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A B S T R A C T

In recent years, the concept of crossdocking has received a lot of at-
tention in literature. A crossdock is a logistics platform that promotes
rapid product turnover through efficient synchronization of inbound
and outbound trucks, with the volume of products stored kept as low
as possible. Crossdocking raises many logistical problems, including
the scheduling of incoming and outgoing trucks on the platform’s
doors. The classical objective considered in the literature for this prob-
lem is the minimization of the makespan, a very common criterion
in scheduling. However, for crossdocking, minimizing the departure
date of the last truck does not necessarily guarantee a good synchro-
nization of the trucks. Therefore the makespan does not seem to be
the most relevant objective.

In order to meet the need for synchronization and to favor fast rota-
tions, our work proposes alternatively to minimize the total sojourn
time of the pallets in the storage. We first study the deterministic
version of this scheduling problem. Its complexity is detailed under
different assumptions to better identify the elements leading to its
NP-hardness. Afterwards, different solution methods are proposed: a
classical integer linear programming method using time indexed de-
cision variables, a critical-set algorithm that exploits a family of new
valid inequalities with iterative addition of cuts, and methods based
on constraint programming. A comparative analysis of these different
methods is proposed.

In a second step, we study a non-deterministic version of our truck
scheduling problem in which uncertainties on truck arrival dates are
introduced in the form of equiprobable time intervals. A proactive-
reactive scheduling method using the concept of groups of permutable
tasks is proposed to cope with the uncertainties. Groups of permutable
trucks are sequenced and assigned to the docks and later, during the
scheduling implementation, a particular total truck order is chosen
based on the actual realization of arrival dates, using a reactive algo-
rithm.
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R É S U M É

La problématique dite de crossdocking a été source de beaucoup
d’attention ces dernières années dans la littérature. Un crossdock est
une plateforme logistique favorisant, par une synchronisation efficace
des camions entrants et sortants, une rotation rapide des produits, le
volume de produits stockés devant être le plus faible possible. Le
crossdocking soulève de nombreux problèmes logistiques, dont no-
tamment celui de l’ordonnancement des camions entrants et sortants
sur les quais de la plateforme. L’objectif classiquement considéré dans
la littérature pour ce problème est la minimisation du makespan, cri-
tère très répandu en ordonnancement. Pour le crossdocking néan-
moins, minimiser la date de départ du dernier camion ne garantit
pas nécessairement une bonne synchronisation des camions et le ma-
kespan ne semble donc pas être l’objectif le plus pertinent.

Pour répondre au besoin de synchronisation et favoriser les rota-
tions rapides, notre travail propose de minimiser le temps de séjour
total des palettes dans le stock. Nous étudions d’abord la version
déterministe de ce problème d’ordonnancement. Sa complexité est
détaillée selon différentes hypothèses pour identifier les éléments me-
nant à sa NP-difficulté. Ensuite, différentes méthodes de résolutions
sont proposées: une méthode classique de programmation linéaire
en nombres entiers utilisant des variables de décision indexées par le
temps, une formulation basée sur les ensembles critiques qui exploite
une nouvelle famille d’inégalités valides avec ajout itératif de coupes
et des méthodes basées sur la programmation par contraintes. Une
analyse comparative de ces différentes méthodes est proposée.

Dans un second temps, nous étudions une version non-déterministe
de notre problème d’ordonnancement dans laquelle des incertitudes
sur les dates d’arrivées des camions sont introduites sous la forme
d’intervalles de temps équiprobables. Une méthode d’ordonnancement
proactive-réactive utilisant le concept de groupes d’opérations permu-
tables est proposée pour faire face aux incertitudes. Des groupes de
camions permutables sont séquencés et affectés aux quais puis, du-
rant l’exécution d’ordonnancement, un ordre total est choisi en fonc-
tion de la réalisation des dates d’arrivées, à l’aide d’un algorithme
réactif.
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1
I N T R O D U C T I O N

With the globalization of markets, companies are expanding, carry-
ing more products on larger distances. In order to maintain shipping
cost competitive, the supply chain have to be adapted to the emer-
gence of new needs. A specific supply chain organization must be
developed in order to appropriately fulfill market expectations and
customer needs. The supply chain is designed according to the dis-
tances to be travelled, the consolidation needs, the quantities to be
shipped, the rotation frequency of the products, etc. The introduction
of crossdocks as logistics nodes has been a revolution in the supply
chain field in recent years. Acting like a logistic hub, the crossdock
consolidates the product flows, with transshipment of goods from in-
bound to outbound trucks according to the destinations in order to
have a quick transition and few storage. One of the first references on
crossdocking was published in 1990 by Tsui and Chang (1990) who
were interested in the problem of assigning trucks to the doors of a
crossdock. Since then, thousands of articles have been written on a
wide variety of crossdocking topics and the literature continues to
grow significantly today.

Among all problems related to crossdocking, this work focuses on
the crossdocking truck scheduling problem (CTSP), which was first
addressed in (Chen et al., 2009). CTSP is often considered as the core
of crossdocking. Indeed, it is crucial to ensure the synchronization
of the trucks which is necessary for a fluid rotation of the products.
Trucks cannot simply be loaded or unloaded when they enter the
crossdock as there are only a limited number of doors available and
limited storage space. There is a flow of pallets from incoming to out-
going trucks, and therefore the order in which the trucks are loaded
and unloaded is important. In a traditional crossdock, doors are a
limited resource and a truck should not stay at the door for too long.
Most of the time, trucks have different arrival dates and must leave
the platform on specific departure dates to deliver their products. The
nature of the objective being considered can make the CTSP very dif-
ficult. Although makespan is often studied in the literature, its use is
contested in the industry, and other more storage-oriented objectives
may be preferred.

One main contribution of this thesis relies on the original storage-
oriented objective that is studied. Indeed, in order to favor the syn-
chronization of trucks, i.e. to reduce the storage over time, we focus
on the minimization of the sojourn time of the products inside the
storage area. The inspiration came from an industrial case working
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2 introduction

with a carousel for consolidation and storage. Moreover, we choose a
mixed mode to manage the doors, meaning that any door can handle
both inbound and outbound trucks. Such a mode is known to allow
a better synchronization, which is confirmed by both industrial feed-
back and scientific literature. The other assumptions we made are
very common; i.e.: time windows associated with trucks, forbidden
preemption, handover relationships.

Two main versions of the CTSP are studied in this thesis. In its first
version, the problem is studied deterministically. We assume that the
trucks arrive on time, and that they do not undergo a loading or
unloading that is longer than expected (which is a bit unrealistic).
Different solution approaches are considered, either based on mixed
integer linear programming, constraint programming or more ad hoc
branch-and-cut strategies. The second version of the CTSP studied
involves uncertainties. This approach was developed following dis-
cussions with industrial users about their requirements, which con-
firmed that arrival delays of trucks are very frequent and often dam-
aging to the synchronization. Decision makers are allowed to change
the order of trucks on the dock doors, based on the actual arrival
dates. We study how to guarantee the performance of a schedule that
allows such flexibility.

This thesis is divided into three parts. The first part presents a de-
tailed description of the problem, discusses our positioning, and pro-
vides complexity studies, taking into account various special cases
of the CTSP. It also details how a set of realistic instances can been
generated to assess our various solving approaches. It is structured
into three chapters. Chapter 2 presents a review of related literature
and justify the assumptions made in our work. The CTSP is formally
stated in Chapter 3, in which useful definitions are introduced and
complexity studies are made. The end of Part 1, Chapter 4, is dedi-
cated to the generation of test instances.

The second part of this thesis focuses on the solving approaches. It
offers five chapters. Chapter 5 details a basic time indexed formula-
tion, developed as a reference to evaluate performances of our others
formulations. Chapter 6 presents a very efficient quadratic formula-
tion, only able to solve single-door CTSP instances. Chapter 7 intro-
duces a branch-and-cut approach using the concept of a critical set of
trucks and develops a new family of strong valid inequalities. Chap-
ter 8 details several approaches to apply Constraint Programming on
the CTSP. Chapter 9 finally compares the strengths and weaknesses
of each formulation with computational experiments.

The last part is an attempt to address a non-deterministic version
of the CTSP where uncertain arrival dates of trucks are considered.
The concept of a group of permutable tasks is applied. Chapter 10

presents a review of the literature concerning robust crossdocking
and recalls the original concept of a group of permutable tasks. Chap-
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ter 11 shows how this concept can be applied on CTSP. Chapter 12

analyses the subproblems induced by the need to assess the quality
of a flexible schedule, which is characterized by a group sequence
of permutable trucks on each door of the crosssdock and also shows
how these supbroblems can be solved. The generation of a group se-
quence is proposed.

Conclusions and future research perspectives are drawn in chap-
ter 13. Please, note that the work presented in Chapter 3 concerning
complexity issues has been presented at the 2020 PMS conference
Fabry et al., 2021a and published in OR letters (Fabry et al., 2022).
The work detailed in Chapter 12 concerning the evaluation of group
sequences has been presented in APMS Fabry et al. (2021b).





Part I

C O N T E X T A N D P R O B L E M D E F I N I T I O N





2
S TAT E O F T H E A RT

2.1 context

2.1.0.1 Emergence and importance of crossdocking

With the increasing importance of specialization and internationaliza-
tion, managing the supply chain becomes more and more challenging
(Porter, 2008). Demand is difficult to predict and highly fluctuating,
making goods turnover a priority. Moreover, modern society grants
great importance to fast delivery. Amazon is a good example: with
the ease of online shopping and fast deliveries, the e-commerce un-
derwent an astonishing growth. Fast deliveries and the ability to man-
age a huge amount of products in little time, are now mandatory in
the logistic chain and wasting time is more costly than ever, which is
even more the case when we consider perishable products.

According to PWC, standard distribution centers with standard
warehouses are not adapted to this mentality change (PwC Report,
2013). In classical storage, incoming products are sorted out and stored
for some days on average. They are regrouped into full truckloads af-
terwards, depending on the needs of the customers. If a product level
decreases below a predefined limit, a new order is placed. This prac-
tice is relatively easy to set up but has some important disadvantages
that induce high logistic costs. In particular, a large area is needed for
storage, numerous actions are needed to store and pick each prod-
uct and the immobilization of the products delays their delivery and
has a high set-up cost. In the last decades, a new approach to prod-
uct consolidation / deconsolidation appears in research and industry.
Crossdocking is a warehouse management concept in which items de-
livered to a warehouse by inbound trucks are immediately sorted out,
reorganized based on customer demands and loaded into outbound
trucks for delivery, avoiding excessive inventory at the warehouse
(Apte and Viswanathan, 2000; Van Belle et al., 2012). Theoretically, a
crossdock behaves like a logistic hub; but in practice, a minimum of
storage is needed as items are held in storage for a short time period,
generally less than 24 hours. Rarely, crossdocks can practice a zero-
stock policy with direct transshipments only (Boysen, 2010), in case
of refrigerated or frozen food for example.

The difficulty of coordinating inbound and outbound trucks in a
crossdock comes from the restricted storage area and the limited so-
journ time of the products in the warehouse (Boysen, 2010; Yu and J.,
2008). Outbound trucks receive their loads from many inbound trucks
and all trucks have to respect time availability constraints. When the
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8 state of the art

number of transshipment activities in a crossdock increases, the plan-
ning complexity increases as well. Up to hundreds of trucks (see
Berghman et al. (2015) for an example in the automotive industry
with 480 inbound trucks a day), each with its own availability in time,
have to be allocated to a dock door and to a time slot, respecting
the preceding and successive trucks and the available crossdock door
capacity. The problem is complex to solve, and this difficulty slows
down the crossdocking expansion.

In this thesis we address a problem called Crossdock Truck Schedul-
ing Problem (CTSP), which consists in assigning a door to each truck
and deciding the sequence in which trucks are processed at each door.
CTSP concerns the tactical/operational level: trucks are scheduled
and attributed to dock doors so as to minimize the storage usage dur-
ing the transfer of the goods. The internal organization of the ware-
house (scanning, sorting, transporting) is not explicitly taken into con-
sideration, as we assume that the internal crossdock logistic capacity
is sufficient to implement any arbitrary docking schedule.

Nowadays, crossdocking is a relatively well-known concept in the
industry: more and more industrial and logistic companies develop
crossdocking solutions. The Saddle Creek Report (Patterson, 2018) is
often mentioned to show the importance of crossdocking in indus-
try in recent years: a survey involving 219 respondents reports that
83.6% of logistic companies use or plan to use crossdocking. Indeed,
the economic benefits provided by crossdocking are confirmed, as
far as it is used for relevant products. Economic papers agree on
the strength of crossdocking, whenever the necessary requirements,
as constant demand rate on products, the density of the business etc.,
are present (Apte and Viswanathan, 2000; Waller et al., 2006; Galbreth
et al., 2008). An empirical analysis strongly supports the success, and
precises a methodology to identify products of interest from a case
study (Duan et al., 2020). More than ever, delivering any product any-
where becomes a need, while production is more and more central-
ized. Crossdocks allow both consolidation and fast delivery, which
is exactly the reason why it has such a major role in modern logis-
tics. Walmart is a notable example of crossdock efficiency as its ex-
pansion and success is based on it (Stalk et al., 1992). We can mention
UPS (Forger, 1995), Toyota (Witt, 1998), Dots (Napolitano, 2011), DHL
(Fedtke and Boysen, 2017) among others.

Figure 1 illustrates the use and the interest of the crossdock, aim-
ing to consolidate the product flow. Pallets from inbound trucks are
spread into outbound trucks, with direct transshipment if it is pos-
sible, avoiding double handling and storage occupation, or with the
help of temporary storage, in a centralized loading area. LTL stands
for Less Than Truckload, commonly used to talk about trucks partially
loaded, while FTL stands for Full Truck Load which is usually desired
to transport products.
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Figure 1: Illustration of the crossdock
Note: This image has been extensively plagiarized and appears on

several commercial web sites without attribution

2.1.0.2 Research and crossdocking

Numerous researchers have focused on the crossdocking concept.
However, it is worth noting that a gap between industry and re-
search emerged, as highlighted by Ladier and Alpan (2016a). This
paper relates a large growth of scientific papers about crossdocks.
Several common assumptions are made in literature such as I-shape
for the crossdock or no-preemption, which are relevant in practice.
Concerning the service mode of the doors, literature mostly focuses
on exclusive mode (doors are used exclusively for inbound or out-
bound), while the industry begins to use the mixed mode (doors can
alternatively be assigned to inbound and outbound). Storage space
and resource capacity are important constraints in the industry, but
barely taken into account in the literature. Arrivals of trucks are often
concentrated in industry, while this is not often mentioned in litera-
ture. Departure times are mostly constrained in reality, while half of
the literature does not consider strict deadlines. Moreover, manage-
ment of unplanned events and delays are very important in reality.
The management of the workforce is also a critical point, although
rarely taken into account in research. Finally, the main objective func-
tion in literature is the minimization of the makespan. However, this
objective does not affect the synchronisation of the trucks nor the
storage, although highly important in the crossdocking concept.

Optimization problems inside a crossdock are numerous, and the
majors ones are covered by literature. Even if the concept of cross-
docking is simple, its implementation is complex, as the synchroniza-
tion between transporters raises different issues. Boysen and Fliedner
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(2010) clearly identify and distinguish the many problems related to
crossdocking, which are listed below:

• location of cross docking terminal(s);

• layout of the terminal;

• assignment of destinations to dock doors;

• vehicle routing;

• truck scheduling;

• resource scheduling inside the terminal;

• (un-)packing loads into (from) trucks.

These problems cannot be solved jointly due to the overall complex-
ity. And, except some of them, they are not treated at the same deci-
sion level. Location and layout by example, are solved once, to build
the crossdock, and condition the following problems. Figure 2 illus-
trates the various possible shapes of a crossdock, highly impacting
the internal management. As an example Bartholdi and Gue (2004)
discuss the shape efficiency to minimize the travel distance inside the
crossdock, based on the number of doors. The travel distance inside
the crossdock is used to measure this efficiency.

Figure 2: Example of different shapes for crossdock
Source: https://eurekapub.fr/productivite/2013/09/14/is-cross-

docking-the-ultimate-panacea

Buijs et al. (2014) analyse the inter dependencies among these prob-
lems and particularly emphasize the need to consider the synchro-
nization of local and network-wide crossdocking operations.

Following the classification of Boysen and Fliedner (2010), Van
Belle et al. (2012) propose a valuable state-of-the-art, often cited in
crossdocking papers. First, the authors define the crossdock, and con-
textualize the use of crossdocking as a strong tool in the supply chain
to reduce costs, risks and storage space, to increase customer service
and truck utilization and to improve delivery times. Nevertheless,
some necessary conditions are listed, like low stock out costs and
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stable demand. Afterwards, the authors enumerate characteristics of
the crossdock, to precise the classification. They differentiate physi-
cal, operational and flow characteristics. The first category concerns
the shape of the crossdock, the number of doors and the internal
transportation system. Operational characteristics contain the service
mode and whether or not preemption is allowed. The flow charac-
teristics concern the arrival pattern of the trucks, the departure times,
the product interchangeability, the temporary storage. Finally, several
papers are presented according to the classification of Boysen and
Fliedner (2010).

This thesis focuses on the truck scheduling problem and pays atten-
tion to ensure an efficient synchronisation of the trucks in crossdocks.
Both the problems of assigning the doors to the trucks and schedul-
ing the trucks on each door are considered together. It is worth not-
ing that door assignment problems have been sometimes associated
to scheduling problems in the literature.

In the truck-to-door standalone assignment problem, the spatial po-
sitioning of trucks is optimized to improve the internal management,
the objective being to minimize the travelled distance of the pallets
(Maknoon, 2013; Hermel et al., 2016). Maknoon and Baptiste (2009)
work on the internal crossdocking management, to obtain the best
assignment given a predetermined schedule. An assignment aiming
only to minimize the travel distance of the pallets inside the distri-
bution center may lead to a bad synchronisation of trucks. Zouhaier
et al. (2016) detail and retrace the evolution of both problems in lit-
erature, as well as their mutual interactions. Rijal et al. (2019) defend
the benefits of an integrated scheduling and assignment approach.

In this thesis, we are nevertheless focusing on the pure scheduling
problem, and this already complex problem is mainly treated alone
in literature.

2.2 literature analysis

2.2.1 Variants of the crossdock truck scheduling problem in the literature

As scheduling trucks on doors is central for proper synchronisation
of crossdocks, the CTSP has been extensively studied in literature. In
this state-of-the-art section, we will report various deterministic CTSP
variants and solving approaches connected with our case. For a more
extensive overview, the reader can refer to the very interesting state
of the art proposed by Ladier and Alpan (2016a), discussing the rel-
evance of current academic assumptions with usual industrial prac-
tices. Note that another literature analysis is proposed in Chapter 10

dedicated to literature dealing with crossdock scheduling under un-
certainties.
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Briskorn et al. (2021) recently considered the general scheduling
problem of vehicles at transshipment terminals, seen as a synchro-
nization problem consisting in the assignment of incoming vehicles
to docking resources subject to handover relations. They define a rel-
evant classification of the various problem variants and take interest
in finding feasible door assignments. Handover relations model com-
modity exchanges between vehicles (a vehicle receiving a commodity
cannot leave the system before the vehicle supplying it has arrived).
The authors also introduce several parameters to classify the variants.
They first consider that the set of doors is divided into groups, the
doors of the same group sharing common characteristics required by
the trucks: a truck is associated with one and only one group, given
that the door assigned to it must belong to this group. Three kinds
of handover relations are distinguished: i) in the “sym” case trucks
exchange commodities (i.e., a commodity flow from truck u to truck
v implies a flow from v to u and vice-versa); ii) in the “asym” case
the flow is retrained to be unilateral; and iii) the “gen” case does not
impose any flow restriction. The "inner" and "inter" parameters allow
to distinguish between the situations where handover relations are
set between truck associated with the same group or not. Preemption
can be specified using status "one", "interrupt", and "revisits" where
status one forbids preemption as the truck can only be docked once,
status interrupt and revisits allow preemption, the truck being respec-
tively restrained to stay or not at the same door. Two storage strate-
gies are considered depending on whether the goods can be stored
intermediately in the terminal ("sto" strategy) or not ("noSto" strat-
egy). For instance, assuming two door groups, one refers to (one, sto,
inter, asym) as the classical crossdock case with intermediate storage
where two distinct sets of inbound and outbound trucks have to be
unloaded and loaded, respectively, without any interruption.

Briskorn et al. (2021) do not consider release dates and deadlines,
i.e., time windows associated to trucks. In addition, they assume that
the trucks have a minimum handling time, which can be extended
in the schedule if it becomes necessary to wait for other goods to ar-
rive. Indeed, the handover relations between trucks imply that one
outbound truck receiving pallets can leave only if all its connected
inbound trucks have been docked. Any truck receiving and provid-
ing pallets is considered as both inbound and outbound. The authors
concentrate their analysis on the feasibility of the handover relation-
ships with respect to specific crossdock configurations. As we will see
below, the assumptions taken in our work will be slightly different.

As mentioned by Ladier and Alpan (2016a), most articles in the
literature do not allow preemption in CTSP because allowing it may
have little benefit in practice, as the cost of interrupting and moving
trucks is not negligible. In addition, due to the existence of due dates
on truck departures, it may lead to infeasibility. However, preemption
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has been studied in several papers, e.g., (Briskorn et al., 2021; Alpan
et al., 2011; Larbi et al., 2011; Fazel Zarandi et al., 2016; Ye et al.,
2018), which introduce objective functions that limit the caused time
overhead.

The no-storage policy mentioned by Briskorn et al. (2021) is also
rarely considered in practice, as it is commonly assumed that the
storage capacity is sufficient to accommodate the flow of goods, es-
pecially to deal with the case where incoming and outgoing trucks
are not physically present at the same time in the crossdock (i.e. their
time window does not overlap). The relevance of the "Sto" policy is
also justified in (Ladier and Alpan, 2016a) with respect to real-life ex-
periences in crossdocks which tend to proof that a storage space, able
to handle the unloading of trucks, is always suitable as it drastically
enhances the fluidity of the flows. However, a very particular cross-
dock case with no-storage policies (noSto) is presented by Boysen and
Fliedner (2010). This paper considers a full direct transshipment cross-
dock, which arises in the food industry, where strict cooling require-
ments forbid an intermediate storage inside the terminal. The authors
took interest in minimizing the flow time, the processing time, and
the tardiness of outbound trucks, using heuristic procedures.

The docking time, which may be variable when preemption is al-
lowed, may also depend on the characteristics of the door. Neverthe-
less, the speed at which a truck is (un)loaded is mostly the same for
all doors, see Golias et al. (2013) and Tadumadze et al. (2019) for the
rare assumption that the handling time is dependent of the allocated
door and sometimes even proportional to the number of goods (or
pallets) to be moved, see e.g. (Guo et al., 2019). A few papers inter-
estingly consider truck processing times by taking into account door
efficiency, which may depend on workforce assignment, see e.g. (Car-
rera et al., 2008; Tadumadze et al., 2019).

The number of doors in the crossdock is also an important parame-
ter that drastically influences both the efficiency of the transshipment
in the crossdock and the complexity of the underlying problem of
truck synchronization. In the literature, the number of open doors is
generally constrained to be less than a given value, although this aca-
demic assumption does not really appear in the industry where the
capacity of crossdocks is generally oversized to cope with possibly
high truck rotation rates. Many papers consider very restricted cases
with a single door or two doors (an inbound door to unload trucks
and an outbound door for loading, see e.g, Monaco and Sammarra
(2019)). In our work, the influence of the door capacity on the com-
putational complexity of the problem will be studied considering a
small number of doors. Nevertheless, the proposed solution method-
ologies will be able to cope with a high number of doors.

The doors can operate according to two different modes (as sug-
gested by Bodnar et al. (2015)). A first option is to use the doors in ex-
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clusive mode, i.e. each door is dedicated exclusively to unloading or
loading operations. This mode tends to simplify the management of
the product flow inside the crossdock, which becomes unidirectional
(Boysen, 2010). However, some doors can operate in mixed mode if
both inbound and outbound trucks are accepted, which guarantees
better performance in terms of flow time, although the internal logis-
tic within the crossdock becomes more complex, see e.g. Berghman
et al. (2015). The mixed mode turns out to be more and more frequent
in industry, as well as in the academic literature (Shakeri et al., 2012;
Rijal et al., 2016; Hermel et al., 2016; Guo et al., 2019).

In (Berghman et al., 2015), a comparison between exclusive and
mixed mode is presented. As expected, the authors show that with
the same number of doors, better solutions are found in mixed mode.
Moreover, they point out that only a few doors need to switch to
mixed mode to benefit from the improvements. Such a flexible mode,
efficiently dividing the doors into exclusive and mixed mode, is also
discussed in (Rijal et al., 2016) and (Bodnar et al., 2015). It has the
advantage of minimizing the perturbations on the internal logistics
of the crossdock.

The consideration of arrival dates and/or departure due dates or
deadlines for trucks is common in the literature, and almost system-
atic in the real world. The existence of time windows can make the
CTSP infeasible and occasionally motivates the introduction of delay
penalties, as discussed by Li et al. (2004). Their effect on the struc-
ture of the problem, as well as on the choice of the solving methods
is important. For example, in the field of mixed integer linear pro-
gramming, time-indexed formulations are known to be more appro-
priate than more classical position-indexed formulations when time-
windows are strict (Monaco and Sammarra, 2019). In the literature,
time windows are considered in various ways, e.g., as soft constraints
(due dates), hard constraints (deadlines) or in a flexible way (Carrera
et al., 2008).

Many articles consider earliness and tardiness penalties that reflect
the just-in-time paradigm. Li et al. (2004), Alvarez-Pérez et al. (2009),
Boloori Arabani et al. (2010), and Serrano et al. (2017) aim to min-
imize the earliness and the tardiness of the trucks. Meta-heuristics
are used, with the exception of (Serrano et al., 2017) using solution
method based on industrial solver. Ladier and Alpan (2018), Ladier
and Alpan (2013) and Bodnar et al. (2015) consider two objectives:
while minimizing the earliness and/or the tardiness, they also mini-
mize storage. The resolution of the normal scale problem is done with
heuristics or metaheuristics. Boloori Arabani et al. (2011a) and Boloori
Arabani et al. (2012) consider the lateness with the usual makespan
objective and use metaheuristics. Rijal et al. (2016) and Assadi and
Bagheri (2016) and Rijal et al. (2019) want to solve the truck to door
assignment problem as a scheduling problem. The objective is to min-
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imize the lateness and the travel cost of pallets inside the crossdock.
Moreover, Rijal et al. (2016) and Rijal et al. (2019) consider a third ob-
jective, respectively minimizing storage and minimizing makespan.
Heuristics or metaheuristics are provided to solve the problem. Go-
lias et al. (2013) and Fazel Zarandi et al. (2016) have less common ob-
jectives. The first ones minimize the service cost induced by lateness,
and the second ones minimize earliness and tardiness while limiting
preemption.

Many authors, e.g. Boysen and Fliedner (2010) and Berghman et al.
(2015), consider strict time windows using deadlines. For example,
Diglio et al. (2017) aim to minimize the sum of the outbound truck
completion times, which is quite unusual under time window con-
straints. Tadumadze et al. (2019) focus on inbound trucks (with the
schedule of outbound trucks assumed to be fixed): the authors opti-
mize the allocation of workers at the doors to speed up the unloading
process. Note that other papers consider only release times, e.g. (Ser-
rano et al., 2017) or only deadlines, e.g. (Boloori Arabani et al., 2011b),
that reflect the arrival time and departure time of trucks, respectively.
In (Yu and J., 2008), a special case is treated where some trucks are
time constrained while others are free.

Another feature concerns the interchangeability of pallets loaded
into the outbound trucks. For instance in (Briskorn et al., 2013), as
pallets of identical products are considered, they can be loaded into
various trucks, without any restriction. In that case, there are no prece-
dence constraints between inbound and outbound trucks, but only
inventory constraints expressing the requirement for each outbound
truck. In (Ladier, 2015), a more general case is described where, since
any pallet is assigned to a specific customer, it can be assigned to any
truck serving this customer.

2.2.2 Focus on the objective functions

The various objectives considered in the literature for the CTSP have
to be reported. The minimization of the makespan is very common,
e.g. (Van Belle et al., 2012), (Yu and J., 2008), and (Gaudioso et al.,
2020)). Nevertheless, the relevance of such a criterion in the crossdock-
ing context has been reported to be questionable by Hedler-Staudt et
al. (2015) as, minimizing the duration of the schedule does not really
reflect the need of having a good truck synchronization; i.e. a smooth
flow of goods and a low retention level in the storage. This issue is
also raised in (Ladier and Alpan, 2016a) where the authors observe
the over-presence of the makespan objective in the review of litera-
ture, while this objective is not considered as important by most of the
industrials participating in their study. In a more recent paper, Ladier
and Alpan (2018) gave privilege to more storage-oriented objectives.
Alpan et al. (2011) and Larbi et al. (2011) aim to minimize the storage
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assuming that a handling cost has to be paid when a pallet cannot be
directly transferred from one truck to another. They combine this ob-
jective with the one of minimizing the number of truck replacements
during docking (as they allow preemption). Sadykov (2012) also aims
to minimize the handling cost without time windows and only two
exclusive doors. Once again, trucks are sequenced in such a way that
direct transshipment is favored. In her PhD thesis, Ladier (2015) also
considers the assumption of Alpan et al. (2011), but without preemp-
tion: a fixed cost is assigned to any pallet placed into the storage.
Her objective function aggregates the criterion of minimizing the to-
tal handling costs with the one of minimizing the tardiness of trucks
(truck departure times are seen as due dates).

Bodnar et al. (2015) also consider the minimization of the handling
costs and truck tardiness with dedicated inbound / outbound doors
and a limited number of mixed doors. In this paper, they assume
handover relationships (i.e., pallets are pre-assigned to trucks), no-
preemption and unitary processing times for inbound trucks. They
propose an adaptive large neighborhood search heuristic to solve the
considered problem. Guo et al. (2019) consider a direct zero-stock
transshipment model such that loads are directly exchanged with-
out intermediate storage or double handling. They propose MILP for-
mulations, capable of minimizing the total weighted sum of realized
transfer times, as well as an efficient heuristic. Briskorn et al. (2021)
also study the direct transshipment model by considering that the
docking times of outbound trucks are not fixed: an outbound truck
can be docked before the inbound trucks are unloaded and wait for
missing pallets. As seen above, it is desirable to take into account
the storage performance within the objective function. Note the im-
portance of both the number of products transiting in the stock as
well as their sojourn time. Indeed, with respect to the turnover per-
formance, it may be preferable to have a reasonably large quantity
of products in stock if their sojourn time is very short, rather than a
small quantity whose sojourn time would be very long. This observa-
tion led Berghman et al. (2015) to focus on the minimization of the
total sojourn time of the pallets: a time-indexed MILP formulation is
proposed to solve this version of CTSP with time windows.

The sojourn time is particularly important when the storage system
has been designed to achieve the just-in-time logic. As an illustration,
Figure 3 describes a system in the food industry in which a conveyor
belt carousel includes input stations (i.e., inbound doors) at which
products are introduced and output stations (i.e., outbound doors) to
which products are transferred according to the trucks assigned to
them. Since the capacity of the conveyor is limited, the goal here is
to ensure that a product accepted on the conveyor is transferred as
quickly as possible to avoid congestion.
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Figure 3: Example of carousel conveyor
(Boysen et al., 2019)

2.2.3 Working assumptions

In line with Berghman et al. (2015) and the previous example, our
work will focus on the total time spent in the system by the goods
(i.e., the total sojourn time). A good will be considered physically
present in the inventory from when the truck carrying it is docked,
until the truck picking it up is docked in its turn. Therefore, if these
two trucks are synchronized (i.e. placed at the door at the same time),
the storage time is zero.

For the doors, we assume a mixed-mode which offers more flexibil-
ity, as often pointed out in the literature. It will also be assumed that
pallet flows have been defined in advance in the crossdock (i.e., pallet
interchangeability is not allowed) and that loading or unloading of
trucks cannot be interrupted. Therefore, we will assume transfer rela-
tionships between trucks, each transfer relationship being associated
with an explicit pallet flow and a start-start precedence constraint.
For that reason, an outbound truck can only be docked if all the in-
bound trucks feeding it are already docked or have been previously
unloaded.

It appears from the literature that the influence of time windows
is crucial in crossdocking, both in terms of computational complexity
and logistic performance. Therefore, we decided to study, for each
CTSP instance, different time window scenarios, starting with strict
time windows and then gradually relaxing them until, at the maxi-
mum extension, time windows can be ignored.

The processing times for unloading or loading trucks reflect the
ability of internal logistics to efficiently handle pallet traffic, i.e. the
various handling operations. As several authors have done in the lit-
erature, we will assume that the handling facilities are sized to han-
dle any rate of truck traffic. In our work, we decide to explore two
scenarios. In the former, the handling time will be assumed to be
proportional to the number of pallets, which seems to be a relevant
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assumption with respect to reality. The previous assumption gives a
particular structure to the problem as there is a relationship between
the pallet flows and the handling times, which possibly makes the
problem simpler. The second scenario therefore assumes independent
processing times.

In this work, the focus is essentially on the resolution of the CTSP
by means of exact methods. The ambition is to tackle instances of real-
istic size (with respect to industrial practices) and to find, if possible,
optimal solutions or, at least, feasible solutions with a lower bound as
performance guarantee. Thus, the development of heuristics or meta-
heuristics is not addressed, even if their design remains an important
area of research and such methods are certainly very useful from a
practical point of view.



3
P R O B L E M S TAT E M E N T A N D C O M P L E X I T Y

In this chapter, we develop the problem and and its statement. Its
computational complexity is also studied with a focus on some spe-
cial cases.

3.1 problem statement

3.1.1 Elements of the problem

Given a crossdocking warehouse with n doors, a set I of inbound
trucks carries goods to be unloaded, sorted and loaded on a set O
of outbound trucks. We let U = I ∪ O be the set of all trucks, and
k = |U| denotes the total number of trucks. In the following, we will
usually use u to refer to any truck in U, meaning it can be inbound or
outbound. Similarly, we will use i to refer to a truck in I and o to refer
to a truck in O. Let wio denote the number of pallets to be transferred
from truck i to truck o. Loading/unloading operations take place
once the trucks are docked at one of the n doors of the warehouse.
They cannot be preempted. Each door can be used both for loading
and unloading. The unloading and loading times of trucks i ∈ I and
o ∈ O are referred to as pi and po, respectively. We let wi =

∑
owio

and wo =
∑
iwio denote the total number of pallets to be unloaded

from i and, respectively, the total number of pallets to be loaded on
o.

Handover relations among trucks are represented by the han-
dover graph GH = (I,O,A). In GH, the two node sets correspond
to inbound and outbound trucks, respectively, and there is an arc
(i,o) ∈ A whenever wio > 0. Letting si and so denote the time at
which truck i ∈ I starts being unloaded and, respectively, the time at
which truck o ∈ O starts being loaded, we require that if (i,o) ∈ A,
in a feasible schedule si 6 so, i.e., the handover graph GH specifies
start-start precedence constraints. This means that an outbound truck
o can be docked – and hence, it can start being loaded – only when
all trucks i with (i,o) ∈ A have been docked. Although this may ap-
pear as a conservative assumption, we note that it avoids modeling
the detailed movement of individual pallets between each truck pair
and their unload/load schedule, which would lead to a considerably
more complex model. Moreover, if all the pallets required by an out-
bound truck o are present in the terminal when o is docked, then its
loading can take place non preemptively in an interval of length po. As
we do not allow docking a truck more than once, in this way we are
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Figure 4: Example of a transfer graph.

sure that each truck (either inbound or outbound) is docked exactly
for the time strictly needed to load/unload it. On the contrary, if we
let an outbound truck o be docked even before all corresponding in-
bound trucks have arrived, the time spent by o at the door would in
general depend on the other trucks’ schedule, and attention should be
paid to avoid deadlocks. Moreover, since we consider terminals allow-
ing direct transshipment of goods (e.g. (Guo et al., 2019)), start-start
precedence constraints appear more appropriate than the more clas-
sical (and common) end-start precedence constraints. If we required
that all the inbound trucks i feeding an outbound truck o be com-
pletely unloaded before o starts being loaded, even when both trucks
i and o such that (i,o) ∈ A are present, pallets should necessarily
spend some time in intermediate storage, which we want to avoid as
far as possible. (In any case, note that if n = 1, the distinction between
start-start and end-start precedences disappears.)

Finally, we refer to ru and du as the release date and deadline of
truck u ∈ U, [ru,du] being the time window during which the truck
is present in the crossdock. The Crossdocking Truck Scheduling Problem
(CTSP) consists in determining processing start times si and so for
all i ∈ I and o ∈ O, so as to minimize the total sojourn time, i.e., the
total time spent in the warehouse by all pallets.

Figure 4 gives a small example of a handover graph. There are
three inbound and three outbound trucks. The pallets of the inbound
truck i0 are loaded on the outbound trucks o0 and o1, while the
pallets carried by both inbound trucks i1 and i2 are loaded on both
the outbound trucks o1 and o2.

As we assume that, given a number of doors, there is sufficient
workforce to (un)load all currently docked trucks at the same time, a
truck assigned to a door never waits for the availability of a material
handler. Pallets can be transshipped directly from an inbound to an
outbound truck if both trucks are simultaneously docked. Otherwise,
pallets are temporarily stored to be loaded later.
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In this thesis, we consider two distinct cases concerning the pro-
cessing times of the trucks.

(i) In the unrelated case, no relationship exists between the number
of pallets that need to be loaded/unloaded and the processing
time of a truck (i.e., in general, for any two trucks u and v ∈ U,
one may have wu/pu 6= wv/pv);

(ii) In the correlated case, the processing time of a truck is propor-
tional to the number of pallets that must be loaded/unloaded,
i.e. wu ∝ pu, u ∈ U.

3.1.2 Objective

For the objective function, we introduced the idea to reduce the total
sojourn time in order to minimize the storage, speed up the turnover
of goods, and promote direct transshipment. The sojourn time of one
pallet transferred from truck i to truck o equals so − si, so the total
sojourn time equals:∑

(i,o)∈I×O

wio(so − si). (1)

correlated case : In the correlated case, we can rewrite the ob-
jective function. If we define one time unit as the time required to han-
dle one pallet, processing times can be expressed in terms of number
of pallets to be moved. In that case, it holds that:

pi = wi =
∑
o∈O

wio (2)

po = wo =
∑
i∈I

wio (3)∑
o∈O

po =
∑
i∈I

pi (4)

As the total load of all inbound trucks is equal to the total load of
all outbound trucks

∑
o∈Owo =

∑
i∈Iwi (pallets conservation), the

total processing time of loading are equal to the total processing time
of unloading, as specified in equation (4). Due to equations (2) and
(3), it is easy to show that solving the problem in the correlated case is
equivalent to finding a feasible schedule that minimizes∑

o∈O
poso −

∑
i∈I

pisi. (5)

3.1.3 Constraints

The constraints of the model are specified in the following. As said
before, we do not consider workforce as we assumed that it is suffi-
cient for the number of doors. If the workforce is weaker, one need
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to consider the number of doors handled by the workforce. In that
way, a truck assigned to a door never waits for the availability of a
material handler. We also assume that loading and unloading tasks
cannot be preempted.

In both the correlated and the unrelated case, the defined objective
function is subject to the following constraints:

so − si > 0 ∀(i,o) (6)

su > ru ∀u ∈ U (7)

su 6 du − pu ∀u ∈ U (8)

|Uτ| 6 n ∀τ ∈ T (9)

with Uτ = {u ∈ U | su < τ 6 su + pu} the set containing all tasks
being executed during time period τ and T the set containing all time
periods considered (time horizon).

Constraints (6) impose start-start precedences between inbound
and outbound trucks sharing a pallet flow. Constraints (7) and (8)
allow each truck to be (un)loaded during its available time window
only. Finally, Constraints (9) model the capacity and ensure that the
number of trucks simultaneously docked never exceeds the number
of available doors.

We refer to this problem as the Crossdocking Truck Scheduling
Problem (CTSP). In the sequel of this thesis we denote by CTSP(n,U)
the problem with n doors and unrelated processing times. Similarly,
CTSP(n,C) refers to the problem with n doors and correlated process-
ing times.

In what follows we establish the complexity of various special cases
of CTSP.

3.1.4 Illustration

We introduce an example in Figure 5. This example introduces an in-
stance with 2 inbound trucks and 3 outbound trucks. The handover
graph is presented on the left, with inbound trucks in blue and out-
bound trucks in red. The number of pallets carried by each inbound
truck are indicated on the left, and the number of pallets carried by
each outbound truck are indicated on the right. The exact number
of pallets unloaded from each specific inbound truck and loaded to
each specific outbound truck are specified in the middle. The cross-
dock has 2 doors. On the right side of the figure, the time windows of
all trucks are detailed. In this example, we consider a correlated case,
with load proportional to the time of loading/unloading. Even, the
time scale is defined as one time unit correspond to the time needed
to load/unload a pallet. Truck 1, as an example, needs 5 time units to
be unloaded.
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Figure 5: Illustration of a CSTP instance

Figure 6 details an optimal solution to the introduced instance. This
solution respects all the constraints. Truck 1 starts before or parallel
to all the outbound trucks (all connected to 1). Truck 2 starts before
or parallel to truck 5 (the only connected truck). Moreover, during
the entire schedule, there are no more than 2 trucks docked at the
same time. We can observe that this optimal solution proposes direct
transshipment with parallel i/o-trucks.

Figure 6: Illustration of a CSTP optimal solution

3.2 complexity results

For general time windows, even with a single door, CTSP is obviously
strongly NP-hard, as finding a feasible schedule is equivalent to find-
ing a feasible solution to an instance of the single machine scheduling
problem with time windows, which is NP-Complete (Pinedo, 2012).

In this section, we focus on the complexity of CTSP when there are
no binding time windows. In particular, we study how the number of
doors, the structure of the handover graph and unrelated/correlated
processing times affect the problem complexity. We particularly ex-
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Figure 7: An instance of CTSP(1,Unr) in which GH is a 1-biclique.

hibit some polynomial single-door CTSP cases that become NP-hard
once an additional door is considered.

3.2.1 Single-door problem

In this section, we consider CTSP(1,·), i.e., the crossdock with a single
door (n = 1). We first address a polynomial special case and then
establish the complexity of CTSP(1,Unr).

3.2.1.1 Bicliques, correlated and unrelated

A biclique is a complete bipartite graph. In this section we address the
case in which the handover graph GH is a h-biclique, i.e., a collection
of h disjoint bicliques.This means that I and O are partitioned into h
subsets I1, . . . , Ih and O1, . . . ,Oh respectively, such that wio > 0 for
any (i,o) ∈ Ij ×Oj, j = 1, . . . ,h. (See Figure 7 for an example with
h = 1 and Figure 8 for an example with h = 3.)

Theorem 1. If GH is a 1-biclique, CTSP(1,Unr) is solved by first sequenc-
ing all inbound trucks in non-increasing order of the ratio pi/wi, then all
outbound trucks in non-decreasing order of the ratio po/wo.

Proof. IfGH is a 1-biclique, in any feasible schedule all inbound trucks
must be consecutively sequenced on the door before all outbound
trucks. So, the problem consists in deciding the order within inbound
and outbound trucks. Let us first consider inbound trucks. Given any
feasible schedule σ, let i and j be any two consecutively scheduled
inbound trucks, and σ ′ the schedule obtained by swapping i and
j. Let P(o) denote the total processing time of the trucks scheduled
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after j in σ and before the outbound truck o. The contribution of i
and j to the value of the objective function in σ is:∑

o∈O
wio

(
pi + pj + P(o)

)
+
∑
o∈O

wjo
(
pj + P(o)

)
,

While in σ ′, the contribution of i and j is∑
o∈O

wjo
(
pj + pi + P(o)

)
+
∑
o∈O

wio (pi + P(o)) ,

hence, f(σ) > f(σ ′) if and only if:∑
o∈O

wio(pi + pj) +
∑
o∈O

wjopj >
∑
o∈O

wjo(pi + pj) +
∑
o∈O

wiopi,

i.e.

pj

wj
>
pi
wi

.

Consequently, it is always profitable to schedule the inbound trucks
by non-increasing values of ratios pi/wi. A symmetrical argument
applied to outbound trucks shows that the outbound trucks should
be sequenced by non-decreasing values of the ratios po/wo.

When considering CTSP(1,Cor), equations (2) and (3) imply the
following.

Corollary 1.1. Given an instance of CTSP(1,Cor), if GH is a 1-biclique, the
problem is solved by any schedule in which all inbound trucks are scheduled
in any order before all outbound trucks, in any order.

Proof. The theorem follows from the fact that in CTSP(1,Cor) equa-
tions (2) and (3) hold.

Theorem 1 easily extends to the case where GH is a h-biclique (like
in Figure 8), as it can be easily checked that there is no gain in inter-
leaving trucks belonging to different bicliques.

https://www.overleaf.com/project/5fc4c2821faca54f6f73bf0d

Corollary 1.2. When GH is a h-biclique, CTSP(1,Unr) is solved by consec-
utively sequencing the trucks involved in the same biclique, as dictated by
Theorem 1, and sequencing the bicliques in any order.

Proof. It is never profitable to interleave trucks from different bi-
cliques, as this increases total sojourn time, i.e., after unloading the
first truck of a biclique, the best decision is always to unload all the in-
bound truck of that biclique and then to load all the outbound trucks
of that biclique. The order in which the bicliques are processed is
immaterial.
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Figure 8: An instance of CTSP(1,Unr) when GH is a 3-biclique.

3.2.1.2 CTSP(1,Unr) with general GH

Let us now consider problem CTSP(1,Unr) where GH is a general
bipartite graph. The decision version of this problem is considered
below.

“Given a set I of inbound trucks and a set O of outbound trucks (with
unloading and loading times pi and po respectively), handover graph GH =

(I,O,A), a pallet flow amountwio for each (i,o) ∈ A, and a positive integer
H, is there a truck sequence at the door such that the total sojourn time does
not exceed H?”

To prove the complexity of CTSP(1,Unr), let us recall the well-
known strongly NP-complete problem OPTIMAL LINEAR AR-
RANGEMENT (OLA) (Garey and Johnson, 1978):

“Given an undirected graph G = (V ,E), with v = |V | nodes and m = |E|

edges, and a positive integer K, is there a numbering f(i) of the nodes such
that
∑

{i,j}∈E |f(i) − f(j)| 6 K?”

Theorem 2. CTSP(1,Unr) is strongly NP-complete.

Proof. Obvioulsy, CTSP(1, Unr) is in NP. Given an instance of OLA
(see Figure 10(a)), let us define an instance of CTSP(1,Unr) as follows
(see Figure 10(b)).

• There are v inbound trucks, each corresponding to a node of G,
and therefore called node-trucks;

• There are m outbound trucks, each corresponding to an edge
{i, j} of G and called edge-trucks;
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• Each edge-truck o = {i, j} receives exactly 1 pallet from node-
truck i and 1 from node-truck j (so, for o = {i, j}, wio = 1 and
wjo = 1).

• For all i ∈ I, pi = M while for all o ∈ O, po = 1, where M is a
sufficiently large integer, say M > 2m2.

We want to show that a truck schedule with a total time spent by
the pallets in the warehouse smaller than or equal to H = KM +

2mM+ 2m2 exists if and only if an OLA with value not exceeding K
exists.

Lets consider any truck schedule σ. Every edge-truck {i, j} is sched-
uled after the last of both node-trucks i and j and before any other
node-truck is scheduled. In fact, consider two node-trucks i and j,
and an edge-truck {i, j}, and suppose that between the completion of
the unloading of j and the start of loading of {i, j}, another node-truck,
say u, is unloaded (see Figure 9(a)). Then, moving the loading of {i, j}
before the unloading of u decreases by M the sojourn time of the two
pallets loaded on truck {i, j}, and indeed decreases also the sojourn
time of all the pallets transported by u, as they enter the warehouse 2

time units later (see Figure 9(b)). In other words, for each edge-truck
{i, j}, when both node-trucks i and j have been unloaded, there is no
reason to wait for any other node-truck before loading {i, j}.

Figure 9: Structure of a feasible solution used for proof of Theorem 2.

In view of the above fact, given a truck schedule, consider the pal-
lets which have to be transferred from node-trucks i and j to the
edge-truck {i, j}, and suppose that i ≺ j in the schedule. First, consid-
ering j, the sojourn time of the pallet carried by j is decomposed into
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a node-truck and an edge-truck contribution. The node-truck part is
only M, i.e. the processing time of j, as this pallet is directly loaded
in {i, j} without any node-truck delaying the process. The edge-truck
part is given by the number of edge-trucks scheduled between j and
{i, j} (each one contributes to the sojourn time with a value 1, as
∀o ∈ O,po = 1). Considering now i, the sojourn time of the pallet
carried by i is also decomposed into a node-truck and an edge-truck
contribution. Let f(i) and f(j) denote the positions of i and j among
inbound trucks in the schedule (with f(i) < f(j)). The sojourn time of
the pallets equals M ∗ (f(j) − f(i) + 1) (the node-truck part), plus the
number of outbound trucks loaded between i and {i, j} in the sched-
ule (edge-truck part). Thus, the sojourn time of pallets loaded in {i, j}
is lower than:

M+m+M(f(j) − f(i) + 1) +m,

As there is a truck {i, j} for each edge of the original graph, for a
given truck schedule, the total sojourn time does not exceed:∑

{i,j}∈E

(M+M(|f(j) − f(i)|+ 1) + 2m) =

2mM+M
∑

{i,j}∈E

|f(j) − f(i)|+ 2m2.

As a consequence, a truck schedule with a cost not exceeding
2mM+MK+ 2m2 exists if and only if f(·) defines a linear arrange-
ment of value not exceeding K.

Figure 10 illustrates the reduction in Theorem 2. A graph with a
node numbering is shown in Figure 10(a). Figure 10(b) shows the
handover graph of the corresponding CTSP instance. Figure 10(c) rep-
resents a feasible schedule. For this instance, the flow times of the two
pallets carried away by truck (b, c) are 3M+ 3 and M. For this exam-
ple with m = 10, the linear arrangement displayed in Figure 10(a)
has value K = 16 and the value of the overall flow time is 36M+ 38

(M > 200).
As in the above proof the processing times of inbound and out-

bound trucks do not respect Equation (4), the argument cannot be
applied to establish the complexity of CTSP(1,Cor), which therefore
remains open for general GH.

3.2.2 Two doors

In this section, we focus on CTSP with n = 2. As the complexity
increase much, we are focusing in particular on CTSP(2,Cor).

A key property of CTSP(2,Cor) is expressed in the following
lemma.
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Figure 10: Illustration of the reduction of the proof of Theorem 2.

Lemma 3. Given an instance of CTSP(2,Cor), let Om be a set of outbound
trucks assigned to a given door m, and suppose that they are scheduled con-
secutively, without idle time, from time r onwards. The contribution to the
objective function of the trucks in Om does not depend on their sequencing
and is given by

r
∑
o∈Om

po +
1

2
[(
∑
o∈Om

po)
2 − (

∑
o∈Om

p2o)].

Proof. Let us consider the objective function (5) having two terms,
the first related to the outbound trucks, the second to the inbound
trucks. Let focus on the first term:

∑
o∈O poso. If all trucks in Om are

scheduled consecutively in non-decreasing order of their index, the
first one is scheduled at time r, (s0 = r), the second one at r+ p0, the
third one at r+ p0 + p1, . . . , hence:∑

o∈O
poso = (r) ∗ p0+ (r+ p0)p1+ (r+ p0 + p1)p2+ . . .

+(r+ p0 + p1 + · · ·+ p|Om|−1)p|Om|

which is equal to∑
v∈Om

(r+
∑
u<v

pu)pv =
∑
v∈S

rpv +
∑
u<v

pvpu

Since (
∑
v∈Om xv)

2 =
∑
v∈Om x

2
v + 2

∑
u<v xuxv , it follows that:

∑
o∈O

poso = r
∑
o∈Om

po +
1

2
[(
∑
o∈Om

po)
2 − (

∑
o∈Om

p2o)].
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Consider now the following auxiliary problem, that we call
(3/4,1/4)-PARTITION: Given a set O of n integers p1, p2, . . . , pk and
W =

∑
u∈O pu, is there a partition (O1,O2) such that

∑
u∈O1 pu =

3
4W and

∑
u∈O2 pu = 1

4W?

Lemma 4. (3/4,1/4)-PARTITION is NP-complete.

Proof. Obvioulsy, CTSP(2, Cor) is in NP. Lets consider an instance of
the well-known PARTITION problem: Given k integers, q1,q2, . . . ,qk,
letting H =

∑
u∈O qu, is there a partition (O1,O2) such that∑

u∈O1 qu =
∑
u∈O2 qu = H

2 ?
To show that PARTITION reduced to (3/4,1/4)-PARTITION, we de-

fine an instance of (3/4,1/4)-PARTITION with k+ 1 integers pu,u =

1, . . . ,k+ 1. The first k integers coincide with those of the instance of
PARTITION, i.e., pu = qu, while pk+1 = H, so that W = 2H. Clearly,
a solution to (3/4,1/4)-PARTITION exists if and only if a solution to
PARTITION exists, as the former is simply obtained from the latter
adding the integer pk+1 to one of the two sets.

We are now in the position of establishing the main result of this
section.

Theorem 5. CTSP(2,Cor) is NP-hard, even if GH is a 1-biclique.

Proof. We reduce (3/4,1/4)-PARTITION to CTSP(2,Cor). Given an in-
stance of (3/4,1/4)-PARTITION, we define an instance of CTSP(2,Cor)
as follows. There are 2 identical inbound trucks and k outbound
trucks (so, |I| = 2 and |O| = k). The graph GH is a 1-biclique, so
(i,o) ∈ A for all pairs (i,o). In view of (5), we specify directly the val-
ues pi and po. Both the inbound trucks have a processing time W/2,
while each outbound truck u has a processing time pu, u = 1, . . . ,k.
In what follows, let P(2) denote the sum of the squares of integers
pu, i.e., P(2) =

∑
u∈O p

2
u. The problem is to determine whether there

exists a schedule σ having an objective value not greater than the
threshold value γ, where

γ =
11

16
W2 −

1

2
P(2).

Concerning inbound trucks, either (i) the two inbound trucks are
consecutively scheduled at the same door, or (ii) they are assigned to
different doors. Call asymmetric and symmetric two schedules having
structure (i) and (ii) respectively. Note that in both situations, due
to the start-start precedence constraints, the first outbound truck(s)
cannot start being loaded before time W/2. In what follows, we let
O1 and O2 denote the subsets of outbound trucks scheduled at door
1 and 2 respectively.
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Figure 11: Asymmetric and symmetric schedules in the proof of Theorem 5.

Let us first analyze asymmetric schedules. With no loss of generality,
we assume that the two inbound trucks are unloaded at door 2 (see
Figure 11). Note that in an asymmetric schedule, the start times of
two inbound trucks are 0 and W/2 respectively, so the contribution
of inbound trucks to the objective function is −W2

W
2 = −W2/4. So,

in an asymmetric schedule, outbound trucks start being scheduled at
door 1 at time W/2, while the others start at door 2 at time W (see
Figure 11). From Lemma 3, the contribution of outbound trucks in an
asymmetric schedule is:

W
2

∑
o∈O1 po +

1
2(
∑
o∈O1 po)

2 − 1
2

∑
o∈O1 p

2
o +

W
∑
o∈O2 po +

1
2(
∑
o∈O2 po)

2 − 1
2

∑
o∈O2 p

2
o =

W
2

∑
o∈O1 po +W

∑
o∈O2 po +

1
2(
∑
o∈O1 po)

2 +

1
2(
∑
o∈O2 po)

2 − 1
2

∑
o∈O p

2
o.

Therefore, the objective function value for an asymmetric schedule
σA is

f(σA) =
W

2

∑
o∈O1

po +W
∑
o∈O2

po +
1

2
(
∑
o∈O1

po)
2

+
1

2
(
∑
o∈O2

po)
2 −

1

2

∑
o∈O

p2o −
W2

4
.

Note that f(σA) only depends on the way outbound trucks are parti-
tioned between O1 and O2. The differentiation of f(σA) shows that it
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is minimal for
∑
o∈O1 po = 3

4W and
∑
o∈O2 po = 1

4W, which gives
the following lower bound:

LBA =
11

16
W2 −

1

2
P(2)

Let us now consider symmetric schedules. In any such schedule σS,
both inbound trucks start at time 0, so their contribution to the objec-
tive function is 0. Outbound trucks start at both doors at time W/2
(see Figure 11). Hence, the objective function f(σS) only includes the
contribution of outbound trucks which, from Lemma 3, is

f(σS) =
W

2

∑
o∈O

po +
1

2
(
∑
o∈O1

po)
2 +

1

2
(
∑
o∈O2

po)
2 −

1

2

∑
o∈O

p2o.

Again, simple calculus shows that a lower bound on f(σS) is

LBS =
3

4
W2 −

1

2
P(2),

which is attained if
∑
o∈O1 =

∑
o∈O2 =

W
2 .

Comparing the two lower bounds, we have

LBS − LBA =
1

16
W2

which is strictly positive. As a consequence, since LBA = γ, we have
that a schedule of value γ exists if and only if there exists an asym-
metric schedule such that

∑
o∈O1 po = 3

4W and
∑
o∈O2 po = 1

4W. In
turn, this schedule exists if and only if a corresponding solution to
the instance of (3/4,1/4)-PARTITION exists.

As CTSP(2,Cor) is a special case of CTSP(2,Unr) in which relations
(2) and (3) hold, Theorem 5 implies immediatly the NP-hardness of
CTSP(2,Unr).

3.2.3 Synthesis of CTSP complexity

Our complexity contributions are summarized in Table 1 where NPH
stands for NP-Hard.

n C , 1-biclique C U, 1-biclique U

1 O(n) open O(n logn) (Th. 1) NPH (Th.2)

2 NPH (Th.5) NPH (Th.5) NPH (Th.5) NPH (Th.5)

Table 1: Complexity of CSTP problem

In view of the NP-hardness of CTSP in the general case for both the
correlated and unrelated cases, the next section focuses on method-
ologies to solve problem instances.



4
I N S TA N C E S O F T H E P R O B L E M

4.1 definition of the instances

In order to assess the potential of our various solving approaches,
this section explains how we generated a set of instances. Due to our
specific assumptions, the studied problem need its proper instances,
which were not available in the literature

instance parameters Our instances are defined by various pa-
rameters:

• the number of doors n

• the number of trucks |U| = |I|+ |O|

• the number of inbound trucks |I|

• the number of outbound trucks |O|

• the processing times of all trucks pu, u ∈ U

• the release dates of all trucks ru, u ∈ U

• the deadlines of all trucks du, u ∈ U

• the loads of all trucks wu, u ∈ U

• the handover relations, i.e. the precedences between inbound-
outbound trucks P

This data represents information known by the crossdock man-
ager, and allows to compute a solution. An instance commonly cor-
responds to a single working day. A correlated instance is illustrated
previously in Figure 5.

The selection of the data allows various kinds of instances: to begin,
the scale of the problem is 24 hours. A schedule is realized for every
day and we are considering that all pallets are unloaded and loaded
in the same day (no pallets left for the next day). We also choose to
work with a precision of 5 minutes assuming this is the time needed
to load or unload one pallet. For this reason, all values are multiples
of 5 min units. The horizon is 24h, so T = 288 as 288× 5 = 1440 min.

The number of doors is chosen in the set n ∈ {1, 2, 5, 10}. We do
not consider larger instances because of the complexity of the prob-
lem: we want to be able to solve the instances in reasonable time.

33
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For a specific number of doors, several number of trucks are speci-
fied. The number of trucks is |U| ∈ {6n, 8n, 10n, 12n, 14n}. The num-
ber of inbound trucks is equal to the number of outbound trucks
|I| = |O|. We fix the workload of the crossdock to 65%. This workload
corresponds to the average occupation rate of the doors. To reach
this workload, the average length of loading/unloading is calculated
based on the number of trucks. Thus the loads (and the processing
times) of the trucks are randomly generated within a predefined in-
terval. Commonly, a link exists between load and processing time:
the more pallets need to be (un)loaded, the more time is needed.
However, depending on the truck, the size of the pallets, the cate-
gory of products, this link between load and processing time can be
more or less strict. For this reason, we will consider two kinds of
instances: correlated and unrelated ones. In correlated instances, the
truck processing time is proportional to the number of pallets. In or-
der to respect the average targeted workload of the crossdock, for the
correlated instances, the load of the {6n, 8n, 10n, 12n, 14n} trucks is
randomly picked in {[30, 30]; [17, 30]; [7, 30]; [2, 30]; [2, 25]}, respectively.
The unrelated instances are obtained by modifying the processing
times of the correlated instances. This operation is partially random-
ized: new values are generated around the initial ones, while conserv-
ing the average workload previously fixed. Concerning the handover
relations, we assume that pallets of inbound truck i need to be loaded
in {1, . . . , pi5 } outbound trucks.

The generation of the time windows is done in two steps: the gen-
eration of tight time windows, called (0.00), and the generation of
four larger time windows (0.25, 0.50, 0.75 and 1.00). These time win-
dows are obtained form the (0;00) ones by proportionally decreasing
the release date and increasing the latest departure date. We define
a change by 0% as keeping the original tight time windows and a
change by 100% as enlarging to the largest time windows. In fact, for
the latter case, there are no time windows anymore as all release
dates are set equal to the beginning of the planning horizon and
all deadlines are set equal to the end of the planning horizon. The
tight time windows are obtained as follows. The ready times ri of
inbound trucks are uniformly distributed in [0, 0.9

∑
pu
n ]. The dead-

lines d̃o of outbound trucks are uniformly distributed in [Ωo,H],
with Ωo = max(i,o)∈A{ri + po}. The ready times ro of outbound
trucks are uniformly distributed in [rmaxi , d̃o − po], with rmaxi =

max(i,o)∈A{ri}. The deadlines d̃i of inbound trucks are uniformly dis-
tributed in [1.5(ri + pi), d̃maxi ], with d̃maxi = min{min(i,o)∈A{d̃o −

po}+ pi,max(i,o)∈A{d̃o}}.
For each combination of these parameters, 10 instances are gener-

ated. A set of 1000 correlated/unrelated instances is obtained. 550

additional instances with one door were added to further examine
the complexity of the single door case.
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4.2 time limitation

In order to evaluate the difficulty to solve these instances, and be-
ing able to get relevant results within an appropriate time limit, we
are now interested in the time needed to converge. We used the cor-
related version of the instances, with the time-indexed formulation,
developed from (Berghman et al., 2015), and also detailed in the next
chapter, as in general the time-indexed formulation is known for be-
ing time consuming. After 2 hours of computing (for a 24h schedule),
some solutions still improve, but the improvement tends to be very
negligible with respect to the time invested. Among the 1000 com-
puted instances, a majority converged. To monitor the evolution of
the solution over time, we interrupted calculation at 8 different time
thresholds: 1, 2, 5, 10, 15, 30, 60 and 120 minutes. For each threshold,
the following table presents the improvement of the UBs, relatively
to those obtained at the previous stop.

The results are divided according to the number of doors and the
tightness of the time windows, which impact the resolution of the
instances. Focusing on the number of doors, the evolution of the so-
lution values (upper bounds) from a selected set of difficult instances
is detailed in Table 2.

Table 2: Evolution of upper bound for different number of doors

Time (min)

Doors 2 5 10 15 30 60 120

1 1% 0% 2% 0% 0% 0% 0%

2 5% 0% 9% 1% 1% 0% 1%

5 6% 0% 8% 3% 4% 4% 2%

10 8% 0% 13% 3% 9% 16% 11%

Based on the number of doors, the convergence of 1, 2 and 5 doors
instances can be considered as stable after 15 min, since the following
improvements of the solution are really low. The convergence of the
10 doors instances is partial, as the variation of the objective is still
relevant (11% between 60 and 120 min).

Focusing on the tightness of the time windows, the evolution of the
upper bound is detailed in Table 3. We notice slower convergence on
larger time windows.

The tightest case reveals an unexpected situation as one minute
is sufficient to find a solution which cannot be improved with 120×
more time. Cases with large time windows, i.e. (0.75) and (1.00), re-
quire 2h of computation.

Considering both the number of doors and the tightness of the time
windows highlights the convergence of all instances, excepting three
categories, as depicted in Table 4.
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Table 3: Evolution of upper bound for different time windows tightness

TW Time (min)

2 5 10 15 30 60 120

0 0% 0% 0% 0% 0% 0% 0%

0,25 6% 0% 10% 0% 1% 1% 0%

0,5 7% 0% 11% 2% 6% 5% 4%

0,75 7% 0% 9% 4% 5% 8% 6%

1 5% 0% 9% 3% 5% 11% 7%

Table 4: Evolution of upper bound for different number of doors and time
windows tightness

Time (min)

Doors TW 2 5 10 15 30 60 120

1 0 0% 0% 0% 0% 0% 0% 0%

1 0,25 0% 0% 0% 0% 0% 0% 0%

1 0,5 2% 0% 2% 0% 0% 0% 0%

1 0,75 2% 0% 4% 0% 0% 0% 0%

1 1 3% 0% 2% 0% 0% 0% 0%

2 0 0% 0% 0% 0% 0% 0% 0%

2 0,25 2% 0% 2% 0% 0% 0% 0%

2 0,5 9% 0% 12% 2% 3% 1% 1%

2 0,75 9% 0% 14% 2% 1% 1% 1%

2 1 6% 0% 15% 2% 1% 0% 1%

5 0 0% 0% 0% 0% 0% 0% 0%

5 0,25 8% 0% 4% 1% 2% 0% 0%

5 0,5 8% 0% 13% 2% 4% 6% 5%

5 0,75 6% 0% 9% 5% 6% 8% 3%

5 1 6% 0% 12% 7% 8% 6% 3%

10 0 0% 0% 0% 0% 0% 0% 0%

10 0,25 15% 0% 32% 0% 3% 2% 1%

10 0,5 10% 0% 15% 2% 19% 14% 11%

10 0,75 10% 0% 9% 10% 13% 25% 21%

10 1 5% 0% 7% 4% 11% 39% 23%
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Figure 12: Upper bound evolution of a selection of the 10 doors, 0.25 time
windows instances

The three concerned categories are 10 doors with (0.5), (0.75) and
(1.00) TW. The improvement of the UB is still relevant, even after two
hours of computing, with a respective improvement of 11%, 21% and
23%.

Only a few categories are not converging after a time of computa-
tion of 2 hours. Moreover, further increasing the computation time is
not ideal as new improvement might arrive late.

Figure 12 illustrates the evolution of a representative part of the
instances, with the biggest number of doors (10) and slightly re-
laxed time windows (0.25). The convergence can be easily certified.
Remark that the curves representing the objective values of the so-
lutions found over time are all decreasing overall, however we can
observe that some curves are locally increasing. This phenomenon is
due to the set-up of the experiment, and the non-deterministic solu-
tions found by cplex within a predefined time limit. Intuitively, one
would expect to interrupt cplex after a predefined time limit, report
the solution, and relaunch for an additional time. However, due to
technical issues, cplex does not relaunch the solving exactly where
it is stopped leading to inexact time management. For that reason,
each solution on the graph is obtained by a separate cplex run with a
pre-defined time limit. In some cases (especially when the time limit
is low), according to branch and hardware conditions, the solution
found can be lower or higher than expected.
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S O LV I N G T H E C T S P





4.2 time limitation 41

This second part introduces the proposed resolution methods to
solve the CTSP problem. First, a general time indexed formulation is
introduced, that can be implemented with a commercial solver like
CPLEX. It will serve as a reference to assess the other methods. Sec-
ondly, a quadratic formulation, that can solve instances with a single
door is proposed, even though the relevance of this formulation is
quite reduced. Next, a critical set formulation, enforced by valid in-
equalities and a constraint programming formulation are developed.
These formulations are designed to solve real-scale instances with
dozens of doors.





5
T I M E I N D E X E D F O R M U L AT I O N

In this chapter we introduce a time indexed formulation for CTSP.

5.1 the choice of time indexed milp to solve cstp

As introduced previously, the time indexed formulation introduced
in Berghman et al. (2015) will be further explored in this chapter,
in order to compare to new methods. This will allow us to have
an idea about the difficulty of the instances, and measure the rela-
tive efficiency of more complex formulations. It is well known that
time indexed formulations perform well for scheduling problems
because the linear programming relaxations typically obtain strong
lower bounds (Dyer and Wolsey, 1990) provided that the problem
size remains reasonable.

5.2 formulation of the time indexed model

In the following, we will refer to the presented time indexed formula-
tion as "TI". The time horizon is discretized into elementary intervals
of unit length. We define T as the set of all time intervals, and τ as the
generic time interval [t− 1, t[ where t represents a moment in time.

For all trucks u ∈ U and for all time periods τ ∈ T, we have

xuτ =


1 if the unloading/loading of truck u starts

during time period τ,

0 otherwise.

For all trucks u ∈ U, xuτ = 0 if τ 6 ru or if τ > d̃u − pu + 1 as dur-
ing these time intervals it is not possible to start unloading/loading
truck u.

A time-indexed formulation for the considered CTSP problem, that
we call TI1 is the following:

min z =
∑

(i,o)∈A

∑
τ∈T

wioτ (xoτ − xiτ) (10)
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subject to ∑
τ∈T

xuτ = 1 ∀u ∈ U (11)∑
τ∈T

τ (xiτ − xoτ) 6 0 ∀(i,o) ∈ A (12)

∑
u∈U

τ∑
b=τ−pu+1

xub 6 n ∀τ ∈ T (13)

xuτ ∈ {0, 1} ∀u ∈ U;∀τ ∈ T (14)

The objective function (10) minimizes the total sojourn time. Con-
straints (11) demand that each truck is assigned to exactly one door.
Constraints (12) ensure that if inbound truck i and outbound truck o
are connected, the loading start time for truck o is not earlier than the
unloading start time for truck i. Constraints (13) enforce the capacity
of the doors.

Alternatively precedence constraint (12) can be expressed as follow:

τ∑
b=1

(xib − xob) > 0 ∀(i,o) ∈ A; ∀τ ∈ T (15)

These constraints state that a loading task can only begin after all pre-
ceding unloading tasks have been started. These constraints are called
disaggregated (Christofides et al., 1987). The formulation obtained by
replacing constraints (12) in formulation TI1 by (15) will be referred
to as formulation TI2. TI2 is stronger than TI1, since each feasible
solution for the LP relaxation of TI2 is also a feasible solution to the
LP relaxation of TI1. However, TI2 contains |A||T| constraints (15),
while TI1 includes only |A| constraints (12). The additional CPU time
needed to solve the larger linear program can significantly counter-
balance the improvement of the bound. Computational experiments
have been conducted to compare the efficiency of both formulations.
We will detail them in the following section.

5.3 comparison of ti formulations

Both formulations have been tested on two predefined sets of 1000

instances, correlated and unrelated versions.
To measure their performances, we focus on the elements in the

table below:

• Optimal (Opt.): the number of instances for which an optimal so-
lution is found by the algorithm before reaching the time limit.

• Feasible (Feas.): the number of instances for which a feasible
solution is found. It may be the optimal solution, but the algo-
rithm cannot prove the optimality within the allowed computa-
tion time.
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• Unfeasible (Unfeas.): the number of instances that are proved
infeasible.

• Unknown (Unkn.): the number of instances for which neither a
feasible solution nor a proof of unfeasibility is found within the
time limit.

• Computation time (Time): the average time in seconds needed
to prove optimality or infeasability whenever both TI1 and TI2
succeeded in proving.

• Gap (Gap): the average gap after reaching the time limit when-
ever both TI1 and TI2 succeeded to find a solution.

• Relative upper bound (relative UB): the average difference be-
tween two upper bounds as a percentage of the best upper
bound, whenever a feasible or optimal solution is found before
the end of the computation time. Considering UBa and UBb:
relative UBa = UBa−UBb

max{UBa,UBb}
. As such, the formulation with

best UB has a positive relative UB.

The number of optimal and infeasible instances is obviously impor-
tant as the more a method is able to find, the more efficient. Also, the
number of unknown instances is relevant because an efficient method
should establish the possibility of solving the instance in short time.
The number of feasible instances is more tricky to interpret, as find-
ing feasible (but not optimal) solutions on easy instances is negative,
while finding feasible solutions on hard instances is positive. Anyway,
the number of feasible instances is a third indicator that simply com-
pletes the number of optimal, infeasible and unknown instances.

Due to similar behaviour, the table establishing the comparison be-
tween formulations cumulates both correlated and unrelated results.

NB: Instances for which optimality or infeasability was not proven by
at least one of both formulations do not participate to the Time calculation.
Instances for which no feasible solution was found by at least one of both
formulation does not participate to the Gap and relative UB calculation.

The results presented in Table 5 show that the obtained solutions
are close from one formulation to another, with the same number
of unfeasible proved and few differences on the number of Optimal
found (1.5%), Feasible found (0.3%) and Unknown (3 instances versus
1). On the one hand TI2 seems to be faster that TI1 to resolve in-
stances, on the other hand the value relative UB is −20% on average,
and the difference increases with the number of doors. Because of the
similar gap of the formulations, a better upper bound for TI1 means
a worse lower bound. However, we grant a strong importance to the
solution value: the UB, and the improvement of the UB. For this rea-
son the formulation TI1 is selected as the final version of the time
indexed formulation and will be used in the following of this work.
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n form. Opt. Feas. Unfeas. Unkn. Time (s) Gap relative UB

all F1 392 1362 243 3 454 60.9% 20.0%

all F2 398 1358 243 1 372 59.6% -20.0%

1 F1 190 216 94 0 579 37.4% 0.4%

1 F2 184 222 94 0 516 34.3% -0.4%

2 F1 87 343 70 0 461 67.5% 12.1%

2 F2 95 335 70 0 394 67.3% -12.1%

5 F1 49 400 51 0 133 69.5% 30.5%

5 F2 51 397 51 1 110 68.2% -30.5%

10 F1 66 403 28 3 432 66.8% 34.0%

10 F2 68 404 28 0 206 66.1% -34.0%

Table 5: Comparison of formulations TI1 and TI2 with time limit of 2h

Although it is not presented in the table, without a surprise, for
the same instances, returned status (optimal/feasible/unfeasible) are
mainly identical for both formulations. On the maximum of 398 Opti-
mal found, 374 are the same instances (94%). All unfeasible are found
by both of the formulations. We can note that the instance Unknown
for TI2 is different from the 3 instances Unknown for TI1, but this is a
very small number.

5.4 performances and limits of the time indexed formu-
lation

To analyse the performance of the TI formulation, we detail the re-
sults with respect to both the number of doors (n) and the average
number of trucks per door ( kn ) in Tables 6 and 7. The gap is based
on the best UB and the best LB found by CPLEX in the predefined
computation time, and is calculated as follows: Gap = UB−LB

UB , for all
instances with a feasible solution.

The first thing we can highlight is the efficiency of the TI formula-
tion to find feasible solutions. Very few of the instances remain un-
known. On the smallest instances, with one door and six trucks, the
method performs very well, but with slightly more trucks, the num-
ber of Feasible increases drastically at the expense of Optimal ones, and
the average gap increases to ∼30%. When the number of doors or the
number of trucks per door increases, the number of optimal solutions
continues to decrease quickly while the average gap reaches ∼70%.

Unexpectedly, the number of optimal solutions and the average
gap seem to be stable when the instances reach a certain size. The
number of optimal and feasible solutions are better for one door, and
for two doors with 6 or 8 trucks per door. Anywhere else, the num-
ber of optimal and feasible solutions does not differ much. The Gap
for instances with one door and a low number of trucks per door are
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n k
n Opt. Feas. Unfeas. Unkn. Time (s) Gap

all all 189 685 124 2 5110 61,5%

1 6 38 2 10 0 1717 0,7%

1 8 19 22 9 0 3530 30,8%

1 10 12 29 9 0 4408 49,6%

1 12 13 28 9 0 4153 55,8%

1 14 11 31 8 0 4552 60,7%

2 6 11 31 8 0 4480 62,0%

2 8 12 31 7 0 4676 66,0%

2 10 7 35 8 0 5206 69,7%

2 12 7 38 5 0 5553 68,1%

2 14 5 38 7 0 5538 71,5%

5 6 4 39 7 0 5685 71,3%

5 8 2 40 8 0 5765 73,9%

5 10 4 40 6 0 5797 71,4%

5 12 6 40 4 0 5765 67,8%

5 14 8 40 2 0 5826 65,3%

10 6 8 40 2 0 5765 65,4%

10 8 6 40 4 0 5906 68,8%

10 10 5 40 5 0 5786 69,4%

10 12 6 40 3 1 6019 66,0%

10 14 5 41 3 1 6069 66,4%

Table 6: TI results on correlated instances

acceptable. But for all other instances the gaps are around 60∼70%, in-
dependently of the number of doors or trucks per door. We can notice
that the time required to solve the instances is increasing overall. As
expected, to perform similarly, TI need more time to solve instances
with an increasing number of doors and trucks. The efficiency to find
solution even for the worst considered case confirms the relevance of
the time limit.

Although the TI formulation seems efficient on the proposed in-
stances to find solutions (low number of Unknown), the gaps of nu-
merous feasible solutions are really important, and show the limit of
the TI formulation to find good solutions (UB is too high), or to prove
the quality of the solution (LB is too low). These conclusions seem in-
sensitive to the nature (correlated versus unrelated) of the problem.

Theses limits are a strong motivation to explore new methods.
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n k
n Opt. Feas. Unfeas. Unkn. Time (s) Gap

all all 203 677 119 1 5075 60,2%

1 6 37 2 11 0 1146 0,6%

1 8 21 17 12 0 3184 18,1%

1 10 15 25 10 0 3967 41,0%

1 12 12 30 8 0 4460 49,9%

1 14 12 30 8 0 4385 61,6%

2 6 10 30 10 0 4473 64,4%

2 8 10 32 8 0 4728 67,7%

2 10 9 34 7 0 5224 68,9%

2 12 9 37 4 0 5486 66,8%

2 14 7 37 6 0 5552 69,2%

5 6 4 40 6 0 5766 72,0%

5 8 5 40 5 0 5775 69,1%

5 10 3 40 7 0 5768 73,0%

5 12 6 40 4 0 5783 67,5%

5 14 7 41 2 0 5978 65,5%

10 6 9 40 1 0 5768 65,2%

10 8 6 41 3 0 6038 68,1%

10 10 6 40 4 0 5829 68,8%

10 12 9 40 1 0 5898 64,5%

10 14 6 41 2 1 6288 65,8%

Table 7: TI results on unrelated instances
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Q U A D R AT I C F O R M U L AT I O N

In this chapter, we introduce a quadratic formulation for the CSTP
with only one door and no binding time windows. The 0/1 quadratic
formulation is widely studied and has a relatively simple structure.
So although it can only be used for a very special case, we think it
is worth presenting the formulation and compare the computational
results with the other formulations.

6.1 a quadratic formulation for the single-door prob-
lem without time windows

This special case can be modeled using a straightforward quadratic
formulation, which is a variation of the linear formulation of (Potts,
1980).

For all trucks (u, v) ∈ U, the following decision variables are set
up:

xuv =

1 if truck u precedes truck v in the schedule,

0 otherwise,

Remark that xuv is also 1 if there are some other trucks scheduled
between u and v, so not only in the case where they are scheduled
immediately the one after the other.

As we only have one door, and as the sojourn time of a pallet is
calculated as the difference between the starting time of the corre-
sponding unloading activity and the starting time of the correspond-
ing loading activity, the sojourn time of a pallet is at least equal to pi.
Moreover, for each truck u (either inbound or outbound) sequenced
between an inbound truck i and an outbound truck o, the wio pallets
will spend an extra pu time in the warehouse. Hence, the total time
the pallets spend in the warehouse after they are unloaded and be-
fore they are loaded can be formulated as the processing time of all
trucks u such that xiu = 1 and xuo = 1, and this processing time con-
tributes to the sojourn time of the wio pallets unloaded from i and
loaded on o. This does not hold anymore when we have release dates
as those might add some idle time in between the (un)loading of two
trucks. This formulation cannot be used if more than one door is con-
sidered, or with time windows: the proposed objective formulation is
only correct when there is no idle time. With one door, without time
widows, the optimal solution does not present idle time, and thus
can be represented by a continuous sequence of trucks. If more doors
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are considered, idle times can be needed due to precedence relations
between connected trucks. And if release dates are considered, idle
times can be needed to respect the time windows.

A quadratic formulation for the considered special case of the CTSP
problem is the following:

min z =
∑
i∈I

wipi +
∑
i∈I

∑
o∈O

∑
u 6=i,o

wiopuxiuxuo (16)

subject to

xuv + xvu = 1 ∀u, v ∈ U (17)

xuv + xvj + xju 6 2 ∀u, v, j ∈ U (18)

xio = 1 ∀(i,o) ∈ A (19)

xuv ∈ {0, 1} ∀u, v ∈ U (20)

The total sojourn time is minimized in (16). The first term corre-
sponds to the sojourn time of each pallet during their unloading, with
wi =

∑
o∈Owio; the second term adds the sojourn time of the pallets

after the truck being unloaded, and before the start of the loading of
the pallets. Constraints (17) impose an order between any pair of 2

trucks and (18) prevent cycles. If u precedes v (xuv = 1) and v pre-
cedes j (xvj = 1), then j precedes u (xju = 1 and hence xuj = 0).
Finally, constraints (19) ensure that outbound trucks do not precede
their connected inbound trucks.

6.2 performances and limits of quadratic formulation

Due to the necessary characteristics of the problem to be able to use
the quadratic formulation, only 50 instances from the generated set
in chapter 4 are eligible. From the original set, we select the instances
with one door, and without time windows. We add to this set 110

new instances, by increasing the number of trucks, to better explore
the behaviour of this formulation. The time limit is fixed to 2h, but
the actual computation time needed by the solver is shorter.

The instances are computed using the quadratic solver of CPLEX
12.8. The results are partitioned according to the number of trucks
per door in Tables 8 and 9. All the instances are optimally solved, so
Feasible, Unfeasible and Unknown are not mentioned in the table. Opt.,
Time and Gap are calculated as explained in the previous chapter.

As the results of the correlated and the unrelated instances are
highly similar, following analysis applies for both sets.

The quadratic formulation works very well. All the instances are
solved to optimality. When the number of trucks per door is small
(below 18), the optimum is found very quickly, in less than 0.1s, for
both correlated and uncorrelated instances. A few seconds are needed
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n k Opt. Time (s) gap

1 6 10 <0.1 0%

1 8 10 <0.1 0%

1 10 10 <0.1 0%

1 12 10 <0.1 0%

1 14 10 <0.1 0%

1 16 10 <0.1 0%

1 18 10 0,1 0%

1 20 10 0,7 0%

1 22 10 0,8 0%

1 24 10 2,1 0%

1 28 10 6,0 0%

1 32 10 14 0%

1 36 10 28 0%

1 40 10 43 0%

1 44 10 188 0%

1 48 10 358 0%

Table 8: Quadratic formulation on correlated instances

n k Opt. Time (s) gap

1 6 10 <0.1 0%

1 8 10 <0.1 0%

1 10 10 <0.1 0%

1 12 10 <0.1 0%

1 14 10 <0.1 0%

1 16 10 <0.1 0%

1 18 10 0,1 0%

1 20 10 0,7 0%

1 22 10 0,8 0%

1 24 10 2,1 0%

1 28 10 6,0 0%

1 32 10 14 0%

1 36 10 29 0%

1 40 10 43 0%

1 44 10 188 0%

1 48 10 358 0%

Table 9: Quadratic formulation on unrelated instances

with more trucks per door (until 40) and when we consider more than
40 trucks, the computation time increases considerably but stays low
compared to the time limit.

The results of the quadratic formulation have to be compared to
the results of the time indexed formulation. Chapter 9 is dedicated
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to this comparison, with additional results from other formulations,
proposed in the following chapters.

To conclude, we can say that the quadratic formulation is as ex-
pected very efficient for instances with one door and without time
windows. However these required conditions drastically limit its use.
A method with similar results able solve the general problem would
be desired.
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C R I T I C A L S E T S F O R M U L AT I O N

The CTSP is complex mainly due to the highly cumulative nature of
the resource constraints (i.e., the doors of the cross-dock). Therefore,
designing efficient methods for solving industrial large-size CTSP is
suitable. In this section, we introduce a new approach that relies on
the basic critical set concept. We show how valid inequalities can be
progressively exhibited to enforce a relaxed MIP formulation of the
CTSP. We also explore different strategies to analyze the efficiency of
this branch-and-cut method.

7.1 basic critical-sets formulation

critical set The concept of a critical set is well-known in the
scheduling literature (Demeulemeester and Herroelen, 2002). A set of
scheduled tasks/trucks is said critical if, due to mutually overlapping
intervals, its implementation requires more resources than available.
The critical set e has two proprieties. The tasks/trucks belonging to
e use a common set of doors (need a certain working capacity) and
their simultaneous processing induces a workload higher than the
offered capacity. A solution with such critical set can become feasi-
ble, if trucks from the critical set are arranged so that they will not
consume too much resource at the same time. On the opposite, a
solution violates the critical set if the resource consumption of these
trucks exceeds the resource capacity. Figure 13 illustrates this concept
considering a CTSP with two doors and four trucks to unload/load.
In solution (i), one can point out the critical set of size 4 ({a,b, c,d}
or alternatively consider four critical sets of size 3 ({a,b, c}, {a,b,d},
{a, c,d} and {b, c,d}). Case (ii) illustrates only two critical sets of size
3 ({a, c,d} and {b, c,d}), (iii) only one critical set ({b, c,d}), and (iv)
has no critical set. A critical set is said minimal if, after removing a
single element from the set, it is not critical anymore. For instance,
in figure 13, solution (i) contains four minimal critical sets ({a,b, c},
{a,b,d}, {a, c,d} and {b, c,d}), solution (ii) has two minimal critical
sets ({a, c,d} and {b, c,d}), and solution (iii) presents only one mini-
mal critical set ({b, c,d}). Each truck requiring exactly one door (dur-
ing the time pu defined for each truck u ∈ U), a set of n trucks or
less cannot be obviously critical for n doors, as it indubitably meets
the resource requirement. Thus, a critical set has a cardinality strictly
greater than n. A minimal critical set has a cardinality of n+ 1.

Before introducing valid inequalities, let us first present the orig-
inal critical-sets formulation of the problem. To model end-to-start
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Figure 13: Possible solutions from a critical set of 4 trucks, according to im-
posed precedences

constraint precedences between trucks, this formulation uses binary
variables αuv for all (u, v) ∈ U2 with:

αuv =

1 if u ends before the starting of v (u ≺ v)

0 otherwise

In other words, αuv = 1 if su + pu 6 sv. This kind of precedence
constraint should obviously be set when u and v are allocated to the
same door. It can also be indirectly satisfied when u and v are allo-
cated to different doors, for instance u is allocated on a door, while
v starts to be handled after the end of u on another door. For any
pair of non-overlapping trucks (u, v), a precedence between u and
v exists: αuv + αvu = 1. In the case of overlapping trucks (u, v), no
end-to-start precedence exist: αuv +αvu = 0.

Using a critical sets formulation, the CTSP objective is still written
as follows:

min
∑
i∈I

∑
o∈O

wio(so − si) (21)

In the correlated case CSTP(C, n), due to the proportional relation
between wu and pu, the objective can be simplified as:

min
∑
o∈O

sopo −
∑
i∈I

sipi (22)
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The CSTP is subject to:

so − si > 0 ∀(i,o) ∈ A (23)

su > ru ∀u ∈ U (24)

−su > pu − d̃u ∀u ∈ U (25)

sv − su +αuv(Muv − pu) >Muv ∀(u, v) ∈ U2,u 6= v (26)∑
(u,v)∈e2,u6=v

αuv > |e|−n ∀e ∈ E (27)

αuv ∈ {0, 1} ∀(u, v) ∈ U2,u 6= v (28)

su ∈ R ∀u ∈ U (29)

The big M constraints (26) are defined by Muv = pu−du+ rv. E is
the set of all critical sets.

Constraints (23) model start-start precedences due to handover re-
lationships between inbound and outbound trucks sharing a flow of
pallets. Constraints (24) and (25) impose the respect of release dates
and deadlines, respectively. Constraints (26) and (27) model the re-
source constraints using the concept of critical sets. Constraints (26)
link the start variables of the trucks with precedence variables α
using big-M constraints. Muv is defined such that sv − su > Muv.
Such constraints do not affect the model when αuv = 0. However,
αuv = 1 forces end-to-start precedences between u and v as we ob-
tain sv − su > pu. Constraints (27) express that, for each critical set
e of cardinality |e|, a minimum number of |e| − n precedence con-
straints should be imposed between pairs of trucks belonging to e,
which ensures that the set e of trucks will never induce a resource
consumption greater than n doors. Constraints (27) intentionally con-
sider all critical sets, even though it is well known that one can restrict
only to minimal ones, i.e.:∑

(u,v)∈e2,u6=v

αuv > 1 ∀e ∈ Emin (30)

with Emin ⊂ E the subset of all minimal critical sets.
The number of critical sets, minimal or not, is exponential, which

makes the formulation itself exponential in size and very ineffective
in practice. That is why we suggest to relax all constraints (27), and
to progressively re-introduce them, using specific cuts, as explained
in the next section.

7.2 new valid inequalities

The following part introduces a valid inequality, which even strength-
ens constraints (27).

definition In a MIP, a valid inequality is a constraint that does
not cut off any integer solutions. If this inequality is able to con-
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sider less continuous solutions than the original formulation, while
conserving all integer solutions, it is called a strong valid inequality
(Wolsey, 1998). A strong valid inequality enforces the original for-
mulation, leading to an easier resolution while reducing the search
space. The inequality, to effectively enforce the formulation, cannot
be a linear combination of existing constraints. Figure 14 presents a
set of solutions. Integer solutions are represented by explicit points.
Constraints c1 and c2 are valid inequalities, but only c1 enforces the
model, wiping out part of the continuous solutions. As constraint c3
is wiping out at least one integer solution, materialized with point p1,
it is not valid.

Figure 14: Illustration of valid inequality

In the sequel of this section, we aim to replace the exponential
number of resource constraints (27) by some strong valid inequalities.
The new constraints add finish-start precedences between trucks such
that resource constraints are not violated. Note that we only need to
consider sets of trucks whose execution time windows can overlap,
which limit the number of critical sets.

Note also that a solution for the relaxed problem (without con-
straints (27)), in which valid inequalities have been added, gives a
lower bound for the non-relaxed problem. Of course this solution
might induce some resource capacity violations. A resource capacity
violation is characterized by the fact that some critical sets do not
respect the minimum number of finish-start precedence constraints
that guarantees the resource feasibility (i.e., constraints (27)). Such a
critical set will give rise to a new valid inequality as explained below.
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Theorem 6. Considering a single resource of capacity n and a critical set
e ∈ E of cardinality |e| > n, the following strong inequality holds:∑

(u,v)∈e2,u6=v

αuv >
(|e|−n)(|e|−n+ 1)

2
. (31)

Note that equation (31) effectively strengthens constraints (27) as
the right member can only be greater than or equal to |e|−n, follow-
ing the definition of a critical set. Note also that these inequalities are
very generic as they can be used for any scheduling problem with cu-
mulative resource constraints, not only the door scheduling problem.

Proof. Part one: (31) is a strong valid inequality
Consider the set U of all truck intervals, and let G(U) be the asso-

ciated interval graph. Let Q be any maximal clique on G(U), i.e., a
set of mutually overlapping truck intervals, and denote |Q| = kQ. If
kQ > n, in any feasible solution all kQ trucks of Q cannot be sched-
uled in parallel, so precedences must be introduced. The question
is what is the minimum number of precedences that need to be im-
posed. In other words, if we consider all variables αuv for u, v ∈ Q,
what is the minimum number of variables that have to equal 1 in any
feasible solution.

In the following, all concepts refer to a subset Q of trucks. So,
we refer to schedules, start times, completion times of trucks in Q.
Given a feasible schedule σ, let su denote the start time of truck u,
and let Cu = su + pu be the completion time of truck u. In σ, for
each door g ∈ J1,nK, there is a sequence of kg trucks. Let (g,w) de-
note the wth truck assigned to door g, g ∈ J1,nK, u ∈ J1,kgK. We
let sg(1), sg(2), . . . , sg(kg) denote the start times of the kg trucks as-
signed to door g.

Given a feasible schedule σ, we say that a precedence occurs between
trucks (g,w) and (h, v) if sg(w) + pw 6 sh(v) or sh(v) + pv 6 sg(w).
Assuming the feasibility of schedule σ, we want to establish a lower
bound on the number of precedences occurring between trucks in σ.

Observe that without loss of generality we can replace σwith a new
(artificial) schedule σ ′ in which each truck has the same start time as
in σ, but their processing time is lengthened so that its completion time
coincides with the start time of the successive truck on the same door.
Let us point out that this replacement cannot increase the number of
precedences among trucks (possibly it can decrease as some trucks
on different doors can become overlapping). Formally, we redefine the
completion times of the trucks as Cg(w) = sg(w + 1), g ∈ J1,nK,
w ∈ J1,kg − 1K. From now on we name this schedule σ ′. Note that
in σ ′ there are no idle times on doors, i.e., door g is busy from time
sg(1) to Cg(kg). We call an "event" the completion of a truck (g,w)
and the beginning of truck (g,w+ 1), g ∈ J1,nK, w ∈ J1,kg − 1K. We
let τ(g,w) be the time at which the event corresponding to the com-
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pletion of truck (g,w) takes place. Note that in σ ′ there are exactly
kQ −n events.

Now let us establish the main argument. We first assume that
events are totally ordered in time, i.e., no two events take place si-
multaneously. This assumption cannot increase the number of prece-
dences as, in the particular case of two events taking place simulta-
neously, one extra precedence occurs. First of all, any single event is
attached to a obvious precedence, due to directly consecutive trucks
(hence corresponding to the truck before and the truck after the
event), i.e., (g,w) and (g,w+ 1) for the event τ(g,w). Since the num-
ber of events is equal to kQ − n, we have a first set kQ − n prece-
dences. Secondly, we can define additional precedences generated by
pairs of events. If τ(g,w) 6 τ(h, v), then a precedence occurs between
trucks (g,w) and (h, v+ 1). Every pairs of events lead to at least one
precedence. Since the number of events is equal to kQ − n, there are
(kQ −n)(kQ −n− 1)/2 additional precedences among trucks. Hence
the total minimal number of precedences is

(kQ −n)(kQ −n− 1)

2
+ (kQ −n) =

(kQ −n)(kQ −n+ 1)

2
. (32)

As precised earlier, if two events take place at the same time, the
number of precedences is higher than what expressed by (32). Indeed
τ(g,w) = τ(h, v), leads to two precedences instead of one: (g,w) pre-
cedes (h, v+ 1) and (h, v) precedes (g,w+ 1).

The inequality being proved, we show below that it also enforces
the formulation as it does not result from a linear combination of
constraints (27), i.e. a combination of minimal critical set inequalities.
The following part is a proof by counterexample.

Proof. Part two: (31) is not a linear combination of the constraints.
Consider a critical set e composed of four trucks a,b, c,d (kQ =

4) and a resource limit of 2 (n = 2). We introduce αuv = 1 when
u ≺ v, (u, v) being any truck in {a,b, c,d}. The minimal critical set
has cardinality 3 (n+ 1). Any set composed of 3 trucks among e is a

minimal critical set. The number of minimal critical set is
(
kQ
n+ 1

)
=(

4

3

)
= 4, namely: {a,b, c}, {a,b,d}, {a, c,d}, and {b, c,d}.

With this example, constraints (27) can be applied on a total of 5

critical sets: one set of 4 trucks and four sets of 3 trucks. However, the
following shows that the constraint applied on the full set e (4 trucks)
is a linear combination of the constraints applied on the minimal crit-
ical sets.

We are focusing on minimal critical-set constraints. A minimal
critical-set constraint imposes at least one precedence (|e| − n = 1)
among trucks from the set. It is well known that imposing one prece-
dence constraint for all minimal critical sets is necessary to ensure the
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feasibility of the resulting schedule (i.e., there is no remaining critical
set), provided that the resulting temporal graph does not contain any
positive length circuit. In our example, for each minimal critical set,
it is possible to choose among 6 possible precedences (for example
a ≺ b, b ≺ a, a ≺ c, c ≺ a, b ≺ c, c ≺ b in a, b, c). The first four
following equations correspond to the inequations (27) applied to our
minimal critical sets. By adding all four constraints and dividing the
obtained result by 2, we obtain the constraints (27) applied to critical
set e.

αab +αba +αac +αca +αbc +αcb > 1

αab +αba +αad +αda +αbd +αdb > 1

+αac +αca +αad +αda +αcd +αdc > 1

+αbc +αcb +αbd +αdb +αcd +αdc > 1

αab +αba +αac +αca +αbc +αcb +αad +αda +αbd +αdb +αcd +αdc > 2

Considering the entire critical set e, applying our inequality returns
a right-term of (kQ−n)(kQ−n+1)

2 = 3, thus

αab +αba +αac +αca +αbc +αcb +αad +αda +αbd +αdb +αcd +αdc > 3

Our inequality is therefore stronger than a linear combination of
any minimal critical-set constraints.

Figure 13 illustrates the interaction of precedences with four trucks
on two doors, following the previous example. Considering a given
minimal number of precedence constraints, a fesasible schedule with
the exact number of precedences is proposed. We can note that 2
precedences correspond to ke−n, the number of trucks exceeding the
resource limit, an intuitive minimum number of precedences. We can
observe critical sets in (i, ii, iii), with respectively {0, 1, 2} precedences
because the number of precedences existing between the trucks is too
low. As expected, because the valid inequality requires a minimum
of 3 precedences, 2 precedences are not enough to break the critical
set.bIn (iv), with the 3mentioned precedences, it is possible to respect
the resource limit. A number of three precedences is the minimum
required to avoid the critical state in this example.

However, as previously mentioned, this minimum number of prece-
dences is not a sufficient condition to guarantee the feasibility of any
schedule, as illustrated in Figure 15.

Nevertheless, this example tends to indicate that it is not possible
to enforce even more the valid inequality to obtain a sufficient condi-
tion, as the feasible solution in Figure 13 (iv) would not be feasible
anymore.
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Figure 15: A necessary but not a sufficient valid inequality.

It is worth noting that the valid inequality (31) does not strengthen
constraints (27) if the critical set is minimal, as in that case (27)
and (31) are strictly equivalent (they both request one precedence).
That is why in our approach, as detailed below, we will not restrict
our attention to only minimal critical sets.

7.2.1 Illustration

Based on the instance introduced in chapter 3, we can consider a
violated critical set in Figure 16. Considering a 2 doors crossdock, the
capacity constraint is violated in three time slots. In order to solve the
critical state, the valid inequality enforces some precedences. The size
of the critical set is 4, while the limit of simultaneous trucks is 2. The
valid inequality imposes a minimum of (4−2)(4−2+1)

2 = 3 end-to-start
precedences between trucks in this set.

Figure 16: Violated critical set on the example

Figure 17 presents the critical set of the example, after the introduc-
tion of 3 precedences: 2 ≺ 4, 3 ≺ 4 and 3 ≺ 5. The capacity constraint
is now respected in all time slots. Using less precedences cannot solve
the violation of critical set.



7.3 optimisation strategy 61

Figure 17: Resolved critical set on the example

7.3 optimisation strategy

7.3.1 Limitation of cuts application

The valid inequalities being now defined, they can be applied on the
relaxed problem. Of course they cannot be all introduced initially into
the relaxed problem because of their exponential number. For that
reason, this section details an approach to separate them iteratively
according to the following algorithm sketch.

The algorithm below distinguishes two models: the original model,
with resource constraints, and the iterative model, initially relaxed
and iteratively enriched by valid inequalities. The status of a solu-
tion can be different with respect to these models. A feasible solution
for the iterative model can be infeasible for the original model, due
to relaxed constraints. Obviously, an optimal solution for the iterative
model can either be infeasible for the original model if a resource con-
straint remains violated, or optimal. For clarity reasons, the solution
status with respect to the iterative model is emphasized, whereas it will
be regularly written when considering the original model.

In order to keep the methodology efficient, the number of added
valid inequalities should remain as small as possible so that the com-
putational effort needed at Step 2 to exhibit a new feasible solution
remains low. But considering a non resource-feasible solution, many
valid inequalities can be exhibited. Four different strategies are con-
sidered below in order to select which valid inequalities should be
added in order to keep the solving methodology efficient.

7.3.2 Cut selection strategies

The selection of the most promising cuts is a difficult task. Indeed,
even considering a single critical set, the number of existing valid
inequalities can be very high (i.e., exponential with the cardinality
of the critical set), as critical subsets can be considered. The cardi-
nality of the considered critical set defines the number of imposed
precedences. Considering a non-minimal set (|e| > n+ 1), there exist
critical sets composed with trucks from e. Any subset |esub| from e
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Algorithm 1 iterative cut algorithm

Input: instance data
Output: schedule

relaxing original problem (the resource constraints (27) are re-
moved)
while optimal not found do

solving the current model, until a feasible solution is found.
if solution feasible for the original formulation and optimal for
the current model. then

global optimum obtained and the algorithm ends
else if solution unfeasible for the original formulation. then

defining some valid inequalities selected from some critical
sets violated in the proposed solution.
adding valid inequalities to the current model.

end if
end while

with |esub| > n+ 1 is critical. Considering a maximum of |e| trucks
in parallel, the number of critical sets defined by these trucks are∑
x∈[n+1,|e|]

(
|e|
x

)
, all possible sets from size n+ 1 to |e|.

To applied cuts, we consider a solution of the relaxed problem as
well as the number of dock doors being used along the time-horizon
for this solution, as illustrated in Figure 18.

Doors in use

Time

n
et

t

Figure 18: Doors usage on example solution

As the relaxed model does not take into account all resource con-
straints, the limit of n doors is exceeded during some time periods.
Although the figure does not represent trucks individually, all trucks
are taken into account in the obtained solution. At any time t, the set
et of the trucks being handled is known. According to the shape of
the graph and the current time t, different sets et (and critical subsets
in et) can be considered.
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From one solution to another, new valid cuts are added in order
to progressively converge towards a resource-feasible solution for the
original problem so that all critical sets have been avoided. However,
to avoid handling too much cuts, these critical sets are not considered
at once. We review below four cut selection strategies, namely the top
cut, base cut, k-base cut - static, and k-base cut - adaptive.

top cut The first strategy that we introduce is called the top cut
strategy and focuses on critical sets with highest violation of the re-
source capacity. For each peak of the workload curve associated with
the current solution, we can identify a critical set of maximum size
and generate a cut. We say that a peak occurs at time t when the
number of doors used at time t is strictly greater than the one used
at time t− 1, strictly greater than n, and remain constant until time
t+ k(k > 0) when it decreases again.

As the total number of peaks is relatively small, a moderate num-
ber of cuts is added at each iteration. Nevertheless, these cuts are
relatively strong as the number at the right side of the inequality is
high. This strategy tends to reduce the worst capacity violation from
solution to solution, decreasing progressively the height of the peaks.
More precisely, t being the time when a peak of resource consump-
tion occurs, the top cut strategy applies the valid inequality on the
entire set of trucks executed at time t.

Figure 19 illustrates the top cut strategy on a workload curve exam-
ple. For this example, the algorithm detects 5 peaks, which will gen-
erate 5 additional valid inequalities in the model. Obviously, e being
a critical set for which a cut is added, trucks of e will not be handled
in parallel at the same time in the next solution, as precedence con-
straints between them have to be added (i.e., the same solution cannot
be reached twice). However, considering a peak with a non-minimal
critical set, part of the trucks belonging to the set can still form an-
other critical set, involving also new trucks. As the number of trucks
considered by the schedule is limited, peak heights will strictly de-
crease. Thus, this strategy can be used until a feasible solution for the
initial problem is found.

base cut The second strategy that we introduce is called the base
cut strategy which focuses on minimal critical set having a cardinal-
ity that equals n + 1. Among the trucks from the beginning of the
resource violation to its end, a set of n+ 1 parallel trucks is selected
and a cut is added into the model that forces to set up at least one
precedence between them. Since a resource overrun can last a long
time, there can potentially be multiple choices of the critical mini-
mum set. In this case, we select the set of trucks having the biggest
time intersection. The number of expected cuts from one solution to
another is low. Obviously, limiting the number of cuts by iteration
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n

Doors in use

Time

Figure 19: Illustration of the top cut strategy.

requires more iterations, but solving the model from one iteration to
another may be easier.

Figure 20 illustrates the base but strategy on the same workload
curve example as before. The proposed solution will generate 3 min-
imal cuts, and for each cut, n+ 1 trucks with largest overlap are se-
lected among the trucks that are docked during the dark blue line.
This strategy does not rely on the valid inequality, as we consider
minimal cuts of n+ 1 trucks.

n

Doors in use

Time

Figure 20: Illustration of a base cut strategy

κ-base cut - static The two previous strategies consider either
a maximal set or a minimal set of trucks. Instead of using one extreme
or the other, the κ-base cut is used as a trade-of approach where we
select a set of κ+ 1 trucks, with κ > n. We propose first a static variant
of the strategy where κt = floor(n+ λ(kmax − n− 1) with λ ∈ [0, 1],
and kmax the maximum number of trucks docked simultaneously
over the entire time horizon for the current solution. The selection
of the critical set for the application of the cut mirrors the base cut
strategy, but instead of n, the threshold limit to generate a new cut is
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now fixed to κ. An intermediate value of λ = 0.5 as been selected after
a short study. Similarly to the top cut strategy, we highlight that a
subset of the trucks involve in the cut can still form a critical set from
a solution to another. However, the cardinality of such critical sets
will get lower and lower, until κ = 0 at the end of the algorithm (i.e.,
the solution is resource feasible). Figure 21 illustrates this strategy.
The new limit κ, used to apply cuts, is materialized, and the green
lines highlight the trucks which can be involved in the cuts.

n

κ

Doors in use

Time

Figure 21: Illustration of κ-base cut strategy - static

κ-base cut - adaptive In this second variant of the κ-base cut,
an adaptive limit for generating cuts is chosen, meaning that the value
of the threshold κ will now depend on the peaks of the workload
curve. Let refer to κt as the resource consumption associated to a
peak of the workload occurring at time t. As for the first variant, for
each cut, a set of κt trucks is selected. The application of the cut
mirrors the top cut strategy. For any peak of kt exceeding the door
capacity n (kt > n), a cut is applied involving κt+ 1 trucks, such that
κt = floor(n+ λ(kt − n− 1) with λ ∈ [0, 1], among the kt trucks of
the peak. Figure 22 illustrates this strategy for the case where λ = 0.5.
The limit κt, used to apply cuts is materialized with a light green line.
Top cuts are still indicated in red.

We highlight that top cut and base cut strategies can be seen as
specific cases of the adaptive κ-base cut strategy such that λ = 1 and
λ = 0, respectively.

7.4 performances of the cut strategies

The proposed algorithm is tested on the instances introduced in
chapter 4. The various strategies presented in this chapter are im-
plemented with a maximal time limit of 2 hours. The platform is
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κt2 κt4 κt5
κt6n

κt1
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Figure 22: Illustration of κ-base cut strategy - adaptive

identical to the one used for the time indexed computation. Further
comparisons and technical details will be given in chapter 9. This sub-
section aims to validate our solving approach and to compare our 4

cut-selection strategies.
1000 correlated instances are solved using each of the 4 strategies,

then 1000 unrelated instances are solved. The following tables men-
tion the number of optimal (opt.), feasible (feas.), proved infeasible
(infeas.), or unknown (unkn.) instances. The mean gap, and the mean
time (in seconds) needed to solve the instances is also reported. Re-
sults are spread according to the number of doors and according to
the tightness of the time-windows. (As a reminder, "0.00" stands for
the tightest time windows, while "1.00" stands for the largest time
windows.)

Table 10: Correlated top cut results

top

n TW opt. feas. infeas. unkn. mean gap mean time

1 205 0 45 0 0,0% 9,5

2 31 183 35 1 47,9% 5488

5 0 104 26 120 77,1% 6454

10 0 123 16 111 83,0% 6787

0.00 22 41 115 22 22,9% 2342

0.25 55 73 6 66 40,9% 5088

0.50 51 85 1 63 44,7% 5358

0.75 54 103 0 43 48,7% 5316

1.00 54 108 0 38 49,9% 5319

all all 236 410 122 232 44,1% 4684
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Table 11: Correlated base cut results

base

n TW opt. feas. infeas. unkn. mean gap mean time

1 205 0 45 0 0,0% 3,4

2 32 183 35 0 47,1% 5474

5 0 53 26 171 81,3% 6452

10 0 53 13 184 70,9% 6848

0.00 22 40 112 26 25,0% 2412

0.25 54 88 6 52 46,3% 5097

0.50 53 50 1 96 29,1% 5324

0.75 53 56 0 91 32,0% 5333

1.00 55 55 0 90 32,5% 5305

all all 237 289 119 355 34,6% 4694

Table 12: Correlated κ-base static cut results

κ-base static

n TW opt. feas. infeas. unkn. mean gap mean time

1 205 0 45 0 0,0% 4,8

2 24 190 35 1 50,4% 5593

5 0 91 26 133 80,3% 6453

10 0 111 10 127 81,7% 6941

0.00 22 41 109 26 24,4% 2487

0.25 54 85 6 55 46,0% 5107

0.50 51 69 1 79 40,2% 5366

0.75 51 94 0 55 47,1% 5368

1.00 51 103 0 46 49,2% 5367

all all 229 392 116 261 43,7% 4744

Table 13: Correlated κ-base adaptive cut results

κ-base adaptative

n TW opt. feas. infeas. unkn. mean gap mean time

1 205 0 45 0 0,0% 4,4

2 25 190 35 0 48,9% 5574

5 0 91 26 133 81,1% 6452

10 0 94 13 143 81,8% 6878

0.00 22 40 112 26 24,1% 2454

0.25 54 83 6 57 44,2% 5102

0.50 52 63 1 84 36,1% 5343

0.75 51 90 0 59 46,1% 5368

1.00 51 99 0 50 49,2% 5369

all all 230 375 119 276 42,3% 4727
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Table 14: Unrelated top cut results

top

n TW opt. feas. infeas. unkn. mean gap mean time

1 201 0 49 0 0,0% 1,5

2 51 164 35 0 38,1% 4918

5 1 125 24 100 72,4% 6510

10 0 161 8 81 83,1% 6992

0.00 24 51 105 20 20,3% 2623

0.25 53 87 11 49 41,8% 4932

0.50 60 88 0 52 44,0% 5130

0.75 58 118 0 24 51,0% 5166

1.00 58 106 0 36 47,9% 5175

all all 253 450 116 181 43,7% 4605

Table 15: Unelated base cut results

base

n TW opt. feas. infeas. unkn. mean gap mean time

1 201 0 49 0 0,0% 1,1

2 58 157 35 0 34,9% 4735

5 1 74 24 151 75,8% 6488

10 0 68 8 174 68,7% 6980

0.00 24 50 105 21 20,7% 2581

0.25 54 95 11 40 45,7% 4901

0.50 61 45 0 94 24,5% 5071

0.75 61 52 0 87 28,6% 5097

1.00 60 57 0 83 31,6% 5104

all all 260 299 116 325 32,0% 4551

Table 16: Unrelated κ-base static cut results

κ-base static

n TW opt. feas. infeas. unkn. mean gap mean time

1 201 0 49 0 0,0% 1,4

2 52 163 35 0 38,7% 4850

5 1 108 23 118 73,4% 6534

10 0 135 6 109 79,4% 7033

0.00 24 51 102 23 20,9% 2706

0.25 53 98 11 38 45,9% 4918

0.50 60 61 0 79 34,3% 5098

0.75 58 94 0 48 45,4% 5154

1.00 59 102 0 39 46,5% 5146

all all 254 406 113 227 41,0% 4605
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Table 17: Unrelated κ-base adaptive cut results

κ-base adaptative

n TW opt. feas. infeas. unkn. mean gap mean time

1 201 0 49 0 0,0% 1,4

2 55 160 35 0 37,1% 4799

5 1 105 24 120 76,2% 6494

10 0 111 7 132 79,9% 6999

0.00 24 51 104 21 21,4% 2612

0.25 54 90 11 45 43,7% 4899

0.50 60 57 0 83 31,8% 5095

0.75 59 89 0 52 44,5% 5138

1.00 60 89 0 51 45,0% 5123

all all 257 376 115 252 39,4% 4573

On the overall, about 25% of the instances are solved to optimal-
ity, and ∼12% are proved unfeasible on the correlated and unrelated
instances. The number of feasible and unknown instances have more
variation according to the strategy: 23% to 35% for correlated and 18%
to 32% for unrelated are still unknown after 2h of computation.

As on might expect, optimally solved instances are mainly one door
instances, and a part of the two doors instances. Moreover, all one
door instances without optimal solution are proved unfeasible, mean-
ing the method solved 100% of the one door instance. The compu-
tation of one door instances are also really quick, some seconds are
needed on average.

The critical sets method begins to struggle with two doors in-
stances, with ∼75% (∼64%) of the correlated (unrelated) instances be-
ing still under computation after reaching the time limit. However,
except from one unknown instance, a solution is always available,
with an average gap of ∼50% (∼37%) for correlated (unrelated) in-
stances. Nevertheless the method completely solves ∼25% (∼30%) of
the correlated (unrelated) two doors instances. Focusing on 5 and 10

doors, no optimal solutions are found anymore, and less instances are
proved unfeasible with a sensitive difference between 5 and 10 doors.
Although the slight differences in number of unknown instances, the
increased difficulty to solve 10 doors instances is reflected by the av-
erage gap and computation time.

Looking at the time windows, an overall analysis can suppose a
reduced difficulty on the tightest instances (0.00): the number of op-
timal solutions found is lower, but undoubtedly the number of un-
feasible instances is higher due to the reduced time windows. In the
correlated set 0.00, the unfeasible instances are at least 115 (top cut
infeasible) and at most 135 (κ-base cut unfeasible + unknown). In
correlated set 0.25, the unfeasible instances are at least 6 (top cut in-
feasible) and at most 58 (base cut unfeasible + unknown). Very similar
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values are obtained for unrelated sets. Nevertheless, for the 0.00 set,
the method is able to prove unfeasible a large part of the instances,
and only a few ones (∼10% stay unknown), while the average gap and
solving time are substantially reduced compared to other sets (0.25,
0.50, 0.75 and 1.00).

The efficiency of the method will be further developed, with com-
parison to other methods in chapter 9. The choice of the best cut
strategy is discussed below.

κ-base strategy First of all, the κ-base strategy presents very
similar results for both variants. On the correlated and unrelated
cases, a single relevant difference relies on the unknown (and indi-
rectly feasible) number with 10 doors, where the static variant ap-
pears less strong. The adaptive variant has been selected for compar-
ison with top and base strategy.

overall strength of top cut strategy Looking at the over-
all results, the top cut strategy presents the most interesting solutions.
The number of optimal solutions and infeasible instances is similar to
the other strategies, whereas the base cut strategy presents a slight
upgrade. However, the ability to find solutions is highlighted when
looking at instances recognized as unknown. Relatively to top cut, for
base cut, the number of unknown increases by 53% and 80% for cor-
related and unrelated instances respectively. Relatively to top cut, for
the κ-base static cut, the number of unknown increases by 12% and
25% respectively.

To conclude, the top cut strategy is selected as the most promising
for this resolution method. Although the top cut does not dominate
the base cut, in term of optimally solved instances, the better perfor-
mance is clearly visible on unknown instance. Both base and κ-base
lack of efficiency to obtain feasible solutions.
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C O N S T R A I N T P R O G R A M M I N G

In this section, we propose to address the CTSP by constraint pro-
gramming (CP) as an alternative solving methodology. CP considers
a set of variables having their specific domain of values (either bi-
nary, discrete or continuous) and a set of constraints that link the vari-
ables together. Constraints can be logical or arithmetic (e.g, different,
equal, less-or-equal, etc.) or more global (e.g., all-different, knapsack
constraint, 1-among-n constraint, cumulative constraint, etc.). Given
a constraint corpus, a set of constraint propagation procedures is de-
fined that allows, considering different pre-assignments of variables,
to reduce the domains of variables by identifying impossible config-
urations. This process is particularly efficient in finding feasible solu-
tions as constraint propagation mechanisms, which are very effective
in practice (their worst computation complexity being polynomial),
can be advantageously combined with other decision procedures as-
signing values to variables in an iterative way. CP is an interesting
paradigm now able to compete with other Linear and Integer Pro-
gramming approaches (LP/IP) and is often used in literature to effi-
ciently solve scheduling problems (Le Pape, 2014; Zeballos, 2010).

The literature using CP for solving the CTSP is scarce. To the best
of our knowledge, only Fazel Zarandi et al. (2016) propose to use CP
for solving a just-in-time CTSP with preemption.

8.1 a constraint-programming model for the ctsp prob-
lem

To solve one decision or optimization problem, CP allows various
modelings that differ according to the chosen solver and the imple-
mented constraints. In Chapter 5 of their book, Bourreau et al. (2019)
recommend a specific modeling of resource limitation in scheduling
problems that use the powerful IBM - CP Optimizer (CPO) solver,
relying on the concept of time interval decision variables.

Therefore, to take benefit from this interesting concept and its asso-
ciated constraint propagation procedures, we choose to use CPO in
our work. Time interval variables have been associated to trucks, each
variable having two attributes, size and start, representing the docking
duration and the starting time of handling, respectively. Additionally,
a global constraint is used in symbiosis with interval variables to
control the resource usage, i.e. the doors are considered as a single
cumulative resource available in multiple units. A Cumul Function in
CPO allows to count overlapping intervals over time, and a single con-
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straint Cumul_Function 6 n is enough to impose that the resource
consumption should not exceed the resource capacity. Thanks to this
concept, CPO allows a compact and straightforward CP fomulation,
as presented in the following.

The decision variables are the starting times of the intervals Si (So)
which represent the duration of the unloading operation of an in-
bound truck i ∈ I (the duration of the loading operation of an out-
bound truck o ∈ 0). This duration, the size of the interval, is by de-
fault a variable, but in our problem, it is fixed and dependant of the
truck.

A CP model for the considered CTSP problem is the following:

min z =
∑

(i,o)∈A

wio (start(So) − start(Si)) (33)

subject to

size(Su) = pu ∀u ∈ U (34)

start(Si) − start(So) 6 0 ∀(i,o) ∈ A (35)

Cumul_Function(Su) 6 n (36)

The objective function (33) is similar to the previous critical-set for-
mulation. Constraints (34) force the interval size of each truck to have
the length of the processing time. Constraints (35) enforce the start-
start precedence constraints between any pair of inbound truck i and
outbound truck o such that (i,o) ∈ A. The global constraint (36) im-
poses that the number of trucks simultaneously docked cannot ex-
ceed the total number of doors n.

In the critical-set formulation of chapter 7, the limited capacity of
the door resource is modelized with precedences between trucks be-
longing to same critical sets. With CP, the cumulative resource con-
straint is expressed more straightforwardly and his treatment is to-
tally integrated inside the various propagation algorithms. It makes
the solving process very effective, as proved by our experiments.

8.2 iterative cuts on cp

The straightforward CP formulation bringing interesting results, we
attempt to mix our critical-set formulation presented in the previous
chapter 7 with the CP formulation. This section details a first way to
do it.

In order to integrate the valid inequality into the CP model, we
need to modify the resource constraint since one cannot express di-
rectly the valid inequality as a global CP constraint. Therefore, the cu-
mulative constraint (36) was replaced by constraints based on prece-
dences and critical sets. Our motivation is to determine whether
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adding valid inequalities iteratively can compensate for the loss of
not using the cumulative global constraint. To use the valid inequal-
ity within the CP formulation, binary variables αuv were added to
model precedence constraints between pair of trucks. Next, CPO al-
lows to achieve reification that consists in activating the end-to-start
CPO precedence constraint u ≺ v if and only if binary variable αuv
is set to one. For that reason, each valid inequality defined in chap-
ter 7 gives rise to a CPO constraint, which requires that a minimum
number of precedence variables are set to one.

Given a critical set e ∈ E, the valid inequality is expressed as fol-
lows: ∑

(u,v)∈e2,u6=v

αuv > K (37)

αuv is the binary precedence variables, and K is the value returned
by the valid inequality. Note also that the model integrates the con-
straints αuv +αvu 6 1, ∀(u, v) ∈ U2,u 6= v.

As mentioned earlier, incorporating our valid inequality into the
CP model may potentially induce a performance loss since CPO’s cu-
mulative resource constraint modeling, which is powerful in practice,
cannot be used anymore.

8.3 hybridization and solution repairing

This section investigates a second way to integrate our critical-set and
CP formulations in an hybrid algorithm. Instead of trying to incor-
porate the cuts into CP, we alternatively aim to integrate CP in our
critical-set method in order to quickly find feasible solutions (as it is
a well-known advantage of CP).

The method still relies on the critical-set based algorithm presented
in chapter 7. The main change lies in the iterative use of CP to speed
up the search for feasible solutions after the addition of a new valid
inequality. The global cumulative constraint is used for this search.
The basic idea is to take advantage of both the MIP aproach (to exhibit
good quality lower bounds), and the straightfoward CP (to find good
quality upper bounds). We further refer to this method as CP-hybrid.

The diagram in Figure 23 represents the algorithm and highlights
the CP interaction. Colors are used to help the understanding: blue
refers to the initial critical-set model, red to the model.

Let remind that after adding a cut, the last solution found is not fea-
sible anymore. To pursue the algorithm, a new feasible solution, sat-
isfying the new added cut has to be found. While the initial method
uses the MIP solver to find a new feasible solution, starting from the
last one, we now use CP for this purpose. The straightforward CP
model is used to repair the solution found by the MIP model in or-
der to satisfy the cumulative resource constraint. Once CP has found
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Figure 23: Hybrid algorithm
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a new solution, the initial algorithm continues, using the new solu-
tion as a warm start within the MIP model. Indeed, the CP solution
can potentially be improved by the MIP solver with respect to its
constraints (as the resource constraints are relaxed). The best feasible
solution known for the original model is saved continuously. If the
solution found by CP is not good enough, the algorithm can use the
saved solution instead. Moreover, to avoid spending too much time
by CP to repair a solution without guarantee on improving its qual-
ity, a time limit is added. If reached, the CP stops and the algorithm
continues with the MIP, from the saved solution.

8.4 performances and limits of the cp formulations

The computational results differentiate between instances according
to the number of doors and the tightness of the time windows. We
reuse the 1000 correlated and 1000 unrelated instances defined in
chapter 4 for this computational experiments. For each class of in-
stances, the number of instances solved to optimality (opt.) is reported.
If an optimal solution is not found, we count the numbers of instances
for which a feasible solution is found (feas.) or, possibly, the number
of infeasible instances (infeas.). Eventually, the number of instances
having still an unknown status after the time limit (2h) is reported
(unkn.). The average gap between the lower and upper bound and
the mean time are also indicated in the tables.

In the sequel, we report only the performances of the straightfor-
ward CP model, followed by the ones of the CP-hybrid models. We
do not comment on the results for the CP-Cut model because, as one
might expect, this approach is systematically worse than the other
two due to the fact that the global cumulative constraint cannot be
used. The results obtained are detailed in tables 18 and 19.

Table 18: Correlated CP results

CP

n TW opt. feas. infeas. unkn. mean gap mean time

1 205 0 45 0 0% 28,2

2 83 132 35 0 60% 4070,7

5 1 222 27 0 90% 6408,8

10 0 233 16 1 88% 6739,2

0.00 28 55 116 1 25% 2079,3

0.25 72 122 6 0 53% 4478,4

0.50 65 134 1 0 67% 4912,3

0.75 62 138 0 0 69% 5038,5

1.00 62 138 0 0 69% 5050,0

all all 289 587 123 1 58% 4311,7
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Table 19: Unrelated CP results

CP

n TW opt. feas. infeas. unkn. mean gap mean time

1 201 0 49 0 0% 11,2

2 96 119 35 0 54% 3746,0

5 4 222 24 0 87% 6437,2

10 0 239 9 2 85% 6940,8

0.00 31 61 106 2 20% 2325,9

0.25 73 116 11 0 50% 4289,1

0.50 69 131 0 0 66% 4831,8

0.75 65 135 0 0 68% 4979,5

1.00 63 137 0 0 69% 4992,8

all all 301 580 117 2 55% 4283,8

First we observe that the structure of the processing times does
not really influence the performances as correlated and unrelated re-
sults are highly similar. The computation time is high for almost all
the instances except the ones with a single-door and the ones with
tight time windows. Those instances are possibly easier because of
the weaker combinatorial nature of the search space.

The efficiency of the straightforward CP model to find solution is
undeniable, with an extremely low number of unknown instances.
With one door, all the instances are optimally solved within a short
computation time. With two doors, the ability to find optimal solu-
tions decreases by ~40%. Moreover, CP struggles to find optimal so-
lutions. Concerning time windows, it is hard to comment on the ef-
fect of 0.00 time windows due to the higher number of unfeasible
instances, but it seems with respect to the mean gap and mean time
that CP works better on tight instances. Above 0.25, no significant
differences appear.

Results for hybrid-CP are presented in tables 20 and 21. We add
two columns in the tables: LB diff and UB diff. The first one com-
pares the lower bounds of the hybrid and straightforward CP in the
following way: LB diff =

LBhyb.−LBstraight.
max(UBhyb.;UBstraight.)

. A positive value is
hence obtained for a higher LB for CP hybrid and vice versa. Simi-
larly, UB diff =

UBhyb.−UBstraight.
max(UBhyb.;UBstraight.)

. Remark that LB diff is calcu-
lated with the UB in order to have a stable reference, which cannot
be obtain with LB as it is sometimes very low or zero.

The comparison shows that hybrid-CP is efficient with a number of
(feasible or optimal) solutions found very similar to straightforward-
CP. Moreover, hybrid-CP is faster on the one door subset, where both
formulations obtain the same results in terms of lower and upper
bounds. The gap appears to be slightly better on most other subsets
of instances. As observed in column LB diff, this improvement can be
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Table 20: Correlated CP hybrid results

CP_hyb

n TW opt. feas. infeas. unkn. mean gap UB diff LB diff mean time

1 205 0 45 0 0% 0% 0% 10,6

2 33 182 35 0 48% -9% 15% 5407,7

5 0 223 26 1 82% -38% 16% 6453,0

10 0 233 16 1 86% -40% 6% 6785,6

0.00 22 61 115 2 29% -8% 2% 2336,6

0.25 55 139 6 0 55% -18% 3% 5068,6

0.50 53 146 1 0 60% -27% 11% 5302,4

0.75 54 146 0 0 59% -27% 14% 5310,7

1.00 54 146 0 0 58% -25% 14% 5302,7

all all 238 638 122 2 53% -21% 9% 4664,2

Table 21: Unrelated CP hybrid results

CP_hyb

n TW opt. feas. infeas. unkn. mean gap UB diff LB diff mean time

1 201 0 49 0 0% 0% 0% 1,8

2 57 158 35 0 37% -8% 20% 4787,6

5 1 225 24 0 79% -39% 18% 6499,1

10 0 239 8 3 85% -43% 7% 6992,2

0.00 24 68 105 3 26% -11% 2% 2611,9

0.25 54 135 11 0 52% -21% 4% 4925,4

0.50 61 139 0 0 57% -27% 13% 5075,4

0.75 60 140 0 0 56% -27% 16% 5121,7

1.00 60 140 0 0 56% -26% 16% 5116,3

all all 259 622 116 3 50% -23% 11% 4570,1

explained by better Lower Bounds (LB), but this gain is unfortunately
counterbalanced by a loss on the quality of the upper bounds (from
0% to 40%. Thus the experience of the association of MIP with CP
works but remains mitigated. It seems that finding a good balance
between the CPU time allocated to CP and that allocated to the MIP
approach is tricky, which does not allow to take full advantage of the
potential of CP to find good quality solutions.

To conclude this section, we can say that although upgrades of the
basic CP formulation were tested, the results are not in favor of more
complex methods. The straightforward formulation is efficient to find
solutions, and using the valid inequality directly inside the model
was a disappointing idea. The difficulty to improve the basic method
may also come from the selected CP Solver. CP Optimizer is devel-
oped over years and integrates numerous optimization algorithms,
beyond the scope of pure CP. However, hybrid-CP at least improves
the LB, in order to better estimate the quality of the solution, with-
out reference. Straightforward CP is selected as the best considered
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method using CP, due to the proved quality of the obtained solutions.
In the sequel, we will simply referred to this method as CP.



9
C O M P U TAT I O N A L R E S U LT S

In this section we present the computational experiments to evaluate
and compare the performance of the proposed solving methods. All
experiments using a solver were running IBM ILOG CPLEX STUDIO
12.8, on Intel Xeon E5-2695 v4, 2.1GHz platform. Each instance run
on a single core, with 16GB RAM available.

We built up two distinct testbeds of instances.

first testbed This testbed, is the one already used in previous
sections (see chapter 4), which contains 1000 instances with 1 to 10

doors. These instances were used to compare the different solving
methods according various criteria.

second testbed An extension of the first testbed was considered,
due to the particularities of the quadratic method, which only works
on single door instances without time windows. As there are only
50 relevant instances in the first testbed, all efficiently solved by the
quadratic method, 110 larger single door instances were added in or-
der to better analyse the method limits. These instances have a num-
ber of trucks k = {6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44, 48}.
The other parameters are similar to the first testbed;

The time limit for these instances is fixed to 2 hours, as determined
in chapter 4.

In the following tables, we use different indicators to measure the
performances of the different algorithms. For any subset of instances
the solution status is reported as before. Moreover the average gap
of instances with solutions is calculated in column "Gap" according
to the formula UB−LB

UB . To realize a fairer comparison, a restrained
average gap is calculated, relatively to another method M, provided
that the gap is only calculated for instances with solutions found by
both methods. This restrained gap is reported in column "GapM".
For example, the column GapCS for TI results, only considers those
instances for which an optimal or feasible solution was found by both
TI and CS method. Therefore, GapCS of TI results and GapTI of CS
results are calculated on the same sets of instances. Not considering
this constrained gap can penalize a method able to find many feasi-
ble solutions on hard instances, with large gap, compared to another
method returning an unknown status on these instances.

The average computation time is reported in column "Time".
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Additionally, for any instance for which a solution was found by
two methods, it is possible to calculate the difference relatively to the
best solution:

UB diff =
(UB2 − UB1)

min{UB1, UB2}

. The average over all instances of the subset with solutions found by
both selected methods is reported in column "UBdiff". This difference
is given as a percentage, and positive if the considered method is
better.

Note that the "UBdiff" is really useful, as one method can be more
efficient on finding solutions (UB) than another, but less efficient at
finding lower bounds (LB). We will see that in some cases a method
can find optimal solutions, but cannot prove the optimality because
it fails to find good LBs, which results in a bad gap.

9.1 first testbed : ti , cs and cp comparison

Tables 22 and 23 present computational results, for three different
groupings of the first testbed: instances are grouped based on the
number of doors, the number of trucks per door and the time window
tightness. The last line of the table includes the whole testbed.

First we analysis the correlated instance.

overall Looking at the global results, we can observe strengths
for every method. CP seems stronger than the other methods, dom-
inating TI, and better than CS on any point except the gap. CS is
more efficient than TI to find optimal solutions, and finds smaller
gaps than the other methods. The smaller gap of CS is explained by
better lower bounds: CS is better in estimating the solution quality,
although solutions found are worse than those found by TI and CP
(UBdiff = −13% and −14%). However, CP has difficulties to solve nu-
merous instances (232 unknown status among 1000 instances), while
TI and CP have respectively only 1 and 2 unknown solutions. We can
observe that all methods are equivalent on proving infeasibily within
the computation time limit.

door subset Focusing on subsets with 1, 2, 5 and 10 doors, each
ones containing 250 instances, different behaviors are observed. CS
and CP perform very well on 1 door instances, and found all optimal
solutions very quickly (CS 9.5s and CP 28.2s on average). However, TI
identifies all the infeasible instances, it is not able to find half of the
optimal solutions. The average gap of the 205 instances with solutions
(including 93 optimal with gap = 0%) is 40%. For 2 doors, CP obtains
better results than the other methods, except on LB. The efficiency of
CS drastically drops with increasing number of doors, and becomes
even worse than TI, also for the solution quality (-5%). Nevertheless,
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CS keeps its ability to find better LB. Instances with 5 and 10 doors
bring unexpected results: although CS and CP showed efficiency on
finding optimal solutions for less doors, TI is almost the only one able
to find optimal solutions on these subsets, with almost no unknown.
TI also has the best gap, with a relatively good UB (-6% relative to
CP).

trucks per door subset A focus on the number of trucks per
door subsets shows a domination of CP on any subset, except for
the gap due to a better LB obtained by CS. Overall, CS finds more
optimal solutions than TI, but also more unknown. When the number
of trucks per door increases, the number of optimal solutions found
by TI and CP gradually decreases, while the number of unknown
from CS increases. This decreasing/increasing slows down with more
trucks per door.

tw subset Focusing on the time windows tightness highlights
two phenomenons. CS and CP have a similar behavior: the results
are relatively stable with the increase of the length of the time win-
dows, with the CP dominating again CS, except on the gap due to
the better LB found by CS. TI is really strong on tight TW instances
while being less efficient on wider ones. For 0.00, TI found almost
all optimal solutions (80 on 83), while CP found only 28. For 0.25, TI
found as many optimal solution as CP, but with a far better gap (8%
vs 53%). An important observation is that the UB difference between
TI and CP on subset 0.00 is very low (1%). This means that CP was
able to find almost all optimal solutions without being able to prove
the optimality. For the 0.25 subset, the gaps are very different, but the
UB difference is only 2%, implying a huge difference on the LB.

unrelated results A look at the results for the unrelated in-
stances does not show any different behaviour. Values slightly differ,
but are similar on many points. The whole analysis realised on corre-
lated instances applies on unrelated ones.

To synthesise the analysis of this first table:

1. CP is stronger on low door number

2. TI is stronger on 5-10 doors

3. CP is stronger on any trucks per doors subsets

4. TI is stronger on 0.00 and 0.25 TW

5. CP is strong on any TW subset, but lack on LB calculation

6. CS returns good LB on any subsets

Tables 24 and 25 present the same computation results, but fo-
cusing on the effect of the Time Windows tightness. Instances are
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grouped according to doors number with time windows, and trucks
per door with time windows. First we analysis the correlated in-
stances.

ti strength The TI method is efficient for few doors and tight
TW. TI also reacts better when there are only few truck per door.
The detailed results on subset 0.00 confirm the observations: from the
200 0.00 instances, all are proved infeasible (117) or optimally solved
(80) except three instances. Focusing on the 0.25 subset, the method
is still strong on 1 door instances, and still finds half of the optimal
solutions on 2 doors instances. For more than 2 doors, the efficiency
drops with only 1 instance out of 100 with an optimal solution. The
performances of TI relative to the number of trucks per door is less
impacted: we notice a smoother decrease. Finally, on wide TW, the
only instances optimally solved have 1 door and 6 trucks. For 0.00 and
0.25 TW, TI performs well compared to the other methods. However,
for wider time windows, it cannot stand the comparison, even when
the number of doors or trucks per door is small. We can see that the
efficiency of the formulation depends mostly on the TW parameters,
then the number of doors and finally the number of trucks per door.

cs strength The previous analysis revealed that CS has miti-
gated results compared with TI, and is globally dominated by CP.
Nevertheless, the ability to find a relevant LB as been identified. The
gap decreases while TW becomes tighter, increases much with the
number of doors, but stays stable according to the number of trucks
per door. The CS gap of any subset is inferior to the CP gap, except
on rare instances, where it is sightly superior, due to an important
UB difference in favor of CP.

cp strength Looking at the 0.00 TW subset, CP is as efficient as
TI for 1 and 2 doors, and far less efficient for 5 and 10 doors, with full
feasible for CP instead of full optimal for TI. However, as specified
previously, the UBdiff between CP and TI for the 0.00 subset is really
weak (1%), meaning the feasible solutions found by CP are almost all
optimal, but CP was not able to prove optimality on 5 and 10 doors.
This shows the weakness of CP on finding LB when the number of
doors increases. Focusing on all TW and 1 door, CP perfectly solves
the instances. Increasing the number of doors results in a drop of
the performance, with a frightening gap for 5 and 10 doors when
TW > 0.50. A gap of 100% means that no LB was found, so we do not
have any information on the solution quality. This analysis shows the
difficulty for CP to prove optimally and find LB when there are more
than 2 doors. Without knowing the optimal solutions, it is difficult
to evaluate the UB values. However, precedent analysis with UBdiff
showed that CP is ahead of other methods, although the obtained gap
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is the worst. Finally, it appears that CP is poorly influenced by the
number of trucks per door. The best results are obtained for instances
with only 6 trucks per door. Worse but similar results are obtained
for higher values. To conclude, CP is particularly efficient when there
are only few doors and when time windows are tight.

unrelated results As before, a look at the results for unrelated
instances does not show any different behaviour. Values slightly dif-
fer, but are similar on many points. The whole analysis realised on
correlated instances also applies on unrelated ones.

9.2 second testbed : quadratic compatible

Tables 26 and 27 present results for instances of the second testbed,
with one door, and without TW (i.e. 1.00). The column of relative gap
does not appear anymore as all methods have solutions for almost all
instances. This testbed shows the dominance of the quadratic method.
QU behaves perfectly, with all instances optimally solved. Only the
computation time attests of the increasing difficulty of the subsets. Be-
cause of the performances of QU, all optimal solutions of this testbed
are known, and one can evaluate the solution (UB) of all methods
relatively to the optimal solution. This difference from the optimal
solution is reported in column "UBdiff OPT".

As previously, correlated instances are analysed first.
TI, strong on TW 0.00, has difficulties in solving the instances with

8 trucks per door or more. The solution found is not bad, from 0% to
13% from the optimal solution, but the LB is very bad, leading to a
100% gap. CS tends to get stuck at 18 trucks per door. From this point,
it struggles to return solutions, up to 31% from the optimal solution
with 48 trucks per doors. Finally we observe that CP encounters trou-
bles at the same threshold, 18 trucks per door. However, as shows the
UBdiff OPT, the difficulty lies in finding good LB. Reaching 24 trucks
per door, CP is not able to find all optimal solutions (without proving
the optimality), but remains very close until the end of the testbed
(-1% to -3% from the optimal).

unrelated results Expectingly, unrelated instances keep to be-
have as correlated ones. Values slightly differ, and are similar on
many points. The whole analysis realised on correlated instances ap-
plies also on unrelated ones.

9.3 conclusions

In the first part of this thesis we have introduced various methods for
truck scheduling at an n-door crossdocking terminal, in which the ob-
jective is to minimize the total time spent in the system by the items
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TI CS

n k
n TW Opt. Feas. Infeas. Unkn. Gap UBdiff OPT Time Opt. Feas. Infeas. Unkn. Gap UBdiff OPT Time

1 6 1.00 9 1 0 0 2% 0% 4108,89 10 0 0 0 0% 0% 0,02

1 8 1.00 0 10 0 0 63% 0% 7220,08 10 0 0 0 0% 0% 0,07

1 10 1.00 0 10 0 0 79% 0% 7228,67 10 0 0 0 0% 0% 0,62

1 12 1.00 0 10 0 0 88% -1% 7217,09 10 0 0 0 0% 0% 3,98

1 14 1.00 0 10 0 0 92% -1% 7208,55 10 0 0 0 0% 0% 39,97

1 16 1.00 0 10 0 0 96% -2% 7218,88 10 0 0 0 0% 0% 717,70

1 18 1.00 0 10 0 0 98% -3% 7218,04 9 1 0 0 2% 0% 2338,99

1 20 1.00 0 10 0 0 98% -3% 7220,89 4 6 0 0 12% 0% 5453,71

1 22 1.00 0 10 0 0 99% -2% 7206,43 1 9 0 0 28% -1% 6733,81

1 24 1.00 0 10 0 0 99% -4% 7206,54 0 10 0 0 42% -3% 7201,93

1 28 1.00 0 10 0 0 100% -9% 7213,35 0 10 0 0 56% -9% 7200,23

1 32 1.00 0 10 0 0 100% -7% 7217,01 0 10 0 0 65% -17% 7200,06

1 36 1.00 0 10 0 0 100% -10% 7223,26 0 10 0 0 69% -21% 7200,54

1 40 1.00 0 10 0 0 100% -12% 7217,00 0 10 0 0 72% -22% 7200,03

1 44 1.00 0 10 0 0 100% -13% 7209,50 0 10 0 0 76% -25% 7200,05

1 48 1.00 0 10 0 0 100% -13% 7210,33 0 8 0 2 78% -31% 7201,83

1 all 1.00 9 151 0 0 88% -5% 7021,53 74 84 0 2 31% -8% 4105,85

CP QU

n k
n TW Opt. Feas. Infeas. Unkn. Gap UBdiff OPT Time Opt. Feas. Infeas. Unkn. Gap UBdiff OPT Time

1 6 1.00 10 0 0 0 0% 0% 0,32 10 0 0 0 0% 0% 0,00

1 8 1.00 10 0 0 0 0% 0% 1,24 10 0 0 0 0% 0% 0,00

1 10 1.00 10 0 0 0 0% 0% 7,52 10 0 0 0 0% 0% 0,01

1 12 1.00 10 0 0 0 0% 0% 27,55 10 0 0 0 0% 0% 0,01

1 14 1.00 10 0 0 0 0% 0% 290,10 10 0 0 0 0% 0% 0,02

1 16 1.00 10 0 0 0 0% 0% 1476,17 10 0 0 0 0% 0% 0,05

1 18 1.00 5 5 0 0 36% 0% 6297,21 10 0 0 0 0% 0% 0,13

1 20 1.00 0 10 0 0 73% 0% 7200,00 10 0 0 0 0% 0% 0,71

1 22 1.00 0 10 0 0 77% 0% 7200,00 10 0 0 0 0% 0% 0,75

1 24 1.00 0 10 0 0 78% -1% 7200,00 10 0 0 0 0% 0% 2,12

1 28 1.00 0 10 0 0 79% -2% 7200,00 10 0 0 0 0% 0% 5,96

1 32 1.00 0 10 0 0 80% -2% 7200,00 10 0 0 0 0% 0% 14,38

1 36 1.00 0 10 0 0 80% -2% 7200,00 10 0 0 0 0% 0% 28,83

1 40 1.00 0 10 0 0 82% -2% 7200,00 10 0 0 0 0% 0% 43,03

1 44 1.00 0 10 0 0 82% -3% 7200,00 10 0 0 0 0% 0% 188,03

1 48 1.00 0 10 0 0 82% -1% 7200,00 10 0 0 0 0% 0% 357,96

1 all 1.00 65 95 0 0 47% -1% 4556,26 160 0 0 0 0% 0% 40,13

Table 26: Correlated results, focus on the quadratic subset
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TI CS

n k
n TW Opt. Feas. Infeas. Unkn. Gap UBdiff OPT Time Opt. Feas. Infeas. Unkn. Gap UBdiff OPT Time

1 6 1.00 8 2 0 0 2% 0% 3515,13 10 0 0 0 0% 0% 0,03

1 8 1.00 1 9 0 0 39% 0% 7200,86 10 0 0 0 0% 0% 0,06

1 10 1.00 0 10 0 0 74% 0% 7214,30 10 0 0 0 0% 0% 0,27

1 12 1.00 0 10 0 0 80% 0% 7210,44 10 0 0 0 0% 0% 1,12

1 14 1.00 0 10 0 0 92% -1% 7213,43 10 0 0 0 0% 0% 8,56

1 16 1.00 0 10 0 0 95% -3% 7215,59 10 0 0 0 0% 0% 125,15

1 18 1.00 0 9 0 0 98% -1% 7217,35 10 0 0 0 0% 0% 659,03

1 20 1.00 0 10 0 0 97% -4% 7215,25 4 6 0 0 6% 0% 4542,47

1 22 1.00 0 10 0 0 98% -3% 7218,73 3 7 0 0 15% 0% 5524,29

1 24 1.00 0 10 0 0 99% -7% 7210,49 0 10 0 0 35% -2% 7203,66

1 28 1.00 0 10 0 0 100% -6% 7212,54 0 10 0 0 48% -7% 7204,39

1 32 1.00 0 10 0 0 100% -11% 7212,87 0 10 0 0 61% -15% 7200,18

1 36 1.00 0 10 0 0 100% -12% 7208,44 0 10 0 0 65% -13% 7200,09

1 40 1.00 0 10 0 0 100% -10% 7213,81 0 10 0 0 70% -20% 7200,37

1 44 1.00 0 10 0 0 100% -16% 7207,10 0 10 0 0 75% -23% 7200,10

1 48 1.00 0 10 0 0 100% -14% 7219,11 0 9 0 1 77% -29% 7200,67

1 all 1.00 9 150 0 0 86% -6% 6980,11 77 82 0 1 28% -7% 3829,40

CP QU

n k
n TW Opt. Feas. Infeas. Unkn. Gap UBdiff OPT Time Opt. Feas. Infeas. Unkn. Gap UBdiff OPT Time

1 6 1.00 10 0 0 0 0% 0% 0,14 10 0 0 0 0% 0% 0,01

1 8 1.00 10 0 0 0 0% 0% 0,48 10 0 0 0 0% 0% 0,01

1 10 1.00 10 0 0 0 0% 0% 2,67 10 0 0 0 0% 0% 0,01

1 12 1.00 10 0 0 0 0% 0% 13,73 10 0 0 0 0% 0% 0,01

1 14 1.00 10 0 0 0 0% 0% 108,39 10 0 0 0 0% 0% 0,02

1 16 1.00 10 0 0 0 0% 0% 411,58 10 0 0 0 0% 0% 0,04

1 18 1.00 10 0 0 0 0% 0% 3149,82 10 0 0 0 0% 0% 0,13

1 20 1.00 3 7 0 0 48% 0% 6212,78 10 0 0 0 0% 0% 0,72

1 22 1.00 0 10 0 0 74% 0% 7200,00 10 0 0 0 0% 0% 0,76

1 24 1.00 0 10 0 0 77% -1% 7200,00 10 0 0 0 0% 0% 2,13

1 28 1.00 0 10 0 0 76% -2% 7200,00 10 0 0 0 0% 0% 5,98

1 32 1.00 0 10 0 0 79% -5% 7200,00 10 0 0 0 0% 0% 14,40

1 36 1.00 0 10 0 0 80% -1% 7200,00 10 0 0 0 0% 0% 28,79

1 40 1.00 0 10 0 0 81% -7% 7200,00 10 0 0 0 0% 0% 42,86

1 44 1.00 0 10 0 0 83% -3% 7200,00 10 0 0 0 0% 0% 187,98

1 48 1.00 0 10 0 0 82% -3% 7200,00 10 0 0 0 0% 0% 358,64

1 all 1.00 73 87 0 0 42% -1% 4218,72 160 0 0 0 0% 0% 40,15

Table 27: Unrelated results, focus on the quadratic subset
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being transfered, and there exist both precedence constraints among
trucks and time window constraints. The problem appears computa-
tionally challenging, as even with a single door the problem is NP-
hard, for general truck loading/unloading times. We have developed
four different formulations (time-indexed, critical set, constraint pro-
gramming and integer quadratic programming) and performed ex-
tensive computational experiments to assess their performance.

It turns out that considering the quality of the solution, CP works
better on all instances. This formulation is particularly efficient when
time windows are not binding or when the number of doors is low.
The weakness of CP lies in the bad quality of its LB. The TI method
has higher UB than CP, but also higher LB, especially for very tight
time windows. The CS formulation finds the best LB but is relatively
poorly suited to find good solutions.

The distinction between correlated and uncorrelated instances has
no impact on the calculations. Unexpectedly, the complexity intro-
duced by independent load and loading time is not observable for
any used methods.



Part III

R O B U S T N E S S A N D G R O U P S O F P E R M U TA B L E
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10
S TAT E O F T H E A RT - C R O S S D O C K T R U C K
S C H E D U L I N G U N D E R U N C E RTA I N T I E S

10.1 uncertainties in scheduling

The CTSP being a scheduling problem in essence, this section sums
up the main concepts related to scheduling under uncertainties.
Scheduling concerns a large variety of problems, and sources of un-
certainties are numerous. We refer to papers or books dedicated to ro-
bustness in scheduling which present the various uncertainty sources,
as well as methods to handle them. For instance, Billaut et al. (2008),
themselves referring to the book of Kouvelis and Yu (1997), mention
the following sources of uncertainties: tasks duration, release and due
dates, machine failures and production costs. Clearly, not all of them
have to be addressed at the same time as their importance and fre-
quency depend on the context. Relevant uncertainties can be a priori
taken into account in the problem and there exist different methods
to tackle them. The most popular ones model them as stochastic vari-
ables, intervals, discrete scenarios, or a mix of these representations.

To solve a problem with uncertainties, different approaches are
used. We distinguish between:

• Proactive methods. The schedule is built in the offline phase,
trying to determine a robust schedule that minimizes the impact
of the uncertainties. This can be achieved by considering the
most probable scenario, computing a schedule remaining effi-
cient for any scenario, and/or adding idle time in the schedule
to absorb the changes that will occur in the online phase.

• Reactive methods. Assuming that uncertainties are hardly pre-
dictable, the schedule is built online, when events appear.
These schedules are often realized with priority rules, like first-
in/first-out, trying to ensure a performance guarantee.

• Proactive-reactive methods. A first robust schedule, or a set
of schedules is computed in the offline phase taking explicitly
the uncertainties into account. This schedule is dynamically up-
dated during the online phase, taking the realized knowledge
into account. There are several ways to adapt a robust schedule
that depends on the structure. For instance, one can simply use
rules to take benefit of time buffers that have been inserted in
the schedule proactively. If several schedules are determined in
the offline phase, one can also select the best one taking into ac-
count the real data. Finally, one can try to reactively repair the
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robust schedule in order to find the closest schedule, that is still
feasible with respect to the actual situation.

Figure 24 illustrates the application of the various methods.

Figure 24: Proactive and reactive method

Many proactive methods insert flexibility into the schedule to face
unforeseen events so that the schedule of the tasks can be dynamically
adapted, by example tasks can be delayed. Four types or flexibility are
defined.

• Time flexibility allows tasks to be moved respecting their initial
order;

• Sequence flexibility allows to modify the sequence of the tasks
on each resource (which implies time flexibility);

• Resource flexibility allows to modify the ssignment of the tasks
to the resources;

• Model flexibility allows to modify some parameters of the
model, like preemption, or deadlines.

A method/solution is said robust if it is able to undergo uncertain-
ties, possibly using flexibility, keeping the performance degradation
under control. However, the way robustness or flexibility are mea-
sured has to be defined for every problem as these metrics intrin-
sically change the nature of the approach.The reader is advised to
consult the book of Billaut et al. (2008) for further information about
measures of flexibility and robustness.
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10.2 crossdock truck scheduling under uncertainties

The deterministic version of the CTSP having been addressed in chap-
ter 2, this section focuses on its non-deterministic version.

As mentioned in the beginning of this chapter, sources of uncer-
tainty are numerous and quite specific to the considered problem.
In the literature, the articles related to robust crossdock scheduling
address different kinds of uncertainties. Nevertheless, most of them
concentrate on truck arrival times which are the most impacting con-
tingencies encountered in the crossdock management. As pointed-out
by Boysen and Fliedner (2010) (a relevant and frequently cited paper
of the crossdocking literature): "Arrival times of trucks are typically
bound to heavy inaccuracies, because traffic congestion or engine
failures delay inbound trucks". Thus uncertainties on arrival times
of trucks is tackled in (Larbi et al., 2011; Heidari et al., 2018; Rajabi
and Shirazi, 2016; Zouhaier et al., 2016). In (Konur and Golias, 2013b)
and (Konur and Golias, 2013a), the authors consider uncertain arrival
times for inbound trucks only.

Other authors consider both uncertainties on arrival times and on
processing times, e.g. Xi et al. (2020) and Ladier and Alpan (2016b).
Amini and Tavakkoli-Moghaddam (2016) consider truck breakdowns
as the main failure source, which induces arrival lateness.

The next chapters will also consider the truck arrival times as the
main source of uncertainty.

To handle uncertainties, a large variety of methods has been used
through the literature. A large part of them are purely proactive meth-
ods: a schedule is built before the execution of the planning, with a
lack of knowledge on the data. Konur and Golias (2013a) and Konur
and Golias (2013b) propose a set of approaches to solve the problem
when considering a set of possible values for the arrival dates of in-
bound trucks. Their objective is to use a cost-stable scheduling strat-
egy by minimizing the average of total service costs. A bi-objective
bi-level optimization problem is formulated and a genetic algorithm
based heuristic to find Pareto efficient schedules is proposed. Simi-
larly, Heidari et al. (2018) consider a model with uncertainties on the
arrival times of inbound and outbound trucks. They also aim at find-
ing a cost-stable scheduling strategy ans also propose metaheuristics
in the spirit of the work of Konur and Golias, 2013b. Rajabi and Shi-
razi (2016) also consider uncertainties on arrival times and aim to
minimize the waiting time. The authors propose chance-constrained
mathematical programming to solve the problem.

Ladier and Alpan (2016b) consider both uncertainties on process-
ing times and arrival times. Their solution method relies on a min-
max method, minimizing the expected regret as well as resource and
time redundancies. Xi et al. (2020) also consider both uncertainties
on processing times and arrival times. They aim to minimize the total
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cost and the number of conflicts, corresponding to a potential overlap
of trucks in the worst case. Amini and Tavakkoli-Moghaddam (2016)
consider truck breakdowns as uncertainty sources. The objective is to
minimize both the total tardiness and the total weighted completion
time. A stochastic model is developed; the probability of breakdown
follows a Poisson distribution. Meta-heuristics are proposed to solve
the model.

To the best of our knowledge, only Larbi et al. (2011) take interest
in a reactive method for the CTSP that differs according to the level
of knowledge on the arrival dates of the trucks. Thus, without any
prior information on the arrival dates, the scheduling is realized on-
line, according to priority rules. Heuristics are proposed to solve the
problem in a restricted case having only a single inbound and a single
outbound door.

Finally, a proactive-reactive method is proposed by Zouhaier et al.
(2016). Dealing also with uncertainties on arrival times, the authors
develop the so-called truck appointment system, a method that mini-
mizes the number of incoming trucks per slot and balances the work-
load between platforms according to the evolution of the demand.
Truck companies can book time slots and participate to the initial-
ization of a schedule. The truck appointment system estimates the
workload of doors and adjusts truck appointment times according
to the actual arrival dates. In this way, the schedule is dynamically
adapted according to event occurrences. The objective is to minimize
the time gap between the realized handling time of a truck and its
original appointment, taking also the waiting cost of the trucks into
account. According to the authors, this proactive-reactive method per-
forms very well in practice.

The method proposed in this work to face arrival time uncertainties
i.s of proactive-reactive nature. It uses the concept of a group of per-
mutable tasks. To the best of our knowledge, this is the first attempt
to apply groups of permutable tasks to the CTSP. The following sub-
section focuses on the literature related to scheduling with groups of
permutable tasks.

10.3 groups of permutable tasks

As the offline and online methods can be designed in a complemen-
tary way, proactive-reactive methods can bring interesting results in
practice, while they are not often addressed in the literature, com-
pared to purely proactive or reactive ones. Van de Vonder et al. (2007)
underlines the efficiency of the proactive-reactive compared to the
proactive method with a comparison study. Proactive-reactive meth-
ods using groups of permutable tasks have been studied for years.
Let us first mention the work of Le Gall (1989) who applied this con-
cept on workshop problems and proved its interest, as still testified
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by some recent publications on this subject. In a schedule with groups
of permutable tasks, a sequence of groups is determined for each re-
source, provided that the order of the tasks in a group is not fixed.
This partial schedule can be used reactively as the order of the tasks
in a group can be chosen opportunistically by a reactive algorithm,
according to the actual event occurrences. In the proactive phase,
the basic objective is to make a good compromise between flexibility
and performance, i.e. one looks for a group sequence that balances
the number of groups with the worst sojourn time. Flexibility is in-
deed defined by the number of groups, because fewer groups imply a
larger cardinality, thus more permutations. Wu et al. (1999) consider
an "Ordered Assignment and Detailed Scheduling Problems", where
they use the same idea of groups of permutable tasks in order to add
robustness to a job shop solution. Ashtiani et al. (2011), considering
stochastic task durations, use a "pre-processing" phase on the RCPSP
which makes a number of a-priori sequencing decisions while the
remaining decisions are taken dynamically during project execution.

The worst sojourn time computation is pessimistic as it consists in
finding the worst sequence being characterized, assuming that such
a sequence can be reached online by the reactive algorithm. In e.g.
(Billaut et al., 2008) and (Artigues et al., 2016), extensions of the con-
cept of groups of permutable tasks are proposed evaluate the worst
sequence with respect to some specific reactive algorithms.

Billaut et al. (2008) introduce two methods: ORABAID, developped
years ago, and AMORFE, a more recent one. These methods specifi-
cally consider the jobshop scheduling environment where one aims
at minimizing the maximum lateness, but they can be adapted to
other scheduling problems. ORABAID is a heuristic method, with a
proactive phase decomposed in two steps: i) the computation of a
group sequence thanks to a heuristic and ii) the improvement of that
sequence to find a better flexibility/performance compromise. The
ORABAID method measures the quality of the group sequence based
on the worst lateness case. In the AMORFE method, the proactive
phase is updated in order to take both the worst and best latenesses
into account in the design of the group sequence. While the worst
case gives a performance guarantee, the authors highlight that the
best case is also of importance in the estimation of the quality of the
group sequence. Indeed, as it is very unlikely that the worst case will
happen, working with intervals of expected performances could be
better suited. Artigues et al. (2016), modeling uncertainties via a dis-
crete set of scenarios, realize a review of the models and algorithms
that have been proposed in the literature for evaluating a group se-
quence. Examples based on single machine and jobshop scheduling
are studied, where the quality of the group sequence is determined
by the Best Earliest Schedule, the Best Latest Schedule, the Worst Ear-
liest Schedule, and the Worst Latest Schedule with respect to a given
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set of scenarios. These four sub-problems are defined in (Artigues
et al., 2016) for a regular time objective. A MILP formulation and a
heuristic method for the maximum lateness minimization on the sin-
gle machine problem are also presented. Yahouni (2019) focuses on
the best case evaluation in his thesis. The considered objective is the
minimization of the makespan and, even with a regular time objec-
tive, the problem is NP-hard. A heuristic called EBJG is proposed for
the design of group sequences. This work follows the work of Pinot
and Mebarki (2009), who propose exact methods to solve the best case
problem, which can be assimilated to a longest path calculation in a
jobshop. Neufeld et al. (2016) complete this framework with a review
of the literature on groups applied on flowshop scheduling.

In the previously cited papers, the studied objectives are regular
and time oriented (lateness, makespan, etc.). As already mentioned
in Chapter 2, the sojourn time objective being relevant in the cross-
dock environment, the next sections are devoted to its study in the
scheduling context of CTSP with groups sequences.
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U S I N G G R O U P S O F P E R M U TA B L E TA S K S F O R T H E
C T S P U N D E R U N C E RTA I N T Y

11.1 problem description

The studied problem is a variation of the CTSP defined in section 3.1
where uncertainties on release dates are now considered. The reader
can refer to this section for the definition of the notations used for
the problem that are slightly adapted in this section. The variations
are detailed below. Also, as we did not observe previously any partic-
ular differences between the complexity of solving correlated versus
unrelated CTSP versions, we only focus from now on the correlated
version.

For each truck u, we define a time interval Ωu = [ru; ru] includ-
ing the expected release date ru. This interval basically models the
uncertainty related to the arrival time as an equiprobable interval of
values. Indeed, from the real life practices, modelling the uncertainty
of arrivals is very important as it is a common source of encountered
disruptions, and some disruption can ruin the planned schedule. We
further refer to r̃u as the realized value of the arrival time of truck u.
(In the deterministic CTSP, ru = r̃u.)

The sojourn time objective is considered as the main objective. Nev-
ertheless, as elaborated later, the minimization of the lateness Lmax
is also used as a secondary objective. This means that the deadlines
of the initial CTSP are now relaxed and seen as due dates. The late-
ness of a truck u corresponds to the amount of time by which the
due date is violated Lu = r̃u + pu − du. Clearly, these objectives are
conflicting as it can be suitable to delay the unloading of an inbound
truck, hence to increase its lateness, in order to improve the sojourn
time.

11.2 using groups of permutable tasks

The decision to use the concept of groups of permutable tasks has
been taken to solve our uncertain CTSP. We will devise a proactive-
reactive method that embraces both the offline and online phases, as
illustrated in Figure 25.

During the offline phase, a flexible schedule is determined, fixing
a partial order on each door. Afterwards, in the online phase (during
the implementation of the planning), the final schedule is dynami-
cally consolidated, accordingly to the real early and late arrivals of
trucks, provided that the final total order of the trucks is an exten-
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Figure 25: Illustration of the online and offline mode

sion of the partial order defined in the proactive phase. To create a
flexible schedule, groups of permutable tasks are used. A group of
permutable tasks contains a set of trucks that are allocated to the
same door and are sequenced before or/and after other groups on
the same door. Figure 26 shows an example of a group containing
three trucks that can be sequenced in any order. Let us highlight that
the realization of a release date for a truck umay possibly delay some
trucks sequenced after u, according to the chosen sequence inside the
group, as illustrated in the previous figure. The offline phase aims
to set up a group sequence G, as illustrated in Figure 27. Obviously,
as an inbound truck i sharing a handover relation with an outbound
truck o cannot be sequenced after o on the same door, they cannot be
assigned to the same group.

Figure 26: Group example

Figure 28 illustrates the online phase, with the execution of the
planning, and the progressive consolidation of the sequence of trucks
chosen inside a group as they arrived. Whenever a truck belonging
to a group g enters the crossdock, one might start its handling while
its door d is available, provided that all trucks belonging to the group
immediately preceding g have all been completed on d. Figure 29

illustrates the total sequence and the corresponding schedule after
the implementation of the planning. This resulting schedule brings
the value of the objectives.

Let us introduce a few notations. We further refer to G as a specific
set of n group sequences of permutable trucks, to g as a specific
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Figure 27: Group sequence

Figure 28: Consolidation of the total order during the online phase

Figure 29: Resulting schedule

group ∈ G, to g(u) as the particular group ∈ G containing truck u, to
g−(u) as the group preceding g(u) on the same door, and g+(u) as
the group following g(u).

In order to illustrate the need of the second Lmax objective and to
have a better understanding of the way of using groups, let us have a
look at the same example as previously with 2 inbound trucks (blue
trucks 1 and 2), 3 outbound trucks (red trucks 3, 4 and 5), and 2 doors.
The handover constraints between trucks are presented at the left side
of Figure 29. The right side of this figure indicates:

• the uncertainty interval of each truck, which is displayed with
colored lines at the top or the bottom of the tasks;
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• the door-to-truck assignment: Trucks 1, 2, and 3 are assigned to
door 1, while trucks 4 and 5 are on door 2;

• the structure of the group sequence: Truck 1 forms a group on
its own, while trucks 2 and 3 form a second trucks group, and
trucks 4 and 5 form a third group;

This group sequence characterizes 4 sequences in total, with two
possibles permutation of trucks 2-3 and trucks 4-5. An earliest start
schedule with 2 ≺ 3 and 4 ≺ 5 is represented in Figure 29, assuming
the realization of the optimistic release dates. Figure 30 represents
an alternative earliest start schedule with 3 ≺ 2 and 5 ≺ 4. Clearly,
this latter schedule violates the due date of truck 4, which is now
late, while the former respect all the due dates. This small example
illustrates the interest of relaxing the initial deadlines, transforming
them into due dates, to better take advantage of the group concept,
without worrying about the feasibility of the schedule.

Figure 30: Small detailed example: Optimal maximum lateness

In the next chapter, we will use the following notations:

• ψ refers to the sojourn time;

• ψ∗ denotes an optimal sojourn time, for a given total order and
given realized release dates, i.e. minsi,so ψ(si, so),

• Lmax is the maximum lateness of a truck schedule.
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E VA L U AT I O N O F A G R O U P S E Q U E N C E

To efficiently create groups and sequence them on each door, the abil-
ity to measure and compare the quality of various group sequences,
in terms of lateness and sojourn time, is required. A sequence of
groups possibly characterizes a lot of total truck orders, each of them
defining to a lot of schedules, depending on the realization of the re-
lease dates. It is not relevant to enumerate all of them for the computa-
tion of the objective values, as they are over-numerous. We will focus
on the worst and best case values of the optimum lateness and so-
journ time. These values provide an interval containing the objective
values of any solution characterized by the group schedule. As pre-
viously mentioned, the worst case is commonly used in robustness,
as it offers a performance guarantee: whatever the realized release
dates respecting the uncertainty intervals, the objective value cannot
be worse than its worst case value. The best case is a second interest-
ing performance measure that reflects the most optimistic value that
can be expected.

12.1 best case scenarios to estimate the quality of a

group sequence

12.1.1 Best sojourn time

As defined before, we are focusing on the weighted sum of the so-
journ times of the pallets stocked in the warehouse. This section ad-
dresses the problem of computing the best value of such an objective.
Obviously, for this computation, only the release date scenario such
that trucks arrive as soon as possible need to be considered. Indeed,
considering another scenario with greater arrival times can only lead
to an increase of the sojourn time because the former (optimistic) sce-
nario is a relaxation of the latter.

The best sojourn time can be defined as follows, considering the
optimistic release date scenario:

min
r

min
θ

min
si,so

∑
o∈O

Wo.so −
∑
i∈I

Wi.si (38)

where min
r

means that for each truck u, ru = ru and where θ is a

total order compatible with the group sequence.

This problem can be viewed as a parallel machine scheduling prob-
lem with release dates r, deadlines d̃, and precedence constraints,
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which is a generalization of 1|r, d̃|. The latter being NP-complete
(Lenstra et al., 1977), finding a feasible solution for the best sojourn
time is also NP-complete.

As learned in the second part of this manuscript, constraint pro-
gramming is efficient on the CTSP to minimize the sojourn time.
Therefore, a CP formulation can be used to solve that problem. The
best sojourn time problem can be formulated as follows. The decision
variables are the start times su for (un)loading truck u. We introduce
a dummy truck 0 so that s0 defines the origin of the time horizon
with a processing time p0 = 0. U0 refers to the set of initial trucks
extended with truck 0.

min
∑
o∈O

Woso −
∑
i∈I

Wisi (39)

subject to

sv − su > luv =


pu ∀u ∈ U, ∀v ∈ g+(u)
0 ∀(u, v) ∈ A

rv ∀v ∈ U,u = 0

−d̃u + pu ∀u ∈ U, v = 0

(40)

|Jt,G| 6 1 ∀G ∈ G, ∀t ∈ [0; T ] (41)

su ∈ R ∀u ∈ U (42)

where Jt,G = {j ∈ G | su < t 6 su + pu} is a set containing all trucks j
of group G that are being (un)loaded at time t.

Constraints (40) impose end-start precedences between trucks of
different groups that follow one another on a dock, start-start prece-
dence between inbound and outbound trucks and time-windows.
Constraints (41) ensure that only one truck per group is (un)loaded
at the same time.

12.1.2 Best maximum lateness Lmax

On time truck departure is also a very important element in cross-
docking. In order to evaluate this criterion we will look at the max-
imum lateness Lmax. Given a total order, Lmax is defined as the
biggest lateness over all trucks.

Lmax = max
u∈U

(su + pu − du)

We will therefore evaluate the best Lmax given a group sequence.
Again, for dominance reasons, the most favourable scenario of release
dates is considered, i.e. all trucks arrive as soon as possible.
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The best maximum lateness, with the best total order and the best
release dates is defined as follows:

min
r

min
θ

min
si,so

Lmax (43)

This problem is NP-hard (Artigues et al., 2005).
As the best sojourn time problem, the best maximum lateness

problem can be written with a Constraint Programming formulation
as follows:

min Lmax (44)

subject to

sv − su > luv =


pu ∀u ∈ U, ∀v ∈ g+(u)
0 ∀(u, v) ∈ A

rv ∀v ∈ U,u = 0

−Lmax − du + pu ∀u ∈ U, v = 0
(45)

|Jt,G| 6 1 ∀G ∈ G, ∀t ∈ [0; T ] (46)

su ∈ R ∀u ∈ U (47)

Lmax ∈ R (48)

where Jt,G = {u ∈ G | su < t 6 su + pu}.
Constraints (45) are similar to (40), however, the deadline is relaxed

here because tasks are allowed to finish Lmax time units after the
deadline. As before, constraints (46) ensure that only one truck per
group is (un)loaded at the same time.

12.2 worst case scenarios to estimate the quality of a

group sequence

12.2.1 Worst optimal sojourn time

This section takes interest in finding the optimal sojourn time (which
should be minimized) in the worst possible arrival scenario. Clearly,
only the scenario in which the trucks arrive as late as possible need
to be considered. Indeed, for such a scenario, reducing any of the
release dates can only result in a decrease of the optimal sojourn
time. Therefore, the search reduces to finding the worst total order
with respect to the optimal sojourn time.

The worst sojourn time can be hence defined as follows:

max
r

max
θ

min
si,so

∑
o∈O

Wo.so −
∑
i∈I

Wi.si (49)
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where max
r

means that for each truck u, ru = ru.

Due to this non-regular time objective, finding the worst sojourn
time given a group sequence is NP-complete:

Theorem 7. Given a general crossdock problem with a group sequence G,
finding a total order θ that minimizes the sojourn time ψ is NP-Complete.

Proof. We reduce the single machine scheduling problem 1|rj|
∑
Cj,

which is known to be NP-Hard, to our problem.
We consider a single machine scheduling problem were the oper-

ations are indexed 1, . . . ,k and we define psj as the processing time
and rsj as the release date of the operation indexed j.

Let us construct a crossdock problem instance with 2 doors, k
inbound trucks indexed i such that pi = psi − 1 and ri = rsi , for
i = 1, . . . ,k and k outbound trucks indexed o such that po = pso and
ro = rso, for o = 1, . . . ,k. We assume that there is an initial stock con-
taining k =

∑
po −

∑
pi pallets. Moreover, we assume that inbound

truck indexed i delivers its pi pallets to outbound truck indexed o = i

(i.e., wio = pi = po − 1 if o = i else wio = 0) and that each outbound
truck indexed o receives exactly 1 pallet from the initial stock. The
group sequence G = {G1,G2} is such that the sequence for the first
door contains one group in which we can find all inbound trucks,
while the sequence for the second group contains one group in which
we can find all outbound trucks. The sojourn time can be expressed
as

ψ =
∑
o

(so − t0) +
∑
i

∑
o

wio(so − si). (50)

The former term corresponds to the cost of the pallets transferred
directly from the stock to the outbound trucks where t0 defines the
beginning of the schedule. The latter is the cost of the pallets moved
from inbound to outbound trucks.

Let us observe that, for any feasible outbound schedule for the
second door, it is always possible to build a similar inbound schedule
on the first door by defining si = so if i = o (because pi < po and ri =
ro). Therefore, ψ reduces to

∑
o(so − t0), which equals

∑
oCo − K

where K =
∑
o(po+ t0). Hence, minimizingψ is equivalent to solving

a 1|rj|
∑
Cj problem on the second door.

From Theorem 7, it results that finding a total order that gives the
best or the worst sojourn time is NP-Complete (as the sub-problem is
itself NP-Complete).

A schedule with worst optimal sojourn time is illustrated Figure 31,
considering the example introduced Figure ??. Let us observe that
delaying some outbound truck can further increase the worst sojourn
time but, in such a case, it will not be optimum any more.
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Figure 31: Worst sojourn time

Due to the max /min objective, finding the worst optimal sojourn
time is more tricky. For that reason, the explanation is given in two
steps.

12.2.1.1 Finding the optimal sojourn time of totally ordered sequences

First of all, we recall that maxrψ∗(r) = ψ∗(r), i.e. the worst optimal
sojourn time can be systematically obtained when the realized release
dates are at the latest.

The well-known strong duality concept related to Linear Program-
ming can be used to determine maxθminsi,so ψ(si, so, r), as detailed
below. We propose to use a primal-dual approach to solve the prob-
lem, as the objective is defined as a min-max.

As a first step, let us suppose that a total order has been chosen.
Determining the optimal sojourn time knowing the total order of the
trucks on the doors is a polynomial problem that can be efficiently
solve with linear programming using the following (primal) formu-
lation:

Primal problem

min
∑
o∈O

Woso −
∑
i∈I

Wisi (51)

subject to

sv − su > luv =


pu ∀u, v ∈ U,u ≺ v
0 ∀(u, v) ∈ A

rv ∀v ∈ U,u = 0

−d̃u + pu ∀u ∈ U, v = 0

(52)

su ∈ R ∀u ∈ U (53)
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Let us now consider the dual counterpart of the previous (primal)
LP.

Dual problem

max
∑

(u,v)∈U
u≺v

φuv.pu +
∑
v∈U

φ0v.rv +
∑
u∈U

φu0.(−d̃u + pu) (54)

subject to

∑
v∈U

φv0 −
∑
v∈U

φ0v = 0 (55)

φ0i −φi0 +
∑
u∈U
u<i

φui −
∑
v∈U
i<v

φiv −
∑

o∈Γ+(i)

φio = −Wi ∀i ∈ I (56)

φ0o −φo0 +
∑
u∈U
u<o

φuo +
∑

i∈Γ−(o)

φio −
∑
v∈U
o<v

φov =Wo ∀o ∈ O (57)

φuv > 0 ∀u, v ∈ U0 (58)

where Γ+(i) and Γ−(o) are the successors of truck i and the prede-
cessors of truck o on the handover graph, respectively.

The primal problem consists in minimizing the sojourn time (ob-
jective (51)) with end-start precedences given by the total order, start-
start precedences between inbound and outbound trucks and time
windows (constraints (52)). The dual problem is a maximum flow
problem (objective (54)) where the difference between the outgoing
and incoming flow equals the load received by the truck (constraints
(55), (56) and (57)).

strong duality According to the strong duality theorem and
given a total order of the trucks on the doors, we can express the
search for an optimal solution as a feasibility problem as only optimal
solutions can satisfy the following system of primal-dual constraints:∑

o∈O
Woso −

∑
i∈I

Wisi >
∑

(u,v)∈U
u≺v

φuv.pu +
∑
v∈U

φ0v.rv +
∑
u∈U

φu0.(−d̃u + pu)

(59)

sv − su > luv =


pu ∀u, v ∈ U,u < v

0 ∀(u, v) ∈ A

rv ∀v ∈ U,u = 0

−d̃u + pu ∀u ∈ U, v = 0

(60)

∑
v∈U

φv0 −
∑
v∈U

φ0v = 0 (61)

φ0i −φi0 +
∑
u∈U
u≺i

φui −
∑
v∈U
i<v

φiv −
∑

o∈Γ+(i)

φio = −Wi ∀i ∈ I (62)

φ0o −φo0 +
∑
u∈U
u≺o

φuo +
∑

i∈Γ−(o)

φio −
∑
v∈U
o≺v

φov =Wo ∀o ∈ O (63)

su ∈ R ∀u ∈ U (64)

φuv > 0 ∀u, v ∈ U0 (65)
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This system of constraints gather all the primal-dual constraints all
together while the constraint (59) enforces the primal objective to be
greater or equal to the dual objective (in fact they can only be equal
for an optimal solution as the former is a lower bound of the latter,
and vice-versa).

12.2.1.2 Searching for the worst total ordering

In a second step, the total order being no longer known, decision
variables are introduced that model end-start precedences between
trucks belonging to the same group, i.e.:

∀g ∈ G, ∀u, v ∈ g, αuv =

{
1 if truck u precedes truck v

0 otherwise

The following constraints are added to the previous primal-dual in-
equation system:

sv − su − pu > (1−αuv).(rv − d̃u) ∀g ∈ G, ∀u, v ∈ g, u 6= v (66)

αuv +αvu = 1 ∀G ∈ G, ∀u, v ∈ G, u 6= v (67)

Constraints (66) ensure that, if there exists a end-start precedence
between truck u and truck v, i.e. αuv = 1, then v cannot be started
before the end of u. Constraints (67) imply that if trucks u and v

belong to the same group and if truck u does not precede truck v
then truck v precedes truck u, and vice versa.

Finally, the worst optimal sojourn time can be computed according
to the following formulation:

max
∑
o∈O

Woso −
∑
i∈I

Wisi (68)

subject to

sv − su > luv =



pu ∀u ∈ U, ∀v ∈ g+(u)

0 ∀(u, v) ∈ A

rv ∀v ∈ U,u = 0

−d̃u + pu ∀u ∈ U, v = 0

(69)

∑
v∈U

φv0 −
∑
v∈U

φ0v = 0 (70)

φ0i −φi0 +
∑

u∈g−(i)

φui −
∑

v∈g+(i)

φiv

+
∑

w∈g(i)
αwi.φwi −αiw.φiw −

∑
o∈Γ+(i)

φio = −Wi ∀i ∈ I (71)
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φ0o −φo0 +
∑

u∈g−(o)

φuo −
∑

v∈g+(o)

φov +
∑

w∈g(o)
αwo.φwo −αow.φow

+
∑

i∈Γ−(o)

φio = Wo ∀o ∈ O (72)

∑
o∈O

Woso −
∑
i∈I

Wisi 6
∑
u∈U

φ0u.ru +
∑
u∈U

φu0.(pu − d̃u)

+
∑
g∈G

∑
u,v∈g

φuv.αuv.pu +
∑
u∈U

∑
v∈g+(u)

φuv.pu (73)

sv − su − pu > (1−αuv).(rv − d̃u) ∀g ∈ G, ∀u, v ∈ g, u 6= v (74)

sv − su > pu ∀u ∈ U, ∀v ∈ g+(u) (75)

αuv +αvu = 1 ∀g ∈ G, ∀u, v ∈ g, u 6= v (76)

su ∈ R ∀u ∈ U (77)

φuv > 0 ∀u, v ∈ U (78)

αuv ∈ {0, 1} ∀u, v ∈ U (79)

All constraints and objectives have been already devised. Due to the
introduction of αuv variables, flow constraints (71), (72), and strong
duality constraint (73) become non linear as they contain products
of binary variables. Nevertheless, these constraints can be easily lin-
earized using standard techniques so that a MIP solver can be used
to solve the problem. The complementary variables and constraints
that were used for linearization are detailed in the following.

12.2.1.3 Worst optimal sojourn time problem linearization

In order to linearize the problem, we introduce variables πuv =

αuv.φuv and Muv, an upper bound of φuv.

max
∑
o∈O

Woso −
∑
i∈I

Wisi (80)
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subject to

sv− su > luv =


pu ∀u ∈ U, ∀v ∈ g+(u)

0 ∀(u,v) ∈A

rv ∀v ∈ U,u = 0

−d̃u+pu ∀u ∈ U,v = 0

(81)

∑
v∈U

φv0−
∑
v∈U

φ0v = 0 (82)

φ0i−φi0+
∑

u∈g−(i)

φui−
∑

v∈g+(i)

φiv+
∑

w∈g(i)
(πwi−πiw)−

∑
o∈Γ+(i)

φio = −Wi ∀i ∈ I

(83)

φ0o−φo0+
∑

u∈g−(o)

φuo−
∑

v∈g+(o)

φov+
∑

w∈g(o)
(πwo−πow)+

∑
i∈Γ−(o)

φio =Wo ∀o ∈ O

(84)∑
o∈O

Woso−
∑
i∈I
Wisi >

∑
u∈U

φ0u.ru+φu0.(pu− d̃u)

+
∑
g∈G

∑
u,v∈g
u 6=v

πuv.pu+
∑
u∈U

∑
v∈g+(u)

φuv.pu (85)

sv− su−pu > (1−αuv).(rv− d̃u) ∀g ∈ G, ∀u,v ∈ g, u 6= v (86)

αuv+αvu = 1 ∀g ∈ G, ∀u,v ∈ g, u 6= v (87)

πuv >Muv.(αuv− 1)+φuv ∀g ∈ G,∀u,v ∈ g (88)

πuv 6 φuv ∀g ∈ },∀u,v ∈ g (89)

πuv 6 αuv.Muv ∀g ∈ },∀u,v ∈ g (90)

su ∈ R ∀u ∈ U (91)

φuv > 0 ∀u,v ∈ U (92)

αuv ∈ {0,1} ∀u,v ∈ U (93)

πuv > 0 ∀g ∈ G,∀u,v ∈ g (94)

12.2.2 Worst maximum lateness

This section is dedicated to the computation of the worst maximum
lateness. We still consider the least favourable situation, i.e. the trucks
arrive as late as possible. We are seeking for a total order offering the
highest maximum lateness Lmax.

The criterion for the worst maximum lateness, with the worst total
order and the worst release dates is:

max
r

max
θ

min
si,so

Lmax (95)

As in the case of the worst optimal sojourn time, one can still use
a primal-dual formulation to determine the worst maximum lateness.
Nevertheless, such an idea sounds ineffective as the worst maximum
lateness can be computed in polynomial time. The proof can be found
in the thesis (Le Gall, 1989) and holds for any regular time objective.
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In the following section, we show how to find an optimal solution in
polynomial time.

A sequence offering the worst optimal maximum lateness is illus-
trated in Figure 32, considering the same example as before.

Figure 32: Worst maximum lateness

12.2.2.1 Polynomial time computation

The polynomial time computation of the worst maximum lateness
considers the worst earliest start time est and the worst earliest fin-
ishing time eft of the truck handling tasks.

The worst earliest start time of a truck u depends on three different
elements:

• the worst release date ru;

• the completion time of the last truck in the previous group
g−(u);

• if u is an outbound truck, the starting time of inbound prede-
cessors.

To calculate the worst earliest finishing time of a truck u, we con-
sider the worst earliest finishing time over all trucks in the previous
group, and the fact that truck u might be the last one of its group.

esti = max

 max
u∈g−(i)

estu +
∑

u∈g−(i)

pu ; ri

 ∀i ∈ I (96)

efti = max

max
v∈g(i)
v6=i

estv +
∑

w∈g(i)

pw ; esti + pi

 ∀i ∈ I (97)
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esto = max

 max
u∈g−(o)

estu +
∑

u∈g−(o)

pu ; ro ; max
i∈Γ−(o)

(
efti − pi

) ∀o ∈ O

(98)

efto = max

max
v∈g(o)
v6=o

estv +
∑

w∈g(o)

pw ; esto + po

 ∀o ∈ O

(99)

Finally, to calculate the worst maximum lateness we take the great-
est difference between the worst earliest finishing time and the due
date over all trucks u.

Lmax = max
u∈U

(
eftu − du

)
(100)

12.2.2.2 Resolution using Bellman - Ford algorithm

Considering a specific truck u, the previous inequations can be easily
modeled with a basic activity-on-node graph, according to the princi-
ples displayed in the partial graphs of the following figures. Figure 33

refers to the Lmax for inbound trucks, whereas Figure 34 refers to the
Lmax for outbound trucks. Nodes 0 and 0∗ are common for all trucks.
Lmax is obtained as the longest path from 0 to 0∗. The length of the
arcs correspond to the formulas (96), (97), (98) and (99).

As such a graph does not hold any circuit, the circuit-free version
of the Bellman-Ford algorithm can be used to solve this problem effi-
ciently in O(n logn) (Cormen et al., 2001).

Figure 33: Graph around a vertex i

12.3 creation of the group sequence

In order to test the evaluation process , a straightforward heuristic is
proposed that only construct groups with either all inbound trucks
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Figure 34: Graph around a vertex o

or all outbound trucks. This heuristic starts from a non-flexible feasi-
ble solution for the problem. Given the starting times of all the tasks
(trucks), the assignment of trucks to doors is done by a MILP that min-
imizes the total number of successive inbound and outbound trucks
on a same door.

Afterwards, for each door, the heuristic goes through the list of al-
located trucks by increasing starting time and gathers inbound trucks
together in one group and outbound trucks together in another group.
Each time an outbound truck is encountered and added to a group,
one need to check if the increasing group of inbound trucks contains
a connected inbound truck. If so, the inbound group is added to the
partial sequence. Whenever the size of a group reaches a predefined
threshold, the group is added to the partial sequence as well, until
all trucks are assigned to a group. A pseudo-code for this heuristic is
presented in Algorithm 2.

12.4 preliminary experiments

In order to test the efficiency of the heuristic, we select the previous
introduced set, with 250 instances and 5 doors, which allows us to
work with enough doors to obtain relevant group sequences.

12.4.1 Group sequence

A parameter of the heuristic is the maximal size of the generated
groups. We need to create groups with enough trucks inside to ab-
sorb by swapping possible perturbations, but limiting the group size
is mandatory as too many trucks in one group will lead to highly
deteriorated worst-case criteria values.
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Algorithm 2 Group heuristic

Input: S: feasible solution; f: group size
Output: Group sequence G

for all door d do
Sort the trucks allocated to door d in non-decreasing order of
their starting time, provided by solution S: trucksd
for all truck u in trucksd do

if u is inbound then
Put u in listi

else
Put u in listo
if u has connection (precedences) with at least a truck in
listi then

Create a new group with the trucks in listi, and add that
group to the partial sequence
Clear listi

end if
end if
if size(listi) > f then

Create a new group with the trucks in listi, and add that
group to the partial sequence
Clear listi

else if size(listo) > f then
Create a new group with the trucks in listo, and add that
group to the partial sequence
Clear listo

end if
end for
Create a new group with the trucks in listi, and add that group
to the partial sequence.
Create a new group with the trucks in listo, and add that group
to the partial sequence

end for
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max size average standard deviation

2 1.6 0.1

3 2.3 0.3

4 2.7 0.4

Table 28: Group size returned by the heuristic

Table 28 reflects some characteristics of the solutions provided by
the heuristic for different maximal group sizes. The results are en-
couraging: a relatively simple and restrictive heuristic (where a group
cannot contain both inbound and outbound trucks) succeeds in creat-
ing groups. With a maximal size of 2, we obtain groups of 1.6 trucks
on average, meaning more than 2/3 of the trucks are permutable. Ob-
viously, we cannot expect all trucks to be in a group of two trucks.
When we increase the maximal size of the group to 3 and 4, we obtain
respectively 2.3 and 2.7 trucks per group, on average. These numbers
could be a good compromise between a non-flexible truck sequence
(no permutation, but good objective values) and large groups (a lot
of possible permutations, but poor worst-case values). We can men-
tion the low standard deviation, meaning that the average size of the
group is stable over the instances.

12.4.2 Lateness

As one of the criteria to evaluate the method, best and worst lateness
can be calculated. We express the lateness values as a percentage of
the time horizon: Łmax

T .
We can see in Table 29 that the worst maximal lateness increases

with the size of the groups. Having larger groups allows more per-
mutations and thus also combinations with higher lateness, which
can be obviously selected in the worst-case scenario. As expected, the
worst-case value decreases as the time windows widen. With more
feasible solutions, the worst maximal lateness is smaller. The number
of trucks per door also has an impact. With more trucks per door, we
increase the possible combinations thus the worst maximal lateness.
We observe a large diversity of values, from 19% to 88%, meaning
we probably even exceed sometimes the time horizon. A possible rea-
son for these high values is that the group generation method is very
basic and does not optimize the worst-case.

We can see in Table 30 that we obtain relevant results for the best
maximal lateness: for all feasible instances, the percentages are neg-
ative. This means that we do not have any lateness and even some
margin on the completion time of the worst truck. As a reminder, we
mention the lateness value of the latest truck, which is obtained for
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max size

trucks/door TW 2 3 4

30 25% 42% 47%

40 32% 54% 66%

50 36% 55% 71%

70 40% 63% 78%

0.00 46% 70% 88%

0.25 49% 69% 83%

0.50 43% 64% 76%

0.75 25% 42% 57%

1.00 19% 40% 53%

all all 35% 55% 69%

Table 29: Worst maximal lateness relative to time horizon

the most favorable sequencing scenario with respect to the lateness
criterion.

We also observe that the maximal group size does not affect the
results significantly. We can nevertheless remark that for tight time
windows, there is unsuspectingly no improvement, but this might be
the result of a too-small computation time.

Considering lateness, we conclude that considering groups of 4

trucks might be irrelevant, as a single group of 4 trucks can ruin
the worst-case value, due to the range of allowed permutations, and
a group with a maximum of 3 trucks already brings sufficient flexi-
bility. Anyhow, these experiments validate the efficient calculation of
the worst and best lateness.

12.4.3 Sojourn time

Similar experiments are conducted with respect to the sojourn time
criterion. As we cannot obtain easily the optimal objective value of
all instances, we use the solution obtained after 2h of computation in
chapter 8 as the reference solution value. We express the results as
the relative difference regarding this value.

Looking at the worse case in Table 31, the average differences with
the good-quality solutions are high, from 263 to 346%. Of course, the
solution value of the worst case is a lot worse than the solution value
of the good solution, as the good solution tries to find the best possi-
ble solution. Having larger groups allows more permutations, which
naturally implies higher sojourn time in the worst case. We observe
that the number of trucks per door does not really cause a signifi-
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max size

trucks/door TW 2 3 4

30 -17% -17% -18%

40 -14% -15% -15%

50 -15% -15% -15%

70 -11% -11% -11%

0.00 0% 0% 0%

0.25 0% 0% 0%

0.50 -5% -6% -6%

0.75 -24% -24% -24%

1.00 -30% -30% -30%

all all -14% -14% -14%

Table 30: Best maximal lateness relative to time horizon

cant variation. However, the tightness of the time windows is more
impacting. Limiting the creation of groups thus limits the number
of possible permutations and the range of possible schedules. These
high values also come from the fact that our simple heuristic aims to
create a large group size and does not consider the worst-case sojourn
time.

The last Table 32, with very low differences between the best case
in sojourn time, shows that the evaluation works properly: within the
15 minutes of computation time allocated to each evaluation, the so-
lutions obtained are really good. The different percentages that can
be read in the Table are not that different from each other. A good
solution is used to start the algorithm, and both the time window
tightness and the number of trucks per door slightly influence the
final solution quality. Enlarging the time windows leads mainly to
solutions with bigger time laps between inbound and outbound, in-
creasing the sojourn time.

12.4.4 Preliminary experiments conclusion

This first set of experiments returns results with relatively high values,
but this is acceptable because of the rather poor performance of the
group creation heuristic. These experiments validate the ability of this
heuristic to create group sequences, and the ability of the evaluation
methods to calculate the best and worst-case values of both objectives.

Obviously, the work on both the evaluation and the creation of
groups and group schedules should be continued. Several points have
to be developed. The appropriate computing time limit for each evalu-
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max size

trucks/door TW 2 3 4

30 265% 278% 319%

40 240% 282% 307%

50 279% 345% 387%

70 284% 323% 364%

0.00 148% 198% 253%

0.25 212% 249% 274%

0.50 304% 354% 414%

0.75 263% 328% 366%

1.00 325% 346% 368%

all all 263% 307% 346%

Table 31: Worst sojourn time relative to CP solution

max size

trucks/door TW 2 3 4

30 5% 7% 6%

40 6% 6% 6%

50 6% 7% 6%

70 7% 7% 7%

0.00 1% 1% 1%

0.25 4% 5% 5%

0.50 12% 14% 12%

0.75 6% 6% 6%

1.00 5% 5% 5%

all all 6% 7% 6%

Table 32: Best sojourn time relative to CP solution
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ation criterion should be determined. The evaluation method should
be tested on larger instances as well. And finally, an efficient method-
ology should be developed to create appropriate group sequences.
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C O N C L U S I O N A N D F U T U R E W O R K S

In this thesis, the crossdock truck scheduling problem has been stud-
ied in order to favor an efficient synchronization of the trucks as well
as to promote a fluid rotation of the goods inside the crossdock. Those
are both performance indicators that are frequently considered by
supply chain managers. The considered problem consists in assigning
trucks to doors as well as scheduling trucks on the different doors in
order to optimize an objective function. Minimizing the total sojourn
time of the pallets in the storage has been considered as the objective
as it reflects both trucks synchronization and goods turnover.

Considering first a deterministic version of this scheduling prob-
lem where each truck is characterized by its handling time, its time
windows, its processing time, its load and a set of handover relations
(which model the pallet flows), we study its complexity under various
assumptions. Such problem is NP-hard in its general version (as find-
ing a feasible solution respecting the time windows is NP-complete).
Nonetheless, we show that even when time windows are relaxed, the
problem remains NP-hard if at least two doors are considered. For the
very restrictive single-door case, CTSP becomes polynomial when the
handover graph can be partitioned in bicliques; otherwise its status
is open.

We also provide a set of 1000 instances with up to 10 doors, which
will be made available for the scheduling community. Designed to
impose a 65% workload inside the crossdock, they can be seen as re-
alistic from an industrial viewpoint. Of course, since real crossdocks
may contain hundreds of doors in practice, this claim must be some-
what mitigated. Anyway, as observed during our computational ex-
periments, our instances seem to be complex enough to reach the
limits of the resolution capabilities of exact solving methods.

Another contribution of this thesis lies in the proposal of different
exact methods that all have been explained and evaluated on our in-
stance sets. In particular, we propose a branch-and-cut algorithm that
exploits the concept of critical sets of tasks, well known in scheduling
research. Instead of focusing only on minimal critical sets as other
methods, we show that extending to non-minimal critical sets can be
interesting. Indeed, it allows to exhibit strong valid inequalities that
can be used to progressively converge to an optimal solution, by it-
eratively integrating cuts in the problem. Since potentially, there is
an exponential number of cuts, we show how cuts can be efficiently
separated from one iteration to another. Note that our cut-separation
approach and our family of valid inequalities can be used in schedul-
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ing environments other than CTSP, which also handle cumulative
resources. This branch-and-cut approach has been implemented in
different ways, sometimes integrating MIP and CP solvers. All ap-
proaches have been evaluated and the results are quite mitigated. For
pure CP formulations, IBM CPO performs very well in finding fea-
sible solutions but fails to find good lower bounds. Conversely, our
branch-and-cut methods are not very good at finding feasible solu-
tions but can provide better lower bounds. In any case, the ability of
the methods to find optimal solutions quickly becomes disappointing
as the number of doors increases.

Our last contribution concerns a non-deterministic version of our
truck scheduling problem where the arrival dates of trucks are un-
certain, and modeled as equiprobable time intervals. We sketch a
proactive-reactive solution method that uses the concept of groups
of permutable trucks. As those groups are sequenced and assigned
to specific doors through the proactive phase, a reactive scheduling
algorithm is able to dynamically determine the order of the trucks
within each group, based on the actual realization of the arrival dates.
Considering a specific group sequence, we discuss how it can be eval-
uated with respect to total sojourn time and maximum lateness. Four
different decision problems have been designed to compute the best
and worst sojourn time and the best and worst maximum lateness,
respectively. We prove that all of these problems are NP-hard, even
when the group sequence is given, except for the worst maximum
delay which remains polynomial. We show how the other three objec-
tives can be computed either by a CP or MIP approach.

There are many perspectives to our work. Concerning the complex-
ity, a first perspective is to settle the complexity status of CTSP(1,C)
that remains open for general handover graph. Addressing the com-
plexity of the problem in different crossdocking scenarios (e.g. stor-
age restrictions, exclusive-mode doors etc) could also be of interest.

Clearly, better exact methods need to be designed to optimally
solve real-size CTSP instances. Many avenues are open for this pur-
pose. First, in the short term, we would like to better explore the in-
fluence of the threshold that triggers the addition of new cuts in our
branch-and-cut algorithm. We would also like to incorporate some
dominance rules from the literature into our approach and design
new ones. Indeed, such rules could restrict the search space further
and make our method more efficient. Of course, more sophisticated
branch-and-cut or branch-and-cut and price methods could also be
designed in the longer term. Another possibility could be to find
better hybridizations of the MIP and CP solvers as they already in-
corporate many very efficient algorithms. Finally, the development of
heuristics, metaheuristics or matheuristics for solving CTSP is also an
interesting line of research as these methods can provide good upper
bounds for exact methods.
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Regarding the non-deterministic version of the CTSP, we still need
to upgrade our groups generation method, in order to optimize the
criteria of worst and best cases for our objectives. We also need to
evaluate experimentally how some reactive scheduling rules can take
profit of group sequences. Another research direction will be to evalu-
ate the quality of group sequences with respect to the worst response
of a reactive algorithm, instead of considering the worst case. Indeed,
the worst case evaluation is known to be too conservative. We do
not investigate procedures able to compute efficient group sequences.
Designing such procedures, able to take the nature of the reactive
algorithm into account, will be ideal. Finally, more ad-hoc proactive-
reactive methods could be designed that take more accurately the
nature of the CTSP into account. Indeed, only the trucks that are ap-
proaching the crossdock have an uncertain release date, while the oth-
ers have a planned release date. The interval of uncertainty evolves
dynamically as the truck gets closer to the crossdock. Therefore, the
robustness could only concentrate on those trucks, instead of consid-
ering all the trucks at once as we did.
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