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Résumé : Cette thèse s’inscrit dans la lignée de
travaux portant sur la modélisation bayésienne de
fonctions par processus gaussiens, pour des appli-
cations en conception industrielle s’appuyant sur
des simulateurs numériques dont le temps de cal-
cul peut atteindre jusqu’à plusieurs heures. Notre
travail se concentre sur le problème de sélection
et de validation de modèle et s’articule autour de
deux axes.

Le premier consiste à étudier empiriquement
les pratiques courantes de modélisation par pro-
cessus gaussien stationnaire. Plusieurs problèmes
sur la sélection automatique de paramètre de
processus gaussien sont considérés. Première-
ment, une étude empirique des critères de sélec-
tion de paramètres constitue le cœur de cet axe de
recherche et conclut que, pour améliorer la prédic-
tivité des modèles, le choix d’un critère de sélection
parmi les plus courants est un facteur de moindre
importance que le choix a priori d’une famille de
modèles. Plus spécifiquement, l’étude montre que
le paramètre de régularité de la fonction de covari-
ance de Matérn est plus déterminant que le choix
d’un critère de vraisemblance ou de validation
croisée. De plus, l’analyse des résultats numériques
montre que ce paramètre peut-être sélectionné de
manière satisfaisante par les critères, ce qui aboutit
à une recommandation permettant d’améliorer les
pratiques courantes. Ensuite, une attention par-
ticulière est réservée à l’optimisation numérique
du critère de vraisemblance. Constatant, comme
Erickson et al. (2018), des inconsistances impor-
tantes entre les différentes librairies disponibles
pour la modélisation par processus gaussien, nous

proposons une série de recettes numériques élé-
mentaires permettant d’obtenir des gains signifi-
catifs tant en termes de vraisemblance que de pré-
cision du modèle. Enfin, les formules analytiques
pour le calcul de critère de validation croisée sont
revisitées sous un angle nouveau et enrichies de for-
mules analogues pour les gradients. Cette dernière
contribution permet d’aligner le coût calculatoire
d’une classe de critères de validation croisée sur
celui de la vraisemblance.

Le second axe de recherche porte sur le
développement de méthodes dépassant le cadre
des modèles gaussiens stationnaires. Constatant
l’absence de méthode ciblée dans la littéra-
ture, nous proposons une approche permettant
d’améliorer la précision d’un modèle sur une
plage d’intérêt en sortie. Cette approche con-
siste à relâcher les contraintes d’interpolation sur
une plage de relaxation disjointe de la plage
d’intérêt, tout en conservant un coût calculatoire
raisonnable. Nous proposons également une ap-
proche pour la sélection automatique de la plage
de relaxation en fonction de la plage d’intérêt.
Cette nouvelle méthode permet de définir des
régions d’intérêt potentiellement complexes dans
l’espace d’entrée avec peu de paramètres et, en
dehors, d’apprendre de manière non-paramétrique
une transformation permettant d’améliorer la pré-
dictivité du modèle sur la plage d’intérêt. Des sim-
ulations numériques montrent l’intérêt de la méth-
ode pour l’optimisation bayésienne, où l’on est in-
téressé par les valeurs basses dans le cadre de la
minimisation. De plus, la convergence théorique de
la méthode est établie, sous certaines hypothèses.
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Abstract: This manuscript focuses on Bayesian
modeling of unknown functions with Gaussian pro-
cesses. This task arises notably for industrial de-
sign, with numerical simulators whose computa-
tion time can reach several hours. Our work fo-
cuses on the problem of model selection and vali-
dation and goes in two directions.

The first part studies empirically the current
practices for stationary Gaussian process model-
ing. Several issues on Gaussian process parame-
ter selection are tackled. A study of parameter
selection criteria is the core of this part. It con-
cludes that the choice of a family of models is
more important than that of the selection criterion.
More specifically, the study shows that the regular-
ity parameter of the Matérn covariance function is
more important than the choice of a likelihood or
cross-validation criterion. Moreover, the analysis
of the numerical results shows that this parame-
ter can be selected satisfactorily by the criteria,
which leads to a practical recommendation. Then,
particular attention is given to the numerical op-
timization of the likelihood criterion. Observing
important inconsistencies between the different li-
braries available for Gaussian process modeling like
Erickson et al. (2018), we propose elementary nu-

merical recipes making it possible to obtain signif-
icant gains both in terms of likelihood and model
accuracy. Finally, the analytical formulas for com-
puting cross-validation criteria are revisited under
a new angle and enriched with similar formulas for
the gradients. This last contribution aligns the
computational cost of a class of cross-validation
criteria with that of the likelihood.

The second part presents a goal-oriented
methodology. It is designed to improve the ac-
curacy of the model in an (output) range of inter-
est. This approach consists in relaxing the inter-
polation constraints on a relaxation range disjoint
from the range of interest. We also propose an ap-
proach for automatically selecting the relaxation
range. This new method can implicitly manage
potentially complex regions of interest in the in-
put space with few parameters. Outside, it learns
non-parametrically a transformation improving the
predictions on the range of interest. Numerical
simulations show the benefits of the approach for
Bayesian optimization, where one is interested in
low values in the minimization framework. More-
over, the theoretical convergence of the method is
established under some assumptions.
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Figure 1: A fan module (left), composed of fan blades (middle) divided

into airfoils (right).

1 . Context

1.1 . The exploration of numerical simulators

Engineers in the industry face the challenge of reaching design specifications
using numerical models that are expensive-to-run computationally and even some-
times financially speaking. A technique for addressing this challenge is to substitute
the expensive numerical model with a cheaper one, which serves as an approxima-
tion.

Such a surrogate model is built, or learned, from a small number of simulator
runs. This approach is studied in the field of computer experiments (see, e.g.,
Currin et al., 1991, Sacks et al., 1989, Santner et al., 2003).

In many situations, it is not possible to obtain a model with good accuracy over
the entire domain of its input parameters, and in this case we prefer to concentrate
the simulations in regions of interest. To do so, it is usual to resort to sequential
design strategies (see, e.g., Bect et al., 2012, 2019, Bernardo et al., 1992, Chevalier
et al., 2014, Feliot et al., 2017, Jones et al., 1998, Villemonteix et al., 2009, and
references therein), where one selects the next run of the simulator at each step
by using the surrogate model.

1.2 . Industrial design: the example of a turbomachine fan blade

Let us now consider as an example the design of a turbomachine fan blade,
which is one of the core businesses of Safran Aircraft Engines. A fan module,
as shown in Figure 1, is a set of individual blades, which forms one of the most
dimensioning components of an aircraft engine. Its role is to shape the air toward
the primary flow and deliver the secondary flow acceleration. It is critical both for
thrust and kerosene efficiency.

To design a fan blade, engineers start from a reference blade that is then
parametrically deformed by considering the variations along the blade height of
some geometrical quantities defining airfoils, shown in Figure 1. More precisely,

13
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Figure 2: An example of design of experiments. The figure shows the

variations of a geometrical quantity η on the x−axis versus the height h
on the y−axis. The two axes are normalized.

the engineers fit the variations with some parametric curves, which are then used
to deform the blade parametrically.

The parametrization must be flexible enough to propose new interesting ge-
ometries. However, maintaining a reasonable number of parameters is critical to
limit the number of design variables and ensure deformations that are not too
rough. An example of design of experiments produced during this thesis is shown
in Figure 2.

A complex pipeline of numerical codes is then used to compute physical quanti-
ties of interest from the parametric deformations. The pipeline is multi-disciplinary:
1) the deformations are applied to the reference blade; 2) a first set of PDE solvers
retrieve the deformations, the mechanical constraints, and the vibration frequencies
of the blade; and 3) a Navier-Stokes solver infers the aerodynamical behavior of
the ensemble during several flight phases. Using this pipeline, the objective of the
engineers is then to find geometries that reach some performance specifications,
which can be expressed, for example, as follows:

• Maximize the aircraft efficiency at a given flight phase

• Subject to:

– Air flow constraints at some other flight phases

– Mechanical constraints (frequency margin, fatigue resistance, . . .).

14



The aforementioned specifications form a constrained (mono-objective) opti-
mization problem. The physic of the system may be difficult to interpret, and
the constraints are numerous. Manual exploration of the simulator is often time-
consuming and inefficient. Consequently, automated sequential design of experi-
ments techniques—presented in the next section—are very fruitful.

2 . Academic context and directions of research

2.1 . Probabilistic models and sequential design of experiments

A numerical simulator such as the one presented in Section 1 will be formalized
as a continuous1 function f : X→Rq, where X is the simulator input space and
q is the number of simulator outputs. This manuscript will focus on parametric
formulations, so we suppose that X⊂Rd . Moreover, the outputs of the simulator
will be modeled independently, so we can also set q = 1 from now on.

When the evaluation of f is costly, we want to construct an approximation
of f using a model. One usually requires models that can produce uncertainty
estimates, since it is unlikely that the practitioner gathers enough data to neglect
it. For this purpose, let D =

⋃
n≥1X

n×Rn be the set of possible finite observations
of the values of f on X. We consider probabilistic models M : D →P, where
P is a set of distributions over RX (endowed with the cylindrical σ−algebra). In
this framework, M (Dn) is a predictive distribution for f given Dn ∈D .

Given a model M , stepwise uncertainty reduction (SUR) techniques (see, e.g.,
Bect et al., 2019, and references therein) form an important subclass of the se-
quential design strategies described in Section 1. In a nutshell, a SUR strategy
consists in choosing the evaluations by optimizing a sampling criterion tailored to
the task at hand. A broad variety of criteria is available in the literature (see, e.g.,
Bect et al., 2012, 2019, Chevalier et al., 2014, Feliot et al., 2017, Ginsbourger and
Le Riche, 2010, Jones et al., 1998, Picheny et al., 2010, 2013, Villemonteix et al.,
2009, and references therein).

The formalism of optimization adopted for the industrial case presented in
Section 1.2 has received particular attention in the literature under the name of
Bayesian optimization. One of the most ubiquitous sampling criteria for optimiza-
tion is probably the expected improvement (EI) criterion (see, e.g., Mockus, 1975,
Mockus et al., 1978), for which the overall optimization algorithm has been popu-
larized under the name of Efficient Global Optimization (EGO) (Jones et al., 1998).
For an x ∈X and Dn ∈D , the EI criterion can be written as

ρn(x) = Eξ∼M (Dn)

(
(ξ (x1)∧·· ·∧ξ (xn)−ξ (x))+

)
, (1)

in the case of a minimization problem. An illustration of the EI criterion is given
in the next section.

1
We suppose that continuity is inherited from the physical system.
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Various extensions of the EI criterion have been proposed to account for batch
evaluations, constraints and multiple objectives (see, e.g., Feliot et al., 2017, Gins-
bourger et al., 2010, and references therein).

2.2 . Gaussian processes interpolation for computer experiments
The Bayesian framework is particularly appropriate for probabilistic modeling

and consists in using a stochastic process ξ : Ω×X→R prior for f , where Ω is a
probability space.

Gaussian processes (GP) are probably the most ubiquitous priors in the domain
of computer experiments (see, e.g., Currin et al., 1988, Kitanidis, 1983), mainly
because they make the inference tractable and form a flexible class of models (see,
e.g., Rasmussen and Williams, 2006, Chapter 4). A GP ξ is defined by an arbitrary
mean function µ : X→R and a symmetric positive (semi)definite covariance func-
tion k : X×X→R, but we shall use strictly positive definite covariance functions
in this manuscript. Given the functions µ and k and the data Dn ∈D , a GP yields
a predictive distribution

ξ |Dn ∼ GP(µn(x), kn(x, x)), (2)

with {
µn(x) = µ(x)+ k (x, xn)K−1

n (Zn−µ(xn)) ,

kn(x, y) = k(x, y)− k (x, xn)K−1
n k (y, xn)

T (3)

and where xn = (x1, . . . ,xn), k (x, xn) = (k (x, x1) , . . . ,k (x, xn)), Kn is the matrix with
entries k (xi, x j), and Zn = (ξ (x1), . . . ,ξ (xn))

T. A GP fit of a toy example is shown
in Figure 3.

As mentioned above, the possibility of choosing µ and k makes the framework
of GPs flexible. For instance, a GP model can be significantly improved by using a
mean function close to the target function. Moreover, Stein (1999) gives numerous
arguments showing that different classes of positive definite covariance functions
encode dramatically different assumptions.

Consequently, the predictive distribution (2) relies critically on µ and k, which
must be chosen from the data and sometimes using expert knowledge. The stan-
dard approach is to select them from data within parametric families with maximum
likelihood (ML) or cross-validation (CV) techniques (see, e.g., Currin et al., 1988).
However, in our view, the literature is sparse about comparisons of such practices.

Furthermore, the parametric families used in practice are often stationary,
i.e., with µ ≡ c ∈ R and k(x, y) = k0(x− y) for some positive-definite function
k0 : Rd → R. The stationary hypothesis is convenient for limiting the dimension
of the parameter space. The most popular stationary family is probably the one of
Matérn covariance functions (Matérn, 1986, Stein, 1999)

k0(x) =
21−νσ2

Γ(ν)

(√
2νh

)ν

Kν

(√
2νh

)
, h =

( d

∑
j=1

x2
j

ρ2
j

)1/2

, (4)
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Figure 3: Left: a toy function to be minimized. Right: a Gaussian pro-

cess fit. The red line represents the posterior mean, the blue lines the

posterior sample paths, and the gray bands credible sets for several

levels.

where Γ is the Gamma function and Kν is the modified Bessel function of the
second kind. Here σ2 is the process variance, ρi is a range parameter, and ν is a
regularity parameter representing roughly the number of derivatives of the process.
The parameters ρis can be used to quantify the influence of the input variables
(see, e.g., Marrel et al., 2009).

Unfortunately, Kν has a closed-form expression only when ν is infinite or can be
written as χ +1/2 with χ ∈N. Consequently, the parameter ν is usually enforced
to one of the standard values 1/2, 3/2, 5/2, or ∞ in practice. As pointed out by
Stein (1999), these values refer to drastically different models. Figure 4 illustrates
the effect of ν when fitting the toy example from Figure 3. Two kernels are used: a
rough ν = 1/2 Matérn covariance function and a much smoother ν = 17/2 Matérn
covariance function. The remaining parameters are selected by maximum likelihood
estimation in both cases. Observe that the posterior is much more concentrated
around the truth when using the smoother kernel. Consequently, the EI criterion
clearly indicates the location of the global minimum, whereas it is much more
spread if one uses the rough kernel.

Figure 5 introduces a slightly modified version of the previous toy function.
Figure 6 shows a fit with the same two previous kernels. Observe that the rough
kernel gives approximately the same results as on the original function. However,
the fit with the smooth kernel is very different: its credible sets are now similar to
those of the rough kernel, and its oscillating predictor induces a very unreasonable
EI criterion.
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Figure 4: The EI criterion with two different Gaussian process priors.

Top: Gaussian process fits of the toy function from Figure 3. Bottom:

the EI criterion for minimization. Left: a fit with a rough kernel (ν =
1/2); right: with a smooth kernel (ν = 17/2).

Figure 5: Left: the toy function from Figure 3. Right: the same function

but with a perturbation taking the form of a jump around the x value
represented by the red horizontal line.
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Figure 6: Same as Figure 4 but considering the perturbed toy mini-

mization problem from Figure 5. The remaining parameters are still

selected by maximum likelihood estimation.

Figure 4 and Figure 6 show that choosing among stationary models can affect
significantly the accuracy. In Figure 6, a rough kernel works best in the big picture
but is not very satisfying. Indeed, the effect of the perturbation is global even if it
lies in one location. Far from the perturbation, a desirable fit would be as accurate
as with the smooth model on the original function. Techniques for localizing
Gaussian process predictions have been largely considered by researchers (see, e.g.,
Gramacy and Lee, 2008). However, the region where the function misbehaves can
potentially be very complicated, especially when the dimension is high.

A research track in this manuscript is motivated by the following observation.
Observe in Figure 6 that the perturbation is localized in the higher range of the
function. If the goal is the minimization of f , then common sense suggests that it
is important to be precise on the lower range of the function. Conversely, modeling
precisely the higher range is probably not so critical.

2.3 . Problem statement
As we saw in Section 2.2, stationary GP modeling is a widespread practice,

but selecting the parameters of a stationary model is critical. In addition, the
stationary hypothesis is sometimes untenable. However, finding a trade-off between
computational cost and expressiveness of a non-stationary model is challenging.
The path of goal-oriented Gaussian process modeling seems promising and has
seldom been explored. Therefore, this manuscript intends to make contributions
on two topics:

• Improving the current practices for stationary GP modeling for prediction
and optimization

• Going beyond stationary models for Bayesian optimization while providing
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turnkey solutions for practitioners

Regarding the second topic, we want to take the path of goal-oriented modeling.

3 . Outline of the manuscript and contributions

The manuscript is organized into three parts.
Part II presents empirical contributions to parameter selection for stationary GP

models. More precisely, Chapter 1 presents a benchmark for the choice of the model
and the selection criterion for prediction and optimization. Some selection criteria
are reviewed, then numerical experiments suggest that: 1) maximum likelihood
provides performances that are better than or comparable to those of other (cross-
validation) criteria; 2) the choice of the regularity parameter of a Matérn covariance
function is a more critical factor; and 3) that the regularity parameter can be
successfully chosen using the criteria. Furthermore, a comparison with models using
the test set shows that there is only little room for improvement with respect to
maximum likelihood estimation. Then, Chapter 2 presents numerical investigations
about optimizing the likelihood for Gaussian processes interpolation. We show that
the numerical noise amplified by the condition number of the covariance matrix
disturbs standard gradient-based optimizers. We propose some simple numerical
recipes to mitigate this issue. Numerical experiments are conducted and show
significant benefits both regarding the likelihood values and the prediction errors.
Finally, Chapter 3 revisits well-known fast cross-validation formulas for Gaussian
process regression and attempts to make some clarifications from a Bayesian point
of view. The fast formulas are then extended to compute the gradients, aligning
the computational cost of a class of cross-validation criteria to the one of the
likelihood.

Part III presents our contribution to goal-oriented modeling for Bayesian op-
timization. After reviewing the existing methods for non-stationary modeling, we
propose a general goal-oriented framework for Gaussian process interpolation, de-
signed to improve the accuracy in a range of interest. The methodology im-
proves the precision in the range of interest by learning a transformation non-
parametrically in a relaxation range jointly with the GP parameters. Given the
relaxation range, the method maintains a reasonable computational cost, mak-
ing it possible to use adaptive strategies—which can be seen as a contribution of
independent interest—for selecting the relaxation range, i.e., for detecting which
values are helpful or not to predict the range of interest. Numerical experiments
demonstrate the interest of the approach, illustrating the relevance of the estimated
transformations and showing more generally its benefits for Bayesian optimization
if one targets low values. In particular, the technique is applied in Figure 7 to the
perturbed problem shown in Figure 5: it makes it possible to recover the precision
of the smooth kernel on the original problem. We also provide a theoretical conver-
gence result of the resulting optimization algorithm and error bounds that suggest
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Figure 7: Same as Figure 6 but using the proposed goal-oriented

methodology with the smooth kernel. The black line represents a

threshold that has been selected automatically.

an improved fit in the range of interest when the function lies in the reproducing
kernel Hilbert space attached to the (fixed) covariance function.

Finally, Part IV summarizes the contributions, the limitations, and the perspec-
tives for future works.

4 . Communications

Chapter 1 is mostly a reproduction of Petit et al. (2021a). Chapter 2 is a re-
production of Basak et al. (2021). Chapter 3 is an article in preparation with Julien
Bect and Emmanuel Vazquez extending Petit et al. (2020a). Finally, Chapter 4 is
mostly a reproduction of Petit et al. (2022b).
Preprints
S. J. Petit, J. Bect, P. Feliot, and E. Vazquez. Model parameters in Gaussian
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Communications with proceedings
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Part II
Choosing a Gaussian processprior
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1 - Model parameters in Gaussian process in-
terpolation: an empirical study of selec-
tion criteria

This chapter is a reproduction of Petit et al. (2021a) with few modifications and
enriched with the additional numerical experiments from Section 1.6. A Supple-
mentary Material (Petit et al., 2021b) with a complete description of the numerical
results is available.

S. J. Petit, J. Bect, P. Feliot, and E. Vazquez. Model parameters in Gaussian
process interpolation: an empirical study of selection criteria. Submitted to
the SIAM/ASA Journal on Uncertainty Quantification, 2021a. URL https:
//arxiv.org/abs/2107.06006

S. J. Petit, J. Bect, P. Feliot, and E. Vazquez. Model parameters in Gaussian pro-
cess interpolation: an empirical study of selection criteria: Supplementary Mate-
rial. 2021b. URL https://hal-centralesupelec.archives-ouvertes.fr/
hal-03285513v2/file/spetit-gpparam-suppmat.pdf

1.1 . Introduction

Regression and interpolation with Gaussian processes, or kriging, is a popular
statistical tool for non-parametric function estimation, originating from geostatis-
tics and time series analysis, and later adopted in many other areas such as machine
learning and the design and analysis of computer experiments (see, e.g., Rasmussen
and Williams (2006), Santner et al. (2003), Stein (1999) and references therein).
It is widely used for constructing fast approximations of time-consuming com-
puter models, with applications to calibration and validation Bayarri et al. (2007),
Kennedy and O’Hagan (2001), engineering design Forrester et al. (2008), Jones
et al. (1998), Bayesian inference Calderhead et al. (2009), Wilkinson (2014), and
the optimization of machine learning algorithms Bergstra et al. (2011)—to name
but a few.

A Gaussian process (GP) prior is characterized by its mean and covariance
functions. They are usually chosen within parametric families (for instance, con-
stant or linear mean functions, and Matérn covariance functions), which transfers
the problem of choosing the mean and covariance functions to that of selecting
parameters. The selection is most often carried out by optimization of a criterion
that measures the goodness of fit of the predictive distributions, and a variety of
such criteria—the likelihood function, the leave-one-out (LOO) squared-prediction-
error criterion (hereafter denoted by LOO-SPE), and others—is available from the
literature. The search for arguments to guide practitioners in the choice of one
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particular criterion is the main motivation of this study.
As a necessary parenthesis, note that the fully Bayesian statistician does not

select a particular value for the parameters, but chooses instead to average the
predictions over a posterior distribution on the parameters Handcock and Stein
(1993). This approach may be preferred for more robust predictions (see, e.g.,
Benassi et al. (2011)), but comes at a higher computational cost. For this reason,
the present chapter will set aside the fully Bayesian approach and concentrate
on the plugin approach, where only one parameter value is chosen to carry out
predictions.

The two most popular methods for parameter selection are maximum likelihood
(ML) and cross-validation (CV) based on LOO criteria, which were introduced in
the field of computer experiments by the seminal work of Currin et al. (1988).
Since then, despite a fairly large number of publications dealing with ML and CV
techniques for the selection of a GP model, the literature has remained in our view
quite sparse about the relative merits of these methods, from both theoretical and
empirical perspectives.

For instance, in the framework of interpolation and infill asymptotics, where
observations accumulate in some bounded domain, Ying (1991) and Zhang (2004)
show that some combinations of the parameters of a Matérn covariance function
can be estimated consistently by ML. Again in the case of infill asymptotics, with
the additional assumption of a one-dimensional GP with an exponential covariance
function, Bachoc et al. (2016) show that estimation by LOO is also consistent.
(Similar results exist in the expanding asymptotic framework, where observations
extend over an ever-increasing horizon.)

The practical consequences of the aforementioned results are somewhat limited
in our view because practitioners are primarily interested in the quality of the
predictions. Knowing that the parameters of a GP can be estimated consistently
is intellectually reassuring, but may be considered of secondary importance. These
results are indeed about the statistical model itself but they say little about the
prediction properties of the model. Besides, there does not exist at present, to our
knowledge, some theoretically-based evaluation of the relative performances of ML
and CV selection criteria under infill asymptotics.

Turning now to empirical comparisons of selection criteria for GP interpolation,
the first attempt in the domain of computer experiments can be traced back to
the work of Currin et al. (1988, 1991). The authors introduce CV and ML—
which can be seen as a special kind of cross-validation—and present some simple
experiments using tensorized covariance functions, from which they conclude that,
“Of the various kinds of cross-validation [they] have tried, maximum likelihood
seems the most reliable”. Additional experiments have been conducted by several
authors, but no consensus emerges from these studies: Bachoc (2013b), Martin
and Simpson (2003), Sundararajan and Keerthi (2001) conclude in favor of CV
whereas Martin and Simpson (2005) advocate ML.
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These studies are limited to a rather small number of test functions and co-
variance functions, which may explain the discrepancy in the conclusions of those
experiments. In particular, only Bachoc (2013b) considers the popular and versatile
Matérn covariance functions. Moreover, most studies focus only on the accuracy
of the posterior mean—only Sundararajan and Keerthi (2001) and Bachoc (2013b)
provide results accounting for the quality of the posterior variance—whereas the
full posterior predictive distribution is used in most GP-based methods (see, e.g.,
Chevalier et al. (2014), Jones et al. (1998)).

This chapter presents two main contributions. First, we improve upon the
results of the literature by providing an empirical ranking of selection criteria for
GP interpolation, according to several metrics measuring the quality of posterior
predictive distributions on a large set of test functions from the domain of computer
experiments. To this end, we base our study on the general concept of scoring rules
Gneiting and Raftery (2007), Zhang and Wang (2010), which provides an effective
framework for building selection and validation criteria. We also introduce a notion
of extended likelihood criteria, borrowing an idea from Fasshauer and co-authors
Fasshauer (2011), Fasshauer et al. (2009) in the literature of radial basis functions.

Second, we provide empirical evidence that the choice of an appropriate family
of models is often more important—and sometimes much more important, es-
pecially when the size of the design increases—than the choice of a particular
selection criterion (e.g., likelihood versus LOO-SPE). More specifically, in the case
of the Matérn family, this leads us to assess, and ultimately recommend, the auto-
matic selection of a suitable value of the regularity parameter, against the common
practice of choosing beforehand an arbitrary value of this parameter.

The chapter is organized as follows. Section 1.2 briefly recalls the general
framework of GP regression and interpolation. Section 1.3 reviews selection criteria
for GP model parameters. After recalling the general notion of scoring rules, we
present a broad variety of selection criteria from the literature. Section 1.4 presents
experimental results on the relative performances of these criteria. Leveraging the
findings from Section 1.4, Section 1.6 presents a benchmark on the choice of a
family of models for Bayesian optimization. Section 1.5 presents our conclusions
and perspectives.

1.2 . General framework

Let us consider the general GP approach for a scalar-valued deterministic com-
puter code with input space X⊆Rd . The output of the computer code z :X→R
is modeled by a random function (Z(x))x∈X, which, from a Bayesian perspective,
represents prior knowledge about z. If we assume that Z(·) is observed on a design
Xn = {x1, . . . ,xn} of size n, the data corresponds to a sample of the random vector
Zn = (Z(x1), . . . ,Z(xn))

T.
The GP assumption makes it possible to easily derive posterior distributions.
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Table 1.1: Popular Matérn subfamilies

ν = 1
2 ν = 3

2 ν = 5
2 ν =+∞

a.k.a. exponential squared exponential

kθ (x,y) σ2e−h σ2(1+
√

3h)e−
√

3h σ2(1+
√

5h+ 5h2

3 )e−
√

5h σ2e−
h2
2

More precisely, it is assumed that Z(·) is a Gaussian process, with (prior) mean
E(Z(x)) = ∑

L
l=1 βlφl(x), where the β1, . . . ,βL are unknown regression parameters

and φ1, . . . ,φl are known regression functions, and with (prior) covariance

cov(Z(x),Z(y)) = kθ (x,y),

where θ ∈Θ⊆Rq is a vector of parameters. Throughout the chapter, the covari-
ance matrix of Zn will be denoted by Kθ . We assume for simplicity that the prior
mean of Z(·) is zero (hence, L = 0), which is a common practice when data are
centered.

One of the most popular covariance functions for GP regression is the anisotropic
stationary Matérn covariance function Matérn (1986) popularized by Stein (1999):

kθ (x,y) = σ
2 21−ν

Γ(ν)

(√
2νh

)ν

Kν

(√
2νh

)
, h =

( d

∑
j=1

(x j− y j)
2

ρ2
j

)1/2

, (1.1)

where Γ is the Gamma function, Kν is the modified Bessel function of the sec-
ond kind, and θ denotes the vector of parameters θ = (σ2, ρ1, . . . , ρd , ν) ∈ Θ =

]0,∞[d+2. The parameter σ2 is the variance of Z(·), the ρis are range parame-
ters which characterize the typical correlation length on each dimension, and ν

is a regularity parameter, whose value controls the mean-square differentiability
of Z(·). Recall (see Table 1.1) that the Matérn covariance function with ν = 1/2
corresponds to the so-called exponential covariance function, and the limiting case
ν→ ∞ can be seen as the “squared exponential” (also called Gaussian) covariance
function.

Because Kν has a closed-form expression when ν− 1
2 is an integer, and is more

expensive to evaluate numerically in other cases, most implementations choose to
restrict ν to half-integer values. Moreover, a widespread practice (in applications
and research papers) consists in selecting a particular value for ν (e.g., ν = 1/2,
ν = 3/2. . . or the limiting case ν → ∞), once and for all.

Since the family of Matérn covariance functions is widely used in practice, we
focus exclusively on this family in this work. We believe that the conclusions of the
present study would not be altered significantly if other families of covariance func-
tions (e.g., the compactly supported covariance functions proposed by Wendland
(1995)) were considered.

Once a GP model has been chosen, the framework of Gaussian process regres-
sion allows one to build a predictive distribution N (µθ (x),σ2

θ
(x)) for an unobserved
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Z(x) at x ∈Rd , where{
µθ (x) = k∗

θ
(x)TK−1

θ
Zn,

σ2
θ
(x) = kθ (x,x)−k∗

θ
(x)TK−1

θ
k∗

θ
(x)

(1.2)

with k∗
θ
(x) = (kθ (x,x1), . . . , kθ (x,xn))

T. More generally, predictive distributions
can be built for a larger range of quantities of interest such as joint observations,
derivatives, integrals or excursions of Z above a given threshold.

Using this framework, the user obtains a family of Bayesian procedures, indexed
by θ , to perform predictions about the unknown computer code at hand, and
must choose a member of the family that will hopefully provide good predictive
performances.

1.3 . Selection of a GP model from a parameterized family

1.3.1 . Scoring rules
Goodness-of-fit criteria for probabilistic predictions have been studied in the

literature under the name of scoring rules by Gneiting and Raftery (2007). A
(negatively oriented) scoring rule is a function S( · ; z) : P→R∪{−∞,+∞}, acting
on a class P of probability distributions on R, such that S(P; z) assigns a loss for
choosing a predictive distribution P ∈P, while observing z ∈ R. Scoring rules
make it possible to quantify the quality of probabilistic predictions.

Example 1 (squared prediction error) Denoting by µ the mean of a predictive
distribution P, the squared prediction error

SSPE(P; z) = (z−µ)2
(1.3)

accounts for the deviation of z from µ . Note that SSPE ignores subsequent moments
and therefore predictive uncertainties.

Example 2 (negative log predictive density) Denoting by p the probability den-
sity of P,

SNLPD(P; z) =− log(p(z)) (1.4)

tells how likely z is according to P. Bernardo (1979) shows that any (proper)
scoring rule that depends on p(z) (and only on p(z)) can be reduced to SNLPD.

Example 3 (continuous ranked probability score) Let U and U ′ be two inde-
pendent random variables with distribution P. The CRPS quantifies the deviation
of U from z:

SCRPS(P; z) = E(|U− z|)− 1
2
E(|U−U ′|) . (1.5)

Székely and Rizzo (2005) show that SCRPS(P; z) =
∫
(P(U ≤ u)−1z≤u)

2 du, the
CRPS can also be seen as a (squared) distance between the empirical cumulative
distribution u 7→ 1z≤u and the cumulative distribution of P.
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Table 1.2: Scoring rules behavior as |µ− z| � 1.
σ � |µ− z| σ ' |µ− z| σ � |µ− z|

SSPE(P; z) 0 0 0
SNLPD(P; z) +∞ −∞ log(2πσ)
SCRPS(P; z) 0 0 ∝ σ

SIS
1−α

(P; z) 0 0 ∝ σ

Note that if absolute values in (1.5) are replaced by squared values, then SSPE is
recovered. The CRPS can also be extended to the so-called energy and kernel scores
Gneiting and Raftery (2007) by observing that (x,y) 7→ |x− y| is a conditionally
negative kernel.

Example 4 (interval score) The interval scoring rule at level 1−α is defined,
for α ∈ ]0,1[, by

SIS
1−α(P; z) = (u− l)+

2
α
(l− z)1z≤l +

2
α
(z−u)1z>u (1.6)

where l and u are the α/2 and 1−α/2 quantiles of P. The first term penalizes
large intervals, while the second and third terms penalize intervals not containing z.

When the predictive distribution P is Gaussian, which is the case when P is the
posterior distribution of a GP Z at a given point, the aforementioned scoring rules
all have closed-form expressions. More precisely, for P=N (µ,σ2), we simply have
SSPE(P; z) = (z− µ)2 and SNLPD(P; z) = 1

2 log2πσ2 + 1
2(z− µ)2/σ2. SIS

1−α
can be

obtained by taking the standard expressions of the α/2 and 1−α/2 quantiles of
P, and it can be shown that

SCRPS(P; z) = σ

(z−µ

σ

(
2Φ
(z−µ

σ

)
−1
)
+2φ

(z−µ

σ

)
− 1√

π

)
,

where φ and Φ stand respectively for the probability density function and the
cumulative distribution function of the standard Gaussian distribution.

Note that all aforementioned scoring rules penalize large values of |z− µ|.
When |z− µ| � 1 different scoring rules yield different penalties, as reported in
Table 1.2.

1.3.2 . Selection criteria
Leave-one-out selection criteria
Scoring rules make it possible to build criteria for choosing the parameters of a
GP. More precisely, to select θ based on a sample Z1, . . . , Zn, one can minimize
the mean score

JS
n (θ) =

1
n

n

∑
i=1

S(Pθ ,−i; Zi), (1.7)
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where S is a scoring rule and Pθ ,−i denotes the distribution of Zi conditional on the
Z js, for 1≤ j ≤ n, j 6= i, indexed by θ .

Selection criteria written as (1.7) correspond to the well-established leave-one-
out (LOO) method, which has been proposed in the domain of computer exper-
iments by Currin et al. (1988), and is now used in many publications (see, e.g.,
Rasmussen and Williams (2006), and also Zhang and Wang (2010), who formally
adopt the point of view of the scoring rules, but for model validation instead of
parameter selection).

Efficient computation of predictive distributions Leave-one-out pre-
dictive densities can be computed using fast algebraic formulas Craven and Wahba
(1979), Dubrule (1983). More precisely, the predictive distribution Pθ ,−i is a normal
distribution N (µθ ,−i,σ

2
θ ,−i) with

µθ ,−i = Z(xi)−
(K−1

θ
Zn)i

K−1
θ ,i,i

and σ
2
θ ,−i =

1
K−1

θ ,i,i

. (1.8)

Furthermore, Petit et al. (2020a) show that, using reverse-mode differentiation,
it is possible to compute mean scores Jn and their gradients with a O(n3 + dn2)

computational cost, which is the same computational complexity as for computing
the likelihood function and its gradient (see, e.g., Rasmussen and Williams (2006)).

The particular case of LOO-SPE The LOO selection criterion

JSPE
n (θ) =

1
n

n

∑
i=1

(µθ ,−i−Z(xi))
2 , (1.9)

based on the scoring rule (1.3) will be referred to as LOO-SPE. This criterion,
also called prediction sum of squares (PRESS) Allen (1974), Wahba (1990) or
LOO squared bias Currin et al. (1988), is well known in statistics and machine
learning, and has been advocated by some authors Bachoc (2013b, 2018), Martin
and Simpson (2003), Santner et al. (2003), Sundararajan and Keerthi (2001) to
address the case of “misspecified” covariance functions.

However, note that σ2 cannot be selected using JSPE
n . When JSPE

n is used, σ2

is generally chosen (see, e.g., Bachoc (2013b), Currin et al. (1988) and Remark 5)
to satisfy

1
n

n

∑
i=1

(Z(xi)−µθ ,−i)
2

σ2
θ ,−i

= 1 , (1.10)

which will be referred to as Cressie’s rule for σ2, in reference to the claim by Cressie
(1993) that (1.10) should hold approximately for a good GP model.
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Other scoring rules for LOO The selection criteria using the NLPD scoring
rule (1.4) and the CRPS scoring rule (1.5) will be referred to as the LOO-NLPD
and LOO-CRPS criteria, respectively. The LOO-NLPD criterion has been called
preditive deficiency in Currin et al. (1988), and Geisser’s surrogate Predictive Prob-
ability (GPP) in Sundararajan and Keerthi (2001). The LOO-CRPS criterion has
been considered in Zhang and Wang (2010) as a criterion for model validation (see
also Demay et al. (2021) for an application to model selection), and more recently
Petit et al. (2020a,b) as a possible criterion for parameter selection as well.

Remark 5 Note that Cressie’s rule (1.10) can be derived by minimizing the LOO-
NLPD criterion with respect to σ2.

Remark 6 In order to limit the number of selection criteria under study, the in-
terval scoring rule is only used for validation in this work.

Maximum likelihood and generalizations
We can safely say that the most popular method for selecting θ from data is max-
imum likelihood estimation—and related techniques, such as restricted maximum
likelihood estimation. The ML estimator is obtained by maximizing the likelihood
function or, equivalently, by minimizing the negative log-likelihood (NLL) selection
criterion. Denoting by pθ (Zn) the joint density of Zn, the NLL selection criterion
may be written as

JNLL
n (θ) =− log(pθ (Zn)) =

1
2

(
n log(2π)+ logdetKθ +ZT

n K−1
θ

Zn

)
. (1.11)

As pointed out by Currin et al. (1988), the NLL criterion is closely related to
the LOO-NLPD criterion, through the identity

JNLL
n (θ) =− log(pθ (Z(x1))−

n

∑
i=2

log(pθ (Z(xi) | Z(x1), . . . ,Z(xi−1))),

where the predictive distributions of the Z(xi)s given the Z(x1), . . . ,Z(xi−1) explicitly
appear.

One can minimize (1.11) in closed-form with respect to σ2, given other parame-
ters. Writing Kθ =σ2 Rθ and canceling ∂JNLL

n (θ)/∂σ2 =
(
nσ2−ZT

n R−1
θ

Zn
)
/(2σ2)

yields

σ
2
NLL =

1
n

ZT
n R−1

θ
Zn , (1.12)

which will be referred to as the profiling rule for σ2.
Injecting (1.12) into (1.11) yields a profiled likelihood selection criterion, that

can be written as

JPL
n (θ) = logσ

2
NLL +

1
n

logdetRθ = log
(1

n
ZT

n R−1
θ

Zn

)
+

1
n

logdetRθ . (1.13)
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Following Fasshauer and co-authors Fasshauer (2011), Fasshauer et al. (2009),
we consider now a family of selection criteria that extends (1.11). Using the factor-
ization Rθ = QΛQT, where Q = (q1, . . . , qn) is an orthogonal matrix of (orthonor-
mal) eigenvectors and Λ = diag(λ1, · · · ,λn), notice that

exp
(
JPL

n (θ)
)
=

1
n

ZT
n R−1

θ
Zn · (detRθ )

1/n
∝

( n

∑
i=1

(
qTi Zn

)2
/λi

)( n

∏
i=1

λ j

)1/n
. (1.14)

This suggests a generalization of the likelihood criterion that we shall call Fasshauer’s
Hölderized likelihood (HL), defined as

JHL, p,q
n (θ) =

( n

∑
i=1

(qTi Zn)
2/λ

p
i

)1/p(1
n

n

∑
j=1

λ
q
j

)1/q
, (1.15)

with q ∈ [−∞,+∞], and p ∈ R \ {0}, and where σ2 can be chosen using the
rules (1.10) or (1.12), since JHL, p,q

n (θ) does not depend on σ2. Owing to the

standard property of generalized means
(1

n ∑
n
i=1 xq

i

) 1
q q→0−→ n

√
x1 · · ·xn), (1.14) is re-

covered by taking p = 1 and letting q→ 0. Moreover, two other known selection
criteria can be obtained for particular values of p and q, as detailed below.

Generalized cross-validation Taking p = 2 and q =−1 in (1.15) yields the
generalized cross-validation (GCV) criterion

JGCV
n (θ) = n−1 (JHL,2,−1

n (θ)
)2
,

which was originally proposed as a rotation-invariant version of PRESS Golub et al.
(1979) for linear models. It has also been shown to be efficient for the selection
of the smoothing parameter of polyharmonic splines Wahba (1990) and for the
selection of the degree of a spline Wahba and Wendelberger (1980).

The GCV selection criterion is a weighted SPE criterion, which can also be
written as

JGCV
n (θ) =

1
n

n

∑
i=1

w2
i (θ)(Z(xi)−µθ ,−i)

2 , wi(θ) =
σ̃2

σ2
θ ,−i

, (1.16)

with σ̃2 =
(1

n ∑
n
i=1

1
σ2

θ ,−i

)−1. Notice that wi(θ) is lower when σθ ,−i is larger, which

happens when points are either isolated or lying on the border / envelope of Xn.
Equation (1.16) shows that, similarly to the LOO criteria of Section 1.3.2, the GCV
criterion can be computed, along with its gradient, in O(n3 +dn2) time.

Kernel alignment The kernel alignment selection criterion is defined as

JKA
n (θ) =−

Tr
(
Kθ ZnZT

n
)

‖Kθ‖F‖Zn‖2 , (1.17)
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where ‖·‖F stands for the Frobenius matrix norm. This criterion can be derived
from (1.15) by taking p =−1 and q = 2:

JKA
n (θ) =− 1

√
n‖Zn‖2JHL,−1,2

n (θ)
.

It was originally proposed in the machine learning literature Cristianini et al. (2001)
as a cosine similarity between Kθ and the matrix ZnZT

n . This criteria is noticeably
cheaper than the others, as it does not require to invert Kθ and can therefore be
computed along with its gradient in O(dn2) time.

Remark 7 We choose to focus in this chapter on three well-known selection crite-
ria (NLL, GCV and KA) that can be seen as special cases of (1.15), corresponding
repectively to (p,q) equal to (1,0), (2,−1) and (−1,2). The study of new selection
criteria, obtained for other values of (p,q), is left for future work.

1.3.3 . Hybrid selection criteria
When considering several parameterized models—or, equivalently, when dealing

with discrete parameters, such as half-integer values for the regularity parameter
of the Matérn covariance—some authors suggest to use one selection criterion to
select the parameters in each particular model, and a different one to select the
model itself.

For instance, in Jones et al. (1998), the authors select the parameters of
a power-exponential covariance function using the NLL selection criterion (i.e.,
the ML method), and then select a suitable transformation of the output of the
simulator, in a finite list of possible choices, using the LOO-SPE criterion. Similarly,
the NLL selection criterion is combined in Demay et al. (2021) with a variety of
model-validation criteria, including LOO-CRPS and LOO-NLPD.

In Section 1.4 we will denote by NLL/SPE the hybrid method that selects the
variance and range parameters of a Matérn covariance function using the NLL
criterion, and then minimizes the LOO-SPE criterion to select the regularity pa-
rameter ν in finite list of values.

1.4 . Numerical experiments

1.4.1 . Methodology
We investigate the problem of parameter selection with an experimental ap-

proach consisting of four ingredients: 1) a set of unknown functions f to be
predicted using evaluation results on a finite design Xn = {x1, . . . ,xn} ⊂X; 2) the
GP regression method that constructs predictive distributions Pθ ,x of f at given
xs in X, indexed by parameter θ ; 3) several selection criteria Jn to choose θ ;
4) several criteria to assess the quality of the Pθ ,xs. Details about each of these
ingredients are given below (starting from the last one).
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Criteria to assess the quality of the Pθ ,xs A natural way to construct
a criterion to assess the quality of the Pθ ,xs is to choose a scoring rule S and to
consider the mean score on a test set Xtest

N = {xtest
1 , . . . , xtest

N } ⊂X of size N:

R(θ ; S) =
1
N

N

∑
i=1

S
(
Pθ ,xtest

i
; f (xtest

i )
)
. (1.18)

Selection criteria We shall consider the selection criteria Jn presented in
Section 1.3, namely, the LOO-SPE, LOO-NLPD, LOO-CRPS, NLL, GCV, KA and
NLL/SPE selection criteria. Given a function f and a design Xn, each selection
criterion Jn yields a parameter θJn .

Parameterized GP models In this work, models are implemented using a
custom version of the GPy (Sheffield machine learning group, 2012–2020) Python
package (see Supplementary Material, hereafter abbreviated as SM). We assume
no observation noise, which corresponds to the interpolation setting. All functions
will be centered beforehand to have zero-mean on Xtest

N , and we will consider zero-
mean GPs only. The anisotropic Matérn covariance function (1.1) is used, with
parameter θ = (σ2, ρ1, . . . , ρd , ν), and the regularity parameter ν is either set a
priori to ν = χ + 1/2, with χ ∈ {0,1,2,3,4,d,2d,∞}, or selected automatically.
The latter case will be denoted by ν̂ .

Remark 8 Since the covariance matrix of Zn can be nearly singular when the
range parameters take large values, we define upper bounds on these values in
order to avoid the use of nugget or jitter (see, e.g., Peng and Wu (2014), Ranjan
et al. (2011)). Details are provided in the SM.

Test functions The test functions used in the study are described in the next
section. They are grouped into collections, and we provide averaged values of
mean-score metrics of the form (1.18) for each collection.

1.4.2 . Test functions

Design of a low-pass filter
Fuhrländer and Schöps Fuhrländer and Schöps (2020) consider the problem of
computing, using a frequency-domain PDE solver, the scattering parameters Sω of
an electronic component called stripline low-pass filter, at several values of the ex-
citation pulsation ω . The geometry of the stripline filter is illustrated on Figure 1.1.
It is parameterized using six real valued factors concatenated in a vector x ∈ Rd ,
d = 6. The objective is to satisfy the low-pass specifications |S2kπ(x)| ≥ −1dB for
0 ≤ k ≤ 4 and |S2kπ(x)| ≤ −20dB for 5 ≤ k ≤ 7. Meeting such requirements is a
difficult and time-consuming task.
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Figure 1.1: A low-pass filter design problem in CST Studio Suite®.

In this chapter we consider the quantities Re(S2π), Re(S6π), Re(S10π) and
Re(S14π). For three design sizes n∈ {10d,20d,50d}, we randomly sample M = 100
subsets Xn of size n from a database of 10000 simulation results, and use the
remaining N = 10000−n points as test sets. The metric (1.18) is computed and
averaged on these M test sets.

Other test functions
We supplement the above engineering problem with a collection of test functions
from the literature. More precisely, we consider the Goldstein-Price function Dixon
and Szegö (1978), a one-dimensional version of the Goldstein-Price function (see
SM for details), the Mystery function Martin and Simpson (2003), the Borehole
function Worley (1987), several collections obtained from the GKLS simulator
Gaviano et al. (2003), and the rotated Rosenbrock collection from the BBOB
benchmark suite Hansen et al. (2009).

The GKLS simulator has a “smoothness” parameter k ∈ {0,1,2} controlling the
presence of non-differentiabilities on some nonlinear subspaces—the trajectories
being otherwise infinitely differentiable. For both GKLS and Rosenbrock, two
different values of the input dimension were considered (d = 2 and d = 5). The
resulting set of twelve problems—considering that changing the value of k or d
defines a new problem—is summarized in Table 1.3.

For each problem, we consider three design sizes n ∈ {10d,20d,50d}. For the
GKLS and Rosenbrock collections, we directly used the collections of test functions
provided by the authors (M = 100 and 15 functions, respectively). For a given
dimension, they are all evaluated on the same space-filling designs Xn. For each
of the remaining problems, we used a single test function, evaluated on M = 100
random space-filling designs Xn, thereby creating collections of 100 data sets. In
both cases, maximin (over 1000 repetitions) Latin hypercube designs (see, e.g.,
McKay et al., 2000) are used.

A Sobol’ sequence Xtest
N of size N = 10000 is used as test set and the functions
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Table 1.3: Twelve benchmark problems

Problem Goldstein-Price Mystery GKLSk=0 GKLSk=1 GKLSk=2 Rosenbrock Borehole

d {1,2} 2 {2,5} {2,5} {2,5} {2,5} 8

Table 1.4: Averages (over the M = 100 designs) of the R(θ ;SSPE) val-
ues for Re(S6π) with n = 10d = 60. Optimal R?

values are given in the

rightmost column for comparison. For comparison also, R(θ ;SSPE) =

3.26 ·10−4
for the JNLL/SPE

n selection criterion, which also selects ν (see

Section 1.3.3). The gray scale highlights the order of magnitude of the

discrepancies.

Scoring rule: SSPE
NLL LOO-SPE LOO-NLPD LOO-CRPS KA GCV R?

ν = 1/2 4.94 ·10−2 5.11 ·10−2 4.84 ·10−2 4.84 ·10−2 4.29 ·10−1 4.73 ·10−2 4.44 ·10−2

ν = 3/2 3.85 ·10−3 4.24 ·10−3 3.52 ·10−3 3.59 ·10−3 3.82 ·10−1 3.45 ·10−3 2.97 ·10−3

ν = 5/2 4.02 ·10−4 5.11 ·10−4 4.18 ·10−4 4.31 ·10−4 3.71 ·10−1 4.93 ·10−4 3.21 ·10−4

ν = 7/2 2.88 ·10−4 4.33 ·10−4 3.73 ·10−4 3.86 ·10−4 3.54 ·10−1 4.75 ·10−4 2.26 ·10−4

ν = 9/2 2.96 ·10−4 4.39 ·10−4 4.22 ·10−4 3.95 ·10−4 3.42 ·10−1 5.44 ·10−4 2.26 ·10−4

ν = 13/2 3.15 ·10−4 4.80 ·10−4 4.48 ·10−4 4.25 ·10−4 3.29 ·10−1 6.43 ·10−4 2.32 ·10−4

ν = 25/2 3.46 ·10−4 5.29 ·10−4 4.92 ·10−4 4.61 ·10−4 3.14 ·10−1 7.43 ·10−4 2.45 ·10−4

ν = ∞ 3.80 ·10−4 6.34 ·10−4 5.38 ·10−4 5.38 ·10−4 2.94 ·10−1 8.75 ·10−4 2.60 ·10−4

ν ∈ {1/2, · · · ,∞} 3.07 ·10−4 4.90 ·10−4 4.64 ·10−4 4.31 ·10−4 2.98 ·10−1 6.89 ·10−4 2.13 ·10−4

are centered and normalized to unit variance on these test sets.

1.4.3 . Results and findings

A close look at one of the problems
Tables 1.4 and 1.5 provide a detailed view of the results obtained on one of the
test problems—namely, the output f = Re(S6π) with n = 10d = 60 of the low-pass
filter case (see Section 1.4.2).

The results presented in these tables are the scores R(θ ;S), averaged over the
M = 100 random instances of the problem, where θ is selected using different
selection criteria (along columns), and the regularity of the Matérn covariance
varies or is selected automatically (along rows). The scoring rule for assessing
the quality of the predictions is the SPE in Table 1.4 and the IS at level 95% in
Table 1.5. (A similar table, not shown here, is presented in the SM for the CRPS.)

For comparison, Table 1.4 also provides the optimal values R? obtained by
direct minimization of the score (1.18). They can be used to assess the loss of
predictive accuracy of the selected models, which are constructed using a limited
number of observations, with respect to the best model that could have been
obtained if the test data had also been used to select the parameters.

Table 1.4 and Table 1.5 support the fact that, for this particular problem, the
NLL and NLL/SPE criteria are the best choices for selecting θ in terms of the
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Table 1.5: Same as Table 1.4 but for averages of R(θ ;SIS
0.95). Using

JNLL/SPE
n gives R(θ ;SIS

0.95) = 7.06 ·10−2
.

Scoring rule: SIS
0.95 NLL LOO-SPE LOO-NLPD LOO-CRPS KA GCV

ν = 1/2 1.44 ·100 1.38 ·100 1.34 ·100 1.48 ·100 3.69 ·100 1.32 ·100

ν = 3/2 2.80 ·10−1 3.05 ·10−1 2.75 ·10−1 2.88 ·10−1 3.43 ·100 2.69 ·10−1

ν = 5/2 9.30 ·10−2 9.42 ·10−2 8.55 ·10−2 9.11 ·10−2 3.36 ·100 9.18 ·10−2

ν = 7/2 6.82 ·10−2 8.82 ·10−2 8.42 ·10−2 9.10 ·10−2 3.23 ·100 9.17 ·10−2

ν = 9/2 6.50 ·10−2 9.08 ·10−2 9.30 ·10−2 9.53 ·10−2 3.14 ·100 1.00 ·10−1

ν = 13/2 6.48 ·10−2 9.95 ·10−2 9.99 ·10−2 1.03 ·10−1 3.02 ·100 1.16 ·10−1

ν = 25/2 6.77 ·10−2 1.10 ·10−1 1.08 ·10−1 1.12 ·10−1 2.90 ·100 1.29 ·10−1

ν = ∞ 7.23 ·10−2 1.23 ·10−1 1.16 ·10−1 1.23 ·10−1 2.74 ·100 1.44 ·10−1

ν ∈ {1/2, · · · ,∞} 6.70 ·10−2 1.04 ·10−1 1.06 ·10−1 1.08 ·10−1 2.78 ·100 1.23 ·10−1

SPE and the IS scores, both for a prescribed regularity ν and when ν is selected
automatically (the NLL/SPE being only available for the latter case). Except for
the KA criterion, however, the other selection criteria are never very far behind.
Elements provided as SM show similar findings using the CRPS validation score.

Strikingly enough, for both scoring rules, the variations of the average score are
much larger when the model changes than when the selection criterion changes.
If a Matérn covariance function with fixed regularity is used, as is often done in
practice, then the best results are obtained for all criteria (except KA) when ν

takes the values 7/2, 9/2 and 13/2. The values of R∗ (Table 1.4) confirm that
these are indeed the best fixed-ν models on this problem for the SPE score. Since
these optimal values were not known beforehand, it is a relief to see (cf. last row
of each table) that comparable performances can be achieved on this problem by
selecting ν automatically.

Statistical analysis of the benchmark results
Tables similar to Tables 1.4 and 1.5 have been produced for all the (4+12)×3 =

48 test problems presented in Section 1.4.2, for the three scoring rules (SPE,
CRPS and IS). We present in this section some graphical summaries and statistical
analyses of these results. The individual tables for each problem are provided in
the SM.

Remark 9 The poor performance of the KA criterion, already observed in Ta-
bles 1.4 and 1.5, is confirmed by the results (not shown) on all the other problems.
We conclude that this selection criterion should not be used in practice, and ex-
clude it from the analyses of this section in order to refine the comparison between
the remaining ones.
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Figure 1.2: Parts of total variances of log10(R)s explained by ν for

SSPE
using a one-factor ANOVA. Each point represents the variations of

log10(R) for one of the 16 problems from Section 1.4.2, split by design
size, with KA and GCV excluded. The model explains almost all the

variations for problems that exhibit significant fluctuations of log10(R)
(at the right of the figure).

Sensitivity analysis We observed in Section 1.4.3 that the choice of the
model—more specifically, of the regularity parameter of the Matérn covariance
function—was more important than that of a particular selection criterion (exclud-
ing KA of course). To confirm this finding, a global sensitivity analysis of the
logarithm of the average score, where the average is taken over the M = 100 in-
stances of each problem, has been performed on each problem. The average score,
for a given scoring rule, depends on two discrete factors: the selection criterion and
the regularity ν of the Matérn covariance function. We present on Figure 1.2, for
the SPE scoring rule, the Sobol’ sensitivity index for the latter factor as a function
of the total variance. Observe that, for the problems where the total variance
is large, the Sobol index is typically very close to one, which indicates that the
variability is indeed mainly explained by the choice of model. Similar conclusions
hold for the other scoring rules (results not shown, see SM).

Comparison of the covariance models Figure 1.3 compares the average
values of R(θ ;SSPE) when ML is used on the set of GKLS problems, which have
low regularities, and on the set of low-pass filter problems, which contains very
smooth instances.

Observe first that the fixed-ν models rank differently on these two sets of
problems, as expected considering the actual regularity of the underlying functions:
low values of ν perform better on the GKLS problems and worse on the low-pass
filter case. Furthermore, it appears that underestimating the regularity (on the low-
pass filter case) has much more severe consequences than overestimating it (on the
GKLS problems) according to the SPE score, as suggested by the theoretical results
of Stein (1999), Narcowich et al. (2006)—see (Scheurer et al., 2013, Section 6)
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Figure 1.3: Box plots of R/R0 using JNLL
n as selection criterion and

SSPE
as quality assessment criterion, for different choices of regular-

ity. Here, R0 stands for the best value of R on each problem (among
all models). Left: All 5d GKLS problems. Right: All low-pass filter prob-
lems. The box plots are sorted according to their upper whisker. Grey

dashed lines: R/R0 = 2,4,6,8,10.

for a discussion—and Tuo and Wang (2020).
Another important conclusion from Figure 1.3 is that very good results can

be obtained by selecting the regularity parameter ν automatically, jointly with the
other parameters (using the NLL criterion in this case). On the GKLS problems,
the results with selected ν are not far from those of the best fixed-ν model under
consideration (ν = 3/2); in the low-pass filter case, they are even better than
those obtained with the best fixed-ν models (ν = 5/2 or 7/2). In other words, the
regularity needs not be known in advance to achieve good performances, which
is a very welcome practical result. This conclusion is also supported, for NLL, by
the additional results provided in the SM for the other problems and for the three
scoring rules.

Concerning the other selection criteria the situation is more contrasted (see
SM): the automatic selection of ν using these criteria still performs very well for
smooth problems, but not always, in particular with GCV, for the less regular
problems of the GKLS class. This is especially true when the sample size is small
(n = 10d).

Comparison of the selection criteria Figure 1.4 compares the distribu-
tions of the average values of the SPE and IS scores for all selection criteria (except
KA) on all test instances, in the case of a Matérn covariance function with au-
tomatically selected regularity. As a preliminary observation, note that for most
cases the ratio R/R0 remains under two (first horizontal dashed line), which con-
firms that the differences between selection criteria are much milder than those
between covariance models (recall Figure 1.3).
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Figure 1.4: Box plots of R/R0 for different selection criteria. Each box

plot is constructed using all problems, with automatically selected ν ,

and R0 stands for the best value of R on each problem (among all se-
lection criteria). The left (resp. right) panel uses the SSPE

(resp. SIS
0.95) as

quality assessment criterion. Sorting of box plots and horizontal lines:

as in Figure 1.3.

A closer look at Figure 1.4 reveals that the rankings of criteria obtained for
both scoring rules are almost identical. The ranking for the CRPS scoring rule (not
shown) is the same as the one for SPE. GCV provides the worst performance for
all scoring rules, followed by LOO-NLPD, while NLL dominates the ranking (for
all scoring rules as well).

Remark 10 Observe on Figure 1.4 that LOO-SPE is surprisingly significantly less
accurate than NLL according to SSPE. More generally, choosing a scoring rule S
for the LOO criterion does not guarantee the highest precision according to this
particular score.

Robustness LOO-SPE is commonly claimed in the literature (see, notably,
Bachoc (2013b)) to provide a certain degree of robustness with respect to model
misspecification. According to this claim, LOO-SPE would be expected to some-
how mitigate the loss of predictive accuracy with respect to likelihood-based ap-
proaches incurred by an ill-advised choice of covariance function. Our detailed re-
sults (see SM) suggest that this effect indeed exists when the regularity is severely
under-estimated (e.g., ν = 1/2 for the low-pass filter problems), but is actually
quite small, and should not be used to motivate the practice of setting ν to an
arbitrary value. A similar effect exists for LOO-CRPS, LOO-NLPD and GCV as
well. Quite surprisingly, NLL turns out to be more robust than LOO-SPE (and the
other criteria) in the case of over-smoothing.

1.5 . Conclusions
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A large variety of selection criteria for Gaussian process models is available
from the literature, with little theoretical or empirical guidance on how to choose
the right one for applications. Our benchmark study with the Matérn family of
covariance functions in the noiseless (interpolation) case indicates that the NLL se-
lection criterion—in other words, the ML method—provides performances that are,
in most situations and for all the scoring rules that were considered (SPE, CRPS
and IS at 95%), better than or comparable to those of the other criteria. Consider-
ing that all the criteria tested in the study (except KA) have a similar computational
complexity, this provides a strong empirical support to the ML method—which is
already the de facto standard in most statistical software packages implementing
Gaussian process interpolation.

Another important lesson learned from our benchmark study is that the choice
of the family of models, and in particular of the family of covariance functions,
has very often a bigger impact on performance than that of the selection criterion
itself. This is especially striking when the actual function is smooth, and very
irregular covariance function such as the Matérn covariance with regularity 1/2
is used to perform Gaussian process interpolation. In such a situation, NLL is
actually outperformed by other criteria such as LOO-SPE or LOO-CRPS, which
thus appear to be more “robust to model misspecification”. However, the small
gain of performance, which is achieved by using LOO-SPE or LOO-CRPS instead
of NLL in this case, is generally negligible with respect to the much larger loss
induced by choosing an inappropriate covariance function in the first place.

Our final recommendation, supported by the results of the benchmark, is there-
fore to select, if possible, the regularity of the covariance function automatically,
jointly with the other parameters, using the NLL criterion. A minimal list of can-
didate values for the regularity parameter should typically include 1/2, 3/2, 5/2,
7/2 and +∞ (the Gaussian covariance function). Should a situation arise where a
default value of ν is nevertheless needed, our recommendation would be to choose
a reasonably large value such as ν = 7/2, since under-smoothing has been seen to
have much more severe consequences than over-smoothing. More generally, our
numerical results support the fact that choosing a model carefully is important,
and probably so not only in the class of Matérn covariance functions.

However, it should be kept in mind that the study focuses on cases where
the number of parameters is small with respect to the number of observations (in
particular, we considered zero-mean GPs with an anisotropic stationary Matérn
covariance function, which have d + 2 parameters, and we took care of having
n� d). When d is large, or when the number of parameters increases, it seems to
us that other selection criteria should be considered, and that the introduction of
regularization terms would be required.

For future work, it would be very interesting to consider the performance of
using selection criteria against a fully Bayesian approach. Another direction would
be to extend this study to the case of regression, which is also used in many
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applications, when dealing with stochastic simulators, for instance.

1.6 . Additional Material: a numerical study about the choice
of ν for Bayesian optimization

1.6.1 . Related works
We now complete the numerical experiments of Section 1.4 by an optimization

benchmark. We refer to Section 2.1 for a brief description and references about
the Efficient Global Optimization (EGO) algorithm and the Expected Improvement
(EI) sampling criterion.

Recently, Le Riche and Picheny (2021) made an insightful empirical compar-
ison of some EGO variants using the COCO (COmparing Continuous Optimizers,
(Hansen et al., 2021)) benchmark. The authors point out that most of the avail-
able benchmarks in the literature (see the provided references, to which we can
add the recent work of Merrill et al. (2021)) deal with the sampling criterion or
Bayesian optimization variants. Therefore they choose to stick to the EI and in-
vestigate other levers with, for instance, the choice of the mean and the covariance
function families, the size of the initial design, and some input or output transfor-
mations. They treated the case of the covariance function by testing EGO with
the Matérn subfamilies corresponding to ν = 1/2 and ν = 5/2 and conclude that
the best choice depends on the smoothness of the function to be optimized; with
the ν = 5/2 subfamily being more often preferable on the COCO benchmark.

1.6.2 . Methodology and test cases
Given the findings from Section 1.4, we restrict ourselves by sticking to the

NLL criterion and investigating the choice of the regularity parameter of a Matérn
covariance function for Bayesian optimization in the wake of Le Riche and Picheny
(2021). We proceed by considering a benchmark inspired by (Feliot, 2017, Section
2.5.3) and described in Table 1.6.

For this benchmark, we also stick to the classical EI with: 1) independent mod-
els for the outputs; 2) no input or output deformation; 3) a constant trend function;
4) the optimization of the sampling criterion conducted with an SMC approach
(Feliot et al., 2017) that uses the PICPI density (the probability of improvement
with a relaxation on the constraints, see Feliot, 2017, Section 3.2.4); space-filling
design of experiments of size 3d; and 5) the Matérn subfamilies corresponding to
the fixed values ν = 1/2, 3/2, 5/2, 7/2, 9/2, 13/2, 17/2, 21/2, ∞ and their union,
i.e., with ν being selected automatically from data. Observe that the regularity
parameters of the outputs are untied only when ν is automatically selected.

For each test case, we run the optimization until the prescribed target from
Table 1.6 is achieved or a maximum budget of 300 evaluations—regardless of the
dimension—is reached.

1.6.3 . Results
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Table 1.6: Optimization benchmark composed of: 1) the Goldstein-

Price function Dixon and Szegö (1978) along with a log version as in

Part III; and 2) the constrainedmono-objective cases from (Feliot, 2017,

Section 2.5.3). Feliot (2017) considers several versions of the “g10”
problem. In our benchmark, we will consider: 1) the g10-ARH version
(see the “g10” problem from Hedar and Ahmed, 2004); 2) the g10-RR
version (see the “g10” problem from Regis, 2014); and 3) the g10-PF
version (see the “modified-g10” problem from Feliot et al., 2017). Some
characteristics and “target” values for the problems—mostly taken

from (Feliot, 2017, Table 2.1)—are provided.

Pbm d q Γ(%) Target

Goldstein-Price 2 0 100 3.001
Goldstein-Price Log 2 0 100 log(3.001)

g1 13 9 4 ·10−4 −14.85
g3mod 20 1 10−4 −0.33
g5mod 4 5 8.7 ·10−2 5150
g6 2 2 6.6 ·10−3 −6800
g7 10 8 10−4 25
g8 2 2 0.86 −0.09
g9 7 4 0.52 1000

g10-ARH 8 6 7 ·10−4 8000
g10-RR 8 6 7 ·10−4 8000
g10-PF 8 6 7 ·10−4 8000
g13-mod 5 3 4.5 0.005
g16 5 38 1.3 ·10−2 −1.8
g18 9 13 2 ·10−10 −0.8
g19 15 5 3.4 ·10−3 40
g24 2 2 44.3 −5
SR7 7 11 9.3 ·10−2 2995
PVD4 4 3 5.6 ·10−1 6000
WB4 4 6 5.6 ·10−2 2.5
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The results are shown in Table 1.7 and Table 1.8 and show significant variations
with respect to ν . The smoother the covariance function, the easier it is to solve
g1, g5mod, g7, g9, g10-ARH, g16, g18, g19, g24, WB4, and Goldstein-Price (with
the traditional ν = 5/2 value underperforming significantly on g9, g19, WB4 and
Goldstein-Price), whereas g8, g10-RR, g10-PF, g13mod, SR7, and Goldstein-Price
(Log) require covariance functions that are not too smooth. For the remainings,
the cases g3mod, g6, and g10-RR remain unsolved1, and the case PVD4 cannot
be solved by any fixed ν value.

The ν = 1/2 covariance function family yields the most dramatic underperfor-
mances, but improves the percentage of successful runs from 0% to 10% on g10-
RR. Although the problem remains unsolved most of the time, taking ν = 1/2—or
selecting it automatically—yields an average best feasible score of about 8400
against 9000 for the other families, which is closer to the target from Table 1.6.
Rough covariance functions are more convenient to solve this problem because
some of its outputs look like discontinuous functions, as shown in Figure 1.5.

Overall, selecting ν automatically always leads to being very close to the top
performer except maybe for g13mod and SR7, where it shows only moderate under-
performance. Observe that it outperforms every fixed regularity on Goldstein-Price
and PVD4. The PVD4 problem is instructive since it is a situation where it is
preferable to keep the regularity parameters untied. Regarding Goldstein-Price,
a closer inspection of the numerical results shows that the selected regularity in-
creases progressively during the optimization, which may be a possible explanation
that it seems to provide both the robustness of the moderate regularities and the
speed of the larger ones.

1.6.4 . Conclusion

This optimization benchmark study provides additional support to the fact that
the regularity parameter of a Matérn covariance function has an important contri-
bution to the predictivity of Gaussian process interpolation models. In this section,
the predictivity was measured by the performances of corresponding Bayesian opti-
mization algorithms. As in Section 1.4, different regularity parameters can lead to
drastically different optimization results. The more dramatic underperformances
are obtained using too rough covariance functions, and the automatic selection
of the regularity parameter is a satisfactory adaptive methodology. Furthermore,

1
Case g6 is cheaply solved by (Feliot, 2017). The reason is that the two constraints

are quadratic functions that are easily modeled by any covariance function that is at

least twice differentiable. However, the problem is two-dimensional, and the volume

of the feasible space is of order 10−5
, so either the optimizer succeeds rapidly, or it

crashes for having evaluations that are too close in this region without having found

the solution. The success of Feliot (2017) may be explained by his special extended

domination rule and the fact that the experiments were conducted using the STK
(Bect et al., 2011–2021) toolbox, which is more mature than our refined version of

GPy.
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Figure 1.5: A histogram for the constraint c6 ≤ 0 from the g10-RR prob-
lem for a space-filling design of experiments of n = 60 points. Observe
that, although the function is infinitely differentiable, its steep varia-

tions make it looks like a piecewise constant function.
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Table 1.7: A small unconstrained mono-objective optimization bench-

mark. We show between parenthesis the fraction of the 30 runs that
manage to reach a given target value in 300 evaluations, and the av-
erage number of evaluations to reach it is also provided (with unsuc-

cessful runs counted as 300). The best value in a column is in bold and
a red cell indicates a fraction of successful runs below 66%. Moreover,
the grayscale highlights the variations with respect to the best value

for a given column.

Goldstein-Price Goldstein-Price Log

ν = 1/2 +∞(0.0) 207.87(0.4)
ν = 3/2 +∞(0.0) 47.23(1.0)
ν = 5/2 238.27(0.67) 76.17(1.0)
ν = 7/2 134.53(1.0) 100.47(1.0)
ν = 9/2 100.27(1.0) 92.0(1.0)

ν = 13/2 101.2(0.93) 123.13(0.87)
ν = 17/2 118.13(0.83) 112.97(0.9)
ν = 21/2 92.0(0.93) 128.2(0.83)

ν = ∞ 112.93(0.83) 122.2(1.0)
ν ∈ {1/2, · · · ,∞} 83.6(1.0) 53.57(1.0)

another situation was identified: the case of optimization problems with several
outputs (an objective and one or several constraints), where using different regu-
larity values for the outputs leads to very significant benefits compared to using
any single value.

It is worth noting also that Le Riche and Picheny (2021) resort to DiceOptim
(Roustant et al., 2012b), which uses tensorized covariance functions instead of the
isotropic ones (1.1). These two ways of building multivariate covariance functions
are discussed by (Stein, 2005b, 1999, Section 2.11), who provide theoretical argu-
ments showing that they lead to very different models. Although Stein (2005b)
disqualifies tensorized covariance functions for geostatistical applications, the situ-
ation is surprisingly unclear for other fields with no clear material or guidelines on
this particular topic.
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Table 1.8: A small constrained mono-objective optimization bench-

mark. The results are presented the same way as in Table 1.7, but

using the number of iterations to find a feasible point that reach the

target.
g1 g3mod g5mod g6 g7 g8

ν = 1/2 +∞(0.0) +∞(0.0) 141.23(1.0) +∞(0.0) +∞(0.0) 106.23(0.87)
ν = 3/2 67.4(0.97) +∞(0.0) 17.03(1.0) +∞(0.0) 97.1(1.0) 32.97(1.0)
ν = 5/2 56.57(1.0) +∞(0.0) 16.4(1.0) +∞(0.0) 52.6(1.0) 27.9(1.0)
ν = 7/2 56.9(1.0) +∞(0.0) 16.1(1.0) +∞(0.0) 50.07(1.0) 28.9(1.0)
ν = 9/2 64.6(0.97) +∞(0.0) 16.17(1.0) +∞(0.0) 50.53(1.0) 28.4(1.0)

ν = 13/2 56.67(1.0) +∞(0.0) 16.13(1.0) +∞(0.0) 50.63(1.0) 29.03(1.0)
ν = 17/2 56.03(1.0) +∞(0.0) 16.53(1.0) +∞(0.0) 50.87(1.0) 38.07(1.0)
ν = 21/2 56.87(1.0) +∞(0.0) 16.17(1.0) +∞(0.0) 50.4(1.0) 36.17(1.0)

ν = ∞ 64.67(0.97) +∞(0.0) 16.33(1.0) +∞(0.0) 49.8(1.0) 31.17(1.0)
ν ∈ {1/2, · · · ,∞} 54.83(1.0) +∞(0.0) 16.17(1.0) +∞(0.0) 50.13(1.0) 27.37(1.0)

g9 g10-ARH g10-RR g10-PF g13mod g16

ν = 1/2 298.4(0.03) 260.27(0.57) 291.33(0.1) 120.2(1.0) +∞(0.0) 218.1(0.63)
ν = 3/2 98.07(1.0) 36.93(1.0) +∞(0.0) 54.37(1.0) 184.63(0.93) 43.63(1.0)
ν = 5/2 52.1(1.0) 27.83(1.0) +∞(0.0) 62.73(1.0) 169.47(0.93) 33.77(1.0)
ν = 7/2 45.97(1.0) 27.73(1.0) +∞(0.0) 67.33(1.0) 155.17(1.0) 30.77(1.0)
ν = 9/2 43.1(1.0) 27.93(1.0) +∞(0.0) 75.73(1.0) 170.73(0.87) 28.73(1.0)

ν = 13/2 45.87(1.0) 27.93(1.0) +∞(0.0) 74.27(1.0) 224.87(0.57) 28.13(1.0)
ν = 17/2 45.93(1.0) 27.9(1.0) +∞(0.0) 76.93(1.0) 235.5(0.43) 31.43(1.0)
ν = 21/2 43.43(1.0) 28.13(1.0) +∞(0.0) 82.5(1.0) 239.33(0.53) 28.5(1.0)

ν = ∞ 47.3(1.0) 27.97(1.0) +∞(0.0) 82.57(1.0) 232.63(0.5) 29.87(1.0)
ν ∈ {1/2, · · · ,∞} 43.63(1.0) 27.83(1.0) 297.27(0.1) 54.4(1.0) 191.53(0.8) 26.7(1.0)

g18 g19 g24 PVD4 SR7 WB4
ν = 1/2 +∞(0.0) +∞(0.0) 24.23(1.0) 246.0(0.37) +∞(0.0) 300.53(0.03)
ν = 3/2 187.13(0.87) +∞(0.0) 11.77(1.0) 286.1(0.2) 49.07(1.0) 67.27(1.0)
ν = 5/2 59.5(1.0) 104.2(1.0) 11.0(1.0) 262.97(0.27) 58.67(1.0) 47.3(1.0)
ν = 7/2 54.9(1.0) 84.97(1.0) 10.63(1.0) 274.8(0.13) 57.43(1.0) 42.37(1.0)
ν = 9/2 54.3(1.0) 84.23(1.0) 10.6(1.0) 279.07(0.23) 57.87(1.0) 40.8(1.0)

ν = 13/2 53.63(1.0) 83.27(1.0) 10.47(1.0) 287.9(0.13) 57.93(1.0) 40.4(1.0)
ν = 17/2 53.83(1.0) 84.6(1.0) 10.43(1.0) 286.37(0.1) 54.0(1.0) 41.03(1.0)
ν = 21/2 53.0(1.0) 84.07(1.0) 10.5(1.0) 289.37(0.13) 53.5(1.0) 40.53(1.0)

ν = ∞ 52.87(1.0) 83.37(1.0) 10.47(1.0) 289.4(0.07) 56.73(1.0) 43.03(1.0)
ν ∈ {1/2, · · · ,∞} 55.57(1.0) 84.83(1.0) 10.23(1.0) 195.67(0.73) 59.2(1.0) 41.43(1.0)
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2 - Numerical issues: the case of maximum-
likelihood

This chapter is a reproduction of Basak et al. (2021) with few modifications.

S. Basak, S. J. Petit, J. Bect, and E. Vazquez. Numerical issues in maximum likeli-
hood parameter estimation for Gaussian process regression. In 7th International
Conference on machine Learning, Optimization and Data science, 2021

2.1 . Introduction

Gaussian process (GP) regression and interpolation (see, e.g., Rasmussen and
Williams, 2006), also known as kriging (see, e.g., Stein, 1999), has gained signif-
icant popularity in statistics and machine learning as a non-parametric Bayesian
approach for the prediction of unknown functions. The need for function prediction
arises not only in supervised learning tasks, but also for building fast surrogates
of time-consuming computations, e.g., in the assessment of the performance of a
learning algorithm as a function of tuning parameters or, more generally, in the
design and analysis computer experiments (Santner et al., 2003). The interest for
GPs has also risen considerably due to the development of Bayesian optimization
(Emmerich et al., 2006, Jones et al., 1998, Mockus, 1975, Srinivas et al., 2010. . . ).

This context has fostered the development of a fairly large number of open-
source packages to facilitate the use of GPs. Some of the popular choices are the
Python modules scikit-learn (Pedregosa et al., 2011), GPy (Sheffield machine learn-
ing group, 2012–2020), GPflow (Matthews et al., 2017), GPyTorch (Gardner et al.,
2018), OpenTURNS (Baudin et al., 2017); the R package DiceKriging (Roustant
et al., 2012a); and the Matlab/GNU Octave toolboxes GPML (Rasmussen and
Nickisch, 2010), STK (Bect et al., 2011–2021) and GPstuff (Vanhatalo et al.,
2012).

In practice, all implementations require the user to specify the mean and covari-
ance functions of a Gaussian process prior under a parameterized form. Out of the
various methods available to estimate the model parameters, we can safely say that
the most popular approach is the maximum likelihood estimation (MLE) method.
However, a simple numerical experiment consisting in interpolating a function (see
Table 2.1), as is usually done in Bayesian optimization, shows that different MLE
implementations from different Python packages produce very dispersed numerical
results when the default settings of each implementation are used. These signif-
icant differences were also noticed by Erickson et al. (2018) but the causes and
possible mitigation were not investigated. Note that each package uses its own
default algorithm for the optimization of the likelihood: GPyTorch uses ADAM
(Kingma and Ba, 2015), OpenTURNS uses a truncated Newton method (Nash,
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Table 2.1: Inconsistencies in the results across different Python pack-

ages. The results were obtained by fitting a GP model, with constant

mean and a Matérn kernel (ν = 5/2), to the Branin function, using
the default settings for each package. We used 50 training points and
500 test points sampled from a uniform distribution on [−5,10]× [0,15].
The table reports the estimated values for the variance and length

scale parameters of the kernel, the empirical root mean squared pre-

diction error (ERMSPE) and theminimized negative log likelihood (NLL).

(Observe that the estimated length scale and variance parameters are

very high, especially for GPy “improved”. Such models are close to a

spline (see, e.g., Barthelmé et al., 2022, Kimeldorf and Wahba, 1970).)

The last row shows the improvement using the recommendations in

this study.

LIBRARY Version Variance Lengthscales ERMSPE NLL

SCIKIT-LEARN 0.24.2 9.9 ·104 (13, 43) 1.482 132.4
GPY 1.9.9 8.1 ·108 (88, 484) 0.259 113.7
GPYTORCH 1.4.1 1.1 ·101 (4, 1) 12.867 200839.7
GPFLOW 1.5.1 5.2 ·108 (80, 433) 0.274 114.0
OPENTURNS 1.16 1.3 ·104 (8, 19) 3.301 163.1

GPY “IMPROVED” 1.9.9 9.4 ·1010 (220, 1500) 0.175 112.0

1984) and the others generally use L-BFGS-B (Byrd et al., 1995). It turns out
that none of the default results in Table 2.1 are really satisfactory compared to the
result obtained using the recommendations in this study1.

Focusing on the case of GP interpolation (with Bayesian optimization as the
main motivation), the first contribution of this chapter is to understand the origin
of the inconsistencies across available implementations. The second contribution is
to investigate simple but effective strategies for improving these implementations,
using the well-established GPy package as a case study. We shall propose rec-
ommendations concerning several optimization settings: initialization and restart
strategies, parameterization of the covariance, etc. By anticipation of our numeri-
cal results, the reader is invited to refer to Figure 2.1 and Table 2.2, which show
that significant improvement in terms of estimated parameter values and prediction
errors can be obtained over default settings using better optimization schemes.

Even though this work targets a seemingly prosaic issue, and advocates some-
how simple solutions, we feel that the contribution is nonetheless of significant
value considering the widespread use of GP modeling. Indeed, a host of stud-
ies, particularly in the literature of Bayesian optimization, rely on off-the-shelf GP
implementations: for their conclusions to be reliable and reproducible, robust im-

1
Code available at https://github.com/saferGPMLE
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Figure 2.1: Improved (cf. Section 2.6) vs default setups in GPy on the
Borehole function with n = 20d = 160 random training points. We re-
move one point at a time to obtain (a) the distribution of the differ-

ences of negative log-likelihood (NLL) values between the two setups;

(b) the empirical CDFs of the prediction error at the removed points; (c)

pairs of box-plots for the estimated range parameters (for each dimen-

sion, indexed from 1 to 8 on the x-axis, the box-plot for improved setup
is on the left and the box-plot for default setup is on the right; horizon-
tal red lines correspond to the estimated values using the whole data

set without leave-one-out). Notice that the parameter distributions of

the default setup are more spread out.
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Table 2.2: Improved (cf. Section 2.6) vs default setups in GPy for the
interpolation of the Borehole function (input space dimension is d = 8)
with n ∈ {3d, 5d} random data points (see Section 2.5.3 for details).
The experiment is repeated 50 times. The columns report the leave-

one-out mean squared error (LOO-MSE) values (empirical mean over

the repetitions, together with the standard deviation and the average

proportion of the LOO-MSE to the total standard deviation of the data

in parentheses).

METHOD n = 3d n = 5d

DEFAULT 17.559 (4.512,

0.387)

10.749 (2.862,

0.229)

IMPROVED 3.949 (1.447, 0.087) 1.577 (0.611,

0.034)

plementations are critical.
The chapter is organized as follows. Section 2.2 provides a brief review of GP

modeling and MLE. Section 2.3 describes some numerical aspects of the evaluation
and optimization of the likelihood function, with a focus on GPy’s implementation.
Section 2.4 provides an analysis of factors influencing the accuracy of numerical
MLE procedures. Finally, Section 2.5 assesses the effectiveness of our solutions
through numerical experiments and Section 2.6 concludes the chapter.

2.2 . Background
2.2.1 . Gaussian processes

Let Z ∼ GP(m, k) be a Gaussian process indexed by Rd , d ≥ 1, specified by a
mean function m :Rd →R and a covariance function k :Rd×Rd →R.

The objective is to predict Z(x) at a given location x ∈ Rd , given a data
set D = {(xi, zi) ∈ Rd ×R, 1 ≤ i ≤ n}, where the observations zis are assumed
to be the outcome of an additive-noise model: Zi = Z(xi) + εi, 1 ≤ i ≤ n. In
most applications, it is assumed that the εis are zero-mean Gaussian i.i.d. random
variables with variance σ2

ε ≥ 0, independent of Z. (In rarer cases, heteroscedasticity
is assumed.)

Knowing m and k, recall (see, e.g. Rasmussen and Williams, 2006) that the
posterior distribution of Z is such that Z | Z1, . . . , Zn, m, k ∼ GP(Ẑn, kn), where Ẑn

and kn stand respectively for the posterior mean and covariance functions:

Ẑn(x) = m(x)+∑
n
i=1 wi(x;xn)(zi−m(xi)) ,

kn(x,y) = k(x,y)−w(y;xn)
TK(xn,x) ,

where xn denotes observation points (x1, . . . , xn) and the weights wi(x;xn) are so-
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Table 2.3: Some kernel functions available in GPy. The Matérn kernel

is recommended by Stein (1999). Γ denotes the gamma function, Kν

is the modified Bessel function of the second kind.

KERNEL r(h), h ∈ [0,+∞)

SQUARED EXPONENTIAL exp(−1
2 r2)

RATIONAL QUADRATIC (1+ r2)−ν

MATÉRN WITH PARAM. ν > 0 21−ν

Γ(ν)

(√
2νr
)ν

Kν

(√
2νr
)

lutions of the linear system:

(K(xn,xn)+σ
2
ε In)w(x;xn) = K(xn,x) , (2.1)

with K(xn, xn) the n×n covariance matrix with entries k(xi, x j), In the identity ma-
trix of size n, and w(x;xn) (resp. K(xn,x)) the column vector with entries wi(x;xn)

(resp. k(xi,x)), 1≤ i≤ n.
It is common practice to assume a zero mean function m = 0—a reasonable

choice if the user has taken care to center data—but most GP implementations
also provide an option for setting a constant mean function m( ·) = µ ∈R. In this
chapter, we will include such a constant in our models, and treat it as an additional
parameter to be estimated by MLE along with the others. (Alternatively, µ could
be endowed with a Gaussian or improper-uniform prior, and then integrated out;
see, e.g., O’Hagan (1978).)

The covariance function, aka covariance kernel, models similarity between data
points and reflects the user’s prior belief about the function to be learned. Most
GP implementations provide a couple of stationary covariance functions taken from
the literature (e.g., Rasmussen and Williams, 2006, Wendland, 2004). The squared
exponential, the rational quadratic or the Matérn covariance functions are popular
choices (see Table 2.3). These covariance functions include a number of parame-
ters: a variance parameter σ2 > 0 corresponding to the variance of Z, and a set of
range (or length scale) parameters ρ1, . . . , ρd , such that

k(x,y) = σ
2r(h) , (2.2)

with h2 = ∑
d
i=1(x[i]− y[i])2/ρ2

i , where x[i] and y[i] denote the elements of x and y.
The function r :R→R in (2.2) is the stationary correlation function of Z. From
now on, the vector of model parameters will be denoted by

θ = (σ2, ρ1, . . . , ρd , . . . ,σ
2
ε )

T ∈Θ⊂Rp,

and the corresponding covariance matrix K(xn,xn)+σ2
ε In by Kθ .
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2.2.2 . Maximum likelihood estimation
In this chapter, we focus on GP implementations where the parameters (θ ,µ)∈

Θ×R of the process Z are estimated by maximizing the likelihood L(Zn|θ ,µ) of
Zn = (Z1, . . . ,Zn)

T, or equivalently, by minimizing the negative log-likelihood (NLL)

− log(L(Zn|θ ,µ)) =
1
2
(Zn−µ1n)

>K−1
θ
(Zn−µ1n)+

1
2

log|Kθ |+constant. (2.3)

This optimization is typically performed by gradient-based methods, although
local maxima can be of significant concern as the likelihood is often non-convex.
Computing the likelihood and its gradient with respect to (θ ,µ) has a O(n3+dn2)

computational cost (Petit et al., 2020a, Rasmussen and Williams, 2006).

2.3 . Numerical noise

The evaluation of the NLL as well as its gradient is subject to numerical noise,
which can prevent proper convergence of the optimization algorithms. Figure 2.2
shows a typical situation where the gradient-based optimization algorithm stops
before converging to an actual minimum. In this section, we provide an analysis
on the numerical noise on the NLL using the concept of local condition numbers.
We also show that the popular solution of adding jitter cannot be considered as a
fully satisfactory answer to the problem of numerical noise.

Numerical noise stems from both terms of the NLL, namely 1
2 Z>n K−1

θ
Zn and

1
2 log|Kθ |. (For simplification, we assume µ = 0 in this section.)

First, recall that the condition number κ(Kθ ) of Kθ , defined as the ratio
|λmax/λmin| of the largest eigenvalue to the smallest eigenvalue (Press et al., 1992),
is the key element for analyzing the numerical noise on K−1

θ
Zn. In double-precision

floating-point approximations of numbers, Zn is corrupted by an error ε whose
magnitude is such that ‖ε‖/‖Zn‖ ' 10−16. Worst-case alignment of Zn and ε with
the eigenvectors of Kθ gives

‖K−1
θ

ε‖
‖K−1

θ
Zn‖
' κ(Kθ )×10−16 , (2.4)

which shows how the numerical noise is amplified when Kθ becomes ill-conditioned.
The term log|Kθ | is nonlinear in Kθ , but observe, using dlog|Kθ |/dKθ = K−1

θ
,

that the differential of log| · | at Kθ is given by H 7→ Trace(K−1
θ

H). Thus, the
induced operator norm with respect to the Frobenius norm ‖·‖F is ‖K−1

θ
‖F . We

can then apply results from Trefethen and Bau (1997) to get a local condition
number of the mapping A 7→ log|A| at Kθ :

κ(log| · |, Kθ ), lim
ε→0

sup
‖δA‖F≤ε

∣∣log|Kθ +δA|− log|Kθ |
∣∣∣∣log|Kθ |

∣∣ ‖Kθ‖F

‖δA‖F
=

√
∑

n
i=1

1
λ 2

i

√
∑

n
i=1 λ 2

i

|∑n
i=1 log(λi)|

(2.5)
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Figure 2.2: Noisy NLL profile along a particular direction in the pa-

rameter space, with a best linear fit (orange line). This example was

obtained with GPy while estimating the parameters of a Matérn 5/2
covariance, using 20 data points sampled from a Branin function, and
setting σ2

ε = 0. The red vertical line indicates the location where the
optimization of the likelihood stalled.

where λ1, · · · ,λn are the (positive) eigenvalues of Kθ . Then, we have

κ(Kθ )

|∑n
i=1 log(λi)|

≤ κ(log| · |, Kθ )≤
nκ(Kθ )

|∑n
i=1 log(λi)|

, (2.6)

which shows that numerical noise on log|Kθ | is linked to the condition number of
Kθ .

The local condition number of the quadratic form 1
2 ZT

n K−1
θ

Zn as a function of
Zn can also be computed analytically. Some straightforward calculations show that
it is bounded by κ(Kθ ).

(When the optimization algorithm stops in the example of Figure 2.2, we have
κ(Kθ ) ' 1011 and κ(log| · |, Kθ ) ' 109.5. The empirical numerical fluctuations
are measured as the residuals of a local second-order polynomial best fit, giving
noise levels 10−7, 10−8 and 10−7.5 for K−1

θ
Zn, 1

2 ZT
n K−1

θ
Zn and log|Kθ | respectively.

These values are consistent with the above first-order analysis.)
Thus, when κ(Kθ ) becomes large in the course of the optimization procedure,

numerical noise on the likelihood and its gradient may trigger an early stopping
of the optimization algorithm (supposedly when the algorithm is unable to find a
proper direction of improvement). It is well-known that κ(Kθ ) becomes large when
σ2

ε = 0 and one of the following conditions occurs: 1) data points are close, 2) the
covariance is very smooth (as for instance when considering the squared exponential
covariance), 3) when the range parameters ρi are large. These conditions arise
more often than not. Therefore, the problem of numerical noise in the evaluation
of the likelihood and its gradient is a problem that should not be neglected in GP
implementations.
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Table 2.4: Influence of the jitter on the GP model (same setting as

in Figure 2.2). The table reports the condition numbers κ(Kθ ) and
κ(log| · |, Kθ ), and the impact on the relative empirical standard devi-
ations δquad and δlogdet of the numerical noise on ZT

n K−1
θ

Zn and log|Kθ |
respectively (measured using second-order polynomial regressions).

As σε increases, δquad and δlogdet decrease but the interpolation er-

ror
√

SSR/SST =
√

1
n ∑

n
j=1(Z j− Ẑn(x j))2/std(Z1, ...,Zn) and the NLL in-

crease. Reducing numerical noise while keeping good interpolation

properties requires careful attention in practice.

σ2
ε / σ2 0.0 10−8 10−6 10−4 10−2

κ(Kθ ) 1011 109 107.5 105.5 103.5

κ(log| · |, Kθ ) 109.5 108.5 106.5 104.5 102.5

δquad
10−8

(= 1011−19)
10−9.5

(= 109−18.5)
10−10.5

(= 107.5−18)
10−12

(= 105.5−17.5)

10−14

(= 103.5−17.5)

δlogdet
10−7.5

(= 109.5−17)
10−9

(= 108.5−17.5)
10−11

(= 106.5−17.5)
10−13.5

(= 104.5−18)

10−15.5

(= 102.5−18)

− log(L(Zn|θ)) 40.69 45.13 62.32 88.81 124.76√
SSR/SST 3.3 ·10−10 1.2 ·10−3 0.028 0.29 0.75

The most classical approach to deal with ill-conditioned covariance matrices is
to add a small positive number on the diagonal of the covariance matrix, called jit-
ter, which is equivalent to assuming a small observation noise with variance σ2

ε > 0.
In GPy for instance, the strategy consists in always setting a minimal jitter of 10−8,
which is automatically increased by an amount ranging from 10−6σ2 to 10−1σ2

whenever the Cholesky factorization of the covariance matrix fails (due to numeri-
cal non-positiveness). The smallest jitter making Kθ numerically invertible is kept
and an error is thrown if no jitter allows for successful factorization. However, note
that large values for the jitter may yield smooth, non-interpolating approximations,
with possible unintuitive and undesirable effects (see Andrianakis and Challenor,
2012), and causing possible convergence problems in Bayesian optimization.

Table 2.4 illustrates the behaviour of GP interpolation when σ2
ε is increased.

It appears that finding a satisfying trade-off between good interpolation properties
and low numerical noise level can be difficult. Table 2.4 also supports the con-
nection in (2.4) and (2.6) between noise levels and κ(Kθ ). In view of the results
of Figure 2.1 based on the default settings of GPy and Table 2.4, we believe that
adaptive jitter cannot be considered as a do-it-all solution.

2.4 . Strategies for improving likelihood maximization
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In this section we investigate simple but hopefully efficient levers / strategies
to improve available implementations of MLE for GP interpolation, beyond the
control of the numerical noise on the likelihood using jitter. We mainly focus on
1) initialization methods for the optimization procedure, 2) stopping criteria, 3)
the effect of “restart” strategies and 4) the effect of the parameterization of the
covariance.

2.4.1 . Initialization strategies
Most GP implementations use a gradient-based local optimization algorithm

to maximize the likelihood that requires the specification of starting/initial values
for the parameters. In the following, we consider different initialization strategies.

Moment-based initialization. A first strategy consists in setting the parameters
using empirical moments of the data. More precisely, assuming a constant mean
m = µ , and a stationary covariance k with variance σ2 and range parameters
ρ1, . . . , ρd , set

µinit = mean(Z1, . . . , Zn), (2.7)

σ
2
init = var(Z1, . . . , Zn), (2.8)

ρk, init = std(x1, [k], . . . , xn, [k]), k = 1, . . . , d, (2.9)

where mean, var and std stand for the empirical mean, variance and standard devi-
ation, and xi, [k] denotes the kth coordinate of xi ∈Rd . The rationale behind (2.9)
(following, e.g., Rasmussen and Williams, 2006) is that the range parameters can
be thought of as the distance one has to move in the input space for the function
value to change significantly and we assume, a priori, that this distance is linked
to the dispersion of data points.

In GPy for instance, the default initialization consists in setting µ = 0, σ2 = 1
and ρk = 1 for all k. This is equivalent to the moment-based initialization scheme
when the data (both inputs and outputs) are centered and standardized. The
practice of standardizing the input domain into a unit length hypercube has been
proposed (see, e.g., Snoek et al., 2012) to deal with numerical issues that arise
due to large length scale values.

Profiled initialization. Assume the range parameters ρ1, . . . , ρd (and more gener-
ally, all parameters different from σ2, σ2

ε and µ) are fixed, and set σ2
ε = ασ2, with

a prescribed multiplicative factor α ≥ 0. In this case, the NLL can be optimized
analytically w.r.t. µ and σ2. Optimal values turn out to be the generalized least
squares solutions

µGLS = (1Tn K−1
θ̃
1n)
−11Tn K−1

θ̃
Zn , (2.10)

σ
2
GLS =

1
n
(Zn−µGLS 1n)

TK−1
θ̃
(Zn−µGLS 1n) , (2.11)

where θ̃ = (σ2, ρ1, . . . , ρd , . . . , σ2
ε )

T ∈Θ, with σ2 = 1 and σ2
ε = α . Under the pro-

filed initialization scheme, ρ1, . . . ,ρd are set using (2.9), α is prescribed according
to user’s preference, and µ and σ2 are initialized using (2.10) and (2.11).
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Grid-search initialization. Grid-search initialization is a profiled initialization with
the addition of a grid-search optimization for the range parameters.

Define a nominal range vector ρ0 such that

ρ0,[k] =
√

d
(

max
1≤i≤n

xi,[k]− min
1≤i≤n

xi,[k]

)
, 1≤ k ≤ d.

Then, define a one-dimensional grid of size L (e.g., L = 5) by taking range vec-
tors proportional to ρ0: {α1ρ0, . . . , αLρ0}, where the αis range, in logarithmic
scale, from a “small” value (e.g., α1 = 1/50) to a “large” value (e.g., αL = 2).
For each point of the grid, the likelihood is optimized with respect to µ and σ2

using (2.10) and (2.11). The range vector with the best likelihood value is selected.
(Note that this initialization procedure is the default initialization procedure in the
Matlab/GNU Octave toolbox STK.)

2.4.2 . Stopping condition
Most GP implementations rely on well-tested gradient-based optimization al-

gorithms. For instance, a popular choice in Python implementations is to use the
limited-memory BFGS algorithm with box constraints (L-BFGS-B; see Byrd et al.,
1995) of the SciPy ecosystem. (Other popular optimization algorithms include the
ordinary BFGS, truncated Newton constrained, SQP, etc.; see, e.g., Nocedal and
Wright (2006a).) The L-BFGS-B algorithm, which belongs to the class of quasi-
Newton algorithms, uses limited-memory Hessian approximations and shows good
performance on non-smooth functions (Curtis and Que, 2015).

Regardless of which optimization algorithm is chosen, the user usually has
the possibility to tune the behavior of the optimizer, and in particular to set the
stopping condition. Generally, the stopping condition is met when a maximum
number of iterations is reached or when a norm on the steps and/or the gradient
become smaller than a threshold.

By increasing the strictness of the stopping condition during the optimization
of the likelihood, one would expect better parameter estimations, provided the
numerical noise on the likelihood does not interfere too much.

2.4.3 . Restart and multi-start strategies
Due to numerical noise and possible non-convexity of the likelihood with respect

to the parameters, gradient-based optimization algorithms may stall far from the
global optimum. A common approach to circumvent the issue is to carry out
several optimization runs with different initialization points. Two simple strategies
can be compared.

Restart. In view of Figure 2.2, a first simple strategy is to restart the optimization
algorithm to clear its memory (Hessian approximation, step sizes. . . ), hopefully
allowing it to escape a possibly problematic location using the last best parameters
as initial values for the next optimization run. The optimization can be restarted
a number of times, until a budget Nopt of restarts is spent or the best value for the
likelihood does not improve.
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Table 2.5: Two popular reparameterization mappings τ , as imple-

mented, for example, in GPy and STK respectively. For invsoftplus, no-
tice parameter s > 0, which is introduced when input standardization
is considered (see Section 2.5).

REPARAM. τ :R?
+→R τ−1 :R→R?

+

INVSOFTPLUS(s) log(exp(θ/s)−1) s log(exp(θ ′)+1)
LOG log(θ) exp(θ ′)

Multi-start. Given an initialization point (θinit,µinit)∈Θ×R, a multi-start strategy
consists in running Nopt > 1 optimizations with different initialization points corre-
sponding to perturbations of the initial point (θinit,µinit). In practice, we suggest
the following rule for building the perturbations: first, move the range parame-
ters around (ρ1, init, . . . , ρd, init)

T (refer to Section 2.5 for an implementation); then,
propagate the perturbations on µ and σ2 using (2.10) and (2.11). The parameter
with the best likelihood value over all optimization runs is selected.

2.4.4 . Parameterization of the covariance function
In practice, the parameters of the covariance functions are generally positive

real numbers (σ2,ρ1,ρ2, . . .) and are related to scaling effects that act “multi-
plicatively” on the predictive distributions. Most GP implementations introduce
a reparameterization using a monotonic one-to-one mapping τ : R?

+→ R, acting
component-wise on the positive parameters of θ , resulting in a mapping τ : Θ→Θ′.
Thus, for carrying out MLE, the actual criterion J that is optimized in most im-
plementations may then be written as

J : θ
′ ∈Θ

′ 7→ − log(L(Zn|τ−1(θ ′),µ)) . (2.12)

Table 2.5 lists two popular reparameterization mappings τ .
The effect of reparameterization is to “reshape” the likelihood. Typical likeli-

hood profiles using the log and the so-called invsoftplus reparameterizations are
shown on Figure 2.3. Notice that the NLL may be almost flat in some regions
depending on the reparameterization. Changing the shape of the optimization cri-
terion, combined with numerical noise, may or may not facilitate the convergence
of the optimization.

2.5 . Numerical study
2.5.1 . Methodology

The main metric used in this numerical study is based on empirical cumulative
distributions (ECDFs) of differences on NLL values.

More precisely, consider N + 1 optimization schemes S0,S1, . . . ,SN , where S0

stands for a “brute-force” optimization scheme based on a very large number of
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multi-starts, which is assumed to provide a robust MLE, and S1, . . . ,SN are opti-
mization schemes to be compared. Each optimization scheme is run on M data
sets D j, 1≤ j ≤M, and we denote by ei, j the difference

ei, j = NLLi, j−NLL0, j , 1≤ i≤ N, 1≤ j ≤M,

where NLLi, j the NLL value obtained by optimization scheme Si on data set D j.
A good scheme Si should concentrate the empirical distribution of the sample

Ei = {ei, j, j = 1, . . . , M} around zero—in other words, the ECDF is close to the
ideal CDF e 7→ 1[0,∞[(e). Using ECDF also provides a convenient way to compare
performances: a strategy with a “steeper” ECDF, or larger area under the ECDF,
is better.

2.5.2 . Optimization schemes
All experiments are performed using GPy version 1.9.9, with the default L-

BFGS-B algorithm. We use a common setup and vary the configurations of the
optimization levers as detailed below.

Common setup. All experiments use an estimated constant mean-function, an
anisotropic Matérn covariance function with regularity ν = 5/2, and we assume
no observation noise (the adaptive jitter of GPy ranging from 10−6σ2 to 102σ2 is
used, however).

Initialization schemes. Three initialization procedures from Section 2.4.1 are con-
sidered.

Stopping criteria. We consider two settings for the stopping condition of the L-
BFGS-B algorithm, called soft (the default setting: maxiter= 1000, factr= 107,
pgtol= 10−5) and strict (maxiter= 1000, factr= 10, pgtol= 10−20).

Restart and multi-start. The two strategies of Section 2.4.3 are implemented using
a log reparameterization and initialization points (θinit,µinit) determined using a
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grid-search strategy. For the multi-start strategy the initial range parameters are
perturbed according to the rule ρ← ρinit ·10η where η is drawn from a N (0,σ2

η)

distribution. We take ση = log10(5)/1.96 (≈ 0.35), to ensure that about 0.95 of
the distribution of ρ is in the interval [1/5 ·ρinit, 5 ·ρinit].

Reparameterization. We study the log reparameterization and two variants of
the invsoftplus. The first version called no-input-standardization simply corre-
sponds to taking s = 1 for each range parameter. The second version called input-
standardization consists in scaling the inputs to a unit standard deviation on each
dimension (by taking the corresponding value for s).

2.5.3 . Data sets
The data sets are generated from six well-known test cases in the literature

of Bayesian optimization: the Branin function (d = 2; see, e.g. Surjanovic and
Bingham, 2013), the Borehole function (d = 8; see, e.g. Worley, 1987), the Welded
Beam Design problem (d = 4 and 6 outputs; see Chafekar et al., 2003), and the
g10-ARH, the g10-RR, and the g10-PF problems (for a total of 13 unique outputs;
see Section 1.6).

Each function is evaluated on Latin hypercube samples with a multi-dimensional
uniformity criterion (LHS-MDU; Deutsch and Deutsch, 2012), with varying sample
size n ∈ {3d, 5d, 10d, 20d}, resulting in a total of 21×4 = 84 data sets.

2.5.4 . Results and findings
Figure 2.4 shows the effect of reparameterization and the initialization method.

Observe that the log reparameterization performs significantly better than the
invsoftplus reparameterizations. For the log reparameterization, observe that the
grid-search strategy brings a moderate but not negligible gain with respect to the
two other initialization strategies, which behave similarly.

Next, we study the effect of the different restart strategies and the stopping
conditions, on the case of the log reparameterization and grid-search initialization.
The metric used for the comparison is the area under the ECDFs of the differences
of NLLs, computed by integrating the ECDF between 0 and NLLmax = 100. Thus,
a perfect optimization strategy would achieve an area under the ECDF equal to
100. Since the multi-start strategy is stochastic, results are averaged over 50
repetitions of the optimization procedures (for each Nopt value, the optimization
strategy is repeated 50 times). The areas are plotted against the computational
run time. Run times are averaged over the repetitions in the case of the multi-start
strategy.

Figure 2.5 shows that the soft stopping condition seems uniformly better. The
restart strategy yields small improvements using moderate computational overhead.
The multi-start strategy is able to achieve the best results at the price of higher
computational costs.

2.6 . Conclusions and recommendations
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Figure 2.4: Initialization and reparameterization methods. (a) ECDFs

corresponding to the best initialization method for each of the three

reparameterizations—red line: log reparam. with grid-search init.;
green line: invsoftplus with input-standardization reparam. and grid-search init; blue line: invsoftplus with no-input-standardization reparam.
and moment-based init. (b) ECDFs for different initialization methods
for the log reparameterization.

Our numerical study has shown that the parameterization of the covariance
function has the most significant impact on the accuracy of MLE in GPy. Using
restart / multi-start strategies is also very beneficial to mitigate the effect of the
numerical noise on the likelihood. The two other levers have second-order but
nonetheless measurable influence.

These observations make it possible to devise a recommended combination of
improvement levers—for GPy at least, but hopefully transferable to other software
packages as well. When computation time matters, an improved optimization pro-
cedure for MLE consists in choosing the combination of a log reparameterization,
with a grid-search initialization, the soft (GPy’s default) stopping condition, and
a small number, say Nopt = 5, of restarts.

Figure 2.1 and Table 2.2 are based on the above optimization procedure, which
results in significantly better likelihood values and smaller prediction errors. The
multi-start strategy can be used when accurate results are sought.

As a conclusion, our recommendations are not intended to be universal, but
will hopefully encourage researchers and users to develop and use more reliable and
more robust GP implementations, in Bayesian optimization or elsewhere.
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(b) multi-start strategy. The maximum areas obtained are respectively
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3 - Efficient cross-validation for Gaussian pro-
cess regression

This chapter is an article in preparation with Julien Bect and Emmanuel
Vazquez extending (Petit et al., 2020a).

3.1 . Introduction

Gaussian process (GP) regression is a technique for inferring an unknown func-
tion using a limited number of possibly noisy observations (see, e.g., Rasmussen
and Williams (2006), Santner et al. (2003), Stein (1999) and references therein).
A GP specifies a prior distribution over functions by specifying a mean function and
a covariance function. The standard practice is to select them from data within
parametric families.

Maximum likelihood estimation is probably the most common technique for
selecting the parameters. Cross-validation techniques are another common class
of methods. In particular, cross-validation methods of the leave-one-out type are
easy to implement due to the existence of fast formulas whose origin can be traced
back to Allen (1971), and have been found again independently, extended or simply
recalled in a number of works (see notably Bachoc, 2013a, Craven and Wahba,
1979, Dubrule, 1983, Ginsbourger and Schärer, 2021, Rasmussen and Williams,
2006, Sundararajan and Keerthi, 2001).

Fast formulas for leave-one-out prediction correspond to the following result.
Let Z = (Z1, . . . ,ZN)

T be a zero-mean Gaussian vector with covariance matrix K.
Then, Zi | Z1, . . . ,Zi−1,Zi+1, . . . ,Zn ∼N

(
Ẑi, σ2

i

)
, where Ẑi and σ2

i satisfy Zi− Ẑi =
(K−1Z)i
(K−1)i, i

,

σ2
i = 1

(K−1)i, i
,

(3.1)

and where (·)i and (·)i, j denote vector and matrix entries. Identity (3.1) makes it
possible to compute leave-one-out predictive distributions with considerable com-
putational cost savings compared to a naive method that would recompute the
predictive distribution for each observation removed from the standard kriging
equations.

A technique for deriving Ẑi in (3.1) was first proposed by Craven and Wahba
(1979, Lemma 3.2) and Dubrule (1983), and is based on the idea of replacing
observations by predicted values. Only Dubrule (1983) provides the expression for
σ2

i . Note also that Dubrule (1983) extends (3.1) to the leave-p-out case. Another
approach to derive (3.1), which is proposed by Rasmussen and Williams (2006,
Section 5.4.2) for the leave-one-out case, and in Ginsbourger and Schärer (2021)
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in the general case, is to resort to the blockwise inversion formula of a matrix M:

M−1 =

(
A B
C D

)−1

=

(
A−1 +A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
(3.2)

with M/A = D−CA−1B standing for the Schur complement of A in M.
In this work, we propose another technique to derive (3.1), which is based on

the well-known conditional distribution formulas for Gaussian random vectors, using
the precision matrix ∆ = K−1 (see, e.g., Von Mises, 1964, p. 200). We believe that
our technique is simpler than the ones previously proposed, and provides moreover
a better understanding of (3.1).

Fast formulas to obtain leave-one-out predictive distributions such as (3.1)
make it possible to build goodness-of-fit criteria to select the parameters of a GP
from data. This is usually done by finding the parameters of the covariance that
maximize goodness of fit. We thus get to an optimization problem, for which having
the gradients of the selection criterion at low computational cost is paramount. For
leave-one-out criteria, Petit et al. (2020a) give efficient formulas for the gradients
of (3.1), so that the computational cost of optimizing leave-one-out criteria is the
same as that of maximum likelihood estimation.

In this work, we extend the formulas of Petit et al. (2020a) for obtaining
the gradients of general cross-validation criteria, and make general complexity
statements for K-fold and leave-p-out cross-validation schemes.

This chapter is organized as follows. Section 3.2 is about obtaining fast formu-
las for cross-validation using precision matrices. Section 3.3 gives the gradients of
cross-validation formulas at low computational cost. Finally, Section 3.4 illustrates
the interest of non-standard cross-validation schemes with an example of K-fold
cross-validation.

3.2 . Fast formulas for cross-validation

In this section, we consider more generally a random vector Z ∈RN such that
Z | β ∼N (Φβ ,K), where Φ is a known matrix of size N× q, β ∼N (b,B) is a
Gaussian random vector of size q, and K is a known covariance matrix assumed
invertible.

The matrix ∆ = K−1 is called the precision matrix of Z. The use of precision
matrices is ubiquitous in the field of Gaussian Markov random fields (see, e.g.,
Rue and Held, 2005, Section 2.2), since precision matrices provide a simple way to
state conditional independence properties. The derivation (3.4)–(3.9) is available in
numerous textbooks and articles, but we repeat it for completeness. However, its
link to the fast cross-validation formulas (3.1) is new, to the best of our knowledge.

Assume first that Z∼N (0,K), which corresponds to the limit case B→ 0, and
consider a decomposition Z =

(
ZT

0 , ZT
1
)T, with Z0 ∈Rn and Z1 ∈RN−n, 1≤ n≤N.
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Then, using the corresponding block decomposition

∆ =

(
∆0,0 ∆0,1
∆1,0 ∆1,1

)
, (3.3)

the conditional density of Z1 given Z0 can be written as

p(Z1 |Z0) = p(Z0,Z1)/p(Z0) (3.4)

∝ exp
(
−1

2
(ZT

0 ,Z
T
1 )

(
∆0,0 ∆0,1
∆1,0 ∆1,1

)
(ZT

0 ,Z
T
1 )

T
)

(3.5)

∝ exp
(
−1

2
ZT

1 ∆1,1Z1−ZT
0 ∆0,1∆

−1
1,1∆1,1Z1

)
(3.6)

= exp
(
−1

2
ZT

1 ∆1,1Z1 + ẐT
1 ∆1,1Z1

)
(3.7)

∝ exp
(
−1

2
(Z1− Ẑ1)

T
∆1,1(Z1− Ẑ1)

)
, (3.8)

with Ẑ1 =−∆
−1
1,1∆1,0Z0. Thus, we have

Z1 | Z0 ∼N (Ẑ1, ∆
−1
1,1) . (3.9)

Then, a generalization of the fast cross-validation formulas (3.1) can be written as

Z1− Ẑ1 = ∆
−1
1,1∆1,1Z1 +∆

−1
1,1∆1,0Z0 = ∆

−1
1,1 [∆Z]1 , (3.10)

where [∆Z]1 denotes the subvector corresponding to last N−n entries of ∆Z.
The following proposition extends (3.9) and (3.10) when B 6= 0. It is an exten-

sion of (Bachoc, 2013a, Proposition 2.35) to more general cross-validation schemes
than leave-one-out. In addition, our proof is new, to the best of our knowledge.

Proposition 11 Let Z ∈ RN be a random vector such that Z | β ∼N (Φβ ,K),
where Φ is a known matrix of size N×q with rank q, β ∼N (b,B) is a Gaussian
random vector of size q, and K is a known covariance matrix of size N×N assumed
invertible.

Consider a decomposition Z =
(
ZT

0 , ZT
1
)T, with Z0 ∈ Rn and Z1 ∈ RN−n, 1 ≤

n≤ N. Then,
p(Z1 |Z0) = N

(
Ẑ1, ∆

−1
1,1

)
, (3.11)

with
Ẑ1 = µ1−∆

−1
1,1∆1,0(Z0−µ0),

where µ0 (respectively µ1) corresponds to the n first entries (respectively n−
N last entries) of µ ∈ RN and ∆0,0,∆0,1,∆1,0 and ∆1,1 correspond to the block
decomposition as in (3.3) of ∆, and where the vector µ and the matrix ∆ are
defined according to three cases as follows.
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Case 1: If β = b is a deterministic parameter (B = 0), then{
µ = Φb,
∆ = K−1.

Case 2: If β ∼N (b, B), then{
µ = Φb,
∆ =

(
K +ΦBΦT

)−1
.

Case 3: Using the improper prior density p(β ) ∝ 1 (which can be seen as a limit
of Case 2, when B = s2Iq and s2→ ∞), we have{

µ = 0,
∆ = K−1−K−1Φ

(
ΦTK−1Φ

)−1
ΦTK−1,

assuming a proper posterior distribution.

Proof
Case 1 is obtained from Case 2 with B = 0.
In Case 2, Z−Φb has zero mean and a covariance matrix equal to K+ΦBΦT.

Thus, (3.9) applies.
In Case 3, the posterior density of Z1 and β is

p(Z1, β |Z0) =
p(Z, β )

p(Z0)
∝ p(Z, β ) ∝ p(Z |β ) = exp

{
−(Z−Φβ )T K−1 (Z−Φβ )

}
By integration, using the identity for multivariate normal pdfs in Lemma B.1 of
Santner et al. (2003), we obtain

p(Z1 |Z0) =
∫

p(Z1, β |Z0)dβ

∝ exp
{
−1

2
ZT

(
K−1−K−1

Φ

(
Φ

TK−1
Φ

)−1
Φ

TK−1
)

Z
}
.

Then, the calculation (3.5)–(3.8) can be repeated with

∆ = K−1−K−1
Φ

(
Φ

TK−1
Φ

)−1
Φ

TK−1.
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Table 3.1: Complexities of computing Ẑi and Σi for different cross-

validation schemes (see, e.g., Arlot and Celisse, 2009). The leave-p-out
cross-validation scheme stands for taking I =

(N
p

)
and all the subsets

of size p for T1, . . . ,TI .
Leave-p-out K-fold General case

Naive O
(
np+3) O

(
Kn3) O

(
∑

I
i=1 ∑

3
q=0|Ti|q(n−|Ti|)3−q

)
Fast formulas O

(
nmax(3, p+1)

)
O
(
n3) O

(
n3 +∑

I
i=1|Ti|3 + |Ti|2n

)
3.3 . Efficient cross-validation schemes for model selection in

GP regression

3.3.1 . Complexity of cross-validation schemes
Proposition 11 gives the predictive distribution for a hold-out cross-validation

scheme, which forms the building block of more complicated schemes (see, e.g.,
Arlot and Celisse, 2009).

Let T1, · · · ,TI be non-trivial subsets of {1, · · · ,N}. Denote by Z1 ∈R|T1|, . . . ,
ZI ∈ R|TI | the associated sub-vectors of Z ∈ RN and denote by Z−1 ∈ RN−|T1|,
. . . , Z−I ∈ RN−|TI | the sub-vectors corresponding to the complements of the sets
T1, · · · ,TI . For instance, in the case of a leave-one-out cross-validation scheme, we
have I = N and Ti = {i}, i = 1 , . . . , N.

Our objective is to construct a Gaussian model for Z, such that for each i,
N (Ẑi, Σi), with Ẑi and Σi obtained from (3.11) (with Z0← Z−i and Z1← Zi), is a
good predictive distribution for Zi.

Petit et al. (2021a) consider goodness-of-fit criteria written as:

I

∑
i=1

Si

(
N
(

Ẑi, Σi

)
, Zi

)
, (3.12)

where and Si : Pi×R|Ti|, i = 1, . . . , I, are (negatively-oriented) scoring rules (see,
e.g., Gneiting and Raftery, 2007), i.e., mappings such that Si(P, z) expresses a loss
for predicting z ∈ R|Ti| using P in a class Pi of predictive distributions. Ubiqui-
tous examples of scoring rules for GP regression are the squared prediction error
SSPE(P, z) = ‖z−γ‖2, with γ the mean of P, and the negative log predictive density
SNLPD(P, z) =− log(p(z)), where p is the probability density of P.

The complexities for computing the predictive moments Ẑi and Σi using the
standard kriging equations for each hold-out or using the fast formulas (3.11) are
given in Table 3.1. A gain up to two orders of magnitude for the leave-p-out and
can be achieved. For K-fold cross-validation, the gain is a factor K.

3.3.2 . Efficient computation of gradients
Suppose that the covariance matrix K of Z is parametrized by ω ∈ Ω ⊆ Rp.

Define θ =
(
ωT,bT

)T, if β is treated as a deterministic parameter b, or θ = ω
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otherwise. Using the notations of Section 3.3.1, the selection of θ can be carried
out by optimizing the criterion

L(θ) =
I

∑
i=1

Si

(
N
(

Ẑi, Σi

)
, Zi

)
, (3.13)

where Ẑi and Σi depend on θ .
In practice, the criterion (3.13) is optimized using a gradient-based algorithm.

In the following, we extend the approach by Petit et al. (2020a) and show how
to compute the gradient of L using reverse mode differentiation (Linnainmaa,
1970), also known as back-propagation. First, notice that L can be written as the
composition of three operators: L = ϕ ◦ρ ◦ ς with

ς : θ ∈Rq 7→ (µ, K) ∈RN×SN
++,

ρ : (µ, K) ∈RN×SN
++ 7→ Γ =

(
Ẑi, Σi

)
i ∈∏

I
i=1R

|Ti|+|Ti|2 ,

ϕ : Γ ∈∏
I
i=1R

|Ti|+|Ti|2 7→ L ∈R,

(3.14)

where SN
++ is the space of strictly positive definite symmetric matrices and µ is

defined in Proposition 11, according to the assumption on β .
The gradient of L can be computed using the chain rule

JL = JϕJρJς , (3.15)

where the symbol J stands for a Jacobian matrix. In the particular case of leave-
one-out cross-validation, Petit et al. (2020a) argue that the computational cost
of (3.15) depends strongly on its implementation.

Computing Jς is discussed by Petit et al. (2020a), and the case of Jϕ is post-
poned to the end of this section. In the case of leave-one-out cross-validation
with µ = 0, Petit et al. (2020a) use reverse-mode differentiation to get an efficient
computation of the adjoint

L ∗
ρ : δ

Γ 7→ JTρ δ
Γ

(3.16)

of ρ . L ∗
ρ expresses how a variation δ Γ on the value of Γ of is (back-)propagated

on µ and K. It can be used to compute L ∗
ρ

(
JTϕ
)
=
(
JϕJρ

)T in (3.15). More
precisely, Algorithm 1 is an efficient implementation of L ∗

ρ , which can be used
for any cross-validation scheme 3.13. By counting elementary operations, observe
that the computation of the adjoint of ρ using Algorithm 1 has the same order of
algorithmic complexity than the computation of ρ itself (as shown in Table 3.1).
Moreover, the complexity of the computation of ρ and its adjoint dominates that
of other operations.
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Algorithm 1 Computing δ µ
and δ K

from δ Γ =(δ Ẑi , δ Σi, 1≤ i≤ I). Given
a vector a (resp. a matrix A) and 1 ≤ i, j ≤ I, ai (resp. Ai, j) stands for

the subvector (resp. the submatrix) with indices in Ti (resp. in Ti×Tj).

Furthermore, the subscript “:” along a dimension indicates taking all

the indices.

Input: µ , K, δ Γ = (δ Ẑi , δ Σi, 1≤ i≤ I),
Compute ∆ from K and Φ using Proposition 11

α = ∆Z
δ µ = 0, δ K = 0, δ ∆ = 0for i = 1 to I do

δ
∆
−1
i,i = δ Σi−δ ẐiαT

i

δ αi =−∆
−1
i,i δ Ẑi

δ µ = δ µ −∆ : ,iδ
αi

δ ∆
i, : = δ ∆

i, : +δ αi(Z−µ)T

δ ∆
i,i = δ ∆

i,i−∆
−1
i,i δ

∆
−1
i,i ∆
−1
i,iend for

δ K =−∆δ ∆∆

Algorithmic complexity of the computation of ϕ Regarding the com-
putation of (3.12) from the ẐIis and ΣIi , assume that we have a sequence (Sm)m≥1

of scoring rules such that Sm : Pm×Rm can be computed along with its gradient
in g(m) time. Then using leave-p-out yields O (g(p)np) time, which can always
be neglected compared to the complexity of ρ given by Table 3.1, whereas us-
ing K-fold yields O (g(n/K)) time, which does not change the overall complexity
when g(m) = O(m3). (This is the case of the scoring rules SSPE and SNLPD men-
tioned in Section 3.3.1.)

Comparison to maximum likelihood estimation Petit et al. (2020a)
pointed out that O(dn2) time implementations already exist for ς and its Jaco-
bian matrix in the typical case of a homoscedastic noise, a constant mean, and
a family of covariance functions with one parameter per dimension and a fixed
number of remaining parameters. In this case, they conclude that the likelihood
criterion and any leave-one-out criterion can be evaluated along with its gradients
in O

(
n3 +dn2

)
time.

Our contribution shows that the same holds for the leave-2-out and K-fold
criteria—provided that g(m) = O(m3) for the latter. However, for leave-p-out
with p≥ 3, the cost is increased to O

(
np+1 +dn2

)
.

3.4 . Numerical experiments
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Figure 3.1: (a) a design of experiments for the function f , composed
of three clusters of five points. (b) a local polynomial regression of the

SPE versus the distance of the location x to be predicted to the design
of experiments.

In the spirit of Ginsbourger and Schärer (2021), this section illustrates the in-
terest of using other cross-validation schemes than leave-one-out for GP regression.
We consider the test function

f : x ∈ [−1,1]2 7→ sin(4‖x‖)

evaluated on a non-uniform design of size n= 15, as shown in Figure 3.1(a). Notice
that there are three clusters of points. The prediction of f is carried out using a
noiseless zero-mean GP model ξ ∼ GP(0,k), with an isotropic Matérn (ν = 5/2)
covariance function k of the form cov(ξ (x), ξ (y)) = σ2r

(‖x−y‖
ρ

)
(see, e.g., Matérn,

1986, Stein, 1999).
We study the selection of the length scale parameter ρ > 0 using two selection

criteria based on SSPE: the standard leave-one-out criterion and a 4-fold criterion,
with one fold per cluster of design points. The two criteria have the same order of
complexity, according to Table 3.1, but lead to different length scale estimates on
this example.

The leave-one-out criterion yields a large value for ρ (ρ = 91.1), whereas the
4-fold criterion leads to a much smaller estimate (ρ = 0.179).

If we use the selected models for making predictions on a space-filling design
of size 104, the leave-one-out criterion yields a mean squared error of 0.71 and the
4-fold criterion yields 0.37. Furthermore, a more careful analysis of the error is
provided in Figure 3.1(b). It reveals that the 4-fold criterion yields a model that is
more precise for making predictions in empty regions.
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Part III
Goal-oriented modeling
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4 - Relaxed Gaussian process interpolation:
a goal-oriented approach to Bayesian op-
timization

This chapter is a reproduction of Petit et al. (2022b) with few modifications.

S. J. Petit, J. Bect, and E. Vazquez. Relaxed Gaussian process interpolation: a
goal-oriented approach to Bayesian optimization. 2022b. URL https://arxiv.
org/abs/2107.06006

4.1 . Introduction

4.1.1 . Context and motivation

Gaussian process (GP) interpolation and regression (see, e.g., Rasmussen and
Williams, 2006, Stein, 1999) is a very classical method for predicting an unknown
function from data. It has found applications in active learning techniques, and no-
tably in Bayesian optimization, a popular derivative-free global optimization tech-
nique for functions whose evaluations are time-consuming.

A GP model is defined by a mean and a covariance functions, which are gen-
erally selected from data within parametric families. The most popular models
assume stationarity and rely on standard covariance functions such as the Matérn
covariance. The assumption of stationarity yields models with relatively low-
dimensional parameters. However, such a hypothesis can sometimes result in
poor models when the function to be predicted has different scales of variation
or different local regularities across the domain.

This is the case for instance in the motivating example given by Gramacy and
Lee (2008), or in the even simpler toy minimization problem shown in Figure 4.1.
The objective function in this example, which we shall call the Steep function, is
smooth with an obvious global minimum around the point x = 8. However, the
variations around the minimum are overshadowed by some steep variations on the
left. Figure 4.2 shows a stationary GP fit with n = 8 points, where the parameters
of the covariance function have been selected using maximum likelihood. Observe
that the confidence bands are too large and that the conditional mean varies too
much in the neighborhood of the global minimum, consistently with the station-
ary GP model that reflects the prior that our function oscillates around a mean
value with a constant scale of variations. In this case, even if GP interpolation
is consistent (Vazquez and Bect, 2010a), stationarity seems an unsatisfactory as-
sumption for the Steep function. One expects Bayesian optimization techniques
to be somehow inefficient on this problem with such a stationary model, whose
posterior distributions are too pessimistic in the region of the minimum.
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Figure 4.1: Left: the Steep function. Right: same illustration with a

restrained range on the y-axis. The variations on the left overshadow
the global minimum on the right.

Nevertheless, the Steep function has the characteristics of an easy optimization
problem: it has only two local minima, with the global minimum lying in a valley
of significant volume. Consequently, a Bayesian optimization technique could be
competitive if it relied on a model giving good predictions in regions where the
function takes low values. In this work, we propose to explore goal-oriented GP
modeling, where we want predictive models in regions of interest, even if it means
being less predictive elsewhere.

4.1.2 . Related works

Going beyond the stationary hypothesis has been an active direction of research.
With maybe a little bit of oversimplification, one can distinguish two categories of
approaches that all use stationary Gaussian processes as a core building block:
local models and transformation/composition of models.

Local models
A first class of local models is obtained by considering partitions of the input domain
with different GP models on each subset. Partitions can be built by splitting
the domain along the coordinate axes. This is the case of the treed Gaussian
process models proposed by Gramacy and Lee (2008), which combines a fully
Bayesian framework and the use of RJ-MCMC techniques for the inference, or
the trust-region method by Eriksson et al. (2019). Park and Apley (2018) also
propose partition-based local models built by splitting the domain along principal
component directions. In such techniques, there are parameters (often many of
them) related to, e.g., the way the partitions evolve with the data, the size of the
partitions, or how local Gaussian processes interact with each other.
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Figure 4.2: Left: GP fit on the Steep function. Right: same illustration

with a restrained range on the y-axis. The squares represent the data.
The red line represents the posterior mean µn given by the model and

the gray envelopes represent the associated uncertainties.

A second class of local models is obtained by spatially weighting one or sev-
eral GP models. Many schemes have been proposed, including methods based on
partition of unity (Nott and Dunsmuir, 2002), weightings of covariance functions
(Pronzato and Rendas, 2017, Rivoirard and Romary, 2011), and convolution tech-
niques (see, e.g., Gibbs, 1998, Higdon, 1998, 2002, Stein, 2005a, Ver Hoef et al.,
2004). Let us also mention data-driven aggregation techniques: composite Gaus-
sian process models (Ba and Joseph, 2012), and mixture of experts techniques
(see, e.g., Meeds and Osindero, 2006, Rasmussen and Ghahramani, 2002, Tresp,
2001, Yang and Ma, 2011, Yuan and Neubauer, 2009, Yuksel et al., 2012). In
the latter framework, the weights are called gating functions and the estimation
of the parameters and the inference are usually performed using EM, MCMC, or
variational techniques. Weighting methods generally have parameters specifying
weighting functions, with an increased need to watch for overfitting phenomena.

Transformation and composition of models
A first technique for composition of models consists in using a parametric trans-
formation of a GP (Rychlik et al., 1997, Snelson et al., 2004).

Another route is to transform the input domain, using for instance a para-
metric density (Xiong et al., 2007), or other parametric transformations involving
possible dimension reduction (Marmin et al., 2018). Bodin et al. (2020) proposed
a framework that uses additional input variables, serving as nuisance parameters,
to smooth out some badly behaved data. The practitioner has to specify a prior
over the variance of the nuisance parameter and inference is based on MCMC.

Lázaro-Gredilla (2012) takes the step of choosing a GP prior on the output
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transform and resorts to variational inference techniques for inference. This type
of idea can be viewed as an ancestor of deep Gaussian processes (see, e.g., Bachoc
and Lagnoux, 2021, Damianou and Lawrence, 2013, Dunlop et al., 2018, Hebbal
et al., 2021, Jakkala, 2021), which stack layers of linear combinations of GPs. The
practitioner has to specify a network structure among other parameters and resort
to variational inference.

Recently, Picheny et al. (2019) proposed another approach where prediction is
made only from pairwise comparisons between data points, relying on the varia-
tional framework of ordinal GP regression proposed by Chu and Ghahramani (2005)
for the inference.

4.1.3 . Contributions and outline

The brief review of the literature above reveals three types of shortcomings in
methods that depart from the stationarity hypothesis: 1) they rely on advanced
techniques for deriving predictive distributions; or 2) they require the practitioner
to choose in advance some key parameters; or 3) they increase the number of
parameters with an increased risk of overfitting.

This chapter suggests a method for building models targeting regions of interest
specified through function values. The main objective is to obtain global models
that exhibit good predictive distributions on a range of interest. In the case of a
minimization problem, the range of interest would be the values below a threshold.
Outside the range of interest, we accept that the model can be less predictive by
relaxing the interpolation constraints. Such a model is presented in Figure 4.3:
compared to the situation in Figure 4.2, the model is more predictive in the region
where the Steep function takes low values, with expected benefits for the efficiency
of Bayesian optimization.

This chapter provides three main contributions. First, we propose a class of
goal-oriented GP-based models called relaxed Gaussian processes (reGP). Second,
we give theoretical and empirical results justifying the method and its use for
Bayesian optimization. Finally, to assess the predictivity of reGP, we adopt the
formalism of scoring rules (Gneiting and Raftery, 2007) and propose the use of
a goal-oriented scoring rule that we call truncated continuous ranked probability
score (tCRPS), which is designed to assess the predictivity of a model in a range
of interest.

The organization is as follows. Section 4.2 briefly recalls the formalism of Gaus-
sian processes and Bayesian optimization (BO). Section 4.3 presents reGP and its
theoretical properties. The tCRPS and its use for selecting regions of interest are
then presented in Section 4.4. Section 4.5 presents a reGP-based Bayesian opti-
mization algorithm called EGO-R, together with the convergence analysis of this
algorithm and a numerical benchmark. Finally, Section 4.6 presents our conclusions
and perspectives for future work.
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Figure 4.3: Left: prediction of the Steep function with the proposed

methodology (black line: relaxation threshold t; blue points: relaxed
observations). Right: µn versus f (with more observations for illustra-
tion purposes). The model interpolates the data below t. The blue
points are relaxed observations.

4.2 . Background and notations

4.2.1 . Gaussian process modeling

Consider a real-valued function f : X→ R, where X ⊆ Rd , and suppose we
want to infer f at a given x∈X from evaluations of f on a finite set of points xn =

(x1, . . . ,xn) ∈Xn, n≥ 1. A standard Bayesian approach to this problem consists in
using a GP model ξ ∼ GP(µ, k) as a prior about f , where µ :X→R is a mean
function and k : X×X→ R is a covariance function, which is supposed to be
strictly positive-definite in this chapter.

The posterior distribution of ξ given Zn = (ξ (x1), · · · ,ξ (xn))
T is still a Gaussian

process, whose mean and covariance functions are given by the standard kriging
equations (Matheron, 1971). More precisely:

ξ |Zn ∼ GP(µn, kn) , (4.1)

with
µn(x) = µ(x)+ k (x, xn)K−1

n (Zn−µ(xn)) (4.2)

and
kn(x, y) = k(x, y)− k (x, xn)K−1

n k (y, xn)
T , (4.3)

and where µ(xn) = (µ(x1), . . . ,µ(xn))
T, k (x, xn) = (k(x, x1), . . . ,k(x, xn)), and Kn

is the n×n matrix with entries k(xi, x j). We shall also use the notation σ2
n (x) =

kn(x, x) for the posterior variance, a.k.a. the kriging variance, a.k.a. the squared
power function, so that ξ (x) |Zn ∼N

(
µn(x), σ2

n (x)
)
.
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The functions µ and k control the posterior distribution (4.1) and must be
chosen carefully. The standard practice is to select them from data within a para-
metric family {(µθ ,kθ ) , θ ∈ Θ}. A common approach is to suppose stationarity
for the GP, which means choosing a constant mean function µ ≡ c ∈R and a sta-
tionary covariance function k(x,y) = σ2r(x− y), where r :Rd →R is a stationary
correlation function.

A correlation function often recommended in the literature (Stein, 1999) is the
(geometrically anisotropic) Matérn correlation function

r(h) =
21−ν

Γ(ν)

(√
2ν‖h‖ρ

)ν

Kν

(√
2ν‖h‖ρ

)
, ‖h‖2

ρ=
d

∑
j=1

h2
[ j]

ρ2
j
, (4.4)

for h = (h[1], . . . , h[d]) ∈ Rd , and where Γ is the Gamma function and Kν is the
modified Bessel function of the second kind. The process parameters to be selected
in this case are θ = (c, σ2, ρ1, . . . , ρd , ν)∈R×(0,∞)d+2 with σ2 the process vari-
ance, ρi the range parameter along the i-th dimension, and ν a regularity parameter
controlling the smoothness of the process. Two other standard covariance func-
tions can be recovered for specific values of ν : the exponential covariance function
for ν = 1/2 and the squared-exponential covariance function for ν → ∞.

A variety of techniques for selecting the parameter θ have been proposed in
the literature, but we can safely say that maximum likelihood estimation is the
most popular and can be recommended in the case of interpolation (Petit et al.,
2021a). It simply consists in minimizing the negative log-likelihood

L (θ ; Zn) =− log(p(Zn |θ)) ∝ log(det(Kn))+(Zn−µ(xn))
TK−1

n (Zn−µ(xn))+C,

(4.5)

where p stands for the probability density of Zn and C is a constant. Other methods
for selecting the parameters include the restricted maximum likelihood method and
leave-one-out strategies (see, e.g., Rasmussen and Williams, 2006, Stein, 1999).

4.2.2 . Bayesian optimization
The framework of GPs is well suited to the problem of sequential design of

experiments, or active learning. In particular, for minimizing a real-valued function
f defined on a compact domain X, the Bayesian approach consists in choosing
sequentially evaluation points X1, X2, . . . ∈ X using a GP model ξ for f , which
makes it to possible to build a sampling criterion that represents an expected
information gain on the minimum of f when an evaluation is made at a new point.
One of the most popular sampling criterion (also called acquisition function) is the
Expected Improvement (EI) (Jones et al., 1998, Mockus et al., 1978), which can
be expressed as

ρn(x) = E
(
(mn−ξ (x))+ |Zn

)
, (4.6)

where mn =min(ξ (x1), · · · ,ξ (xn)). The EI criterion corresponds to the expectation
of the excursion of ξ below the minimum given n observations, and can be written
in closed form:

80



Proposition 12 (Jones et al., 1998, Vazquez and Bect, 2010b) The EI criterion
may be written as ρn(x) = γ

(
mn−µn(x), σ2

n (x)
)
with

γ : (z, s) ∈R×R+ 7→

{ √
sφ

(
z√
s

)
+ zΦ

(
z√
s

)
if s > 0,

max(z,0) if s = 0,

where φ and Φ stand for the probability density and cumulative distribution func-
tions of the standard Gaussian distribution. Moreover, the function γ is continuous,
verifies γ(z, s)> 0 if s> 0 and is non-decreasing with respect to z and s on R×R+.

When the EI criterion is used for optimization, that is, when the sequence of
evaluation points (Xn)n>0 of f is chosen using the rule

Xn+1 = argmax
x∈X

ρn(x) ,

the resulting algorithm is generally called the Efficient Global Optimization (EGO)
algorithm, as proposed by Jones et al. (1998). The EGO algorithm has known
convergence properties (Bull, 2011, Vazquez and Bect, 2010b).

A variety of other sampling criteria for the minimization problem can be found
in the literature (see, e.g., Frazier et al., 2008, Srinivas et al., 2010, Vazquez and
Bect, 2014, Villemonteix et al., 2009), but we shall focus on the EI algorithm in
this chapter.

4.2.3 . Reproducing kernel Hilbert spaces
Reproducing kernel Hilbert spaces (RKHS, see e.g., Aronszajn, 1950, Berlinet

and Thomas-Agnan, 2004) are Hilbert spaces of functions commonly used in the
field of approximation theory (see, e.g., Wahba, 1990, Wendland, 2004). A Hilbert
space H (X) of real-valued functions on X with an inner product (· , ·)H (X) is
called an RKHS if it has a reproducing kernel, that is, a function k : X×X→R

such that k(x, ·) ∈H (X), and

( f , k(x, ·))H (X) = f (x) (4.7)

(the reproduction property), for all x ∈ X and f ∈H (X). Furthermore, given
a (strictly) positive definite covariance function k, there exists a unique RKHS
admitting k as reproducing kernel.

Given locations xn = (x1, · · · ,xn) ∈Xn, and corresponding values zn ∈Rn, sup-
pose we want to find a function g∈H (X) such that g(xn) = (g(x1), . . . ,g(xn))

T =

zn. Then, the minimum-norm interpolation solution is given by the following propo-
sition.

Proposition 13 (Kimeldorf and Wahba, 1970) The problem

min g ∈H (X)
g(xn) = zn

‖g‖H (X), (4.8)

has a unique solution given by szn
= k(·, xn)K

−1
n zn.
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Observe that the solution szn
is equal to the posterior mean (4.2) when µ = 0.

Moreover, for any f ∈H (X) and x∈X, the reproduction property (4.7) yields
the upper bound ∣∣ f (x)− szn

(x)
∣∣≤ σn(x)‖ f‖H (X), (4.9)

with σn(x) =
√

kn (x, x). Note that σn(x) is the worst-case error at x for the
interpolation of functions in the unit ball of H (X).

4.3 . Relaxed Gaussian process interpolation

4.3.1 . Relaxed interpolation
The example in the introduction (see Figures 4.1–4.3) suggests that, in order

to gain accuracy over a range of values of interest, it can be beneficial to relax
interpolation constraints outside this range. More precisely, the probabilistic model
in Figure 4.3 interpolates data lying below a selected threshold t, and when data
are above t, the model only keeps the information that the data exceeds t.

In the following, we consider the general setting where relaxation is carried
out on a set of the form R =

⋃J
j=1 R j, where R1, . . . , RJ ⊂ R are disjoint closed

intervals with non-zero lengths. (The set R = [t,+∞) was used in the example of
Figure 4.3).

As above, we shall write xn = (x1, · · · ,xn)∈Xn for a sequence of locations with
corresponding function values zn = (z1, · · · ,zn)

T ∈Rn. Then, we introduce the set
CR,n =C1×·· ·×Cn ⊂Rn of relaxed constraints, where{

Ci = R j if zi ∈ R j for some j,
Ci = {zi} otherwise.

(4.10)

Let also
HR,n = {g ∈H (X) | g(xn) ∈CR,n} (4.11)

be the set of relaxed-interpolating functions. The following proposition gives the
definition of the minimum-norm relaxed predictor.

Proposition 14 The problem

min
g∈HR,n

‖g‖H (X) (4.12)

has a unique solution given by sz?n , where z?n is the unique solution of the quadratic
problem

argmin
z∈CR,n

zTK−1
n z. (4.13)

4.3.2 . Relaxed Gaussian process interpolation
The main advantage of Gaussian processes is the possibility to obtain not

only point predictions but also predictive distributions. However, Proposition 14
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only defines a function approximation. We now turn relaxed interpolation into a
probabilistic model providing predictive distributions whose mean is not constrained
to interpolate data on a given range R. The following proposition makes a step in
this direction.

Proposition 15 Let ξ ∼ GP(0, k), xn = (x1, · · · ,xn) ∈ Xn, zn ∈ Rn and x′m =

(x′1, · · · ,x′m) ∈ Xm be a set of locations of interest where predictions should be
made. Write Zn = (ξ (x1), . . . ,ξ (xn))

T and Z′m = (ξ (x′1), . . . ,ξ (x
′
m))

T. Then the
mode of the probability density function

p
(
Z′m, Zn |Zn ∈CR,n

)
(4.14)

is given by
(
sz?n(x

′
m), z?n

)
.

In other words, the relaxed interpolation solution of Proposition 14 corresponds
to the maximum a posteriori (MAP) estimate under the predictive model (4.14).
Conditional distributions with respect to events of the type Zn ∈CR,n have been
used in Bayesian statistics for dealing with outliers and model misspecifications
(see, e.g., Lewis et al., 2021, and references therein). This type of conditional dis-
tributions is also encountered for constrained GPs (see, e.g., Da Veiga and Marrel,
2012, López-Lopera et al., 2018, Maatouk and Bay, 2017), when constraints come
from expert knowledge.

However, the predictive distribution (4.14) is non-Gaussian since the support
of Zn is truncated. In particular, its moments are more expensive to compute
than those of a GP (Da Veiga and Marrel, 2012), and sampling requires advanced
techniques (e.g., variational, MCMC). Motivated by this observation, we propose
instead to build a goal-oriented probabilistic model using the following definition.

Definition 16 (Relaxed-GP predictive distribution; fixed µ and k) Given xn ∈
Xn, zn ∈Rn, and a relaxation set R (finite union of closed intervals), the relaxed-GP
(reGP) predictive distribution with fixed mean function µ and covariance function k
is defined as the (Gaussian) conditional distribution of ξ ∼GP(µ, k) given Zn = z?n,
where z?n is given by

z?n = argmin
z∈CR,n

(z−µ(xn))
T K−1

n (z−µ(xn)) , (4.15)

with CR,n defined by (4.10).

Observe that (4.15) reduces to (4.13) when µ = 0. Consequently, the mean
of the distribution is the predictor sz?n from Proposition 14 in this particular case,
and is equal to µ + sz?n in general. Moreover, the reGP predictive distribution can
be seen as an approximation of (4.14), where p(Zn |Zn ∈CR,n) has been replaced
by its mode. As discussed earlier, the main advantage of the reGP predictive
distribution compared to (4.14) is its reasonable computational burden since it is
a GP. Therefore, it makes it possible to use adaptive strategies for the choice of
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R, as in Section 4.4. Moreover, it also has appealing theoretical approximation
properties, as discussed in Section 4.3.3.

As discussed in Section 4.2.1, the standard practice is to select the mean and
the covariance functions within a parametric family {(µθ ,kθ ) , θ ∈Θ}. In this case,
we propose to perform the parameter selection and the relaxation jointly. This is
formalized by the following definition of relaxed Gaussian process interpolation.

Definition 17 (Relaxed-GP predictive distribution; estimated parameters)
Given xn ∈Xn, zn ∈ Rn, a relaxation set R (finite union of closed intervals), and
parametric families (µθ ) and (kθ ) as in Section 4.2.1, the relaxed-GP (reGP) pre-
dictive distribution with estimated parameters is the (Gaussian) conditional distri-
bution of ξ ∼ GP(µθ , kθ ) given Zn = z?n, where z?n and θ = θ̂n are obtained jointly
by minimizing the negative log-likelihood:(

θ̂n, z?n
)

= argmin
θ∈Θ, z∈CR,n

L (θ ; z) , (4.16)

with CR,n defined by (4.10).

Remark 18 (On minimizing (4.16) jointly) Let Zn,1 be the values within the
range R, and Zn,0 the values in Rc = R \R that are not relaxed. The negative
log-likelihood can be written as

L (θ ; Zn) =− ln
(

p
(
Zn,0 |θ

))
− ln

(
p
(
Zn,1 |θ , Zn,0

))
, (4.17)

where the first term is a goodness-of-fit criterion based on the values in Rc, and
where the second term can mainly be viewed as an imputation term, which “re-
shapes” the values in R with the information from Zn,0. (Note also that θ appears
in the second term. When this term is minimized with respect to Zn,1, it becomes
a parameter selection term that promotes the θ s compatible with the excursions
in CR,n.)

For illustration, we provide an example of a reGP predictive distribution in
Figure 4.4, with an union of two intervals for the relaxation set R.

Remark 19 (Numerical details) Minimizing (4.16) with respect to z falls under
the scope of quadratic programming (see, e.g., Nocedal and Wright, 2006b) and
could be solved efficiently using dedicated algorithms. This suggests that specific
algorithms could be developed for the problem. In this work, we simply use a
standard L-BFGS-B solver (Byrd et al., 1995) using the gradient of (4.16).

4.3.3 . Convergence analysis of reGP
In this section, we provide several theoretical results concerning the convergence

of the method proposed. This section can be skipped on first reading.
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Figure 4.4: An example of reGP predictive distribution with R =
(−∞,−1]∪ [1,+∞) on a function f represented in dashed black lines.
The solid black lines represent the relaxation thresholds. The prob-

lem (4.16) was solved only in z as the parameters of the (constant)
mean and (ν = 5/2 Matérn) covariance functions were held fixed for
illustration purposes.
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Known convergence results about interpolation in RKHS
Recall that the fractional-order Sobolev space W β

2 (Rd), with regularity β ≥ 0, is
the space of functions on Rd defined by

W β

2 (Rd) =
{

g ∈ L2(Rd), ‖g‖
W β

2 (Rd)
=
∥∥ĝ
(
1+‖·‖2)β/2∥∥

L2(Rd)
<+∞

}
,

where ĝ ∈ L2(Rd) is the Fourier transform of g ∈ L2(Rd).
For a given X⊂Rd , define the Sobolev spaces W β

2 (X) =
{

g|X, g ∈W β

2 (Rd)
}

endowed with the norm

‖g‖
W β

2 (X)
= inf

g̃∈W β

2 (Rd), g̃|X=g
‖g̃‖

W β

2 (Rd)
. (4.18)

The following assumption about X will sometimes be used in this section.

Assumption 20 The domain is non-empty, compact, connected, has locally Lip-
schitz boundary (see, e.g., Adams and Fournier, 2003, Section 4.9), and is equal
to the closure of its interior.

Assumption 20 ensures that the previous definition coincides with other commons
definitions, and makes it possible to use well-known results from the field of scat-
tered data approximation, by preventing the existence of cusps. Many common
domains—such as hyperrectangles or balls, for instance—verify Assumption 20.

A strictly positive-definite reproducing kernel k : X×X→ R is said to have
regularity α > 0 if the associated RKHS H (X) coincides with W α+d/2

2 (X) as a
function space, with equivalent norms. As such, the Matérn stationary kernels (4.4)
have correlation functions r whose Fourier transform verifies (see, e.g., Wendland,
2004, Theorem 6.13)

C1
(
1+‖·‖2)−ν−d/2 ≤ r̂ ≤C2

(
1+‖·‖2)−ν−d/2

for some C2 ≥ C1 > 0, and have therefore Sobolev regularity α = ν on Rd (see,
e.g., Wendland, 2004, Corollary 10.13) and consequently also on X, using (4.18)
and Lemma 36. Other examples are given by Wendland (2004), for instance.

We now recall a classical convergence result about interpolation in RKHS with
evaluation points in a bounded domain. Consider a kernel k :X×X→R, and let
(xn)n≥1 ∈XN be a sequence of distinct points. The following property (a minor
reformulation of Theorem 4.1 of Arcangéli et al. (2007)) gives error bounds that
depend on the Sobolev regularity of k and the so-called fill distance of xn ∈Xn,
defined by

hn = sup
x∈X

min
1≤i≤n

‖x− xi‖. (4.19)
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Proposition 21 Let k be a reproducing kernel with regularity α > 0. If X verifies
Assumption 20, then

sup
x∈X

σn(x). hα
n , n≥ 1 , (4.20)

where . denotes inequality up to a constant, that does not depend on (xn)n≥1.

Using (4.9) and Proposition 21, this yields the following uniform bound.

Corollary 22 Let k be a reproducing kernel with regularity α > 0, H (X) the
RKHS generated by k, and let f ∈ H (X). As above, let szn

be the solution
of (4.8) for zn = ( f (x1), · · · , f (xn))

T, n≥ 1. If X verifies Assumption 20, then

‖ f − szn
‖L∞(X) . hα

n ‖ f‖H (X) . (4.21)

Convergence results for reGP
Let k : X×X→ R be a continuous strictly positive-definite reproducing kernel.
In this section, we consider the zero-mean reGP predictive distribution obtained
from ξ ∼ GP(0, k), with relaxed interpolation constraints on a union R =

⋃q
j=1 R j

of disjoints closed intervals R j with non-zero length. Let H (X) be the RKHS
attached to k, f ∈ H (X), and consider a sequence (xn)n≥1 ∈ XN of distinct
points. Furthermore, define (the) regions X j = {x ∈X, f (x) ∈ R j} for 1≤ j ≤ q
and X0 =X \

⋃
j≥1X j. We give results about the limit of the sequence of reGP

predictive distributions that suggest an improved fit in X0.
Let sR,n = sz?n be the relaxed predictor from Proposition 14 based on (x1, . . . ,xn)

and ( f (x1), . . . , f (xn))
T, n ≥ 1. The following proposition establishes the limit

behavior of the sequence (sR,n)n≥1.

Proposition 23 Let U⊂X and let HR,U denote the set of functions g ∈H (X)

such that, for all x ∈U,{
g(x) ∈ R j if f (x) ∈ R j for some j,
g(x) = f (x) otherwise.

(4.22)

Then the problem
min

g∈HR,U
‖g‖H (X) (4.23)

has a unique solution denoted by sR,U. Moreover,

sR,n
H (X)−−−−→ sR,U, (4.24)

with U the closure of {xn}.

In particular, when {xn} is dense in X, then U =X and (sR,n)n≥1 converges
to sR,X, which is the minimal-norm element of the set HR,X.

The next proposition tells us that the interpolation error onX0 can be bounded
by a term that depends on the norm of sR,X.
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Proposition 24 For any x ∈X0 and n≥ 1,

| f (x)− sR,n(x)| ≤ 2σn,0(x)‖sR,X‖H (X), (4.25)

where σn,0 is the power function obtained using only points in X0 for predictions.

This yields the following error bounds when the design is dense.

Proposition 25 Suppose that {xn} is dense and that k has regularity α > 0. Let
B⊂X0 verify Assumption 20. Then, for all n≥ 1,

‖ f − sR,n‖L∞(B) . hα
n ‖sR,X‖H (X). (4.26)

Let d(y, A) be the distance of y ∈R to A⊂R. For j ≥ 1, x ∈X j, and for all
n≥ 1:

d(sR,n(x), R j). hα
n ‖sR,X‖H (X) if α < 1, (4.27)

d(sR,n(x), R j).
√

(|ln(hn)|+1)hn ‖sR,X‖H (X) if α = 1, (4.28)

and
d(sR,n(x), R j). hn‖sR,X‖H (X) if α > 1 , (4.29)

where . denotes inequality up to a constant, that does not depend on f , n, x or
(xn).

Finally, we investigate the following question: how large can be the norm of f
compared to the approximation ‖sR,X‖H (X)?

Proposition 26 Suppose that k has regularity α > 0 and that there exists some
j ≥ 1 such that X j has a non-empty interior. We have

sup
g∈HR,X

‖g‖H (X) =+∞, (4.30)

with HR,X given by (4.22) for f ∈H (X).

This result shows that the norm reduction obtained by approximating f with relaxed
interpolation constraints can therefore be arbitrarily high in the finite-smoothness
case. A stronger version of Proposition 26 for the special case where R = [t,+∞)

can be derived, and shows that

sup
g∈HR,X

‖g‖L∞(X) =+∞ .

Overall, no matter the element of HR,X at hand, reGP converges to a func-
tion sR,X which: coincides with f on X0, verifies f (x) ∈ R j⇔ sR,X(x) ∈ R j for all
x ∈X, and is “nicer” than f in the sense of ‖·‖H (X). Furthermore, reGP yields
error bounds carrying the norm of sR,X, which can be arbitrarily smaller than the
norm of f in the case of a finite-smoothness covariance function.
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Remark 27 Note that σn ≤ σn,0 due to the standard projection interpretation.
Empirical and theoretical results about the screening effect (see, e.g., Bao et al.,
2020, Stein, 2011), suggests that σn ' σn,0, if k has smoothness α > 0. In this
case, observe that—no matter the element of HR,X at hand—the bound (4.25) is
larger by only a small factor compared to (4.9) with f = sR,X. (However, to the
best of our knowledge, no result exists concerning the screening effect for arbitrary
designs.)

Remark 28 The equality (4.30) does not hold in general for infinitely smooth
covariance functions. For instance, Steinwart et al. (2006, Corollary 3.9) show
that HR,X= { f} if the interior ofX0 is not empty and k is the squared-exponential
covariance function (i.e. (4.4), with ν → ∞).

4.4 . Choice of the relaxation set

4.4.1 . Towards goal-oriented cross-validation
The framework of reGP makes it possible to predict a function f from point

evaluations of f . Suppose we are specifically interested in obtaining good predictive
distributions in a range Q⊂R of function values, and accept degraded predictions
outside this range. To achieve this goal, the idea of reGP is to relax interpolation
constraints. Naturally, it makes sense to relax interpolation constraints outside
the range Q but it could happen that relaxing interpolation constraints does not
improve predictive distributions on Q. Therefore, the question arises as to how to
automatically select a range R in R\Q, on which interpolation constraints should
be relaxed.

In the following, we put R(0) = R \Q, and we view the relaxation set R as a
parameter of the reGP model, which has to be chosen in R(0) along with the param-
eters θ of the underlying GP ξ . A first idea for the selection of R is to rely on the
standard leave-one-out cross-validation approach to select the parameters of a GP
(Dubrule, 1983, Rasmussen and Williams, 2006, Zhang and Wang, 2010). Using
the formalism of scoring rules (see, e.g., Gneiting and Raftery, 2007, Petit et al.,
2021a), selecting parameters by a leave-one-out approach amounts to minimizing
a selection criterion written as

Jn(R) =
1
n

n

∑
i=1

S (PR,n,−i, f (xi)) , (4.31)

where PR,n,−i is the reGP predictive distribution with the observations zn,−i =

(z1, . . . ,zi−1, zi+1, . . . ,zn) and the relaxation set R. The function S in (4.31) is
a scoring rule, that is, a function S : P×R→R∪{−∞,+∞}, acting on a class P

of probability distributions on R, such that S(P, z) assigns a loss for choosing a
predictive distribution P∈P, while observing z∈R. Scoring rules make it possible
to quantify the quality of probabilistic predictions.
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Since the user is not specifically interested in good predictive distributions in
R(0), validating the model on R(0) should not be a primary focus. However, simply
restricting the sum (4.31) by removing indices i such that f (xi) ∈ R(0) would make
it impossible to assess if the model is good at predicting that f (x) ∈ R(0) for a
given x ∈X. For instance, in the case of minimization, with Q = (−∞, t(0)) and
R(0) = [ t(0),∞), it is important to identify the regions corresponding to f being
above t(0), even if we are not interested in accurate predictions above t(0), because
we expect that an optimization algorithm should avoid the exploration of these
regions.

In the next section, we propose instead to keep the whole leave-one-out sum
(4.31), but to choose a scoring rule S that serves our goal-oriented approach.

4.4.2 . Truncated continuous ranked probability score
An appealing class of scoring rules for goal-oriented predictive distributions

is the class of weighted scoring rules for binary predictors (Gneiting and Raftery,
2007, Matheson and Winkler, 1976), which may be written as

S (P, z) =
∫ +∞

−∞

s(FP(u),1z≤u)µ(du) , (4.32)

where s : [0, 1]×{0, 1} → R∪{−∞,+∞} is a scoring rule for binary predictors,
and µ is a Borel measure on R. A well-known instance of (4.32) is the continuous
ranked probability score (Gneiting et al., 2005) written as

SCRPS(P, z) =
∫ +∞

−∞

(FP(u)−1z≤u)
2 du ,

which is obtained by choosing the Brier score for s and the Lebesgue measure for
µ .

For the case where we are specifically interested in obtaining good predictive
distributions in a range of interest Q⊂R, we propose to use the following scoring
rule, which we call truncated continuous ranked probability score (tCRPS):

StCRPS
Q (P, z) =

∫
Q
(FP(u)−1z≤u)

2 du. (4.33)

This scoring rule, proposed by Lerch and Thorarinsdottir (2013) in a different
context, reduces to SCRPS when Q = R. It can be seen as a special case of the
weighted CRPS (Gneiting and Ranjan, 2011, Gneiting and Raftery, 2007, Matheson
and Winkler, 1976), in which the indicator function 1Q plays the role of the weight
function—in other words, the measure µ in (4.32) has density 1Q with respect to
Lebesgue’s measure.

Consider for instance the case Q =
(
−∞, t(0)

)
:

StCRPS
Q (P, z) =

∫ t(0)

−∞

(FP(u)−1z≤u)
2 du. (4.34)
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Note that, in this case, StCRPS
Q (P, z) does not depend on the specific value of z

when z ≥ t(0). This scoring rule is thus well suited to the problem of measuring
the performance of a predictive distribution in such a way as to fully assess the
goodness-of-fit of the distribution when the true value is below a threshold, and
only ask that the support of the predictive distribution is concentrated above the
threshold when the true value is above the threshold.

We provide in Appendix 4.7 some properties of the scoring rule (4.33) and
closed-form expressions for the case where Q is an interval (or a finite union of
intervals) and P is Gaussian. To the best of our knowledge, these expressions are
new.

4.4.3 . Choosing the relaxation set using the tCRPS scoring rule
Given a range of interest Q, the tCRPS scoring rule makes it possible to derive

a goal-oriented leave-one-out selection criterion, that we shall call the LOO-tCRPS
criterion:

Jn (R) =
1
n

n

∑
i=1

StCRPS
Q (PR,n,−i, f (xi)) . (4.35)

Using (4.35), we suggest the following procedure to select a reGP model. First,
choose a sequence of nested candidate relaxation sets R(0) ⊃ R(1) ⊃ ·· · ⊃ R(G) = /0.
The next step is the computation of Jn(R(g)), g = 0, . . . , G, which involves the
predictive distributions PR(g),n,−i.

In principle, (4.16) should be solved again each time a data point (xi, zi) is
removed, to obtain a pair (θ̂ (g)

n,−i, z(g)n,−i) and then the corresponding reGP distribu-
tion PR(g),n,−i. To alleviate computational cost, a simple idea is to rely on the fast
leave-one-out formulas (Dubrule, 1983) for Gaussian processes: for each set R(g),
solve (4.16) to obtain θ̂

(g)
n and z(g)n = (z(g)1 , . . . , z(g)n )T, and then compute the con-

ditional distributions ξ (xi) | {ξ (x j) = z(g)j , j 6= i}, where ξ ∼ GP(µ, k), and where

µ and k have parameter θ̂
(g)
n , using the fast leave-one-out formulas. By doing so,

we neglect the difference between θ̂
(g)
n,−i and θ̂

(g)
n and the difference between z(g)n,−i

and the vector (z(g)1 , . . . , z(g)i−1, z(g)i+1, . . . , z(g)n )T.
The procedure ends by choosing the relaxation set R(g) that achieves the best

LOO-tCRPS value.
Figure 4.5 illustrates the selection of the relaxation set used in Figure 4.3.

4.4.4 . An example for the estimation of an excursion set
We illustrate the method on the problem of estimating an excursion set {x ∈

X, f (x)≤ 0}. We consider the g10-RR optimization problem from Section 1.6, and
focus on the constraint c6 ≤ 0. Finding solutions satisfying the c6 ≤ 0 constraint
using a GP model is difficult, probably because the values of c6 are very bi-modal,
as illustrated in Figure 4.6. However, Feliot et al. (2017) found that the difficulty
could be overcome by performing an ad-hoc monotonic transformation z 7→ zα ,
with α = 7, on the constraint.
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Figure 4.5: Illustration of the choice of a relaxation set. The range of

interest Q is determined by the threshold t(0). The relaxation set R cor-
responding to the region above t has been obtained by the procedure
described in Section 4.4.3.
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Figure 4.6: Left: Histogram of the values of the function c6 from the

g10-RR problem. Right: Same illustration but for the function cα
6 , with

α = 7. The histograms are obtained from the values of the functions
on a space-filling design of size n = 100. On the left, the values are very
separated and concentrated on twomodes, yielding a function close to

a piecewise constant function. After transformation, the phenomenon

is mitigated.
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Figure 4.7: A reGP fit of c6, where the relaxation thresholds have been

selected by LOO-tCRPS. The observations zn are shown on the x-axis,
whereas the “relaxed” observations z?n are represented on the y-axis.
Moreover, the green lines represent the value zero, and the brown

lines represent ± t(g), with t(g) chosen to be t(0) by the LOO-tCRPS. Fi-
nally, the blue line shows a best fit by z 7→ z7

.

The estimation of an excursion set { f ≤ 0} involves capturing precisely the
behavior of f around zero. Thus, we define a range of interest Q = (−t(0), t(0))
centered on zero, with t(0) sufficiently small (note that there may be no data in Q).
Then, we consider relaxation range candidates R(g) = (−∞,−t(g) ]∪ [ t(g),+∞) with
a sequence of thresholds t(0) < · · · < t(G) = +∞, and we select t(g) by minimizing
the LOO-tCRPS as described in the previous section.

In the case of the c6 constraint and a small value for t(0) such that there is
no data in Q, the results are presented in Figure 4.7. The LOO-tCRPS chooses
t(g) = t(0), so the reGP predictive distributions use only the information of being
above or below zero. Moreover, observe that the corresponding transformation
after relaxation bears resemblance to the transformation z 7→ zα proposed by Feliot
et al. (2017). If we apply the reGP framework on the transformed function cα

6
(details omitted for brevity), we find that the LOO-tCRPS chooses a large t(g)

such that the interpolation constraints are relaxed for a few observations only.

4.5 . Application to Bayesian optimization
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4.5.1 . Efficient global optimization with relaxation
The first motivation for introducing reGP models is Bayesian optimization,

where obtaining good predictive distributions over ranges corresponding to optimal
values is a key issue. In this chapter, we focus more specifically on the minimization
problem

min
x∈X

f (x) , (4.36)

where f is a real-valued function defined on a compact set X ⊂ Rd , but the
methodology can be generalized to constrained and/or multi-objective formula-
tions.

Given f , our objective is to construct a sequence of evaluation points X1,X2 . . .∈
X by choosing each point Xn+1 as the maximizer of the expected improvement cri-
terion (4.6) computed with respect to the reGP predictive distribution, with a
relaxation set Rn = [tn,+∞). More precisely, the sequence (Xn) is constructed
sequentially using the rule

Xn+1 = argmax
x∈X

En
(
(mn−ξ (x))+

)
, (4.37)

where mn = f (X1)∧·· ·∧ f (Xn), and En is the expectation under the reGP predictive
distribution with relaxation set Rn and data zn = ( f (X1), . . . , f (Xn))

T.
As in Section 4.4.3, the relaxation threshold tn at iteration n is chosen using

the LOO-tCRPS criterion (4.35) among candidates values

t(0)n < t(1)n < · · ·< t(G)
n , (4.38)

where t(0)n is the validation threshold. In the following, the optimization method
just described will be called efficient global optimization with relaxation (EGO-R),
in reference to the EGO name proposed by Jones et al. (1998).

Implementation specifics—including heuristics for choosing t(0)n —are detailed
in Section 4.5.3. In the next section, we show that using the EI criterion with a
reGP model yields a convergent algorithm.

4.5.2 . Convergence of EGO-R with fixed parameters and varying
threshold

In this section, we extend the result of Vazquez and Bect (2010b) and show the
convergence of the EGO-R algorithm, in the case where the predictive distributions
derive from a zero-mean Gaussian process with fixed covariance function.

We suppose thatX is a compact domain and that k :X×X→R is continuous,
strictly positive-definite, and has the NEB (no-empty ball) property (Vazquez and
Bect, 2010b), which says that the posterior variance cannot go to zero at a given
point if there is no evaluation points in a ball centered on this point. In other words,
the NEB property requires that the posterior variance σ2

n (x) at x ∈ X remains
bounded away from zero for any x not in the closure of the sequence of points (Xn)

evaluated by the optimization algorithm. A stationary covariance function with
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smoothness α > 0 verifies the NEB property (Vazquez and Bect, 2010b), whereas
the squared-exponential covariance function does not (Vazquez and Bect, 2010a).

Proposition 29 Let k :X×X→R be a continuous strictly positive-definite co-
variance function that verifies the NEB property, H (X) the corresponding RKHS
and f ∈H (X). Let n0 > 0. Let (Xn)n≥1 be a sequence in X such that, for each
n ≥ n0, Xn+1 is obtained by (4.37) with tn > mn. Then the sequence (Xn)n≥1 is
dense in X.

Observe that Proposition 29 implies the convergence of EGO-R with a fixed
threshold t > mini≤n0 f (Xi). In this case, the theoretical insights from Section 4.3.3
suggest a faster convergence might be achieved due to the improved error esti-
mates (4.25) and (4.26) in a neighborhood of the global minimum.

The convergence of EGO-R also holds in the case of a varying relaxation set
Rn = [tn,+∞), with tn > mn, and in particular when tn is selected at each step using
the LOO-tCRPS criterion (4.35) with a validation threshold t(0)n > mn. In this case,
the norm term in (4.25) gets smaller if (tn)n≥1 is decreasing.

4.5.3 . Optimization benchmark
In this section, we run numerical experiments to demonstrate the interest of

using EGO-R instead of EGO for minimization problems.

Methodology
In practice, we must choose the sequence of thresholds (4.38). The validation
threshold t(0)n should be set above mn to ensure there is enough data to carry out
the validation. We propose two different heuristics: a) a constant heuristic, where
t(0)n is kept constant through the iterations and set to an empirical quantile of an
initial data set constructed before EGO-R is run, and b) a concentration heuristic,
where t(0)n corresponds to an empirical quantile of zn.

In the case of the constant heuristic, we set t(0)n to the α-quantile of the
function values on an initial design, which is typically built to fill X as evenly as
possible with, e.g., maximin Latin hypercube sampling (McKay et al., 2000). The
numerical experiments were conducted with α = 0.25 in this chapter.

In the case of the concentration heuristic, we consider an α-quantile of the
values of f at the points visited by the algorithm (again with α = 0.25). As
the optimization algorithm makes progress, the evaluations will likely concentrate
around the global minimum. Thus, t(0)n will get closer to the minimum value, and
the range Qn = (−∞, t(0)n ) of validation values will get smaller. Besides, since we
expect better predictive distributions in this range, a better convergence may be
obtained.

Both heuristics can be justified by the idealized setting of the convergence
result from the previous section. Proposing alternative adaptive strategies to the
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concentration heuristic, or more generally conducting a theoretical study on the
performance of such adaptive strategies, is out of the scope of this chapter.

For a given t(0)n , the candidate relaxation thresholds t(g)n , g = 1, . . . , G, are
chosen so that t(g)n −mn ranges logarithmically from t(0)n −mn to max f (Xi)−mn

(with G = 10, in the experiments below).
To assess the performances of EGO-R with the two heuristics for choosing t(0)n ,

we compare them to the standard EGO algorithm. For all three algorithms, we
use a first initial maximin (over 50 random repetitions) Latin hypercube design of
size n0 = 3d, and we consider GPs with constant mean and a Matérn covariance
function with regularity ν = 5/2. The parameters are estimated using (4.5) for
EGO, while EGO-R uses (4.16) for a relaxation set [tn,+∞) selected by LOO-
tCRPS with t(0)n . The maximization of the sampling criteria (4.6) and (4.37) is
carried out using a sequential Monte Carlo approach (Benassi et al., 2012, Feliot
et al., 2017).

For reference, we also run the Dual simulated Annealing algorithm (inspired by
Xiang et al. (1997)) from SciPy (Virtanen et al., 2020), with the default settings
and with a random initialization.

The optimization algorithms are tested against a benchmark of test functions
from Surjanovic and Bingham (2013) summarized in Table 4.1, with nrep = 30
random repetitions, and a budget of ntot = 300 evaluations for each repetition.
Note that the randomness is caused by the designs and the SMC algorithm.

This benchmark is partly inspired by Jones et al. (1998) and Merrill et al.
(2021). In particular, we also use a log-version of the Goldstein-Price function as
Jones et al. (1998).

To evaluate the algorithms we use, for each test function, several targets de-
fined as spatial quantiles of the function and estimated with a subset simulation
algorithm (see, e.g., Au and Beck, 2001). Then, the performances of the algo-
rithms are evaluated using the fractions of runs that manage to reach the targets
and the average numbers of evaluations to reach the targets (with unsuccessful
runs counted as ntot).

Findings
The full set of results is provided in Appendix 4.9. In Figure 4.8, we present a
representative subset of these results.

First, observe in Figure 4.8 that the EGO-R methods can be considerably
helpful and can outperform EGO largely on functions that are difficult to model
with stationary GPs, such as Goldstein-Price, Perm (10), and Beale.

Observe also that the EGO-R methods have about the same performance as
EGO on functions that are easy to model with stationary GPs. This is the case
of the Log-Goldstein-Price and the Branin functions, for which the LOO-tCRPS
criterion for choosing the relaxation set detects that the larger values help predict
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Table 4.1: Optimization benchmark. The acronym G-P stands for

Goldstein-Price.

Problem d
Branin 2

Six-hump Camel 2
Three-hump Camel 2

Hartman 3, 6
Ackley 4, 6, 10

Rosenbrock 4, 6, 10
Shekel 5, 7, 10

Goldstein-Price 2
Log-Goldstein-Price 2
Cross-in-Tray 2
Beale 2

Dixon-Price 4, 6, 10
Perm 4, 6, 10

Michalewicz 4, 6, 10
Zakharov 4, 6, 10

near the minimum, and that no relaxation is needed as a result.

Furthermore, it is instructive to compare the performances of the EGO-R al-
gorithms on the Goldstein-Price function on the one hand, with the performance
of the EGO algorithm on Log-Goldstein-Price function on the other hand. Using
reGP modeling enables to perform as well as with the logarithmic transform, but
in an automatic way. This is also illustrated by Figure 4.9, which shows that the
(non-parametric) transform learned by reGP resembles a logarithmic transform.

Finally, observe that the constant heuristic performs as well as EGO on Ack-
ley (10), whereas the concentration heuristic lags behind. A closer look at the
results for this function shows that the concentration heuristic get sometimes stuck
in a local minimum. We explain this by the fact that the reGP model with the
concentration heuristic can become very predictive in a small region around the lo-
cal minimum, and underestimate the function variations elsewhere (the variance of
the predictive distributions above t(0)n are too small, and the optimization algorithm
does not sufficiently explore unknown regions). To this regard, the constant heuris-
tic is probably more conservative. Overall, taking the results from Appendix 4.9
into account, the concentration heuristic appears to be more (resp. less) efficient
than the constant heuristic when there are few (resp. many) local minima.

4.6 . Conclusion
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Figure 4.8: For each case, the top plot is the average number of itera-

tions to reach the spatial quantile, and the bottom plot is the propor-

tion of successful runs. Both are represented versus the level of the

spatial quantile. The gray dotted line stands for the Dual simulated

Annealing algorithm, the red line for the standard EGO algorithm, and

the blue and green lines for EGO-R, with the “Constant” and “Concen-

tration” heuristics. The results are shown until the success rates of the

three previous methods fall below the 66% threshold materialized by

the black dashed line.
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This chapter presents a new technique called reGP to build predictive distri-
butions for a function observed on a sequence of points. This technique can be
applied when a user wants good predictive distributions in a range of function val-
ues, for example below a given threshold, and accepts degraded predictions outside
this range. The technique relies on Gaussian process interpolation, and operates
by relaxing the interpolation constraints outside the range of interest. This goal-
oriented technique is kept simple and cheap: there are no additional parameters to
set compared to the standard Gaussian process framework. The user only needs
to specify a range of function values where good predictions should be obtained.
The relaxation range can be selected automatically, using a scoring rule adapted
to reGP models.

Such goal-oriented models can then be used in Bayesian sequential search
algorithms. Here we are interested in the problem of mono-objective optimization
and we propose to study the EI / EGO algorithm with such models. In a first step,
we guarantee the convergence of the reGP-based algorithm on the RKHS attached
to the underlying GP covariance. Then, we provide a benchmark that shows very
clear benefits of using reGP models for the optimization of various functions.
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4.7 . Properties of the truncated CRPS

We shall now write (4.33)more explicitly for the case where the range of interest
is an interval Q = (a,b), −∞ ≤ a < b ≤ +∞, and provide closed-form expressions
for the case where, in addition, the predictive distribution P is Gaussian.

Remark 30 The value of the tCRPS for an interval Q = (a,b) remains unchanged
if the interval is closed at one or both of its endpoints.

Remark 31 The value of the tCRPS for a finite (or countable) union of disjoint
intervals follows readily from its values on intervals, since Q 7→ StCRPS

Q (P, z) is σ -
additive.

We shall start by defining a quantity that shares similarities with (4.6).

Definition 32 EI↑q(P, z) = E
(
(N1∨·· ·∨Nq− z)+

)
with N j

iid∼ P.

The following expressions hold for a general predictive distribution P. With
a slight abuse of notation, we will write StCRPS

a,b for StCRPS
Q with Q = (a,b) in the

following.

Proposition 33 Suppose that P has a first order moment.

• Let a,b ∈R with a≤ b. Then,

StCRPS
a,b (P, z) = (b∧ z−a)+ + EI↑2(P,b)−EI↑2(P,a)

−21z≤b

(
EI↑1(P,b)−EI↑1(P,a∨ z)

)
. (4.39)

• Let b ∈R and N1,N2
iid∼ P. Then,

StCRPS
−∞,b (P, z) = b∧ z + EI↑2(P,b)−E(N1∨N2)

−21z≤b

(
EI↑1(P,b)−EI↑1(P,z)

)
. (4.40)

• Finally, if a ∈R, then

StCRPS
a,+∞ (P, z) = StCRPS

−∞,−a(P,−z), (4.41)

where P is the distribution of −U if U is P-distributed.

Now, leveraging well-known analytic expressions (see, e.g., Chevalier and Gins-
bourger, 2013, Nadarajah and Kotz, 2008), we have the following closed-form
expressions in the Gaussian case.

Proposition 34 (Chevalier and Ginsbourger, 2013, Nadarajah and Kotz, 2008)
Suppose that P = N (µ,σ2) and let φ and Φ denote respectively the pdf and the
cdf of the standard Gaussian distribution. Then
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• EI↑1(P,z) = σ g1
(

µ−z
σ

)
, with

g1(t) = t Φ(t)+φ (t) , (4.42)

• for q≥ 2, we have EI↑q(P,z) = σ gq
(

µ−z
σ

)
, where

gq(t) = qt Φq(δ
t
q;0,DqDT

q ) + qΦ(−t)q−1
φ(t) +

q(q−1)
2
√

π
Φq−1(δ

t
q−1;0, 1

2 Bq),

(4.43)

where Φq(·;m,Σ) is the cdf of the multivariate N (m,Σ) distribution,

Bq = 2diag(0,1Tq−2)+1q−11
T
q−1,

Dq is the matrix representing the linear map

Rq→Rq, (y1, . . . , yq)
T 7→ (−y1, y2− y1, y3− y1, . . . , yq− y1)

T,

and δ t
q = (t,0Tq−1)

T,

• finally for q = 2 we have

E(N1∨N2) = µ +
σ√
π
. (4.44)

For a scoring rule S : P×R→R and P1,P2 ∈P such that y∈R 7→ S(P1, y) is
P2-integrable, write S(P1, P2) = EU∼P2 (S (P1,U)). The propriety of scoring rules is
an important notion that formalizes “well-calibration” in the sense that a generating
distribution must be identified to be optimal on average.

Definition 35 (see, e.g. Gneiting and Raftery, 2007) A scoring rule S : P×R→R
is said to be (strictly) proper with respect to P if, for all P1,P2 ∈P, the mapping
y ∈R 7→ S(P1, y) is P2-integrable and the mapping P1 ∈P 7→ S(P1, P2) admits P2

as a (unique) minimizer.

A strictly proper scoring rule S on a class P induces a divergence

(P1,P2) 7→ S(P1, P2)−S(P2, P2),

which is non-negative on P×P, and vanishes if and only if P1 = P2. In the case
of the truncated CRPS, simple calculations lead to (Matheson and Winkler, 1976):

StCRPS
Q (P1, P2)−StCRPS

Q (P2, P2) =
∫

Q
(FP1(u)−FP2(u))

2 du.

It follows that StCRPS
Q is proper for any measurable Q ⊂ R, and is strictly proper

with respect to the class of non-degenerate Gaussian measures on R as soon as Q
has non-empty interior.
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4.8 . Proofs

Lemma 36 (Aronszajn, 1950, Section 1.5) Let k : X×X → R be a positive-
definite covariance function, U ⊂ X, and H (U) be the RKHS attached to the
restriction of k to U×U. The RKHS H (U) is the space of restrictions of functions
from H (X) and the norm of g ∈H (U) is given by

inf
g̃∈H (X), g̃|U=g

‖g̃‖H (X). (4.45)

Proof of Proposition 14. First the existence and the uniqueness of the solution
are given by the first statement of Proposition 23 (with HR,n = HR,{x1,··· ,xn}).

Furthermore let z ∈ R and write α = K−1
n z, the reproduction property (4.7)

gives
‖sz‖2

H (X) = α
TKnα = zTK−1

n z, (4.46)

and therefore

min
h∈HR,n

‖h‖2
H (X) = inf

z∈CR,n
min

h∈H (X),h(xn)=z
‖h‖2

H (X) = inf
z∈CR,n

zTK−1
n z,

where the last infimum is uniquely reached by the evaluation of the solution on xn.

Proof of Proposition 15. Write Km,n for the covariance matrix of the random

vector
(

Z′m
T, ZT

n

)T
. Using the equalities (4.5) and (4.46), and a slight abuse of

notation by dropping irrelevant constants with respect to z′ and z ∈CR,n, we have

−2ln
(

p
(
z′, z |Zn ∈CR,n

))
=
(

z′T, zT
)

K−1
m,n

(
z′T, zT

)T
= min

h∈H (X),h(xn)=z,h(x′m)=z′
‖h‖2

H (X).

This gives

inf
z′∈Rm,z∈CR,n

−2ln
(

p
(
z′, z |Zn ∈CR,n

))
= min

h∈H (X),h(xn)∈CR,n

‖h‖2
H (X),

which is reached by taking z = z?n and z′ =
(
sz?n(x

′
1), . . . ,sz?n(x

′
m)
)T.

Proof of Proposition 21. First, one has

sup
x∈X

σn(x) = sup
x∈X

sup
‖ f‖H (X)=1

| f (x)− szn
(x)|= sup

‖ f‖H (X)=1
‖ f − szn

‖L∞(X).

Now, let f ∈H (X) such that ‖ f‖H (X) = 1, and Xo be the interior of X.
The boundary of Xo is the one of X under Assumption 20, and the Sobolev
space W α+d/2

2 (Xo) defined by (4.18) is norm-equivalent to the Sobolev–Slobodeckij
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space (see, e.g., Di Nezza et al. (2012, Proposition 3.4) for a statement on Rd

and Grisvard (1985, Theorem 1.4.3.1) for the existence of an extension operator).
Then, one can apply (Arcangéli et al., 2007, Theorem 4.1) to f − szn

restricted
to Xo to show that, for hn lower than some h0 (not depending on f or (xn)n≥1),
we have:

‖ f − szn
‖L∞(X) = ‖ f − szn

‖L∞(Xo) . hα
n ‖ f − szn

‖W α
2 (Xo) . hα

n ‖ f − szn
‖H (X) . hα

n
(4.47)

by continuity of f − szn
, since ‖·‖

W α+d/2
2 (Xo)

≤ ‖·‖
W α+d/2

2 (X)
due to the definition

(4.18), W α+d/2
2 (X) being norm equivalent to H (X), and because of the projec-

tion interpretation of szn
(see, e.g., Wendland, 2004, Theorem 13.1). Finally, one

can get rid of the condition hn ≤ h0 for simplicity by increasing the constant even-
tually, since σn is bounded on X.

Proof of Proposition 23. First observe that HR,U is not empty since it contains
f . Furthermore, it is easy to verify that HR,U is convex and that it is closed
since pointwise evaluation functionals are continuous on an RKHS. The problem is
then the one of projecting the null function on a convex closed subset; hence the
existence and the uniqueness.

Then, the function sR,n is the projection of the null function on the closed
convex set HR,n defined by (4.11). Moreover, the sequence (HR,n)n≥1 is non-
increasing, so the sequence (sR,n)n≥1 converges in H (X) to the projection of the
null function on

⋂
n≥1 HR,n (see, e.g., Brezis, 2011, Exercice 5.5), i.e. the solution

of (4.23), with U= {xn}. But this last solution is also the solution on the closure
since it verifies the constraints by continuity.

Proof of Proposition 24. Define x0
n and z0

n to be data points within X0, and
sx0

n,z0
n
the associated (interpolation) predictor, i.e. the solution of (4.8). Observing

that sx0
n,z0

n
interpolates sR,n, we have:∣∣ f (x)− sR,n(x)

∣∣ ≤ ∣∣ f (x)− sx0
n,z0

n
(x)
∣∣+ ∣∣sx0

n,z0
n
(x)− sR,n(x)

∣∣
≤ σn,0(x)‖ f‖H (X0)+σn,0(x)‖sR,n‖H (X0)

≤ 2σn,0(x)‖sR,X‖H (X),

since f coincides with sR,X on X0, sR,X is in HR,n (see 4.11), and by Lemma 36.

Proof of Proposition 25. For the first assertion, let σn,B be the power function
using only the observations within B. Using Proposition 24, the inequality σn,0 ≤
σn,B given by the projection interpretation, and applying Proposition 21 to B yields
a bound depending on the fill distance hn,B of {x1, · · · ,xn}∩B within B. Finally,
Lemma 37 allows us to conclude.
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Regarding second assertion, f is continuous so the sets X j are compact for
j ≥ 1. In addition, they are disjoint so

δ = min
1≤ j<p

inf
x∈X j,y∈Xp

‖x− y‖> 0.

Suppose now that hn < δ and let j ≥ 1, x ∈ X j and 1 ≤ i ≤ n the index of the
closet xi to x. By definition, ‖x−xi‖ ≤ hn and therefore xi ∈X0∪X j. Let H ?(X)

be the (topological) dual of H (X) and

δy : g ∈H (X) 7→ g(y), (4.48)

which lies in H ?(X) for all y ∈X. Then using the reproducing property (4.7), we
have

|sR,n(xi)− sR,n(x)| ≤ ‖δxi−δx‖H ?(X)‖sR,n‖H (X) ≤ ‖δxi−δx‖H ?(X)‖sR,X‖H (X),

and therefore

d(sR,n(x), R j)≤ ‖δxi−δx‖H ?(X)‖sR,X‖H (X)+d(sR,n(xi), R j).

Now, if xi ∈X j, then d(sR,n(xi), R j) = 0. Otherwise, xi ∈X0 necessarily and then,
using the fact that sR,X(x) ∈ R j, we have:

d(sR,n(xi), R j) ≤ |sR,n(xi)− sR,X(x)|
= |sR,X(xi)− sR,X(x)|
≤ ‖δxi−δx‖H ?(X)‖sR,X‖H (X).

So one can use Lemma 38 along with the previous statements to conclude if
hn < δ .

Finally, treating the case hn ≥ δ is straightforward using the reproducing prop-
erty (4.7), the fact that supx∈X

√
k (x, x) is finite thanks to the compacity of X,

and d(sR,n(x), R j)≤ |sR,n(x)− sR,X(x)| for j ≥ 1 and x ∈X j.

Lemma 37 Let B ⊂X verifying Assumption 20 and hn,B be the fill distance of
Xn,B = {x1, · · · ,xn}∩B within B, with the convention hn,B = diam(B) if Xn,B is
empty. Then, hn,B . hn.

Proof. The idea of the proof is given by Wendland (2004, Lemma 11.31), but it is
interlinked with a much more sophisticated construction, so we provide a specific
version here for completeness. Adams and Fournier (2003, Section 4.11) shows
that B verifies a cone condition with radius ρ > 0 and angle φ ∈ (0, π/2). If Xn,B

is not empty, then the compacity of B ensures the existence of an x ∈ B such that
d(x,Xn,B) = hn,B. (If Xn,B is empty, then the rest of the proof is also valid taking
an arbitrary x ∈ B.)
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A cone C originating from x with angle φ and radius δ = min(hn,B, ρ) is con-
tained in B and its interior do not contains observations. Furthermore, Wend-
land (2004, Lemma 3.7) shows that there exists a y ∈C such that the open ball
B
(

y, δ sin(φ)(1+ sin(φ))−1
)
is subset ofC, and therefore contains no observations

as well. Thus, hn ≥ δ sin(φ)(1+ sin(φ))−1. Now, if hn,B ≤ ρ , then the desired re-
sult follows. If not, the result holds as well since hn,B ≤ diam(B).

Lemma 38 If k has smoothness α > 0, then there exists h0 > 0 depending only
on α such that, for all x,y ∈X verifying ‖x− y‖ ≤ h0, we have

‖δy−δx‖H ?(X) . ‖x− y‖α , for α < 1, (4.49)

‖δy−δx‖H ?(X) .
√
|ln(‖x− y‖)|‖x− y‖, for α = 1, (4.50)

and
‖δy−δx‖H ?(X) . ‖x− y‖, for α > 1. (4.51)

Proof. Since equivalent norms give equivalent operator norms on the topological
dual of a normed space, it suffices to show the result for a unit-variance isotropic
Matérn covariance function (4.4) of regularity α .

In this case, we have

‖δy−δx‖2
H ?(X) = k(x, x)+ k(y, y)−2k(x, y) = 2(1− rα(‖x− y‖)) ,

with rα the corresponding isotropic correlation function. Standard results on prin-
cipal irregular terms (see, e.g., Stein, 1999, Chapter 2.7) give the results.

Lemma 39 If g1, g1 ∈W γ

2 (X) for γ > d/2, then g1g2 ∈W γ

2 (X).

Proof. By the definition (4.18) of W γ

2 (X), the functions g1 and g2 can be extended
as functions on Rd , having their product in W γ

2 (R
d) (Strichartz, 1967, Theorem

2.1). Taking the restriction shows the desired result.

Proof of Proposition 26. We use a bump function argument. Let B(x0,r)⊂X j

(with r > 0) be an open ball. There exists a C∞ function φ : Rd →R such that
0≤ φ ≤ 1,
φ(x) = 1 only if x = 0,
φ(x) = 0 if x ∈X\B(0,r).

Let c ∈ R j \{ f (x0)}, φn = φ (n(·− x0)) as a function on X, and fn = (1−φn) f +
cφn, for n ≥ 1. We have φn ∈W α+d/2

2 (Rd) as a function on Rd , so it belongs
to W α+d/2

2 (X) as a function on X, and Lemma 39 ensures that fn ∈ H (X).
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Moreover, it is easy to check that fn ∈HR,X. Observe that the sequence ( fn)n≥1

converges pointwise to a discontinuous function that lies thus outside H (X).
Suppose now that ‖ fn‖H (X) 9 +∞ then one can extract a bounded subse-

quence of norms and a classical weak compacity argument would yield a weakly
convergent subsequence, which is impossible since the pointwise limit is not in
H (X).

Proof of Proposition 29. This is an adaptation of Theorem 6 from (Vazquez and
Bect, 2010b). For f ∈H (X), write (xn)n≥1 for the corresponding sequence (Xn)n≥1
generated by EGO-R. Moreover, write sn = sRn,n for the reGP predictor at the
step n to avoid cumbersome notations. Then, for x ∈X, write ρn, tn(x) = γ(mn−
sn(x), σ2

n (x)) for the expected improvement under the reGP predictive distribution,
with γ the function defined in Proposition 12.

Suppose that there exists some x0 ∈X such that σ2
n (x0) ≥ C1 > 0. The se-

quence (mn)n≥1 converges and the reproducing property (4.7) yields

|sn(x0)| ≤
√

k(x0, x0)‖sn‖H (X) ≤
√

k(x0, x0)‖ f‖H (X),

so the sequence (|mn− sn(x0)|)n≥1 is bounded by, say C2. We have then

vn = sup
x∈X

ρn, tn(x)≥ γ
(
mn− sn(x0),σ

2
n (x0)

)
≥ γ (−C2,C1)> 0

by Proposition 12. But this yields a contradiction with Lemma 41, so the decreasing
sequence

(
σ2

n
)

n≥1 converges pointwise on X to zero. Proposition 10 from Vazquez
and Bect (2010b) then implies that every x ∈X is adherent to {xn}.

Lemma 40 Use the notations of Proposition 29 and let (yn)n≥1 be a sequence in
X. Assume that the sequence (yn)n≥1 is convergent, denote by y? its limit and
assume that y? is an adherent point of the set {xn}. Let t∞ = liminf tn, then

• sn(yn)→ f (y?) if f (y?)< t∞,

• liminfsn(yn)≥ t∞, otherwise.

In particular, we have

liminfsn(yn)≥min( f (y?), t∞). (4.52)

Proof. If y? ∈ {xn}, then the result holds so suppose the converse. Let xφ(n) be a
subsequence converging to y? and let

ψ(n) = max{φ(k),φ(k)≤ n}.

We proceed as in Proposition 25. First,∣∣sn(xψ(n))− sn(yn)
∣∣≤ ‖δxψ(n)−δyn‖H ?(X)‖sn‖H (X) ≤ ‖δxψ(n)−δyn‖H ?(X)‖ f‖H (X)
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converges to zero thanks to Lemma 38.
Now sn(xψ(n))≥min

(
f
(
xψ(n)

)
, tn
)
so liminfsn(xψ(n))≥min( f (y?) , t∞), which

gives the second assertion. Observe that f (xψ(n))< tn ultimately if f (y?)< t∞ for
the first assertion.

Lemma 41 Using the notations of Proposition 29 and writing vn = supx∈Xρn, tn(x),
we have liminfvn = 0.

Proof. This is an adaptation of Lemma 12 from (Vazquez and Bect, 2010b).
Let y? be a cluster point of (xn)n≥1 and let xφ(n) be a subsequence converging

to y?. We are going to prove that vφ(n)−1→ 0. Define

zφ(n)−1 = mφ(n)−1− sφ(n)−1(xφ(n)).

Lemma 40 gives liminfsφ(n)−1(xφ(n))≥min( f (y?), t∞), with t∞ = liminf tn. More-
over we have

mφ(n)−1 ≤min
(

f
(
xφ(n−1)

)
, tφ(n)−1

)
so limmφ(n)−1 ≤min( f (y?), t∞) since

(
mφ(n)−1

)
n≥1 is non-increasing. The previous

arguments show that limsupzφ(n)−1 ≤ 0. The latter fact and σ2
φ(n)−1(xφ(n))→ 0

(Vazquez and Bect, 2010b, Proposition 10) show that

vφ(n)−1 = γ

(
zφ(n)−1, σ

2
φ(n)−1(xφ(n))

)
≤ γ

(
sup
k≥n

zφ(k)−1, σ
2
φ(n)−1(xφ(n))

)
→ 0,

since γ is non-decreasing with respect to its first argument and continuous.

Lemma 42 Assume that b is finite, and that either a is finite too or
∫ 0
−∞

FP(u)du=∫ 0
−∞
|u|P(du) is finite. Then

StCRPS
a,b (P, z) = (b−a∨ z)++R2(a,b)−2R1(a∨ z,b), (4.53)

where
Rq(a,b) =

∫ +∞

−∞

1a≤u≤b FP(u)q du. (4.54)

Proof.
StCRPS

a,b (P, z) =
∫ +∞

−∞

1a≤u≤b (1z≤u−FP(u))
2 du

=
∫ +∞

−∞

1a≤u≤b
(
1z≤u +FP(u)2−21z≤u FP(u)

)
du

=
∫ +∞

−∞

(
1a∨z≤u≤b +1a≤u≤b FP(u)2−21a∨z≤u≤b FP(u)

)
du

= (b−a∨ z)++R2(a,b)−2R1(a∨ z,b).
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Lemma 43 Let a,b ∈R with a≤ b. Let q≥ 1. Then

Rq(a,b) = b−a+EI↑q(P,b)−EI↑q(P,a). (4.55)

Proof.
Rq(a,b) =

∫
1a≤u≤b FP(u)q du

=
∫
1a≤u≤b

q

∏
j=1

E
(
1N j≤u

)
du with N j

iid∼ P

= E

(∫
1a∨N1∨···∨Nq≤u≤b du

)
= E

(
(b−a∨N1∨·· ·∨Nq)+

)
= b−a+EI↑q(P,b)−EI↑q(P,a).

.

Proof of Proposition 33. The first result is given by Lemma 42 and Lemma 43.
Then using the dominated convergence theorem, it is easy to see that, when

a→−∞

EI↑q(P,a) = E(N1∨·· ·∨Nq)−a+o(1), (4.56)

and therefore

Rq(−∞,b) = lim
a→−∞

Rq(a,b) = b+EI↑q(P,b)−E(N1∨·· ·∨Nq) , (4.57)

which gives the second statement.
Finally, a change of variable gives∫ +∞

a
(FP(u)−1z≤u)

2 du =
∫ −a

−∞

(FP(u)−P(U =−u)−1−z<u)
2 du,

and the last statement follows by observing that a probability measure admits at
most a countable number of atoms.
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4.9 . Optimization benchmark results

The results are provided in Figure 4.10, Figure 4.11, Figure 4.12, and Fig-
ure 4.13, for the other test functions from Table 4.1, using the same format as
in Figure 4.8. Observe that the two heuristics for reGP yield (sometimes very)
substantial improvements on Zakharov (4), Zakharov (10), Three-hump Camel,
Perm (4), Perm (6), Rosenbrock (4), and Rosenbrock (6). However, only the
“Concentration” heuristic yields clear benefits for Zakharov (6), Dixon-Price (4),
Dixon-Price (6), and Rosenbrock (10). Furthermore, the “Concentration” heuristic
underperforms slightly on the (multimodal) Shekel problems. Finally, the EGO and
EGO-R algorithms yield indistinguishable results on the remainings cases.
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Figure 4.10: Same as Figure 4.8. The gray dashed line stands for the

Dual simulated Annealing algorithm, the red line for the standard EGO

algorithm, and the blue and green lines for EGO-R, with the “Constant”

and “Concentration” heuristics.
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Figure 4.11: Same as Figure 4.8. The gray dashed line stands for the

Dual simulated Annealing algorithm, the red line for the standard EGO

algorithm, and the blue and green lines for EGO-R, with the “Constant”

and “Concentration” heuristics.
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Figure 4.12: Same as Figure 4.8. The gray dashed line stands for the

Dual simulated Annealing algorithm, the red line for the standard EGO

algorithm, and the blue and green lines for EGO-R, with the “Constant”

and “Concentration” heuristics.

112



100

200

10−710−610−5

0.0

0.33

0.66

1.0

Michalewicz (4)

100

200

10−610−510−4

0.0

0.33

0.66

1.0

Michalewicz (6)

100

200

10−510−410−3

0.0

0.33

0.66

1.0

Michalewicz (10)

50

100

10−710−610−5

0.0

0.33

0.66

1.0

Hartman (3)

100

200

10−710−510−3

0.0

0.33

0.66

1.0

Ackley (4)

100

200

10−910−710−510−3

0.0

0.33

0.66

1.0

Ackley (6)

Figure 4.13: Same as Figure 4.8. The gray dashed line stands for the

Dual simulated Annealing algorithm, the red line for the standard EGO

algorithm, and the blue and green lines for EGO-R, with the “Constant”

and “Concentration” heuristics.
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Part IV
Conclusions and perspectives
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1 . Contributions

This thesis focuses on the choice of a Gaussian model for predicting an unknown
function. More specifically, the work goes in two directions: 1) questioning the
standard methods for model selection; and 2) contributing to the field of non-
stationary modeling by considering goal-oriented approaches.

The first task aims at improving model selection in applications. Starting
with parameter selection by maximum likelihood estimation, inconsistencies across
different softwares seemed to be the first issue to address. Chapter 2 traces the
origin of these inconsistencies to the numerical noise amplified by the condition
number of the covariance matrix. Then, simple levers are proposed to mitigate
this issue and lead to clear benefits. Although this part of the manuscript deals
with a rather prosaic issue, it contains ingredients that are fundamental for building
efficient algorithms relying on Gaussian processes. For instance, potentially poor
results can be expected when using a Bayesian optimization algorithm with the
default settings of Python packages mentioned in Chapter 2. Using a robust
implementation is a key requirement to benefit from the methodologies proposed
in this manuscript.

A popular alternative to maximum likelihood estimation for selecting the pa-
rameters of a stationary Gaussian process is leave-one-out cross-validation, intro-
duced for computer experiments by Currin et al. (1988), thanks to the existence
of fast formulas that can be traced back at least to Dubrule (1983). The second
contribution of this manuscript concerns the efficient computation of gradients of
cross-validation criteria. Rasmussen and Williams (2006) deemed that the compu-
tation of the gradients of cross-validation criteria are unavoidably more expensive
than that of the likelihood. Chapter 3 shows that this is not true. The chapter
also provides a probabilistic interpretation of the fast cross-validation formulas, us-
ing the notion of precision matrices (see, e.g., Rue and Held, 2005, Section 2.2).
Eventually, a toy example at the end of the chapter suggests that K-fold cross-
validation may sometimes help, as previously discussed by Ginsbourger and Schärer
(2021).

Overall, Chapter 2 and Chapter 3 make computational contributions to the
topic of parameter selection. In Chapter 1, we compare the relative performances
of standard and new selection criteria. Intensive numerical experiments were con-
ducted to investigate this issue. Another question emerged in this study about
the influence of the choice of the family of covariance functions. More specifi-
cally, analyzing the performances of stationary models on test data according to
various scoring rules led to the conclusion that the choice of a selection criterion
has less influence than the regularity parameter of the Matérn covariance function,
especially if the function to be inferred is smooth. Furthermore, the numerical
results show that the regularity parameter can be successfully chosen by the cri-
teria with almost no loss of performance compared to the ideal situation where
one knows in advance which value to use. Recent theoretical results from Kar-
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vonen (2022) support this observation. Moreover, in our experiments, maximum
likelihood estimation stands out as a good selection criterion. Another interesting
selection criterion is the LOO-CRPS. Interestingly, automatically selecting the reg-
ularity in the constrained mono-objective optimization benchmark used by Feliot
et al. (2017) showed significant benefits. Unfortunately, the regularity parameter
controls the model globally. The rough behavior of a function may be localized in
a region, and using a smoother model exclusively outside this region could be very
beneficial compared to using a globally rough model.

This observation suggests that some way of localizing the models could be
very beneficial. Numerous approaches are referenced in the literature review from
Chapter 4. Overall, this review shows that building non-stationary models must
achieve a trade-off between the expressiveness of the model and the dimension of
the parameter space. However, to the best of our knowledge, very few authors
explored the path of goal-oriented modeling. Chapter 4 proposes a new goal-
oriented approach for modeling unknown functions, which turns out to be very
beneficial for Bayesian optimization. The method, called reGP, is built to improve
the fit in an (output) range of interest by transforming the data lying outside
this range. It can be seen as an instance of the two categories of approaches
mentioned in Section 4.1.2. First, it is a local approach since it implicitly involves
an input region of interest (but this region can be very complex, especially when
the dimension is high). Second, it involves a transformation of the output, but
which does not act on the range where the user wants improved predictions.

The transformation acts on a range called the relaxation range. It may be
interpreted in two ways: 1) as a relaxation of the problem of minimal-norm in-
terpolation in the RKHS; and 2) as an approximation of a constrained Gaussian
process model (see, e.g., Da Veiga and Marrel, 2012). This is implemented by
extending the likelihood optimization formulation to include “relaxed” observations
that must be optimized as well. The method also maintains a reasonable complex-
ity that makes it possible to propose an adaptive approach for the choice of the
relaxation set, thanks to a scoring rule tailored to the problem of goal-oriented mod-
eling. Furthermore, combining the two previous contributions with the formalism
of expected improvement (Mockus et al., 1978) yields an optimization algorithm
called EGO-R, which outperforms EGO on a benchmark. The interest of reGP is
further illustrated by looking at the transformation learned, which resembles some
common transformations traditionally used in a few examples.

The benefits of reGP are also illustrated by theoretical analysis. A first result
shows the convergence of EGO-R when the function lies in the RKHS attached to a
zero-mean Gaussian process with a fixed covariance function. Then, error bounds
show why improved fit in the range of interest is obtained.

Although the reGP predictive distribution is a Gaussian process, it does not
have (or at least, we could not find) a proper Bayesian interpretation. Nevertheless,
it can be seen as a probabilistic modeling tool within the formalism described in
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Section 2.1. While being applied mainly to mono-objective Bayesian optimization
in this work, it can be applied to the estimation of excursion sets and, of course,
more generally for any application in which the practitioner can set an explicit
range of interest.

2 . A focus on numerical simulators

Let us now discuss the implications for modeling numerical simulators. First,
the numerical ingredients presented in Chapter 2 are a step towards allowing non-
statistician users to use GPs in a robust way. Then, automatically choosing the
regularity value is another step in this direction. For instance, choosing a high
regularity value makes it possible to model well a smooth numerical simulator
with a smaller number of observations. Conversely, choosing a small regularity
value makes it possible to mitigate the difficulties posed by a numerical simulator
exhibiting a discontinuity. Such discontinuities are frequent and can be caused by
the physical model itself or by a numerical PDE solver. If the discontinuity lies in
a non-interesting (output) range of values, then the reGP method allows to obtain
even better performances. For example, one type of practical cases encountered
by Safran consists in numerical codes that no longer make physical sense for some
combinations of input values that, e.g., yield too high values for an output. This
set of input combinations can be difficult to characterize and the reGP method
allows to circumvent this issue.

3 . Limitations and future works

Several promising tracks for future research could be explored in the future.
First of all, although the numerical recipes from Chapter 2 implemented within

(a custom version of) the package GPy (Sheffield machine learning group, 2012–
2020) are effective, the underlying issue of the noisy likelihood could be addressed
in greater depth. We believe that this topic is of primary concern and that there
is a large room for improvement in optimizing the likelihood. Furthermore, our
numerical experiments suggest that the numerical issues are caused by maximum
likelihood estimates occurring for very large correlation lengths, which brings the
model closer to a spline (see, e.g., Barthelmé et al., 2022, Kimeldorf and Wahba,
1970). This issue has recently started to be investigated by Karvonen and Oates
(2022).

Chapter 3 presents a computational contribution for selecting the parameters of
a Gaussian process with cross-validation criteria. Unfortunately, the leave-one-out
cross-validation criteria turn out to be of limited interest in our numerical exper-
iments. Although other cross-validation schemes were not tested, lower accuracy
bounds suggest that there is little room for improvement with respect to maximum
likelihood. However, the numerical experiment from Chapter 3 shows an example
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where a K-fold cross-validation criterion improves long-distance predictions when
the data is clustered. In this spirit, it could be possible to build cross-validation
criteria dedicated to optimization by working on the cross-validation scheme rather
than on the loss function as done in Part III. For example, an interesting idea would
be to validate increments, in the spirit of Picheny et al. (2019).

The practical recommendation emerging from the simulations presented in
Chapter 1 has a computational downside: the regularity parameter is selected us-
ing a double-loop on top of the standard continuous optimization for the variance
and the correlation lengths. Therefore, the computational time is multiplied by a
number of candidates values for the regularity. Although the results suggest that
sticking to the values {1/2,3/2,5/2,7/2,∞} provides satisfactory results, break-
ing this loop could yield computational savings and make it possible to explore
other values. However, no closed-form expression exists for the Matérn covari-
ance function and its gradient when the regularity parameter is not a half-integer.
Nevertheless, some packages (see, e.g., STK, Bect et al., 2011–2021) allow to
estimate ν continuously thanks to finite-difference numerical approximations (see
also Geoga et al., 2022).

Moreover, the numerical experiments described in Chapter 1 could be enriched
by a comparison with regularization (see, e.g., Lizotte et al., 2011) or fully Bayesian
(see, e.g., Benassi et al., 2011, Handcock and Stein, 1993) methods, that could be
especially interesting when the number of observations is low. In addition, consid-
ering non-uniform designs and/or noisy observations could provide more insights.
Theoretical asymptotic results could also provide additional support to the findings.
Several steps were made in this direction recently by Karvonen (2022), Karvonen
et al. (2020), and other works have been done in the case of noisy observations
(see, e.g., van Der Vaart and van Zanten, 2011, van der Vaart and van Zanten,
2009, Wynne et al., 2021).

Regarding Part III, the main perspective is to extend reGP to the case of noisy
observations. One of the main difficulties comes from the fact that taking noise into
account already consists in relaxing the interpolation constraints with a quadratic
data fitting term. However, the relaxation due to Gaussian noise is symmetric and
involves the exact values of the data. We must therefore find a way to conciliate
these two relaxations.

Moreover, even in the noiseless case, the reGP methodology can be improved.
Indeed, the choice of the validation threshold t(0)n was only briefly discussed in Chap-
ter 4, but we can see that it has a significant impact on the benchmark results.
More precisely, the heuristic called “Constant” never under-performs significantly
compared to EGO and sometimes gives very significant improvements. The "Con-
centration" heuristic, on the other hand, sometimes gives more spectacular results
but under-performs slightly for the optimization of functions with many local min-
ima. More advanced heuristics can probably be found with ideas from the field of
trust-region-based algorithms (Conn et al., 2000). Eventually, we believe that a
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theoretical study would be beneficial.
The procedure for automating the selection of the relaxation range can also be

improved since it implies building several model candidates by looping over a set
of threshold candidates t(0)n < · · · < t(G)

n . (Note that selecting ν as in Chapter 1
becomes then impractical, although it may be interesting in principle to select also
this parameter when using reGP.) Offering the possibility to choose the relaxation
threshold jointly with the process parameters would allow a significant gain in
computation time. Nevertheless, the non-smooth effect of tn on the predictions
makes gradient-based approaches difficult to implement. Studying empirically the
impact of the number G of threshold candidates on the results could be a simpler
solution.

It would also be appreciable to extend the use of reGP to constrained or multi-
objective optimization problems. For the constrained case, it seems natural to use
the approach described in Section 4.4.4. Nevertheless, it could be necessary, in
some cases, to consider the functions of the problem simultaneously by defining
relaxations that apply jointly to the objectives and the constraints. Generalizing
the method will thus require finding heuristics for defining multivariate regions of
interest Qn ⊂Rq and sequences of candidate relaxation regions

Rq \Qn = R(0)
n ⊃ R(1)

n ⊃ ·· · ⊃ R(G)
n = /0

from which to select a region R(g)
n to be accurate on Qn.
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A - Synthèse

Cette thèse porte sur la modélisation par processus gaussien de simulateurs
numériques utilisés pour la conception industrielle. Le temps de calcul de ces
simulateurs pouvant atteindre jusqu’à plusieurs heures, l’utilisation de processus
gaussiens s’avère souvent efficace pour mener à bien une tâche de conception à par-
tir d’un petit nombre d’exécutions du simulateur. Plus précisément, ce manuscrit
étudie le problème du choix et de la validation de modèle et s’articule autour de
deux axes.

Dans un premier axe, nous étudions de manière empirique l’impact de plusieurs
facteurs sur la prédiction par processus gaussien stationnaire. Un processus gaussien
stationnaire est souvent choisi au sein d’une famille paramétrée en optimisant un
critère de sélection. Nous étudions principalement deux facteurs dans cette partie
: le choix du critère de sélection (vraisemblance, validation croisée. . . ) et le choix
d’une famille de processus. Pour le dernier facteur, cette partie se concentre sur le
choix du paramètre de régularité d’une fonction de covariance de Matérn (1986).
Des expériences numériques sur plusieurs cas issus de la littérature des «computer
experiments» sont menées et fournissent plusieurs conclusions. La première est que
le choix du paramètre de régularité a un impact plus important que le choix d’un
critère de vraisemblance ou de validation croisée. Ensuite, les résultats montrent
que le paramètre de régularité peut-être sélectionné de manière satisfaisante par les
critères. Enfin, une analyse au second ordre montre que le critère de vraisemblance
donne des précisions similaires voire supérieures à celles des autres critères. Ce
travail de simulation numérique a nécessité des contributions annexes, également
présentées dans cette partie. Tout d’abord, le Chapitre 2 présente les difficultés
numériques importantes posées par le problème d’optimisation de la vraisemblance
à travers des expériences numériques montrant que ces difficultés sont liées au bruit
numérique dont l’amplitude peut-être reliée au conditionnement de la matrice de
covariance. Ensuite, le Chapitre 3 revisite les formules analytiques efficaces pour
le calcul de critères de validation croisée et propose des formules analogues, plus
efficaces que celles référencées dans la littérature, pour le calcul de gradients.

Une approche ciblée de modélisation par processus gaussien est proposée dans
la deuxième partie de ce manuscrit. De manière générale, cette approche permet
d’obtenir des modèles plus prédictifs sur une plage d’intérêt en sortie. L’idée
principale est de relâcher les contraintes d’interpolation sur une plage de valeur
disjointe de la plage d’intérêt. Une procédure de validation croisée est proposée
pour le choix automatique de la plage de relaxation. Des simulations numériques
montrent l’intérêt de cette méthode, en conjonction avec le critère «Expected
Improvement», pour l’optimisation Bayésienne lorsque l’on cible, par exemple, les
valeurs basses dans le cadre d’une minimisation. La convergence de l’algorithme est
établie lorsque la fonction appartient à l’espace de Hilbert à noyau reproduisant
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associé à la fonction de covariance. Des bornes d’erreur montrant le gain en
précision sur la plage d’intérêt sont également fournies.

Les contributions évoquées présentent plusieurs limitations. Premièrement, les
expériences numériques sur la modélisation stationnaire ne traitent ni le cas d’un
bruit d’observation, ni les approches complètement bayésiennes. De plus, le choix
du paramètre de régularité est opéré à l’aide d’une «boucle» sur un ensemble fini,
dont la taille fait augmenter linéairement le temps de calcul; une approche conjointe
permettant de sélectionner ce paramètre continûment serait appréciable. En outre,
la méthode ciblée proposée présente également quelques limitations. Première-
ment, cette technique ne s’applique pas au cas bruité dans lequel les contraintes
d’interpolation sont déjà relâchées. Par ailleurs, son utilisation pour l’optimisation
bayésienne nécessite de choisir un seuil de validation dynamiquement, et les heuris-
tiques proposées restent probablement perfectibles. Enfin, le choix automatique de
la plage de relaxation implique également une boucle sur un ensemble de candidats
dont la taille démultiplie le temps de calcul. Des résultats numériques satisfaisants
sont obtenus en se restreignant à une dizaine de candidats.
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