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Résumé en Francais

La Résonance Magnétique Nucléaire (RMN) est une spectroscopie permettant ’analyse de la
matiére sur un large panel d’applications, allant de I’étude de piles & combustibles (RMN solide)
[1] & I'imagerie biomédicale (Imagerie par Résonance Magnétique, IRM) [2], en passant par
Panalyse de produits agroalimentaires [3]. Quel que soit son domaine d’application, la RMN
consiste & mesurer un signal produit par des spins apres avoir appliqué une série d’impulsions
radio-fréquences et de délais, et en présence d’un champ magnétique intense généré par I’aimant
du spectrometre RMN. Plus ce dernier est intense, plus le signal detecté est intense et résolu,
c’est-a-dire plus les signaux qui émanent de spins distincts peuvent étre distingués. Avec le gain
de sensibilité apporté par I'augmentation des champs magnétiques produits par les aimants,
ainsi que grace aux progres électroniques qui ont permis le développement de sondes RMN plus
sensibles [4], la RMN a trouvé sa place parmi les méthodes de tout premier plan pour I’étude

de la structure, dynamique et fonction des biomolécules [5, 6, 7].

RMN et dynamique des biomolécules

A ce jour, la diffraction des rayons-X, et, plus récemment, la cryomicroscopie électronique (Cryo-
EM), se sont imposées comme les techniques de choix pour la détermination de la structure de
biopolymeres (protéines et acides nucléiques) [8]. Pour ces deux techniques, la mesure se fait
dans un état figé (le crystal en diffraction des rayons-X, une glace amorphe en Cryo-EM), a
la différence de la RMN qui permet de sonder les molécules notamment en solution, une car-
actéristique particulierement intéressante car plus proche de leur environnement natif. Il est
aujourd’hui généralement admis que la fonction des biomolécules, et en particulier celle des
protéines, ne peut étre totalement comprise a ’aide de la structure tri-dimensionelle, et que la
dynamique des atomes qui la composent est essentielle aux phénomenes biologiques en jeu [9].

Des lors, la RMN constitue une méthode de choix pour ’étude de biomolécules complexes.

En RMN, c’est ’étude de 1’évolution des spins vers leur état d’équilibre thermique,
phénomene appelé relaxation des spins nucléaires, qui permet de sonder les mouvements des li-
aisons chimiques [10, 11]. Ces mouvements peuvent étre de plusieurs natures et avoir différentes
échelles de temps: quelques picosecondes pour la rotation d’un groupe méthyle, quelques cen-

taines de picoseconde a quelques nanosecondes pour les mouvements locaux de chaines latérales
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dans les protéines, plusieurs nanosecondes pour la diffusion rotationnelle, microsecondes et plus
pour les réarrangements conformationnels, la liaison d’un ligand, etc... Pour chacune de ces
échelles de temps, la RMN offre une ou plusieurs expériences permettant de les caractériser
au moyen de vitesses de relaxation. Des lors, la compréhension du processus de relaxation des

spins est essentielle pour interpréter les résultats RMN en terme de dynamique.

Les vitesses de relaxation peuvent s’exprimer analytiquement en utilisant la théorie
Bloch-Wangsness-Redfield (BWR) comme des combinaisons linéraires de la fonction de densité
spectrale évaluée a différentes fréquences [12, 13, 14]. La fonction de densité spectrale est une
densité de probabilité de mouvement pour une fréquence donnée et s’écrit, en général, comme
une somme de fonctions Lorentziennes [15]. Lors de la mesure de la vitesse longitudinale d’auto-
relaxation (R;) d'un azote-15 dans une paire >N-'H d’une liaison peptidique, la fonction de
densité spectrale est "mesurée" simultanément aux fréquences wy — wy, wy et wyg + wn, avec
wx = vx By la fréquence de Larmor au champ magnétique By de la mesure et vx le rapport
gyromagnétique du noyau X [16]. Aux champs magnétiques couramment utilisés en RMN des
biomolécules (By > 9T), la fonction de densité spectrale n’est donc pas caractérisée a des
fréquences non nulles inférieures & 40 MHz (on note que les vitesses de relaxation transversales
dépendent de la fonction de densité spectrale en w = 0). Or, de nombreux mouvements internes
dans les biomolécules ont des fréquences plus basses. La plupart de la variation de la fonction
de densité spectrale n’est pas déterminée par des mesures a haut champs, comme le montre la
fonction de densité spectrale en Figurel (trait plein) et calculée en utilisant un exemple tres

simple et approche Model Free (MF) [15]:

2|5 T 9 7!
w==-|SS—+1-8)—"+—= 1
T =55 T wrr TS T ) o
ou 7. est le temps caractéristique pour la diffusion rotationelle, TZ-/ -l = ! +7’i—1 avec 7; le temps

caractéristique pour le mouvement de la liaison N-H avec une amplitude du mouvement reliée
au parametre d’ordre S2. Ainsi, la mesure de vitesses de relaxation aux champs utilisés en RMN
des biomolécules offre a priori une faible précision quant a la caractérisation des mouvements
internes. Une solution serait de réaliser la mesure a des champs plus faibles, comme suggéré
par la Figure1l. Cependant, jusqu’a tres récemment, la tres faible sensibilité et résolution liée
a l'utilisation de tels champs magnétiques pour la détection du signal en RMN biomoléculaire

rendaient ces mesures impossibles.
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Figure 1: Fonction de densité spectrale et fréquences sondées par la vitesse de relaxation R;
de 'azote-15 dans une paire de spins "N-'H. Les fonctions de densité spectrale sont calculées
en utilisant Eq.1 et un temps de corrélation pour la diffusion rotionnelle 7. = 25ns. Dans le
cas oil un mouvement interne est considéré (trait plein), on a S? = 0.8 et 7; = 20ns. Dans
le cas ou le mouvement interne n’est pas inclu (pointillés), on a S? = 1. Les fréquences qui
contribuent a la vitesse de relaxation longitudinale R; de ’azote-15 sont indiquées par les lignes
verticales pointillées pour deux champs magnétiques: 14.1 T (fréquence de Larmor du proton
de 600 MHz) en orange, et 0.33 T (fréquence de Larmor du proton de 14 MHz) en vert.

Une solution a ce probleme de sensibilité a été apportée par le laboratoire et consiste a
déplacer I’échantillon le long du champ de fuite produit par I'aimant : ’échantillon est déplacé
vers le haut et stabilisé & une certaine position pendant le délais de relaxation, puis ramené au
ceeur de 'aimant pour la détection du signal [17]. Ainsi, les propriétés de relaxation peuvent
étre mesurées a bas champ, tout en conservant une bonne sensibilité pour la mesure du signal.
Les vitesses de relaxation mesurées par cette méthode, appelée relaxométrie a haute résolution
(RHR), contiennent des contributions d’autres chemins de relaxation qui sont habituellement
supprimées par l'utilisation d’impulsions radio-fréquences dans les expériences de relaxation
classiques. Des lors, comment prendre en compte ces contributions pour obtenir une analyse

fine de la dynamique des biomolécules ?

Nous avons mis en place une feuille de calcul MATHEMATICA [18, 19] appelée REDKITE et

utilisant des fonctions implémentées dans SPINDYNAMICA [20]. Cet outil a été mis a profit
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pour I’étude de la dynamique des groupes méthyles 1 des isoleucines marqués sélectivement
13CIH2H, dans la protéine Ubiquitine [21]. REDKITE nous a permis de calculer analytique-
ment les vitesses de relaxation pour le systéme de spin d’intérét (i.e. *C'H?Hy) comme une
combinaison linéaire de la fonction de densité spectrale évaluée a différentes fréquences. RED-
KITE peut également étre utilisé pour ’étude d’un grand nombre de systeme de spins. Une fois
les expressions des vitesses de relaxation obtenues, nous étions en mesure d’analyser les données
de relaxation mesurées: les vitesses de relaxation du carbone-13 longitudinale (R;), transverse
(R2), et les vitesses de relaxation croisée carbone-proton enregistrées a 1’aide de spectrometres
conventionnels a 4 champs magnétiques différents, ainsi que 27 données de RHR enregistrées
a bas champs. Afin d’analyser précisément les vitesses de relaxation enregistrées en déplagant
I’échantillon au-dessus de I'aimant, il nous faut prendre en compte les effets de la relaxation

croisée lorsque les chemins de relaxation ne sont plus controlés par 'application d’impulsion

radio-fréquence.

Pour cela, nous avons développé une premieére approche, appelée ICARUS (Iterative
Correction for the Analysis of Relaxation Under Shuttling), qui repose sur la correction des
données de relaxométrie au moyen d’une successions d’itérations. Pour se faire, les données de
relaxation enregistrées de facon conventionnelles, dites ’exactes’, sont analysées afin d’extraire
un premier jeu de parametres pour la dynamique (i.e. parametre de la fonction de densité
spectrale) qui va étre utile a l'initialisation des itérations. Ce premier jeu de parametres est
utilisé pour simuler les expériences de relaxométrie et ainsi calculer une décroisance de I'intensité
du signal selon une vitesse de relaxation dite ’simulée’. Ces simulations consistent & calculer
I’évolution du systéme pendant le déplacement de ’échantillon vers la position du bas champ,
pendant le délai de relaxation, puis le retour vers le coeur de 'aimant avant la détection, ainsi
que toutes les périodes de stabilisation de 1’échantillon. Les vitesses simulées sont comparées
aux vitesses calculées aux bas champs auxquels la relaxation a lieu. En ’abscence de relaxation
croisée, les vitesses simulées et calculées seraient identiques. Le ratio des vitesses calculées et
simulées défini un facteur de correction pour chaque bas champ auquel une vitesse de relaxation
a été mesurée. Le facteur de correction est appliqué aux données expérimentales pour générer
des données ’corrigées’ qui sont analysées, avec les données exactes, pour conduire a un deux-
ieme jeu de parametres pour la dynamique. Celui-ci sera utilisé dans la deuxiéme itération de
la boucle, pour conduire a un troisieme jeu de parametres. La convergence des facteurs de cor-
rection permet ’arrét de la boucle, et ainsi d’obtenir des données corrigées pour les bas champs.

L’utilisation de la méthode de Monte-Carlo par chaines de Markov (MCMC) sur les données
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exactes et corrigées conduit a des distributions pour les parametres de la fonction de densité
spectrale et permet une interprétation biophysique et fonctionnelle des mouvements dans la

biomolécule d’intérét.

a) b)
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Figure 2: Mouvements nanosecondes dans I’'Ubiquitine. a) Distributions du temps de corrélation
Ts décrivant les mouvements lents et obtenues apres analyse avec la méthode MCMC de données
de RHR sur les groupes méthyles d1 de l'isoleucine 13 (haut), 36 (milieu) et sur les groupes
N-H du squelette peptidique pour les résidues 7 a 11 (bas). La moyenne des distributions
est indiquée sur chaque panel. La distribution pour les résidues 7 a 11 est obtenue selon
Pr_q1(1s) = HEE%I Pi(7s) avec P;(1s) la distribution de temps de corrélation pour le résidue
i. b) Structure de 'Ubiquitine montrant la boucle 51-42 (rouge) et les chaines latérales des
isoleucines 13 et 36. Figure adaptée de [21].

Nous présentons ici des résultats obtenus pour 'analyse des isoleucines 13 et 36 de
I’Ubiquitine. Ces isoleucines sont soumises & des mouvements complexes sur des échelles de
temps variant de la pico-seconde (rotation du groupe méthyle autour de son axe de symmétrie)
a plusieurs nanosecondes (mouvements des liaisons C-C) [21]. En particulier, la relaxométrie
permet de détecter un mouvement nanoseconde pour ces deux résidus sur des échelles de temps
similaires (Fig.2a). De plus, 'analyse des données de relaxométrie enregistrées précédemment
sur les paires "N-'H des liaisons peptidiques montre que les résidus 7 & 11 de la boucle S1-
B2 (Fig.2b) adoptent également un mouvement lent avec un temps caractéristique global du
méme ordre que ceux des groupes méthyles des isoleucines 13 et 36 (Fig.2a). Des données de

RMN et de dynamique moléculaire (MD) ont suggéré que ces deux régions (la boucle 51-52
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et la boucle a1-43 a laquelle appartient Ile36) ont des mouvements concertés, ce que semblent
corroborer nos résultats, méme si nous ne pouvons pas, par notre analyse, clairement indiquer
si les distributions de temps de corrélations similaires sont une coincidence ou réellement diies

a des mouvements concertés.

L’approche ICARUS présente néanmoins deux défauts. Le premier réside dans le fait
qu’il n’est a ce jour possible de vérifier expérimentalement la qualité de la correction qu’a une
poignée de champs magnétiques. Une seule mesure de vitesse de relaxation ’exacte’ a été réal-
isée a bas champ dans le laboratoire en utilisant un spectrometre & deux champs [22], ce qui
a permis de vérifier I’accord entre les vitesses corrigées et exactes a 0.33T, mais rien n’a été
fait aux champs intermédiaires (de 9.4 T & 0.33T). Le second provient de I'hypotheése que les
décroissances en intensité mesurées expérimentalement en RHR peuvent étre reproduites par
une fonction mono-exponentielle pour obtenir une vitesse de relaxation. Sur les données que
nous avons enregistrées, nous n’avons pas observé de déviations entre ce type de modele et
les mesures expérimentales, mais il est possible que pour des systémes de spin avec une forte
relaxation croisée, des déviations significatives soient obtenues. Pour ces raisons, nous avons

développé une autre approche pour ’analyse des données de relaxométrie.

Cette deuxiéme méthode, appelée MINOTAUR (Matching INtensities to Optimize Time-
scales and AmplitUdes of motions from Relaxometry) ne repose pas sur l'utilisation de vitesses
de relaxation & bas champ. MINOTAUR est un programme utilisant la méthode de MCMC
sur les vitesses de relaxation exactes (enregistrées avec des spectrometres conventionnels) et
les décroissances en intensité obtenues par RHR pour conduire a des distributions pour les
parametres de la fonction de densité spectrale. Ainsi, alors que dans ICARUS les décroissances
simulées étaient utilisées pour simuler une vitesse de relaxation, dans MINOTAUR elles sont
utilisées directement pour reproduire les données expérimentales. Cette approche n’est donc pas
itérative (ormis pour les itérations de la méthode MCMC), et permet une analyse immédiate des

données en terme de dynamique (pas d’intermédiaire entre les données et la méthode MCMC).

Modeles de mouvements atomiques

La RMN, tout comme la diffraction des rayons-X et récemment la Cryo-EM, offrent une réso-
lution atomique de l'information: un pic dans un spectre RMN correspond a un nombre limité

de noyaux de la molécule étudiée. Il est donc a priori possible de caractériser avec précision
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les mouvements de chaque résidue d’une protéine, et relier ces informations a des propriétés
thermodynamiques telles que l'entropie conformationnelle [23, 24]. Pourtant, les modeles de
mouvements utilisés restent basés sur 'approche MF (Eq. 1) [15], qui ne donne aucune infor-
mation sur le type de mouvement en jeu. De plus, ce modele de fonction de densité spectrale et
ceux qui en ont découlé ont été sujets a de nombreuses controverses en lien avec leur simplicité
mathématique [25, 26, 27, 28, 29]. Cependant, choisir un modele pour analyser des données de
RMN nécessite une connaissance de la nature des mouvements. Les simulations de MD per-
mettent d’aller en ce sens, pour obtenir une description plus précise de la dynamique interne
des biomolécules par I'analyse simultanée des trajectoires de MD et des vitesses de relaxation
[30, 31, 32]. De plus, 'utilisation de la RHR permet d’étendre les échelles de temps accessibles
par la RMN [33] et ainsi avoir une description plus fine et plus complétes des mouvements.
Des lors, pouvons-nous étudier la dynamique des chaines latérales des protéines en utilisant des
modeles de mouvements plus explicites que les approches de type MF et des informations tirées

de la dynamique moléculaire 7

La fonction de densité spectrale, composante décrivant la dynamique des atomes dans la
théorie BWR, est la transformée de Fourier de la fonction de corrélation pour 'orientation des
interactions participant a la relaxation. Nous avons repris I’approche initialement proposée pour
le calcul de ces fonctions de corrélation [34] et qui consiste a résoudre ’équation de diffusion
adaptée au modele de mouvement considéré. Pour les 4 types de mouvement étudiés (diffusion
rotationelle, échange entre conformeéres, diffusion sur un céne, diffusion dans un cone), les équa-
tions de diffusion ont déja été résolues. Nous avons donc repris ces résultats pour les combiner
et former des modéles de mouvement incluant plusieurs composantes. Seules les équations pour
la diffusion dans un co6ne ont di étre modifiées pour les rendre généralisables a des cas plus

complexes que ceux pour lesquels elles ont été initialement développées.

Nous avons ensuite questionné la capacité du MF a évaluer les temps caractéristiques
et amplitudes de mouvement avec exactitude. Pour cela, nous avons utilisé des données syn-
thétiques, ce qui nous a permis de montrer que le MF constitue une bonne approximation pour
les fonctions de corrélation des mouvements de type diffusif (diffusion sur un cone, diffusion
dans un cone). La correspondance entre temps de corrélation (obtenu via Ianalyse MF) et
coefficient de diffusion (la grandeur physique décrivant la dynamique du systéme) peut néan-
moins étre complexe. De plus, les fonctions de corrélation de type MF ne permettent pas, en

général, de décrire correctement la dynamique des sytémes dans le cas de transition entre po-
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sitions discretes, c’est-a-dire la dynamique des chaines latérales qui s’échangent entre rotameéres.

Avant d’analyser les données de RHR enregistrées sur les groupes méthyles d1 des
isoleucines de I’Ubiquitine, nous avons obtenu des informations sur le type de mouvement de ces
chaines latérales grace a une simulation de MD. Les diagrammes de Ramachandran extraits de
la MD montrent que les liaisons C-C adoptent des conformations privilégiées qui changent au
cours de la trajectoire. Au sein de la protéines, les isoleucines se distinguent de part le nombre,
la nature et les distributions de population des conformations qu’elles adoptent. Dans I’analyse
des données de RHR, nous avons donc opté pour un mouvement d’échange entre rotameres en
plus de la rotation du groupe méthyle autour de son axe de symmétrie, modélisée en utilisant
les équations de diffusion sur un céne. Nous nous sommes également intéressé a I’évolution des
tenseurs de déplacement chimiques pour chacun des 9 rotameéres du diagramme de Ramachan-
dran des isoleucines, et en particulier 'anisotropie de déplacement chimique (CSA) qui constitue
un mécanisme de relaxation. Nous avons donc calculé ces CSA en utilisant la DFT (Théorie
Fonctionnellle de la Densité) pour les 9 géométries possibles. Nous avons ainsi pu constater
que les CSA des carbones §1 pouvaient varier jusqu’a 10 ppm d’un conformere a l’autre, ce qui
représente des variations significatives alors que la moyenne est a 19 ppm. En conséquence, nous
avons modifié la fonction de corrélation modélisant les mouvements des chaines latérales des
isoleucines pour inclure, en plus de la variation des orientations des liaisons chimiques, la vari-
ation de 'intensité des interactions conduisant & un mécanisme de relaxation et en particulier
du CSA. Nous avons également pu montrer que le fait de considérer un CSA moyen et des CSA
distincts conduit a des différences importantes dans les vitesses de corrélations croisées entre le

CSA du carbone et l'intéraction dipolaire entre le carbon et le proton.

L’analyse des données de relaxation avec des modeles de mouvement explicites s’est faite
en utilisant les vitesses de relaxation Ry et Ry du carbon-13 et les vitesses de relaxation dipolaire
carbon-proton enregistrées a haut champ, et les données de RHR corrigées par ICARUS. Les
modeles de mouvement utilisent les informations obtenues de la MD de telle sorte que seuls
les rotameres peuplés au cours de la trajectoire ont été considérés pour construire la matrice
d’échange. Ainsi, la MD indique que pour lisoleucine 61, seuls les rotameéres 6 et 9 sont
significativement peuplés (Fig.3a). Un modele d’échange a 2 états a donc été utilisé pour
reproduire les vitesses de relaxation du carbone-13 par la méthode MCMC (Fig.3b,c). Les
parametres obtenus ont des distributions étroites et bien définies (Fig.3d), et les vitesses de

relaxation sont bien reproduites par ce modele a 4 parametres libres (dans l’analyse MF, 6
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Figure 3: Résultats pour l'analyse de la dynamique de l'isoleucine 61 par RMN et MD. a)
Diagramme de Ramachandran de Ile-61 obtenu apres analyse de la trajectoire de dynamique
moléculaire sur 'Ubiquitine. Les 9 rotameéres sont numérotés comme indiqué sur chaque cadran,
ainsi que la population (en pourcentage) observée au cours de la MD. Reproduction des données
de relaxation longitudinale (b), transverse pour le carbone (c, bleu) et de relaxation croisée
carbon-proton (c, marron) apres analyse par la méthode de MCMC. Les résultats de I’analyse
MF précédemment publiés sont également indiqués [21]. HC: Haut Champs. BC: Bas Champs.
d) Histogrammes des parameétres libres au cours du MCMC. D, est le coefficient de diffusion
pour la rotation du groupe méthyle autour de son axe de symmétrie, p(6) la population du
rotamere 6, log(kog) le logarithme de la constante d’échange (exprimée en s~1) du rotameére 6
au rotamere 9 et aucga un coefficient de mise a I’échelle pour les CSA calculés en DFT. e) Vitesse
de corrélation croisée longitudinale (blue) et transverse (marron) entre le CSA du carbone-13

et l'interaction dipolaire carbone-proton. Ces vitesses ne sont pas inclues dans la méthode de
MCMC.

parametres étaient laissés libres). Le coefficient de diffusion pour la rotation du groupe méthyle
est de 3.2 x 10'°s~! ce qui correspond & un temps caractéristique de I'ordre de 15 ps, en accord
avec les résultats obtenus par analyse MF [21]. Les populations pour le rotameére 6 obtenues
par l'analyse de la trajectoire de MD et des données de relaxation sont en tres bon accord
(0.815 et 0.82 respectivement), et la vitesse d’échange du rotameére 6 & 9 est de 10%2s~1. Pour
prendre en compte I’écart entre les CSA calculés par DFT et déterminé expérimentalement, un

facteur commun pour les tenseurs de CSA des deux rotameéres a été introduit (parameétre acsa
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dans la Fig.3d). De fagon remarquable, ce modeéle nous a permis de reproduire les vitesses
de corrélation croisée CSA-dipole du carbone-13, alors que les vitesses obtenues a partir de la
fonction de corrélation de type MF présentaient un écart significatif par rapport aux données

expérimentales (Fig. 3e).

La RMN multi-champs comme alternative aux tres hauts champs

La relaxation des spins est un phénomene inévitable qui renseigne sur la dynamique globale
(diffusion) et locale des liaisons chimiques, et qui affecte le signal mesuré en RMN. Du fait
qu’elle induit le retour des spins vers leur état d’équilibre, elle conduit & une diminution de
I'intensité du signal mesuré, jusqu’a ce qu’il ne puisse plus étre distingué du bruit lié a la
mesure. Chaque état d’un systeme de spin donné a ses propres propriétés de relaxation, si
bien qu’il est possible d’optimiser les expériences RMN pour ne sélectionner que ceux qui ont
des propriétés de relaxation favorables. C’est dans cette optique que les expériences de type
TROSY (Transverse Relaxation Optimised SpectroscopY) ont été développées, dans un pre-
mier temps pour les paires de spins ?’N-'H des liaisons peptidiques [35], puis pour les groupes
méthyles '3C'H3 des chaines latérales aliphatiques [36]. Au-dela de I'intérét particulier d’étudier
la dynamique des molécules, I’étude de la relaxation des spins trouve donc également des ap-
plications dans le développement d’expériences plus sensibles. En particulier, certains noyaux,
comme le carbon-13 dans les groupes carbonyles des liaisons peptidiques, ont des propriétés
de relaxation tres défavorables a haut champs magnétiques, au point qu’il est probable que
les expériences multi-dimensionnelles mettant en jeu ces noyaux devront étre revisitées sur les
nouvelles génération d’aimants actuellement accessibles (1.2 GHz). Le mécanisme de relaxation
associé est l'anisotropie de déplacement chimique (CSA), dont la contribution a la relaxation
transversale augmente quadratiquement avec le champ magnétique, si bien que certains noyaux
ayant des CSA élevés peuvent avoir des propriétés de relaxation favorables a des champs tres

faibles, comme c’est le cas du fluor-19.

Afin d’apporter une solution aux propriétés de relaxation pouvant étre défavorables a
haut champ, le laboratoire a récemment introduit le concept de spectroscopie a deux champs
[39, 37]. Tout comme pour la RHR, son principe repose sur le déplacement de 1’échantillon
au sein du spectrometre, la différence majeure étant que la position d’arrivée au champ plus
faible est fixe et se fait dans une deuxiéme sonde placée au-dessus de I'appareil (Fig. 4a). Cela

permet de controler les systémes de spin a bas champ, et de réaliser des expériences multi-
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Figure 4: Principe de la spectroscopie RMN & deux champs. a) Schéma montrant le fonc-
tionement d’un spectrometre & deux champs. Deux sondes sont placées de telle sorte & pouvoir
appliquer des implulsions radio-fréquences aux niveaux des régions de champ magnétique ho-
mogene créées par I'aimant (vert) du spectrometre et les ferroshims (orange). L’échantillon est
déplacé d’un point & I'autre via le stabilisateur de trajectoire (jaune) & des vitesses pouvant aller
jusqu’a 10m.s~! grace a de I’air comprimé. b) Spectre des groupes méthyles d1 des isoleucines
de 1'Ubiquitine avec un marquage isotopique 3C!Hs. Sur ce spectre le déplacement chimique
mension associée au déplacement ch1m1que du proton a été détectée a haut champ (14.1T). Les
artefacts apparaissant & 2.7 ppm des pics principaux ne sont pas compris a ce jour. c¢) Section
du spectre montré en b selon la ligne pointillée rouge montrant le spectre enregistré (blue), le
spectre simulé en utilisant la théorie du méthyle-TROSY pré-existente (vert) et la théorie du
méthyle-TROSY que nous avons généralisé (rouge). Figure adaptée de [37] et [38].

dimensionnelles ot I'une des dimensions est associée a un bas champ tout en concervant la
sensibilité du haut champ de l'aimant sur une autre dimension (Fig.4b). Sur ce spectre de
groupes méthyle '3 C'Hs, la bonne résolution obtenue dans la dimension du bas champ était
particulierement surprenante car en désaccord avec les prédictions que nous pouvions faire en

utilisant la théorie du méthyle-TROSY [36]. C’est seulement en s’affranchissant des hypotheses
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avec lesquelles cette théorie a été intialement développée, et en considérant toutes les transitions
entre niveaux d’énergie indépendamment les unes des autres, que nous avons pu généraliser la
théorie du méthyle-TROSY dans les conditions dans lesquelles le spectre a deux champ a été

enregistré [38] (Fig. 4c).

Aucune des expériences existantes a ce jour ne permettent de résoudre le probleme de la
relaxation liée aux grands CSA a hauts champs magnétiques. Peut-on utiliser la spectroscopie
RMN & deux champs pour enregistrer le spectre de noyaux ayant des CSA élevés tout en
préservant la sensibilité des hauts champs? Nous avons mené une étude théorique en prenant
pour systéme modeéle une paire de spin 3C-1"F pour une tyrosine sur laquelle un des protons
en position 3 du cycle a été remplacé par un fluor-19. Une expérience TROSY a récemment été
développée pour ce type de systéme, mais la forte valeur du CSA du fluor conduit néanmoins a
des raies larges [40]. Nous avons proposé une expérience alternative ou la dimension associée au
déplacement chimique du fluor est éditée a bas champs et la composante TROSY du carbon-13
est détectée a haut champ [41]. Nos simulations ont suggéré qu'un bas champ de 2.5T et une
détection a 21.15T conduisent a une intensité optimale dans le cadre d’une expérience a deux
champs. A ce bas champ, la relaxation liée au CSA est significativement réduite par rapport &
une expérience réalisée a haut champ. Afin de déterminer si la perte de polarisation liée au fait
que les spins sont soumis & un champ faible pendant une partie de I'expérience ne se fait pas au
détriment de la qualité du spectre, nous avons comparé les spectres simulées pour les expériences
un champ et deux champs. Que ce soit en terme de résolution dans la dimension fluor ou en
terme de rapport signal sur bruit, nous prédisons que l'expérience a deux champs conduit a
des spectres de meilleure qualité. En I’état, nous n’avons cependant pas les moyens de vérifier
ces préfictions: en effet, notre systéme & deux champs opeére & des champs trop faibles (0.33
et 14.1T). Cela nous a néanmoins permis d’introduire le concept de TROSY & deux champs.
Dans le TROSY tel qu’il a été initialement développé, les transitions ayant des propriétés de
relaxation favorables sont sélectionnées au cours de ’expérience. Ici, nous proposons également
de sélectionner le champ magnétique pour I’évolution de ces opérateurs, ceux-ci pouvant étre

différent d’une dimension de ’expérience a 'autre.
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Conclusion et perspectives

Ma these a tourné constamment autour d’une équation: 1’équation du super-opérateur de re-
laxation donnée par la théorie BWR. Cette équation en a constitué la pierre angulaire, que ce
soit pour comprendre des propriétés de relaxation favorables sur des expériences multi-champs,
calculer des vitesses de relaxation pour analyser des données expérimentales, ou encore mettre
au point des modeles pour ’analyse des mouvements de chaines latérales aliphatiques dans les
protéines. A mon sens, ma thése montre deux choses. La premicre, et cela a déja été souligné
dans d’autres theses du laboratoire et les papiers qui en ont découlés, la RMN a deux champs
peut s’imposer comme une alternative a la RMN ’conventionnelle’ face aux problématiques que
la RMN a tres hauts champs posent dans ’étude de systemes biomoléculaires complexes. Pour
atteindre cet objectif, il faudra néanmoins qu’un effort soit fourni dans le développement d’une
nouvelle génération d’instruments. La seconde est plus nuancée et réside dans le fait que la
relaxométrie haute résolution telle que pratiquée dans le laboratoire a effectivement cette ca-
pacité de sonder les mouvements atomiques avec une grande précision, mais que I'extraction
de parametres biophysiques pertinents peut s’avérer (trés) complexe. L’acceés aux bas champs
magnétiques tout en concervant la sensibilité et résolution des hauts champs magnétiques a
néanmoins conduit a de nouvelles découvertes et ont montré que 1’édifice que constitue la théorie

de la relaxation est perfectible.

Pendant ces 3 années de recherche, j’ai cherché a répondre & des questions en lien avec des
problémes tres spécifiques et liés au phénomene de relaxation. La plupart des travaux sont a ce
jour publiés si bien qu’il serait tentant de déclarer que ces questions ont été répondues. Pourtant,
un certain nombre de points restent encore en suspens ; les pics additionels observés sur le spectre
des groupes méthyles des isoleucines de I'Ubiquine (Fig. 4b) sont-ils des artefacts liés au systéme
expérimental 7 Les prédictions faites quant aux bénéfices de la RMN a deux champs pour les
paires de spins BC-9F dans les résidus aromatiques sont-elles exactes? Comment concilier
MD et relaxation? Ce dernier point me parait critique. La MD et la RMN apportent des
informations & la fois complémentaires et similaires, et pourtant il n’est pas rare d’observer des
différences significatives entre les résultats obtenus par I'une ou l'autre de ces techniques. Les
calculs que j’ai menés recemment m’ont convaincu que les approches MF ne peuvent permettre
de caractériser la dynamique des chaines latérales aliphatiques pour lesquelles des modéles
complexes doivent étre utilisés. Poursuivre ces travaux préliminaires permettra d’aboutir & des

modeles plus adaptés pouvant fournir des interprétations en terme de propriétés biophysiques.






General introduction

Structure and dynamics of biopolymers

Proteins and nucleic acids are the main actors in performing cellular activity, together with
other small molecules (lipids, metabolites,...). Studying their functions and regulatory path-
ways not only helps in understanding how living organisms function and interact with their
environment, but also how to design therapeutic agents to treat potential miss-functions and
deseases. These molecules have been studied with atomic details, primarily by X-ray diffraction
of the crystallized sample [42] but also with Nuclear Magnetic Resonance (NMR) (both in lig-
uid and solid states) [43] and cryogenic electron microscopy of the sample in vitreous water [44].
Obtaining the tri-dimensional organisation of the atoms that constitute the molecule has been
of great interest in the frame of the "structure-function" paradigm: the function of a protein

can be determined from its structure.

The structure-function paradigm has been challenged as it became clear that proteins
and nucleic acids exhibit dynamic properties, and that every protein functions requires protein
motions. In addition to performing critical catalitic activity in the cell [45, 46, 47], nucleic acids
and associated proteins can triger Liquid-Liquid Phase Separation (LLPS) [48], an important
process in regulating gene expression for example [49, 50]. Some proteins contain elements of few
tens up to hundreds of amino acids, called Intrinsically Disordered Regions (IDR), and char-
acterized by the abscence of a stable tri-dimensional structure which can be involved in a wide
range of functions [51]. Folded proteins also undergo motions, other than the overall rotational
diffusion that is characteristic of the hydrodynamic properties of the molecule: domain-domain
motions can be triggered by the binding of ligand and change the shape of the protein, flexible
parts of the protein (loops and turns) can wobble in the low nano-second range, hydrogen bonds
and salt bridges can be broken and replaced in the range of micro-seconds to seconds, side chains
can adopt different rotamer conformations and exchange between each of them in the tens of
pico- to nano-seconde range, chemical bonds adopt libration motions,... These dynamic features
are reporters of the energy landscapes of the biomolecules. These cannot be fully characterized

by a single or limited set of static structures.

NMR is a versatile technique that offers information at atomic resolution, can be per-
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formed in solution, 7.e in conditions close to the native state of the biomolecule, and can report
on timescales ranging from the low pico-seconds to seconds and more. As such, NMR has es-
tablished itself as a powerful tool for the study of the dynamic and function of biomolecules.
The constant increase in magnetic field strength [4], has lead to an increase in sensitivity and
resolution of the recorded spectra, while isotope specific labeling strategies [36, 52, 53] allowed

the study of larger and more challenging biomolecular assemblies [54, 55].

Studying dynamics with nuclear magnetic resonance

In NMR, radio-frequency pulses are used to create coherences and perturb the system from
its equilibrium state [56]. The evolution of these coherences can produce the NMR signal and
give information about the chemical environment through the chemical shifts, but also always
includes the irreversible return of the spin system to its equilibrium state. This process is called
relazation and relies on the local interaction of nuclear spins [57, 58, 16]. In biomolecular NMR,
these interactions are the dipolar interaction between a pair of spins (nuclear spins or unpaired
electrons), the interaction with the ensemble of electrons around the nucleus (called chemical
shift) and the interaction with the quadrupolar moment of the nucleus for isotopes with spin
quantum number higher than 1/2. Due to the re-orientations of chemical bonds originating
from the internal dynamics of the molecule, the interactions fluctuate. Thus, measuring the
relaxation properties of nuclear spins allows one to characterize these fluctuations, that is dy-

namic properties of the molecule under study [10, 59].

A time correlation-function C(t) can be defined for these interactions, which usually
corresponds to the re-orientation of the bond vectors. Its limit at infinite time relates to the
amplitudes of motions, while the decay rates inform on the associated time-scales of motions.
The Fourier transform of C(t), J(w), is the density probability of motions at frequencies w, and
is of great interest in NMR spectroscopy. Indeed, relaxation rates can be analytically expanded
in linear combinations of J(w) at a limited set of frequencies [12, 13, 14]. Thus, the mea-
surement of relaxation rates at multiple magnetic fields can lead to the characterization of the
spectral density function over a wide range of frequencies and give great insights on molecular
motions [60, 61]. However, at the high magnetic fields required to obtain sufficient sentivity for
biomolecular NMR (typically higher than 9.4 T), the spectral density function is probed only

at rather high frequencies, mostly corresponding to low pico- to low nano-seconds time-scales.
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High-Resolution Relaxometry (HRR) has been developped to extend the range of fre-
quencies that are probed by NMR relaxation rate measurements, and thus the time-scales of
internal motions that can be characterized [33]. It relies on moving the sample above the magnet
to use the stray field as a variable field while preserving the high-field sensivity and resolution
for detection [62, 63]. This methodology has been applied to the study of phospholipids [64],
DNA [65], and proteins backbone [66, 17] and side chains [21]. HRR relaxation rates require a
careful analysis [67] since nuclear spins are not controlled during the relaxation delays by the use
of radio-frequency pulses as in standard relaxation experiments [68]. A reliable description of
the dynamic properties thus requires an accurate understanding of the active cross-relaxation
pathways while the sample is outside of the NMR probe. The past few years have seen the
popularization of a number of tools for the study of relaxation processes [69, 70, 20], but an-

alytical tools for use in HRR and with applications to a broad range of situation are still missing.

Different models have been proposed to analyze NMR relaxation rates recorded on
biomolecules [71, 25, 27, 72, 73], but the most popular one in biomolecular NMR remains
the Model Free (MF) [15]. In this approach, the dynamic properties are characterized by an
order parameter, that relates to the amplitude of motion and conformational entropy [23, 24],
and one effective correlation time. A second time scale and order parameter were later included
[74] to yield the Extended Model Free (EMF) approach and account for the deviations ob-
served when reproducing experimental data with the MF spectral density function. However,
models based on the MF approach do not give any information about the nature of motions.
NMR measurements have to be combined with Molecular Dynamic (MD) simulations to obtain
a mechanistic description of dynamics [75, 21, 31, 32]. Relaxation rates measured using HRR
can a priori lead to a better characterization of the motions [33]. Today, MD simulations can
be used to identify which model is best to describe the dynamic properties of the system of
interest. Thus, MD can be used to build explicit models of motions [34] that can be used to
analyse HRR relaxation data in order to build a realistic picture of the motions in a combined

NMR and MD analysis.

Increasing sensitivity and resolution in NMR

Although it reports on motional properties, relaxation also leads to polarization losses in the
course of a pulse sequence that can translate into poor signal quality. During an NMR experi-

ment, different coherences can be created, each of them potentially having different relaxation
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rates and manipulating only spin coherences with favorable relaxation properties can lead to
better signal quality. Transverse Relaxation-Optimized SpectroscopY (TROSY) type of exper-
iments were developped in this logic, first on >N-'H spin pairs of the protein backbone [35, 76],
and then on aromatic *C-'H pair of aromatic rings [77] and ¥*C'H3 methyl groups [36], and
all rely on interferences between relaxation mechanisms [78, 79, 80]. The ’N-'H TROSY has
allowed the study of a 900-kDa GroEL-GroES chaperone complex [81], while the 1 MDa hsp60
chaperonin was amenable to NMR studies with the methyl-TROSY approach [54]. Thus, un-
derstanding relaxation properties can help designing more sensitive experiments for the study

of challenging systems.

The increase in magnetic field strength commercially available has been justified by the
constant need for better sensitivity, in particular in biomolecular NMR experiments. However,
the Chemical Shift Anisotropy (CSA) contribution to transverse relaxation quadratically scales
with the magnetic field, leading to line broadening that can dramatically deteriorate the spec-
trum quality at high magnetic-fields. The carbonyl-'>C of peptide bonds has a high CSA value
of about 140 ppm [82] and recording standard multi-dimensional experiments involving this nu-
cleus will most likely become challenging at the highest available magnetic field (1.2 GHz at the
time of writing). This contribution to relaxation can potentially be decreased by recording the
spectra of high-CSA nuclei at lower magnetic fields, but this comes at the price of dramatic loss
of sensitivity. A solution could potentially consist in using a Two-Field (2F) NMR spectrometer
for the measurement [39, 37]: the dimension associated to the high-CSA nucleus could be edited
at low field while the signal generated by another type of nuclear spin would be detected at high
field. This would ensure high sensitivity during the detection, and high resolution in both di-
mension. Applications of 2F-NMR have been proposed to overcome the effect of line broadening
due to chemical exchange [37], to record TOtal Correlation SpectroscopY (TOCSY) spectrum
with broadband isotropic mixing [83] and measure low-field relaxation rates [22]. An applica-
tion to multi-dimensional experiments to overcome the unfavorable high-field CSA relaxation

is missing and can be considered.

Thesis outline

In the first chapter, the fundamentals of the Bloch-Wangsness-Redfield (BWR) relaxation the-
ory will be introduced, and its implementation in a MATHEMATICA notebook will be presented

with an example on the '>N-'H spin pair. This notebook, called REDKITE, is intended to be
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as general as possible for a broad range of applications and was used throughout the projects

conducted during this PhD.

In Chapter 2, we will investigate relaxation properties of '3C!Hs methyl groups in a two-
field version of the high-field methyl-TROSY pulse-sequence. We will provide an explanation
to the narrow linewidths that were experimentally obtained by generalizing the methyl-TROSY
theory ouside the conditions for which it was initially developped (i.e high molecular-weight pro-
teins and high magnetic-fields) [36]. We will then propose a 2F-TROSY experiment to record
the spectrum of pairs of spin with one high-CSA nucleus. These experiments rely on the use
of a 2F-NMR spectrometer to edit the chemical shift of such nuclei at low field while detecting

the signal from the spin evolution of the other nucleus at high field.

Chapter 3 is dedicated to the analysis of HRR data, with two tools that were devel-
opped and can be used in a wide range of situations: Iterative Correction for the Analysis of
Relaxation Under Shuttling (ICARUS) and Matching Intensities to Optimize Timescales and
AmplitUdes of motions from Relaxometry (MINOTAUR). These tools are used to characterize

the dynamic properties of isoleucine-d1 methyl groups in the protein Ubiquitin.

In the last chapter of this thesis, we will review models of motions that were introduced
in the 1960s and 1970s, and use them in combination with a MD simulation on Ubiquitin to
re-analyse our HRR collected on isoleucine-§1 methyl groups using explicit models of motions.
In addition, we will evaluate relaxation when changes of CSA tensors are correlated with jumps
between rotamer states of the isoleucine side-chains, and show that this relaxation mechanism

is relevant to reproduce the measured relaxation rates.






CHAPTER 1

Theory of nuclear spin relaxation
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1.1 Introduction

Standard Nuclear Magnetic Resonance (NMR) experiments consist in using radiofrequency
pulses to manipulate nuclear spins in a sample experiencing an intense, stable and homogenous
magnetic field [16]. NMR experiments are built using three successive steps: (1) a polarization
step which ensures the nuclear spins return towards their equilibrium state so the maximum
magnetization, hence maximum signal, can be obtained for a given experimental time; (2) a
pulse sequence step which contains radiofrequency pulses and delays designed to transfer the
polarization from one spin quantum state to another; (3) a detection step during which signal is
acquired. Each of these steps is influenced by the rates and pathways at which the spins return

to their equilibrium state, a process called relaxation: a long polarization step is necessary when
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the relaxation rates are small, lengthening the experimental time; fast relaxation properties of
coherences and spin orders during the preparation step can lead to dramatic signal losses with
detrimental consequences on the recorded spectra; fast relaxation properties of the coherence
producing the detected signal lead to peak broadening and, consequently, a decrease in spectrum
quality. The understanding of nuclear-spin relaxation is essential to interpret potential poor
spectrum quality, improve already existing NMR experiments, and design new pulse-sequences.
For example, the introduction of the Ernst angle [84] has lead to increased signal-to-noise ratio
by using partial excitation before detection (leading to lower signal) to significantly shorten the
polarization step allowing efficient signal-accumulation per unit of time. More recently, resolu-
tion and sensitivity gains were reached by exploiting relaxation interferences [78, 85, 79, 80] in

Transverse Relaxation-Optimized SpectroscopY (TROSY) type of pulse sequences [35, 36].
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Figure 1.1: Timescales of motions in proteins and NMR, experiments to probe these motions.
Local motions include both side-chains (methyl rotation, C-C bond libration, rotamer jumps)
and backbone motions. The dash arrow indicates that H-D exchange techniques can probe
slower motions. The list of experimental techniques and type of motions shown here are non-
exhaustive. CEST: Chemical Exchange Saturation Transfer. CPMG: Carr-Purcell-Meiboom-
Gill. H-D exchange: Hydrogen-Deuterium exchange. NOE: Nuclear Overhauser Effect.
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Relaxation of one nuclear spin is induced by the interaction of this spin with a fluctuat-
ing magnetic field. Thermal energy allows molecular motions, such as global rotational diffusion
or internal chemical-bond motions, which change the orientation of the spin interactions with
respect to the static field of the spectrometer magnet, and, in its turn, changes the local field
experienced by the spins. Thus, the relaxation properties of nuclear spins are not only dert-
erminant for the quality of the recorded spectrum, they are also reporters on the structural
and dynamics characteristics of the molecule under study [10, 86]. The local fluctuations of
the magnetic fields can occur on timescale varying from the picosecond to seconds and more,
making NMR a perfect tool to study a broad range of dynamic processes in biomolecules, such
as fast sub-nanosecond side-chain and slower backbone motions in the hundreds of nanosecond

range, domain-domain reorientations and chemical reactions.

A wide range of NMR experiments has been developped to measure specific relaxation
rates that report on different types of information (Fig.1.1). In the frame of this thesis, we were
essentially interested in side-chain motions in proteins, as revealed by relaxation and relaxometry
types of experiments. The analysis of the collected relaxation rates allows an interpretation in
terms of the internal dynamics of the system under investigation. In this chapter, the Bloch-
Wangsness-Redfield (BWR) theory will be presented. This semi-classical approach allows one
to treat relaxation processes in solution [12, 13, 14]. The BWR theory has been implemented in
a MATHEMATICA [18] notebook which will be presented next and has been used to carry most

of the calculations presented in this PhD (chapters 2 and 3).
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1.2 Fundamentals of the Bloch-Wangsness-Redfield relaxation
theory

We will review here the most important steps and approximations leading to the calculation of
the time-evolution of the density operator. More detailled descriptions of the BWR theory can
be found elsewhere [57, 79, 87, 58, 59].

1.2.1 Master equation

The evolution of the density operator 6(t) is described by the Liouville-von Neumann equation,
in units of h:
da(t)

5 = —iH®,6(1), (1.1)

where the commutator operator applied on two operators A and B is defined as:

o

[A,B] = AB — BA. (1.2)

The Hamiltonian # of the system can be expressed as the sum of a stationary part Ho and a
smaller fluctuating part 7, (t):
H(t) = Ho + Hi(t). (1.3)

This equation can be transformed in the interaction frame of the stationary Hamiltonian Ho.

An operator @ transformed into the interaction frame is labeled with a tilde:
O(t) = exp{iflot jO(t) exp{ ~iHot }. (1.4)

The frame transformation of the full Hamiltonian requires the subtraction of the static

Hamiltoniean g, so that the Liouville-von Neumann equation (Eq. 1.1) now reads:

do(t)
dt

Qn

(), Ha (2)]. (1.5)

:i[

We will develop a second-order time-dependent perturbation to solve Eq. 1.5. After integration,

we obtain:

5(t) = &(0) +¢/Ut[é(t’),;ft1(t')]dt’, (1.6)
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which can be inserted into Eq. 1.5 to yield the Liouville-von-Neumann equation, in the interac-

tion frame: _
da(t)
dt

= (0, 0] - [ 60, Fa (] A (0 (17)

1.2.2 Hypotheses in the BWR theory

In the frame of the BWR theory, the following hypotheses are made to calculate the ensemble

average of the evolution of the density operator:
e for an ensemble average, denoted by the horizontal bar, [5(0), Hy(t)] averages to zero;

e a time ¢ can be found that is short enough such that the evolution of the spin system is
negligible on the interval [0,¢] but that is much larger than the typical correlation times

for the fluctuations of 7-:[1(15).

The consequences of the second hypothesis in Eq. 1.7 are that the integration can be extended
to 400, and the density operator does not depend on the variable of integration and we can
perform the change t' — t. The evolution of the density matrix &(t) over time for an ensemble

average, under a perturbation Hamiltonian 4 (t), can now be expressed as:

o

ot
dt

(1), [Ha(t +7),5(1)] | dr. (1.8)

The second hypothesis implies that FEq. 1.8 is valid only for system close to equilibrium. In his
seminal papers [13, 14], A.Redfield identifies this limitation and notes that his development is
valid in the high-temperature limit for systems with weak order (i.e. liquid with weak collisions
between particles). These conditions apply in almost all biomolecular liquid-state NMR, studies.
Recently, Bengs and Levitt used Lindblad operators to introduce a new form of master equation
[88] that applies to systems far from their equilibium state, such as encountered in Dynamic

Nuclear Polarization (DNP) experiments [89].

1.2.3 Irreducible tensor representation

The master equation Eq. 1.8 can be further simplified using the irreducible tensor representation
in order to separate the angular and spin parts of the Hamiltonian. The perturbation Hamil-
tonian 7:[1(15) may include several interactions, identified by the label ¢. Each of them can be

written as the sum of the product of time-dependent spatial variables V; _,(t) and tensor spin
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operators Tl,q of rank ! and coherence order ¢ (which is usually simply called order):

=G Z ()T}, (1.9)

% I qg=—1

where (; is the amplitude of the interaction ¢. The irreducible tensor TZ g can be expressed as a

(@) .

linear combination of eigenoperators {Al q p} of the superoperator [I:IO, -], with eigenvalues Wi gpt

Ty = ZA%,qyp' (1.10)
p

These eigenoperators can be written in the interaction frame as:

x.

~ Y A . OIS
Al 7q’p( ) = exp{(iHot)}A;,q’p exp{(—i?—[ot)} —e z,q,ptAhq’p, (1.11)

In the interaction frame, we now have:

~ l

i) =>6> Y Y (- 96 0.0t Vi_ (DA} . (1.12)

% Il g=—1l D

Since H; is Hermitian, we can also write:

=363 Z S (1)t “ant Vit (1Al (1.13)

A l g=—1l p

where (1) denotes the hermitian conjugate of the operator, and (x) the complex conjugate.

Substituting Eq.1.12 and 1.13 into Eq. 1.8 gives:

5 ZQCJ Z Z Z Z q+q e f;,p_wz(f,ig’,p')tx
LU g=—lg'=—U' pp’
o0

(Ao (4,30 / (Vi (V" 4+ 7))e "
0

(1.14)

The correlation function C; ; between the interations ¢ and j is defined as:

(Vi OV (t + 7)) = 8q g0, Cij(7), (1.15)
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where ¢ is the Kronecker delta, such that:

a5 ( @ 0@ 31 b G)
o Z%ZZ S (A, (4], 0] [ Cugrre a7 ar. (1.16)
0

l g=—lpp

We assume that the functions V}Q q and Vf, g are statistically independent unless their coherence
orders are equal, which yields to the condition ¢ = ¢’. The functions V}Q q are related to
spherical harmonics (details on spherical harmonics are given in Appendix A.2). The irreducible

representations of three interaction Hamiltonians are given below.

Dipole-dipole interaction The magnetic moment of a spin has an effect on the relaxation
of the neighbouring spins through its local magnetic field. This dipolar coupling decreases
as a function of r3 with r the distance between the two coupled spins, and is used in NMR
spectroscopy to obtain distance contrains, for example when solving protein structures [90, 91].
The dipolar coupling Hamiltonian between two spins I and S is given by [56, 92]:

~ i) = T = 7 -

Al =108 [ (1.5 (5. 5 ) - 1 8 (1.17)

dmryg r1s rrs

where g is the permeability of free space, h is the Planck constant divided by 27, vx the

gyromagnetic ratio of nucleus X and ryg the internuclear distance. The Hamiltonian can be

decomposed as a product of rank-2 spherical harmonics and rank-2 tensors:

= d;sV6 Z > (=1)9Y 20 (Q15)ADE (1.18)

q=—2 p

__ Mo ﬁ’YMS

where djg = — p

is the dipolar constant, Yg, are rank-2 spherical harmonics, the rank-2
tensors A2 qp are glven in Table. 1.1 together with their eigenvalues wf(fp, and €, rg is the set
of Euler angles for transformation from the laboratory frame to the frame of the interaction

(whose main axis points along the internuclear vector).

Chemical-shift anisotropy interaction Electrons around the nucleus act as conducting
coils generating a small magnetic field that adds to the external field. Thus, depending on their
position on the molecules, nuclear spins are submitted to a more or less intense magnetic field
compared to the static field of the NMR, spectrometer. This effect, known as chemical shift,

leads to peak separation in NMR spectra, and is associated to the chemical shift interaction
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Table 1.1: Rank-2 tensors (flgfp) and associated eigenvalues (wQD’(fp) for the decomposition of

the dipolar coupling Hamiltonian [16]. q is the coherence order of the tensor, p an index for the
decomposition, wx = —vx By the Larmor frequency of spin X at magnetic field By. Details on

spin angular momentum operators can be found in Appendix A.1.

= = “DDT
a b Ag,ffp Ag,gq,p - (_1)(1145517’ wé?é?p
0 0 (2/V6)LS. (2/V6)IL.8. 0
0 1 —1/(2v6)[-ST —1/(2v6)I* S~ ws — wy
0 2 —1/(2V6)I+S~ —1/(2V6) I~ S+ Wi — ws
1 0 —(1/2)L.8* (1/2)1.5~ wg
1 1 —(1/2)I*8. (1/2)I-8. wr
2 0 (1/2)t§t (1/2)I-8~ wr + wg
Hamiltonian [56, 93]:
HLg=va-B-1, (1.19)

where &7 is the chemical shift tensor of spin I and B the magnetic field. The chemical shift

tensor is written, in matrix representation:

011 012 013
0] = | 021 022 023| - (1.20)

031 032 033

The tensor can be split into an isotropic (rank ! = 0), anisotropic antisymmetrical (rank [ = 1)

and anisotropic symmetric (rank [ = 2) parts [94]:

1 00 0 O'gg) Ug) 011 — Tiso O'S) 0%)
or=0iso |0 1 0|+ |-l 0 S| +| o em—0i. o) |, (121)
001 \=ol@ 5@ o o3 0%) o33 — Oiso

(a)

j

(s)

where 05, = Z§:1 0;i/3, and o;;’ and ;) refer respectively to the antisymmetric and sym-

metric components of the chemical shift tensor and are defined as ai(]‘-l) = (0 — 04;)/2 and
(s)

0;;° = (0ij +0ji)/2. The isotropic part (rank [ = 0) is independent from the molecular orienta-
tions and does not contribute to the relaxation (unless it is affected by conformational changes
[95, 96]): it is affecting the Zeeman Hamiltonian to yield observable site-specific chemical shift
in solution NMR. The anisotropic parts (rank [ = 1 and [ = 2) depend on the molecular ori-

entations and contribute to the relaxation as the Chemical Shift Anisotropy (CSA) interaction.
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The rank-1 tensor part (antisymmetric) is usually neglected. Note that, in the presence
of highly anisotropic motions, the contribution of the antisymmetric CSA (rank-1 tensors) may
account for up to 10 % of the contribution of the CSA rank-2 tensors to auto-relaxation [97, 98].

(2)

The rank-2 tensor part (symmetric, o;~) can be diagonalized:

Or — Oiso 0 0
0-5'2) =Rcsa 0 Oy — Oiso 0 RE’}S‘A’ (122)

0 0 Oy — Oiso

where the o;,7 € {z,y, 2z} are the principal components of the chemical shift tensor, and Rega
contains the eigenvectors associated to the three eigenvalues and corresponds to the rotation
matrix from the frame where o was initially written (for example, the molecular frame) to the
frame defined by the principal axes of the interaction. In this frame, the CSA Hamiltonian is

written:

. 1 . . .
HEsa =371 (0: — 01) (BzIz + Byl, — 2BxII) .
1 N " N .
+ 37 (02 = 0y) (B:L + Bol, —2B,1,).

Three cases appear.

Isotropic chemical shift tensor In its simplest case, all components of the chemical

shift are equal, and there is no CSA contribution to relaxation.

Axially symmetric chemical-shift tensor When two eigenvalues are degenerate,
the CSA is axially symmetric. Let us assume o, = o, (a frame transformation can always be

applied to reach this particular situation). The anisotropy of the CSA is defined as:
ACgpial = Oz — Og. (1.24)

The CSA Hamiltonian is decomposed as:

. 7 2 .
HEsaazial = Aaam’alwl\/; > (—1)TY24(Qc54)ATS S, (1.25)
q=—2

where wy = —v1Bp is the Larmor frequency of spin I at magnetic field By, Yo, are rank-

2 spherical harmonics, the rank-2 tensors flggf} are given in Table. 1.2 together with their



16 Chapter 1. Theory of nuclear spin relaxation

Table 1.2: Rank-2 tensors (Agié) and associated eigenvalues (wQC (%‘) for the decomposition of

the CSA interaction Hamiltonian [16]. q is the coherence order of the tensor, p an index for the
decomposition, w; = —v; By the Larmor frequency of spin X at magnetic field By. Details on
spin angular momentum operators can be found in Appendix A.1.

ACSA ACSA ~CSAT CSA
Asgo  Azgo= (D450 wigh

(2/V6)I. (2/V6)L. 0
—(1/2)I* (1/2)I~ wr

N = OQ

eigenvalues wg ;%‘, and €17, cg4 is the set of Euler angles for transformation from the laboratory

frame to the CSA frame.

Asymmetric chemical-shift tensor When the three eigenvalues of the CSA tensors
are different, Eq.1.25 is not valid. Without loss of generality (a frame rotation would be
sufficient to obtain such situation), we impose that o, < o, < 0. In order to write an equation

of the form of Eq. 1.25, we write the diagonalized rank-2 tensor part of the CSA (Eq. 1.22):

Oxr — Oiso 0 0 0 0 0
U?) =Rcsa 0 Oz — Oiso 0 +10 oy—0, O RE}qA, (1.26)
0 0 0s — Oiso 0 0 0

From this equation, the longitudinal (Ac)) and orthogonal (Ao ) components of the CSA
tensor are defined:

Aoj=o0,—0y Aoy =o0y— 0. (1.27)
The CSA Hamiltonian for asymmetric chemical shift tensors is then:
5 2
» ACSA
HEs A asym = WI\/; > (~D)TAGSS (A0 Yaq(Qr0)) + A0t Yag(Q0.)) (1.28)
q=—2

with the same definitions as above, and () Loy and €, being the Euler angles for transfor-
mation from the laboratory frame to the longitudinal and orthogonal component of the CSA

frames respectively.

Quadrupolar interaction Isotopes with a quantum magnetic number higher than 1/2 pos-

sess a quadrupolar moment. The quadrupolar interaction leads often to fast relaxation at stan-
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dard magnetic fields so that such spins are rarely used in solution-states biomolecular NMR.

The quadrupolar interaction Hamiltonian is [56, 99]:

Al = it (gi — aﬁg;jwvaﬁ [; (Luds + I51.) = apml(m! + DE| . (1.29)
where e is the electronic charge, Q is the quadrupole moment, mg is the quantum spin number of
spin I, V,3 are elements of the Electric Field Gradient (EFG) tensor, ¢ is the Kronecker delta
and F is the identity operator. The Hamiltonian is decomposed using products of spherical
harmonics and rank-2 tensors as [99]:

2 2
L = cqQ PAS 70
@7 4hmI(2ml —1) Y (DY 50(Qr,0) AT o (1.30)

q=—2

where ¢ is the nuclear charge, Yo, are rank-2 spherical harmonics, €27, ¢ is the set of Euler angles
for transformation from the laboratory frame to the main axis of the frame of the quadrupolar
interaction, the rank-2 tensors AZQ’%O are given in Table. 1.3 together with their eigenvalues w%q’o,
and V;]P AS are components of the EFG expressed in the Principal Axis System (PAS) of the

quadrupolar interaction and are given by [99]:
WA =6, Vi =0, VY =y, (1.31)

where 7 is the asymmetry of the EFG:

Vyy — Vo
Ve |

n= (1.32)

The value of €2Qq/h has been measured in partially deuterated methyl groups of small molecules

[100] and proteins with residue-specific resolution [101], and has a value of around 168 kHz.

1.2.4 The secular approximation

Oscillating terms can be neglected when they average to zero much faster than the evolution of

the density operator under relaxation. This is the secular approximation. Thus, only secular
@ _, 0)

Lap — “Lap
are relevant to describe dipole-dipole, CSA (vide supra for a discussion on the rank-1 part of

terms for which w , contribute to Eq.1.16. In addition, only rank-2 (I = 2) tensors
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Table 1.3: Rank-2 tensors (/12%170) and associated eigenvalues (wQQ%O) for the decomposition
of the quadrupolar interaction Hamiltonian [16]. ¢ is the coherence order of the tensor, p an
index for the decomposition, w; = —v; By the Larmor frequency of spin X at magnetic field By.
Details on spin angular momentum operators can be found in Appendix A.1.

q A2Qq 0 AZqu 0 — (_1)(11212@,(;,0 O‘)QQ,q 0
0 (1/v6) (2[2 12) (1/\/)( 2 — g_fg) 0
1 —(/2) (LI + I+Iz) (1/2) (. f +I°L)  w
2 (1/2)I+1+ (1/2)I- I~ 2wg

the CSA) and quadrupolar interactions.

: 0o
U ZCZC] Z 25 (1) W@ , [Aé,q,pﬂ 2qp/7 5 /C 2‘1P dT (1.33)
2,4,p 3

7
g=—2pp P

This equation includes the Fourier tranform of the correlation function, called the spectral

density function:

Jij(w) =2 / C; (e ™dr. (1.34)
0

Finally, the Master equation reads:

d&

= —*ZCZCJ Z Zé 0wt T (wS,) [Ab g (427,501 - (1.35)

wW2,q,p 1%
q=—2p,;p

Discussion on the secular approximation The secular approximation neglects the contri-
bution from eigentensors which have different eigenfrequencies, based on the assumption that
the resulting fast oscillating term average out. This holds true for eigentensors with largely
different eigenfrequencies, but not necessarily for those which are close to one another without
being exactly equal. We illustrate this here with the relaxation of the Zero Quantum (ZQ)
operator Z@Q, in a two spin-1/2 system (labelled here I and S). The relaxation rate for this

operator, without applying the secular approximation, can be calculated using Eq.1.16:

2

R(Z00u,1) = “15 (2 (g — ws) + 37 (or) + 3T (s) L

—2co8(2(wy —wg)t) T (wr —ws)),
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Figure 1.2: Tllustration of the secular approximation effects. Relaxation rate (a, ¢) and expec-
tation value (Eq.1.38, b, d) of the ZQ, operator for a "'N-'H (a,b) and two non-equivalent
protons (c,d) spin pairs as a function of time at 14.1T. A zoom over the first 10ms of the
evolution is shown in a. Expectation value of the Z Qa operator in a non-equivalent "H-'H spin
system as a function of time for different value of magnetic field (e) and chemical shift difference
A6 between the two protons (f). In both the >N-'H and 'H-'H cases, the internuclear distance
is the same and set to 1.02 A. This accentuates the effects in the homonuclear spins system case.
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where the time-dependence arises from the last term, wx = —vyx By is the Larmor frequency of
spin X at magnetic field By, djg is the dipolar constant and 7 the spectral density function

which, here, comes solely from the global tumbling:

Te

J(w) = il‘F(W’ (1.37)

where 7. is the global tumbling correlation time (choosen in the simulations presented here to be
25ns, which rougly corresponds to the global tumbling correlation time of a 50 kDa protein at
298 K). Without the time dependent term, Eq. 1.36 is in agreement with reported rates for ZQ
operators [16]. The expectation value (Z Qﬁ(t) of the operator ZQ, can be computed using:

(ZQu)(t + 8t) = (ZQy) (t)e "RIZQD), (1.38)

where 6t is sufficiently small so that we can approximate the decay of (Z@x> to be mono-
exponential with a unique rate over the time 6t. In the simulations presented here, 0t is set to

1 ps.

First, let us consider a '>N-'H spin system, as can be found in the peptide plane of
proteins. The Larmor frequency of the proton is about 10 times higher (in absolute value) than
the nitrogen-15 Larmor frequency so that the oscillating term in Eq. 1.36 varies extremely fast
and does not affect significantly the value of the relaxation rate (Fig.1.2a), and the decay of
the expectation value for the operator Z @x is mono-exponential (Fig.1.2b). In this case, the

secular approximation is justified.

Let us now consider a spin system composed of two non-equivalent protons. We will first
consider a 0.5 ppm chemical shift different between them. The relaxation rate at 14.1T shows
large-amplitude variations, on timescales similar to relaxation (Fig.1.2¢,d). During the relax-
ation decay, the relaxation rate changes, leading to oscillations in the decay of the expectation
value. These are particularly significant since the oscillating part involves the spectral density
function evalutaed at w; — wg and, for two non-equivalent protons, J(w; — wg) > J(wy) =~
J(wg). The difference frequency between the two protons depends on the magnetic field, and
the frequency of these oscilations decreases when the magnetic field decreases. The relaxation
being faster at lower magnetic fields, the oscillations in the expectation value are not visible

(Fig. 1.2e) since the polarization decays to 0 in a time-scale much smaller than the oscillation
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period, but the decays show clear deviations from a mono-exponential behavior. These conclu-
sions also apply when, instead of changing the magnetic field, the difference in chemical shift
in changed (Fig.1.2f). When the two protons have the same chemical shift (Ad = 0 ppm), the
relaxation is mono-exponential and occurs on a timescale three orders of magnitude longer than

the one shown in Fig. 1.2f.

In the case of non-equivalent homonuclear spin systems, the systematic use of the secular
approximation can miss some important features of the relaxation process. Such situation
presented here do not occur for the longitudinal and transverse relaxation, dipole-dipole cross-
relaxation or two-spin order relaxation. It can only be expected when the operator of interest
is expressed as a sum of operators, such as ZAQW ZAQy, and their Double Quantum (DQ)

counterparts DAQI and DAQy.

1.2.5 Relaxation in the laboratory frame

The final step consists in transforming Eq. 1.8 from the interaction representation back to the

Schrédinger representation given in Eq. 1.1. For this, we invert Eq. 1.4:

5(t) = exp{ —iHot (1) exp{iFlot }, (1.39)
with time-derivative:
ast) o 4o o

i —i[Ho, 6(t)] —I-exp{—z?'-[ot} i exp{z?-[gt}. (1.40)

Inserting Eq. 1.35 into Eq. 1.40 leads to:

d&(t) 7 S _ = (,,@ A At 5
dt [ 07 ZC’LCJ Z Z (l) W@ ln.7z,j (w2,q,p) { 2,q,pﬂ[ 2,q,p’70(t)ﬂ : (1'41)
2,q,p

q=—2p,;p

We now define the relaxation super-operator R as:

R= %ZQCJ‘ Z Yoo o Z,;( ) [Az,qp?[‘[lé:g’p”'ﬂ' (1.42)
2y

——2pp = Peraa
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The relaxation rate between operators A and B is:

R(A,B) = _BIRIA (1.43)

If A= B, the rate R(fl, B) is called an auto-relaxation rate, while if A # B, the rate R(A, E)
is refered to as a cross-relaxation rate, if ¢ = j, it is an auto-correlated relaxation rate, and if
1 # j a cross-correlated relaxation rate. These rates can easily be calculated analytically using
the BRW engine [70]. This tool calculates the double commutator for each pair of spin tensors
with identical eigenfrequencies and multiplies them by the spectral density function evaluated
at this frequency. The implementation of this algorithm in MATHEMATICA [18] is detailed in

section 1.3.

1.2.6 Models of correlation function

The correlation function reports on the local and global fluctuations of the Hamiltonian opera-
tors of interactions, and hence often reorientations of bond vectors, in the fixed laboratory frame.
Analytical models to describe the correlation function are of great interest to interpret NMR re-
laxation data in terms of dynamics of the molecules under investigation. Depending on the type
of motions, different forms of correlation functions have been derived from the Master equation
of diffusion in the 1960’s-1970’s, with applications in both NMR and fluorescence spectroscopy.
Luginbiihl and Wiithrich published a survey on the most important types of motions and their
associated correlation functions [34], and these will be discussed in details in chapter4. In the
early 80’s, Lipari and Szabo pointed out that using these models to the study of biomolecules
can lead to overinterpretation of data as the analysis requires a a priori knownledge or phys-
ical intuition of the model of motions [15]. Following their argument that 'models cannot be
proven; they can only be eliminated’ (quoted from [15]), they introduced the Model Free (MF)
approach, which is now widely used in biomolecular NMR, either as it was originially proposed
[15, 102] or as a basis for more complex correlation functions [74, 103, 21]. It must be noted
that even if without internal motional model assumptions [15, 104], the MF approach is not free
of any hypothesis. One of them is the factorisation of the global rotational diffusion and inter-
nal motion correlation functions. This is mathematically rigorous when the global tumbling is
isotropic and uncorrelated with internal motions. Lipari and Szabo proposed an approximated
form of the correlation function when the tumbling is anisotropic and uncorrelated from the

internal motions [15] which has been used in a number of studies [105, 106, 107, 108, 109].



1.2. Fundamentals of the Bloch-Wangsness-Redfield relaxation theory 23

The MF approach leads to satisfactory results for the analysis of folded proteins, but
a single effective correlation time for internal motion cannot accurately reproduce relaxation
data of Intrinsically Disordered Proteins (IDP) for which dynamics occur over a wide range
of timescale. An approach, called Interpretation of Motions by a Projection onto an Array
of Correlation Times (IMPACT) [110], as been proposed to write the correlation function of
IDPs as a distribution of correlation times. It does neither assume any particular type of
motion, nor a decorrelation of global tumbling and internal motions, nor a intra-residue corre-

lation/decorrelation of motions.

The independence of the rotational diffusion and internal motions has been questionned
in folded proteins: for example, loop motions or inter-domain motions can affect the overall
shape of the molecule and thus, the diffusion tensor. The Slowly Relaxing Local Structure
(SRLS) model aims at taking such correlations into account by modeling the interaction frame
motions as a diffusion in a potential which depends on the molecular environment [71, 25, 27].
Correlation functions in the presence of correlated global tumbling and conformers exchange
(i.e. domain jump motions) have also been proposed, for both isotropic [111] and anisotropic

[112, 113] tumbling diffusion tensors.
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1.3 Implementation of the Bloch-Wangsness-Redfield theory in
RedKite

The computation of the relaxation rates is highly efficient with the formalism of the BRW
engine [70] which does not require an explicit expression of the spherical harmonics defining the
correlation function (Eq. 1.15). Relaxation rates are first expressed as a function of the spectral
density function J; j(w,0;,0;) where 6, is the orientation of the interaction k in the System
Frame (SF) of the chemical moiety. This frame corresponds to an arbitrary frame in which the
orientation of the interactions are calculated. The different steps of REDKITE are presented in
the flowchart shown in Fig. 1.3. We will illustrate the use of REDKITE on an isolated pair of spin-
1/2 nuclei: a '>N-'H pair. REDKITE notebooks for an isolated >N-'H spin pair and *C'H?H,
methyl group with a vicinal deuterium can be found at: https://figshare.com/articles/
software/RedKite/11745111. As will become clear in the follwing sections, REDKITE consists
in a succession of commands imported from the SPINDYNAMICA package [20]. This section is

largely based on the associated published work [19].

@ I Ve
I |

| I | | |

: N -:-L analytical :
T Secular - | rates

| ¥ H, & 2H, approximation -, | I '

: e definition Jl_l analytica :
H matrix

| . . | |

- || W SpinDynamica | I |
| |
< - _ _ __ _ _ N_ - ____ o\ _ _ _ _ _ /

Figure 1.3: Schematic representation of the REDKITE calculation, describing input information
and the output of the MATHEMATICA notebook. a) Initial inputs from the user are the spin
system (isotopes and geometry) and CSA and quadrupolar interactions properties. b) After
definition of the operator basis, Hamiltonian operators are defined. After indicating the operator
of the basis studied during the experiment, a reduction of the size of the basis is performed.
Rates of interest that will be calculated are defined as well. ¢) Calculations produce analytical
expressions for the relaxation rates and the relaxation matrix. Blue rectangles: user inputs.
Yellow rectangles: calculated outputs. Pink rectangle and purple triangles: tasks performed by
REDKITE. Figure reproduced from [19].
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1.3.1 Definition of the spin system

The first step is to define the spin system by specifying for each nuclear spin the nucleus type
with its isotopic number, and a unique label for each spin which is used for identification. We
present as an illustration the example of a simple spin system composed of an isolated N-1H

pair. The spin system is therefore defined as:
Nuclei — {{I|15NH’I|NA|I}’ {IllH", I|HA|I}};

where "NA" and "HA" refer to the Nitrogen-15 and Proton respectively, before running the
SPINDYNAMICA [20] SetSpinSystem command.

The geometry of the spin system is defined next. We define an array of size n x 3 (where n is
the number of nuclei in the spin system, in our case 2) containing the position of each atom in
a Cartesian axis system. In our example, we set the nitrogen nucleus at the origin of the axis

system and the proton 1.02 A away from the nitrogen in the z-direction:
Coordinates = {{0,0, 0}, {0,0,1.02 x 1070} };

To complete the definition of the spin system, the CSA and quadrupolar properties have to
be defined. The nuclei for which the CSA will be considered must be defined as such. In our

example, we will only consider the nitrogen CSA:
CSAConsidered = {1,0};

It is possible to give a numerical value to the CSA or keep its value as an analytical parameter.

We will consider this latter case here:
505&[1] = AUN;

Note that defining d.s4[2] is not necessary since the proton CSA is neglected in our example.
Similarly, the strength of the quadrupolar interaction does not need to be defined (see Ap-
pendix B.4 for an example that includes quadrupolar interactions).

The orientations of the CSA tensor have to be given (either numerically or analytically) as
projections on the 3 axes of the molecular frame. For the sake of simplicity, we choose an

alignement along the N-H axis:

vectorNum;“54" = {0, 0, 1};
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The index 1 refers to the first spin in the spin system (i.e. the nitrogen-15). There is also
a possibility to consider asymmetric CSA tensors. In this case, the asymmetric CSA tensor
is decomposed in two axially symmetric components. The longitudinal and orthogonal com-
ponent of the CSA have to be defined using the variables names olong[i] and operp[i] for
the longitudinal and orthogonal values of the CSA tensors of isotope 4, and vectorNuleCSA"

and vectorNump;“54" for the associated orientations. TableB.1 contains the definitions of the

different variables of REDKITE.

1.3.2 Definition of spin tensors and Hamiltonian

Three different types of interactions are considered in REDKITE: the dipolar couplings, the
CSA (in the case where at least one spin has a CSA) and the quadrupolar couplings (in the case
where spins with mg > 1/2 are present in the spin system). Analytical forms of these Hamilto-
nian operators are calculated automatically. Other Hamiltonian operators can be defined and

added if other interactions or effects are considered.

Calculation of Hamiltonian operators requires the definition of spin-tensor operators.
SPINDYNAMICA already contains their definition, but each tensor of coherence order-q is given
as a linear combination of eigentensors [20]. Consequently, SPINDYNAMICA tensors can be linear
combinations of eigenvectors with different eigenfrequencies, which is an inappropriate basis to
perform the secular approximation (based on the equality of eigenfrequencies of two eigenvec-
tors). The secular approximation is better performed with complete separation of the tensor
operators. The definition of each tensor is given in Table 1.1, 1.2 and 1.3, and their definition in
MATHEMATICA can be found in Appendix B.2. In the case of non-equivalent homonuclear spin
systems, performing the secular approximation is more complex, as shown in previous section.
REDKITE performs the secular approximation, even in these situations. Numerical tools, such
as SPINACH [70], are available to study such systems. The Hamiltonian, as written in REDKITE,

can be found in Appendix B.3.

In the definitions of the Hamiltonians, we introduce the function M, similarly to the
BRW engine [70], which depends on the operator coherence order m being considered, its
associated eigenfrequency, a time t at which the Hamiltonian is calculated, and the orientation
of the interactions. The function M is useful when calculating the double commutators to obtain

relaxation rates (as detailed in the previous section). Products of the function M appear, which
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are simplified according to:

M[l , fl ,0,i |Conjugate[M[k ,f2 |t ,j || := KroneckerDelta[l, k| KroneckerDelta[f1, {2]
Glt, i, j];
where KroneckerDelta|z,y] = 1 if x = y and 0 otherwise, | and k are associated to tensor

coherence order, f1 and f2 to the tensor eigenfrequencies, ¢ the time at which the Hamiltonian
is calculated, and 7 and j are the orientation of the interactions in the molecular frame. G/,
f1, i, j] is the correlation function evaluated at time ¢ and is further replaced by the spectral

density function evaluated at frequency f1 by using the function BRWlntegrate:
BRWlntegrate[emesiComplex(0a LtAIG[6 i j ] == J[axfl, i, j] ;

where the coefficients a are obtained from the eigenvalues of the eigentensors. For auto-

correlation, i = j, while cross-correlation is obtained when ¢ # j.

1.3.3 Analytical and numerical spin state restriction

The number of operators in the basis is equal to 4" for n spin-1/2 nuclear spins. Hence, in a
two spin-1/2 system there are 16 operators, which is still a workable number. For more complex
spin systems, reducing the size of the basis to keep only terms relevant for the analysis of an
experiment is essential. We only keep the terms contributing to the relaxation of the operator
of interest (that is the operator for which the evolution of the expectation value with time
needs to be carefully evaluted) following the scheme of Fig. 1.4. First, only terms with the same
coherence order as the operator of interest are selected (indicated in blue in Fig.1.4a). Then,
the secular approximation is involved to average out all non-secular terms in the interaction
frame (Fig.1.4b). Cross-relaxation rates with the operator of interest in this reduced basis are
calculated (Fig.1.4c) and the operators with no cross-relaxation with the operator of interest
are discarded from the basis (here this last step only removes the identity operator E, Fig. 1.4d).
This step is basis-dependent and some indirect cross-relaxation pathways affecting the operator
of interest may be suppressed. An additional step can be applied for large spin systems to sort
and select only major cross-relaxation pathways. In our example of an isolated '>N-'H spin pair
with a CSA on the nitrogen-15 and the N, operator defined as the operator of interest, only 3

terms remain in the basis:
ReducedBasis = {NA,, HA,,2NA,HA,};

The user can also manually define its own basis.
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Figure 1.4: Reduction of the matrix size for our case example of a ">’N-'H spin system. a) A °N-
'H isolated spin pair has 16 operators in its basis. b) The first step of the matrix reduction size
consists in keeping only terms that have the same coherence order as the spin-term of interest,
leading to 6 terms in the basis. c¢) The secular approximation allows another level of size
reduction: only terms that are secular with the Zeeman Hamiltonian are kept in the basis. Two
zero-quantum operators are removed at this stage. d) In the absence of cross-relaxation with
the spin term of interest N, the identity operator is removed from the basis and the final basis
contains 3 operators. In this graphical representation of the relaxation matrices, a red square
indicates a non-zero value for the corresponding relaxation rate. The blue rectangles contain
the selected part of the relaxation matrix after each steps of the size reduction. Normalization
factors for the spin operators have been omitted for clarity. Figure reproduced from [19].
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1.3.4 Calculations

Once the basis has been defined, the relaxation matrix can be calculated:

RM=|oxg R 0 |,
o 0 Rnm

where RY and R! refer to the nitrogen-15 and proton longitudinal relaxation rates respectively,
Rnu to the auto-relaxation rate of the two-spin order 2]\7216[ », onu to the dipole-dipole cross-
relaxation rate between nitrogen-15 and proton and dy to the cross-relaxation rate due to the

cross-correlation of the nitrogen-15 CSA and the Dipole-Dipole (DD) coupling with the proton:

d3 1
RY = =y (T @y = wn) + 67 (wx +wn) + 37 (wn)) + gAJI%IWI%Ij(WN)a (1.44)
d2
Rt = (T (wx —wn) + 67 (@x +wn) +37 (wn)). (1.45)
3 1
Ry = %(3._7(&)N) + SJ(WH)) + gAUI%IWI%Ij(wN)a (1’46)
d2
ONH = %(_j(WN —wn) + 67 (wN + wn)), (1.47)
on = AonwndnuJ (wN), (1.48)
with dyg = —%%J the dipolar coefficient between the proton and the nitrogen-15, rxp the
NH

distance separating the two nuclei, vx the gyromagnetic ratio of nucleus X, A the Plank con-
stant divided by 27, uo the permeability of free space, and Aon = 0, — % the CSA of the
nitrogen-15 with o), the k' diagonal element of the chemical shift tensor. J is the spectral
density function and is expressed as a function of the proton (wy) and nitrogen-15 (wy) Larmor

frequencies.

All types of relaxation rates in this spin system can be calculated. In such a spin system,
it is relatively easy to record longitudinal and transverse relaxation rates for the nitrogen-15

nucleus, as well as the cross-relaxation rate with the proton. These rates are calculated by:

RatesOflInterest = {

{Rate[opI['NA", "z"], opI['NA", "z"]], "RIN"},
{Rate[opI['NA", "+"], opI['NA", "+"]], "R2N"},
{Rate[opI['NA", "z"], opI['"HA", "z"]], "Sigma'}};
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where Rate is the implemented command to calculate relaxation rates as described in the

section 1.2. This leads to the expression of transverse relaxation rate for nitrogen-15:

Ry :d%}gH(j(wN —wn) + 67 (wN +wn) + 37 (wn) + 67 (wn) + 47 (0))
(1.49)

+ %Agl‘aw@(sj(w) +47(0)).

1.3.5 Model free spectral density function

The user has to provide at least one definition of spectral density function in order to have a
model for the dynamics of the system. In our case, we can use a model-free approach [15] with
a correlation time for global tumbling 7., one order parameter S? and an effective correlation

time for internal motions 7;,;:

2 S2r, (1-— SQ)TZ-’nt
J(w) = R (1 o) i 2 ) (1.50)

where Tl-,,;tl =714 7'“_1% This function is implemented in REDKITE as:

JNH[w_,i_,j ] :=Module[{spec, 71},
7L =T¢Tint/(Te + Tint);

2 T,
=-(8§2—°<
spec =3 (2ot

Tl
1= S0 o)

Other models of spectral density function can be used as well. At this point, the relaxation
rates seen above can be expressed as a function of the parameters of the dynamics of the system
(order parameter and correlation times). Numerical calculations can be performed if values for

the parameters of the spectral density function are provided.
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1.4 Conclusion

The basis of the BWR relaxation theory [12, 13, 14] was introduced in this chapter, and some
of its main hypotheses were discussed. The secular approximation may lead to substantial
deviations form the expected evolution of the spin system under relaxation only in particular
situations. The range of applicability of the theory to high-temperature and weak-order solution

is not limitting in the context of biomolecular liquid-state NMR where they are fullfilled [13, 14].

The BWR theory has been implemented in a MATHEMATICA [18] notebook using the
SPINDYNAMICA package [20]. This program, called REDKITE, is applicable to a wide range of
spin systems. An illustration of its usuage has been detailed for an isolated "N-H spin pair.
REDKITE has been used by others to help designing experiments to improve the sensitivity of
Nuclear Overhauser Effect SpectroscopY (NOESY) experiments [114] and analyse quadrupole
relaxation in methyl groups [115]. Three applications of REDKITE will be detailed in this
manuscript: understanding experimental spectra recorded under unsual conditions (chapter 2),
and calculating relaxation matrix for systems of interest to design new experiment (chapter 2) or
analyse relaxation data (chapter 3). In the frame of the BWR relaxation theory, the relaxation

super-operator (Eq. 1.42) shows two distinct elements:

e The tensor part. It is determined by the spin system. During the course of an experiment,
the proper selection of coherence pathway can lead to relaxation-optimized pulse sequence.
The TROSY types of pulse sequences [35, 36] apply this idea to select slowly relaxing-
operators. In chapter 2 we will use these aspects to rationalize the observation of a methyl-

TROSY effect in a situation where it is not expected.

e The lattice part. This is the spectral density function, which is determined by the dy-
namics of the molecule. Its dependence on the Larmor frequency leads to a magnetic
field dependence of the relaxation. In chapter2, we will show how we can use this as-
pect to develop multiple-field NMR spectroscopy with improved sensitivity compared to
single-field experiments. In addition, the measurement of relaxation rates at different
fields allows a mapping of the spectral density function and an interpretation in terms of
dynamics. These aspects will be investigated in chapter 3. In the chapter 4, we will review
and analyze some models of correlation function to study the dynamics of biomolecules,

and propose new correlation functions for the analysis of side-chain dynamics.
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2.1 Introduction

Structural biology aims at describing the intricate relationship between the structure, dynamics
and function of biomolecules. Among all the techniques brought by decades of methodological
developments, Nuclear Magnetic Resonance (NMR) is the only one with the ability to provide
direct information on all these three aspects. However, NMR suffers from a limited sensitivity
which significantly decreases as the size of the molecule increases. Consequently, until the very
end of the 20*" century, biomolecular NMR rarely focussed on systems exceeding 30 kDa. The
progress of NMR over the last decades was made possible by the constant development of mag-
nets with higher magnetic fields [4], the availability of more sensitive probes, especially cryogenic

probes, as well as countless innovative methodological developments. A major breakthrough
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for the investigation of large biomolecules has been the introduction of Transverse Relaxation-
Optimized SpectroscopY (TROSY) [35]. In the N-'H spin pair present in peptide bonds, the
TROSY effect relies on the selection of a coherences that benefit from destructive interference
between the Chemical Shift Anisotropy (CSA) and Dipole-Dipole (DD) relaxation mechanisms
[78, 79, 80], leading to a dramatic decrease of their transverse relaxation rates [35, 116]. The
improvement in resolution and sensitivity has made possible the study of large biomolecular

systems up to about 1 MDa [81].

Relaxation interference also gives rise to a TROSY effect in '3C'H3 methyl groups
in macromolecules. Tugarinov et al. [36] described the Heteronuclear Multiple Quantum
Coherence (HMQC) experiment and associated methyl-TROSY effect using two main assump-
tions: the slow-tumbling approximation and infinitely fast methyl-group rotation. The slow-
tumbling approximation is suitable to describe relaxation properties in high molecular-weight
proteins on high-field magnets (10 to 25T). In addition, rotation of methyl groups can be con-
sidered infinitely fast since it is much faster than the slow global tumbling of large proteins.
Under these assumptions, the contributions of all intra-methyl DD couplings for the relaxation
of the central line of the triplet are exactly zero in an HMQC experiment [36, 117]. This major
discovery hand in hand with the development of schemes for protein *C'Hjz labeling at specific
positions, both in proteins [52, 118, 119] and nucleic acids [55], has opened new perspectives
to study high-molecular weight biomolecules with NMR [120] as was shown by several studies
of large molecular machines, such as the proteasome [121, 122], a 1 MDa-chaperone [54] or the

nucleosome core particle [55, 123].

The need for higher magnetic-field has been justified by the need for higher sensitivity
which would allow the study of always more challenging systems. Undoubtedly of great inter-
est for the biomolecular NMR community, such high-field magnets (as high as 1.2 GHz at the
time of writing) can also have detrimental effects on the quality of the recorded spectra. For
example, the CSA interaction scales linearly with the magnetic field (Eq.1.25 and Eq. 1.28) so
that the relaxation rates of nuclei with large CSA can lead to dramatic polarization losses at
high magnetic fields. The carbonyl carbon-13 nucleus present in peptide bonds has a high CSA
(0, = 250ppm, o, ~ 170 ppm and o, ~ 80 ppm) [82], leading to relaxation rates higher than
600! for protein assemblies with the size of the nucleosome at 1.2 GHz. Such a high relaxation
rate would make most of the multi-dimensional NMR, experiments with transfer trough the car-

bonyl function challenging, if not impossible, decreasing the attractivity for higher magnetic
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fields.

Low-field probe
("H, N, 3C, Z-grad)

B- I

High-field TXI probe
("H, N, C, 2H, Z-grad)

Figure 2.1: Schematic of a 2F-NMR spectrometer. The magnet shown in green operating at
B = 14.1T produces a stray field (blue line). The ferroshims (orange) create a plateau of
magnetic field at B§¥ = 0.33 T. The sample shuttle (yellow) moves the sample between the two
positions at up to 10m.s~'. Two probes are placed at the two magnetic centers. The high-field
probe is used for signal detection. Figure reproduced and edited from [37].

Two-Field NMR (2F-NMR) spectroscopy has been recently proposed to overcome the
challenges brought by very high-field NMR [39]. The laboratory is equipped with a propotype
of 2F-NMR spectrometer. It consists in a commercial 600 MHz spectrometer where a pneumatic
sample shuttle couples the high-field position with a low-field position placed around 1 m higher,
in the stray-field gradient produced by the high-field magnet (Fig.2.1). The low-field position
has a value of 0.33 T (14 MHz proton Larmor frequency) and ferroshims provide a c.a. 10 ppm

field homogeneity [39]. A second probe is placed on top of the spectrometer to manipulate the
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spins at low-field. The coupling between the two positions allows one to polarize and detect the
signal at high field to maximize the signal intensity while monitoring specific spin properties at
low field. Our prototype has been used to overcome chemical exchange broadening [37], obtain
broad-band correlations throughout aliphatic and aromatic 3C resonances [83], and measure
accurate relaxation rates at low field on Ubiquitin isoleucine methyl-groups [22] and on the
backbone of an Intrinsically Disordered Proteins (IDP) using pseudo-four-dimensional NMR
and Non Uniform Sampling (NUS) [124].

Our 2F-NMR spectrometer was also used to record a Heteronuclear Zero Quantum
Coherence (HZQC) experiment of the isoleucines methyl-group of the protein Ubiquitin. This
experiment is the 2F equivalent of the HMQC pulse-sequence to record methyl-TROSY spectra
[36]. It combines detection at 14.1 T and evolution of multiple-quantum coherences at 0.33 T
[37]. Narrow linewidths were obtained in the indirect low-field dimension suggesting a TROSY
effect at low field, well outside the slow-tumbling regime where the initial methyl-TROSY the-
ory was introduced [36]. Understanding this observation requires a formal description of methyl
group relaxation in all motional regimes. In the first part of this chapter, we extend the methyl-
TROSY theory to situations ouside the slow-tumbling regime. This first part is based on an

already published experiment which revealed an unexpected spin property.

In the second part of this chapter, we propose a new type of TROSY experiment.
Currently, TROSY-types of pulse sequences aim at selecting slowing relaxing coherences [35, 36].
Here, we propose to optimize transverse-relaxation rates by optimizing the magnetic field for
spin evolution and detection, the two being potentially different. We refer to this class of
experiment as 2F-TROSY. Our prototype of 2F-spectrometer does not permit us to record
such experiments yet. This part will aim at showing the potential of 2F-NMR, spectroscopy for
biomolecular NMR.
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2.2 Understanding the methyl-TROSY over a wide range of

magnetic field

This section is largely based on the associated published work [38].

2.2.1 Experimental evidence
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Figure 2.2: Two-field HZQC experiment recorded on U-[2H, '*N], Ile-6; ['*CHj3]-ubiquitin. a)
Pulse sequence for the 2F-HZQC [37]. All pulses are applied along the x-axis of the rotating
frame, unless specified otherwise. The phases are cycled as ¢1 = z, —z, ¢po = 4{z},4{y} and
o3 = 2{x},2{—x},2{y}, 2{—y} with a receiver phase ¢4cq = {x, —z, —x,x}. The phase cycling
ensures that the spin system evolves under ZQ coherences during 7 = (79 + n1At;)c and 75 =
To¢, and under DQ coherences during 7 = (19+n1At1)(1—c¢), 213 = 279(2¢—1)+2n1At1(c—0.5)
and 74 = 79(1 —¢) with ¢ = (y¢ /v +1)/2, Aty the time increment and n; the index of the time
increment. The other delays are 7, = 1/(4Jop) with Jog = 125 HZ and § comprising the length
of the gradient (0.9 ms) and the recovery delay. The gradients Gi, G2 and Gg are applied along
the z axis with amplitudes 10 G.cm™!, 15G.cm™! and 2(y¢/vm)G1 respectively. Carbon-13
decoupling during acquisition is achieved using the GARP composite pulse with wigarp/27 =
2.08kHz [125]. HF: High Field. LF: Low Field. b) 2D-correlation spectrum of the seven
isoleucines recorded on U-[2H, N], Ile-6;['3CHjs]-ubiquitin [37]. A shearing transformation
allows the display of 13C-chemical shifts in the indirect dimension. Figure adapted from [38].

The experiment suggesting the persistence of the methyl-TROSY effect at low field has
been published recently by our group [37]. It was recorded in 9 hours on a sample of 1.5 mM
specifically labeled U-[2H, 'SN], Ile-§1['**CH3]-ubiquitin, expressed and purified as detailed in
the original publication, and using the pulse sequence shown in Fig.2.2. The seven peaks
corresponding to the seven isoleucine of Ubiquitin are clearly identified. The additional artifacts

c.a. 2.7ppm away from the most intense peak are still unexplained. The surprisingly narrow
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linewidth in the carbon low-field dimension were originally hypothesized to arise from a methyl-
TROSY effect [37], but the small size of the protein (8.5 kDa) and the low field for spin evolution
make that the system is outside of the slow tumbling motional regime for which the existing
methyl-TROSY theory was developped [36]. Here we propose a general analysis of the relaxation
properties of ZQ and DQ coherences in methyl groups, which goes beyond the main hypotheses
of the original methyl-TROSY work: slow tumbling and fast methyl rotation [36].

2.2.2 Theoretical framework
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Figure 2.3: Description of the methyl-TROSY multiple-quantum spectrum and associated spin
transitions. a) Energy level diagram of a *C'Hjz spin system using symmetry-adapted states
for the point group C3. In the state labels, the first spin state corresponds to the '3C nuclear
spin, and the others to the three 'H spins, i.e. each spin state can be written as |[CH;HoH3)
where C and H; refer to the spin states of the carbon and proton 7 respectively (either a or
B). Each state is associated with a number in order to simplify the description. Transitions
of interest have been highlighted with solid (resp. dashed) arrows for the ZQ (resp. DQ)
coherences. Transitions giving rise to the outer (resp. central) component of the triplet are
colored in blue (resp. orange). b. Simulated multiple-quantum methyl-TROSY triplet showing
the contributions from the outer and central lines. Figure reproduced from [38].

2.2.2.1 Spin system

Many studies have focussed on the relaxation properties of Hz and 3C'Hj spin systems in
methyl groups [126, 92, 93, 127, 128, 129]. Here, we consider a '*C'Hj spin system of an
isolated methyl group for which tetrahedral geometry is assumed, that is the carbon nucleus

occupies the center of a tetrahedron, three corners of which are occupied by the protons. This



2.2. Understanding the methyl-TROSY over a wide range of magnetic field 39

Table 2.1: Single-transition operator basis used for the study of the relaxation properties of ZQ
and DQ coherences. The numbers in the bra and ket refer to the states as shown in Fig. 2.3.

Bzq Bpg
ZQhwern 1321 | DQhven 14 (1
ZQhers 1TV (6] | DQovera  18) (5]
ZQntral 15) (4| DQ% e 16) (3]
ZQemrat 5(113) (1] | DQihar  5(115) (9]

o~ ~—

+ [14) (12]) + [16) (10])

nuclear spin system is characterized by sixteen energy levels, direct product of the spin states
of a 13C spin with a 'Hj spin system. Mathematically, the relevant symmetry group to describe
this system of three protons is the alternating group As. The point group Cj is isomorphic to
As and more commonly used when refering to symmetry properties in physical sciences. An
equivalent theoretical description could be built on the irreducible representation of the point
group C3,. The energy levels are then separated into two manifolds based on their spin quantum
number: A (I = 3) and E (I = 1). A schematic representation is shown in Fig. 2.3.a where the

7ZQ and DQ coherences are highlighted in solid and dashed arrows respectively.

2.2.2.2 Operators

We will use the following convention: in the abscence of indices to 'H operators, the sum over
the three protons is implicit, i.e. 0t = g’:l ICIfE / /3 where ICIZ is the operator for proton i. Note

nAn

that in the following, the operator-sign """ is ommited. The product operators that are relevant
to the present analysis are the ZQ (2CTH™+ 2C~H™T) and DQ (2CTH*+ 2C~H™) coherence
operators of a 13C'H3 spin system. The analysis performed here only considers the 2CTH™ and
2CTHT transition operators, but can be performed similarly for the corresponding 2C~H™ and
2C~H™ transition operators. A symmetry analysis shows that the subspace of operators for
which: i) the point group is Cs (i.e., the operators are unchanged by a circular permutation of
the three protons) and ii) the coherence orders are m¢ = +1 and my = -1 for ZQ transitions,
or mg = +1 and my = 41 for DQ transitions has dimension five. All transitions are shown in
Fig.2.3.a. As explained below, defining the sums and the differences of the transitions in the E-

manifold allows a size-reduction of the basis to four terms. A suitable basis for the study of the

considered single-transition operators expressed in terms of the transitions shown in Fig.2.3.a
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is presented in Table 2.1.

The expansion of the two Multiple Quantum (MQ) transition operators relevant for the
study of the pulse sequence in the respective bases defined in Table 2.1 is:

1 1
QC+H ZZQouter 1 + 4ZQouter 2 + 2\/>Zchntral +— 2\/’ gi)];:’itral?

2.1)
) (
20+H+ ZDQouter 1 + 4DQouter 2 + 2\/‘ chntral +t o= \/‘ (,;e]?ltral'

The single-transition operators ZQ2F = (|13) (11] — |14) (12|)/v/2 and DQ*F = (|15) (9] —
|16) (10])/v/2 need not to be included in the basis, as they are found to be in independent sub-
spaces for the evolution analysed here: they do not contribute to the expansion of the studied

7ZQ and DQ transitions and they do not cross-relax with the other terms.

In the slow-tumbling approximation, the methyl-TROSY spectrum can be studied using
two single-transition operators, equivalent to those described by Tugarinov et al. [36] for the

description of the central and outer lines of the triplet (Fig.2.3.b):

1

A A A A
Touter = 1 (ZQouter,l + DQouter,l + ZQouter 2 + DQouter,2) )

(2.2)
Tcentral 2[ <Zchntral + Dchntral +—= \[ ( chntral + DanEtral)) :

2.2.2.3 Relaxation mechanisms

Nuclear spin relaxation is described using the Bloch-Wangsness-Redfield (BWR) (chapter 1)
relaxation theory. Calculations were performed using the framework of SPINDYNAMICA [20] as
implemented in REDKITE [19]. We considered the three 'H-'H and three 3C-'H DD interac-

tions, as well as the 13C-CSA interaction, when mentioned.

2.2.2.4 Spectral density functions

To take into account the methyl rotation around its symmetry axis, the Model Free (MF)
approach [15] has been modified to include three types of motions, considered to be uncor-
related: the global tumbling, motions of the methyl symmetry axis occuring on the nano- to

sub-nanosecond time scales [74], and the rotation of the methyl group, resulting in a correlation
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function similar to a form previously introduced for methyl groups [109]:

1 — T — T — Tm
C(t,0:5) = = t/c(s;+(1—s;)e V7Y (S2,(0z7) + (Pa(cos(0z7) — SZ(0z7)e/™),  (2.3)

where 7, is the overall global tumbling correlation time, SJQC and 7y are the order parameter and
correlation time for the motions of the symmetry axis aligned with the CC bond, and 7, is
the correlation time for the rotation of the methyl group. S%(GW) is the order parameter of
the methyl group which can be expressed as SZ (677) = P2[cos (Ga Ct‘)] X Pa[cos (ej,(fc)] [130],
where P is the second order Legendre polynomial and C'C' is the vector aligned along the CC
bond and associated with the symmetry axis of the system. 60;; defines the angle between the
vectors ¢ and j formed by the two pairs of nuclei involved in the considered DD interactions,
or the symmetry axis of the CSA tensor, and allows for possible cross-correlation. The Fourier
transform of the correlation function gives the following spectral density function for the Model

Free for Methyl (MFM) model:

Tntraa (,0c5) =2 1SE O (SHLw, 70) + (1 = SHL(w, 7)) o

+ (Pa(cos(0z7)) = S (077)) (SFL(w, ) + (1 = SF)L(w, 77))],

1_ -1 -1
=T, +7.7,

where w is the Larmor frequency, effective correlation times are expressed as 7‘,2_
(k € {f,met}) and 7‘}"1 = 7]71—1—7‘514—7};1, and L(w,7) = 7/(14+(w7)?) stands for the Lorentzian
function. This spectral density function will be used throughout this section, unless otherwise
specified. For the sake of simplicity, a compact notation is used in the rest of the manuscript.
Spectral density functions are labeled with indices referring to the auto- and cross-correlated

interactions following a notation suggested by Werbelow and Grant [126]. Notations used for

the spectral density functions and values of S2,(6;7) and Pa(cos 6 ;) are listed in Table C.1.

In the hypothesis of an Infinitely Fast Methyl Rotation (IFMR) the second line in

jIFMR.

Eq. 2.4 vanishes, leading to the spectral density function J;;73;":

Tt (w, 0z5) = Tlirilo Turm(w, 07)

; (2.5)
== [SE0:)S3 1w, 7e) + 8,05 (1 — S L, 7})]

Importantly, under the IFMR approximation, the dependence on the relative orientation of all

interactions vanishes, leading to Jgcu = Jcu and Jgug = Juug which is important for relax-
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ation interference (see below). Finally, the slow tumbling approximation implies J(w) = 0 for

w # 0.

Tugarinov et al. used a simpler form of spectral density function adapted to slow tum-
bling for the overall rotational diffusion and Infinitely Fast Internal Motions (IFIM), in which

all internal correlation times are zero [36]:

2
Titrat (@, 077 Igsfn(@af)S?L(w, Te)- (2.6)

In the analysis presented here, the following parameters S’J% = 0.5, 7.=10ns, 7,=100 ps
and 7,=5ps will be used, if not specified otherwise [21]. Introducing the additional correlation

time 77 for internal motions does not change the general features of methyl-TROSY.

2.2.3 Methyl-TROSY at high field

In the absence of the proton refocusing pulse during the indirect evolution period of the HMQC
pulse-sequence, the coupling between the evolving '3*C-'H spin pair and the passive '"H-'H spin
pair leads to a triplet arising from the different spin states of the passive protons (Fig.2.3.b).
The central line of the triplet is much sharper than the outer lines (for a detailed description
of the HMQC spectrum, see Tugarinov et al. [36]). The dipolar contributions to the transverse
relaxation rates for the outer and central single-transition operators (Toyter and Teentrqr defined

in Eq.2.2) can be expressed as general (gen) expressions Rﬁ/[e(g’outer and R%Zg}central:

en 1
Ri/IQ,outer :gd%H [8Jcu(0) + QJCH(WC) + BJCH(WC —wy) +9Jcu(wy)
+18JCH(OUC + wy )]

1
+ Zd%H [4Tcu(0) + 3Tmcn (we,) + Tien(we — wyy) + 3Tmcn (wy) 2
2.7
+6JHucH (wc + wy )]

3
+ ZdQHH [3Jman(0) + 4Jmm (wy ) + 211 (2wy)]

3
+ ZdzHH [BTunm (0) + 2Junn (wyy ) — 2JmnuH (2wy,)]
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0 1
B0 contral =g dlom [BTcn(0) +9Tcm(we) +3Jcn(we — wy) +9Tcm(w,)

+18Jch(we + wy)]

1
+ Zd%H [—4Tucu(0) — 3Jucu(w) + Jucu(we — wy) + 3Jucu(wy )

(2.8)
+6Tncn(we + wy)]
+ %dgH B (0) + 4Tr111(wy) + 2T5an1 (20, )]
+ zd%H [—3Jumn (0) + 2Tumn 2wy, )]
where d;; are dipolar coefficients for the DD interaction between nuclei ¢ and j, d;; = —‘%fif;‘j

g

with uo the permeability of free space, h the Planck’s constant divided by 2w, v, the gyromag-
netic ratio of nucleus n, and r;; the distance between nuclei 7 and j. Importantly, the rates
Rf}facentral and R%}faouter are not equal due to different cross-correlated contributions depend-
ing on Jycu and Jugg. Using the slow tumbling approximation, we only retain terms of the

spectral density function evaluated at 0 frequency, leading to:

9
Rf/[%,outer :d%H [jCH(O) + jHCH(O)} + Zd%{H [jHH(O) + JHHH(O)] s (2 9)

9
Rf/[%,central :d2CH [jCH(O) - jHCH(O)} + Zd%{H [jHH(O) - jHHH(O)] .

As explained in the previous section, under IFMR, the spectral density functions for auto- and

cross-correlation are equal, Jog = Jucu and Jug = JauH, SO that:

ST,IFR 9
RMQ,outer = 2d%HjCH(O) + id%{HjHH(O)a

ST,JFR
RMQ,central = 0.

(2.10)

The complete cancellation of the relaxation rate of the central line arises from the com-
bination of two approximations: slow tumbling and IFMR. A similar cancellation of auto- and
cross-correlated relaxation terms is responsible for the existence of long-lived nuclear spin states

in methyl groups [129]. Introducing the spectral density function Ji/ZM (Eq.2.6), we obtain:

4
RSTIFIM _ Ho (225%(90}1707{)5% I . 92572”(9H71,H7{)S]2‘7Hh27'c>

Mouter = am 75 o 25 i (2.11)

ST IFIM
RMQ,central = 0.

Replacing S2, according to Table C.1, we obtain the same expressions as reported in Tugarinov
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et al. [36]:
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Figure 2.4: Variation of the DD contributions to auto-relaxation rates in the slow-tumbling
approximation with the correlation time 7. for the outer lines (a) and the central line (b).
Relaxation rates were calculated using the spectral density function Jysras. The non-zero rates
predicted for the central line are due to finite speed of methyl rotation. Figure reproduced from
[38].

The relaxation rate of the outer lines calculated using the general expression R%Z‘aouter
(Eq.2.8) and in the slow tumbling approximation Rf/[%puter (Eq.2.9) and using the spectral
density function Jasrar compare well for magnetic fields higher than 5T, both of them being
independent of the magnetic field and proportional to the global tumbling correlation time
7. (Fig.2.4.a and Fig.2.5.a). The value of the relaxation rate of the central line R&%7central
approaches zero in the slow tumbling approximation (Eq.2.9 and Fig.2.4.b), as analytically
calculated in the case of the IFMR (Eq.2.10). In the general case, the central line relaxation
rate Rf/[eg, centra 1@ @ non-zero value. For magnetic fields higher than 5T it is small and can be
considered independent of the magnetic field and global tumbling correlation time 7. (Fig. 2.5.b),
thus reproducing the expected behavior predicted by the slow tumbling approximation. These
calculations show that in the frame of the operator expansion introduced by Tugarinov et al.
[36] (Eq.2.2), the slow tumbling approximation allows an accurate description of the relaxation

rates of the triplet at moderate and high magnetic fields.

However, using this operator expansion, calculation of the relaxation rate of the central
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Figure 2.5: Domain of validity of the slow-tumbling regime. a) Contour plot of the relaxation
rate of the outer lines of the triplet as a function of the magnetic field and the correlation
time 7, and calculated using Eq. 2.8 (Rﬁdegputer, solid line) and Eq. 2.9 (Rf/[TQ,outer’ dashed line).
The slow-tumbling approximation holds when the dashed and solid lines coincide. b) Contour

plot of the relaxation rate of the central line of the triplet as a function of the magnetic field
gen

MQ,central) :

expected relaxation rate for the central single-transition operator Teeptral in the slow-tumbling

approximation is Rf/lj(z),central ~ Rf&%{iﬁral = 0 (Fig.2.4.b). Figure reproduced from [38].

and the correlation time 7, and calculated using Eq.2.8 (R By comparison, the

line of the triplet shows a rapid increase of R%deacentral at low magnetic fields (Fig. 2.6). Such an
increase is in contradiction with the experimental observation of favorable relaxation properties
of MQ coherences at 0.33 T in the 2F-HZQC experiment recorded on a sample of Ubiquitin [37].
As Rﬁ& centra] 15 calculated without making the initial hypotheses of slow tumbling and infinitely
fast rotation of the methyl group, this discrepancy between theory and experiment cannot be
attributed to the expression of the spectral density function but to the expansion of operators
employed. In the following section, we will show that the expansion of operators introduced
in the theoretical framework section allows us to understand the relaxation properties of MQ

coherences at low magnetic fields.

2.2.4 Methyl-TROSY beyond the slow tumbling limit
2.2.4.1 Definition of a suitable basis

So far, calculations were done using an expansion of the single-transition operators between
those contributing to the sharp central line, and those contributing to the broad outer lines

of the triplet. Here, we suggest to calculate independentely the relaxation properties of each



46 Chapter 2. Two-field NMR and TROSY

103
[, =100 ns

[t,=50ns

kt, =20 n

10%¢

~T.=10n

(s7)

kT =5ns
c

gen
MQ,central

R

—

Q
T

100 | |
1072 10- 10° 10
Magnetic field (T)

Figure 2.6: Variation of the general expression of the central line relaxation rate Ri/fg,central with
respect to the magnetic field for different values of the overall corelation time 7.. Relaxation
rates were calculated using the spectral density function Ja/ry and Eq.2.8. The contribution
of the CSA to the relaxation is not included. Figure reproduced from [38].

single-transition operator in order to identify slowly relaxing components. Suitable bases for
the expansion of the 2CTH™ and 2CTH™ coherences are presented in the theoretical framework

section (Table2.1 and Eq.2.1).

2.2.4.2 Identification of a slowly relaxing term in the new operator basis

The contribution of the carbon-13 CSA is included in the following analysis. It is assumed to
be axially symmetric with anisotropy Ao = 0, — (0xx + 0yy) /2 = 20 ppm and aligned with the
direction of the C-C bond. The proton CSA is expected to be approximately 1 ppm [131] and is
neglected in our analysis. Relaxation rates for the zero- and double-quantum single-transition
operators forming the bases Bz and Bpg are shown in Fig. 2.7. The single-transition operators
contributing to the outer lines of the triplet relax faster than the single-transition operators of
the central line, at all magnetic fields (between 0.01 T and 25 T'), in agreement with the previous
analysis [36]. Interestingly, the two operators corresponding to the outer lines do not have the

same relaxation properties at high fields. This effect arises from the CSA/DD contributions to



2.2. Understanding the methyl-TROSY over a wide range of magnetic field 47

a) A A ) 200 A A

100 - ZQ(z\uter,1 - ZchntraI - DQcAuterJ - DchntraI
- ZE - ZE
'LI)’ - ZQouter,z - ZchntraI ;@/150 - DQouter,Z - DchntraI
L 80F L
© ©
—_ —
c 60 c 100
§e] el
S s | g
3 8 50t
[} 0}
x 207 L 2

0 5 10 15 20 25 0 5 10 15 20 25

Magnetic field (T) Magnetic field (T)

Figure 2.7: Magnetic field variation of the relaxation rates of the four single-transition operators
of the MQ triplet in the ZQ basis (a) Bzg and the DQ basis (b) Bpg. Relaxation rates were
calculated using the spectral density function Jyras. Figure reproduced from [38].

relaxation, which are negligible at low field (see Appendix C.1 for expressions of the relaxation

rates).
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Figure 2.8: Auto-relaxation rates of the operators Z che?ltral, Z Q?entral, DQCEeEtral and DQ?entral

jIFR

from 0.1 to 25T. Relaxation rates were calculated using the spectral density function J;;pz},-

Figure reproduced from [38].

The two operators that describe the central line have comparable relaxation properties

at high fields (higher than ca. 5T). This is consistent with the treatment proposed by Tugarinov
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et al. in the slow-tumbling regime with IFMR [36]. At lower fields, the two single-transition op-
erators of the central line have drastically different relaxation behaviors. This difference arises
even in the IFMR limit (Fig.2.8). The A-manifold operators contributing to the central line
ZQ?erltral and DQ?entral relax much faster while the sums of the E single-transition operators
still relax slowly. It would be possible to verify these predictions experimentally by separating
the 'H transitions of the two manifolds using a two-field version of the approach described in

Tugarinov and Kay [132] or Tugarinov et al. [133].

The ratio of the relaxation rates of the two operators corresponding to the central line
is around 10 in the ZQ and DQ cases at 0.33 T with the parameters for dynamics used here (see
theoretical framework section). Similar conclusions can be drawn in the case of large proteins
(1. = 100 ns) where the slow-tumbling approximation is almost justified at 0.33 T: the sums of
the E single-transition operators have small relaxation rates around 4s~! in B zg and 557! in
Bpg at 0.33T. The A-manifold central M(Q transition operators ZQCAem]ra1 and DQ?em]ral have
relaxation rates higher but comparable to their E-manifold equivalents at 0.33 T (11s~! in Bzg
and 205! in Bpg). This shows that the combined operators approach [36] is still valid at

relatively low magnetic fields for high molecular-weight proteins.

Taken together, these results suggest that the methyl-TROSY effect is retained at low
fields for only one of the two single-transition operators that contribute to the central line of

the triplet, while both single-transition operators relax slowly at high field.

2.2.4.3 Cross relaxation between and within the lines

Slowly relaxing single-transition coherences lead to an efficient TROSY effect if they are good ap-
proximations of the eigenvectors of the relaxation matrix. Here, we studied the cross-relaxation
pathways related to the slow-relaxing terms. This requires a full treatment of the relaxation
matrix in the considered basis. Two types of cross-relaxation pathways have to be considered:
cross-relaxation between the slowly relaxing single-transition operator of the central line and the
fast relaxing single-transition operator of the central line (intra-line transfer) or cross-relaxation
between the central line of the triplet and the outer lines (inter-line transfer). Percentage of
intra- and inter-line cross-relaxation with respect to the auto-relaxation of the M chegtral oper-

ators are shown in Fig. 2.9.
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Figure 2.9: Magnetic field variation of the cross-relaxation rate between the E- and A-manifolds
of the MQ triplet in the ZQ basis (a) Bzg and the DQ basis (b) Bpg. The cross-relaxation

rates are expressed as the percentage of the auto-relaxation rate of the (a) ZQZE, = and (b)

DQCZe];j1tra1 transition operators. Relaxation rates were calculated using the spectral density
function Jyrpar. The two single-transition operators contributing to the outer lines of the
triplet have the same cross-relaxation rates with the E-manifold in both the ZQ and DQ cases.
Figure reproduced from [38].

Inter-line cross-relaxation rates appear as non-secular in the interaction frame of B¥C-'H
scalar-coupling interactions (they oscillate at the angular frequency 27J with J the scalar cou-
pling constant). Thus the predicted cross-relaxation rates with the single-transition operators
contributing to the outer lines of the triplet (blue curves in Fig. 2.9) have no effect on the relax-
ation of the term contributing to the central line. On the other hand, intra-line cross-relaxation
is always secular. At high fields (higher than 5T) cross-relaxation has no effect as the A- and
E-manifold central coherences have the same relaxation rates (Fig.2.7). At low fields (lower

than 1 T), the Z QA , and DQA ; terms relax much faster than the sums of the E single-

centra centra
YE A

transition operators. The ZQZX. ;. entra

| cross-relaxation rate with ZQ) | ranges from 0.5 to 3% of
the auto-relaxation of the slowly relaxing Z Qgﬁtral from 1 to 5T so that cross-relaxation effects
can be neglected (red curve in Fig.2.9.a). The intra-line cross-relaxation rate represents 5 to
15% of the auto-relaxation rate in the DQ case (Fig.2.9.b), and may have a small effect on the
decay of the polarization. Interestingly, intra-line cross-relaxation rates are independent of the
magnetic field as they only depend on spectral density function evaluated at zero-frequency and
originate from dipolar interactions (see Appendix C.1 for detailed relaxation rate expressions).
Moreover, the percentage of cross-relaxation is independent of the global tumbling correlation

time 7. and our conclusions can be extended to large proteins.
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2.2.4.4 Fast methyl rotation is important for a TROSY effect

As discussed in the previous section, the theory of methyl-TROSY proposed by Tugarinov et
al. is based on the hypotheses of slow tumbling of the protein and infinitely fast rotation of the
methyl group [36]. We investigated the effect of the finite speed of rotation of the methyl group

on both auto- and cross-relaxation rates.

Fast rotation of the methyl group is essential for favorable auto-relaxation rates as even
the previously identified slowly relaxing terms have significantly higher relaxation rates for rota-
tion correlation times 7,, values larger than 1 ns, especially at low fields (Fig.2.10.a and b). At
0.33 T, the auto-relaxation rates of the operators for the central line of the triplet are mostly in-
dependendent of the correlation time 7, in the range from 0.1 ps (close to the IFMR) to 100 ps,
i.e. the chosen value for the correlation time 7; (Fig.2.10.c). This correlates with a higher loss
of polarization through intra-line cross-relaxation as the slow and fast relaxing terms are mixed
rapidely for 7, > 100 ps (Fig.2.10.d). In agreement with the initial treatment of Tugarinov et
al., a fast rotating group on the pico-second to few tens of pico-second time scales ensures an
efficient methyl-TROSY effect at high fields as well as the ability to record a methyl-TROSY
spectrum at low magnetic fields (below 1T). The same conclusions can be drawn for larger

proteins (Fig.2.10.e-h).

In the case of protein NMR, isoleucine is a favorable methyl group-bearing residue with
low energy barriers for methyl group rotation [21]. The rotation of the methyl group in alanine
can be significantely affected by interactions with the protein backbone, leading to a higher 7,,
[134]. Hence, signals from C'Hjz groups in alanine side-chains are expected to be broader than

signals of isoleucines, or even leucines or valines.

2.2.4.5 What happens at very high fields

The contribution of the CSA to relaxation is negligible at the low fields considered so far. CSA
contributions to the relaxation of M(Q) transition operators increase with the magnetic field.
At the highest currently commercially available magnetic field (By = 28.2'T), this contribution
to relaxation is not negligible but is still small. We have investigated how relaxation due to
the CSA interaction would alter HMQC spectra of methyl groups at magnetic fields that may
be commercially available in the future (By > 30T). As discussed above, the proton CSA is
neglected.
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Figure 2.10: Effect of methyl group rotation on methyl relaxation properties. Evolution of the
relaxation rates for the operators Z che?ltral (e = 10ns, a and 7. = 100ns, e) and D Cze?ltral
(e = 10mns, b and 7. = 100ns, f) from 0.1 to 25T with 7, values ranging from 1ps to 1ns.
Evolution of the auto-relaxation rates of the operators contributing to the central line of the
triplet as a function of the correlation time for methyl group rotation 7, at 0.33 T for 7. = 10 ns
(c) and 7. = 100ns (g). Evolution of the intra-line cross-relaxation rates as a function of the
correlation time for methyl group rotation 7, for 7. = 10ns (d) and 7. = 100ns (h). These
rates are independent of the magnetic field as can be seen in the expressions in Appendix C.1.
Relaxation rates were calculated using the spectral density function Jysppr. Figure adapted

from [38].
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Figure 2.11: Effect of the '3-CSA contribution on the auto-relaxation rates. Depence of the
auto-relaxation rates of the single-transition operators contributing to the central and outer
lines of the triplet on the magnetic field for very high fields (from 25 to 100T) in the basis Bzg
(T =10ns, a and 7. = 100ns, ¢) and Bpg (7. = 10ns, b and 7. = 100ns, d). Relaxation rates
were calculated using the spectral density function Jyrras. Figure reproduced from [38].

The contribution of the CSA leads to a small but significant increase of the auto-
relaxation rates for the single-transition operators of the central line (Fig.2.11). Such increase

is expected to moderately deteriorate the quality of HMQC spectra.

By contrast, the relaxation rates of the outer lines of the triplet change dramatically
with the magnetic field in both the ZQ and DQ cases. When the magnetic field increases, if
the passive spins ('H) are in the « state (operators Mqutem), auto-relaxation rates decrease
for ZQ transition operators but increase for DQ transition operators. On the other hand,
when passive protons spins are in the § state (operators MQ?utcr,Q)’ the auto-relaxation rates
increase for ZQ transition operators but decrease DQ transition operators. The magnetic-field
variation of relaxation rates is dominated by the interference between the *C-CSA and the 'H-

'H DD interactions. The additional 3C-CSA/3C-'H DD cross-correlated contribution leads
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to a stronger field-dependence of relaxation rates for DQ transition operators than for ZQ
transition operators as can be infered from analytical expressions (Appendix C.1, remembering
that Jocn and Jocun are negative at all magnetic fields). The overall effect of CSA/DD
cross-correlated relaxation leads to a crossing of the field-dependence of relaxation rates for ZQ
transition operators at very high fields: the single-transition operators Zqumnl (passive spins
in a state) becomes the single-transition operator with the smallest auto-relaxation rate for
magnetic fields higher than ca. 55T (2.3 GHz). For the central line, the sum of the CSA/DD
cross-correlations vanishes so that the field variation of CSA constributions to relaxation is
only due to the auto-correlation (see Appendix C.1 for expressions of relaxation rates). For
large proteins at very high fields, recording a HZQC spectrum [135] on the ZQéuter,l appears
to be more favorable, introducing a new form of methyl TROSY based on cancellation between
CSA and DD contributions to relaxation. This prediction suggests that transverse relaxation-
optimized spectroscopy due to CSA/DD interference should be investigated in aliphatic groups
at fields By >30T.

2.2.5 Two-field HZQC analysis

At the end of the evolution at low field (Fig. 2.2.a), ZQ coherences are selected by phase cycling.
Importantly, the selected ZQ terms have evolved half of the time as ZQ and half of the time
as DQ coherences to simultaneously scale down the 'H offset and suppress the evolution due
to BC-1H scalar couplings. It allows the correlation between a ZQ 3C-'H coherence at 0.33 T

and a single-quantum proton coherence at 14.1T (Fig.2.2.b) [37].

2.2.5.1 Methods: simulation of the HZQC spectrum

Relaxation The propagator for an evolution of the spin system during the delay 7 = 7 +
Ty + 273 + 74 + 75, where the times 7; are defined in Fig. 2.2.a, at low field is (without considering
evolution under the chemical shifts):

—r /4 (szQﬁQJ) /4 (ﬁDQ+ﬁJ> e (fzpcﬁﬁj) ]__ZDefT/ax (szQJrﬁJ)

P(r)=e Fype . (2.13)

where 7%ZQ (resp. 7AQDQ) is the relaxation matrix superoperator in the ZQ (resp. DQ) operator

bases Bzg (resp. Bpq, see Table2.1), U the matrix accounting for the effect of the simultaneous
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m-pulses:
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o

U = , (2.14)
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o
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in basis {DQZE, | DQA . ., DQf}utem, DQOAuter’z}, # ;7 accounts for the scalar coupling:

central’

0 0 0 0

2 0 0 0 0

Hy = (2.15)
0 0 2imJ 0
0 0 0 —2imJ

in both the ZQ and DQ subspaces spanned by the bases 7@2@ and 7A2DQ respectively, with J
the scalar coupling constant, set to 130 Hz, and Fzp the bijection function from Bzq to Bpg

accounting for the first and third proton w-pulses:

2Q%uwal DQriran

o | 2 | [P | -
ZQ?utor,l DQ?utor,2
ZQ?uter,Q DQ?uter,l

The expected value at the end of the low-field evolution is obtained by:

T
ot i, (T) = Pacit, 8,07 (T)Pac, 1, 8,00 (2.17)

where P2y Hy—Bo is the projection of the operator monitored during the evolution period (i.e.

QC'ylEIy) on Bz and the superscript T refers to the transpose operation:

(1 1 11
1/(2v6)
i _|ves| (2.18)

Pacyi,~B20 — | 4 /4

1/4
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Detection The entire spectrum was simulated by including the chemical shift evolution, with
the same sweep width and number of points as in the recorded 2F-HZQC to provide a reliable
comparison. Both simulated and measured spectra were processed with the same parameters
for zero-filling. No apodisation function was used in the indirect dimension. The individual free
induction decays were simulated and fast Fourier transformation was applied using the Python
scipy.fftpack library [136]. Spectra were created using the Python nmrglue library [137]. All

extracted cross-sections were further normalized independantely to the maximum peak intensity.

2.2.5.2 Validation of the methyl-TROSY theory

In order to confirm our treatment of relaxation in methyl groups during MQ evolution, we
simulated the spin evolution (relaxation, chemical shift and scalar coupling) at the low magnetic
field center (Byp = 0.33T) and calculated the corresponding spectrum. We used a spectral
density function that accounts for the global tumbling of the protein (correlation time 7.), the
rotation of the methyl group (order parameter S2, and correlation time 7,,), and two modes
of motion of the C-C bond within the protein: fast (order parameter SJ% and correlation time
7¢) and slow (order parameter S? and correlation time 7 — s). The spectral density function is

written as:

2
+(Pacos(6z7)] — S7,(0:7)) (5782 L(w, 77,) + (1 = SF) L(w, 7) + SFH(1 — Sf)L(w,T!))} ,
(2.19)
using the same definition as above. The values of the motional parameters used in the simula-

tion of the spectrum were obtained in an independant study [21] based on high-resolution NMR

relaxometry of U-[2H, 1°N], Tle-6; ['3C'H2Hy]-ubiquitin and are reported in Appendix Table E.1.

Cross-section of the 2F-HZQC along the carbon dimension and simulated spectra are
shown in Fig. 2.12. Using a single relaxation rate RyYjq a1 (Ed-2.8) cannot explain the rela-
tively sharp peaks at low field but is in perfect agreement with the HZQC spectrum recorded
at a single high field (Bg = 14.1T) (Fig.2.13). Our model, which considers the individual re-
laxation rates of the two contributions to the central line, reproduces well the linewidth of the
peaks in both spectra. The low intensity observed for Ile-23 (Fig.2.2.b) may be due to slower
rotation of the methyl group (Table E.1) as would be expected from Fig. 2.10.
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Figure 2.12: Simulation of the 2F-HZQC spectrum at 0.33 T of U-[*H, !°N], Tle-§;[!3CH3]-
ubiquitin. Simulation of cross-sections along the indirect dimension of the 2F-HZQC spectrum
for the seven isoleucine residues of Ubiquitin measured with ¢; evolution at 0.33 T. The cross-
sections from the experimental spectra (blue) are compared with a simulation using our approach
(red) or using the previously reported expression of relaxation rates for the central lines of the
triplets (green). All cross-sections are normalized independently so that each of them have
the same maximum intensity. We applied an apodization function to the experimental and
simulated FIDs of the form: sp(z) = sin® W, with n the data index and N the number

of points in the proton dimension. Figure reproduced from [38].

2.2.6 Conclusion

A general analysis of the relaxation properties of zero- and double-quantum coherences in methyl
groups has been described, without invoking two key hypotheses of the original methyl-TROSY
work [36]: slow tumbling and fast methyl rotation, which are appropriate for large macro-
molecules at high fields. Symmetry considerations show that the free evolutions of ZQ (or DQ)
coherences occur in a subspace of dimension 4. A numerical analysis shows that one component

of this subspace relaxes slowly at all magnetic fields where the Redfield treatment of relaxation
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Figure 2.13: Simulation of the HZQC spectrum at 14.1 T of U-[?H, '°N], Ile-6; [\¥CH3]-ubiquitin.
Simulation of cross-sections along the indirect dimension of the HZQC spectrum for the seven
isoleucine residues of Ubiquitin measured with ¢; evolution at 14.1 T. The cross-sections from
the experimental spectra (blue) are compared with simulations using our approach (red) or
using the previously reported expression of relaxation rates for the central lines of the triplets
(green). All cross-sections are normalized independently so that all spectra have the same
maximum intensity. We applied an apodization function to the experimental and simulated
FIDs of the form: sp(x) = sin? w
in the proton dimension. Figure reproduced from [38].

, with n the data index and N the number of points

is valid. At high field, two operators relax slowly and correspond to the central lines of the
methyl triplet. Analytical calculations with our model are then equivalent to the conventional
methyl-TROSY theory. At low field, where the slow-tumbling approximation is not valid any-
more, a single component relaxes slowly, preserving the methyl-TROSY effect for a third of the

polarization. A detailed analysis of the spectral density functions that describe relaxation prop-
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erties of multiple-quantum coherences confirmed that the TROSY effect is optimal under fast
rotation of the methyl group from the pico- to few tens of pico-second time scales. This limits
optimal TROSY conditions to un-constrained methyl groups with a free rotation around the
symmetry axis. This particularity may hinder the observation of some conformationally con-
strained methyl-groups. Our comprenhensive approach shows that CSA/DD cross-correlated
relaxation leads to more favorable relaxation properties for one component of the outer lines of
the triplet at very high fields (By > 50T). At these magnetic fields, recording an HZQC exploit-
ing the interference between the DD and CSA relaxation mechanisms will lead to a new type
of methyl TROSY. This new development sheds light on the 2F-HZQC experiment performed
on Ubiquitin [37]. It shows that the manipulation of ZQ coherences can be used to observe
methyl groups of large macro-molecules at low magnetic fields where contributions of chemical

exchange line broadening are dramatically reduced [37].
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2.3 Two-field TROSY for the study nuclei with high CSA in

large proteins

This section is largely based on the associated published work [41].

2.3.1 Motivation

The NH- and methyl-TROSY both rely on interference between relaxation mechanisms. The
methyl-TROSY experiment is based on the cancellation between intra-methyl DD interactions
while the NH-TROSY exploits interference between DD and CSA interactions [78, 79, 80, 36].
The amplitude of the dipolar interaction is field-independent so that the methyl-TROSY effect
is ubiquitous at conventional magnetic fields (By > 9 T) and even at lower magnetic fields, down
to a fraction of a Tesla, as shown in the previous section and Ref. [38]. The CSA interaction
scales linearly with the magnetic field and, consequently, TROSY effects based on DD/CSA
interference mechanisms are optimal at magnetic fields where the CSA interactions has a mag-
nitude similar to the DD interactions [35]. However, recent theoretical work showed that the
optimal field in terms of Signal-to-Noise Ratio (SNR) for NH-TROSY is 1.5 GHz proton Lar-
mor frequency, whereas optimal DD /CSA interference is around 950 MHz, as higher fields lead
to better intrinsic sensitivity [138]. In two-spin systems, an essential component to obtain in-
creased resolution is the selection of the appropriate operator (the TROSY single-transition

operator) at the optimal field.

The set of two-spin TROSY pulse sequences used for the study of biomolecules has
mainly been applied on pairs of the type X-'H (X=backbone-'°N in proteins or aromatic-°N
and 13C in proteins and nucleic acids) [35, 77, 139, 140]. In these spin systems, the CSA of the
protons is either small or comparable to the amplitude of the DD interaction at magnetic fields
currently accessible for biomolecular NMR (between 9 and 28 T') and leads to field-dependence
of the proton transverse relaxation rate usually less pronounced than for the relaxation of
backbone-'N and aromatic-'*C nuclei [138], with the exception of imino protons in nucleic
acids [141]. Thus, the optimal field for the associated TROSY experiment depends mostly on
the relaxation properties of the heteronucleus. This is not the case in the recently developed
two-dimensional '3C-19F-TROSY experiment for the study of specifically '“F-labeled protein

aromatic side-chains and nucleic acid bases [40, 142]. The potential of this approach cannot
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be overstated, as the study of aromatic side-chains by NMR is one of the biggest challenges
in large biomolecules. The interference between the C-F DD and the 3C-CSA relaxation
mechanisms is strong, leading to favorable relaxation properties of the TROSY component of
the '3C polarization. On the other hand, because of the large ?F-CSA, the interference between
the 3C-F DD and the 'F-CSA relaxation mechanisms is far from optimal at conventional
magnetic fields for biomolecular NMR, (higher than 9.4T). The unfavorable F relaxation
properties originating from its large CSA lead to two drastically different optimal fields for the
relaxation of 1F and '3C coherences [40]. Is it nevertheless possible to define a magnetic field
that would be a good compromise for aromatic 3C-1"F-TROSY experiments in large proteins
(with a correlation time for overall rotational diffusion 7. > 25ns) ? Numerical simulations
(see below) show that there will likely be no good single magnetic field compromise for the
investigation of large systems by '3C-1"F-TROSY. Then, would it be possible to exploit the
optimal relaxation properties of both *C and F within the same experiment? Here, we
introduce the concept of two-field transverse relaxation-optimized spectroscopy (2F-TROSY)
where we exploit the different optimums for the transverse relaxation in multiple-spin systems

by visiting two vastly different magnetic fields within a single experiment.

2.3.2 Theory and calculations
2.3.2.1 Relaxation theory

We considered pairs of directly bound '3C and '°F nuclei separated by 133.8 picometers, with
the physical properties of a specifically labelled side chain of 3-Fluorotyrosine (3F-Tyr) as
previously used [40]. Analytical calculations of the relaxation rates (see Appendix C.2) for an
isolated 3C-19F spin pair were performed using REDKITE [19] in the basis formed by the 16

terms:

Ber =
(1, Py, Fy, By, Cy, Cy, Gy, 20, C,, 2F, C,, 28,0y, 2F,Cy, 20, Cy, 2R, Oy, 28, Cy, 2F, Cy, 2F,C, ),
(2.20)
where 1 is the identity operator. The C- and F-CSA tensors from Ref.[40] were used and are
given in Appendix Table C.3. We used the MF approach [15] for the spectral density function,

which includes the effect of internal motions and global tumbling:

/

+(1- S%M) , (2.21)

Te
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where ¢ and j are vectors pointing along the principal axes of interactions i and j in the molecular
frame, Py is the second order Legendre polynomial Py(z) = (322 —1)/2, 7/~ = 771 + 7, with
7. the isotropic global tumbling correlation time and 7; the correlation time associated with
local motions of order parameter S?. We set the parameters of local dynamics to those of a
rigid side chain, with S? = 0.8 and 7; = 100 ps. The evolution of all the relaxation rates with

the magnetic field are shown in Appendix Fig. C.1.

2.3.2.2 Simulation, processing and analysis of a spectrum

Theory To accurately account for polarization losses, lineshapes, and pathways, the evolu-
tion of the magnetization throughout the full pulse sequence was simulated by integrating the
complete master equation [143] and generate the FID using Python and the numpy [144, 145]
and scipy [136] packages. The free-evolution Liouvillian for a 13C-'°F group written in the basis

Ber (Eq.2.20) is:

L=
0 0 0 0 0 0 0 0 0 0 0 0o 0 0 0 0
0 R2(F) Qp 0 0 0 0 nr wJor 0 0 0 0 0 0 0
0 —Qp Ro(F) 0 0 0 0 —wJor 7F 0 0 o 0 0 0 0
0 0 0 Ri(F) 0 0 o 0 0 0 0 0 0 0 0 dp
0 0 0 0 R2C) Q¢ O 0 0 ne wler O 0O 0O 0 0
0 0 0 0 —Qc R2C) 0O 0 0 —-mJcr ¢ O O 0O 0 O
¢ 0 0 o 0 0 Ri(C) 0 0 0 0 0 0 0 0 ¢
0 np wJorp O 0 0 0 pr  Qp 0 0 o 0 0 0 0
0 —ndor nr O 0 0 0 —Qp pr 0 0 o 0 0 0 0
0 0 0 0 ne wlor O 0 0 pc Q 0O 0 0 0 0
0 0 0 0 —mdor 7C 0 0 0 Q pc O 0O 0 0 0
0 0 0 0 0 0 0 0 0 0 0 Amg Qo QpF —fimg O
0 0 0 0 0 0 0 0 0 0 0 —Qc Amqg pmg Q¢ O
0 0 0 0 0 0 0 0 0 0 0 —QF fmg dmg Q¢ O
0 0 0 0 0 0 0 0 0 0 0 —pmg =QF —Q0 Amg O
bcr O 0 dr 0 0 ¢ 0 0 0 0 0 0 0 0 Rcr
(2.22)
where Jor = —240Hz is the scalar coupling constant between the '3C and '°F nuclei [40], ©;
is the offset for nucleus ¢ and the thermal correction is defined by [146, 147]:
O = —2 x 1071 (WpRy(F) 4+ weo),
Oc = — 2 x 107 (WeR1(C) + wro), (2.23)

Ocr =—2 X 10710 (wede + wpdp) ,

Thus, the effect of the magnetic field on the available polarization is included in the Liouvillian.

The scaling factor 10710 is used to avoid calculations overflow.
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The propagator during a free evolution period is calculated as:
Pfree(T) = €7T£7 (224)

with 7 being the evolution delay. The propagator during an rf pulse is:

Prot(Tpulse) = eiTPMSE(EJrEPUZSS): (2'25)
with 7p,sc being the pulse length and the Liouvillian for the pulse is:
0600 0 0 0 O 0O 0 0 0 0 0 0 0 0 0
00 0 —w" 0 o 0o o0 o0 0 0 0 0 0 0 0
00 0 wf o o o0 o0 0 0O 0 0 0 0 0 o0
0wl —wl oo o o0 O 0O O O O 0 0 O
00 0 0 0 0 —w§ 0 0 0 0 0 0 0 0 0
00 0 0 0 o0 w§ 0 0 0O 0 0 0 0 0 0
00 0 0 wf—wf o0 O 0 O O 0O O 0 0 O
00 0 0 0 0 0 0 0 0 0 wfi-wd 0 0 —wf
Lovise=]00 0 0o 0 0 0 0 0 0 0 0 0 wf —wS wf |, (2.26)
00 0 0 0 0 0 0 0 0 0 w' 0 —wf 0 —w¢
00 0O O 0 O O 0 o0 o0 0 0 wf 0 —wf ¢
00 0 0 0 0 0 —-wf 0 —w 0o o0 0o 0 0 0
00 0 0 0 0 0 wfy 0o 0 O0wlo o 0 o0 o0
00 0 0 0 0 0 0 —wfwl 0o 0 0 0 0 O
00 0 0 0 0 0 0 w¢& 0 w&' 0o 0 0 0 O
00 0 0 0 0 0 w' —wflwfé —wé o 0o 0 0 o0
with:
w,f = Z,cos(ﬂ@v) wg = 7;silrl(ﬁgzﬁluv),
T 2 T 2
T T C T T (2.27)
wf = Ccos(2¢0> Wy, = ? sin(2¢(;>,

\]

s
with 71 being the pulse length for a 180°-pulse on nucleus 7 with phase ¢;. ¢; equals 0, 1, 2 or 3
for a pulse along x, y, -x or -y respectively. Pulse lengths used in the simulations are reported

in Table 2.2.

The gradients used during the Single Transition-to-Single Transition Polarization Transfer
(ST2-PT) block [148] of the single-field experiment [40] were simulated by separating the sample
into 10,000 slices over 2 cm, modifying the Liouvillian for free evolution in each slice according

to the associated magnetic field, and taking the average signal over the whole sample.

The simulation of the evolution of the density operator during the shuttle transfers was

performed as previously described [19]. Briefly, we used the existing prototype of a 2F-NMR



2.3. Two-field TROSY for the study nuclei with high CSA in large proteins 63

Table 2.2: Pulse lengths used in the simulation of the experiments. The values of the pulse-
lengths at low-field are based on the existing two-field system [37, 39].

Two-field TROSY Single-field TROSY
Carbon 90°-pulse  Fluorine 90°-pulse | Carbon 90°-pulse Fluorine 90°-pulse
Low field 10 ps 6 us - -
High fields 12 us 10 us 12 us 10 ps

spectrometer operating at 14.1T and 0.33 T to model the design of other 2F-NMR, systems.
The field profiles were assumed to be identical to the one of our current system apart from a
scaling factor a(By) where By is the high-field value and « is a dimensionless function of the
magnetic field B: a(By) = By/(14.1T) (Fig.2.14). In this design, the sample is shuttled at
constant speed until it reaches the desired low field. The computation of the density operator

is performed every 1 ms during the transfers of the sample shuttle.

25 5.0 75 100 125 15.0 175 20.0

Magnetic field (T)

Figure 2.14: Examples of scaled magnetic field profiles used in the simulations. The field profile
for a spectrometer operating at 14.1T (orange) is taken as a reference and matches the existing
600 MHz/14 MHz 2F-NMR spectrometer. The magnetic field profiles for spectrometers operat-
ing at 9.4 T (blue) and 18.8 T (green) are calculated by multiplying the reference profile (orange)
by a factor a(By) = Bp/14.1 where By is the operating magnetic field. Figure reproduced from
[41].

Acquisition details When acquiring a spectrum, different user-defined parameters affect the

signal intensity and SNR (acquisition time, sweep width, number of points in the indirect di-
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mension, etc...). In order to obtain relevant comparisons between the simulated pulse sequences,

and the range of magnetic fields evaluated in this study, we considered that:

e the spectral width is constant to 10 ppm in both dimensions. The number of points is
then automatically calculated based on the maximum acquisition time of the associated
dimension. Note that in the case of the indirect fluorine dimension, a very low number of

points sometimes leads to a slightly different spectral width.

e the maximum acquisition time for the direct carbon dimension is t2 pqz = 3% 15 (33C — TROSY)

where T3(13C — TROSY) is the relaxation rate of the TROSY !3C single transition coher-

ence.

We also considered the pulse lengths to be the same at different magnetic fields (see Table 2.2).

Optimization of the recycling delays and simulation of dummy scans We define the
recycling delay as the sum of the acquisition time and inter-scan delay (d; in Bruker pulse
programs). This delay allows the longitudinal polarization to evolve towards its equilibrium
value and determines the available polarization at the beginning of the next scan. Having
a long recycling delay maximizes the amount of polarization at the expense of experimental
time. We optimized the inter-scan delay at each magnetic field for both experiments when the

acquisition time is set to t2 maz. For this, we simulated 10 scans, without indirect dimension
F.(dy)

2,mazx +d1

delays. We devide by y/t2 maz + d1 since the signal-to-noise ratio evolves as the square-root of

editing, and compared the value of of the 11*" scan for different values of inter-scans
the experimental time and the duration of the pulse sequence is negligible. In all the simulations
presented here, the inter-scan delays were the optimized delays, and 10 dummy scans were

simulated prior to detection to obtain the steady-state fluorine polarization.

Extracting peak heights from noise-free spectra The comparison of the peak heights
from one field to the other was used to optimize the magnetic field to record each experiment
(see below). The height of a Lorentzian-shaped peak is proportional to:

FID(t = 0)

H =
Ry(19F)Ry(13C — TROSY)’

(2.28)

where FID(¢ = 0) is the signal at time 0 (i.e. the peak area), Ro(*3C — TROSY) is the carbon-
TROSY relaxation rate and Ry(1°F) is either the fluorine-TROSY single-transition coherence

(for the single-field experiment) or the fluorine transverse (for the 2F experiment) relaxation
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rate. This relationship assumes perfect sampling in both dimensions, which is a good approxi-

mation for the direct dimension, but not necessarily in the indirect dimension.

The definition of the Liouvillian (Eq.2.22) already takes into account the proportional-
ity of the polarization to the magnetic field through a field-dependent thermal correction [146].
However, it does not consider the proportionality of the detected signal to the resonance fre-
quency from Faraday’s law. Likewise, the noise increases with the square root of the resonance
frequency. In addition, at high magnetic fields, the recycling delay becomes longer, leading to
potentially longer experimental times and lower peak heights per units of time. In order to

include these effects, we multiplied the peak height H by 4/ g((ti(;?) with By ; the magnetic field

of detection for the experiment 4, tpg; the time for one scan of the experiment ¢ without indirect

dimension editing and:

B
a(B) = ,
( ) BO,ref
t
Bt =
PS,ref

with B,y and tpg,er the magnetic field and experimental time for one scan of the reference
experiment without indirect dimension editing. We consider as reference experiment the single-
field pulse sequence recorded at 14.1 T on 3F-Tyr with a global tumbling correlation time
T. = 25ns (in these conditions, tpsref = 1.52sec). This scaling factor does not consider the
effect of accumulating different number of points in the indirect dimension in order to reach a
fixed spectral width at different fields. An accurate estimate of the noise level is performed by

simulating spectra with noise.

Processing of the spectra The simulated FIDs were processed using the nmrglue Python
library [137]. All processing parameters were the same for all spectra (except phases which were

adapted from one pulse sequence to the other):

e zero-filling to double the number of points in both dimensions,

2 m/2+0.487n

N1 with n

e apodization function using the shifted sine-bell function: sp(n) = sin

the data index and N the number of points in the associated dimension.

Simulation with noise and assessment of the signal-to-noise When spectra with noise
were simulated, a Gaussian-shaped noise centered on 0 was generated using the random.normal

function from the Python numpy library [144, 145] and was added to the FID before process-
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ing. In each simulation, the same width for the Gaussian distribution was given as input to the
random.normal function. In order to consider the effect of the magnetic field on the level of
noise when comparing experiments recorded over different durations, the noise-free FID and the
noise were scaled with o(By;) and /a(By,;) respectively. This accounts for the proportionality
of the noise to /By, and the proportionality of the detected signal to Bai (note that the
effect of the magnetic field on the polarization is already accounted for in the Liouvillian with
the thermal correction so that we do not scale the noise-free FID with a?(By;)). In order to
take into account the effect of the experimental time on the level of noise, the noise-free FID
and the noise were also scaled with teppi/teaprer and \/tewp.i/teapres respectively, with tezp
(teap,ref) the total experimental time for the experiment i (for the reference experiment). Here,
the reference experiment is the single-field TROSY pulse sequence used to record spectra of
3F-Tyr at 14.1 T with global tumbling correlation time 7. = 25ns and an indirect dimension
aquisition time 1 4, = 1.25 x To(*F — TROSY) with T3(*F — TROSY) the relaxation time

for the fluorine-TROSY component (experimental time of 4.9 hours).

Evaluation of the signal-to-noise ratio was done using two spectra:

e the spectrum corresponding to the sum of the FID and the noise. This spectrum was used

to extract the peak height I;

e the spectrum of the noise only. This spectrum was generated by processing the random
noise using the same parameters as for the complete FID. This spectrum was used to
extract the standard deviation of the noise oppise-

The SNR is then given by:
I

Onoise

SNR =

This computational procedure ensures that no parts of the peak are considered in the estimation
of the noise (which is particularly critical when the TROSY selection is not optimal) and that
sufficient points are included to obtain an accurate estimate of 0, (Which is important when

a low number of points is used in the indirect dimension).

The level of noise was choosen such that it would visually reproduce the noise in spectra
already published [40]. We simulated the single-field experiment using the same experimental
parameters as the ones used to record the spectrum of Maltose Binding Protein (MBP) until

the noise was visually similar to the one reported in the original paper (signal-to-noise ratio of
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25, Fig.2.15 and [40]). Since the MBP spectrum was recorded with 80 scans [40], the spectra
and noise level were scaled with 80 and /80 respectively. Thus, the scaling of the FID and

noise level by 80 X terpi/texprer and \/ 80 X texp,i/teapref respectively leads to spectra with a

number of scans leading to the same experimental time for each of them.

312
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Figure 2.15: Simulation of the spectrum of MBP labeled on 3F-Tyr using the single-field TROSY
pulse sequence with experimental parameters identical to Ref.[40]: By = 14.1T, 80 scans,
recycling delay of 2sec, t1 max=10ms, t2 max=348 ms, 116 (4,096) complex points in the indirect
(direct) dimension. Noise was added in this simulation. We show 10 contour levels starting
from the highest intensity and with a factor 1.2 between two consecutive levels. The SNR is
equal to 25.1. Figure reproduced from [41].

2.3.3 Results and discussion
2.3.3.1 Relaxation properties of aromatic *C-'"F groups

The large CSA (Table C.3) is the dominant source of 1F nuclear spin relaxation at high magnetic
fields (i.e. higher than 10T). The CSA contribution to transverse relaxation scales with the
square of the magnetic field and becomes a minor contribution at fields lower than a few Tesla
(7% at 1 T vs 95 % at 14.1 T for the 3F-Tyr and 7. = 25 ns) where relaxation is mainly caused by
the DD interaction. Fast !°F transverse relaxation, both for an in-phase coherence and TROSY
single-transition, precludes the observation of intense and well-resolved peaks at magnetic fields
that are commonly used for biomolecules (Fig.2.16a). The *C-TROSY component displays
very favorable relaxation properties at high-field: at 14.1T, the TROSY effect is strong with
a relaxation rate for the TROSY component about 6 times lower than the in-phase transverse

relaxation rate (Fig. 2.16b). The most favorable transverse relaxation properties are found at low
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a) 19F b) 13C
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Figure 2.16: Transverse relaxation rates of an isolated '3C-'F aromatic spin pair. Fluorine-19
(a) and carbon-13 (b) relaxation rates of the in-phase coherences (dash) and TROSY single
transition (plain) for 7. = 25ns (blue) and 7. = 100ns (orange). Calculations were performed
using the parameters for the CSA tensors of 3F-Tyr. Figure reproduced from [41].

magnetic fields (Bg ~ 1T) for !°F and at high magnetic field (Bg ~ 15T) for 3C for proteins
with correlation times for overall tumbling in the range 1 to 200ns. These two drastically
different optimal magnetic fields suggest that any single field for the 3C-'F TROSY single-
field experiment [40] (hereafter referred to as 1F-TROSY) will likely be a poor compromise
between irreconcilable constraints (Fig.2.17) [138]. By contrast, 2F-NMR offers in principle the
possibility to reach two independently optimized magnetic fields within the course of a single
experiment. This approach should be particularly well suited to record the spectra of aromatic

BC-YF groups.

2.3.3.2 Pulse sequence for two-field TROSY

The 2F-TROSY pulse sequence proposed here is presented in Fig.2.18. Nuclear spin systems
are controlled using radiofrequency pulses and pulsed field gradients at both high- and low-
field magnetic centers. Additional delays corresponding to sample shuttle transfers from one
magnetic center to the other (7g) and waiting delays needed by the shuttle apparatus before
(tar,1 and Trp2) and after shuttling (7,r 1 and 7yp 2) were included when simulating the pulse

sequence [39].

The sample is polarized at high field before shuttling to low field. At point a of the
pulse-sequence, F, is the only operator with a non-zero expectation value. The '"F chemical

shift is labeled at low field in a semi-constant time fashion [149] with an effective evolution
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Figure 2.17: Field optimization following the approach of Ref.[138]. The relative signal for
a nucleus X at a magnetic field By is given by Bg’/ % x T5(X) where T»(X) is the TROSY
transverse relaxation time of X and scaled so that the relative signal is 1.0 at 14.1 T. These
calculations have been performed for a global tumbling correlation time of 25ns and the CSA
tensor parameters of 3F-Tyr. Figure reproduced from [41].

under the C-19F scalar-coupling for a duration 7' = (2|.Jor|)~!. Depending on the phase (1,
either the cosine or sine t1-evolving components are stored as a two-spin order 2£,C, (point
b) and preserved during the transfer from low to high magnetic field (from b to ¢). The Spin
State Selective Excitation (S3E) block [150] allows for efficient selective excitation of the 3C-
TROSY component at high field (point d). The use of two inversion pulses on F at high
field preserves the longitudinal magnetization recovered between points b and c. This scheme
allows to reduce the subsequent recycling delay and make the experiment more time efficient.
When 'F broadband excitation is needed, composite m-pulses can be used, keeping in mind

that transverse relaxation may not be negligible during °F pulses (Fig.2.16a).

Throughout the phase cycle, the nature of the evolving operators during the S3E ele-
ment [150] is the same, ensuring identical relaxation properties of the different pathways during
the S3E block [150] and the effective cancellation of undesired components of the density oper-
ator. This is not the case for the 1F-TROSY pulse sequence [40] for which the ST2-PT block
[148] creates alternatively a single-quantum anti-phase '3C coherence and a multiple-quantum
transition coherence which relax with drastically different rates at high fields because of the
strong 19F-CSA (see Appendix D, sections D.1 and D.2). This leads to imperfect selection of
the TROSY line in the original '3C-1F TROSY experiment (Fig. D.2). Similarly, an alternative
2F-TROSY pulse sequence could select the YF-TROSY component with an ST2-PT block [148]
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Figure 2.18: 2F-TROSY pulse sequence for the study of aromatic *C-F groups. Black narrow

T

(respectively wide white) rectangles represent 90° (respectively 180°) pulses. Phases are aligned
along the x-axis of the rotating frame unless otherwise stated. Phase cycles are as follows:
©1=(X,-X,X,-X,X,-X,X,-X), 2=V, Y,¥,¥,-Vs-¥Vs-¥s-Y), 3=(m/4,m/4,57/4,5m /4,7 /47 /4,5m/4,5m/4)
and prec=(X,-X,-X,X,- X,X,X,-X). The sign discrimination of the frequency in the indirect dimen-
sion is achieved using the States method by changing the phase cycle for ¢1 to (y,-y,y,-¥,¥,-,¥,-Y)-

For the semi-constant time indirect evolution period, t§ = %—i— ]\?_11 tl”;‘”‘” , tlj = %(tl,mam—T)
an = 1= wi = cr|, N and t1 ez the number of points and maximum evolu-
dt§ = TNm=L with T = 1/2|Jcp|, N and t jaq th ber of points and maxi 1

tion delay in the indirect dimension respectively, ni the increment number. The pulse sequence
can be modified to include proton decoupling during the t; and ¢9 evolution periods. The
horizontal line breaks represent the shuttling transfers from one field to the other. gy, is the
shuttling delay to and from the desired position. 7yp,; and Tap 2 are waiting delays at high
field, respectively before and after shuttling. 7 r; and 7 p2 are waiting delays at low field,
respectively after and before shuttling. In our simulations, we set 7g, = 100ms, Tr,1 = 25 ms,
Tr1 = 40ms, T p2 = 5ms and Tur 2 = 350ms. Figure reproduced from [41].

at low field (Fig.D.3). Cross-relaxation between the two '3C single-transition longitudinal po-
larization operators during the shuttle transfer and stabilization delays would lead to imperfect
TROSY selection and thus the use of ST2-PT block [148] for 2F-TROSY is not recommended
(Fig.D.4 and D.5).

2.3.3.3 What are the optimal fields to record the TROSY experiments?

In order to account for all sources of polarization loss in the course of an experiment, accurate
determination of the optimal magnetic fields requires the full simulation of the pulse-sequences.
We compared the expected peak height at each magnetic field (or pairs of magnetic fields in
the case of the 2F-TROSY sequence) assuming ideal sampling in both dimensions so that the
linewidth in both dimensions is directly linked to their associated transverse relaxation rate

and does not depend on the number of points in the time dimensions and apodization func-
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tion (see section 2.3.2.2 for more details). In these calculations, peak heights are scaled by

a(Bo)tps/tres, a factor proportional to the expected evolution of the SNR with the magnetic
field and experimental time [56]. Note that the effect of signal accumulation arising from indi-
rect dimension acquisition is not taken into account and, therefore, peak heights do not fully

reproduce expected SNR variations.
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Figure 2.19: Magnetic field optimization of the 1IF-TROSY and 2F-TROSY experiments. Ex-
pected peak heights for the 1IF-TROSY (a, b) and 2F-TROSY (c, d) experiments, for 3F-Tyr
and a global tumbling correlation time 7. = 25ns (a, ¢) and 7. = 100ns (b, d). The color scale
is identical for all pannels. The conventional magnetic fields closest to the optimal fields are
indicated with an arrow (a, d) or a cross (c, d). The highest peak-height position is indicated
with a star in pannels ¢ and d. In pannels a and b, points are connected by a solid line for
visual clarity. Figure reproduced from [41].

The optimal field for the 1F-TROSY is lower than the optimal field for the relaxation
of the single-transition 3C-TROSY (Fig.2.19a,b) because of the losses from fast relaxation of
9F-coherences during the ST2-PT block [148], as well as the broadening in the fluorine dimen-
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sion caused by fast relaxation of the TROSY single-transition ’F-coherence (Fig.2.16a). The
optimal conventional fields are predicted to be 11.75T for medium sized proteins (7. = 25ns),
and 9.4T for larger systems (7. = 100ns). The optimal magnetic field for detection of the
13C-TROSY operator is higher in the 2F-TROSY experiment (Fig.2.19¢,d) since no fluorine
coherence is generated at high field. For this experiment, we recommend a high field in the

vicinity of 21.15T and a low field close to 2.5T for the 3F-Tyr.

In the 2F-TROSY experiment, the optimal high-field strongly correlates with the ori-
entation of the 3C-CSA tensor with respect to the C-F bond (Fig.2.20). A perfect alignment
of the C-CSA with the C-F bond leads to an optimal interference between the CSA and DD
interactions. In this case, the 3C-TROSY effect is strong at moderate magnetic fields (ca.
10< By < 15T). Increased equilibrium polarization and higher sensitivity of signal detection at
higher magnetic field does not counter-balance the less efficient 1*C-TROSY effect. The optimal
low field for F chemical shift evolution inversely correlates with the value of the orthogonal
component of the 1F-CSA tensor (i.e. the larger component of the tensor). Lower magnetic
fields lead to a higher reduction of the F-CSA contribution to the relaxation of the evolv-
ing fluorine in-phase coherence for compounds having the larger orthogonal component of the

YF_CSA tensor.
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Figure 2.20: Correlation plots (a) between the angle between the principal axis of the '3C-CSA
and the C-F bond and the optimal field for carbon-detection in the 2F-TROSY experiment,
and (b) between the orthogonal component of the F-CSA (o!") and the optimal field for
fluorine chemical shift evolution in the 2F-TROSY experiment. Optimal fields are obtained for
7. = 100 ns. Figure reproduced from [41].
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2.3.3.4 Two-field TROSY offers increased sensitivity and resolution
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Figure 2.21: Expected SNR for the 1F-TROSY and 2F-TROSY experiments. The SNR was
estimated for proteins with global tumbling correlation times 7. = 25ns (a and ¢) and 7, =
100ns (c and d) labeled with 3F-Tyr (a and b) or 4F-Phe (c and d). The value of ¢ 4z is
calculated as t1 mq(C) = C x To(YF) where C is a multiplication factor, ranging from 0.5
to 3.0, and T5(1PF) is the transverse relaxation time for the fluorine TROSY single-transition
coherence (resp. the in-phase single-quantum coherence) in the 1F-TROSY (resp. 2F-TROSY)
experiment. The experimental time is the same for each simulated experiment (4.9 hours),
leading to a higher number of scans for experiments with shorter ¢ ,,q,. Figure reproduced
from [41].

We compared the expected SNR from the 1F-TROSY and 2F-TROSY experiments at
their optimal magnetic field(s) by simulating the full two-dimensional spectra with Gaussian
noise with scaled intensity from one field to the other (see section 2.3.2.2). The level of noise was
chosen to approximately reproduce the SNR on MBP spectra already published (SNR 25 for
80 scans of 700 uM MBP, recycling delay of 2sec, 116 complex points in the indirect dimension

and ¢ maee = 10ms, see Fig.2.15) [40]. Peak intensities depend, among other parameters, on
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the number of points in the indirect time dimension, which is usually set to reach a desired
resolution for a given spectral width. To take different options into account, we simulated the
pulse sequences for different values of t1 ;.. For moderate protein sizes (7. = 25ns), the 2F-
TROSY experiment offers better sensitivity by a factor ca. 5 for t1 e = To(*F) (Fig.2.21a).
For a large system (7. = 100ns), no visible peak is expected at the chosen level of noise for
the 1F-TROSY experiment, while good SNR for the 2F-TROSY experiment can be achieved
in similar experimental time (Fig.2.21b). Similar results are obtained for compounds with bet-
ter 13C-TROSY efficiency (i.e. lower optimal field for carbon detection) such as the 4F-Phe
(Fig.2.21c,d). In the following, we consider t e, = 1.25 x To(*F) [151].

Having two distinct magnetic centers allows one to carry the evolution of the F and
BC-TROSY coherences where their respective relaxation properties are most favorable. We
have chosen conventional magnetic fields that lead to near-optimal sensitivity (Bjow = 2.5T
and Byjgn, = 21.15T). The 2F-TROSY experiment not only leads to better sensitivity but also
to better resolution in both dimensions as compared to the 1F-TROSY experiment (Fig.2.22).
The resolution in the carbon dimension is the same for the two experiments if the detection is
done at the same field. However, recording both experiments at 14.1 T to obtain a strong '3C-
TROSY effect leads to losses in intrinsic sensitivity (initial polarization and signal detection)
compared to situations where the experiments are recorded at their optimal field(s). The sub-
optimal TROSY relaxation interference in the 1IF-TROSY leads to large carbon linewidth in the
spectra of large protein (7. = 100ns). For a medium-size system (7. = 25ns), the 1IF-TROSY
experiment provides good peak separation in spite of the broadening in the fluorine dimension,
but the spectra of larger proteins (7. = 100ns) show ca. 2ppm broad peaks. The 2F-TROSY
experiment gives rise to a lower fluorine linewidth in spite of the lower magnetic field, even
for large systems (ca. 1ppm). Combined with the optimal '3 C-TROSY detection, satisfactory
peak separation can be obtained in situations where peak overlap and a low SNR would prevent

quantitative analysis in the 1F-TROSY pulse sequence.

2.3.4 Conclusion

We have introduced the concept of two-field transverse relaxation-optimized spectroscopy (2F-
TROSY). It takes advantage of the development in 2F-NMR spectroscopy [37, 39] to increase
the sensitivity in multidimensional spectra. By optimizing the magnetic field of different parts

of the pulse sequence, the transverse relaxation rates of the evolving operators are decreased to
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Figure 2.22: Simulated noise-free two-dimensional ¥ C-19F TROSY spectra with 3 peaks. Spec-
tra for the 1IF-TROSY (a, ¢) and 2F-TROSY (b, d) experiments simulated with global tumbling
correlation times 7. = 25ns (a, b) and 7. = 1001ns (c, d) for ¢ max = 1.25 X To(}?F) where
Ty(1F) is the transverse relaxation time of the coherence edited in the indirect dimension. In
each spectrum, 10 contour levels are shown, starting from the maximum intensity and with a
factor 1.2 between two consecutive levels. Spectra were simulated without noise. Cross-sections
for one peak are shown in orange. In panels a and b, the carbon anti-TROSY peak is shown
with the red arrow. The number of recorded points in the indirect dimension is indicated on
the top left corner of each panel. Figure reproduced from [41].

their minimal values. We have illustrated the potential of this new type of pulse sequences on
13C-F aromatic spin pairs, where optimal magnetic fields are in a range that will be accessible

in future designs of 2F-NMR spectrometers.

We expect a new generation of 2F-NMR spectrometers to offer sufficiently high homo-
geneity to allow the evolution of single-quantum coherences at low field, an essential feature to
obtain high-resolution spectra and develop a new toolbox of pulse sequences. We expect F

aromatic side-chain specific labeling [40] combined with 2F-TROSY will open the way for the
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investigation of structure, dynamics and function of aromatic side chains in proteins, as well as
purine and pyrimidine bases in nucleic acids [142]. This would provide new probes for NMR of
large proteins and nucleic acids. Further benefits are expected in systems with line broadening
due to chemical exchange [37, 152]. Beyond the scope of *C-19F, 2F-NMR approaches that
exploit favorable relaxation properties at low field can be adapted to the NMR investigation of
a variety of nuclei with large CSAs to increase the sensitivity and resolution in NMR spectra
of large systems. These include nuclei such as the carbonyl carbon of peptide bonds or F in
the context of 13C-19F3 groups, where significant TROSY-type interference was not found at
high field [153] but the field-dependence of TROSY in 3C-'F3 groups has not been explored
as much as for '3C-1Hs groups [38] yet.
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2.4 Conclusion

In the first part of this chapter, we used REDKITE and a complete expansion of the Hilbert
space for an isolated "3C'H3 methyl group to understand linewidths in two dimensional 2F-
HZQC spectrum obtained on the protein Ubiquitin specifically labeled at its isoleucine-d; methyl
groups. We explained the unexpected persistence of signal in the two-field HZQC experiment
by showing that an excited coherence has favourable relaxation properties, even at low fields.
This showed that the methyl-TROSY effect still exists at low fields beyond the slow tumbling

motional regime.

In addition to revealing a spin property, this experiment paves the way for a new class
of pulse sequences with spin evolution at multiple fields. In the second part of this chapter, we
introduced the concepts of two-field TROSY: slowly relaxing operators are selected and chem-
ical shift editing is performed at the optimal field for resolution and sensitivity. We illustrated
this approach computationaly on aromatic *C-'"F groups for which the carbon and fluorine
chemical shift evolution are optimal at two very distinct fields. With the constant increase in
available magnetic fields, high-CSA nuclei (such as the carbon-13 in carbonyl groups of peptide
bonds) might become an impediment to record many multi-dimensional experiments. Coupling
a high-magnetic center to a low-field has the potential to offer high sensitivity and resolution

for these spin groups.

Historically, investiments to increase the available magnetic-field stength has been justi-
fied by the need for higher sensitivity. Undeniably, these technological developments will make
a number of challenging sytems amenable to NMR studies. The work presented in this chapter
suggests however that a number of studies will not be possible at very high magnetic fields.
As much as increased magnetic fields are of great interest for the biomolecular community, we
argue that the ability to shuttle the sample from a high to low field and back will become
equally important. This will require solving a number of technological challenges, starting with

obtaining a highly homogeneous low-field to allow single-quantum coherence evolution.
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3.1 Introduction

Several clases of experiments are based on either moving the sample through a broad range

of magnetic fields or switching rapidly the magnetic field between two extreme values. An

in depth investigation of relaxation processes is particularly critical to design and interpret a
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selection of experiments which have been designed recently: (1) The existence of Long-Lived
States (LLS) [154, 155] was revealed by the combination of high-field coherent evolution and
low-field relaxation; (2) In dissolution Dynamic Nuclear Polarization (dDNP) [89, 156, 157],
the hyperpolarized sample is transferred back and forth between the polarizing magnetic center
and the high-field spectrometer through magnetic fields that can be as low as the earth magnetic
field; (3) Multi-scale dynamics can be characterized with Fast Field Cycling (FFC) relaxometry
[158] where the magnetic field is switched from ca. 1 T down to ca. 100 uT; (4) A sample-shuttle
apparatus can be used to combine relaxometry experiments with high-field Nuclear Magnetic
Resonance (NMR) [62, 63, 159, 17] to gain atomic resolution description of molecular dynamics;
(5) This kind of device can also be used to investigate relaxation properties of spin terms that
are only relevant at low fields [160]; (6) A sample shuttle may couple two magnetic centers in
a Two-Field (2F) NMR spectrometer [39] to record multi-dimensional experiments where spins

are manipulated at two vastly different fields [39, 37, 22, 124].

Sample-shuttling experiments have been used to measure longitudinal relaxation rates
over orders of magnitude of magnetic fields and characterize the dynamics of membrane vesicules
[64], protein backbone [66, 17] and side-chains [21]. This type of experiments, called High-
Resolution Relaxometry (HRR), consists in the measurement of relaxation rates over a broad
range of magnetic field while preserving the high resolution of conventional high-field magnets
(i.e. higher than 9T) [62, 63]. This approach relies on moving the NMR sample in the stray
field of a commercial magnet to measure longitudinal relaxation rates over orders of magnitude
of magnetic field. The sample is transfered back in the high-field magnetic center for detection,

thus ensuring high sensitivity and resolution.

During a HRR experiment, the sample is moved outside of the magnetic center where no
radiofrequency pulse can be applied. Thus, relaxation decays acquired using HRR deviate from
ideal decays with the longitudinal relaxation rate for two reasons. First, the effective density op-
erator at the beginning of the relaxation delay is usually different from the desired longitudinal
operator due to cross-relaxation during the sample transfers. Second, cross-relaxation pathways
during the relaxation delay may lead to multi-exponential polarization decays. Therefore, the
analysis of experimental HRR rates requires to account for these systematic deviations in order
to accurately determine the motional parameters of the system under study. We introduced an
iterative correction procedure called Iterative Correction for the Analysis of Relaxation Under

Shuttling (ICARUS) [17, 67] for the correction of HRR relaxation rates. Using symbolic expres-
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sions of magnetic-field dependent relaxation matrices, the HRR experiments are simulated and
measured relaxometry relaxation rates are corrected so that a reliable analysis of the dynamic
properties of the system under study can be performed. These aspects will be detailed with

application on {'3*C'H?Hj}-labeled methyl-groups on the protein Ubiquitin.

We later developped a new approach to analyze HRR relaxation data without the need
for correction. Instead of extracting parameters for the dynamics of the system from relaxation
rates, we reproduce relaxation decays from the relaxometry experiment. The fourth section
of this chapter introduces this approach, with a comparison with results obtained from the
analysis using ICARUS. This new method for quantitative analysis of HRR relaxation data is
presumably more rigorous as (i) it does not require fitting potentially multi-exponential decay
to extract a single longitudinal relaxation rate and (ii) is free from any correction procedure

that can only be verified experimentally using 2F NMR spectroscopy [22].

The first two sections of this chapter are largely based on the associated published work
[21, 19]. ICARUS is available here: https://figshare.com/articles/software/ICARUS/
9893912.


https://figshare.com/articles/software/ICARUS/9893912
https://figshare.com/articles/software/ICARUS/9893912
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3.2 High-resolution relaxometry and protein dynamics

The spectral density function has been used extensively to describe motional properties of
molecular systems [15, 102, 11, 16]. Having a proper definition of the spectral density function,
and more specifically of its parameters, is essential in order to understand the dynamics of these
systems: order parameters reflect on the rigidity of the system and can be related to conforma-
tional entropy [161, 162, 163, 164]; correlation times reflect on the time-scales of the different
types of internal motions of the system under study. Expressed as linear combination of the
spectral density function evaluated at different frequencies, relaxation rates are direct probes of

the spectral density function [16, 58, 59].

Until recently, the analysis of dynamic modes in proteins was restricted to the mea-
surement of relaxation rates on standard high-field magnets (typically higher than 9.4 T, corre-
sponding to a proton Larmor frequency of 400 MHz). At these magnetic fields and for standard
biomolecular nuclear-spin labels (*H, '3C, N), the spectral density function is only probed at
frequencies higher than 40 MHz (as well as at 0 for transverse auto-relaxation rates). On molec-
ular systems such as proteins, the spectral density function varies more between 0 and 40 MHz
than at all frequencies above 40 MHz, i.e. complex motions occur at lower frequencies. This
leads to two major issues: relaxation rates recorded at high magnetic fields are potentially poor
reporters for the complexity of motions; and the deconvolution of overall rotational diffusion and
internal motion can appear to be complex as they can occur on similar timescales. An elegant
solution has recently been proposed to overcome the later difficulty by weak interactions of the
protein of interest to nanoparticules, thus artificially changing the global tumbling correlation

times by orders of magnitude [165, 166].

One way to extend the range of frequencies where the spectral density is probed is
to record relaxation rates at lower fields. This approach suffers from loss of sensitivity and
resolution. This limitation is overcome by shuttling the sample in the stray field of the magnet,
inside the bore of a standard high-field spectrometer, while still detecting the signal at the high-
field position [62, 63, 17]. This methodology has been used in the group to study the dynamics of
backbone [17] and side-chains [21] of Ubiquitin over two orders of magnitude of magnetic fields

and allowing the quantitative characterization of motions from pico- to nanosecond time-scales.
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3.2.1 Theoretical framework for the dynamics of methyl groups
3.2.1.1 Model of correlation function

Different models of correlation function for a wide variety of molecular systems have been
suggested in the past [15, 74, 27, 29, 11, 72, 110, 167]. In our analysis of high field and
relaxometry relaxation rates on {I3C'H2Hs}-methyl group of Ubiquitin, the data recorded at
low fields (lower than 5T) allowed a better characterization of the complexity of motions that
can occur in a methyl-bearing side-chain, in particular x/x2 rotameric transitions in isoleucine
residues on nanosecond timescales [21]. The analysis was based on the Extended Model Free
(EMF) description of the CC bond motions [74]. Assuming (i) isotropic tumbling of the protein
characterized by a correlation time 7., (ii) EMF for CC bonds motions, (iii) perfect tetrahedral
symmetry for the methyl group with a characteristic correlation time for the methyl group

rotation 7,,.¢ associated to an order parameter an

«t(0i5) [130] and (iv) statistical independence
between methyl group rotation, motions of the methyl group axis and overall rotational diffusion,

the correlation function can be modeled by:
C;,njet(t) = Cg(t)caxiS(t)ngét(t)a (3.1)

where:

Cylt) = e/, Caxis(t) = S* + (1 — SH)e™ /™ + SF(1 — S2)e ™'/,

i (3.2)
Culi(t) = S or(0i5) + (Pz(cos 0; ;) — S?mt(eijj» ¢t/ Tmet

with S2,.,(0;.;) = P2(cos 0;)P2(cos 0;) and P, is the second order Legendre polynomial function,
Po(x) = (32%2—1)/2, 0}, is the angle between the principal axis of an axially symmetric interaction
k vector and the CC-axis (methyl group symmetry axis) and 6; ; the angle between the principal
axes of two (possibly identical) axially symmetric interactions ¢ and j. The order parameters SJ%
and S? characterize motions of the system frame and are associated with the correlation times
7f and 7, respectively. The overall order parameter is defined as S 2= S}%Sg. The corresponding

spectral density function is:
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1_ 1 -1 -1
=Tq +Tc +Tmet'

where /' =771+ 77 and 7/~

In the following, Jap will be used to denote the Dipole-Dipole (DD) auto-correlation
between nuclei A and B, J4 for the Chemical Shift Anisotropy (CSA) auto-correlation of nu-
cleus A, Jag,cp for the DD cross-correlation between the spin pairs AB and CD, Ja B¢ for the
cross-correlation between the CSA of nucleus A and the DD interaction between nuclei B and
C. Finally, the index Q will be used to denote the quadrupolar interactions. These notations

follow conventions proposed by Werbelow and Grant [126].

As detailed bellow, in our treatment of the relaxometry data, the effects of the surround-
ing deuterium nuclei arising from the labelling of the protein have to be considered. These have
been taken into account by adding a single additional deuterium nucleus in the spin system.
For simplicity, while we consider the additional dipolar contributions to relaxation rates of the
{13C'H2H,} spin system, we do not include this additional nucleus in our basis. We approxi-
mated the spectral density function for the correlations involving this vicinal deuterium Dy;. to

be described by Eq. 3.3, although it is not part of the methyl group.

3.2.1.2 Relaxation rates

In our analysis of high-field and relaxometry relaxation rates of {!3C!H?Hj}-methyl groups
of Ubiquitin, longitudinal and transverse carbon-13 autorelaxation rates, longitudinal proton
autorelaxation rates and dipolar cross-relaxation rates were used. Dipolar relaxation with an
effective vicinal deuterium was considered. The set-up of REDKITE for such a spin system is
detailed in Appendix B.4. The contribution of the proton CSA to relaxation is expected to be
negligible [131], and is not considered in the following. The CSA tensor of the carbon-13 nucleus
is assumed to be symmetric and aligned with the CC bond. Expressions of the relaxation rates

are given in the following equations:

1
Ri(B0) :gAU%ngc (we)

1
+ Zd%H (Jer(we — wy) + 3Jcn(we) + 6JcH(we + wy))

(3.4)
4
=+ gd%}D (jCD(wc - wD) + 3-70D(wc> + 6~.70D(wc + wD))
2
+ gd%D\,ic (jCDvic (wc - WD) + 3‘7CDViC (wc) + 6jCDviC (wc + WD)) )
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1
Ri(*H) :Zd%H<jCH(WC —wy) +3Jcr(wy) + 6Jcn(we +wy))

4
+§d2HD(u7HD(wD - wH) + 3JHD(WH) + 6'.7HD(WD + wH))

2
‘l_§d2HDviC (jHDvic (WD - WH) + 3‘-7HDvic (WH) + 6‘7HDvic (WD + wH))’

oo = gl (~Jon(we — w) + 6Tcn(we + ),

Ra(30) :%Aa%wg (47c(0) + 3Tc(we))
+ (4o (0) + Jon(we — wy) + 3Jon(we) + 6o (wy)
+ 6Jcn(we + wy))
+ 2 (17 (0) + Jon(we — w) + BJen(we) + 6.Jen ()
+6Jop (we + wyp))
3, (400 (0) + Top (w6 — ) + B0 ()
+ 6JcD,; (Wp) + 6JcD,i (We +wWp)),

where dap is the dipolar coefficient between atoms A and B and equals —(uohyays)/ (473 5)
with ug the permeability of free space, i the Planck’s constant divided by 2x, vx the gyromag-
netic ratio of nucleus X and r4p the internuclear distance between nuclei A and B, Ao is the
CSA of the carbon-13 nucleus and wxy = —yx By is the Larmor frequency for the nuclei X at
a magnetic field Bg. The geometry of the methyl group was assumed to be tetrahedral with
rca = rcp = 111.5pm leading to rgp = 182pm. The distance rcp,,. is determined during the
ICARUS analysis as described below.

3.2.1.3 Relaxation matrix

The secularized basis for the subspace that includes C.ina {13C'H2H; }-methyl group contains

14 terms:

C., 12 DQZ 20, H, C.,Dy, C.Ds, \fCHDlz
3v373v376v2 6v2" 3v3 ' 3v3 T 3v3 ' 3
C.Dy.D,, C.DfD; C.DyDf
b 2\/?: ) 4’\/7 ) 4\/§ b
Séz-bl,zﬁl,z - zéz Séz-DZ,z-DZz - 2éz
3v6 ’ 3v6 }

Bsecularlzed - {

(3.5)

where C, H, D1 and D, refer to the carbon, proton, deuterium 1 and deuterium 2, respectively,

as defined in the spin system in REDKITE. The deuterium 1 and 2 are considered magnetically
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equivalent and can be exchanged by symmetry.

As shown below, the analysis of the relaxation properties of the {!3C'H?Hj}-methyl
groups of Ubiquitin during a relaxometry experiment can be performed with satisfactory accu-

racy in the subspace spanned by the three operators:

C, H, 20.H,
Breduced,S = { } ) (36)

3v33v3 3V3

leading to the following relaxation matrix:

Ri(C) ocu ¢
Rs=| ocu Ri(*H) 0 |, (3.7)
ng 0 Rcy

where R;(13C), R;(*H) and ocy are defined above and:

1 3
Rcu =§A0(2ngjc(wc) + id%H (Jen(we) + Jen(wy))

4
+ 5dén (Jep(we — wp) +3Jep(we) + 6Jcp (we + wp)

4
+ §d2HD (Jnp (wy — wp) + 3Jup (wy) + 671D (Wy + wp))

2
+ ngCDviC (jCDvic (wc - WD) + 3jCDvic (Wc) + GJCDvic (wc + WD))

(3.8)

2
+ §d2HDvic (jCDvic (wH - OJD) + 3‘70Dvic (wH) + 6‘7H]:)vic (wH + WD)) )

nS =Accwedendocn(we)-

The expression of the secularized relaxation matrix in the basis Bgecularized can be found in

Appendix section C.3.

3.2.2 Simulating sample-shuttling relaxometry experiments
3.2.2.1 Expectation value of spin operators

The expectation value of a specific operator after an evolution period ¢ is obtained from the

calculation of the propagator:

P(t) = e L, (3.9)
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with lj the Liouvillian. Eq.3.9 assumes a constant Liouvillian over the interval ¢, including
a constant Hamiltonian. This assumption does not hold when pulses are applied, or in field-
varying experiments. In a relaxometry experiment, the fields during the polarization, relaxation
and detection periods are potentially all different [158, 63]. In these cases, the evolution time ¢

is decomposed in delays dt; that are small enough so that the field can be considered constant:
P(t) = dPp(8tn, Bp) X ... x dPy(5t1, By), (3.10)

where dP; is the propagator during the interval §¢; for which the magnetic field has a constant

value B;.

When pulses are applied, which is the case in standard pulse sequences for the measure-
ment of relaxation rates [68], cross-relaxation pathways may no longer be active and Eq.3.10
can be simplified using averaged Liouvillian theory [146, 168]. For example, for the measure-
ment of longitudinal relaxation rates of nitrogen-15 in a »N-'H spin pair, proton 7-pulses are

applied during the relaxation delay. In the abscence of such pulses, the Liouvillian reads:

h))

= | ONH RIfI 5H 5 (3.11)
N  d0m Rnu

where the relaxation matrix has been written in the basis of the spin operators {Nz, ICIZ, 2NZICIZ}
and RY (respectively RIl) refers to nitrogen-15 (respectively proton) longitudinal relaxation
rate, Ry to the two-spin order relaxation rate, oy to the DD cross-relaxation rate between
the nitrogen-15 and proton, and dx (respectively ) to the CSA-DD cross-correlated cross-
relaxation rate involving the nitrogen-15 (respectively proton) CSA. After applying a proton

m-pulse, the Liouvillian is transformed according to:

~
~

L=

hU))

2
L

hU))

. (3.12)

where P is the propagator for an ideal proton m-pulse:

1
B.=|o -1 o |. (3.13)
0
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When the evolution delay before and after the pulse are equal, the proton inversion pulse leads

to the following average Liouvillian over the whole relaxation period:

RY 0 0
Low=]0 RH 4y |. (3.14)
0 du Rnu

Over this time period, the spin operator N. is an eigenvector of the relaxation matrix, and the

time-evolution of its expectation value is given by:
(NL)(t) = e i, (3.15)

which is the usual mono-exponential decay used for the analysis of relaxation rates measurements
(note that the evolution towards an effective saturated state is obtained from the averaging of
consecutive scans [146, 169]). By constrast, an accurate analysis of relaxation properties in the
abscence of radio-frequency pulses, or in field-varying experiments, requires the full relaxation

matrix.

3.2.2.2 Propagator decomposition in a high-resolution relaxometry experiment

High-resolution relaxometry can be used to obtain a precise description of the dynamics of spin
systems over orders of magnitude of timescales [17, 21, 67]. The analysis is based on the mea-
surement of longitudinal relaxation rates over a broad range of magnetic fields (typically from
a few tenths of Tesla up to about 20 T). A reliable description of the motions requires accurate

estimates of the relaxation rates.

During each HRR experiment, the sample is transferred outside of the magnetic center to
a defined position z.¢jq, in the stray field above the magnet (Fig.3.1). During the two transfers
(from high to low field, and back) and the relaxation delay, all relaxation pathways are active.
In contrast to the example presented above, measured polarization decays can be affected by
cross relaxation and therefore cannot be used as is to determine longitudinal relaxation rates
accurately (this is true for any relaxation experiment where pulses can not be applied during
the relaxation period). Doing so would lead to systematic deviations in the parameters used
to describe the dynamics of the system. Simulating the experiment including the time when

the sample is outside the superconducting coil allows one to take into account cross-relaxation
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Figure 3.1: Description of an HRR scheme. a) The position of the sample is changed during the
course of the experiment. It is first polarized at high field, and transfered to a chosen position
in the stray field of the superconducting magnet, characterized by a lower magnetic field, for
relaxation. The sample is then moved back to the high-field position for detection. Pannel
adapted from [21]. b) A typical pulse sequence used to record HRR experiment. During the
analysis of HRR rates, the highlighted part of the pulse sequence (blue) is simulated. Black
narrow (respectively wide empty) rectangles represent 7 /2-pulses (respectively m-pulses). Pulses
are applied along the x-axis of the rotating frame if not otherwise stated (by the ¢;). The
amplitude of pulse field gradients are labeled g;. Additional experimental details can be found
in [67]. Figure reproduced from [19].
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pathways and to estimate accurate relaxation rates. The complete relaxation period in a high-
resolution relaxometry experiment includes three delays at constant fields and two transfers

through a strong gradient of magnetic field.

The simulation of the experiment is performed by calculating the propagator during the
highlighted part of the pulse sequence in Fig. 3.1b. For convenience, it is written as a product

of individual propagators:

ﬁtOt(tHF,lv tupv trela)o tdowm tHF,Z) :ﬁHF’Z (tHF,2) ' ﬁdown (tdown) ' 75LF (trelax)’

. ] (3.16)
pup (tup) . ,PHFJ (tHF,l)a

where 7§HF’1 and 7§HF’2 are the propagators calculated at high field, respectively before and after
shuttling, 7§LF is the propagator calculated at the low field position and 751113 (respectively 7§d0wn)
is the propagator calculated during the motion up (respectively down) from the high-field to the
low-field position (respectively from the low-field to the high-field position). This decomposition
allows the calculation of the segmental propagators using either Eq. 3.9 (for constant Liouvillian
superoporators) or Eq.3.10 (for time-dependent Liouvillian superoporators). The propagators
for constant-field positions (i.e. 7§HF’1, 7§LF and 7§HF 2) are calculated using Eq.3.9 and the

relaxation matrix calculated at either high field (ﬁHF) or low field (ﬁLF):

7§HF’i(tHF,i) = 67tHFﬁHF7 (3.17)
) . 3.17
’]SLF (trelax) — eftrelaxRLF.

The simulation of the transfers through the magnetic field gradient is performed by subdividing
the experiment into intervals of few milli-seconds 0t that still fulfill the conditions of Redfield
theory. In order to stay in the Redfield hypothesis, 6t must be large compared to the correlation
time of the system to extend the integration to infinity in Eq.1.7. In addition, §¢ must be suffi-
ciently small in order to perform a discretization of the integral over the full sample trajectory.

L over at most

In the case of high-resolution relaxometry with a sample traveling at ~10m.s™
1m, we considered a 6t of 1 ms, which corresponds, at most, to a change of about 10 % of the
magnetic field between two consecutive steps. The propagators d73(5t, z(t)) for these small steps

are obtained following Eq. 3.9:

AP(6t, 2(1)) = e OREW), (3.18)
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where ﬁ(z(t)) is the relaxation matrix evaluated at the position z(¢) along the bore of the
magnet and characterized by its magnetic field. The experimental field profile is fitted to a
polynomial expansion during the analysis of HRR data. Each propagator d7§(6t, z(t)) is field
dependent due to the field dependence of the relaxation matrix. The propagator for the motions
up to and down from the position z,..;q; are defined as the ordered products of the infinitesimal

propagators dP:

R Mmax .
P = T] aP(t, (x(n x 61))),
n=0
= (3.19)
Ppdown _ H APIVI(5t, (2(n x 6t))),
n=0
where n;P = (respectively n%fgzn) is defined by tturI;nsfer = Tmaz X 0t (respectively t?fz;flrslfer =

ndown x §t) with ¢ . (respectively t1o"% ) the delay of transfer to the top (respectively
down) position. In these calculations, the relaxation matrix is derived using the analytical
expression obtained from REDKITE and compiled in a Python script called FunctionsFile.py,
a model of motions and a set of parameters of dynamics. We will detail applications to the
dynamics of {3C1H?Hs}-methyl groups. The set-up of REDKITE for this spin system in given

in Appendix B.4.
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3.3 Analysis of the relaxation in methyl groups using ICARUS

3.3.1 Principle of the iterative correction for the analysis of relaxation under

shuttling

The expectation value for the operator of interest at the end of the full relaxation period (delays
at high field and low field as well as the two transfers in between) can be extracted from the
calculated propagator for each relaxation delay. The simulated decay as a function of the
relaxation time is fitted with a mono-exponential decay function with an effective longitudinal
relaxation rate Rsim(cfj,BI(]g D;) where &; are the experimental parameters (shuttling times
and relaxation delays) for the experiment j, Bl(jg is the associated low field, and D; are the
parameters of dynamics for the amino acid ¢ (Table3.1 sums up our nomenclature for the
different calculated and measured relaxometry relaxation rates). All relaxation pathways are
active during the transfers between high and low-field positions. The initial density operator is
partially projected onto the eigenvectors of the relaxation matrix (relaxation modes) of lowest
eigenvalues. Thus, the simulated decay rate Rg;m, is a priori lower than the pure longitudinal
relaxation rate R.q. calculated using the parameters of dynamics. We define the correction
factor C(&;, BI(}), D;) for each relaxometry experiment as the ratio between these two rates for

an experiment j (corresponding to a specific low field B&)) and a residue i:

(4)
Rcalc B aDi
(&, B D) = — el B D1

Rsim ((‘:j, Bﬁjg‘a Dl)

(3.20)

The correction factor is applied to each corresponding measured relaxometry data Ryneqs(Ej, B£F))
R E. B(j) D) = C(E: B(j) D: R E. B(j) 3.91
corr( jr» DLE> z) ( js DLF z) X Reas( J LF)' ( 21)

The correction is performed iteratively (Fig.3.2). The set of parameters D; for the first
iteration is obtained from the analysis of the accurate relaxation rates, i.e measured with the
use of tailored pulse sequences, typically on high-field magnets. Then corrected relaxometry
relaxation rates are analyzed alongside high-field relaxation rates from the second iteration. A
new set of parameters of dynamics is extracted from this ensemble of relaxation rates. In the
next iteration, these parameters of dynamics are used to simulate the experiment and compute
improved corrections of experimental rates to estimate the accurate low-field relaxation rates.
This is repeated until the correction factors converge. The final set of high-field and corrected

relaxometry relaxation rates can then be used to extract the distribution of the parameters
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Table 3.1: Nomenclature for the relaxometry relaxation rate labels and parameters determining
their values. {&;} are the experimental parameters for the experiment j, Bﬁjg is the low field
chosen for relaxation and D; are the parameters of the spectral density function used to describe
the dynamics of residue ¢ in the simulation.

Label Parameters Description

Ryim &, Bijg and D; Relaxation rate extrated from the fitting
of the simulated polarization decay
R.aic ng and D; Relaxation rate calculated from

the parameters of dynamics

Rieas &; and BIEF) Measured relaxation decay rate
Reorr &5, Bijg and D; Corrected relaxation decay rate

of local motions in a Markov-Chain Monte-Carlo (MCMC) procedure and thus evaluate the

median value and uncertainty of these parameters (see below).

In the following, we will investigate the validity of key hypothesis made for the analysis
of the dynamics of {!3CH?Hj}-methyl groups in the protein Ubiquitin for which we collected
HRR on the carbon, as well as high-field longitudinal and transverse relaxation rates and carbon-

proton cross-relaxation rates [21].

3.3.2 Size of the relaxation matrix

The ICARUS protocol aims at obtaining accurate estimates of low-field relaxation rates by
accounting for the effects of cross-relaxation on the longitudinal relaxation decays during a
HRR experiment. This estimate is based on the simulation of the relaxometry experiments,
where the sample travels through a broad range of magnetic fields. In order to obtain a re-
liable description of relaxation over orders of magnitude of magnetic fields, simulations must
use appropriate relaxation matrices as well as expressions of relaxation rates, with accurate
parameters for the amplitudes of interactions and the description of the spectral density func-
tion. The full Liouville space for a {**C'H?H,} spin system is spanned by a large basis of
2xi+ 1)2XM72 % (2 x 14 1)2¥™ = 1296 spin terms, with nyj2 = 2 and n; = 2 the number
of spin-half and spin-one respectively (Fig.3.3a). An efficient calculation requires to minimize

the size of the Liouville space where the evolution of the density operator is calculated. We
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convergence
test

Figure 3.2: Flow chart for the analysis of high-resolution relaxometry data with ICARUS. a) Af-
ter a FunctionsFile has been obtained from REDKITE, ICARUS can be run, using, among other
inputs, relaxation rates recorded on standard high-field spectrometers and the high-resolution
relaxometry data. Accurate relaxometry relaxation rates are obtained, and an MCMC analysis
of these corrected rates and high-field relaxation rates leads to values of parameters describing
the dynamics of the system and their distribution. b) Flow chart of the ICARUS procedure.
Accurate high-field (HF) relaxation rates are used to obtain an initial set of parameters for the
dynamics of the system. These parameters are used to simulate the high-resolution relaxometry
experiments (using the same experimental set up, i.e. shuttling time, delays, magnetic fields)
from which biased simulated R, are extracted, and also to calculate the accurate expected R;.
The ratios of these two calculated rates are called correction factors. The product of experi-
mental decay rates and correction factors are corrected experimental low field (LF) relaxometry
relaxation rates. Together with the high-field relaxation data, the corrected rates are used to
determine a new set of parameters of dynamics, further used in the next correction iteration.
Convergence is not evaluated within ICARUS and the number of iterations remains a choice of
the user. However, we recommend to verify the convergence of the correction factors, as these
ones are essential in the determination of the final parameters of the dynamics. Typically three
or four iterations are sufficient. Figure reproduced from [19].
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Figure 3.3: Relaxation matrix size-reduction in a {!3C*H2Hj}-methyl group. a) Full relaxation
matrix of a {I3C'H2Hs}-methyl group. b) Relaxation matrix of the ZQ coherences and pop-
ulations are selected. At this stage, the matrix has a 262x262 size. c¢) Secularized relaxation
matrix containing 76 secular terms in the Zeeman interaction frame. The line corresponding to

A

the operator of interest (C,) is highlighted. d) Relaxation matrix containing only terms cross-

A

relaxing with the operator of interest (C,). Evaluating the cross-relaxation rates allows another
level of size reduction. e) Numerical values of the diagonal terms of the relaxation matrix shown
in d) (auto-relaxation, bottom row) and cross-relaxation rates with C, (top row) for the mo-
tional parameters of the -1 methyl-group of Ile-3 in U-[2H, '°N], Tle-6; ['3C2Hy H]-Ubiquitin at
14.1T and 0.33 T (reported in Ref. [21], see Table E.1). Relaxation rates are normalized to the
auto-relaxation rate of C, at each magnetic field. Figure reproduced from [19].

have reduced the size of the subspace using the steps described in Section 1.3.3 for '>N-'H spin
systems. First, we have considered the subspace only spanned by zero-quantum coherences and
population operators (Fig. 3.3b). We then applied the secular approximation, and calculated all
cross-relaxation terms with the C, operator, in order to keep only non zero terms, i.e. terms
that cross-relax with C., reducing the size of the basis to 14 terms (Fig.3.3d). Cross-relaxation
and autorelaxation rates in this 14-element basis have been calculated at the lowest and highest
magnetic fields used during our HRR experiments, i.e 0.33'T and 14.1 T, using parameters ob-
tained after a preliminary ICARUS analysis (for isoleucine 3) performed using B;educed,s (Eq. 3.6,
Fig. 3.3e).
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The inspection of these two relaxation matrices justifies the use of a basis containing
only 3 operators as cross-relaxation rates involving other operators are either negligible (cross-
relaxation from C, to another operator can be neglected if the ratio of this cross-relaxation
rate to the auto-relaxation rate of C, is small) or involve an operator with an auto-relaxation
rate much larger than the auto-relaxation rate of Cz and the cross-relaxation rate with Cz (see
Appendix E.3 for the proof that cross-relaxation with fast relaxing operator do not contribute to
the polarization decay of slowly relaxing operators). At both magnetic fields, the largest cross-
relaxation rate with the carbon-13 longitudinal polarization is the dipolar cross-relaxation with
the proton longitudinal polarization. At low magnetic field (0.33T), even a 2-operator basis
{%(A}Z, %ICIZ} would be sufficient to describe the relaxation properties of a {13C'H?Hj}-methyl
group as cross-relaxation towards other terms is either very small or towards fast-relaxing terms.
However, the subspace should include the two-spin order 2C,H, at high fields (14.1T). Thus,
HRR experiments in {!3C'H?H;}-methyl groups have been simulated in the small subspace
spanned by the three operators (@z, . and QCZICIZ) This subspace was used throughout our
analysis of carbon-13 HRR in {!3C'H2H,} methyl groups.

3.3.3 Proton relaxation and surrounding deuterium

Proton longitudinal relaxation rates Rj('H) were measured at three magnetic fields (0.33, 14.1
and 18.8 T') using standard high-field magnets (18.8 T and 14.1 T) and our 2F-NMR spectrom-
eter operating at 14.1T and 0.33T [22] (see Chapter2 for a description of 2F-NMR). These
rates were also calculated after an ICARUS analysis of high-field and HRR rates considering
intra-methyl group interactions only. The predicted relaxation rates are systematically lower
than those measured at 0.33 T, 14.1 T and 18.8 T (Fig.3.4a, b). Thus, even if relaxation rates
in a {13C'H2H;}-methyl group are dominated by the contributions of internal interactions, an-
other contribution to relaxation has to be taken into account to describe proton relaxation. The
differences between the measured and calculated R;('H) rates were assigned to the effect of the

neighbouring deuterium nuclei.

Adding the dipolar interactions with surrounding deuterium nuclei leads to non-negligible
contributions to relaxation to both the proton and the carbon-13. The closest neighbouring deu-
terium nuclei are the 2H~v; and 2H~s sites of the isoleucine side-chain, but other deuterium nuclei

may also be in close proximity to the methyl group. The correlation function for the fluctuations
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Figure 3.4: Including the effect of an effective vicinal deuterium nucleus on the analysis of
HRR data of U-[2H, 'N], Ile-0;['**C?Ho'H]-Ubiquitin. a) Correlation plot of the calculated
proton longitudinal relaxation rate R; at 0.33 T with (orange) and without (blue) including the
effect of the vicinal deuterium, with the experimental Ry at 0.33 T, for the seven isoleucines of
Ubiquitin. The black line is shown as a guide for perfect equality between the two rates. b)
Correlation plots of the calculated proton longitudinal relaxation rate Ry at 14.1 T and 18.8 T
with and without including the effect of the vicinal deuterium, with the experimental R; at
14.1T and 18.8 T, for the seven isoleucines of Ubiquitin. The black line is shown as a guide for
perfect equality between the two rates. c¢) Geometry of the methyl group and position of the
effective neighbouring deuterium. The distance rc_p ;. = 4 /T}2’7Dvic + riDvic is determined using
additional relaxation rates as explained in the main text. d) Correction factors as a function of
the magnetic field for Ile-30 and Ile-44 with and without an effective vicinal deuterium nucleus.
e) Corrected relaxometry relaxation rates for Ile-30 and Ile-44 with and without including an
effective vicinal deuterium nucleus. f) Comparison of the distance of the vicinal deuterium with
the carbon-13 nucleus obtained from the analysis of proton relaxation (red, ICARUS) to the
calculated distance to an effective deuterium nucleus that accounts for either only the 2Hry;
and ?H~y, nuclei of the isoleucine residue (green) or all the hydrogens (blue) in the structure of
Ubiquitin, PDB 1D3Z. In these NMR derived structures, the distances were averaged over the

~1/6
10 models present in the PDB file. In each model, the distance equals r¢_p . = (Z 1 >

i q
with d; the distance of the carbon-13 to proton ¢ (excluding intra-methyl group proton). Figure
reproduced from [19].

of the corresponding internuclear vectors are expected to vary. In particular, these interactions

are expected to be affected in different ways by the fast rotation of the methyl group. We mod-
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eled the surrounding deuterium nuclei by a single deuterium at an effective distance rc_p,,.
(Fig.3.4.). The interaction of the proton and carbon-13 nuclei of the methyl group with this
deuterium accounts for the interaction with all the other deuterium nuclei of the protein. We
used two adjustable parameters to describe its position, defining its coordinates in the Cartesian
axis system: the y- and z-coordinate were fitted while the x-coordinate was fixed to 0. The
position of the effective surrounding deuterium nucleus is determined independently for each
residue using proton relaxation rates as well as all relaxation rates used in the ICARUS itera-
tions (accurate and corrected) and keeping the other parameters constant (i.e. the parameters
describing the dynamics). When fitting the parameters of the model during further ICARUS
analysis, the effective position of the surrounding deuterium is kept constant. Introducing the
contribution of the surrounding deuterium and performing the whole ICARUS analysis again
preserves the agreement between the measured and calculated proton longitudinal relaxation

rates (Fig. 3.4a, b).

The surrounding deuterium has an effect on the correction factors (Fig. 3.4d) which leads
to differences of corrected HRR rates between 0 and 4 % (Fig. 3.4e). Correction factors depend
on the magnetic field and generally increase with decreasing magnetic field. It must be pointed
out that non-monotonous changes in the correction factors profiles in Fig. 3.4d are due to dif-

ferences in shuttling and waiting delays at low magnetic fields (Fig. E.4).

The effective distances with the surrounding deuterium nucleus are close to extracted
distances from the NMR structure of Ubiquitin (Fig. 3.4f, PDB 1D3Z). The dipolar interaction
between the methyl group and the effective deuterium is included in the following iterations of

the ICARUS analysis.

3.3.4 Convergence of the iterative correction

The number of iteration steps is expected to be dependent on the spin system under study.
In the case of the {I3C'H2Hy}-spin system, the convergence was reached after 2 iterations
(Fig. 3.5a) for all residues except residue 44. Some slight instability in the convergence of the
correction at low field is observed for this residue (Fig. 3.5b) but the amplitude of change (1-2 %

at most) has a negligible effect on the values of the corrected relaxation rates (Fig. 3.5c¢).
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Figure 3.5: Evolution of the correction with the number of iterations of ICARUS and the
selected model of motions. Correction factors as a function of the magnetic field for (a) Ile-30
and (b) Ile-44 after 1 to 4 rounds of ICARUS. ¢) Evolution of the corrected relaxation rates of
Tle-44 after 1 to 4 rounds of ICARUS. Correction factors as a function of the magnetic field for
(d) Ile-30 and (e) Ile-44 using a model of spectral density function with 3 (Eq. 3.22 jorange) or 5
(Eq. 3.3, blue) parameters to describe internal dynamics. f) Corrected relaxation rates of Ile-44
obtained with a model with 3 (Eq.3.22, orange) or 5 (Eq.3.3, blue) parameters to describe
internal dynamics.

3.3.5 Influence of the model of spectral density function on the correction

Different models can be used to describe the motions in a methyl group. Eq. 3.3 gives a rather
complex description of the motion, but a simpler model can be tested by reducing the number
of internal dynamics parameters to 3 by only considering the global tumbling, the methyl-group
rotation with one fitted correlation time and C-C axis motions with only one fitted correlation

time and one order parameter. The spectral density function for this model is:

Tij (@) = lsm”w“) (5 e T <w;m>2>

(3.22)

) Q2 . 27—7/71615 @2 Ti,1/1t
+(P2 COS(HZJ) Smet(e’h])) (S + (1 S )1 4 ((JJTZ,’,/«Lt)2>‘| ’

with the same definitions as above and where 7;,; is an internal correlation time for the motion

of the C-C axis. Correction factors obtained for the two spectral density functions are shown
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in Fig.3.5d and e. They are identical for Ile-30 where both models fit the experimental data
well. In contrast, the correction is slightly different for the two models of motion for Ile-44
(Fig. 3.5e), where the 5-parameters model is in better agreement with the experiments [21].
Yet, the variation on the corrected rates is small (between 1 and 2%, Fig.3.5f) with equally
small effects on the analysis. The ICARUS analysis requires a model that accounts for the
overall changes of the spectral density function on the range of frequencies probed during the
experiments but it does not require that the used model reproduces all subtle details of the
spectral density function: small variations of the value of the spectral density function at a

specific frequency have negligible effects on the correction.

3.3.6 Scaling of the CSA /DD cross-correlated cross-relaxation rates

Our combined analysis of low-field longitudinal and high-field transverse relaxation allows us
to obtain the value of the CSA for each residue in addition to parameters of internal motions,
except for Ile-44 for which chemical exchange prevented the analysis of the carbon-13 transverse
relaxation rates (Fig. E.1) [21]. In order to validate our analysis, a series of relaxation rates were
measured as detailed hereafter: accurate low-field carbon longitudinal relaxation-rates recorded
with our 2F-NMR spectrometer [22] as well as high-field longitudinal CSA /DD cross-correlated
cross-relaxation rates (cross-relaxation between C’z and 26’sz » referred to as nzc) These relax-
ation rates were not used during the analysis of the relaxometry relaxation rates, but calculated

using the set of motional parameters obtained after correction of the relaxometry data.

The calculated longitudinal CSA /DD cross-relaxation rates were strongly correlated to
measurements at 14.1 T and 18.8 T but significantely overestimated (Fig.3.6a). Our goal here
is to effectively describe cross relaxation, so we decided to introduce an ad hoc scaling factor,
applied directly to this term in the relaxation matrix. The scaling factor was calculated as the
averaged inverse correlation coefficient between the unscaled and measured ¢ at 14.1 T and
18.8 T and equals 0.505. A number of hypothesis can be made to explain the origin of the
scaling factor: i) the carbon-13 CSA may be overestimated since it is determined essentially
from transverse relaxation rates, which may suffer from small chemical exchange contributions;
ii) the carbon-13 CSA may not be perfectly alligned with the C-C bond; iii) the form of the
spectral density function may not describe correctly the motions of the methyl group; iv) the

amplitude of the carbon-13 CSA may be rotamer-dependent (see section 4.6).
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Figure 3.6: Scaling the CSA/DD cross-correlated cross-relaxation rates. a) Correlation plot be-
tween the calculated unscaled and scaled longitudinal CSA /DD cross-correlated cross-relaxation
rates with the measured rates at 14.1 T and 18.8 T. The black line is shown as a guide for perfect
equality between the two rates. b) Correlation plot between the calculated (without scaling)
trasnverse CSA/DD cross-correlated cross-relaxation rates with the measured rates at 14.1T
and 18.8 T. The black line is shown as a guide for perfect equality between the two rates. c)
Correction factors as a function of the magnetic field for Ile-30 and Ile-44 with or without scaling
of the longitudinal CSA /DD cross-correlated cross-relaxation rate. Figure edited from [19].

To understand the origin of this scaling factor, we also measured the carbon transverse
CSA/DD cross-correlated cross-relaxation rates (ngy). The calculated relaxation rates correlate
with the measurement, with an averaged inverse correlation coefficient between the calculated
and measured ngy at 14.1 T and 18.8 T of 0.629 (Fig. 3.6b). The discrepency between the scaling
factors of the longitudinal and transverse CSA /DD cross-correlated cross-relaxation rates can
not be accounted for only from a miss-evaluation of the carbon-13 CSA (under our assumptions
of axially symmetry and perfect alignment allong the CC bond). Thus, it is likely that the
model of correlation function does not describe entirely the complexity of the motions in the

methyl group (see Chapter4).

The analysis of the relaxometry relaxation data was performed again after applying the
scaling factor to longitudinal CSA /DD relaxation rates. As expected, the agreement between
calculated and measured CSA /DD cross-relaxation rates is significantly improved by the use
of a scaling factor (Fig.3.6a). Low-field correction factors are not sensitive to the scaling of a
CSA-dependent relaxation rate (Fig.3.6¢). At moderate and high field, the effect is larger with

a reduction of the correction by about 2 % which has limited impact on the analysis.
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3.3.7 Validation of the correction with the suppression of cross-relaxation

pathways at low field
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Figure 3.7: Validation of the correction protocol. a) Correlation plot between the relaxometry
uncorrected (blue) and corrected (orange) carbon Ry at 0.33 T with the measured two-field
R1(13C). b) Correlation plot between the pseudo-relaxometry uncorrected (blue) and corrected
(orange) R1(*3C) with the accurate relaxation rates measured at 14.1 T. The black line is shown
as a guide for perfect equality between the two rates.

Using our 2F-NMR spectrometer [37, 39], we measured, among other relaxation rates,
the longitudinal carbon-13 relaxation rates at 0.33 T with suppression of cross-relaxation path-
ways [22]. The rates of the seven isoleucines acquired at 0.33 T have been compared to measured
and corrected relaxometry relaxation rates at the same magnetic field (Fig.3.7a). The uncor-
rected relaxometry rates Ri('3C) are systematically lower than the accurate relaxation rates.
This stresses the fact that the relaxometry relaxation rates have to be corrected in order to
reach a reliable analysis of the dynamics of the system. Corrected rates are in excellent agree-
ment with the accurate R (13C) rates measured with the 2F system. This comparison validates
the ICARUS approach on this spin system. In addition, experiments have been recorded at
14.1'T with and without pulses during the relaxation delay. Corresponding relaxation rates are
displayed in Fig.3.7b. The high-field experiment recorded without control of cross-relaxation
pathways is similar to a shuttling experiments. Correction factors seem to be slightly overes-
timated at 14.1 T, but corrected rates are in better agreement with accurate rates than uncor-
rected rates (r.m.s.d of 3.8 x 1072571 versus 5.7 x 1072571, respectively), which is mostly due

to the better estimation of the longitudinal relaxation rate of isoleucine-23.
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3.3.8 Biophysical analysis of ICARUS results

The ICARUS corrected HRR rates were analysed together with the accurate high-field relax-
ation rates in a MCMC procedure using the emcee Python library [170] to obtain parameters
distributions for the two order parameters and correlation times associated to the C-C bond
motions, the correlation time for methyl rotation, and the carbon-CSA. Parameters for the
dynamics and width of the associated distribution are reported in Appendix Table E.1. It must
be noted that an initial analysis of the relaxation data without the carbon transverse relaxation
rate Ry (13C) allowed us to identify a chemical exchange contribution to the Ry (12C) of isoleucine
44 (Appendix Fig. E.1). These rates were not considered in the analysis for this residue and its

carbon-CSA was kept constant at 25 ppm.

< _\ 7 lle-13

Figure 3.8: Structure of Ubiquitin showing the 7 Isoleucine residues. PDB 1D3Z.

The correlation times for methyl rotation all fall within a rather narrow range between
5.5 and 22 ps. The variations of 7,,.; correlates with the structure: the shortest value is found
for the only isoleucine with its side chain at the surface of the protein, that is isoleucine 44
(Fig.3.8). Isoleucine 23 (Ile-23) has the largest value of Tyet (Tmet = 22ps), which can be
explained by the close proximity of the H, of Ile-23 from its §1 methyl group.

We can distinguish three groups of residues from our analysis of HRR data (see Ap-

pendix Fig. E.2 for the distribution of parameters after the MCMC procedure). Ile-44 is the
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only isoleucine residue with a side chain being totally exposed to the solvent (Fig.3.8). Its
dynamic properties lead to chemical exchange affecting the values of the carbon-Ry, but HRR
identifies a slow motion with a correlation time in the low nanosecond range (7, = 1.3ns).
On the other hand, we cannot detect motions in the nanosecond range for residues 3, 23, 30
and 61 with ill-defined order parameters S? and associated correlation time 7,. The apparent
simplicity of motions for these residues can be explained by the fact that they are located in
the hydrophobic core of the protein where the packing can hinder the motions. For Ile-30, the
broad distributions for 74 with relatively high order parameter is likely due to the fact that we
consider an isotropic global tumbling tensor despite the small anisotropy that have already been
reported for Ubiquitin [106]. Finally, the last group consists of Ile-13 and Ile-36 for which we
can clearly identify two correlation times for internal motions in the tens of picosecond range
for fast motions and in the low nanosecond range for slow motions. The two isoleucines are
located at the edge of the hydrophobic core such that they are not as affected by the proximity

of other hydrophobic residues as the second group of isoleucines.
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Figure 3.9: Nanosecond side chains and backbone motions in Ubiquitin. a) Distribution of
corretaiton time 75 from an MCMC analysis of HRR data recorded on 41 methyl groups for
Tle-13 (top) and Ile-36 (middle), and on ®N-'H of the backbone from residues 7-11 (bottom).
The average value of 75 is indicated on each pannel. The resulting distribution for residues 7 to
11 is given by Pr_11(7s) = Hﬁ:%l Pi(75) where P;(7s) is the distribution of 74 for residue i. b)
Structure of Ubiquitin (PDB 1D3Z) showing the Ile-13 and Ile-36 61 methyl group and $1-32

turn corresponding to residues 7 to 11. Figure reproduced from [21].
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The case of Tle-13 and Ile-36 is particularly interesting as not only are they close in
the protein structure, but their distributions of correlation time for slow motion also overlap
(Fig. 3.9a, top and middle pannels). Ile-13 flanks the §1-52 turn (residues 7 to 11) while Ile-36
belongs to the al-£3 loop (residues 34 to 40) (Fig.3.9b). These two regions have been shown
to undergo substantial motions in the main conformational mode detected by a combination of
Residual Dipolar Coupling (RDC) and Molecular Dynamic (MD) simulations analysis [171].
In order to better evalute the correlation time for motions in the 81-52 turn, we reanalyzed
the backbone nitrogen-15 HRR data recorded for Ubiquitin [17] using ICARUS and the same
procedure as for isoleucine d1 methyl groups. The resulting distribution of correlation time
overlaps with the ones of Ile-13 and Ile-36 (Fig.3.9a). Our analysis of relaxation data cannot
unambiguously identify concerted motions and the similar distribution of correlation times
in the nanosecond range may be a coincidence. However, this work demonstrates how the
analysis of HRR dataset can provide insights into interal motions and point at regions potentially

undergoing correlated motions.
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3.4 MINOTAUR: a correction-free analysis of relaxometry ex-

periments

So far, the analysis of relaxation rates recorded under shuttling was based on an iterative cor-
rection of the relaxometry relaxation rates as implemented in ICARUS [17, 67]. As explained
in the previous section, the free evolution parts of the experiment are simulated and extracted
relaxation rates are compared to the calculated pure relaxation rates to obtain a correction fac-
tor applied to the measured relaxation rates. This approach suffers from two major limitations.
First, the measured intensity decays are fitted with a mono-exponential decay to extract relax-
ation rates, but strong cross-relaxation may lead to clear deviations from a mono-exponential
behavior making it impossible to extract a single relaxation rate. Second, it is possible to
evaluate the quality of the correction only in particular cases, for instance with measurements

performed on a 2F-NMR spectrometer (see section 3.3.7) [22].

However, this somewhat convoluted approach is not the only possible way to analyze
relaxometry data and account for cross-relaxation pathways. Here, we introduce a correction-
free analysis to overcome these two limitations. Accurate high-field relaxation rates and low-field
intensity decays are all used together in a MCMC sampling in order to extract distributions
of dynamic parameters of the spectral density function, as well as other relevent parameters
of the spin system (such as CSA for example). This approach of the analysis of relaxometry
data does not require to approximate the intensity decay to a mono-exponential function. In
addition, data are not transformed during the analysis as would be the case with a correction
factor. It has been implemented in a Python program called Matching Intensities to Optimize
Timescales and AmplitUdes of motions from Relaxometry (MINOTAUR) for use over a wide
range of spin systems and dynamic models. In the following, we review some of the key elements
of the program, re-analyse our high-resolution relaxometry methyl-group relaxation rates and

compare these results with our previously reported analysis [21].

3.4.1 Computational features of MINOTAUR

MINOTAUR and ICARUS [67] are very similar in terms of usage. The Graphical User
Interface (GUI) and outputs remain essentially the same. However, ICARUS is used to correct
relaxometry relaxation rates rather than extract dynamic parameters or their distribution. This

was performed through the use of a different program directely reading ICARUS output folders
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and running a MCMC sampling on the accurate and corrected relaxation data. MINOTAUR
does not minimize a x? but directly provides parameters distribution, using the same MCMC
approach from the emcee Python library [170]. A drawback of the MINOTAUR approach is
the handling of potentially large amount of data (all the accurate relaxation rates and all the
intensities for all the low magnetic fields), which may dramatically increase the time spent in
the MCMC loops. Different solutions have been implemented to overcome this limitation and

are listed below.

The calculation of the relaxation rates and relaxation matrix has been implemented
in C-language. The C-language is particularly efficient to perform calculations compared to
Python. For example, we have seen a factor 10 difference for the evaluation of the relaxation
matrix using Python and C. In practice, the gain is not as high as expected because C outputs
have to be converted into Python objects. Expressions of the relaxation matrix and relaxation
rates have to be compiled in the C-language. The synthax is close to the Python synthax, and
expressions obtained from REDKITE can be exported as C-expressions using the MATHEMAT-
1cA command CForm [18]. In addition, as no x? minimization is performed, first derivatives

are no longer needed. Compilation of the C-scripts is directly implemented in MINOTAUR.

The increment time for the calculation of the propagator during the shuttling (from the
high-field to low-field positions and back to high field) is no longer a user-defined variable but its
value is optimized. The default lowest value is 1 ms. The increment is then gradually increased
by 1ms steps until a difference of the expectation value of the operator of interest (e.g. CZ)
higher than 1% is observed compared to the default value (calculated with the 1 ms increment).
The comparison is made over 20 different simulations with 20 different and random dynamic
parameters, at the lowest recorded field. The optimization is stoped when at least one of the
simulations leads to a significant difference of the expected value (i.e. higher than 1%). For
a 100 ms shuttling trajectory, increasing the increment from 1ms to 5ms has no effect on the
expected value of the C, operator of a {13C'H2H; }-methyl group in Ubiquitin and decreases
the number of calculated relaxation matrix from 100 to 20 in each direction of the shuttling,

significantely decreasing the calculation time.

In order to calculate the propagators during the relaxation delays, the exponential of the
Liouvillian has to be calculated [67, 19]. Two methods can be used to calculate the exponen-

tial of a matrix in Python: directely computing the exponential using the linalg.expm function
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implemented in the scipy Python library [136], or diagonalizing the matrix and calculating the
exponential of the diagonalized matrix. Relaxation matrices are symmetric and can always be
diagonalized. In the case where the system undergoes chemical exchange, the relaxation matrix
is no longer symmetric (because of the exchange contribution) but can still be diagonalized [16].
In the case of the 3x3 relaxation matrix of {!3C'H?H;}-methyl group, calculating the matrix
exponential by diagonalization is faster by a factor 2 to 3, but this may not be true for larger
matrices. The choice of the calculation method is made by calculating 10,000 random relaxation
matrix exponentials and comparing the time spent to calculate them. This step takes just a

few seconds to perform.

The MCMC is now paralelized over the CPUs, reducing in theory the calculation time
by a factor equal to the number of CPU present on the computer. It is lower in practice, espe-
cially if the computer is being used for other tasks. In addition, we do not recommend using as
many steps as what was recommended in the case of corrected relaxation rates. In the analysis
of Ubiquitin {"¥C'H2Hs}-methyl group, we used 20 chains of 10,000 steps after ICARUS [21].

As what will be seen later, 20 chains of 3,000 steps reproduce well the results published earlier.

As a result, the MCMC analysis of U-[2H, °N], Tle-§;[**C?Hg'H]-Ubiquitin [21] and
containing 12 accurate relaxation rates and 22 relaxometry experiments, each containing at
least 6 relaxation delays, is conducted within approximately 30 min for each isoleucine residues
with 3,000 steps and 20 chains on a MacBook Pro (2016) with a 2.9 GHz Intel Core i5 processor
and 4 CPUs.

3.4.2 Scaling intensities

One major difference between using relaxation rates extracted from fitting simulated intensity
decays, and directly using these intensity decays is the need to scale the simulated intensities to
the measured ones. This scaling depends on various parameters of the system (concentration of
the spins, probe sensitivity, number of scans,...). For each relaxometry experiments, a unique
scaling factor is applied to each simulated intensity. The scaling factors are in theory parame-
ters of the system and should be variables of the MCMC. However, their definition makes them
strictly dependent on the other parameters of the system which are constraining them as shown

below.
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Figure 3.10: Intensity decays for Isoleucine-36 of U-[?H, '°N], Ile-0; ["*C?H3' H]-Ubiquitin at
four low magnetic fields ((a) 4.0T, (b) 3.0T, (c) 1.3T and (d) 0.3T). Turquoise circles are
measured relaxometry intensities, brown circles are back-calculated scaled intensities using the
mean dynamic parameters and Eq. 3.24 for scaling.

The 2 for the intensities can be written:

Nye. :
Npp Ve, (Ignfas _ aiI§1;n)2

SEDIDY —— (3.23)

i=0 j=0 1,7

where Nz and Ny ¢, are respectively the number of relaxometry experiments and the number
of delays in the relaxometry experiment number 4, I/, Ifl;n and O'Z-% ; are the measured and
simulated (respectively) intensities and the experimental error (i.e. noise level) for the experi-

ment ¢ and delay j, and «; the scaling factor for experiment 1.

Derivating Eq. 3.23 with respect to «; and cancelling the derivative to 0 leads to the
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optimal value for the scaling factor of experiment i:

Ny¢;, Nvg, 2
1 151mImeas ISlm
o = 2 / ( ) (3.24)
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At each MCMC iterations, it is then possible to calculate the scaling factors as a function
of the set of dynamic parameters. Fig.3.10 shows selected simulated decays obtained after
re-analysing our high-resolution relaxometry data recorded on methyl groups of U-[?H, *N],
Tle-01 [**C2Ho H]-Ubiquitin. The agreement between the scaled simulated intensities and the

measured decay is excellent.

3.4.3 Comparison between MINOTAUR and ICARUS analysis

We analyzed the same data as the ones reported in the previous study [21], but we used inten-
sity decays instead of HRR relaxation rates. The same form of spectral density function was
used to calculate the relaxation rates and the relaxation matrices (Eq.3.3). The optimization
of the increment time for the calculation of the propagator during the shuttling period leads
to an increment of 5ms. The diagonalization methods leads to faster calculation of the matrix
exponential. The MCMC was run with 20 chains and 3,000 steps each. The carbon-CSA was
among the free parameters during the MCMC sampling, except for residue 44 for which carbon-
13 transverse relaxation rates have been shown to be affected by chemical exchange and were

discared from the analysis and its CSA was fixed to 25 ppm [21].

As reported earlier [19], the contribution from the surrounding deuterium of the protein
to the relaxation has to be taken into account. In ICARUS, the procedure consisted in first not
considering the effect of these deuterium, then determine the position of an effective deuterium
that would reproduce proton longitudinal auto-relaxation rates, and perform the correction pro-
cedure again. Two major differences compared to our previous method of analysis have been
implemented: the distance is now determined from a MCMC procedure and error evaluation can
be performed; the evaluation of other defined parameters extends to any user-defined variable,
which constitutes a major improvement compared to the previous situation where a methyl-
adapted version of ICARUS had to be written. In short, expressions of relaxation rates and
relaxation matrices accept as input four entries: the magnetic field, parameters of the systems
that are to be determined using the HRR experiments (dynamic parameters, CSA for example),

the global tumbling correlation time, and an array containing any other variables of the sys-
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tems (loaded by the user in the GUI) and that can be residue-specific information. MINOTAUR
keeps these later parameters constant throughout the program. In addition to MINOTAUR,
we wrote a program called ACTEON that uses MINOTAUR outputs (i.e. parameters that had
to be determined), accepts additional informations (7.e. relaxation rates) to run a MCMC on
user-selected parameters that used to be kept constant. MINOTAUR can be run again using
the newly determined parameters by ACTEON. In our example of the position of the vicinal
deuterium, MINOTAUR is run first using intensity decays from HRR experiments, longitudinal
and transverse carbon auto-relaxation rates and carbon-proton cross-relaxation rates. S%, S2
Tmet, Tf, Ts and the carbon-CSA (except for Ile-44) are determined. ACTEON is run using these
values, the same relaxation rates and decays, and longitudinal proton auto-relaxation rates to
determine the position of the vicinal deuterium, for each residue. This position is kept fixed
in the final MINOTAUR run (where proton relaxation rates are not included). This procedure
keeps the exact same principle as before, but has been generalized to any situations a user might

encounter.

Overall, 198 data for each residue were used in MINOTAUR: 12 relaxation rates at
diffrerent high magnetic fields (17 total with the repeats), and 177 intensities (22 decays).
For each residue, the MCMC sampling (20 chains of 3,000 steps) took between 30 min and
40 min on a MacBook Pro (2016) with a 2.9 GHz Intel Core i5 processor and 4 CPUs. It must
be noted that in order to keep a relatively equal contribution for each each experiments in
the MCMC procedure, the difference between the experimental and simulated intensities in the

MCMC iterations are devided by the number of relaxation delays in the associated experiments.

Parameters obtained after the analysis with MINOTAUR are reported in Appendix Ta-
ble E.2. Overall, they agree well with the ICARUS analysis of the relaxometry relaxation rates
(Fig.3.11) [21]. Thus, even if imperfect, the correction procedure provides accurate estimates
of low-field relaxation rates in the case of {I*C'H?Hs}-methyl groups in Ubiquitin. It must
be noted that the EMF correlation function for the C-C motion is not adapted for residues 3,
23, 30 and 61, and the simpler Model Free (MF) correlation function [15] reproduces well the
relaxation data [21]. This explains the large standard deviations for the parameters S3 and 75
for these residues. Increasing the number of MCMC steps to 10,000 does not significantely alter
the distributions (Appendix Fig. E.3).

A new method to analyse HRR experiments has been presented and implemented in
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Figure 3.11: Correlation between ICARUS and MINOTAUR analysis. Correlation plot between
SJ% (a), S2 (b), Tmet (c), 77 (d), 75 (e) and the carbon-CSA (f) obtained after the ICARUS
analysis [21] and MINOTAUR. The solid black lines correspond to perfect correlation. « is the
slope of the linear correlation function.

a program called MINOTAUR. Relaxometry decay rates are no longer fitted and thus do

not need to be corrected to take into account cross-relaxation effects. Rather, the intensity

decays are reproduced after simulation of the free relaxation periods. We re-analyzed our data
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recorded on isoleucine methyl groups of Ubiquitin [21] and did not see significant deviations in
the description of the dynamics. This observation was expected since the experimental intensity
decays did not show obvious deviation from a mono-exponential decay, justifying the correction

procedure.
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3.5 Conclusion

In this chapter, the basics of high-resolution relaxometry were introduced, with applications
to the study of protein dynamics. The theoretical framework for the analysis of sample-
shuttling experiments recorded on side-chains {'3*C'H2Hj} methyl-groups was presented. Two
programs were used for the accurate description of isoleucine §1-methyl groups: ICARUS and
MINOTAUR. The first one uses accurate high-field relaxation rates and relaxometry decay
rates to perform an iterative correction on the later. It was used to analyse several aspects
of the relaxation in methyl groups. In combination with accurate low-field relaxation data, it
suggested that neighbouring deuteron significantly contribute to relaxation at low fields. The
second generation approach, called MINOTAUR, uses accurate high-field relaxation rates and
relaxometry relaxation decays to directly obtain values for the parameters of the spectral density
function. It is thus free of the correction procedure and we believe has a wider range of applica-
tion than ICARUS, in particular when strong cross-relaxation leads to a clear multi-exponential

relaxation decays in relaxometry experiments.
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4.1 Introduction

With the development of sample-shuttling experiments (both relaxometry and Two-Field (2F)
Nuclear Magnetic Resonance (NMR)), the range of timescales that can be probed with high
accuracy using relaxation experiments is potentially extended to the tens to hundreds of nanosec-
onds [33]. In order to separate different timescales of motions, the initial Model Free (MF)
correlation function have been complefixied to introduce an additional correlation time and
order parameter to yield the Extended Model Free (EMF) correlation function for internal
motions [74]:

Cenp(t) = 8283+ (1 - 8H)et/™ + 83(1 — 83)e M, (4.1)

where 71 and 79 are two correlation times associated respectively to squared order parameters
S? and S2. In effect, relying the analysis of relaxation data recorded over 2 orders of magnitude
of magnetic fields on MF [15] or EMF [74] models is unlikely the best route towards a better
understanding of protein backbone and side-chains motions [17, 21, 22]. Indeed, no informa-
tion on the type of motions involved can be obtained, unless complemented with Molecular

Dynamic (MD) simulations [75, 30, 21, 31, 32].

In MF type of analysis, the global tumbling is often supposed to be isotropic, which
is the frame in which it was originially presented [15], with an approximated correlation func-
tion for overall diffusion when the diffusion tensor is anisotropic. This limitation has raised a
number of questions regarding the relevance of the analysis of relaxation data with MF type of
correlation functions in the case of couplings between global (i.e overall diffusion) and local mo-
tions [25, 26], and has lead to the development of the Slowly Relaxing Local Structure (SRLS)
approach for the analysis of NMR relaxation data. The SRLS models were initially proposed to
analyze Electron Spin Resonance (ESR) spectra [71, 172]. In ESR, a nitroxide tag is attached
on the surface of a biomolecule, so that fluctuations in the shape of the overall diffusion tensor
can have strong effects on the orientation of the spin interactions in the laboratory frame. With
the exception of paramagnetic experiments, NMR spin relaxation probes bond motions in the
biomolecules, for which only domain-domain reorientations are expected to lead to a coupling
between global and local motions. In this case, alternative solutions to the SRLS models have
also been proposed [111, 173, 174]. In addition, and as suggested by Freed and coworkers, the
assumptions of simple local geometry and motions with axial symmetry have to be invoked in

the frame of the MF [15] and EMF [74] approaches [27, 28, 29]. This aspect is particularly
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critical as MF order parameters have been shown to be related to conformational entropy, both
for protein backbone [23] and side-chains [24], and a miss-characterization of the motions will

inevitably lead to a miss-characterization of the thermodynamics.

In this chapter, we will write correlation functions as obtained by solving diffusion equa-
tions. The mathematical treatment presented here follows approaches published between the
1960s and 1980s. We will then investigate how the factorization of the global tumbling correla-
tion function and the MF approximation affects the dynamic parameters using synthetic data.
We will briefly look at the effect of correlated motions in the case of methyl groups undergoing
rotamer exchange. Finally, we will use our newly developped models of motion, and insights
obtained from MD simulations, to analyse our relaxation data recorded on isoleucine-d; methyl
groups of Ubiquitin. We will show that a relaxation mechanism is associated to the change of
Chemical Shift Anisotropy (CSA) tensors as one isoleucine jumps from one conformer to the
other. This will allow us to reproduce cross-correlated cross-relaxation rates, which was not
possible with the MF approach (Fig. 3.6a,b), an aspect that was already identified by Freed and

coworkers [26].



118 Chapter 4. Models for protein site-specific side-chains dynamics

4.2 (General approach to calculate correlation functions

The correlation function between two interactions ¢ and j has been defined in Chapter1 by
Eq.1.15:
Cij(t) = (V3 (0)Vey(1), (4.2)

where (- - -) denotes ensemble average, * stands for complex conjugate and the function V' is

related to rank-2 Wigner matrices by:
2,q q0 (aL,l)ﬁL,Za )7 ( . )

where oy ; and Br; are Euler angles for transformation from the laboratory to interaction
frame. In the following, we will use the compact notation for the set of three Euler angles (see

Appendix A.2 for more details on Wigner matrices):

Qri={ari Bri, Vri}- (4.4)
The correlation function can then be written:
Cij(t) = (D" (U, 0)Dig (U5, 1))- (4.5)
The approach to calculate the ensemble average in Eq. 4.5 is detailed in [34]. If we write:
C(t) = (A*(Q(0)B(2(1))), (4.6)

with A and B two Wigner rotation matrices with potentially different indices, the ensemble

average expands into:
C(t) = / % / dQP(Q0) P(2, |0, 0)A* () B(Q), (4.7)

where P(€2) is the probability that the Euler angles for frame transformation is 2, and P(£2, ¢|Q, 0)
is the conditional probability that the Euler angles for frame transformation is §2 at time ¢ when
it was 0 at time ¢t = 0. In the following, we will calculate the ensemble averages using a Master

equation for the description of relaxation-inducing rate processes:

9
5 P(Qt) = —KP(Q.1), (4.8)
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which is a Fokker-Planck diffusion equation and where P((,t) is the probability of finding
the Euler angles Q2 for frame transformation, at time ¢, and K is a model-dependent operator
describing the motions of interest. The initial step is to diagonalize the operator K, with

eigenvalues F,, and eigenvectors ,,:

Ky, = Exthy (4.9)
The conditional probability is then:
P(Q,tQ0,0) = > 05 (Q)thn (Q)e Ent, (4.10)
and:
P(Q) = tl_i}rn P(Q,t0,0). (4.11)

P(9p) can sometimes be evaluated by simple probabilistic and geometric considerations.

The probability P(€29) and conditional probability P(€2, ¢, 0) can be inserted in Eq. 4.7

to yield an expression of the correlation function as a sum of decaying exponential terms:
Ct)=> ae™'/™. (4.12)
i

It is then straightforward to calculate the spectral density functions, which are defined as the
Fourier transform of correlation functions and are usefull to express relaxation rates as a function

of parameters describing the dynamics (see Chapter 1):

Ti

J(w) =Re <2 /;OO C’(t)e_i“’tdt> = ZZaim. (4.13)
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4.3 Correlation functions for four types of motions

In this section, we will detail how the correlation function can be computed for different motions:
the global rotation diffusion, the instantaneous jumps between different conformations, the
diffusion on a cone and the wobbling in a cone. The correlation functions for these motions
have already been reviewed [34], so that this mathematical introduction essentially consists in
a review of the associated litterature. The order parameter associated to each motion will also

be calculated.

4.3.1 Global tumbling

In this section, we will only consider the rotational diffusion of the protein: all interactions are
fixed in the molecular frame. The correlation function describes the motions of the interactions
in the laboratory frame, which is equivalent to the motions of the protein in the laboratory
frame. AppendixF.1 follows the thorough treatment of this situation presented by Werbelow
et al. [175], but other approaches can be found elsewhere [176, 177, 178, 179].

The correlation function can be decomposed using properties of the Wigner matrices

(2) .
D;7’(Q,t) (Eq. A.11):

Cii(t) =(DD* (215,002 (s ,1))
2 (4.14)

= > (DR QLp. )DL, )DE (i, 0)DE) (2 5. 1)),

a,a’=—2

where D is the frame associated to the diffusion tensor, €17, p is the time-dependent Euler angle
set for the orientation of the diffusion tensor in the laboratory frame and Qpx, k = {7, 7}, are
the Euler angle sets for orientation of the interactions-i and -j in the diffusion frame. Since the
angles Qp i, k = {i,j}, are time-independent, they can be taken out of the ensemble average.

In the following, we define:
Cou (t) = (DD*(Qr 1, 0)DZ(Q b, t 4.15
aa(t) = (Dgg’" (21,0, 0)D i (Qr,p, 1)), (4.15)
so that we can write:

2
Ciyt)= 3 Cow®DE (20, D2 (). (4.16)
2

a,a’=—
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Table 4.1: Values of the coefficients a, , and eigenvalues E,; appearing in the global tumbling

correlation function (Eq.4.18), where 3 = tan—! D\ff)5+, Dy = %(Dm + Dyy), D = %(Dm +

Dyy + D..) and £ = X(DyeDyy + Do D= + Dy, D).

a E.
-2 -1 0 1 2
1 0 % 0 % 0 4Dy + Dyy + D,
2 0 v LY 0 Dy + 4Dy, + D,
K3 -7 0 0 0 NG Dy + Dyy + 4D,
4 %COS% 0 sing 0 %cosg 6(D +vD?% — L2)
5| —Jgsing 0 cosg 0 —gssing | 6(D—vD?-L?)

The Master equation for global tumbling, written in a frame where the rotational diffu-

sion tensor is diagonal, is:

0

50 QLo t) = - 2 DiLiP(Qup,t), (4.17)
J=wy,2

where Dj; is the jth component of the diagonalized diffusion tensor and L; are the associated

angular momentum operators. The detailled calculation of the eigenfunctions and eigenvalues

required to express the conditional probability (Eq.4.10) can be found in the AppendixF.1. It

leads to the following expression for the global tumbling correlation function:

1 B
Cow (t) = 5 Z Ok,a0p,a' € Bt s (4.18)
k=1

where the coefficients a, , and eigenvalues F,; are reported in Table4.1.
The correlation function can now be written:

2 2
DD aﬁ,aan,a,e—mpﬁg*(QDJ)DLS?}O(QDJ-). (4.19)
a'=—2

rk=1a=-2

Cij(t) =

| =

Special case 1: axial symmetry In this case, the Wigner matrices D/(f,)ﬂ(Q), k € [-2,2] are

eigenfunctions of the diffusion operator with associated eigenvalue 6D | + k2 (DH -D L) where
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we define D | = Dy, = Dy, and Dy=D,. It follows:
C'(t) = 5aa,%e*<6Dl+a2<Du*DL>)t, (4.20)

and the total correlation function is:

1 2
5 > e~ 0D+ (D=DuDtq, o (Bp )dao(Bp,;) cos(alap, — ap,;)), (4.21)

a=—2

Cij(t) =

where Qp . = {ap i, Bpk, 0}, k = {i,j} are the Euler angles for orientation of the interaction

frames in the diffusion frame and d, o are small Wigner matrices (Appendix Table A.1).

Special case 2: isotropic tumbling In this case as well, the Wigner matrices D!(L,)C(Q), ke
[—2,2] are eigenfunctions of the diffusion operator with degenerate eigenvalue of 6D,.;. The

well-known result immediately follows:

/ 1
ce (t) = dqa 5€_t/TC, (422)

where the global tumbling correlation time is defined as:

1
= . 4.23
= 6Dror (4.23)
The total correlation function is:
1 —t/7c
Cij(t) = ¢ Pa(cos b; 5), (4.24)

where 0; ; is the angle between interactions ¢ and j and P; is the second-order Legendre poly-

nomial Py(x) = (3cos?(x) — 1)/2.

Graphical representations The analysis of '’ N-backbone relaxation data has been of great
interest in the late 1990s and early 2000s to obtain information about the anisotropy of the over-
all diffusion tensor [106, 107, 180, 181, 182, 183, 184, 185, 186]. We will show here how assuming
symmetry properties of the diffusion tensor affects the correlation function, the spectral density
function, and some relaxation rates for a '>’N-'H spin pair. We impose the interaction frame to
be fixed in the diffusion frame, with Euler angles given by Qp ; = {70deg, 60deg, 0}. The values
of the diffusion tensors components are chosen to be Dy, = 1.5 x 107s71, Dy, =2.0 x 10771

and D,, = 2.5 x 107s™'. Although the correlation functions calculated assuming partial or
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complete symmetry of the diffusion tensor are almost indistinguishable from the accurate corre-
lation function (Fig. 4.1a), the spectral density functions show some deviations at low frequencies

(Fig. 4.1b).
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Figure 4.1: Effect of partial or full symmetry of the diffusion tensor assumption. a) Global
tumbling auto-correlation function for a diffusion tensor with components D, = 1.5 x 107 s,
Dy, = 2.0 x 107s7 ! and D,, = 2.5 x 107 s~ and interaction orientation Qp,; = {70°,60°,0}.
The assymetric tumbling (blue) correlation function is calculated using Eq.4.19, the sym-
metric top (orange) correlation function using Eq.4.21 and the spherical top (green) corre-
lation function using Eq.4.24. The symmetric top correlation function was calculated using
Dy = D,, and Dy = (Dgz + Dyy)/2. The spherical top correlation function was calculated
using Dyot = (Dye + Dyy + D..)/3. b) Spectral density function associated to the correlation
functions shown in a. Field-variation of the (c¢) nitrogen longitudinal relaxation rate, (d) nitro-
gen transverse relaxation rate and (e) nitrogen-proton cross-relaxation rate calculated using the
spectral density function shown in b. The hydrogen-nitrogen distance is set to 1.02 A and the
15N-chemical shift anisotropy tensor was assumed to be axially symmetric with value 150 ppm
and aligned along the N-H vector.

In order to evaluate the effect of these deviations on calculated relaxation rates, we
considered an isolated '>N-'H spin pair, and calculated the nitrogen-15 longitudinal (R;) and
tranverse (Rz) relaxation rates as well as the proton-nitrogen-15 cross-relaxation rate (oNOF).
Not surprisingly, at high magnetic fields, R; and ¢V9F | which only depend on the spectral

density function evaluated at high frequencies, are not affected by assumming partial or full
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symmetry of the diffusion tensor (Fig. 4.1c,e). However, deviations in R; profiles appear at very
low field (lower than 0.5 T') which are now accessible with High-Resolution Relaxometry (HRR)
[17]. Transverse relaxation rates are also dependent on the spectral density function evaluated
at zero frequency, and show variations depending on the assumption being made (Fig.4.1d).
The extent of the variations depends on the orientation of the interaction in the diffusion tensor
and the anisotropy of the tensor. Some of these aspects in the presence of an internal motion

were discussed by J. Tropp [187].

4.3.2 Rotamer jumps

In this section, we will add one internal motion on top of the global tumbling. We will assume
the interactions can adopt a finite number of fixed conformations and that they can exchange
between one another. Moreover, it is assumed that the transition events are infinitely fast, that
is, the system can always be found in one particular conformation. This model can be used to
study side-chain motions, as revealed by MD simulations (vide infra): in the example presented
in Fig. 4.2a, the side chain of isoleucine 36 of Ubiquitin is found in a limited number of confor-
mations during the MD trajectory, each of them being caracterized by a pair of dihedral angles

x1 and xa.

a)

360

240

X, (deg)

120

120 240 360

X, (deg)

Figure 4.2: Side-chain motions and jump frames. a) Ramachandran diagram for isoleucine 36
obtained from a MD simulation on Ubiquitin. b) Structure of an isoleucine residue showing the
jump frame and the system frame in one particular conformation. The parts of the frame axis
that are hidden by the atoms are shown in dash lines.
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The treatment of rotameric jumps in this section is based on the work of Witterbort

and Szabo [188]. We will use the result from the previous section and write the correlation as:

1 5 2 2 o) 5
Cig) =23 3 Y avatuae (D (@, 0D (. 1)), (4.25)

where the ensemble average (...) accounts for the presence of internal motions. This equation
is valid only under the assumption that global tumbling and internal motions are uncorrelated.

The Wigner matrices can be split into successive frame transformations:

e from the diffusion frame to the jump frame, with Euler angle Q2p ;. This transformation
allows a facilitated description of the jumps. For example, in the case of isoleucine xi
and x2 rotameric jumps (corresponding to different orientations of the C,1-Cjs; axis), the
jump frame main axis (z7) points along the C,-Cg bond, with origin corresponding to the
Cps (Fig.4.2b). The orientation of x; axis is arbitrary. This frame is fixed in the diffusion

frame, and the transformation is time-independent.

e from the jump frame to the system frame (SF), with Euler angle 27 gp. From the definition
of the jump frame, we have Q;sr = {ajsr,Bs5r,0}. The system frame has main axis
pointing along the chemical bond defining the conformation. In the case of isoleucine

residues, it is the C,1-Cs1 bond (Fig. 4.2b). This transformation is time-dependent.

e from the system frame to the interaction frame. The interaction frame has its main axis
pointing along the direction of the interaction. This is a time-independent transformation,

with Euler angle Qgr;.

These additional frames lead to the decomposition:

(2) 0(Q2pi, 1) Z Z D? (Qp.)DY )(QJSF, )Dg,zo)(QSF,i)- (4.26)
b=—2c=-2

The correlation function can be written:

1 5 2 2 2 B . 5
Ca) =23 > 3 Y dnateae et (D2 (57, 0) DY 0 (s, ) X .
b =—2 ¢,/ =—2 .

Dfﬁ*(ﬂp 7)D (/)b/(QD J)D( * (QSF,z')Dg)O(QSF,j),

where a,, and E, are given in Table4.1. The conditional probability (Eq.4.10) is found by
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solving the Master equation:

a N
a7 Pa (t) = Z Raﬁpﬁ (t)v (428)
ot

B=1
where p,(t) is the population of state a at time t and Rnp is an element of the exchange matrix
R and corresponds to the exchange rate from state 5 to a. Solving for the eigenfunctions

and eigenvalues (as shown in Appendix F.2) leads to the following expression of the correlation

function that appears in the sum defined in Eq. 4.27:

N N N_1
<DIE,2C)*(QJ,SF7O)DI(;’2,)C/ Qrsrt) =D > Dz(),zc*(QJ,SFa)Dﬁ)C,(QJ,SFﬁ)\/qup;qXé”)X };%Ant
a=1 ﬁ:l n=0

(4.29)
where X’én) is the o' value of eigenvector associated to the eigenvalue \,. The total correlation

function is:

N—
Z naan,a'\/poqu%q (n )X(n) —Extg Ant o

Da?g*(QD J) (S,’)b’(QD 7)Dy () (QJ,SFQ)DI()?,)C/(QJ,SFB)’Dg?o)*(QSF,Z')DS)Q(QSFJ)'

‘M“
QMZ

(4.30)

We can recognize that the sums over b and b’ are associated with decomposition of Wigner
matrices. We can write in a more compact form (suppression of the sums over b and b’ are

associated with the variable name changes ¢ — b and ¢/ — b'):

1 5 2 2 N N-1 ) )
Cigt) = 5 Z Z Z Z Zo Or,a0k,a! \/]@Xén)Xén)e_E”te)‘"tx
1 n=

D) (Qp,57.,) Dy (p,57,) Dy (Qs5:) Dy 0(Qsrj)-

(4.31)

In the case of an isotropic global diffusion tensor, we can use Eq. A.10 and Eq. A.11 to simplify:

N N-1
C; j(iso,t) fe_t/TC Z Z ,/peqpeq )732 (cosBi,.j5)e et (4.32)
a,=1 n=0
where 0;, ;, is the angle between the main axis of interaction ¢ in rotamer o and the main axis

of interaction j in rotamer .

Order parameter for rotamer jumps The internal correlation function for rotamer jumps

in Eq. 4.29 does not cancel out when ¢ — oo only for n = 0 so that the squared order parameter
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for rotamer jumps is:

(2)* 2 2
Shumps(1,3) = D> Z ZP qu ; QJ,SFQ)Dz(),c)I(QJ,SFB) D& (s, ) ﬂf,)o(QSFa,j)-
b ¢, a=1p=1
(4.33)
Using Eq. A.10 and Eq. A.11, we can write the compact expression:
N N
Sumps(1:3) = D > ppGPa(cos bi, j,)- (4.34)

a=1 =1
4.3.3 Diffusion on a cone

The diffusion on a cone can be used, for example, to model the rotation of a methyl group
around its symmetry axis under the assumption that the rotation is not hindered by the prox-
imity of other atoms that can potentially lead to a non-uniform probability distribution for
each position of the protons. Methyl groups are now widely used in biomolecular NMR for
their favorable relaxation properties that precisely originate from the fast rotation around their
symmetry axis [36, 52, 53]. In this context, force fields used in MD simulations of proteins have
been modified using NMR experimental data to correctly account for the energy barrier for the
rotation [189, 190]. The solution of the Master equation (Eq.4.8) has first been published by
D. Wallach [191].

In order to describe the diffusion on a cone motion, an additional frame needs to be
introduced on top of the diffusion and interaction frames. Similarly to the rotamer jumps, we
call this frame the system frame (SF). The main axis is pointing along the axis of rotation,
with arbitrary orientation of the x- and y-axis. The Euler angle for transformation from the
diffusion frame to the system frame is Qp sr = {ap,sr, Bp,sF,¥D,sr(t)} where only the third

angle is time-dependent in the context of this type of motion. The correlation function is then:

Zzzamamfe Enteiense(a=a) g, (Bp sp)dw y (Bp,sF) X
k=1 a,a’ bt/ (435)

(eir0sr O 0sr N DI (55 DYy (Vs

The Master equation is written using the angular momentum operator L2,:

0 0?
&p(’% t) = _DrotL%otp(’Yv t) = Drotai/ygp(’% t)v (436)
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where D, is the rotational diffusion coefficient. Solving for the eigenfunctions and eigenvalues

(see Appendix. F.3) leads to the rotation correlation function:

<ei(b7D,SF(0)*5"7D,SF(75))> - 5bb,€*Drotb2t , (4.37)

and the total correlation function is:

1< Bt Dokt o
Cis(t) = = Z Zzamam,e Ext ,—~Drotb’t jiap sr(a—a )da,b(ﬁD,SF)da/,b(ﬁD,SF)><
k=la,a’ b (438)

Dy (Qsri)Dyy (Qsry)-
In the case of an isotropic global tumbling diffusion tensor, it simplifies to:

. 1 _ 2 _ 2 *
C;j(iso,t) = =€ t/7e Z e~ Drotb tDl(fg (QSF’Z-)DZ()?(;(QSFJ). (4.39)
b=—2
Order parameter for rotation on a cone The only non-vanishing term in Eq.4.37 is

obtained for b = 0, so that the squared order-parameter for rotation on a cone is:

8711, §) = Pa(cos Bsri)Pa(cos Bsr). (4.40)

In the case of methyl-group rotation, with ideal tetrahedral geometry, it leads to the well-known

result S2,.,(ddcy, dden) = 1/9, where ddcy stands for the C-H Dipole-Dipole (DD) interaction.

4.3.4 Wobbling in a cone

The last type of motion that we will consider here is the wobbling in a cone. In this model, the
bond vector undergoes restricted diffusion inside a volume that is associated to a cone. It can
be usefull to model the motion of any bonds such as the '>’N-'H pair, or C-C side-chains bonds.
The correlation function for this type of motion was initially introduced in fluorescence [192]
and dielectric spectroscopy [193]. As will be seen bellow, and in details in the Appendix F .4,
the Master equation can be solved analytically, but the complexity of the solution has led to the
introduction of approximated forms for the correlation function by the group of A. Ikegami [192],
and later obtained similarly by G.Lipari and A. Szabo [194, 195], which led them to present the
MF correlation function [15]. However, the initial treatment of this model and the following
studies were performed under the assumption that the interaction of interest was undergoing

the wobbling motion [192, 194, 195, 196], which makes it a priori not applicable to the study
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of the motion of side-chains. A. Kumar solved the master equation when the frame undergoing
the diffusion in a cone is not the interaction frame [197, 198]. We will follow his approach,
as well as the one of C. Wang and R. Pecora [196] who extended the work of M. Warchol and
W. Vaughan [193]. In the construction of this model, the diffusing bond vector also undergoes
rotation around itself, which is not likely to correctly reproduce motions of side-chains C-C

bond vectors. We present here a way to overcome this difficulty.

For the description of this motion, we introduce the Wobbling Frame (WF) which main
axis points along the axis of the cone, and x-axis can point in any direction. Similarly to what
was presented in the previous sections, we also include a System Frame (SF') which undergoes the
diffusion motion. Assuming the wobbling and global tumbling are uncorrelated, the correlation

function is written:

1< -
J 5 Z Z Z Zam,aa,{7a/6 Ext < (2) (QWF SF, O)IDIS’Q,)C/(QWF,SF7 t)> X ( )
k=1a,a’ bt/ c,! 4.41

ng* (QD,WF)D%* (QSF,i)D((i’)b/ (QD,WF)D((;/ )O(QSF,j )-

The Master equation that solves the conditional probability is given by:

ap(ght) = _DWL%/Vp(Q7t)7 (4.42)

where Dyy is the diffusion coefficient for the wobble motion and L%V is the angular momentum

19 ) 1 &
2 _ - i T
Liv = =500 (Smeaa> sin2 0 92’ (4.43)

operator:

with reflecting boundary condition at 6 = Be.one, With Beone the cone semi-angle opening:

0
%p(gh t) |9:600ne = 0 (444)

Solving Eq.4.42 is rather tedious, and presented in AppendixF.4. It leads to the following

expression for the conditional probability:

400 +oo
p(t2,00 = > > —Dwymwmnﬂﬁm QY (Q), (4.45)
m=—o0 n=0
where:
1 )
Y, (€)= Py (p)e™?, (4.46)

27T-Hm,n (Ncone)
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and:
1

Hm,n(ﬂcone) = / (P,Tn’n(u)fdu,
Hcone (447)

Hecone = COS Beone

PJr  is the Legendre associated function (Appendix A.3) with degree vy, , and order m [196,
199, 200, 201]. The initial angle probability is:

1
a_/1 .\ 0 E 0’ Bcone Y
271~ reme)” € | ] (4.48)

p(Qo) = 07 90 > /Bcone-

p(Q0) =

The correlation function for wobbling in a cone then reads:

too  too 7DWVm n(Vm n+l)

> Y- x

4772 1- ,Ucone M= —00 n—0 Hy, n(ﬂcone)
Bcone . ﬁcone i 2 2 (2)* (2)
; sin 0dby ; sin 0d6 ; dipo ; deDy . (0, 00, —0) Dy (9, 6, —) x

P (cosbp) P,  (cos g)eimle—ro)

Vm,n

<D((,,20) (Qwrsr, O)Dézlf Qwrsr,t)) =

(4.49)

The third Euler angles in the Wigner matrices equal the opposite of the first Euler angles in
order for this correlation function to only account for the motion of the C-C bond in a cone, and
not any rotational motions: if the third angle was set to 0, the orientation of the x-axis of the
system frame with respect to the wobbling frame would not change upon diffusion in the cone.
When it was initially developped, this model was accounting for motions of the interaction of
interest [192, 193]. In this situation, the second index of the Wigner matrices equals 0, and the
third Euler angle does not play any role. This is not the case when the interaction frame is not
the one undergoing the wobbling motion, and introducing this angle is essential to best describe

the motions.

Expanding the expression of the Wigner matrices and performing the integration on ¢
and ¢ leads to the condition m = b—c = b/ — /. Note that in the previous models, the condition
m = b = b was obtained, which is correct when the interaction frame is the diffusing frame

since ¢ = ¢ =0 [196, 197, 198]. We finally can write:

Ob—c,b/—¢! X o Dwtb—cn(Woent1)t

DI* (wr s, 0D, (U psp, 1)) =
(Dye (Qwrse, 0Dy o (Qwrsr.t) = 17— D S

Il:fc (Bcone)Il?,c’ (Bcone)

(4.50)
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where:

/Bcone
I (Beone) = /0 sin 0y o(9) PL=C (cos 0)db. (4.51)

The total correlation function is then:

1< _ 2)x 2)x 2 2
Cig(t) = D33 anaanae Eﬁtpa,g (QD,WF)Dé,o) (QSF,i)sz/,)b/(QD,WF)D&,)O(QSFJ)><

k=1 a,a’ bt c,c

Z 5bfc,b’fc’ €

n 1- Hcone Hbfc,n (,Ufcone)

_DWbec,n(bec,n"‘l)t

I (Beone) Iy o+ (Beone)-

(4.52)
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Figure 4.3: Value of v, (Vs + 1) and associated pre-exponential factor for values of @ = 0,1, 2
and n ranging form 0 to 4 and cone semi-angle opening S.one = 15deg. In the condition where
the interaction frame is the interaction frame, cases where a = —1 and a = —2 are identical to
a =1 and a = 2 respectively.

In the following numerical evalutations of the correlation function for wobbling in a cone,
the integrals I;’.(Bcone) and Hp—c n(ticone) Were computed using the Python Scipy library [136]
with a limit of 30 in the sum of the Hypergeometric function part of the Legendre associated
function (see Eq. A.18), a point at which the Hypergeometric function reached convergence in

the conditions considered here. In addition, the sum limit over n has been set to 3 (only 4 eigen-
12 (Beone) 17y s (Beone)
l_l—Lcone)Hbfc,n(/"‘Cone)

values for each values of b — ¢ are calculated) as the pre-exponential factor 0
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calculated for an interaction frame undergoing the wobbling motion (leading to ¢ = 0) quickly

drops, even for values of n higher than 2 (Fig. 4.3).

Wobbling in a cone order parameter The correlation function Eq.4.50 is non-zero when

t — 400 for b — ¢ = n = 0. Thus, we have:

5b—c,05b—c’,0 Il?,c (/Bcone)ll()),c' (ﬁcone)

S2.(i, ) = D*(Qsr)DP (Qsr1), 4.53
W( ]) zb:; 1—Mcone HO,O(,Ucone) 670( SF’) 670( SFJ) ( )
which, after using Eq. A.28, leads to:
2 /. . Il?b(ﬁcone) ? (2)* (2)
Siy(i, ) =Y T . . Dyo (sF7,:) Dy (sry)- (4.54)
b cone

In the particular case where the interactions are undergoing the wobbling motions, we have

Qgsri = Qgr; = {0,0,0} and the order parameter simplifies into:

I(()),O(ﬁcone)>2 (4.55)

Siy (iw, dw) = ( -
cone

where we write iy and jy to indicate that the interactions ¢ and j are diffusing in a cone.

Calculating 1870 is straightforward from Eq. 4.51:

1 :
I(()),O (ﬁcone) = 5 €08 Beone sin” Beones (456)

which leads to the order parameter reported by K. Kinosita et al. [192]:

1
SI%V(ZWa]W) = 1 COS2 Bcone(l + cos ﬁcone)Q- (457)

The general expression of the order parameter for interaction frames not necessarily

aligned with the diffusing frame, and for the auto-correlation functions is:

. 1 1 .
SI%V (Z7 Z) = (1 — cos 6cone)2 E COSZ 5cone Sln4 /Bcone(3 COS2 0SF,i - 1)2

1
+E sin %(3 ~+ 7 cos Beone + 2 cos 25@”6)2 sin? Osr cos? OsF (4.58)

1 .4 5cone
—— SIn
192 2

(15 + 8 cos Beone + cos 2600”6)2 sin? Osril

which, in the case of interaction frames aligned with the diffusing frame, equals Eq.4.57. The
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Figure 4.4: Wobbling in a cone order parameter (Eq.4.58) as a function of the cone semi-angle
opening (Beone) and the angle between the interaction frame and the diffusing frame (0gr;).
The order parameter is calculated assuming the two interactions have the same orientation with
the diffusing frame.

evolution of the order parameter as a function of S.one and Ogp; is shown in Fig.4.4. As
expected, for a fixed Ogp;, it decreases when the amplitude of motions increases (i.e. when

Beone increases).

Discussion on the wobbling in a cone model The wobbling in a cone correlation function
was built under the assumption of uniform probability distribution for the bond vector within
the cone. This can be considered a strong hypothesis, in particular for amino-acid side-chains
pointing toward the hydrophobic core of the protein where nearby atoms can hinder motions.
Our MD simulation on Ubiquitin (vide infra for more details on the simulation) allows us
to evaluate the amplitude of motions and obtain a direct measure of the density probability
distributions for bond vectors. The probability density for Euler angles pw rsr and 0w g sr for

transformation from the wobbling frame to the system frame (with main axis aligned along the
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bond vector) are determined by:
n(p, 0¢)
Powr sr (o) = Nég )

n(0,90)
Powrsr (9) - Nébsinh’

(4.59)

where n(p, d¢) and n(0,50) are the number of Euler angles with values in the range ¢ + dp/2
and 6 £ 060/2 respectively, N is the number of frames in the MD simuations that were used
for this calculation. The values of §¢ and 66 were set to 0.01rad. To calculate the probability
density for N-H bond motion and before calculating the Euler angles, the N-C, and N-CO
bond vectors were aligned to the first structure in the MD trajectory. Similarly, to calculate
the probability density for C,1-Cs1 Euler angles, the Cg-C,1 and CTC/; A m vectors were
aligned to the corresponding vectors in the first MD frame. The main axis of the wobbling frame
is defined as the averaged orientatation of the bond vector of interest in the MD. Probability
densities are shown in Fig.4.5a,b for the N-H and C,1-Cs1 bond vectors of isoleucine 30 of
Ubiquitin, and clearly suggest that a uniform density probability distribution for the two Euler
angles is not suitable to describe accurately the motions of these bond vectors. This can be
better visualized in Fig. 4.5¢ where the carbon-d1 does not sample the entire surface of a cone.
Thus, studying bond libration motions using the wobbling in a cone model is not accurate, and
introducing a MD-derived potential in the Master equation (Eq.4.42) can potentially lead to a

better description of this type of motion.

4.3.5 Contribution of each motion to relaxation

Now, we will evaluate here how each motion contribute to relaxation. Having an exhaustive
analysis is not feasible and we will focus on typical relaxation rates: >C-Ry, *C-Ry and ¥C-1H-
oNOE in a 1BCTH?H, methyl group as encountered in a valine side-chain. The overall diffusion
will be supposed to be isotropic with global tumbling correlation time 7. = 10ns. The methyl
rotation diffusion coefficient will be set to D,or = 5 x 101571, which leads to a correlation time

for rotation of 7.+ = 6.1 ps assuming the angle between the C-C and C-H bond is Bocg =
109.47 deg;:

1 1 )
= d , 4.60
Trot 1_ Sgot b;2 bZDrot [ b,O(BCCH)] ( )
b0
2 2 _ (3cos®Bcor—1 2. .
where S/, = [doo(Bccr)]” = (f) is the methyl rotation squared order parameter.

When a jump-type of motion is added, we will suppose that the valine side-chain can jump be-
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Figure 4.5: Local librations motions of selected bond vectors of isoleucine 30 from the MD
simulation. Probability density for Euler angles ¢wrsr (a) and 6w psp (b) for the C,1-Csy
(blue) and N-H (orange) bond vectors. Points are connected by a line for visual clarity. c)
Positions of the Cs; (blue dots) in the molecular frame. The C,; is shown as a black ball.
The main axis of the wobbling frame is the red line pointing along the direction of the C,1-Cgsy
bonds. The x-axis of the wobbling frame is also shown as a red line. Units of the axis of the
molecular frames are A.

tween three possible rotamer states, and we will distinguish the situation where each rotamers
are equaly populated with equal exchange rate k5Y™ = 1/3 x 10'°s~! between the different
conformers (which leads to a correlation time for exchange of 7™ = 0.1 ns), from the situation
where p; = 0.7, po = 0.2 and p3 = 0.1 (the state numerotation is irrelevant since the global
diffusion tensor is isotropic) and all exchange rates kj;*™ = 1/3 x 10°s~! with 4 < j and kj;*"
with ¢ > j is calculated to satisfy the microscropy reversibility condition (Eq. F.27) (which leads
to a correlation time for exchange of 725%™ = 0.18 ns). The Euler angles associated to the jump
motion are Q; = {2nn/3, Bcc,0} where n = 0,1,2 and Soc = 76 deg, which is typical for
carbon side-chains. A wobbling in a cone motion of the C,1-Cs1 bond will also be considered,
when mentioned. The cone semi-angle opening is set to 15deg (results for opening angles of
5, 30 and 60 deg are shown in Appendix Fig. F.1), and the associated diffusion constant Dy is
varied from 10° to 10!°s~!, leading to variation of the wobbling correlation time from 1ps to
10 ns approximately for this cone angle opening. Relaxation rates are calculated at a magnetic

field of 14.1T, and the carbon-13 CSA is set to 20 ppm.

The rotamer exchange contributes significantly to the relaxation (compare dash lines in
Fig. 4.6), with an R; and oNOF increase by a factor 1.5 approximately, while Ry decrease by a

factor up to 3.8 when rotamer jumps motion with equal populations is introduced. The effect of

NOE

the exchange is reduced for Rs and o when the populations are not equal, and increased for
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Figure 4.6: Contribution of rotamer jump and wobbling in a cone motions to relaxation. Carbon
R; (a), Rz (b) and carbon-proton oNOF (c) at 14.1T in a C'H2H, valine methyl group, and
associated spectral density funtion for the Cg-C,1 bond auto-correlations. Dash lines show the
value of the relaxation rates and spectral density function without wobbling. Relaxation rates
(a-c) and spectral density function (d) calculated in the abscence of rotamer jump are shown in
green. In the presence of rotamer jump, the case where all rotamer populations are equal (blue)
and unequal (orange) are distinguished. In this later case, populations are p; = 0.7, po = 0.2 and
p1 = 0.1. Calculations are shown as a function of the correlation time for wobbling, a function
of the wobbling diffusion constant and cone semi-angle opening, set here to Seone = 15 deg, while
the diffusion constant Dy is varied from 10% to 1019s™!. The blue and orange vertical arrows
indicate the values of the correlation time for rotamer jump, respectively when populations are
equal and unequal. The spectral density functions are shown for Dy = 108571

Rj. These effects can be rationalized by looking at the spectral density functions (Fig.4.6d). In
the presence of internal motions, the spectral density function tends to be higher at frequencies

in the range 10°-10'° rad.s~!, which are frequencies Ry and oNOF

are sensitive to, leading to an
increase of these rates. The higher contribution of medium-frequency motions to the spectral
density function goes in pair with a decrease in the contribution of low-frequency motions, which
is the main determinant in the value of the transverse relaxation rate Ra, explaining the large

effects calculated in the presence of rotamer exchange.



4.3. Correlation functions for four types of motions 137

On the other hand, the wobbling of the Cg-C,1 bond has smaller effects on relaxation
(Fig.4.6) for the choosen cone semi-angle opening. It decreases the Rg, but the effect on longi-
tudinal relaxation rates depends on the value of the diffusion constant Dy, with fast diffusion

NOE “an increase for lower values of Dy (higher

(low ) leading to a decrease in Ry and o
values of my7), and hardly any effects for very slow diffusion. These results can be rationalized
using the same arguments as for the rotamer jump by analyzing the evolution of the spectral
density function and the relative contribution of each frequency range to the value of the re-
laxation rates. These observations can be extended to proteins with higher global tumbling
correlation time (Appendix Fig.F.2). It is interesting to notice the similarities between the

evolution of the R; as a function of 7 and the sensitivies calculated in the detector approach

which characterizes the amount of motions in a given range of correlation times [202, 203, 31, 33].

The contribution of the wobbling motions increases with increasing cone semi-angle
opening and can even become larger than the contribution of the rotamer jump (Appendix
Fig.F.1). This can be explained by the value of order parameters, which act as weights for the
Lorentzian terms of the spectral density containing contribution only from the global tumbling.
The order parameters for rotamer exchange when population are equal and unequal are 0.17
and 0.43 respectively. In comparison, the wobbling order parameter equals 0.99, 0.90, 0.65 and
0.14 for values of cone semi-angle opening of 5, 15, 30 and 60deg. Thus, for Beone = 60deg,
the decreases in Ro from either a rotamer exchange with equal population or the wobbling are

similar for Ty ~ 72Y™ (Appendix Fig. F.1.h).

As a general rule of thumb, one can reasonably expect rotamer jump to be the major
source of relaxation for methyl groups in aliphatic side-chains, since the amplitudes of wobbling
are usually limited to small cone angle openings. This of course has to be carefully investigated

before neglecting one motion, for example with the use of MD simulations.



138 Chapter 4. Models for protein site-specific side-chains dynamics

4.4 Comparison with Model-Free correlation functions

The models presented in the previous section all share one property: they are complex. Up
to 3 correlation times might be necessary to model the global tumbling; the number of decay-
ing exponential describing rotamer jumps quickly increases as the number of accessible states
increases; modeling the wobbling in a cone motion involves complex integral evaluations. Out
of the 4 considered motions, the rotation on a cone seems the most simple one. In addition
to their intrinsic complexity, another difficulty arises when analyzing data, in particular NMR
relaxation rates: how to choose one model over the other without a priori knowledge of the
type of motions involved? These aspects naturally led to the popularization of the Model-Free

correlation function [15, 102] to model internal motions:
Citp(t) = Siip + (1= S3yp)e /™, (461)

where 8%4 r is the squared order parameter and 7)/r an effective correlation time. The simplic-
ity of this model makes it particularly attractive, and has indeed led to a number of successful
analyses of NMR relaxation experiments [102, 204, 105, 106, 205, 206, 107, 108, 207, 109]. Over
the past few decades, the MF has been modified in order to include the effect of cross cor-
relation [103], or to include more than one correlation time and study more complex systems

[74, 208, 72, 73], in particular Intrinsically Disordered Proteins (IDP) [209, 210, 110, 167].

However, a series of question arises on this simple form of correlation function:

e The total correlation function results from the multiplication of the correlation func-
tions accounting for internal motions (Eq.4.61) and global tumbling. It is clear from
section4.3.1 that such factorization is possible only in the case of an isotropic diffusion
tensor, which is the frame in which the MF was initially presented. An approximated form
for the global tumbling correlation function in the case of an axially symmetric diffusion
tensor was proposed as well, and consists in the sum of two decaying exponential, with
decay constants and relative weights that can be determined experimentally [15]. Then,
how is the factorization of the global tumbling and internal motion correlation functions
affecting the fitted values of 8]2\“; and 7y r? It must be noted that the SRLS model
of correlation function was introduced in part as an attempt to overcome this difficulty

[71, 25, 27].

e The squared order parameter is of great interest as it relates NMR, data to thermodynamic
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quantities. M. Akke et al. initially related changes of order parameters to changes in
free energy [161]. A relationship between order parameter and conformational entropy
was later suggested and rationalized using a one-dimensional harmonic model [211]. An
analytical relationship was proposed by D. Yang and L.Kay based on the wobbling in
a cone model for backbone N-HN and C®-H®, as well as side-chains N-HY groups [23].
D.-W.Li and R. Briischweiler extended the equation to side-chains C-C and C-H bonds
motions by introducing amino-acid dependent parameters [24]. Recently, the group of
J. Wand proposed an ’entropy meter’ [212] to relate the order parameters to entropy
changes empirically, assuming a linear relationship between the two. For all these different
approaches, the analysis of NMR relaxation rates was essentially performed using the MF
correlation function [213, 214, 212, 215, 216, 163, 217]. Then, do the MF order parameters
accurately reflect on the amplitude of motions and can they be related to conformational

entropy quantitatively?

e Only one of the presented internal motions can be modelled with a correlation function
written as a mono-exponential decay: the instantaneous jumps between two rotamers. It
is clear that the MF correlation time is effective and is more difficult to interpret than
the order parameter when analyzing relaxation data since it contains contribution from
multiple time constants. However, can it still represent approximately the time-scales
for the motions involved? And is one decay time constant enough to analyze recorded

relaxation rates?

e The MF correlation function contains only one order parameter and correlation time, such
that it cannot accurately report on the amplitudes and time-scale of bonds undergoing
more than one internal motion, such as a combination of a rotamer jump and a rotation
on a cone. Modified versions of the MF correlation function has been suggested to take
into account the complexity of motions in biomolecules, in particular for aliphatic side-
chains [74, 21]. Then, are the fitted parameters of these models accurately reporting on

the timescales and amplitudes of the motions involved?

These questions might be combined into a single one: are the parameters of the MF correlation
function accurately reflecting the dynamic properties of the system under study? Here, we
evaluate the accuracy of the MF to describe the parameters of the explicit models presented in

preceding sections.
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4.4.1 Global tumbling in the Model-Free correlation function

Here, we will evaluate the effect of the factorization of the global tumbling correlation function

on the value of the fitted MF parameters. We will focus on auto-correlation only:

o) = Z Z<Dt(172c2*(QL7D> O>D§,QC)L/<QL,D, t)ng*(QD,M)D%(QD,M)><
a,a’ bbb/ (462)
2)* 2
(DY (14, 00Dy (s, 1)),
where M denotes the frame in which the motion is best described, (D((ng*(Q L,D; O)ngl(QL,D, t))
accounts for overall rotational diffusion, {p sr is the angle orienting the diffusing frame in the

global diffusion tensor frame, and <D£?3*(Q M. O)Dl(),%)o(QM,i,t» accounts for internal motions.

The MF correlation function is written as:

Crir(t) = (Sip + (1= S3p)e /™) x

S (D2 (21,0, 00D (21, ) D (o ar) D) (Q,01)-

/
q,a
’

(4.63)

a,a
4.4.1.1 Details on the simulations

The order parameters and correlation times are fitted to the simulated accurate correlation
function using the scipy.optimize.curve_fit function [136]. We detail here the value of the

parameters for the accurate correlation function in the following simulations.

Global tumbling The global tumbling diffusion tensor eigenvalues have been set to D,, =
107 s~ 1, Dy, =5 x 10"s™! and D,, = 10®s~!. When the symmetric top model is used, the
eigenvalues are D = D, and D = %(Dm + D,,). When the isotropic model is used, the
global tumbling correlation time is equal to 7, ! = %(Dm + Dyy + D). The two Euler angles

defining Qp rr = {¥p,m, 0p,m, 0} will each be incremented from 0 to «.

Jump model When modeling internal motions with the jump model, all populations will be
considered equal. We will simulate a 2-state and 3-state jump model, with all exchange rates
equal to ke, = 10° s~ 1. In the 2-state jump model, the Euler angles orienting the interaction
in the jump frame will be equal to Q;; = {£F, Bcc} where Boc = 76 deg, which is typical for

carbon chains. In the 3-state jump model, the Euler angles are equal to Q;; = {£2n7%, Bcc},
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where n = 0,1, 2. The internal correlation function is written as:

* 2 >(n) v (n " *
(DS (g, 00Dy (Qrs 1)) = S5 Pabp X X M DI (Qr3 ) DY b (a1, (4.64)

a7ﬁ n

where the same notations as in Section 4.3.2 are used.

Diffusion on a cone model In this case, the diffusion coefficient for rotation on the cone
will be set to Dyo; = 10' s™! and the cone semi-angle opening will be chosen so as to model a

methyl group geometry Beone = 180 — 109.47 = 70.53 deg. The internal correlation function is:
<DIE72(3*(QM,17 O)Dé?’)o(QM,z, t)> = (sbbleibQDMtt [db,O(/BCOne)]Z . (465)

Wobbling in a cone model In this last model, the diffusion coefficient will be equal to
Dy = 108s~! and the cone semi-angle opening is chosen to be Beone = 20 deg. The interaction
frame will be supposed to be aligned with the diffusing frame so that the correlation function

for internal motions reads:

2
n
: e*DW”bvn(”bvnH)tM

(2)* (2)
DI (.0, 0) DN (Qnris 1)) = oy ———— 7
< b,0 ( ) b 70( )> 1 — Lteone — b,n(/lcone)

. (4.66)

where the same notations as in Section 4.3.4 are used.

4.4.1.2 Isotropic global tumbling

In this simple case, the factorization of the global tumbling correlation function is exact and

the correlation functions are written:

1, & .
Oy = ze™™ 37 (DY (1. 0)DL3 (1),
b=—2 (4.67)

1
Carp(t) = e/ (Skir + (1= Styp)e/mir).

Since the factorization is exact, the fitted parameters can be used as reference for the parameters
fitted in the case of an asymmetric overall diffusion tensor. Fitted parameters are reported in
Table4.2. We will evaluate whether or not they correctly represent the internal dynamics in

the following sections.
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4.4.1.3 Asymmetric rotational diffusion tensor

In this case, the factorization of the global tumbling correlation function is not mathematically

rigorous. The two correlation functions for the symmetrical top diffusion tensor read [15, 218]:

Z Z e~ 6D+ Dy=DItg (0 ar)day (Op.ar) X
a——2bb’—f

(DY (., 0)Dy g (s, 1)), (4.68)

1 2
Cur(t) = £ (512\/1F +(1— 512\4F)€_t/TMF) > e~ OPL+aD=Dt (g, (0p ar))?,
a=—2

and for the fully asymmetric tensor [106]:

1 2 2 5 - A -,
5 Z Z Z Uy allys s Ext giop v (a a)da,b(9D,M)da,b/(9D,M)X

—2b
Dy <QM“0>D§3<QM,Z¢>>,

<1 (4.69)
Cmr(t) = ¢ (SMF + (1= Stp)e _t/TMF) X

Z Z gy e e M ) [do o (0p )]
a,a'=—2 k=1
We can note here that, the MF correlation function cannot distinguish the orientation of the in-
teraction frames in the diffusion frame, which is particularly critical in the presence of a rotamer
jump motion. The fitted MF parameters agree well with the ones obtained when simulating
an isotropic global tumbling, except in the case of the two-state jump model where large devi-
ations of the fitted parameters are obtained when Qp ps is changed (Table4.2, top). J. Wand
and co-workers already distinguished the 2-state and 3-state jump models by considering the
resulting symmetry [219]. In the case of 3 exchanging states with equal populations, the motions

is azymutal symmetric, that is:

(@%) = (y*), (z) = (y) =0, and (zy) =0, (4.70)

where (- - -) denotes an ensemble average, and z and y are the z- and y—coordinates of the
interaction frame in the jump frame (labelled M in this section). In the case of the 2-state
jump model presented here, the first condition in Eq.4.70 is not fulfilled. It is not fulfilled nei-
ther when populations in the 3-state jump model are not equal, in which case the factorization

of the asymmetric global tumbling correlation functions does not accurately reproduces MF
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Table 4.2: Values of the fitted MF parameters (correlation function Eq.4.63) for 4 types of
internal motions and the three possible symmetry property of the overal diffusion tensor. In the
case of the symmetric top and fully asymmetric overal diffusion tensor, the reported values and
errors correspond to the average and standard deviation over the simulations with different val-
ues of Op ar and {¢p ar,0p v} respectively. The 3-state jump model with unequal populations
(bottom row) was simulated with p; = 0.7, p, = 0.2 and p3 = 0.1.

Isotropic Symmetric top Fully asymmetric

S%/[F TMF (PS) 81\2/1F mF (PS) S%JF TMF (PS)

2-state jump
0.82 612 0.56£0.24 | 1,368 £709 | 0.52+0.29 | 1,840+ 1,181

b1 =p2

3-state jump
0.16 319 0.16 £0.01 331+ 21 0.17£0.00 329 £ 20

P1=P2 =DP3
rotation 0.12 4.5 0.12 £0.00 4.7 +0.0 0.11 £0.00 4.94+0.0

wobbling 0.83 340 0.83 £0.00 348 £ 27 0.83+£0.00 351 £27

3-state jump
0.43 153 043 +£0.11 | 188 +£117 | 0.42+£0.12 186 4+ 169

P1 # D2 # D3

parameters obtained in the isotropic tumbling case, and show large deviations depending on

the orientation in the diffusion tensor frame (Table4.2, bottom).

These simulations suggest that the factorization of the global tumbling correlation func-
tion does not affect the value of the fitted parameters in the presence of a diffusing-type of
internal motions (that is diffusion on a cone or wobbling in a cone). When the sampling of the
conformational space is discrete (jump model), the factorization does not affect the value of the
MF fitted parameters when the motion has azymutal symmetry, a strong condition that may
not be met in most cases. This result is in contradiction with results of J. Wand and co-workers
who concluded that the MF correlation function is robust in the 3-state jump model, even if
populations are not equal [219]. A strong difference between our simulations and their study
is the fact that the conclusion of the authors is based only on simulations of the internal cor-
relation function. In this subsection, we did not compare the values of the fitted parameters
with the ones choosen for the simulations such that MF fitted parameters might reproduce

expected ones, as suggested by the authors [219]. The conclusions brought here only concern
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the factorization of the global tumbling correlation function, which in the case of a jump-like
motion without azymutal symmetry in an asymmetric diffusion tensor affects the value of the

fitted parameters. These aspects were not investigated in the original paper [219].

4.4.2 Accuracy of the Model-Free fitted parameters

Here, we will evaluate if the MF order parameter matches the expected one, and if the MF
correlation time reports on the correct time-scales for the internal motions. Based on the
previous conclusions, we will only consider the diffusing-like motions and a jump motion with
azymutal symmetry. In addition, for the sake of simplicity, we will consider that the global
tumbling is isotropic. In this case, we will not simulate the decay associated with the overall

diffusion so that the time-scales of each motion can arbitrarily be set to unity.

4.4.2.1 Jump model

Since we only consider azymutal symmetric motion, we will restrict ourselves here to a 3-state
jump model with equal equilibrium population for each state, and equal exchange rate between
each state. The global tumbling motion is not considered in the simulations so that the exchange
rate will be taken equal to k., = 1a.u. without loss of generality. In addition, we will consider
the case where the interaction frame is not necessarily aligned with the rotamer frame (i.e. the
frame undergoing the jump motions), and is oriented with Euler angles Qr; = {¢r,,0r:} in

the rotamer frame. The correlation function is then written as:

(1) =3 33 S s XX et

b ¢c apf n (471)
DY) (Q1,2,) DY (1.0, ) D (i) DL ()

which is can be compacted into:

C(t) = Z Z . /papngén)Xén)e)\”t'Pg(COS Oieeig)s (4.72)

a?ﬁ n
where 6;, i, is the angle between the interaction-i main axis in rotamers a and 5. We will
compare the expected and fitted MF order parameter and correlation time as a function of the

angles ¢pr; and 0g ;. First, we can show that the expected correlation time is independent from
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the internal geometry of the system:

ME = SZZZ L BB X Xy (cos i, ). (4.73)

n>0 o,

In this particular case where all populations are equal, the eigenvalues A\,,n > 0 are degenerate

and equal to —3k., such that:

TME = 3 D D \/PabpX n)X( )7’2(C059ia,w)- (4.74)
3]4: 1—5 e

The sum over the variable n can be extended to n = 0, provided the order parameter is
then substracted (the element of the sum evaluated for n = 0 equals the order parameter, see

section 4.3.2):

1 1 > o(n
TME = B 182 (Z > VPP XX Pa(cos i i) 82) | Y
exr n 0575

We can now recognize that the sum equals the correlation function at ¢ = 0, which, for auto-

correlation of internal motions, equals to 1, such that we finally obtain:

1
3kex '

TMF = (4.76)

In the case presented here, the MF correlation time is equal to 1/3 a.u..

Simulating and fitting 400 different correlation functions calculated for 20 angles g ; and
O varying from 0 to 7/2 leads to a fitted MF correlation time of 7.5, = 0.33+ (4.9 x 1077) a.u
(average and standard deviation calculated for the 400 cases), which is in perfect agreement
with the expected correlation time, and is indeed independent from the internal geometry. This
result shows that the MF correlation function can accurately report on the exchange rate of an
azymutal symmetric jump motion. It can also perfectly reproduce the expected order parameter
(Fig.4.7a). However, its value strongly depends on the orientation of the interaction frame in
the rotamer frame (Fig.4.7b). Indeed, it does not report on the amplitude of motions of the
bond undergoing the jumps, but on the amplitude of motions of the interaction frame, bound
to the jumping frame. Note that in the simple case presented here, the interaction frame is
fixed in the rotamer frame such that a change of jump frame can lead to Qr; = {0,0}. When

other motions are involved, this might not be possible.
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Figure 4.7: Comparison between the expected and fitted MF order parameters in the case of a 3-
state jump model with azymutal symmetry. a) Correlation plot between the expected (Eq. 4.34)
and fitted order parameters for different Euler angles Qr; = {¢r,i, 0r,} orienting the interaction
frame in the rotamer frame. The dash line is shown as a guide for perfect equality between the
two order parameters. b) Contour plot of the expected order parameter as a function of the
Euler angles orienting the interaction frame in the rotamer frame Qg ; = {¢r.,0r,}-

4.4.2.2 Methyl rotation

Here, we will consider the diffusion on a cone motion, applied to methyl group rotation around
the C-C symmetry axis. The restriction to this particular moiety is not strongly limitting: this
model does not apply to other common chemical bond motions in biomolecules which are a
priori better modeled with the wobbling in a cone type of correlation functions. Following the
approach presented for the jump motion, we will consider the overall tumbling to be isotropic
and it will not be simulated. The diffusion constant for rotation on the cone will be taken equal
to Dot = la.u., and the angle between the C-C and C-H bonds is Seone = 109.47 deg. We can

calculate the correlation function for motions of the C-H and H-H dipolar interactions:

2
CCH(t) = Z einDmtt [db,O(ﬁcone)]2 ,
b=—2

1 1
Cunu(t) = 1 (1 + 36_4D’"°tt) =57 (1 -

(4.77)

1 _4D7‘ott
4> ¢ ’

where we have used the fact that the H-H and C-C bond are orthogonal to write Crpg. As can
be seen in Eq.4.77, the correlation function for H-H motions is already written in the form of
a MF type of correlation function, with order parameter 1/4 and correlation time 1/(4D,).

Nor surprisingly, it is perfectly fitted with a MF correlation function, and the fitted parameters
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correspond to the expected ones (Fig.4.8a). However, a single exponential decay does not
perfectly reproduce the simulated correlation function for C-H motions (Fig.4.8b). The order
parameter is slightly overestimated and the correlation time underestimated by 20%. The
methyl-group order parameter is well-described for each type of possible interactions, and is
usually not fitted. Critically however, a unique motion (the rotation of a methyl group) leads

to two distinct correlation times depending on whether C-H or H-H motions are probed. These

results show that:

e since order parameters for methyl-groups rotation are of little interest and usually never
fitted, an MF correlation function can be used to model methyl group rotation. The fitted

correlation time is underestimated, but the order of magnitude will be correct.

e for the analysis of methyl-groups relaxation properties, a single MF spectral density func-
tion can not be used for C-H and H-H dipolar interactions associated spectral density

functions. A scaling factor of 2 has to be applied to the correlation time for C-H motions.

e the analysis of MF correlation time for methyl rotation can easily be interpreted to extract

the diffusion constant for methyl rotation.

a) b)
1.0 H-H auto-correlation 101 C-H auto-correlation
091\
\ . 0.8 .
0.8F | Expected Fitted Expected Fitted
\ s? 025 025 s 011 013
=0.7F | D, XxT 025 0.25 o6k D,xT 050 0.40
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05F | 0.4
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Figure 4.8: Correlation function for methyl group rotation. Auto-correlation function for H-H
(a) and C-H (b) motions. Simulated correlation function are shown in blue, and MF fit in
dash orange. The correlation functions are shown as a function of D, X ¢ such that they are

independent of the diffusion constant D,,. The expected and fitted MF parameters are shown
on each pannel.
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4.4.2.3 Wobbling in a cone

We now turn to the last internal motion considered in this section: diffusion in a cone. Again,
and without loss of generality, the diffusion constant will be supposed to be equal to Dy = 1 a.u..
We will only consider cone semi-angle opening lower than /3 which covers most of the bond

motions in folded biomolecules.

Interaction frame aligned with the diffusing frame We first consider the simpler case
where the interaction frame is the diffusing frame. The correlation function simulated here is

written as:

2
o=t 3y Ll

—Dw vy n (Vp,n+1)t 4.78
e , )
1 — ficone b——_9 n Hb,n(ﬂcone) ( )

using the same notations as in section 4.3.4. Fitting the simulated correlation functions repro-
duces well the expected values for the order parameter and correlation time for cone semi-angle
opening lower than 30deg (Fig.4.9). The agreement between the expected and fitted order pa-
rameter is still satisfactory for larger cone opening, and the correlation time can still report on
the order of magnitude for the time scale of motion, provided the dependence in cone semi-angle

opening is taken into account (see y-scale in Fig. 4.9b).

a) b)
10 B —
D — Expected 02}
\\ Fitted
0.8 N\
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04+F
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Figure 4.9: Order parameter (a) and correlation time (b) as a function of the cone semi-angle
opening for an interaction frame undergoing a wobbling in a cone type of motion. The expected
values are shown as a solid blue line and the fitted ones as a dashed orange line.

Interaction frame not aligned with the diffusing frame In the case where the in-

teraction frame is not aligned with the diffusing frame but is oriented with Euler angles
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Qsri = {¢sri,0sri}, the correlation function reads:

1

cio - oy [FeBeone)]”

e~ Pwib—en(Wb—entDE (7 (0or )2 4.79
LO\USF, ) .
1- Hcone b=—2¢=—2 n Hb cn(ﬂcone) [ ¢ ( Z)] ( )

which is independent from the first Euler angle ¢gr;. The expected order parameters and
correlation time are well reproduced by the MF correlation function (Fig.4.10). For large cone
semi-angle opening (Seone = 60deg), a small deviation in the order parameter is observed, and
the correlation time still reports on the order of magnitude of the time-scales involved with a
systematic error lower than 10 %. It can also be noted that while the order parameter shows a
dependence in Euler angle 05, the correlation time has only a small dependence in internal

geometry.

a b
) 1 .0 Bcone = 5 deg )

Boone = 15 deg 0.2k B..=60deg

0.6F Bcone =30 deg
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Figure 4.10: Order parameter (a) and correlation time (b) as a function of the cone semi-angle
opening for an interaction frame attached to a frame diffusing in a cone. The expected values
are shown in solid lines and the fitted ones in dash lines. Calculations were performed for 4
cone semi-angles opening.

4.4.3 Model-Free in the presence of uncorrelated motions

Motions in biomolecules can be far more complex than the superposition of one of the afor-
mentioned internal motions and global tumbling. We will investigate here to what extend MF
correlation functions accurately report on order parameters and correlation times for the mo-
tions involved. Instead of fitting simulated correlation functions, we will here calculate and fit
relaxation rates for a '*C'H2H; methyl group of a valine in a protein. We will only consider car-

bon longitudinal and transverse auto-relaxation rates, as well as the *C-'H DD cross-relaxation
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rate, at magnetic fields of 9.4, 14.1, 18.8, 23.5 and 28.2 T. Equations for the relaxation rates can
be found in Appendix C.3. The 3C-CSA is supposed to be axially symmetric with value 20 ppm.

4.4.3.1 Method

The protein will be suposed to tumble isotropically, with a global tumbling correlation time of
7, = 10ns. The methyl rotation is included, with a diffusion coefficient D,.,; = 5 x 101%s~! and
a cone opening for the rotation of Sccpy = 70.53 deg. We will first consider only one additional

internal motion, and the three following cases will be simulated:

e a wobbling in a cone motion, with cone semi-angle opening of S.on. = 15 deg and diffusion

cofficient Dy = 107 s™;

e a 3-state rotamer exchange motion with azymutal symmetry and exchange rate between

each state equal to ke, = 1/3 x 109571,

e a 3-state rotamer exchange motion with same geometric parameters, but with p; = 0.7,
p2 = 0.2 and p3 = 0.1 (the state labelling is irrelevant since the global tumbling is isotropic)
and k;; = 1/3 x 109571, i < j.

The spectral density functions for the C-H and C-C auto-correlation when the wobbling is

included are:

[deo(Beon))”

2
2 2 2 en 1 Inc(/Bcone)
jCH 5 Z _ZZ Z b [ b }

b=—2c 1 + wacn)2 1 — picone Hp-— cn(/«tcone)

9 (4.80)
j 2 Z Z Tb()n 1 {Iao(ﬁcone)}
CC 5 b—2 n 1 + WTMS 21— Hcone Hb,n(,ucone)
and when the rotamer exchange is included:
Thi, 5 (n) ()15 (2) @
Z Z Z Z 1 ng 2 VPaP X&n)Xﬂn Db,c (QJvRa)Db,c (QJvRﬁ)X
b——2c*—2a6n 0 + wbcn)
[dc o(ﬂGCH)]2 : (4.81)

b n >(n) v (n 2)* 2
z Sy e JPala X XD (kD (k).

b——2a,,8n 01+ waOn)
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with the same notations as above and:

_1:

(Tl}/‘gn) 7_(:_1 + DWVb—c,n(Vb—c,n + 1) + C2Dr0ta

(4.82)
(TbEcxn)il = Tgl - )\n =+ C2DTOt'

When three motions are included, we will consider that the wobbling affects the rotamer
frame which exchanges between 3-states. The same parameters as before will be used such that
two cases will be distinguished (exchange with or without azymutal symmetry), except that
the coefficient for diffusion in a cone will be increased to Dy, = 108s~!. The spectral density

functions are written:

2
T 2 ncm n 1 [21 (/6607’16)
jC]:JHW Zzzzl+ Tb,c,d ) Pald ()X()l [ d } %

b ¢d a,f n=0 m — HMcone Hc—d,m(,“«cone)

Dz(;Qc) *(QJ,RQ)DSC) (Q1rs) [dd,o(BCCH)]2 ,

(4.83)
2Ty B L[]
« be a,3n=0 m 1 + ) 1- Hcone Hc,m(ﬂcone)
Dz(;zc)* (Q,R., )Dz(),c) (QJ,RB),
with:
(Tpa) ' =7 = A+ DiyVeamVe—dm + 1) + &> Dror. (4.84)

A Markov-Chain Monte-Carlo (MCMC) analysis is used to obtain MF [15] and EMF
[74] parameters for the internal motions. The associated following spectral density functions

are [15, 74, 130, 21]:

2 0 =35 (8 o+ 0
2 T 7/
+=(1-83) <S21+(0W+(1_82)1+(m{’)2>’ (4.85)
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Table 4.3: Values of MF parameters obtained from fitting carbon-13 longitudinal and transverse
relaxation rates and C-'H DD cross-relaxation rates at 5 different fields compared with the
expected parameters for a P C'H?H, methyl group on a protein with isotropic global tumbling
correlation time 7, = 10 ns, undergoing rotation and one of the 3 considered motions. The error
is obtained from the parameters distribution following the MCMC analysis of the simulated
relaxation rates.

S? 7; (ns) Tm (DS)
expected fitted expected fitted expected fitted

C-C wobbling 0.90 0.87+0.04 1.96 4.75+3.03 10.0 10.1+0.24
Symmetric jump 0.17 0.17£0.01 1.00 1.024+0.13 10.0 9.89£0.35
Asymmetric jump 0.43 0.43+0.03 1.84 1.82+£0.38 10.0 9.94+0.34

2 T, 7! 75
EMF _2c2 2 o2 c 1 2 1 2 1— 2 2 )
jC’H (w) 5Sm <8152 1+ (ch)g + ( Sl) 1+ (WT],_)Q + Sl( 52) 1+ (CL)Té)Q
2(1_82) (82827—7/”4‘(1—82) 7—{,
5 m Y29 (wr)2 V1 4 (wrf)?
e o (4.86)
1( - 2) 1 n (WT£/)2> )
2 T, T T
EMF _“ 2 Q2 c Q2 1 21 _ Q2 2
jCC (W) _5 <8182 1 + (W’TC)Z + (1 Sl) 1 n (WT{)Z + Sl(]' 82)1 + (WTé)Z) )

where S,;, = Pa(cos Bccp) is the methyl rotation order parameter, S is the order parameter
associated to the correlation time 7; in the MF, &; (respectively S) is the order parameter for
the motion associated to the correlation time 71 (respectively 72), and T,;_l =71+ T L and
7',;,_1 =7 4 b+ Tk_l with & =14,1,2,m. The MCMC is performed using the emcee Python
library [170] with 15 chains of 15,000 steps (only the last 10,000 are kept for analysis). The

error for the calculated relaxation rates is set to 5 % of their value.

4.4.3.2 Model Free and two internal motions

In the case where only one additional internal motion is considered, on top of the methyl rota-
tion, the MF spectral density function can perfectly fit the simulated relaxation rates (Appendix
Fig. F.3). The comparison of the MF fitted and expected parameters (Table 4.3) shows that the
fitted order parameters and correlation times are in very good agreement with the expected
values. Among the MF parameters, the order parameter is of particular interest since it can

be used to calculate conformational entropy [23, 24], heat capacity [213] or changes in entropy
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upon binding of a drug for example [214, 212]. Thus, a MF analysis of 3C*H?Hy methyl groups
relaxation rates undergoing rotation and one additional motion on top of an isotropic overall

tumbling can a priori still report accurately on the thermodynamic properties.

4.4.3.3 Model Free and three internal motions

We will here investigate the case where the methyl group of a Valine side-chain still undergoes
a rotation around the Cg-C,; bond, but two additional internal motions are considered: the
wobbling of the Cg-C,1 bond (with a diffusion constant 10 times higher than in the previous
section) and the rotamer exchange between each rotamer positions. Relaxation rates are fitted
using the MF [15] and EMF [74] correlation functions (Appendix Fig.F.4). The EMF correla-

tion function better reproduces the simulated relaxation rates than the MF correlation function.

The fitted correlation time for methyl rotation perfectly reproduces the correlation time
obtained when only one additional internal motion was considered (compare Table4.3 and Ta-
ble4.4). Since the Cg-C,1 wobbling diffusion coefficient was increased by a factor 10, this
suggests the fitted value for the correlation time of methyl-rotation is independent from the
time-scale of the other motions. This is consistent with the variations of 7,,, that do not exceed
0.1ps when the diffusion coefficient for wobbling is changed over 4 orders of magnitude (Ap-

pendix Fig. F.5ek).

When analyzing relaxation data with the EMF spectral density function [74], we can
wonder if the two sets of fitted order parameters and correlation times can report on the motions
involved, that is wether each of them can be associated to one particular motion. With the
new diffusion constant for wobbling, the associated expected correlation time is 197 ps, which
is in the same order of magnitude as the fitted correlation time 7o, while 7 can correspond to
the correlation time for rotamer jumps (compare Table4.3 and Table4.4). However, the fitted
correlation times 71 and 7 show negligeable variations when the wobbling diffusion coefficient
spans 4 orders of magnitude (Appendix Fig.F.5) which suggest that neither of them report
on this motion. This is likely due to the fact that for the chosen cone semi-angle opening, the
contribution of the wobbling to relaxation is small compared to the rotamer exchange (Fig. 4.6).
Critically, the fitted order parameters are far from any of the expected ones (compare Table 4.3

and Table 4.4) which also indicates the the EMF correlation function does not allow to identify
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Table 4.4: Values of EMF parameters obtained from fitting '*C longitudinal and transverse re-
laxation rates and '3C-'H DD cross-relaxation rates at 5 different fields for a '3C'H2Hy methyl
group on a protein with isotropic global tumbling correlation time 7. = 10 ns, undergoing rota-
tion, wobbling of the C-C bond holding the methyl group, and a rotamer exchange process with
azymutal or non-azymutal symmetry. The error is obtained from the parameters distribution
following the MCMC analysis of the simulated relaxation rates.

812 71 (ns) 822 Ty (ps) Tm (DS)
Symmetric jump | 0.64+0.24 2.394+1.56 | 0.18+0.15 703+185 | 10.1+0.42

Asymmetric jump | 0.54+0.10 3.42+1.07 | 0.624+0.11 656 £238 | 10.2+£0.39

the parameters describing each motions individually.

4.4.4 Conclusion

In this section, we have shown that the MF correlation function reproduces the accurate correla-
tion function for the models considered here. When two internal motions are considered, on top
of an isotropic overall tumbling, fitted MF parameters agree well with the expected ones. Devi-
ations are noticed in three cases. (1) The methyl rotation seems to be ill-characterized by a MF
correlation function, but fitted correlation times still report correctly on the order of magnitude
for the time-scales involved. However, the value of the MF correlation time for rotation depends
on wether C-H or H-H correlation are probed (that is depending on wheter carbon or proton
relaxation rates are analyzed). If such correlations are analyzed together, the spectral density
function has to be adapted to each correlation. (2) When more than two internal motions are
considered, the deconvolution of each contribution to the relaxation rates is not trivial from
fitted EMF parameters as each individual parameters can not be assigned to one particular
motion. (3) When the overall tumbling is not isotropic, which concerns the large majority of
biomolecules, the MF correlation function miss-characterizes rotamer exchange processes which
do not have azymutal symmetry. This condition on the symmetry property of the exchange is
very strong and is unlikely to hold often, so that MF-type of correlation functions might lead
to a miss-characterization of rotamer-jump processes that, when present, mostly dominate the

relaxation of side-chains (see previous section).
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4.5 Correlation functions in the presence of correlated internal

motions

So far, correlation functions were written assuming statistical independence between each mo-
tions. In the case of methyl groups in aliphatic side-chains, it is relatively easy to imagine
that the methyl rotation or C-C wobbling depend on the rotameric state. Here, we present the
correlation functions for correlated rotamer jumps and methyl rotation. This section is based
on the treatment of correlated overal tumbling and rotamer jumps which was initially presented

in the late 2000s [111, 173].

4.5.1 Analytical treatment for correlated rotamer jumps and methyl rotation

We will treat the case where a methyl group jumps between rotameric states with different

rotation properties in each of them. The correlation function is:

Z Qe qC q/ € E”tDa?g*(QDJ)Dg,)b’(QDJ) X
—2bb=—2c,c/=—2 (4.87)

(D éc’ <QJ,5F,o>D£,,L,<QJ,SF,t>>2>£23*msaz-)Dﬁ?,’omsmx

g

I M v
M v

where the same notations as above have been used. The correlation function for overall tumbling
is already expanded as presented in the previous sections. In the Euler angle set Q;sr =
{¢15F,055F, ®55F}, ¢JsF orients the jump frame in the direction of the populated rotamer
and is thus time dependent, 6;gr rotates the jump frame to align it on the rotamer frame
(which was introduced in the previous sections), and ¢ gr rotates the resulting frame to align
its x-axis along the direction of one C-H bond and is thus time dependent. The ensemble average

can be expressed:
<Dl(),2c)*(QJ,SF7 0)D, () (QsE,t) ZP Q57,0 )DIE’) (Qs7:1)) pars (4.88)

where the sums run over all accessible states, and the notation () g, indicates that the ensemble

average is calculated with initial state o and final state 8. It can be calculated as follows:

27 27
a :/ d¢o d¢p(¢0)DIS26)*({<PJ,SFaaQJ,SFaa Po})x
’ (4.89)

({QDJSFBaeJSFga O} t{$,5F0s 05.5F, Do} 0) ({WJSFB,QJSFB,QS})
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where ¢ sr, and 0 sp, are the values of the Euler angles to transform from the jump frame to

the System Frame (SF) in rotamer k. The probability p(¢o) is:

p(do) = i7 (4.90)

2

and in order to calculate the conditional probability, we will use the notation:

p({wssF;, 05585, 0}, tHpssF., 0158, $0},0) = p(B, ¢, tla, ¢o, 0). (4.91)

The Master equation that solves the conditional probability is a combination of the Master

equations for rotamer exchange and diffusion on a cone:
d N
ap(ﬁa ¢7 t‘Oé, ¢07 0) = Z Rﬁ’yp(’% ¢7 t|Oé, d)Oa 0) - Drot,,BL?«otp(ﬁa ¢7 t|Oé, d)Oa O)a (492)
y=1

where R;; are elements of the exchange matrix R (i.e. exchange rate from state j to state i) and
D, is the diffusion constant for diffusion on a cone in state 3. We solve Eq.4.92 by writting
the conditional probability in terms of eigenfunctions of the angular momentum operator L2,

(see Appendix F.3):
p(5,6,tla 60, 0) = 3 ey, (1.9

n27r

which, after insertion and identification in Eq. 4.92, leads to the following differential equation

for the functions %

d N
S0(1) = —Dyor g (1) + 3 Ryl (t). (4.94)
y=1
It can be written in matrix form as:
d N
LCa(1) = Y R Ci), (4.95)
v=1

where C{(t) is a column vector containing the elements ch®(t) for all states p and R, are

elements of the matrix R,, defined as:

Ryw p#F v
Rn,uy = g . (496)

2 —
RMV —-n Drot,u =V
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Similarly to the treatment of rotamer jumps, we define the symmetrized pseudo-exchange matrix
as:

ﬁrot,n = 7% - n2Drot7 (497)

wherer D,..; is a diagonal matrix containing the methyl rotation diffusion coefficient as diagonal
clements, and R is the symmetrized exchange matrix (Eq. F.31). Then, the functions ¢2® can
be explicitely written as:

eq N

Ba(t) = ;)fq SO X g ) (4.98)

n

where N is the number of states and Xc(m’n) is the value ¢ of the eigenvector X (™™ for the
symmetrized exchange matrix associated to the eigenvalue ), ,,. The ensemble average in

Eq.4.89 can now be expressed as:

iei(b@J,SFa —Versr)
2

2T 27 . , .
Z/ d¢0/ dgpeileto—c ¢>)i€m(¢*¢o)cga(t) (4.99)
. J0 0 2w

i(b —b
:5(26/62( PJ,S Fo, WJ,SFB)dlw(

dp,c(0,5F,)dy o (B1,5F5) %

<"'>50¢ =

01,55, )dy (0.1,5F,)cE*(t),

which leads to the correlation function for correlated rotamer jumps and methyl rotation:

2 2

1 — 2)x* 2
Ci,j (t) :g Z Z Z Z Z QAk,alk,q' € ENtDEL,ZZ (QD,SFQ )D((J/?b(QDvsFB) X
k=la,a/=—2b=—2q,3 1 (4100)

\Palp X Pm XXt DI (Q5m,) D) (Vsr)-
4.5.2 Effect of correlated motions on relaxation rates

We investigate here how the correlation of motions affects relaxation rates in a '*C'H?H, methyl
group. We restrict the calculations to a 2-state exchange, with Euler angles for jumps of
{x7/2,85cc,0}, where Sjcc = T6deg is typical for aliphatic carbon chains. The exchange
rate ki is fixed to ko = 0.5 x 109571, and ko is calculated using Eq. F.27 to satisfy the mis-
croscopic reversibility condition. We impose an isotropic overall diffusion tensor with global
tumbling correlation time 7. = 25ns. Relaxation rates are calculated for three distributions of
rotamers: p; = 0.3, p1 = 0.5 and p; = 0.7. Finally, the population average methyl rotation
diffusion coefficient is set to 10 s™1, and the difference of diffusion coefficients between the two

states is AD,o = 5x 1019571 with the highest diffusion coefficient being associated to rotamer
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Figure 4.11: Contribution of correlated rotamer jumps and methyl rotation to relaxation. Mag-
netic field variations of carbon R; (a), Re (b) and carbon-proton DD cross-relaxation rate (c)
in a '3C'H?H, methyl group exchanging between two rotamers states and calculated for three
distributions of populations. Relaxation rates calculated with a unique diffusion coefficient for
methyl rotation are shown in dash, and relaxation rates calculated by considering the correlation
between rotamer jumps and methyl rotation motions are shown in plain lines.

1. We impose an axially symmetric CSA tensor for the *C nucleus with an anisotropy of 20 ppm.

Transverse relaxation rates calculated with the same properties for methyl rotation in
both rotamers are indistinguishable from the rates where the correlation between motions are
taken into account (Fig.4.11b). This is due to the fact that the main contribution to these rates
is the CSA, which does not report on methyl rotation. However, longitudinal auto-relaxation
rates (Fig.4.11a) and DD cross-relaxation rates (Fig.4.11c¢) show significant deviations depend-

ing on wether correlated motions are considered or not.
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4.6 Unravelling a CSA rotamer-dependent relaxation mecha-

nism

When we introduced the Bloch-Wangsness-Redfield (BWR) relaxation theory (Chapter 1), we
implicitly assumed that the strengths of the interactions were time independent. Chemical
bonds vibrates in the femtosecond range by a few picometers, so that it is a valid approxi-
mation in the case of the DD interactions between directly bonded nuclei, even if its effective
strength needs to be carefully set [220]. Similarly, bonds vibrations lead to slight variations
in CSA tensors for the nitrogen and carbonyl carbon-13 of peptide planes [221]. In this later
study, S. Tang and D. Case indicate that the use of a scaling factor for the CSA when analyzing
relaxation data is a way to take into account the motional averaging of the CSA tensor. How-
ever, to the best of our knowledge, no study focused on the variations of CSA tensors in protein

side-chains and their effect on relaxation.

Our initial NMR and MD analyses of isoleucine-0; methyl groups (Ile-0;) dynamics in
Ubiquitin showed that isoleucine side-chains undergo instantaneous (that is faster than the
sampling of the MD, i.e. time difference between two saved frames) jumps between different
rotameric states [21], with a retention time of a few nanoseconds in each conformers. For each
of the orientation of the carbon chain, it is reasonable to expect a significantly different CSA
tensor such that the strength of the CSA interaction cannot be considered time-independent on
the timescales of the relaxation. In this section, we show that the difference in CSA between
conformers contributes to relaxation. Then, we calculate the CSA tensors of Ile-d; for different
conformation of an isoleucine side-chain in water. We re-analyze our relaxometry data recorded
on Ile-9; of Ubiquitin and show that the models of correlation function introduced in the previous
sections can reproduce CSA-DD cross-correlated cross-relaxation rate much better than the
MF analysis (Fig.3.6a,b). This analysis is performed using results from MD simulations, in

particular to limit the size of the exchange matrix to the sole populated states.

4.6.1 Relaxation with a time-dependent CSA tensor

In this section, we restrict ourselves to the simple case of a methyl group exchanging between two
rotamers in a protein undergoing isotropic overall diffusion with correlation time 7. = 25ns.
We asume perfect tetrahedral geometry for the methyl group, and a diffusion coefficient for

the rotation Dyo; = 5 x 1010571, The set of Euler angles for transformation from the jump
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frame to the rotamer frame is Q;p = {£n/2,6;,0} with 5; = 76 deg, which is typical for
carbon chains. The carbon CSA tensors is considered axially symmetric and aligned along
the C-C bond of the methyl group. The proton CSA is neglected. We set the exchange rate
from state 1 to 2 to ko1 = 0.5 x 109s™! and the exchange rate ko; is calculated to satisfy the
microreversibility condition (Eq.F.27) depending on the three situations we consider for the
population of state 1: p; = 0.3, p1 = 0.5 and p; = 0.7. Finally, the population average of the
CSA value is set to 04, = 18.2 ppm which corresponds to the value of the carbon-d1 in isoleucine
side-chains determined from cross-correlated cross-relaxation rates [131]. We evaluate the effect
of Ao = o9 — o1, the difference in CSA between the two states. The individual CSAs are

calculated using;:

01 =0av _pQAga
(4.101)
02 = Oqu +P1AU,

where o; is the value of the CSA in state i. We focus on carbon-Rq, carbon-Rs and the carbon
CSA/DD cross-correlated cross-relaxation rates 7, and 1., in a BC'H?H, spin system for a

magnetic field By = 14.1T:

Ri(9C) =3 (T wn — we) + 3T we) + 678 (o + we))
+ g(J O (we —wp) + 37D (we) + 675 (we + wp))
+ I (we),
Ro(9C) =4 (4TS 0) + T o — wo) + 3T (we) + 6Ty wn)+
6Ty (wi +we)
+ (TG0 + T8 we — wp) + 375 (we) + 678 wp)+ e
6750 (we +wp))
+ 50700) + 37 wo)),
0:070) =\ [27nc),

1 /1
1en(70) =1 L4710 (0) 185 0,

where the superscript (I) indicates that the strengths of the interactions are included in the

spectral density functions which are written (using the same notations as in the previous sec-
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tions):

T CH5 Z Z Z 1+ )Qx/pap GX WX

a,b=—2 a,f=1n=0

Da?g*(QJ RQ)D(S 2(QJ Ry)dbo(Becn)?,

T CD* Z Z ZH 5 Fap XX

abf—Qa,B 1n=0

D? (QJRQ)D(Sg(QJRB)dbO(BCCH)27 (4.103)
(1) 2 2 2
T '( WCE Z ZUaUﬂ 5v/PaPp X("X Pg(cosﬂa”g),
3 a,f=1n=0 1+( )
\/§ 2 1 TO,n ~(n) ~(n)
jCCH( w) =dch 3“’05772(005506%)Q%Elnz:oaawvaapﬁ)(a Xﬁ X

Pa(cos by ),

where Socop = 180 — 109.47 = 70.53 deg is the angle between the C-H bond and the methyl
group symmetry axis, 6, g is the angle between the vectors pointing along the directions of the

C-C bonds in rotamers « and [ (that is 0 when o = 8 and 28¢c¢ when « # 3), and:

Tom =T ' = An+ " Dyor, (4.104)

where \, is the n'” eigenvalue of the symmetrized exchange matrix (see Section 4.3.2).

The carbon auto-relaxation rates show very small deviations depending on whether
distinct CSA values are considered or not (Fig.4.12a,b), which most likely arrives from the
relatively small contribution of the CSA (about 1.5 % for the carbon-Ry and 5 % for the carbon-
Rg) compared to the DD interactions. The cross-correlated cross-relaxation rates calculated
with distinct CSA tensors show a linear variation with the difference in anisotropy between the
two states (Fig.4.12c,d). This can be understood by expanding the spectral density function

for cross-correlation between the carbon-CSA and carbon-proton DD interactions:

2 2 Te
jo CH( w) dCH\/;WC57D2(COS Bocn) [Uav <1+(ch)2(?§ + p3 + 2p1paPa(cos By))
2’7’071 _
71+(w70’1)2p1p2(1 7’2(0085J))> (4.105)

+Aopipa(p1 — p2)(1 — Pa(cos 7)) <1 T (70(1,71_0 )2 1 n (T{:Tcpﬂ ’
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Figure 4.12: Highlighting the CSA rotamer-dependent relaxation mechanism. Evolution of the

carbon-R; (a), carbon-Ry (b), and carbon longitudinal (c) and transverse (d) cross-correlated

cross-relaxation rate for a methyl group exchanging between two rotamer positions as a function

of the difference between the CSA of the two rotamers. Calculations are performed for three

equilibrium position for the state 1 and by either considering a population-averaged CSA value

(dash) or distinct CSA tensors (solid).

where the last line contains the Ao-dependent part of the spectral density function and high-

lights the linear variation of the cross-correlated cross-relaxation rates when the difference of

CSA is changed. For the chosen geometry, we have:

dcuaP2(cos Bocu) > 0,

1 —Pa(cosBy) > 0.

In addition, we have chosen Ao = 09 — 01 > 0 and:

kio + k
2 12 21
Tl — Te = —T, <0,
0.1 ¢ “1+ Tc(k‘12 + k21)
70,1 Te
’ — > 0,
1+ (wchJ)z 1+ (wcTC)2

(4.106)

(4.107)

such that, when calculations are performed with distinct CSA tensors, 77, increases when p; > ps
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and decreases otherwise, and since Jg )C y(0) > Jg éH(wc), Ney decreases when p; > po and
increases otherwise. Finally, when p; = po, the Aco-dependent term in Eq.4.105 vanishes and
the cross-correlated cross-relaxation rates are independent of the difference in CSA value be-
tween the two states. In can be noted that the effect of this relaxation mechanism increases with

the magnetic field, as expected for a CSA-dependent relaxation mechanism (Appendix Fig. F.6).

Conclusion In this initial section, we used a simple model to highlight the contribution of
internal dynamics to relaxation when a spin system exchanges between discrete positions with
distinct CSA tensors. In particular, CSA/DD cross-correlated cross-relaxation rates seem to
be affected by this mechanism. These rates were poorly reproduced by our analysis of HRR
data of Ile-01 methyl groups of Ubiquitin using an MF-type of correlation function (Fig3.6
of chapter3) [19]. We re-analyse these data using the models developped in this chapter to

potentially explain these differences.

4.6.2 Computation of CSA tensors for an isoleucine side-chain

Geometry optimization of the rotamers The conformation of an isoleucine side-chain is
defined by the pair of dihedral angles (x1, x2), with x1 being associated to the C,-N and Cg-C;
bonds, and x2 to the C,-Cg and C,1-Cs; bonds. Both of these dihedral angles can identify 3
staggered conformations, for values expected to be close to 60deg, 180 deg and 300 deg, thus
leading to 9 possible rotamer states. In order to obtain a structure for the 9 rotamers, an initial
structure of isoleucine in zwitterionic form was optimized with Density Functional Theory
(DFT) methods as implemented in Gaussian 09 Revision A.01 [222]. All DFT calculations were
realized by Diego Carnevale, and I analyzed the results obtained directly from Gaussian. The
B3LYP [223, 224] hybrid functional and 6-311++G(2d,p) Pople basis set were chosen [225], with
solvent effects due to water implicitly taken into account by means of the polarizable continuum
model [226]. The local minimum produced by this geometry optimization resulted in y; and
x2 values of —63.05 and —64.85 deg, respectively. Subsequently, this structure was utilized to
perform a relaxed Potential Energy Surface (PES) scan at the same level of theory by varying
independently the two dihedral angles in steps of 30deg over 360 deg, so as to generate 144
conformers. The 9 rotamers were thus identified as local minima of the cost function defined

as:

FOaxa ) =y (aar — x1)? + (e — x2)2, (4.108)
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were X1, and X2, are the theoretical x; and x» angles in rotamer r. The values of the x
and yg angles for the selected structures are reported in Appendix Table F.3. These rotamers
also correspond to local minima of the PES, or are close to local minima, and fall within an
energy window of ca. 10.5kJ.mol~! (Appendix Fig. F.7). The global minimum is characterized
by x1 = 59.88deg and yo = 173.85 deg.

CSA calculation The CSA tensors of the selected rotamers were calculated by means of
the Gauge-Independent Atomic Orbital (GIAO) method [227, 228] at the same level of theory
as for the geometry optimizations. The CSA tensors were then diagonalized to extract the
principal components and orientations of the 3 main axes in the molecular frame, and define
the longitudinal and orthogonal components of the CSA interaction as we decompose the fully
asymmetric CSA tensors into two axially symmetric interactions (see Chapter 1 for more details).
In order to calculate the relaxation rates, the set of Euler angles for the orientation of the CSA
components in the rotamer frame has to be determined. In order to do so, we first defined the

jump frame, as explained in section 4.3.2, with main axis pointing along the C,-Cg bond, and

7, = CalN A2 (4.109)
T '

where Caﬁ is the vector pointing in the direction of the C,-N bond, and Z; and Z; are the

the x-axis defined as:

normalized vectors defining the x- and z-axes of the jump frame. From this frame, the Euler
angles ¢ g and 0;r defining the orientation of the rotamer frame in the jump frame can be
calculated, and are reported in the last columns of Appendix Table F.3. In each rotamer frames,
defined after applying transformations of the jump frame with the corresponding Euler angles,
the orientation of the CSA components can be calculated. The amplitude of the CSA compo-
nents and their respective set of Euler angles for orientation in the rotamer frames are given in

Table 4.5.

From these DFT calculations, it is clear that the strength of the CSA interaction de-
pends on which rotamer is populated. In particular, rotamer 9 stands out with longitudinal
and orthogonal components of the CSA tensor that are 15% to 75 % lower than the CSA com-
ponents of the other rotamers. Thus, if isoleucine side-chains undergo fast transitions between
rotamers, the amplitude of the interaction is time-dependent. It must be noted that on top
of having different anisotropy of chemical shift, each rotamer have different isotropic chemical

shift, a property that can be used to obtain the distribution of rotamer populations [229].
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Table 4.5: Amplitude (o) and orientation (Euler angles ¢r, and 6r,) of the longidutinal
(denoted by the subscript ||) and orthogonal (denoted by the subscript L) components of the
CSA tensor for each rotamers, and isotropic chemical shift referenced against the TMS isotropic
chemical shift. The rotamers are labelled from 1 to 9 (label r)

Longidutinal Orthogonal
r | o) (ppm)  @re, (deg) Oro, (deg) | o (pPm) ¢ro, (deg) Oro, (deg) | 4(r) (ppm)
1 23.61 103.08 39.66 6.03 163.24 118.11 12.99
2 26.32 253.69 47.17 6.74 157.87 73.93 13.77
3 22.69 226.33 151.17 6.63 166.75 93.24 15.09
4 25.81 176.84 9.59 7.11 100.69 95.61 13.57
5 27.48 166.95 163.57 9.21 97.39 97.41 14.23
6 25.58 172.60 24.43 8.25 229.37 69.59 13.54
7 21.15 156.81 8.15 11.03 156.91 79.80 10.1
8 17.25 248.01 157.41 6.55 131.90 107.37 7.49
9 14.17 138.63 119.87 2.56 220.43 139.87 7.06

CSA tensors were also calculated for TMS using the same level of theory to reference

carbon isotropic chemical shifts as:
8(r) = Giso(TMS) — bis0(r), (4.110)

where r denotes the rotamer number, d;,, is the isotropic chemical shift calculated as the average
of the tensor eigenvalues and d;5,(TMS) is the average of the isotropic chemical shift of the 4

carbons of TMS.

4.6.3 Using molecular dynamics simulations to build motional models

An isoleucine side-chain can adopt 9 different conformers, such that analyzing relaxation data
with a jump model would require determining 8 populations and 36 rate constants. We used a
MD simultion to get more insights into the relevant conformations to describe the motions of

isoleucines side-chains in Ubiquitin and decrease the number of free parameters.
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Methods Our collaborators at the Institut de Biologie Physico-Chimique (IBPC) performed
a 1pus MD simulation using the Protein Data Bank (PDB) structure 1UBI of Ubiquitin in
Gromacs 2018.4 [230, 231, 232, 233, 234] and the Amber ff99SB*-ILDN force field [235, 236]
modified with accurate methyl rotation energy barriers [190]. The structure is solvated at
300K and 1bar in a 65A box neutralized and enriched with ca. 0.05mol.L~' NaCl using the
TIP4P /2005 water model. The integration step is 2 fs while the protein coordinates are saved

every 0.5 ps. When building the Ramachandran plots, only frames saved every 10 ps were used.

a)  lle-30 b) lle-36
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Figure 4.13: Priviledged conformations for isoleucine side-chains in Ubiquitin from MD sim-
ulations. Ramachandran plot for isoleucines 30 (a) and 36 (b) where each dots correspond
to one set of angles (1, x2) for a snapshot in the MD trajectory. Histograms of x; and xo
angles are shown on the side of each Ramachandran plots. Each cadrans delimit the 9 rotamers
(numbered from 1 to 9). c) Structure of Ubiquitin (PDB: 1D3Z) showing the buried isoleucine
30 and isoleucine 36 which is closer to the surface. d) Variations of the x; and y2 angles over
the course of the MD trajectory for isoleucine 36. The values for the angles x; and x2 at the
center of each cadrans of the Ramachandran plot are shown with the horizontal red dash lines.
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Analysis of conformer distribution In order to identify the conformation or set of con-
formers the isoleucines of Ubiquitin are sampling during the MD simulation, we computed the
set of angles (1, x2) at each 10ps interval. We present here the examples of isoleucines 30
and 36 which have very distinct dynamic behaviour as shown by their Ramachandran plots
(Fig. 4.13a,b). Isoleucine 30 (Ile-30) exchanges between one major conformation and a less pop-
ulated conformation (less than 10%). Both conformations have the same x; angle. On the
other hand, Ile-36 adopts two majors conformations (the same as Ile-30) that account for 78 %
of the whole MD trajectory, and 5 other minor conformations (we neglect rotamers that have
populations lower than 1%). The difference in number of populated states can be explained
by the position of the two residues in the structure (Fig4.13c): Ile-30 is buried and faces the
(B-sheet, leading to restriction on the angle x1; on the contrary, Ile-36 is in the al1-83 loop
with a prefered orientation toward the hydrophobic core constraining the value of y1 to a value
close to 300 deg but with other accessible states with a different y1, where the side chain points
towards the surface, are possible. The distributions of rotamers for all Ile residues in the MD
trajectory are given in Appendix Table F.4 and the histograms in Appendix Fig. F.8. It is worth
noticing that the transition between each states is faster than 0.5 ps (Fig. 4.13d), except between
rotamers 3 and 6 for Ile-36 for which intermediate states can be detected. This suggests that
a model of instantaneous jumps between discrete states as presented in the previous sections is

suitable to describe the motions of the C-C bonds of isoleucine side-chains in Ubiquitin.

The widths of the distribution of y; and x2 angles indicate that the C-C bonds also
undergo libration motions around their equilibrium positions. Modeling these motions could
potentially be achieved with the wobbling in a cone model, although we noticed that the full
cone surface is not sampled (see Fig. 4.5). In addition to considerably complexify the correlation
functions, doing so would add four unknown parameters (two cone semi-angles opening and two
diffusion constants) for each populated rotamers. Extracting these parameters from relaxation
data only, on top of exchange rates and populations of the rotamers, seems an impossible task.

Using the result from section 4.3.5, we will neglect these motions in the analysis of HRR data.

For all isoleucines, the rotamer with lowest CSA (rotamer 9) is observed during the
MD trajectory, while other states with larger CSA values are populated as well (Appendix
Table F.4). The exchange between these states will thus contribute to relaxation through the
correlation between the CSA tensors of each rotamer state. Before analyzing the relaxation

data, we can calculate the expected chemical shifts of the isoleucine residues using the DFT
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results and the population of the rotamers from the MD simulation as:

9
dup (Ile) = Zp(r, Tle)d(r), (4.111)

r=1
where the sum runs over each rotamer states, p(r,Ile) is the population of rotamer r for the
considered isoleucine and §(r) is the isotropic chemical shift for rotamer r (Table4.5). The pre-
dicted and experimental chemical shift obtained from the Biological Magnetic Resonance data
Bank (BMRB) (entry 6466) and referenced against the TMS agree very well with one another.
It must be noted that the experimental chemical shift were shifted by 2.86 ppm compared to
the reported values to have a TMS carbon chemical shift set at 0 [237].
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Figure 4.14: Correlation plot between the experimental and predicted carbon chemical shift of
Ile-91 methyl group of Ubiquitin. The slope of the dark line is o = 0.94.

4.6.4 Analysis of relaxation data using explicit models of motions

We present here the results of the analysis of Ile-d1 methyl groups relaxation data in Ubiquitin.
We first re-analysed backbone nitrogen-15 high-field R; and Ry and nitrogen-proton oNOF
[17] to obtain an accurate estimate of hydrodynamic properties. The RotDiff analysis [181,

238, 184, 185] indicates that an axially symmetric overall diffusion tensor best reproduces the
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experimental data, with principal values D = 3.99 x 10"s " and D; =3.39x107s™!. We used

an axially symmetric model of rotational diffusion in the following analysis.

Ile-30 and Ile-61 In order to first test our approach on systems that can be characterized
with a minimal set of parameters, we primarily focused on isoleucine residues which showed
only two populated rotamers throughout the MD trajectory: Ile-30 and Ile-61. We analyzed
the four carbon R; and Ry, the four DD cross-relaxation rates oNOF recorded at 9.4, 14.1,
18.8 and 22.3T, and the HRR corrected rates using Iterative Correction for the Analysis of
Relaxation Under Shuttling (ICARUS). For these two residues, only 4 parameters need to be
determined, which we did using an MCMC procedure (compared to 6 free parameters in the
initial EMF analysis [21]): the diffusion constant for methyl rotation, which was supposed to be
the same in the two rotamer states, the population of rotamer 6, the logarithm of the exchange
rate from state 6 to 9 and a scaling constant applied to the CSA values (acga). This scaling
factor accounts for the difference between experimentally determined and DFT-predicted CSA
tensors [131] which, in our case, can originate from the fact that CSA tensors were computed
for an isoleucine amino acid dissolved in implicit water. The MCMC was performed with 10
chains of 1,500 steps using the emcee Python library [170]. Only the last 1,000 steps of each
MCMC chain were kept for analysis.

Despite the smaller number of free parameters in the model, relaxation rates are well
reproduced by the MCMC procedure for these two residues (Fig.4.15a,b,d,e). Only oNOF of
Ile-30 are better reproduced with the EMF type of spectral density function (Fig.4.15b). The
distributions of parameters obtained from the MCMC analysis are well defined (Fig.4.15g,h). In
particular, the populations pg are in perfect agreement with the MD simulation. We calculated
the magnetic field evolution of the CSA /DD cross-correlated cross-relaxation rates with the two
models and using the results of the analysis of the carbon Ry, Ry and carbon-proton ¢NOF. For

Ile-30, the agreement between the experimental and predicted values is slightly improved by

the use of an explicit model of motions, and is excellent for Ile-61 (Fig.4.15¢,f).

In order to evaluate the effect of the CSA rotamer-dependent relaxation mechanism,
we analyzed the same relaxation data using the same models of explicit motions, but with a
CSA equal to the population averaged CSA. In this model, the CSA interaction is constant.

NOE

The effect on the carbon Rj, Ry and carbon-proton o is negligible (Appendix Fig.F.9), in

agreement with the simple case investigated above (Fig. 4.12). Cross-correlated cross-relaxation
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Figure 4.15: Analysis of relaxation rates for Ile-30 and Ile-61 using an explicit model of motion.
Carbon R; (a and d), Ry and carbon-proton ¢N°F (b and e), and longitudinal and transverse
cross-correlated cross-relaxation rates (c and f) for Ile-30 (a-c) and Ile-61 (d-f) as a function
of the magnetic field. The results from the EMF analysis are shown in dash lines in each panel.

Only carbon Ry, Ry and carbon-proton oNOF

were used in each analysis while 1, and 7,, were
calculated for validation using the obtained results. Distribution of parameters for the explicit
model of motions for Ile-30 (g) and Ile-61 (h). The mean values of parameters are given on
every panels. Populations obtained from the MD analysis are indicated by the red arrows. The

exchange rate kog is expressed in s—L.
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rates show slight variations depending on wheter distinct CSAs are considered or not (Appendix
Fig. F.9), in particular 1, which better reproduces experimental data when correlation between

CSA tensors are included in the correlation function.

Table 4.6: Parameters of the explicit model of motions using ICARUS corrected rates with the
EMF spectral density function of MINOTAUR. The exchange rate kog is expressed in s~1.

Dyot (x1010s71) Ps

Median +o0 —o | Median +o —0o

Ile-30 ICARUS 6.02 0.17 0.18 0.92 0.01 0.00
MINOTAUR 5.87 0.18 0.49 0.92 0.01 0.01
Ile-61 ICARUS 3.23 0.15 0.19 0.82 0.00 0.00
MINOTAUR 3.24 0.06 0.06 0.83 0.00 0.00

log kog QCSA

Median +o0 —o | Median +o0o —0o

Ile-30 ICARUS 8.71 0.11 0.08 0.68 0.07 0.07
MINOTAUR 8.75 0.12 0.13 0.66 0.07 0.08
Ile-61 ICARUS 9.18 0.09 0.06 0.80 0.05 0.04
MINOTAUR 9.14 0.04 0.03 0.74 0.03 0.03

This re-analysis of the HRR dataset was performed with ICARUS corrected rates using
the EMF spectral density function. We have shown in the previous sections that the EMF
correlation function can reproduce carbon Ry, Ry and carbon-proton oNOF. Thus, we can still
expect to obtain an accurate description of the dynamics from the use of HRR corrected rates
with the EMF type of correlation function. In order to confirm this hypothesis, the intensity
decays and the accurate relaxation rates were analyzed using MINOTAUR. The good agreement
between the parameters determined from the two methods indicates that ICARUS corrected
rates can indeed be used here (Table4.6). The main difference between the two approaches is
the computational time: one MINOTAUR, run for one residue exchanging between two rotamer
positions took ca. 1hour on a MacBook Pro (2016) with a 2.9 GHz Intel Core 15 processor and 4
CPUs while the analysis using reported ICARUS corrected rates took ca 2min. In the following
analysis, we used ICARUS corrected rates in the MCMC procedure.
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Figure 4.16: Analysis of relaxation rates for Ile-3 using a 5-rotamer jump model. Carbon R;
(a), Ry and carbon-proton o™OF (b) and longitudinal and transverse cross-correlated cross-

relaxation rates (c) as a function of the magnetic field. The results from the EMF analysis are

NOE

shown as dash lines in each panel. Only carbon Ry, Ry and carbon-proton o were used in

each analysis while 77, and 7, were calculated using the obtained results for cross-validation. d)
Distributions of parameters for the explicit model of motions. The mean values of parameters

are given on every panels when relevant. The populations p4 obtained from the MD analysis is
1

indicated by the red arrow. The exchange rates are expressed in s~
Ile-3 Ile-3 is predicted to mainly sample rotamer 4 and 9, while rotamers 1, 2 and 5 have small
populations that account for 10 % of the whole trajectory (Appendix TableF.4). The popula-
tion of these later 3 states were set to the values obtained from the MD analysis while we only
considered exchange between rotamer 4 (the most populate state) and the other four. This re-
duction in the number of free parameters in the MCMC procedure relies on the assumption that
NMR relaxation data are mostly sensitive to exchange involving the most populated rotamer.
The carbon Ry, Ry and oNOF are well reproduced with a 5-rotamer state exchange model
(Fig.4.16a,b). Exchange rates are ill-defined except between the two most populated states
(Fig.4.16d). However, the 5-rotamer state exchange model reproduces the cross-correlated
cross-relaxation rates slightly better than the 2-rotamer state model (Fig.4.16¢c and Appendix
Fig. F.10). The population of rotamer 4 obtained from the analysis of the NMR data matches
the one from the MD simulation (which is not the case for the 2-rotamer state rotamer model,

see Appendix Fig. F.10), which might indicate that the well-defined parameters in Fig.4.16 are
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accurately reporting on the internal dynamics of the portein.
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Figure 4.17: Analysis of relaxation rates for Ile-13 using a 3-rotamer jump model. Carbon R;
(a), Rg and carbon-proton relaxation rates (b) and longitudinal and transverse cross-correlated

cross-relaxation rates (c) as a function of the magnetic field. The results from the EMF analysis
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are shown in dash lines in each pannel. Only carbon Ry, Ry and carbon-proton o were used

in each analysis while 7, and 7,, were calculated using the obtained results for cross-validation.

d) Distributions of parameters for the explicit model of motions. The mean values of parameters

are given on every panels. The exchange rates are expressed in s~!.

Ile-13 The MD simulation analysis reveals that rotamers 3, 4 and 6 are the main form of
Ile-13, while rotamers 1, 5 and 9 are populated by up to 3% each. For this reason, we initially
analyzed the NMR relaxation data using the 3-rotamer state exchange model. Carbon Ry,
Ro and oNOF are well-reprocuded by this model (Fig.4.17a,b). The exchange rate distributions
obtained from the MCMC analysis are broad but an average value can be identified (Fig.4.17d).
The populations of rotamer 3 and 4 are well defined but not in the range of the MD trajectory
(0.22 vs 0.12 for p3 and 0.25 wvs 0.55 for pg). This might indicate that the sampling in the MD
simulation is not representative of the behaviour of this side-chain and, consequently, that this
analysis using rotamer 3, 4 and 6 to build the model of motions might not correctly describe
the dynamic features of this side chain. However, the agreement between the calculated and
measured cross-correlated cross-relaxation rates is improved compared to the EMF analysis, in

particular for n,, (Fig.4.17c). The use of a more complex model of motions involving the 6
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rotamer states does not significantly improve the agreement (Appendix Fig. F.11).
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Figure 4.18: Analysis of relaxation rates for Ile-23 using a 2-rotamer jump model. Carbon R;
(a), Ry and carbon-proton o™ (b) and longitudinal and transverse cross-correlated cross-
relaxation rates (c) as a function of the magnetic field. The results from the EMF analysis are
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shown in dash lines in each pannel. Only carbon Ry, Re and carbon-proton o were used in

each analysis while 7, and 7, were calculated using the obtained results for cross-validation. d)

Distributions of parameters for the explicit model of motions. The mean values of parameters

are given on every panels. The exchange rate kog is expressed in s~ 1.

Ile-23 According to the MD simulation, Ile-23 exists in 3 rotamer states that differ only by
their xo dihedral angle. The population of rotamer 3 is predicted to be very small (3%) so
that we initially analyzed the relaxation data with a 2-rotamer jump model. Carbon Ry, Rg

and carbon-proton oNOF

are nicely reproduced with this model, but calculated 1, and 7,
still show significant deviations compared to experimental values (Fig.4.18). The 3-rotamer
exchange model leads to broad distributions of parameters associated to rotamer 3 (population
and exchange rates), and the calculated 7, and 7,, do not better reproduce the measured
rates (Appendix Fig.F.12). The significant difference between the populations of rotamer 6
determined from the NMR data and MD trajectory (0.21 vs 0.06), added to the disagreement

in cross-correlated cross-relaxation rates, can be interpreted as the sign that a conformation of

Ile-23 is not well sampled during the MD trajectory.
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Figure 4.19: Analysis of relaxation rates for Ile-36 using a 7-rotamer jump model. Carbon Ry
(a), Ry and carbon-proton o™OF (b) and longitudinal and transverse cross-correlated cross-
relaxation rates (c) as a function of the magnetic field. The results from the EMF analysis
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are shown in dash lines in each panel. Only carbon R; and carbon-proton o were used in

each analysis while carbon Ro, 77, and n,, were calculated using the obtained results for cross-
validation. d) Distributions of parameters for the explicit model of motions. The mean values

of parameters are given on every panels when relevant. The populations pg obtained from the

MD analysis is indicated by the red arrow. The exchange rates are expressed in ™.

Ile-36 Ile-36 is the isoleucine residue sampling the most conformations, with 7 out of the 9
possible conformations being populated in the MD trajectory. Only 2 have populations higher
than 10 % such that we fixed the values of the population of the other 5 conformers to their MD
values and we only considered exchange with the most populated state (rotamer 6). Carbon
R; and oNOF are well reproduce by the 7-rotamer state exchange model (Fig. 4.19a,b). Carbon
Ro are under-estimated using this explicit model of motions which cannot be interpreted as

a sign of fast chemical exchange from the magnetic-field evolution of the difference between
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experimental and calculated rates. This might be indicative of a miss-characterization of the
spectral density function at low frequencies, which could explain the deviations between the
MF and explicit model for carbon R, at low field. Still, cross-correlated cross-relaxation rates
are correctly predicted from the result of this analysis (Fig.4.19¢). Despite the large number
of free parameters in the MCMC procedure, we can consider that the parameters distribution
are narrow for the majority of them (Fig.4.19d). The population of rotamer 6 is 10 % lower
compared to the MD value. Interestingly, the exchange rates are about one order of magnitude
lower than the exchange rates obtained for the other residues. It can be noted that a 2-rotamer
state jump model (between rotamer 6 and 9) does not correctly reproduce carbon Ry and oNOF

(Appendix Fig. F.13), showing that the collected relaxation rates are particularly sensitivite to

the presence of rotamers with small populations.
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Figure 4.20: Analysis of relaxation rates for Ile-44 using a 3-rotamer jump model. Carbon R;
(a), Ry and carbon-proton ¢NOF (b) and longitudinal and transverse cross-correlated cross-
relaxation rates (c) as a function of the magnetic field. The results from the EMF analysis

NOE were used in

are shown in dash lines in each panel. Only carbon R; and carbon-proton o
each analysis while carbon Rs, 77, and n,, were calculated using the obtained results for cross-
validation. d) Distributions of parameters for the explicit model of motions. The mean values
of parameters are given on every panels when relevant. The populations pg obtained from the

MD analysis is indicated by the red arrow. The exchange rates are expressed in s™*.
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Ile-44 In the case of Ile-44, carbon Ry cannot be used in the analysis due to chemical exchange
contributions (Appendix Fig. E.1) [21]. For this reason, the CSA factor was fixed to acga = 0.8,
in the range of the values found for the other isoleucines and in the litterature [131]. When

NOE

analyzing carbon R; and carbon-proton o , distributions of the population for rotamer 3 is

ill-defined. We fixed it to the value given by the MD trajectory (11 %). The carbon R; and

NOE are not well reproduced by the chosen model of motion (Fig.4.20a,b). In

carbon-proton o
particular, low-fields Ry deviations are indivative of miss-characterization of motions with time-
scales in the low nanosecond range. This might arise form the fact that this surface-exposed
residue undergoes significant libration motions of its C-C bonds, as suggested by the large x
distribution (Appendix Fig.F.8). On the other hand, 7, and 7, are better reproduced by
this model of motions while carbon Ry show a clear contribution from chemical exchange, in
agreement with our previous study (Fig.4.20b,c). Parameters distributions obtained from the
MCMC procedure are broad (Fig.4.20d), but an averaged value can still be identified for the
population of rotamer 6, and is in good agreement with the MD value (51 % for NMR vs 57 %
for MD). In addition, the diffusion constant for methyl rotation is one order of magnitude larger

than for the other residues, which is consistent with the fact that Ile-44 methyl rotation is not

hindered by the proximity of other atoms of the protein.

Discussion In this section, we have re-analyzed the HRR data recorded on Ile-§1 methyl-
groups of Ubiquitin using explicit models of motions introduced in the previous sections, and
results from MD simulations and DFT calculations. Overall, all relaxation rates used in the
MCMC procedure are nicely reproduced. Parameters distributions can be broad and sometimes
ill-defined, but these often can be rationalized by the presence of rotamer states with a small
populations. Rotamer populations obtained from the analysis of the NMR relaxation rates are
in good agreement with the MD values for 4 out of the 7 isoleucine residues (3, 30, 44 and 61).
In addition to the potential miss-sampling in MD simulation, the differences observed for the
remaining 3 can be explained by the fact that DFT calculations were performed for an isoleucine
in water and CSA tensors were transposed to isoleucine residues in the protein, neglecting the
effects of all nearby nuclei. The scaling factor acga was introduced to account for these effects,
under the assumptions that the relative difference in CSA values between each states remained
the same and that the orientations of the CSA tensors was unchanged. These two hypotheses
need to be validated by computing the CSA tensors on the whole Ubiquitin. Rotamer popu-
lations for isoleucine side-chains in Ubiquitin have been determined from two other methods:

scalar coupling constants, leading to x; populations [239], and chemical shifts, giving y; and
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X2 distributions [229]. Our combined NMR and MD analysis is in good agreement with the
x1 distributions obtained from scalar couplings measurements but significantly differs from the
results of chemical shifts, except for Ile-3 (Table4.7). The reason for the differences between

the 3 studies needs to be investigated.

Table 4.7: Populations of x1 angles determined from the combined analysis of NMR relaxation
and MD trajectory (this study), scalar coupling constants (SC) [239] and chemical shifts (CS)
[229].

x1 = 60deg x1 = 180 deg x1 = 300deg
Ile  NMR+MD SC CS |[NMR+MD SC CS |NMR+MD SC CS
3 0.84 0.47 0.88 0.05 0.21 0.07 0.11 0.32 0.05
13 0.22 0.24 0.34 0.0 0.01 0.0 0.78 0.75 0.66
23 0.0 0.04 0.12 0.0 0.07 0.0 1.0 0.89 0.88
30 0.0 0.0 0.04 0.0 0.01 0.0 1.0 0.99 0.96
36 0.08 0.0 0.32 0.13 0.10 0.03 0.79 0.90 0.65
44 0.0 0.03 0.14 0.0 0.06 0.02 1.0 091 0.84
61 0.0 0.01 0.18 0.0 0.01 0.0 1.0 0.98 0.82

The calculated CSA-DD cross-correlated cross-relaxation rates 7, and 7,, using the pa-
rameters obtained from the MCMC procedure are in good agreement with the experimental
data, and much better than in our initial MF analysis. This further suggests that side-chain
motions cannot be accurately modeled using MF type of correlation functions. Among the
rates that were collected, proton Ry have not yet been considered. Systematic deviations were
observed for these rates in our MF analysis and assigned to the contribution of DD with neigh-
boring deuterium nuclei [19]. These deviations are still present in the analysis presented here
(Fig.4.21), and considering nearby deuterium nuclei might lead to a better correlation between
calculated and measured rates. The framework presented here to build the spectral density
function can better model the interaction between the methyl group and these nuclei compared

to the MF.

We have shown in the previous sections that MF correlation function to account for

methyl rotation can lead to miss-characterization of the methyl rotation diffusion coefficient



4.6. Unravelling a CSA rotamer-dependent relaxation mechanism

179

__a) B,=033T b) B,=141T c) B,=188T

2 10F 0.6}

:\I: 8: l s 03r 23

d 6_ —30 104} Lo 61

° B — 61 02+

2 o 13 61 3 | 44 13 . 44 T

E 4+ =23 - 36

=} 36 36 -

° 44 0.2 3 50 ® 3

8 -.T 1 1 1 1 1 1 1 1 1 1 1 01 Cl _.I_ 1 1 1 1 1 1
4 6 8 10 02 0.4 0.6 02 03 04 05
Measured R, ("H) (s™) Measured R, ("H) (s™) Measured R, ("H) (s™)

Figure 4.21: Correlations between measured and calculated proton longitudinal relaxation rates
at 0.33T (a), 14.1T (b) and 18.8T (c). Explicit model of motions was used to calculate the
protons Rj.

(Fig.4.8). However, calculated correlation time according to:

> i
S2, R b2D,
b0

back __ 1
Tm = 1—

[dy0(Boon))”

(4.112)

correlates well with the MF-determined correlation time for most of the isoleucine residues
(Fig.4.22a). Similarly, the squared order parameters determined from the two approaches are

in good agreement (Fig.4.22b). The expected squared order parameter is calculated as:

8% =" papsPa(cosba )
a?ﬁ

(4.113)

where the sums run over all the accessible states and 0, 3 is the angle between the C,1-Cgs;
bonds in rotamer states a and 3. However, this does not relate to an accurate estimate of
the conformational entropy. For isoleucine side-chains, the conformational entropy has been
expressed as a function of the squared order parameter as [24]:

Es

— =2 4.114
= (114)

(1.95+ 1.55(1 - %)),

where the entropy is labeled E to avoid confusion from the squared order parameter and the
subscript S indicates that it is calculated using order parameters. kp is the Boltzmann constant.
Since order parameters correlate well between the two approaches, so does conformational en-
tropy calculated using Eq.4.114 (blue circles in Fig. 4.22¢). The analysis of HRR data presented

here also allows us to calculate the conformational entropy from a model using the population
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of each states:

fg _ _zo;pa 10g pa. (4.115)
where the subscript P indicates that it is calculated using populations. The two entropies
correlate with one another (orange circles in Fig.4.22¢), but the correlation coefficient is far
from unity and equals 0.36. Thus, we cannot rule out the existence of a relationship between MF
squared order parameters and conformational entropy of the form of Eq. 4.114, but this needs to
be revisited. The reason for the disagreement between entropies calculated with Eq.4.114 and
Eq.4.115 is unclear but can arise from the fact that the parametrization of Eq.4.114 was only
based on MD methods. Whether the relationship we find here between Eg and Ep is correct
and stands for isoleucines residues in other proteins needs to be investigated in order to propose

a correction to Eq.4.114, or to favor analysis of relaxation data based on explicit models.
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Figure 4.22: Correlations between parameters obtained from the analysis based on the MF and
explicit models of spectral density functions. a) Correlation between the MF and calculated
(Eq.4.112) correlation times for methyl rotation . b) Correlation between the MF and cal-
culated (Eq.4.113) squared order parameters for C-C bond motions. The MF squared order
parameters are either SJ% (Tle-3, 23, 30, 61) or the product S]%SS2 (Ile-13, 36 and 44). c) Correla-
tion between the conformational entropy calculated using Model Free (Ej r) or Explicit Model
(Egn) parameters. The entropy Ejp has been calculated using Eq.4.114 (blue circles) and
Eq.4.115 (orange circles). The dash line has equation y = 0.36z — 1.20. In each pannel, the
solid black lines are shown as a guide for perfect correlation, y = x.
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4.7 Conclusion

This chapter started with a review of explicit models of correlation functions to study the
internal dynamics in proteins, with a generalization of the wobbling in a cone model. We also
calculated the correlation function in the case of rotamer jumps and rotamer-dependent methyl
rotation. It must be noted that these models only apply to folded proteins, and potentially
nucleic acids. We evaluated how these correlation functions compare with the MF approach.
We found that the MF correlation function can lead to deviations in order parameters and
correlation times in the case of instantaneous jumps between discrete positions. This suggests
that the analysis of side-chains relaxation data requires explicit models of motions. In the last
part of this chapter we used the models of correlation functions presented above to show that a
relaxation mechanism is associated to the correlation between different CSA tensors of different
rotamer states. We refer to it as the CSA rotamer-dependent relaxation mechanism. Its effects
at high magnetic-fields might not be negligeable. DFT calculations performed on isoleucine
in water show that CSA can vary by up to a factor ca. 2 between different rotamers. We
re-analyzed our relaxation data collected on Ile-01 methyl groups of Ubiquitin in combination
with MD simulations, and were able to better reproduce cross-correlated cross-relaxation rates.

Our analysis leaves a number of questions:

e what are the reasons for the differences in rotamer populations obtained from different
methods (MD only, MD and NMR, scalar couplings [239] and chemical shifts [229])? In
our analysis, MD complements the NMR as the MD trajectory is used to constrain the
model, while NMR provides a quantitative description of the dynamics, essentially popu-
lations and kinetics of exchange between rotamer states. Thus, questioning the agreement
between each approach also questions the ability of computational methods (MD and

DFT) to reproduce experimental data.

e what is the reason for the systematic deviation in proton longitudinal relaxation rate? We
hypothesized here that the contribution from neighbouring deuterium nuclei can account
for these deviations. This can be tested using the explicit models of correlation functions

presented in this chapter.

e what is the reason for the systematic deviation in conformational entropy calculated either

using squared order parameters or rotamer populations?

This later question is particularly critical as it has broad implications for the quantitative

investigation of protein thermodynamics. In light of the complexity of the explicit models of
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motions, obtaining an accurate picture of the thermodynamics properties from an MF analysis
seems appealing. Indeed, even if the MF spectral density function does not reproduce cross-
correlated cross-relaxation rates, the order parameters obtained from the analysis of longitudinal
and transverse auto-relaxation rates, and DD cross-relaxation rates are in good agreement with
the calculated order parameters from the analysis with explicit models of motions. This would
suggest that the internal dynamics of isoleucine side-chains in Ubiquitin can still be characterized
using the MF approach, although 7, and 7,, cannot be reproduced. Such conclusion have been

challenged throughout this chapter and surely needs further validation.



General conclusion

During the 3 years of my PhD program, we have challenged the foundations of the relaxation
theory in liquid state NMR based on results obtained from ’exotic’ experiments. The research
we performed constantly referred to the relaxation super-operator (Eq. 1.42). In the first chap-
ter, we presented the basis of the BWR relaxation theory, and how we implemented it in a
MATHEMATICA notebook called REDKITE. This tool was essential in order to carry most of the

following projects. These can be summarized in three main axes.

We investigated relaxation properties of two types of spin system in 2F-NMR type of ex-
periments. Methyl groups in Ubiquitin give rise to linewidths narrower than expected in the 2F
version of the methyl Transverse Relaxation-Optimized SpectroscopY (TROSY) experiment,
and it was only by considering each transitions of the energy diagram independently from one
another that we were able to reproduce experimental results. These theoretical considerations
were mostly done to rationalize unexpected results, rather than propose a 2F counterpart to the
methyl-TROSY pulse sequence. On the other hand, we presented the concept of 2F-TROSY
and used computer simulations to show how it can lead to higher sensitivity and resolution
in pairs of spins composed of one high-CSA nucleus. 2F-TROSY relies on the selection of
slowly relaxing coherences at their optimal magnetic field in terms of relaxation by the use of
a 2F-NMR spectrometer. Thus, the chemical shift of the nucleus which have high CSA con-
tribution to relaxation is labeled at low field while the second nucleus chemical shift evolution
leads to the signal detected at high field. The new generation of 2F-NMR spectrometer will

most likely lead to an experimental validation of the theoretical predictions that were presented.

Next, we developped two approaches to analyse relaxation data recorded under shuttling.
The first one, ICARUS, relies on the correction of the relaxometry relaxation rates to account
for active cross-relaxation pathways while the sample is outside of the probe. We presented
an application with the analysis of relaxation properties of Ile-§1 methyl groups specifically
labeled "*C'H2Hj in the protein Ubiquitin. The second one, MINOTAUR, does not reproduce
the relaxometry relaxation rates but rather the intensity decays so that this procedure does not
need to correct experimental data. We showed that, for Ile-d1 methyl groups in Ubiquitin, the

two approaches give similar results.
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Finally, we presented explicit models of motion, and compared them with the MF types
of correlation functions. We showed that in the case of aliphatic side-chains, an analysis of
relaxation data based on the MF can lead to a miss-representation of the motions. In addition,
we showed that for a spin system undergoing exchange between positions with different CSA
tensors, the correlation between the tensors of the different conformations is leading to a relax-
ation process. This effect cannot be taken into account by the MF types of correlation functions.
For these reasons, we re-analysed our dataset recorded on ille-d1 methyl groups using a model
of instantaneous jumps between discrete positions and the CSA tensors associated to each of
these positions obtained from DFT calculations. We also used MD simulation results to build
the models of correlation function. Overall, the explicit models of motions are reproducing well
the relaxation rates, including the cross-correlated cross-relaxation rates, which was not the

case in our initial MF analysis.

This later project has showed that NMR and MD have the ability to capture the com-
plexity of motions in proteins, but efforts are still required to develop a general framework to
reach a reliable description of the internal dynamics. Motions are complex and so are the mod-
els. Here, we chose to follow an approach where models were built according to the equilibrium
properties obtained from the MD simulations, but deviations were observed between the NMR
data and the MD predictions. At this point, we cannot identify the reason of these deviations,
but these still do not undermine the potentiality of the combined analysis of NMR and MD
data. Overall, it has become clear to me that our understanding of the relaxation theory, al-
though powerful enough to analyse and predict results in standard experiments, is imperfect.
The recent developments in other NMR spectroscopic techniques, and not only the ability to
record datasets at low magnetic fields but also hyperpolarization methods for example, will
certainly lead to an improved theory to unify the quantum description of the spin interactions

and the geometric description of molecular motions.
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APPENDIX A

Mathematical definitions

A.1 Spin angular momentum operators

Spin operators are angular momentum operators, and, as such, can be decomposed in a Carte-
sian basis as:

= (L.1,1.), (A.1)
where fx, fy and I . satisfy the commutation relations:
(I, I,) =ihl,, [I,, L) =ihl,, [L,I,]=ihi,, (A.2)

where & is the Planck constant devided by 27, and the commutation between two operators A
and B is defined as:
(A B = AB - BA. (A.3)

The matrix representation of the operators fw, fy and I, is given by the Pauli matrices, written
here for a spin-1/2:

1/(0 1 10 — 11 0
’ 2(1 0)’ Y 2(1’ 0)’ ¢ 2(0 —1) (A.4)
Together with the identy operator E, these operators form the Cartesian basis operators for a

spin system composed of one spin-1/2. It is often more convenient to use the shift basis, written
here in matrix representation:

1 1 {10 0 1
Ey=—=E=— , I =1, +il, = ,
VG 2(0 1) oty <0 0)

0 0 1 (1 0
==y (1 0)’ 0= V2L \/§<0 —1>

In the case of two spin-1/2, the Cartesian basis is given by the combinations of direct products

(A.5)

between one spin basis operator and the other. For example, the matrix representation of the
operator IS5 is:

ITesS = (A.6)

o O O O
o O O O
o O = O
o O O O

See [16] for more details.
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A.2 Spherical harmonics and Wigner rotation matrices

Rank-2 spherical harmonics are directly linked to Wigner matrices as:

b(0.5.7) =\ T V38,00, (A7)

D) (o, B,y) = e~ ™d2) (B)e™™, (A.8)

with:

where d,,,, is the reduced Wigner matrix. From this definition (and the one of the reduced
Wigner matrices), it follows:

D) (Q) = (1)~ "D (). (A.9)

The addition theorem relates rank-2 spherical harmonics to the second-order Legendre polyno-
mial Pa(x) = ?’3022;1:

Po(Z - §) = — Z Yom (§)Y5, (% Z DA (D3 (%). (A.10)

m=—2 m=—2

Wigner matrices can be decomposed into succesive rotations:

DR (Qusp)= > DR (Qx,) D, (Qx5x.)- PP (Qx, 1—x,) D (Qx,58),

T1,L2,...Tk

(A.11)
where Qx,_, X; s the Euler angle for transformation between frame X; and frame X; and the
sums run from -2 to 2 for each frames X;.

Wigner matrices can be normalized:

_ 872
2L +1

5LL’5mm’6nn’7 (A12)

where 9§ is the Kronecker function. Finally, we have the following property:

2

> DR (e, B,0)Die (4, 8, 0) = Sy (A.13)

m=—2

It is worthwhile to specify the convention for Euler angle used throughout the presented projects.
If we write an Euler angle set Q@ = {a, 3,7}, for tranformation from a frame {O,z,y, 2} to
{O",2',y/,2'} (the two frame origins can be different, which only yields a translation without
affecting the rotations), « is the rotation angle around the Oz axis, § is the rotation angle
about the new Ox axis (axis rotated by an angle o around the Oz axis), and ~ is the rotation
about the new Oz axis (after applying the two previous rotations, only the last one affecting
the z-axis).

The reduced Wigner matrices are reported in Table A.1.
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Spherical harmonics and Wigner rotation matrices

A.2.

Table A.1: Reduced Wigner matrices dyy,.

& 4800 (T + ¢/ s00)g/ urs & — g urs S (1 — ¢/soo)gurs & & jurs e
(1+gso)gus? (14 gs0)(1 - gsoog)§  gsoogusi— (1 gsoo)(1+gsog)é  (1-gsoo)gus? |
g s s gsoogurs (T — ¢ s0g)e gsoogusE - gous i 0
(1 —gso)gums e~ (T —gs00)(1+gs00g) ¢~ mmoomﬁmm\/ (1 +gs00)(1 — gsoog) (1 +¢s00)gus— | 1-
& purs (T — ¢ so0)g uts £ — g cus § (1+gsoo)gusé £ ;500 -
é T 0 I- z- w

1
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A.3 Legendre associated functions

A.3.1 Introduction on the Gamma function

The Gamma function is defined for all z # 0 by:

o0
I'(z) :/ e tt* 1 dt,
0

Numerical evaluation of the Gamma function is facilitated using the following property:

I(z+1)=2I(z), z>0.
We can then show that:
FNz+M)=z+M-1)(z+M—-2)---(2+1)2I'(z), M eN.
In addition, when n € N*, we have:
I'(n)=(n-1)\

A.3.2 Definition of Legendre associated functions

The analytical expression of the Legendre associated functions is given by [199, 196]:

m mL Wmn+m+1)(1— z)m/Q
mz0: B () = D) ) g

X

1
o Fi (= Vmmn +m, vy +m+1,m+1,

and:
F(men —m+ 1) Pm

P (2) = (—1)™
(Z) ( ) F(”m,n"’m—*—l) Um,n

(2),

V_m,n

where , F} is the Hypergeometric function:

B aB z  ala+1)B(B+1) 22
2F1(a767772)_1+7i+ 7(7+1) E

We can use the Gamma function to write in a compact form:

2F1(O[,B,’}/,Z):]_, OZZOOI'B:O,

X I'(a L
JFy (0, By 2) = 3 L@ IDE + W)

Z TP+ k) K # 0 and 3 # 0.

A.3.3 Roots of Legendre associated functions

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

Here, we show how the values of v, , can be found. Different studies have already been published

to report roots of the Legendre associated functions, and we do not aim here at proposing a new
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method. We will detail the chosen methodology, which has been reported by H. Bauer [201]. It
consists in solving for v, , the following equation:

f(ym,na 600716) — 07 (A22)
with:

Wi +m 4+ 1)) (—ppy  +m 1) "
nl(m +n)!

+0o0

m
f(Vm,m Bcone) =Vm,n — M — Vm,n COS Beone + Z
n=1

. Bcone
sip2n Zeone

2
(A.23)

where we have used the Pochhammer symbol 2™ = z(z+1)--- (z+n —1), and z® = 1. In
order to find the roots, from the lowest to the highest, we performed the regula falsi method
[240] on intervals v € [k, k +0.1], k € Z, starting with n = 0, and implemented in Python. The
sum in the definition of f was stopped at n = 75 (numerical evaluation of the factorial leads to
overflows for larger sum limits).
In the frame of the study presented in this manuscript, only integer values of m from —4 to 4
are relevant. In addition, using Eq. A.19, it is straightforward to show that the roots obey the
following usefull property:

Vemn = Vmn, (A.24)

such that we only need to consider values of m € {0,1,2,3,4}. We have calculated the 5 first
roots for angles Beone € [0.01, 5] (Fig. A.1).

103 = n=1 3 n=0 n=0
m=0 n=2‘10 n=1103 n=1
n=3 n=2 n=2
n=4 n=3 n=3
<102 0 "= 10 e
£
>
101-
10k 10’
o o 0 10 20 30 40 50 60
n= = n=
103 n=110° m 4 n=1 Bcane (deg)
n=2 n=2
n=3 n=3
n=4 n=4
£102 102
10 10

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Bcone (deg) Bcone (deg)

Figure A.1: Values of v, as a function of the cone semi-angle opening [.one for m =
{0,1,2,3,4}. In the case where m = 0, 10 = 0 for all cone semi-angle opening value.

[(Vsln - mQ)(m — Umn + 1) = U (M — Vi) (M + 1+ Uy ) €OS Bwne} ,
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A.3.4 Orthogonality of the Legendre associated functions

C. Wang and R.Pecora [196] reported the following result from W.Smythe [200], for vy, , #

Py, () : apPp, (1)
(13— 1) | P (o) (d> ~ B, o) ()
H=0 H=H0o

0 Vm! n! (Vmn = Vi) W + Vi + 1)

(A.25)
Applied to the particular situation presented in this manuscript, that is using the boundary
condition Eq. 4.44, this leads to:

Vil !

1 !
/ By (B, () dpe = O S Hon,n(fhcone), (A.26)

where fcone = €OS Beone- Using Eq. A.19, it can be shown easily that:

P ()P (pe) P ()P (p2)

H*m,n(lu’cone) B Hm,n(,ucone) ’ (8.27)
where p; and po are the cosine of two, potentially different, angles.
A result that will prove itself usefull is:
Hoo(tcone) =1 — peone, (A.28)
which is easily prooven after noticing that 19o = 0 and:
By, (2) = 1. (A.29)
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RedKite implementation details

B.1 Variables names

Table B.1: Variable names used in REDKITE.

Name definition User-defined?

Atoms Table containing the spins present in the system Yes
and their associated labels

NumberofAtoms number of spins considered No

LF vector orienting the System Frame in the Yes
Cartesian axis system

Coordinates Table containing the position of the spins in Yes
the Cartesian axis system

CSAConsidered Table filled with 1 (CSA is considered) Yes
or 0 (CSA is neglected)

desall] value of the axially symmetric CSA Yes
associated with nucleus ¢

olong]i] value of the longitudinal component of Yes
an asymmetric CSA associated with nucleus

operpli value of the orthogonal component Yes
of an asymmetric CSA associated with nucleus ¢

vectorNum A7, orientation of the principal axis of Yes
a symmetric CSA tensor for spin 4

vectorNuml ©547; orientation of the longitudinal component Yes
of a symmetric CSA tensor for spin ¢

vectorNump 547, orientation of the longitudinal component Yes
of a symmetric CSA tensor for spin ¢

doli] strength of the quadrupolar interaction for spin ¢ Yes

vectorNum Quad”; orientation of the quadrupolar interaction for spin ¢ Yes

opTDip tensors associated with dipolar interactions No

opTCSA tensors associated with CSA interactions No

opTQuad tensors associated with quadrupolar interactions No

opTDipFreq frequencies associated to tensors OpTDip No

opTCSAFreq frequencies associated to tensors OpTCSA No

opTQuadFreq frequencies associated to tensors OpTQuad No

Continued on next page
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Table B.1 — continued from previous page
Name definition User-defined?
dDD[i, j] dipolar coefficient for the interaction of spins 7 and j  No
i, 7] vector linking spins ¢ and j No
A; symmetric CSA value in Hz: \/2/30csq[i]w]i] No
oln; longitudinal component of an asymmetric No
CSA value in Hz: /2/3clong][i]w]i]
opn; orthogonal component of an asymmetric No
CSA value in Hz: /2/30perp|iw]i]
wli] Larmor frequency associated with spin 4 No
AngleCSA[n, 1] orientation of the longitudinal component No
of the CSA of spin ¢
AngleCSA[n, 2] orientation of the orthogonal component No
of the CSA of spin ¢ No
AngleQ|n, 2] orientation of the quadrupolar interaction of spin %
M function depending on variables detailed in main text No
to perform the calculations
SpinTermOfInterest Studied operator during the relaxation experiments Yes
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B.2 Tensor operators definitions

Table B.2: Tensor operators for the dipole-dipole interaction and associated frequency as written
in REDKITE. Tensors are of rank 2 and with coherence order g. The letter p refers to the
decomposition of the tensors in the irreducible tensor operator basis. Tensors are written
opTDip[{i_,j_},{q,p}] for the interaction between nuclei ¢ and j. The associated frequencies
are opTDipFreq[{i_,j },{q,p}]. We define w[i] = —v; By in REDKITE.

coherence order p Tensor Frequency
2 0 sopl[i,” + ".opl[j,” + 7] wli] + wlj]
1 0 —2opl[i, "2"].opl[j,” + 7] wlj]
1 1 —2opl[i,” + "].opl[j, "2"] wli]
0 1 = heoplli,” — opllf," + 7] wlj] — wli
0 0 %opl[i, 72”].opl[4, 72" 0
0 1 —5zoplli,” + 7oplls,” = 7] wli] - wlj]
-1 0 %opl[i, "2"].opl[j,” = 7] wlj]
-1 1 opl[i,” — ".opl[j, "z wli]
-2 0 gopl[i,” = "Lopll,” =" —wli] —wlj]
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Table B.3: Tensor operators for the CSA interaction and associated frequency as written
in REDKITE. Tensors are of rank 2 and with coherence order ¢. Tensors are written
opTCSAJi_,{q,0}] for the interaction between nuclei 7 and j. The associated frequencies are
opTCSAFreqi,{q,0}]. We define w[i] = —v; By in REDKITE.

coherence order Tensor Frequency
2 0 2wli]
1 —Zopl[i,” + 7] wli]
0 %opl[i, 2" 0
-1 sopl[i,” — "] —wli]
-2 0 —2w(i

Table B.4: Tensor operators for the quadrupolar interaction and associated frequency as writ-
ten in REDKITE. Tensors are of rank 2 and with coherence order ¢g. Tensors are written
opTQuad[i_,{g,0}] for the interaction between nuclei 7 and j. The associated frequencies are
opTQuadFreq[i_,{q,0}]. We define w[i] = —v; By in REDKITE.

coherence order Tensor Frequency
2 opl[i,” + "].opl[i,” + 7] 2wli]
1 —%(Opl[i, "2"].opl[i,” + 7] wli]
+OpI[Z, » 4 ”].OpI[’L., 77277])
0 %(QOPI[Z', "2"].opl[i, ”2”]
—opl[i, "z”].opl[i, "z" 0

9., 9.,

—opl[i, "y”].opl[i, "y"])

-1 %(opI[i, 727).opl[i,” — 7] —wli
+OpI[’L, » ”].OpI[Z., 77277])

-2 opl[i,” — "].opl[i,” — 7] —2uwli]
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B.3 Hamiltonian in RedKite

We report here the definition of the Hamiltonian as written in REDKITE. Constants are defined
in Table B.1.
For the dipolar interaction:

HDDI[i_,j ,t_]:= /6 dDD[Nuclei[[i, 2]],Nuclei[[j, 2]]] x Sum[ (—1)"™ M[m,
opTDipFreq[{Nuclei[[i,1]],Nuclei[[j,1]] },{-m,k}], t,®[Nuclei[[i,2]], Nuclei[[j,2]]]]
opTDip[{Nuclei[[i,1]],Nuclei[[j,1]] },{-m.,k}], {m, -2, 2}], {k, Min[0, Abs[m]-1], Min[1, 2 -
Abs[m]]};

HDDtot[t_] := Sum[HDDJi,j,t], {i, 1,NumberofAtoms-1}, {j, i+1,NumberofAtoms}|;

For the CSA interaction, in the case of an axially symmetric tensor:

HCSAt_] := Sum[CSAConsidered[[n]] Sum[ (—1)" Anyeleifn,2)] M[m,
opTCSAFreq[Nuclei[[n,1]],{-m,0}], t,AngleCSA[[n, 1]]] opTCSA[Nuclei[[n,1]],{-m,0}], {m, -2,
2}], {n, 1, NumberofAtoms}|;

and for an asymmetric tensor:

HCSAJt_ ] := Sum[CSAConsidered|[[n]] Sum|[ (—1)™ (alnNuclei[[mQ]] M[m,
opTCSAFreq[Nuclei[[n,1]],{-m,0}], t,AngleCSA[[n, 1]]] + opnNyeleiffn,2)) Mm,
opTCSAFreq[Nuclei[[n,1]],{-m,0}], t,AngleCSA[[n, 2]]] ) opTCSA[Nuclei[[n,1]],{-m,0}], {m, -2,
2}], {n, 1, NumberofAtoms}];

and for the quadrupolar interaction:

. L do[AtomsQuadConsidered|[7,2
HQU‘a’d[lf’ tf] T 4QuantumNumberCan[sidered[[i]](2QuantumNE£ml])]erConsidered[[i]]71) Sum[(_l)k M[m’
opTQuadFreq[Atoms|[i, 1]], {-m, 0}], t, AngleQ][[i]]] Vi

opTQuad[AtomsQuadConsidered|[n,2]],{-m,0}], {m, -2, 2}], {k, -2, 2}];
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B.4 Set up of RedKite for “C'H?H,-methyl groups with a vic-
inal deuterium

Here, we show the most important command lines used to calculate relaxation rates and relax-
ation matrix of a {¥*C'H?Hs,}-methyl group with a vicinal deuterium nucleus.

Nuclei — {{Il13CI|7|ICA|I}’ {IllHH’ lIHAH}’ {II2H|I’ ||DAII}’ {I|2Hll7 |IDB|I}’ {II2H|I’ lIDCII}};

The deuterium DC is associated with the vicinal deuterium here. The SetSpinSystem [20]
command is then run as explained in the section 1.3. We define the intermediate constants:

o = 109.477/180;

aCH =7 — o;

rCH = 1.115 x 10717,
rCD = 1.115 x 10719,
hCH = rCH x Cos[aCH];
hCD = rCD x Cos[aCHJ;
OH = Sqrt[rCD? — hCH?];
OD = Sqrt[rCD? — hCD?;
ryCD := rxyCDvic;

rzCD := rzCDvic;

before definition of the atoms coordinates:

Coordinates ={{0,0,0},
{0, —OH, hCH},
{(Sqrt[3]/2)0D, 20D /2, hCD},
{=(Sqrt[3]/2)0OD, 20D/2, hCD},
{0,ryCD, rzCD};

The carbon-13 is set at the origin of the Cartesian axis system, the 'H is in the Oyz plan,
as is the vicinal deuterium, which position is determined by two unknown (later optimized)
variables describing its position along axes Oy and Oz (ryCD and rzCD, respectively). The two
deuterium nuclei of the methyl group are mirror image of one another with respect to the Oyz
plane.

We define a SF with z-axis along the symmetry axis of the methyl group, i.e. the Oz axis:

SF = {0,0,1};

The orientation of the interactions relative to the SF is important when studying the dynamics
of the methyl groups, in particular their rotation around the symmetry axis, and are used in
the definition of the spectral density function.
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We only consider the CSA for the carbon-13 nucleus, assumed to be axially symmetric:
CSAConsidered = {1,0,0,0,0};

with value CSAValue:
desa[l] = CSAValue;

and oriented along the CC bond (i.e. the symmetry axis):
vectorNum, 54" = {0, 0, 1};

Finally, we consider the quadrupolar interaction of the methyl deuterium nuclei, but not for the
vicinal deuterium [101]:

do[l] = 0;
dol2] = 0;
do[3] = 167000 * 2 * T;
dol4] = 167000 * 2 x ;
do[5] = 0;

and we define the orientations of the considered quadrupolar interactions:

vectorNum 24" = Vec["CA", "DA"};
VectorNum;Quad“: Vec['CA", "DB'"];
vectorNuméQuad": {0, 0, 0};

where the command Vec extracts the vector between the two entries (the two nuclei). In the
following analytical expressions of relaxation rates, the intensity of the quadrupolar interaction
will be labelled (g.






APPENDIX C

Analytical expressions of relaxation
rates

C.1 Relaxation rates relevant for the methyl-TROSY

C.1.1 Notations

Table C.1: Spectral density functions used in the description of relaxation in a methyl group
and associated values of S2,(6;7) and Pa(cos(6;7) for different interactions. Jocn and Jecuu
are negative at all magnetic fields.

Notation Correlation Interactions SZ (0z7) Pa(cos(6z7)
Jcc auto-correlation C-C CSA 1 1
Jcu auto-correlation C-H DD 1/9 1
Juu auto-correlation H-H DD 1/4 1
JHCH cross-correlation between two C-H pairs DD/DD 1/9 -1/3
JHHH cross-correlation between two H-H pairs DD/DD 1/4 -1/8
Jcun cross-correlation between a C-H; and a H;-H; pair DD/DD 1/6 1/2

JoHHH cross-correlation between a C-H; and a H;-H;, pair DD/DD 1/6 -1/2
Jocn — cross-correlation between the 3C-CSA and a C-H pair ~ CSA/DD -1/3 -1/3

Jocun  cross-correlation between the 13C-CSA and a H-H pair ~ CSA/DD -1/2 -1/2
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C.1.2 Relaxation in the zero-quantum subspace

C.1.2.1 Auto-relaxation rates

R(ZQer) =l 87 (0) + 9cmoc) + Ao (e — ) + 9cmes) + 12Tcm(es + 0,
+ id%H [4Tucn(0) + 3Tucn(we) + Tuen(we — wy) + 3Tucu(wy) + 6Tnon(we + wy )]
- gdCHdHH [2Tcnn(0) + Jenn(wy) + 2Jcuun(0) — Jonnn (wy )]
b S (3 (0) + 4 an(,) + AThn (20, )]
+ S [3mn (0) + 2 () + 2 (26,,)]

1
+ Egéwg [4Jcc(0) + 3\700((*}0)]
1
3

e [8Tcu(0) + 9Tcu(w) + 4dcu(we — wy) + 9Tcu(wy) + 12JcH(w + wy)]

+
_1
-8

1
+ Zd%H [AT1cu(0) + 3TucH (we) + Trcu(we — wy) + 3TucH (wy) + 6TxcH (W + wy)]

dcnocwe [4Jocn(0) 4 3Jccn(we)] — 4danocws Jocnn(0)

R(ZQ(?uter,Q)

3
- §dCHdHH 2Jcun(0) + Jonn (wy ) + 2Jcnan (0) — Jounn (wy )]

3
+ ZdIQ{H [3Tun(0) + 4Jun(wy) + 4Tun (2wy )]
3
+ ZdIQ{H [3Juuu(0) + 2JuHH(wy ) + 2T0HHE (2w, )]

1
+ ng%wg [4Tcc(0) + 3Tcc(we)]
1

3
1
R(ZQ%ntra)) :ﬂdch [16Tcu(0) + 27Jcn(we) + 12Jcn(we — wy) + 27Tcn(wy) + 36Jcn (we + wy )]

dcnocwe [4Jccu(0) + 3Jccn(we )] + 4dunocws Jocun (0)

1
+ ﬁd%H [—8J1cH(0) — 9TncH (we) + 6ThcH(we — wy) + 18ThcH (wy) + 36 TheH (W + wyy)]

1
- idCHdHH 4Jcuu(0) + 3Jcuu(wy)] + 2dcudun [2Jcuun(0) — 3JcHuH (Wy )]

3
+ ZdIQ{H 2T (0) + 5Jmm (wy ) + 2Tmm (2wy )]

3
+ ZdIZ{H [—2Juuu(0) + Junn (wy) + 4TmaaH (2w,,)]

1
+ 1780%&;2 [4Tcc(0) + 3Tcc(we)]
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R(ZQcenura) :idéH [8T0u(0) +27J0n(we) + 12J0n (we — wy) + 2700n(wy) + 36T0n (e + wy)]
- 1—12d2CH [4Tncn(0) + 9Tucn (we) + 3Tucn (W — wy) + 9Tncn(wy) + 18Jucn(we + wy )]
- %dCHdHH [2Jcun(0) + 3Jcnn (wy) — 2Jcnnn(0) — 3JcHuH (wy )]
+ 2 [ (0) + 2(a,) + 250 (2,
— Sty (i (0) + 2 () + 2w (26,

1
4 ISUCW [4Jcc(0) + 3Tcc(we)]

C.1.2.2 Cross-relaxation rates

3
R(ZQéuter,l A ZQéuter,Z) - - §d%{HjHH(2wH) - 3dQHH\jHHH(QWH)

3 3 3
R(ZQns © ZQmn) =t Tora() + Lot Tincn(iny) — L2 dondias (2 (0y) + Torn ()]

R(ZQA s & ZQ ) mdéH Jon(wy) — Jcn(wy)] + 4jgd%m (it () — Tzt ()]
V6

— TdCHdHH [jCHH (WH) — JonnHH (wH)]

(ZQouter 2 ZQcAentral) = (ZQéuter 15 ZQéantral)
(ZQouter 2 Zchntral) (ZQouter 157 Zchntral)
2 3
(Zchntral A Zchntral) fd%H [jCH<O) - jHCH (O)] + id [jHH(O) - jHHH<O)]

+ V2dcndun [Jennn(0) — jCHH( )

C.1.3 Relaxation in the double-quantum subspace
C.1.3.1 Auto-relaxation rates
R(DQter,1) éd%H [8Jcn(0) +9Tcn(we) + 2Jcn(we — wy) + 9Tcn (wy) + 24Tcn(we + wy)]

+ id%H [4Tncu(0) + 3Jucn(we) + Jncn(we — wy) + 3Tucn(wy ) + 6Jucn (we + wy)]
+ gdCHdHH [2Jcnn (0) + Jonn (wy) + 2Jcnnn(0) — Jonnn (wy )]
4 S (30 (0) + A () + Ak (2,)]
+ S 13T (0) + 2 () + 2 (26,
+ 1 —otw? [4Jcc(0) + 3J0c(we )]

18
+ gdCHUC’WC [4Jccn(0) + 3Jccn(we )] + 4dunocw, Jocun (0)
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R(DQ%\er2) :éd%H [8Jcu(0) + 9Tcn(we) + 2Jcn(we — wy) + 9Tcn(wy) + 24Tcn(we + wy )]
+ %d%H [4Tucn(0) + 3TucH (we) + Juen(we — wy) + 3Jucn(wy) + 6Jucn (we + wy)]
+ gdCHdHH [2Jcnn (0) + Jonn (wy) + 2Jcnnn(0) — Jennn (wy )]
4 S [3Bun(0) + Ak () + Ak (2,)]
+ %d%m [BJrannu (0) + 2Jumn (wyy ) + 2Tmmm (2w, )]
+ 5ot [1T00(0) + 3cc(we)]
- %dCHUCWC [4Tcen(0) + 3Jcen(we)] — 4dunocwe Jecnn (0)
R(DQfntra) :2*146%1{ [16Tcn(0) + 27Tcn(we) + 6Jcn(we — wy) +27Tcn(wy) + 72Jcn(we + wy )]
+ 11*2d2CH [=8T1cn(0) — 9Tucn(we) + 6TucH(we — wy) + 18Tucu(wy) + 36Jncn (we + wy)]
+ %dCHdHH [4Jcnn (0) + 3Jcun(wy )| — 2dondnn [2Jcuun(0) — 3Jcnun(wy )]
+ Zd%H [2Tun(0) + 5Txm (wy) + 2Tuu (2w, )]
S (-2 T (0) + T () + A (2,)]
+ 11—80%%% [4Tcc(0) + 3Tcc(we)]
R(DQzuntral) :2*146%1{ [87cn(0) 4+ 27Jcn(we) + 6Jcn(we — wy) +27Jcn(wy) + 72JcH(we + wy )]

1
12

1
+ §dCHdHH [2Jcuu(0) + 3Jcuu(wy) — 2Jcnnn(0) — 3Jcuun (wy, )]

dzg [4T1cn(0) + 9Tucn(we) + 3Tucn(we — wy) + 9Tcn (wy) + 18TucH (we + wy )]

3
+ Zd%H [(Jrr(0) + 2Tun (wy) + 2Tu01 (2w, )]
3
- Zd%lH [Jrrn (0) + 2Jmmm (wyy ) + 200 (2w, )]

1
+ Eaéwg [4Jcc(0) + 3Jce (wc)]
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C.1.3.2 Cross-relaxation rates

(DQouter 1 A DQouter 2) (ZQouter 1 A ZQouter 2)

3 3 3
(DQouter 1€ Dchntral) \[dz HJCH(WH) + \gd%HJHCH(w ) + £dCHdHH [QJCHH(WH) + jCHHH(wH)]

(DQouter 157 Dchntral) 4\[ CH [jCH( ) JucH (WH)} 4\[dHH [jHH( ) jHHH<wH)]

6
+ \QdeHdHH [jCHH(wH) — JcHEH (wH)]

A A A A
(DQouter 2 Dchntral) = (DQouter 157 Dchntral)
(DQouter 2 7 D central) (DQouter 157 Dchntral)

R(DQ%iral ¢ DQiiira)) = fdQCH [Jcu(0) — Tucu(0)] + ﬁd 1 [Juu(0) — Tunn(0)]

— V2dcendun [Jonnn (0) — jCHH( )l
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C.2 Relaxation rates for a BC-'"F spin pair

C.2.1 Notations

Table C.2: Spectral density functions used in the expressions of the relaxation rates for a >C-
9F group and values of 0z 5- ax: angle of the CSA tensor principal axis with the CF bond for

nucleus X.

Notation Correlation Interaction 0z 5
JcF auto-correlation C-F or CSA auto-correlation DD or CSA 0
Tesa cross-correlation between homonuclear components of CSA tensor o) JoL /2

jCFF” cross-correlation between the F longitudinal CSA and C-F DD/ o|F aF
jCFCH cross-correlation between the 3C longitudinal CSA and C-F DD/ o|,c ac
JcFo, cross-correlation between the orthogonal CSA and C-F DD/o ; /2
oF o€ cross-correlation between heteronuclear components of CSA tensor o) p/o ¢ ar —ac
J. oF oS cross-correlation between heteronuclear components of CSA tensor o) p/01 ¢ /2
o, aﬁ cross-correlation between heteronuclear components of CSA tensor o p/ o|.c /2
0

\7057 o€ cross-correlation between heteronuclear components of CSA tensor o p/o| ¢

C.2.2 Auto-relaxation rates

A

R2(F) =R(Fyx) = R(Fy)

:d%sF (4Tcr(0) + Jor(wy — we) + 6Jcr(we) + 3Jcr (wp) + 6Jcr (wp + we))
+ c;é ((Uﬁ,F +01 ) (4Tcr(0) + 3Jcr (W) + 207 po 1k (4Tesa(0) + Sjcsa(wF))>
Ri(F) =R(F)
:déF (Jor(wy — we) + 3Tcr(wy) + 6Jcr(w, +we)
" °‘f ((Uﬁ,F + 0% p)Jor(we) + 20’“7F0'J_,chsa(wF))

A

R2(C) =R(Cx) = R(Cy)

d2
:% (4Tcr(0) + Jor(wy — we) + 6Jcr (wy) + 3Tcr(we) + 6ok (wy + w,))

2
+ 22 (0 o + 0% ) (1Ter(0) + 8Tcw () + 20,0010 (1Tesa(0) + BTesa (1))
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+ -2 ((0F o + 0 o) Tor(we) + 201,001 ¢ Tesa (w0 )
) = R(2F,C,)

)

|

|

=

[\V]

5 w0
"

o>

o
—

4Jcr(0) + Jor (wp — we) + 3Tcr (wy) + 6Tcr (W + W)

((of 7+ 0% .p) (4T (0) + 8Tk (w)) + 201 po 1,k (4Tesa(0) + 3esa ()

3 ((Uﬁ’c + Ui7c)u7csa(0) + 2O-||’CO-L,CJCSE1(O))
po =R(2F,Cy) = R(2F,Cy)

(0) + Jcr(wp — we) + 3Tcr(we) + 6Jcr (wy + we))

+
o5
—

(oF ¢ + 0% 0) (ATor (0) + 8Tcw (we)) + 201,00 1.0 (Aesa (0) + BTesa () )

|
> 7 N

(of  + 0% 1) Jesa 0) +20),50 L P Jesa (0))

>
3
<
|
P
[\
>
k]
Q

o) = R(2F,Cy) = R(2F,Cy) = R(2FCy)
(we) + Jer(wp — we) + 3Jcr(wp) + 6Jcr (wy + Wy ))

18 ((oF r + 0% p) (ATcr (0) + 8Tcr (we)) + 2000 1 p (4Tesa(0) + 3Tesa(wy) )
+ c%c ((Uﬁ,c + 01 .0) (4Tcr(0) 4+ 3Jcr (we)) + 20y 001 ¢ (4Tesa(0) + 3~7csa(wc>))

Rer =R(2F,C,)
3d%p
= WJer(we) + Jer(we))

2
F

€

+3 ((Uﬁ,F + 07 p)Jor(wg) + O—H,FO-J-,ijcsa(wF)>
w? 2 2
+ ?C ((Un,c + 01 o) Jor(we) + Uu,oﬂ,cjcsa(wc))

C.2.3 Cross-relaxation rates

~ A d?
o =R(F, < C,) = % (6Jcr(wy +we) — Jor(wy — we))
o =R(F, +» 2F,C,) = dopwy (U”,FjCFF” (we) + 01,rJcFo, (wF))
50 Z'R(CZ <~

2F,C,) = derw, (UH,CJCFCH (wo) +01,cJcra, (wc))
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r :R( FiC,) = R(Fy  2F,C,) = R(FF 4 207 C,)
(“H (47crr, (0) + 3Tcrr, (we)) + 01k (40Fo, (0) + 3T0re, (w,)) )

nc—R(C o 20,00 = R(Cy o 2B,C4)
:dCTch (Ull,C (4JCFCH( ) +4Jcrc) (w c)) + 010 (4Jcrs, (0) + 3Tcrs, (Wc)))

ftmg =R(2FCy & 2F,Cy) = R(2FCy = 2F,Cy)

d
gF (6Jcr (wy + wg) — Jor(wp — wg))

4
+ gWrte <U|| Fo|,cJy ol f(o) + U”’FJL’C‘Z’f:Uf (0) + 01 roy, cJor o (0) + UL,FUL,CJJEJE(O))

C.2.4 CSA tensor parameters
Table C.3: CSA tensor parameters as reported in Ref.[40] and TROSY operators. The parallel

components of the CSAs lay in the aromatic ring plane at an angle o with respect to the C-F
bond, while the perpendicular components are oriented perpendicular to this plane.

YF, ppm | 13C, ppm | « (deg) TROSY operator
Molecule Uf alj Uﬁ Uf Bp  13C Fluorine Carbon
2F-Phe 2-fluorophenylalanine | 61 159 | -113 48 | 3 0 | Bt —20tC, Ct—2F.Ct
2F-Trp  2-fluorotryptophan | 70 159 | -102 13 | 1 29 |F+—2F+C, CF —2F.C*
2F-Tyr 2-fluorotyrosine 65 167 | -113 47 | 0 Ft—oFtC, CF—2F,CF
3F-Phe 3-fluorophenylalanine | 80 137 |-115 49 | 0 0 | Ft+2FtC, Ot —2F.Ct
3F-Tyr 3-fluorotyrosine 43 157 | -75 54 | 17 16 | Bt —2F*tC, Ot —2F.C*
4F-Phe 4-fluorophenylalanine | 81 139 | -111 51 0 0 P+ 213‘*'6z C+ — 2Fzé+
4F-Trp  4-fluorotryptophan 63 150 | -98 39 | 10 11 | Bt —2F*tC, Ct—2F.Ct
5F-Trp  5-fluorotryptophan | 79 113 | -109 40 | 1 9 | Ft4+2FtC, Ct—2F,Ct
6F-Trp  6-fluorotryptophan | 76 112 | -108 45 | 9 0 |F+t4+2F+tC, CF —2F.C*
7F-Trp  7-fluorotryptophan | 54 146 | -78 47 | 4 15 | Bt —2F*+C, Ct —2F.C*
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C.2.5 Field-dependence of the relaxation rates
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Figure C.1: Magnetic field variations of the relaxation rates of the fluorine and carbon operators
forming the Liouville space of a 3C-'F nuclear spin pair for 7. = 25ns (blue) and 7. = 100 ns
(orange). Calculations were performed using the CSA tensor parameters for 3-fluorotyrosine.
Figure reproduced from [41].
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C.3 Relaxation rates relevant for {3*C'H?H,}-methyl groups

C.3.1 Notations

Table C.4: Spectral density functions used in the description of relaxation in a {!3C'H?Hj}-
methyl group.

Notation Correlation Interactions
Jc auto-correlation C-C CSA
Jo auto-correlation C-D quadrupolar
Jcn auto-correlation C-H DD
Jcp intra-methyl auto-correlation C-D DD
JuD intra-methyl auto-correlation H-D DD
JpD intra-methyl auto-correlation D-D DD
JCDuic auto-correlation C-Dyic DD
JHD.;. auto-correlation H-Dyj;¢ DD
JDDyic auto-correlation D-Dy;c DD
Jc,cH cross-correlation between C-C and C-H CSA/DD
Jc,cp cross-correlation between C-C and C-D CSA/DD
JcD,,CDs intra-methyl cross-correlation between two C-D pairs DD/DD
JHD, HD, intra-methyl cross-correlation between two H-D pairs DD/DD
JID1Duic,DaDyic cross-correlation between two D-Dy;. pairs DD/DD
JcH HD cross-correlation between C-H and H-D DD/DD
Jcu,cp cross-correlation between C-H and C-D DD/DD
Jcp,HD cross-correlation between C-D and H-D DD/DD
Jcp,pD cross-correlation between C-D and D-D DD/DD
JHD,DD cross-correlation between H-D and D-D DD/DD
Jcp,o auto-correlation C-D DD /quadrupolar
JHuD,Q cross-correlation H-D and C-D DD/quadrupolar

Jpp,0 cross-correlation D-D and C-D DD/quadrupolar
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C.3.2 Relaxation matrix

Operators in the secularized basis are:
B larized = éz f{z QCA'zIA{z \/iézﬁzf)l,z \/iézﬁzblz CA(zljl,z C'zD2,z
secularize 3\/§7 3\/37 3\/§ ) 3 ) 3 9 3\/§ ) 3\/§ 9
Dl,z DQ,Z észD; C’ZDTZA)Q_ ézbl,zﬁzz 3ézD1,zD1,z - 262

(C.1)
6v2 6v2  4v3 T 43 T 23 3v6 ’
3C.Dy D, —2C,
3v6 '
The relaxation matrix in the basis Bsecularized 1S:
Ri(*3C) oca nS k€  kC nfP nfP oep ocp A A v: B B
ocu Ri(PH) 0 &H kH 0 0 ogp oup O 0 0 0 0
nS 0 Rey kCH kCH § 5 0 0 0 0 0 0 0
«<C Kl kCH Ropp <CHD nzCHD 0 ocup O A A Vgl) w0
e gH gCH CHD Ry 0 CHD 0 soyp AD M Vgl) 0 u®
nSP 0 § nSHP 0 Rep &P 0 0 0 o P u® o
R nCP 0 § 0 %MD 4CD Ry 0 0 0 o 42 0 u® 0.9
- oCcD OHD 0 OCHD 0 0 0 RD ODD )\(2) )\(2) Vgg) ,LL(B) 0 ( ’ )
2 K@ LB (3)
ocD OHD 0 0 ocup O 0 opp Rp A A v 0 u
A 0 0o A @ 0 0 A® A\ R(C%D xCDD (1) PONAO)
A 0 0o A A 0 A@ A2 ,CDD R(C%D v @ @
v, 0 0 l/gl) V;l) V£2) ugg) u§3) u£3> u§4> V§4) Rg])DD ,u(5> M(E’)
w 0 o p 0 u® 0 p® 0 @ u® G R0
i 0 0 0 ey 0 pu@ 0 S IO B CO RGN (N
Note that numerical simulations were carried out in a reduced basis formed with elements 3?/257
H, 20, H, : .
Wi and Wl of the secularized basis.

C.3.3 Auto-relaxation rates

1
R(5C) =LAt ot
1
+1d%H (Jen(we —wy) +3Jcn(we) + 6Jcu(we + wy))

4
+§d%D (Jop(we — wp) +3Jep(we) + 6Jcp(we + wp))
2
3
1
Ry (*H) =g (Ton(we — wy) + 3T0n(wy) + 6T0n (we + wy))

+ dQCDViC (jCDvic (OJC - wD) + 3t7C]Dvic (wC) + 6\7C]:)vic (wC + wD)) ’

4
+§d%{D(~7HD(wD — wy) + 3Jup(wy) + 6Jup (wp, + wy))
2
+§d12-ID\,iC (jHDvic (wD - WH) + 3‘7HDvic (WH) + 6‘7HDvic (wD + wH))’
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Rcn

Rcup

Rcp

Rp

1 3
:gAJ%ngC(wc) + Zd%H (jCH(wc> + jCH<wH))

4
+§d20D (Jep(we — wp) +3Jep(we) + 6Jcp (we + wp))

4
+§d%{D (Jnp(wy — wp) + 3Jup (Wy) + 60D (Wy + wp))
2
+§dZCDviC (jCDvic (wc - wD) + 3jCDvic (wc) + 6jCDvic (WC + WD))

+§d12{DviC (JuDyse (wy — wp) + 3T, (Wy) + 61D, (Wy +wp))

=3 (Tolp) +870(2up)) + 3 A0t Jowe)

+§d2DD(s7DD(O) + 3Jbp(wp) + 6Jpp (2w )) + gd%H(jCH(wc) + Jon(wy))
+1—12d%n(117cn(wc —wp,) 4 9Jcep(wy,) + 60Tcp (we) + 66Tcp (we + wy))
+T12d%1D(115HD(wH — wp) + 9Jup (wy ) + 601D (Wyy ) + 66 T1D (wy + wp))
3 (oD (0) + 3ToDu ) + 670, (29)

2 (BT0De (00) + ToDe (e = @) + 6Ty + )

3 i (BT (40) + Tty (g — ) + BTD (3 + )

=2 (3 (Jolwp) + 470(2u)) + 5 A0Ee Tol)

+id%H(jCH<wc —wy) +3Jcn(we) + 6Jcn(we + wy))

+id%{D(jHD (wy —wp) +3Jmp(wp) + 6Jnp (wy + wp))

+§d2DD(u7DD(O) + 3Jpp(wp,) + 6JpD (2wy, )

+%d2CD(11jCD(Wc —wp) +9Jcp(wy, ) + 60Tcp(we) + 66Tcp(we + wp))
2B (T, (0) + 80, () + 670D, (2,))
2 dep (Tenu (We — @)+ BTen . (we) + 6Tcny (e +5,)),
Z%Cé(jg(wn) +4Jo(2wy)) + §d2DD(~.7DD(O) + 3Jpp(wp) + 6Jpp (2wy, )
Frd(Jo (e — wy) + 3o () + 6Ten(we + 1))

+id%{D(jHD (wy —wp) + 3Jmp(wp) + 60D (wy + wp,))

+§d2DD (JpD0ic (0) + 3TDD i (Wp ) + 6TDDs (2005)),

vic
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1 3
R(cll)JD :4*8@(379(0) +5J0(wp) +2J0(2wy,)) + ZdDDCQ(QjDD,Q(O) + 3Jpp,0(wp))
1
3
1
+1d]23D(7\7DD(0) +18Jpp(wy) + 12Jpp (2wy,))

1

+3 80w Jo(we) + Jden(Jon(we —wy) +3Jon(we) + 6Jon(we +wy))

1
+1d12{D(4L7HD(0) + Jup (wy — wp) + 3Jup (wp ) + 670D (wyy) + 6J1p (wy + wpy))

1
+Zd%D (4._70]3(0) + 5JCD(WC — OJD) + 3JCD(WD) + GJCD(CUC) + 30JQD(WC + wD))

2
+§dCDvic (jCDvic (wC - wD) + 3\7C])vic (WC) + 6\—70Dvic (wC + wD)) - 2d%DjCD17CD2 (0)

2
+7d]23Dvic (5‘7DDvic (O) + 9'°7]3]3vic (wD ) + 6‘7]D])vic (2wD ))

3
1 4
—§d12{D(2~7HD1,HD2 (0) + 3JuD, HD, (Wy)) — gd%D(QJDlDViC,DQDViC (0) + 3JD1Dyic,DaDuic (Wp))
2 3 1
Ribp = glal(Jalwn) +470(2wy)) + 5 Actw? Jo(we)

+ R (Ton (e — wig) + 3Tcne) + 67cn (w0 + )

3 (Ton(we — wp) + 3Top(wp) + 67on(we + ) +1270p(w)
b5 (Thp (w0 — ) + 3i0(,) + 6 (0, + )
+%d]23D(x7DD<O) +12Jpp(wy,) + 6D (2wy))

+§d%DviC(~70Dm (we —wp) +3Jcp (We) + 6TcD i (We + wp))

4
+§dDDvic (jDDviC (O) + SjDDvic (WD) + 6‘7DDvic (2(*)]3 )) )

R =1L 3 oluy) + 5 Aot To(we)
o du(Ton(@e — ) + 3Jc(we) + 6on(we + )
+Zd%D(jCD(wc —wp) +3Jcp(wy) + 4Jep(we) + 6Jcp (W + wp))
+ZdI%ID(x7HD (wy —wp) + 3Jmp(wy,) + 6Tup (wy + wp,))
+2d3p (Jop(0) + 3Tpp (wh) + 67bD (2w,
2 (o0 — ) + BT () + 6Ty (0 + )
+2d3 5. (ToDue (0) + 3TDDyie (W) + 6D, (20 )-
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C.3.4 Cross-relaxation rates

Cross-relaxation rates with the operator C. are:

1
oCH :Zd%H(_jCH(WC — wy) + 6Jon(We + wy)),
77ZC :AUCdeCHjC,CH(Wc)a

kY =V6dcndop Jon,op (We ),

5
e —\2denAocwoTocnl.)
1
ocD :%d%D(—ch(wc —wp) +6Jcp(We + wp)),

2
A :gd%D(jCDl,CDz (We = wp) +6Jcpy e, (W + wp)),

V. =4dgp Jep,,cp, (W),

2
H _\Gfd%D (—=Jep(we — wp) + 6Jcp(we) — 6Jcp(we + wp)) -
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APPENDIX D

Analysis of B3C-PF TROSY
pulse-sequences

D.1 Single-Field TROSY experiment

P,
] I H I H t2’ (prec
13C
(p1 (p3
T/2 H T/2 I T/2 H T/2 I

t1
19F
92 92 93 g3

. T

Figure D.1: Single-field TROSY pulse-sequence for '3C-F aromatic groups. This sequence

can be modified to include proton decoupling during the t; and to evolution periods as detailed
in the original publication [40]. Black narrow (resp. wide white) rectangles represent 90° (resp.
180°) pulses. Pulses are applied long the x-axis of the rotating frame if not otherwise stated.
Phase cycles are as follows: ¢1=(y,-y,x,-X) , and @re.=(x,-X,-y,y). Pulses @2 and @3 select the
TROSY component. In the case of the 3-fluorotyrosine, o=y and @p3=-y, while po=-y and
p3=-y for the 4-fluorophenylalanine. The indirect dimension is recorded in an Echo/Anti-Echo
scheme by recording another set of experiment with following phases: ¢1=(-y,y,x,-X), p2=-
y (3-fluorotyrosine) or po=y (4-fluorophenylalanine), ¢3=y and the same receiver phase. The
duration of the delay T=1/(2J). Gradient g; is a cleaning gradient and was simulated by setting
the initial density operator to Fz only. Length of the gradients is 750 us with amplitudes 24.75
G.cm~! for go and 27.5G.cm™! for g3.

In the following, relaxation effects are neglected. The pulse sequence [40] is shown in
Figure D.1. The first carbon pulse and gradient g; remove carbon polarization. After the pulse

P1:

Fy Ot Fztonorh = F, cos(Qpt1) cos(nJopty) + Fy sin(Qpty) cos(mJorts)

+ Qﬁ‘yéz cos(Qptq) sin(rJopty) — 21, C, sin(Qptq) sin(rJopty),

(D.1)
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where Qg is the offset frequency for the fluorine nucleus and Jop the scalar-coupling con-
stant between the carbon-13 and fluorine-19 nuclei. The Single Transition-to-Single Transition
Polarization Transfer (ST2-PT) block [148] converts these operators into observable carbon-13

magnetization (recall that the coupling constant is negative):

B ze, P m(FotCo)—mELC oby 0, 2(Ca—Fy) o, 7(Fp+Cy)—nF.C.
A EC‘ A ﬁ‘z"‘éz - Fzéz A A, z Az_ﬁ‘ AN ﬁz+éz - Fzéz
p, 20, p TEAC)TTRC op o) BOTR) o ¢ TG
y y y
6, w(FtCo)—nFuCe . . E(CamBy) (Bt Cy)—nFuCe

During the acquisition time to, the signal has the form:

S£x (tl, tg) XX sin(QFt1 — WJCFtl)ei(QctQ_WJCFQ),

where the notation 85 denotes the signal recorded for the set of phases v1 = y and prec = «

,

during the echo part of the sequence. The second cycle (91 = —¥, Prec =

same FID. The last two cycles (¢1, ¢rec) lead to the signal:

Sg—y (th tZ) :SE:C,y (tl, t2),

SxE’_y(tl, tg) X — iCOS(QFtl — WJCFtl)ei(QCh_WJCFtQ).

In the "echo" linear combination, this leads to a signal of the form:

SP(tita) = D Sy e (tista),
(#1,prec)
Z'ei(QF_ﬂ'JCF)tl ei(Qc—ﬂ'Jcp)tz

X = )

where the factor - only introduces a -90° phase shift.

During the anti-echo acquisition, the ST2-PT block converts the operators into:

leading to signals:

S(A;Zx) (tl, tg) X Sin(QFt1 + WJCFtl)ei(Qct2+7rJCFt2),

SAE (tl, tQ) X1 COS(QFtl + WJCFtl)ei(QCbJ'_ﬂJCFtQ),

(x’_y)

—x) produces the

(D.4)

(D.5)
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where the exponent AFE refers to the anti-echo acquisition of the sequence. Finally:
SAE(tl, tQ) x Z'ei(QF‘HTJCF)tl ei(Qc—ﬂ'JCF)tz. (DS)

The Rance-Kay processing leads to the final spectrum with selection of the YF-TROSY com-
ponent in the indirect dimension.

As detailed in section 2.3, the successive evolution during the ST2PT! (ST2PT!) un-
der operators with drastically distinct relaxation properties (i.e single-quantum and multiple-
quantum coherences) leads to a poor selection of the carbon-13 TROSY component (Fig.D.2).

a) 3F-Tyr-t,=25ns b) 3F-Tyr-t_ =100 ns

L N,

1 1 1 1 1 1
26 24 22 20 18 16 26 24 22 20 18 16
13C - ppm 13C - ppm

Figure D.2: The 1F-TROSY experiment does not perfectly select the carbonl3 -TROSY peak.
Carbon-13 cross-sections of two-dimensional spectra simulated with the 1F-TROSY pulse-
sequence for 3F-Tyr with global tumbling correlation times 7. = 25ns (a) and 7. = 100ns

(b).
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D.2 Two-Field TROSY experiment

In the following derivation, relaxation effects are neglected. The pulse sequence is shown in
Fig. 2.18. Polarization occurs at high field and the magnetization is stored and shuttled as F,
operator. Evolution in the Indirect dimension is performed in a semi-constant time fashion [149]
such that scalar-coupling evolution is refocussed. The phase cycle on o allows selection of the
cosine or sine evolving part, which is further transfered back to the 2F.C, operator for shuttling
to high field. The first carbon-13 pulse creates anti-phase carbon magnetization, which further
evolves under scalar coupling during a time T/2:

A A i A A Eéx A A Wﬁz+éz 75}:—'2@2 2
2, C, ™y —oF,C, 25 oF, Gy ( )75 V2

2@&@+@) (D.9)

The phase cycle on @3 and the use of two fluorine 180° pulses allow selection of the carbon-13
TROSY component.

N
Y3 = Z: 7 (QFZCy+CX> ﬁ)

V2

2
16,12 -} (2R, 20.0) + oG- (e 6) - Y
L (D.10)

Changing the receiver phase from -z to +z leads to the selection of the QFZCX — CX operator
before detection (i.e. the TROSY component). Reconstruction of the indirect dimension is
done after Fourier transform of the direct dimension as:

S(t1,w2) = Sy =z (t1, wa) + 1Sy, =y (t1, w2), (D.11)

with Sy, —x(t1,w2) being the Fourier-transformed signal in the direct dimension recorded with
phase 1 = k.
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D.3 Two-Field TROSY experiment with ST2-PT block

In this section, some results for an alternative 2F-TROSY pulse-sequence are detailed. In this
pulse sequence (Fig.D.3), the Spin State Selective Excitation (S3E) block [150] is replaced by
a ST2-PT block [149]. This allows for a selection of both 13C- and °-TROSY single-transitions.
We refer to this experiment as 2F-ST2PT.

|
?; L %
I t, T2 | TR I T2 | | T2

9, 9, 9 9, 9s /
GLF ‘ ‘ “ ‘

Figure D.3: Two-field TROSY pulse sequence with selection of both F and '3C-TROSY
components in BC-19F aromatic groups. Black narrow (respectively wide white) rectangles

BC,e Thra
\Csh ] ]
PCye ik I I I
F e
F \
G

represent 90° (respectively 180°) pulses. Pulses are applied along the x-axis of the rotating
frame unless otherwise stated. Phase cycles are as follows: ¢1 = (y,-¥,X,-X, ¥,-¥,X,-X), @1 =
(X X X XY % YY), ¢ = (X, X, X, Xy, -y, -¥y) and @ree = (X,-X,-7,Y,%,-X,-yy). In
order to select the TROSY peak, phases @2 and (3 have to be adjusted to either y and —y for
selection of Ft — 2F*C, (3F-Tyr) or to —y and —y for selection of FT + 2E+C, (4F-Phe).
Frequency discrimination in the indirect dimension is performed using the Echo/Anti-Echo
acquisition scheme, with phases 1 = (-y,y,X,-X,-y,y,x,-x) and the phases ¢y and 3 shifted
by 180°. Length of the gradient go and g3 are the same as in the single-field experiment
(750 ps, and 24.75 G.cm~! and 27.5 G.cm ™! respectively). This pulse sequence can be modified
to include proton decoupling during fluorine-19 and carbon-13 chemical shift evolution periods.
The horizontal line breaks represent the shuttling periods from one field to the other. Time 7gp
is the shuttling delay, 7yr1 and 7 F2 are waiting delays before shuttling and 74p2 and 77,71
are waiting delays after shuttling, as detailed in section 2.3. Figure reproduced from [41].
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a) 3F-Tyr-t_=25ns b) 3F-Tyr -t_=100 ns 50
50
>
45 45 ol .
>
—~ 4.0F —~ 40 ;
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Figure D.4: Field optimization of the 2F-ST2PT experiment. Expected peak height for the
3F-Tyr for correlation times for global tumbling 7. of 25ns (a) and 100ns (b). The highest
peak-height position is indicated with a star. The optimal low-field remains the same as for
the two-field experiment discussed in section 2.3 (2.5 T). Interestingly, the optimial high field is
higher. This is due to an increase in the °F longitudinal relaxation rate (Fig. C.1) leading to
a smaller recycling delay and hence lower experimental time. We simulated the experiment at
the highest commercially available magnetic field at the time of writing (i.e. 28.2T). Figure

reproduced from [41].

a) Full delay b) Cancelled delay
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Figure D.5: The 2F-ST2PT leads to poor selection of the TROSY operators. 3F-Tyr spec-
tra simulated with correct shuttling delays (a) and virtually cancelling shuttling (1 ms) and
high-field stabilization (0ms) delays (b). These simulations were performed for a global
tumbling correlation time 7. = 25ns. Here, we show 15 contour levels starting from the
maximum intensity and with a factor 1.2 between two consecutive levels. Peaks are la-
belled as Carbon-TROSY /-Fluorine TROSY (CTFT), Carbon anti-TROSY /Fluorine-TROSY
(CATET), Carbon-TROSY /Fluorine anti-TROSY (CTFAT) and Carbon anti-TROSY /Fluorine
anti-TROSY (CATFAT). Figure reproduced from [41].



APPENDIX E
Results for the dynamics of
ubiquitin methyl groups

E.1 Value of the parameters for isoleucine dynamics of ubiqui-
tin

The results reported here were published by Cousin et al. [21] and are based on the analysis of
high-resolution relaxometry data using a spectral density function accounting for an isotropic
global tumbling motions (correlation time 7..), the rotation of the methyl group (order parameter
S2 and correlation time 7,,), and two modes of motions for the C-C bonds, one fast (correlation
time S]% and correlation time 7¢) and one slow (order parameter S? and correlation time 7y):

J aaa:gSQ 6;7)(S3S°L 1—S?)L(w,7h) 4+ 531 - SHL(w, 7!
(w7 Z,]) 5 m( Z,j)( 95 (W,TC)+( f) (W;Tf)‘i‘ f( s) (W,TS))

+(Pafeos(0:7)] — S2(0:)) (S3S2L(w, 74) + (1 — SHL(w, 7)) + SH(1 — $3)L(w, 7))

(E.1)

where 6; is the angle between the two interactions i and j, L(w,7) = 7/(1 + (w7)?) is the

Legendre function, Po(z) = (322 —1)/2 is the second order Legendre polynomial and SZ,(6;7) =

Palcos( 7)1 P [005(90”05)] where 67, - and 0, - are the angle between the C-C bond and the
interactions ¢ and j respectively.
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1.0

OO 1 1 1 1

100 200 300 400
B, (T?)

Figure E.1: Contribution of chemical exchange to the relaxation of carbon-13 41 nucleus of
isoleucine 44 of Ubiquitin. The y-axis corresponds to the difference between the measured and

calculated Ry using ICARUS analysis without including these rates. Figure reproduced from
[21].



E.1. Value of the parameters for isoleucine dynamics of ubiquitin 243

AR e L
Al L
LA U] e L
SN IS W Y
oI N N1 W)
T W

AL e

o

0.

-—
o
o
)
—
w

14 2500 01 02 030 15

w
o
o
—
()]

30

Figure E.2: Distribution of parameters of the dynamics after an MCMC procedure on corrected
HRR rates using ICARUS and accurate high-field relaxation rates. Figure reproduced from
[21].
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Table E.1: Order parameters and correlation times for isoleucine d1 methyl groups in Ubiquitin
determined using HRR and ICARUS analysis [21]. 7. was set to 5.028 ns. Chemical exchange
is affecting transverse relaxation rates of Ile-44 and its CSA was set to 25.0 ppm.

SJ% S2 CSA (ppm)
Residue | Median 40 —o | Median +o0 —o | Median 40 —o
3 0.71 0.01 0.01 0.76 0.12 0.15 23.8 1.57 1.43
13 0.63 0.02 0.03 0.62 0.06 0.15 23.9 2.53 2.33
23 0.51 0.01 0.01 0.90 0.07 0.12 20.1 1.36 1.37
30 0.81 0.01 0.02 0.74 0.10 0.30 22.5 2.05 2.19
36 0.67 0.02 0.02 0.58 0.03 0.03 29.4 1.28 1.19
44 0.51 0.03 0.05 0.28 0.02 0.03 Not fitted
61 0.55 0.02 0.01 0.89 0.07 0.11 26.1 1.87 1.83
Timet (DS) 7t (ps) 7s (ns)
Residue | Median 40 —o | Median +o0 —o | Median 4o —0o
3 8.56 1.06 0.88 34.8 244 170 17.7 8.86 10.6
13 11.5 1.85 0.94 77.3 40.7 39.3 3.13 4.10 1.08
23 21.7 0.38 0.33 150 11.8 12.1 18.3 837 114
30 9.03 0.92 0.61 61.8 47.6 354 6.98 14.8  4.20
36 8.05 1.14 0.43 82.8 24.8 37.6 2.48 0.63 0.45
44 5.58 2.44 1.17 70.3 42.1 429 1.27 0.36 0.22
61 14.4 0.71 0.45 138 18.2  26.1 17.3 9.05 12.7
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Table E.2: Median values and standard deviations for order parameters and correlation times

for isoleucine 41 methyl groups of Ubiquitin determined using HRR and a MINOTAUR analysis.

T. was set to 5.028 ns. Chemical exchange is affecting transverse relaxation rates of Ile-44 and
CSA was set to 25.0 ppm.

SJQC 52 CSA (ppm)
Residue | Median +o0 —o0 | Median 40 —o | Median +o0 —0o
3 0.71 0.02 0.02 0.81 0.10 0.18 22.1 1.69 2.26
13 0.63 0.02 0.02 0.51 0.12 0.25 25.2 1.68 1.71
23 0.52 0.02 0.02 0.82 0.12 0.21 19.9 2.17 2.05
30 0.82 0.02 0.02 0.47 0.29 0.26 22.9 1.86 2.01
36 0.66 0.02 0.02 0.53 0.07 0.11 29.4 1.61 1.53
44 0.50 0.02 0.02 0.23 0.04 0.05 Not fitted
61 0.57 0.02 0.01 0.84 0.10 0.17 25.0 1.57 141
Tmet (PS) s (ps) Ts (ns)
Residue | Median +0 —o0 | Median 40 —o | Median 40 —0o
3 8.40 0.83 0.63 40.0 25.5 16.3 19.6 7.19 10.3
13 11.3 0.90 0.48 84.5 21.0 27.2 5.44 4.98 2.39
23 21.9 0.50 0.39 139 13.7 16.8 17.8 8.42 11.3
30 9.21 0.69 0.52 59.4 38.2 30.6 16.3 8.68 10.3
36 9.21 0.58 0.31 94.9 22.6 264 3.50 1.76  0.99
44 6.06 1.35 0.73 58.6 19.2 227 1.62 0.28 0.26
61 14.7 0.36 0.29 121 12.8 14.9 17.6 8.53 10.4
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Figure E.3: Correlation between MINOTAUR analysis using 3,000 and 10,000 MCMC steps for
S]% (a), SZ (b), Tmet (c), T (d), 75 (e) and the carbon-CSA (f). The solid black lines correspond

to perfect correlation. « is the slope of the linear correlation function.
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E.2 Experimental parameters
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Figure E.4: Experimental delays for the 25 experiments used in the analysis of the dynamics
of isoleucine-d1-methyl groups of Ubiquitin, and ordered from the highest magnetic field at
which relaxation takes place to the lowest. The time labels refer to the decomposition of the
free-relaxation part of the pulse-sequence, as shown in Fig.3.1. The blue curve (right y-axis)
shows the variation of the magnetic field for each experiment (associated with an increase of
shuttling height). Experiments 1, 2 and 4 were performed on high-field spectrometers, with no
shuttle. Figure reproduced from [19].
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E.3 Size-reduction of relaxation matrices by removing fast-relaxing
operators

Here, we will show that fast-relaxing terms of a relaxation matrix can be discarded (as mentioned
in Section 3.3.2 of the main text) in order to reduce the size of the relaxation matrix and save
computational time. For the sake of simplicity, we consider a 2x2 Liouvillian:

R1 g
L= . E.2
( o R’1> (E2)
The characteristic polynomial of L is:
det[£ — A\I] = X\ — AM(R; + R}) — 0® + R\ R}, (E.3)

with Z the identity matrix. The roots are given by:

R+ R+ VA
ao = BERIEVE (B.4)
with:
A = RP 4+ R? — 2R\ R} + 40*. (E.5)
Let’s assume R} > Ry, 0. A first order approximation in R; and o of VA leads to:
\/> ~ D! Rl /
1

such that the eigenvalues of £ are R; and R). The associated eigenvectors approximate to {1,0}
and {0, 1} and the autorelaxation of the operator of interest can be considered mono-exponential
with decay rate of R;. The fast relaxing operator does not contribute to the relaxation of the
slowly relaxing operator.

This can be verified by simulating the polarization decay. We will set Ry = 1571,
o =0.55"1 and vary R|. We can compute the polarization decay (associated with the operator
of interest with autorelaxation rate R;) following Section 3.2.2.1 of the main text (Fig.E.5).
The polarization decay can be fitted to a mono-exponential decay, and fitted relaxation rates
are reported in Table E.3. It is clear that the fast relaxing operator has negligeable effects on
the polarization decay when R} > R;.
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Figure E.5: Simulated polarization decay (plain) and exponential fit (dash) for different values
of R} relaxation rates.

Table E.3: Fitted relaxation rates from the simulated polarization decay for different values of
Ry

R} (s7!) fitted relaxation rate (s~ !)

1 0.73
10 0.97
1,000 1.00






APPENDIX F

Detailed calculation of correlation
functions

F.1 Correlation function global tumbling

F.1.1 Master equation

The Master equation for global tumbling has been written in the main text (section4.3.1):

0

aP(QL’D,t) = — Z Dj]Lgp(QL,Dat)a
j:I7y7Z

where Dj; is the jth component of the diagonalized diffusion coefficient tensor and L; the
associated angular momentum operator. Obtaining an expression for the correlation function

requires first the diagonalization of the operator Dy = DijJQ-. We express the operator

j:x7y7z
in terms of raising and lowering operators:

1
D, =D, L+ 5D,(L2+ + L*) + (D,. — D)2, (F.1)
where:
Dy =X(Dyu + D,,)
+ —2 Tx Yy )s (FQ)
Ly=L,+ L,

The eigen equation is written:
Dy, = E,V,, (F.3)

where the functions ¥,, are expanded in terms of the normalized Wigner matrices:

120 + 1
‘IJL,u,K(Q) = Za’ﬁ,k W,Dﬁk(ﬁ) (F4)
k
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Table F.1: Effect of the raising (L) and lowering (L_) squared operators on the rank-2 Wigner
matrices.

k| 12000  L2D7)(Q)
2 | V2ID)(0) 0

1| 6D 0

0 | v2ID7)() V2D ()
1 0 6D (%)
2 0 V24D7)(0)

F.1.2 Calculation of the conditional probability

The following properties (in units of #) will be used in constructing the linear combination of
Wigner matrices that are eigenfunctions of the eigen equation (Eq. F.3):

L*DL,(Q) = L(L + 1)DE (),
L.Dy, 1 (Q) = kD (), (F.5)
LaDE(Q) = /(LF B)(L £k + 1)DE 1y ().

Using the above notations, the conditional probability (Eq.4.10) is expressed as:

co’ = / QY / dQP(Q0) D2 (Q0) D2 () x

qa qa’

2Lt 1 ' ) (F.6)
> T%,kan,k/Dﬁ,k(Qo)Dik,(Q)e EL it
L,M,k,k’,/{

The orthogonality condition on the Wigner matrices (Eq. A.12) imposes L = 2 when calculat-
ing the integral. As a consequence, only 5 non-degenerate eigenfunctions are needed to solve
Eq. F.1.1. With this simplication in hand, the eigenvalues and eigenfunctions of the components
of the angular momentum operators are:

2 2
L*p?)(2) = 6D°)(2),

(F.7)
L?D?)(Q) = K*D)(Q).

The effects of the raising and lowering squared operators are summed up in Table F.1.



F.1. Correlation function global tumbling 253

It is then straightforward to find 3 eigenvectors:

(2) (2
[5 D,1(Q)+D,~ () /

+
\[
(2) (2) 2 (2)
D (Q) —D Q Q
D, /% ml( ) M,—1( ) — (5D, —3D_ + D..) f —1( ), (F.8)
) ,(92

<2) e
D)) — DY, (0 DY
D,/ =) _ 2D++4DZZ,/ “ ),

Finding the remaining two requires more calculatlons The initial step is to recognize that they

PP ()

)

have the form: X (z1,79) = 1,/ % (D( )(Q) + D ) + 22/ 52 QD@ , where z1 and x5
are two numbers to be found. The effect of opertor D on this e1genfunct10n is:
v24  x
DyX (21, 2) :x“/g 3 (D) + D2 5(9)) l6D+ +4(D., — Dy) + QDA
REING o)
)
+ 291/ =D (Q) |6D, +\/24D_”ﬂ .
8 s T2
Thus, X (x1,x2) is an eigenvector if:
V24
6D, +4(D.. — D)+ “oD_22 = 6D, +v24D_"1, (F.10)
2 1 T2
which can be re-written:
2D,,—D
x2 — 222 + 2\/;”“'D+x1x2 = 0. (F.11)
The normalization condition for X (z1,x2) to be an eigenvector gives:
212 + 23 = 1. (F.12)
We set 22 = 227 such that:
o4l =1. (F.13)
We can find a number z such that:
Ty = Sin(;), xTg = COS(;). (F.14)
Inserting in Eq. F.11 leads to:
D,,—D
cosz(g) - sinQ(g) + 2?37D_+ sm(2) cos(i) =0. (F.15)
W f D_ . . . . o
eset = = and use trigonometric relationships to write:
1

cos(z) + o sin(z) = 0, (F.16)
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Table F.2: Eigenvalues and eigenvectors for the operator associated to global tumbling. We

define = tan™! Df?5+.

K E, o k() = Dk an i &%D;(fl)c(ﬁ)

1 5D, +3D_+ D, L (D2 @)+ D2, ()

2 5D, —3D_ + D, L (2@ - D2, ()

3 2D, +4D.. 5 (D) - DY ()

4| 4D, +2D.. +2[(D.. — Dy)? +3D2]? 1 (D) + DE () cos § + D)) sin §
5| 4D) +2D.. ~2[(Ds: — D4)? 43072 — L (D22 + DY 5(9) sin§ + DT)() cos §

which yields:
z = —tan"(a), (F.17)

and one set of solution to Eq. F.11:

1 . (tan Y«) B tan=! ()
x] = G sin <2> , T = COS <> . (F.18)

A second set of solution is obtained by choosing:

] = —COS(;), xh = sin(;;), (F.19)

which is a §-shift of the previous solution, and leads to:

an~1(a an~1(a
) = 1 cos <J52()> , Th = sin <t2()> . (F.20)

The eigenvalues associated to these two eigenvectors can be calculated easily using Eq. F.9. The
five eigenvectors and associated eigenvalues of Eq. F.3 are gathered in Table F.2 where we have

defined § = tan~! /05

When the molecule shows some symmetry properties, the angular momentum operator
can have degenerate eigenfunctions. For example, if the molecule behaves as a cylinder (axial
symmetry), then D, = D,,, eliminating the L, and L_ part of Eq.F.1. The immediate
consequence is that D_ = 0 and two of the three unique eigenvalues are doubly degenerate
(k =1 and 2 on the one side, and x = 3 and 4 on the other). When the diffusion tensor is
isotropic, Dyz = Dyy = D.., all eigenvalues are degenerate and equal 6D, usually refered to as
the inverse of the global tumbling correlation time: 7. = 1/(6D).
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Static angle probability distribution It is clear from the form of the eigenvalues of the
components of the angular momentum that one only needs to calculate the eigenfunction asso-
ciated with the 0 eigenvalue in order to have a non-vanishing exponential term in Eq.4.10 when
calculating the limit with ¢ — oo. It is obvious that such an eigenfunction has L = 0 (from the
eigenvalues of L?) and k = 0 (from the eigenvalues of L) such that it corresponds to Dé?g(Q).
Then:
(0) _ 1

G E— (F.21)

1
P(QO) 87 , ]2

F.1.3 Integration of the correlation function for global tumbling

Using the integration in Eq. F.6:

2 2 2 5

/dQ()/dQ Z Z Z ZP Qo o5 Uk kO k€ Bt

p=—2k=—2k'=—2r=1 (F.22)
Dg?*(szo)DﬁQ*m Dy (DD, (€).

We can use the property in Eq. A.9 to transform this equation into:

Caa t 6471'4 Z Z Z Zaﬁka,ﬂk/e En( 1)4@7]@’)(

—2k=—2k'=—2K=1 (F.23)
/ 420D (Q0)D)_, () / aDZ(Q)DP" (),
where P(€p) has been left out of the integrations as it is a constant of {y. Looking at Table F.2

shows that k + k' is always an even number such that (—1)"%=¥ = 1 for all k and k. It
immediately follows from the orthonormality condition (Eq. A.12) that:

87r 872

Coa (t) 647T4 Z Z Z Za,{ka,{k/e & 5q 1Oa—k0q/—fr X —— ?, (F.24)

p=—2k=—2k=-2r=1

where J is the Kronecker-delta function. It simplifies into:

Cou ( Z A, —aCy,—a/ € —Ext (F.25)

From symmetry consideration, it follows that a. _qax —o/ = Gy,q0x .« s0 that we find the result
reported in the main text:

5
1 _
=z E Uk,alp,a’ € Bt
5 =
k=1
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F.2 correlation function for rotamer jumps

The strategy remains the same as presented in section 4.2, and used in the case of the global
tumbling. The only difference is that integrals in Eq. 4.7 are replaced by discrete sums:

N N
(DY Qs 0D (Vs 1) ZZ " (1,55.)D5 0 (55, )0ED(B, tla, 0),  (F.26)

where N is the number of accessible states, €1;gr, is the Euler angle for transformation from
the jump frame to the system frame in rotamer o, p&! is the equilibrium population of state o
and p(f,t|a,0) is the conditional probability of finding the system in state 8 at time ¢ when
is was initially in state o at time ¢t = 0. The conditional probability is found by solving the
Master equation presented in the main text (Eq4.28):

N
t) = Rijp;(t)
j=1

where p;(t) is the population of state ¢ at time ¢t and R;; is an element of the exchange matrix
‘R and corresponds to the exchange rate from state j to . The microscopic reversibility implies
that:

Rijqu = jipfq. (F27)

Diagonal elements of the exchange matrix are given by:

Rii=—»_ Rji. (F.28)
J#i

The boundary conditions associated to Eq. 4.28 are:

(]‘) p(IB’t = 0‘0(,0) = 605[‘37

F.29)
. _eq (
(2) Jim p(B,t|a, 0) = pg',
Eq. 4.28 transforms into an eigen equation as follows:
RX = )X. (F.30)

The exchange matrix is in general not symmetric (it is only when equilibrium populations are
equal) but can be transformed into a symmetric matrix R:

oq

~ p; .,

Rij = p%qRij =/ RijRji, ©# J,
(3

Rii=Rii = — Y Rji.
i

(F.31)
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The eigen equation now reads:

RX = \X, (F.32)
where: 1

Since R is symmetric, its eigenvalues A, are all real and the associated eigenvectors X (™ are
orthogonal. The conditional probability is written as in Eq.4.10 such that, for the second
condition in Eq.F.29 to be met, we must have \g = 0 (we order the eigenvalues such that
IAn| < [Ang1]). The associated eigenvector X () can be calculated as follows:

j=1
= 7%1‘]‘ N](O) + 7%“)21(0) =0,
i#i
o 0 " (F.34)
& PR XY =Y R XY =0,
i \ Pi i
1 S 1 0)
& Rﬂ( — o eqXZ( )_
J#i pj b;
It follows that {X } = {Vpn'}, Vn € [1,N] is an eigenvector associated to the eigenvalue
Ao = 0.
The conditional probability can be written:
N-1
p(B,tla,0) = Ag o Z XC(Y”)Xén)e)‘"t, (F.35)

n=0

where Ag, is a constant introduced to fullfill the conditions in Eq.F.29. The eigenvectors X
are orthogonal such that condition (1) is already met. In order to satisfy condition (2), we must

Vi

have Ag, =

P5 N ) g0
p(B,tle,0) = | =7 S XX Ve, (F.36)
Pa n=0

The correlation function Eq. F.26 is expressed as shown in the main text (Eq.4.29):

N N
<DIS,20)*(QJ75F7O)D( ) QJSF, Z Z Z DIE?C* QJ FQ)DE(,/) (QJSFg) pa pg X(n)X( e

(F.37)
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F.3 Correlation function for diffusion on a cone

The correlation function is written as in the main text (Eq.4.35):

Z Z zan alk,a' € —Ext e'ep sr(a—a’) dg b(ﬁD SF) aﬁb’(ﬁD,SF) X

k=1 a,a’ bt/

(e sr O3 ) DI (513Dl (Vi)

We use the same approach as introduced in Section 4.2 to solve the ensemble average:

. , 2 2w . o,
<el(b7D,5F(0)*b 'YD,SF(t))> — / / p(’yo)p(’y,t|’yo,0)elbwe’1b Ydvyody, (F.38)
0 0
where p(y9) = 7 (all orientations are equi-probable), and the conditional probability is ex-
pressed as:
p(7,t[70,0) thn Y0)@n(y)e B, (F.39)

where ¢, is the eigenfunction associated to the eigenvalue E,, of the rotation operator DTOtht

2

) ) )
ap(% t) = =DyotLyyyp(7,1) = Drotwp(v, t), (F.40)

where D, is the rotational diffusion coefficient and L? , is the angular momentum operator for

rot
rotation on a circle. Eigenfunctions and eigenvalues are given by:

1 iy
= e y
on(7) = = (Fa1)
E, = Drotn2-
Inserting in Eq. F.38 leads to:
(¢! i(byp,sr(0)=b"vp, SF(t)) =13 Ze_D’"Otht /27r /27T 0 (b—n) o =i (b’ n)d’)/od’}/, (F.42)
us

which does not cancel out only for n = b = V/, and leads to the correlation function reported in
the main text (Eq.4.37):

<€i(b7D,SF(0)—b"YD,SF(t))> — 5bb’€_DMtb2t-
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F.4 Correlation function wobbling in a cone

The correlation function has been written in the main text (Eq.4.41):

1 _ .
Ci;(t) = : D33 anaawe E“t@;ﬁ) (QwrsF, 0)D£?7)C/(QWF,SF, t)) x

k=1a,a’ b/ ¢,/

D (Qpwr) D (Qsri) DSy (Qpwr) DI (Qsry).

The correlation function for wobbling is calculated by solving the Smoluchowski’s equation

(Eq. 4.42):
0

ap(

where Dyy is the diffusion coefficient for the wobble motion and L%,V is the angular momentum

operator (Eq.4.43):
1 0 0 1 0
3, =—— — (sinf— ) - ———
w sin 6 99 (Sm 80) sin? 0 0p?’
with reflecting boundary condition at 0 = Beone, With Beone the cone semi-angle opening
(Eq. 4.44):

d

—p(Q, 1) o= = 0.

aep( Y )le—ﬁcone
F.4.1 Solving the Master equation

When solving Eq.4.42, Wang and Pecora did not diagonalize the operator LIQ/V, but their ap-
proach is mathematically the same [196]. For the sake of consistency, the diagonalization-based
treatment is presented here. The eigen equation is written:

Dw Ly c(0, ) = Ec(0, o). (F.43)

We use the method of variable separation to write:

c(0,¢) = 0(0)2(¢), (F.44)
which yields:
2
-2 [Fmegg o) - S et - poewet. B

which leads to the following differential equation for ®:

82
87;1)(@) x &(p). (F.46)

Following the work of Wang and Pecora [196], we write the complete set of functions ® as:

D, () = Ay cos(mep) + By, sin(mep), (F.47)
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where m € N, and A,, and B,, are coefficients associated to the eigenvalue m. It follows:

> i) =—m?®P F.48
87802 m(@o)*_m m(‘p)v ( . )

and we can write the differential equation for ©:

1 [0 00 m? E
sin 0 {80 S5 } 26 " Dy 0 0 (F49)
We operate the following variable change: p — cos6:
a@ 2 82@ m2 E
2u— — (1 — 0 — 0 =0. F.50

We now define E = Dy vy, (v, + 1) to obtain:

0’0 00
- —2u=
o o

(1—p?)

+ (um(um +1) -+ T;) 0 =0. (F.51)

Solutions of the equations of the type Eq. F.51 for p € [0, 1] are given by the Legendre associated
functions P]" of degree vy, and order m. There are an infinite number of solutions and the
eigenfunctions and eigenvalues are given by P} and Dy vy, n(Vimn + 1) respectively, where the
Vm,n fulfill the boundary condition Eq. 4.44. W;e choose the indices n such that vy, , < vpm pi1-

The conditional probability p(€2, ¢, 0) is now given by:
400 400
p(£2,tQ0,0) = Z Z e~ PwymanmantDt(A - cos(mg) + Bumn sin(mep)) P, | (cos0), (F.52)

m=0n=0

where we explicitely show the dependence of the coefficients A and B in m and n.

F.4.2 Solving the boundary condition

The conditional probability is written in Eq.F.52 where the coefficients A,, , and B,, , still
need to be calculated. For this, we first take a look at the conditional probability at time ¢ = 0:

p(2,t = 0[Q0,0) = d(i — 110)d( — o),

+oo +oo ' (F.53)
= Z Z(Amm cos(myo) + Bmn sm(mgpo))P,wa (o),

m=0n=0

where we set p = cosf. Now, we can calculate the following two integrals:

1 27 ,
I. = / dp dop(Q,t = 0[|Q0,0) P, (1) cosm/,
cone 0

Vm/,n/

1 2 , (F54)
I, = / d,u/ dop(Q,t = 0|Q0,0) P, (1) sinm/ .
0 m/n

Hcone
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On one side, we have:

1 2w , ,
I = / dp | dpd(p — p10)d(p — o) P, () cosm/p = P (o) cosm’ipo,

V! n! !
1 o , , (F.55)
I, = / du/O dpd(p — po)d(e — o)), () sinm'e = P (1) sinm’o.
On the other side, we can write:
1 , 2
L= [ B, P dux [ de(Ancos(mg) + B sin(me) cosn'p,
m,n cone men ' 0
) / o (F.56)
I, = Z/ P (WP (w)dp % ; do(Am n cos(mp) + By, sin(mey)) sinm/e.
m,n cone '
Using the property Eq. A.26, we have:
27 , ,
I. = Hyy s (feone) X d(Apy nr cos(mep) + By o sin(m’p)) cosm’e,
0 (F.57)
21 , , :
Iy = Hypy oy (fcone) X ; do(Apy pr cos(me) + By sin(m/ o)) sinm/ .
After simple integration, we now have:
I. = 57er,n’ (Mcone)Am,n’a (F58)
Is = 7Tf[m,n/ (Hcone)Bm,n’-
where:
2, m=0
€= . (F.59)
1, m={1,2}
By identification with Eq. F.55, we can express the two coefficients A,,,, and By, :
cosm
Ay = —2T0_pm (1),
EWHm,n(,Ucone) ’ F.60
sin mepo m (F.60)
Bm,n = —F——P (MO)

7Tflm,n (Ncone) Ym,m

F.4.3 Expression of the conditional probability

The conditional probability can now be written:
+oo  +00
p(Q, t‘Qo, 0) = Z Z Xm,na (F61)

m=—o0 n=0

where we define:

X o e—Dme,n(Vm,n—i-l)tPZZ?n,n(/‘L)PIZZn,n(MO) (CosmSOO
m,n —

, cos my + sin mpg sinm ) . F.62
ﬂ-Hm,n (Mcone) v v v ( )



262 Appendix F. Detailed calculation of correlation functions

We have: o o
Xon = EPVO’" (M)PZ’O”L (Mo)efDWVO,n(Vo,n+1)t (F.63)
n — .
' 2 7THO,n (,ucone)
and, for m # 0:
P P 0
Xmn = e~ Pwvmn(Vmn 1)t Ym "( ) . o (1(0) (cos mpg cos mep + sinmepg sinmep) . (F.64)
71—I{m,n(ﬂcone)
We can write:
COS Mg Cos MY + sin mg sinmep = e™¢ (efim‘po + isinm(ep — 4,00)) , (F.65)

so that, after using Eq. A.27 and Eq. A.24, we can write:

tPVTnn (M)P;:Lnn ('UO) eimga
7Tflm,n(,ulcone)

an — efDWVm,n(Vm,n+1)

)

(e*im‘po +isinm(p — goo)) )
(F.66)

Py (WP (o) :
X_ _ e—DWVm,n(Vm,n"’l)t Vm,n Vm,n e—Zm(,D elmWO _ ZSlnm © — Vo .
o WHm,n (Mcone) ( ( ))

Including negative values of m in the sum Eq. F.61 let the sinus terms cancel with one another.
Including the m < 0 terms in Eq. F.61 is possible as X_,,, , = X, »,, as seen using Eq. F.64. We

can write:
400  +o0 m m
(Q t’QOa Z Z —Dwvm,n(Vmn+1)t PVm n( )PVm n(,uo) eimgoe—imgoo. (F.67)
m——oon 0 7"'11——[m,n(,ufcone>
The factor 1/2 comes from the equality X_,, , = X, , and the extension of the sum on the index

m from —oo to 400, and the expression of Xy, (Eq.F.63). C. Wang and R. Pecora introduced
the pseudo-spherical harmonics [196]:
1 .
Y (@) = P (u)em, (F.68)

Vm, Vm,
- 27er,n (,Ucone) -

and wrote the conditional probability in a compact form:

400 +oo
P t0Q0,0) = > Y e Pwrmnlmat iy )y (Q). (F.69)

VUm,n Um,n
m=—oo n=0

F.4.4 [Initial angle probability

The initial angle probability can easily be found with geometric arguments. We prefer to use
the limit definition (Eq.4.11). The conditional probability does not cancel out when ¢t — oo
only for vy, ,, = 0, that is m =n = 0:

PY (1) Fg (o)

(QO) (Q)Yb (Q ) 2mHy 0<Ncone) '

(F.70)
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It is then straightforward to show:

1
= a_/1 .\ 00 6 07 BCOTLQ Y
27 (1 — Hcone) | ] (F.71)

p(QO) = 07 00 > /Bcone-

p(Q0)



264

Appendix F. Detailed calculation of correlation functions

F.5 Additional figures

F.5.1 Contribution of each motion to the relaxation
— No exchange — Exchange, p,=p,=p, Exchange, p,#p,#p,
- - No wobbling — +C,-C,, wobbling
a) Bcone = 5 deg b) Bcone = 5 deg C) x102 B'cone = 5 deg
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Figure F.1: Contribution of rotamer jump and wobbling in a cone motions to relaxation rates.
Carbon R; (a, d, g), R (b, e, h) and carbon-proton ¢NOF (c, f, i) at 14.1T in a BC'H?H,
methy group for a protein of global tumbling correlation time 7. = 10ns. Dashed horizontal
lines show the value of the relaxation rates without wobbling. Relaxation rates calculated in
the abscence of rotamer jumps are shown in green. In the presence of rotamer jumps, the
case where all rotamer populations are equal (blue) and unequal (orange) are distinguish. In
this later case, populations are p; = 0.7, po = 0.2 and p; = 0.1. Calculations are shown as a
function of the correlation time for wobbling, a function of the wobbling diffusion constant and
cone semi-angle opening Beone, while the diffusion constant is varied from 106 to 109s~!. The
blue and orange vertical arrows indicate the values of the correlation time for rotamer jumps,
when populations are equal and unequal respectively.
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— No exchange — Exchange, p,=p,=p, Exchange, p,#p,#p,
- - No wobbling — +C,-C,, wobbling
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Figure F.2: Same as Fig. F.1 for a protein of global tumbling correlation time 7, = 50 ns.
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F.5.2 Model Free analysis with multiple internal motions

a) C-C wobbling b) C-C wobbling €) ,40: C-Cwobbling
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Figure F.3: Model Free analysis of relaxation rates in the presence of two internal motions.
Carbon-13 longitudinal (a, d, g) and transverse (b, e, h), and carbon-proton DD (c, f, i)
relaxation rates calculated assuming isotropic overall tumbling (global tumbling correlation
time 7. = 10s~!), methyl rotation and C-C wobbling (a-c), azymutal symmetric rotamer jumps
(d-f) or non-azymutal symmetric jumps (g-h).
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Figure F.4: Model Free and Extended Model Free analyses of relaxation rates in the presence of
three internal motions. Carbon-13 longitudinal (a, d) and transverse (b, €), and carbon-proton
DD (c, f) relaxation rates calculated assuming isotropic overall tumbling (global tumbling
correlation time 7, = 10s~!), methyl rotation, C-C wobbling and azymutal symmetric rotamer

jumps (a-c) or non-azymutal symmetric jumps (d-f).
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Figure F.5: Evolution of the EMF parameters obtained after a MCMC analysis as a function
of the diffusion coefficient for wobling, in the case where three internal motions are considered.
Results for azymutal symmetric rotamer jumps are presented in a-e, and for non-azymutal
symmetric rotamer jumps in f-k. The blue line shows the mean of the parameter and the grey
area the parameter distribution obtained after a MCMC analysis of the relaxation rates. Points
are connected by a solid line for visual clarity.
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F.5.3 Rotamer-dependent CSA tensors and relaxation
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Figure F.6: Highlighting the CSA rotamer-dependent relaxation mechanism at 1.2 GHz. Evo-
lution of the carbon-R; (a), carbon-Ry (b), and carbon longitudinal (c) and transverse (d)
cross-correlated cross-relaxation rate for a methyl group exchanging between two rotamer po-
sitions as a function of the difference between the CSA of the two rotamers. Calculations are
performed for three equilibrium position for the state 1 and by either considering a population-
averaged CSA value (dash) or distinct CSA tensors (solid).
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Figure F.7: Energies of the 144 conformations of an isoleucine amino acid in water and calculated
using DFT. The conformation with the lowest energy (conformation 101) defines the reference
point. The 9 selected rotamers are indicated with the red stars
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Figure F.9: Contribution from the CSA rotamer-dependent relaxation mechanism. Analysis
of relaxation rates for Ile-30 and Ile-61 using a 2-rotamer exchange model (rotamer 4 and 9).
Carbon Ry (a), Ry and carbon-proton oNOF (b) and longitudinal and transverse cross-correlated
cross-relaxation rates (c) as a function of the magnetic field. Only carbon R;, R and carbon-

proton oNOE

were used in each analysis while 7. and 7n;, were calculated using the obtained
results for cross-validation. Calculation were performed either using distinct CSA tensors in

each rotamer (plain) or the population-averaged value (dash).
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Figure F.10: Analysis of relaxation rates for Ile-3 using a 2-rotamer jump model (rotamer 4
and 9). Carbon R; (a), Ry and carbon-proton oN°F (b) and longitudinal and transverse cross-
correlated cross-relaxation rates (c) as a function of the magnetic field. The results from the
EMF analysis are shown in dash lines in each panel. Only carbon R;, Ro and carbon-proton
oNOE were used in each analysis while 7, and Ny Were calculated using the obtained results for
cross-validation. d) Distributions of parameters for the explicit model of motions. The mean

values of parameters are given on every panels. The jump rate kg4 is expressed in s~'.
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Figure F.11: Analysis of relaxation rates for Ile-13 using a 6-rotamer jump model (rotamer 1, 3,
4,5,6,and 9). Carbon R; (a), Ry and carbon-proton oNOF (b) and longitudinal and transverse
cross-correlated cross-relaxation rates (c) as a function of the magnetic field. The results from

the EMF analysis are shown in dash lines in each panel. Only carbon R;, R and carbon-proton

NOE

g

were used in each analysis while 1, and 7, were calculated using the obtained results for

cross-validation. d) Distributions of parameters for the explicit model of motions. The mean

values of parameters are given on every panels. All jump rates are expressed in s~!. In the
model, populations of rotamers 1, 5 and 9 were fixed to their MD values (respectively 2%, 1%
and 3 %) and all jump rates fixed to 1070 except exchange rates involving rotamer 4 which is

predicted to be the most populated rotamer from the MD simulation.
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Figure F.12: Analysis of relaxation rates for Ile-23 using a 3-rotamer jump model (rotamer
3, 6 and 9). Carbon R; (a), Rz and carbon-proton relaxation rates (b) and longitudinal and

transverse cross-correlated cross-relaxation rates (c) as a function of the magnetic field. The
results from the EMF analysis are shown in dash lines in each panel. Only carbon Rj, Ro

and carbon-proton o

NOE

were used in each analysis while 1, and 7,, were calculated using the

obtained results for cross-validation. d) Distributions of parameters for the explicit model of
motions. The mean values of parameters are given on every panels. The exchange rates are

1

expressed in s7.
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Figure F.13: Analysis of relaxation rates for Ile-36 using a 2-rotamer jump model (rotamer

NOE

6 and 9). Carbon R; (a), R2 and carbon-proton o (b) and longitudinal and transverse

cross-correlated cross-relaxation rates (c) as a function of the magnetic field. The results from

the EMF analysis are shown in dash lines in each panel. Only carbon R;, Rs and carbon-proton

NOE

o were used in each analysis while 1, and 7,, were calculated using the obtained results for

cross-validation. d) Distributions of parameters for the explicit model of motions. The mean

values of parameters are given on every panels. The exchange rates are expressed in s~
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F.6 Additional tables

Table F.3: Values of x1 and x4 angles obtained after DF'T optimization of isoleucine structures,
and defining the 9 rotamers, and Euler angles ¢ r and 0;r defining the orientation of the

rotamer frame in the jump frame.

X1 (deg) X2 (deg)

Rotamer | Theoretical DFT | Theoretical DFT | ¢ g (deg) 6 (deg)
1 60 55.58 60 56.70 105.33 103.74
2 180 178.08 60 53.63 228.21 108.71
3 300 291.44 60 59.22 199.06 101.55
4 60 59.88 180 173.85 135.10 5.80
5) 180 180.25 180 172.19 249.12 7.65
6 300 295.36 180 177.00 211.35 4.97
7 60 63.59 300 289.81 172.20 92.98
8 180 184.40 300 287.02 127.09 91.56
9 300 296.95 300 295.15 241.33 100.43

Table F.4: Populations of each Isoleucine rotamer states in the MD trajectory of Ubiquitin.

Rotamer | [le-3 Tle-13 Tle-23 1le-30 1Ile-36 Ile-44 Tle-61
1 0.06 0.02 0.0 0.0 0.0 0.0 0.0
2 0.02 0.0 0.0 0.0 0.05 0.0 0.0
3 0.0 0.12 0.03 0.0 0.01  0.11 0.0
4 0.79  0.55 0.0 0.0 0.05 0.0 0.0
5 0.03 0.01 0.0 0.0 0.08 0.0 0.0
6 0.0 026 006 092 058 057 0.81
7 0.0 0.0 0.0 0.0 0.03 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9 0.12 0.03 092 0.08 019 031 0.18
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RESUME

La relaxation des spins nucléaires est un phénoméne fondamental en Résonance Magnétique Nucléaire (RMN). Au
cours d’'une expérience, elle conduit a des pertes de polarisation affectant la qualité des spectres. Afin de développer de
nouvelles séquences d'impulsion, il est essentiel de prendre en compte ses effets, voire de les optimiser, comme dans
le cas des expériences de type TROSY (Transverse Relaxation Optimized SpectroscopY). Aprés une bréve introduction
a la théorie de la relaxation en phase liquide, nous détaillons comment cette théorie a été implémentée dans le but de
calculer efficacement les vitesses de relaxation d’un grand nombre de systémes de spins.

La théorie de la relaxation nous a permis de comprendre le spectre de groupes méthyl dans la protéine Ubiquitine, et
enregistré avec une évolution zéro quantum a bas champs et une détection a haut champs en utilisant un spectrométre
RMN a deux champs. Cela nous a conduit a étendre le champ d’application de la théorie du methyl-TROSY. Par ailleurs,
nous avons introduit le concept de TROSY a deux-champs. Il repose non seulement sur la sélection d’opérateur de spin
ayant des propriétés de relaxation favorables, mais également sur la sélection adéquate des champs magnétiques pour
I'évolution sous I'effet du déplacement chimique tout en conservant la sensibilité des hauts champs pour la détection.

La mesure des vitesses de relaxation, constitue un outil de choix pour la caractérisation de la dynamique sur des échelles
de temps allant de la pico- a la seconde, et plus. Nous présentons ici des outils pour analyser la dépendance en champs
magnétique de vitesses de relaxation enregistrées sur une large gamme de champs magnétiques. Enfin, nous présentons
quelques modeles de mouvements prenant en compte la nature des mouvements dans les protéines. En particulier, nous
montrons I'existence d’un mécanisme de relaxation associé a des différences de CSA (Chemical Shift Anisotropy) dans
les chaines latérales aliphatiques.

MOTS CLES

Résonance Magnétique Nucléaire, Relaxation, Dynamique des protéines, RMN multi-champ

ABSTRACT

Nuclear spin relaxation is a fundamental phenomenon in Nuclear Magnetic Resonance (NMR). During the course of
an experiment, it leads to polarization losses that can be detrimental to the spectrum quality. Taking spin relaxation
into account when developing NMR pulse sequences appears essential, and can reveal itself beneficial as shown in
TRansverse Optimized SpectroscopY (TROSY) type of experiments. After a brief introduction to nuclear spin relaxation
theory in liquid, we will detail how it has been implemented to efficiently compute relaxation rates of arbitrary spin systems.
Nuclear spin relaxation theory has been used to understand the spectrum of methyl groups in the protein Ubiquitin
recorded with zero-quantum evolution at low field and signal detection at high field using a two-field NMR spectrometer.
This led us to extend the methyl-TROSY theory beyond the its original conditions of application. In addition, we introduced
the concept of two-field TROSY which relies not only on the selection of spin quantum operators with favorable relaxation
properties, but also on the proper selection of the magnetic field for chemical shift labeling while retaining high-field
high-sensitivity detection.

Relaxation measurements report on dynamic properties over timescales ranging from pico- to seconds and more is
unique. Here, we present tools to analyze the field-dependence of relaxation rates recorded while moving the sample
inside the bore of the spectrometer to extend the range of available magnetic fields. Finally, we discuss models of motions
adapted to the nature of internal motions in protons. We reveal the existence of a rotamer Chemical Shift Anisotropy (CSA)
dependent relaxation mechanism in aliphatic side-chains.

KEYWORDS

Nuclear Magnetic Resonance, Nuclear spin relaxation, Protein dynamics, Multiple-field NMR
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