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RÉSUMÉ   

Cette thèse présente trois essais sur les réseaux de collaboration des inventeurs et leur capacité d’invention. 

La thèse vise à tester empiriquement l'un des résultats théoriques fondamentaux de l’analyse des réseaux 

sociaux suggérant que les caractéristiques structurelles des réseaux de collaboration des inventeurs ont un 

impact sur les les capacités d’invention (taux d'inventions, nouveauté et utilisation de leur production). 

L’une des contributions de ce travail consiste d’isoler les effets de la structure du réseau sur la l’intensité et 

la diversité des connaissances partagées par les membres du réseau des d’autres effets tels que l’influence 

des inventeurs après des membres. Les études empiriques des trois essais se concentre sur l’analyse la 

variation temporelle intra-sujet à partir de données de panel d'inventeurs français extraites de la base de 

données PATSTAT produite par le bureau européen des brevets.  

Le premier essai analyse dans quelle mesure la capacité d’invention individuelle est influencée par les 

caractéristiques structurelles et relationnelles des réseaux de collaboration. Ce chapitre élabore un cadre 

théorique qui relie quatre aspects du réseau d'un inventeurs - le nombre de collaborateurs et d'inventeurs 

indirectement connectés, l’intensité des collaborations et la faiblesse de l’intensité des connexions entre les 

collaborateurs d’un inventeur (brokerage) - à la performance de l'inventeur. Le deuxième essai étudie 

comment l'accès à des connaissances hétérogènes affecte la relation entre le brokerage et la nouveauté de 

la production des inventeurs. Il fait la distinction entre les avantages structurels apportés par le brokerage 

et les opportunités qui l'accompagnent en termes de connaissances. Il analyse leurs effets sur le niveau de 

nouveauté des inventions des membres du réseau. Le dernier essai étudie la relation entre le brokerage et 

l'utilisation de la production des inventeurs. L'objectif de ce chapitre est double. D’une part, il vise à 

identifier l'influence du brokerage sur l'utilisation de la production de l'inventeur par les membres localisés 

du réseau. D’autre part, il étudie l'effet modérateur de la proximité cognitive sur la relation entre le 

brokerage et l'utilisation des inventions du broker au sein de la configuration du réseau local.  
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Les résultats des études longitudinales soulignent qu'il n'y a pas de réponse simple et universelle sur la 

façon de concevoir le réseau optimal pour les multiples facettes de la performance. La thèse démontre que 

les collaborateurs indirectement connectés n’exercent aucune influence sur les performances de l’inventeurs 

et que seuls les collaborateurs proches (c-à-d., ceux situés à une distance à l’inventeur maximale de deux) 

sont bénéfiques à l'inventeur focal. La structure optimale du réseau de collaborations d'un inventeur est 

celle dans laquelle l'inventeur est fortement connecté à des ensembles d'inventeurs déconnectés. Cependant, 

l'étude démontre que l'influence de la structure sur la nouveauté et l'utilisation des idées créées dépendent 

d'autres caractéristiques des réseaux de collaboration. Pour ce faire, elle distingue les avantages structurels 

apportés par la structure brokered et la représentation qui l'accompagne de l'arbitrage des connaissances et 

de la proximité cognitive. Les résultats suggèrent que le fait d'être un broker centre d'une structure de réseau 

et d'une clique de connaissances spécialisées est positivement associé à la probabilité de réutilisation des 

idées des brokers. Identifier le mécanisme par la manière dont la structure du réseau de collaboration affecte 

les performances des inventeurs a des implications importantes. Cela informera les inventeurs sur la façon 

d'optimiser ou d'adapter leurs réseaux collaboratifs pour répondre aux attentes, ainsi que d'aider les 

décideurs à concevoir des programmes d'incitation qui maximiseraient la performance organisationnelle. 

Mots-clés : Collaborations, réseau brokered contre réseau cohésif, perspective de contingence, performance 

des inventeurs, OEB PATSTAT 
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ABSTRACT 

This dissertation presents three essays on inventors’ collaboration networks and their inventive 

performance. The thesis intends to empirically test the relation between the structural characteristics of 

inventors’ collaboration networks and inventors’ performance (i.e., rate of inventions, novelty, and reuse 

of their output), one of most agreed result in the literature. . In doing so, it provides answers to a fundamental 

question from the innovation and social network literature and brings a new perspective to empirical 

analyses of network characteristics by disentangling the intensity and the diversity of shared knowledge 

and their structure. The empirical tests of the three essays rely on panel data of French inventors extracted 

from the PATSTAT database provided by the European Patent Office are used to examine the within-

subject variation over time. 

The first essay analyses the extent to which individual inventive performance is influenced by the structural 

and relational characteristics of collaboration networks. The chapter elaborates a theoretical framework that 

relates four aspects of an inventor’s network – the number of collaborators and indirectly connected 

inventors, the strength of collaborations, and brokered network structure (i.e., disconnections between an 

inventor’s collaborators)- to the inventor’s output. The second essay investigates how access to 

heterogeneous knowledge affects the relationship between the brokerage and the novelty of inventors' 

output. It distinguishes between structural advantages brought by the brokerage and accompanying 

opportunities in terms of knowledge and scrutinizes their effects on the level of novelty embedded in 

inventors' output. The last essay investigates the relationship between the brokerage and the reuse of 

inventors' output. The objective of this chapter is twofold. First, it aims to identify the influence of 

brokerage on the reuse of the broker’s output by localized network members. Second, it investigates the 

moderating effect of cognitive proximity on the relationship between brokerage and reuse within the local 

network setup. 
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Results from the longitudinal studies highlight that there is no simple, universal answer on how to design 

optimal networks for multiple facets of inventive performance. The thesis demonstrates that indirectly 

connected collaborators, in general, are found to have no influence on inventors’ performance. Only close 

collaborators (i.e., collaborators located at a maximum of two path length distances from the focal inventor) 

is positively related to the focal inventor’s performance. The analysis shows that the optimal structure of 

an inventor's collaboration network results from an inventor strongly connected to disconnected sets of 

collaborators. However, the study further demonstrates the influence of structure on novelty and reuse of 

generated ideas is contingent upon other features of collaboration networks. To do so, it distinguishes 

between structural advantages brought by the bridging structure and its accompanying representation of 

knowledge arbitrage and cognitive proximity. Results suggest that being at the center of a brokered network 

structure and knowledge specialized clique is positively associated with the diffusion of the inventors’ 

ideas. Pinning down the mechanism explaining how the structure of a collaboration network affects the 

inventors' performance has important implications. This will inform inventors on how to optimize or adapt 

their collaborative networks to meet their expectations (i.e., productivity, creativity and influence), as well 

as help decision-makers design incentive schemes of collaborations that would maximize individual and 

organizational performance.  

Keywords: Collaborations, brokered versus cohesive networks, contingency perspective, inventors’ 

performance, EPO PATSTAT  
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To my sisters, 

 The difficult we can do immediately, the impossible takes a little longer. 
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GENERAL INTRODUCTION 

PURPOSE AND RESEARCH QUESTIONS 

The main objective of this dissertation is to make the contribution of collaboration network characteristics 

to individuals’ innovation performance clearer and the mechanism through which this contribution takes 

effect. The thesis makes an effort to deconstruct the effects of relational and structural characteristics to 

evaluate their influence and their contingent value to understand when and where the characteristics are 

valuable for inventive performance.  

In the past decade, the importance of collaborations for inventive performance is well-documented (Burt 

2005, 2017; Fleming et al. 2007; Perry-Smith and Mannucci 2017). For instance, a notable study by Singh 

and Fleming (2010) demonstrates that “Individuals working alone… are less likely to achieve 

breakthroughs and more likely to invent particularly poor outcomes”. Uzzi and his co-authors (2013) 

further argue that “Novel combinations of prior work are rare, yet teams are 37.7% more likely than solo 

authors to insert novel combinations into familiar knowledge domains”.  

However, although the benefits of collaborations make no doubt, the analyses of invention performance 

have given rise to many discussions on to what extent and how collaborations matter. For instance, 

collaboration networks may have different –and sometimes opposite- effects on the legitimacy, the social 

capital of inventors and to what extent their network provide them with a privileged access to different 

diverse resources. The discussion started as a debate on the properties of the relations with collaborators 

and their effects on inventive capabilities. More precisely, early work on collaboration networks questioned 

the benefits of collaboration networks depending on the intensity of the relations between an inventor and 

his or her co-inventors. For instance, Burt (1992), Coleman (1988), or Granovetter (1973) discussed and 

demonstrated the structural and relational characteristics of collaboration networks in which inventors 

increases their combinatorial capabilities and implementation power and has evolved to the recognition that 
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there is a trade-off between strong versus weak relationships, and, sparse versus dense structures (Burt 

2005, 2017; Fleming et al. 2007; Perry-Smith and Mannucci 2017).  

In addition, one of the key insights emerging from this stream of research is that the influence of the 

structure of a collaboration network on different facets of invention performance varies significantly. For 

instance, the literature demonstrates that being in the center of a sparse network increases the inventor’s 

own creativity while it decreases the usefulness of his or her ideas (Fleming et al. 2007; Perry-Smith and 

Mannucci 2017). A well-established line of inquiry argues that brokered collaboration networks enhance 

the focal inventor’s creativity (Burt 2004).This is due to the fact that brokered network structure occurs 

when an inventor’s collaborators are mutually disconnected, therefore, assumed to increase his or her access 

to diverse knowledge. The inventor in the center of a brokered network is called as broker who occupies 

the sole intermediate position between other inventors. Others can interact only through the broker whose 

position allows an inventor to control knowledge flow within network, therefore, to be aware of novel 

combinations earlier than other members of the network (Amabile et al. 2019; Burt 2007). On the contrary, 

because the inventor’s collaborators do not know each other brokered networks hinder the emergence of a 

trusting environment and low intensity of interactions decreases the knowledge diffusion among 

collaborators. Thus, in a network where mutually disconnected collaborators do not trust and interact with 

each other, the recognition and acceptance of generated ideas by others will be less likely and more slowly 

within brokered networks compared to dense networks, termed cohesive or closed networks, in which most 

inventors collaborate and know each other (Fleming et al. 2007; Perry-Smith and Mannucci 2017). 

Then, inventors face an obvious problem of choice between generating ideas that are novel or ideas that are 

useful for future studies. The dilemma appears because an inventor cannot be in both a cohesive in which 

most inventors are linked and a brokered network in which most inventors are disconnected, at the same 

time. However, the debates that led to the dilemma built their arguments on very optimistic assumptions 

that the greatest advantage of network structure is due to the knowledge diversity of disconnected inventors 
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within brokered networks or the cognitive proximity of connected ones within cohesive networks. Authors 

routinely assume that each collaboration and mutually disconnected collaborators deliver diverse 

knowledge and perspective while connected ones establish an environment that is based on mutual trust 

and easier communication (Burt 2004; Obstfeld 2005; Perry-Smith and Mannucci 2017). However, 

collaborations could vary widely in terms of knowledge and expertise diversity (McFadyen and Cannella 

2017; Singh and Fleming 2010; Sosa 2011; Wang 2016), therefore, communication facilities. In this case, 

an inventor may appear in a brokered network structure in which mutually disconnected collaborators 

possess similar knowledge and cognitively proximate or in a closed network where connected collaborators 

have different expertise and cognitively distant.  

The abundance of empirical research has produced intriguing but contradicting findings that leave decision 

makers (i.e., inventors who build their networks, managers who assign inventors to teams and projects, 

policy makers who give incentives to boost inventors’ collaborations) wondering whether they should 

create and be part of a highly connected group of inventors or be part of a brokered network in which few 

inventors bridge a disconnected set of inventors. This question invites us to further clarify the processes 

and the conditions under which collaboration networks deliver value to inventors.  

Chapters of the thesis follows the studies emphasizing the importance of relative (Ahuja 2000; Perry-Smith 

and Mannucci 2017 McFadyen et al. 2009) and contingent (Burt 2021; Carnabuci and Diószegi 2015; 

Fleming et al. 2007; Tsai 2009) value of collaboration network characteristics. The contingent value 

argument helps us to understand under which circumstances the characteristics are valuable for inventive 

performance. More importantly, the thesis questions the assumption about structure – content couples such 

as brokered networks – diversity of collaborators’ knowledge or closed networks – cognitive proximity of 

collaborators and sets three main goals. First, it develops a theoretical framework to provide an 

understanding of the extent to which individual inventive performance is influenced by the structural and 

relational characteristics of collaboration networks. Second, it elaborates the framework by making a 
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distinction between network structure and its content related to network members’ attributes (i.e., unique 

knowledge they provide to the focal inventor and their cognitive proximity). The elaborated framework 

simultaneously assesses the network structure and the content as sources of inventive performance and let 

us to understand the influence of pure structural and relational characteristics on inventors’ performance. 

Moreover, it demonstrates the extent to which content and structure of a network moderates each other’s 

influence. The model allows for an in-depth analysis of the advantages and disadvantages of each feature. 

Third, it theorizes about the specific mechanisms and strategies through which each feature delivers value 

to different facets of inventive performance (i.e., rate of invention, novelty of output, and reuse of output). 

The dissertation consists of three essays that address the influence of collaboration network characteristics 

analyzing the influence of brokered network structure from different theoretical angles. In the first essay, I 

raise the question of how inventive performance is influenced by the structural and relational characteristics 

of collaboration networks. It argues that individual inventive performance is influenced by three main 

features of collaboration networks: network size (i.e., the number of collaborators and the number of 

indirectly connected inventors), the strength of collaborations, and brokered network structure (i.e., 

disconnectedness between a focal inventor’s collaborators). Building on the recent literature it argues that 

each source presents complementary opportunities and at the same time requires different strategies to 

exploit those opportunities. The second essay analyzes the propensity of an inventor within a brokered 

network to produce novel invention. Making a distinction between the structure (i.e., the disconnectedness 

of the collaborators) and knowledge heterogeneity provided by the focal inventors’ collaborators allows us 

to evaluate exclusively the benefits of the only network structure. The third essay, also makes a distinction 

between structure–content couples (Ter Wal et al. 2016; Guan et al. 2017; Rodan and Galunic 2004) and it 

takes contingency approach (Burt 2021; Carnabuci and Diószegi 2015; Tsai 2009) by making a distinction 

between cognitive proximity of network members to be confident about the sole influence of brokered 

network structure. As a contribution to recent literature, the study shows that the influence of the structure 
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changes depending on the focused sphere of influence, the structure of the network does not guarantee a 

given content of it and even further they change each other’s influence on the inventor’s performance.  

My dissertation makes three main theoretical contribution to the literature discussing the characteristics of 

collaboration networks --depending on its structure, the nature of the links between co-inventors or 

similarity of collaborators’ attributes-- and their effects on an inventor’s performance. First, it suggests that 

the added and relative value of collaborations on the inventor’s performance depend on the collaborators’ 

social distance to the focal inventor and on their integration within the network. From a methodological 

standpoint, the framework makes more focused predictions on the relative value of the outcomes of French 

inventors depending on the characteristics of their collaboration network. Second, it argues that neither 

relational characteristics (i.e., number or strength of collaborations) nor attributes of collaborators (i.e., their 

cognitive proximity and the uniqueness of their knowledge) is guaranteed by a specific structure (i.e., 

brokered, or cohesive network structure). From a theoretical standpoint the frameworks allow for an in-

depth analysis of the similarities and differences in the value, and opportunities inherent in collaboration 

networks’ characteristics. Third, it theorizes about the two critical features of collaboration networks – 

structure and content (i.e., knowledge heterogeneity and cognitive proximity) –, their value, the strategies 

to exploit their value, and their utility for the concerned facet of inventive performance (i.e., rate of 

inventions, novelty, and reuse of inventor’s output). They together, further justify the need for adopting the 

framework in future analyses.  
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DETERMINANTS OF INVENTIVE PERFORMANCE: A NETWORK PERSPECTIVE   

Prior research focusing on individual inventive performance provides alternative perspectives. A well-

established tenet among invention and strategy researchers is that inventors’ ability to use novel 

technologies or recombine existing technologies, are key drivers of their inventive performance (Galunic 

and Rodan 1998; Hargadon and Sutton 1997; Henderson and Clark 1990; Sosa 2011; Yayavaram and Ahuja 

2008). In addition to the inventors’ creativity and combinatory skills which are critical for the idea 

generation phase, others pay attention to the more advanced phases of invention journey and emphasize the 

importance of idea implementation and approve the acceptance of the ideas and their reuse by others as key 

drivers of inventive performance (Baer 2012; Fleming et al. 2007; Hargadon and Sutton 1997; Obstfeld 

2005; Rodan and Galunic 2004; Tortoriello and Krackhardt 2010; Uzzi and Spiro 2005). Naturally, the 

sources they focus on and the managerial implications they provide are contradictory to each other. 

However, almost all studies make an assumption about a perfect association between network structure and 

content (based on the attributes of collaborators). 

Creativity and idea elaboration  

Collaboration networks and its characteristics serve as an indication of combinatorial capabilities which 

increases with the exposure to diverse resources. To start with, creativity during the idea generation phase 

is highly associated with brokered network structure and weak1 ties because inventors within loosely 

integrated, namely weak, collaborations and brokered collaboration networks are assumed to connect with 

non-redundant collaborators (Burt 2004; Granovetter 1973; Hargadon and Sutton 1997). Disconnectedness 

 

1 Strength of a tie can be defined in many ways. The chapters of the thesis assign the strength of the ties -- 

strength of the collaborations-- considering the frequency of co-inventor relationships and the team size. 

This is explained in detail in the next chapter. 
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within networks and weakly connected collaborators indicate that inventors provide diverse knowledge, 

different perspectives, and resources to the focal inventor (Burt 1992, 2004). Moreover, the focal inventors 

within brokered networks keep a position through which the knowledge between disconnected collaborators 

can flow and be transferred. They have a greater capacity to monitor and control a content rich information 

flow for their own benefit (Burt 1991; Obstfeld 2005; Padgett and Ansell 1993). As a result, collaboration 

network brokers are assumed to be more likely to be exposed to heterogeneous knowledge elements, and 

further, be aware of novel combinations earlier than others (Burt 2004).  

In addition, collaboration networks serve as an indication of trust and willingness to share within the 

network. Scholars stress the importance of strong relationships and cohesive social structure in which most 

inventors are to each other (Burt 2005, 2017; Coleman 1988; Fleming et al. 2007; Perry-Smith and 

Mannucci 2017; Reagans and McEvily 2003; Rowley et al. 2000). Strong relations and cohesive structure 

of the networks characterize the formation of cooperative norms, a convergence in vision and common 

language among collaborators, therefore, facilitating the knowledge exchange in both explicit and tacit 

forms. The appearance of high-quality knowledge exchange and trust fosters the benefits of knowledge 

spillover and the commitment of inventors to their collaborations. As a result, inventors within highly 

integrated relations and collaboration networks are assumed to benefit from constructive feedback, shared 

norms, and vision to improve and elaborate their ideas.  

Idea implementation and its reuse 

In addition to the generation and improvement of an idea, collaboration networks foster the implementation 

of an idea, its diffusion, and its reuse by other actors.  

Scholars focusing on the latest phases of the invention journey started a conversation resulting in a debate 

on brokered versus cohesive networks as a source of inventive performance. On the one hand, collaboration 

networks act as a source of social capital which is derived from control over knowledge flow, therefore, 
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increased awareness and combinatory capabilities (Burt 2004). Focal inventors within brokered networks 

occupy sole intermediate positions among others and, therefore, hold the advantage of keeping or sharing 

knowledge with others as they want (Obstfeld 2005). Knowledge arbitrage advantages are assumed to 

appear for brokers because they know of a knowledge difference between multiple pools of inventors and 

exploit this by bringing the knowledge from one pool to another. The arbitrage and political 

maneuverability lead to their dominance within their ego network and increase their legitimacy. As a result, 

the central inventors within brokered networks can convince others that their ideas are valuable and move 

their ideas further increase by using available sources as they want.  

On the other hand, a brokered network structure will result in an inefficient knowledge diffusion within the 

network which hinders the detection and the adoption of the broker’s ideas by others, whereas in cohesive 

networks, high level of interactions among collaborators act as a facilitator for faster knowledge transfer 

through many direct connections and, therefore, increases the diffusion of a generated idea (Coleman 1988; 

Fleming et al. 2007; Tortoriello et al. 2015; Tortoriello et al. 2012). In addition, high intensity of interactions 

is assumed to allow for a convergence in the used language and smoothen the communication between 

collaborators within cohesive networks. As a result, the likelihood of being understood and the reuse of an 

idea by others increases within closed networks.  

In addition to the structural characteristics, maintaining strong versus weak relationships is associated with 

the latest phases of the invention journey. The strength of the ties indicates higher social and cognitive 

proximities which facilitate the communication with collaborators and acceptance by them. Being involved 

in strong collaborations becomes crucial under certain conditions in which novel ideas are on the table. This 

is due to the fact that complex ideas either consist of unusual set of technologies or unusual combinations 

of known technologies. Under such circumstances, understanding and accepting an idea require a high 

quality of knowledge exchange and sharing. 
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The differences in how scholars define the sources of the inventive performance vary significantly by the 

differences in which facet of inventors’ output and the assumption they build on. Consequently, scholars 

investigating the influence of collaboration networks provide contradictory implications and suggestions. 

The three essays of my dissertation are motivated by the observation of the alternative drivers of inventive 

performance through collaborations and by the confusion raised from conventional assumptions that 

guarantee proximities among collaborators. I start by questioning the generalizability of empirical studies 

for French inventors and investigated the relative importance of relational and structural characteristics. 

Then, I continue by focusing on the most effective characteristic of the collaboration networks on inventors’ 

performance and further analyzed its validity for different facets of inventive performance. In the last two 

essays, I was motivated to dig into the micro mechanisms to better understand the contingent value of 

structure.
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RESEARCH METHODOLOGY AND DATA 

Research methodology 

In order to address research questions, I follow the literature that already merges the social network analysis 

and innovation studies, especially those analyzing collaborations among individuals. In many studies of the 

literature, social network analysis has been applied as a methodological approach to portray the value of 

collaboration network characteristics to the inventive performance. The same methodology is implemented 

in the following chapters to compute inventors’ performance and explanatory variables. 

To gauge the advantages to which a particular inventor is provided through interaction with his or her 

contacts, it is not enough to evaluate his or her dyadic relations with each contact; the similarity of one 

collaborator's attributes to another in the network, their redundant benefits, and connections to each other 

must be taken into account. For instance, assume that inventor X has three collaborators (K, L, and M) each 

of whom has similar technical expertise, yet their specialty is completely different from X's expertise area. 

In this case, while the dyadic approach reflects potential knowledge benefits from collaborations, social 

network analysis allows us to evaluate the set of collaborations' benefits by considering all members of the 

ego network. Throughout the following chapters of the thesis, the terms co-invention networks, 

collaboration networks, innovation networks, are used interchangeable to on behalf of ego networks of 

French inventors.   

Ego networks are ego-centered networks consisting of a focal actor, termed ego, a set of collaborators who 

are directly tied to the ego, and inventors who are indirectly connected to the ego. In the following chapters 

of the thesis, the actors of the ego networks are inventors who are located in France. Co-patenting 

relationships are used to construct the links within focal inventors’ collaboration networks. The chapters of 

the thesis focus on ego network analysis, but the exact definition of an ego-network varies across literature. 

Some works consider it as a focal inventor and a set of immediate collaborators (Cannella and McFadyen 
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2016), while others include all actors that the focal inventor can reach through intermediary collaborations 

(Ahuja 2000). Because the thesis aims to understand the influence of several characteristics of collaboration 

networks, it starts the analyses with no boundaries based on the distance between inventors and ego2. As a 

result, among the networks constructed, there are even ego networks containing more than one million 

inventors. One of the biggest challenges of the thesis has been the incredible size of collaboration networks. 

The constructions of the ego networks and the calculations of characteristics took more than 6 months and 

that require very high computational power.  

Data 

The analyses and the findings rely on panel data sets, which are constructed from the European Patent 

Office worldwide patent statistical database – EPO PATSTAT – for the purposes of the dissertation. 

According to the World Intellectual Property Organization, the top 5 Intellectual Property offices account 

for more than 85% of all patent filings in the world in 2020 and EPO is one of them.  

Despite its imperfections caused by actors who may avoid sharing their inventive activities and may limit 

their patent submissions for their best inventions, patents are the best quantitative measure to observe an 

inventor’s performance and their collaborations (Fleming and Sorenson 2004) . The increased availability 

of structured EPO PATSTAT database benefits empirical research on the economics and management of 

innovation. The database provides bibliographic patent data for over 100 patent offices, reaching back to 

the nineteenth century. This database is important to the scientific world because it offers raw data that is 

gathered transparently; therefore, it promises to increase the quality of empirical research in many fields. 

 

2 For instance, if there are indirectly connected inventors who are connected to the focal inventor with 20 

path lengths – with 19 intermediary inventors--, they are also included in the beginning. 
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However, it is not easy to navigate such database3, and its complexity makes it less attractive and more 

challenging for users.  

To validate the generalizability of the results as much as possible, I chose not to apply any limitation by 

focusing on a specific technology or sector. Patents from 1990 to 2010 is used to construct variables, while 

the time frame of the regression analysis is limited to patents that applied to the European Patent Office 

between the years 1995 and 2010. This is necessary to have sufficient time left for collaboration network 

period prior to the performance year. The set of focal inventors contains only inventors who are located in 

France. However, the data used to construct networks also contains inventors located outside France for the 

purpose of not missing collaborative links that cross French borders. Therefore, the study involved cleaning 

and manipulating a very large database with more than 70 million patents and more than 1 million French 

inventors. To do so, I needed to learn and use a general-purpose programming language, Python, to 

aggregate network, inventor, and team level variables. Once the ultimate observation dataset is finalized, I 

used a powerful statistical software, Stata, for the purposes of all statistical analysis (i.e., descriptive and 

regression analysis).  

 

3 The database is composed of a number of tables that adhere to a relational database schema. It includes 

more than 20 tables and 6 of them are used to construct all variables included in the analyses. A key of each 

separated table is frequently the identifier of patent applications and used to link tables with each other. The 

core table (tls201_appln) of the chosen 6 tables provides descriptive information such as identity of patent 

applications and the application year. Two of the tables (tls212_citation and tls211_pat_publn) provide 

information about citation traffic within patents. The input within another table (tls_209_appln_ipc) allows 

identification of patents by technology. The last 2 tables (tls207_pers_appln and tls206_person) provide 

information about the identification of applicants, let us to identify whether a given identification number 

of an applicant represents an inventor or an institution, and the inventors’ residency country.  
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OVERVIEW OF THE THREE ESSAYS 

Collaboration networks and the quantity of inventors’ output 

The first essay of my dissertation is interested in the influence of the structural and relational 

characteristics of collaboration networks on inventive performance of an individual. I argue that there are 

three distinct sources of collaboration benefits that have different predictive values for individual 

achievements: network size (i.e., number of collaborators and indirectly connected inventors), the strength 

of collaborations and non-redundancy of the collaborators (i.e., disconnections between a focal inventor’s 

collaborators). Building on current and past research on social networks and ego-centric collaborative 

networking I argue that each source presents unique, non-equipollent opportunities and at the same time 

requires different strategies to derive those opportunities.  

My first argument is that the sources differ in the utility that might be derived from them including through 

directly and indirectly connected collaborators. Weak relationships allow for the potential relational 

advantages through the quantity of total gathered resources, information, and knowledge as well as the 

widest choice of interaction collaborators (Granovetter 1973, 1983; Ibarra and Andrews 1993; Umphress, 

et al., 2003) while brokered network structure in which the focal inventor is spanning several structural 

holes4 provides opportunities for earlier exposure to a wide range of views, knowledge, and perspectives as 

well as opportunities to come up with and implement good ideas (Amabile et al. 2019; Aral and Van Alstyne 

2011; Burt 1991, 1992, 2004, 2005; Carnabuci and Diószegi 2015). Strong relationships appear between 

collaborators who are willing to devote their time, attention, and effort to support each other, sharing the 

risks and higher quality of information transfer and tacit knowledge (Coleman 1988; Gulati 1995; Inkpen 

 

4 Structural holes are the gaps in information flows between the focal inventor’s collaborators because they 

are not connected to each other. A network with many structural holes termed as a brokered network.  
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and Tsang 2005; Larson 1992; Reagans and McEvily 2003; Rowley et al. 2000) while closed network 

structure in which a focal inventor’s collaborators are connected to each other provides a trusting 

environment and norms of cooperation that facilitates the information flow, knowledge sharing and rapid 

feedback from collaborators in case it is needed (Baer 2012; Coleman 1998; Fleming et al.2007; Perry-

Smith and Mannucci 2017; Walker et al. 1997). My second argument the substantive benefits of 

collaborators will vary depending on their distance to the focal inventor, and whether the collaborator has 

direct connections. In addition to the social distances between collaborators and the focal inventor, the 

substantive benefits will be limited to an extent by the similarities between the types and amounts of 

resources provided by collaborators. Based on those arguments I first, identify the structural and relational 

characteristics of collaboration networks contributing to the focal inventor’s performance. Second, I 

compare the relative contribution of collaboration network features to provide suggestions on designing 

effective and efficient networks to increase individual performance. I use European Patent Office 

worldwide patent statistical database – EPO PATSTAT –to construct collaborative networks and all 

variables. A longitudinal dataset with more than 200 000 inventor-year observations from 1995 to 2010 is 

generated from the EPO PATSTAT database. A panel data–negative binomial estimator is preferred 

because of the inflation and overdispersion that the explanatory variable exhibits (quantity of inventors’ 

output).   

Overall, results of the study shows that even within the same network, collaborators differ significantly in 

the magnitude and nature of benefits (i.e., resource and tacit knowledge sharing, and information spillover) 

they provide to the focal inventor depending on their social distance. In fact, the results of the statistical 

analysis demonstrate that collaborators other than socially very close ones (i.e., the ones located at a 

maximum of two path length distances) do not provide any benefit to the focal inventor. I find that; non-

redundancy and strength of relationships are more important than enlarging the frontiers of the networks 

by increasing the number of indirectly connected collaborators, even further, ones. Moreover, being part of 
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brokered networks in which otherwise disconnected collaborators are strongly tied to the focal inventor 

allows for the best performant focal actor.  

Collaboration networks and novelty of inventors’ output: the interplay between knowledge 

heterogeneity and brokerage 

Building on the second chapter’s conclusion I dig into the structural characteristics (i.e., being the focal 

inventor within brokered networks) of collaboration networks as it is the most effective contributor to 

increasing the focal inventor’s performance. The lead question in the second essay of my dissertation is 

how heterogeneous knowledge accessible through the collaborators influences the relationship between 

being a broker and the novelty of the focal inventor’s output. Joining the research on the contingent value 

of brokered networks, I look at the structure and content-related factors of collaboration networks to predict 

the value of each focal inventor’s ego network source to better performance and theorize about the strategies 

inventors and their managers should pursue in order to increase individuals’ creativity and the novelty of 

their ideas. Inspired by the controversial conclusions on which structure (i.e., brokered versus constraint 

networks) is better for inventive performance, I question the assumption made by the great majority of prior 

literature of a direct association between network structure and the nature of accessible knowledge within 

the network. More specifically, I question the conventional assumption that suggests a direct association 

between being a broker and collaborating with inventors possessing unique knowledge. To do so, the study 

suggests a way to make a distinction between the structural characteristic of an ego network (i.e., brokered 

structure) and the content of an ego network (i.e., knowledge heterogeneity provided only by collaborators). 

My first argument is that brokered networks serve as sources of knowledge arbitrage and increase the focal 

inventor’s creativity. Brokered networks in which focal inventors collaborate with otherwise disconnected 

actors are associated with working with diverse knowledge, perspective, and resources providers (Brass 

and Burkhardt 1993; Burt 1992, 2004; Hargadon and Sutton 1997; Lee 2010; Zaheer and Soda 2009) that 
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serve as sources of combinatory skills (Fleming et al. 2007; Perry-Smith and Mannucci 2017). Because 

focal inventors have control over the information flow within the brokered network, they can be aware of 

and exploit the knowledge available within their ego networks, therefore, increasing the novelty of their 

output. In certain circumstances, being a broker (i.e., being the focal inventor of a brokered network) allows 

the inventor to be more legitimate which helps him or her to implement his or her novel ideas easier than 

inventors within constraint networks in which all inventors tied to each other (Burt 2017; Rodan and 

Galunic 2004). Yet, knowledge arbitrage advantages of a broker can happen if disconnected inventors do 

not possess each other's knowledge. Building on the contingent value of brokerage, my second argument is 

that brokered networks act as a source of costs. These costs simply can be coordination and communication 

costs among disconnected sets of inventors and maintenance costs of the non-redundant ties. Moreover, 

novel ideas are hard to be understood and to be supported by others as they contain high uncertainty and 

are more complex combinations. However, sparse networks do not provide a trusting environment, 

therefore, decrease the willingness to share risks, resources, and knowledge between collaborators (Obstfeld 

2005; Uzzi and Spiro 2005). As a result, if the focal inventor of a brokered network cannot use the 

positioning as a source of knowledge arbitrage, being a broker can become detrimental to his or her 

creativity.  

In this study, I use the same database – EPO PATSTAT – to construct collaborative networks, to measure 

the available knowledge heterogeneity5 within the networks, and the novelty of inventors’ output. A 

longitudinal dataset with more than 80 000 inventor-year observations from 1995 to 2010 is aggregated 

 

5 EPO PATSTAT database has approximately 650 4-digit subclasses to categorize used technologies for 

the inventions. I used 4-digit technological classes which are narrow enough to observe the heterogeneous 

expertise holders and knowledge heterogeneity provided by collaborators and to observe novel 

combinations of technologies.  
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from the EPO PATSTAT database as the study focus on inventors who have at least one paten in the given 

performance year. As in the second chapter, a panel data–negative binomial estimator is preferred because 

of the inflation and overdispersion which explanatory (i.e., the novelty of inventors’ output) variable 

exhibits.  

Overall, the results indicate that being a broker does not guarantee access to heterogeneous resources. 

Structural brokerage and having access to diverse knowledge through collaborators moderate each other’s 

influence on the novelty of inventors’ output. Last, the fact that an inventor enjoys being a broker is 

contingent upon the existence of knowledge heterogeneity within his or her ego network. Otherwise, 

besides the lack of knowledge arbitrage advantages, being a broker becomes detrimental to his or her own 

creativity because the communication, coordination costs, and lack of trust among inventors overweigh.  

Collaboration networks and the reuse of inventors’ output: the interplay between cognitive proximity 

and brokerage 

In the final essay, I seek to find an answer to the question of how cognitive proximity among local network 

members (including the focal inventor) does6 affect the relationship between reuse of the focal inventor’s 

ideas and being a broker. The study is again attached to the contingent value of being a broker and contribute 

to the ongoing debate on the brokered versus constraint networks. In the previous chapters, I show that 

being a broker does not guarantee collaborators providing unique knowledge and there are brokers who do 

not take the advantage of their collaboration networks to increase the novelty of their output. There are 

multiple facets of inventive performance: quantity, novelty, and usefulness of output. An inventor can enjoy 

 

6 Local network is the very close network of the focal inventor. Its members include the focal inventor’s 

direct collaborators and their direct collaborators. In other words, all inventors with a maximum of two 

social distances to the focal inventor.  
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his position depending on the incentives and benefit from the collaboration networks to increase one 

specific facet of inventive performance (i.e., the reuse of the inventor’s ideas). Thus, after investigating the 

first two facets of inventive performance in the first two chapters, in the third chapter I concentrate on the 

third aspect of inventive performance and dig in to understand the association between brokerage and the 

reuse of inventors’ ideas. 

The chapter first makes an argument that the effects of brokered networks may vary significantly for 

different spheres of influence. To do so, I make a distinction between a complete collaborative network 

(i.e., simply all active inventors appear in the EPO PATSTAT database), and its sub-section to which the 

focal inventor belongs. Sub networks are termed as local networks and are constrained by maximum of two 

collaborative links (i.e., the focal inventor, the ones who directly collaborated with the focal inventor and 

their collaborators). Brokered networks increases the focal inventor’s creativity and implementation 

capabilities with strategic advantages attached to knowledge arbitrage capabilities and legitimate 

positioning (Burt 2007; Perry-Smith and Mannucci 2017; Rodan and Galunic 2004). However, they are 

claimed to decrease the usefulness of generated ideas by others (Guimerà et al. 2005; Obstfeld 2005; Perry-

Smith and Mannucci 2017; Uzzi and Spiro 2005). This is due to the fact that brokered networks prevent the 

emergence of trust and common language, hinder the acceptance of generated ideas, and slow down their 

diffusion (Fleming et al. 2007; Tortoriello and Krackhardt 2010; Uzzi 1997). I argue that the mentioned 

disadvantages will disappear within the local network in which collaborators are part of the same team and 

most of the collaborators are directly tied to each other, thus, they are less likely to perform opportunistic 

behaviors. The social proximity among local network members facilitates knowledge exchange and enables 

them to interact with each other easily. My second argument is that the focal inventor of a brokered network 

can take even more advantages of his or her position in case the collaborators are cognitively proximate to 

each other. The proximity helps inventors to communicate with a minimum effort and appreciate the ideas 

generated by the broker even if they do not have an efficient information flow within the network. To do 
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so, I question the assumption of brokered networks consist cognitive distant set of inventors that appears in 

most of the previous studies and make a distinction between the cognitive proximity of the local network 

members and the network structure (i.e., the level of brokerage). 

In this essay, I use the same longitudinal dataset used in third chapter, with more than 80 000 inventor-year 

observations. Again, a panel data–negative binomial estimator is preferred because of the inflation and 

overdispersion which explanatory (i.e., the future of inventors’ output by local network members) variable 

exhibits. 

Overall, I find that the advantages of being the focal inventor within a brokered versus constraint network 

are contingent upon the cognitive proximity of local network members. The study contributes to the 

ongoing debate on cohesive versus brokerage by showing that the detrimental effect of brokered networks 

can be overcome through social and cognitive proximity of collaborators. Even further the focal inventor 

of a brokered network conditionally enjoys more than an inventor within constraint network to increase the 

reuse of his or her ideas.  However, constraint networks become advantageous for unique technological 

expertise holders because the high intensity of interactions helps them to overcome consequences of 

working with cognitively distant collaborators. Although both closed and brokered networks seem to be 

beneficial for usefulness of inventors’ ideas, being a broker where a high level of cognitive proximity exist 

is the most fruitful environment to increase the reuse of inventor’s ideas within his or her local network. 
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CHAPTER 27 

 

 

 

 

 

7 This chapter is based on a joint work with my supervisors, Ludovic Dibiaggio and Zakaria Babutsidze. 
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COLLABORATION NETWORKS AND QUANTITY OF INVENTORS’ OUTPUT 

ABSTRACT 

The study analyses the extent to which an individual’s inventive performance is influenced by the structural 

and relational characteristics of her collaboration network. The chapter develops a framework that theorizes 

the relationship between structural characteristics –the number of collaborators, the number of inventors 

indirectly connected to the focal inventor and brokerage, termed brokered network, - and relational 

characteristics –the strength of relations– to the focal inventor’s output. Results from the longitudinal study 

highlight the positive association between collaborators as well as spanning structural holes -direct 

collaborations with otherwise isolated collaborators- to increase the quantity of inventors' inventions. Yet, 

the overall network of indirect connections is found to have no influence.  Only most proximate indirect 

connections (i.e., collaborators located at a maximum of two path length distances) contribute to the focal 

inventor’s performance. The findings on the strength of relationships and structural holes further reinforce 

the basic conclusion that the quality of collaborative relationships and the complementarity (i.e., non-

redundancy) of the collaborators is more important than the number of the collaborators. Thus, the analysis 

of the optimal structure of an inventor's collaboration network confirms the advantage of an inventor 

strongly connected to disconnected sets of inventors. 
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INTRODUCTION 

Several studies have indicated that the network of collaborations of an inventor influences her inventive 

behavior and performance (Burt 1991, 2000, 2004, 2017; Obstfeld 2005; Coleman 1988; Granovetter 1973; 

Perry-Smith 2006; Fleming et al.2007; Quintane and Carnabuci 2016). There is a strong research tradition 

in management supporting the idea that brokered collaboration network structure provide greater 

information advantages and social capital (Burt 1991, 2000, 2004, 2017). Collaboration networks provide 

access to resources, facilitate knowledge sharing and contribute to inventors’ social capital by building trust 

and increasing legitimacy in the network. However, despite the growing consensus that collaboration 

networks matter, the specific influences of different features of a network structure on the inventors’ 

performance remain unclear for two reasons. First, the generalizability of much published research on the 

structure of collaboration networks is problematic. The conclusions are rather controversial, and there is no 

general agreement about the influence of structural collaboration network characteristics on inventors’ 

performance. Second, the research to date has tended to focus on one network feature such as cohesive 

network structure or attribute such as experience of collaborators at once rather than observing their relative 

impact or interplay with each other.  

Debates have arisen over the structural (i.e., topological structure of networks) and relational (i.e., number 

and strength of the ties within those networks) dimensions that can appropriately be regarded as 

advantageous. According to one view, dense networks with many connections linking the members of a 

network facilitate learning by interactions (i.e., one inventor taps into another’s knowledge and experience 

by communication). Collaboration network structures are seen as beneficial to the extent that networks are 

closed8 (Coleman 1988; Fleming et al.2007; Walker et al. 1997). The rate of return from being within closed 

 

8 A closed network structure occurs in case many members of the network are interconnected. 
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networks is similar to studies focusing on the benefits of strong relationships. Strength of ties also are found 

to facilitate  higher quality information transfer and tacit knowledge between connected inventors (Gulati 

1995; Inkpen and Tsang 2005; Larson 1992; Reagans and McEvily 2003; Rowley et al. 2000). Both closed 

networks and collaboration networks formed by strong ties are argued as indications of shared 

understanding, trust and collaborative integration that foster knowledge sharing and learning by interactions 

Yet, they do not guarantee the availability of diverse resources. 

According to alternate views, however, structural advantages derive from weak ties (Granovetter 1973) and 

spanning structural holes (Burt 1991, 1992, 2004, 2017, 2021). First, researchers suggest that weak 

collaborations serve as a source of richer contents that differs from that the focal inventor already knows. 

This is due to the fact that weak ties tend to connect nonredundant collaborators who belongs to different 

groups of inventors (Granovetter 1973, 1983; Ibarra and Andrews 1993). Second, brokered networks where 

focal inventors spanned by several structural holes creates similar opportunities for focal inventors. Being 

in contact with otherwise disconnected collaborators helps the focal inventor access diverse knowledge and 

have control over knowledge flows within her ego network (Burt 1991, 1992). By tapping information from 

these collaborators (Aral and Van Alstyne 2011; Burt 2004; Carnabuci and Diószegi 2015), inventors 

spanning several structural holes are more likely to come across different pieces of technological knowledge 

and combine them in an unexpected way, which are critical for providing novel approaches and creative 

solutions (Amabile et al. 2019; Burt 2005). Both open networks and collaboration networks formed by 

weak ties are argued to facilitate access to diverse resources that is available in the network. Yet, these 

structural and relational characteristics do not guarantee the willingness of collaborators to share their 

possessed knowledge.  

In addition, prior literature has led to the important insight that enlarging the frontiers of the networks with 

a large number of indirectly connected collaborators may be an effective way for actors to enjoy the benefits 

of collaborations without paying the maintenance costs of relationships (Burt 1992). Although such strategy 
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seems to be a cost-free --and therefore an attractive-- way of taking the advantages of collaborative linkages, 

it is for sure that the value of network size will be associated with the equipollency of the benefits provided 

by collaborators and indirectly connected inventors. The substitutability of the collaborators and indirectly 

connected inventors will be limited to an extent by the similarities between the types and amounts of the 

benefits provided by them.  

From a social network perspective, the contradictory structural requirements of having access to diverse 

resources and being able to take advantage of available resources provide completely different normative 

implications. Further, there are studies demonstrating that co-existence of unexpected characteristics is 

possible. For instance, according to a stream of research building on Granovetter’s argument (1973), tie 

strength and density are generally strongly correlated and mutually reinforcing. However, a notable study 

focusing on almost 200 researcher’s performance and knowledge creation demonstrates that the optimal 

network structure can be a combination of strong direct ties and sparse connections among collaborators 

(McFadyen et al. 2009). According to their conclusion, this combination provides the best of the worlds for 

access to resource diversity coupled with an efficient access to tacit knowledge and shared experiences. My 

study aims to clarify and identify the features of collaboration networks contributing to performance of 

inventors who are located in France. In addition, by examining the relative contribution of structural 

characteristics the study intends to provide a perspective for designing effective and efficient networks to 

increase the inventor’s output. Examining the relationship between collaborative networks and invention 

output can provide both a clarification of the role of different elements of network features (i.e., relational, 

and structural dimensions) in the invention process and an empirical indicator of the effectiveness of 

knowledge flows through such networks. 

The chapter is structured as follows. Section 2 provides an overview of the literature analyzing structural 

collaborative network characteristics as key determinants of inventor’s performance, showing the attention 

to available knowledge diversity, and knowledge sharing. The contrary arguments associated with structural 
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and relational network characteristics is emphasized in this section.  Building on this, I outline the 

advantages and disadvantages of inventor’s structural and relational network characteristics, and I develop 

hypotheses regarding the way they can contribute to an inventor’s output. Section 3 describes the empirical 

setting, data sample and discusses the empirical methodology. Section 4 presents the results, and Section 5 

concludes.  
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COLLABORATION NETWORKS AND INVENTORS’ OUTPUT 

Although research on individuals’ performance has traditionally been the province of psychologists (Ford 

1996), sociologists have recently joined the discussion. They agree on the importance of collaboration 

networks’ structure for inventors’ performance. Yet, despite a growing number of empirical studies (e.g., 

Ahuja 2000; Burt 1992; Fleming et al. 2007; Obstfeld 2005; Reagans and McEvily 2008), the 

generalizability of the conclusions and relative importance of each dimension are far from being settled. 

Extant social network analysis literature identifies the antecedents and analyzes the consequences of 

network features and builds a ground to understand information flows, opportunities through collaborations, 

advantages and constraint of resources embedded within the collaborative networks (Ahuja 2000; Borgatti 

and Halgin 2011; Burt 1995; Cannella and McFadyen 2016). According to network theory actors can 

benefit from the relational and structural characteristics of their collaboration networks. Studies emphasize 

that the characteristics of collaboration networks is associated with the diversity of resources available to 

inventors, interactive learning, constructive feedback, and trust, therefore, inventive performance (Burt 

2005; Fleming et al. 2007; Perry-Smith and Mannucci 2017; Nooteboom 2000).  

The study considers four characteristics of an inventor’s collaboration network are supposed to contributed 

to the benefits mentioned above. These characteristics are 1) the number of collaborators, 2) the number of 

indirectly connected inventors (inventors who can be reach in the focal inventor’s ego network through his 

or her collaborators or their collaborators), 3) the strength of each couple of inventor’s collaborative 

relationships, and 4) the degree to which an inventor’s collaborators are linked to each other within the 

focal inventor’s ego network (i.e., spanning structural holes, termed brokerage). Figure 1 shows these four 

dimensions in the ego networks of two illustrative inventors: A and B. The links between inventors appear 

in case they co-invent. Inventor A has 7 collaborators (from 1 to 7) and 3 indirectly connected inventors (8, 

9, 10) that can be reached at two-step through his or her direct collaborator numbered as 4. Some of these 
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connections are stronger than others. The thickness of the lines increases with the strength of the 

relationships between inventors. For instance, dashed lines are assigned to be the weakest ties within 

illustrated networks. The study assigns the thickness of the links by how frequently two inventors work 

together and the links are weakened by the team size of the two inventors. Further, A’s collaborators are 

mostly disconnected to each other, creating an open network with many structural holes that are the gaps 

between A’s collaborators (1 through 7). In comparison, inventor B has same number of collaborators, yet 

more (from 8 to 16) indirectly connected inventors. In B’s network, the average strength of ties, on average, 

is greater than A’s collaborations. Last, his or her collaborators are mostly linked to each other, creating a 

cohesive network with almost no structural holes. 

Each of these four dimensions, influence the focal inventor’s performance. An inventor’s collaborators 

provide knowledge and resource-sharing opportunities. Indirectly connected inventors can provide 

knowledge spillover benefits while they do not entail resource-sharing benefits. The strength of ties between 

couples of inventors indicates shared understanding, high quality of information and tacit knowledge 

transfer between collaborators (Gulati 1995; Inkpen and Tsang 2005; Larson 1992; Reagans and McEvily 

Network of A Network of B 

Figure 1. An illustration of structural characteristics in two hypothetical networks 
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2003; Rowley et al. 2000). Finally, spanning several structural holes among collaborators affects both 

access to diverse resources and resource-sharing opportunities (Burt 1992, 1995, 2004).  

Number of directly and indirectly connected collaborators 

The first relational dimension I consider is the number of collaborators that a focal inventor has during the 

given network period.  

The number of an inventor’s collaborators can contribute to his or her inventive output by providing 

essential benefits: resource and knowledge sharing, complementarity (non-redundant resources), and scale 

(Ahuja 2000; Gonzalez-Brambila et al. 2013; Nagapie and Ghoshal 1998). First, relying on a network of 

collaborators provide access to critical resources –such as technological knowledge-- for invention. 

Inventive performance often demands the simultaneous use of different sets of skills, perspectives, and 

experiences in the invention process (Perry-Smith and Mannucci 2017; Sosa 2011; Burt 2004). However, 

developing new skills, learning new knowledge, and acquiring know-how for rapidly changing technologies 

are difficult and costly for an inventor (Mitchell and Singh 1996; Sorenson et al. 2006). Collaborating with 

co-inventors enables her to (freely) access knowledge and contribution of all co-inventors in her network. 

Therefore, being part of a collaborative network provides her with the opportunity to receive a greater 

amount of resource compared to a being a lone inventor (Singh and Fleming 2010). Collaborating with 

other inventors facilitates bringing together complementary skills from different inventors. Furthermore, t 

benefiting from free knowledge, as a member of a collaborative network, she can enjoy others’ 

specialization. Second, there are size effects of collaborative networks. collaborating for a project will 

provide more fruitful investments. For instance, in an R&D collaborative project of three co-inventors, if 

each inventor devotes an amount of time t and an amount of attention a to the project, then the total effort 

dedicated to the project is 3t and 3a s. Therefore, this view emphasizes positive effects of collaborative 

networks exclusively: collaborations increase the probability of successful outcomes because they increase 
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combinatorial capabilities by increasing the amount of knowledge available, increase invested time to the 

project by sharing the work load and provide more rigorous selection of ideas by including all collaborators’ 

contribution (Singh and Fleming 2010).  

An alternative view suggests negative network size effects and argue that, after a certain threshold, adding 

collaborators is detrimental to inventive performance. i Indeed, maintaining direct ties requires attention 

and therefore increasing the number of collaborators is costly. (Belkhouja et al. 2021). However, most of 

these studies focus on researchers’ knowledge creation processes and productivity in academia where 

researchers have the rights to select their collaborators and chose as many collaborators as they want. By 

contrast, in the context of industrial innovation, an inventor is generally part of a team that is created by a 

manager. Because the institutions focus on increasing the efficiency of their inventors, the number of 

collaborators is not expected to increase in an uncontrolled manner. As a result, the first hypothesis I put 

forward is: 

Hypothesis 1: Inventors with a larger number of collaborators will have greater output.  

The second relational dimension I consider is the number of indirectly connected collaborators that a focal 

inventor has during the given network period.  

The wealth of resources accessible through one’s direct connections is subject to resources provided by 

their own collaborators (Ahuja 2000; Gulati and Gargiulo 1999; Zaheer and Bell 2005). An ego network 

that includes directly and indirectly connected inventors creates a channel of communication between the 

focal inventor and many other actors. A focal inventor’s direct collaborations bring information, 

knowledge, and a different skill sets from their own collaborators (Gulati and Gargiulo 1999).  

Having access to external resources provide focal inventors with strategic advantages in two forms 

(Leonard-Barton 1984). First, inventors have limited cognitive capacities, to invest in all technologies and 
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pursue many projects. Thus, they can benefit from co-inventors’ knowledge and increase their performance. 

Second, any information gathered through collaborators is an output of information processing that 

collaborators invested in. It is the return of the learning investment in a piece of specific information or 

technology. Therefore, the focal inventor can more efficiently decide which direction to go and increase his 

or her performance by benefiting others’ experiences and attempts that both succeed and failed. As a result, 

the second hypothesis9 I put forward is:  

Hypothesis 2: Inventors with a larger number of indirectly connected inventors will have greater output.  

The degree to which collaborators benefit the focal inventor, however, is likely to be contingent on the 

number of his or her existing indirectly connected inventors. Inventors with few indirectly connected 

inventors can have more chances to enjoy greater benefits from their collaborators than the ones with many 

indirectly connected inventors. A focal inventor’s collaborators are required to dedicate their attention and 

time to their collaborators other than the focal inventor. For instance, inventor B in Figure 1 collaborates 

with inventor 4. However, the collaborator (4) cannot dedicate all his or her attention and time to inventor 

B because he or she collaborates also with inventors 2, 3, 5, 7, 8, 9. On the contrary, inventor A collaborates 

with inventor 1 who does not share his or her attention and time with others. Therefore, an inventor with 

 

9 In this case, it is certain that the benefits of indirect ties need to be considered to explain subsequent 

inventive performance of focal inventors. However, treating all indirect ties equally is not the best way to 

analyze their effects on inventors’ output. First, because the knowledge diffusion performance depend on 

the distance between co-inventors, the shortest path length will vary the benefits of ties (Sorenson, Rivkin, 

and Fleming 2006). Second, the distance being equal, the potential knowledge to be shared through 

collaborations will change the benefits of ties depending on the possessed knowledge by collaborated 

inventors (G. Ahuja 2000). Therefore, I construct alternative measurements including distance and 

information of collaborators for testing the hypothesis put forward.  
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many indirectly connected collaborators can limitedly interact and benefit from their collaborators. 

Considering an inventor’s limited time and attention to allocate to his or her collaborators (Belkhouja et al. 

2021; Cohen and Levinthal 1990), although the benefits of collaborators and indirectly connected inventors 

are hypothesized to be positively associated with inventive performance, I expect that they negatively 

moderate each other’s benefits. As a result, the third hypothesis I put forward is: 

Hypothesis 3: The positive association between collaborators and an inventor’s output will be negatively 

moderated by the number of the indirectly connected inventors: the greater the number of indirectly 

connected inventors, the smaller the benefit from collaborators. 

Strength of collaborations 

The third relational dimension is the strength of collaborations. It is a quite important characteristic of an 

inventor’s collaboration network because maintaining collaborators does not guarantee that the possessed 

knowledge will be shared within the network. Strength indicates that inventors communicate with each 

other frequently and reflects “how well” an inventor knows his or her collaborators. The average strength 

of relationships affects the level of integration of co-inventors and the level of commitment of collaborators. 

Inventors hold strong collaborative relationships in case they frequently work together, therefore, they have 

similar objectives, same incentives and opportunity to share information (Boorman 1975; Granovetter 1973, 

1983; Krackhardt 1992).  

Literature has demonstrated some of the key benefits of the strength of ties such as trust and high quality 

of knowledge and information exchange (Nonaka 1994; Perry-Smith and Mannucci 2015; Phelps et al. 

2012; Sosa 2011). Strong linkages foster knowledge transfer and communication effectiveness. First, the 

emerging trust through the strength of the ties reduces the likelihood of opportunistic behaviors such as 

misusing shared knowledge. Consequently, trust increases the propensity of co-inventors to share 

knowledge (Gulati 1995; Inkpen and Tsang 2005; Larson 1992; McEvily et al. 2021; Reagans and McEvily 
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2003; Rowley et al. 2000). Second, maintaining strong relationships with collaborators makes interactions 

easier and more effective and facilitates the invention processes. Maintaining strong relationships means 

that collaborators have already established some norms, learn how to communicate, and develop a common 

language. Finally, prior experience reduces the cost of searching new collaborators for new projects (Gulati 

1995; Inkpen and Tsang 2005; Larson 1992; Rowley et al. 2000). 

In addition, the literature on learning and creativity highlights the importance of strengthening collaborative 

relationships for two reasons. First, trust and willingness to share knowledge generate learning by 

interactions (Nooteboom 2000; Perry-Smith and Mannucci 2017). Second, even if collaborators do not 

learn from one another, they still are likely to benefit from others’ expertise through feedback. A focal 

inventor who hold strong direct collaborations can enjoy constructive and rapid feedback from their 

collaborators to move their projects further (Perry-Smith and Mannucci 2015, 2017; Phelps et al. 2012). 

The same applies for indirectly connected inventors. Even further, from the focal inventors’ perspective it 

became more crucial to be part of a network in which strong relationships are hold among inventors 

(excluding the focal inventor). Strength of collaborations will increase the knowledge spillover benefits 

through collaborators by paying no costs of maintenance. Therefore, the fourth hypothesis I put forward is: 

Hypothesis 4: Inventors who hold stronger relationships (both direct and indirect) will have greater output.  

The level of non-redundancy of collaborators  

In addition to the relational dimensions of the collaboration networks, literature suggests that a third 

dimension of an inventor’s ego network is also likely to be important for inventive performance: brokerage 

(i.e., high level of structural holes around the focal inventor). Structural holes are the gaps in information 

flows between the focal inventor’s collaborators because they are not connected to each other. For instance, 

inventor A in figure 1 has many structural holes among his or her collaborators (no connections between 1, 
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3, 5, 6, 7). For ego networks, this dimension indicates the extent to which a given focal inventor’s 

collaborators belong to different groups of inventors.  to each other (Borgatti 1997; Burt 1992; Ahuja 2000). 

Networks with many structural holes are termed as brokered or sparse networks and put the focal inventors 

in a gatekeeper role. Literature on the effects of brokered and dense networks is mixed. 

On the one hand, researchers demonstrate the benefits of ego networks with few structural holes and 

emphasize that resource-sharing benefits within an information-rich network arise from actors’ trust in one 

another and from their willingness to combine skills and share knowledge (Coleman 1988; Fleming et al. 

2007; Obstfeld 2005; Uzzi and Spiro 2005). According to these studies’ conclusion, ego networks that are 

rich in structural holes prevents the emergence of a trusting environment. Consequently, they hinder the 

commitment of actors, increase the tendency for opportunistic behaviors, and hold inventors back to share 

their unique knowledge. However, most of these studies are not at the individual level and focus on firms 

that have similar objectives ( Dyer and Noboeka 2000; Gulati and Singh 1998; Uzzi 1997; Walker et al. 

1997). On the other hand, inventors embedded in loosely connected networks will have knowledge 

brokerage opportunities. According to Burt’s structural hole theory, collaborations are redundant to the 

degree that they lead to the same inventors. The theory indicates that inventors on either side of the 

structural holes bring different flows of information (Burt 1992, Hargadon and Sutton 1997). The notion of 

structural holes has been assumed to be a valid indication of the extent to which an inventor’s position in 

the network confers the greatest access to novel information and good ideas (Burt 1992, 2004). Minimizing 

redundancy or maximizing the level of structural holes is an important aspect of an efficient and 

information-rich network construction (Burt 1992).  

In addition to knowledge benefits, the focal inventor spanning several structural holes keeps a very strategic 

position within their ego networks. The focal inventor enjoys the position by having control over the 

information flow because he or she reserves the right to let the information flows from one side of the 

network to the other side(Quintane and Carnabuci 2016). As a result, an inventor spanning many structural 
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holes is assumed to be exposed to diverse knowledge, to have a higher awareness of available resources in 

his or her surroundings by having a superiority over the control of information flow.  

To reflect how these perspectives relate to inventors, one can consider how inventions are generated and 

how acquired knowledge is shared among inventors. In the context of industrial innovation, there are within 

firm connections and teams working on projects focusing on a specific new technology, a set of 

technologies to create novel combinations or their applications in other contexts. They may have internal 

collaborations and external ones with other economic actors in their ecosystem. In the end, their aim is 

either to increase the absorptive capacity of their institutions, to protect and to codify their ideas by 

patenting. In general, they do expect to have intellectual property rights to generate profits based on it. 

Although, for industrial innovation, knowledge sharing seems to be less frequent to protect institutional 

secrecy and more complex (Gilsing et al. 2008), these arguments are less relevant for inventors for two 

reasons. First, inventors are part of the same project and team, therefore, they have the same goals and 

incentives. Even if the projects include multiple firms, the interorganizational relationships through 

inventors can emerge only after their mutual agreements that, again, emphasize joining forces to overcome 

a technological challenge. Second, unlike a notable study demonstrating that spanning structural holes feed 

the opportunistic behaviors of competitor firms (Ahuja 2000), at individual level studies relational 

dimension (i.e., strength of relationships) is more valid as an indication of trust among collaborating 

inventors compared to spanning structural holes (McFadyen et al. 2009; Perry-Smith and Mannucci 2015). 

As a result, although trust and cooperation norms contribute to inventive performance, it is hypothesized 

that structural holes in ego-networks of individual inventors are positively associated with inventive 

performance. Then, the last hypothesis I put forward is: 

Hypothesis 5: Inventors that are embedded in networks richer in structural holes are associated with 

greater output. 
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METHODOLOGY 

Setting and data 

To test my hypotheses and to answer – if and to what extend collaboration networks influence inventors’ 

performance – an empirical study of French inventors is conducted. A single inventor embedded in a 

collaborative network for a given performance year is focused. The unit of analysis is an inventor-year pair. 

To construct independent variables, collaborative networks containing focal inventors and the set of 

collaborators to whom the focal inventor is directly and indirectly tied are defined. In this chapter, ego 

networks do not have any boundaries based on a given number of maximum path length of indirectly 

connected inventors.  

The model and measurements 

Dependent variable 

I measured Patents it, as the number of patent applications, for inventor i in performance year t. The majority 

of patent applications are examined and ruled upon within the upcoming years of application. I used the 

original application date to assign a patent to the particular year in which it was originally applied for. For 

instance, a patent applied for in 2004 but granted in 2007 is considered a 2004 patent. This procedure 

permitted consistency in the treatment of all patents and controlled for differences in delays that may occur 

in granting patents after the application is filed. Dependent variables used in this and in the following 

chapters are always measured based on the patents produced with a one-year lag to the network period. For 

instance, if the networks are created by using the patents applied between years t-5 and t-1, the number of 

inventor’s patents in year t is measured. Thus, the patent count for 2005 is regressed against the 2004-2000 

period values of other covariates.  
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Independent variables 

Number of collaborators is measured by an inventor’s degree centrality in the network. This variable 

represents the number of directly collaborators of an inventor. 

Number of indirectly connected collaborators are measured with four alternative ways10. The first one is 

the simple count of focal inventors’ collaborators’ collaborators. Their social distance to the focal inventor 

is 2-path length. This variable is named as indirect 1st. The second version of indirectly connected inventors 

is the simple count of collaborators who does not have a direct connection to the focal inventor but is 

reachable through any number of steps. This variable does not apply a limitation to the number of steps to 

access the focal inventor and is named as indirect connections - count. 

However, this simple count of indirectly connected inventors does not consider the weakening or decay in 

the relationship strength between the inventors who are connected by increasingly longer path distances. 

For instance, it counts that both inventors with two social distances and inventors (i.e., the ones connected 

with 1 intermediary inventor in between) with 5 social distances (i.e., the ones connected with 4 

intermediary inventors in between) to the focal inventor have the same influence within the focal inventor’s 

collaborative network. Yet, larger social distance connecting inventors is likely to decrease the benefits of 

collaborators compare to closer ones. For this reason, third alternative measure of indirectly connected 

inventors captures distance effect on benefits of collaborations. This variable is named as indirect 

connections - distance weighted and measured as in the previous studies relying on Burt’s (1991) frequency 

decay measure (Ahuja 2000). I first determine the distance weight of path lengths by using their distance 

to the focal inventor. I weighted the indirect connections count with their distance strength and summed all 

 

10 A hypothetical ego network is illustrated to provide an example of the construction of four alternative 

number of indirectly connected collaborators. Please see Appendix 1.A.  
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distance weighted connections to measure this variable. The argument for weighting is that in terms of 

distance strength, the longer distance means the weaker path distances, and the shorter ones mean the 

collaborators with stronger distance weights. Also, the strength of path distance should vary with the 

collaboration structure in which it occurs. Therefore, decay in the distance weighted relationship strength 

is related to the number of other inventors accessible at any social distance (Burt 1991).  

The variable is constructed as 

𝑖𝑛𝑑. 𝑐𝑜𝑙𝑙𝑎𝑏.−	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =3 41 − !!
"
6	𝑐#

$%&	(#)

#*+
, 

where i is the level of path length, N is the network size (including the focal inventor), 𝑛!  is the number of 

connections up to ith level of path length (excluding the focal inventor) and 𝑐! is the number of connections 

at ith level of path length. 

The fourth indirect tie variable is called as indirect connections - distance and information weighted. In 

collaboration networks, some inventors create more than others and hence can be the source of more 

information. Therefore, collaborating with inventors who produce more lead to increase inventor’s output 

more than others. Even if the shortest path lengths to the focal inventor are same for two collaborators, their 

benefits may change depending on their own productivity. The third indirectly connected inventors’ 

measurement accounts for a lowered probability of knowledge spillover benefits across larger social 

distances. Therefore, the number of patents applied by the collaborator is included to the equation used to 

construct indirect connections – distance weighted variable. To do so, I first capture the productivity of co-

inventors by total patent count between years t-5 and t-111. Then, I took the multiplication of the patent 

 

11 Patents in this period are used to create networks and inventive performance is measured based on patents 

in year t. 
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count and the distance weighted tie strength as Burt’s (1991) frequency decay measure (Ahuja 2000). The 

variable is constructed as  

𝐼𝑛𝑑. 𝐶𝑜𝑙𝑙𝑎𝑏.−	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	&	𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =3 41 − !!
"
6	𝑝𝑐#

$%&	(#)

#*+
, 

where i is the level of path length, N is the ego network size (including the focal inventor), 𝑛! is the number 

of connections up to ith level of path length (excluding the focal inventor), and 𝑝𝑐! is the total patent count 

of ith level of path length connections. 

Once indirect and direct variables are generated, four alternatives of the interaction variables based on four 

versions of indirectly connected inventors are constructed to observe the moderating effect of indirectly 

connected inventors on collaborators.  

Strength of collaborative ties is measured by assigning weights to each dyadic collaborative relations 

relying on Newman’s (2001) network weighting measurement12. The measurement of the weights takes 

into account the frequency of co-patenting behavior, as well as the size of each patent’s co-inventing team. 

First, the tie strength between inventor x and inventor y is computed as  

𝑡𝑠,- = 	∑ .
!"/.

	
0 , 

where p is the set of patents that inventors x and y collaborated on during the reference period and 𝑛" is the 

number of inventors for each patent p. Second, I sum the tie strengths derived from each of the patents 

 

12 A hypothetical network is illustrated to provide an example of weighted ties. See Appendix 1.A. 



55 

 

written by a couple of inventors. Based on these weighted ties, the three strength variables included in my 

analysis are calculated.  

Notice that any network contains several disjoint sets of relationships. Because the study observes the 

collaborations in three main groups (i.e., direct, indirect 1st, and indirect connections) I construct the 

strength of collaborative for the three main sets of collaborations. First set collects all dyadic connections 

that involve the focal inventor. Averaging over strengths of these ties gives us the variable average strength 

of direct ties. The second set of ties includes the collaborations between focal inventor’s collaborators and 

two-step collaborators (i.e., collaborators’ collaborators). The second variable is the average tie strength of 

these ties and named as average strength of 1st order indirect ties. The last set of connections includes all 

ties between indirectly connected inventors in the focal inventor’s network. Averaging over strengths of 

these ties results into the average strength of indirect ties. 

To construct the brokerage13, I used the ratio of non-redundant collaborators to total collaborators for the 

focal inventor (Burt 1991). The measurement relies on constraint measurement and the level of the 

structural holes available in the focal inventor’s network (Borgatti 1997; Burt 1992; Ahuja 2000). The 

brokerage measure is a constrained version of betweenness centrality. The measure counts paths between 

nodes assigned to different sets of inventors, gives a rise to gatekeeper role while a traditional betweenness 

centrality measure counts shortest paths between all nodes. Following the literature, brokerage is 

constructed as 

𝐵!,$ =
∑ ('(∑ 	"!"	*#"" )	
#

,!,&
, 

 

13 The same measurement is used also for the following chapters.  
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where v runs through all collaborators of inventor i, 	𝑝!- is the proportion of focal inventor i’s connections 

invested in the relations with contact w, and 	𝑚.- denotes the marginal strength of a tie between 

collaborators v and w, and 𝐶!,$ is the total number of contacts for inventor i in the network period attached 

to the performance year t. Not to increase the complexity of the measurement and to remain interpretable, 

I assume equal tie strengths. 

Control variables 

To obtain meaningful results, several characteristics are included in the empirical model. The control 

variables are organized on two levels. The first set relates to individual-level characteristics of the focal 

inventor such as experience, previous performance and so on. Second set includes team-level variables to 

control for the team composition for focal inventor’s patenting activities.  

To control for the team composition within focal inventor’s patent portfolio two indicators are used. The 

first one is the single firm. It is the percentage of the focal inventor’s patents in which all inventors come 

from the same company during the period of five years preceding performance year. Second, single country 

is the ratio of the focal inventor’s patents in which his or her collaborators are located in the same country 

for five years preceding the performance year, to his or her all patents. The last variable of this set is the 

technology diversity. Demonstrations have been made for the association between knowledge diversity and 

actors’ innovation performance (Cohen and Levinthal 1990; Galunic and Rodan 1998; Rodan and Galunic 

2004; Sorenson et al. 2006; Sosa 2011b). Although the chapter does not make any prediction on its effect, 

the influence of diverse technology access is controlled because it increases the inventor’s combinatory 
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skills (Sosa 2011). A simple count of unique technological classes14 appear in the focal inventor’s and 

collaborators’ patents during the network period is used to construct the variable.  

The inventor-level set includes three variables: experience, first inventor, previous patent count. The 

variable experience counts the number of years between performance year and the first year the focal 

inventor appears in EPO database. The measure of first inventor is the share of the patents that the focal 

inventor was listed first, during the period of five years preceding performance year. I also control the 

previous performance of focal inventors by including the number of patents they have applied for over the 

last 10 years preceding the performance year, namely previous patent count. 

Econometric issues and estimation 

A panel dataset where I observe patenting behavior of inventors over an extended period is structured. The 

descriptive analysis shows that the dependent variable takes only integer values and has an overdispersed 

and an inflated distribution. Considering the specific features of the variable itself and its distribution, it is 

preferred to use a panel data specific Negative Binomial estimator. The estimator lets us control for 

overdispersion —where the variance is quite greater than the mean— and inflation which the data exhibits. 

Therefore, the selected estimator provides efficient, consistent, and unbiased coefficients. Despite the high 

number of observations, the difference between the coefficients of a random effect modal and a fixed-effect 

modal is double-checked by using a likelihood ratio test. As expected, the test pointed to the use of a random 

effect modal.  

 

14 European Patent Office (EPO) separates the technologies in classes and subclasses. To construct this 

variable, I used the 4-digit technological classes assigned to the related patents by EPO.  
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Although the chapter investigates several characteristics of a focal inventor’s collaboration network, the 

inclusion of the inventors who did not work with two or more collaborators would be misleading for the 

analysis. This is because inventors who did not work with at least two collaborators cannot become brokers 

(i.e., inventors spanning structural holes) within their network. Therefore, following previous studies 

(Ahuja 2000, Fleming et al. 2007), I use only cases where the focal inventor has at least two collaborators. 

32 092 unique inventors and 227,679 inventor-year combinations are used to obtain random-effects 

Negative Binomial estimates (with added year fixed-effects and technology residuals15) of empirical 

models. Tables 4 and 516 respectively provide descriptive statistics and pairwise correlations of main 

variables across all retained observations. These statistics indicate some multicollinearity between some of 

the structural characteristics such as the number of direct and the number of indirect 1st connections. This 

is an expected correlation considering the relationship between the number of direct and indirect ties, as 

acquiring an indirect connection is only possible through direct connections. The same applies to high 

positive correlation between the number of indirectly connected inventors and technology diversity 

 

15 Despite the potential bias deriving from ignored technological fixed effects, I couldn’t manage to include 

fixed effects of the technologies in the models as they are. This is due to the fact that the addition of almost 

650 4-digit technologies created computational problems (i.e., conformability and non-achieved 

convergence errors) that appeared in the software used for regression analyses (Stata MP-17). As a solution, 

a base model that includes only technology fixed effects is simply run to create a new variable with the 

residuals that came out from the model. The variable then is included in the main models as a representation 

of technology fixed effects. This lets us prevent any bias that may occur in the results without technology-

fixed effects. The residuals could not be calculated for 4-digit and 3-digit versions because of the same 

errors. Therefore, the models include the 2-digit technology residuals that provide convergence. This choice 

is done to strengthen our statistical model. 

16 Please see Appendix 1.B 
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considering the literature demonstrating that remote collaborators can generate knowledge spillover 

benefits for the focal inventor (Ahuja 2000; Gulati and Gargiulo 1999; Zaheer and Bell 2005).  
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RESULTS and DISCUSSION 

I estimate four distinct models17. The set of models begins with Model 1, which highlights the influence of 

collaborators on the focal inventor’s performance. To do so, it includes the number of collaborators and the 

strength of the relationship with them, as well as control variables, technology residuals, and year-fixed 

effects. In the next stage, Model 2 appends a stand-alone number of indirectly connected collaborators and 

the strength of the indirect ties for four alternative measures of indirectly connected inventors. Model 2a, 

2b, 2c, and 2d include respectively indirect 1st connections, indirect connections – count, indirect 

connections – distance weighted, and indirect connections – distance & information weighted. Model 3a, 

3b,3c, and 3d are constructed to examine the moderating role of indirectly connected inventors (four 

measures) on the relationship between collaborators and the focal inventor's performance. Here I add the 

interaction term between the number of collaborators and indirectly connected inventors, to set up from 

Model 3s. Finally, Model 4a, 4b, 4c, and 4d add the brokerage variable to complete the specification. The 

extended models allow us to evaluate the hypotheses put forward in section 2. I use the complete 

specification (models 4a to 4d) to discuss the results.  

 

17 Considering studies demonstrating the non-linear relationship between the diversity of collaborators and 

inventors’ productivity (Belkhouja et al. 2021; Nooteboom et al. 2007; Reagans and McEvily 2003) I also 

conducted supplementary analyses to evaluate the robustness of the results. To do so, I simply include the 

square of the number of collaborators. Although the inclusion of the squared variables results in the 

significance of all variables, the interpretation of the results provided strong support for the reported results. 

This is due to the fact that almost all observations were located on the left side (i.e., less than 0.1 percent of 

them were located on the right side) of the turning point of the inverted U-shaped relationships between the 

number of collaborators and inventors' performance. As a result, I preferred to run linear models for the 

ease of the interaction variables’ interpretation. 
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To start with, Table 118 report the regression coefficient estimated for variable of interests across all models 

explaining the focal inventor’s performance in terms of the number of patent applications. The results 

support the predictions for hypotheses 1, 4, and 5 while hypotheses 2 and 3 are not supported.  

On the one hand, the coefficient of collaborators is positive and significant, supporting hypothesis 1, which 

predicts a positive relation between collaborators and inventors’ output. The result of the study both verifies 

and qualifies the prescription to use collaborators as an efficient and effective way of maximizing network 

benefits. In an inventor linkage network, an inventor’s collaborators serve for resource-sharing and 

information spillover benefits and contribute positively and significantly to his or her inventive output.  

On the other hand, regarding the hypothesis 2, predicting a positive relationship between indirectly 

connected collaborators and inventors’ output, the indirectly connected inventor’s coefficient (for all 

measurements except indirect 1st connections) is negative and significant, not supporting the hypothesis for 

three alternative measurements. However, the number indirect 1st connections are positive and significant, 

supporting hypothesis 2’s prediction of positive relationship between indirectly connected inventors and 

inventors’ output. Thus, the benefits of indirectly connected collaborators have appeared only up to two-

step collaborators. The results provide support for the basic premise that network effectiveness can be 

enhanced through collaborators or their collaborators (Burt, 1992).  

 

 

18 For full regression outputs please see Table 6, Table 7, and Table 8 in Appendix 1.C.  
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Table 1. Results from panel negative binomial estimation: quantity of inventor’s output  

VARIABLES inventor's performance - quantity of inventor's output 
   1 2a 2b 2c 2d 
number of collaborators  0.00889*** 0.00964*** 0.00927*** 0.00905*** 0.00912*** 

  (0.000598) (0.000656) (0.000599) (0.000598) (0.000598) 
indirect 1st connections  -0.000200***    

   (7.65e-05)    

indirect connections – count    
-6.39e-07*** 

  
    (1.00e-07)   

ind. collab. – distance weighted   -3.45e-06***  
     (4.10e-07)  

ind. collab. - distance & information weighted   -3.18e-07*** 
      (4.48e-08) 

avg. strength of direct ties 0.0515*** 0.0423*** 0.0441*** 0.0443*** 0.0442*** 
 (0.00362) (0.00369) (0.00367) (0.00367) (0.00367) 

avg. strength of 1st order indirect ties  0.0519***    
  (0.00350)    

avg. strength of indirect ties   0.0616*** 0.0609*** 0.0617*** 
   (0.00411) (0.00412) (0.00411) 

direct collab. # indirect 1st collab.              
direct collab. # indirect collab.              
direct collab. # ind. collab. dist. weight.              
direct collab. # ind. collab. dist. & inf. weight.              
brokerage              

       
observations  227,679 227,679 227,679 227,679 227,679 
number of inventors  32,092 32,092 32,092 32,092 32,092 
Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1 
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Table 1 - continued 

VARIABLES inventor's performance - quantity of inventor's output 
  3a 3b 3c 3d 
number of collaborators 0.0110*** 0.00968*** 0.00924*** 0.00930*** 

 (0.000683) (0.000626) (0.000621) (0.000625) 
 indirect 1st connections 0.000295***    

 (8.29e-05)    
indirect connections – count  -4.57e-07***    

  (1.31e-07)    
ind. collab. - distance weighted   -3.05e-06***   

   (5.45e-07)   
ind. collab. - distance & information weighted    -2.84e-07*** 

    (5.80e-08) 
avg. strength of direct ties 0.0437*** 0.0444*** 0.0444*** 0.0443*** 
 (0.00369) (0.00367) (0.00368) (0.00368) 
avg. strength of 1st order indirect ties 0.0511***    
 (0.00351)    
avg. strength of indirect ties  0.0615*** 0.0609*** 0.0616*** 
  (0.00411) (0.00412) (0.00411) 
direct collab. # indirect 1st collab. -1.27e-05***     

 (1.88e-06)     
direct collab. # indirect collab.  -4.99e-09**    

  (2.39e-09)    
direct collab. # ind. collab. dist. weight.   -1.03e-08   

   (9.50e-09)   
direct collab. # ind. collab. dist. & inf. weight.    -9.53e-10 

    (1.04e-09) 
brokerage      

      
     

observations 227,679 227,679 227,679 227,679 
number of inventors 32,092 32,092 32,092 32,092 
Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1 



64 

 

Table 1 - continued 

VARIABLES inventor's performance - quantity of inventor's output 
  4a 4b 4c 4d 
number of collaborators 0.00791*** 0.00694*** 0.00661*** 0.00659*** 

 (0.000724) (0.000672) (0.000663) (0.000669) 
indirect 1st connections 0.000321***    

 (8.05e-05)    
indirect connections – count  -4.19e-07***    

  (1.30e-07)    
ind. collab. - distance weighted   -2.92e-06***   

   (5.38e-07)   
ind. collab. - distance & information weighted    -2.71e-07*** 

    (5.75e-08) 
avg. strength of direct ties 0.0369*** 0.0378*** 0.0379*** 0.0377*** 
 (0.00377) (0.00376) (0.00376) (0.00376) 
avg. strength of 1st order indirect ties 0.0524***    
 (0.00351)    
avg. strength of indirect ties  0.0622*** 0.0616*** 0.0623*** 
  (0.00411) (0.00412) (0.00411) 
direct collab. # indirect 1st collab. -1.07e-05***     

 (1.83e-06)     
direct collab. # indirect collab.  -2.48e-09    

  (2.36e-09)    
direct collab. # ind. collab. dist. weight.   -2.07e-09   

   (9.19e-09)   
direct collab. # ind. collab. dist. & inf. weight.    1.20e-10 

    (1.02e-09) 
brokerage 0.272*** 0.269*** 0.268*** 0.270*** 

 (0.0202) (0.0202) (0.0201) (0.0202) 
     

observations 227,679 227,679 227,679 227,679 
number of inventors 32,092 32,092 32,092 32,092 
Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1 



65 

 

An aspect of the results of the second hypothesis is worth probing further. Although the mentioned three 

alternative indirectly connected inventors’ measurements seem to be negatively correlated with the 

inventors’ output, providing some quantitative indication of their effect could help in interpreting the real-

life validity of the coefficients. To better investigate the indirect collaborator’s negative effect, I examine 

the impact of an increase in each alternative measurement on the predictive margins of patenting output of 

the focal inventor. Even an increase of the number of indirectly connected inventors (for all three alternative 

measurements) from zero to the maximum observed number of indirectly connected inventors, it does not 

cause even one patent application reduction. Therefore, I can claim that the negative coefficients of the 

indirectly connected inventors are significantly different from zero. Yet the magnitude of the effect is not 

large enough to generate an overall negative effect on the focal inventor’s output. 

Similar to the results of the second hypothesis, also hypothesis 3, predicting a negative impact of the 

interaction between directly and indirectly connected collaborators on inventors’ output is partially 

supported. While a negative interaction appears for the indirect 1st connections, the significance of the 

interaction variables disappears for the other alternative three indirectly connected inventors’ 

measurements. Thus, The results suggest that caution is required while building larger networks, especially 

with two-step collaborators even if they provide knowledge benefits. However, the insignificance of other 

alternative indirect measures indicates that the negative interaction of two-step collaborators is worth 

probing further. To do so, I estimated the predictive margins of inventors’ output and illustrate them in 

Figure 219. The figure considers the standard errors and allows us to better observe the moderation of 

 

19 Low and high number of indirect 1st connections are defined as the level at respectively 10th and 90th 

percentiles of indirect 1st connections distribution. Confidence interval corresponds to 95% confidence 

level. 
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indirect 1st connections on the relationship between collaborators and inventors’ performance. According 

to Figure 2, I do not observe a significant difference between inventors who have a low or a high number 

of indirect 1st connections. Therefore, I can claim that the third hypothesis is not supported at all. 

The coefficient of strength of the ties is positive and significant, supporting hypothesis 4, which predicts a 

positive influence of strong collaborations on inventors’ performance. The results on the strength of ties 

qualify the prescription to maintain collaborations with the ones who previously have worked with. In an 

inventor linkage network, the strength of the collaboration relationships serves as a mechanism for shared 

understanding, trust, reciprocity and the transfer of high-quality information and tacit knowledge (Gulati 

1995; Inkpen and Tsang 2005; Larson 1992; Reagans and McEvily 2003; Rowley et al. 2000), therefore, 

contributes positively and significantly to the focal inventor’s output. 
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To compare the relative influence of the number of collaborators and the strength of ties, I can examine the 

impact of a one-standard-deviation increase in each on the patenting output of an inventor. First, a one-

standard-deviation increase in the number of collaborators increases the patenting rate by 5 percent 

(0.0079*6.88 – 0.000011*6.88*22.32) while a one-standard-deviation increase in the average strength of 

direct ties increases the patenting rate by 2.9 percent (0.037*0.78). Second, a one-standard-deviation 

increase in the average strength of 1st order indirect ties and the number of indirect 1st connections increase 

the patenting rate 5 percent (0.0524*0.957) and 1.2 percent (0.000321*50.63 – 0.000011*7.25*50.63) 

respectively. Thus, the coefficient on the collaborators and strength of their ties suggests that both of them 

do contribute to innovation output; however, the magnitude of the average strength of direct ties’ 

contribution is smaller than the number of collaborators. This result provides a support for the previous 

view on the strength of weak ties argument, although strength of relationships is positively associated with 

inventors’ output. On the contrary, the contribution of average strength of the indirect 1st order ties is bigger 
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than the number of indirect 1st connections. Given that unlike direct ties, indirect ones entail no 

maintenance costs for the focal inventor, the knowledge spillover benefits through strong indirect 

collaborations are extremely welcome.  

Finally, hypothesis 5 predicted a positive effect of being in the center of sparse networks on inventors’ 

output. The results indicate, in support of Burt’s position, that being embedded in networks richer in 

structural holes is associated with increased inventive output. The findings on being in the center of a 

brokered network reinforce the fundamental conclusion that the benefits of diversity (such as information, 

experience, perspective) that is provided by having many structural holes in an inventor’s network outweigh 

the disadvantages of not developing and improving collaboration routines provided by a group of 

cohesively interconnected inventors. The positive association between brokerage and inventors’ output is 

also explained by the lack of trust and the reluctance to share knowledge between collaborators. These are 

not the main features of inventors’ networks in which collaborators are generally members of the same 

team.  Most importantly, considering the estimated coefficients, being a broker by spanning many structural 

holes is the most important structural characteristics to increase the focal inventor’s performance. This 

result points to the criticality of the positioning in the network and of the necessity to share non-redundant 

knowledge among the collaborators rather than focusing on the quantity of the collaborations.  

Several coefficients of control variables are also significant (all models). Technology diversity of the 

network members is positive and significant, supporting the argument that combinatory capability issues 

are likely to be important in the context of the inventors' collaborations (Carnabuci and Operti 2013; Sosa 

2011). Being a focal inventor within an ego network where all collaborators are located in the same country 

favors the focal inventors’ output, supporting the argument that short distances and geographical proximity 

b facilitate the exchange of explicit and also tacit knowledge (Boschma 2005). 
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Being part of a single firm is positively associated with patenting frequency in this research. Prior research 

on the impact of institutional proximity on innovative activity has been mixed, with studies showing both 

a positive and a negative impact of institutional proximity on inventive performance (Balland et al. 2015; 

Boschma 2005). Two broad arguments relate institutional proximity to inventive output. It can encourage 

inventive performance by providing stable conditions for interactive learning, common language, shared 

habits, and a law system securing ownership and intellectual property rights. Institutional proximity can 

also imply institutional lock-in and rigidity which leaves no room for the successful implementation of new 

ideas. The results of this research support the first interpretation suggesting that collaborations among 

members of a single firm is positively associated with the focal inventor’s patent. 

Among other control variables, being in the first order in the inventors’ name list and having a higher 

previous performance are positively associated with increased output of the focal inventors while 

experience is negatively associated. This indicates that there may be significant individual-level unobserved 

effects of the career life cycle in the data that are captured by the experience variable.  I assume that the 

inventors who have higher experience may be the ones who have higher responsibilities and are ranked 

above the others according to status or authority within their organizations. Having more experience may 

require attention and time distribution among different projects that may or may not be about patenting. 
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CONCLUSION 

This study examines the influence of several aspects of an inventor’s ego network – number of 

collaborators, strength of collaborations and non-redundancy of the collaborators – on the individuals’ 

inventive performance. The results suggests that the four dimensions of a network structure play different 

roles in the invention process. First, collaborators serve as sources of diverse resources and information, 

indirectly connected collaborators at the two-step distance to the focal inventor serve primarily as sources 

of knowledge spillover benefits. Yet, the collaborators with more than two path lengths are not found to 

significantly affect the focal inventor’s performance. Second, the strength of the collaborative relationships 

serves as the collaborative integration and high quality of information and tacit knowledge. Third, I 

predicted, but do not find any support that collaborators’ influence are moderated by the number of focal 

inventors’ indirectly connected collaborators. Last, spanning many structural holes within the ego network 

serve as a source of non-redundant resources and combinatorial capabilities.  

This study is motivated by two theoretical puzzles and their implications for inventors in their collaboration 

networks. First, I seek to evaluate whether building networks with large numbers of indirectly connected 

collaborators is an effective way for inventors to enjoy the benefits of network size without cost of 

maintaining the relationships with collaborators (Burt 1992). Second, I seek to understand the degree to 

which brokered networks and the strength of ties are appropriately regarded as the optimal (Granovetter 

1973; Coleman 1998; Burt 1992). The arguments and conclusions of the study shed some light on both 

issues.  

The study highlights the fact that even within the same network, directly and indirectly connected 

collaborators differ significantly in the nature of benefits that they provide to the focal inventor. Although 

I did not directly control for the content of the collaborations, I argued that direct ties provide resource-

sharing and knowledge spillover benefits while indirect ones provide only the latter. Beyond the differences 
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between direct and indirectly connected inventors, I observe a notable decay on the benefits of indirectly 

connected collaborators' benefits. Clearly, under these circumstances, there is a limited degree of 

substitution between collaborators at different social distances to the focal inventor.  Another aspect of the 

study, the findings on the strength of relationships and structural holes further reinforce the basic conclusion 

that the quality of collaborations and complementarity (i.e., non-redundancy) of the collaborators is more 

important than the quantity of the collaborators. The results of the statistical analysis further illuminate that 

only close collaborators (i.e., the ones located at a maximum of two path length distances) are of benefit to 

the focal inventor’s performance.  

The study makes contributions to my understanding of the social network theory and practice by exploring 

the interplay between an individual’s collaborative network structure and their inventive performance. It 

provides a suggestion for an optimum network structure to increase the focal inventor’s performance. 

Considering all the results, the most fruitful environment of a focal inventor is in which he or she hold 

strong relationships with non-redundant collaborators. Collaborating with inventors who work with 

different set of inventors is the most important feature of the network to raise the productivity of the 

collaborative networks. In addition, the benefits of the focal inventor gains increase in case the in-contact 

members hold strong relationships with actors who are disconnected to the focal one. The strength of their 

relationships helps to receive more information and tacit knowledge from others, therefore, raise in the 

collaborators’ potential value to the focal inventor.  

My propositions also suggest a number of possible empirical and theory-based avenues for future research. 

First, considering the highlighted effectiveness of the close collaborators, it would not be wrong to point to 

the importance of teams the focal inventor is part of. The way an institution creates the teams and set of 

teams could create a significant change in the inventors’, even further, unit and institutional level 

performances. Building on this perspective, different levels of analysis would be helpful to better explore 

the mechanism between collaboration networks and inventive performance.  
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Another fruitful line of research would be to focus on theoretical mechanisms in such studies and to develop 

more detailed description of inventive performance rather than quantity of inventions. It would make sense 

to anticipate that different network profiles might be associated with multiple facets of inventive 

performance (such as novelty and success of inventions). For instance, on the one hand, non-sparse 

networks might result in efficiency and effectiveness when inventors need risk-taking, supportive feedback, 

and peer-review processes to increase the novelty of the inventions. On the other hand, spanning many 

structural holes might promote the efficiency in selecting impactful ideas by increasing the focal inventor’s 

chances of being aware of the valuable and most promising ideas.  

My final point concerns the optimistic assumption on the positive association between spanning structural 

holes and access to non-redundant collaborators and resources. Although the role of network structure has 

led to the identification as network attributes such as trust, diverse information, legitimacy, and controlling 

power, researchers have been unable to agree on the form of collaboration network structures that constitute 

the mentioned benefits. For instance, Coleman (1988) have presented that densely interconnected 

collaboration networks as ideal to increase the trusting environment, therefore, the inventive performance. 

On the contrary, others have followed Burt’s (1992) structural hole theory and emphasized the advantages 

of brokered networks in which the focal inventor is exposed to heterogeneous resources to increase the 

inventive performance. For the inventors seeking to improve social capital to increase their own 

performance, these non-aligned propositions suggest a confusing set of choices.  

At one level, the conclusion of the study adds further complexity to this problem by highlighting the 

importance of a combination brokered but strongly connected collaborations.  The conclusion of the study 

and ongoing debate on brokered versus cohesive networks encourage future studies on making a distinction 

between the structural compositions and attributes of the collaborations. This is due to the fact that being 

in the center of very sparse network may not guarantee a set of content rich collaborations or lack of trust. 

These assumptions might be acting as obstacles to understand the real mechanism behind the relationship 
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between network structure and inventive performance. In addition to the main mechanism, it would open 

new avenues to test the micro-mechanisms in the relationship between collaboration network structure and 

inventive performance.  

To conclude, it is important to make a distinction between the content of the collaborations and the network 

structure for two reasons. First, this will allow us to examine the association between structure and content 

with no bias. Second, it will create opportunities to test the interplay between these two characteristics of 

the inventors’ networks and further provide other opportunities for future managerial implications. This 

conclusion provides a great motivation for the second and third chapters of the thesis.  
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CHAPTER 320 

 

 

20 This chapter is based on a joint work with my supervisors, Ludovic Dibiaggio and Zakaria Babutsidze. 
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COLLABORATION NETWORKS AND NOVELTY OF INVENTORS’ OUTPUT: THE 

INTERPLAY BETWEEN KNOWLEDGE HETEROGENEITY AND BROKERAGE 

ABSTRACT 

This chapter investigates how access to heterogeneous knowledge affects the relationship between 

brokerage and novelty of inventor’s output. I distinguish between structural advantages brought by 

brokerage and those brought by diversity of knowledge coming from the collaboration network and 

scrutinize their effects on the level of novelty embedded in inventor’s output. I use panel data of French 

inventors and examine the within-subject variation over time. Results suggest that the influence of being a 

broker on the novelty of an inventor’s output is moderated by the level of knowledge heterogeneity accessed 

through disconnected collaborators. Results highlight that on the one hand, being exposed to heterogeneous 

knowledge compensates the costs of brokerage. On the other hand, being a broker significantly 

complements exposure to heterogeneous knowledge. At the same time, I observe that higher levels of 

brokerage create a negative effect on the novelty of an inventor’s output despite its strategic advantages. 

Negative effects might be there also for low levels of brokerage, but those outweigh the advantages only 

for the high levels of brokerage. On the contrary, being a broker becomes more advantageous within the 

non-redundant content collaboration networks. The study contributes to the social network literature and 

develops a deeper understanding of the brokerage’s influence on inventor’s creativity.  
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INTRODUCTION 

As it is highlighted in the previous chapter, the capacity of an inventor to produce novel ideas depends on 

his or her ability to access and combine pre-existing knowledge elements (Clement et al. 2018; Fleming 

2001; Fleming et al. 2007; Gonzalez-Brambila et al. 2013; Uzzi and Spiro 2005; Van Rijnsoever and 

Hessels 2011). Novel ideas form through collaborations and interactions among multiple inventors who 

contribute to the creative processes ( Perry-Smith 2006; Perry-Smith and Mannucci 2017). Consequently, 

the literature focusing on inventive performance and the previous chapter relate inventors’ creativity to their 

collaboration network characteristics (Burt 2004; Lee et al. 2015; Singh 2005; Singh and Fleming 2010; 

Wang 2016).  

More precisely, existing scholarship points toward the importance of inventor’s position within his or her 

collaboration network. Authors highlight the advantage of being a broker (Brass and Burkhardt 1993; Burt 

1991, 1995; Coleman 1988; Ibarra and Andrews 1993). In this setting, a broker is an individual who 

occupies a specific location in a collaborative network bridging disconnected collaborating groups of 

inventors. Usually, close-knit collaborative sub-networks are assumed to belong to the same discipline. 

Therefore, bridging multiple disconnected clicks is interpreted as access to heterogeneous knowledge and 

such position is associated with the boost in inventive capability (Burt 2004; Fleming et al. 2007; Paruchuri 

2009). 

Beyond the capacity to access heterogeneous knowledge, being a broker also provides strategic advantages 

resulting from the position in the collaboration network. First, because his or her collaboration network is 

composed of relatively non-redundant contacts (compared to others), an inventor in a brokering position is 

more likely to gain a reputation. Being known by different groups of inventors he or she can increase the 

visibility and the legitimacy of his or her ideas to promote his or her novel ideas further (Burt 1991, 2004; 

2017; Paruchuri and Awate 2017; Quintane and Carnabuci 2016). Second, as a broker, the inventor has 
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greater capacity to monitor and control information flows than others and therefore has more influence on 

the conception and the development of projects carried out in the network (Nerkar and Paruchuri 2005; 

Shah et al. 2018). 

However, a brokering position also generates significant coordination costs. A broker needs to devote 

significant attention to every disconnected collaborator. But because she has limited time and attention to 

dedicate to his or her co-authors, she is likely to incur additional costs in terms of continuously adapting to 

different working cultures and methods when collaborating with multiple groups of inventors (Burt 2017; 

McFadyen and Cannella 2017; Sorenson et al. 2006). Furthermore, having access to diverse pieces of 

knowledge may not bring effective sourcing of this knowledge. The ability to access the heterogeneous 

knowledge elements needs to be complemented by collaborators’ willingness to share their acquired 

knowledge. In addition, combining different, and sometimes distant, pieces of knowledge also requires a 

willingness of collaborators to share the risk as it is less likely to be accomplished (Mueller et al. 2011). 

Therefore, novelty requires high trust -both for high knowledge-sharing and high risk-sharing capacity with 

collaborators, which is hard to cultivate within sparse networks (Perry-Smith and Mannucci 2017). 

The great majority of prior literature assumes a direct association between network structure and access to 

diverse knowledge. In fact, brokerage is routinely used as a measure of access to heterogeneous pieces of 

knowledge (Burt 2017; Fleming et al. 2007). A notable exception is Rodan and Galunic (2004) who argue 

for separating structural measure of brokerage from knowledge heterogeneity, a well-known feature of 

network content (Moody 2004; Sammarra and Biggiero 2008). It is not hard to conceive disconnected sets 

of collaborators possessing similar knowledge content. It is also plausible that significant levels of 

knowledge heterogeneity remain in a fully connected network. Therefore, holding a high level of brokerage 

for an inventor does not automatically guarantee an increase in knowledge diversity. 
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This chapter aims at identifying knowledge heterogeneity conditions under which brokerage affects 

inventive performance in terms of novel combinations they created. As argued above, a brokering position 

provides structural advantages as well as disadvantages beyond those associated with knowledge arbitrage. 

On the one hand, being in a position that bridges disconnected groups of inventors would allow an inventor 

to control information flow and participate in projects which are likely to develop more novel ideas. On the 

other hand, being a part of close-knit collaborative click would allow for the emergence of more trusting, 

and risk-sharing environment, which is also crucial for developing novel ideas (Burt 2017; 2021). This 

highlights the fact that the novelty of inventor’s output could have distinct relationships with the multiple 

components of brokerage. A careful analysis of the mechanism requires the examination of the multiple 

components of brokerage by creating a distinction between its knowledge exploitation benefits and 

structural consequences. In this study, I analyze the moderating role of knowledge heterogeneity on the 

relation between being a broker and the novelty of French inventors’ output.  

The chapter is structured as follows. Section 2 provides an overview of the literature analyzing collaborative 

networks of inventors, showing the attention dedicated knowledge, and emphasizes the distinction between 

network structure (i.e., the level of brokerage) and network content (i.e., the level of knowledge 

heterogeneity) as key determinants of inventor’s creativity. Building on this distinction, I outline the 

advantages and disadvantages of inventor’s network characteristics, and I develop hypotheses regarding 

the way they contribute to the novelty of an inventor’s output. Section 3 describes the empirical setting, 

data sample and discusses the empirical methodology. Section 4 presents the results, and Section 5 

concludes.  
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 BROKERAGE and the NOVELTY of INVENTOR’S OUTPUT 

Collaborations embed the inventor in a collaborative network. The structure of interactions in this network 

can generate advantages and costs that are not exclusively related to the  level of knowledge heterogeneity 

the inventor can access (Hottenrott and Lopes-Bento 2016; Singh and Fleming 2010). The literature 

recognizes that the structure of the inventor’s collaborative network provides them with a strategic position 

and may contribute to increase his or her capacity to develop and implement novel ideas (Burt 2004; 

Fleming et al. 2007; Obstfeld 2005; Perry-Smith 2006).  

Prior research has essentially focused on brokerage as the main structural feature of an ego-network (Lee 

2010; Quintane and Carnabuci 2016). An inventor assumes the role of a broker when she connects disjoint 

collaborative communities. Brokerage is found to boost inventor’s performance for multiple reasons (Burt 

2017; Fleming et al. 2007; Rodan and Galunic 2004; Tortoriello et al. 2015).  

Brokerage as a source of knowledge arbitrage 

Following the recombinant search view, invention relies on the recombination of pre-existing knowledge 

elements (Fleming, 2001; Fleming and Sorenson 2001, 2004). Hence, an inventor’s creativity relies on his 

or her capacity to access  different knowledge elements (Sosa 2011) as this increases the potential of 

identifying promising new (re)combinations (McFadyen and Cannella 2017).  

An inventor can access heterogeneous knowledge in two ways. The inventor can accumulate such 

knowledge through his or her own previous experience, or she can access different knowledge elements 

through his or her collaborators (Conti et al. 2014; Gonzalez-Brambila et al. 2013; Taylor and Greve 2006). 

Literature has demonstrated that interactions with disconnected collaborators are assumed to be an indicator 

of the access to more heterogeneous knowledge, diverse fields of expertise and varied points of view (Brass 

and Burkhardt 1993; Burt 1991; Hargadon and Sutton 1997; Zaheer and Soda 2009). Moreover, a broker is 
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in the position to control information flows in their surroundings and has the capacity to exploit available 

knowledge to their own benefit (Burt 2004; Lee 2010). In certain settings, brokerage can also provide higher 

legitimacy and prestige which could help the inventor to further promote his or her ideas (Burt 2017; Rodan 

and Galunic 2004). 

Brokerage as a source of costs 

In addition to knowledge arbitrage advantages of brokerage, such a key position could also be associated 

with distinct costs and may negatively influence the novelty generation. First, a brokering position generates 

significant coordination costs because a broker needs to devote significant attention to maintain the 

connections among disconnected collaborators. Moreover, a broker is expected to act like a translator 

between collaborators from different working cultures and adapt to different methods when collaborating 

with inventors from multiple clicks (Burt 2017; Cannella and McFadyen 2016; Sorenson et al. 2006). 

Second, the lack of interactions among the inventor’s collaborators prevents the emergence of a shared 

culture and of a trusting environment. As a result,  the lack of willingness of some contributors to freely 

share their knowledge could hinder the broker’s inventive capacity (Coleman 1988; Perry-Smith and 

Mannucci 2017; Reagans and McEvily 2003; Uzzi and Spiro 2005). Then, the first thing to suspect is 

whether a broker is exposed to heterogeneous knowledge. 

Importantly, the large majority of previous research makes no distinction between structural position of a 

broker and his or her access to more heterogeneous knowledge. However, it is worth noticing that while 

brokerage is a structural characteristic, knowledge heterogeneity is a feature of the intellectual content 

residing within inventor’s ego-network. The important contribution by Rodan and Galunic (2004), albeit in 

a different setting, has convincingly demonstrated that a brokering position does not guarantee the 

heterogeneity of knowledge available to the individual. Although their study focuses on the managerial 

performances, this highlights the importance of using alternate measure of knowledge heterogeneity in 
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order to investigate the role of purely structural influence of brokerage. This disentanglement will allow for 

better understanding of determinants of inventor’s performance in terms of the novelty of his or her output. 

 Hypotheses 

In the following sections, I put forward three hypotheses that are later tested using extensive dataset 

collecting information on all French inventors. Based on the literature reviewed in the previous sections, if 

novelty emerges from the assemblage of new combinations, then I expect that higher levels of brokerage 

will improve inventor’s capacity to create novel combinations. Brokers maintain an advantage as they are 

strategically positioned to be aware of new and previously uncombined ideas earlier than others (Burt 2004; 

Fleming et al. 2007). In contrast, positioning within densely connected networks whose members 

collaborate with one another will expose an inventor to higher rate of recycling of ideas. Moreover, closed 

collaboration networks increase the possibility of a shared vision and groupthink that may lead to fewer 

novel ideas (Thomas-Hunt et al. 2003). If a broker is more likely to receive non-redundant knowledge that 

enhances the inventor's creativity, the inventor who brokers connections between his or her collaborators 

should create more novel ideas. Consequently, the first hypothesis I put forward is: 

Hypothesis 1: An inventor is more likely to create novel combinations if he or she brokers relations between 

otherwise disconnected collaborators.  

I expect that the exposure to knowledge heterogeneity through non-redundant collaborators lets brokers 

take advantage at best of their core positioning within their ego networks. This happens for multiple reasons. 

First, an inventor in brokering position by definition, is like the core member of a sparse collaboration 

network. Therefore, a broker has greater capacity to monitor and control information flows than other 

inventors. When keeping the gatekeeper position within a sparse network is combined with a high level of 

knowledge heterogeneity within the same network increases the chances of being aware of new 

combinations. Finally, a brokerage position is associated with a certain prestige, which gives the inventor 
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greater visibility and recognition by his or her pairs. As a result, his or her inventions are more likely to be 

accepted and implemented than those of non-brokers. Consequently, the second hypothesis I put forward 

is: 

Hypothesis 2: If an inventor’s connections bring heterogeneous knowledge to the collaboration network, 

being a broker is positively associated with the novelty of his or her combinations. 

When it comes to networks that are homogenous in knowledge, the picture is different. It is important to 

notice that the information arbitrage depends on the availability of heterogeneous knowledge. Therefore, 

the benefits of being a broker within a sparse network is mainly associated with increased combinatory 

capabilities attached to the non-redundancy of his or her collaborators. Moreover, coordination costs are 

required to hold the brokerage position and remain collaborations among the disconnected sets of inventors. 

Hence, all the benefits provided his or her by a brokerage position described above will not hold when the 

low level of knowledge heterogeneity of the ego-network is considered.  

In addition, the loosely connected structure of broker’s collaborative network may significantly reduce his 

or her capacity to participate in novel projects (Perry-Smith and Mannucci 2017). Disconnectedness among 

a broker’s collaborators and the associated low level of interactions reduces the likelihood of a common 

language and a shared vision (Fleming et al. 2007).Lower intensity of interactions also prevents the 

emergence of trusting environment and reduces the propensity to engage in risky projects (Burt 2017). 

Therefore, a broker has no motivation to jump through hoops to be part of novel patents. 

Conversely, I expect that the likelihood to engage in novel and risky projects is associated with the level of 

density – closure – of a collaborative network. An inventor in highly connected networks has higher chances 

to have constructive feedback from their colleagues to improve their ideas. Densely connected collaboration 

networks decrease the likelihood of poor outcomes thanks to within-team peer review and filtering (Singh 

and Fleming 2010). An inventor within closely connected network have trust, a common language and 
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shared vision within his or her network will share risks with his or her collaborators (Obstfeld 2005; Uzzi 

and Spiro 2005). Hence, for a given level of risk, inventors within a closed network enjoy a high likelihood 

of coming up with more complex ideas even if they need to incorporate technologies out of their expertise. 

As a result, if a broker’s collaboration network exhibit low levels of knowledge heterogeneity, and thus low 

opportunities to exploit its position, I expect low level of novelty of his or her inventions. In other words, I 

expect that an inventor is more likely to create novel combinations within a cohesive – knowledge redundant 

collaborative network. Consequently, the last hypothesis I put forward is: 

Hypothesis 3: If an inventor’s connections bring homogenous knowledge to the collaboration network, 

being a broker is negatively associated with the novelty of his or her combinations. 
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METHODOLOGY 

 Setting and data 

To test my hypotheses about the role of brokerage on the novelty of inventor’s output an empirical study 

of French inventors is conducted. I focus on a single inventor embedded in a collaborative network for a 

performance year. The unit of analysis is again, an inventor-year pair. In order to construct variables, ego 

networks are defined as collaborative networks containing focal inventor’s collaborators and their 

collaborator’s collaborators. These sub-networks are referred to as ego-networks of a focal inventor.  

 The model and measures 

Dependent variable 

Novelty of inventor’s output 

According to previous studies, patents with new combinations reflects the extent to which an invention is 

novel (Arts and Fleming 2018; Fleming et al. 2007; Verhoeven et al. 2016). Consistent with the existing 

literature, the study uses the number of new subclass pairs within each of a focal inventor’s patents as a 

measure of novelty of inventor’s output. I first identified the first appearance of a previously uncombined 

pair of subclasses in each patent. To do so, each pairwise combination of subclasses is compared with all 

pairwise combinations of last five years’ patents in EPO database. I then summed this indicator measure 

for all patents of the focal inventor during the performance year. I prefer to assign the combinations as novel 

by comparing them to the last 5-years’ prior-art as to strength my statistical model21.  

 

21 As robustness check, I assigned the combinations as new, compared to last 10 years’ patents and 

compared to all previous patents in EPO database. I have also used novel patent count measure as a 
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The EPO database has approximately 650 subclasses defined over time. 640 out of these 650 subclasses 

have already been seen in the database before 1995 that is the left limit of analyzed performance years. 

Therefore, although I take new combinations as a measure of novelty, I also check the patents with a single 

new technology despite they are not a combination. My descriptive analysis showed that more than 50 

million patents are available in the EPO database from 1995 to 2010. 32 patents out of them have included 

new technological subclass and only 3 of them had 1 technological subclass. In the end, I am confident 

about the performance of my measurement which relies on the number of new combinations.  

Independent variables 

In this study, the independent variables are network-based variables. I have two independent variables. The 

first one is knowledge heterogeneity of the ego-network with two alternative measures of it. The second 

one is brokerage as the structural measure of the ego-network. 

Brokerage 

Previous studies in invention literature use the density of ego-network as an indicator of the level of 

brokerage (Fleming et al. 2007; Podolny and Stuart 1995; Rodan and Galunic 2004). However, I argue that 

such a simplistic measure does not sufficiently highlight the structural characteristics of brokerage. Brokers 

are inventors at the cross-roads of knowledge streams and this needs to be reflected in the measurement. In 

order to take this important feature into account I borrow the measure from the structural hole literature 

 

robustness check by assigning the patents who at least have one new combination as novel. Alternative 

measurement and alternative windows provide no qualitative changes in results. I prefer abstaining from 

relying on alternative measures considering statistical convergence performance of the model. 
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(Ahuja 2000; Borgatti 1997; Burt 1995). Following these authors, I define the measure of brokerage as it is 

used in the previous chapter (see pg. 54).  

Knowledge heterogeneity 

The second explanatory variable is knowledge heterogeneity. This variable captures the level of knowledge 

heterogeneity the focal inventor has access to within his or her ego-network. I used two alternative measures 

to capture the variable. 

Naturally, collaborators of an inventor—that is his or her co-authors--are more important than remote 

collaborators. The immediate neighborhood of collaborators is commonly defined as a set of inventors from 

whom the focal inventor can source knowledge, and is referred to as his or her ego-network  (Borgatti 1997; 

Burt 1995). As the independent variable wants to capture the knowledge benefits, ego-network includes the 

focal inventor, their immediate collaborators, and their collaborators’ collaborators22.  

The first version of the variable is a simple one to capture the knowledge diversity of the focal inventor’s 

ego-network. This measure considers all patents produced by ego-network members including the focal 

inventor during the network period (i.e., the last five years preceding the performing year). In order to 

quantify this variable, I used the one’s complement of the Herfindahl-Hirschman Index23. The index of 

network i is computed as  

ℎℎ𝑖! = 	∑ s!$/	
$   , 

 

22 This is inspired and supported by the second chapter’s results. 

23 For more details on Herfindahl-Hirschman Index, see Appendix 2.A.  
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where s is technology field t’s share in the patents produced by the network members. To create the share 

of technology j, I use 4-digit technological classes of each patent. 

Imagine an ego network where 5 patents are produced uses only one 4-digit technology. Then the illustrated 

network is fully concentrated on one technological field. Then the knowledge heterogeneity hhi will be equal 

to 0 = 1-(5/5)2.  An alternative example is an ego network with, again, 5 patents but use Technology 1 

(Tec1) and Technology 2 (Tec2), respectively in 5 and 3 of these 5 patents. In this case, the knowledge 

heterogeneity hhi of the illustrated ego network would be 0.47 = 1-((5/8)2 + (3/8)2). In the second illustrated 

network, there are more dominated technologies, and it puts the focal inventor in a more knowledge-diverse 

environment.   

Although this is a valid diversity measurement, the variable captures the heterogeneity provided by 

collaborators imperfectly. This is due to the fact that the first measure provides the heterogeneity level of 

the ego network's knowledge portfolio. It considers all patents produced by an ego network and does not 

distinguish the focal inventor’s and collaborators’ knowledge. Therefore, I can only claim that lesser 

concentration means more heterogenous knowledge available within the ego network. However, I cannot 

claim that knowledge heterogeneity comes through collaborations. As the brokerage is associated with 

having collaborators who hold different expertise, I went for an alternative yet more specific measure.  

The alternative measure of the variable let us distinguish the collaborators’ unique knowledge and captures 

the level of knowledge heterogeneity provided to the focal inventor from the other members of his or her 

ego-network. In order to quantify the heterogeneity to which an inventor has access, observing 

discrepancies between knowledge bases of an inventor and single collaborator (and then aggregating over 

all dyadic partnerships) is not sufficient. I need to consider differences across multiple collaborators of the 

focal inventor. In order to achieve this, I extend the measure of Rodan and Galunic (2004) to include in 

consideration the knowledge flows from focal inventors’ collaborators’ collaborators. This is important as 
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previous literature has demonstrated that remote collaborators can generate knowledge spillover benefits 

for the focal inventor (Ahuja 2000; Gulati and Gargiulo 1999; Zaheer and Bell 2005). Even though such 

spillovers could potentially extend to remote indirect connections, their benefits erode exponentially with 

distance (Ahuja 2000). Because the study investigates the role of brokerage that considers inventors with a 

maximum of two path lengths, this measurement also is constructed by considering inventors with a 

maximum of two path length.  

To create the measurement, I first create the knowledge vectors of each member of a given ego-network. I 

use the 4-digit technological classes of each inventors’ patents during the network period (i.e., the last five 

years preceding the performing year). Next, I measure the cosine similarity between each dyad in ego-

network. Then, based on the angle between a pair of vectors, I create a knowledge distance matrix including 

all ego-network members (the focal inventor, his or her collaborators and collaborators’ collaborators). 

These matrices let us capture the level of knowledge heterogeneity in an ego-network. In order to transform 

the information in such a matrix into a single measure I compute  

ℎ! = 	∑ 0!'∗λ∗2'
3∗45!'

3
67'  , 

where i denotes the focal inventor, j runs over all other scientists in i’s ego-network, N is the size of the 

ego-network, 𝑈6 is the eigenvector centrality of inventor j in this ego-network, 𝑑!6 is the knowledge distance 

between inventors i and j, λ is the highest eigenvalue of the matrix, and 𝑃𝐿!6 denotes the path length between 

inventors i and j. The measurement is an extension of the original measure Addition of the latter element 

(𝑃𝐿!6) to the original measure created by Rodan and Galunic (2004). The extension shows up with the 

addition of the 𝑃𝐿!6 part. This is inspired by the previous chapter’s results and is found necessary to take 

into account the facility of knowledge transfer between collaborators that are collaborating directly 
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compared to ones who have not co-signed patents over last five years24. The consideration of the knowledge 

transfer facilities is another plus of the measurement compared to Herfindahl-Hirschman Index based 

knowledge heterogeneity measurement which does not take this into account.  

The final step in calculating knowledge heterogeneity is to standardize hi by dividing the maximum possible 

knowledge heterogeneity level in a network of given configuration. This is necessary for meaningful 

interpretation of estimation results.  

Control variables 

In order to obtain meaningful results, I control for a number of characteristics in my empirical model. In 

my setup, it is important to control for variables that provide resource-sharing advantages, knowledge 

benefits or potential level of knowledge heterogeneity (Perry-Smith and Mannucci 2017). I have two sets 

of control variables. The first set relates to characteristics of collaboration structure and intensity. The 

second relates to individual research path and performance.  

The first set of controls consists of six variables. I use the number of focal inventor’s collaborators (the 

number of direct ties) and the number of inventors indirectly connected to the focal inventor who are the 

members of focal inventor’s ego-network (the number of indirect ties) in order to control for inventor’s 

ego-network size. This is important as I need to control for the possibility that the knowledge heterogeneity 

or deconcentration effect might be simply a function of the network size. In order to control for the strength 

of focal inventor’s connectedness to the members of their ego-network, I use the average strength of direct 

 

24 Although the addition of the PLij is necessary according to the second chapter’s conclusion, the results 

of the previous chapter is valid for more distant inventors. Even so, I have double checked for the robustness 

of the results without applying no distance weight for the measurement, and the excluding this part provide 

no qualitative changes in results.  
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and indirect ties.25 In order to control for the team composition within inventor’s patent portfolio I use the 

indicators three variables. Single firm is the percentage of the focal inventor’s patents that all co-authors 

come from the same company during the period of five years preceding performance year. Single Country 

is the percentage of the focal inventor’s patents that all co-authors live in the same country during the period 

of five years preceding performance year. And first inventor is the share of the patents that the focal inventor 

was listed first, again during the period of five years preceding performance year. 

The second set of controls includes three variables. Here I use the measure of experience, which counts the 

number of years between performance year and the first year the focal inventor appears on one of the patents 

in EPO database. I also control the level of productivity of an inventor by including the number of patents 

they have applied for over the last 10 years preceding the performance year (previous patent count). The 

very last control variable I use is patent count during the performance year (current patent count). 

Estimation and econometric issues 

The first thing to notice is that I have a panel structure in my dataset. I can observe patenting behavior of 

inventors over an extended time period. Therefore, I require an appropriate panel estimator. The descriptive 

analysis shows that the dependent variable has over dispersed and inflated distribution. Considering the 

specific features of the data and knowing that the dependent variable takes only whole number values, using 

a linear model admittedly would create inefficient, inconsistent, and biased coefficients. On the contrary, a 

(panel) Negative Binomial estimator allows controlling for overdispersion —where the variance is 

significantly greater than the mean— and inflation which the data exhibits. Being aware of the necessity of 

a likelihood ratio test to strengthen the estimator’s efficiency, I checked for the differences between the 

 

25 The tie strength measurements are constructed as in the second chapter. For technical details on 

measurement of variables controlling strength of ties, see pg. 53. 
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coefficients of a random effect modal and fixed-effect modal. Considering the massive number of 

observations, the test pointed to the necessity for the use of a random effect modal as expected. 

Before proceeding to estimation, I need to carefully consider the appropriateness of my measures in 

boundary cases. In this particular case, consider the brokerage variable. Although this variable does the job 

for most cases, it is not defined for inventors who do not have any collaborators. Similarly, it takes the 

maximum value of 1 for inventors who have only one collaborator, which is misleading as these inventors 

cannot broker an ego-network. Due to these anomalies, following the previous literature (Fleming et al., 

2007), I retain for the analysis only cases where focal inventor has at least two collaborators. Additionally, 

inventors who have no patenting activity in a given year are also excluded from the analysis. Their presence 

in the dataset would create a bias for in my analysis as they would have no possibility to create new 

combinations. 

This leaves us with 32 092 unique inventors and 80 573 inventor-year combinations that I use to obtain 

random-effects Negative Binomial estimates (with added year fixed-effects and technology residuals as a 

replacement of technology fixed-effects26) of my empirical models. Appendix 2.B provides summary 

 

26 Despite I am aware of the necessities and advantages of adding technological fixed effects, I couldn’t 

manage to include them in the models as they are. This is due to the fact that the addition of more than 600 

4-digit technologies created computational problems, therefore, the software used for regression analyses 

(Stata MP-17) could not achieve convergence. I observe the same non-convergence problem for 3-digit and 

2-digit technology fixed effects. Therefore, I simply ran a base model that includes only technology fixed 

effects and create a new variable with the residuals that came out from the model. The new residual variable 

was included in our main model as a replacement for technology fixed effects. This lets us prevent any bias 

that may occur in our results without technology-fixed effects. Because the residuals could not be calculated 

for 4-digit and 3-digit versions for the same reasons of non-convergence the models include the 2-digit 

technology residuals that provide convergence. Although this choice is done to strengthen our statistical 

model, I did several robustness checks. To do so, I limited the number of iterations for the calculations of 
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statistics and pairwise correlations of variables across all retained observations. These statistics indicate 

some multicollinearity between some of the structural characteristics (i.e., the number of direct and 

indirectly connected inventors in an ego-network) and knowledge heterogeneity. This is an expected 

correlation considering the literature discussed above. The same applies to the relationship between the 

number of direct and indirect ties, as acquiring an indirect connection is only possible through direct 

connections.

 

technological residuals at 3- and 4-digit level classes. Then, used the residuals for final estimations. 

Alternative approaches provide no qualitative changes in results. 
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RESULTS and DISCUSSION 

In order to build the analysis, I estimate four distinct models for each of knowledge heterogeneity variables: 

knowledge heterogeneity (matrix-based, from now on this will not be specified again) and knowledge 

heterogeneity hhi-based (Herfindahl-Hirschman Index(hhi)-based). I begin with Model 1, which highlights the 

link between brokerage and the novelty of the inventor’s output. This model includes brokerage and control 

variables, as well as technology residual variables and year-fixed effects. At the next stage, Model 2a and 

2b include a stand-alone knowledge heterogeneity term to the Model 1. Finally, Model 3a and 3b are 

constructed to examine the moderating role of knowledge heterogeneity access. Here I add the interaction 

term between brokerage and knowledge heterogeneity, to the setup from Model 2a and 2b. These extended 

models allow us to evaluate the hypotheses put forward in section 2.  

Table 2 reports the regression coefficient estimates for variables of interest across all models27. The results 

from the model b’s that include the comprehensive knowledge heterogeneity measure, are considered 

mainly to test the hypothesis. However, results remain similar for model a’s that include the simpler 

heterogeneity measurement based on Herfindahl-Hirschman Index. 

Results from Model 3 estimations allow for the study of the moderating effect of the knowledge 

heterogeneity. For the sake of interpretation Figure 3 presents predictive margins of the dependent variable 

for low and high levels of knowledge heterogeneity. I define the low level of heterogeneity as the level at 

the 5th percentile of the variable distribution in my data. Similarly, I define the high level of it at the 95th 

percentile of the same distribution. 

 

27 For full regression outputs please see Table 10 and Table 11 in Appendix 2.C. 
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Results from Table 2 provide strong evidence for all of the hypotheses put forward in my chapter. Model 1 

suggests strong support for the first hypothesis, that having disconnected contacts contributes to the novelty 

of inventor’s output. Although I do not test for this, in Model 2a and 2b, first thing to notice is that my 

results support that an access to heterogeneous knowledge – for both measures– increases the inventor’s 

likelihood to create novel combinations. These findings consistent with the previous literature (Burt 2004; 

Fleming et al. 2007). 

The positive effect of brokerage remains, in Table 2 - Model 2a. Given that I have removed knowledge 

heterogeneity co-notation from the structural brokerage measure, this result indicates advantages of 

brokerage beyond those related to knowledge heterogeneity according to Model 2a. However, in Model 2b 

which includes the more comprehensive knowledge heterogeneity measure, the impact of brokerage 

diminishes and falls from significance. Moreover, the positive effect of brokage shifts to the negative in 

both of the Model 3s and do provide similar results for the two alternative heterogeneity measure. The 

difference of the results in 2nd Models while becoming similar in the 3rd models, supports my concerns 

about the fact that hhi-based heterogeneity measurement limitedly captures the knowledge heterogeneity 

exposure from a perspective of brokerage advantages. This is why, I observe insignificance of the brokerage 

in the model 2b while it remains positively significant in model 2a. 

Finally, in Model 3s, the interaction variables are positive and significant, confirming the second hypothesis 

that an inventor within a sparse network and having access to the knowledge heterogeneity performs better 

than others in novelty. Before discussing results with respect to the second hypothesis, it is important to 

notice, the results indicate the distinct influence of brokerage and knowledge heterogeneity access on the 

novelty of inventor’s output in addition to the moderating effect of them. Once the interaction variables are 

included, the stand-alone brokerage variable become negative and significant. This suggests strong support 

for the last hypothesis that an inventor is less likely to create novel combinations within a sparse 

collaborative network unless his or her collaborators bring heterogeneous knowledge to the collaboration 
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network. The negative coefficient of stand-alone brokerage variable indicates the commensal relation of 

being a broker with knowledge heterogeneity access. 

Prior research on the impact of brokerage on inventive activity has been mixed. Studies arguing that 

brokerage should have positive relation with generated novelty usually equate the structural measure of 

brokerage with increased combinatory capabilities which, is a concept related to the heterogeneous content 

of the collaborations (Burt 2004; Nerkar and Paruchuri 2005). Being a broker provide advantages coming 

from control over the knowledge flow, as well as having benefits associated with higher legitimacy and 

prestige that increases the implementation power of inventors (Burt 2017;  Lee 2010; Rodan and Galunic 

2004). As an intermediary study, (Lee 2010), shows the endogenous relation between increased 

performance and being a broker. 

Following contributions, however, claimed the being part of a closed network rather than a sparse one is 

associated with the higher innovation performance. They point to the potential increase in coordination 

costs due to necessity to manage cognitively distant collaborators. It also refers to the lack of the shared 

work-culture emergence across disconnected research groups that brokers usually belong to. On the 

contrary, a closed network puts inventors in an environment where individuals do not be afraid to seem 

ridiculous and share their ideas with others more freely ( Fleming et al. 2007; Obstfeld 2005; Perry-Smith 

& Mannucci 2017; Uzzi and Spiro 2005). Them having a common language and shared vision make it easy 

to communicate and to solve complex problems (Burt 2017).   

Our results provide explanations for the two community by clarifying the micro mechanism behind the 

relationship between brokerage and novelty. I contribute to the brokerage literature and to the ongoing 

discussion about the influence of brokerage by showing that its effects are moderated by the access to the 

knowledge heterogeneity. According to my results, although their joint effect on novelty of inventor’s 
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output is positive, the absence of knowledge heterogeneity does dramatically change the brokerage’s 

influence on novelty. 

Table 2. Results from panel negative binomial estimation: novelty of inventor’s output 

In line with the first literature, brokerage increases the novelty of inventor’s output, yet it depends on the 

availability of diverse knowledge. Opportunities generated by being a broker appear only after a level of 

knowledge heterogeneity28. As brokers have control over the knowledge flow, between the set of inventors 

that hold diverse technological expertise, they are more likely to be aware of potential new combinations. 

Moreover, they take the advantage of their legitimate positioning to push their ideas further easier than 

 

28 Calculations show that the threshold for the level of knowledge heterogeneity to take the advantage of 

being a broker is approximately 35% which counts up for almost 63% of the observations. 

VARIABLES Novelty of Inventor’s Output 

  Model 1 Model 2a Model 2b Model 3a Model 3b 

Brokerage 0.569*** 0.442** -0.106 -2.529*** -0.926*** 
 (0.174) (0.173) (0.179) (0.815) (0.304) 
Knowledge Heterogeneity hhi-based  2.283***  0.356  
  (0.219)  (0.536)  
Knowledge Heterogeneity    2.909***  1.481*** 

   (0.192)  (0.470) 
Brokerage # Know. Het. hhi-based    3.829***  

    (1.023)  
Brokerage # Knowledge Heterogeneity     2.609*** 
     (0.782) 

Number of Observations 80 573 80 573 80 573 80 573 80 573 

Number of Inventors 32 092 32 092 32 092 32 092 32 092 
Notes: Dependent variables are inversely weighted with the number of co-inventors. Standard errors in 
parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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others. Therefore, a combination of the increased combinatory skills and their implementation power 

increases their performance in terms of the novelty of their output.  

In line with the latter interpretation, I see the brokers handicapped by their role which increases the 

coordination costs. A knowledge homogenous network is a place where there are no chances to take the 

advantage of control over the knowledge flow as everybody holds redundant knowledge yet still requires 

time and attention investments. Moreover, a sparse network prevents the emergence of a common language, 

a shared vision, and most importantly trust environment. However, they are crucial for developing novel 

technologies that are riskier and more complex projects (Fleming 2001; Mueller et al. 2011). Therefore, 

low brokerage individuals find themselves embedded in a tenacious collaborative network that motivates 

them to jump into risky projects and develop more novel combinations (compared to brokers). And thus, 

they start realizing positive returns of non-sparse networks where their common understanding and shared 

vision helps for solving complex problems even if they do not have any expertise of it so far.  

Results presented in this section are based on panel Negative Binomial estimator, which, I believe, is the 

most suited procedure for my data set. A robustness check was prompted by the fact that my experience 

measure applied to EPO dataset generates a small number of extreme values. I have inventors who record 

107 years of inventive activities, which is clearly impossible. Given that I do not have access to a complete 

set of inventor names and have to operate using inventor ID numbers, I cannot fix this anomaly. However, 

as a sensitivity check I have eliminated all observations recording higher than 40 years of inventive 

experience from the dataset (this constituted a breaking point in the frequency distribution of the variable) 

and have re-estimated my models. Results are qualitatively unaltered29. 

 

29 Results, presented in Table 12 and Table 13 in Appendix 2.C 
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Note: Low brokerage is calculated as the level at the 5th percentile of brokerage distribution, while high brokerage is 

calculated at the 95th percentile of the same distribution. Confidence interval corresponds to 95% confidence level.

Figure 3 Predictive margins: novelty of inventor’s output for two alternative knowledge measurement 

Panel A: the role of knowledge heterogeneity 

Panel B: the role of knowledge heterogeneity hhi-based 
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CONCLUSION 

In this chapter, I have analyzed how brokerage influences the novelty of an inventor’s output. More 

specifically, the study investigates under which circumstances being a broker is beneficial or detrimental 

for the inventor’s creativity by investigating the micro mechanisms behind the relationship. The 

contribution of my chapter hinges on the separation of brokerage, which constitutes a measure of inventor’s 

positioning within a collaborative network, and knowledge heterogeneity access, which is a measure 

characterizing the knowledge content available in the focal inventor’s surroundings. Naturally, this 

delineation represents a necessary condition for separating the effects of knowledge content and network 

positioning of an inventor towards their inventive performance. Results demonstrate that being a broker 

does not guarantee knowledge heterogeneity access. Therefore, although there is literature assuming 

heterogeneity is a byproduct of being a broker, it is important to make a distinction between them to better 

understand the influence of brokerage on inventor’s performance. 

Our results indicate that both knowledge heterogeneity and brokerage have distinct paths in affecting the 

creativity of an inventor. In addition, brokerage and knowledge heterogeneity moderate each other’s 

influence. The findings imply that to benefit from the structure of the ego-network, inventors may need 

both redundancy and non-redundancy of knowledge depending on the connectedness of it. Looking at only 

the dichotomy between a sparse (where a broker appears) and a closed structure is not enough to explain 

its effects on the novelty. By bringing the distinction of collaborators’ knowledge heterogeneity into the 

brokerage versus closure debate, I make clear that the maximum creativity of a broker can stem from the 

dissimilarity of knowledge within his or her network with low levels of structural redundancy. Based on 

the result of the study, informational advantages associated with brokerage may be maximized when 

knowledge heterogeneity coexist because the former aids interpretation and the latter safeguards 

combinatory skills.  
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More importantly, I demonstrate that the direct effect of brokerage on the novelty of an inventor’s output 

and its effect contingent on the knowledge heterogeneity access go in opposite directions. An inventor may 

benefit from knowledge heterogeneity at its best only if he is positioned as a gatekeeper within a sparse 

network. Brokerage always comes with costs that may cause a decrease in performance unless they are 

compensated by knowledge arbitrage. This is in line with the interpretation that brokering advantages only 

come from exploiting opportunities presented by knowledge heterogeneity. 

A noteworthy feature of my findings is the fact that in existence of knowledge redundancy, an inventor 

within a closed network does seem to be writing significantly more novel patents. Closure provides 

advantages regardless of the content of the collaborations. This should be explained uniquely by the 

structural features of the inventor’s collaboration network. First, others do not pay coordination costs as a 

broker has to pay. Second, it is plausible to expect that developing novel technologies requires the 

originality, and thus riskier ideas in the collaboration network. A closed network that provides a trusting 

environment shared vision, and common language among collaborators, helps others to overcome more 

complex ideas compare to a broker. Inventors may benefit from a structural redundancy within their closed 

networks only if they can rely on joint third parties whose interpretation, perspective, and language create 

redundancy yet enable be in agreement to solve more complex problems compare to brokers.  

Now, one might ask why the benefits of closed networks diminish when knowledge heterogeneity shows 

up. It is true that the existence of non-redundant knowledge surely positively affects the novelty as such 

knowledge constellation increases possibilities for knowledge recombination. Moreover, exploitation of 

collaborators’ potential depends on their willingness to share these ideas and the risks associated with 

bringing them to fruition. Then, knowing that the willingness is higher in closed networks, it is quite normal 

to expect higher creativity from an inventor.  
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However, inventors within closed networks find themselves within more flat, egalitarian environments 

where there is no structural hierarchy. Therefore, they do not have such legitimate position to push their 

ideas further as brokers. In addition to this, a broker is the one who knows how to communicate with 

cognitively distant groups, how to control heterogeneous knowledge and use it for his or her own benefit. 

On the contrary, inventors within closed networks are less likely to hold such cognitive capabilities. As a 

result, others do not take advantage of knowledge heterogeneity as much as a broker does and they perform 

better than a broker only within a network that has more specialized content.
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FUTURE IMPLICATIONS 

Results in this chapter beg a question of how inventors navigate their collaborations. This is important as 

inventors can influence (to a certain level) their network positioning, as well as the heterogeneity of 

knowledge available to them through strategically forming co-inventor relationships. If inventors can affect 

these two factors separately, they gain larger flexibility in meeting their professional goals. Despite this, 

there are still those who hold brokerage positions within knowledge redundant networks.  

I suspect that my contribution appears as the study focuses on the novelty of inventor’s output. This may 

not be the case for another facet of inventive performance such as the quantity of the inventors’ output as 

well as the usefulness of those inventions. Inventors may have different incentives depending on where 

they work or where they are in their career path. Therefore, prior research relies on different definitions of 

inventive performance. In addition, the relationship between the novelty of researcher’s invention and the 

usefulness of generated knowledge is not clear. Some researchers assume that higher novelty implies higher 

usefulness (Singh and Fleming 2010; Wuchty et al. 2007). Other empirical research, however, shows no 

relationship between the originality of an idea and its use (Dahlin and Behrens 2005; Nemet and Johnson 

2012).  I believe that brokers may not benefit from their position in terms of the novelty of their output but 

for the impact or reuse of their inventions. This motivates us to get the bottom of the question how and to 

what extend being a broker is beneficial for the impact of his or her inventions and even further does being 

a broker helps inventors to create an impact with their ideas regardless the novelty of them.  

In the light of this additional study, considering that both novelty and impact provide different but important 

information about the effects of a brokerage position on inventive capacity, I suggest keeping an agnostic 

viewpoint to analyze whether and according to which conditions brokerage has a positive or negative 

influence on the capacity of an inventor to produce novel or useful inventions. If it is conceivable that stand-

alone brokerage is positively (unlike novelty) associated with its reuse, the moderating role of knowledge 
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heterogeneity may exhibit different results. Even further, this will make clearer why brokers are willing to 

pay such coordination costs while creating less novelty compared to non-brokers.  

The results of the further analysis may also let us shed light on how to describe a typical inventor’s career 

journey, further, the relationship between performance and brokerage.   
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COLLABORATION NETWORKS AND THE REUSE OF INVENTORS’ OUTPUT: THE 

INTERPLAY BETWEEN COGNITIVE PROXIMITY AND BROKERAGE 

ABSTRACT 

This chapter investigates the relationship between brokerage and reuse of inventor’s output. The objective 

of this chapter is twofold. First, it aims to identify differences in the influence of brokerage on the reuse of 

inventor’s output by localized network members and by whole network members. Second, it investigates 

the potential moderating effect of cognitive proximity in this relationship within the local network setup. 

To do so, structural advantages brought by brokerage and its accompanying representation of collaborating 

with cognitively distant inventors are decoupled and their effects on the reuse of broker’s ideas are 

observed. I use panel data of French inventors and examine the within-subject variation over time. The 

results demonstrate that being a broker is positively associated with the reuse of the inventor’s ideas by 

local network members.  Results suggest that being embedded in a network in which members of the 

network are cognitively proximate generates the conditions conducive to collaborators' understanding and 

reuse of the broker’s ideas. Pinning down the mechanism through how collaboration network structure 

affects the reuse of inventor’s ideas without sacrificing their novelty has important implications. This will 

inform inventors on how to optimize or adapt their collaborative networks to meet the expectations, as well 

as help decision makers to design incentive schemes which would maximize organizational performance. 
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INTRODUCTION 

Even though collaborations are generally thought to increase innovation performance (Burt 2004; 2005; 

Lee et al. 2015; McFadyen and Cannella 2004; Obstfeld 2005; Reagans and McEvily 2003; Rodan and 

Galunic 2004), there is still controversy over the optimal structure of those collaborations. In particular, the 

relative benefits of brokerage between otherwise disconnected inventors (Granovetter 1973) and closure 

where most collaborators have direct connections to each of the others (Coleman 1988) has been at the 

center of ongoing debate. Most notably, collaboration network structures characterized by brokerage or 

closure have been shown that they have independent and conditional effects on innovation output (Burt 

2017; Carnabuci and Diószegi 2015; Fleming et al. 2007; Quintane and Carnabuci 2016; Tortoriello et al. 

2015).  

Innovation scholars pointed out, creation of an idea does not guarantee its success which becomes possible 

with the internal support, alignment and coordinated action. Here, it is important to notice that the creation 

of an idea and its success have different determinants (Carnabuci and Diószegi 2015; Carnabuci and Operti 

2013). The latter requires the acceptance and reuse of the generated ideas by others (Perry-Smith and 

Mannucci, 2017).  

Aligned with the requirements of a successful innovation outcome, opponents of brokered networks (i.e., 

proponents of closed networks) has emphasized the importance of a shared vision and understanding for an 

effective increase in the reuse. Inventors in closed networks are found to be more likely to be fully 

understood by others and to sell their ideas (Perry-Smith and Mannucci 2017). On the contrary, inventors 

who collaborate with a broker are assumed to be more likely to differ in their fields and prior knowledge 

(Fleming et al. 2007; Obstfeld 2005); therefore, they are assumed to have harder time appreciating and 

understanding of the broker’s ideas at least in part. Members of a brokered network are assumed to have 
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less cognitive proximity which can be defined as the similarities in the way inventors interpret, perceive, 

and evaluate generated ideas (Boschma 2005; Nooteboom 2000).  

The handicap of the ongoing debate on brokered versus closed networks is taking structural characteristics 

as the leading indicator of cognitive proximity or social integration. However, exploring the effects of 

collaboration networks by solely considering the structure is not enough to bring the ongoing debate 

between the proponents of network closure and brokerage to a conclusion30. This is due to the fact that an 

inventor may be located in the center of a very sparse network in which all inventors have a shared vision 

and/or common language. 

Aligned with this concern, a considerable amount of study has shown that the influence of collaboration 

network structure takes on a new meaning contingent upon the collaborators’ attributes and collaboration 

characteristics. This line of inquiry significantly enhances the social network literature by clarifying various 

contingencies that co-appear within an unexpected network structure and changes its effect. Studies 

focusing on the contingency perspective demonstrated the role of various characteristics such as inventor’s 

personality (Anderson 2008), experience ( Fleming et al. 2007), culture (Goldberg et al. 2016), perspectives 

(Schowalter et al. 2020), self-monitoring abilities (Mehra et al. 2001), and cognitive style (Carnabuci and 

Diószegi 2015).  

While the effects of brokerage and notable conditional characteristics have been evidenced by the literature 

and by the previous chapter of the thesis, cognitive distance of collaborators (i.e., uniqueness of 

collaborators’ possessed knowledge) and structural characteristics (i.e., the level of brokerage) have not 

been studied jointly. Moreover, although the success of brokers’ ideas is well documented (Burt 2004; 

 

30 The need for separation between structure and other attributes of the networks to capture the pure 

structural influence of cohesive and brokered networks is inspired also by the results of the third chapter. 
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Fleming et al. 2007; Perry-Smith 2006; Perry-Smith and Mannucci 2017), there is still controversies, and 

less attention has been paid to re-users’ social distance to brokers. Considering well-established literature 

on the importance of social distances for better knowledge spillover and resource sharing (Ahuja 2000; Burt 

1991; Singh 2005; Singh and Fleming 2010), it is worthwhile to make a distinction between different 

spheres of influence and further investigate the mechanism. 

This study addresses above-mentioned gap by focusing on the contingency perspective to clarify the micro 

mechanism behind the relationship between brokerage and reuse of inventor’s ideas. To do so, first, it makes 

a distinction on how the mechanism may vary depending on the focused idea penetration areas (i.e., 

focusing on the reuse by local inventors comprised of broker’s collaborators and collaborators’ 

collaborators, instead of all other inventors). Second, it argues that being in the center of structurally 

brokered network can be beneficial for the usefulness of an inventor’s ideas within the localized sub 

networks when the crucial benefits of constraint networks (i.e., common language, shared vision, easier 

acceptance by others and so on) co-appear with the given structure.  

The chapter is structured as follows. Section 2 provides an overview of the literature analyzing collaborative 

networks of brokers, emphasizes the different dynamics of whole and localized sub networks. I summarize 

the advantages and disadvantages of a focal inventor’s local network characteristics and develop hypotheses 

regarding the way they contribute to the reuse of a broker’s ideas. Section 3 describes the empirical setting, 

data sample and discusses the empirical methodology. Section 4 presents the results; Section 5 concludes 

and the last one provides future implications.  
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BROKERED NETWORKS AND REUSE OF INVENTOR’S IDEAS  

Aligned with the appearance of alternative perspectives on the inventors’ performance, literature 

investigating the cruciality of social networks demonstrates inconsistencies in the influence of network 

structure on inventive performance. More specifically, the relative benefits of opposite types of 

collaborative network structures (i.e., cohesive networks versus sparse networks) are addressed.  Being a 

broker who connects two or more otherwise disconnected inventors, in particular, has been paid attention 

to.  

Being a broker confers several distinct advantages, each of which is helpful during the idea generation and 

implementation phases which require respectively cognitive flexibilities and a higher legitimacy (Baer 

2012; Burt 1991, 2004, 2017; Granovetter 1973; Ibarra and Andrews 1993; Podolny and Baron 1997; Rodan 

and Galunic 2004).  

The latter, idea implementation, is found to be significantly correlated with the level of brokerage. It has 

been demonstrated that especially brokering managers perform better in their innovation activities because 

their positioning opens the door to successful project (Rodan and Galunic 2004) and risk management 

capabilities (Burt 2017). Inventors bridging structural holes are thought to have a higher vision and 

communication skills as they are working with diverse groups of inventors (Burt 2017; Perry-Smith and 

Mannucci 2017). Accordingly, they can act like the translators between disconnected collaborators to 

convince others and sell their ideas (Obstfeld 2005). Due to the lower constraints to which they are subject 

within their sparse networks they can portray their ideas more freely and easily attract others' attention. In 

the end, they are expected to have greater visibility and recognition by their pairs to move their ideas further 

to be implemented and become successful (Burt 2007; Perry-Smith and Mannucci 2017; Rodan and Galunic 

2004).   



110 

 

On the contrary, although the strategic advantages attached to knowledge arbitrage capabilities and 

legitimate positioning are claimed to be helpful for brokers to come up and bring their ideas to a successful 

conclusion, proponents of cohesive (the opposite of sparse network) networks demonstrate that the benefits 

of being a broker lose their value for success (Guimerà et al. 2005; Obstfeld 2005; Perry-Smith and 

Mannucci 2017; Uzzi and Spiro 2005). Researchers counterargue the benefits of being a broker by 

emphasizing the following detrimental effects. Due to the limited interactions brokered networks prevents 

the emergence of common language, a shared vision ( Fleming et al.2007; Tortoriello and Krackhardt 2010) 

and trusting environment (Uzzi 1997). They claim the imperfections of sparse networks as the key decisive 

factors that help inventors overcome interpretive problems and the potential resistance to their ideas from 

others to be appreciated and to be reused (Cohen and Levinthal 1990; Obstfeld 2005; Perry-Smith and 

Mannucci 2017). Some of the researchers, define the success and usefulness of an idea as the repeated use 

of technological combinations related to implemented ideas. To them, inevitable and detrimental endings 

of brokered networks are a decelerated knowledge flow and a hampered spread of the combinations that a 

broker explored (Carnabuci and Operti 2013; Fleming et al. 2007). 

Yet, most of these studies focused on the reuse of broker’s ideas within larger networks or within whole 

network that is the entire network. It captures every single inventor, and it does not apply a limitation to the 

social distance between the focal inventor, namely broker, and any other inventor. 

Reuse of broker’s ideas within local network 

The dynamics of localized sub networks and whole network may vary significantly and change the 

influence of network structure on the reuse of inventor’s ideas. A local network is a subset of whole network 

and includes a focal inventor and inventors who are clustered together around the broker’s close 
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surroundings. The study considers the focal inventors, their collaborators (the ones with one social distance) 

and collaborators’ collaborators (the ones with two social distance) while talking about local networks31.  

Studies highlighting the important social (Boschma 2005; Granovetter 1985; Polanyi 1944) and 

geographical (Ahuja 2000; Burt 2000; Singh 2005) proximities of innovation activities emphasize the 

enabling structural network characteristics providing them (Boschma 2005; Perry-Smith and Mannucci 

2017). First, they claim that there is an association between cohesive network structure, and having trust-

based interactions and higher social proximities between inventors (Boschma 2005; Granovetter 1985; 

Polanyi 1944). Second, being co-located and having arm’s length interactions are associated with higher 

geographical proximity among collaborators (Ahuja 2000; Burt 2000; Singh 2005).  

First, with respect to social proximity, it has been shown that embedded and integrated networks facilitate 

the knowledge exchange and enables the local inventors to monitor each other closely and continuously 

with a minimum amount of effort (Boschma 2005; Carnabuci and Operti 2013; Fleming 2001; Kaplan and 

Tripsas 2008). Those non-sparse networks are the ones where literature expects to see an emergence of 

trusting environment, therefore, more willingness to share the possessed knowledge among network 

members. Due to many direct connections within the constraint (i.e., closed) networks, by nature, it is easier 

to communicate and, even further, it is possible to exchange tacit knowledge (Tortoriello and Krackhardt 

2010).  

Second, with respect to geographical proximity (from a social network perspective), the closer inventors 

are to each other the more they share, the more they learning from interactions, and the more they benefit 

from each other's knowledge (Boschma 2005; Garcia et al. 2018). Studies coprocessing this proximity with 

 

31 The study determines the local network boundaries being inspired from the second chapter’s results. 
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the social network analysis demonstrate that knowledge spillover benefits provided by indirectly connected 

collaborators change with a decay frequency proportional to the social distance between inventors (Ahuja 

2000; Burt 1991, 2000; Fleming et al. 2007; Singh 2005). 

Building on emphasized importance of social and geographical proximities on knowledge spillover benefits 

and interactive learning, I argue that disadvantages of brokered networks disappear for local networks. This 

is first, in the local networks the social distance of the collaborators is at maximum path length of 2. Even, 

most of the collaborators and know the broker as they are part of the same team. Meaning that they work 

together, mostly know each other in person, or they have common collaborators which is also a sign of 

common interests and language. Unlike whole network, they can easily access and benefit from broker’s 

knowledge, even further, from their tacit knowledge either directly or through their partners.  

In addition, the broker benefits from his position that provides him a better recognition by his or her 

collaborators. Broker will have the most legitimate position where he or she can easily promote his or her 

ideas to each of otherwise disconnected inventors. Most importantly broker, the focal inventor of a very 

sparse network, know how to convince and communicate with many others compare to non-brokers. Their 

ideas will be more likely to be understood and appreciated by others thanks to their abilities to adapt to 

different cultures, to multiple work environments and to each collaborator’s jargon.  

Consequently, I expect that being a broker not only is harmless but also provides strategic advantages such 

as legitimacy and a higher recognition that are expected to increase the reuse of broker’s ideas by local 

network members. Therefore, the first hypothesis I put forward is: 

Hypothesis 1: The higher an inventor’s brokerage level, the more the inventor’s ideas will be reused by 

local network members. 
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 Contingent value of brokered networks: the role of cognitive proximity  

In addition to social and geographical proximity, cognitive proximity among network members is a well-

established driver of innovation success (Balland et al. 2015; Boschma 2005; Nooteboom 2000; Shaw and 

Gilly 2000). Cognitive proximity can be defined as the similarities in the collaborators' perception, 

interpretation, and evaluation of new knowledge. It implies that inventors possessing a similar prior 

knowledge are more able to understand and learn from each other (Boschma 2005; Nooteboom 2000).  

Recalling that reuse of generated ideas depends on users’ abilities to understand, appreciate, and accept 

inventors’ ideas, cognitive proximity seems to be a basic need of innovation success. Indeed, the benefits 

of geographical or social proximities have been claimed to be subject to the existence of cognitive proximity 

(Garcia et al. 2018).  With the lack of it, the generated ideas can be simply seen as ridiculous, crazy, or 

nonsensical and cannot be reused by others even if they are reachable and valuable enough to be invested 

in (Burt 2017; Fleming et al.2007). 

The proximity is related to the most common assumption that has been made by researchers focusing on 

the influence of collaboration networks. The assumption is attached to the level of collaborators’ knowledge 

redundancy. On the one hand, proponents of sparse networks defend the opinion that being a broker 

increases inventive creativity and success by tapping heterogeneous information from mutually 

disconnected collaborators (Aral and van Alstyne 2011; Burt 2004). Most of the strategic advantages of a 

broker (i.e., early awareness of valuable combinations and increased combinatory skills) rely on the 

assumption that brokers are exposed to heterogeneous knowledge elements through otherwise disconnected 

collaborators. On the other hand, proponents of non-brokered networks claim that embedded networks and 

highly integrated collaborations imply a network that consists of redundant knowledge holders. They argue 

that the members of non-sparse networks have a common language, similar prior knowledge, therefore, 

higher cognitive proximity. Considering the unveiled importance of proximity on the usefulness of 
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generated ideas by others, it has been an expected conclusion that social network literature put forward the 

positive association between closed networks and the reuse of generated ideas.  

The study questions the conventional assumption about the strong association between cohesive network 

structure (i.e., non-brokered network structure) and cognitive proximity among network members and 

builds on the contingency perspective. To do so, it makes a distinction between the cognitive proximity of 

the local network members and the network structure (i.e., the level of brokerage). In addition to the 

projected structural benefits of brokered networks for the local reuse, it is argued that brokers’ ideas will 

be more reused if the members of the local networks (including the broker) hold similar knowledge. This 

is because the redundancy creates cognitive proximity among inventors, letting them have a common 

language and understand generated ideas even if they do not have intense interactions or direct connections 

to the broker. Collaborators’ own knowledge will be enough to successfully interpret, therefore, be able to 

appreciate, adopt and reuse the ideas of brokers. As a result, the second and last hypothesis I put forward 

is: 

Hypothesis 2: The influence of the brokerage on the local reuse of the inventor's ideas is positively 

moderated by the level of cognitive proximity that appears in the local network.  
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METHODOLOGY 

 Setting and data 

To test my hypotheses about the role of brokerage on the reuse of inventor’s output an empirical study of 

French inventors is conducted. A single inventor embedded in a collaborative network for a given 

performance year is focused. As in the previous chapters unit of analysis is an inventor-year pair and as in 

the third chapter, ego networks are defined as collaborative networks containing focal inventor’s 

collaborators and their collaborator’s collaborators. These sub-networks are referred to as local networks 

of a focal inventor. I use co-patenting ties to construct inventors’ collaboration networks, whereas 

inventors’ specialty portfolios are used to measure knowledge range, furthermore, cognitive proximities. 

The study investigates the reuse of inventor’s output; therefore, the dependent variables consider the reuse 

of the focal inventor’s technological combinations in the future patents up to the fifth year following the 

performance year. For instance, if the networks are created by using the patents applied between years t-5 

and t-1 – the reuse of inventor’s output in year t is measured by using patents applied between year t+1 and 

t+5. Therefore, for this chapter the time frame of the analysis is limited to patents that are between the years 

1990 and 2015 (instead of 1990 and 2010) to have sufficient data from more recent years to observe patents’ 

reuse.  

The model and measures 

Dependent variable 

Local reuse  

In this study, the dependent variable is the reuse of focal inventor’s combinations.  
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The European Patent Office organizes all technology into approximately 650 subclasses and periodically 

updates and reorganizes them. To construct the variable, I first identified all subclass pairs within each of 

a focal inventor’s patents in a given performance year. This step is done regardless of the novelty of 

combinations which is controlled with an additional measurement. The variable then counts how many 

times other inventors reuse the focal inventor’s combinations in their patenting activities. Following the 

literature (Fleming and Sorenson 2004; Singh 2005; Marco 2007) the reuse count considers the patents of 

other inventors over the five years following the performance year. The variable considers all inventors 

located in the local network boundaries of the focal inventor. If the focal inventor re-uses his or her 

combination with a patent in which he or she is a sole inventor, then this use is not taken into account in 

the variable calculation. 

To measure the reuse by local network members of a given year, I consider all patent applications by the 

focal inventor in a particular performance year and scrutinize the reuse of inventor's combinations by local 

network members (by collaborators and collaborators’ collaborators). The inventors who have a patent(s) 

in the five years following the performance year, therefore, have a chance to reuse focal inventor’s 

combinations. I simply name this variable as Local Reuse.  

Independent variables 

In this study, I have two independent variables: cognitive proximity within the focal inventor’s local 

network and his or her level of brokerage (i.e., the level of sparseness of his or her network).  

Brokerage 

The measure of brokerage is defined and constructed as it is used in the previous chapters (see pg. 54).  
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Cognitive proximity  

The second explanatory variable is cognitive proximity. This variable captures the level of knowledge 

similarity of local network members. Focal inventor’s cognitive proximity to the local network is obtained 

on the basis of the past patenting portfolios of all network members, based again on their inventions during 

the five years preceding the performance year. The technological expertise of each inventor in the network 

is described by a vector of length 650, where a cell describes whether an inventor uses a specific subclass. 

if inventor uses technology, the variable equals 1, else zero. The focal inventor’s cognitive proximity 

available in their local network is calculated as the average cosine similarity of the vectors for each dyad 

of network members. The decision to include each pair of network members is made because observing 

discrepancies between the knowledge base of the focal inventor and each other collaborator is not sufficient. 

Cognitive proximity measure ranges from 0 (fully diverse network) to 1 (fully specialized network). I 

construct alternative variables32 as a robustness check. 

Control variables 

To obtain meaningful results, a number of characteristics are included in the empirical model. The control 

variables are organized on three levels. The network-level set includes the variables related to 

characteristics of collaboration structure and collaborators. The second set relates to individual-level 

characteristics of the focal inventor such as research path, previous performance and so on. Last set includes 

team-level variables to control for the team composition for focal inventor’s patenting activities.  

 

32 As an alternative measures of cognitive proximity among local network members, I construct three 

additional variables. Alternative approaches provide no qualitative changes in results. For detailed 

explanation of those alternative measurements, see Appendix 3.A. 
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The network-level set of controls consists of four variables. The number of focal inventor’s collaborators 

(the number of direct ties) and the number of inventors indirectly connected to the focal inventor who are 

the members of focal inventor’s local network (the number of indirect ties) are calculated to control for 

inventor’s local network size. This is important as I need to control for the possibility that the reuse of the 

combinations might be simply a function of the network size. In order to control for the effectiveness of 

inventor’s collaborative integration, the average strength of direct and indirect ties33 are constructed.  

To control for the team composition within focal inventor’s patent portfolio two indicators are used. The 

first one is the single firm. It is the percentage of the focal inventor’s patents that all co-authors come from 

the same company during the period of five years preceding performance year. Second, single Country is 

the percentage of the focal inventor’s patents that all co-authors live in the same country during the period 

of five years preceding performance year.  

The inventor-level set includes six variables. Here I use the measure of first inventor, which is the share of 

the patents that the focal inventor was listed first, again during the period of five years preceding 

performance year. The variable experience counts the number of years between performance year and the 

first year the focal inventor appears in EPO database. To capture the fact that reuse might be a function of 

the number of patents, I use patent count during the performance year (current patent count). I also control 

the level of productivity of an inventor by including the number of patents he or she has applied for over 

the last 10 years preceding the performance year (previous patent count). 

 

33 The tie strength measurements are constructed as in the second chapter. For technical details on 

measurement of variables controlling strength of ties, see pg. 53. 
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It is also important to notice that the acceptance and reuse by others may vary significantly depending on 

the novelty of combinations (Mueller et al. 2011; Perry-Smith and Mannucci 2017; Wang et al. 2017). In 

addition, some researchers assume that higher novelty implies higher value (Singh and Fleming 2010; 

Wuchty et al. 2007) while others show no relationship between the two (Dahlin and Behrens 2005; Nemet 

and Johnson 2012). Although a sparse collaborative network structure of a broker is expected to increase 

his or her creativity, the reuse of the combinations is detached from their novelty. Considering ongoing 

debate on the relationship between an invention’s value and novelty I prefer to control for the novelty34 of 

focal inventor’s combinations.  

The very last individual-level control variable is self-reuse. To make sure that the reuse is not biased because 

of the self-reuse I construct the variable. A simple count of reuse of focal inventor’s combinations in his or 

her future patents is used as a measure of self-reuse. The patents where the reuse appears, and the broker is 

the solo-author are not considered for the calculations. 

 Econometric issues and estimation 

A panel dataset where it is possible to observe patenting behavior of inventors over an extended time period 

is structured. Therefore, a panel data estimator is required to be used. The descriptive analysis shows that 

the dependent variable has an overdispersed and an inflated distribution. Also, it takes only integer values. 

Considering the specific features of the variable itself and its distribution, it is preferred to use panel data 

specific Negative Binomial estimator. This is done to prevent the estimation of inefficient, inconsistent, and 

biased coefficients. Moreover, the estimator lets me control for overdispersion —where the variance is quite 

bigger than the mean— and inflation which the data exhibits. Despite the high number of observations, I 

 

34 For technical details on measurement of variables controlling novelty of combinations, see Appendix 3.A. 



120 

 

double-checked for the differences between the coefficients of a random effect modal and a fixed-effect 

modal by using a likelihood ratio test. As expected, the test pointed to the use of a random effect modal.  

Before proceeding to estimation, inventors who did not work with two or more collaborators are identified 

as these inventors cannot become brokers within their network, therefore, are misleading the analysis. 

Following the previous literature (Fleming et al. 2007), I use only cases where the focal inventor has at least 

two collaborators. Additionally, inventors who have no patenting activity in a given year are also excluded 

from the analysis. As they do not generate any combinations which can be reused by others, they create a 

noise between the ones who have generated the combinations with no reuse and the ones who do not 

generate any combinations at all. Therefore, their inclusion would have easily created a bias for the reuse 

of inventor’s ideas and for the analysis. I use 32 092 unique inventors and 80 573 inventor-year 

combinations to obtain random-effects Negative Binomial estimates (with added year fixed-effects and 

technology residuals as a replacement of technology fixed-effects35) of empirical models. Table 1436 

provides descriptive statistics and pairwise correlations of main variables across all retained observations. 

 

35 Despite I am aware of the potential bias deriving from ignored technological fixed effects, I couldn’t 

manage to include them in the models as they are. This is due to the fact that the addition of almost 650 4-

digit technologies created computational problems (i.e., conformability and non-achieved convergence 

errors) that appeared in the software used for regression analyses (Stata MP-17). As a solution, I simply run 

a base model that includes only technology fixed effects and create a new variable with the residuals that 

came out from the model. The variable then is included in the main models as a replacement for technology 

fixed effects. This lets me prevent any bias that may occur in the results without technology-fixed effects. 

Because the residuals could not be calculated for 4-digit and 3-digit versions because of the same errors the 

models include the 2-digit technology residuals that provide convergence. This choice is done to strengthen 

our statistical model. 

36 Please see Appendix 3.B 
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These statistics indicate some multicollinearity between some of the structural characteristics such as the 

number of direct and indirectly connected inventors, and the number of collaborators and local reuse. This 

is an expected correlation considering the literature discussed above about the ease of interactive learning 

and knowledge sharing for the shorter social distances. The same applies to the relationship between the 

number of direct and indirect ties, as acquiring an indirect connection is only possible through direct 

connections. 
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RESULTS AND DISCUSSION 

In order to build analyses, I estimate three distinct models. To test the reuse of inventor’s combinations by 

local network members. I begin with Model 1, which highlights the link between the focal inventor’s level 

of brokerage and the reuse by the local network. This model includes brokerage and control variables 

including the novelty of the inventor’s output, as well as technology residual variables and year-fixed effect. 

In the next stage, Model 2 appends a stand-alone cognitive proximity term to Model 1. Although I do not 

question the relationship between cognitive proximity and reuse by local network members, its inclusion 

in the second model creates an added value for the sake of interpreting the influence of network structure 

by decoupling the assumed knowledge benefits of brokerage. Therefore, second model is used for 

hypothesis testing. Finally, Model 3 is constructed to examine the moderating role of cognitive proximity 

among local network members. Here I add the interaction term between brokerage and cognitive proximity, 

to setup from Model 2. The extended model allows us to evaluate the hypothesis 2 put forward in section 

2. 

Table 3. Reuse of inventor's output by local network members 

VARIABLES Local Reuse 

 Model 1 Model 2 Model 3 

Brokerage 0.0801*** 0.0735** -0.504*** 
 (0.0309) (0.0319) (0.0756) 

Cognitive Proximity  -0.0233 -0.562*** 
  (0.0284) (0.0701) 

Brokerage # Cognitive Proximity   0.977*** 
   (0.116) 

Number of Observations 80,573 80,573 80,573 

Number of Inventors 32,092 32,092 32,092 

Note: Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 337 report the regression coefficient estimates for variable of interests across all models explaining 

the reuse of focal inventor’s ideas by local network members. Results provide strong evidence for both 

hypotheses. 

First of all, results from Model 1 and 2 suggests strong support for the first hypothesis, that the higher an 

inventor’s brokerage level, the more the inventor’s ideas will be reused by local network members. 

Inventors located in local networks are very close to the brokers even further may have direct connections 

to the broker. First, because they have already chose worked together, the trust argument is apparently 

weakened. And second, the knowledge diffusion is way faster compared to larger networks. Building on 

these arguments, unlike literature demonstrating the dark side of brokered networks for the innovation 

success38, results indicate that for local networks this is not the case. And again, the study emphasizes the 

strategic advantages of brokerage beyond those related to non-redundant knowledge exposure (i.e., the 

sparseness of the network structure) are positively influencing the reuse of inventor’s ideas. Shorter social 

distance between collaborators and broker help inventors to overcome the obstacles of sparse networks. In 

addition, brokers enjoy their unique gatekeeper positioning where they can have good reputation and higher 

legitimacy. Their working with different groups of inventors, and ability to communicate with larger 

audience is a huge plus for the reuse their ideas by local neighbors. 

 

37 For full regression outputs please see Table 16, and for all robustness checks related to local reuse please 

see Table 17 in Appendix 3.D. Results in Table 17 are robust to changes in measurement and consistent 

with the discussed results in section 4.  

38 Although I do not hypothesis for the reuse of broker’s ideas within whole networks, I conduct additional 

analysis to see the robustness of my dataset with literature showing that brokered networks are detrimental 

for the diffusion of generated ideas within whole networks. The results are aligned with the literature. For 

the details of additional analysis, see Appendix 3.C. 
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Second, results from Model 3 estimations allow for the study of the moderating effect of the cognitive 

proximity and evidence the second hypothesis, that the sparseness of a broker’s network and having 

cognitive proximity among local network members jointly increases the reuse of the broker’s ideas by local 

network members. For the sake of interpretation Figure 4 presents predictive margins of the dependent 

variable for low (10th percentile of the variable distribution), average, and high (90th percentile of the 

variable distribution) levels of cognitive proximity.  

Before discussing results with respect to the last hypothesis, it is important to notice, the results indicate 

the distinct influence of brokerage and cognitive proximity on the reuse of inventor’s output in addition to 

the moderation of them. Although I do not test for this, the insignificance of cognitive proximity in Model 

2 and then its positive significance only within brokered networks is worthwhile to be discussed. Results 
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from Model 3 demonstrates that unless the inventor is part of loosely embedded network, cognitive 

proximity can be harmful. This transition reminds the cost of embedded networks where inventors need to 

interact with each other and spend their time and attention on many redundant collaborators (Mueller and 

Kamdar 2011; Perry-Smith and Shalley 2003; Uzzi 1997).  Yet, considering the standard deviation of the 

coefficients (see in Figure 4) for the mean of brokerage appears in the analyzed dataset, I do not see a 

significant difference in the reuse of inventors’ ideas contingent upon the level of cognitive proximity.  

With respect to the core question of the study, prior research on the reuse of broker’s innovation activity 

has been mixed. The results of this study provide explanations for the two community (i.e., proponents of 

brokered or embedded networks) by clarifying the micro mechanism behind the relationship between 

brokerage and success of inventor’s output. I demonstrate that the influence of network structure is 

contingent upon the cognitive proximity of local network members. According to the results, although the 

interaction variable is positive and significant confirming their joint benefits on the reuse of inventor’s idea, 

the absence of cognitive proximity does dramatically change the influence of brokerage.  

On the one hand, although I do not hypothesis for the relationship between brokered networks and the reuse 

of inventor’s output by larger network members, the results of the robustness checks are in line with the 

literature supporting the non-brokered networks (see Appendix 3.C). If the broker has no common 

knowledge with any other inventors whom he is collaborating with, spareness of the network creates only 

obstacles and decreases the reuse of inventors’ ideas. As argued in section 2, this is due to the fact that 

highly disconnected network hinders the emergence of trusting environment, therefore, willingness to share 

possessed knowledge, slow down the knowledge flow which hampers interactive learning and emergence 

of knowledge convergence (Burt 2017; Coleman 1988; Reagans and McEvily 2003; Uzzi 1997). Now, 

knowing that the influence of brokerage is positive in the first two models, the result of a remarkable study 

comes to the mind. Boschma (2005) has provided a critical assessment about the importance of main 

proximities’ co-appearance to increase innovation performance. For instance, geographical proximity hinge 
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upon the cognitive proximity among actors because even if the actors are next to each other they cannot 

communicate. This provides a is a potential explanation of my results. Although the broker has the shortest 

social distance to his or her collaborators within local networks in which inventors live in a cognitive world 

of their own, structural convenience is not enough to increase the reuse of the inventor’s output.    

On the other hand, being part of a more specialized knowledge clique generates the conditions conducive 

to collaborators understanding and reusing broker’s ideas more than ever. By digging into the micro 

mechanisms of the relationship, I observe that local network members possessing common knowledge 

boost the benefits of being a broker on the reuse of inventor’s combinations by local network. Strategic 

opportunities generated by being a broker appears after a level of cognitive proximity among inventors and 

continue to gradually increase. Knowing that cognitively proximate collaborators do not provide knowledge 

advantages as much as knowledge heterogeneous networks to be aware of more valuable combinations, I 

claim that this significant increase in the positive influence of being a broker erupt from strategic advantages 

such as prestige, legitimacy, and communication skills which led to a higher acceptance and recognition by 

others. Thus, having lesser communication costs thanks to common language and shared understanding 

among the local network members provides additional advantages.  

To sum up, if a broker collaborates with inventors differ in their domain and prior knowledge – as it is 

assumed in the literature – their ideas are less likely to be reused by the members of their local networks. 

Moreover, it appears that being a broker does not guarantee a higher knowledge diversity among the 

collaborators and this, also, is consistent with the contingency perspective. Finally, following the distinction 

between brokerage and knowledge, the study proves that being a broker becomes beneficial more than ever 

especially for inventors who are cognitively capable of understanding each other’s ideas.  
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CONCLUSION 

The study contributes to the social network and innovation literature and develop a deeper understanding 

of the brokerage’s influence on inventor’s success while controlling for the novelty of their output. It 

explores micro-mechanisms behind the relationship between brokerage and the reuse of inventor’s ideas 

and the conditional influence of cognitive characteristics on the relationship. It enlarges my understanding 

to what extend sparseness of collaboration networks hinders the reuse of generated ideas and provide 

scenarios in which convergence of technology expertise among collaborators may help to overcome the 

obstacles of a brokered network. The main contributions of the chapter hinge on the two separations: First 

one is between the reuse of broker’s ideas by localized network members instead of all active inventors. 

Second one is the distinction between brokerage, which constitutes a structural measure of inventor’s 

positioning, and cognitive proximity of the collaborators including broker and the ones at maximum of 2 

path length to the focal inventor.  

A noteworthy feature of the findings is the fact that both brokered and cohesive networks provide 

advantages contingent upon the cognitive proximity level among local network members. On the one hand, 

the chapter contributes to the ongoing debate on closure versus brokerage by showing that the detrimental 

effect of brokered networks can be overcome through knowledge redundancy of collaborators. Even further 

brokering the network might be conditionally an advantageous position to increase the reuse of an 

inventor’s ideas without sacrificing novelty.  On the other hand, closed networks become advantageous for 

unique knowledge holders. This time, the high intensity of interactions appears in their networks helps them 

to overcome consequences of cognitive distance. 

The study highlights that there is always a trade of every second network structure and knowledge specialty 

of inventors to achieve the same success. Yet, the best of these two scenarios points that being a broker 
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where a high level of cognitive proximity exist is the most fruitful environment to increase the reuse of 

inventor’s ideas within his or her local network.  

The study is one of the contributors to literature building on the contingency perspective. Following this 

stream of research (Brass and Borgatti 2019; Carnabuci and Diószegi 2015) many other things can be tested 

such as the experience within firms, managerial abilities, coming from different working culture, being a 

broker within versus between teams, firms and so on. One of the outstanding questions is that how an 

inventor increases his or her innovative performance in terms of both novelty and success while he or she 

is in a very sparse but knowledge redundant network. I would expect that a broker’s creativity within 

knowledge redundant network is lower than another broker located in knowledge heterogeneous network, 

as redundancy decreases the combinatory capabilities. However, the study investigates the reuse of broker’s 

ideas under the condition of the novelty of broker’s ideas being equal. This means a broker can be as 

creative as independently of knowledge heterogeneity access. Here, the study hints at the importance of 

different cultures, perspectives, experiences, and any other contributors of a valuable collaboration. There 

are studies demonstrating the importance of bridging perspectives, cultures, or the importance of social 

integration to increase the inventive performance (Brass and Borgatti 2019; Chua 2018; Goldberg et al. 

2016; Schowalter et al. 2020). Therefore, although in the beginning, observing similar creativity for the 

inventors who are exposed to significantly different levels of knowledge heterogeneity is seen as a 

counterintuitive result, I claim that this is due to the fact that the ones bridge cognitively proximate 

disconnected collaborators enjoy their position by being exposed to different perspectives, approaches and 

working cultures. These diversities help them to be specialized in a particular area and exploit it at its best, 

even further, help them to be able to apply the technology in multiple contexts.  
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FUTURE IMPLICATIONS 

In general, the study motivates us to further investigate the network evolution of inventors and actually how 

and where to start building structurally sparse versus cohesive networks. In addition to the structure, the 

study begs for further studies on the trade of between several proximities including structural proximity 

such as cultural and cognitive ones. It would have created an added value if I could understand and provide 

some managerial implications which to start with and which proximity to add in the next steps for constant 

innovative performance and knowledge spillover within local networks. Another conclusion of this kind of 

study would provide a comprehensive understanding on how to guide inventors during their career journey. 

This could shape at which stage and which incentive (to collaborate more interactively and to upskill or to 

reskill themselves to increase their cognitive abilities) to offer to the employees.  
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GENERAL CONCLUSION 

Inventive performance has been extensively studied over the last decades by both practitioners and scholars 

as it is agreed that the ability for technological change and innovation performance are drivers of 

competitive advantage and sustainable growth. Since the acceptance of a significant association between 

collaboration networks and knowledge spillover benefits, legitimacy, trust, and so on, researchers have 

widely acknowledged the importance of collaboration networks on the inventors’ performance. However, 

the theoretical and empirical arguments of the potential influence of inventors’ collaboration networks on 

their performance are not yet clearly established in the literature and provide contradictory conclusions and 

managerial implications, therefore, invite scholars to further clarify the processes and conditions under 

which collaboration networks deliver value to inventors’ performance.  

The main purpose of this dissertation is to investigate the role of collaboration network features, the 

mechanisms through which they affect individuals’ inventive performance, and question the extent to which 

collaboration network structure is advantageous. My research makes an effort to define the influence of 

structural and relational characteristics and explores their contribution to French inventors’ performance. 

Then, the study combs through the utilities of collaborative network structure by questioning very well-

accepted assumptions in the literature. It aims to introduce a distinction between collaboration networks’ 

structure and assumed attributes of network members such as their knowledge portfolio and cognitive 

proximity. 

The dissertation presents three essays on the influence of collaboration network characteristics and the 

dichotomy between cohesive and brokered networks from different theoretical angles focusing on the rate 

of, the novelty of, and the usefulness of their output, namely inventions. More specifically, in the first essay 

of my dissertation, I argue that in order to better understand how and to what extent collaboration network 

characteristics influence inventors’ performance I need to distinguish structural and relational features of 
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collaboration networks and I propose four general sources of increased performance: maintaining direct 

connections, increasing network size through indirect connections, bridging network, and strengthening 

relationships. I also provide theoretical arguments on the differences between those sources based on the 

potential benefits they provide, their relative contribution to inventors’ performance, and their interplay 

with each other, and I statistically test the explanatory power of the framework with four features of 

collaboration networks. In the second essay, I seek evidence for the unlikely co-appearance of structure-

content couples, namely, brokered network structure-knowledge heterogeneity of network members. 

Building on the distinction between content and structure of the networks, I expand on the contingency 

perspective and explore the moderating influence of accessible knowledge heterogeneity within inventors’ 

networks on the relationship between bridging networks and the novelty inventors’ output. In the final 

essay, I adopt a novel stance toward analyzing the value of brokered network structure arguing that their 

utility should take into account not only their direct influence on the diffusion of inventors’ ideas but also 

its association with others’ cognitive capabilities and their reachability to the bridge holders, termed 

brokers. The fourth chapter accentuates the counterintuitive appearance of cognitively proximate 

collaborators within brokered network structure or cognitively distant collaborators within the cohesive 

network structure. 

Together, the three essays of my dissertation provide intriguing perspectives on the collaborating strategies 

and contingencies. My research demonstrates that collaboration networks provide advantages under certain 

conditions. It demonstrates that to increase inventors’ performance their very close connections matter. In 

addition to the importance of quick accessibility through social proximity, the brokered structure is 

demonstrated to be the most important influencer of inventive performance. However, the research shows 

that a given structure is not a valid indicator of the other features of the collaboration networks. It reveals 

that brokered networks do not guarantee access to knowledge heterogeneity as well as cohesive networks 

do not guarantee cognitive proximity within networks, and finally, the contribution of the network structure 
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is significantly dependent on the co-appearance of other features of the networks.  The results of my 

dissertation contribute to collaboration networks literature and the ongoing debate on “cohesive versus 

brokered networks” with new findings on the value and utility of their structural, relational, and content 

features and raise interesting theoretical questions for future research, which I cover in the sections that 

follow. 

CONTRIBUTIONS 

The first contribution of my thesis is that focal inventors can only profit from their local networks which 

are composed of focal inventors, their collaborators, and collaborators’ collaborators. This enlightens us 

about how the boundaries of ego networks for inventor level analyses need to be defined. The study 

demonstrates that even within the same network, the benefits provided to the focal inventor by the 

collaborators and inventors who are indirectly connected differ significantly. More importantly, the benefits 

of indirectly connected collaborators do not substitute the benefits of collaborators to the focal inventor. 

The study provides evidence that having strong relationships reinforce the focal inventor’s performance 

and that highly integrated connections have a bigger influence on the inventor's performance than the 

number of collaborators. It shows that the most important feature that will improve and contribute to the 

performance of focal inventors in every aspect of it (i.e., quantity and novelty of their output, and usefulness 

of their inventions by local network members) is the brokered structure of local networks. 

The following contributions of the thesis hinges on the separation of collaboration networks’ structure and 

assumed attributes of collaborators. Digging into the micro-mechanisms behind the inventors’ performance 

the thesis focuses on the most important feature of the collaboration networks – structural non-redundancy–

and questions the most common assumptions in the literature. I argue that looking at being the focal inventor 

within a brokered network can be advantageous in which to an extent and depending on the appearance of 

assumed byproduct features.  
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First of all, the distinctions allow us to understand that the structure of the network may hint at but does not 

guarantee the heterogeneity of shared knowledge or the cognitive proximity among collaborators. The 

findings demonstrate that the appearance of either available knowledge heterogeneity within networks or 

cognitive proximity of collaborators and network structure (bridging versus bonding structure) are not 

dependent on each other’s existence, yet they moderate each other’s influence on inventors’ performance. 

Therefore, although there is literature assuming heterogeneity and cognitively distant collaborators are 

byproducts of being focal inventors within brokered network structure, it is a must to make a distinction 

between them to better understand the influence of any mentioned features on inventor’s performance. 

Second of all, by bringing distinctions between knowledge heterogeneity and brokered network structure, 

high cognitive proximity among collaborators, and cohesive network structure into the brokered versus 

cohesive networks debate, the thesis makes clear that both structures have their unique yet contingent 

advantages. On the one hand, the study contributes to the Burt’s social capital and structural hole theories. 

It makes clear that the maximum creativity of the focal inventor within a brokered network structure stems 

from the provided knowledge heterogeneity by collaborators. Strategic advantages associated with being a 

broker are maximized if and only if collaborators possess unique knowledge. In addition to the benefits of 

being a broker on the creativity of inventors, their ideas are also more likely to be recognized and reused 

by collaborators under the condition of holding similar expertise and being cognitively proximate. Those 

findings support the literature on the advantages of being the focal inventor within brokered networks by 

enhancing our understanding on its contingent value for inventors’ performance. On the other hand, by 

contributing to Coleman’s (1998) argument on the benefits of cohesive networks (non-brokered networks) 

the thesis put forward that inventors within a cohesive network are better performers in terms of the novelty 

and reuse of their output more than brokers unless collaborators possess unique knowledge or similar 

technological expertise.  



135 

 

With the study, I raise awareness that while there is a trade-off in being within brokered and cohesive 

network structure, their assumed byproducts are not exclusive to a given structure. The study highlights 

that the advantages achieved with certain structural characteristics (i.e., brokered, and cohesive networks) 

appears contingent upon other features of collaborators. There is a tradeoff between cohesive and brokered 

network structures for inventors’ performance. Yet, the best of these two scenarios points that focal 

inventors who have cognitively proximate collaborators and exposed to heterogenous knowledge within a 

brokered networks are the best performers in terms of both creativity and the impact of their inventions on 

others’ future studies.  

The study makes contributions to my understanding of the optimum network features and their implications 

by exploring the interplay between an individual’s collaborative network characteristics and their 

performance. It also enlarges our understanding to what extend sparseness of collaboration networks 

hinders the inventors’ performance and provide scenarios in which convergence of technology expertise 

among collaborators and accessible knowledge heterogeneity help to overcome the obstacles of a brokered 

networks. Considering all the findings of the three main essays of the thesis, the most fruitful environment 

of a focal inventor is in which he or she holds strong connections with collaborators from different groups 

of inventors who provide complementary knowledge elements and are also cognitively proximate to the 

focal inventor. The combination of all these features allows the focal inventors to profit from all the strategic 

advantages of bridging the network to increase their inventive performance. 

However, it is not so easy to create a network that holds all the mentioned features at once. Also, inventors 

are not always expected and promoted to produce both novel and useful patents at the same time or the 

same stage of their careers. Contrarily, they may choose to focus on one aspect of their performance by 

focusing on the essentials of the targeted outcome (i.e., quantity, novelty, and reuse of their inventions). 

For instance, if they would like to increase their creativity, it is enough that they focus on and maintain their 

connections with heterogeneous knowledge providers to increase their combinatory skills, knowledge 
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arbitrage advantages, therefore, the novelty of their output. Another example of this approach is that a 

manager who tries to increase the reuse of generated ideas by broker inventors within localized networks 

needs to put them with cognitively and socially proximate inventors to ease their communication and 

diffusion of the novel ideas. 

To sum up, my dissertation provides evidence that adopting the distinction among multiple features of 

collaboration networks and questioning their widely accepted indications for each other in investigating the 

association between collaboration network features and multiple facets of inventive performance will allow 

scholars to address not only the questions of which structure will influence the outcome, but also the 

interplay between structure and determinants (i.e., social, and cognitive proximity, and knowledge 

heterogeneity access) of inventive performance. Together, the relational and structural features of 

collaboration networks and attributes of network members provide a more rigorous theoretical base, on 

which to estimate the mechanisms through which they deliver value and the ways in which context change 

their added value. The contingency perspective in my research strengthens the argument that each of the 

variables has a distinct contribution that is influenced differently by the other features. Most importantly, 

the findings of the thesis serve as a foundation for future research ideas that can vastly improve our 

understanding of how and the extent to which collaborations and collaboration networks matter, social 

capital management strategies, and the determinants of invention performance at different levels of 

analyses. 

LIMITATIONS AND FUTURE RESEARCH 

Several limitations of my dissertation merit discussion. From a theoretical standpoint, the use of the EPO 

database is certainly one of the main limitations of the three essays because patents do not reflect all 

collaborative initiatives taking place among inventors. Therefore, collaboration networks of inventors 

considered represent only the observable dimension of collaborative relationships among actors. The 
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addition of other types of data could deepen my understanding of the collaboration network features’ 

contribution to inventors' performance. For instance, data from social media networks such as LinkedIn and 

surveys could be helpful to better observe all collaborations and define the attributes of collaborators such 

as their motive to collaborate or their hierarchical level.  

In addition, the three essays try to do their best on controlling the organizational boundaries, however, an 

analysis of a more focused setup would have been helpful to better explore the influence of inter-

organizational collaborations. Moreover, it could let us observe the differences between organizations and 

their influence on the construction of collaboration networks of inventors. For instance, depending on the 

exploration or exploitation strategies and business plans of the organizations they could choose whether to 

share their knowledge with other actors in the ecosystem. In the same vein, three essays control for the 

variance among technologies used for inventions, however, focusing on one part of inventions related to 

specific technologies (such as focusing AI, AgTech, or FoodTech) or focusing on a specific product (such 

as drones or plant-based meats) would help for further investigations. For instance, it could provide in-

depth explanations why some firms are better to adopt new technologies or why their innovation 

performance is better than others.  

Besides, while only collaborations among inventors have been investigated in the thesis, other types of 

collaborators, in particular, industry-science collaborations as well as intra- and inter-sectoral 

collaborations are also important to interpret the role of collaboration networks on inventors’, therefore, 

firms’, and regions’ innovation performance.  

Moreover, the thesis motivates us to further investigate the network evolution of inventors and actually how 

it is important to keep the network evolving over time. Because sparse - knowledge heterogeneous networks 

are the most creative ones while sparse - knowledge homogenous or cohesive - knowledge heterogeneous 

networks are the most fruitful to increase the reuse of generated ideas by local network members. Meaning 
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that, an inventor as a broker first needs knowledge heterogeneity to generate novel ideas and then 

knowledge convergence among his/her very close network to be cited or to be replicated in the future. As 

a matter of fact, answering whether inventors need to shift from brokered to cohesive networks or shift 

from knowledge heterogeneous networks to more specialized ones would be a worthwhile contribution to 

the innovation literature and would provide managerial implications.  

Even further, the question to be investigated can go beyond the evolution of networks and change in the 

network characteristics. It may be about the smart activation of the necessary part of the network as has 

been highlighted in the literature (Perry-Smith and Mannucci 2017). Then, building on this theoretical 

study, the followed question is who is capable of maintaining all their collaborations while they continue 

to invest their attention and time to a dedicated part of it. This needs to be further investigated by observing 

the inventor’s additional advantages such as their positioning within the organizational hierarchy, being a 

manager versus being a newcomer. This can be a part of an investigation of inventors’ career journey their 

innovation activities during the journey by specifically questioning when and how to bridge or bond the 

relationships, further, which one to start with to the journey.  

From an empirical standpoint, a significant future study would be constructing hypergraphs instead of 

graphs. It would define the collaborative relationships at the team level or triadic relationships other than a 

dyadic approach which is used for three essays of the dissertation and could be useful to provide alternative 

explanations of redundancy or social capital within networks.  

Another drawback of my dissertation is that across the studies I am unable to account for causality in the 

mechanism. Although I conduct longitudinal analysis for all three essays, I could only claim by observing 

the existing collaboration network characteristics. By applying a dynamic model approach and how those 

collaborations emerge and change over time and how they explain network features is a question that begs 

for further studies.  
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In addition, although this is only for the purpose of robustness analysis, the study is using the Burt’s 

constraint measurement which does consider collaborators with a maximum of two path length while 

observing its effect on the reuse by any other inventor (for global network analysis, see Appendix 3.C). 

Although this is chosen to contribute to an ongoing debate which apply the same approach and 

measurement, it may not the best strategy to capture the network structure’s influence for reuse within 

larger networks. It would be insightful to see a complementary study which investigates the mechanism 

with other centrality measurements such as original betweenness centrality measure.  

One of the very last promising future study ideas is related to the limitation on whole network measurement 

that gives a new lease of study. A very important future implication of the study would be its application 

for multi-level analysis and then replicating the whole network perspective by also using local networks of 

small actors. For instance, local networks of a global network can be defined by economic actors such as 

departments, universities, and firms. The global network would represent a regional network that includes 

all those local networks. This would help us to better understand why some regions are better benefiting 

from each other’s core knowledge to increase both their own and regional innovation performance. In this 

set, it would make sense to assign one knowledge vector to each local network and observe the cognitive 

proximity or alignment of whole network members that are the local networks including scientists and 

inventors. This approach would make both theoretical and empirical contributions to the literature as well 

as help to better explain firm or regional level performances by relying on inventors’ actions or investigating 

the influence of network-based innovation policies on all types of actors’ collaboration networks, further, 

their performance.   
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APPENDIX 1 

Appendix 1.A 

An Example on how to construct indirect connections variables: 

To explain all indirectly connected inventor measurements with an example a hypothetical ego network as 

in the Figure 5 is illustrated. The focal inventor (A) of hypothetical ego network in the figure has 3 direct 

(B, C, D), 4 two-steps (E, F, G, H), and 5 three-steps (I, J, K, L, M). Let’s assume that while two-steps 

collaborators produced 2, 4, 1 and 3 patents respectively, three-step connections produced 4, 3, 1, 5, and 8 

patents respectively. In this case the network size (N) is equal to 13, indirect 1st connections are 4 (E, F, G, 

H), and indirect connections – count are 9 (E, F, G, H, I, J, K, L, M). Indirect connections – distance 

weighted will be equal to 2.23 = ((1-7/13) * 4 + (1-12/13) * 5) and indirect connections - distance and 

information weighted is equal to 6.23 = ((6/13) * (2+4+1+3) + (1/13) * (4+3+1+5+8)). 
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Figure 5. Inventor A’s ego network  
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An example to tie measurements in weighted and unweighted networks: 

First, for the unweighted collaboration relationships, a link occurs (i.e., weight = 1) if inventor A is a co-

inventor of inventor B at least in one patent which is written in given five-year window and there is no link 

otherwise (i.e., weight = 0).  

Second, for weighted ties I used Newman’s (2001) approach to account for the strength of collaborative 

integration. An example for measurement of tie weights explained with an example in Figure 6. In this 

example, inventors A and B have collaborated for four patents, labeled P1, P2, P3, and P4 which had 

respectively 2, 3, 4, and 5 inventors. The tie between A and B accordingly accrues weights 1, 1/2, 1/3, and 

1/4 from the four patents, for a total weight of 2.08.   

 

 

 

P1 P4 P3 P2 

A 

B 

𝑡𝑖𝑒	𝑤𝑒𝑖𝑔ℎ𝑡 =
1
1
+
1
2
+
1
3
+
1
4
=
52
25

= 2.08 

A 

B 

Weighted Collaborations Unweighted Collaborations 

A 

B 

weight = 1 weight = 2.08 

Figure 6.  An example to tie measurements in weighted and unweighted networks 
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Appendix 1.B 

Table 4. Summary statistics (means, standard deviations, N = 227 679) 

  Variables Mean S.D. 
(1) quantity of inventor’s output 1.17 2.946 
(2) number of direct collab. 7.25 6.88 
(3)  indirect 1st connections 22.32 50.63 
(4) indirect connections – count 6870.9 40422.3 
(5) ind. collab. - distance weighted 1384.6 9764.9 
(6) ind. collab. - distance & information weighted 14049.7 90532.3 
(7) brokerage .531 .207 
(8) technology diversity 17.90 27.89 
(9) avg. strength of direct ties .898 .965 
(10) avg. strength of 1st order indirect ties .933 .957 
(11) avg. strength of indirect ties .9 .777 
(12) previous patent count 8.91 15.69 
(13) experience 6.26 6.05 
(14) first inventor .304 .366 
(15) single country .8 .352 
(16) single firm .835 .318 
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Table 5. Pairwise correlations (N = 227 679) 

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 
(1) quantity of inventor’s output 1.00               
(2) number of direct collab. 0.21 1.00              
(3)  indirect 1st connections 0.15 0.58 1.00             
(4) indirect connections – count 0.06 0.30 0.56 1.00            
(5) ind. collab. - distance weighted 0.05 0.27 0.55 0.95 1.00           
(6) ind. collab. - distance & 
information weighted 0.06 0.28 0.54 0.98 0.97 1.00          

(7) brokerage 0.12 0.31 0.11 0.05 0.04 0.04 1.00         
(8) technology diversity 0.12 0.40 0.65 0.62 0.65 0.64 0.15 1.00        
(9) avg. strength of direct ties 0.23 -0.04 -0.01 -0.01 -0.01 -0.01 0.22 0.04 1.00       
(10) avg. strength of 1st indirect ties 0.18 0.09 0.10 0.03 0.03 0.03 0.07 0.14 0.35 1.00      
(11) avg. strength of indirect ties 0.13 0.06 0.07 0.04 0.03 0.05 0.07 0.14 0.28 0.76 1.00     
(12) previous patent count 0.27 0.49 0.30 0.16 0.14 0.15 0.29 0.26 0.43 0.26 0.17 1.00    
(13) experience 0.02 0.16 0.09 0.06 0.05 0.05 0.13 0.08 0.09 0.05 0.04 0.31 1.00   
(14) first inventor 0.03 -0.06 -0.06 -0.03 -0.02 -0.03 0.20 -0.03 0.09 -0.01 -0.02 0.05 0.02 1.00  
(15) single country 0.00 -0.18 -0.20 -0.18 -0.15 -0.17 0.10 -0.20 0.13 0.04 0.02 0.00 0.02 0.07 1.00 
(16) single firm 0.04 -0.02 0.04 0.03 0.02 0.03 0.12 0.02 0.10 0.08 0.05 0.06 -0.02 0.05 0.09 



145 

 

Appendix 1.C 

Table 6. Results from panel negative binomial estimation: quantity of inventor’s output – model 1&2 

VARIABLES  inventor's performance - quantity of inventor's output 
  1 2a 2b 2c 2d 
number of collaborators 0.00889*** 0.00964*** 0.00927*** 0.00905*** 0.00912*** 

 (0.000598) (0.000656) (0.000599) (0.000598) (0.000598) 
indirect 1st connections  -0.0002***    

  (7.65e-05)    
indirect connections – count   -6.39e-07***    

   (1.00e-07)    
ind. collab. - distance weighted    -3.4e-06***   

    (4.10e-07)   
ind. collab. - distance & information 
weight.     -3.1e-07*** 
     (4.48e-08) 
direct collab. # indirect 1st collab.            
direct collab. # indirect collab.            
direct collab. # ind. collab. dist. weight.      

      
direct collab. # ind. collab. dist. & inf. weight.            
brokerage             
avg. strength of direct ties 0.0515*** 0.0423*** 0.0441*** 0.0443*** 0.0442*** 

 (0.00362) (0.00369) (0.00367) (0.00367) (0.00367) 
avg. strength of 1st order indirect ties  0.0519***    

  (0.00350)    
avg. strength of indirect ties   0.0616*** 0.0609*** 0.0617*** 

   (0.00411) (0.00412) (0.00411) 
technology diversity 0.00242*** 0.00254*** 0.00294*** 0.00327*** 0.00306*** 

 (0.000112) (0.000138) (0.000151) (0.000158) (0.000154) 
previous patent count 0.00358*** 0.00344*** 0.00374*** 0.00368*** 0.00372*** 

 (0.000251) (0.000251) (0.000248) (0.000249) (0.000249) 
experience -0.0409*** -0.0407*** -0.0409*** -0.0409*** -0.0409*** 

 (0.000905) (0.000903) (0.000902) (0.000902) (0.000902) 
first inventor 0.199*** 0.204*** 0.203*** 0.203*** 0.203*** 

 (0.0102) (0.0101) (0.0101) (0.0101) (0.0101) 
single country 0.0715*** 0.0679*** 0.0672*** 0.0699*** 0.0677*** 

 (0.0115) (0.0114) (0.0114) (0.0114) (0.0114) 
single firm 0.0996*** 0.0953*** 0.100*** 0.0998*** 0.100*** 

 (0.0125) (0.0125) (0.0125) (0.0125) (0.0125) 
technology residuals 0.0998*** 0.0992*** 0.0995*** 0.0994*** 0.0995*** 

 (0.000537) (0.000537) (0.000536) (0.000536) (0.000536) 
year dummies YES YES YES YES YES 
constant -0.877*** -0.917*** -0.939*** -0.944*** -0.940*** 

 (0.0277) (0.0278) (0.0279) (0.0279) (0.0279) 
observations 227,679 227,679 227,679 227,679 227,679 
number of inventors 32,092 32,092 32,092 32,092 32,092 
Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1 
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Table 7. Results from panel negative binomial estimation: quantity of inventor’s output – model 3 

VARIABLES inventor's performance - quantity of inventor's output 
  3a 3b 3c 3d 
number of collaborators 0.0110*** 0.00968*** 0.00924*** 0.00930*** 

 (0.000683) (0.000626) (0.000621) (0.000625) 
indirect 1st connections 0.000295***     

 (8.29e-05)     
indirect connections – count  -4.57e-07***    

  (1.31e-07)    
ind. collab. - distance weighted   -3.05e-06***   

   (5.45e-07)   
ind. collab. - distance & information weight.    -2.84e-07*** 

    (5.80e-08) 
direct collab. # indirect 1st collab. -1.27e-05***     

 (1.88e-06)     
direct collab. # indirect collab.  -4.99e-09**    

  (2.39e-09)    
direct collab. # ind. collab. dist. weight.   -1.03e-08   

   (9.50e-09)   
direct collab. # ind. collab. dist. & inf. weight.    -9.53e-10 

    (1.04e-09) 
brokerage      
avg. strength of direct ties 0.0437*** 0.0444*** 0.0444*** 0.0443*** 
 (0.00369) (0.00367) (0.00368) (0.00368) 
avg. strength of 1st order indirect ties 0.0511***     
 (0.00351)     
avg. strength of indirect ties  0.0615*** 0.0609*** 0.0616*** 
  (0.00411) (0.00412) (0.00411) 
technology diversity 0.00243*** 0.00291*** 0.00325*** 0.00305*** 
 (0.000134) (0.000151) (0.000160) (0.000155) 
previous patent count 0.00348*** 0.00375*** 0.00368*** 0.00373*** 
 (0.000251) (0.000248) (0.000249) (0.000248) 
experience -0.0409*** -0.0410*** -0.0409*** -0.0410*** 
 (0.000904) (0.000902) (0.000902) (0.000902) 
first inventor 0.206*** 0.203*** 0.204*** 0.203*** 
 (0.0101) (0.0101) (0.0101) (0.0101) 
single country 0.0740*** 0.0694*** 0.0709*** 0.0686*** 
 (0.0115) (0.0115) (0.0115) (0.0115) 
single firm 0.0953*** 0.100*** 0.0998*** 0.100*** 
 (0.0125) (0.0125) (0.0125) (0.0125) 
technology residuals 0.0989*** 0.0994*** 0.0993*** 0.0994*** 
 (0.000538) (0.000537) (0.000537) (0.000537) 
year dummies YES YES YES YES 
constant -0.938*** -0.943*** -0.946*** -0.942*** 
 (0.0280) (0.0280) (0.0280) (0.0280) 
observations 227,679 227,679 227,679 227,679 
number of inventors 32,092 32,092 32,092 32,092 
Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1 
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Table 8. Results from panel negative binomial estimation: quantity of inventor’s output – model 4 

VARIABLES inventor's performance - quantity of inventor's output 
  4a 4b 4c 4d 
number of collaborators 0.00791*** 0.00694*** 0.00661*** 0.00659*** 

 (0.000724) (0.000672) (0.000663) (0.000669) 
indirect 1st connections 0.000321***     

 (8.05e-05)     
indirect connections – count  -4.19e-07***    

  (1.30e-07)    
ind. collab. - distance weighted   -2.92e-06***   

   (5.38e-07)   
ind. collab. - distance & information weight.    -2.71e-07*** 

    (5.75e-08) 
direct collab. # indirect 1st collab. -1.07e-05***     

 (1.83e-06)     
direct collab. # indirect collab.  -2.48e-09    

  (2.36e-09)    
direct collab. # ind. collab. dist. weight.   -2.07e-09   
   (9.19e-09)   
direct collab. # ind. collab. dist. & inf. weight.    1.20e-10 

    (1.02e-09) 
brokerage  0.272*** 0.269*** 0.268*** 0.270*** 

 (0.0202) (0.0202) (0.0201) (0.0202) 
avg. strength of direct ties 0.0369*** 0.0378*** 0.0379*** 0.0377*** 
 (0.00377) (0.00376) (0.00376) (0.00376) 
avg. strength of 1st order indirect ties 0.0524***     
 (0.00351)     
avg. strength of indirect ties  0.0622*** 0.0616*** 0.0623*** 
  (0.00411) (0.00412) (0.00411) 
technology diversity 0.00233*** 0.00280*** 0.00314*** 0.00294*** 
 (0.000134) (0.000151) (0.000160) (0.000155) 
previous patent count 0.00354*** 0.00383*** 0.00377*** 0.00381*** 
 (0.000254) (0.000250) (0.000251) (0.000251) 
experience -0.0415*** -0.0416*** -0.0415*** -0.0416*** 
 (0.000907) (0.000906) (0.000906) (0.000906) 
first inventor 0.180*** 0.178*** 0.178*** 0.177*** 
 (0.0103) (0.0103) (0.0103) (0.0103) 
single country 0.0543*** 0.0504*** 0.0518*** 0.0494*** 
 (0.0115) (0.0116) (0.0116) (0.0116) 
single firm 0.0779*** 0.0834*** 0.0833*** 0.0833*** 
 (0.0126) (0.0126) (0.0126) (0.0126) 
technology residuals 0.0989*** 0.0995*** 0.0994*** 0.0995*** 
 (0.000539) (0.000538) (0.000538) (0.000538) 
year dummies YES YES YES YES 
constant -1.015*** -1.020*** -1.023*** -1.020*** 
 (0.0286) (0.0286) (0.0286) (0.0286) 
observations 227,679 227,679 227,679 227,679 
number of inventors 32,092 32,092 32,092 32,092 
Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1 
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APPENDIX 2 

Appendix 2.A  

Herfindahl-Hirschman Index  

The Herfindahl-Hirschman Index (HHI) is a common measure of market concentration and is used to 

determine market competitiveness (Matsumoto et al. 2012; Rhoades 1993). The higher a market’s 

concentration and the lower its competition the closer the market is to a monopoly.  

HHI takes value between 0 and 1. A value close to unity indicates strong technological concentration, the 

polar case being unity, where all the patents applied by members of an ego network belong to one 

technological field. In other words, all collaborators have specialized in one technology and do not access 

to a wide range of knowledge. On the contrary, a value close to zero represents availability of more 

heterogeneous knowledge and lesser concentration of the technology expertise in the ego network. 

Therefore, the final step in calculating knowledge deconcentration is a linear transformation by subtracting 

HHI from 1. This step is necessary for the interpretation of heterogeneity rather than concentration of 

knowledge available in the ego network.  

For instance, if an ego network with 5 patents uses only one technology the HHI of this ego network will 

be equal to 1 = (5/5)2. This first illustrated network is fully concentrated on one technology field, and the 

HHI will be equal to 1. An alternative example to this is an ego network with, again, 5 patents use 

Technology 1 (T1), Technology 2 (T2) and Technology 3 (T3), respectively in 5, 3 and 2 of these 5 patents. 

In this case, the HHI of the illustrated ego network would be 0.38 = ((5/10)2 + (3/10)2 + (2/10)2). In this 

second illustrated network, there are many dominated technologies unlike in the first illustrated network.  
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Appendix 2.B 

Table 9. Summary statistics and pairwise correlations (means, standard deviations, N = 80 573) 

Variables Mean S. D. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 
(1) novelty of inventor’s output .036 .51 1.00             
(2) knowledge heterogeneity .281 .19 0.02 1.00            
(3) knowledge heterogeneity hhi-based .731 .22 0.02 0.65 1.00           
(4) brokerage .555 .21 0.01 0.33 0.15 1.00          
(5) number of direct collab. 8.13 8.44 -0.01 0.22 0.23 0.36 1.00         
(6) number of indirect collab. 26.82 64.16 -0.01 0.20 0.18 0.14 0.58 1.00        
(7) avg. strength of direct ties 1.01 1.11 0.027 0.07 0.04 0.25 -0.01 -0.01 1.00       
(8) avg. strength of indirect ties 1.02 1.01 0.021 0.19 0.19 0.11 0.09 0.08 0.36 1.00      
(9) current patent count 3.31 4.18 0.073 0.06 0.09 0.15 0.26 0.18 0.33 0.28 1.00     
(10) previous patent count 10.86 20.25 0.00 0.19 0.14 0.34 0.53 0.30 0.43 0.26 0.34 1.00    
(11) experience 5.78 6.29 0.00 0.14 0.11 0.23 0.24 0.11 0.13 0.08 0.1 0.34 1.00   
(12) first inventor .326 .36 0.013 0.04 -0.02 0.21 -0.06 -0.06 0.10 -0.01 0.02 0.06 0.04 1.00  
(13) single country .81 .34 0.006 -0.03 -0.09 0.09 -0.18 -0.21 0.13 0.05 -0.01 -0.00 0.02 0.08 1.00 
(14) single firm .85 .30 0.001 0.01 -0.02 0.12 -0.01 0.04 0.09 0.08 0.05 0.06 -0.02 0.04 0.08 



150 

 

Appendix 2.C 

Table 10. Results from panel negative binomial estimation: novelty of inventor’s output 

VARIABLES novelty of inventor’s output 
  model 1 model 2 model 3 
number of collaborators -0.00258 -0.000309 -0.00319 

 (0.00720) (0.00737) (0.00759) 
average strength of direct ties -0.0410 -0.0354 -0.0328 

 (0.0348) (0.0342) (0.0342) 
number of indirect connections -0.00746*** -0.0155*** -0.0154*** 

 (0.00156) (0.00195) (0.00194) 
average strength of indirect ties -0.169*** -0.299*** -0.291*** 

 (0.0358) (0.0411) (0.0409) 
current patent count 0.0679*** 0.0699*** 0.0698*** 

 (0.00530) (0.00525) (0.00526) 
previous patent count -0.00162 0.000391 -0.000122 

 (0.00233) (0.00240) (0.00245) 
experience -0.00587 -0.0111* -0.0121* 

 (0.00621) (0.00643) (0.00649) 
first inventor 0.145* 0.139 0.136 

 (0.0871) (0.0871) (0.0870) 
single country 0.0976 0.0800 0.0713 

 (0.104) (0.103) (0.103) 
single firm 0.144 0.208* 0.205* 

 (0.113) (0.114) (0.114) 
technology residuals 0.208*** 0.240*** 0.243*** 

 (0.0158) (0.0157) (0.0155) 
brokerage 0.569*** -0.106 -0.926*** 

 (0.174) (0.179) (0.304) 
knowledge heterogeneity  2.909*** 1.481*** 

  (0.192) (0.470) 
brokerage # knowledge heterogeneity   2.609*** 

   (0.782) 
constant -4.249*** -5.000*** -4.637*** 

 (0.262) (0.284) (0.305) 
year dummies yes yes yes 
number of observations 80,573 80,573 80,573 
number of inventors 32,092 32,092 32,092 
notes: dependent variables are inversely weighted with the number of co-inventors. standard errors in parentheses. 
significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 11. Results from panel negative binomial estimation (considering knowledge heterogeneity based 

on hhi) 

VARIABLES novelty of inventor’s output 

  model 1 model 2 model 3 
number of collaborators -0.00258 -0.00802 -0.0108 

 (0.00720) (0.00737) (0.00751) 
average strength of direct ties -0.0410 -0.0391 -0.0375 

 (0.0348) (0.0345) (0.0344) 
number of indirect connections -0.00746*** -0.0109*** -0.0110*** 

 (0.00156) (0.00174) (0.00174) 
average strength of indirect ties -0.169*** -0.247*** -0.245*** 

 (0.0358) (0.0386) (0.0386) 
current patent count 0.0679*** 0.0685*** 0.0682*** 

 (0.00530) (0.00525) (0.00525) 
previous patent count -0.00162 0.000314 0.000312 

 (0.00233) (0.00235) (0.00237) 
experience -0.00587 -0.0103 -0.0110* 

 (0.00621) (0.00644) (0.00648) 
first inventor 0.145* 0.150* 0.149* 

 (0.0871) (0.0872) (0.0870) 
single country 0.0976 0.140 0.133 

 (0.104) (0.103) (0.103) 
single firm 0.144 0.200* 0.200* 

 (0.113) (0.114) (0.114) 
technology residuals 0.208*** 0.227*** 0.230*** 

 (0.0158) (0.0155) (0.0153) 
brokerage 0.569*** 0.442** -2.529*** 

 (0.174) (0.173) (0.815) 
knowledge heterogeneity hhi-based  2.283*** 0.356 

 
 (0.219) (0.536) 

brokerage # know. heterogeneity hhi-based   3.829*** 
   (1.023) 

constant -4.249*** -6.150*** -4.727*** 
 (0.262) (0.329) (0.485) 

year dummies YES YES YES 
number of observations 80,573 80,573 80,573 
number of inventors 32,092 32,092 32,092 
Notes: Dependent variables are inversely weighted with the number of co-inventors. Standard errors in 
parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 12. Results from panel negative binomial estimation - lower than 40 years of experience 

VARIABLES novelty of inventor’s output 

  model 1 model 2 model 3 
number of collaborators -0.00295 -0.000520 -0.00338 

 (0.00721) (0.00739) (0.00760) 
average strength of direct ties -0.0413 -0.0354 -0.0328 

 (0.0348) (0.0342) (0.0342) 
number of indirect connections -0.00745*** -0.0155*** -0.0154*** 

 (0.00157) (0.00195) (0.00194) 
average strength of indirect ties -0.168*** -0.298*** -0.291*** 

 (0.0358) (0.0411) (0.0409) 
current patent count 0.0679*** 0.0699*** 0.0698*** 

 (0.00530) (0.00525) (0.00526) 
previous patent count -0.00198 0.000157 -0.000341 

 (0.00236) (0.00243) (0.00247) 
experience -0.00163 -0.00846 -0.00969 

 (0.00713) (0.00707) (0.00709) 
first inventor 0.144* 0.139 0.136 

 (0.0871) (0.0871) (0.0870) 
single country 0.0966 0.0794 0.0708 

 (0.104) (0.103) (0.103) 
single firm 0.147 0.210* 0.206* 

 (0.114) (0.114) (0.114) 
technology residuals 0.208*** 0.239*** 0.243*** 

 (0.0158) (0.0157) (0.0155) 
brokerage 0.558*** -0.113 -0.928*** 

 (0.175) (0.179) (0.304) 
knowledge heterogeneity  2.904*** 1.484*** 

  (0.192) (0.470) 
brokerage # knowledge heterogeneity   2.595*** 

   (0.782) 
constant -4.267*** -5.009*** -4.646*** 

 (0.263) (0.284) (0.305) 
year dummies YES YES YES 
number of observations 80,448 80,448 80,448 
number of inventors 32,051 32,051 32,051 
Notes: Dependent variables are inversely weighted with the number of co-inventors. Standard errors in parentheses. 
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 13. Results from panel negative binomial estimation - lower than 40 years of experience 

(considering knowledge heterogeneity based on hhi) 

VARIABLES novelty of inventor’s output 

  model 1 model 2 model 3 
number of collaborators -0.00295 -0.00824 -0.0110 

 (0.00721) (0.00739) (0.00752) 
average strength of direct ties -0.0413 -0.0393 -0.0376 

 (0.0348) (0.0345) (0.0344) 
number of indirect connections -0.00745*** -0.0109*** -0.0110*** 

 (0.00157) (0.00174) (0.00174) 
average strength of indirect ties -0.168*** -0.247*** -0.245*** 

 (0.0358) (0.0386) (0.0386) 
current patent count 0.0679*** 0.0685*** 0.0683*** 

 (0.00530) (0.00525) (0.00525) 
previous patent count -0.00198 7.74e-05 8.86e-05 

 (0.00236) (0.00238) (0.00240) 
experience -0.00163 -0.00761 -0.00846 

 (0.00713) (0.00710) (0.00710) 
first inventor 0.144* 0.150* 0.149* 

 (0.0871) (0.0872) (0.0871) 
single country 0.0966 0.139 0.132 

 (0.104) (0.103) (0.103) 
single firm 0.147 0.202* 0.202* 

 (0.114) (0.114) (0.114) 
technology residuals 0.208*** 0.227*** 0.230*** 

 (0.0158) (0.0155) (0.0153) 
brokerage 0.558*** 0.435** -2.524*** 

 (0.175) (0.173) (0.815) 
knowledge heterogeneity hhi-based  2.278*** 0.358 

 
 (0.219) (0.536) 

brokerage # know. heterogeneity hhi-based   3.814*** 
   (1.023) 

constant -4.267*** -6.155*** -4.738*** 
 (0.263) (0.329) (0.485) 

year dummies YES YES YES 
number of observations 80,448 80,448 80,448 
number of inventors 32,051 32,051 32,051 
Notes: Dependent variables are inversely weighted with the number of co-inventors. Standard errors in 
parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX 3 

Appendix 3.A 

Alternative cognitive proximity measurements 

Three additional measurements are constructed as alternatives to the main cognitive proximity measure.  

The first one, cognitive proximity 2, is a simple average of the cosine similarity of vectors as in the main 

measurement. However, the alternative version does not include vector dyads unless the focal inventor is 

one of the two. Again, the measurement is obtained on the basis of the past patenting portfolios of all 

network members, based on their inventions during the five years preceding the performance year. The 

technological expertise of each inventor in the network is described by a vector of length 650, where a cell 

describes whether an inventor uses a specific subclass. It equals 1 if the inventor uses the technology, else 

zero. The cognitive proximity is calculated as the average cosine similarity between the focal inventor's 

vector and the vectors of each other network member. The measurement does not capture the similarities 

between the network members and only considers the average cognitive proximity of local network 

members to the focal inventor. The alternative measure ranges from 0 (fully diverse network) to 1 (fully 

specialized network). 

For the second one, cognitive proximity 3, Herfindahl-Hirschman Index (HHI) is used. HHI a common 

measure of market concentration (Matsumoto et al. 2012; Rhoades 1993). In my study the higher a 

network’s knowledge concentration and specialization the higher the cognitive proximity within the 

network is. HHI takes value between 0 and 1. A value close to unity indicates strong technological 

concentration, the polar case being unity, where all the patents applied by members of a local network 

belong to one technological field. In other words, all collaborators have specialized in one technology and 
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do have the highest possible cognitive proximity. On the contrary, a value close to zero represents 

availability of a wide range of knowledge and lesser specialized technology expertise in the local network.  

For instance, if a local network with 10 patents uses only one technology the HHI of this local network will 

be equal to 1 = (10/10)2. This first illustrated network is fully concentrated on one technology field, and the 

HHI will be equal to 1. An alternative example to this is a local network with, again, 10 patents use 

Technology 1 (T1), Technology 2 (T2) and Technology 3 (T3), respectively in 10, 6 and 4 of these 10 

patents. In this case, the HHI of the illustrated local network would be 0.38 = ((10/20)2 + (6/20)2 + (4/20)2). 

In this second illustrated network, there are many dominated technologies unlike in the first illustrated 

network which leads to a more cognitive distance among the local network members.  

The last alternative measure, cognitive proximity 4 of the variable let us distinguish the collaborators’ 

common and unique knowledge and captures the level of cognitive proximity within focal inventor’s local 

network. To construct the measurement, I used the generated technology vectors of each member of a given 

local network. Next, I measure the cosine similarity between each dyad in local network. Then, based on 

the knowledge similarities between pairs of vectors, a knowledge matrix for the full local network is created. 

These matrices let me capture the level of cognitive proximity of local network members more from a 

network perspective. In order to transform the information in such a matrix into a single measure I compute  

𝑐𝑝! = 	∑ λ∗,'
3

3
67'  , 

where i denotes the focal inventor, j runs over all other inventors in i’s local network, N is the size of the 

local network, 𝐶6 is the eigenvector centrality of inventor j in this network, and λ is the maximum eigenvalue 

of the matrix. I, then, standardize cpi by dividing the maximum possible cognitive proximity in a network 

of given configuration. This is necessary for meaningful interpretation of estimation results.  
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Being that the results are robust to changes in measurement, I use the variable that is simpler and 

comprehensive enough to cover the compatibilities of all local network members’ knowledge portfolios. 

Novelty  

According to previous studies, number of new combinations represents the extent to which an invention is 

novel (Fleming et al. 2007; Jung and Lee 2016; Verhoeven et al. 2016; Arts and Fleming 2018). Consistent 

with the literature, the number of new subclass pairs within each of a focal inventor’s patents is used as a 

measure of novelty of inventor’s output. For this, I identified the first appearance of a previously 

uncombined pair of subclasses in each patent. I assign the combinations as novel by comparing them with 

pairwise combinations appear in all previous patents in EPO database. I then summed this indicator measure 

for each pairwise combination of the focal inventor during the performance year. Although new 

combinations are taken as a measure of novelty, I check if there are patents with no new combinations but 

with single new technology. The descriptive analysis showed that only 3 out of all used patents (from 1995 

to 2010) have included new and solo technological subclass. In the end, I am confident about the 

performance of the novelty measurement which relies on the number of new combinations.  
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Appendix 3.B 

Table 14. Summary statistics and pairwise correlations 

Means, Standard deviations, N = 80 573                                    

Variables   Mean   S. D. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

(1) global reuse 119884 229159 1               

(2) local reuse 70.41 273.41 0.44 1              

(3) cognitive proximity 0.60 0.24 0.22 0.07 1             

(4) brokerage 0.56 0.21 -0.04 0.08 -0.29 1            

(5) number of direct collab. 8.13 8.44 0.27 0.47 -0.17 0.36 1           

(6) number of indirect collab. 26.82 64.16 0.18 0.51 -0.14 0.14 0.58 1          

(7) avg. strength of direct ties 1.01 1.11 0.06 0.12 -0.07 0.25 -0.01 -0.01 1         

(8) avg. strength of indirect ties 1.02 1.01 0.09 0.19 -0.21 0.11 0.10 0.08 0.36 1        

(9) novelty  0.01 0.25 -0.01 0.00 -0.01 0.01 -0.01 -0.01 0.02 0.02 1       

(10) self-reuse 5.97 25.47 0.39 0.57 0.05 0.08 0.26 0.16 0.17 0.17 0.00 1      

(11) current patent count 3.31 4.18 0.29 0.41 -0.04 0.15 0.26 0.18 0.33 0.28 0.04 0.44 1     

(12) previous patent count 10.86 20.25 0.15 0.32 -0.15 0.34 0.53 0.30 0.43 0.26 0.00 0.20 0.34 1    

(13) experience 5.78 6.29 0.08 0.09 -0.12 0.23 0.24 0.11 0.13 0.08 0.00 0.06 0.10 0.34 1   

(14) first inventor 0.33 0.36 -0.07 -0.06 -0.03 0.21 -0.06 -0.06 0.10 -0.01 0.01 -0.01 0.02 0.06 0.04 1  

(15) single country 0.81 0.34 -0.10 -0.14 0.02 0.10 -0.18 -0.21 0.13 0.05 0.00 -0.04 -0.01 0.00 0.02 0.08 1 

(16) single firm 0.85 0.30 -0.01 0.05 0.00 0.12 -0.01 0.04 0.09 0.08 0.00 0.03 0.05 0.06 -0.02 0.04 0.08 

(17) forward citation 7.46 17.7 0.11 0.14 0.01 0.03 0.10 0.10 0.02 0.02 0.01 0.13 0.28 0.07 -0.01 0.00 -0.08 0.02 
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Appendix 3.C 

Success of broker’s ideas within whole network  

Whole network represents the entire network that captures every single inventor, and it does not apply a 

limitation to the social distance between the focal inventor, namely broker, and any other inventor. In a 

network that consists of all active inventors without questioning their distance to the focal inventor, having 

high-intensity connections, that is observed within cohesive networks, is emphasized to provide the 

following advantages to increase the success of the broker’s ideas. First, inventors’ engagement with one 

another directly is higher in cohesive networks and conducive to a more seamless diffusion of generated 

ideas. Second, the members of non-sparse networks are assumed to be more likely to possess highly 

overlapped knowledge which makes it easier to learn diversifying information through frequent 

interactions. Therefore, by agreeing with proponents of cohesive networks, the study build on the 

assumption that inventors’ ideas are more likely to be useful for others if they are embedded in cohesive 

networks. Consequently, the baseline hypothesis I tested is: 

Baseline hypothesis: The higher an inventor’s brokerage level, the less the inventor’s ideas will be 

successful (i.e., being reused and being cited by others) within whole networks.  

In addition to the opposing views about the influence of sparse network structure, counterparties provide 

non identical perspectives in terms of innovation success. Here, there is no harm to emphasize the 

differences between using an idea to take inspiration for future inventive activities and using the generated 

combination in an exact way by replicating it. The latter requires an excellent understanding of the 

generated technology combination to be able to use it in another context. To do so, inventors need to know 

the generated combinations very well and be able to refine them to solve new problems and develop novel 

applications. Even though there are remarkable studies on the success of individual’s ideas such as Fleming 

et al. (2007), the influence of being a broker still remains unclear and cannot be generalized for all contexts. 



159 

 

In addition to this generalizability issue, it is worthwhile to investigate the consistency of its effect for 

multiple facets of innovation usefulness (i.e., innovation success). And last, studies focusing on the 

innovation success and the influence of being a broker generally do not question whether the knowledge 

content of a brokered network is non-redundant or whether disconnected actors have different fields of 

expertise.  

Global reuse  

To measure the reuse by global network members of a given year, I consider all patent applications by the 

focal inventor in a particular performance year and scrutinize the reuse of inventor's combinations by others. 

Networks that contain all active inventors appear in European Patent Office worldwide patent statistical 

database are referred to as global or whole networks. Naturally, global network members can be at any 

social distance to focal inventor. Those members are the inventors who have a patent(s) in the five years 

following the performance year, therefore, have a chance to reuse focal inventor’s combinations. I simply 

name this variable as Global Reuse.  

As a matter of fact, the estimator’s performance begged for robustness analyses. Moreover, considering the 

alternative perspectives of innovation success (i.e., citing versus replicating the generated combinations) I 

see an added value for an alternative and very well-established proxy of usefulness of generated 

combinations. Therefore, I construct an alternative variable to use as a robustness check for reuse of 

inventor’s ideas by global network members. The variable considers future citations to the focal inventor’s 

patents of a given year. The variable is named as forward citations. It considers all patents applied by the 

focal inventor in a particular performance year and scrutinizes forward citations received by these patents. 

Forward citation count is another accepted measure of invention’s reuse (Harhoff et al. 1999; von Wartburg 

et al. 2005; Perry-Smith and Mannucci 2017). The variable is again measured over the five years following 

the patent application date.  
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Results 

In order to build analyses, I estimate two models respectively. To test the reuse of inventor’s combinations 

by all active network members (i.e., forward citation and global reuse) I begin with Model 1, which 

highlights the link between the focal inventor’s level of brokerage and the reuse by the whole network. This 

model includes brokerage and control variables including the novelty of the inventor’s output, as well as 

technology residual variables and year-fixed effect. In the next stage, Model 2 appends a stand-alone 

cognitive proximity term to Model 1. Although I do not question the relationship between cognitive 

proximity and reuse39, its inclusion in the second model creates an added value for the sake of interpreting 

the influence of network structure by decoupling the assumed knowledge benefits of brokerage. Therefore, 

second models are used for hypothesis testing. 

Table 15 reports the regression coefficient estimates for variable of interests across all models explaining 

the reuse of focal inventor’s ideas by whole network members. The results from Model 2s provide similar 

and strong evidence aligned with the literature showing that having disconnected contacts decreases the 

likelihood of the reuse of broker’s combinations. Literature provides opposite insights on the brokered 

networks’ influence on alternative reuse measurements tested in this study. Although the coefficients of 

brokerage are qualitatively consistent starting from Model 1, once the distinction between broker’s assumed 

 

39 The study does not choose to measure the global member’s cognitive proximity or observe its moderation 

on the analyzed mechanism. This is due to the fact that the global network constructed based on EPO 

database provides 1 global network of active thousands of inventors. Therefore, first, it is obvious that the 

knowledge matrix could not provide a good output because a massive number of inventors would create 

too much convergence among their knowledge vectors.  Second, I could have only 1 cognitive proximity 

measurement for this whole network which consists of all analyzed local networks. And addition of an 

interaction variable with a constant value of cognitive proximity could not be a valid approach and more 

importantly would not change the conclusion of my results. 
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knowledge advantages and its structural influence is made, the significance of coefficients increases for 

Forward Citation Count. Therefore, the study is convincing enough to conclude that regardless the broker’s 

strategic advantages relying on assumed knowledge heterogeneity access, his or her limited interactions 

decreases the reuse of his or her combinations by inventors placed in anywhere in the whole network. As 

proponents of closed networks argue, sparseness of broker’s network prevents the emergence of trusting 

environment, decelerate the knowledge flow, and hinder others from realizing previously used 

combinations. The study claims that this is not about the common language or ability to understand each 

other’s ideas as well as bias against novelty because it controls for the broker’s collaborators’ cognitive 

proximity and the novelty of their ideas.  
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Table 15. Reuse of inventor's output by global network members 

VARIABLES forward citation count        global reuse  
 model 1 model 2 model 1 model 2 

number of collaborators -0.00955*** -0.00956*** -0.0270*** -0.00351*** 
 (0.000824) (0.000825) (0.000754) (0.000645) 

average strength of direct ties -0.0734*** -0.0733*** -0.164*** -0.160*** 
 (0.00546) (0.00546) (0.00544) (0.00588) 

number of indirect connections 6.27e-05 5.81e-05 0.000642*** 0.000940*** 
 (8.46e-05) (8.53e-05) (2.52e-05) (2.29e-05) 

average strength of indirect ties -0.0704*** -0.0709*** -0.170*** -0.0930*** 
 (0.00493) (0.00507) (0.00508) (0.00535) 

current patent count 0.0326*** 0.0326*** -0.00274*** 0.0115*** 
 (0.000779) (0.000780) (0.00101) (0.000642) 

previous patent count 0.000346 0.000348 0.0145*** 0.00864*** 
 (0.000327) (0.000327) (0.000193) (0.000198) 

experience -0.0160*** -0.0161*** -0.0429*** 0.00902*** 
 (0.000926) (0.000927) (0.00103) (0.000729) 

first inventor -0.0196* -0.0195* -0.0441*** -0.0430*** 
 (0.0116) (0.0116) (0.0111) (0.0122) 

single country -0.0403*** -0.0401*** -0.686*** -0.630*** 
 (0.0127) (0.0127) (0.0108) (0.0122) 

single firm 0.0230* 0.0231* -0.710*** -0.633*** 
 (0.0139) (0.0139) (0.0116) (0.0129) 

technology residuals 0.0106*** 0.0106*** 2.57e-06*** 2.70e-06*** 
 (7.95e-05) (7.95e-05) (1.35e-08) (1.34e-08) 

self-reuse -0.001518*** -0.00341*** -0.0149182*** -0.001527*** 
 (0.0000112) (0.000016) (0.000214) (0.00012) 

novelty  0.0673*** 0.0673*** 0.0838*** 0.0801*** 
 (0.0117) (0.0117) (0.0123) (0.0124) 

cognitive proximity  -0.0117  1.724*** 
  (0.0240)  (0.0282) 

brokerage -0.0437* -0.0464** -1.165*** -0.705*** 
 (0.0229) (0.0236) (0.0220) (0.0240) 

constant -0.148*** -0.149*** 2.255*** 1.477*** 
 (0.0317) (0.0318) (0.0208) (0.0223) 

year dummies YES YES YES YES 
number of observations 80,573 80,573 80,573 80,573 
number of inventors 32,092 32,092 32,092 32,092 
Note: Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix 3.D 

Table 16. Reuse of inventor's output by local network members 

VARIABLES local reuse 
 model 1 model 2 model 3 

number of collaborators 0.00900*** 0.00901*** 0.00887*** 
 (0.000637) (0.000637) (0.000632) 

average strength of direct ties -0.000362 -0.000236 -0.00113 
 (0.00514) (0.00514) (0.00514) 

number of indirect connections 0.000319*** 0.000316*** 0.000357*** 
 (4.78e-05) (4.81e-05) (4.80e-05) 

average strength of indirect ties 0.103*** 0.102*** 0.101*** 
 (0.00470) (0.00473) (0.00475) 

current patent count 0.0176*** 0.0176*** 0.0175*** 
 (0.000645) (0.000645) (0.000643) 

previous patent count -0.000651*** -0.000655*** -0.000514*** 
 (0.000184) (0.000184) (0.000183) 

experience -0.000422 -0.000426 3.93e-05 
 (0.00113) (0.00113) (0.00113) 

first inventor -0.111*** -0.110*** -0.108*** 
 (0.0173) (0.0173) (0.0173) 

single country -0.293*** -0.292*** -0.289*** 
 (0.0180) (0.0180) (0.0180) 

single firm 0.0654*** 0.0658*** 0.0632*** 
 (0.0210) (0.0210) (0.0210) 

technology residuals 0.000801*** 0.000802*** 0.000791*** 
 (1.18e-05) (1.18e-05) (1.19e-05) 

self-reuse -0.000266*** -0.000272*** -0.000189** 
 (9.08e-05) (9.12e-05) (9.13e-05) 

novelty  0.0331** 0.0331** 0.0316** 
 (0.0159) (0.0159) (0.0159) 

brokerage 0.0801*** 0.0735** -0.504*** 
 (0.0309) (0.0319) (0.0756) 

cognitive proximity  -0.0233 -0.562*** 
  (0.0284) (0.0701) 

brokerage # cognitive proximity   0.977*** 
   (0.116) 

constant -0.513*** -0.496*** -0.158*** 
 (0.0385) (0.0438) (0.0592) 

year dummies YES YES YES 
number of observations 80,573 80,573 80,573 
number of inventors 32,092 32,092 32,092 
Note: Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 17. Robustness checks for alternative cognitive proximity measurements –reuse of inventor's 
output by local network members 

VARIABLES local reuse 
  alternative 1 alternative 2 alternative 3 
number of collaborators 0.00902*** 0.00840*** 0.00917*** 

 (0.000636) (0.000662) (0.000637) 
average strength of direct ties -0.000619 0.00696 -0.000294 

 (0.00513) (0.00506) (0.00514) 
number of indirect connections 0.000343*** 0.000234*** 0.000323*** 

 (4.83e-05) (4.95e-05) (4.87e-05) 
average strength of indirect ties 0.102*** 0.0838*** 0.0993*** 

 (0.00473) (0.00501) (0.00479) 
current patent count 0.0176*** 0.0178*** 0.0175*** 

 (0.000641) (0.000652) (0.000646) 
previous patent count -0.000556*** -0.000573*** -0.000550*** 

 (0.000183) (0.000185) (0.000183) 
experience -4.56e-05 -0.000921 6.46e-05 

 (0.00113) (0.00110) (0.00112) 
first inventor -0.108*** -0.0895*** -0.106*** 

 (0.0173) (0.0171) (0.0173) 
single country -0.290*** -0.242*** -0.284*** 

 (0.0180) (0.0177) (0.0180) 
single firm 0.0637*** 0.0946*** 0.0641*** 

 (0.0210) (0.0206) (0.0210) 
technology residuals 0.000792*** 0.000831*** 0.000797*** 

 (1.19e-05) (1.19e-05) (1.19e-05) 
self-reuse -0.000201** -0.000412*** -0.000237*** 

 (9.13e-05) (9.24e-05) (9.15e-05) 
novelty  0.0322** 0.0269* 0.0315** 

 (0.0159) (0.0161) (0.0160) 
brokerage -0.414*** -0.307*** -0.813*** 

 (0.0820) (0.0485) (0.104) 
cognitive proximity    
 -0.418*** -2.389*** -0.874*** 

 (0.0702) (0.0976) (0.0856) 
brokerage # cognitive proximity     
 0.786*** 1.111*** 1.164*** 

 (0.120) (0.174) (0.137) 
constant -0.240*** 0.00251 0.162** 

 (0.0607) (0.0442) (0.0757) 
year dummies YES YES YES 
number of observations 80,573 80,573 80,573 
number of inventors 32,092 32,092 32,092 
Note: Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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