heure du pic de la veille (Jour 2, L-O). La présence de ces deux pics illustre que la majorité de l'émission fait la bascule mais que l'adaptation n'est pas complète car des cercaires ont été émises durant la période lumineuse à l'heure du pic en photopériode classique. A partir du 2^{ème} jour d'inversion tous les profils émettent de nouveau plus de 20 cercaires, mais la majorité reste multimodale. Il faut attendre le 7^{ème} jour d'inversion pour que tous les profils soient de nouveau unimodaux comme les jours 1 et 2 de photopériode classique. A l'exception de l'heure du pic pour les profils multimodaux, aucun des paramètres de description des profils n'est significativement différent lorsque l'on effectue une comparaison avec le jour précédent. Les tests impliquant les 1^{er} et 3^{ème} jours d'inversion peuvent être discutés car la taille des échantillons est très petite (≤ 3). Il peut toutefois être dit que l'inversion de photopériode induit dans la majorité des cas une baisse de l'émission cercarienne. Cela peut être apparenté à un statut d'attente pour le retour d'une alternance jour/nuit puisque dès le 2^{ème} jour d'inversion tous les profils sont de nouveau au-dessus de la limite. L'adaptation pour les profils dont l'émission reste au-dessus de la limite passe par un stade intermédiaire de deux pics qui ont lieu à la nouvelle et à l'ancienne heure du pic. Le fait qu'en photopériode classique le pic se passe à la transition jour/nuit rend plus difficilement interprétable la nature du pic diurne à l'ancienne heure d'émission. Ce pic diurne peut être soit assimilé à un pic résiduel qui n'a pas encore fait la bascule face à l'inversion, soit à une réponse mécanique à la lumière due à la perturbation.

En conclusion, le rythme d'émission des cercaires du chronotype nocturne commence à s'adapter immédiatement à l'inversion de photopériode lorsque celle-ci est déclenchée après 24h d'obscurité. Il faut toutefois attendre le 7^{ème} jour d'inversion pour que l'inversion concerne l'ensemble des individus.

I.2.1.7. Comparaison des chronotypes diurne et nocturne avec inversion de la photopériode

Les chronotypes diurne et nocturne de *S. mansoni* ont des façons différentes de réagir à l'inversion de photopériode induite par 24h d'obscurité. Le chronotype diurne s'adapte immédiatement et totalement à l'inversion de photopériode tandis que le chronotype nocturne doit soit passer par 24h de pause puis une émission bimodale (aux heures de l'ancien et du nouveau pic), soit directement être bimodal pour finalement s'adapter complètement à la nouvelle photopériode. Cette différence entre chronotypes peut s'expliquer par la place du pic nocturne dans le nycthémère et par l'inversion de 12 heures qui peut représenter une grande perturbation pour les organismes.

Une autre expérience d'inversion de 3 jours (résultats non montrés) a été menée avec cette fois-ci l'inversion induite après 24h de lumière. L'adaptation du chronotype nocturne avec une étape intermédiaire bimodale (ancienne et nouvelle heures du pic) reste inchangée. Pour le chronotype diurne, l'adaptation est totale dès le 1^{er} jour d'inversion. Il est intéressant de noter qu'aux 2^{ème} et 3^{ème} jour d'inversion, il y a une émission cercarienne à 6h du matin qui correspond au début de l'obscurité (O-L). Cette émission à la transition jour/nuit observée chez le diurne pourrait signifier que l'émission observée chez le nocturne est plus une réponse à la transition jour/nuit qu'un pic qui n'est pas encore adapté à la nouvelle photopériode.

I.2.2. Zeitgeber constant

Une autre des caractéristiques d'un rythme circadien est qu'il persiste en l'absence de zeitgeber. Privé du zeitgeber, le rythme adopte une période dite de libre cours (« free running period ») d'approximativement 24 heures (entre 20 et 28 heures) dictée par l'horloge interne. Si en conditions continues, la période de libre cours est supérieure à 20 heures et inférieure à 24h, l'horloge interne avance par rapport à un rythme de 24h (avancement du rythme). A l'inverse, si la période de libre cours est supérieure à 28h, l'horloge interne retarde par rapport à un rythme de 24h (avancement du rythme). A l'inverse, si la période de libre cours est supérieure à 24 heures et inférieure à 28h, l'horloge interne retarde par rapport à un rythme de 24h (retard du rythme). Dans le cas de *S. mansoni*, il s'agit de voir si le rythme d'émission des cercaires persiste dans un environnement à photopériode continue (lumière ou obscurité) et température constante. Sa période de libre cours correspond à la période qu'il y a entre deux pics d'émission. Selon la littérature, des expériences ont été menées uniquement sur le chronotype diurne classique de *S. mansoni*. Que ce soit sous luminosité continue ou sous obscurité continue, les schistosomes ont perdu leur rythme d'émission. Cette perte de rythme intervient soit immédiatement après (Williams, Wessels & Gilbertson, 1984), soit deux jours après le changement de photopériode (Valle, Pellegrino & Alvarenga, 1973). Dans les deux cas, le rythme d'émission des cercaires revient à la normale dès le retour d'un cycle jour/nuit.

L'objectif de ce point, au travers des expériences de chronobiologie, va être de déterminer si le rythme d'émission des cercaires persiste en lumière continue pour le chronotype diurne et en obscurité continue pour le chronotype nocturne de *S. mansoni* (Oman). S'il y a persistance du rythme, le second objectif sera de déterminer la période de libre cours du rythme d'émission des cercaires, et ainsi si l'horloge interne avance (20h > période de libre cours > 24h) ou retarde (24h > période de libre cours > 28h) par rapport aux rythmes de 24h imposés par le cycle jour/nuit.

I.2.2.1. Chronotype diurne

I.2.2.1.1. Protocole lumière continue

L'expérience de chronobiologie en lumière continue a été effectuée sur une période de 26 jours et réalisée sur 6 *Biomphalaria glabrata* infestés par le chronotype diurne de *S. mansoni*. Ces jours se divisent en trois phases d'expérimentation. Les jours 1 et 2 représentent les conditions classiques, avec une photopériode équilibrée L-O 12-12 ; la lumière s'allumant à 6h du matin et s'éteignant à 18h le soir. A partir du jour 3, la lumière est laissée allumée à 18h. Le jour 3 correspond au 1^{er} jour de lumière continue et le jour 18 au 16^{ème} et dernier jour de lumière continue L-L 12-12. A partir du jour 19 et jusqu'à la fin de l'expérimentation, la lumière est arrêtée à 18h pour un retour de la photopériode équilibrée L-O 12-12 identique aux conditions classiques.

I.2.2.1.2. Résultats. Expérience de lumière continue

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_26 et le Tableau_19 pour la partie de lumière continue et la Figure_27 et le Tableau_20 pour le retour de la photopériode équilibrée. Pour les jours 1 et 2, seuls les profils avec une émission supérieure à 20 cercaires sont pris en compte. Pour les autres jours, les profils avec une émission inférieure à 20 cercaires sont pris en compte pour la caractérisation des comportements mais sont exclus des analyses statistiques. Pour cette expérience, le paramètre du nombre total de cercaires émises est pris en compte. Pour les jours (L-L), le pourcentage de cercaires nocturnes correspondra au pourcentage de cercaires émises durant les douze dernières heures de la journée, c'est-à-dire pendant la nuit subjective.

<u>Figure 26 :</u> Histogramme de l'expérience de chronobiologie en lumière continue pour le chronotype diurne (1/2), phase lumière continue. L'expérimentation voit se succéder trois conditions : Photopériode équilibrée L-O 12-12 (jours 1 et 2), lumière continue (1^{er} au 13^{ème} jour) et le retour à la photopériode équilibrée en figure 27 (1^{er} au 8^{ème} jour). Le début de la lumière continue se fait à partir de 18h. En blanc, période de lumière (indiquée de 6h à 18h) ; en gris, période d'obscurité (indiquée de 18h à 6h).

Tableau 19: Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites du chronotype diurne de *S. mansoni* de l'expérience de lumière continue (1/2)

		Moyenne ± ES Variations individuelles															
Parametres	Jour 1 Jour 2		1 ^{er} jour de L-L	ur de L-L 2 ^{ème} Jour de L-L		7 ^{ème} Jour de L-L		e L-L	8 ^{ème}	Jour de	e L-L	12 ^{ème}	· Jour (de L-L	13 ^{èn}	^{ne} Jour d	le L-L
Effectif	6/6	6/6	6/6	6/6	6/6	4/6	1/6	1/6	4/6	1/6	1/6	4/6	1/6	1/6	4/6	1/6	1/6
Photopériode	L-0	L-0	L-L	L-L	L-L		L-L		L-L			L-L			L-L		
Nombre de	1	1	1				1	1		1	1						
pics	1	1	1				-	-		-							
Heure du pic	12-13h 11-12h à 12-13h	12-13h 11-12h à 13-14h	11-12h <i>11-12h à 13-14h</i>				17-18 (pm)	8-9 (pm)		6-7 (am)	8-9 (pm)		9-10 (pm)	9-10 (pm)		11- 12(a m)	15- 16 (am)
Plage d'émission (h)	4,0 ± 0,3 3 à 5	5,2 ± 0,4 4 à 7	4,3 ± 0,2 4 à 5				2	2		2	6		7	5		2	5
Intensité de la plage (%)	91,4 ± 1,0 88,7 à 93,9	92,1 ± 2,2 83,6 à 97,6	79,6 ± 3,5 70 à 92,8				80,6	63,1		41,6	91,6		58,8	88,8		47,5	67,3
Asymétrie	-0,3 ± 0,4 -1,3 à +0,6	+0,4 ± 0,3 -0,6 à +1	+0,3 ± 0,4 -1,2 à +1,7				N=0	N=0		N=0	0,7		+1,2	+1		N=0	+0,3
Aplatissement	-0,8 ± 0,8 (N=5) -2,4 à +1,3	0 ± 0,7 -2,3 à +1,7	+0,3 ± 0,9 -2,7 à +2,8				N=0	N=0		N=0	-1,9		-0,1	+0,8		N=0	-2,9
Cercaires la nuit subjective (%)	0,7 ± 0,3 <i>0 à 1,3</i>	2,6 ± 1,0 0,4 à 6,9	2,1 ± 0,8 0,7 à 4,6				97,2	78,5		46,5	85,5		67	98,3		35,6	32,1
Nombre total de cercaires	749,3 ± 215,4 274 à 1589	679,5 ± 106,2 464 à 986	830,2 ± 110,4 671 à 1313	3ª ± 1,02 0 à 6	1,17 ± 0,87 0 à 5	2,25 ± 0,87 0 à 3	607	65	7,5 ± 2,56 4 à 14	649	83	8,5 ± 2,0 5 à 12	294	116	3,8 ± 1,6 1à 7	59	165
N° mollusque							N°2	N°6		N°2	N°6		N°2	N°6		N°2	N°6

ES : Ecart-standard ; L-O : Lumière-Obscurité (12-12) ; O-L : Obscurité-Lumière (12-12) ; Tests Wilcoxon Mann Whitney significatifs (*p*-value <0,01) pour les effectifs supérieurs à 4 individus : Comparaison avec le jour précédent (p<0,01) : a W = 36, *p* = 0,005

<u>Figure 27</u>: **Histogramme de l'expérience de chronobiologie en lumière continue pour le chronotype diurne** (2/2): phase retour de la photopériode équilibrée. L'expérimentation voit se succéder trois conditions : Photopériode équilibrée L-O 12-12 (jours 1 et 2) en figure 26, lumière continue en figure 26 (1^{er} au 13^{ème} jour) et le retour à la photopériode équilibrée (1^{er} au 8^{ème} jour). Le retour de la photopériode équilibrée s'opère avec le retour de l'obscurité à 18h. En blanc, période de lumière (indiquée de 6h à 18h) ; en gris, période d'obscurité (indiquée de 18h à 6h).

Tableau 20: Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites du chronotype diurne de S. mansoni de l'expérience de lumière continue (2/2)

Paramètres	Moyenne ± ES Variations individuelles						
	1 ^{er} jour du retour L-O			2 ^{ème} jour du retour L-O	3 ^{ème} jour du retour L-O	7 ^{ème} jour du retour L-O	8 ^{ème} jour du retour L-O
Effectif	4/6	1/6	1/6	6/6	8/8	8/8	8/8
Photopériode	L-0			L-0	L-0	L-0	L-0
Nombre de pics				1 1	1 1	1 1	1 1
Heure du pic		19- 20h	19- 20h	12-13h 11-12h à 13-14h	12-13h 11-12h à 13-14h	11-12h 11-12h à 13-14h	12-13h 11-12h à 14-15h
Plage d'émission (h)		4	4	6,0 ± 0,3 5 à 7	4,8 ± 0,3 4 à 6	5,3 ± 0,4 3 à 7	4,9 ± 0,6 3 à 8
Intensité de la plage (%)		52,0	92,9	79,7 ± 3,6 70,6 à 89,4	67,8 ± 3,9 50 à 80,5	86,6 ^b ± 3,4 <i>68,4 à 97,7</i>	74,9 ± 7,6 <i>38,9 à 95,2</i>
Asymétrie		+1,5	+1,8	+0,5 ± 0,4 -0,6 à +1,8	0 ± 0,3 -0,9 à +1,6	+0,6 ± 0,2 -0,4 à +1,4	+0,9 ± 0,6 -2,1 à +2,5
Aplatissement		+2,7	+3,2	+0,2 ± 0,9 -1,7 à +3,9	-0,6 ± 0,7 -2,4 à +2,8	-0,4 ± 0,9 (N=7) <i>-3,0 à +2,9</i>	+2,6 ± 1,3 (N=7) -3,3 à +6,7
Cercaires la nuit subjective (%)		58,7	96,8	11,5 ± 3,2 4,7 à 21,3	18,5 ± 2,9 7,5 à 33,3	5,7 ± 3,2 0 à 25,3	15,2 ± 6,2 0 à 41,7
Nombre total de cercaires	7,3 ± 4,8 0 à 19	196	156	1940,3 ± 481,1 <i>856 à 3755</i>	151,8ª ± 49 26 à 324	227,8 ± 66 <i>38 à 519</i>	444,9 ± 109 <i>166 à 948</i>
N° mollusque		N°2	N°6				

ES : Ecart-standard ; L-O : Lumière-Obscurité (12-12) ; O-L : Obscurité-Lumière (12-12) ; Tests Wilcoxon Mann Whitney significatifs (*p*-value<0,01) pour les effectifs supérieurs à 4 individus : Comparaison avec le jour précédent : ^a W = 48, *p* = 0,0007, ^b W =5, *p* = 0,003.

Chacun des paramètres d'un jour a été comparé avec le même paramètre du jour précédent et les résultats sont présentés ci-dessous.

Jour 1 versus Jour 2

6h 18h	6h 18h

Aucun des paramètres de description n'est significativement différent entre le profil du jour 1 et le profil du jour 2 (p > 0,01). Ces profils ont les caractéristiques du chronotype diurne avec la présence d'un seul pic à 12-13h et une plage entre 4h et 5h avec une intensité moyenne de la plage supérieure à 90%. Ils partagent aussi un coefficient d'asymétrie modéré (positif ou négatif) ainsi qu'une émission nocturne quasi inexistante. Le nombre total de cercaires émises est d'environ 700.

Jour 2 versus 1^{er} jour de lumière continue

Le régime de lumière continue débute à la seconde moitié de la 1^{ère} journée de lumière continue. Les 12 premières heures du 1^{er} jour de lumière continue ne sont pas affectées par le changement de photopériode car elles correspondent au début de jour classique. Aucune émission significative n'est observée dans la seconde moitié du 1^{er} jour de lumière continue. Ainsi, aucun des paramètres de description n'est significativement différent entre le profil du jour 2 et le profil du 1^{er} jour de lumière continue (p > 0,01). La différence d'une heure pour l'heure du pic n'est pas significative entre les profils du jour 2 et du 1^{er} jour de lumière continue (p > 0,01).

1^{er} jour de lumière continue *versus* 2^{ème} jour de lumière continue

Après 24h de lumière continue, il y a une perte totale de rythme et une émission quasi inexistante. Sur les 6 profils du 2ème jour de lumière continue, aucun n'a émis plus de 6 cercaires. Ce changement de comportement est d'autant plus important puisqu'en 24h de lumière continue, le nombre total moyen de cercaires émises est passé de 830 à 3.

2^{ème} jour de lumière continue *versus* 3^{ème} jour de lumière continue

6h 6h	6h 6h

Aucun des 6 profils du 3^{ème} jour de lumière continue n'a émis plus de 5 cercaires. Le nombre total de cercaires émises n'est pas significativement différent entre le 2^{ème} jour de lumière continue et le 3^{ème} jour de lumière continue (p > 0,01).

3^{ème} jour de lumière continue *versus* 7^{ème} jour de lumière continue

A partir du 7^{ème} jour, deux comportements se distinguent entre les 6 profils. Ceux qui ont émis moins de 20 cercaires (4/6) et ceux qui émettent plus de 20 cercaires (2/6). Cette différence de
comportement demeure jusqu'au dernier jour de la lumière continue chez les mêmes individus. Les 4 profils du 7^{ème} jour de lumière continue qui ont émis moins de 20 cercaires sont les mêmes individus que ceux du 13^{eme} jour de lumière continue qui ont émis moins de 20 cercaires. Le nombre moyen total de cercaires émises pour ces 4 profils du 7^{ème} jour de lumière continue n'est pas significativement différent de celui du profil du 3^{ème} jour de lumière continue (p > 0,01).

Les deux profils restants du 7^{ème} jour de lumière continue ont émis plus de 20 cercaires. Ils sont issus des mollusques n°2 et n°6. La majorité de leur émission se concentre sur 2 heures avec toutefois 9 heures d'écart entre leur « pic » d'émission respectifs. La majorité de leur émission se fait dans la deuxième moitié du 7ème jour de lumière continue. Chez le mollusque n°2, la majorité des cercaires sont émises dans les deux dernières heures du 7^{ème} jour de lumière continue tandis que chez le mollusque n°6 la majorité des cercaires sont émises entre 8 et 10h de la seconde moitié du 7ème jour de lumière continue. A noter que 9 fois plus de cercaires ont été émises chez le mollusque n°2.

7^{ème} jour de lumière continue versus 13^{ème} jour de lumière continue (4/6)

6h 6h	6h 6h

Du 2^{ème} jour de lumière continue jusqu'au dernier, les mollusques n°1, 3, 4, et 5 ont émis moins de 20 cercaires avec une moyenne globale de 6 cercaires par jour. Le nombre total moyen de cercaires émises n'est pas significativement différent entre les jours de lumière continue. Aucune période de libre cours n'a pu être mise en évidence.

7^{ème} jour de lumière continue versus 13^{ème} jour de lumière continue (1/6)

6h 6h	6h 6h

Le mollusque n°2 a émis plus de 20 cercaires les 7^{ème} jour, 8^{ème} jour, 12^{ème} jour et 13^{ème} jour de lumière continue, avec en moyenne une émission de 400 cercaires. Aucune période de libre cours comprise entre 20h et 28h n'a pu être mise en évidence.

7^{ème} jour de lumière continue versus 13^{ème} jour de lumière continue (1/6)

6h 6h	6h 6h

Le mollusque n°6 a émis plus de 20 cercaires les 7^{ème} jour, 8^{ème} jour, 12^{ème} jour et 13^{ème} jour de lumière continue, avec en moyenne une émission de 107 cercaires. Aucune période de libre cours comprise entre 20h et 28h n'a pu être mise en évidence.

13^{ème} jour de lumière continue *versus* 1^{er} jour du retour L-O

6h 6h	6h 18h

Le retour de l'alternance lumière-obscurité débute avec l'obscurité à 18h. Les deux comportements distinctifs observés lors du 13^{ème} jour de lumière continue restent inchangés au 1^{er} jour du retour de la photopériode équilibrée (L-O). Les mêmes 4 individus ont des profils avec moins de 20 cercaires. Les mollusques n°2 et 6 ont émis plus de 20 cercaires. La majorité de l'émission cercarienne se fait au retour de l'obscurité, avec respectivement pour les mollusques n°2 et 6, 58,7 et 96,8% de cercaires nocturnes. Le pic de cette émission nocturne a lieu une heure après le retour de l'obscurité (19-20h).

1^{er} jour du retour L-O *versus* 2^{ème} jour du retour L-O

Au 2^{ème} jour du retour de la photopériode équilibrée (L-O), les 6 profils ont émis plus de 20 cercaires. Contrairement au jour précédent, ces profils ont les caractéristiques du chronotype diurne (1^{er} jour, 2^{ème} jour et 1^{er} jour Lumière continue) avec la présence d'un seul pic à 12-13h et le pourcentage de cercaire nocturne moyen qui est descendu à 11%.

2^{ème} jour du retour L-O versus 3^{ème} jour du retour L-O

6h 18h	6h 18h

Les huit profils du 3^{ème} jour du retour L-O ont émis plus de 20 cercaires. A l'exception du nombre total de cercaires, aucun des autres paramètres de description n'est significativement différent entre le profil du 2^{ème} jour du retour de L-O et le 3^{ème} jour du retour L-O. Le nombre total moyen de cercaires du 3^{ème} jour du retour L-O est significativement plus petit que celui du 2^{ème} jour du retour L-O (respectivement 1940 et 152 cercaires). Même si la majorité de l'émission cercarienne du 3^{ème} jour du retour L-O est diurne, le pourcentage moyen de cercaires nocturnes reste élevé (18,5%) comparé au pourcentage classique observé chez le chronotype diurne (~1-2%).

3^{ème} jour du retour L-O versus 7^{ème} jour du retour L-O

6h 18h	6h	18h

Les huit profils du 7^{ème} jour du retour L-O ont émis plus de 20 cercaires. A l'exception de l'intensité de la plage d'émission, aucun des paramètres de description n'est significativement différent entre le profil du 3^{ème} jour du retour de L-O et le profil du 7^{ème} jour du retour L-O. L'intensité de la plage du 7^{ème} jour du retour L-O est significativement plus élevée que celle du 3^{ème} jour du retour L-O (respectivement 86,6% et 67,8%). Même si la majorité de l'émission cercarienne du 7^{ème} jour du retour L-O est diurne, le pourcentage moyen de cercaires nocturnes reste élevé (5,7%) comparé au pourcentage classique observé chez le chronotype diurne (~1-2%).

7^{ème} jour du retour L-O versus 8^{ème} jour du retour L-O

Les huit profils du 8^{ème} jour du retour L-O ont émis plus de 20 cercaires. Aucun des paramètres de description n'est significativement différent entre le profil du 3^{ème} jour du retour de L-O et le 7^{ème} jour du retour L-O. Même si la majorité de l'émission cercarienne du 7^{ème} jour du retour L-O est diurne, le pourcentage moyen de cercaires nocturnes reste élevé (15,2%) comparé au pourcentage classique observé chez le chronotype diurne (~1-2%).

I.2.2.1.3. Discussion et conclusion

Les jours 1 et 2 ainsi que le 1^{er} jour de lumière continue (L-L) représentent le chronotype classique de *S. mansoni.* Le changement de photopériode s'étant opéré au milieu de la journée (L-L à 18h) après le pic, les 12 premières heures correspondent à une émission classique. De plus aucune émission significative n'a été observée durant les douze heures suivantes du 1^{er} jour de lumière continue. Les

2^{ème} et 3^{ème} jours de lumière continue marquent un arrêt brusque dans l'émission des cercaires puisqu'aucun profil ne dépasse les six cercaires. Cet arrêt d'émission est d'autant plus impressionnant que l'on passe d'un nombre total moyen de cercaires de 753 (Jour 1, jour 2 et 1^{er} jour L-L) à 2 (2^{ème} jour et 3^{ème} jour de L-L).

C'est à partir du 7^{ème} jour de lumière continue qu'un changement de comportement est observé. Quatre individus vont rester sous la barre des 20 cercaires avec un nombre total moyen de 5 cercaires jusqu'au dernier jour de lumière continue (13^{ème} jour de L-L). Les deux individus restants vont émettre plus de 20 cercaires pendant les 7^{ème} jour, 8^{ème} jour, 12^{ème} jour et 13^{ème} jour de lumière continue avec un nombre total moyen de cercaires de 600 (mollusque n°2) et 107 (mollusque n°6). En plus du nombre moyen de cercaires émises, les deux individus se distinguent par la désynchronisation de leur émission cercarienne. Même si des cercaires ont été émises, aucune période de libre cours n'a pu être mise en évidence.

Le 1^{er} jour de retour à la photopériode équilibrée s'opère avec le retour de l'obscurité à 18h. Pour les deux mollusques qui ont émis plus de 20 cercaires, la majorité de l'émission est nocturne s'opérant une heure après le début du retour de la nuit. Après douze heures d'obscurité, le 2^{ème} jour du retour de la photopériode équilibrée, tous les mollusques émettent de nouveau plus de 20 cercaires avec un pic diurne classique à 12-13h et une explosion du nombre total de cercaires émises (1940 cercaires en moyenne). Le pourcentage de cercaires nocturnes et la plage d'émission sont significativement plus grands que ceux observés au début de l'expérience (p<0,01). Une émission plus longue avec plus de cercaires nocturnes illustre une réadaptation à la photopériode équilibrée. En effet, au 8^{ème} jour du retour de la photopériode équilibrée, aucun des paramètres de description ne sont significativement différents avec les Jour 1, Jour 2 et le 1^{er} jour de lumière continue (p>0,01).

L'absence d'émission cercarienne ou la présence d'une émission erratique en lumière continue, couplées à un retour immédiat à la normale dès le recommencement d'une alternance jour/nuit sont des observations en faveur d'un rythme de nature exogène.

En conclusion, en présence de lumière continue le rythme d'émission des cercaires n'est pas maintenu. Il n'y a donc pas d'évidence de rythme circadien. Cette expérience montre aussi que la lumière seule n'est pas suffisante pour déclencher une émission rythmée et qu'il faut une alternance jour/nuit. La variation impressionnante du nombre de cercaires observées sous les différentes photopériodes nous interroge sur le phénomène au niveau intra-mollusque.

I.2.2.1.4. Expérience d'histologie

Si l'analyse de l'expérience de lumière continue est faite d'un point de vue production cercarienne, l'arrêt brusque de l'émission pendant 12 jours de lumière continue et l'explosion de l'émission cercarienne au 2^{ème} jour du retour de la photopériode équilibrée nous interroge sur le devenir des cercaires pendant ce laps de temps. Bien qu'important, le nombre de cercaires émises le 2^{ème} jour du retour L-O ne correspond pas à l'addition des douze jours d'absence d'émission. Pour comprendre où sont passées les cercaires non-émises, deux hypothèses sont envisagées. La première est que les cercaires sont sorties des sporocystes mais sont en attente des conditions propices de photopériode pour sortir du mollusque. La deuxième hypothèse est que les cercaires sont soit retenues soit en attente à l'intérieur des sporocystes.

Pour répondre à cette question, une étude histologique a été réalisée sur des *B. glabrata* infestés avec le chronotype diurne de *S. mansoni* sous deux conditions expérimentales différentes ; soit après 13 jours de photopériode équilibrée (L-O 12-12) soit après 13 jours de lumière continue (L-L 12-12). Les coupes sont réalisées sur l'hépatopancréas et l'ovotestis car c'est dans ces zones que se concentrent

les parasites. La coloration utilisée est l'Hématoxyline Eosine Safran (HES) ; elle met en évidence les noyaux en violet (hématoxyline), les cytoplasmes en rose (éosine) et les fibres de collagène en jaune (Safran).

I.2.2.1.5. Résultats histologie après 13 jours de photopériode équilibrée

Après 13 jours de photopériode équilibrée quelques cellules hôtes sont observées (Figure_28_A et B). Il y a beaucoup plus d'embryons cercariens que de cercaires matures (Figure_28_C et D). Cela s'explique par le fait que, toutes les 24h, les cercaires matures sont émises et que la cercariogenèse suit son cours pour les remplacer.

<u>Figure 28 :</u> Coupe histologique d'hépatopancréas de *B. glabrata* infesté avec le chronotype diurne de *S. mansoni* (Oman) après 13 jours de photopériode équilibrée (L-O) A) Coupe histologique avec coloration HES, image d'origine. B) Coupe histologique avec mise en évidence des cellules de l'hôte en orange. C) Coupe histologique avec mise en évidence des embryons cercariens en turquoise. D) Coupe histologique avec mise en évidence des cercaires matures en bleu foncé. Abréviations : C : Cercaria (cercaire), CE : Cercarial Embryo (embryon cercarien), HI : Hemocyte Invasion (invasion hémocytaire), L : Lumen (lumière), LL : Lobular Liver (lobule digestif).

I.2.2.1.6. Résultats histologie après 13 jours de lumière continue

Après 13 jours de lumière continue, très peu de cellules hôtes sont observées (Figure_29_A et B). On peut aussi voir quelques embryons cercariens (Figure_29_C). Toutefois, la majorité du tissu est rempli par des cercaires matures (Figure_29_D). Ces cercaires sont contenues à l'intérieur des sporocystes (espaces blancs autours des cercaires). C'est donc l'hypothèse des cercaires attendant à l'intérieur des sporocystes qui est validée. De plus le ratio de cercaires matures et d'embryons cercariens illustre un arrêt ou un très fort ralentissement de la cercariogenèse qui explique pourquoi après le retour de la

photopériode équilibrée, le nombre de cercaires observées n'est pas l'addition des 12 jours d'arrêt d'émission.

<u>Figure 29</u>: <u>Coupe histologique d'hépatopancréas de *B. glabrata* infesté avec le chronotype diurne de *S. mansoni* (Oman) après 13 jours de lumière continue A) Coupe histologique avec coloration HES, image d'origine B) Coupe histologique avec mise en évidence des cellules de l'hôte en orange C) Coupe histologique avec mise en évidence des cellules D) Coupe histologique avec mise en évidence des cercaires matures en bleu foncé. Abréviations : C : Cercaria (cercaire), CE : Cercarial Embryo (embryon cercarien), LL : Lobular Liver (lobule digestif), T : Tail (queue de la cercaire) et TP : Tunica propria (tégument du mollusque).</u>

I.2.2.1.7. Discussion expérience lumière continue et histologie

Les observations des coupes histologiques apportent un éclaircissement supplémentaire sur les résultats de l'expérience de lumière continue. Pour la majorité des individus, l'émission des cercaires cesse avec la lumière continue. Les observations histologiques montrent que les cercaires matures s'accumulent à l'intérieur des sporocystes et que la cercariogenèse est arrêtée.

Au 2^{ème} jour du retour de la photopériode équilibrée, il y a une explosion du nombre de cercaires émises allant de 856 à 3755 cercaires (Tableau_20). Il est intéressant de noter que le plus grand nombre de cercaires a été émis par l'individu n°6 qui pourtant a émis des cercaires en période de lumière continue (Tableau_21).

<u>Tableau 21 :</u> Corrélation entre la taille des mollusques et la production cercarienne du jour 1 et 2 de la photopériode équilibrée, du 1^{er} jour de la lumière continue et des 2^{ème} jour et 3^{ème} jour de la photopériode équilibrée après 15 jours de lumière continue

Mollusque	Taille des mollusques au début de l'expérience de lumière continue (mm)	Production cercarienne au jour 1 de la photopériode équilibrée (L-O)	Production cercarienne au jour 2 de la photopériode équilibrée (L-O)	Production cercarienne au 1er jour de lumière continue (L-L)	Production cercarienne au 2 ^{ème} jour du retour de la photopériode équilibrée (L-O)	Production cercarienne au 3 ^{ème} jour du retour de la photopériode équilibrée (L-O)
1	10,20	1036	986	1313	2409	26
2	10,20	1589	901	804	1463	161
3	12,15	274	464	680	856	59
4	13,00	575	775	835		
5	9,30	476	477	671		
6	9,50	546	474	678	3755	324
8	9,35				2132	37
9	12,30				1027	36
Coefficient d	e corrélation	-0,28	0,10	-0,02	-0,78	-0,44

Il n'y a pas de corrélation évidente entre la taille du mollusque et le nombre de cercaires émises pour les jours 1 et 2 de la photopériode équilibrée (L-O), ni pour le 1^{er} jour de la lumière continue (L-L) dont les douze premières heures correspondent à une émission classique. Par contre, il existe une corrélation négative entre la taille des mollusques et le nombre de cercaires émises les 2^{ème} et 3^{ème} jours de photopériode équilibrée après 15 jours de lumière continue (Figure_30 et Tableau_21).

<u>Figure 30</u>: Corrélation entre la taille des mollusques et la production cercarienne aux 2ème et 3ème jours du retour de la photopériode équilibrée. En abscisse la taille des mollusques et en ordonnée le nombre de cercaires. Les coefficients de corrélation sont respectivement de -0,78 pour le 2^{ème} jour du retour de la photopériode équilibrée et de -0,44 pour le 3^{ème} jour du retour de la photopériode équilibrée. Les points rouges indiquent le mollusque n°2 et les points verts le mollusque n°6.

En période de photopériode classique L-O, la production cercarienne dépend de plusieurs facteurs, dont la taille du mollusque, la charge parasitaire, la capacité de développement du parasite et la permissivité de l'hôte. Dans notre cas, la charge parasitaire n'entre pas en compte car toutes les infestations sont faites avec un seul miracidium. Si la corrélation entre taille du mollusque et production cercarienne a été prouvée chez *S. mansoni* (Porto Rico) chez *B. glabrata* (Niemann & Lewis, 1990) il n'y pas de corrélation évidente dans cette expérience (Tableau_21).

Les observations histologiques ont montré un arrêt de la cercariogenèse et une accumulation des cercaires matures dans les sporocystes. Nous pouvons émettre l'hypothèse que plus le mollusque est grand plus les sporocystes pleins de cercaires ont de la place dans les tissus les uns par rapport aux autres, et donc peuvent tenir plus longtemps sans saturer les tissus mollusques. Nous pouvons alors penser que, de par l'encombrement intrasporocyste, la cercariogenèse est complètement arrêtée, et que le sporocyste plein reste dans un état de statu quo Figure_31.

<u>Figure 31</u>: Schéma de l'hypothèse du devenir des cercaires en lumière continue dans les mollusques de grande taille

A l'inverse, dans les petits mollusques, la saturation limite des tissus arrive plus rapidement et oblige une sortie massive de cercaires. Nous pouvons alors penser que, dans ce cas, la cercariogenèse est très fortement ralentie mais pas totalement arrêtée (Figure_32). Les cercaires émises sont lentement remplacées, ce qui explique la succession de jours avec et sans émissions significatives pour les mollusques 2 et 6 (les plus petits du groupe).

<u>Figure 32</u>: Schéma de l'hypothèse du devenir des cercaires en lumière continue dans les mollusques de petite taille

Cette hypothèse reste valable même si le mollusque n°2 (10,20 mm), plus grand que le mollusque n°6 (9,50 mm), émet plus de cercaires. Lors des premiers jours de l'expérience en photopériode équilibrée (L-O), le mollusque n° 2 a émis en moyenne deux fois plus de cercaires que le mollusque n° 6. On peut donc dire que le mollusque n° 6, plus petit, pourrait avoir une concentration parasitaire moins forte et donc émettre moins de cercaires ce qui signifierait que la différence observée n'est pas uniquement due à la taille. Dans cette expérience, seule la taille en début d'expérience a été mesurée. L'évolution de la taille des mollusques et donc de la capacité de croissance de l'hôte dépend de sa réponse à la parasitose. Deux mollusques de même taille, peuvent avoir une réponse différente à la présence du parasite qui peut provoquer une différence de croissance. Cela pourrait notamment expliquer la différence de comportement entre le mollusque n°1 qui a toujours émis moins de 20 cercaires en lumière continue et le mollusque n°2 avec lequel il partageait la même taille en début et fin d'expérience, et aussi réaliser l'expérience des coupes histologiques avec des mollusques de tailles différentes. En effet, la taille du mollusque pour la coupe histologique en lumière continue mesurait 13,55mm, ce qui fait partie des tailles les plus grandes.

Indépendamment du rythme de l'émission des cercaires, il existe un rythme de la production cercarienne (nombre de cercaires) ainsi qu'un rythme de développement des cercaires (abondance relative entre les stades embryonnaires et les stades cercaires en fin de maturation) (Théron, 1982). D'un point de vue histologique, on peut interpréter les résultats en lumière continue par le fait que l'arrêt de l'alternance jour/nuit induit un arrêt de synchronisme dans le développement des cercaires. Sans repère temporel, le renouvellement de génération de cercaires s'arrête. L'agent de ce renouvellement est inconnu. Il peut soit être un stock initial de cellules germinales présentes dans le

sporocyste qui entrerait en maturation de façon échelonnée, soit être une production rythmique de cellules germinales générées à la fin de chaque cycle de maturation (génération). Dans les deux cas, la lumière continue induit leur arrêt de maturation. En parallèle, les générations de cercaires déjà en cours de maturation continuent leur développement jusqu'au stade mature. Il se crée alors l'accumulation de cercaires matures dans les sporocystes observés après 13 jours de lumière continue. Pour les parasites présents dans les plus petits mollusques, cette accumulation peut se transformer en encombrement physique du sporocyste qui, faute de place, voit les cercaires les plus matures sortir. Cette sortie des cercaires peut, soit être un processus issu du sporocyste qui va réguler son encombrement, soit un processus des cercaires qui perçoivent leur densité intra-sporocyste, soit plus simplement une pression physique qui fait sortir les cercaires.

I.2.2.2. Chronotype nocturne (expérience d'obscurité continue)

I.2.2.2.1. Protocole obscurité continue

L'expérience de chronobiologie en obscurité continue a été effectuée sur une période de 20 jours et réalisée sur 6 *Biomphalaria pfeifferi* infestés par le chronotype nocturne de *S. mansoni*. Ces jours se divisent en trois phases d'expérimentation. Les jours 1 et 2 représentent les conditions classiques, avec une photopériode équilibrée L-O 12-12 ; la lumière s'allumant à 6h du matin et s'éteignant à 18h le soir. A partir du jour 3, la lumière reste éteinte à 6h du matin. Le jour 3 correspond au 1^{er} jour d'obscurité continue et le jour 14 au 12^{ème} et dernier jour d'obscurité continue O-O 12-12. A partir du jour 15 et jusqu'à la fin de l'expérimentation, la lumière est rallumée à 6h pour un retour de la photopériode équilibrée L-O 12-12 identique aux conditions classiques.

I.2.2.2.2. Expérience d'obscurité continue

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_33 et le Tableau_22 pour la partie obscurité continue ainsi que dans la Figure_34 et le Tableau_23 pour la partie retour de la photopériode équilibrée. Pour cette expérience, le paramètre du nombre total de cercaires émises n'est pas pris en compte, mais reste présent dans les données. Pour les jours d'obscurité continue (O-O), le pourcentage de cercaires nocturnes correspondra au pourcentage de cercaires émises durant les douze dernières heures de la journée, c'est-à-dire pendant la nuit subjective.

<u>Figure_33</u>: Histogramme de l'expérience de chronobiologie d'Obscurité continue pour le chronotype nocturne (1/2), phase obscurité continue. L'expérimentation voit se succéder trois conditions : Photopériode équilibrée L-O 12-12 (jours 1 et 2), obscurité continue (1er au 12ème jour) et le retour à la photopériode équilibrée en figure 32 (1er au 6ème jour). L'obscurité continue commence à 6h. En blanc, période de lumière (indiquée de 6h à 18h) ; en gris, période d'obscurité (indiquée de 18h à 6h).

Tableau 22 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites du chronotype nocturne de S. mansoni de l'expérience d'obscurité continue (1/2)

						N Varia	Moyenne ± E	S uelles					
Paramètres	Jour 1	Jour 2	1 ^{er} jour de O-O	1 ^{er} jour de O-O	2 ^{ème} Jour de O-O	3 ^{ème} Jour de O-O	3ème Jour de O-O	7 ^{ème} jour de O-O	7 ^{ème} jour de O-O	8 ^{ème} Jour de O-O	8 ^{ème} Jour de O-O	12 ^{ème} Jour de O-O	12 ^{ème} Jour de O-O
Effectif	6/6	5/5	4/6	2/6	6/6	3/5	2/5	3/6	3/6	4/5	1/5	2/4	2/4
Photopériode	L-0	L-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
Nombre de pics	1 1	1 1		1 1									
Heure du pic	19-20h 18-19h à 22-23h	19-20h 18-19h à 19-20h		20-21h (am) à 22- 23h (pm)	3-4h (am) à 23-24h (pm)	18-19h (pm) à 1- 2h (pm)			19-20h (pm) à 23- 24h (pm)		18-19h (am)		19-20h (am) à 18- 19h (pm)
Plage d'émission (h)	4,3 ± 0,4 3 à 5	4,2 ± 0,4 3 à 5		2,5 ± 0,7 2 à 3	3,5 ± 0,4 2 à 4	4,3 ± 1,1 3 à 6			2,7 ± 0,8 2 à 4		4		2 ± 1,4 1 à 3
Intensité de la plage (%)	91,9 ± 1,6 <i>89,1 à 98,8</i>	97,8 ± 0,5 <i>96,2 à 98,7</i>		39,5 ± 11,7 <i>31,3 à 47,7</i>	50,8ª ± 10,8 <i>26,8 à 86,6</i>	48,4 ± 11,6 <i>34,8 à 66,7</i>			28,7 ± 12,2 16,0 à 48,3		55		33,2 ± 30,8 <i>11,4 à 55</i>
Asymétrie	+0,6 ± 0,5 -1,3 à +1,7	-0,4 ± 0,5 -1,8 à +0 ,4		+2 (N=1)	+1,2 ± 0,4 (N=5) 0 à +1,8	+0,3 ± 0,9 -0,9 à +1,5			-2 (N=1)		+0,2		+0,2 (N=1)
Aplatissement	-0,3 ± 1,5 (N=5) -3,1 à +3,2	-1,5 ± 1,9 (N=4) -4,0 à +3,3		(N=0)	+0,9 ± 2,1 (N=4) -4,4 à +3,3	-1 ± 0,4 (N=2) -1,5 à -0,6			4 (N=1)		-4,9		-4,9 (N=1)
Cercaires la nuit (%)	97,1 ± 1,8 <i>91,3 à 100</i>	100 <i>100</i>		61,0 ± 31,6 <i>38,6 à 83,3</i>	54,9 ± 12,2 <i>19,7 à 99,5</i>	71,1 ± 12,4 <i>51,5 à 82,6</i>			60 ± 6,3 51 à 69		5		56,0 ± 10,4 <i>48,6 à 63,3</i>
Nombre total de cercaires	63,3 ± 5,5 <i>46 à 80</i>	84,0 ± 15 <i>52 à 122</i>	10,8 ± 3,7 3 à 17	46,0 ± 2,8 <i>44 à 48</i>	123 ± 55,1 <i>34 à 340</i>	56 ± 20,7 <i>33 à 89</i>	13 ± 8,5 7 à 19	11 ± 6,5 1 à 19	58,3 ± 24,2 <i>29 à 96</i>	8,5 ± 4,1 <i>3 à 19</i>	20	9 ± 2,8 7 à 11	47,5 ± 17,7 35 à 60

ES : Ecart-standard ; L-O : Lumière-Obscurité (12-12) ; O-L : Obscurité-Lumière (12-12)

Tests Wilcoxon Mann Whitney significatifs (*p*-value<0,01) pour les effectifs supérieurs à 4 individus : Comparaison avec le jour précédent

<u>Figure 34 :</u> **Histogramme de l'expérience de chronobiologie d'Obscurité continue pour le chronotype nocturne** (2/2), phase retour à la photopériode équilibrée. L'expérimentation voit se succéder trois conditions : Photopériode équilibrée L-O 12-12 en figure 31 (jours 1 et 2), obscurité continue en figure 31 (1^{er} au 12^{ème} jour) et le retour à la photopériode équilibrée (1^{er} au 6^{ème} jour). Le retour à la photopériode continue se fait avec le retour de la lumière à 6h. En blanc, période de lumière (indiquée de 6h à 18h) ; en gris, période d'obscurité (indiquée de 18h à 6h).

Tableau 23 : Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites du chronotype nocturne de *S. mansoni* de l'expérience d'obscurité continue (2/2)

	Moyenne ± ES Variations individuelles					
Paramètres	1 ^{er} jour du retour	1 ^{er} jour du retour	5 ^{ème} jour du retour	5 ^{ème} jour du retour	6 ^{ème} jour du retour	6 ^{ème} jour du retour
	L-0	L-0	L-0	L-O	L-0	L-0
Effectif	2/4	2/4	3/4	1/4	1/4	3/4
Photopériode	L-O	L-0	L-0	L-0	L-O	L-O
Nombre de pics	1 1			1	1	
Heure du pic	19-20h			19-20h	18-19h	
Plage d'émission (h)	4			4	4	
Intensité de la plage (%)	62,1 ± 16,1 50,7 à 73,5			95,8	89,2	
Asymétrie	+0,5 ± 1,2 -0,3 à +1,4			+0,4	-0,1	
Aplatissement	0 ± 2,2 -1,6 à +1,5			-3,9	-5,2	
Cercaires la nuit (%)	65,1 ± 20,3 <i>50,7 à 79,44</i>			91,7	89,2	
Nombre total de cercaires	52,5 ± 26,2 34 à 71	15,0 ± 1,4 14 à 16	8,3 ± 2,9 7 à 13	24	37	4,0 ± 1,2 2 à 5

ES : Ecart-standard ; L-O : Lumière-Obscurité (12-12)

Chacun des paramètres d'un jour a été comparé avec le même paramètre du jour précédent et les résultats sont présentés ci-dessous.

Jour 1 versus Jour 2

6h 18h	6h 18h

Aucun des paramètres de description n'est significativement différent entre le profil du jour 1 et le profil du jour 2 (p > 0,01). Ces profils ont les caractéristiques du chronotype nocturne avec la présence d'un seul pic à 19-20h et une plage d'environ 4h avec une intensité moyenne de la plage supérieure à 90%. Ils partagent aussi un coefficient d'asymétrie modéré (positif ou négatif) ainsi qu'une émission nocturne supérieure à 97%. Le nombre total de cercaires émises est en moyenne de 73.

Jour 2 versus 1^{er} jour d'obscurité continue

Le régime d'obscurité continue débute dès le commencement de la 1^{ère} journée d'obscurité continue, avec la lumière laissée éteinte à 6h. Trois comportements se distinguent parmi les six profils observés. Quatre profils sur six ont émis moins de 20 cercaires. Un profil issu du mollusque n°2 a eu son émission la plus élevée 14 heures après son pic du jour précédent. Le dernier profil issu du mollusque n°3 a eu son émission la plus élevée 27 heures après son pic du jour précédent. Pour les deux profils qui ont émis plus de 20 cercaires, l'intensité de la plage principale d'émission a baissé à 39,5% contre les 97,8% du jour 2 de la photopériode équilibrée. Le pourcentage moyen de cercaires émises dans la nuit subjective est descendu à 61% contre les 100% du jour 2 de la photopériode équilibrée.

1^{er} jour d'obscurité continue *versus* 2^{ème} jour d'obscurité continue

18h 18h	18h 18h

Après 24h d'obscurité continue, les 6 profils ont émis plus de 20 cercaires. La plage principale moyenne d'émission et le pourcentage de cercaires émises pendant la période de nuit subjective sont significativement plus faibles que ceux du jour 2 de la photopériode équilibrée (w = 30, p = 0,004 et W = 30, p = 0,006). Il n'y a pas une heure consensus pour l'émission la plus haute entre les six profils.

Le profil issu du mollusque n°2 a eu son émission la plus élevée 35h après son émission la plus élevée du 1^{er} jour d'obscurité. Le profil issu du mollusque n°3 a eu son émission la plus élevée 22h après son émission la plus élevée du 1^{er} jour d'obscurité.

2^{ème} jour d'obscurité continue versus 3^{ème} jour d'obscurité continue

18h 18h	18h 18h

Deux profils sur les 5 observés le 3^{ème} jour d'obscurité continue ont émis moins de 20 cercaires. Parmi les trois profils qui ont émis plus de 20 cercaires, on retrouve ceux issus des mollusques n°2 et n°3. Le profil issu du mollusque n°2 a eu son émission la plus élevée 23 heures après son émission la plus élevée du 2^{ème} jour d'obscurité continue. Le profil issu du mollusque n°3 a eu son émission la plus élevée 22 heures après son pic du jour précédent.

Le troisième profil qui a émis plus de 20 cercaires est issu du mollusque n°9 qui a été intégré à l'expérimentation pour remplacer un mollusque décédé. Il n'y a pas de donnée de comptage pour cet individu avant le 3^{ème} jour d'obscurité continue.

Pour ces trois profils qui ont émis plus de 20 cercaires, l'intensité de la plage principale d'émission reste faible par rapport à celle du jour 2 de la photopériode équilibrée mais équivalente à l'intensité moyenne des jours en obscurité continue. Cette observation est aussi valable pour le nombre moyen de cercaires émises en nuit subjective.

3^{ème} jour d'obscurité continue versus 7^{ème} jour d'obscurité continue

18h 18h	18h 18h

A partir du 7^{ème} jour d'obscurité, tous les individus mollusques ont été remplacés par des nouveaux. Aucune période de libre cours n'a pu être mise en évidence pour les individus décédés.

Au 7^{ème} jour d'obscurité continue, trois profils sur six ont émis moins de 20 cercaires. Les trois profils restants sont issus des individus mollusques n°12, 13 et 14. Pour ces trois profils, l'intensité moyenne de la plage d'émission est la plus faible depuis le début de l'expérimentation, avec 28,7%. La majorité de l'émission se fait pendant la nuit subjective, avec 60% de cercaires.

7^{ème} jour d'obscurité continue *versus* 8^{ème} jour d'obscurité continue

18h 18h	18h 18h

Au 8^{ème} jour d'obscurité continue, quatre profils sur cinq ont émis moins de 20 cercaires. Le profil restant est issu du mollusque n°13. Le profil issu du mollusque n°13 a eu son émission la plus élevée 11 heures après son émission la plus élevée du 7^{ème} jour d'obscurité continue. La majorité de son émission s'est faite pendant le jour subjectif (5% de cercaires émises en nuit subjective).

8^{ème} jour d'obscurité continue versus 12^{ème} jour d'obscurité continue

18h 18h	18h 18h

Au 12^{ème} jour d'obscurité continue, deux profils sur les quatre observés ont émis moins de 20 cercaires. Les deux profils restants sont issus des mollusques n°12 et 13. Il n'y a pas de consensus dans l'heure de l'émission la plus élevée. L'intensité moyenne de la plage d'émission principale reste faible, avec 33,2%.

12^{ème} jour d'obscurité continue versus 1^{er} jour du retour L-O

Le retour de l'alternance lumière-obscurité débute avec la lumière à 6h. Les deux comportements distinctifs observés lors du 12^{ème} jour d'obscurité continue restent inchangés au 1^{er} jour du retour de la photopériode équilibrée (L-O). Les mêmes 2 individus ont des profils avec moins de 20 cercaires. Les mollusques n°12 et n°13 ont émis plus de 20 cercaires. Une émission cercarienne conséquente a eu lieu à 6h du matin dès le retour de la lumière. Toutefois, elle ne peut pas être apparentée à un pic mais plutôt à une réponse au retour de la lumière puisque le chronotype est nocturne et que le pic classique a lieu à 19-20h le même jour. Si le pic a lieu à la bonne heure pour les deux profils, il faut cependant

noter que l'intensité et le pourcentage de cercaires nocturnes sont plus faibles que ceux des jours 1 et jour2 de photopériode équilibrée.

Du 2^{ème} jour du retour L-O jusqu'au 6^{ème} jour du retour L-O

A partir du 2^{ème} jour du retour L-O et jusqu'à la fin de l'expérience (6^{ème} jour retour L-O), le même comportement est observé. Trois mollusques sur quatre ont des profils d'émission cercarien avec moins de 20 cercaires durant cette période. Seuls les profils du mollusque n° 13 ont émis plus de 20 cercaires. Ces profils ont tous les caractéristiques d'un profil classique du chronotype nocturne, et illustrent ainsi un retour à la normale avec un seul pic à 18-19h ou 19-20h qui a une intensité aux alentours de 90% sur une plage de 4h avec un pourcentage de cercaires nocturnes supérieur à 90%.

I.2.2.2.3. Discussion et conclusion

Les jours 1 et 2 de photopériode équilibrée représentent le chronotype nocturne classique de *S. mansoni.* Le 1^{er} jour d'obscurité continue marque un arrêt de l'émission des cercaires pour la majorité des profils. Pour la minorité des profils qui émettent des cercaires, il y a une désynchronisation de leur émission cercarienne, avec d'un côté un profil qui fait son émission la plus élevée 14 heures après le pic de la veille et l'autre profil après 27 heures. Pour ces deux individus, les jours suivants, les écarts entre les émissions les plus élevées sont disparates (respectivement 35 heures et 22h heures). Contrairement à l'expérience faite avec le chronotype diurne, le suivi individuel des profils n'a pas pu être mené jusqu'à la fin de l'expérimentation à cause de la mortalité des mollusques. Toutefois pour les quelques jours de suivi individuels qui ont pu être faits, aucune période de libre cours n'a pu être mise en évidence.

De façon globale, la période d'obscurité continue voit l'alternance de deux comportements (plus ou moins de 20 cercaires) en intra et inter-individuel. Il est intéressant de voir que les profils qui émettent le plus de cercaires sont issus des mêmes mollusques. Contrairement au chronotype diurne, le nombre total de cercaires ne s'est pas révélé être un paramètre pertinent. Cela s'explique par le fait que la production cercarienne des *B. pfeifferi* est beaucoup moins élevée que celle des *B. glabrata* utilisés pour le chronotype diurne.

Le 1^{er} jour de retour à la photopériode équilibrée s'opère avec le retour de la lumière à 6h. Pour les mollusques qui ont émis des cercaires, le pic nocturne classique est immédiatement de retour. Il se fait en parallèle d'une émission conséquente qui a eu lieu à 6h et s'apparente à une réponse physique à la lumière. Ce phénomène physique de réponse à la photopériode opposée a aussi été observé avec le chronotype diurne (émission nocturne avec le retour de la nuit lors du 1^{er} jour du retour de la photopériode équilibrée).

Il est important de voir que la moitié des individus sont restés sous la barre des 20 cercaires malgré le retour de la photopériode équilibrée. Cela peut s'expliquer par le fait que plus de 12 jours d'obscurité continue sont éreintants pour les organismes et que les individus mollusques étaient sur une dynamique de mortalité. On est passé de 6 individus au début de l'expérimentation à 4 car tous les remplaçants étaient soit utilisés soit morts. Pour les cinq derniers jours de l'expérimentation seul un individu a émis plus de 20 cercaires avec un retour à un rythme d'émission classique.

La forte diminution de l'émission cercarienne ou d'une émission erratique en obscurité continue, couplée à un retour immédiat à la normale dès le recommencement d'une alternance jour/nuit sont des observations en faveur d'un rythme de nature exogène.

En conclusion, en présence d'obscurité continue, le rythme d'émission des cercaires n'est pas maintenu. Il n'y a donc pas d'évidence de rythme circadien. Cette expérience montre aussi que l'obscurité seule n'est pas suffisante pour déclencher une émission rythmée et qu'il faut une alternance jour/nuit.

I.3. Discussion

Pour déterminer si le rythme d'émission des cercaires était circadien, l'adaptabilité et la constance du rythme ont été étudiées. L'adaptabilité du rythme aux changements du zeitgeber a été testée par l'inversion de photopériode. Nos résultats chez le chronotype diurne, que ce soit par 24h de nuit ou 24h de jour, montrent une adaptation directe et totale. Ces résultats sont en accord avec ceux obtenus par Luttermoser (1955), Asch (1972) et Glaudel & Edges (1973) avec la souche Porto Rico. Malheureusement, le comptage des cercaires dans ces études s'est fait toutes les 6 (Asch, 1972; Glaudel and Etges, 1973) ou 12 heures (Luttermoser, 1955) et ne peut pas être finement comparé avec les nôtres, notamment sur la question de l'émission subsidiaire aux transitions jour/nuit. Le chronotype nocturne, bien que la majorité de l'émission s'adapte dès 12 heures de nuit, passe par une étape intermédiaire bimodale précédée suivant les cas d'une chute de l'émission cercarienne (émission inférieure à 20 cercaires). L'émission à l'ancienne heure de pic pourrait s'apparenter à une perturbation causée par les 12 heures de décalage qui induiraient une sensibilité accrue à la transition jour/nuit. Toutefois, le pic nocturne se produisant à la transition jour/nuit complexifie la compréhension de cette émission secondaire. Pour peut-être éliminer ce pic subsidiaire à la transition jour/nuit, une expérience de chronobiologie avec un décalage plus léger pourrait être faite. Cette émission chez le chronotype nocturne, dès 12h de nuit supplémentaire lors du 1^{er} jour de photopériode inversée pourrait être en faveur d'un rythme plutôt exogène. Peu importe le chronotype, le rythme d'émission suit le changement de photopériode.

La constance du rythme d'émission a été testée avec la photopériode où le pic a lieu, c'est-à-dire lumière continue pour le chronotype diurne et obscurité continue pour le chronotype nocturne. Nos résultats chez le chronotype diurne montrent, qu'à la lumière continue, il y a un arrêt de l'émission cercarienne puis une émission disparate pour quelques individus, sans la possibilité de mettre en évidence une période de libre cours (période régulière entre deux pics comprise entre 20 et 28 heures). Ces résultats sont en accord avec les travaux de Valle, Pellegrino & Alvarenga (1973) (lumière et obscurité continues) et Williams, Wessels & Gilbertson (1984) (lumière continue) faits sur la souche Porto Rico. Toutefois, ces deux études ne peuvent pas être finement comparées aux nôtres, avec, d'un côté, seulement 20% des cercaires comptées toutes les 12h et de l'autre 3 aliquots de 1µL toutes les deux heures, respectivement. Ceci est d'autant plus vrai pour les questionnements portant sur la variabilité des comportements individuels. Tout comme le chronotype diurne, le chronotype nocturne en condition d'obscurité continue, a soit une émission inférieure à 20 cercaires soit une émission disparate sans période de libre cours. Dans les deux chronotypes, le 1^{er} jour du retour de la photopériode équilibrée voit un pic d'émission dans l'élément inverse (un pic nocturne pour le chronotype diurne et un pic diurne pour le chronotype nocturne) suivi d'un retour à la normale dès le lendemain. Ce pic dans l'élément inverse (nuit pour le chronotype diurne et jour pour le chronotype nocturne) est une réponse « physique » suite au brusque changement après au moins 10 jours de photopériode continue. Ces résultats montrent l'importance de l'alternance jour/nuit pour déclencher

une émission rythmique des cercaires. Les expériences de Nojima & Sato (1982) sur la souche Porto Rico ont montré qu'il fallait entre 10 et 14 heures d'obscurité pour maintenir un rythme d'émission normale et qu'en dessous de 8 heures d'obscurité le rythme était perdu. Au-dessus de 16 heures d'obscurité, un « pic » supplémentaire apparait dès le retour de la lumière en plus du pic classique (Nojima & Sato, 1982). Ce « pic » qui ne dure en fait qu'une heure, ressemble au « pic » subsidiaire observé chez le chronotype nocturne lors de nos expériences d'inversion et d'obscurité continue. L'hypothèse qui peut résulter de ces observations est qu'une modification importante de la photopériode (comme une inversion de 12h ou une obscurité trop prolongée) induit un stress chez le parasite qui va émettre des cercaires mécaniquement dès le retour de l'élément opposé (nuit pour le chronotype diurne et jour pour le chronotype nocturne) sur une période très courte pour ensuite faire son pic normal. Cette hypothèse peut être appuyée par nos résultats d'histologie qui ont montré qu'en condition de lumière continue il y a une accumulation des cercaires matures. La modification importante de la photopériode pourrait impliquer une accumulation de cercaires matures dont une petite partie serait expulsée dès le retour de l'élément opposé (nuit pour le chronotype diurne et jour pour le chronotype nocturne). Cette expulsion pourrait être soit une réaction purement physique soit une réaction du parasite afin de faire de la place dans les sporocystes pour retrouver un rythme normal dans l'émission mais aussi dans le développement cercarien.

L'utilisation des *B. glabrata* pour l'expérience de lumière continue a mis en exergue l'arrêt de production et de différenciation cercarienne en photopériode continue. Les travaux de Théron en 1982 ont montré l'existence d'un rythme mensuel de la production des cercaires et des indices d'abondance des différentes formes de maturation cercarienne. Cette accumulation des cercaires matures à l'intérieur des sporocystes nous permet de déduire que l'alternance jour/nuit est le zeitgeber principal qui contrôle ces deux autres rythmes ; et par extension que l'utilisation de la photopériode continue, impactant négativement la production et le développement cercarien, a peut-être perturbé l'observation du rythme journalier d'émission des cercaires. Cette déduction amène à penser qu'une expérience de photopériode continue est une condition trop stricte pour pouvoir mettre en évidence un rythme en photopériode continue est l'expérience la plus simple mais pas forcément la plus adaptée en fonction de la nature fonctionnelle du rythme et du modèle biologique. C'est le cas pour *Ostreococcus tauri* dont la régulation du cycle cellulaire sous le contrôle d'une horloge circadienne est dépendant de la lumière (Moulager, Monnier et al., 2007) ; de ce fait, une expérience d'obscurité continue ne permet pas de révéler le rythme circadien du cycle cellulaire chez *Ostreococcus tauri*.

Une expérience alternative qui pourrait mettre en évidence un rythme circadien chez *S. mansoni* serait l'utilisation de lumière pulsée. Aschoff explique que, lors d'une expérience de condition continue, « l'arrêt soudain ou l'amortissement du rythme observé n'est pas une preuve convaincante contre le rythme endogène ou pour le rythme exogène » (Aschoff, 1960).

Nos résultats des expériences de photopériode continue peuvent s'expliquer par deux modèles de régulation des rythmes des horloges endogènes. Il y a d'un côté le modèle du sablier (ou « Hourglass ») (Queiroz 1979 ; Rensing, Meyer-Grahle & Ruoff, 2001) qui nécessite un unique signal du zeitgeber pour enclencher un cycle. Si le signal n'est pas renouvelé alors le rythme disparait. En d'autres termes, si l'horloge endogène est symbolisée par un sablier et le rythme par le sable qui s'écoule, le zeitgeber enclenche le retournement du sablier qui entraîne l'écoulement du sable jusqu'à épuisement (Figure_35_A). S'il n'y pas de nouveau signal du zeitgeber pour retourner le sablier, le sable ne s'écoule pas et il n'y a plus de rythme (Figure_35_B). Un exemple moins trivial issu de Queiroz (1979) prend comme signal de zeitgeber « le passage jour/nuit qui déclenche le changement de concentration d'un

Partie I

effecteur X qui doit atteindre un seuil permettant le démarrage des mécanismes conduisant à l'induction » du rythme.

Figure 35 : Schéma du modèle du sablier (« hourlgass »). A) Cas où le zeitgeber est présent. B) Cas où le zeitgeber est absent.

Le second modèle est celui de la coïncidence externe, théorisée par Bünning (*in* Queiroz 1979). Deux composantes doivent être intégrées par l'organisme pour que le rythme se déclenche. Une information externe issue du zeitgeber et une information interne provenant de l'horloge circadienne (signal moléculaire à un moment spécifique de la journée). Le rythme s'obtient lorsque les deux signaux coïncident. C'est le cas de la floraison chez *Arabidopsis thaliana* où l'expression du gène FKF1 (Flavin-Binding, Kelch Repeat, F-Box) contrôlée par l'horloge circadienne doit coïncider avec l'expression de GI (Gigantea) pour enclencher une cascade de régulation qui entraînera la floraison (Sawa, Nusinow et al., 2007). Cette coïncidence des deux expressions se déroule lors des jours longs (Figure_36).

<u>Figure 36</u>: Schéma du modèle de la coïncidence externe à travers l'exemple simplifié de la floraison d'*Arabidopsis thaliana*. A) Cas où les journées ont une période lumineuse courte. B) Cas où les journées ont une période lumineuse longue. Pour chaque diagramme, il y a en rouge l'expression du gène sous contrôle de l'horloge circadienne (FKF1) et en bleu l'expression du gène qui n'est pas régulée par l'horloge circadienne (GI). Les abscisses représentent les 24h d'une journée et les ordonnées le taux d'expression des gènes. La partie blanche correspond à la période de lumière et la partie grisée correspond à la période d'obscurité.

Pour discriminer les deux modèles et la nature endogène ou exogène du rythme d'émission des cercaires, il faudrait réaliser une expérience lumière pulsée (une à deux heures). Pour cela il faudrait tester, en parallèle, plusieurs groupes de mollusques parasités où chaque groupe recevrait un seul pulse de lumière à une heure différente de la journée. Si le rythme d'émission des cercaires s'enclenche après chaque pulse peu importe le groupe (6h après le début de la lumière pour le chronotype diurne et 12h pour le nocturne), alors le rythme est circadien et suit le modèle du sablier. Si le rythme d'émission se déclenche quand le pulse a été émis à une heure précise et pas dans les autres, alors le rythme est circadien et suit le modèle de la coïncidence externe. Si le rythme n'a pas été déclenché dans un seul des groupes, alors le rythme est exogène.

Une complexité supplémentaire à la compréhension du rythme d'émission des cercaires est que l'on ignore l'échelle du rythme observé. C'est-à-dire si le rythme d'émission des cercaires provient de la population des cercaires, d'un rythme propre au sporocyste ou d'une action conjointe des deux. La position d'attente des cercaires matures à l'intérieur des sporocystes en condition de photopériode continue ne permet pas d'exclure une des hypothèses. Ceci se rajoute au fait, que l'on ignore le mécanisme exact de sortie des cercaires des sporocystes. Chez *S. mansoni*, le sporocyste a un pore de sortie « birth pore » à une de ses extrémités qui s'ouvre et se ferme activement (Théron, 2015). Les observations histologiques issues de Théron (2015) ont pu mettre en évidence des cercaires qui sortent par ce pore ; ce qui serait en faveur soit d'un contrôle du sporocyste soit d'une action conjointe sporocyste-cercaire. Toutefois, on peut mettre en balance ces observations avec le fait que ce pore n'a pas été observé chez *S. bovis*, *S. haematobium* et *S. intercalatum* qui appartiennent au groupe des

œufs avec éperon terminal (Théron, 2015). L'hypothèse explicitée par cet auteur est que les cercaires de ces trois espèces sortiraient en déchirant la paroi des sporocystes allant dans le sens d'une action de la cercaire ou d'une action conjointe cercaires-sporocystes.

Pour conclure, cette première partie a permis de poser les bases du phénotype du rythme d'émission des cercaires pour les deux chronotypes de S. mansoni Oman (Figure_37). En condition de photopériode équilibrée (L-O), les deux chronotypes partagent une émission unimodale, où ni l'espèce de l'hôte mollusque, ni le sexe du parasite n'ont d'influence sur le rythme. Ces observations minimisent le rôle que pourrait avoir l'hôte en tant que zeitgeber et vont plutôt dans le sens d'une perception directe de l'environnement par le parasite. Les résultats de chronobiologie pour les deux chronotypes n'ont pas mis en évidence une nature circadienne pour le rythme d'émission des cercaires. Un rythme circadien repose sur l'entraînabilité du rythme aux variations de zeitgeber, la constance du rythme et la compensation du rythme face à des changements de température. Si nos résultats montrent que les deux chronotypes s'adaptent à la variation du zeitgeber (directement ou indirectement), il n'y a pas de constance du rythme en condition continue (L-L ou O-O). Toutefois, le rythme est retrouvé dès le retour de la photopériode équilibrée. La dernière caractéristique qui pourrait trancher est la compensation du rythme face à la température mais elle n'a pas été testée dans cette thèse. Pour répondre à ce point, il faudrait observer l'influence de la température sur le rythme. C'est-à-dire regarder si le rythme d'émission des cercaires reste inchangé quand le mollusque est par exemple à 20°C, 26°C (condition contrôle) ou 30°C en photopériode équilibrée (L-O). D'autres expériences de chronobiologie peuvent être faites pour aiguiller la compréhension moléculaire du phénomène en nous interrogeant sur la perception du signal lumineux par le parasite. Dans l'environnement, les parasites ont accès à l'ensemble du spectre lumineux, or un photorécepteur capte une gamme précise du spectre lumineux. Pour déterminer quelle est la nature des photorécepteurs impliqués, il serait intéressant de remplacer la lumière blanche par une lumière colorée (rouge, bleue ou verte). Les photorécepteurs qui absorbent la lumière dans le rouge (type phytochrome) peuvent déjà être éliminés de l'expérimentation ; en effet, l'utilisation de la lumière pour nous éclairer lors des transferts de mollusques dans l'obscurité ne perturbe pas le rythme d'émission des cercaires.

Figure 37 : Résumé des principaux résultats de la première partie.

Partie II : Déterminants moléculaires du rythme d'émission des cercaires

chez Schistosoma mansoni

Le caractère gonochorique des schistosomes permet de réaliser diverses expériences de croisements intra et interspécifiques. Ainsi, le déterminisme génétique du rythme d'émission des cercaires chez les schistosomes, et plus particulièrement chez *S. mansoni*, (Théron & Combes, 1983 ; Théron & Combes, 1988 ; Théron, 1989) a pu être démontré. Cette deuxième partie de thèse a pour objectif d'identifier les déterminants moléculaires du rythme d'émission des cercaires. Cet objectif se réalisera autour de trois approches complémentaires qui sont la génétique, l'épigénétique et la transcriptomique. L'intérêt de cette transversalité peut se comprendre au travers d'un exemple musical (Figure_38).

<u>Figure 38 :</u> Parallèle entre la partition musicale et l'approche moléculaire tri-disciplinaire (Génétique, Epigénétique et Transcriptomique). Explication ci-dessous.

Si un morceau de musique symbolise le phénotype, la partition musicale représente l'ADN où sont présentes toutes les informations nécessaires pour jouer le morceau de musique. Les portées représentent l'ADN double brin et les notes de musique les gènes. Toutes les annotations autour des portées qui indiquent les nuances à apporter à l'interprétation musicale, sans pour autant modifier l'ordre des notes, correspondent aux marques épigénétiques (méthylation de l'ADN dans l'exemple). Enfin, la transcriptomique est représentée par la mélodie jouée, qui dépend de la façon dont la partition est retranscrite, en prenant en compte ou non les annotations. Pour comprendre les subtilités de la musique, il est donc essentiel de ne pas uniquement s'intéresser aux notes (gènes) mais aussi de prendre en compte toutes les nuances de jeu apportées par les annotations (épigénétique) et les choix qui sont faits lors de l'interprétation de la partition (transcriptomique).

Le premier chapitre se concentrera sur l'aspect génétique avec la technique de linkage mapping pour identifier les gènes responsables du phénotype du rythme d'émission cercarienne.

Le deuxième chapitre portera sur l'étude des marqueurs moléculaires rythmiques avec une approche épigénétique et une approche transcriptomique partageant la même expérience d'échantillonnage biologique. L'épigénétique sera abordée au travers de la technique de ChIPmentation et la transcriptomique au travers de la technique de RNA-seq. Dans les deux cas, le but sera de déterminer s'il y a un rythme d'acétylation et méthylation des histones/expression des gènes pour mettre en lumière d'autres potentiels gènes candidats. Enfin, l'approche transcriptomique permettra de faire le lien entre les différentes approches moléculaires et d'affiner la liste des gènes candidats.

II.1. : Linkage mapping

De façon générale, la génétique étudie la transmission de caractères héréditaires. Ces caractères héréditaires reposent sur l'ADN et plus particulièrement sur les gènes. L'étude d'un phénotype à travers le prisme génétique consiste donc à s'intéresser aux gènes et à la façon dont ils sont transmis aux générations suivantes. L'ADN est regroupé en chromosomes et chaque chromosome est présent en deux exemplaires, chaque exemplaire provenant de l'un des deux parents dans le cas d'une reproduction sexuée (méiose). Cette paire de chromosomes contient les mêmes gènes mais pas forcément les mêmes versions, on parle alors d'allèles pour les différentes versions d'un même gène présentes sur des chromosomes homologues. Le génotype est alors la combinaison des deux allèles d'un même gène dont l'expression va produire un phénotype. Pour un gène donné, un individu qui porte deux allèles identiques est appelé homozygote. Si les deux allèles sont différents, l'individu est alors hétérozygote. L'expression du génotype dépend de l'interaction entre les allèles. On parle d'allèle dominant si la présence d'un seul exemplaire est suffisante pour s'exprimer et il est à l'inverse récessif si la présence des deux exemplaires est nécessaire à son expression.

Le rythme d'émission des cercaires est un caractère héritable chez les schistosomes. Il a été prouvé chez *S. mansoni* au travers de croisements intraspécifiques et interspécifiques.

- Lors du croisement intraspécifique entre *S. mansoni* Guadeloupe (chronotype précoce) et *S. mansoni* Brésil (chronotype tardif) (Théron & Combes, 1983), les progénitures présentent un profil d'émission bimodal équilibré entre les pics précoce et tardif parentaux, ce qui illustre la codominance des gènes responsables du rythme de l'émission des cercaires pour les deux chronotypes.
- Le croisement intraspécifique entre les chronotypes précoce et tardif de S. *mansoni* Guadeloupe (Théron & Combes, 1988), donne des progénitures avec un profil unimodal au

milieu des deux pics parentaux, ce qui indique que les deux chronotypes sont dus à une variation allélique du même gène. Par contre, l'utilisation du chronotype tardif d'une autre souche (Brésil) a montré que les deux chronotypes sont dus à deux gènes différents (Théron & Combes, 1988).

- Le croisement interspécifique entre *S. mansoni* Guadeloupe précoce et *S. rodhaini* (nocturne) (Théron, 1989) donne des progénitures avec un profil bimodal des deux pics parentaux, dont le pic le plus important correspond au chronotype précoce.
- A l'inverse, le croisement interspécifique entre *S. mansoni* Guadeloupe tardif et *S. rodhaini* (nocturne) (Théron, 1989) donne des progénitures avec un profil bimodal des deux pics parentaux, dont le pic le plus important correspond au chronotype nocturne. Ceci suggère que le rythme d'émission des cercaires est polygénique (Théron, 1989).

Ce déterminisme génétique du rythme d'émission des cercaires, couplé à la facilité de croiser les espèces grâce à leur caractère gonochorique ainsi que la bonne qualité d'assemblage du génome de *S. mansoni* version 7 sont les conditions idéales pour faire du linkage mapping (Anderson, LoVerde et al., 2018). Le linkage mapping, et plus particulièrement la technique de QTL (Quantitative Trait Loci) mapping, est le fait d'expliquer la variation phénotypique d'une population par sa variation génotypique (Broman & Sen, 2009). Cette technique permet donc de détecter des QTLs qui contribuent à la variation d'un trait quantitatif (phénotype). L'identification de ces loci se fait grâce à des expériences de deux croisements consécutifs (rétrocroisement ou croisement test). Le rétrocroisement ou « back-cross » est le croisement entre un individu progéniture F1 et un de ses parents F0 (Figure_39_A), il permet de détecter les QTL pour un caractère récessif. Le croisement test ou « intercross » est le croisement entre deux progénitures F1, il permet de détecter les QTLs pour un caractère dominant (Figure_39_B).

<u>Figure 39</u>: Schéma de la ségrégation de chromosomes autosomiques dans le cas d'un rétrocroisement et d'un croisement test. (Figure modifiée à partir de Broman & Sen (2009)). A et B sont deux souches aux phénotypes distincts dont les chromosomes sont respectivement représentés en bleu et rouge A) Rétrocroisement : Le phénotype étudié est récessif chez la souche A. B) Croisement test : Le phénotype étudié est dominant chez la souche A et/ou la souche B.

Dans les deux cas, le croisement initial, dit F0, s'opère entre deux individus homozygotes aux phénotypes distincts (ex : les chronotypes diurne et nocturne) (Figure_39). Ce croisement F0 donne une génération F1 hétérozygote qui a un génotype à 50% maternel et à 50% paternel. Le troisième croisement donnera soit une génération Backcross BC, soit une génération F2 (en fonction du type de croisement) où les individus de cette troisième génération présentent une mosaïque de variation de pourcentage des génotypes parentaux due à la recombinaison lors de la méiose (Figure_39). La détection des QTLs se fait sur cette troisième génération (F2 ou BC) au travers d'une régression statistique entre la variation génotypique de chaque individu F2 et la variation de leur phénotype. Plus le nombre d'individus F2 est grand, meilleure est la précision de la détection.

L'objectif de ce chapitre est de déterminer quels sont les loci impliqués dans le rythme d'émission des cercaires chez *Schistosoma mansoni*. Le rythme d'émission des cercaires étant un caractère codominant entre les différents chronotypes, deux croisements tests ont été réalisés pour répondre à cet objectif : un croisement test (intercross) intraspécifique entre les deux chronotypes (diurne et nocturne) de *S. mansoni* et un autre croisement test (intercross) interspécifique entre le chronotype diurne de *S. mansoni* Oman et un schistosome nocturne *S. rodhaini*. L'intérêt de ce second croisement est de voir si les loci impliqués dans le rythme d'émission du chronotype nocturne de *S. mansoni* sont les mêmes que ceux de *S. rodhaini*.

Le premier point de ce chapitre sera consacré à une présentation de la méthode utilisée, le second point présentera les résultats du QTL mapping pour le croisement intraspécifique et le troisième point pour le croisement interspécifique.

II.1.1. Méthode du linkage QTL mapping

La méthode de QTL mapping se divise en quatre grandes étapes, les croisements et les phénotypages, la préparation moléculaire des échantillons, le génotypage et enfin la détection des QTLs. Ces expériences sont issues d'une collaboration avec l'équipe de Tim Anderson du Texas Biomedical Research Institute. Les croisements et le phénotypage sont réalisés à Perpignan tandis que la préparation moléculaire et le génotypage sont faits à San Antonio. L'analyse QTL est faite entre les deux sites.

Les croisements consistent à générer, phénotyper et échantillonner les générations F0, F1 et F2. La production des parasites a été détaillée dans les méthodes de l'entretien du cycle ; ils sont obtenus à partir d'une infestation mono-miracidiale de *B. pfeifferi*. Chaque mollusque contient le génome d'un seul individu parasite. Pour la génération F0 et F1, une étape supplémentaire de sexage a été faite pour faire les croisements (cf 4. Méthode du sexage des parasites au stade cercaire). Le phénotype utilisé dans nos expériences est la moyenne du pourcentage de cercaires nocturnes (trait quantitatif). Le phénotypage se fait au travers d'une expérience de chronobiologie de trois jours consécutifs en photopériode équilibrée (L-O 12-12) (cf 3. Méthode de chronobiologie de l'émission cercarienne). Afin d'éviter tout biais sexuel dans les résultats, les croisements et leurs réciproques sont réalisés à chaque expérience.

La préparation moléculaire se répartit entre l'extraction de l'ADN, la préparation des banques et le séquençage. Pour le cas du croisement intraspécifique, seul les exomes (partie exprimée des gènes) générés à partir de vers adultes conservés dans l'alcool à 90° ont été utilisés pour générer les banques (Whole Exome Sequencing). Pour le croisement interspécifique, tout le génome, généré à partir de cercaires plongées dans l'azote liquide et conservées à -80°C, a été utilisé (Whole Genome Sequencing). Pour éviter un effet de lot (batch effect), l'extraction d'ADN des échantillons a été réalisée dans un ordre aléatoire généré par ARTS (Automated Randomization of multiple Traits for Study design) (Maienschein-Cline, Lei et al., 2014).

Le génotypage consiste dans un premier temps à faire des alignements contre la version 7 du génome de *S. mansoni*. On crée un fichier VCF (Variant Call file) qui répertorie les variations des séquences génétiques, et plus particulièrement dans notre cas les SNPs (Single Nucleotide Polymorphism). Grâce à VCFtool, on sélectionne les SNPs qui ont une ségrégation de type mendélienne c'est-à-dire une répartition dans la F2 de ~25% homozygotes pour le parent F0 diurne (DD), ~25% homozygotes pour le parent F0 nocturne (NN) et ~50% hétérozygotes (DN et ND). On crée ensuite un fichier génotype (csvs) qui contient tous les individus F2, avec, pour chaque marqueur sélectionné, la position du marqueur et le génotype correspondant (DD, NN ou ND/DN) ou NA quand il est impossible de statuer. Pour l'analyse QTL, seuls les échantillons dont le génotype contient moins de 20% de données manquantes (NA) sont utilisés.

La détection des QTLs se fait avec la version 1.47-9 de R/qtl (Broman & Sen 2009). Elle se divise en plusieurs étapes, la vérification de la distribution des phénotypes, la vérification des marqueurs génotypiques, l'analyse QTL et la détermination de la transmission allélique (Figure 40). La vérification des phénotypes consiste à tester la normalité des échantillons pour déterminer quel modèle utiliser. La vérification des marqueurs génotypiques consiste à repérer les potentielles erreurs. L'analyse QTL consiste à scanner la présence d'un ou de plusieurs QTLs en déterminant un LOD score QTL (logarithm of odds). Pour cela, un seuil de détection avec un risque de 5% est déterminé avec 1000 permutations. Si plusieurs QTLs sont détectés (supérieur au seuil), il faut alors déterminer le type d'interaction qu'il y a entre eux (épistasie ou effet additif). Enfin, la détermination de la transmission allélique sert à comprendre comment les allèles parentaux F0 diurne et nocturne interagissent (dominance, récessivité). Cela se fait en regardant la répartition des génotypes (DD, ND/DN et NN) en fonction de la distribution du phénotype pour le marqueur QTL qui a le LOD score le plus haut. Si les répartitions des génotypes sont significativement différentes entre les trois groupes (DD, ND/DN et NN), les allèles parentaux D et N sont co-dominants. Si un groupe homozygote (ex : NN) est significativement différent des deux autres (DD et DN/ND) et que ces derniers ne sont pas significativement différents entre eux, alors l'allèle N est récessif et l'allèle D est dominant.

<u>Figure 40 : Schéma de l'analyse QTL avec les fonctions utilisées dans R/qtl.</u> Détail des fonctions (Broman & Sen 2009) : *PlotPheno* affiche le graphique des phénotypes et *shapiro.test* évalue la normalité des données. *Geno.table* crée une table des génotypes pour chaque marqueur et permet de déterminer si la répartition des marqueurs suit une ségrégation mendélienne. *Est.rf* estime la fraction de recombinaison par paire entre les marqueurs. *checkAllele* identifie les marqueurs avec des allèles potentiellement inversés. *calc.errorlod* calcule les LOD score des erreurs de génotypage. *Calc.genoprob* calcule les probabilités des génotypes conditionnels. *Scanone* analyse le génome avec un modèle de QTL unique. *Scantwo* fait une analyse bidimensionnelle du génome avec un modèle à deux QTLs et permet d'identifier la nature des interactions quand plusieurs QTLs sont détectés. *Makeqt1* crée un objet QTL pour utiliser la fonction *fitqt1* qui fait une analyse multidimensionnelle du génome. *Fitqt1* détermine ainsi le pourcentage de variation phénotypique expliquée par le QTL. *Effectplot* trace les moyennes phénotypiques de groupes de génotype définis par un marqueur QTL. *plotPXG* a la même fonction que *Effectplot* mais génère à la place un dot plot.

II.1.2. Croisement intraspécifique : *Schistosoma mansoni* diurne X *Schistosoma mansoni* nocturne

Les croisements *Schistosoma mansoni* diurne avec *S. mansoni* nocturne ont été réalisés avant cette thèse. Les croisements et le phénotypage ont été réalisés par Hélène Moné et Gabriel Mouahid. La préparation moléculaire des échantillons jusqu'à l'analyse a été réalisée par l'équipe de Tim Anderson (Texas Biomedical Research Institute). Les premières analyses QTL ont été réalisées en utilisant la version 5 du génome de *S. mansoni* (Protasio, Tsai et al., 2012). Une nouvelle analyse QTL a été réalisée par Frédéric Chevalier (Texas Biomedical Research Institute) avec la version 7 du génome de *S. mansoni* (GCA_000237925.3). Ce sont les résultats de cette nouvelle analyse et plus particulièrement la nouvelle liste de gènes qui vont être présentés ci-dessous.

II.1.2.1. Protocole

Les parasites F0 utilisés pour ce croisement sont les chronotypes diurne et nocturne de *S. mansoni* (Oman). Les hôtes intermédiaires mollusques sont des *Biomphalaria pfeifferi* originaires de la région du Dhofar à Oman. Les croisements réciproques se nomment croisement A (F0 mâle *S. mansoni* diurne X F0 femelle *S. mansoni* nocturne) et croisement B (F0 mâle *S. mansoni* nocturne X F0 femelle *S. mansoni* nocturne). Pour cette nouvelle analyse, les individus F2 des croisements A et B ont été utilisés en une seule analyse QTL.

II.1.2.2. Présentation des phénotypes

II.1.2.2.1. Les phénotypes FO

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_41 et le Tableau_24. Pour *S. mansoni* diurne, 18 profils ont émis plus de 20 cercaires et 15 profils ont émis plus de 20 cercaires pour le chronotype nocturne.

<u>Figure_41</u> : Chronobiologie des chronotypes diurne (orange) et nocturne (violet) de *S. mansoni* pour l'expérience de QTL mapping. Chaque histogramme a, en ordonnées, la moyenne du pourcentage des cercaires émises ± écart standard. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit. L'arrière-plan gris correspond à l'obscurité. La ligne noire marque le début de l'obscurité à 18h.

	Moyenne ± ES Variations individuelles		Test de Wilcoxon- Mann-Whitney
Parametres	S. mansoni diurne	S. mansoni nocturne	
	(FO)	(FO)	
Effectif	18	15	
Photopériode	L-0	L-0	
Nombre de pics	1	1	
	1	1	
Heure du pic	11-12h	19-20h	¥
	10-11h à 12-13h	19-20h	
Plage d'émission (h)	4,4 ± 0,2	4,2 ± 0,2	W =148, <i>p</i> = 0,6
	3 à 7	3 à 6	
Intensité de la plage (%)	95,1 ± 0,8	95,4 ± 1,1	W =106, <i>p</i> = 0,3
	88,2 à 99,1	86,6 à 100	
Asymétrie	+0,3 ± 0,2	+1 ± 0,3	W = 77, <i>p</i> = 0,04
	-1,5 à +1,9	-1,6 à +2,1	
Aplatissement	-0,9 ± 0,6 (N=17)	+2 ± 0,7 (N=12)	W = 35, <i>p</i> = 0,002
	-5,9 à +3,8	-4,1 à +4,5	
Cercaires la nuit (%)	$0,2 \pm 0,1$	97,2 ± 1	W =0, p = 3,2e-07
	0,0 à 1,6	87,7 à 100	
Nombre total de	202,1 ± 28,9	144 ± 20,8	W =177, <i>p</i> = 0,1
cercaires	55 à 497	75 à 328	

<u>Tableau 24 :</u> Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites diurne et nocturne de *S. mansoni* pour l'expérience de QTL mapping

Le chronotype diurne a une émission unimodale dont l'heure du pic moyen est à 11-12h. La plage horaire moyenne d'émission est d'environ 4h avec une intensité de 95%. La plage d'émission moyenne est symétrique avec une distribution aplatie. Il n'y a quasiment pas d'émission de cercaires nocturne.

Le chronotype nocturne a une émission unimodale dont l'heure du pic moyen est à 19-20h. La plage horaire moyenne d'émission est d'environ 4h avec une intensité de 95%. La plage d'émission moyenne a une asymétrie sur la droite avec une distribution centrée. L'émission nocturne est majoritaire avec en moyenne 97,2% des cercaires émises la nuit.

Les comparaisons sont présentées dans le Tableau_24. Les profils moyens des deux chronotypes se différencient par l'heure du pic (11-12h pour les diurnes et 19-20h pour les nocturnes), le pourcentage de cercaires émises la nuit (0% pour les diurnes et 98% pour les nocturnes ; p<0,01) et le coefficient d'aplatissement (-0,9 pour les diurnes et +2 pour les nocturnes ; p<0,01). La plage d'émission du chronotype nocturne est plus centrée autour de l'heure du pic que le chronotype diurne. Les deux chronotypes partagent la présence d'un seul pic. De plus, les plages d'émission, l'intensité d'émission, leurs coefficients d'asymétrie et le nombre total de cercaires ne sont pas significativement différents entre les diurnes et les nocturnes (p>0,01).

II.1.2.2.2. Le croisement A (Figure_42)

Le croisement intraspécifique A est un croisement entre un mâle F0 *S. mansoni* diurne et une femelle F0 *S. mansoni* nocturne. La génération F1 issue de ce croisement a un profil bimodal, avec un pic principal vers 13-14h et un pic secondaire vers 19-20h. Le pourcentage de cercaires nocturne moyen est de 23,57%. La génération F2, issue du croisement entre un mâle F1 et une femelle F1, contient 113 individus. Le pourcentage de cercaires nocturne moyen est de 24,29% avec des valeurs individuelles allant de 0% à 87,99%. La répartition des profils de chronobiologie de la F2 est de 25,7% ressemblant à la F0 diurne (1ère ligne des F2 ; Figure_42), 13,3% ressemblant à la F0 nocturne (dernière ligne des

F2 ; Figure_42) et 61,1% hybride ou inclassable (les 2^{ème} et 3^{ème} lignes des F2 ; Figure_42). L'ensemble des profils F2 sont à retrouver en Annexe 3.

<u>Figure 42</u> : Chronobiologie du croisement A intraspécifique, avec F0 diurne (orange), F0 nocturne (violet) et une sélection d'individus F2 hybrides (vert).

Chaque histogramme a, en ordonnées, la moyenne du pourcentage des cercaires émises ± écart standard ; audessus de chacun des individus F2 est indiqué le pourcentage total des cercaires émises la nuit. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit. L'arrièreplan gris correspond à l'obscurité. La ligne noire marque le début de l'obscurité à 18h. Les individus F2 sont une sélection des divers pourcentages de cercaires nocturnes. Ils sont classés du plus faible pourcentage de cercaires nocturne au plus élevé. La première ligne des F2 représente une sélection d'individus proche du phénotype F0 diurne. Les 2^{ème} et 3^{ème} lignes représentent une sélection d'individus au phénotype hybride. La 4^{ème} ligne représente une sélection d'individus proches du phénotype F0 nocturne.

II.1.2.2.3. Le croisement B (Figure_43)

Le croisement intraspécifique B est un croisement entre un mâle F0 *S. mansoni* nocturne et une femelle F0 *S. mansoni* diurne. La génération F1 issue de ce croisement a un profil bimodal, avec un pic principal vers 13-14h et un pic secondaire vers 18-19h. Le pourcentage de cercaires nocturne moyen est de 14,13%. La génération F2, issue du croisement entre un mâle et une femelle F1, contient 102 individus. Le pourcentage de cercaires nocturne moyen est de 26,36% avec des valeurs individuelles allant de 0% à 90,16%. La répartition des profils de chronobiologie de la F2 est de 24,5% ressemblant à la F0 diurne (1ère ligne des F2 ; Figure_43), 14,7% ressemblant à la F0 nocturne (dernière ligne des F2 ; Figure_43) et 60,8% hybride ou inclassable (les 2^{ème} et 3^{ème} lignes des F2 ; Figure_43). L'ensemble des profils F2 sont à retrouver en Annexe 3.

<u>Figure_43 :</u> Chronobiologie du croisement B intraspécifique, avec F0 diurne (orange), F0 nocturne (violet), F1 et une sélection d'individus F2 hybrides (vert).

Chaque histogramme a, en ordonnées, la moyenne du pourcentage des cercaires émises ± écart standard ; audessus de chacun des individus F2 est indiqué le pourcentage total des cercaires émises la nuit. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit. L'arrièreplan gris correspond à l'obscurité. La ligne noire marque le début de l'obscurité à 18h. Les individus F2 sont une sélection des divers pourcentages de cercaires nocturnes. Ils sont classés du plus faible pourcentage de cercaires nocturne au plus élevé. La première ligne des F2 représente une sélection d'individus proches du phénotype F0 diurne. Les 2ème et 3ème lignes représentent une sélection d'individus au phénotype hybride. La 4ème ligne représente une sélection d'individus proches du phénotype F0 nocturne.

Il n'y a pas de différence significative entre les profils d'émission des générations F1 des croisements intraspécifiques A et B. De plus, le pourcentage de cercaires nocturne moyen n'est pas significativement différent entre les générations F1 et F2 des deux croisements intraspécifiques (p> 0,01). Ces résultats sont en accord avec ceux de la première partie qui montraient que le sexe, et donc ici le sens du croisement, n'a pas d'influence sur le rythme d'émission des cercaires.

II.1.2.3. QTL mapping

Cette nouvelle analyse QTL a été réalisée en utilisant conjointement les individus F2 des croisements A et B. La préparation moléculaire des échantillons s'est faite en récupérant uniquement l'exome. Le phénotype utilisé est la moyenne du pourcentage de cercaires nocturne. Elle a été réalisée avec l'algorithme EM (Expectation Maximisation pour maximisation de l'espérance) de la fonction scanone du package R/qtl avec un seuil de détection à 5% déterminé avec 1000 permutations. Cette nouvelle analyse révèle 3 QTLs sur les chromosomes 1, 5 et 6 (Figure_44), c'est-à-dire les chromosomes qui ont un LOD score supérieur au seuil fixé à 5% (ligne pointillée).

<u>Figure 44 :</u> LOD score pour les croisements intraspécifiques de *Schistosoma mansoni* obtenu avec l'algorithme EM (Espérance-Maximisation) de la fonction scanone. En abscisse, les chromosomes, et en ordonnée les LOD scores. Les LOD score significatifs sont ceux qui sont supérieurs au seuil de 5% symbolisé par la ligne en pointillé bleue. Les chromosomes impairs sont grisés.

Ces 3 QTLs sont additifs et expliquent 28% de la variation phénotypique. La transmission allélique pour les QTLs sur les chromosomes 1, 5 et 6 est illustrée en Figure_45. Pour le QTL du chromosome 1, les trois génotypes sont significativement différents les uns des autres (p<0,01), indiquant que les allèles D (Diurne) et N (Nocturne) sont codominants. Pour les QTLs sur les chromosomes 5 et 6, la moyenne du pourcentage de cercaires nocturne n'est pas significativement différente entre les individus avec un génotype homozygote diurne (DD) et un génotype hétérozygote (ND/DN) (p>0,01). Seul le groupe homozygote nocturne (NN) a une moyenne de cercaires nocturne significativement plus élevée que les deux autres génotypes. Ceci indique que l'allèle N (nocturne) est récessif par rapport à l'allèle D (diurne). En effet, il faut deux allèles N pour que la moyenne de cercaires nocturne soit plus élevée.

<u>Figure 45</u>: Transmission allélique pour les QTLs identifiés pour le croisement intraspécifique entre les deux chronotypes de *Schistosoma mansoni*. En abscisse, les génotypes homozygotes diurnes (DD) en blanc, hétérozygotes (DN) en gris et homozygotes nocturne (NN) en noir. En ordonnée, le pourcentage des cercaires émises la nuit. Les lettres « a », « b » et « c » désignent les *p*-values significativement différentes. Ainsi, s'il y a « a, b et c » les trois génotypes sont significativement différents. S'il y a uniquement « a » et « b », alors un seul génotype est significativement différent des deux autres. Pour le chromosome 1, les trois génotypes sont significativement différent ses uns des autres (p<0,01). Pour les chromosomes 5 et 6, seul le génotype homozygote nocturne (NN) est significativement différent des deux autres génotypes (p<0,01). Les hétérozygotes DN regroupent les génotypes DN et ND.

II.1.2.4. Gènes candidats

Pour ces 3 QTLs, 462 gènes ont été identifiés dans le chromosome 1, 63 gènes dans le chromosome 5 et 169 gènes dans le chromosome 6 (liste des gènes en Annexe 4). Ces gènes ont été annotés dans la version WBPS16 du génome de *Schistosoma mansoni* (annotation GFF) (Howe, Bolt et al., 2016 ; Howe, Bolt et al., 2017). Pour compléter l'annotation officielle sur ces gènes, une annotation HHsearch a été réalisée (Le Clec'h, Chevalier et al., 2021). Elle est basée sur la génération de modèles Hidden Markov (HMM Hidden Markow model) à partir d'un alignement multiple des séquences et de la comparaison des modèles HMM pour reconnaître des protéines homologues (Steinegger, Meier et al., 2019).
Une première analyse basée sur les annotations génomiques et les résultats HHsearch a été réalisée pour faire une sélection subjective basée sur les gènes de l'horloge (rythme circadien), les gènes impliqués dans la phototransduction (détection de la photopériode) et les gènes impliqués dans l'acétylation et la méthylation des histones (pour trouver un lien avec les travaux en épigénétique).

Pour discerner les implications fonctionnelles et les gènes candidats, deux analyses d'enrichissement GO (Gene Ontology) et Kegg pathway ont été réalisées. L'enrichissement GO a été fait avec Blast2GO version 5.2 en utilisant le Fisher's Exact Test (p<0,05). L'analyse d'enrichissement Kegg pathway a été faite sur le serveur KAAS en utilisant le programme Blast avec la méthode SBH (Single-directional Best Hit).

II.1.2.4.1. Les gènes de l'horloge et le domaine Basic Helix-Loop-Helix

Parmi les 694 gènes QTLs, il n'y a aucun gène canonique de l'horloge. Toutefois, on retrouve 5 gènes qui présentent un domaine BHLH (Basic Helix-Loop-Helix) pour hélice-boucle-hélice basique. Ce domaine est présent dans les gènes canoniques de l'horloge comme CLOCK, BMAL1 et PER-1 et permet la liaison à l'ADN et plus particulièrement aux E-box (enhancer box) important dans leur rôle de facteur de transcription (Delauney & Laudet, 1998). Toutefois, l'annotation génomique de ces 5 gènes (Tableau_25) définit ce domaine comme étant de type Myc, où Myc est un facteur de transcription proto-oncogène qui recrute des histones acétyltransférases. Si l'on s'intéresse aux annotations HHsearch, on trouve une ARNT (Aryl hydrocarbon receptor nuclear translocator-like), le pendant non circadien de BALM1, mais aussi le facteur de transcription SREBP-1a (Sterol Regulatory Element-Binding Proteins 1) et le facteur de transcription HES-1 (hairy and enhancer of split-1). Chez la souris, l'expression du gène SREBP est sous le contrôle de l'horloge circadienne (Matsumoto, Ishihare et al., 2010). Enfin, HES-1 est impliqué dans la différenciation et la prolifération cellulaire dans l'embryogénèse. Ce dernier gène est un oscillateur moléculaire avec une période de 2h, dont sa propre protéine va inhiber son expression (Kageyama, Ohtsuka & Kobayashi, 2007).

Intórôt Chr		Identifiant Annotation		Annotation	
meret	chr.	(ID) du gène	GFF	HHsearch	
		Smp 122010		Myc proto-oncogene protein {Human	
Motif BHLH 1		Sub_125810	Myc-type, Basic Helix-Loop-Helix (BHLH) domain	(Homo sapiens) [TaxId: 9606]}	
		Smp_132800		Aryl hydrocarbon receptor nuclear	
	1			translocator-like	
	T			SREBP-1a {Human (Homo sapiens) [TaxId:	
		311p_019400		9606]}	
		Smp_132790		Transcription factor HES-1	
		Smp_343020		DNA-binding protein inhibitor ID-1	

|--|

Chr. : chromosome

II.1.2.4.2. Les rhodopsines et autres gènes impliqués dans la phototransduction

On retrouve aussi, comme gènes remarquables, une rhodopsine (Smp_146470) et 16 autres gènes rhodopsine-like (Tableau_26). La rhodopsine est un photorécepteur impliqué dans la phototransduction rétinienne (Chabre, 1998). La phototransduction est la conversion d'un signal lumineux en signal compréhensible par le système nerveux.

Intérêt	Chr.	Identifiant	Annotation	Annotation
		(ID) du gene	GFF	HHsearch
Rhodopsine	1	Smp_146470	NA	Rhodopsin
		Smp_180140		P2Y purinoceptor 1, Rubredoxin
		Smp_316850		C-C chemokine receptor type 2
		Smp_204580	G protein-	Neurotensin receptor type 1, Neurotensin
		Smp_118040	coupled	Chimera of Proteinase-activated receptor 1
		Smp_137320	receptor,	Srg
		Smp_027940	rhodopsin-like	ADENOSINE RECEPTOR A2A
		Smp_137310		7TM_GPCR_Srw
		Smp_137300		7TM_GPCR_Srw
Rhodopsine-	1	Smp_319310	NA	7TM_GPCR_Srab
like	1	Smp_178420	GPCR,	ADENOSINE RECEPTOR A2A
		Smp_132730	rhodopsin-like,	Neurotensin receptor type
			7TM	1, Endolysin, NEUROTENSIN RECEPTOR
		Smp_127310		Chimera of Proteinase-activated receptor 1
		Smp 140250	G protein-	Platelet-activating factor
		5111p_140250	coupled	receptor,Flavodoxin
		Smp_193610	receptor,	Lysozyme C (E.C.3.2.1.17)
		Smp_126730	rhodopsin-like	7tm_1
		Smp_007070		M3-mT4L, Tiotropium

Tableau 26 : Liste des gènes QTLs rhodospine et rhodospine_like

Chr. : chromosome

Un schéma de la transmission, de l'amplification et de la régulation du signal lors de la phototransduction avec la rhodopsine est présenté en Figure_46. Une cellule photoréceptrice rétinienne de type bâtonnet est composée d'un segment externe qui contient des disques, d'un segment interne qui contient le noyau et les mitochondries et enfin d'une terminaison synaptique. Les disques présents dans le cytoplasme du segment externe sont des éléments cellulaires contenant les photopigments (ici rhodopsine). C'est donc dans les disques que commence la phototransduction.

- De façon simplifiée, quand il fait nuit, les canaux GMPc (Guanine Monophosphate cyclique) dépendant des cellules photoréceptrices sont ouverts et laissent entrer dans le milieu cellulaire des ions Na+ et Ca²+. En parallèle, d'autres canaux laissent sortir des ions K+, ce qui entraîne un état dépolarisé de la cellule photoréceptrice. Cette dépolarisation de la cellule entraîne alors la libération de neurotransmetteur dans les synapses (glutamate).
- A la lumière, la rhodopsine (photorécepteur) est activée. La rhodopsine activée catalyse l'activation par le GTP de la transducine (protéine G). L'activation de cette protéine hétérotrimérique (TαGDP-Tβγ) entraîne la séparation des deux sous-unités, avec d'un côté TαGTP et de l'autre Tβγ. La forme active de la transducine (TαGTP) active l'enzyme phosphodiestérase qui hydrolyse les GMPc en 5'-GMP. La concentration en GMPc baisse dans la cellule photoréceptrice ce qui entraîne la fermeture des canaux ioniques GMPc dépendants. L'arrêt de l'entrée des ions Na+ et Ca²+ couplé à la sortie des ions K+ qui n'est pas perturbée, entraîne une hyperpolarisation de la cellule et ainsi un arrêt de la libération des neurotransmetteurs (glutamate). Cet arrêt de l'émission du neurotransmetteur depuis la cellule photoréceptrice est perçu comme un signal par les autres cellules.

<u>Figure 46</u> : Schéma de la phototransduction du signal dans les bâtonnets rétiniens. A) Une cellule photoréceptrice complète (bâtonnet rétinien) (figure issue du site https://lecerveau.mcgill.ca) B) Disques qui contiennent les photorécepteurs (Rhodopsine) et la membrane plasmique de la cellule photoréceptrice avec le détail de la transmission, de l'amplification et de la régulation du signal (figure modifiée à partir de Chabre (1998)). La membrane des disques est colorée en violet clair et la membrane cytoplasmique de la cellule photoréceptrice est colorée en violet foncé. Arr : arrestine ; Calmod: calmoduline ; RGS: GTPase activating protein ; GC: guanylyl cyclase ; GCAP: calciprotéine activatrice de la guanylyl cyclase ; PDE $\alpha\beta$: sous-unité catalytique de la phosphodiestérase ; P γ : sous-unité inhibitrice; Phos : phosducine ; Rh* : rhodopsine photoactivée ; R-K : rhodopsine kinase ; Rv : recoverine ; T α , T $\beta\gamma$: sous-unités de la transducine. **C)** Terminaison synaptique de la cellule photoréceptrice à l'obscurité et à la lumière.

La rhodopsine qui a été activée par la lumière est ensuite phosphorylée par une rhodopsine kinase (spécifique sérine/thréonine kinase), ce qui permet à l'arrestine de se fixer à la rhodopsine phosphorylée. Ce complexe rhodopsine-arrestine met un terme à toute nouvelle interaction entre la transducine et la rhodopsine.

- Avec le retour de la nuit, un guanylate cyclase va produire du GMPc, ce qui va entraîner une augmentation de la concentration en GMPc dans le cytoplasme et ainsi l'ouverture des canaux GMPc dépendant. Cette ouverture des canaux provoque une augmentation du Ca2+ cellulaire et la capture de la rhodopsine kinase par la recoverine. La recoverine est un inhibiteur de la rhodopsine kinase qui est calcium-dépendant.
- Lorsque la concentration de Ca2+ est basse (jour), la recoverine devient soluble et relâche la rhodopsine kinase qui va alors phosphoryler la rhodopsine. A concentration élevée de Ca2+ (obscurité), la recoverine est liée à la membrane du disque et à la rhodopsine kinase empêchant ainsi la phosphorylation de la rhodopsine. La rhodopsine phosphorylée couplée à l'arrestine est alors déphosphorylée par une protéine phosphatase 2A (PP2A) et séparée de l'arrestine. Dans cet état, la rhodopsine est de nouveau prête à être activée par la lumière et à recommencer un cycle de phototransduction. En parallèle du phénomène de déphosphorylation de la rhodopsine, la sous-unité Τβγ de la transducine est capturée par une

phosducine et la sous-unité T α GTP est hydrolysée pour devenir T α GDP et reformer la transducine hétérotrimérique inactive (T α GDP-T $\beta\gamma$) prête elle aussi à réenclencher la transduction du signal.

Parmi tous les acteurs de la phototransduction cités, on retrouve, dans les gènes QTL (Tableau_26 et Tableau_27) : la rhodopsine, la protéine G, la phosphodiestérase, la sérine/thréonine kinase, l'arrestine, la recoverine, la protéine phosphatase 2A (PP2A), la GTPase activating protein et la guanylyl cyclase.

Intérêt	Chr	Identifiant	Annotation	Annotation	
	C	(ID) du gène	GFF	HHsearch	
		Smn 132750	G-protein alpha subunit,	G-protein alpha subunit	
		5mp_152750	group Q	Galpha7	
	1			beta1-subunit of the signal-	
Protéine G	1	Smn 010220	G-protein, beta subunit	transducing G protein	
(Transducine)		5mp_010250		heterotrimer {Cow (<i>Bos</i>	
(Transducine)				<i>taurus</i>) [TaxId: 9913]}	
			Guanine nucleotide	G-protein alpha subunit	
	6	Smp_016630	binding protein (G-	Galpha7	
			protein), alpha subunit		
Phospho-		Smp 105040	Endonuclease/exonucle	2',5'-phosphodiesterase 12	
diestérase		5mp_105040	ase/phosphatase	(E.C.3.1.4,3.1.13.4)	
		Smn 210820	GPCR kinase	Beta-adrenergic receptor	
		51119_210020		kinase 1 (E.C.2.7.11.15)	
		Smn 068060	Protein kinase domain	Serine/threonine protein	
CDCD kinaca	1	5mp_000000	Trotein kinase domain	kinase TAO2 {Rat (<i>Rattus</i>	
sórino/				norvegicus) [TaxId: 10116]}	
thréonine		Smn 005190	Protein kinase domain	STE20-like serine/threonine-	
kinaso		51110_000100	Trotein kinase domain	protein kinase, SLK {Human	
(rhodosnine				(Homo sapiens) [TaxId: 9606]}	
(inouospine kinase)		Smn 009800	Protein kinase domain	Serine/threonine-protein	
Kindsey		5mp_005800		kinase Nek2 {Human (Homo	
				sapiens) [TaxId: 9606]}	
	5	Smp_158950	Protein kinase-like	SERINE/THREONINE-PROTEIN	
	5		domain superfamily	KINASE HASPIN (E.C.2.7.11.1)	
Arrestine	1	Smp_126080	Arrestin	Bovine arrestin-2 (full length)	
		Smp_158980	EF-hand domain	Recoverin {Cow (<i>Bos taurus</i>)	
				[TaxId: 9913]}	
	5			Frequenin (neuronal calcium	
	5	Smp_158990	EF-hand domain	sensor 1) {Baker's yeast	
Pecoverine				(Saccharomyces cerevisiae)	
et domaine				[TaxId: 4932]}	
		Smp_156180	EF-hand domain	DUF5580	
	6	Smn 136640	FE-hand domain	Grancalcin {Human (<i>Homo</i>	
		5mp_130040		sapiens) [TaxId: 9606]}	
		Smn 083740	FE-hand domain	Myosin Essential Chain {Bay	
	1			scallop (Aequipecten	
				irradians) [TaxId: 31199]}	

Tableau 27 : Liste des gènes QTLs en lien avec la phototransduction

		Smp 005220	EE hand domain	Calcium-dependent protein
		5111p_005250		kinase sk5 CLD {Soybean
				(Glycine max) [TaxId: 3847]}
		Smp_137410	EF-hand domain pair	M-CALPAIN LARGE AND
				SMALL SUBUNITS
		Sma 122670	EE hand domain	Myosin Essential Chain {Bay
		Smp_132670	EF-nand domain	scallop (Aequipecten
				irradians) [TaxId: 31199]}
anat (in a			Calcineurin-like	Protein phosphatase 2A
proteine	_	Smp_165490	phosphoesterase	catalytic subunit alpha
pnospna-	5		domain, ApaH type	isoform, PP2A-alpha {Human
tase ZA (PPZA)				(Homo sapiens) [TaxId: 9606]}
		Creater 00 4000	Rho GTPase-activating	Beta-chimaerin, C-terminal
		Smp_094890	protein domain	domain {Human (<i>Homo</i>
				sapiens) [TaxId: 9606]}
		Smp_028030	Rho GTPase-activating	SLIT-ROBO Rho GTPase-
			protein domain	activating protein 2
		Smp_180150	Rho GTPase-activating	Beta-chimaerin, C-terminal
077	1		protein domain	domain {Human (<i>Homo</i>
GIPase				sapiens) [TaxId: 9606]}
activating		Smp_180160	Rho GTPase-activating	Graf {Chicken (Gallus gallus)
protein			protein domain	[TaxId: 9031]}
		Smp_319130	FCH domain	SLIT-ROBO Rho GTPase-
				activating protein 2
		Smp_007210	Rab-GTPase-TBC	Rab GTPase-activating protein
			domain	1
	-	Smp_165530	Rho GTPase-activating	p50 RhoGAP domain {Human
	5		protein domain	(Homo sapiens) [TaxId: 9606]}
and a start of the		Creater 211220	Adenylyl cyclase class-	Soluble guanylyl cyclase alpha-
guanylyl		Smp_211230	3/4/guanylyl cyclase	1 subunit
cyclase		6 007470	Adenylyl cyclase class-	Soluble guanylyl cyclase alpha-
		Smp_097470	3/4/guanylyl cyclase	1 subunit
	1 1	Smp_067140	Small GTPase	RhoA {Human (<i>Homo sapiens</i>)
GTPAse				[TaxId: 9606]}
		Smp_025740	Small GTPase	RhoE (RND3) {Mouse (Mus
				musculus) [TaxId: 10090]}

Chr. : chromosome

II.1.2.4.3. Les gènes impliqués dans l'acétylation des histones

Un autre point non exhaustif sur les gènes QTLs du croisement intraspécifique est la présence de gènes qui codent pour les histones H2A, H3, H4, mais aussi des gènes qui codent pour des histones acétyl transférase (« writer ») et des histones désacétylases (« eraser ») (Tableau_28). La présence des « writer » (enzyme qui fait les modifications des queues d'histones) et d' « eraser » (enzyme qui enlève les modifications des queues d'histones) sont encourageantes pour l'implication de l'acétylation des histones dans le phénomène du rythme d'émission des cercaires.

Intárôt	Chr	Identifiant	Annotation	Annotation
Interet	Cnr.	(ID) du gène	GFF	HHsearch
		Smp_246990	Transcription factor CBF/NF-Y/archaeal histone domain	Histone H3.1, Histone H4, Histone
Histones	1	Smp_036220	Histone H2B	Histone H2B {Chicken (<i>Gallus gallus</i>), erythrocytes [TaxId: 9031]}
		Smp_124840	Zinc finger, UBR-type	Histone H3.2, Histone H4, Histone
		Smp_318950	Histone H3/CENP-A	Leishmania histone H3, Histone H4
		Smp_210630	Histone H2A	Histone H2A {Chicken (<i>Gallus gallus</i>), erythrocytes [TaxId: 9031]}
Histone acétylase	6	Smp_131320	Zinc finger, PHD-type	Probable histone acetyltransferase MYST1 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
Histone	1	Smp_005210	Histone deacetylase family	METASTASIS-ASSOCIATED PROTEIN MTA1, HISTONE DEACETYLASE
uesacetyiase	5	Smp_330000	Sin3 associated	HISTONE DEACETYLASE COMPLEX SUBUNIT SAP18

Tableau 28 : Liste des gènes QTLs en lien avec les histones et l'acétylation/	désacétylation des histone
---	----------------------------

Chr. : chromosome

II.1.2.4.4. Enrichissement GO : Processus biologiques

Les analyses d'enrichissement GO des gènes QTLs n'ont pas donné de résultats significatifs en utilisant la limite usuelle FDR < 0,05 (False Discovery Rate). Les résultats qui suivent ont été obtenus en utilisant la limite de p < 0,05.

On retrouve, parmi les processus biologiques mis en évidence par les analyses d'enrichissement GO, le rythme circadien, le sommeil, le transport de neurotransmetteur, la signalisation cellule à cellule et la maturation développementale (Figure 47). L'annotation GO « rythme circadien » ne correspond pas à un gène de l'horloge (clock) mais au gène Smp_105040 qui est décrit comme la nocturnine dans le génome de S. mansoni. La nocturnine contient un domaine Endonuclease/exonuclease/phosphatase qui est commun avec la phosphodiestérase. Ce gène est connu pour avoir une expression rythmique avec un pic nocturne et être régulé par les gènes de l'horloge (Green & Besharse, 1996). L'annotation GO « sommeil » correspond au gène Smp_345020, le gène quiver (QVR) chez la drosophile qui est impliqué dans la régulation positive des cycles veille/sommeil circadiens mais aussi dans la modulation de la transmission synaptique chimique et la régulation négative de potentiel membranaire (https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=2768718). L'annotation GO « signalisation cellule à cellule » correspond, entre autres, au gène Smp 126730, un récepteur 5HT-1 (5-hydroxytryptamine). Le récepteur 5HT-1 est en fait un récepteur sérotoninergique de type rhodopsine-like. Chez la forme adulte de S. mansoni, il a été montré que Smp_126730 est un des récepteurs responsables de l'effet moteur provoqué par la sérotonine qui est un puissant myoexcitateur (Patocha, Sharma et al. 2014). De plus, chez la forme sporocyste, il a été montré que les récepteurs 5HT sont importants dans la production de sporocystes filles (secondaires) (Boyle & Yoshino, 2005). Parmi les gènes qui portent l'annotation GO « maturation développementale », on retrouve le gène Smp_009630, un facteur de transcription putatif six/sine homeobox qui, chez la drosophile, est directement responsable de la formation de l'œil (Weasner, Salzer & Kumar, 2007).

<u>Figure 47</u> : Treemap des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes QTLs du croisement intraspécifique. Chaque couleur représente un grand ensemble de processus biologiques. Il y a, de gauche à droite : Régulation de la perméabilité membranaire, déacylation des macromolécules, transports des neurotransmetteurs, maturation du développement, signalisation cellule à cellule, réponse de l'immunité adaptative, déphosphorylation 5' polynucléotides, organisation de la membrane, adhésion cellule-substrat, mouvement des cils, régulation biologique, réponse à des stimulus, mort cellulaire programmée, signalisation, processus basé sur les microtubules, processus métabolique NADP, processus métabolique acétate, assimilation du sulfate, rythme circadien, communication cellulaire, mort cellulaire, organisation ou biogénèse des composants cellulaires et sommeil.

II.1.2.4.5. Kegg pathway

Les analyses Kegg pathway montrent que les gènes QTLs sont potentiellement impliqués dans 266 voies moléculaires différentes. Parmi toutes ces voies, cinq retiennent notre attention : le rythme circadien, l'entraînement circadien, la phototransduction, la phototransduction chez la drosophile et la transduction olfactive (Tableau_29).

Kegg pathway	KO annotation	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch	
Rythme circadien	K07200	1	Smp_315790	CBS domain	5'-AMP-activated protein kinase catalytic subunit	
Entraînement du rythme circadien	K04630	6	Smp_016630	Guanine nucleo -tide binding protein (G-protein), G-protein alpha subuni		
	K04634	1	Smp_132750	G-protein alpha subunit, group Q		
	K04536		Smp_010230 *	G-protein, beta subunit	beta1-subunit of the signal- transducing G protein	

Tableau	29 : Liste	des gènes	OTLs corres	pondant aux	Kegg pathy	ways sélectionnés
Tubicuu	231 21040	aco Berreo	Q. 10 001100	pondancada		14,0 001001011100

Photo	K04536		Smp_010230		heterotrimer {Cow (<i>Bos</i>
-transduction			*		<i>taurus</i>) [TaxId: 9913]}
	K00010		Smp_210820	CDCD kinasa	Beta-adrenergic receptor
Photo	K00910		*	GPCK KIIIdse	kinase 1 (E.C.2.7.11.15)
-transduction					beta1-subunit of the signal-
chez la	KOAE26		Smp_010230	G-protein, beta	transducing G protein
drosophile	KU4550		*	subunit	heterotrimer {Cow (Bos
					taurus) [TaxId: 9913]}
	K00010		Smp_210820	CDCD kinasa	Beta-adrenergic receptor
Transduction olfactive	K00910		*	GPCK KINASE	kinase 1 (E.C.2.7.11.15)
	K04439		Smp 126080	Arroctin	Bovine arrestin-2 (full
			Smp_126080	Arrestin	length)
					beta1-subunit of the signal-
	К04536		Smp_010230	G-protein, beta	transducing G protein
			*	subunit	heterotrimer {Cow (Bos
					taurus) [TaxId: 9913]}
	K05940		Smp 152020	Na-Ca	
	KU3649		311h_125820	exchanger/	Na/Ca exchange protein
				integrin-beta4	

Chr. : chromosome ; les gènes marqués d'un astérisque (*) sont des gènes correspondant à plusieurs Kegg pathways sélectionnés.

On retrouve un seul gène dans le pathway rythme circadien, qui est **Smp_315790** une sous-unité gamma de la kinase 5'AMP-activatrice de protéine (AMPK). La phosphorylation de la protéine CRY (issue du gène clock Cryptochrome) est médiée par des AMPK ce qui induit la dégradation de CRY et ainsi régule la boucle de rétro contrôle négative de l'horloge circadienne (Lee & Kim, 2013).

Il y a trois gènes dans la voie de l'entraînement circadien, c'est-à-dire les processus de synchronisation de l'horloge interne avec les signaux environnementaux. Le gène **Smp_016630** est une putative sous unité alpha de la protéine G. Le gène **Smp_010230**, retrouvé dans trois voies différentes qui sont l'entraînement circadien, la phototransduction et la transduction olfactive, est la sous-unité béta de la protéine G/transducine. Le gène **Smp_132750** est une sous unité alpha du groupe Q de la protéine G. Ce gène est aussi retrouvé dans la voie de la phototransduction de la drosophile.

Le gène **Smp_210820** est le second gène qui est présent dans la voie de la phototransduction chez la drosophile. Ce gène est une kinase des récepteurs couplés aux protéines G (GPCR kinase) et potentiellement une rhodopsine kinase. Il est aussi présent dans la voie de la transduction olfactive.

La voie de la transduction olfactive contient deux autres gènes, en plus de ceux précédemment cités : le gène **Smp_126080** qui est l'arrestine et le gène **Smp_152830** qui est un échangeur d'ion sodium calcium.

II.1.2.5. Conclusion

Le QTL mapping issu des croisements intraspécifiques de *S. mansoni* a mis en évidence 3 QTLs, sur les chromosomes 1, 5 et 6. Parmi tous les gènes candidats, aucun gène canonique de l'horloge n'est présent, ce qui est en accord avec Rawlinson, Reid et al. (2021) qui n'ont pas trouvé de gène canonique de l'horloge dans le génome de *S. mansoni*. On peut toutefois noter la présence de gènes avec un domaine BHLH, qui est présent dans certains gènes canoniques de l'horloge. La sélection subjective, basée sur les annotations GFF et HHsearch, a mis en évidence des gènes impliqués dans la phototransduction et plus largement dans la transduction des signaux environnementaux, avec la rhodospine comme probable photorécepteur. Ceci est en accord avec la découverte de plusieurs rhodopsines et GPCR (récepteurs couplés aux protéines G) dont certaines sont impliquées dans la

reconnaissance par le miracidium de certain peptides sécrétés par le mollusque dans l'eau (Hoffmann, Davis et al., 2001 ; El-Shehabi, Taman et al., 2012 ; Liang, Zao et al., 2016; Phan, Liang et al., 2022). La sélection subjective a aussi mis en évidence des gènes impliqués dans l'acétylation des histones. La présence de gènes avec un domaine BHLH de type Myc qui recrute les histones acétylases ainsi que la présence de gènes histone acétylase et désacétylase sont encourageants pour l'implication de l'actétylation des histones dans le rythme d'émission des cercaires.

Enfin, les analyses d'enrichissement GO et de Kegg pathway ont confirmé l'implication fonctionnelle de certains gènes dans les voies moléculaires touchant à la régulation du rythme circadien et à la phototransduction, et plus largement dans la transduction des signaux environnementaux.

II.1.3. Croisement interspécifique : *Schistosoma mansoni* (diurne) X *Schistosoma rodhaini* (nocturne)

Les croisements F0 et F1 de *Schistosoma mansoni* diurne avec *Schistosoma rodhaini* nocturne ont été réalisés avant cette thèse par Hélène Moné et Gabriel Mouahid. La préparation moléculaire des échantillons a été faite dans le cadre de mon stage d'été de 3 mois au Texas Biomedical Research Institute dans l'équipe de Tim Anderson, avec l'aide de Robbie Diaz. Le génotypage a été réalisé sur la version 7 du génome de *S. mansoni* avec le pipeline du génotypage multiplex shotgun (Andolfatto, Davison et al., 2011) adapté par Frédéric Chevalier. L'analyse QTL a été réalisée à Perpignan.

II.1.3.1. Protocole

Les parasites F0 utilisés pour ce croisement sont le chronotype diurne de *S. mansoni* (Oman) et le parasite *S. rodhaini*. Les hôtes intermédiaires mollusques *Biomphalaria pfeifferi* ont été prélevés sur le terrain dans la région du Dhofar à Oman. Les croisements réciproques se nomment croisement A (F0 mâle *S. mansoni* diurne X F0 femelle *S. rodhaini* nocturne) et croisement B (F0 mâle *S. rodhaini* nocturne X F0 femelle *S. mansoni* diurne). L'analyse QTL a été faite sur chacun des deux croisements interspécifiques.

II.1.3.2. Présentation des phénotypes

II.1.3.2.1. Les phénotypes FO

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_48 et le Tableau_30. Pour *S. mansoni* diurne, 24 profils ont émis plus de 20 cercaires et 41 profils ont émis plus de 20 cercaires pour S. *rodhaini*.

	Moyen Variations i	Test de Wilcoxon- Mann-Whitney		
Paramétres	<i>S. mansoni</i> diurne	S. rodhaini nocturne	,	
	(FO)	(F0)		
Effectif	24	41		
Photopériode	L-0	L-0		
Nombre de nics	1	1		
Nombre de pics	1	1		
Houro du pic	11-12h	18-19h	-	
Heure du pic	10-11h à 13-14h	18-19h à 19-20h	+	
Plage d'émission (b)	4,5 ± 0,2	3,7 ± 0,1	M = 727 $p = 0.0007$	
Flage d effilssion (II)	3à6	3 à 6	νν =727, p = 0,0007	
Intensité de la plage (%)	92 ± 1,4	81,1 ± 1,1	W = 882 $p = 1.10.07$	
Intensite de la plage (78)	65,6 à 98,2	66,7 à 95	w = 883, <i>μ</i> = 1,1e-07	
Asymétria	$+0,4 \pm 0,1$	+1,5 ± 0,1	$W = 104 \ p = 1.40.07$	
Asymethe	-1,3 à +1,6	-0,5 à +2,3	vv = 104, p = 1,4e-07	
Anlatissement	-0,9 ± 0,5 (N=22)	+2,6 ± 0,4 (N=22)	W = 47, <i>p</i> = 6,7e-07	
Aplatissement	-5,8 à +2,8	-2,9 à +5,6		
Corcairos la puit (%)	1,8 ± 0,5	85,3 ± 1,2	W = 0 $p = 2.40.11$	
	0,0 à 10,1	63,5 à 96,6	νν –0, <i>μ</i> – 2,4e-11	
Nombre total de	355,4 ± 41,5	559,4 ± 51,1	$M = 202 \ m = 0.00000$	
cercaires	58 à 811	63 à 1269	$vv = 502, \mu = 0,00999$	

<u>Tableau 30 :</u> Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites diurne *S. mansoni* et nocturne *S. rodhaini* pour l'expérience de QTL mapping

S. mansoni diurne a une émission unimodale dont l'heure du pic moyen est à 11-12h. La plage horaire moyenne d'émission est d'environ 4h avec une intensité de 92%. La plage d'émission moyenne est symétrique, avec une distribution aplatie. Il n'y a quasiment pas d'émission de cercaires nocturne.

S. rodhaini nocturne a une émission unimodale dont l'heure du pic moyen est à 18-19h. La plage horaire moyenne d'émission est un peu moins de 4h avec une intensité de 81%. La plage d'émission moyenne a une asymétrie élevée sur la droite, avec une distribution centrée. L'émission nocturne est majoritaire, avec en moyenne 85% des cercaires émises la nuit.

Les comparaisons sont présentées dans le Tableau_30. Les profils moyens des deux schistosomes se différencient par tous les paramètres de comparaison (*p*<0,01), à l'exception du pic unimodal. Comparé à *S. mansoni,* le parasite *S. rodhaini* a une plage d'émission plus courte et plus centrée autour de l'heure du pic mais avec une intensité plus faible. Ces résultats illustrent bien l'unicité des deux phénotypes F0.

II.1.3.2.2. Le croisement A

Le croisement interspécifique A est un croisement entre un mâle F0 *S. mansoni* diurne et une femelle F0 *S. rodhaini* nocturne. La génération F1 issue de ce croisement a un profil tri-modal, avec deux pics majoritaires à 6-7h et 10-11h et un pic secondaire à 18-19h. Le pourcentage de cercaires nocturne moyen est de 11,19%. La génération F2, issue du croisement entre un mâle et une femelle F1, contient 94 individus. Le pourcentage de cercaires nocturne moyen est de 25,25% avec des valeurs individuelles allant de 0% à 94,46%. La répartition des profils de chronobiologie de la F2 est de 17% ressemblant à la F0 diurne (1ère ligne des F2 ; Figure_49), 12,8% ressemblant à la F0 nocturne (dernière ligne des F2 ; Figure_44) et 70,2% hybride ou inclassable (les 2^{ème} et 3^{ème} lignes des F2 ; Figure_49). L'ensemble des profils F2 sont à retrouver en Annexe 5.

<u>Figure 49</u>: Chronobiologie du croisement A interspécifique, avec F0 diurne (orange), F0 nocturne (violet) et F1 et une sélection d'individus F2 hybrides (vert).

Chaque histogramme a, en ordonnées, la moyenne du pourcentage des cercaires émises ± écart standard. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit. L'arrière-plan gris correspond à l'obscurité. La ligne noire marque le début de l'obscurité à 18h. Les individus F2 sont une sélection des divers pourcentages de cercaires nocturnes. Ils sont classés du plus faible pourcentage de cercaires nocturne au plus élevé. La première ligne des F2 représente une sélection d'individus proches du phénotype F0 diurne. Les 2^{ème} et 3^{ème} lignes représentent une sélection d'individus au phénotype hybride. La 4^{ème} ligne représente une sélection d'individus proches du phénotype F0 nocturne.

II.1.3.2.3. Le croisement B

Le croisement interspécifique B est un croisement entre un mâle F0 *S. rodhaini* nocturne et une femelle F0 *S. mansoni* diurne. La génération F1 issue de ce croisement a un profil tri-modal, avec deux pics majoritaires à 6-7h et 10-11h et un pic secondaire à 18-19h. Le pourcentage de cercaires nocturne moyen est de 8,75%. La génération F2, issue du croisement entre un mâle F1 et une femelle F1, contient 115 individus. Le pourcentage de cercaires nocturne moyen est de 27,53% avec des valeurs individuelles allant de 0% à 97,16%. La répartition des profils de chronobiologie de la F2 est de 25,2% ressemblant à la F0 diurne (1ère ligne des F2 ; Figure_50), 13,9% ressemblant à la F0 nocturne (dernière ligne des F2 ; Figure_50) et 60,9% hybride ou inclassable (les 2^{ème} et 3^{ème} lignes des F2 ; Figure_50). L'ensemble des profils F2 sont à retrouver en Annexe 5.

<u>Figure_50</u> : Chronobiologie du croisement B interspécifique, avec F0 diurne (orange), F0 nocturne (violet) et F1 et une sélection d'individus F2 hybrides (vert).

Chaque histogramme a, en ordonnées, la moyenne du pourcentage des cercaires émises ± écart standard. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit. L'arrière-plan gris correspond à l'obscurité. La ligne noire marque le début de l'obscurité à 18h. Les individus F2 sont une sélection des divers pourcentages de cercaires nocturnes. Ils sont classés du plus faible pourcentage de cercaires nocturne au plus élevé. La première ligne des F2 représente une sélection d'individus proches du phénotype F0 diurne. Les 2^{ème} et 3^{ème} lignes représentent une sélection d'individus au phénotype hybride. La 4^{ème} ligne représente une sélection d'individus proches du phénotype F0 nocturne.

Il n'y a pas de différence significative entre les profils d'émission des générations F1 des croisements interspécifiques A et B. De plus, le pourcentage de cercaires nocturne moyen n'est pas significativement différent entre les générations F1 et F2 des deux croisements intraspécifiques (p>0,01). Ces résultats sont en accord avec ceux de la première partie qui montraient que le sexe, et donc ici le sens du croisement, n'a pas d'influence sur le rythme d'émission des cercaires.

II.1.3.3. QTL mapping

Les analyses QTL ont été faites en parallèle sur les deux croisements interspécifiques. La préparation moléculaire des échantillons s'est faite en utilisant tout le génome. Le génotypage regroupe 400 marqueurs répartis sur les 8 chromosomes du génome de *S. mansoni* (7 autosomes et 1 sexuel). Pour le croisement A, 87 individus F2 ont servis pour l'analyse QTL et 97 individus F2 pour le croisement B. Le phénotype utilisé est la moyenne du pourcentage de cercaires nocturne. La détection des QTLs a été faite avec la méthode de l'algorithme EM de la fonction scanone avec un seuil de détection à 5% déterminé avec 1000 permutations.

II.1.3.3.1. Croisement A

L'analyse QTL du croisement A révèle un QTL dans le chromosome 3 avec un LOD score de 5,04 pour un seuil 5% de 4,0 (Figure_51).

Ce QTL sur le chromosome 3 explique 22,38% de la variation phénotypique (*P*-value 2,38 e-05). La répartition génotypique en fonction de la variation phénotypique pour ce QTL sur le chromosome 3 est illustrée en Figure_52. La moyenne du pourcentage de cercaires nocturne n'est pas significativement différente entre les individus avec un génotype homozygote diurne (DD) et un génotype hétérozygote (ND/DN) pour le QTL du chromosome 3 (*p*>0,01). Seul le groupe homozygote nocturne (NN) a une moyenne de cercaires nocturne significativement plus élevée que les deux autres génotypes. Ceci indique que l'allèle N (nocturne) est récessif par rapport à l'allèle D (diurne). En effet, il faut deux allèles N pour que la moyenne des cercaires nocturne soit plus élevée pour le QTL du chromosome 3.

<u>Figure 52</u> : Effet plot pour le QTL du chromosome 3 pour le croisement A interspécifique *entre Schistosoma mansoni* et *Schistosoma rodhaini* obtenu avec l'algorithme EM de la fonction scanone. En abscisse, les génotypes homozygotes diurnes (DD) en blanc, hétérozygotes (DN) en gris et homozygotes nocturne (NN) en noir. En ordonnée, le pourcentage des cercaires émises la nuit. Les lettes « a », « b » et « c » désignent les *p*-values significativement différentes. Ainsi, s'il y a « a, b et c », les trois génotypes sont significativement différent des deux autres. Pour le chromosome 3, seul le génotype homozygote nocturne (NN) est significativement différent des deux autres génotypes (W =264, *p* = 0,0008 pour ND et W =331, *p* = 0,0008 pour DD). Les hétérozygotes DN regroupent les génotypes DN et ND.

II.1.3.3.2. Croisement B

L'analyse QTL du croisement B révèle deux QTLs pour un seuil 5% de 4,08 (Figure_53). Le premier QTL est dans le chromosome 3 avec un LOD score de 4,52 et le second se situe dans le chromosome 4 avec un LOD score de 4,34.

<u>Figure 53</u> : LOD score QTL pour le croisement B interspécifique de *Schistosoma mansoni* et *Schistosoma rodhaini* obtenu avec l'algorithme EM de la fonction scanone. En abscisse, les chromosomes, et en ordonnée les LOD scores. Les LOD score significatifs sont ceux qui sont supérieurs au seuil de 5% symbolisé par la ligne en bleu. Les chromosomes impairs sont grisés.

Pour déterminer la nature des interactions entre les deux QTLs, on dresse de façon simplifiée, un modèle théorique d'interaction épistatique et un modèle théorique d'interaction d'effet additif. Un test statistique est ensuite réalisé pour déterminer lequel de ces deux modèles théoriques explique le mieux la nature de l'interaction des QTLs que nous avons détectée. Pour cela, le seuil est fixé à 5% et est a été déterminé avec 500 permutations donnant respectivement un seuil de 12,3 pour l'épistasie et de 7,67 pour l'effet additif.

Seul le LOD score de l'interaction additive des QTLs sur les chromosomes 3 et 4 s'est révélé significatif (Tableau_31).

<u>Tableau 31 :</u> Tableau récapitulatif du scantwo pour déterminer l'interaction (épistasie et l'effet additif) des QTLs pour le croisement B interspécifique

Paire des locus	Position du locus 1 (chr3)	Position du locus 2 (chr4)	LOD Épistasie	LOD Addition
Seuil 5%			12,3	7,67
Chr3 :Chr4	215	157	11,12	8,71

Cette interaction additive entre les QTLs entre les chromosomes 3 et 4 explique 32,78% de la variation phénotypique (Tableau_32). Pris individuellement, le QTL du chromosome 3 explique 14,17% de la variation phénotypique et le QTL du chromosome 4, 13,47%, ce qui illustre que les deux QTLs sont importants.

Loci	LOD score (QTL)	% variance	P-value
Modèle additif Chr3 + Chr4	8,37	32,78	1.87e-07
Chr3	4,02	14,17	0,0002
Chr4	3,85	13,47	0,0002

Tableau 32 : Explication de la variance du phénotype (moyenne du pourcentage de cercaires nocturne) par le modèle additif des QTLs et les QTLs séparés pour le croisement B interspécifique

La répartition génotypique en fonction de la variation phénotypique pour les QTLs sur les chromosomes 3 et 4 est illustrée en Figure_54 et Figure_55. Pour les deux QTLs, la moyenne du pourcentage de cercaires nocturne n'est pas significativement différente entre les individus avec un génotype homozygote diurne (DD) et un génotype hétérozygote (ND/DN) pour le QTL du chromosome 3 (*p*>0,01). Seul le groupe homozygote nocturne (NN) a une moyenne de cercaires nocturne significativement plus élevée que les deux autres génotypes. Ceci indique que l'allèle N (nocturne) est récessif par rapport à l'allèle D (diurne). En effet, il faut deux allèles N pour que la moyenne des cercaires nocturne soit plus élevée pour les QTLs des chromosomes 3 et 4.

<u>Figure 54</u> : Effet plot pour le QTL du chromosome 3 pour le croisement B interspécifique entre *Schistosoma mansoni* et *Schistosoma rodhaini* obtenu avec l'algorithme EM de la fonction scanone. En abscisse, les génotypes homozygotes nocturnes (NN), hétérozygotes (ND) et homozygotes diurnes (DD) et en ordonnée la moyenne du pourcentage de cercaires nocturne. Les lettes « a », « b » et « c » désignent les *p*-values significativement différentes. Ainsi, s'il y a « a, b et c », les trois génotypes sont significativement différents. S'il y a uniquement « a » et « b », alors un seul génotype est significativement différent des deux autres. Pour le chromosome 3, seul le génotype homozygote nocturne (NN) est significativement différent des deux autres génotypes (W =362, p = 0,0007 pour ND et W =484, p = 0,0007 pour DD). Les hétérozygotes DN regroupent les génotypes DN et ND.

<u>Figure 55</u> : Effet plot pour le QTL du chromosome 4 pour le croisement B interspécifique entre *Schistosoma mansoni* et *Schistosoma rodhaini* obtenu avec l'algorithme EM de la fonction scanone. En abscisse, les génotypes homozygotes nocturnes (NN), hétérozygotes (ND) et homozygotes diurnes (DD) et en ordonnée la moyenne du pourcentage de cercaires nocturne. Les lettes « a », « b » et « c » désignent les *p*-values significativement différentes. Ainsi, s'il y a « a, b et c », les trois génotypes sont significativement différents. S'il y a uniquement « a » et « b », alors un seul génotype est significativement différent des deux autres. Pour le chromosome 3, seul le génotype homozygote nocturne (NN) est significativement différent des deux autres génotypes (W =446, *p* = 0,0005 pour ND et W =331, *p* = 0,003 pour DD). Les hétérozygotes DN regroupent les génotypes DN et ND.

II.1.3.4. Gènes candidats

Pour le croisement A, il y a 497 gènes dans le QTL du chromosome 3. Pour le croisement B, il y a 736 gènes pour le QTL du chromosome 3 et 210 gènes pour le QTL du chromosome 4 (liste complète des gènes en Annexe 6). Les 497 gènes du croisement A sont inclus dans les 736 gènes du croisement B. Pour discerner ces différents gènes candidats, une analyse d'enrichissement GO et de Kegg pathway ont été réalisées. L'enrichissement GO a été fait avec Blast2GO version 5.2 en utilisant le Fisher's Exact Test (p<0,05). L'analyse d'enrichissement Kegg pathway a été faite sur le serveur KAAS en utilisant le programme Blast avec la méthode SBH (Single-directional Best Hit).

II.1.3.4.1. Les gènes de l'horloge (Basic Helix-Loop-Helix)

Parmi les 946 gènes QTLs, aucun n'est un gène canonique de l'horloge. Tout comme avec le croisement intraspécifique, on retrouve 5 gènes qui présentent un domaine BHLH (Basic Helix-Loop-Helix) de type Myc (Tableau_33). Si on s'intéresse aux annotations HHsearch, on retrouve la protéine Mad qui lorsqu'elle forme l'hétérodimère Mad-Max est impliquée dans le recrutement d'histone désacétylase (Laherty, Yang et al., 1997). La protéine Mad est en compétition avec la protéine Myc pour se lier à la protéine Max.

Intórôt	Chr	Identifiant	Annotation	Annotation				
meret	CIII.	(ID) du gène	GFF	HHsearch				
		Smp 021240		Mad protein {Human (Homo sapiens) [TaxId:				
		5111p_021540		9606]}				
		Smp_123570	Muchung hasis	Aryl hydrocarbon receptor nuclear translocator				
Motif	240	Smp 242580	holix loop holix	Transcription factor E2-alpha, DNA-binding				
BHLH	SAD	3111p_342380	(hull) domain	protein				
		Smp_000620		DNA-binding protein inhibitor ID-1				
		Smp_333620		Myc proto-oncogene protein {Human (<i>Homo</i>				

<u>Tableau 33 :</u> Liste des gènes QTLs avec un motif BHLH (Basic Helix Loop Helix) pour les QTLs des croisements interspécifiques

Chr.: chromosome; A : croisement A; B: croisement B

II.1.3.4.2. Les rhodopsines et autres gènes impliqués dans la phototransduction

Tout comme dans les QTLs du croisement intraspécifique, on retrouve une rhodopsine (Smp_117340) et 26 autres rhodopsine-like (Tableau_34).

Tableau 34 : Liste des gènes QTLs rhodopsine et rhodopsine-like pour le QTL interspécifiqu	ue
--	----

Intórôt Chr		Identifiant	Annotation	Annotation		
merei	Chr.	(ID) du gène	GFF	HHsearch		
Rhodopsine	3B	Smp_117340		Rhodopsin		
		Smp 150180		Chimera of Proteinase-		
	3AB	3mp_130180		activated receptor 1		
		Smn 159860		Cannabinoid receptor		
		5mp_155800		1,Flavodoxin		
				Lysozyme, Proteinase-		
		Smn 132410		activated receptor		
		51110_132410		2,Soluble cytochrome		
				b562, Proteinase-activated		
		Smp_083880		Neurotensin receptor type		
				1,Endolysin,NEUROTENSIN		
Phodonsino			G protein-coupled receptor,	RECEPTOR		
liko		Smp 177720	rhodopsin-like	C-X-C chemokine receptor		
like	20	51110_17720		type 4		
	30	Smp_083940		7TM_GPCR_Srw		
		Smp_326640		7TM_GPCR_Srw		
		Smp_241490		7TM_GPCR_Srw		
		Smp_091950		7TM_GPCR_Srw		
		Smn 326670		Platelet-activating factor		
		5mp_520070		receptor,Flavodoxin		
		Smn 13/960		Platelet-activating factor		
		5mp_134500		receptor,Flavodoxin		
		Smn 023710		Platelet-activating factor		
		5mp_025710		receptor,Flavodoxin		

		Smp 13/820		Chimera of Proteinase-		
		5mp_134820		activated receptor 1		
				Adenosine receptor		
		Smp_343810	GPCR, rhodopsin-like, 7TM	A2a,Soluble cytochrome		
				b562,Adenosine		
		Smp_043260				
		Smp_043270				
		Smp_336140				
		Smp_348040		7tm_1		
		Smp_043290				
		Smp_043300				
	4 B	Smp_348050				
	40	Smp_332070		human Chemokine		
			G protein-coupled receptor,	Receptor 7		
		Smp_043320	rhodopsin-like	7tm 1		
		Smp_043340		/[11_1		
				Muscarinic acetylcholine		
		Smp_145540		receptor M2, Vasopressin		
				V2		
				Lysophosphatidic acid		
		Smn 212750		receptor		
		5mp_212750		6a, Endolysin, receptor		
				(E.C.3.2.1.17)		

Chr.: chromosome; A : croisement A; B: croisement B

Il y a aussi dans ce croisement interspécifique la présence de certains acteurs de la phototransduction. En plus de la rhodopsine, il y a, dans les gènes QTLs, la protéine G (transducine), la phosphodiestérase, la sérine/thréonine kinase (rhodopsine kinase), des gènes contenant le domaine EF-hand qui est présent dans la recoverine, la protéine phosphatase 2A (PP2A) et la GTPase activating protein (Tableau_34 et Tableau_35). Contrairement au croisement intraspécifique, l'arrestine et la guanylyl cyclase ne sont pas présentes dans les gènes QTLs.

Tableau 35 : Liste des gènes QTLs potentiellement liés à la phototransduction

Intérêt	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch		
Protéine G (Transducine)	20	Smp_075130 G-protein, beta subunit		beta1-subunit of the signal- transducing G protein heterotrimer {Cow (<i>Bos taurus</i>) [TaxId: 9913]}		
	38	Smp_018400	WD40 repeat	beta1-subunit of the signal- transducing G protein heterotrimer {Cow (<i>Bos taurus</i>) [TaxId: 9913]}		
Phosphodiesté rase	ЗАВ	Smp_084890	Type I phosphodiesterase /nucleotide pyrophosphatase/p hosphate transferase	PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2)		

	3B Smp_018360		PLC-like phosphodiesterase, TIM beta/alpha- barrel domain superfamily	Crystal Structure of the Y247S/Y251S		
	4B	Smp_135500	3'5'-cyclic nucleotide phosphodiesterase, catalytic domain	cGMP-specific 3',5'-cyclic phosphodiesterase (E.C.3.1.4.35)		
		Smp_053550	U6 snRNA phosphodiesterase Usb1	U6 snRNA phosphodiesterase (E.C.3.1.4)		
	3AB	Smp_123610	Protein kinase domain	Phosphatidylinositol 3-kinase VPS34 (E.C.2.7.1.137), Serine/threonine-protein		
GPCR kinase,		Smp_123640	GPCR kinase	G protein-coupled receptor kinase 4		
thréonine kinase	3B	Smp_144390	Ser/Thr protein kinase, TGFB receptor	B-Raf kinase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
(modospine kinase)		Smp_042920	Serine-threonine protein kinase 19	Stk19		
	4B	Smp_308680	Protein kinase domain	Serine/threonine-protein kinase Nek2 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
		Smp_106110 EF-hand domain		Kchip1, Kv4 potassium channel- interacting protein {Rat (<i>Rattus</i> <i>norvegicus</i>) [TaxId: 10116]}		
	3AB	Smp_181460	EF-hand domain pair	DUF4205		
		Smp_106060	EF-hand domain	ADP,ATP carrier protein {Cow (<i>Bos taurus</i>), heart isoform t1 [TaxId: 9913]}		
domaine EF-hand		Smp_000180		Frequenin (neuronal calcium sensor 1) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
(Recoverine)	3B	Smp_134950		Myosin Essential Chain {Bay scallop (<i>Aequipecten irradians</i>) [Taxld: 31199]}		
		Smp_018940	EF-hand domain	Myosin Essential Chain {Bay scallop (<i>Aequipecten irradians</i>) [TaxId: 31199]}		
	4B	Smp_313310		Sarcoplasmic calcium-binding protein {Amphioxus (<i>Branchiostoma lanceolatum</i>) [TaxId: 7740]}		
Protéine		Smp_308680	Protein	Serine/threonine-protein phosphatase 2A 65 kDa		
phosphatase	3AB	Smp 308690	phosphatase 2A	NA		
2A (PP2A)		Smp_308700	PR55	Serine/threonine-protein phosphatase 2A 65 kDa		

		Smp_138500	Arf CTDasa	Ras-related protein Rab-35, Iporin		
		Smp_000670	activating protein	ARFGAP with coiled-coil, ANK		
GTPase		5mp_000070		repeat		
activating			Rho GTPase-	n50 RhoGAP domain {Human		
protein		Smp_160610	activating protein	(Homo saniens) [Tayld: 9606]}		
			domain			
		Smp_138430	DEP domain	Regulator of G-protein signaling 7		
		Smp 246610		Rad {Human (Homo sapiens)		
		Ship_240010		[TaxId: 9606]}		
				Ras-related protein M-Ras (XRas)		
		Smp_084940		{Mouse (<i>Mus musculus</i>) [TaxId:		
			Small GTPase	10090]}		
	20	Smn 122220		Rab30 (Human (Homo sapiens)		
		311h_125220		[TaxId: 9606]}		
GTPase		Smp 170010		GTP-binding protein RheB {Human		
		211b_1/2210		(Homo sapiens) [TaxId: 9606]}		
	20	Smp 124040	GTP binding	VacH GTRasa		
		5111p_154940	domain	rgen Grease		
		Smp 242660		Rad {Human (Homo sapiens)		
		5111p_542000	Small GTPase	[TaxId: 9606]}		
	4B	Smn 313300	Small Off ase	Rab21 {Human (Homo sapiens)		
	4D	211h_212200		[TaxId: 9606]}		

Chr.: chromosome; A : croisement A; B: croisement B

II.1.3.4.3. Les gènes impliqués dans l'acétylation et la méthylation des histones

Un autre point commun avec le QTL intraspécifique est la présence de gènes liés aux histones (Tableau_36). Tout comme précédemment, on retrouve des gènes qui codent pour des histones et aussi des histones acétyltransférase (« writer ») mais pas d'histones désacétylases (« eraser »). Une spécificité du QTL interspécifique est qu'il y a aussi l'équivalent pour la méthylation des histones avec la présence du gène histone méthyltransférase (« writer ») et du gène histone déméthylase (« eraser »).

<u>Tableau_36</u>: Liste des gènes QTLs en lien avec les histones, l'acétylation des histones et la méthylation/déméthylation des histones

Intérêt	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch			
Histone	3AB	Smp_337740	Histone H2A	Histone H2A {Chicken (<i>Gallus gallus</i>), erythrocytes [TaxId: 9031]}			
	3B	Smp_000150	Zinc finger, PHD-type	Histone H3.2, Histone H4, Histone			
	3B	Smp_027850	Chromatin SPT2	Histone H3.2, Histone H4, Protein			
	3B	Smp_026880	Histone H3/CENP-A	Leishmania histone H3, Histone H4			
Histone acétylase	3AB	Smp_105910	Zinc finger, TAZ-type	Histone acetyltransferase p300 (E.C.2.3.1.48), p53			
	3B	Smp_083930	Chromatin modification-related protein Eaf6	Histone acetyltransferase ESA1 (E.C.2.3.1.48), Chromatin			

	240	Create 210000	CET damain	Histone-lysine N-methyltransferase		
	3AB	Smp_210660	SEI domain	2E (E.C.2.1.1.43)		
mistone	40	Smp 150950	Methyl-CpG DNA	Histone-lysine N-methyltransferase		
transfórasa	4B	Smp_120820	binding	SETDB1 (E.C.2.1.1.43), Histone		
-transierase				Histone-lysine N-methyltransferase		
	4B	Smp_160700	PWWP domain	SETD2 (E.C.2.1.1.43,2.1.1),		
				H3.3S31phK36M(29-42)		
	240	Smar 211000	Zinc finger C2H2 tune	LYSINE-SPECIFIC HISTONE		
Histone	SAD	211h_211990	Zinc ninger CZHZ-type	DEMETHYLASE 1A (E.C.1)		
démethylase	240	Create 0000000	Zinc finger C2H2 tune	LYSINE-SPECIFIC HISTONE		
	SAB	Sillp_000230	Zinc miger CZHZ-type	DEMETHYLASE 1A (E.C.1)		

Chr.: chromosome; A : croisement A; B: croisement B

II.1.3.4.4. Enrichissement GO : Processus biologiques

Les analyses d'enrichissement GO des gènes QTLs n'ont pas donné de résultats significatifs en utilisant la limite usuelle FDR < 0,05 (False Discovery Rate). Les résultats qui suivent ont été obtenus en utilisant la limite de p < 0,05.

On retrouve, parmi les processus biologiques mis en évidence par les analyses d'enrichissement GO, la réponse à la chaleur et la régulation du cycle cellulaire. L'annotation GO « réponse à la chaleur » correspond au gène **Smp_096010**, une Heat shock protein DnaJ (HSP60) qui, en interagissant avec HSP70, empêche l'agrégation des protéines partiellement dénaturées causée par un stress environnemental (Ohtsuka & Hata, 2000). L'annotation GO « régulation du cycle cellulaire » contient le gène **Smp_181450** qui code pour CCDC66 (Coiled-Coil Domain Containing 66). La déplétion de ce gène entraîne une rétinopathie pigmentaire (dégénérescence rétinienne) (Gerding, Shreiber et al., 2011).

	Revigo TreeMap														
regulation of cell division	glucose homeostasis	regulation of cytokinesis	regulation of dephosphorylation	U2 snRNA 3'-end processing	pyridine-containing compound metabolic process		transcription by RNA polymerase II	bicarbonate tra	insport car tr	bohydrate ransport	nitrogen compound metabolic process	primary metabolic process	proteasome regulatory particle assembly	DNA conformation change	
regulation of transcription by RNA polymerase III	regulation of transcription regulation of by RNA polymerase II	negative regulation of cell_division by RNA	regulation of cysteine-type endopeptidase activity involved in apoptotic process	nucleic acid phosphodiester bond hydrolysis	aspartyl-tRNA aminoacylation snRNA.3'-end proce bisphosphate metabolic process		aspartyl-tRNA aminoacylation processing RNA 3'-end processing bishbashate compound		snRNA transport bica	snRNA export from nucleus rbonate transp	nuclear export	organic sub nitrogen mei metabol process	organic cyclic compoundund c process olic process	proteason particle mature	e regulatory assembly mitochondrial protein
carbohydrate	positive regulation of	negative regulation of	negative	nucleobase-containing compound metabolic process			bisphosphate compound metabolic biosynthetic process process		endoplasmic reticulum to Golgi localization		microtubule cytoskeleton organization metabolic		assembly	catabolic process	
homeostasis	transcription by RNA polymerase II	protein-containing complex assembly	of apoptotic process	DNA	ribonucleoside bisphosphate RN/		nucleic acid	vesicle-mediated transport		involved in mitosis	process	process	rRNA processing		
response to endogenous	response to unfolded	response to topologically incorrect	response to growth factor	recombination	metabolic proce		process	sulfation	thioester metabolic process	thioester metabolic process	'de novo' otein folding	cell adhesion	prot	ein folding	
sumulus	protein	protein		protein repair	peptidyl-t modific	yrosine histone lysine demethylation		sulf	ation	protein tolaing	tolding	cell communicati	on man	nosylation	
response	response to	to heatrin-plexin	transmembrane receptor protein					lipoate metabolic	lipoate c biosynthetic			cen communicati	on man	mannosylation	
to heat	substance	signaling pathway	kinase signaling pathway	protein K63-linked deubiquitination	peptidyl-t protein r sulfat	pentidyl-tyrosine p protein repair sulfation ubiq		process	process	metabolic process	response to stimulus	superoxide metabolic proce	reactive oxygen species metaboli		
cellular response to endogenous stimulus	cellular response to stimulus	enzyme-linked receptor protein signaling pathway	G protein-coupled receptor signaling pathway	peptidyl-tyrosine dephosphorylatior	prote modifical small pr conjugal remo	ein tion by rotein tion or val	protein dephosphorylation	muscle muscle c contraction	muscle system ontraction process	sigr	naling	microtubule slidi	ng depho	sphorylation	

<u>Figure_56</u> : Treemap revigo des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes QTL du croisement interspécifique.

Chaque couleur représente un grand ensemble de processus biologique. Il y a de gauche à droite : La régulation de la division cellulaire, le traitement de l'extrémité 3' du petit ARN nucléaire U2, transport du bicarbonate, processus métabolique des composés azotés, assemblage des particules régulatrices du protéasome, réponse à la chaleur, réparation des protéines, sulfatation, repliement des protéines « de novo », adhésion cellulaire, repliement des protéines, contraction des muscles, processus métabolique, réponse à des stimulus, communication cellulaire, mannosylation, signalisation, processus métabolique superoxyde, processus métabolique des espèces réactives de l'oxygène, glissement des microtubules et déphosphorylation. La treemap a été obtenue avec revigo (Supek, Bošnjak et al., 2011).

II.1.3.4.5. Kegg pathway

Les analyses Kegg pathway montrent que les gènes QTLs des croisements interspécifiques sont potentiellement impliqués dans 282 voies moléculaires différentes. Parmi toutes ces voies, sept retiennent notre attention, le rythme circadien, le rythme circadien chez la drosophile, l'entraînement circadien, la phototransduction, la phototransduction chez la drosophile et la transduction olfactive, la transduction gustative (Tableau_37).

<u>Tableau 37:</u> Liste des gènes QTLs correspondant aux Kegg pathways sélectionnés. Les gènes marqués d'un astérisque (*) sont des gènes correspondant à plusieurs Kegg pathways sélectionnés

Kegg pathway	KO annotation	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch
Rythme circadien	K07199	4B	Smp_329580	5'-AMP-activated protein kinase subunit beta-1 (Fragment)	5'-AMP-activated protein kinase subunit beta-2
Rythme circadien drosophile	K23643	ЗВ	Smp_023700	Anticodon-binding domain	AD
Entraînement du rythme circadien	K02183		Smp_018940	EF-hand domain	Myosin Essential Chain {Bay scallop (<i>Aequipecten</i> <i>irradians</i>) [TaxId: 31199]}
	K04539		Smp_075130	G-protein, beta subunit	beta1-subunit of the signal-transducing G protein heterotrimer {Cow (<i>Bos taurus</i>) [TaxId: 9913]}
Phototransduction Phototransduction chez la drosophile	K02183		Smp_018940*	EF-hand domain	Myosin Essential Chain {Bay scallop (<i>Aequipecten</i> <i>irradians</i>) [TaxId: 31199]}
Transduction olfactive	K18283	4B	Smp_135500	3'5'-cyclic nucleotide phosphodiesterase, catalytic domain	cGMP-specific 3',5'- cyclic phosphodiesterase (E.C.3.1.4.35)
Transduction gustative	K04153	3B	Smp_134820	G protein-coupled receptor, rhodopsin-like	Chimera of Proteinase-activated receptor 1

	G protein-coupled	G protein-coupled	Muscarinic	
K04131	4B	Smp_145540	receptor, rhodopsin-like	acetylcholine receptor M2.Vasopressin V2

Chr.: chromosome; A : croisement A; B: croisement B.

On retrouve un seul gène dans le pathway rythme circadien qui est **Smp_329580**, une sous-unité beta de la kinase 5'AMP-activatrice de protéine (AMPK). Il y a aussi un gène dans le pathway du rythme circadien chez la drosophile qui est **Smp_023700**, un gène qui code pour une protéine qui contient un domaine AD (Anticodon-binding domain). Dans le pathway du rythme circadien chez la drosophile, ce gène correspond au LSM12 qui forme un complexe avec deux autres protéines pour stimuler la traduction du gène de l'horloge per (Lee, Yoo et al., 2017).

Le pathway de l'entraînement circadien compte deux gènes. Le premier est **Smp_075130**, une sousunité beta de la protéine G et le second est **Smp_018940**, une putative calmoduline, un détecteur de calcium ubiquitaire qui a des implications dans la transduction du signal et le rythme circadien (Cavieres-Lepe & Ewer, 2021). Le gène Smp_018940 est aussi présent dans le pathway de la phototransduction, de la phototransduction chez la drosophile et de la transduction olfactive.

Le pathway de la transduction olfactive contient aussi le gène **Smp_135500** qui est une phosphodiestérase. Enfin, le pathway de la transduction gustative contient deux gènes. Le gène **Smp_134820**, une rhodopsine-like qui correspond dans le pathway à un récepteur sérotoninergique ; c'est-à-dire un récepteur de la sérotonine, un neurotransmetteur impliqué, entre autres, dans le rythme circadien. Le second gène est le **Smp_145540**, une autre rhodopsine-like qui correspond à un récepteur muscarinique acétylcholine. L'acétylcholine est considérée comme le neurotransmetteur de « l'éveil » puisque son taux est élevé pendant les périodes d'activité physique et d'éveil (Hut & Van der Zee, 2011).

II.1.3.5. Conclusion

Le QTL mapping issu des croisements interspécifiques entre *S. mansoni* et *S. rodhaini* a mis en évidence 2 QTLs sur les chromosomes 3 (croisements A et B) et 4 (croisement B uniquement). Ces QTLs sur des chromosomes différents de ceux du QTL intraspécifique indiquent que les différences de rythme d'émission des cercaires reposent sur des régions génomiques différentes entre les espèces. Il n'est pas à exclure, cependant, que les gènes présents dans les QTLs intra et interspécifique jouent un rôle dans le rythme d'émission des cercaires, peu importe l'espèce de schistosome. Cela est d'autant plus vrai que l'on retrouve des gènes reposant sur des mécanismes similaires entre les deux expériences QTLs (Figure_57). En effet, tout comme le croisement intraspécifique, il n'y a pas de de gène canonique de l'horloge conformément avec Rawlinson, Reid et al. (2021) mais il y a des gènes avec domaine BHLH de type Myc. La sélection subjective basée sur les annotations GFF et HHsearch a aussi mis en évidence des gènes impliqués dans la phototransduction et plus largement dans la transduction des signaux environnementaux, avec la rhodospine comme probable photorécepteur.

De plus, tout comme le croisement intraspécifique, la présence de gènes avec un motif BHLH qui recrute les histones acétylases et désacétylases ainsi que la présence de gène histone acétylase mais aussi d'histone méthyltransférase et déméthylase sont des résultats à mettre en regard des analyses épigénétiques qui font l'objet du prochain chapitre afin de voir l'implication de l'actétylation et de la méthylation des histones dans le rythme d'émission des cercaires.

Les QTLs intra- et interspécifiques partagent la réponse à des stimuli, la signalisation et la communication cellulaire comme processus biologiques mis en évidence par les analyses d'enrichissement GO (Figure_56).

Enfin, les analyses de Kegg pathway ont confirmé l'implication fonctionnelle de certains gènes dans les voies moléculaires touchant à la régulation du rythme circadien et à la phototransduction, et plus largement dans la transduction des signaux environnementaux. Il est intéressant de noter que bien que les gènes soient impliqués dans les mêmes pathways, ils ne correspondent pas aux mêmes annotations fonctionnelles. Ces résultats indiquent que le rythme d'émission des cercaires nocturnes repose sur un mécanisme moléculaire similaire centré autour de rhodospine et la transduction de signaux environnement mais que les acteurs de régulation diffèrent entre les espèces de schistosomes.

Figure 57 : Bilan des QTL mapping intra et interspécifiques.

Partie II : Rythme-Epigénétique

II.2. Recherche des marqueurs rythmiques

La présence d'un gène dans le génome ne signifie pas forcément qu'il est impliqué dans un phénotype. Pour connaître son implication il est donc nécessaire d'étudier son expression. L'expression d'un gène passe par une étape de transcription de l'ADN double brin en ARN messager (ARNm) simple brin, puis d'une étape de traduction de cet ARNm en protéine qui donnera un phénotype (Figure_58).

<u>Figure_58 : Schéma de l'expression d'un gène de la transcription jusqu'à la traduction.</u>

La transcriptomique est l'étude des ARN messagers (ARNm) produits lors de la transcription. Ce phénomène peut être régulé par des acteurs génétiques (facteurs de transcription) et des acteurs épigénétiques (Figure_59).

<u>Figure 59</u> : **Schéma de la transcription d'un gène et des acteurs de la régulation.** De façon simplifiée lors de la transcription, l'ARN polymérase est recrutée par un promoteur en amont du gène. Une fois fixée, la polymérase synthétise un brin d'ARN en prenant comme modèle le brin d'ADN. Le recrutement de cette ARN polymérase peut être facilité ou empêché par des actions de régulations venant d'acteurs génétique et/ou épigénétique.

L'épigénétique est l'étude des caractères phénotypiques héritables qui n'impliquent pas de modification de la séquence d'ADN. Ces traits sont réversibles et héritables (mitotiquement et/ou méiotiquement). Il existe quatre principaux types de modification épigénétique : la méthylation de l'ADN, les modifications d'histone, la topologie du noyau et les petits ARN non-codants (Figure_60) (Joly & Grunau, 2018).

Figure_60 : Les quatre principaux types de modification épigénétique.

A) La méthylation de l'ADN est l'ajout d'un groupement méthyl (Me en rouge) qui s'effectue uniquement sur les adénosines et les cytosines. De façon générale, la méthylation de l'ADN est associée à la répression des zones marquées. B) La modification d'histone s'opère sur les acides aminés des queues d'histones qui composent le nucléosome. En fonction de la marque, elle peut induire une activation ou une répression de la transcription en changeant l'état de compaction de la chromatine. C) Les petits ARN non codants sont inférieurs à 30 nucléotides et sont impliqués dans la répression de l'expression des gènes. D) La topologie du noyau consiste en des mouvements chromatiniens qui rapprochent ou éloignent physiquement des sites de transcription.

Chacune de ces modifications est associée à des phénomènes de régulation de l'horloge circadienne (Singh, Jha & Thakur, 2019). Par exemple la méthylation de l'ADN joue un rôle dans l'expression du gène clock Frq chez *Neurospora crassa* (Belden, Lewis et al., 2011). Chez la souris, l'acétylation de l'histone H3 dans les promoteurs de Per1, Per2 et Cry1 (gènes clock) suit un rythme circadien (Etchegaray, Lee et al., 2003). Des territoires chromosomiques circadiens ont pu être mis en évidence dans les fibroblastes embryonnaires des souris (Aguilar-Arnal, Hakim et al., 2013). Enfin, chez les mammifères, le miR-219 a un rythme circadien et son knock-down entraîne un rallongement de la période circadienne, de plus il est une cible du complexe CLOCK-BMAL1 (Cheng, Papp et al., 2007).

Sur les quatre types de modification épigénétique, deux sont au centre des recherches sur *S. mansoni*; la modification d'histone et les petits ARN non codants (Azzi, Cosseau & Grunau, 2009 ; Simões, Lee et al., 2011 ; Picard, Boissier et al., 2016 ; Cosseau, Wolkenhauer et al., 2017). En effet, il existe très peu de méthylation de l'ADN chez *S. mansoni* (Fantappié, Gimba & Rumjanek, 2001) et aucune étude sur la topologie nucléaire n'a été faite pour cet organisme.

L'objectif de ce chapitre va être, dans un premier temps, d'identifier les marqueurs moléculaires rythmiques au travers de deux approches complémentaires, l'approche épigénétique et l'approche transcriptomique, car ayant été réalisées sur les mêmes échantillons biologiques ; dans un second temps, d'analyser les différents gènes candidats qui auront émergé de cette seconde partie de thèse consacrée aux déterminants moléculaires du rythme de l'émission des cercaires.

Le premier point développera l'expérience d'échantillonnage commune aux approches d'épigénétique et transcriptomique. Le second point abordera l'épigénétique au travers de la technique de ChIPmentation et le troisième point la transcriptomique avec la technique de RNA-seq. Enfin le dernier point sera consacré à une synthèse et analyse des divers gènes candidats.

II.2.1. Echantillonnage commun pour les expériences d'épigénétique et de transcriptomique

II.2.1.1. Méthode d'échantillonnage pour les expériences d'épigénétique et de transcriptomique

L'échantillonnage est commun aux expériences de ChIPmentation et de RNA-seq. Ces deux expériences partagent l'objectif d'identification d'un potentiel rythme (respectivement acétylation/méthylation d'histone et expression de gènes). L'échantillonnage comprend l'infestation des mollusques, le sexage des parasites, la chronobiologie des individus et la dissection des mollusques pour récupérer les hépatopancréas et ovotestis infestés. Chaque dissection se fait en retirant la

coquille et le pied du mollusque. Deux-tiers de l'hépatopancréas sont utilisés pour le ChIPmentation et le tiers restant ainsi que l'ovotestis sont utilisés pour le RNA-seq (Figure_61) ; tous les échantillons sont plongés, dès la fin de la dissection, dans de l'azote liquide puis stockés au congélateur -80°C. Les deux chronotypes de *S. mansoni*, diurne et nocturne, sont analysés.

<u>Figure 61</u>: **Répartition de l'échantillon entre les expériences de ChIPmentation et de RNA-seq.** Pour chaque *B. pfeifferi*, 2/3 de l'hépatopancréas sert pour le ChIPmentation et le 1/3 restant ainsi que l'ovotestis servent pour le RNA-seq. L'hépatopancréas est en gris foncé, l'ovotestis en gris clair et les parasites en ovales beiges.

Pour chaque chronotype, deux séries d'échantillonnage ont eu lieu. La première consiste à disséquer toutes les quatre heures pendant 48h trois *B. pfeifferi* infestés par des parasites mâles et trois *B. pfeifferi* infestés par des parasites femelles qui sont restés sous une photopériode classique (L-O). La deuxième série suit chronologiquement la première et consiste à disséquer toutes les quatre heures pendant 24h trois *B. pfeifferi* infestés par des parasites femelles qui sont restés sous une photopériode classique (L-O). La deuxième série suit chronologiquement la première et consiste à disséquer toutes les quatre heures pendant 24h trois *B. pfeifferi* infestés par des parasites mâles et trois *B. pfeifferi* infestés par des parasites femelles qui ont été soumis, en plus, pendant 10 jours, à une photopériode inversée (O-L) (Tableau_38).

<u>Tableau 38</u>: **Description des deux séries d'échantillonnage pour les expériences d'épigénétique et de transcriptomique**. Les deux séries sont réalisées pour les deux chronotypes de *S. mansoni*. Les mâles et les femelles correspondent au sexe du parasite qui infeste les *B. pfeifferi*.

Série d'échantillonnage	1 ^{ère} série	2 ^{ème} série	
Photopériode	L-O	O-L pendant 10 jours	
	48h	24h	
Durée échantillonnage	4h 8h 12h 16h 20h 24h 4h 8h 12h 16h 20h	4h 8h 12h 16h 20h 24h	
Ecart entre les points	4h		
Nombre d'individus par point	3 mâles et 3 femelles		

Pour le ChIPmentation, l'extraction de la chromatine permet de pouvoir réaliser trois réactions d'immunoprécipitations différentes avec un input par morceau d'hépatopancréas (Figure_62). Dans le cadre de nos expériences, deux réactions sont utilisées (H3K4me3 et H3K9ac) et la 3^{ème} dose sert de back-up soit pour refaire une IP soit pour éventuellement faire le ChIPmentation sur une nouvelle marque.

<u>Figure 62</u>: **Description des deux séries d'échantillonnage pour les expériences d'épigénétique et transcriptomique**. Les deux séries sont réalisées pour les deux chronotypes de *S. mansoni*. Les mâles et les femelles correspondent au sexe du parasite qui infeste les *B. pfeifferi*.

Cet échantillonnage commun entre l'expérience d'épigénétique et de transcriptomique permet pour chaque individu/génome de parasite d'avoir deux profils : le profil épigénétique et l'expression des gènes associés.

II.2.1.2. Chronobiologie

II.2.1.2.1. Protocole

Sur les 480 *B. pfeifferi* infestés avec 1 miracidium de *S. mansoni* diurne, 99 se sont révélés positifs à l'infestation et ont été échantillonnés. Sur ces 99 *B. pfeifferi*, 57 ont été infestés par des mâles et 42 par des femelles. Sur les 504 *B. pfeifferi* infestés avec 1 miracidium de *S. mansoni* nocturne, 123 se sont révélés positifs à l'infestation et ont été échantillonnés. Sur ces 123 *B. pfeifferi*, 62 ont été infestés par des mâles et 61 par des femelles. La chronobiologie a été effectuée pendant deux jours consécutifs sur 12 profils d'infestations (6 mâles et 6 femelles) pour chaque chronotype, soit au total 24 profils diurnes et 24 profils nocturnes.

II.2.1.2.2. Chronotype diurne

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_63 et le Tableau_39. Sur les 24 profils diurnes réalisés, 16 ont pu être utilisés car leur émission totale sur les 24 heures était égale ou supérieure à 20 cercaires.

Le chronotype diurne a une émission unimodale dont l'heure du pic moyen est à 10-11h. La plage horaire moyenne d'émission est d'environ 4h avec une intensité de 92%. La plage d'émission a une asymétrie modérée sur la droite et une distribution normale. Il n'y a pas d'émission de cercaires nocturne.

<u>Figure 63</u>: Chronobiologie des chronotypes diurne (orange) et nocturne (violet) de *S. mansoni* pour les échantillons d'épigénétique et transcriptomique. Chaque histogramme a, en ordonnées, la moyenne du pourcentage des cercaires émises ± écart standard. L'axe des abscisses représente les 24h de la journée, débutant à 6h, début du jour, et finissant à 6h, fin de la nuit. L'arrière-plan gris correspond à l'obscurité. La ligne noire marque le début de l'obscurité à 18h.

	Moye	Test de Wilcoxon-Mann-		
Paramètres	Variations	Whitney		
	Diurne (N=16)	Nocturne (N=20)		
Photopériode	L-O	L-0		
Nombre de nics	1	1		
Nombre de pics	1	1		
Heure du pic	10-11h	19-20h	4	
	10-11h à 11-12h	18-19h à 20-21h	<i>\ ≠</i>	
Diago d'émission (h)	3,6 ± 0,2	3,4 ± 0,1	W = 0, <i>p</i> = 0,53	
Flage a emission (n)	3 à 5	3 à 5		
Intoncitó do la plago (%)	92,3 ± 1,9 97,6 ± 0,5		W = 74 $p = 0.006$	
Intensite de la plage (76)	69,8 à 100	94,3 à 100	vv = 74, p = 0,006	
Asymótria	+0,7 ± 0,2	+0,5 ± 0,3	W = 166, <i>p</i> = 0,86	
Asymethe	-1,4 à +1,8	-1,7 à +1,7		
Anlaticcomont	0 ± 0,8 (N=8)	-0,7 ± 1,3 (N=7)	W = 20 p = 0.87	
Aplatissement	-3,0 à +3,3	-5,1 à +2,9	νν – 30, <i>μ</i> – 0,87	
Corcairos la puit (%)	0	99,0 ± 0,3	$M = 177 E p = E 7E_0 09$	
	0	95,2 à 100	w – 1/7,5, p – 5,75e-08	

<u>Tableau 39 :</u> Paramètres des profils moyens d'émission, accompagnés des variations individuelles, pour les parasites diurne et nocturne de *S. mansoni* pour les échantillons de l'expérience épigénétique et transcriptomique

II.2.1.2.3. Chronotype nocturne

Les résultats moyens, accompagnés des variations individuelles, sont présentés dans la Figure_63 et le Tableau_39. Sur les 24 profils nocturnes réalisés, 20 profils ont rempli cette condition d'émission d'au moins 20 cercaires.

Le chronotype nocturne a une émission unimodale dont l'heure du pic moyen est à 19-20h. La plage horaire moyenne d'émission est d'un peu plus de 3h avec une intensité de 97%. La plage d'émission moyenne est symétrique avec une distribution normale. L'émission nocturne est majoritaire avec en moyenne 99% des cercaires émises la nuit.

II.2.1.2.4. Comparaison des chronotypes

Les comparaisons sont présentées dans le Tableau_39. Les différences et similitudes observées entre les deux chronotypes dans cette expérience d'échantillonnage sont les mêmes que celles établies dans la première partie (présentation des chronotypes). Les profils moyens des deux chronotypes se différencient par l'heure du pic (10-11h pour les diurnes et 19-20h pour les nocturnes) et le pourcentage de cercaires émises la nuit (0% pour les diurnes et 99% pour les nocturnes ; p<0,01). Il est à noter que l'intensité de l'émission de la plage est significativement plus forte chez le chronotype nocturne (p<0,01). Les deux chronotypes ont en commun la présence d'un seul pic. De plus, les plages d'émission, leurs coefficients d'asymétrie et d'aplatissement ne sont pas significativement différents entre les diurnes et les nocturnes (p>0,01).
II.2.2. ChIPmentation

Dans le cadre de cette thèse nous allons nous concentrer uniquement sur la modification d'histone pour décortiquer le rythme d'émission des cercaires. Les modifications des histones impliquées dans l'état de la chromatine sont associées à l'activation et à la répression de la transcription. Les histones sont des protéines responsables de la compaction de l'ADN et donc, de l'accès ou non de la machinerie de transcription à l'ADN. La modification d'histones est une modification post-traductionnelle, qui a lieu sur les acides aminés constituant la queue des histones H2A, H2B, H3 et H4. Il existe quatre types de modification d'histone qui sont la méthylation, l'acétylation, la phosphorylation et l'ubiquitination (Figure_64). On retrouve, pour chacune de ces modifications, des exemples d'implication dans la régulation du rythme circadien.

Figure 64 : Les quatre types de modification d'histone avec des exemples de marque.

Pour cette thèse, les marques H3K4me3 (triméthylation de l'histone H3 sur la lysine n°4) et H3K9ac (acétylation de l'histone H3 sur la lysine n°9) ont été testées. La marque H3K4me3 est présente chez *S. mansoni* (Roquis, Taudt et al., 2018). Chez d'autres espèces, cette marque est rythmique dans beaucoup de promoteurs de gènes de l'horloge (clock) ou de gènes contrôlés par les gènes de l'horloge (clock) (Koike, Yoo et al., 2012; Aguilar-Arnal, Hakim et al., 2013) et représente ainsi une piste intéressante. La marque H3K9ac est aussi présente chez *S. mansoni* et de manière plus intéressante dans le promoteur du gène *Sm*Rho (smp_104210) au stade cercaire (Cosseau, Azzi et al., 2009). Ce gène code pour une rhodopsine (récepteur couplé à la protéine G), un photorécepteur impliqué notamment dans la vision. De façon plus générale, la position H3K9 est connue pour être un site préférentiel d'acétylation pour le gène CLOCK qui a une activité d'histone acétyl transférase (HAT) (Doi,

Hirayama & Sassone-Corsi, 2006). Chez les mammifères, les marques H3K4me3 et H3K9ac sont rythmiques dans les promoteurs de gènes clock (Aguilar-Arnal, Hakim et al., 2013 ; Takahashi, 2015).

L'objectif principal de ce sous chapitre va être de déterminer s'il existe un rythme d'acétylation ou de méthylation des histones dans les deux chronotypes de *S. mansoni* qui serait impliqué dans le rythme d'émission des cercaires.

Pour étudier les marques d'histone, la technique de ChIPmentation a été utilisée. Le premier point de ce chapitre présentera la technique et toutes les optimisations qui ont dû être réalisées pour l'adapter à *S. mansoni*. Les deuxième et troisième points seront consacrés respectivement aux résultats de la marque H3K4me3 et de la marque H3K9ac.

II.2.2.1. Méthode et optimisations

Le ChIP-seq (Chromatin Immunoprecipitation-sequencing) pour immunoprécipitation de la chromatine est la technique qui permet d'étudier les protéines qui interagissent avec l'ADN et donc les modifications d'histone. Cette technique permet d'identifier les sites de liaisons des protéines associées à l'ADN, dans un premier temps, par la capture du complexe ADN-protéine via un anticorps spécifique (immunoprécipitation) puis, dans un second temps, par le séquençage de l'ADN issu du complexe. Dans le contexte d'étude d'un rythme d'acétylation et méthylation d'histone, un grand nombre d'échantillons doivent être générés pour établir une cinétique avec assez de points temporels pour chaque marque. Ce souci de quantité de matériel biologique est aussi étayé par la nature du modèle, ici S. mansoni, dont l'obtention des individus nécessite le sacrifice d'animaux. S'ajoute encore à cela le fait que la technique de ChIP-seq est très chronophage (Annexe 7). Pour pallier ces problèmes, le choix de la technique s'est porté sur le ChIPmentation, une version semi-automatisée du ChIP-seq qui nécessite de faibles quantités de chromatine (Schmidl, Rendeiro et al., 2015 ; Roels, Kuchmiy et al., 2020). Une partie du temps de cette thèse a été consacrée à l'adaptation du ChIPmentation sur le modèle S. mansoni et s'est concrétisé sous la forme d'un article de méthodologie, et en cours de review dans Wellcome Open Research (Lasica, de Carvalho Augusto et al., 2022). L'objectif de ce point est de présenter les différentes optimisations qu'a nécessité l'adaptation du ChIPmentation au modèle S. mansoni.

II.2.2.1.1. Méthode

La technique de ChIPmentation se divise en six étapes, l'échantillonnage biologique, la préparation de la chromatine, l'immunoprécipitation (ChIPmentation), la fabrication des bibliothèques, le séquençage et les analyses bioinformatiques des données. Dans le cadre de nos expériences, l'échantillonnage biologique consiste à récupérer des hépatopancréas de B. pfeifferi infestés par S. mansoni. La préparation de la chromatine consiste, dans un premier temps, en la lyse mécanique des échantillons, suivie de la fixation des protéines avec du formaldéhyde (cross-link). La chromatine est récupérée après une fragmentation enzymatique (Mnase) ou physique (sonication). L'étape d'immunoprécipitation consiste à isoler la chromatine contenant la marque histone d'intérêt en la ciblant avec un anticorps spécifique. Cette étape est réalisée par la machine IP-star de Diagenode ® où se déroule aussi l'ajout des adaptateurs grâce à l'action de la transposase Tn5. Pour fabriquer les bibliothèques, il faut dans un premier temps éliminer les protéines (histones) pour ne garder que l'ADN par le décross-link du complexe. La détermination du nombre de cycles d'amplification pour chaque échantillon est faite à l'aide d'une qPCR. Une fois les paramètres définis, l'ADN est amplifié avec les amorces qui serviront pour le séquençage. Les bibliothèques ainsi réalisées sont ensuite séquencées. Les analyses bioinformatiques consistent dans un premier temps à aligner les séquences contre les génomes, puis à effectuer une détection des pics (accumulation significative des séquences), enfin une analyse rythmique et fonctionnelle des gènes associés aux pics est ensuite réalisée.

II.2.2.1.2. Optimisations

Le ChIPmentation qui a initialement été développé sur culture cellulaire humaine (Schmidl, Rendeiro et al., 2015 ; Roels, Kuchmiy et al., 2020) a nécessité un grand nombre d'optimisations pour s'adapter à notre modèle d'étude. Le détail de ces optimisations va faire l'objet de ce sous chapitre (Figure_65).

<u>Figure 65</u> : Schéma récapitulatif des différentes optimisations pour l'étude des modifications d'histone chez *S. mansoni.*

L'optimisation du ChIPmentation a commencé par le choix du type d'échantillon. L'utilisation de tissu frais s'est révélé être la meilleure option car nos tests ont révélé un meilleur pourcentage d'alignement contre le génome de *S. mansoni*. Une fois choisi, il faut aussi déterminer le temps de sonication idéal et le volume d'anticorps à utiliser par échantillon. Toutefois, l'utilisation de tissu frais à fait remonter la problématique de variabilité biologique des échantillons. Chaque échantillon est un mollusque unique, ce qui implique la variation de la densité parasitaire et la taille du tissu. Si les échantillons ne sont pas normalisés, on ne pourra pas déterminer si la différence entre deux échantillons est due à une différence biologique ou technique.

Pour pallier ceci, il a été envisagé dans un premier temps de compter les noyaux d'un aliquot de l'échantillon avant l'étape de fixation (cross-link). Les diverses tentatives se sont révélées infructueuses car les noyaux étaient trop lysés suite à la fragmentation mécanique et donc impossibles à compter.

La solution s'est alors portée sur l'adaptation de la méthode de spike-in décrite par Bonhoure, Bounova et al. (2014) où, pour quantifier des échantillons de souris, ils ajoutent un spike-in de culture cellulaire HeLa (humain). Un spike-in est l'ajout d'une quantité connue, dans notre cas de chromatine de drosophile, à tous les échantillons d'une expérience pour pouvoir les normaliser lors des analyses bioinformatiques. Dans le cas de Bonhoure, Bounova et al. (2014), il y a immunoprécipitation des échantillons (chromatine souris + spike-in humain) avec deux anticorps, un pour l'expérience de ChIP et l'autre dirigé contre des régions connues pour être immunoprécipitées dans le spike-in (humain). Le taux d'immunoprécipitation du second anticorps avec le spike-in sert à calculer le facteur de normalisation qui sera appliqué aux échantillons. Dans notre cas expérimental, l'ajout d'un spike-in implique la coexistence de trois espèces différentes (mollusque, parasite et spike-in) au sein d'un même échantillon. Pour ne pas rajouter de la complexité, il a été décidé de ne garder qu'un seul anticorps par échantillon et d'utiliser de la chromatine d'embryon de drosophile diluée au 10^e.

Différents volumes de chromatine de drosophile ont été testés. Le test des volumes de spike-in a consisté à faire des ChIPmentations en ajoutant 0, 5, 10 ou 15µL de spike-in après la sonication des échantillons pour les marques H3K4me3 et H3K9ac. Peu importe le volume utilisé, les profils méta gènes H3K4me3 et H3K9ac, ne sont pas affectés (Figure_66).

Pour déterminer le meilleur volume, on sélectionne visuellement tous les pics sur le génome de *Drosophila melanogaster* véritablement enrichis puis on calcule la profondeur de ces pics dans chaque condition. Les pics véritablement enrichis sont les pics qui s'alignent uniquement sur la version 6 du génome de *Drosophila melanogaster* (pic absent de la condition 0µL de spike-in) avec une profondeur supérieure à 10 reads. La détection des pics a été faite avec MACS2 sur galaxy version 2.1.1.20160309.5 (Zhang, Liu et al., 2008 ; Feng, Liu et al., 2012), la sélection visuelle avec IGV (Integrative genome viewer) version 2.8.2 et le comptage des reads par pic (profondeur) a été déterminé avec bedtool multicov sur galaxy version 2.29.0 (Quinlan & Hall, 2010).

Pour les deux marques, la meilleure condition est 15µL avec, respectivement, une profondeur moyenne de 69 reads pour 196 pics H3K4me3 drosophile et 42 reads pour 31 pics H3K9ac drosophile (Tableau_40 et Tableau_41). Même si le nombre de pics sélectionnés est inférieur aux 500 pics utilisés dans l'article de Bonhoure, Bounova et al. (2014), ces conditions restent satisfaisantes grâce à leur profondeur moyenne qui est bien supérieure aux 13 reads de l'article.

<u>Tableau 40 :</u> Profondeur moyenne des pics uniques à *Drosophila melanogaster* en fonction du volume de spike-in pour la marque H3K4me3

H3K4me3	ΟµL	5μL	10µL	15µL
Le nombre de pics uniques à <i>Drosophila</i> avec un véritable enrichissement sélectionné	0		196	
Profondeur moyenne des pics communs véritablement enrichis (nombre de reads par pics)	0	3,3 ± 1,3 0 à 237	15,9 ± 6,5 <i>0 à 1251</i>	69,1 ± 21,6 <i>11 à 4090</i>

<u>Tableau 41 :</u> Profondeur moyenne des pics uniques à *Drosophila melanogaster* en fonction du volume de spike-in pour la marque H3K9ac

H3K9ac	ΟµL	5μL	10µL	15µL
Le nombre de pics uniques à <i>Drosophila</i> avec un véritable enrichissement sélectionné	0		31	
Profondeur moyenne des pics communs véritablement enrichis (nombre de reads par pics)	0	9,6 ± 2,3 0 à 63	21,2 ± 4,4 0 à 120	42,3 ± 9,1 11 à 220

Une fois le volume de spike-in choisi, il a fallu inclure l'étape de normalisation dans le pipeline bioinformatique. Dans un premier temps, le calcul du facteur de spike-in et la normalisation étaient des étapes hors pipeline en suivant la formule issue de Bonhoure, Bounova et al. (2014). Suite à l'impossibilité de faire fonctionner Chromstar avec nos échantillons normalisés, il a été décidé de changer de pipeline bioinformatique et d'utiliser SnakePipe (Figure_67) (Bhardwaj, Heyne et al., 2019). Ce pipeline offre l'avantage de prendre en compte les inputs et le spike-in. La normalisation est faite en appliquant une méthode similaire à celle implémentée dans DEseq2.

Figure_67 : Pipeline bioinformatique utilisé pour l'analyse finale des échantillons de ChIPmentation avec Snakepipe.

II.2.2.1.3. Article ChIPmentation

Le protocole expérimental utilisé pour les expériences de ChIPmentation est détaillé dans le matériel et méthode de l'article (Annexe 7).

II.2.2.2. H3K4me3

La moyenne et les variations individuelles du nombre total et du pourcentage d'alignement des reads par échantillon, selon chaque chronotype, sont présentées dans le Tableau_42. Pour les analyses, seuls les échantillons avec un minimum de 1 500 000 reads alignés uniquement sur le génome de *S. mansoni* ont été gardés. Si initialement l'expérience devait compter au minimum 2 échantillons mâles et 2 échantillons femelles par point temporel, il a été décidé de réduire le nombre à 3 échantillons (sexes confondus) par point temporel. Le temps de la thèse, amputé par la pandémie, ne permettait pas de prendre le temps de refaire les ChIPmentation pour tous les échantillons en dessous de la limite des reads. Les expériences de chronobiologie qui montrent que le sexe du parasite n'a pas d'importance dans le rythme d'émission des cercaires justifient scientifiquement ce choix. Malheureusement, pour le chronotype diurne, deux échantillons sont en dessous de cette limite des 1 500 000 reads malgré la réalisation de ChIPmentation sur de nouveaux individus. Ces deux échantillons représentent tous les deux le point temporel 16h pour le 1^{er} jour d'échantillonnage.

H3K4me	Moyen Variations i	Test de Wilcoxon- Mann-Whitney	
	Diurne (N=31)	Nocturne (N=33)	
Nombre total de reads	8 303 741 ± 411 309	6 683 639 ± 238 292	W = 2072,
	<i>4 610 796 à 12 106 301</i>	4 500 323 à 10 657 012	p = 0,0
Alignement sur	46,90 ± 2,16	52,92± 2,12	W =1059,
S. mansoni (%)	27,08 à 69,41	29,69 à 75,73	p = 0,001
Alignement unique sur	30,57 ± 1,67	37,72 ± 1,90	W = 1012,
S. mansoni (%)	13,24 à 44,53	19,82 à 66,03	p = 0,0004
Alignement unique sur <i>S. mansoni</i> (nombre de reads)	2 448 792 ± 166 405 1 535 469 à 5 391 156	2 423 928 ± 110 007 1 612 973 à 3 998 228	W = 1154, p = 0,007
Alignement sur	20,93 ± 1,77	13,31 ± 1,19	W = 2243,
<i>B. glabrata</i> (%)	6,79 à 41,84	4,09 à 30,14	p = 0,0007
Alignement unique sur	9,85 ± 0,87	6,02 ± 0,62	W = 2183,
B. glabrata (%)	2,76 à 19,38	0,77 à 14,70	p = 0,002
Alignement unique sur <i>B.</i> glabrata (nombre de reads)	845 169 ± 98 113 194 746 à 2 246 369	396 528 ± 42 797 47 727 à 1 135 777	W = 2265, p = 0,0004
Alignement sur D. melanogaster, spike-in (%)	18,17 ± 2,00 4,57 à 36,59	23,83 ± 2,09 7,42 à 56,38	W = 1651, p = 0,94
Alignement unique sur	11,58 ± 1,32	15,14 ± 1,35	W = 1654,
D. melanogaster,	2,82 à 24,25	<i>4,47 à 35,95</i>	p = 0,93

Tableau_42 : Nombre et pourcentage d'alignement des reads moyens, accompagnés des variations individuelles, pour les parasites diurne et nocturne de *S. mansoni* pour les échantillons de l'expérience épigénétique H3K4me3

spike-in (%)			
Alignement unique sur D. melanogaster, spike-in (nombre de reads)	943 504 ± 116 076 198 766 à 2 182 448	1 060 953 ± 121 976 279 340 à 3 401 341	W = 1708, p = 0,7

S. mansoni est en bleu, B. glabrata en orange et D. melanogaster (spike-in) en vert.

Pour les chronotypes, les échantillons s'alignent majoritairement sur le génome de S. mansoni. Toutefois chez le chronotype nocturne, significativement plus de reads s'alignent sur le génome du spike-in que sur celui de *B. glabrata* (p < 0,01). Cette situation n'est pas dérangeante puisque la part de l'hôte dans l'échantillon est trop faible pour être exploitée dans des analyses bioinformatiques. Cette faible part de l'hôte peut s'expliquer par le fait que l'hépatopancréas est rempli de sporocystes et que le ratio cellule hôte/parasite penche en faveur de S. mansoni. Il peut aussi être ajouté à cela que l'alignement se fait sur le génome d'une autre espèce que celle présente dans l'échantillon car le génome de *B. pfeifferi* n'existe pas. Côté spike-in, il n'y a aucune différence significative entre les deux chronotypes (p > 0,01), ce qui permet de faire des comparaisons biologiques. Dans les échantillons nocturnes, l'immunoprécipitation du parasite est significativement plus importante. Ceci peut s'expliquer soit par le fait que le chronotype nocturne a une meilleure affinité avec l'anticorps, soit que les échantillons du chronotype nocturne contiennent plus de parasite que ceux du chronotype diurne. Si on s'intéresse aux inputs (chromatine non immunoprécipitée des échantillons), il n'y a pas de différence significative en termes de pourcentage d'alignement du parasite et du spike-in entre les deux chronotypes (p>0,01). Le pourcentage d'alignement sur le génome de B. glabrata n'est pas significativement différent avec un seuil fixé à 0,01 mais la p-value reste faible (w=1516, p = 0,02). Si on la considère comme significative, on pourrait alors penser que les mollusques utilisés pour le chronotype diurne étaient plus grands que pour le chronotype nocturne. Toutefois, comme le pourcentage de parasite n'est pas significativement différent entre les deux chronotypes, il serait plus plausible de penser que c'est tout simplement l'anticorps qui a une meilleure affinité avec le chronotype nocturne.

II.2.2.2.1. Rythme des pics

Pour détecter le rythme de méthylation des histones, le logiciel GeneCycle (Ahdesmäki, Fokianos & Strimmer, 2012) et le logiciel meta2d (Wu, Anafi et al.,2016) ont été utilisés. Les logiciels reposent sur l'utilisation du test exact de Fisher. Pour pallier au risque de faux positifs dus au grand nombre de tests à réaliser, chaque logiciel applique une correction de la *p*-value basée sur la méthode de Benjamini-Hochberg, appelée BH.Q ou FDR (False Discovery rate) avec un seuil fixé à 5% de risque (BH.Q/FDR < 0,05). Un pic est considéré comme rythmique s'il est détecté dans les deux logiciels avec au moins le seuil *p*-value < 0,05. Cette précaution est utilisée pour éviter une variabilité qui serait propre au logiciel (Takahashi, Kumar et al., 2015 ; Rijo-Ferreira, Acosta-Rodriguez et al., 2020).

Les deux chronotypes confondus totalisent 6360 pics H3K4me3 détectés. Pour les analyses rythmiques, seuls les pics avec une profondeur moyenne supérieure à 10 reads sont utilisés. Le nombre de pics rythmiques par chronotype et logiciels sont présentés dans le Tableau_43.

	H3K4me3	Diurne (6163 pics filtrés)	Nocturne (6090 pics filtrés)	Commun aux deux chronotypes
GeneCycle	Pics	67	909	31
(p-value)	Gènes associés	21	815	10
meta2d	Pics	0	69	
(p-value)	Gènes associés	0	63	

Tableau 43 : Nombre de pics H3K4me3 détectés comme rythmiques et nombre de gènes associé en fonction du logiciel et du chronotype du parasite (p < 0,05). Aucun gène n'est rythmique avec le FDR < 0,05.

Aucun pic n'est détecté comme rythmique avec la FDR/BH.Q, peu importe le logiciel et le chronotype. Pour le chronotype diurne aucun pic H3K4me3 n'est considéré comme rythmique car aucun pic n'a été détecté avec le logiciel meta2d (Tableau_43). Pour le chronotype nocturne, 909 pics ont été détectés comme rythmiques avec GeneCycle et 69 avec le logiciel meta2d (p < 0,05). Sur tous ces pics, seuls deux sont communs aux deux logiciels (Figure_68). Le premier pic est le pic n°4353 qui est présent sur le gène Smp_147140. Ce gène code pour un canal TRP (Transient Receptor Potential) cationique. Chez la drosophile les canaux TRP sont impliqués dans les étapes intermédiaires de la phototransduction (Montell, Jones et al., 1985). Le pic des marques H3K4me3 est nocturne et à minuit, le point temporel juste après celui du pic d'émission des cercaire (20h). Le second gène est smp_340310, une alpha-1,2mannosidase impliqué dans la synthèse des glycoprotéines. Le pic des marques H3K4me3 est entre 4h et 8h matin.

<u>Figure 68</u> : **Profils des deux marques H3K4me3 rythmiques chez le chronotype nocturne.** Chaque histogramme a, en abscisse, les heures (points temporels) et en ordonnées le nombre de reads pour le pic sélectionné. En fond, se trouve le profil d'émission des cercaires. Les rectangles gris symbolisent l'obscurité (O), les blancs la lumière (L) et les rectangles bleus la période du pic d'émission des cercaires.

II.2.2.2.2. Gènes associés aux marques H3K4me3

Si les analyses rythmiques n'ont pas été très probantes sur un rythme de méthylation des histones, cela ne signifie pas pour autant qu'il n'y a pas de lien avec le rythme d'émission des cercaires. Il a été montré qu'il y a une variation du taux de méthylation des histones en fonction du stade de vie de *S. mansoni* (Roquis, Taudt et al., 2018). Dans notre contexte d'étude, nous pouvons penser qu'il peut y avoir un set de marque d'histone (ici H3K4me3) qui pourrait être spécifique aux stades sporocystes/cercaires intrasporocystes et qui soit impliqué dans le rythme d'émission des cercaires. Voilà pourquoi il est intéressant de regarder de plus près les gènes associés aux marques d'histone H3K4me3. Sur les 6360 pics H3K4me3 détectés, 5537 coïncident avec des gènes.

Tout comme pour les gènes candidats QTL, une sélection subjective basée sur la recherche de gènes de l'horloge, de la phototransduction, de l'acétylation et la méthylation des histones a été faite. L'enrichissement GO a été fait avec Blast2GO version 5.2 en utilisant le Fisher's Exact Test (p<0,05). L'analyse d'enrichissement Kegg pathway a été faite sur le serveur KAAS en utilisant le programme Blast avec la méthode BBH (Bi-directional Best Hit).

II.2.2.2.3. Les gènes de l'horloge (Basic Helix-Loop-Helix)

Il n'y a aucun gène canonique de l'horloge dans les gènes marqués H3K4me3. Toutefois, nous retrouvons trois gènes du QTL interspécifique *mansoni* X *rodhaini* (Tableau_33 partie génétique), Smp_021340, Smp_123570 et Smp_333620 qui contiennent des motifs BHLH.

II.2.2.2.4. Les rhodopsines et autres gènes impliqués dans la phototransduction

On retrouve la rhodopsine (Smp_117340) du QTL interspécifique. On retrouve aussi 6 rhodopsine-like ; parmi elles, deux sont issues du QTL *mansoni* X *mansoni* (Smp_132730 et Smp_127310) et deux autres du QTL interspécifique (Smp_083880 et Smp_326640). Les deux autres sont des putatives rhodospine-like orphan (Tableau_44), c'est-à-dire des rhodopsine-like dont le ligand n'a pas encore été identifié.

<u>Tableau</u>	<u>44 : Liste</u>	e des gènes	associés aux	pics H3K4me3	, rhodopsine e	et rhodopsine-like
----------------	-------------------	-------------	--------------	--------------	----------------	--------------------

Intérêt	Chr.	Identifiant (ID) du gène	Annotation GFF
Phodonsino liko	1	Smp_170610	Putative rhodopsin-like orphan GPCR
Rhodopsine-like	1	Smp_056080	Putative rhodopsin-like orphan GPCR

Parmi les différents acteurs de la phototransduction, nous retrouvons, dans les gènes marqués H3K4me3 : la rhodopsine, la protéine G, la phosphodiesterase, la GPCR kinase (sérine/thréonine kinase), l'arrestine, la recoverine, la protéine phosphatase 2A (PP2A), la GTPase activating protine et la guanylyl cyclase (Tableau_45).

Tableau 45 : Liste des gènes associés aux pics H3K4me3 potentiellement liés à la phototransduction

Intérêt	Chr.	Identifiant	Annotation GFF
	1	Smp 098760	Transducin beta-like
Protéine G	4	Smp_050700	Transducin-like enhancer protein 1
(Transducine)	OTI intrasné	Smp_130000 Smp_010230 et Smp	016630 (Tableau 27)
(Transadenie)	OTL intersné	Smp_010230 et Smp	_018400 (Tableau_27)
	2	Smp_075150 et 5mp	Phosphodiesterase
·	2	5mp_140120	Putative ectonucleotide
	5	Smp_153340	pyrophosphatase/phosphodiesteras e
	6	Smp_141980	Dhasphadiastorasa
Phosphodiestérase		Smp_179590	Phosphodiesterase
	ZW	Smp_151190	Retinal rod rhodopsin-sensitive cgmp 3',5'-cyclic phosphodiesterase, putative
	QTL intraspé.	Smp_105040 (Tablea	iu_27)
	QTL interspé.	Smp_018360 (Tablea	iu_35)
		Smp_176620	
		Smp_098840	
		Smp_068990	
		Smp_124130	Serine/threonine kinase
		Smp_097940	
		Smp 141230	
		Smp 073340	
	1	Smp 210820	Protein-serine/threonine kinase
		Smp_160760	Serine/threonine kinase
		Smp_090890	Serine/threonine protein kinase
		Smp 090980	· · · · · · · · · · · · · · · · · · ·
		Smp 158560	
		Smp_103950	
		Smp_040190	
		Smp_018290	
GPCR kinase,		Smp 132260	Serine/threonine kinase
serine/		Smp 181490	
(rhodosnino kinase	3	Smp 000720	
(modospine kinase)		Smp 134910	
		Smp_177120	
		Smp_172700	
		Smp_049760	Receptor protein serine/threonine kinase
		Smp_150860	
		Smp_053560	Sarina/thraoning kinasa
	4	Smp_126460	Serine/timeonine kinase
		Smp_041770	
		Smp_334370	Receptor protein serine/threonine kinase
		Smp_171370	
	5	Smp_347070	Corino (throoping liness
	6	Smp_123290	Serine/threonine kinase
	σ	Smp_080730	1

		Smp_169980	
		Smp_169950	
		Smp_155720	
		Smp_180400	
	7	Smp_127920	
		Smp_057360	
		Smp_125370	
		Smp_152330	
		Smp_097820	
		Smp 156990	
		Smp_068960	
		Smp_210970	
		Smp_094760	
		Smp 047190	
		Smp 163380	
	ZW	Smp 058620	
		Smp 094190	
		Smp 176580	
		Smp 096640	
		Smp 194610	
		Smp 151140	
		Smp 151100	
		Smp 077180	
	OTL intraspé.	Smp 068060. Smp (009800 et Smp 005190 (Tableau 27)
	QTL interspé.	Smp 123640, Smp 1	.44390 et Smp 042920 (Tableau 35)
	1	Smp 152290	
Arrestine	2	Smp 122900	Putative beta-arrestin 1
	QTL intraspé.	Smp 126080 (Tablea	iu 27)
		Smp 171010	Putative ef-hand domain (C-
	1	Smp 159160	terminal) containing protein
domaine		Smp_005230, Smp_1	36640, Smp_083740 et Smp_137410
EF-hand	QTL intraspé.	(Tableau 27)	· · - · -
(Recoverine)		Smp 181460, Smp 1	.06060, Smp 134950, Smp 018940
	QTL interspe.	(Tableau_35)	
		Smp_176600	Serine/threonine protein
		Smp_035430	phosphatase 2A regulatory subunit
	1	<u> </u>	Serine/threonine-protein
		Smp_166290	phosphatase 2A activator
	3	Smp_173810	Serine/threonine-protein
Dratáina	4	Sma 055770	phosphatase 2A 55 kDa regulatory
Proteine	4	smp_055770	subunit B
phosphatase ZA	E	Smp 152/10	Putative serine/threonine protein
(FFZA)	5	Sinp_155410	phosphatase 2a regulatory subunit A
			Serine/threonine protein
	ZW	Smp_172280	phosphatase 2a regulatory subunit
			A, putative
	QTL intraspé.	Smp_165490 (Tablea	iu_27)
	QTL interspé.	Smp_308680 (Tablea	iu_35)
GTPase activating	1	Smp 060400	Putative regulator of G protein
protein	⊥	3111P_09400	signaling

			Dec stacce estivating protein		
		Smp 072660	Ras gipase activating protein,		
		op_0/2000	putative		
	3	Smp_079800	Putative gtpase activating protein		
		6 407500	Putative regulator of G protein		
	3	Smp_127520	signaling		
	4	Smp_155780	Gtpase activating protein-related		
	OTL intracná	Smp_007210, Smp_2	Smp_007210, Smp_180160, Smp_028030,		
QTEINITAS		Smp_094890, Smp_319130 et Smp_165530 (Tableau_27)			
	QTL interspé.	Smp_138430, Smp_2	138500, Smp_000670 (Tableau_35)		
	1	Smp_142620			
Guanylyl cyclase	7\\/	Smp_019790	Guanylate cyclase		
	2.00	Smp_153500			
	1	Sma 122620	Transmembrane gtpase mfn		
CTDAco		Smp_132620	(Mitofusin 1) (Fzo homolog), putative		
GTPASE	QTL intraspé.	Smp_025740 (Tableau_27)			
	QTL interspé.	Smp_084940 (Tableau_35)			

Chr. : chromosome ; intraspé.: intraspécifique; interspé. : interspécifique.

II.2.2.2.5. Les gènes impliqués dans l'acétylation et la méthylation des histones

Parmi les gènes associés à la marque H3K4me3, nous retrouvons aussi des gènes qui codent pour les histones H2A, H2B, H3 et H4, ainsi que les writer et eraser pour l'acétylation et la méthylation des histones (Tableau_46).

<u>Tableau 46 :</u> Liste des gènes associés avec la marque H3K4me3 en lien avec les histones, l'acétylation/désacétylation des histones et la méthylation/déméthylation des histones

Intárôt	Chr	Identifiant	Annotation
merei	Chr.	(ID) du gène	GFF
	1	Smp_053390	Histone H4
		Smp_086860	Listona LI2A
	7	Smp_031720	HISTORE HZA
Histone	ZW	Smp_082240	Histone H3
	OTL intracnó	Smp_036220,	Smp_210630, Smp_246990et
	QTE intraspe.	Smp_124840 (Tableau_27)
	QTL interspé.	Smp_000150 e	et Smp_027850 (Tableau_35)
	1	Smp_178700	Putative histone acetyltransferase type
			B catalytic subunit
Llistopo poátuloso	2	Smp_194520	
histone acetylase	4	Smp_053140	Histone acetyltransferase
	ZW	Smp_198670	
	QTL intraspé.	Smp_131320 (Tableau_27)
	QTL interspé.	Smp_105910 e	et Smp_083930 (Tableau_35)
	1	Smp_069380	Putative histone deacetylase 4, 5
	L	Smp_091990	Putative histone deacetylase 1, 2,3
Histone désacétylase	2	Smp_138770	Histone deacetylase, putative
	5	Smp_093280	Histone deacetylase
	QTL intraspé.	Smp_005210 (Tableau_27)
Histone	1	Smp_140390	Histone-lysine N-methyltransferase

méthyltransférase	3	Smp_138030	
	4	Smp_070170	
	4	Smp_027300	
	E	Smp 042590	Putative histone-lysine n-
	5	5111p_045580	methyltransferase, setb1
	c	Smp 165000	Histone-lysine N-methyltransferase, H3
	0	211h_102000	lysine-79 specific
	ZW	Smp_210650	Histone-lysine N-methyltransferase
	QTL interspé.	Smp_150850 (Tableau_35)
Llistono démothuloso			Putative lysine-specific histone
nistone demethylase	5	311h_120200	demethylase 1
	QTL interspé.	Smp_000230 (Tableau_35)

Chr.: chromosome; intraspé.: intraspécifique; interspé. : interspécifique.

II.2.2.2.6. Enrichissement GO : Processus biologique

Parmi les gènes QTL mis en évidence avec l'analyse d'enrichissement GO, 4 sont associés avec la marque H3K4me3. Le gène Smp_345020 (annotation GO sommeil) pour le QTL intraspécifique et les gènes Smp_096010 (annotation GO réponse à la chaleur), Smp_310920 et Smp_181450 (annotation GO contraction musculaire).

Pour les 5537 gènes associés à la marque H3K4me3, les analyses d'enrichissement GO n'ont pas donné de résultats significatifs en utilisant la limite usuelle FDR < 0,05 (False Discovery Rate). Les résultats qui suivent ont été obtenus en utilisant la limite de p < 0,05.

Parmi toutes les annotations GO, les processus métabolique et biosynthétique du pigment intriguent. Le pigment impliqué n'est malheureusement pas photorécepteur puisqu'il s'agit de l'hème, précurseur de l'hémoglobine (Figure_69). Ces deux annotations regroupent 10 gènes qui sont impliqués dans la synthèse de l'hème (Tableau_47). Si l'hème est connu pour être impliqué dans divers processus biologiques, comme le transport d'oxygène, il a été montré qu'il pourrait aussi intervenir dans un nouveau mécanisme de régulation du rythme circadien (Freeman, Kwon et al., 2019). La fixation de l'hème sur la protéine clock perturberait la liaison entre la protéine clock et les E-box (enhancer box) qui permettent l'expression des éléments qui exercent un contrôle négatif de la boucle de rétrocontrôle du rythme circadien (ex : PER, CRY).

	Revigo TreeMap																			
macromolecule deacytation	lipoprotein metabolic process	macromolecule modification	gene expression	protein prenylation	protein deacylation	paptidyi-arginina modification	protein-containing complex localization	vesicle-mediated transport	carbohydrate derivative transport	nitrogen compound transport	nucleotide transport	e proton transmembrane transport	autophagy	carbohydrate derivative catabolic process	membrane lipid metabolic process	isoprenoi metaboli process	Id C phosphorylati	organophosphai metabolic process	e diphosphat metabolic process	e punne ntonuceoade dphosphale metabolic procesi nucleoside
protein acylation	histone modification	protein alkylation	organic substance biosynthetic process	protein deubiquitination	macromolecule methylation	cellular macromolecule metabolic process	post-Oolgi vesicle-mediated transport	anion transport	organic substance transport	cellular localization	organic acid transport	RNA localization	liposaccharide metabolic process	cellular lipid metabolic process	carbohydrat derivative biosynthetic process	e lipid cataboli process	C dephosphary n	ucleotide p	nucleoside monophospha phosphory	triphosphate metabolic process
tetrapyrrole metabolic process	peptidyl-lysine modification	macromolecule biosynthetic process	transcription elongation from RNA polymerase II promoter	peptide metabolic process	cytoplasmic translational initiation	protein lipidation	mitochondrial transmembrane transport	orgarophosphate aster transport	ontaining o	omplex lo	calization lipid transpor	endosoma t transport	catabolic process	organic cycli colautop catabolic process	hagy	heterocyc catabolic process	deoxyribos phosphat metabolic process	e purine ribonucleosid triphosphate metabolic process	B Instanting Strategy and Strat	suchoskie neprospade Industrie procese procese procese
peptidyl-tyrcsine deptrasphorylation	protein metabolic process	cytoplasmic trmacrom	compound compound process	mRNA acylation process	organic cyclic compound biosynthetic process cetutar	rRNA metabolic process	Golgi vesicle transport	macromolecule localization	anion transmembrane transport	lipid localization	localizatio within membran	n establishment of protein localization to mitochondrion	metabolic process steroid	biosyntheti process	iC compo cetabo proce	tic and fic 55	alcoho metabol Second pyruva	ry monoca ic acid me proc dary alcoh- te ste	rboxylic atabolic cess according ol metabo rol	RNA metabolic lic processs
cellular amide metabolic process	protein methylation	DNA-templated transcription, slongation	compound siosynthetic process	protein phosphorylation	ntropen compound biosynthetic process	ranslational initiation nucleic	membrane fusion	ribosoma small subu biogenes	al unit organel	le nuclear	plasma membran bounded o	e ell mitochondrion organization	metabolic process small	compound catabelic process	compound o proce	entaining stabolic in	metabo proces	lic meta s proc	energ	IA metabolic process
protein acetylation	protein modification by small protein conjugation or removal	peptidyl-amino acid modification	neterocycle ma biosynthetic bi process	omular nch cromolecule osynthetic procese pro	RNA abolic transition cess	netabolic process	cellular component disassembly	membrar organizati	ne protein-cor on compl	ntaining fibonui ex co	organizatio	cellular component	molecule c metabolic r procesma metab	Il molecule	etabolic n process a ss h	nd precu metabo	tion of ^{olic} rsor ^{SS} plites #	cell cycle mitotic cell cycle	by oxid of orga comport	ation anic cellular unds process
porphysis-containing compound metabulic process	purine-containing compound metabolic process	RNA splicing	mRNA	terrene anter construction aprese construction	sartalorg poord citratic poss	nang protein nang protein phosphorylation	supramolecula fiber organization	r protein polymerizat	chrom remode	atin cytos eling orga	skeleton nization	organelle assembly	biosynthetic s process r	ubstance netabolic process	cellular r letabolic process	process	rnetabolic process	chromosome segregation	biological proce in interspecies between org process	ss involved Interaction Janisms
regulation of chromosome segregation	of GTPase	regulation of molecular	regulation of cellular component	regulation of cell communication	positive regulation o biological	negative regulation of biological	protein-containin complex disassembly	g cell projectio organizati	n ribonucleo compl on biogen	protein E lex cytos esis orga	actin skeleton nization	thromosome organization	lipid metabolic	netabolic process	glucose letabolic	system	anstomical structure morphogenesis	reproductive process	utilizing autophag mechanis	apoptotic process m
regulation of actin filament-based process	positive regulation of catalytic	function positive regulation of molecula	regulation phosphoru metabolic	n of regulation is of mitotic cell cycle	regulation of protein modification	regulation of Ras protein	immune response	response to chemical	defense response to other organism		inositol Ipid-mediate signaling	Ras protein signal transduction	cellular carbohydrate metabolic	arbohydrate Nosynthetic process	cess cellular glucan ietabolic	calization ^f	actin ilament-based process	cell division	cell cycle	cellular component organization or biogenesis
regulation of anatomical structure	regulation of signaling	regulation of respons to stimulu	cell redox homeostas	regulati of phospi metabo	ation ^{rocess} on negative regulation of protein	negative regulation	response to biotic stimulus	defense response	cellular immune r DNA damage stimulus	esponse	MAPK	enzyme-linked receptor protein signaling pathway	carbohydrate derivative metabolic	macromsterule ^a	rgaranitogen compound	etabolic process	chromosome segregation	pigment metabolic process	nicrotabule-based movement	pigment biosynthetic process
regulation of cellular component biogenesis	regulation of cell cycle	of cataboli process	regulation of respons to stress	n regulati se of prote polymeriz	s modificat process in regulati ation comp	on of cellular	response to organic substance	response to stress	ARF protein signal transduction	transmembrane receptor protein serine/threonine kinase signaling pathway	small GTPase mediated signal transductio	intracellular signal transduction	carbohyd or metab compound metabolic process	cellular ni compound r proce	trogen re metabolic rss	production	protein folding	ATP metabolic process	nethylation prem	nylation catabolic process

<u>Figure 69</u> : Treemap revigo des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes associés à la marque H3K4me3.

Chaque couleur représente un grand ensemble de processus biologiques. Il y a, de gauche à droite : désacétylation des macromolécules, localisation des complexes contenant des protéines, autophagie, phosphorylation des nucléotides, processus métabolique secondaire de l'alcool, fusion membranaire, processus métabolique des petites molécules, génération des métabolites précurseurs et énergie, cycle cellulaire mitotique, dérivation de l'énergie par l'oxydation des composés organiques, processus biologique impliqué dans les interactions inter-espèces entre les organismes, processus cellulaire, régulation de la ségrégation des chromosomes, réponse immunitaire, processus métabolique des lipides, processus du système immunitaire, morphogénèse des structures anatomiques, processus de reproduction, processus utilisant les mécanismes autophagiques, processus d'apoptose, localisation, processus basé sur les filament d'actines, division cellulaire, cycle cellulaire, organisation des composés cellulaires ou biogénèse, processus métabolique des pigments, mouvement basés sur les microtubules, processus de biosynthétique des pigments, reproduction, repliement des protéines, processus métabolique de l'ATP, méthylation, prénylation et processus catabolique. La treemap a été obtenue avec revigo (Supek, Bošnjak et al., 2011).

60	Chr	Identifiant	Annotation
GO	Chr.	(ID) du gène	GFF
	1	Smp_140790	Ferrochelatase
	2	Smp_045260	5-aminolevulinate synthase
Processus	3	Smp_079840	Uroporphyrinogen-III synthase
métabolique	4	Smp_137190	Frataxin homolog, mitochondrial, putative
des pigments	5	Smp_340920	previous_stable_id=Smp_057930
et processus	6	Smp_162280	Coproporphyrinogen oxidase
de synthèse		Smp_143740	Uroporphyrinogen decarboxylase
des pigments	7\\/	Smp_333090	NA
	200	Smp_045810	Delta-aminolevulinic acid dehydratase
		Smp_095130	Putative porphobilinogen deaminase

Tableau 47 : Liste des gènes associés avec la marque H3K4me3 en lien avec l'annotation GO processus métabolique des pigments et processus de synthèse des pigments

Chr.: chromosome.

II.2.2.2.7. Kegg pathway

Les analyses Kegg pathway montrent que les gènes associés à la marque H3K4me3 sont potentiellement impliqués dans 364 voies moléculaires différentes. Parmi toutes ces voies, neuf retiennent notre attention, le rythme circadien, le rythme circadien chez la drosophile, le rythme circadien chez la plante, l'entraînement circadien, la phototransduction, la phototransduction chez la drosophile, la transduction olfactive et la transduction gustative (Tableau_48).

<u>Tableau_48 : Liste des gènes associés avec la marque H3K4me3 en lien avec les Kegg pathway sélectionnés.</u>
Les gènes et KO annotation qui sont marqué d'une étoile apparaissent dans plusieurs Kegg pathways.

Kegg pathway	KO	Chr.	Identifiant (ID) du gène	Annotation		
		1	Smp_341700	AMPKBI domain-containing protein		
			Smp_052910	Skp1-related		
			Smp_099930	Putative f-box and wd40 domain protein		
	К07200	3	Smp_001030	5'-amp-activated protein kinase gamma-2 non- catalytic subunit transcript variant 2		
		4	Smp_334010	NA		
			Smp_170160	5-AMP-activated protein kinase, beta subunit, putative		
Rythme circadien		ZW	Smp_214100	Non-specific serine/threonine protein kinase		
		QTL intraspé.	Smp_315790 (Ta	ableau_27)		
		1	Smp_341700	AMPKBI domain-containing protein		
	KU/199	zw	Smp_170160	5-AMP-activated protein kinase, beta subunit, putative		
	K03094		Smp_052910	Skp1-related		
	K03362	3	Smp_099930	Putative f-box and wd40 domain protein		
	К07198	ZW	Smp_214100	Non-specific serine/threonine protein kinase		
Rythme circadien chez la drosophile	K23643	QTL interspé.	Smp_023700 (Ta	ableau_35)		
Rythme circadien	K03097	ZW	Smp_099030	Protein kinase		
chez la plante	K03115	6	Smp_025010	Casein kinase II subunit beta		
	К05208	ZW	Smp_245320	ANF_receptor domain- containing protein		
			Smp_026560*	Calmodulin 2		
	KU2183*	QTL interspé.	Smp_018940* (T	ableau_35)		
Entrainement du	K04515*	ZW	Smp_011660*	Protein kinase		
	K04630	1	Smp_020080	Putative gtp-binding protein (I) alpha-1subunit, gnai1		
	104030	2	Smp_016250	Putative gtp-binding protein (I) alpha-2 subunit, gnai2		

	K04634*	7	Smp_005790*	Putative gtp-binding protein (O) alpha-11 subunit, gna11		
	K04536*	2	Smp_063640*	Putative g-protein, beta		
	K04330	OTL intrasné	Smp_010230 */	Subulit Fableau 27)		
	KU1230	QTL intraspe.	Smp_010230 (
	K04339	QTE interspe.		Nite son estivated avetain		
	K04371	4	Smp_142050	kinase		
	K04958*		Smp_336900*	Inositol 1,4,5-trisphosphate receptor		
	K04962	1	Smp_163570	Ryanodine receptor related		
	K08049	4	Smp_102340	Adenylate cyclase type IX, putative		
			Smp_152330*	Serine/threonine kinase		
	K04345*	ZW	Smp 267270*	NA		
		1	Smp 020270	Voltage-dependent L-type		
	K04851	3	Smp_159990	calcium channel subunit		
	K04632	4	Smp_172640	Putative gtp-binding protein		
				Phosphoinositide		
	K05858*	2	Smp_245900*	phospholipase C		
	K02C77*	73.47	6 244 420*	AGC-kinase C-terminal		
	KU2677*	ZW	Smp_241420*	domain-containing protein		
	K04536*	2	Smp_063640*	Putative g-protein, beta subunit		
		QTL intraspé.	Smp_010230 *(Fableau_27)		
Phototransduction	K12322	2	Smp_125450	Guanylate cyclase		
	K02183*	ZW	Smp_026560	Calmodulin 2		
		QTL interspé.	Smp_018940* (Ta	ableau_35)		
	K04634*	7	Smp_005790*	Putative gtp-binding protein (Q) alpha-11 subunit, gna11		
	K05858*	2	Smp_245900*	Phosphoinositide phospholipase C		
	K02677*	7W	Smp_241420*	AGC-kinase C-terminal		
			Smp 026560	Calmodulin 2		
Phototransduction	K02183*	OTL intersné	Smp_018940* (Ta	ableau 35)		
chez la drosophile		Greinterspe.	<u> </u>	Inosital 1 4 5-trisphasnbate		
	K04958*	4	Smp_336900*	receptor		
	K00910*	QTL intraspé.	Smp_210820* *(1	ableau_27)		
	K04515*	7W	Smp_011660*	Protein kinase		
	K13806		Smp_128680	Lipase		
	K13807	2	Smp_140770	Serine/threonine-protein phosphatase with EF-hands		
		1	Smp_152290	Dutative bate creatin 1		
Transal (К04439	2	Smp_122900	Futative beta-arrestin 1		
I ransduction		OTI intracné	Smp_210820 (Tableau_27)			
ollactive	K05849	Qir intraspe.	Smp_152830 (Tab	bleau_27)		
	K04536*	2	Smp_063640*	Putative g-protein, beta		

				subunit	
		QTL intraspé.	Smp_010230 * (Tableau_27)	
	K00910*	QTL intraspé.	Smp_210820* *(Tableau_27)	K00910*	
	V0424E*		Smp_152330*	Serine/threonine kinase	
	K04345	ZW	Smp_267270*	NA	
	V02102*		Smp_026560*	Calmodulin 2	
	KU2183	QTL interspé.	Smp_018940* (Tableau_35)		
	K04515*	ZW	Smp_011660*	Protein kinase	
	K04153	4	Smp_149770	Putative g-protein coupled receptor	
Transduction	V0424E*	7\\/	Smp_152330*	Serine/threonine kinase	
gustative	K04345	200	Smp_267270*	NA	
	K05858*	2	Smp_245900*	Phosphoinositide phospholipase C	

Chr. : chromosome ; intraspé.: intraspécifique; interspé. : interspécifique.

II.2.2.2.8. Analyses DEseq2

II.2.2.2.8.1. Comparaison des chronotypes

Pour déterminer s'il y a une différence de méthylation des histones entre les deux chronotypes de *S. mansoni*, des analyses différentielles ont été réalisées avec DEseq2 (Galaxy Version 2.11.40.2) (Love, Huber & Anders, 2014). Par convention, les pics différentiellement exprimés sont ceux qui ont une *p*-ajustée < 0,01 et un log2(foldchange) (log2FC) supérieur à +1 (le pic est surreprésenté chez le chronotype diurne) ou inférieur à -1 (le pic est surreprésenté chez le chronotype nocturne). Lors des analyses DEseq2 entre les deux chronotypes, les échantillons se regroupent par chronotype mais aussi par sexe (Figure_70). Comme le rythme d'émission des cercaires ne dépend pas phénotypiquement du sexe du parasite, un pic surreprésenté est un pic qui répond aux conditions citées précédemment lors d'une analyse DEseq2 entre les chronotypes, sexes confondus et sexes séparés (mâles diurnes Vs mâles nocturnes et femelles diurnes Vs femelles nocturnes).

<u>Figure 70 :</u> Analyse en composante principale (ACP) issue de l'analyse DEseq2 entre les chronotypes diurne et nocturne de *S. mansoni* (sexe confondu). La PC1, en abscisse, est le chronotype qui explique 52% de la variance des échantillons. La PC2, en ordonnée, est le sexe qui explique 24% de la variance des échantillons. Les échantillons diurnes sont représentés en bleu et les nocturnes en rose. Les échantillons mâles représentent les deux groupes du haut, tandis que les femelles sont les deux groupes du bas.

II.2.2.2.8.2. Gènes différentiellement marqués par H3K4me3 issus du DEseq2 entre les deux chronotypes

Les comparaisons entre les chronotypes diurne et nocturne révèlent qu'il y a plus de marques H3K4me3 chez le chronotype diurne (Tableau_49 et Figure_71).

MA-plot Desq2: diurnes Vs nocturnes

<u>Figure 71</u>: MA-plots issus des analyses DEseq2 diurnes Vs nocturnes pour H3K4me3. Les abscisses représentent le comptage des moyennes normalisées et les ordonnées représentent le log(foldchange). Chaque point représente un pic. Tous les points ne sont pas différents entre les chronotypes. Les points rouges sont différentiellement présents entre les deux chronotypes. Dans ces MA-plots, les Log foldchange positifs sont surreprésentés chez les diurnes et les log (foldchange) négatifs sont surreprésentés chez les nocturnes.

Sur les 105 surreprésentés chez le chronotype diurne, il a 31 gènes associés aux pics (Annexe 8).

H3K4me3	Nombre de pics surreprésentés chez les diurnes	Nombre de pics surreprésentés chez les nocturnes
Desq2 Diurne (D) Vs Nocturne (N)	154	3
Desq2 Mâles D Vs Mâles N	155	4
Desq2 Femelles D Vs Femelles N	118	2
Pics communs aux trois Desq2	105	2

<u>Tableau_49 :</u> Tableau récapitulatif des analyses DEseq2 entre les chronotypes diurne et nocturne de *S. mansoni* pour la marque H3K4me3

Parmi ces 31 gènes, aucun ne correspond à ceux sélectionnés dans les points II.2.2.2.2. à II.2.2.2.7. Toutefois, trois de ces gènes sont communs avec les QTLs intra et interspécifique (Tableau_49). Sur les deux pics H3K4me3 surreprésentés dans le chronotype nocturne, les deux sont associés à des gènes (Annexe 8). Aucun ne correspond aux gènes cités précédemment ; toutefois, un des gènes est commun au QTL intraspécifique (Tableau_50).

<u>Tableau_50 :</u> Liste des gènes associés aux marques H3K4me3 différentiellement présentes entre les deux chronotypes et communs aux gènes QTL

H3K4me3	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch
	1	Smp_319050	Transmembrane protein 164	TMEM164
Surreprésenté chez les diurnes	2	Smp_085780	Ribosomal protein L10P	28S ribosomal protein S2, mitochondrial
	5	Smp_000370	Selenoprotein SelK/SelG	SelK_SelG
Surreprésenté chez les nocturnes	1	Smp_127370	Glycosyl transferase, family 14	beta-1,6-N- acetylglucosaminyltransferase (E.C.2.4.1.102)

Chr. : chromosome.

L'utilisation d'un spike-in avec la marque H3K4me3 ne perturbe pas l'immunoprécipitation de la chromatine du parasite puisque la majorité de l'alignement de l'échantillon se fait sur le génome de *S. mansoni*. La détection d'un rythme de la marque H3K4me3 s'est révélée infructueuse pour le chronotype diurne, et seulement deux pics ont été détectés pour le chronotype nocturne. Ces résultats peuvent s'expliquer de plusieurs manières. Soit, il n'y a tout simplement pas de rythme avec la marque H3K4me3, soit le rythme provient d'oscillations trop faibles pour qu'il soit détecté par les logiciels. Les logiciels de détection de rythme ont été initialement créés pour analyser des données de RNA-seq. Ces logiciels sont d'autant plus efficaces que le signal est fort (Laloum & Robinson-Rechavi, 2020). Une des solutions pour pallier à ce problème serait d'être moins sévère dans les critères de sélection des pics, au risque d'avoir des faux positifs. Une autre solution serait de refaire l'expérience avec plus de répliquas pour augmenter le signal. Enfin une autre solution est de voir le problème sous un autre angle et de coupler ces résultats avec le rythme d'expression des gènes qui codent pour les « writers » et les erasers » (ici histone méthyltransférase et histone déméthylase).

A défaut d'étudier un rythme H3K4me3, l'étude des gènes associés à la marque H3K4me3 s'est révélé intéressante puisque l'on retrouve certains gènes issus des QTLs intra- et interspécifiques. Tout comme dans la partie QTL mapping, aucun gène canonique de l'horloge n'a été détecté, conformément aux résultats de Rawlinson, Reid et al. (2021). La sélection subjective basée sur l'annotation du génome et les résultats HHsearch ont par contre mis en évidence d'autres gènes impliqués dans la phototransduction et plus largement dans la transduction des signaux environnementaux que ceux déjà mis en avant par les QTLs (Figure_72). Cette sélection a aussi mis en évidence des gènes avec un motif BHLH de type Myc et aussi des gènes impliqués dans la modification des histones (acétylation et méthylation).

L'analyse différentielle des pics H3K4me3 entre les chronotypes a montré qu'il y avait plus de méthylation dans le chronotype diurne. Il est intéressant de voir que parmi les gènes associés aux

marques H3K4me3 surreprésentés dans l'un ou l'autre des chronotypes on retrouve des gènes issus des QTLs intra et interspécifiques.

Enfin, l'analyse différentielle entre les chronotypes a révélé qu'il y avait plus de marque H3K4me3 chez le diurne. Ces résultats sont intéressants dans une perspective de différenciation des parasites.

Figure 72 : Bilan de la marque H3K4me3 pour les chronotypes diurne et nocturne de S. mansoni.

II.2.2.3. H3K9ac

La moyenne et les variations individuelles du nombre total et du pourcentage d'alignement des reads par échantillon selon chaque chronotype sont présentées dans le Tableau_51. Pour les analyses, seuls les échantillons avec un minimum de 1 500 000 reads alignés uniquement sur le génome de *S. mansoni* ont été gardés (cf explication au point H3K4me3). Pour le chronotype diurne, deux échantillons sont en dessous de cette limite des 1 500 000 reads malgré la réalisation de ChIPmentation sur de nouveaux individus. Ces deux échantillons représentent tous les deux le point temporel 16h pour le 1^{er} jour d'échantillonnage.

<u>Tableau 51</u> : Nombres et pourcentages d'alignement des reads moyens, accompagnés des variations individuelles, pour les parasites diurne et nocturne de *S. mansoni* pour les échantillons de l'expérience épigénétique H3K9ac.

	Moyen	ne ± ES	Test de
H3K9ac	Variations i	ndividuelles	Wilcoxon-
	Diurne (N=31)	Nocturne (N=33)	Mann-Whitney
Nombro total do roads	6 404 906 ± 218 958	5 951 099 ± 213 251	W =1413,
Nombre total de l'eads	4 150 315 à 10 542 122	3 834 352 à 8 665 900	<i>p</i> = 0,02
Alignement sur	60,05 ± 2,96	69,60 ± 2,33	W = 652,
S. mansoni (%)	35,40 à 87,78	37,91 à 93,44	<i>p</i> = 0,0007
Alignement unique sur	40,86 ± 2,28	49,98 ± 1,89	W = 604,
S. mansoni (%)	19,45 à 64,39	26,29 à 71,11	<i>p</i> = 0,0002
Alignement unique sur	2 664 144 + 146 896		\N/ - 772
<i>S. mansoni</i> (nombre de	2 004 144 ± 140 880 1 5/8 151 à / 130 708	2 941 751 ± 155 257 1 551 133 à 1 375 208	n = 0.01
reads)	1 548 151 0 4 155 708	1 551 155 0 4 575 200	ρ=0,01
Alignement sur	17,31 ± 1,84	12,48 ± 1,30	W = 1475,
B. glabrata (%)	3,73 à 33,66	1,91 à 34,40	<i>p</i> = 0,005
Alignement unique sur	8,87 ± 0,93	6,23 ± 0,68	W = 1461,
B. glabrata (%)	1,59 à 17,18	0,69 à 17,75	p = 0,006
Alignement unique sur			M = 1404
<i>B. glabrata</i> (nombre de	105 697 à 1 363 188	35 216 à 1 536 665	n = 0.003
reads)	105 057 0 1 505 100	33 210 0 1 330 003	ρ = 0,005
Alignement sur	7.01 + 1.46	6.01 + 0.05	W/ - 1209
D. melanogaster,	7,31 ± 1,40 0.67 à 32.36	0,91 ± 0,95	n = 0.12
spike-in (%)	0,07 a 52,50	0,70015,45	μ = 0,12
Alignement unique sur	5 56 + 1 00	1 86 + 0 60	\ <u>\</u> / = 1292
D. melanogaster,	0 35 à 23 61	4,80 ± 0,09	n = 0.17
spike-in (%)	0,55 0 25,01	0,40 0 13,57	p = 0,17
Alignement unique sur	27/ 170 + 90 2/2	204 200 + 42 222	\N/ - 122E
D. melanogaster, spike-in	17 981 à 2 487 191	234 833 ± 42 222 22 340 à 709 396	n = 0.09
(nombre de reads)	1, 301 0 2 40, 131	22 340 0 703 330	p = 0,05

S. mansoni est en bleu, B. glabrata en orange et D. melanogaster (spike-in) en vert.

Pour les chronotypes, les échantillons s'alignent majoritairement sur le génome de *S. mansoni*, puis vient celui de *B. glabrata* et enfin celui de *D. melanogaster*. Le nombre de reads qui s'aligne sur le génome de l'hôte est trop faible pour être exploité dans des analyses bioinformatiques. Cette faible part de l'hôte peut s'expliquer par le fait que l'hépatopancréas est rempli de sporocystes et que le ratio cellule hôte/parasite penche en faveur de *S. mansoni*. Il peut aussi être ajouté à cela que l'alignement se fait sur le génome d'une autre espèce que celle présente dans l'échantillon car celui de *B. pfeifferi* n'existe pas.

Côté spike-in, il n'y a aucune différence significative entre les deux chronotypes (p > 0,01), ce qui permet de faire des comparaisons biologiques. Dans les échantillons nocturnes, l'immunoprécipitation du parasite est significativement plus importante (p < 0,01). On peut tirer les mêmes conclusions qu'avec la marque H3K4me3 car les inputs sont les mêmes. Dans les deux expériences, la chromatine des échantillons nocturnes a une meilleure affinité avec l'anticorps que celle des échantillons diurnes.

II.2.2.3.1. Rythme des pics

La détection de l'acétylation des histones se fait de la même façon qu'avec la marque H3K4me3 (cf II.2.2.2.1. Rythme des pics).

Les deux chronotypes confondus totalisent 566 pics H3K9ac détectés. Pour les analyses rythmiques, seuls les pics avec une profondeur moyenne supérieure à 10 reads sont utilisés. Le nombre de pics rythmiques par chronotype et logiciels sont présentés dans le Tableau_52.

<u>Tableau_52</u> : Nombre de pics H3K9ac détectés comme rythmiques et nombre de gènes associés en fonction du logiciel et du chronotype du parasite (p < 0,05)

		Diurne	Nocturne	Communs aux	
	H3K9ac	(453 pics	(483 pics	deux	
		filtrés)	filtrés)	chronotypes	
	Dicc	22	35 (dont 11	14	
GeneCycle	PICS	22	FDR < 0,05)		
(<i>p</i> -value)	Gènes	Λ	3 (dont 1 FDR	2	
	associés	4	< 0,05)		
motald	Pics	0	3		
	Gènes	0	0		
(p-value)	associés	0	0		

Aucun pic n'est détecté comme rythmique avec la FDR/BH.Q, sauf avec le logiciel GeneCycle pour le chronotype nocturne. Pour le chronotype diurne, aucun pic H3K9ac n'est considéré comme rythmique car aucun pic n'a été détecté avec le logiciel meta2d (Tableau_51). Pour le chronotype nocturne, 35 pics ont été détectés comme rythmiques avec GeneCycle et 3 avec le logiciel meta2d (p < 0,05). Sur tous ces pics, un seul est commun aux deux logiciels (Figure_73), le n°408. Ce pic n'est pas associé à un gène mais à une région de répétition en tandem (ici région non codante qui contient des motifs nucléotidiques répétés). Le pic des marques H3K9ac est au point temporel 20h soit en même temps que le pic d'émission des cercaires.

<u>Figure 73 :</u> **Profil de la marque H3K9ac rythmique chez le chronotype nocturne.** Chaque histogramme a, en abscisse, les heures (points temporels) et, en ordonnées, le nombre de reads pour le pic sélectionné. En fond se trouve le profil d'émission des cercaires. Les rectangles gris symbolisent l'obscurité (O), les blancs la lumière (L) et les rectangles bleus la période du pic d'émission des cercaires.

II.2.2.3.2. Gènes associés aux marques H3K9ac

Sur les 566 pics H3K9ac détectés, 93 coïncident avec des gènes. Tout comme pour les gènes candidats QTL, une sélection subjective basée sur la recherche de gènes de l'horloge, de la phototransduction et de l'acétylation et la méthylation des histones a été faite. L'enrichissement GO a été fait avec Blast2GO version 5.2 en utilisant le Fisher's Exact Test (*p*<0,05). L'analyse d'enrichissement Kegg pathway a été faite sur le serveur KAAS en utilisant le programme Blast avec la méthode SBH (Single-directional Best Hit).

II.2.2.3.3. Les gènes de l'horloge (Basic Helix-Loop-Helix)

Il n'y a aucun gène canonique de l'horloge, ni de protéine au motif BHLH dans les gènes marqués H3K9ac.

II.2.2.3.4. Les rhodopsines et autres gènes impliqués dans la phototransduction

Il n'y a aucune rhodopsine dans les gènes associés aux marques H3K9ac mais on retrouve un gène rhodopsine-like **Smp_134100** (chromosome 3) qui code pour un récepteur couplé aux protéines G. Parmi les différents acteurs de la phototransduction, nous retrouvons, dans les gènes marqués H3K9ac, uniquement une sous-unité γ (gamma) de la protéine G (**Smp_205760**, chromosome 3).

II.2.2.3.5. Les gènes impliqués dans l'acétylation et la méthylation des histones

Parmi les gènes associés à la marque H3K9ac, aucun n'est en rapport avec les histones et la modification d'histone.

II.2.2.3.6. Enrichissement GO : Processus biologique

Pour les gènes associés à la marque H3K9ac, les analyses d'enrichissement GO n'ont pas donné de résultats significatifs en utilisant la limite usuelle FDR < 0,05 (False Discovery Rate). Les résultats qui suivent ont été obtenus en utilisant la limite de p < 0,05.

Parmi toutes les annotations GO, le grand sous-ensemble régulation de l'activité catalytique est intéressant puisqu'il contient les annotations GO régulation de la réponse à un stimulus, régulation de la transduction du signal médié par des petites GTPases, transduction du signal médié par des petites GTPases et transduction du signal des protéines ARF (ADP-ribosylation factor) (Figure_74). Ces quatre annotations regroupent deux gènes qui sont **Smp_147020** dans le chromosome 6 (putative arf6 guanine nucleotide exchange factor) qui fait partie des gènes candidats du croisement intraspécifique et **Smp_124660** dans le chromosome 2 (guanyl-nucleotide exchange factor). Les guanines exchange factor qui interagissent avec les protéines Arf sont impliqués dans le trafic vésiculaire. Il a été montré chez la souris que l'interaction entre la guanine exchange factor (EFA6A) et Arf6 pourrait avoir un rôle dans un sous-compartiment des processus photorécepteurs périsynaptique (Katsumata, Honma et al., 2008).

<u>Figure 74</u>: **Treemap revigo des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes associés à la marque H3K9ac.** Chaque couleur représente un grand ensemble de processus biologiques. Il y a de gauche à droite : la régulation de l'activité catalytique, la localisation protéique au site de sortie du réticulum endoplasmique, le processus des nRNA (small nuclear RNA), la désacylation des macromolécules et la respiration cellulaire. La treemap a été obtenue avec revigo (Supek, Bošnjak et al., 2011). Une autre annotation intéressante est la respiration cellulaire qui contient deux gènes différents. Le gène **Smp_900070** qui code pour un cytochrome B et le gène **Smp_900090** qui code pour la sous-unité 4 de la NADH déshydrogénase. Si de prime abord ces deux gènes sont impliqués dans la respiration cellulaire dans la mitochondrie, il a été montré chez le champignon *Schizosaccharomyces pombe* que le cytochrome B était un composant essentiel dans la photosynchronisation de l'horloge circadienne (Kippert, Ninnemann & Engelmann, 1991).

II.2.2.3.7. Kegg pathway

Les analyses Kegg pathway montrent que les gènes associés à la marque H3K9ac sont potentiellement impliqués dans 23 voies moléculaires différentes. Parmi toutes ces voies, aucune ne concerne le rythme circadien, l'entraînement circadien ou encore la transduction des signaux lumineux, olfactifs et gustatifs.

II.2.2.3.8. Analyses DEseq2

II.2.2.2.8.1. Comparaison des chronotypes

Pour déterminer s'il y a une différence d'acétylation des histones entre les deux chronotypes de *S. mansoni*, des analyses différentielles ont été réalisées avec DEseq2 (Galaxy Version 2.11.40.2) (Love, Huber & Anders, 2014) selon les mêmes conditions que la marque H3K4me3 (II.2.2.2.8. Analyses DEseq2). Lors des analyses DEseq2 entre les deux chronotypes, les échantillons se regroupent par chronotype mais aussi par sexe (Figure_75). Comme le rythme d'émission des cercaires ne dépend pas phénotypiquement du sexe du parasite, un pic surreprésenté est un pic qui répond aux conditions citées précédemment lors d'une analyse DEseq2 entre les chronotypes, sexes confondus et sexes séparés (mâles diurnes Vs mâles nocturnes et femelles diurnes Vs femelles nocturnes).

<u>Figure 75 : Analyse en composante principale (ACP) issue de l'analyse DEseq2 entre les chronotypes diurne et</u> nocturne de *S. mansoni* (sexes confondus) pour la marque H3K9ac. La PC1, en abscisse est le chronotype qui explique 52% de la variance des échantillons. La PC2, en ordonnée est le sexe qui explique 21% de la variance

des échantillons. Les échantillons diurnes sont représentés en bleu et les nocturnes en rose. Les échantillons mâles représentent les deux groupes du haut tandis que les femelles sont les deux groupes du bas.

II.2.2.3.8.2. Gènes différentiellement marqués par H3K9ac entre les deux chronotypes

Les comparaisons entre les chronotypes diurne et nocturne révèlent qu'il y a plus de marque H3K9ac chez le chronotype nocturne (Tableau_53 et Figure_76).

MA-plot Desq2: diurnes Vs nocturnes

<u>Figure 76</u>: MA-plots issus des analyses DEseq2 diurnes Vs nocturnes pour H3K9ac. Les abscisses représentent le comptage des moyennes normalisées et les ordonnées représentent le log(foldchange). Chaque point représente un pic. Tous les points ne sont pas différents entre les chronotypes. Les points rouges sont différentiellement présents entre les deux chronotypes. Dans ces MA-plots, les Log foldchange positifs sont surreprésentés chez les diurnes et les log (foldchange) négatifs sont surreprésentés chez les nocturnes.

Sur les 92 surreprésentés chez le chronotype nocturne, il y a 17 gènes associés aux pics (Annexe 9). Chez le chronotype diurne, sur les 32 pics surreprésentés, il y a 2 gènes associés (Annexe 9).

<u>Tab</u>	<u>leau_53 : Tableau réca</u>	pitulatif des analyses DEseq2 entre les ch	ronotypes diurne et nocturne de <i>S. man</i> s	soni
pou	ir la marque H3K9ac			
		Nombre de pics surreprésentés	Nombre de pics surreprésentés	

H3K9ac	Nombre de pics surrepresentes chez les diurnes	chez les nocturnes	
Desq2 Diurne (D) Vs Nocturne (N)	39	112	
Desq2 Mâles D Vs Mâles N	36	99	
Desq2 Femelles D Vs Femelles N	46	101	
Pics communs aux trois Desq2	32	92	

Parmi les gènes associés aux pics H3K9ac surreprésentés chez les nocturnes, nous retrouvons trois gènes sélectionnés dans les points précédents concernant H3K9ac (Tableau_53). De plus, nous retrouvons aussi des gènes candidats des QTL intraspécifique et interspécifique (Tableau_53). Il est aussi intéressant de noter que certains de ces gènes sont co-marqués par H3K9ac et H3K4me3 (Tableau_54).

<u>Tableau_54 :</u> Liste des gènes associés aux marques H3K9ac différentiellement présentes entre les deux chronotypes et communs aux gènes QTL et/ou sélectionnés dans les points précédents

НЗК9ас	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch	Origine de la sélection
	3	Smp_205760	Guanine nucleotide- binding protein subunit gamma		Potentiellement lié à la phototransduction (protéine G)
		Smp_900070	Cytochrome b (mitochondrion)		
Sur- représenté chez les nocturnes	7_MITO	Smp_900090	NADH dehydrogenase subunit 4 (mitochondrion)		Annotation GO, respiration cellulaire
	1	Smp_127370	Glycosyl transferase, family 14	beta-1,6-N- acetylglucosami nyltransferase (E.C.2.4.1.102)	QTL intraspécifique
	3	Smp_308470	SEA domain	SEA	
		Smp_084540	Forkhead- associated (FHA) domain	RNA-binding protein 5, Survival motor	QTL interspécifique
Sur- représenté chez les diurnes	6	Smp_147020	Sec7 domain	guanine nucleotide exchange protein	QTL intraspécifique

Chr.: chromosome.

Parmi les deux gènes associés aux pics H3K9ac surreprésentés chez les diurnes, nous retrouvons un gène sélectionné dans les points précédents qui fait partie des gènes candidats du QTL intraspécifique (Tableau_54). Il est aussi intéressant de noter que ces deux gènes sont co-marqués par H3K9ac et H3K4me3 (Tableau_55).

<u>Tableau 55</u>: Liste des gènes associés aux marques H3K9ac différentiellement présentes entre les deux chronotypes qui sont co-marqués avec H3K4me3

H3K9ac et H3K4me3	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch
Sur- représenté chez les nocturnes H3K4me3 et H3K9ac	1 (QTL intraspé.)	Smp_127370	Glycosyl transferase, family 14	beta-1,6-N- acetylglucosaminyltransferase (E.C.2.4.1.102)
	1	Smp_158570	NA	
	2	Smp_011220	Putative glucosamine- fructose-6-phosphate aminotransferase	
	3 Smp_205760 Guanine gamma		Guanine nucleotide- binding protein subunit gamma	
Sur-	5	Smp_327560 Thioredoxin domain- containing protein		
représenté	6	Smp_341570	NA	
chez les nocturnes	7	Smp_010380	Isochorismatase domain- containing protein	
НЗК9ас		Smp_900070	Cytochrome b (mitochondrion)	
		Smp_900080	NA	
	7_WITO	Smp_900090	NADH dehydrogenase subunit 4 (mitochondrion)	
	3 (QTL interspé.)	Smp_084540	Forkhead-associated (FHA) domain	RNA-binding protein 5, Survival motor
Sur-	6	Smp_336310	NA	
représenté chez les diurnes H3K9ac	6 (QTL intraspé.)	Smp_147020	Sec7 domain	guanine nucleotide exchange protein

Chr.: chromosome; intraspé.: intraspécifique; interspé. : interspécifique.

Tout comme la marque H3K4me3, l'utilisation d'un spike-in avec la marque H3K9ac ne perturbe pas l'immunoprécipitation de la chromatine du parasite puisque la majorité de l'alignement de l'échantillon se fait sur le génome de *S. mansoni*. De la même façon qu'H3K4me3, la détection d'un rythme de la marque H3K9ac s'est révélée infructueuse pour le chronotype diurne, et seulement un pic a été détecté pour le chronotype nocturne. Le pic rythmique atteint son sommet à 20h soit en même temps que le pic d'émission des cercaires du chronotype nocturne. Ce pic H3K9ac nocturne est associé à une région non codante de répétition en tandem du génome qui pourrait représenter une piste supplémentaire pour l'étude du rythme d'émission des cercaires. Cette très faible présence de pic H3K9ac rythmique s'explique de la même façon que pour la marque H3K4me3.

L'étude des gènes associés à la marque H3K9ac ne s'est pas révélée aussi prolifique que la marque H3K4me3 (Figure_77). On notera tout de même la mise en évidence d'un autre gène rhodopsine-like.

Toutefois, il n'y a pas de marque H3K9ac associée au gène *Sm*Rho (smp_104210) comme rapporté par Cosseau, Azzi et al., 2009. Cette différence avec leurs travaux peut s'expliquer par le fait que leurs expériences ont été menées sur des cercaires libres d'une autre souche de *S. mansoni*. La différence peut donc être interprétée soit comme une spécificité due à la souche du parasite (Oman ou Porto Rico) soit à une spécificité du stade (cercaire libre, contre sporocyste et cercaires intrasporocystes).

L'analyse différentielle des pics H3K9ac entre les chronotypes a montré qu'il y avait plus d'acétylation dans le chronotype nocturne. Il est intéressant de voir que, parmi les gènes associés aux marques H3K9ac surreprésentées dans l'un ou l'autre des chronotypes, on retrouve non seulement des gènes issus des QTLs intra et interspécifiques mais aussi des gènes qui sont co-marqués avec H3K4me3. Les marques H3K4me3 et H3K9ac sont toutes les deux des marques associées à l'activation de la transcription, ce qui peut mettre en avant l'importance du rôle de ces gènes co-marqués pour le parasite.

Enfin, l'analyse différentielle entre les chronotypes a révélé qu'il y avait plus de marque H3K9ac chez les nocturnes. Couplé avec les résultats de la marque H3K4me3, il est intéressant de voir que l'on peut différencier des individus parasites par leur chronotype. Ces résultats ouvrent la possibilité d'établir des profils de marques épigénétiques pour différencier les différents chronotypes de schistosomes.

Figure 77 : Bilan de la marque H3K9ac pour les chronotypes diurne et nocturne de S. mansoni.

II.2.3. RNA-seq

Dans le cadre de l'étude d'un rythme, la transcriptomique permet de mettre en évidence les gènes qui ont une expression rythmique, et donc d'identifier ceux potentiellement impliqués dans le phénotype. L'étude de cette expression se fait au travers de la technique de RNA-sequencing (RNA-seq) qui quantifie les ARNm présents dans un échantillon, couplée à un logiciel de détection des rythmes dans une cinétique d'échantillons. Chez *S. mansoni*, une seule étude de transcriptomique rythmique a été menée et c'était sur le stade adulte (Rawlinson, Reid et al., 2021). Cette étude révèle ainsi qu'il n'y a aucun gène principal de l'horloge présent dans le génome de *S. mansoni*.

L'objectif de ce chapitre est donc de déterminer quels sont les gènes rythmiques au stade sporocyste/cercaires intrasporocystes et de croiser ces résultats avec les gènes candidats identifiés dans les approches de génétique et d'épigénétique. Pour cela, un RNA-seq a été effectué sur des morceaux d'hépatopancréas et d'ovotestis parasités par chacun des chronotypes de *S. mansoni*.

Le premier point de ce sous chapitre sera consacré à une présentation de la méthode utilisée, le second point présentera les gènes rythmiques et le dernier point fera le lien entre les trois approches moléculaires en étudiant les différents gènes candidats sélectionnés.

II.2.3.1. Méthode

La méthode de RNA-seq se divise en plusieurs étapes : l'échantillonnage biologique, la préparation moléculaire des échantillons et les analyses bioinformatiques des données. Ces expériences sont issues d'une collaboration avec l'équipe de Tim Anderson du Texas Biomedical Research Institute. L'échantillonnage biologique a été réalisé à Perpignan et est commun avec l'expérience d'épigénétique. La préparation moléculaire des échantillons a été réalisée au Texas par Robbie Diaz et Amanda Strickland de l'équipe de Tim Anderson. L'analyse bioinformatique a été réalisée entre les deux sites. L'échantillonnage biologique consiste à récupérer des hépatopancréas et ovotestis de *B. pfeifferi* infestés par *S. mansoni*. La préparation moléculaire des échantillons consiste à extraire l'ARN des échantillons, à isoler les ARNm grâce à leur queue polyA et à faire une transcription inverse (convertir ARN en ADN complémentaire). L'ADNc est ensuite séquencé. L'analyse bioinformatique consiste dans un premier temps à faire un alignement contre la version 7 du génome de *S. mansoni*, avec STAR (Dobin, Davis et al., 2013) puis de faire un comptage des transcrits pour chaque gène avec RSEM (Li & Dewey, 2011). La méthode détaillée de la préparation moléculaire ainsi que le détail du script utilisé pour l'alignement et le comptage des transcrits sont similaires à ceux utilisés dans Clec'h, Chevalier, Mattos et al. (2021). La détection des gènes rythmiques s'est faite avec 3 logiciels différents pour éviter les biais (Takahashi, Kumar et al., 2015) et meta2d (Wu, Anafi et al., 2016).

II.2.3.2. Gènes rythmiques

Deux RNA-seq ont été menés dans le cadre de cette thèse. L'expérience principale a été conduite sur des parasites ayant été laissés sous photopériode équilibrée classique (L-O). La seconde expérience utilise, quant à elle, des parasites qui ont subi 10 jours de photopériode inversée (O-L). Cette seconde expérience sert de complément à la première dans la sélection de gènes d'intérêt et ne sera donc pas développée.

Pour détecter le rythme d'expression des gènes de *S. mansoni*, le logiciel GeneCycle (Ahdesmäki, Fokianos & Strimmer, 2012), le logiciel empirical-JTK (Hutchinson, Maienschein-Cline et al., 2015) et le logiciel meta2d (Wu, Anafi et al., 2016) ont été utilisés. Les logiciels reposent sur l'utilisation du test exact de Fisher. Pour pallier au risque de faux positifs dus au grand nombre de tests à réaliser, chaque logiciel applique une correction de la *p*-value basée sur la méthode de Benjamini-Hochberg, appelée BH.Q ou FDR (False Discovery rate) avec un seuil fixé à 5% de risque (BH.Q/FDR < 0,05). Pour le cas du logiciel empirical-JTK, la correction de la *p*-value que nous avons utilisée est la méthode Bonferroni

Partie II : Rythme-Transcriptomique

(appelé BF), avec un seuil fixé à 5% de risque (BF < 0,05). La méthode de Bonferroni est plus restrictive que la méthode Benjamini-Hochberg. Un pic est considéré comme rythmique s'il est détecté dans au moins deux des trois logiciels avec au moins le seuil *p*-value < 0,05. Cette précaution est utilisée pour éviter une variabilité qui serait propre au logiciel (Takahashi, Kumar et al., 2015 ; Rijo-Ferreira, Acosta-Rodriguez et al., 2020).

Pour les analyses rythmiques, seuls les gènes avec une expression moyenne supérieure à 10 reads ont été utilisés. Le nombre de gènes rythmiques par chronotype et logiciel est présenté dans le Tableau_56.

Tableau 56	: Nombre de gènes détectés comme rythmiques en fonction du logiciel et du chronotype du parasite (<i>p</i> < 0,05) pour
les échantille	lons en photopériode équilibrée	

Condition photopériode équilibrée	Seuil	Diurne (9832 gènes exprimés)	Nocturne (9901 gènes exprimés)
GeneCycle	<i>p</i> -val	1050	1155
(Nombre de gènes)	FDR	465	189
Empirical-JTK	<i>p</i> -val	5507	4188
(Nombre de gènes)	BF	1369	297
Meta2d	<i>p</i> -val	407	11
(Nombre de gènes)	BH.Q	32	0
Commun	<i>p</i> -val	703	411

Environ 7% des gènes sont rythmiques dans le chronotype diurne contre 4% pour le chronotype nocturne. Sur les 1114 gènes détectés comme rythmiques, 28 sont communs au chronotype diurne et nocturne (Figure_78), ce qui implique que la majorité des gènes rythmiques sont propres à chaque chronotype.

Figure 78 : Diagramme des gènes rythmiques en fonction des logiciels et des chronotypes.

II.2.3.2.1. Les gènes communs aux deux chronotypes

Sur les 28 gènes communs, il y a un gène issu du QTL interspécifique (**Smp_313310**) potentiellement impliqué dans la transduction et un gène marqué par H3K4me3 (**Smp_045260**) (Tableau_57). On retrouve aussi une putative otopetrin qui est un canal à proton impliqué dans la transduction du goût acide (Ramsey & DeSimone, 2018) dont le pic d'expression diurne est à 12h (le jour, pendant le pic) et le pic d'expression nocturne à 4h (la nuit). Les analyses d'enrichissement GO et de Kegg pathway n'ont pas donné de résultat intéressant à développer ici.

Chr.	Gene ID	GFF annotation	HHsearch annotation	Pic expression Diurne (h)	Pic expressio n Nocturne (h)
	Smp_121990	Glycerol-3-phosphate dehydrogenase		8	4
	Smp_149710	NA		16	24
1	Smp_160710	Putative upstream stimulatory factor		8	16
	Smp_169360	Putative kinesin		12	4
	Smp_202260	NA		12	16
	Smp_314800	NA		12	4
	Smp_045260	5-aminolevulinate synthase		8	4
2	Smp_161210	NA		8	4
Z	Smp_310750	NA		8	4
	Smp_316380	NA		8	4
	Smp_328260	NA		20	20
	Smp_050280	60S ribosomal protein L31		20	24
	Smp_172590	Carboxypeptidase		8	4
	Smp_197860	Putative gelsolin		12	4
	Smp_312580	Pribosyltran domain- containing protein		8	20
4			Sarcoplasmic calcium-		

Tableau	57 : Liste des	s gènes communs	aux chronotypes	diurne et nocturn	e avec le pic d'	expression des gène	es
		0					

	Smp_312580	containing protein		8	20
4	Smp_313310	EF-hand domain	Sarcoplasmic calcium- binding protein {Amphioxus (Branchiostoma lanceolatum) [TaxId: 7740]}	16	12
5	Smp_125660	Heterogeneous nuclear ribonucleoprotein-related		12	4
c	Smp_183710	Putative actin		4	24
0	Smp_203130	NA		8	4
7	Smp_125080	Mername-AA217 hypothetical peptidase (M14 family)		12	4
/	Smp_130280	Cell polarity protein		12	4
	Smp_152940	Putative otopetrin		12	4
	Smp_337880	NA		8	20
ZW	Smp_091790	NA		16	12

	Smp_128440	Putative run and fyve		12	4
		domain containing protein			
	Smp_245290	NA		12	4
	Smp_306990	NA		8	4
	Smp_344820	NA		12	4

Chr. : Chromosome.

Chez le chronotype diurne, la majorité des pics d'expression des gènes communs a lieu à 8h et 12h (Tableau_58), soit 4h avant le pic ou pendant le pic d'émission des cercaires. Chez le chronotype nocturne, l'écrasante majorité des pics d'expressions a lieu à 4h (Tableau_57), soit 16h avant le pic d'émission des cercaires.

Tableau 58 : Répartition des pics d'expression des gènes rythmiques dans les deux chronotypes

Heures	Nombre des pics d'expression des gènes rythmiques Diurnes	Nombre des pics d'expression des gènes rythmiques Nocturnes
4	1	18
8	11	0
12	11	2
16	3	2
20	2	3
24	0	3
Total des pics d'expression diurne (8h, 12h, 16h)	25	4
Total des pics d'expression nocturne (4h, 20h, 0h)	3	24

Si on s'intéresse à l'heure des pics d'expression entre les chronotypes, on observe différents types de comportement. Il y a tout d'abord les gènes qui ont le même profil d'expression entre les deux chronotypes (**Smp_328260**) (Figure_79). Ce résultat peut indiquer que le gène est un acteur commun aux deux chronotypes dans le mécanisme du rythme d'émission des cercaires ou que ce gène occupe une fonction commune mais dans un processus biologique indépendant du rythme d'émission des cercaires. Un comportement inverse est observé où l'expression est diamétralement opposée (**Smp_312580**).

Smp_328260 (NA) : pic d'expression diurne et nocturne à 20h

<u>Figure 79</u>: **Exemple de profils d'expression de gène commun aux deux chronotypes (pic d'expression à la même heure).** Chaque histogramme a, en abscisse, les heures (points temporels) et en ordonnées le nombre de reads pour le gène sélectionné. En fond, se trouve le profil d'émission des cercaires. Les rectangles gris symbolisent l'obscurité (O), les blancs la lumière (L), les rectangles jaunes la période du pic d'émission des cercaires chronotype diurne et les rectangles bleus la période du pic d'émission des cercaires.
Un autre comportement implique des pics d'expression avant le pic d'émission des cercaires (Figure_80), soit 4h avant pour le diurne et 16h avant pour le nocturne (Smp_121990, Smp_045260, Smp_161210, Smp_310750, Smp_316380 et Smp_172590). Un autre comportement similaire, représente un pic d'expression diurne en même temps que le pic d'émission des cercaires diurne, tandis que le pic d'expression nocturne reste à 16h avant le pic d'émission des cercaires (Smp_169360, Smp_314800 et Smp_197860). Ces deux cas de figure peuvent illustrer que les mêmes acteurs sont impliqués pour le rythme d'émission des cercaires dans les deux chronotypes mais qu'une mutation ou une modulation différente de l'expression des gènes concernés impliquent une différence d'heure d'émission des cercaires.

<u>Figure 80</u>: **Exemple de profils d'expression de gène commun aux deux chronotypes (pic d'expression avant le pic d'émission des cercaires).** Chaque histogramme a, en abscisses, les heures (points temporels) et en ordonnées le nombre de reads pour le gène sélectionné. En fond, se trouve le profil d'émission des cercaires. Les rectangles gris symbolisent l'obscurité (O), les blancs la lumière (L), les rectangles jaunes la période du pic d'émission des cercaires chronotype diurne et les rectangles bleus la période du pic d'émission des cercaires.

II.2.3.2.2. Les gènes diurnes rythmiques

Tout comme pour les gènes candidats QTL et marque histone, une sélection subjective basée sur la recherche de gènes de l'horloge, de la phototransduction et de l'acétylation et la méthylation des histones a été faite. L'enrichissement GO a été fait avec Blast2GO version 5.2 en utilisant le Fisher's Exact Test (p<0,05). L'analyse d'enrichissement Kegg pathway a été faite sur le serveur KAAS en utilisant le programme Blast avec la méthode SBH (Single-directional Best Hit). La liste complète des gènes diurnes rythmiques est présentée dans l'annexe 10.

II.2.3.2.2.1. Les gènes de l'horloge (Basic Helix-Loop-Helix)

Il n'y a aucun gène canonique de l'horloge ni de gène avec un domaine BHLH dans les gènes rythmiques diurnes.

II.2.3.2.2.2. Les rhodopsines et autres gènes impliqués dans la phototransduction

Il y a trois gènes rhodopsine-like (Tableau_59), mais aucune rhodopsine. Chacun de ces trois gènes a un pic d'expression diurne différent, qui se déroule soit avant (8h), soit pendant (12h) soit après le pic d'émission des cercaires (16h).

<u>Tableau</u>	59 :	Liste de	es gènes	diurnes	rythmiques	rhodopsine-like
----------------	------	----------	----------	---------	------------	-----------------

Chr.	Identifiant (ID) du gène	Annotation GFF	Heure du pic d'expression
1	Smp_072450	Putative rhodopsin-like orphan GPCR	16
7) //	Smp_203500 G_PROTEIN_RECEP_F1_2 domain- containing protein		8
200	Smp_332930	G_PROTEIN_RECEP_F2_4 domain- containing protein	12

Parmi les différents acteurs de la phototransduction, nous retrouvons, dans les gènes diurnes rythmiques : la rhodopsine-like, la phosphodiestérase, la GPCR kinase (sérine/thréonine kinase), la recoverine (domaine EF-hand), la protéine phosphatase 2A (PP2A), la GTPase activating protéine et la GTPase (Tableau_60). Dans la majorité des cas, les pics d'expression sont diurnes et se déroulent au moment du pic d'émission des cercaires.

Tableau 60 : Liste des gènes diurnes rythmiques liés à la phototransduction

Intérêt	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch	Commun	H pic exp
Phospho- diestérase	5	Smp_334600	Phosphodiesterase			12
	ZW	Smp_134140				12
GPCR kinase (sérine/	1	Smp_009600	Serine/threonine- protein kinase PLK			4
thréonine kinase)	ZW	Smp_194610	Serine/threonine kinase		H3K4me3	8
recoverin e (domaine EF-hand),	6	Smp_341900	EF-hand domain- containing protein			12
	3	Smp_106110	EF-hand domain	Kchip1, Kv4 potassium channel- interacting protein {Rat (<i>Rattus</i> <i>norvegicus</i>) [TaxId: 10116]}	Kchip1, Kv4 potassium channel- interacting protein {Rat (<i>Rattus</i> <i>norvegicus</i>) [TaxId: 10116]}	12
		Smp_181460	EF-hand domain pair	DUF4205	DUF4205	12
PP2A	zw	Smp_172280	Serine/threonine protein phosphatase 2a regulatory subunit A%2C putative			8
	5	Smp_165490	Calcineurin-like phosphoesterase domain, ApaH type	Protein phosphatase 2A catalytic	Protein phosphatase 2A catalytic subunit	4

activating protein GTPase	zw 4	Smp_152370 Smp_313300	Putative arf gtpase- activating protein Small GTPase	Rab21 {Human (Homo	Rab21 {Human (Homo sapiens)	24 8
GTRasa				subunit alpha isoform, PP2A- alpha {Human (<i>Homo</i> <i>sapiens</i>) [TaxId: 9606]}	alpha isoform, PP2A-alpha {Human (<i>Homo</i> <i>sapiens</i>) [TaxId: 9606]}	

II.2.3.2.2.3. Les gènes impliqués dans l'acétylation des histones

Parmi les gènes rythmiques diurnes, nous retrouvons le gène **Smp_053140** qui est une histone acétyltransférase. Ce gène est marqué avec H3K4me3 et a son pic d'expression à 4h (la nuit).

II.2.3.2.2.4. Enrichissement GO : Processus biologique

Les analyses d'enrichissement GO n'ont pas donné de résultats significatifs en utilisant la limite usuelle FDR < 0,05 (False Discovery Rate). Les résultats qui suivent ont été obtenus en utilisant la limite de p < 0,05.

Les annotations processus métabolique/biosynthétique regroupent 3 gènes marqués avec H3K4me3 impliqués dans le processus de l'hème (Tableau_61) (cf II.2.2.2.6 Enrichissement GO : Processus biologique).

<u>Tableau</u>	<u>61 : Liste des</u>	gènes diurnes	rythmiques is	ssus des annot	tations GO sélectionnées
----------------	-----------------------	---------------	---------------	----------------	--------------------------

GO	Chr.	Identifiant (ID) du gène	Annotation GFF	Commun	Heure du pic d'expression
	1	Smp_342030	NA		12
stross oxydatif	7\\/	Smp_058690	Glutathione		12
Stress Oxyuatii	200	Smp_058700	peroxidase		12
		Smp_047680	Forritin		16
	2	Smp_047650	remun		16
Processus	2	Smp_046740	Dihydrolipoyl dehydrogenase		8
homéostatique	4	Smp_043030	Hexokinase		8
	ZW	Smp_203970	Calcium load- activated calcium channel		20
Processus métabolique	2	Smp_045260	5- aminolevulinate synthase		8
et	5	Smp_340920	NA	H3K4me3	8
biosynthétique du pigment	ZW	Smp_095130	Putative porphobilinogen deaminase		20

Partie II : Rythme-Transcriptomique

Parmi toutes les annotations GO (Figure_81), la réponse au stress oxidatif et les processus homéostatiques sont intéressants. L'annotation réponse au stress oxydatif regroupe 3 gènes, dont deux Glutathione peroxidase. Il a été montré chez la souris que la glutathione peroxidase 4 (GPx4) était une enzyme antioxydante importante dans la maturation et la survie des cellules photoréceptrices (Ueta, Inoue et al., 2012).

Revigo TreeMap									
regulation of cellular amide metabolic process	post-transcriptional regulation of gene expression	organonitrogen compound metabolic process		cellular macromolect biosynthetic proces	cellular macromolecule methylguanosine-cap biosynthetic process decapping		cellular macromolecule biosynthetic process methylguanosine-cap decapping response to oxidative stress response to oxidative stress		carbohydrate catabolic process carbohydrate catabolic process
regulation of cellular macromolecule biosynthetic process	homeostatic process	tetrapyrrole metabolic process		rapyrrole metabolic process cellular amide metabolic process			adenylate cyclase-modulating G protein-coupled receptor signaling pathway	mRNA catabolic process	
homeosta	tic process	RNA decapping DNA replication			compound metabolic process				
cellular homeostasis	positive regulation of mRNA metabolic process			DNA replication			microtubule-based movement	pigment metabolic process	
regulation of translation	positive regulation of cellular catabolic process	pyruvate metabolic process	pyru metat	vanic acid vate metabolic proces Noic process	s salvage	ATP generation from ADP	microtubule-based process	pigment biosynthetic process	

<u>Figure 81</u>: **Treemap des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes diurnes rythmiques.** Chaque couleur représente un grand ensemble de processus biologique. Il y a, de gauche à droite : Processus homéostatique ; Processus métabolique des tetrapyrroles ; Réponse à un stress oxydatif ; Processus catabolique des glucides ; Processus métabolique des pyruvates ; mouvement basé sur les microtubules ; Processus métabolique des pigments ; processus biologique s processus biologique des pigments ; processus biologique s processus métabolique des pigments ; processus biologique s pigments.

L'annotation processus homéostatique contient deux gènes qui codent pour des ferritines. Ces protéines, qui permettent le stockage du fer, sont régulées par des cycles jour/nuit sous le contrôle de l'horloge circadienne chez *Ostreococcus tauri* (Botebol, Lesuisse et al., 2015).

Dans la majorité des cas, le pic d'expression de ces gènes est diurne, soit avant le pic d'émission (8h) soit pendant le pic (12h).

II.2.3.2.2.5. Kegg pathway

Les analyses Kegg pathway montrent que les gènes diurnes rythmiques sont potentiellement impliqués dans 308 voies moléculaires différentes. Parmi toutes ces voies, sept retiennent notre attention, le rythme circadien, l'entraînement circadien, la phototransduction, la phototransduction chez la drosophile, la transduction olfactive et la transduction gustative (Tableau_62). La majorité de ces gènes ont des pics d'expressions diurnes, principalement avant le pic d'émission (8h).

Partie II : Rythme-Transcriptomique

Tableau	62 : Liste de	es gènes diurne	es rvthmiaues iss	sus des Kegg pat	hwavs sélectionnées
	<u></u>				

Kegg pathway	KO annotation	Chr.	Identifiant (ID) du gène	Annotation GFF	Commun	H pic exp
Rythme circadien	К08959	ZW Smp_201220		Non-specific serine/threonine protein kinase		12
	К07199	1	Smp_341700	AMPKBI domain- containing protein	H3K4me3	12
Rythme circadien chez la drosophile	K09057		Smp_026400	Thyrotroph embryonic factor related		12
	K02183	zw	Smp_033010*	Similar to 16 kDa calcium-binding protein		8
Entraînement circadien	K04345		Smp_307260	Protein kinase domain-containing protein		8
	K04630 1 2	Smp_020080	Putative gtp-binding protein (I) alpha- 1subunit, gnai1	H2K4mo2	12	
		2	Smp_016250	Putative gtp-binding protein (I) alpha-2 subunit, gnai2	nsk4mes	24
Phototransduction	K02183	zw	Smp_033010*	Similar to 16 kDa calcium-binding protein		8
	K04967	1	Smp_344020	NA		12
Phototransduction chez la drosophile	K02183		Smp_033010*	Similar to 16 kDa calcium-binding protein		8
Transduction olfactive	K04345	714/	Smp_307260*	Protein kinase domain-containing protein		8
	К02183	2.00	Smp_033010*	Similar to 16 kDa calcium-binding protein		8
Transduction gustative	K04345		Smp_307260*	Protein kinase domain-containing protein		8

II.2.3.2.2.6. Les gènes rythmiques communs en photopériode classique et inversée

Parmi les 731 gènes diurnes rythmiques pour les échantillons en photopériode classique (L-O), 35 sont communs avec les gènes diurnes rythmiques pour les échantillons en photopériode inversée (O-L) (Tableau_63). Si la sélection subjective et l'annotation GO ne donnent pas matière à discuter, les analyses Kegg pathway révèlent que ces gènes sont potentiellement impliqués dans 67 pathways différents, dont le rythme circadien. Le pathway rythme circadien contient le gène **Smp_201220**. Ce gène a des pics d'expression opposés entre les échantillons en photopériode classique (12h) et en condition photopériode inversée (20h) (Figure_82). Ces résultats font de ce gène un candidat très sérieux pour expliquer le rythme d'émission des cercaires.

<u>Tableau_63 :</u> Liste des gènes diurnes rythmiques communs aux échantillons photopériode classique (L-O) et photopériode inversée (O-L). Les gènes aux pics d'expression diamétralement opposés sont marqués en rouge.

Chr.	Gene ID	GFF annotation	HHsearch annotation	Pic expression Diurne L-O	Pic expressio n Diurne
				(h)	O-L (h)
SM_V7_1	Smp_073800	RecQ-mediated genome instability protein 1		12	8
SM_V7_1	Smp_246020	NA		16	20
SM_V7_3	Smp_167630	Solute carrier family%2C putative		16	16
SM_V7_3	Smp_326660	NA		8	12
SM_V7_5	Smp_006440	Heterogeneous nuclear ribonucleoprotein l (Hnrnp l)%2C putative		8	20
SM_V7_5	Smp_061570	Mediator of RNA polymerase II transcription subunit 19		12	12
SM_V7_5	Smp_315750	Ubiquitin-conjugating enzyme E2	Ubiquitin- conjugating enzyme E2	12	24
SM_V7_6	Smp_074330	PEST proteolytic signal-containing nuclear protein		12	12
SM_V7_7	Smp_152940	Putative otopetrin		12	16
SM_V7_ZW	Smp_006340	ER membrane protein complex subunit 4		20	0
SM_V7_ZW	Smp_019820	NA		12	24
SM_V7_ZW	Smp_022500	NA		20	16
SM_V7_ZW	Smp_037700	Nuclear transport factor 2-like protein%3B Nuclear transport factor%2C putative		20	16
SM_V7_ZW	Smp_046980	Pre-mRNA-splicing factor 38		20	20
SM_V7_ZW	Smp_060210	Putative lipopolysaccharide- induced transcription factor regulating tumor necrosis factor alpha		8	16
SM_V7_ZW	Smp_091170	Ribosomal protein		12	24
SM_V7_ZW	Smp_091840	Bestrophin homolog		20	16
SM_V7_ZW	Smp_102240	Upf3 regulator of nonsense transcripts- like protein		12	24

		Testis specific leucine		
SM V7 ZW	Smp 120380	rich repeat	12	8
0	0p_120000	nrotein%2Cnutative		0
		Mitochondrial carrier		
SM_V7_ZW	Smp_121130	protoin%2C putativo	16	24
		Nuclear movement		
SM_V7_ZW	Smp_128650	Nuclear movement	12	20
		protein related		
		Putative		
SM V7 ZW	Smp 143730	carboxypeptidase	24	4
	'-	regulatory region-		
		containing		
SM V7 7W	Smp 165470	Receptor protein-	16	12
5	51110_105170	tyrosine kinase	10	12
		Phosphatidylcholine-		
		sterol acyltransferase		
SM_V7_ZW	Smp_166500	(Lecithin-cholesterol	12	12
		acyltransferase)/		
		Phospholipase A		
		Iron-sulfur cluster		
SM V7 ZW	Smp 177790	scaffold protein nfu-	12	16
	• =	related		
		Non-specific		
SM V7 ZW	Smp 201220	serine/threonine	12	20
		protein kinase		-
SM V7 ZW	Smp 204380	NA	16	12
SM V7 ZW	Smp 245400	NA	12	16
SM V7 ZW	Smp 315980	NA	12	20
SM V7 ZW	Smp 322240	NA	12	16
 SM_V7_ZW	Smp_323230	NA	8	12
SM_V7_ZW	Smp_343530	NA	8	8
SM V7 ZW	Smp 343890	NA	20	20
SM_V7_ZW	Smp_346810	NA	12	24
SM_V7_ZWH005	Smp_330950	NA	8	4

Smp_ 201220 (Non-specific serine/threonine protein kinase) : pic d'expression Diurne (L-O) et Diurne photopériode inversée (O-L) opposés

<u>Figure 82</u>: **Exemple de profils d'expression de gène commun aux chronotypes Diurnes L-O et O-L (pic d'expression inversé).** Chaque histogramme a, en abscisses, les heures (points temporels) et en ordonnées le nombre de reads pour le gène sélectionné. En fond, se trouve le profil d'émission des cercaires. Les rectangles gris symbolisent l'obscurité (O), les blancs la lumière (L), les rectangles jaunes la période du pic d'émission des cercaires chronotype diurne.

Partie II : Rythme-Transcriptomique

Chez le diurne (L-O), la majorité des pics d'expression des gènes communs a lieu à 12h (Tableau_64), soit pendant le pic d'émission des cercaires. Chez le diurne (O-L), la majorité des pics d'expressions à lieu à 16h (Tableau_63), soit pendant la nuit, 8h avant le pic d'émission des cercaires (O-L).

Heures	Nombre des pics d'expression des gènes rythmiques Diurnes (L-O)	Nombre des pics d'expression des gènes rythmiques Diurnes (O-L)
4	0	2
8	6	3
12	17	7
16	5	9
20	6	7
24	1	7
Total des pics		
d'expression diurne (L-	20	16
O : 8h, 12h, 16h ; O-L :	28	10
4h, 20h et 24h)		
Total des pics		
d'expression nocturne	7	10
(L-O : 4h, 20h, 24h ; O-	7	19
L : 8h, 12h et 16h)		

Tableau 64 : Répartition des pics d'expression des gènes rhythmiques aux deux photopériodes du chronotype diurne

Si on s'intéresse à l'heure des pics d'expression entre les conditions de photopériode, on observe différents types de comportement. Il y a tout d'abord les gènes qui ont le même type d'expression entre les deux photopériodes. Ce résultat suggère que l'expression de ces gènes est indépendante de la photopériode. Le comportement inverse est aussi observé, c'est-à-dire des expressions qui se sont inversé avec la modification de la photopériode. Ces gènes représentent des candidats sérieux car leur expression est dépendante des variations de photopériode.

II.2.3.2.3. Les gènes nocturnes

Comme précédemment, une sélection subjective basée sur la recherche de gènes de l'horloge, de la phototransduction et de l'acétylation et la méthylation des histones a été faite. L'enrichissement GO a été fait avec Blast2GO version 5.2 en utilisant le Fisher's Exact Test (*p*<0,05). L'analyse d'enrichissement Kegg pathway a été faite sur le serveur KAAS en utilisant le programme Blast avec la méthode SBH (Single-directional Best Hit). La liste complète des gènes nocturnes rythmiques est présentée dans l'annexe 11.

II.2.3.2.3.1. Les gènes de l'horloge (Basic Helix-Loop-Helix)

Il n'y a aucun gène canonique de l'horloge. On retrouve toutefois deux gènes avec un domaine BHLH issus des QTL interspécifiques (Tableau_65) qui ont leur pic d'expression à 4h (la nuit).

Tableau 65 : Liste de	es gènes nocturnes	rythmiques BHLH
-----------------------	--------------------	-----------------

Intérêt	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch	Commun	Heure du pic d'expressio n
Domaine BHLH	3	Smp_021340	Myc-type, basic helix- loop-helix	Mad protein {Human (<i>Homo</i> sapiens) [TaxId: 9606]}	QTL interspécifique et H3K4me3	4
		Smp_000620	(bHLH) domain	DNA- binding protein inhibitor ID-1	QTL interspécifique	4

II.2.3.2.3.2. Les rhodopsines et autres gènes impliqués dans la phototransduction

Il y a quatre gènes rhodopsine-like tous identifiés lors des QTLs intra et interspécifique (Tableau_66). Trois d'entre eux ont leur pic d'expression à 4h (la nuit) et le quatrième a son pic à 12h (jour).

Intérêt	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch	Commun	Hr pic exp
		Smp_180140		P2Y purinoceptor 1, Rubredoxin		12
Rhodopsin e-like	1	Smp_140250		Platelet-activating factor receptor,Flavodoxin	QTL intraspé.	4
	3	Smp_132410	G protein- coupled receptor, rhodopsin- like	Lysozyme, Proteinase -activated receptor 2, Soluble cytochrome b562, Proteinase- activated	QTL interspé.	4
	4	Smp_145540		Muscarinic acetylcholine receptor M2,Vasopressin V2	QTL interspé. et Kegg pathway transduction gustative	4

Tableau 66 : Liste des gènes nocturnes rythmiques rhodopsine-like

Partie II : Rythme-Transcriptomique

Parmi les différents acteurs de la phototransduction, nous retrouvons, dans les gènes nocturnes rythmiques : les rhodopsine-like, la GPCR kinase (sérine/thréonine kinase), l'arrestine, la recoverine (domaine EF-hand), la GTPase activating protein et la guanylate cyclase (Tableau_67). Dans la majorité des gènes, le pic d'expression est à 4h.

Intérêt	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch	Commun	H Pic ex p
	1	Smp_210820	Protein- serine/threonine kinase			4
GPCR kinase	2	Smp_310770				8
(sérine/thréonine	1	Smp_097940				4
kinase)	3	Smp_134910	Serine/threonine			4
	7	Smp_057360	kinase		H3K4me3	4
	714/	Smp_094190			1	4
	ZVV	Smp_156990			1	4
Arrestine	3	Smp_176980	Putative beta- arrestin 1			12
	1	1 Smp_171010 Smp_171010 Putative ef-hand domain (C- terminal) containing proteir			H3K4me3	16
Recoverine (domaine EF- hand)	4	Smp_313310	EF-hand domain	Sarcoplasmic calcium-binding protein {Amphioxus (<i>Branchiostoma</i> <i>lanceolatum</i>) [TaxId: 7740]}	QTL interspé.	12
	7	Smp_318260	EF-hand domain- containing protein			4
	1	Smp_166310	Putative ran gtpase-activating protein			20
	1	Smp_081190	Putative rho3 GTPase%3B Rho3 GTPase			4
GTPase activating	2	Smp_154850	Putative rap gtpase-activating protein			4
protein	ZW	Smp_164680	Synaptic ras gtpase activating protein%2C syngap%2Cputative			4
	1	Smp_319130	FCH domain	SLIT-ROBO Rho GTPase- activating protein 2	QTL intraspé. et H3K4me3	4

Tableau 67 : Liste des gènes nocturnes rythmiques liés à la phototransduction

		Smp_094890	Rho GTPase- activating protein domain	Beta-chimaerin, C-terminal domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}	QTL intraspé. et H3K4me3	4
Guanylyl cyclase	7	Smp_140040	Guanylate cyclase domain-containing protein			4

II.2.3.2.3.3. Les gènes impliqués dans l'acétylation des histones

Contrairement au chronotype diurne, il n'y a pas de gènes rhythmiques impliqués dans l'acétylation ou la méthylation des histones pour le chronotype nocturne. Toutefois, il est intéressant de noter la présence de deux gènes rythmiques de type myc dont un potentiel gène Mad qui recrute des histones désacétylases (Smp_021340 **et** Smp_000620).

II.2.3.2.3.4. Enrichissement GO : Processus biologique

Les analyses d'enrichissement GO des gènes détectés comme rythmique dans le chronotype nocturne n'ont pas donné de résultats significatifs en utilisant la limite usuelle FDR < 0,05 (False Discovery Rate). Les résultats qui suivent ont été obtenus en utilisant la limite de p < 0,05.

Parmi les gènes nocturnes rythmiques, on retrouve deux gènes marqués avec H3K4me3 impliqués dans le métabolique de l'hème (Tableau_68).

GO	Chr.	Identifiant (ID) du gène	Annotation GFF	Commun	Heure du pic d'expressio n
Réponse à un stimulus environnemental	zw	Smp_244250	NA		4
Régulation des	2	Smp_316380	NA		4
niveaux de	4	Smp_126990	Putative synapsin		4
neurotransmetteur	ZW	Smp_175900	Synaptotagmin		4
Processus métabolique et	2	Smp_045260	5-aminolevulinate synthase	112/(4m o 2	4
biosynthétique du pigment	SM_V7_3	Smp_079840	Uroporphyrinogen -III synthase	пзк4тез	4

Tableau 68 : Liste des gènes nocturnes rythmiques issus des annotations GO sélectionnées

Parmi toutes les annotations GO (Figure _83), la réponse cellulaire à un stimulus environnemental et la régulation des niveaux de neurotransmetteurs sont intéressantes. L'annotation « réponse cellulaire à un stimulus environnemental » correspond à un gène non identifié. L'annotation « régulation des niveaux de neurotransmetteur » regroupe 3 gènes, avec, parmi eux, une synaptotagmine. Il a été montré que la synaptotagmine régule la transmission synaptique dépendant des ions Ca2+ (Grassmeyer, Cahill et al., 2019). Tous les gènes de ce point ont leur pic d'expression à 4h (la nuit).

	Revigo TreeMap												
neurotransmitter transport	ion transport	secretion by cell	transport	peptidyl-tyrosine dephosphorylation	transsulfu	ration	phosph cc metat	ate-containing ompound bolic process	cell-cell sign	aling	chemi trar	ical synaptic nsmission	protein homooligomerization
secretion	catching ion neurotransmit transport	calcium ion ter transport transport	sodium ion transmembrane transport	uroporphyrinogen III metabo <mark>reptid</mark> process	protein n-phosphoryla n-tyrosine de	phospho	polys rylatio	saccharide polic process	cellular response to stimulus Cf	protein C-activa protein-o ali-ceil s path	kinase ating G coupled ignaling way	bacan-reagen-racialist generge	protein complex oligomerization protein complex oligomerization axonemal dynein
export from cell	chloride transmembrane transport	potassium ion transport	cation transport	uroporphyrinogen Ili biosynthetic process		cellular carbohydrate biosynthetic process	insitiol neuropeptide intrace phosphate-mediated signaling signaling signaling transde		intracellular signal transduction	complex assembly mRNA 5'-splice site recognition			
regulation of neurotransmitter levels	regulation of molecular function	regulation of biological quality	regulation of signaling receptor activity	cellular response environmental stimu	cellular response to environmental stimulus osmotic		response to hypotonic osmotic stress response		biological regulation		signaling		cell adhesion
regulation of cAMP-dependent protein kinase activity	regulation of neuron neurotransmitte receptor activity	transmitter levels r regulation of biological process	regulation of cellular process	response to Cellular response to environmental stir acid chemical oxygen-containing		al stimulus		cellular process		cell communication		phosphorus metabolic process	
regulation of localization	regulation of synaptic plasticit	y regulatio	n of transport	response to chemi	cal cellu to ch	cellular response to chemical stress		response to oxygen-containing compound	response to stimulus		cell	-cell adhesion	energy reserve metabolic process

<u>Figure 83</u> : **Treemap des résultats de l'analyse d'enrichissement GO des processus biologiques obtenus pour les gènes nocturnes rythmiques.** Chaque couleur représente un grand ensemble de processus biologiques. Il y a, de gauche à droite : Transport des neurotransmetteurs ; déphosphorylation peptidyl-tyrosine ; signalisation cellule à cellule ; Oligomérisation du complexe protéique ; Régulation du niveau des neurotransmetteurs ; Réponse cellulaire à un stimulus environnemental ; Régulation biologique ; Signalisation ; Adhésion cellulaire ; Processus cellulaire ; Communication cellulaire ; processus métabolique du phosphore ; Réponse aux stimilus ; Adhésion cellule à cellule ; Processus métabolique des réserves d'énergie.

II.2.3.2.3.5. Kegg pathway

Les analyses Kegg pathway montrent que les gènes nocturnes rythmiques sont potentiellement impliqués dans 220 voies moléculaires différentes. Parmi toutes ces voies, quatre retiennent notre attention, l'entraînement circadien, la phototransduction chez la drosophile, la transduction olfactive et la transduction gustative (Tableau_69). On retrouve des gènes déjà identifiés avec les QTL intra et interspécifique. La majorité des pics d'expression a lieu à 4h, la nuit, et le reste a lieu à 12h.

<u>Tableau 69 :</u> Liste des gènes diurnes rythmiques issus des Kegg pathways sélectionnés. Les gènes marqués avec une étoile (*) sont présents dans plusieurs pathways

Kegg pathway	KO annotation	Chr.	Identifiant (ID) du gène	Annotation GFF	Annotation HHsearch	Commun	н
	K05208	ZW	Smp_245310	NA			1 2
Entraînement circadien	K04962	1	Smp_163570	Ryanodine receptor related			4
	K04851	3	Smp_159990	Voltage-dependent L-type calcium channel subunit alpha		H3K4me3	4

	К04958	4	Smp_336900 *	Inositol 1,4,5- trisphosphate receptor			4
	К02677	zw	Smp_241420 *	AGC-kinase C- terminal domain- containing protein			4
	K04958	4	Smp_336900 *	Inositol 1,4,5- trisphosphate receptor			4
Phototransduc tion chez la	К02677	7 ZW Smp_241420		AGC-kinase C- terminal domain- containing protein			4
drosophile	K00910	1	Smp_210820 *	GPCR kinase	Beta- adrenergic receptor kinase 1 (E.C.2.7.11.15)	QTL intraspéci fique et H3K4me3	4
Transduction	K04439	3	Smp_176980	Putative beta- arrestin 1			1 2
	K05849	1	Smp_152830	Na-Ca exchanger/integrin -beta4	Na/Ca exchange protein		4
olfactive	K00910	1	Smp_210820 *	GPCR kinase	Beta- adrenergic receptor kinase 1 (E.C.2.7.11.15)	QTL intraspéci fique et H3K4me3	4
Transduction gustative	K04131	4	Smp_145540	G protein-coupled receptor, rhodopsin-like	Muscarinic acetylcholine receptor M2,Vasopressi n V2	QTL interspéci fique	4

II.2.3.2.3.6. Les gènes rythmiques communs en photopériode classique et inversée

Parmi les 439 gènes nocturnes rythmiques pour les échantillons en photopériode classique (L-O), 7 sont communs avec les gènes nocturnes rythmiques pour les échantillons en photopériode inversée (O-L) (Tableau_70). Parmi ces 7 gènes, on retrouve deux gènes issus des QTLs intraspécifiques qui codent pour des rhodopsine-like. Dans le cas du gène **Smp_140250**, le pic d'expression en photopériode classique est à 4h (nuit) tandis qu'il est à 20h (jour) en condition photopériode inversée. On retrouve aussi un gène sérine/thréonine kinase (Smp_310770) qui ne change pas d'heure de pic d'expression entre les deux conditions. Cela peut signifier que l'expression de ce gène n'est pas influencée par la photopériode. Ce cas de figure arrive pour deux autres gènes (Tableau_70).

Le gène **Smp_197640**, qui code pour un canal calcique voltage dépendant, a son rythme d'expression totalement inversé entre les deux conditions de photopériode (Tableau_70 et Figure_84). Cela implique que les mécanismes Ca2+ dépendants sont importants dans le rythme d'émission des cercaires.

Les analyses Kegg pathways révèlent que ces gènes sont potentiellement impliqués dans 11 pathways différents. Aucun pathway rythme/entraînement circadien ou transduction de signaux environnementaux ne ressort de ces analyses. Toutefois le gène **Smp_180140** (K04144) apparaît dans les pathways concernant la voie de signalisation du calcium, la voie de signalisation de l'AMPc, les synapses dopaminergiques et même le pathway de l'addiction à la cocaïne.

Chr	Gene ID	GFF annotation	HHsearch annotation	Pic expression Nocturne L-O (h)	Pic expression Nocturne O-L (h)
SM_V7_1	Smp_140250	G protein- coupled receptor, rhodopsin-like	Platelet-activating factor receptor,Flavodoxin	4	20
SM_V7_3	Smp_162660	Glutamine- dependent NAD(+) synthetase		12	20
SM_V7_1	Smp_163430	C2H2-type domain- containing protein		24	8
SM_V7_1	Smp_180140	G protein- coupled receptor, rhodopsin-like	P2Y purinoceptor 1, Rubredoxin	12	16
SM_V7_3	Smp_197640	Voltage- dependent calcium channel		4	16
SM_V7_ZW	Smp_212240	NA		16	16
SM_V7_2	Smp_310770	Serine/threonine kinase		8	8

Tableau 70: Liste des gènes nocturnes rythmiques communs aux échantillons photopériode classique (L-O) et photopériode inversée (O-L). Les gènes aux pics d'expression diamétralement opposés sont marqués en rouge.

Smp_197640 (Voltage-dependent calcium channel) : pic d'expression Nocturne (L-O) et Nocturne photopériode inversée (O-L) opposés

<u>Figure 84 :</u> **Exemple de profils d'expression de gène commun aux chronotypes Nocturnes L-O et O-L (pic d'expression inversé).** Chaque histogramme a, en abscisses, les heures (points temporels) et en ordonnées le nombre de reads pour le gène sélectionné. En fond, se trouve le profil d'émission des cercaires. Les rectangles gris symbolisent l'obscurité (O), les blancs la lumière (L), les rectangles bleus la période du pic d'émission des cercaires chronotype nocturne. Chez le nocturne (L-O), la majorité des pics d'expression des gènes communs a lieu à 4h (nuit) et 12h (jour) (Tableau_71), soit 16h et 8h avant le pic d'émission des cercaires. Chez le nocturne (O-L), la majorité des pics d'expression a lieu à 16h (Tableau_70) la nuit, soit 16h avant le pic d'émission des cercaires (O-L).

Houros	Nombre des pics d'expression des	Nombre des pics d'expression des
neures	gènes rythmiques Nocturnes (L-O)	gènes rythmiques Nocturnes (O-L)
4	2	2
8	1	3
12	2	7
16	1	9
20	0	7
0	1	7
Total des pics		
d'expression diurne (L-	4	2
O : 8h, 12h, 16h ; O-L :	4	Z
4h, 20h et 24h)		
Total des pics		
d'expression nocturne	2	F
(L-O : 4h, 20h, 24h ; O-	3	5
L : 8h, 12h et 16h)		

<u>Tableau</u>	71:	Répartition	des pics c	d'expression de	s gènes	rhythmiques	aux deux	photopériodes	s du chronotype noc	turne
----------------	-----	-------------	------------	-----------------	---------	-------------	----------	---------------	---------------------	-------

Tout comme le chronotype diurne, on observe différents types de comportement dans l'expression des gènes entre les deux photopériodes. Il y a tout d'abord les gènes qui ont le même type d'expression entre les deux photopériodes. Ce résultat suggère que l'expression de ces gènes est indépendante de la photopériode. Le comportement inverse est aussi observé, c'est-à-dire des expressions qui se sont inversé avec la modification de la photopériode. Ces gènes représentent des candidats sérieux car leur expression est dépendante des variations de photopériode.

II.2.3.3. Comparaison des chronotypes

La majorité des gènes rythmiques sont propres à chaque chronotype. Il est intéressant de noter que chez le chronotype diurne, la majorité des pics d'expression sont diurnes avec le maximum à 8h soit quatre heures avant le pic d'émission des cercaires (Tableau_72). A l'inverse, chez le chronotype nocturne, la majorité des pics d'expression sont nocturnes, avec une concentration de pic à 4h (la nuit), soit 16h avant l'heure du pic (Tableau_72).

Heures	Nombre des pics d'expression des gènes rythmiques Diurne (N=703)	Nombre des pics d'expression des gènes rythmiques Nocturnes (N=411)
4	66	316
8	246	7
12	186	37
16	64	10
20	95	5
0	46	36
Total des pics d'expression diurne (8h, 12h et 16h)	496	54
Total des pics d'expression nocturne (4h, 20h et 24h)	207	357

Tableau 72 : Répartition des pics d'expression des gènes rhythmiques des deux chronotypes en photopériode classique (L-O)

Il est intéressant de noter que même si les gènes rythmiques présents dans les deux chronotypes sont différents, on retrouve des fonctions communes avec notamment la présence de rhodopsine-like et d'acteur de la phototransduction (Figure_85).

II.2.3.4. Intégration des résultats de génétique et épigénétique

Les approches de génétique, épigénétique et transcriptomique ont permis de mettre en lumière 353 gènes candidats. Contrairement à l'approche transcriptomique, les approches génétique et épigénétique ne donnent pas accès à l'expression des gènes sélectionnés. Pour affiner cette liste de 353 gènes, une vérification du comptage a été faite. Ainsi tous les gènes qui ont une moyenne inférieure à 10 reads pour tous les échantillons des deux chronotypes sont considérés comme non exprimés. Ce filtrage des gènes candidats retire 3 gènes à la liste. Le premier gène est Smp_124470, une adénylate/guanylate cyclase qui est issue du QTL intraspécifique. Les deux autres gènes sont Smp_083940 et Smp_134960, deux rhodopsine-like, issus du QTL interspécifique. Ce résultat intéressant pourrait signifier que si aucun des deux chronotypes de *S. mansoni* n'exprime significativement ces gènes, alors ces deux rhodopsine-like sont spécifiques de *S. rodhaini*. Ces résultats pourraient aussi aller dans le sens de l'hypothèse que le chronotype des schistosomes dépend des rhodopsine-like exprimées dans le parasite.

Pour vérifier cette hypothèse de spécificité de rhodopsine et plus largement des gènes candidats sélectionnés, une analyse différentielle DEseq2 (Galaxy Version 2.11.40.2) (Love, Huber & Anders, 2014) a été menée entre tous les échantillons des deux chronotypes (sans distinction de temps). Par convention, les gènes différentiellement exprimés sont ceux qui ont une *p*-ajustée < 0,01 et un log2(folchange) (log2FC) supérieur à +1 (le gène surexprimé chez le chronotype diurne) ou inférieur à -1 (le gène surexprimé chez le chronotype nocturne). Comme le rythme d'émission des cercaires ne dépend pas phénotypiquement du sexe du parasite, un gène surreprésenté est un gène qui répond aux conditions citées précédemment lors d'une analyse DEseq2 entre les chronotypes, sexes confondus et sexes séparés (mâles diurnes Vs mâles nocturnes et femelles diurnes Vs femelles nocturnes). En plus des 353 gènes sélectionnés par nos analyses, nous avons ajouté 28 gènes rapportés comme rhodopsine-like (opsine-like et photolyase) dans la littérature ou dans le génome de *S. mansoni* qui n'ont pas été sélectionnés au cours de ces travaux (Cosseau, Azzi et al., 2009 ; Hoffman, Davis et al., 2001 ; Liang, Zhao et al., 2016 ; Phan, Liang et al., 2022) (Annexe_12).

La comparaison des chronotypes révèle que les gènes candidats sont plus exprimés dans le chronotype nocturne (Figure_86 et Tableau_73). Ce résultat peut s'expliquer en partie par le fait que les analyses QTL ont été faites sur le phénotype pourcentage de cercaires nocturne.

Parmi les 24 gènes surexprimés chez les nocturnes, nous retrouvons 10 rhodopsine-like contre une seule pour les 9 gènes surexprimés chez les diurnes (Annexe 13). L'expression plus forte de rhodopsine implique une sensibilité plus forte à la lumière pour le chronotype nocturne. Il est intéressant de voir que, sur les 10 rhodopsines surexprimées chez le nocturne, seules deux ont été détectées comme rythmiques. Parmi ces deux, une est rythmique uniquement chez les nocturnes (**Smp_145540**) et l'autre uniquement chez les diurnes (**Smp_203500**). Le gène **Smp_203500** n'est pas le seul à être surexprimé chez le nocturne et à avoir été détecté comme rythmique uniquement chez les diurnes (Annexe 13).

Tableau 73 : Tableau récapitulatif des analyses DEseq2 entre les chronotypes diurne et nocturne de *S. mansoni* pour les gènes candidats sélectionnés

H3K4me3	Nombre de gènes surreprésentés chez les diurnes	Nombre de gènes surreprésentés chez les nocturnes
Deseq2 Diurne D Vs Nocturne N	10	38
Deseq2 Mâles D Vs Mâles N	10	42
Deseq2 Femelles D Vs Femelles N	10	30
Pics communs aux trois Deseq2	9	24

Chez le chronotype diurne, il est intéressant de voir qu'il y a deux acteurs de la phototransduction que l'on retrouve aussi dans les gènes surexprimés chez les nocturnes (recoverine (EF-hand domain) et PP2A). Ces deux protéines sont directement impliquées dans la régulation de l'état de la rhodopsine pour enclencher ou non un nouveau cycle de phototransduction. En fonction de la concentration en Ca2+, la recoverine inhibe la phosphorylation de la rhodopsine activée par la lumière en retenant captive la rhodopsine-kinase. De son côté, la PP2A, déphosphoryle la rhodopsine ce qui lui permet d'être à nouveau disponible pour interagir de nouveau avec la lumière et enclencher une nouvelle cascade.

L'ensemble de ces résultats suggèrent que le rythme d'émission des cercaires des chronotypes diurne et nocturne de *S. mansoni* reposent sur un même principe de phototransduction basé sur la rhodopsine et que le nombre de rhodopsine/rhodopsine-like exprimée ainsi que les régulateurs de la phototransduction impliqués aient un rôle majeur dans la différence de phénotype.

Discussion et conclusion générales

L'objectif principal de cette thèse est d'approfondir la connaissance de la transmission de *Schistosoma mansoni* du mollusque aux mammifères à travers le trait de vie du rythme d'émission des cercaires. L'étude de ce phénomène s'étend du phénotype, au travers d'approches de chronobiologie et d'histologie, jusqu'aux gènes impliqués, au travers d'approches de biologie moléculaire (génétique, épigénétique et transcriptomique). Les modèles biologiques principaux de ces recherches sont deux chronotypes opposés d'émission des cercaires (diurne et nocturne) issus de la même espèce de schistosomes, *S. mansoni*, tous deux originaires de la même région du Dhofar à Oman. La situation sanitaire de cette région peut être comparée à la Corse en termes de faible endémie et de prise en charge rapide de la bilharziose.

La première partie de cette thèse a été consacrée à la description des phénotypes des émissions journalières des deux chronotypes diurne et nocturne de *S. mansoni*. Cette étape a été nécessaire pour établir une base solide de phénotype à utiliser dans les études de biologie moléculaire. Elle s'axe sur deux grands objectifs qui sont de déterminer quelles sont les caractéristiques du phénotype du rythme d'émission des cercaires chez *S. mansoni* et si ce rythme d'émission des cercaires est circadien ? Dans la littérature qui traite de ces problématiques, aucun consensus n'a été établi en termes de protocole et de description des résultats. Ainsi chaque article relève de sa propre méthode et analyse empirique rendant ainsi la possibilité de faire des comparaisons fines entre les expériences difficile. C'est donc dans cette optique qu'il a été primordial de faire un protocole avec un comptage de cercaires toutes les heures sur une durée minimale de 48h. Et également d'établir des paramètres de description précis et quantitatifs pour donner une dimension « statistique » aux observations et ainsi permettre aux non-initiés de l'émission des cercaires de comprendre les analyses.

Pour le premier point de cette partie, sept paramètres ont ainsi été définis, à savoir, le nombre de pic, l'heure du pic, la plage horaire d'émission, l'intensité de la plage horaire d'émission, le coefficient d'asymétrie (skewness), le coefficient d'aplatissement (Kurtosis) et le pourcentage de cercaires nocturne. Un huitième paramètre, qui est le nombre total de cercaires émises sur 24h, n'a pas été pris en compte dans la notion de « rythme d'émission » des cercaires. Il est toutefois un paramètre capital dans la notion de « production cercarienne quantitative » notamment en termes de transmission et d'infectivité du parasite. Les diverses expériences de chronobiologie menées dans cette thèse en condition de photopériode équilibrée L-O (12-12) ont montré que l'espèce de l'hôte et le sexe du parasite n'avaient pas d'influence sur le rythme d'émission des cercaires. Elles ont aussi démontré que les profils journaliers d'émission des cercaires des chronotypes diurne et nocturne de *S. mansoni* se distinguent par trois paramètres qui sont l'heure du pic, l'intensité de la plage d'émission et le pourcentage de cercaires nocturne, illustrant ainsi l'unicité des deux chronotypes. Ces distinctions viennent s'ajouter à celles mises en évidence par Mouahid, Idris *et al.*, 2012 et Mouahid, Mintsa Nguema *et al.*, 2019.

Le deuxième point soulevé dans cette première partie de thèse est le questionnement sur le caractère circadien du rythme d'émission des cercaires. Pour répondre à cette interrogation, le rythme doit répondre à trois caractéristiques, l'entraînabilité du rythme, le maintien du rythme en condition environnementale constante et la compensation du rythme au changement de température.

L'entraînabilité du rythme par le zeitgeber revient à se questionner sur la capacité du rythme à s'adapter à une inversion de photopériode. Les travaux de cette thèse montrent que, peu importe les chronotypes, le rythme d'émission des cercaires s'adapte à l'inversion de photopériode. Dans le cas du chronotype diurne, cette adaptation est immédiate. Ces résultats sont en accord avec les expériences menées sur *S. mansoni* diurne originaire de Porto Rico (Luttermoser, 1955; Asch, 1972; and Glaudel & Edges, 1973) même si les expériences ne peuvent pas être finement comparées. Dans le cas du chronotype nocturne, l'adaptation passe par une étape intermédiaire d'émission bimodale avant de s'adapter totalement à l'inversion. Aucune expérience dans la littérature n'a été menée sur des schistosomes avec un chronotype nocturne pour avoir un point de comparaison.

Discussion et conclusion générales

Le maintien du rythme en condition environnementale constante est, dans notre cas, la capacité à maintenir le rythme d'émission des cercaires en lumière ou obscurité continue (L-L (12-12) ou O-O (12-12). Cette question a été traitée pour les deux chronotypes, en condition de lumière continue et obscurité continue dans des expériences indépendantes. Pour éviter une redondance face à la similarité des résultats entre les deux conditions (L-L (12-12) ou O-O (12-12), seule la lumière continue pour le chronotype diurne et l'obscurité continue pour le chronotype nocturne ont été présentés dans cette thèse. Que ce soit pour le chronotype diurne ou nocturne, le maintien des organismes en condition de photopériode continue implique une perte de rythme et une baisse significative du nombre de cercaires émises voire un arrêt total de l'émission des cercaires dans la majorité des cas. Le rythme d'émission des cercaires est aussitôt rétabli dès qu'il y a le retour de la photopériode équilibrée L-O (12-12). Ces résultats sont en accord avec les expériences menées sur S. mansoni diurne Porto Rico par Valle, Pellegrino & Alvarenga, 1973 et Williams, Wessels & Gilbertson, 1984. L'observation de l'arrêt d'émission cercarienne en condition continue suivi d'un retour à la normale avec le retour à la photopériode équilibrée a amené à s'interroger sur le devenir des cercaires à l'intérieur du mollusque pendant cette période. L'observation de coupes histologiques a permis de découvrir qu'en condition de photopériode continue il y a une accumulation des cercaires matures à l'intérieur des sporocystes, couplée à un arrêt de la cercariogenèse. Ces expériences d'histologie mettent ainsi en lumière un potentiel rôle du sporocyste dans le rythme d'émission des cercaires qui est jusque-là très peu étudié dans la littérature.

Enfin la dernière caractéristique d'un rythme circadien est la compensation du rythme à la température. C'est-à-dire, du point de vue expérimental, de voir si le rythme reste inchangé sous différentes températures. Dans le cas des travaux de cette thèse, limitée par le temps mais aussi par la nécessité de la génération d'assez de matériel biologique, ce dernier caractère n'a pas été testé. En effet, dans l'environnement naturel de *S. mansoni* Oman (zone tropicale), la variation de la température de l'eau n'est pas significative au cours d'une journée. Dans la littérature, le sujet de la compensation du rythme d'émission des cercaires à la température n'est quasiment par traité, à l'exception de travaux G. H. Frank, 1966. Malheureusement, la méthode utilisée ne permet pas de tirer de conclusion définitive (période d'expérimentation trop courte, points temporels de comptage trop éloignés). Ainsi, mises bout à bout, nos expériences ne mettent pas en évidence un rythme de type circadien pour l'émission des cercaires des deux chronotypes de *S. mansoni* (Oman).

Les résultats de la première partie de cette thèse ont permis de poser les bases du phénotype du rythme d'émission des cercaires mais aussi d'orienter les expériences de la partie de biologie moléculaire. De ce fait, cette première partie a démontré l'unicité de chacun des chronotypes diurne et nocturne de *S. mansoni* (Oman), ce qui a rendu possible l'utilisation de la technique de QTL mapping. La non-évidence de la nature circadienne du rythme et l'identification de l'alternance jour/nuit comme zeitgeber suggère que, lors des analyses moléculaires, il n'y aura pas de gène de l'horloge et que les mécanismes de phototransduction seront importants. Les expériences de chronobiologie en photopériode équilibrée L-O (12-12) ont permis d'exclure le sexe du parasite et l'espèce de mollusque comme paramètres de variabilité du rythme d'émission des cercaires de nos expériences ainsi que de minimiser le rôle de l'hôte dans le phénomène. Enfin, la mise en lumière du rôle potentiel des sporocystes par l'approche d'histologie nous a permis d'inclure ce stade parasitaire dans les expérimentations de biologie moléculaire.

Si aucune évidence de rythme circadien n'a été montrée, les divers résultats de la première partie ont identifié l'alternance jour/nuit comme le zeitgeber du rythme d'émission des cercaires. Les expériences d'histologie ont mis en lumière le rôle des sporocystes et les expériences de chronobiologie ont permis d'exclure le sexe du parasite, l'espèce de l'hôte mollusque et la lumière rouge comme paramètres de variation.

La deuxième partie de cette thèse a été consacrée à l'identification des déterminants moléculaires impliqués dans le rythme d'émission des cercaires. Cette problématique a été abordée avec trois approches de biologie moléculaire différentes et complémentaires (génétique, épigénétique et transcriptomique).

L'approche de génétique qui fait office de premier chapitre avec la technique de QTL mapping s'est concentrée sur l'identification des loci impliqués dans le rythme d'émission des cercaires chez *S. mansoni* Oman avec l'expérience intraspécifique issue des croisements entre les deux chronotypes. Les résultats ont montré que le rythme d'émission des cercaires était multigénique, avec des QTL détectés sur les chromosomes 1, 5 et 6. Parmi tous ces gènes, aucun gène canonique de l'horloge n'a été trouvé, ce qui est en accord avec les travaux de Rawlinson, Reid et al., 2021. Il y a toutefois la présence de facteurs de transcription contenant le domaine bhlh présent dans certains gènes de l'horloge. L'analyse de ces gènes candidats a révélé l'implication de certains dans la phototransduction avec notamment la présence de rhodopsine et rhodopsine-like. L'implication de la rhodopsine dans ce phénomène n'est pas surprenante puisque des rhodopsines et certains GPCR (récepteurs couplés aux protéines G) sont impliqués dans d'autres stades du parasite comme le miracidium (Hoffmann, Davis et al., 2001 ; El-Shehabi, Taman et al., 2012 ; Liang, Zao et al., 2016; Phan, Liang et al., 2022). La présence de gènes candidats impliqués dans la modification d'histone (ici acétylation) représente une découverte encourageante pour l'approche épigénétique portant sur les modifications d'histones dans le rythme d'émission des cercaires.

Une expérience de QTL mapping interspécifique issue des croisements entre S. mansoni diurne et S. rodhaini nocturne a aussi été menée dans le but, cette fois ci, de déterminer si les loci impliqués dans le rythme d'émission sont les mêmes entre espèces de schistosomes. Les résultats présentés sont des résultats QTL préliminaires réalisés sur les croisements réciproques séparés. Contrairement à l'expérience intraspécifique réalisée sur les exomes (exome capture), l'expérience interspécifique a été réalisée sur le génome entier (WGS, whole genome sequencing). Ce choix de technique se justifie par le fait que les croisements font intervenir deux génomes d'espèces différentes (S. mansoni et S. rodhaini). Avoir ainsi accès à l'ensemble des génomes parents et recombinés permet de détecter les régions incompatibles ou de faible recombinaison et d'avoir une meilleure détection des variants. Les résultats préliminaires ont montré qu'il y avait un QTL dans le chromosome 3 pour les deux croisements réciproques et un QTL dans le chromosome 4 uniquement pour le croisement B. Ce QTL dans le chromosome 4 n'est pas certain car il n'est pas présent dans le croisement A (très loin du seuil de significativité). Cela peut s'expliquer par le fait que ce QTL chromosome 4 est un artefact ou un phénomène propre au croisement B que l'on peut écarter de notre phénotype d'intérêt, dans le sens où il n'y a pas de différence significative dans la chronobiologie des individus des croisements réciproques A et B. L'analyse des gènes candidats a révélé des résultats similaires avec l'expérience intraspécifique, même si les QTLs ne sont pas sur les mêmes chromosomes. Ainsi, aucun gène canonique de l'horloge n'est présent mais il y a des facteurs de transcription avec un domaine bhlh, des gènes impliqués dans la phototransduction dont des rhodopsines et rhodopsines-like et des gènes liés à la modification d'histone (acétylation et méthylation). Avec ces résultats préliminaires du QTL interspécifique, nous pouvons dire que le rythme d'émission des cercaires (au travers du phénotype du nombre de cercaires nocturnes), repose sur des régions génomiques différentes, mais sur des mécanismes similaires.

L'intégration des résultats des approches de chronobiologie et d'histologie avec ceux de l'approche de génétique fait apparaitre des liens. Ainsi la non évidence de rythme circadien en chronobiologie est confirmée par l'absence de gène canonique de l'horloge par l'approche moléculaire. L'identification du principal zeitgeber (alternance jour/nuit) est validée par la présence de gènes candidats impliqués dans la phototransduction. Côté photorécepteur, l'approche de chronobiologie avait écarté la lumière rouge (et donc par extension les photorécepteurs de type phytochrome). Ceci est confirmé avec d'une part l'absence de phytochrome et phytochrome-like dans le génome de *S. mansoni* et d'autre part avec l'identification de la rhodopsine comme potentiel photorécepteur qui absorbe la lumière verte-bleue. Il est aussi intéressant de noter que la non différence des phénotypes dans les croisements réciproques des expériences de génétique confirme qu'il n'y a pas d'effet du sexe dans le rythme d'émission des cercaires, comme observé avec la chronobiologie. Indépendamment de ces liens, les résultats de génétique ont conforté l'intérêt de l'étude de la modification d'histone en mettant en évidence les « writer » et « eraser » de l'acétylation et méthylation des histones.

Le second chapitre de la deuxième partie s'est centré sur l'approche d'épigénétique avec pour but de déterminer s'il y avait un rythme d'acétylation et de méthylation pour les marques H3K4me3 et H3K9ac pour les deux chronotypes de *S. mansoni* Oman. Ces deux marques présentent un intérêt particulier car elles ont été identifiées comme étant

rythmiques dans les promoteurs des gènes de l'horloge (Koike, Yoo et al., 2012 ; Aguilar-Arnal, Hakim et al., 2013 Takahashi, 2015). De plus la marque H3K9ac chez *S. mansoni* est présente sur un gène codant pour une rhodopsine (smp_104210). Cette approche d'épigénétique a nécessité l'optimisation de la technique de ChIPmentation au modèle biologique de *S. mansoni*, valorisée sous la forme d'un article (Lasica, de Carvalho Augusto et al., 2022).

Pour le chronotype diurne, aucune évidence de rythme n'a été détectée pour les deux marques. En ce qui concerne le chronotype nocturne, seul deux pics pour H3K4me3 et un seul pic pour H3K9ac ont été détectés comme rythmiques. Ces résultats peuvent s'expliquer de plusieurs manières. La première et la plus simple est qu'il n'y a tout simplement pas de rythme dans ces deux marques histones. La deuxième raison est centrée sur les logiciels de détection qui pourraient sous-estimer les pics rythmiques. En effet, les logiciels de détection des rythmes sont des outils qui ont été créés en premier lieu pour les analyses transcriptomiques qui ont des signaux beaucoup plus forts que les expériences d'épigénétique. Ceci est d'autant plus vrai qu'il a été montré que les logiciels rythmiques détectent plus facilement le rythme avec un signal fort (Laloum & Robinson-Rechavi, 2020). La quantité de matériel biologique étant souvent un facteur limitant pour les modèles atypiques, diminuant la possibilité de fortifier le signal avec une augmentation du nombre d'échantillons, il est intéressant de s'interroger sur la sévérité des seuils de détection ou alors de développer des logiciels capables de détecter le rythme d'un signal faible.

Si les évidences de rythme ne sont pas très probantes pour cette approche d'épigénétique, l'étude des gènes associés aux marques histones s'est révélée intéressante, en retrouvant des gènes QTLs, mais aussi des gènes impliqués dans la phototransduction et des rhodopsine-like, ce qui conforte l'intérêt de ces voies avec les résultats des autres approches. L'analyse différentielle des pics entre les chronotypes diurne et nocturne a montré qu'il y avait une différence significative pour les deux marques. On retrouve de ce fait plus de marque H3K4me3 dans le chronotype diurne et plus de marque H3K9ac dans le chronotype nocturne, ce qui vient ajouter un nouveau paramètre de différenciation entre les deux chronotypes en plus de ceux mis en avant dans l'approche de chronobiologie.

La dernière approche de la partie de biologie moléculaire est la transcriptomique dont le but est de déterminer s'il y a des gènes avec une expression rythmique. Les résultats ont montré que la grande majorité des gènes rythmiques était spécifique à chaque chronotype. Il est intéressant de voir que, pour certains gènes communs, le pic d'expression est différent entre les deux chronotypes. Cette différence globale de pic d'expression se retrouve sur l'ensemble des gènes rythmiques des deux chronotypes. Chez le chronotype diurne, la majorité des pics d'expression est à 8h, soit 4h avant le pic d'émission tandis que chez le chronotype nocturne le pic d'expression est à 4h, soit 16h avant le pic d'émission. Cette différence peut s'expliquer par le fait que le signal environnemental perçu par les deux chronotypes n'est pas de la même puissance. Les analyses différentielles des gènes candidats entre les deux chronotypes ont montré qu'il y avait plus de rhodopsine exprimée chez le chronotype nocturne. On peut donc en déduire que le chronotype nocturne est plus sensible à la lumière et plus largement aux signaux environnementaux. Les pics d'expression nocturnes à 4h pourraient signifier la perception d'un signal environnemental faible, puis l'apparition de la lumière entraînerait l'activation de plusieurs rhodopsines qui déclencheraient un signal fort dans la cellule et une inhibition des mécanismes qui permettraient la sortie des cercaires. Dès l'apparition de la nuit, le fort signal d'inhibition enclenché par les rhodopsines est levé, démarrant ainsi l'émission des cercaires. La présence de plusieurs rhodopsines qui agiraient de concert pour faire un fort signal d'inhibition levé dès la nuit expliquerait le phénotype très abrupt d'émission de cercaires nocturnes qui débute immédiatement à la nuit. Pour le chronotype diurne, à l'inverse, qui a un pic d'expression majoritaire à 8h et exprime moins de rhodopsine, nous pouvons penser qu'il faut un signal environnemental fort pour enclencher l'émission des cercaires. En d'autres termes, s'il y a moins de rhodopsine/rhodopsine-like exprimée dans les cellules, il faut, pour que le niveau de signal cellulaire soit assez fort, attendre une plus forte intensité lumineuse qui arriverait à 8h et enclencherait ainsi l'émission des cercaires.

L'analyse des gènes rythmiques pour les deux chronotypes a révélé des gènes rhodopsine, rhodopsine-like, des gènes impliqués dans la phototransduction, l'acétylation des histones (chronotype diurne uniquement), des facteurs de transcription (chronotype nocturne uniquement) dont certains sont communs avec les expériences de QTL et de

ChIPmentation. L'ensemble des résultats de biologie moléculaire fait émerger des voies intéressantes mais surtout communes aux trois approches, avec l'absence de gène canonique de l'horloge, la mise en avant de gènes impliqués dans la phototransduction avec la rhodopsine comme photorécepteur, et même la modification d'histone. Intégrés avec la première partie de la thèse, les différents résultats indiquent que le rythme d'émission des cercaires repose au minimum sur un mécanisme de phototransduction, où la rhodopsine joue un rôle central. Ce mécanisme semble être certainement commun entre les différentes espèces de schistosomes mais reposerait sur l'action de régions génomiques différentes. Par exemple, le nombre de gènes rhodopsine/rhodopsine-like exprimés pourrait être un facteur qui expliquerait la différence de chronotype. En effet, le chronotype diurne de *S. mansoni* Oman exprime moins de rhodopsine et a besoin d'un signal environnemental/lumineux fort pour enclencher une transduction assez forte pour enclencher le rythme d'émission des cercaires (Figure_87). A l'inverse, le chronotype nocturne, qui a plus de rhodopsine/rhodopsine-like exprimés, perçoit les signaux environnementaux faibles (ex : les tout premiers rayons du soleil) pour enclencher une transduction qui bloquera l'émergence des cercaires jusqu'à la levée de cette inhibition par le retour de la nuit (Figure_87). Ce scénario est renforcé par la forme des profils d'émission des cercaires qui s'enclenche dès le début de la nuit comme un interrupteur.

Discussion et conclusion générales

<u>Figure 87 :</u> Proposition d'un modèle chronobiologique et moléculaire du rythme de l'émission des cercaires chez les deux chronotypes de *S. mansoni*.

Pour résumer, les approches phénotypiques et moléculaires convergent vers une même interprétation du rythme d'émission des cercaires chez *S. mansoni*, illustrant ainsi l'intérêt et la complémentarité d'une vision intégrative du phénomène. Ces approches ont mis en lumière des caractéristiques propres à chaque chronotype, comme l'heure du pic, l'intensité de la plage d'émission et le pourcentage de cercaires nocturne avec la chronobiologie, ou encore l'acétylation et la méthylation des histones avec l'épigénétique et aussi le pic du rythme de l'expression de gènes rythmiques avec la transcriptomique. La différence d'acétylation et de méthylation des histones entre les deux chronotypes présente une piste intéressante dans l'identification des schistosomes. Si les techniques de détection avec les séquences COX et ITS sont robustes et éprouvées, la problématique des individus hybrides amène à complexifier l'interprétation des résultats. Les analyses différentielles de l'acétylation et de la méthylation des histones avec H3K9ac et H3K4me3 sont un résultat qui doit être creusé. Ainsi, il faudrait effectuer de nouvelles expériences de ChIPmentation, sur différentes espèces de schistosomes « pures/modèle » et aussi hybrides pour essayer d'identifier des profils de marques histones. Ce potentiel outil d'identification épigénétique permettrait ainsi une identification plus fine des schistosomes hybrides.

Les résultats des approches phénotypiques et moléculaires convergent vers la non évidence de rythme circadien. Des nuances peuvent être apportées à cette conclusion. En effet, la perte totale de rythme d'émission des cercaires observée avec les expériences de chronobiologie ne permet pas d'affirmer ou d'infirmer la nature du rythme. Les conditions drastiques de photopériode continue pourraient avoir perturbé d'autres fonctions biologiques comme par exemple la production cercarienne et faire disparaitre le rythme d'émission. Nous pouvons ajouter à cela l'absence de gène canonique de l'horloge dans le génome de *S. mansoni* qui ne signifie pas qu'il n'existe pas d'autres gènes au rôle similaire mais à l'heure actuelle inconnus. Pour statuer de façon claire sur la nature circadienne ou non du rythme, de nouvelles expériences de lumière pulsée en chronobiologie doivent être faites. Ces expériences permettront ainsi de déterminer si le rythme d'émission des cercaires est bien exogène ou s'il est endogène en suivant soit le modèle du sablier soit le modèle de la coïncidence externe.

La transversalité des approches a mis en lumière l'alternance jour/nuit comme zeitgeber, soutenue par la sélection subjective des gènes impliqués dans le phénomène de phototransduction. Toutefois, les acteurs des transductions d'autres signaux environnementaux ne sont pas à exclure, bien au contraire. Par exemple, chez le némathelminthe, *C. elegans*, la phototransduction passe par la protéine LITE-1 appartenant à une famille de récepteurs gustatifs chez les invertébrés (Liu, Ward et al., 2010). On peut donc naturellement penser que les rhodopsines ne sont pas forcément les seuls photorécepteurs chez *S. mansoni* mais aussi que la perception de la lumière peut passer par d'autres signaux, par exemple un changement dans le pH gastrique du mollusque médié par un rythme circadien de la digestion. Si la sélection subjective présentée dans cette thèse s'est concentrée autour de la réception du signal lumineux et de la cascade associée, la prochaine étape dans les analyses des gènes est d'y inclure les gènes responsables des messages nerveux qui résultent de la réception de la lumière, les récepteurs de ces messages et les actions qui en découlent.

Nos expériences d'histologie ont mis en lumière l'intérêt de la forme sporocyste qui pourrait jouer un rôle dans le rythme d'émission des cercaires. En réponse à cet intérêt, les sporocystes ont été inclus dans les expériences de biologie moléculaire (épigénétique et transcriptomique). Si avoir plusieurs stades du parasite dans une seule analyse moléculaire peut être préjudiciable dans l'interprétation des résultats, l'état actuel des connaissances et la technique ne nous permettent pas d'exclure le stade sporocyste. En effet, il faut savoir que le phénomène de sortie des cercaires du sporocyste reste encore inconnu et qu'exclure le sporocyste des analyses est une potentielle perte d'information non négligeable dans la compréhension du phénomène. De plus, il est impossible de dissocier physiquement un sporocyste des cercaires qu'il contient, ne permettant pas une analyse séparée des stades. Ce trou dans les connaissances, généré par la difficulté du modèle biologique, est un sujet de recherche à approfondir. Pour cela de nouvelles expériences d'histologie pourraient être menées notamment en réalisant des coupes histologiques sur des mollusques prélevés toutes les heures sur minimun 24h afin d'avoir une chronologie de développement du parasite dans les tissus. Ces expériences d'histologie doivent être menées à la fois sur les schistosomes du groupe des œufs avec éperon terminal, comme *S. mansoni* qui possède des « birth pore » (Théron, 2015) et les schistosomes d'autres

groupes comme *S. bovis, S. haematobium* ou *S. intercalatum* où aucune structure de sortie sur les sporocystes n'avait été observée.

Enfin, les diverses expériences de chronobiologie et d'histologie ont montré leur intérêt et leur importance dans cette thèse pour compléter et éclaircir les approches de biologie moléculaire. Toutefois l'ancienneté des articles portant sur la chronobiologie de l'émission des cercaires montrent un désintérêt et une méconnaissance du sujet. Pourtant aujourd'hui avec l'émergence de plus en plus fréquente d'hybrides, rendant petit à petit caduques les connaissances anciennes, il est primordial de s'intéresser de nouveau à cet aspect de chronobiologie de l'émission des cercaires. Ceci est notamment renforcé par le réchauffement climatique et l'émergence du parasite en Corse dépassant ainsi les limites géographiques des zones tropicales. Des expériences de chronobiologie supplémentaires doivent être menées notamment sur la capacité du rythme d'émergence des cercaires à évoluer ou non en fonction de la température. En d'autres termes, de voir si le parasite sous conditions hivernales émettra ces cercaires aux mêmes horaires qu'en conditions optimales de température ?

Les travaux de thèse soulèvent beaucoup de nouveau questionnements et de champs de recherche à approfondir. Ils présentent ainsi les bases chronobiologiques et moléculaires du rythme d'émission des cercaires chez les deux chronotypes de *S. mansoni* et illustre la nécessité d'aborder les phénomènes biologiques avec une approche transversale pour comprendre les subtilités et les diverses nuances de la relation phénotype/génotype.

Participation aux congrès, manifestations scientifiques et Distinctions

En national

- 10ème CONGRÈS DES DOCTORANTS - Communication orale + poster + vidéo. 19 novembre 2021 3ème prix pour la présentation orale, 1er prix pour la présentation de Poster et de vidéo.

- Fête de la science 2018 (Promotion de faire une thèse auprès de classes de lycée, stand Upvdoc)

- Fête de la science 2019 et 2020 (stand du laboratoire IHPE)

En international

Summer Internship 2019 - Texas Biomedical research institute (2 présentations orales en tant qu'invitée) juin à septembre **2019**

4 congrès internationaux:

- 85th Cold Spring Harbor Laboratory Symposium on Quantitative Biology: Biological Time Keeping – Lasica et al., Poster- 1 juin 2021

- 18th Ecology and Evolution of Infectious Diseases (online) meeting - Lasica et al., Poster- 14 juin 2021 + 2ème prix du meilleur teaser video

- 15th International Conference on Molecular Epidemiology and Evolution Genetics of Infectious Diseases (MEEGID XV) – Lasica et al., Présentation orale- 2 novembre 2021

- Molecular Helminthology: An integrated Approach, San Antonio, Tx, USA, Poster, Mouahid G., Chevalier F., Langand J., Lasica C. ... & Moné H. April 7-10th **2019**.

Teaser vidéo (anglais) : <u>https://vimeo.com/557965346</u>

Teaser vidéo (Français) : <u>https://mediaserver.univ-perp.fr/permalink/v1261ca3c6d19ckewcyb/iframe/</u>

Références

- Aguilar-Arnal, L., Hakim, O., Patel, V. R., Baldi, P., Hager, G. L. & Sassone-Corsi, P. (2013). Cycles in spatial and temporal chromosomal organization driven by the circadian clock. *Nature Structural & Molecular Biology, 20*(10), 1206-1213. doi:10.1038/nsmb.2667
- Ahdesmäki, M., Fokianos, K. & Strimmer, K. (2012). GeneCycle: identification of periodically expressed genes. In: R package version.
- Anderson, T. J., LoVerde, P. T., Le Clec'h, W. & Chevalier, F. D. (2018). Genetic crosses and linkage mapping in schistosome parasites. *Trends in Parasitology*, *34*(11), 982-996. doi:10.1016/j.pt.2018.08.001
- Andolfatto, P., Davison, D., Erezyilmaz, D., Hu, T. T., Mast, J., Sunayama-Morita, T. & Stern, D. L. (2011). Multiplexed shotgun genotyping for rapid and efficient genetic mapping. *Genome Research* 21(4), 610-617. doi:10.1101/gr.115402.110
- Asch, H. L. (1972). Rhythmic emergence of *Schistosoma mansoni* cercariae from *Biomphalaria glabrata*: control by illumination. *Experimental Parasitology*, *31*(3), 350-355. doi:10.1016/0014-4894(72)90096-3
- Aschoff, J. (1960). *Exogenous and endogenous components in circadian rhythms*. Paper presented at the Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor Laboratory Press.
- Azzi, A., Cosseau, C. & Grunau, C. (2009). *Schistosoma mansoni*: developmental arrest of miracidia treated with histone deacetylase inhibitors. *Experimental parasitology*, *121*, 288-291. doi:10.1016/j.exppara.2008.11.010
- Belden, W. J., Lewis, Z. A., Selker, E. U., Loros, J. J. & Dunlap, J. C. (2011). CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. *PLoS genetics*, 7(7), e1002166. doi:10.1371/journal.pgen.1002166
- Bell-Pedersen, D., Cassone, V. M., Earnest, D. J., Golden, S. S., Hardin, P. E., Thomas, T. L. & Zoran, M. J. (2005). Circadian rhythms from multiple oscillators: lessons from diverse organisms. *Nature Reviews Genetics*, 6(7), 544-556. doi:10.1038/nrg1633
- Berry, A., Moné, H., Iriart, X., Mouahid, G., Aboo, O., Boissier, J., . . & Valentin, A. (2014). Schistosomiasis *haematobium*, Corsica, France. *Emerging infectious diseases*, 20(9), 1595. doi:10.3201/eid2009.140928
- Bhardwaj, V., Heyne, S., Sikora, K., Rabbani, L., Rauer, M., Kilpert, F., . . . & Manke, T. (2019). snakePipes: facilitating flexible, scalable and integrative epigenomic analysis. *Bioinformatics*, *35*(22), 4757-4759. doi:10.1093/bioinformatics/btz436
- Boissier, J. & Moné, H. (2000). Experimental observations on the sex ratio of adult *Schistosoma mansoni*, with comments on the natural male bias. *Parasitology*, *121*(4), 379-383. doi:10.1017/S0031182099006393
- Boissier, J., Morand S. & Moné H. (1999). A review of performance and pathogenicity of male and female *Schistosoma mansoni* during the life-cycle. *Parasitology, 119* (5), 447-454. doi:10.1017/s0031182099005004
- Boissier, J., Mouahid, G. & Moné, H. (2019). *Schistosoma* spp. In: In: J.B. Rose and B. Jiménez-Cisneros, (eds) Global Water Pathogen Project. http://www.waterpathogens.org (http://www.waterpathogens.org/) (Robertson, L (eds) Part 4 Helminths) http://www.waterpathogens.org/book/shistosoma (http://www.waterpathogens.org/book/shistosoma) Michigan State University, E. Lansing, MI, UNESCO.
- Bonhoure, N., Bounova, G., Bernasconi, D., Praz, V., Lammers, F., Canella, D., . . .& Delorenzi, M. (2014). Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. *Genome research*, 24(7), 1157-1168. doi:10.1101/gr.168260.113
- Botebol, H., Lesuisse, E., Šuták, R., Six, C., Lozano, J.-C., Schatt, P., . . .& Léger, T. (2015). Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton. *Proceedings of the National Academy of Sciences*, *112*(47), 14652-14657. doi:10.1073/pnas.1506074112
- Boyle, J. P. & Yoshino, T. P. (2005). Serotonin-induced muscular activity in *Schistosoma mansoni* larval stages: importance of 5-HT transport and role in daughter sporocyst production. *The Journal of Parasitology, 91*(3), 542-550. doi:10.1645/GE-432R
- Broman, K. W. & Sen, S. (2009). A Guide to QTL Mapping with R/qtl, Springer, 46, 133 p.
- Cavieres-Lepe, J. & Ewer, J. (2021). Reciprocal relationship between calcium signaling and circadian clocks: implications for calcium homeostasis, clock function, and therapeutics. *Frontiers in Molecular Neuroscience*, *14*, 666673. doi:10.3389/fnmol.2021.66667

- Chabre, M. (1998). Actualité moléculaire de la phototransduction des bâtonnets rétiniens. MS. *Médecine Sciences,* 14(12), 1315-1321.
- Cheng, H.-Y. M., Papp, J. W., Varlamova, O., Dziema, H., Russell, B., Curfman, J. P., . . . & Impey, S. (2007). microRNA modulation of circadian-clock period and entrainment. *Neuron*, 54(5), 813-829. doi:10.1016/j.neuron.2007.05.017
- Cosseau, C., Azzi, A., Smith, K., Freitag, M., Mitta, G. & Grunau, C. (2009). Native chromatin immunoprecipitation (N-ChIP) and ChIP-Seq of *Schistosoma mansoni*: Critical experimental parameters. *Molecular and Biochemical Parasitology*, *166*(1), 70-76. doi:10.1016/j.molbiopara.2009.02.015
- Cosseau, C., Wolkenhauer, O., Padalino, G., Geyer, K. K., Hoffmann, K. F. & Grunau, C. (2017). (Epi) genetic inheritance in *Schistosoma mansoni*: a systems approach. *Trends in Parasitology, 33*(4), 285-294. doi:10.1016/j.pt.2016.12.002 2
- Cupit, P. M. & Cunningham, C. (2015). What is the mechanism of action of praziquantel and how might resistance strike? *Future medicinal chemistry*, 7(6), 701-705. doi:10.4155/fmc.15.11
- Delaunay, F. & Laudet, V. (1998). Rythme circadien : des horloges dans les organes périphériques et dans des fibroblastes en culture. MS. *Médecine Sciences*, *14*(10), 1114-1117.
- Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., . . .& Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1), 15-21. doi:10.1093/bioinformatics/bts635
- Doi, M., Hirayama, J. & Sassone-Corsi, P. (2006). Circadian regulator CLOCK is a histone acetyltransferase. *Cell,* 125(3), 497-508. doi:10.1016/j.cell.2006.03.033
- Dortous de Mairan, J.-J. (1729). Observation botanique. *Histoire de l'Académie royale des Sciences*, 35-36.
- Dunlap, J. C., Loros, J. J. & DeCoursey, P. J. (2004). *Chronobiology: biological timekeeping*: Sinauer Associates.
- El-Shehabi, F., Taman, A., Moali, L. S., El-Sakkary, N. & Ribeiro, P. (2012). A novel G protein-coupled receptor of *Schistosoma mansoni* (SmGPR-3) is activated by dopamine and is widely expressed in the nervous system. PLoS Neglected Tropical Diseases, 6(2), e1523. doi:10.1371/journal.pntd.0001523
- Erren, T. C. (2018). A chronology of chronobiology. *Chronobiology and Sleep*, (113), 32-35. Retrieved from <u>https://www.physoc.org/magazine-articles/a-chronology-of-chronobiology/</u>
- Etchegaray, J.-P., Lee, C., Wade, P. A. & Reppert, S. M. (2003). Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. *Nature*, 421(6919), 177-182. doi:10.1038/nature01314
- Fantappié, M. R., Gimba, E. R. P. & Rumjanek, F. D. (2001). Lack of DNA methylation in *Schistosoma mansoni*. *Experimental parasitology*, *98*(3), 162-166. doi:10.1006/expr.2001.4630
- Frank, G. H. (1966). The effect of temperature on the rate of development and emergence of schistosome cercariae. *Zoologica Africana*, 2:2, 211-221. doi:10.1080/00445096.1966.11447344
- Feldman, J. F. & Hoyle, M. N. (1973). Isolation of circadian clock mutants of *Neurospora crassa*. *Genetics*, 75(4), 605-613. doi:10.1093/genetics/75.4.605
- Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. (2012). Identifying ChIP-seq enrichment using MACS. *Nature Protocols,* 7(9), 1728-1740. doi:10.1038/nprot.2012.101
- Freeman, S. L., Kwon, H., Portolano, N., Parkin, G., Venkatraman Girija, U., Basran, J., . . . & Moody, P. C. (2019). Heme binding to human CLOCK affects interactions with the E-box. *Proceedings of the National Academy of Sciences*, 116(40), 19911-19916.
- Gerding, W. M., Schreiber, S., Schulte-Middelmann, T., de Castro Marques, A., Atorf, J., Akkad, D. A., . . . & Gal, A. (2011). Ccdc66 null mutation causes retinal degeneration and dysfunction. *Human Molecular Genetics, 20*(18), 3620-3631. doi:10.1093/hmg/ddr282
- Glaudel, R. J. & Etges F. J. (1973). The effect of photoperiod inversion upon *Schistosoma mansoni* cercarial emergence from *Biomphalaria glabrata*. *International Journal for Parasitology*, *3*(5), 619-622. doi:10.1016/0020-7519(73)90086-6
- Grassmeyer, J. J., Cahill, A. L., Hays, C. L., Barta, C., Quadros, R. M., Gurumurthy, C. B., & Thoreson, W. B. (2019). Ca2+ sensor synaptotagmin-1 mediates exocytosis in mammalian photoreceptors. *Elife, 8*, e45946. Doi:10.7554/eLife.45946
- Green, C. B. & Besharse, J. C. (1996). Identification of a novel vertebrate circadian clock-regulated gene encoding the protein nocturnin. *Proceedings of the National Academy of Sciences, 93*(25), 14884-14888. doi:10.1073/pnas.93.25.14884

- Hasegawa, K., Saigusa, T. & Tamai, Y. (2005). *Caenorhabditis elegans* opens up new insights into circadian clock mechanisms. *Chronobiology international*, 22(1), 1-19. doi:10.1081/cbi-200038149
- Hawking, F. (1967). The 24-hour periodicity of microfilariae: biological mechanisms responsible for its production and control. *Proceedings of the Royal Society of London. Series B. Biological Sciences, 169*(1014), 59-76. doi:10.1098/rspb.1967.0079
- Hawking, F., Worms, M. J. & Gammage, K. (1968). 24-and 48-hour cycles of malaria parasites in the blood; their purpose, production and control. *Transactions of the Royal Society of Tropical Medicine and Hygiene, 62*(6), 731-760. doi:10.1016/0035-9203(68)90001-1
- Hevia, M. A., Canessa, P., Müller-Esparza, H. & Larrondo, L. F. (2015). A circadian oscillator in the fungus *Botrytis cinerea* regulates virulence when infecting *Arabidopsis thaliana*. *Proceedings of the National Academy of Sciences*, 112(28), 8744-8749. doi:10.1073/pnas.1508432112
- Hoffmann, K. F., Davis, E. M., Fischer, E. R. & Wynn, T. A. (2001). The guanine protein coupled receptor rhodopsin is developmentally regulated in the free-living stages of *Schistosoma mansoni*. *Molecular and Biochemical Parasitology*, *112*(1), 113-123.
- Holtfreter, M., Moné, H., Müller-Stöver, I., Mouahid, G. & Richter, J. (2014). *Schistosoma haematobium* infections acquired in Corsica, France, August 2013. *Eurosurveillance, 19*(22), 20821. doi:10.2807/1560-7917.es2014.19.22.20821
- Howe, K. L., Bolt, B. J., Cain, S., Chan, J., Chen, W. J., Davis, P., . . & Grove, C. (2016). WormBase 2016: expanding to enable helminth genomic research. *Nucleic acids research*, *44*(D1), D774-D780. doi:10.1093/nar/gkv1217
- Howe, K. L., Bolt, B. J., Shafie, M., Kersey, P. & Berriman, M. (2017). WormBase ParaSite– a comprehensive resource for helminth genomics. *Molecular and biochemical parasitology, 215*, 2-10. doi:10.1016/j.molbiopara.2016.11.005
- Hut, R. & Van der Zee, E. (2011). The cholinergic system, circadian rhythmicity, and time memory. *Behavioural Brain Research*, 221(2), 466-480. doi:10.1016/j.bbr.2010.11.039
- Hutchison, A. L., Maienschein-Cline, M., Chiang, A. H., Tabei, S. A., Gudjonson, H., Bahroos, N., . . .& Dinner, A. R. (2015). Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data. *PLoS Computational Biology*, *11*(3), e1004094. doi:10.1371/journal.pcbi.1004094
- Joly, D. & Grunau, C. (2018). Prospective Épigénétique en Écologie et Environnement de l'Institut Ecologie et Environnement du CNRS. *Les Cahiers Prospectives (CNRS-INEE)* n° 8 Novembre, 80 pages.
- Kageyama, R., Ohtsuka, T. & Kobayashi, T. (2007). The Hes gene family: repressors and oscillators that orchestrate embryogenesis. doi:10.1242/dev.000786
- Katsumata, O., Honma, T., Sanda, M., Kamata, A., Takeda, S. i., Kondo, H. & Sakagami, H. (2008). Predominant localization of EFA6A, a guanine nucleotide exchange factor for ARF6, at the perisynaptic photoreceptor processes. *Brain research*, 1234, 44-49. doi:10.1016/j.brainres.2008.07.093
- Kazibwe, F., Makanga, B., Rubaire-Akiiki, C., Ouma, J., Kariuki, C., Kabatereine, N., Vennervald, B., Rollinson, D. & Stothard, J. (2010). Transmission studies of intestinal schistosomiasis in Lake Albert, Uganda and experimental compatibility of local *Biomphalaria spp. Parasitology international, 59*(1), 49-53. doi: 10.1016/j.parint.2009.10.004
- King, D. P. & Takahashi, J. S. (2000). Molecular genetics of circadian rhythms in mammals. *Annual Review of Neuroscience*, 23, 713-742. doi:10.1146/annurev.neuro.23.1.713
- King, D. P., Zhao, Y., Sangoram, A. M., Wilsbacher, L. D., Tanaka, M., Antoch, M. P., . . . & Lowrey, P. L. (1997). Positional cloning of the mouse circadian clock gene. *Cell*, *89*(4), 641-653. doi:10.1016/s0092-8674(00)80245-7
- Kippert, F., Ninnemann, H. & Engelmann, W. (1991). Photosynchronization of the circadian clock of Schizosaccharomyces pombe: mitochondrial cytochrome b is an essential component. Current genetics, 19(2), 103-107.
- Klarsfeld, A. (2013). Aux aurores de la chronobiologie. *Bibnum, Sciences de la vie*, 12 p. Retrieved from <u>http://journals.openedition.org/bibnum/511</u>
- Koike, N., Yoo, S.-H., Huang, H.-C., Kumar, V., Lee, C., Kim, T.-K. & Takahashi, J. S. (2012). Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. *Science*, *338*(6105), 349-354. doi:10.1126/science.1226339
- Konopka, R. J. & Benzer, S. (1971). Clock mutants of *Drosophila melanogaster*. *Proceedings of the National Academy* of Science U S A, 68(9), 2112-2116. doi:10.1073/pnas.68.9.2112
- Kuhlman, S. J., Craig, L. M. & Duffy, J. F. (2018). Introduction to chronobiology. *Cold Spring Harbor Perspectives in Biology*, *10*(9), a033613. doi:10.1101/cshperspect.a033613

- Laherty, C. D., Yang, W.-M., Sun, J.-M., Davie, J. R., Seto, E. & Eisenman, R. N. (1997). Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. *Cell*, *89*(3), 349-356. doi:10.1016/s0092-8674(00)80215-19
- Laloum, D. & Robinson-Rechavi, M. (2020). Methods detecting rhythmic gene expression are biologically relevant only for strong signal. PLoS Computational Biology, 16(3), e1007666. doi:10.1371/journal.pcbi.1007666
- Lasica, C., de Carvalho Augusto, R., Moné, H., Mouahid, G., Chaparro, C., Veillard, A.-C., . . . & Grunau, C. (2021). Automated ChIPmentation procedure on limited biological material of the human blood fluke *Schistosoma mansoni*. *bioRxiv*. doi:10.1101/2021.06.02.446743
- Lasica, C., de Carvalho Augusto, R., Moné, H., Mouahid, G., Chaparro, C., Veillard, A.-C., . . . & Grunau, C. (2022). Automated ChIPmentation procedure on limited biological material of the human blood fluke *Schistosoma mansoni* [version 1; peer review: 1 approved with reservations]. *Wellcome Open Research*, *7*,133. doi:10.12688/wellcomeopenres.17779.1.
- Le Clec'h, W., Chevalier, F. D., Mattos, A. C. A., Strickland, A., Diaz, R., Mcdew-White, M., . . . & Anderson, T. J. (2021). Genetic analysis of praziquantel response in schistosome parasites implicates a Transient Receptor Potential channel. *Science Translational Medicine*, *13*(625), eabj9114. doi:10.1126/scitranslmed.abj9114
- Le Clec'h, W., Chevalier, F. D., McDew-White, M., Menon, V., Arya, G.-A. & Anderson, T. J. (2021). Genetic architecture of transmission stage production and virulence in schistosome parasites. *Virulence*, *12*(1), 1508-1526. doi:10.1080/21505594.2021.1932183
- Lee, Y., & Kim, E.-K. (2013). AMP-activated protein kinase as a key molecular link between metabolism and clockwork. *Experimental & Molecular Medicine*, 45(7), e33-e33. doi:10.1038/emm.2013.65
- Lee, J., Yoo, E., Lee, H., Park, K., Hur, J.-H. & Lim, C. (2017). LSM12 and ME31B/DDX6 define distinct modes of posttranscriptional regulation by ATAXIN-2 protein complex in *Drosophila* circadian pacemaker neurons. *Molecular Cell, 66*(1), 129-140. e127. doi:10.1016/j.molcel.2017.03.004
- Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics*, 12(1), 1-16. doi:10.1186/1471-2105-12-323
- Liang, D., Zhao, M., Wang, T., McManus, D. P. & Cummins, S. F. (2016). GPCR and IR genes in *Schistosoma mansoni* miracidia. *Parasites & Vectors, 9*(1), 1-12. doi:10.1186/s13071-016-1837-2
- Liu, J., Ward, A., Gao, J., Dong, Y., Nishio N., Inada H.,... & Xu, X. Z. S. (2010). *C. elegans* phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. *Nature Neuroscience*, *13*(6), 715-722. doi:10.1038/nn.2540
- Love, M. I., Huber, W. & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome biology*, *15*(12), 1-21. doi:10.1186/s13059-014-0550-8
- Luttermoser, G. W. (1955). Studies on the chemotherapy of experimental schistosomiasis. III. Harvest of *Schistosoma mansoni* cercariae by forced nocturnal emergence from *Australorbis glabratus*. *Journal of Parasitology*, *41*(2), 201-208. doi:10.2307/3273793
- Maienschein-Cline, M., Lei, Z., Gardeux, V., Abbasi, T., Machado, R. F., Gordeuk, V., ... & Lussier, Y. (2014). ARTS: automated randomization of multiple traits for study design. *Bioinformatics*, *30*(11), 1637-1639.
- Marsaudon, É. (2006). La chronobiologie, une conception dynamique du fonctionnement corporel. *Les Tribunes de la santé*, (4), 39-44. doi:10.3917/seve.013.0039
- Matsumoto, E., Ishihara, A., Tamai, S., Nemoto, A., Iwase, K., Hiwasa, T., . . . & Takiguchi, M. (2010). Time of day and nutrients in feeding govern daily expression rhythms of the gene for sterol regulatory element-binding protein (SREBP)-1 in the mouse liver. *Journal of Biological Chemistry*, 285(43), 33028-33036. doi:10.1074/jbc.M109.089391
- McClung, C. R. (2006). Plant circadian rhythms. *The Plant Cell, 18*(4), 792-803. doi:10.1105/tpc.106.040980
- Merrow, M., Brunner, M. & Roenneberg, T. (1999). Assignment of circadian function for the *Neurospora* clock gene frequency. *Nature, 399*(6736), 584-586. doi:10.1038/21190
- Moné, H., Holtfreter, M. C., Allienne, J.-F., Mintsa-Nguéma, R., Ibikounlé, M., Boissier, J., . . . & Mouahid, G. (2015). Introgressive hybridizations of *Schistosoma haematobium* by *Schistosoma bovis* at the origin of the first case report of schistosomiasis in Corsica (France, Europe). *Parasitology Research*, 114(11), 4127-4133. doi:10.1007/s00436-015-4643-4
- Montell, C., Jones, K., Hafen, E. & Rubin, G. (1985). Rescue of the *Drosophila* phototransduction mutation trp by germline transformation. *Science*, *230*(4729), 1040-1043. doi:10.1126/science.3933112
- Morgan, E. & Last, V. (1982). The behaviour of *Bulinus africanus:* a circadian profile. *Animal Behaviour, 30*, 557-567. doi:10.1016/S0003-3472(82)80069-9

- Mouahid, A. & Théron, A. (1986). *Schistosoma bovis*: patterns of cercarial emergence from snails of the genera *Bulinus* and *Planorbarius*. *Experimental Parasitology*, *62*(3), 389-393. doi:10.1016/0014-4894(86)90047-0
- Mouahid, G., Idris, M. A., Verneau, O., Théron, A., Shaban, M. M. & Moné, H. (2012). A new chronotype of *Schistosoma mansoni*: adaptive significance. *Tropical Medicine & International Health*, *17*(6), 727-732. doi:10.1111/j.1365-3156.2012.02988.x
- Mouahid, G., Mintsa Nguema, R., Al Mashikhi, K. M., Al Yafae, S. A., Idris, M. A. & Moné, H. (2019). Host-parasite lifehistories of the diurnal vs. nocturnal chronotypes of *Schistosoma mansoni*: adaptive significance. *Tropical Medicine & International Health*, 24(6), 692-700. doi:10.1111/tmi.13227
- Moulager, M., Monnier, A., Jesson, B., Bouvet, R., Mosser, J., Schwartz, C.,... & Bouget, F.-Y. (2007). Light-dependent regulation of cell division in *Ostreococcus*: evidence for a major transcriptional input. *Plant physiology*, 144(3), 1360-1369. doi:10.1104/pp.107.096149
- Niemann, G. M. & Lewis, F. A. (1990). *Schistosoma mansoni*: influence of *Biomphalaria glabrata* size on susceptibility to infection and resultant cercarial production. *Experimental Parasitology*, *70*(3), 286-292. doi: 10.1016/0014-4894(90)90110-x
- Nishimura, H., Nakahira, Y., Imai, K., Tsuruhara, A., Kondo, H., Hayashi, H., . . . & Kondo, T. (2002). Mutations in KaiA, a clock protein, extend the period of circadian rhythm in the cyanobacterium *Synechococcus elongatus* PCC 7942. *Microbiology*, *148*(9), 2903-2909. doi:10.1099/00221287-148-9-2903
- Nojima, H. & Sato, A. (1982). *Schistosoma mansoni* and *Schistosoma haematobium*: emergence of schistosome cercariae from snails with darkness and illumination. *Experimental Parasitology*, *53*(2), 189-198. doi:10.1016/0014-4894(82)90060-1
- Ohtsuka, K. & Hata, M. (2000). Molecular chaperone function of mammalian Hsp70 and Hsp40-a review. *International Journal of Hyperthermia*, 16(3), 231-245. doi:10.1080/026567300285259
- Patocka, N., Sharma, N., Rashid, M. & Ribeiro, P. (2014). Serotonin signaling in *Schistosoma mansoni*: A Serotonin– activated G protein-coupled receptor controls parasite movement. *PLoS Pathogens, 10*(1), e1003878. doi:10.1371/journal.ppat.1003878
- Phan, P., Liang, D., Zhao, M., Wyeth, R. C., Fogarty, C., Duke, M. G., . . . Cummins, S. F. (2022). Analysis of rhodopsin G protein-coupled receptor orthologs reveals semiochemical peptides for parasite (*Schistosoma mansoni*) and host (*Biomphalaria glabrata*) interplay. *Scientific Reports, 12*(1), 1-11. doi.org/10.1038/s41598-022-11996-x
- Picard, M. A., Boissier, J., Roquis, D., Grunau, C., Allienne, J.-F., Duval, D., . . .& Long, T. (2016). Sex-biased transcriptome of *Schistosoma mansoni*: host-parasite interaction, genetic determinants and epigenetic regulators are associated with sexual differentiation. *PLoS Neglected Tropical Diseases, 10*(9), e0004930. doi:10.1371/journal.pntd.0004930
- Protasio, A. V., Tsai, I. J., Babbage, A., Nichol, S., Hunt, M., Aslett, M. A., . . . & Clark, R. C. (2012). A systematically improved high quality genome and transcriptome of the human blood fluke *Schistosoma mansoni*. *PLoS neglected tropical diseases*, 6(1), e1455. doi:10.1371/journal.pntd.0001455
- Queiroz, O. (1979). Les horloges biologiques. Organisation du métabolisme chez les végétaux supérieurs et adaptation au climat. *Bulletin de la Société Botanique de France. Actualités Botaniques, 126*(1), 5-19. doi:10.1080/01811789.1979.10826368
- Quinlan, A. R. & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics,* 26(6), 841-842. doi:10.1093/bioinformatics/btq033
- Ramsey, I. S. & DeSimone, J. A. (2018). Otopetrin-1: a sour-tasting proton channel. *Journal of General Physiology,* 150(3), 379-382. doi:10.1085/jgp.201812003
- Rawlinson, K. A., Reid, A. J., Lu, Z., Driguez, P., Wawer, A., Coghlan A., ... & McCarthy C. (2021). Daily rhythms in gene expression of the human parasite *Schistosoma mansoni*. *BMC Biology*, *19*(1), 1-21. doi:10.1186/s12915-021-01189-9
- Reece, S. E., Prior, K. F. & Mideo, N. (2017). The life and times of parasites: rhythms in strategies for within-host survival and between-host transmission. *Journal of Biological Rhythms, 32*(6), 516-533. doi:10.1177/0748730417718904
- Reinberg, A. (2003). Chronobiologie médicale. *Chronothérapeutique. 2nd edition. Paris: Médecine*-Sciences Flammarion, 298 p.
- Rensing, L., Meyer-Grahle, U. & Ruoff, P. (2001). Biological timing and the clock metaphor: oscillatory and hourglass mechanisms. *Chronobiology international*, *18*(3), 329-369. doi:10.1081/CBI-100103961
- Rijo-Ferreira, F., Takahashi, J. S. & Figueiredo, L. M. (2017). Circadian rhythms in parasites. *PLoS pathogens, 13*(10), e1006590. doi:10.1371/journal.ppat.1006590

- Rijo-Ferreira, F., Pinto-Neves, D., Barbosa-Morais, N. L., Takahashi, J. S. & Figueiredo, L. M. (2017). *Trypanosoma brucei* metabolism is under circadian control. *Nature microbiology*, 2(6), 1-10. doi:10.1038/nmicrobiol.2017.32
- Rijo-Ferreira, F., Acosta-Rodriguez, V. A., Abel, J. H., Kornblum, I., Bento, I., Kilaru, G., . . . & Takahashi, J. S. (2020). The malaria parasite has an intrinsic clock. *Science*, *368*(6492), 746-753. doi:10.1126/science.aba2658
- Ritchie, L. S., Jachowski, L. A. & Ferguson, F. F. (1960). "Bilharzia"—A Military Hazard in Puerto Rico. *Military Medicine*, 125(4), 253-257. doi:10.1093/milmed/125.4.253
- Roels, J., Kuchmiy, A., De Decker, M., Strubbe, S., Lavaert, M., Liang, K. L., . . . & Van Vlierberghe, P. (2020). Distinct and temporary-restricted epigenetic mechanisms regulate human αβ and γδ T cell development. *Nature Immunology*, 21(10), 1280-1292. doi:10.1038/s41590-020-0747-9
- Roquis, D., Taudt, A., Geyer, K. K., Padalino, G., Hoffmann, K. F., Holroyd, N., . . . & Grunau, C. (2018). Histone methylation changes are required for life cycle progression in the human parasite *Schistosoma mansoni*. *PLoS Pathogens*, *14*(5), e1007066. doi:10.1371/journal.ppat.1007066
- Saigusa, T., Ishizaki, S., Watabiki, S., Ishii, N., Tanakadate, A., Tamai, Y. & Hasegawa, K. (2002). Circadian behavioural rhythm in *Caenorhabditis elegans*. *Current Biology*, *12*(2), R46-47. doi:10.1016/s0960-9822(01)00669-8
- Savassi, B. A., Mouahid, G., Lasica, C., Mahaman, S.-D. K., Garcia, A., Courtin, D., ... & Moné, H. (2020). Cattle as natural host for *Schistosoma haematobium* (Bilharz, 1852) Weinland, 1858 x *Schistosoma bovis* Sonsino, 1876 interactions, with new cercarial emergence and genetic patterns. *Parasitology Research*, *119*(7), 2189-2205. doi:10.1007/s00436-020-06709-0
- Savassi, B., Dobigny, G., Etougbétché, J. R., Avocegan, T. T., Quinsou, F. T., Gauthier, P., . . . & Mouahid, G. (2021). Mastomys natalensis (Smith, 1834) as a natural host for Schistosoma haematobium (Bilharz, 1852) Weinland, 1858 x Schistosoma bovis Sonsino, 1876 introgressive hybrids. Parasitology Research, 120(5), 1755-1770. doi:10.1007/s00436-021-07099-7
- Sawa, M., Nusinow, D. A., Kay S. A. & Imaizumi, T. (2007). FKF1 and GIGANTEA complex formation is required for daylength measurement in *Arabidopsis. Science*, *318*(5848), 261-265. doi:10.1126/science.1146994
- Schmidl, C., Rendeiro, A. F., Sheffield, N. C. & Bock, C. (2015). ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. *Nature Methods*, *12*(10), 963-965. doi:10.1038/nmeth.3542
- Sharma, V. K. (2003). Adaptive significance of circadian clocks. *Chronobiology International, 20*(6), 901-919. doi:10.1081/cbi-120026099
- Simões, M. C., Lee, J., Djikeng, A., Cerqueira, G. C., Zerlotini, A., da Silva-Pereira, R. A., . . . & Oliveira, G. (2011). Identification of *Schistosoma mansoni* microRNAs. *BMC Genomics*, 12(1), 1-17. doi:10.1186/1471-2164-12-47
- Singh, K., Jha, N. K. & Thakur, A. (2019). Spatiotemporal chromatin dynamics-A telltale of circadian epigenetic gene regulation. *Life Sciences, 221*, 377-391. doi:10.1016/j.lfs.2019.02.006
- Steinegger, M., Meier, M., Mirdita, M., Vöhringer, H., Haunsberger, S. J. & Söding, J. (2019). HH-suite3 for fast remote homology detection and deep protein annotation. *BMC bioinformatics*, 20(1), 1-15. doi:10.1186/s12859-019-3019-7
- Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. *PloS One, 6*(7), e21800. doi:10.1371/journal.pone.0021800
- Takahashi, J. S. (2015). Molecular components of the circadian clock in mammals. *Diabetes, Obesity and Metabolism, 17*, 6-11. doi:10.1093/hmg/ddl207
- Takahashi, J. S., Kumar, V., Nakashe, P., Koike, N., Huang, H.-C., Green, C. B. & Kim, T.-K. (2015). ChIP-seq and RNA-seq methods to study circadian control of transcription in mammals. *In* Methods in enzymology (Vol. 551, pp. 285-321): Elsevier. doi:10.1016/bs.mie.2014.10.059
- Tan, S. & Ahana, A. (2007). Theodor Bilharz (1825-1862): discoverer of schistosomiasis. *Singapore medical journal,* 48(3), 184-185.
- Théron, A. (1980). Mise en évidence de races chronobiologiques de *Schistosoma mansoni*, agent de la bilharziose, à partir des cinétiques d'émission cercarienne. *Comptes-Rendus de l'Académie des Sciences, Paris, 291*, 279-282.
- Théron, A. (1982). Le compartiment cercaire dans le cycle de Schistosoma mansoni Sambon, 1907: écologie de la transmission bilharzienne en Guadeloupe: Thèse d'état.
- Théron, A. (1984). Early and late shedding patterns of *Schistosoma mansoni* cercariae: ecological significance in transmission to human and murine hosts. The *Journal of Parasitology*, *70*(5), 652-655. doi:10.2307/3281744
- Théron, A. (1989). Hybrids between *Schistosoma mansoni* and *S. rodhaini*: characterization by cercarial emergence rhythms. *Parasitology*, *99*(2), 225-228. doi:10.1017/s0031182000058674
- Théron, A. (2015). Chronobiology of trematode cercarial emergence: from data recovery to epidemiological, ecological and evolutionary implications. *Advances in Parasitology, 88*, 123-164. doi:10.1016/bs.apar.2015.02.003

- Théron, A. & Combes, C. (1983). Genetic analysis of the shedding pattern of *Schistosoma mansoni* cercariae by hybridization of species with early and late emission peaks. *Comptes-Rendus de l'Académie des Sciences III, Paris, 297*(12), 571-574.
- Théron, A. & Combes, C. (1988). Genetic analysis of cercarial emergence rhythms of *Schistosoma mansoni*. *Behavior Genetics*, *18*(2), 201-209. doi:10.1007/bf01067842
- Théron, A., Mouahid, G. & Moné, H. (1997). *Schistosoma mansoni*: cercarial shedding patterns from a mixed infection of *Biomphalaria glabrata* with two (early and late) chronobiological variants. *Parasitology Research 83*(4),3 56-358.
- Thommen, Q., Pfeuty, B., Corellou, F., Bouget, F. Y. & Lefranc, M. (2012). Robust and flexible response of the Ostreococcus tauri circadian clock to light/dark cycles of varying photoperiod. Federation of European Biochemical Societies Journal, 279(18), 3432-3448. doi:10.1111/j.1742-4658.2012.08666.x
- Ueta, T., Inoue, T., Furukawa, T., Tamaki, Y., Nakagawa, Y., Imai, H. & Yanagi, Y. (2012). Glutathione peroxidase 4 is required for maturation of photoreceptor cells. *Journal of Biological Chemistry*, *287*(10), 7675-7682. doi:10.1074/jbc.M111.335174
- Valle, C. M., Pellegrino, J. & Alvarenga, N. (1973). Rhythmic emergence of Schistosoma mansoni cercariae from Biomphalaria glabrata: influence of the temperature. Revista do Instituto de Medicina Tropical de São Paulo, 15(4), 195-201.
- Wang, S. R., Zhu, Y. J., Ge, Q. P., Yang, M. J., Huang, J. L., Huang, W. Q.,...& Lu, D. B. (2015). Effect of photoperiod change on chronobiology of cercarial emergence of *Schistosoma japonicum* derived from hilly and marshy regions of China. *Experimental Parasitology*, 159,227-232.doi:10.1016/j.exppara.2015.10.004
- Weasner, B., Salzer, C. & Kumar, J. P. (2007). Sine oculis, a member of the SIX family of transcription factors, directs eye formation. *Developmental biology*, *303*(2), 756-771. doi:10.1016/j.ydbio.2006.10.040
- WHO (2021). Lutter contre les maladies tropicales négligées pour atteindre les objectifs de développement durable: feuille de route pour les maladies tropicales négligées 2021–2030. 40 p. Retrieved from https://www.who.int/fr/publications-detail/9789240019027
- WHO (2022). Fact sheet. Retrieved from https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
- Williams, C. L. & Gilbertson, D. E. (1983). Altered feeding response as a cause for the altered heartbeat rate and locomotor activity of *Schistosoma mansoni*-infected *Biomphalaria glabrata*. *The Journal of Parasitology*, 671-676.
- Williams, C. L., Wessels, W. S. & Gilbertson, D. E. (1984). Comparison of the rhythmic emergence of Schistosoma mansoni cercariae from Biomphalaria glabrata in different lighting regimens. The Journal of Parasitology, 70(3), 450-452. doi:10.2307/3281585
- Wu, G., Anafi, R. C., Hughes, M. E., Kornacker, K. & Hogenesch, J. B. (2016). MetaCycle: an integrated R package to evaluate periodicity in large scale data. *Bioinformatics*, 32(21), 3351-3353. doi:10.1093/bioinformatics/btw405
- Xu, Y., Mori, T. & Johnson, C. H. (2003). Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. *Embo j, 22*(9), 2117-2126. doi:10.1093/emboj/cdg168
- Zhang, Y., Liu, T., Meyer, C., Eeckhoute, J., Johnson, D., Bernstein, B., . . .& Li, W. (2008). Model-based analysis of chipseq (macs). *Genome Biology*, 9(9). R137. doi:10.1186/gb-2008-9-9-r137
- Ziskind, B. (2009). Urinary schistosomiasis in ancient Egypt. *Néphrologie & Thérapeutique, 5*(7), 658-661. doi:10.1016/j.nephro.2009.06.001

Annexes
Annexe 1 : Article sur la chronobiologie comme outil de mise en évidence d'un événement d'hybridation

Parasitology Research https://doi.org/10.1007/s00436-020-06709-0

HELMINTHOLOGY - ORIGINAL PAPER

Cattle as natural host for *Schistosoma haematobium* (Bilharz, 1852) Weinland, 1858 x *Schistosoma bovis* Sonsino, 1876 interactions, with new cercarial emergence and genetic patterns

Boris A.E.S. Savassi^{1,2} · Gabriel Mouahid¹ · Chrystelle Lasica¹ · Samoussou-Dine K. Mahaman² · André Garcia³ · David Courtin⁴ · Jean-François Allienne¹ · Moudachirou Ibikounlé² · Hélène Moné¹

Received: 16 December 2019 / Accepted: 5 May 2020

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Schistosomiasis remains a parasitic infection which poses serious public health consequences around the world, particularly on the African continent where cases of introgression/hybridization between human and cattle schistosomiasis are being discovered on a more frequent basis in humans, specifically between *Schistosoma haematobium* and *S. bovis*. The aim of this paper is to analyze the occurrence of *S. bovis* in cattle and its relationship with *S. haematobium* in an area where cattle and humans share the same site in Benin (West Africa). We used the chronobiology of cercarial emergence as an ecological parameter and both molecular biology (COI mtDNA and ITS rDNA) of the larvae and morphology of the eggs as taxonomic parameters. The results showed a chronobiological polymorphism in the cercarial emergence rhythm. They showed for the first time the presence of *S. bovis* in Benin, the presence of introgressive hybridization between *S. bovis* and *S. haematobium* in domestic cattle, and the presence of atypical chronobiological patterns in schistosomes from cattle, with typical *S. haematobium* shedding pattern, double-peak patterns, and nocturnal patterns. Our results showed that the chronobiological life-history trait is useful for the detection of new hosts and also may reveal the possible presence of introgressive hybridization in schistosomes. Our results, for the first time, place cattle as reservoir host for *S. haematobium* and *S. bovis x S. haematobium*. The consequences of these results on the epidemiology of the disease, the transmission to humans, and the control of the disease are very important.

Keywords Schistosoma bovis · Schistosoma haematobium · Introgressive hybridization · Cercarial emergence pattern · Cattle · Benin

Introduction

Schistosomiasis or Bilharziasis remains a parasitic infection which poses serious public health consequences around the

Sato	0	,	0
------	---	---	---

Hélène Moné mone@univ-perp.fr

- ² Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 01BP526 Cotonou, Benin
- ³ UMR 261 MERIT, Institut de Recherche pour le Développement (IRD), Cotonou, Bénin
- ⁴ UMR 261 MERIT, Institut de Recherche pour le Développement (IRD), Université de Paris, Paris, France

world, particularly on the African continent which harbors 85% of the total number of infected people worldwide (Chitsulo et al. 2000; Engels et al. 2002). In Africa, humans can be infected with four species of Schistosoma: Schistosoma mansoni Sambon, 1907, S. haematobium, S. intercalatum Fisher, 1934 and S. guineensis Pagès, Jourdane, Southgate & Tchuem Tchuenté, 2003 where S. haematobium is the most prevalent species affecting around 112 million people (WHO 2019). Cattle schistosomiasis affects approximately 165 million domestic cattle worldwide and the disease is of veterinary and economic significances (De Bont and Vercruysse 1997). In Africa, species such as S. bovis, S. curassoni Brumpt, 1931, S. mattheei Veglia & Le Roux 1929, and S. leiperi Le Roux, 1955 are responsible for inducing severe infections in animals (De Bont and Vercruysse 1998). Africa is also the continent where cases of introgression/hybridization between human and cattle schistosomes are being discovered on a more frequent basis, specifically between S. haematobium and

🖉 Springer

¹ University of Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, 58 avenue Paul Alduy, Bât. R, F-66860 Perpignan, France

S. bovis. All but one of these cases were found in humans in West Africa: in Niger (introgression of *S. haematobium* by genes of *S. bovis*, Brémond et al. 1993; Leger et al. 2016), in Senegal (bidirectional introgression, Huyse et al. 2009; Webster et al. 2013), in Mali (hybrids, Soentjens et al. 2016), in Côte d'Ivoire (Angora et al. 2019), and in Benin (introgressive hybridization, Moné et al. 2015). The outlying case was from Corsica (France) (introgressive hybridization, Moné et al. 2015). Hybridization between *S. haematobium* and *S. bovis* in a non-human host was found in one rodent, *Mastomys huberti* Wroughton, 1909 in Senegal, which was shown to harbor a hybrid female (Catalano et al. 2018).

In Benin, two species of human schistosomes are reported in the literature: S. haematobium and S. mansoni (Moné et al. 2010): S. haematobium is widely distributed, with a national prevalence of 17.6%, while S. mansoni has a narrow distribution, with a prevalence of 2.5% (Onzo-Aboki et al. 2019). Introgressive hybridization between S. bovis and S. haematobium was already reported for humans in Benin (Moné et al. 2015) but, as a species, S. bovis was never reported in this country. This is interesting given that all of Benin's neighboring countries including Togo, Burkina Faso, Niger, and Nigeria were known to harbor this bovine species (Moné et al. 1999). In many villages in Benin, humans and cattle live in close proximity. Since the snails from the genus Bulinus are known to act as intermediate hosts for both S. haematobium and S. bovis, a logical question to consider is whether cattle in these areas could be infected by S. bovis or S. haematobium and if introgressive hybridization exists between the two species.

The aim of this paper is to analyze the occurrence of *S. bovis* in cattle and its relationship with *S. haematobium* in an area where cattle and humans share the same site (Fig. 1). We used the chronobiology of cercarial emergence as an ecological parameter, as the cercarial emission is related to the definitive host behavior (Théron et al. 1997; Ibikounlé et al. 2012; Mouahid et al. 2012; Mintsa-Nguema et al. 2014), the emission pattern of *S. bovis* cercariae is different (early diurnal, Mouahid et al. 1991) from that of *S. haematobium* cercariae (midday to late diurnal, Mouahid et al. 1991), and since schistosome cercarial emission has been shown to have a genetic base (Théron and Combes 1988). We also used both molecular biology (cytochrome c oxidase (COI mtDNA) and internal transcribed spacer (ITS rDNA)) of the larvae and morphology of the eggs as taxonomic parameters.

Materials and methods

Geographical sampling position

The study was conducted on cows and schoolchildren (elementary school; latitude N: 6°34'39.84"; longitude E: 2°31'

🖉 Springer

9.03") from 2017 to 2018 in Kessounou Village, located in the department of Ouémé in southeastern Benin (Fig. 2). The district of Kessounou is a fluvio-lacustrine zone characterized by a four-season subequatorial climate (Abou et al. 2018): (i) a long rainy season from March to June, (ii) a short dry season in July and August, (iii) a short rainy season in September and October, and finally (iv) a long dry season that runs from November to February. The Ouémé River crosses Kessounou and periodically floods the entire area during its flood period (mid-July to early November). During the period where river water levels are low (December to June), almost all of the water disappears giving way to ponds in various places. The climatic characteristics observed at Kessounou favor the seasonal installation of freshwater snails, especially during the flood period. Adults engage in fishing, agriculture, and livestock breeding. Schoolchildren regularly fish and search for crabs and shrimps for sale, which places them in permanent contact with contaminated waters. Cattle breeding is done in collectivity. Cows are left to wander even during periods of flooding and they never leave Kessounou unless they are sold. According to the breeders, most of the cows were born in Kessounou and some have spent more than 20 years in the one location.

Schistosoma egg and miracidium recoveries from cattle

The feces from 48 cows were collected individually (from 150 to 250 g), immediately after defecation. The infection status of each fecal sample was analyzed using the miracidial hatching test from 50 g of feces. The filtration technique consisted of placing the 50 g of feces in a container with half a liter of NaCl 9% saline solution. The solution was then homogenized using an electric hand mixer, passed through a series of decreasing mesh vacuum sieves (315 µm, 180 µm, 106 µm, and 45 µm), then washed with NaCl 9% saline solution using a pressure pump. The residues retained on the 45 µm pore size sieve were placed in a beaker containing drilling water, at room temperature under light, for miracidial hatching. Among the 48 cows, 35 were found positive (73%). We chose to continue the analyses with the four fecal samples that gave the most miracidia (BK19, BK24, BK26, and BK29). The rest of the fecal sample from each of the four cows was then filtered as above and separated into two subsamples: the first subsample was once again passed through the 45 µm pore size sieve, and the eggs were placed in a beaker containing drilling water for miracidial hatching. Several miracidia from each cow were collected individually onto FTA® Classic Cards (Whatman, GE Healthcare companies, Little Chalfont, United Kingdom) and then transferred to University of Perpignan (France) for molecular analyses; the rest of the miracidia from the four cows were mixed and used for snail infection; the second subsamples from the four cows were once again individually

Fig. 1 Kessounou sampling area where cows access water in close proximity to houses

passed through the 45 μ m pore size sieve in 9% NaCl saline solution and the eggs from the four subsamples were mixed for an egg morphology study.

Schistosoma egg and miracidium recoveries from schoolchildren

Urine samples from 76 schoolchildren were collected individually. The infection status of each urine sample was analyzed using the syringe filtration technique (Boko et al. 2016; Onzo-Aboki et al. 2019) after staining each filter with Lugol solution. One of the 18 girls' samples (5.6%) and 4 of the 58 boys (6.9%) were found positive. The rest of the five positive urine-egg samples (DK20, DK23, DK54, KE14, and KE15) were individually filtered according to the same procedure as above, and the filters were placed in saline solution. Two subsamples were made from each urine sample: the first subsample was passed through a 45 μ m pore size sieve and the eggs were placed in a beaker containing drilling water for miracidial hatching. Several miracidia were collected individually for each urine sample in Eppendorf tubes (only one miracidium per tube), containing 95° alcohol, then transferred to the University of Perpignan (France) for molecular analyses. The second subsamples from the five urine samples were mixed in saline solution for an egg morphology study.

Fig. 2 Sampling area. a Map of Benin; Kessounou Village (black circle) in Ouémé Department. b Kessounou Village (white with black circles). ES: Elementary School

The stools from the four urine-egg-positive boys were collected individually. Each stool was passed through a series of sieves (315, 180, 106, and 45 pore size) and washed through with 9% NaCl saline solution with a pressure pump.

The eggs that were retained on the 45 μ m pore size sieve were collected in a beaker containing saline solution. The presence of eggs was ascertained under a binocular microscope. Only one stool was found positive and two subsamples were made: the first subsample was passed through the 45 μ m pore size sieve and the eggs were placed in a beaker containing drilling water for miracidial hatching. Several miracidia were collected individually in Eppendorf tubes (only one miracidium per tube) containing 95° alcohol, then transferred to the University of Perpignan (France) for molecular analyses. The second subsample was kept in 9% NaCl saline solution for an egg morphology study.

Snail infection

Two species of freshwater snails, Bulinus forskalii (Ehrenberg, 1831) and Bulinus globosus (Morelet, 1866), were collected in Kessounou Village and used in this study. These species were identified using shell morphology (Brown 1994). All of the collected snails were tested for infection with schistosomes or other trematodes for a period of 55 days. None of the snails used for the infection were found to be naturally infected. We exposed 43 Bulinus forskalii (6.3 to 8.2 mm in height) and 62 Bulinus globosus (4.4 to 7.6 mm in height), individually, to 3 miracidia obtained from the eggs originating from a mixture of feces from the 4 cows (BK19, BK24, BK26, and BK29). The snails of each species were maintained separately, fed with dry and fresh salad in water at 28 °C with a balanced photoperiod (12 h light, 12 h dark) and a photophase from 6:00 am to 6:00 pm. The snails were then transferred to Perpignan (France) for cercarial emission and molecular analyses.

Cercarial emergence pattern

The snails were maintained individually in glass vessels containing 150 ml of drilling water, at a constant temperature (25 °C), balanced photoperiod (light/dark: 12 h/12 h), and photophase (6:00 am to 6:00 pm). They were given fresh washed lettuce ad libitum. The cercarial emission rhythm (chronobiology) was studied for five consecutive days for 13 infected snails, 11 *Bulinus forskalii* (Kf1 to Kf11), and 2 *Bulinus globosus* (Kg1 and Kg2) to show the stability of the emission pattern, from the 6th day after the first day of the patent period, i.e., 32 to 38 days after snail exposure to the miracidia. Each hour, each snail, with its lettuce, was transferred into a new vessel. The water left in the vessel, containing the cercariae, was transferred to a container where a few drops of Lugol solution was added to kill the cercariae and

🙆 Springer

red-color them; this solution was then filtered through a Nitrel polyamide filter (25 μ m pore size). The cercariae retained on the filter were counted under the binocular microscope.

Cercariae emitted by four infected *Bulinus forskalii* (Kf5, Kf6, Kf8, and Kf9) and the two *Bulinus globosus* (Kg1 and Kg2) were individually stored onto FTA® Classic Cards (Whatman, GE Healthcare companies, Little Chalfont, United Kingdom), as described above, for molecular studies.

Molecular analyses

DNA extraction

DNA from miracidia collected in alcohol was extracted according Beltran et al. (2008) and stored at - 20 °C. DNA from either miracidia or cercariae individually stored on FTA® Classic Cards (Whatman, GE Healthcare companies, Little Chalfont, United Kingdom) was extracted as follows. A 3mm disk was removed with a Craft Punch from the FTA® Classic Cards at the center of where the miracidium or cercaria was loaded. The disks were deposited in Eppendorf tubes (1.5 ml) and an initial washing step with 100 µl of Milli-Q water was performed. After a 10-mn incubation at room temperature, water was removed and replaced with 80 µl of 5% Chelex® 100 Molecular Biology Grade Resin solution (Bio-Rad Laboratories, Hercules, California, USA). The sample was then heated to 65 °C for 30 min at a stirring speed of 800 rpm followed by a second heating at 99 °C for 8 min without stirring. DNA was finally collected by centrifugation at 14,000 rpm for 2 min. Fifty microliters of the supernatant (DNA) of each sample was taken and stored at -20 °C for further molecular analyses.

Rapid diagnostic multiplex PCR

A rapid diagnostic multiplex PCR was used to target the COI mtDNA gene. We used the technique of Webster et al. (2010), optimized by Van den Broeck et al. (2011) and Angora et al. (2019). The primers were one universal reverse primer (Shmb.R: 5'-CAA GTA TCA TGA AAY ART ATR TCT AA-3') and three species-specific forward primers (for S. haematobium (120 bp) Sh.F: 5'-GGT CTC GTG TAT GAG ATC CTA TAG TTT G-3', for S. bovis (260 bp) Sb.F: 5'-GTT TAG GTA GTG TAG TTT GGG CTC AC-3' and for S. mansoni (215 bp) Sm.F: 5'-CTT TGA TTC GTT AAC TGG AGT G-3'). Each PCR amplification of partial COI mtDNA was carried out in a total volume of 10 µl, containing 2 µl of DNA template, 2 µl of the GoTaq® Flexy buffer (Promega; Madison, Wisconsin, USA), 0.6 µl of 25 mM MgCl₂, 1 µl of 10× primer mix (4 µl of 100 µM universal reverse primer, 4 µl of each 100 µM forward primer, and 84 µl of milli-Q water), 0.2 µl solutions of dNTP at 10 mM each, 0.2 µl of the GoTaq® G2 Hot Start Taq Polymerase

(Promega), and 4 μ l milli-Q water. The PCR conditions involved an initial phase of activation of GoTaq Polymerase at 95 °C for 3 min followed by 45 amplification cycles. Each cycle comprised DNA denaturation step at 95 °C for 10 s, followed by primer annealing at 52 °C for 30 s, and an elongation step at 72 °C for 10 s. The program ended with a final extension at 72 °C for 2 min. The PCR products were examined on 2.5% agarose gels at 135 V for 40 min using the 100 bp DNA size marker (Promega) for size estimation.

COI mtDNA PCR

Partial COI mtDNA amplification was performed by PCR using the forward primer, Cox1_schist F: 5'-TCTT TRGATCATAAGCG-3', and the reverse primer, Cox1_schist-R: 5'-TAATGCATMGGAAAAAAAAAAAA' (Lockyer et al. 2003). PCR conditions used were those as described in Moné et al. (2015).

ITS rDNA PCR

PCR amplification of ITS rDNA (partial 18S, ITS1, 5.8S, and ITS2) was performed using the primers of Barber et al. (2000): ITS4F: 5'-TCCTCCGCTTATTGATATGC-3'; ITS5R: 5'-GGAAGTAAAAGTCGTAACAAGG-3'. The amplification was carried out in a total reaction volume of 25 µl, containing 2 µl of DNA; 1.5 µl of MgCl2 (25 mM), 5 µl of the 5× buffer (Promega), 1 μl of each of the primers (10 μM), 0.5 μl of each dNTP (10 mM), 0.2 µl of Go Taq polymerase (Promega), and 13.8 µl of H2O using a thermocycler (Techne TC-Plus, Bibby Scientific, Staffordshire, UK). The reaction conditions included an activation step at 95 °C for 3 min, followed by 45 amplification cycles. Each cycle comprised a DNA denaturation step at 95 °C for 40 s, followed by primer annealing at 48 °C for 40 s and an elongation step at 72 °C for 1 min 10 s and a final extension at 72 °C for 5 min. One percent agarose gel electrophoresis was used to visualize the ITS rDNA-PCR products.

Sequencing

Partial COI mtDNA gene and ITS rDNA region were sequenced (Genoscreen; Lille, France) using the reverse primers; some regions were also sequenced using the forward primer in order to confirm the sequence. The sequences were manually edited using Sequencher 4.5 (Gene Codes Corporation, Ann Arbor, USA). For the analysis of nuclear gene sequences (ITS rDNA), the sequence polymorphism was verified and confirmed by visualization of the raw sequence chromatograms. Since this gene has biparental transmission and segregation sites (polymorphic sites) between *S. haematobium* and *S. bovis*, the sequence chromatograms were carefully checked to identify the presence of possible heterozygosity. At each polymorphic site where two chromatogram peaks overlapped (indicating the genetic signature of both parents), the IUPAC ambiguity symbols were used to indicate the individual nucleotide polymorphisms. Thus, Y indicates the presence of the bases T and C, rather than an ambiguous reading between T and C. Similarly, R indicates the presence of the bases A and G and not an ambiguous reading between A and G. The different haplotypes and the different profiles are presented in Table 1 for the COI mtDNA gene and the ITS rDNA region, respectively.

Partial COI mtDNA phylogenetic analysis

DNA multiple sequence alignments were performed using Muscle program (Edgar 2004) on the MEGA 7.0 software (Kumar et al. 2016) and refined by Gblocks 0.91b (Castresana 2000; Dereeper et al. 2008, 2010). The probabilistic model of sequence evolution (Nei and Kumar 2000) and the gamma distribution (G) to approximate rate heterogeneity among haplotypes was performed using MEGA 7.0 software. The best model with the lowest BIC score (Bayesian Information Criterion) was HKY + G (Hasegawa-Kishino-Yano with the gamma distribution). A phylogenetic tree using the maximum likelihood method was constructed. The maximum likelihood method was performed using MEGA 7.0 software. Reliability for internal branch was assessed using bootstrapping procedure (1000 replicates). The topology of the tree was rooted by S. intercalatum. The comparison was also performed using the percentage of difference calculated from the pairwise distances data obtained by using MEGA 7.0 software.

Egg morphology

The eggs were mounted individually at random in a 9% NaCl solution beneath glass cover-slips on glass slides using a Pasteur pipette. They were photographed and measured (length, width, spine length, and length/width ratio) by microscopy. Only the eggs which contained a living miracidium were measured. In total, 113 eggs were measured: 47 from cow feces, 48 from schoolchildren urines, and 18 from the schoolchildren stool.

Statistical analyses

Means and standard errors were calculated. The Mann-Whitney test was used for measure comparisons and the Fisher's exact test was used for proportion comparisons using the BiostaTGV https://biostatgv.sentiweb.fr. The probability values (p) less than 5% were considered statistically significant.

🖄 Springer

Table 1 Origin and sample label of the miracidia and cercariae used for the molecular analyses. Number of haplotypes/number of sequenced larval stages (either miracidia or cercariae) for the COI mtDNA gene and number of profiles/number of sequenced larval stages (either miracidia or cercariae) for the ITS rDNA region

Sample label	COI mtDNA	ITS rDNA
BK19	3/5	2/5
BK24	2/5	3/5
BK26	2/5	3/5
BK29	3/5	2/5
Kf5	1/5	1/5
Kf6	1/3	1/3
Kf8	1/3	1/3
Kf9	2/3	1/3
Kg1	1/5	1/5
Kg2	1/5	1/5
DK20	1/3	-
DK23	4/6	5/6
DK54	2/2	1/2
KE14	2/11	6/14
KE15	4/11	5/10
KE14	3/14	7/13
	Sample label BK19 BK24 BK26 BK29 Kf5 Kf6 Kf8 Kf9 Kg1 Kg2 DK20 DK20 DK23 DK54 KE14 KE15 KE14	Sample label COI mtDNA BK19 3/5 BK24 2/5 BK26 2/5 BK29 3/5 Kf5 1/5 Kf6 1/3 Kf8 1/3 Kg1 1/5 DK20 1/3 DK23 4/6 DK54 2/2 KE14 2/11 KE15 4/11 KE14 3/14

BK, Kf, and Kg: cow origin; DK and KE: schoolchild origin; "--": not available

Results

Snail infection

Of the 43 *B. forskalii* that were exposed, 16 survived and 11 shed cercariae (69%) (Kf1 to Kf11); of the 62 *B. globosus* that were exposed, 52 survived and only 2 shed cercariae (2.9%) (Kg1 and Kg2). The percentage of infection was significantly higher for *B. forskalii* compared to *B. globosus* (Fisher's exact test; p < 0.0001). Prepatent periods lasted 26 days (from the *B. forskalii* Kf1, Kf2, Kf3, Kf4, Kf5, Kf6, Kf7, and Kf8 and from the *B. globosus* Kg1), 30 days (from the *B. forskalii* Kf9 and Kf10), or 32 days (from the *B. forskalii* Kf11 and from the *B. globosus* Kg2).

Cercarial emission patterns

The cercarial emission patterns were analyzed for the 13 positive snails (11 *B. forskalii* and 2 *B. globosus*) during 5 consecutive days (65 occurrences in total) from the 6th day after the first day of the patent period, i.e. 32 to 38 days after snail exposure to the miracidia. The results showed a variability in the patterns; we identified four different patterns (Fig. 3), and each snail harbored only one pattern.

a- An early diurnal pattern was observed for 7 of the 13 snails (53.8%). Cercarial emission began at 6 am, immediately after the start of the light period; it increased very rapidly to reach an emission peak at either 7 am (for Kf1)

Springer

and Kf11) or 8 am (for Kf2, Kf3, Kf6, Kf7, and Kf8), then decreased gradually to stop at 2 pm. Immediately after the beginning of the dark period, very low cercarial emissions were observed at 7 pm, and sometimes at 8 pm as well. The mean pattern showed that more than 97% of the cercariae were shed during the day and a peak occurred at 8 am (Fig. 3a);

- b- A midday to late diurnal pattern was found for 1 of the 13 snails (7.7%). More than 90% of the cercariae were shed during the day. Cercarial emission mainly occurred from 12 am to 6 pm with an emission peak at 2 pm (Kg2), followed by a gradual decrease during the daylight hours and then a rapid decrease at the beginning of the dark period (Fig. 3b);
- c- An early diurnal and nocturnal pattern was found for 4 of the 13 snails (30.8%). The percentages of cercariae shed during the day were highly variable and represented from more than 90% (as for the two previous chronotypes) to less than 60%. The diurnal cercarial emission occurred during the 4 to 5 first hours of light with peaks at 7 am (for Kf5), 8 am (for Kf4 and Kf9), or 9 am (for Kf10). The nocturnal cercarial emission occurred mainly during the first hour of darkness where another peak was observed for the 4 snails for which Kf5 represented more than 40% of the total cercarial daily emission. The mean pattern had more than 79% of the cercariae that were shed during the day and harbored two peaks, an early peak at 8 am and a nocturnal peak at 7 pm (Fig. 3c);
- d- A late diurnal and nocturnal pattern for 1 of the 13 snails (7.7%). Roughly 60% of the cercariae were shed during

Parasitol Res

b Midday to late diurnal

Fig. 3 Cercarial emission patterns from infected snails, each exposed to 3 miracidia of *Schistosoma* from cow feces. a Early diurnal pattern for *B. forskalii* (Kf1, Kf2, Kf3, Kf6, Kf7, Kf8 and Kf11). b Midday to late

the day. Cercarial emission occurred mainly from 4 pm to 7 pm with an emission peak at 7 pm (Kg1) (Fig. 3d).

COI mtDNA (894 bp)

Ninety-one sequences were analyzed. The numbers of haplotypes on the numbers of sequenced larval stages for each sample (4 cows, 6 snails, and 5 schoolchildren) are presented in Table 1. We found from 2 to 3 haplotypes per cow, from 1 to 2 haplotypes per snail, and from 1 to 4 haplotypes per child. In total, 13 haplotypes were found: 6 haplotypes from cows (K Cow Hap1 to K Cow Hap6) which contained 13 mutation sites, all different from the 7 haplotypes from schoolchildren (K Child Hap7 to K_Child_Hap13), containing 16 mutation sites (Table 2). Sequence data were deposited in the NCBI GenBank database under the accession numbers MT159589 to MT159601. The percentages of differences ranged between 0.11 and 1.36% between the cow and the human haplotypes. Site polymorphism was shared between cows and schoolchildren in seven different positions while six positions were polymorph only in cows and only eight in schoolchildren. One haplotype was harbored by only one individual (either cow (K Cow Hap1: accession number MT159589, K Cow Hap2: accession number MT159590

diurnal pattern for *B. globosus* (Kg2). c Early diurnal and nocturnal pattern for *B. forskalii* (Kf4, Kf5, Kf9, Kf10). d Late diurnal and nocturnal pattern for *B. globosus* (Kg1)

and K Cow Hap6: accession number MT159594) or schoolchild (K Child Hap10: accession number MT159598, K Child Hap12: accession number MT159600 and K Child Hap13: accession number MT159601)) or was shared by different cows (K Cow Hap3: accession number MT159591, K Cow Hap4: accession number MT159592 and K_Cow_Hap5: accession number MT159593) or different schoolchildren (K Child Hap7: accession number MT159595, K Child Hap8: accession number MT159596, K Child Hap9: accession number MT159597 and K_Child_Hap11: accession number MT159599). Three different haplotypes were found from the snails among the six recovered in the cows; they were different between B. forskalii (K. Cow Hap1: accession number MT159589 and K_Cow_Hap2: accession number MT159590) and B. globosus (K Cow Hap4: accession number MT159592). Two haplotypes (K Child Hap8: accession number MT159596 and K_Child_Hap9: accession number MT159597) were shared by miracidia that came from the same child in both the urine and the stool.

ITS rDNA (946 bp)

Eighty-nine sequences were analyzed for the 18S, ITS1, 5.8S and ITS2 genes. The first 22 bp of our ITS rDNA sequences belonged to the 18S gene and no variability was found

hild (DK and KE) in Kessounou Village, Benin	Sample label (Number of	1 594 630 690 699 726 777 778 782 792 843	A T T T G T T C G T BK19(2); Kf9(2)		G C C BK19(2); BK26(1); BK29(2)	. C C . C . BK24(4); BK24(4); BK26(4); Kg1(5); Kg2(5)	BK24(1); BK29(2)	BK29(1)	. C C C DK20(3); DK23(1); KE15(1)	C C C . C . DK23(3); DK54(1); KE14 (urine(3) and stool(2))	C C . C DK23(1); KE14 (urine(9) and stool(6)); KE15(8)	· · · C · C · · · · DK23(1)	C C . C A . DK54(1); KE14 (stool(5))	A C KE15(1)	· · · · A · · · C KEI5(1)
lchild (I		5015	0									L			
nd schoo		432	C	-							Н		Г		
ł Kg) ar		3 3 6 9	IJ		Т	Т			Т	Н	H	F	Н		
, Kf and	numbers	4 333	Т		C	C			С	C	C	С	С		
w (BK	ertical r	9 3 2	IJ				Τ								
d by co	ed in vo	4 3 0	V											Ð	G
arbore	present	5 29	U	V	Υ	Y		-	V	V	А	¥	V	Y	×
gene, l	tions (j	0 19	U	Т	Т	Т			Т	Т	Т	Т	Т	Т	Т
fDNA	ic posi	4 15	۷		U	G			G	U	C	Ð	Ċ		
COIm	morph	4 14	U	V	A	V			<	V	A	V	V	V	<
cs of t	2 poly	4 8	A						9						
plotyp	~	10	V					~		∞					0
2 The 13 hap	Haplotype		K_Cow_Hap1	K_Cow_Hap?	K_Cow_Hap:	K_Cow_Hap4	K Cow Haps	K_Cow_Hap(K_Child_Hap	K_Child_Hap	K_Child_Hap	K_Child_ Hap10	K_Child_ Hap11	K_Child_ Han12	K_Child_ Hap13
Table	Host		Cow						Child						

between any of our samples. We thus no longer gave this gene further consideration. Eleven profiles were found with the ITS1, 5.8S and ITS2 sequences, with 2 to 3 profiles per cow, only 1 profile per snail and 1 to 7 profiles per child (Table 1). Sequence data were deposited in the NCBI GenBank database under the accession numbers MT158872 to MT158882.

Table 3 shows that the 11 profiles may differ by their ITS1 gene (458 bp: from position 23 to position 480), with 5 genetic variants at three positions (TGT, TAT, TGY, TRT, and YAT), by their 5.8S gene (155 bp: from position 481 to position 635), with 2 genetic variants at 1 position (C and Y), and by their ITS2 gene (311 bp: from position 636 to position 946), with 3 genetic variants at 4 positions (ATAT, GCGC and RYRY). Among these 11 profiles, 1 profile corresponding to S. bovis ITS rDNA was found only in cows (profile 1: accession number MT158872), and 1 profile corresponding to S. haematobium ITS rDNA was found only in schoolchildren (profile 2: accession number MT158873). All of the other 9 profiles showed atypical sequences in ITS rDNA. Two were found only in cows (profiles 3: accession number MT158874 and 4: accession number MT158875) and showed double peaks in the ITS1 gene. Five were found only in schoolchildren (profiles 5: accession number MT158876, 6: accession number MT158877, 7: accession number MT158878, 8: accession number MT158879 and 9: accession number MT158880) and showed double peaks in 1 or 2 of the ITS1, 5.8S and ITS2 genes. Two were found both in cows and schoolchildren, where the first one showed a typical S. haematobium ITS1 marker together with a typical S. bovis ITS2 marker (profile 10: accession number MT158881) and the second showed a typical ITS1 S. haematobium marker together with double peaks in both the 5.8S and ITS2 genes (profile 11: accession number MT158882).

COI mtDNA phylogeny (881 bp)

The 13 haplotypes obtained from the COI mtDNA sequences (haplotype code/COI mtDNA accession No: K_Cow_Hap1/ MT159589, K Cow Hap2/MT159590, K Cow Hap3/ MT159591, K_Cow_Hap4/MT159592, K_Cow_Hap5/ MT159593, K Cow Hap6/MT159594, K Child Hap7/ MT159595, K Child Hap8/MT159596, K Child Hap9/ MT159597, K Child Hap10/MT159598, K Child Hap11/ MT159599, K Child Hap12/MT159600, K Child Hap13/ MT159601) were compared to 23 published nucleotide sequences of Schistosoma (12 sequences from S. haematobium (haplotype code/COI mtDNA accession No: Sh Gambia/ JQ397349; Sh_Liberia/JQ397350; Sh_Mali/AY157209; Sh_Egypt/JQ397368; Sh_Guinea Bissau/JQ397351; Sh_Toho_Benin/KT354661; Sh_Cameroon/JQ397365; Sh Melen Gabon/KT354660; Sh Ekouk Gabon/KT354659; Sh_Kenya/JQ397378; Sh_South Africa/JQ397397; Sh_Madagascar/JQ397399), 7 from S. bovis (haplotype code/ COI mtDNA accession No: SbxSh Corsical France/ KT354656; SbxSh_Corsica2_France/KT354657; SbxSh_Corsica3_France/KT354658; SbxSh_Sô-Tchanhoué Benin/KT354662; Sb Senegal/AJ519521; Sb_Kenya/FJ897160; Sb_Tanzania/AY157212), 2 from S. guineensis (haplotype code/COI mtDNA accession No: Sg_Sao Tome and Principe/AJ519517 and Sg_Cameroon/ AJ519522), 1 from S. curassoni (haplotype code/COI mtDNA accession No: Sc Senegal/AJ519516), and 1 from S. intercalatum (haplotype code/COI mtDNA accession No:

Table 3 The 11 profiles of the ITS rDNA region, and their positions, harbored by cow (BK, Kf, and Kg) and schoolchild (DK and KE) in Kessounou Village, Benin

Species	Profile	ITS	51		5.8	ITS2	2			Host	Sample (Number of sequenced larval stages)
		41	73	257	556	725	780	830	900		
S. bovis	1	Т	G	Т	С	А	Т	А	Т	Cow	BK19(4); BK24(1); BK26(1); BK29(4); Kf5(5); Kf6(3); Kf8(3); Kf9(3)
S. haematobium	2	Т	А	Т	С	G	С	G	С	Schoolchild	KE14 (urine(1) and stool(1))
S. bovis x S.	3	Т	G	Y	С	Α	Т	А	Т	Cow	BK19(1); BK29(1)
haematobium	4	Т	R	Т	С	Α	Т	А	Т		BK24(3); BK26(3)
	5	Т	А	Т	Y	G	С	G	С	Schoolchild	DK54(2); KE14 (urine(4) and stool(2)); KE15(2)
	6	Т	Α	Т	С	R	Υ	R	Υ		DK23(1); KE14 (stool(1)); KE15(1)
	7	Υ	Α	Т	С	G	С	G	С		DK23(2); KE14 (urine(1) and stool(1))
	8	Y	А	Т	Y	G	С	G	С		DK23(1); KE14 (urine(4) and stool(4)); KE15(4)
	9	Υ	Α	Т	С	R	Υ	R	Υ	Cow and	DK23(1); KE14 (stool(2)); KE15(2)
	10	Т	Α	Т	С	Α	Т	А	Т	Schoolchild	BK24(1); BK26(1); Kg1(5); KE14 (urine(2))
	11	Т	Α	Т	Y	R	Y	R	Y		Kg2(5); DK23(1); KE14 (urine(2) and stool(2)); KE15(1)

Y indicates the presence of the bases T and C, rather than an ambiguous reading between T and C. Similarly, R indicates the presence of the bases A and G and not an ambiguous reading between A and G

🖄 Springer

Si_Democratic Republic of the Congo/AJ519515) obtained at the GenBank database. Maximum likelihood tree topology of COI mtDNA showed that all 13 haplotypes which came from cows and schoolchildren belonged to the *S. bovis* clade and not to the *S. haematobium* or to other *Schistosoma* species clades (Fig. 4). The percentages of differences ranged between 0.23 and 1.70% between our 13 haplotypes and the *S. bovis* haplotypes from Senegal, Kenya, and Tanzania. We found 0% difference between K_Child_Hap11 and the haplotype from Sô-Tchanhoué, Benin. We also found 0% difference between K_Child_Hap13 and the Corsica3 haplotype.

Egg morphometry

Two or three morphotypes were observed according to the host and the excreta (urine or feces/stool). In cow feces, three

Fig. 4 Maximum likelihood tree topology built with the 13 haplotypes COI mtDNA (881 bp) showing that S. haematobium from Kessounou (recovered either from cows or schoolchildren) belongs to the S. bovis clade. Haplotype code/COI mtDNA accession No: K Cow Hap1/ MT159589, K Cow Hap2/ MT159590, K_Cow_Hap3/ MT159591, K Cow Hap4/ MT159592, K Cow Hap5/ MT159593, K_Cow_Hap6/ MT159594, K_Child_Hap7/ MT159595, K Child Hap8/ MT159596, K Child Hap9/ MT159597, K_Child_Hap10/ MT159598, K_Child_Hap11/ MT159599, K_Child_Hap12/ MT159600, K_Child_Hap13/ MT159601). The scale shows the number of nucleotide substitutions per site

morphotypes were found: *S. bovis*, *S. haematobium*, and their intermediate morphotype (Fig. 5a-c); in schoolchild stool (Fig. 5d, e) and urine (Fig. 5f, g), two morphotypes were found: *S. haematobium* and an intermediate morphotype.

The percentages of each morphotype are presented in Fig. 6 for each origin. The percentage of *S. bovis* morphotype was high (63.8%) in the cow feces, and null in schoolchild (stool and urine origins) (p < 0.05). The percentages of intermediate morphotype were not different between the origins (p > 0.05). The percentage of *S. haematobium* morphotype observed from cow feces origin was significantly lower than those from both stool and urine of schoolchild origins (p < 0.05). For each origin, the percentages of *S. bovis*, intermediate and *S. haematobium* morphotypes were all significantly different from each other (p < 0.05).

🙆 Springer

Fig. 5 Egg morphology. Cow feces, a S. bovis morphotype, b intermediate morphotype, c S. haematobium morphotype. Schoolchild stool, d intermediate morphotype, c S. haematobium morphotype. Schoolchild urine, f intermediate morphotype, g S. haematobium morphotype. Bar represents 100 μm

The morphometry of the eggs from cows and schoolchildren is presented in Table 4 and Fig. 7. For the S. bovis morphotype, no comparison could be made since this morphotype was not present in schoolchildren. For the intermediate morphotype, mean egg length and spine length were significantly higher for the cow feces origin (p < 0.05) and no difference was observed between the urine and the stool of the schoolchildren (p > 0.05). The mean length/width ratio was significantly smaller for the eggs obtained from schoolchild urine (p < 0.05) and no differences were observed between the schoolchild and cow feces (p > 0.05). For the S. haematobium morphotype, no major difference was observed between the origins (p > 0.05). The comparisons between morphotypes indicated that mean egg length and egg length/width ratio from urine or from stool were significantly higher in S. bovis morphotype compared to the intermediate one and higher in the intermediate morphotype compared to the S. haematobium one (p < 0.05). The plot of the egg width (µm) and egg length (µm) for schoolchild urine (green diamonds), schoolchild stool (blue squares), and cow feces (orange triangles) showed that the eggs from schoolchild urine and stool were grouped together but that those of cow feces constituted a separate group, with some individuals making the link between the two groups showing a higher variability in the eggs from cows compared to the eggs from schoolchildren.

Discussion

The results showed a chronobiological polymorphism in the cercarial emergence rhythm from snails exposed to miracidia collected from cow feces, with four different patterns.

The first pattern, early diurnal, exhibited a typical *S. bovis* cercarial emission; it was obtained in 7 *B. forskalii* among 11 (Kf1, Kf2, Kf3, Kf6, Kf7, Kf8, and Kf11). Such a pattern was found in *S. bovis* from Sardinia (Italy), Sudan and Spain

Fig. 6 Percentages of each egg morphotype (*S. bovis*, black; intermediate, dots; *S. haematobium*, grey) according to origin (cow feces, schoolchild stool, schoolchild urine) Table 4 Egg morphometry (mean (μ m) \pm standard error)

Parasitol Res

Morphotype	S. bovis			Intermediat	e	S. haematobium			
Origin	CF	SS	SU	CF	SS	SU	CF	SS	SU
Length	247.83 ^b	na	na	223.17 ^{a, b}	153.00	148.54 ^b	140.00	138.85	132.0
SE	4.03	na	na	7.51	5.48	3.82	42.43	4.68	1.66
N	30.00	na	na	15.00	5.00	12.00	2.00	13.00	36.00
Min	205.00	na	na	170.00	140.00	135.00	110.00	120.00	117.5
Max	300.00	na	na	262.50	170.00	170.00	170.00	175.00	170.0
Width	69.58 ^b int	na	na	83.17 ^a	56.00 ^{a, b}	68.13 ^a	67.50	68.85	68.96
SE	1.56	na	na	2.19	3.26	2.04	17.68	3.25	1.62
N	30.00	na	na	15.00	5.00	12.00	2.00	13.00	36.00
Min	57.50	na	na	65.00	50.00	60.00	55.00	50.00	50.00
Max	90.00	na	na	100.00	65.00	80.00	80.00	95.00	85.00
Spine length	17.38	na	na	17.31ªSU	13.33	10.94	17.50	10.31 ^a	12.59
SE	0.68	na	na	1.04	4.45	0.49	3.54	0.61	0.48
N	20.00	na	na	13.00	3.00	8.00	2.00	8.00	29.00
Min	12.50	na	na	10.00	7.50	10.00	15.00	7.50	10.00
Max	22.50	na	na	22.50	20.00	12.50	20.00	12.50	20.00
Length/Width	3.59 ^b	na	na	2.68 ^b	2.75 ^b	2.19 ^{a, b}	2.06 ^b	2.04^{b}	1.94
SE	0.07	na	na	0.05	0.11	0.07	0.09	0.07	0.04
N	30.00	na	na	15.00	5.00	12.00	2.00	13.00	36.00
Min	2.93	na	na	2.31	2.50	1.93	2.00	1.71	1.63
Max	4.17	na	na	2.93	3.10	2.72	2.13	2.50	2.60

CF cow feces, SS schoolchild stool, SU schoolchild urine, SE standard error, N number of eggs

^a Mann-Whitney test: significantly different from the other origins of the same morphotype

^b Mann-Whitney test: significantly different from the other morphotypes of the same origin

(Mouahid et al. 1987, 1991), and Niger (Mouchet et al. 1992). The COI mtDNA molecular analyses, conducted on cercariae from 2 snails among the 7 (Kf6 and Kf8), showed that the DNA sequences (K_Cow_Hap2) belonged to the *S. bovis* clade. *Schistosoma bovis* has an extensive geographical distribution (Moné et al. 1999), and in their review, Moné et al. showed that this species was naturally found in all of the neighboring countries of Benin: Togo, Burkina Faso, Niger, and Nigeria. However, while this is the first time that this species has been found naturally in Benin, this result is not surprising. Furthermore, if the presence of *S. bovis* was not surprising in cows, the presence of COI mtDNA *S. bovis* haplotypes in all of the schoolchildren samples confirms that introgressive hybridization between *S. bovis* and *S. haematobium* exists in humans in

Fig. 7 Plot of the egg width (µm) and egg length (µm) for schoolchild urine (diamonds), schoolchild stool (squares) and cow feces (triangles)

Benin, as shown previously by Moné et al. (2015). The phylogenetic analysis showed that 2 of the 6 haplotypes recovered from cows (K_Cow_Hap3 and K_Cow_Hap4) and 5 of the 7 haplotypes recovered from schoolchildren (K Child Hap7, K_Child_Hap8, K_Child_Hap9, K_Child_Hap10, and K_Child_Hap11) grouped with the one from Sô-Tchanhoué from Benin, confirms previous results on introgressive hybridization between S. bovis and S. haematobium with respect to humans in this area (Moné et al. 2015). The four last haplotypes recovered from cows (K Cow Hap1, K Cow Hap2, K Cow Hap5, and K Cow Hap6) grouped with the S. bovis haplotypes. The last two haplotypes recovered in humans (K Child Hap12 and K Child Hap13) grouped with those from Corsica, with the haplotype number 13 being exactly the same as the Corsica 3 haplotype. This result provides insight into the origin of the Corsican hybrids which was previously attributed to Senegal (Boissier et al. 2016) on the basis of 407 positions. The phylogenetic tree in the present work, based on 881 positions of the COI mtDNA, showed that the origin of Corsican haplotypes could be attributed to Benin.

The second pattern, midday to late diurnal, was new for cercarial emission in cows while it was similar to what has been published on S. haematobium in humans from Algeria (Kéchemir and Théron 1997), Morocco (Mouahid et al. 1991), Niger (Pagès and Théron 1990; Mouchet et al. 1992), and Gabon (Mintsa-Nguema et al. 2014). This is the first time that a typical S. haematobium pattern has been observed in cows as S. haematobium has always been thought to have the highest specificity to humans. This atypical pattern from cows was not due to the fact that the cercariae were shed by B. globosus (Kg2) since it has been shown that the taxa of the snail from which the cercariae emerge does not determine the cercarial emergence pattern of S. bovis (Mouahid and Théron 1986). Furthermore, hybridization in schistosomes is known to be accompanied by heterosis (hybrid vigor), including the capability of hybrid schistosomes to open their snail intermediate host spectrum (Wright and Ross 1980; Webster and Southgate 2003; Huyse et al. 2009). Bulinus forskalii is the main snail host for S. bovis in Sub-Saharian Africa while B. globosus is the main snail host for S. haematobium in this area (Brown 1994). The fact that a B. globosus was shedding this atypical pattern could stem from the opening of the snail host spectrum by this S. bovis x S. haematobium new pattern. The molecular and phylogenetic results presented in this paper support this idea since this S. bovis COI mtDNA haplotype (K_Cow_Hap4) grouped with the one from Sô-Tchanhoué from Benin harboring a S. haematobium x S. bovis genetic pattern (Moné et al. 2015). The molecular analyses also showed an atypical ITS rDNA profile for this sample (profile 11), with a S. haematobium pattern for ITS1 and double peaks for both 5.8S and ITS2 (Table 3). These results show that in this area, introgressive hybridization exists between S. bovis and S. haematobium in cows as well. This is the first time that

such an introgressive hybridization has been identified in domestic bovines. Previous results showed introgression between *S. bovis* and *S. haematobium* in humans (Brémond et al. 1993; Huyse et al. 2009; Webster et al. 2013; Moné et al. 2015; Leger et al. 2016; Soentjens et al. 2016; Angora et al. 2019) and rodents (Catalano et al. 2018).

The third pattern corresponded to a new pattern for S. bovis, with both a typical early pattern for S. bovis accompanied by a nocturnal emergence peak at 7 pm. This pattern was obtained from 4 of the 11 B. forskalii snails (Kf4, Kf5, Kf9, and Kf10). This is the first time that a double peak in cercarial emergence is shown for S. bovis. Another animal schistosome, S. margrebowiei Le Roux, 1933 also showed two emergence peaks per day, with the first peak occurring 1 h after the onset of daylight, and the second peak 1 h after the onset of darkness (Raymond and Probert 1991). This is also the first time that a nocturnal cercarial emergence is shown for S. bovis. In another species of schistosome, S. mansoni, atypical chronotypes were found with nocturnal shedding. A three-peak cercarial emergence was found in southern Benin in both natural and experimental infections, with one peak in the early morning, a second around midday, and a third one at the beginning of the night (Ibikounlé et al. 2012). Another chronotype that displayed a strictly nocturnal emergence was shown in Oman and was related to the presence of reservoir hosts (rodents) in the transmission sites (Mouahid et al. 2012). However, this particular S. mansoni nocturnal chronotype was purely nocturnal and was not accompanied by diurnal cercarial emergence from the same individual snail. Several hypotheses could be proposed for the two peaks in diurnal-nocturnal cercarial emergence. First, the peaks may coincide with the behavior of the definitive host where cattle would go twice a day to drink and S. bovis would thus be adapted to this behavior. This explanation could also apply in the case of S. margrebowiei. Second, the peaks may be due to the presence of nocturnal reservoir hosts for S. bovis, like rodents, with nocturnal watering behaviors. This explanation would apply in the case of S. mansoni from Oman (Mouahid et al. 2012). Lastly, the peaks may have resulted in response to the presence of introgressive hybridization between S. bovis and a nocturnal population of S. bovis or another species of schistosome. It is difficult, however, to get a nocturnal pattern with two diurnal species of schistosomes (in our case, S. bovis and S. haematobium), even if they can hybridize. Pagès and Théron (1990) conducted crossing experiments between S. bovis from Spain and S. haematobium from Niger and the F1 hybrids harbored the same chronobiological pattern as the parental S. bovis, i.e., with an early peak. Unfortunately, these authors did not analyze the F2 generations. Furthermore, double infections were experimentally done with both S. bovis from Sardinia (Italy) and S. haematobium from Morocco and both species kept their own cercarial shedding rhythm in the doubly infected snails (Mouahid et al. 1991). This was also

🖄 Springer

the case for S. mansoni with both early and late diurnal patterns (Théron et al. 1997). The cercariae from 2 of the 4 snails (Kf5 and Kf9) used for cercarial emergence pattern were analyzed for molecular biology and showed S. bovis COI mtDNA haplotypes (K_Cow_Hap1 and K_Cow_Hap2). Both COI mtDNA haplotypes were found from different cercariae found in a single snail sample suggesting that, perhaps, 2 miracidia succeeded in developing in this one snail, leading to the double peak in cercarial emergence. However, as the other snail sample had only 1 COI mtDNA haplotype (K Cow Hap2) and yielded the same double peak pattern, this hypothesis is unsupported. The phylogenetic analysis showed that these COI mtDNA haplotypes (K_Cow_Hap1 and K_Cow_Hap2) grouped with the S. bovis haplotypes from other countries. The molecular analyses also showed typical ITS rDNA S. bovis profiles for these samples (profile 1).

The fourth chronotype, obtained from one B. globosus snail (Kg1), corresponded to a new chronotype for S. bovis, with both a typical S. haematobium late diurnal pattern accompanied by a nocturnal emergence peak at 7 pm. This is the first time that a midday to late diurnal peak together with a nocturnal peak was identified in S. bovis. This result shares similarities with the pattern with the previous one, with the presence of nocturnal cercarial shedding, but is different in that the early pattern in S. bovis was replaced by a late S. haematobium pattern. The molecular studies showed that this sample had the same COI mtDNA haplotype (K_Cow_Hap4) as the one linked to the second cercarial emergence pattern (S. haematobium midday to late diurnal pattern) and the phylogenetic analyses grouped this haplotype with the one from Sô-Tchanhoué, Benin. Furthermore, the ITS rDNA profile of all the cercariae in this sample (profile 10) showed a typical S. haematobium ITS1 marker together with a typical S. bovis ITS2 marker. Further studies on the behavior of the cattle and the presence of rodents as reservoir hosts are needed to explain this atypical pattern of cercarial emergence.

The results showed a polymorphism in egg morphology in both cows and schoolchildren, with 3 morphotypes. The first, the S. bovis morphotype, represented over 60% of the eggs in cow feces and no S. bovis morphotype was found in either the stool or urine of schoolchildren. Still, this result shows that 40% of the eggs recovered in the cows did not have a S. bovis morphotype and leads us to also suspect hybridization in cows between S. bovis and S. haematobium. With respect to egg morphometry, mean egg length of our S. bovis morphotype (247 µm) was similar to those recorded for S. bovis from cow feces (from 179 to 260 µm (Alves (1949); Pitchford (1965)). The second morphotype, S. haematobium, represented around 4% of the eggs in cow feces, compared to over 70% of the eggs in both stool and urine of the schoolchildren. This result showed that some eggs which harbored the S. haematobium morphotype were present in cows and that 30% of the eggs recovered in the schoolchildren lacked a S. haematobium

🖉 Springer

morphotype, leading us to also suspect hybridization between S. bovis and S. haematobium in both cows and humans. Mean egg lengths of our S. haematobium morphotypes (132 to 140 µm) were similar to those recorded for S. haematobium eggs (from 131 to 146 µm; see Pitchford (1965), Loker (1983), Richard-Lenoble et al. (1993), and Moné et al. (2012)). The third chronotype, an intermediate morphotype between S. bovis and S. haematobium, sustained the hybridization between S. bovis and S. haematobium, as we would have suspected from the cercarial emergence results. Even if the shape of the eggs produced is not necessarily a guide to the genetic constitution of the enclosed larvae, as stated by Wright and Ross (1980), these authors also suspected natural hybrids between S. haematobium and S. mattheei thanks to S. mattheei-like eggs in a human infection. Mean egg lengths for our intermediate morphotypes, between S. bovis and S. haematobium (148 to 223 µm), also suggest the presence of hybridization between these two species in both cows and humans. However, much smaller intermediate egg sizes were found in the hybrids we found between S. bovis and S. haematobium in Corsica, France (Moné et al. 2015). A higher variability in the morphometry of the eggs was observed in cow feces compared to schoolchild stool or urine and thus place the cow host as the host which provides the largest panel of eggs for schistosome transmission in the area.

In conclusion, our results showed, for the first time, (i) the presence of S. bovis in Benin, (ii) the presence of introgressive hybridization between S. bovis and S. haematobium in domestic cattle, and (iii) the presence of atypical chronobiological patterns in schistosomes from cattle, with typical S. haematobium shedding pattern, double-peak patterns and nocturnal patterns. They also confirmed that introgressive hybridization between S. bovis and S. haematobium exists in humans in Benin. Very little comparison is possible between the present findings and the literature, because until now, the researchers who worked on introgressive hybridization had never analyzed the cercarial emergence patterns from naturally-infected cows. Our results showed that the chronobiological life-history trait is useful for the detection of new hosts and also may reveal the possible presence of introgressive hybridization in schistosomes. They also showed that another life-history trait, the prepatent period, which is known to be short for Schistosoma bovis (21-22 days, Mouahid and Théron 1987) and long for Schistosoma haematobium (32 to 43 days, Ibikounlé et al. 2013) was intermediate for all our samples (26 to 32 days).

Our results, for the first time, place cattle as reservoir host for S. haematobium and S. bovis x S. haematobium. The proximity between humans and cattle in Kessounou, like in many villages in Africa, is favorable for the interactions between their schistosomes, S. haematobium for humans and S. bovis for cattle. The consequences of these results on the epidemiology of the disease, the transmission to humans, and the control of the disease

are very important. They show that the definitive host spectrum of *S. haematobium* may be opened to include cattle; further research should be done regarding the importance of rodents, especially in nocturnal schistosomiasis.

Our results are not congruent with two recently published papers which suggest that hybridization may occur quite infrequently between S. bovis and S. haematobium. Boon et al. (2019) found strong differentiation between S. bovis and S. haematobium in human populations of the Senegal River Basin, suggesting that there is minimal gene flow between them. However, in their paper, they found a miracidium harboring a double S. bovis and S. haematobium ITS rDNA profile from a neighborhood village which was genetically highly differentiated from the others. They also questioned about the previous findings by Huyse et al. (2009) and Webster et al. (2013) showing the existence of contemporary hybrid crosses between S. bovis and S. haematobium in humans in Senegal. Platt et al. (2019) studied the exomes of miracidia coming from humans in Niger and Zanzibar and their data did not reveal any evidence for contemporary hybridization. Instead, they showed ancient introgression of some S. bovis alleles into the genome of S. haematobium in Niger. We are aware that our data were genotyped with just two loci (COI mtDNA and ITS rDNA) and that they may provide little power to detect recent hybridization. However, unlike other recent results, our data showed that double S. bovis and S. haematobium ITS rDNA profiles were not rare in Kessounou village suggesting a recent hybridization, as the ITS rDNA marker can retain both parental copies for several generations before they are homogenized by concerted evolution (Sang et al. 1995). Our results show that, in some places in Benin, gene flow between S. bovis and S. haematobium is present.

Acknowledgments We would like to thank M. Marius CODJO, chief of Kessounou village and all the breeders and also M. Jean-Pierre TOKPO, Director of Kessounou school and all the schoolchildren for their participation to the study.

Authors' contributions Conceptualization: Hélène Moné, Gabriel Mouahid, Moudachirou Ibikounlé.

Material preparation, data collection and analysis: Boris A.E.S. Savassi, Gabriel Mouahid, Chrystelle Lasica, Samoussou-Dine K. Mahaman, Jean-François Allienne, Moudachirou Ibikounlé, Hélène Moné.

Funding acquisition: Gabriel Mouahid, André Garcia, David Courtin, Moudachirou Ibikounlé, Hélène Moné.

Investigation: Boris A.E.S. Savassi, Gabriel Mouahid, Chrystelle Lasica, Samoussou-Dine K. Mahaman, Jean-François Allienne, Moudachirou Ibikounlé, Hélène Moné.

Methodology: Hélène Moné, Gabriel Mouahid, Moudachirou Ibikounlé.

Project administration: Gabriel Mouahid, André Garcia, David Courtin, Moudachirou Ibikounlé, Hélène Moné.

Resources: Boris A.E.S. Savassi, Gabriel Mouahid, Chrystelle Lasica, Samoussou-Dine K. Mahaman, André Garcia, David Courtin, Jean-

François Allienne, Moudachirou Ibikounlé, Hélène Moné. Supervision: Gabriel Mouahid, Hélène Moné. Validation: Gabriel Mouahid, Hélène Moné.

Visualization: Gabriel Mouahid, Hélène Moné.

Writing-original draft: Boris A.E.S. Savassi, Gabriel Mouahid, Hélène Moné.

Writing-review & editing: Boris A.E.S. Savassi, Gabriel Mouahid, Chrystelle Lasica, André Garcia, David Courtin, Jean-François Allienne, Moudachirou Ibikounlé, Hélène Moné.

All authors read and approved the final manuscript.

Funding information This research was funded by the French Ministry of Foreign Affairs, the "Laboratoire Mixte International" (Mixed International Laboratory) on the project CONS-HELM « Infections helminthiques: traitements et conséquences sur la santé et le développement au Sud », and the French National Agency for Research (ANR) [grant ANR-17-CE12-0005-01] CHRONOGET and CNRS. BS is a student fellow from the SCAC (Service de Coopération et d'Action Culturelle), French Embassy in Benin; CL is a student fellow from the Occitanie Region, France.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval Ethical permission (No119, 17/07/2019/CER-ISBA) was obtained from the Ethic Committee of the « Institut des Sciences Biomédicales Appliquées, Faculté de Médecine, Université d'Abomey-Calavi, 01BP526, Cotonou, Benin.

Informed consent The Director of Kessounou school obtained informed consent from the parents of all the schoolchildren who participated to the study.

Data set availability Sequence data were deposited in the NCBI GenBank database under the accession numbers MT159589 to MT159601 for COI mtDNA and MT158872 to MT158882 for ITS rDNA.

References

- Abou M, Yabi I, Yolou I, Ogouwale E (2018) Caractérisation des systèmes de production sur les sites d'aménagements hydroagricoles dans le doublet Dangbo-Adjohoun au sud du Bénin. Int J Biol Chem Sci 12:462–478
- Alves W (1949) The eggs of Schistosoma bovis, S. mattheei and S. haematobium. J Helminthol 23:127–134
- Angora EK, Allienne J-F, Rey O, Menan H, Touré AO, Coulibaly JT, Raso G, Yavo W, N'Goran EK, Utzinger J, Balmer O, Boissier J (2019) High prevalence of *Schistosoma haematobium× Schistosoma bovis* hybrids in schoolchildren in Côte d'Ivoire. Parasitology 147:287–294
- Barber K, Mkoji G, Loker E (2000) PCR-RFLP analysis of the ITS2 region to identify *Schistosoma haematobium* and *S. bovis* from Kenya. Am J Trop Med Hyg 62:434–440
- Beltran S, Galinier R, Allienne J-F, Boissier J (2008) Cheap, rapid and efficient DNA extraction method to perform multilocus microsatellite genotyping on all *Schistosoma mansoni* stages. Mem Inst Oswaldo Cruz 103:501–503
- Boissier J, Grech-Angelini S, Webster BL, Allienne J-F, Huyse T, Mas-Coma S, Toulza E, Barré-Cardi H, Rollinson D, Kincaid-Smith J, Oleaga A, Galinier R, Foata J, Rognon A, Berry A, Mouahid G, Henneron R, Moné H, Noel H, Mitta G (2016) Outbreak of

urogenital schistosomiasis in Corsica (France): an epidemiological case study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(16)00175-4

- Boko PM, Ibikounlé M, Onzo-Aboki A, Tougoue J-J, Sissinto Y, Batcho W, Kindé-Gazard D, Kabore A (2016) Schistosomiasis and soil transmitted helminths distribution in Benin : a baseline prevalence survey in 30 districts. PLoS One 11:e0162798
- Boon NAM, Mbow M, Paredis L, Moris P, Sy I, Maes T, Webster BL, Sacko M, Volckaert FAM, Polman K, Huyse T (2019) No barrier breakdown between human and cattle schistosome species in the Senegal River Basin in the face of hybridisation. Int J Parasitol 49: 1039–1048
- Brémond P, Sellin B, Sellin E, Naméoua B, Labbo R, Théron A, Combes C (1993) Arguments for the modification of the genome (introgression) of the human parasite *Schistosoma haematobium* by genes from *S. bovis*, in Niger. C R Acad Sci Série III, Sciences de la vie 316:667–670
- Brown DS (1994) Freshwater snails of Africa and their medical importance, revised 2nd edition. Taylor & Francis Ltd, London, pp 608
- Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540– 552
- Catalano S, Sene M, Diouf ND, Fall CB, Borlase A, Leger E, Ba K, Webster JP (2018) Rodents as natural hosts of zoonotic Schistosoma species and hybrids: an epidemiological and evolutionary perspective from West Africa. J Infect Dis 218:429–433
- Chitsulo L, Engels D, Montresor A, Savioli L (2000) The global status of schistosomiasis and its control. Acta Trop 77:41–51
- De Bont J, Vercruysse J (1997) The epidemiology and control of cattle schistosomiasis. Parasitol Today 13:255–262
- De Bont J, Vercruysse J (1998) Schistosomiasis in cattle. Adv Parasitol 41:285–364
- Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10:8. https://doi.org/10.1186/1471-2148-10-8
- Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue): W465–W469. https://doi.org/10.1093/nar/gkn180
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797
- Engels D, Chitsulo L, Montresor A, Savioli L (2002) The global epidemiological situation of schistosomiasis and new approaches to control and research. Acta Trop 82:139–146
- Huyse T, Webster BL, Geldof S, Stothard R, Diaw OT, Polman K, Rollinson D (2009) Bidirectional introgressive hybridization between a cattle and human schistosome species. PLoS Pathog 5(9): e1000571
- Ibikounlé M, Moné H, Abou Y, Kinde-Gazard D, Sakiti NG, Mouahid G, Massougbodji A (2012) Premier cas de chronobiologie des émissions cercariennes de type infradien chez Schistosoma mansoni dans deux fovers du sud-Bénin. Int J Biol Chem Sci 6:1081–1089
- Ibikounlé M, Mouahid G, Mintsa-Nguema R, Sakiti N, Massougbodji A, Moné H (2013) Snail intermediate host/Schistosoma haematobium relationships from three transmission sites in Benin (West Africa). Parasitol Res 112:227–233
- Kéchemir N, Théron A (1997) Intraspecific variation in Schistosoma haematobium from Algeria. J Helminthol 71:29–33
- Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0. Mol Biol Evol 33:1870–1874
- Leger E, Garba A, Hamidou AA, Webster BL, Pennance T, Rollinson D, Webster JP (2016) Introgressed animal schistosomes *Schistosoma curassoni* and *S. bovis* naturally infecting humans. EID 22:2212
- Lockyer A, Olson P, Østergaard P, Rollinson D, Johnston D, Attwood S, Southgate V, Horak P, Snyder S, Le T (2003) The phylogeny of the

🖉 Springer

Schistosomatidae based on three genes with emphasis on the interrelationships of *Schistosoma* Weinland, 1858. Parasitology 126: 203–224

- Loker ES (1983) A comparative study of the life-histories of mammalian schistosomes. Parasitology 87:343–369
- Mintsa-Nguema R, Moné H, Ibikounlé M, Mengué-Ngou-Milama K, Kombila M, Mouahid G (2014) Cercarial emergence pattern of *Schistosoma haematobium* from Libreville, Gabon. Parasite 21:3. https://doi.org/10.1051/parasite/2014004
- Moné H, Holtfreter MC, Allienne J-F, Mintsa-Nguema R, Ibikounlé M, Boissier J, Berry A, Mitta G, Richter J, Mouahid G (2015) Introgressive hybridizations of *Schistosoma haematobium* by *Schistosoma bovis* at the origin of the first case report of schistosomiasis in Corsica (France, Europe). Parasitol Res 114:4127–4133
- Moné H, Ibikounlé M, Massougbodji A, Mouahid G (2010) Human schistosomiasis in the Economic Community of West African States; epidemiology and control. Adv Parasitol 71:33–91
- Moné H, Minguez S, Ibikounlé M, Allienne J-F, Massougbodji A, Mouahid G (2012) Natural interactions between S. haematobium and S. guineensis in the Republic of Benin. Sci World J 2012: 793420
- Moné H, Mouahid G, Morand S (1999) The distribution of Schistosoma bovis Sonsino, 1876 in relation to intermediate host mollusc-parasite relationships. Adv Parasitol 44:99–138
- Mouahid A, Théron A (1986) Schistosoma bovis: patterns of cercarial emergence from snails of the genera Bulinus and Planorbarius. Exp Parasitol 62:389–393
- Mouahid A, Théron A (1987) Schistosoma bovis: variability of cercarial production as related to the snail hosts: Bulinus truncatus, B. wrighti and Planorbarius metidjensis. Int J Parasitol 17:1431–1434
- Mouahid G, Idris MA, Verneau O, Théron A, Shaban MM, Moné H (2012) A new chronotype of *Schistosoma mansoni*: adaptive significance. Tropical Med Int Health 17:727–732
- Mouahid A, Moné H, Arru E, Chassé J-L, Théron A, Combes C (1987) Analyse comparative du rythme d'émission des cercaires de trois souches de Schistosoma bovis. Parassitologia 29:79–85
- Mouahid A, Moné H, Chaïb A, Théron A (1991) Cercarial shedding patterns of Schistosoma bovis and Schistosoma haematobium from single and mixed infections of Bulinus truncatus. J Helminthol 65: 8–14
- Mouchet F, Théron A, Brémond P, Sellin E, Sellin B (1992) Pattern of cercarial emergence of *Schistosoma curassoni* from Niger and comparison with three sympatric species of schistosomes. J Parasitol 78: 61–63
- Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York
- Onzo-Aboki A, Ibikounlé M, Boko PM, Savassi BS, Doritchamou J, Siko EJ, Daré A, Batcho W, Massougbodji A, Tougoue JJ (2019) Human Schistosomiasis in Benin: countrywide evidence of *Schistosoma haematobium* predominance. Acta Trop 191:185–197
- Pagés J, Théron A (1990) Analysis and comparison of cercarial emergence rhythms of *Schistosoma haematobium*, *S. intercalatum*, *S. bovis*, and their hybrid progeny. Int J Parasitol 20:193–197
- Pitchford R (1965) Differences in the egg morphology and certain biological characteristics of some African and Middle Eastern schistosomes, genus *Schistosoma*, with terminal-spined eggs. Bull World Health Organ 32:105–120
- Platt RN, McDew-White M, Le Clec'h W, Chevalier F, Allan F, Emery AM, Garba A, Hamidou AA, Ame SM, Webster JP, Rollinson D, Webster BL, Anderson TJC (2019) Ancient hybridization and adaptive introgression of an invadolysin gene in schistosome parasites. Mol Biol Evol 36:2127–2142
- Raymond K, Probert AJ (1991) The daily cercarial emission rhythm of Schistosoma margrebowiei with particular reference to dark period stimuli. J Helminthol 65:159–168

- Richard-Lenoble D, Kombila M, Duong TH, Gendrel D (1993) Schistosoma intercalatum schistosomiasis. A recent and forgotten schistosomiasis. Rev Praticien 43:432–439
- Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (*Paeonia*) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci U S A 92:6813– 6817
- Soentjens P, Cnops L, Huyse T, Yansouni C, De Vos D, Bottieau E, Clerinx J, Van Esbroeck M (2016) Diagnosis and clinical management of *Schistosoma haematobium–Schistosoma bovis* hybrid infection in a cluster of travelers returning from Mali. Clin Infect Dis 63: 1626–1629
- Théron A, Combes C (1988) Genetic analysis of cercarial emergence rhythms of *Schistosoma mansoni*. Behavior Gen 18:201–209
- Théron A, Mouahid G, Moné H (1997) Schistosoma mansoni : cercarial shedding patterns from a mixed infection of Biomphalaria glabrata with two (early and late) chronobiological variants. Parasitol Res 83: 356–358
- Van den Broeck F, Geldof S, Polman K, Volckaert F, Huyse T (2011) Optimal sample storage and extraction procotols for reliable

multilocus genotyping of the human parasite Schistosoma mansoni. Infect Genet Evol 11:1413–1418

- Webster BL, Southgate VR (2003) Compatibility of Schistosoma haematobium, S. intercalatum and their hybrids with Bulinus truncatus and B. forskalii. Parasitology 127:231–242
- Webster BL, Diaw OT, Seye MM, Webster JP, Rollinson D (2013) Introgressive hybridization of *Schistosoma haematobium* group species in Senegal: species barrier breakdown between ruminant and human schistosomes. PLoS Negl Trop Dis 7(4):e2110. https://doi. org/10.1371/journal.pntd.0002110
- Webster BL, Rollinson D, Stothard JR, Huyse T (2010) Rapid diagnostic multiplex PCR (RD-PCR) to discriminate Schistosoma haematobium and S. bovis. J Helminthol 84(107):114
- World Health Organization (2019) Schistosomiasis. Fact sheet 17 April 2019
- Wright C, Ross G (1980) Hybrids between Schistosoma haematobium and S. mattheei and their identification by isoelectric focusing of enzymes. Trans R Soc Trop Med Hyg 74:326–332

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Annexe 2 : Test de la PCR multiplex pour le sexage avec les couples d'amorces Scaff_02739 et Rhodospine 3_BIS

Lors du sexage pour le chronotype diurne, 6 plaques 96 puits ont été réalisées. Les deux dernières plaques ont montré que quatre puits vides avaient une bande à 200 pb correspondant à la Rhodopsine sur le gel d'électrophorèse, alors que les deux témoins négatifs et d'autres puits vides étaient sans bandes. Pour éliminer les diverses hypothèses de problème de contamination d'ADN entre les puits ou une mauvaise manipulation de la part de l'expérimentatrice, plusieurs PCR multiplex ont été refaites à partir d'une nouvelle dilution de l'ADN mère, des nouvelles solutions et mix, des nouvelles pipettes ainsi que par un autre expérimentateur. Les contrôles négatifs restant positifs, il a été décidé de remplacer le couple d'amorces Rhodopsine 3 par la Rhodopsine 3_BIS (cf méthode 4.1). Une comparaison a été effectuée entre les couples d'amorces de Rhodopsine en utilisant l'ADN de trois mâles et trois femelles connus et des témoins négatifs (Figure_A2).

<u>Figure A2</u> : Gel électrophorèse : comparaison des sexages réalisés avec les amorces Rhodopsine 3 et Rhodopsine 3_BIS. Les échantillons A7, B7 et C7 sont des mâles tandis que les échantillons A8, B8 et C8 sont des femelles. Le T- R est le témoin négatif du sexage réalisé avec les amorces Scaff_02739/Rhodopsine 3. Le T- B est le témoin négatif du sexage réalisé avec les amorces Scaff_02739/Rhodopsine 3_BIS. Les échantillons dans un carré blanc sont des sexages réalisés avec les amorces Scaff_02739/Rhodopsine 3_BIS.

Pour le sexage réalisé avec les amorces Scaff_02739/Rhodopsine 3, le diagnostic des sexes est correct. Toutefois le témoin négatif (T-R) présente une bande à 200 pb et est donc diagnostiqué comme un mâle. Bien que l'on ait un biais de mâle avec les amorces Scaff_02739/Rhodopsine 3, le résultat des sexages du chronotype diurne n'est pas remis en cause. Pour le sexage réalisé avec les amorces Scaff_02739/Rhodopsine 3_BIS, le diagnostic des sexes est correct. De plus, le témoin négatif (T-B) est bien négatif. De ce fait, le couple Scaff_02739/Rhodopsine 3_BIS devient le nouveau couple d'amorces pour réaliser le sexage en routine.

Annexe 3 : Répartition des profils chronobiologiques des générations F0, F1 et F2 des croisements intraspécifiques

<u>Figure A3</u> : Joyplots des profils chronobiologiques des générations F0, F1 et F2 des croisements intraspécifiques pour le QTL mapping. Le croisement A est à gauche et le croisement B à droite. L'aire blanche sous la courbe correspond à une émission diurne des cercaires. L'aire grise sous la courbe correspond à une émission nocturne des cercaires.

Annexe 4 : Liste des gènes candidats issus du QTL mapping des croisements intraspécifiques

Chr.	Gene ID	GFF annotation	HHsearch annotation
1	Smp_345740	Oligomycin resistance ATP-dependent permease Yor1	ABC_membrane_2
1	Smp_083740	EF-hand domain	Myosin Essential Chain {Bay scallop (<i>Aequipecten irradians</i>) [TaxId: 31199]}
1	Smp_319580	NA	Maltose transport protein MalK, N-terminal domain { <i>Archaeon Thermococcus litoralis</i> [TaxId: 2265]}
1	Smp_319570	NA	3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHP synthase, AroG) { <i>Escherichia</i> <i>coli</i> , phenylalanine-regulated isozyme [TaxId: 562]}
1	Smp_083730	NA	NA
1	Smp_083720	Mitochondrial substrate/solute carrier	ADP,ATP carrier protein {Cow (<i>Bos taurus</i>), heart isoform t1 [TaxId: 9913]}
1	Smp_083710	Helicase, C-terminal	PROBABLE ATP-DEPENDENT RNA HELICASE DDX58
1	Smp_167590	ASCH domain	Hypothetical protein TTHA0113 { <i>Thermus thermophilus</i> [TaxId: 274]}
1	Smp_083680	Ribosome biogenesis protein Nop53/GLTSCR2	Nop53
1	Smp_083650	Cys/Met metabolism, pyridoxal phosphate- dependent enzyme	Methionine gamma-lyase, MGL { <i>Pseudomonas</i> <i>putida</i> [TaxId: 303]}
1	Smp_337600	NA	NA
1	Smp_246990	Transcription factor CBF/NF-Y/archaeal histone domain	Histone H3.1, Histone H4, Histone
1	Smp_196840	Fibrillar collagen, C-terminal	Collagen alpha-1(I) chain, Collagen alpha-2(I)
1	Smp_103830	Zinc finger, HIT-type	Vacuolar protein sorting-associated protein 72
1	Smp_180140	G protein-coupled receptor, rhodopsin-like	P2Y purinoceptor 1, Rubredoxin
1	Smp_319540	NA	NA
1	Smp_158520	Diacylglycerol acyltransferase	DAGAT
1	Smp_344950	Diacylglycerol acyltransferase	DAGAT
1	Smp_210570	JAB1/MPN/MOV34 metalloenzyme domain	40S ribosomal protein SA, 40S
1	Smp_212850	LSM domain, eukaryotic/archaea-type	D1 core SNRNP protein {Human (Homo sapiens) [TaxId: 9606]}
1	Smp_212840	PQ-loop repeat	Bidirectional sugar transporter SWEET2b (E.C.1-215)
1	Smp_158490	Zinc finger C2H2-type	Zinc finger protein 297b {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_158480	AMP-dependent synthetase/ligase	Acetyl-CoA synthetase {Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]}

Anne	xe 4		
1	Smp_158470	NA	DUF3896
1	Smp_158460	SH3 domain	Hypothetical protein YFR024c {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}
1	Smp_067140	Small GTPase	RhoA {Human (Homo sapiens) [TaxId: 9606]}
1	Smp_158450	BTB/POZ domain	S-phase kinase-associated protein 1, F-box/LRR- repeat
1	Smp_159070	NA	Herpes_LMP1
1	Smp_159060	SRCR domain	Lysyl oxidase homolog 2 (E.C.1.4.3.13)
1	Smp_159050	Thrombospondin type-1 (TSP1) repeat	Semaphorin-6A
1	Smp_319520	NA	RIFIN
1	Smp_068120	Tetratricopeptide-like helical domain superfamily	FKBP51, C-terminal domain {Monkey (Saimiri boliviensis) [TaxId: 27679]}
1	Smp_068110	DNA double-strand break repair protein Mre11	Mre11
1	Smp_068100	Micro-fibrillar-associated protein 1, C- terminal	Pre-mRNA-processing-splicing factor 8, Thioredoxin-like protein
1	Smp_337420	Ribosomal protein S23, mitochondrial	MRP-S23
1	Smp_068070	Nucleoside phosphorylase superfamily	MTA/SAH nucleosidase (E.C.3.2.2.16,3.2.2.9)
1	Smp_068060	Protein kinase domain	Serine/threonine protein kinase TAO2 {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}
1	Smp_159020	NA	Otopetrin
1	Smp_210820	GPCR kinase	Beta-adrenergic receptor kinase 1 (E.C.2.7.11.15)
1	Smp_210810	Arsenical pump ATPase, ArsA/GET3	Arsenite-translocating ATPase ArsA { <i>Escherichia coli</i> [TaxId: 562]}
1	Smp_319500	Small subunit of serine palmitoyltransferase- like	SPT_ssu-like
1	Smp_092770	Clathrin/coatomer adaptor, adaptin-like, N- terminal	ADP-RIBOSYLATION FACTOR 1, COATOMER SUBUNIT
1	Smp_092780	snRNA-activating protein complex, subunit 3	zf-SNAP50_C
1	Smp_060480	C2 domain	Copine
1	Smp_060490	Zinc finger, RanBP2-type	E3 ubiquitin-protein ligase RING2 (E.C.6.3.2)
1	Smp_154620	WD40 repeat	DUF1513
1	Smp_154640	High mobility group box domain	Transcription activator BRG1 (E.C.3.6.4), AT-rich
1	Smp_154650	FCP1 homology domain	Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1, NRAMP1 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_319490	NA	Nucleoporin p54
1	Smp_332520	RIB43A	Tubulin beta, Tubulin alpha, PACRG
1	Smp_060560	Leucine-rich repeat	Ribonuclease inhibitor {Human (<i>Homo sapiens</i>) [TaxId: 9606]}

Anne	AC 4		1
1	Smp_060570	Protein of unknown function DUF4735	DUF4735
1	Smp_154670	Glycosyl transferase, family 14	beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102)
1	Smp_154680	Glycosyl transferase, family 14	beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102)
1	Smp_346560	NA	NA
1	Smp_060620	Pyrimidine 5'-nucleotidase, eukaryotic	Cytosolic 5'-nucleotidase III {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
1	Smp_332510	Pyrimidine 5'-nucleotidase, eukaryotic	Cytosolic 5'-nucleotidase III {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
1	Smp_154690	Ribosomal protein L16	28S ribosomal protein S2, mitochondrial
1	Smp_319480	NA	NA
1	Smp_332500	DIX domain	Axin 1 protein
1	Smp_187360	Glycosyl transferase, family 14	beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102)
1	Smp_142550	NA	Intimin adherence protein
1	Smp_142560	Homeobox domain	LIM domain-binding protein 1, LIM/homeobox
1	Smp_037780	NA	Lipase L1 { <i>Bacillus stearothermophilus</i> [TaxId: 1422]}
1	Smp_142600	High mobility group box domain	Lymphoid enhancer-binding factor, LEF1 {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
1	Smp_310870	Protein kinase domain	Cell division protein kinase 7, CDK7 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_201000	NA	NA
1	Smp_319470	NA	NA
1	Smp_142620	Protein kinase domain	G protein-coupled receptor kinase 6
1	Smp_241440	NA	NA
1	Smp_343540	I/LWEQ domain	I_LWEQ
1	Smp_142640	YjeF N-terminal domain	Hypothetical protein YNL200c (YNU0_YEAST) {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}
1	Smp_142650	PDZ domain	Neurabin-i {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_142670	Intraflagellar transport complex B protein 46	IFT46_B_C
1	Smp_037900	Beta-lactamase-related	D-Amino acid amidase DaaA { <i>Ochrobactrum anthropi</i> [TaxId: 529]}
1	Smp_037910	Succinate dehydrogenase [ubiquinone] cytochrome b small subunit, CybS	CybS
1	Smp_084620	Transcriptional coactivator p15 (PC4)	Transcriptional coactivator PC4 C-terminal domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_084610	UBX domain	UBX domain-containing protein 7 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}

Annexe 4	1
----------	---

Anne	xe 4		
1	Smp_084600	Sugar phosphate transporter	Glycerol-3-phosphate transporter { <i>Escherichia</i> <i>coli</i> [Taxld: 562]}
1	Smp_168000	Major facilitator superfamily	Monocarboxylate transporter 2
1	Smp_319460	NA	NA
1	Smp_319450	NA	NA
1	Smp_319440	NA	NA
1	Smp_319430	NA	NA
1	Smp_319420	NA	NA
1	Smp_141630	Armadillo-like helical	Splicing factor 3B subunit 5
1	Smp_319410	Dynein light chain, type 1/2	Dynein light chain 1 (DLC1) {Fruit fly (<i>Drosophila</i> <i>melanogaster</i>) [TaxId: 7227]}
1	Smp_141640	NA	NA
1	Smp_201030	Dynein light chain, type 1/2	Dynein light chain 1 (DLC1) {Fruit fly (<i>Drosophila melanogaster</i>) [TaxId: 7227]}
1	Smp_036180	NA	NA
1	Smp_141650	Resistance to inhibitors of cholinesterase protein 3	RIC3
1	Smp_141660	Voltage-dependent calcium channel, L-type, beta subunit	Guanylate kinase-like domain of the L-type calcium channel {Rabbit (<i>Oryctolagus cuniculus</i>) [TaxId: 9986]}
1	Smp_036220	Histone H2B	Histone H2B {Chicken (<i>Gallus gallus</i>), erythrocytes [TaxId: 9031]}
1	Smp_343460	NA	Ankyrin-2, Spectrin beta chain
1	Smp_141680	FAS1 domain	Periostin
1	Smp_141690	NA	NA
1	Smp_036250	PRELI/MSF1 domain	LTP1, LTP1BP
1	Smp_036270	RNA recognition motif domain	Nucleolysin TIA-1 isoform p40
1	Smp_141710	NA	Rod_C
1	Smp_343470	Short-chain dehydrogenase/reductase SDR	17-beta-hydroxysteroid dehydrogenase type XI {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_301800	Cadherin-like	Protocadherin-10
1	Smp_092850	SprT-like	SprT-like domain-containing protein Spartan
1	Smp_104980	NA	PHD finger protein 7 (NYD-SP6) {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
1	Smp_180800	Learning associated protein 18-like	Nucleolar GTP-binding protein 2, 60S
1	Smp_180810	Pancreatic trypsin inhibitor Kunitz domain	CARBOXYPEPTIDASE A4 (E.C.3.4.17), CARBOXYPEPTIDASE INHIBITOR
1	Smp_105020	Immunoglobulin subtype 2	Titin
1	Smp_301790	NA	NA
1	Smp_105040	Endonuclease/exonuclease/phosphatase	2',5'-phosphodiesterase 12 (E.C.3.1.4,3.1.13.4)
1	Smp_315760	NA	Nucleoid-associated protein Rv3716c

Anne	xe 4		
1	Smp_347990	DNA/RNA non-specific endonuclease	Nuclease EXOG, mitochondrial/DNA (5'- D(*CP*GP*GP*GP*AP*TP*AP*TP*CP*CP*CP*G)- 3') Complex
1	Smp_105090	Nuclear hormone receptor, ligand-binding domain	Hepatocyte nuclear factor 4-alpha, Nuclear
1	Smp_105100	Ribonuclease kappa	ATPase H+-transporting V1 subunit A
1	Smp_212230	Proteasome component (PCI) domain	COP9 signalosome complex subunit 1
1	Smp_332490	Alpha carbonic anhydrase domain	Carbonic anhydrase {Human (<i>Homo sapiens</i>), erythrocytes, isozyme I [TaxId: 9606]}
1	Smp_205000	NA	NA
1	Smp_243790	NA	Parathyroid hormone/parathyroid hormone- related peptide receptor
1	Smp_094890	Rho GTPase-activating protein domain	Beta-chimaerin, C-terminal domain {Human (Homo sapiens) [TaxId: 9606]}
1	Smp_031920	Luc7-related	U1 small nuclear ribonucleoprotein 70
1	Smp_139470	NA	NA
1	Smp_301780	Protein kinase domain	Dual specificity mitogen-activated protein kinase kinase 1, Mek1 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_031950	Programmed cell death protein 10	Programmed cell death protein 10
1	Smp_139480	Protein kinase domain	ephb2 receptor tyrosine kinase {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
1	Smp_031990	Amidase	Glutamyl-tRNA(Gln) amidotransferase subunit A {Thermotoga maritima [TaxId: 2336]}
1	Smp_139500	NA	MYEOV2
1	Smp_266940	NA	DUF3967
1	Smp_032000	Peptidase C14, p20 domain	Apaf-1 related killer DARK, Caspase
1	Smp_343320	G-patch domain	Pre-mRNA-splicing factor 8, Pre-mRNA-splicing factor
1	Smp_139520	SH3 domain	Hypothetical protein FLJ21935
1	Smp_032060	RNA recognition motif domain	Pre-mRNA branch site protein p14 {Human (Homo sapiens) [TaxId: 9606]}
1	Smp_139530	p53 tumour suppressor family	p53 tumor suppressor, DNA-binding domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_139540	NA	NA
1	Smp_316850	G protein-coupled receptor, rhodopsin-like	C-C chemokine receptor type 2
1	Smp_212830	NA	DX
1	Smp_032120	NA	Ribonucleases P/MRP protein subunit POP6
1	Smp_139580	NA	Ribonucleases P/MRP protein subunit POP6
1	Smp_139590	NA	NPL4
1	Smp_032150	Snf7 family	Charged multivesicular body protein 3
1	Smp_139600	Zinc finger C2H2-type	Zinc finger protein 568/DNA Complex

Anne	xe 4		
1	Smp_309610	Protein Lines, N-terminal	LINES_N
1	Smp_032180	Small GTP-binding protein domain	ADP-ribosylation factor {Human (<i>Homo sapiens</i>), ARF6 [TaxId: 9606]}
1	Smp_319390	Protein Lines, N-terminal	LINES_N
1	Smp_139620	PDZ domain	Glutamate receptor interacting protein 2, GRIP2 (KIAA1719) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_319380	NA	NA
1	Smp_213160	Protein kinase domain	WaaY
1	Smp_213170	NA	СТ398
1	Smp_032230	Tetratricopeptide-like helical domain superfamily	Mitochondria fission protein Fis1 {Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]}
1	Smp_319370	Tetratricopeptide-like helical domain superfamily	Mitochondria fission protein Fis1 {Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]}
1	Smp_032240	MOZART2 family	MOZART2
1	Smp_032250	Beta-lactamase-related	Carboxylesterase (E.C.3.1.1.1)
1	Smp_032260	Ribosomal protein L15e	uL2, uS2, uL15, eS26, uL3
1	Smp_009650	Peptidase M16, zinc-binding site	Cytochrome b-c1 complex subunit 1
1	Smp_204580	G protein-coupled receptor, rhodopsin-like	Neurotensin receptor type 1, Neurotensin
1	Smp_009630	Homeobox domain	SIX1_SD
1	Smp_127240	Homeobox domain	Maltose-binding periplasmic protein, Homeobox protein
1	Smp_315890	JmjC domain	PHD FINGER PROTEIN 8
1	Smp_009600	Protein kinase domain	Aurora-related kinase 1 (aurora-2) {Human (Homo sapiens) [TaxId: 9606]}
1	Smp_127220	NA	Corticotropin-releasing factor receptor 1
1	Smp_004990	Chaperonin TCP-1, conserved site	T-COMPLEX PROTEIN 1 SUBUNIT ALPHA
1	Smp_005000	PH-like domain superfamily	AP-2 complex subunit alpha-2, AP-2
1	Smp_004980	Ribosomal protein L20	28S ribosomal protein S2, mitochondrial
1	Smp_213790	Papain-like cysteine peptidase superfamily	Cysteine protease ATG4A {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_124820	Importin-beta, N-terminal domain	Chromosome region maintenance 1 (CRM1)
1	Smp_004940	Ribosomal protein L29/L35	Ribosomal protein L8, putative, Uncharacterized
1	Smp_340120	Malectin domain	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3B (E.C.2.4.99.18)
1	Smp_005070	DnaJ domain	Large T antigen, the N-terminal J domain {Simian virus 40, Sv40 [TaxId: 10633]}
1	Smp_005080	SAM-dependent methyltransferase RsmB/NOP2-type	60S ribosomal protein L13-A, 60S
1	Smp_124840	Zinc finger, UBR-type	Histone H3.2, Histone H4, Histone
1	Smp_319330	SAM-dependent methyltransferase RsmB/NOP2-type	60S ribosomal protein L13-A, 60S
1	Smp_124850	Protein kinase domain	Bruton's Tyrosine Kinase (E.C.2.7.10.2)

1	Smp_337760	Selenoprotein F/M	GLI-Krueppel family member HKR3 {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
1	Smp_124860	Methyltransferase Ppm1/Ppm2/Tcmp	Leucine carboxy methyltransferase Ppm1 {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}
1	Smp_005140	Thrombospondin type-1 (TSP1) repeat	Vitelline membrane outer protein-I (VMO-I) {Hen (<i>Gallus gallus</i>) [TaxId: 9031]}
1	Smp_005160	Zinc finger, CCCH-type	Muscleblind-like protein 1/RNA Complex
1	Smp_005180	Transcription factor, GTP-binding domain	uL2, uL3, uL4, 60S ribosomal
1	Smp_124870	NA	Activity-regulated cytoskeleton associated protein 1
1	Smp_319320	Acylphosphatase-like domain	Acylphosphatase 2 (Cg18505) {Fruit fly (<i>Drosophila melanogaster</i>) [TaxId: 7227]}
1	Smp_005190	Protein kinase domain	STE20-like serine/threonine-protein kinase, SLK {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_005210	Histone deacetylase family	METASTASIS-ASSOCIATED PROTEIN MTA1, HISTONE DEACETYLASE
1	Smp_093440	Ribosomal protein S5/S7	Ribosomal protein S7 { <i>Archaeon Pyrococcus</i> <i>horikoshii</i> [Taxld: 53953]}
1	Smp_173360	NA	DUF2613
1	Smp_124890	NA	DUF2613
1	Smp_005230	EF-hand domain	Calcium-dependent protein kinase sk5 CLD {Soybean (Glycine max) [TaxId: 3847]}
1	Smp_342080	Stonin homology	Second domain of Mu2 adaptin subunit (ap50) of ap2 adaptor {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}
1	Smp_124920	Endoplasmic reticulum oxidoreductin 1	ERO1-like protein alpha (E.C.1.8.4)
1	Smp_028170	NA	zf_C2H2_10
1	Smp_246940	LIS1 homology motif	LisH_2
1	Smp_028140	FCH domain	Growth arrest-specific protein 7
1	Smp_028130	Protein FAM78	Uncharacterized protein PA3332 { <i>Pseudomonas</i> <i>aeruginosa</i> [TaxId: 287]}
1	Smp_028120	Dynamin, GTPase domain	Dynamin-like 120 kDa protein, mitochondrial,OPA1
1	Smp_137410	EF-hand domain pair	M-CALPAIN LARGE AND SMALL SUBUNITS
1	Smp_028100	Ubiquitin-conjugating enzyme E2	Ubiquitin conjugating enzyme, UBC {Nematode (<i>Caenorhabditis elegans</i>), E2-19 kDa [TaxId: 6239]}
1	Smp_137400	NA	Brain-specific angiogenesis inhibitor 1-associated protein
1	Smp_137390	Histone RNA stem-loop-binding protein SLBP1/SLBP2	SLBP/RNA Complex

1	Smp_028080	Aminotransferase, class I/classII	5-aminolevulinate synthase { <i>Rhodobacter</i> <i>capsulatus</i> [TaxId: 1061]}
1	Smp_028070	Bicaudal-D protein	BicD
1	Smp_028060	Surfeit locus 6	SURF6
1	Smp_028050	NA	NA
1	Smp_028030	Rho GTPase-activating protein domain	SLIT-ROBO Rho GTPase-activating protein 2
1	Smp_137380	Forkhead-associated (FHA) domain	Pre-mRNA-processing-splicing factor 8, 116 kDa
1	Smp_317370	NA	NA
1	Smp_118040	G protein-coupled receptor, rhodopsin-like	Chimera of Proteinase-activated receptor 1
1	Smp_137360	NA	Collectrin
1	Smp_027990	Homeobox domain	Homeobox protein hox-a9 {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
1	Smp_027970	Helicase, C-terminal	RNA-binding motif protein, X-linked 2
1	Smp_137330	RNA recognition motif domain	L-serine dehydratase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_137320	G protein-coupled receptor, rhodopsin-like	Srg
1	Smp_027940	G protein-coupled receptor, rhodopsin-like	ADENOSINE RECEPTOR A2A
1	Smp_137310	G protein-coupled receptor, rhodopsin-like	7TM_GPCR_Srw
1	Smp_137300	G protein-coupled receptor, rhodopsin-like	7TM_GPCR_Srw
1	Smp_319310	NA	7TM_GPCR_Srab
1	Smp_178420	GPCR, rhodopsin-like, 7TM	ADENOSINE RECEPTOR A2A
1	Smp_168080	RmIC-like cupin domain superfamily	Hypothetical protein MJ0764 { <i>Archaeon</i> <i>Methanococcus jannaschii</i> [TaxId: 2190]}
1	Smp_332480	TNFR/NGFR cysteine-rich region	Tumor necrosis factor ligand superfamily
1	Smp_180150	Rho GTPase-activating protein domain	Beta-chimaerin, C-terminal domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_180160	Rho GTPase-activating protein domain	Graf {Chicken (<i>Gallus gallus</i>) [TaxId: 9031]}
1	Smp_180170	Ubiquitin-conjugating enzyme E2	Ubiquitin conjugating enzyme, UBC {Human(<i>Homo sapiens</i>), E2 S [TaxId: 9606]}
1	Smp_175680	Tudor domain	Survival motor neuron protein 1, smn {Human (Homo sapiens) [TaxId: 9606]}
1	Smp_213980	K Homology domain	neuro-oncological ventral antigen 1/RNA Complex
1	Smp_213990	NA	Membrane-associated protein slr1513
1	Smp_124470	Adenylyl cyclase class-3/4/guanylyl cyclase	Soluble guanylyl cyclase alpha-1 subunit
1	Smp_097460	Adenylyl cyclase class-3/4/guanylyl cyclase	Soluble guanylyl cyclase alpha-1 subunit

Anne	exe 4		
1	Smp_175710	Helix-turn-helix motif	Homeobox protein hox-b13 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_097490	P25-alpha	Tubulin polymerization-promoting protein family member
1	Smp_097500	F-box domain	S-phase kinase-associated protein 1/F-box only
1	Smp_319300	NA	NA
1	Smp_319290	NA	Corona_S2
1	Smp_332470	B-box-type zinc finger	E3 UBIQUITIN/ISG15 LIGASE TRIM25 (E.C.6.3.2.19
1	Smp_132830	Helix-loop-helix DNA-binding domain superfamily	Pho4 B/HLH domain {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}
1	Smp_319280	NA	NA
1	Smp_019490	Retrieval of early ER protein Rer1	Rer1
1	Smp_132810	Myc-type, basic helix-loop-helix (bHLH) domain	Myc proto-oncogene protein {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_132800	Myc-type, basic helix-loop-helix (bHLH) domain	Aryl hydrocarbon receptor nuclear translocator- like
1	Smp_019460	Myc-type, basic helix-loop-helix (bHLH) domain	SREBP-1a {Human (Homo sapiens) [TaxId: 9606]}
1	Smp_132790	Myc-type, basic helix-loop-helix (bHLH) domain	Transcription factor HES-1
1	Smp_332460	Helix-loop-helix DNA-binding domain superfamily	Usf B/HLH domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_019440	SUI1 domain	Eukaryotic translation initiation factor eIF-1 (SUI1) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_019430	Matrin/U1-C-like, C2H2-type zinc finger	RNA binding protein ZFa
1	Smp_331670	Uncharacterised protein family SERF, N- terminal	4F5
1	Smp_301670	Zinc finger, RING-type	E3 ubiquitin-protein ligase parkin (E.C.2.3.2.31)
1	Smp_019380	W2 domain	Translation initiation factor eIF-2B subunit
1	Smp_132750	G-protein alpha subunit, group Q	G-protein alpha subunit Galpha7
1	Smp_019350	NA	ALPHA-BUNGAROTOXIN ISOFORM V31, ALPHA- BUNGAROTOXIN ISOFORM
1	Smp_019340	Tetraspanin	Tetraspanin
1	Smp_132740	Cytochrome b5-like heme/steroid binding domain	FA_desaturase
1	Smp_019310	Dynein light chain, type 1/2	Dynein light chain 1 (DLC1) {Fruit fly (Drosophila melanogaster) [TaxId: 7227]}
1	Smp_319270	Dynein light chain, type 1/2	Dynein light chain 1 (DLC1) {Fruit fly (<i>Drosophila melanogaster</i>) [TaxId: 7227]}
1	Smp_319260	Dynein light chain, type 1/2	Dynein light chain 1 (DLC1) {Fruit fly (<i>Drosophila melanogaster</i>) [TaxId: 7227]}

Smp_132730 G protein-coupled receptor, rhodopsin-like

1

Neurotensin receptor type 1,Endolysin,NEUROTENSIN RECEPTOR

Anne	xe 4		
1	Smp_319250	NA	Engineered transmembrane domain variant
1	Smp_019280	Cyclic nucleotide-binding domain	Protein kinase, cAMP-dependent, catalytic, alpha
1	Smp_019260	Ankyrin repeat	Myotrophin {Rat (<i>Rattus norvegicus</i>) [Taxld: 10116]}
1	Smp_342710	Dual specificity phosphatase, catalytic domain	31 6DT1_A DNA dC->dU-editing enzy 98.1 1.6E- 08 1.4E-13 100.3 0.0 261 353-651 171-505 (507)
1	Smp_132700	Immunoglobulin subtype 2	CARCINOEMBRYONIC ANTIGEN
1	Smp_019190	Pre-mRNA-splicing factor SLU7 domain	Protein mago nashi homolog 2
1	Smp_132690	AAA ATPase domain	RuvB-like 2 (E.C.3.6.4.12)
1	Smp_019170	ARID DNA-binding domain	Lysine-specific demethylase 5A (E.C.1.14.11)
1	Smp_132670	EF-hand domain	Myosin Essential Chain {Bay scallop (<i>Aequipecten irradians</i>) [TaxId: 31199]}
1	Smp_132660	Dbl homology (DH) domain	FYVE, RhoGEF and PH domain-containing
1	Smp_201130	Tumor protein p53-inducible protein 11	p53-inducible11
1	Smp_132640	CDP-alcohol phosphatidyltransferase	CTP L-myo-inositol-1-phosphate cytidylyltransferase/CDP-L-myo-inositol myo- inositolphosphotransferase
1	Smp_019130	Pre-mRNA cleavage complex subunit Clp1, C- terminal	Protein clpf-1
1	Smp_301660	NA	NA
1	Smp_132620	Dynamin superfamily	Mitofusin-2,cDNA FLJ57997, highly similar to
1	Smp_019100	Dynamin superfamily	EH DOMAIN-CONTAINING PROTEIN-2
1	Smp_132610	NA	NA
1	Smp_000020	Beta-N-acetylglucosaminidase	Protein O-GlcNAcase (E.C.3.2.1.169,3.2.1)
1	Smp_000030	Armadillo-type fold	RPN1_RPN2_N
1	Smp_000040	Kinesin light chain	Kinesin light chain 2, C-Jun-amino-terminal
1	Smp_000050	Ankyrin repeat	nvTRPM2 channel
1	Smp_000070	Phospholipid/glycerol acyltransferase	1-acyl-sn-glycerol-3-phosphate acyltransferase (E.C.2.3.1.51)
1	Smp_000075	Homeobox domain	Engrailed Homeodomain { <i>Drosophila melanogaster</i> [TaxId: 7227]}
1	Smp_319230	Target SNARE coiled-coil homology domain	Syntaxin-1A
1	Smp_000080	Target SNARE coiled-coil homology domain	Syntaxin-1A
1	Smp_335570	Sodium channel and clathrin linker 1	СССАР
1	Smp_319220	LSM domain, eukaryotic/archaea-type	U6 snRNA-associated Sm-like protein LSm2
1	Smp_346820	Sodium channel and clathrin linker 1	СССАР
1	Smp_127580	DIS3-like exonuclease 2, C-terminal	Dis3L2/RNA Complex

Anne	xe 4		
1	Smp_319210	Ribonuclease II/R	Dis3L2/RNA Complex
1	Smp_248110	SANT/Myb domain	DNA-binding protein reb1/DNA Complex
1	Smp_010230	G-protein, beta subunit	beta1-subunit of the signal-transducing G protein heterotrimer {Cow (<i>Bos taurus</i>) [TaxId: 9913]}
1	Smp_127600	Cyclin-like	Cyclin-dependent protein kinase PHO85 (E.C.2.7.11.22)
1	Smp_010250	Dbl homology (DH) domain	Triple functional domain protein TRIO {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_010260	ХРА	General transcription and DNA repair
1	Smp_248120	NA	HAUS4
1	Smp_010280	Phospholipase/carboxylesterase/thioesterase	Putative serine hydrolase Ydr428c {Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]}
1	Smp_127450	IQ motif, EF-hand binding site	MYOSIN 2 HEAVY CHAIN STRIATED
1	Smp_127440	Centrosome-associated protein 350	NA
1	Smp_127430	NA	Probable metalloprotease ARX1, rRNA- processing protein
1	Smp_315790	CBS domain	5'-AMP-activated protein kinase catalytic subunit
1	Smp_127380	HAP1, N-terminal	HAP1_N
1	Smp_009830	Translocon-associated protein subunit beta	TRAP_beta
1	Smp_127370	Glycosyl transferase, family 14	beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102)
1	Smp_009810	NA	beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102)
1	Smp_319200	C-type lectin fold	NK cell receptor {Mouse (<i>Mus musculus</i>), ly49-c [Taxld: 10090]}
1	Smp_127360	NA	NA
1	Smp_009800	Protein kinase domain	Serine/threonine-protein kinase Nek2 {Human (<i>Homo sapiens</i>) [Taxld: 9606]}
1	Smp_337140	NADH-quinone oxidoreductase, subunit D	NADH-ubiquinone oxidoreductase chain 3 (E.C.1.6.5.3)
1	Smp_301620	14-3-3 protein	zeta isoform {Cow (<i>Bos taurus</i>) [TaxId: 9913]}
1	Smp_301610	NA	Neutrophil cytosol factor 4
1	Smp_009760	14-3-3 protein	zeta isoform {Cow (<i>Bos taurus</i>) [TaxId: 9913]}
1	Smp_127310	G protein-coupled receptor, rhodopsin-like	Chimera of Proteinase-activated receptor 1
1	Smp_121460	NA	NA
1	Smp_341860	50S ribosomal protein L30e-like	Ribosome
1	Smp_121430	Proteasome, subunit alpha/beta	Proteasome beta subunit (catalytic) {Cow (<i>Bos taurus</i>) [TaxId: 9913]}
1	Smp_121420	Myristoyl-CoA	GLYCYLPEPTIDE N- TETRADECANOYLTRANSFERASE (E.C.2.3.1.97)
1	Smp_194430	PRC-barrel-like superfamily	RIKEN cDNA 2310057j16 protein (KIAA1543) {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}

Anne	XE 4	i de la constante d	
1	Smp_332450	Equilibrative nucleoside transporter	Equilibrative nucleoside transporter 1
1	Smp_337200	Putative homeodomain transcription factor 1/2	NA
1	Smp_173840	AAA ATPase domain	Proteasome subunit alpha type-6 (E.C.3.4.25.1)
1	Smp_094320	Zinc finger, CCCH-type	zf-C3H1
1	Smp_315830	NA	Muscarinic acetylcholine receptor M5, T4
1	Smp_102690	PAZ domain	Argonaute2/RNA Complex
1	Smp_179320	PAZ domain	CRISPR-associated endonuclease Cpf1/RNA Complex
1	Smp_146460	Dynein light chain, type 1/2	Tegumental protein 20.8 kDa
1	Smp_045010	Dynein light chain, type 1/2	CALCIUM BINDING PROTEIN
1	Smp_146470	NA	Rhodopsin
1	Smp_319170	NA	Neurotensin receptor type 1,Endolysin,NEUROTENSIN RECEPTOR
1	Smp_045200	Dynein light chain, type 1/2	Tegumental protein 20.8 kDa
1	Smp_337040	Ribosomal protein L11/L12	28S ribosomal protein S2, mitochondrial
1	Smp_319140	Mediator complex, subunit Med27	Med27
1	Smp_319130	FCH domain	SLIT-ROBO Rho GTPase-activating protein 2
1	Smp_319120	Zinc finger, RING-type	zf-PHD-like
1	Smp_319110	FeS cluster biogenesis	Fe-S scaffold protein IscA (YfhF) { <i>Escherichia coli</i> [TaxId: 562]}
1	Smp_319100	PPM-type phosphatase, divalent cation binding	Protein serine/threonine phosphatase 2C, catalytic domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_319090	NA	HIN recombinase (DNA-binding domain) {Synthetic}
1	Smp_319080	NA	NA
1	Smp_319070	NA	DUF2852
1	Smp_319060	Matrin/U1-C-like, C2H2-type zinc finger	zf-U1
1	Smp_045070	WD40 repeat	Groucho/tle1, C-terminal domain {Human (Homo sapiens) [TaxId: 9606]}
1	Smp_045060	WD40 repeat	Cell cycle arrest protein BUB3 {Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]}
1	Smp_319050	Transmembrane protein 164	TMEM164
1	Smp_316440	Ribosomal RNA methyltransferase FtsJ domain	60S ribosomal protein L13-A, 60S
1	Smp_146480	NA	NA
1	Smp_140250	G protein-coupled receptor, rhodopsin-like	Platelet-activating factor receptor, Flavodoxin
1	Smp_140260	CARD domain	Apaf-1 related killer DARK

Anne	exe 4		
1	Smp_140270	NAD(P)-binding domain superfamily	Carbonyl reductase/20beta-hydroxysteroid dehydrogenase {Human (Homo sapiens) [TaxId: 9606]}
1	Smp_033530	Short-chain dehydrogenase/reductase SDR	Carbonyl reductase/20beta-hydroxysteroid dehydrogenase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_033540	Short-chain dehydrogenase/reductase SDR	Carbonyl reductase/20beta-hydroxysteroid dehydrogenase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_152870	NA	NA
1	Smp_200980	NA	Type-B carboxylesterase/lipase {Fungus (<i>Geotrichum candidum</i>), ATCC 34614 [TaxId: 27317]}
1	Smp_319040	NA	NA
1	Smp_152860	Tetratricopeptide-like helical domain superfamily	Protein farnesyltransferase alpha subunit (E.C.2.5.1)
1	Smp_057230	Aminoacyl-tRNA synthetase, class II (G/ P/ S/T)	Seryl-tRNA synthetase (SerRS) { <i>Thermus</i> <i>thermophilus,</i> strain hb27 [TaxId: 274]}
1	Smp_152850	Tetratricopeptide-like helical domain superfamily	Putative 70 kda peptidylprolyl isomerase PFL2275c { <i>Plasmodium falciparum</i> [TaxId: 5833]}
1	Smp_057210	Leucine-rich repeat	Slit {Fruit fly (<i>Drosophila melanogaster</i>) [TaxId: 7227]}
1	Smp_152840	Helicase, C-terminal	CG9323, isoform A/DNA Complex
1	Smp_142620	Na-Ca exchanger/integrin-beta4	Na/Ca exchange protein
1	Smp_210470	Rab-GTPase-TBC domain	TBC1 domain family member 22A
1	Smp_337800	Bromodomain	CREB-binding protein, CBP {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_319010	NA	Uncharacterized protein BT2961 { <i>Bacteroides thetaiotaomicron</i> [TaxId: 818]}
1	Smp_057120	GYF domain	Hypothetical rotein At5g08430 {Thale cress (Arabidopsis thaliana) [TaxId: 3702]}
1	Smp_200960	NA	Guanine nucleotide dissociation inhibitor, GDI {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}
1	Smp_197230	Adenylate kinase/UMP-CMP kinase	Adenylate kinase {Pig (Sus scrofa) [TaxId: 9823]}
1	Smp_301570	F-box domain	Protein prenyltransferase alpha subunit repeat- containing
1	Smp_301560	Leucine-rich repeat	Cyclin A/CDK2-associated p19, Skp2 {Human (Homo sapiens) [TaxId: 9606]}
1	Smp_319000	NA	Kunitz-type protease inhibitor 1
1	Smp_057090	Radial spokehead-like protein	Radial_spoke
1	Smp_152800	Armadillo-like helical	Exportin-5/13-mer peptide/GTP-binding nuclear protein Ran/RNA
1	Smp_152790	Gtr1/RagA G protein	Ragulator complex protein LAMTOR3, Ragulator

Anne	annexe 4				
1	Smp_057060	Acetyl-CoA hydrolase/transferase	4-hydroxybutyrate CoA-transferase		
1	Smp_301530	NA	NA		
1	Smp_057020	ATP-dependent RNA helicase DEAD-box, conserved site	Ribosome biogenesis protein RLP7, Ribosome		
1	Smp_344520	NA	Golgin_A5		
1	Smp_056990	Ionotropic glutamate receptor	Glutamate receptor ionotropic, delta-2		
1	Smp_152760	Cyclin-Q	Cyclin K {Human (<i>Homo sapiens</i>) [Taxld: 9606]}		
1	Smp_152750	PTP type protein phosphatase	Receptor-type tyrosine-protein phosphatase zeta		
1	Smp_056970	Glyceraldehyde-3-phosphate dehydrogenase, type I	Glyceraldehyde-3-phosphate dehydrogenase (E.C.1.2.1.12)		
1	Smp_152740	WD40 repeat	40S ribosomal protein S1-A, 40S		
1	Smp_056930	Zinc finger, RING-type	Myeloid/lymphoid or mixed-lineage leukemia protein		
1	Smp_193610	G protein-coupled receptor, rhodopsin-like	Lysozyme C (E.C.3.2.1.17)		
1	Smp_008450	Leucine-rich repeat	Protein toll, Protein spaetzle C-106		
1	Smp_008440	DNA-directed RNA polymerase, subunit N/Rpb10	DNA-directed RNA polymerase subunit A'		
1	Smp_008430	NA	Protease Do (DegP, HtrA), C-terminal domains { <i>Escherichia coli</i> [TaxId: 562]}		
1	Smp_008470	CTLH, C-terminal LisH motif	Vacuolar import and degradation protein		
1	Smp_126720	Pre-mRNA-splicing factor Isy1	Pre-mRNA-processing-splicing factor 8, 116 kDa		
1	Smp_318980	BolA protein	SufE-like protein, chloroplastic		
1	Smp_318970	Domain of unknown function DUF1330	uncharacterized conserved protein		
1	Smp_008490	Glycosyl transferase, family 8	GLYCOGENIN-1 (E.C.2.4.1.186)		
1	Smp_008500	Transcription factor IIS, N-terminal	Transcription factor IWS1		
1	Smp_126730	G protein-coupled receptor, rhodopsin-like	7tm_1		
1	Smp_094020	ATP-dependent RNA helicase DEAD-box, conserved site	Ribosome biogenesis protein RLP7, Ribosome		
1	Smp_173640	NA	TAtT		
1	Smp_347850	NA	Rap guanine nucleotide exchange factor 5, RapGEF5 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
1	Smp_246820	NA	hypothetical protein TTHA1254		
1	Smp_093980	NA	NA		
1	Smp_173620	Transmembrane protein TqsA-like	AI-2E_transport		
1	Smp_318960	NA	NA		
1	Smp_093950	OTU domain	OTU domain-containing protein 5 (E.C.3.4.19.12)		
1	Smp_173610	NA	YuzL		
1	Smp_200540	NA	NA		
1	Smp_318950	Histone H3/CENP-A	Leishmania histone H3, Histone H4		

Anne	Annexe 4				
1	Smp_125980	Tetratricopeptide-like helical domain superfamily	PARTNER OF INSCUTEABLE, RE60102P		
1	Smp_193150	NA	NA		
1	Smp_126000	NA	NA		
1	Smp_007070	G protein-coupled receptor, rhodopsin-like	M3-mT4L, Tiotropium		
1	Smp_126020	Fe-S hydro-lyase, tartrate dehydratase alpha- type, catalytic domain	Fumarate hydratase 2 (E.C.4.2.1.2)		
1	Smp_126030	Homeobox domain	PBC		
1	Smp_126050	Cadherin-like	Protocadherin-15		
1	Smp_126070	NA	NA		
1	Smp_126080	Arrestin	Bovine arrestin-2 (full length)		
1	Smp_007170	Armadillo-like helical	Mo25 protein {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
1	Smp_007180	CID domain	Putative RNA-binding protein 16		
1	Smp_007190	Lariat debranching enzyme, C-terminal	DBR1		
1	Smp_110280	Srp40, C-terminal	SRP40_C		
1	Smp_007210	Rab-GTPase-TBC domain	Rab GTPase-activating protein 1		
1	Smp_196700	WD40/YVTN repeat-like-containing domain superfamily	Bardet-Biedl syndrome 18 protein, BBS1		
1	Smp_318920	NA	Biopolymer transport protein ExbB, TonB		
1	Smp_318900	NA	PTS system, cellobiose-specific IIB component		
1	Smp_318890	NA	Biopolymer transport protein ExbB, TonB		
1	Smp_126110	AAA ATPase domain	Spastin (E.C.5.6.1.1), polyglutamate peptide		
1	Smp_007260	P-type ATPase	SARCOPLASMIC/ENDOPLASMIC RETICULUM CALCIUM ATPASE 1		
1	Smp_007270	Calponin homology domain	Actin binding domain of plectin {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
1	Smp_007290	NA	UPF0249 protein EF_3048		
1	Smp_007300	NA	Coiled-coil-helix-coiled-coil-helix domain- containing protein 7		
1	Smp_301430	Phospholipase B-like	Putative phospholipase B-like 2 (E.C.3.1.1)		
1	Smp_007330	NA	NA		
1	Smp_210450	Ribosomal protein S23/S29, mitochondrial	Ribosomal protein L2, 50S ribosomal		
1	Smp_210440	Aldehyde dehydrogenase domain	Aldehyde reductase (dehydrogenase), ALDH {Baltic cod (<i>Gadus callarias</i>) [TaxId: 8053]}		
1	Smp_196480	Small integral membrane protein 15	UPF0542		
1	Smp_114160	GTP binding domain	Probable GTPase YlqF { <i>Bacillus subtilis</i> [TaxId: 1423]}		
1	Smp_007380	UPF0428 family	DUF2325		

Anne	Annexe 4					
1	Smp_126140	Integrin alpha chain	Integrin alpha-V, Integrin beta-3			
1	Smp_158330	Coiled-coil domain-containing protein 170- like	СТ398			
1	Smp_158320	NA	NA			
1	Smp_066830	Protein N-terminal asparagine amidohydrolase	Protein N-terminal asparagine amidohydrolase (E.C.3.5.1)			
1	Smp_066820	von Willebrand factor, type A	INT_SG_DDX_CT_C			
1	Smp_093580	Helicase, C-terminal	Pre-mRNA-splicing factor 8, Pre-mRNA-splicing factor			
1	Smp_173420	Leucine-rich repeat	von Willebrand factor binding domain of glycoprotein Ib alpha {Human (<i>Homo sapiens</i>) [TaxId: 9606]}			
1	Smp_173410	Mediator complex, subunit Med30, metazoa	Med30			
1	Smp_093540	Ser/Thr protein kinase, TGFB receptor	Type I TGF-beta receptor R4 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}			
1	Smp_347110	Ribosomal protein L5 eukaryotic/L18 archaeal	60S ribosomal protein L8, 60S			
1	Smp_346200	SANT/Myb domain	DnaJ chaperone, N-terminal (J) domain { <i>Escherichia coli</i> [TaxId: 562]}			
1	Smp_173380	Protein kinase domain	Musk tyrosine kinase {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}			
1	Smp_025620	Coiled-coil domain-containing protein 151	Tubulin beta, Tubulin alpha, PACRG			
1	Smp_115290	Ran binding domain	Ran-binding protein 1, Ranbp1 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}			
1	Smp_136090	Ribosomal protein L30, ferredoxin-like fold domain	60S ribosomal protein L8, 60S			
1	Smp_343010	Kelch repeat type 1	S-phase kinase-associated protein 1, F-box/LRR- repeat			
1	Smp_136110	NA	Lin-12 and glp-1 phenotype protein			
1	Smp_343020	Myc-type, basic helix-loop-helix (bHLH) domain	DNA-binding protein inhibitor ID-1			
1	Smp_025670	Zinc finger C2H2-type	Zinc finger protein 568/DNA Complex			
1	Smp_025680	CSN8/PSMD8/EIF3K	COP9 signalosome complex subunit 1			
1	Smp_331660	NA	26S proteasome regulatory subunit RPN9			
1	Smp_025700	Kelch-type beta propeller	Kelch-like ECH-associated protein 1, KEAP1 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}			
1	Smp_200910	NA	NA			
1	Smp_266750	NA	NA			
1	Smp_318870	NA	IIA domain of mannose transporter, IIA-Man { <i>Escherichia coli</i> [TaxId: 562]}			
1	Smp_136130	Parathyroid hormone-responsive B1	Bardet-Biedl syndrome 18 protein, BBS1			

Anne	xe 4		
1	Smp_136190	Nuclear protein MDM1	MDM1
1	Smp_025740	Small GTPase	RhoE (RND3) {Mouse (<i>Mus musculus</i>) [Taxld: 10090]}
1	Smp_025750	NA	NA
1	Smp_200530	NA	Weak toxin DE-1 homolog 1
1	Smp_305800	Proteasome, subunit alpha/beta	Proteasome beta subunit (catalytic) {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}
1	Smp_213780	Transmembrane protein 223	TMEM223
1	Smp_303770	NA	DNA-directed RNA polymerase subunit, DNA- directed
1	Smp_301340	Proteasome, subunit alpha/beta	Proteasome beta subunit (catalytic) {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}
1	Smp_318850	RNA recognition motif domain	DNA-directed RNA polymerase subunit, DNA- directed
1	Smp_025830	ADP-ribosyl cyclase (CD38/157)	Bone marror stromal cell antigen 1, BST-1/CD157 (ADP ribosyl cyclase-2) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_136150	Leucine-rich repeat	Rna1p (RanGAP1), N-terminal domain {Fission yeast (<i>Schizosaccharomyces pombe</i>) [TaxId: 4896]}
1	Smp_025860	Beta-thymosin	Actin, alpha skeletal muscle, Thymosin
1	Smp_136160	p53 tumour suppressor family	p53 tumor suppressor, DNA-binding domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
1	Smp_025890	Rab-GTPase-TBC domain	TBC1 domain family member 22B
1	Smp_343030	Sterol-sensing domain	Protein dispatched
5	Smp_165490	Calcineurin-like phosphoesterase domain, ApaH type	Protein phosphatase 2A catalytic subunit alpha isoform, PP2A-alpha {Human (<i>Homo sapiens</i>) [Taxld: 9606]}
5	Smp_334460	NA	Lebercilin
5	Smp_165530	Rho GTPase-activating protein domain	p50 RhoGAP domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
5	Smp_070600	Transaldolase/Fructose-6-phosphate aldolase	Transaldolase { <i>Escherichia coli</i> [TaxId: 562]}
5	Smp_329930	NA	NA
5	Smp_329940	NA	NA
5	Smp_070610	MOB kinase activator family	Mob1a {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
5	Smp_212250	Short-chain dehydrogenase/reductase SDR	Sepiapterin reductase {Mouse (<i>Mus musculus</i>) [Taxld: 10090]}
5	Smp_160530	N2227-like	Carnosine N-methyltransferase (E.C.2.1.1.22)
5	Smp_070640	FERM/acyl-CoA-binding protein superfamily	Fermitin family homolog 3
5	Smp_160540	Primosome PriB/single-strand DNA-binding	Primosomal replication protein n
5	Smp_345210	Dyp-type peroxidase	Melanin biosynthesis protein TyrA { <i>Shewanella oneidensis</i> [Taxld: 70863]}
Anne			
------	------------	---	--
5	Smp_314200	Dyp-type peroxidase	Hypothetical protein BT1219 { <i>Bacteroides</i> <i>thetaiotaomicron</i> [TaxId: 818]}
5	Smp_317150	Dyp-type peroxidase	Hypothetical protein BT1219 { <i>Bacteroides thetaiotaomicron</i> [TaxId: 818]}
5	Smp_346170	Dyp-type peroxidase	Melanin biosynthesis protein TyrA { <i>Shewanella</i> <i>oneidensis</i> [TaxId: 70863]}
5	Smp_314210	Dyp-type peroxidase	Melanin biosynthesis protein TyrA {Shewanella oneidensis [TaxId: 70863]}
5	Smp_329950	NA	NA
5	Smp_154590	NA	Naphthalene 1,2-dioxygenase alpha subunit, N- domain { <i>Rhodococcus sp.</i> ncimb12038 [TaxId: 92694]}
5	Smp_201330	NA	NA
5	Smp_201320	NA	NA
5	Smp_329960	NA	Phenol_monoox
5	Smp_102020	NA	NA
5	Smp_086630	NA	NA
5	Smp_329970	NA	Nicotinamide mononucleotide (NMN) adenylyltransferase { <i>Bacillus subtilis</i> [TaxId: 1423]}
5	Smp_192610	NA	NA
5	Smp_329980	NA	Synaptotagmin IV {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
5	Smp_329990	C2 domain	Synaptotagmin IV {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}
5	Smp_330000	Sin3 associated polypeptide p18	HISTONE DEACETYLASE COMPLEX SUBUNIT SAP18
5	Smp_330010	Alpha-ketoglutarate-dependent dioxygenase alkB homologue 7	Alkylated DNA repair protein AlkB/DNA
5	Smp_330020	NA	NA
5	Smp_314630	NA	RCR
5	Smp_332090	Alpha-ketoglutarate-dependent dioxygenase alkB homologue 7	Alkylated DNA repair protein AlkB/DNA
5	Smp_093070	NA	NA
5	Smp_345030	WD40 repeat	mTOR, Target of rapamycin complex
5	Smp_068000	Ubiquitin-conjugating enzyme E2	Ubiquitin conjugating enzyme, UBC { <i>Caenorhabditis elegans</i> , E2 2 [TaxId: 6239]}
5	Smp_315750	Ubiquitin-conjugating enzyme E2	Ubiquitin conjugating enzyme, UBC { <i>Caenorhabditis elegans</i> , E2 2 [TaxId: 6239]}
5	Smp_158990	EF-hand domain	Frequenin (neuronal calcium sensor 1) {Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]}
5	Smp_158980	EF-hand domain	Recoverin {Cow (<i>Bos taurus</i>) [Taxld: 9913]}
5	Smp_158970	ATP-dependent RNA helicase DEAD-box, conserved site	ATP-dependent RNA helicase MSS116 (E.C.3.6.1)/RNA
5	Smp_341090	Zinc finger C2H2-type	Zn-C2H2_12

5	Smp_067930	28kDa heat- and acid-stable phosphoprotein	DNA-directed RNA polymerase subunit, DNA- directed
5	Smp_345020	NA	QVR
5	Smp_158950	Protein kinase-like domain superfamily	SERINE/THREONINE-PROTEIN KINASE HASPIN (E.C.2.7.11.1)
5	Smp_067900	Cdc37	HEAT SHOCK PROTEIN HSP 90
5	Smp_067890	Proteasome alpha-subunit, N-terminal domain	Proteasome alpha subunit (non-catalytic) {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}
5	Smp_330050	NA	Strabismus
5	Smp_330060	NA	NA
5	Smp_330070	NA	NA
5	Smp_330080	NA	Eukaryotic translation initiation factor 4E-like
5	Smp_330090	NA	NA
5	Smp_330100	NA	NA
5	Smp_056460	NA	DUF3091
5	Smp_330110	NA	NA
5	Smp_330120	NA	NA
5	Smp_344470	NA	NA
5	Smp_330130	NA	NA
5	Smp_152430	CTF transcription factor/nuclear factor 1	zf-His_Me_endon
5	Smp_056500	Proteasome, subunit alpha/beta	Proteasome subunit alpha type-6 (E.C.3.4.25.1)
5	Smp_152440	Nucleotide-binding alpha-beta plait domain superfamily	Splicing factor 3A subunit 3
5	Smp_266930	ΝΑ	Zinc finger protein 295, ZNF295 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
5	Smp_337370	Enolase	Enolase {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}
5	Smp_342340	NA	NA
5	Smp_128040	NA	OB-fold domains of BRCA2 {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}
6	Smp_345940	NA	Thiamine transporter
6	Smp_169860	NA	NA
6	Smp_169870	Lysosomal cystine transporter	sugar transporter
6	Smp_169880	Immunoglobulin subtype 2	Kin of IRRE-like protein 1
6	Smp_169890	Immunoglobulin subtype	Defective proboscis extension response 2
6	Smp_341830	P-loop containing nucleoside triphosphate hydrolase	Sulfotransferase
6	Smp_203170	Oligosaccaryltransferase	Ost4
6	Smp_176180	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (<i>Vespula vulgaris</i>), Ves v 5 [TaxId: 7454]}
6	Smp_176160	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (<i>Vespula vulgaris</i>), Ves v 5 [TaxId: 7454]}

Anne	AC 4		
6	Smp_120670	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (<i>Vespula vulgaris</i>), Ves v 5 [TaxId: 7454]}
6	Smp_176170	CAP domain	Insect allergen 5 (AG5) {Yellow jacket (<i>Vespula vulgaris</i>), Ves v 5 [TaxId: 7454]}
6	Smp_154260	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (<i>Vespula vulgaris</i>), Ves v 5 [TaxId: 7454]}
6	Smp_154270	Rossmann-like alpha/beta/alpha sandwich fold	ATP sulfurylase catalytic domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_317130	ATPase, V0 complex, subunit e1/e2	ATPase H+-transporting V1 subunit A
6	Smp_214020	S-adenosyl-L-methionine-dependent methyltransferase	Fibrillarin homologue { <i>Archaeon Pyrococcus</i> <i>horikoshii</i> [Taxld: 53953]}
6	Smp_214030	Metallo-beta-lactamase	Hypothetical protein TM0894 { <i>Thermotoga</i> <i>maritima</i> [TaxId: 2336]}
6	Smp_059670	Marvel domain	MARVEL
6	Smp_340940	WD40 repeat	F-box/WD-repeat protein 1 (beta-TRCP1) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_305690	Small GTPase	Rad {Human (Homo sapiens) [TaxId: 9606]}
6	Smp_059710	SAP domain	Protein DEK
6	Smp_154280	Divergent protein kinase domain 2A/B	PIP49_C
6	Smp_191970	NA	Endolysin,Claudin-4 (E.C.3.2.1.17), Heat-labile enterotoxin B
6	Smp_154290	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (<i>Vespula vulgaris</i>), Ves v 5 [TaxId: 7454]}
6	Smp_059600	Tektin	Tektin
6	Smp_317500	NA	PGM_PMM_I
6	Smp_154250	NA	NA
6	Smp_141490	Zinc finger, RING-type	brca1 RING domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_203030	Uncharacterised domain UPF0506	UPF0506
6	Smp_141500	Uncharacterised domain UPF0506	UPF0506
6	Smp_317510	Uncharacterised domain UPF0506	UPF0506
6	Smp_316080	BTB/POZ domain	Voltage-gated potassium channel subunit beta-2
6	Smp_316090	Carboxylesterase, type B	Acetylcholinesterase {Pacific electric ray (<i>Torpedo californica</i>) [TaxId: 7787]}
6	Smp_141520	PDZ domain	Hypothetical protein KIAA1095 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_347170	Cysteine alpha-hairpin motif superfamily	28S ribosomal protein S24, mitochondrial
6	Smp_343430	Anoctamin	Anoctamin-1
6	Smp_247980	Deoxynucleoside kinase	Deoxyribonucleoside kinase {Fruit fly (<i>Drosophila melanogaster</i>) [TaxId: 7227]}
6	Smp_141540	Leucine-rich repeat	Splicesomal U2A' protein {Human (<i>Homo sapiens</i>) [TaxId: 9606]}

Annexe 4	4
----------	---

6	Smp_210630	Histone H2A	Histone H2A {Chicken (<i>Gallus gallus</i>), erythrocytes [TaxId: 9031]}
6	Smp_347320	Cysteine-rich secretory protein-related	Cysteine-rich secretory protein (SteCRISP) {Chinese green tree viper (<i>Trimeresurus</i> <i>stejnegeri</i>) [TaxId: 39682]}
6	Smp_141550	Cysteine-rich secretory protein-related	Cysteine-rich secretory protein (SteCRISP) {Chinese green tree viper (<i>Trimeresurus</i> <i>stejnegeri</i>) [TaxId: 39682]}
6	Smp_317520	Cysteine-rich secretory protein-related	Pathogenesis-related protein 1 (PR1) {Tomato (<i>Lycopersicon esculentum</i>), P14a [TaxId: 4081]}
6	Smp_141560	Cysteine-rich secretory protein-related	Cysteine-rich secretory protein (SteCRISP) {Chinese green tree viper (<i>Trimeresurus</i> <i>stejnegeri</i>) [TaxId: 39682]}
6	Smp_316760	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (<i>Vespula vulgaris</i>), Ves v 5 [TaxId: 7454]}
6	Smp_160250	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (Vespula vulgaris), Ves v 5 [TaxId: 7454]}
6	Smp_313710	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (<i>Vespula vulgaris</i>), Ves v 5 [TaxId: 7454]}
6	Smp_070250	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (<i>Vespula vulgaris</i>), Ves v 5 [TaxId: 7454]}
6	Smp_317530	NA	NA
6	Smp_300070	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (<i>Vespula vulgaris</i>), Ves v 5 [TaxId: 7454]}
6	Smp_336880	Cysteine-rich secretory protein-related	Pathogenesis-related protein 1 (PR1) {Tomato (Lycopersicon esculentum), P14a [TaxId: 4081]}
6	Smp_300080	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (<i>Vespula vulgaris</i>), Ves v 5 [TaxId: 7454]}
6	Smp_317540	NA	NA
6	Smp_156240	NA	DUF5588
6	Smp_156230	NA	Tk-SP_N-pro
6	Smp_344760	PTP type protein phosphatase	RPTP Lar {Human (Homo sapiens) [TaxId: 9606]}
6	Smp_063190	Transforming growth factor-beta, C-terminal	Activin A (Inhibin beta A) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_063180	NA	NA
6	Smp_316770	NA	Cytochrome P450, family 17, subfamily
6	Smp_300090	Terminal nucleotidyltransferase	NTP_transf_7
6	Smp_156180	EF-hand domain	DUF5580
6	Smp_063120	Ham1-like protein	Inosine triphosphate pyrophosphatase, ITPase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_063110	Protein of unknown function DUF3504	DUF3504
6	Smp_156170	ARID DNA-binding domain	Transcription activator BRG1 (E.C.3.6.4), AT-rich

Anne	xe 4	1	
6	Smp_063090	Aconitase A/isopropylmalate dehydratase small subunit, swivel domain	ACONITASE
6	Smp_156160	WD40 repeat	Elongator complex protein 1, Elongator
6	Smp_063070	Small GTPase	CDC42 {Human (Homo sapiens) [TaxId: 9606]}
6	Smp_300140	NA	NA
6	Smp_300150	NA	NA
6	Smp_309350	Transport protein particle (TRAPP) component	Trafficking protein particle complex subunit 3, Bet3 homolog {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
6	Smp_050880	CXXC motif containing zinc binding protein, eukaryotic	Hypothetical protein MAL13P1.257 {Malaria parasite (<i>Plasmodium falciparum</i>) [TaxId: 5833]}
6	Smp_050890	Hid-1/Ecm30	Dymeclin
6	Smp_149370	Transmembrane protein 181	MIG-14_Wnt-bd
6	Smp_050920	RNA recognition motif domain	RNA-binding region containing protein 1 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_149380	SET domain	SET domain-containing protein 6, RelA
6	Smp_050940	Ribosomal protein L5	eL18, uL16, uL5, eL13, uL13
6	Smp_347550	C-type lectin-like	Low affinity immunoglobulin epsilon Fc receptor {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_243000	NA	Low density lipoprotein (LDL) receptor, different EGF domains {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_051000	Syndetin, C-terminal	Vps54_N
6	Smp_051010	Ubiquitin-conjugating enzyme E2	Ubiquitin conjugating enzyme, UBC {Human (<i>Homo sapiens</i>), ubch10 [TaxId: 9606]}
6	Smp_149400	Peptidase S8/S53 domain	Furin (E.C.3.4.21.75)
6	Smp_149410	NA	NA
6	Smp_177180	NA	Merozoite surface protein 1 (MSP-1) {Malaria parasite (<i>Plasmodium falciparum</i>) [TaxId: 5833]}
6	Smp_051070	Gonadal family	DGCR6
6	Smp_051080	Clathrin light chain	Clathrin heavy chain 1, Clathrin
6	Smp_051090	CFA20 domain	DUF667
6	Smp_149420	K Homology domain	Protein quaking/RNA
6	Smp_247990	NA	DUF4806
6	Smp_248000	39S ribosomal protein L52, mitochondrial	Mitochondrial ribosomal protein L27, Mitochondrial
6	Smp_051120	START-like domain superfamily	Uncharacterized protein DR_A0006
6	Smp_051130	Ets domain	Fli-1 {Human (Homo sapiens) [TaxId: 9606]}
6	Smp_149430	Phenylalanyl-tRNA synthetase	Phenyl-tRNA synthetase (PheRS) alpha subunit, PheS { <i>Thermus thermophilus</i> [TaxId: 274]}
6	Smp_344200	Small GTPase	MITOCHONDRIAL RHO GTPASE (E.C.3.6.5)
6	Smp_149450	tRNA-dihydrouridine synthase	tRNA-dihydrouridine(20) synthase [NAD(P)+]-like (E.C.1.3.1)

Anne.	AC 4		
6	Smp_149460	Protein kinase domain	Tyrosine-protein kinase SYK {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_149480	Leucine-rich repeat	von Willebrand factor binding domain of glycoprotein Ib alpha {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_344210	NA	NA
6	Smp_340780	Pleckstrin homology domain	Actin-binding protein anillin
6	Smp_046290	Marvel domain	MARVEL
6	Smp_147000	PDZ domain	amyloid beta A4 precursor protein-binding
6	Smp_300200	Zinc finger C2H2-type	Transcriptional repressor CTCF/DNA Complex
6	Smp_300210	Zinc finger C2H2-type	Zinc finger protein 568/DNA Complex
6	Smp_300220	Zinc finger C2H2-type	Zinc finger protein 568/DNA Complex
6	Smp_046360	Zinc finger C2H2-type	Transcriptional repressor CTCF/DNA Complex
6	Smp_147020	Sec7 domain	guanine nucleotide exchange protein
6	Smp_147040	Ankyrin repeat	Glutaminase kidney isoform, mitochondrial (E.C.3.5.1.2)
6	Smp_046410	Tektin	Tektin
6	Smp_147050	ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding domain	ATPase H+-transporting V1 subunit A
6	Smp_046430	Peptidase C19, ubiquitin carboxyl-terminal hydrolase	Ubiquitin carboxyl-terminal hydrolase 7 (USP7, HAUSP) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
6	Smp_317560	NA	30S ribosomal protein S2, 30S
6	Smp_147060	NA	NA
6	Smp_147070	Amino acid transporter, transmembrane domain	antibody Fab Heavy Chain, antibody
6	Smp_011030	Regulatory factor, effector binding domain superfamily	Heme-binding protein 2, Programmed cell
6	Smp_128010	NA	NA
6	Smp_011010	NA	39S ribosomal protein L2, mitochondrial
6	Smp_011000	Partial AB-hydrolase lipase domain	Gastric lipase {Dog (<i>Canis familiaris</i>) [TaxId: 9615]}
6	Smp_128000	High mobility group box domain	ARS-binding factor 2, mitochondrial/DNA Complex
6	Smp_127990	NA	NA
6	Smp_098420	NA	FtsL
6	Smp_317580	NA	GRP
6	Smp_317590	NA	NA
6	Smp_176270	Target SNARE coiled-coil homology domain	Syntaxin-binding protein 1, Syntaxin-1A
6	Smp_098450	NA	NA
6	Smp_203190	NA	NA
6	Smp_154220	NA	Photosystem II protein D1 (E.C.1.10.3.9)

Signal recognition particle, SRP54 subunit, Smp 059540 6 60S RIBOSOMAL PROTEIN L23, RIBOSOMAL **GTPase** domain 6 Domain of unknown function DUF4604 DUF4604 Smp 316100 TAP46-like protein **TAP42** 6 Smp 316110 Ras-related protein RalA (Cotton-top tamarin 6 Smp_059570 Small GTPase (Saguinus oedipus) [TaxId: 9490]} RSC7, Chromatin structure-remodeling complex 6 Smp 244170 ARID DNA-binding domain protein Neural cell adhesion molecule (NCAM) {Rat EGF-like domain 6 Smp_136660 (Rattus norvegicus) [TaxId: 10116]} Grancalcin {Human (Homo sapiens) [TaxId: 6 Smp 136640 **EF-hand domain** 9606]} 6 Smp 026770 LSM domain, eukaryotic/archaea-type Spliceosomal U1 small nuclear ribonucleoprotein Diacylglycerol kinase DgkB {Staphylococcus 6 Smp 342570 Diacylglycerol kinase, accessory domain aureus [TaxId: 1280]} 6 Smp 131220 Peptidase S8/S53 domain Tripeptidyl-peptidase 2 (E.C.3.4.14.10) 6 Smp 016600 Sodium Neutral amino acid transporter B(0) F-box/WD-repeat protein 1 (beta-TRCP1) 6 Smp 131230 WD40 repeat {Human (Homo sapiens) [TaxId: 9606]} Guanine nucleotide binding protein (G-Smp_016630 G-protein alpha subunit Galpha7 6 protein), alpha subunit 6 Smp_317600 Eukaryotic translation initiation factor 4E-binding NA 6 Smp 131250 NDRG Protein NDRG3 DcoH-like protein DCoH2 {Mouse (Mus Smp 016670 Pterin 4 alpha carbinolamine dehydratase 6 musculus) [TaxId: 10090]} **BETA-CATENIN/TRANSCRISTION FACTOR XTCF-3** 6 Smp_315800 NA 6 Smp_213250 Bcl2-like Bcl-2 homologous antagonist/killer N-alpha-acetyltransferase 60 6 Smp 213260 Acyl-CoA N-acyltransferase (E.C.2.3.1.48,2.3.1.88) Heme-binding protein 1 {Mouse (*Mus musculus*) 6 Smp 016730 SOUL haem-binding protein [TaxId: 10090]} 6 Smp 131290 SSP160 NA ADR1 {Synthetic, based on Saccharomyces 6 Smp_016750 Zinc finger C2H2-type cerevisiae sequence} Probable histone acetyltransferase MYST1 6 Smp 131320 Zinc finger, PHD-type {Human (Homo sapiens) [TaxId: 9606]} 6 Smp_016780 Tubulin SPINDLE POLE BODY COMPONENT SPC97 6 Smp 337210 EB NA Trafficking protein particle complex subunit 6 Smp_016810 **DUF974** 13 6 Smp_131350 Bile acid Transporter, sodium/bile acid symporter family

POLYC9

Annexe 4

6

Smp_203200

NA

Anne	xe 4		
6	Smp_131360	ATP-dependent RNA helicase DEAD-box, conserved site	Splicing factor 3A subunit 3
6	Smp_131370	CAP domain	Ancylostoma secreted protein 2
6	Smp_340240	Armadillo-like helical	Exportin-4, GTP-binding nuclear protein Ran
6	Smp_317620	NA	Keratinocyte growth factor, FGF7 {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}
6	Smp_131380	NA	Keratinocyte growth factor, FGF7 {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}
6	Smp_131390	Bromodomain	beta1-subunit of the signal-transducing G protein heterotrimer {Cow (<i>Bos taurus</i>) [TaxId: 9913]}
6	Smp_016870	Microtubule-associated protein, MAP65/Ase1/PRC1	Protein regulator of cytokinesis 1
6	Smp_214040	Glycosyl hydrolase family 99	Glycosyl hydrolase family 71
6	Smp_214050	Guanylate kinase-like domain	Guanylate kinase { Escherichia coli [TaxId: 562] }
6	Smp_340250	NA	NA
6	Smp_016900	Protein of unknown function DUF2373	DUF2373
6	Smp_016910	2Fe-2S ferredoxin-type iron-sulfur binding domain	Adrenodoxin {Cow (<i>Bos taurus</i>) [TaxId: 9913]}
6	Smp_016920	Zinc finger, RING-type	EL5 RING-H2 domain {Rice (<i>Oryza sativa</i>) [TaxId: 4530]}
6	Smp_131400	Mannose-6-phosphate receptor binding domain superfamily	PRKCSH_1
6	Smp_131410	Tmem141 superfamily	Herpes_LMP1
6	Smp_317630	NA	PMP22_Claudin
6	Smp_331630	Uncharacterised domain UPF0506	UPF0506
6	Smp_342590	T-complex 11	Тср11

Chr.: chromosome.

Annexe 5 : Répartition des profils chronobiologiques des générations F0, F1 et F2 des croisements interspécifiques

<u>Figure A5</u> : Joyplots des profils chronobiologiques des générations F0, F1 et F2 des croisements interspécifiques pour le QTL mapping. Le croisement A est à gauche et le croisement B à droite. L'aire blanche sous la courbe correspond à une émission diurne des cercaires. L'aire grise sous la courbe correspond à une émission nocturne des cercaires.

Annexe 6 : Liste des gènes candidats issus du QTL mapping des croisements interspécifiques

Chr.	Gene ID	GFF annotation	HHsearch annotation
3B	Smp_018360	PLC-like phosphodiesterase, TIM beta/alpha-barrel domain superfamily	Crystal Structure of the Y247S/Y251S
3B	Smp_132260	Armadillo	Aurora-related kinase 1 (aurora-2) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
3B	Smp_132270	K Homology domain	Poly(rC)-binding protein 2
3B	Smp_018400	WD40 repeat	beta1-subunit of the signal-transducing G protein heterotrimer {Cow (<i>Bos taurus</i>) [TaxId: 9913]}
3B	Smp_132280	Thrombospondin type-1 (TSP1) repeat	Thrombospondin-1 (TSP-1) {Human (<i>Homo</i> <i>sapiens</i>) [TaxId: 9606]}
3B	Smp_018430	Peptidase S24/S26A/S26B/S26C	Maltose binding protein -
3B	Smp_018440	NA	NA
3B	Smp_018460	Phosphatidylinositol 3-/4-kinase, catalytic domain	Phosphatidylinositol 4-kinase type 2-alpha (E.C.2.7.1.67)
3B	Smp_337780	Coiled-coil alpha-helical rod protein 1	HCR
3B	Smp_018500	Carbohydrate kinase, thermoresistant glucokinase	Gluconate kinase { <i>Escherichia coli</i> [Taxld: 562]}
3B	Smp_132300	Kinesin motor domain	Kinesin { <i>Neurospora crassa</i> [Taxld: 5141]}
3B	Smp_337050		380.41
3B	Smp_325920	Ribosomal protein L15, conserved site	Ribosomal protein L8, putative, Uncharacterized
3B	Smp_018530	Nascent polypeptide-associated complex NAC domain	Ribosomal protein L8, uL3, uL4
3B	Smp_132320	Cadherin-like	Protocadherin-15
3B	Smp_018550	NA	SWI5-dependent HO expression protein 3
3B	Smp_132330	Small GTPase	Rab30 {Human (Homo sapiens) [TaxId: 9606]}
3B	Smp_018570	G protein pathway suppressor 2	G_path_suppress
3B	Smp_018580	WD40 repeat	Pectate_lyase22
3B	Smp_018590	Zinc finger, GATA-type	Trans-acting T-cell-specific transcription factor GATA-3/DNA
3B	Smp_132340	NA	NA
3B	Smp_018610	Mediator complex, subunit Med7	Med7
3B	Smp_018620	Peptidase M41	AFG3-like protein 2 (E.C.3.4.24), Substrate
3B	Smp_132350	CCAAT-binding factor	60S ribosomal protein L13-A, 60S
3B	Smp_132360	NA	Activity-regulated cytoskeleton associated protein 1
3B	Smp_018640	RUN domain	Rap2 interacting protein X (RUFY3) {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
3B	Smp_246950	PTP type protein phosphatase	Tyrosine-protein phosphatase, non-receptor type 13 (PTPL1) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
3B	Smp_132390	NA	NA
3B	Smp_018680	Isocitrate dehydrogenase NAD- dependent	Isocitrate dehydrogenase [NAD] subunit 1

Anne	Annexe 6			
3B	Smp_132410	G protein-coupled receptor, rhodopsin-like	Lysozyme,Proteinase-activated receptor 2,Soluble cytochrome b562,Proteinase-activated	
3B	Smp_018710	WD40 repeat	Uncharacterized WD repeat-containing protein C4F10.18	
3B	Smp_335830	Armadillo-type fold	RTTN_N	
3B	Smp_018760	Glycoside hydrolase family 31	Protein disulfide-isomerase (E.C.5.3.4.1), Peptide from	
3B	Smp_342640	Tetratricopeptide-like helical domain superfamily	O-GlcNAc transferase p110 subunit, OGT {Human (<i>Homo sapiens</i>) [TaxId: 9606]}	
3B	Smp_018790	PPM-type phosphatase domain	Probable protein phosphatase 2C 50	
3B	Smp_132450	BTB/POZ domain	No mechanoreceptor potential C isoform	
3B	Smp_325960	Tetratricopeptide-like helical domain superfamily	O-GlcNAc transferase p110 subunit, OGT {Human (<i>Homo sapiens</i>) [TaxId: 9606]}	
3B	Smp_204880	NA	DUF4999	
3B	Smp_335840	NA	NA	
3B	Smp 347080	Ion transport domain	nvTRPM2 channel	
3B	Smp_331920	LSM domain, eukaryotic/archaea-type	Archaeal homoheptameric Sm protein { <i>Archaeon</i> <i>Methanobacterium thermoautotrophicum</i> [TaxId: 145262]}	
3B	Smp_094140	MCM domain	DNA replication licensing factor MCM2	
3B	Smp_308310	Helix-turn-helix motif	Homeotic bicoid protein {Fruit fly (<i>Drosophila melanogaster</i>) [TaxId: 7227]}	
3B	Smp_325970	NA	NA	
3B	Smp_126200	Nitrogen permease regulator 2	GATOR complex protein NPRL2, GATOR	
3B	Smp_007540	NA	Exosome complex RNA-binding protein 1, ECR1 {Archaeoglobus fulgidus [TaxId: 2234]}	
3B	Smp_007550	Peptidase M1, alanine aminopeptidase/leukotriene A4 hydrolase	MGC78867 protein (E.C.3.3.2.6)	
3B	Smp_126210	NA	ΝΛ	
3B			INA	
20	Smp_007570	NA	NA	
3B	Smp_007570 Smp_126220	NA NA	NA	
3B 3B	Smp_007570 Smp_126220 Smp_126230	NA NA NA	NA NA NA	
3B 3B 3B	Smp_007570 Smp_126220 Smp_126230 Smp_126240	NA NA NA Protein kinase domain	NA NA NA Twitchin, kinase domain {California sea hare (<i>Aplysia californica</i>), twk43 [TaxId: 6500]}	
3B 3B 3B 3B	Smp_007570 Smp_126220 Smp_126230 Smp_126240 Smp_336670	NA NA NA Protein kinase domain Tetratricopeptide-like helical domain superfamily	NA NA NA NA Twitchin, kinase domain {California sea hare (<i>Aplysia californica</i>), twk43 [TaxId: 6500]} N-terminal acetyltransferase-like protein, Naa10, HypK	
3B 3B 3B 3B 3B	Smp_007570 Smp_126220 Smp_126230 Smp_126240 Smp_336670 Smp_179910	NA NA NA Protein kinase domain Tetratricopeptide-like helical domain superfamily Small GTPase	NA NA NA NA Twitchin, kinase domain {California sea hare (<i>Aplysia californica</i>), twk43 [TaxId: 6500]} N-terminal acetyltransferase-like protein, Naa10, HypK GTP-binding protein RheB {Human (<i>Homo sapiens</i>) [TaxId: 9606]}	
3B 3B 3B 3B 3B 3B	Smp_007570 Smp_126220 Smp_126230 Smp_126240 Smp_336670 Smp_179910 Smp_162520	NA NA NA Protein kinase domain Tetratricopeptide-like helical domain superfamily Small GTPase Cadherin-like	NA NA NA Twitchin, kinase domain {California sea hare (<i>Aplysia californica</i>), twk43 [TaxId: 6500]} N-terminal acetyltransferase-like protein, Naa10, HypK GTP-binding protein RheB {Human (<i>Homo sapiens</i>) [TaxId: 9606]} EP-cadherin, ectodomain	
3B 3B 3B 3B 3B 3B 3B	Smp_007570 Smp_126220 Smp_126230 Smp_126240 Smp_336670 Smp_179910 Smp_162520 Smp_074770	NA NA NA Protein kinase domain Tetratricopeptide-like helical domain superfamily Small GTPase Cadherin-like Protein KTI12/L-seryI-tRNA(Sec) kinase	NA NA NA NA Twitchin, kinase domain {California sea hare (<i>Aplysia californica</i>), twk43 [TaxId: 6500]} N-terminal acetyltransferase-like protein, Naa10, HypK GTP-binding protein RheB {Human (<i>Homo sapiens</i>) [TaxId: 9606]} EP-cadherin, ectodomain KTI12	
3B 3B 3B 3B 3B 3B 3B 3B	Smp_007570 Smp_126220 Smp_126230 Smp_126240 Smp_336670 Smp_179910 Smp_162520 Smp_074770 Smp_074780	NA NA NA NA NA Constant of the second	NA NA NA NA Twitchin, kinase domain {California sea hare (<i>Aplysia californica</i>), twk43 [TaxId: 6500]} N-terminal acetyltransferase-like protein, Naa10, HypK GTP-binding protein RheB {Human (<i>Homo sapiens</i>) [TaxId: 9606]} EP-cadherin, ectodomain KTI12 30S ribosomal protein S2, 30S	
3B	Smp_007570 Smp_126220 Smp_126230 Smp_126240 Smp_336670 Smp_179910 Smp_162520 Smp_074770 Smp_074780 Smp_162540	NA NA NA Protein kinase domain Tetratricopeptide-like helical domain superfamily Small GTPase Cadherin-like Protein KTI12/L-seryl-tRNA(Sec) kinase Ribosomal protein S13 Tektin	NA NA NA NA Twitchin, kinase domain {California sea hare (<i>Aplysia californica</i>), twk43 [TaxId: 6500]} N-terminal acetyltransferase-like protein, Naa10, HypK GTP-binding protein RheB {Human (<i>Homo sapiens</i>) [TaxId: 9606]} EP-cadherin, ectodomain KTI12 30S ribosomal protein S2, 30S Tektin	
3B 3B	Smp_007570 Smp_126220 Smp_126230 Smp_126240 Smp_336670 Smp_179910 Smp_162520 Smp_074770 Smp_074780 Smp_162540 Smp_162550	NA NA NA Protein kinase domain Tetratricopeptide-like helical domain superfamily Small GTPase Cadherin-like Protein KTI12/L-seryl-tRNA(Sec) kinase Ribosomal protein S13 Tektin Cadherin-like	NA NA NA NA Twitchin, kinase domain {California sea hare (<i>Aplysia californica</i>), twk43 [TaxId: 6500]} N-terminal acetyltransferase-like protein, Naa10, HypK GTP-binding protein RheB {Human (<i>Homo sapiens</i>) [TaxId: 9606]} EP-cadherin, ectodomain KTI12 30S ribosomal protein S2, 30S Tektin Protocadherin-15	

Anne	Annexe 6				
3B	Smp_074830	Tubulin-tyrosine ligase/Tubulin polyglutamylase	Tubulin polyglutamylase TTLL7 (E.C.6)		
3B	Smp_162600	U3 small nucleolar RNA-associated protein 10	40S ribosomal protein S1-A, 40S		
3B	Smp_074870	tRNA-splicing ligase, RtcB	Hypothetical protein PH1602 { <i>Archaeon</i> <i>Pyrococcus horikoshii</i> [Taxld: 53953]}		
3B	Smp_074880	NA	Tim17		
3B	Smp_074900	IRS-type PTB domain	Docking protein 1, Dok1 {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
3B	Smp_162610	Cadherin-like	Protocadherin-15		
3B	Smp_162620	rRNA adenine dimethylase-like	SAVED domain-containing protein/RNA Complex		
3B	Smp_074930	Palmitoyltransferase, DHHC domain	human DHHC20 palmitoyltransferase (E.C.2.3.1.225)		
3B	Smp_074940	Alpha/beta hydrolase fold-3	Uncharacterized protein TM1040_2492 { <i>Silicibacter sp.</i> tm1040 [TaxId: 292414]}		
3B	Smp_074950	RWD domain	RWD domain-containing protein 2 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3B	Smp_162630	Ubiquitin/SUMO-activating enzyme E1	Ubiquitin-activating enzyme E1 1, Uba1		
3B	Smp_162640	NA	DUF2798		
3B	Smp_075000	Regulator of chromosome condensation 1/beta-lactamase- inhibitor protein II	NA		
3B	Smp_074990	Regulator of chromosome condensation, RCC1	Regulator of chromosome condensation RCC1 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3B	Smp_162650	Anoctamin	Anoctamin		
3B	Smp_075030	Ankyrin repeat	Myotrophin {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}		
3B	Smp_075040	Uncharacterised protein family UPF0538	DUF2340		
3B	Smp_162660	Carbon-nitrogen hydrolase	Glutamine-dependent NAD(+) synthetase (E.C.6.3.5.1)		
3B	Smp_075060	Carbon-nitrogen hydrolase	Glutamine-dependent NAD(+) synthetase (E.C.6.3.5.1)		
3B	Smp_337650	Sperm-associated antigen 17	PapD-like		
3B	Smp_162680	Epithelial sodium channel	Acid-sensing ion channel 1, Pi-theraphotoxin-Pc1a		
3B	Smp_075110	Cell cycle checkpoint protein, Rad1	Rad1		
3B	Smp_075120	Purine-rich element binding protein family	PurA		
3B	Smp_075130	G-protein, beta subunit	beta1-subunit of the signal-transducing G protein heterotrimer {Cow (<i>Bos taurus</i>) [TaxId: 9913]}		
3B	Smp_075140	Mitochondria-eating protein	MIEAP		
3B	Smp_162710	Protein kinase domain	Aurora-related kinase 1 (aurora-2) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3B	Smp_333540	Nucleic acid-binding, OB-fold	CDC24_OB3		
3B	Smp_346300	NA	ноок		

Annex	ke 6		
3B	Smp_174780	P-loop containing nucleoside triphosphate hydrolase	Intraflagellar transport protein 22
3B	Smp_202010	NA	NA
3B	Smp_174800	Zinc finger C2H2-type	Zinc finger protein 568/DNA Complex
3B	Smp_174810	Superoxide dismutase, copper/zinc binding domain	Cu,Zn superoxide dismutase, SOD {Blood fluke (Schistosoma mansoni) [TaxId: 6183]}
3B	Smp_095980	Superoxide dismutase, copper/zinc binding domain	Cu,Zn superoxide dismutase, SOD {Blood fluke (Schistosoma mansoni) [TaxId: 6183]}
3B	Smp_346310	Protein kinase domain	Pkb kinase (Akt-2) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
3AB	Smp_096000	NA	NUCLEAR PORE COMPLEX PROTEIN NUP155
3AB	Smp_096010	Heat shock protein DnaJ, cysteine-rich domain	Putative chaperone DnaJ
3AB	Smp_096020	Adenosylhomocysteinase-like	adenosylhomocysteinase (E.C.3.3.1.1)
ЗАВ	Smp_346320	Chromo/chromo shadow domain	Polycomb protein, Pc {Fruit fly (<i>Drosophila melanogaster</i>) [TaxId: 7227]}
3AB	Smp_174850	NA	Ragulator complex protein LAMTOR3, Ragulator
3AB	Smp_096050	NA	DNA polymerase III subunit alpha
3AB	Smp_325990	NA	NA
ЗАВ	Smp_212410	Cyclic nucleotide-binding domain	Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel
3AB	Smp_078780	Amidohydrolase-related	DIHYDROPYRIMIDINASE-RELATED PROTEIN 5
3AB	Smp_078800	DnaJ domain	DnaJ chaperone, N-terminal (J) domain { <i>Escherichia coli</i> [TaxId: 562]}
3AB	Smp_326000	Helix-turn-helix motif	Engrailed Homeodomain { <i>Drosophila melanogaster</i> [TaxId: 7227]}
3AB	Smp_326010	NA	NA
3AB	Smp_345520	Poly A polymerase, head domain	A.fulgidus CCA-adding enzyme (E.C.2.7.7.72)
3AB	Smp_145890	Thrombospondin type-1 (TSP1) repeat	PROPERDIN
3AB	Smp_197390	Peptidase M12B, ADAM/reprolysin	Disintegrin and metalloproteinase domain- containing protein
3AB	Smp_145910	NA	Protein-tyrosine sulfotransferase 2 (E.C.2.8.2.20), C4
3AB	Smp_308350	Protein-tyrosine sulfotransferase	Protein-tyrosine sulfotransferase 1 (E.C.2.8.2.20), gastrin
3AB	Smp_305920	Protein-tyrosine sulfotransferase	Protein-tyrosine sulfotransferase 1 (E.C.2.8.2.20), gastrin
ЗАВ	Smp_044160	Mitochondrial carrier protein	ADP,ATP carrier protein {Cow (<i>Bos taurus</i>), heart isoform t1 [TaxId: 9913]}
3AB	Smp_145930	Hemopexin-like domain	Interstitial collagenase (E.C.3.4.24.7)
3AB	Smp_343900	NA	NA
3AB	Smp_246600	p53-like transcription factor, DNA- binding	Lin-12 and glp-1 phenotype protein
3AB	Smp_145980	Sodium	Neutral amino acid transporter B(0)

Anne	innexe 6				
3AB	Smp_145990	ClpA/B family	ClpA, an Hsp100 chaperone, AAA+ modules { <i>Escherichia coli</i> [TaxId: 562]}		
ЗАВ	Smp_044250	JAB1/MPN/MOV34 metalloenzyme domain	Prp8, Brr2, Snu114, Rse1, Cus1		
3AB	Smp_146000	Small lysine-rich protein 1	NA		
3AB	Smp_044260	Autophagy-related protein 3	Ubiquitin-like-conjugating enzyme ATG10 (E.C.6.3.2)		
3AB	Smp_267300	NA	NA		
ЗАВ	Smp_267310	Thiolase	Thiolase {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}		
3AB	Smp_208080	Golgin subfamily A member 7/ERF4	Erf4		
3AB	Smp_326040	Up-regulated during skeletal muscle growth protein 5	ATP_synth_reg		
ЗАВ	Smp_129340	WD40 repeat	Platelet-activating factor acetylhydrolase IB subunit alpha {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
3AB	Smp_013300	Yip1 domain	YIF1		
3AB	Smp_246610	Small GTPase	Rad {Human (Homo sapiens) [TaxId: 9606]}		
3AB	Smp_129360	Cyclin, N-terminal	Cell division protein kinase 4		
3AB	Smp_342430	NA	NA		
3AB	Smp_129380	BTB/POZ domain	Voltage-gated potassium channel subunit beta-2		
3AB	Smp_013360	RNA recognition motif domain	U1 small nuclear ribonucleoprotein A		
3AB	Smp_013370	Tetraspanin	Tetraspanin		
ЗАВ	Smp_347820	Vacuolar protein sorting-associated protein 13, N-terminal domain	Putative vacuolar protein sorting-associated protein		
3AB	Smp_129410	NA	NUCLEAR PORE COMPLEX PROTEIN NUP155		
3AB	Smp_129420	Ribosomal protein S11	Ribosomal protein S11 { <i>Escherichia coli</i> [Taxld: 562]}		
ЗАВ	Smp_129430	Transcription factor, MADS-box	Myocyte enhancer factor Mef2a core {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_013440	Zinc/iron permease	Zip		
ЗАВ	Smp_129450	Phosphatidic acid phosphatase type 2/haloperoxidase	Phosphatidylglycerophosphatase B (E.C.3.1.3.27)		
3AB	Smp_013460	SCAMP	SCAMP		
3AB	Smp_013470	Ribosomal protein S5	uS2, eS1, uS5, uS3, eS4		
3AB	Smp_246650	Cadherin-like superfamily	DAG1		
3AB	Smp_246660	Homeobox domain	LIM domain-binding protein 1, LIM/homeobox		
3AB	Smp_013520	Nuclear cap-binding protein subunit 3	NCBP3		
3AB	Smp_129500	RNA polymerase, alpha subunit	DNA-DIRECTED RNA POLYMERASES I, II		
ЗАВ	Smp_013540	Tyrosinase copper-binding domain	5,6-dihydroxyindole-2-carboxylic acid oxidase (E.C.1.14.18)		
3AB	Smp_129510	Metallo-dependent phosphatase-like	Metallophosphoesterase MPPED2 (E.C.3.1)		
ЗАВ	Smp_311970	Zinc finger, GATA-type	Erythroid transcription factor GATA-1 { <i>Emericella</i> <i>nidulans</i> [TaxId: 162425]}		
3AB	Smp_129520	NA	DASH_Spc34		

Anne	Annexe 6				
3AB	Smp_013600	Homeobox domain	Homeotic bicoid protein {Fruit fly (<i>Drosophila melanogaster</i>) [Taxld: 7227]}		
3AB	Smp_013610	Uncharacterised protein family UPF0564	UPF0564		
3AB	Smp_347790	Cadherin-like	Protocadherin-15		
3AB	Smp_326080	Major facilitator, sugar transporter- like	Folate_carrier		
3AB	Smp_326090	Major facilitator, sugar transporter- like	Sugar_tr		
ЗАВ	Smp_070680	Repressor of RNA polymerase III transcription Maf1	Repressor of RNA polymerase III		
3AB	Smp_336680	Tetratricopeptide-like helical domain superfamily	ANAPHASE-PROMOTING COMPLEX SUBUNIT 1, ANAPHASE-PROMOTING		
3AB	Smp_246570	Matrin/U1-C-like, C2H2-type zinc finger	RNA binding protein ZFa		
3AB	Smp_070710	Polyprenyl synthetase	farnesyl pyrophosphate synthase (E.C.2.5.1.10)		
3AB	Smp_308420	Actin-depolymerising factor homology domain	Adf-H domain of twinfilin isoform-1 {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
3AB	Smp_160590	NA	NA		
3AB	Smp_070760	YEATS	Protein AF-9 homolog		
ЗАВ	Smp_070770	Ubiquitin-fold modifier-conjugating enzyme 1	Ufm1-conjugating enzyme 1, UFC1 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_070780	UDP-glucose 4-epimerase	Uridine diphosphogalactose-4-epimerase (UDP- galactose 4-epimerase) { <i>Escherichia coli</i> [TaxId: 562]}		
3AB	Smp_160600	THO complex, subunit THOC1	efThoc1		
ЗАВ	Smp_333550	Pyridoxal phosphate homeostasis protein	Hypothetical protein ybl036c {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}		
3AB	Smp_160610	Rho GTPase-activating protein domain	p50 RhoGAP domain {Human (<i>Homo sapiens</i>) [Taxld: 9606]}		
3AB	Smp_326120	NA	NA		
ЗАВ	Smp_181490	Protein kinase domain	Death-associated protein kinase, Dap {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_186670	Aspartate carbamoyltransferase	Human Carbamoyl Phosphate Synthetase I		
3AB	Smp_181480	tRNA (uracil-O(2)-)-methyltransferase	AdoMet_MTase		
3AB	Smp_106130	Chaperone DnaK	HSP70		
3AB	Smp_181470	Bax inhibitor 1-related	Herpes_LMP1		
ЗАВ	Smp_106110	EF-hand domain	Kchip1, Kv4 potassium channel-interacting protein {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}		
3AB	Smp_181460	EF-hand domain pair	DUF4205		
3AB	Smp_335280	NAD(P)-binding domain superfamily	NADH-ubiquinone oxidoreductase chain 3 (E.C.1.6.5.3)		
3AB	Smp_181450	NA	CCDC66		
3AB	Smp_326130	Svp26/Tex261	Erv26		
3AB	Smp_106080	NAD(P)-binding domain	NADH-ubiquinone oxidoreductase chain 3 (E.C.1.6.5.3)		

Anne	nnexe 6				
ЗАВ	Smp_181440	Dual specificity phosphatase, catalytic domain	Proline directed phosphatase CDC14b2 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_106060	EF-hand domain	ADP,ATP carrier protein {Cow (<i>Bos taurus</i>), heart isoform t1 [TaxId: 9913]}		
ЗАВ	Smp_106050	Dim1 family	spliceosomal protein U5-15Kd {Human (<i>Homo</i> <i>sapiens</i>) [TaxId: 9606]}		
ЗАВ	Smp_246560	GIY-YIG endonuclease	Structure-specific endonuclease subunit SLX1, Structure-specific		
3AB	Smp_181410	NA	NA		
ЗАВ	Smp_106010	NA	Mitogen activated protein kinase kinase 5, Map2k5 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_181390	CREB3 regulatory factor	Zta transcription factor/DNA Complex		
ЗАВ	Smp_213040	26S Proteasome non-ATPase regulatory subunit 9	Probable 26S proteasome regulatory subunit		
3AB	Smp_213050	NA	ComS		
3AB	Smp_105970	NA	NUCLEAR PORE COMPLEX PROTEIN NUP155		
3AB	Smp 105960	SANT/Myb domain	Zuotin		
3AB	Smp_105950	Armadillo	beta-Catenin {Human (<i>Homo sapiens</i>) [Taxld: 9606]}		
3AB	Smp_308440	NA	NA		
3AB	Smp_105930	S1 domain	ribosome, ribosome biogenesis, rRNA		
3AB	Smp_105910	Zinc finger, TAZ-type	Histone acetyltransferase p300 (E.C.2.3.1.48), p53		
3AB	Smp_246550	I/LWEQ domain	ENTH DOMAIN OF EPSIN ENT1		
ЗАВ	Smp_105860	SKI-interacting protein SKIP, SNW domain	Pre-mRNA-processing-splicing factor 8, 116 kDa		
3AB	Smp_246540	Peptidase M14, carboxypeptidase A	METALLO-CARBOXYPEPTIDASE		
ЗАВ	Smp_246530	Zinc finger, RING-type	Immediate early protein, IEEHV {Equine herpesvirus 1 [TaxId: 10326]}		
3AB	Smp_308470	SEA domain	SEA		
3AB	Smp_308480	SEA domain	SEA		
3AB	Smp_308490	SEA domain	Transmembrane protease (E.C.3.4.21)		
ЗАВ	Smp_347300	Ribosomal protein L1, 3-layer alpha/beta-sandwich	Periodic tryptophan protein 2-like protein		
3AB	Smp_181290	Ribosomal protein L28/L24	28S ribosomal protein S2, mitochondrial		
ЗАВ	Smp_246520	Sel1-like repeat	Cysteine rich protein C (HcpC) { <i>Helicobacter pylori</i> [Taxld: 210]}		
ЗАВ	Smp_326150	NA	Cysteine rich protein B (HcpB) { <i>Helicobacter pylori</i> [Taxld: 210]}		
3AB	Smp_341430	NA	NA		
3AB	Smp_085080	NA	cAMP-dependent protein kinase type II-alpha		
ЗАВ	Smp_168330	Trafficking protein particle complex subunit 2	Sedlin (SEDL) {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
3AB	Smp_085110	Amidohydrolase-related	DIHYDROPYRIMIDINASE-RELATED PROTEIN 5		

Anne	Annexe 6				
3AB	Smp_168340	SANT/Myb domain	REST corepressor 1, CoREST {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_168350	CS domain	Suppressor of G2 allele of skp1 homolog, gst1 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_010160	CS domain	SGS		
3AB	Smp_347810	NA	RabGAP/TBC protein		
3AB	Smp_010140	G-patch domain	G-patch		
3AB	Smp_210480	Peptidase M24	AMINOPEPTIDASE P II (E.C.3.4.11.9)		
3AB	Smp_333560	Beta-N-acetylglucosaminidase	Protein O-GlcNAcase (E.C.3.2.1.169,3.2.1)		
3AB	Smp_010110	Zinc finger, RING-CH-type	IE1B protein (ORF K3), N-terminal domain {Kaposi's sarcoma-associated herpesvirus, KSHV, HHV8 [TaxId: 37296]}		
3AB	Smp_010100	Lipoyl synthase	Lipoyl synthase (E.C.2.8.1.8)		
3AB	Smp_010090	Snf7 family	Charged multivesicular body protein 3		
3AB	Smp_167880	SprT-like	SprT-like domain-containing protein Spartan		
3AB	Smp_326160	NA	NA		
3AB	Smp_210680	CCR4-NOT transcription complex subunit 9	GENERAL NEGATIVE REGULATOR OF TRANSCRIPTION		
3AB	Smp_212540	ST7	ST7		
3AB	Smp_316690	Cysteine alpha-hairpin motif superfamily	СНСН		
3AB	Smp_127520	PDZ domain	Galpha interacting protein, GaIP {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_335850	CDK5 regulatory subunit-associated protein 3	DUF773		
3AB	Smp_210070	Domain of unknown function DUF3677	DUF3677		
3AB	Smp_246450	CDK5 regulatory subunit-associated protein 3	DUF773		
3AB	Smp_243720	IQ motif, EF-hand binding site	Myosin S1, motor domain {Bay scallop (<i>Aequipecten irradians</i>) [TaxId: 31199]}		
3AB	Smp_127500	NA	NA		
3AB	Smp_335300	Tim10-like	MITOCHONDRIAL IMPORT INNER MEMBRANE TRANSLOCASE		
3AB	Smp_009990	Receptor L-domain	Insulin receptor (E.C.2.7.10.1), Insulin		
3AB	Smp_210660	SET domain	Histone-lysine N-methyltransferase 2E (E.C.2.1.1.43)		
3AB	Smp_192010	NA	Activity-regulated cytoskeleton associated protein 1		
3AB	Smp_210670	LIS1 homology motif	Vacuolar import and degradation protein		
3AB	Smp_127490	Helicase, C-terminal	BLOOM'S SYNDROME HELICASE (E.C.3.6.4.12)		
3AB	Smp_127480	von Willebrand factor, type A	VWA_3		
3AB	Smp_127470	NA	NA		
3AB	Smp_127460	Translin-associated factor X- interacting protein 1, N-terminal	TSNAXIP1_N		
3AB	Smp_013040	Aspartic peptidase A1 family	Pepsin(ogen) {Pig (Sus scrofa) [TaxId: 9823]}		

Annex	innexe 6				
ЗАВ	Smp_326170	Aspartic peptidase domain superfamily	Plasmepsin (a hemoglobin-degrading enzyme) { <i>Plasmodium vivax</i> [TaxId: 5855]}		
3AB	Smp_326180	NA	NA		
ЗАВ	Smp_129160	siRNA-mediated silencing protein NRDE-2	NRDE-2		
3AB	Smp_013050	TLDc domain	TLD		
3AB	Smp_013060	SMAD domain, Dwarfin-type	SMAD MH1 domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_326190	NA	NA		
3AB	Smp_013070	Homeobox domain	Hepatocyte nuclear factor 6 {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
3AB	Smp_013080	IQ motif, EF-hand binding site	Vacuolar protein sorting-associated protein 4		
3AB	Smp_243700	Protein kinase domain	Cyclin-dependent PK, CDK6 {Human (<i>Homo</i> <i>sapiens</i>) [TaxId: 9606]}		
3AB	Smp_308550	METTL16/RImF family	Methyltransferase 10 domain containing protein METT10D {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_129130	Helicase, C-terminal	ATP-dependent DNA helicase Q5 (E.C.3.6.4.12)		
3AB	Smp_129120	Leucine-rich repeat	BURRH		
3AB	Smp_129110	Fanconi-associated nuclease 1-like	Fanconi-associated nuclease 1 (E.C.3.1.21, 3.1.4.1)		
3AB	Smp_012980	Eukaryotic translation initiation factor 3 subunit J	eIF3_subunit		
3AB	Smp_308590	Myotubularin-like phosphatase domain	MYOTUBULARIN-RELATED PROTEIN 6 (E.C.3.1.3)		
3AB	Smp_308600	FYVE zinc finger	Myotubularin-related protein 2, C-terminal domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_243690	Cytoplasmic polyadenylation element-binding protein, ZZ domain	Cytoplasmic polyadenylation element-binding protein 1		
3AB	Smp_026390	Zinc finger, AN1-type	RIKEN cDNA 2310008M20 protein		
ЗАВ	Smp_136400	Cytochrome b561/ferric reductase transmembrane	Cytochrome b reductase 1 (E.C.1)		
3AB	Smp_246440	Immunoglobulin-like fold	PapD-like		
3AB	Smp_026340	XRN2-binding (XTBD) domain	5'-3' EXORIBONUCLEASE 2 HOMOLOG (E.C.3.1.13)		
3AB	Smp_026320	Mediator complex, subunit Med25, von Willebrand factor type A	Med25_VWA		
3AB	Smp_332420	GroES-like superfamily	Trans-2-enoyl-CoA reductase (E.C.1.3.1.38)		
3AB	Smp_308630	GroES-like superfamily	Trans-2-enoyl-CoA reductase (E.C.1.3.1.38)		
3AB	Smp_026300	rRNA biogenesis protein RRP36	RRP36		
3AB	Smp_136360	Metallo-beta-lactamase	SGC - Diamond I04-1 fragment		
3AB	Smp_026280	NA	NRBF2		
ЗАВ	Smp_026270	Zinc finger C2H2-type	Zinc finger protein 297b {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_136350	Ribonuclease P/MRP protein subunit	RNase P protein component 2, Rnp2 { <i>Pyrococcus horikoshii</i> [TaxId: 53953]}		

Anne	innexe 6				
3AB	Smp_026260	Zinc finger, RING-type	V(D)J recombination activating protein 1 (RAG1), dimerization domain {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
ЗАВ	Smp_026250	Tetratricopeptide-like helical domain superfamily	Uncharacterized protein, Peptide alpha-N- acetyltransferase		
3AB	Smp_343040	NA	FAM184		
3AB	Smp_026230	NA	Snake coagglutinin alpha chain {Habu snake (<i>Trimeresurus flavoviridis</i>), flavocetin-A [Taxld: 88087]}		
3AB	Smp_246430	Sterile alpha motif domain	Receptor-type tyrosine-protein phosphatase delta (E.C.3.1.3.48)		
3AB	Smp_092810	TMEM33/Pom33 family	UPF0121		
ЗАВ	Smp_308680	Protein phosphatase 2A regulatory subunit PR55	Serine/threonine-protein phosphatase 2A 65 kDa		
3AB	Smp_335460	NA	NA		
ЗАВ	Smp_308690	Protein phosphatase 2A regulatory subunit PR55	NA		
3AB	Smp_335470	NA	NA		
3AB	Smp_335480	NA	NA		
ЗАВ	Smp_308700	Protein phosphatase 2A regulatory subunit PR55	Serine/threonine-protein phosphatase 2A 65 kDa		
3AB	Smp_335490	NA	NA		
3AB	Smp_326220	NA	NA		
3AB	Smp_335500	NA	DUF4183		
3AB	Smp_326230	NA	NA		
3AB	Smp_335510	NA	NA		
3AB	Smp_344300	NA	NA		
3AB	Smp_150230	Cation efflux protein	Cation efflux family protein		
3AB	Smp_052390	Origin recognition complex, subunit 5	Orc2, Orc3, Orc5, Orc1, Orc6		
ЗАВ	Smp_150220	PTP type protein phosphatase	Protein-tyrosine phosphatase alpha {Mouse (Mus musculus) [TaxId: 10090]}		
3AB	Smp_150210	Zinc finger, RING-type	U1 SNP1-associating protein 1, Degradation		
3AB	Smp_150200	Glycosyltransferase, ALG3	ALG3		
3AB	Smp_052350	Zinc finger, RanBP2-type	UBIQUITIN THIOESTERASE ZRANB1 (E.C.3.4.19.12)		
3AB	Smp_052330	Glycosyl transferase, family 1	DNA alpha-glucosyltransferase (E.C.2.4.1.26)		
ЗАВ	Smp_150180	G protein-coupled receptor, rhodopsin-like	Chimera of Proteinase-activated receptor 1		
3AB	Smp_084380	Metallo-beta-lactamase	Small nuclear ribonucleoprotein Sm D3		
3AB	Smp_167920	Ubinuclein-2	UBN_AB		
ЗАВ	Smp_084400	CTLH/CRA C-terminal to LisH motif domain	Vacuolar import and degradation protein		
ЗАВ	Smp_007510	Protein kinase domain	Cell division protein kinase 7, CDK7 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_007500	Golgi phosphoprotein 3-like	Sac1, Vps74		

Annex	annexe 6				
ЗАВ	Smp_168800	Peptidase C12, ubiquitin carboxyl- terminal hydrolase	Ubiquitin carboxyl-terminal hydrolase UCH-I3 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_085790	NA	NA		
ЗАВ	Smp_197540	Lipocalin-interacting membrane receptor	LMBR1		
3AB	Smp_326250	NA	30S ribosomal protein S2, 30S		
3AB	Smp_085780	Ribosomal protein L10P	28S ribosomal protein S2, mitochondrial		
3AB	Smp_168780	NA	NA		
ЗАВ	Smp_168770	Mitochondrial import inner membrane translocase subunit Tim16	Pam16		
3AB	Smp_085750	Zinc finger protein NOA36	NOA36		
3AB	Smp_085740	SH3 domain	Cytoplasmic FMR1-interacting protein 1, Nck- associated		
3AB	Smp_076650	Calcium release-activated calcium channel protein	Orai-1		
3AB	Smp_168760	Flavin amine oxidase	ferredoxin reductase (E.C.1.18.1.2)		
3AB	Smp_131600	Cadherin-like	Protocadherin-15		
3AB	Smp_087550	NA	Cytochrome c oxidase subunit 1		
3AB	Smp_087560	Dynein regulatory complex protein 1/2, N-terminal	NYD-SP28		
ЗАВ	Smp_169780	SMAD domain, Dwarfin-type	Smad4 tumor suppressor C-terminal domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_087580	BRO1 domain	Crystal Structure of ALIX/AIP1 in		
ЗАВ	Smp_243670	DNA topoisomerase, type IA	DNA TOPOISOMERASE 3-ALPHA (E.C.5.99.1.2), RECQ-MEDIATED		
3AB	Smp_243660	Cilia- and flagella-associated protein 97	NA		
3AB	Smp_087620	BRO1 domain	Crystal Structure of ALIX/AIP1 in		
3AB	Smp_169800	Citron homology (CNH) domain	Rho guanyl nucleotide exchange factor		
ЗАВ	Smp_169820	Gamma-tubulin complex component protein	Gamma-tubulin complex component 6		
3AB	Smp_345930	NA	HNH_5		
3AB	Smp_326270	NA	NA		
ЗАВ	Smp_210720	Uncharacterised protein family UPF0047	Hypothetical protein TM0723 { <i>Thermotoga</i> <i>maritima</i> [TaxId: 2336]}		
3AB	Smp_213030	XPG/Rad2 endonuclease	Flap endonuclease GEN homolog 1/DNA		
3AB	Smp_087690	Protease inhibitor I35 (TIMP)	Metalloproteinase inhibitor 1, Stromelysin-2 (E.C.3.4.24.22)		
ЗАВ	Smp_156250	NA	Photosystem I iron-sulfur protein PsaC {Synechococcus elongatus [TaxId: 32046]}		
3AB	Smp_063230	Leucine-rich repeat	von Willebrand factor binding domain of glycoprotein Ib alpha {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_156270	Per1-like	Per1		
3AB	Smp_156280	Hyccin	Phosphatidylinositol 4-kinase III alpha (PI4KA)		

Annex	Annexe 6				
3AB	Smp_063250	Ubiquinol-cytochrome c chaperone, CBP3	Ubiquinol-cytochrome C chaperone		
ЗАВ	Smp_063260	FYVE zinc finger	Platelet-activating factor acetylhydrolase IB subunit alpha {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
3AB	Smp_156290	ARID DNA-binding domain	Lysine-specific demethylase 5A (E.C.1.14.11)		
3AB	Smp_156300	WD40 repeat	Tubulin beta, Tubulin alpha, PACRG		
3AB	Smp_063300	Ribosomal protein L36e	Protein translation inhibitor, complex, ribosome		
3AB	Smp_156310	NA	NA		
3AB	Smp_333570	Sodium	Sodium-dependent serotonin transporter, 8B6 antibody		
3AB	Smp_063330	NA	NA		
3AB	Smp_340980	Phosphoserine phosphatase, domain 2	Phosphoserine phosphatase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_063350	Ribosomal protein L27e	uL2, uL3, uL4, uL18, eL6		
3AB	Smp_308750	NA	NA		
3AB	Smp_308760	NA	VASODILATOR-STIMULATED PHOSPHOPROTEIN		
3AB	Smp_326300	NA	NA		
ЗАВ	Smp_063380	HAD superfamily	Phosphoserine phosphatase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
ЗАВ	Smp_063390	4'-phosphopantetheinyl transferase domain	HSPC223 (E.C.1.2.1.31)		
3AB	Smp_156340	NA	NA		
ЗАВ	Smp_156350	WD40 repeat	Actin interacting protein 1 {Nematode (Caenorhabditis elegans) [TaxId: 6239]}		
3AB	Smp_063420	Chaperonin TCP-1, conserved site	T-COMPLEX PROTEIN 1 SUBUNIT ALPHA		
3AB	Smp_241400	Pyruvate kinase	Pyruvate kinase (E.C.2.7.1.40)		
ЗАВ	Smp_214390	Homeobox domain	Antennapedia Homeodomain { <i>Drosophila melanogaster</i> [TaxId: 7227]}		
3AB	Smp_156370	NA	CCDC144C		
3AB	Smp_156390	Ras-associating (RA) domain	Growth factor receptor-bound protein 14		
3AB	Smp_243680	AAA ATPase domain	HsIU {Haemophilus influenzae [TaxId: 727]}		
3AB	Smp_063500	NA	Deltex protein 2 RING-H2 domain {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
ЗАВ	Smp_021340	Myc-type, basic helix-loop-helix (bHLH) domain	Mad protein {Human (<i>Homo sapiens</i>) [Taxld: 9606]}		
3AB	Smp_326360		0.34		
3AB	Smp_123440	FAD dependent oxidoreductase	D-amino-acid oxidase (E.C.1.4.3.3)		
3AB	Smp_123450	Nucleoporin Nup88	Nup88		
3AB	Smp_123460	NA	Peptidyl-tRNA hydrolase { <i>Escherichia coli</i> [TaxId: 562]}		
3AB	Smp_002510	Transketolase-like, pyrimidine-binding domain	Pyruvate dehydrogenase E1-beta, PdhB, N- terminal domain { <i>Bacillus stearothermophilus</i> [TaxId: 1422]}		
3AB	Smp_123470	Leucine-rich repeat	Rna1p (RanGAP1), N-terminal domain {Fission yeast (<i>Schizosaccharomyces pombe</i>) [TaxId: 4896]}		

Anne	Annexe 6				
3AB	Smp_123480	Protein kinase domain	Death-associated protein kinase, Dap {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_123490	Cytidyltransferase-like domain	Nicotinamide mononucleotide (NMN) adenylyltransferase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_002550	RNA recognition motif domain	RNA-binding protein 8 {Fruit fly (<i>Drosophila melanogaster</i>) [TaxId: 7227]}		
3AB	Smp_123500	Helicase, C-terminal	DEAH (Asp-Glu-Ala-His) box polypeptide 37/RNA		
3AB	Smp_123510	Vps16, C-terminal	Vps16_C		
3AB	Smp_123520	(Uracil-5)-methyltransferase family	rRNA (Uracil-5-)-methyltransferase RumA, catalytic domain { <i>Escherichia coli</i> [TaxId: 562]}		
3AB	Smp_123530	tRNA/rRNA methyltransferase, SpoU type	RNA 2'-O-RIBOSE METHYLTRANSFERASE(E.C.2.1.1)		
3AB	Smp_002600	Peptidase S28	Lysosomal Pro-X carboxypeptidase (E.C.3.4.16.2)		
3AB	Smp_202120	Homeobox domain	Msx-1 homeodomain {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
3AB	Smp_002640	Homeobox domain	Antennapedia Homeodomain { <i>Drosophila melanogaster</i> [TaxId: 7227]}		
3AB	Smp_123570	Myc-type, basic helix-loop-helix (bHLH) domain	Aryl hydrocarbon receptor nuclear translocator		
3AB	Smp_123590	NA	Penicillin-binding protein 2x (pbp-2x), c-terminal domain { <i>Streptococcus pneumoniae</i> [TaxId: 1313]}		
3AB	Smp_123600	RNA recognition motif domain	SMART/HDAC1 associated repressor protein, SHARP {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_123610	Protein kinase domain	Phosphatidylinositol 3-kinase VPS34 (E.C.2.7.1.137), Serine/threonine-protein		
3AB	Smp_123620	OTU domain	OTU domain-containing protein 5 (E.C.3.4.19.12)		
ЗАВ	Smp_123630	Peptidase C19, ubiquitin carboxyl- terminal hydrolase	TATA-binding protein, Transcriptional coactivator HFI1/ADA1		
3AB	Smp_002740	NA	Arylsulfatase B (4-sulfatase) {Human (<i>Homo sapiens</i>) [Taxld: 9606]}		
3AB	Smp_123640	GPCR kinase	G protein-coupled receptor kinase 4		
3AB	Smp_308820	Leucine-rich repeat	Myeloperoxidase (E.C.1.11.2.2)		
3AB	Smp_308830	NA	NA		
3AB	Smp_300810	AAA ATPase domain	Spastin (E.C.5.6.1.1), polyglutamate peptide		
3AB	Smp_002820	Zinc finger, CCCH-type	Zinc finger CCCH domain-containing protein C19orf7 (KIAA1064) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_002840	Uncharacterised protein family UPF0489	UPF0489		
3AB	Smp_123670	Histidine phosphatase superfamily, clade-2	Prostatic acid phosphatase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_002860	NA	NA		
3AB	Smp_002870	TMEM115/Pdh1/Rbl19	DER1		

Anne	Annexe 6				
3AB	Smp_002880	ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-	ATP synthase alpha chain, mitochondrial		
3AB	Smn 212320	BNA polymerase, alpha subupit	DNA-directed RNA polymerase III subunit		
3AB	Smp_212320	Anoctamin	Anoctamin-10		
3AB	Smp_123690	tRNA-splicing endonuclease, subunit Sen54, N-terminal	tRNA-splicing endonuclease (E.C.3.1.27.9), NEQ261		
3AB	Smp_002920	TRAM/LAG1/CLN8 homology domain	TRAM_LAG1_CLN8		
ЗАВ	Smp_337740	Histone H2A	Histone H2A {Chicken (<i>Gallus gallus</i>), erythrocytes [TaxId: 9031]}		
3AB	Smp_341880	Leucine-rich repeat	von Willebrand factor binding domain of glycoprotein Ib alpha {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_084520	SRR1-like domain	SRR1		
3AB	Smp_084540	Forkhead-associated (FHA) domain	RNA-binding protein 5, Survival motor		
3AB	Smp_165280	WD40 repeat	Transducin-like enhancer protein 1		
3AB	Smp_197370	Fibrillar collagen, C-terminal	Collagen alpha-1(I) chain, Collagen alpha-2(I)		
3AB	Smp_164590	Fibrillar collagen, C-terminal	Collagen alpha-1(I) chain, Collagen alpha-2(I)		
3AB	Smp_078750	Tetraspanin	Tetraspanin		
ЗАВ	Smp_345510	P-loop containing nucleoside triphosphate hydrolase	di-Ras2 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
ЗАВ	Smp_078730	Dihydroorotate dehydrogenase, conserved site	Dihydroorotate dehydrogenase (E.C.1.3.98.1)		
ЗАВ	Smp_326390	Dynein light chain, type 1/2	Dynein light chain 1 (DLC1) {Fruit fly (Drosophila melanogaster) [TaxId: 7227]}		
ЗАВ	Smp_202130	Dynein light chain, type 1/2	Dynein light chain 1 (DLC1) {Fruit fly (Drosophila melanogaster) [TaxId: 7227]}		
3AB	Smp_164560	NA	NA		
3AB	Smp_213150	Pop1, N-terminal	Ribonucleases P/MRP protein subunit POP1		
3AB	Smp_168160	HECT domain	Ubiquitin-protein ligase E3a (E6ap) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_084830	UDP-glucose/GDP-mannose dehydrogenase, N-terminal	UDP-glucose 6-dehydrogenase (E.C.1.1.1.22)		
3AB	Smp_197480	Abhydrolase domain containing 18	CARBOXYLESTERASE (EST-2) (E.C.3.1.1.1)		
3AB	Smp_165180	NA	NA		
3AB	Smp_079840	Tetrapyrrole biosynthesis, uroporphyrinogen III synthase	Uroporphyrinogen III synthase (U3S, HemD) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_165170	Ion transport domain	nvTRPM2 channel		
3AB	Smp_079810	Peptide chain release factor class I/class II	Probable peptide chain release factor		
3AB	Smp_079800	Rab-GTPase-TBC domain	RabGAP/TBC protein		
3AB	Smp_165150	Ankyrin repeat	I-kappa-B-alpha {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_079770	Disulphide isomerase	Protein disulfide-isomerase A3ERp57 (E.C.5.3.4.1)/Tapasin		

Anne	Annexe 6				
3AB	Smp_079760	Protein kinase domain	B-Raf kinase {Human (<i>Homo sapiens</i>) [Taxld: 9606]}		
3AB	Smp_079750	Ribosomal RNA processing protein 8	Methyltransf_8		
3AB	Smp_079740	Cullin, N-terminal	Cullin-5, RING-box protein 2		
3AB	Smp_079730	RNA recognition motif domain	mRNA 3'-end-processing protein RNA14, Rna15		
ЗАВ	Smp_079710	Ribosomal protein/NADH dehydrogenase domain	NADH-ubiquinone oxidoreductase b8 subunit, CI- B8 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_345590	NA	NA		
3AB	Smp_331930	NA	NA		
3AB	Smp_183870	NA	NA		
3AB	Smp_341780	NA	NA		
3AB	Smp_346730	NA	NA		
3AB	Smp_185460	NA	NA		
3AB	Smp_346550	NA	NA		
ЗАВ	Smp_326400	Pseudouridine synthase, RsuA/RluA	Ribosomal large subunit pseudouridine synthase D, RluD { <i>Escherichia coli</i> [TaxId: 562]}		
3AB	Smp_333580	Microtubule-associated protein, MAP65/Ase1/PRC1	Protein regulator of cytokinesis 1		
3AB	Smp_084940	Small GTPase	Ras-related protein M-Ras (XRas) {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
ЗАВ	Smp_341420	Dual specificity phosphatase, catalytic domain	Mapk phosphatase {Human (<i>Homo sapiens</i>), pac-1 [TaxId: 9606]}		
3AB	Smp_168200	F-box domain	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase		
3AB 3AB	Smp_168200 Smp_084910	F-box domain Protein FMC1 homologue	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2		
3AB 3AB 3AB	Smp_168200 Smp_084910 Smp_084900	F-box domain Protein FMC1 homologue Initiation factor 2B-related	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit		
3AB 3AB 3AB 3AB	Smp_168200 Smp_084910 Smp_084900 Smp_084890	F-box domain Protein FMC1 homologue Initiation factor 2B-related Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2)		
3AB 3AB 3AB 3AB 3AB	Smp_168200 Smp_084910 Smp_084900 Smp_084890 Smp_084870	F-box domain Protein FMC1 homologue Initiation factor 2B-related Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase CID domain	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2) PCF11 protein {Baker's yeast (<i>Saccharomyces</i> <i>cerevisiae</i>) [TaxId: 4932]}		
3AB 3AB 3AB 3AB 3AB 3AB	Smp_168200 Smp_084910 Smp_084900 Smp_084890 Smp_084870 Smp_084860	F-box domain Protein FMC1 homologue Initiation factor 2B-related Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase CID domain Domain of unknown function DUF155	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2) PCF11 protein {Baker's yeast (<i>Saccharomyces</i> <i>cerevisiae</i>) [TaxId: 4932]} DUF155		
3AB 3AB 3AB 3AB 3AB 3AB 3AB	Smp_168200 Smp_084910 Smp_084900 Smp_084890 Smp_084870 Smp_084860 Smp_168170	F-box domain Protein FMC1 homologue Initiation factor 2B-related Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase CID domain Domain of unknown function DUF155 Calcineurin-like phosphoesterase domain, ApaH type	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2) PCF11 protein {Baker's yeast (<i>Saccharomyces</i> <i>cerevisiae</i>) [TaxId: 4932]} DUF155 Uncharacterized C17orf48 homolog zgc:64213 {Zebrafish (<i>Danio rerio</i>) [TaxId: 7955]}		
3AB 3AB 3AB 3AB 3AB 3AB 3AB 3AB	Smp_168200 Smp_084910 Smp_084900 Smp_084890 Smp_084870 Smp_084860 Smp_168170 Smp_138210	F-box domain Protein FMC1 homologue Initiation factor 2B-related Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase CID domain Domain of unknown function DUF155 Calcineurin-like phosphoesterase domain, ApaH type Alpha crystallin/Hsp20 domain	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2) PCF11 protein {Baker's yeast (<i>Saccharomyces</i> <i>cerevisiae</i>) [TaxId: 4932]} DUF155 Uncharacterized C17orf48 homolog zgc:64213 {Zebrafish (<i>Danio rerio</i>) [TaxId: 7955]} SMALL HEAT SHOCK PROTEIN		
3AB 3AB 3AB 3AB 3AB 3AB 3AB 3AB	Smp_168200 Smp_084910 Smp_084900 Smp_084890 Smp_084870 Smp_084860 Smp_168170 Smp_138210 Smp_347470	F-box domain Protein FMC1 homologue Initiation factor 2B-related Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase CID domain Domain of unknown function DUF155 Calcineurin-like phosphoesterase domain, ApaH type Alpha crystallin/Hsp20 domain Homeobox domain	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2) PCF11 protein {Baker's yeast (<i>Saccharomyces</i> <i>cerevisiae</i>) [TaxId: 4932]} DUF155 Uncharacterized C17orf48 homolog zgc:64213 {Zebrafish (<i>Danio rerio</i>) [TaxId: 7955]} SMALL HEAT SHOCK PROTEIN Antennapedia Homeodomain { <i>Drosophila</i> <i>melanogaster</i> [TaxId: 7227]}		
3AB 3AB 3AB 3AB 3AB 3AB 3AB 3AB 3AB	Smp_168200 Smp_084910 Smp_084900 Smp_084890 Smp_084870 Smp_084860 Smp_168170 Smp_138210 Smp_347470 Smp_138220	F-box domain Protein FMC1 homologue Initiation factor 2B-related Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase CID domain Domain of unknown function DUF155 Calcineurin-like phosphoesterase domain, ApaH type Alpha crystallin/Hsp20 domain Homeobox domain NA	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2) PCF11 protein {Baker's yeast (<i>Saccharomyces</i> <i>cerevisiae</i>) [Taxld: 4932]} DUF155 Uncharacterized C17orf48 homolog zgc:64213 {Zebrafish (<i>Danio rerio</i>) [Taxld: 7955]} SMALL HEAT SHOCK PROTEIN Antennapedia Homeodomain { <i>Drosophila</i> <i>melanogaster</i> [Taxld: 7227]} Enhancer of mRNA-decapping protein 3		
 3AB 	Smp_168200 Smp_084910 Smp_084900 Smp_084890 Smp_084870 Smp_084860 Smp_168170 Smp_138210 Smp_138220 Smp_138220 Smp_138230	F-box domain Protein FMC1 homologue Initiation factor 2B-related Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase CID domain Domain of unknown function DUF155 Calcineurin-like phosphoesterase domain, ApaH type Alpha crystallin/Hsp20 domain Homeobox domain NA DM DNA-binding domain	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2) PCF11 protein {Baker's yeast (<i>Saccharomyces</i> <i>cerevisiae</i>) [TaxId: 4932]} DUF155 Uncharacterized C17orf48 homolog zgc:64213 {Zebrafish (<i>Danio rerio</i>) [TaxId: 7955]} SMALL HEAT SHOCK PROTEIN Antennapedia Homeodomain { <i>Drosophila</i> <i>melanogaster</i> [TaxId: 7227]} Enhancer of mRNA-decapping protein 3 human DmrT1/DNA Complex		
 3AB 	Smp_168200 Smp_084910 Smp_084900 Smp_084890 Smp_084870 Smp_084860 Smp_168170 Smp_138210 Smp_138210 Smp_138220 Smp_138230 Smp_029670	F-box domain Protein FMC1 homologue Initiation factor 2B-related Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase CID domain Domain of unknown function DUF155 Calcineurin-like phosphoesterase domain, ApaH type Alpha crystallin/Hsp20 domain Homeobox domain NA DM DNA-binding domain NA	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2) PCF11 protein {Baker's yeast (<i>Saccharomyces</i> <i>cerevisiae</i>) [TaxId: 4932]} DUF155 Uncharacterized C17orf48 homolog zgc:64213 {Zebrafish (<i>Danio rerio</i>) [TaxId: 7955]} SMALL HEAT SHOCK PROTEIN Antennapedia Homeodomain { <i>Drosophila</i> <i>melanogaster</i> [TaxId: 7227]} Enhancer of mRNA-decapping protein 3 human DmrT1/DNA Complex Methyltransf_21		
 3AB 	Smp_168200 Smp_084910 Smp_084900 Smp_084890 Smp_084870 Smp_084860 Smp_168170 Smp_138210 Smp_138210 Smp_138220 Smp_138230 Smp_029670 Smp_138240	F-box domain Protein FMC1 homologue Initiation factor 2B-related Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase CID domain Domain of unknown function DUF155 Calcineurin-like phosphoesterase domain, ApaH type Alpha crystallin/Hsp20 domain Homeobox domain NA DM DNA-binding domain NA Zinc finger, double-stranded RNA binding	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2) PCF11 protein {Baker's yeast (<i>Saccharomyces</i> <i>cerevisiae</i>) [Taxld: 4932]} DUF155 Uncharacterized C17orf48 homolog zgc:64213 {Zebrafish (<i>Danio rerio</i>) [Taxld: 7955]} SMALL HEAT SHOCK PROTEIN Antennapedia Homeodomain { <i>Drosophila</i> <i>melanogaster</i> [Taxld: 7227]} Enhancer of mRNA-decapping protein 3 human DmrT1/DNA Complex Methyltransf_21 Pre-mRNA-processing-splicing factor 8, 116 kDa		
 3AB 	Smp_168200 Smp_084910 Smp_084900 Smp_084890 Smp_084870 Smp_084860 Smp_168170 Smp_138210 Smp_138210 Smp_138220 Smp_138230 Smp_029670 Smp_138240 Smp_029700	F-box domain Protein FMC1 homologue Initiation factor 2B-related Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase CID domain CID domain Domain of unknown function DUF155 Calcineurin-like phosphoesterase domain, ApaH type Alpha crystallin/Hsp20 domain Homeobox domain NA IMA IMA Zinc finger, double-stranded RNA binding NF-kappa-B-activating protein, C- terminal	Cryptochrome-2, F-box/LRR-repeat protein 3, S- phase Complex1_LYR_2 Translation initiation factor eIF-2B subunit PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2) PCF11 protein {Baker's yeast (<i>Saccharomyces</i> <i>cerevisiae</i>) [Taxld: 4932]} DUF155 Uncharacterized C17orf48 homolog zgc:64213 {Zebrafish (<i>Danio rerio</i>) [Taxld: 7955]} SMALL HEAT SHOCK PROTEIN Antennapedia Homeodomain { <i>Drosophila</i> <i>melanogaster</i> [Taxld: 7227]} Enhancer of mRNA-decapping protein 3 human DmrT1/DNA Complex Methyltransf_21 Pre-mRNA-processing-splicing factor 8, 116 kDa Nkap_C		

Anne	xe 6		
3AB	Smp_246350	NA	BAR_3
ЗАВ	Smp_029740	Flavinator of succinate dehydrogenase	Succinate dehydrogenase [ubiquinone] flavoprotein subunit
3AB	Smp_029750	Pre-rRNA-processing protein TSR2	Pre-rRNA-processing protein TSR2, 40S ribosomal
3AB	Smp_138280	Ribonuclease III domain	28S ribosomal protein S2, mitochondrial
3AB	Smp_138290	Dynein light chain, type 1/2	DYNEIN LIGHT CHAIN 2, CYTOPLASMIC
3AB	Smp_246340	NA	Tubulin beta, Tubulin alpha, PACRG
3AB	Smp_029800	FERM domain	FERM, RhoGEF and pleckstrin domain
3AB	Smp_138300	Tetraspanin, EC2 domain superfamily	CD81 antigen
3AB	Smp_029820	Ribosomal protein L12 family	Ribosome
ЗАВ	Smp_138310	Dual specificity phosphatase, catalytic domain	Mapk phosphatase {Human (<i>Homo sapiens</i>), pac-1 [TaxId: 9606]}
3AB	Smp_029850	Ribonuclease H-like superfamily	3'-5' exonuclease ERI1 (E.C.3.1)
3AB	Smp_138320	NA	NA
3AB	Smp_029890	Septin	Septin
ЗАВ	Smp_029900	Cyclophilin-type peptidyl-prolyl cis- trans isomerase domain	Peptidyl-prolyl cis-trans isomerase-like 1, PPIL1 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
3AB	Smp_138330	Tetraspanin, EC2 domain superfamily	CD81 antigen
ЗАВ	Smp_138340	Zinc finger C2H2-type	Transcriptional repressor CTCF {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
3AB	Smp_138350	Zinc finger C2H2-type	NOA36
3AB	Smp_343210	NA	NA
3AB	Smp_340620	NA	NA
ЗАВ	Smp_029940	Ubiquitin-conjugating enzyme E2	Ubiquitin-conjugating enzyme E2 Q2, C-terminal domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
3AB	Smp_029970	NA	NA
3AB	Smp_029990	Dedicator of cytokinesis, C-terminal	Dedicator of cytokinesis protein 2
ЗАВ	Smp_030000	Peptidase M17, leucyl aminopeptidase, C-terminal	Cytosol aminopeptidase (E.C.3.4.11.1)
3AB	Smp_030010	CCDC92/74, coiled-coil domain	CCDC92
3AB	Smp_030020	PTIP-associated protein 1	PAXIP1_C
3AB	Smp_030030	TM2 domain	TM2
3AB	Smp_347780	Homeobox domain	Msx-1 homeodomain {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
3AB	Smp_308980	BRCT domain	BRCT-containing protein 1
3AB	Smp_309000	BRCT domain	Regulator of Ty1 transposition protein
ЗАВ	Smp_311980	Zinc finger C2H2-type	LYSINE-SPECIFIC HISTONE DEMETHYLASE 1A (E.C.1)
3AB	Smp_138430	DEP domain	Regulator of G-protein signaling 7
3AB	Smp_030110	NA	Actin, alpha skeletal muscle, Gelsolin
3AB	Smp_316460	Zinc finger, UBR-type	E3 ubiquitin-protein ligase UBR2 (E.C.6.3.2.19)
ЗАВ	Smp_326430	Exoribonuclease, phosphorolytic domain 1	Exosome complex exonuclease RRP46 {Human (Homo sapiens) [TaxId: 9606]}
3AB	Smp_337750	DNA repair protein, Swi5	Swi5-dependent recombination DNA repair protein

Anne	innexe 6				
ЗАВ	Smp_120960	Exoribonuclease, phosphorolytic domain 1	Exosome complex exonuclease RRP46 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_030150	WH1/EVH1 domain	Homer {Rat (Rattus norvegicus) [TaxId: 10116]}		
3AB	Smp_138470	NA	Type-2 restriction enzyme DpnI (E.C.3.1.21.4)/DNA		
3AB	Smp_138480	NEMP family	NEMP		
3AB	Smp_030180	Beta-grasp domain superfamily	C9orf74 homolog {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
3AB	Smp_343220	Bardet-Biedl syndrome 5 protein	Bardet-Biedl syndrome 18 protein, BBS1		
3AB	Smp_138500	Arf GTPase activating protein	Ras-related protein Rab-35, Iporin		
ЗАВ	Smp_030220	HAD-superfamily hydrolase, subfamily IIA	Hypothetical protein TM1742 { <i>Thermotoga</i> <i>maritima</i> [Taxld: 2336]}		
3AB	Smp_138510	NA	NA		
3AB	Smp_030250	Nuclear transcription factor Y subunit A	NUCLEAR TRANSCRIPTION FACTOR Y SUBUNIT		
3AB	Smp_030260	NA	HIG1 domain family member 1B		
ЗАВ	Smp_138520	Drought induced 19 protein type, zinc-binding domain	Zinc finger protein 568/DNA Complex		
3AB	Smp_030280	OTU domain	OTU domain-containing protein		
3AB	Smp_030290	Prefoldin beta-like	Prefoldin beta subunit { <i>Archaeon</i> <i>Methanobacterium thermoautotrophicum</i> [TaxId: 145262]}		
ЗАВ	Smp_340630	Heat shock protein Hsp90 family	ATP-DEPENDENT MOLECULAR CHAPERONE HSP82, CO-CHAPERONE		
ЗАВ	Smp_030320	WD40 repeat	F-box/WD repeat-containing protein 7, FBXW7 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_030330	Peptidyl-tRNA hydrolase, PTH2	Hypothetical protein TA0108 {Archaeon Thermoplasma acidophilum [TaxId: 2303]}		
3AB	Smp_333590	CUB domain	Gastric intrinsic factor, Cubilin		
3AB	Smp_030350	CUB domain	Granzyme K {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_326450	NA	NA		
3AB	Smp_326460	NA	NA		
3AB	Smp_326470	NA	NA		
3AB	Smp_326480	NA	NA		
3AB	Smp_309090	NA	NA		
3AB	Smp_309100	NA	NA		
3AB	Smp_343230	NA	Lachrymatory-factor synthase		
3AB	Smp_341710	NA	Catalytic domain of MutY { <i>Escherichia coli</i> [Taxld: 562]}		
3AB	Smp_333600	P2X purinoreceptor	P2X purinoceptor 3		
ЗАВ	Smp_309110	NAD(P)-binding domain	TAT-interacting protein TIP30 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_326490	NA	GRP		
ЗАВ	Smp_159890	Peptidase M14, carboxypeptidase A	Carboxypeptidase M, catalytic domain {Human (Homo sapiens) [TaxId: 9606]}		
3AB	Smp_333610	Nucleolar, Nop52	Nop52		

Anne	xe 6		
3AB	Smp_326500	Dolichol-phosphate mannosyltransferase subunit 3	DPM3
ЗАВ	Smp_159860	G protein-coupled receptor, rhodopsin-like	Cannabinoid receptor 1, Flavodoxin
ЗАВ	Smp_159840	Dynein heavy chain, C-terminal domain	Dynein heavy chain, cytoplasmic
3AB	Smp_159830	NA	CYYR1
3AB	Smp_159800	NA	NA
3AB	Smp_326510	NA	GRP
ЗАВ	Smp_180310	NA	Histidyl-tRNA synthetase (HisRS) { <i>Staphylococcus aureus</i> [TaxId: 1280]}
3AB	Smp_180340	NA	SMK-1
ЗАВ	Smp_180330	NA	HTP reductase { <i>Methanococcus jannaschii</i> [TaxId: 2190]}
3AB	Smp_180320	NA	toxin Hm-3
ЗАВ	Smp_345100	NA	Squamosa-promoter binding-like protein 12, DNA- binding domain {Thale cress (<i>Arabidopsis thaliana</i>) [TaxId: 3702]}
3AB	Smp_309120	NA	NA
ЗАВ	Smp_336990	NA	Squamosa-promoter binding-like protein 12, DNA- binding domain {Thale cress (<i>Arabidopsis thaliana</i>) [TaxId: 3702]}
3AB	Smp_337000	NA	WAK
ЗАВ	Smp_016640	Histidine phosphatase superfamily, clade-2	Prostatic acid phosphatase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
ЗАВ	Smp_342580	Myc-type, basic helix-loop-helix (bHLH) domain	Transcription factor E2-alpha, DNA-binding protein
3AB	Smp_179810	Troponin	PROTEIN
ЗАВ	Smp_340020	Small GTP-binding protein domain	ADP-ribosylation factor {Human (<i>Homo sapiens</i>), ARF6 [TaxId: 9606]}
ЗАВ	Smp_000720	Protein kinase domain	Dual specificity mitogen-activated protein kinase kinase 1, Mek1 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
ЗАВ	Smp_000710	Peptidase C19, ubiquitin carboxyl- terminal hydrolase	Ubiquitin carboxyl-terminal hydrolase 7 (USP7, HAUSP) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
3AB	Smp_000700	SET domain	Smyd3 methyltransferase
3AB	Smp_000690	POU-specific domain	Oct-1 {Human (Homo sapiens) [TaxId: 9606]}
ЗАВ	Smp_000680	Mitochondrial substrate/solute carrier	ADP,ATP carrier protein {Cow (<i>Bos taurus</i>), heart isoform t1 [TaxId: 9913]}
3AB	Smp_000670	Arf GTPase activating protein	ARFGAP with coiled-coil, ANK repeat
3AB	Smp_000660	Aminotransferase class-III	Ornithine aminotransferase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
ЗАВ	Smp_000650	Zinc finger, RING-type	SIAH, seven in absentia homolog {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
3AB	Smp_000640	SH2 domain	v-crk sarcoma virus CT10 oncogene
ЗАВ	Smp_000630	Isochorismatase-like	Ribonuclease MAR1 { <i>Leishmania donovani</i> [TaxId: 5661]}

Anne	nnexe 6				
3AB	Smp_000620	Myc-type, basic helix-loop-helix (bHLH) domain	DNA-binding protein inhibitor ID-1		
3AB	Smp_000600	WD40 repeat	Rsa4		
3AB	Smp_000590	28S ribosomal protein S26	MITORIBOSOMAL PROTEIN US2M, MRPS2, MITORIBOSOMAL		
3AB	Smp_000580	NA	Tubulin beta, Tubulin alpha, PACRG		
ЗАВ	Smp_122370	Bromodomain	PHD-Bromo of TRIM66 protein, ALA-ARG-THR-LYS- GLN-THR-ALA-ARG-LYS-SER-THR-GLY		
3AB	Smp_000560	NA	NA		
3AB	Smp_266960	Zinc finger C2H2-type	FIVE-FINGER GLI/DNA COMPLEX		
ЗАВ	Smp_333620	Myc-type, basic helix-loop-helix (bHLH) domain	Myc proto-oncogene protein {Human (<i>Homo</i> <i>sapiens</i>) [TaxId: 9606]}		
3AB	Smp_185930	NA	Coatomer subunit alpha, Coatomer subunit		
3AB	Smp_162070	NA	NA		
3AB	Smp_000510	Hexapeptide repeat	Glucose-1-phosphate adenylyltransferase (E.C.2.7.7.27)		
3AB	Smp_000500	NA	NA		
3AB	Smp_122340	BTB/POZ domain	S-phase kinase-associated protein 1, F-box/LRR- repeat		
3AB	Smp_000480	Proteasome component (PCI) domain	40S ribosomal protein SA, 40S		
ЗАВ	Smp_000470	ATP-dependent (S)-NAD(P)H-hydrate dehydratase	Hypothetical protein TM0922, C-terminal domain { <i>Thermotoga maritima</i> [TaxId: 2336]}		
3AB	Smp_326520	NA	DNA damage-binding protein 1, DDB1-		
3AB	Smp_122320	NA	Activity-regulated cytoskeleton associated protein 1		
ЗАВ	Smp_309210	UBA-like superfamily	Ubiquitin-associated protein 2-like Ubap2l {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
ЗАВ	Smp_309220	Nucleotide-binding alpha-beta plait domain superfamily	Poly(A)-binding protein {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3AB	Smp_000430	Trematode Eggshell Synthesis	TES		
3AB	Smp_000420	NA	NA		
3AB	Smp_326530	NA	GRP		
3AB	Smp_122280	NA	NA		
3AB	Smp_326540	NA	NA		
3AB	Smp_191910	Trematode Eggshell Synthesis	TES		
3AB	Smp_340010	Trematode Eggshell Synthesis	TES		
3AB	Smp_326550	NA	NA		
3AB	Smp_326560	NA	NA		
3AB	Smp_000390	Trematode Eggshell Synthesis	TES		
3AB	Smp_326570	NA	NA		
3AB	Smp_326580	NA	NA		
3AB	Smp_000370	Selenoprotein SelK/SelG	SelK_SelG		
3AB	Smp_312230	NA	CCDC73		
3AB	Smp_000340	Nuclear hormone receptor, ligand- binding domain	Retinoic acid receptor RXR-alpha, Retinoic		

Anne	nnexe 6				
3AB	Smp_000320	NDRG	Protein NDRG3		
3AB	Smp_000310	NA	PRA1		
3AB	Smp_000300	Tetratricopeptide-like helical domain superfamily	Coatomer subunit alpha, Coatomer subunit		
3AB	Smp_112450	Trematode Eggshell Synthesis	TES		
3AB	Smp_077890	Trematode Eggshell Synthesis	TES		
3AB	Smp_307900	Trematode Eggshell Synthesis	TES		
3AB	Smp_332440	Trematode Eggshell Synthesis	TES		
3AB	Smp_309250	Trematode Eggshell Synthesis	TES		
3AB	Smp_326600	Trematode Eggshell Synthesis	TES		
3AB	Smp_326610	Trematode Eggshell Synthesis	TES		
3AB	Smp_000280	Trematode Eggshell Synthesis	TES		
3AB	Smp_000270	Trematode Eggshell Synthesis	TES		
3AB	Smp_000260	Saposin A-type domain	(Pro)phytepsin {Barley (<i>Hordeum vulgare</i>) [TaxId: 4513]}		
3AB	Smp_000250	NA	tRNA modification GTPase trmE		
3AB	Smp_000240	RNA recognition motif domain	Transportin-1, RNA-binding protein FUS		
3AB	Smp_000230	Zinc finger C2H2-type	LYSINE-SPECIFIC HISTONE DEMETHYLASE 1A (E.C.1)		
3B	Smp_000200	Smr domain	Polynucleotide kinase, kinase domain {Bacteriophage T4 [TaxId: 10665]}		
3B	Smp_122190	NA	p47 {Rat (Rattus norvegicus) [TaxId: 10116]}		
3B	Smp_326620	Cysteine-rich domain, DPF-motif	C6_DPF		
3B	Smp_000190	Short-chain dehydrogenase/reductase SDR	17-beta-hydroxysteroid dehydrogenase type XI {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3B	Smp_000180	EF-hand domain	Frequenin (neuronal calcium sensor 1) {Human (Homo sapiens) [TaxId: 9606]}		
3B	Smp_000160	Leucine-rich repeat N-terminal domain	Slit {Fruit fly (<i>Drosophila melanogaster</i>) [TaxId: 7227]}		
3B	Smp_122170	NA	Thrombospondin-1 (TSP-1) {Human (<i>Homo</i> sapiens) [TaxId: 9606]}		
3B	Smp_000150	Zinc finger, PHD-type	Histone H3.2, Histone H4, Histone		
3B	Smp_187940	NAD kinase/diacylglycerol kinase-like domain superfamily	DAGK_cat		
3B	Smp_000130	Hormone-sensitive lipase, N-terminal	HSL_N		
3B	Smp_000110	Elongation factor EFG, domain V-like	60S RIBOSOMAL PROTEIN L3, 60S		
3B	Smp_000100	Filamin/ABP280 repeat	FILAMIN-B		
3B	Smp_118830	F-actin-capping protein subunit alpha	Capz alpha-1 subunit {Chicken (<i>Gallus gallus</i>) [TaxId: 9031]}		
3B	Smp_167630	Zinc/iron permease	Zip		
3B	Smp_167640	Peptidase M14, carboxypeptidase A	FAMILY M14 UNASSIGNED PEPTIDASE		
			GEF of TIAM1 (T-Lymphoma invasion and		
3B	Smp_167650	Dbl homology (DH) domain	metastasis inducing protein 1) {Mouse (<i>Mus</i> <i>musculus</i>) [TaxId: 10090]}		
3B	Smp_083870	Peptidase M17, leucyl aminopeptidase, C-terminal	Cytosol aminopeptidase (E.C.3.4.11.1)		

Anne	Annexe 6				
3B	Smp_083880	G protein-coupled receptor, rhodopsin-like	Neurotensin receptor type 1,Endolysin,NEUROTENSIN RECEPTOR		
3B	Smp_167660	CBM21 (carbohydrate binding type- 21) domain	Protein phosphatase 1 regulatory subunit		
3B	Smp_167670	NA	GTP-sensing transcriptional pleiotropic repressor CodY		
3B	Smp_167680	HECT domain	E3 ubiquitin-protein ligase HUWE1 (E.C.6.3.2)		
3B	Smp_083930	Chromatin modification-related protein Eaf6	Histone acetyltransferase ESA1 (E.C.2.3.1.48), Chromatin		
3B	Smp_177720	G protein-coupled receptor, rhodopsin-like	C-X-C chemokine receptor type 4		
3B	Smp_083940	G protein-coupled receptor, rhodopsin-like	7TM_GPCR_Srw		
3B	Smp_326640	G protein-coupled receptor, rhodopsin-like	7TM_GPCR_Srw		
3B	Smp_083950	NA	Soluble cytochrome b562,Thromboxane A2 receptor,Rubredoxin,Thromboxane		
3B	Smp_083990	Amino acid/polyamine transporter I	4F2 cell-surface antigen heavy chain		
3B	Smp_326650	NA	DUF1998		
3B	Smp_083980	Epithelial sodium channel	Amiloride-sensitive sodium channel subunit alpha		
3B	Smp_083970	ER membrane protein complex subunit 10	ER membrane protein complex subunit		
3B	Smp_336790	FYVE zinc finger	Early Endosomal Autoantigen 1		
3B	Smp_246300	WD40 repeat	40S ribosomal protein S1-A, 40S		
3B	Smp_144350	NA	BEN		
3B	Smp_040710	DNA-directed RNA polymerase Rpb11, 13-16kDa subunit, conserved site	RPB11 {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}		
3B	Smp_040720	Protein of unknown function DUF2838	DUF2838		
3B	Smp_144360	Myelin proteolipid protein PLP	Myelin_PLP		
3B	Smp_144370	Leucine-rich repeat	Ribonuclease inhibitor {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3B	Smp_144380	Homeobox domain	Msx-1 homeodomain {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
3B	Smp_040770	Aminoacyl-tRNA synthetase, class I, conserved site	Methionyl-tRNA synthetase (E.C.6.1.1.10)		
3B	Smp_190740	NA	Coatomer subunit alpha, Coatomer subunit		
3B	Smp_040790	Cyclophilin-type peptidyl-prolyl cis- trans isomerase domain	Cyclophilin (eukaryotic) { <i>Caenorhabditis elegans,</i> isoform 5 [TaxId: 6239]}		
3B	Smp_040800	WHEP-TRS domain	Glycyl-tRNA synthetase (E.C.6.1.1.14)		
3B	Smp_144390	Ser/Thr protein kinase, TGFB receptor	B-Raf kinase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3B	Smp_185420	NA	ms48, ms51, ms56, ms59, ms60		
3B	Smp_196090	NA	Protein patched homolog 1, Sonic		
3B	Smp_205170	NA	NA		

Anne	xe 6		
3B	Smp_144430	Formin, FH3 domain	FMNL1, Cdc42
3B	Smp_144440	NA	NA
3B	Smp_144450	RNA recognition motif domain	Vinculin, Ribonucleoprotein PTB-binding 1
3B	Smp_190940	NA	EGF_3
3B	Smp_172030	Helicase, C-terminal	U1 small nuclear ribonucleoprotein 70
3B	Smp_199800	NA	DNA-directed primase/polymerase protein/DNA Complex
3B	Smp_337590	Matrin/U1-C, C2H2-type zinc finger	Spliceosomal protein U1C {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
3B	Smp_243210	Peptidase C14, p20 domain	Caspase-1 {Fall armyworm (<i>Spodoptera frugiperda</i>) [TaxId: 7108]}
3B	Smp_313810	Cell cycle regulator Mat89Bb	Integrator complex subunit 13, Integrator
3B	Smp_309360	Sterol-sensing domain	Protein dispatched homolog 1
3B	Smp_333630	PDZ domain	Synaptic protein PSD-95 {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}
3B	Smp_326660	NA	LRR_11
3B	Smp_091240	Porin, eukaryotic type	Voltage-dependent anion-selective channel protein 1
3B	Smp_091230	Ubiquitin-fold modifier 1	Ufm1-specific protease (E.C.3.4.22), Ubiquitin- fold modifier
3B	Smp_118710	NA	DNA replication licensing factor MCM6
3B	Smp_057130	AdipoR/Haemolysin-III-related	HUMAN ADIPONECTIN RECEPTOR 2, single-chain
3B	Smp_027850	Chromatin SPT2	Histone H3.2, Histone H4, Protein
3B	Smp_027870	NA	NPIP
3B	Smp_027880	Prefoldin beta-like	Prefoldin beta subunit { <i>Archaeon</i> <i>Methanobacterium thermoautotrophicum</i> [Taxld: 145262]}
3B	Smp_347380	Zinc finger, TRAF-type	F-box_4
3B	Smp_137280	Coiled-coil domain-containing protein 87	Protein regulator of cytokinesis 1
3B	Smp_333640	Peptidase S59, nucleoporin	NUCLEOPORIN NUP43, NUCLEAR PORE COMPLEX
3B	Smp_027910	Synembryn	Synembryn-A, G alpha t C
3B	Smp_027920	Tubulin	SPINDLE POLE BODY COMPONENT SPC97
3B	Smp_347950	Myosin head, motor domain	MYOSIN 2 HEAVY CHAIN STRIATED
3B	Smp_241490	G protein-coupled receptor, rhodopsin-like	7TM_GPCR_Srw
3B	Smp_091950	G protein-coupled receptor, rhodopsin-like	7TM_GPCR_Srw
3B	Smp_326670	G protein-coupled receptor, rhodopsin-like	Platelet-activating factor receptor, Flavodoxin
3B	Smp_134960	G protein-coupled receptor, rhodopsin-like	Platelet-activating factor receptor
3B	Smp_023710	G protein-coupled receptor, rhodopsin-like	Platelet-activating factor receptor, Flavodoxin

Anne	Annexe 6				
3B	Smp_117340	G protein-coupled receptor, rhodopsin-like	Rhodopsin		
3B	Smp_023700	Anticodon-binding domain	AD		
3B	Smp_134950	EF-hand domain	Myosin Essential Chain {Bay scallop (<i>Aequipecten irradians</i>) [TaxId: 31199]}		
3B	Smp_340430	Double-stranded RNA-binding domain	Endoribonuclease Dicer, RISC-loading complex subunit		
3B	Smp_023660	U3 small nucleolar ribonucleoprotein complex, subunit Mpp10	Mpp10		
3B	Smp_134940	GTP binding domain	YqeH GTPase		
3B	Smp_134930	NA	NA		
3B	Smp_023620	FERM domain	FERM, RhoGEF and pleckstrin domain		
3B	Smp_134910	Protein kinase domain	Aurora-related kinase 1 (aurora-2) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3B	Smp_246270	ABC transporter-like	Iron-sulfur clusters transporter ATM1, mitochondrial		
3B	Smp_023550	Armadillo	Sys-1 protein, Pop-1 8-residue peptide		
3B	Smp_134880	Snurportin-1	35 6DT1_A DNA dC->dU-editing enzy 93.8 0.02 1.7E-07 54.0 0.0 202 99-310 152-399 (507)		
3B	Smp_333660	Nucleosome assembly protein (NAP)	Nucleosome assembly protein, NAP {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}		
3B	Smp_134870	Zinc finger C2H2-type	Zinc finger protein 297b {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3B	Smp_134860	HEAT repeat	Constant regulatory domain of protein phosphatase 2a, pr65alpha {Human (<i>Homo</i> <i>sapiens</i>) [TaxId: 9606]}		
3B	Smp_309430	RecF/RecN/SMC, N-terminal	Structural maintenance of chromosomes protein		
3B	Smp_246290	SAC domain	Sac1, Vps74		
3B	Smp_023470	Aminotransferase class V domain	Probable cysteine desulfurase SufS { <i>Synechocystis</i> <i>sp.</i> PCC 6803 [TaxId: 1148]}		
3B	Smp_134820	G protein-coupled receptor, rhodopsin-like	Chimera of Proteinase-activated receptor 1		
3B	Smp_326690	NA	NA		
3B	Smp_134800	Protein kinase domain	Tyrosine-protein kinase ZAP-70 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3B	Smp_134790	TAFII28-like protein	TAF(II)28 {Human (Homo sapiens) [TaxId: 9606]}		
3B	Smp_342930	Zinc finger, RING-type	Not-4 N-terminal RING finger domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
3B	Smp_346950	NA	NA		
3B	Smp_342920	NA	NA		
3B	Smp_023360	Anticodon-binding	human histidyl-tRNA synthetase, cytoplasmic		
3B	Smp_134720	Major facilitator superfamily domain	Melibiose carrier protein		
3B	Smp_309500	Major facilitator superfamily domain	Melibiose carrier protein		
3B	Smp_309510	Major facilitator superfamily domain	Melibiose carrier protein		
3B	Smp_335880	Major facilitator superfamily domain	Melibiose carrier protein		

Anne	xe 6		
3B	Smp_333670	Ionotropic glutamate receptor	N-methyl-D-aspartate receptor subunit NR1-8a, Ionotropic
3B	Smp_026880	Histone H3/CENP-A	Leishmania histone H3, Histone H4
3B	Smp_136710	P-type ATPase	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1
3B	Smp_136730	Aspartic peptidase A1 family	Pepsin(ogen) {Pig (Sus scrofa) [TaxId: 9823]}
3B	Smp_026910	Lipase maturation factor	LMF1
3B	Smp_026920	GTP cyclohydrolase I	GTP cyclohydrolase I {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}
3B	Smp_026930	Glycosyl transferase, family 13	N-acetylglucosaminyltransferase I {Rabbit (<i>Oryctolagus cuniculus</i>) [TaxId: 9986]}
3B	Smp_136740	ClpA/B family	ClpB, AAA+ modules { <i>Thermus thermophilus</i> [TaxId: 274]}
3B	Smp_213390	Protein kinase domain	Pkb kinase (Akt-2) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
3B	Smp_213400	Zinc finger, RING-type	V(D)J recombination activating protein 1 (RAG1), dimerization domain {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
3B	Smp_136760	NA	hypothetical protein YugE { <i>Bacillus</i> <i>stearothermophilus</i> [TaxId: 1422]}
3B	Smp_136770	BCL7	BCL_N
3B	Smp_027000	Serine aminopeptidase, S33	Myristoyl-ACP-specific thioesterase { <i>Vibrio harveyi</i> [TaxId: 669]}
3B	Smp_027010	Clathrin adaptor, mu subunit	ADAPTOR-RELATED PROTEIN COMPLEX 2, ALPHA
3B	Smp_136780	Ubiquitin domain	Ubiquitin-like protein bab25500 (2010008E23Rik) {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
3B	Smp_027040	TB2/DP1/HVA22-related protein	TB2_DP1_HVA22
3B	Smp_333680	Phosphatidylinositol transfer protein	Phoshatidylinositol transfer protein, PITP {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}
3B	Smp_027080	NA	YIF1
3B	Smp_336330	NA	Myelin_PLP
3B	Smp_335890	Aspartic peptidase A1 family	Pepsin(ogen) {Pig (Sus scrofa) [TaxId: 9823]}
3B	Smp_326700	NA	NA
3B	Smp_335900	Aspartic peptidase A1 family	Pepsin(ogen) {Human (<i>Homo sapiens</i>), progastricsin (pepsinogen C) [TaxId: 9606]}
3B	Smp_309540	Aspartic peptidase A1 family	Pepsin(ogen) {Human (<i>Homo sapiens</i>), progastricsin (pepsinogen C) [TaxId: 9606]}
3B	Smp_018800	Aspartic peptidase A1 family	Pepsin(ogen) {Pig (Sus scrofa) [TaxId: 9823]}
3B	Smp_132470	Aspartic peptidase A1 family	Pepsin(ogen) {Human (<i>Homo sapiens</i>), progastricsin (pepsinogen C) [TaxId: 9606]}
3B	Smp_132480	Aspartic peptidase A1 family	Pepsin(ogen) {Pig (Sus scrofa) [TaxId: 9823]}
3B	Smp_342650	NA	NA
3B	Smp_342660	Small GTPase	Rad {Human (Homo sapiens) [TaxId: 9606]}
3B	Smp_342670	BRCT domain	Breast cancer associated protein, BRCA1 {Human (Homo sapiens) [TaxId: 9606]}
3B	Smp_342680	Sema domain	Macrophage-stimulating protein receptor (E.C.2.7.10.1)

Anne	Annexe 6				
3B	Smp_018870	Domain of unknown function DUF4537	DUF4537		
3B	Smp_018880	NA	NA		
3B	Smp_342690	3-oxo-5-alpha-steroid 4- dehydrogenase, C-terminal	3-oxo-5-alpha-steroid 4-dehydrogenase 2 (E.C.1.3.1.22)		
3B	Smp_214060	Phosphoglycerate kinase	Phosphoglycerate kinase {Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]}		
3B	Smp_132540	EGF-type aspartate/asparagine hydroxylation site	Protein toll, Protein spaetzle C-106		
3B	Smp_018930	NA	NA		
3B	Smp_018940	EF-hand domain	Myosin Essential Chain {Bay scallop (<i>Aequipecten irradians</i>) [TaxId: 31199]}		
3B	Smp_018950	RNA recognition motif domain	Telomerase reverse transcriptase, Telomerase- associated protein		
3B	Smp_132550	Centrosomal protein POC5	NA		
4B	Smp_135500	3'5'-cyclic nucleotide phosphodiesterase, catalytic domain	cGMP-specific 3',5'-cyclic phosphodiesterase (E.C.3.1.4.35)		
4B	Smp_135510	Glutamate carboxypeptidase 2-like	Glutamate carboxypeptidase III (E.C.3.4.17.21)		
4B	Smp_340460	Beta-1,4-galactosyltransferase	beta 1,4 galactosyltransferase (b4GalT1) {Cow (<i>Bos taurus</i>) [TaxId: 9913]}		
4B	Smp_024660	Immunoglobulin subtype 2	Roundabout homolog 2		
4B	Smp_340470	Sirtuin family	NAD-dependent deacetylase sirtuin-6 (E.C.3.5.1)		
4B	Smp_248070	Dedicator of cytokinesis, C-terminal	Dedicator of cytokinesis protein 10		
4B	Smp_211020	Coagulation factor 5/8 C-terminal domain	C2 domain of factor V {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
4B	Smp_247870	NA	NA		
4B	Smp_247860	Peptidase M8, leishmanolysin	Peptidase_M8		
4B	Smp_247850	Peptidase M8, leishmanolysin	LEISHMANOLYSIN		
4B	Smp_135540	NA	Guanine nucleotide-binding protein G(i) subunit		
4B	Smp_135550	Leucine-rich repeat	Ribonuclease inhibitor {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
4B	Smp_135560	Fibrillar collagen, C-terminal	Collagen alpha-1(I) chain, Collagen alpha-2(I)		
4B	Smp_135570	Actin family	RuvB-like helicase (E.C.3.6.4.12), Ino80, Uncharacterized		
4B	Smp_334210	Zinc finger C2H2-type	Cohesin subunit SA-2, Double-strand-break repair		
4B	Smp_342970	EGF-type aspartate/asparagine hydroxylation site	DUF4958		
4B	Smp_213190	NA	DNA-directed RNA polymerase subunit, DNA- directed		
4B	Smp_213200	Amidohydrolase-related	Amidohydrolase 2		
4B	Smp_334220	Cadherin-like	Protocadherin-10		
4B	Smp_024800	S-adenosyl-L-methionine-dependent methyltransferase	DUF2431		
4B	Smp_340480	Tetratricopeptide-like helical domain superfamily	Mitochondrial import receptor subunit tom20-3 {Thale cress (<i>Arabidopsis thaliana</i>) [TaxId: 3702]}		

Anne	exe 6		
4B	Smp_024820	Tetraspanin	Tetraspanin
4B	Smp_342980	The Golgi pH regulator/GPCR-type G protein	ABA_GPCR
4B	Smp_343790	Rab-GTPase-TBC domain	RabGAP/TBC protein
4B	Smp_145180	Zinc finger, A20-type	Rab5 GDP/GTP exchange factor, Ras-related
4B	Smp_145190	Protein kinase domain	Calmodulin-dependent protein kinase {Rat (<i>Rattus norvegicus</i>) [TaxId: 10116]}
4B	Smp_343800	Homeobox domain engrailed	Engrailed Homeodomain { <i>Drosophila melanogaster</i> [TaxId: 7227]}
4B	Smp_145210	Cadherin-like	Protocadherin-15
4B	Smp_042530	WD40 repeat	Tubulin beta, Tubulin alpha, PACRG
4B	Smp_244220	POU-specific domain	Pituitary-specific positive transcription factor 1/DNA
4B	Smp_244230	WD40 repeat	Platelet-activating factor acetylhydrolase IB subunit alpha {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}
4B	Smp_042550	Phox homologous domain	Vacuolar protein sorting-associated protein 26-like
4B	Smp_042560	Porin domain superfamily	Mitochondrial import receptor subunit TOM40
4B	Smp_145230	Transcription factor, T-box	T-box protein 3, tbx3 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
4B	Smp_042590	NADH-quinone oxidoreductase, chain I	NADH-quinone oxidoreductase chain 9, Nqo9 { <i>Thermus thermophilus</i> [TaxId: 274]}
4B	Smp_343810	GPCR, rhodopsin-like, 7TM	Adenosine receptor A2a,Soluble cytochrome b562,Adenosine
4B	Smp_145250	Cleft lip and palate transmembrane 1	CLPTM1
4B	Smp_042630	Methyltransferase-like	Phenylethanolamine N-methyltransferase, PNMTase {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
4B	Smp_343820	P-loop containing nucleoside triphosphate hydrolase	Apoptotic protease activating factor 1
4B	Smp_042670	DNA mismatch repair protein MutS, C-terminal	DNA mismatch repair protein Msh2/
4B	Smp_042680	Short-chain dehydrogenase/reductase SDR	Tropinone reductase {Jimsonweed (<i>Datura stramonium</i>), II [TaxId: 4076]}
4B	Smp_042700	Protein FAM81	Apolipoprotein A-IV
4B	Smp_145290	Alkaline phosphatase	Alkaline phosphatase {Northern shrimp (<i>Pandalus borealis</i>) [TaxId: 6703]}
4B	Smp_198170	NA	DUF1664
4B	Smp_307840	Alkaline phosphatase	Alkaline phosphatase {Northern shrimp (<i>Pandalus borealis</i>) [TaxId: 6703]}
4B	Smp_145300	Copper type II, ascorbate-dependent monooxygenase, N-terminal	Peptidyl-glycine alpha-amidating monooxygenase (E.C.1.14.17.3,4.3.2.5)
4B	Smp_329490	NA	NA
4B	Smp_042740	Armadillo	Karyopherin alpha {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}
4B	Smp_145310	Reduced growth phenotype protein 1	Rgp1

Anne	Annexe 6				
4B	Smp_145320	SLC26A/SulP transporter	Solute carrier family 26 member		
4B	Smp_042770	Rab-GTPase-TBC domain	RabGAP/TBC protein		
4B	Smp_042780	Mediator complex, subunit Med20	Mediator of RNA polymerase II		
4B	Smp_042790	Glycosyltransferase 2-like	Dolichol monophosphate mannose synthase		
4B	Smp_343830	IQ and ubiquitin-like domain- containing protein	Small ubiquitin-related modifier 1, Death		
4B	Smp_042810	AAA ATPase domain	Replication factor C subunit 1		
4B	Smp_145350	Ubiquitin-conjugating enzyme E2	Ubiquitin conjugating enzyme, UBC {Human (<i>Homo sapiens</i>), E2 H [TaxId: 9606]}		
4B	Smp_202660	NA	NA		
4B	Smp_329500	NA	PFL0690c		
4B	Smp_145360	Mitochondria-eating protein	MIEAP		
4B	Smp_329510	NA	Anti-silencing protein 1, ASF1 {Baker's yeast (<i>Saccharomyces cerevisiae</i>) [TaxId: 4932]}		
4B	Smp_145370	NA	NA		
4B	Smp_145380	NA	NA		
4B	Smp_334230	C-5 cytosine methyltransferase	DNMT2 {Human (Homo sapiens) [Taxld: 9606]}		
4B	Smp_042910	Osteopetrosis-associated transmembrane protein 1 precursor	OSTMP1		
4B	Smp_042920	Serine-threonine protein kinase 19	Stk19		
4B	Smp_329520	Complex 1 LYR protein	Acyl carrier protein, mitochondrial, LYR		
4B	Smp_145400	Armadillo-like helical	Rcd1		
4B	Smp_303310	NA	NA		
4B	Smp_145410	NA	DUF3338		
4B	Smp_145420	Sema domain	Semaphorin-like protein 139, Plexin-C1		
4B	Smp_042980	GHMP kinase, ATP-binding, conserved site	mevalonate kinase (E.C.2.7.1.36)		
4B	Smp_042990	MINDY deubiquitinase	Protein FAM63A		
4B	Smp_247830	NA	AF-4		
4B	Smp_202680	Ragulator complex protein LAMTOR5	Hepatitis B virus X-interacting protein		
4B	Smp_043030	Hexokinase	Hexokinase {Blood fluke (<i>Schistosoma mansoni</i>) [TaxId: 6183]}		
4B	Smp_340750	NA	DYNC2H1 variant protein		
4B	Smp_145440	Zinc finger C2H2-type	Zinc finger protein 568/DNA Complex		
4B	Smp_343840	NA	DUF4659		
4B	Smp_043070	Phosphorylated adapter RNA export protein, RNA-binding domain	ANKYRIN-REPEAT PROTEIN		
4B	Smp_145460	NA	CD225		
4B	Smp_145470	Zinc finger C2H2-type	Zinc finger protein 295		
4B	Smp_043100	RNA recognition motif domain	Nuclear ribonucleoprotein A1 (RNP A1, UP1) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
4B	Smp_043110	NA	Phage_AlpA		
4B	Smp_043120	Universal stress protein A family	Putative ethylene-responsive protein AT3g01520/F4P13_7 {Thale cress (<i>Arabidopsis</i> <i>thaliana</i>) [TaxId: 3702]}		
Anne	xe 6				
------	------------	--	---		
4B	Smp_202690	Universal stress protein A family	Putative ethylene-responsive protein AT3g01520/F4P13_7 {Thale cress (<i>Arabidopsis</i> <i>thaliana</i>) [TaxId: 3702]}		
4B	Smp_043130	Gemin2/Brr1	Small nuclear ribonucleoprotein Sm D1		
4B	Smp_043150	Calreticulin/calnexin	calnexin		
4B	Smp_145490	K Homology domain	Far upstream binding element, FBP {Human (<i>Homo sapiens</i>) [TaxId: 9606]}		
4B	Smp_043170	Transforming acidic coiled-coil- containing protein, C-terminal	TACC_C		
4B	Smp_343850	Formin, FH2 domain	Diaphanous protein homolog 1, dia1 {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}		
4B	Smp_043200	RIO kinase	40S ribosomal protein S27-A, 40S		
4B	Smp_043210	Tetraspanin, EC2 domain superfamily	Tetraspanin		
4B	Smp_043220	NA	BNIP3		
4B	Smp_145510	Leucine-rich repeat	Internalin A { <i>Listeria monocytogenes</i> [TaxId: 1639]}		
4B	Smp_043250	NA	GIY-YIG		
4B	Smp_043260	G protein-coupled receptor, rhodopsin-like	7tm_1		
4B	Smp_043270	G protein-coupled receptor, rhodopsin-like	7tm_1		
4B	Smp_336140	G protein-coupled receptor, rhodopsin-like	7tm_1		
4B	Smp_348040	G protein-coupled receptor, rhodopsin-like	7tm_1		
4B	Smp_043290	G protein-coupled receptor, rhodopsin-like	7tm_1		
4B	Smp_043300	G protein-coupled receptor, rhodopsin-like	7tm_1		
4B	Smp_348050	G protein-coupled receptor, rhodopsin-like	7tm_1		
4B	Smp_332070	G protein-coupled receptor, rhodopsin-like	human Chemokine Receptor 7		
4B	Smp_043320	G protein-coupled receptor, rhodopsin-like	7tm_1		
4B	Smp_043340	G protein-coupled receptor, rhodopsin-like	7tm_1		
4B	Smp_043350	UDPGP family	UDP-N-acetylglucosamine pyrophosphorylase {Human (<i>Homo sapiens</i>), AGX1 [TaxId: 9606]}		
4B	Smp_043360	NA	SJCHGC06286 protein, Bcl-2 homologous antagonist/killer		
4B	Smp_145540	G protein-coupled receptor, rhodopsin-like	Muscarinic acetylcholine receptor M2,Vasopressin V2		
4B	Smp_329530	NA	Myelin Oligodendrocyte Glycoprotein		

4B	Smp_053700	Cytochrome b-c1 complex subunit 8	Ubiquinone-binding protein QP-C of cytochrome bc1 complex subunit 8 {Cow (<i>Bos taurus</i>) [TaxId: 9913]}			
4B	Smp_150890	IBR domain	E3 ubiquitin-protein ligase ARIH1 (E.C.2.3.2)			
4B	Smp_247810	NA	NA			
4B	Smp_150870	Leucine-rich repeat	Rab geranylgeranyltransferase alpha-subunit, C- terminal domain {Rat (<i>Rattus norvegicus</i>) [Taxld: 10116]}			
4B	Smp_329550	NA	NA			
4B	Smp_053640	NA	NA			
4B	Smp_150860	Protein kinase domain	Cyclin-dependent PK, CDK6 {Human (<i>Homo</i> <i>sapiens</i>) [TaxId: 9606]}			
4B	Smp_053610	Aminoacyl-tRNA synthetase, class II (G/ P/ S/T)	Seryl-tRNA synthetase, cytoplasmic (E.C.6.1.1.11)			
4B	Smp_150850	Methyl-CpG DNA binding	Histone-lysine N-methyltransferase SETDB1 (E.C.2.1.1.43), Histone			
4B	Smp_150840	Zinc finger, C2H2, LYAR-type	60S ribosomal protein L8, 60S			
4B	Smp_313300	Small GTPase	Rab21 {Human (Homo sapiens) [TaxId: 9606]}			
4B	Smp_313310	EF-hand domain	Sarcoplasmic calcium-binding protein {Amphioxus (<i>Branchiostoma lanceolatum</i>) [TaxId: 7740]}			
4B	Smp_053560	Protein kinase domain	MAP kinase activated protein kinase 2, mapkap2 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}			
4B	Smp_053550	U6 snRNA phosphodiesterase Usb1	U6 snRNA phosphodiesterase (E.C.3.1.4)			
4B	Smp_213500	HotDog domain superfamily	Acyl-CoA thioesterase			
4B	Smp_213510	NA	FA_FANCE			
4B	Smp_247800	Homeobox domain	Homeodomain-only protein, Hop {Mouse (<i>Mus musculus</i>) [TaxId: 10090]}			
4B	Smp_053510	Aspartyl/Asparaginyl-tRNA synthetase, class IIb	AspartatetRNA ligase, cytoplasmic (E.C.6.1.1.12)			
4B	Smp_313320	NA	Med28			
4B	Smp_313330	NA	NA			
4B	Smp_329560	NA	conserved hypothetical protein			
4B	Smp_344330	Cysteine-rich flanking region, C- terminal	von Willebrand factor binding domain of glycoprotein Ib alpha {Human (<i>Homo sapiens</i>) [TaxId: 9606]}			
4B	Smp_334250	Epithelial sodium channel	Acid-sensing ion channel 1			
4B	Smp_153890	Post-GPI attachment to proteins factor 2	Frag1			
4B	Smp_030760	Flavodoxin-like	NADPHcytochrome P450 reductase (E.C.1.6.2.4)			
4B	Smp_138810	Frag1/DRAM/Sfk1	Frag1			
4B	Smp_334260	Zinc finger, PHD-type	Protein AF-10			
4B	Smp_153870	Protein kinase domain	Aurora-related kinase 1 (aurora-2) {Human (<i>Homo sapiens</i>) [TaxId: 9606]}			
4B	Smp_058990	Meiotic nuclear division protein 1	Mnd1, Putative tbpip family protein			
4B	Smp_058980	Oxysterol-binding protein	KLLA0C04147p			

Anne	nnexe 6					
4B	Smp_058970	Succinate dehydrogenase assembly factor 4	DUF1674			
4B	Smp_337560	NA	DNA damage-binding protein 1, DDB1-			
4B	Smp_344600	Zinc finger C2H2-type	Transcriptional repressor CTCF/DNA Complex			
4B	Smp_153840	BEACH domain	Lipopolysaccharide-responsive and beige-like anchor protein			
4B	Smp_153820	SNF2-related, N-terminal domain	DNA-directed RNA polymerase II subunit			
4B	Smp_058880	Serine hydrolase FSH	FSH1			
4B	Smp_329570	Nicotinamide riboside kinase	Uridine-cytidine kinase 2 {Human (Homo sapiens) [TaxId: 9606]}			
4B	Smp_153810	Ankyrin repeat	Asparaginase type II {Vibrio cholerae [TaxId: 666]}			
4B	Smp_058850	RAD51 interacting motif	RAD51_interact			
4B	Smp_059090	NA	cAMP-dependent protein kinase type II-alpha			
4B	Smp_153790	Ribosomal protein L4/L1e	ribosomal protein uL2, ribosomal protein			
4B	Smp_059100	PRELI/MSF1 domain	Protein UPS1, mitochondrial, Mitochondrial distribution and			
4B	Smp_153920	Cyclin, N-terminal	G1/S-specific cyclin-E1 {Human (Homo sapiens) [TaxId: 9606]}			
4B	Smp_153930	Peptidase M8, leishmanolysin	LEISHMANOLYSIN			
4B	Smp_059130	CAP Gly-rich domain	Restin {Human (Homo sapiens) [TaxId: 9606]}			
4B	Smp_059140	NA	NDUF_B12			
4B	Smp_329580	Immunoglobulin-like fold	SIP2 {Saccharomyces cerevisiae [TaxId: 4932]}			
4B	Smp_059150	Mitochondrial inner membrane protein Mitofilin	Mitofilin			
4B	Smp_153950	Ribosomal protein L24e-related	60S ribosomal protein L2-A, 60S			
4B	Smp_059170	Troponin	Troponin C/Troponin T/Troponin I			
4B	Smp_153960	Peptidase A22A, presenilin	Presenilin			
4B	Smp_153970	JNK/Rab-associated protein-1, N- terminal	RILP			
4B	Smp_059200	NA	RIFIN			
4B	Smp_059210	Periphilin-1	Periphilin-1, Protein TASOR			
4B	Smp_153990	Zinc finger, LIM-type	DNA endonuclease RBBP8, LIM domain			
4B	Smp_126460	Protein kinase domain	Serine/threonine-protein kinase Nek2 {Human (Homo sapiens) [TaxId: 9606]}			
4B	Smp_126450	ABC transporter-like	ATP-binding cassette sub-family G member			
4B	Smp_007970	Ribosome maturation protein Sdo1/SBDS	60S RIBOSOMAL PROTEIN L3, 60S			
4B	Smp_007960	Glyoxalase/fosfomycin resistance/dioxygenase domain	4-hydroxyphenylpyruvate dioxygenase, HppD {Streptomyces avermitilis [TaxId: 33903]}			
4B	Smp_340160	Beta-1,4-galactosyltransferase	beta 1,4 galactosyltransferase (b4GalT1) {Cow (<i>Bos taurus</i>) [TaxId: 9913]}			
4B	Smp_071000	DSS1/SEM1	Activated Human 26S Proteasome			
4B	Smp_160700	PWWP domain	Histone-lysine N-methyltransferase SETD2 (E.C.2.1.1.43,2.1.1), H3.3S31phK36M(29-42)			

Anne	xe 6		
4B	Smp_345220	Nucleic acid-binding, OB-fold	Breast Cancer type 2 susceptibility
4B	Smp_160670	Homeobox domain	Paired protein (prd) {Fruit fly (<i>Drosophila melanogaster</i>) [TaxId: 7227]}
4B	Smp_347040	Protein of unknown function DUF2045	DUF2045
4B	Smp_070930	Proteasome alpha-subunit, N- terminal domain	Proteasome alpha subunit (non-catalytic) {Cow (<i>Bos taurus</i>) [TaxId: 9913]}
4B	Smp_310920	Forkhead-associated (FHA) domain	Suppressor of IKBKE 1, Sarcolemmal
4B	Smp_212750	G protein-coupled receptor, rhodopsin-like	Lysophosphatidic acid receptor 6a,Endolysin,receptor (E.C.3.2.1.17)
4B	Smp_212740	SMAD domain, Dwarfin-type	Smad3 MH2 domain {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
4B	Smp_337220	AAA ATPase domain	DYNC2H1 variant protein
4B	Smp_070860	Malate dehydrogenase, type 2	MALATE DEHYDROGENASE
4B	Smp_341800	Leucine-rich repeat	von Willebrand factor binding domain of glycoprotein Ib alpha {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
4B	Smp_347030	Dbl homology (DH) domain	GEF of intersectin {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
4B	Smp_347560	DNA recombination and repair protein Rad51-like, C-terminal	DNA REPAIR AND RECOMBINATION PROTEIN
4B	Smp_313450	Peptidase M12B, ADAM/reprolysin	Disintegrin and metalloproteinase domain- containing protein
4B	Smp_348000	NA	NA
4B	Smp_348010	NA	NA
4B	Smp_348020	NA	NA
4B	Smp_348030	NA	NA
4B	Smp_313480	NA	NA
4B	Smp_190540	NA	Coatomer subunit alpha, Coatomer subunit
4B	Smp_303070	Peptidase M8, leishmanolysin	Peptidase_M8
4B	Smp_303760	Peptidase M8, leishmanolysin	Peptidase_M8
4B	Smp_204980	NA	Cyclophilin-like protein, putative, Dipeptide ala- pro
4B	Smp_093840	NA	Mtp
4B	Smp_346220	NA	NA
4B	Smp_093850	RNA recognition motif domain	Splicing factor 3B subunit 4 {Human (<i>Homo sapiens</i>) [TaxId: 9606]}
4B	Smp_167890	Peptide methionine sulphoxide reductase MrsB	C-terminal MsrB domain of peptide methionine sulfoxide reductase PilB { <i>Neisseria gonorrhoeae</i> [TaxId: 485]}
4B	Smp_313490	NA	Transforming protein RhoA, Rho-associated, coiled-coil
4B	Smp_313500	NA	NA
4B	Smp_174580	Legume-like lectin	Emp46p N-terminal domain {Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]}
4B	Smp_341620	FERM domain	FERM, RhoGEF and pleckstrin domain
4B	Smp_095630	Tetraspanin	CD81 antigen

Anne	Annexe 6					
4B	Smp_174610	Zinc finger, LIM-type	Fusion protein of Lmo4 protein			
4B	Smp_095650	Selenophosphate synthetase	Putative selenophosphate synthetase (E.C.2.7.9.3)			
4B	Smp_332080	NA	28S ribosomal protein S2, mitochondrial			
4B	Smp_095670	Zinc finger, CCCH-type	Protein CFT1, mRNA 3'-end-processing protein			
4B	Smp_095680	Matrin/U1-C, C2H2-type zinc finger	Pre-mRNA-processing-splicing factor 8, 116 kDa			
4B	Smp_174630	Tetraspanin	CD81 antigen			
4B	Smp_334280	Sterile alpha motif domain	Stromal interaction molecule 2			

Chr. : chromosome.

Annexe 7 : Article méthodologique sur la technique de ChIPmentation sur échantillons *S. mansoni*

Wellcome Open Research	Wellcome Open Research 2022, 7:133 Last updated: 24 MAY 2022
the the experiment of the test of	frencome open neocaren zozz, miss case apoarea za min zozz

METHOD ARTICLE

Automated ChIPmentation procedure on limited biological

material of the human blood fluke Schistosoma mansoni

[version 1; peer review: 1 approved with reservations]

Chrystelle Lasica¹, Ronaldo de Carvalho Augusto^{®1,2}, Hélène Moné^{®1}, Gabriel Mouahid¹, Cristian Chaparro^{®1}, Anne-Clémence Veillard³, Agnieszka Zelisko-Schmidt³, Christoph Grunau^{®1}

¹IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, 66860, France

²LBMC, Laboratoire de Biologie et Modélisation de la Cellule Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1210,, Lyon, 69000, France

³Diagenode, Seraing, 4100, Belgium

 First published: 11 Apr 2022, 7:133 https://doi.org/10.12688/wellcomeopenres.17779.1
 Latest published: 11 Apr 2022, 7:133 https://doi.org/10.12688/wellcomeopenres.17779.1

Abstract

In living cells, the genetic information stored in the DNA sequence is always associated with chromosomal and extra-chromosomal epigenetic information. Chromatin is formed by the DNA and associated proteins, in particular histones. Covalent histone modifications are important bearers of epigenetic information and as such have been increasingly studied since about the year 2000. One of the principal techniques to gather information about the association between DNA and modified histones is chromatin immunoprecipitation (ChIP), also combined with massive sequencing (ChIP-Seq). Automated ChIPmentation procedure is a convenient alternative to native chromatin immunoprecipitation (N-ChIP). It is now routinely used for ChIP-Seq in many model species, using in general roughly 10⁶ cells per experiment. Such high cell numbers are sometimes difficult to produce. Using the human parasite Schistosoma mansoni, whose production requires sacrificing animals and should therefore be kept to a minimum, we show here that automated ChIPmentation is suitable for limited biological material. We define the operational limit as ≥20,000 Schistosoma cells. We also present a streamlined protocol for the preparation of ChIP input libraries.

Keywords

ChIPmentation, ChIP-seq, N-ChIP, limited biological material, Epigenetics, Schistosoma mansoni

Open Peer Review Approval Status ? 1 version 1 11 Apr 2022 view

Check for updates

 Nolwenn M. Dheilly ^(D), ENVA, Animal health laboratory, 14 rue Pierre et Marie Curie, France

Any reports and responses or comments on the article can be found at the end of the article.

Page 1 of 16

Wellcome Open Research

Corresponding author: Christoph Grunau (christoph.grunau@univ-perp.fr)

Author roles: Lasica C: Data Curation, Formal Analysis, Investigation, Methodology, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; de Carvalho Augusto R: Investigation, Methodology, Writing – Review & Editing; Moné H: Conceptualization, Funding Acquisition, Investigation, Project Administration, Supervision, Writing – Review & Editing; Mouahid G: Conceptualization, Funding Acquisition, Investigation, Project Administration, Supervision, Writing – Review & Editing; Chaparro C: Data Curation, Methodology, Resources, Software, Supervision, Writing – Review & Editing; Veillard AC: Methodology, Supervision, Visualization, Writing – Review & Editing; Zelisko-Schmidt A: Conceptualization, Methodology, Supervision, Visualization, Writing – Review & Editing; Grunau C: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: Diagenode is the company which commercialized the ChIPmentation technology. ACV and AZS are employees of Diagenode.

Grant information: This work was supported by Wellcome [107475/Z/15/Z]. This research was also funded by the French National Agency for Research (ANR) [grant ANR-17-CE12-0005-01] CHRONOGET and the CNRS (French National Centre for Research). CL is a PhD candidate who receives funding from the Occitanie Region (France).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2022 Lasica C et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Lasica C, de Carvalho Augusto R, Moné H *et al.* Automated ChIPmentation procedure on limited biological material of the human blood fluke *Schistosoma mansoni* [version 1; peer review: 1 approved with reservations] Wellcome Open Research 2022, 7:133 https://doi.org/10.12688/wellcomeopenres.17779.1

First published: 11 Apr 2022, 7:133 https://doi.org/10.12688/wellcomeopenres.17779.1

Page 2 of 16

Introduction

Schistosoma mansoni is a human parasite with a complex life cycle that shows strong developmental phenotypic plasticity, with intra-molluscal and intra-vertebrate stages, and two free-swimming larvae stages (miracidium and cercariae). We had shown by native chromatin immunoprecipitation (N-ChIP) that the different life cycle stages also show strong histone modification plasticity (Augusto et al., 2019; Cosseau et al., 2009; Roquis et al., 2018). While N-ChIP has been successfully used, we found that it is associated two challenges: one is the high hands-on time with the N-ChIP, and the other is obtaining enough biological material to perform several ChIP experiments with different antibodies. We therefore explored and benchmarked an automated ChIP procedure (Figure 1). ChIPmentation is a ChIP-sequencing (ChIP-seq) technology which uses a transposase to add the sequencing adaptors to the DNA of interest instead of the classical multi-step processing, including end repair, A-tailing, adaptor ligation and size-selection (Schmidl et al., 2015). Thanks to the action of the transposase, loaded with sequencing adaptors, the library preparation is performed in only one step, which reduces hands-on time and material loss. Moreover, in the ChIPmentation approach, this tagmentation process is performed directly on chromatin during the immunoprecipitation process instead of naked DNA after purification. This workflow allows for a more reproducible tagmentation.

The combined facts that ChIPmentation has been automated on Diagenode's IP-Star Compact Automated System and that this technology has been validated on low amounts of human cells (Roels *et al.*, 2020; Schmidl *et al.*, 2015) make it a perfect candidate for ChIP-seq on limited material of other, non-model species. Here we addressed the questions of whether ChIPmentation, which was originally developed for human cell cultures, (i) can be used with schistosomes, (ii) whether it can be automated on a pipetting robot, and finally (iii) what the lowest schistosome cell number would be to obtain robust results with this procedure. We show here that the method is almost as sensitive as N-ChIP, but is about two times faster and can be carried out on the IP-Star pipetting robot, reducing experimenter hands-on and, more importantly, training time.

Methods

Production of biological material

S. mansoni NMRI eggs were extracted from livers of golden hamsters (donated by ParaDev) 42 days post-infection. Nocturnal S. mansoni from Oman (Mouahid et al., 2012) were extracted from livers of two swiss OF1 mice eight months post-infection. Miracidia were allowed to hatch for two hours in spring water, collected by pipetting and sedimented on ice for 30 min. Miracidia were counted under a microscope, aliquoted and stored at -80°C.

Ethical considerations

Experiments on animals permits The laboratory received the permit number A 66040 for experiments on animals, from both the French Ministère de l'Agriculture et de la Pêche (Ministry of Agriculture and Fisheries) and the French Ministère de l'Education Nationale de la Recherche et de la Technologie (Ministry of Education, Research and Technology, Décret n° 2001-464 du 29 mai 2001 modifiant le décret n° 87-848 du 19 octobre 1987). This includes housing, breeding and care of the mice and hamsters, and animal experimentation. HM holds the official certificate for animal experimentation N° C661101 delivered by the *Direction Départementale de la Protection des Populations* (Articles R 214-87 à R 214-122 du Code Rural et article R 215-10 ; Arrêté du 19 avril 1988).

Ethical approval number: we obtained approval from the CEEA - 036 Comité d'éthique en expérimentation animale Languedoc Roussillon (CEEA-LR)", which is the registration code of our ethical committee within the Comité national de réflexion éthique sur l'expérimentation animale (CNREEA), under the agreement number C66-136-01. The CNREEA is part of the French Ministry of Higher Education, Research and Innovation.

Cell lysis and chromatin shearing

Chromatin preparation was performed using the Diagenode ChIPmentation Kit for Histones, Cat. No. C01011009 and protocol with minor modifications. A total of 10,000 miracidia (1,000,000 cells based on the observation that one miracidium is composed of 100-120 cells) were resuspended in 1 mL 1x Hank's balanced salt solution (HBSS), split into 2x500 µL and crushed with a plastic pestle in an Eppendorf tube on ice during ~1 min. For cross-linking, 13.5 µL of formaldehyde were added and tubes were incubated for 10 min at room temperature with occasional inversion. To stop cross-linking fixation, 57 µL of glycine were added and samples were incubated for 5 min at room temperature. Samples were centrifuged at 500xg, at 4°C, for 5 min. The pellet was resuspended in 2x1 mL of ice-cold Lysis Buffer iL1, combined and homogenized in a Dounce (pestle A) on ice for 5 min. After another centrifugation (500g, 5 min, 4°C), the supernatant was discarded and the pellet was resuspended in 1 mL of ice-cold Lysis Buffer II.2 and centrifuged (500xg, 5 min, 4°C). The supernatant was discarded and the pellet was resuspended in 100 µL of complete Shearing Buffer iS1 for each tube. Samples were sonicated with the Bioruptor Pico (Diagenode, Cat. No. B01080010) for 5 cycles (30 s ON and 30 s OFF). After transfer into new tubes, samples were centrifuged (16,000g, 10 min, 4°C). The supernatants were transferred into a new single tube (200 µl total) and 20 µl iS1 were added, yielding a total volume of 220 µl. The procedure was done in duplicate (named L and R in the following). Serial dilutions were done in iS1 to produce 100 µl equivalents of 10,000 miracidia (106 cells), 1,000 miracidia (105 cells), 100 miracidia (104 cells), 50 miracidia (5,000 cells), 10 miracidia (103 cells), five miracidia (500 cells) and one miracidium (100 cells) or 100 µl iS1 as negative control.

Magnetic immunoprecipitation and tagmentation

Immunoprecipitation (IP) was performed on the Diagenode IP-Star Compact Automated System (Cat. No. B03000002) according to the ChIPmentation Kit for Histones User Guide and by following the manufacturer's on-screen instructions. Antibody (Ab) coating time was set to 3 h, IP reaction to 13 h, washes to 10 min, and tagmentation to 5 min. For each sample the Ab coating mix was done with 4 µl anti-H3K4me3 (Diagenode, Cat. No. C15410003; mixture of lot A1051D and A1052D; raised in rabbit).

Page 3 of 16

Wellcome Open Research 2022, 7:133 Last updated: 24 MAY 2022

Figure 1. Comparison of Native-ChIP and ChIPmentation workflows. Biological sampling time depends on the biological model used. Native-ChIP protocol lasts three to four days. A sucrose cushion is used for cell lysis and MNase digestion for the fragmentation step. The immunoprecipitation is done by centrifugation. The whole process is done manually. ChIPmentation protocol lasts two days. Cross-linking is used for cell lysis and sonication for the fragmentation step. The immunoprecipitation, tagmentation and library cleaning are done with the IP-Star.

Page 4 of 16

Stripping, end repair and reverse cross-linking were done as indicated in the User Guide.

Input library tagmentation

In the ChIPmentation Kit for Histones (Diagenode, Cat. No. C01011009) the suggested strategy is to sequence one immunoprecipitated sample with a control immunoglobulin G (IgG) and to use it for sequencing normalization instead of the traditional input, which cannot be treated in exactly the same way as the immunoprecipitated samples. However, IgG are negative control samples, and the generation of such samples in low-amount approaches involves in our experience the use of a high number of amplification cycles that can induce some biases. A protocol for the tagmentation of the input sample was therefore set-up as follows.

For each immunoprecipitated sample, 1µL of sheared chromatin was kept aside before IP in the IP-Star. 1 µL of MgCl,

(Diagenode ChIPmentation kit for Histones, Cat. No. C01011009), 8 µL of molecular biology grade water, 10 µL 2xTagment DNA buffer and 1 µL of 100-fold in molecular-grade water diluted DNA tagmentation enzyme (Illumina 20034197, lot 20464427) were added to each 1 µL input. The tagmentation reaction was performed in a thermocycler for five minutes at 55°C. Then, 25 µL of 2xPCR NEB master mix (New England Biolabs M0541L, lot 10067165) was added to each input. The end-repair and de-cross-link were performed in a thermocycler for five minutes at 72°C followed by 10 minutes at 95°C. An aliquot of 2 µL was taken from each input and added to 8 µL of quantification mix. For each reaction, this quantification mix was composed of 0.3 µL of forward and reverse ATAC-seq primers (25 µM) (Table 1, (Buenrostro et al., 2015), 1 µL SYBR Green 10X (Diagenode kit), 1.3 µL of molecular biology grade water and 5 µL of 2xPCR NEB master mix. While not formally tested, leftover primers of the ChIPmentation kit could probably also be used, but the volume must be adjusted

Table 1. ATAC-seq primer indexes and sequences (Buenrostro et al., 2015).

Index ID	Sequence
Ad1_noMX:	AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG
Ad2.1_TAAGGCGA	CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGGAGATGT
Ad2.2_CGTACTAG	CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGT
Ad2.3_AGGCAGAA	CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGT
Ad2.4_TCCTGAGC	CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAGATGT
Ad2.5_GGACTCCT	CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGT
Ad2.6_TAGGCATG	CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAGATGT
Ad2.7_CTCTCTAC	CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGGAGATGT
Ad2.8_CAGAGAGG	CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTCTCGTGGGCTCGGAGATGT
Ad2.9_GCTACGCT	CAAGCAGAAGACGGCATACGAGATAGCGTAGCGTCTCGTGGGCTCGGAGATGT
Ad2.10_CGAGGCTG	CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCGTGGGCTCGGAGATGT
Ad2.11_AAGAGGCA	CAAGCAGAAGACGGCATACGAGATTGCCTCTTGTCTCGTGGGCTCGGAGATGT
Ad2.12_GTAGAGGA	CAAGCAGAAGACGGCATACGAGATTCCTCTACGTCTCGTGGGCTCGGAGATGT
Ad2.13_GTCGTGAT	CAAGCAGAAGACGGCATACGAGATATCACGACGTCTCGTGGGCTCGGAGATGT
Ad2.14_ACCACTGT	CAAGCAGAAGACGGCATACGAGATACAGTGGTGTCTCGTGGGCTCGGAGATGT
Ad2.15_TGGATCTG	CAAGCAGAAGACGGCATACGAGATCAGATCCAGTCTCGTGGGCTCGGAGATGT
Ad2.16_CCGTTTGT	CAAGCAGAAGACGGCATACGAGATACAAACGGGTCTCGTGGGCTCGGAGATGT
Ad2.17_TGCTGGGT	CAAGCAGAAGACGGCATACGAGATACCCAGCAGTCTCGTGGGCTCGGAGATGT
Ad2.18_GAGGGGTT	CAAGCAGAAGACGGCATACGAGATAACCCCTCGTCTCGT
Ad2.19_AGGTTGGG	CAAGCAGAAGACGGCATACGAGATCCCAACCTGTCTCGTGGGCTCGGAGATGT
Ad2.20_GTGTGGTG	CAAGCAGAAGACGGCATACGAGATCACCACACGTCTCGTGGGCTCGGAGATGT
Ad2.21_TGGGTTTC	CAAGCAGAAGACGGCATACGAGATGAAACCCAGTCTCGTGGGCTCGGAGATGT
Ad2.22_TGGTCACA	CAAGCAGAAGACGGCATACGAGATTGTGACCAGTCTCGTGGGCTCGGAGATGT
Ad2.23_TTGACCCT	CAAGCAGAAGACGGCATACGAGATAGGGTCAAGTCTCGTGGGCTCGGAGATGT
Ad2.24_CCACTCCT	CAAGCAGAAGACGGCATACGAGATAGGAGTGGGTCTCGTGGGCTCGGAGATGT

Page 5 of 16

as the primer pairs in the kit were 10 μ M instead of 25 μ M. Library amplification, purification, quality checking and sequencing steps were performed as for the immunoprecipitated samples (see below).

Library amplification

To determine optimal number of library amplification cycles we proceeded as described in steps 5.1 to 5.5 of the ChIPmentation User Guide with modifications detailed below. We determined the number of amplification cycles for each library by using the number of cycles that corresponded to 1/3 of the qPCR amplification curve slope during the exponential phase. Results are shown in Table 6.

Amplification was done in step 5.7. After PCR, 48 μ l of library amplification mix were AMPure-purified on the IP-Star using 86 μ l of AMPure beads (1.8x). Instead of a resuspension buffer, we used ChIP grade water for a final volume of 20 μ l.

Library check and sequencing

Library fragment size and concentration was checked on an Agilent 2100 Bioanalyzer with a High Sensitivity DNA Assay v1.03. Paired-end sequencing (2x75 cycles) was performed at the Bio-Environnement platform (University of Perpignan, France) on a NextSeq 550 instrument (Illumina, USA).

Bioinformatics analysis

Reads were quality-checked with FastQC, Galaxy version 0.72 and Galaxy 1 (Smith, 2019). Adapters were detected in less than 4% of reads. Reads were aligned with the *S. mansoni* v7 reference genomes using Bowtie2 Galaxy version 2.3.4.3 (Langmead & Salzberg, 2012)., the default sensitive settings.

Uniquely aligned reads were filtered from the BAM files using the XS: tag of Bowtie2, Galaxy version 2.3.4.3 and Galaxy 0 (Langmead & Salzberg, 2012). PCR duplicates were removed with samtools rmdup Galaxy version 2.0.1 (Li et al., 2009). BAM files were subsampled to 3.8 M uniquely aligned reads with Picard DownsampleSam Galaxy version 2.18.2.1 (Broad Institute 2022, February 23) . Peakcalling was done with Peakranger (v1.17) Galaxy version 1.0.0 (Feng et al., 2011), with P value cut-off: 0.0001, false discovery rate (FDR) cutoff: 0.05, Read extension length 100 - 2,000 bp, Smoothing bandwidth: 99. Delta: 0.8, Detection mode: region. ChromstaR, Galaxy version 0.99.0 (Taudt et al., 2016) was used with a bin size same as Peakranger extension lengths and a step size of half a bin size. Miracidia genomic DNA libraries served as input. In ChromstaR postprocessing, the maximum posterior probabilities to adjust sensitivity of peak detection was set to 0.999. This kept broad peaks intact. We reasoned that gaps between peaks that were larger than a nucleosome are not biologically meaningful and peaks were merged with BEDTOOLS, Galaxy version 2.29.2 (Quinlan & Hall, 2010) when they were ≤150 bp apart (the average length of DNA in a nucleosome).

Enrichment plots over metagenes were produced over 5,073 genes on the positive strand based on the canonical annotation v7 of *S. mansoni*.

Results

ChIPmentation has a sensitivity that is comparable to N-ChIP

We used *S. mansoni* miracidia which are composed of 100–120 cells as starting material, allowing for a good estimate of cell numbers. After the chromatin fragmentation and library amplification, 10^6 to 10^4 cell equivalents gave comparable Bioanalyzer profiles with peaks around 1kb. For 5,000 cells equivalents and below, fragments of smaller size became clearly visible. No high-molecular fragments were observed in the negative control without chromatin (Figure 2 and Table 2).

Alignments to the genome gave expected results (~50% uniquely aligned reads) for 10^6 to 10^4 cell equivalents, but dropped to ~35% with 10^3 cells equivalent and were <20% for 100 cells equivalent. No contaminating DNA was detected (Table 3).

In order to compare ChIPmentation results to N-ChIP we re-analysed earlier data obtained by N-ChIP (Augusto *et al.*, 2019) using the same data-cleaning, alignment and peak-calling parameters as for ChIPmentation (Table 4). For ChIPmentation, peakcalling with Peakranger was highly robust for 10⁶ cells and delivered the expected values (based on earlier N-ChIP results). Below this cell equivalent, peak-calling became dependent on bin size (Table 5).

We iteratively identified 1,000 bp as best-read extension length. Using the HMM-based ChromstaR improved peak calling for ChIPmentation 10^4 cell equivalent, but not for 10^3 or 100 cells. We obtained comparable results for ChIPmentation of 10^6 , 10^4 cells and N-ChIP ~ 10^6 , 10^4 and 10^3 cells (Table 6).

ChromstaR metagene profiles showed consistent profiles for ChIPmentation 10⁶, 10⁴ and 10³ cells, and all N-ChIP, but not for ChIPmentation on 100 cell equivalents (Figure 3).

ChromstaR allows for estimating the correlation of chromatin profiles based on read counts (Figure 4), and indicates high correlations between ChIPmentation 10⁶, and N-ChIP ~10⁶, 10⁴.

All other overall chromatin profiles were below 0.75 correlation coefficient. This is surprising given the high similarity of metagene profiles. Visual inspection of peaks and profiles showed that peaks were actually correctly identified by ChromstaR (but much less by Peakranger) in ChIPmentation until 10⁴ cells, but there was higher background than in N-ChIP which probably decreased the correlation for lower cell equivalents (Figure 5).

BEDTools intersect with default parameters identified 5,948 common peaks between the 6,682 ChIPmentation peaks and the 6,186 N-ChIP peaks obtained with 10⁶ cells. This corresponds to an empirical FDR of 0.89–0.96%. This FDR cannot distinguish between biological and technical variation.

ChIPmentation input library can rapidly be produced in parallel to the automated procedure

After having formally established that automated ChIPmentation had a comparable sensitivity to our routine N-ChIP procedure, we aimed to identify the optimal way to produce input libraries

Page 6 of 16

Wellcome Open Research 2022, 7:133 Last updated: 24 MAY 2022

Figure 2. ChIPmentation library profiles for two technical replicates (L and R). Electrophoresis performed on BioAnalyser. Lanes 1–8 from left to right: 10⁶, 10⁵, 10⁴, 5x10³, 10³, 500, 100, and 0 cells. Libraries used in lanes L1, L3, L5 and L7, and R1, R3, R5 and R7 were subsequently sequenced. Size indicated on the left in base pairs.

Table 2. Cell number	equivalents and librar	y amplification c	ycles for ChIPmentation.
----------------------	------------------------	-------------------	--------------------------

Position	Equivalent Miracidia	Equivalent cells	Amplification cycles L1-8	Amplification cycles R1-8	Sequenced
1	10,000	1,000,000	17	18	у
2	1,000	100,000	17	17	
3	100	10,000	18	19	у
4	50	5,000	19	18	
5	10	1,000	19	20	у
6	5	500	22	20	
7	1	100	22	22	у
8	0	0	26	25	

Pos	Equivalent miracidia	Equivalent cells	Amplification cycles	qBit DNA HS ng/µl	Read pairs	Uniquely aligned	After deduplication	% unique non-dup	% to keep for 3.8 M
L1	10,000	1,000,000	17	23.2	5,728,173	7,969,894	6,775,525	0	0
R1	10,000	1,000,000	18	21.2	8,388,53	13,469,770	10,007,402	0	0
L3	100	10,000	18	25.2	12,537,243	19,157,585	14,417,614	0	0
R3	100	10,000	19	30.4	8,665,837	13,838,684	8,409,793	0	0
L5	10	1,000	19	13.8	11,436,716	17,920,411	8,664,467	0	0
R5	10	1,000	20	19.3	11,109,380	17,854,360	7,214,153	0	0
L7	1	100	22	22.0	11,662,120	15,737,202	4,095,477	0	0
R7	1	100	22	11.9	10,566,906	15,221,913	3,827,034	0	0

Table 3. General statistics on ChIPmentation libraries. All libraries were downsampled to 3.8 M uniquely aligned reads.

Page 7 of 16

able 4. General statistics on N-ChIP libraries. Whe	n possible	, libraries were downsampled to	3.8 M uniquely aligned reads.
---	------------	---------------------------------	-------------------------------

Pos	Equivalent Miracidia	Equivalent cells	Amplification cycles	Read pairs	Uniquely aligned	After deduplication	% unique non-dup	% downsampled
A	8,000	800,000	14	13,129,021	11,299,195	10,763,378	41 %	35 %
В	100	10,000	14	21,415,343	5,409,960	2,477,749	6 %	100 %
С	10	1,000	14	29,857,139	12,170,093	6,718,570	11 %	57 %

Table 5. Optimization of peakcalling with Peakranger. Number of peaks identified for each condition. ChIPmentation on top. In bold: 1000 bp was selected as the best extension length and applied to N-ChIP data below. N-ChIP A is for 0.8x10⁶ cells.

cell equivalents	1,000,0	00		10,000			1,000			100	
	ChIPme	entation		ChIPme	entation		ChIPme	ntation		ChIPme	ntation
Peakranger read extension length in bp	L1	R1	N-ChIP A	L3	R3	N-ChIP B	L5	R5	N-ChIP C	L7	R7
100	6,871	6,767		625	424		200	370		4,732	5,683
300	10,369	9,545		2,125	1,211		499	635		3,944	5,264
600	10,581	9,924		3,513	2,823		610	813		3,197	3,816
1,000	9,632	9,835	8,320	4,033	2,749	3,888	695	811	131	3,098	3,416
1,500	9,901	9,426		3,315	2,925		847	837		4,019	3,526
2,000	9,067	8,353		3,052	2,631		626	693		4,336	3,897

Table 6. Peakcalling with HMM-based ChromstaR before and after merging adjacent peaks (in bold).

Cell equivalents	1,000,0	00	10,000		1,000		100	
ChromstaR bin 1000, step 500, post prob 0.999	All	merged	All	Merged	All	Merged	All	Merged
ChIPmentation	13,565	6,682	7,194	5,504	3,137	2,876	10,665	10,522
N-ChIP	6,262	6,186	7,058	6,922	5,296	5,129		

for control of unspecific enrichment. The production of input chromatin is "built-in" the N-ChIP protocol (Cosseau *et al.*, 2009; de Carvalho Augusto *et al.*, 2020; Roquis *et al.*, 2018) and needed to be adapted to the automated ChIPmentation procedure. During a ChIPmentation experiment three types of input can be considered (Figure 6): (i) 1 μ L of chromatin before immunoprecipitation, (ii) chromatin that binds non-specifically to any support, and (iii) chromatin truly available for IP. In (i), an aliquot of 1 μ L is taken from the sample before *immunoprecipitation*. The two other types (input library ii and

iii) need a supplementary sample in which mock IP is done without antibody. After IP, this supplementary sample contains magnetic beads with the non-specifically bound chromatin and the supernatant, which is the available chromatin for IP.

Only (i), *i.e.* before IP chromatin and (iii) *i.e.* free chromatin available for IP give ideal library sizes (Figure 6). We decided to optimize the input protocol for option (i), non-immunoprecipitated chromatin because it does not occupy a slot in the IP-Star. In addition, during the preliminary

Page 8 of 16

Wellcome Open Research 2022, 7:133 Last updated: 24 MAY 2022

Figure 3. Average metagene profiles over 5,073 plus strand genes for ChIPmentation and N-ChIP. ChIPmentation samples were 10⁶ (C1), 10⁴ (C3), 10³ (C5) and 100 cell equivalents (C7). N-ChIP samples were 0.8x10⁶ cells (NA), 10⁴ (NB) and 10³ (NC). X-axis: bp upstream, within and downstream of genes. TSS/TES for transcription start and end sites. Y-axis: log(observed/expected). Not all genes contributed to the profiles as only roughly half of the genes show a H3K4me3 peak at the TSS.

Figure 4. ChromstaR read count correlations between libraries (lowest 0, highest 1). L and R samples were considered as replicates 1 and 2 for ChromstaR analysis. ChIPmentation 10⁶ (C1), 10⁴ (C3), 10³ (C5) and 100 cell equivalent (C7). N-ChIP 0.8x10⁶ cells (NA), 10⁴ (NB) and 10³ (NC).

Page 9 of 16

Figure 5. Genome browser screen shot of a typical region of the *S. mansoni* genome with Peakranger chromatin profiles for visual inspection and HMM model-based ChromstaR peak regions (grey underlay). ChIPmentation 10⁶ (L1, R1), 10⁴ (L3, R3), 10³ (L5, R5) and 100 cell equivalent (L7, R7), and N-ChIP 0.8x10⁶ cells (N-A), 10⁴ (N-B) and 10³ (N-C). Color codes as in previous figures : ChIPmentation 10⁶ (L1, R1) in dark red, N-ChIP 0.8x10⁶ cells (N-A) in magenta, ChIPmentation 10⁴ (L3, R3) in orange, N-ChIP 10⁴ (N-B) in dark orange, ChIPmentation 10³ (L5, R5) in green, N-ChIP 10³ (N-C) in light green and ChIPmentation 100 cell equivalent (L7, R7) in light blue The region circled in red illustrates higher background for 10⁴ cells equivalent in ChIPmentation C3 (orange, replicates L3, R3) than in N-ChIP B (dark orange).

Figure 6. Types of inputs generated during ChIPmentation and their associated bioanalyzer profiles. X axis represents the size in base pair, and Y axis represents the fluorescence intensity. Ideal library size is between 150 bp and 500 bp (blue rectangle). (i) 1µL aliquot of one sample chromatin taken before its immunoprecipitation. (ii) and (iii) are from a supplementary sample where immunoprecipitation in the IP-Star is done without antibody. After immunoprecipitation, this supplementary sample contains magnetic beads with the (ii) non-specifically binding chromatin and the supernatant which is the (iii) available chromatin for immunoprecipitation. (ii) No specific binding chromatin which did not deliver a usable library.

Page 10 of 16

test, 1 μ L chromatin input showed a lower Ct compared to option (iii) input, which means that it requires fewer amplification cycles (data on Zenodo).

For the preparation of the 1 μ L chromatin input libraries, we identified two critical parameters. The first one was the dilution of the tagmentation enzyme. Using undiluted Tn5 caused complete over-tagmentation. Between 10- and 100-fold dilutions in water delivered optimal results (Figure 7A).

Secondly, we found that, in our hands, there was no need to add tagmentation neutralizer (0.2% sodium dodecyl sulfate [SDS]) after tagmentation (Figure 7-B and Figure 8). This actually inhibits the PCR amplification step (Picelli *et al.*, 2014). Interestingly, parameters like tagmentation temperature ($37^{\circ}C-55^{\circ}C$) (Figure 8), tagmentation time (2–10 min) and addition of MgCl₂ did not have a critical effect on input library generation.

Discussion

As many methods, ChIPmentation had been developed using readily available but highly artificial cell cultures (Schmidl *et al.*, 2015). The transition from such model systems to non-model species and ecologically realistic conditions is sometimes very difficult or even impossible. Here we showed that the automated ChIPmentation can be done with a parasitic flatworm and delivers results comparable to N-ChIP, the current method of choice for this species. However, the method is roughly two times faster and requires roughly six times less hands-on time. Since the procedure is done on a pipetting robot with on-screen instructions for the researcher, in our experience, training time was reduced to about a week.

We empirically define the limit for the robust detection of peaks with ChIPmentation to be 100,000 cells equivalent per antibody reaction, with 10,000 being the absolute limit if background is acceptable. Operational limit for N-ChIP is 10,000 cells equivalent, confirming our previous results. To avoid variations that might be introduced by small errors in the estimation of cell numbers, we arbitrarily doubled this lower cell limit and established ≥20,000 cells as the lower limit for the routine ChIPmentation-seq procedures in *S. mansoni*. This is a little higher than what has been described in Human cells where good results have been obtained with as little as 5,000 cells.

To improve signal to noise ratio and reduce background in ChIPmentation, it could be useful to increase the washing time (currently 10 min) and speed (currently medium) but we recommend increasing cell number rather than to invest in washing optimization.

Figure 7. Bioanalyzer profiles for input libraries performed with different Tn5 and SDS conditions. a) with undiluted Tn5 (Tn5), 10-fold diluted Tn5 (1/10 Tn5) and 100-fold diluted Tn5 (1/100 Tn5). b) 10-fold diluted Tn5 with 0.2% SDS (S55) and 10-fold diluted Tn5 without 0.2% SDS (E55). X axis represents the size in base pair, and Y axis represents the fluorescence intensity. Ideal library size is between 150 bp and 500 bp (blue rectangle).

Page 11 of 16

Wellcome Open Research 2022, 7:133 Last updated: 24 MAY 2022

Figure 8. Picture of size separation of PCR products after qPCR for input library quantification by electrophoresis. Electrophoresis was performed through an agarose gel stained with ethidium bromide. Tagmentation was performed at 37°C and 55°C with 10-fold diluted Tn5. Sample legend; (S) SD5, (E) No SD5, (TS) no Tn5 enzyme with 0.2% SD5, (TE) no Tn5 enzyme and no SD5, (T-) qPCR negative control without chromatin. Ideal library size is between 150 bp and 500 bp. Only E samples had the right library size.

Using 1 μ L of non-immunoprecipitated chromatin for the reference input library production is the best compromise to save space in the IP-Star, experiment time and biological materials when one is restricted by quantity.

This ChIPmentation protocol is not limited to miracidia cells. We also performed this protocol on *S. mansoni* adult worms and sporocysts. It should be noted that the number of sonication cycles needs to be experimentally determined and adapted for each sample type before proceeding to ChIPmentation experiments.

A new version of the ChIPmentation solution, called μ ChIPmentation for Histones (Diagenode, Cat. No. C01011011), has also been released recently in order to improve the quality for low-amount samples. This relies on a reduced number of steps, especially during chromatin preparation, and reduced number of tube transfers, in order to avoid DNA loss. It also contains a new protocol to process the non-immunoprecipitated chromatin input samples up to the sequencing step. This new version of μ ChIPmentation may be a good alternative for experiments on very low cell numbers in the future.

Data availability

Underlying data

NCBI SRA: Automated ChIPmentation procedure on limited biological material of the human blood fluke Schistosoma mansoni. Accession number: PRJNA816041, https://identifiers.org/ ncbiprotein:PRJNA816041

This project contains the Fastq data of the ChIPmentation libraries.

Zenodo: Supporting information for "Automated ChIPmentation procedure on limited biological material of the human blood fluke Schistosoma mansoni", https://doi.org/10.5281/zenodo. 6375548 (Grunau, 2022) This project contains the following underlying data:

- 20200612-1_Report.pdf (qPCR report for inputs 1µL and available chromatin ("Row7"), see Figure 6)
- 20200919-1_Report.pdf (qPCR report for testing SDS after Tn5, see Figure 7B and Figure 8)
- 20200921-1_Report.pdf (qPCR report for comparing inputs with enzyme of Diagenode kit and our protocol with other enzyme Tn5)
- CG_Ro_1_HighSensitivityDNAAssay_DE13805677_2019-06-20_09-10-48.pdf (DNA assay file underlying Figure 2)
- CG_Ro_2_HighSensitivityDNAAssay_DE13805677_2019-06-20_10-12-12.pdf (DNA assay file underlying Figure 2)
- gel qpcr test input sds_01.Tif

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements

This study is set within the framework of the Laboratoire d'Excellence (LabEx) TULIP (ANR-10-LABX-41), with the support of LabEx CeMEB, an ANR Investissements d'avenir program (ANR-10-LABX-04-01) and the Environmental Epigenomics Core Service at IHPE.

We thank S.A.S. *ParaDev* and Julien Portela for livers of infected hamsters. We also thank the Bio-Environment platform (University of Perpignan Via Domitia) and Jean-François Allienne for support in library preparation and sequencing. We have obtained permission from these colleagues to be acknowledged.

Page 12 of 16

References

Augusto RdC, Cosseau C, Grunau C: **Histone Methylome of the Human** Parasite Schistosoma Mansoni. The DNA RNA, and Histone Methylomes. S. Jurga and J. Barciszewski. Cham, Springer International Publishing: 2019; 607–624. Publisher Full Text

Broad Institute: Picard. Broad Institute, GitHub repository. 2022. **Reference Source**

Buenrostro JD, Wu B, Chang HY, et al.: ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol. 2015; 109:

21.29.21-21.29.29. PubMed Abstract | Publisher Full Text | Free Full Text

Cosseau C, Azzi A, Smith K, et al.: Native chromatin immunoprecipitation (N-ChIP) and ChIP-Seq of Schistosoma mansani: Critical experimental parameters. Mol Biochem Parasitol. 2009; 166(1): 70–76. PubMed Abstract | Publisher Full Text

de Carvalho Augusto R, Roquis D, Al Picard M, et al.: Measuring Histone Modifications in the Human Parasite Schistosoma mansoni. Methods Mol Biol. 2020; 2151: 93-107.

PubMed Abstract | Publisher Full Text

Feng X, Grossman R, Stein L: PeakRanger: a cloud-enabled peak caller for ChIP-seq data. BMC Bioinformatics. 2011; 12: 139. PubMed Abstract | Publisher Full Text | Free Full Text

Grunau C: Supporting information for "Automated ChIPmentation procedure on limited biological material of the human blood fluke Schistosoma mansoni" (Version 1) [Data set]. Zenodo. 2022. http://www.doi.org/10.5281/zenodo.6382509

Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4): 357–359. PubMed Abstract | Publisher Full Text | Free Full Text

Li H, Handsaker B, Wysoker A, et al.: The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25(16): 2078–2079. PubMed Abstract | Publisher Full Text | Free Full Text

Mouahid G, Idris MA, Verneau O, et al.: A new chronotype of Schistosoma mansoni: adaptive significance. Trop Med Int Health. 2012; 17(6): 727-732. PubMed Abstract | Publisher Full Text

Picelli S, Björklund AK, Reinius B, et al.: Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 2014; 24(12): 2033-2040.

PubMed Abstract | Publisher Full Text | Free Full Text Ouinian AR. Hall IM: BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics. 2010; 26(6): 841–842. PubMed Abstract | Publisher Full Text | Free Full Text

Roels J, Kuchmiy A, De Decker M, *et al.*: Distinct and temporary-restricted epigenetic mechanisms regulate human αβ and γδ T cell development. *Nat Immunol.* 2020; **21**(10): 1280–1292. PubMed Abstract | Publisher Full Text

Public Additional Additional Production Characteria Provided Additional Additiona Additional Additional Additional Additional Additiona Additio

input ChIP-seq for histones and transcription factors. Nat Methods. 2015; 12(10): 963–965. PubMed Abstract | Publisher Full Text | Free Full Text

Smith AD: A quality control tool for high throughput sequence data. 2019.

Taudt A, Nguyen MA, Heinig M, et al.: chromstaR: Tracking combinatorial chromatin state dynamics in space and time. *bioRxiv*, 2016. Publisher Full Text

Page 13 of 16

Annexe 8 : Liste des gènes différentiellement marqués par H3K4me3 issus du DEseq2 entre les chronotypes diurne et nocturne de *S. mansoni*

Chr.	Gene ID	GFF annotation	HHsearch annotation	Surrepré- senté	QTL
2	Smp_327240	NA		Diurne	
2	Smp_310040	Alpha 1,6 fucosyltransferase I		Diurne	
2	Smp_122820	NA		Diurne	
2	Smp_327530	NA		Diurne	
2	Smp_327550	NA		Diurne	
2	Smp_303430	previous_stable_id=Smp_001430		Diurne	
2	Smp_001420	Gh regulated tbc protein-1, putative		Diurne	
2	Smp_122810	Putative spfh domain / Band 7 family protein		Diurne	
2	Smp_343980	previous_stable_id=Smp_047850,Smp_147740		Diurne	
2	Smp_337360	Peptidase_M13_N domain-containing protein		Diurne	
2	Smp_021170	VPS13C protein, putative		Diurne	
2	Smp_335380	previous_stable_id=Smp_193370		Diurne	
2	Smp_328700	NA		Diurne	
2	Smp_328710	previous_stable_id=Smp_170370		Diurne	
1	Smp_162010	Non-specific serine/threonine protein kinase		Diurne	
SM _V7 _2H008	Smp_305410	previous_stable_id=Smp_085410		Diurne	
3	Smp_336660	previous_stable_id=Smp_212400,Smp_197760, Smp_055500		Diurne	
3	Smp_098950	TATA-box binding protein, putative		Diurne	
3	Smp_247260	previous_stable_id=Smp_194670,Smp_149660		Diurne	
3	Smp_085780	Ribosomal protein L10P	28S ribosomal protein S2, mitochondrial	Diurne	QTL3AB
3	Smp_000370	Selenoprotein SelK/SelG	SelK_SelG	Diurne	QTL3AB
1	Smp_180260	Amiloride-sensitive sodium channel, putative		Diurne	
5	Smp_334550	previous_stable_id=Smp_156830,Smp_205340		Diurne	

Annexe	8				
5	Smp_334620	previous_stable_id=Smp_210140		Diurne	
6	Smp_155560	Serpin, putative		Diurne	
6	Smp_336290	previous_stable_id=Smp_162320		Diurne	
6	Smp_331250	NA		Diurne	
6	Smp_164130	Dopey-related		Diurne	
ZW	Smp_324090	NA		Diurne	
ZW	Smp_173120	Phosphatidic acid phosphatase type 2-related		Diurne	
1	Smp_319050	Transmembrane protein 164	TMEM164	Diurne	QTL1
1	Smp_127370	Glycosyl transferase, family 14	beta-1,6-N- acetylglucosa- minyltransferase (E.C.2.4.1.102)	Nocturne	QTL1
2	Smp_172990	Putative leucine rich repeat-containing		Nocturne	

Chr. : chromosome.

Annexe 9 : Liste des gènes différentiellement marqués par H3K9ac issus du DEseq2 entre les chronotypes diurne et nocturne de *S. mansoni*

Chr.	Gene ID	GFF annotation	HHsearch annotation	Surrepré- senté	QTL
6	Smp_336310	NA		Diurne	
6	Smp_147020	Sec7 domain	guanine nucleotide exchange protein	Diurne	QTL6
2	Smp_011220	Putative glucosamine-fructose-6- phosphate aminotransferase		Nocturne	
3	Smp_337380	NA		Nocturne	
3	Smp_205760	Guanine nucleotide-binding protein subunit gamma		Nocturne	
3	Smp_029160	Putative ribonuclease p/mrp subunit		Nocturne	
3	Smp_308470	SEA domain	SEA	Nocturne	QTL3AB
3	Smp_084540	Forkhead-associated (FHA) domain	RNA-binding protein 5, Survival motor	Nocturne	QTL3AB
5	Smp_106390	NA		Nocturne	
5	Smp_327560	Thioredoxin domain-containing protein		Nocturne	
6	Smp_341570	NA		Nocturne	
SM_V7 _6H013	Smp_321200	NA		Nocturne	
7	Smp_010380	Isochorismatase domain-containing protein		Nocturne	
SM_V7 _MITO	Smp_900070	Cytochrome b (mitochondrion)		Nocturne	
SM_V7 _MITO	Smp_900080	NA		Nocturne	
SM_V7 _MITO	Smp_900090	NADH dehydrogenase subunit 4 (mitochondrion)		Nocturne	
ZW	Smp_169010	Putative adenylate cyclase		Nocturne	
1	Smp_127370	Glycosyl transferase, family 14	beta-1,6-N- acetylglucosaminyl- transferase (E.C.2.4.1.102)	Nocturne	QTL1

Annexe 5	A	۱n	ex	e	9
----------	---	----	----	---	---

1	Smp_158570	NA	Nocturne	

Chr.: chromosome.

Annexe 10 Annexe 10 : Liste des gènes diurnes rythmiques

Chr.	Gene ID	GFF annotation	HHsearch annotation	Pic (h)
SM_V7_1	Smp_003300	Putative serpin		8
SM_V7_1	Smp_003610	NA		16
SM_V7_1	Smp_003940	NA		4
SM_V7_1	Smp_005180	Transcription factor, GTP-binding domain	uL2, uL3, uL4, 60S ribosomal	24
SM_V7_1	Smp_007260	P-type ATPase	SARCOPLASMIC/ENDOPLASMIC RETICULUM CALCIUM ATPASE 1	8
SM_V7_1	Smp_007270	Putative alpha-actinin		12
SM_V7_1	Smp_008400	Adenosine kinase		4
SM_V7_1	Smp_009600	Protein kinase domain	Aurora-related kinase 1 (aurora-2) {Human (Homo sapiens) [TaxId: 9606]}	4
SM_V7_1	Smp_009830	Translocon-associated protein subunit beta	TRAP_beta	20
SM_V7_1	Smp_012810	Putative four and A half lim domains		12
SM_V7_1	Smp_019190	Pre-mRNA-splicing factor SLU7 domain	Protein mago nashi homolog 2	12
SM_V7_1	Smp_019310	Dynein light chain, type 1/2	Dynein light chain 1 (DLC1) {Fruit fly (Drosophila melanogaster) [TaxId: 7227]}	8
SM_V7_1	Smp_019340	Tetraspanin	Tetraspanin	20
SM_V7_1	Smp_019440	SUI1 domain	Eukaryotic translation initiation factor eIF-1 (SUI1) {Human (Homo sapiens) [TaxId: 9606]}	20
SM_V7_1	Smp_020070	NA		8
SM_V7_1	Smp_020080	Putative gtp-binding protein (I) alpha- 1subunit%2C gnai1		12
SM_V7_1	Smp_025750	NA	NA	8
SM_V7_1	Smp_032180	Small GTP-binding protein domain	ADP-ribosylation factor {Human (Homo sapiens), ARF6 [TaxId: 9606]}	24
SM_V7_1	Smp_032230	Tetratricopeptide-like helical domain superfamily	Mitochondria fission protein Fis1 {Baker's yeast (Saccharomyces cerevisiae) [Taxld: 4932]}	20
SM_V7_1	Smp_032250	Beta-lactamase-related	Carboxylesterase (E.C.3.1.1.1)	20
SM_V7_1	Smp_034660	Cytohesin-related guanine nucleotide- exchange protein		8
SM_V7_1	Smp_034670	Tubulin gamma chain		4
SM_V7_1	Smp_035250	NA		12
SM_V7_1	Smp_035280	Adenylyltransferase and sulfurtransferase MOCS3 homolog Adenylyltransferase Sulfurtransferase		12
SM_V7_1	Smp_035470	Dolichyl-diphosphooligosaccharide protein glycosyltransferase 48 kDa subunit		8
SM_V7_1	Smp_048260	Putative n-acetyltransferase		20
SM_V7_1	Smp_049550	Putative heat shock protein 70 (Hsp70)		8
SM_V7_1	Smp_049600	Putative DNAj (Hsp40) homolog%2C subfamily C%2C member		8
SM_V7_1	Smp_055390	Putative dullard protein		24
SM_V7_1	Smp_055990	Adenylosuccinate synthetase		8

Isocitrate dehydrogenase [NAD] SM_V7_1 Smp_056200 12 subunit%2C mitochondrial SM V7 1 Smp 057060 Acetyl-CoA deacylase 8 SM V7 1 Smp 059980 Arginase 8 Smp_060570 Putative sarg904 SM_V7_1 8 26S proteasome subunit S9%2C SM_V7_1 Smp_061650 4 putative SM V7 1 Smp 065610 Pyruvate kinase 8 SM_V7_1 Smp_071050 16 NA Adenylate kinase%3B Putative SM_V7_1 Smp_071390 8 adenylate kinase SM_V7_1 Smp_072450 Putative rhodopsin-like orphan GPCR 16 SM V7 1 Smp_072560 NA 4 Smp_073560 SM_V7_1 G beta-like protein gbl 12 Transcriptional co-activator crsp77-SM_V7_1 Smp_073610 4 related RecQ-mediated genome instability SM_V7_1 Smp_073800 12 protein 1 SM V7 1 Smp 075770 NA 12 SM_V7_1 Smp_075800 Legumain 8 Putative DNA polymerase delta small SM_V7_1 Smp_076660 20 subunit SM V7 1 20 Smp 077030 NA SM_V7_1 Smp_078690 Calponin 12 PROBABLE ATP-DEPENDENT RNA SM_V7_1 Smp_083710 Helicase, C-terminal 4 **HELICASE DDX58** Putative solute carrier family 37 Smp_084600 member 2 (Glycerol-3-phosphate SM_V7_1 8 transporter) SM V7 1 Smp 085010 Cathepsin B-like peptidase (C01 family) 8 Smp_085840 SM_V7_1 MEG-4 (10.3) family 8 SM_V7_1 Smp_086480 Antigen Sm21.7 8 Sm 20.8%3B Tegumental antigen SM_V7_1 Smp_086530 Sm20.8%3B Tegumental protein Sm 8 20.8 SM_V7_1 Smp_088950 Hypoxia upregulated 1 (Hyou1)-related 8 SM V7 1 Smp 090860 Protein-serine/threonine phosphatase 8 SM_V7_1 Smp 091390 Btz domain-containing protein 20 Putative amiloride-sensitive sodium SM_V7_1 Smp 093210 12 channel Receptor protein serine/threonine SM_V7_1 Smp_093540 8 kinase Pre-mRNA-splicing factor 8, Pre-mRNA-Helicase, C-terminal 12 SM_V7_1 Smp 093580 splicing factor Putative hepatitis B virus X associated SM_V7_1 Smp_094360 8 protein%2C hbxa Putative trna delta(2)-SM_V7_1 Smp 102920 24 isopentenylpyrophosphate transferase SM V7 1 Cathepsin B1 isotype 1 8 Smp_103610 PHD finger protein 7 (NYD-SP6) {Mouse SM_V7_1 Smp_104980 NA 4 (Mus musculus) [TaxId: 10090]} SM_V7_1 Smp_124050 Venom allergen-like (VAL) 6 protein 8 SM V7 1 Smp 124070 Venom allergen-like (VAL) 16 protein 8

Annexe 10				
SM V7 1	Smp 124120	DNA polymerase II subunit 2		4
SM V7 1	Smp 124340	NRF domain-containing protein		8
SM V7 1	Smp 129020	Innexin		16
SM V7 1	Smp 129560	C2H2-type domain-containing protein		24
SM V7 1	Smp 129830	Putative cadherin		4
SM V7 1	Smp 133020	Mitogen-activated protein kinase		4
SM V7 1	Smp 136200	NA		12
SM V7 1	Smp 136700	NA		12
SM_V7_1	Smp_137390	Histone RNA stem-loop-binding protein SLBP1/SLBP2	SLBP/RNA Complex	20
SM_V7_1	Smp_139620	PDZ domain	Glutamate receptor interacting protein 2, GRIP2 (KIAA1719) {Human (Homo sapiens) [TaxId: 9606]}	4
SM_V7_1	Smp_140460	NA		8
SM_V7_1	Smp_140550	Putative 39s ribosomal protein L35%2C mitochondrial		20
SM_V7_1	Smp_141380	Protein kinase		4
SM_V7_1	Smp_144510	VWFA domain-containing protein		12
SM_V7_1	Smp_149700	Heterogeneous nuclear ribonucleoprotein I (Hnrnp I)%2C putative		4
SM_V7_1	Smp_150420	NA		12
SM_V7_1	Smp_151360	NA		16
SM_V7_1	Smp_154600	Carboxylic ester hydrolase		12
SM_V7_1	Smp_159600	Putative collagen alpha chain		8
SM_V7_1	Smp_160490	NA		12
SM_V7_1	Smp_160850	Nucleoprotein TPR		8
SM_V7_1	Smp_160880	Phosphatidylcholine-sterol acyltransferase (Lecithin-cholesterol acyltransferase)/ Phospholipase A		8
SM_V7_1	Smp_160950	RING-type domain-containing protein		24
SM_V7_1	Smp_161360	Putative syndecan		12
SM_V7_1	Smp_161790	NA		12
SM_V7_1	Smp_165050	MEG-7		8
SM_V7_1	Smp_165950	Tektin		12
SM_V7_1	Smp_165960	Dcp1 related		8
SM_V7_1	Smp_167240	Nicastrin		4
SM_V7_1	Smp_167300	SWIM-type domain-containing protein		12
SM_V7_1	Smp_169190	Tegumental allergen-like protein		8
SM_V7_1	Smp_170340	Putative collagen alpha-1(V) chain		8
SM_V7_1	Smp_170570	Pre-mRNA processing protein prp39- related		4
SM_V7_1	Smp_172110	Protein disulfide-isomerase		24
SM_V7_1	Smp_173150	Tetraspanin		12
SM_V7_1	Smp_174520	Dynein light chain		8
SM_V7_1	Smp_176930	Putative cationic amino acid transporter		8
SM_V7_1	Smp_181050	NA		24
SM_V7_1	Smp_194040	NA		8
SM_V7_1	Smp_194770	Taurocyamine kinase		8
SM_V7_1	Smp_195090	Tegumental antigen		8

Adenylate kinase {Pig (Sus scrofa) SM_V7_1 Smp 197230 Adenylate kinase/UMP-CMP kinase 12 [TaxId: 9823]} SM V7 1 Smp 200020 Protein yippee-like 16 SM V7 1 Smp 200110 NA 12 Smp 208090 SM_V7_1 NA 12 Smp_210160 20 SM_V7_1 NA SM V7 1 Smp 212230 Proteasome component (PCI) domain COP9 signalosome complex subunit 1 20 previous_stable_id=Smp_131860 SM V7 1 Smp_212860 20 20 SM_V7_1 Smp_213850 previous_stable_id=Smp_167250 Collagen IV NC1 domain-containing 8 SM_V7_1 Smp 213900 protein Calpain catalytic domain-containing SM_V7_1 Smp 214180 8 protein previous stable id=Smp 191220,Smp SM_V7_1 Smp_245600 16 180960,Smp 180950 SM_V7_1 Smp_246020 NA 16 Glycos_transf_1 domain-containing SM_V7_1 Smp 246400 8 protein SM V7 1 Smp 246460 previous_stable_id=Smp_173850 12 SM_V7_1 Smp_247180 SHSP domain-containing protein 12 DNA-binding protein reb1/DNA SM_V7_1 Smp_248110 SANT/Myb domain 12 Complex previous stable id=Smp 148580,Smp SM V7 1 Smp 302370 16 196250 Developmentally regulated antigen SM_V7_1 Smp_307220 8 10.3 Calponin-homology (CH) domain-SM V7 1 Smp 310240 12 containing protein previous_stable_id=Smp_073050 SM_V7_1 Smp_314730 4 SM V7 1 Smp 315890 JmjC domain **PHD FINGER PROTEIN 8** 8 Biopolymer transport protein ExbB, SM_V7_1 Smp 318890 NA 8 TonB PTS system, cellobiose-specific IIB SM_V7_1 NA 8 Smp_318900 component Biopolymer transport protein ExbB, NA 8 SM_V7_1 Smp_318920 TonB SM_V7_1 Smp_319140 Mediator complex, subunit Med27 Med27 4 Dynein light chain 1 (DLC1) {Fruit fly (Drosophila melanogaster) [TaxId: SM_V7_1 Smp_319260 Dynein light chain, type 1/2 8 7227]} SM_V7_1 Smp_319300 NA NA 8 Smp 319490 SM V7 1 NA Nucleoporin p54 8 SM_V7_1 Smp_319720 NA 8 SM_V7_1 Smp 319810 previous stable id=Smp 056290 8 SM_V7_1 Smp 319920 8 NA SM V7 1 Smp 319930 8 NA SM_V7_1 Smp_320110 NA 8 8 SM V7 1 Smp 320300 Dynein light chain 20 SM_V7_1 Smp_320540 NA N6-L-threonylcarbamoyladenine SM_V7_1 Smp_329760 12 synthase SM_V7_1 Smp_331730 Poly(U)-specific endoribonuclease 12

		previous stable id-Smp 172100 Smp	
SM_V7_1	Smp_332610	172000	12
	Smp 227250	172000	10
	Smp_337250		12
	Smp_33/310	NA	12
SM_V7_1	Smp_340440	previous_stable_id=Smp_023830	12
SM_V7_1	Smp_341700	AMPKBI domain-containing protein	12
SM_V7_1	Smp_342030	previous_stable_id=Smp_124360	12
SM_V7_1	Smp_342240	previous_stable_id=Smp_126630	4
SM_V7_1	Smp_342940	UPF0506 domain-containing protein	20
SM_V7_1	Smp_344020	previous_stable_id=Smp_147860	12
SM_V7_1	Smp_344320	Tubulin-folding cofactor E	8
SM_V7_1	Smp_345320	previous_stable_id=Smp_161990	16
SM_V7_1	Smp_345500	previous_stable_id=Smp_164550	8
SM_V7_1	Smp_345580	previous_stable_id=Smp_165100	12
		26S proteasome non-ATPase	•
SM_V/_1	Smp_346350	regulatory subunit 1	8
SM V7 1H0		RFX-type winged-helix domain-	
02	Smp_329840	containing protein	4
		NADH dehvdrogenase [ubiquinone] 1	
SM_V7_2	Smp_001590	alpha subcomplex assembly factor 3	4
SM V7 2	Smp 004260	NA	4
	• =	Interferon-related developmental	
SM_V7_2	Smp_004680	regulator-related	8
SM V7 2	Smp_004690	77-type domain-containing protein	8
SM_V7_2	Smp_004810	Serine/threenine-protein phosphatase	24
SM V7 2	Smp_004010	Taspase-1 (TO2 family)	12
SM V7 2	Smp_011130	Smp 014570.2	8
5101_07_2	5mp_014570	Ship_014570.2	0
SM_V7_2	Smp_014620	2b beta subunit	24
		Putative gtp-binding protein (I) alpha-2	
SM_V7_2	Smp_016250	subunit%2C gnai2	24
SM V7 2	Smp 021140	40S ribosomal protein S7	20
SM V7 2	Smp 021920	Paramyosin	8
SM V7 2	Smp 022090	Ribose-phosphate diphosphokinase	8
SM V7 2	Smp 034410	Cathepsin F (CO1 family)	12
SM_V7_2	Smp_037540	Putative alpha-amylase	24
SM_V7_2	Smp_046740	Dihydrolipoyl dehydrogenase	8
		Histone-like transcription factor ccaat-	•
SM_V7_2	Smp_046910	related	24
SM V7 2	Smp 047620	Putative cyclin B3	4
SM V7 2	Smp 047650	Ferritin	16
SM_V7_2			
<u> </u>	Smp 047680	Ferritin	16
SM V7 2	Smp_047680	Ferritin	16 20
SM_V7_2	Smp_047680 Smp_086220	Ferritin NA Protein BEB1	16 20 20
SM_V7_2 SM_V7_2	Smp_047680 Smp_086220 Smp_099690	Ferritin NA Protein RER1	16 20 20
SM_V7_2 SM_V7_2 SM_V7_2	Smp_047680 Smp_086220 Smp_099690 Smp_102490	Ferritin NA Protein RER1 NA	16 20 20 12
SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2	Smp_047680 Smp_086220 Smp_099690 Smp_102490 Smp_103340	Ferritin NA Protein RER1 NA NA	16 20 20 12 12
SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2	Smp_047680 Smp_086220 Smp_099690 Smp_102490 Smp_103340 Smp_105420	Ferritin NA Protein RER1 NA NA LGG%3B Saposin containing protein	16 20 20 12 12 8
SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2	Smp_047680 Smp_086220 Smp_099690 Smp_102490 Smp_103340 Smp_105420 Smp_123390	Ferritin NA Protein RER1 NA NA LGG%3B Saposin containing protein Requim%2C req/dpf2%2C putative	16 20 20 12 12 8 8 8
SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2	Smp_047680 Smp_086220 Smp_099690 Smp_102490 Smp_10340 Smp_105420 Smp_123390 Smp_124430	Ferritin NA Protein RER1 NA NA LGG%3B Saposin containing protein Requim%2C req/dpf2%2C putative Coatomer subunit beta	16 20 20 12 12 8 8 8 24
SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2	Smp_047680 Smp_086220 Smp_099690 Smp_102490 Smp_103340 Smp_105420 Smp_123390 Smp_124430 Smp_125490	Ferritin NA Protein RER1 NA NA LGG%3B Saposin containing protein Requim%2C req/dpf2%2C putative Coatomer subunit beta NA	16 20 12 12 8 8 24 16
SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2 SM_V7_2	Smp_047680 Smp_086220 Smp_099690 Smp_102490 Smp_103340 Smp_105420 Smp_123390 Smp_124430 Smp_125490 Smp_127200	Ferritin NA Protein RER1 NA NA LGG%3B Saposin containing protein Requim%2C req/dpf2%2C putative Coatomer subunit beta NA Glucose transporter	16 20 12 12 8 24 16 12

Annexe 10				
SM_V7_2	Smp_134040	Putative elf1		8
SM V7 2	Smp 137720	NA		12
SM V7 2	Smp 138750	Alpha 1%2C6 fucosyltransferase K		8
SM V7 2	Smp 140700	Mitogen-activated protein kinase		16
SM V7 2	Smp 148220	NA		24
SM V7 2	Smp 154830	NA		8
SM V7 2	Smp 154880	Delta-tubulin		20
SM V7 2	Smp 157290	Condensin complex subunit 2		8
SM V7 2	Smp 157360	RING-type E3 ubiquitin transferase		4
SM V7 2	Smp 158240	Fumarate hydratase		4
SM V7 2	Smp 167750	Putative fatty-acid amide hydrolase		12
SM V7 2	Smp 169090	NA		8
SM V7 2	Smp 176300	Dynein heavy chain%2C putative		4
SM_V7_2	Smp 210300	Putative 60s ribosomal protein L7a		8
SM_V7_2	Smp_245790	SAM domain-containing protein		12
SM_V7_2	Smp_213750	C2H2-type domain-containing protein		12
SM_V7_2	Smp_21/600	previous stable id=Smp 161310		12
SM_V7_2	Smp_3100000	PD7 domain-containing protein		12
SM_V7_2	Smp_311700	Putative kunitz-type protease inhibitor		8
5101_07_2	5mp_511700	Metallophos domain-containing		0
SM_V7_2	Smp_318800	protein		8
SM_V7_2	Smp_332350	Putative kunitz-type protease inhibitor		8
SM_V7_2	Smp_337470	RING-type domain-containing protein		24
SM_V7_2	Smp_341520	RFXA_RFXANK_bdg domain-containing protein		20
SM_V7_2	Smp_345700	IPPc domain-containing protein		4
SM_V7_3	Smp_000500	NA	NA	8
SM_V7_3	Smp_000790	Actin binding LIM protein family		12
SM V7 3	Smp 001100			8
SM_V7_3	Smp_001100	TRAM/LAG1/CLN8 homology domain	TRAM LAG1 CLN8	8
5101_07_5	5mp_002520	Red protein (Ik factor) (Cytokine ik)%2C		0
SM_V7_3	Smp_004480	putative		12
SM_V7_3	Smp_010160	CS domain	Suppressor of G2 allele of skp1 homolog, gst1 {Human (Homo sapiens) [TaxId: 9606]}	20
SM_V7_3	Smp_013300	Yip1 domain	YIF1	24
SM_V7_3	Smp_013440	Zinc/iron permease	Zip	8
SM_V7_3	Smp_018610	Mediator complex, subunit Med7	Med7	8
SM_V7_3	Smp_018710	WD40 repeat	Uncharacterized WD repeat-containing protein C4F10.18	24
SM V7 3	Smp 018880	NA	NA	8
SM V7 3	Smp 019010	Dipeptidyl peptidase 3		4
SM V7 3	Smp 027870	NA	NPIP	8
SM_V7_3	Smp_029500	Thimet oligopeptidase (M03 family)		24
SM_V7_3	Smp_030220	HAD-superfamily hydrolase, subfamily IIA	Hypothetical protein TM1742 {Thermotoga maritima [TaxId: 2336]}	24
SM_V7_3	Smp_052350	Zinc finger, RanBP2-type	UBIQUITIN THIOESTERASE ZRANB1 (E.C.3.4.19.12)	8
SM_V7_3	Smp_052390	Origin recognition complex, subunit 5	Orc2, Orc3, Orc5, Orc1, Orc6	4
SM_V7_3	Smp_075040	Uncharacterised protein family UPF0538	DUF2340	16

SM, V7, 3 Smp, 075110 Cell cycle checkpoint protein, Rod1 Rad1 202 SM, V7, 3 Smp, 085750 Zinc finger protein NOA36 NOA36 8 SM, V7, 3 Smp, 100130 GVF domain-ontaining protein Deta-Catenin (Human (Homo sapiens) [Taxki: 9606]; 16 SM, V7, 3 Smp, 105950 Armadillo Eh-and domain Rchip1, Kv4 potassium channel- interacting protein (Rat (Rattus 12 SM, V7, 3 Smp, 102110 Eh-hand domain Rchip1, Kv4 potassium channel- interacting protein (Rat (Rattus 12 SM, V7, 3 Smp, 127490 Helicase, C-terminal Rchip1, Kv4 potassium channel- interacting protein 287b (Human (Homo sapiens) [Taxki: 9015] 16 SM, V7, 3 Smp, 134870 Zinc finger C2H2-type Zinc finger protein 287b (Human (Homo sapiens) [Taxki: 9060]; 16 SM, V7, 3 Smp, 134800 Snurportin-1 35 00 21.7E-07 54.0 0.0 202 99 8 SM, V7, 3 Smp, 137910 Putative tight junction protein Ratt 12 SM, V7, 3 Smp, 130920 Putative chloride intracellular channel 8 12 SM, V7, 3 Smp, 145900 ClpA/B family	Annexe 10				
SM V7.3 Smp D85700 Zinc fnger protein NOA36 NOA36 Ref SM_V7.3 Smp 100130 GYF domain-containing protein 20 SM_V7.3 Smp 1005950 Armadillo Interacting protein (Auter Sed6) 16 SM_V7.3 Smp 105100 EF-hand domain Kchipi, KW potassium channel- interacting protein (Rat (Rattus) 12 SM_V7.3 Smp 12210 NA ELC.3.6.4.12) 4 SM_V7.3 Smp 132210 NA ELC.3.6.4.12) 12 SM_V7.3 Smp 134700 Vici finger C2H2-type Zinc finger protein STOP (Human (Homo sapiens) [Taxd: 9506)] 16 SM_V7.3 Smp 134870 Zinc finger C2H2-type Zinc finger protein STOP (Human (Homo sapiens) [Taxd: 9506)] 16 SM_V7.3 Smp 137910 Putative tight junction protein 93.8 0.01 7:E-07 540 0.02 0:2.99 8 SM_V7.3 Smp 13820 NA NA 12 SM 12 SM_V7.3 Smp 14800 ClpA/B family ClpA/B family ClpA/B family 12 SM_V7.3 Smp 16000 QD_REPEATS, EEGION	SM_V7_3	Smp_075110	Cell cycle checkpoint protein, Rad1	Rad1	20
SM_V7_3 Smp_100130 GYF domain-containing protein peta-Caterin (Human (Homo sapies)) 20 SM_V7_3 Smp_105950 Armadillo [Takd: 9606]) 16 SM_V7_3 Smp_106110 F-hand domain interacting protein (AR (Rat Rust) norvegicus) [Takd: 10116]) 12 SM_V7_3 Smp_127490 Helicase, C-terminal E-f-hand domain 12 SM_V7_3 Smp_134220 Na 12 12 SM_V7_3 Smp_134270 Major facilitator superfamily domain Melibiose carrier protein 8 SM_V7_3 Smp_134820 Narp orter (Part) 35 5011_A DNA dc-xdU-editing enzy 93.8 93.6 SM_V7_3 Smp_137910 Putative tight junction protein 12 12 SM_V7_3 Smp_137920 Putative tight junction protein 12 12 SM_V7_3 Smp_150210 Zinc finger RING-type UI SMP1-associating protein 1, Degradation 8 SM_V7_3 Smp_162030 Ubiquitin/SUM-activating enzyme 11, Uba1 8 8 SM_V7_3 Smp_162030 Ubiquitin/SUM-activating enzyme 11, Uba1 8 12	SM_V7_3	Smp_085750	Zinc finger protein NOA36	NOA36	8
SM_V7_3 Smp_105950 Armadilio beta-Caterin (Human (Homo sapiens) [Taxit: 9606]) 16 SM_V7_3 Smp_106110 EF-hand domain Kchipi, KW potassium channel- interacting protein (Rat (Ratus) 12 SM_V7_3 Smp_127490 Helicase, C-terminal BLOOM'S SYNDROME HELICASE (E.G.3.6.4.12) 4 SM_V7_3 Smp_132210 NA 12 SM_V7_3 Smp_134720 Major facilitator superfamily domain Melibiose carrier protein 8 SM_V7_3 Smp_134820 Zinc finger C2H2-type Tint finger protein 2976 (Human (Homo sapiens) [Taxid: 9606]) 16 SM_V7_3 Smp_134820 Putative tight junction protein 93.8 00.21.7E-07.940.00.202.99 8 SM_V7_3 Smp_137910 Putative tight junction protein 12 12 SM_V7_3 Smp_138320 NA NA 12 SM_V7_3 Smp_138320 NA NA 12 SM_V7_3 Smp_16500 Clp/B family ClpA, an Hsp100 chaperone, AAA+ modules (Escherichia coli [Taxid: 560]) 8 SM_V7_3 Smp_16200 ADA3-like 12 12	SM_V7_3	Smp_100130	GYF domain-containing protein		20
SM_V7_3 Smp_10610 EF-hand domain Kchip1, Kv4 potassium channel- increacting protein (Rat (Rattus norvegicus) [Taxtd: 10116]) 12 SM_V7_3 Smp_127490 Helicase, C-terminal BLOOM'S SYNDROME HELICASE (C.S. 8. 4.12) 4 SM_V7_3 Smp_132210 NA Increacting protein (Rat (Rattus norvegicus) [Taxtd: 4006]} 8 SM_V7_3 Smp_13470 Major facilitator superfamily domain Melibiose carrier protein (Homo sapiens) [Taxtd: 4006]} 8 SM_V7_3 Smp_134800 Snurportin-1 35.6 OT1 A DNA 40-40-4016] 8 SM_V7_3 Smp_137910 Putative tight junction protein 93.8 0.02 1.7E-07 54.0 0.0 202 99- 310 152-399 (507) 8 SM_V7_3 Smp_138200 NA NA 8 SM_V7_3 Smp_145900 ClpA/8 family ClpA, an Hsp100 chaperone, AAA+ modules (Escherichia coli [Taxid: 562]] 8 SM_V7_3 Smp_16200 ADA3-like 10 12 SM_V7_3 Smp_16210 ADA3-like 12 SM_V7_3 Smp_16230 Ubiquitin/SUMO-activating enzyet E1 14 SM_V7_3 Smp_167540 Ris2 protein%2C putative	SM_V7_3	Smp_105950	Armadillo	beta-Catenin {Human (Homo sapiens) [TaxId: 9606]}	16
SM_V7.3 Smp_127490 Helicase, C-terminal BLOOM'S SYNDROME HELICASE (E.C.3.6.4.12) 4 SM_V7.3 Smp_132210 NA 12 SM_V7.3 Smp_134720 Major facilitator superfamily domain Melibiose carrier protein 297b (Human (Homo sapiens) [Taxid: 9606]) 16 SM_V7.3 Smp_134870 Zinc finger C2H2-type Zinc finger protein 297b (Human (Homo sapiens) [Taxid: 9606]) 16 SM_V7.3 Smp_137910 Putative tigh junction protein 35 6DT1_A DNA dC-AdU-editing enzy 310 152-399 (507) 8 SM_V7.3 Smp_137910 Putative tigh junction protein 8 12 SM_V7.3 Smp_138320 NA NA NA 12 SM_V7.3 Smp_138320 NA NA 12 12 SM_V7.3 Smp_145990 ClpA/B family ClpA, an Hsp100 chaperone, AAA+ modules (Escherichia coil [Taxid: 562]) 8 SM_V7.3 Smp_162010 Zinc finger, RING-type U1 SNP1-associating protein 1, begradation 12 SM_V7.3 Smp_162030 Ubiquitin/SUMO-activating enzyme E1 Ubiquitin-activating enzyme E1 1, Ubal 1 8 SM_V7.3	SM_V7_3	Smp_106110	EF-hand domain	Kchip1, Kv4 potassium channel- interacting protein {Rat (Rattus norvegicus) [TaxId: 10116]}	12
SM, V7,3 Smp 132210 NA Image: constraints of the second secon	SM_V7_3	Smp_127490	Helicase, C-terminal	BLOOM'S SYNDROME HELICASE (E.C.3.6.4.12)	4
SM_V7_3 Smp_134720 Major facilitator superfamily domain Melibiose carrier protein 297b (Human (Homo sapiens) [Taxld: 9606]) 8 SM_V7_3 Smp_134870 Zinc finger C2H2-type Zinc finger protein 297b (Human (Homo sapiens) [Taxld: 9606]) 16 SM_V7_3 Smp_134880 Snurportin-1 35 6DT1_A DNA 4C-3U-editing enzy 93.8 0.02 J.TF-07 54.0 0.0 202 99- 310 152-399 (507) 8 SM_V7_3 Smp_137910 Putative tight junction protein NA 12 SM_V7_3 Smp_13820 NA NA 12 SM_V7_3 Smp_145990 ClpA/B family ClpA/A an Hsp100 chaperone, AAA+ modules (Escherichia coli [Taxld: 562]) 8 SM_V7_3 Smp_160000 Zinc finger, RING-type U1 SNP_associating protein 1, Degradation 8 SM_V7_3 Smp_162100 ADA3-like 12 20 SM_V7_3 Smp_162100 ADA3-like 12 20 SM_V7_3 Smp_162100 ADA3-like 12 20 SM_V7_3 Smp_16210 Protein kinase domain Aurora-related kinase 1 (aurora-2) (Human (Homo sapiens) [Taxld: 9606]) 20 SM_V7_3 Smp_	SM_V7_3	Smp_132210	NA		12
SM_V7_3 Smp_134870 Zinc finger C2H2-type Zinc finger protein 2970 (Human (Hom sapiens) [Taxld: 9606]) 16 SM_V7_3 Smp_134880 Snurportin-1 35 60T1_ADNA dC->dU-editing enzy 93.8 0.02 1.7E-07 54.0 0.0 202 99- 310 152-399 (507) 8 SM_V7_3 Smp_137910 Putative tight junction protein 8 8 SM_V7_3 Smp_137920 Putative chloride intracellular channel 8 8 SM_V7_3 Smp_138320 NA NA 12 SM_V7_3 Smp_145990 ClpA/B family ClpA, an Hsp100 chaperone, AAA+ modules (Escherichia coli [Taxld: 562]) 8 SM_V7_3 Smp_160000 WD_REPEATS_REGION domain- containing protein USINP1-associating protein 1, Degradation 8 SM_V7_3 Smp_162630 Ubiquitin/SUMO-activating enzyme E1 Ubiquitin-activating enzyme E1 1, Uba1 8 SM_V7_3 Smp_167540 Ris2 protein%2C putative Zip 4 SM_V7_3 Smp_167540 Ris2 protein%2C putative 8 12 SM_V7_3 Smp_167540 Ris2 protein%2C putative 8 12 SM_V7_3 Smp_167540	SM_V7_3	Smp_134720	Major facilitator superfamily domain	Melibiose carrier protein	8
SM_V7.3 Smp_134880 Snurportin-1 35 60T1_A DNA dc>dU-editing enzy 93.8 0.02 1.7E 07 54.0 0.02 0.99 8 SM_V7.3 Smp_137910 Putative tight junction protein 12 152.399 (507) 12 SM_V7.3 Smp_137920 Putative chloride intracellular channel NA 12 SM_V7.3 Smp_137920 Putative chloride intracellular channel NA 12 SM_V7.3 Smp_137920 Putative chloride intracellular channel NA 12 SM_V7.3 Smp_145990 ClpA/B family ClpA, an Hsp100 chaperone, AAA+ modules [Escherichia coli [TaxId: 562]] 8 SM_V7.3 Smp_16000 WD_REPEATS_REGION domain- containing protein Ubiquitin-activating enzyme E1 1, Ubal 8 SM_V7.3 Smp_16200 ADA3-like unrora-related kinase 1 (aurora-2) (Human (Homo sapiens) [TaxId: 9606]] 20 SM_V7.3 Smp_167540 Ris2 protein%2C putative 4 3 SM_V7.3 Smp_167500 Ris2 protein%2C putative 4 3 SM_V7.3 Smp_167200 Ris2 protein%2C putative 4 3	SM_V7_3	Smp_134870	Zinc finger C2H2-type	Zinc finger protein 297b {Human (Homo sapiens) [TaxId: 9606]}	16
SM_V7_3 Smp_137910 Putative tight junction protein 12 SM_V7_3 Smp_137920 Putative tight junction protein 8 SM_V7_3 Smp_13320 NA 12 SM_V7_3 Smp_13320 NA NA 12 SM_V7_3 Smp_145990 ClpA/B family ClpA, an Hsp100 chaperone, AAA+ modules (Escherichia coli [Taxid: 562]) 8 SM_V7_3 Smp_150210 Zinc finger, RING-type U1SNP1-associating protein 1, Degradation 8 SM_V7_3 Smp_160000 WD_REPEATS, REGION domain- containing protein 12 12 SM_V7_3 Smp_16200 ADA3-like 12 12 SM_V7_3 Smp_16200 Ubiquitin/SUMO-activating enzyme E1 Ubiquitin-activating enzyme E1 1, Uba1 8 SM_V7_3 Smp_167500 Ris2 protein%2C putative 4 20 SM_V7_3 Smp_177040 Ris2 protein%2C putative 8 8 SM_V7_3 Smp_181460 EF-hand domain pair DUF4205 12 SM_V7_3 Smp_19420 NA 20 20 <	SM_V7_3	Smp_134880	Snurportin-1	35 6DT1_A DNA dC->dU-editing enzy 93.8 0.02 1.7E-07 54.0 0.0 202 99- 310 152-399 (507)	8
SM_V7_3Smp_137920Putative chloride intracellular channel8SM_V7_3Smp_138320NANA12SM_V7_3Smp_138320NAClpA, an Hsp100 chaperone, AAA+ modules (Escherichia coli [Taxid: 562])8SM_V7_3Smp_150210Zinc finger, RING-typeUI SNP1-associating protein 1, Degradation8SM_V7_3Smp_160000WD_REPEATS_REGION domain- containing proteinUD iguitin-activating enzyme E112SM_V7_3Smp_162100ADA3-like1212SM_V7_3Smp_162630Ubiquitin/SUMO-activating enzyme E1Ubiquitin-activating enzyme E1, Ubal8SM_V7_3Smp_162700Protein kinase domainAurora-related kinase 1 (aurora-2) (Human (Homo sapiens) [Taxid: 9606]}20SM_V7_3Smp_167500Ris2 protein%2C putative412SM_V7_3Smp_177000GPI mannosyltransferase 2812SM_V7_3Smp_177100NA1212SM_V7_3Smp_194200NA1212SM_V7_3Smp_194200Ra1212SM_V7_3Smp_194200Ra1220SM_V7_3Smp_202070Citrate synthase88SM_V7_3Smp_202190NA2020SM_V7_3Smp_210700Uncharacterised protein family UPFO0d7Hypothetical protein TM0723 (Thermotoga maritima [Taxid: 2336]}20SM_V7_3Smp_211070NED8-activating enzyme E1 catalytic (Suf amily)83020SM_V7_3Smp_21126	SM_V7_3	Smp_137910	Putative tight junction protein		12
SM_V7_3 Smp_138320 NA NA NA I2 SM_V7_3 Smp_145990 ClpA/B family ClpA, an Hsp100 chaperone, AAA+ modules {Escherichia coli [Taxld: 562]} Degradation 8 SM_V7_3 Smp_150210 Zinc finger, RING-type U1 SNP1-associating protein 1, Degradation 8 SM_V7_3 Smp_16200 ADA3-like 20 12 SM_V7_3 Smp_16200 ADA3-like 40 12 SM_V7_3 Smp_16200 ADA3-like 40 12 SM_V7_3 Smp_16200 ADA3-like 40 12 SM_V7_3 Smp_16200 Protein kinase domain Aurora-related kinase 1 (aurora-2) (Human (Homo sapiens) [Taxld: 9606]} 20 SM_V7_3 Smp_167540 Ris2 protein%2C putative 4 3 SM_V7_3 Smp_167540 Ris2 protein%2C putative 4 3 SM_V7_3 Smp_181460 EF-hand domain pair DUF4205 12 SM_V7_3 Smp_19420 NA 12 3 SM_V7_3 Smp_1962010 NA 20 3 <td>SM_V7_3</td> <td>Smp_137920</td> <td>Putative chloride intracellular channel</td> <td></td> <td>8</td>	SM_V7_3	Smp_137920	Putative chloride intracellular channel		8
SM_V7_3Smp_145990ClpA/B familyClpA, an Hsp100 chaperone, AAA+ modules (Escherichia coli [Taxld: 562])8SM_V7_3Smp_150200Zinc finger, RING-typeUSNP1-associating protein 1, Degradation8SM_V7_3Smp_162000WD_REPEATS_REGION domain- containing protein12SM_V7_3Smp_162100ADA3-like12SM_V7_3Smp_162630Ubiquitin/SUMO-activating enzyme E1Ubiquitin-activating enzyme E1, Uba8SM_V7_3Smp_162700Protein kinase domainAurora-related kinase 1 (aurora-2) (Human (Homo sapiens) [Taxld: 9606]}4SM_V7_3Smp_167540Ris2 protein%2C putative44SM_V7_3Smp_167630Zinc/iron permeaseZip16SM_V7_3Smp_177040GPI mannosyltransferase 2208SM_V7_3Smp_177040RPI nannosyltransferase 22021SM_V7_3Smp_181460EF-hand domain pairDUF420512SM_V7_3Smp_194200Family S33 non-peptidase homologue (S33 family)2120SM_V7_3Smp_201950NA2008SM_V7_3Smp_201950NA20020SM_V7_3Smp_201970Citrate synthase420SM_V7_3Smp_210700WCMWCM200SM_V7_3Smp_210700NEDB-activating enzyme E1 catalytic suburit120SM_V7_3Smp_211070NEDB-activating enzyme E1 catalytic suburit140SM_V7_3Smp_211000SUbFanilyS1B unassigned peptidase	SM_V7_3	Smp_138320	NA	NA	12
SM_V7_3Smp_150210Zinc finger, RING-typeU1 SNP1-associating protein 1, Degradation8SM_V7_3Smp_160000WD_REPEATS_REGION domain- containing protein12SM_V7_3Smp_162100ADA3-like12SM_V7_3Smp_162630Ubiquitin/SUMO-activating enzyme E1Ubiquitin-activating enzyme E1, lubia8SM_V7_3Smp_162710Protein kinase domainAurora-related kinase 1 (aurora-2) (Human (Homo sapiens) [Takid: 9606]}4SM_V7_3Smp_167540Ris2 protein%2C putative16SM_V7_3Smp_17700GPI mannosyltransferase 216SM_V7_3Smp_177100NA8SM_V7_3Smp_181460EF-hand domain pairDUF420512SM_V7_3Smp_19420NA12SM_V7_3Smp_19420Risinily S33 non-peptidase homologue (S33 family)88SM_V7_3Smp_19420Risinily S33 non-peptidase homologue (S33 family)88SM_V7_3Smp_201950NA2008SM_V7_3Smp_201950NA2008SM_V7_3Smp_201950NA2008SM_V7_3Smp_201970Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [Takid: 2336])8SM_V7_3Smp_211070NEDB-activating enzyme E1 catalytic suburit108SM_V7_3Smp_211260SUbraily S1B unassigned peptidase (S01 family)ST7ST74SM_V7_3Smp_21360previous_stable_id=Smp_029150	SM_V7_3	Smp_145990	ClpA/B family	ClpA, an Hsp100 chaperone, AAA+ modules {Escherichia coli [TaxId: 562]}	8
SM_V7_3 Smp_160000 WD_REPEATS_REGION domain- containing protein 8 SM_V7_3 Smp_162100 ADA3-like 12 SM_V7_3 Smp_162630 Ubiquitin/SUMO-activating enzyme E1 Ubiquitin-activating enzyme E1, ubiquitin-activating enzyme E1, ubiquitin-activating enzyme E1, ubiquitin/SUMO-activating enzyme E1 Ubiquitin-activating enzyme E1, ubiquitin-activating enzyme E1, ubiquitin/SUMO-activating enzyme E1 20 SM_V7_3 Smp_162700 Protein kinase domain Aurora-related kinase 1 (aurora-2) (Human (Homo sapiens) [Taxld: 9606]] 20 SM_V7_3 Smp_167540 Ris2 protein%2C putative 4 4 SM_V7_3 Smp_177040 GPI mannosyltransferase 2 12 8 SM_V7_3 Smp_177100 NA 5 12 SM_V7_3 Smp_194420 NA 12 12 SM_V7_3 Smp_19420 Ramily S33 non-peptidase homologue (33 family) 12 12 SM_V7_3 Smp_201950 NA 4 8 3 SM_V7_3 Smp_201950 NA 5 20 3 SM_V7_3 Smp_201950 NA 4 <td>SM_V7_3</td> <td>Smp_150210</td> <td>Zinc finger, RING-type</td> <td>U1 SNP1-associating protein 1, Degradation</td> <td>8</td>	SM_V7_3	Smp_150210	Zinc finger, RING-type	U1 SNP1-associating protein 1, Degradation	8
SM_V7.3Smp_162100ADA3-like12SM_V7.3Smp_162630Ubiquitin/SUMO-activating enzyme E1Ubiquitin-activating enzyme E1 1, Uba18SM_V7.3Smp_162700Protein kinase domainAurora-related kinase 1 (aurora-2) (Human (Homo sapiens) [Taxld: 9606])20SM_V7.3Smp_167540Ris2 protein%2C putative4SM_V7.3Smp_167630Zinc/iron permeaseZip16SM_V7.3Smp_177040GPI mannosyltransferase 2208SM_V7.3Smp_17100NASM8SM_V7.3Smp_181460EF-hand domain pairDUF420512SM_V7.3Smp_19420NA2012SM_V7.3Smp_19420Family S33 non-peptidase homologue (S33 family)2012SM_V7.3Smp_19420RING-type E3 ubiquitin transferase208SM_V7.3Smp_201950NA202020SM_V7.3Smp_201950NA202020SM_V7.3Smp_201970Citrate synthase420SM_V7.3Smp_210700Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [Taxid: 2336])20SM_V7.3Smp_211070Subfamily S1B unassigned peptidase (S01 family)2020SM_V7.3Smp_211260Subfamily S1B unassigned peptidase (S01 family)2020SM_V7.3Smp_213360previous_stable_id=Smp_029150ST74SM_V7.3Smp_213360previous_stable_id=Smp_02915020 </td <td>SM_V7_3</td> <td>Smp_160000</td> <td>WD_REPEATS_REGION domain- containing protein</td> <td></td> <td>8</td>	SM_V7_3	Smp_160000	WD_REPEATS_REGION domain- containing protein		8
SM_V7_3Smp_162630Ubiquitin/SUMO-activating enzyme E1Ubiquitin-activating enzyme E1 1, Ubal8SM_V7_3Smp_162710Protein kinase domainAurora-related kinase 1 (aurora-2) (Human (Homo sapiens) [Taxld: 9606]}20SM_V7_3Smp_167500Ris2 protein%2C putative4SM_V7_3Smp_167503Zinc/iron permeaseZip66SM_V7_3Smp_177040GPI mannosyltransferase 228SM_V7_3Smp_177100NA98SM_V7_3Smp_194420NA012SM_V7_3Smp_19420NA212SM_V7_3Smp_19420Ramily S33 non-peptidase homologue (S33 family)88SM_V7_3Smp_195200RING-type E3 ubiquitin transferase220SM_V7_3Smp_201950NA220SM_V7_3Smp_204700Citrate synthase88SM_V7_3Smp_210700Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [Taxld: 2336])20SM_V7_3Smp_211070Subfamily S1B unassigned peptidase (S01 family)820SM_V7_3Smp_211260SUffamily S1B unassigned peptidase (S01 family)ST74SM_V7_3Smp_212540ST7527SM_V7_3Smp_21360previous_stable_id=Smp_02915020SM_V7_3Smp_21360previous_stable_id=Smp_02915020SM_V7_3Smp_21360previous_stable_id=Smp_02915021SM_V7_3Smp_21360 <td>SM_V7_3</td> <td>Smp_162100</td> <td>ADA3-like</td> <td></td> <td>12</td>	SM_V7_3	Smp_162100	ADA3-like		12
SM_V7_3 Smp_162710 Protein kinase domain Aurora-related kinase 1 (aurora-2) (Human (Homo sapiens) [Taxld: 9606]) 20 SM_V7_3 Smp_167500 Ris2 protein%2C putative 4 SM_V7_3 Smp_167600 Zinc/iron permease Zip 16 SM_V7_3 Smp_17700 GPI mannosyltransferase 2 2 8 SM_V7_3 Smp_177100 NA 8 8 SM_V7_3 Smp_181460 EF-hand domain pair DUF4205 12 SM_V7_3 Smp_194200 NA 12 12 SM_V7_3 Smp_194200 Rind-type E3 ubiquitin transferase 8 8 SM_V7_3 Smp_201950 NA 20 12 SM_V7_3 Smp_201950 NA 200 12 SM_V7_3 Smp_201950 NA 200 12 SM_V7_3 Smp_201950 NA 200 20 SM_V7_3 Smp_201970 Citrate synthase 8 20 SM_V7_3 Smp_210700 Uncharacterised protein family UPF0047 Hypoth	SM_V7_3	Smp_162630	Ubiquitin/SUMO-activating enzyme E1	Ubiquitin-activating enzyme E1 1, Uba1	8
SM_V7_3 Smp_167540 Ris2 protein%2C putative 4 SM_V7_3 Smp_167630 Zinc/iron permease Zip 16 SM_V7_3 Smp_177040 GPI mannosyltransferase 2 8 8 SM_V7_3 Smp_177100 NA 9 8 SM_V7_3 Smp_177100 NA 9 8 SM_V7_3 Smp_17100 NA 9 8 SM_V7_3 Smp_17100 NA 9 8 SM_V7_3 Smp_181460 EF-hand domain pair DUF4205 12 SM_V7_3 Smp_19420 NA 9 12 SM_V7_3 Smp_19420 Ramily S33 non-peptidase homologue (S33 family) 12 SM_V7_3 Smp_201920 NA 9 8 SM_V7_3 Smp_201920 NA 9 9 SM_V7_3 Smp_20190 NA 9 9 9 SM_V7_3 Smp_20190 NA 9 9 9 SM_V7_3 Smp_210700 Uncharacterised prote	SM_V7_3	Smp_162710	Protein kinase domain	Aurora-related kinase 1 (aurora-2) {Human (Homo sapiens) [TaxId: 9606]}	20
SM_V7_3 Smp_167630 Zinc/iron permease Zip 16 SM_V7_3 Smp_17700 GPI mannosyltransferase 2 8 SM_V7_3 Smp_177100 NA 8 SM_V7_3 Smp_181460 EF-hand domain pair DUF4205 12 SM_V7_3 Smp_194420 NA 12 12 SM_V7_3 Smp_194700 Family S33 non-peptidase homologue (S33 family) 12 12 SM_V7_3 Smp_194720 Ramily S33 non-peptidase homologue (S33 family) 12 12 SM_V7_3 Smp_196220 RING-type E3 ubiquitin transferase 8 8 SM_V7_3 Smp_201950 NA 200 12 SM_V7_3 Smp_202190 NA 14 20 SM_V7_3 Smp_201950 NA 14 20 SM_V7_3 Smp_201950 NA 14 20 SM_V7_3 Smp_201700 Uncharacterised protein family UPF0047 Hypothetical protein TM0723 (Thermotoga maritima [Taxld: 2336]} 20 SM_V7_3 Smp_211260 Subfamily S1B una	SM_V7_3	Smp_167540	Ris2 protein%2C putative		4
SM_V7_3 Smp_17700 GPI mannosyltransferase 2 Interpretation Smp SM_V7_3 Smp_177100 NA Smp <	SM_V7_3	Smp_167630	Zinc/iron permease	Zip	16
SM_V7_3Smp_177100NA8SM_V7_3Smp_181460EF-hand domain pairDUF420512SM_V7_3Smp_194200NA12SM_V7_3Smp_194200Family S33 non-peptidase homologue (S3 family)12SM_V7_3Smp_196200RING-type E3 ubiquitin transferase9SM_V7_3Smp_201900NA9SM_V7_3Smp_201900NA9SM_V7_3Smp_201900NA9SM_V7_3Smp_204700Citrate synthase9SM_V7_3Smp_210700Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [Taxid: 2336])20SM_V7_3Smp_2110700Subfamily S1B unassigned peptidase (S01 family)ST744SM_V7_3Smp_213600previous_stable_id=Smp_0291500ST741SM_V7_3Smp_213600previous_stable_id=Smp_0291500200200SM_V7_3Smp_2432000Calpain catalytic domain-containing proteinST741SM_V7_3Smp_243200Calpain catalytic domain-containing protein200200	SM_V7_3	Smp_177040	GPI mannosyltransferase 2		8
SM_V7_3Smp_181460EF-hand domain pairDUF420512SM_V7_3Smp_194420NA12SM_V7_3Smp_194720Family S33 non-peptidase homologue (S33 family)12SM_V7_3Smp_196220RING-type E3 ubiquitin transferase8SM_V7_3Smp_201950NA12SM_V7_3Smp_201950NA12SM_V7_3Smp_201950NA12SM_V7_3Smp_201950NA12SM_V7_3Smp_201970Citrate synthase12SM_V7_3Smp_201770Citrate synthase8SM_V7_3Smp_210720Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [Taxld: 2336])SM_V7_3Smp_211070NEDD8-activating enzyme E1 catalytic subunit8SM_V7_3Smp_211260Subfamily S1B unassigned peptidase (S01 family)ST7SM_V7_3Smp_21360previous_stable_id=Smp_02915020SM_V7_3Smp_21360previous_stable_id=Smp_02915020SM_V7_3Smp_243200Calpain catalytic domain-containing protein21	SM_V7_3	Smp_177100	NA		8
SM_V7_3Smp_194420NA12SM_V7_3Smp_194720Family S33 non-peptidase homologue (S33 family)12SM_V7_3Smp_196220RING-type E3 ubiquitin transferase8SM_V7_3Smp_201950NA68SM_V7_3Smp_202190NA20SM_V7_3Smp_204770Citrate synthase8SM_V7_3Smp_210720Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [Taxld: 2336])20SM_V7_3Smp_211070NEDD8-activating enzyme E1 catalytic subunit88SM_V7_3Smp_211260Subfamily S1B unassigned peptidase (S01 family)ST75174SM_V7_3Smp_213360previous_stable_id=Smp_02915051720SM_V7_3Smp_243200Calpain catalytic domain-containing protein51712	SM_V7_3	Smp_181460	EF-hand domain pair	DUF4205	12
SM_V7_3Smp_194720Family S33 non-peptidase homologue (S33 family)12SM_V7_3Smp_196220RING-type E3 ubiquitin transferase8SM_V7_3Smp_201950NA9SM_V7_3Smp_202190NA20SM_V7_3Smp_204770Citrate synthase8SM_V7_3Smp_204770Citrate synthase8SM_V7_3Smp_210720Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [Taxld: 2336]}20SM_V7_3Smp_211070Subfamily S1B unassigned peptidase (S01 family)88SM_V7_3Smp_212540ST7ST74SM_V7_3Smp_213360previous_stable_id=Smp_02915020SM_V7_3Smp_243200Calpain catalytic domain-containing protein21	SM_V7_3	Smp_194420	NA		12
SM_V7_3Smp_196220RING-type E3 ubiquitin transferase8SM_V7_3Smp_201950NA8SM_V7_3Smp_202190NA20SM_V7_3Smp_204770Citrate synthase8SM_V7_3Smp_210720Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [TaxId: 2336])20SM_V7_3Smp_211070NEDD8-activating enzyme E1 catalytic subunit88SM_V7_3Smp_211260Subfamily S1B unassigned peptidase (S01 family)20SM_V7_3Smp_213360previous_stable_id=Smp_029150ST74SM_V7_3Smp_243200Calpain catalytic domain-containing protein20	SM_V7_3	Smp_194720	Family S33 non-peptidase homologue (S33 family)		12
SM_V7_3Smp_201950NA8SM_V7_3Smp_202190NA20SM_V7_3Smp_204770Citrate synthase8SM_V7_3Smp_210720Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [Taxld: 2336])20SM_V7_3Smp_211070NEDD8-activating enzyme E1 catalytic subunit88SM_V7_3Smp_211260Subfamily S1B unassigned peptidase (S01 family)8SM_V7_3Smp_212540ST7ST7SM_V7_3Smp_213360previous_stable_id=Smp_02915020SM_V7_3Smp_243200Calpain catalytic domain-containing protein12	SM_V7_3	Smp_196220	RING-type E3 ubiquitin transferase		8
SM_V7_3Smp_202190NA20SM_V7_3Smp_204770Citrate synthase8SM_V7_3Smp_210720Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [Taxld: 2336]}20SM_V7_3Smp_211070NEDD8-activating enzyme E1 catalytic subunitFermotoga maritima [Taxld: 2336]8SM_V7_3Smp_211260Subfamily S1B unassigned peptidase (S01 family)20SM_V7_3Smp_212540ST7ST74SM_V7_3Smp_213360previous_stable_id=Smp_02915020SM_V7_3Smp_243200Calpain catalytic domain-containing protein12	SM_V7_3	Smp_201950	NA		8
SM_V7_3Smp_204770Citrate synthase8SM_V7_3Smp_210720Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [TaxId: 2336])20SM_V7_3Smp_211070NEDD8-activating enzyme E1 catalytic subunit88SM_V7_3Smp_211260Subfamily S1B unassigned peptidase (S01 family)20SM_V7_3Smp_212540ST7ST7SM_V7_3Smp_213360previous_stable_id=Smp_02915020SM_V7_3Smp_243200Calpain catalytic domain-containing protein20	SM_V7_3	Smp_202190	NA		20
SM_V7_3Smp_210720Uncharacterised protein family UPF0047Hypothetical protein TM0723 (Thermotoga maritima [Taxld: 2336]}20SM_V7_3Smp_211070NEDD8-activating enzyme E1 catalytic subunit88SM_V7_3Smp_211260Subfamily S1B unassigned peptidase (S01 family)20SM_V7_3Smp_212540ST75T74SM_V7_3Smp_213360previous_stable_id=Smp_02915020SM_V7_3Smp_243200Calpain catalytic domain-containing protein12	SM_V7_3	Smp_204770	Citrate synthase		8
SM_V7_3Smp_211070NEDD8-activating enzyme E1 catalytic subunit8SM_V7_3Smp_211260Subfamily S1B unassigned peptidase (S01 family)20SM_V7_3Smp_212540ST7ST74SM_V7_3Smp_213360previous_stable_id=Smp_02915020SM_V7_3Smp_243200Calpain catalytic domain-containing protein12	SM_V7_3	Smp_210720	Uncharacterised protein family UPF0047	Hypothetical protein TM0723 {Thermotoga maritima [TaxId: 2336]}	20
SM_V7_3Smp_211260Subfamily S1B unassigned peptidase (S01 family)20SM_V7_3Smp_212540ST7ST74SM_V7_3Smp_213360previous_stable_id=Smp_02915020SM_V7_3Smp_243200Calpain catalytic domain-containing protein12	SM_V7_3	Smp_211070	NEDD8-activating enzyme E1 catalytic subunit		8
SM_V7_3 Smp_212540 ST7 ST7 4 SM_V7_3 Smp_213360 previous_stable_id=Smp_029150 20 SM_V7_3 Smp_243200 Calpain catalytic domain-containing protein 12	SM_V7_3	Smp_211260	Subfamily S1B unassigned peptidase (S01 family)		20
SM_V7_3Smp_213360previous_stable_id=Smp_02915020SM_V7_3Smp_243200Calpain catalytic domain-containing protein12	SM_V7_3	Smp_212540	ST7	ST7	4
SM_V7_3 Smp_243200 Calpain catalytic domain-containing protein 12	SM_V7_3	Smp_213360	previous_stable_id=Smp_029150		20
	SM_V7_3	Smp_243200	Calpain catalytic domain-containing protein		12

Annexe 10				
SM_V7_3	Smp_243680	AAA ATPase domain	HsIU {Haemophilus influenzae [TaxId: 727]}	8
SM_V7_3	Smp_246560	GIY-YIG endonuclease	Structure-specific endonuclease subunit SLX1, Structure-specific	20
SM_V7_3	Smp_266760	NA		12
SM_V7_3	Smp_308750	NA	NA	8
SM_V7_3	Smp_309100	NA	NA	12
SM_V7_3	Smp_309580	previous_stable_id=Smp_019000		8
SM_V7_3	Smp_326250	NA	30S ribosomal protein S2, 30S	12
SM_V7_3	Smp_326390	Dynein light chain, type 1/2	Dynein light chain 1 (DLC1) {Fruit fly (Drosophila melanogaster) [TaxId: 7227]}	8
SM_V7_3	Smp_326460	NA	NA	8
SM_V7_3	Smp_326480	NA	NA	8
SM_V7_3	Smp_326490	NA	GRP	8
SM_V7_3	Smp_326660	NA	LRR_11	8
SM_V7_3	Smp_326730	previous_stable_id=Smp_108550		20
SM_V7_3	Smp_336680	Tetratricopeptide-like helical domain superfamily	ANAPHASE-PROMOTING COMPLEX SUBUNIT 1, ANAPHASE-PROMOTING	20
SM_V7_3	Smp_337650	Sperm-associated antigen 17	PapD-like	8
SM_V7_3	Smp_341710	NA	Catalytic domain of MutY {Escherichia coli [TaxId: 562]}	8
SM_V7_3	Smp_342670	BRCT domain	Breast cancer associated protein, BRCA1 {Human (Homo sapiens) [TaxId: 9606]}	4
SM_V7_3	Smp_343230	NA	Lachrymatory-factor synthase	8
SM_V7_3	Smp_346510	previous_stable_id=Smp_177110		8
SM_V7_3	Smp_346550	NA	NA	8
SM_V7_3	Smp_346960	previous_stable_id=Smp_171410,Smp_ 197430		8
SM_V7_3	Smp_347290	previous_stable_id=Smp_210210		8
SM_V7_3H0 01	Smp_326590	previous_stable_id=Smp_000370		12
SM_V7_3H0 03	Smp_320020	TPR_REGION domain-containing protein		20
SM_V7_4	Smp_008830	Putative helicase		4
SM_V7_4	Smp_009030	Ribonucleoside-diphosphate reductase		8
SM_V7_4	Smp_024820	Tetraspanin	Tetraspanin	8
SM_V7_4	Smp_036130	Phosducin-like protein (Phlp)		12
SM_V7_4	Smp_042160	Fructose-bisphosphate aldolase		8
SM_V7_4	Smp_042440	(Dihydro)ceramide Synthase (LAG1)		8
SM_V7_4	Smp_042560	Porin domain superfamily	Mitochondrial import receptor subunit TOM40	24
SM_V7_4	Smp_043030	Hexokinase	Hexokinase {Blood fluke (Schistosoma mansoni) [TaxId: 6183]}	8
SM_V7_4	Smp_043350	UDPGP family	UDP-N-acetylglucosamine pyrophosphorylase {Human (Homo sapiens), AGX1 [TaxId: 9606]}	8
SM_V7_4	Smp_049890	WD-repeat protein%2C putative		12
SM_V7_4	Smp_050080	NAD dehydrogenase%2C putative		20
SM_V7_4	Smp_050740	NA		8
SM_V7_4	Smp_050830	Putative synaptojanin		8

Annexe 10				
SM_V7_4	Smp_053140	Histone acetyltransferase		4
SM_V7_4	Smp_053510	Aspartyl/Asparaginyl-tRNA synthetase, class IIb	AspartatetRNA ligase, cytoplasmic (E.C.6.1.1.12)	20
SM_V7_4	Smp_053820	Putative preprotein translocase secy subunit (Sec61)		8
SM_V7_4	Smp_055220	Putative surface protein PspC		12
SM_V7_4	Smp_080100	Putative synaptophysin/synaptoporin		24
SM_V7_4	Smp_080180	Putative carcinoma associated protein hoj-1		12
SM V7 4	Smp 080210	Putative lipid-binding protein		8
SM_V7_4	Smp_089200	Putative multidrug resistance protein 1%2C 2%2C 3 (P glycoprotein 1%2C 2%2C 3)		8
SM_V7_4	Smp_094930	Early growth response protein%2C putative		16
SM_V7_4	Smp_096750	40S ribosomal protein S13		20
SM_V7_4	Smp_100380	DNA replication complex GINS protein PSF2		4
SM_V7_4	Smp_104860	Ribonuclease p-related		12
SM_V7_4	Smp_136950	NA		20
SM_V7_4	Smp_142780	Putative retinoblastoma binding protein		4
SM_V7_4	Smp_145370	NA	NA	16
SM_V7_4	Smp_150020	NA		16
SM_V7_4	Smp_150160	Geranylgeranyl transferase type-2 subunit beta		8
SM_V7_4	Smp_151070	DRB sensitivity-inducing factor large subunit		12
SM_V7_4	Smp_169640	Nup54 domain-containing protein		24
SM_V7_4	Smp_170770	NA		12
SM_V7_4	Smp_211030	Protein phosphatase methylesterase 1		8
SM_V7_4	Smp_211040	Protein phosphatase methylesterase 1 (S33 family)		12
SM_V7_4	Smp_213200	Amidohydrolase-related	Amidohydrolase 2	4
SM_V7_4	Smp_213500	HotDog domain superfamily	Acyl-CoA thioesterase	20
SM_V7_4	Smp_247460	ACB domain-containing protein		24
SM_V7_4	Smp_247630	ARMC6-like protein		20
SM_V7_4	Smp_247860	Peptidase M8, leishmanolysin	Peptidase_M8	8
SM_V7_4	Smp_312440	Aldehyde dehydrogenase%2Cputative		24
SM_V7_4	Smp_313300	Small GTPase	Rab21 {Human (Homo sapiens) [TaxId: 9606]}	8
SM_V7_4	Smp_317120	NA		8
SM_V7_4	Smp_328940	NA		12
SM_V7_4	Smp_329280	NA		12
SM_V7_4	Smp_329700	Dolichyl-diphosphooligosaccharide protein glycosyltransferase subunit 2		12
SM_V7_4	Smp_334090	previous_stable_id=Smp_182770,Smp_ 038730		16
SM_V7_4	Smp_334160	Kinesin motor domain-containing protein		4
SM_V7_4	Smp_334180	Hydrogen voltage-gated channel 1		16
SM_V7_4	Smp_336100	previous_stable_id=Smp_170820		8

Annexe 10				
SM_V7_4	Smp_341080	previous_stable_id=Smp_067800		24
SM V7 4	Smp 345010	previous stable id=Smp 158930		4
SM_V7_4	Smp_345910	previous_stable_id=Smp_169620		12
SM_V7_4	Smp_346530	previous_stable_id=Smp_177320		12
SM_V7_4H0	Cmm 202500	Putative mitochondrial 39S ribosomal		20
21	Smb_303290	protein L45		20
SM_V7_4H0 34	Smp_325270	NA		16
SM_V7_5	Smp_006440	Heterogeneous nuclear ribonucleoprotein I (Hnrnp I)%2C putative		8
SM_V7_5	Smp_053040	Snf7-related		24
SM_V7_5	Smp_056760	Protein disulfide-isomerase		4
SM_V7_5	Smp_058140	Protein-L-isoaspartate O- methyltransferase		20
SM_V7_5	Smp_061570	Mediator of RNA polymerase II		12
SM_V7_5	Smp_064350	Putative vacuolar ATP synthase		4
SM 1/7 5	Smp 064400			12
SN1_V7_5	Smp_004400	PPM domain-containing protein		12 Q
SN1_V7_5	Smp 146200	Protein kinase		0 24
SM_V7_5	Smp_140230 Smp_160530	N2227-like	Carnosine N-methyltransferase	8
SM_V7_5	Smp_165490	Calcineurin-like phosphoesterase domain, ApaH type	Protein phosphatase 2A catalytic subunit alpha isoform, PP2A-alpha {Human (Homo sapiens) [TaxId: 9606]}	4
SM_V7_5	Smp_247660	NA		8
SM_V7_5	Smp_266890	previous_stable_id=Smp_133440		24
SM_V7_5	Smp_314310	CN hydrolase domain-containing protein		20
SM_V7_5	Smp_314640	Peroxiredoxin%2C Prx1		16
SM_V7_5	Smp_315750	Ubiquitin-conjugating enzyme E2	Ubiquitin conjugating enzyme, UBC {Caenorhabditis elegans, E2 2 [TaxId: 6239]}	12
SM_V7_5	Smp_330180	NA		8
SM_V7_5	Smp_330240	NA		8
SM_V7_5	Smp_330380	NA		20
SM_V7_5	Smp_333340	previous_stable_id=Smp_205630,Smp_ 121070		8
SM_V7_5	Smp_334600	Phosphodiesterase		12
SM_V7_5	Smp_336210	previous_stable_id=Smp_174500		8
SM_V7_5	Smp_340920	Heme O synthase		8
SM_V7_5	Smp_342420	previous_stable_id=Smp_129220		8
SM_V7_6	Smp_001890	Venom allergen-like (VAL) 18 protein		8
SM_V7_6	Smp_002060	Venom allergen-like (VAL) 10 protein%3B Venom allergen-like protein 10		8
SM_V7_6	Smp_002070	Venom allergen-like protein 4		8
SM_V7_6	Smp_005290	Cytochrome C1%2C putative		8
SM_V7_6	Smp_009340	KRR1 small subunit processome component		4

Annexe 10				
SM_V7_6	Smp_016920	Zinc finger, RING-type	EL5 RING-H2 domain {Rice (Oryza sativa) [TaxId: 4530]}	16
SM_V7_6	Smp_024900	Putative retinoblastoma-like protein		4
SM_V7_6	Smp_052740	Putative gamma-soluble nsf attachment protein (Snap)		8
SM_V7_6	Smp_062080	Serpin%2C putative		8
		Aconitase A/isopropylmalate		
SM_V7_6	Smp_063090	dehydratase small subunit, swivel domain	ACONITASE	12
SM_V7_6	Smp_067420	Splicing factor 3b%2C subunit 4%2Cputative		24
SM_V7_6	Smp_067430	Basic helix-loop-helix protein%2C putative		4
SM_V7_6	Smp_074330	PEST proteolytic signal-containing nuclear protein		12
SM_V7_6	Smp_074370	Putative pre-mRNA splicing factor		4
SM_V7_6	Smp_091750	NA		16
SM_V7_6	Smp_123090	Venom allergen-like (VAL) 19 protein		8
SM_V7_6	Smp_138850	Putative sh2a		8
SM_V7_6	Smp_141550	Cysteine-rich secretory protein-related	Cysteine-rich secretory protein (SteCRISP) {Chinese green tree viper (Trimeresurus stejnegeri) [TaxId: 39682]}	8
SM_V7_6	Smp_147110	Putative ankyrin repeat-containing		8
SM_V7_6	Smp_147160	Protein quiver		24
SM_V7_6	Smp_149400	Peptidase S8/S53 domain	Furin (E.C.3.4.21.75)	8
SM_V7_6	Smp_158600	Dolichyl-diphosphooligosaccharide protein glycotransferase		4
SM_V7_6	Smp_162230	Microtubule-associated protein		16
SM_V7_6	Smp_165660	PKD_channel domain-containing protein		12
SM V7 6	Smp 168730	Carbonic anhydrase		8
SM V7 6	Smp 172190	Putative methyltransferase		16
SM V7 6	Smp 175310	NA		12
SM V7 6	Smp 179350	previous stable id=Smp 036760		12
SM_V7_6	Smp_202970	Smp_202970		8
SM_V7_6	Smp_267040	KH_dom_type_1 domain-containing protein		8
SM_V7_6	Smp_300070	Cysteine-rich secretory protein-related	Insect allergen 5 (AG5) {Yellow jacket (Vespula vulgaris), Ves v 5 [TaxId: 7454]}	8
SM_V7_6	Smp_305550	Serpin%2C putative		8
SM_V7_6	Smp_331270	NA		8
SM_V7_6	Smp_340060	Peptidase S1 domain-containing protein		12
SM_V7_6	Smp_341900	EF-hand domain-containing protein		12
SM_V7_6	Smp_341930	previous_stable_id=Smp_123250		8
SM_V7_6	Smp_347320	Cysteine-rich secretory protein-related	Cysteine-rich secretory protein (SteCRISP) {Chinese green tree viper (Trimeresurus stejnegeri) [TaxId: 39682]}	8
SM_V7_7	Smp_005720	Putative aquaporin-3		8

Annexe 10			
SM_V7_7	Smp_005910	TYR_PHOSPHATASE_2 domain- containing protein	8
SM_V7_7	Smp_010820	Peptidylamidoglycolate lyase	12
SM_V7_7	Smp_015020	Sodium/potassium-transporting ATPase subunit alpha	8
SM_V7_7	Smp_023010	ATPase inhibitor-like protein trans- spliced	24
SM_V7_7	Smp_033260	Family C48 unassigned peptidase (C48 family)	24
SM_V7_7	Smp_033380	NA	8
SM_V7_7	Smp_041430	14-3-3 protein%2C putative	8
SM_V7_7	Smp_041480	Rna recognition motif (Rrm) domain containing protein%2C putative	4
SM_V7_7	Smp_041650	Putative 40s ribosomal protein S27	20
SM_V7_7	Smp_140100	Putative double-stranded rna-binding protein zn72d	4
SM_V7_7	Smp_152960	previous_stable_id=Smp_057410,Smp_ 152970	12
SM_V7_7	Smp_153100	Putative potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel	12
SM_V7_7	Smp_166680	Putative sorting and assembly machinery (Sam50) protein	4
SM_V7_7	Smp_166690	NA	12
SM_V7_7	Smp_198360	Putative ankyrin repeat-containing	16
SM_V7_7	Smp_210370	Dolichyl-diphosphooligosaccharide protein glycosyltransferase subunit 2	8
SM_V7_7	Smp_212190	Acetyltransferase component of pyruvate dehydrogenase complex	8
SM_V7_7	Smp_267240	Palmitoyltransferase	8
SM_V7_7	Smp_318210	NA	8
SM_V7_7	Smp_318300	NA	8
SM_V7_7	Smp_318310	NA	8
SM_V7_7	Smp_332980	previous_stable_id=Smp_125220,Smp_ 005740	8
SM_V7_7	Smp_335530	previous_stable_id=Smp_194470	12
SM_V7_7	Smp_341850	previous_stable_id=Smp_121240	8
SM_V7_U00 5	Smp_317840	NA	12
SM V7 ZW	Smp 005020	E3 ubiquitin-protein ligase CBL	24
SM_V7_ZW	Smp_006340	ER membrane protein complex subunit	20
SM_V7_ZW	Smp_007730	ER lumen protein-retaining receptor	20
SM_V7_ZW	Smp_011700	Receptor protein-tyrosine kinase	16
SM V7 ZW	Smp 011720	NA , , , , , , , , , , , , , , , , , , ,	20
SM_V7_ZW	Smp_012200	Putative zinc finger protein	12
SM V7 ZW	Smp 015390	Putative wd-repeat protein	24
SM V7 ZW	Smp 015530	NA	20
SM_V7_ZW	Smp_015840	Putative zinc finger protein	4
SM_V7_ZW	Smp_017710	Putative rab	16
SM_V7_ZW	Smp_019630	N-acyl-L-amino-acid amidohydrolase	20
SM_V7_ZW	Smp_019820	NA	12

Annexe 10			
SM_V7_ZW	Smp_019840	DNA ligase	20
SM_V7_ZW	Smp_020550	Low-density lipoprotein receptor (Ldl)	8
	Smn 021200	Subfamily M23B non-peptidase	12
5101_07_200	3111h_051230	homologue (M23 family)	12
	Smp 021460	Glutamine synthetase bacteria%2C	Q
5101_07_200	5mp_021400	putative	 0
SM_V7_ZW	Smp_022340	Putative pdz and lim domain protein	 8
SM_V7_ZW	Smp_022400	Glucose-6-phosphate isomerase	 8
SM V7 7W	Smp 022470	Putative excision repair cross-	12
	5p_022.00	complementing 1 ercc1	
SM_V7_ZW	Smp_022500	NA	20
SM_V7_ZW	Smp_022700	Very-long-chain (3R)-3-hydroxyacyl- CoA dehydratase	12
SM_V7_ZW	Smp_025150	Sugar nucleotide epimerase related	4
SM_V7_ZW	Smp_025260	Prolyl-tRNA synthetase	20
SM_V7_ZW	Smp_026400	Thyrotroph embryonic factor related	12
	Smp 028670	Putative carbonic anhydrase II	0
3101_07_200	3mp_028070	(Carbonate dehydratase II)	0
SM_V7_ZW	Smp_030370	Calreticulin	24
SM_V7_ZW	Smp_030440	NA	12
SM_V7_ZW	Smp_031010	Putative dead box ATP-dependent RNA helicase	20
SM V7 ZW	Smp 031310	40S ribosomal protein S26	20
SM V7 ZW	Smp 032370	Putative short chain dehydrogenase	8
SM_V7_ZW	Smp_032420	Rhomboid-like protein	20
SM_V7_ZW	Smp_032920	Putative ob fold nucleic acid binding	20
SM V7 ZW	Smp 032930	NA	12
SM V7 ZW	Smp 032950	Putative calmodulin (CaM)	16
SM V7 ZW	Smp 032970	Putative calmodulin	8
SM V7 ZW	Smp 032980	NA	8
 SM_V7_ZW	Smp_032990	Putative calmodulin-4 (Calcium-binding	8
SM V7 ZW	Smp 033000	Calcium-binding protein	8
		Similar to 16 kDa calcium-binding	
SM_V7_ZW	Smp_033010	protein	8
SM_V7_ZW	Smp_033020	Putative anti-silencing protein	20
SM_V7_ZW	Smp_036550	NA	20
		Nuclear transport factor 2-like	
SM_V7_ZW	Smp_037700	protein%3B Nuclear transport	20
		factor%2C putative	
SM_V7_ZW	Smp_038410	Protein SYS1 homolog	24
SM_V7_ZW	Smp_044470	Autophagy_act_C domain-containing protein	20
SM_V7_ZW	Smp_044520	Putative vmac	12
SM_V7_ZW	Smp_044560	NA	20
	5mn 046030	U6 snRNA-associated Sm-like protein	10
	3111p_040030	LSm1	12
SM_V7_ZW	Smp_046980	Pre-mRNA-splicing factor 38	20
SM_V7_ZW	Smp_053430	NA	12
SM_V7_ZW	Smp_054120	Ribosome biogenesis protein NSA2 homologue	16

Annexe 10			
SM_V7_ZW	Smp_054410	Adenine phosphoribosyltransferase	20
SM_V7_ZW	Smp_057620	Polypeptide N- acetylgalactosaminyltransferase	16
SM V7 ZW	Smp 057650	IST1 homolog	12
SM_V7_ZW	Smp_058170	Agenet-like domain-containing protein	4
	0001/0	Putative amiloride-sensitive sodium	· ·
SM_V7_ZW	Smp_058270	channel	16
SM_V7_ZW	Smp_058380	Putative long-N-terminal adhesion GPCR	8
SM_V7_ZW	Smp_058690	Glutathione peroxidase	12
SM_V7_ZW	Smp_058700	Glutathione peroxidase	12
SM_V7_ZW	Smp_058780	Cir_N domain-containing protein	20
SM_V7_ZW	Smp_059290	Putative dual-specificity phosphatase	16
SM V7 ZW	Smp 059920	NA	20
SM_V7_ZW	Smp_060210	Putative lipopolysaccharide-induced transcription factor regulating tumor necrosis factor alpha	8
SM_V7_ZW	Smp_061940	Putative adenylate kinase 1	8
SM_V7_ZW	Smp_061950	Putative u3 small nucleolar ribonucleoprotein	20
SM_V7_ZW	Smp_064800	Alba domain-containing protein	20
SM V7 ZW	Smp 067510	NA	16
SM V7 ZW	Smp 067590	NA	20
SM V7 ZW	Smp 068300	Putative zinc finger protein	12
SM_V7_7W	Smp_071770	Putative mase h (70)	8
SM_V7_7W	Smp_074450		8
SM_V7_ZW	Smp_074560	ΝΔ	8
SM V7 7W	Smp_074500		8
SNA V/7 ZW	Smp_074370		0
	Smp_075370		0
$SIVI_V7_ZVV$	Smp_075400		0
	Smp_075500		0
	Smp_076010		8
SM_V7_ZW	Smp_076390	Glycolipid transfer protein (Gltp)%2C putative	24
SM_V7_ZW	Smp_076600	Sox transcription factor	4
SM_V7_ZW	Smp_077280	NA	20
SM_V7_ZW	Smp_079960	Tubulin beta chain	24
SM_V7_ZW	Smp_080370	NA	16
SM_V7_ZW	Smp_080530	Putative replication protein A	20
SM_V7_ZW	Smp_080980	NA	16
SM_V7_ZW	Smp_082250	Peptidase_M14 domain-containing protein	12
SM_V7_ZW	Smp_084060	NA	8
SM_V7_ZW	Smp_085240	Diacylglycerol pyrophosphate (Phosphatidic acid) phosphatase 1	16
SM_V7_ZW	Smp_091010	Putative glyoxalase II (Hydroxyacylglutathione hydrolase)	16
SM_V7_ZW	Smp_091170	Ribosomal protein	12
SM_V7_ZW	Smp_091840	Bestrophin homolog	20
SM_V7_ZW	Smp_091850	Glucosamine-6-phosphate isomerase	20
SM_V7_ZW	Smp_092530	AP-1 complex subunit gamma	12
SM_V7_ZW	Smp_093790	CAI-2 protein%2C putative	12
Annexe 10			
-----------	------------	---	----
SM_V7_ZW	Smp_093930	Receptor protein-tyrosine kinase	16
SM_V7_ZW	Smp_095130	Hydroxymethylbilane synthase	20
SM_V7_ZW	Smp_095150	Protein-synthesizing GTPase	16
SM_V7_ZW	Smp_096160	ADP-ribosylation factor-like 13%2C arl13	12
SM_V7_ZW	Smp_100350	NA	12
SM_V7_ZW	Smp_102240	Upf3 regulator of nonsense transcripts- like protein	12
SM_V7_ZW	Smp_103920	Axonemal dynein intermediate chain%2C putative	12
SM V7 ZW	Smp 104450	NA	12
SM V7 ZW	Smp 119110	NA	12
SM_V7_ZW	Smp_120380	Testis specific leucine rich repeat protein%2Cputative	12
SM_V7_ZW	Smp_121130	Mitochondrial carrier protein%2C putative	16
SM_V7_ZW	Smp_121160	Mitochondrial carrier protein%2C putative	20
SM_V7_ZW	Smp_125550	Protein RIC1 homolog	16
SM_V7_ZW	Smp_126370	RPB5 homolog	12
SM_V7_ZW	Smp_128430	NA	8
SM_V7_ZW	Smp_128650	Nuclear movement protein related	12
SM_V7_ZW	Smp_132020	Cell division cycle 20 (Fizzy)-related	24
SM_V7_ZW	Smp_132090	Putative wd40 protein	8
SM_V7_ZW	Smp_133770	Putative glutamine synthetase bacteria	8
SM_V7_ZW	Smp_133800	NA	12
SM_V7_ZW	Smp_133830	NA	12
SM_V7_ZW	Smp_133900	NA	12
SM V7 ZW	Smp 134140	Phosphodiesterase	12
SM_V7_ZW	Smp_134390	Acyl-CoA: cholesterol acyltransferase protein isotype 1.1%3B O- acyltransferase	16
SM_V7_ZW	Smp_135250	NA	12
SM_V7_ZW	Smp_135270	NA	12
SM_V7_ZW	Smp_135840	NA	20
SM_V7_ZW	Smp_135900	Putative dna double-strand break repair rad50 ATPase	12
SM_V7_ZW	Smp_135960	NA	8
SM_V7_ZW	Smp_136010	NA	4
SM_V7_ZW	Smp_136530	Palmitoyltransferase	24
SM_V7_ZW	Smp_137610	Tyrosine kinase	16
SM_V7_ZW	Smp_139030	NA	12
SM_V7_ZW	Smp_141830	Transcriptional enhancer factor (Tef) related	16
SM_V7_ZW	Smp_142150	NA	8
SM_V7_ZW	Smp_142160	NA	8
SM_V7_ZW	Smp_143130	Putative four and A half lim domains	12
SM_V7_ZW	Smp_143730	Putative carboxypeptidase regulatory region-containing	24
SM_V7_ZW	Smp_145550	Sister chromatid cohesion protein DCC1	20

		1	
SM_V7_ZW	Smp_145580	Putative progesterone-induced-	16
SM_V7_ZW	Smp_145640	Putative forkhead protein/ forkhead	12
SM V7 ZW	Smp 145810	Poly [ADP-ribose] polymerase	12
SM V7 ZW	Smp 147420	EGF-like domain-containing protein	16
SM V7 ZW	Smp 147520	Putative tripartite motif protein	12
		Monocarboxylate transporter%2C	
SM_V7_ZW	Smp_150340	putative	8
SM_V7_ZW	Smp_152370	Putative arf gtpase-activating protein	24
SM_V7_ZW	Smp_153660	Cyclin d%2C putative	4
SM_V7_ZW	Smp_157100	Sphingoid long chain base kinase	8
SM_V7_ZW	Smp_157910	NA	12
SM_V7_ZW	Smp_157930	Putative leukocyte receptor cluster (Lrc) member 4 protein	8
SM_V7_ZW	Smp_158030	Intu_longin_1 domain-containing protein	20
SM_V7_ZW	Smp_158720	Protein kinase	12
SM_V7_ZW	Smp_162380	Isoamyl acetate-hydrolyzing esterase 1	12
SM_V7_ZW	Smp_163300	m7GpppX diphosphatase	4
SM_V7_ZW	Smp_163820	Phospholipid-transporting ATPase	12
SM_V7_ZW	Smp_164760	NA	12
SM_V7_ZW	Smp_165230	Polycystin 1-related	8
SM_V7_ZW	Smp_165470	Receptor protein-tyrosine kinase	16
SM_V7_ZW	Smp_165550	Afg3-like protein 2 (M41 family)	20
SM_V7_ZW	Smp_165580	General transcription and DNA repair factor IIH helicase subunit XPB	12
SM V7 ZW	Smp 165780	Glycine cleavage system H protein	20
SM V7 ZW	Smp 165820	NA	12
SM_V7_ZW	Smp_166500	Phosphatidylcholine-sterol acyltransferase (Lecithin-cholesterol acyltransferase)/ Phospholipase A	12
SM_V7_ZW	Smp_166600	Ubiquitin conjugating enzyme variant%3B Ubiquitin conjugating enzyme%2C putative	20
SM_V7_ZW	Smp_166610	previous_stable_id=Smp_166620,Smp_ 166630	8
SM_V7_ZW	Smp_171640	previous_stable_id=Smp_171650	12
SM_V7_ZW	Smp_171670	Putative wd-repeat protein	20
SM_V7_ZW	Smp_171770	NA	20
SM_V7_ZW	Smp_171860	Kh-domain rna binding protein-related	16
SM_V7_ZW	Smp_172280	Serine/threonine protein phosphatase 2a regulatory subunit A%2C putative	8
SM V7 ZW	Smp 173910	Nuclear movement protein related	12
SM_V7_ZW	Smp_174870	NA	12
SM_V7_ZW	Smp_174950	Putative 40s ribosomal protein S19	20
SM_V7_ZW	Smp_175090	Long-chain-fatty-acidCoA ligase	12
SM_V7_ZW	Smp_176090	Fbxl4%2C putative	12
SM_V7_ZW	Smp_177790	Iron-sulfur cluster scaffold protein nfu-	12
SM_V7_ZW	Smp_178750	Transcription initiation factor IIE subunit alpha	20

SM, V7.2W Smp. 179100 Purine nucleoside phosphorylase 8 SM, V7.2W Smp. 180000 405 ribosomal protein 9 16 SM, V7.2W Smp. 180000 405 ribosomal protein 9 16 SM, V7.2W Smp. 180000 405 ribosomal protein 9 12 SM, V7.2W Smp. 190200 NA 12 SM, V7.2W Smp. 190200 NA 12 SM, V7.2W Smp. 190400 SPRV domain-containing protein 7 12 SM, V7.2W Smp. 190500 NA 8 SM, V7.2W Smp. 195000 NA 8 SM, V7.2W Smp. 195000 NA 8 SM, V7.2W Smp. 195000 NA 8 SM, V7.2W Smp. 198500 ECKF1-1 complex subunit VF520 12 SM, V7.2W Smp. 201300 G. PROTEIN_RECEP_F1_2 domain- containing protein 12 SM, V7.2W Smp. 203300 NA 12 12 SM, V7.2W Smp. 203300 NA 12 12 SM, V7.2W Smp. 204380	Annexe 10			
SM V7 ZW Smp 179720 Oxysterol-binding protein 12 SM V7 ZW Smp 180360 VA 20 SM V7 ZW Smp 180360 NA 20 SM V7 ZW Smp 180360 NA 20 SM V7 ZW Smp 194200 NA 212 SM V7 ZW Smp 194200 SPR domain-containing protein 7 122 SM V7 ZW Smp 194610 Serine/Intreonine kinase 8 SM V7 ZW Smp 195060 NA 8 SM V7 ZW Smp 195070 NA 8 SM V7 ZW Smp 198300 Ecramidase 12 SM V7 ZW Smp 198300 Ecramidase 12 SM V7 ZW Smp 20120 Non-specific serine/Internine protein kinase 12 SM V7 ZW Smp 201300 Calcium load-activated calcium channe containing protein 12 SM V7 ZW Smp 201300 NA 20 SM V7 ZW Smp 201300 NA 20 SM V7 ZW Smp 201300 NA 20 SM V7 ZW Smp 2	SM_V7_ZW	Smp_179110	Purine nucleoside phosphorylase	8
SM 7/2W Smp 180000 405 ribosomal protein 59 16 SM V7 ZW Smp 190020 NA 20 SM V7 ZW Smp 190020 NA 12 SM V7 ZW Smp 190020 NA 12 SM V7 ZW Smp 194010 SPRV domain-containing protein 7 12 SM V7 ZW Smp 194010 Serine/threonine kinase 8 SM V7 ZW Smp 195000 NA 8 SM V7 ZW Smp 201200 Non-specific serine/threonine protein 12 SM V7 ZW Smp 20330 NA 20 SM V7 ZW Smp 20330 NA 20 SM V7 ZW Smp 20330 NA 20 SM V7 ZW Smp 20330 Smp 204380 12 <t< td=""><td>SM_V7_ZW</td><td>Smp_179720</td><td>Oxysterol-binding protein</td><td>12</td></t<>	SM_V7_ZW	Smp_179720	Oxysterol-binding protein	12
SM_V7_ZW Smp 139360 NA 20 SM_V7_ZW Smp 139420 NA 12 SM_V7_ZW Smp 139420 SPK domain-containing protein 7 12 SM_V7_ZW Smp 139420 Serine//threonine kinase 8 SM_V7_ZW Smp 1394610 Serine//threonine kinase 8 SM_V7_ZW Smp 139500 NA 8 SM_V7_ZW Smp 1395070 NA 8 SM_V7_ZW Smp 1395101 Ceramidase 12 SM_V7_ZW Smp 1395070 NA 8 SM_V7_ZW Smp 1395070 NA 8 SM_V7_ZW Smp 1395070 NA 8 SM_V7_ZW Smp 201201 Non-specific scrine/threonine protein 12 SM_V7_ZW Smp 203500 G-PROTEIN_RECEP_F1_2 domain-containing protein 8 SM_V7_ZW Smp 203301 NA 20 SM_V7_ZW Smp 203303 NA 20 SM_V7_ZW Smp 204380 Smp 204380 16 SM_V7_ZW Smp 204390	SM V7 ZW	Smp 180000	40S ribosomal protein S9	16
SM_V7_ZW Smp_190020 NA 12 SM_V7ZW Smp_194200 SPRY domain-containing protein 7 12 SM_V7ZW Smp_1948100 Serine(threonine kinase 8 SM_V7ZW Smp_1946200 Serine(threonine kinase 8 SM_V7ZW Smp_195000 NA 8 SM_V7ZW Smp_195000 NA 8 SM_V7ZW Smp_195000 NA 8 SM_V7ZW Smp_195000 NA 8 SM_V7ZW Smp_195010 Ceramidase 12 SM_V7ZW Smp_198890 previous_stable_id=Smp_15030 8 SM_V7ZW Smp_201200 Non-specific serine(threonine protein kinase 12 SM_V7ZW Smp_20330 NA 20 5 SM_V7ZW Smp_20330 NA 20 5 SM_V7ZW Smp_204300 Smp_20430 16 5 SM_V7ZW Smp_204300 Smp_20430 8 5 SM_V7ZW Smp_210800 Na 12 12	SM V7 ZW	Smp 180360	NA	20
SM_V7_ZW Smp_194240 SPRY domain-containing protein 7 12 SM_V7_ZW Smp_194610 Serine(threonine kinase 8 SM_V7_ZW Smp_194620 methyltransferase catalytic subunit TRMT6IA 8 SM_V7_ZW Smp_195070 NA 8 SM_V7_ZW Smp_195070 NA 8 SM_V7_ZW Smp_195070 NA 8 SM_V7_ZW Smp_195070 NA 8 SM_V7_ZW Smp_198850 ECRT-II complex subunit VFS22 12 SM_V7_ZW Smp_198890 previous stable id=Smp_15030 8 SM_V7_ZW Smp_201200 Non-specific serine/threonine protein kinase 8 SM_V7_ZW Smp_203300 G_PROTEIN_EECEP_F1_2 domain- containing protein 20 SM_V7_ZW Smp_203300 NA 12 SM_V7_ZW Smp_203300 NA 12 SM_V7_ZW Smp_204380 Smp_204380 12 SM_V7_ZW Smp_210800 NA 12 SM_V7_ZW Smp_210480 Smp_210480 12 </td <td>SM V7 ZW</td> <td>Smp 190020</td> <td>NA</td> <td>12</td>	SM V7 ZW	Smp 190020	NA	12
SM_V7_ZW Smp_194610 Serine/threonine kinase 8 SM_V7_ZW Smp_194620 tRNA (aderine(S8)-N(1))- methyltransferase catalytic subunit TRMTG1A 4 SM_V7_ZW Smp_195000 NA 8 SM_V7_ZW Smp_195000 NA 8 SM_V7_ZW Smp_195000 NA 8 SM_V7_ZW Smp_195000 NA 8 SM_V7_ZW Smp_19800 previous_stable_id=Smp_15030 8 SM_V7_ZW Smp_201200 Non-specific serine/threonine protein kinase 12 SM_V7_ZW Smp_20300 G_PROTEIN_RECEP_F1_2 domain- containing protein 8 SM_V7_ZW Smp_20330 NA 20 SM_V7ZW Smp_204120 NA 20 SM_V7ZW Smp_204300 Smg_204300 16 SM_V7ZW Smp_204300 Smg_204300 8 SM_V7ZW Smp_210520 Putative tyrosyl-DNA phosphodtererase 4 SM_V7ZW Smp_2104200 Long-chain-fatty-acid-CoA ligase 8 SM_V7ZW Smp_210200 NA	SM V7 ZW	Smp 194240	SPRY domain-containing protein 7	12
SM_V7_2W Smp_194620 tRNA (adenine(58)-N(1))- methyltransferase catalytic subunit TRNT61A 4 SM_V7_ZW Smp_195060 NA 8 SM_V7_ZW Smp_195060 NA 8 SM_V7_ZW Smp_195070 NA 8 SM_V7_ZW Smp_198070 NA 8 SM_V7_ZW Smp_198070 NA 8 SM_V7_ZW Smp_198070 NA 8 SM_V7_ZW Smp_198070 Non-specific serine/threonine protein kinase 12 SM_V7_ZW Smp_201200 Non-specific serine/threonine protein kinase 8 SM_V7_ZW Smp_203300 Q_PROTEIN_RECEP_F1_2 domain- containing protein 8 SM_V7_ZW Smp_203300 NA 20 SM_V7_ZW Smp_203300 Smp_204380 16 SM_V7_ZW Smp_204380 Smp_204390 8 SM_V7_ZW Smp_204380 Smp_204390 8 SM_V7_ZW Smp_210500 NA 12 SM_V7_ZW Smp_210800 Putative tyrosyl-DNA phosphodiestersae 4	SM V7 ZW	Smp 194610	Serine/threonine kinase	8
SM_V7_ZW Smp_194620 methyltransferase catalytic subunit TRM/T61A 4 SM_V7_ZW Smp_195000 NA 8 SM_V7_ZW Smp_195010 Ceramidase 12 SM_V7_ZW Smp_1981010 Ceramidase 12 SM_V7_ZW Smp_198800 ESCRT-II complex subunit VPS22 12 SM_V7_ZW Smp_198800 previous_stable (d-Smp_150330 8 SM_V7_ZW Smp_203200 Non-specific serine/threonine protein 12 SM_V7_ZW Smp_203300 AA 16 SM_V7_ZW Smp_203300 NA 16 SM_V7_ZW Smp_203300 NA 12 SM_V7_ZW Smp_204320 NA 12 SM_V7_ZW Smp_204330 Smp_204300 12 SM_V7_ZW Smp_204300 Smp_204300 8 SM_V7_ZW Smp_210520 Putative trovyl-DNA 12 SM_V7_ZW Smp_210520 Previous_stable (d-Smp_154510 8 SM_V7_ZW Smp_241520 previous_stable (d-Smp_16630,Smp_155410 8 </td <td></td> <td></td> <td>tRNA (adenine(58)-N(1))-</td> <td></td>			tRNA (adenine(58)-N(1))-	
L TRMT61A R SM_V7.2W Smp_195060 NA 8 SM_V7.ZW Smp_195070 NA 8 SM_V7.ZW Smp_199800 ESCRT-II complex suburit VPS22 12 SM_V7.ZW Smp_198800 ESCRT-II complex suburit VPS22 12 SM_V7.ZW Smp_198800 previous, stable_id=Smp_150330 8 SM_V7.ZW Smp_201200 Non-specific serine/threonine protein kinase 12 SM_V7.ZW Smp_203800 RCEEP_F1_2 domain- containing protein 8 SM_V7.ZW Smp_203800 NA 20 SM_V7.ZW Smp_203970 Calcium load-activated calcium channel 20 SM_V7.ZW Smp_204380 Smp_204380 16 SM_V7.ZW Smp_204380 Smp_204380 16 SM_V7.ZW Smp_204380 Smp_204380 12 SM_V7.ZW Smp_204380 Smp_204380 12 SM_V7.ZW Smp_204380 Smp_204380 12 SM_V7.ZW Smp_204380 Smp_204380 12 SM_V7	SM V7 ZW	Smp 194620	methyltransferase catalytic subunit	4
SM, V7, ZW Smp 195060 NA 8 SM, V7, ZW Smp 195070 NA 8 SM, V7, ZW Smp 195070 NA 8 SM, V7, ZW Smp 195070 NA 8 SM, V7, ZW Smp 198850 ESCRT-II complex subunit VP522 12 SM, V7, ZW Smp 198850 ESCRT-II complex subunit VP523 8 SM, V7, ZW Smp 201200 Non-specific serine/threonine protein containing protein 8 SM, V7, ZW Smp 203630 NA 20 8 SM, V7, ZW Smp 203630 NA 20 8 SM, V7, ZW Smp 203630 NA 20 9 SM, V7, ZW Smp 204300 11 20 9 SM, V7, ZW Smp 204380 Smp 204390 16 5 SM, V7, ZW Smp 201020 NA 12 2 SM, V7, ZW Smp 201080 Putative tryosyl-DNA phosphodisetrase 4 4 SM, V7, ZW Smp 214240 Previous, stable_id=Smp_155410 8 8		• =	TRMT61A	
SM_V7_2W Smp_195070 NA 8 SM_V7_ZW Smp_19810 Ceramidase 12 SM_V7_ZW Smp_198800 ESCRT-11 complex subunit VP522 122 SM_V7_ZW Smp_198800 ESCRT-11 complex subunit VP522 122 SM_V7_ZW Smp_198800 ESCRT-11 complex subunit VP522 122 SM_V7_ZW Smp_201220 Non-specific serine/threonine protein kinase 12 SM_V7_ZW Smp_20300 G_PROTEIN_RECEP_F1_2 domain- containing protein 8 SM_V7_ZW Smp_203300 NA 200 SM_V7_ZW Smp_204300 NA 120 SM_V7_ZW Smp_204380 Smp_204380 166 SM_V7_ZW Smp_204380 Smp_204380 8 SM_V7_ZW Smp_204380 Smp_204380 8 SM_V7_ZW Smp_204380 Smp_204380 122 SM_V7_ZW Smp_210200 NA 122 SM_V7_ZW Smp_21420 Pretivos_stable_id=Smp_011600,Smp_ 122 SM_V7_ZW Smp_241570 pretivos_stable_id=Smp_015501	SM_V7_ZW	Smp_195060	NA	8
SM_V7_ZW Smp_196110 Ceramidase 12 SM_V7_ZW Smp_19880 ESCRT-II complex subunit VPS22 12 SM_V7_ZW Smp_198800 previous_stable_id-Smp_150330 8 SM_V7_ZW Smp_20300 G_PROTEIN_RECEP_F1_2 domain- containing protein 12 SM_V7_ZW Smp_203500 G_PROTEIN_RECEP_F1_2 domain- containing protein 8 SM_V7_ZW Smp_20360 NA 200 SM_V7_ZW Smp_20360 NA 200 SM_V7_ZW Smp_20370 Calcium load-activated calcium channel 200 SM_V7_ZW Smp_204300 Smp_204380 112 SM_V7_ZW Smp_204300 Smp_204380 8 SM_V7_ZW Smp_204300 Smp_204380 8 SM_V7_ZW Smp_210800 Putative tyrosyl-DNA 12 SM_V7_ZW Smp_210800 Putative tyrosyl-DNA 12 SM_V7_ZW Smp_210800 Putative tyrosyl-DNA 12 SM_V7_ZW Smp_244300 previous_stable_id=Smp_154500 8 SM_V7_ZW Smp_244300 <td>SM_V7_ZW</td> <td>Smp_195070</td> <td>NA</td> <td>8</td>	SM_V7_ZW	Smp_195070	NA	8
SM_V7_ZW Smp_198850 ESCRT-II complex subunit VPS22 12 SM_V7_ZW Smp_108890 previous_stable_id=Smp_150330 8 SM_V7_ZW Smp_201220 Non-specific serine/threonine protein kinase 12 SM_V7_ZW Smp_203500 G_PROTEIN_RECEP_F1_2 domain- containing protein 16 SM_V7_ZW Smp_203630 NA 200 SM_V7_ZW Smp_203830 NA 200 SM_V7_ZW Smp_203970 Calcium load-activated calcium channel 200 SM_V7_ZW Smp_204380 Smp_204380 16 SM_V7_ZW Smp_204380 Smp_204390 8 SM_V7_ZW Smp_204380 Putative tyrosyl-DNA phosphodiesterase 8 SM_V7_ZW Smp_2104800 Putative dystrobrevin 12 SM_V7_ZW Smp_214240 Previous_stable_id=Smp_011600,Smp_ 12 SM_V7_ZW Smp_241500 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_244300 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244500 previous_stable_id=Smp_094500 <t< td=""><td>SM V7 ZW</td><td>Smp 196110</td><td>Ceramidase</td><td>12</td></t<>	SM V7 ZW	Smp 196110	Ceramidase	12
SM_V7_ZW Smp_198890 previous_stable_id=Smp_150330 8 SM_V7_ZW Smp_201220 Non-specific serine/threonine protein kinase 12 SM_V7_ZW Smp_203500 G_PROTEIN_RECEP_F1_2 domain-containing protein 8 SM_V7_ZW Smp_203800 NA 20 SM_V7_ZW Smp_203800 NA 20 SM_V7_ZW Smp_203800 NA 20 SM_V7_ZW Smp_203800 Calcium load-activated calcium channel 20 SM_V7_ZW Smp_204380 Smp_204380 16 SM_V7_ZW Smp_204380 Smp_204390 8 SM_V7_ZW Smp_204300 Long-chain-fatty-acidCoA ligase 8 SM_V7_ZW Smp_201200 Putative tyrosyl-DNA posphodiesterase 4 SM_V7_ZW Smp_2124200 Previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_241240 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_244130 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244130 Elongatin factor G%2C mitochondrial 12	SM V7 ZW	Smp 198850	ESCRT-II complex subunit VPS22	12
SM_V7_ZW Smp_201220 Non-specific serine/threonine protein kinase 12 SM_V7_ZW Smp_203500 G_PROTEIN_RECEP_F1_2 domain-containing protein containing protein protein containing protein 8 SM_V7_ZW Smp_203830 NA 16 SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_204120 NA 12 SM_V7_ZW Smp_204380 Smp_204380 12 SM_V7_ZW Smp_204390 Smp_204390 8 SM_V7_ZW Smp_20430 Smp_204390 8 SM_V7_ZW Smp_210800 Long-chain-fatty-acidCoA ligase 8 SM_V7_ZW Smp_210800 Putative tyrosyl-DNA 12 SM_V7_ZW Smp_210800 Putative tyrosyl-DNA 12 SM_V7_ZW Smp_214200 previous_stable_id=Smp_011600,Smp_ 12 SM_V7_ZW Smp_244300 previous_stable_id=Smp_155410 8 SM_V7_ZW Smp_244300 <t< td=""><td>SM V7 ZW</td><td>Smp 198890</td><td>previous stable id=Smp 150330</td><td>8</td></t<>	SM V7 ZW	Smp 198890	previous stable id=Smp 150330	8
SM_V7_ZW Smp_201220 kinase 12 SM_V7_ZW Smp_203500 G_PROTEIN_RECEP_F1_2 domain- containing protein 8 SM_V7_ZW Smp_203630 NA 16 SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_203970 Calcium load-activated calcium channel 20 SM_V7_ZW Smp_204380 Smp_204380 112 SM_V7_ZW Smp_204380 Smp_204390 8 SM_V7_ZW Smp_20100 Long-chain-fatty-acid-CoA ligase 8 SM_V7_ZW Smp_210800 Putative tyrosyl-DNA phosphodiesterase 4 SM_V7_ZW Smp_210900 NA 12 SM_V7_ZW Smp_214200 Previous_stable_id=Smp_011600,Smp_ 128400 12 SM_V7_ZW Smp_241300 previous_stable_id=Smp_155410 8 SM_V7_ZW Smp_244300 previous_stable_id=Smp_155410 8 SM_V7_ZW Smp_244300 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244300			Non-specific serine/threonine protein	
SM_V7_ZW Smp_203500 G_PROTEIN_RECEP_F1_2 domain- containing protein 8 SM_V7_ZW Smp_203630 NA 16 SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_203970 Calcium load-activated calcium channel 20 SM_V7_ZW Smp_204320 NA 12 SM_V7_ZW Smp_204380 Smp_204380 16 SM_V7_ZW Smp_204380 Smp_204380 8 SM_V7_ZW Smp_204390 Smp_204390 8 SM_V7_ZW Smp_204900 Long-chain-fatty-acid-COA ligase 8 SM_V7_ZW Smp_210800 Putative tyrosyl-DNA phosphodiesterase 4 SM_V7_ZW Smp_210800 Putative dystrobrevin 12 SM_V7_ZW Smp_241420 previous_stable_id=Smp_15490 8 SM_V7_ZW Smp_241200 previous_stable_id=Smp_155410 8 SM_V7_ZW Smp_244300 Elongation factor G%2C mitochondrial 122 SM_V7_ZW Smp_244300 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_2	SM_V7_ZW	Smp_201220	kinase	12
SM_V7_ZW Smp_20360 R 16 SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_203800 Calcium load-activated calcium channel 20 SM_V7_ZW Smp_204380 Smp_204380 112 SM_V7_ZW Smp_204380 Smp_204380 8 SM_V7_ZW Smp_204380 Smp_204380 8 SM_V7_ZW Smp_204380 Smp_204390 8 SM_V7_ZW Smp_210520 Putative tyrosyl-DNA phosphodiesterase 8 SM_V7_ZW Smp_210520 Putative dystrobrevin 12 SM_V7_ZW Smp_241200 Previous_stable_id=Smp_011600,Smp_128400 12 SM_V7_ZW Smp_24130 [Borgation factor G%2C mitochondrial 12 SM_V7_ZW Smp_24430 [Borgation factor G%2C mitochondrial 12 SM_V7_ZW Smp_24430 ginal recognition particle 14 kDa protein 20 SM_V7_ZW Smp_244300 previous_stabl		c 202500	G PROTEIN RECEP F1 2 domain-	•
SM_V7_ZW Smp_203830 NA 16 SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_203970 Calcium load-activated calcium channel 20 SM_V7_ZW Smp_204380 Smp_204380 112 SM_V7_ZW Smp_204390 Smp_204390 8 SM_V7_ZW Smp_209040 Long-chain-fatty-acid-CoA ligase 8 SM_V7_ZW Smp_210520 Putative tyrosyl-DNA phosphodiesterase 4 SM_V7_ZW Smp_210900 NA 122 SM_V7_ZW Smp_210900 NA 122 SM_V7_ZW Smp_214240 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_244250 previous_stable_id=Smp_155410 8 SM_V7_ZW Smp_244300 Elongation factor G%2C mitochondrial 122 SM_V7_ZW Smp_244350 Signal recognition particle 14 kDa protein 20 SM_V7_ZW Smp_244500 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244650 pre	SM_V7_ZW	Smp_203500	containing protein	8
SM_V7_ZW Smp_203830 NA 20 SM_V7_ZW Smp_203970 Calcium load-activated calcium channel 20 SM_V7_ZW Smp_204320 NA 12 SM_V7_ZW Smp_204380 Smp_204390 8 SM_V7_ZW Smp_204390 Smp_204390 8 SM_V7_ZW Smp_20400 Long-chain-fatty-acidCoA ligase 8 SM_V7_ZW Smp_210520 Putative tyrosyl-DNA phosphodiesterase 4 SM_V7_ZW Smp_210860 Putative dystrobrevin 12 SM_V7_ZW Smp_210800 NA 12 SM_V7_ZW Smp_210800 Previous_stable_id=Smp_011600,Smp_ 128400 12 SM_V7_ZW Smp_241240 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_244100 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244300 ginal recognition particle 14 kDa protein 20 SM_V7_ZW Smp_24450 previous_stable_id=Smp_017900,Smp_ 179030 8 SM_V7_ZW Smp_24450 previous_stable_id=Smp_174910 8	SM_V7_ZW	Smp_203630	NA	16
SM_V7_ZW Smp_203970 Calcium load-activated calcium channel 20 SM_V7_ZW Smp_204120 NA 12 SM_V7_ZW Smp_204380 Smp_204380 Smp_204390 8 SM_V7_ZW Smp_204390 Smp_204390 8 8 SM_V7_ZW Smp_20400 Long-chain-fatty-acidCoA ligase 8 SM_V7_ZW Smp_210500 Putative tyrosyl-DNA phosphodiesterase 4 SM_V7_ZW Smp_210900 NA 12 SM_V7_ZW Smp_210900 NA 12 SM_V7_ZW Smp_210900 NA 12 SM_V7_ZW Smp_214240 previous_stable_id=Smp_011600,Smp_ 128400 12 SM_V7_ZW Smp_244300 previous_stable_id=Smp_155410 8 SM_V7_ZW Smp_244300 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244300 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_24460 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_24460 previous_stable_id=Smp_179020,Smp_ 179030 12	SM_V7_ZW	Smp_203830	NA	20
SM_V7_ZW Smp_204320 NA 12 SM_V7_ZW Smp_204380 Smp_204380 16 SM_V7_ZW Smp_204390 Smp_204390 8 SM_V7_ZW Smp_204390 Smp 204390 8 SM_V7_ZW Smp_209040 Long-chain-fatty-acidCoA ligase 8 8 SM_V7_ZW Smp_210520 Putative tyrosyl-DNA phosphodiesterase 4 4 SM_V7_ZW Smp_210800 Putative dystrobrevin 12 12 SM_V7_ZW Smp_210900 NA 12 12 SM_V7_ZW Smp_214240 previous_stable_id=Smp_011600,Smp_ 128400 12 SM_V7_ZW Smp_241250 previous_stable_id=Smp_15410 8 SM_V7_ZW Smp_244310 Elongation factor G%2C mitochondrial 122 SM_V7_ZW Smp_244310 Filongation particle 14 kDa protein 20 SM_V7_ZW Smp_244640 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_24460 previous_stable_id=Smp_179020,Smp_179030 12 SM_V7_ZW Smp_24460	SM_V7_ZW	Smp_203970	Calcium load-activated calcium channel	20
SM_V7_ZW Smp_204380 Smp_204390 Smp_20439	SM V7 ZW	Smp 204120	NA	12
SM_V7_ZW Smp_204390 Smp_204390 Smp_204390 8 SM_V7_ZW Smp_209040 Long-chain-fatty-acidCoA ligase 8 SM_V7_ZW Smp_210520 Putative tyrosyl-DNA phosphodiesterase 4 SM_V7_ZW Smp_210800 Putative tyrosyl-DNA phosphodiesterase 4 SM_V7_ZW Smp_210800 NA 12 SM_V7_ZW Smp_214240 previous_stable_id=Smp_011600,Smp_ 128400 12 SM_V7_ZW Smp_241570 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_24430 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244310 Elongation factor G%2C mitochondrial 20 SM_V7_ZW Smp_24460 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_24460 previous_stable_id=Smp_179020,Smp_ 179030 12 SM_V7_ZW Smp_244900 previous_stable_id=Smp_171960 8 SM_V7_ZW Smp_244920 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_245100 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_2	SM_V7_ZW	Smp_204380	Smp_204380	16
SM_V7_ZW Smp_209040 Long-chain-fatty-acidCoA ligase 8 SM_V7_ZW Smp_210520 Putative tyrosyl-DNA phosphodiesterase 4 SM_V7_ZW Smp_210860 Putative tyrosyl-DNA phosphodiesterase 4 SM_V7_ZW Smp_210860 Putative dystrobrevin 12 SM_V7_ZW Smp_210800 NA 122 SM_V7_ZW Smp_214240 previous_stable_id=Smp_011600,Smp_ 128400 12 SM_V7_ZW Smp_241570 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_244130 Elongation factor G%2C mitochondrial 122 SM_V7_ZW Smp_244310 Elongation factor G%2C mitochondrial 122 SM_V7_ZW Smp_244300 Signal recognition particle 14 kDa protein 20 SM_V7_ZW Smp_244630 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244900 previous_stable_id=Smp_179020,Smp_ 179030 12 SM_V7_ZW Smp_244900 previous_stable_id=Smp_179100 8 SM_V7_ZW Smp_245100 MFS domain-containing protein 8 SM_V7_ZW Smp	SM V7 ZW	Smp 204390	Smp 204390	8
SM_V7_ZW Smp_210520 Putative tyrosyl-DNA phosphodiesterase 4 SM_V7_ZW Smp_210500 Putative dystrobrevin 12 SM_V7_ZW Smp_210900 NA 12 SM_V7_ZW Smp_210900 NA 12 SM_V7_ZW Smp_214240 previous_stable_id=Smp_011600,Smp_ 128400 12 SM_V7_ZW Smp_241570 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_244300 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244300 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244300 Signal recognition particle 14 kDa protein 8 SM_V7_ZW Smp_244350 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244650 previous_stable_id=Smp_179020,Smp_ 179030 12 SM_V7_ZW Smp_244500 previous_stable_id=Smp_174910 8 SM_V7_ZW Smp_24500 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_24510 MFS domain-containing protein 8 SM_V7_ZW Smp_24510 previous_stable_id=S	SM V7 ZW	Smp 209040	Long-chain-fatty-acidCoA ligase	8
SM_V7_ZW Smp_210520 phosphodiesterase 4 SM_V7_ZW Smp_210860 Putative dystrobrevin 12 SM_V7_ZW Smp_210900 NA 12 SM_V7_ZW Smp_210900 NA 12 SM_V7_ZW Smp_214240 previous_stable_id=Smp_011600,Smp_128400 12 SM_V7_ZW Smp_241570 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_244130 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244310 previous_stable_id=Smp_168630,Smp_168640 8 SM_V7_ZW Smp_244350 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244640 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244650 previous_stable_id=Smp_179020,Smp_179020,Smp_179030 12 SM_V7_ZW Smp_245040 previous_stable_id=Smp_174910 8 SM_V7_ZW Smp_245160 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_245160 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_245160 previous_stable_id=Smp_174910			Putative tyrosyl-DNA	
SM_V7_ZW Smp_210860 Putative dystrobrevin 12 SM_V7_ZW Smp_210900 NA 12 SM_V7_ZW Smp_210900 NA 12 SM_V7_ZW Smp_214240 previous_stable_id=Smp_011600,Smp_128400 12 SM_V7_ZW Smp_241570 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_244300 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244310 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244310 Signal recognition particle 14 kDa protein 8 SM_V7_ZW Smp_24460 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244650 previous_stable_id=Smp_179020,Smp_179020,Smp_179030 12 SM_V7_ZW Smp_244900 previous_stable_id=Smp_171960 8 SM_V7_ZW Smp_24510 MFS domain-containing protein 12 SM_V7_ZW Smp_24510 MFS domain-containing protein 12 SM_V7_ZW Smp_24510 MFS domain-containing protein 12 SM_V7_ZW Smp_245100 previous_stable_id=	SIVI_V7_ZW	Smp_210520	phosphodiesterase	4
SM_V7_ZW Smp_210900 NA 12 SM_V7_ZW Smp_214240 previous_stable_id=Smp_011600,Smp_ 128400 12 SM_V7_ZW Smp_241570 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_242500 previous_stable_id=Smp_155410 8 SM_V7_ZW Smp_244130 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244310 Bioston factor G%2C mitochondrial 12 SM_V7_ZW Smp_244310 Signal recognition particle 14 kDa protein 8 SM_V7_ZW Smp_244350 Signal recognition particle 14 kDa protein 20 SM_V7_ZW Smp_244640 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244620 previous_stable_id=Smp_179020,Smp_ 179030 12 SM_V7_ZW Smp_24500 previous_stable_id=Smp_174910 8 SM_V7_ZW Smp_245160 previous_stable_id=Smp_134990 8 SM_V7_ZW Smp_245150 MFS domain-containing protein 12 SM_V7_ZW Smp_245100 previous_stable_id=Smp_134990 8 SM_V7_ZW Smp_245400<	SM_V7_ZW	Smp_210860	Putative dystrobrevin	12
SM_V7_ZW Smp_214240 previous_stable_id=Smp_011600,Smp_128400 12 SM_V7_ZW Smp_241570 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_242500 previous_stable_id=Smp_155410 8 SM_V7_ZW Smp_244130 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244310 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244310 Elongation factor G%2C mitochondrial 8 SM_V7_ZW Smp_244300 previous_stable_id=Smp_168630,Smp_168640 8 SM_V7_ZW Smp_244350 Signal recognition particle 14 kDa protein 20 SM_V7_ZW Smp_24460 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244600 previous_stable_id=Smp_179020,Smp_179030 12 SM_V7_ZW Smp_244920 previous_stable_id=Smp_171960 8 SM_V7_ZW Smp_245040 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_245100 MFS domain-containing protein 8 SM_V7_ZW Smp_245100 MFS domain-containing protein 12 SM_V	SM_V7_ZW	Smp_210900	NA	12
128400 128400 128400 SM_V7_ZW Smp_241570 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_242500 previous_stable_id=Smp_155410 8 SM_V7_ZW Smp_244130 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244310 previous_stable_id=Smp_168630,Smp_168640 8 SM_V7_ZW Smp_244350 Signal recognition particle 14 kDa protein 20 SM_V7_ZW Smp_244600 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244650 previous_stable_id=Smp_179020,Smp_179030 8 SM_V7_ZW Smp_244900 previous_stable_id=Smp_171960 8 SM_V7_ZW Smp_245040 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_245100 MFS domain-containing protein 8 SM_V7_ZW Smp_245100 previous_stable_id=Smp_134990 8 SM_V7_ZW Smp_245100 MFS domain-containing protein 12 SM_V7_ZW Smp_245100 NA 16 SM_V7_ZW Smp_245100 NA 16	SM V7 ZW	Smp 214240	previous_stable_id=Smp_011600,Smp_	12
SM_V7_ZW Smp_241570 previous_stable_id=Smp_154950 8 SM_V7_ZW Smp_242500 previous_stable_id=Smp_155410 8 SM_V7_ZW Smp_244130 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244300 previous_stable_id=Smp_168630,Smp_ 168640 8 SM_V7_ZW Smp_244300 Signal recognition particle 14 kDa protein 20 SM_V7_ZW Smp_244600 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244650 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244650 previous_stable_id=Smp_179020,Smp_ 179030 12 SM_V7_ZW Smp_244900 previous_stable_id=Smp_171960 8 SM_V7_ZW Smp_24500 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_24510 MFS domain-containing protein 8 SM_V7_ZW Smp_24510 previous_stable_id=Smp_134990 8 SM_V7_ZW Smp_24510 previous_stable_id=Smp_134990 8 SM_V7_ZW Smp_245300 NA 16 SM_V7_ZW Smp_245300 NA <td></td> <td>•=</td> <td>128400</td> <td></td>		•=	128400	
SM_V7_ZW Smp_242500 previous_stable_id=Smp_155410 8 SM_V7_ZW Smp_244130 Elongation factor G%2C mitochondrial 12 SM_V7_ZW Smp_244310 previous_stable_id=Smp_168630,Smp_ 168640 8 SM_V7_ZW Smp_244350 Signal recognition particle 14 kDa protein 20 SM_V7_ZW Smp_244640 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244650 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244650 previous_stable_id=Smp_179020,Smp_ 179030 12 SM_V7_ZW Smp_244920 previous_stable_id=Smp_174910 8 SM_V7_ZW Smp_245040 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_24510 MFS domain-containing protein 8 SM_V7_ZW Smp_24510 MFS domain-containing protein 12 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245300 NA 16 SM_V7_ZW Smp_245300 NA 16 SM_V7_ZW Smp_245300 NA 12	SM_V7_ZW	Smp_241570	previous_stable_id=Smp_154950	8
SM_V7_ZWSmp_244130Elongation factor G%2C mitochondrial12SM_V7_ZWSmp_244310previous_stable_id=Smp_168630,Smp_ 1686408SM_V7_ZWSmp_244350Signal recognition particle 14 kDa protein20SM_V7_ZWSmp_244640previous_stable_id=Smp_0945008SM_V7_ZWSmp_244650previous_stable_id=Smp_0945008SM_V7_ZWSmp_244650previous_stable_id=Smp_0945008SM_V7_ZWSmp_244920previous_stable_id=Smp_179020,Smp_ 17903012SM_V7_ZWSmp_244920previous_stable_id=Smp_1719608SM_V7_ZWSmp_245040previous_stable_id=Smp_17491016SM_V7_ZWSmp_245100MFS domain-containing protein8SM_V7_ZWSmp_245100previous_stable_id=Smp_1349908SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_245400NA12SM_V7_ZWSmp_245300previous_stable_id=Smp_165208SM_V7_ZWSmp_266790NUDE_C domain-containing protein16	SM_V7_ZW	Smp_242500	previous_stable_id=Smp_155410	8
SM_V7_ZWSmp_244310previous_stable_id=Smp_168630,Smp_1686408SM_V7_ZWSmp_244350Signal recognition particle 14 kDa protein20SM_V7_ZWSmp_244640previous_stable_id=Smp_0945008SM_V7_ZWSmp_244650previous_stable_id=Smp_0945008SM_V7_ZWSmp_244650previous_stable_id=Smp_0945008SM_V7_ZWSmp_244600previous_stable_id=Smp_179020,Smp_17903012SM_V7_ZWSmp_244920previous_stable_id=Smp_1719608SM_V7_ZWSmp_245040previous_stable_id=Smp_17491016SM_V7_ZWSmp_245100MFS domain-containing protein8SM_V7_ZWSmp_245100previous_stable_id=Smp_1349908SM_V7_ZWSmp_245370NA16SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_245400NA12SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_246330previous_stable_id=Smp_1665208SM_V7_ZWSmp_266790NUDE_C domain-containing protein16	SM_V7_ZW	Smp_244130	Elongation factor G%2C mitochondrial	12
SM_V7_ZWSmp_244350Signal recognition particle 14 kDa protein20SM_V7_ZWSmp_244640previous_stable_id=Smp_0945008SM_V7_ZWSmp_244650previous_stable_id=Smp_0945008SM_V7_ZWSmp_244920previous_stable_id=Smp_179020,Smp_ 17903012SM_V7_ZWSmp_244960previous_stable_id=Smp_1719608SM_V7_ZWSmp_245040previous_stable_id=Smp_17491016SM_V7_ZWSmp_245150MFS domain-containing protein8SM_V7_ZWSmp_245150MFS domain-containing protein12SM_V7_ZWSmp_245160previous_stable_id=Smp_1349908SM_V7_ZWSmp_245370NA16SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_246330previous_stable_id=Smp_1665208SM_V7_ZWSmp_266790NUDE_C domain-containing protein16	SM_V7_ZW	Smp_244310	previous_stable_id=Smp_168630,Smp_ 168640	8
SM_V7_ZWSmp_244350protein20SM_V7_ZWSmp_244640previous_stable_id=Smp_0945008SM_V7_ZWSmp_244650previous_stable_id=Smp_0945008SM_V7_ZWSmp_244920previous_stable_id=Smp_179020,Smp_ 17903012SM_V7_ZWSmp_244960previous_stable_id=Smp_1719608SM_V7_ZWSmp_245040previous_stable_id=Smp_17491016SM_V7_ZWSmp_245140MFS domain-containing protein8SM_V7_ZWSmp_245150MFS domain-containing protein12SM_V7_ZWSmp_245160previous_stable_id=Smp_1349908SM_V7_ZWSmp_245370NA16SM_V7_ZWSmp_245400NA12SM_V7_ZWSmp_245300previous_stable_id=Smp_1665208SM_V7_ZWSmp_266790NUDE_C domain-containing protein16		Creater 244250	Signal recognition particle 14 kDa	20
SM_V7_ZW Smp_244640 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244650 previous_stable_id=Smp_094500 8 SM_V7_ZW Smp_244920 previous_stable_id=Smp_179020,Smp_ 179030 12 SM_V7_ZW Smp_244960 previous_stable_id=Smp_171960 8 SM_V7_ZW Smp_245040 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_245140 MFS domain-containing protein 8 SM_V7_ZW Smp_245150 MFS domain-containing protein 12 SM_V7_ZW Smp_245160 previous_stable_id=Smp_134990 8 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245370 NA 12 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245300 previous_stable_id=Smp_166520 8 SM_V7_ZW Smp_246330 previous_stable_id=Smp_166520 8 SM_V7_ZW Smp_266790 NUDE_C domain-containing protein 16	SIVI_V7_ZW	Smp_244350	protein	20
SM_V7_ZWSmp_244650previous_stable_id=Smp_0945008SM_V7_ZWSmp_244920previous_stable_id=Smp_179020,Smp_ 17903012SM_V7_ZWSmp_244960previous_stable_id=Smp_1719608SM_V7_ZWSmp_245040previous_stable_id=Smp_17491016SM_V7_ZWSmp_245140MFS domain-containing protein8SM_V7_ZWSmp_245150MFS domain-containing protein12SM_V7_ZWSmp_245160previous_stable_id=Smp_1349908SM_V7_ZWSmp_245370NA16SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_245300NA12SM_V7_ZWSmp_246330previous_stable_id=Smp_1665208SM_V7_ZWSmp_266790NUDE_C domain-containing protein16	SM_V7_ZW	Smp_244640	previous_stable_id=Smp_094500	8
SM_V7_ZWSmp_244920previous_stable_id=Smp_179020,Smp_ 17903012SM_V7_ZWSmp_244960previous_stable_id=Smp_1719608SM_V7_ZWSmp_245040previous_stable_id=Smp_17491016SM_V7_ZWSmp_245140MFS domain-containing protein8SM_V7_ZWSmp_245150MFS domain-containing protein12SM_V7_ZWSmp_245160previous_stable_id=Smp_1349908SM_V7_ZWSmp_245370NA16SM_V7_ZWSmp_245370NA16SM_V7_ZWSmp_245300previous_stable_id=Smp_1665208SM_V7_ZWSmp_266790NUDE_C domain-containing protein16	SM_V7_ZW	Smp_244650	previous_stable_id=Smp_094500	8
SM_V7_ZW Smp_244960 previous_stable_id=Smp_171960 8 SM_V7_ZW Smp_245040 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_245140 MFS domain-containing protein 8 SM_V7_ZW Smp_245150 MFS domain-containing protein 12 SM_V7_ZW Smp_245160 previous_stable_id=Smp_134990 8 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245300 NA 12 SM_V7_ZW Smp_245400 NA 12 SM_V7_ZW Smp_245300 NA 12 SM_V7_ZW Smp_246330 previous_stable_id=Smp_166520 8 SM_V7_ZW Smp_266790 NUDE_C domain-containing protein 16	SM_V7_ZW	Smp_244920	previous_stable_id=Smp_179020,Smp_ 179030	12
SM_V7_ZW Smp_245040 previous_stable_id=Smp_174910 16 SM_V7_ZW Smp_245140 MFS domain-containing protein 8 SM_V7_ZW Smp_245150 MFS domain-containing protein 12 SM_V7_ZW Smp_245160 previous_stable_id=Smp_134990 8 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245400 NA 16 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245400 NA 12 SM_V7_ZW Smp_245400 NA 12 SM_V7_ZW Smp_246330 previous_stable_id=Smp_166520 8 SM_V7_ZW Smp_266790 NUDE_C domain-containing protein 16	SM V7 ZW	Smp 244960	previous stable id=Smp 171960	8
SM_V7_ZWSmp_245140MFS domain-containing protein8SM_V7_ZWSmp_245150MFS domain-containing protein12SM_V7_ZWSmp_245160previous_stable_id=Smp_1349908SM_V7_ZWSmp_245370NA16SM_V7_ZWSmp_245400NA12SM_V7_ZWSmp_245300previous_stable_id=Smp_1665208SM_V7_ZWSmp_246330previous_stable_id=Smp_1665208SM_V7_ZWSmp_266790NUDE_C domain-containing protein16	SM V7 ZW	Smp 245040	previous stable id=Smp 174910	16
SM_V7_ZW Smp_245150 MFS domain-containing protein 12 SM_V7_ZW Smp_245160 previous_stable_id=Smp_134990 8 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245400 NA 12 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245300 NA 12 SM_V7_ZW Smp_246330 previous_stable_id=Smp_166520 8 SM_V7_ZW Smp_266790 NUDE_C domain-containing protein 16	SM V7 ZW	Smp 245140	MFS domain-containing protein	8
SM_V7_ZW Smp_245160 previous_stable_id=Smp_134990 8 SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245400 NA 12 SM_V7_ZW Smp_246330 previous_stable_id=Smp_166520 8 SM_V7_ZW Smp_266790 NUDE_C domain-containing protein 16	SM V7 ZW	Smp 245150	MFS domain-containing protein	12
SM_V7_ZW Smp_245370 NA 16 SM_V7_ZW Smp_245400 NA 12 SM_V7_ZW Smp_246330 previous_stable_id=Smp_166520 8 SM_V7_ZW Smp_266790 NUDE_C domain-containing protein 16	SM V7 ZW	Smp 245160	previous stable id=Smp 134990	8
SM_V7_ZW Smp_245400 NA 12 SM_V7_ZW Smp_246330 previous_stable_id=Smp_166520 8 SM_V7_ZW Smp_266790 NUDE_C domain-containing protein 16	SM V7 ZW	Smp 245370	NA	16
SM_V7_ZWSmp_246330previous_stable_id=Smp_1665208SM_V7_ZWSmp_266790NUDE_C domain-containing protein16	SM V7 ZW	Smp 245400	NA	12
SM_V7_ZW Smp_266790 NUDE_C domain-containing protein 16	SM V7 ZW	Smp 246330	previous stable id=Smp 166520	8
	SM_V7_ZW	Smp_266790	NUDE_C domain-containing protein	16

Annexe 10			
SM_V7_ZW	Smp_267110	Ribosomal RNA-processing protein 40	4
SM_V7_ZW	Smp_267120	previous_stable_id=Smp_194600	4
	<u> </u>	previous_stable_id=Smp_153230,Smp_	
SIVI_V7_ZW	Smp_303980	057790,Smp_153240	8
SM_V7_ZW	Smp_304250	Purine nucleoside phosphorylase	4
SM_V7_ZW	Smp_304260	Purine nucleoside phosphorylase	24
SM_V7_ZW	Smp_304710	previous_stable_id=Smp_167940	12
SM_V7_ZW	Smp_304800	Mannosyltransferase	12
SM_V7_ZW	Smp_305120	G domain-containing protein	12
		previous stable id=Smp 130420,Smp	
	Smp_306610	015190	ð
	C	Protein kinase domain-containing	
SIVI_V7_ZW	Smp_307260	protein	8
SM_V7_ZW	Smp_314290	previous_stable_id=Smp_176530	8
SM_V7_ZW	Smp_315980	previous_stable_id=Smp_171890	12
SM_V7_ZW	Smp_321810	NA	8
SM_V7_ZW	Smp_322220	60S ribosomal protein L18a	20
SM_V7_ZW	Smp_322240	NA	12
SM_V7_ZW	Smp_322560	NA	20
SM_V7_ZW	Smp_322590	NA	12
SM_V7_ZW	Smp_322650	NA	12
	<u> </u>	LIM zinc-binding domain-containing	20
SM_V7_ZW	Smp_322820	protein	20
		LIM zinc-binding domain-containing	
SIVI_V7_ZW	Smp_322830	protein	8
SM_V7_ZW	Smp_322850	NA	24
	Smn 222070	Endo/exonuclease/phosphatase	12
	Smp_322970	domain-containing protein	12
SM_V7_ZW	Smp_323230	previous_stable_id=Smp_136600	8
SM_V7_ZW	Smp_323280	NA	12
SM_V7_ZW	Smp_323440	NA	8
SM_V7_ZW	Smp_323900	NA	8
	Smp 224090	ATP-binding domain-containing protein	12
3101_07_200	3111p_324080	4	12
SM_V7_ZW	Smp_324230	NA	8
	Smp 222800	previous_stable_id=Smp_137550,Smp_	16
5101_07_200	5mp_552890	137560	10
	Smp 222010	previous_stable_id=Smp_198850,Smp_	16
5101_07_200	5mp_552510	130400,Smp_198650,Smp_139110	10
SNA 1/7 714/	Smp 222020	G_PROTEIN_RECEP_F2_4 domain-	12
5101_07_200	5mp_552550	containing protein	12
SM_V7_ZW	Smp_333080	RRM domain-containing protein	12
SM_V7_ZW	Smp_335130	NA	8
SM_V7_ZW	Smp_337330	60S ribosomal protein L21	20
SM 1/7 711/	Smn 337200	Ribosome biogenesis regulatory	12
5101_07_200	5mp_557550	protein	12
SM_V7_ZW	Smp_340410	SMP-LTD domain-containing protein	16
SM_V7_ZW	Smp_340960	previous_stable_id=Smp_062720	8
SM 1/7 711/	Smn 341550	Guanine nucleotide exchange factor	12
	5p_5+1550	mss4%2Cputative	<u> </u>
SM_V7_ZW	Smp_342910	Ribosome assembly factor mrt4	16

[
SM_V7_ZW	Smp_343350	Ubiquitin-like domain-containing	12
SM_V7_ZW	Smp_343530	previous_stable_id=Smp_142140	8
SM_V7_ZW	Smp_343890	previous_stable_id=Smp_145870,Smp_ 203570	20
SM_V7_ZW	Smp_343970	Tektin	12
SM_V7_ZW	Smp_344840	previous_stable_id=Smp_157130	8
SM_V7_ZW	Smp_345200	previous_stable_id=Smp_160350	4
SM_V7_ZW	Smp_345560	Autophagy protein 5	12
SM_V7_ZW	Smp_345770	Phosphatase and actin regulator%2C putative	12
SM_V7_ZW	Smp_346050	zf-CHCC domain-containing protein	16
SM_V7_ZW	Smp_346340	RRM domain-containing protein	20
SM_V7_ZW	Smp_346810	previous_stable_id=Smp_192180	12
SM_V7_ZW	Smp_347710	previous_stable_id=Smp_153180,Smp_ 057710	12
SM_V7_ZW H005	Smp_330930	previous_stable_id=Smp_190330	8
SM_V7_ZW H005	Smp_330950	NA	8
SM_V7_ZW H005	Smp_330960	NA	8
SM_V7_ZW H006	Smp_330990	NA	8
SM_V7_ZW H010	Smp_316820	previous_stable_id=Smp_075500	8
SM_V7_ZW H019	Smp_321350	NA	24
SM_V7_ZW H041	Smp_325450	NA	12

Chr. : chromosome.

Annexe 11 Annexe 11 : Liste des gènes nocturnes rythmiques

Chr.	Gene ID	GFF annotation	HHsearch annotation	Н
SM_V7_1	Smp_003970	Putative elongation factor-1 beta%2Cdelta		24
SM_V7_1	Smp_006860	PDZ domain-containing protein		4
SM_V7_1	Smp_019280	Cyclic nucleotide-binding domain	Protein kinase, cAMP-	4
SM V7 1	Smp 032260	Ribosomal protein L15e	μ 2 μ 2 μ 15 μ 26 μ 3	24
SM_V7_1	Smp_033870	NA		16
SM_V7_1	Smp_034550	Putative alpha-actinin		4
SM V7 1	Smp_034860	Putative nuclear receptor		4
SM V7 1	Smp 035180	Putative voltage-gated potassium channel		4
SM V7 1	Smp 035210	Myosin tail 1 domain-containing protein		4
SM V7 1	Smp 036180	Diacylglycerol kinase	NA	4
SM_V7_1	Smp_040360	Serologically defined breast cancer antigen ny-br-84-related		12
SM_V7_1	Smp_040970	V-type proton ATPase subunit a		4
SM_V7_1	Smp_049270	Putative heat shock protein		4
SM_V7_1	Smp_054620	NA		12
SM_V7_1	Smp_055450	Late endosomal/lysosomal adaptor and MAPK and MTOR activator 4		12
SM_V7_1	Smp_056280	NA		16
SM_V7_1	Smp_059780	Putative rab6-interacting protein 2 (ERC protein 1)		4
SM_V7_1	Smp_060030	NA		4
SM_V7_1	Smp_060480	C2 domain	Copine	4
SM_V7_1	Smp_073080	Putative rrna processing protein (Rrp20)		24
SM_V7_1	Smp_073270	C-terminal peptide		4
SM_V7_1	Smp_079400	Putative goliath E3 ubiquitin ligase		4
SM_V7_1	Smp_081190	Putative rho3 GTPase%3B Rho3 GTPase		4
SM_V7_1	Smp_083650	Cys/Met metabolism, pyridoxal phosphate- dependent enzyme	Methionine gamma-lyase, MGL {Pseudomonas putida [TaxId: 303]}	24
SM_V7_1	Smp_083680	Ribosome biogenesis protein Nop53/GLTSCR2	Nop53	24
SM_V7_1	Smp_086830	Putative spfh domain / Band 7 family protein		4
SM_V7_1	Smp_087760	Ferritin-1 heavy chain		24
SM_V7_1	Smp_094880	1%2C4-alpha-glucan branching enzyme		4
SM_V7_1	Smp_094890	Rho GTPase-activating protein domain	Beta-chimaerin, C-terminal domain {Human (Homo sapiens) [TaxId: 9606]}	4
SM_V7_1	Smp_097800	Y-box binding protein%3B Y-box binding protein homolog		24
SM_V7_1	Smp_097940	Serine/threonine kinase		4
SM_V7_1	Smp_099850	Putative divalent metal transporter DMT1B		4
SM_V7_1	Smp_104660	Ribonucloprotein		24
SM_V7_1	Smp_105020	Immunoglobulin subtype 2	Titin	4
SM_V7_1	Smp_123860	Putative neurexin		4
SM_V7_1	Smp_123910	Putative ift20		4
SM_V7_1	Smp_126050	Cadherin-like	Protocadherin-15	4
SM_V7_1	Smp_126140	Integrin alpha chain	Integrin alpha-V, Integrin beta- 3	4

Annexe 11				
SM_V7_1	Smp_126540	Endostatin domain-containing protein		4
SM_V7_1	Smp_126620	NA		4
SM_V7_1	Smp_128920	Putative spectrin beta chain		4
	Smp 120060	Putative solute carrier family 17%2C member		4
3101_07_1	311h_153000	7 (Vesicular glutamate transporter)		4
SM_V7_1	Smp_129840	DUF5735 domain-containing protein		4
SM V7 1	Smn 131870	Putative syntaxin binding protein-		Л
5101_07_1	5mp_151070	1%2C2%2C3		-
SM_V7_1	Smp_132700	Immunoglobulin subtype 2	CARCINOEMBRYONIC ANTIGEN	4
SM_V7_1	Smp_139480	Protein kinase domain	ephb2 receptor tyrosine kinase {Mouse (Mus musculus) [TaxId: 10090]}	4
SM_V7_1	Smp_139520	SH3 domain	Hypothetical protein FLJ21935	4
SM_V7_1	Smp_140250	G protein-coupled receptor, rhodopsin-like	Platelet-activating factor receptor, Flavodoxin	4
SM_V7_1	Smp_140510	Putative transmembrane protein 56		16
SM_V7_1	Smp_140520	Putative ank repeat-containing		4
SM_V7_1	Smp_144210	Putative death associated protein kinase		4
SM_V7_1	Smp_144240	NA		4
SM_V7_1	Smp_149660	DRBM domain-containing protein		4
SM_V7_1	Smp_152060	NA		4
SM_V7_1	Smp_152830	Putative sodium/calcium exchanger		4
SM_V7_1	Smp_154670	Glycosyl transferase, family 14	beta-1,6-N- acetylglucosaminyltransferase (E.C.2.4.1.102)	12
SM_V7_1	Smp_155290	RIIa domain-containing protein		4
SM_V7_1	Smp_157620	NA		4
SM_V7_1	Smp_158450	BTB/POZ domain	S-phase kinase-associated protein 1, F-box/LRR-repeat	4
SM_V7_1	Smp_158480	AMP-dependent synthetase/ligase	Acetyl-CoA synthetase {Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]}	4
SM_V7_1	Smp_159730	Protein kinase		4
SM_V7_1	Smp_159780	NA		4
SM_V7_1	Smp_159790	Putative kif1		4
SM_V7_1	Smp_161510	NA		4
SM_V7_1	Smp_161680	Phosphorylase b kinase regulatory subunit		4
SM_V7_1	Smp_163080	Diacylglycerol kinase		4
SM_V7_1	Smp_163420	Protein kinase		4
SM_V7_1	Smp_163430	C2H2-type domain-containing protein		24
SM_V7_1	Smp_163500	SH2 domain-containing protein		4
SM_V7_1	Smp_163570	Ryanodine receptor related		4
SM_V7_1	Smp_165940	DH domain-containing protein		4
SM_V7_1	Smp_166310	Putative ran gtpase-activating protein		20
SM_V7_1	Smp_167200	Putative ATPase		24
SM_V7_1	Smp_170290	Neuronal differentiation protein		4
SM_V7_1	Smp_171010	Putative ef-hand domain (C-terminal) containing protein		16
SM_V7_1	Smp_171020	NA		4
SM_V7_1	Smp_172040	Putative unc-13 (Munc13)		4
SM_V7_1	Smp_180140	G protein-coupled receptor, rhodopsin-like	P2Y purinoceptor 1, Rubredoxin	12

SM_V7_1	Smp_181150	Putative abc transporter		4
SM_V7_1	Smp_194780	Neurotracting/Isamp/neurotrimin/obcam related cell adhesion molecule		4
SM_V7_1	Smp_196300	Putative rhogef and pleckstrin domain protein		4
SM_V7_1	Smp_196400	Putative sphingosine phosphate lyase		4
SM_V7_1	Smp_198930	previous_stable_id=Smp_125000		4
SM_V7_1	Smp_200450	Hexosyltransferase		4
SM_V7_1	Smp_201130	Tumor protein p53-inducible protein 11	p53-inducible11	12
SM_V7_1	Smp_210820	GPCR kinase	Beta-adrenergic receptor kinase 1 (E.C.2.7.11.15)	4
SM_V7_1	Smp_213180	Putative 12-lipoxygenase		4
SM_V7_1	Smp_213740	previous_stable_id=Smp_162050		4
SM_V7_1	Smp_241950	HMG-CoA synthase		4
SM_V7_1	Smp_245820	Kettin/titin-related protein		4
SM_V7_1	Smp_246030	tRNA-intron lyase		12
SM_V7_1	Smp_246240	previous_stable_id=Smp_160900,Smp_16091 0,Smp_160890		4
SM V7 1	Smp 246380	previous stable id=Smp 012680		4
SM V7 1	Smp 247030	Putative protocadherin alpha		4
 SM_V7_1	Smp_301990	previous_stable_id=Smp_180750,Smp_18076		4
SM V7 1	Smp 303260	previous stable id=Smp 142230		24
SM_V7_1	Smp_305430	G_PROTEIN_RECEP_F3_4 domain-containing protein		4
SM_V7_1	Smp_310210	previous_stable_id=Smp_031530,Smp_13921 0		4
SM_V7_1	Smp_315690	previous_stable_id=Smp_120050,Smp_19923 0		4
SM_V7_1	Smp_315760	C1q domain-containing protein	Nucleoid-associated protein Rv3716c	4
SM_V7_1	Smp_319130	FCH domain	SLIT-ROBO Rho GTPase- activating protein 2	4
SM_V7_1	Smp_319330	SAM-dependent methyltransferase RsmB/NOP2-type	60S ribosomal protein L13-A, 60S	12
SM_V7_1	Smp_323010	NA		4
SM_V7_1	Smp_323430	NA		24
SM_V7_1	Smp_328690	NA		4
SM_V7_1	Smp_332470	B-box-type zinc finger	E3 UBIQUITIN/ISG15 LIGASE TRIM25 (E.C.6.3.2.19	4
SM_V7_1	Smp_332520	RIB43A	Tubulin beta, Tubulin alpha, PACRG	4
SM_V7_1	Smp_332600	MAM domain-containing protein		4
SM_V7_1	Smp_333140	previous_stable_id=Smp_180980,Smp_16887 0		4
SM_V7_1	Smp_333210	previous_stable_id=Smp_175280,Smp_17970 0		4
SM_V7_1	Smp_335630	Tetraspanin		4
SM_V7_1	Smp_337040	Ribosomal protein L11/L12	28S ribosomal protein S2, mitochondrial	24
SM_V7_1	Smp_340760	Tropomyosin-1		4
SM_V7_1	Smp_341660	Thiol oxidase		4

Annexe 11				
SM_V7_1	Smp_342080	Stonin homology	Second domain of Mu2 adaptin subunit (ap50) of ap2 adaptor {Rat (Rattus norvegicus) [TaxId: 10116]}	4
SM V7 1	Smp 342950	ARID domain-containing protein		4
SM V7 1	Smp 343540	I/LWEQ domain	I LWEQ	4
SM V7 1	Smp 343700	SH2 domain-containing protein		4
SM_V7_1	Smp_346630	Membrane associated guanylate kinase inverted related		4
SM_V7_100 3	Smp_165590	NA		12
SM_V7_2	Smp_004190	Putative cationic amino acid transporter		4
SM V7 2	Smp 009560	BTB domain-containing protein		4
SM_V7_2	Smp_016340	Mediator of RNA polymerase II transcription subunit 8		12
SM_V7_2	Smp_021070	Putative gtp-binding protein-animal		24
SM_V7_2	Smp_021100	SAM domain-containing protein		4
SM_V7_2	Smp_024520	Rab GDP dissociation inhibitor		4
SM_V7_2	Smp_030690	Elongation factor 1-beta%2C putative		24
SM_V7_2	Smp_045360	NA		4
SM_V7_2	Smp_047700	Putative ring finger protein 11 (Sid 1669) (Nedd4 ww domain-binding protein 2)		4
SM_V7_2	Smp_048980	Putative multiple pdz domain protein		4
SM_V7_2	Smp_063680	NA		4
SM_V7_2	Smp_065180	Eh domain containing/past-1-related		4
SM_V7_2	Smp_089430	60S ribosomal protein L40		20
SM_V7_2	Smp_122810	Putative spfh domain / Band 7 family protein		4
SM_V7_2	Smp_122950	NA		4
SM_V7_2	Smp_125480	PDZ domain-containing protein		4
SM_V7_2	Smp_125510	Putative cadherin		4
SM_V7_2	Smp_128170	NA		4
SM_V7_2	Smp_128750	Putative titin		4
SM_V7_2	Smp_129670	Apoptosis stimulating of P53%2C putative		4
SM_V7_2	Smp_130160	Sema domain-containing protein		4
SM_V7_2	Smp_131050	Putative camp-dependent protein kinase type II regulatory subunit		4
SM_V7_2	Smp_131690	MAGUK homolog		4
SM_V7_2	Smp_133580	NA		4
SM_V7_2	Smp_142520	Palmitoyltransferase		12
SM_V7_2	Smp_146580	Putative homeobox protein knotted-1		4
SM_V7_2	Smp_147260	Ras-like family		4
SM_V7_2	Smp_148400	Putative calmodulin-binding transcription activator (Camta)		4
SM_V7_2	Smp_148460	Putative neurofibromin		4
SM_V7_2	Smp_154850	Putative rap gtpase-activating protein		4
SM_V7_2	Smp_156400	Putative cytochrome P450		4
SM_V7_2	Smp_156720	Putative o-linked n-acetylglucosamine transferase%2C ogt		4
SM_V7_2	Smp_171580	Aromatic-L-amino-acid decarboxylase (AADC) (DOPA decarboxylase) (DDC)%2Cputative		4
SM_V7_2	Smp_207080	Proteasome subunit alpha type-6		24
SM V7 2	Smp 213010	DFP domain-containing protein		12

Annexe 11				
SM_V7_2	Smp_242110	Putative sam/hd domain protein		4
SM_V7_2	Smp_245580	Putative cadherin		4
SM_V7_2	Smp_245680	Nephrin related		4
SM_V7_2	Smp_245840	previous_stable_id=Smp_148310,Smp_14830 0		4
SM_V7_2	Smp_245970	previous_stable_id=Smp_140660,Smp_14067 0		4
SM_V7_2	Smp_246050	Vinculin		4
SM_V7_2	Smp_310160	previous_stable_id=Smp_208030,Smp_14695 0		4
SM_V7_2	Smp_310170	previous_stable_id=Smp_208030,Smp_14695 0		4
SM_V7_2	Smp_310430	previous_stable_id=Smp_016230,Smp_13101 0		4
SM_V7_2	Smp_310550	previous_stable_id=Smp_143620,Smp_14361 0		4
SM_V7_2	Smp_310620	previous_stable_id=Smp_139300,Smp_13931 0,Smp_072030		4
SM_V7_2	Smp_310650	previous_stable_id=Smp_161180		4
SM_V7_2	Smp_310770	Serine/threonine kinase		8
SM_V7_2	Smp_327250	NA		20
SM_V7_2	Smp_328730	NA		4
SM_V7_2	Smp_333920	previous_stable_id=Smp_147550		4
SM_V7_2	Smp_335360	BPTI/Kunitz inhibitor domain-containing protein		4
SM_V7_2	Smp_337610	previous_stable_id=Smp_206120		4
SM_V7_2	Smp_340270	previous_stable_id=Smp_017350		4
SM_V7_2	Smp_340770	Putative zinc finger protein		12
SM_V7_2	Smp_344000	previous_stable_id=Smp_147810		4
SM_V7_2	Smp_346250	Putative anosmin-1 (Kallmann syndrome protein) (Adhesion molecule-like X-linked)		4
SM_V7_2	Smp_346270	alpha-1%2C2-Mannosidase		4
SM_V7_2	Smp_347740	Coiled-coil domain-containing protein 39		4
SM_V7_3	Smp_000100	Filamin/ABP280 repeat	FILAMIN-B	4
SM_V7_3	Smp_000620	Myc-type, basic helix-loop-helix (bHLH) domain	DNA-binding protein inhibitor ID-1	4
SM_V7_3	Smp_007890	DNA-directed RNA polymerase III subunit RPC9		4
SM_V7_3	Smp_009990	Receptor L-domain	Insulin receptor (E.C.2.7.10.1), Insulin	4
SM_V7_3	Smp_018260	Glycogen [starch] synthase		4
SM_V7_3	Smp_018790	PPM-type phosphatase domain	Probable protein phosphatase 2C 50	4
SM_V7_3	Smp_021340	Myc-type, basic helix-loop-helix (bHLH) domain	Mad protein {Human (Homo sapiens) [TaxId: 9606]}	4
SM_V7_3	Smp_023620	FERM domain	FERM, RhoGEF and pleckstrin domain	4
SM_V7_3	Smp_026230	NA	Snake coagglutinin alpha chain {Habu snake (Trimeresurus flavoviridis), flavocetin-A [TaxId: 88087]}	4
SM_V7_3	Smp_030010	CCDC92/74, coiled-coil domain	CCDC92	4

Annexe 11				
SM_V7_3	Smp_063250	Ubiquinol-cytochrome c chaperone, CBP3	Ubiquinol-cytochrome C chaperone	24
SM_V7_3	Smp_072900	Hsp90 co-chaperone (Tebp)%2C putative		24
SM_V7_3	Smp_079840	Tetrapyrrole biosynthesis, uroporphyrinogen III synthase	Uroporphyrinogen III synthase (U3S, HemD) {Human (Homo sapiens) [TaxId: 9606]}	4
SM_V7_3	Smp_087690	Protease inhibitor I35 (TIMP)	Metalloproteinase inhibitor 1, Stromelysin-2 (E.C.3.4.24.22)	4
SM_V7_3	Smp_098960	60S ribosomal protein L26%2C putative%3B 60S ribosomal protein L26-like protein		24
SM_V7_3	Smp_123630	Peptidase C19, ubiquitin carboxyl-terminal hydrolase	TATA-binding protein, Transcriptional coactivator HFI1/ADA1	4
SM_V7_3	Smp_126240	Protein kinase domain	Twitchin, kinase domain {California sea hare (Aplysia californica), twk43 [TaxId: 6500]}	4
SM_V7_3	Smp_129360	Cyclin, N-terminal	Cell division protein kinase 4	4
SM_V7_3	Smp_132320	Cadherin-like	Protocadherin-15	4
SM_V7_3	Smp_132410	G protein-coupled receptor, rhodopsin-like	Lysozyme,Proteinase-activated receptor 2,Soluble cytochrome b562,Proteinase-activated	4
SM_V7_3	Smp_134910	Protein kinase domain	Aurora-related kinase 1 (aurora-2) {Human (Homo sapiens) [TaxId: 9606]}	4
SM_V7_3	Smp_138430	DEP domain	Regulator of G-protein signaling 7	4
SM_V7_3	Smp_138510	NA	NA	4
SM_V7_3	Smp_145890	Thrombospondin type-1 (TSP1) repeat	PROPERDIN	4
SM_V7_3	Smp_150220	PTP type protein phosphatase	Protein-tyrosine phosphatase alpha {Mouse (Mus musculus) [TaxId: 10090]}	4
SM_V7_3	Smp_156280	Hyccin	Phosphatidylinositol 4-kinase III alpha (PI4KA)	4
SM_V7_3	Smp_159840	Dynein heavy chain, C-terminal domain	Dynein heavy chain, cytoplasmic	4
SM_V7_3	Smp_159990	Voltage-dependent L-type calcium channel subunit alpha		4
SM_V7_3	Smp_162520	Cadherin-like	EP-cadherin, ectodomain	4
SM_V7_3	Smp_162610	Cadherin-like	Protocadherin-15	12
SM_V7_3	Smp_162660	Carbon-nitrogen hydrolase	Glutamine-dependent NAD(+) synthetase (E.C.6.3.5.1)	12
SM_V7_3	Smp_169700	LIM zinc-binding domain-containing protein		4
SM_V7_3	Smp_175510	NA		4
SM_V7_3	Smp_176980	Putative beta-arrestin 1		12
SM_V7_3	Smp_196090	NA	Protein patched homolog 1, Sonic	4
SM_V7_3	Smp_196810	Dihydropyrimidinase related protein-3 (M38 family)		4
SM_V7_3	Smp_197640	Voltage-dependent calcium channel		4
SM_V7_3	Smp_212410	Cyclic nucleotide-binding domain	Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel	4

Annexe 11				
SM_V7_3	Smp_212710	Gynecophoral canal protein		4
SM_V7_3	Smp_246890	previous_stable_id=Smp_137830,Smp_13782		4
SM_V7_3	Smp_246950	PTP type protein phosphatase	Tyrosine-protein phosphatase, non-receptor type 13 (PTPL1) {Human (Homo sapiens) [TaxId: 9606]}	4
SM_V7_3	Smp_247230	Putative single-stranded DNA-binding protein mssp-1		4
SM_V7_3	Smp_247260	IPT/TIG domain-containing protein		4
SM_V7_3	Smp_307780	previous_stable_id=Smp_193230,Smp_17647 0,Smp_199910		12
SM_V7_3	Smp_307880	VWFA domain-containing protein		4
SM_V7_3	Smp_307960	MAP kinase-activating death domain protein		4
SM_V7_3	Smp_308440	NA	NA	4
SM_V7_3	Smp_308820	Leucine-rich repeat	Myeloperoxidase (E.C.1.11.2.2)	4
SM_V7_3	Smp_309510	Major facilitator superfamily domain	Melibiose carrier protein	12
SM_V7_3	Smp_311920	FHA domain-containing protein		4
SM_V7_3	Smp_315360	previous_stable_id=Smp_159360		4
SM_V7_3	Smp_316660	previous_stable_id=Smp_176510		24
SM_V7_3	Smp_331880	COesterase domain-containing protein		4
SM_V7_3	Smp_333520	previous_stable_id=Smp_204450,Smp_16746 0		4
SM_V7_3	Smp_333540	Nucleic acid-binding, OB-fold	CDC24_OB3	4
SM_V7_3	Smp_333660	Nucleosome assembly protein (NAP)	Nucleosome assembly protein, NAP {Baker's yeast (Saccharomyces cerevisiae) [TaxId: 4932]}	24
SM_V7_3	Smp_333720	previous_stable_id=Smp_197770,Smp_16589 0		4
SM_V7_3	Smp_333740	previous_stable_id=Smp_151620,Smp_15163 0		4
SM_V7_3	Smp_337590	Matrin/U1-C, C2H2-type zinc finger	Spliceosomal protein U1C {Human (Homo sapiens) [TaxId: 9606]}	20
SM_V7_3	Smp_337640	NA	NA	12
SM_V7_3	Smp_340630	Heat shock protein Hsp90 family	ATP-DEPENDENT MOLECULAR CHAPERONE HSP82, CO- CHAPERONE	4
SM_V7_3	Smp_340860	previous_stable_id=Smp_052880		4
SM_V7_3	Smp_341890	Tr-type G domain-containing protein		4
SM_V7_3	Smp_346670	RNase H domain-containing protein		4
SM_V7_3	Smp_347130	previous_stable_id=Smp_202290		4
SM_V7_3	Smp_347790	Cadherin-like	Protocadherin-15	4
SM_V7_4	Smp_024660	Immunoglobulin subtype 2	Roundabout homolog 2	4
SM_V7_4	Smp_041740	T-complex protein 1 subunit gamma	-	24
SM_V7_4	Smp_041980	Putative 60s acidic ribosomal protein P1		24
SM_V7_4	Smp_042340	Catenin and plakophilin%2C putative		16
SM_V7_4	Smp_042530	WD40 repeat	Tubulin beta, Tubulin alpha, PACRG	4
SM_V7 4	Smp_050220	Complexin%2C putative		4
SM_V7_4	Smp_053900	Beta-hexosaminidase		12
SM_V7_4	Smp_062970	WD-repeat protein%2C putative		4

Annexe 11				
SM_V7_4	Smp_070030	Snf7-related		24
SM V7 4	Smp 126990	Putative synapsin		4
SM_V7_4	Smp_140990	NA		4
SM_V7_4	Smp_145040	MFS domain-containing protein		4
SM_V7_4	Smp_145210	Cadherin-like	Protocadherin-15	4
SM_V7_4	Smp_145540	G protein-coupled receptor, rhodopsin-like	Muscarinic acetylcholine receptor M2,Vasopressin V2	4
SM_V7_4	Smp_148790	Laminin beta chain-related		4
SM_V7_4	Smp_150140	Putative pi3kinase		4
SM_V7_4	Smp_150870	G protein-coupled receptor, rhodopsin-like	Muscarinic acetylcholine receptor M2,Vasopressin V2	4
SM_V7_4	Smp_156630	NA		4
SM_V7_4	Smp_169660	NA		4
SM_V7_4	Smp_170700	Putative wd-repeat protein		4
SM_V7_4	Smp_173100	Axon guidance protein		4
SM_V7_4	Smp_180240	F-spondin%2C putative		4
SM_V7_4	Smp_200520	Smp_200520		12
SM V7 4	Smp 241510	Protein kinase domain-containing protein		24
SM V7 4	Smp 247280	C2H2-type domain-containing protein		4
SM_V7_4	Smp_247620	previous_stable_id=Smp_081700,Smp_16619 0		4
SM V7 4	Smp 248170	Nop domain-containing protein		24
SM V7 4	Smp 313100	F5/8 type C domain-containing protein		4
SM_V7_4	Smp_313110	previous_stable_id=Smp_126880		4
SM_V7_4	Smp_313210	previous_stable_id=Smp_063930,Smp_15664 0		4
SM V7 4	Smp 315730	TGc domain-containing protein		4
SM_V7_4	Smp_315840	previous_stable_id=Smp_149280,Smp_14929 0		4
SM_V7_4	Smp_317070	SAC domain-containing protein		24
SM V7 4	Smp 329150	NA		16
SM_V7_4	Smp_336730	previous_stable_id=Smp_126950,Smp_12694 0		4
SM_V7_4	Smp_336900	previous_stable_id=Smp_151860,Smp_19954 0,Smp_151850		4
SM_V7_4	Smp_343120	Calcium-transporting ATPase		4
SM_V7_4	Smp_343130	previous_stable_id=Smp_137200		4
SM_V7_4	Smp_344270	previous_stable_id=Smp_149910		4
SM_V7_4	Smp_344900	previous_stable_id=Smp_158090		4
SM_V7_4	Smp_345160	P/Homo B domain-containing protein		4
SM_V7_4	Smp_347500	previous_stable_id=Smp_212450,Smp_19823 0,Smp_168510		4
SM_V7_4H0 04	Smp_318540	Autophagy-related protein 101		12
SM_V7_4H0 30	Smp_332730	Camp-dependent protein kinase type II-alpha regulatory subunit%2C putative		4
SM_V7_4H0 37	Smp_325410	NA		8
SM_V7_5	Smp_067890	Proteasome alpha-subunit, N-terminal domain	Proteasome alpha subunit (non-catalytic) {Baker's yeast (Saccharomyces cerevisiae) [Taxld: 4932]}	24

Annexe 11				
SM_V7_5	Smp_085540	Myosin heavy chain		4
SM_V7_5	Smp_088270	Subfamily M14A unassigned peptidase (M14 family)		4
SM V7 5	Smp 101450	60S ribosomal protein 17%2C putative		24
SM_V7_5	Smp 129240	SBE2 domain-containing protein		4
SM_V7_5	Smp 143940	Dynein light intermediate chain		4
SM_V7_5	Smp_145700	Putative ankyrin 2%2C3/unc44		4
SM_V7_5	Smp_153440	Neuropilin (Nrp) and tolloid (TII)-like		4
SM_V7_5	Smp_154520	previous stable id=Smp 154510		24
SM V7 5	Smp_154520			12
SM V7 5	Smp_100230	Tektin		12
SM V7 5	Smp_170210	previous stable id=Smp 199030		12
SM_V7_5	Smp_329980	NA	Synaptotagmin IV {Human (Homo sapiens) [TaxId: 9606]}	12
SM V7 5	Smp 337500	Peptidase S1 domain-containing protein		4
SM V7 5	Smp 343630	previous stable id=Smp 143410		4
SM V7 5	Smp 343680	Protein-tyrosine-phosphatase		4
SM_V7_5H0	Smp_307520	NA		24
	Smp_001900	Septate junction protein		12
SM_V7_6	Smp_025030	Glutamate-cysteine ligase		4
SM_V7_6	Smp_051130	Ets domain	Fli-1 {Human (Homo sapiens) [TaxId: 9606]}	16
SM_V7_6	Smp_077860	Putative actin		4
SM_V7_6	Smp_078230	cGMP-dependent protein kinase		4
SM_V7_6	Smp_082300	acidPPc domain-containing protein		4
SM V7 6	Smp 102960	Nebula%2C putative		4
SM_V7_6	Smp_123100	MEG-32.1 protein		12
SM V7 6	Smp 127130	Venom allergen-like (VAL) 20 protein		4
SM V7 6	Smp 154080	NA		24
SM V7 6	Smp 163950	NA		4
SM V7 6	Smp 315510	previous stable id=Smp 179570		12
SM V7 6	Smp 317810	NA		4
SM V7 6	Smp 331200	NA		8
SM V7 6	Smp 342090	CUB domain-containing protein		4
SM V7 6	Smp 342990	previous stable id=Smp 135670		12
SM_V7_7	Smp_006000	Eukaryotic translation initiation factor 3 subunit I		24
SM_V7_7	Smp_041190	NA		4
SM V7 7	Smp 041370	NA		4
SM V7 7	Smp 041460	Tetraspanin%2C putative		12
SM V7 7	Smp 057360	Serine/threonine kinase		4
 SM_V7_7	Smp_057530	Subfamily S9B unassigned peptidase (S09 family)		4
SM_V7_7	Smp_097380	10 kDa heat shock protein%2C mitochondrial		24
SM_V7_7	Smp_125350	BC026374 protein (S09 family)		4
SM V7 7	Smp 125440	Putative 4.1 G protein		4
SM V7 7	Smp 127940	Anion exchange protein		4
 SM_V7_7	Smp_130260	Calponin-homology (CH) domain-containing protein		4
SM V7 7	Smp 134590	Putative unc-13 (Munc13)		4
SM_V7_7	Smp_140040	Guanylate cyclase domain-containing protein		4

Annexe 11			
SM_V7_7	Smp_214210	previous_stable_id=Smp_175620	8
SM_V7_7	Smp_246140	V-type proton ATPase subunit H	4
SM V7 7	Smp 246160	previous stable id=Smp 210730	4
SM V7 7	Smp 300560	BTB domain-containing protein	4
SM V7 7	Smp 300840	Bruno-like rna binding protein	4
SM V7 7	Smp 318260	EF-hand domain-containing protein	4
	· · -	previous stable id=Smp 127800.Smp 12779	-
SM_V7_7	Smp_332270	0,Smp_205400	4
SM_V7_7	Smp_332280	previous_stable_id=Smp_140170	4
SM_V7_7	Smp_332360	Erythrocyte membrane protein%2C putative	4
SM_V7_7	Smp_340660	previous_stable_id=Smp_140090,Smp_03320 0	4
SM_V7_7	Smp_343310	previous_stable_id=Smp_139400	4
SM_V7_7	Smp_344530	previous_stable_id=Smp_152890	4
SM_V7_ZW	Smp_007650	previous_stable_id=Smp_007640	4
SM_V7_ZW	Smp_011860	Putative transcription factor LCR-F1	8
SM_V7_ZW	Smp_011960	Inositol-pentakisphosphate 2-kinase	16
SM_V7_ZW	Smp_015630	Putative cys-loop ligand gated ion channel subunit	4
SM V7 ZW	Smp 028650	Rho-GAP domain-containing protein	16
SM V7 ZW	Smp 031050	BSD domain-containing protein	12
SM V7 ZW	Smp 039640	Putative retinoblastoma binding protein	8
SM V7 ZW	Smp 039810	Muscleblind-like protein	4
 SM_V7_ZW	Smp_045860	Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase	4
SM V7 ZW	Smp 046130	Putative alpha-actinin	4
	- r <u>-</u>	Amiloride-sensitive sodium	_
SM_V7_ZW	Smp_052630	channel%2Cputative	4
SM V7 ZW	Smp 074500	Proteasome subunit beta	20
SM V7 ZW	Smp 075350	NA	4
SM V7 ZW	Smp 080520	RING-type domain-containing protein	4
SM V7 ZW	Smp 084090	Putative junctophilin	4
SM V7 ZW	Smp 094190	Serine/threonine kinase	4
SM V7 ZW	Smp 099090	Putative alpha(1%2C3)fucosyltransferase	4
SM V7 ZW	Smp 135210	Egf-like domain protein	4
SM V7 ZW	Smp 135300	NA	4
 SM_V7_ZW	Smp_136070	previous_stable_id=Smp_118100,Smp_15765 0	4
SM V7 ZW	Smp 139760	Kinesin light chain	4
SM V7 ZW	Smp 142740	Rho-GAP domain-containing protein	4
SM_V7_ZW	Smp_151280	Camp-response element binding protein-	12
SM V7 7W	Smp 152390	NA	4
SM V7 7W	Smp 155050	Agrin%2C putative	4
SM V7 7W	Smp 156990	Serine/threonine kinase	4
SM V7 7W	Smp 157830	Putative erythrocyte membrane protein	4
SM V7 7W	Smp 161120	Actin hundling/missing in metastasis-related	4
SM_V7_7W	Smp 161140	Putative voltage-gated notassium channel	4
SM_V7_7W	Smp 163750	Putative otoferlin	4
	Smp_100700	Synaptic ras gtpase activating protein%2C	
		syngap%2Cputative	4
SM_V7_ZW	Smp_170060	previous_stable_id=Smp_118020	4

Annexe 11			
SM_V7_ZW	Smp_175900	Synaptotagmin	4
SM_V7_ZW	Smp_176200	Superoxide dismutase [Cu-Zn]	24
SM_V7_ZW	Smp_176540	Putative cadherin	4
SM_V7_ZW	Smp_182620	previous_stable_id=Smp_142190	4
SM_V7_ZW	Smp_210580	Sad1/unc-84-like protein	12
	Smp 212190	Putative glucose-methanol-choline (Gmc)	10
	Smp_212180	oxidoreductase	12
SM_V7_ZW	Smp_212240	NA	16
	Smp 241420	AGC-kinase C-terminal domain-containing	4
	Smp_241420	protein	4
SM_V7_ZW	Smp_241470	Metalloendopeptidase	4
SM_V7_ZW	Smp_243900	Innexin	4
SM_V7_ZW	Smp_244080	Protein-tyrosine-phosphatase	4
SM_V7_ZW	Smp_244190	ZP domain-containing protein	4
	Smp 244250	previous_stable_id=Smp_198430,Smp_16782	4
	311p_244250	0	4
SM_V7_ZW	Smp_244400	FERM domain-containing protein	4
SM_V7_ZW	Smp_244950	previous_stable_id=Smp_171960	12
SM_V7_ZW	Smp_245310	previous_stable_id=Smp_126350	12
	Smp 266920	previous_stable_id=Smp_096370,Smp_17327	4
3101_07_200	5111p_200820	0,Smp_175050	4
SM_V7_ZW	Smp_303910	NA	4
SM_V7_ZW	Smp_305740	Putative nachr subunit	4
SM_V7_ZW	Smp_306120	NA	4
SM_V7_ZW	Smp_306200	FERM domain-containing protein	4
SM_V7_ZW	Smp_306240	Acetylcholine-gated chloride channel subunit	4
	Smn 306270	previous_stable_id=Smp_171450,Smp_17144	л
5101_07_200	5mp_500270	0	4
SM_V7_ZW	Smp_307000	SH3_10 domain-containing protein	4
	Smn 315810	previous_stable_id=Smp_168650,Smp_19882	Δ
5141_47_244	5110_515010	0,Smp_138620,Smp_138630,Smp_187350	-
SM V7 7W	Smn 333320	previous_stable_id=Smp_076180,Smp_07617	Δ
5141_47_244	51110_5555520	0,Smp_173170,Smp_163200	-
SM V7 7W	Smn 337260	previous_stable_id=Smp_054170,Smp_19896	4
5141_47_244	51119_557200	0	 -
SM_V7_ZW	Smp_337410	SB domain-containing protein	 8
SM V7 7W	Smn 345440	previous_stable_id=Smp_188590,Smp_16392	4
5	51110_515110	0	 <u> </u>
SM_V7_ZW	Smp_345530	previous_stable_id=Smp_164670	 24
SM_V7_ZW	Smp 314110	Alpha-mann mid domain-containing protein	12
H003			

Chr. : chromosome.

Annexe 12 Annexe 12 : Liste des gènes candidats sélectionnés pour être potentiellement impliqués dans le rythme d'émission des cercaires

Chr.	Gene ID	GFF annotation	HHsearch annotation	Moyenne	Moyenne	QTL	н	H3	Rythmi	Sélection
				Keads D	keads N		ĸ	к9 ас	que	
							4 m			
							е 3			
1	Smp_132810	Myc-type, basic helix-loop-helix (bHLH)	Myc proto-oncogene protein (Human (Homo sapiens)	53,6037965	82,6678821	Intraspé.	-			Motif bHLH
1	Smp_132800	Myc-type, basic helix-loop-helix (bHLH)	Aryl hydrocarbon receptor nuclear translocator-like	91,0373972	4830,18226	Intraspé.	⊢			Motif bHLH
1	Smp_019460	domain Myc-type, basic helix-loop-helix (bHLH)	SREBP-1a {Human (Homo sapiens) [TaxId: 9606]}	53,4203059	408,194317	Intraspé.				Motif bHLH
1	Smn 132790	domain Myc-type basic belix-loon-belix (bHLH)	Transcription factor HES-1	16 8412608	637 812492	Intrasné				Motif bHLH
	5mp_132750	domain		10,0412000	037,012432	intraspe.				
1	Smp_343020	Myc-type, basic helix-loop-helix (bHLH) domain	DNA-binding protein inhibitor ID-1	3,16691957	38,930902	Intraspe.				Motif bHLH
1	Smp_180140	G protein-coupled receptor, rhodopsin- like	P2Y purinoceptor 1, Rubredoxin	0,15105096	156,233733	Intraspé.			N (L-O et O-L)	Rhodospine et rhodospine like
1	Smp_316850	G protein-coupled receptor, rhodopsin- like	C-C chemokine receptor type 2	3,61511644	64,6441694	Intraspé.				Rhodospine et rhodospine like
1	Smp_204580	G protein-coupled receptor, rhodopsin-	Neurotensin receptor type 1, Neurotensin	2,54493418	486,176692	Intraspé.				Rhodospine et rhodospine like
1	Smp_118040	G protein-coupled receptor, rhodopsin-	Chimera of Proteinase-activated receptor 1	4,64630648	782,09813	Intraspé.				Rhodospine et rhodospine like
1	Smp_137320	like G protein-coupled receptor, rhodopsin-	Srg	0,46920763	4273,7631	Intraspé.				Rhodospine et rhodospine like
1	Smp 027940	like G protein-coupled receptor, rhodopsin-	ADENOSINE RECEPTOR A2A	0.19641185	632,323537	Intraspé.				Rhodospine et rhodospine like
	6mp 127210	like		1 02280005	4102 97566	Introceó				Dhadasaine et shadasaine like
1	Smp_137310	like	7TM_GPCR_SrW	1,63386995	4103,87566	intraspe.				knodospine et rhodospine like
1	Smp_137300	G protein-coupled receptor, rhodopsin- like	7TM_GPCR_Srw	2,31619242	2573,30923	Intraspé.				Rhodospine et rhodospine like
1	Smp_319310 Smp_178420	NA GPCR rhodopsin-like 7TM	7TM_GPCR_Srab	0,99318232	93,7737103 939 306078	Intraspé.				Rhodospine et rhodospine like
1	Smp_132730	G protein-coupled receptor, rhodopsin-	Neurotensin receptor type 1,Endolysin,NEUROTENSIN	10,5536811	2022,0823	Intraspé.	x			Rhodospine et rhodospine like
1	Smp_127310	like G protein-coupled receptor, rhodopsin-	RECEPTOR Chimera of Proteinase-activated receptor 1	55,3426429	6,11219416	Intraspé.	x			Rhodospine et rhodospine like
1	Smp 146470	like NA	Rhodopsin	1.24781665	1021.28325	Intraspé.				Rhodospine et rhodospine like
1	Smp_140250	G protein-coupled receptor, rhodopsin-	Platelet-activating factor receptor, Flavodoxin	23,2810068	1485,52478	Intraspé.			N (L-O	Rhodospine et rhodospine like
1	Smp_193610	G protein-coupled receptor, rhodopsin-	Lysozyme C (E.C.3.2.1.17)	13,4895674	2,94755447	Intraspé.			et O-L)	Rhodospine et rhodospine like
1	Smp_007070	like G protein-coupled receptor, rhodopsin-	M3-mT4L, Tiotropium	30,7991451	760,084209	Intraspé.				Rhodospine et rhodospine like
1	Smp 094890	like Rho GTPase-activating protein domain	Beta-chimaerin, C-terminal domain {Human (Homo	488,132151	1006.31934	Intraspé.	×		N (I -O)	Acteurs phototransduction
	C		sapiens) [Taxld: 9606]}	4044 20072	4740.04605	hatara (
1	Smp_180150	Rho GTPase-activating protein domain	Beta-chimaerin, C-terminal domain {Human (Homo	1037,28971	230,457733	Intraspe.	x			Acteurs phototransduction
1	Smp 180160	Rho GTPase-activating protein domain	sapiens) [Taxld: 9606]} Graf {Chicken (Gallus gallus) [Taxld: 9031]}	604,819963	4030,17202	Intraspé.	x			Acteurs phototransduction
1	Smp_319130	FCH domain	SLIT-ROBO Rho GTPase-activating protein 2	131,032691	10,4521916	Intraspé.	х		N (L-O)	Acteurs phototransduction
1	Smp_007210 Smp 165530	Rab-GTPase-TBC domain Rho GTPase-activating protein domain	p50 RhoGAP domain {Human (Homo sapiens) [TaxId:	1264,20337 122,950283	6834,72269 809,709826	Intraspe. Intraspé.	x			Acteurs phototransduction Acteurs phototransduction
1	Smp 211220	Adopylyl cyclaso class 2/4/guapylyl	9606]}	4 46077252	0 47290104	Intracnó				Actours phototropsduction
	3mp_211230	cyclase		4,40877332	5,47380154	intraspe.				Acteurs phototransduction
1	Smp_097470	Adenyiyi cyclase class-3/4/guanyiyi cyclase	Soluble guanylyl cyclase alpha-1 subunit	2,37668024	299,613768	Intraspé.				Acteurs phototransduction
5	Smp_158980 Smp_158990	EF-hand domain EF-hand domain	Recoverin {Cow (Bos taurus) [Taxld: 9913]} Frequenin (neuronal calcium sensor 1) {Baker's yeast	6,57180603 35.1542874	415,080824 394,752873	Intraspé. Intraspé.				Acteurs phototransduction Acteurs phototransduction
6	6mp 156190	FF hand domain	(Saccharomyces cerevisiae) [TaxId: 4932]}		416 694559	Introceó				Astours shotetraneduction
6	Smp_136640	EF-hand domain EF-hand domain	Grancalcin {Human (Homo sapiens) [TaxId: 9606]}	1433,53103	2523,6077	Intraspé.	х			Acteurs phototransduction Acteurs phototransduction
1	Smp_083740	EF-hand domain	Myosin Essential Chain (Bay scallop (Aequipecten irradians)	739,409005	1224,24346	Intraspé.	x			Acteurs phototransduction
1	Smp_005230	EF-hand domain	Calcium-dependent protein kinase sk5 CLD {Soybean	3763,84069	173,141661	Intraspé.	x			Acteurs phototransduction
1	Smp_137410	EF-hand domain pair	(Glycine max) [Taxid: 3847]} M-CALPAIN LARGE AND SMALL SUBUNITS	128,358601	548,023258	Intraspé.	x			Acteurs phototransduction
1	Smp_132670	EF-hand domain	Myosin Essential Chain (Bay scallop (Aequipecten irradians)	6010,69651	5332,5733	Intraspé.				Acteurs phototransduction
1	Smp_068060	Protein kinase domain	Serine/threonine protein kinase TAO2 {Rat (Rattus	3107,58026	631,614881	Intraspé.	x			Acteurs phototransduction
1	Smp_005190	Protein kinase domain	norvegicus) [Taxld: 10116]} STE20-like serine/threonine-protein kinase, SLK {Human	1236,88844	165,090057	Intraspé.	x			Acteurs phototransduction
1	Smp_009800	Protein kinase domain	(Homo sapiens) [Taxld: 9606]} Serine/threonine-protein kinase Nek2 {Human (Homo	19,0607243	1,90069089	Intraspé.	\vdash			Acteurs phototransduction
-	Smn 1590E0	Protein kinase-like domain suporfamilu	sapiens) [Taxld: 9606]}	172 064207	1651 30400	Intraceó				Acteurs phototransduction
5	Smp_165490	Calcineurin-like phosphoesterase	Protein phosphatase 2A catalytic subunit alpha isoform,	4779,87312	1606,50822	Intraspé.	x			Acteurs phototransduction
1	Smp 067140	domain, ApaH type Small GTPase	PPZA-alpha {Human (Homo sapiens) [Taxld: 9606]} RhoA {Human (Homo sapiens) [Taxld: 9606]}	687.376028	144.309619	Intraspé	\vdash	-		Acteurs phototransduction
1	Smp_025740	Small GTPase	RhoE (RND3) [Mouse (Mus musculus) [TaxId: 10090]]	267,897857	545,542907	Intraspé.	x			Acteurs phototransduction
1	Smp_246990	i ranscription factor CBF/NF-Y/archaeal histone domain	HISTORE H3.1, HISTORE H4, HISTORE	583,452168	1375,80951	Intraspé.				Histone
1	Smp_036220	Histone H2B	Histone H2B {Chicken (Gallus gallus), erythrocytes [TaxId: 9031]}	1995,08293	543,166586	Intraspé.	×			Histone
1	Smp_124840	Zinc finger, UBR-type	Histone H3.2, Histone H4, Histone	2078,18437	447,202343	Intraspé.				Histone
6	Smp_318950 Smp_210630	HISTONE H3/CENP-A Histone H2A	Leisnmania histone H3, Histone H4 Histone H2A {Chicken (Gallus gallus), ervthrocytes [TaxId:	0,27740305 3662,2237	/19,694697 2098,24735	Intraspé. Intraspé.	x			Histone
c	Smp 121220	Zinc finger PHD-type	9031]}	1152 00101	75 4026476	Intracoó	Ļ			Histone
	5mp_151520	Literinger, Horighe	sapiens) [Taxld: 9606]}	1100,00101	10,000	incraspe.	^			- Historic
1	Smp_005210	Histone deacetylase family	METASTASIS-ASSOCIATED PROTEIN MTA1, HISTONE DEACETYLASE	3274,91636	10,6869863	Intraspé.	×			Histone
5	Smp_330000	Sin3 associated polypeptide p18	HISTONE DEACETYLASE COMPLEX SUBUNIT SAP18	866,154826	168,49628	Intraspé.	Π			Histone
	5p_120/30	like		23,1323131	1223,40203					
5	Smp_329990 Smp_314630	C2 domain NA	synaptotagmin IV {Rat (Rattus norvegicus) [Taxld: 10116]} RCR	22,3182533 42,4353226	457,016358 35,6081083	Intraspé. Intraspé.	x			
1	Smp_105040	Endonuclease/exonuclease/phosphatase	2',5'-phosphodiesterase 12 (E.C.3.1.4,3.1.13.4)	291,88514	236,676729	Intraspé.	x			
5	Smp_345020 Smp_009630	NA Homeobox domain	QVK SIX1 SD	25,4178812 148.366449	170,969739 5349.04638	Intraspé.	x	-		GUsleep GO developmental maturation
1	Smp_315790	CBS domain	5'-AMP-activated protein kinase catalytic subunit	255,672243	420,816428	Intraspé.	x			K07200
1	5mp_010230	G-protein, beta subunit	heterotrimer {Cow (Bos taurus) [TaxId: 9913]}	060,225115	1,01257237	muraspe.	×			
6	Smp_016630	Guanine nucleotide binding protein (G- protein), alpha subunit	G-protein alpha subunit Galpha7	1132,64942	0,08891906	Intraspé.	×			
1	Smp_132750	G-protein alpha subunit, group Q	G-protein alpha subunit Galpha7	1,24197493	596,446731	Intraspé.			N/LO	K00910
	Junk_510950	GI CIV KIIIDGC	seta aurenergie receptor Milase ± (E.C.2.7.11.15)	CEODE'+CC	J, J, 410400	minaspe.			··· (L=U)	100010

1	Smp_126080	Arrestin	Bovine arrestin-2 (full length)	601,479348	2159,11532	Intraspé.	x		
1	Smp_152830	Na-Ca exchanger/integrin-beta4	Na/Ca exchange protein	335,193874	13,2323608	Intraspé.		N (L-O)	K05849 Motif bull H
3	3mp_021340	domain		51/1,8134/	703,33008	interspe.		N (L=O)	WIGHT BHEIT
3	Smp_123570	Myc-type, basic helix-loop-helix (bHLH)	Aryl hydrocarbon receptor nuclear translocator	262,402038	1031,30756	Interspé.	×		Motif bHLH
3	Smp 342580	Myc-type, basic helix-loop-helix (bHLH)	Transcription factor E2-alpha, DNA-binding protein	10.7735232	547.83698	Interspé.			Motif bHLH
		domain							
3	Smp_000620	Myc-type, basic helix-loop-helix (bHLH) domain	DNA-binding protein inhibitor ID-1	15,2282684	0,60010372	Interspe.		N (L-O)	Motif bHLH
3	Smp_333620	Myc-type, basic helix-loop-helix (bHLH)	Myc proto-oncogene protein {Human (Homo sapiens)	2934,35195	270,433032	Interspé.	x		Motif bHLH
3	Smn 150180	domain	[TaxId: 9606]}	3 32080335	1065 25224	Intersné			Rhodospine et rhodospine like
5	5mp_150100	like		5,52505555	1005,25224	interspe.			
3	Smp_159860	G protein-coupled receptor, rhodopsin-	Cannabinoid receptor 1, Flavodoxin	3,96183552	262,487843	Interspé.			Rhodospine et rhodospine like
3	Smp_132410	G protein-coupled receptor, rhodopsin-	Lysozyme, Proteinase-activated receptor 2, Soluble	19,2022749	33,1519434	Interspé.		N (L-O)	Rhodospine et rhodospine like
2	Cara 002000	like	cytochrome b562,Proteinase-activated	0.00070650	4 4 2 0 4 0 4 0 7	lateras (Disadaasiaa at daadaasiaa Uus
3	Sillb_092990	like	RECEPTOR	0,09078652	1420,40407	interspe.	×		knodospine et modospine like
3	Smp_177720	G protein-coupled receptor, rhodopsin-	C-X-C chemokine receptor type 4	0,09730639	42,6576636	Interspé.			Rhodospine et rhodospine like
3	Smp_083940	G protein-coupled receptor, rhodopsin-	7TM_GPCR_Srw	9,3390145	0	Interspé.			Rhodospine et rhodospine like
	Court 220040	like	7744 6060 600		427.467422	lateras (Disademics at the density of the
3	Smp_326640	like	7TM_GPCR_SFW	U	427,467123	interspe.	×		knodospine et rhodospine like
3	Smp_241490	G protein-coupled receptor, rhodopsin-	7TM_GPCR_Srw	0,69401572	89,9435101	Interspé.			Rhodospine et rhodospine like
3	Smp_091950	G protein-coupled receptor, rhodopsin-	7TM_GPCR_Srw	0,19361732	392,952619	Interspé.			Rhodospine et rhodospine like
2	Cara 220070	like	Platelat attractive factors and the Place days	4.24644626	4545 2754	latera (Disademine et de deseis e lla
3	Smp_326670	G protein-coupled receptor, rhodopsin- like	Platelet-activating factor receptor, Havodoxin	4,24614636	1545,2751	Interspe.			Rhodospine et rhodospine like
3	Smp_134960	G protein-coupled receptor, rhodopsin-	Platelet-activating factor receptor	6,88566344	6,67864644	Interspé.			Rhodospine et rhodospine like
3	Smp 023710	like G protein-coupled receptor, rhodopsin-	Platelet-activating factor receptor Flavodoxin	1.37522946	14.8816496	Interspé.			Rhodospine et rhodospine like
		like							
3	Smp_117340	G protein-coupled receptor, rhodopsin- like	Khodopsin	1,65972958	4949,25023	Interspé.	x		Knodospine et rhodospine like
4	Smp_343810	GPCR, rhodopsin-like, 7TM	Adenosine receptor A2a,Soluble cytochrome	37,7981714	781,939417	Interspé.			Rhodospine et rhodospine like
л	Smp 043260	G protein-coupled recentor rhodonsin	b562,Adenosine 7tm 1	4,52025031	2235 20202	Intersné			Rhodospine et rhodospine like
-	5mp_045200	like	, and a	4,52025051	2233,33202	interspe.			ninouospine et mouospine like
4	Smp_043270	G protein-coupled receptor, rhodopsin-	7tm_1	2,31687872	654,548813	Interspé.			Rhodospine et rhodospine like
4	Smp_336140	G protein-coupled receptor, rhodopsin-	7tm_1	0,91088034	1621,13261	Interspé.			Rhodospine et rhodospine like
	Court 240040	like	Then 4	0.20402502	4020 44246	lata and			Disademics at the density of the
4	Smp_348040	like	/tm_i	0,36462583	1038,44216	interspe.			knodospine et rhodospine like
4	Smp_043290	G protein-coupled receptor, rhodopsin-	7tm_1	0,47477174	118,097675	Interspé.			Rhodospine et rhodospine like
4	Smp 043300	G protein-coupled receptor, rhodopsin-	7tm 1	0,21959669	165,906881	Interspé.			Rhodospine et rhodospine like
		like	-			,			
4	Smp_348050	G protein-coupled receptor, rhodopsin- like	7tm_1	0,79699199	1269,34159	Interspé.			Rhodospine et rhodospine like
4	Smp_332070	G protein-coupled receptor, rhodopsin-	human Chemokine Receptor 7	1,48945005	2706,94684	Interspé.			Rhodospine et rhodospine like
4	Smp 043320	like G protein-coupled receptor, rhodopsin-	7tm 1	0.09880883	223.716815	Interspé.	_		Rhodospine et rhodospine like
	5mp_010020	like		0,0000000	225,7 20025	interspe.			ninodospine et modospine like
4	Smp_043340	G protein-coupled receptor, rhodopsin- like	7tm_1	0,23576484	2103,46195	Interspé.			Rhodospine et rhodospine like
4	Smp_212750	G protein-coupled receptor, rhodopsin-	Lysophosphatidic acid receptor 6a, Endolysin, receptor	2,44988415	212,848143	Interspé.			Rhodospine et rhodospine like
3	Smp 138500	Arf GTPase activating protein	(E.C.3.2.1.17) Ras-related protein Rab-35, Iporin	632.036028	628.922412	Interspé.	x		Acteurs phototransduction
3	Smp_000670	Arf GTPase activating protein	ARFGAP with coiled-coil, ANK repeat	787,647933	0,8046734	Interspé.	x		Acteurs phototransduction
3	Smp_160610	Rho GTPase-activating protein domain	p50 RhoGAP domain {Human (Homo sapiens) [TaxId: 96061}	194,197882	4334,59485	Interspé.			Acteurs phototransduction
3	Smp_138430	DEP domain	Regulator of G-protein signaling 7	238,951866	366,55032	Interspé.	x		Acteurs phototransduction
3	Smp_084890	Type I phosphodiesterase/nucleotide	PHOSPHONOACETATE HYDROLASE (E.C.3.11.1.2)	926,177763	287,758284	Interspé.			Acteurs phototransduction
3	Smp_018360	PLC-like phosphodiesterase, TIM	Crystal Structure of the Y247S/Y251S	943,10973	0,21454483	Interspé.			Acteurs phototransduction
4	Smn 053550	beta/alpha-barrel domain superfamily	LIG spRNA phosphodiesterase (E.C. 3.1.4.)	246 183457	395 867207	Intersné			Acteurs phototrapsduction
3	Smp_106110	EF-hand domain	Kchip1, Kv4 potassium channel-interacting protein {Rat	23,7359547	192,04885	Interspé.		D (L-O)	Acteurs phototransduction
2	Smp 191460	EE hand domain pair	(Rattus norvegicus) [Taxld: 10116]}	410 705045	22 2492005	Intorcoá	~	D/I ()	Actours phototropsduction
3	Smp_106060	EF-hand domain	ADP,ATP carrier protein {Cow (Bos taurus), heart isoform	398,839106	88,6154242	Interspé.	x	D (L-O)	Acteurs phototransduction
2	Cmp. 000180	FF hand domain	t1 [Taxld: 9913]}	4 50021700	1251 05154	Interené	_		Astours phototropoduction
3	200180		sapiens) [Taxld: 9606]}	4,50921799	1331,85154	interspe.			Acceurs protocransouction
3	Smp_134950	EF-hand domain	Myosin Essential Chain (Bay scallop (Aequipecten irradians)	449,311197	1162,46489	Interspé.	x		Acteurs phototransduction
4	Smp_313310	EF-hand domain	Sarcoplasmic calcium-binding protein {Amphioxus	8,22979325	584,346012	Interspé.		DN	Acteurs phototransduction
-	Smp 010400	WD40 ropost	(Branchiostoma lanceolatum) [TaxId: 7740]}	120 764404	E20 77224C	Interes (Actours phototropoduct'
3	5mp_016400	woworepear	heterotrimer {Cow (Bos taurus) [TaxId: 9913]}	+30,701194	323,112310	incerspe.	^		Acceurs prototransuuction
3	Smp_123610	Protein kinase domain	Phosphatidylinositol 3-kinase VPS34 (E.C.2.7.1.137),	506,853188	55,8904665	Interspé.			Acteurs phototransduction
3	Smp_123640	GPCR kinase	G protein-coupled receptor kinase 4	508,110359	562,613409	Interspé.	x	<u>t</u>	Acteurs phototransduction
3	Smp_144390	Ser/Thr protein kinase, TGFB receptor	B-Raf kinase {Human (Homo sapiens) [TaxId: 9606]}	830,269412	613,673974	Interspé.	x		Acteurs phototransduction
4	Smp_042920 Smp_308680	Serine-threonine protein kinase 19 Protein kinase domain	Stk19 Serine/threonine-protein kinase Nek2 {Human (Homo	273,061349 1065.27069	40,7021666 848.171547	Interspe. Interspé.	x		Acteurs phototransduction Acteurs phototransduction
			sapiens) [Taxld: 9606]}	,					
3	Smp_308690	Protein phosphatase 2A regulatory subunit PR55	NA	276,900956	/63,532311	Interspe.			Acteurs phototransduction
3	Smp_308700	Protein phosphatase 2A regulatory	Serine/threonine-protein phosphatase 2A 65 kDa	7,76765622	878,795614	Interspé.			Acteurs phototransduction
3	Smp 246610	Subunit PR55 Small GTPase	Rad {Human (Homo sapiens) [TaxId: 96061]	88.0819514	133.394512	Interspé.	+	+	Acteurs phototransduction
3	Smp_084940	Small GTPase	Ras-related protein M-Ras (XRas) {Mouse (Mus musculus)	928,541401	126,391329	Interspé.	x		Acteurs phototransduction
2	Smp 132330	Small GTPase	[TaxId: 10090]} Rab30 {Human (Homo saniens) [TaxId: 9606]}	257 926221	26 892610	Intersné	+	-	Acteurs phototransduction
3	Smp_134940	GTP binding domain	YqeH GTPase	1096,94943	130,919352	Interspé.			Acteurs phototransduction
3	Smp_342660	Small GTPase	Rad {Human (Homo sapiens) [TaxId: 9606]}	15,3716692	844,395068	Interspé.		D/L (2)	Acteurs phototransduction
4	Smp_313300 Smp_337740	Histone H2A	Histone H2A {Chicken (Gallus gallus), ervthrocvtes [TaxId:	38,8927175 215,345187	3108,98173 1022,78704	Interspé. Interspé.	+	D (L-O)	Acteurs phototransduction Histone
	· _ · · · · ·	The Research III I	9031]}	005 005-00		late 1			Watana
3	Smp_000150 Smp_027850	Linc tinger, PHD-type Chromatin SPT2	Histone H3.2, Histone H4, Histone Histone H3.2, Histone H4. Protein	905,606672 609.945723	6505,47622 289.167188	Interspé.	+	+	Histone
3	Smp_026880	Histone H3/CENP-A	Leishmania histone H3, Histone H4	0	852,292191	Interspé.			Histone
3	Smp_105910 Smp_083930	Zinc finger, TAZ-type Chromatin modification-related protein	Histone acetyltransferase p300 (E.C.2.3.1.48), p53 Histone acetyltransferase FSA1 (E.C.2.3.1.48), Chromatia	4566,00741	22,4878089 801 874546	Interspé.	x		Histone
	2h_002220	Eaf6		1002,70043	551,074540	ci эрс.	^		
3	Smp_210660	SET domain Methyl-CoG DNA binding	Histone-lysine N-methyltransferase 2E (E.C.2.1.1.43)	1211,11036	243,241395	Interspé.	x	+	Histone
4	20000 T20020	mentyr opo orak binning	Histone	1103,0033	2330,46332	interspe.	î		
4	Smp_160700	PWWP domain	Histone-lysine N-methyltransferase SETD2 (E.C.2.1.1.43.2.1.1), H3.3S31nhK36M(29-42)	935,275395	312,146006	Interspé.			Histone
		-							

3	Smp 311980	Zinc finger C2H2-type	LYSINE-SPECIFIC HISTONE DEMETHYLASE 1A (E.C.1)	80,820992	223,518307	Interspé.			Histone
3	Smp_000230	Zinc finger C2H2-type	LYSINE-SPECIFIC HISTONE DEMETHYLASE 1A (E.C.1)	771,999792	217,639903	Interspé.	x		Histone
3	Smp_096010	Heat shock protein DnaJ, cysteine-rich	Putative chaperone DnaJ	1379,26204	174,836922	Interspé.	х		GO response to heat
		domain							
3	Smp_181450	NA	CCDC66	129,563024	3450,44113	Interspé.	х		
4	Smp_329580	5'-AMP-activated protein kinase subunit	5'-AMP-activated protein kinase subunit beta-2	0,02865547	77,4431606	Interspé.			K07199
3	Smn 018940	EF-band domain	Myosin Essential Chain (Bay scallon (Aequinecten irradians)	5 58645379	2427 24282	Intersné	×		K02183 + acteur phototransduction
-			[Taxid: 31199]}	-,	,				
3	Smp_075130	G-protein, beta subunit	beta1-subunit of the signal-transducing G protein	179,157801	1440,50885	Interspé.	х		K04539 + acteur phototransduction
			heterotrimer {Cow (Bos taurus) [TaxId: 9913]}						
3	Smp_023700	Anticodon-binding domain	AD	1043,34444	906,628996	Interspé.	х		K23643
4	Smp_135500	3'5'-cyclic nucleotide phosphodiesterase,	cGMP-specific 3',5'-cyclic phosphodiesterase (E.C.3.1.4.35)	57,9496532	1314,08891	Interspé.			K18283 + acteur phototransduction
3	Smn 134820	G protein-coupled receptor rhodonsin-	Chimera of Proteinase-activated recentor 1	15 7759026	775 763363	Intersné			K04153 + rhodopsine
5	5mp_154620	like	climera or rotemase activated receptor 1	13,7755020	//3,/03303	interspe.			Ko4155 (Hiodopane
4	Smp_145540	G protein-coupled receptor, rhodopsin-	Muscarinic acetylcholine receptor M2,Vasopressin V2	62,6866853	1438,4788	Interspé.		N (L-O)	K04131 + rhodopsine
		like							
3	Smp_000130	Hormone-sensitive lipase, N-terminal	HSL_N	589,468444	1331,86032	Interspé.			K07188
3	Smb_1/9910	Small G I Pase	GTP-binding protein Kneb (Human (Homo sapiens) [Taxid: 96061]	11/6,85/83	14050,3008	interspe.			
4	Smp 042590	NADH-quinone oxidoreductase, chain I	NADH-quinone oxidoreductase chain 9, Ngo9 {Thermus	904.373887	21,9001908	Interspé.			K03941
			thermophilus [TaxId: 274]}		,				
3	Smp_079710	Ribosomal protein/NADH dehydrogenase	NADH-ubiquinone oxidoreductase b8 subunit, CI-B8	612,491811	6163,17154	Interspé.			K03946
		domain	{Human (Homo sapiens) [Taxld: 9606]}	10000 0007					
3	Smp_002880	Al Pase, F1/V1/A1 complex, alpha/beta	ATP synthase alpha chain, mitochondrial	12260,9337	/91,560953	Interspe.			K02132
3	Smp 335280	NAD(P)-binding domain superfamily	NADH-ubiquinone oxidoreductase chain 3 (E.C.1.6.5.3)	2.42831778	677.522265	Interspé.			K03953
4	Smp_053700	Cytochrome b-c1 complex subunit 8	Ubiquinone-binding protein QP-C of cytochrome bc1	1074,35704	1749,13573	Interspé.			K00418
1		1	complex (Ubiquinol-cytochrome c reductase) {Cow (Bos			1			
-	Comp. 4.40.000	Dutation billion to according to the	taurus) [Taxld: 9913]}	200 700055	103 00330			_	Maski kuluu
7\//	Smn_069220	Putative bhlbzin transcription factor bigma:	igmax	239,708352	102,99329		x	+	Motif bHLH
1	Smp_008220 Smp_170610	Putative rhodonsin-like ornhan GPCR		1,73570176	515.632161		x	-	Rhodospine et rhodospine like
1	Smp_056080	Putative rhodopsin-like orphan GPCR		1,4061365	467,330715	1	x		Rhodospine et rhodospine like
1	Smp_072660	Ras gtpase activating protein, putative		356,758021	2868,5326		х		Acteurs phototransduction
3	Smp_079800	Putative gtpase activating protein		86,7480391	1569,58492		х		Acteurs phototransduction
4	Smp_155780	Gtpase activating protein-related		1204,29354	638,06771		х		Acteurs phototransduction
1	Smp_069400	Putative regulator of G protein signaling		8,59383701	2790,90633		X	+	Acteurs phototransduction
3	Smp 142620	Guanylate cyclase		300 680600	3024,56207		x	+	Acteurs phototransduction
ZW	Smp_142020 Smp_019790	Guanylate cyclase		2580.79154	405.311438		X	-	Acteurs phototransduction
ZW	Smp_153500	Guanylate cyclase		1003,04214	217,665305	1	x		Acteurs phototransduction
2	Smp_146120	Phosphodiesterase		113,972456	3121,4442		х		Acteurs phototransduction
5	Smp_153340	Putative ectonucleotide pyrophosphatase/	phosphodiesterase	457,648163	1180,36489		х		Acteurs phototransduction
6	Smp_141980	Phosphodiesterase		119,361191	638,297796		x		Acteurs phototransduction
ZW	Smp_179590	Phosphodiesterase		239,930872	1296,85049		х		Acteurs phototransduction
ZW	Smp_151190	Retinal rod rhodopsin-sensitive cgmp 3',5'-	cyclic phosphodiesterase, putative	76,78339	284,241477		x	N (L O)	Acteurs phototransduction
1	Smp_1/1010 Smp_159160	Putative ef-hand domain (C-terminal) conta Putative ef-hand domain (C-terminal) conta	ining protein	25,3099157	7342 10029		x	N (L-U)	Acteurs phototransduction
1	Smp_133100	Transducin beta-like		3000.15421	1501.19554		x		Acteurs phototransduction
4	Smp 150080	Transducin-like enhancer protein 1		2620,44127	1840,35661		x		Acteurs phototransduction
1	Smp_176620	Serine/threonine kinase		1090,46637	429,151423		х		Acteurs phototransduction
1	Smp_098840	Serine/threonine kinase		409,51592	10462,236		х		Acteurs phototransduction
1	Smp_068990	Serine/threonine kinase		932,567059	479,125553		x		Acteurs phototransduction
1	Smp_124130	Serine/threonine kinase		23,0274465	89,5282187		х		Acteurs phototransduction
1	Smp_097940 Smp_141230	Serine/threonine kinase		19,6149009	/33,34/235 627 889534		×	N (L-O)	Acteurs phototransduction
1	Smp_141250 Smp_073340	Serine/threonine kinase		358.631399	284.60263		x		Acteurs phototransduction
1	Smp 160760	Serine/threonine kinase		2007,20985	1,36373764		x		Acteurs phototransduction
1	Smp_090890	Serine/threonine protein kinase		1350,33901	63,4779915		x		Acteurs phototransduction
1	Smp_090980	Serine/threonine kinase		84,2471951	455,657315		х		Acteurs phototransduction
1	Smp_158560	Serine/threonine kinase		2702,92226	54,1224904		x		Acteurs phototransduction
1	Smp_103950	Serine/threonine kinase		2068,34456	35,1964267		x		Acteurs phototransduction
3	Smp_040190	Serine/threonine kinase		73/ 992967	4 99530306		x		Acteurs phototransduction
3	Smp_018250	Serine/threonine kinase		313,269179	3349,72869		x		Acteurs phototransduction
3	Smp_181490	Serine/threonine kinase		178,003903	6124,58647		x		Acteurs phototransduction
3	Smp_000720	Serine/threonine kinase		2002,88725	4388,21107		х		Acteurs phototransduction
3	Smp_134910	Serine/threonine kinase		402,224927	1032,47557		x	N (L-O)	Acteurs phototransduction
3	Smp_177120	Serine/threonine kinase		329,663262	323,923637		х		Acteurs phototransduction
3	Smp_1/2700	Secontor protein corino (throasing literation		801,26295	438,514794		X	-	Acteurs phototransduction
4 4	Smp_049760 Smp_150860	Serine/threonine kinase		371.447792	341.193996		×	-	Acteurs phototransduction
4	Smp_053560	Serine/threonine kinase		244,144945	173,900994		x		Acteurs phototransduction
4	Smp_126460	Serine/threonine kinase		369,87977	344,35948		х		Acteurs phototransduction
4	Smp_041770	Serine/threonine kinase		4307,95496	401,80327		х		Acteurs phototransduction
4	Smp_334370	Receptor protein serine/threonine kinase		569,226108	542,25825		х		Acteurs phototransduction
4	Smp_171370	Serine/threonine kinase		362,614408	/068,06214		X	_	Acteurs phototransduction
۶ ۶	Smp 122200	Serine/threonine kinase		820 605717	207,527993		×	-	Acteurs phototransduction
6	Smp_080730	Serine/threonine kinase		2209,33042	606,093232		x		Acteurs phototransduction
6	Smp_169980	Serine/threonine kinase		489,21084	831,458106		х		Acteurs phototransduction
6	Smp_169950	Serine/threonine kinase		819,417928	890,839047		х	T	Acteurs phototransduction
7	Smp_155720	Serine/threonine kinase		1767,51208	926,861956		х		Acteurs phototransduction
7	Smp_180400	Serine/threonine kinase		1061,97369	1207,85633		X	+	Acteurs phototransduction
7	Smp_12/920	Serine/threonine kinase		357 /10217	125 201/175		×	N (L-O)	Acteurs phototransduction
7	Smp_037300 Smp_125370	Serine/threonine kinase		176.835535	273.855001		x	N (L=O)	Acteurs phototransduction
ZW	Smp_097820	Serine/threonine kinase		143,345923	434,298598		x	N (L-O)	Acteurs phototransduction
ZW	Smp_156990	Serine/threonine kinase		875,813395	411,618861		х	T	Acteurs phototransduction
ZW	Smp_068960	Serine/threonine kinase		1115,20401	449,347473	ļ	х		Acteurs phototransduction
ZW	Smp_210970	Serine/threonine kinase		384,068056	1078,18587		х	_	Acteurs phototransduction
2W	Smp_094760	Serine/threonine kinase		818,426565	233,093597		x	_	Acteurs phototransduction
ZW	Smp_047190 Smp_163380	Serine/threonine kinase		11.6800102	414.037294		x	-	Acteurs phototransduction
ZW	Smp 058620	Serine/threonine kinase		744,449659	546,396776	1	x		Acteurs phototransduction
ZW	Smp_094190	Serine/threonine kinase		103,642412	1076,28432		х	N (L-O)	Acteurs phototransduction
ZW	Smp_176580	Serine/threonine kinase		972,97629	1637,68634		х		Acteurs phototransduction
ZW	Smp_096640	Serine/threonine kinase		913,551096	490,024363	ļ	х		Acteurs phototransduction
ZW	Smp_194610	Serine/threonine kinase		151,833163	525,172495		x	D (L-O)	Acteurs phototransduction
2W	Smp_151140	Serine/threonine kinase		163 844955	1255,62465		x	-	Acteurs phototransduction
ZW	Smp_131100 Smp_077180	Serine/threonine kinase		704.621758	395.126760		x	-	Acteurs phototransduction
1	Smp_176600	Serine/threonine protein phosphatase 2A r	egulatory subunit	604,070152	1851,37197		x		Acteurs phototransduction
1	Smp_035430	Serine/threonine protein phosphatase 2A r	egulatory subunit	2210,45181	537,550017		х		Acteurs phototransduction
1	Smp_166290	Serine/threonine-protein phosphatase 2A a	ctivator	519,845154	380,137631		х	T	Acteurs phototransduction
3	Smp_173810	Serine/threonine-protein phosphatase 2A 5	5 kDa regulatory subunit B	708,339981	390,986628		х	_	Acteurs phototransduction
4	Smp_055770	Serine/threonine-protein phosphatase 2A 5	5 KDa regulatory subunit B	467,131111	500,593099		X	+	Acteurs phototransduction
5	Smp_153410	Serine/threonine protein phosphatase 25	ase za regulatory suburit A	2/10,92815	427 851570		x	-	Acteurs phototransduction
1	Smp 132620	Transmembrane gtpase mfn (Mitofusin 1) (Fzo homolog), putative	725.226392	92.834918		x	+	Acteurs phototransduction
	Cmm 052200	Listens III		2552 74495	202 000042	1	~		History

7 ZW	C		2200 60047	242 50704				1 Patauxa
ZW 7	5111P_086860	Historie H2A	5500,68917	312,58/84			l	History
ZW	Smp_031720	Histone HZA	2964,8147	3326,42021)			Histone
	smp_082240	Histone H3	12656,1237	555,023314	, ,	1		Histone
1	Smp_178700	Putative histone acetyltransferase type B catalytic subunit	884,324648	2481,69561)			Histone
2	Smp_194520	Histone acetyltransferase	280,988236	2866,68794)			Histone
4	Smp_053140	Histone acetyltransferase	877,773134	1549,20364)		D (L-O)	Histone
ZW	Smp_198670	Histone acetyltransferase	562,985347	490,186844	,			Histone
1	Smp_069380	Putative histone deacetylase 4, 5	510,978471	767,937322)	_		Histone
1	Smp_091990	Putative histone deacetylase 1, 2,3	884,409109	260,502211)			Histone
2	Smp_138770	Histone deacetylase,putative	347,31463	0,73535486)			Histone
5	Smp_093280	Histone deacetylase	946,536548	84,8427208)			Histone
1	Smp_140390	Histone-lysine N-methyltransferase	1824,48666	42,0710763)			Histone
3	Smp_138030	Histone-lysine N-methyltransferase	2812,50744	200,22716)			Histone
4	Smp_070170	Histone-lysine N-methyltransferase	686,10412	182,576826)			Histone
4	Smp_027300	Histone-lysine N-methyltransferase	703,555319	18,25879)			Histone
5	Smp_043580	Putative histone-lysine n-methyltransferase, setb1	128,089362	11,4564123)			Histone
6	Smp_165000	Histone-lysine N-methyltransferase, H3 lysine-79 specific	1562,7874	1843,36117)			Histone
ZW	Smp_210650	Histone-lysine N-methyltransferase	1437,73889	206,108752)			Histone
5	Smp_150560	Putative lysine-specific histone demethylase 1	817,609421	508,265591)			Histone
ZW	Smp_095130	Putative porphobilinogen deaminase	246,204347	10906,4062)		D (L-O)	
1	Smp_140790	Ferrochelatase	764,085121	275,424078)			
2	Smp_045260	5-aminolevulinate synthase	989,112985	260,830481)		DN	
3	Smp_079840	Uroporphyrinogen-III synthase	646,090086	1245,87292)		N (L-O)	
4	Smp_137190	Frataxin homolog, mitochondrial, putative	337,46529	1325,19166)			
5	Smp_340920	previous_stable_id=Smp_057930	1091,20744	538,10452)		D (L-O)	
6	Smp_162280	Coproporphyrinogen oxidase	329,346133	984,709566)			
ZW	Smp_143740	Uroporphyrinogen decarboxylase	329,668652	988,238438)			
ZW	Smp_333090	previous_stable_id=Smp_199730,Smp_199720,Smp_147510,Smp_147500	2039,06417	127,498461)			
ZW	Smp_045810	Delta-aminolevulinic acid dehydratase	446,08514	826,029862)			
ZW	Smp_065890	NA	272,318596	221,620058)			
ZW	Smp_004910	Rab-2,4,14, putative Ras-related protein Rab-14	563,831914	846,458679)			
1	Smp_089630	Putative polyglutamine binding protein	1045,18712	670,702612)			
1	Smp_041050	G-patch domain-containing protein	1057,34496	10,4344192)	1	l	4
1	Smp_012780	Putative sarm1 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase	327,400059	399,231208)	1		l
3	Smp_001030	5'-amp-activated protein kinase gamma-2 non-catalytic subunit transcript variant 2	234,514885	617,069314	>	1		к07200
4	Smp_334010	NA	62,7964225	2557,78588)	1	l	к07200
ZW	Smp_170160	5-AMP-activated protein kinase, beta subunit, putative	787,691557	7895,60296)	1		K07199
1	Smp_341700	AMPKBI domain-containing protein	785,238006	737,721057	>	1	D (L-O)	K07199
3	Smp_052910	Skp1-related	1288,33863	262,189434)		L	K03094
3	Smp_099930	Putative f-box and wd40 domain protein	982,672389	668,221374)		L	K03362
ZW	Smp_214100	Non-specific serine/threonine protein kinase	1417,09423	226,920302)			K07198
ZW	Smp_245320	ANF_receptor domain-containing protein	168,68939	19316,7996)			K05208
ZW	Smp_026560	Calmodulin 2	5362,10614	191,414259)			K02183
ZW	Smp_011660	Protein kinase	1926,81391	600,521307)			K04515
1	Smp_020080	Putative gtp-binding protein (I) alpha-1subunit, gnai1	36,9592898	0)		D (L-O)	K04630
2	Smp_016250	Putative gtp-binding protein (I) alpha-2 subunit, gnai2	692,742701	0,64443613)		D (L-O)	K04630
7	Smp_005790	Putative gtp-binding protein (Q) alpha-11 subunit, gna11	632,10564	625,292788)			K04634
2	Smp_063640	Putative g-protein, beta subunit	2209,21385	64,2475109)			K04536
4	Smp_142050	Mitogen-activated protein kinase	58,5492814	301,452631)			K04371
4	Smp_336900	Inositol 1,4,5-trisphosphate receptor	15,5334374	602,730612)		N (L-O)	K04958
1	Smp_163570	Ryanodine receptor related	2051,34732	405,215777	>		N (L-O)	K04962
4	Smp_102340	Adenylate cyclase type IX, putative	2538,44659	2203,03812	>			K08049
ZW	Smp_152330	Serine/threonine kinase	479,726111	67,9349543	>			
ZW	Smp_267270	NA	35,5357316	775,58214	>			K04345
1	Smp_020270	Voltage-dependent L-type calcium channel subunit alpha	225,997532	43,3999267	>			K04851
3	Smp_159990	Voltage-dependent L-type calcium channel subunit alpha	144,880033	31,1977222	>		N (L-O)	K04851
4	Smp_172640	Putative gtp-binding protein alpha subunit	31,5407288	138,300805	>			K04632
2	Smp_245900	Phosphoinositide phospholipase C	488,040101	33,2561482)			K05858
ZW	Smp_241420	AGC-kinase C-terminal domain-containing protein	276,304707	2843,16684)		N (L-O)	K02677
ZW	Smp_099030	Protein kinase	5020,49088	262,542507	>			K03097
6	Smp_025010	Casein kinase II subunit beta	2154,70155	58,1874919)			K03115
2	Smp_125450	Guanylate cyclase	6,37015434	1428,30966	>			K12322
ZW	Smp_128680	Lipase	384,287943	649,158714)			K13806
2	Smp_140770	Serine/threonine-protein phosphatase with EF-hands	58,8780932	2504,30171	>			K13807
2	Smp_122900	Putative beta-arrestin 1	386,425187	2452,69684)			
1	Smp_152290	Butative bota arrestin 1		076 000000				
4		Futative Deta-arrestili 1	37,5075607	276,983829	>			K04153
4	Smp_149770	Putative beta an estimate	37,5075607 18,1073535	2630,64798) 			
4	Smp_149770 Smp_319050	Putative protein coupled receptor Transmembrane protein 164 TMEM164	37,5075607 18,1073535 859,953736	276,983829 2630,64798 1734,3278	> > >			
4 1 3	Smp_149770 Smp_319050 Smp_085780	Putative g-protein coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L10P 28S ribosomal protein S2, mitochondrial	37,5075607 18,1073535 859,953736 213,641686	276,983829 2630,64798 1734,3278 217,671147	> > > >			
4 1 3 3	Smp_149770 Smp_319050 Smp_085780 Smp_000370	Putative generation coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L10P 285 ribosomal protein S2, mitochondrial Selenoprotein SelK/SelG SelK_SelG	37,5075607 18,1073535 859,953736 213,641686 340,549469	276,983829 2630,64798 1734,3278 217,671147 909,805039	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>			
4 1 3 3 1	Smp_149770 Smp_319050 Smp_085780 Smp_000370 Smp_127370	Transmembrane protein coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein 10P 285 ribosomal protein 52, mitochondrial Selenoprotein Sel/Sel6 SelK_Sel6 Glycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102)	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644	276,983829 2630,64798 1734,3278 217,671147 909,805039 1552,4241	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	x		
4 1 3 3 1 3	Smp_149770 Smp_319050 Smp_085780 Smp_000370 Smp_127370 Smp_134100	Putative generations Putative generations Putative generations Putative generations Transmembrane protein 164 TMEM164 Ribosomal protein 110P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102)	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184	276,983829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787		x		Rhodospine et rhodospine like
4 1 3 3 1 3 3 3	Smp_149770 Smp_319050 Smp_085780 Smp_000370 Smp_127370 Smp_134100 Smp_205760	Putative generation Putative generation Putative generation coupled receptor Transmembrane protein 164 Tinsmembrane protein 164 TMEM164 Ribosomal protein S2, mitochondrial 285 ribosomal protein S2, mitochondrial Selenoprotein SelK/SelS SelK, SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanien nucleotide-binding protein subunit gamma	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604	276,983829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005		x x x x		Rhodospine et rhodospine like
4 1 3 3 1 3 3 3	Smp_149770 Smp_319050 Smp_085780 Smp_000370 Smp_127370 Smp_134100 Smp_205760 Smp_147020	Putative grotein coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein 110P 28S ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG Selenoprotein SelK/SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanien nucleotide-binding protein subunit gamma Putative arf6 guanien nucleotide Putative arf6 guanien nucleotide	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225	276,983829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	x x x x x		Rhodospine et rhodospine like
4 1 3 3 1 3 3 3	Smp_149770 Smp_319050 Smp_085780 Smp_000370 Smp_127370 Smp_134100 Smp_147020	Putative genzenies Putative genzenies Putative genzenies TMEM164 Transmembrane protein 164 TMEM164 Ribosomal protein 10P 285 ribosomal protein 52, mitochondrial Selenoprotein Sel/SelG SelK_SelG Glycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide Putative arf6 guanine nucleotide exchange factor exchange factor Putative arf6 guanine nucleotide	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225	276,983829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535		x x x x x		Rhodospine et rhodospine like
4 1 3 1 3 3 3 3	Smp_149770 Smp_319050 Smp_085780 Smp_000370 Smp_127370 Smp_134100 Smp_147020 Smp_124660	Putative granteini coupled receptor Transmembrane protein 164 Tibosomal protein L1DP 285 ribosomal protein S2, mitochondrial Selenoprotein SelK/SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor Putative guanyl-nucleotide exchange Putative guanyl-nucleotide exchange	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676	276,983829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466		x x x x x x		Rhodospine et rhodospine like
4 1 3 1 3 3 3	Smp_149770 Smp_319050 Smp_085780 Smp_100370 Smp_127370 Smp_134100 Smp_134100 Smp_147020 Smp_124660 Smp_025757	Putative grotein coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein Sel/Sel6 SelK_Sel6 Glycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanien nucleotide-binding protein subunit gamma Putative arf6 guanien nucleotide Putative arf6 guanien nucleotide exchange factor Putative grotein de putative guanyl-nucleotide exchange factor Putative guanyl-nucleotide exchange factor Putative guanyl-nucleotide exchange factor	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 2632,72,555	276,983829 2630,64798 1734,3278 217,67147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466		x x x x x x		Rhodospine et rhodospine like
4 1 3 3 1 3 3 3 3 5 M_V	Smp_149770 Smp_319050 Smp_085780 Smp_100370 Smp_1134100 Smp_205760 Smp_147020 Smp_124660 Smp_900070	Putative granteini coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Glycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion)	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497	276,9,83,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562		x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 1 3 3 3 5M_V 7_MIT 0	Smp_149770 Smp_319050 Smp_0085780 Smp_000370 Smp_127370 Smp_134100 Smp_147020 Smp_124660 Smp_124600	Putative granteini coupled receptor Transmembrane protein 164 Ribosomal protein L1DP 285 ribosomal protein S2, mitochondrial Selenoprotein SelK/SelC Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor yutative Guanien nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide Putative arf6 guanine nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange Putative guanyl-nucleotide exchange Cytochrome b (mitochondrion)	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497	2/6,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562		x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 1 3 3 3 3 5 M_V 7_MIT 0 SM_V	Smp 149770 Smp 319050 Smp 085780 Smp 000370 Smp 127370 Smp 205760 Smp 1447020 Smp 124660 Smp 124660 Smp 900070	Putative gerareterini coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein Self/Sel6 Self, Sel6 Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanien nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide Putative arf6 guanine nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange factor Putative guanyl-nucleotide exchange Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) NADH debudrogenase subunit 4 (mitochondrion)	37,5075607 18,1073535 859,953736 340,549469 3,82520644 137,021604 558,598225 129,09676 7632,78497 8010 5775	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562		x x x x x x		Rhodospine et rhodospine like
4 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 5 M_V 7_MIT 0 5 M_V 7_MIT	Smp 149770 Smp 319050 Smp 085780 Smp 000370 Smp 127370 Smp 127370 Smp 127370 Smp 127370 Smp 127370 Smp 124060 Smp 124660 Smp 900070 Smp 900090	Putative garotein icoupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative ganyl-nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange factor factor Cytochrome b (mitochondrion) NADH dehydrogenase subunit 4 (mitochondrion)	37,5075607 18,1073535 889,953736 340,549469 3,82520644 1,2698184 137,021604 588,598225 129,09676 7632,78497 8919,57763	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977		x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 1 3 3 3 5 M_V 7_MIT 0 SM_V 7_MIT 0	Smp_149770 Smp_319050 Smp_085780 Smp_000370 Smp_127370 Smp_127370 Smp_127370 Smp_127370 Smp_127370 Smp_1205760 Smp_147020 Smp_124660 Smp_900070 Smp_900090	Putative garotein icoupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein LUP 285 ribosomal protein S2, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) NADH dehydrogenase subunit 4 (mitochondrion)	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,37,021604 558,598225 129,09676 7632,78497 8919,57763	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977		x x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 1 3 3 5 M_V 7_MIT 0 5 M_V 7_MIT 0 3	Smp 149770 Smp 319050 Smp 085780 Smp 000370 Smp 134100 Smp 205760 Smp 147020 Smp 124660 Smp 900070 Smp 900090 Smp 900470	Putative geraretesini roupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein Self/Sel6 Self, Sel6 Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanien nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide Putative arf6 guanine nucleotide exchange factor Putative arf6 guanine nucleotide exchange Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) NADH dehydrogenase subunit 4 (mitochondrion) SEA domain SEA	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 8919,57763 6,95190945	2/6,9,83,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539170		x x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 3 3 3 3 5M_V 7_MIT 0 5M_V 7_MIT 0 3	Smp_149770 Smp_319050 Smp_085780 Smp_000370 Smp_127370 Smp_127370 Smp_14100 Smp_147020 Smp_147020 Smp_900070 Smp_900070 Smp_900090 Smp_308470 Smp 308470	Putative garoteini coupled receptor Transmembrane protein 164 Tibosomal protein 10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG Geyrotein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative garoyl-nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) SEA domain SEA domain SEA domain	37,5075607 18,1073535 889,953736 340,549469 3,82520644 1,2698184 137,021604 588,598225 129,09676 7632,78497 8919,57763 6,95190946 1120,47018	2/6,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,6412		x x x x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 M_V 7_MIT 0 0 3 1	Smp_149770 Smp_319050 Smp_085780 Smp_000370 Smp_127370 Smp_127370 Smp_127370 Smp_127370 Smp_127370 Smp_1205760 Smp_147020 Smp_124660 Smp_900070 Smp_308470 Smp_308470 Smp_0845470 Smp_0845470 Smp_18570	Putative garoteini coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L1DP 285 ribosomal protein 52, mitochondrial Selenoprotein Selk/SelG Selk_SelG Giycosyl transferase, family 14 beta-1,6-N-acety/glucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) Vatative guanyl-nucleotide exchange factor SEA domain SEA Forkhead-associated (FHA) domain RNA-binding protein 5, Survival motor	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,37,021604 558,598225 129,09676 7632,78497 7632,78497 6,95190946 1120,47018 55,0753045	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,4612 674,663091		x x x x x x x x x x x x x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Smp 149770 Smp 319050 Smp 085780 Smp 003700 Smp 121370 Smp 134100 Smp 205760 Smp 147020 Smp 124660 Smp 900070 Smp 900070 Smp 308470 Smp 158570 Smp 158570	Putative grantesini Putative grantesini Putative grantesini Putative grantesini Selemorrote noupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanien nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide Putative arf6 guanine nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange factor Fortor Cytochrome b (mitochondrion) NADH dehydrogenase subunit 4 (mitochondrion) SEA Forkhead-associated (FHA) domain RNA-binding protein 5, Survival motor NA Putative guogamine-fructose-6-phosphate aminontransferase	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,37,021604 558,598225 129,09676 7632,78497 7632,78497 6,95190946 1120,47018 57,0753046 90,3317331	2/6,9,83,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 1728,24977 931,539179 11086,4612 674,653091		x x x x x x x x x x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 3 3 3 3 3 5 5 5 5 5 5	Smp_149770 Smp_319050 Smp_085780 Smp_00370 Smp_127370 Smp_127370 Smp_14100 Smp_147020 Smp_147020 Smp_900070 Smp_900070 Smp_900090 Smp 308470 Smp 158570 Smp 158570 Smp 011220	Putative garotein icoupled receptor Transmembrane protein 104 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Grycosi pupel erceptor, puptative Guanine nucleotide-binding protein subunit gamma Putative garopiel arceptor, putative Putative garopiel arceptor, putative Guanine nucleotide exchange factor Putative guanyl-nucleotide exchange factor Putative guanyl-nucleotide exchange Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) SEA SEA domain SEA Porkead-associated (FHA) domain RNA-binding protein 5, Survival motor NA Putative glucosamine-fructose-6-phosphate aminotransferase	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 8919,57763 8919,57763 6,95190946 1120,47018 57,0753046 90,3317331 189,47861	2/6,983,829 2/630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 11086,4612 674,663091 502,715624 11814,7048		x x x x x x x x x x x x x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 3 3 3 3 3 5 M_V 7_MIT 0 5 SM_V 7_MIT 0 3 1 2 5 6	Smp_149770 Smp_319050 Smp_085780 Smp_000370 Smp_127370 Smp_127370 Smp_14100 Smp_205760 Smp_147020 Smp_124660 Smp_900070 Smp_900070 Smp_308470 Smp_138470 Smp_084540 Smp_011220 Smp_31570	Putative g-protein icoupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L1DP 285 ribosomal protein S2, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acety/glucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange factor Quative guanyl-nucleotide exchange factor NADH dehydrogenase subunit 4 (mitochondrion) SEA domain SEA Forkhead-associated (FHA) domain RNA-binding protein 5, Survival motor NA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 8919,57763 6,95190946 1120,47018 57,0753046 90,3317331 189,457861 195,28018	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,4612 674,663091 502,715624 11814,2048		x x x x x x x x x x x x x x x x x x x		Rhodospine et rhodospine like
4 1 1 3 3 3 3 5 5 5 6 7	Smp 149770 Smp 319050 Smp 085780 Smp 00370 Smp 12370 Smp 134100 Smp 205760 Smp 147020 Smp 124660 Smp 900070 Smp 900070 Smp 308470 Smp 158570 Smp 158570 Smp 27560 Smp 341570 Smp 341570	Putative garotein coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative garoyl-nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange factor factor Cytochrome b (mitochondrion) SelA SEA domain SEA Forkhead-associated (FHA) domain RNA-binding protein 5, Survival motor NA Putative glucosamine-fructose-6 -phosphate aminotransferase Thioredoxin domain-containing protein NA	37,5075607 18,1073535 859,953736 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 8919,57763 8919,57763 6,95190946 1120,47018 57,0753046 1120,47018 120,4708 120,4708	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 11086,4612 674,663091 11086,4612 674,663091 11086,4612 674,663091 11086,4612 674,663091 11086,4612 674,663091 11086,4612 674,663091 11086,4612 674,663091 11086,4612 674,663091 11086,4612 674,663091 11086,4612 674,663091 11086,4612 674,663091 11086,4612 674,663091 11086,4612 11086,461		x x x x x x x x x x x x x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 0 0 5 5 0 0 3 1 2 5 5 6 7	Smp_149770 Smp_319050 Smp_085780 Smp_00370 Smp_127370 Smp_127370 Smp_14000 Smp_147020 Smp_147020 Smp_900070 Smp_900070 Smp_900070 Smp_084540 Smp_158570 Smp_12260 Smp_312750 Smp_341570 Smp_010380 Smp_010380	Putative garoteini coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L1DP 285 ribosomal protein S2, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) SEA SEA domain SEA Forkhead-associated (FHA) domain RNA-binding protein 5, Survival motor NA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA	37,5075607 18,1073535 859,953736 213,641686 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 8919,57763 6,95190946 1120,47018 857,0753046 90,3317331 189,457861 195,28918 168,208013 2008,6634	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 1086,4612 674,663091 502,715624 11814,2048 11814,2048 1184,2047 1182,24977 1108,4612 1674,653091 152,715624 11814,2048 11814,2048 1182,777262 1192,77726 1192,77726		x x x x x x x x x x x x x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 3 3 3 3 5 5 5 6 7 7 6	Smp 149770 Smp 319050 Smp 085780 Smp 000370 Smp 134100 Smp 12370 Smp 124700 Smp 124600 Smp 124660 Smp 900090 Smp 900090 Smp 308470 Smp 084540 Smp 158570 Smp 327560 Smp 900380 Smp 900380 Smp<90038	Putative grantesini coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein SLIDP 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acety/glucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanien nucleotide-binding protein subunit gamma Putative arfs guanien nucleotide Putative arf6 guanien nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange factor Futative guanyl-nucleotide exchange Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) SEA SEA domain SEA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA I Isochorismatase domain-containing protein NA	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2608184 137,021604 558,598225 129,09676 7632,78497 7632,78497 6,95190946 1120,47018 57,0753046 90,3317331 189,457861 195,28918 168,208013 2003,66364 17,2470867	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,4612 674,663091 112,215644 1131,4524 987,958037 112,215166 1292,77786		x x x x x x x x x x x x x x x x x x x		Rhodospine et rhodospine like
4 1 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 7 7 1 2 2 5 6 7 7	Smp_149770 Smp_319050 Smp_085780 Smp_00370 Smp_123700 Smp_134100 Smp_147020 Smp_147020 Smp_124660 Smp_900070 Smp_900070 Smp_900090 Smp_158570 Smp_158570 Smp_341570 Smp 900080 Smp 308470 Smp_327560 Smp 315770 Smp 300383 Smp 300383 Smp 300383 Smp 300383 Smp 300383 Smp 303310	Putative grantesini oupled receptor Transmembrane protein 104 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative gardy-inucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) Vetative guanyl-nucleotide exchange factor SEA domain SEA Forkhead-associated (FHA) domain RNA-binding protein 5, Survival motor NA Isochorismatase domain-containing protein NA Isochorismatase domain-containing protein NA NA Putative trabodosin-like orohan GPCR	37,5075607 18,1073535 859,953736 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 7632,78497 8919,57763 6,95190946 1120,47018 57,0753046 129,47018 129,28918 189,457861 195,28918 189,457861 195,28918 189,457861 195,28918 189,457861 195,28918 189,457861 195,28918 189,457861 195,28918 189,457861 195,28918 189,457861 195,28918 189,457861 195,28918 189,457861 195,28918 189,457861 195,28918 189,457861 195,28918 189,457861 195,28918 196,457861 195,28918 196,457861 195,28918 196,457861 195,28918 196,457861 195,28918 196,45786 196	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,4612 674,663091 502,715624 11814,2048 987,958037 112,126106 1792,77786 1430,48575 36,823408		x x x x x x x x x x x x x x x x x x x	D (1-0)	Rhodospine et rhodospine like
4 1 3 3 1 3 3 3 3 5 5 5 5 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7	Smp_149770 Smp_319050 Smp_085780 Smp_00370 Smp_127370 Smp_127370 Smp_14000 Smp_147020 Smp_147020 Smp_900070 Smp_900070 Smp_900070 Smp_124660 Smp_900070 Smp_900070 Smp_18570 Smp_12260 Smp_312750 Smp_900383 Smp_900383 Smp_33310 Smp_272450 Smp_272450 Smp_335410	Putative garoteini coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein L1DP 285 ribosomal protein S2, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) Putative guanyl-nucleotide exchange factor SEA domain SEA Forkhead-associated (FHA) domain RNA-binding protein 5, Survival motor NA Iborechoxing protein NA NA Putative rhodopsin-like orphan GPCR NA	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 7632,78497 8919,57763 6,95190946 1120,47018 8919,57763 129,3317331 189,457861 195,28918 168,208013 2003,66364 17,2420897 29,4953463 147,7707070	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 1086,4612 931,539179 11086,4612 674,663091 502,715624 1181,2064 1182,27786 1430,44575 536,823608		x x x x x x x x x x x x x x x x x x x	D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like
4 1 3 3 1 3 3 3 3 5 5 6 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp 149770 Smp 319050 Smp 085780 Smp 000370 Smp 134100 Smp 205760 Smp 147020 Smp 124660 Smp 900070 Smp 900070 Smp 900090 Smp 9004540 Smp 158570 Smp 327560 Smp 90080 Smp 90080 Smp 902450 Smp 323510	Putative grantesini coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein SLIDP 285 ribosomal protein S2, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acety/glucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arfo guanine nucleotide exchange factor Putative arfo guanine nucleotide exchange factor Putative ards guanyl-nucleotide exchange Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) Vetative guanyl-nucleotide exchange factor SEA domain SEA Forkhead-associated (FHA) domain RNA-binding protein 5, Survival motor NA Isochorismatase domain-containing protein NA NA Putative glucosamine-fructose-6-phosphate aminotransferase Na NA NA Putative rhodopsin-like orphan GPCR NA G - PROTEIN RECEP E1_2 domain-containing protein	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2608184 137,021604 558,598225 129,09676 7632,78497 7632,78497 6,95190946 1120,47018 57,0753046 90,3317331 189,457861 195,28918 168,208013 2003,66364 17,2420897 29,4953463 14,7720279 1423 33106	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,4612 674,663091 112,126106 1792,77786 112,126106 1792,77786 1430,48575 536,823608 1067,93035 204,82765 104,827765 10		x x x x x x x x x x x x x x x x x x x	D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like
4 1 3 3 3 5M_V 7_MIT 0 SM_V 7_MIT 0 3 1 2 5 6 7 7 2 W 2 W 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 147020 Smp 147020 Smp 147020 Smp 124660 Smp 900070 Smp 900070 Smp 900070 Smp 9004540 Smp 158570 Smp 341570 Smp 34310 Smp 336310 Smp 205500 Smp 302500 Smp 323930	Putative garoteini coupled receptor Transmembrane protein 104 TMEM164 Bibosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Grycosi pupied receptor, putative Guanine nucleotide-binding protein subunit gamma Putative garotein top Putative arf6 guanine nucleotide exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) Putative guanyl-nucleotide exchange factor SEA domain SEA Forkhead-associated (FHA) domain RNA-binding protein 5, Survival motor NA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA Putative rhodopsin-like orphan GPCR G G. PROTEIN, RECEP [F1, 2 domain-containing protein Putative grotein	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 8919,57763 8919,57763 8919,57763 6,9510946 1120,47018 57,0753046 90,3317331 189,457861 195,28918 168,208013 129,453463 14,7720279 1442,33196	2/6,983,829 2/630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,4612 674,663091 502,715624 11814,2048 987,958037 112,126106 1430,48575 536,6823608 1067,93033 204,827051 200 98:6925		x x x x x x x x x x x x x x x x x x x	D (L-O) D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like
4 1 3 3 1 3 3 3 3 5 5 5 6 7 7 1 2 W 2 W 2 W 2 W 2 W 2 W 2 C C C 2 C C C 2 C C C C C C C C C C C C C	Smp 149770 Smp 319050 Smp 085780 Smp 000370 Smp 12370 Smp 124100 Smp 1247020 Smp 124660 Smp 900070 Smp 900090 Smp 900090 Smp 084540 Smp 11220 Smp 14570 Smp 000370 Smp 9008470 Smp 084540 Smp 11220 Smp 315570 Smp 9000801 Smp 203800 Smp 203803 Smp 203303 Smp 123233 Smp 123293 Smp 123293	Putative grantesini oupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein LDP 285 ribosomal protein S2, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acety/glucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arfs guanine nucleotide exchange factor exchange factor Putative guanyl-nucleotide exchange Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) Putative guanyl-nucleotide exchange factor SEA domain SEA Forkhead-associated (FHA) domain RNA-binding protein 5, Survival motor NA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA Putative rhodopsin-like orphan GPCR G. PROTEIN, RECEP_F1.2 domain-containing protein NA NA Putative ard figuase-activating protein NA Putative ard figuase-activating protein NA	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 7632,78497 6,95190946 1120,47018 8919,57763 6,95190946 1120,47018 168,208013 2003,66364 17,2420897 29,4953463 14,7720279 1442,33196 1072,70429 10,5290,770	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 1086,4612 931,539179 11086,4612 502,715624 1181,2048 987,958037 112,126106 1729,77786 1430,445575 536,823608 1067,93035 204,827051 200,986886		x x	D (L-O) D (L-O) D (L-O) D (L-O) D (L-O)	Rhodospine et rhodospine like
4 1 3 3 1 3 3 3 3 3 3 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 124700 Smp 124700 Smp 147020 Smp 147020 Smp 147020 Smp 900070 Smp 900070 Smp 900070 Smp 900470 Smp 308470 Smp 32230 Smp 332300 Smp 323200 Smp 334600	Putative grantesini A Putative robal A Putative robal A Putative robal A Putative robal A Putative grantesini A Putative robal A Putative grantesini A Putative grantesini A Putative robal A Putative robal A Putative grantesini A Putative robal A Putative grantesini A Putative robal A Putative grantesini A Putative robal A Putative robal A Putative grantesini A Putative robal A Putative grantesini A Putative robal A	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 7632,78497 7632,78497 7632,78497 6,95190946 1120,47018 57,0753046 195,28918 168,208013 2003,66364 17,2420897 129,4953463 14,7720279 1442,33196 1072,70429 106,580078	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 400,256562 1728,24977 931,539179 11086,4612 674,663091 112,126106 1430,48575 536,823608 1430,48575 536,823608 1067,93035 204,827051 200,986886 19779,3702 204,827051 200,986886		x x	D (L-O) D (L-O) D (L-O) D (L-O) D (L-O) D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction
4 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 1427370 Smp 143100 Smp 205760 Smp 1447020 Smp 124660 Smp 900070 Smp 900090 Smp 308470 Smp 303030 Smp 336310 Smp 336310 Smp 332500 Smp 334600 Smp 334400	Putative granteini coupled receptor Transmembrane protein 104 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Glycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor Putative guanyl-nucleotide exchange factor Quative guanyl-nucleotide exchange factor NADH dehydrogenase subunit 4 (mitochondrion) SEA domain SEA domain SEA domain NA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA Putative rhodopsin-like orphan GPCR G_PROTEIN, RECEP_F1_2 domain-containing protein Putative arf guase-activating protein Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA Putative rhodopsin-like orphan GPCR G_PROTEIN, RECEP_F1_2 domain-containing protein Putative arf guase-activating protein Putative arf guase-activating protein Putative glucosamine-fructose-6-phosphate Putative rhodopsin-like orphan GPCR G_PROTEIN, RECEP_F1_2 domain-containing protein Putative arf gtpase-activating protein Putative arf gtpase-activating protein Putative arf gtpase-activating protein Putative arf gtpase-activating protein Phosphodiesterase Phosphodiesterase	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 8919,57763 6,95190946 1120,47018 57,0753046 90,3317331 189,457861 1195,28918 188,208013 189,457861 119,28918 108,20813 119,457861 119,28918 108,20813 119,457861 119,24918 109,24918 109,24918 109,24918 100,250078 107,70429 106,650078 107,70429 106,650078 107,70429 106,650078 107,70429 106,650078 107,70429 106,650078 107,70429 106,650078 107,70429 106,650078 107,70429 106,650078 107,70429 106,6977 106,977 106	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 11086,4612 674,663091 502,715624 11814,2048 987,958037 112,126106 1430,48575 36,623608 1067,93035 204,827051 200,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,986886 1430,48575 120,972234 120,972234 120,972234 120,972234 15,97264 15		x x x x x x x x x x x x x x x x x x x	D (L-O) D (L-O) D (L-O) D (L-O) D (L-O) D (L-O) D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction
4 1 3 3 1 3 3 3 3 5 5 6 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp 149770 Smp 319050 Smp 085780 Smp 000370 Smp 12370 Smp 124100 Smp 1247020 Smp 1247020 Smp 124660 Smp 900070 Smp 900090 Smp 900470 Smp 084540 Smp 158570 Smp 900380 Smp 900380 Smp 327560 Smp 320300 Smp 320300 Smp 323500 Smp 334600 Smp 314140 Smp 314140	Putative grantesini coupled receptor Transmembrane protein 164 TMEM164 Ribosomal protein LUP 285 ribosomal protein 52, mitochondrial Sellenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acety/glucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor Putative guanyl-nucleotide exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) SEA domain SEA domain Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA Putative rhodopsin-like orphan GPCR G_PROTEIN_RECEP_F1_2 domain-containing protein Putative arfg tpase-activating protein Putative argetserase Phosphodiesterase Er-hand domain-containing protein Putative argetserase Putative	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 7632,78497 6,95190946 1120,47018 8919,57763 6,95190946 1120,47018 168,208013 2003,66364 11,72420897 29,4953463 147,720279 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 10,70429 10,70429 10,6580078 10,70429 10,70429 10,6580078 10,70429 10,658078 10,70429 10,70429 10,658078 10,70429 10,70429 10,658078 10,70429 10,70429 10,70429 10,70429 10,70429 10,658078 10,70429 10,70429 10,658078 10,70429 10,70429 10,70429 10,658078 10,70429 10,70429 10,70429 10,70429 10,70429 10,70429 10,70429 10,658078 10,70429	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 1086,4612 931,539179 11086,4612 1728,24977 112,126106 1792,77786 1430,48575 536,823608 1067,93035 204,827051 200,986886 19779,3702 690,972234 15,4622564 15,462564		x x x x x x x x x x x x x x x x x x x	D (L-O) D (L-O) D (L-O) D (L-O) D (L-O) D (L-O) D (L-O) D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction
4 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 124370 Smp 124370 Smp 124700 Smp 124600 Smp 900070 Smp 900070 Smp 900070 Smp 900450 Smp 900800 Smp 9008440 Smp 158570 Smp 9152760 Smp 322560 Smp 323500 Smp 323300 Smp 323300 Smp 3341000 Smp 341400 Smp 341400 Smp 341400 Smp 005600 Smp 341900 Smp 005600	Putative grantesini A Putative grantesini Phosphodiesterase Phosphodiesterase PLK A Puta	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 7632,78497 7632,78497 7632,78497 6,95190946 1120,47018 57,0753046 199,57763 69,317331 189,457861 195,28918 1868,208013 2003,6634 17,2420897 194,4233196 1072,70429 106,580078 197,662779 126,6371 4487,81793 128,612355 129,1255 129,09576 120,09576 120,09576 120,07530 120,075 120,0	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,4612 674,663091 502,715624 11814,2048 987,958037 112,126106 1164,2048 1067,93035 204,827051 200,986886 1977,93702 200,9826886 1977,93702 200,972234 15,4622564 0 0 355,567316 0 1552,124 0 0 1552,124 0 0 1552,124 0 0 1552,124 0 1552,124 0 1552,124 0 1552,124 1552,		X X X X X X X X X X X X X X X X X X X	D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction
4 1 3 3 1 3 3 3 3 3 5 5 5 5 5 6 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 147020 Smp 147020 Smp 147020 Smp 147020 Smp 147020 Smp 900070 Smp 900070 Smp 900900 Smp 900900 Smp 9004540 Smp 9158570 Smp 912265 Smp 215270 Smp 010380 Smp 203500 Smp 336310 Smp 3341570 Smp 336310 Smp 935500 Smp 334400 Smp 334600 Smp 341400 Smp 341400 Smp 341400 Smp 341500 Smp 341500	Putative grantesini A Putative Serverse	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 7632,78497 8919,57763 6,95190946 1120,47018 8919,57763 6,95190946 1120,47018 109,28918 108,28918 108,28918 108,28918 108,28918 108,28918 109,28918 108,28918 109,28918 109,28918 109,28918 109,28918 109,269279 1442,33196 107,760279 1442,33196 107,760279 1442,33196 107,760279 1448,81793 218,613756 218,6137	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 1086,4612 674,663091 502,715624 41814,2048 987,958037 112,126106 1430,48575 536,623608 1067,93035 204,827051 200,986886 10792,77786 1430,48575 306,823608 1067,93035 204,827051 200,986886 19779,3702 690,972234 15,4622564 0 0 355,567515 0 0		x x	D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Goresponse to oxidative stress Goresponse to oxidative stress
4 1 3 3 1 3 3 3 3 3 3 5 5 6 1 2 W	Smp 149770 Smp 319050 Smp 085780 Smp 000370 Smp 134100 Smp 12370 Smp 124100 Smp 1247020 Smp 124660 Smp 900070 Smp 900090 Smp 900450 Smp 124660 Smp 9004540 Smp 308470 Smp 084540 Smp 158570 Smp 900830 Smp 327560 Smp 323930 Smp 900830 Smp 323930 Smp 152370 Smp 334000 Smp 341900 Smp 341900 Smp 34203 Smp 095609	Putative grantesini A Putative regrantesion A Putative regrantesion A Putative regrantesion A Putative regrantesion A Putative grantesini A Putative grantesini A Putative grantesini A Putative grantesini A Putative regrantesion A Putative grantesion A Putative a Protein A Putative a Protein A Putative a Pu	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 7632,78497 7632,78497 6,95190946 1120,47018 8919,57763 6,95190946 1120,47018 168,208013 2003,6634 17,2420897 29,4953463 1442,733196 1072,70429 10,6580078 126,8371 126,8371 4487,81793 4487,81793 128,613756 128,034346 99,13756 128,034346 128,043756 128,034346 128,043756 128,034346 128,043756 128,034346 128,043756 128,034346 128,043756 128,034346 128,043756 128,034346 128,03456 128,034346 128,03456 128,034346 128,03456 128,04	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,4612 674,663091 502,715624 11814,2048 987,958037 112,126106 1792,77786 1430,48575 536,823608 1067,93035 204,827051 200,986886 19779,3702 690,972234 15,4622564 0 555,567515 34,9837174 11207,727		x x x x x x x x x x x x x x x x x x x	D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Goresponse to oxidative stress Goresponse to oxidative stress Coresponse to oxidative stress Coresponse to oxidative stress
4 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 5 5 6 7_MIT 0 3 3 2 2 5 6 1 2 2 W 2 W 2 W 2 W 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 12370 Smp 124370 Smp 205760 Smp 124660 Smp 900070 Smp 900070 Smp 900070 Smp 308470 Smp 30810 Smp 30810 >Smp 341300 >Sm	Putative grantenin coupled receptor Transmembrane protein 104 TMEM164 TMEM164 Tibosomal protein 110P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) Gorpotein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative granteninucleotide exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) SEA domain SEA domain SEA domain SEA domain NA Putative glucosamine-fructose-6-phosphate aminotransferase Thoredoxin domain-containing protein NA Putative rhodogsin-like orphan GPCR G_PROTEIN_RECEP_F1_2 domain-containing protein Phosphodiesterase Phosphodiesterase Phosphodiesterase Phosphodiesterase Pictation NA Ciutathione peroxidase C	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,37,021604 558,598225 129,09676 7632,78497 8919,57763 8919,57763 8919,57763 8919,57763 120,047018 57,0753046 90,3317331 189,457861 195,28918 168,208013 1072,70429 10,6580078 1072,70429 10,6580078 197,662779 126,8371 4487,81793 218,613756 218,013456 891,50763 218,613756 218,013456 128,034346 93,158083 218,613756 218,013456 128,034346 128,04346 128,043446 128,04346 128,0456 1	2/6,983,829 2/630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,4612 674,663091 502,715624 11814,2048 987,958037 112,126106 1134,2048 987,958037 112,126106 1067,93035 204,827051 209,982851 209,982851 209,97234 15,4622564 0 355,567515 34,9837174 11292,787 122,2747 11292,787 122,2747 11292,787 122,2747 1222,7747 122		x x	D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Coresponse to oxidative stress Goresponse to oxidative stress
4 1 3 3 1 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 147020 Smp 147020 Smp 147020 Smp 147020 Smp 147020 Smp 147020 Smp 900070 Smp 900070 Smp 900900 Smp 908470 Smp 9084540 Smp 9158570 Smp 315870 Smp 911220 Smp<011320	Putative gratein coupled receptor Transmembrane protein 164 TMEM164 Tibosomal protein 10P 285 ribosomal protein 52, mitochondrial Selenoprotein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arfo guanine nucleotide exchange factor Putative guopuled receptor Putative guopuled receptor Putative guopuled receptor SEA domain SEA Forkhead-associated (FHA) domain NA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA Putative grotein NA Putative arfoguanie-containing protein NA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA Putative arfoguanie-containing protein NA Putative ard gluse-eracivating protein NA Putative glucosamine-containing protein SA Putative ard gluse-eracivating protein SA Putative ard gluse-eracivating protein SA Putative ard gluse-activating protein Samptode serase Phosphodiesterase Phosphodiesterase Phosphodiesterase Frintin Er-And domain-containing protein Samptode	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 8919,57763 6,95190946 1120,47018 8919,57763 6,95190946 1120,47018 2003,66364 10,228918 168,208013 109,28918 168,208013 1003,66364 10,7270279 1442,33196 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 10,6580078 1072,70429 128,613756 1280,34346 981,580833 666,787097 181,4 67797 181,4	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 1086,4612 674,663091 502,715624 1184,2048 1842,048575 1636,63091 502,715624 1184,2048 1842,048575 1067,93035 204,827051 200,986886 1067,93035 204,827051 200,986885 19779,3702 690,972234 15,4622564 0 34,9837174 11292,787 40,0229118 34,9837174 11292,787 40,0229118 34,036715 34,9837174 11292,787 40,0229118 34,036715 34,9837174 11292,787 40,0229118 34,036715 34,03715		x x x x x x x x x x x x x x x x x x x	D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction GOresponse to oxidative stress GO homeostatic process
4 1 1 3 3 1 3 3 3 3 3 5 5 6 1 2 W 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp 149770 Smp 319050 Smp 085780 Smp 000370 Smp 124700 Smp 124700 Smp 147020 Smp 147020 Smp 147020 Smp 147020 Smp 900070 Smp 900070 Smp 900090 Smp 9008470 Smp 084540 Smp 158570 Smp 341570 Smp 336310 Smp 327560 Smp 33230 Smp 334300 Smp 334300 Smp 34400 Smp 34400 Smp 05800 Smp 058700 Smp 058700 Smp 058700 Smp 058700 Smp 058700 Smp 058700 >Smp<05869	Putative grotein coupled receptor Transmembrane protein 104 TMEM164 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG Giycosyl transferase, family 14 beta-1,6-N-acetyiglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative grotein factor Quantie guante nucleotide Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) SEA domain Futative glucosamine-fructose-6 phosphate aminotransferase Thioredoxin domain-containing protein NA Putative rhodopsin-like orphan GPCR G PROTEIN RECEP F1, 2 domain-containing protein Phosphodiesterase EF-hand domain-containing protein Phosphodiesterase EF-hand domain-containing protein NA Giutathione peroxidase Giutathione peroxi	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 7632,78497 7632,78497 6,95190946 1120,47018 8919,57763 6,95190946 1120,47018 195,28918 168,208013 2003,66364 11,72420897 29,4953463 14,7720279 10,6580078 1442,33196 1072,70429 10,658078 126,8371 1487,81793 126,8371 1487,81793 126,8371 1487,81793 126,8371 1487,81793 126,8371 1487,81793 126,8371 1487,81795 126,8371 1487,81795 126,8371 1487,81795 126,8371 1487,81795 126,8371 1487,81795 126,8371 1487,81795 126,8371 1485,80833 666,787097 181,459787 197,62277 181,459787 197,62277 197,6227 10,658078 10,72042 10,658078 126,8371 126,8370 126,8371 126,87097	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,4612 674,663091 502,715624 11814,2048 987,958037 112,126106 1792,77786 1430,48575 536,823608 1067,93035 1067,93035 104,827051 200,986886 19779,3702 15,4622564 0 355,567515 34,9837174 11292,787 0 355,567515 34,9837174 11292,787 0 355,567515 34,9837174 11292,787 12,462254 0 0 15,567515 15,462218 15,462254 0 0 15,567515 15,462218 17,28,24937 17,462254 15,46254 15,		x x x x x x x x x x x x x x x x x x x	D (L-O) D (L-O	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Goresponse to oxidative stress GOresponse to oxidative stress GOnemostatic process GO homeostatic process
4 1 3 3 1 3 3 3 3 3 3 3 3 3 3 5 5 7 7 1 2 W 2 W 2 W 2 2 2 2 2 2 2 2 4 4	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 124370 Smp 124370 Smp 124500 Smp 900070 Smp 308470 Smp 308470 Smp 308470 Smp 312560 Smp 911220 Smp 930310 Smp 203500 Smp 33230 Smp 33230 Smp 332400 Smp 134140 Smp 342030 Smp 058690 Smp 058700 Smp 058700 Smp 058700 >Smp 058700 >S	Putative grantenin Completereceptor Transmembrane protein 104 TMEM164 TMEM164 Selenoprotein SelK/SelG SelK_SelG Glycosyl transferase, family 14 Guanine nucleotide - SelK_SelG Glycosyl transferase, family 14 Guanine nucleotide - SelK_SelG Putative arfo guanine nucleotide Selenoprotein SelK/SelG Putative arfo guanine nucleotide Putative guanyl-nucleotide SelA domain SEA domain SEA Forkhead-associated (FHA) domain NA Putative glucosamine-fructose-6-phosphate aminotransferase Thoreodoxin domain-containing protein NA Putative robopsin-like orphan GPCR GPROTEIN_RECEP_F1_2 domain-containing protein Phosphodiesterase Phosphodiesterase Phosphodiesterase Ferritin Ferritin Ferritin Calcium load-activated calcium channel	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 8919,57763 8919,57763 8919,57763 6,9510946 1120,47018 57,0753046 90,3317331 189,457861 195,28918 168,208013 195,28918 168,208013 195,28918 168,208013 195,28918 168,208013 195,28918 168,208013 195,28918 168,208013 195,28918 168,208013 195,28918 168,208013 195,28918 168,208013 195,28918 128,04546 128,04547 128,0454	2/6,983,829 2/630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 931,539179 931,539179 11086,4612 674,663091 502,715624 11814,2048 987,958037 112,126106 1430,485705 366,823608 1430,485705 366,823608 1067,93035 204,827051 209,985812 209,985812 209,985812 209,985812 209,985812 209,972234 15,462254 0 355,567515 12,44217 12,92718 40,9229118 40,9229118 40,62005 22293,9025 15,44445 15,44215 15,46215 15,4445 15,44515	> > <t< td=""><td>x x</td><td>D (L-O) D (L-O)</td><td>Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction GOresponse to oxidative stress GOresponse to oxidative stress GOresponse to oxidative stress GO homeostatic process GO homeostatic process</td></t<>	x x	D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction GOresponse to oxidative stress GOresponse to oxidative stress GOresponse to oxidative stress GO homeostatic process
4 1 3 3 1 3 3 3 3 3 3 3 5 5 5 5 7 7 MIT 0 3 3 1 2 5 5 6 7 7 1 2 W 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp 149770 Smp 319050 Smp 085780 Smp 000370 Smp 12370 Smp 124100 Smp 1247020 Smp 1247020 Smp 124660 Smp 900070 Smp 900090 Smp 900470 Smp 900470 Smp 908470 Smp 084540 Smp 128270 Smp 308470 Smp 308470 Smp 1220 Smp 308470 Smp 1220550 Smp 327560 Smp 324300 Smp 122303 Smp 152370 Smp 334600 Smp 058690 Smp 342030 Smp 058690 Smp 058690 Smp<047680	Putative grates in Coupled receptor Transmembrane protein 1C4 Ribosomal protein LOP 285 ribosomal protein S2, mitochondrial Selenoprotein Coupled receptor Genomic Coupled receptor Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acety(glucosaminyltransferase (E.C.2.4.1.102) Goprotein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor Putative guanyl-nucleotide exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) SEA domain SEA Forkhead-associated (FHA) domain RNA-binding protein 5, Survival motor NA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA Putative rhodopsin-like orphan GPCR G_PROTEIN_RECEP_F2_2 domain-containing protein G_PROTEIN_RECEP_F2_2 domain-containing protein Putative ard fguase-activating protein SeF-Addomain-containing protein G_PROTEIN_RECEP_F2_2 domain-containing protein G_PROTEIN_RECEP_F2_2 domain-containing protein G_PROTEIN_RECEP_F2_4 domain-containing protein F1-Addomain-containing protein G_PROTEIN_RECEP_F2_4 domain-containing protein G_PROTEIN_RECEP_F2_4 domain-containing protein F1-Addomain-containing protein G_PROTEIN_RECEP_F2_4 domain-containing protein G_PROTEIN_RECEP_F3_4 domain-containing protein G_PROTE	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 7632,78497 7632,78497 6,95190946 1120,47018 8919,57763 6,95190946 1120,47018 129,28918 168,208013 1203,66364 14,7720279 126,8371 126,8371 126,8371 126,8371 218,613756 1280,34346 1280,	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 1086,4612 931,539179 11086,4612 1728,24977 1086,4612 1728,24977 1086,4612 1728,24977 1086,4612 1067,93035 204,827051 204,827051 204,827051 204,827051 204,827051 204,827051 204,827051 34,94837174 0 355,567515 34,9837174 0 355,567515 34,9837174 0 355,567515 34,9837174 0 22293,9025 136,44615 22293,9025 136,44615 2249,2024 254,72054 204,827054 204,827051 205,827051 204,827051 205,727056 205,	> > <t< td=""><td>x x x x x x x x x x x x x x x x x x x</td><td>D (L-O) D (L-O</td><td>Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Coresponse to oxidative stress Goresponse to oxidative stress Go homeostatic process Go homeostatic process</td></t<>	x x x x x x x x x x x x x x x x x x x	D (L-O) D (L-O	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Coresponse to oxidative stress Goresponse to oxidative stress Go homeostatic process
4 1 1 3 3 1 3 3 3 3 5 5 5 6 7 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 085780 Smp 124700 Smp 124700 Smp 147020 Smp 147020 Smp 147020 Smp 900070 Smp 900070 Smp 900070 Smp 308470 Smp 341570 Smp 332300 Smp 334000 Smp 34403 Smp 058700 >Smp 058700 S	Putative grotein coupled receptor Transmembrane protein 104 TMEM164 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG Glycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) SEA domain SEA domain SEA Forkhead-associated (FHA) domain NA Putative glucosamine-containing protein NA Sechorismatase domain-containing protein NA Putative rhodopsin-like orphan GPCR G PROTEIN_RECEP f1_2 domain-containing protein Phosphodiesterase Phosphodiesterase Phosphodiesterase Phosphodiesterase Phosphodiesterase Phosphodiesterase Phosphodiesterase Dibydrolipoyl dehydrogenase Dibydrolipoyl dehydrogena	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 7632,78497 7632,78497 7632,78497 7632,78497 7632,78497 7632,78497 7632,78497 120,05676 120,0763 120,0763 120,0763 120,0763 120,07530 120,07530 120,07530 120,07530 120,07530 126,8371 1442,32196 1072,70429 10,6580078 120,6580078 121,268371 1442,32196 1072,70429 10,6580078 126,8371 1442,81735 128,043346 981,580833 666,787097 126,8370 126,8371 1448,58787 128,043446 981,580833 307,763535 2333,69548 2950,53301 174,04057 174,04	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 11086,6412 674,663091 502,715624 11814,2048 987,958037 112,126106 1067,93035 204,827051 336,823608 1067,93035 204,827051 34,9837174 11292,787 355,567515 34,9837174 11292,787 15,462154 0 0 255,557515 34,9837174 11292,787 15,464512 24,47974 16,262054 16,262055 22293,9025 24,46415 254,749746 125,74974 125,74975 136,44615 254,749746 125,7		x x	D (L-O) D (L-O	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Goresponse to oxidative stress GOresponse to oxidative stress GOresponse to oxidative stress GOresponse to oxidative stress GO homeostatic process GO homeostatic proce
4 1 3 3 1 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 127370 Smp 127370 Smp 124370 Smp 124370 Smp 14100 Smp 147020 Smp 147020 Smp 900070 Smp 900070 Smp 900070 Smp 900070 Smp 308470 Smp 900900 Smp 308470 Smp 308470 Smp 308470 Smp 308470 Smp 900080 Smp 341570 Smp 901380 Smp 32330 Smp 32330 Smp 34400 Smp 03600 Smp 043030 Smp<04760	Putative gratein coupled receptor Transmembrane protein 104 TMEM164 Tibosomal protein 110P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Glycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) SEA domain SEA Forkhead-associated (FHA) domain RAN-binding protein 5, Survival motor NA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA Putative groupin-like orphan GPCR G_PROTEIN_RECEP_E1_2 domain-containing protein QPutative arf guase-activating protein Putative arf guase-activating protein Sea- Phosphodiesterase Phosphodiesterase Fr-hand domain-containing protein Gutathione peroxidase Glutathione peroxidase Glutathione peroxidase Ferritin Calcium load-activated calcium channel	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 7632,78497 7632,78497 7632,78497 7632,78497 7632,78497 7632,78497 129,09676 129,09676 129,09676 129,09676 129,09676 129,09676 129,28918 168,208013 199,457861 195,28918 168,208013 199,457861 195,28918 168,208013 199,457861 195,28918 168,208013 199,457861 197,262779 126,8371 128,8371 218,613756 51280,34346 981,580833 666,787097 126,8331 33,65548 2950,53301 1744,94912	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 1086,4612 674,663091 502,715624 11814,2048 987,958037 112,126106 1430,48575 336,623608 1067,93035 204,827051 200,986886 1067,93035 204,827051 200,986886 1067,93035 204,827051 200,986886 1067,93035 204,827051 200,986887 105,567515 200,986887 105,567515 200,987234 15,4622564 41,222787 40,2929118 62,062005 22293,9025 136,44615 264,749746 41,3215573	> > <t< td=""><td>x x</td><td>D (L-O) D (L-O)</td><td>Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Goresponse to oxidative stress GOresponse to oxidative stress GOresponse to oxidative stress GO homeostatic process GO homeostatic process</td></t<>	x x	D (L-O) D (L-O)	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Goresponse to oxidative stress GOresponse to oxidative stress GOresponse to oxidative stress GO homeostatic process
4 1 3 3 1 3 3 3 3 3 3 5 5 5 7 MIT 0 3 3 1 2 5 6 7 7 1 2 W 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 085780 Smp 124100 Smp 124100 Smp 1247020 Smp 124660 Smp 900070 Smp 900090 Smp 900470 Smp 90084540 Smp 188570 Smp 900830 Smp 327560 Smp 323503 Smp 323503 Smp 323503 Smp 334600 Smp 344140 Smp 33400 Smp 34303 Smp 05800 Smp 058690 Smp 058690 Smp 047680 Smp 043030 Smp 043030 Smp 043030 Smp 043202	Putative grates in coupled receptor Transmembrane protein 164 Ribosomal protein 10P 28 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Giycosyl transferase, family 14 beta-1,6-N-acety(glucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanien nucleotide-binding protein subunit gamma Putative arf6 guanine nucleotide exchange factor Putative arf6 guanine nucleotide exchange factor Putative guanyl-nucleotide exchange factor Putative guanyl-nucleotide exchange factor NA Hothydrogenase subunit 4 (mitochondrion) SEA domain SEA Forkhead-associated (FHA) domain NA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA Putative rhodopsin-like orphan GPCR G PROTEIN_RECEP_F1_2 domain-containing protein Putative arf gtapase-activating protein Putative argetserase Phosphodiesterase Phosphodiesterase Ferritin G Route Na Glutathione peroxidase Ferritin Calcium load-activated calcium channel	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 1,2698184 137,021604 558,598225 129,09676 7632,78497 7632,78497 7632,78497 7632,78497 7632,78497 7632,78497 7632,78497 7632,78497 129,09676 120,016 90,3317331 189,457861 195,28918 168,208013 2003,66364 19,720279 126,8371 126,8371 126,8373 126,8374 127,70279 126,8371 126,8373 218,613756 1280,34346 666,787097 1844,59787 218,613756 1280,34346 1280,34346 533,65948 2333,65948 295,053301 1744,94912 214,613746	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 1086,4612 931,539179 11086,4612 1728,24977 1086,4612 1728,24977 1086,4612 1728,24977 1086,4612 1728,24977 1086,4612 1728,24977 1086,4612 1728,24977 1086,4612 1728,24977 1128,24977 1128,24977 1128,24977 1128,24977 1128,24977 1128,24977 1128,24977 1128,24977 1128,24977 1128,24977 1128,24977 1128,24977 1129,7786 1430,44575 1977,93025 1977,93702 190,985,885 1067,93035 204,827051 200,985,885 1067,93035 204,827051 200,985,885 1077,93025 1069,972234 15,4622564 1072,2787 40,2929118 62,062005 22293,9025 136,44615 254,749746 123,2787 123,834461 243,749746 123,2787 123,834461 244,749746 123,749746 123,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 125,744746 125,749746 123,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 123,834461 124,2787 124,834461 124,2787 124,834747 125,907 125,907 125,907 126,847 127,748 127,748 128,747 128,7487 128,747 128,7487		x x	D (L-O) D (L-O	Rhodospine et rhodospine like Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Acteurs phototransduction Coresponse to oxidative stress Goresponse to oxidative stress Goresponse to oxidative stress Go homeostatic process K08959 K02183
4 1 3 3 1 3 3 3 3 3 3 5 5 6 7 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp 149770 Smp 319050 Smp 085780 Smp 085780 Smp 124370 Smp 124370 Smp 124370 Smp 1247020 Smp 124660 Smp 900070 Smp 900070 Smp 900070 Smp 900090 Smp 9008420 Smp 158570 Smp 915270 Smp 313270 Smp 323500 Smp 323300 Smp 3134100 Smp 341500 Smp 341400 Smp 058600 Smp 058600 Smp 058700 Smp 047680 Smp 047680 Smp 047680 Smp 047670 Smp 030300	Putative gratein coupled receptor Transmembrane protein 104 TMEM164 TMEM164 Ribosomal protein L10P 285 ribosomal protein 52, mitochondrial Selenoprotein SelK/SelG SelK_SelG Glycosyl transferase, family 14 beta-1,6-N-acetylglucosaminyltransferase (E.C.2.4.1.102) G-protein coupled receptor, putative Guanine nucleotide-binding protein subunit gamma Putative arfo guanine nucleotide exchange factor Putative guanyl-nucleotide exchange factor Cytochrome b (mitochondrion) SEA domain SEA domain SEA Forkhead-associated (FHA) domain NA Putative glucosamine-fructose-6-phosphate aminotransferase Thioredoxin domain-containing protein NA Putative rhodopsin-like orphan GPCR G_PROTEIN_RECEP_F1_2 domain-containing protein Phosphodiesterase Phosphodiesterase Phosphodiesterase Phosphodiesterase Piotein Na Calcum London Piotein Serine(threonine-protein kinase Serine(threonine-protein kinase Similar to 16 KDa calcum-binding protein Similar to 16	37,5075607 18,1073535 859,953736 213,641686 340,549469 3,82520644 137,021604 558,598225 129,09676 7632,78497 8919,57763 8919,57763 8919,57763 8919,57763 120,047018 57,0753046 90,3317331 189,457861 195,28918 168,208013 1072,70429 10,6580078 1072,70429 10,6580078 197,662779 10,6580078 197,662779 126,6371 128,04376 128,04346 891,59787 307,763355 213,65948 2950,53301 1744,94912 104,2024 205,053301 1744,94912 104,2024 205,053301 1744,94912 104,2024 205,053301 1744,94912 104,2024 205,053301 1744,94912 104,2024 205,053301 1744,94912 105,0540 124,0540 125,0550 124,0550 124,0550 124,0550 124,0550 124,0550 124,0550 124,0550 124,0550 124,0550 124,0550 124,0550 124,0550 125,0550 124,0550 125,0550 125,0550 125,0550 124,0550 125,0550 124,0550 124,0550 124,0550 125,05500 125,05500 125,0550 125,0550 125,0550 125,0550 12	276,983,829 2630,64798 1734,3278 217,671147 909,805039 1552,4241 6952,2787 794,43005 2788,14535 214,305466 400,256562 1728,24977 931,539179 931,539179 931,539179 931,539179 931,539179 931,539179 11086,4612 674,663091 502,715624 11814,2048 987,958037 112,126106 1067,93035 204,827051 1209,986886 19779,3702 690,972234 0 0 355,567515 34,9831714 11292,787 135,464515 224,749746 41,3215573 123,838448 536,300,0022	> > <t< td=""><td>x x</td><td>D (L-O) D (L-O</td><td>Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Goresponse to oxidative stress GOresponse to oxidative stress GOresponse to oxidative stress GO homeostatic process K08959 K02183 KM3445</td></t<>	x x	D (L-O) D (L-O	Rhodospine et rhodospine like Rhodospine et rhodospine like Acteurs phototransduction Goresponse to oxidative stress GOresponse to oxidative stress GOresponse to oxidative stress GO homeostatic process K08959 K02183 KM3445

1	Smn 344020	NA		63 9769703	651 793823		D (I-O)	K04967
2	Smp_344020	Putative ran gtnase-activating protein	l	05,5705703	717 242079		N (L-O)	Acteurs phototransduction
Z 2	Smp_154630	Supartie rac atpace activating protein%2C of	ungan%2Cnutativa	J0,41J9/10 499 414077	2 04409225		N (L-O)	Actours phototransduction
200	Smp_166210	Synaptic ras gipase activating protein%2C s	yngap%2Cputative	466,414977	3,94498223		N (L-O)	Acteurs phototransduction
1	Smp_100310	Putative ran gipase-activating protein		1020,42537	0.76051515		N (L-O)	Acteurs phototransduction
7	Smp_081190	Guanylate cyclase domain containing prote	in the second	1572 00644	1046 00776		N (L-O)	Acteurs phototransduction
1	Smp_140040	C DROTEIN DECED 52 4 domain containing prote	a protoin	20 760922	1100 47440		N (L-O)	Acteurs phototransduction
2	Smp_305430	G_PROTEIN_RECEP_F3_4 domain-containin	ring/threening kinase				N (L-O)	Acteurs phototransduction
2	Slub_210110	Serine/threohine kinase		551,200010	250,577250		N (L-U	Acteurs phototransduction
7	Smn 318260	FE-band domain-containing protein		18 0261/85	13 28/5/19		N (L-O)	Acteurs phototransduction
7W	Smp_310200	NA		668 270923	6275 04501		N (L-O)	Acteurs prototransduction
2.0	Smp_211230	NA	41 8562197	8 5592052		N (L-O)		
	Smp_126990	Putative synapsin	366 903621	1.05/19522		N (L-O)		
7W	Smp_120000	Synaptotagmin		256.045556	1577 79207		N (L-O)	
7W	Smp 245310	NA	pyriapiolagriiiii				N (L-O)	K05208
	Smn 176980	Putative beta-arrestin 1	A giutamate receptor ionotropic, NMDA 1				N (L-O)	
7W	Smp_170300	Bhodonsin		7 18443175	197 656822			
7W	Smp_162980	Putative rhodonsin-like ornhan GPCR		10 780007	1368 605			
1	Smp_102000	Putative rhodopsin-like orphan GPCR		10.4721482	76.8694442			
7W	Smp_050000	Rhodonsin-like ornhan GPCR putative [0.83224902	575 984625			
7W	Smp_107070	Putative rhodonsin-like ornhan GPCR		12 4494133	194 214496			
ZW	Smp_1/2010	Putative rhodopsin-like orphan GPCR		3.31127787	5833.2722			
7W	Smp 153200	Putative rhodopsin-like orphan GPCR		2,69906486	1116.50964			1
2	Smp 041700	Rhodopsin-like orphan GPCR.putative		7,20934203	741.222966			1
ZW	Smp 157050	Rhodopsin-like orphan GPCR.putative		6.05112192	162,565997			1
3	Smp 137980	Putative rhodopsin-like orphan GPCR		6.09011859	2369.18839			
ZW	Smp 084270	Rhodopsin-like orphan GPCR.putative		1.08020081	337.75706			1
1	Smp 161500	Rhodopsin-like orphan GPCR, putative		13,739393	437,280594			
1	Smp 125890	Putative DNA photolyase		655,264768	477,045066			
1	Smp 033700	DNA photolyase, putative		1287,58474	0			
4	Smp 027210	Flavoprotein domain-containing protein		23.1675611	109.08272			
2	Smp 062270	12.5 kDa retinal tissue protein (Rtp12.5),pu	tative	267,87092	591,628504			
ZW	Smp_306970	Putative retinal dehydrogenase		8,88763091	1116,24643			1
ZW	Smp_104210	Putative opsin-like receptor		6,69824823	20666,3499			1
ZW	Smp_180030	Putative opsin-like receptor		0,50439852	411,97546			1
ZW	Smp_170020	Putative neuropeptide receptor		9,25295687	261,767147			7
ZW	Smp_141880	Putative neuropeptide receptor		4,42406751	3076,17155			1
4	Smp_041880	Putative peptide (Allatostatin/somatostatin)-like receptor	0,25739638	8016,51462			1
1	Smp_149580	Peptide (FMRFamide/somatostatin)-like ree	Peptide (FMRFamide/somatostatin)-like receptor%2Cputative					1
ZW	Smp_204230	G_PROTEIN_RECEP_F1_2 domain-containing	5,46647038	240,445056			1	
2	Smp_173010	Putative dro/myosuppressin receptor	11,6425195	882,661491			1	
2	Smp_140620	Putative g-protein coupled receptor	3,46108488	967,058522			1	
ZW	Smp_131980	G_PROTEIN_RECEP_F1_2 domain-containing	g protein	0,82338607	612,149383			1
1	Smp 049330	GpcrRhopsn4 domain-containing protein		603,449227	3112,54544			7

Les nombres moyens de reads indiqués en rouge sont inférieurs à 10 reads.

Annexe 13 : Liste des gènes candidats différentiellement exprimés

Sur exp rim é	C hr	Gene ID	GFF annotation	HHsearch annotation	Moyenne Reads D	Moyenne Reads N	QTL	H 3 K 4 m e 3	H 3 K 9 a c	Ryth miq ue	Sélection
N	1	Smp_ 13730 0	G protein-coupled receptor, rhodopsin- like	7TM_GPCR_Srw	2	2573	Intras pé.				Rhodospine et rhodospine like
N	1	Smp_ 13267 0	EF-hand domain	Myosin Essential Chain {Bay scallop (Aequipecten irradians) [Taxld: 31199]}	6011	5333	Intras pé.				Acteurs phototransduction
N	1	Smp_ 15283 0	Na-Ca exchanger/integrin- beta4	Na/Ca exchange protein	335	13	Intras pé.			N (L- O)	K05849
N	3	Smp_ 32667 0	G protein-coupled receptor, rhodopsin- like	Platelet-activating factor receptor, Flavodoxin	4	1545	Inters pé.				Rhodospine et rhodospine like
N	3	Smp_ 30870 0	Protein phosphatase 2A regulatory subunit PR55	Serine/threonine-protein phosphatase 2A 65 kDa	8	879	Inters pé.				Acteurs phototransduction
N	4	Smp_ 31330 0	Small GTPase	Rab21 {Human (Homo sapiens) [Taxld: 9606]}	39	3109	Inters pé.			D (L- O)	Acteurs phototransduction
N	4	Smp_ 14554 0	G protein-coupled receptor, rhodopsin- like	Muscarinic acetylcholine receptor M2,Vasopressin V2	63	1438	Inters pé.			N (L- O)	K04131 + rhodopsine
N	1	Smp_ 17061 0	Putative rhodopsin-like	e orphan GPCR	2	516		x			Rhodospine et rhodospine like
N	1	Smp_ 15916 0	Putative ef-hand doma	in (C-terminal) containing protein	31	7342		x			Acteurs phototransduction
N	4	Smp_ 33690 0	Inositol 1,4,5-trisphosp	hate receptor	16	603		x		N (L- O)	K04958
N	4	Smp_ 17264 0	Putative gtp-binding pr	rotein alpha subunit	32	138		x			K04632
N	2	Smp_ 12545 0	Guanylate cyclase		6	1428		x			K12322
N	1	Smp_ 12737 0	Glycosyl transferase, family 14	beta-1,6-N- acetylglucosaminyltransferase (E.C.2.4.1.102)	4	1552		x	x		H3K4me3 et H3K9ac surreprésentés chez nocturne
N	3	Smp_ 13410 0	G-protein coupled rece	eptor, putative	1	6952			x		Rhodospine et rhodospine like
N	S M - V 7 - M IT 0	Smp_ 90009 0	NADH dehydrogenase	subunit 4 (mitochondrion)	8920	1728		x	x		GO Respiration cellulaire (N H3K9ac -1 et K4)
N	1	Smp_ 15857 0	NA		57	675		x	x		H3K9ac surreprésentés chez nocturne
N	z w	Smp_ 20350 0	G_PROTEIN_RECEP_F1	_2 domain-containing protein	15	1068				D (L- O)	Rhodospine et rhodospine like (GPR)
N	1	Smp_ 34203 0	NA		219	356				D (L- O)	GOresponse to oxidative stress

N	z w	Smp_ 03301 0	Similar to 16 kDa calciu	ım-binding protein	21	124				D (L- O)	K02183
N	z w	Smp_ 30726 0	Protein kinase domain-	-containing protein	59	536				D (L- O)	К04345
N	z W	Smp_ 18035 0	Rhodopsin		7	198					Rhodospine et rhodospine like (annotation)
N	z W	Smp_ 10421 0	Putative opsin-like rece	eptor	7	20666					Rhodospine et rhodospine like (Liang 2016 + Hoffman 2000 + Cosseau 2009)
N	z w	Smp_ 17002 0	Putative neuropeptide	receptor	9	262					Rhodospine et rhodospine like (Liang 2016)
N	z w	Smp_ 20423 0	G_PROTEIN_RECEP_F1	_2 domain-containing protein	5	240					Rhodospine et rhodospine like (Liang 2016)
D	1	Smp_ 13280 0	Myc-type, basic helix- loop-helix (bHLH) domain	Aryl hydrocarbon receptor nuclear translocator-like	91	4830	Intras pé.				Motif bHLH
D	1	Smp_ 00721 0	Rab-GTPase-TBC domain	Rab GTPase-activating protein 1	1264	6835	Intras pé.	x			Acteurs phototransduction
D	5	Smp_ 15898 0	EF-hand domain	Recoverin {Cow (Bos taurus) [Taxld: 9913]}	7	415	Intras pé.				Acteurs phototransduction
D	6	Smp_ 21063 0	Histone H2A	Histone H2A {Chicken (Gallus gallus), erythrocytes [TaxId: 9031]}	3662	2098	Intras pé.	x			Histone
D	3	Smp_ 30869 0	Protein phosphatase 2A regulatory subunit PR55	NA	277	764	Inters pé.				Acteurs phototransduction
D	1	Smp_ 31905 0	Transmembrane protein 164	TMEM164	860	1734		x			H3K4me3 surreprésenté chez diurne
D	3	Smp_ 00037 0	Selenoprotein SelK/SelG	SelK_SelG	341	910		x			H3K4me3 surreprésenté chez diurne
D	7	Smp_ 01038 0	Isochorismatase doma	in-containing protein	168	112		x	x		H3K9ac surreprésentés chez nocturne
D	z w	Smp_ 30697 0	Putative retinal dehydr	ogenase	9	1116					Rhodospine et rhodospine like (annotation)

Les nombres moyens de reads indiqués en rouge sont inférieurs à 10 reads.

Emission rythmique des cercaires de Schistosoma mansoni : du phénotype au(x) gène(s)

Schistosoma mansoni est un parasite responsable de la bilharziose. Cette maladie tropicale négligée sévit aussi en Corse depuis 2013. Le cycle de vie du parasite est divisé entre un hôte mammifère où il fait sa reproduction sexuée et un hôte mollusque d'eau douce où il fait une multiplication clonale. La forme du parasite qui infeste le mammifère est la cercaire. L'émission de ces cercaires suit un rythme de 24h dont le pic est calqué sur le pic d'activité aquatique de l'hôte mammifère. Afin de mieux comprendre la transmission des schistosomes vers l'hôte mammifère, les travaux de cette thèse s'intéressent au rythme d'émission des cercaires des chronotypes diurne et nocturne de Schistosoma mansoni. Cette étude est transversale en étudiant le phénomène de rythme des cercaires du phénotype (chronobiologie, histologie) jusqu'aux gènes impliqués (génétique, épigénétique et transcriptomique). Les approches de chronobiologie ont révélé que le rythme d'émission des cercaires s'adapte à l'inversion de photopériode et disparaît en l'absence d'alternance jour/nuit (lumière ou obscurité continue) sans pour autant statuer sur la nature endogène ou exogène de ce rythme. L'approche histologique a dévoilé que, en absence d'alternance jour/nuit, il y a une accumulation de cercaires matures en attente à l'intérieur des sporocystes et un arrêt de la cercariogenèse mettant ainsi en lumière le sporocyste comme autre acteur dans le phénotype du rythme d'émission des cercaires. Au niveau moléculaire, l'association des approches génétique (linkage mapping), épigénétique (ChIPmentation) et transcriptomique (RNA-seq) a montré qu'aucun gène canonique de l'horloge (clock) n'est impliqué. Toutefois les trois approches ont identifié des gènes impliqués dans le mécanisme de phototransduction, avec la rhodopsine comme photorécepteur.

Mots-clés : *Schistosoma mansoni*, Rythme d'émission des cercaires, Chronobiologie, Génétique, Epigénétique, Transcriptomique.

Schistosoma mansoni cercariae shedding rhythm: From phenotype to gene(s)

Schistosoma mansoni is a parasite responsible for bilharzia. This neglected tropical disease has also been prevalent in Corsica since 2013. The life cycle of the parasite is divided between a mammalian host where it does it sexual reproduction and a freshwater snail host where it does clonal multiplication. Cercariae is the parasite form that infests the mammal. The cercariae shedding follows a 24-hour rhythm based on the water activity peak of the mammalian host. In order to enhance the understanding of schistosome transmission to the mammalian host, the work of this thesis focuses on the cercariae shedding rhythm of the diurnal and nocturnal chronotypes of Schistosoma mansoni. This study is transversal by studying the phenomenon of cercariae shedding rhythm from the phenotype (chronobiology, histology) to the genes involved (genetics, epigenetics and transcriptomics). Chronobiology approaches revealed that the cercariae shedding rhythm adapts to photoperiod inversion and disappears in the absence of day/night alternation (continuous light or darkness) without however ruling on the endogenous or exogenous nature of this rhythm. The histological approach revealed that, in the absence of day/night alternation, there is an accumulation of mature cercariae waiting inside the sporocysts and an arrest of cercariogenesis thus highlighting the sporocyst as another actor in the phenotype of the cercarial emission rhythm. At the molecular level, the combination of genetic (linkage mapping), epigenetic (ChIPmentation) and transcriptomic (RNA-seq) approaches showed that no canonical clock gene is involved. However, all three approaches identified genes involved in the phototransduction mechanism with rhodopsin as the photoreceptor.

Keywords: *Schistosoma mansoni*, Cercariae shedding rhythm, Chronobiology, Genetics, Epigenetics, Transcriptomics.