
HAL Id: tel-03925830
https://theses.hal.science/tel-03925830

Submitted on 5 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-level approach for the automatic generation of
optimized hardware accelerators for deep neural

networks
Nermine Ali

To cite this version:
Nermine Ali. High-level approach for the automatic generation of optimized hardware accelerators
for deep neural networks. Computer Vision and Pattern Recognition [cs.CV]. Université de Bretagne
Sud, 2022. English. �NNT : 2022LORIS623�. �tel-03925830�

https://theses.hal.science/tel-03925830
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE BRETAGNE SUD

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Electronique

Par

Nermine ALI
High-level approach for the automatic generation of optimized
hardware accelerators for deep neural networks

Thèse présentée et soutenue à CEA LIST, Nano-Innov, le 21 Mars 2022
Unité de recherche : CEA List, Saclay
UBS - Lab-STICC, Lorient
Thèse No : 623

Rapporteurs avant soutenance :

Alix MUNIER Professeur des Université Sorbonne Université, LIP6
François BERRY Professeur des Université Université Clermond Auvergne, Institut Pascal

Composition du Jury :
Président : Olivier SENTIEYS Professeur des Université de Rennes 1, IRISA
Examinateurs : Bernard GIRAU Professeur des Université de Lorraine, Loria
Dir. de thèse : Philippe COUSSY Professeur des Université Bretagne Sud, Lab-STICC
Encadrants de thèse : Jean-Marc PHILIPPE Docteur Ingénieur CEA List/Thales

Invité(s) :

Benoit TAIN Ingénieur chercheur CEA List (Co-encadrant)

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

REMERCIEMENTS

Cette thèse est le fruit de trois années passés au Département Systèmes et Circuits
Intégrés Numériques (DSCIN) du Commissariat à l’Energie Atomique et aux Energies
Alternatives (CEA) (CEA LIST), au sein du Laboratoire Environnement de Conception
et Architecture (LECA) sur le plateau de Saclay. Je remercie Fabien Clermidy, chef du
DSCIN, et Thomas Dombek, Chef de Département Adjoint, pour leur accueil, la confiance
qu’ils m’ont accordée et les moyens qu’ils m’ont fournis pour accomplir cette thèse dans
les meilleures conditions.

Je tiens à remercier Tanguy Sassolas, chef du LECA et son prédécesseur Nicolas Ven-
troux pour la confiance et le soutien qu’ils m’ont accordés tout au long de ces trois ans.

Je remercie également mon directeur de thèse, Philippe Coussy, Directeur Adjoint du
LAB-STICC (CNRS UMR 6285) à l’Université de Bretagne Sud. Merci pour tes conseils
et tes recommandations qui étaient enrichissantes pour ce travail. Merci d’avoir accépté
de diriger cette thèse et pour avoir participé à mon jury.

Je remercie du fond du cœur, Jean-Marc Philippe, ingénieur chercheur au CEA/Thales,
pour avoir effectué l’encadrement de ma thèse. Tu es une personne magnifique, tant sur
le plan professionnel que sur le plan humain. J’ai tellement apprécié de travailler avec
toi. Merci d’avoir partagé avec moi tes connaissances scientifiques de grandes valeurs. Et
merci pour la confiance que tu m’as accordée et pour la grande autonomie que tu m’as
laissée. Nos échanges étaient très enrichissants, et m’ont permis de prendre du recule sur
mes travaux. Merci pour tes encouragements durant les moments difficiles. Je te serai
reconnaissante pour toujours.

Je remercie Benoit Tain, ingénieur chercheur au CEA, pour avoir effectué l’encadrement
de ma thèse. Je te remercie pour ton enthousiasme et ton soutien sans faille tout au long
de ma thèse. Je remercie également Lilia Zaourar pour son soutien et son encouragement
tout au long de ma thèse.

Je remercie Alix Munier, Professeur à Sorbonne Université, et François Berry, Pro-
fesseur à l’Université Clermond Auvergne, pour avoir accepté de juger mon travail en tant
que rapporteur ainsi que pour leur participation à mon jury de thèse. Je remercie égale-
ment Bernard Girau, Professeur à l’Université de Lorraine, et Olivier Sentieys, Professeur

3

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

à l’Université de Rennes 1, pour leur participation à mon jury.
Je remercie ensuite toutes les personnes que j’ai rencontrées au CEA tout au long

de ma thèse, pour toutes les discussions intéressantes que nous avons pu avoir malgré la
situation sanitaire qui nous a séparé.

Je remercie spécialement Oumaima Matoussi et Benjamin Binder qui ont su m’apporter
écoute et confiance à tous les moments.

Un grand merci à ma formidable famille pour tout le soutien qu’elle m’a apportée. Ma
mère Raoufa, mon frère Maxime et ma sœur Hanin, je ne pourrai jamais vous remercier
assez pour tout ce que vous avez fait pour moi.

4

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

RÉSUMÉ

Context and motivations

De nos jours, de nombreuses tâches de la vie quotidienne font l’objet d’automatisation
telles que la conduite automobile, la reconnaissance d’images et de la parole, la médecine,
etc. Doter des machines ou des systèmes d’un processus décisionnel apparaît comme le
germe d’applications de nouvelle génération. Cette automatisation essentielle nécessite
des algorithmes intelligents et puissants pour modéliser le comportement des individus.
Cependant, modéliser la connaissance d’un environnement ou d’un contexte pour permet-
tre aux ordinateurs de prendre une décision est une tâche difficile. C’est là qu’entre en jeu
l’intelligence artificielle (IA), qui est un vaste domaine de recherche qui propose des algo-
rithmes pour résoudre des problèmes complexes en émulant le raisonnement, la prise de
décision et l’acquisition de nouvelles connaissances, compétences et compréhensions chez
l’homme par des machines. L’IA est un terme large qui inclut Machine Learning (ML) et
Deep Learning (DL). ML, un sous-ensemble de l’IA, est un domaine d’étude qui utilise
beaucoup de données pour rendre les ordinateurs plus intelligents et capables de résoudre
des problèmes complexes sans être explicitement programmés. Il donne aux machines la
capacité d’apprendre par elles-mêmes et d’accomplir des tâches de prise de décision. Le
DL est un sous-ensemble de ML inspiré du comportement biologique des neurones (c’est-
à-dire des cellules cérébrales humaines) qui utilisent un empilement de plusieurs couches,
d’où le terme "profond". Ces couches sont formées d’éléments informatiques simples et
interconnectés qui extraient progressivement des fonctionnalités de haut niveau à partir
de données de niveau inférieur. Ce processus permet de dériver des connaissances de haut
niveau (par exemple "un chien", "un visage", "une voiture") à partir de données brutes
(par exemple un ensemble de pixels).

Les premiers réseaux de neurones artificiels (Artificial Neural Networks - ANN) sont
apparus en 1950. On prétendait qu’ils étaient capables de simuler le comportement d’un
cerveau très simple composé de neurones formels. La propriété intéressante de ces pre-
miers RNA était leur capacité à être enseignés d’une manière ou d’une autre. Ce processus
d’apprentissage a été effectué à l’aide d’un ensemble de données fourni par l’utilisateur

5

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

comprenant des données d’entrée et les données de sortie correspondantes. La rétroprop-
agation des erreurs entre les données de sortie attendues et la sortie de l’ANN permet
de modifier les paramètres de l’ANN, donc de lui apprendre à produire de bonnes sor-
ties. En d’autres termes, cela lui permet de reconnaître des modèles spécifiques. L’un des
premiers RNA (un seul élément) fut le Perceptron, inventé en 1957 par Franck Rosen-
blatt (McCulloch et Pitts ont décrit la base d’un neurone formel dans les années 1940).
Comme exemples d’algorithmes de DL, les réseaux de neurones profonds (DNN) sont com-
posés de neurones organisés en une structure en couches. En raison des multiples couches
(profondeur) et du nombre potentiellement élevé d’éléments calculatoires dans chaque
couche (largeur), les DNN présentent un nombre élevé de paramètres qui permettent de
d’encoder une grande quantité de connaissances. Ceci explique leurs excellents résultats
dans les tâches de reconnaissance complexes. Comme leurs ancêtres, les DNN peuvent
acquérir les connaissances de manière supervisée en utilisant des données étiquetées dans
une phase d’apprentissage. Ces connaissances acquises sont ensuite utilisées pour inférer
des résultats dans la phase d’inférence, qui est la principale préoccupation des concepteurs
d’architectures matérielles de systèmes embarqués, et donc le principal intérêt de cette
thèse.

Parmi les DNNs, les réseaux de neurones convolutifs (CNN) sont l’exemple le plus
célèbre d’une telle approche et le fondement des architectures modernes de réseaux de
neurones. Les CNN sont appliqués dans de nombreuses applications telles que la classi-
fication d’images et la détection et la reconnaissance d’objets. En général, les premières
couches de CNN sont basées sur des filtres convolutifs qui agissent comme des extracteurs
de caractéristiques et les dernières couches sont basées sur des neurones entièrement con-
nectés qui effectuent un processus de classification grâce aux caractéristiques extraites. Ils
ont une organisation hiérarchique inspirée de l’architecture des neurones du cortex visuel.
Ces différentes couches reposent sur des paramètres (coefficients de filtrage, pondérations,
etc.) appris lors de la phase d’apprentissage de manière supervisée. De nos jours, les CNN
sont l’une des principales technologies appliquées aux problèmes de classification. Ils sont
utilisés par les géants mondiaux du numérique comme Google (c’est-à-dire Google Pho-
tos) et Facebook pour la détection et la reconnaissance des visages, etc. Ces algorithmes
évoluent continuellement pour augmenter la précision de leur processus de reconnaissance
et réduire les besoins en calcul et en mémoire.

Les CNN ont d’excellentes performances dans les défis de reconnaissance d’images
populaires tels que le défi de reconnaissance visuelle à grande échelle ImageNet (Ima-

6

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

geNet Large Scale Visual Recognition Challenge - ILSVRC) [110]. Cependant, ces per-
formances s’accompagnent d’une grande complexité de calcul et de besoins en mémoire.
L’implémentation de ces algorithmes sur des appareils mobiles et edge suscite un grand in-
térêt et pousse les chercheurs en algorithmique à proposer de nouveaux modèles de DNN
et des techniques d’optimisation pour réduire ces besoins (e.g. réduction de précision,
pruning, etc.). Bien que de nombreux algorithmes et techniques d’optimisation efficaces
aient été proposés au cours des dernières années, l’intégration de tels algorithmes dans les
systèmes de périphérie reste un défi. En même temps, les concepteurs des accélérateurs
matériels travaillent sur le développement d’architectures calculatoires et d’accélérateurs
économes en énergie à cet effet. De nombreux accélérateurs matériels DNN proposés sont
destinés à atteindre les objectifs classiques des systèmes embarqués : faible latence, faible
consommation d’énergie, haute efficacité énergétique et capacité à exécuter différentes
couches et formes CNN. Tout en introduisant diverses approches architecturales pour
améliorer les calculs des DNN, ces propositions exploitent également des caractéristiques
spécifiques des DNN telles que la sparsité pour réduire la consommation d’énergie et la
latence. La Figure 1 montre la chronologie de l’évolution des architectures matérielles
ciblant les CNN.

20202019201820172016201520142010

Exploiting Algorithmic Optimizations

Support for sparse and dense
models

First attempts of CNN accelerators

Data reuse

Compression
Zero-skipping

Reconfigurability
Sparsity

Compression

Sparsity
Compression

Data reuse

Sparsity
Compression
Zero-skipping

Compression
Compression

Data reuse

Programmability

Figure 1 – Chronologie des architectures d’accélérateurs ciblant les réseaux de neurones. Au-dessus de la
chronologie, trois époques principales d’accélérateurs matériels, compte tenu de diverses approches archi-
tecturales, sont mises en évidence. Sous la chronologie, les principales caractéristiques des accélérateurs
sont mises en évidence.

Malheureusement, il existe un écart entre ces initiatives algorithmiques et architec-
turales. En fait, il est assez complexe pour les concepteurs d’architectures matérielles
de trouver l’architecture appropriée ou au moins la configuration pertinente d’une ar-

7

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

chitecture spécifique pour les nouveaux réseaux de neurones (NN) ou pour un ensemble
d’algorithmes basés sur les NN. De plus, la conception d’un accélérateur à l’aide de lan-
gages de description matérielle (HDL) tels que VHDL ou Verilog prend du temps, ce qui
laisse les architectes matériels un pas en arrière, laissant l’écart se creuser entre l’évolution
algorithmique et les accélérateurs matériels. Le processus de conception nécessite égale-
ment de nombreux compromis de conception qui dépendent du résultat attendu par le
concepteur et de contraintes spécifiques.

De nombreux efforts de recherche ont proposé d’utiliser des approches de génération
de matériel pour combler cette lacune. Les frameworks qui en résultent s’appuient sur
de nouvelles approches de conception telles que la synthèse de haut niveau (HLS) et/ou
des modèles d’architecture informatique cible. Des outils HLS commerciaux peuvent être
utilisés, tels que Siemens-EDA Catapult ou Xilinx Vivado-HLS, pour générer le niveau
de transfert de registre (RTL) à partir d’un algorithme codé de haut niveau (par exemple
C, C++). Le code source de haut niveau est optimisé en appliquant des transformations
au code source, ce qui se traduit par une meilleure génération de matériel. De plus,
des ensembles d’optimisations spécifiques à l’outil sont appliqués par le concepteur pour
optimiser davantage la RTL et atteindre l’objectif de conception souhaité. Malgré les
avantages de telles approches, des questions importantes demeurent : Quelles sont les
clés pour développer des accélérateurs optimisés par rapport à un objectif de conception
? Comment concevoir efficacement des accélérateurs matériels ciblant les DNN tout en
tenant compte de l’évolution continuelle de ces algorithmes? Quelles sont les techniques
de conception qui permettent de diminuer le time-to-market des accélérateurs DNNs ?

Approche scientifique et résultats

Cette thèse présente d’abord l’état de l’art des réseaux de neurones profonds (Deep
Neural Networks - DNN) et montre la différence entre apprentissage et inférence. La lu-
mière est mise, en particulier, sur les algorithmes CNN qui sont efficaces et adaptés à
l’accélération en raison de leurs structures parallèles intrinsèques, mais sont gourmands
en calculs et ont des besoins en mémoire importants. De là vient le problème d’accélération
matérielle des CNN en phase d’inférence, notamment dans les systèmes embarqués, qui
est confronté à diverses solutions. Ces solutions reposent principalement sur des accéléra-
teurs matériels ASIC qui offrent des solutions dédiées et fortement optimisées. En rai-
son du manque de flexibilité des architectures ASIC dédiées, l’aspect reconfiguration des

8

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

FPGA est exploité. Les FPGA offrent la possibilité d’adapter les accélérateurs en termes
de largeur de bit et de mémoire aux besoins exacts des algorithmes. Malheureusement,
la conception d’accélérateurs DNN basés sur ASIC ou FPGA pour l’inférence nécessite
du temps et de l’expertise si elle est effectuée manuellement ou même en utilisant des
méthodes de conception de haut niveau, telles que la synthèse de haut niveau (HLS). Par
conséquent, un autre ensemble de solutions, proposant des frameworks de génération de
matériel qui exploitent des techniques de conception de haut niveau (par exemple HLS),
est présenté qui vise à réduire l’écart entre l’application et l’architecture matérielle et ainsi
réduire la complexité et le temps du processus de conception.

Ensuite, les approches de génération de matériel existantes sont comparées en fonc-
tion de différents critères. Ces critères permettent d’évaluer qualitativement chaque ap-
proche proposée en termes de niveau d’abstraction utilisé, les méthodes utilisées pour
l’exploration de l’espace de conception, la méthode de génération de matériel et le proces-
sus global d’optimisation de l’architecture matérielle à générer. Cette comparaison montre
que le HLS est l’un des plus utilisés pour sa facilité d’utilisation et sa flexibilité. En outre,
elle montre que HLS n’est pas pleinement exploité au niveau algorithmique et que la
plupart des approches sont basées sur des modèles ou des architectures existants. Con-
cernant le processus d’optimisation, il repose largement sur une recherche exhaustive et
il est également spécifique à l’architecture cible. De plus, le RTL produit, dans la plupart
des cas, ne peut pas être optimisé une fois synthétisé. Sur la base de cette comparaison,
des améliorations possibles au processus de conception automatisée sont identifiées.

Par conséquent, cette thèse présente une méthodologie automatisée de bout en bout
pour concevoir des accélérateurs matériels pour les DNN embarqués. Cette méthodologie
permet de réduire l’écart entre les descriptions abstraites et les architectures matérielles,
car les concepteurs des architectures matérielles ont des difficultés à maîtriser le large
espace des DNNs et leur évolution continue. Par conséquent, une première étape con-
siste à caractériser automatiquement et minutieusement le DNN pour en extraire des
métriques pertinentes qui facilitent le processus de conception d’architectures. De plus,
cette méthodologie suggère d’exploiter des techniques de conception de haut niveau pour
réduire le temps de conception et augmenter la productivité, tout en permettant suff-
isamment de degrés de liberté pour l’exploration de l’espace de conception (Design Space
Exploration- DSE). Malheureusement, le vaste espace de conception rend l’exploration
de toutes les potentielles solutions très chronophage. Pour cette raison, la méthodologie
proposée automatise cette exploration pour faciliter le processus de conception global.

9

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

Figure 2 présente le flot de la méthodologie proposée.

Figure 2 – Le flot de l’approche proposée avec ses trois étapes principales : Caractérisation, Génération
Matérielle et Optimiseur.

Implementation et résultats

Cette méthodologie a été mise en œuvre sous la forme d’un framework, appelé SHEFTENN.
Le framework cible les FPGA et ne dépend pas des architectures ou des modèles existants.
Il consiste en trois modules interdépendants travaillant ensemble pour assurer une implé-
mentation optimisée du RTL (cf. Figure 3). Chaque module a un rôle spécifique dans le
processus de conception.

Le premier module, Characterization, réduit l’espace de conception grâce au calcul
et à l’analyse de métriques et génère des spécifications augmentées qui fournissent un
premier ensemble de pré-optimisations. Une caractérisation approfondie des applications
DNN est essentielle pour acquérir les connaissances requises pour concevoir des accéléra-
teurs matériels efficaces. Ce module caractérise et étudie le DNN d’entrée, puis produit
des spécifications augmentées liées à l’application. Comme étape préliminaire, un script
d’analyse implémenté en Python traite le fichier de description DNN. Le script Python
est adaptable au format du fichier d’entrée (TensorflowLite, ONNX ou N2D2, incluant
éventuellement les paramètres/poids du réseau). Les fichiers de description contiennent

10

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

principalement la topologie du DNN, l’ordre, les types ainsi que la configuration de chaque
couche. Ils peuvent également contenir les paramètres du réseau de neurones, si le format
de fichier prend en charge cette option. Pour prendre en charge cette variété de descriptions
d’entrée, des bibliothèques d’analyse appropriées sont importées dans le script Python.
La description DNN d’entrée est transformée en IR. Ensuite, un script Python utilise cet
IR pour calculer des métriques indépendantes de la cible/conscientes du matériel pour
chaque couche. Ensuite, il extrait les métriques liées aux données et les spécifications
augmentées. L’IR est mis à jour avec les métriques nouvellement calculées. Le module
de caractérisation vérifie également si le CNN est quantifié en vérifiant les largeurs de
bits des paramètres pour définir la bonne optimisation liée à la précision des bits dans
le module de génération de matériel. Ce module analyse le comportement de l’ensemble
du CNN pour aider à piloter la génération de code C. De plus, le module Caractérisation
dispose d’une étape de génération de code compatible C-HLS (il génère le code source de
l’ensemble du CNN) qui sert de modèle de référence à la fois pour l’analyse dynamique
et la validation de la génération matérielle par co-simulation.

Le deuxième module est le module de génération de matériel, Hardware Generation.
Il exploite la HLS pour effectuer l’implémentation du matériel dans SHEFTENN. Ce
module exploite un ensemble de données d’opérateurs HLS et de spécifications augmen-
tées pour générer une représentation RTL optimisée de l’accélérateur DNN. Un module de
génération de code (boîte bleue dans la Figure 3) génère un code source C optimisé et syn-
thétisable (compatible HLS) basé sur les résultats de la caractérisation. Ces optimisations
consistent en des transformations de boucle, telles que la réorganisation des boucles dans
les premières couches, pour encourager la localisation et la réutilisation des données afin
de réduire le temps de transfert des données. De plus, pour de meilleures optimisations,
le code C-HLS intègre des directives de compilation associées aux opérateurs qui pour-
raient remplacer les boucles du noyau. En outre, le module Hardware Generation génère
un fichier séparé comprenant des directives spécifiques à l’outil (pragmas) pour optimiser
chaque couche ainsi que l’ensemble du DNN. Les paires pragma-valeur, les directives du
compilateur, les facteurs de tuilage sont tous définis par le module Optimizer. L’outil HLS
considéré dans l’implémentation SHEFTENN est Vivado-HLS puisque les FPGA Xilinx
sont actuellement ciblés par le framework. Une fois toutes les optimisations définies, ce
module synthétise le code C-HLS résultant, puis co-simule le code généré et compare les
résultats avec ceux du modèle de référence pour vérifier le bon fonctionnement du design
avant de générer le RTL.

11

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

Enfin, le module Optimizer prend en entrée les résultats de la Caractérisation, la con-
figuration de chaque couche et les ressources du FPGA ciblé. Ensuite, il optimise le code
source C-HLS (généré dans le module précédent). Il détermine les couples pragma-valeur
à appliquer, les opérateurs à employer ainsi que les paramètres de tuilages. Ce module
réduit le nombre d’exécutions de synthèse en utilisant des modèles de surface et de perfor-
mance pour évaluer les différentes solutions lors de l’exploration de l’espace de conception.
De plus, une véritable synthèse est établie à chaque 20 itérations pour s’assurer que les
estimations de surface et de latence de l’ensemble du DNN ne s’écartent pas des valeurs
de synthèse réelles. Ce nombre d’itérations a été choisi à des fins d’instanciation, et peut
être remplacé par un nombre supérieur ou inférieur, permettant d’établir un compro-
mis entre précision et rapidité. L’exploration de paramètres supplémentaires (e.g. nombre
d’itérations) fait partie des perspectives, en particulier l’exploration du compromis entre
vitesse et précision des modèles. L’algorithme génétique du module d’optimisation génère
les meilleures configurations par couche uniquement en utilisant des métriques basées
sur la couche et génère des configurations optimisées basées sur un compromis surface-
performance. La deuxième étape du module Optimizer se concentre sur l’optimisation de
l’implémentation du DNN complet. Il prend l’ensemble des configurations précédemment
trouvées et recherche une implémentation satisfaisante qui intègre le DNN dans la cible
FPGA. Précisément, il recherche une solution optimale de Pareto pour chaque couche. De
plus, cette étape exploite les résultats de la caractérisation pour trouver des similitudes
entre les couches en termes de formes de noyau, de nombre de paramètres et de volume
de données d’entrée et de sortie. Par exemple, si deux couches ou plus ont les mêmes
caractéristiques, une seule fonction C-HLS implémentant cette couche est conservée pour
exécuter toutes les couches similaires. Par conséquent, cette étape sélectionne la meilleure
configuration optimisée par le GA et l’utilise pour implémenter la couche sélectionnée. Ces
couches sont ensuite allouées aux mêmes ressources RTL à l’aide du pragma d’allocation
qui sert à gérer les ressources au niveau RTL.

Le framework est évalué sur deux DNN de la littérature : MobileNet-V1 [57] and
SqueezeNet-V1.1 [58]. L’évaluation montre que l’approche proposée est fiable et permet
de concevoir des accélérateurs matériels pour les DNN sans intervention de l’utilisateur
dans le processus de conception. Les implémentations basées sur le framework ont montré
de meilleures performances et un meilleur compromis surface-performance par rapport
aux implémentations classiques.

La Table 1 résume les besoins en calcul et en ressources d’une implémentation clas-

12

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

.ini

.onnx

Parameters

DNN IR

Pa
rs

er

RTL Generation

Vivado-HLS Tool

Cosimulation

Analysis Synthesizable RTLPA Report

Performance &
Area models

Optimizer

GA
Layer-wise

Search
Algorithm

Network-wise

1

2

DNA Architectural
Representation

Analysis

Characterization

network.c
layers.c

C code – Reference Model

Parameters.h

Metrics

Computation

Feature maps

HLS Code Generation

network.c
layers.c

C HLS

La
be

ls Pragmas

directives.tcl

Images
Database

Augmented
Specifications

HLS
Operators

Optimization
Algorithms C Synthesis

.tflite

Figure 3 – Une description détaillée de chaque module du framework SHEFTENN instancié, où : le
module de caractérisation calcule et analyse les métriques, la génération HW génère du code C-HLS
et exploite une base de données d’opérateurs basés sur la HLS et utilise des outils HLS pour générer
le RTL et l’optimiseur utilise un algorithme génétique pour optimiser le RTL en définissant les bonnes
configurations pour le code C-HLS.

sique (non optimisée) de MobileNet-V1, qui n’inclut que les optimisations spécifiques à
l’outil qui sont généralement appliquées automatiquement, et l’implémentation optimisée.
Comme on peut le voir, la mise en œuvre de MobiletNet-V1 est optimisée en termes de
ressources et de performance. L’utilisation des ressources a considérablement diminué par
rapport à une implémentation classique. Par exemple, la mise en œuvre optimisée de
MobileNet-V1 utilise 63 .69% moins de LUTs, 31 .84% moins de FF, 10 .15% moins de
BRAM and 80 .95% moins de DSP, ce qui est dû aux optimisations employées, notamment
le pragma Allocation et l’opérateur choisi dans certaines couches. En ce qui concerne la
latence, la version optimisée de MobileNet-V1 est 22 .5% plus rapide que la version non
optimisée, ce qui peut s’expliquer par le fait que certaines optimisations appliquées inclu-
ent souvent des calculs simultanés et un accès parallèle aux données, en particulier dans
les opérateurs choisis. Il est à noter qu’une seule synthèse a été nécessaire dans ce cas,
car les valeurs estimées de latence et d’utilisation des ressources sont proches des valeurs
réelles, avec une erreur de 1 .6% pour la latence et une erreur moyenne de 15 .63% pour
les estimations de ressources.

13

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

Ressources (%) Non-Optimisée Optimisée Gain (%)
LUT 7,8 2,8 63,69
FF 2,7 1,8 31.84
DSP 26,3 5,0 80,95
BRAM 87,4 78,5 10,15
Latence (cycles) ×1000 29 972 23 227 22,5

Table 1 – Utilisation des ressources (%) et latence (cycles) des implémentations optimisée
et non-optimisée de MobileNet-V1.

En ce qui concerne le CNN SqueezeNet-V1.1, la Figure 4 montre l’utilisation des
ressources et la latence des deux implémentations optimisées et non optimisées. À partir
de cette figure, on peut voir que la version optimisée de SqueezeNet-V1.1 a une latence
plus faible mais une utilisation des ressources plus élevée par rapport à la version non
optimisée. Précisément, les LUT, FF et DSP ont augmenté de 18 .20%, 0 .62% et 3 .2%
respectivement par rapport à l’implémentation non optimisée. En revanche, les BRAM
ont légèrement diminué de 0 , 05%. En ce qui concerne la latence, la version optimisée de
SqueezeNet-V1.1 est 39 .24% plus rapide que l’implémentation classique. On peut voir que
l’outil a optimisé la performance de l’implémentation de SqueezeNet-V1.1 sans sacrifier
l’utilisation des ressources, puisque la plupart des ressources utilisées ne dépassent pas
50% de celles disponibles sur le FPGA ciblé.

Figure 4 – Utilisation des ressources (%) et latence (cycles) des implémentations optimisée et non-
optimisée de SqueezeNet-V1.1.

Ces résultats expérimentaux ont montré que le framework SHEFTENN est capable de
produire des solutions viables avec un compromis intéressant entre les performances de

14

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

la surface et de générer des implémentations optimisées d’accélérateurs pour les réseaux
de neurones de l’état de l’art, en utilisant un algorithme génétique qui encode l’ordre des
boucles et les optimise.

Comparaison entre SHEFTENN et la littérature

Cette section présente une première comparaison entre le présent travail et certains
des frameworks les plus pertinents de l’état de l’art, résumés dans la Table 2.

Frameworks Contributions Input Template HLS-tool Optimizations Ref.

hls4ml

Hardware Generator
Quantization-aware training
quantization-aware pruning
Targets FPGAs & ASICs

Trained DNN No Vivado-HLS, Catapult

No feedback after
RTL synthesis;

Relies on internal
feedback loops
of HLS-tools;
optimize PPA

[43]

MAGNet
Template-based

Hardware Generator;
Targets ASICs

Design goal
Hardware constraints
DNN Specifications

Yes Catapult

Bayesian optimization
strategy for DSE;

Feedback after
RTL synthesis;
Optimize PPA

[127]

Rivera-Acosta et al. Direct Hardware Generator CNN configuration
Database Yes Quartus II

No feedback loops;
No exploitation of

parallelism in FPGAs
[107]

fpgaConvNet
Exploits SDF for

efficient DSE;
Targets FPGAs

Trained DNN model No Vivado-HLS

Optimization of
performance &

throughput only;
No feedback loop

after RTL synthesis

[126]

FP-DNN
Instantiate hybrid

RTL-HLS template;
Topology analysis

Trained DNN Yes Catapult No feedback loop
after RTL synthesis [50]

FINN

Targets BNN;
Exploits a predefined

library for RTL
generation

BNN model No Vivado-HLS
No feedback loop

after RTL synthesis;
Performance optimization

[125]

Solazzo et al.
Direct Hardware generator;
Empirical estimation models

for FPGA resources
CNN configuration & Weights No Vivado-HLS

Optimization of
FPGA resources based
on estimation models;

No feedback loop
after RTL synthesis

[120]

SHEFTENN

Hardware generator;
estimation models

for FPGA resources;
Quantization-aware hardware

generation

Trained CNN No Vivado-HLS

2-steps optimization process
of FPGA resources and latency

based on estimation models
& real synthesis

-

Table 2 – Comparaison avec les frameworks de génération d’accélérateurs matériels de la
littérature.

Ce tableau montre que la plupart des approches proposées, contrairement à SHEFTENN,
offrent des frameworks de génération de matériel directs basés sur HLS sans boucles de
rétroaction après la synthèse RTL pour optimiser divers aspects de conception (c’est-à-
dire la puissance, les performances et la surface) en utilisant des valeurs réelles. MAGNet
offre une boucle de rétroaction sur le PPA uniquement après la synthèse. Cependant,

15

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

il utilise la HLS pour générer des composants architecturaux individuels décrits à haut
niveau mais pas au niveau algorithmique.

Certains frameworks de génération de matériel incluent une étape d’optimisation avant
la synthèse RTL, mais ne se concentrent que sur certains aspects de la conception, ce
qui n’est pas le cas de SHEFTENN qui vise à optimiser le PPA (power performance et
area) de la conception en utilisant un processus d’optimisation en 2 étapes. Par exemple,
FINN optimise l’implémentation en termes de performances uniquement et fpgaConvNet
se concentre sur l’optimisation des performances et du débit en utilisant un DSE qui
exploite le flux de données synchrones (Synchronous Dataflow - SDF). Le framework
proposé par Solazzo et al. optimise uniquement l’utilisation des ressources. Il convient de
noter que hls4ml s’appuie sur les boucles de rétroaction internes de l’outil HLS utilisé, tel
que Xilinx Vivado-HLS et Siemens Catapult, pour optimiser le PPA de la mise en œuvre
de l’accélérateur.

D’autre part, presque tous ces frameworks ne s’attaquent pas au temps d’évaluation et
de conception important des accélérateurs DNN, qui est l’une des contributions SHEFTENN
qui introduit des modèles d’estimation pour PPA afin de réduire le temps d’évaluation des
solutions d’optimisation potentielles, et donc le temps total de conception. Seuls Solazzo
et al. ont présenté des modèles d’estimation empiriques pour l’utilisation des ressources
sur les cibles FPGA, tout en ignorant les performances et la puissance. Cependant, ces
estimateurs sont limités à quelques configurations CNN et ne peuvent pas inclure les DNN
de la littérature.

La majorité des frameworks de génération de matériel proposés, contrairement à
SHEFTENN, sont limités à certains types ou configurations de DNN et ne prennent
pas en compte les optimisations algorithmiques sensibles au matériel. Les frameworks in-
troduits par Rivera-Acosta et al. et Solazzo et al. ne peuvent pas prendre en charge que
quelques configurations de couches. FINN n’accepte que les DNN binarisés et ne peut
donc pas prendre en compte les DNN standard. Certaines approches, telles que MAGNet,
fpgaConvNet et FP-DNN, considèrent les DNN de la littérature ayant de grandes topolo-
gies. Cependant, ils n’explorent pas la génération de matériel sensible à la quantification
pour les DNN quantifiés.

SHEFTENN, contrairement à d’autres approches dans l’état de l’art, est un outil au-
tomatisé ciblant les FPGA, et est indépendant d’un modèle ou d’une architecture cible. Il
permet de concevoir rapidement des accélérateurs DNN grâce à la combinaison d’une étape
de caractérisation qui réduit l’espace de conception et d’une étape de génération RTL qui

16

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

exploite la HLS. Une étape d’optimisation optimise l’implémentation de l’accélérateur
DNN grâce à une exploration automatique de l’espace de conception, qui utilise un pro-
cessus d’optimisation hybride de génération de code source RTL basé sur un code source
C-HLS, comme expliqué précédemment. Ce processus repose sur deux algorithmes dis-
tincts, le premier optimise chaque couche individuellement et le second optimise l’ensemble
du CNN. Un tel processus offre un compromis entre la qualité et la rapidité de l’exploration
à l’aide de modèles d’estimation (pour les performances et l’utilisation des ressources) et
la synthèse réelle. De plus, contrairement aux autres approches, SHEFTENN supporte les
réseaux quantifiés grâce à la HLS.

Ce travail doit être considéré comme une première étape de la mise en œuvre de la
méthodologie proposée, et de nombreuses perspectives ont été identifiées pour l’améliorer.
La section suivante discute des résultats et présente ces perspectives.

Conclusion

La HLS offrait un moyen rapide de concevoir des puces IA, sans avoir besoin d’une
expertise matérielle avancée, tout en exploitant les FPGA. En même temps, de nombreux
nouveaux défis et perspectives intéressantes ont émergé. L’un des principaux défis est
le DSE en raison de la variété des paramètres à modifier. Ces paramètres se présentent
sous la forme d’un style de codage algorithmique et d’optimisations de haut niveau, qui
nécessitent de nombreuses interventions de l’utilisateur pour atteindre l’objectif de con-
ception souhaité, ce qui augmente le temps de conception. Par conséquent, les outils HLS
doivent évoluer pour automatiser cette exploration, en particulier pour les accélérateurs
d’IA, afin de réduire le délai de mise sur le marché (time-to-market) des nouveaux ac-
célérateurs. Cette automatisation doit tenir compte de l’évolution rapide des DNN ainsi
que des contraintes des systèmes embarqués.

Cette thèse a présenté une approche de conception de haut niveau qui exploite HLS.
Le processus de conception de haut niveau est abordé à trois niveaux différents. Dans
l’implémentation actuelle de la méthodologie proposé, l’espace de conception est d’abord
réduit en considérant plusieurs options d’optimisation déduites de la phase de caractéri-
sation, puis augmenté en raison de la combinaison de pragmas et d’opérateurs HLS. La
combinaison de ces trois niveaux semble essentielle pour assurer un flot de conception
efficace et automatisé et pour réduire le temps de conception.

17

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

Discussion et perspectives

Bien que ce travail ait exploité les avantages de la HLS et des FPGA offrant respec-
tivement la vitesse de conception matérielle et l’aspect de reconfiguration, divers aspects
devraient encore être améliorés pour rendre l’approche proposée plus générique et efficace.
Certaines de ces perspectives sont discutées ci-dessous :

— Afin de faire face aux évolutions algorithmiques, le framework devrait être capable
de prendre en considération les nouvelles techniques d’optimisation des DNN, telles
que le pruning et l’entraînement quantization-aware employées dans hls4ml [43].
La prise en compte de ces techniques dans l’implémentation matérielle améliore les
performances et réduit l’utilisation des ressources et la consommation d’énergie.

— La consommation d’énergie doit être prise en compte dans le processus d’optimisation
afin d’optimiser tous les aspects de la conception. Par conséquent, un modèle
de puissance doit être créé et intégré dans le module Optimizer. Un exemple
de puissance de modélisation consiste à suivre la même approche présentée dans
ce manuscrit qui consiste à créer un dataset de microbenchmarks de différentes
couches. Ces benchmarks seront écrits en C, synthétisés et simulés puis alimentés
à un outil d’estimation de puissance RTL. Les données collectées seront transmises
au logiciel NCSS pour concevoir le modèle approprié. D’autres solutions existent
également et peuvent être utilisées pour estimer la consommation électrique comme
présenté dans [92].

— Les modèles adoptés dans le module d’optimisation (Optimizer) sont liés aux con-
figurations de couche. Par conséquent, ces modèles doivent être adaptés à chaque
nouvelle configuration disponible pour obtenir une estimation acceptable avec une
faible erreur quadratique moyenne. De plus, les données collectées après la simu-
lation des microbenchmarks dépendent des FPGA employés, puisque seuls deux
FPGA ont été utilisés pour synthétiser toutes les couches.

— Exploration d’autres paramètres du framework, en particulier l’exploration du com-
promis entre la vitesse de recherche d’une solution et la précision des modèles
d’estimation utilisés.

— Les travaux futurs porteront également sur le partitionnement DNN pour perme-
ttre la mise en œuvre de grands DNN sur des FPGA plus petits. L’algorithme de
partitionnement s’appuiera sur la représentation algorithmique de l’architecture
du réseau (code source C-HLS) pour trouver le bon partitionnement, c’est-à-dire

18

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

un partitionnement qui réduit l’utilisation des ressources sans sacrifier les perfor-
mances. Cet algorithme fera partie de l’algorithme de recherche, son rôle principal
sera de trouver des couches avec des besoins en mémoire et en informatique simi-
laires pour les allouer dans la même instance RTL. Le partitionnement peut égale-
ment être au niveau de la couche, c’est-à-dire un partitionnement intra-couche,
pour augmenter le parallélisme au niveau de la couche. De plus, des approches de
type fpgaConvNet qui utilisent SDF peuvent également être utilisées pour trouver
un partitionnement approprié pour le DNN.

— Une autre perspective intéressante est de trouver d’autres algorithmes d’optimisation
capables d’explorer rapidement l’espace de conception et de fournir des solutions
précises, tels que les algorithmes de DL.

— Exploration des effets de nouveaux pragmas pour étendre davantage l’espace de
conception. De plus, cibler les DNN sparse, d’un point de vue matériel, en intro-
duisant des techniques de compression basées sur la HLS enrichira le framework
proposé.

— Différentes options possibles peuvent être utilisées pour abstraire la surface en
termes de ressources FPGA, telles que des solutions pondérées, qui peuvent être
considérées comme favorisant les designs nécessitant moins de LUT ou moins de
BRAM en fonction du système global à mettre en œuvre, ou en tant que valeurs
ajoutées des ressources sous une forme de combinaison linéaire de leur usage.

— Comparaison du framework SHEFTENN quantitativement avec les frameworks
existants dans la littérature en implémentant les mêmes réseaux que ceux utilisés
dans la littérature ou en expérimentant avec des frameworks open source existants.

Contributions

Cette thèse fait l’objet de plusieurs contributions cités ci-dessous. Les publications sont
listées dans l’ordre chronologique inverse et classées parmi des revues, des conférences et
des brevets.

Soumises dans des journaux:

1. Ali, N.; Philippe, J. M.; Tain, B. & Coussy, P., "SHEFTENN : Software and Hard-
ware Exploration Framework for Efficient Implementation on Embedded Systems".
ACM Transactions on Design Automation of Embedded Systems (TOADES), 2022

2. Ali, N.; Philippe, J. M.; Tain, B. & Coussy, P., "Exploration and Generation of

19

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Résumé

Efficient FPGA-based Deep Neural Network Accelerators". Journal of Signal Pro-
cessing Systems (JSPS), 2022

Soumises dans des conférences:

1. Ali, N.; Philippe, J. M.; Tain, B. & Coussy, P. "An Integrated Design Space Explo-
ration and Hardware Generation Tool Flow for Next-Generation Deep Neural Net-
works Accelerators", Field Programmable Custom Computing Machines (FCCM),
2022.

Publiées:

1. Ali, N.; Philippe, J.-M.; Tain, B. & Coussy, P., "Exploration and Generation of
Efficient FPGA-based Deep Neural Network Accelerators", 2021 IEEE Workshop
on Signal Processing Systems (SiPS), 2021

2. Ali, N.; Philippe, J. M.; Tain, B.; Peyret, T. & Coussy, P.,"Deep Neural Networks
Characterization Framework for Efficient Implementation on Embedded Systems",
2020 IEEE Workshop on Signal Processing Systems (SiPS), 2020, 1-6

Submitted patents:

1. High-level design flow for artificial intelligence accelerator (2021)

20

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

TABLE OF CONTENTS

Résumé 5

Introduction 25

1 Background on Deep Neural Networks and Hardware Accelerators 31
1.1 Deep Neural Networks - DNNs . 32

1.1.1 Training vs. Inference . 34
1.1.2 Convolutional Neural Networks - CNNs 35

1.2 Hardware Accelerators for DNNs . 43
1.2.1 Dataflows Taxonomy . 45
1.2.2 Dedicated ASIC Architectures . 46
1.2.3 Programmable ASIC architectures 48
1.2.4 FPGA Architectures . 48

1.3 Conclusion . 50

2 State of the Art of Design Methodologies and Proposed Approach 53
2.1 Design Flows and Tools . 54

2.1.1 High-Level Hardware Description Languages 54
2.1.2 High-Level Synthesis - HLS . 55

2.2 Hardware Generation Frameworks . 58
2.3 Proposed Methodology Overview . 64
2.4 Comparison between SHEFTENN and the State of the Art 66
2.5 Conclusion . 68

3 Characterization and Metrics Analysis 69
3.1 Characterization step Overview . 70

3.1.1 Metrics Computation . 72
3.1.2 Metrics Analysis . 74

3.2 Characterization and Analysis of different State-of-the-Art Networks 82
3.3 Conclusion . 83

21

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

TABLE OF CONTENTS

4 Flexible Hardware Generation 85
4.1 Hardware Generation step Overview . 86

4.1.1 Non-optimized C-HLS implementations of DNN layers 87
4.1.2 C-Code transformation example . 88

4.2 High-Level Optimizations . 90
4.3 Library of HLS operators . 95

4.3.1 Introduction . 95
4.3.2 HLS operators overview and early results 97

4.4 Early Results using the Hardware Generation step 99
4.5 Conclusion . 105

5 Optimizing hardware through Design Space Exploration 107
5.1 Related Works on DSE . 108

5.1.1 Model-based DSE approaches . 109
5.1.2 Black-box-based DSE approaches 110
5.1.3 Discussion . 112

5.2 DSE Algorithm . 112
5.2.1 Introduction to Genetic Algorithm 113
5.2.2 Implementation of the DSE module 115

5.3 Model-based estimations . 118
5.3.1 Performance Model . 118
5.3.2 Models for resource utilization . 119
5.3.3 Discussion on obtained models . 122

5.4 Early results for DNN layer implementation optimization 123
5.5 Conclusion . 126

6 Implementation of the SHEFTENN Framework and Assessment 127
6.1 Implementation of the SHEFTENN framework 128

6.1.1 Characterization module . 128
6.1.2 Hardware Generation module . 130
6.1.3 Optimizer module . 130

6.2 Experiments and Results . 132
6.2.1 Experimental Setup . 132
6.2.2 SHEFTENN Evaluation using MobileNet-V1 133
6.2.3 SHEFTENN Evaluation using SqueezeNet-V1.1 143

22

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

TABLE OF CONTENTS

6.3 Conclusion . 144

Conclusion 147

Bibliography 153

23

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

INTRODUCTION

Nowadays, many tasks of daily life are subjects of automation such as car driving, im-
age and speech recognition, medicine, etc. Providing machines or systems with a decision-
making process is seen to be the seed of next-generation applications. The needed au-
tomation requires smart and powerful algorithms to model the behavior of individuals.
However, modeling the knowledge of an environment or a context to enable computers to
take a decision is a hard task. This is where artificial intelligence (AI) comes into play,
which is a large field of research that proposes algorithms to solve complex problems by
emulating the reasoning, the decision-making and the acquiring of new knowledge, skills
and understandings in humans by machines. AI is a wide term which includes Machine
Learning (ML) and Deep Learning (DL). ML, a subset of AI, is a field of study that uses a
lot of data to make computers smarter and capable of solving complex problems without
being explicitly programmed. It gives machines the ability to learn on their own and com-
plete decision making tasks. DL is a subset of ML inspired by the biological behavior of
neurons (i.e. human brain cells) that use a stack of multiple layers, hence the term "deep".
These layers are formed by simple, interconnected computing elements that progressively
extract high-level features from lower-level data. This process enables to derive high-level
knowledge (e.g. "a dog", "a face", "a car") from raw data (e.g. a set of pixels). Figure 5
shows the chronological evolution of AI with a brief description of AI, ML and DL.

Artificial Intelligence (AI)
Algorithms simulating the human brain:
decision making, adaptation, etc.

Machine Learning (ML)
Machines act and make decisions with the
help of lots of data without being explicitly
programmed

Deep Learning (DL)
Multi-layered artificial
neural networks inspired
by the neural structure of
the brain

1950 1960 1970 1980 1990 2000 2010 2015 2020

Figure 5 – Artificial Intelligence evolution and subsets.

25

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Introduction

First Artificial Neural Networks (ANNs) appeared in 1950. They were claimed to be
capable of simulating the behavior of a very simple brain composed of formal neurons. The
interesting property of these first ANNs was their ability to be taught in some way. This
learning process was performed using a user-provided dataset comprising input data and
the corresponding output data. Back-propagating the errors between the expected output
data and the output of the ANN enables to modify the parameters of the ANN, thus to
teach it the way to produce good outputs. In other words, it enables it to recognize specific
patterns. One of the first ANN (one single element) was the Perceptron, invented in 1957
by Franck Rosenblatt (McCulloch and Pitts described the basis of a formal neuron in
the 1940s). As examples of DL algorithms, Deep Neural Networks (DNNs) are composed
of neurons organized in a layered structure. Due to the multiple layers (depth) and the
potentially high number of computing elements in each layer (width), DNNs exhibit a high
number of parameters which enable to store or encode a high amount of knowledge. This
explains their excellent results in complex recognition tasks. As their ancestors, DNNs
can acquire the knowledge in a supervised manner using labeled data in a training phase.
This acquired knowledge is later used to infer results in the inference phase, which is the
main concern of hardware engineers of embedded system architectures, and therefore the
principle interest in this thesis.

In the landscape of DNN algorithms, Convolutional Neural Networks (CNNs) are
certainly the most famous example of such an approach and the foundation of modern
architectures of neural networks. CNNs are applied in many applications such as image
classification and object detection and recognition. In general, first layers of CNNs are
based on convolutional filters that act as feature extractors and the last layers are based
on fully connected neurons that perform a classification process thanks to the extracted
features. They have a hierarchical organization inspired by the architecture of the neurons
in the visual cortex. Those different layers rely on parameters (filter coefficients, weights,
etc.) learned during the training phase in a supervised manner. Nowadays, CNNs are
one of the leading technologies applied for classification problems. They are used by the
world digital giants like Google (i.e. Google Photos) and Facebook for face detection and
recognition, etc. These algorithms are continuously evolving to increase the accuracy of
their recognition process and to reduce computing and memory requirements.

CNNs have excellent performance in popular image recognition challenges such as
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [110]. However, these
performances come with high computing complexity and memory requirements. Imple-

26

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Introduction

menting these algorithms on mobile and edge devices raises great interest and push al-
gorithmic researchers to propose new DNN architectures and optimization techniques to
reduce these needs (e.g. precision reduction, pruning, etc.). Although many efficient al-
gorithms and optimization techniques were proposed in the last years, embedding such
algorithms into edge systems remains challenging. At the same time, hardware architects
work to develop energy-efficient computing architectures and accelerators for this purpose.
Numerous proposed DNNs hardware accelerators are intended to achieve the classical ob-
jectives of embedded systems: low latency, low energy consumption, high energy efficiency
and ability to execute different CNN layers and shapes. While introducing various archi-
tectural approaches to improve DNN computations, these proposals also exploit specific
features of DNNs such as sparsity to reduce energy consumption and latency. Figure 6
shows the timeline of the evolution of the hardware architectures targeting CNNs. Unfor-
tunately, there is a gap between these algorithmic and architectural initiatives. In fact, it
is quite complex for hardware designers to find the appropriate accelerator architecture or
at least the relevant configuration of specific architectures for new neural networks (NN)
or for a set of NN-based algorithms. In addition, designing an accelerator using Hardware
Description Languages (HDLs) such as VHDL or Verilog is time consuming which leaves
the hardware architects one step behind, letting the gap grow wider between the algo-
rithmic evolution and the hardware accelerators. The design process also requires a lot of
design compromises which depend on the output expected by the designer and specific
constraints.

20202019201820172016201520142010

Exploiting Algorithmic Optimizations

Support for sparse and dense
models

First attempts of CNN accelerators

Data reuse

Compression
Zero-skipping

Reconfigurability
Sparsity

Compression

Sparsity
Compression

Data reuse

Sparsity
Compression
Zero-skipping

Compression
Compression

Data reuse

Programmability

Figure 6 – Timeline of accelerator architectures targeting neural networks. Above the timeline, three
main epochs of hardware accelerators, considering various architectural approaches, are highlighted. Below
the timeline, the main features of accelerators are highlighted.

27

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Introduction

Numerous research efforts proposed to use hardware generation approaches to fill this
gap. The resulting frameworks leverage new design approaches such as high-level synthesis
(HLS) and/or target computing architectural templates. Commercial HLS tools can be
employed, such as Siemens-EDA Catapult or Xilinx Vivado-HLS, to generate the Register
Transfer Level (RTL) from a high-level coded algorithm (e.g. C, C++). The high-level
source code is optimized by applying transformations to the source code, hence resulting
in better hardware generation. In addition, tool-specific sets of optimizations are applied
by the designer to further optimize the RTL and achieve the desired design goal. Despite
the advantages of such approaches, important questions remain: What are the keys to
develop optimized accelerators with respect to a design goal? How to efficiently design
hardware accelerators targeting DNNs while also considering the changing landscape of
such algorithms? What are the design techniques that allow to decrease the time-to-market
of DNNs accelerators?

Aim of This Work

This thesis proposes a design approach and its implementation in the form of a frame-
work, called SHEFTENN (Software-Hardware Exploration Framework Targeting Embed-
ded Neural Networks), an end-to-end framework for generating efficient hardware acceler-
ators from high-level algorithmic descriptions. The goal of this work is to reduce the gap
between the software (SW) and the hardware (HW) by relying on an automatic design
flow for CNN hardware accelerator architectures. SHEFTENN comprises three modules
which interact with each other to bring together the algorithmic descriptions and the hard-
ware architectures. The first module, Characterization, performs an in-depth study of the
CNN algorithm with a hardware perspective. It computes metrics to derive augmented
specifications to help the two other modules. The second module, Hardware Generation,
uses the characterization results to generate an RTL (Register Transfer Level) source code
of the accelerator using a high-level description (e.g. C/C++ source code if using high-
level synthesis - HLS) and a database of operators. The third module, Optimizer, exploits
the results of the other two steps to control the hardware generation block according to
different objectives. Its goal is to optimize the generation of the RTL source code of the
accelerator based on a high-level model of the architecture. This module reduces the num-
ber of synthesis runs (long exploration loop) by leveraging area and performance models
to quickly evaluate each design point (short exploration loop).

28

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Introduction

To summarize, the contributions are as follows:

— The hardware generation approach based on three interdependent modules coop-
erating to generate optimized hardware accelerators. Its main purpose is to reduce
the gap between the application and the hardware architecture.

— The SHEFTENN framework which generates optimized accelerators from a CNN
description file. Side contributions also consist of its three modules: SHEFTENN
analyses the input algorithm and generates augmented specifications. Then, it pro-
duces a HLS-friendly code to feed it to a third-party HLS tool that generates the
RTL source code of the accelerator. The optimization phase of SHEFTENN works
on the high-level algorithmic architecture of the network to optimize the RTL
source code through generation.

— A database of HLS-based operators with different areas and latencies. These oper-
ators are meant to replace the kernel loops (innermost loops) in convolution and
pooling layers to reduce the surface of the hardware representation of the layer or
its latency or both. Only kernel shapes bigger than 1×1 have substitute operators.

— A two-steps optimization process which optimizes the high-level description of the
architecture (i.e. C source code). The first step uses a genetic algorithm to optimize
each layer of the network. The second step uses a search algorithm to optimize the
whole network while being able to fit it on the target FPGA architecture.

— An optimizer module which optimizes the RTL source code generation based on an
algorithmic representation of the accelerator architecture (e.g. C/C++). In other
words, it optimizes the high-level representation of the accelerator architecture
to generate an optimized RTL source code, based on high-level latency and area
models and real synthesis runs. SHEFTENN offers a trade-off between exploration
precision and speed by controlling the ratio between these two exploration loops.

— A quantization-aware C code generation that translates into a bitwidth optimized
accelerator thanks to HLS. Accelerators for homogeneous and heterogeneous quan-
tized DNN can be easily generated by the proposed approach, since it exploits the
ability of HLS to tailor bitwidths to the exact needs of the DNN weights by using
specific libraries.

This manuscript is organized as follows. The first chapter describes the context of this
dissertation, including a background on DNN algorithms and hardware accelerators tar-
geting these DNNs. The second chapter starts with a state-of-the-art on design flows and

29

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Introduction

hardware generation tools/frameworks, which their main features and discusses both their
advantages and inconveniences, to later introduce the proposed approach and compare
it with existing work. The third chapter presents the first building block of the pro-
posed approach, Characterization module, while presenting technical details and partial
results. The fourth chapter details the second building block, Hardware generation mod-
ule, including its technical implementation, the adopted tools for high-level synthesis, the
possible optimizations (pragmas) as well as their impact on the generated architecture.
In addition, it also introduces HLS-based operators as a new layer of optimization. The
fifth chapter details the last building block, Optimizer module, including the used opti-
mization algorithms as well as their working flow. The sixth chapter presents the flow of
the software and hardware exploration framework targeting embedded neural networks,
SHEFTENN, which uses all the modules detailed in the previous chapters. The sixth
chapter sketches the results of the framework used on state-of-the-art DNNs. Finally, a
conclusion summarizes the work in this PhD and sketches future works.

30

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1

BACKGROUND ON DEEP NEURAL

NETWORKS AND HARDWARE

ACCELERATORS

Designing efficient hardware accelerators for Deep Neural Networks (DNNs) requires
a thorough understanding of such applications. This chapter provides a background on
both the application and the hardware accelerators, which allows gaining a deeper under-
standing of the goal of the present dissertation.

The first section presents a background on DNNs including a brief history of these
algorithms. It shows the different steps that are employed to teach (learning phase) an
DNN and to later use it to infer results (inference phase). This section also puts the light
on Convolutional Neural Networks (CNNs) that are targeted in the scope of this thesis.
It presents the different types of layers that form a CNN, and finishes with an overview
of existing deep learning frameworks. Furthermore, this section highlights the extensive
computational and memory requirements of CNNs that makes them difficult to embed on
mobile and edge systems.

The second section introduces the challenges related to designing efficient hardware
accelerators for DNNs in the inference phase, while emphasizing on the difficulty to find a
suitable hardware architecture for various DNNs topologies. This section also presents the
various employed approaches by hardware architects to achieve certain design goals (e.g.
high performance, high energy-efficiency) by employing various dataflows that exploit
the intrinsic parallelism offered by CNNs as well as the locality and reuse of different
data types. In addition, it sheds the light on the complexity and the expensive design of
dedicated ASIC architectures and the desire to reduce that cost by devising more flexible
targets, such as programmable ASIC or reconfigurable FPGAs. Some of the most relevant
accelerators in each type of target are briefly discussed.

Finally, a conclusion concludes the chapter by recalling its main sections and summa-

31

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1 – Background on Deep Neural Networks and Hardware Accelerators

rizing the challenges of hardware designs, while briefly introducing the content of the next
one.

1.1 Deep Neural Networks - DNNs

As briefly evoked in the introduction of this document, ANNs really started when
Frank Rosenblatt came up with the Perceptron in 1957. It is the first model that shed
the light on the learning mechanics. It is a mono-layer linear binary classifier, formed of
one formal neuron, designed to classify visual inputs [108]. A formal neuron (also called
artificial neuron) is a mathematical representation of a biological neuron with multiple
inputs and a single output. It is a computational rule that associates an output with
a number of inputs having real values. The proposed model by McCulloch and Pitts,
presented in Figure 1.1, associates one synaptic weight (W) per input (X). In this model,
the first operation consists of a sum the weighted inputs (e.g. W1.X1+W2.X2+...+Wn.Xn).
A threshold value is added to this sum. The result of this summation is later transformed
by a non-linear activation function (ϕ) to obtain the output Y.

Figure 1.1 – Illustration of a formal neuron having three inputs and one output. X1, X2 and X3 represent
the inputs. W1, W2 and W3 represent the synaptic weights. Y is the output.

An ANN can be created by stacking a set of computational layers, see Figure 1.2. Each
of these layers consist of multiple artificial neurons. They are organized as follows: one
input layer, several hidden layers, and one output layer. The layers are interconnected via
artificial neurons (with weighted connections) with each layer using, as input, the output
of the preceding layer.

32

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

1.1. Deep Neural Networks - DNNs

YX

Input layer Hidden layers Output layer

x1

x2

x3

x4

y2

y1

w1,1

wi,j

Figure 1.2 – Structure of a classical Deep Neural Network. X represents the inputs, Wij represent the
connections (i.e. weights), Y represents the outputs.

While trying to understand the functioning of neurons in the visual cortex, the con-
ducted experiments by Hubel and Wiesel revealed two types of cells, simple cells and
complex cells [36]. Simple cells respond to stimuli with specific orientations, thus serve for
pattern or feature extraction. Complex cells respond to features (gathered from simple
cells) regardless to variations in position unlike simple cells. Thereby, the experiments in-
troduced the concepts of pooling and receptive fields. By means of these two cells, Hubel
and Wiesel introduced a model for pattern recognition having a hierarchical organization
similar to the visual nervous system.

Inspired by this model, the Neocognitron, a model with multiple layers organized in
a hierarchical structure, was introduced by Kunihiko Fukushima [46]. Each layer consists
of simple cells linked to complex cells with a fixed connection. This model was used
for various pattern recognition tasks. The Neocognition was later revisited by applying
the back-propagation algorithm to the learning system (a process of fine-tuning weights
based on error rate from previous epoch) to adapt the weights of the model [109]. After
years of research, the first Convolutional Neural Network (CNN) capable of classifying
handwritten digits, LeNet-5, was created by Yann LeCun et al. in 1998 [72]. LeNet-5,
represented in Figure 1.3, consists of a stack of five layers based on convolutional filters,
sub-sampling and fully connected layers associated with a back-propagation algorithm.

Inspired by all these research efforts, Deep Neural Networks (DNNs) use multiple
processing layers. Figure 1.4 shows, AlexNet [67], a classical example of a DNN. AlexNet
became one of the most influential networks that spurred a significant AI wave, since it

33

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1 – Background on Deep Neural Networks and Hardware Accelerators

Figure 1.3 – Structure of LeNet-5 (from [72]).

won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [110] in 2012.

Figure 1.4 – Architecture of AlexNet (retrieved from [67]).

Having detailed the origin of DNNs and their history development, the next sections
explain how a DNN learns, what are the steps of the leaning process and what is the
difference between training and inference.

1.1.1 Training vs. Inference

DNN algorithms, as explained earlier, are inspired by the biological nervous system.
Therefore, they require a learning process which allows them to learn a specific task
(e.g. image recognition, classification, etc.). The goal of the so-called training phase is to
modify and adapt the parameters of the DNN to enable it perform the required task with
a reliable accuracy. After this phase, the DNN is meant to infer results about unknown
data in the so-called inference phase. Figure 1.5 illustrates the two phases in which a DNN
passes through.

34

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

1.1. Deep Neural Networks - DNNs

Training The training is an essential step in which a model acquire the ability to per-
form a certain task, such as making predictions on data. It could have three different
types: supervised, unsupervised and semi-supervised. Supervised learning, the most com-
mon approach, provides the neural network with labeled training dataset. In contrast,
unsupervised learning uses an unlabeled training dataset. Semi-supervised learning falls
between supervised and unsupervised learning, since it uses a small amount of labeled
data and a large amount of unlabeled data. Only DNNs with supervised learning are used
in the scope of this thesis.

This phase requires an important training dataset and a training algorithm to learn
relevant features and fine-tune the weights of the network. In this phase the model learns
in epochs (i.e. iterations). Back-propagation is employed to propagate the error backward
through the layers of the network and tune the weights based on error rate (i.e. error be-
tween the actual label and the predicted one) obtained in previous iteration. For instance,
the network in Figure 1.5 learns to classify images into two categories ("car" and "truck").
The network takes the training dataset as input, adjusts its weights and makes its pre-
diction on each input whether it is a "car" or "truck" or neither. Based on the prediction
and the actual answer, the training algorithm receives true or false in response.

Inference The inference takes place after the training is done and a reliable model
is obtained (i.e. satisfying accuracy is reached on a validation dataset). The training
infrastructure is no more required: the weights are fixed and no longer need adjustments.
The neural network is capable of processing new data and propagates it forward only. It
is therefore employed to perform the previously learned task.

1.1.2 Convolutional Neural Networks - CNNs

This section presents the building blocks of a CNN and clarifies some notations used
throughout the manuscript. It also shows the types of layers, their hyperparameters,
the mathematical operations they perform, as well as the computational complexity and
memory requirements.

CNNs are one of the most popular examples of DNNs and one of the cutting edge
technology in the computer vision field. As detailed earlier, CNNs have a hierarchical or-
ganization inspired by the biological architecture of the visual cortex. They use concepts
similar to pooling and receptive fields, inspired by simple and complex cells introduced
by Hubel and Wiesel. In addition, weights sharing is employed to reduce the number

35

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1 – Background on Deep Neural Networks and Hardware Accelerators

« car »

Training
Dataset Prediction

« car »

« truck »

Forward

Backpropagation Error =
prediction - label

« car »

New Data

Trained Model

Training Phase

Inference Phase

Prediction

Figure 1.5 – Training vs Inference of a Deep Neural Network.

of weights and make feature recognition indifferent to the location of the feature. First
layers are based on convolutional filters which extract key features from the input data.
Latter layers perform the classification process to classify input data by using the pre-
viously extracted features. These layers rely on parameters (filter coefficients, weights,
etc.) learned during a training phase on a specific dataset. More specifically, hidden layers
perform mathematical operations such as convolutions, pooling and activation functions.
In general, the core building blocks of a CNN are convolution, pooling and fully connected
layers. Most popular types of CNN layers are detailed below.

Convolutional layer - Conv

The main role of this layer is to extract features from input data. It is a computational
layer which performs mathematical operation called convolution. Convolutional layers are
presented as a stack of 2D matrices (i.e. 3D matrix). Each element of the matrix is the
output of a neuron looking at a local region (e.g. a small window with certain dimensions)
in the input data and sharing parameters with left and right neurons. Weighted filters
(i.e. parameters) carry out connections between the input and the output of a layer.

In the image processing field, a convolutional operation is represented as a sliding

36

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

1.1. Deep Neural Networks - DNNs

window, known as filter, over an input image (i.e input feature map). Each area covered
by the sliding window is called the receptive field. The idea of the sliding window is
interpreted as shared weights between the output neurons. However, the position of each
receptive field depends on the stride S (i.e. step) and the zero padding P (the most
common type of padding) of the input. Figure 1.6 illustrates a convolutional operation
with a stride of 1 without padding in Figure 1.6(a), with a padding of 1 in Figure 1.6(b).

(a) 5x5 image convolved with a 3x3 filter with a
stride s = 1 and padding p = 0.

(b) 5x5 image convolved with a 3x3 filter with a
stride s = 1 and padding p = 1.

Figure 1.6 –
Illustration of a convolutional operation. The receptive field is represented as a shaded

area on top of the input image.

In this operation, relevant features and characteristics are extracted from the input
image. Output feature maps (also called activations map) are generated by accumulating
partial sums. It is basically a Multiply ACcumulate (MAC) operation. MAC is used as
a unit to express the computational complexity of the layer. Considering a batch size of
one, the dimension of the input feature map is a 3D structure composed of N 2D planes,
known as channels. Output feature maps are also 3D. As for filter weights, the dimension
is 4D consisting of 3D structure (height Kx, width Ky and depth N matching the number
of channels of the input feature map), and a 1D structure representing the number of
filters that determines the number of output feature maps M . In a given layer, a 3D input
feature map is processed by M 3D filters (i.e. 4D filters). Furthermore, there is a 1D bias
that is added to the result of the filtering operation to help the layer produce non-zero
valued results if the input features were null. The mathematical representation of a three
dimensional convolutional layer is represented in Equation 1.1:

37

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1 – Background on Deep Neural Networks and Hardware Accelerators

O[m][x][y] = f(
M∑

m=1

Kx∑
i=1

Ky∑
j=1

(W [m][n][i][j]×I[n][ix][iy]) + B[m])

ix = x ∗ Sx − Px + i ; iy = y ∗ Sy − Py + j

(1.1)

Where 0 ≤ n < N (N is the number of channels) and:
— O is the output feature maps (output matrix)
— I is the input feature maps (input matrix)
— W is the weights matrix
— B is the biases matrix
— S is a given stride
— P is a given padding
— Kx & Ky are the width and depth of the weights array
— f is the Activation Function, which will be described later
The stride, padding along with the size of the filter are the hyperparameters of a con-

volutional layer. Figure 1.7 illustrates the computation of a convolutional layer, omitting
biases. The height and width of the output feature map are computed as in Equation 1.2.

R = H − Kx + 2Px + Sx

Sx

Output Height

C = W − Ky + 2Py + Sy

Sy

Output Width
(1.2)

Using the details above, parameters characterizing a convolutional layer can be calcu-
lated using Equation 1.3. These parameters include the number of parameters NbP aram,
the number of pixels in the input and output feature maps, also called input activations
Nbinput activations and output activations Nboutput activations respectively.

NbP aram = Kx × Ky × N × M

Nbinput activations = H × W × N

Nboutput activations = R × C × M

(1.3)

The memory requirements of a layer can be determined using Equation 1.3, given a
specific bit precision, by multiplying the number of parameters, and the number of input

38

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

1.1. Deep Neural Networks - DNNs

Weights Input Feature Output Feature
Maps Maps

M

N Kx

Ky
N

W

H
M

C

R

Figure 1.7 – Illustration of a convolutional layer, M being the number of filters/outputs, N the number
of channels, R the output width, C the output height, W the input width, H the input height, Kx the
filter width and finally Ky the filter height.

and output activations by the number of bits. The computing complexity (in MAC) of a
convolutional layer can be calculated using Equation 1.4.

Nbstd convMAC
= R × C × Kx × Ky × M × N (1.4)

Activation Function

Activation functions are inspired by the activation process of the biological neuron.
They usually follow convolutions to introduce non-linearity and help the network learn
complex features. Activation functions define the state of each neuron. In other words, it
determines if a neuron is activated or not.

Several activation functions with different properties have been studied and evaluated
in the literature [4, 39]. One of the most popular and modern activation function is the
rectifier linear unit, ReLU [89]. It is efficient from an application performance perspective,
it is also computationally efficient, especially in hardware. ReLU is not zero-centered, it
clamps negative inputs to zero while positive inputs are transmitted as outputs as follows:
f(x) = max(0, x).

Pooling Layers - Pool

Pooling layers are standard layers in CNNs. They do not have parameters and thus
are not affected by the training phase. These layers perform downsampling operations to
maintain robust features only and are usually applied after convolutions. The process of a
pooling layer is the same as the sliding window in a convolution without weights to share,

39

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1 – Background on Deep Neural Networks and Hardware Accelerators

thus depends on two hyperparameters: stride, size of the sliding window (Kx & Ky). The
most commonly used types of pooling are max and average. In max pooling the maximum
value is taken out of a window of values y = max(input window), and in average pooling,
the output corresponds to the average of values in a window is computed and taken out
y = avg(input window). Figure 1.8 sketches the operations of max and average pooling
on a 4×4 input feature map, with a 2×2 filter size and a stride of 2.

2 5 8 1

50 21 40 32

76 88 100 50

2 20 30 31

50 40

88 100

19 20

46 52

Max Pooling

Average Pooling

2x2 Filter
Stride 2

Input Feature Map Ouput Feature Map

Figure 1.8 – Illustration of max and average pooling operations.

Fully Connected Layers - FC

Fully connected layers are usually the last layers in a CNN. Each output neuron is
connected to every input neuron from previous layer, hence the name "Fully Connected".
These layers have parameters, thus they are affected by the training phase. FC layers
perform the classification process using flattened feature maps. The number of parameters
as well as the input and output activations are computed using Equation 1.5. It is worth
noting that the computational complexity of FC layers is equivalent to the number of
parameters.

NbP aram = Kx × Ky × N × M

Nbinput activations = H × W × N

Nboutput activations = M

(1.5)

The previous sections described the basic building blocks of common CNNs. The
given equations and notations will be used throughout the manuscript to compute the

40

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

1.1. Deep Neural Networks - DNNs

computational complexity and the memory requirements which will be used to compare
state-of-the-art CNNs.

Numerous CNNs were designed using the building blocks above. In particular, the
most famous CNNs were competing and won the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in object detection and image classification tasks [110]. Researchers
continuously put efforts to improve the accuracy of the CNNs (i.e. top-1 and top-5 scores
on the ILSVRC challenge) or to reduce the computational complexity and the memory
needs. Therefore, the comparison between DNNs is mainly based on their accuracy and
their execution time, during the inference phase, on GPU platforms as provided by some
DNN frameworks like Tensorflow.

The majority of artificial neural network designers focused on increasing the number
of layers to reach higher accuracy, such as GoogleNet [122], ResNet-50 [53], etc. Table
1.1 shows the main characteristics of a variety of neural networks. It lists a few state-
of-the-art CNNs and presents some parameters that characterize each network: size of
the input, number of conv. and fc layers, input data, number of parameters, and the
number of MACs. The volume of parameters and the input data of each networks are
reported in Bytes considering an 8-bit precision. These networks (except LeNet) are part
of ILSVRC and take similar input dimensions 3×224×224. Changing the size (decreasing
or increasing the size) of the input only affects the number of input and output activations
(i.e. memory requirements) in proportional ways. However, modifying the input dimension
does not affect the number of parameters, since the dimensions of each layer in a network
are fixed before training. Another interesting point is the huge number of convolutional
layers, more than 90% of the layers, which concentrate most of CNNs computation.

CNNs
Models

Input
Size

Total
Layers

Conv.
Layers

FC
Layers

Total
Parameters (B)

Total
Data (B)

Total Operations
(MACs)

LeNet-5 [72] 28x28x1 5 2 2 60K 8.1K 0.33M
0.25-MobileNet [57] 224x224x3 28 27 1 466K 1.26M 41.03M
0.25-MobileNet [57] 128x128x3 28 27 1 466K 0.46M 13.58M
SqueezeNet-v1.1 [58] 227x227x3 28 10 1 1.2M 3M 352.54M
EfficientNet-b0 [123] 224x224x3 99 81 1 5.3M 13.9M 387.78M
VGG-16 [119] 224x224x3 16 13 3 138M 15.1M 15.47B
GoogLeNet [122] 224x224x3 22 57 1 7M 4.7M 1.68B
ResNet-50 [53] 224x224x3 50 53 1 25.5M 16.6M 3.83B

Table 1.1 – State-of-the-art CNNs and some characterizing metrics.

Many deep learning frameworks are developed to create reliable models. They provide,
through APIs, building blocks for designing, training and validating deep learning models.

41

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1 – Background on Deep Neural Networks and Hardware Accelerators

An overview of existing deep leaning frameworks is presented next.

Deep Learning Frameworks

With the growing popularity of DL algorithms in various fields, academic (e.g. Uni-
versity of California, Berkeley) and industrial groups (e.g. Google) showed lots of interest
in developing the frameworks for designing, training and validating DNNs [8]. Most of
the existing frameworks are open source (e.g. PyTorch [45], TensorFlow [1], etc.) and
offer the possibility to design and train neural networks and even execute pretrained
ones. Most of these frameworks strongly rely on hardware accelerators such as Graphical
Processing Units (GPUs) and the related software APIs (e.g. CUDA) to speed-up the
compute-intensive training phase. Table 1.2 presents a few Deep Learning Frameworks
and compares some of their properties.

For instance, TensorFlow, one of the most used tools in DL, is an end-to-end open
source DL framework developed by Google. It provides stable Python and C++ APIs
and offers a complete and flexible ecosystem of tools, libraries and community resources
that allow researchers and developers to easily train and deploy neural networks. It al-
lows to deploy processing on multiple CPUs and/or GPUs. In addition, it provides a
specific framework called TensorFlow Lite to deploy DL models on mobile and edge de-
vices. Keras is an open source library developed "for humans" [66]. It offers consistent
and simple APIs, it is user-friendly and extensible since it is written in Python. PyTorch,
developed by FaceBook, is a powerful DL tool based on Python. It is easy to use and
integrates acceleration libraries (such as Nvidia cuDNN [94]) to maximize development
and deployment speed. N2D2 (Neural Network Design and Deployment) is another open
source framework for designing and deploying DNN-based applications developed at CEA
(Commissariat à l’Energie Atomique et aux Energies Alternatives) [87]. It provides a ro-
bust and efficient source code generation backend for several targets, and includes specific
features targeting embedded systems such as advanced precision reduction techniques.
The Nvidia Caffe, known as NVCaffe, is developed by the Berkeley Vision and Learning
Center and community contributors [63]. It supports acceleration libraries for CPUs and
GPUs such as cuDNN.

As it can be seen, from Table 1.1, these networks have extensive memory and compu-
tation needs which make them hard to implement into embedded systems. Fortunately,
they exhibit a significant intrinsic parallelism, which make them the prime target for
hardware acceleration. Although these networks are based on convolutional filters, the

42

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

1.2. Hardware Accelerators for DNNs

Software Caffe Keras TensorFlow PyTorch N2D2
Open source Yes Yes Yes Yes Yes
Written in C++ Python C++, Python, CUDA Python, C, C++, CUDA C++
CUDA support Yes Yes Yes Yes Yes
Initial release 2013 2015 2015 2016 -
Software license BSD MIT license Apache 2.0 BSD CeCILL-C license
Actively developed No Yes Yes Yes Yes

Table 1.2 – Overview of few Deep Learning frameworks.

networks topologies as well as the types and dimensions of layers make them behave very
differently. Therefore, finding a suitable implementation on a target architecture for CNNs
is challenging due to their respective needs in memories and processing operators. The
following section sets out the literature of the existing hardware CNN accelerators.

1.2 Hardware Accelerators for DNNs

Researchers in the past decade put efforts in designing hardware accelerators for DNNs
algorithms [12]. The main focus was on accelerating the inference phase to target embed-
ded systems, since the training is less critical and can be accelerated offline using GPUs.
Designers have exploited all types of parallelism, offered by the data structure and the
mathematical operations of DNNs, to design accelerators while focusing on performance
or energy-efficiency or flexibility depending on the target technology (ASICs - Application
Specific Integrated Circuits, or FPGAs - Field-Programmable Gate Arrays) or applica-
tion. It is worth noting that FPGAs are often used for prototyping ASIC architectures.
A typical high-level representation of spatial DNN accelerators can be illustrated as in
Figure 1.9.

More specifically, they usually consist in an array of Processing Elements (PEs) for
computation, which is mostly Multiply-ACcumulate (MAC) operations. PEs have inter-
nal control and are interconnected using a Network-on-Chip (NoC) to interchange data to
support a specific dataflow. Regarding memories, a three-level memory hierarchy is often
implemented to fulfill the extensive memory needs of DNNs and overcome memory ac-
cesses bottleneck. The first memory structure is at PE level, where each PE has a Register
File (RF) to store intermediate results or accumulations. The second memory structure
is an on-chip global buffer (GB) which is often implemented to provide the computation
array with enough data. The third one is the off-chip memory, DRAM in most cases,
where no longer used data is sent, and new data is retrieved from off-chip memory to

43

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1 – Background on Deep Neural Networks and Hardware Accelerators

Figure 1.9 – Illustration of a spatial architecture of a DNN accelerator. Each processing element (PE)
consists in 3 main parts: Register File, Control and the Processing part. The memory hierarchy of the
overall architecture consists in a Global buffer and an off-chip memory.

fill the GB. RF and GB are usually implemented in such architectures to encourage data
locality and reuse and ensure fast load/store operations. In addition, they are smaller,
faster and have lower energy cost compared to DRAMs.

Moving CNNs to embedded systems is, till now, one of the main goals of hardware
designers. Most research efforts focused on achieving classical embedded systems design
objectives: high throughput, limited accesses to off-chip memory, high performance, high
energy-efficiency. Choosing ASIC or FPGA targets, designers focused on dataflow-based
architectures to reduce memory footprints of DNN algorithms due to their large memory
requirements. They investigated different scenarios of data reuse provided by the internal
structure of CNNs, which allows using data close to the PE and avoiding time and energy
consuming read operations. Three reuse scenarios can be found: weights reuse in which a
filter is reused E×F times to compute one output feature map; input reuse in which the
input feature map is reused M times to compute the output feature maps; convolutional
reuse when input pixels (i.e. activations) are reused to compute more than two output
activations. Most accelerators are essentially designed to compute convolutional layers,
which are computationally intensive, to explore various dataflows, reuse and parallelism
opportunities.

While employing optimized dataflows or using different memory levels for different
types of data were not enough to either overcome energy-efficiency issues or to improve
performance, designers exploited application-related optimizations. For example, one can
cite the use of specific approaches exploiting sparsity, in which a significant number of
weights and/or input activations are zeros, and pruning [52], in which less useful connec-
tions in a CNN are removed (i.e. set to zero). According to [12], the number of zero values

44

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

1.2. Hardware Accelerators for DNNs

can go up to 80% for weights and 70% for activations. Researchers leveraged this sparsity
in hardware, to avoid zero-valued multiplications. Sparsity or pruning can be exploited us-
ing compression techniques, such as Compressed Sparse Row (CSR), Compressed Sparse
Column (CSC) and Run Length Coding (RLC), to store data in a compressed format and
thus reduce memory usage and allow direct access to the "next" non-zero valued data.
This section shows a taxonomy of existing dataflows, then presents the state of the art
of dedicated and programmable ASIC architectures as well as FPGA-based accelerators
architectures.

1.2.1 Dataflows Taxonomy

The idea behind specific dataflows is to improve the energy of the system by articu-
lating data movement on-chip. Dataflows usually reflect the type of data reuse employed
in an accelerator. Researchers in [20] classified dataflows into four different categories as
follows:

— Weight Stationary (WS) dataflow encourages weights reuse by keeping weights on-
chip, in the RF of each PE. Input pixels are broadcasted to all PEs and partial sums,
once generated, are accumulated spatially across the PE array. This maximizes
weight and convolutional reuse. Works employing this dataflow are presented in
[16], [48], and [64].

— Output Stationary (OS) dataflow encourages the locality of partial sums on-chip,
where they are accumulated in the RF of each PE, thus maximizes the reuse
of partial sums. Filter weights are broadcasted to all PEs while input pixels are
distributed spatially across the computing array. Works presented in [51], [41], and
[99] adopted the OS dataflow.

— Row Stationary (RS) dataflow encourages all types of data reuse (i.e. input pix-
els, filter weights and partial sums) in each PE. In RS dataflow, each row of the
convolutional operation is mapped to a PE, thus each PE processes one row of the
convolution. MIT researchers, who introduced this dataflow, employed it in the
Eyeriss architecture [19].

— No Local Reuse (NLR) dataflow, as indicated by its name, does not leverage any
data reuse. Therefore, no data is kept on-chip and the RFs are exchanged with a
large global buffer for the whole PE array. For instance, DianNao [136] and the
work in [22] use this dataflow.

45

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1 – Background on Deep Neural Networks and Hardware Accelerators

1.2.2 Dedicated ASIC Architectures

ASIC stands for Application-Specific Integrated Circuits. Every designed dataflow-
based ASIC chip is customized for a specific application and thus can no longer be modified
or adjusted once fabricated. ASICs can be classified into various categories, such as Full
Custom cells and Semi-Custom cells (such as Standard Cells). Full Custom cells imply
designing a chip from scratch where most logic cells, circuits and the overall chip layout
must be designed. This allows to design customized circuits optimized in terms of area
and performance. The main drawback is the significant design effort and the high cost.
On the other hand, Standard Cells involve pre-designed, pre-characterized and pre-tested
logic cells as building blocks from a library of standard cells, which allows saving design
time and reduce the risk compared to Full Custom. However, purchasing such libraries is
expensive and designing standard cells is time extensive, which imply long manufacturing
time.

The design flow of such architectures is complex and the production cost is quite
extensive which means a significant time-to-market. Although the design flow of ASIC
chips is pretty complex, these architectures have been one of the best targets to execute
DL algorithms due to the resulting optimized and energy-efficient chip.

Due to the efficiency of data reuse in the implementation of DNNs, dataflow-based
accelerators consist of the majority of existing DNN accelerators in the literature. Neu-
flow [100] and DianNao [22] are good examples of early dataflow architectures targeting
DNN acceleration. They consist in computational units performing each an arithmetic
operation (i.e. multiplication or accumulation) or a non-linear operation and connected
by a reconfigurable interconnect system. These approaches reduce latency since interme-
diate data do not need to be stored, which also reduces the required on-chip memory. The
main issue in such approaches is flexibility, since the implementation of newly emerging
CNNs with different topologies or CNNs leveraging algorithmic optimizations cannot be
easily implemented due to the fixed structure of such architectures. Other approaches al-
low more flexibility by implementing reconfigurable arrays, they also leverage algorithmic
optimization, such as sparsity in specific dataflows (e.g. RS, OS, etc.).

Architectures exploiting sparsity These architectures are also dataflow-based and
consist in an array of PEs. In general, PEs perform MAC operations and, in most cases,
non-linear operations (e.g. ReLU). PEs are interconnected to exchange data with respect
to the adopted dataflow. For instance, Eyeriss is an RS-dataflow-based architecture, de-

46

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

1.2. Hardware Accelerators for DNNs

signed to accelerate convolutional layers [21]. It consists of an array of PEs with four
levels of memories: external DRAM, On-chip GB, Inter-PE communication network and
scratch pads. It leverages the sparsity in activations (due to the application of ReLU)
on two levels to improve energy. The first level consists in skipping the computation
of zero-valued activations, and the second one consists in compressing data using RLC.
The Unique Weight CNN accelerator (UCNN) exploits sparsity in weights [54]. Unlike
Eyeriss, it also leverages weights repetition (similar to weights sharing) to improve per-
formance and reduce memory accesses. An improved version of Eyeriss, Eyeriss V2, runs
compact sparse CNNs [23]. It exploits the sparsity in weights and activations. It uses the
CSC compression technique to keep both weights and activations in a compressed format
during computation and in memory. In addition, it presents more flexibility due to the
hierarchical mesh-based NoC used to connect the PEs. SCNN targets sparse CNNs and
uses CSC to compress both weights and activations [98]. It is optimized for convolutional
layers and employs a dedicated dataflow to keep both weights and activations in a com-
pressed format throughout the execution of the layers. Data is sent to a computing array
(mainly multipliers), and the results are accumulated by means of a dedicated mesh-based
NoC. Researchers revisiting SCNN designed the SparTen architecture to tackle the load
imbalance problem found in SCNN [49]. The authors in [75] designed SqueezeFlow, an
accelerator which compresses weights only using the RLC technique. They proposed the
concise convolution rules to reduce the gap between sparse and dense DNN accelerators
and to eliminate the processing of zero-valued weights and activations. EIE, presented in
[52], in an accelerator for sparse networks and optimized for FC layers. It exploits dy-
namic sparsity in input pixels by skipping zero-valued activations. It also uses the CSC
compression scheme to compress weights and reduces energy consumption by avoiding
DRAM accesses.

Other approaches The work in [132], FixyNN, proposed a deeply optimized fixed
structure for feature extraction to improve energy-efficiency while sacrificing flexibility. In
this approach the Register Transfer Level (RTL) source code of the spatial architecture
of the CNN topology is generated using fixed weight-optimized operators. To manage a
performance-flexibility trade-off, the generation can be applied on a set of early layers of
the input CNN. The last part of the architecture is more flexible and new applications
can be implemented using the transfer learning technique. The authors also studied how
to reuse generated partial structures for other deep learning algorithms using retraining.

47

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1 – Background on Deep Neural Networks and Hardware Accelerators

Another array-based accelerator, called Squeezelerator, is designed with the idea of co-
designing the algorithm and architecture to reduce energy consumption [69]. It alternates
between two dataflows, Output Stationary and Weight Stationary, to suit the needs of
each layers with no switching overhead.

Optimized ASIC architectures, exploiting various algorithmic optimizations, mostly
depend on the employed dataflow. Updating the dataflow of the architecture is necessary
to execute new DNN applications. However, changing or adapting the dataflow to the
application requires redesigning the overall chip, which is pretty high-cost. Therefore,
some approaches would rather design programmable and reconfigurable architectures to
reduce this cost and enable more flexibility.

1.2.3 Programmable ASIC architectures

Most of the previously analyzed approaches suffer from a common problem which is
flexibility. They are either dedicated to one feature, either a dataflow or a type of network
(dense or sparse) since supporting more features makes the hardware more complex which
makes the control more difficult. Therefore, more flexible (i.e. less dedicated) approaches
can be found in the literature which are basically programmable DSP-like architectures
(for Digital Signal Processing). These approaches rely on less dedicated hardware to be
more flexible. For instance, PNeuro is a homogeneous accelerator formed by clusters of
identical programmable processing elements working using the Single Instruction Multiple
Data (SIMD) paradigm [13]. Orlando, a heterogeneous approach presented in [38], is
composed of two parts: a dedicated one and a programmable one. The dedicated part
consists of accelerators for convolutions and other image processing algorithms, while the
programmable part consists of programmable DSP clusters which are in charge of other
layers (such as pooling or fully connected ones). The common goal of these proposals is to
efficiently implement variations of existing layers or to be future-proof in case new layers
are introduced.

1.2.4 FPGA Architectures

FPGAs, for Field Programmable Gate Array, are characterized by their fine-grain re-
configurablity which facilitates the implementation of any design while tailoring each of its
components (e.g. PEs, memory infrastructure and interconnect) to the exact requirements
of the application. One of the most appealing property of FPGAs is their reconfigurabilty

48

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

1.2. Hardware Accelerators for DNNs

which allows to modify the structure of the accelerator even on-the-fly. This extend FP-
GAs life cycle as technology and application requirements evolve. Another interesting
aspect of FPGAs is their computation structure suited to application with intrinsic spa-
tial parallelism as well as to dataflow algorithms, found in deep learning, such as CNNs.
Compared to ASICs, FPGAs have lower performances and higher energy-consumption.
Unlike ASICs, FPGAs have a less complex design flow and are cost-effective, thus they
have a short time-to-market. Consequently, FPGAs are one of the first targets to imple-
ment accelerators for deep learning algorithms and are often used for ASIC prototyping.
FPGA vendors offer their own tools and dedicated deep learning architectures to facilitate
the use of these platforms, such as Vitis AI from Xilinx [133] or OpenVINO from Intel
[62].

FPGAs Exploiting Sparsity

Similarly to the ASIC-based dedicated implementations, some FPGA-based acceler-
ators exploits sparsity in CNNs to reduce energy consumption. For example, NullHop
targets the acceleration of convolutional layers while leveraging sparsity in activations
in computational and memory aspects [3]. Computational-wise, the sparsity is exploited
to skip zero-valued computation with no overhead. Memory-wise, a compression tech-
nique is applied to reduce accesses. Researchers in [81] propose an accelerator exploiting
sparsity in weights to improve performance. They employ a weight-oriented dataflow, in
which each weight is processed separately to leverage the mathematical element-matrix
multiplication.

FPGA for Dense CNNs

In addition to all these works, some researchers addressed the problem of designing
hardware accelerators on FPGAs for CNNs differently. They employ a high-level template
(i.e. written in C/C++ or SystemC) of the loop nest of convolutional layer. Most of these
approaches leverage the High-Level-Synthesis (HLS) technique to generate an accelerator
from a high-level code. The main focus is to optimize the loop nest by applying loop trans-
formations which include tiling, unrolling and ordering techniques to improve throughput
and resource usage.

The work in [136] proposes an optimized accelerator template for convolutional layers
in which certain loops are tiled and reordered and some are unrolled to reduce data trans-
fer and increase throughput. The template uses the same unrolling factors for different

49

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1 – Background on Deep Neural Networks and Hardware Accelerators

convolutional layers applying the concept of one size fits all. Contrary to this approach,
the work in [117] focuses on resource partitioning among a number of CLP (for Convolu-
tional Layer Processor) tailored differently to maximize efficiency. The authors emphasis
on the size of the CLP which is determined by the dimensions of the convolutional layer
and the tiling parameters. In this approach layers are pipelined, different layers with sim-
ilar dimensions can be assigned to the same CLP. Adjacent layers must be assigned to
different CLPs to avoid idle time. The FPGA-based accelerator proposed in [82] aims at
improving performance, reducing accesses to memories (on-chip and off-chip) and max-
imizing resource usage. The three loop transformations are deeply analyzed to find the
right configuration with respect to the design goal (e.g. reduce memory requirements).
[130] introduces a pipeline architecture with tiling techniques to improve computation.

Other approaches aims at implementing all the layers of a given CNN on-chip. For
instance, the authors in [74] proposed an accelerator in which all the CNN layers are
pipelined to allow a concurrent execution and increase throughput. A similar approach
is presented in [10]. The layers of a given CNN are seen as building blocks, they are
implemented separately and then assembled to build the accelerator. These building blocks
are pipelined to increase throughput and improve performance.

Table 1.3 summarizes the most relevant CNN accelerators in the literature. It high-
lights the contributions of each work, the tested networks with the supported layers, and
the adopted bit-precision. As can be seen, 16-bit fixed point is the trending bit-precision,
employed for weights and activations, among most accelerators. The focus is on accelerat-
ing convolutional layers in very demanding networks in terms on memory and computation
(such as AlexNet, VGG, etc.) while exploiting sparsity in activations or weights or both.
Some other accelerators are more dedicated to embedded systems and thus target less
complex networks, as PNeuro. Table 1.4 completes Table 1.3 with area and performance
comparison. The reported performances and energy consumptions are not constant. They
vary with respect to the deployed networks, more specifically to the deployed layers since
the workload shifts from layer to layer according to the number of parameters and the
number of pixels to be processed.

1.3 Conclusion

This chapter presented an overview of deep learning algorithms, with a focus on CNNs,
and the embedded hardware architectures targeting their acceleration. From this chapter,

50

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

1.3. Conclusion

Architecture Contributions Tested Networks Supported Layers Bit-Precision (W & A) Ref.

Eyeriss v2
Sparsity in Weights and activations:

CSC compression format
kept during processing

AlexNet, GoogleNet, MobileNet Conv. 8-bit Fixed-Point [23]

SqueezeFlow

Sparsity in Weights:
RLC compression.

Concise Conv. rules to
support dense and sparse

AlexNet, VGG16, GoogleNet Conv. 16-bit Fixed-Point [75]

SparTen Enhanced SCNN
Tackle the load imbalance AlexNet, VGG16, GoogleNet Conv. 16-bit Fixed-Point [49]

NullHop
Sparsity in activations:

zero-skipping
Compression.

VGG16-19, GigalNet, RoshamboNet, Face Detector Conv., FC, Pool 16-bit Fixed-Point [3]

UCNN Sparsity in weights LeNet, AlexNet, ResNet-50 Conv. 16-bit Fixed-Point [54]
Squeezelarator Alternates between OS and WS SqueezeNet NN family Conv., FC 16-bit Integer [69]

PNeuro SIMD programmable
homogeneous architecture

Small test CNN,
LeNet-5, Mnist,MobileNet-V1 Conv., FC, Pool 8-bit & 16-bit Integer [13]

Orlando Heterogeneous programmable SoC AlexNet, VGG16 Conv., FC, Pool 16-bit Fixed-Point [38]

Eyeriss

Sparsity in activations:
RLC compression,

Zero Skipping.
Dedicated NoC,
for RS dataflow

AlexNet, VGG16 Conv. 16-bit Fixed-Point [19]

SCNN
Sparsity in weights and activations:

CSC compression format
kept during execution.

AlexNet, VGG16, GoogleNet Conv. 16-bit Fixed-Point [98]

EIE
Sparsity in weights and activations:

CSC compression for weights
zero-skipping for activations.

AlexNet, NeuralTalk, VGG16 FC 16-bit Fixed-Point [52]

Table 1.3 – Comparison of state-of-the-art accelerators. The main contributions of each
accelerator are highlighted as well as the tested networks, the supported layers and the
bit-precision of weights (W) and activations (A).

Architecture and
target technology Platform Area(mm2) Power (mW) GOps/s GMACS/W Ref.

Eyeriss v2 - 65nm ASIC - - - 153.6 [23]
SqueezeFlow - 65nm ASIC 4.8 536.09 - - [75]
SparTen - 45nm ASIC 0.766 118.3 - - [49]
NullHop - 28nm FPGA 8.1 2300 17.19 28.8 [3]
UCNN - 32nm ASIC - - - - [54]
Squeezelarator ASIC - - - - [69]
PNeuro - 28nm ASIC 0.93 73 102.2 700 [13]
Orlando - 28nm ASIC 34 39 (Dedicated part only) 2930 1465 [38]
Eyeriss - 65nm ASIC 12.25 278 16.8 - 42 122.8 [19]
SCNN - 16nm ASIC 7.9 - - - [98]
EIE - 45nm ASIC 40.8 590 1.6 85 [52]

Table 1.4 – Comparison of state-of-the-art accelerators in terms of area and performance.
It highlights the target technology and platform as well as the resulting power (mW),
performance (GOps/s), energy efficiency (GMACS/W) and area (mm2).

one can conclude that designing accelerators for deep learning algorithms is a laborious
work in which plenty of factors come into play. First, the design choices such as the choice
of the target (e.g. FPGA, ASIC, etc.) and the trade-offs (e.g. flexibility-performance,
area-performance, power-performance, etc.) which depend on the design goal, are hard
to make. Second, designing an architecture is a time-consuming process, in which the

51

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 1 – Background on Deep Neural Networks and Hardware Accelerators

functioning of the design is not guaranteed. In addition, depending on the chosen target,
it might be mandatory to develop a specific compiler to deploy the application to the
designed architecture. Third, the quickly changing landscape of algorithms, especially
deep learning algorithms, adds a thick layer of difficulty to the design process. Finally, the
various existing neural network topologies and the constant evolution of these algorithms
is making an existing gap between the hardware architectures and the evolving algorithms
grow wider. In the next chapter, the state of the art of design approaches tackling these
challenges are introduced, and we propose in this PhD thesis report an approach and
compare it to existing work.

52

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 2

STATE OF THE ART OF DESIGN

METHODOLOGIES AND PROPOSED

APPROACH

Research efforts are put to reduce the gap between the applications and the hard-
ware architectures to ease the design of hardware accelerators for DNNs. Instead of using
hardware description languages such as VHDL (Very high speed integrated circuits Hard-
ware Description Language) or Verilog, some new approaches focus on raising the level
of abstraction of hardware descriptions by using high-level general purpose languages,
such as Python, to describe hardware designs at RTL level. Other efforts are put on the
High-Level Synthesis (HLS) approach to directly generate the RTL source code from the
algorithmic description. Researchers pushed the level of abstraction further by develop-
ing end-to-end hardware generation frameworks based on these tools to automate and
accelerate the design process. These frameworks are part of the EDA (Electronic Design
Automation) field.

This chapter is organized as follows. Section 2.1 presents the state of the art of existing
HDLs and HLS tools with a comparison between them. It also sketches a comparison
between a standard design process and an automated one. Section 2.2 details the state of
the art of existing accelerator generation frameworks while discussing the most popular
and relevant approaches. Based on the challenges to tackle and the analysis of the state
of the art of design methodologies for DNN accelerators, a novel approach is proposed in
Section 2.3. A first comparison between the proposed approach and the existing work is
introduced in Section 2.4. Finally, Section 2.5 concludes the chapter by recalling its main
content and giving an opening on the following chapters.

53

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 2 – State of the Art of Design Methodologies and Proposed Approach

2.1 Design Flows and Tools

To raise the level of abstraction of hardware descriptions, boost the productivity and
reduce time-to-market of the hardware design processes, EDA (for Electronic Design Au-
tomation) and CAD (for Computer Aided Design) tools were introduced. The layer of
abstraction of the design process is raised by including simulation and verification of the
design functionality as well as synthesis, which automate the manual tasks. These tools
rely on HDLs, such as VHDL and Verilog, which the designers use to specify the detailed
structure of the architecture.

Even using these description languages, the design is still at a very low level, since the
designer has to tightly model the behavior of the target logic circuit. The design process
is thus error-prone and requires an advanced expertise in the hardware design field. To
speed-up and simplify the design process, new design methodologies and relevant tools
were introduced. For example, using high level programming languages (i.e. C/C++,
Python, Scala, etc.), to reduce design time and errors was suggested by a study in [129].

Many researchers and developers tried to leverage the advantages of high-level pro-
gramming languages in two different ways. The first one consists in adding hardware
primitives to these languages to describe hardware components, turning them into hard-
ware description languages (HDLs). The second one consists in inputting algorithmic
descriptions and automatically generating a hardware implementation that respects de-
sign constraint and optimize design objectives, known as High-Level Synthesis (HLS).
These two approaches are presented below.

2.1.1 High-Level Hardware Description Languages

Plenty of high-level HDLs were developed to ease the design task by adding the ability
to some high-level programming languages to describe hardware components and struc-
tures. The main benefit of such approaches is the ability to leverage the advantages of
high-level programming languages especially the object-oriented aspect which includes
the reusability and modularity features.

For instance, Chisel is an open-source HDL based on Scala (a programming language
characterized by its object-oriented and functional programming features) that outputs a
synthesizable Verilog [7]. It allows to describe complex and configurable circuit generators
with modern high-level programming language. The Flexible Internal Representation for
RTL (FIRRTL) hardware compiler is employed in the design flow to optimize the Chisel-

54

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

2.1. Design Flows and Tools

generated circuits. FIRRTL also supports custom user-defined circuit transformations.
The main flaws of this HDL is that it does not support directly Verilog logic values
and the instantiations of a module must be wrapped in a module. Another open-source
Scala-based hardware description language is SpinalHDL [121]. It is characterized by its
interoperability with standard VHDL/Verilog-based EDA tools, its reduced code size and
the clock domain safety. A generic design can be created and can also incorporate IPs
(based on VHDL and Verilog) as blackboxes in the design.

Other open-source HDLs leverage the simplicity of the Python language to enable
rapid prototyping of complex circuits. PyRTL, for example, concentrates on the entire
toolchain and does not include any non-synthesizable hardware primitives [27]. It also
supports imports and exports from and to Verilog. On the other hand, PyMTL is a
unified framework for hardware generation, simulation and verification [80]. It leverages
the Python runtime to simulate and co-simulate the design. However, it does not support
a full system simulation with real OS support. As for MyHDL, it is suitable for IP block
development and allows modeling hardware concurrency [86]. However, it is not well suited
for accurate timing simulation.

The provided details above rely on what was mentioned by the developers. No more
details can be given, since no experiments were done, in the scope of this work, to fur-
ther characterize these tools. After all, these languages are interesting, but generating an
architecture (Template) requires to precisely describe it.

2.1.2 High-Level Synthesis - HLS

HLS, known as behavioral synthesis, is a viable solution to RTL-design flows [34, 84,
31, 78]. It links the high-level application and the hardware architecture with the use of
high-level languages, e.g. C/C++ or SystemC, to a synthesizable RTL which describes the
design functionality using HDLs. This high-level of abstraction allows devising hardware
accelerator without the need of advanced hardware skills [90]. Technology-wise, HLS offers
the possibility to target both ASICs and FPGAs by easily synthesizing the generated RTL
with both ASIC and FPGA toolchains.

The use of high-level languages in HLS significantly enhances design productivity. It
also allows to easily reuse behavioural intellectual properties (BIPs), since they are not
limited to fixed architectural and interface protocols. Consequently, re-targeting these IPs
to different technologies can be rather smoothly done. Furthermore, the HLS community
showed a specific interest in FPGA targets due to their reconfiguration aspect. This latter

55

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 2 – State of the Art of Design Methodologies and Proposed Approach

fits well the advantages provided by HLS tools, especially the fast generation of IPs having
different functionalities. Another interesting aspect of FPGAs is the efficient estimation
of the design costs and performances. Therefore, combining reconfigurable architectures
and HLS tools tackles the time-to-market problem [33].

In a recent study, different aspects of the HLS and traditional RTL design flows are
analyzed and compared [70]. The compared aspects involve the quality of results as well
as the productivity. According to this study, although the quality of results of traditional
design flows is consistently better than that of academic and commercial HLS tools, the
average development time is strongly reduced with HLS tools achieving 4× more produc-
tivity. The work in [70] illustrated these differences via a graph of box-plots presented in
Figure 2.1. This figure shows the required time to perform different steps of both HLS-
based and RTL-based design flows. From this figure, one can clearly notice that the HLS
design flow requires less time than a traditional design process.

Figure 2.1 – Comparison of HLS and RTL design flows across different steps of the design process.
The box-plots show the maximum, minimum and average time usage for the different evaluated features.
Figure retrieved from [70].

Design flow of HLS tools The transformation from high-level source code to RTL
representation requires certain steps. Therefore, the synthesis process relies on the follow-
ing phases: code transformation, allocation, operation scheduling, datapath allocation,
binding and controller generation. Figure 2.2 sketches the steps of HLS process. The
code transformation step transforms the input source code into an equivalent representa-
tion of it (formal model in Figure 2.2). This representation exposes features of the code
and enables simple optimizations. Once all operations and variables are extracted in the
compilation step, the allocation specifies the number as well as the type of the required

56

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

2.1. Design Flows and Tools

hardware resources (e.g. functional units, storage components, connectivity elements) to
output the hardware implementation. The allocation step selects from a library of RTL
components to implement operations present in the code, such as multiplications, accu-
mulations, etc. It is worth noting that this library comprises characteristics and metrics
for each component to later estimate power, performance and area in synthesis processes.
Then, each operation is assigned to a specific cycle in the operation scheduling step. Next,
required hardware resources are defined in the datapath allocation phase to meet the de-
sign constraints. The binding step allows to share hardware components to satisfy design
constraints. For instance, various variables can be mapped to the same storage unit if their
lifecycles do not overlap. Finally, design decisions are applied in the controller generation
step to produce a synthesizable RTL model.

Figure 2.2 – Steps of the HLS design process (retrieved from [34] and modified).

HLS tools The growth in the FPGA market is one of the main reasons that encour-
aged the researchers and private enterprises to take particular interest in HLS tools and
expand their usages [124]. Hence, myriad of academic and commercial HLS tools exists
in the state of the art [90]. These tools are improved to provide efficient techniques to
automatically devise customized hardware accelerators. On the academic side, BAMBU
[102], developed at the Politecnico di Milano, takes as input a C code. It exploits the
GNU compiler to support compiler-based optimizations and build new memory archi-
tecture to support high-level features of the C language, such as pointers and structs
[103]. BAMBU supports various data types and is capable of generating Pareto-optimal
implementations (regarding latency and resource usage). GAUT, developed at the Uni-
versity of South Brittany, is a free HLS tool [35]. This tool is capable of automatically

57

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 2 – State of the Art of Design Methodologies and Proposed Approach

generating, from a C/C++ input description and a set of synthesis options, the hardware
architecture of the accelerator while also generating the controller and the memory as
well as the communication interfaces. DWARV, another academic tool, is based on CoSy
commercial compiler [42] and developed at the Delft University of Technology [91]. The
tool is scalable and can be easily extended with new optimizations. LEGUP, developed
at the university of Toronto, takes as input a C code [11]. The tool is capable of syn-
thesizing the input source code to hardware or to a hybrid system including a processor
and a hardware accelerator. It exploits the open-source low level virtual machine (LLVM)
compiler framework [71]. LEGUP allows an automated bitwidth reduction and is capable
of synthesizing software threads into parallel hardware. On the commercial side, many
HLS tools are widely used. For instance, Xilinx Vivado-HLS uses LLVM and accepts as
inputs three different high-level languages, which are C, C++ and SystemC [128]. It has
a complete design environment and includes various optimization options to refine the
generation process. Vivado-HLS targets FPGAs and can generate hardware modules in
VHDL, Verilog and SystemC. Siemens Catapult-C also accepts C/C++ and SystemC as
input [15]. It targets both FPGAs and ASICs and offers flexibility in selecting external
libraries and various design options. Differently from other tools, Bluespec takes as input
Bluespec System Verilog (BSV) [60]. BSV is a Verilog-based HDL inspired by Haskell,
where Verilog syntax is used to describe a set of rules to implement hardware modules.
Thus, using this tool requires specific expertise.

Having introduced the literature of DNN accelerators as well as hardware generation
tools and targeted technologies, the next section presents state-of-the-art approaches that
aim at accelerating the design process of inference accelerators by leveraging high-level
design techniques.

2.2 Hardware Generation Frameworks

Several approaches sought to simplify the design process of DNN inference accelerators
by high-level design techniques, where most of the works target FPGAs. These approaches
fall into three main categories: C-HLS-based templates, direct hardware generation frame-
works and integrated hardware generation frameworks.

Regarding the first category, researchers build HLS-friendly convolutional templates
by using C, C++ or SystemC programming languages to express the functionality. They

58

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

2.2. Hardware Generation Frameworks

focus on tiling loops having a large bound and unrolling them when necessary or even
when the bound is small, as well as loops reordering. These optimizations are employed
to improve performance and optimize data transfer and memory accesses of the resulting
convolutional accelerator. Some works adopt a one size fits all approach to deploy different
convolutional layers on the same template like the work in [136]. The authors of this paper
employed roofline model to optimize computation and memory accesses. They used the
roofline model to identify all possible optimizations, including loop tiling parameters and
unrolling pragmas, and then set the best solution for each layer. The main drawback of
this approach is the use of uniform unrolling parameters for all layers which underutilizes
hardware resources on the target FPGA. In addition, the employed model depends on the
target template written in C++. A similar approach developed a template allowing the
exploitation of various parallelism options to mainly improve performance [85]. This latter
employed analytical performance and memory models, inspired by the roofline model
in [136], which are used to enumerate all possible solutions. Solutions having the best
communication to computation ratio will be picked. [104], like previous works, considers
various code transformation options such as loop tiling and unrolling. It proposes an
analytical model to evaluate each possible design point in terms of computation time,
data transfer, DSP usage and bandwidth. Another interesting approach, based on a C++
template, is proposed in [117]. It focuses on resource partitioning on FPGAs to enhance
efficiency and throughput. The same FPGA is partitioned to accommodate all layers of
a CNN. The design space is explored via an iterative optimization process, based on two
steps, which takes as input a performance target. The first step searches for the best
partitioning, the tiling parameters of loops which are close to the computing part and the
layers assignments. The second one partitions BRAM and minimizes the peak memory
bandwidth by finding the right tiling parameters of memory-related loops. The exploration
and the evaluations are facilitated via performance, BRAM and DSP models that depend
on the template.

The second category, direct hardware generation frameworks, comprises some works
aiming to generate inference accelerators by using as input a DNN configuration or de-
scription. For instance, [107] takes as input a custom configuration of a CNN and a training
database chosen by the user. The configured CNN is then trained using MATLAB and
the Verilog files are produced to later generate the RTL, which will be synthesized using
Quartus II [61]. The main drawback of such approach is the absence of optimizations
to exploit the parallelism in FPGA. In addition, neither evaluation models are used nor

59

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 2 – State of the Art of Design Methodologies and Proposed Approach

feedback loops exist to optimize the design after synthesis. Furthermore, all CNN layers
(e.g. convolution, pooling, fully connected) are hand-coded templates written in Verilog,
which require adjustments when new layers become available. Few other works, unlike
[107], propose direct hardware generation frameworks which generates a synthesizable
high-level code from a DNN model description. The generated code is then fed to com-
mercial high-level synthesis tool, such as Vivado-HLS and Catapult. For instance, [120]
proposes a web-based framework which takes as input a CNN configuration along with
its weights. Based on the network configuration, it provide an empirical estimation of re-
source usage in an optimization step. Next, it generates a synthesizable C-HLS code with
Tcl files containing directives specific to Vivado-HLS. Then, using Vivado-HLS, the RTL
is generated from the C-HLS code to further produce the bitstream. The optimization in
this framework relies solely on resource estimation. Thus, it does not have any feedback
loop to the optimization phase with the actual values of performance, energy consumption
and resource utilization after the generation of the C code and even after the generation
of the RTL. This can lead to less optimized solutions and put quite a lot of pressure on the
estimation of computational resources since the optimization is performed only on these
estimates. Furthermore, no compatibility with other hardware generation techniques is
indicated. FP-DNN [50] is another framework for DNN accelerators generation. It takes
as input a DNN model description in a protobuf format generated by TensorFlow and
generates the corresponding RTL. FP-DNN is another approach presented in Figure 2.3.
Unlike other approaches, it analyzes the topological structure of the input DNN and has an
optimization step which is used to generate part of the C++ source code. Once the source
code is compiled, a hardware generator module instantiates RTL-HLS hybrid templates
which are then transformed into a hardware implementation using Catapult. However,
it does not have any feedback on the actual performance of the produced architecture,
thus doing a thorough optimization after generating the RTL is not possible. Figure 2.3
presents the framework flow.

The authors in [126] propose an automated design flow, fpgaConvnet, which gener-
ates a hardware implementation from a trained DNN model, in Torch or Caffe format.
The structure of the input DNN is analyzed to be later transformed into a synchronous
dataflow (SDF) model to efficiently explore the design space. The resulting SDF model is
equivalent to a set of connected hardware building blocks (nodes represent hardware build-
ing blocks and arcs represent connections). It allows optimizations and transformations
to be applied to explore various mapping strategies with respect to available resources

60

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

2.2. Hardware Generation Frameworks

Figure 2.3 – Flow of the FP-DNN framework representing a direct hardware generation approach.
Figure retrieved from [50].

on a target FPGA. The framework leverages the reconfigurability of FPGAs to partition
the DNN model into a number of sub-networks mapped on different bitstreams. Once the
mapping strategy is set, the hardware implementation is generated using Vivado-HLS.
The optimization process targets latency and throughput only, resource usage is not op-
timized. In addition, once the FPGA is configured, the implementation can no longer be
optimized.

Regarding the third and the last category, frameworks present a hardware gener-
ation step based on a thorough optimization process. For example, FINN [125], illus-
trated in Figure 2.4, accepts as input binary neural networks (BNN) and targets FP-
GAs. It produces a synthesizable C++ source code of a streaming architecture, optimized
performance-wise. The source code is then fed to Vivado-HLS to generate the RTL based
on a predefined library of basic blocks. FINN shows low modularity in terms of em-
ployed tools and targeted applications. In addition, the lack of optimization and feedback
on actual performance makes it difficult to subsequently optimize the generated RTL.
A more flexible open-source approach, hls4ml [43] sketched in Figure 2.5, automatically
transforms a trained DNN model into a synthesizable representation adequate for HLS
tools and targets FPGAs and ASICs; NN models can be trained using Pytorch, Keras,
etc. Trained models can be optimized by using compression techniques before hardware
generation. Unlike existing frameworks, hls4ml offers to use quantization-aware training

61

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 2 – State of the Art of Design Methodologies and Proposed Approach

Figure 2.4 – Flow of the FINN framework representing a hardware generation approach for binarized
networks. Figure retrieved from [125].

and quantization-aware pruning before generating the hardware in order to exploit the
bit-level structure of FPGAs or even to target custom ASIC implementations. The DNN
model is translated into an HLS-friendly high-level code, written in C/C++, which is
then optimized to improve performance and reduce resource usage. Performance can be
optimized via pipelining and resource usage via bit-width tailoring of each layer. The
framework then leverages HLS tools to generate an IP core representing the entire NN.
Unfortunately, both FINN and hls4ml rely on internal feedback loops of the employed
HLS-tools, such as Vivado-HLS and Catapult, to optimize the hardware implementation
of the DNN model. Thus, no further optimizations can be done after synthesizing the
RTL. Another interesting framework targeting ASIC implementations is MAGNet [127]

Figure 2.5 – Flow of the hls4ml framework which uses quantization-aware training and quantization-
aware pruning on a higher level. After a DNN optimization phase (in red), the DNN model is transformed
into an HLS code and both FPGA and ASIC architectures can be targeted. Figure retrieved from [43].

62

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

2.2. Hardware Generation Frameworks

presented in Figure 2.6. It proposes a generator of DNN accelerators based on a specific
architectural template. It allows a co-optimization between hardware parameters, tiling
strategies and the chosen DNN. Contrary to existing state-of-the-art frameworks, MAG-
Net offer an optimization step based on real power, performance and area (PPA) values of
the generated architecture. Unfortunately, since the flow depends on the target template,
the design space exploration (DSE) also depends on it. In addition, this approach uses
HLS to only generate the RTL of the architecture using elementary low-level components
described at high-level. It does not leverage any algorithmic representation to fully exploit
the HLS benefits. Moreover, the exploration is based on systematic feedback loop on PPA
after RTL synthesis, which lengthen optimization time as well as the overall design time
of an optimized architecture.

Figure 2.6 – Flow of the MAGNet framework that consists in Designer that generates the architecture,
a Mapper that maps the application to the architecture and a Tuner that optimizes the architecture
based on a design goal. Figure retrieved from [127].

In summary, most of the proposed hardware generation flows are direct flows with
little or no optimization, and no feedback loop connected to the real PPA values of the
resulting architecture. These flows lack modularity either in terms of generation tools
or in terms of targeted DNN applications. Thereafter, the following section presents the
proposed approach, SHEFTENN, a Software and Hardware Exploration Framework Tar-
geting Embedded Neural Networks that partially addresses the weak points of the state of
the art. It is an approach for hardware generation of efficient neural accelerators based on
high-level algorithmic descriptions, which aims at reducing the gap between the software
and the hardware.

63

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 2 – State of the Art of Design Methodologies and Proposed Approach

2.3 Proposed Methodology Overview

In this section, a novel methodology is proposed to overcome some hardware design
process issues identified in the state of the art. Designing an accelerator for DNNs requires
a deep understanding of the application itself. Unfortunately, DNN algorithms are quite
different in various ways. Each DNN model has its unique topology, which consists of a
stacking of various layers. These layers have different types (e.g. standard and depthwise
convolutions, max and average pooling, etc.) and shapes (3x3, 5x5, etc.), which makes
the computational and memory requirements inconsistent from one DNN to another as
well as from one layer to another in the same model. In addition, applying high-level
optimizations on DNNs, such as quantization and pruning, have an impact on the design
choices to make while devising a DNN accelerator. Unfortunately, the wide landscape
of DNN applications is hard to study and master by hardware architects, since a lot of
design choices depend on the DNN algorithm itself. Therefore, a first step to design a
DNN accelerator is to automatically and meticulously characterize the algorithm to ease
the design process.

Furthermore, conceiving a DNN accelerator by using VHDL-like hardware description
languages is complex and time consuming, which lengthen the time-to-market. Hence,
high-level design methodologies are needed to facilitate the design process and automat-
ically generate the hardware architecture, while allowing enough degrees of liberty to
explore the design space. However, the resulting design space is relatively wide, which
makes the exploration of all potential solutions quite complex and laborious.

Consequently, automating the exploration is required to facilitate the decision-making
that requires lots of compromises to reach the desired design goal(s).

All these discussed steps are put in the proposed methodology which is implemented
in a framework called SHEFTENN (Software and Hardware Exploration Framework Tar-
geting Embedded Neural Networks). Figure 2.7 sketches a high-level representation of the
SHEFTENN flow.

This methodology, as it can be seen in Figure 2.7, is based on three interdependent
steps cooperating to generate optimized hardware accelerators.

The first step of the approach is the Characterization that processes the DNN speci-
fications to characterize the DNN attributes and behavior. This step aims at producing
relevant metrics and augmented specifications. The Characterization step is in charge of
bringing the DNN algorithm closer to the hardware part, by calculating target-agnostic

64

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

2.3. Proposed Methodology Overview

Figure 2.7 – The flow of the proposed approach with its three main steps: Characterization, HW
Generation, Optimizer.

metrics, which are also hardware-aware, such as the number of MAC operations and the
memory requirements of weights and input feature maps. Additional studies can be car-
ried out, such as determining the reuse ratio per layer, or unfolding the internal graph
structure of the DNN algorithm in a simplified way [5] to outline the communications be-
tween the various types of layers forming this DNN, and therefore, between the accelerator
hardware operators in case available.

The second step of the approach is the Hardware Generation. This step abstracts the
hardware by employing high-level design techniques and RTL source code generation.
It exploits augmented specifications, computed in the previous step, and generates a
synthesizable RTL starting from high-level network description. After synthesizing the
RTL, the figures of merit of the designed accelerator are obtained and analyzed. In this
context, the traditional PPA (Performance, Power, Area) metrics are designated by these
figures of merit. For FPGA targets, the area can be substituted by the resources (LUTs,
BRAMs, etc.) utilized for the implementation of the accelerator. Regarding the PPA
report, it is generated by classical synthesis tools, whether the target is an ASIC (e.g.
Design Compiler from Synopsys) or an FPGA (e.g. Vivado from Xilinx).

The third and last step of the proposed methodology is the Optimizer. This step
performs the exploration of the accelerator design space. It relies on one or more opti-

65

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 2 – State of the Art of Design Methodologies and Proposed Approach

mization algorithms that exploit the characterization results to optimize the high-level
representation of the DNN algorithm, and thus the RTL generation. It identifies various
configurations to be generated by the Hardware Generation step. The optimizer computes
different configurations, which are fed to the Hardware Generation step to be generated,
as it can be seen in Figure 2.7. Two different methods are used to generate these config-
urations: the first one uses simple augmented-specifications-based hints, the second one
depends on the optimization algorithm itself. As a matter of fact, common and efficient
code transformation strategies can be deduced from the specifications’ analysis. These
strategies can be applied by default to generate relevant configurations. The remaining
design space can be explored by using the optimization algorithm to find more efficient
mixture of code transformations or tool-specific directives. The Optimizer step can rely
on two exploration loops to avoid the long exploration time: a long loop that uses results
derived from the synthesis step, and a short loop that relies on internal PPA high-level
estimation models. An exploration speed and precision tradeoff can be defined from the
ratio between the long exploration loop and the short one.

2.4 Comparison between SHEFTENN and the State
of the Art

This section presents a first comparison between the present work and some of the
most relevant frameworks in the state of the art, summarized in Table 2.1.

This table shows that most of the proposed approaches, unlike SHEFTENN, offer
direct HLS-based hardware generation frameworks with no feedback loops after RTL
synthesis to optimize various design aspects (i.e. power, performance and area) by using
real values. MAGNet offers a feedback loop on PPA only after synthesis. However, it
employs HLS to generate individual architectural components described at high-level but
not the algorithm.

Some hardware generation frameworks include an optimization step before the RTL
synthesis, but only focus on some aspects of the design, which is not the case for SHEFTENN
that aims at optimizing the PPA of the design by using a 2-steps optimization process.
For instance, FINN optimizes the implementation performance-wise only and fpgaCon-
vNet focus on optimizing performance and throughput by using a DSE that leverages
SDF. The framework proposed by Solazzo et al. only optimizes resource usage. It is worth
noting that hls4ml rely on the internal feedback loops of the employed HLS tool, such

66

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

2.4. Comparison between SHEFTENN and the State of the Art

Frameworks Contributions Input Template HLS-tool Optimizations Ref.

hls4ml

Hardware Generator
Quantization-aware training
quantization-aware pruning
Targets FPGAs & ASICs

Trained DNN No Vivado-HLS, Catapult

No feedback after
RTL synthesis;

Relies on internal
feedback loops
of HLS-tools;
optimize PPA

[43]

MAGNet
Template-based

Hardware Generator;
Targets ASICs

Design goal
Hardware constraints
DNN Specifications

Yes Catapult

Bayesian optimization
strategy for DSE;

Feedback after
RTL synthesis;
Optimize PPA

[127]

Rivera-Acosta et al. Direct Hardware Generator CNN configuration
Database Yes Quartus II

No feedback loops;
No exploitation of

parallelism in FPGAs
[107]

fpgaConvNet
Exploits SDF for

efficient DSE;
Targets FPGAs

Trained DNN model No Vivado-HLS

Optimization of
performance &

throughput only;
No feedback loop

after RTL synthesis

[126]

FP-DNN
Instantiate hybrid

RTL-HLS template;
Topology analysis

Trained DNN Yes Catapult No feedback loop
after RTL synthesis [50]

FINN

Targets BNN;
Exploits a predefined

library for RTL
generation

BNN model No Vivado-HLS
No feedback loop

after RTL synthesis;
Performance optimization

[125]

Solazzo et al.
Direct Hardware generator;
Empirical estimation models

for FPGA resources
CNN configuration & Weights No Vivado-HLS

Optimization of
FPGA resources based
on estimation models;

No feedback loop
after RTL synthesis

[120]

SHEFTENN

Hardware generator;
estimation models

for FPGA resources;
Quantization-aware hardware

generation

Trained CNN No Vivado-HLS

2-steps optimization process
of FPGA resources and latency

based on estimation models
& real synthesis

-

Table 2.1 – Comparison with state-of-the-art hardware generation frameworks.

as Xilinx Vivado-HLS and Siemens Catapult, to optimize the PPA of the accelerator
implementation.

On the other hand, almost all of these frameworks do not tackle the large evaluation
and design time of DNN accelerators, which is one of the SHEFTENN contributions
that introduces estimation models for PPA to reduce the evaluation time of potential
optimization solutions, and thus the overall design time. Only the Solazzo et al. work
presented empirical estimation models for resource usage on FPGA targets, while ignoring
performance and power. However, these estimators are limited to few CNN configurations
and cannot encompass literature DNNs.

The majority of the proposed hardware generation frameworks, contrary to SHEFTENN,
are limited to a certain DNN types or configurations and do not consider hardware-aware
algorithmic optimizations. The frameworks introduced by Rivera-Acosta et al. and So-
lazzo et al. can only support few layers configurations. FINN accepts binarized DNNs
only, and therefore cannot take into account standard DNNs. Some approaches, such
as MAGNet, fpgaConvNet and FP-DNN, consider state-of-the-art DNNs having large

67

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 2 – State of the Art of Design Methodologies and Proposed Approach

topologies. However, they do not explore the quantization-aware hardware generation for
quantified DNNs.

SHEFTENN, unlike other state-of-the-art approaches, is an automated tool targeting
FPGAs, and is independent from a target template or architecture. It allows to quickly
design DNN accelerators through the combination of a characterization step that reduces
the design space, and an RTL generation step that leverages HLS. An optimizer step op-
timizes the implementation of the DNN accelerator thanks to an automatic exploration of
the design space, which uses a hybrid optimization process of RTL source code generation
based on a C-HLS source code, as explained earlier. This process relies on two separate
algorithms, the first one optimizes each layer individually, and the second one optimizes
the whole CNN. Such process offers a trade-off between quality and rapidity of exploration
using estimation models (for both performance and resource usage) and real synthesis. In
addition, unlike other approaches, SHEFTENN supports quantified networks thanks to
HLS.

2.5 Conclusion

This chapter presented the state of the art of the EDA field while providing a compar-
ison between standard and high-level hardware design processes. Furthermore, high-level
hardware generation frameworks were detailed discussed. Then, the proposed approach,
subject of this thesis, was introduced. It offers a solution to cope with the rapidly evolving
DNN applications and to reduce the time and complexity of the overall design process. A
qualitative comparison was then provided to position the suggested approach with respect
to existing work. The three following chapters will provide a detailed description of each
step of the proposed approach as well as early results assessing their efficiency. A last
chapter will provide complete detailed results of the approach implementation.

68

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 3

CHARACTERIZATION AND METRICS

ANALYSIS

One of the important idea presented in the previous chapters is that the design of
an efficient DNN accelerator requires a deep knowledge of the algorithm. This is critical
in design flow relying on algorithm/architecture matching. Automatically obtaining this
knowledge is the purpose of the first step of the proposed methodology introduced in
Section 2.3. The aim of the so-called characterization step is to extract reliable metrics
from neural network descriptions, and analyze them to provide relevant information on
their structures and requirements to drive efficient implementation strategies.

The purpose of this chapter is to detail the characterization step of the proposed
methodology (see Figure 3.1) and to present some early results.

Figure 3.1 – The flow of the proposed approach, with a focus on the Characterization module.

This chapter is organized as follows. Section 3.1 presents the characterization flow.
Section 3.2 details the metrics computation phase. Section 3.3 explains the metrics analysis

69

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 3 – Characterization and Metrics Analysis

phase. Section 3.4 shows the results of the characterization module on various state-of-
the-Art neural networks. And finally section 3.5 sketches a conclusion of the chapter.

3.1 Characterization step Overview

The characterization step represents the first step of the proposed methodology [5].
Based on a modular implementation, it can be adapted and enhanced to characterize newly
available DNN algorithms. This step characterizes and analyzes deep learning algorithms
on several levels and outputs DNN specifications augmented with metrics and related
analysis, called Augmented Specifications. An overview of the characterization module is
presented in Figure 3.2.

.ini

.onnx

.tflite Parameters

NN IR

Pa
rs

er

Images
Database

Metrics Analysis

Characterization

network.c
layers.c

C code – Reference Model

Parameters.h

Metrics
Metrics Computation

Feature maps

Augmented Specifications

Figure 3.2 – Overview of the characterization flow.

A preliminary step first parses the input CNN description, such as a .tflite Tensor-
FlowLite framework enabling deep learning models on mobile and edge devices [1], an
.onnx from ONNX (Open Neural Network Exchange) the open defacto standard for rep-
resenting machine learning models [9] or an .ini from N2D2 (Neural Network Design and
Deployment) framework [87]. Listing 3.1 presents a description of two convolutional layers.

70

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

3.1. Characterization step Overview

[conv1] conv_def
Input = sp ;#input image
KernelHeight = 3
KernelWidth = 3
NbOutputs = 8
S t r i d e= 2
Padding = 1

[conv1_3x3] conv_def
Input = conv1
KernelHeight = 3
KernelWidth = 3
NbOutputs = 16
S t r i d e = 1
Padding= 0

Listing 3.1 – Configuration of two convolutional layers in the N2D2 .ini file.

The step also transforms the input description to an Internal Representation (IR),
including layers types and configurations, and optionally extracts the weights of the CNN
and exports them into arrays for advanced analysis related to their distribution and
their sparsity. The IR is a list of objects, where each object represents a layer with its
configuration and all its characteristics. By means of this IR, the characterization step
generates a C-based implementation of the DNN to dynamically characterize and analyze
the sparsity of the input feature maps using a test or validation dataset. This C-based
implementation includes the C-code of each layer composing the input DNN, such as
convolutional (Conv.) layers, pooling (Pool.) layers and even fully connected (FC) layers.
This implementation is the C reference (or "golden") model of the DNN for the framework.
This C model is HLS-friendly and can be used as it is for hardware generation as a reference
implementation.

The characterization step later computes target-agnostic/hardware-aware metrics such
as the number of MAC operations and the memory requirements and aggregates this
information with the DNN parameters- and feature maps-related data metrics (if avail-
able in the description). Then, it performs an advanced analysis to generate application-
dependent Augmented Specifications such as potential mapping strategies and dataflows
for dataflow-based accelerators. Figure 3.3 illustrates a detailed representation of the char-
acterization flow while highlighting the metrics computation and analysis results. More
details on these two points are presented below.

71

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 3 – Characterization and Metrics Analysis

Figure 3.3 – Detailed flow of the characterization step focusing on the metrics computation and analysis.

3.1.1 Metrics Computation

Metrics Computation highlighted in Figure 3.3, is the first phase to gain thorough
knowledge about the behavior of the DNN by analyzing (optionally) weights and feature
maps. A second step takes the IR of the given CNN which holds the dimension of the
input data (if available), the topology of the network, the type of each layer as well as its
corresponding configuration (i.e. hyper-parameters).

Figure 3.4 sketches the function of the this step. One can see that the IR is used to
compute hardware-aware/target-agnostic metrics. The the three main tasks are performed
concurrently. The first one (on the left) checks if the parameters (i.e. weights) are available
to simply count them on a layer by layer basis. If they are not available, the the number
of weights is computed per layer based on the configuration of each layer, called hyper-
parameters, which consist in the dimensions of the layers (kernel width, height and depth).
The number of parameters is calculated using Equation 1.3 in Section 1.1.2.

The task in the middle checks if the input and output dimensions are included and
extracts them. Else, computing the dimensions is a must using Equation 1.2 in Section
1.1.2. Once dimensions are obtained, the width and depth are extracted and the amount of
activations is computed. In addition to pure metrics computation, which can be provided

72

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

3.1. Characterization step Overview

Number of MAC |
Ops

NN IR

No In &
Out Dims

In & Out Dimensions

▶ Compute
▶ Number of Activations
▶ Pixel Reuse (%)

▶ Extract Width & Depth

No
weights

.CSV

Number of Parameters

Compute Count Compute Count

Figure 3.4 – Overview of the Metrics Computation.

by numerous machine learning frameworks, more sophisticated metrics related to data
reuse such as the percentage of pixel reuse in the input feature map of convolutional and
pooling layers can be computed. The pixel reuse in a feature map is computed based
on the fact that a convolution is a sliding window over that map. Figure 3.5 shows two
different reuse maps, having a 56x56 size, generated using a stride of 1 in Figure 3.5(a)
and a stride of 2 in Figure 3.5(b). As it can be seen, the pixel reuse is impacted by the
stride, a hyper-parameter expressing the step of the filter over the input image.

The third task on the right of Figure 3.4 consists in computing the number of opera-
tions with respect to the type of each layer, expressed in MACs (Multiply-ACcumulate)
for convolutional layers, and Ops (Operations) for pooling layers. The computation de-
pends on the input and output dimensions. It is worth mentioning that the computation of
the number of MAC differs according to the type of the convolutional layer. For instance,
the number of MAC for a standard convolution can be computed using Equation 1.4. A
depth-wise (dw) convolution applies a filter on each channel of the image. Therefore, the
number of MAC is N× lower compared to a standard convolution. In the dw convolution,
the number of MACs is therefore expressed by Equation 3.1.

MACdw = R × C × Kx × Ky × M (3.1)

This information is stored in a .csv file and the appropriate charts are then generated

73

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 3 – Characterization and Metrics Analysis

(a) 56x56 image convolved with a 3x3 filter and
a stride s = 1

(b) 56x56 image convolved with a 3x3 filter and a
stride s = 2

Figure 3.5 –
Reuse maps with different stride values.

to be later analyzed in the Metrics Analysis phase.

3.1.2 Metrics Analysis

The analysis phase, represented by the green blocks in Figure 3.4, takes the resulted
metrics as input to drive implementations strategies and provides hardware-based hints
for efficient implementation. This phase highlights the potential use of each metric, listed
earlier, in designing an optimized hardware accelerator. It is worth noting that each metric
could be beneficial on several levels in designing or configuring an architecture or even a
template-based architecture. Below a detailed description of potential utilization of each
of the previously computed metrics.

Bit-precision It is an important metric to consider, especially when dealing with quan-
tized networks. It allows to tailor the hardware architecture to the exact needs of the DNN
by setting the required number of bits for weights and features. It has an significant im-
pact on various design aspect: area, performance and power. Quantized DNNs with small
bit-width allow to reduce the memory required to store the model, the size of the operators
and thus, the area of the resulting accelerator.

74

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

3.1. Characterization step Overview

Input/output feature maps and kernels dimensions This metric, in addition to
the kernels dimensions, is the backbone for computing the number of MACs operations.
Besides, it helps estimating the bandwidth and the memory requirements, in bytes, for
each layer with respect to the used bit-precision for configurable architectures and tem-
plates. On a higher level, it helps computing the pixel-reuse percentage in each layer. In
addition, it helps setting threshold values for tiling parameters for C-based convolutional
templates especially in HLS approaches. For instance, a C-based convolution consists in
six nested loops, represented in Listing 3.2, where each loop has its own loop bound which
is a dimension in a convolutional layer. Each loop iterates over a dimension to complete
the convolution process. Usually loops with large bounds are optimized to reduce the
required on-chip memory by applying loop transformations such as tiling.

i fmap [N] [(R−1)∗S+K] [(C−1)∗S+K] // input f e a t u r e maps
outfmap [M] [R] [C] // output f e a t u r e maps
weights [M] [N] [Kx] [Ky] // f i l t e r weights
l 0 : for (r =0; r<R; r++) // output X

l 1 : for (c=0; c<C; c++) // output Y
l 2 : for (m=0; m<M; m++) //nb outputs

l 3 : for (n=0; n<N; n++) //nb channe l s
l 4 : for (kx=0; kx<Kx; kx++) // ke rne l X

l 5 : for (ky=0; ky<Ky; ky++) // ke rne l Y
wx=weights [m] [n] [kx] [ky]
i x=ifmap [n] [S∗ r+kx] [S∗c+ky]
outfmap [m] [r] [c]+=wx∗ i x

Listing 3.2 – Pseudo-code of a convolutional layer.

Setting threshold values, as in Equations (3.2), is essential to limit the search space
of tiling parameters Tr for l0, Tc for l1, Tn for l3 and Tm for l2. The minimum threshold
values for the width Tr and the height Tc are set to the kernel height Ky and width Kx

respectively. And their maximum threshold values are set to their respective loop bounds.

Kx ≤ Tr ≤ R

Ky ≤ Tc ≤ C

tn ≤ Tn ≤ N

tm ≤ Tm ≤ M

(3.2)

75

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 3 – Characterization and Metrics Analysis

Memory requirements This metric helps to quantify memory needs of a DNN. It
gives an estimation of the required memory when designing a hardware accelerator. This
metric includes both weights and input activations, where each one is computed based on
different dimensions. The required weights’ memory can be computed for each layer by
using the convolutional kernel. The activations’ memory can be computed using the input
feature maps dimensions. Equation 1.3 and 1.5 presented in Section 1.1.2 sketches memory
requirements for both weights and activations for different types of layers. Figure 3.6 and
Figure 3.7 present the number of parameters (in byte) for each layer of MobileNet-V1 and
SqueezeNet-V1.1 respectively, considering an 8-bit precision.

Figure 3.6 – Number of weights (parameters) of each layer of MobileNet-V1.

Number of MACs Its computation depends on the input/output feature maps di-
mensions, kernels dimensions, as well as on the type of the layer. This metric gives an
estimation of the required number of hardware MAC operators based on a target rate
which could represent a number of DSPs, for DSP-like architectures, such as Orlando
[38], or Processing Elements found in Eyeriss [19], SqueezeFlow [75], etc. Furthermore,
since the computation of this metric relies on the input/output dimensions and on the
configuration of the layer, the number of MACs can be employed to create analytical mod-
els to estimate the latency of C-based templates of convolutional accelerators on FPGAs
like the works in [136] and [117].

76

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

3.1. Characterization step Overview

PA
R

AM
ET

ER
S

(B
)

1E+00

1E+03

1E+06

LAYERS
co

nv
1_

std
po

ol1

fire
2_

s1
x1

fire
2_

e1
x1

fire
2_

e3
x3

fire
3_

s1
x1

fire
3_

e1
x1

fire
3_

e3
x3

po
ol3

fire
4_

s1
x1

fire
4_

e1
x1

fire
4_

e3
x3

fire
5_

s1
x1

fire
5_

e1
x1

fire
5_

e3
x3

po
ol5

fire
6_

s1
x1

fire
6_

e1
x1

fire
6_

e3
x3

fire
7_

s1
x1

fire
7_

e1
x1

fire
7_

e3
x3

fire
8_

s1
x1

fire
8_

e1
x1

fire
8_

e3
x3

fire
9_

s1
x1

fire
9_

e1
x1

fire
9_

e3
x3

co
nv

10

po
ol1

0

Parameters

Figure 3.7 – Number of weights (parameters) of each layer of SqueezeNet-V1.1.

Data-Reuse percentage par layer It is an interesting metric from which several
dataflows can be derived, such as the input stationary (IS) dataflow used in [17]. Thus, it
can be leveraged in dataflow-based architectures. This metric is key to determine which
dataflow to employ in each layer of the input network and thus the suitable mapping
strategy to implement. It can also be combined with other metrics as explained next.

Width and Depth comparison Monitoring the width and depth evolution throughout
the CNN, such as Figure 3.8 that presents a layer by layer characterization of the width and
depth of the input feature maps in MobileNet-V1, gives some hints on possible parallelism
and mapping opportunities in each layer.

For example Figure 3.9 illustrates potential mapping scenarios derived from this met-
ric. The 3D feature map (at the top) having its width greater than its depth implies a 2D
mapping to promote data locality and pixel reuse. In the opposite scenario (at the bot-
tom), a depthwise mapping is more likely to encourage channel-wise parallelism. However,
this metric alone is incomplete to confirm those mapping choices.

Connection graph It is an essential and complex result, obtained by analyzing the
DNN metrics, for an optimized mapping. For instance, Figure 3.10 represents the connec-
tion graph of MobileNet-V1 in terms of the layers, the shape of their kernels and their
stride value. For example, the number of connections between each type of layer is pre-
sented. It also highlights, in green, the layers having the same input and output volume of

77

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 3 – Characterization and Metrics Analysis

0

50

100

150

200

250

300

N
B

Pi
xe

ls

Layers

In Width In Depth

Figure 3.8 – A per-layer characterization of the width (In Width) and depth (In Depth) of the input
feature maps in MobileNet-V1.

3D Feature Map

2D Mapping

Depthwise Mapping

Depth > Width

Width > Depth

3D Feature Map

Width

Figure 3.9 – Mapping opportunities derived from the shape of the input feature map.

data in terms of number of pixels. A connection graph can be used to map similar layers on
the same hardware resources to reduce area. However, its usage depends on the adopted
approach. For instance, some HLS-based approaches tend to design a monolithic accel-
erator capable of hosting all the layers of a CNN on the target FPGA, creating thereby

78

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

3.1. Characterization step Overview

an RTL module for each layer and resulting in a large area like the work in [10]. This
metric can help limit the resource usage by assigning identical layers or even similar ones,
in terms of memory requirements and kernel dimensions, to the same hardware resources.

conv3x3
S=2

conv3x3
_dw conv1x1

conv3x3
_dw
S=2

conv3x3
_dwconv1x1 In/out pixels

8,19 x ͳͲଷ

pool fc

5

4

4

1

11

1

1 1

DW: Depth-Wise
PW: Point-Wise
S : Stride

Figure 3.10 – Overview of the connections in MobileNet-V1 organized according to the types of layers.

Parameters sparsity Shows the weights distribution in each layer, the number of
positive and negative values as well as the number of zero weights. For example, Figure
3.11 presents the weights distribution of the conv9_1×1 convolutional layer of MobileNet-
V1. One can see that the number of zero-valued weights is significant compared to weights
with negative and positive values. It consists of 30.31% of the overall weights.

The number of zeros is a key information to help identify layers in which memory
requirements can be reduced by applying compression techniques. In addition, computa-
tional needs can be reduced by skipping zero-valued computations as done in EIE [52],
Eyeriss-V2 [18] and NullHop [3]. Figure 3.12 shows the percentage of zeros in each layer
of MobileNet-V1. It can be seen that the percentage of zeros varies throughout the DNN
due to the variety of layers shapes. In addition, 1x1 convolutions have higher percentage
of sparsity compared to 3x3 convolutions, which is related to the significant number of
weights in those layers.

Dynamic activations sparsity The sparsity of activations comes from the use of some
activation function (e.g. ReLU) after a convolutional layer. It clamps negative values to
zero. The use of this metric is the same as the previous one, however the only difference
is that sparse weights are fixed after the training phase. Therefore, a dynamic sparsity
study, using the learning dataset (used to train the network), the validation one or a

79

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 3 – Characterization and Metrics Analysis

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

-1
0

5
-7

3
-6

5
-6

0
-5

5
-5

0
-4

5
-4

0
-3

5
-3

0
-2

5
-2

0
-1

5
-1

0 -5 0 5
1

0
1

5
2

0
2

5
3

0
3

5
4

0
4

5
5

0
5

5
6

0
6

5
7

8
9

3

C
O

U
N

T

WEIGHT VALUE

Negative values 25597
Positive values 20075
Nb Zeros 19864

Std. Dev. 12.8185
Mean -1.386

Figure 3.11 – Weights distribution in the conv9_1×1 convolutional layer of MobileNet-V1.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

W
ei
gh
ts
Sp
as
it
y
(%

)

Layers

Figure 3.12 – A per-layer characterization of the percentage of zero in the parameters of MobileNet-V1.

set of real images, is essential to choose the right techniques to decrease computational
and memory requirements. This analysis uses the generated C reference model evoked
in Section 3.1 to dynamically characterized the sparsity profile of activation maps. For
instance, the generated C code of the CNN can use the learning database or the validation
one to analyze the dynamic sparsity of the input DNN when executed. For example, the
average sparsity of 5% of the training dataset of MobileNet-V1 is 0.46%. Those images

80

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

3.1. Characterization step Overview

are analyzed by being an input of the first layer in the DNN. On the other hand, the layer
per layer analysis of the output feature maps in MobileNet-V1, presented in Figure 3.13,
shows a significant sparsity in the majority of the layers (e.g. 83.88% for conv9_1×1).
The average sparsity of the input features of all layers is 51.9%.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

A
c�

va
�

o
n

s
Sp

ar
si

ty
 (

%
)

Layers

Figure 3.13 – A per-layer characterization of the percentage of zero of activations in MobileNet-V1.

Width/Depth and Data-reuse Combining width and depth evolution of the feature
maps throughout the network and the pixel-reuse percentage emphasizes the use of some
previously presented metrics and generates new ones. For instance, it could be used to
determine the achievable degree of parallelism and what to priories in reuse, i.e. pixel
reuse or weight reuse. It could also help choose the right dataflow for dataflow-based ar-
chitectures and refine memory requirements according to the chosen dataflow. On a higher
level, it hints to efficient algorithmic implementations that have a great impact on the
required on-chip memory and amount of data transfer. Examples of transformations are
loop tiling along with their possible values (for algorithmic architectural representation
in C/C++, SystemC, etc.) as well as loop ordering.

The main goal of the metrics analysis is to facilitate the implementation of DNN algo-
rithms on embedded systems in a short time by providing target-agnostic and hardware-
aware metrics which gives hints on applicable methods and strategies to implement op-

81

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 3 – Characterization and Metrics Analysis

timized CNN accelerators. The idea is to have a systematic, automatic and modular
approach to gather the required knowledge to ease the next generation and optimisation
phases.

3.2 Characterization and Analysis of different State-
of-the-Art Networks

In the literature, DNNs are trained on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) dataset [110]. They are usually compared based on their accuracy
and their execution time on particular platforms such as GPUs as provided by most
DNN training and inference frameworks like TensorFlow [1]. Unlike the accuracy-based
comparison, this section presents the characterization results of some of the popular state-
of-the-art networks and compares them in terms of computational and memory needs. In
addition, an analysis of these metrics is also sketched to provide potential implementation
strategies for DNNs on embedded systems which, at the same time, reduces design time.

Various state-of-the-art networks were used to assess the interest of the characteriza-
tion and analysis phase. The evaluation was performed on small neural networks such as
LeNet-5 [72], as well as different and complex topologies such as GoogleNet (2014) [122],
EfficientNet-b0 (2019) [123], VGG16 (2014) [119], ResNet-50 (2015) and [53] SqueezeNet
(2016) [58]. These networks take similar input dimensions, as presented in Table 1.1 in
Section 1.1.2, and have won the ILSVRC challenge, except for LeNet-5. It is worth men-
tioning that the input image has a significant impact on the memory requirement of the
neural network, especially the activation memory needs. However, increasing the size of
the input image has no impact on the number of weights, since it depends on the fixed
structure of the network. As an illustration, for a neural network with a 48x48 input im-
age (2304 input activations) and a total of 5512 activations, if the size of its input image
is doubled (96x96), then the total number of input activations becomes 11024 (which is
2×5512).

For instance, considering a neural network with a 48x48 input image (2304 input
activations) and a total of 5512 activations. If the size of the input image is doubled
(96x96), the total number of input activations becomes 11024 (which is 2×5512).

The chosen networks are characterized, first, in terms of computational complexity
expressed in MAC which is considered as an elementary unit. Second, the networks are

82

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

3.3. Conclusion

dissected to study their internal structure, i.e., the types and dimensions of layers per-
forming MAC operations as well as the percentage of performed MACs. Table 3.1 shows
the total computational complexity of various DNNs and highlights the most computa-
tionally intensive layers in each of the considered networks. For instance, LeNet-5 consists
of 5x5 kernels were 96.66% of the computation happens, the remaining 3.35% are located
in FC layers. MobileNet-V1.0, a network with a more complex structure, has 80 to 90%
of MAC operations performed by 1x1 point-wise convolutions, 5 to 10% are performed by
depth-wise convolutions and the remaining are performed by FC layers. Implementing an
accelerator capable of hosting these different types of layers is challenging even though
the performed operation is always a MAC in a convolution. The main obstacle is that
these kernels have different data access patterns and might require different dataflows.
Therefore, hosting those three layers necessitate a flexible microarchitecture with opera-
tors performing the elementary MAC operation. More challenges are faced with modern
networks having three different kernel shapes 1x1, 3x3 and 5x5 like EfficientNet-b0. In such
case, the use of several accelerators might be a solution to avoid sacrificing performance
due to load imbalance, at the cost of flexibility.

In case a set of networks is targeted, the challenge becomes even harder. Designing
an accelerator for EfficientNet-b0, MobileNet and SqueezeNet is a very hard task due
to the variety of kernel shapes as well as the irregular computational partitioning: 3x3
convolutions occupy 9.52% of the computation in EfficientNet, 60% in SqueezeNet and
10.65% of 3x3 depth-wise in 0.25-MobileNet-V1, which means that data access patterns
are not the same and a significant load imbalance can take place due to this diversity.
Additionally, memory needs of these networks are widely different due to the variety of the
employed layers in each one. For example, considering an 8-bit precision, 0.25-MobileNet-
V1 has 0.46E + 06B of activations, EfficientNet has 13.97E + 06B and SqueezeNet has
3E + 06B as presented in Table 1.1 (Chapter 1).

3.3 Conclusion

In this chapter, the characterization of an application is presented as a way to gain
knowledge about the algorithm(s) to implement to reduce the gap between the application
and the hardware architecture. The proposed characterization step studies the application
to provide key features and characteristics of CNNs algorithms for an efficient implemen-
tation. It can also take into consideration the newly available DNNs. It provides relevant

83

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 3 – Characterization and Metrics Analysis

CNNs Total MACs MACs % of each kernel
First
Layer 1x1 3x3 5x5 7x7 DW-3x3 FC

LeNet-5 3.26E+05 36.02 0 0 96.66 0.0 0.0 3.35
0.25-MobileNet V1.0 41.03E+06 6.64 82.64 6.64 0 0 10.65 0.06
0.5-MobileNet v1.0 149.49E+06 3.62 90.22 3.62 0 0 5.82 0.34
SqueezeNet V1.1 352.54E+06 6.25 40 60 0 0 0 0
EfficientNet-b0 387.78E+06 0.68 78.57 9.52 10.71 0.0 0.0 1.19
VGG16 15.47E+09 0.5 0 99.2 0 0 0 0.8
ResNet-50 3.83E+09 3.078 48.95 47.92 0 3.08 0 0.052
GoogleNet 1.69E+09 6.992 28.102 57.042 7.8 6.992 0 0.06

Table 3.1 – Computational complexity of different state-of-the-art CNNs.

metrics and data visualization techniques based on a static analysis with no execution of
the CNN. In addition, it offers optional information regarding weights sparsity as well as
the dynamic activations sparsity. The utility of each metric is presented to suggest opti-
mization strategies regarding memory and computational requirements as well as mapping
techniques. In addition, it can be employed to drive the configuration of target architec-
tures by setting the required on-chip memory per layer, identifying the required number
of MACs (i.e. computational elements) and setting up the interconnect.

In the next chapter, the Hardware Generation step of the proposed approach, intro-
duced in Section 2.3, will be presented. This step exploits the high-level synthesis (HLS)
to generate the RTL of the architecture. Furthermore, it will be illustrated how the pre-
sented layer-based metrics as well as their analysis are used to help HLS-based hardware
generation.

84

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 4

FLEXIBLE HARDWARE GENERATION

Designing a hardware accelerator is a time consuming process, especially when us-
ing traditional Hardware Description Languages (HDLs), such as VHDL or Verilog. To
overcome RTL design limitations, researchers felt the need to raise the level of abstrac-
tion to improve the comprehension about a system and increase productivity. Therefore,
High Level Synthesis (HLS), which enables the Electronic System-Level (ESL) design
automation, has been introduced.

The second step of the proposed methodology (blue box in Figure 4.1), presented
in Section 2.3, leverages this high level of abstraction through the use of HLS tools to
increase productivity.

Figure 4.1 – The flow of the proposed approach, with a focus on the Hardware Generation step.

The main goal of this Hardware Generation step is to generate an optimized synthesiz-
able RTL for an input DNN. This step takes as input the results of the Characterization
step to drive the generation of the HLS-friendly source code. Hence, the produced source
code includes transformations that intend to optimize the RTL that will be generated.

85

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 4 – Flexible Hardware Generation

The purpose of this chapter is to detail the Hardware Generation step of the proposed
methodology and to present some early results on DNN layers generation.

This chapter is organized as follows. Section 4.1 presents an overview about the Hard-
ware Generation step as well as a code transformation example that motivates the need
for high-level optimizations and a library of operators. Section 4.2 presents the possible
high-level optimizations of the C source code. Section 4.3 presents the implementation of
a library of C-HLS oprators. Section 4.4 details the hardware generation of different C
code implementations, and finally section 4.5 sketches the conclusion.

4.1 Hardware Generation step Overview

The Hardware Generation step is composed of two stages. The first one generates a
high-level source code of the different layers composing the input DNN. These source
codes are then combined to build the source code of the entire DNN. The second step
takes the resulting source code and effectively generates the RTL representation of the
accelerator using an HLS approach. More precisely, the hardware generation step uses
the IR of the DNN (cf. Section 3.1) to generate an optimized RTL representation of
each layer of the input DNN using an HLS tool. Figure 4.2 illustrates (in blue) the
HLS-based hardware generation step. The generated C-HLS source code is optimized by
leveraging the Characterization step results. The functionality of the generated C-HLS
code is verified using co-simulation with respect to the C reference model generated in the
Characterization step, detailed in Section 3.1. As explained in the previous Chapter, this
reference model (also called golden model) is HLS-friendly and can be synthesized and co-
simulated using the employed HLS tool in the Hardware Generation step. Consequently,
the RTL of the optimized C-HLS source code can be generated. In addition, the RTL of
the C golden model can be generated to obtain a reference hardware implementation.

It is worth noting that some layers in the DNNs might remain non-optimized if the
Characterization metrics did not imply any relevant changes that could positively impact
the RTL. Hereafter, non-optimized C-HLS implementations of the different layers are
presented, which are the same found in a C reference model.

86

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

4.1. Hardware Generation step Overview

Figure 4.2 – The HLS-based generation flow, in blue, of each layer of an input DNN algorithm. It
consists of two main steps: the C-HLS code generation and the RTL generation using Vivado-HLS.

4.1.1 Non-optimized C-HLS implementations of DNN layers

The most common C implementation of convolutional layers can be found in [136]
[117] [104] and many others. It consists in a nest of six loops, where each loop represents
one dimension of the layer. The pseudo-code is presented in Listing 4.1.

Pooling layers have a similar structure to convolutional layers. The pseudo-code of
such layers consists in a nest of five loops as presented in Listing 4.2. Only max-pooling
layers are considered due to their high efficiency compared to average pooling layers [114].

Regarding FC layers, the C implementation consists of four nested loops as presented

i fmap [N] [(R−1)∗S+K] [(C−1)∗S+K] // input f e a t u r e maps
outfmap [M] [R] [C] // output f e a t u r e maps
weights [M] [N] [Kx] [Ky] // f i l t e r weights
l 0 : for (r =0; r<R; r++) // output X

l 1 : for (c=0; c<C; c++) // output Y
l 2 : for (m=0; m<M; m++) //nb outputs

l 3 : for (n=0; n<N; n++) //nb channe l s
l 4 : for (kx=0; kx<Kx; kx++) // ke rne l X

l 5 : for (ky=0; ky<Ky; ky++) // ke rne l Y
wx=weights [m] [n] [kx] [ky]
i x=ifmap [n] [S∗ r+kx] [S∗c+ky]
outfmap [m] [r] [c]+=wx∗ i x

Listing 4.1 – Pseudo-code of a convolutional layer.

87

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 4 – Flexible Hardware Generation

l 0 : for (r =0; r<R; r++) // output X
l 1 : for (c=0; c<C; c++) // output Y

l 2 : for (m=0; m<M; m++) //nb outputs
tmp = 0
l 3 : for (kx=0; kx<Kx; kx++) // ke rne l X

l 4 : for (ky=0; ky<Ky; ky++) // ke rne l Y
ix=ifmap [n] [S∗ r+kx] [S∗c+ky]
tmp = max(ix , tmp)
outfmap [m] [r] [c]=tmp

Listing 4.2 – Pseudo-code of a max-pooling layer.

l 0 : for (m=0; m<M; m++) //nb outputs
l 1 : for (n=0; n<N; n++) //nb channe l s

l 2 : for (i =0; i<H; i++) // input X
l 3 : for (j =0; j<W; j++) // input Y

wx=weights [m] [n]
i x=ifmap [i] [j]
outfmap [m]+=wx∗ i x

Listing 4.3 – Pseudo-code of a fully-connected layer.

in Listing 4.3.

4.1.2 C-Code transformation example

The coding style has a significant impact on area and performance of the final hardware
design. For example, a C code written in many different ways, which have the exact same
functionality, results in different area and performance for each implementation after
synthesis. To illustrate this fact, an experiment presented in Listing 4.4 presents a C
implementation of standard 3×3 convolution, and Listing 4.5 presents a modified C code
having the same functionality. The body of the loop nest in the first implementation
consists in multiply-accumulate (MAC) operation of the weights and input feature maps.
This MAC operation is separated in the second implementation (Listing 4.5), changing
the order of the operations from MAC at each iteration to a set of multiplications followed
by a set of accumulations.

Both C-code implementations are synthesized and simulated to verify that both im-
plementations have the same behavior. Then the RTL is generated using Vivado-HLS
2020.1. The Xilinx Zynq7000 xc7z030 FPGA is set as a target to implement the two
convolutions assuming a fixed frequency of 100MHz. Table 4.1 presents a comparison in
terms of resource usage and performance. As it can be seen, the standard implementa-

88

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

4.1. Hardware Generation step Overview

// ifmap : input maps
//w: f i l t e r weights
void conv3x3 (w[Ky] [Kx] , ifmap [Ky] [Kx] , ∗ outpix) // Kx = 3 ; Ky = 3

∗out_pix = 0 ;
for (int i = 0 ; i < Ky; ++i)

for (int j = 0 ; j < Kx; ++j)
∗ outpix += w[i] [j] ∗ i fmap [i] [j]

Listing 4.4 – Pseudo-code of a 3x3 standard convolution.

void conv3_modif (w[Kx∗Ky] , ifmap [Kx∗Ky] , ∗ outpix)
tmp_mult [Kx∗Ky] ;
∗out_pix = 0 ;
for (int i = 0 ; i < KDIM; ++i) { // m u l t i p l i c a t i o n loop
#pragma HLS ALLOCATION i n s t a n c e s=mul l i m i t=9 operat i on

tmp_mult [i] = c o e f f [i] ∗ in_pix [i]

for (int j = 0 ; j < KDIM; ++j) { // adding loop
#pragma HLS ALLOCATION i n s t a n c e s=add l i m i t=9 opera t i on

∗ outpix += tmp_mult [j]

Listing 4.5 – Pseudo-code of a 3x3 modified convolution.

Implementation Std. Conv. Modif. Conv.
Latency (cycles) 25 38
LUT 32 142
FF 16 61
DSP 1 0
BRAM 0 0

Table 4.1 – Comparison of RTL implementations of the standard listing and the modified
listing 3x3 convolution.

tion is faster than the modified one. However, this can be explained by the fact that the
first implementation employs a DSP (DSP48E) having pipeline registers for both multiply
and accumulate operations, which enables it to run faster. Regarding resource utilization,
the modified implementation uses more LUTs and FFs compared to the standard one.
However, it does not use any DSP, which can be the reason why it has a higher latency
compared to the standard implementation.

From this experiment, one can see that modifying the C code could add other possibil-
ities. Improving some aspects of a design requires high-level optimizations in addition to
the coding style. Furthermore, combining different C-code transformations and pragmas
results in numerous design possibilities, which allows extending the design space for DNN

89

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 4 – Flexible Hardware Generation

accelerators to enable new potential optimizations. Hence, a library is required to store the
resulting set of combinations, each called an "operator". These operators replace, when
convenient, the computing part in the DNN layers, precisely the two inner-most loops
(also called kernel loops) in convolutional and pooling layers, in order to improve certain
aspects of the hardware implementation of each layer. These kernel loops can represent
different shapes such as 3×3, 5×5, etc. More details are provided in the following sections.

4.2 High-Level Optimizations

The Characterization step, detailed in Chapter 3, generates augmented specifications
(cf. section 3.1) which enable the generation of optimized C-HLS code of each layer (pre-
sented in Section 4.1.1) of the given DNN algorithm. The generated metrics are employed
to enhance the reference C-code to produce optimized RTL representations of hardware
accelerators. Since all layers are based on a set of nested loops, important high-level op-
timizations to consider are related to loop transformations. The most common loop opti-
mizations are loop unrolling, pipelining, ordering and tiling, which apply transformations
on a loop or a loop nest to improve data locality or parallelism. Applying transformations
on high-level descriptions has an important impact on the RTL to be generated [73, 29].

Despite the possibilities to enhance the performance of the C/C++ code, and thus
the RTL to be generated, more optimization opportunities are available. C and C++
are sequential languages that describe the software behavior, they do not have the clock
concept and do not offer the possibility to set variable bit-width, especially using a low
number of bits such as int3_t, int4_t, etc. Therefore, researchers proposed solutions via
libraries and extensions [47] [59] [68]. For instance, the use of directives (tool-specific or
not), and the use of a subset of ANSI C/C++ are one of the most common solutions. The
directives are, in general, used to apply transformations for RTL generation, like improving
resource usage. Such directives play a significant role in reducing the gap between the
software and the hardware and makes the design space rich and flexible. These high-level
optimizations are detailed in the following subsections.

Unrolling

This type of optimization introduces spatial parallelism which aims at improving la-
tency and throughput of a loop. It allows a concurrent execution of a number of iterations,
set by a given factor N which enables partial or full unroll. If the loop is fully unrolled,

90

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

4.2. High-Level Optimizations

then all the iterations are executed in parallel and the latency is reduced to the latency
of a single iteration of the loop, in this case N may not be specified. Otherwise, in partial
unrolling N must be specified and the tools checks if the partially unrolled loop and the
original one are functionally the same. From a hardware perspective, unrolling a loop
implies instantiating necessary RTL copies of the loop body to allow a concurrent execu-
tion of the loop iterations. However, despite the significant decrease in execution time an
important amount of resources is needed.

Figure 4.3 sketches an unrolling example of a loop. The pragma completely unrolls
the loop allowing to start all iteration at the same cycle. Therefore, since there are only 2
loop iterations in this example, the functional units in the loop’s body are doubled, and
the total number of iterations is halved.

Figure 4.3 – Illustration of a loop unrolling example. On the left, the loop is not unrolled, no unroll
directive in the loop body. Performing two iteration takes 6 clock cycles. On the right, the loop is totally
unrolled. Performing the two iterations of the loop takes 3 cycles.

Pipelining

Pipelining is an optimization that allows concurrent execution of operations inside a
loop or a function to reduce its Initiation Interval (II). II is the number of clock cycles
between the processing of consecutive inputs or loop iterations. With this optimization,
the processing of the second input or loop iteration can start before finishing the first one.
A new process starts every II cycles, if II is set to 1 then a new input or loop iteration is

91

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 4 – Flexible Hardware Generation

processed every cycle. Pipelining can highly improve latency, however, resource constraints
as well as loop carried dependencies can restrict the attainable II. From a hardware
viewpoint, this optimization requires more resources to concurrently process inputs or
loops iterations.

Figure 4.4 sketches a pipelining example of a loop. The pragma is applied with an II
of 1 allowing to start a new iteration every cycle.

void foo(tab[2], res){
l0:for(i=0; i<2; ++i){

tmp = tab[i]; // RD
tmp = tmp + i; // CMP
res = tmp; // WR

}
}

void foo(tab[2], res){
l0:for(i=0; i<2; ++i){

#pragma HLS PIPELINE II=1
tmp = tab[i];
tmp = tmp + i;
res = tmp;

}
}

RD CMP WR RD CMP WR

i = 0 i = 1

RD CMP WR
RD CMP WR

3 cycles

6 cycles

1 cycle

4 cycles

Without Loop Pipelining With Loop Pipelining

Figure 4.4 – Illustration of a loop pipelining example. On the left, the loop is not pipelined, no pipeline
directive in the loop body. Performing two iteration takes 6 clock cycles. On the right, the loop is pipelined
with an II= 1. Performing the two iterations of the loop takes 4 cycles.

Loop Reordering

Loop reordering is another loop nest optimization technique related to data manage-
ment. It is exploited to make sure that data is accessed in the same pattern in which it
is present in memory. This improves data locality as well as memory accesses. Deciding
which loop levels to interchange, relies on the same metrics used to set the loop levels to
tile and their tiling parameters. For instance, in Listing 4.1, instead of being tiled, loops
l0 and l1 (suppose they have high loop bounds) can be swapped with l2 to bring the data
closer to the computation part and, therefore, to improve performance.

Loop Tiling

Loop tiling is a commonly used optimization, especially in HLS approaches for CNNs
[136] [117] [104]. It encourages data locality to limit expensive memory accesses and

92

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

4.2. High-Level Optimizations

transfers. In addition, it improves performance if the tile size is correctly set. When tiling
is applied, the source code incorporates new loop levels, depending on the number of tiled
loops in the loop nest. For instance, tiling loop l0 and l1 in Listing 4.1 with Tr and Tc

factors respectively, introduces two new loops, l0.1 and l1.1, as presented in listing 4.6.
The intra-tile loops (l0.1 and l1.1) drives the computation inside a tile and the inter-tile
loop nest that traverses different tiles. Hence, it allows working on smaller chucks of the
input. Figure 4.5 illustrates the tiling of two nested loops. These loops are tiled into (Ti,
Tj) with four nested loops consisting of two inter-tile loops and two intra-tile loops.

for(i=0; i<M; i++)
 for(j=0; j<N; j++)
 LoopBody(i, j);

for(ix=0; ix<M; ix+=Ti)
 for(jx=0; jx<N; jx+=Tj)
 for(i=ix; i<min(M, ix+Ti-1); i++)
 for(j=jx; j<min(N,jx+Tj-1); j++)
 LoopBody(i, j);

i

j

i

j
Tile shape

TixTj

tile 0 tile 1MxN Loop Tiling

Inter-tile loops

Intra-tile loops

}
}

Figure 4.5 – Illustration of the tiling of two nested loops.

However, it is challenging to determine the loops to tile and their tiling factors. There-
fore, the metrics extracted in the characterization, especially the Input/output feature
maps and kernels dimensions and Width/Depth and Data-reuse, can be em-
ployed. The first metric sets the threshold value of each tiling factor, as explained in
Section 3.1.2, to limit the design space. The second one highlights the loop levels to be
tiled, since it takes into account the width and depth of the input feature map as well
as the reuse percentage. For instance, a layer with a large input width and a high reuse
percentage (e.g. loop l0) will be tiled as data locality can be exploited to also encourage
data reuse.

With the help of the characterization results, the C-HLS source code can be gener-
ated with a first optimization level involving loop transformations, which can be directly
applied at C-HLS code generation.

Dataflow

The main purpose of this directive is to increase the concurrency and the throughput
of the design at RTL level by reducing the II. Therefore, after a dataflow analysis between

93

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 4 – Flexible Hardware Generation

i fmap [N] [(R−1)∗S+K] [(C−1)∗S+K] // input maps
outfmap [M] [R] [C] // output maps
weights [M] [N] [K] [K]
l 0 : for (r =0; r<R; r+=Tr) // output X

l 1 : for (c=0; c<C; c+=Tc) // output Y
l 2 : for (m=0; m<M; m++) //nb outputs

l 3 : for (n=0; n<N; n++) //nb channe l s
l 0 . 1 : for (t r=r ; r<min (R, r+Tr) ; t r++)

l 1 . 1 for (tc=c ; c<min (C, c+Tc) ; tc++)
l 4 : for (kx=0; kx<Kx; kx++) // ke rne l X

l 5 : for (ky=0; ky<Ky; ky++) // ke rne l Y
wx=weights [m] [n] [kx] [ky]
i x=ifmap [n] [S∗ t r+kx] [S∗ tc+ky]
outfmap [m] [t r] [t c]+=wx∗ i x

Listing 4.6 – Pseudo-code of a tiled convolutional layer.

the components of the sequential high-level code (i.e. functions or loops), the tools create
channels based on FIFOs or Ping Pong RAMs, which enable functions and loops to
overlap, or in other words to be pipelined.

Hierarchical Optimization - Inlining

The inlining directive has an impact on the generated RTL hierarchy, especially the
amount of the generated control logic after synthesis. A function usually appears as a
separate RTL module. Inlining dissolves the target function into the calling one, so it
does no longer appear as an isolated level of hierarchy in the RTL code. Therefore, the
logic related to function calling is no longer required and will not be generated. In contrast,
the code of the called function is replicated in the calling one. Sometimes, operations and
resources within the inlined function can be efficiently shared and used in the surrounding
RTL code. Once a function is inlined, sharing it and reusing its RTL module is no longer
possible. This can result in an increase of the required area for the RTL implementation.

Bit-Precision Optimization

Optimizing bit-widths has a significant impact on the area, the power and the perfor-
mance of a design as well as the quality of the produced hardware. HLS tools offer the
ability to generate hardware with arbitrary bit-widths, using only the required number of
bits for operators and variables. This can be done by including the "ap_cint.h" HLS C Li-
brary ("ap_int.h" for C++). An pseudo-code using this library is presented in Listing 4.7.

94

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

4.3. Library of HLS operators

#include <ap_cint . h>
in t4 w;

Listing 4.7 – Pseudo-code using the "ap_cint.h" library.

It is an important optimization especially for memory and computationally demanding
applications, such as CNNs. It reduces the required area to implement the CNN model, if
the bit-widths are tailored to the exact number of bits of weights and activations of the
trained CNN. In addition, quantization can significantly reduce bit-precision of a DNN,
and thus HLS can leverage this optimization to reduce design resources.

Table 4.2 summarizes the optimizations detailed above and shows their configuration
and a brief description.

Optimization Configuration Description

Unrolling Unrolling factors Creates multiple copies
of the loop body & increases parallelism

Pipeling Enabled/Disabled & II Reduces II; & Allows a concurrent
execution of operations

Inline Yes/No Dissolves a function into the calling one
Bit-Width Bit-Width Specifies the exact amount of required bits

Table 4.2 – Summary of the used optimizations.

4.3 Library of HLS operators

4.3.1 Introduction

Manipulating the computational part in the loop nest of a DNN layer is a high-
level optimization that offers an additional degree of liberty. This manipulation consists
in taking C-HLS code of kernel loops (l4 and l5) and transforming it by changing the
coding style and applying high-level optimizations (Section 4.2) while guaranteeing the
same functionality. Each transformed set of kernel loops is then designated as an HLS
operator. This helps building a library of C-HLS operators with figures of merit. Since
the C HLS source code has a great impact on the RTL, each kernel shape is coded in
several different ways and optimized, performance-wise or latency-wise or a trade-off of
both, using pragmas. These kernels are aggregated into a library of HLS operators.

95

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 4 – Flexible Hardware Generation

void multAddTree(ifmap [Kx∗Ky] , w[Kx ∗ Ky] , ∗ outpix)
tmp [Kx∗Ky]
// mult ip ly loop
for (i =0; i < Ky ∗ Kx; ++i)

#pragma HLS UNROLL
tmp [i] = w[i] ∗ i fmap [i]

// add loop
for (j =0; j < Ky ∗ Kx; ++j)

#pragma HLS UNROLL
∗ outpix += tmp [j]

Listing 4.8 – Pseudo-code of a 3x3 convolutional operator with multiplication and
accumulation implemented in separate loops - Adder tree.

This library of operators presents a new optimization option for DNN algorithms,
which is directly related to the computational part, and a diversification of the design
space of each layer as well as the whole network.

Therefore, the convolutional kernel presented in Listing 4.4 can be implemented by
separating the multiplication and the accumulation into two distinct loops, as in Listing
4.5. Such implementation resulted in greater area and poorer performance (cf. Table 4.1).
To improve this implementation, each loop can be optimized using different types of prag-
mas to obtain different operators in terms of area and performance. For instance, as a code
transformation, both loops can be unrolled, which results in a vector of multiplications
followed by a parallel adder tree. The pseudo-code of the resulting operator is presented
in Listing 4.8. Other optimizations can be applied to create different operators with the
same functionality. For example, input arrays can be partitioned to improve throughput
and performance.

Another C-HLS code transformation consists in modifying the optimization of one of
the loops. For instance, the multiplication loop can be kept in unrolled state, and the
accumulation loop can be replaced by a single instruction accumulating all the values at
once. This approach results in a serial adder instead of an adder tree. The pseudo-code is
presented in Listing 4.9.

The same approach is applied on pooling layers, i.e., replacing kernel loops (l3, l4) by
an operator, especially max-pool layers. An example of a substitute max-pool operator is
presented Listing 4.10, where a max operation finds the maximum value of three inputs.
The loop embodying this operation is unrolled to accelerate the max-pool operation. The
applicable code transformations are limited in this type of layers due to the simplicity of
the operation (finding the max value).

96

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

4.3. Library of HLS operators

void multSerialAdd (ifmap [Kx∗Ky] , w[Kx ∗ Ky] , ∗ outpix)
tmp [Kx∗Ky]
for (i =0; i < Ky ∗ Kx; ++i) // mult ip ly loop

#pragma HLS UNROLL
tmp [i] = w[i] ∗ i fmap [i]

∗ outpix = tmp [0] + tmp [1] + tmp [2] // s e r i a l adder
+ tmp [3] + tmp [4] + tmp [5]
+ tmp [6] + tmp [7] + tmp [8]

Listing 4.9 – Pseudo-code of a 3x3 convolutional operator with separate operations
replacing the accumulation loop by a single instruction - Serial Adder.

#define max(a , b , c) (((a > b) && (a > c)) ? a : ((b > c) ? b : c))
void maxpool(ifmap [Kx∗Ky] , ∗ outpix)

j=0
tmp [Kx∗Ky]
for (i =0; i < Ky ∗ Kx; ++i)

#pragma HLS UNROLL
tmp [j] = max(ifmap [i] , ifmap [i +1] , ifmap [i +2])
i+=3
j++

∗ outpix = max(tmp [0] , tmp [1] , tmp [2])

Listing 4.10 – Pseudo-code of a 3x3 pooling operator.

4.3.2 HLS operators overview and early results

Following the same approach of combining C-HLS code transformations and high-
level optimizations, a library of operators comprising different shapes of convolutions and
max-poolings is created.

Each implemented operator of this library is synthesized (place and route), exclud-
ing infrastructure such as memory controllers and crossbars, to get resource usage and
performance details. Assuming a fixed frequency of 100MHz, the latency is expressed in
cycles. Contrary to ASIC designs where area is measured in terms of square millimeters or
gate equivalent, area is expressed in terms of used resources (i.e. FF, LUT, DSP, BRAM),
since the target in here is FPGA.

In the context of this thesis, the chosen solution is to express area as aggregated values
of FF, LUT, DSP and BRAM as in Equation (4.1).

PseudoArea = FF

FFAvailable

+ LUT

LUTAvailable

+ DSP

DSPAvailable

+ BRAM

BRAMAvailable

(4.1)

97

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 4 – Flexible Hardware Generation

For instance, various implementations of a 3×3 convolution operator, having different
code transformations and configurations, result in different area and latency values as
illustrated in Figure 4.6 in which each point represents an operator. In this figure, one
can see that some of these points form a shape of an area-latency Pareto curve. The x-axis
and y-axis represent the latency and area respectively. Only operators on the Pareto curve
will be selected for future optimizations.

The same is valid for the 5×5 and the 7×7 convolutional operators in Figure 4.7 and
Figure 4.8 respectively, and the 3×3 pooling operators in Figure 4.9.

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

0 5 10 15 20 25 30 35 40

AR
EA

LATENCY (CYCLES)

Figure 4.6 – Distribution of the 3×3 convolutional operators according to their area and latency. Some
of these points are on the Pareto curve.

The proposed operators diversify the design space and enable a higher degree of liberty
to optimize the implementation of each layer of the network, and to later optimize the
whole network. Area and latency details will be later used in specific estimation models
that will be detailed in the next chapter. It is worth noting that power consumption was
not considered in this first implementation of the SHEFTENN framework. This explains
why PPA Report in Figure 4.1 is replaced by PA Report in Figure 4.2. Introducing power
consumption as another optimization parameter is clearly a perspective of this work.

98

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

4.4. Early Results using the Hardware Generation step

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0 20 40 60 80 100 120

AR
EA

LATENCY (CYCLES)

Figure 4.7 – Distribution of the 5x5 convolutional operators according to their area and latency. Some
of these points are on the Pareto curve.

4.4 Early Results using the Hardware Generation step

This section shows few examples of some layers’ implementations to illustrate the use
of C-HLS source code, while considering possible optimizations related to loop transfor-
mations, pragmas and HLS operators. Regarding the hardware implementation, Vivado-
HLS 2020.1 is employed to generate the RTL of the layers. The chosen target is the
Xilinx Zynq7000 xc7z030 FPGA supposing a fixed frequency of 100MHz. Each layer is
implemented separately without memory controller or crossbars.

Three example layers were chosen to illustrate the generation step. Table 4.3 shows the
type of each layer, its order of loops and its dimensions. For comparison purposes, each
layer is implemented without optimization, which serves as a reference implementation.
It is worth noting that these layers are extracted from trained networks, where L1 is the
first layer of MobileNet-V2, L2 is the sixth layer of MobileNet-V1 and L3 is the second
layer of an evaluation network employed in [6].

Regarding the applied optimizations, some are derived from the characterization step,
especially the ones related to loop re-ordering and high-level optimizations thanks to the
characterization results especially the Width and Depth comparison and the Data-Reuse
percentage (detailed in Section 3.1.2). The ones related to the use of operators cannot be
derived from the characterization’ results, since the characterization has not the operators

99

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 4 – Flexible Hardware Generation

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0 50 100 150 200 250

AR
EA

LATENCY (CYCLES)

Figure 4.8 – Distribution of the 7x7 convolutional operators according to their area and latency. Some
of these points are on the Pareto curve.

Layers Type Loops Order Values Stride
L1 Std. Conv. R, C, M, N,Kx, Ky 128, 128, 8, 3, 3, 3 2
L2 Depth-Wise Conv. R, C, M, N, Kx, Ky 16, 16, 32, 1, 3, 3 1
L3 Max Pooling R, C, M, N, Kx, Ky 16, 16, 2, 2, 3, 3 3

Table 4.3 – Type and configuration of the implemented layers. Where, R: Output Height,
C: Output Width, M : Number of Outputs, N : Number of Channels, Kx: Kernel Height,
Ky: Kernel Width. Values correspond to loops order variables.

details (e.g. latency and resource usage), and can neither estimate the performance nor
the resource utilization. All layers’ implementation, optimized and non-optimized, are
implemented with an 8-bit precision for weights and activations. In addition, bit-widths
of employed indexes are tailored to their exact needs.

Layer L1 this layer has the width R greater than the depth N , as it can be seen in
Table 4.3. According to the characterization analysis, the maximum reuse percentage in
this layer is 23.85%, which is quite low for a convolution layer. A typical reuse factor
for such a layer is above 80%. This low value can be explained by the employed stride
value (stride = 2). While the reuse factor is not very high, encouraging data locality will
still impact positively the performance, since the convolutional reuse is not negligible.
Therefore, the first applied optimization is loop re-ordering (Reorder) which is applied

100

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

4.4. Early Results using the Hardware Generation step

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 5 10 15 20 25 30

AR
EA

LATENCY (CYCLES)

Figure 4.9 – Distribution of the 3×3 pooling operators according to their area and latency. Some of
these points are on the Pareto curve.

automatically thanks to the results of the Characterization phase; loops are re-ordered to
move data closer to the computing part, i.e. kernel loops (Kx, Ky), and limit unnecessary
transfers. The resulting loop order is M, R, C, N, Kx, Ky. Reordering the loop improved
the latency of 1.5% compared to the non-optimized implementation, while having little
impact on resource usage.

The second optimization is related to the computing part. Since the kernel width
and height are very small ([Kx, Ky] = [3, 3]) compared to the remaining dimensions,
the loops are fully unrolled to improve parallelism and accelerate the processing (Unroll
KL). Unrolling kernel loops improved performance by 70.15% but increased significantly
resource usage, especially the DSP and the LUT, using 3.7× more LUTs and 9× more
DSPs compared to the reference (non-optimized) implementation.

The third potential optimization is to employ a 3×3 convolutional operator (Oper-
ator); the operator is chosen from the Pareto curve. Two additional configurations are
applied to the reordered version: unrolling kernel loops (Reorder + Unroll KL) and re-
placing kernel loops by a convolutional operator (Reorder + Operator). Compared to only
unrolling the loops, the implementation combining reordering and unrolling improves the
latency by 5%, while having no obvious impact on resources. Regarding the implemen-
tations including operators, the improvement in latency is similar to previous solutions,
around 70% compared to the non-optimized implementation. In addition, resource uti-

101

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 4 – Flexible Hardware Generation

lization significantly increased, 2× more LUTs, 9× more DSPs and 3× more BRAM in
comparison to the non-optimized implementation. Figure 4.10 shows the resource usage
(in percentage) and the latency (in cycles) of the different implementations.

0,0E+00

5,0E+05

1,0E+06

1,5E+06

2,0E+06

2,5E+06

3,0E+06

0,00

0,50

1,00

1,50

2,00

2,50

Non Op�mized Reorder Unroll KL Reorder+ Unroll KL Operator Reorder +
Operator

La
te

n
cy

 (
C

yc
le

s)

R
es

o
u

rc
e

U
sa

ge
 (

%
)

Implementa�ons

LUT FF DSP BRAM Latency

Figure 4.10 – Different implementations of the convolutional layer L1. KL: Kernel loops. Operator :
3×3 convolutional operator, pseudo-code in Listing 4.8.

Layer L2 this layer is a depth-wise convolutional layer. Contrary to the first one, its
depth M is greater than its width R, as can be seen in Table 4.3. Additionally, the
reuse percentage is low, 20.66%, due to the employed stride (stride = 2). As for the
previous example, and despite the low reuse percentage, reordering will slightly enhance
the performance, since the reuse percentage is not negligible. The same configurations
applied on L1 are also applied on L2. Figure 4.11 shows the resource usage (in percentage)
and the latency (in cycles) of the different implementations.

Reordering the loops improved the latency of 3.43% compared to the non optimized
implementation, while having no impact on resources. Unrolling kernel loops improved
performance by 74%, eliminated BRAM usage but increased significantly the DSP us-
age by 9× compared to the reference implementation. The implementation combining
reordering and unrolling does not improve performance, compared to unrolling only. It

102

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

4.4. Early Results using the Hardware Generation step

0,0E+00

5,0E+04

1,0E+05

1,5E+05

2,0E+05

2,5E+05

0,00

0,50

1,00

1,50

2,00

2,50

Non Op�mized Reorder Unroll KL Reorder+
Unroll KL

Operator Reorder +
Operator

La
te

n
cy

 (
C

yc
le

s)

R
es

o
u

rc
e

U
sa

ge
 (

%
)

Implementa�ons

LUT FF DSP BRAM Latency

Figure 4.11 – Different implementations of the convolutional layer L2. KL: Kernel loops. Operator :
3×3 convolutional operator, pseudo-code in Listing 4.8.

103

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 4 – Flexible Hardware Generation

also impacts negatively resource usage, especially the number of LUTs and FFs. Regard-
ing the implementations in which operators are used as substitutes for kernel loops, the
improvement in latency is similar to previous solutions, around 70% compared to the
reference implementation. In addition, resource utilization significantly increased, 2.67×
more LUTs, 9× more DSPs in comparison to the non-optimized implementation, but
eliminated the use of BRAMs. It is worth noting that using the proposed operators as an
optimization is not the best option between the proposed optimizations, since it degrades
latency by 11% compared to implementations with unrolling and reordering + unrolling.

Layer L3 it is a pooling layer in which the width R greater than the depth N (cf. Table
4.3). The reuse percentage in input feature maps is zero, since the values of the stride
and the kernel size are the same. Therefore, reordering should have little to no impact on
area and performance. The same configurations applied on L1 and L2 are also applied on
L3. Figure 4.12 shows the resource usage as well as the latency of each implementation.

0,0E+00

2,0E+03

4,0E+03

6,0E+03

8,0E+03

1,0E+04

1,2E+04

1,4E+04

1,6E+04

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

Non Op�mized Reorder Unroll KL Reorder+
Unroll KL

Operator Reorder +
Operator

La
te

nc
y

(C
yc

le
s)

R
es

o
u

rc
e

U
sa

ge
 (

%
)

Implementations

LUT FF DSP BRAM Latency (cycles)

Figure 4.12 – Different implementations of the pooling layer L3. KL: Kernel loops. Operator : 3×3
max-pooling operator, pseudo-code in Listing 4.9.

Reordering loops improved performance by 3.44%, while having insignificant impact
on used resources. The latency improved greatly with the unrolling of kernel loops, 52.4%
faster than the reference implementation. On the other hand, the use of LUTs and FFs in-
creased by 3.72× and 2.8× respectively. Applying reordering and unrolling simultaneously

104

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

4.5. Conclusion

enhanced further the performance by 62%, but kept the high use of FFs and LUTs. Using
a pooling operator reduced greatly latency compared to all other implementations. The
implementation with operator is 66.5% faster but uses more resources. As for resources,
obviously this implementation requires more resources, 3.23× and 2.45× more LUTs and
FFs respectively.

Many other implementations, which can improve various aspect of the design, should
be explored. However, the large design space make this mission tricky especially when
manually done.

4.5 Conclusion

This chapter presented the hardware generation step which, based on the characteriza-
tion results, generates a semi-optimized C-HLS code including loop transformations, such
as loop re-ordering and tiling. In addition, it leverages other high-level optimizations as
well as a library of HLS operators, also exploiting these optimizations, to further optimize
the high-level code. The generated metrics can determine the order of the loops and the
loops to be tiled. However, it cannot (yet) determine the tiling parameters, which opera-
tors or pragmas to employ, since it has no way to explore the design space and evaluate
each solution.

At this point, the hardware designer must test all the configurations himself to find
an appropriate implementation, which is a very laborious task due to the resulting large
design space. Therefore, the proposed methodology introduces an automated optimization
step to perform this tedious task.

The following chapter presents an optimizer step to automate and facilitate the search
for optimized configurations, for each layer, in the design space. This optimizer step will
also be used to ensure the generation of an optimized accelerator for an entire DNN.

105

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 5

OPTIMIZING HARDWARE THROUGH

DESIGN SPACE EXPLORATION

In the previous chapter, a flexible Hardware Generation module was presented. This
module allows exploiting numerous optimizations of high-level code transformations and
pragmas of HLS tools. Unfortunately, new issues appeared similar to the ones of a stan-
dard design process but at a higher level. The first challenge is related to the number
of high-level optimizations that can be applied, which increases the number of possible
implementations of a design.

The second issue is the time-consuming syntheses to check the latency and resource
usage of the design, which lengthen the exploration time and the overall design process.
Therefore, design exploration strategies are required to obtain Pareto-optimal implemen-
tations while reducing the number of required syntheses.

Figure 5.1 – The flow of the proposed methodology with a focus on the Optimizer module.

In the scope of this thesis, a specific DSE methodology, based on Genetic Algorithm, is

107

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 5 – Optimizing hardware through Design Space Exploration

developed to speed-up the exploration as well as the whole design process. The proposed
method aims at optimizing each layer of a DNN individually based on its dimensions. It
uses area (i.e. resource utilization for FPGAs) and performance models to ensure a faster
evaluation of the implementation and to decrease the number of synthesis runs. These
models are based on a statistical analysis, which are developed for the purpose of this
work. Section 5.1 presents some state-of-the-art DSE approaches: model-based and black-
box-based. Section 5.2 presents the rationale for using a GA algorithm, the algorithm
itself and finally, its current implementation. Section 5.3 presents the employed area and
performance models. Section 5.4 presents early results assessing the interest of the GA
algorithm for automatically optimizing the implementations of some DNN layers. Finally,
section 5.5 sketches the conclusion of the chapter.

5.1 Related Works on DSE

The literature unveils different Design Space Exploration (DSE) techniques to reach
a set of Pareto-optimal solutions of the hardware design problem, while diminishing the
number of synthesis runs. Some of the proposed approaches are mainly HLS-driven and
intend to mimic the HLS-tools’ behavior in order to predict the effect of applied prag-
mas on area and performance and to limit the required number of syntheses. The main
drawback of such strategies is that they cannot catch the impact of all optimizations, es-
pecially the inter-dependant ones. Recently, some papers have reviewed HLS-driven DSE
strategies and classified them into different categories like Schafer et al. [113], Bulnes et al.
[106] and Shathanaa [116]. They presented the current progress of these strategies while
proposing different classifications to categorize existing approaches. HLS-driven DSE are
classified into:

— synthesis-based and model-based as in [113]. The synthesis-based ones, such as
meta-heuristics and dedicated heuristics, invoke the HLS-tool to evaluate every
implementation. The model-based ones, such as supervised learning and graph-
based, rely on performance and cost models for fast evaluation to avoid invoking
the HLS tool. Schafer et al. imply that supervised learning methodologies belong
to both categories since they require the synthesis of numerous configurations to
build their knowledge. Once the model has learned the required information to
mimic the behavior of the HLS tool, it then uses this knowledge to estimate the
design costs and performance.

108

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

5.1. Related Works on DSE

— exact and approximate methods as in [106] which focus on heuristic and meta-
heuristic approaches. Exact methods (based on other forms of the branch and
bound algorithm) have few appearances in the literature according to [44]. On the
other hand; approximate ones are more popular among researchers.

— learning-based methodologies, exploration-based types, evolutionary algorithm, and
population-based stochastic optimization methods as in [116]. This classification
slightly matches the first one.

Following the classification used in [44], inspired by [113], the works in the literature
are classified into two categories: model-based and black-box-based methodologies. Model-
based strategies uses estimation models to mimic the behavior of a given HLS-tool. In
contrast, black-box strategies deduce the behavior of the used HLS-tool.

5.1.1 Model-based DSE approaches

These approaches focus on estimating the behavior of the synthesis tool, while using
various tool-specific directives and high-level code transformations. These approaches do
not directly invoke the HLS-tool and rely on cost and performance models, usually ana-
lytical models, to evaluate the resulting implementations. However, they are often limited
to a small set of tool-specific directives due to the complexity in predicting the effect of
various and simultaneously applied pragmas on different steps of the HLS-based design
process like allocation, scheduling and binding.

For example, the work proposed in [25] investigates three types of pragmas only, which
are array partitioning, loop unrolling and loop pipelining. In order to estimate different
design aspects, analytical resource and performance models are devised. While also using
analytical models for performance and resource utilization, the works in [24], [28] and
[30] aim at reducing the complexity of these models in various ways. For instance, [24]
focuses on a distinct types of applications, especially on stencils. The work in [28] tar-
gets systolic architectures, and [28] aims at reducing the design space, i.e., configuration
space, by suggesting the use of architectural templates. The authors in [76] also use ar-
chitectural templates to limit the design space and conceive analytical models specific
to these templates, and thus reduce the complexity of the design problem. Furthermore,
using static graph analysis strategies have been also suggested, like the work in [137] in
which a graph representation of the design is generated from its behavioral model using
compiler methods. Using these graphs, processing elements (PEs) and their communica-
tion can be analyzed in order to respectively devise a model of the PEs and evaluate the

109

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 5 – Optimizing hardware through Design Space Exploration

communication cost.
Other works have chosen another research path to accurately predict cost and perfor-

mance. In particular, [115] presents a Pre-RTL, Power-Performance accelerator simulator,
called Aladdin. It takes a high-level description of the architecture (written in C/C++)
along with the applied directives to accurately estimate power, performance, and area. [26]
proposes FLASH, an HLS simulation flow capable of extracting scheduling information
from the HLS tool. Then, while maintaining C semantics, the tool automatically builds an
analogous cycle-accurate simulation model. Such approaches substitute the synthesis pro-
cess by accurate costs and performance prediction models, but do not reduce the design
space.

The above cited approaches tackled the design space exploration problem by reducing
the complexity of the design. They proposed various solutions, by using analytical models
(tied to the HLS tool) , or by targeting specific applications, or also by developing accurate
simulators for costs and performance estimations. Despite the fine results that could be
obtained, such approaches are hard to generalize. For instance, analytical models must be
updated with every new release of the employed commercial HLS tool (e.g. Vivado-HLS).
These HLS tool updates are essential to tackle the market needs.

On the other side, Black-box-based techniques are agnostic to the number of considered
pragmas and to the chosen HLS tool, which is an advantage compared to model-based
approaches. Some of these approaches are presented in the following subsection.

5.1.2 Black-box-based DSE approaches

Black-box-based approaches, unlike model-based approaches, have no prior knowledge
of the problem. These approaches are independent of the used pragmas and the HLS tool.
Therefore, they need to acquire their knowledge throughout exploration, online or offline.
These techniques require a large number of synthesis until they can provide high-quality
and accurate results. Black-box-based approaches can be divided into different categories:
learning-based approaches and refinement-based approaches. The learning-based ones gain
their knowledge through a training phase in which a model of the synthesis process is
learned, such as in supervised learning. The acquired knowledge is then used to drive the
exploration process or to estimate costs and performance. Regarding refinement-based
approaches, their knowledge is refined with new acquired data throughout the exploration
process, such as in meta-heuristics and dedicated heuristics. It is worth noting that their
initial knowledge can be acquired via a learning step.

110

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

5.1. Related Works on DSE

Refinement-based strategies refine their knowledge during the exploration process to
optimize the search for Pareto-optimal solutions. Therefore, the search will only seek
promising regions of the design space, discovered online. Thus, poor solutions are ignored
by adjusting the internal model. The model is refined using syntheses feed-backs, to boost
its knowledge, while searching for Pareto-optimal solutions. Such approaches offer promis-
ing results especially when handling multi-objective optimization problems. For instance,
the paper in [111] proposes a tool to explore the design space by generating a set of designs
using an adaptive simulated annealing approach. Another approach proposes a probabilis-
tic model [14] to accelerate the design space exploration. The probabilistic model aims at
predicting Pareto-dominant solution with respect to the selected pragmas. The work in
[112] suggests exploring each loop individually then merging the exploration results.

The authors in [77] derive a model of the used HLS tool by employing the Random
Forest algorithm. The model is refined at every new synthesis. Some other approaches
investigated the usage of Genetic Algorithms to explore the design space while tackling a
small set of pragmas, like the works in [2], [97] and [56]. Few other works aim at refining
the simulation-based exploration and producing a synthesis model by employing Response
Surface Model, like the works in [134], [83], [118], [96]. The authors in [101] suggest an
automated design space exploration technique which simultaneously coordinates pragmas
and memory optimizations. The authors in [40] accentuate the importance of exploiting
previously acquired data to efficiently diminish the DSE problems’ complexity.

The work in [37] uses synthesis results in order to enhance the accuracy of HLS esti-
mations. At the same time, the work in [79] uses an ASIC synthesis report to estimate the
performance of the targeted FPGA. The work in [131] performs offline pre-characterization
of micro-kernels and then builds predictive models of these kernels. The main purpose is
to accelerate the HLS-driven DSE process.

Regarding Learning-based strategies, various approaches have been proposed in the
literature. For instance, [95] addresses the DSE problem by using a neural network to
predict performance and cost of a given processor. It also predicts memory, and bus pa-
rameters of a new architecture. Other approaches sought to gain high-quality results by
employing various learning models while reducing the need for syntheses. In particular,
[138] proposes to predict area and latency by employing a regression model, which relies
on a Gaussian process, trained on a given dataset. [112] uses pattern matching techniques
to implement local search methods. The approach in [135] predicts the optimal unrolling
factors of given loops by combining a compiler pass analysis and Random Forest classifier.

111

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 5 – Optimizing hardware through Design Space Exploration

These learning models use a training dataset to learn a model of the synthesis process,
they use the acquired knowledge to infer results on the configurations to explore.

5.1.3 Discussion

The above-detailed state of the art presented various DSE methods that aims at
finding Pareto-optimal implementations in a short time. Hence, those techniques tackle
two main problems: the exploration of the design space and the evaluation time of each
solution. Model-based approaches proposed using analytical models or accurate simulators
developed to estimate area and latency to reduce the evaluation time. Even though such
approaches outputs quality results, they are not easily generalizable, since models and
simulators must be updated to take into account HLS tool’ updates. On the other hand,
black-box-based approaches are independent of both HLS tools and considered pragmas.
Such techniques require a learning step either online (i.e. during the exploration) or offline
(i.e. using neural network trained offline).

The work in this thesis tackle the same DSE issues of the literature stated earlier
since it aims at facilitating the design of a DNN accelerator, and thus on easing laborious
steps in the HLS design process, especially the synthesis part. Regarding the design space
exploration problem, black-box-based approaches sound promising and suitable since they
acquire their knowledge online through exploration and are not dependent on an HLS tool
nor pragmas. Among the state-of-the-art black-box-based techniques, Genetic Algorithm
(GA) seems well adapted to the DSE problem in this thesis since it learns online through
exploration and does not require an offline learning step. In addition, it is scalable, and
thus capable of dealing with small to large sets of pragmas. On the speed of evaluation
side, estimation models for area and performance are developed to reduce the number of
syntheses, and thus to rapidly evaluate each configuration. These two aspects are detailed
in the following sections.

5.2 DSE Algorithm

The design space exploration problem, in the context of this work, consists in finding
the right configuration, of a given layer, based on area-latency tradeoff. The configuration
comprises loops order, pragmas and their corresponding values as well as the operators

112

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

5.2. DSE Algorithm

detailed in the previous chapter (cf. Section 4.3). The main purpose is to find the right
configuration of the high-level representation of a given layer, i.e., C-HLS code.

Herein, a method to solve this problem is presented. This method is based on a genetic
algorithm (GA) that uses estimation models to rapidly evaluate each configuration. The
main considered design criteria are: area and latency. Other design aspects can also be
considered, such as power consumption. First, an introduction including the motivations
behind the choice of GA as well as some basic notions will be presented. Then, the
optimization method will be exposed.

5.2.1 Introduction to Genetic Algorithm

GAs are search algorithms that fall within the scope of Evolutionary Algorithms.
GAs are inspired by Darwin’s theory of evolution, and were firstly developed by John
Holland in 1975 [55]. They were later used to solve various optimization problems, such
as DNN hardware mapping [65], multi-objective optimizations (power, area and delay)
[105], scheduling multiprocessor tasks [32], etc. Such algorithms mimic the mechanism
of natural selection in which the fittest individuals are chosen for reproduction; selected
individuals reproduce children.

These are powerful algorithms for solving multi-optimization problems, in which op-
timization aspects are often conflicting, and even for problems with a minimal amount of
information. Multi-optimization problem is the most common problem in hardware design
architectures, especially in embedded systems. Hardware designers often need to concur-
rently optimize several design aspects, such as performance and area, memory accesses
and power, power and performance, or a combination of power, area and performance, etc.
Therefore, a scalable algorithm is needed to rapidly adapt to the size of the problem and
to be able to easily integrate new features (new pragmas or operators in this work). Such
features characterize the GA, hence the choice of such algorithm for the DSE problem.

In this section, common GA terms and core principles of the Darwinian evolution are
clarified, which are required to devise a specific genetic algorithm for the DSE problem
of this thesis. To ensure that the natural selection takes place, three main elements are
crucial: heredity, variation and selection. Heredity is a process in which parents, who
survive long enough, pass down their genetic traits to their children. Variation must be
introduced to obtain a diversified population, i.e., a population with a variety of traits, to
enable new combinations and ensure evolution. Finally, selection is a process in which the
fittest members of a population are selected for reproduction to produce children, referred

113

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 5 – Optimizing hardware through Design Space Exploration

to as survival of the fittest. The term fittest is related to the adaptability of the individual
to his environment, especially the traits of this individual. Hence, such individuals have
higher probability of survival and reproduction.

This phenomenon inspired John Holland to develop the principle of GAs. The DNA,
short for deoxyribonucleic acid, encodes the genetic information of every living organisms.
Similarly, in GA a solution is an individual represented by its genotype and its environment
is the search space. The individuals’ evolution in an artificial environment (search space)
leads to the improvement of their performance. Therefore, GA can be used to optimize
any problem for which an encoding of the solutions and an evaluation function can be
established. Some common terms are employed in this work and should be clarified before
diving deeper into the proposed implementation. First, a gene encodes a trait of a solution.
Second, an allele is a potential form of a gene. The genome is a set of genes of an individual,
i.e., a design point in the solution space. The genotype is the genetic information, and
finally the phenotype is the physical information of that individual.

A GA, as represented in Figure 5.2, is an iterative process that works as follows. First,
solutions should be encoded in the form of chromosomes where each solution is represented
by its genotype in the search space; it is usually represented by a binary or real valued
vector of fixed or variable size. Once the solutions’ encoding is set, the population of
N individuals can be initialized by generating random solutions. The second step is the
Evaluation where each individual (genome) of the generated populated is evaluated by
means of a fitness function. The third step is the Selection process, in which genomes
are selected for reproduction, and thus create the new genomes of the next generation.
Various selection strategies are proposed:

— Random Selection, where a random number of genomes is selected for reproduction
regardless of their fitness.

— Elitist Selection, where a small set of the fittest individuals are selected for re-
production. Unfortunately, this method cannot produce optimal outputs since all
individuals, top and low -scoring, have the same probability to be selected for
reproduction.

— Selection by using the Wheel of Fortune, also known as the Roulette wheel, which
is a probability-based selection. In this method, each individual is assigned a sector
of the roulette wheel proportional to his fitness and then a random draw is made
to select the parents for reproduction.

— Selection by tournaments, in which a fixed number of genomes is randomly selected

114

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

5.2. DSE Algorithm

and individuals having the best fitness score will be selected for reproduction.
The fourth step is the Crossover, where a new child genome is created by mixing the

parents genes. The fifth and the last step is the Mutation, it is an alteration of the genetic
information, where certain genes are modified based on a mutation rate, and produces
new genomes. This step allows to produce new genomes and ensures the exploration of
new areas in the search space. This allows reducing the probability of arriving in a local
minimum. The GA then iterates on Selection, Crossover, Mutation and Evaluation, until
a stop condition is reached, such as a solution is satisfied or a maximum number of
generations is reached, etc. It is worth noting that elitist politics of population renewal
is often used, in which a set of the best individuals (also called elite set) of the current
population replaces the rest of the population with the new generation.

Initialize
population

DNA
Encoding

Evaluation

Selection

Crossover

Mutation

Stop ?

Evaluation

Selection

GA
converged

No
solutions

Figure 5.2 – Workflow of a Genetic Algorithm.

5.2.2 Implementation of the DSE module

In the context of this work, a custom GA is developed for this hardware generation
problem to optimize the implementation of each layer of a given DNN. This implemen-
tation is inspired by the work in [65] where layers’ dimensions are encoded into a set of
genes to optimize the mapping of DNNs on a given target. However, in this approach the
GA is used to search for the right pragmas and tiling parameters to optimize, in the first
place, the high-level implementation (C-HLS source code) of a layer and thus to generate

115

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 5 – Optimizing hardware through Design Space Exploration

an optimized RTL representation.

DNA encoding

In the current GA implementation, the DNA is first encoded by employing the N
dimensions of a layer, which also represent the number of loops of the layer. Those N di-
mensions are encoded into N pairs of genes. Each dimension is encoded into a gene which
has four optimization types: tiling factor (if loop is tiled), pragma-value pair, operators
(for innermost loops only, i.e., kernel loops), and Null to express the absence of optimiza-
tions. Figure 5.3 sketches the adopted encoding of the DNA. This latter is illustrated as
a pair of chromosomes carrying those genes. As it can be seen, the first chromosome, on
the left, encodes the loops’ order and the tiling parameters. The one on the right, en-
codes the potential optimizations, such as Pipelining, Unrolling and the use of Operators.
Hereinafter the used abbreviations: Tx denotes the tiling factor, P-Val denotes a certain
pragma and its value, Opx indicates the Operator to use and N for Null and indicates
that no optimization is applied. It is worth mentioning that the loops’ order is guided by
the results of the Characterization step, especially the dimensionality analysis, and fed as
it is to the optimizer module. For example, if a given layer has its width bigger than its
depth, it means that this layer has higher reuse opportunities. Therefore, shifting a part
of the input closer to the computational part by changing the loop’ order of the layer to
M, R, C, N, Kx, Ky (see Listing 4.1), favors data locality and reuse and enhances the
overall latency. In contrast, if a given layer has its depth bigger than its width is more
likely to have lower reuse opportunities. Consequently, the loops’ order can be kept as R,
C, M, N, Kx, Ky. A layer with a width equivalent to depth can be implemented in both
previously discussed loops orders.

The genotype, described in Figure 5.3, is the employed genetic encoding, and the
Area-Latency is the physical behavior of the identified solution, called phenotype.

GA evaluation

Once the population is initialized, each individual (solution) in this population is eval-
uated based on its phenotype. This evaluation consists in attributing, for each individual,
a fitness score. The computation of this latter depends on two parameters: the latency
and the resource utilization. The individual resources are compared to the ones on the
targeted FPGA, while his latency is compared to the one of a non-optimized (classical)

116

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

5.2. DSE Algorithm

C

Figure 5.3 – Encoding scheme of the proposed GA’ implementation. Tx : tiling factor, P-Val: pragma
and its value, Opx : Operator to use and N : Null for non-optimization.

implementation. The fitness score is set as follows: if the estimated latency exceeds the la-
tency of the classical implementation, and if the estimated resources surpass the available
one on the targeted FPGA regardless of routing, then the fitness is given a −1 value. Else,
area and latency of each individual are normalized and then multiplied to compute the
fitness score. Equation 5.1 illustrates the fitness function employed in this work, where A
and L are respectively the normalized area and latency.

Fitness =

L×A > 0, if constraints met

−1, if constraints not met
(5.1)

Therefore, all individuals having a positive fitness are kept. Only Pareto font solu-
tions (individuals) are considered as viable solutions. These latter are also used for the
optimization of the entire neural network, which will be detailed in the next chapter.

The resource utilization and the latency of each individual can be obtained by sim-
ulating and synthesizing (place and route) each obtained configuration. However, this
lengthen the exploration of the design space, since real synthesis is time-consuming. There-
fore, resource utilization and latency estimation models are introduced to speed up the
exploration phase. These models are detailed in section 5.3.

Regarding the selection process, a probability-based selection is used, the so-called
Roulette Wheel. This method ensures that the highest-scoring individual will be most
likely to reproduce. It also guarantees the diversity of the population since it does not
entirely eliminate any variation.

117

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 5 – Optimizing hardware through Design Space Exploration

5.3 Model-based estimations

To reduce design time of hardware implementation, the evaluation time of each pro-
posed solution must be reduced. Hence, instead of synthesizing every proposed solution,
resource utilization (DSP, BRAM, LUT, FF) and latency are modeled to imitate the
behavior of the employed HLS tool. This allows a faster evaluation as well as a faster
convergence towards a suitable solution.

5.3.1 Performance Model

In the context of modeling latency for HLS-based designs, many researchers assume a
fixed clock frequency for the design and thus use the number of cycles as a measurement
unit, such as the works in [117, 104]. These works built algorithmic convolutional templates
suitable for multiple convolutional layers, and built their performance models based on
these high-level templates. Thus, the performance is expressed in terms of the dimensions
of a given layer. Since the proposed approach in this thesis does not rely on existing
templates or architectures to use fixed performance models, an adaptive model had to
be developed that takes into consideration possible loop optimizations, such as tiling,
unrolling, pipelining and the use of an operator. This model is built based on layers’
dimensions, i.e., loop bounds as in Listing 4.1. Hence, it depends on the latency of the
loop nest. A performance model for non-optimized layers is used as a building block for
this model, in which the latency of the loop is computed recursively starting from the
innermost loop (having the highest index) as in Equation 5.2. This model is inspired by
the work in [137]. It is worth noting that if an operator is employed, the latency of kernel
loops is replaced by the latency of the operator, especially in convolutional and pooling
layers.

ILl = ILl+1 × LBl+1 + P

LLl = ILl × LBl

(5.2)

In Equation 5.2, ILl , LBl and LLl are respectively the Iteration Latency, the Loop
Bound and the Loop Latency of loop l. ILl+1 and LBl+1 are the Iteration Latency and
Loop Bound of the nested loop. P is the pipeline depth of the innermost loop.

The proposed latency model can compute the latency of a nest of multiple loops in
a recursive way. It takes into account various optimizations: UNROLL, PIPELINE and

118

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

5.3. Model-based estimations

selected operators performances.

5.3.2 Models for resource utilization

Unlike ASICs where area is expressed in mm2 , area on FPGAs is expressed in terms
of resource utilization. Resources are four types: DSP, FF, LUT and BRAM. Therefore,
FPGA resources are modeled separately to estimate the resource utilization of each layer
of a given CNN; The resources of the entire CNN can be later computed by aggregating the
resources of all its layers. Various layer-based high-level parameters and configurations are
employed to model resource utilization, especially the layers loop bounds, the number of
parameters, the volume of data to be processed and the input/output depths. In addition,
these models take into consideration the presence of an operator (from the dataset of HLS-
based operators) in a layer.

In our work, statistical analysis is used to model resource utilization by trying to
find viable links between the parameters stated above. For this purpose, a set of 70 mi-
crobenchmarks of various layers coded in C-HLS were simulated. This set includes 20
non-optimized layers having different dimensions and types, which comprises the most
common layers used in state-of-the-art DNNs. It also includes 30 optimized layers (hav-
ing the same dimensions as the non-optimized layers), using pipelining and unrolling as
optimizations. The remaining 15 layers are optimized using operators. These microbench-
marks were then synthesized for different FPGA targets. These layers have different types
and dimensions. Syntheses results of every layer were gathered in a database.

Estimating DSP utilization

In the first place, modeling DSP usage relies on the innermost loop in convolutional
and fully connected layers, since it is where the MAC operation resides. Performed mi-
crobenchmarks have shown that a MAC operation is mapped onto one DSP, even if a
pipelining directive is employed. In a convolutional loop nest, if the two innermost loops
are substituted with a specific HLS operator, then the number of DSP is the same as that
of the chosen operator. If unrolling directives are used to optimize the loop nest, then the
number of DSP is equal to the product of unrolling factors of unrolled loops. The number
of DSP is dictated by Equation 5.3 where Ul is the unrolling factor of loop level l, and
DSPOp is the number of DSP of the substitute operator.

119

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 5 – Optimizing hardware through Design Space Exploration

Number of DSPs =

1, if no optimization OR loop l is pipelined only

DSPOp, if operator only

DSPOp, if operator AND loop l is pipelined∏L−1
l=0 Ul × DSPOp, if loop l unrolled AND operator

(5.3)
It is worth noting that pooling layers do not use DSPs since the computational part is

based on comparisons only. Therefore, the tool does not use DSP resources to implement
a pooling layer.

Estimating BRAM, LUT and FF utilization

The collected data of the 70 microbenchmarks have shown a dependency on layers
properties, such as dimensions, number of parameters, volume of input/output data as
well as the input depth. It first showed that the number of BRAM depends on the input
and output depths of a layer, and that the numbers of LUT and FF are affected by the
number of BRAM.

Due to these dependencies, it is quite challenging to model BRAM, LUT and FF
utilization. Therefore, statistical methods are chosen as a way to model those resources.
These methods are tested to check if they are capable of outputting reliable models that
accurately predicts the value of each resource. Thus, various statistical tools are tested,
Among these tools is the NCSS software (Number Cruncher Statistical System) [93].
NCSS is selected to accomplish this task, since it is one of the best tools that provides a
complete collection of statistics, graphics tools and model fitting functions.

Therefore, NCSS is used to process and analyze the collected data to find reliable re-
source models. The NCSS-based analysis showed, along with layer-related configurations,
a chain dependency between the number of BRAM, LUT and FF.

Some techniques offered by the NCSS software were tested to find reliable models.
The Robust Multiple Regression (RMR) technique was a good candidate, since it found
a relationship between the number of BRAM and the input and output depths of the
layers.

It is worth noting that the mean square error (MSE) of the BRAM model is 6 .69%.
The resulting BRAM model is represented in Equation 5.4, where I is the input depth

and O is the output depth. The coefficients of this equation as well as all the following

120

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

5.3. Model-based estimations

ones in this chapter are provided by the NCSS tool.

NBRAM =0.87 − 0.058×I + 0.0169×O − 0.0017×I2 + 0.0043×I×O −

0.0014×O2 + 4, 26×10−5×I3 − 8, 14×10−5×O×I2+

4, 03×10−5×I×O2 − 5.12×10−6×O3

(5.4)

RMR was not able to find a viable relationship between layer-based configurations
and the number of LUT and FF. Therefore, the Polynomial Regression (PR) method
is employed as a substitute, since it lead to better FF and LUT models. Based on the
analysis of the NCSS software, a relationship between the number of LUT and the number
of BRAM is identified. In addition, the analysis also showed that the number of LUT
depends on the number of parameters, the number of input pixels and the input depth.
The output LUT model is a ratio of polynomials of order 3 taking as input four variables,
as presented in Eaquation 5.5. The MSE of the resulting LUT model is 1 .81%.

NLUT =(10.45 − 0.094×BRAM + 0.19×BRAM 2 + 0.0012×BRAM 3 + 2.88×10−5

×NB_PIX − 2.12×10−6×BRAM×NB_PIX + 1.21×10−6×BRAM 2

×NB_PIX + 8.94×10−12×NB_PIX2 − 1.04×10−10×BRAM×NB_PIX2

− 7.0×10−18×NB_PIX3 + 9.16×10−5×NB_PARAM − 4.74×10−5×BRAM

×NB_PARAM − 3.27×1010−6×BRAM 2×NB_PARAM − 4.44×10−9

×NB_PIX×NB_PARAM + 2.53×10−10×BRAM×NB_PIX×NB_PARAM

+ 6.28×10−14×NB_PIX2×NB_PARAM − 2.87×10−8×NB_PARAM2

+ 1.56×10−9×BRAM×NB_PARAM2 − 1.78×10−14×NB_PIX×NB_PARAM2

− 6.93×10−14×NB_PARAM3 − 0.072×I − 0.022×BRAM×I − 0.002×BRAM 2×I

+ 2.42×10−7×NB_PIX×I − 1.32×10−7×BRAM××NB_PIX×I

− 7.75×10−13×NB_PIX2×I + 1.35×10−5×NB_PARAM×I

+ 5.54×10−7×BRAM×NB_PARAM×I + 6.07×10−11×NB_PIX×NB_PARAM

×I + 2.74×10−10 ∗ ×NB_PARAM2×I + 0.0002×I2 + 0.0001×BRAM××I2

− 6.79×10−10×NB_PIX×I2 − 8.96×10−8×NB_PARAM×I2

− 9.34×10−8×I3) /(1 + 6.43×10−22×BRAM×NB_PIX×NB_PARAM2×I2)
(5.5)

121

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 5 – Optimizing hardware through Design Space Exploration

Regarding the number of FF, it depends on the number of LUT, since it is a chain
dependence. Additionally, the number of LUT also depends on the number of parameters,
the number of input pixels and the input depth. The resulting FF model is also a ratio of
polynomials of order 2 taking as input four distinct variables, as presented in Equation
5.6. Its MSE is 8 , 83%.

NF F =(82.49 − 0.97×LUT + 0.0014×LUT 2 + 0.0016×NB_PIX

− 5.88×10−6×LUT×NB_PIX − 4.69×10−9×NB_PIX2

+ 0.0015×NB_PARAM − 2.51×10−6×LUT×NB_PARAM

− 1.13×10−8×NB_PIX×NB_PARAM + 4.62×10−9×NB_PARAM2

− 1.23×I + 0.011×LUT ×I − 7.30×10−7×NB_PIX×I

− 1.7×10−5×NB_PARAM×I + 0.0026×I2) /

(1 − 0.013×LUT + 3.35×10−5×LUT 2 + 1.16×10−5×NB_PIX

− 4.6×10−8×LUT ∗ NB_PIX − 3.057×10−11×NB_PIX2

+ 1.65×10−5×NB_PARAM − 7.35×10−9×LUT×NB_PARAM

− 3.66×10−10×NB_PIX×NB_PARAM + 4.45×10−11×NB_PARAM2

− 0.013×I + 0.0001×LUT ×I + 4.23×10−8×NB_PIX×I

− 1.74×10−7×NB_PARAM×I + 3.27×10−5×I2)
(5.6)

5.3.3 Discussion on obtained models

Such modeling approach, especially the modeling of BRAM, FF and LUT, was not
previously used in the state of the art, at least in the analyzed literature. It uses statistical
analysis to find a solid relationship between the resource utilization and the characteristics
of the application (i.e. the layers in this case), which is also a way to bring closer the
hardware and the software parts.

Although the proposed models showed a low MSE value, some parameters must be
considered when devising them. For instance, considering optimized and non-optimized
layers in the microbenchmarks does not mean that the model is capable of predicting
accurate value of latency and used resources, since it does not have the information if a
layer is optimized or not, which make them more suited for non-optimized layers mostly.

122

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

5.4. Early results for DNN layer implementation optimization

Therefore, gathering additional data related to the employed optimization, especially its
type (e.g. unrolling, operator, etc.) and its location (loop index), is mandatory. The added
data must thoroughly be analyzed to tighten the links between the layers’ properties and
the hardware resources. In addition, microbenchmarks layers do not cover all the layers in
the literature, which means more layers and syntheses are required to expand the usage
of such models. However, this remains a promising approach since no training is needed
to create the estimation models. Such models can provide accurate predictions once they
are correctly created. In addition, the estimation process is quite fast.

Alternative approaches like Aladdin [115] can be used to provide latency and area esti-
mates without the need to generate the RTL. On the other hand, deep learning approaches
can be used to create a predictive model or even models for area and performance. How-
ever, such approach requires a larger database to have enough data for learning, testing
and validation and to prevent overfitting. In this case, more syntheses are required to
gather the needed data, which is time-consuming. Despite that, once the DNN model is
trained, inferring results does not require a lot of time.

5.4 Early results for DNN layer implementation op-
timization

This section presents few results on the Optimizer module to assess the interest of
using GA for this optimization problem. It also show the use of the performance and area
models to estimate each solution in the solution space. Therefore, the GA is applied to
find suitable solutions for a few layers, as an illustration for the proposed approach. The
chosen layers are the same used in the previous chapter in Section 4.4, in which Table 4.3
shows the type of each layer, its default loops order and its dimensions

First of all, the mutation rate and the population size of the GA are properly set to
ensure an appropriate functioning of the algorithm. In here, the mutation rate is set to
0.1, which means for each gene, there is a 0.1% chance that it will mutate. Regarding the
number of individuals in the population, it is set to 300 to allow diversification.

Before searching for the right optimizations, the DNA of each layer must be encoded
based on its dimensions. However, the loops order is dictated by the Characterization
module. This latter provides a dimensionality analysis that allows to set the appropriate
loops order in a loop nest. For instance, layer L1 has its width (128) bigger than its depth
3, this means that this layer has higher reuse opportunities in the 2-D plane. Therefore,

123

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 5 – Optimizing hardware through Design Space Exploration

the loop order that is more likely to encourage reuse is the M , R, C , N , Kx , Ky loop order.
This allows to move a great part of the image to be closer to the computational part and
consequently enhances performance and memory accesses. Hence, the DNA of layer L1 is
encoded using the M , R, C , N , Kx , Ky loop order.

As for layer L2, its depth (32) is larger and its width (16), which means that less reuse
opportunities are available in the 2-D plane. However, in this case, filter reuse could be
promoted by processing the input feature maps depth-wise, which improves the weights
locality. Hence, the loops order should remain R, C , M , N , Kx , Ky.

Regarding the last layer in the table, layer L3, the analysis is similar to layer L1, since
its width (16) is greater than its depth (2). Consequently, the adopted loop order that
will be encoded into the DNA is the M , R, C , N , Kx , Ky.

After set the order of loops and encoding the DNA, the GA can now search for ap-
propriate solutions to implement those layers. The GA found various solutions for each
layer, which are the Pareto front solutions. Figure 5.4 shows the found solutions of layer
L1, where the blue points are the Pareto front. The same goes for layers L2 and L3, their
respective solution spaces are presented in Figure 5.5 and Figure 5.6. It is worth noting
that the area in these figures is normalized using Equation (4.1) in Chapter 4.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0,0E+00 2,0E+05 4,0E+05 6,0E+05 8,0E+05 1,0E+06 1,2E+06 1,4E+06 1,6E+06

AR
EA

LATENCY (CYCLES)

Figure 5.4 – The GA search space of layer L1.

Although various solutions are identified by the GA, in the final implementation only
Pareto front solutions are considered. The set of results found by the GA is a finite solution
space, and thus selecting one solution depends on the design goal, which can be to either

124

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

5.4. Early results for DNN layer implementation optimization

0

0,51

1,52

2,53

3,54

4,5

0,0E+ 00 2,0E+04 4,0E+ 04 6,0E+04 8,0E +04 1,0E+05 1,2E+05 1,4E+05 1,6E+05

AR
EA

LATENCY (CYCLES)

Figure 5.5 – The GA search space of layer L2.

AR
EA

LATENCY (CYCLES)
4,0E+03

0,14

0,02

0

0,04

0,06

0,08

0,10

0,12

6,0E+03 8,0E+03 10,0E+03 12,0E+03 14,0E+03 16,0E+03

Figure 5.6 – The GA search space of layer L3.

125

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 5 – Optimizing hardware through Design Space Exploration

optimize performance-wise or area-wise or to have a tradeoff of both. However, the main
purpose of the proposed methodology is to implement an entire DNN, instead of a single
layer, thus the solution of each layer should be chosen carefully to fit the whole CNN on
the target FPGA. This issue will be the tackled in the next chapter.

5.5 Conclusion

This chapter presented the layer-based optimization part of the Optimizer step. This
module uses the characterization results, especially layers dimensions and data reuse fea-
tures, to optimize the C-HLS source code of each layer of a given DNN. It can take into
account different types of optimizations, such as pragmas, tiling factors and HLS-based
operators. A specific genetic algorithm was developed to find the Pareto-optimal configu-
rations for each layer. However, selecting a relevant solution from a Pareto-optimal set of
solutions is challenging. In addition, finding an optimized implementation for the entire
CNN cannot be achieved by only using a per layer GA-based optimization. Therefore,
another algorithmic layer is needed to optimize the implementation of the whole network
on a FPGA target.

The following chapter will present the complete implementation of the purposed
methodology, called SHEFTENN, along with the missing piece that allows generating
an accelerator for the entire CNN by using layer-based optimization. Furthermore, it
will detail implementations of various state-of-the-art DNNs to validate the proposed
approach.

126

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 6

IMPLEMENTATION OF THE SHEFTENN
FRAMEWORK AND ASSESSMENT

As illustrated in previous chapters, SHEFTENN is an end-to-end automated frame-
work that consists of three main modules working together to bring the hardware archi-
tecture and the high-level application closer and reduce design time. Chapter 3 detailed
the first step of the proposed methodology, called Characterization, which performs a
thorough investigation of the CNN algorithm with a hardware perspective, and com-
putes metrics to derive augmented specifications (see Figure 3.2). Following, Chapter 4
described the second step of SHEFTENN, called Hardware Generation, that generates
from high-level descriptions (e.g. C/C++ source code) an RTL source code of the CNN
accelerator (see Figure 4.2). It also exploits augmented specifications to incorporate loop
transformations and set the right bit-widths in the high-level description, while also using
a database of HLS-based operators in the generation process. Finally, Chapter 5 presented
the last step of the proposed methodology, called Optimizer, which aims at optimizing
the RTL source code generation by relying on a high-level model of the architecture. The
Optimizer module uses a hybrid algorithm that selects HLS tool-specific pragmas and
operators to further optimize the implementation with respect to latency and resource
utilization.

Previous chapters thoroughly introduced the different steps of the proposed methodol-
ogy, presented possible implementations and validated them by providing per-layer results
based on trained CNNs. This chapter presents the overall implementation of the proposed
methodology while exposing each of its modules. It also introduces an additional method
to the previous chapter that limits the solution space of each layer and provides an imple-
mentation for the entire CNN. In addition, it presents complete results showing how the
modules work together to generate hardware accelerators for complete CNNs instead of
a layer by layer hardware generation. These results enable to assess the relevance of the
SHEFTENN framework to efficiently generate CNN accelerators.

127

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 6 – Implementation of the SHEFTENN Framework and Assessment

This chapter is organized as follows. Section 6.1 presents the whole implementation
of the SHEFTENN framework and introduces the additional step in the Optimizer that
allows generating a full DNN accelerator. Section 6.2 details the results of the imple-
mentation of state-of-the-art networks. Finally, Section 6.3 sketches the conclusion of the
chapter.

6.1 Implementation of the SHEFTENN framework

This section provides a description of each module of the framework and the commu-
nication between them to generate optimized CNN hardware accelerators. Relying on the
proposed methodology depicted in Section 2.3, SHEFTENN is instantiated and presented
with an increased level of details in Figure 6.1. The main elements of the Characterization
(in green), the Hardware Generation (in blue) and the Optimizer (in orange) modules are
represented, as well as supporting databases of components (operators, algorithms). More
details in the following subsections.

6.1.1 Characterization module

As explained in Chapter 2, an in-depth characterization of DNN applications is es-
sential to get the required knowledge to design efficient hardware accelerators. This mod-
ule characterizes and investigates the input DNN, and then produces application-related
augmented specifications. As a preliminary step, a parsing script implemented in Python
processes the DNN description file. The Python script is adaptable to the input file for-
mat (TensorflowLite, ONNX or N2D2, optionally including network parameters/weights).
Description files mainly contain the topology of the DNN, the order, types as well as the
configuration of each layer. They may also contain the parameters of the neural network,
if the file format supports this option. To support this variety of the input descriptions,
suitable parsing libraries are imported to the Python script. The N2D2 .ini DNN con-
figuration files are employed in here, since the N2D2 open source framework is used as a
front-end in the experiments. A sample of a .ini file, describing two convolutional layers,
is presented in Listing 6.1 below.

The input DNN description is transformed into an IR. Then, a Python script uses this
IR to compute target-agnostic/hardware-aware metrics for each layer. Then, it extracts
data-related metrics and augmented specifications (cf. Section 3.1.1). The IR is updated

128

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

6.1. Implementation of the SHEFTENN framework

.ini

.onnx

Parameters

DNN IR

Pa
rs

er

RTL Generation

Vivado-HLS Tool

Cosimulation

Analysis Synthesizable RTLPA Report

Performance &
Area models

Optimizer

GA
Layer-wise

Search
Algorithm

Network-wise

1

2

DNA Architectural
Representation

Analysis

Characterization

network.c
layers.c

C code – Reference Model

Parameters.h

Metrics

Computation

Feature maps

HLS Code Generation

network.c
layers.c

C HLS

La
be

ls Pragmas

directives.tcl

Images
Database

Augmented
Specifications

HLS
Operators

Optimization
Algorithms C Synthesis

.tflite

Figure 6.1 – A detailed description of each module of the instantiated SHEFTENN framework, where:
the characterization module computes and analyses metrics, the HW generation generates C-HLS code
and leverages a database of HLS-based operators and uses HLS tools to generate the RTL, and optimizer
uses a genetic algorithm to optimize the RTL by setting the right configurations for the C-HLS code.

[conv1] conv_def
Input = sp ;#input image
KernelHeight = 3
KernelWidth = 3
NbOutputs = $ (i n t (32 ∗ ${ALPHA}))
S t r i d e= 2
Padding = 1

[conv1_3x3_dw] conv_def
Input = conv1
KernelHeight = 3
KernelWidth = 3
NbOutputs = $ (i n t (32 ∗ ${ALPHA}))
S t r i d e = 1
Padding= 1

Listing 6.1 – Configuration of two convolutional layers in a N2D2 .ini file.

129

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 6 – Implementation of the SHEFTENN Framework and Assessment

with newly computed metrics. The Characterization module also verifies if the CNN is
quantized by checking parameters bit-widths to set the right bit-precision-related opti-
mization in the Hardware Generation module. This module analyzes the behavior of the
entire CNN to help drive the C-code generation. Moreover, the Characterization module
has a C-HLS-friendly code generation step (it generates the source code of the entire
CNN) that serves as a reference model for both dynamic analysis and validation of the
hardware generation using co-simulation.

6.1.2 Hardware Generation module

The Hardware Generation module leverages HLS to abstract the implementation of
the hardware in SHEFTENN. This module exploits a dataset of HLS operators and aug-
mented specifications to generate an optimized RTL representation of the entire DNN
accelerator. As explained in section 4.1, a code generation module (blue box in Fig-
ure 6.1) generates an optimized and synthesizable (HLS-friendly) C source code based
on the characterization results. These optimizations consist of loop transformations, such
as loop reordering in early layers, to encourage data locality and reuse to reduce data
transfer time. In addition, for better optimizations, the C-HLS code incorporates com-
piler directives associated to the operators that could replace kernel loops (more details in
Section 4.3). Besides, the Hardware Generation module generates a separate file includ-
ing tool-specific directives (pragmas) to optimize each layer as well as the whole DNN.
Pragma-value pairs, compiler directives, tiling factors are all set by the Optimizer mod-
ule. Table 4.2 in section 4.2 summarizes the employed optimizations. The considered HLS
tool in the SHEFTENN implementation is Vivado-HLS since Xilinx FPGAs are currently
targeted by the framework. Once all optimizations are set, this module synthesizes the
resulting C-HLS code, then co-simulates the generated code and compares the results
with the ones of the reference model to check the right functioning of the design before
generating the RTL.

6.1.3 Optimizer module

The Optimizer module takes as input the Characterization’ results, the configuration
of each layer and the resources of the targeted FPGA. Then, it optimizes the C-HLS
source code (generated in the previous module). It determines the pragma-value pairs to
be applied, the operators to be employed as well as the tiling parameters. This module

130

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

6.1. Implementation of the SHEFTENN framework

reduces the number of synthesis runs by using area and performance models to evaluate
the different solutions during design space exploration, as detailed in section 5.3. Further-
more, a real synthesis is established every 20 iterations to ensure that area and latency
estimations of the whole DNN are not deriving far from real synthesis values. This num-
ber of iterations was chosen for instantiation purposes, and can be replaced by a higher
or lower number, enabling to set up a tradeoff between accuracy and speed. The explo-
ration of additional parameters (e.g. number of iterations) is part of the perspectives, in
particular the exploration of the tradeoff between speed and models precision.

The GA of optimizer module outputs the best configurations per layer only by using
layer-based metrics and outputs optimized configurations based on an area-performance
trade-off (cf. Chapter 4, Section 5.2.2). However, at this stage the entire neural network
is not optimized. Hence, another algorithm is required to optimize the whole DNN by
using the previously obtained layer-based configurations. The next subsection presents
this algorithm.

Network-wise Optimizations

The second step of the Optimizer module, optimizeNetwork (in Listing 6.2), focuses
on optimizing the implementation of the entire DNN. It takes the set of the previously
found configurations and searches for a satisfying implementation that fits the DNN into
the FPGA target. Precisely, it searches for a Pareto-optimal solution for every layer. In
addition, this step exploits the characterization results to find similarities between layers
in terms of kernel shapes, number of parameters and the volume of input and output
data. For instance, if two or more layers have the same features, only one C-HLS function
implementing this layer is kept to execute all the similar layers. Consequently, this step
picks the best GA-optimized configuration and uses it to implement the selected layer.
These layers are later allocated to the same RTL resources by using the allocation pragma.

Allocation It is a synthesis directive employed inside a function, a loop or a region of
code, to manage resource usage at RTL level. Precisely, it allows the user to set the number
of RTL instances to limit the resources implementing particular loops, functions, cores or
operations. For instance, calling the same function n times in a C code implies instantiat-
ing n RTL modules. Using this pragma allows implementing all instances of the high-level
function using the same RTL resources, or limiting the RTL modules to be instantiated to
a certain number. Despite reducing resource usage, the performance is negatively affected.

131

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 6 – Implementation of the SHEFTENN Framework and Assessment

optimizeImplementation (layersConf , hwResources)
// A: Area , L : Latency
while !A and ! L

// GA algor i thm
network = optimizeLayers (l a y e r s)
// Search a lgor i thm
optimizeNetwork (network)
A, L = evaluateNetwork (network)

return network

Listing 6.2 – Pseudo-code of the multi-objective optimization process.

Consequently, a two-step iterative optimization process is performed by the Optimizer
module until at least one suitable solution for implementing the whole network is found.
The optimizer module sets a standard implementation if no solution is found after 100
iterations. Listing 6.2 summarizes the two-step process. The first step, optimizeLayers,
uses a GA to optimize each layer individually. The next step optimizes the implementation
of the whole network.

The next section presents the experimental results that allowed to evaluate the per-
formance of SHEFTENN in the generation of efficient CNN hardware accelerators.

6.2 Experiments and Results

6.2.1 Experimental Setup

To evaluate and validate the SHEFTENN framework, two state-of-the-art networks
were employed as workloads: MobileNet-V1 [57] and SqueezeNet-V1.1 [58]. Both net-
works were trained on the ImageNet dataset by using the open-source N2D2 framework.
After training, these networks were quantified to 8 -bit using Post-training quantization,
explained in [88].

GA configuration

To correctly set the GA parameters, numerous simulations of various layers from
MobileNet-V1 and SqueezeNet-V1.1, varying the population size (from 100 to 400) and
the mutation rate (from 0 .1 to 0 .4), were performed. The maximum number of genera-
tions is set to 100 in those simulations. The impact of modifying the population size and

132

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

6.2. Experiments and Results

the mutation rate of different layers, on the number of generations and thus the speed
for obtaining viable solutions, is illustrated in Figure 6.2. For instance, in Figure 6.2(a)
representing a mutation rate of 0 .1 , it can be seen that the majority of the layers re-
quire less than 20 generations to find appropriate solutions. Additionally, increasing the
number of individuals in a population reduces the number of required generations for
almost all layers. However, for a population size of 400 , the GA converges slowly for two
layers, since the number of individuals in the population is large and the mutation rate
is small, which limits the variety in the population. Raising the mutation rate from 0 .2
to 0 .4 , Figure 6.2(b) - 6.2(d), increased the number of required generations for the GA
to converge, since the population is less stable. Based on this analysis and the fact that
a few generations means fast convergence, the mutation rate is set to 0 .1 , for which the
GA converges faster, and the population size is set to 300 , since the algorithm found fit
solutions for mostly all layers with this configuration.

Hardware implementations

To generate the RTL source code of the resulting high-level optimized implementation
fo the CNN accelerator, Vivado-HLS 2020.1 is used. All implementations are performed
by using Xilinx FPGAs as targets, assuming a fixed frequency of 100MHz. Besides, both
networks are implemented (place and route), omitting memory controllers and crossbars,
since there is no intermediate memory control. Furthermore, the main focus is on the
computational part. Memory footprint is handled in the Characterization module, which
performs a memory analysis on a layer by layer basis.

6.2.2 SHEFTENN Evaluation using MobileNet-V1

MobileNet-V1 is an adjustable CNN thanks to its hyper-parameter α. Herein, MobileNet-
V1 is configured, before training, as follows: α is set to 0 .25 (to reduce the depth of the
network) and the dimensions of the input image are 3 × 128 × 128 .

Characterization results exploited by the Optimizer module

First, the DNN is analyzed, in the Characterization module to extract relevant infor-
mation, such as computation needs, memory requirements and reuse opportunities. For
instance, Figure 6.3 shows the evolution of the input feature maps in terms of number of
input activations, as well as the input and output depths across the network; the number

133

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 6 – Implementation of the SHEFTENN Framework and Assessment

1

10

100

50 150 250 350 450

N
B

 G
EN

ER
AT

IO
N

POPULATION SIZE

conv1

conv1_3x3_dw

conv1_1x1

conv2_3x3_dw

conv2_1x1

conv5_3x3_dw

conv5_1x1

conv7_3x3_dw

conv7_1x1

conv8_3x3_dw

conv8_1x1

pool

(a) Mutation rate = 0.1

1

10

100

0 100 200 300 400 500

N
B

 G
EN

ER
A

TI
O

N

POPULATION SIZE

conv1

conv1_3x3_dw

conv1_1x1

conv2_3x3_dw

conv2_1x1

conv5_3x3_dw

conv5_1x1

conv7_3x3_dw

conv7_1x1

conv8_3x3_dw

conv8_1x1

pool

(b) Mutation rate = 0.2

1

10

100

50 150 250 350 450

N
B

 G
EN

ER
AT

IO
N

POPULATION SIZE

conv1

conv1_3x3_dw

conv1_1x1

conv2_3x3_dw

conv2_1x1

conv5_3x3_dw

conv5_1x1

conv7_3x3_dw

conv7_1x1

conv8_3x3_dw

conv8_1x1

pool

(c) Mutation rate = 0.3

1

10

100

0 100 200 300 400 500

N
B

 G
EN

ER
AT

IO
N

POPULATION SIZE

conv1

conv1_3x3_dw

conv1_1x1

conv2_3x3_dw

conv2_1x1

conv5_3x3_dw

conv5_1x1

conv7_3x3_dw

conv7_1x1

conv8_3x3_dw

conv8_1x1

pool

(d) Mutation rate = 0.4

Figure 6.2 – The impact of varying population size (from 100 to 400) and mutation rate (from 0.1 to
0.4) on the number of generations.

134

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

6.2. Experiments and Results

of pixels is used as a measurement unit. As it can be seen, the number of input activations
decreases in the last few layers where the size of input feature maps diminishes due to the
use of convolutional filters. In contrast, the input and output depths increases through-
out the DNN due to the large number of filters in deeper layers. The optimizer module
exploits this information, especially in the area and performance models, to estimate the
resource usage of each layer based on its configuration.

Figure 6.3 – Variation of the input pixels of each layer along the MobileNet-V1 network.

A different way to exploit the width and depth metric is by combining it to the reuse
percentage metric and using this combination to determine the loops order, which will
be later employed to encode the DNA for the GA implementation. Figure 6.4 sketches
both metrics, the widths and depths evolution of the input feature maps and the reuse
percentage for each layer of MobileNet-V1. The reuse percentage varies according to the
width and height of the image and the stride. As it can be seen in Figure 6.4, the reuse
ratio is lower than 30% in early layers, in which the stride has a value of 2 , such as
conv1 , conv2_3×3_dw and conv4_3×3_dw. In addition, layers in which the width of
the input feature map is less than or equal to its depth have a low reuse ratio. These
layers are implemented in the R, C , M , N , Kx , Ky loop order (see Listing 4.1 in Section
4.1.1), since the reuse percentage is small. Every conv1×1 in this CNN has a high reuse
ratio, since all input activations (pixels) are equally used. These layers are implemented
in the M , R, C , N , Kx , Ky loop order to promote data reuse and reduce expensive mem-

135

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 6 – Implementation of the SHEFTENN Framework and Assessment

ory transfers. A layer with a width equivalent to its depth can be implemented in both
previously discussed orders. An additional aspect is the depth of the feature map that
helps identifying parallelism opportunities where appropriate loop optimizations could be
applied. Hence, layers having a depth larger than a width could be tiled along the M and
N dimensions to encourage parallelism along outputs and channels respectively.

Figure 6.4 – Variation of the input pixels of each layer along the MobileNet-V1 network.

Other exploited information by the Optimizer module are the number of parameters
(weights) and the number of operations (MACs for convolutional and fully connected
layers and Ops for pooling layers). The number of weights is employed for area models to
estimate resource usage, especially LUT and FF models as detailed in Section 5.3. The
number of operations is used to dictate the computational latency of non-optimized layers,
since the product of all bounds in a loop nest presents the number of MAC operations,
where 1 MAC operation takes 1 clock cycle. Multiplying all loop bounds in a loop nest
yields the number of MAC operations, especially in convolutional and fully connected
layers. As it can be seen in Figure 6.5, the number of parameters increases throughout
the network, since the number of filters increases in the deepest layers of the DNN. On
the other hand, the number of operations does not have a consistent evolution due to the
types of layers and the employed stride values. For instance, MobileNet-V1 uses depth-
wise convolutions, a channel-wise convolutional computation, to reduce the computational

136

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

6.2. Experiments and Results

complexity and accelerate the inference phase [57].

Figure 6.5 – Number of parameters and required computation of each layer of MobileNet-V1 in terms
of number of MAC for convolutional layers, and number of Operations for pooling layers.

Optimizer module results

The Optimizer module performs per layer optimizations by using an intermediate
representation of the network, including layers dimensions and types. The order of loops
is an essential information for the GA, since the DNA material is based on it. It is set
based on the dimensions of the layers and to the reuse opportunities.

Once all the required information regarding the loops order and tiling possibilities
are acquired by the GA, it then runs until a set of pertinent solutions is found. This
found set comprises various solutions having different combinations of surface and latency,
enabling the search algorithm to pick one satisfactory solution for each layer based on
their computing and memory needs as well as their position in the CNN. Figure 6.6 shows
various configuration points of a few layers of the MobileNet-V1 network, convolutional
layers in Figure 6.6(a) - 6.6(g) and pooling layer in Figure 6.6(h). As it can be seen,
area and latency vary in opposite ways, i.e., optimizing the area by decreasing resource
usage comes at a performance cost, and reducing the latency (optimizing the performance)
comes at an area cost. Since the search algorithm selects a solution in a set of Pareto-
optimal solutions for each layer, it is worth noting that only Pareto-optimal solutions will

137

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 6 – Implementation of the SHEFTENN Framework and Assessment

Layers Loops Order Optimizations LUT FF DSP BRAM Latency (Cycles)
conv1 M , R, C , N , KY , KX U-1; N; N; P-5; Op-conv3_sepfunc4 ; N 511 257 9 4 529920
conv1_3x3_dw M , R, C , N , KY , KX N; N; N; P-1; Op-conv3_sepop3 ; U-1 401 293 9 1 258048
conv1_1x1 M , R, C , N , KY , KX U-1; N; N; U-1; U-1; P-1 75 100 1 1 1310720
conv2_3x3_dw M , R, C , N , KY , KX P-5; N; U-1; N; Op-conv3_sepop3 , N 419 200 9 1 122564
conv2_1x1 M , R, C , N , KY , KX N; N; P-6; U-2; N; N 291 233 2 3 258144
conv3_3x3_dw M , R, C , N , KY , KX N; N; N; U-1; P-3, U-2 670 423 2 1 262144
conv3_1x1 M , R, C , N , KY , KX P-1; U-2; U-4; N; N, N 392 150 3 1 2530130
conv4_3x3_dw R, C , M , N , KY , KX U-1; N; P-8; N; Op-conv3_sepop3 , N 952 392 9 1 68096
conv4_1x1 M , R, C , N , KY , KX U-8; N; N; N; N; P-2; N 147 129 1 2 1157882
conv5_3x3_dw R, C , M , N , KY , KX N; N; N; P-5, N; N 844 421 1 2 131072
conv5_1x1 M , R, C , N , KY , KX N; N; N; P-2; N; N 133 261 1 2 2217924
conv6_3x3_dw R, C , M , N , KY , KX U-4; U-4; P-6; N; Op-conv3_add4 ; N 519 295 9 2 27751
conv6_1x1 M , R, C , N , KY , KX N; N; U-4; N; N; N; 83 291 12 6 546133
conv7_1_3x3_dw R, C , M , N , KY , KX N; N; N; P-5; Op-conv3_add4 ; N 331 301 9 7 47268
conv7_1_1x1 M , R, C , N , KY , KX N; N; N; P-2; N; N; 100 156 1 10 2119480
conv8_3x3_dw R, C , M , N , KY , KX N; N; P-6; N; Op-conv3_sepfunc4 ; N 469 172 9 7 10256
conv8_1x1 M , R, C , N , KY , KX N; N; N; N; N; N 80 226 1 17 1122304
conv9_3x3_dw R, C , M , N , KY , KX N; N; N; N; Op-conv3_sepop3 ; N 472 220 9 12 43008
conv9_1x1 M , R, C , N , KY , KX N; N; N; N; N; N 85 206 1 35 1654464
pool M , R, C , N , KY , KX N; U-1; N; N; N; U-4 94 80 0 3 4096
fc M , N , KY , KX N; N; N; N; 80 120 1 129 512000
Total - - 7148 4926 103 336 23600396

Table 6.1 – Configuration of each layer of MobileNet-V1 and resource and latency esti-
mations.

be used to optimize the entire CNN.

Only one configuration is selected by the search algorithm for each layer. The selected
configuration allows to fit the entire CNN accelerator on a single FPGA. Table 6.1 shows
the configuration of each layer, generated by the GA, along with the estimated resource
usage and latency. In most cases, the algorithm searches for the solution with the best area-
latency trade-off. For example, for computationally intensive layers, the algorithm selects
a solution with lower latency, without sacrificing the area. As for less computationally
intensive layers, the algorithm selects a configuration point with low resource utilization
without sacrificing the latency. For instance, conv1 has a large number of MAC operations
(see Figure 6.4), this means that the algorithm will seek a solution between these two
latencies 5 .0E + 05 and 1 .0E + 06 (Figure 6.6(a)). This is compatible with the estimated
latency, 5 .3E + 06 cycles, in Table 6.1. For conv1_3×3_dw, the number of MACs is less
than the half of conv1 , thus the search algorithm picks a configuration with low resource
usage having a latency value between 2 .0E + 05 and 3 .0E + 05 which is compatible with
the latency 2 .5E + 05 in Table 6.1.

As it can be seen in Table 6.1, the Optimizer module found no suitable solutions for
some layers, especially the deeper ones where the depth of the feature map is greater
than its height, such as layer conv8_1×1 , conv9_1×1 and fc where the optimiza-

138

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

6.2. Experiments and Results

(a) Conv1 (b) Conv1_3x3_dw

(c) Conv1_1x1 (d) Conv3_3x3_dw

(e) Conv3_1x1 (f) Conv7_3x3_dw

(g) Conv7_1x1 (h) Pool

Figure 6.6 – GA-based configurations of various MobileNet-V1 layers represented as area-latency points
in a 2d space.

139

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 6 – Implementation of the SHEFTENN Framework and Assessment

tions are set to N . The large depth led to higher BRAM usage, which means the Op-
timizer module was unable to find an appropriate solution without sacrificing the la-
tency at the cost of the resource usage, and thus no optimizations were applied. It is
worth noting that the optimizer module sought for solutions only for the first two conv7
layers, i.e., conv7_1_3×3_dw and conv7_3_1×1 , since the remaining conv7 layers
(conv7×7_2_3×3_dw to conv7_5_1×1) have exactly the same number of parame-
ters and the same input and output pixels as the first ones. The Optimizer module relied
on the connection graph of the MobileNet-V1 DNN (detailed in Figure 3.11 in chapter 2)
to get the information on layers similarities. Hence, the Allocation pragma is set to use
the same RTL resources for those layers, and thus reduce the overall resource utilization
of the DNN accelerator.

Hardware Implementation Results

After identifying a suitable configuration for each layer by the Optimizer module, the
Hardware Generation module includes, in the C-HLS source code, the right compiler di-
rectives and tool-specific commands (Vivado-HLS pragmas). Then, the configured C-HLS
code is transferred to the Vivado-HLS 2020.1 tool, which generates the RTL representation
of the entire CNN.

For comparison purposes, two hardware implementations of MobileNet-V1 were de-
vised: an implementation with no specific optimizations and an optimized one using the
configurations set by the Optimizer module. The Xilinx Zynq7000 xc7z030 FPGA was set
as a target for both implementations. Figure 6.7 represents a per layer resource utilization,
in percentage, of the non-optimized implementation. As for the optimized implementation,
Figure 6.8 shows the resource utilization per layer (in percentage) after the generation
of the RTL. As it can be seen, the classical implementation (non-optimized) requires less
resources, especially in terms of DSP, LUT and FF. The number of BRAM shows a slight
change from the classical implementation to the optimized one.

Regarding the latency, it can be seen from Figure 6.9 that the optimized layers, espe-
cially early layers, show a clear difference between the two implementations. Optimized
layers, using operators and other combination of optimizations such as unrolling and
pipelining, are faster than the non-optimized ones but use more resources.

For instance, conv1 was optimized on multiple levels: the first one is the loop order,
which is set in a way to encourage data locality and reduce unnecessary data transfer by
moving the width and height loops (l0 and l1 in Listing 4.1) closer to the computing loops

140

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

6.2. Experiments and Results

Figure 6.7 – Resource utilization, expressed in percentage, of the non-optimized implementation of
MobileNet-V1 in terms of DSP, LUT, FF and BRAM.

Figure 6.8 – Resource utilization, expressed in percentage, of an optimized implementation of
MobileNet-V1 in terms of DSP, LUT, FF and BRAM.

141

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 6 – Implementation of the SHEFTENN Framework and Assessment

(l4 and l5). Moreover, an operator was used as a substitute of l4 and l5 to improve per-
formance, where the kernel loop of the convolutional operation (3×3 kernel) is separated
into two functions. The first function consists of an unrolled multiplication loop, and the
second one is an unrolled accumulation loop. This increased the resource utilization by
3× for LUT and 9× for DSP. However, the use of this operator is intended to accelerate
the computation due to its ability of computing one 3×3 kernel in one clock cycle, at a
frequency of 100MHz (excluding data transfer), instead of executing one MAC operation
per cycle. And finally, setting the pipeline directive on the channels loop l3 , with an Initi-
ation Interval of 5, enhanced the latency by implying a concurrent implementation of the
operations in the loop. As a result, the whole latency is improved by 81 .25% compared
to a classical implementation. Performance improvements of a few layers is presented in
Figure 6.9.

Figure 6.9 – Latency comparison, in cycles, between a non-optimized and an optimized implementation
of MobileNet-V1.

Table 6.2 summarizes the computational and resource needs of a classical (non-optimized)
implementation of MobileNet-V1, which only includes tool-specific optimizations that
are usually applied automatically, as well as the optimized one. As it can be seen, the
implementation of MobiletNet-V1 is optimized performance-wise. Most of the resources
have slightly increased compared to a classical implementation. For instance, optimized
MobileNet-V1 uses 2 .75× more LUTs, 1 .46× more FFs and 1 .11× more BRAMs. On
the other hand, 5 .25× more DSPs are used, which is due to the employed optimizations
like the unrolling and the chosen operator in certain layers. As for the latency, opti-

142

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

6.2. Experiments and Results

Resources (%) Non-Optimized Optimized Gain (%)
LUT 2,8 7,8 -
FF 1,8 2,7 -
DSP 5,0 26,3 -
BRAM 87,4 78,5 -
Latency (cycles) ×1000 29 972 23 227 22,5

Table 6.2 – Resource Usage (%) and Latency (cycles) of Optimized and Non-Optimized
MobileNet-V1 implementations.

mized MobileNet-V1 is 22 .5% faster compared to the non-optimized version, which can
be explained by the applied optimizations that often include concurrent computation and
parallel access to data, especially in the chosen operators. It is worth noting that only
one synthesis was required in this case, since the estimated values of latency and resource
usage are close to real values, with an error of 1 .6% for latency and average 15 .63% for
all resources.

6.2.3 SHEFTENN Evaluation using SqueezeNet-V1.1

The same steps are applied to implement the SqueezeNet-V1.1 DNN with an input
image of 3×227×227 . Regarding GA parameters, the mutation rate is set to 0 .1 and the
population size is set 300 , same as MobileNet-V1. Besides, changing the FPGA target
was mandatory, since the SqueezeNet-V1.1 is a larger network and the search algorithm
optimizeNetwork was not able to find a viable solution to fit the whole network on the tar-
geted FPGA. Hence, the Xilinx Virtex xc7vx980t is used instead. Currently, the proposed
methodology generates a full accelerator for the whole CNN, which makes it difficult to
use for large networks due to limited FPGA size. However, one of the perspectives is to
automatically partition large DNNs as illustrated in Section "Discussion and Perspectives".

The resource usage and the latency of optimized and non-optimized versions of SqueezeNet-
V1.1 are illustrated in Figure 6.10. From this figure, one can see that the optimized version
of SqueezeNet-V1.1 has a lower latency but higher resource usage compared to the non-
optimized one. Precisely, LUTs, FFs and DSPs have increased by 18 .20%, 0 .62% and
3 .2% respectively compared to the non-optimized implementation. In contrast, BRAMs
have slightly decreased by 0 .05%. As for the latency, the optimized version of SqueezeNet-
V1.1 is 39 .24% faster than the classical implementation. One can see that the tool op-
timized the SqueezeNet-V1.1’ implementation performance-wise without sacrificing re-

143

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Chapter 6 – Implementation of the SHEFTENN Framework and Assessment

source usage, since most used resources do not exceed 50 % of the ones available on the
targeted FPGA.

Figure 6.10 – Resource Usage (%) and Latency (cycles) of non-optimized and optimized SqueezeNet-
V1.1 implementations.

To sum up, experimental results showed that the SHEFTENN framework was able to
output viable solutions with an interesting area-performance trade-off, and to generate
optimized implementations of accelerators for state-of-the-art neural networks, by using
a custom-made GA encoding the loops order and their optimizations.

6.3 Conclusion

This chapter presented the implementation of the SHEFTENN methodology as an
automated end-to-end hardware generation framework targeting embedded DNNs. The
proposed design flow combines the advantages of the Characterization and the Optimizer
modules to guide and optimize the Hardware Generation step. It has a new layer of op-
timization that diversifies the design space thanks to the library of HLS-based operators
having distinct areas and latencies. The dataset is leveraged by the Optimizer module for
optimization purposes. SHEFTENN employs a two-step optimization process that opti-
mizes each layer separately based on area and latency models, and therefore lowers design
time. It then uses a search algorithm to optimize the entire CNN hardware implemen-
tation. The results confirmed the efficiency of the proposed approach, which allowed to
design accelerator implementations of MobileNet-V1 and SqueezeNet-V1.1. These hard-

144

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

6.3. Conclusion

ware designs are respectively 22.5% and 39.24% faster compared to HLS implementation.
Thus, the proposed approach allows devising CNN accelerators to be embedded into next-
generation embedded systems.

145

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

CONCLUSION

Summary

This dissertation first presented the state of the art of DNNs and showed the differ-
ence between training and inference. The light was put, in particular, on CNN algorithms
that are efficient and suited for acceleration due to their intrinsic parallel structures,
but are computationally intensive and have large memory needs. From here came the
hardware acceleration problem of the CNNs’ inference phase, especially in embedded sys-
tems, which was faced with various solutions. These solutions primary relied on ASIC
hardware accelerators which offer dedicated and highly optimized solutions. Due to the
lack of flexibility in dedicated ASIC architectures, the reconfiguration aspect of FPGAs
is leveraged. FPGAs offer the possibility to tailor accelerators in terms of bitwidth and
memory to the exact needs of the algorithms. Unfortunately, designing ASIC or FPGA-
based DNN accelerators for inference requires time and expertise if done manually or
even using high-level design methods, such as high-level synthesis (HLS). Therefore, an-
other set of solutions, proposing hardware generation frameworks which exploit high-level
design techniques (e.g. HLS), was presented that aims at reducing the gap between the
application and the hardware architecture and thus reducing the complexity and the time
of the design process.

After that, existing hardware generation approaches were compared with respect to
different criteria. These criteria allowed to qualitatively evaluate each proposed approach
in terms of the used level of abstraction, the methods used for the design space exploration,
the hardware generation method and the overall optimization process of the hardware
architecture to be generated. This comparison showed that the HLS is one of the most
widely used for its ease of use and its flexibility. In addition, it showed that HLS is not fully
leveraged at the algorithmic level and most approaches are based on existing templates
or architectures. Regarding the optimization process, it widely relies on exhaustive search
and it is also specific to the target architecture. Furthermore, the produced RTL, in
most cases, cannot be optimized once synthesized. Based on this comparison, possible
improvements to the automated design process were identified.

147

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Hence, the presented approach in this thesis is an end-to-end automated methodology
to design hardware accelerators for embedded DNNs. This methodology helps reducing the
gap between abstract descriptions and hardware architectures, since hardware designers
find it hard to master the wide and continuously evolving landscape of DNNs. Therefore, a
first step consists in automatically and thoroughly characterizing the DNN to extract rele-
vant metrics that ease the design process. Moreover, this methodology suggests exploiting
high-level design techniques to reduce the design time and increase productivity, while
enabling enough degrees of liberty for design space exploration. Unfortunately, the vast
design space makes the exploration of all potential solutions very time-consuming. For this
reason, the proposed methodology automates this exploration to ease the overall design
process. This methodology was implemented as a framework, called SHEFTENN. The
tool targets FPGAs and has no dependency on existing architectures or templates. The
proposed framework consists in three interdependent modules working together to ensure
an optimized RTL implementation. Each module has a specific role in the design process.
The first module, Characterization, reduces the design space through metrics computa-
tion and analysis and generates augmented specifications which provides a first set of
pre-optimizations. The second module, Hardware Generation, exploits the produced met-
rics and high-level languages, by using HLS, to generate an semi-optimized C-HLS source
code. Finally, the Optimizer module, automatically explores the design space through a
hybrid optimization process of the C-HLS code to optimize the resulting RTL. It is a two-
step optimization process, which uses two separate algorithms, respectively targeting each
layer and the whole DNN. The optimizer module proposes a trade-off between speed and
quality of exploration using layer-based latency and area models as well as real syntheses.

The framework was evaluated on two state-of-the-art DNNs. The evaluation showed
that the proposed approach is reliable and allows to devise hardware accelerators for
DNNs with no user intervention in the design process. Framework-based implementations
showed better performance and a better area-performance trade-off compared to classical
implementations. This work should be considered as a first step of the implementation
of the proposed methodology, and many perspectives were identified to improve it. The
following section discusses the results and presents these perspectives.

148

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Discussion and Perspectives

HLS offered a fast way to design AI chips, without a need for an advanced hardware
expertise, while exploiting FPGAs. At the same time, many new challenges and interesting
perspectives have emerged. One of the main challenges is the DSE due the variety of the
parameters to modify. These parameters stand in the form of algorithmic coding style
and high-level optimizations, which require many user interventions to achieve the desired
design goal which lengthen design time. Therefore, HLS tools must evolve to automate this
exploration, especially for AI accelerators, to reduce time-to-market of new accelerators.
This automation must consider the rapidly changing landscape of DNNs as well as the
embedded systems constraints.

This thesis presented a high-level design approach that exploits HLS. The high-level
design process is tackled on three different levels. In the current implementation of the
proposed framework, the design space is firstly reduced considering several optimization
options deduced from the characterization phase, and then increased due to the combina-
tion of pragmas and HLS operators. The combination of those three levels seems essential
to ensure an efficient and automated design flow and to reduce design time.

Although this work exploited the advantages of HLS and FPGAs offering respectively
the speed of hardware design and the reconfiguration aspect, various aspects should be
further enhanced to make the framework more generic and efficient. Some of these exciting
perspectives are discussed below:

— In order to cope with algorithmic evolutions, the framework should be able to take
into consideration newly-available DNN optimization techniques, such as prun-
ing and quantization-aware training employed in hls4ml [43]. Considering such
techniques in hardware implementation improves performance and reduce resource
usage and energy consumption.

— Power consumption must be taken into account in the optimization process in
order to optimize all aspects of the design. Therefore, a power model should be
created and integrated in the Optimizer module. An example of modeling power is
by following the same approach presented in section 5.3 which consists in creating a
dataset of microbenchmarks of different layers. These benchmarks will be written
in C, synthesized and simulated then fed to an RTL power estimator tool. The
gathered data will be fed to the NCSS software to devise the appropriate model.
Other solutions also exists and can be employed to estimate power consumption

149

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

as presented in [92].
— Adopted models in the optimizer module are related to layer configurations. There-

fore, those models should be adapted for each newly available configuration to get
an acceptable estimation with a small MSE. In addition, the collected data af-
ter simulating microbenchmarks depend on the employed FPGAs, since only two
FPGAs were used to synthesize all the layers.

— Explore more parameters of the framework, especially the exploration of the trade-
off between speed of finding a solution and precision of the employed estimation
models.

— Future works will also pursue DNN partitioning to enable implementing large
DNNs on smaller FPGAs. The partitioning algorithm will rely on the algorith-
mic representation of the network architecture (C-HLS source code) to find the
right partitioning, i.e., a partitioning that reduces resource usage without sacrific-
ing performance. This algorithm will be part of the search algorithm, its main role
will be to find layers with similar memory requirements and computing needs to
allocate them into the same RTL instance. Partitioning can also be on the layer
level, i.e., intra-layer partitioning, to increase parallelism at the layer level. Fur-
thermore, fpgaConvNet-like approaches that uses SDF can also be employed to
find a suitable partitioning for the DNN.

— Thorough study of the GA results by studying its optimality results.
— Another interesting perspective is to seek other optimization algorithms capable of

rapidly exploring the design space and providing accurate solutions, such as deep
learning algorithms.

— Explore the effects of new pragmas to further extend the design space. Additionally,
targeting sparse DNNs, from a hardware perspective, by introducing HLS-based
compression techniques will enrich the proposed framework.

— Different possible options can be used to abstract the area in terms of FPGA
resources, such as weighted solutions, which can be considered to favor designs
requiring less LUTs or less BRAMs depending on the overall system to be imple-
mented, or as added values of the resources on a form of linear combination of their
usage.

— Compare SHEFTENN quantitatively with existing state-of-the-art frameworks by
implementing the same networks used in the literature or by experimenting with
existing open-source frameworks.

150

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Contributions

All contributions during my doctoral studies are listed below. Publications are listed
in reverse chronological order and classified among journals, conferences and patents:

Submitted in journals:

1. Ali, N.; Philippe, J. M.; Tain, B. & Coussy, P., "SHEFTENN : Software and Hard-
ware Exploration Framework for Efficient Implementation on Embedded Systems".
ACM Transactions on Design Automation of Embedded Systems (TODAES), 2022

2. Ali, N.; Philippe, J. M.; Tain, B. & Coussy, P., "Exploration and Generation of
Efficient FPGA-based Deep Neural Network Accelerators". Journal of Signal Pro-
cessing Systems (JSPS), 2022

To be Submitted in conferences:

1. Ali, N.; Philippe, J. M.; Tain, B. & Coussy, P. "An Integrated Design Space Ex-
ploration and Hardware Generation Tool Flow for Next-Generation Deep Neural
Networks Accelerators", 2022.

Published:

1. Ali, N.; Philippe, J.-M.; Tain, B. & Coussy, P., "Exploration and Generation of
Efficient FPGA-based Deep Neural Network Accelerators", 2021 IEEE Workshop
on Signal Processing Systems (SiPS), 2021

2. Ali, N.; Philippe, J. M.; Tain, B.; Peyret, T. & Coussy, P.,"Deep Neural Networks
Characterization Framework for Efficient Implementation on Embedded Systems",
2020 IEEE Workshop on Signal Processing Systems (SiPS), 2020, 1-6

Submitted patents:

1. High-level design flow for artificial intelligence accelerator (2021)

151

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

BIBLIOGRAPHY

[1] Martin Abadi et al., TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems, Software available from tensorflow.org, 2015, url: https://www.
tensorflow.org/.

[2] I. Ahmad, M.K. Dhodhi, and F.H. Hielscher, « Design-Space Exploration for High-
Level Synthesis », in: Proceeding of 13th IEEE Annual International Phoenix Con-
ference on Computers and Communications, 1994, pp. 491–, doi: 10.1109/PCCC.
1994.504159.

[3] A. Aimar et al., « NullHop: A Flexible Convolutional Neural Network Accelerator
Based on Sparse Representations of Feature Maps », in: IEEE Transactions on
Neural Networks and Learning Systems 30.3 (Mar. 2019), pp. 644–656, issn: 2162-
2388, doi: 10.1109/TNNLS.2018.2852335.

[4] Giovanni Alcantara, « Empirical analysis of non-linear activation functions for
Deep Neural Networks in classification tasks », in: CoRR abs/1710.11272 (2017),
arXiv: 1710.11272, url: http://arxiv.org/abs/1710.11272.

[5] N. Ali et al., « Deep Neural Networks Characterization Framework for Efficient
Implementation on Embedded Systems », in: 2020 IEEE Workshop on Signal Pro-
cessing Systems (SiPS), 2020, pp. 1–6, doi: 10.1109/SiPS50750.2020.9195227.

[6] Nermine Ali et al., « Exploration and Generation of Efficient FPGA-based Deep
Neural Network Accelerators », in: 2021 IEEE Workshop on Signal Processing
Systems (SiPS), 2021, pp. 123–128, doi: 10.1109/SiPS52927.2021.00030.

[7] Jonathan Bachrach et al., « Chisel: Constructing hardware in a Scala embedded
language », in: DAC Design Automation Conference 2012, 2012, pp. 1212–1221,
doi: 10.1145/2228360.2228584.

[8] Soheil Bahrampour et al., « Comparative Study of Caffe, Neon, Theano, and Torch
for Deep Learning », in: CoRR abs/1511.06435 (2015), arXiv: 1511.06435, url:
http://arxiv.org/abs/1511.06435.

153

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1109/PCCC.1994.504159
https://doi.org/10.1109/PCCC.1994.504159
https://doi.org/10.1109/TNNLS.2018.2852335
https://arxiv.org/abs/1710.11272
http://arxiv.org/abs/1710.11272
https://doi.org/10.1109/SiPS50750.2020.9195227
https://doi.org/10.1109/SiPS52927.2021.00030
https://doi.org/10.1145/2228360.2228584
https://arxiv.org/abs/1511.06435
http://arxiv.org/abs/1511.06435

[9] Junjie Bai, Fang Lu, Ke Zhang, et al., ONNX: Open Neural Network Exchange,
2019.

[10] D. Baptista, F. Morgado-Dias, and L. Sousa, « A Platform based on HLS to Im-
plement a Generic CNN on an FPGA », in: 2019 International Conference in En-
gineering Applications (ICEA), 2019, pp. 1–7, doi: 10.1109/CEAP.2019.8883473.

[11] Andrew Canis et al., « LegUp: An Open-Source High-Level Synthesis Tool for
FPGA-Based Processor/Accelerator Systems », in: ACM Trans. Embed. Comput.
Syst. 13.2 (Sept. 2013), issn: 1539-9087, doi: 10.1145/2514740, url: https:
//doi.org/10.1145/2514740.

[12] Maurizio Capra et al., « An Updated Survey of Efficient Hardware Architectures
for Accelerating Deep Convolutional Neural Networks », in: Future Internet 12.7
(2020), issn: 1999-5903, doi: 10.3390/fi12070113, url: https://www.mdpi.
com/1999-5903/12/7/113.

[13] A. Carbon et al., « PNeuro: A scalable energy-efficient programmable hardware
accelerator for neural networks », in: 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), Mar. 2018, pp. 1039–1044, doi: 10.23919/DATE.
2018.8342165.

[14] Benjamin Carrion Schafer, « Probabilistic Multiknob High-Level Synthesis Design
Space Exploration Acceleration », in: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 35.3 (2016), pp. 394–406, doi: 10.1109/
TCAD.2015.2472007.

[15] Catapult, 2021.

[16] Srimat Chakradhar et al., « A Dynamically Configurable Coprocessor for Convolu-
tional Neural Networks », in: SIGARCH Comput. Archit. News 38.3 (June 2010),
pp. 247–257, issn: 0163-5964, doi: 10 . 1145/ 1816038 . 1815993, url: https :
//doi.org/10.1145/1816038.1815993.

[17] Chixiao Chen et al., « iFPNA: A Flexible and Efficient Deep Learning Processor in
28nm CMOS Using a Domain-Specific Instruction Set and Reconfigurable Fabric »,
in: IEEE Journal on Emerging and Selected Topics in Circuits and Systems PP
(May 2019), pp. 1–1, doi: 10.1109/JETCAS.2019.2914355.

[18] Yu-Hsin Chen, Joel Emer, and Vivienne Sze, « Eyeriss v2: A Flexible and High-
Performance Accelerator for Emerging Deep Neural Networks », in: 2018.

154

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://doi.org/10.1109/CEAP.2019.8883473
https://doi.org/10.1145/2514740
https://doi.org/10.1145/2514740
https://doi.org/10.1145/2514740
https://doi.org/10.3390/fi12070113
https://www.mdpi.com/1999-5903/12/7/113
https://www.mdpi.com/1999-5903/12/7/113
https://doi.org/10.23919/DATE.2018.8342165
https://doi.org/10.23919/DATE.2018.8342165
https://doi.org/10.1109/TCAD.2015.2472007
https://doi.org/10.1109/TCAD.2015.2472007
https://doi.org/10.1145/1816038.1815993
https://doi.org/10.1145/1816038.1815993
https://doi.org/10.1145/1816038.1815993
https://doi.org/10.1109/JETCAS.2019.2914355

[19] Yu-Hsin Chen, Joel Emer, and Vivienne Sze, « Eyeriss: A and Spatial Arachi-
tecture and for Energy-Efficient and Dataflow and for Convolutional and Neural
Networks », in: IEEE, 2016, pp. 367–379, doi: 10.1109/ISCA.2016.40.

[20] Yu-Hsin Chen, Joel Emer, and Vivienne Sze, « Using Dataflow to Optimize Energy
Efficiency of Deep Neural Network Accelerators », in: IEEE Micro 37.3 (2017),
pp. 12–21, doi: 10.1109/MM.2017.54.

[21] Yu-Hsin Chen et al., « Eyeriss: An and Energy-Efficient Reconfigurable and Ac-
celerator for Deep and Convolutional », in: IEEE JOURNAL OF SOLID-STATE
CIRCUITS VOL. 52.NO. 1 (Jan. 2017).

[22] Tianshi Chen, Zidong Du, and Ninghui Sun, « DianNao: A Small-Footprint High-
Throughput Accelerator for Ubiquitous Machine-Learning », in: 2014, doi: .org/
10.1145/http://dx.doi.org/10.1145/2541940.2541967.

[23] Y. Chen et al., « Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural
Networks on Mobile Devices », in: IEEE Journal on Emerging and Selected Topics
in Circuits and Systems 9.2 (2019), pp. 292–308, doi: 10.1109/JETCAS.2019.
2910232.

[24] Yuze Chi et al., « SODA: Stencil with Optimized Dataflow Architecture », in: 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2018,
pp. 1–8, doi: 10.1145/3240765.3240850.

[25] Young-kyu Choi and Jason Cong, « HLS-Based Optimization and Design Space
Exploration for Applications with Variable Loop Bounds », in: Proceedings of the
International Conference on Computer-Aided Design, ICCAD ’18, San Diego, Cal-
ifornia: Association for Computing Machinery, 2018, isbn: 9781450359504, doi:
10.1145/3240765.3240815, url: https://doi.org/10.1145/3240765.3240815.

[26] Young-Kyu Choi et al., « FLASH: Fast, Parallel, and Accurate Simulator for
HLS », in: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 39.12 (2020), pp. 4828–4841, doi: 10.1109/TCAD.2020.2970597.

[27] John Clow et al., « A pythonic approach for rapid hardware prototyping and in-
strumentation », in: 2017 27th International Conference on Field Programmable
Logic and Applications (FPL), 2017, pp. 1–7, doi: 10.23919/FPL.2017.8056860.

155

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/MM.2017.54
https://doi.org/.org/10.1145/http://dx.doi.org/10.1145/2541940.2541967
https://doi.org/.org/10.1145/http://dx.doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1145/3240765.3240850
https://doi.org/10.1145/3240765.3240815
https://doi.org/10.1145/3240765.3240815
https://doi.org/10.1109/TCAD.2020.2970597
https://doi.org/10.23919/FPL.2017.8056860

[28] Jason Cong and Jie Wang, « PolySA: Polyhedral-Based Systolic Array Auto-
Compilation », in: Proceedings of the International Conference on Computer-Aided
Design, ICCAD ’18, San Diego, California: Association for Computing Machin-
ery, 2018, isbn: 9781450359504, doi: 10.1145/3240765.3240838, url: https:
//doi.org/10.1145/3240765.3240838.

[29] Jason Cong et al., « A Study on the Impact of Compiler Optimizations on High-
Level Synthesis », in: Languages and Compilers for Parallel Computing, ed. by
Hironori Kasahara and Keiji Kimura, Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 143–157, isbn: 978-3-642-37658-0.

[30] Jason Cong et al., « Automated Accelerator Generation and Optimization with
Composable, Parallel and Pipeline Architecture », in: Proceedings of the 55th An-
nual Design Automation Conference, DAC ’18, San Francisco, California: Asso-
ciation for Computing Machinery, 2018, isbn: 9781450357005, doi: 10 . 1145 /
3195970.3195999, url: https://doi.org/10.1145/3195970.3195999.

[31] Jason Cong et al., « High-Level Synthesis for FPGAs: From Prototyping to Deploy-
ment », in: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 30.4 (2011), pp. 473–491, doi: 10.1109/TCAD.2011.2110592.

[32] Ricardo C. Corrêa, Afonso Ferreira, and Pascal Rebreyend, « Scheduling Multipro-
cessor Tasks with Genetic Algorithms », in: IEEE Trans. Parallel Distrib. Syst.
10.8 (Aug. 1999), pp. 825–837, issn: 1045-9219, doi: 10.1109/71.790600, url:
https://doi.org/10.1109/71.790600.

[33] Philippe Coussy and Adam Morawiec, High-Level Synthesis: From Algorithm to
Digital Circuit, 1st, Springer Publishing Company, Incorporated, 2008, isbn: 1402085877.

[34] Philippe Coussy et al., « An Introduction to High-Level Synthesis », in: IEEE
Design Test of Computers 26.4 (2009), pp. 8–17, doi: 10.1109/MDT.2009.69.

[35] Philippe Coussy et al., « GAUT: A High-Level Synthesis Tool for DSP applica-
tions », in: (June 2008).

[36] Hubel D.H. and Wiesel T.N., « Receptive fields and functional architecture of
monkey striate cortex », in: The Journal of Physiology 195.1 (1968), pp. 215–243,
doi: 10.1113/jphysiol.1968.sp008455.

156

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://doi.org/10.1145/3240765.3240838
https://doi.org/10.1145/3240765.3240838
https://doi.org/10.1145/3240765.3240838
https://doi.org/10.1145/3195970.3195999
https://doi.org/10.1145/3195970.3195999
https://doi.org/10.1145/3195970.3195999
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/71.790600
https://doi.org/10.1109/71.790600
https://doi.org/10.1109/MDT.2009.69
https://doi.org/10.1113/jphysiol.1968.sp008455

[37] Steve Dai et al., « Fast and Accurate Estimation of Quality of Results in High-
Level Synthesis with Machine Learning », in: 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), 2018,
pp. 129–132, doi: 10.1109/FCCM.2018.00029.

[38] G. Desoli et al., « 14.1 A 2.9TOPS/W deep convolutional neural network SoC in
FD-SOI 28nm for intelligent embedded systems », in: 2017 IEEE International
Solid-State Circuits Conference (ISSCC), Feb. 2017, pp. 238–239, doi: 10.1109/
ISSCC.2017.7870349.

[39] Bin Ding, Huimin Qian, and Jun Zhou, « Activation functions and their character-
istics in deep neural networks », in: 2018 Chinese Control And Decision Conference
(CCDC), 2018, pp. 1836–1841, doi: 10.1109/CCDC.2018.8407425.

[40] Janardhan Rao Doppa, Justinian Rosca, and Paul Bogdan, « Autonomous Design
Space Exploration of Computing Systems for Sustainability: Opportunities and
Challenges », in: IEEE Design Test 36.5 (2019), pp. 35–43, doi: 10.1109/MDAT.
2019.2932894.

[41] Zidong Du et al., « ShiDianNao: Shifting Vision Processing Closer to the Sensor »,
in: 2015, doi: .org/10.1145/2749469.2750389.

[42] ACE-Associated Compiler Experts, CoSy, 2016.

[43] Farah Fahim et al., « hls4ml: An Open-Source Codesign Workflow to Empower Sci-
entific Low-Power Machine Learning Devices », in: CoRR abs/2103.05579 (2021),
arXiv: 2103.05579, url: https://arxiv.org/abs/2103.05579.

[44] Lorenzo Ferretti, « Design space exploration in high-level synthesis », PhD thesis,
Università della Svizzera italiana, 2020.

[45] FROM RESEARCH TO PRODUCTION, 2021, url: https://pytorch.org/.

[46] Kunihiko Fukushima, « Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position », in: Biological
Cybernetics, vol. 36, 4, 1980, pp. 193–202, doi: 10.1007/BF00344251.

[47] Daniel D. Gajski et al., SPECC: Specification Language and Methodology, 2012.

[48] Vinayak Gokhale et al., « A 240 G-ops/s Mobile Coprocessor for Deep Neural Net-
works », in: 2014 IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2014, pp. 696–701, doi: 10.1109/CVPRW.2014.106.

157

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://doi.org/10.1109/FCCM.2018.00029
https://doi.org/10.1109/ISSCC.2017.7870349
https://doi.org/10.1109/ISSCC.2017.7870349
https://doi.org/10.1109/CCDC.2018.8407425
https://doi.org/10.1109/MDAT.2019.2932894
https://doi.org/10.1109/MDAT.2019.2932894
https://doi.org/.org/10.1145/2749469.2750389
https://arxiv.org/abs/2103.05579
https://arxiv.org/abs/2103.05579
https://pytorch.org/
https://doi.org/10.1007/BF00344251
https://doi.org/10.1109/CVPRW.2014.106

[49] Ashish Gondimalla et al., « SparTen: A Sparse Tensor Accelerator for Convolu-
tional Neural Networks », in: Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO ’52, Columbus, OH, USA: As-
sociation for Computing Machinery, 2019, pp. 151–165, isbn: 9781450369381, doi:
10.1145/3352460.3358291, url: https://doi.org/10.1145/3352460.3358291.

[50] Y. Guan et al., « FP-DNN: An Automated Framework for Mapping Deep Neu-
ral Networks onto FPGAs with RTL-HLS Hybrid Templates », in: 2017 IEEE
25th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2017, pp. 152–159, doi: 10.1109/FCCM.2017.25.

[51] Suyog Gupta et al., « Deep Learning with Limited Numerical Precision », in: Pro-
ceedings of the 32nd International Conference on International Conference on Ma-
chine Learning - Volume 37, ICML’15, Lille, France: JMLR.org, 2015, pp. 1737–
1746.

[52] Song Han et al., « EIE: Efficient Inference Engine on Compressed Deep Neural
Network », in: Proceedings of the 43rd International Symposium on Computer Ar-
chitecture, ISCA ’16, Seoul, Republic of Korea: IEEE Press, 2016, pp. 243–254,
isbn: 9781467389471, doi: 10.1109/ISCA.2016.30, url: https://doi.org/10.
1109/ISCA.2016.30.

[53] Kaiming He et al., « Deep Residual Learning for Image Recognition », in: (2015).

[54] Kartik Hegde et al., « UCNN: Exploiting Computational Reuse in Deep Neural
Networks via Weight Repetition », in: Proceedings of the 45th Annual International
Symposium on Computer Architecture, ISCA ’18, Los Angeles, California: IEEE
Press, 2018, pp. 674–687, isbn: 9781538659847, doi: 10.1109/ISCA.2018.00062,
url: https://doi.org/10.1109/ISCA.2018.00062.

[55] John H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence, Cam-
bridge, MA, USA: MIT Press, 1992, isbn: 0262082136.

[56] M. Holzer, B. Knerr, and M. Rupp, « Design Space Exploration with Evolutionary
Multi-Objective Optimisation », in: 2007 International Symposium on Industrial
Embedded Systems, 2007, pp. 126–133, doi: 10.1109/SIES.2007.4297326.

158

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://doi.org/10.1145/3352460.3358291
https://doi.org/10.1145/3352460.3358291
https://doi.org/10.1109/FCCM.2017.25
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2018.00062
https://doi.org/10.1109/ISCA.2018.00062
https://doi.org/10.1109/SIES.2007.4297326

[57] Andrew G. Howard et al., « MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications », in: CoRR abs/1704.04861 (2017), arXiv: 1704.
04861, url: http://arxiv.org/abs/1704.04861.

[58] Forrest N. Iandola et al., « SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size », in: CoRR abs/1602.07360 (2016), arXiv:
1602.07360, url: http://arxiv.org/abs/1602.07360.

[59] « IEEE Standard for Standard SystemC Language Reference Manual - Redline »,
in: IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005) - Redline (2012), pp. 1–
1163.

[60] Bluespec Inc., 2021.

[61] Intel, 2021.

[62] Intel, Intel Distribution of OpenVINO toolkit, 2021, url: https://software.
intel.com/content/www/us/en/develop/tools/openvino-toolkit.html.

[63] Yangqing Jia et al., « Caffe: Convolutional Architecture for Fast Feature Embed-
ding », in: arXiv preprint arXiv:1408.5093 (2014).

[64] Norman P. Jouppi et al., « In-Datacenter Performance Analysis of a Tensor Pro-
cessing Unit », in: Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17, Toronto, ON, Canada: Association for Comput-
ing Machinery, 2017, pp. 1–12, isbn: 9781450348928, doi: 10.1145/3079856.
3080246, url: https://doi.org/10.1145/3079856.3080246.

[65] Sheng-Chun Kao and Tushar Krishna, « GAMMA: Automating the HW Mapping
of DNN Models on Accelerators via Genetic Algorithm », in: Proceedings of the
39th International Conference on Computer-Aided Design, ICCAD ’20, Virtual
Event, USA: Association for Computing Machinery, 2020, isbn: 9781450380263,
doi: 10.1145/3400302.3415639, url: https://doi.org/10.1145/3400302.
3415639.

[66] Keras: Deep Learning for humans, 2020.

[67] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, « ImageNet Classification
with Deep Convolutional Neural Networks », in: 2012.

[68] David C. Ku and Giovanni De Micheli, Hardware C - A Language for Hardware
Design, tech. rep., STANFORD UNIV CA COMPUTER SYSTEMS LAB, Aug. 1,
1988.

159

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3400302.3415639
https://doi.org/10.1145/3400302.3415639
https://doi.org/10.1145/3400302.3415639

[69] Kiseok Kwon et al., « Co-Design of Deep Neural Nets and Neural Net Accelerators
for Embedded Vision Applications », in: Proceedings of the 55th Annual Design
Automation Conference, DAC ’18, San Francisco, California: Association for Com-
puting Machinery, 2018, isbn: 9781450357005, doi: 10.1145/3195970.3199849,
url: https://doi.org/10.1145/3195970.3199849.

[70] Sakari Lahti et al., « Are We There Yet? A Study on the State of High-Level Syn-
thesis », in: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 38.5 (2019), pp. 898–911, doi: 10.1109/TCAD.2018.2834439.

[71] C. Lattner and V. Adve, « LLVM: a compilation framework for lifelong program
analysis amp; transformation », in: International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 2004, pp. 75–86, doi: 10.1109/CGO.2004.
1281665.

[72] Gradient-Based Learning Applied to Document Recognition, IEEE, 1998.

[73] Chao Li et al., « High-level synthesis for FPGAs: code optimization strategies for
real-time image processing », in: Journal of Real-Time Image Processing 14 (2018),
doi: 10.1007/s11554-017-0722-3, url: https://doi.org/10.1007/s11554-
017-0722-3.

[74] Huimin Li et al., « A High Performance FPGA-based Accelerator for Large-Scale
Convolutional Neural Networks », in: 2016.

[75] Jiajun Li et al., « SqueezeFlow: A Sparse CNN Accelerator Exploiting Concise
Convolution Rules », in: IEEE Transactions on Computers 68.11 (2019), pp. 1663–
1677, doi: 10.1109/TC.2019.2924215.

[76] Gai Liu et al., « Architecture and Synthesis for Area-Efficient Pipelining of Irregu-
lar Loop Nests », in: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 36.11 (2017), pp. 1817–1830, doi: 10.1109/TCAD.2017.
2664067.

[77] Hung-Yi Liu and Luca P. Carloni, « On learning-based methods for design-space
exploration with High-Level Synthesis », in: 2013 50th ACM/EDAC/IEEE Design
Automation Conference (DAC), 2013, pp. 1–7.

160

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://doi.org/10.1145/3195970.3199849
https://doi.org/10.1145/3195970.3199849
https://doi.org/10.1109/TCAD.2018.2834439
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/s11554-017-0722-3
https://doi.org/10.1007/s11554-017-0722-3
https://doi.org/10.1007/s11554-017-0722-3
https://doi.org/10.1109/TC.2019.2924215
https://doi.org/10.1109/TCAD.2017.2664067
https://doi.org/10.1109/TCAD.2017.2664067

[78] Hung-Yi Liu, Michele Petracca, and Luca P. Carloni, « Compositional system-
level design exploration with planning of high-level synthesis », in: 2012 Design,
Automation Test in Europe Conference Exhibition (DATE), 2012, pp. 641–646,
doi: 10.1109/DATE.2012.6176550.

[79] Shuangnan Liu, Francis CM Lau, and Benjamin Carrion Schafer, « Accelerating
FPGA Prototyping through Predictive Model-Based HLS Design Space Explo-
ration », in: 2019 56th ACM/IEEE Design Automation Conference (DAC), 2019,
pp. 1–6.

[80] Derek Lockhart, Gary Zibrat, and Christopher Batten, « PyMTL: A Unified Frame-
work for Vertically Integrated Computer Architecture Research », in: 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, 2014, pp. 280–
292, doi: 10.1109/MICRO.2014.50.

[81] Liqiang Lu et al., « An Efficient Hardware Accelerator for Sparse Convolutional
Neural Networks on FPGAs », in: 2019 IEEE 27th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM), 2019, pp. 17–
25, doi: 10.1109/FCCM.2019.00013.

[82] Yufei Ma et al., « Optimizing Loop Operation and Dataflow in FPGA Accel-
eration of Deep Convolutional Neural Networks », in: Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA
’17, Monterey, California, USA: Association for Computing Machinery, 2017, pp. 45–
54, isbn: 9781450343541, doi: 10.1145/3020078.3021736, url: https://doi.
org/10.1145/3020078.3021736.

[83] Giovanni Mariani et al., « OSCAR: An Optimization Methodology Exploiting Spa-
tial Correlation in Multicore Design Spaces », in: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 31.5 (2012), pp. 740–753, doi:
10.1109/TCAD.2011.2177457.

[84] Grant Martin and Gary Smith, « High-Level Synthesis: Past, Present, and Fu-
ture », in: IEEE Design Test of Computers 26.4 (2009), pp. 18–25, doi: 10.1109/
MDT.2009.83.

[85] M. Motamedi et al., « Design space exploration of FPGA-based Deep Convolu-
tional Neural Networks », in: 2016 21st Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), Jan. 2016, pp. 575–580, doi: 10 . 1109 / ASPDAC .
2016.7428073.

161

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://doi.org/10.1109/DATE.2012.6176550
https://doi.org/10.1109/MICRO.2014.50
https://doi.org/10.1109/FCCM.2019.00013
https://doi.org/10.1145/3020078.3021736
https://doi.org/10.1145/3020078.3021736
https://doi.org/10.1145/3020078.3021736
https://doi.org/10.1109/TCAD.2011.2177457
https://doi.org/10.1109/MDT.2009.83
https://doi.org/10.1109/MDT.2009.83
https://doi.org/10.1109/ASPDAC.2016.7428073
https://doi.org/10.1109/ASPDAC.2016.7428073

[86] MyHDL: From Python to Silicon, Manual available on Github, 2018, url: https:
//github.com/myhdl/myhdl.

[87] N2D2 - Neural Network Design & Deployment, Manual available on Github, 2019,
url: https://github.com/CEA-LIST/N2D2/.

[88] N2D2 - Neural Network Design & Deployment, 2019, url: https://n2d2.readthedocs.
io/en/latest/quant/post.html#post-training-quantization.

[89] Vinod Nair and Geoffrey E. Hinton, « Rectified Linear Units Improve Restricted
Boltzmann Machines », in: Proceedings of the 27th International Conference on
International Conference on Machine Learning, ICML’10, Haifa, Israel: Omnipress,
2010, pp. 807–814, isbn: 9781605589077.

[90] Razvan Nane et al., « A Survey and Evaluation of FPGA High-Level Synthesis
Tools », in: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 35.10 (2016), pp. 1591–1604, doi: 10.1109/TCAD.2015.2513673.

[91] Razvan Nane et al., « DWARV 2.0: A CoSy-based C-to-VHDL hardware com-
piler », in: 22nd International Conference on Field Programmable Logic and Ap-
plications (FPL), 2012, pp. 619–622, doi: 10.1109/FPL.2012.6339221.

[92] Yehya Nasser et al., « RTL to Transistor Level Power Modeling and Estimation
Techniques for FPGA and ASIC: A Survey », in: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 40.3 (2021), pp. 479–493, doi:
10.1109/TCAD.2020.3003276.

[93] NCSS, NCSS 2021 Statistical Software, 2021.

[94] NVIDIA cuDNN, 2021.

[95] Berkin Ozisikyilmaz, Gokhan Memik, and Alok Choudhary, « Efficient system de-
sign space exploration using machine learning techniques », in: 2008 45th ACM/IEEE
Design Automation Conference, 2008, pp. 966–969, doi: 10 . 1145 / 1391469 .
1391712.

[96] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria, « ReSPIR: A Response
Surface-Based Pareto Iterative Refinement for Application-Specific Design Space
Exploration », in: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 28.12 (2009), pp. 1816–1829, doi: 10.1109/TCAD.2009.
2028681.

162

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://github.com/myhdl/myhdl
https://github.com/myhdl/myhdl
https://github.com/CEA-LIST/N2D2/
https://n2d2.readthedocs.io/en/latest/quant/post.html#post-training-quantization
https://n2d2.readthedocs.io/en/latest/quant/post.html#post-training-quantization
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/FPL.2012.6339221
https://doi.org/10.1109/TCAD.2020.3003276
https://doi.org/10.1145/1391469.1391712
https://doi.org/10.1145/1391469.1391712
https://doi.org/10.1109/TCAD.2009.2028681
https://doi.org/10.1109/TCAD.2009.2028681

[97] M. Palesi and T. Givargis, « Multi-objective design space exploration using genetic
algorithms », in: Proceedings of the Tenth International Symposium on Hardware/-
Software Codesign. CODES 2002 (IEEE Cat. No.02TH8627), 2002, pp. 67–72, doi:
10.1145/774789.774804.

[98] Angshuman Parashar et al., « SCNN: An Accelerator for Compressed-sparse Con-
volutional Neural Networks », in: CoRR abs/1708.04485 (2017), arXiv: 1708 .
04485, url: http://arxiv.org/abs/1708.04485.

[99] Maurice Peemen et al., « Memory-centric accelerator design for Convolutional Neu-
ral Networks », in: 2013 IEEE 31st International Conference on Computer Design
(ICCD), 2013, pp. 13–19, doi: 10.1109/ICCD.2013.6657019.

[100] Phi-Hung Pham et al., « NeuFlow: Dataflow Vision Processing System-on-a-Chip »,
in: IEEE, 2012.

[101] Luca Piccolboni et al., « COSMOS: Coordination of High-Level Synthesis and
Memory Optimization for Hardware Accelerators », in: CoRR abs/1912.10823
(2019), arXiv: 1912.10823, url: http://arxiv.org/abs/1912.10823.

[102] Christian Pilato and Fabrizio Ferrandi, « Bambu: A modular framework for the
high level synthesis of memory-intensive applications », in: Sept. 2013, pp. 1–4,
doi: 10.1109/FPL.2013.6645550.

[103] Christian Pilato, Fabrizio Ferrandi, and Donatella Sciuto, « A design methodology
to implement memory accesses in High-Level Synthesis », in: 2011 Proceedings
of the Ninth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2011, pp. 49–58, doi: 10.1145/
2039370.2039381.

[104] Atul Rahman et al., « Design Space Exploration of FPGA Accelerators for Con-
volutional Neural Networks », in: IEEE, 2017.

[105] D.S. Harish Ram, M.C. Bhuvaneswari, and S.M. Logesh, « A Novel Evolutionary
Technique for Multi-objective Power, Area and Delay Optimization in High Level
Synthesis of Datapaths », in: 2011 IEEE Computer Society Annual Symposium on
VLSI, 2011, pp. 290–295, doi: 10.1109/ISVLSI.2011.55.

[106] Darian Reyes Fernandez de Bulnes, Yazmin Maldonado, and Leonardo Trujillo,
« Development of Multiobjective High-Level Synthesis for FPGAs », in: Scientific
Programming 2020.10 (2020), pp. 2628–2639, doi: 10.1155/2020/7095048.

163

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://doi.org/10.1145/774789.774804
https://arxiv.org/abs/1708.04485
https://arxiv.org/abs/1708.04485
http://arxiv.org/abs/1708.04485
https://doi.org/10.1109/ICCD.2013.6657019
https://arxiv.org/abs/1912.10823
http://arxiv.org/abs/1912.10823
https://doi.org/10.1109/FPL.2013.6645550
https://doi.org/10.1145/2039370.2039381
https://doi.org/10.1145/2039370.2039381
https://doi.org/10.1109/ISVLSI.2011.55
https://doi.org/10.1155/2020/7095048

[107] Miguel Rivera-Acosta, Susana Ortega-Cisneros, and Jorge Rivera, « Automatic
Tool for Fast Generation of Custom Convolutional Neural Networks Accelera-
tors for FPGA », in: Electronics 8.6 (2019), issn: 2079-9292, doi: 10 . 3390 /
electronics8060641, url: https://www.mdpi.com/2079-9292/8/6/641.

[108] F. Rosenblatt, « The perceptron: A probabilistic model for information storage
and organization in the brain. », in: Psychological Review 65.6 (1958), pp. 386–
408, doi: 10.1037/h0042519.

[109] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, « Learning Internal Represen-
tations by Error Propagation », in: Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vol. 1: Foundations, Cambridge, MA, USA:
MIT Press, 1986, pp. 318–362, isbn: 026268053X.

[110] Olga Russakovsky et al., « ImageNet Large Scale Visual Recognition Challenge »,
in: International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252,
doi: 10.1007/s11263-015-0816-y.

[111] Benjamin Carrion Schafer, Takashi Takenaka, and Kazutoshi Wakabayashi, « Adap-
tive Simulated Annealer for high level synthesis design space exploration », in: 2009
International Symposium on VLSI Design, Automation and Test, 2009, pp. 106–
109, doi: 10.1109/VDAT.2009.5158106.

[112] Benjamin Carrion Schafer and Kazutoshi Wakabayashi, « Divide and Conquer
High-Level Synthesis Design Space Exploration », in: ACM Trans. Des. Autom.
Electron. Syst. 17.3 (July 2012), issn: 1084-4309, doi: 10.1145/2209291.2209302,
url: https://doi.org/10.1145/2209291.2209302.

[113] Benjamin Carrion Schafer and Zi Wang, « High-Level Synthesis Design Space Ex-
ploration: Past, Present, and Future », in: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39.10 (2020), pp. 2628–2639, doi: 10.
1109/TCAD.2019.2943570.

[114] Dominik Scherer, Andreas Müller, and Sven Behnke, « Evaluation of Pooling Oper-
ations in Convolutional Architectures for Object Recognition », in: Artificial Neu-
ral Networks – ICANN 2010, ed. by Konstantinos Diamantaras, Wlodek Duch, and
Lazaros S. Iliadis, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 92–101,
isbn: 978-3-642-15825-4.

164

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://doi.org/10.3390/electronics8060641
https://doi.org/10.3390/electronics8060641
https://www.mdpi.com/2079-9292/8/6/641
https://doi.org/10.1037/h0042519
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/VDAT.2009.5158106
https://doi.org/10.1145/2209291.2209302
https://doi.org/10.1145/2209291.2209302
https://doi.org/10.1109/TCAD.2019.2943570
https://doi.org/10.1109/TCAD.2019.2943570

[115] Yakun Shao et al., « Aladdin: A pre-RTL, power-performance accelerator simulator
enabling large design space exploration of customized architectures », in: June
2014, pp. 97–108, isbn: 978-1-4799-4394-4, doi: 10.1109/ISCA.2014.6853196.

[116] R. Shathanaa and N. Ramasubramanian, « Design Space Exploration for Ar-
chitectural Synthesis—A Survey », in: Recent Findings in Intelligent Computing
Techniques, ed. by Pankaj Kumar Sa et al., Singapore: Springer Singapore, 2018,
pp. 519–527, isbn: 978-981-10-8636-6.

[117] Yongming Shen, Michael Ferdman, and Peter Milder, « Maximizing CNN Accel-
erator Efficiency Through Resource Partitioning », in: Proceedings of the 44th
Annual International Symposium on Computer Architecture, ISCA ’17, Toronto,
ON, Canada: Association for Computing Machinery, 2017, pp. 535–547, isbn:
9781450348
928, doi: 10.1145/3079856.3080221.

[118] Cristina Silvano et al., « MULTICUBE: Multi-objective Design Space Exploration
of Multi-core Architectures », in: 2010 IEEE Computer Society Annual Symposium
on VLSI, 2010, pp. 488–493, doi: 10.1109/ISVLSI.2010.67.

[119] Karen Simonyan and Andrew Zisserman, « VERY DEEP and CONVOLUTIONAL
NETWORKS and FOR LARGE-SCALE and IMAGE RECOGNITION », in: 2015.

[120] Andrea Solazzo et al., « Hardware Design and Automation of Convolutional »,
in: 2016 IEEE Computer Society Annual Symposium on VLSI, IEEE, 2016, doi:
10.1109/ISVLSI.2016.101.

[121] SpinalHDL, Manual available on Github, 2021, url: https : / / github . com /
SpinalHDL/SpinalHDL.

[122] C. Szegedy et al., « Going deeper with convolutions », in: 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9, doi: 10.
1109/CVPR.2015.7298594.

[123] Mingxing Tan and Quoc V. Le, « EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks », in: CoRR abs/1905.11946 (2019), arXiv: 1905 .
11946, url: http://arxiv.org/abs/1905.11946.

165

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://doi.org/10.1109/ISCA.2014.6853196
https://doi.org/10.1145/3079856.3080221
https://doi.org/10.1109/ISVLSI.2010.67
https://doi.org/10.1109/ISVLSI.2016.101
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946

[124] Stephen M. Steve Trimberger, « Three Ages of FPGAs: A Retrospective on the
First Thirty Years of FPGA Technology: This Paper Reflects on How Moore’s Law
Has Driven the Design of FPGAs Through Three Epochs: the Age of Invention, the
Age of Expansion, and the Age of Accumulation », in: IEEE Solid-State Circuits
Magazine 10.2 (2018), pp. 16–29, doi: 10.1109/MSSC.2018.2822862.

[125] Yaman Umuroglu et al., « FINN: A Framework for Fast, Scalable Binarized Neu-
ral Network Inference », in: Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’17, Monterey, California,
USA: Association for Computing Machinery, 2017, pp. 65–74, isbn: 9781450343541,
doi: 10.1145/3020078.3021744, url: https://doi.org/10.1145/3020078.
3021744.

[126] Stylianos I. Venieris and Christos-Savvas Bouganis, « fpgaConvNet: Mapping Reg-
ular and Irregular Convolutional Neural Networks on FPGAs », in: IEEE Trans-
actions on Neural Networks and Learning Systems 30.2 (2019), pp. 326–342, doi:
10.1109/TNNLS.2018.2844093.

[127] Rangharajan Venkatesan et al., « MAGNet: A Modular Accelerator Generator for
Neural Networks », in: 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2019, pp. 1–8.

[128] Xilinx Vivado, 2020.

[129] Kazutoshi Wakabayashi, « C-Based Behavioral Synthesis and Verification Analy-
sis on Industrial Design Examples », in: Proceedings of the 2004 Asia and South
Pacific Design Automation Conference, ASP-DAC ’04, Yokohama, Japan: IEEE
Press, 2004, pp. 344–348, isbn: 0780381750.

[130] Chao Wang et al., « DLAU: A Scalable Deep Learning Accelerator Unit on FPGA »,
in: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 36.3 (2017), pp. 513–517, doi: 10.1109/TCAD.2016.2587683.

[131] Zi Wang, Jianqi Chen, and Benjamin Carrion Schafer, « Efficient and Robust
High-Level Synthesis Design Space Exploration through offline Micro-kernels Pre-
characterization », in: 2020 Design, Automation Test in Europe Conference Exhi-
bition (DATE), 2020, pp. 145–150, doi: 10.23919/DATE48585.2020.9116309.

166

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://doi.org/10.1109/MSSC.2018.2822862
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1109/TNNLS.2018.2844093
https://doi.org/10.1109/TCAD.2016.2587683
https://doi.org/10.23919/DATE48585.2020.9116309

[132] P. N. Whatmough et al., « FixyNN: Efficient Hardware for Mobile Computer Vision
via Transfer Learning », in: The 2nd Conference on Systems and Machine Learning
(SysML), 2019, url: https://arxiv.org/pdf/1902.11128.

[133] Xilinx, Vitis AI, 2021, url: https : / / www . xilinx . com / products / design -
tools/vitis/vitis-ai.html.

[134] Sotirios Xydis et al., « SPIRIT: Spectral-Aware Pareto Iterative Refinement Opti-
mization for Supervised High-Level Synthesis », in: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 34.1 (2015), pp. 155–159, doi:
10.1109/TCAD.2014.2363392.

[135] Georgios Zacharopoulos et al., « Machine Learning Approach for Loop Unrolling
Factor Prediction in High Level Synthesis », in: 2018 International Conference on
High Performance Computing Simulation (HPCS), 2018, pp. 91–97, doi: 10.1109/
HPCS.2018.00030.

[136] Chen Zhang et al., « Optimizing FPGA-Based Accelerator Design for Deep Con-
volutional Neural Networks », in: Proceedings of the 2015 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, FPGA ’15, Monterey,
California, USA: Association for Computing Machinery, 2015, pp. 161–170, isbn:
9781450333153, doi: 10.1145/2684746.2689060, url: https://doi.org/10.
1145/2684746.2689060.

[137] J. Zhao et al., « COMBA: A comprehensive model-based analysis framework for
high level synthesis of real applications », in: 2017 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2017, pp. 430–437, doi: 10.1109/
ICCAD.2017.8203809.

[138] Marcela Zuluaga et al., « "Smart" Design Space Sampling to Predict Pareto-Optimal
Solutions », in: SIGPLAN Not. 47.5 (June 2012), pp. 119–128, issn: 0362-1340,
doi: 10.1145/2345141.2248436, url: https://doi.org/10.1145/2345141.
2248436.

167

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

https://arxiv.org/pdf/1902.11128
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://doi.org/10.1109/TCAD.2014.2363392
https://doi.org/10.1109/HPCS.2018.00030
https://doi.org/10.1109/HPCS.2018.00030
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1109/ICCAD.2017.8203809
https://doi.org/10.1109/ICCAD.2017.8203809
https://doi.org/10.1145/2345141.2248436
https://doi.org/10.1145/2345141.2248436
https://doi.org/10.1145/2345141.2248436

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Titre : Approche haut niveau pour la génération automatique d’accélérateurs matériels optimi-
sés pour les réseaux de neurones profonds

Mot clés : Synthèse haut-niveau, Réseaux de neurones convolutionnels, Systèmes embar-

qués, Méthodologies pour l’EDA, Accélerateurs matériels

Résumé : Étant l’une des solutions de pointe
dans le domaine de la vision par ordinateur,
les réseaux de neurones convolutifs (CNN)
évoluent rapidement. En effet, les chercheurs
déploient de nombreux efforts pour amélio-
rer la précision de ces algorithmes afin de ré-
pondre à des tâches de détection et de recon-
naissance d’objet de plus en plus complexes.
L’amélioration des performances applicatives,
ou encore la diminution des besoins de cal-
cul et de mémoire des CNNs sont principale-
ment apportées par de nouvelles topologies
ou par l’introduction de nouveaux types de
couches. Les CNN se caractérisent par leur
parallélisme intrinsèque et sont bien adaptés
à l’accélération matérielle. Malgré ces innova-
tions, les besoins importants en mémoire et
la complexité de calcul des CNN les rendent
difficiles à intégrer dans les systèmes em-
barqués. De plus, l’évolution rapide des algo-
rithmes rend difficile leur maîtrise par les ar-
chitectes matériels, ce qui rend l’écart logiciel-
matériel existant de plus en plus important.
En outre, la conception d’accélérateurs ma-
tériels prend un temps important. Dans cette
thèse, les défis du processus de conception

des accélérateurs de réseaux de neurones
sont abordés en étudiant divers aspects du flot
de conception, de l’application, de la généra-
tion de matériel et de l’exploration de l’espace
de conception. Ces aspects sont abordés via
SHEFTENN, une approche d’exploration logi-
cielle et matérielle de bout en bout pour la
génération d’accélérateurs CNN. SHEFTENN
vise à réduire l’écart entre le matériel et le
logiciel en introduisant une phase de carac-
térisation visant à étudier la description al-
gorithmique d’un point de vue matériel et en
utilisant ensuite des techniques modernes de
conception de haut-niveau pour les systèmes
électroniques (ESL) telles que la synthèse de
haut niveau pour générer du matériel à par-
tir d’une description logicielle. Tirant parti des
métriques de caractérisation, l’exploration au-
tomatique de l’espace de conception est effec-
tuée par un module d’optimisation hybride qui
utilise une combinaison d’évaluations de l’ar-
chitecture candidate basées sur des modèles
et des synthèses réelles. Les résultats expé-
rimentaux montrent l’efficacité de l’approche
proposée et débouchent sur des perspectives
prometteuses.

High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

Title: High-level approach for the automatic generation of optimized hardware accelerators for
deep neural networks

Keywords: High-Level Synthesis, Convolutional Neural Networks, Embedded Systems, Method-

ologies for EDA, Hardware Accelerators

Abstract: Being one of the cutting edge so-
lutions in the computer vision field, Convo-
lutional neural networks (CNNs) are rapidly
evolving. Indeed, researchers put many ef-
forts to enhance the accuracy of these al-
gorithms to meet increasingly complex ob-
ject detection and recognition tasks. The im-
provement in application performance, or even
the reduction in the computation and mem-
ory requirements of CNNs, are mainly brought
about by new topologies or by the introduc-
tion of new types of layers. CNN are char-
acterized by their spatial parallelism and are
well adapted for hardware acceleration. De-
spite these innovations, the large memory re-
quirements and computational complexity of
CNNs make them difficult to embed in em-
bedded systems. Additionally, the fast algo-
rithmic evolutions are difficult to follow and
master for hardware architects, which makes
an existing software-hardware gap growing
wider. Besides, designing hardware accelera-
tors is a time consuming. In this dissertation,

the challenges of the design process of neu-
ral networks accelerators are tackled by in-
vestigating various aspects of the design flow,
the application, the hardware generation, and
the exploration of the design space. These
aspects are addressed through SHEFTENN,
an end-to-end software and hardware explo-
ration approach for CNN accelerator gener-
ation. SHEFTENN aims at reducing the gap
between hardware and software by introduc-
ing a characterization phase to study the al-
gorithmic description with a hardware point of
view and by using modern Electronic System
Level (ESL) design techniques such as high-
level synthesis to generate hardware with a
software point of view. Leveraging characteri-
zation metrics, automatic design space explo-
ration is performed by an optimization mod-
ule which uses a combination of model-based
evaluations and real syntheses. Experimental
results show the effectiveness of the proposed
approach and lead to promising perspectives.

171
High-level approach for the automatic generation of optimized hardware accelerators for deep neural networks Nermine Ali 2022

	Résumé
	Introduction
	Background on Deep Neural Networks and Hardware Accelerators
	Deep Neural Networks - DNNs
	Training vs. Inference
	Convolutional Neural Networks - CNNs

	Hardware Accelerators for DNNs
	Dataflows Taxonomy
	Dedicated ASIC Architectures
	Programmable ASIC architectures
	FPGA Architectures

	Conclusion

	State of the Art of Design Methodologies and Proposed Approach
	Design Flows and Tools
	High-Level Hardware Description Languages
	High-Level Synthesis - HLS

	Hardware Generation Frameworks
	Proposed Methodology Overview
	Comparison between SHEFTENN and the State of the Art
	Conclusion

	Characterization and Metrics Analysis
	Characterization step Overview
	Metrics Analysis

	Characterization and Analysis of different State-of-the-Art Networks
	Conclusion

	Flexible Hardware Generation
	Hardware Generation step Overview
	C-Code transformation example

	High-Level Optimizations
	Library of HLS operators
	Introduction
	HLS operators overview and early results

	Early Results using the Hardware Generation step
	Conclusion

	Optimizing hardware through Design Space Exploration
	Related Works on DSE
	Model-based DSE approaches
	Black-box-based DSE approaches
	Discussion

	DSE Algorithm
	Introduction to Genetic Algorithm
	Implementation of the DSE module

	Model-based estimations
	Performance Model
	Models for resource utilization
	Discussion on obtained models

	Early results for DNN layer implementation optimization
	Conclusion

	Implementation of the SHEFTENN Framework and Assessment
	Implementation of the SHEFTENN framework
	Characterization module
	Hardware Generation module
	Optimizer module

	Experiments and Results
	Experimental Setup
	SHEFTENN Evaluation using MobileNet-V1
	SHEFTENN Evaluation using SqueezeNet-V1.1

	Conclusion

	Conclusion
	Bibliography

