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Maintenant que le cadre de ce mémoire est bien posé, on va commencer à discuter des résultats qui y sont présentés. Le premier thème, évoqué ci-dessus, est celui des liens entre divers invariants topologiques combinatoires (accessibles à partir d'une triangulation) et le volume riemannien. Pour une variété lisse, on peut définir de façon grossière sa complexité topologique comme le non-arithmétiques dans les groupes SU(n, 1) pour n ≥ 4.
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Introduction

Variétés, complexes simpliciaux et groupes

Ce manuscrit présente des contributions qui se rattachent toutes plus ou moins directement à la topologie des variétés. C'est un vaste sujet à l'interface de la topologie algébrique, de la géométrie différentielle et de la théorie géométrique des groupes ; on n'en discutera ici qu'une petite partie mais je vais commencer par une dicussion un peu générale bien qu'orientée vers les thèmes plus précis qui seront discutés dans les sections suivantes de cette introduction. Pour présenter vaguement les grandes lignes de ce mémoire on pourrait dire que l'on s'intéresse à certaines familles de variétés et au problème de les classer à isomorphisme près-comme il s'agit d'ensembles dénombrables, on entend par là étudier les manières intelligibles de les énumérer, les comparer entre elles et en étudier divers invariants. On peut aussi de manière plus imagée parler du paysage décrit par ces variétés et des différents angles sous lesquels on peut le regarder.

Les objets centraux seront donc les variétés ; dans le cadre qui nous intéressera cela signifiera variétés lisses. On ne considérera le plus souvent que celles qui seront compactes ou au moins intérieur d'une variété compacte à bord. Pour nous, les variétés seront réalisées concrètement de deux façons : comme complexes simpliciaux (une description combinatoire) et comme quotients d'un espace explicite par des groupes y agissant discrètement (description que l'on peut qualifier d'algébrique, vu que pour nous les espaces considérés seront des espaces homogènes).

La première description est la plus élémentaire et la plus utilisée pour représenter en pratique les variétés. En effet, il est bien connu que toute variété lisse est homéomorphe à un complexe simplicial, et c'est donc une manière commode de présenter une variété par un ensemble fini de données. La description combinatoire d'une variété permet aussi de calculer très facilement différents invariants d'homéomorphisme (groupe fondamental, groupes d'homologie en particulier). Il est donc important de savoir représenter une variété décrite d'une autre manière comme un complexe simplicial. En revanche l'ensemble des complexes simpliciaux qui sont homéomorphes à des variétés (même lisses) est essentiellement inacessible à la description ; par exemple il n'existe pas (en dimension au moins 6) d'algorithme permettant de décider si un complexe donné est homéomorphe à une variété. Il est aussi bien connu qu'il ne peut pas exister d'algorithme décidant si deux variétés lisses sont homéomorphes l'une à l'autre. On peut quand même en principe donner une énumération d'une liste de complexes simpliciaux tel que toute variété lisse soit homéomorphe à l'un deux (qui contiendra forcément des doublons).

La seconde description est le mieux illustrée par l'exemple des variétés hyperboliques 1 . Si l'on fixe une dimension d ≥ 2, le revêtement universel commun à ces variétés, l'espace hyperbolique de dimension d, peut être vu comme l'intérieur de la boule unité dans R d muni d'une structure additionnelle que l'on va maintenant décrire. Certaines transformations conformes du bord de la boule (les "transformations de Möbius") qui se prolongent de manière rigide à l'intérieur, forment Introduction un groupe G agissant proprement et transitivement sur l'espace hyperbolique : les stabilisateurs sont compacts, en fait conjugués dans G au sous-groupe des isométries de la sphère. Tout sousgroupe discret, cocompact et sans torsion de G agit donc librement, proprement discontinûment et de manière cocompacte sur l'espace hyperbolique, c'est-à-dire que le quotient en est une variété lisse compacte. Il ne semble pas évident que de tels groupes existent, mais on peut donner une description plus algébrique du groupe G (et de l'espace hyperbolique) qui permet d'utiliser des méthodes arithmétiques pour construire de tels sous-groupes ; on la détaillera en plus grande généralité dans la section suivante. L'étude des variétés hyperboliques, en particulier de celles obtenues par les méthodes arithmétiques, est l'objet principal de ce mémoire, même si l'on se placera souvent dans un cadre plus général.

On peut aussi commencer à s'intéresser aux variétés d'un point de vue géométrique, c'està-dire en étudiant les structures riemanniennes dont elles peuvent être munies. Par exemple, l'espace hyperbolique introduit au paragraphe précédent supporte une métrique à courbure sectionelle constante égale à -1 qui est préservée par l'action des transformations de Möbius. Tous ses quotients sont donc munis d'une telle métrique, et réciproquement toute variété riemannienne complète connexe dont les courbures sectionelles sont toutes égales à -1 est un quotient de l'espace hyperbolique. En général, l'ensemble des variétés supportant une métrique riemanienne à courbures sectionelles négatives (non constantes) est encore mal compris en dimensions 4 et plus. Les principaux exemples sont les espaces localement symétriques qui généralisent les variétés hyperboliques et que l'on décrira en détail dans la section suivante. Plusieurs autres constructions sont néanmoins connues, et la théorie de la structure globale des variétés à courbure négative est assez bien développée. Dans ce mémoire et dans les articles qu'il résume, on se limite aux seuls espaces localement symétriques pour lesquels on a en général des résultats plus précis.

Une propriété importante de ces espaces à courbure négative est qu'ils sont asphériques, c'est-à-dire que leur type d'homotopie est complètement déterminé par leur groupe fondamental ; conjecturalement (conjecture de Borel) c'est vrai aussi pour le type d'homéomorphisme, un point subtil étant que ça ne l'est plus pour leur type de difféomorphisme. Ils sont donc utiles pour l'étude des groupes, en particulier de leur homologie. C'est un aspect qu'on ne développera pas dans la suite mais qui est une motivation importante, en particulier pour ses applications à la théorie géométrique des groupes (principalement comme source d'exemples). Notons que la classe des variétés asphériques est loin de se limiter aux variétés riemaniennes à courbure négative, de nombreux autres exemples sont connus (par exemple quotients compacts de groupes de Lie résolubles, variétés CAT(0) non-lissables). Cette classe, ainsi que la classe des groupes dénombrables qui sont leurs groupes fondamentaux, sont très mal comprises en dimensions 4 et plus.

Espaces localement symétriques et réseaux arithmétiques

Une autre manière de réaliser l'espace hyperbolique est la suivante : on peut montrer que le groupe de transformations de Möbius est isomorphe au groupe de Lie PO(d, 1), en identifiant la sphère de dimension (d -1) à la projectivisation du cône isotrope d'une forme quadratique de signature (d, 1) (l'espace hyperbolique est alors identifié au projectivisé du cône des vecteurs négatifs). Le stabilisateur d'un point intérieur de l'espace hyperbolique est alors conjugué à PO(d), de sorte que l'espace hyperbolique est isomorphe à l'espace homogène G/K avec G = PO(d, 1) et K = PO(d). On peut aussi retrouver ainsi la métrique invariante, vu qu'il n'existe à proportionalité près qu'une seule métrique euclidienne invariante par l'action adjointe de PO(d) sur l'orthogonal p à so(d) pour la forme de Killing sur l'algèbre de Lie so(d, 1) (p est identifié à l'espace tangent à G/K en la classe e G K), que l'on peut alors transporter sur les espaces tangents en d'autres points.

Une classe d'espaces généralisant directement cette construction des variétés hyperboliques est donnée par les espaces localement symétriques, que l'on va maintenant décrire. Étant donné un groupe de Lie connexe G et un sous-groupe fermé K, le quotient X = G/K est une variété lisse, admettant une métrique G-invariante si K est compact. De plus tout sous-groupe Γ de G agit sur X par difféomorphismes ; nous voulons donc trouver de tels Γ dont l'action est de plus propre et libre. C'est le plus simple quand G est semisimple non compact (par exemple G = SL n (R) ou G est le groupe orthogonal d'une forme quadratique isotrope) et K est compact maximal dans G ; il faut et suffit alors que Γ soit discret dans G et sans torsion. Dans ce cas X est appelé un espace symétrique riemannien de type non-compact, sans facteur euclidien2 , et les quotients Γ\X sont des espaces localement symétriques.

Pour obtenir des variétés fermées il faut de plus que le quotient Γ\X soit compact ; avec cette contrainte supplémentaire il n'est pas évident que l'on puisse trouver un tel Γ. Pour diverses raisons (motivées par les applications mais aussi internes à la théorie) il est commode d'affaiblir l'hypothèse que Γ est cocompact en demandant seulement que la mesure de Haar à gauche de G induise une mesure finie sur le quotient Γ\G (on dit que Γ est de covolume fini). Un sous-groupe Γ qui est discret et de covolume fini dans G est appelé un réseau de G. Tout réseau contient un sous-groupe d'indice fini sans torsion, et la construction d'espaces localement symétriques de volume fini (respectivement cocompacts) est donc équivalente à celle de réseaux (respectivement de réseaux cocompacts).

Une construction systématique de tels sous-groupes est donnée par les groupes arithmétiques, qui grosso modo généralisent l'exemple SL m (Z) ⊂ SL m (R). Par exemple si q est une forme quadratique (isotrope) sur R n à coefficients rationnels, les transformations préservant q et à coefficients entiers forment un réseau3 dans le groupe orthogonal de q. En général, étant donnés un corps de nombres k (dont on notera Z k l'anneau des entiers) et un k-groupe G muni d'une kreprésentation fidèle ρ : G → GL N on a un groupe des points entiers G(Z k ) = {g ∈ G(k) : ρ(g) ∈ GL N (Z k )}. On peut alors définir un sous-groupe arithmétique de G(k) comme n'importe quel sous-groupe dont l'intersection avec G(Z k ) est d'indice fini dans les deux groupes (on dit alors qu'ils sont commensurables) ; cette définition ne dépend pas du plongement ρ, contrairement au groupe G(Z k ). S'il existe une surjection à noyau compact du groupe de Lie G(k ⊗ Q R) vers G, on dit alors qu'un sous-groupe de G qui est commensurable à l'image d'un sous-groupe arithmétique de G(k) dans G est un réseau arithmétique de G, et on appelle le corps k son corps de traces. Cette nomenclature est justifiée par le fait qu'un sous-groupe obtenu de cette manière est bien un réseau (théorème de Borel-Harish-Chandra), et k est le corps engendré par les traces des éléments de Γ dans la représentation adjointe de G (un résultat observé par Vinberg). De plus on sait qu'il est cocompact si et seulement si le groupe G est k-anisotrope.

En général, il peut exister d'autres réseaux dans G que les réseaux arithmétiques ; cependant ceci ne peut arriver essentiellement que pour une liste assez restreinte de groupes, les groupes orthogonaux SO(n, 1) et les groupes unitaires SU(n, 1) (et tous les groupes leur étant isogènes), d'après le théorème d'arithméticité de Margulis et ses extensions par Corlette et Gromov-Schoen. C'est un fait fondamental dans l'étude des espaces localement symétriques, et qui justifie en partie que l'on s'intéresse particulièrement aux espaces localement symétriques arithmétiques. On discutera plus loin des variétés non-arithmétiques, uniquement dans le cas des espaces hyperboliques réels 4 .

Introduction

Si l'on fixe l'espace symétrique X, on sait classer assez grossièrement ses quotients arithmétiques. En effet, étant donné un corps de nombres k, la théorie générale des groupes algébriques permet 5 de classer les k-groupes G tels que G(k ⊗ Q R) admette une surjection à noyau compact vers le groupe d'isométries G de X et partant, les classes de commensurabilité de réseaux arithmétiques de G de corps de traces k. La question de comprendre la structure de l'ensemble des groupes à l'intérieur d'une classe de commensurabilité est plus nébuleuse. Il y a une sous-classe bien comprise, formée des sous-groupes de congruence qui sont grosso modo les éléments de la classe de commensurabilité que l'on peut décrire à partir de la seule donnée de G (pour les sousgroupes de G(k) il s'agit exactement de ceux qui sont fermés pour la topologie induite sur G(k) par le plongement de k dans ses adèles finies). La plupart (mais pas la totalité) des questions qui nous intéressent dans ce mémoire sont le mieux posées dans ce cadre plus limité des réseaux de congruence.

Une propriété importante des espaces localement symétriques de volume fini est que, sauf en dimension 2, la métrique riemannienne localement symétrique sur ces espaces est complètement déterminée par leur type d'homotopie (c'est le théorème de rigidité forte, ou de Mostow-Prasad). De plus, en dimension au moins 4, le volume donne une manière naturelle d'énumérer les espaces localement symétriques (théorème de finitude de Wang). Par rapport aux questions générales un peu vaguement décrites au cours de la section précédente, on peut maintenant formuler une question plus précise : comment cette énumération se compare-t-elle aux manières plus topologiques de le faire? En pratique, ceci veut dire comparer le volume à des invariants numériques définis topologiquement. Les liens entre les invariants riemanniens (en particulier le volume) et les invariants topologiques définis à partir de structures combinatoires dans le cadre des espaces localement symétrique arithmétiques sont le premier thème de ce mémoire, que l'on étudiera en profondeur dans les deux premiers chapitres.

Notons aussi que bien que le volume ne permette pas d'énumérer les variétés hyperboliques en dimension 3 (c'est un phénomène provenant de la construction de telle variétés via les remplissages de Dehn hyperboliques), c'est le cas si on se limite aux variétés arithmétiques (pour lesquels une formule du volume faisant intervenir de manière transparente les invariants arithmétiques permet de le démontrer directement). Cette dimension nous intéressera donc aussi malgré ses particularités, en particulier une autre motivation des travaux que l'on présente est la question suivante posée par Thurston dans sa liste de problèmes 6 :

Find topological and geometric properties of quotient spaces of arithmetic subgroups of P SL 2 C. These manifolds often seem to have special beauty.

Notons enfin que la topologie des variétés localement symétriques arithmétiques est liée, via le programme de Langlands et ses dérivées, à la théorie des représentations du groupe de Galois absolu. C'est une motivation importante pour une partie des résultats de ce mémoire mais on n'en parlera pas plus ici. nombre minimal de simplexes maximaux dans un complexe simplicial qui lui est homéomorphe. Le principe de proportionalité pour le volume simplicial, et sa positivité pour les espaces localement symétriques, montrent que le volume riemannien est à une constante près une borne inférieure pour cette complexité pour les espaces localement symétriques de dimension fixée. Un des principaux résultats discutés dans ce mémoire est le théorème suivant, obtenu dans un travail en commun avec Sebastian Hurtado et Mikołaj Frączyk.

Théorème A (Voir le théorème 1.30 dans le chapitre 1). Soient X un espace symétrique de type non-compact sans facteur euclidien et G son groupe d'isométries. Il existe des constantes A, B telles que pour toute variété riemannienne M obtenue comme quotient de X par un réseau arithmétique de G, il existe un complexe simplicial équivalent en homotopie à M ayant au plus A vol(M ) simplexes maximaux et où chaque sommet appartient à au plus B simplexes.

La conclusion légèrement affaiblie que le complexe n'est qu'équivalent en homotopie à M plutôt qu'homéomorphe est largement suffisante en pratique (noter que la conjecture de Borel est connue pour de telles variétés M ). En utilisant des résultats sur les triangulations de Delaunay en courbure variable7 , on peut d'ailleurs améliorer le théorème pour obtenir des complexes homéomorphes à M . La question de savoir si un complexe équivalent en homotopie à M doit avoir au moins a vol(M ) simplexes (pour une constante a ne dépendant que de X) est encore ouverte en général ; pour les espaces symétriques ayant des invariants L 2 positifs (ce qui inclut en particulier toutes les variétés hyperboliques réelles et complexes) on sait que c'est le cas (voir les remarques suivant le Théorème 1.30). Enfin, notons qu'en dimension 3 il est bien connu que la conclusion de ce théorème est fausse lorsqu'on considère aussi des variétés non-arithmétiques. En dimensions supérieures, rien n'est connu et il semble plausible qu'un résultat semblable soit valable sans l'hypothèse d'arithméticité (cependant les techniques que nous utilisons sont rendues en grande partie caduques par l'absence de celle-ci).

Les invariants topologiques les plus accessibles au calcul pour une variété triangulée M sont sans doute les groupes d'homologie H i (M, Z). Ce sont aussi des invariants assez puissants en pratique : par exemple, il a été observé empiriquement8 que l'on peut souvent distinguer deux variétés de dimension 3 en calculant l'homologie de leurs revêtements de petit degré. Il est donc naturel de s'y intéresser dans le cadre des problématiques étudiées ici. Un autre résultat obtenu avec Hurtado et Frączyk donne des bornes a priori sur la taille des nombres de Betti b

i (M ) = dim(H i (M, Z) ⊗ Q).
Théorème B (Voir le théorème 1.34 dans le chapitre 1). Soient X, G comme dans l'énoncé précédent ; il existe une constante β (2) 

(X) ≥ 0 et une fonction r(v) = v→+∞ o(v) telle que pour tout réseau arithmétique de congruence Γ dans G on ait b i (Γ\X) -β (2) (X) vol(Γ\X) ≤ r(vol(Γ\X)) si i = dim(X)/2; b i (Γ\X) ≤ r(vol(Γ\X)) sinon.
. Le théorème ne s'applique pas en général aux réseaux arithmétiques qui ne sont pas de congruence ; par exemple beaucoup de variétés hyperboliques arithmétiques ont des suites de revêtements finis où des nombres de Betti en-dehors du degré médian croissent linéairement en le degré. Le théorème précédant sur les triangulations donne une borne en O(vol(M )) pour tous les nombres de Betti d'un espace localement symétrique arithmétique, ce qui est vrai aussi pour les espaces symétriques non-arithmétiques et plus généralement pour les variétés à courbure négative pincée normalisée (c'est un théorème assez ancien dû à M. Gromov 9 ).

Notons que le théorème B ne dit rien sur des bornes inférieures pour les nombres de Betti en-dehors du degré médian. Dans la généralité où il est énoncé, les comportements possibles sont en effet très variés : on dispose d'exemples de suites de réseaux de congruence où les nombres de Betti sont identiquement nuls, aussi bien que d'exemples où ils croissent comme une puissance (d'exposant < 1) du volume. Les outils utilisés pour démontrer ces bornes inférieures proviennent de la théorie des formes automorphes10 ou de la géométrie 11 , mais sont toujours liés à la structure particulière des espaces symétriques et des réseaux arithmétiques considérés.

Les nombres de Betti ne suffisent pas à décrire complètement les groupes d'homologie H i (M, Z) à coefficients dans Z puisqu'ils ont a priori un sous-groupe de torsion non-trivial ; pour un groupe abélien A on notera A tors son sous-groupe de torsion. Comme pour les nombres de Betti, le théorème A implique une borne générale pour l'ordre des groupes de torsion H i (M, Z) tors . Plus précisément, il implique qu'il existe une constante C, ne dépendant que de X, telle que pour tout quotient arithmétique M = Γ\X on ait

log |H i (M, Z) tors | ≤ C vol(M ),
ce qui est aussi connu pour les variétés à courbure négative pincée 12 . En revanche, un résultat précis comme le théorème B n'est pas connu. Une conjecture exactement analogue à ce théorème (formulée par Nicolas Bergeron et Akshay Venkatesh13 est présentée ci-dessous (cf. §2.2). Cette dernière semble encore hors de portée même dans des cas particuliers ; on discute quand même de résultats analogues lorsqu'on considère une homologie à coefficients dans des systèmes locaux nontriviaux provenant de certaines représentations de G. Ces résultats sont formulés uniquement pour des suites de revêtements de congruence d'un espace de base fixé. On se concentre en particulier sur le cas où ce dernier est une orbi-variété hyperbolique non-compacte en dimension 3, la non-compacité compliquant nettement l'étude par des outils analytiques. Par exemple, on a le résultat suivant (la partie compacte vient d'un travail en commun avec Abért-Bergeron-Biringer-Gelander-Nikolov-Samet, mais l'argument est essentiellement celui de Bergeron-Venkatesh 14 ).

Théorème C (Voir les théorèmes 2.1 et 2.4 dans le chapitre 2). Soient Γ un réseau arithmétique dans PSL 2 (C) et (Γ n ) n≥1 une suite de sous-groupes de congruence de Γ.

1. Si Γ est cocompact et L est un réseau dans sl 2 (C) stable par l'action adjointe de Γ (qui existe si et seulement si le corps de traces de Γ est quadratique) alors 

lim n→+∞ log |H i (Γ n , L) tors | vol(Γ n \H 3 ) = 13 6π si i = 1 0 sinon.
log |H i (Γ n , L) tors | vol(Γ n \H 3 ) ≤ 13 6π si i = 1 0 sinon.
Le cas cocompact se généralise à tous les corps de traces ; on peut aussi remplacer la représentation adjointe par n'importe laquelle de ses puissances symétriques. L'énoncé plus faible dans le cas non-cocompact (noter que tout réseau arithmétique non-uniforme dans PSL 2 (C) est commensurable à un groupe de Bianchi) est dû à un obstacle de nature arithmétique qui n'apparaît pas dans le cas cocompact. Une borne inférieure pour des suites (Γ n ) particulières a été donnée par J. Pfaff 15 .

Une autre manière de considérer la torsion dans l'homologie est de fixer une variété hyperbolique arithmétique et de considérer des systèmes locaux de coefficients de rang tendant vers l'infini. Dans ce cadre, on peut faire des conjectures similaires à celles de Bergeron-Venkatesh. Dans un travail avec Pfaff, on démontre le résultat suivant pour les groupes de Bianchi.

Théorème D (Voir le théorème 2.7 dans le chapitre 2). Soit k un corps quadratique imaginaire et soit L n un réseau stable sous PSL 2 (Z k ) dans la n-ième puissance symétrique de sl 2 (C). On fixe ε > 0, si Γ est un sous-groupe de congruence principal dans PSL 2 (Z k ) de niveau assez élevé (en fonction de k, ε) et

M = Γ\H 3 alors lim inf n→∞ log |H 1 (Γ, L n ) tors | n 2 ≥ 1 2 -ε vol(M ) 2π et lim sup n→∞ log |H 1 (Γ, L n ) tors | n 2 ≤ (2 + ε) vol(M ) 2π .
Le résultat optimal serait que la limite de log |H 1 (Γ,Ln)tors|

n 2
existe et vaut vol(M ) 2π . Mentionnons aussi quelques résultats sur l'homologie qui ne seront plus évoqués dans ce mémoire. Avant d'être traitées dans le cadre des variétés arithmétiques dans leur ensemble, les questions asymptotiques sur les nombres de Betti ont d'abord été étudiées pour les suites de revêtement d'un complexe simplicial (ou CW) fixé. Le résultat séminal dans ce contexte est le théorème d'approximation de Lück 16 , où l'on considère une tour de revêtements telle que l'intersection des sous-groupes correspondants est un sous-groupe distingué et on cherche à relier l'asymptotique des nombres de Betti dans la suite en fonction du degré du revêtement aux nombres de Betti L 2 du revêtement galoisien infini. Des résultats similaires pour la torsion ont été démontrés dans le cas où les revêtements sont abéliens 17 , mais au-delà rien n'est connu en général.

Il est aussi naturel de se demander si des résultats similaires au théorème B sont valides pour les nombres de Betti en caractéristique positive. C'est un problème encore largement ouvert, en particulier il n'y a pas de résultat aussi général, ni même dans les tours de revêtements fini. En revanche dans certains contextes particulier on a des résultats plus précis, par exemple pour les nombres de Betti modulo p dans les tours p-adiques analytiques 18 .

Enfin, il existe quelques autres approches bien étudiées de la notion de complexité topologique, en particulier en petites dimensions 19 . En dimension 3, on peut aussi décrire les variétés en utilisant des constructions alternatives, par exemple les scindements de Heegaard qui définissent le genre de Heegaard d'une variété ; pour les variétés hyperboliques, on peut aussi définir un autre genre en considérant les revêtements finis obtenus comme tores de suspension d'une surface. Ces invariants ne sont pas propres par rapport au volume ou à la complexité topologique, cependant ils le deviennent lorsqu'on ne considère que des variétés hyperboliques arithmétiques de congruence 20 . Une autre complexité "faible" est donnée par le rang (c'est-à-dire le nombre minimal de générateurs) du groupe fondamental. Ce dernier est majoré par une fonction linéaire du volume, mais contrairement aux deux précédents invariants on ne connaît pas de borne inférieure pour les variétés de congruence en général. Notons que toutes ces complexités ne semblent pas aisément calculables en pratique pour une variété donnée, au-delà des exemples de petite taille. En théorie des groupes, le calcul du rang est un problème indécidable pour les présentations finies de groupes 21 , et même sur des familles spécifiques, on ne connait en général pas d'algorithme pour le calculer 22 .

Géométrie globale des espaces localement symétriques arithmétiques et sous-groupes aléatoires invariants

Les résultats topologiques exposés ci-dessus sont démontrés à l'aide d'outils géométriques. Pour comprendre la structure géométrique globale d'un espace localement symétrique la première étape est d'étudier sa décomposition en parties mince et épaisse. Plus précisément, pour M une variété riemannienne et R > 0, on note M ≤R l'ensemble des points de M autour desquels la boule de rayon R n'est pas plongée (la partie R-mince), et M >R son complément (la partie R-épaisse). Si M est un quotient de volume fini d'un expace symétrique X alors il existe un ε > 0 ne dépendant que de X tel que la topologie des composantes de M ≤ε est bien comprise 23 . La plupart de l'information topologique sur M est alors contenue dans M >ε , dont la structure géométrique locale plus simple permet l'utilisation de certaines techniques de manière plus performante. Par exemple, on y a un bon contrôle sur le noyau de la chaleur, ou on peut construire des triangulations en utilisant le nerf d'un revêtement par boules de rayon constant, ce qui permet déjà de démontrer certaines estimées grossières sur les nombres de Betti, ou sur le rang du groupe fondamental. Ces techniques ne sont cependant pas suffisantes pour démontrer le résultat plus précis des théorèmes B (qui n'est d'ailleurs pas vrai en général) ou A (qui n'est pas vrai au moins en dimension 3 dans le cas non-arithmétique).

Pour l'étude du noyau de la chaleur sur une variété compacte M (et partant de ses nombres de Betti), on a besoin d'étudier les parties M ≤R pour R arbitrairement grand. En effet, en utilisant des techniques standard 24 on peut en principe contrôler la trace du noyau de la chaleur par un terme en vol(M ≤R ) vol(M ) + o R (1) vol M ; si on contrôle le terme vol(M ≤R ) vol(M ) pour n'importe quel R fixé, on a donc des estimées sur les nombre de Betti. En pratique, il y a de nombreuses complications dans la mise en oeuvre (surtout liées aux parties à petit rayon d'injectivité) mais ce schéma s'applique plus ou moins tel quel au moins dans le cadre des variétés hyperboliques réelles.

Les résultats principaux dans cette veine que l'on utilise dans la démonstration des théorèmes A et B (et des cas particuliers antérieurs pour le théorème C) sont regroupés dans le théorème suivant, qui est démontré dans cette généralité dans le travail avec Frączyk et Hurtado.

Théorème E (Voir les théorèmes 1.1 et 1.4 dans le chapitre 1). Soient X un espace symétrique et G son groupe d'isométries.

1. Il existe des δ, η > 0 tel que pour tout réseau arithmétique Γ dans G de corps de traces k,

et M = Γ\X, on a vol M ≤η[k:Q] ≤ e -δ[k:Q] vol(M ). 2. Pour tout R > 0 il existe une fonction t R : [0, +∞[ → [0, +∞[ telle que lim v→+∞ t R (v)/v = 0 et pour tout réseau arithmétique de congruence Γ dans G et M = Γ\X, on a vol (M ≤R ) ≤ t R (vol(M )).
Le premier résultat donne un contrôle qualitatif sur le volume des parties minces, suffisant pour que l'on puisse l'utiliser en conjonction avec les bornes de Dobrowolski25 sur la systole des espaces localement symétriques arithmétiques pour construire des revêtements par boules plongées avec un nombre de boules en O(vol), et en déduire par une construction combinatoire standard (le nerf d'un tel recouvrement est équivalent en homotopie à l'espace recouvert) des triangulations qui satisfont les conclusions du théorème A. On peut aussi l'utiliser pour estimer les nombres de Betti en fonction du degré [k : Q] du corps de traces, en utilisant la théorie fine des représentations unitaires de G.

Le deuxième résultat implique le théorème B via un résultat général sur les nombres de Betti dû à Abért-Bergeron-Biringer-Gelander 26 , dont la démonstration utilise la décomposition mince/épaisse de manière plus combinatoire. On peut aussi en principe utiliser les deux parties du théorème E en conjonction pour appliquer les techniques analytiques décrites ci-dessus, mais vu le résultat général déjà existant nous n'avons pas rédigé cette démonstration 27 .

La condition que le quotient

vol(M ≤R ) vol(M )
tende vers 0 dans une suite d'espaces localement isométriques à X peut être interprétée comme définissant une notion de convergence vers X. Cette dernière est appelée la "convergence de Benjamini-Schramm" d'après le travail 28 de ces auteurs sur une notion correspondante sur les graphes ; dans le cadre des espaces localement symétriques, elle a été introduite dans un travail en commun avec Abért-Bergeron-Biringer-Gelander-Nikolov-Samet (après que son analogue discret ait été introduit par Abért-Glasner-Virág). Une observation importante est que l'on peut placer cette convergence dans un cadre plus général, en plongeant l'ensemble des espaces localement-X de volume fini dans un espace compact. Cet espace est de nature probabiliste ; on peut le décrire de manière algébrique (comme l'ensemble des sous-groupes aléatoires invariants de G) ou géométrique (avec les variétés localement-X unimodulaires 29 ). La version algébrique est la plus simple à décrire et c'est donc elle qu'on va retenir ici : un sous-groupe aléatoire invariant de G est une variable aléatoire borélienne à valeurs dans l'espace Sub G des sous-groupes fermés de G muni de la topologie de Chabauty, dont la loi est invariante sous l'action par conjugaison de G sur Sub G . Par les théorèmes généraux de compacité l'ensemble de ces sous-groupes aléatoires invariants, muni de la topologie de la convergence faible-étoile des mesures, est un espace compact, que l'on notera IRS(G). Un réseau Γ de G définit un élément dans IRS(G) en prenant un conjugué aléatoire de G (ceci se justifie rigoureusement par le fait que la classe de conjugaison de Γ dans G est un G-facteur de l'espace G/Γ qui possède une mesure de probabilité G-invariante). La condition de convergence de Benjamini-Schramm vers X se réinterprète comme la convergence faible-étoile des sous-groupes aléatoires invariants vers un sous-groupe central (la masse de Dirac supportée sur un sous-groupe distingué dans G est un point de IRS(G)).

La compacité de l'espace IRS(G) permet d'utiliser des arguments non-effectifs pour établir la convergence de Benjamini-Schramm. Pour ceci, on a besoin de propriétés générales des éléments de IRS(G) ; ces derniers semblent aussi être des objets d'étude intéressants par eux-mêmes et pour leurs liens avec la théorie des actions ergodiques de G et de ses réseaux. En général, on ne sait pas grand-chose sur l'espace IRS(G), sauf quand G n'a que des facteurs simples de rang supérieur, auquel cas il n'existe que les sous-groupes aléatoires invariants construits à partir des sous-groupes distingués et des réseaux de G (c'est une conséquence d'un théorème dû à G. Stuck et R. Zimmer 30 ). Le dernier chapitre de ce mémoire présente quelques résultats en rang 1, notamment des constructions plus compliquées et des propriétés remarquables. Pour ce qui est des constructions "exotiques", le résultat principal est le suivant, obtenu dans la deuxième partie du travail avec Abért-Bergeron-Biringer-Gelander-Nikolov-Samet.

Théorème F (Voir le théorème 4.5 dans le chapitre 4). Pour tout d ≥ 2, il existe un continuum de sous-groupes aléatoires invariants dans SO(d, 1) pour lesquels la mesure des sous-groupes de réseaux est nulle.

Quelques propriétés remarquables sont données par le résultat suivant (la première partie vient encore du travail avec Abért-Bergeron-Biringer-Gelander-Nikolov-Samet, la deuxième est obtenue dans un article postérieur écrit avec Biringer).

Théorème G (Voir les théorèmes 4.3 et 4.4 dans le chapitre 4). Soit µ un sous-groupe aléatoire invariant ergodique dans SO(d, 1).

1. Si µ n'est pas central alors l'ensemble limite de µ-presque tout sous-groupe est S n-1 . 

Si

Variété hyperboliques génériques

On dispose d'une classification satisfaisante des variétés hyperboliques de congruence, au sens d'une description uniforme via des invariants arithmétiques31 , que l'on peut de plus en principe relier à leur description topologique (par triangulation) et à leurs invariants géométriques (en particulier le volume). Un exemple d'application de cette classification est que l'on sait donner des asymptotes assez précises sur le nombre de variétés hyperboliques arithmétiques de congruence de volume au plus v quand v tend vers l'infini 32 . Pour les variétés hyperboliques arithmétiques qui ne sont pas de congruence (celles-ci existent en toute dimension), on ne dispose pas d'une description uniforme autre que que celle donnée par leur définition, c'est-à-dire qu'elles correspondent aux sous-groupes d'indice fini dans les réseaux arithmétiques maximaux (ces derniers sont de congruence et on sait donc les décrire systématiquement). Un sous-groupe d'indice fini correspond à un morphisme vers un groupe symétrique fini, donné par l'action sur le quotient. Le problème de comptage des sous-groupes est donc fortement lié au problème suivant : étant donné un groupe Γ de type fini, estimer le nombre de morphismes de Γ vers le groupe symétrique S n quand n → +∞. Cependant le comptage de tels morphismes est extrêmement difficile pour des groupes de présentation finie généraux : sans information supplémentaire, on ne dispose pas d'autre méthode que celle de compter les solutions dans S n aux équations données par les relations. On dispose de réponses complète pour les groupes de surface et plus généralement les groupes fuchsiens33 et ceci a été appliqué au comptage précis du nombres de surfaces hyperboliques arithmétiques 34 .

Il n'y a, à ce jour, aucune variété hyperbolique de dimension 3 ou plus pour laquelle un équivalent asymptotique du nombre de sous-groupes d'indice n est connu. Certaines d'entre elles ont des groupes fondamentaux de présentation assez simple 35 mais la structure de la relation ne semble pas adaptée à la solution du problème ci-dessus. Une famille de réseaux hyperboliques plus intéressante de ce point de vue est donnée par les groupes de réflexions à angles droits : ils sont engendrés par des involutions parmi lesquelles les seules relations sont des commutations. Ce sont des groupes de Coxeter à angles droits ; dans un travail avec Baik et Petri, nous avons étudié la croissance des sous-groupes pour cette famille en général.

Nos résultats sont loin de donner une solution complète et ils sont assez longs à énoncer précisément ; on va quand même en donner ici une version condensée. On rappelle que si G est un graphe fini, on peut lui associer un groupe de Coxeter à angles droits, qui est engendré par des involutions correspondant aux sommets de G, deux générateurs commutant s'ils sont reliés par une arête de G. On définit un invariant de graphes γ(G) de la manière suivante : à un sous-graphe induit de G qui est isomorphe à une union disjointe de graphes complets C 1 , . . . , C n (autrement deux sommets du même C i sont toujours adjacents dans G mais si i ̸ = j alors au cun sommet de C i n'est adjacent à un sommet de C j ), on associe le poids w = n i=1 (1 -2 -|C i | ), et on définit γ(G) comme le maximum de ces poids. Nos résultats ne sont pas valides pour tous les graphes, on introduit la classe AT contenant les arbres finis, les graphes obtenus en leur ajoutant des sommets adjacents uniquement à une ou plusieurs feuilles et ceux obtenus en ajoutant encore des sommets adjacents seulement aux précédents. C'est une classe assez riche mais en aucun cas générique, et malheureusement il n'y a pas de groupes de réflexions de l'espace hyperbolique dans AT .

Théorème H (Voir le théorème 3.9 dans le chapitre 3). Soit Γ le groupe de Coxeter à angles droits associé à un graphe fini G. On note s n (Γ) le nombre de sous-groupes d'indice n dans Γ.

1. Si G est dans la classe AT , ou si Γ est le groupe engendré par les réflexions par rapport aux faces d'un octaèdre idéal régulier à angles droits alors

lim n→+∞ log s n (Γ) n log(n) = γ(G) -1.
2. Si Γ 1 , . . . , Γ m sont des groupes de Coxeter à angles droits virtuellement cycliques 36 , m ≥ 2,

et Γ = Γ 1 * • • • * Γ m est leur produit libre, alors il existe a, b > 0, c ∈ R (effectivement calculables) tels que s n (Γ) ∼ an c+1 e b √ n (n!) m-1 .
On présente aussi un résultat similaire sur le croissance des sous-groupes pour les groupes d'Artin à angles droits, sans limitation sur le graphe définissant le groupe ; mais bien que les liens de ces groupes avec la géométrie hyperbolique soient extrêmement intéressants dans d'autres perspectives, ils sont quasiment sans intérêt pour les problèmes qui nous intéressent ici.

Au-delà des problèmes de comptage, les propriétés topologiques et géométriques des variétés hyperboliques arithmétiques de congruence données par les théorèmes B et E ne sont pas partagées par toutes les variétés hyperboliques arithmétiques. Le mieux que l'on puisse espérer est que ces propriétés soient vérifiées presque sûrement au sens suivant : la proportion parmi les variétés hyperboliques arithmétiques de volume au plus v qui vérifient ces estimées (pour une précision fixée arbitrairement proche de l'asymptote) tend vers 1 quand v tend vers l'infini. Étant donné que c'est le cas pour les réseaux arithmétiques maximaux, le problème se réduit essentiellement à étudier les sous-groupes d'indice fini dans un réseau donné. Il a été en grande partie résolu 37 en dimension 2. En dimensions supérieures le problème ne semble pas abordable dans l'état actuel des connaissances.

Enfin, il existe en toute dimension des variétés hyperboliques de volume fini qui ne sont pas arithmétiques. Le cas des dimensions 2 et 3 est à traiter à part et on n'en discutera pas ici. À partir de la dimension 4, il n'existe actuellement qu'une seule construction systématique de telles variétés, dûe originellement à Gromov et Piatetski-Shapiro 38 mais dont de nombreuses variantes adaptées à des problèmes précis ont été introduites depuis 39 . En particulier, on verra au chapitre 3 que cette construction suffit à montrer que les classes de commensurabilité non-arithmétiques sont beaucoup plus nombreuses que les arithmétiques 40 .

Théorème I (Voir le theorème 3.1 dans le chapitre 3). Pour n ≥ 1 et v > 0, on note L com (v) (respectivment L a,com ) le nombre de classes de commensurabilité de réseaux (respectivement de réseaux arithmétiques) dans SO(n, 1) qui contiennent un réseau de covolume ≤ v. Alors on a

lim v→+∞ L a,com (v) L com (v) = 0.
Une classification à commensurabilité près des variétés hyperboliques de volume fini (y compris non-arithmétiques) en toute dimension ≥ 4 est peut-être possible, mais sans doute hors de portée pour le moment (même des questions simples y afférant sont complètement ouvertes-par exemple on ne sait pas si pour tout réseau il existe un réseau arithmétique avec lequel il ait une intersection Zariski-dense). Pour étudier des variétés "génériques" en-dehors du cadre arithmétique, on peut essayer d'utiliser d'autres modèles probabilistes, au moins en petite dimension. En dimension 2, on sait construire des surfaces aléatoires à partir de triangulations, qui sont presque sûrement hyperboliques et dont les propriétés géométriques et topologiques génériques sont bien comprises 41 . Dès la dimension 3, cette construction pose problème. En effet, les complexes simpliciaux obtenus en collant deux à deux des faces de tétraèdres ne sont pas automatiquement des variétés, vu que le lien d'un sommet dans le complexe est une surface triangulée qui est rarement homéomorphe à une sphère 42 . Il est donc difficile de construire un modèle aléatoire reposant sur les triangulations qui soit accessible à l'étude. Pour finir le chapitre 3, on présente un travail avec Petri, où on étudie les variétés à bord obtenues en excisant les sommets. Nous y établissons entre autres les propriétés suivantes, qui illustrent dans le contexte aléatoire le lien du volume avec le complexité topologique.

Théorème J. Pour un n ≥ 5 soit M n la 3-variété compacte à bord obtenue en excisant les sommets d'un 3-complexe simplicial aléatoire (dans le modèle de configurations, en conditionnant pour que le graphe dual soit sans boucles ou bigones). Alors avec probabilité tendant vers 1 quand n → +∞ on a que M n admet une unique métrique hyperbolique à bord totalement géodésique et vol(M n ) ∼ n→+∞ v O • n (où v O est le volume de l'octaèdre régulier idéal à angles droits dans H 3 ).

En plus du cas des surfaces mentionnés plus haut, ce travail a aussi été motivé par des modèles aléatoires déjà existant en dimension 3. Ceux-ci utilisent les constructions propres à la dimension 3, notamment les scindements de Heegaard aléatoires 43 . Dans ce cas un invariant topologique (le genre de Heegaard) est fixé au départ. La construction est donc conditionnée par cet invariant ; ceci signifie qu'elle présente un biais intrinsèque. Les modèles de triangulations aléatoires ne devraient pas présenter de tel biais, et nous le démontrons d'ailleurs dans le cas du modèle à bord.

Directions futures

La première question relative aux théorèmes B et E est d'en obtenir des versions quantitatives. Les estimées optimales que l'on peut espérer obtenir pour la convergence de Benjamini-Schramm des variétés de congruence seraient de la forme Le second problème est qu'il faudrait étendre la démonstration utilisant les techniques cidessus au cas d'une suite de réseaux dont les corps de traces sont de degré tendant vers l'infini, notre démonstration actuelle utilisant des techniques complètement différentes ne faisant intervenir que le degré du corps de traces, qui est très insuffisant pour obtenir une estimée asymptotique du volume. Pour le cas de type A 1 ceci a été fait dans le travail de Fraczyk cité plus haut ; une partie de ses arguments s'adapte sans trop de difficultés (au moins dans le cas d'intégrales orbitales pour des éléments réguliers) mais certains éléments pourraient poser problème dans le cas des types exceptionnels et des formes trialitaires.

vol(M ≤δ log vol(M ) ) ≪ (vol M ) 1-η (1) 
Mentionnons que toute estimée de la forme (1) implique, par des arguments standards 44 , des estimées pour les nombres de Betti de la forme b i (M ) ≪ (vol M ) 1-α pour les degrés suffisament éloignés de la dimension moitié (par exemple i < d-1

2 pour les d-variétés hyperboliques de congruence), et b i (M ) ≪ vol(M )/ log(vol M ) α pour les degrés restants 45 (par exemple i = d-1 2 , d+1 2 pour les variétés hyperboliques de dimension d impaire).

Un problème sans doute plus accessible serait d'étendre les applications topologiques du résultat géométrique E (qui est aussi valide pour des réseaux Γ ayant des éléments de torsion) aux orbi-variétés. Ceci nécèssiterait en particulier une étude spécifique du lieu singulier de ces dernières ; ceci a été fait dans un travail antérieur avec Fraczyk46 pour les orbi-variétés de dimension 3, sans arriver jusqu'au résultat sur les triangulations. Il existe47 par ailleurs déjà des méthodes pour construire des triangulations sur les orbi-variétés hyperboliques.

Une question dans la même veine que les résultats de comparaison entre volume et complexité topologique est la suivante : étant donné une 3-variété N , existe-t'il une infinité d'entrelacs dans N dont le complémentaire est difféomorphe à une variété hyperbolique arithmétique de congruence? 48 On s'attend à une réponse négative, mais la solution ne peut pas être donnée en utilisant uniquement l'expansion ou la convergence de Benjamini-Schramm des variétés de congruence. Dans un travail en cours avec Steffen Kionke, nous démontrons des résultats dans cette direction, et nous espérons arriver sous peu à une solution complète. De plus, on peut espérer que les méthodes utilisées se prêtent (modulo un travail conséquent) à une implémentation effective, permettant par exemple de lister tous les entrelacs dans la sphère S 3 dont le complément est hyperbolique de congruence. Plus précisément, nos méthodes devraient aboutir sur des bornes effectives pour le co-volume d'un réseau de congruence sans torsion pour lequel la variété hyperbolique associée est difféomorphe à un complémet d'entrelacs dans S 3 . On peut espérer, moyennant un travail conséquent, réduire ensuite suffisament ces bornes pour pouvoir examiner un par un 49 tous les sous-groupes de congruence les satisfaisant pour déterminer lesquels sont bien des compléments d'entrelacs.

Le cas des coefficients triviaux dans la conjecture de Bergeron-Venkatesh sur la torsion homologique (c'est-à-dire une extension du théorème C à la suite des groupes d'homologie entiers H 1 (Γ n , Z)) semble hors de portée pour le moment, même si les problèmes auxilaires qu'elle pose semblent accessibles à un progrès incrémental 50 . La conjecture de Bergeron-Venkatesh est formulée pour n'importe quel autre espace symétrique, et dans le cas de réseaux cocompacts et de certains coefficients non-triviaux la partie (1) du théorème C se généralise. En petites dimensions, il est possible de vérifier la conjecture pour des coefficients triviaux de manière assez précise, en calculant numériquement l'homologie de revêtements de congruence de haut degré et en comparant les résultats avec l'asymptote attendue. Ceci a été fait de manière concluante51 en dimension 3. La conjecture de Bergeron-Venkatesh prédit que l'ordre des sous-groupes de torsion dans l'homologie des variétés localement symétriques de dimension paire est toujours sous-exponentielle. Les premiers cas intéressants après la dimension 3 sont donc de dimension au moins 5. La conjecture prédit que pour les variétés hyperboliques arithmétiques de dimension 5 et les espaces localement isométriques à SL 3 (R)/SO(3), le sous-groupe de torsion homologique en degré 2 devrait croître exponentiellement en le volume dans des suites de revêtements de congruence.

Dans le cadre d'un projet avec Aurel Page, nous avons commencé une telle vérification pour certaines orbi-variétés hyperboliques de dimension 5. La difficulté est nettement plus relevée qu'en dimension 3 vu la paucité de revêtements de petit degré pour les petites orbi-variétés arithmétiques. En effet, les sous-groupes de congruence de petit indice correspondent à des sous-groupes des groupes finis de type Lie qui sont des groupes orthogonaux en dimension 6, et de tels groupes ont un indice croissant rapidement avec le niveau 52 . Dans les cas les plus favorables, le plus petit indice d'un tel sous-groupe est p 3 pour un groupe de niveau p (pour certains "bons" nombres premiers p, dépendant du choix initial du réseau Γ mais ayant une densité asymptotique positive), à contraster avec le cas des réseaux arithmétiques dans SL 2 (C) à corps de traces quadratique, où pour la moitié (asymptotiquement) des p il existe un sousgroupe d'indice p. Nous espérons cependant des résultats concluants sous peu, en utilisant des techniques d'accélération des calculs d'homologie 53 pour pouvoir accéder à des sous-groupes de très grand indice. Nous envisageons aussi d'étudier (y compris en dimension 3) d'autres questions plus fines, aussi posées par Bergeron et Venkatesh, sur la structure des groupes d'homologie, en particulier sur les statistiques du rang et des exposants des p-sous-groupes en fonction de p.

Il est naturel d'essayer de généraliser les résultats sur la croissance des sous-groupes de Coxeter à angles droits donnés dans le théorème H. Même sur des exemples concrets les difficultés combinatoires apparaissent énormes, en particulier les méthodes utilisées pour les estimées les plus fines ne peuvent pas se généraliser de manière directe au-delà du cadre virtuellement abélien. On peut quand même espérer y parvenir pour quelques cas où la structure du graphe définissant le groupe est particulièrement simple. Le cas-test serait celui des graphes cycliques, qui définissent des groupes représentables comme groupes fuchsiens engendrés par des réflexions. Pour ceux-ci, de bonnes asymptotes pour la croissance des sous-groupes sont connues 54 , mais il serait intéressant de les retrouver par des méthodes différentes 55 . On peut de plus espérer obtenir des résultats de convergence des sous-groupes génériques comme corollaire. Notons pour finir qu'au delà des groupes fuchsiens, l'extension aux groupes de Coxeter généraux semble encore plus difficile ; nous n'avons même pas un énoncé conjectural pour les groupes de réflexions des polyèdres de Coxeter dans les espaces hyperboliques réels de dimension au moins 3.

Pour ce qui est des sous-groupes aléatoires invariants dans PSL 2 (R), le théorème G est optimal en ce qui concerne la topologie des surfaces associées. En revanche, on sait peu de choses sur leurs invariants métriques : l'espace des structures hyperboliques sur une surface de type infini est immense, mais il est clair que celles qui apparaissent dans le support d'une surface aléatoire obtenue comme quotient du plan hyperbolique par un sous-groupe aléatoire invariant n'en occupent qu'une petite partie. Dans ce cadre il semble naturel d'étudier les invariants métriques asymptotiques ; par exemple il est connu56 que l'exposant critique d'une surface aléatoire unimodulaire est > 1/2 et on peut se demander si le type topologique de la surface implique des contraintes supplémentaires sur l'exposant critique ou la croissance volumique. Par exemple, si µ est un sous-groupe aléatoire invariant ergodique de SL 2 (R) (supporté sur les sous-groupes sans torsion) et on sait que H\H 2 a µ-presque sûrement deux bouts de volume infini, est-ce-que la croissance du volume est au plus57 linéaire? Si µ-presque sûrement il y a un nombre infini de bouts et le rayon d'injectivité est positif, est-ce-que la croissance volumique est exponentielle? Il existe des exemples au comportement "sauvage" dans le cas des graphes, par exemple un graphe unimodulaire dont la croissance oscille entre exponentielle et sous-exponentielle 58 .

Une question adjacente est de donner une définition géométrique de moyennabilité pour les surfaces unimodulaires qui forcerait en particulier l'exposant critique à être égal à 1 (pour des revêtements galoisiens de surfaces hyperboliques de volume fini 59 , le groupe de Galois est moyennable si et seulement si l'exposant critique est 1).

Chapter 1

Geometry and topology of arithmetic locally symmetric spaces

Introduction

Let us start by describing in some detail the construction of arithmetic lattices in semisimple connected linear Lie groups and arithmetic locally symmetric spaces. Given such a group G, which we assume to be without compact factors, and a maximal compact subgroup K of G the quotient X = G/K has a natural G-invariant Riemannian metric. Such spaces are called symmetric spaces (of noncompact type without Euclidean factors) as they can be characterised in purely geometric terms. All their sectional curvatures are nonpositive and they are simplyconnected. Locally symmetric spaces are connected complete Riemannian manifolds which are locally isometric to symmetric spaces. Equivalently they are the quotients of X by discrete, torsion-free subgroups of G (these subgroups are exactly those acting properly discontinuously and freely on X). If X is fixed, we call such a manifold a locally-X manifold. The manifold

M = Γ\X is compact (respectively of finite volume) if and only if Γ is cocompact (resp. of finite covolume) in G; such Γ are called uniform lattices (resp. lattices) in G.
If G is a semisimple Lie group without compact factors, one can always construct lattices in G as follows (see [START_REF] Borel | Compact Clifford-Klein forms of symmetric spaces[END_REF]). Call an embedding of a number field k into the complex numbers an infinite place of k; the set of such embeddings is usually denoted by V k,∞ . If v is an infinite place of k the field k v is the completion of k associated with v: this is the closure of its image inside C, which can be either R or C. Take a totally real1 number field k with ring of integers Z k , a k-subgroup G of a general linear group over k, and a set S of infinite places such that

v∈S G(k v ) is isogenous to G and G(k v ) is compact for all infinite places v of k outside S. Then the group of integer points G(Z k ) is discrete in v∈V k,∞ G(k v )
and so is its projection to v∈S G(k v ); moreover a theorem of A. Borel and Harish-Chandra states that it has cofinite volume in there, and another of G. Mostow and T. Tamagawa that it is cocompact if and only if G is k-anisotropic. We can then take its image in G via the isogeny we assumed to exist and get a lattice there. Any discrete subgroup of G which is commensurable to a group obtained this way is called an arithmetic lattice in G. It is said to be irreducible if the group G in the construction is k-simple. An obvious necessary condition for a semisimple group to have an irreducible arithmetic lattice is that all its simple factors should have the same absolute type; it is also a sufficient condition by [START_REF] Platonov | Algebraic groups and number theory[END_REF]Proposition 6.17].

The commensurability clause in the definition of an arithmetic lattice leaves a degree of vagueness. A more rigid definition is that of a congruence arithmetic lattice2 : a lattice in the commensurability class of the arithmetic lattice G(Z k ) in v∈S G(k v ) is said to be congruence if its intersection with the image of G(k) satisfies the property that it is equal to the intersection of its closure in G(A k,f ) (where A k,f denotes the ring of finite adèles of k) with G(k). In particular, if Γ is a congruence lattice in the commensurability class of G(Z k ) and ∆ the smallest normal subgroup of

G(Z k ) contained in Γ then G(Z k )/∆ is a finite quotient of the profinite group v∈V k,f G(Z kv )
. This shows that this definition of congruence subgroup generalises the classical example of the congruence subgroups given by matrices congruent to the identity mod n in SL 2 (Z). Note that the congruence lattices need not be contained in G(Z k ), in fact there are infinitely many maximal lattices in the commensurability class. Unless G is adjoint, they need not even be contained in G(k).

In this chapter, we study the geometry of the family of all congruence lattices in a fixed semisimple group G as above. We will be concerned mostly with the geometry in terms of Benjamini-Schramm convergence to the symmetric space X. This notion was first studied in the context of locally symmetric spaces in the joint work [2] with M. Abért, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov and I. Samet, and it roughly means that congruence locally-X manifolds of large volume look locally (at any fixed scale) like X at most points; i.e. for any fixed R > 0, the proportion of points x where the ball of radius R around x is not embedded (the R-thin part) is much smaller than the volume.

The most general result about this is Theorem 1.1, from the joint work [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF] with M. Fraczyk and S. Hurtado, which establishes this property for the family of all congruence arithmetic lattices in a given group G. This theorem is the combination of several special cases, which are proven using very different techniques. The first one is the case of congruence subgroups in a fixed arithmetic lattices, which was dealt with in [2]; in this setting, we obtain by essentially group-theoretical methods a much more precise result. The second result, from [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF], gives an estimate for the volume of the R-thin part in terms of the degree of the trace field of an arithmetic lattice (the field k occuring in the construction detailed above). The proof is purely geometrical, the arithmeticity only mattering through a result of E. Breuillard [START_REF] Breuillard | A height gap theorem for finite subsets of GL d (Q) and nonamenable subgroups[END_REF] which implies a refined version of the Margulis lemma taking into account the degree of the trace field. The last case, also from [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF], is that of maximal lattices with trace fields of fixed degree, for which we use the advanced structure theory of arithmetic lattices, the Prasad volume formula and we prove strong estimates for orbital integrals and the number of conjugacy classes of small displacement. In the end, this is not sufficient to imply what we want and we resort to a non-effective criterion for Benjamini-Schramm convergence.

We also include an effective result from [START_REF] Raimbault | Sur la convergence des orbi-variétés arithmétiques[END_REF] about the family of Bianchi groups which uses quite explicitely classical reduction theory for SL 2 . The estimates in this result are quite better than those that can be obtained in the general case (even restricting to hyperbolic 3-manifolds where convergence in general was proven by M. Fraczyk with effective bounds) and the methods of proof are completely different from those of the other results.

The motivation for studying Benjamini-Schramm convergence in [2] was initially to generalise asymptotic results about Betti numbers of finite covers (namely the Lück Approximation Theorem) to the more general setting of locally symmetric space with fixed local geometry. The result on congruence arithmetic lattices implies such a result for the family of congruence arithmetic lattices. In low dimensions, it can also be applied to other topological invariants; we present a result from the joint work [START_REF] Frączyk | Betti numbers of Shimura curves and arithmetic three-orbifolds[END_REF] with M. Fraczyk where we generalise an asymptotic Gauss-Bonnet formula for the genus of modular surfaces due to J. G. Thompson to the family of all compact congruence arithmetic 2-orbifolds. Finally, the estimates on thin parts of arithmetic locally symmetric spaces with trace field of large degree from [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF] implies a result about optimal triangulations of such spaces which in turn gives bounds for the torsion homology of such spaces.

Statement of results

A general result

The following result from [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Theorem D], establishes the Benjamini-Schramm convergence of congruence arithmetic locally symmetric spaces.

Theorem 1.1. Let G be a connected linear semisimple Lie group, without compact factors, and let X be its symmetric space. For any R > 0 there exists a function t R : ]0, +∞[ → ]0, +∞[ such that lim v→+∞ (t R (v)/v) = 0 and for any irreducible locally-X congruence arithmetic orbifold M we have

vol(M ≤R ) ≤ t R (vol M ).
This was known previous to [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF] in a few particular cases: when the group G is of higher rank and has property (T) (see Theorem 1.5 below), and in the complementary higher-rank case where G is a product (proven in [START_REF] Levit | On Benjamini-Schramm limits of congruence subgroups[END_REF]); note that the first result uses no assumption of arithmeticity or congruence, while the second does through the use of property (τ ) for congruence arithmetic lattices from [START_REF] Clozel | Démonstration de la conjecture τ[END_REF]. For rank 1 groups, we detail some previously known results below.

The proof of this theorem consists in collating various specialisations: first we deal with lattices whose trace field has degree going to infinity, see Theorem 1.4, then with maximal lattices whose trace field has fixed degree, see Theorem 1.20, and finally with congruence subgroups in a fixed arithmetic lattice. For the last point, Theorem 1.2 gives a quantitative result but only for uniform lattices. The case of a non-uniform lattice can be dealt with using non-effective arguments, which we explain in §1.4.3; a generalisation of the effective result was given by T. Finis and E. Lapid in [START_REF] Finis | An approximation principle for congruence subgroups[END_REF][START_REF] Finis | An approximation principle for congruence subgroups. II: Application to the limit multiplicity problem[END_REF].

The arguments for each case are essentially disjoint; in principle it should be possible to give a unified proof but this would require many nontrivial extensions of our arguments for the second case. We note that in the case of lattices in groups with factors of type A 1 , such a proof was given by M. Fraczyk in [START_REF] Frączyk | Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds[END_REF], which is the foremost inspiration for our proof of the second case.

Explicit results in some special cases

For some families of lattices, we can say more about the volume of the thin part. That is, we can get a more or less explicit form for the function t R in Theorem 1.1.

Congruence covers

In the setting of congruence subgroups of a fixed uniform arithmetic lattice (which need not be congruence) a more precise version of Theorem 1.1 is proven in [2, Theorem 5.2]. Theorem 1.2. Let Γ be a uniform irreducible arithmetic lattice in a semisimple group G. There are constants α > 0 (a priori depending on Γ) and C (depending on R, and a priori also on Γ), such that for any congruence subgroup ∆ ≤ Γ and M = ∆\X we have

vol(M ≤R ) ≤ C(vol M ) 1-α .
We present the proof of this in §1.3.1 below. This has been generalised to nonuniform lattices by T. Finis-E. Lapid in [START_REF] Finis | An approximation principle for congruence subgroups[END_REF][START_REF] Finis | An approximation principle for congruence subgroups. II: Application to the limit multiplicity problem[END_REF] (the case where G = SL 2 (C) was treated shortly before in [START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF]Theorem B]).

Bianchi groups

Bianchi groups are arithmetic lattices in SL 2 (C) of the form SL 2 (Z k ) where k is an imaginary quadratic field. The following result on this family of arithmetic groups is [START_REF] Raimbault | Sur la convergence des orbi-variétés arithmétiques[END_REF]Theorem 1.3].

Theorem 1.3. For any α < 1/3 and R > 0, there exists C > 0 such that for any Bianchi group Γ = SL 2 (Z k ) and M = Γ\H 3 we have

vol(M ≤R ) ≤ C(vol M ) 1-α .
We can use the geometric form of the Jacquet-Langlands correspondance to deduce from this result its analogue for compact orbifolds defined over quadratic fields. On the other hand M. Fraczyk has proven the most general possible result about hyperbolic 3-manifolds in his thesis (published in [START_REF] Frączyk | Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds[END_REF]), using techniques that were partly generalised in the preprint [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF] which we describe in 1.5 below. We should also cite J. Matz's paper [START_REF] Matz | Limit multiplicities for SL 2 (O F ) in SL 2 (R r 1 ⊕ C R 2 )[END_REF] where she generalizes the statement above to groups SL 2 (Z k ) with k a number field with arbitrary fixed signature (r 1 , r 2 ) (so they are lattices in the same Lie group SL 2 (R)

r 1 × SL 2 (C) r 2 ).

Trace field of unbounded degree

A very general explicit result (which however does not apply to the two cases above) is the following one, from [42, Theorem C].

Theorem 1.4. Let G be a semisimple Lie group as in Theorem 1.1 and X its symmetric space. There exist C, ϵ, δ > 0 depending only on G such that for any arithmetic lattice Γ in G with trace field k Γ and M = Γ\X, we have

vol(M ≤ϵ[k Γ :Q] ) ≤ Ce -δ[k Γ :Q] vol M.

Higher rank

In the case where G is higher rank and has no factors locally isomorphic to SO(n, 1) or SU(n, 1), a much simpler result can be proven [2, Theorem 1.5].

Theorem 1.5. Let G be a semisimple Lie group of real rank at least 2 and with Kazhdan's property (T). For any R > 0, there is a function t R : ]0, +∞[ → ]0, +∞[ such that lim v→+∞ (t R (v)/v) = 0 and for any irreducible locally-X orbifold M , we have

vol(M ≤R ) ≤ t R (vol M ).
This is a priori more general than Theorem 1.1 when restricted to these groups G. On the other hand, for such G the Margulis superrigidity theorem implies that all lattices are arithmetic, and the congruence subgroup problem is expected to have a positive solution, so in fact it may well be that all lattices in such a G are congruence arithmetic. Since the congruence subgroup problem remains open in some cases, the statement above remains interesting in its own right, maybe even as a slight additional piece of evidence that the congruence subgroup property should hold for these G.

A note

In the exposition below, we will often restrict to the case where G is simple when this is convenient. Some additional difficulties appear in the proof of the general case but they can be overcome without much difficulty.

Direct approaches

In this section, we present various methods to estimate directly the volume of the thin part, each proving one of the quantitative results above.

Congruence subgroups

We sketch here the proof of Theorem 1.2. First we notice that studying the ratio vol(M ′ ≤R )/ vol(M ′ ) for M ′ a finite cover of a fixed orbifold of non-positive curvature and finite volume translates to a question in pure group theory. Lemma 1.6. For any cocompact arithmetic lattice Γ in G, there exist C, c > 0 depending only on Γ such that for any R > 0 and any finite-index subgroup ∆ ≤ Γ and M = ∆\X we have

vol(M ≤R ) ≤ Ce cR [γ]∈C ≤R (Γ) Fix Γ/∆ (γ)
where

• C ≤R (Γ) is the set of conjugacy classes [γ] ̸ = {Id} of Γ such that there exists x ∈ X with d X (x, γx) ≤ R;
• Fix Γ/∆ (γ) is the subset of Γ/∆ constisting of those cosets g∆ for which γg∆ = g∆.

A proof is given in [2, Section 5.7]. We sketch a slightly different and more explicit argument in the cas where G is of real rank 1 (which generalises to higher rank in straightforward fashion). We also restrict to the case when ∆ is torsion-free (similar arguments apply to deal with the subset of the thin part coming from the singular subset in the case when M is an orbifold).

Let M 0 = Γ\X; for each primitive conjugacy class [γ] ∈ C ≤R (Γ) there is a closed geodesic c γ ⊂ M 0 , of length ℓ γ . Its preimage under the covering map M → M 0 is a union cγ of closed geodesics indexed by N Γ (γ)\Γ/∆ which may be of length k

• ℓ γ for 1 ≤ k ≤ [Γ : ∆]. The number of components of length k • ℓ γ is equal to at most Fix Γ/∆ (γ k ) ; indeed, if the geodesic corresponding to N Γ (γ)g∆ is of length k • ℓ γ then gγ k g -1 ∈ ∆ so the coset g -1 ∆ is fixed by γ k . So there is a map from [γ]∈C ≤R (Γ) Fix Γ/∆ (γ k ) onto the set of closed geodesics of length ≤ R in M .
The R-thin part M ≤R is contained in the (R + R 0 )-neighbourhood of the union of all these closed geodesics, where R 0 depends only on the systole of M 0 . The volume of the (R + R 0 )neighbourhood of a closed geodesic of length l is at most C 0 le cR where c depends on X, R 0 on X and R 0 . It follows that

vol(M ≤R ) ≤ [γ]∈C ≤R (Γ) C 0 Re cR Fix Γ/∆ (γ)
and this proves the lemma.

With this lemma, Theorem 1.2 follows from the next purely group-theoretical statement [2, Theorem 5.6].

Theorem 1.7. Let Γ be an arithmetic lattice; there are α, c > 0 depending only on Γ such that for any γ ∈ Γ, γ ̸ = Id, and any congruence subgroup ∆ in Γ, we have

Fix Γ/∆ (γ) ≤ e cℓγ [Γ : ∆] 1-α .
We give a short sketch of the proof of this theorem; we denote by G the k-algebraic group defining Γ and assume for simplicity that Γ ⊂ G(k). The first steps are to reduce the general statement to its local version. That is, for p a rational prime and

G p the closure of Γ in v|p G(k v ), H p an open subgroup of G p and γ ∈ G p , we have Fix Gp/Hp (γ) ≤ p cnp(γ) [G p : H p ] 1-α (1.1)
where α > 0 does not depend on p, the integer n p (γ) is the largest n such that, for some prime ideal p v of Z k dividing p, we have that p n v divides all coefficients of Ad G(kv) (γ) -1, and c is a constant depending only on the absolute type of G. As ℓ γ ≍ p p np(γ) (with constants depending only on Γ), the general result is a consequence of this and the fact that there is a c

1 ∈ ]0, 1[ such that any congruence subgroup H of Γ is contained in a congruence subgroup H ′ such that the closure of H ′ in G(A k,f
) is the product of its p-factors, and [Γ : [2, 5.9 and 5.10]).

H ′ ] ≥ [Γ : H] c 1 (see
The proof of (1.1) is quite involved, so we won't give a detailed account. The index [G p : H p ] is controlled by a power of the level p mp of H p so the proof reduces to showing that

Fix Gp/Hp (γ) ≪ γ p -c 2 mp [G p : H p ]
for some c 2 > 0. The difficulty lies mainly in dealing with large values of m p (for instance, for groups of level p the proof is quite easier than the general case; see also [2, p. 747]). For this, one uses the structure theory of analytic pro-p groups (of which G p is an instance) to reduce the problem to counting solutions of polynomial congruences modulo prime powers; then a general lemma gives the result.

Bianchi groups

The proof of Theorem 1.3 is based on explicit reduction theory for SL 2 over an imaginary quadratic field k. We use the following notation:

• Γ k = SL 2 (Z k );
• N is the unipotent k-subgroup of upper triangular matrices in SL 2 ;

• K = SU(2) is a maximal compact subgroup in SL 2 (C); • for c ∈ ]0, +∞[ let T ∞ (c) = t 0 0 t -1 : t ∈ C × , |t| 2 ≥ c .
Moreover we choose α 1 , β 1 , . . . , α h k , β h k ∈ Z k such that the ideals (α i , β i ) are representatives for the class-group of k and put

ξ i = α i β i , γ i = 0 1 -1 ξ i , c i = (β i ) (α i , β i ) .
Define also

γ k = sup g∈GL 2 (A k ) inf x∈k 2 \{(0,0)} ∥gx∥ | det(g)| 1/2 , c i = γ -1 k • N (c i )
where ∥ • ∥ is the product of the standard norms on the completions k v for v in the set of equivalence classes of valuations on k. Then we have

SL 2 (A k ) = h k i=1 SL 2 (k)N(A k )T ∞ (c i )Kγ i U for any compact-open subgroup U in SL 2 (A k,f
). See [93, Eq. (4.6)] for more details. Moreover, a result of Ohno-Watanabe [START_REF] Ohno | Estimates of Hermite constants for algebraic number fields[END_REF] gives that

γ k ≪ |∆ k | 1/2 (1.2)
where ∆ k is the discriminant of the number field k. It follows from the strong approximation property for SL 2 that the projection

SL 2 (A k ) → SL 2 (C) induces a bijection from SL 2 (k)\SL 2 (A k )/KU to Γ k \H 3 . We denote by B i the image of SL 2 (k)N(A k )T ∞ (c i )Kγ i U in Γ k \H 3 under this map (this is a neighbourhood of the cusp associated with the orbit of α i /β i under Γ k ).
There is also a classical description of closed geodesics in the orbifolds Γ k \H 3 . They are in bijection with the Γ k -equivalence classes of binary quadratic forms ax 2 + bxy + cz 2 , a, b, c ∈ Z k , whose discrimimnant d = b 2 -4ac is square-free in Z k (these correspond to embeddings of the split torus SO(2) into SL 2 ). Moreover the length of a geodesic is a function of the discriminant d. We have the following counting lemma [93, Lemma 5.2]. Lemma 1.8. Let N i,d be the number of closed geodesics in Γ k \H 3 which come from quadratic forms of discriminant d and intersect the cusp neighbourhood B i . Then for any ε > 0

N i,d ≪ ε c -2-ε i • N (c i ) 2+ε • |∆ k | -1/2 .
With this estimate, it is easy to estimate the volume of the subset of the R-thin part coming from hyperbolic elements: since we are in rank 1, it suffices to estimate the total length of all closed geodesics of length at most R, plus the volume of cusps (note that while there is a singular locus which a priori contributes to the thin part, it is contained in closed geodesics associated with quadratic forms of bounded determinant so we do not need to evaluate it separately). The cusps in the R-thin [93, Eq. (5.4)]). For closed geodesics, since there are only finitely many discriminants d corresponding to lengths at most R, it suffices for a fixed d to estimate the number N d of geodesics corresponding to quadratic forms of discriminant d. Since the horoball quotients B i cover Γ k \H 3 , we have

part have volume ≪ R h k i=1 N (c i ) which is O(|∆ k | log |∆ k |) (see also
N d ≤ h k i=1 N i,d
. By Lemma 1.8, and using that

c -2-ε i • N (c i ) 2+ε = c 2+ε k ≪ |∆ k | 1+ε
according to (1.2) we have for any ε > 0 that

N d ≪ ε h k i=1 |∆ k | 1 2 +ε ≪ ∆ 1+2ε k
where the second inequality follows from the estimate

h k ≪ ∆ 1/2 k log |∆ k |. By Humbert's volume formula [37, Eq. (8.1) in Section 8.8] for Γ k \H 3 it finally follows that N d ≪ ε (vol Γ k \H 3 ) 2/3+ε
, which is essentially the statement of Theorem 1.3.

Sketch of proof of Lemma 1.8

Assume that ξ ̸ = ∞ and let ξ be the point at infinity of an horoball covering B i . Then it is easy to see that the closed geodesic corresponding to the quadratic form ax 2 + bxy + cy 2 goes through B i if and only if [START_REF] Raimbault | Sur la convergence des orbi-variétés arithmétiques[END_REF]Lemma 5.1]). We can then use counting arguments for the solutions of such an inequation (modulo the group of unipotent transformations fixing ξ) to get the estimate. The case ξ = ∞ is dealt with separately with an easier argument.

|aξ 2 + bξ + c| ≤ C k,d c 2 i (see

An arithmetic Margulis lemma and its application

The following theorem is proven in [42, Theorem 3.1, Remark 3.2], as a consequence of a result of Breuillard [START_REF] Breuillard | A height gap theorem for finite subsets of GL d (Q) and nonamenable subgroups[END_REF]Corollary 1.7].

Theorem 1.9. Let G be a semisimple Lie group. There exists a constant ε G > 0 such that if Γ ⊂ G is a uniform arithmetic lattice with trace field k, then for any x ∈ X, the subgroup

⟨γ ∈ Γ : d(x, γx) ≤ ε G • [k : Q]⟩ is virtually abelian.
This is an essential ingredient in the proof of Theorem 1.4, which we now present. For any R > 0 and any semisimple non-compact isometry γ ∈ Γ, we can define a "model Margulis tube" as follows: let

S R γ = {x ∈ X : d(x, γx) ≤ R} and T R γ = Z Γ (γ)\S R γ
which is always compact when Γ is uniform. For R larger than a usual Margulis constant for G, there is no reason that the T R γ should embed in Γ\X and not intersect one another. However with the arithmetic Margulis lemma we can prove the following quantitative approximation to this ideal solution.

Lemma 1.10. Let G, Γ, k be as above; there exist ε 0 , d 0 , m depending only on G such that the following holds. Let

T R γ = Γ\ g∈Γ gS R γ (the image of T R γ in Γ\X). Then for Γ such that [k : Q] ≥ d 0 and for any R < ε 0 [k : Q], we have 1. vol T R γ ≥ [k : Q] -m vol(T R γ ) ; 2. if N ≥ [k : Q] m and γ 1 , . . . , γ N ∈ Γ are pairwise non-conjugate in Γ then N i=1 T R γ i is empty.
An immediate corollary of this lemma is that, writing M = Γ\X, for any

R ≤ ε 0 [k : Q] we have vol(M ≤R ) ≥ [k : Q] -2m [γ]∈C ≤R (Γ) vol(T R γ ). (1.3) 
With this, Theorem 1.4 follows from the next estimate: there exists η > 0, C ≥ 1 (depending only on G) such that for any R, S > 0 we have

vol(T CR+S γ
) ≥ e ηS vol(T R γ ).

(1.4)

Indeed, if we apply this estimate with S = ε G [k : Q]-CR (which we may for any R < (ε

G /C)[k : Q]), we get that vol(M ) ≥ vol(M ≤ε G [k:Q] ) ≥ [k : Q] -2m [γ]∈C ≤R (Γ) vol(T ε G [k:Q] γ ) ≥ [k : Q] -2m [γ]∈C ≤R (Γ) e η(ε G [k:Q]-CR) vol(T R γ ) ≥ [k : Q] -2m e η(ε G [k:Q]-CR) vol(M ≤R ) so in the end vol(M ≤R ) ≪ G [k : Q] -2m e -ηε G 2 [k:Q] vol(M ) for any R < ε G 2C [k : Q],
which proves Theorem 1.4 (we can take any δ < ηε G /2 in the statement).

Proof of Formula (1.4)

The first step is to express vol(T R Γ ) using orbital integrals which are defined as follows: for a compactly supported locally integrable function f on G and a semisimple element γ ∈ G, let G γ = Z G (γ) be the centraliser of γ in G and define

O(γ, f ) = Gγ \G f (x -1 γx)dx.
(1.5)

The integral is convergent since the map

G γ \G → G, x → x -1 γx is proper (see e.g. [42, Proposition 2.6]). Then vol(T R γ ) = vol(Γ γ \G γ )O(γ, 1 B(R)
) where B(R) is defined as the preimage in G of the ball of radius R around the identity coset in X = G/K and 1 B(R) is its indicator function. As vol(Γ γ \G γ ) is independent of R, the estimate (1.4) follows directly from the corresponding estimate for orbital integrals which is stated in the next theorem [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Theorem 4.4].

Theorem 1.11. There exist C, δ > 0 (depending only on G) such that for every R, S ≥ 0 and every semisimple γ ∈ G:

O(γ, 1 B(R) ) < Ce -δS O(γ, 1 B(R+S) ).
The proof of this theorem relies on the spectral gap property of G and its semi-regular representations. Namely, using property (T) when it holds, and the spectral gap for convexcocompact subgroups with limit set of codimension at least 1 in real or complex hyperbolic spaces otherwise, it follows that there exists δ 0 > 0 such that for a function φ supported on B(1), which is bi-K-invariant and such that G φ(x)dx = 1, for any reductive subgroup H ⊊ G and f ∈ L 2 (H\G) we have

∥φ * f ∥ L 2 (H\G) ≤ e -δ 0 ∥f ∥ L 2 (H\G)
(see Lemma 5.1 in [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]). From this inequality and the other properties of φ, it follows after a short computation using the function x → x -1 γx (which belongs to L 2 (H\G) for 

H = G γ ) that O(γ, 1 B(R) ) < e -δ O(γ, 1 B(R+2) ).
((M n ) ≤R ) = o(vol M n ) (1.6)
for a sequence of locally-X manifolds (or orbifolds). This fits in a broader framework as we explain now.

The set Sub G of closed subgroups of G is endowed with a natural topology called Chabauty topology, which is metrisable compact (see e.g. [START_REF] Biringer | Metrizing the Chabauty topology[END_REF]). Note that there is a forgetful map from the subset of discrete subgroups in Sub G to the set of pointed locally-X orbifolds (which sends a discrete subgroup Λ to the pointed orbifold (Λ\X, x 0 ) where x 0 is the image of the identity coset in Λ\G/K), and that the pushforward of the Chabauty topology on this set is the geometric topology or pointed Gromov-Hausdorff topology (see [2,Section 3]).

We want to consider the set Prob(Sub G ) G of Borel probability measures on Sub G which are invariant under the action of G by conjugation. Such a measure can be interpreted as the distribution of a random variable with values in Sub G that is invariant under conjugating it by an element of G, which justifies that they be given the name of "invariant random subgroups" (IRS) of G; we will use the notation Prob(Sub G ) G = IRS(G). The set Prob(Sub G ) is a compact space for the topology of weak-star convergence of measures. As IRS(G) is closed therein, it is also compact for this topology.

A locally-X orbifold of finite volume can be interpreted as an element of IRS as follows. Let M = Γ\X be such an orbifold; note that Γ is a discrete subgroup of G of finite covolume which is well-defined up to conjugation by an element of G. There are a unique G-invariant probability measure µ on G/Γ and a G-equivariant continuous map Φ : G/Γ → Sub G given by Φ(gΓ) = gΓg -1 . The pushforward µ M = Φ * µ is an element of IRS(G) which does not depend on the choice of Γ.

Other elements of IRS(G) are given by normal subgroups: if N ◁ G then the Dirac mass δ N supported on {N } is an IRS; if Z is the centre of G this applies in particular to subgroups of Z.

With this notation we have the following result [2, Corollary 3.8].

Lemma 1.12. For a sequence (M n ) n≥1 of locally-X orbifolds of finite volume, the condition (1.6) holds if and only if any accumulation point of the sequence (µ Mn ) n≥1 in IRS(G) is supported on central subgroups.

Main criterion for convergence

By compactness of IRS(G), we can use Lemma 1.12 to prove that the condition (1.6) holds for a sequence by proving that it cannot have any other limit point. We present here a general criterion using this principle; we will apply it to concrete situations in the next subsection. For the sake of simplicity, we will restrict to the case where G is simple but, modulo necessary additions, the criterion applies in the more general setting as well (see [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Theorem 7.3]). The statement is the following. Theorem 1.13. Let G be a simple Lie group. Let W be a Borel subset of G such that W is invariant by conjugation by any element of G and for any discrete, Zariski-dense subgroup Λ ⊂ G, we have Λ ∩ W ̸ = {1} or ∅.

Let (Γ n ) be a sequence of cocompact lattices in G; then Γ n \X satisfies (1.6) if and only if for any compactly supported locally integrable function f on G, we have

lim n→+∞   1 vol(Γ n \X) [γ] Γn ⊂W vol ((Γ n ) γ \G γ ) Gγ \G f (x -1 γx)dx   = 0.
We will give examples of sets W in the applications of this criterion in §1.4.3 and Theorem 1.20 below.

Borel density for IRS

The main ingredient for the proof of Theorem 1.13 is the following generalisation of the Borel density theorem from lattices to IRS [2, Theorem 2.9]. The proof is an easy generalisation of Furstenberg's argument [START_REF] Furstenberg | A note on Borel's density theorem[END_REF].

Theorem 1.14. Let G be a simple Lie group. If µ ∈ IRS(G) is ergodic (with respect to the action of G by conjugation) and not supported on subgroups of the center or on {G}, then µ-almost every subgroup is discrete and Zariski-dense in G.

We note that in many cases this is sufficient to prove that the condition (1.6) holds without needing to appeal to the more involved Theorem 1.13; see for example §1.4.3, §1.4.3 below.

The proof of Theorem 1.13 proceeds straightforwardly from this result: the condition on the sequence (Γ n ) n≥1 implies by standard arguments that any invariant random subgroup which is an accumulation point of the sequence (µ Γn ) n≥1 almost surely does not intersect W . Borel density then forces it to be central.

Non-effective proofs in special cases

The tools above can be used to give much shorter proofs of convergence in all three cases dealt with in the previous section. Of course the drawback is that they give no explicit estimates on the volume of the thin part.

Congruence subgroups

We give here the short argument proving a non-quantitative version of Theorem 1.2 from [2, Theorem 5.3]. It relies only on Borel density and the strong approximation property of Zariskidense subgroups in semisimple simply connected algebraic groups. The general case reduces immediately to that of a sequence of congruence subgroups Γ n ≤ Γ 0 where Γ 0 is an arithmetic subgroup of G(k) with k a number field, G an absolutely simple, simply connected k-group; for simplicity let us assume that G is embedded in some GL N and

Γ 0 = G(Z k ). Then the pro- congruence completion of Γ 0 is G( Z k ) = v∈V k,f G(Z kv
) and the strong approximation property (see for instance [64, Theorem 1 on p. 391]) states that if Λ ≤ Γ 0 is Zariski-dense the closure of its image in G( Z k ) has finite index. In particular any congruence-closed Zariski dense subgroup of Γ 0 must be a congruence subgroup. Congruence-closedness is preserved under Chabauty limits, and since the subgroups Γ n are pairwise distinct they do not have Chabauty limits that are congruence subgroups, any Chabauty limit point of (Γ n ) n≥1 is not Zariski-dense. It follows that any limit point in IRS(G) of (µ Γn ) n≥1 must be supported on non-Zariski dense subgroups of Γ 0 , hence by Theorem 1.14 it must be supported on subgroups of the center of G. By Lemma 1.12, this means that the sequence (Γ n \X) n≥1 satisfies the condition (1.6).

Bianchi groups

We present a slight variation on the proof of a non-quatitative version of Theorem 1.3 given in [93, Section 3]. For this, we apply Theorem 1.13 (for G = SL 2 (C)) with

W = {g ∈ SL 2 (C) : tr(g) ̸ ∈ R}.
We note that in the case when G is of real rank 1, the centraliser volumes vol (Γ γ \G γ ) and the orbital integrals Gγ \G f (x -1 γx)dx in Theorem 1.13 depend only on the minimal displacement ℓ γ and the function f , so we have

[γ] Γn ⊂W vol (Γ γ \G γ ) Gγ \G f (x -1 γx)dx ≪ f N W Γ (R)
where f is supported in the ball B G (R) and

N W Γ (R) counts the number of Γ-conjugacy classes in W ∩ Γ with minimal displacement ℓ γ ≤ R. So if (Γ n ) n≥1 is a sequence of lattices in SL 2 (C), we must only prove that lim n→+∞ N W Γn (R) vol(Γ n \X) = 0
to deduce that the condition (1.6) holds for (Γ n \X).

For the sequence of Bianchi groups SL 2 (Z k ), with k ranging over the imaginary quadratic fields, we now prove that in fact

N W Γn (R) = 0 for ∆ k large enough. Indeed, if γ ∈ W ∩ SL 2 (Z k ) then 2 cosh(ℓ γ ) = | tr(γ)|. Since tr(γ) ∈ Z k \ Z and Z k is a 2-dimensional lattice we see that Z + Z tr(γ) is a finite-index sub-lattice in Z k . But ∆ k is comparable with the covolume of Z k in C and by Minkowski's theorem it follows that | tr(γ)| ≫ |∆ k | so ℓ γ > R for ∆ k large enough.

Unbounded trace field degree

We present the short proof of a non-quantitative version of Theorem 1.4 using only the arithmetic Margulis lemma 1.9 and Borel density theorem 1.14, which is written up in [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Section 7.3].

We need an additional lemma [42, Lemma 7.5] Lemma 1.15. For any m, k ≥ 1, there exists A > 0 such that if ∆ is a finitely generated subgroup of GL m (C) which contains an abelian subgroup of finite index and rank at most k composed only of semisimple elements then it has an abelian subgroup of index at most A.

Let (Γ n ) n≥1 be a sequence of arithmetic lattices in G with trace fields k n and [k n : Q] → +∞. With this and the arithmetic Margulis lemma, it is essentially immediate to deduce that any Chabauty limit of (Γ n ) n≥1 must be virtually abelian. Since a virtually abelian group cannot be Zariski-dense in a semisimple Lie group, the Borel density theorem 1.14 implies that any limit of (µ Γn ) n≥1 in IRS(G) must be supported on central subgroups of G, and we can conclude by Lemma 1.12.

Stuck-Zimmer theorem and higher rank lattices

In this section, we explain the proof of Theorem 1.5. We note that according to Wang's finiteness theorem [START_REF] Chung | Topics on totally discontinuous groups[END_REF], we can order conjugacy classes of lattices in G by volume, so it is enough to prove that for a sequence (Γ n ) n≥1 the condition (1.6) holds. This is done by ineffective means, using the following rigidity theorem, a special case of [2,Theorem 4.2]. We say that an invariant random subgroup µ of G is irreducible if for every simple factor G i of (the simply connected cover of) G its action on (Sub G , µ) is ergodic. In particular irreducible lattices (in the classical sense) give irreducible invariant random subgroups.

Theorem 1.16. Let G be a semisimple Lie group of real rank at least 2 and with Kazhdan's property (T). Let µ be an irreducible invariant random subgroup of G without atoms, then µ = µ Γ for some lattice Γ in G.

The following result was proven by T. Gelander in [48, Proposition 1.9]; its proof follows immediately from local (Calabi-Weil) rigidity and finite presentability of lattices in Lie groups.

Lemma 1.17. If G is not locally isomorphic to SL 2 (R) or SL 2 (C) then the conjugacy orbit of a lattice is isolated from that of any other lattice.

The next lemma is implied by a theorem of E. Glasner and B. Weiss who prove that for a group with property (T) acting on a Borel space, the set of ergodic probability measures is closed under weak-star convergence [START_REF] Glasner | Kazhdan's property T and the geometry of the collection of invariant measures[END_REF].

Lemma 1.18. The subset of irreducible invariant random subgroups is closed in IRS(G).

Finally, we will need the following lemma, which is essentially a consequence of the existence of Zassenhaus neighbourhoods.

Lemma 1. [START_REF] Biringer | Unimodularity of invariant random subgroups[END_REF]. If H is a closed subgroup in G which is a Chabauty limit of a sequence of lattices of G then its identity component is nilpotent.

With these lemmas we can conclude the proof of Theorem 1.5: let (Γ n ) n≥1 be a sequence of irreducible lattices in G, then any limit point in IRS(G) of the sequence (µ Γn ) n≥1 is an irreducible invariant random subgroup of G by Lemma 1.18. It follows from Lemma 1.17 that its support does not contain any lattice of G, so from Theorem 1. [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF] we can conclude that it must be atomic. An atom must contain a normal subgroup with finite index; by Lemma 1.19, the latter must have a nilpotent identity component, and since it is normal it must be trivial. Any discrete normal subgroup in G is central; hence we have proven that any limit point of (µ Γn ) n≥1 is supported on central subgroups and we can once more use Lemma 1.12 in order to conclude.

Proof of Theorem 1.16

The theorem for simple groups is essentially a consequence of a result of G. Stuck-R. Zimmer [START_REF] Stuck | Stabilizers for ergodic actions of higher rank semisimple groups[END_REF]Theorem 4.3]. It implies that under the hypotheses of the theorem there exists a lattice Γ such that for µ-almost all H ∈ Sub G we have N G (H) = Γ 0 . By Margulis' normal subgroup theorem and the fact that µ is noncentral (since it has no atoms), it follows that µ-almost every H must be a lattice (in fact a finite-index subgroup of Γ 0 ). By ergodicity, and since the subset of lattices is made up of countably many separated components in Sub G , it follows that in fact there is a single Γ such that µ is supported on its orbit, so that necessarily µ = µ Γ .

Arithmetic lattices with trace field of bounded degree

In this section, we explain the proof of the following theorem, which together with Theorems 1.4 and 1.2 finishes the proof of Theorem 1.1.

Theorem 1.20. Let d ∈ N and let (Γ n ) n≥1 be a sequence of irreducible maximal arithmetic lattices in G such that the trace field of each Γ n is an extension of degree d of Q, and let M n = Γ n \X. Then the condition (1.6) holds for the sequence (M n ) n≥1 .

The proof relies on Theorem 1.13, but it is much more involved than the other applications of this theorem we have seen so far. The sufficiently dense subset W is chosen so that we have a good control of the arithmetic invariants of the centralisers of its elements, under the hypothesis that they correspond to isometries of small displacement. This allows us to get good bounds on the orbital integrals corresponding to them, as well as on the number of conjugacy classes of such elements. In the end, we inject these in the geometric side of Selberg's trace formula for compact quotient and we compare the result to the estimates for the volume given by Prasad's volume formula, which allows the application of Theorem 1.13. We describe some of the details below, including the finer description of maximal arithmetic lattices; we work exclusively in the adélic setting which is much more convenient for this.

Arithmetic lattices in the adélic setting

For the proof of Theorem 1.20, we need a precise description of the arithmetic lattices in the group G. For this section, we will assume, in addition to our standing hypotheses, that G is simply-connected.

A congruence arithmetic subgroup in G is constructed as follows: let k be a number field and G a simply connected semisimple k-group such that v∈V k,∞ G(k v ) is isomorphic to the product of G with a compact group. Then for any compact-open subgroup

U ⊂ G(A k,f ), let Γ U = G(k) ∩ U (where we view G(k) as diagonally embedded in G(A k,f )). By definition, the image of Γ U in G (via the map G(k) → v∈V k,∞ G(k v ) → G) is a congruence arithmetic lattice in G.
Since G is noncompact and G is simply connected, the latter satisfies strong approximation with respect to infinite places [86, Theorem 7.12], that is, G(k) is dense in G(A k,f ). Let k ∞ be the product of all Archimedean completions of k and let dg ∞ be the standard Haar measure on the Lie group G(k ∞ ). Let dg f be the Haar measure on G(A k,f ) normalised so that vol dg f (U ) = 1. Then we have an isomorphism Ψ of measured spaces from (G(k)\G(A k )/U, dg ∞ ⊗ dg f ) to (Γ U \G, dg ∞ ) (where we define quotient measures by taking counting measure on the discrete subgroups G(k), Γ U and Haar probability measure on the compact subgroup U ); Ψ is simply induced by the first projection

G(A) = G(k ∞ ) × G(A k,f ) → G(k ∞ ).

• G does not split over an unramified extension of k

v ; • U v is not hyperspecial in G(k v ).
This does not completely determine Γ U but there can be only finitely many congruence lattices which share the same data, which is sufficient for our purposes.

Prasad's volume formula

We will describe here part of the formula obtained by G. Prasad [START_REF] Prasad | Volumes of S-arithmetic quotients of semi-simple groups[END_REF] for the covolume vol(Γ U \G) of a principal arithmetic lattice in G with respect to the appropriate Haar measure on G. The following theorem is a consequence of his results, which will be sufficient for us. In the sequel we use C G to denote a constant depending only on G, if ℓ/k we denote by ∆ ℓ/k its relative discriminant (an ideal in Z k ) and by N k/Q (∆ ℓ/k ) its norm (a rational integer). The next result follows immediately from [88, Theorem 3.7] together with the following further facts from this reference: in the infinite product E appearing in this theorem all factors are > 1 and they are ≥ 2q v /3 at places in S U (Proposition 2.10(iv) in loc. cit.), and if G is not an inner form then the exponent s(G) of N k/Q (∆ ℓ/k ) 1/2 is at least 2 for all types (this can be checked case-by-case using the formulas given in loc. cit., 0.4).

Theorem 1.22. Let k be a number field, let G be a (simply connected) k-group such that G(k ∞ ) is isomorphic to the product of G with a compact factor, and U a compact-open subgroup which is a product of parahoric groups (so that Γ U is a principal arithmetic lattice). Then

vol(Γ U \G) ≥ C G |∆ k | dim(G) 2 • N k/Q (∆ ℓ/k ) • v∈S U 2q v /3
where S U , ℓ are defined as above.

Index estimates

In order to estimate covolumes of maximal arithmetic lattices we will use the following result, which is proven in [42, Proposition 9.3]. We will not detail the argument here, as it follows from standard arguments from [START_REF] Margulis | On the proportionality of covolumes of discrete subgroups[END_REF] and [START_REF] Borel | Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups[END_REF]; in [12, Section 4] M. Belolipetsky-V. Emery deal with the case of even orthogonal groups and their argument generalises to all groups with no problem.

Lemma 1.23. Let Γ U be a principal arithmetic lattice in G and Γ = N G (Γ U ) its normaliser. Let k, ℓ, S U be as in 1, 2, 3 above. Then

[Γ : Γ U ] ≤ C |S U | G N k/Q (∆ ℓ/k ) 1 2 ∆ 3 2
k . Depending on S U , the group Γ/Γ U can be arbitrarily large even for trace fields of bounded degree, but in this latter case the exponent is bounded as given in the following lemma; the first part is essentially [67, Proposition 2.6(i)], the second is immediate. In the sequel we will denote the constants appearing in this lemma also by C G since we assume that the degree [k : Q] is fixed.

Proof of Theorem 1.20

Regularity conditions

The set of semisimple elements for which we are able to get good estimates on the corresponding summands in the trace formula is defined by the following conditions.

• Let g ∈ G be semisimple, T a maximal torus of G containing g, ∥•∥ the norm on X * (T )⊗R associated with the convex hull of the root system of (G, T ). For m ∈ N we say that g is m-regular if ξ(g) ̸ = 1 for all ξ ∈ X * (T), ξ ̸ = 1 such that ∥ξ∥ ≤ m, and strongly m-regular if ξ(g) ̸ = ζ(g) for all ξ, ζ ∈ X * (T) with ∥ξ∥ ≤ m. We will abbreviate "strongly 1-regular" to "strongly regular" (as 1-regular elements are regular elements in the usual sense).

• A semisimple g ∈ G is said to be R-regular if it is regular (in the usual sense, that is 1-regular) and its centraliser has maximal R-split rank; equivalently, g has the maximal possible number of adjoint eigenvalues which are not of modulus 1 (for G of real rank 1, this is equivalent to g Z being unbounded).

The following lemma [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Lemma 11.8] will let us apply our criterion for Benjamini-Schramm convergence.

Lemma 1.25. Let G be a semisimple Lie group and m ∈ N. The set W of strongly m-regular, R-regular elements of G satisfies the assumptions of Theorem 1.13.

The proof of this lemma essentially follows from arguments of Prasad [START_REF] Prasad | R-regular elements in Zariski-dense subgroups[END_REF].

The main argument

Let f be a smooth function on G and W a conjugacy-invariant subset of semisimple elements in G. We put

3 tr R W Γ U f = [γ] Γn ⊂W vol ((Γ n ) γ \G γ ) Gγ \G f (x -1 γx)dx
For a principal arithmetic lattice Γ U , we put

f A = f ⊗ 1 U∞ ⊗ 1 U where U is the closure of Γ U in G(A k,f ) and U ∞ is the product of G(k v ) for v ∈ V k,∞ with G(k v ) compact.
Then for f locally integrable and compactly supported we have the following adelic formula for the distribution tr R W Γ U , which follows immediately from the isomorphism Γ\G ∼ = G(k)\G(A k )/U given by strong approximation:

tr R W Γ U f = [γ] G(k) ⊂W vol(G γ (k)\G γ (A k )) Gγ (A k )\G(A k ) f A (x -1 γx)dx (1.7)
We can use this in order to estimate tr R W Γ U f : the adélic orbital integrals

G(A k )/Gγ (A k ) f A (xγx -1
)dx are estimated in Theorem 1.27 below, the volume terms vol(G γ (k)\G γ (A k )) can be estimated using a formula of E. Ullmo-A. Yafaev [START_REF] Ullmo | Nombre de classes des tores de multiplication complexe et bornes inférieures pour les orbites galoisiennes de points spéciaux[END_REF] and standard estimates on value of L-functions for fields of bounded degree. Finally, the number of nonzero terms in (1.7) is estimated in Theorem 1.28 below. Altogether this gives the following result [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Theorem 10.7].

Theorem 1.26. Let G be a simply connected Lie group and f a continous, compactly supported function on G. Let W be a subset of the set of strongly regular, R-regular semisimple elements in G. For fixed d ∈ N, for all number fields k with

[k : Q] = d and G(k ∞ ) ≃ G, we have [γ] G(k) ⊂W vol(G γ (k)\G γ (A k )) G(A k )/Gγ (A k ) f A (xγx -1 )dx ≪ f,d ∆ dim(G) 2 -δ k for any δ < dim(G)-dim(T) 2
where T is a maximal k-torus in G.

Together with Formula (1.7) this implies that

tr R W Γ U f ≪ f,d ∆ dim(G) 2 -δ k for any δ > dim(T)/2 where T is a maximal k-torus in G and d = [k : Q].
From here on we use the estimates on index and volume to deduce a similar upper bound for tr R W Γ 1 B(R) where B(R) is the ball of radius R in G in the semi-distance lifted from the Riemannian distance on X. The first step is that for W the set of strongly m-regular elements in G (where m is the bound on the exponent of Γ/Γ U given in the first part of Lemma 1.24) and W ′ the set of strongly regular elements we have

tr R W Γ 1 B(R) ≤ C G • tr R W ′ Γ U 1 B(mR) . (1.8)
where C G is given by the second part of Lemma 1.24; this follows from an immediate comparison of orbital integrals between Γ and Γ U . Now we estimate the right-hand side of (1.8) using Theorem 1.26, and we compare between the lower bound for the covolume of Γ U given by Theorem 1.22 and the upper bound for the index |Γ/Γ U | given by Lemma 1.23 in order to prove that it is o(vol(Γ\G)). By Lemma 1.25 and Theorem 1.13, we can conclude that the condition (1.6) must hold for a sequence of maximal lattices with trace fields of constant degree, which finishes the proof of Theorem 1.20.

Orbital integrals for regular elements

The main new contribution from [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF] regarding the proof of Theorem 1. 

O(γ, f ) = Gγ (k∞)\G(k∞) f (x -1 γx)dx.
The dependency on γ will be seen through the Weyl discriminant

∆(γ) = λ∈Φ (1 -λ(γ))
where Φ is a root system for (G, T) with T a maximal k-torus containing γ ; note in particular that the product is an element of k. We prove that there exists a > 0 depending only on the absolute type of G such that the following estimates hold when d

G (1, γ) ≤ R ∀v ∈ V f , O(γ, 1 Uv ) ≤ |∆(γ)| -a v (1.9) O(γ, f ) ≪ R ∥f ∥ ∞ v∈V∞ |∆(γ)| v .
(1.10)

We will concentrate on the proof of Formula (1.9), as Formula (1.10) is essentially a straightforward computation in the appropriate Iwasawa decomposition (though there is a subtlety as we get estimates in terms of the real roots, and we must estimate the impact of the missing roots on the Weyl discriminant, see [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Lemma 12.6]).

In order to prove Formula (1.9) the first step is to convert it into a more geometric statement about orbits on the Bruhat-Tits building X(G, k v ), namely we have the following [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Lemma 12.3]

O(γ, 1 Uv ) = x∈Gγ (kv)\(X Θ ) γ |G γ (k v ) b • x| (1.11)
where G γ (k v ) b is the unique maximal bounded subgroup in the torus G γ (k v ), X Θ is the set of simplices in X(G, k v ) which are stabilised by a conjugate of U (Θ denotes the type of U ) and (X Θ ) γ are those fixed by γ.

In order to estimate the right-hand side in the inequality (1.11) it is easy to see that it suffices to prove that there exists c > 0 depending on the absolute type of G such that any fixed point of γ in X(G, k v ) lies at distance at most c • v(∆(γ)) from the apartment A γ associated with G γ (k v ). For this we first reduce to the case where G is split using standard descent arguments (see [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Section 11.1.3]). Then, assuming that G splits over k v , we compute distances in the decomposition associated with a choice of maximal chamber in A γ , which is a bit involved but not difficult (see the proof of [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Lemma 11.4]), and the result follows.

Conjugacy classes of small displacement

The second result needed for the proof of Theorem 1.20 is the following.

Theorem 1.28. For all semisimple k-groups G with G(k ∞ ) ≃ G and R > 0 the number of conjugacy classes of strongly regular elements γ ∈ G(k) such that m(γ) ≤ R, and which generate a compact subgroup at all non-Archimedean places, is O(1) with the constant depending on R, [k : Q] and the absolute type of G.

We give a short account of the proof. First it is essentially immediate that the number of conjugacy classes of such γ over the algebraic closure k is bounded by a constant depending only on R (see [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Lemma 13.2]). So the proof boils down to estimating the number of integral G(k)-classes inside a single G(k)-class. This can be interpreted as a problem in Galois cohomology, which we will use here without definitions (see [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Section 9] for notations and basic facts). Namely, the classes we are interested in are in bijection with a subset S U (γ) of ker(H 1 (k, G γ ) → H 1 (k, G)). Using a local-global principle and standard estimates on the size of a Tate-Shafarevich group, the estimation of |S U (γ)| boils down to that of v∈V f S Uv (γ) where S Uv (γ) ⊂ H 1 (k v , G γ ) are its local analogues. This in turn depends on the behaviour of v with respect to G and γ. At "good" places where G γ splits over an unramified extension of k v and |∆(γ)| v = 1, we have |S Uv (γ)| = 1 (see [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Proposition 13.5]); this part of the argument is quite delicate to carry out as we need to specifically care about which classes are integral at v. So these places will not contribute to the size of the global set S U (γ). On the other hand, at the remaining places, we can afford to just bound |H 1 (k v , G γ )| by a constant depending only on the absolute type of G (see [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Lemma 13.8]), which is essentially immediate, and the global estimate then follows by brutally estimating the number of "bad" places.

Topological applications

Genus of Shimura curves

A Shimura curve is a quotient of H 2 by a congruence arithmetic lattice of SL 2 (R) (the underlying Riemann surface can be obtained as an algebraic curve defined over a number field which is where the name "curve" comes from). These objects are orientable 2-orbifolds, therefore their singularities can only be cone points, which have neighbourhoods that are homeomorphic to discs. So topologically, a Shimura curve S is just a surface of finite type which has a well-defined genus g(S). However, for such a surface the Gauss-Bonnet formula does not apply to compute the genus directly in terms of the volume: one must take the singularities into account. The following result, which is [START_REF] Frączyk | Betti numbers of Shimura curves and arithmetic three-orbifolds[END_REF]Theorem B] shows that the relation still holds asymptotically, i.e. we can ignore the additional terms coming from singularities when the volume is large.

Theorem 1.29. There is a function s : ]0, +∞[ → ]0, +∞[ such that lim v→+∞ s(v) = 0 and for any Shimura curve S g(S) 4π vol(S) = s(vol(S)).

The proof follows easily from the specialisation of Theorem 1.1 to G = SL 2 (R) (which is due to M. Fraczyk [START_REF] Frączyk | Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds[END_REF] for torsion-free lattices and extended to lattices with torsion in [43, Theorem A]). If an orientable hyperbolic 2-orbifold O has k cusps and s cone points of order m 1 , . . . , m s then its genus g = g(O) is given by the formula

vol(O) 2π = 2g -2 + k + s i=1 1 - 1 m i . (1.12)
By the Margulis lemma (see [START_REF] Frączyk | Betti numbers of Shimura curves and arithmetic three-orbifolds[END_REF]Lemma 3.2]), cusps and cone points of order m i > 2 all contribute a fixed quantity to the volume of the thin part, hence k

+ i, m i >2 1 -1 m i = o(vol(O)
). Cone points of order 2 can be arbitrarily close to each other since a pair of rotations of order 2 generate an infinite dihedral group, but the Margulis lemma still implies that at worst pairs of them contribute a fixed quantity to the volume of the thin part, hence i, m i =2 1 -1 m i = o(vol(O)) as well. So the theorem follows from the formula (1.12).

Triangulations of arithmetic locally symmetric spaces

Beyond Benjamini-Schramm convergence, a major consequence of the explicit estimates on the thin part given in Theorem 1.4 is the solution to a conjecture of T. Gelander from [START_REF] Gelander | Homotopy type and volume of locally symmetric manifolds[END_REF] about the homotopy type of arithmetic locally symmetric spaces. The following result is [42, Theorem A]: it was proven for non-compact manifolds by Tsachik Gelander [49, Theorem 1.5(1)], and we proved it for compact manifolds.

Theorem 1.30. There are constants A, B dependent only on X, such that every arithmetic locally-X manifold M is homotopy equivalent to a simplicial complex N with at most A vol M simplices, where every vertex is incident to at most B simplices.

A consequence of this is the following rough bound on the size of torsion homology for torsion-free arithmetic lattices (we will discuss the finer behaviour of torsion homology in the next chapter).

Theorem 1.31. There is a constant C depending only on X such that for any arithmetic locally-X manifold M of finite volume and 0 ≤ i ≤ dim(X) we have

log |H i (M, Z) tors | ≤ C vol(M )
where for an abelian group A we denote by A tors its torsion subgroup.

The second result, though not the first one, was known for rank 1 symmetric spaces by work of U. Bader-T. Gelander-R. Sauer (see [7] which gives their most general result). They prove a weaker result about homotopy type which is nevertheless sufficient to imply the bounds on torsion homology; on the other hand their result also apply to non-arithmetic manifolds (it is not valid for hyperbolic 3-manifolds for which it is well-known that the above bounds do not hold in general). For arithmetic hyperbolic 3-manifolds, Theorem 1.30 was proven by M. Fraczyk in [START_REF] Frączyk | Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds[END_REF].

Note that the converse to Theorem 1.30, that is the statement that for any B there exists an A > 0 such that any simplicial complex of degree at most B which is homotopy equivalent to a locally-X manifold M must have at least A vol(M ) vertices, is not known in general. For complexes which are homeomorphic to X-manifolds it follows immediately from positivity and the proportionality principle of the simplicial volume for X-manifolds. When X has pisitive L 2 -betti numbers or L 2 -torsion (for instance for real or complex hyperbolic spaces) the converse can be proven for homotopy equivalence (see [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Section 6.2]).

Proof of Theorem 1.30

If M is a closed Riemannian manifold and x ∈ M we denote

ε x = min(1, inj M (x)).
The proof of Theorem 1.30 uses the usual procedure of constructing the nerve complex of a wellchosen net of points inside a manifold. This argument is not specific to the locally symmetric context, a general result we can use is the following one (a detailed proof of which can be found in [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Proposition 4.6]).

Lemma 1.32. Let X be a symmetric space of non-compact type without Euclidean factors. There exist A, B depending only on X such that any compact X-manifold is homotopy equivalent to a simplicial complex with at most

A M ε -dim(X)
x dx vertices and where every vertex belongs to at most B simplices.

To estimate the integral in this lemma we use the following classical bound on the injectivity radius of an arithmetic manifold (which follows from a result of E. Dobrowolski on Mahler measures; an explanation can be found in [START_REF] Frączyk | Homotopy type and homology versus volume for arithmetic locally symmetric spaces[END_REF]Proposition 2.5]): if Γ is a cocompact torsion-free arithmetic lattice in G with trace field k and M = Γ\X then

inj(M ) ≫ G 1 (log[k : Q]) 3 .

It follows from this and Theorem 1.4 (applied with

R = 1) that M ε -dim(X) x dx ≪ G vol(M ≥1 ) + (log[k : Q]) 3 dim X vol(M ≤1 ) ≪ G vol(M ) 1 + e -δ[k:Q] (log[k : Q]) 3 dim X ≪ G vol(M )
so Theorem 1.30 now follows from Lemma 1.32.

Bounds on torsion homology

For the sake of exposition, we explain how to bound the size of torsion homology for a simplicial complex of bounded degree. Let Y be a simplicial complex such that every vertex belongs to at most B simplices. Let C * (Y ) be its chain complex (with Z-coefficients) and This lemma is [97, Lemma 1] where the author gives a proof which he attributes to O. Gabber. The level of mathematical language in this reference is completely out of line with the degree of difficulty of this proof; instead we note that it is easily seen that the proof reduces to the case where ϕ is injective of full rank, and the lemma then follows immediately from Hadamard's inequality (det(A) ≪ n i=1 ∥A i ∥ for a square real matrix A with columns A 1 , . . . , A n ).

∂ k : C k+1 (Y ) → C k (Y ) be the kth differential. As C k (Y )/ ker(∂ k-1 ) is torsion-free, the torsion subgroup of H k (Y ) is isomorphic to that of coker(∂ k ). Now observe that since Y is simplicial all nonzero coefficients of ∂ k are ±1,

Betti numbers

The following theorem is an immediate consequence of Theorem 1.1 and a result of M. Abért, N. Bergeron, I. Biringer and T. Gelander [1,Corollary 1.4].

Theorem 1.34. Let (Γ n ) n≥1 be a sequence of pairwise distinct, torsion-free irreducible congruence arithmetic lattices or pairwise non-commensurable irreducible arithmetic lattices in a semisimple Lie group G. Then

lim n→∞ b i (Γ n \X) vol(Γ n \X) = β (2) i (X) if i = dim(X)/2; 0 otherwise. The nonzero L 2 -Betti numbers β (2)
dim(X)/2 (X) appearing in these theorems can be computed explicitely: they are equal to χ(X d )/ vol(X d ) where X d is the the "compact dual" of G endowed with the Haar measure compatible with that of G. A list (up to isogeny) of all simple Lie groups G of non-compact type for which β (2) dim(X)/2 (G) ̸ = 0 is as follows:

• All unitary groups SU(n, m);

• All orthogonal groups SO(n, m) with nm even;

• All symplectic groups Sp(n) and all groups Sp(p, q) (isometries of quaternionic hermitian forms);

Introduction

In the previous chapter, there are two results about the asymptotic behaviour of homology for congruence arithmetic lattices, Theorem 1.31 which is a not too precise result about torsion homology and Theorem 1.34 which is a sharper result about Betti numbers. In this chapter, we discuss what is conjectured and what is known about sharp asymptotic results on the torsion homology of congruence arithmetic lattices. This was initiated by N. Bergeron and A. Venkatesh in [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF] where they made a conjecture similar to Lück's approximation theorem for the torsion homology in congruence covers of compact arithmetic locally symmetric spaces. They also proved results towards this conjecture, establishing a version for homology with coefficients in certain natural modules. In the joint work [2], it was observed that their method of proof would work for any Benjamini-Schramm convergent sequence of locally symmetric spaces, pending the existence of the coefficient modules they used. The scheme of proof of Bergeron-Venkatesh, which rests on analytic torsion and the Cheeger-Müller theorem, runs into major obstacles when applied to trivial coefficients, the problem of small eigenvalues and that of regulators. Both of these have focused a lot of effort since the appearance of their paper but to this day there is no case where a definitive solution has been found. Much of the evidence for the Bergeron-Venkatesh conjecture thus comes from extensive computations made from low-dimensional spaces.

In [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF], the focus was on uniform lattices since analytic torsion is only defined for compact Riemannian manifolds. An attempt to generalise their result to non-uniform lattices in SO(3, 1), or rather in the isogenous group SL 2 (C), was made in the papers [START_REF] Raimbault | Asymptotics of analytic torsion for hyperbolic three-manifolds[END_REF][START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF]. The first one deals with the general analytic aspects, defining analytic torsion for cusped hyperbolic manifolds using the Selberg trace formula and providing asymptotic results for this torsion and some results towards a Cheeger-Müller equality. The second one applies this to congruence lattices in SL 2 (C) and works out some applications to torsion homology. Ultimately this attempt fell short of extending the Bergeron-Venkatesh result for these lattices, because of a number-theoretical obstacle that is very precisely identified. We should note that in parallel to this work, W. Müller-J. Pfaff developed a similar theory of analytic torsion for cusped hyperbolic manifolds and J. Pfaff obtained an analogue of the Cheeger-Müller in this setting [START_REF] Müller | The analytic torsion and its asymptotic behaviour for sequences of hyperbolic manifolds of finite volume[END_REF], [START_REF] Pfaff | A gluing formula for the analytic torsion on hyperbolic manifolds with cusps[END_REF], both valid in arbitrary dimensions. Their results are slightly less general than mine in dimension 3 but they are much more precise when they apply; however, since the approaches are essentially the same though different in form, they cannot allow any better results about torsion homology without dealing with the same problems arising in [START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF].

Parallel to [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF] and its sucessors, there is also an orthogonal problem which appeared in the 1990's in a different context from that we are interested in, and which was revived by results of W. Müller and S. Marshall-W. Müller [START_REF] Marshall | On the torsion in the cohomology of arithmetic hyperbolic 3-manifolds[END_REF] around the same time as when [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF] appeared. These results concern the torsion homology of a fixed arithmetic lattice in SL 2 (C), with coefficients in a sequence of modules with rank going to infinity; they were generalised to lattices in other groups in a series of paper by W. Müller and J. Pfaff. The scheme of proof is the same as the one alluded to above, in particular it does not apply to non-uniform lattices. For non-uniform lattices in SL 2 (C) a similar result is proven in the joint work [START_REF] Pfaff | The torsion in symmetric powers on congruence subgroups of Bianchi groups[END_REF] with J. Pfaff. The difficulties occurring in the last steps in order to prove torsion growth are the same as those discussed in the previous paragraph but in this different context existing tools in number theory can be applied to surmount them.

Conjectural context and results in the cocompact case

The results in this chapter are much less conclusive in range and strength then in the previous section so we motivate them by presenting the conjectural picture in which they fit. Similarly to what happens with Betti numbers (see Theorem 1.34), it is expected that specifically for congruence arithmetic lattices it should be possible to say much more about the torsion subgroups of homology groups than the general bounds given in Theorem 1.31. Namely, given a semisimple Lie group G and its symmetric space X, we should have that (with uniform bounds over all congruence lattices Γ ⊂ G) :

1. if i ̸ = dim(X)-1 2 then log |H i (Γ\X) tors | = o(vol(Γ\X) ; 2. for i = dim(X)-1 2 , log |H i (Γ\X) tors | = vol(Γ\X) • |t (2) (X)| + o(vol(Γ\X).
Here t (2) (X) is the L 2 -torsion of the symmetric space X. It is computed in [START_REF] Olbrich | L2-invariants of locally symmetric spaces[END_REF], which shows in particular that it is nonzero if and only if maximal compact tori in G have dimension exactly equal to the absolute rank of G minus 1. Among simple Lie groups this is the case only for G = SL 3 (R), SL 4 (R) and SO(p, q) with p odd and p + q even (in other words pq odd); these correspond to Vogan diagrams with an involution exchanging exactly one pair of vertices, which is possible only in types A 2 , A 3 and D n , n ≥ 2 (see also [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF]Section 1.2]).

This conjecture was originally stated by N. Bergeron and A. Venkatesh in [16, Conjecture 1.3] only for a nested sequence Γ 1 ⊃ Γ 2 ⊃ • • • of congruence subgroups inside a fixed arithmetic lattice. The restriction to nested sequences is certainly not necessary. It seems more hasardous to generalise their conjecture to sequences with non-commensurable lattices but from a topologist's point of view this is natural in view of the convergence results from the previous chapter. Another motivation is given by extensions of the Langlands program from automorphic forms to torsion cohomology classes, which we shall not discuss here.

The conjecture as stated above is completely open in all cases; namely there is not a single example of a group G and sequence (Γ n ) n≥1 of congruence arithmetic lattices in G such that the conclusion holds. However, there is an approach to it also introduced in [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF] which does succeed in proving some analogous results for homology with coefficients and seems to have a chance of applying also for homology with Z-coefficients. We shall present it in the remainder of this section. Discussion about the obstacles to going through with this argument in the case of trivial coefficients can be found in particular in [START_REF] Bergeron | Torsion homology growth and cycle complexity of arithmetic manifolds[END_REF].

Finally, we note that the conjecture in the case G = SO(3, 1) is well-supported by numerical computations of the homology groups of congruence subgroups up to relatively high level of many arithmetic lattices of small covolume (see [START_REF] Haluk | On the integral cohomology of Bianchi groups[END_REF][START_REF] Brock | Injectivity radii of hyperbolic integer homology 3-spheres[END_REF] and [START_REF] Raimbault | Analytic Torsion, Regulators and Arithmetic Hyperbolic Manifolds[END_REF]Section 3.3.1]). For higherdimensional groups, numerical evidence is scant; some computations for nonuniform lattices in G = SL 3 (R), SL 4 (R) are given in [6].

Exponential growth for nontrivial coefficients in the uniform case

We present here the arguments for the proof of the following theorem.

Theorem 2.1. Let (Γ n ) n≥1 be a sequence of uniform, torsion-free congruence arithmetic lattices in G. Let ρ be a representation of G on a real vector space V such that the G-representations ρ and ρ • θ are not isomorphic, where θ is a Cartan involution of G. Assume that for each n there is a lattice

L n ⊂ V such that ρ(Γ n ) • L n = L n . Then dim(X) i=0 (-1) i log |H i (Γ n , L n ) tors | = t (2) (X, ρ) • vol(Γ n \X) + o(vol Γ n \X).
This is a generalisation of [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF]Theorem 1.4] and the arguments are due to these authors, with the observation that Benjamini-Schramm convergence of the sequence (Γ n \X) n≥1 to X is sufficient to extend it being used in [2,Theorem 8.4]. In the statement t (2) (X, ρ) is the L2 -torsion of X with coefficients in the equivariant flat bundle induced1 by ρ; the groups G for which this theorem gives a nontrivial exponential growth are the same ones as those in the conjecture of the previous subsection, since the condition given there for t (2) (X) > 0 is also necessary and sufficient for t (2) (X, ρ) > 0. Moreover, an explicit computation of the exact value of t (2) (X, ρ) > 0 is given in [START_REF] Bergeron | The asymptotic growth of torsion homology for arithmetic groups[END_REF]Section 5]. Morover they prove that when this condition is met, representations ρ with ρ • θ ̸ ∼ = ρ always exist. See §2.2.2 below for some comments on the use of this condition.

We note that this result is more naturally stated for a sequence of congruence subgroups inside a fixed arithmetic lattice as one can then consider a single stable lattice. In general, the hypothesis that such lattices exist for all n implies that the trace field of Γ n has bounded degree. Finally, in general we do not know how to extract the exponential growth rate for a given degree from this result, but it does imply that at least one degree with the parity of (dim X -1)/2 has exponential growth of torsion since the L 2 -torsion has the same sign as (-1) (dim X-1)/2 . In particular, in dimension 3 (for G = SL 2 (C)), this theorem gives the exact exponential growth rate of the torsion subgroup in H 1 since H 3 is torsion-free and it can be shown that H 0 , H 2 have sub-exponential growth rate (see [16, p. 8.6], [91, p. 6.2]).

Analytic torsion and the Cheeger-Müller theorem

The following theorem allows to use analytic methods to study torsion. Originally it is due to Cheeger and Müller (independently) for trivial coefficients, the extension to unimodular coefficients is due (independently) to Müller and Bismut-Zhang. We use the notation t(M, ρ) to denote the analytic torsion 2 of a closed, odd-dimensional Riemannian manifold M with coefficients in the flat bundle induced by a representation ρ of π 1 (M ).

Theorem 2.2. Let Γ be a uniform torsion-free lattice in G, ρ a representation of G and L ⊂ V a Γ-stable lattice. If H * (Γ, V ) = 0 then dim(X) i=0 (-1) i log |H i (Γ, L) tors | = t(Γ\X, ρ).
Note that unimodularity is implied by the holonomy representation being a representation of the semisimple group G. The usual formulation does not assume acyclicity and uses a Reidemeister torsion rather than homological torsion ; the hypothesis that H * (Γ, V ) = 0 ensures that both are equal.

Approximation for analytic torsion

With Theorem 2.2 above, Theorem 2.1 is an immediate consequence of its analogue for analytic torsion.

Theorem 2.3. If ρ • θ ̸ ∼ = ρ then H * (Γ, V ) = 0 for any uniform lattice Γ in G and t(Γ\X, ρ) = t (2) (X, ρ) • vol(Γ\X) + o(vol Γ\X)
uniformly for congruence lattices. 

lim n→+∞ τ (M n , L) vol(M n ) = t (2) (H 3 , ρ).
The proof of this theorem is contained in [START_REF] Raimbault | Asymptotics of analytic torsion for hyperbolic three-manifolds[END_REF] and [START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF]Sections 3,4,5]. We shall not present it here in detail as it was in large part (all of [START_REF] Raimbault | Asymptotics of analytic torsion for hyperbolic three-manifolds[END_REF] and some special cases of [START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF]) contained in my PhD thesis. The main ingredients are [92, Theorem A, B], the Maass-Selberg relations (see [START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF]Section 5.3]) and ideas from [START_REF] Calegari | A torsion Jacquet-Langlands correspondence[END_REF]Chapter 6]. The complete proof is given in [START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF]Sections 5.4,5.5]. We note that the statement here is substantially more general than in these references; this can be obtained using the same arguments with a slightly more precise version of a crucial lemma that we present in 2.3.2 below.

Cuspidal homology and Reidemeister torsion

We explain here how to define a Reidemeister torsion for cusped hyperbolic manifolds similar to that used in the statement of the Cheeger-Müller theorem [27, Section 1]. The difference between the compact and cusped cases comes from the fact that not all cohomology classes are represented by square-integrable harmonic forms in the latter case.

In order to overcome this difficulty we use the Borel-Serre compactification. Let M be a cusped hyperbolic 3-manifold M , then it is the interior of a compact manifold M whose boundary ∂M is a disjoint union of tori, and the inclusion M ⊂ M is a homotopy equivalence. The manifold M is called the Borel-Serre compactification of M (though in this case the construction is immediate and predates their work which is mostly useful in the case of locally symmetric spaces of higher Q-rank). Then we can consider the pair (M , ∂M ) which gives restriction maps in cohomology ι * : H i (M, V ) → H i (∂M , V ) and a long exact sequence (we will use V to denote the coefficient system Sym m (C 2 )). In this case the kernel ker(ι * ) ⊂ H i (M, V ) is called the cuspidal cohomology and it is isomorphic to the space of square-integrable harmonic forms on M .

On the other hand, each torus T in ∂M has a flat structure4 coming from the hyperbolic structure of M . We can take the induced Euclidean structure on ι * H i (M, V ) and we endow the space ker(ι * ) ⊕ ι * H i (M, V ) ∼ = H i (M, V ) with the Euclidean structure where the summands are orthogonal. With this the following definition for Reidemeister torsion with coefficients in a Γ-stable lattice L ⊂ V is equivalent to that from [26, Chapter 5] (see also [91, (5.6)].

τ (M ; L) = |H 1 (M ; L) tors | vol H 1 (M ; L) free × vol H 2 (M ; L) free |H 2 (M ; L) tors | . (2.1) 
We have the following lemma which simplifies matters when considering nontrivial local coefficients.

Lemma 2.6. For m ≥ 1, V = Sym m (C 2 ) and i = 0, 1, 2, the restriction maps ι * are injective.

The proof uses the same argument as the vanishing of cohomology for cocompact lattices: an analysis based on representation theory of G shows that there cannot be square-integrable harmonic forms with coefficients in V .

Addendum

The statements in [START_REF] Raimbault | Asymptotics of analytic torsion for hyperbolic three-manifolds[END_REF] and [START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF] are significantly weaker than that of Theorem 2.5 in that they ask for an additional condition on the geometry of the M n . However, while writing this thesis, I realised that the need for this condition can be removed in a very simple way that I will explain below. Lemma 2.2 in [START_REF] Raimbault | Asymptotics of analytic torsion for hyperbolic three-manifolds[END_REF] states that if N * λ (R) counts the number of nonzero vectors of length ≤ R in a 2-dimensional Euclidean lattice Λ, and α 1 (Λ) ≤ α 2 (Λ) are the successive minima of Λ, then

N * λ (R) - πR 2 vol(Λ) ≤ C R α 1 (Λ) + α 2 (Λ) α 1 (Λ)
for some constant C independent of Λ. In fact, this can be replaced for 0 ≤ R ≤ α 1 (Λ)α 2 (Λ) by the following more precise estimate:

N * λ (R) - πR 2 vol(Λ) ≤ C R α 1 (Λ)
.

In order to see this we need just observe that in the range 0 ≤ R ≤ α 2 (Λ) (so in particular

R ≤ α 2 (Λ)α 1 (Λ)), we have N * λ (R) = R α 1 (Λ) so that N * λ (R) - πR 2 vol(Λ) ≤ R α 1 (Λ) + πR 2 vol(Λ) ≪ R α 1 (Λ)
where the second inequality follows from Minkoswki's theorem which states that vol

(Λ) ≍ α 1 (Λ)α 2 (Λ) ≥ R 2 .
This improved estimate allows to ignore hypothesis (3) in Theorem A of [START_REF] Raimbault | Asymptotics of analytic torsion for hyperbolic three-manifolds[END_REF] and replace the corresponding hypothesis in Theorem B by vol(M n ) ≤R ≪ vol(M n )/ log(vol M n ) 20 . In particular these two theorems apply to a sequence (Γ n ) n≥1 of congruence subgroups in a Bianchi group, by [91, Theorem B].

Growth of regulators and Eisenstein cohomology

According to (2.1) we have that

log |H 2 (M n , L) tors | = τ (M n , L) + log vol H 2 (M n , L) free + log |H 1 (M n , L) tors | -log vol H 1 (M n , L) free .
We can thus deduce Theorem 2.4 from Theorem 2.5 together with the following estimates:

log |H 1 (M n , L) tors | = o(vol M n ); (2.2) log vol H 2 (M n , L) free = o(vol M n ); (2.3) lim inf n→+∞ log vol H 1 (M n , L) free vol M n ≥ 0. (2.4) 
The estimate (2.2) is proven in [91, Lemma 6.6], and (2.3) is proven in loc. cit., Lemma 6.8. Both proofs use only elementary estimates on the boundary and on co-invariants and duality tricks. We will spend a bit more time discussing (2.4), and how to attempt a proof of its converse inequality.

Eisenstein cohomology and the regulator in degree 1

We give a short account (limited to our setting of SL 2 (C)) of G. Harder's theory of Eisenstein cohomology. We do so in classical language; let M be an orientable hyperbolic 3-manifold with h cusps. Let T 1 , . . . , T h be cross-sections of the cusps, so that each T j is a flat torus and h j=1 T j is identified with the boundary ∂M of the Borel-Serre compactification of M . Recall that V is the space Sym m (C 2 ); we define H 1,0 (T j , V ) to be the 1-dimensional space of holomorphic forms on T j with coefficients in V , and H 0,1 (T j , V ) the space of anti-holomorphic forms. By classical Hodge theory, we have H 1 (T j , V ) = H 1,0 (T j , V ) ⊕ H 0,1 (T j , V ). Using Eisenstein series, it is possible to construct :

• A map E from the space H 1,0 (∂M , V ) of holomorphic 1-forms on ∂M = h j=1 T j (with coefficients in V ) to H 1 (M, V ); • A map Φ : H 1,0 (∂M , V ) → H 0,1 (∂M , V ) (the space of anti-holomorphic forms on ∂M )
such that for all ω ∈ H 1,0 (∂M , V ), we have

ι * E(ω) = ω + Φ(ω).
In particular it follows from Lemma 2.6 and duality arguments that E is a surjective map and that, if π is the projection from H 1 (∂M , V ) → H 1,0 (∂M , V ), then π • ι is an isomorphism. Proving a lower bound for vol H 1 (M n , L) free , from which the estimate (2.4) follows at once, is then quite easy as it boils down to understanding the index of H 1,0 (∂M , L) ⊕ H 0,1 (∂M , L) in H 1 (∂M , L). See [START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF]Lemma 6.7]. This finishes the proof of Theorem 2.4.

On the other hand, to give an upper bound for vol H 1 (M n , L) free (which would be necessary to arrive at a limit in the statement of Theorem 2.4) we need to estimate:

1. the product of singular values of the orthogonal projection π : ι * H 1 (M, V ) → H 1,0 (∂M , V );

the index of πι

* H 1 (M, L) in H 1,0 (∂M , L).
To deal with the problem in 1, we need only to use a bound on the determinant of Φ which is provided by [START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF]Proposition 4.1]. On the other hand, the issues in 2 are much harder to deal with and we could only succeed in reducing the estimate to a number-theoretical statement for which we do not know whether it holds or not (see Proposition C in [START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF]).

In order to perform this reduction, we estimate the denominator of a class E(ω) for ω ∈ H 1,0 (∂M , L), that is the smallest d ∈ N such that dE(ω) ∈ H 1 (M, L) (this exists because the map Φ is defined over Q, see for instance [START_REF] Harder | Eisenstein cohomology of arithmetic groups. The case GL 2[END_REF]Corollary 4.2.1]). Let N be the lowest common multiple of the denominators of E(ω), for ω in a basis of the free part of H 1,0 (∂M , L). Then N • H 1,0 (∂M , L) ⊂ πι * H 1 (M, L) so we get an estimate on the index. This boils down (in part) to estimating the denominator of the intertwining map Φ, and as the latter can be expressed using L-functions, we arrive at a problem about algebraicity properties of special L-values. We will detail this in a slightly different setting where it can be resolved in the next section (see 2.4.1 below).

Exponential growth in symmetric powers of the standard representation

In a different direction one can ask for the asymptotic behaviour of H 1 (Γ, L n ) tors where Γ is a fixed arithmetic lattice in a semisimple group G and L n are Γ-stable lattices in a sequence of
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representations ρ n of G. To expect resonably precise results one might take the ρ n to be the representations associated with the weights along a half-line in the weight lattice; in this setting, and for cocompact torsion-free Γ a reasonable analogue of the results of Bergeron-Venkatesh have been obtained by S. Marshall-W. Müller [START_REF] Marshall | On the torsion in the cohomology of arithmetic hyperbolic 3-manifolds[END_REF] (using analytic results of W. Müller [START_REF] Müller | The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3manifolds[END_REF]) and W. Müller-J. Pfaff (the analytic part is [START_REF] Müller | Analytic torsion and L 2 -torsion of compact locally symmetric manifolds[END_REF] and the application to torsion homology is given in [START_REF] Müller | On the growth of torsion in the cohomology of arithmetic groups[END_REF]).

In this section we present a similar result about non-cocompact lattices in SL 2 (C) obtained with J. Pfaff. The result is the following [85, Theorem A].

Theorem 2.7. Let ε > 0 and k be an imaginary quadratic field. Let Γ be a principal congruence subgroup of SL 2 (Z k ) of sufficiently large level (depending on k, ε) and let L n be the lattice

Sym n (Z 2 k ). Then lim inf n→∞ log |H 1 (Γ, L n ) tors | n 2 ≥ 1 2 -ε vol(M ) 2π (2.5) 
and

lim sup n→∞ log |H 1 (Γ, L n ) tors | n 2 ≤ (2 + ε) vol(M ) 2π . (2.6) 
Conjecturally, there should be a limit and it should be equal to vol(M ) 2π . The scheme of proof is the same one as in the previous section, using a result of Pfaff-Müller for the growth of analytic torsion [START_REF] Müller | Analytic torsion of complete hyperbolic manifolds of finite volume[END_REF]. Then a generalisation of the Cheeger-Müller theorem for manifolds with cusps due to Pfaff [START_REF] Pfaff | A gluing formula for the analytic torsion on hyperbolic manifolds with cusps[END_REF] gives us exponential growth for Reidemeister torsion (not with tight bounds), see [START_REF] Pfaff | The torsion in symmetric powers on congruence subgroups of Bianchi groups[END_REF]Proposition 3.2].

The upper bound (2.6) in this theorem is deduced using the same method as for Theorem 1.31. A difference is that the matrix norms of the differentials in the cellular complex grow with n, but we can estimate this growth precisely and deduce that log [START_REF] Pfaff | The torsion in symmetric powers on congruence subgroups of Bianchi groups[END_REF]Proposition 8.3]). Then we use a balancing trick to get the more precise bound (2.6), at the cost of having to take smaller congruence subgroups in the statement.

|H 1 (Γ, L n ) tors | = O(n 2 ) (see

Estimating the denominator of Eisenstein classes

To deduce the lower bound in Theorem 2.7 from the exponential growth of the Reidemeister torsion defined by the formula (2.1), we need to deal with the term vol H 1 (M, L n ). The method is the same one as that in §2.3.3 but we are able to (mostly) carry it to term in this setting. Namely, we prove the following result (see [START_REF] Pfaff | The torsion in symmetric powers on congruence subgroups of Bianchi groups[END_REF]Proposition 6.1]).

Theorem 2.8. Let d(n) be the smallest d ∈ N such that d • Φ(ω) ∈ H 0,1 (∂M , L n ) for all ω ∈ H 1,0 (∂M , L n ). Then log d(n) = O(n log n).
This is not sufficient to estimate the index of πι * H 1 (M, L n ) in H 1,0 (∂M , L n ), as this helps only to check integrality against 1-cycles which are homologous to the boundary; in principle one also needs to check it for 1-cycles relative to the boundary (which could be done using techniques from [START_REF] Calegari | A torsion Jacquet-Langlands correspondence[END_REF]Chapter 5.7]). However we use another balancing trick to deduce a slightly weaker estimate from this theorem (see [START_REF] Pfaff | The torsion in symmetric powers on congruence subgroups of Bianchi groups[END_REF]Lemma 4.1]).

We finish this chapter with a few words on the proof of Theorem 2.8. It reduces (non-trivially) to proving a statement about certain particular 1-forms which, when viewed as functions on the adèle group associated with the arithmetic lattice SL 2 (Z k ), are eigenfunctions of the group of diagonal matrices; see loc. cit., sections 5 and 6.1. For such functions, the intertwining operator Φ essentially reduces to multiplying by the quotient of L-values

L(χ, n + 2) π • L(χ, n)
where χ is the eigencharacter associated with the function on which we compute the intertwining operator; see loc. cit., Sections 5.5 and 6.3. Now estimating the denominator of the algebraic number above can be done along the lines of the proof of a result of Damerell [START_REF] Damerell | L-functions of elliptic curves with complex multiplication. I[END_REF][START_REF] Damerell | L-functions of elliptic curves with complex multiplication. II[END_REF] which gives a direct proof (without Eisenstein cohomology) that it is algebraic. This is done in the Appendix to [START_REF] Pfaff | The torsion in symmetric powers on congruence subgroups of Bianchi groups[END_REF].

Introduction

In the previous chapters, we described results solely about congruence arithmetic lattices in semisimple Lie groups. We now discuss the position of these particular lattices (and of their properties described there) with respect to the set of all lattices. There is in this regard a wellknown trichotomy (which might reduce to a dichotomy) among semsisimple Lie groups regarding the nature of their lattices:

• In groups of real rank at least 2 all (irreducible) lattices are arithmetic, and conjecturally they are all essentially congruence, meaning that for a given G there is a universal bound for the index of a lattice in its congruence closure;

• In the real rank 1 groups Sp(n, 1), n ≥ 2 and in the exceptional rank 1 group, all lattices are arithmetic and nothing is conjectured one way or the other about them being congruence;

• For the remaining rank 1 groups SO(n, 1) and SU(n, 1) knowledge is still patchy regarding this problem:

-In the real rank 1 groups SU(n, 1) with n ≥ 4 no examples of non-arithmetic lattices are known, and there are examples of lattices with arbitrarily large index in their congruence closure (which also exist for n = 2, 3);

-In each of SU(2, 1) and SU(3, 1) there are finitely many commensurability classes of non-arithmetic lattices known (cf. [START_REF] Deraux | New nonarithmetic complex hyperbolic lattices. II[END_REF][START_REF] Deraux | A new nonarithmetic lattice in PU(3, 1)[END_REF] for the most recent results on the problem);

-In each group SO(n, 1) there are infinitaly many known commensurability classes of non-arithmetic lattices [START_REF] Gromov | Non-arithmetic groups in Lobachevsky spaces[END_REF], and in each arithmetic commensurability class (except for a specific family for n = 7) there are examples of arithmetic lattices with arbitrarily large index in their congruence closure (this follows from [START_REF] Millson | On the first Betti number of a constant negatively curved manifold[END_REF][START_REF] Li | On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group[END_REF] in dimensions > 3, and [5] in dimension 3; see [13] for relevant information on the exceptional lattices in SO(7, 1)).

It is not clear at present whether all SU(n, 1) should have the same behaviour as SO(n, 1) or whether arithmetic lattices should be essentially congruence in Sp(n, 1) and the exceptional rank 1 group. In any case, in this chapter we concentrate on SO(n, 1), especially in small dimensions. The examples which establish the failure of the congruence subgroup property for SO(n, 1) also show that the conclusion of Theorem 1.1 does not hold for more general lattices. More precisely, the papers of J. Millson and Millson-J.-S. Li [START_REF] Millson | On the first Betti number of a constant negatively curved manifold[END_REF][START_REF] Li | On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group[END_REF] quoted above show that any arithmetic manifold M of dimension n ≥ 4 (except for the exceptional manifolds of dimension 7) has positive virtual first Betti number. That is, there exists a finite cover M ′ → M such that π 1 (M ′ ) admits a nontrivial morphism φ to Z. Thus there is an infinite sequence of cyclic covers M k → M ′ associated with the morphisms π 1 (M ′ ) → Z/kZ obtained by composing φ with reduction modulo k. Obviously, the sequence (M k ) k≥1 cannot be Benjamini-Schramm convergent to H n , and it follows by applying Theorem 1.2 that for k large enough they cannot be congruence either (and in fact their index inside their congruence closure must go to infinity with k). For n = 3, it is actually known by a result of I. Agol that all hyperbolic manifolds of finite volume have virtual positive first Betti numbers. In the complex hyperbolic case only arithmetic manifolds of the simplest type are known to satisfy this property, as follows from a theorem of D. Kazhdan [START_REF] Kazhdan | Some applications of the Weil representation[END_REF], while for other arithmetic manifolds it is known that no congruence covers can have positive first Betti number [START_REF] Rogawski | Automorphic representations of unitary groups in three variables[END_REF].

In view of this, we ask whether Benjamini-Schramm convergence holds "generically". For n ≥ 4 there is a natural way to make this precise: the set of volumes of lattices is locally finite (Wang's finiteness theorem), so we can filter the set of hyperbolic manifolds by increasing volume1 and ask whether the probability that an event holds is asymptotically almost sure. However, questions of this nature seem out of reach with our current understanding of non-arithmetic lattices.

The first result in this chapter, from [START_REF] Raimbault | A note on maximal lattice growth in SO(1,n)[END_REF], is that the known class of examples suffice to prove that among commensurability classes ordered by minimal volume, non-arithmetic classes predominate by a large margin. We note that the examples produced to this end do not satisfy the conclusion of Theorem 1.1. However, even barring the possibility of a still unknown more abundant source of non-arithmetic commensurability classes, this does not imply anything one way or the other regarding the generic behaviour, as lattices from a few arithmetic commensurability class may still account for a comparable number.

Since arithmetic lattices are not all congruence, and in fact it is known that generically in the sense above they are not2 , the question of generic behaviour is still interesting when restricted to arithmetic lattices. In view of Theorem 1.1, the main focus should be on studying generic finite-index subgroups in a single arithmetic lattice. The question then admits a purely grouptheoretical reformulation: given a finitely generated group Γ, if g ∈ Γ \ {1}, does the proportion of subgroups of index n in Γ which contain g tend to 0 as n → +∞? This is known to be true when Γ is a non-compact lattice in PGL 2 (R) (a result of E. Baker-B. Petri [10], generalising a result of B. Bollobás on free groups) and for surface groups by a result of M. Magee and D. Puder [START_REF] Magee | The Asymptotic Statistics of Random Covering Surfaces[END_REF] (and it seems likely that the arguments on the latter paper could be generalised to include all cocompact lattices in PGL 2 (R)).

For lattices in higher-dimensional groups, starting with SO(3, 1), essentially nothing is known about their generic finite-index subgroups. The most basic question, without an answer to which further progress seems unlikely, is to get a precise asymptotic information about the number of such groups. This fits within the topic of subgroup growth, which we now describe briefly. If Γ is a finitely generated group, let s n (Γ) denote the number of its subgroup of index n; we are interested in the asymptotic behaviour of s n (Γ) as n → +∞. In order to study this, the first step is to observe that it is enough to get a sufficiently fast-growing and well-behaved asymptotic equivalent for the number h n (Γ) of morphisms from Γ to the symmetric group S n . The number of such morphisms is at most (n!) d Γ where d Γ is the minimal number of generators of Γ, so it is natural to first study whether the limit

lim n→+∞ log s n (Γ) n log(n) (3.1)
exists and to evaluate it. There is no answer to this in general, as the study of h n (Γ) must often involve a direct combinatorial approach searching for solutions in S n to the defining relations of Γ, which is very hard even when a rather simple presentation of Γ (say with 1 relation) is available. One general fact is that for groups which are large (including all 3-dimensional hyperbolic lattices by the work of Agol-Wise, and many arithmetic lattices in higher dimensions), the upper limit is positive-but it is not known whether the limit even exists. Among lattices in hyperbolic spaces, perhaps the ones with the simplest presentations are right-angled Coxeter groups. For Fuchsian groups, a result of M. Liebeck and A. Shalev [START_REF] Liebeck | Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks[END_REF] gives a precise asymptotic equivalent to s n (Γ) which can be interpreted in a simple way from the Coxeter diagram for right-angled reflection groups. In dimension 3, the only such group for which even the value for the limit (3.1) is known is the reflection group of the regular right-angled ideal octahedron (cf. [8, § 2.5.2]). For general right-angled Coxeter groups, there is a conjecture (generalising the two known facts above) for this value due to H. Baik, B. Petri and myself, which we proved for a large family of groups which unfortunately does not include any other hyperbolic reflection groups. On the other hand, for right-angled Artin groups the value of the limit (3.1) is known in general. For finer asymptotic information nothing is known outside of the simplest examples, virtually cyclic right-angled Coxeter groups (products of an infinite dihedral group with an elementary abelian 2-group), and the answer in this case is already quite complicated (see Theorem 3.11 below).

In the discussion above, we considered only subgroups of finite index in lattices of SO(n, 1), but if we are ultimately interested in properties of the corresponding hyperbolic manifolds we should rather study isomorphism classes of such subgroups. When n = 2, there is a dramatic difference between these two quantities: if e n (Γ) denotes the number of isomorphism classes of subgroups of index n in Γ and Γ is a torsion-free lattice in SO(2, 1) then e n (Γ) = 1 for all n ≥ 1. For lattices with torsion, the behaviour is slightly more complicated and can be related to the geometry of the quotient. As far as counting goes, for n ≥ 3, there is no large difference between s n and e n but the finer relation between the two is still not very clear. For example, if Γ is a lattice in SO(3, 1), it is not quite easy to produce infinitely many examples of non-isomorphic normal subgroups with the same quotient.

Finally, in dimensions 2 and 3, the situation with regard to the motivation of this chapter (understanding generic hyperbolic manifolds) is completely different. In dimension 2, the volume spectrum is still discrete (by the Gauss-Bonnet formula) but for each volume there is a continuous moduli space of hyperbolic surfaces realising it. The flavour of our question in this setting is thus completely different but it has a positive answer by the work of M. Mirzakhani [START_REF] Mirzakhani | Growth of Weil-Petersson volumes and random hyperbolic surface of large genus[END_REF]. In dimension 3 the volume spectrum is not discrete (see for instance [START_REF] Gromov | Hyperbolic manifolds according to Thurston and Jorgensen[END_REF]). However there is a purely topological characterisation of hyperbolicity in this dimension, given by G. Perelman's solution to the Geometrisation conjecture (see [START_REF] Thurston | Three dimensional manifolds, Kleinian groups and hyperbolic geometry[END_REF]Conjecture 1.1] for the statement, and [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF][START_REF] Perelman | Ricci flow with surgery on three-manifolds[END_REF] for the solution). Hence it is feasible to study hyperbolic 3-manifolds via a topological model for random manifolds, by proving that hyperbolicity is generic in this model. This has been done for random Heegaard splittings by J. Maher [START_REF] Maher | Random Heegaard splittings[END_REF] following work by N. Dunfield and W. Thurston on this model [START_REF] Dunfield | Finite covers of random 3-manifolds[END_REF]; a finer description of the generic geometric properties of these manifolds is given by P. Feller, A. Sisto and G. Viaggi in [START_REF] Feller | Uniform models and short curves for random 3-manifolds[END_REF].

On the other hand, the constraint brought by fixing Heegaard genus seems unnatural with regards to what we expect of a random manifold. For our purposes it is better to study random triangulation on a fixed number (going to infinity) of tetrahedra. Unfortunately such triangulations are not (in the natural random model) homeomorphic to manifolds, and studying conditional properties on the subset of those which are seems extremely difficult. Nevertheless, removing the singular locus (the vertices of the triangulation) gives a random manifold with boundary which turns out to be hyperbolic with totally geodesic boundary and a well-understood geometry. This has a priori no bearing on the original problem but still seems interesting in its own right and perhaps as a stepping stone towards it.

Generic commensurability classes

The following result is [START_REF] Raimbault | A note on maximal lattice growth in SO(1,n)[END_REF]Corollary 1.3]. Theorem 3.1. Let n ≥ 3 and for v > 0, let L com (v) (respectively L a,com ) be the number of commensurability classes of lattices (respectively arithmetic lattices) in SO(n, 1) which contain a 3.3 Subgroup growth of right-angled groups

Subgroup growth and permutation representations

In order to study the function n → s n (Γ), the most useful fact is that

s n (Γ) = t n (Γ) (n -1)!
where t n (Γ) is the number of transitive actions of Γ on the set {1, . . . , n}. This follows immediately from the fact that a subgroup of index n in Γ corresponds to an action of Γ (on its left cosets) which is transitive, and has a distinguished point (the identity coset); there are (n -1)! possible labelings which do not change the distinguished point.

It often happens that t n (Γ) ∼ n→+∞ h n (Γ) where h n is the number of all actions, in other words, morphisms from Γ to the symmetric groups S n . Most of the known results on subgroup growth beyond polynomial growth amount to an estimate of h n (Γ).

Artin groups

For a finite graph G let Γ Art (G) be the right-angled Artin group associated with G. That is, Γ Art (G) is defined by the presentation

Γ Art (G) = ⟨s v , v a vertex of G | [s v , s w ] = 1 if v is adjacent to w⟩ .
We also denote by α(G) the independence number of G, that is the maximal cardinality of an independent set in G-a set of vertices which are pairwise not adjacent in G. The following result is [8, Theorem A]. The lower limit is essentially immediate to deduce from the case of the free groups: for the free group F r of rank r, it is well-known (see for instance [START_REF] Lubotzky | Subgroup growth[END_REF]Theorem 2.1]) that the theorem holds, that is lim n→+∞ log sn(Fr) n log(n) = r -1. If α(G) = r, let {v 1 , . . . , v r } be an independent set. There is a morphism from Γ Art (G) to F r sending the generator corresponding to v i to the ith generator of F r , and the remaining generators to 1. This is surjective, so

s n (Γ Art (G)) ≥ s n (F r ), hence lim inf n→+∞ log sn(Γ) n log(n) ≥ r -1 = α(G) -1.
The upper bound is proven by induction on the number of vertices of G. To do so we fix an arbitary vertex v 0 ∈ G. Let v 1 , . . . , v d be its neighbours in G and σ 0 , . . . , σ d the corresponding generators of Γ. We enumerate (arbitrarily) the remaining generators of Γ as σ d+1 , . . . , σ r .

The upper bound on h n (Γ) is obtained by reducing it to more manageable summands as follows: for ℓ, K ≥ 0 let L(ℓ, K) = {ρ ∈ Hom(Γ, Sym ℓ ) : all orbits of ⟨ρ(σ 1 ), . . . , ρ(σ d )⟩ are of size > K} and S(ℓ, K) = {ρ ∈ Hom(Γ, Sym ℓ ) : all orbits of ⟨ρ(σ 1 ), . . . , ρ(σ d )⟩ are of size ≤ K}.

Then we have the following result [8,Lemma 4.2].

A simple example

Let Γ be the subgroup of SO(3, 1) generated by the reflections in the faces of a regular rightangled ideal octahedron. It is naturally isomorphic to the right-angled Coxeter group associated with the 1-skelethon G of the dual of the octahedron, namely the cube. It has γ(G) = 2, realised by an independent set of 4 vertices as illustrated below.

In this case we can prove that lim(log s n (Γ)/n log n) = 1 by a simple argument. Removing all white vertices from the graph above we get a surjection from Γ to the free product (Z/2Z) * 4 of four copies of Z/2Z, for which we have lim log s n ((Z/2Z) * 4 )/n log n = 1. On the other hand, removing the edges joining the two squares in G we get a surjection from the group

Γ ′ = (D ∞ × D ∞ ) * (D ∞ × D ∞ )
to Γ (where D ∞ is the infinite dihedral group), for which it is also easy to show that lim log s n (Γ ′ )/n log n = 1. It follows that we must have lim log s n (Γ)/n log n = 1 as well.

The case of trees

If G is a graph, S a set of vertices of G and π a function from S to the set of partitions of {1, . . . , n} we define

h π n (Γ Cox (G)) = |{ρ ∈ Hom(Γ Cox (G), Sym n ) : ∀v ∈ S, ρ(s v ) ∈ Stab(π v )}|.
For trees, we can prove the following theorem [8, Proposition 5.5], which implies in particular that they satisfy the conclusion of Theorem 3.9.

Theorem 3.10. Let T be a tree and S a set of leaves of T . Let π = (π v , v ∈ S) as above, such that every partition π v has only blocks of size 1 or 2; we denote by π v,2 the number of those of size 2. Then there exists C > 1 such that we have

h π n (Γ Cox (G)) ≤ C n log log(n) (n!) γ(G) (n!) 1 2n v∈S π v,2
. This is proven by induction starting with |T | = 4. For |T | = 1, 2 it is elementary (see loc. cit., Lemma 5.2 and Lemma 5.3); for |T | = 3 it is quite harder and we use a result of Liebeck and Shalev [START_REF] Liebeck | Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks[END_REF] (see loc. cit., Lemma 5.4). From there it is quite easy to proceed by removing well-chosen subsets of leaves from the tree and applying the induction hypothesis.

Completing the proof

It is quite easy to see using Theorem 3.10 that if v 0 ∈ G verifies that the subgraph G \ {v 0 } is a tree T , and all vertices of T which are adjacent in G to v 0 are leaves, then the conclusion of Theorem 3.9 holds for G; the main remark is that if G is not a tree itself then γ(G) = γ(T ). This works also when we add vertices to a tree which are adjacent to disjoint subsets of leaves.

In order to deal with the case where a second layer of vertices is added, we use the same strategy as for the induction steps in the proof of the result for right-angled Artin groups presented above; though we need to take into account the constraints on the vertices as well for this case, because the behaviour of the invariant γ when removing a 1-neighbourhood of a vertex is more complicated than that of the independence number. See [8,Section 5.4] for details.

Virtually cyclic groups and their free products

The only virtually cyclic Artin group is the infinite cyclic group. On the other hand there are infinitely many virtually cyclic righ-angled Coxeter groups: these are exactly the groups D ∞ × (Z/2Z) r for r ≥ 0, where D ∞ ∼ = (Z/2Z) * (Z/2Z) is the infinite dihedral group. For these groups, there is an explicit formula for s n (Γ) which is not very hard to prove though its statement is a bit cumbersome [9,Corollary 4.2].

On the other hand, the asymptotic formula for h n (D ∞ × (Z/2Z) r ) is much more involved, but it gives the following asymptotic for the subgroup growth of free products [9, Theorem 5.9]. Theorem 3.11. Let m ≥ 2 and r 1 , . . . , r m ∈ N. Let Γ be the free product of the groups

D ∞ × (Z/2Z) r i , then s n (Γ) ∼ a n c+1 e b √ n (n!) m-1
for some a, b > 0 and c ∈ R.

The constants a, b, c have very explicit though quite complicated formulas in terms of the r i .

The main ingredient for the proof of Theorem 3.11 is a precise asymptotic for the number of permutation representations of a virtually cyclic Coxeter group; if Γ = D ∞ × (Z/2Z) r we prove that h n (Γ) ∼ a r n cr+1 e br √ n n!.

The proof of this is completely disjoint from the arguments in the previous subsection, and it uses more advanced techniques from analytic combinatorics. Namely we compute an explicit form for the exponential generating function for the sequence h n (Γ) [9, Theorem 4.1].

Theorem 3.12. Let Γ = D ∞ × (Z/2Z) r and G r (x) = n≥1 hn(Γ) n! x n . There are coefficients s j , 1 ≤ j ≤ r depending only on r such that

G r (x) = r j=0 1 -x 2 j+1 -s 2 j /2 exp -2 j s 2 j + 2 j s 2 j 1 -x 2 j .
The proof of this is by direct combinatorial methods, which give an explicit expression for h n (Γ); it is not quite manageable but can be used to decompose G r as a product of functions F

(2) j . The coefficients for these functions are more manageable and it is possible to derive a differential equation satisfied by each F

(2) j , from which the expression in the theorem follows. Using this theorem and techniques similar to those in [START_REF] Hayman | A generalisation of Stirling's formula[END_REF], we derive the asymptotic equivalent for h n (Γ); from its form we can deduce that for t n (Γ) and hence the asymptotic formula appearing in Theorem 3.11.

Finite covers of 2-orbifolds and 3-manifolds

Beyond subgroup growth, one can study the number e n (Γ) of isomorphism types of subgroups of index n in Γ. This makes more sense in a topological context: if Γ = π 1 (M ) for an aspherical smooth manifold M , then e n (Γ) is equal to the number of homeomorphism types of degree n connected covers of M , at least if the Borel conjecture is true. This may seem like a big "if" but in many cases it is nonconditional (for example for nonpositively curved manifolds). Given Mostow's rigidity theorem, for hyperbolic manifolds in dimensions at least 3 (and other locally symmetric spaces), this also gives the number of isometry classes of finite covers.

Distinct subgroups in a Fuchsian group

For Fuchsian groups the situation is quite different; for example any surface or free group has only 1 isomorphism class of subgroups of index n for a given n, while a hyperbolic surface of which it is the fundamental group has many more non-isometric covers of degree n. When there is torsion the same gap persists between subgroups and covers but it turns out that the number of isomorphism classes has a more interesting behaviour. A very nice example is given by the following result which is mentioned without proof in the introduction of [START_REF] Friedl | On distinct finite covers of 3-manifolds[END_REF].

Theorem 3.13. Let Γ = PSL 2 (Z). Then e n (Γ) ∼ n 2 6 .
The proof of this is mostly given by a result of T. Müller and J. C. Schlage-Puchta [START_REF] Müller | Classification and statistics of finite index subgroups in free products[END_REF] which states that all groups of the form (Z/2Z) * k * (Z/3Z) * l * Z * r with k/2 + 2l/3 + r > 1 are realisable as subgroups of finite index in Γ = PSL 2 (Z). If Λ is such a subgroup its Euler characteristic is given by

χ(Λ) = k 2 + 2l 3 + r -1
and in particular χ(Γ) = 1 6 , so we must have

[Γ : Λ] = χ(Λ) χ(Γ) = 3k + 4l + 6r -6.
By Müller and Schlage-Puchta's result, for n large enough, the number of isomorphism classes among subgroups in Γ of index n is thus equal to the number of non-negative integer solutions (k, l, r) to the equation 3k + 4l + 6r = n + 6. For convenience, we will estimate the number of such solutions for index (n -6); then it is equal to the number of points of the lattice 1 n Z 3 in the triangle given by the intersection of the positive octant in R 3 with the plane 3x + 4y + 6z = 1; the area of the triangle is equal to √ 61/6 while the co-area of the intersection of 1 n Z 3 with the plane is equal to √ 61/n 2 , hence the number of points is asymptotically n 2 /6.

For general Fuchsian groups, a similar result is true with regard to degree of growth. We did not carry out the computation of the full asymptotic estimate, which should be feasible at least for non-cocompact groups. This is [44, Proposition 2.2], which is proven by methods quite similar to those used for the above result, generalising enough of the result of Müller-Schlage-Puchta to cocompact groups. Theorem 3.14. Let Γ be a cofinite Fuchsian group, let m 1 , . . . , m s be the cardinalities of a family of representatives of the conjugacy classes of its maximal finite subgroups (geometrically this corresponds to the orders of the cone points on the orbifold Γ\H 2 ). Let d be the total number of divisors of all m i . Then e n (Γ) ≍ n d-1 .

Regular covers of hyperbolic 3-manifolds

Even for groups whose subgroup growth is well-understood (which is not the case of fundamental groups of hyperbolic manifolds), their normal subgroup growth (the asymptotic behaviour of the number of normal subgroups of index n) seems to be much more complicated. For example, for the free group of rank d, this amounts to counting the number of finite groups with at most d generators, so the function must be very irregular (for instance it takes value 1 at each prime number). We can still prove the following result about hyperbolic 3-manifolds, which implies in particular that they have infinitely many non-isometric pairs of finite covers with the same degree [44, Proposition 4.5].

Theorem 3.15. Let M be a connected closed hyperbolic 3-manifold. There are C, α > 0 (depending on M ) such that if c n denotes the number of non-isometric manifolds which are regular covers of M whose Galois group contains a cyclic subgroup of index at most C then

lim sup n→+∞ c n n α > 0.
The proof is quite straightforward; if b 1 (M ) ≥ 2 we can produce many non-isomorphic finiteindex subgroups with cyclic quotient. By the solution to the Virtually Haken conjecture we can always take a finite index subgroup ∆ in Γ such that b 1 (∆\H 3 ) ≥ 2; then we take the normal cores in Γ of the subgroups with abelian quotients in ∆ and we check that they give enough subgroups to prove the proposition. This is not completely obvious and we use the fact that the quotients of ∆ are abelian in an essential way.

Random 3-dimensional triangulations and manifolds

A random model for 3-manifolds with boundary

Let T be a complex obtained by gluing finitely many tetrahedra (4-simplices) along their faces so that each face belongs to exactly 2 tetrahedra. Then T is not necessarily a 3-manifold but each point in T which is not a vertex of a tetrahedron has a neighbourhood in T which is homeomorphic to a 3-ball, so removing from T a conical neighbourhood of every vertex gives a manifold with boundary. The manifold is orientable if the gluings were made by orientation-reversing maps.

In [START_REF] Petri | A model for random 3-manifolds[END_REF] we introduce a model for 3-manifolds by taking a random simplicial complex satisfying the properties above and excising the vertices (it is well-known that generically, the random complex T n obtained by gluing n tetrahedra along a 4-valent graph is not a manifold as n → +∞, see [36, §2.1]). The model for the complex is natural: we choose uniformly at random an involution σ on {1, . . . , 4n}, without fixed points. Viewing {1, . . . , 4n} as the set of faces of n tetrahedra, we choose for each transposition in the cycle decomposition of σ an orientationreversing identification between the two corresponding faces, uniformly at random among the 3 possibilities. For technical reasons, we also ask that in the dual graph to the complex there be no loops or bigons (this condition has positive probability as n → +∞).

We denote by M n the resulting random manifold. It is oriented (by construction) and asymptotically almost surely connected.

Generic properties

It turns out that despite its purely combinatorial construction the random manifold M n has a very rigid geometric behaviour, as illustrated from the following properties from [82, Theorem 1.2]. Theorem 3.16. Let M n be the asymptotically almost surely connected random manifold described above. Then asymptotically almost surely as n → +∞ the manifold M n has an hyperbolic structure with totally geodesic boundary, and its hyperbolic volume is ∼ v O • n where v O is the volume of a regular right-angled ideal octahedron in H3 .

In [82, Theorems 1.1, 1.2] we also prove more topological and geometric properties of M n : the boundary component is connected has genus ∼ n, the first Betti numbers are ∼ n, the hyperbolic structure has a uniform spectral gap, and it converges in Benjamini-Schramm topology to an explicit invariant random subgroup of PSL 2 (C). Here we only explain the proof of the hyperbolisation theorem above, which contains all the main ingredients for the proof of the other results.

The proof of Theorem 3.16 proceeds via explicit hyperbolisation of the manifold M n under certain combinatorial conditions on the triangulation T n ; namely (in addition to excluding loops and bigons in the dual graph) we ask that its dual graph has few short cycles, and that cycles which loop around an edge of the triangulation are disjoint up to length n 1/3 . These conditions are proven to be generic in [START_REF] Petri | A model for random 3-manifolds[END_REF]Theorem 2.4].

We can also use T n to construct a hyperbolic manifold of finite volume with totally geodesic boundary as follows: pick a vertex in the middle of each edge of T n and truncate the tetrahedra along the triangles spanned by these vertices. Each tetrahedron is replaced by an octahedron whose vertices correspond to the edges of the tetrahedron. Identifying each octahedron with the regular right-angled ideal tetrahedron in H 3 , we obtain a hyperbolic manifold X n with totally geodesic boundary and finite volume.

The cusps of X n correspond to the edges of T n . We can use this to describe X n as the interior of a compact manifold, whose boundary contains annuli each corresponding to a cusp of X n . Indeed, the neighbourhood of the cusp of X n corresponding to the edge e of T n is made up of the cusps of the ideal octahedra coming from the tetrahedra of T n around e. Each of these octahedral cusps has a cross section which is a square; hence, when we remove the neighbourhood, we add to the boundary a surface made up by gluing squares cyclically, which is an annulus.

We can recover M n from X n as follows: if we glue cylinders [0, 1] × D 2 to the annuli on the boundary 3 of this compactification of X n , we obtain a compact manifold homeomorphic to M n . Indeed, this amounts to blowing up each ideal vertex of X n to an edge, and each octahedron in X n becomes a truncated tetrahedron, which glue together to form M n .

If we exclude triangles from the dual graph we can apply the 2π-theorem [20, Theorem 9 on p. 816] to conclude that M n , as a Dehn filling of X n , must be generically hyperbolic. Under our slightly more general condition, and in order to have a better control over the distortion in the hyperbolic metric on the thick part induced by the filling, we use a more explicit procedure. We refer to [82, Lemma 3.6] and its proof for detailed statements. First we replace all octagons which are adjacent to cusps of X n corresponding to an edge of T n around which there are at most n 1/4 tetrahedra (we call such cusps small cusps in the sequel) by compact polygons realising the new hyperbolic metric. This is not obvious to perform : first we need to invoke Andreev's theorem to construct the polygons. Then, to ensure that we can perform the gluing isometrically, we observe that generically small cusps correspond to edges lying far apart in T n . This procedure affects a relativaly small part of the manifold by the generic hypothesis that there are few short cycles, and we have a bilipschitz control with uniform constant over the distortion in the thick part. We call the resulting manifold Z n ; the observation above shows that in particular vol(Z n ) ∼ vol(X n ).

After that we use explicit drilling/filling estimate of D. Futer, J. Purcell and S. Schleimer [START_REF] Futer | Effective bilipschitz bounds on drilling and filling[END_REF] to control the distortion when filling the remaining cusps in Z n ; this is carried out in [82, Lemma 3.7]. In short we get that (in addition to M n being hyperbolic), for an arbitrarily small

Introduction

In this last chapter, we study in some depth invariant random subgroups in semisimple Lie groups, which were introduced in the first chapter as a tool for proving results on Benjamini-Schramm convergence. As we saw there, in most higher-rank groups the Stuck-Zimmer theorem applies so the space of invariant random subgroups is completely understood (see Theorem 1.16). For those which have factors of rank 1 without property (T), nothing is known one way or the other (for irreducible invariant random subgroups) and we will not discuss the situation here.

We will therefore limit ourselves here to studying invariant random subgroups in rank 1 Lie groups, mostly SO(n, 1). It is known that there are many of them in these groups beyond the trivial ones and the µ Γ for Γ a lattice. For example, cocompact lattices in a rank 1 group are Gromov-hyperbolic groups and these always have infinite normal subgroups of infinite index. In SU(n, 1) and Sp(n, 1) (and in the exceptional rank 1 group) no other constructions are known at present. In [3] several other constructions are presented of invariant random subgroups in the groups SO(n, 1) whose support does not intersect the set of subgroups of all lattices in SO(n, 1). These constructions essentially follow known constructions of hyperbolic manifolds: in dimensions 2 and 3, the geometric tools at disposal allow for specific constructions, while for dimensions n ≥ 4 there is a construction inspired by Gromov and Piatetski-Shapiro's examples of nonarithmetic manifolds.

On the other hand, discrete subgroups of semisimple Lie groups appearing in the support of invariant random subgroups should be somewhat constrained. The first instance of this is the generalisation of Borel density theorem we encountered in the first chapter (see Theorem 1.14). Beyond that result, invariant random subgroups share more properties with the special case of normal subgroups of lattices: their limit sets must be the whole boundary at infinity [3], the associated quotient spaces must have either zero, one, two or infinitely many infinite-volume ends [START_REF] Biringer | Ends of unimodular random manifolds[END_REF] (this generalises the Hopf-Freudenthal theorem on ends of groups).

For surfaces (that is, invariant random subgroups in SL 2 (R)), these properties imply much more detailed results. The result on limit sets implies that any invariant random subgroup in SL 2 (R) which is supported on finitely generated subgroups1 must be supported on lattices. The result on ends gives a complete list of surfaces of infinite type that can appear as quotients of H2 by invariant random subgroups. In higher dimensions not much is known; a result of M. Abért-I. Biringer [4] shows that invariant random subgroups in SL 2 (C) supported on torsionfree, finitely generated subgroups must in fact be supported on doubly degenerate surface groups and lattices. A result of I. Gekhtman-A. Levit [START_REF] Gekhtman | Critical exponents of invariant random subgroups in negative curvature[END_REF] gives more information about the behaviour at infinity of invariant random subgroups in rank-1 groups via their critical exponents.

Properties of invariant subgroups in rank 1

The no-core principle

In this subsection we present some results on invariant random subgroups due to M. Abért-I. Biringer and I. Biringer-O. Tamuz [4,[START_REF] Biringer | Unimodularity of invariant random subgroups[END_REF]. The no-core principle is the following theorem, which gives a precise meaning to the statement that it is not possible to measurably pick a finite-volume region in a conjugacy class in Sub G unless it is itself of finite (G-invariant) volume. We give an algebraic statement, a more geometric version 2 in a slightly different setting is given in [4,Theorem 1.15]. of discrete, torsion-free, non-central subgroups H of G such that ξ does not belong to the limit set of H, and the root He G K ∈ H\G/K is at distance at most 1 of the projection of ξ onto the convex hull in G/K of the limit set. This is obviously a Borel subset of Sub G . Moreover, for any H in the support of ν such that ξ is not in the limit set of H, the intersection of A with the conjugacy class of H lifts (via the covering map H\G → N G (H)\G) to a finite-volume subset of H\G (since its preimage maps to a ball of radius 1 in H\G/K). By the no-core principle it follows that ν-almost surely ξ belongs to the limit set of H, or ν is supported on central subgroups. Considering only the first possibility, and taking a dense countable subset of ∂ ∞ X we see that ν-almost surely the limit set of H contains a dense subset of ∂ ∞ X so it must be equal to ∂ ∞ X.

Topology of unimodular random hyperbolic surfaces

An end of a locally compact, second-countable connected topological space M is an element of the projective limit lim n→+∞ π 0 (M \ C n ) where C n is an increasing exhaustion of Y by compact subsets (it does not depend on such an exhaustion). The set of ends has a natural topology for which it is compact.

If M is a Riemannian manifold an end is said to have finite volume if for some n the corresponding component of Y \ C n has finite Riemannian volume (in case where Y is hyperbolic this means the end corresponds to a cusp of M ). If M is a surface, and we take the C n to be subsurfaces then we say that an end has infinite genus if for all n the corresponding component of M \ C n has positive genus (i.e. contains a nonseparating closed curve). The following theorem is then [START_REF] Biringer | Ends of unimodular random manifolds[END_REF]Theorem 1.1].

Theorem 4.4. Let ν be an invariant random subgroup in SL 2 (R) and assume that a ν-random subgroup is almost surely discrete and torsion-free. Then for ν-almost every H, the quotient S = H\H 2 satisfies the following properties:

1. the space of infinite-volume ends of S has at most two elements or it is a Cantor set; 2. if S has a cusp then every infinite-volume end of S is a limit of cusps; 3. if S has positive genus then every infinite-volume end of S has infinite genus.

All three properties are trivially satisfied by any finite-volume surface. On the other hand they restrict dramatically the topological types for surfaces of infinite volume. Topological surfaces of infinite type are classified by their end space and the genus function on this space [START_REF] Richards | On the classification of noncompact surfaces[END_REF]; it is then easy to see that up to homeomorphism there are exactly 12 surfaces of infinite type satisfying the three conditions above. Those without cusps4 are pictured in Figure 4.1.

We note that the statements 1 and 2 in the theorem are also valid for torsion-free invariant random subgroups5 in any G.

Each of the statements in the theorem can be proven using the no-core principle (the proof in [START_REF] Biringer | Ends of unimodular random manifolds[END_REF] is essentially the same but does not appeal explicitely to the principle). Namely, each of them follows from applying the theorem to one of the subsets of Sub SL 2 (R) in the following list:

• For 1, the discrete subgroups H of SL 2 (R) such that H\H 2 has one isolated infinite-volume end and at least two others infinite-volume ends, and the ball of radius R around the root the infinite prison window, Jacob's ladder, the Cantor tree, the Cantor tree in bloom, • For 2, the discrete subgroups H of SL 2 (R) such that the ball of radius R around the root in H\H 2 separates all cusps from an infinite-volume end, see [START_REF] Biringer | Ends of unimodular random manifolds[END_REF]Lemma 3.4].

• For 3, the discrete subgroups H of SL 2 (R) such that the ball of radius R around the root in H\H 2 separates a genus-zero end from all subsurfaces with positive genus, and the ball itself contains such a surface; see [START_REF] Biringer | Ends of unimodular random manifolds[END_REF]Lemma 3.5] 4.3 Constructions of invariant random subgroups in rank 1 groups

Invariant random subgroups of lattices and induction

If Γ is a lattice in G and Λ ◁ Γ is a normal subgroup then the G-conjugacy class of Λ is a Gequivariant quotient of G/Γ and so it carries a unique G-invariant probability measure. Hence there is an invariant random subgroup in G supported on the conjugacy class of Λ; in particular, such an example shows that the conclusion of Theorem 1.16 cannot hold for G since cocompact lattices in G are non-elementary Gromov-hyperbolic groups and as such they always contain infinite-index infinite normal subgroups (cf. [START_REF] Delzant | Distinguished subgroups and quotients of hyperbolic groups[END_REF]). Note that since not much is known about the quotient Γ/Λ, it is still possible that the conclusion of Theorem 1.5 holds for those rank 1 groups in which we do not know the answer to the congruence subgroup problem for their arithmetic lattices (so Sp(n, 1) and the exceptional group; in SO(n, 1) and SU(n, 1), as was observed in the introduction to Chapter 3, there are arithmetic lattices with an infinite cyclic quotient and the associated finite cyclic covers give a sequence of manifolds which converge to an infinite index infinite normal subgroup).

More generally it is possible to induce invariant random subgroups from lattices to the ambient group as follows. If G is a locally compact group and Γ a lattice in G then Γ acts on the right on G × Sub Γ by (g, H) • γ = (gγ, γ -1 Hγ). We see that there is a map (G × Sub Γ )/Γ → Sub G given by (g, H) → gHg -1 . If ν is an invariant random subgroup in Γ, by taking the product with the Haar measure on G, we obtain a Γ-invariant measure on G × Sub Γ . Then the quotient (G × Sub Γ )/Γ is a Borel space, and the quotient measure is a finite measure. We can thus normalise this measure to be a probability measure, and its pushforward by the map Φ is an invariant random subgroup in G.

L. Bowen has constructed examples of ergodic invariant random subgroups in non-abelian free groups which are supported on uncountable subsets [START_REF] Bowen | Invariant random subgroups of the free group[END_REF]. As there are lattices in every SO(n, 1) and in SU(2, 1) which have non-abelian free quotients [START_REF] Lubotzky | Free quotients and the first Betti number of some hyperbolic manifolds[END_REF][START_REF] Deraux | Forgetful maps between Deligne-Mostow ball quotients[END_REF], this gives examples of invariant random subgroups in these groups which are supported on uncountably many conjugacy classes. It is not known whether these exist in Sp(n, 1) or in the exceptional rank 1 group.

Non-lattice examples in PO(n, 1)

All examples previously constructed of non-trivial invariant random subgroup in a simple Lie group G rely on lattices in G or their subgroups. In PO(n, 1) more complicated examples can be constructed. We state this in the following theorem. Theorem 4.5. Let n ≥ 2. There exists uncountably many invariant random subgroups in PO(n, 1) for which the measure of the Borel set of all subgroups of lattices in PO(n, 1) is zero.

All constructions will be of a geometric nature. Recall that the connected component PO(n, 1) • is PO(n, 1) • -equivariantly diffeomorphic to the direct orthonormal frame bundle of H n , so that if (M, ϕ) is an orientable framed hyperbolic n-manifold there is a unique torsion-free discrete subgroup Γ in PO(n, 1) such that Γ\H n is isometric to M and the framing ϕ is the image of the framing of H n given by the trivial element of PO(n, 1); we call this subgroup Γ the holonomy group of (M, ϕ).

Dimension 2

In this case the construction is quite elementary. It uses the following construction of infinitetype surfaces: a 3-valent tree T , each of whose edges is marked by a length ℓ > 0 and a twist parameter θ ∈ R/2πZ determines a surface by putting at each vertex a pair of pants whose cuff lengths are given by the lengths marking the edges adjacent to the vertex, and gluing the pants corresponding to two adjacent vertices using the twist marking of the edge between the two. We randomise this construction by taking the lengths to be i.i.d. random variables supported in ]0, +∞[ (with arbitrary law) and the twists to be i.i.d. uniform random variables. Then we fix a root in T and we choose uniformly randomly a direct orthonormal frame inside the corresponding pair of pants. The holonomy of the resulting framed surface gives an ergodic invariant random subgroup in PO(2, 1) [3,Proposition 11.2]. As soon as the measure determining the length markings have a non locally-finite support, it will almost surely not be a subgroup of a lattice, as a random surface will almost surely contain countably many closed geodesics with lengths which are pairwise distinct and smaller than some constant, which is not possible for a cover of a finite-type surface.

Dimension 3

For dimension 3, the construction relies on doubly degenerate surface groups in PGL 2 (C). It is quite technical and we will only describe it briefly; details can be found in [3,Theorem 12.8]. A doubly degenerate surface group Λ ∼ = π 1 (S) can be associated to certain pair of points in the Thurston boundary of hyperbolic space; such a pair corresponds to the ending laminations of the hyperbolic manifold Λ\H 3 , which is diffeomorphic to S × R. In particular, if F is a Schottky subgroup of the mapping class group Mod(S) freely generated by pseudo-Anosov mapping classes ϕ 1 , . . . , ϕ n every complete geodesic line in the Cayley tree of F with respect to the generators ϕ 1 , . . . , ϕ n corresponds to a doubly degenerate surface group. A vertex in this geodesic gives a basepoint in the manifold, well-defined up to a bounded distance.

Roughly, the invariant random subgroups we construct are described as follows: pick a random subsequence in {1, . . . , n} Z according to an ergodic, non-periodic shift-invariant probability measure. This gives a bi-infinite geodesic in F through the root (the identity element); we obtain a framed manifold by taking the doubly degenerate surface group associated with the geodesic, rooted at a random frame chosen near the coarsely defined basepoint. The last step is not rigorous and it does not seem to be quite obvious how to formalise it. Instead there is an easier way: the shift-invariant measure can be approximated by periodic measures. For these the doubly-degenerate manifolds are infinite cyclic covers of fibred hyperbolic manifolds, so they correspond to a well-defined invariant random subgroup. Taking a weak limit point of this sequence of invariant random subgroups we get another invariant random subgroups which is supported on the holonomies of doubly degenerate manifolds associated with sequences in the support of our original shift-invariant measure. It can be checked that these manifolds do not cover any finite-volume hyperbolic 3-manifold [3,Proposition 12.26], hence the invariant random subgroup is almost surely not a subgroup of a lattice in PGL 2 (C).

All dimensions

The construction in any dimension n ≥ 3 uses a similar idea to the construction above but implemented with quite different tools so it is easy to make it rigorous. We start as in §3.2 with N 0 , N 1 two manifolds with totally geodesic boundary obtained from two arithmetic manifolds by removing a common totally geodesic hypersurface. We label the boundary components in each N i by ±1 and we fix isometries between the components with the same lable, so that any sequence α ∈ {0, 1} Z gives a hyperbolic manifold by gluing N 0 , N 1 according to the sequence (identifying the +1 boundary component of N α i to the -1 boundary component of N α i+1 ).

Then picking the sequence α randomly according to an ergodic shift-invariant probability measure on {0, 1} Z and a random frame uniformly in the component N α 0 , we get an ergodic invariant random subgroup in PO(n, 1) (note that the measure on {0, 1} Z needs to be weighted according to the respective volumes of N 0 , N 1 to ensure invariance, see [3, p. 13.2]).

If the shift-invariant measure is periodic then the invariant random subgroup comes from a cyclic cover of a closed hyperbolic manifold. On the other hand, if it is not then almost all subgroups are not subgroups of lattices in PO(n, 1) [3,Theorem 13.6]. Note that we can, as in the previous paragraph, approximate a non-periodic measure by periodic ones and this shows that the invariant random subgroups constructed here are the limits of the invariant random subgroups associated with the non-arithmetic lattices in the proof of Theorem 3.1.
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 41 Figure 4.1: Surfaces without cusps

Il faudrait préciser "réelles" vu qu'il existe aussi des variétés hyperboliques complexes, quaternioniques voire octonioniques ; cependant, vu que dans ce mémoire je ne traiterai en détail que le cas réel je préfère oublier le qualificatif supplémentaire pour une meilleure lisibilité.

Cette nomenclature reflète une caractérisation géométrique des métriques riemanniennes G-invariantes sur X ; dans la suite on supposera que tous les espaces symétriques considérés sont tels.

Ce réseau est cocompact si et seulement si la forme q est Q-anisotrope, ce qui ne peut pas être le cas à partir de la dimension 5 ; on peut par exemple construire des réseaux cocompacts en considérant des formes définies sur des extensions finies de Q.

Le cas hyperbolique complexe est encore plus mal compris, en particulier on ne sait pas s'il existe des réseaux
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 9 (2016).[START_REF] Glasner | Kazhdan's property T and the geometry of the collection of invariant measures[END_REF] Voir entre autres H. Şengün, On the integral cohomology of Bianchi groups, Exp. Math. 20, No. 4 (2011) et les dernières sections de J. Brock, N. Dunfield, Injectivity radii of hyperbolic integer homology 3-spheres, Geom. Topol.19, 

No. 1 (2015).[START_REF] Gromov | Non-arithmetic groups in Lobachevsky spaces[END_REF] Voir par exemple S. Guest, J. Morris, C. Praeger, P. Spiga, On the maximum orders of elements of finite almost simple groups and primitive permutation groups, Trans. Am. Math. Soc. 367No. 11 (2015) 

Voir L. Lampret, Chain complex reduction via fast digraph traversal, arXiv:1903.00783.

Voir M. Liebeck, A. Shalev, Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks, J. Algebra 276 No.2 (2004).

[START_REF] Hayman | A generalisation of Stirling's formula[END_REF] Nous travaillons en particulier sur une approche combinatoire directe inspirée de celle utilisée dans la section 3.3 de notre travail [

].[START_REF] Kazhdan | Some applications of the Weil representation[END_REF] Voir I. Gekhtman, A. Levit, Critical exponents of invariant random subgroups in negative curvature, Geom. Funct. Anal. 29, No. 2 (

2019).[START_REF] Knapp | Lie groups beyond an introduction[END_REF] On peut construire des exemples ou la croissance est sous-

linéaire.[START_REF] Thang | Croissance de la torsion homologique dans les revêtements finis et le volume hyperbolique[END_REF] Voir A. Timár, A stationary random graph of no growth rate, Ann. Inst. Henri Poincaré, Probab. Stat.[START_REF] Gelander | Counting commensurability classes of hyperbolic manifolds[END_REF] 

No. 4 (2014).[START_REF] Levit | On Benjamini-Schramm limits of congruence subgroups[END_REF] Voir R. Brooks, The fundamental group and the spectrum of the Laplacian, Comment. Math. Helv.56 (1981) et D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Differ. Geom.25 (1987).

Meaning that the closure at all infinite places is R.

In most textbooks the classical definition in terms of reduction modulo n is given, before the adelic setting is introduced and used for giving a more uniform description; compare for instance Chapters 4 and 5 in[START_REF] Platonov | Algebraic groups and number theory[END_REF]. Papers on automorphic forms usually use the adelic language directly, see for instance[START_REF] Bergeron | Spectre automorphe des variétés hyperboliques et applications topologiques[END_REF], and we followed this practice here.

This is the trace of an operator R W Γ U f given by convolution with a smooth kernel on Γ\G, hence the notation.

That is, the quotient Γ\(X × Vρ) by the action γ • (x, v) = (γ • x, ρ(γ)v), with the natural map to Γ\X.

We will not discuss the definition here; it depends a priori on the choice of a Euclidean or Hermitian metric on the bundle to define Laplace operators on differential forms with coefficients in the bundle. The analytic torsion is then defined using the discrete spectra of these operators. For odd-dimensional manifolds, the choice of metric on the bundle does not bear on the resulting number. For locally symmetric spaces, there is a canonical choice of such a metric.

Note that such V exhaust the non-trivial finite-dimensional, complex-linear representations of SL2(C). The theorem also holds for most real representations-the condition that ρ ̸ ∼ = ρ • θ can be made very explicit for representations of SL2(C).

A priori this is just defined up to homothety, but as we need a parametrisation of the cusps of M to write down the trace formula and define analytic torsion, we can use the same parametrisation to identify the torus T with a cross-section, which has then a well-defined Riemannian structure.

Note that in view of Theorem 1.30 and its conjectural generalisation to non-arithmetic manifolds, this filtration also makes topological sense.

At least for lattices in SO(n, 1) of the simplest type, or lattices in SO(3, 1): for these, a result of Lubotzky[START_REF] Lubotzky | Free quotients and the first Betti number of some hyperbolic manifolds[END_REF] in the first case, and the results of Agol[5] in the second, show that they virtually surject onto a nonabelian free group, hence the number of subgroups of index ≤ n is asymptotically ≥ (n!) a for some a > 0. On the other hand, the number of congruence subgroups is much smaller by[START_REF] Lubotzky | Subgroup growth of lattices in semisimple Lie groups[END_REF].

This also amounts to performing the only mirror-invariant Dehn filling on the double of Xn.

Note that finite generation is a Chabauty-closed property.

They are equivalent though the correspondence of discrete subgroups of G with pointed X-orbifolds, given by Λ → (Λ\G/K, ΛK).

They correspond to doubly pointed X-orbifolds.

Except the plane, which occurs only for the trivial IRS, and the cylinder, which does not occur for IRSs in PSL2(R). To obtain the complete list one needs to add the 6 surfaces with cusps accumulating on every end.

In[START_REF] Biringer | Ends of unimodular random manifolds[END_REF] Theorem 1.1] these properties are stated for unimodular random manifolds; the quotient of a symmetric space by a discrete, torsion-free invariant random subgroup in its isometry group is a unimodular random manifold so the theorem applies to it.
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• some exceptional groups (at least one in each absolute type). This is well-known, and can be recovered as follows: by [79, Theorem 1.1], a group is on the list if and only if it has a compact maximal torus. In terms of the classification by Vogan diagrams [57, p. VI.8], this means that the action of the Cartan involution on the Dynkin diagram is trivial. The list of such diagrams is given in this book, in Figure 6.1, p. 414 and Figure 6.2, p. 416 for classical and exceptional types respectively.

Bruhat-Tits theory

In order to describe maximal lattices, we will need a specific class of congruence lattices which are described using the Bruhat-Tits theory of the local groups G(k v ). Our references for the following are [START_REF] Tits | Reductive groups over local fields[END_REF] and [START_REF] Prasad | Volumes of S-arithmetic quotients of semi-simple groups[END_REF]Sections 0.5,0.6].

We fix v ∈ V k,f and a maximal k v -split k v -torus T in G. Bruhat-Tits theory constructs a building X(G, k v ), which is a polysimplicial complex of dimension equal to dim(T), with an action of G(k v ) which is transitive on the top-dimensional products of simplices. Moreover T(k v ) stabilises an apartment, which is a subcomplex A of X(G, k v ) isomorphic to the tiling of R dim(T) = X * (T, k v ) ⊗ R (where X * (T, k v ) is the group of k v -rational characters of T) by the Coxeter group generated by the Weyl group of (G(k v ), T(k v )) together with the translations coming from the action of T(k v ) on the valuations on the unipotent subgroups. The root system of this group is called the affine root system of (G(k v ), T(k v )), we denote it by Φ a (G(k v ), T(k v )). We will also denote by ∆ a,v its Coxeter diagram.

We fix a maximal product of simplices C of A and let I v be the subgroup of G(k v ) which fixes all vertices of C; this is called a Iwahori subgroup and it is unique up to conjugation in G(k v ). The compact subgroups containing I v are the stabilisers of the facets of C, which are in bijection with proper subsets of the diagram ∆ a,v . If θ v is a proper subset of the vertices ∆ a,v we denote by U θv the corresponding compact-open subgroup (which is unique up to conjugation by G(k v ) independently of the choices of T, C). These subgroups are called parahoric subgroups of G(k v ); if U θv is a parahoric we call the subset θ v its type.

Maximal parahoric subgroups are stabilisers of vertices of C, they correspond to θ v containing all vertices of ∆ a,v but one. If the sub-diagram of ∆ a,v on the vertices of θ v is isomorphic to the Dynkin diagram of the the linear root system Φ(G(k v ), T(k v )) then we say that θ v , or the corresponding parahoric subgroup U θv , is special. If furthermore G splits over an unramified extension

Description of maximal lattices

A congruence lattice Γ U is said to be a principal arithmetic lattice (following the terminology in [START_REF] Prasad | Volumes of S-arithmetic quotients of semi-simple groups[END_REF]) if U = v∈V k ,f U v with U v being parahoric for all v (and hyperspecial for almost all v, which is a necessary condition for being open in G(A k,f )). The following fact is contained in [START_REF] Borel | Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups[END_REF]Proposition 1.4].

Lemma 1.21. If Γ is a maximal arithmetic lattice in G, there exists a principal arithmetic lattice

The conjugacy class in G of the lattice Γ = N G (Γ U ) is completely described by the number field k, the k-isomorphism class of the k-group G and the G(k)-conjugacy class of the compactopen subgroup U = v∈V k,f U v . We will only use the following data:

1. The number field k.

2. The number field ℓ defined as follows: unless G is of type D 4 , ℓ is the smallest field containing k such that G is an inner form of its split form over ℓ; this is a quadratic extension of k. If G is of type D 4 we take ℓ to be either this extension if it has degree 2 or 3, or a cubic subfield (well-defined up to automorphism) if it has degree 6.

3. The finite set S U of places v of k where one of the following conditions is met:

Chapter 2

Torsion homology of arithmetic hyperbolic manifolds

Strong acyclicity

The condition that ρ • θ ̸ ∼ = ρ for a G-representation is used through its consequence of "strong acyclicity". It means that there is a uniform positive lower bound for all eigenvalues of all Laplacians on differential forms on a X-manifold with coefficients in the flat bundle associated with ρ (this was observed by Bergeron-Venkatesh, the mere acyclicity under this condition goes further back). This implies immediately that H * (Γ, V ) = 0 for any uniform lattice Γ. It is also used in the proof of the other statement in Theorem 2.3. This is because arbitrarily small eigenvalues of the Laplace operators make controlling the analytic torsion difficult; such eigenvalues may well appear in a sequence of covers without the assumption of strong acyclicity on the bundle. For instance, in a sequence of covers of a closed hyperbolic 3-manifold there will always be arbitrarily small Laplacian eigenvalues on 1-forms with trivial coefficients.

Exponential growth for congruence subgroups of Bianchi groups

In this section, we present the proof of the following theorem, which is an improvement on [91, Theorem A].

Theorem 2.4. Let k be an imaginary quadratic field and let (Γ n ) n≥1 be a sequence of pairwise distinct torsion-free congruence subgroups in

Here

where ρ is the natural representation 3 of SL 2 (C) on V . This result by itself is not our main concern; a purely topological proof has been given by T. Le [START_REF] Thang | Croissance de la torsion homologique dans les revêtements finis et le volume hyperbolique[END_REF], which works for all coefficient systems (in particular the trivial one). However the proof we present, which attempts to reproduce the scheme used by Bergeron-Venkatesh in the compact case, almost succeeds in replacing the upper limit in the statement by a genuine limit; it is only at the end that the argument encounters an obstacle, which is of a purely number-theoretical nature.

We should note that a lower bound for the exponential growth (which is strictly smaller than the conjectured limit) has been given by J. Pfaff [START_REF] Pfaff | Exponential growth of homological torsion for towers of congruence subgroups of Bianchi groups[END_REF] (the statement in loc. cit. does not concern all sequences of congruence lattices but the argument should be adaptable to encompass this greater generality).

Reidemeister torsion for manifolds with cusps

Let us explain the difficulties in adapting the arguments from the previous section to the noncompact case. The analytic torsion of compact manifolds can be defined via Mellin transform using the trace of the heat kernels. On a cusped manifold, heat kernels are not trace-class, but there is a natural way to define analytic torsion in the same way for them, using the Selberg trace formula which gives a way to define the trace (see [START_REF] Müller | Analytic torsion of complete hyperbolic manifolds of finite volume[END_REF] and [92, Section 5]). There is also a natural way to define a Reidemeister torsion τ (M, L), for M a cusped manifold and L a local system over M , which we detail in §2.3.1 below, and appropriate extensions of the Cheeger-Müller theorem, for instance [START_REF] Pfaff | A gluing formula for the analytic torsion on hyperbolic manifolds with cusps[END_REF] and the weaker [92, Theorem B]. There are additional difficulties to extending Theorem 2.3 to this setting but it has been done for certain exhaustive sequences of covers in [START_REF] Müller | The analytic torsion and its asymptotic behaviour for sequences of hyperbolic manifolds of finite volume[END_REF] and for congruence covers in [START_REF] Raimbault | Asymptotics of analytic torsion for hyperbolic three-manifolds[END_REF][START_REF] Raimbault | Analytic, Reidemeister and homological torsion for congruence threemanifolds[END_REF]. The result is the following one.

Chapter 3

Generic hyperbolic manifolds and related topics lattice of covolume at most v. Then

The proof shows that log L com (v) ≫ v (Theorem 1.1 in loc. cit.); this implies the statement above by a result of M. Belolipetsky which states that log L a,com (v) = o(v) [11]. A strengthening of this theorem is given in [START_REF] Gelander | Counting commensurability classes of hyperbolic manifolds[END_REF], where T. Gelander and A. Levit prove that log L com (v) ≫ v log(v).

The proof of the estimate log L com (v) ≫ v is by a direct construction. Namely, we generalise the well-known construction on non-arithmetic hyperbolic manifolds by M. Gromov and I. Piatetski-Shapiro [START_REF] Gromov | Non-arithmetic groups in Lobachevsky spaces[END_REF] as follows. Take, as they do, two closed arithmetic hyperbolic nmanifolds M 0 , M 1 which are non-commensurable with each other, such that each contain a hyperbolic (n -1)-manifold Σ as an embedded totally geodesic hypersurface, and assume additionally that Σ is non-separating in both. For i = 0, 1 let N i be the completion of M i \Σ, which is a compact hyperbolic n-manifold with totally geodesic boundary isometric to two copies of Σ; we label these arbitrarily with ±1. Then any sequence α ∈ {0, 1} Z/nZ gives a hyperbolic manifold N α obtained by gluing N 0 , N 1 according to the pattern (identifying via the identity map the +1 boundary component of N α i to the -1 boundary component of N α i+1 ). The claim is that these manifolds include sufficiently many commensurability classes to account for the estimate log L com (v) ≫ v, which is an immediate consequence of the following lemma, since there are 2 n manifolds obtained by the construction above and their volume is at most n•max(vol M 0 , vol M 1 ).

Lemma 3.2. The manifolds N α , N β are commensurable to each other if and only if the sequences α, β can be obtained from each other by shifting or mirorring the indices (that is α i = β ±i+i 0 for some i 0 ∈ Z/nZ). In particular there are exactly 2n manifolds in any given commensurability class among the N α for α ∈ {0, 1} Z/nZ . The proof of this is quite simple, resting on the following two lemmas from [52, Section 1.6] and [89, Lemma 3.2] respectively. Lemma 3.3. If Γ, Γ ′ are two arithmetic lattices in a semisimple Lie group G and Γ ∩ Γ ′ is Zariski-dense in G then Γ is commensurable with Γ ′ . Lemma 3.4. Let M be a closed hyperbolic n-manifold. If U, U ′ are two submanifolds of M with totally geodesic boundary then either U ∩ U ′ has Zariski-dense monodromy in SO(n, 1) or its interior is empty.

From this it is immediate to deduce that if N α , N β are isometric then we must have α i = β ±i+i 0 ; the lemmas essentially imply that any isometry must send N α 0 inside a N β i 0 with i 0 = 0, and actually induce an isometry between them because they have the same volume. Then looking at the pieces on the right one by one, we prove by induction that α i = β ±i+i 0 (the sign ± depending on where the isometry sends the boundary components of N α 0 ). The proof for non-commensurability is essentially the same though a bit more involved (see the proof of Proposition 2.1 in [START_REF] Raimbault | A note on maximal lattice growth in SO(1,n)[END_REF]).

Note that the proof for non-isometry sketched above generalises immediately to the situation where the pieces have d boundary components and we glue them along an (edge-colored) dregular graph. However the argument for non-commensurability does not go through since it really uses the simple structure of the cyclic graph. T. Gelander and A. Levit in [START_REF] Gelander | Counting commensurability classes of hyperbolic manifolds[END_REF] manage to side-step this problem by adding "buffers" between N 0 , N 1 , that is, a third arithmetic piece which is not commensurable to any of them. This allows them to prove that the number of commensurability classes is comparable to the number of 4-regular graphs, which gives the lower estimate that log L com (v) ≫ v log(v). Lemma 3.6. There is C 0 > 1 (depending only on G) such that for all n ≥ 1 we have :

On the other hand the quantities L and S are not very hard to control directly; by using the induction hypothesis on G \ {v 0 }, it is proven in [8, Lemma 4.3] that: Lemma 3.7. There exists a constant C 1 > 1 (depending only on G), such that for any n ≥ 2 and 0 ≤ m ≤ n we have that, for K = ⌊log(n)⌋:

Using the induction hypothesis on G \ {v 0 , . . . , v d }, we have [8, Lemma 4.4]:

Lemma 3.8. There exists a constant C 2 > 1 (depending only on G), such that for any n ≥ 2 and 0 ≤ m ≤ n, we have for K = ⌊log(n)⌋ that:

Together these three lemmas imply the upper bound on h n (Γ).

Coxeter groups

The right-angled Coxeter group Γ Cox (G) associated with a graph G is defined like the Artin group but with the generators being involutions. In other words it has the following presentation:

For right-angled Coxeter groups, a lower bound for the lower limit can be proven as for Artin groups: if C 1 , . . . , C r are pairwise non-adjacent cliques in G, then there is a surjection from Γ Cox (G) to the free product (Z/2Z)

For the latter it is easily seen that

whenever the right-hand side is non-negative (i.e. as soon as r ≥ 2), so we get that

We define a class AT of finite graphs as follows: it contains all finite trees; all graphs obtained by adding to a tree new vertices, each of which is adjacent to only leaves in the tree, and no two new vertices are adjacent to the same leaf; and all graphs obtained from the previous ones by adding vertices which are adjacent only to the new vertices (and no two are adjacent to the same vertex). For graphs in AT , we can prove that the limit is actually equal to γ(G) -1, see [8, Theorem C]. Theorem 3.9. Let G be a graph in the class AT . Then

Chapter 4

Invariant random subgroups 

The proof of this is not hard given the following theorem due to I. Biringer and O. Tamuz [START_REF] Biringer | Unimodularity of invariant random subgroups[END_REF]Theorem 1.4]. We denote by Cos G the space of (left or right) cosets of closed subgroups in G 3 ; it has a Chabauty topology as a closed subset of the set of closed subsets of G. Theorem 4.2. Let G be a unimodular locally compact topological group and ν an invariant random subgroup in G. Then for any Borel function f on Cos G we have

We sketch the argument following the one given in a geometric setting in [4, Section 2.1]. Assume that A ⊂ Cos G is such that 0 < vol H\G (A ∩ (H\G)) < +∞ with positive ν-probability. Then there is a R > 0 such that 0 < vol H\G (A ∩ (H\G)) ≤ R, still with positive ν-probability. Let A be the closure in Chabauty topology of all conjugates gAg -1 for g ∈ G ; then we still have that 0 < vol H\G (A ∩ (H\G)) ≤ R with positive probability, and since A is G-invariant, we may assume that ν is supported on the subgroups in A. It follows that

is infinite unless ν-almost every H is cofinite, since the integrand equals vol(H\G) and we assume ν(A) > 0. By the mass transport principle (Theorem 4.2) applied to the function on Cos G defined by Hg → 1 A (H), gH → 1 A (gHg -1 ), these two integrals are equal, and Theorem 4.1 follows.

Limit sets

If H is a discrete subgroup in G, its limit set is the subset of the visual boundary ∂ ∞ X given by limit points of some (or any) orbit of H in X. If it is infinite (which is the case for example if H is Zariski-dense in G) then it is also the unique minimal closed nonempty H-invariant subset in the boundary. The following result can be seen as a geometric strengthening of the Borel density theorem 1.14; it is a particular case of [3,Proposition 11.3]. Theorem 4.3. Let G be a simple Lie group of real rank 1 and ν an invariant random subgroup in G, such that ν({G}) = 0. Then for ν-almost every H ∈ Sub G either H is central in G or it has full limit set in ∂ ∞ X.

A generalisation to invariant random subgroups in isometry groups of CAT(0) spaces is proven by B. Duchesne, Y. Glasner, N. Lazarovich and J. Lécureux [START_REF] Duchesne | Geometric density for invariant random subgroups of groups acting on CAT(0) spaces[END_REF].

We describe how to deduce this from the no-core principle; a different (detailed) argument is given in [3], which is not much longer or complicated. Fix a point ξ ∈ ∂ ∞ X. Let A be the set