
HAL Id: tel-03931346
https://theses.hal.science/tel-03931346v1

Submitted on 9 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards trustworthy, flexible, and privacy-preserving
peer-to-peer business process management systems

Tiphaine Henry

To cite this version:
Tiphaine Henry. Towards trustworthy, flexible, and privacy-preserving peer-to-peer business process
management systems. Computer science. Institut Polytechnique de Paris, 2022. English. �NNT :
2022IPPAS024�. �tel-03931346�

https://theses.hal.science/tel-03931346v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
2I

P
PA

S
02

4

Towards trustworthy, flexible, and
privacy-preserving peer-to-peer

business process management systems
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom SudParis

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 16/11/2022, par

TIPHAINE HENRY

Composition du Jury :

Professor Chirine Ghedira-Guegan (PhD)
Univ. Lyon, Université Jean Moulin Lyon 3, LIRIS, UMR5205, IAE
Lyon School of Management, France Présidente

Assoc. Professor Alexander Norta (PhD)
Department of Software Science, School of Information
Technologies, Tallinn University of Technology, Estonia Rapporteur

Professor Thomas Hildebrandt (PhD)
Computer Science Department, University of Copenhagen, Denmark Rapporteur

Sara Tucci Pergiovanni (PhD)
Head of Laboratory, CEA, France Examinateur

Professor Joaquin Garcia (PhD)
Télécom SudParis, Institut Polytechnique de Paris, Samovar, France Examinateur

Emmanuel Bertin (PhD)
Research Scientist, Orange Innovation Examinateur

Professor Walid Gaaloul (PhD)
Télécom SudParis, Institut Polytechnique de Paris, Samovar, France Directeur de thèse

Nassim Laga (PhD)
Research Project Leader, Orange Innovation, France Encadrant

Julien Hatin (PhD)
Research Project Leader, Orange Innovation, France Invité

Acknowledgment

Mes premiers remerciements vont à mes encadrants : les docteurs Nassim
Laga et Julien Hatin, et le professeur Walid Gaaloul. Le sujet de thèse proposé
est à la fois passionnant sur le plan théorique et précurseur d’applications
industrielles. Je les remercie de leur bienveillance, de leurs encouragements,
et de la veille qu’ils ont mise en œuvre pour que cette thèse soit une réussite.

Je remercie chaleureusement le professeur Alexander Norta, le professeur
Thomas Hildebrandt, le professeur Chirine Ghedira-Guegan, le docteur Sara
Tucci-Pergiovanni, le professeur Joaquin Garcia, et le docteur Emmanuel
Bertin d’avoir accepté de participer à mon jury de thèse.

Je remercie également Orange de m’avoir donné l’opportunité de réaliser
ce travail, ainsi que tous les moyens nécessaires pour son bon déroulement.
Je remercie Nassim Laga et Philippe Legay, de m’avoir fait confiance et
de m’avoir permis de réaliser cette thèse. Je remercie également Damien
Lannelonque et Xavier Loir de m’avoir accueilli dans leurs équipes durant la
thèse.

Ma gratitude va aussi à tous les gens qui ont participé de près ou de
loin à la réalisation de ce travail, que ce soit de façon informelle dans les
couloirs et les pauses café, ou formelle au travers de travaux de recherches,
de séminaires et de stages. Je remercie plus particulièrement Amina Brahem,
Denis Perrin, Paul Amsellem, Drissa Houatra, Oumaima Alaoui Ismaili, Rémy
Scholler, Jérôme Dupont, Shenle Pan, Roman Beck, Blaise Carnevillier, Léo
Kazmierczak, et Eloi Besnard, pour les nombreux échanges fructueux que
nous avons eus. Je remercie également les membres de l’équipe SAMOVAR
de l’Institut Telecom Sudparis. Leurs commentaires, suggestions, ou tout
simplement sympathie ont largement contribué au succès de cette thèse.

Enfin, je remercie Sara Tucci-Pergiovanni, et tous les membres de ma
nouvelle équipe pour leur sympathie et leur accueil dans mes nouvelles
fonctions au sein du CEA List.

Merci enfin à mes proches pour leur soutien au long de ces trois ans :
mes parents et ma soeur Astrid, qui ont été non seulement patients mais
également les meilleurs supporters tout au long de ces années d’études, mon
compagnon Antoine, pour son humour et sa confiance, sans qui je ne serais
pas là où je suis aujourd’hui, ainsi que ma famille et mes amis, pour leur
présence bienveillante et constante. Cette thèse leur est dédiée.

i

ii

Abstract

Blockchain technology has been introduced as a trustworthy disintermediation
tool for managing cross-organizational business processes in the past decade.
It ensures activities’ execution traceability while enforcing the control flow
agreed upon at design time with other partners.

However, ensuring trust in the deployment and execution protocol remain
challenging in this environment. Indeed, a separation of concerns should be
ensured among participants: the latter should only have access to the status
of the public tasks they are concerned with. Additionally, cross-organizational
processes comprise public and private activities, and a mechanism ensuring
the connection between the these two views should be defined. Another
challenge concerns business process management systems flexibility. Cross-
organizational processes are dynamic by nature, hence both control-flow
and runtime resources allocation flexibility should be made accessible in a
blockchain-based process management system. Finally, we consider the data
privacy challenge. Data processed in the blockchain environment can be
accessed by blockchain participants. Hence, the trustworthy auditability of
the blockchain-based process management systems should be backed with a
confidential treatment of sensitive business data.

To address these challenges, we propose the three following contributions
in this manuscript. First, we design and implement an on/off-chain
deployment and execution strategy for on/off-chain choreographies, which
enforces a trustworthy separation of concern between participants at each
step of the deployment and execution. Second, we propose to bring
control-flow flexibility to the blockchain-based business process management
system through change management: a change impacting other partners is
propagated to affected processes using a smart contract. We also leverage
smart contracts for a dynamic selection of service providers. Finally, we
propose two mechanisms to reconcile privacy imperatives with the benefits
of blockchain. The first mechanism leverages fully homomorphic encryption
for blockchain-based calculations such as sealed-bid auctions. The second
mechanism leverages banks as trustworthy intermediaries while secreting the
payment value. We demonstrate the feasibility of each contribution through
an implemented prototype and its effectiveness via experiments anchored in
the logistics domain.

iii

iv

Contents

Acknowledgment . i
Abstract . iii
List of Figures . x
List of Tables . xi
List of Symbols and Acronyms . xii
List of Publications . xvii

1 Introduction 3
1.1 Research context . 3
1.2 Motivating example . 6
1.3 Research problem . 8

1.3.1 (RQ1) How to leverage smart contracts as a
trustworthy distributed tool for coordination and
decision making in cross-organizational processes? . . 10

1.3.2 (RQ2) How to deploy and execute in a flexible fashion
cross-organizational processes managed on-chain? . . . 11

1.3.3 (RQ3) How to ensure the privacy of sensitive data
processed on-chain while preserving blockchain systems’
integrity and verifiability properties? 12

1.4 Thesis objectives, principles, and contributions 14
1.4.1 Thesis objectives and principles 14
1.4.2 Thesis contributions 15

1.5 Thesis outline . 17

2 Basic Concepts on Business Process Management and
Blockchain 19
2.1 Business Process Management 19

2.1.1 Business Process Lifecycle 20
2.1.2 Business Process Modelization 20
2.1.3 Business Process Execution 21

2.2 Blockchain . 23
2.2.1 Identity: reaching pseudo-anonymity with public and

private keys . 24
2.2.2 Transactions and record-keeping : 25

v

vi CONTENTS

2.2.3 Onchain execution logic with smart contracts 31

3 Related Work 35
3.1 Introduction . 35
3.2 Blockchain-based BPMS . 36

3.2.1 From empirical to model-based management of
processes on-chain . 36

3.2.2 Modeling stakes: focus on the imperative and
declarative approaches 37

3.2.3 View-based approaches 39
3.2.4 Business process instance deployment strategies 40

3.3 Bringing flexibility to blockchain-based BPMS 41
3.3.1 Control-flow flexibility with runtime process instance

changes . 41
3.3.2 Partner flexibility with runtime blockchain-based

procurement . 43
3.4 Bringing privacy to blockchain-based BPMS 44

3.4.1 Privacy preservation for on-chain offer comparison . . 45
3.4.2 On-chain privacy-preserving payments 46

3.5 Comparison and Discussion 48
3.5.1 Evaluation Criteria . 48
3.5.2 Summary . 49

3.6 Conclusion . 51

4 Declarative Choreography Management with Blockchain 57
4.1 Introduction . 57
4.2 Basic concepts . 59

4.2.1 DCR graphs . 59
4.2.2 DCR choreography . 60

4.3 Motivating Example . 61
4.4 Design time: Generating Public and Private Views 63

4.4.1 Public and private views of a DCR choreography . . . 63
4.4.2 Translating DCR graphs into bitvectors 65
4.4.3 Hybrid on/off-chain generation of views 66

4.5 Hybrid Off/On-chain Runtime Execution 68
4.5.1 Managing internal execution requests off-chain 69
4.5.2 Managing choreography events execution requests on-

chain . 69
4.6 Implementation and Evaluation 70

4.6.1 Implementation . 70
4.6.2 Evaluation . 71

4.7 Conclusion . 72

5 Control-flow and Partnership Flexibility 75

CONTENTS vii

5.1 Introduction . 75
5.2 Basic Concepts and Motivating Example 78

5.2.1 Control-flow change 78
5.2.2 Partner flexibility . 80

5.3 Control flow flexibility . 81
5.3.1 Step 1: Change Proposal 82
5.3.2 Step 2: Change request and negotiation 82
5.3.3 Step 3: Change propagation 85

5.4 Actor flexibility . 87
5.4.1 Platform instantiation 88
5.4.2 Filtering and sorting candidates 89
5.4.3 Service binding and fulfillment 90

5.5 Implementation and evaluation 91
5.5.1 Runtime DCR change 91
5.5.2 QoS-based resource allocation 94

5.6 Conclusion . 100

6 Sealed-bid Auctions and Privacy-preserving Payment 103
6.1 Introduction . 103
6.2 Motivating example . 105
6.3 Sealed-bid auctions . 107

6.3.1 Basic concepts on encryption technics 107
6.3.2 Overall approach . 109
6.3.3 Key initialization . 111
6.3.4 Generating and forwarding FHE-ciphered offers to the

smart contract . 112
6.3.5 Compare and allocate the service to the best offer . . 113

6.4 Privacy-preserving token payment 117
6.4.1 Overall approach . 117
6.4.2 Payment token smart contract initialization 118
6.4.3 Request payment tokens 121
6.4.4 Service payment . 121
6.4.5 Collaboration settlement and payment tokens

deactivation . 123
6.5 Implementation and evaluation 123

6.5.1 Sealed-bid auctions . 124
6.5.2 Privacy-preserving payment 127

6.6 Conclusion . 131

7 Summary, Discussion and Future Work 133
7.1 Summary . 133
7.2 Discussions . 135

7.2.1 Discussion on the DCR-choreography deployment and
execution blockchain-based system 135

viii CONTENTS

7.2.2 Discussion on the DCR-choreography control-flow and
partners change mechanism 136

7.2.3 Discussion on the privacy-preserving auction and
payment mechanisms 137

7.2.4 Summary . 139
7.3 Future work . 140

7.3.1 Contextual challenges 141

Appendices 165

Appendix Examples of DCR graph inputs 167

Appendix Proof of Concepts 171

Appendix Résumé Etendu 173

List of Figures

1.1 Motivating Example: BPMN Orchestration Diagram of Flower
Delivery. 7

2.1 The BPM life-cycle . 21
2.2 Examples of two modeling approaches of a flower delivery

business process . 22
(a) Declarative process of a flower delivery (DCR notation.) 22
(b) Imperative BPMN process of a flower delivery (BPMN

notation.) . 22
2.3 Illustration of a segment of the blockchain ledger (blocks 46-49) 27

3.1 Model-engineering pipeline for blockchain-based BPMS. . . . 37

4.1 DCR graph, and projections of a DCR graph chunk (in orange). 61
(a) DCR graph of Flower Delivery (in orange, a DCR subgraph) . . . 61
(b) Projection of the orange sub-graph over Driver (Driver private view) 61
(c) Projection of the orange sub-graph over Florist (Florist private view) 61

4.2 Sequence diagram of the hybrid on/off-chain design protocol . 67
4.3 The execution scheme logic of DCR choreography events . . . 68

(a) scale=0.51 . 68
(b) Execution of a choreography event 68

5.1 DCR choreography process and Carrier A1 private DCR
process of the flower delivery process 78

5.2 Sequence diagram of the propagation stage illustrating the
interactions between partners and the smart contract 86

5.3 Sequence Diagram of the binding solution (SP= Service
Provider) . 87

5.4 Blockchain-based FTSP mapping protocol 94
5.5 Smart contract creation cost depending on the number of

resources and binding parameters 96
(a) Creation cost according to the number of resources

initially registered . 96

ix

x LIST OF FIGURES

(b) Creation cost according to the number of binding
parameters . 96

5.6 Smart contract resource-binding latency 98

6.1 Sequence diagram of a blockchain-based service payment . . . 106
6.2 FHE Scheme . 108
6.3 RSA Scheme . 109
6.4 Privacy-preserving allocation and settlement stages 109
6.5 Initialization of cipher keys 111
6.6 Ciphering and gathering offers 112
6.7 Ciphered comparison and allocation 114
6.8 Privacy-preserving smart contract payments with a bank:

main stages . 118
6.9 Sequence diagram of the payment token smart contract

initialization (SC=Smart contract) 118
6.10 Service fulfillment . 122
6.11 Settlement of the payment channel and token deactivation . . 123
6.12 Protocol and key holders . 125
6.13 Comparison time according to the number of ciphered FHE

offers submitted . 127
6.14 Interaction Contract/Contract & Actor/Contract 129

List of Tables

1.1 RQ1 sub-challenges . 10
1.2 RQ2 sub-challenges . 12
1.3 RQ3 sub-challenges . 13
1.4 Mapping of research questions to corresponding thesis chapters,

publications, and contributions. 17

3.1 Related works categorization according to the evaluation
criteria E1-E7. (*)=no experimentation, (ND)= not detailed,
(NA)=not applicable . 53

4.1 Evolution of the markings of the DCR graph in Figure 4.1a . 62
4.2 Hybrid on/off-chain Projection and execution costs 74

(a) Subtable 1 list of tables text 74
(b) Subtable 2 list of tables text 74

4.3 Gas fees comparison of BPMN [122], and DCR choreographies
(our approach). 74

5.1 Registered carrier profiles. PFi the ith filtering criteria, and
POi the ith QoS optimization criteria 81

5.2 Proposed allowed (AR) and denied (DR) change rules for a
DCR process . 82

5.3 Smart contract propagation costs (Neg.=negotiation,
Prop.=propagation) . 93

5.4 Blockchain-based FTSP mapping nascent design principles . . 99

6.1 Competing carriers offers . 106
6.2 Size of files generated during the protocol (1 Mbit = 125 KB).

Acronyms: IS= competitors’ information system 126
6.3 Smart contract transaction costs. 126
6.4 Gas measurement for deploying 5 payment token smart

contracts (SC). 129
6.5 Gas measurement for the Bank Contract Methods during

payment and settlement stages. 130

xi

xii LIST OF TABLES

List of Symbols

DCR graphs symbols

R Set of roles
r, r′ Roles
G DCR graph
Gr DCR choreography private view (projection) of role r
Gγ DCR choreography public view
Φ A DCR choreography
E Set of labeled events
e, e′ Two events
ide Index of activity e in the relation matrix
ϵ Set of internal events in G
i An interaction
I, γ Set of interactions
M Set of markings
me Marking of event e
in Included event state
pe Pending event state
ex Executed event state
In Set of currently included events
Pe Set of currently pending responses
Ex Set of previously executed events
f Labelling function
L Set of labels
Γ Set of relations of the graph
l A relation between two events
−→ • Condition relation
• −→ Response relation
−→ ⋄ Milestone relation
−→+ Include relation
−→% Exclude relation
σ counter keeping track of the number of projections realized

xiii

xiv LIST OF TABLES

γapproval List recording whether a participant has generated its
local projection

γfetch List recording whether the participant fetched the public
view

Business Process Model change symbols

ν A change
Rendorsers Set of change endorsers
GRef Change element (also called refinement element)
G′

Ref Updated change element
Q A business process model fragment
t1 the deadline timestamp for change endorsement
t2 the deadline timestamp for change propagation
δ the endorser response ∈ {0, 1}
γrequests List of change requests
γendorsement List of change endorsement responses
γpropag List of partners’ change propagation states

Encryption symbols

ψx Hash of x
c, cmax Ciphered numbers
cx, c′

x Ciphers of x
C , D Ciphering function of type
k Ciphering key for the symmetric encryption of type
k’ Ciphered Ciphering key for the symmetric encryption of

type
(s , p) Secret and public keys for the asymmetric encryption

algorithm of type
Oenc Array of numbers ciphered with an algorithm of type
L List of ciphered aggregated offers
Ldec Deciphered argmax vector
Ψ A hash function
θ1, θ2, θ3 Values to be hashed
ρl, ρr Left and right branches of Merkle tree

Blockchain/IPFS symbols

Vtoken Token smart contract
VDCR Smart contract managing the DCR choreography

LIST OF TABLES xv

aV public address of smart contract V
arole Blockchain address of partner role
asender Address of the sender of the blockchain transaction
aendorser the endorser address
Aendorsers the list of endorser addresses
ψG the current IPFS workflow hash
ψG′ the IPFS hash of the requested change description
q Token price for a service
t Target block to call a smart contract
N Total Number of tokens to generate
h Payment channel
H List of payment channels
α Payment token conversion rate
m Number of tokens

Miscellaneous

A1, A2, A3, A4 Four carriers
D1, D2 Availability dates
OA1, OA2 Vector of offers of A1 and A2
ϕ A toy example location
x, y, n Natural numbers
p a prime number
g an algebraic operation
β penalty factor
d Claim time
PF List of filtering criteria
PO List of QoS optimization criteria
W List of optimization weights where each weight ∈ [0,1]
S Service request
U Candidates matrix
ηr Quality of service rating of role r
PFavailability

List of candidates’ availability dates
ω A boolean variable assessing candidates’ matching status
X Binary filter vector
B binary argmax vector
ΠOA1 ,ΠOA2 interchanged offers

xvi LIST OF TABLES

List of Acronyms

RSA Rivest Shamir Adleman
AES Advanced Encryption Standard
FHE Fully Homomorphic Encryption
T Token unit
SP Service Provider
SC Smart Contract
IPFS Inter Planetary File System
BPMN Business Process Model and Notation
DCR Dynamic-Condition-Response
QoS Quality of Service
FTSP Freight Transportation Procurement Process
CMR (or CMR
Convention)

Convention on the Contract for the International Carriage
of Goods by Road

AR Allowed Change Rule
DR Denied Change Rule
API Application Programming Interface
DoS Denial of Service
DSS Digital Signature Scheme
ECDSA Elliptic Curve Digital Signature Algorithm
ECDH Elliptic Curve Diffie-Hellman
DSA Digital Signature Algorithm
PBFT Practical Byzantine Fault Tolerance consensus mechanism
UTXO Unspent transaction output
TEE Trusted execution environment
VDF Verifiable delay function
EVM Ethereum Virtual Machine
CPU Central Processing Unit
GPU Graphics Processing Unit
ASIC Application Specific Integrated Circuit
DAG Directed Acyclic Graph

xvii

xviii LIST OF TABLES

List of Publications

This Ph.D. thesis is based on the following publications that are referred to
in the text by Roman numbers.

I HICSS 2021: Hawaii, USA, Cross-collaboration processes based on
blockchain and IoT: a survey, T.Henry, N.Laga, J.Hatin, W.Gaaloul,
I.Boughzala

II ICSOC 2021, Dubai, UAE, Trustworthy Decentralized Execution of
Declarative Business Process Choreographies, T.Henry, A.Brahem,
N.Laga, J.Hatin, W.Gaaloul, B.Benatallah

III IEEE SCC 2021, online session, Hire me fairly: Towards dynamic
resource-binding with smart contracts, T.Henry, N.Laga, R.Beck,
W.Gaaloul

IV HICSS 2022, Hawaii, USA, Decentralized procurement mechanisms for
efficient logistics services mapping - a design science research approach,
T.Henry, R.Beck, N.Laga, W.Gaaloul, S.Pan

V BPM 2022, Münster, Germany, A trustworthy decentralized change
propagation mechanism for declarative choreographies, A.Brahem,
T.Henry, S.Bhiri, T.Devogele, N. Laga, N. Messai, Y.Sam, W. Gaaloul,
B. Benatallah

VI ICSOC 2022, Bozen Bolzano, Italy Random-value tokens for privacy-
preserving decentralized payments, T.Henry, L.Kazmierczak, J.Hatin,
E.Bertin, N.Laga, W.Gaaloul

VII Towards trustworthy and privacy-preserving decentralized auctions,
T.Henry, J.Hatin, N.Laga, W.Gaaloul, submitted to the Journal of
Banking and Financial Technology

Two patents were derived from publications IV and VII.

• Patent: n° FR2100122 ”Procédé de fourniture de service mis en œuvre
par ordinateur dans une châıne de blocs, nœud d’un réseau de châıne
de blocs et programme d’ordinateur correspondants.”. T.Henry, N.Laga,
2021

xix

LIST OF TABLES 1

• Patent: n°FR2109204 ”Procédé de fourniture de service mis en œuvre
par ordinateur dans une châıne de blocs, nœud d’un réseau de châıne
de blocs et programme d’ordinateur correspondants”. T.Henry, B.
Carnevillier, J.Hatin, N.Laga

2 LIST OF TABLES

Chapter 1

Introduction

Contents
1.1 Research context 3
1.2 Motivating example 6
1.3 Research problem 8

1.3.1 (RQ1) How to leverage smart contracts as a
trustworthy distributed tool for coordination and
decision making in cross-organizational processes? 10

1.3.2 (RQ2) How to deploy and execute in a flexible
fashion cross-organizational processes managed on-
chain? . 11

1.3.3 (RQ3) How to ensure the privacy of sensitive
data processed on-chain while preserving blockchain
systems’ integrity and verifiability properties? . . . 12

1.4 Thesis objectives, principles, and contributions 14
1.4.1 Thesis objectives and principles 14
1.4.2 Thesis contributions 15

1.5 Thesis outline . 17

1.1 Research context

A trend toward content decentralization, distribution, and disintermediation
can be noted since the early 2000s [174]: service and resource providers
communicate and collaborate with clients more directly, with fewer
intermediaries. Such habits can be particularly noticed in the industry.
Indeed, the digitization and automation of industrial processes, backed by
servitization and decentralization trends, has encouraged the development of
more flexible and cross-organizational partnerships [134, 137]. Intermediation
platforms such as Amazon or Uber are examples of cross-collaboration
processes: customers and service providers (e.g., manufacturers or delivery

3

4 CHAPTER 1. INTRODUCTION

carriers) interact at different stages of the process to lead to value creation [59].
Some examples of added-value activities are producing items, proceeding to
checkout, proceeding to the delivery, etc.

In this cross-organizational setting, contractual trust- the subjective
belief that a set of agreements will be fulfilled while respecting a set of
constraints (e.g., resource, time, etc.)- is paramount. To better communicate
and coordinate, business process models are used: the activities of each
partner are specified as a shared diagram, and activities are linked together
to be orchestrated in a standardized fashion [221, 92, 128, 197]. The status
of each activity is specified and monitored on the business process model
instance. Hence, each partner oversees the whole process pipeline and verifies
the correct execution of activities at the right time and by the right partner.

Activities managed in a cross-organizational setting can be public (e.g.,
involving several partners), or private (e.g., part of one partner’s internal
process). Communication activities aim at better communication and
coordination between partners. Nonetheless, public activities take place
physically in a decentralized fashion. Hence, challenges arise regarding the
multi-party management of such decentralized process.

First, a need for a trusted communication environment arises [157].
A third-party platform often carries out in a centralized silo fashion the
management of shared tasks aiming at communication and coordination [21,
228]. The platform embodies trust: for example, it can act as a mediator in
the case of a dispute resolution, collect the ratings of the clients, or propose
optional insurance. However, these third-party platforms represent added
costs for the involved partners. They also create an imbalanced sharing
of resources, impede contractual flexibility, and constitute single points of
failure that can cause security leakages. Power imbalances regarding access
to information may rise as in traditional settings, distrust into provided
logs may arise as execution logs, and process execution is provided by a
trusted third-party [83, 33]. Hence, a need for leveraging trust in a trustless
multiparty environment arises.

Additionally, a need for more efficient execution procedures can be cited,
backed by the automation of paperwork activities. Indeed, legal or security-
related guidelines can generate delays for document processing activities (cf
AML procedures or import-export regulations). Similarly, human factors can
also induce activity execution delays (e.g., a collaborator forgets to confirm
the reception of a package). Hence, a need to reduce process execution delays
through the lens of process automation raises.

Thirdly, a need for more flexible process management can be pointed
at. Indeed, business process management systems may prove to be rigid
with respect to control-flow executions. Nonetheless, adapting processes to
evolving regulation laws, internal process changes, or partnering choices can
be cumbersome but remains necessary for enterprises to stay competitive.

Finally, a need for bridging the gap between business and IT is at

1.1. RESEARCH CONTEXT 5

stake. The tools and proof-of-concepts currently developed are often
too development-oriented. Their manipulation requires coding skills.
Consequently, from a business analyst’s perspective, three difficulties might
arise: a steep learning gap, the threat of committing implementation errors,
and security concerns.

In the past decade, blockchain technology has been introduced as a
trustworthy disintermediation tool for managing information, and payment
[105, 135].

Blockchain can be defined as a decentralized peer-to-peer ledger that
keeps track of transactions between users. This is particularly helpful for
providing trust, traceability, and security in systems that exchange data or
assets.” [213]. Validated transactions are stored in blocks, and blocks are
linked with the former block’s hash following a Merkle tree structure [136].
Consensus algorithms such as proof-of-work, or proof-of-stake, regulate the
chain’s growth by verifying transactions and discarding invalid transactions.
Additionally, cryptography rules ensure the pseudo-anonymity of users.
Blockchains today start to be adopted by the banking system and the supply
chain [29], smart shipment monitoring [44, 10], land registry implementations
in Sweden and Georgia [178, 199], corruption fight in Ukraine [191], or food
traceability such as the IBM food trust initiative [97], a consortium of food
partners such as Carrefour and the Mousseline mash potatoes traceability in
2019, or the Liebig soup in 2020 [68].

The maturation of blockchain has followed an iterative process. Bitcoin
was inspired by early attempts to create an anonymous transaction system,
namely Digicash, Hashcash, and B-Money [146]. Satoshi Nakamoto published
the Bitcoin whitepaper in October 2008 to summarize these early attempt
proposals. The whitepaper proposes an electronic payment system based on
cryptographic proof instead of trust in central banks. It proposes proof of
work consensus as a trustworthy distributed consensus as one CPU (Central
Unit Processing) is worth one vote. Building on this whitepaper, Bitcoin is
proposed as a trustworthy pseudonymous cryptocurrency. The genesis block
was mined on Jan 3rd, 2009.

The second generation blockchain, released in 2015, is Ethereum, which
proposes, on top of the blockchain, smart contracts [31]. Ethereum history
begins with the need for a platform that can support a Turing complete
code. Ethereum has been developed to offer more than currency exchanges
using Turing-complete scripts executed on-chain named smart contracts.
With Ethereum smart contracts, any algorithm can theoretically be coded
and executed as a smart contract. Additionally, decentralized applications
(dApps) can be developed using Ethereum’s blockchain as a backend. Users
access dApps functionalities by calling smart contract functions instead
of traditional API (Application Programming Interface) calls. The smart
contract, publicly stored in the ledger, autonomously executes contractual
terms without calling any third party. Smart contracts are deployed in the

6 CHAPTER 1. INTRODUCTION

blockchain ledger and replicated among blockchain participants: they are
run by each network node. If all nodes verify all conditions of the smart
contract, then the transaction is executed and validated (i.e., appended to
the chain).

Alongside smart contracts operate third-party services linking the
blockchain network to the outside world, referred to as oracles [4]. Using
oracles, smart contracts can carry on API calls to query trustworthy off-chain
data sources that provide data feeds exposed as APIs. Oracles are multi-
agent systems and can even be used for conflict-resolution management [148].
On a technical side, oracles consist of smart contracts serving data requests
coming from other smart contracts [227]. The issue of re-centralization and
trust coming with the idea of using trusted external data sources, known as
the oracle problem, is currently a subject of investigation [32].

Leveraging these building blocks, several approaches have been leveraging
blockchain as a trustworthy tool for managing inter-organizational business
process information systems. Blockchain offers a trustworthy decentralized
tool to manage the deployment and execution of business processes. It
enforces the traceability of the status and execution of the task (who
executed the task, and when) while enforcing the control flow agreed upon
at design time with other partners [135]. With blockchain, no central actor
is required to manage the process [152, 156]. Additionally, data management
is trustworthy as blockchain logs are immutable. Moreover, smart contracts
can contribute to the trustworthy automation of redundant tasks. Indeed,
smart contracts can monitor processes and automatize contractualization or
billing tasks without needing a third party, and research efforts are being
made regarding the development of legally binding smart contracts [60].
However, process flexibility and end-user accessibility remain challenges in
the blockchain environment. In addition, blockchain environment specificities
raise data privacy concerns: the history of transactions is accessible to the
blockchain network participants. Hence, sensitive information can leak and
be accessible to competitors. At the same time, a shared process should
enforce a separation of concerns: internal data such as model and execution
logs should not be visible to the other partners. Hence, a trade-off between
ensuring the privacy of partners’ private processes and exposing the public
process thus arises [194].

Thus, using blockchain-enabled processes for trust triggers the following
research challenges: process traceability, process flexibility, and data privacy.
We detail each one of these research directions hereinafter.

1.2 Motivating example

Let’s consider an inter-organizational process: a florist requests a delivery
service to fulfill an order issued by a customer. Figure 1.1 depicts the

1.2. MOTIVATING EXAMPLE 7

Figure 1.1: Motivating Example: BPMN Orchestration Diagram of Flower
Delivery.

process using the BPMN (Business Process Model and Notation) standard
and following an orchestration scheme. Several pools compose the workflow:
the florist pool, the delivering carrier pool, and the customer pool. In
this example, the inter-organizational process comprises public and private
activities. Shipping or Accept are examples of public activities. The
status of these activities is shared between partners for communication
and coordination purposes. Upon executing the public task Shipping, Driver
updates the activity status in the BPMS. The participants, Customer and
Florist, will receive the status update. PrepareCommand is an example of a
private activity. The activity is not shared with the other partners, and the
execution status is managed in the private information system of the partner
Florist. Finally, the execution of tasks follows an imperative control-flow:
the execution of PrepareCommand will imply the execution of CallDriver,
that will imply the execution of Shipping, etc.

The modeling choice of the cross-organizational process is also to be
considered [164]. Figure 1.1 depicts an orchestration scheme: the global
process is managed by a centralized entity. Choreography modeling can also
be a fit in a cross-organizational setting as access to the global process is
distributed across partners. Hence, a separation of concerns is provided by
design.

In this cross-organizational setting, alongside modeling choices, trust can
be challenged, e.g., if the customer declares that she did not receive one of the
requested flower packages or if the florist suspects that delays occurred during
the delivery. A trustworthy (or trustless) communication and coordination

8 CHAPTER 1. INTRODUCTION

tool such as blockchain could help ensure a trustworthy management of the
process history data. The business process flow could be managed on-chain:
hence, the history of services would be tamper-proof (knowing who unloaded
the truck, who got the merchandise, what was checked before departure, etc.).
Every participant could thus have access to the current state of the process
by auditing the ledger. Governance of the business process, decentralized,
would thus better fit the real-world state of the process. Moreover, such
auditing could ease claim resolution as the ledger serves as a single source of
truth. Smart contracts could address the need for task automation such as
carrier selection, contracting based on preset criteria, or service settlement
(pay carrier, pay florist). We build on this motivating example to illustrate
our research problem and challenges hereinafter.

1.3 Research problem

Three important challenges arise regarding the development of blockchain-
based cross-organizational processes.

The first challenge, illustrated in our motivating example, is the need for
a trustless tool for coordination and decision-making in cross-organizational
processes. Such a tool, embodied by smart contracts, could answer the
need for a trustworthy deployment and execution of cross-organizational
processes while enforcing the separation of concerns. The use of smart
contracts to manage business process models with a decentralized focus has
been investigated in [214, 112]. Each participant is identified as a blockchain
participant, and a smart contract manages business process instances depicted
as a BPMN diagram. For each BPMN activity execution, participants interact
with the smart contract. Hence, the history of the transactions is stored in the
blockchain ledger in a trustworthy and tamper-proof fashion. Nonetheless, in
these approaches, the execution of private tasks off-chain is only mentioned,
and the inner on/off-chain deployment and execution mechanism for process
instances has not been detailed further. In our motivating example, the
question about how to interconnect private tasks such as PrepareCommand
in the florist view with the on-chain public view is not addressed.

Moreover, cross-organizational decisions such as resource allocation
activities call for a trustworthy automation for adoption purposes. Indeed,
the contractulization with one partner based on the outcome of a bidding
auction should leverage tamper-proof data, and partners’ bids should be
processed without bias. Details regarding the decision process also require to
be stored in a trustworthy and tamper proof fashion. In this context, smart
contracts could be used to manage the runtime allocation of a given set of
resources based on past services history stored on-chain. Hence, this design
would ensure a certain quality of service while preventing siloed decision-
making [159, 181, 162]. For example, the florist, who may not want to rely

1.3. RESEARCH PROBLEM 9

on a single delivery company to ensure quality standards, could leverage a
smart contract to find the carrier with the best quality of service (QoS) to
ensure, e.g., a constant temperature during the delivery, or a just-in-time
delivery. The smart contract resource binder could compute each available
carrier’s QoS to propose to the florist the best profile.

Hence, the first research question is thus (RQ1) How to leverage smart
contracts as a trustworthy distributed tool for coordination and decision
making in cross-organizational processes?

The second challenge relates to the dynamic nature of cross-organizational
processes: such processes require (i) adaptation of the process at runtime
and (ii) a dynamic assignment of actors.

Regarding process adaptation, participants in our motivating example
may want to add a temperature sensor to deliver real-time data to monitor
the temperature of the flowers though the smart contract managing the
process is already deployed. Most related works consider changes in process
orchestrations only [141, 49]. Additionally, approaches binding actors to
roles in a process collaboration [125] currently push the burden of checking
the transitive effect of new changes onto the new parties.

Regarding dynamic assignment, several rules, or constraints, have been
implemented to retrieve resource-binding matches. Among such rules stand:
(i) behavioral, structural, or execution constraints in [195], or (ii) roles, and
statements in [121]. However, these notions are missing in the retrieved
protocols. Moreover, to our knowledge, no QoS rules have been proposed
in the literature to generate smart contract bindings (e.g., rules leveraging
customer satisfaction or delivering carriers’ punctuality). Additionally, the
contracting stage is only addressed in [172] where parties negotiate binding
terms.

Hence, the second research question is thus (RQ2) How to deploy and
execute in a flexible fashion cross-organizational processes managed on-chain?

The third challenge relates to the privacy of sensitive data transiting
in cross-organizational processes. Indeed, cross-organizational processes
leverage sensitive information such as delivery price or truck size in our
motivating example. Nonetheless, blockchain’s open and transparent
characteristic challenges this imperative for full or partial confidentiality in
cross-organizational business processes.

Several publications propose to investigate blockchain-based sealed-bid
auctioning [72, 103, 61, 71, 14, 192, 110, 51, 210, 22, 126]. Nonetheless,
carrying on privacy-preserving auctions on blockchain with multi-party-
computing reintroduces bidders interactivity, which is not desired to carry
on auctions [192]. Additionally, using private blockchains lowers scalability
and does not leverage smart contract automation benefits. Moreover, using
trusted execution environments reintroduces a single point of failure as the
content of offers is revealed to the enclave. Hence, there is a research gap in
allocating services based on multi-objective sorting in a privacy-preserving

10 CHAPTER 1. INTRODUCTION

RQ1.1 How to carry out a separation of concerns that preserves
the privacy of the private processes and trust of the public
process for the deployment and execution of choreography
processes in blockchain?

RQ1.2 How can smart contracts foster trustworthy and power-
balanced decision-making for the runtime allocation of
resources?

Table 1.1: RQ1 sub-challenges

fashion while ensuring auditability [132].
The third research question is thus (RQ3) How to ensure the privacy of

sensitive data while preserving the integrity and verifiability advantages of
blockchain systems?

These research questions can be further divided into several sub-questions.
Some were previously discussed in related studies, and others were not
previously handled but could be deduced from the flexible and sensitive
nature of cross-organizational processes. We develop these research sub-
questions according to RQ1 (c.f. Section 1.3.1), RQ2 (c.f. Section 1.3.2),
and RQ3 (c.f. Section 1.3.3).

1.3.1 (RQ1) How to leverage smart contracts as a
trustworthy distributed tool for coordination and
decision making in cross-organizational processes?

Blockchain has been leveraged in the literature as a trustworthy coordination
mechanism for collaborative business processes [214, 112, 115]. On-chain
business process execution logs are not only tamper-proof but also made
publicly available to participants, reducing power balance. Hence, the use
of smart contracts as a trustworthy distributed tool for cross-organizational
collaboration and decision-making should be investigated: table 1.1 presents
our two related research sub-questions.

First, the potential for smart contracts to encapsulate business process
models in a trustworthy fashion while preserving the separation of concerns
shall be investigated. To better fit the collaboration aspect of cross-
organizational processes and ensure a separation of concerns by design, we
choose a choreography modeling approach. Business process choreographies
comprise private processes carried by individual partners, where internal
data such as model and execution logs should not be visible to the other
partners. It also includes a public process where several partners collaborate
in a coordinated way. In a choreography, all partners should trust the
execution state of the public process. However, the trustworthy execution of
the public process remains challenging as it is often managed centrally [112].
Additionally, a trade-off between ensuring the privacy of partners’ private

1.3. RESEARCH PROBLEM 11

processes and the exposure of the public process arises, e.g., the carrier
should only have access to the set of tasks where she is involved and not
the tasks of the customer or florist, and reciprocally. To our knowledge,
research is scarce concerning the trustworthy deployment of choreographies
leveraging blockchain. This deployment remains challenging as private
information should not be shared between partners at design or runtime.
Thus, the following question arises RQ1.1 How to carry out a separation of
concerns that preserves the privacy of the private processes and trust of the
public process for the deployment and execution of choreography processes in
blockchain?

Additionally, a specific cross-organizational concern is allocating a
participant to a given task in a dynamic fashion. Many cross-organizational
processes call for more power balance and objectivity when assigning a task
to one of several potential candidates. Public tasks such as allocation tasks
should be objective and neutral regarding participants: power asymmetries,
or collusion between participants, should be avoided. Hence the role of
smart contracts as a reliable distributed tool for resource allocation shall be
investigated more thoroughly while taking into account runtime customizable
QoS metrics and leveraging past activity data shared between participants
on-chain (e.g., the number of items delivered or the hour of delivery). Hence,
we propose the following question: RQ1.2 How can smart contracts foster
trustworthy and power-balanced decision-making for the runtime allocation
of resources?

1.3.2 (RQ2) How to deploy and execute in a flexible fashion
cross-organizational processes managed on-chain?

Due to the dynamic nature of cross-organizational processes, a blockchain-
based business process management system should offer flexibility at runtime,
e.g., adapt to a moving environment, support partnering, and operational
business process agility [183]. Partnering agility consists of sharing
competencies and upstream and downstream resources, and operational
agility consists of working on speed and accuracy improvements, as well as
cost economy, often by leveraging servitization. Hence our challenge is to
improve model flexibility of cross-organizational processes in a trustworthy
fashion by focusing on the partnering and operational aspects.

Table 1.2 presents the three research sub-questions.
Partnering agility should be taken into account when designing blockchain-

based processes[183, 137]: models should integrate activities where the
assignment to tasks can be realized at runtime (e.g., using push and pull
strategies [70], and multi-criteria auctions leveraging, for example, the QoS of
delivering carriers). For example, it should be possible to reallocate an activity
to another actor if the actor initially assigned does not comply anymore, for
instance, with the QoS requirements or if she is unavailable. We thus ask the

12 CHAPTER 1. INTRODUCTION

RQ2.1 How to foster actors’ (re)allocation flexibility on running
instances using a smart contract-based multi-criteria decision
algorithm that leverages blockchain-based process history?

RQ2.2 How to model the flexibility imperatives of cross-
organizational business processes?

RQ2.3 How to change the process model instances of blockchain-
based cross-organizational processes?

Table 1.2: RQ2 sub-challenges

following sub-question: RQ2.1 How to foster actors’ (re)allocation flexibility
on running instances using a smart contract-based multi-criteria decision
algorithm that leverages blockchain-based process history?

Operational agility should be examined in the blockchain context. The
modeling language used to design business processes should offer flexibility
due to the dynamic nature of cross-organizational processes. Hence, the
modeling language should be flexible enough to adapt to process execution
path variations at runtime. Therefore, we ask the following sub-question:
RQ2.2 How to model the flexibility imperatives of cross-organizational business
processes? Moreover, participants should be able to suggest modifications to
the running process instance and negotiate change requests on-chain. We
thus ask the following sub-questions: RQ2.3 How to change the process model
instances of blockchain-based cross-organizational processes?

1.3.3 (RQ3) How to ensure the privacy of sensitive
data processed on-chain while preserving blockchain
systems’ integrity and verifiability properties?

Blockchain offers a verifiable system; every action is recorded in a tamper-
proof and decentralized fashion. In the blockchain network, all participants
can access execution logs and retrieve the history of transactions, as well as
the amount of gas spent for the execution payable smart contract functions.
Additionally, the identity of participants is pseudonymous and not anonymous.
Hence it is possible to re-identify users based on their transaction behavior
(c.f., the Silk Road marketplace scandal where a drug dealing network was
uncovered based on an analysis of the Bitcoin ledger [43]). Hence, if it is
possible to keep sensitive information private using proxies in traditional
cross-organizational business process management systems, the situation
is more challenging in the blockchain context. Indeed, in the blockchain
context, smart contract-mediated collaborations often occur in a competitive
environment where competitors agree to use a blockchain to gain economic
costs, e.g., they decide to bid for a service provisioning managed by a smart
contract [214, 224]. Though multiple blockchain technologies can be used
and interoperated [154], the privacy of sensitive data should nonetheless

1.3. RESEARCH PROBLEM 13

RQ3.1 How to ensure a trustworthy access-control of business
process activity data stored in smart contracts in blockchain-
based cross-organizational processes?

RQ3.2 How to manage and compute numeric information in
a privacy-preserving fashion using fully homomorphic
encryption?

RQ3.3 How to ensure payment privacy in a cross-organizational
process that preserves privacy while offering public
auditability?

Table 1.3: RQ3 sub-challenges

be guaranteed while preserving the verifiability characteristic of blockchain
systems. Hence, our third objective is to maintain data and protocol integrity
of cross-organizational processes while safeguarding data privacy. Table 1.3
presents the privacy-related sub-questions linked to this challenge.

First, a reliable separation of concerns should be ensured between
participants: activities and data should not be accessed and managed by all
participants: they should only access the information they are concerned with.
Hence the following sub-question raises: RQ3.1 How to ensure a trustworthy
access-control of business process activity data stored in smart contracts in
blockchain-based cross-organizational processes?

Additionally, the privacy of input and output data (e.g., information
transiting from one task to another, such as the number of packages to
deliver, a contract, or the hour of delivery) should be ensured in competitive
contexts. In the context of privacy-preserving IoT data aggregation, [124]
uses homomorphic encryption to preserve the inner value of IoT data: only
ciphered data can be accessed by third parties while preserving aggregation
operations. A blockchain, Dero.io, proposes to leverage homomorphic
encryption for various applications such as voting or asset management [1].
Nonetheless, data processing such as auctioning is not addressed in this
work. A privacy-preserving data processing of business data such as a
price for a service or the volume offered in a truck is necessary to support
flexible partnerships in a cross-organizational context. Hence, we propose
the following refined sub-question: RQ3.2 How to manage and compute
numeric information in a privacy-preserving fashion using fully homomorphic
encryption?.

Finally, providing privacy and auditability of payment on blockchain
systems has been a subject of concern in the literature since the beginning
of bitcoin and cryptocurrencies [168]. Payment auditability is necessary
to ensure trust in the system. It is facilitated with the blockchain ledger
tamper-proof storing facility, which can be used as a trustworthy settlement
log. However, a cryptocurrency payment reveals the content hidden in the

14 CHAPTER 1. INTRODUCTION

privacy-preserving auction though the winning service provider may not be
willing to reveal the content of its bid to competitors [168]. Competitors can
thus retrieve strategic positioning or trading secrets. Hence, auditability and
privacy appear necessary at the binding and payment stages. We, therefore,
state the following sub-question: RQ3.3 How to ensure payment privacy in
a cross-organizational process that preserves privacy while offering public
auditability?.

1.4 Thesis objectives, principles, and contributions

In this section, we present the main objectives of the thesis for answering
the aforementioned research questions. We also propose a set of principles
that will guide the fulfillment of the objectives. We finally present the main
contributions of the thesis.

1.4.1 Thesis objectives and principles

In the light of the previously described research problems, the main objectives
of this thesis are summarized as follows:

Objective 1 Identifying a business process modeling language that
is flexible and a business process model that integrates
a separation of concerns by design; implementing this
modeling using a blockchain system (c.f., RQ1.1 and
RQ2.2);

Objective 2 Integrating data to the blockchain-based business process
management system, and leveraging dedicated off-chain
storage (c.f., RQ3.1);

Objective 3 Making the public view upgradable and open to changes
upon participants’ requests at runtime (c.f., RQ2.2 and
RQ2.3).

Objective 4 Carrying on runtime allocation by leveraging blockchain-
stored tamper-proof data (c.f., RQ2.1 and RQ1.2);

Objective 5 Carrying on trustworthy privacy-preserving on-chain
auctions while preserving the auditability of the smart-
contract-based decision making (c.f., RQ3.2)

Objective 6 Providing a trustworthy, privacy-preserving, and scalable
on-chain payment mechanism (c.f., RQ3.3);

To this end, we consider the following principles:

1.4. THESIS OBJECTIVES, PRINCIPLES, AND CONTRIBUTIONS 15

• Automation: the proposed systems should automatize the maximum
tasks

• Ease of use: the proposed system should bridge the gap between (a
priori) non-technical end-users, and smart contracts development

• Privacy: the proposed system should always take into consideration
the privacy of users

• Customer agility: the proposed system should include business
process participants as co-creators and testers

It is noteworthy that the proposed work in this thesis needs to be:
(i) evaluated through experimental prototypes and (ii) collect end-user
feed-backs on the proposed methods. Furthermore, the implementation,
experiments, and results should be detailed.

1.4.2 Thesis contributions

To meet the above objectives while handling the described research issues,
we propose the following contributions:

i Blockchain as a trustworthy business process management
tool: an on/off-chain declarative choreography deployment
and execution system (c.f., Objective 1 and Objective 2)

(a) We design and implement an on/off-chain deployment and
execution strategy for on/off-chain choreographies, which enables a
trustworthy business process management facility while enforcing
separation of concern between participants at each step of the
deployment and execution. More precisely, we propose an
on/off-chain mechanism to generate public-to-private views of
a declarative choreography and execute private views in a hybrid
on/off-chain fashion. In doing so, no centralized party is necessary
to control business processes while preserving the traceability of
the process events. Meanwhile, we leverage a constraint-based
business model language that enables the abstraction of the control
flow under a set of constraints. By so doing, business modelers do
not need to imagine all possible paths, a task that can be intensive
and error-prone (ease of use principle). We moreover integrate a
trustworthy smart contract-based access control to activity data
(privacy principle).

ii Control-flow and partnership flexibility:

(a) Trustworthy change mechanism for on-chain choreography
instances (c.f., Objective 3): We propose a new approach

16 CHAPTER 1. INTRODUCTION

allowing for the change management of blockchain-enabled
declarative business process choreographies modeled as DCR
graphs (Declarative-Condition-Response graphs). Our system
allows a partner in a running blockchain-based DCR choreography
instance to change its private DCR process. A change impacting
other partners is propagated to their affected processes using
a smart contract. The change propagation mechanism ensures
the compatibility checks between public DCR processes of the
partners. We demonstrate the approach’s feasibility through
an implemented prototype and its effectiveness via experiments
(customer agility principle).

(b) Trustworthy resource allocation using blockchain (c.f., Objective
4): We propose a system that leverages smart contracts for a
dynamic selection of service providers. The system analyses service
providers’ performance stored as blockchain logs (automation and
ease of use principles). The interest of this mechanism is to increase
actor selection flexibility, as the selection may differ between
process instances. Additionally, it enables an objective selection
of service providers, as the same criteria are used to analyze each
provider. Hence, information asymmetry and data tampering are
prevented. We validate this approach’s suitability in a real-world
use case by deploying this mechanism in a procurement context
for logistics services mapping using a design science research
approach that integrates participants’ feedback in the design
process (customer agility principle).

iii Data confidentiality in a blockchain environment:

(a) Trustworthy and privacy-preserving data computation (c.f.,
Objective 5) To reconcile privacy imperatives with the benefits of
blockchain, we propose to leverage fully homomorphic encryption
(FHE) for blockchain-based calculations such as sealed-bid
auctions. FHE is a cryptography protocol preserving operations
over ciphered data. Smart contracts gather and orchestrate bid
comparisons, while a computation oracle carries comparisons
over ciphered data. Additionally, we propose to use the hybrid
RSA/AES encryption protocol1 to preserve bid confidentiality
both on-chain and in the comparison oracle. Hence, our protocol
compares competitive bids without any information leakage on
the service providers’ side or on-chain (privacy principle). In so
doing, we contribute to the literature by designing a mechanism
that addresses the privacy-preserving allocation problem using

1RSA stands for the name of its inventors, Rivest, Shamir, and Adleman, and AES
stands for Advanced Encryption Standard

1.5. THESIS OUTLINE 17

Research Question Chapter Publications Contributions
RQ1.1 4 II i(a)
RQ1.2 4 IV ii(b)
RQ2.1 5 III ii(b)
RQ2.2 5 I-II i(a)
RQ2.3 5 V ii(a)
RQ3.1 6 II-VI-VII i(a)
RQ3.2 6 VII iii(a)
RQ3.3 6 VI iii(b)

Table 1.4: Mapping of research questions to corresponding thesis chapters,
publications, and contributions.

blockchain and FHE while preserving the auditability and
verifiability properties of the blockchain. We validate this approach
through an implemented prototype.

(b) Trustworthy and privacy-preserving payment (c.f., Objective 6).
Fully privacy-preserving schemes such as Monero, ARRR, or Epic
Cash are not applicable in multi-party industrial processes, as
partners already know each others. Hence, anonymity of the
payment senders and recipients are not desirable. Meanwhile, we
hypothesise that banks can be referred to as trusted entities for
payment management. Hence, we propose a solution leveraging
banks as trustworthy intermediaries while making the payment
value secret (privacy principle). This solution uses an oracle bank
and a per-collaboration payment token linked to a random value.
Partners can use per-collaboration tokens to proceed to multiple
payments while preserving values’ privacy. Moreover, partners can
program smart contracts to ensure escrows or carry conditional
payment (automation and ease of use principles). Additionally,
external peers can trust-worthily audit token transactions as they
are stored on-chain. We demonstrate our approach’s feasibility
through an implemented prototype and its effectiveness via
experiments.

1.5 Thesis outline

Section 2 introduces the main concepts related to blockchain and business
process management used in the following manuscript. In Section 3, we
present the main related work. Section 4, Section 6 and Section 5 present
the three contributions related to trust, privacy, and flexibility respectively.
Finally, we discuss and conclude this manuscript with Section 7.

Table 1.4 presents the mapping of the research questions corresponding to

18 CHAPTER 1. INTRODUCTION

the main thesis chapters (Section 4, Section 6 and Section 5), the publications,
and the aforementioned contributions.

Chapter 2

Basic Concepts on Business
Process Management and
Blockchain

Contents
2.1 Business Process Management 19

2.1.1 Business Process Lifecycle 20
2.1.2 Business Process Modelization 20
2.1.3 Business Process Execution 21

2.2 Blockchain . 23
2.2.1 Identity: reaching pseudo-anonymity with public

and private keys 24
2.2.2 Transactions and record-keeping : 25
2.2.3 Onchain execution logic with smart contracts . . . 31

This chapter presents the basic concepts used in the remainder of this
thesis, that will help address our research questions. In Section 2.1, we present
basic concepts related to Business Process Management. In Section 2.2,
we present basic concepts related to core concepts related to blockchain
technology.

2.1 Business Process Management

Business Process Management refers to the discipline that focuses on the
life-cycle of business processes [58] to analyze, design, implement, and
continuously improve organizational processes [209]. In the following section,
we present an overview of the business process life-cycle (Section 2.1.1) and
then focus on two steps occuring in two stages of the life-cycle, namely

19

20 CHAPTER 2. PRELIMINARIES

business process modeling (Section 2.1.2), and business process execution
(Section 2.1.3).

2.1.1 Business Process Lifecycle

Figure 2.1 presents the the business process lifecycle. It comprises six steps
[57]:

• business process identification consists in the identification of the
process architecture relevant to a business problem (e.g., what are the
main processes involved in a flower delivery;)

• business process discovery consists in the design of the as-is process
model previously identified as relevant for the identified business
problem (e.g., a BPMN diagram of the flower delivery process;)

• business process analysis consists in finding insights on the process
weaknesses and their impact (e.g., for some delivery instances, the
trucks leave with the wrong set of packages;)

• business process redesign consists in adapting the business process
model to unify and correct the preidentified weaknesses (e.g., adding a
package checking activity before shipping;)

• business process implementation consists in transforming the to-be
process model in an executable process model: activities may be
automated, and people are training for the organizational change;

• business process monitoring is the last step of the business process
lifecycle: there, conformance checking is performed, and performance
insights can be deduced from the event logs.

If bottlenecks, errors, or deviations are found during the monitoring
stage, a new cycle starts, starting at the business process discovery stage (c.f.,
Figure 2.1.) Hence the business process life-cycle helps understand processes
better and rationalize or automize them for speed, consistency, and quality
improvements.

In the following, we focus on two stages that will be the focus of this
manuscript, namely the business process discovery stage, that we refer
to as the business process modelization stage, and the business process
implementation stage, where we focus on the business process model execution
managed by the business process information system.

2.1.2 Business Process Modelization

During the discovery stage, business process modelers produce a business
process modelization that aims to formally represent a real-life business

2.1. BUSINESS PROCESS MANAGEMENT 21

Figure 2.1: The BPM life-cycle

process. This representation comprises all the activities leading to the
production of a business value. Activities comprise roles assigned to
participants, services, or systems, and are linked to a set of physical and
immaterial objects. Additionally, interactions between activities are also
depicted. Such a model enables the communication between participants
in an agreed-upon fashion. It also eases the autonomous execution of tasks
(e.g., to call a service).

Several approaches coexist to model the interactions. The imperative
approach consists into the explicit representiion of the paths along which
a process instance runs. In this approach, activities can be linked together
by sequential constraints. It has been standardized with a business process
modeling language is referred to as BPMN An example of a BPMN model
is depicted in Figure 2.2b. In reaction to the imperative approach, the
declarative modeling approach aims to capture the constraints underlying
the process, hence providing more flexibility to end users [63]. It has gained
momentum in recent years, and is not yet standardized: several notations
have emerged such as Declare, DCR Graphs, DMN, GSM, eCRG, or DPIL.
For example, in DCR, the control-flow is abstracted into a set of pre and
post-execution constraints. An example of a DCR business process model is
depicted in Figure 2.2a.

2.1.3 Business Process Execution

A business process management system can manage several instances of a
process model. An instance comprises data specific to the execution, the
state of execution, and the history of the execution.

If multiple role instances coexist at runtime, the assignment of one of
the role instances to a task can be in a push fashion (participants request a
task) or a pull fashion (the business process management system will assign
the task to the participant).

Two execution strategies can be underlined, namely using orchestrations

22 CHAPTER 2. PRELIMINARIES

(a) Declarative process of a flower delivery (DCR notation.)

(b) Imperative BPMN process of a flower delivery (BPMN notation.)

Figure 2.2: Examples of two modeling approaches of a flower delivery business
process

2.2. BLOCKCHAIN 23

or choreographies. With an orchestration, the management of business
process instances is managed in a centralized fashion, by a trusted third party,
or by one of the participants. In this setting, all activities, public and private,
are managed by this central entity. Hence, the choice of a choreography is
often motivated by the wish not to disclose internal and private activities
to the other parties [58]. With a choreography, the management of business
process instances is managed in a decentralized fashion by several partners.
More precisely, the set of interactions between partners, the high-level public
view, is shared between partners. It acts as contract for the coordination and
communication between participants. Additionally, partners can refine their
views by projecting the set of public interactions they are involved with over
their roles and enriching such private views with internal activities. We talk
about partners private views.

The execution of such decentralized processes is challenging, hence a
decentralized information system, such as one leveraging blockchain smart
contracts, is necessary. In the following, we present the main elements of the
blockchain technology that will be leveraged in the rest of the manuscript.

2.2 Blockchain

Traditionally, identity management and services (e.g., transfer, redeem
money) or accurate record management requires trust in a third party,
whether through verified professionals or governments. Blockchain proposes
an alternative to this scheme, where trusted third parties are not needed
anymore. Blockchain can be defined as a protocol for storing and keeping
track of the transfer of assets amongst multiple parties to ensure data integrity
(i.e., storage should be immutable and transparent). It forms a distributed
ledger where transaction records are batched into timestamped blocks. Each
block is identified by a cryptography hash referenced by the previous block
[42]. It is managed by a peer-to-peer network, i.e., the ledger is spread
across multiple nodes, or servers [211], which prevents tampering attempts,
as every participant holds a copy of the ledger. They lower the cost of
trusted transactions by making databases tamper-proof by design [135]. The
blockchain network corresponds to the set of nodes (clients) operating on
the blockchain via the copy each one holds. It builds on (1) a tamper-proof
data structure that captures the history of transactions, (2) algorithms that
lead to consensus, and (3) market mechanisms that motivate the nodes to
progress the network.

In the following, we present in more depth identity management in a
blockchain network (Section 2.2.1), transactions management (Section 2.2.2),
and smart contracts building blocks (Section 2.2.3).

24 CHAPTER 2. PRELIMINARIES

2.2.1 Identity: reaching pseudo-anonymity with public and
private keys

The notion of identity management onchain is key as each business process
participant is assigned a set of public and private keys on chain and at the
root of a trustworthy use of the blockchain technology. In the following,
we present the key building blocks of identity management in blockchain
networks.

Managing identity on-chain

Identity is the central concept used by users to receive, spend, or claim money.
Traditionally, a username and password are issued by a central manager (e.g.,
the bank) to link the user to an account. User identity is confirmed through
personal information such as a social security number or a name.

In the blockchain, identity is managed using public and private keys.
Public keys are analog to a physical address, and private keys are analog
to mailbox keys. The public key is the unique representation of each entity
or user. The corresponding private key acts as a key to unlock the public
key. In the blockchain, the public key is used for receiving money, while the
private key is used to sign and send transactions. In practice, the private
key is chosen randomly, for example, using a generator with a lot of entropy,
and the public key is generated from the private key.

One of the main interests of using public and private key schemes
is that no personal information is necessary to connect and prove one’s
identity. Additionally, the number of accounts is not limited, and there are
no restrictions on keys taken.

Generating public and private keys

The digital signature scheme (often referred to as DSS) states that the pair
(message, signature) can be considered secured if the recipients can verify
[104]:

1. the message origin, i.e., whether the original sender has authorized the
transaction;

2. the non-repudiation of the message, i.e., the original sender cannot
backtrack;

3. the message integrity, i.e., the message cannot have been modified since
sending).

Examples of key generation schemes are RSA (Rivest, Shamir, Adleman),
ECDSA (Elliptic Curve Digital Signature Algorithm), ECDH (Elliptic Curve
Diffie-Hellman), or DSA (Digital Signature Algorithm).

2.2. BLOCKCHAIN 25

Finally, more complex schemes for multi-factor challenge-set identity
authentication (referred to as MFSSIA) have been proposed in the literature
to support a trustworthy identity authentication of process participants
(humans, machines, software systems etc) [154].

2.2.2 Transactions and record-keeping :

The use of the blockchain for managing business processes is motivated by the
fact that each action mediated by the blockchain will be recorded in a tamper-
proof fashion. Hence, understanding the building blocks for a trustworthy
record-keeping is necessary to understand how blockchain technology can
be relevant to record business process executions in a competitive trustless
context.

Account and UTXO models

A valid transaction is a transaction that (1) has been signed (there is proof
of ownership), (2) has been signed by an account with available funds, and
(3) there is no other pending transaction using the same funds.

With blockchain, two main models have been defined to validate
transactions in a trustless distributed fashion. The blockchain keeps track of
unspent money with the UTXO model (standing for Unspent Transactions
Output, specific to Bitcoin [146]). Each account holds a set of unspent
transaction outputs, which consists of money that has been sent to the
account and not yet spent. Account models are similar to traditional bank
accounts where a central manager keeps track of account balances: each user
is assigned to an account with a balance, and money can be spent if the
balance remains positive. Then, money is subtracted from the total balance.
Ethereum’s design illustrates this type of account.

Cryptography hash functions

The bedrock of the blockchain system is the cryptography hash function.
Its goal is to enforce information integrity.

The cryptography hash function extends the hash function, which outputs,
with some degree of deterministic randomness, 256 bits. It verifies three
properties: pre-image resistance, second-image resistance, and collision
resistance. These properties enforce trust and discourage any tampering
attempts regarding data or identities. Indeed, the avalanche effect occurs
at any change attempt: a small change in the input drastically changes
the output. For example, Bitcoin’s cryptography hash function is SHA2562,
Litecoin uses scrypt/RFC 7914, and Ethereum uses KECCAK-256, a hash
function that won the NIST SHA3 competition in 2012 [26].

The two blocks of blockchain using cryptography hash functions are (1) the
tamper-evident database and (2) the secured transactions mechanism. Hence,

26 CHAPTER 2. PRELIMINARIES

cryptography hashes and asymmetric encryption such as ECDSA provide a
pseudo-anonymity of the participants and enforce the non-tampering of the
transactions. Pseudo comes from the fact that the ledger links user addresses
and transactions. Anonymity is hence, by design, not fully guaranteed.
Blockchain networks can be permissionless (any node can join or leave the
network) or permissionned (nodes must be approved to join the network;
leaving the network may be prone to more difficulties).

Hash function inputs are referred to as pre-images. Hash function outputs
are referred to as images.

Cryptography functions are a type of hash function, written Ψ. With
a cryptography hash function, we can take any pre-image of any size and
obtain an output of 256 bits.

Cryptography hash functions are hash functions with three special
properties:

1. The first propriety is pre-image resistance: given Ψ(θ1), it is
computationally difficult to determine θ1. As a metaphor, intuitively,
it is as difficult as tracing one identity from a given fingerprint.

2. The second propriety is second-image resistance: Given θ1, it is
computationally difficult to find some value θ2 such that Ψ(θ1)==Ψ(θ2).
As a metaphor, intuitively, it is as difficult as finding someone with the
same fingerprint as you.

3. The third propriety is collision resistance: It is computationally difficult
to find θ1 and θ3 such that Ψ(θ1) == Ψ(θ3). As a metaphor, intuitively,
it is similar to trying to find two random people with the same
fingerprint.

With a cryptography hash function, taking an infinite amount of inputs,
a finite amount of outputs is possible, which does not prevent collisions.
Nonetheless, cryptography hash functions are collision-resistant: it is hard
for someone to find the two inputs that will produce the same output.
Additionally, a slight change in the input produces a pseudo-random change
in the output (it is referred to as the avalanche effect). Hence, it prevents
“hot or cold” games with inputs to produce or predict outputs.

Different cryptography hash function algorithms exist. For example,
Bitcoin uses Ψ(θ1) = SHA256(SHA256(θ1)) also referred to as SHA2562,
which was designed by the NSA.

Record-keeping (the blockchain).

Blockchain systems store data transactions hierarchically, using linked blocks
of aggregated transactions [218]. This record-keeping storage facility is
referred to as the blockchain ledger. Figure 2.3 illustrates such ledger. Each
block contains (1) the reference to the previous block, (2) a tamper-evident

2.2. BLOCKCHAIN 27

Figure 2.3: Illustration of a segment of the blockchain ledger (blocks 46-49)

digest of the transaction history to attest the integrity and block order, and
(3) the list of the transactions to commit [205] stored as a Merkle tree. A
Merkle tree (or hash tree) consists of a tree comprising two kinds of nodes,
leaf, and non-leaf nodes, with two labeling strategies. Leaf nodes are labeled
with the hash value of a data block. Non-leaf nodes are labeled with the
hash value of the child nodes labels.

Block headers comprise three main elements ensuring the integrity of
data.

First, the block header comprises the base of the Merkle tree of the
transactions, also known as the Merkle root [136]. It corresponds to
Ψ(Ψ(ρl) + Ψ(ρr)) where ρl and ρr are the respective left and right branches
of the Merkle tree. The interest in the Merkle root is twofold. First, a
slight change in one transaction can be traced back down easily due to
the avalanche effect of the cryptography hash function. Hence, it enables
checking easily if data is corrupted. Second, it provides direct proof of the
inclusion of transactions to blocks: instead of proving all the transactions are
correct, one can give the roots of each branch. If they are correct, the rest is
correct. Additionally, it is hardly tamperable due to collision resistance.

Second, for proof-of-work-based blockchains, the block header comprises
the block nonce (an acronym for number only used once), which corresponds
to the number found through brute force computation by miners, i.e., the
mining solution of the puzzle. Indeed, the proof of work consensus requires
miners to solve a computationally difficult puzzle that is (1) adjustable (if
more resources or more people enter the game, then difficulty should increase)
and (2) easily verifiable. The problem of finding a 32-bit number, where
the value to be found is a random integer between 0 and 232, answers this
requirement. The puzzle difficulty corresponds to a representation of the
expected number of computations required to find a block. It is implemented
as a requirement of the leading number of 0s, which adjusts every 2015 block
based on the average time spent to solve a block in Bitcoin.

Finally, the block header comprises a reference to the hash of the
previous block, which is computed as PrevblockHash = Ψ(blockHeader) =
Ψ(prevBlockHash ∥ merkleRoot ∥ nonce). This hash links blocks together
(with the block id).

28 CHAPTER 2. PRELIMINARIES

Trust without trust: distributed systems and consensus
mechanisms

Distributed systems A distributed system can be defined as a network
of independent nodes, each representing a process, talking to each other via
messages, and often accomplishing a common goal (e.g., keeping track of
money transactions).

A distributed system verifies the following properties:

• Concurrent components:

• Message sharing:

• No global clock:

• Potential failure of individual components:

Consensus helps render the majority opinion and frame how nodes reach
a general agreement on the ledger’s state. The study of distributed systems
and consensus helps manage fault tolerance by trying to answer the challenge
of creating an overall system that is reliable though some components might
be unreliable.

A distributed system should offer correctness, i.e., ensure safety (no
undesired state can occur, i.e., a participant introducing a false transaction in
the context of blockchain, as long as the protocol does not reach the specified
threshold of misbehavior) and liveness (as long as the protocol verifies the
right proportion of honest nodes, the system will behave as intended, i.e., in
the context of blockchain, a correct transaction will eventually be added to
the chain) [6].

To ensure correctness, one uses a consensus algorithm to enable the
distributed system reaching a consensus, i.e., returning the majority value.
The consensus shall offer the following three properties:

• Validity: any value decided upon must be proposed by one of the
processes

• Agreement: all non-faulty processes must agree on the same value and
will never decide on trivial, random, or different values

• Termination: all non faulty nodes eventually decide

The CAP (or Brewer’s) theorem is a fundamental theorem for distributed
systems. This theorem states that a distributed system can only verify two
of the three following properties:

• Consistency (every node of the distributed system provides the most
recent state)

• Availability (the system offers a consistent read and write access)

2.2. BLOCKCHAIN 29

• Partition tolerance (the system works despite the disconnection of
certain nodes)

With blockchain, partition tolerance is verified by design (nodes are
independent and can fail). A trade-off between consistency and availability is
thus at stake and varies depending on the choice of the consensus algorithm.

We present the two main consensus algorithms hereinafter and refer
the reader to [140] for a broader vision (PBFT1, voting-based, or federated
consensus).

Consensus: ensuring all users stay on the same page. The trusted
behavior of blockchain systems builds upon the consensus protocol used to
update the chain of blocks [12]. A set of nodes (or users) hold a copy of
the ledger and update it following a set of rules, a consensus protocol. The
consensus protocol defines the protocol followed by the nodes to verify and
append new transactions to the chain. This protocol ensures the tamper-
proof growth of the database [218]. Proof-of-work and proof-of-stake are
among the best-known consensus protocols. With proof-of-work, a puzzle
needs to be solved by miners to append a new block and get a financial fee.
With proof of stake, the node responsible for adding a new block of validated
transactions has the most assets at stake. These rules help avoid malicious
nodes or invalid transactions. Merkle trees ensure the ledger’s integrity by
linking transactions using cryptography rules.

In the traditional model, each user submits transactions to a central
authority that decides on the validity of transactions. With blockchain,
siloed decisions are not possible as it would be prone to double-spending
attacks. Each user has to be concerted. The majority rule alternative, with
proposers and voters, is also not applicable as Sybil attacks are possible: a
malicious user could create enough nodes to obtain the majority.

To prevent double spending and Sybil attacks, the strategy, referred to
as proof of work, is to apply a variation of the majority rule to make it
prohibitive to cheat via Sybil attacks. To do so, users must pay to become
transaction validators. They gather new transactions to form the next block.
Forming the next block implies running a cryptography hash function several
times. Indeed, validators must provide a solution to a hash puzzle that
can only be solved through brute force computation. It takes around 10
minutes to solve the hash puzzle. By running this cryptography hash function,
validators consume computation power, proving that they have worked and
defusing cheating attempts. An economic incentive is added to avoid having
one miner who would take control only: the first miner who solves the puzzle
receives the authorization to form the next block and receives the block
and fees reward (i.e., all transaction fees): he is compensated for its power.
Hence, mining defuses the Sybil attack as there is insufficient computing

1Practical Byzantine Fault Tolerance

30 CHAPTER 2. PRELIMINARIES

power to vote multiple times. It is to note that computing costs depend
on mining hardware (e.g., CPU, GPU; Ethereum is ASIC-resistant2) and
operations (e.g., energy consumption, network connectivity).

Alternatives to proof of work focus on spending something else than
computing power. For proof of stake, the resource consumed is the native
currency. Validators replace miners, they put their stakes into escrow. In
case of misbehavior, their stake is destroyed. Another alternative to proof
of work is proof of burn: the resource, e.g., one bitcoin, is burned, i.e., fully
consumed, in exchange for a coin in another cryptocurrency. With proof
of space, storage space in decentralized clouds is consumed. With proof of
elapsed time, the resource consumed is time. They can be implemented
using trusted execution environments (TEEs) and verifiable delay functions
(VDFs). Such proof depends on assumptions of randomness and trust in the
manufacturer (e.g., Intel for SGXs).

Choosing the right consensus algorithm Network consensus is
necessary for blockchain to agree on the validity and order of the transactions
in the ledger. The risk of nodes disagreeing on the state or order of
transactions would otherwise create forks and have running variations of the
ledger.

The choice of the consensus algorithm depends on (1) the blockchain
network (public or private) as well as (2) the attack vector.

For public networks, an incentive mechanism is proposed for solving
hashing cryptography puzzles to prevent Sybil attacks. The proof of work
is the main consensus proposed to defuse Sybil attacks in public networks.
Proof of work consensus is the consensus chosen for Bitcoin and the initial
version of Ethereum. Its goal is to make it too difficult for malicious users to
introduce fake branching. Mining is a time-based competition, as difficulty
comes from the computation time necessary during mining. Indeed, the
concept of mining is to make valid the longest chain. To append a fake
branching, one must build the longest chain and possess more than 50 percent
of the overall computing power. Several hashing algorithms can be used for
proof of work, such as SHA-256, Blake-256, scrypt, or myriad. Nonetheless,
the hash puzzle requires heavy computation, which causes energy concerns.
To avoid energy waste, some propose to change the hash puzzle to solve
current research problems, which are computing intensive such as protein
folding. Several other consensus protocols have been proposed to circumvent
this computing issue. The most famous one is the proof of stake consensus,
which requires fewer CPU computations for mining than proof of work: node
validators are the ones with the most coins at stake, not the ones that are
the fastest to solve the hash puzzle. Proof of stake consensus consists of
delegating the validation power (ordering and creating new blocks for the

2Application Specific Integrated Circuit

2.2. BLOCKCHAIN 31

nodes to reach a consensus). A small group of elected people can validate
the transactions. Elected people put to stake their assets, which prevents
malicious behaviors, as validators are less prone to risk their assets. Among
the advantages of proof of stake are energy efficiency and lower entry barriers,
as computation power during mining is no longer necessary.

For private blockchain networks, incentive mechanisms are unnecessary
as Sybil attacks are not prevalent. The Practical Byzantine Fault Tolerance
(PBFT) consensus mechanism proposes a one-third resilience to attack vectors.
Tangaroa, a Byzantine Fault Tolerant (BFT) variant of the Raft algorithm
(Tendermint), offers one-third resilience. Ripple proposes trusted/whitelisted
subnetworks that offer one-fifth resilience to attack vectors. Another example
is SIEVE, one of the two consensus protocols used in Hyperledger Fabric
(alongside PBFT). SIEVE adds speculative execution and verification phases
to the PBFT algorithm to detect and filter possible non-deterministic
requests.

2.2.3 Onchain execution logic with smart contracts

Finally, we present onchain executing logics building blocks, as these building
blocks (smart contracts, oracles, IPFS3, or tokens) will be leveraged to
support business process management strategies onchain in the rest of the
manuscript.

Smart contracts

Nick Szabo first theorized them in 1994, where the author defines smart
contracts as ”a computerized transaction protocol that executes the terms
of a contract” [198]. Smart contracts can be approached as deterministic
scripts, executing any on-chain logic expressed as a function of on-chain
data inputs [42]. Smart contracts have a deterministic behavior because of a
closed-world assumption: only the information stored on the blockchain is
available at runtime. Smart contracts can run the business logic, self-enforce
contractual clauses translated into code, and manage business processes
in an autonomous fashion [135]. Hence smart contracts are relevant for
managing data-driven interactions [42]. Smart contracts have their state
and can take custody over assets on the blockchain, which is helpful for
data-driven processes (e.g., for trading x assets for y others) and executing
services on demand [31].

Contracts and smart contracts should be approached as two different
concepts. Contracts can be defined as written or spoken agreements intended
to be enforceable by law (cannot be broken, it is going to happen). A smart
contract, on the contrary, is code. It facilitates, verifies, and enforces a digital
contract’s negotiation or execution.

3Inter Planetary File System

32 CHAPTER 2. PRELIMINARIES

In practice, every node runs a blockchain virtual machine, and the
blockchain network acts as a distributed virtual machine. Smart contacts
are triggered by messages or transactions sent to their address and executed
into this distributed virtual machine.

The main advantages of smart contracts are (1) the possibility to execute
multi-step processes and (2) the possibility to inspect the code before
launching a transaction. Hence, smart contracts offer informed decisions,
certainty of execution, and verifiability over the process.

A deeper focus on Ethereum Ethereum is a decentralized platform
building on blockchain and designed to run smart contracts. It acts as a
distributed computer to execute code and as a distributed state machine as
each new transaction changes the global state.

Ethereum smart contracts can be approached as autonomous agents that
live inside the Ethereum network, triggered by transactions. They have
direct control over the internal ether balance and internal contract state.
Smart contracts have four main uses:

1. store and maintain data (e.g., a token currency, a list of memberships,
etc.)

2. manage contract or relationship between untrusting users (e.g., financial
contracts or escrow)

3. provide functions to other contracts and serving as a software library
(e.g., for secured mathematical operations)

4. manage complex authentication (M of N multi-signature access)

The execution and verification of Ethereum smart contract transactions
are realized using the Ethereum distributed computer. Every node of the
blockchain network executes the smart contract. Afterward, they all reach a
consensus (using proof-of-work) regarding the new network state. Miners
competitively create blocks of transactions by running code and searching
for a solution to the mining puzzle. Hence, there is no need for trusted third
parties as a violation of a smart contract would imply subverting the entire
network. Smart contracts offer secure peer-to-peer agreements that live on
the blockchain in a tamper-proof fashion.

Every Ethereum node runs Ethereum virtual machines (also referred to as
EVMs) to avoid OS incompatibilities between different machines. Ethereum
virtual machines can be viewed as mini-computers running smart contract
code. Every blockchain node compiles the Solidity code into EVM bytecode
(a low-level, stack-based bytecode language, the instruction set to be executed
by a processor). The compilation chain is the following: the solidity smart
contract is compiled into the compiler language solc, then into bytecode (the
opcode view), then the stack (hexadecimal), and finally the memory (into the

2.2. BLOCKCHAIN 33

blockchain). It is to note that the opcode can be decompiled using reverse
engineering techniques and that the pseudo-code can be traced back.

The halting problem states that it is impossible to determine ahead of
time whether the contract will ever terminate (if, for example, a denial
of service attack occurs). Hence, to prevent infinite loops that could be
damaging when executed in a distributed fashion, Ethereum introduces the
notion of a gas fee: every contract requires gas which fuels contract execution.
Every transaction specifies the maximum quantity of gas to be consumed
and the Ether gas price corresponding to the fee the transaction issuer is
willing to pay per unit of gas. Hence, when purchasing gas, transaction
issuers purchase distributed, trustless computational power.

In practice, the transaction fee is subtracted from the sender’s account
at the start of the transaction. If the transaction is successful, the remaining
gas is refunded. Else (an infinite loop occurs), the execution is reversed,
but the amount is not refunded, and an attacker looking to launch a DoS
(Denial of Service) attack will need to supply enough ether to fund the attack.
Additionally, the transaction issuer supplies gas for one validator to run the
code only, which acts as an incentive mechanism. Indeed, only one block is
added to the blockchain, and only one user is compensated for the computing
power.

Smart contract executions are redundantly parallel to reach consensus,
which is expensive and memory-intensive. Such behavior encourages
developers to prefer off-chain computation for use cases that do not necessitate
trust.

Blockchain oracles and IPFS

Some smart contract services depend on external data. Oracles bridge the
closed blockchain network with web APIs to forward external data to smart
contracts. Oracle services repeatedly trigger the same API and triangulate
the results to prevent malicious behavior on the API side. An alternative use
for oracles is to ask APIs to carry heavy computations, which are otherwise
too expensive to process directly on smart contracts. Among commercial
oracles stand Chainlink and Provable.

IPFS is an open peer-to-peer network for file sharing providing high
throughput and low latency [19]. Two main building components are
distributed hash tables and a Merkle directed acyclic graph (DAG). First,
distributed hash tables provide high throughput and low latency for data
distribution: nodes of the IPFS network can store and share data in a
decentralized fashion. Second, Merkle DAG provides content addressing
and tamper-resistance: data are identified uniquely, and permanently stored
with integrity. In the blockchain context, IPFS provides a reliable and low
transaction cost storage capacity [95]. This is especially of use for blockchains
with a proof-of-work consensus, such as Ethereum, where storing data on

34 CHAPTER 2. PRELIMINARIES

smart contracts is costly.

Payment tokens

Smart contracts can implement and manage blockchain tokens. These
tokens can have multiple uses [158]: payment tokens, equity tokens, or
cryptocurrency tokens, to name a few. With tokenization [186], tokens
encapsulate sensitive data and lower the risks of exposure and sensitive
information leakage. The Ethereum blockchain introduces the token smart
contract standard [207]. This standard refers to the list of functionalities
implemented by a smart contract for token management. Smart contracts
create a new type of token by setting the total number of token supplies,
the number of decimals of the token, its name, and its symbol. It also
manages the tokens’ first allocation from a token generator to participants
while verifying the total number of token supplies limit. It keeps track of the
token balance of participants and manages the transfers among participants.

Chapter 3

Related Work

Contents
3.1 Introduction . 35
3.2 Blockchain-based BPMS 36

3.2.1 From empirical to model-based management of
processes on-chain 36

3.2.2 Modeling stakes: focus on the imperative and
declarative approaches 37

3.2.3 View-based approaches 39
3.2.4 Business process instance deployment strategies . . 40

3.3 Bringing flexibility to blockchain-based BPMS . 41
3.3.1 Control-flow flexibility with runtime process

instance changes 41
3.3.2 Partner flexibility with runtime blockchain-based

procurement . 43
3.4 Bringing privacy to blockchain-based BPMS . . 44

3.4.1 Privacy preservation for on-chain offer comparison 45
3.4.2 On-chain privacy-preserving payments 46

3.5 Comparison and Discussion 48
3.5.1 Evaluation Criteria 48
3.5.2 Summary . 49

3.6 Conclusion . 51

3.1 Introduction

In this chapter, we review the existing works relevant to the topic of
decentralized BPMS using blockchain. We classify these works according
to the three following categories, each one referring to one of the research
questions presented in the introduction: blockchain-based business process

35

36 CHAPTER 3. RELATED WORK

management system (c.f., RQ1), business process management flexibility
(c.f., RQ2), and business process privacy (c.f., RQ3). We detail in more depth
in Sections 3.2-3.3 each one of the proposed categories. Finally, we compare
related approaches in Section 3.5. We classify each work using a concept
matrix presented by Webster and Watson [215] as a way of systematically
collecting and analyzing the different blockchain-based business process
management systems. By so doing, we identify research gaps that motivate
the objectives previously identified in the introduction. We then conclude in
Section 3.6.

The work presented in this chapter (mainly in Section 3.2, Section 3.4,
and Section 3.3) was published in international conferences HICSS [91, 90]
and BPM [27] and in the journal preprint [89].

3.2 Blockchain-based BPMS

In this section, we investigate related work on blockchain-based business
process management systems. We do so by presenting the evolution of
related work from empirical approaches leveraging blockchain to model-based
approaches (c.f., 3.2.1). To investigate related work focusing on the challenges
identified in RQ1, we propose a classification of such works according to
(1) the choice of business process modelization which impacts the system
flexibility and scalability (c.f., 3.2.2), (2) the public/private views separation
which impacts confidentiality (c.f., 3.2.3), and (3) the deployment which
impacts participants’ trust (c.f., 3.2.4).

3.2.1 From empirical to model-based management of
processes on-chain

Several approaches empirically show the usefulness of blockchains for asset
management. In these approaches, smart contracts are developed from scratch
and designed according to the business need. For instance, a luxury supply
chain [229] mimics an asset monitoring process using a Hyperledger Fabric
chaincode (a smart contract variant) derived from a BPMN collaboration
diagram. There, an EPC-based IoT network composed of RFID chips is used
to track assets. Similarly, a food delivery process is successfully implemented
using a Quorum-based private blockchain [223]. Moreover, an industrial
prototype of trusted energy performance contracts using Ethereum smart
contracts is proposed in [80]. To improve scalability, block-free directed
acyclic graphs, such as IOTA have also been proposed as a distributed ledger
alternative to blockchains [55]. By removing blocks (each new transaction
verifies former transactions), miners are removed. By removing miners, the
threat of centralization implied by mining pools vanishes. This distributed
ledger technology has been empirically used to trade energy in a peer-to-peer
fashion though this architecture increases transaction time [165].

3.2. BLOCKCHAIN-BASED BPMS 37

The empirical development of process smart contracts requires strong
development skills, the design stage is therefore costly and time-consuming.
This issue can be circumvented by abstracting smart contracts into sublayer
stacks [54, 111, 13]. Figure 3.1 depicts the semi-automatic deployment
approach used to deploy model diagrams to the blockchain. First, the
diagram is fed to the system. It is ingested, interpreted, and mapped to a
smart contract template with a translator module. Second, the generated
smart contracts can be reviewed by a human operator. Lastly, the smart
contract is deployed in the blockchain. By abstracting the underlying smart
contract code to the eyes of the business modelers, the design process is
faster and more reliable [122].

Figure 3.1: Model-engineering pipeline for blockchain-based BPMS.

In the following, we classify related works managing collaborative
processes on-chain according to (1) business process modeling choices, (2)
view-based approaches, and (3) deployment strategies.

3.2.2 Modeling stakes: focus on the imperative and
declarative approaches

The modeling paradigm criterion refers to the process modeling choice
used to represent collaborative processes on the blockchain. The choice of
the modeling language impacts the way the control flow is described. It
consequently influences the smart contract translation step and the flexibility
of the process.

In preliminary work, the eSourcing conceptual framework that uses
a smart contract application layer is proposed [153, 155]. Such a layer
is used for transacting decentralized autonomous organizations (DAOs).

38 CHAPTER 3. RELATED WORK

This framework helps build the life-cycles of business collaborations by
stipulating the setup stage, the enactment, rollback, and termination of
collaborations. Nonetheless, the eSourcing framework is process-tree-based
(in earlier papers Petri-net based) and does not address declarative business
process choreographies. We detail hereinafter the imperative and declarative
modeling approaches proposed in the literature.

The imperative modeling approach consists of approaching business
processes as an ordered sequence of enforceable tasks. BPMN is the standard
notation used to depict processes in an imperative fashion. The literature
reports two BPMN-based blockchain monitoring systems. Caterpillar [214]
executes business processes fully on-chain. Its focus is on control flows:
a translator component maps BPMN diagrams into a simplified Petri net
translated into Ethereum’s Solidity smart contract. On the execution side,
partner instances are generated corresponding to the affectation of a partner
to a role. A process instance is also generated. To ensure trust, each involved
partner computes its own version of the contract, to be compared later. At
runtime, a local trigger links API calls to blockchain transactions, and process
history is stored using IPFS, a decentralized network protocol providing
storage facilities [109]. Moreover, data structure optimizations have been
implemented to cut execution costs [73, 122]. Similarly, Lorikeet [201] focuses
on the mapping of BPMN choreography processes into smart contracts. Only
the message flows between partners are stored on-chain. In both Caterpillar
and Lorikeet approaches, though at different degrees, security and privacy
issues are taken into account: for example through participant binding and
asymmetric data sharing [54].

Other works such as [28, 96, 127, 193, 138, 60] use the declarative
modelling approach where only execution constraints are specified. This
modeling approach answers the need for more execution flexibility, as only
the specification of a set of rules to be followed by the process is needed.
Hence the sequencing of the tasks is indirectly enforced, and business process
modelers do not need to specify all the execution paths at design time. One
protocol, ADICO, focuses on institutional grammar. On the semantic side,
institutions embody behavioral patterns among people. Strategies, rules, and
norms frame these patterns. On the translation side, the semi-automated
translation of textual inputs generates smart contracts [69]. The execution
has two facets. First the translation is semi-automatic: the developer can
customize the generated smart contract to prevent deviating cases. Then,
smart contracts are instantiated: they are compiled into an EVM bytecode.
The complexity of the contract and the predicted gas consumption are
provided to the user before being committed to the blockchain network.
Another protocol, BCRL (Business Collaboration Rule Language), focuses
on controlled English sequences of the form when-if-then [11, 96]. The user
declares the set of business rules to be ingested in a rule parser, which
will, in turn, instantiate a RETE algorithm (a pattern-matching algorithm

3.2. BLOCKCHAIN-BASED BPMS 39

adapted to rule-based systems). A smart contract hosted on Hyperledger
Fabric embeds the rule engine. A dedicated API triggers the engine when
needed. Finally, Dynamic Condition Response (DCR) graphs build on
declarative event process flows [92, 189, 127]. On the modelization side, each
node represents an event. The ordering of the events is made through role
assignment (person or machine) and causal or conflictual relationships. The
strength of this approach is the ease of modelization and the flexibility of
process execution paths. A research work proposes LTL for smart contract
parametrized pre and post-execution conditions, however without including
implementations [96]. Authors in [138, 193] use the artifact-centric language.
Pre and post-state conditions of the artifacts indicate the completion of an
activity. The artifact-centric process modeling relies on the guard-stage-
milestone principles. The guards are the set of conditions to be met to
trigger a stage activation. The milestones are the set of conditions to be
met to settle a stage. The stages are the set of tasks to be executed. Two
blockchain-based BPMS implementations of this approach prove the validity
of the model [138, 193]. In [28], authors propose a set of transformation rules
to convert touristic itineraries presented in XML to BP choreographies which
are then implemented as smart contracts and executed on the Ethereum
platform [28]. A research work builds on this approach to auto-generate
Solidity smart contracts using a legal contract markup language based on
XML [60]. However, the authors do not consider the separation between
global and local views in the choreography.

3.2.3 View-based approaches

The view-based criterion refers to the separate display of the global process:
in a view-based setting, participants only have access to their tasks. This
criterion is important as the separation of concern is necessary for the
adoption of a mechanism in a coopetition context: competing partners do
not wish to share parts of their internal processes with their peers.

Regarding traditional view-based approaches, authors in [37, 107] use
process views to build an abstracted version of each partner’s private processes
in order to hide its internal structure. In [107], authors define a Symbolic
Observation Graph (SOG) for each choreography participant. A SOG is an
abstraction of the reachability state graph of a formally modeled process (e.g.,
an LTS). The nodes in the SOG are meta-states, i.e., a set of states connected
by unobserved (internal) activities, and the edges are labeled with observed
(interaction) activities. The SOG of the choreography process is the product
of the SOGs of the participants. In [37], roles inter-connect via a set of
virtual activities. These virtual activities abstract choreography interactions,
and are enacted by a trusted third party. In these works, partners’ privacy is
reached by separating public and private views. However, trust issues remain
as shared execution logic and data are managed in a centralized fashion,

40 CHAPTER 3. RELATED WORK

often by a third-party [112].
In the literature, several research works leverage blockchain for business

process model management but do not consider the public/private view
separation [96, 193, 138, 28, 176, 64, 161, 127, 214]. For example,
in [127, 214, 120], authors handle orchestration schemes only. A choreography
is considered in [112] but the authors do not expand on the participants’
private workflows execution and deployment. Though the generation of the
public and private views in [112] is suggested, projections are not enforced
in a trustworthy fashion in this work. The Dibichain protocol proposes
to minimize information stored on-chain to preserve privacy during the
exchange of supply chain information by storing only links to in-house data
storage locations in [194]. Nonetheless, smart contract-based automation of
processes such as resource allocation or payment escrow is not considered in
this approach.

3.2.4 Business process instance deployment strategies

The deployment criterion refers to the mechanism chosen for deploying
an instance of a business process model on the blockchain. As cross-
organizational processes hold both internal and public activities, a strategy
is needed to connect the onchain process management system to the offchain
ones stored that are stored in a decentralized fashion in each partner’s private
information system.

Regarding fully on-chain schemes, a translator maps directly BPMN [214,
112, 120], DCR [127], or XML [28] models into Solidity. Additionally, a
custom interface binds local execution engines with blockchain in [112].
In [176], authors run choreographies with Bitcoin instead of smart contracts.
Two research works advise the direct end-to-end deployment of public
processes [96, 193]. Finally, a smart contract stores the hash of an artifact-
based multi-party process but no details are given on off-chain tasks [138].

Regarding hybrid on/off-chain schemes, a hybrid on-chain/off-chain
business process execution has gained interest in recent years. A
BPMS vendor1, proposed a set of on-chain/off-chain business process
connectors [161]. Nevertheless, processes are intra-organizational and the
system allows only monetary operations. In [64], a gateway enables a
business process belonging to one organization running on an off-chain
process execution engine to interact with heterogeneous blockchains. They
propose a unique identifier to access the smart contract from the off-chain
world. Nonetheless, off-chain business processes are intra-organizational and
modeled in BPMN. The private and public business processes are connected
using an array of integers stored on the blockchain ledger in [123]. Nonetheless,
the approach leverages an orchestration scheme instead of a choreography

1https://www.bonitasoft.com/

3.3. BRINGING FLEXIBILITY TO BLOCKCHAIN-BASED BPMS 41

one. To deal with the matters of privity and observability in a smart contract,
authors in [108] define privity spheres to limit the read-access of data values
to specific sets of participants. The most general public sphere allows the
entire blockchain to read the data. Then this sphere can be reduced to a
group of authorized participants. However, the management of fully off-chain
tasks is not addressed in this work.

In summary, regarding flexibility efforts for business process modelization
(RQ2.2), most blockchain-based collaborative processes focus on orchestration
languages, especially on the BPMN standard, that do not encourage
modelization flexibility (c.f., chapter basic concepts, Section 2.1). For studies
using declarative languages, several declarative languages have been used
such as DCR, XML, ADICO, ESML, or BPEL, efforts that call for further
studies.

Furthermore, with our objective of a deployment and execution strategy
that enforces a trustworthy separation of concerns (RQ1.1), some works
propose a hybrid on/off-chain deployment approach preserving deployment
trust, but without taking a view-based approach (hence, not addressing our
separation of concerns objective). Among papers focusing on declarative
choreographies, proposed solutions do not distinguish the partners’ internal
processes and the public view of the choreography when deployed to the
chain.

3.3 Bringing flexibility to blockchain-based BPMS

As business environments such as laws, regulations, new competitors, or
market strategies evolve continuously, the flexibility of the blockchain-based
BPMS shall be investigated. In this section, we investigate related work
focusing on two specific types of changes in order to address RQ2: (1) runtime
control-flow changes (Section 3.3.1), and (2) partner flexibility in the case of
procurement activities (Section 3.3.2).

3.3.1 Control-flow flexibility with runtime process instance
changes

The change management criterion refers to the possibility to change the
business process model instance once deployed on-chain. This change support
is necessary due to the dynamic nature of processes: a study of change
variability is necessary to reach modeling flexibility, as well as a study of the
reaction to different change requests to achieve execution flexibility [114].

Change management at runtime in procedural processes has been studied
in [66] where change propagation algorithms ensure the behavioral and
structural soundness of choreography partners’ private processes after the
change. In [99, 67], authors consider the change negotiation phase but no
mechanism is proposed to ensure that all partners have trustfully applied

42 CHAPTER 3. RELATED WORK

the change. An approach integrates change to BPEL process choreographies
[62]. Authors divide internal and public changes and formalize both changes.
Participants only have access to their private views and define and submit
changes that if valid are merged into other participants’ private views.
Nonetheless, changes are defined for the BPEL language, and change
negotiation and propagation are not addressed in this work. In all these
works, blockchain is not proposed as a trustworthy tool to carry on change
management.

The CoBuP architecture enables change on the deployed process model to
improve business process model flexibility [123]. Authors separate a BPMN
model interpreter from the data structures defining the process model. By
so doing, the logic workflow of the BPMN model is not statically encoded in
the process instance smart contract but collected off-chain from the process
model and dynamically added to it. Hence role changes are possible at
runtime. Nonetheless, the authors focus on a BPMN orchestration approach
only. Meanwhile, collaborative decisions on (1) late binding and un-binding
of actors to roles in blockchain-based collaborative processes, (2) late binding
of subprocesses, and (3) choosing a path after a complex gateway help
support process model changes deployed on-chain [125]. A policy language
enables the description of policy enforcement rules such as who can be a
change initiator and who can endorse a change. However, the authors do
not consider ADD/REMOVE/UPDATE change operations. Additionally,
the private processes of roles are not considered, nor is the propagation of
the effect of the new decisions over partners.

Change management has also been studied in DCR processes, mainly
through runtime changes. The first efforts appear with the notion of DCR
fragments where simple change/add/remove operations are implemented [141].
Authors follow the build-and-verify approach to apply incremental changes to
the fragments. This approach consists of continuous iterations of (i) modeling,
(ii) verifying that the new graph is free of deadlocks and livelocks, and (iii)
executing until a further adaptation is required. Nonetheless, partner trust in
the change propagation of DCR choreographies is not addressed in this work.
In [145], authors use a correct-by-construction approach on running instances
of DCR graphs. The structure underlying a DCR is a labeled transition
system. Starting from a user-defined change, authors define a reconfiguration
workflow. During the transition period, old requirements are disabled, and
verified subpaths of activity executions are enabled. This setting holds until
new requirements are verified. However, not every reconfiguration problem
has a solution, and for every change, one has to build a new reconfiguration
workflow, which is not easy for large models. Indeed, this approach requires
heavy calculations to discover the verified subpaths. Authors extend this
work with a fully automated technique based on formal specifications in
[144]. Finally, in [49], authors use a set of rules ensuring the correctness
of new instances of DCR graphs by design. Any new change operation

3.3. BRINGING FLEXIBILITY TO BLOCKCHAIN-BASED BPMS 43

must respect these rules to prevent any unwanted behavior. Nonetheless,
no blockchain support is provided in these works to carry on trustworthy
change management.

3.3.2 Partner flexibility with runtime blockchain-based
procurement

We now focus on partner flexibility in the case of procurement activities.
This type of flexibility is necessary as partnerships are dynamic in cross-
organizational processes: for example, a reallocation may be necessary to fit
a temporary constraint (i.e., if a carrier cannot be on time for delivery) or
to fulfill delivery standards that may vary from one delivery to another (i.e.,
for flowers or chemical goods).

Resource-binding refers to resource allocation mediation within or between
organizations following a given policy [216], a mediation that cannot be
avoided or broken. Compared to traditional allocation systems, blockchain-
based allocation protocols unlock trustworthy process automation [181, 195,
121]. Indeed, the integrity of the protocol can be ensured as all carriers
are considered before attributing a request, while historical data stored
in the blockchain is tamper-proof. When a conflict occurs, the history of
transactions can be retrieved and used as the single source of truth [156, 148].
Blockchain-based mappings can go one step further by managing the end-to-
end service enactment autonomously and reliably.

Retrieved use cases are mainly anchored towards the autonomous
delegation of computational tasks [212, 147, 142], and energy requests in
smart grids [203, 117, 142]. The blockchain access control is mainly public,
as use cases target public markets. It is also to note that two papers
advocate permissioned blockchain access for privacy purposes [212, 117]. Thus
resource-binding smart contracts often target public markets and choose a
corresponding blockchain access control. Regarding the binding Scheme which
summarises the existence of QoS binding rules and binding agreements (i.e.,
smart contract-based agreements), several rules, or constraints, have been
proposed to choose or validate a resource binding match. Among such rules
stand: (i) behavioral, structural, or execution constraints in [195], or (ii) roles,
and statements in [121]. However, these notions are missing in the retrieved
protocols. Moreover, to our knowledge, no QoS rules have been proposed
in the literature to generate smart contract-based bindings. Moreover, the
notion of a contractualization stage is not addressed except in [172] where
the contractor and the resource negotiate the contract terms. Finally, several
behavior control schemes have been implemented within resource-binding
smart contracts. Incentives can foster service completion [15, 117, 147].
Escrow mechanisms moreover exist [169, 203, 147] to prevent the non-
completion of an agreement and facilitate the settlement between the tenants
once the service completes.

44 CHAPTER 3. RELATED WORK

On the one hand, several papers investigate the use of blockchain
and smart contracts for the autonomous allocation of services. In [151]
a setup stage formalization is proposed for blockchain-based resource
binding selection: it comprises the selection of the possible sets service
request/resource provider, population with participants, and negotiation
stages that will finally lead to contractualization, which can take the
form of a digital agreement. QoS-based allocation rules are proposed as
one type of selection strategy. Other papers leverage smart contracts for
autonomous contractualization [203, 147], incentives to encourage service
completion [117, 147], or delivery settlement [169]. However, these papers
do not use oracles to compute QoS ratings.

On the other hand, several papers propose a design science research
approach to investigate the use of blockchain applications. Two papers, [119,
3], focus respectively on developing blockchain-based IoT applications and
smart-parking. However, the retrieved design principles do not specifically
concern multi-criteria QoS-based procurement mappings. Two design science
research papers, [143, 187], focus on the use of blockchain for logistics but do
not focus specifically on the multi-criteria QoS-based procurement. The first
paper focuses on the management of bills of lading via blockchain. Retrieved
design principles are process digitization, tamper-proof storage, accessibility,
and user authentication. The second paper focuses on food supply chains;
the retrieved design principles are mainly related to data privacy and keeping
sensitive data off-chain.

To summarize, regarding control-flow flexibility (RQ2.2), most related
works consider changes in process orchestrations only [141, 49]. Additionally,
approaches binding actors to roles in a process collaboration [125] currently
push the burden of checking the transitive effect of new changes onto the
new parties. This checking is likely done manually, which can lead to errors.
Finally, even when the change propagation soundness is dealt with, the
proposed approaches do not provide a mechanism that ensures choreography
partners project the change and propagate it trustfully.

Moreover, regarding partnership flexibility (RQ2.1), the retrieved
approaches propose resource-binding mechanisms based on price criteria.
However, allocating a resource based on multiple criteria stored on-chain for
a dynamic and trustworthy QoS-based allocation has not been addressed
yet.

3.4 Bringing privacy to blockchain-based BPMS

In this section, we focus on two specific cross-organizational activities
prone to distrust that can benefit from blockchain while demanding privacy:
procurement and payment. The procurement stage consists of allocating
a task to a service provider after examining service provider competitors.

3.4. BRINGING PRIVACY TO BLOCKCHAIN-BASED BPMS 45

Challenges focus on the objective and customized examination of competitors
while preserving the confidentiality of sensitive data on the blockchain. The
payment stage occurs at the end of the service delivery between two parties:
it is also prone to trust requirements regarding the payment protocol, as well
as confidentiality of payment content, as competitors share the blockchain
transaction logs. We detail in the following the related work regarding these
two stages.

3.4.1 Privacy preservation for on-chain offer comparison

We focus the study on sealed-bid auctions as in such auctions, bidders
explicitly do not have access to bids from other competitors, and are requested
to submit only one bid per auction.

Multi-party computation, alongside zero-knowledge-proof [77], can be
used to conduct sealed-bid auctions. With zero-knowledge proofs, a prover
can demonstrate knowledge of a piece of information without leaking
information directly to the verifier. In the context of sealed-bid auctions,
the non-interactive zero-knowledge proof variant, which consists of one-way
communication between the prover and the verifier (c.f. zk-SNARKs [18]), is
often used by bidders to compare offers pairwise in private channels without
revealing the content of the bids [210, 22, 126]. They reveal the result of each
smart contract comparison using evidence techniques with zero knowledge
disclosure. The main limitation consists of the fact that bidders need to
interact with each other. Hence, issues may arise if one bidder is not willing
to participate, takes more time than needed, or if too many bidders need to
interact. Additionally, the smart contract can reconstruct the bid ordering
(e.g., from the most to the least expensive if the auctions are on a price),
which reduces the privacy of bids.

In [51], a hybrid public/private blockchain scheme, combined with
encryption technics, is proposed to carry on privacy-preserving auctions. The
public blockchain is used to gather bids, and once the auction terminates,
the auctioneer can access the content of the bids in the private blockchain.
Such architecture answers the need for low auction costs and low latency.
Nonetheless, the auctioneer must orchestrate and deploy the auction on
the private chain. This may reduce the benefits of smart contracts as a
trustworthy and autonomous third party, and reintroduces security and
scalability downsides.

Other approaches use a smart contract to gather offers and compare
them on-chain using a trusted execution environment or enclave [72, 103, 61,
71, 14, 192, 110]. A smart contract bridges the gap between customers and
the enclave. Partial homomorphic encryption is used to gather offers in a
confidential fashion on-chain, forwarded in an asymmetric fashion by bidders.
An enclave then deciphers offers off-chain, as in [72]. In [103], a trusted
execution environment computes allocations in a blockchain environment,

46 CHAPTER 3. RELATED WORK

using an oracle to track node preferences. However, in these approaches, the
enclave has access to the content of offers and this can result in a single point
of failure. Additionally, partial homomorphic encryption, which is used e.g.,
in [71, 14] does not allow the combination of different operations (addition,
subtraction, multiplication, division), which is necessary to carry on typical
aggregation strategies used to compute a multi-objective comparison of offers.

3.4.2 On-chain privacy-preserving payments

In permissionless blockchains, private payments can be reached using mixing
services. Cryptocurrency assets are mixed, anonymizing transactions and
disconnecting the sender from the receiver. For example, Dash implements a
decentralized mixing service coupled with a chaining facility on bitcoin [56].
Nonetheless, Bitcoin does not provide smart contracts: programmable
payments are unavailable. Additionally, auditability is computationally
intensive due to using an ahead-of-time decentralized trustless mixing
strategy. SilentWhispers [130] also leverages a mixing facility as payment is
processed using intermediary nodes. Additionally, temporary and long-term
encryption keys are used for internode payments. By so doing, transactions
are not linkable, i.e., it is not possible to backtrack transaction history, thus
hampering auditability. Nonetheless, the key management scheme adds
complexity to the payment scheme. Finally, Monero [150] proposes a mixing
technique coupled with ring signature to hide both payment issuance and
value. Nonetheless, an issue arises regarding the ring signature’s size, which
impacts the transaction sizes directly and processing speed. Several works
tried to address this limitation, such as [196] and [101] but, similarly to
Bitcoin, no smart contract facility is provided in Monero.

Alongside mixing strategies, encryption and zero-knowledge proofs
protocols can enforce the privacy of payments.

Zerocash [184], based on bitcoin, uses zk-SNARKs to hide the payment’s
sender, receiver, and amount. Users pay each other privately while
corresponding anonymized transactions are stored on-chain. This method
requires a trusted setup, and transaction generation is computationally
expensive (two minutes are necessary to generate a transaction using zero-
knowledge proof according to [101]). Several extensions to Zerocash have
been proposed in the literature to add an auditability layer: [74] adds an
accountability layer to audit transactions and enforce spending limits, and
[65, 30] propose partial anonymity for auditability using anonymity sets,
coupled with El Gamal encryption and Schnorr zero-knowledge proofs. Audits
can occur in a permissioned setting using verifiable public-key encryption. As
a downside, the anonymity set depends on the set’s size, and an encryption
key management system is necessary to manage auditability. Additionally,
all these solutions are based on Bitcoin, and partial payment is not provided.

Another strategy consists of hiding payment content using various

3.4. BRINGING PRIVACY TO BLOCKCHAIN-BASED BPMS 47

semi-homomorphic schemes (Pedersen commitment, Paillier, or El Gamal
algorithms) and zero-knowledge proofs [139, 36, 173, 39]. Often, Pedersen
commitments encode the amount and types of assets to be transferred.
Zero-knowledge proofs show the validity of a transaction once it has been
processed. For example, Zerocoin [139] converts bitcoins into zero coins that
offer anonymity using Pedersen commitments and zero-knowledge proofs.
Additionally, the zerocoins can be reconverted into bitcoins without any
origin leakage. Nonetheless, Zerocoin does not offer auditing facilities and
focuses on Bitcoin, hence does not offer smart contract facilities. MiniLedger
focuses on a permissioned account-based blockchain, aiming for banks as
end-users [36]. It uses Pedersen commitment and NIZK proofs to hide
transaction values, senders, and recipients. Each bank-to-bank collaboration,
i.e., a transaction from one bank to another, uses a unique encryption key to
decipher their assets privately. Additionally, storage cost is independent of
the number of transactions as MiniLedger leverages pruning technics.

Nonetheless, due to Pedersen commitment schemes, off-chain systems
must transmit the openings of outgoing commitments, which complexifies the
design and adds a layer of trust to senders. Additionally, if one user fails to
open one commitment, its account will be unusable [39]. To circumvent the
Pedersen commitment issue, Pretty Good Confidentiality (PCG)[39] proposes
twisted El Gamal encryption and zero-knowledge proof. They offer to display
transactions and public keys on the ledger for auditability. However, it is
impossible to collect amounts or provide partial payments forcibly.

Several papers use privacy-preserving payment channels [230, 226, 131,
202, 85]. [230] proposes token payment schemes in a private blockchain
consortium. A private blockchain acts as the interoperability domain issuing
tokens. The banks use private payment channels built on this master
blockchain to allocate transactions. Only the transaction hash, without
further transaction details, is recorded in the master blockchain to preserve
privacy. Hence, only banks involved in a transaction can access the details.
As a limitation, private channels complexify the information system as each
bank needs to open several channels to proceed with payments with other
banks. In [226, 131], the Chameleon hash function guarantees that users
cannot track payments under the condition that at least one intermediate
payment node is honest. Nonetheless, an issue arises if intermediate nodes
collude with each other. In [202], authors leverage Elliptic curve cryptography
to hide transaction content. In [85], payment is processed off-blockchain in
private payment channels using an untrusted intermediary. Nonetheless, in
both approaches, auditability is not provided.

Another strategy uses trustworthy intermediaries to decipher encrypted
payments and proceed to payments privately. In Bolt [79], the focus is
set on intermediated payments carried on the Bitcoin blockchain. Privacy-
preserving payment channel schemes are presented, including one leveraging
trusted intermediaries. Solidus [34] offers a privacy-preserving protocol for

48 CHAPTER 3. RELATED WORK

asset transfer in intermediated bilateral transactions. Banks act as mediators
or proxies to hide transaction graphs and values in this system. They do so
using ORAMs (oblivious random access machines, which prevent servers from
learning about data [78]) coupled with zero-knowledge proof. Nonetheless,
no dedicated auditing functionality is proposed, though banks can open the
content of relevant transactions upon request.

In summary, regarding allocation privacy, a balance between auditability
and full privacy is still challenging in the related work (RQ3.2). In [230],
auditability is limited as only the transaction hash is accessible to auditors.
Moreover, multi-party-computing reintroduces bidders’ interactivity, which
is not desired to carry on auctions [192]. Moreover, using trusted execution
environments reintroduces a single point of failure as the content of offers is
revealed to the enclave. Finally, fully homomorphic encryption has not been
investigated in the context of on-chain auctions.

Regarding payment privacy (RQ3.3), several approaches offer fully
privacy-preserving payment mechanisms such as mixing strategies, or
payment channels. Indeed, mixing strategies have been proposed to
anonymize transactions such as in Monero [150], ARRR, or Epic Cash, while
private payment channels can ensure privacy and transaction scalability [230].
However, a fully privacy-preserving payment scheme is not desirable in our
cross-organizational context, as partners already know each others. Instead,
the following requirements arise : (1) auditability of the payment senders and
recipients, (2) privacy of the payment value, (3) no computation intensive
schemes for usability (i.e., inversely to schemes leveraging zero-knowledge
proofs such as PIVX or Solidus [34]), (4) leverage of smart contracts for
automation purposes. Additionally, in an industrial context, we hypothesise
that the trust issue is more on the process managmeent governance than
on banks, hence banks can be referred to as trusted entities for payment
management [79, 34].

3.5 Comparison and Discussion

3.5.1 Evaluation Criteria

Based on the challenges discussed in the previous chapter, we propose the
following criteria to evaluate related work revolving around blockchain-based
business process management systems:

• (E1): Trustworthy support using blockchain. This criterion is deduced
from the research sub-question RQ2.1 (section 1.3.2);

• (E2): Declarative modeling language. This criterion is deduced from
the research sub-question RQ2.3 (section 1.3.2);

• (E3): Trustworthy and privacy-preserving separation of concerns

3.5. COMPARISON AND DISCUSSION 49

during deployment and execution. This criterion is deduced from
the research sub-questions RQ1.1 (section 1.3.1) and RQ3.1 (section
1.3.3);

• (E4): Process instance control-flow change. This criterion is deduced
from the research sub-question RQ2.4 (section 1.3.2);

• (E5): Dynamic and customizable actors allocation task decision making
based on a smart contract, and leveraging past customers history This
criterion is deduced from sub-question RQ1.2 (section 1.3.1) and sub-
question RQ2.2 (section 1.3.2);

• (E6): Privacy and auditability of the allocation stage by confidentially
computing sensitive metrics. This criterion is deduced from the research
sub-question RQ3.2 (section 1.3.3);

• (E7): Privacy and auditability of the payment stage. This criterion is
deduced from the research sub-question RQ3.3 (section 1.3.3).

3.5.2 Summary

Table 3.1 summarizes the features of the presented approaches according to
previously introduced criteria E1-E7.

For the first criterion (E1), the notion of a trustworthy inter-organizational
business process support using blockchain is addressed in most related work
except for several papers where blockchain is cited as a possible solution
among others ([194]), or not considered as it was not the direct focus of the
paper ([66, 67, 99, 62, 141, 145, 144, 49]). We present these works as they
match some of our other criteria.

For the second criterion (E2), most blockchain-based collaborative
processes cited in the literature do not consider declarative choreographies.
A majority focuses on orchestration languages, especially on BPMN
([214, 201, 112, 120, 64, 123, 108, 66, 67, 99, 123, 125]). Moreover, no
standard exists yet regarding declarative languages, and several declarative
languages such as DCR, XML, ADICO, ESML, or BPEL, call for further
study in the blockchain context.

For the third criterion (E3), we focus on the challenge of the trustworthy
and privacy-preserving separation of concerns during deployment and
execution. We classify related work with respect to view-based approaches
and the existence of a hybrid on/off-chain deployment. Some works propose
a hybrid on/off-chain deployment approach preserving deployment trust, but
without taking a view-based approach [161, 64, 123, 108]. Among papers
focusing on declarative choreographies, proposed solutions do not distinguish
the partners’ internal processes and the public view of the choreography
when deployed to the chain.

50 CHAPTER 3. RELATED WORK

Limitations identified in the related work for (E2) and (E3) hence help
refine Objective 1 (c.f., Section 1.4.1): identifying a business process modeling
language that is flexible and a business process model that integrates a
separation of concerns by design) with (i) a focus on a declarative language
and (ii) by means of an on-chain choreography management.

For the fourth criterion (E4), we investigate process instance control-flow
change by looking at the presence of choreography, propagation soundness,
and propagation trustworthiness. Most of the related work considers changes
in process orchestrations only [141, 49] and even when authors bind actors to
roles in a process collaboration [125], they do not consider the transitive effect
of new changes on the partners’ parts of the process. Moreover, even when
the change propagation soundness is dealt with, no mechanism is proposed
to ensure that choreography partners project the change and propagate it
trustfully. Hence these identified limitations validate Objective 3 (making
the public view upgradable and open to changes upon participants’ requests at
runtime.)

For the fifth criterion (E5), we focus on the dynamic and customizable
actors allocation task decision-making based on a smart contract by looking
at the notions of multi-criteria filtering and sorting and smart contract e-
contracting. The retrieved approaches propose resource-binding mechanisms
based on price criteria. However, allocating a resource based on multiple
criteria stored on-chain (some to be filtered and some to be sorted) to allow
for a dynamic and trustworthy QoS-based allocation has not been addressed
yet. Hence, this research gap validates Objective 4 (carrying on runtime
allocation by leveraging blockchain- stored tamper-proof data.)

For the sixth criterion (E6), we focus on allocation privacy by looking
at the following criteria: allocation privacy, bidder non-interactivity, no
trusted entity access to clear data, and no auctioneer orchestration (as
we aim at full automation). With [230], auditability is provided but
limited as only the transaction hash is accessible to auditors. Carrying
on privacy-preserving auctions on the blockchain with multi-party-computing
reintroduces bidders’ interactivity, which is not desired to carry on
auctions [192]. Additionally, using private blockchains lowers scalability
and does not leverage smart contract automation benefits. Moreover,
using trusted execution environments reintroduces a single point of failure
as the content of offers is revealed to the enclave. Hence, we validate
Objective 5 (carrying on trustworthy privacy-preserving on-chain auctions
while preserving the auditability of the smart- contract-based decision making).

For the seventh criterion (E7), which focuses on the payment stage,
we investigate post-payment privacy, programmable payment, and payment
auditability. Several approaches use private payment channels ([230, 226, 131,
202, 85]) to ensure privacy and scalability when transactions increase, but
they offer little [230] to no auditability. In [184, 94, 139], semi-homomorphic
encryption and zero-knowledge-proof schemes are combined to hide the

3.6. CONCLUSION 51

transaction value, sender, and receiver identity. Following the same approach,
a set of papers ([149, 9, 74, 65, 30, 36, 39]) also provide auditability
functionalities. Nonetheless, zero-knowledge proofs and semi-homomorphic
encryption come with computation issues. Additionally, semi-homomorphic
encryption comes with complicated encryption key management. Mixing
strategies such as in [56, 150, 196, 101] for UTXO models, and [130]
for account-based models have been proposed to anonymize transactions.
Nonetheless, no focus on auditability is provided in these papers, except
for [56] which proposes a retroactive auditability function. The auditability
affordance is computationally expensive, and Dash does not offer smart
contracts, hence no partial or programmable payment. In [79, 34], banks
are leveraged as trustworthy intermediates to carry on on-chain payments.
Cryptography technics such as zero-knowledge proof in [34] ensure privacy,
but auditing functions are not provided. Hence, we validate Objective 6
(Providing a trustworthy, privacy-preserving, and scalable on-chain payment
mechanism).

3.6 Conclusion

In this chapter, we present the current efforts devoted to building blockchain-
based cross-collaboration BPMS. For this purpose, we conduct a survey
aiming to determine the challenges linked to trusted decentralized process
monitoring, identify the proofs-of-use developed in the literature and compare
them to outline existing research gaps. We classify related work according to
the following analytical perspectives: (i) blockchain-based business process
deployment and execution, (ii) control-flow and partner flexibility, and (iii)
allocation and payment privacy.

Hence, in this chapter, the following research gaps appear: (i) a lack
of constraint-based process modeling in the blockchain context, (ii) a
lack of process flexibility in the choreography context (behavioral and
actor flexibility), (iii) a lack of approaches preserving process privacy and
auditability in a blockchain context.

In this thesis, we propose to address these challenges by:

• Taking a declarative choreography modeling approach (c.f., Section1.4.2,
contribution i). Indeed, most existing works use an imperative paradigm
such as BPMN. However, we chose to model choreographies with a
declarative language that abstracts the control-flow through a set
of rules or constraints [63, 76], namely Dynamic-Condition-Response
(DCR) graphs [190, 93]. We believe that the declarative paradigm
corresponds to the dynamic nature of choreography interactions, as
business modelers cannot predefine all the execution paths of a model
in constant evolution. Only essential constraints are specified in the
model. Additionally, choreographies help separate clearly the public

52 CHAPTER 3. RELATED WORK

and private views, hence easing the separation of concerns for business
process model deployment, execution, or runtime change. On/off-chain
deployment and execution strategies for constraint-based models of
choreographies have not been addressed in the literature, as well as
runtime change of the corresponding control flow instance.

• Enhancing runtime flexibility by investigating control-flow and
partnerships flexibilities (c.f., Section1.4.2, contribution ii). Indeed,
research on the flexibility of blockchain-based declarative business
process management is scarce, especially regarding strategies concerning
a trustworthy change proposition. What is more, research on a QoS-
based runtime partner allocation, which leverages blockchain, is lacking.
Hence, we propose two mechanisms in this thesis to foster blockchain-
based business process management flexibility, a flexibility that is
necessary for the system to adapt to moving environments.

• Preserving sensitive metrics confidentiality while aiming at full smart
contract automation (c.f., Section1.4.2, contribution iii). In most
related work, sensitive metrics confidentiality comes at the expense
of auditability limitations, or partner interactions, hence reducing
automation benefits coming from smart contracts. In the context of
cross-organizational processes, both confidentiality and auditability of
the allocation or payment stages are paramount to foster the adoption
of such technology.

Hence the three following chapters present research works aiming at
answering these objectives by respectively addressing (i) blockchain-based
on/off-chain deployment and execution, (ii) flexibility of the control-flow and
partners allocation, and (iii) privacy of allocation and payment.

3.6.
C

O
N

C
LU

SIO
N

53

Table 3.1: Related works categorization according to the evaluation criteria E1-E7. (*)=no experimentation, (ND)= not
detailed, (NA)=not applicable

Papers E1 E2 E3 E4 E5 E6 E7

B
lo

ck
ch

ai
n

B
P

m
od

el
in

g

V
ie

w
-b

as
ed

D
ep

lo
ym

en
t

C
ho

re
og

ra
ph

y

P
ro

pa
ga

ti
on

so
un

dn
es

s

P
ro

pa
ga

ti
on

tr
us

t

Q
oS

al
lo

ca
ti

on

O
n-

ch
ai

n
co

nt
ra

ct
in

g

A
llo

ca
ti

on
P

ri
va

cy

B
id

de
r

in
te

ra
ct

iv
it

y

T
E

E
ac

ce
ss

to
cl

ea
r

da
ta

A
uc

ti
on

ee
r

or
ch

es
tr

at
io

n

P
os

t-
pa

ym
en

t
pr

iv
ac

y

P
ro

gr
am

m
ab

le
pa

ym
en

t

P
ay

m
en

t
au

di
ta

bi
lit

y

[229] x - - on-chain NA NA NA NA NA - NA NA NA - NA -
[223, 165] x - - on-chain NA NA NA - - NA NA NA NA - NA -
[80] x - - on-chain NA NA NA - - x NA NA NA - NA -
[153, 155] x(*) ESML x NA x NA NA - x - NA NA NA - NA -
[214] x BPMN - on-chain - NA NA NA NA - NA NA NA - NA -
[201] x BPMN x on-chain x NA NA NA NA NA NA NA NA NA NA NA
[69] x ADICO - ND - - - - - - NA NA NA - NA -
[11] x BCRL - on-chain - NA NA NA NA NA NA NA NA NA NA NA
[127] x DCR - on-chain - NA NA - NA NA NA NA NA NA NA NA
[96] x(*) LTL - on-chain - NA NA - - - NA NA NA - NA -
[193] x(*) AC - on-chain - NA NA NA NA NA NA NA NA NA NA NA

Continued on next page

54
C

H
A

PT
ER

3.
R

ELAT
ED

W
O

R
K

Table 3.1 – continued from previous page
Papers E1 E2 E3 E4 E5 E6 E7

B
lo

ck
ch

ai
n

B
P

m
od

el
in

g

V
ie

w
-b

as
ed

D
ep

lo
ym

en
t

C
ho

re
og

ra
ph

y

P
ro

pa
ga

ti
on

so
un

dn
es

s

P
ro

pa
ga

ti
on

tr
us

t

Q
oS

al
lo

ca
ti

on

O
n-

ch
ai

n
co

nt
ra

ct
in

g

A
llo

ca
ti

on
P

ri
va

cy

B
id

de
r

in
te

ra
ct

iv
it

y

T
E

E
ac

ce
ss

to
cl

ea
r

da
ta

A
uc

ti
on

ee
r

or
ch

es
tr

at
io

n

P
os

t-
pa

ym
en

t
pr

iv
ac

y

P
ro

gr
am

m
ab

le
pa

ym
en

t

P
ay

m
en

t
au

di
ta

bi
lit

y

[138] x AC - on-chain - NA NA NA NA NA NA NA NA NA NA NA
[28] x XML - on-chain x NA NA NA NA NA NA NA NA NA NA NA
[60] x XML x on-chain x NA NA NA NA NA NA NA NA NA NA NA
[107, 37] - NA x NA - NA NA NA NA NA NA NA NA NA NA NA
[112] x BPMN x ND x NA NA NA NA NA NA NA NA NA NA NA
[194] ND ND x NA x NA NA NA NA x NA NA NA NA NA NA
[120] x BPMN - on-chain - NA NA NA NA NA NA NA NA NA NA NA
[176] x NA - on-chain x NA NA NA NA NA NA NA NA NA NA NA
[161] x NA - hybrid - NA NA NA NA NA NA NA NA NA NA NA
[64, 123] x BPMN - hybrid - NA NA NA NA NA NA NA NA NA NA NA
[108] x BPMN - hybrid - - NA - NA NA NA NA NA NA NA NA
[22, 126] x - - - - - - - - x x NA - NA NA NA
[51] x - - - - - - - - x - NA x NA NA NA

Continued on next page

3.6.
C

O
N

C
LU

SIO
N

55

Table 3.1 – continued from previous page
Papers E1 E2 E3 E4 E5 E6 E7

B
lo

ck
ch

ai
n

B
P

m
od

el
in

g

V
ie

w
-b

as
ed

D
ep

lo
ym

en
t

C
ho

re
og

ra
ph

y

P
ro

pa
ga

ti
on

so
un

dn
es

s

P
ro

pa
ga

ti
on

tr
us

t

Q
oS

al
lo

ca
ti

on

O
n-

ch
ai

n
co

nt
ra

ct
in

g

A
llo

ca
ti

on
P

ri
va

cy

B
id

de
r

in
te

ra
ct

iv
it

y

T
E

E
ac

ce
ss

to
cl

ea
r

da
ta

A
uc

ti
on

ee
r

or
ch

es
tr

at
io

n

P
os

t-
pa

ym
en

t
pr

iv
ac

y

P
ro

gr
am

m
ab

le
pa

ym
en

t

P
ay

m
en

t
au

di
ta

bi
lit

y

[72, 103, 14, 61,
71, 110, 192]

x - - - - - - - - x - x - NA NA NA

[130] x NA NA NA NA NA NA NA NA NA NA NA NA x NA -
[139, 150, 196,
101, 184]

x NA NA NA NA NA NA NA NA NA NA NA NA x - -

[9] x NA NA NA NA NA NA NA NA NA NA NA NA x x x
[56, 149, 74, 65,
30]

x NA NA NA NA NA NA NA NA NA NA NA NA x - x

[36] x NA NA NA NA NA NA NA NA NA NA NA NA x NA x
[39] x NA NA NA NA NA NA NA NA NA NA NA NA - NA x
[230] x NA NA NA NA NA NA NA NA NA NA NA NA x x x
[226, 131] x NA NA NA NA NA NA NA NA NA NA NA NA x x -
[202, 85, 79,
34]

x NA NA NA NA NA NA NA NA NA NA NA NA x - -

Continued on next page

56
C

H
A

PT
ER

3.
R

ELAT
ED

W
O

R
K

Table 3.1 – continued from previous page
Papers E1 E2 E3 E4 E5 E6 E7

B
lo

ck
ch

ai
n

B
P

m
od

el
in

g

V
ie

w
-b

as
ed

D
ep

lo
ym

en
t

C
ho

re
og

ra
ph

y

P
ro

pa
ga

ti
on

so
un

dn
es

s

P
ro

pa
ga

ti
on

tr
us

t

Q
oS

al
lo

ca
ti

on

O
n-

ch
ai

n
co

nt
ra

ct
in

g

A
llo

ca
ti

on
P

ri
va

cy

B
id

de
r

in
te

ra
ct

iv
it

y

T
E

E
ac

ce
ss

to
cl

ea
r

da
ta

A
uc

ti
on

ee
r

or
ch

es
tr

at
io

n

P
os

t-
pa

ym
en

t
pr

iv
ac

y

P
ro

gr
am

m
ab

le
pa

ym
en

t

P
ay

m
en

t
au

di
ta

bi
lit

y

[66, 67, 99] - BPMN x NA x x - NA NA NA NA NA NA NA NA NA
[62] - BPEL x NA x x NA NA NA NA NA NA NA NA NA NA
[123] x BPMN - on-chain - x x NA NA NA NA NA NA NA NA NA
[125] x BPMN - on-chain - NA NA NA NA NA NA NA NA NA NA NA
[141, 145, 144,
49]

- DCR - NA - x NA NA NA NA NA NA NA NA NA NA

[151] x NA NA NA NA NA NA ND x - NA NA - NA NA NA
[203, 147, 117,
169, 119, 3,
143, 187]

x NA NA NA NA NA NA - x - NA NA - NA NA NA

Our
approach

x DCR x hybrid x x x x x x - - - x x x

Chapter 4

Declarative Choreography
Management with Blockchain

Contents
4.1 Introduction . 57
4.2 Basic concepts . 59

4.2.1 DCR graphs . 59
4.2.2 DCR choreography 60

4.3 Motivating Example 61
4.4 Design time: Generating Public and Private Views 63

4.4.1 Public and private views of a DCR choreography . 63
4.4.2 Translating DCR graphs into bitvectors 65
4.4.3 Hybrid on/off-chain generation of views 66

4.5 Hybrid Off/On-chain Runtime Execution 68
4.5.1 Managing internal execution requests off-chain . . 69
4.5.2 Managing choreography events execution requests

on-chain . 69
4.6 Implementation and Evaluation 70

4.6.1 Implementation . 70
4.6.2 Evaluation . 71

4.7 Conclusion . 72

4.1 Introduction

As mentioned in Section 1.1, a cross-organizational process can be defined
as a process scattered across different organizations. It comprises private
processes carried out by individual partners, where internal data such as
business data, actors, or business entities, should not be visible to the other

57

58 CHAPTER 4. CONTRIBUTION 1

partners. It also includes a public process where several partners collaborate
in a coordinated way.

In this setting, all partners should trust the execution state of the public
process. Hence, a trade-off between ensuring the privacy of partners’ private
processes and exposing the public process thus arises. Model flexibility is
also at stake, as processes are dynamic: partners should be able to change
their internal processes without impacting the public process [37]. Thus, the
following questions arise:

1. How to carry out a separation of concerns that preserves the privacy of
the private processes and trust of the public process for the deployment
and execution of choreography processes in blockchain? (c.f., Section 1.3,
RQ1.1)

2. How to model the flexibility imperatives of cross-organizational business
processes? (c.f., Section 1.3, RQ2.2)

3. How to ensure a trustworthy access-control of business process activity
data stored in smart contracts in blockchain-based cross-organizational
processes? (c.f., Section 1.3, RQ3.1)

In the literature, as mentioned in the chapter basic concepts,
subsection 2.1.3, business process choreographies answer the need for such
separation of concerns by clearly specifying coordination tasks [2, 112]. In
addition, the public process is shared between participants to limit privacy
leakages. Meanwhile, private views hold the set of (1) internal tasks of a
particular partner not disclosed to the other partners and (2) communication
tasks in which this partner is involved, i.e., the projection of the public view
over this partner [2]. However, the trustworthy execution of the public view
remains challenging as it is often managed centrally [112].

Blockchain has been leveraged in the literature as a trustworthy
coordination mechanism for collaborative business processes [214, 112]. As
mentioned in the related work chapter, subsections 3.2.3 and 3.2.4, in [214],
a smart contract manages the public workflow of an orchestration. However,
in this approach, the execution of private tasks off-chain is only mentioned,
and the inner mechanism has not been detailed further. Additionally, in
[112], the smart contract is used to manage a choreography public view,
and so doing, enforcing the order of messages. Nonetheless, this work
suggests a private/public separation, but only the public view mechanism
is implemented. Additionally, there is no on/off-chain enforcement of
projections during the deployment of the process instance.

Thus, to our knowledge, none of the retrieved works addresses the
trustworthy deployment of choreographies. This deployment remains
challenging as private information should not be shared between partners at
design or runtime. Moreover, none of the retrieved works proposes a detailed
mechanism for executing projections using a hybrid on/off-chain mechanism.

4.2. BASIC CONCEPTS 59

In this chapter, we contribute to the literature through a unified solution
for designing and executing business process choreographies in a hybrid
on/off-chain fashion.

The first contribution of this chapter is presented in Section 4.4.
We propose a mechanism for deploying the global process, which offers
trustworthiness while preserving the separation of concerns. Participants
build the global process incrementally from a public view stored in a smart
contract during deployment. Each participant will compute off-chain its
role projection comprising public events where she is involved, and private
events are kept off-chain for privacy concerns. This way, private control flows
remain in the participants’ process engines, while blockchain systems ensure
a tamper-proof public view. The blockchain cannot access private events;
aggregating all role projections will render the global process.

The second contribution, presented in Section 4.5, is a hybrid on/off-
chain mechanism for executing cross-organizational choreographies. The
roles execute their internal tasks off-chain in their local process execution
engine. Meanwhile, a smart contract manages public interactions. When
the smart contract receives an interaction request initiated from one of the
roles (sender or receiver(s)), it executes the task and communicates its state
back. The roles update their private states accordingly. Hence, we achieve
a trustworthy separation of concerns preserving partners’ private processes’
privacy.

Most existing works use an imperative paradigm such as BPMN. However,
we chose to model choreographies with a declarative language that abstracts
the control-flow through a set of rules or constraints [63, 76], namely Dynamic-
Condition-Response (DCR) graphs [190, 93]. We believe that the declarative
paradigm corresponds to the dynamic nature of choreography interactions,
as business modelers cannot predefine all the execution paths of a model in
constant evolution. Only essential constraints are specified in the model.

4.2 Basic concepts

In the following section, we introduce basic concepts related to DCR graphs
(Section 4.2.1) and DCR choreographies (Section 4.2.2) that will be used in
the rest of the chapter.

4.2.1 DCR graphs

DCR graphs are one of many declarative business process modeling languages
whose formalism is presented in [93]. We refer to the following definition
(cf [93]):

Definition 4.2.1 (DCR Graph). A DCR graph G is a tuple (E, M , L, f ,
−→ •, • −→, −→ ⋄, −→ +, −→ %), where:

60 CHAPTER 4. CONTRIBUTION 1

• E is a set of events

• M = (In, Pe, Ex) ⊆ E × E × E is a marking

• L is a set of labels

• f : E −→ L is a labelling function

• l⊆ E × E for l∈ {−→ •, • −→,−→ ⋄,−→ +,−→ %} are relations
between events.

Following Definition 4.2.1, business processes are modelled as a set of
events E linked together with relations1. Markings M capture the graph’s
state at runtime by referring to the triplet (currently included events In,
currently pending responses Pe, previously executed events Ex). Relations
model in a loosely fashion the constraints linking two events. The end-user
can enact any enabled activity at any time and more than one time during a
process instance execution.

DCR graphs hold five types of relations. Two relations, condition and
milestone, model pre-execution constraints. They restrain the enactment of
an event. The condition relation from GetOrder to CallDriver in Fig. 4.1a
implies that GetOrder must have been launched, not necessarily terminated,
for CallDriver to start. The milestone relation from Shipping to CheckOrder
implies that Shipping must be finished for CheckOrder to start. Three
relations translate the effects of an event execution to the remaining activity
markings. The inclusion relation from Accept to Pay states that the execution
of Accept unlocks Pay. On the opposite, the exclusion relation from Reject
to Pay states that the enactment of Reject forbids the execution of Pay.
Finally, the response relation from Accept to Pay sets Pay to pending when
Accept is executed (i.e., Pay waits for completion).

In the manuscript, we refer to Γ as the set of relations of the graph:
Γ={−→ •, • −→, −→ ⋄, −→ +, −→ %.}.

4.2.2 DCR choreography

A DCR choreography [93, 167] models and executes DCR graphs in a
distributed way. It comprises choreography events that ease coordination
between independent entities and internal events. We reconcile the definition
of a DCR choreography proposed in [93] and formalize it as follows:

Definition 4.2.2 (DCR choreography). A DCR choreography Φ is a
triple (G, I, R) where G is a DCR graph, I is a set of interactions, and R
is a set of roles. An interaction i is a triple (e, r, r′) in which the event
e is initiated by the role r and received by the roles r′ ⊂ R \ {r}. For an
event e∈E, e.type is the type of the event, e.type ∈ {ϵ, γ}, where (i) epsilon

1A DCR event is equivalent to a BPMN activity.

4.3. MOTIVATING EXAMPLE 61

(a) DCR graph of Flower Delivery (in orange, a DCR subgraph)

(b) Projection of the orange
sub-graph over Driver (Driver
private view)

(c) Projection of the orange sub-graph over Florist
(Florist private view)

Figure 4.1: DCR graph, and projections of a DCR graph chunk (in orange).

denotes the set of internal events in G, i.e., events having one initiator r ∈ R
and (ii) gamma are the set of interactions in G (gamma = I).

Figure 4.1a represents the DCR choreography of the delivery process
presented in the introduction in BPMN. The process involves three
participants: Customer, Florist, and Driver. In this example, Shipping
is a choreography interaction sent by Driver and received by Florist and
Customer. GetOrder is an internal event of Florist.

4.3 Motivating Example

Table 4.1 illustrates several executions of the DCR graph instance of the
delivery process (Figure 4.1).

Each column corresponds to an event marking of the graph in the form
(included, pending, executed). Each line stands for an event query triggered.
For example, initially, no event is executed or pending. The event GetOrder
is included in the execution set. Thus the initial marking of GetOrder is
(1,0,0). Upon executing GetOrder, the markings of GetOrder and CallDriver
are updated. GetOrder is now executed while CallDriver becomes included
and pending. Hence corresponding markings are (1,0,1) and (1,1,0).

Each participant controls the internal and choreography events where
she is involved. We define this set of events as her private view. For example,

62 CHAPTER 4. CONTRIBUTION 1

Table 4.1: Evolution of the markings of the DCR graph in Figure 4.1a

Markings (included,pending,executed)
G

et
O

rd
er

C
al

lD
riv

er

Sh
ip

pi
ng

C
he

ck
O

rd
er

A
cc

ep
t

R
ej

ec
t

D
el

iv
er

Se
tt

le
O

rd
er

(init) (1,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
GetOrder (1,0,1) (1,1,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
CallDriver (1,0,1) (1,0,1) (1,1,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
Shipping (1,0,1) (1,0,1) (1,0,1) (1,1,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
CheckOrder (1,0,1) (1,0,1) (1,0,1) (1,0,1) (1,1,0) (1,1,0) (0,0,0) (0,0,0)
Decide (Accept) (1,0,1) (1,0,1) (1,0,1) (1,0,1) (1,0,1) (0,0,0) (1,1,0) (0,0,0)
Deliver (1,0,1) (1,0,1) (1,0,1) (1,0,1) (1,0,1) (0,0,0) (1,0,1) (1,1,0)
SettleOrder (1,0,1) (1,0,1) (1,0,1) (1,0,1) (1,0,1) (0,0,0) (1,0,1) (1,0,1)

the sub-graph in orange in Figure 4.1a depicts the global view of a process
involving three partners: Florist, Driver, and Customer. Figure 4.1b and
Figure 4.1c depict respectively the private views over Driver and Florist.

Requirements arise when dealing with the execution of such choreography.
The activities for which some of the participants are not interested in (e.g.,
SettleOrder) or confidential (e.g., GetOrder) must be kept private. The
public view must express by design the information and requirements needed
to execute the workflow. Moreover, public activities must be tamper-proof,
and the execution flow fulfilled to keep on with the agreed-upon flow. The
system must offer integrity by design. If a claim occurs, the system becomes
the single source of truth.

Former works on private and public views have been proposed before
blockchain emergence [37, 107]. Separation of concerns is reached by
separating public and private views. However, trust in the execution of
the public view is still needed. Blockchain brings two interesting properties
to our research: decentralization and tamper-proof logs. Thus, the public
view of a business process could be completely decentralized by design while
ensuring trust through the tamper-proof logs property.

Nonetheless, two questions arise in this setting to preserve the separation
of concerns between participants, which we address in the following sections.

The first question, addressed in Section 4.4, concerns the deployment
of the global process in each local BPMS. The deployment shall not be
managed by a centralized entity that would then upload the public view
on-chain. Otherwise, the trust issue would rise again. Additionally, the
question of ensuring that projections are completed off-chain while avoiding
any information leakage remains.

4.4. DESIGN TIME: GENERATING PUBLIC AND PRIVATE VIEWS63

The second question, addressed in Section 4.5, concerns the execution of
the global graph. The smart contracts act as an entry point to ensure the
correctness of the execution of the public view. The mechanism managing
the two-sided public/private execution of tasks needs to be defined to ensure
that each participant can manage its projection in a trustworthy fashion.

4.4 Design time: Generating Public and Private
Views

This section presents the hybrid on/off-chain protocol developed to generate
the partners’ view-based projections. We first introduce concepts related to
public and private views of a DCR choreography (c.f., Section 4.4.1). We then
present the protocol, which comprises two steps, first the translation from
the DCR process model of the public and private views to a bitvector
representation (c.f., Section 4.4.2), and then the hybrid on/off-chain
generation of views (c.f., Section 4.4.3).

Regarding the hybrid on/off-chain generation of views, a smart contract
comprising (1) DCR execution constraints rules and (2) a list of workflows
initially empty is used to manage DCR graph instances. Once all participants
agree on the public process model at design time, one of the participants
(chosen randomly or nominated by its peers) instantiates the DCR graph
instance in the smart contract. The DCR graph instance comprises the
relation matrices and markings of the public view (cf. Section 4.2). It also
comprises the list of the role addresses linked to each activity. Roles (e.g.,
Driver, Florist, or Customer) are each assigned to a public blockchain address.
Finally, the DCR graph instance comprises the IPFS hash of the textual
input. The hash serves as a unique identifier for the workflow. Then, each
participant computes her private view by combining the public view with its
internal events. The output is a bitvectorized DCR graph. These private
views constitute the entry point for the hybrid runtime execution. Finally,
once the generation of role projections is fulfilled, the smart contract unlocks
the process instances for execution.

4.4.1 Public and private views of a DCR choreography

Let (G, I, R) be a DCR choreography (cf. Definition 4.2.2), we define this
DCR choreography through its public view Gγ and private views Gr, ∀ r ∈
R, which are derived from G. We formalize Gγ and Gr, ∀ r ∈ R as follows:

Definition 4.4.1 (Public view). Gγ is a tuple (Eγ , Mγ , Lγ , fγ , −→ •γ ,
• −→γ , −→ ⋄γ , −→ +γ , −→ %γ), where:

1. Eγ = {e ∈ I}

64 CHAPTER 4. CONTRIBUTION 1

2. Mγ = (Inγ , P eγ , Exγ) where Inγ = In ∩ Eγ , Peγ = Pe ∩ Eγ , and
Exγ = Ex ∩ Eγ

3. fγ(e) = f(e)

4. Lγ = img(fγ)

5. −→ •γ =−→ • ∩ ((−→ • Eγ)× Eγ)

6. • −→γ= • −→ ∩((• −→ Eγ)× Eγ)

7. −→ ⋄γ =−→ ⋄ ∩ ((−→ ⋄ Eγ)× Eγ)

8. −→ +γ =−→ + ∩ ((−→ + Eγ)× Eγ)

9. −→ %γ =−→ % ∩ ((−→ % Eγ)× Eγ)
Hence, lγ ∈ {−→ •γ , • −→γ ,−→ ⋄γ ,−→ +γ ,−→ %γ}

In our motivating example, the public view of the DCR choreography
depicted in Figure 4.1a comprises Eγ = {Shipping, CheckOrder, Accept,
Reject, Pay, UnloadTruck, PayDriver}, the set of markings Mγ , the set
of labels of the events (e.g., ”Shipping” or ”CheckOrder”), associated with
the labeling function fγ , and the set of interactions linking these events.

Definition 4.4.2 (Private views). For a role r ∈ R, Gr = a tuple (Er,
Mr, Lr, fr, −→ •r, • −→r, −→ ⋄r, −→ +r, −→ %r), where:

1. Er = {e ∈ E | Initiator(e) = r ∪ Receiver(e) = r}

2. Mr = (Inr, P er, Exr) where Inr = In ∩ Er, Per = Pe ∩ Er, and
Exr = Ex ∩ Er

3. fr(e) = f(e)

4. Lr = img(fr)

5. −→ •r =−→ • ∩ ((−→ • Er)× Er)

6. • −→r= • −→ ∩((• −→ Er)× Er)

7. −→ ⋄r =−→ ⋄ ∩ ((−→ ⋄ Er)× Er)

8. −→ +r =−→ + ∩ ((−→ + Er)× Er)

9. −→ %r =−→ % ∩ ((−→ % Er)× Er)
Hence, lr ∈ {−→ •r, • −→r,−→ ⋄r,−→ +r,−→ %r}

4.4. DESIGN TIME: GENERATING PUBLIC AND PRIVATE VIEWS65

Algorithm 1: Marking Vectorization of a private view
Data: Gr = (E, l)
Result: the list of included, executed, and pending marking vectors

1 Function initializeMarkings(E, l):
2 var len← length(E);

// INITIALIZE VECTORS

3 var In← V ector(size : len);
4 var Pen← V ector(size : len);
5 var Ex← V ector(size : len);

// DETECT INITIALLY INCLUDED EVENTS

6 var i=0;
7 forall e ∈ E.ϵ do
8 var hasPreceedingEvent← FALSE;
9 forall rel ∈ l do

10 if rel.target == e then
11 hasPreceedingEvent← TRUE;
12 break;
13 if not hasPreceedingEvent then
14 In[i]← 1 ; // NO PRECEEDING EVENTS

15 i=i+1;
16 return [In, Pen,Ex]
17 End Function

In our motivating example, three private views exist, one for each
choreography partner (Driver, Customer, and Florist). For the sub-graph
in orange in Figure 4.1a, Figure 4.1b and Figure 4.1c depict respectively
the private views over Driver and Florist. EDriver comprises the set of
events where Driver is involved (e.g., public events such as Shipping, and
private events such as ReturnTruck), their markings, their labels, and the
interactions linking these events.

4.4.2 Translating DCR graphs into bitvectors

The public and private views are initially described as textual input following
the semantics prescribed in [47]. The reader can find input examples of
the delivery process in Appendix 7.3.1. Additional examples can be found
in the source code repository of our prototype, in the folder dcrInputs2.
We translate each view into a bitvector representation for execution in the

2https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363ca
ee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;vi
sit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:
a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97

https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97
https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97
https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97
https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97

66 CHAPTER 4. CONTRIBUTION 1

off-chain and on-chain process execution engines [214, 127]. We describe in
the following paragraph the approach to computing such representation.

The bitvector representation comprises (1) the five relation matrices of
the DCR graph and (2) the three markings of the graph. The five relation
matrices are computed out of an input view. For each relation [ei −→ ej],
the item aij in the relation matrix is set to one. Besides, we generate the
three initial bitvector markings of the graph (Algorithm 1, lines 3-5). The
executed and pending initial markings are set to zero as no event has been
executed yet. The included state of the event is set to one if it has no pre-
execution condition (Algorithm 1, lines 6-15). We now illustrate the Florist
projection bitvectorisation. First, we generate the five relation matrices.
In the Florist private projection, a condition relation links CallDriver and
Shipping. Thus, Condition[idCallDriver, idShipping]=1. The same protocol
follows for each relation of the graph. We then compute the three markings
of the projection. The pending and executed bitvectors are filled with eleven
zeros (one for each event of EF lorist). The Florist included bitvector is filled
similarly, except for GetOrder which is set to one (no pre-condition).

4.4.3 Hybrid on/off-chain generation of views

The generation of views comprises two steps: the on-chain public view first
and private views.

The public view managed on-chain, Gγ , is the DCR graph consisting of
the set of choreography events, i.e., events having one or many receivers and
their relations, that model participants’ interactions. A representative of all
participants first generates the approved bitvector representation of the public
view (Figure 4.2, step1). The public view consists of choreography events and
their relations. Each role has a public blockchain address, and choreography
events are mapped to a sender role. Moreover, the representative saves the
textual public view input to IPFS to keep track of it and saves the hash
into the smart contract. The smart contract locks the process instance while
waiting for each participant projection (Figure 4.2, step2). Initially set to
zero, a variable named σ, keeps track of the number of projections realized.
The process instance is unlocked for execution when σ equals the number of
participants. For example, the public events of Figure 4.1a are {Shipping,
CheckOrder, Accept, Reject, Pay, UnloadTruck, PayDriver}. The smart
contract stores these events and relations where at least two public events
are involved. The internal events of Figure 4.1a ({ReturnTruck} for Driver,
or {GetOrder, CallDriver, SettleOrder}) for Florist are kept off-chain.

Once the public view populates the smart contract, each participant
fetches it (Figure 4.2, step4). The private projection is generated by
extracting all the events of Gγ where the participant is an initiator or a
receiver in a choreography event. We conjointly extract relations connecting
these events. Afterward, the participant combines off-chain the public view

4.4. DESIGN TIME: GENERATING PUBLIC AND PRIVATE VIEWS67

Figure 4.2: Sequence diagram of the hybrid on/off-chain design protocol

68 CHAPTER 4. CONTRIBUTION 1

(a) Execution of an internal event

(b) Execution of a choreography event

Figure 4.3: The execution scheme logic of DCR choreography events

with its internal events (Figure 4.2, step4). The obtained projection over the
role r is Gr. A dedicated smart contract function named, confirmProjection(),
enables participants to update σ after the local projection. The function
uses two mapping variables. The first mapping, γapproval, records whether a
participant has generated its local projection. The second mapping, γfetch,
records whether the participant did fetch the public view (necessary condition
to realize the projection). The following constraints restrain σ update: (i) the
sender’s address must belong to the list of addresses white-listed in the smart
contract, (ii) participants can only update the variable once, and (iii) must
have fetched the public projection first. In our motivating example, Florist
asks for the public projection of the smart contract. The smart contract
verifies that its address belongs to the white list, forwards the public view
to Florist, and updates σ to 1. Florist projects the view over her role. She
obtains a set of receive events: {Shipping, CheckOrder, Accept, Reject, Pay,
UnloadTruck}, and one send event {PayDriver}.

She then adds its internal activities {GetOrder, CallDriver, SettleOrder}
to the projection. Lastly, Florist triggers confirmProjection().

4.5 Hybrid Off/On-chain Runtime Execution

Our approach proposes a hybrid execution at runtime comprising two
strategies. On the one hand, the private DCR execution engine of the
involved participants manages the private projections. This strategy is

4.5. HYBRID OFF/ON-CHAIN RUNTIME EXECUTION 69

described in Section 4.5.1. On the other hand, a smart contract called VDCR

triggers the execution logic of the public tasks on the blockchain. This
strategy is described in Section 4.5.2.

An event execution query comprises the name of the event and its class:
internal, or choreography. The execution logic depends on the event class.

4.5.1 Managing internal execution requests off-chain

Participant executes private events off-chain (cf. Figure 4.3a). For an
internal event, the private process engine looks at its private markings (see
Figure 4.3a). If the event is enabled3, we apply post-execution constraints
to the bound events (i.e., events are set to pending, included, or excluded),
and update the marking accordingly.

In our motivating example, the execution request of GetOrder
(Figure 4.1a) will succeed: it does not have any pre-execution constraint.
Thus, the executed marking of the event GetOrder will be set to one. The
post-execution constraints (condition and response) will unlock CallDriver
and set its pending marking to one.

4.5.2 Managing choreography events execution requests on-
chain

Private and public projections communicate via choreography events (via
send and receive events). The smart contract VDCR handles the execution
of the choreography send and receive events (cf. Figure 4.3b). VDCR

holds the bitvector representation of the public view and two functions:
enableExecution() checks the enabling preconditions, and execute() computes
the enabled event and updates the marking vectors.

The execution of a choreography event follows the subsequent steps (see
Figure 4.3b). First, the backend receives an execution query (step 1) and
forwards it to the smart contract API (step 2). The latter sends a transaction
to VDCR to call the function enableExecution() (step 3). The transaction
includes the event’s name to execute, the event initiator, the receiver (if it
is a choreography event), and the event state (enabled, included, executed).
If the activation conditions are verified, the function execute() updates the
event state (the three bitvectors) and the public projection state (the five
relation matrices). The transaction callback containing the updated states
is sent back to the smart contract API (step 4), which forwards it to the
local backend (step 5). The backend updates the public projection (step 6).
Changes are propagated to the concerned private projections (step 7).

In our motivating example, we suppose that Florist executed the private
tasks GetOrder and CallDriver. Driver now launches the execution request of

3An event is enabled if the following preconditions are fulfilled: the event is included,
and the condition and milestone relations are executed

70 CHAPTER 4. CONTRIBUTION 1

the public event Shipping to the smart contract (Figure 4.1a). The function
enableExecution() evaluates to true as the event is set to pending. The smart
contract function execute() then updates the onchain marking of Shipping,
and updates the marking of CheckOrder to pending. A notification event is
emitted to the backends of the participants Florist, Customer and Driver,
and the markings of their local projections are updated accordingly.

Choreography events are by nature of interest to process participants.
VDCR makes their execution management trustworthy as its behavior is
deterministic, and the choreography states stored in the smart contract are
tamper-proof.

In the following sections, we will refer to Driver as Carrier A1.

4.6 Implementation and Evaluation

In this section, we present a prototype implementing the aforementioned
protocol in the Ethereum blockchain (Section 4.6.1). We then evaluate its
latency and scalability by running a set of experiments on our motivating
example business process model, as well as two business process models
presented in the literature (Section 4.6.2).

4.6.1 Implementation

Our proof of concept is a hybrid on/off-chain business process engine
managing declarative choreographies 4. We use a Ganache testnet to
deploy the public smart contract VDCR, which manages each process. VDCR

comprises (1) execution constraints rules and (2) a list of workflows initially
empty.

We use the August 24th, 2022 conversion rate (1ETH=1,663.76e) in the
following.

The initial cost of deployment of VDCR is 0.06413472 ETH (i.e., 106.7e).
Additionally, a smart contract manages roles authentication and access
control rules. Its deployment cost is 0.05859442 ETH (97.5e) for a gas usage
of 1,953,149.

For each workflow, RoleAdmin (1) generates the public view bit vector
representation of the DCR choreography (Section 4.4), (2) saves the textual
public view input to IPFS, and (3) registers the new workflow on-chain by
calling the function uploadPublicView. The workflow is identified by the
IPFS unique hash. Participants interact with the smart contract via API
calls to generate their private views. Afterward, the process instance is

4Code repository: https://archive.softwareheritage.org/swh:1:dir:211c6bdb1c
e9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybri
dChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:
1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97

https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97
https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97
https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97
https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97

4.6. IMPLEMENTATION AND EVALUATION 71

released for execution. The local process execution engine executes internal
events off-chain and forwards choreography events to the blockchain.

4.6.2 Evaluation

We evaluate the protocol using experiments that aim respectively to measure
(1) the smart contract transaction costs for the deployment of a cross-
organizational process, (2) the transaction processing time and gas fees, and
(3) a comparison between BPMN and DCR choreography executions onchain.
These metrics are important because they provide insights regarding the
latency and scalability of the solutions based on different use cases.

To do so, we instantiate three cross-organizational processes in the
platform: we test two workflows from the literature: the invoice and oncology
workflows [190], and the motivating example. We run the experiments on a
personal computer with an Intel i5 core CPU and 4GB of RAM.

We evaluate the public-to-private projection costs when deploying the
three processes mentioned above (cf. Table 4.2a). For each workflow, the
public view registration cost is worth 0.068352 ETH (113.7e) for the delivery
workflow, 0.040947 ETH (68.1e) for the invoice workflow, and 0.065019 ETH
(108.2e) for the oncology workflow. Afterward, each role fetches the public
view and confirms its projection. The delivery and invoice workflows share
the same costs for fetching the public view and confirming the projection.
Such cost, corresponding to updating γapproval and γfetch, is proportional to
the number of roles registered. The total cost for instantiating a choreography
corresponds to the public view upload and the number of roles #R times the
private projection cost. It is worth 0.078534 ETH (130.7e), 0.051129 ETH
(85.1e), and 0.079795 ETH (132.8e) for the delivery, invoice, and oncology
workflows, respectively. Hence, the public-to-private total projection cost
depends on the number of roles and events. Indeed, the more activities, the
highest the public view upload will be. Similarly, the more participants, the
highest the total cost of private projections will be, though the total projection
cost is divided equally between participants. Nonetheless, the transaction
cost behavior of the public view may underline scalability limitations for
more complex public processes.

We also evaluate the system’s performance at runtime. Table 4.2b presents
the results obtained after the enactment of one trace. The reported execution
time factors in the transaction confirmation time. The average transaction
fees requested for a task execution are smaller than the process instantiation
ones. Moreover, the average execution time for a private task is smaller
than that needed for a public task. Indeed, we compute private activities
off-chain. Thus the execution time of a private event corresponds comprises
checking the event’s nature (private or public) and updating private markings.
Conversely, the execution of public activities comprises an interaction with
the blockchain network. The latency induced by executing public tasks

72 CHAPTER 4. CONTRIBUTION 1

onchain may hinder the adoption of this solution for time-intensive processes.
Nonetheless, these experiments underline the benefits of executing private
tasks locally to reduce the overall execution time.

Finally, we compare the transaction costs of our approach to the BPMN-
based experiments presented in [122]. We translate into DCR choreographies
the two open-sourced BPMN choreographies presented in [214], namely supply
chain and incident management. We deploy and execute the choreography
in our prototype and compare the results. Table 4.3 shows the instantiation
and task execution average gas fees; task execution fees correspond to the
average cost of execution of a task. A gain of 26,412 gas for the supply
chain workflow and 189,404 gas for the incident management workflow can
be noticed with the DCR approach. Thus, the DCR-based smart contract
requires fewer fees for instantiation than the BPMN one in these workflows.
Regarding task execution costs, the modeling choice does not seem to impact
gas fees: a gain can be noticed with DCR in the supply chain workflow but
not in the incident management one. The number of gateways (2 in the
supply chain and six in the incident management workflow) may explain this
disparity. Indeed, each exclusive gateway is translated into an include and a
response relation for each decision path in the DCR model. Such translation
may explain the gas difference.

In summary, the public-to-private total projection cost depends on the
number of roles and events, which may be a limiting factor for more complex
public processes. The average execution time for a private task is smaller
than that needed for a public task which requires a smart contract interaction.
Hence these experiments underline the benefits of executing private tasks
locally to reduce the overall execution time. Finally, the DCR-based smart
contract requires fewer gas fees for instantiation than the BPMN one in
these workflows, though the modeling choice does not seem to impact gas
fees; experiments on graphs of alternative complexity should confirm these
preliminary results. These experiments give proof to the first contribution
i(a) (an on/off-chain declarative choreography deployment and execution
system), and validate objectives 1 and 2.

4.7 Conclusion

This chapter presents the contribution i(a) presented in Section 1.4.2. We
address the research question RQ1.1 on the need for a trustworthy separation
of concerns (c.f., Section 1.3) by leveraging the management of business
process choreographies using blockchain. We model choreographies with a
declarative language called DCR. This language offers loosely-constrained
models to meet the flexibility requirements of cross-organizational processes
(c.f., Section 1.3, RQ2.2). The public view of the choreography is stored in
a smart contract, and participants generate their private view off-chain to

4.7. CONCLUSION 73

enhance privacy at design time. On the execution side, internal events are
executed locally for privacy concerns, while choreography events are executed
on-chain for accountability concerns (c.f., Section 1.3, RQ3.1).

This approach represents a first effort to separate a declarative
choreography’s public and private views and proceed with its hybrid off/on-
chain management. Results confirm the advantages of separating public from
private events to ensure privacy while leveraging blockchain as a decentralized
execution infrastructure. Moreover, the local execution of private events leads
to time and economic gains. Our approach works if there is no public event.
Then, no public projection is generated. Multi-instance choreographies are
also possible: then, DCR graph instances are added chronologically to the
smart contract.

Through the presented experiments, we validate Objective 1 presented
in Section 1.4.1. These experiments show the feasibility of the solution.
The DCR-based smart contract requires fewer fees for instantiation than
BPMN workflows, and the execution in an off-chain setting of private
activities reduces the overall process execution latency. Nonetheless, the
total deployment cost is proportional to DCR graphs complexity (i.e., the
number of activities) and the number of participants. This behavior calls for
further studies to scale the solution to more complex graphs.

The work presented in this chapter has been published in the International
Conference on Service-Oriented Computing [87].

74
C

H
A

PT
ER

4.
C

O
N

T
R

IB
U

T
IO

N
1

Table 4.2: Hybrid on/off-chain Projection and execution costs

(a) Public-to-private projection costs, W. =Workflow

Step Role Function Delivery W. Invoice W. Oncology W.
A RoleAdmin uploadPublicView() 0.068352 ETH 0.040947 ETH 0.065019 ETH
B1 Role r in R fetchPublicView() 0.002006 ETH 0.002006 ETH 0.002139 ETH
B2 Role r in R confirmProjection() 0.001388 ETH 0.001388 ETH 0.001555 ETH
Total Cost = A + #R.(B1+B2) 0.078534 ETH 0.051129 ETH 0.079795 ETH

(b) Task execution costs (Pub/Pri= public/private tasks).

Workflow Tx. Fees Exec Time
Name #Parties #Pub #Pri #Constraints Task Exec Pub Pri
Delivery 3 9 1 28 0.0093 ETH 15s 1s
Invoice 3 8 2 15 0.0069 ETH 10s 1s
Oncology 4 10 3 21 0.0117 ETH 19s 2s

Mean 0.0093 ETH 14.6s 1.3s

Table 4.3: Gas fees comparison of BPMN [122], and DCR choreographies (our approach).

Workflow #Tasks #Gateways Gas fees [122] (BPMN) Our approach

Supply Chain[214] 10 2 Instantiation 1,100,590 1,074,178
Task exec. 566,861 478,527

Incident Mgt.[214] 9 6 Instantiation 1,119,803 930,399
Task exec. 324,420 456,887

Chapter 5

Control-flow and Partnership
Flexibility

Contents
5.1 Introduction . 75
5.2 Basic Concepts and Motivating Example 78

5.2.1 Control-flow change 78
5.2.2 Partner flexibility 80

5.3 Control flow flexibility 81
5.3.1 Step 1: Change Proposal 82
5.3.2 Step 2: Change request and negotiation 82
5.3.3 Step 3: Change propagation 85

5.4 Actor flexibility 87
5.4.1 Platform instantiation 88
5.4.2 Filtering and sorting candidates 89
5.4.3 Service binding and fulfillment 90

5.5 Implementation and evaluation 91
5.5.1 Runtime DCR change 91
5.5.2 QoS-based resource allocation 94

5.6 Conclusion . 100

5.1 Introduction

As noted in Chapter 3, imperative and declarative process modeling
paradigms have been used to execute blockchain-based business processes.
Proposed techniques include translation of BPMN collaboration models into
smart contracts [214] and execution engines of declarative orchestration
processes called Dynamic-Condition-Response (DCR) graphs [127]. However,

75

76 CHAPTER 5. CONTRIBUTION 2

dealing with changes in blockchain-enabled business processes remains an
open research issue [125]. Business processes managed by “static” smart
contracts cannot be upgraded because the smart contracts are immutable
once deployed. Efforts exist to support basic versioning in smart contracts
or a registry for smart contracts [222], or to manage governance changes
using soft-forks [52]. Nevertheless, managing changes in business processes,
particularly in running instances, needs more fined-grained and advanced
change management techniques.

Control flow changes can be necessary in a running choreography
instance [66, 206]. A change may consist of a simple change operation
(ADD/REMOVE/UPDATE) or a combination of change operations [141, 66].
A change in a partner process instance may affect other partners’ process
instances. Hence, change must be propagated to the affected partners of
the choreography instance [66, 182]. One has also to ensure that neither the
structural nor behavioral compatibility of partners processes are violated
after a change [2, 66, 48, 50]. Structural compatibility checks consist of
ensuring that there is at least one potential send message assigned to a
partner with a corresponding receive message assigned to another partner[50].
Behavioral compatibility refers to ensuring that the choreography process
after the change is safe and terminates in an acceptable state. In other words,
no deadlocks should occur between partners’ public processes during the
choreography execution after change [66, 48].

Flexibility regarding partners’ allocation is also necessary at runtime in
complement to control-flow changes, e.g., for a dynamic task assignment to
participants at runtime [8]. In the context of task binding, contractors need to
be sure that a newly hired service provider will meet quality standards [159].
Several resource-binding mechanisms have been proposed [98, 204] that
are often organized in a centralized way. Due to power asymmetries, this
centralized architecture may induce distrust. Thus, the need for a trustworthy
and objective resource-binding mechanism arises.

To our knowledge, the integration of change management, especially
change propagation, in blockchain-based declarative choreographies
management systems has not been studied. Similarly, the transfer of Quality
of Service (QoS)-mechanisms to resource-binding smart contracts has been
under-investigated. To do so, we focus in this chapter on the following
research questions:

1. How to change the process model instances of blockchain-based cross-
organizational processes? (c.f., Section 1.3, RQ2.3). In light of the
related work, we refine this question as follows: How to guarantee
correct change propagation in declarative blockchain-based choreography
processes such as DCR graphs?

2. How to foster actors’ (re)allocation flexibility on running instances

5.1. INTRODUCTION 77

using a smart contract-based multi-criteria decision algorithm that
leverages blockchain-based process history? (c.f., Section 1.3, RQ2.1)

3. How can smart contracts foster trustworthy and power-balanced
decision-making for the runtime allocation of resources? (c.f.,
Section 1.3, RQ1.2)

To answer these research questions, we first present basic concepts and
our motivating example in Section 5.2. We then propose the following
contributions.

First, we provide in Section 5.3 novel change management techniques in
blockchain-enabled declarative choreographies. To do so, we build on and
extend the solution presented in chapter 4 with the change management
mechanism. DCR graphs are specified as a set of rules interpreted at runtime.
They directly represent business requirements, and thus it is easier to add or
update constraints if the business requirements change [49]. Our approach
allows a partner in a running DCR choreography instance to change its private
process, which may impact its interactions with other partners. Changes
are mainly ADD/ REMOVE and UPDATE operations applied to the DCR
choreography events and relations [141, 66]. We only focus on these change
operations as they are challenging by themselves, and any change to a process
can be written as a combination of these operations [82]. The smart contract
records the involvement of concerned partners in a tamper-proof fashion, and
smart contract transactions act like ”approval checkpoints” during change
negotiation and propagation. Hence, if misbehavior occurs, e.g., a partner
projects wrongfully the change, claim resolution is eased between partners
as the blockchain stores the negotiation and propagation history on-chain.

Second, we present in Section 5.4 an algorithm leveraging smart contracts
to filter and sort a set of available candidates based on their past blockchain
history. Such matching, done autonomously, generates a digital agreement
that can be linked to a BPMS to manage the settlement of the allocated
services. We thus provide a transparent and reliable protocol computing a set
of tamper-proof QoS ratings. In so doing, we contribute to the literature by
addressing the lack of research regarding the fair (i.e., trustworthy and
reliable) enactment of QoS allocations. This work addresses the trust
challenge through smart contracts enforcing an agreed-upon binding protocol
and through the blockchain ledger offering a tamper-proof history of services.
It also addresses the automation challenge through the management of smart
contract hiring, contractualization, and settlement stages. Hence, this system
decreases the end-users/platform interaction. Blockchain addresses service
providers’ and issuers’ collusion risks by design as no single entity controls the
binding platform. Such a system also preserves the integrity and transparency
of the QoS protocol: it prevents tampering with the service history while
ensuring a deterministic binding protocol.

Finally, we evaluate both contributions in Section 5.5.

78 CHAPTER 5. CONTRIBUTION 2

Figure 5.1: DCR choreography process and Carrier A1 private DCR process
of the flower delivery process

5.2 Basic Concepts and Motivating Example

5.2.1 Control-flow change

Both choreography and private DCR processes in our flower delivery
motivating example are susceptible to control-flow changes, where a control-
flow change comprises a set of change elements and a combination of change
operations.

Figure 5.1 illustrates three possible change operations on the flower
delivery motivating example, namely the DELETE, ADD, and UPDATE
operations. Florist decides to launch a procurement auction instead
of relying on a single carrier for quality concerns. She updates the
task e1(CallDriver, F lorist −→ A1) with a new business process model
subprocess describing the auction (change #1). Additionally, Florist may
have passed a monthly contract with Customer for flower deliveries, and

5.2. BASIC CONCEPTS AND MOTIVATING EXAMPLE 79

thus Customer does not need to pay for flowers each time a new delivery is
carried. Hence, Customer deletes the task e6(Pay(Customer −→ Florist))
(change #2). Finally, A1 may wish to add a new private activity FillFuel
before returning the truck to the initial loading location (change #3).

We now define more formally the concepts of a change element
(Definition 5.2.1) and a change operation (Definition 5.2.2).

Definition 5.2.1 (Change Element). Let Φ=(G, I, R) be a DCR
choreography. GRef is a change element (also called refinement element) if
and only if one of the following conditions is met:

1. GRef ∈ {ϵ ∪ γ∪ −→ • ∪ • −→ ∪ −→ ⋄∪ −→ +∪ −→ %}

2. GRef = (e ∈ {ϵ ∪ γ},me(in, pe, ex), {−→ • ∪ • −→ ∪ −→ ⋄∪ −→
+∪ −→ %})

This means that, GRef is a refinement element if it is either (1) an atomic
element, i.e., an internal event such as p3 in Figure 5.1(b), or an interaction
such as e6, or one of the five relations such as the condition relation linking e6
and e4; (2) a DCR fragment, i.e., a sub-graph with the minimal configuration:
{one event, initial marking of the event, one relation} such as the subset
e9− 12 and their relations (one include, one milestone, and two responses)
in Figure 5.1, change #1.

To define the change operations, we refer to [141] where authors propose
three change operations on DCR orchestration processes. We re-adapt these
operations to be used in the context of DCR choreographies and where the
change element can be one of the three types defined in Definition 5.2.1.
Change operations are of three major types1:

Definition 5.2.2 (Change Operation). • Φ ⊕ GRef to ADD the
refinement element GRef to the original DCR choreography Φ. To
apply the change, one has to compose the refinement element with the
original graph, i.e., one has to take the union of events, labels, relations,
and markings of the composition’s two parts.

• Φ⊖GRef to REMOVE a change element GRef from Φ. For example, to
remove an interaction, one has to remove it from the set of interactions
γ, its marking from the marking (In,Pe,Ex) of the graph, as well as
the incoming and outgoing constraints, coming to/ going from this
interaction.

• Φ[GRef 7→ G′
Ref] to UPDATE a change element. For the case of an

event (internal or interaction): the UPDATE operation is used for
1We use the same notation of the operations defined in [141]

80 CHAPTER 5. CONTRIBUTION 2

replacing one event with another or re-labeling it. To replace, for
example, one interaction with another, one has to update the set of
interactions γ with the new interaction, the marking of the graph, and
the set of incoming and outgoing constraints.

For instance, in Figure 5.1, Florist decides to launch procurement auctions
to allocate delivery services to carriers. The request is sent to all registered
carriers (here A1, A2, and A3) (e9). A1 and A2 decide to propose their offer
to Florist (e10 and e11). Afterward, Florist decides on the best offer for the
service request (e12). Consequently, the changes to make are: (i) add the
partners A2 and A3, (ii) an UPDATE operation where the interaction e1
is replaced with the DCR fragment {e9, e10, e11, e12}. These changes are
represented in red in Figure 5.1(a) and are called public changes.

Change #1 and change #2 control-flow changes affect carriers’ internal
processes. Thus, the UPDATE and DELETE change must be propagated
to all carriers’ process instances. Partners should trustfully access (1) the
shared view of the change and (2) the tamper-proof history of the negotiation
and propagation status to avoid any conflict or misunderstanding [99].
Additionally, the public task e6 (“Pay”) is composed of two messages,
namely the send and receive messages, respectively assigned to Customer and
Florist. When Customer DELETES the send message “Pay”, a structural
incompatibility occurs as the corresponding receive message is still present
in the Florist process. Hence, behavioral and structural compatibility should
be ensured.

To proceed with such a change: (i) the change should be negotiated
(agreed on or not) by the involved partners, (ii) the change proposition
should be examined by all involved partners, and (iii) the negotiation outcome
should be tamper-proof to avoid that someone diverges from the common
understanding, and (iv) the change should be correctly propagated [93, 49].

5.2.2 Partner flexibility

After the DCR choreography update of change #1, Florist can now carry on
auctions to allocate a carrier to a delivery request. This choice is motivated by
the will to not rely on a single delivery company to ensure quality standards.

This auction, also known as the freight transportation procurement
process (FTSP), is one of the primary activities in the logistics field. The
FTSP holds three stakeholders: the shipper Florist (i.e., the service buyer)
who initiates the allocation request, the carrier (i.e., the service seller) who
sells its delivery services, and an intermediary, often a digital platform,
responsible for the carrier-shipper allocation [113, 216]. It comprises two
stages: first, the matching stage, where the set [service request/resource
provider] is defined, and then the allocation, which generates a mediation
contract, the CMR (i.e., CMR Convention: Convention on the Contract for
the International Carriage of Goods by Road). It is worth noting that the

5.3. CONTROL FLOW FLEXIBILITY 81

Table 5.1: Registered carrier profiles. PFi the ith filtering criteria, and POi

the ith QoS optimization criteria

PF1 PF2 PF3 PO1 P02

Carriers Date City Equipment Experience Delay
A1 D1 Geneva Cold storage 110 10
A2 D2 Zurich - 90 0
A3 D1 Geneva Cold storage 32 20
A4 D2 Geneva Cold storage 32 20

platforms’ service procurement process will be the same for either shipper-
to-carrier or carrier-to-carrier allocations.

In our example, Florist wishes to find the carrier with the best quality of
service (QoS) to ensure, e.g., a constant delivery temperature or just-in-time
delivery. She asks for flower delivery from Geneva to Zurich at date D1. She
wants the carrier closest to Geneva and the truck to offer cold storage. She
wishes for a carrier with good experience and is not concerned about delay.

A1, A2, A3, and A4 are the four competing delivering carriers wishing
to win the auction. Table 5.1 presents their profiles. Each profile comprises
(1) three filtering criteria: availability date, city, and equipment, and (2)
two optimization criteria: the candidate’s experience (number of former
deliveries) and the average delay in minutes.

One option for Florist to carry on the QoS-based allocation is to rely on
an intermediary responsible for collecting carriers’ profiles and keeping track
of their QoS history. However, the resource binder can become a source
of failure. Some carriers may want to hide past services to disguise their
poor QoS record or collude with the resource binder to gain market shares.
Consequently, the need for a trustworthy binding protocol arises.

5.3 Control flow flexibility

Partners coordinate their processes and propose/receive changes to/from
other partners. We aim to make it possible for each partner to (i) modify
its private DCR process and (ii) suggest a change to the DCR choreography
monitored in the blockchain (Section 5.3.1). If the change request is fully
private, for e. g., it concerns an internal event or a relation linking two
internal events (private-to-private relation) or a relation linking an interaction
to an internal event (public-to-private relation), then the private process of
the partner updates accordingly. If the change is public, i.e., concerns an
interaction or a relation linking two interactions (public-to-public relation)
or a relation linking an internal event to an interaction (private-to-public
relation), then a negotiation stage starts (Section 5.3.2), followed by a
propagation stage (Section 5.3.3).

82 CHAPTER 5. CONTRIBUTION 2

Table 5.2: Proposed allowed (AR) and denied (DR) change rules for a DCR
process

Type Rule
AR1 Change condition / response / milestone relations
DR1 Inclusion of an excluded event
DR2 Exclusion of an included event
AR2 Block temporarily/ permanently an included event

5.3.1 Step 1: Change Proposal

The role initiator defines the change of its private DCR process. She may
modify internal events, interactions, and relations linking events. The
introduction of a change is called refinement (cf. Definition 5.2.1). It is
done before submitting it to other partners for examination.

A set of integrity rules need to be defined to ensure the correctness of the
updated graph, i. e., the non-violation of the behavior of the original graph
when one introduces a change. These rules should ensure the graph’s safety
(no deadlocks) and liveness (no livelocks). A DCR graph is deadlock-free if,
for any reachable marking, there is either an enabled event or no included
required responses. Whereas liveness describes the ability of the DCR graph
to completion by continued execution of pending response events or their
exclusion.

To do so, we leverage non-invasive adaptation rules, originally introduced
in the context of DCR orchestrations, to DCR choreographies [49]. We divide
these rules into rules describing (i) allowed change rule (AR) and (ii) denied
change rule (DR) presented in Table 5.2.

One can ADD/REMOVE/UPDATE condition, response, and milestone
relations (AR1). The only restriction is not to have condition/response
relations cycles to avoid deadlocks. However, one cannot include an already
excluded event (DR1), nor can she exclude an already included event (DR2).
One alternative is to temporarily or permanently block an event (AR2). We
suppose we want to permanently block a DCR graph G of executing an event
e. We refine with the fragment Q: Q = { e: (0,1,0), e′: (0,1,0)), e′−→ • e′, e′

−→ • e }. Here, e can never fire (again) because it depends on e′. Moreover,
by excluding and including e′, one can selectively enable and disable e.

In our example, the change proposal #1 replaces e1 with the fragment
composed of the events {e9, e10, e11, e12}. The change proposal evaluates
to true because ∀i, (ARi) evaluates to true and ∀j, (DRj) evaluates to false.

5.3.2 Step 2: Change request and negotiation

This step is divided into two sub-steps: change request first (Step 2.1),
followed by a change negotiation (Step 2.2).

5.3. CONTROL FLOW FLEXIBILITY 83

Step 2.1: Change request The smart contract stores the list of change
requests assigned to process instances as a hash map. Ongoing process
instance changes are recorded with the identification hash of the current
process instance ψG. The identification hash corresponds to the IPFS
hash of the process instance description.During the change request life-
cycle, the request is assigned to a status belonging to {Init, BeingProcessed,
Approved, Declined}. Status is set to Init if no change request is ongoing, to
BeingProcessed during the negotiation stage, to Approved or Declined once
the change request is processed by all endorsers.

Algorithm 2 presents the smart contract function registering a change
request. The identity of the change initiator is checked: it should belong to
the list of partner addresses (line 2). If the workflow is not attached to a
change request (line 3), then the change request is created (lines 4-8). The
hash of the redesigned workflow is stored in ψG′ (line 4). This identification
hash corresponds to the IPFS description of the requested redesigned public
workflow ψG′ . The change request status is set to ”BeingProcessed” (line 5).
The addresses of the change initiator and endorsers Rendorsers are attached
to the request (lines 6-7). Endorsing partners are, for example, in the case
of adding a choreography interaction i (i) the sender and the receiver(s)
of the event and (ii) partners connected directly with the choreography
interaction. The change initiator also sets two response deadlines, t1 for
change endorsement and t2 for change propagation, to be checked by the
smart contract (lines 8-9). Finally, the smart contract emits a change request
notification to all partners listening to the smart contract (line 10). If one of
the change endorsers does not reply before deadline t1 during endorsement
or t2 during propagation, an alarm clock triggers a smart contract function
canceling the change request. If one of the change endorsers does not reply
before deadline t1 during endorsement or t2 during propagation, an alarm
clock triggers a smart contract function canceling the change request at
a specified block in the future corresponding to t1 or t2. It consists of a
smart contract function being called by incentivized users triggering the
smart contract at the desired timestamp [116]. Upon trigger, the smart
contract function sets the change request status to canceled and emits an
event notifying partners that the change has been canceled. By so doing, we
prevent any deadlock due to one of the partners not responding.

In Figure 5.1, Change #1 is public as it concerns three partners, namely
Florist, A1, A2, and A3. Hence a negotiation must occur between the partners
to reach a consensus on the proposed change before propagating it. Florist
launches the change negotiation by triggering the smart contract. The smart
contract updates the change requests list linked to ψG with the following
information: [(1) ψG′ the IPFS hash of the updated process description which
comprises the operation UPDATE(e1) with (e9+e10+e11+e12), (2) the list
of endorsers: {aA1 , aA2 , aA3}, (3) Change negotiation deadline t1 = 72h, (4)
Change propagation deadline t2 = 120h]

84 CHAPTER 5. CONTRIBUTION 2

Algorithm 2: Request change smart contract function
Data: γrequests the list of change requests, Aendorsers the list of

endorser addresses, ψG the current IPFS workflow hash, ψG′

the IPFS hash of requested change description, t1 the
deadline timestamp for change endorsement, and t2 the
deadline timestamp for change propagation

Result: emits change request notifications to endorsers
1 Function requestChange(ψG, ψG′, Aendorsers, t1, t2):
2 require asender belongs to the list of business partners;
3 if γrequests[ψG].status == Init then
4 set γrequests[ψG].ψG′ ← ψG′ ;
5 set γrequests[ψG].status← ”BeingProcessed”;
6 set γrequests[ψG].initiator ← asender;
7 set γrequests[ψG].endorsers← Aendorsers;
8 set γrequests[ψG].t1← t1;
9 set γrequests[ψG].t2← t2;

10 emit RequestChange(ψG, ψG′ , Aendorsers, asender);
11 else
12 emit Error // an ongoing change request is being processed

13 End Function

Step 2.2: Change negotiation All partners subscribe to the change
request events emitted by the smart contract. Endorsing partners must send
their decision requests to the smart contract based on the rules in Table. 5.2.
If the change, once computed on the endorser’s process, respects all ARi and
DRj rules, then the endorser approves the request. It is otherwise rejected.
The smart contract collects the decisions from the endorsers to lock (or not)
the choreography instance and proceed (or not) with the change. We detail
both stages hereinafter.

Algorithm 3 presents the smart contract function receiving one endorser’s
decision. The endorser address aendorser should belong to the list of registered
addresses (line 2) and not have answered the change request already (line
3). The change request should also be processable, i.e., its status should
be set to ”BeingProcessed” (line 4). The endorser response δ is processed
if all conditions are met. If δ equals 1 (line 5), the endorser has accepted
the change. Its response is saved into the change endorsement list (line 6),
the notification of acceptance is sent to all endorsers as well as the change
initiator (line 7), and the smart contract checks whether the instance needs to
be locked (line 8). The lockInstanceChecker function assesses whether all
endorsers have accepted the change: the change endorsement list γendorsement

should be filled with ones. At this stage, no further execution of included
events is allowed, and the mechanism waits for pending events to terminate.

5.3. CONTROL FLOW FLEXIBILITY 85

Algorithm 3: Endorser decision management smart contract
function

Data: γrequests the list of change requests, aendorser the endorser
address, Aendorsers the list of endorsers, ψG the hash of the
current workflow, ψG′ the hash of the desired workflow, δ the
endorser response ∈ {0, 1}

1 Function endorserRSP(ψG, aendorser, δ):
2 require(aendorser ∈ E);
3 require(γrequests[ψG].γendorsement[aendorser] != 1);
4 require(γrequests[ψG].status == ”BeingProcessed”);
5 if δ == 1 then
6 set γrequests[ψG].γendorsement[aendorser]←− 1;
7 emit AcceptChange(ψG′ , aendorser);
8 lockInstanceChecker(ψG)
9 else if δ == 0 then

// declineapprovalOutcomes

10 set γrequests[ψG].status← ”Declined”;
11 emit DeclineChange(ψG′ , aendorser);
12 else
13 emit Error(ψG′ , aendorser);
14 End Function

The status of the change is then updated to ”Approved”.
In our example, we suppose that endorsers confirmed the change request

(δA1 = 1, δA2 = 1, and δA3 = 1) while respecting t1. The smart contract
locks the instance for change propagation. As it manages the negotiation
process, a tamper-proof record of the negotiation is accessible to all partners.
This prevents conflicts and eases potential claim resolutions.

5.3.3 Step 3: Change propagation

Change propagation is to apply the change effect after the negotiation phase
succeeds to (i) the affected partners’ DCR public processes, and (ii) each
partner propagates the change effect to its private DCR process. To ensure
the correctness of the change propagation, we introduce the following property
(Property 1) where ν is a change, r is the initiator of change ν, and Rendorsers

are the set of endorsers, Gr,Gr′ are respectively the public DCR process of r
and r′ where r′ ∈ Rendorsers:

Property 1. if effect(c)∥Gr
: ⇒ Gr is correct-by-construction and

∀r ∈ Rendorsers, effect(c)∥Gr′
: ⇒ Gr′ is correct-by-construction then Gr and

Gr′ are compatible ∀r ∈ Rendorsers.
Property 1. states that if Gr is correct-by-construction and if ∀r′ ∈

Rendorsers, Gr′ are also correct-by-construction, then compatibility is verified.

86 CHAPTER 5. CONTRIBUTION 2

Figure 5.2: Sequence diagram of the propagation stage illustrating the
interactions between partners and the smart contract

In fact, a public DCR process Gr is correct-by-construction means that
computing the effect of a change ν over r introduces no deadlocks in Gr

(see Sect. 5.3.1). Thus, if the DCR public models of the change initiator
and endorsers are safe, i.e., no deadlocks can occur, they can communicate
adequately after the change and are consequently compatible with each other.
The smart contract enforces propagation correctness given that it maintains
the tamper-proof record for the endorsement and application of the change
effect across the partners. This is described in the following.

Figure 5.2 depicts the sequence diagram of the change propagation
interactions between partners and the smart contract. Each partner projects
locally the DCR choreography in its projection using the process description
given in the IPFS hash (Figure 5.2 step 1-3). Algorithm 4 presents the
function triggered by partners to confirm the projection to the smart contract.
A list γpropag keeps track of the propagation status, i.e., it records the private
projection of each partner. The function checks that the partner belongs
to the list of endorsers (line 2) and that the endorser has not projected
locally yet (line 3). The smart contract detects the completion of all local
projections once γpropag is filled with ones and notifies the change initiator.
The change initiator then retrieves the new DCR choreography that was
saved into IPFS using ψG′ (Figure 5.2 step 4) and forwards it to the smart
contract (Figure 5.2 step 5). The smart contract updates the relations and
markings stored in the process instance and resets the status of the change
of the workflow instance: a new change request can be processed (Figure 5.2
step 6).

In our motivating example, the propagation of change #1 occurs with
partners Florist, A1, A2, and A3 updating their private DCR process with
the approved change. They first retrieve the change description stored in
IPFS under ψG′ . They then project the updated public change description

5.4. ACTOR FLEXIBILITY 87

Algorithm 4: Confirm change propagation smart contract function
Data: γrequests the list of change requests, aendorser the sender

address, Aendorsers the list of endorsers, ψG the hash of the
current workflow

Result: manages the record of projections of the new public view
1 Function confirmProjection(ψG, aendorser):
2 require(aendorser ∈ E);
3 require(γrequests[ψG].γpropag[id] != 1);
4 set γrequests[ψG].γpropag[id] ←− 1;
5 emit LogWorkflowProjection(ψG);
6 End Function

Figure 5.3: Sequence Diagram of the binding solution (SP= Service Provider)

on their role following the same approach as in Section 4. For example, A1
will retrieve the activities {e9, e10, e12}. A1 then combines this projection
with private activities {p2,p3}. Once all projections have been done and
notified to the smart contract, the change initiator Florist triggers the smart
contract. The trigger updates the process description of the running instance,
e.g., the updated relation matrices, activity markings, and access controls
(c.f. Section 4 for a more detailed explanation).

5.4 Actor flexibility

Alongside control-flow change, the allocation of partners to tasks should also
be flexible. We present a trustworthy mechanism building on QoS-based
allocation to address this requirement.

Figure 5.3 presents the matching stage sequence diagram. Suppose two
service providers subscribe to the smart contract (e.g., delivery carriers)
(step 1-2). First, the contractor sends the service request to the resource-

88 CHAPTER 5. CONTRIBUTION 2

binding smart contract (step 3). The smart contract will scan resources
to find matching candidates based on the filtering criteria (step 4). If any
candidate meets the required filtering criteria, the smart contract calls the
oracle that triggers an external API (step 5). The oracle computes the QoS
rate of the successful candidates (step 6). Upon completing the request, the
oracle sends a callback to the smart contract with the sorted profiles (step 7).
The smart contract will, in turn, send the best profiles to the contractor
(step 8). The contractor answers the smart contract with the profile she likes
best (step 9). The smart contract generates a binding agreement on-chain
to confirm the resource-binding and manage the service fulfillment later
(step 10). It also triggers a success callback directed towards the contractor
(step 11) and the elected service provider (step 12). If no matching occurs, a
no-match event is sent instead (step 13). It is to note that a fully autonomous
binding is also possible. In this case, the smart contract will initiate the
matching and generate the binding without asking the contractor to choose
a candidate among the retrieved profiles.

We present in more detail each stage of the solution hereinafter. We
introduce the instantiation of the platform in Section 5.4.1. We then
present the smart contract-based candidates’ filtering and sorting strategy
in Section 5.4.2. We finally present the service binding and fulfillment
mechanism in Section 5.4.3.

5.4.1 Platform instantiation

At design time, a set of representative participants gathers to instantiate the
binding platform (e.g., delivery carriers and florist unions). They specify the
set of possible binding parameters accessible by the smart contract. Each
resource profile, managed by the resource-binding smart contract will be
constituted with this set of parameters. These parameters are of two kinds:
filtering criteria and optimization criteria. The representative participants
also specify a factory binding agreement linked to the smart contract. This
factory agreement, once instantiated, will be used by the contractor and
service provider to manage the service fulfillment. We suppose a set of initially
registered resources. A matrix stores these profiles. Each line corresponds to
a candidate profile, and each profile comprises: (i) the resource availability,
(ii) the set of filtering parameters agreed upon at the platform design time,
and (iii) the set of optimization criteria.

Competing carriers A1, A2, A3, and A4 are registered in the resource
binding smart contract functionality of the business process management
platform. The smart contract stores the filtering metrics PF for each
candidate and optimization metrics PO presented in Table 5.1. Our florist
sends a request to the resource-binding smart contract. She asks for flower
delivery from Geneva to Zurich at date D1. She wants the carrier closest to
Geneva and the truck to offer cold storage. She wishes for a carrier with

5.4. ACTOR FLEXIBILITY 89

good experience and is not concerned about delay. Thus she sets the weight
for experience to 1 and the weight for the average delay to 0.6. Florist asks
for the resource-binding smart contract to retrieve the delivery carrier with
the best weighted QoS profile.

5.4.2 Filtering and sorting candidates

In the following, let S be the service request, U be the candidates’ matrix,
PF the list of filtering criteria, P0 the list of optimization criteria, and W
the optimization weights. Each weight ∈ [0,1]. The smart contract U matrix
stores PF and P0 for each profile. A binding links S to a service provider.

The matching stage aims at retrieving the resource with the best QoS
profile compared to a service request: it filters and sorts resources stored in
U . The contractor sends the binary filter X of the required filtering criteria
to the smart contract. If the ith criterion is needed by the contractor, then
X[i] = 1. Algorithm 5 presents the filtering function of the resource-binding
smart contract. An internal binary filter assesses a candidate’s eligibility.
Each index holds for a candidate. The value assigned to the index of a
matching resource is 1, 0 otherwise. Initially, all indexes equal 0 (line 2). A
boolean variable ω assesses candidates’ matching status. We suppose there is
no initial matching by setting this variable to False (line 3). We then assess
each candidate’s profile based on the required attributes X (e.g., a truck
with cold storage) (lines 6-12). If at least one candidate fits, we retrieve its
availability (line 13). If the candidate is available, the ω variable equals True,
and the internal filter is set to 1 (lines 14-16). We then return the filter (line
19).

Afterward, the smart contract must sort filtered candidates according
to their QoS. If only one resource matches, the profile is returned to the
contractor. If more than one resource matches, a multi-objective sorting is
launched to retrieve the best QoS profile. We use the optimization criteria
P0 to compute each matching resource’s QoS. Each PO is retrieved from
the resource profile stored in U and is thus tamper-proof. The QoS η is
calculated as a weighted normalized mean, using both PO and the set of
weighing parameters W :

∀i ∈ U, ηi =
n∑

j=0
Wj

∥∥∥POj

∥∥∥ . (5.1)

If a weighting factor equals zero, then PO is not considered for the QoS
computation. If it equals one, then PO will be fully considered for the QoS
computation.

An oracle realizes all calculations to reduce the smart contract’s
computation loads. The resource-binding smart contract needs funds to
pay for the oracle fees. The oracle sends the API request if the resource-
binding smart contract is funded. During the oracle process, several oracle

90 CHAPTER 5. CONTRIBUTION 2

Algorithm 5: Filtering algorithm
Data: U , PF , PFavailability

Result: Filter[]
1 Function filter(U , PF , PFavailability

):
2 Filter = Zeros(U .length);
3 bool ω=false;
4 ind=0;
5 forall i in U do
6 .
7 length bool matchAttributes=true;
8 forall a in PF do
9 if (a == 1) and (U[i][a] ! = a) then

10 matchAttributes=false;
11 break;
12 ω = checkAvailability(PFavailability

,U[i]);
13 if ω then
14 filter[ind] = 1;
15 ind++;
16 return Filter

17 End Function

machines trigger the API. If the result computed by each oracle is correct, the
smart contract receives the API output in a dedicated callback function. This
callback function provides the best profiles retrieved by the QoS computation
API.

The multi-objective is performed using a weighted mean on normalized
data. However, it remains an illustrative example. Other techniques such as
Pareto optima could be considered.

In our delivery example, the resource-binding smart contract first retrieves
matching candidates, i.e., the carriers available at date D1 who are located
in Geneva and whose truck is equipped with cold storage: carriers A1 and
A3 are thus retrieved by the smart contract. The internal filter is thus
[1,0,1]. The QoS optimization matrix is then computed by looping around
the filtered candidates. It is forwarded to the oracle that computes ηA1 and
ηA3 by applying equation (1). We obtain ηA1 = 1.01 > QoSA3 = 0.69. The
resource-binding smart contract retrieves both QoS and enacts the binding
between the florist and Carrier A1.

5.4.3 Service binding and fulfillment

The smart contract generates a digital binding agreement stored in the smart
contract. The identity of the contractor, and service provider, the service

5.5. IMPLEMENTATION AND EVALUATION 91

execution agreement (e.g., a service execution data, and a deadline, the pay,
and optional incentives), as well as the service details (e.g., the type of tasks
to be realized, or comments on the contractor or service provider side), are
stored in the digital agreement. The funds are locked in the smart contract
to ensure the contractor’s engagement and ease the payment process. The
business process management system can use the binding agreement later
to manage the execution process. Additionally, smart contracts could ease
claim resolutions by carrying on an agreed-upon settlement plan. Upon
service completion, the client provides feedback on the smart contract. If it is
positive, the service provider may receive an optional bonus. Otherwise, the
smart contract forwards the funds to the contractor. Additionally, the smart
contract (1) updates the service status, (2) resets the resource availability,
and (3) updates the service provider’s QoS.

As an illustration, the binding agreement {Florist, Carrier A1} is stored
in the list of ongoing agreements of the smart contract. It records the service
and merchandise details {D1, Geneva, cold storage; 1000 flowers, 10m3}.
The 500 CHF pay and the 10 CHF incentive for timely deliveries are locked
into the smart contract, waiting for process completion. The process status
will evolve from scheduled to ongoing to finished. Let’s suppose the delivery
occurs without any delay. Pay and incentive are sent to Carrier A1 on finished.
The resource-binding smart contract also updates Carrier A1’s experience
QoS to 111. Its delay QoS remains constant.

5.5 Implementation and evaluation

In the following section, we investigate the feasibility of these mechanisms by
implementing and evaluating each solution on the blockchain. In Section 5.5.1,
we implement a change management support for DCR choreographies. We
evaluate the prototype by investigating gas costs required to trigger the smart
contract during the change request and propagation stages. In Section 5.5.2,
we build a QoS-based resource allocation mechanism applied to the logistic
environment. We evaluate the prototype quantitatively through smart
contract gas costs and latency experiments. We also evaluate it qualitatively
with a design science research protocol.

5.5.1 Runtime DCR change

Implementation We extend the DCR choreography management platform
aforementioned with change support for running DCR graph instances2.
VDCR initially comprised (1) execution constraint rules and (2) a list of

2The extension code is accessible at https://archive.softwareheritage.org/swh:
1:dir:8bde592496c231084627448dbd2399446f1cf2ce;origin=https://github.com/tip
hainehenry/adaptiveChangeDCR;visit=swh:1:snp:89cd57a878c58593ac077da79d99a0
f00cb8ac41;anchor=swh:1:rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e.

https://archive.softwareheritage.org/swh:1:dir:8bde592496c231084627448dbd2399446f1cf2ce;origin=https://github.com/tiphainehenry/adaptiveChangeDCR;visit=swh:1:snp:89cd57a878c58593ac077da79d99a0f00cb8ac41;anchor=swh:1:rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e
https://archive.softwareheritage.org/swh:1:dir:8bde592496c231084627448dbd2399446f1cf2ce;origin=https://github.com/tiphainehenry/adaptiveChangeDCR;visit=swh:1:snp:89cd57a878c58593ac077da79d99a0f00cb8ac41;anchor=swh:1:rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e
https://archive.softwareheritage.org/swh:1:dir:8bde592496c231084627448dbd2399446f1cf2ce;origin=https://github.com/tiphainehenry/adaptiveChangeDCR;visit=swh:1:snp:89cd57a878c58593ac077da79d99a0f00cb8ac41;anchor=swh:1:rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e
https://archive.softwareheritage.org/swh:1:dir:8bde592496c231084627448dbd2399446f1cf2ce;origin=https://github.com/tiphainehenry/adaptiveChangeDCR;visit=swh:1:snp:89cd57a878c58593ac077da79d99a0f00cb8ac41;anchor=swh:1:rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e

92 CHAPTER 5. CONTRIBUTION 2

workflows initially empty. It is enriched with the list of change requests
linked to the list of workflows. The initial cost of deployment of VDCR is
0.10667554 ETH (177.5e) for a gas usage of 3,555,855. VDCR is deployed in
Ropsten3.

Each partner can edit the running instance of their choice. Editing is done
using the panel manager, a tool to update DCR graph descriptions. Users
can add private and choreography interactions, condition, response, include,
exclude, and milestone relations. They can also use the panel manager to
remove and update events and relations. The panel manager implements
integrity rules presented in subsection 5.3.1: the panel verifies the soundness
of the desired change operation. Hence, we obtain a redesigned DCR graph
that is correct-by-construction. After editing, if the panel manager detects a
public change, it triggers the smart contract. The smart contract registers
the request and forwards it to the partners identified by the panel manager.
Each partner accesses the change request and answers back to the smart
contract (cf. subsection 13). If the change request is accepted by all, the
propagation mechanism described in subsection 5.3.3 is launched.

Smart contract evaluation costs The initial cost of the deployment of
the motivating example instance is 0.04181024ETH (69.56e) or 1,393,674.67
gas. Indeed, the consensus algorithm used in the Ethereum blockchain is a
proof of work [31]. Hence, each smart contract transaction (except reading
transactions) is payable to compensate miners for computation costs. We
evaluate the transaction costs to assess the computation costs related to the
change negotiation and propagation functionalities.

In our motivating example, three changes occur. Change#1 is fully public:
the choreography interactions (e9− e12) replace e1. Eight public-to-public
relations (four response relations, two include relations, and two milestone
relations) are added to the set. The change initiator is Florist. In change
#2, the choreography interaction e6 and the include and response relations
between e4 and e6 are deleted. Change initiator is Customer. In change #3,
the private event p3 is added to the graph, as well as two private-to-private
relations (include and condition). The change initiator is Carrier A1. In
the following, we investigate the public negotiation and propagation smart
contract costs for change #1.

Table 5.3 presents the transaction costs in ETH and euro (e) induced by
the smart contract execution during the negotiation and propagation stages.
We indicate the gas usage for each transaction. Gas is used to compute the
transaction fees compensating miners for their computation power in the
blockchain cryptocurrency.

Regarding the negotiation stage, Florist first launches the change request

3Ropsten smart contract address: 0x523939C53843AD3A0284a20569D0CDf600bF811b.
This address can be used with Etherscan to access the record of transactions.

5.5. IMPLEMENTATION AND EVALUATION 93

Table 5.3: Smart contract propagation costs (Neg.=negotiation,
Prop.=propagation)

Stage Step Partner Gas Use Cost (ETH) Cost (e)
Neg. LaunchNego Florist 225,485 0.00676454 11.3

Case Decline A1 43,473 0.00130418 2.2
Case Accept A1 53,582 0.00160745 2.7

A2 56,515 0.00169544 2.8
A3 56,515 0.00169544 2.8

Prop. Update proj. A1 67,520 0.0020256 3.4
A2 67,130 0.0020139 3.3
A3 67,130 0.0020139 3.3

Update proj. Florist 55,299 0.00165899 2.8
Update SC Florist 913,740 0.0274122 45.6

for replacing one public task with a new fragment of two public tasks. The
transaction fees for the request are 0.00676454 ETH (225,485 gas), the highest
fees in the negotiation stage. Indeed, the fee for declining or accepting a role
is worth around 0.0016 ETH (0.00130418 ETH to decline and 0.00160745
and 0.00169544 to accept). Nonetheless, all fees are of the same magnitude
(0.001 ETH).

Regarding the propagation stage, the transaction fees of the smart contract
correspond to two stages. First, the change endorsers, A1, A2, and A3, apply
the change effect to their private processes. No transaction fee is requested to
fetch the IPFS hash of the new DCR choreography. However, a transaction
fee is necessary to update the smart contract list γpropag recording the
projections. The smart contract notification of the local update is worth
0.0020 ETH for the endorsers (around 3.3eper local projection).

The change initiator, Florist, finally updates her projection. The cost to
switch the workflow locally is 0.00165899 ETH. Florist sends a transaction to
update the DCR choreography on-chain using the same tool used to deploy
a new instance on-chain. The cost for switching the DCR choreography
on-chain is 0.0274122 ETH. It is one order of magnitude higher than other
transaction fees and similar to the cost of instantiating a new instance on-
chain. Indeed, this similarity comes from the update of relation matrices
and markings.

Hence, propagation transaction fees are higher than the negotiation
ones. Additionally, the propagation cost mainly comprises the cost of the
DCR choreography update. Finally, we appraise these costs to have more
significance in a heavy negotiation scenario such as loan assessment.

We finally investigate execution times for the enactment of one trace. The
reported execution time factors the transaction confirmation time obtained
on the test network. On average, the execution time of on-chain interactions

94 CHAPTER 5. CONTRIBUTION 2

Figure 5.4: Blockchain-based FTSP mapping protocol

is 14.7s. Additionally, the average time for IPFS transactions is 7.6ms. The
change initiator, Florist, needs to process four on-chain transactions and two
off-chain transactions with IPFS. Each change endorser (i.e., A1, A2, and
A3) must process three on-chain transactions and two IPFS transactions.
Hence, the change management cycle takes 193s if all participants launch
their transactions on trigger (4+3+3+3 on-chain transactions requiring 14.8s
on average and 2+2+2+2 IPFS transactions requiring 7.6ms on average).

In summary, onchain negotiation requires less gas fees than the onchain
propagation mechanism; the propagation cost mainly comprises the cost of
the DCR choreography update. Both gas fees are proportional to the number
of participants involved in the change. Finally, execution times depend on
the latency of both smart contract calls, and IPFS calls.

5.5.2 QoS-based resource allocation

In this subsection, we implement (Section 5.5.2) and evaluate (Section 5.5.2)
the QoS-based resource allocation mechanism presented in this chapter. We
apply this mechanism to the logistic environment: we build a decentralized
trust-free FTSP mechanism answering the needs of shippers striving to find
the most qualified delivery drivers in open and dynamic markets (c.f. [86] for
more details on the design science research approach). Shipment allocation is
managed by a smart contract, the smart contract sorting carrier offers based
on the QoS stored on-chain. We then focus on the academic contribution by
discussing the nascent design principles emerging from the development and
evaluation cycles in Section 5.5.2.

Implementation

The prototype architecture is multi-tiers, with (i) an application layer, (ii)
the backend (smart contract, oracle) running on a blockchain, and (iii) a

5.5. IMPLEMENTATION AND EVALUATION 95

Rest API for bridging the application layer with blockchain.
The front end is built with React and web3.js for API calls to the

blockchain. The smart contract is written in Solidity and deployed to the
Ethereum Ropsten testnet4.

The blockchain-based FTSP mapping process follows the subsequent
steps (cf. Figure 5.4). Initially, representatives from both shippers and
carriers instantiate the FTSP mapping. The representatives state the smart
contract’s metrics to compute the on-chain QoS. Afterward, the carrier-
shipper mapping can occur. Two stakeholders, carriers and shippers, interact
with the FTSP smart contract. Carriers share eligibility information with the
smart contract (e.g., location, licenses, truck capacity, and equipment) (step
1.a.). The smart contract associates this information with initially empty
QoS metrics that record the history of their past services (e.g., number
of deliveries and average delay) (step 1.b.). Shippers trigger the smart
contract to find a carrier matching their needs by specifying filtering criteria
(e.g., price, location, shipping date, equipment, merchandise volume) and
sorting criteria (e.g., preferred experience or maximum delay) (step 2.). The
smart contract will filter the candidates (step 3.a.) and delegate the QoS
computations according to the required sorting criteria to the oracle (step
3.b.-3.c.). The Provable oracle generates API calls from our smart contract.
Smart contracts pay a fee to the oracle at each query to compensate for
computation costs. Thus, during platform instantiation, we fund the smart
contract to ensure the processing of binding requests. The oracle provides to
the smart contract the best-matching carrier (step 3.d.). Finally, the smart
contract generates a digital delivery agreement as a decentralized version of
the CMR (step 4.). The user (shipper or carrier) can retrieve all contracts
bound to their public address.

We refined the prototype following two iterative cycles. User tests
underlined the need to display computation information to enhance trust
in the system. Indeed the black-box effect appeared, linked to users using
a technology they are not experts with occurs. Users can only trust the
machine as they do not know the underlying protocols. This dependency
may trigger mistrust. We thus displayed all resource profiles to the users
and the ratings obtained for each resource. The second evaluation round
consisted of focus group discussions. Testimonies underlined the need for an
almost entirely autonomous system. We revisited the artifact by merging
the matching and allocation stages into one single step.

Power asymmetry between carriers and shippers is addressed through
shared governance, which can occur through an open or consortium
blockchain: each actor participates equally in the consensus protocol.

4Code is available at https://archive.softwareheritage.org/swh:1:dir:
cc1dc66c637f8427836d808745f1bf1630816527;origin=https://github.com/tipha
inehenry/smart-logistics;visit=swh:1:snp:d97e3a03446f13ef7112faba5abec02254
568449;anchor=swh:1:rev:e06b091de377c1bfe29644fb2b539af99381dd1e.

https://archive.softwareheritage.org/swh:1:dir:cc1dc66c637f8427836d808745f1bf1630816527;origin=https://github.com/tiphainehenry/smart-logistics;visit=swh:1:snp:d97e3a03446f13ef7112faba5abec02254568449;anchor=swh:1:rev:e06b091de377c1bfe29644fb2b539af99381dd1e
https://archive.softwareheritage.org/swh:1:dir:cc1dc66c637f8427836d808745f1bf1630816527;origin=https://github.com/tiphainehenry/smart-logistics;visit=swh:1:snp:d97e3a03446f13ef7112faba5abec02254568449;anchor=swh:1:rev:e06b091de377c1bfe29644fb2b539af99381dd1e
https://archive.softwareheritage.org/swh:1:dir:cc1dc66c637f8427836d808745f1bf1630816527;origin=https://github.com/tiphainehenry/smart-logistics;visit=swh:1:snp:d97e3a03446f13ef7112faba5abec02254568449;anchor=swh:1:rev:e06b091de377c1bfe29644fb2b539af99381dd1e
https://archive.softwareheritage.org/swh:1:dir:cc1dc66c637f8427836d808745f1bf1630816527;origin=https://github.com/tiphainehenry/smart-logistics;visit=swh:1:snp:d97e3a03446f13ef7112faba5abec02254568449;anchor=swh:1:rev:e06b091de377c1bfe29644fb2b539af99381dd1e

96 CHAPTER 5. CONTRIBUTION 2

(a) Creation cost according to
the number of resources initially
registered

(b) Creation cost according to the
number of binding parameters

Figure 5.5: Smart contract creation cost depending on the number of resources
and binding parameters

Information asymmetry is addressed by making it accessible to shippers
carriers’ former services rating on the blockchain ledger. Additionally, a
power balance is reached by putting into escrow the carrier’s pay, as well
as the carrier’s caution. Hence, the shipper and the carrier are bound after
the mapping validation. The smart contract enables platform operating
costs reduction by managing allocations autonomously. The smart contract
also allows contractual flexibility as it speeds cash flow; payment is enacted
right after the shipping is settled. Finally, the combination of (1) the
blockchain ledger, (2) the smart contract protocol, and (3) the oracle-based
QoS computations ensures tamper-proof and objective management of the
allocation requests. With the proposed architecture, oracles share QoS-
computation results with the blockchain, and shippers and carriers interact
directly with the blockchain to manage delivery requests. Hence, there is
no more intervention from a trusted third party. Thus, a blockchain system
can manage carrier-shipper mappings in a secure, trusted, and reliable way.
As a side note, regarding carrier coopetition, a carrier wishing to delegate
the delivery service to another carrier can take the role of the shipper. The
generated CMR contracts hold a link to the initial CMR contract. When
the new carrier-carrier CMR is settled (i.e., the delegated delivery has been
fulfilled), the status of both CMR contracts is set as settled, and the smart
contract transfers the corresponding escrowed payments. The QoS rating
obtained for the delivery is stored in both carrier profiles.

Evaluation

We now evaluate the prototype by investigating the gas fees necessary for
deploying the resource-binding smart contract. We then evaluate the smart
contract’s resource-binding fees and latency.

5.5. IMPLEMENTATION AND EVALUATION 97

Deployment Costs We evaluate the smart contract deployment costs
on Ropsten (cf Figure 5.5). The deployment of the resource-binding smart
contract into the blockchain network is payable as miners need compensation
for the computation resources linked to the consensus protocol.

We use the August 24th, 2022 conversion rate (1ETH=1,663.76e) in the
following.

Figure 5.5a depicts the smart contract creation fee variations according
to the number of registered resources (i.e., its id, availability, and the set
of binding criteria). The smart contract creation fee increases with the
number of resources initially populating Candidates, from 0.08 ETH for
five resources to 0.15 ETH for twenty resources. Figure 5.5b depicts the
smart contract creation fee according to the number of binding resources
(i.e., the number of filtering and optimization criteria). The smart contract
creation fee similarly increases with the number of binding parameters, from
0.09 ETH for three binding parameters to 0.15 ETH for fifteen parameters.
Experiments show that creation costs depend on the size of Candidates, and
consequently on (1) the number of resources initially registered and (2) the
number of binding parameters: the bigger the candidates’ matrix, the more
expensive the smart contract creation fees. Each candidate could pay for
being added to the matrix. However, scalability issues could arise if the
number of registered candidates generates a smart contract cost above the
blockchain limit threshold.

Binding Costs We then evaluate the smart contract’s resource-binding
fees and latency (cf Figure 5.6). Each resource-binding request requires the
contractor to pay a smart contract transaction fee. This fee compensates
the blockchain miners for processing the binding smart contract function.
The average matching cost corresponds to the oracle fees required for GET
requests to the external QoS computation API. The price is manually tuned
to fit price requirements. In our experimental setting, it is thus constant
for the oracle. The matching cost is 0.47 ETH, and the contracting cost is
0.0021 ETH. A resource-binding request is relatively expensive compared to
traditional Ethereum transactions, often around 0.01 ETH at the time of
writing5. The binding price depends on the string conversion required to
transform the parameters into an URL for the API call. Other oracles such
as Chainlink use dedicated tokens instead of ETH and could decrease this
cost.

We trigger ten times the resource-binding smart contract to evaluate the
latency of the proposed solution while reducing network noise. We measure
the oracle call and callback time. Figure 5.6 represents the results displaying
the oracle call and callback, as well as the cumulative response time. The
median oracle response time is 19 sec. The median callback response time is

5See https://bitinfocharts.com/, accessed on February 28th, 2021

98 CHAPTER 5. CONTRIBUTION 2

Figure 5.6: Smart contract resource-binding latency

51 sec. The median cumulated time is 78 sec. The cumulated time boxplot
is left-skewed. Most requests take between 78 sec (the median) and 85
sec (the upper quartile), but some calls answer more rapidly. Overall, the
oracle calls are shorter than callback times. Oracle calls are less spread than
callback response times. The network capacity and the oracle-related block
validation time may explain the disparity between oracle calls and callbacks.
At runtime, the resource-binding cost is 0.47 ETH and takes one minute and
a half to process on average. Depending on the targeted market, the gain in
trust and transparency could justify these costs.

In summary, smart contract deployment costs depend on (1) the number of
resources initially registered and (2) the number of binding parameters to be
analyzed. The fees required for a smart contract binding request correspond
to the oracle services. Hence, a resource-binding request is relatively expensive
compared to traditional Ethereum transactions in our experiment, but is
highly dependent on the oracle service triggered. Finally, matching time are
highly impacted by the oracle response time. Hence this mechanism should
not be considered for time-dependent matching applications.

Theory generation

We propose three nascent principles stemming from the prototype
development cycles that support a successful artifact development [175].
We then discuss these findings in the light of other design science research
papers.

Table 5.4 presents the three emerging design principles detailed
hereinafter. First, understandability of the smart contract shipper-carrier
allocation is needed to encourage non-technical users’ adoption (DP1).
Delegating the allocation process to the blockchain triggered some concerns
during the user testing stage. More precisely, the use of an oracle raised
concerns related to integrity gains. Having no access to the decision protocol,
several users were puzzled regarding the result, as they did not have access

5.5. IMPLEMENTATION AND EVALUATION 99

Table 5.4: Blockchain-based FTSP mapping nascent design principles

Understandability The smart contract shipper-carrier allocation
protocol must be displayed to the shipper

Automation The FTSP process must be carried on in an
end-to-end fashion by the smart contract

QoS-metrics privacy The allocation mechanism must keep sensitive
data off-chain in competitive markets

to the smart contract reasoning for such allocation. Thus the FTSP platform
should display the decision protocol alongside the data output to avoid
the technological black-box effect. Blockchain architecture requires strong
technical skills to understand its benefits (decentralized governance, tamper-
proof data, autonomous scripts). For non-expert users, the prototype thus
consists of a box where data comes in (e.g., their delivery request) and out
(e.g., a shipper/carrier mapping) without understanding what happens inside
the box. We propose to display the shipper computation outputs for each
profile to counter the black-box issue. Moreover, automation of the FTSP
process is necessary (DP2): the FTSP process must be carried on in an
end-to-end fashion by the smart contract. Indeed, process optimization is one
of the significant benefits underlined by both testers and experts. Experts
have made suggestions for enriched process automation. More precisely, they
foresee blockchain-based FTSP mapping as autonomous agents managing
request bundling, re-pricing, or matching. To integrate automation into our
artifact, we merge the service request and contractualization stages into one
step. The service status is tracked and managed within the blockchain for
integrity and efficiency. Nonetheless, oracle latency is at stake regarding
allocation queries, as it can take up to several minutes to process a request.
According to one expert, ’latency variability seems acceptable for long-
term markets where contracts can be set for a year or so [...] In spot
markets, the service provider could become unavailable before the end of the
query.’ Thus, the automation of the FTSP mapping should take into account
allocation latency. Finally, metrics privacy should be considered (DP3).
The allocation mechanism must keep sensitive data off-chain in competitive
markets. On the evaluation side, the disjunction between private and public
data appears in several testimonies. Such sensitivity needs to adjust to the
market at stake. Price and capacity data are sensitive and should remain
private to other carriers’ eyes. Though our prototype saves QoS metrics to
the blockchain, a better option is to encrypt the price and volume metrics.
We leave it for future work.

These nascent design principles resonate with several design principles
proposed in the design science research literature. Accessibility of blockchain-

100 CHAPTER 5. CONTRIBUTION 2

based applications to non-technical users is one of the design principles
of [143]. The design principle (DP1) stands on the necessity to explain
the smart contract decision-making process adequately to users. Though
blockchain smart contracts provide automation and transparency, protocol
and data trust come if users understand the mechanisms motivating a decision
(a delivery request allocation here). (DP1) is thus reinforced as a design
principle. Moreover, allocation automation (DP2) resonates with the need for
digitizing chapter-based processes in [143]. The issuance of CMR contracts
implies the production of several paperwork copies that need to be approved
by both shipper and carrier at the start of the delivery. Consequently, the
paperwork slows the delivery process, reduces the overall efficiency, and
implies tampering risks. (DP2) also resonates with the potential for smart
contracts to manage processes presented in [3]. (DP2) is thus also reinforced
as a design principle. Lastly, the privacy of allocation metrics (DP3) resonates
with the need to manage in an off-chain fashion private and sensitive data.
These needs were underlined in [5] that performed a design science research
study in the trucking industry: private carrier and shipper information should
remain off-chain. The need for sensitive data privacy is also underlined as a
design principle in [187] and [119]. QoS metrics act as private and sensitive
data in our setting. In the future, the QoS metrics of our proposed mechanism
should consequently be ciphered so that they cannot be understandable by
other competitors or kept off-chain. Thus, (DP1-3) can be considered as
design principles for developing a blockchain-based FTSP solution.

The contribution of this experiment to theory lies in investigating the use
of the blockchain in the logistics industry concerning coopetition [20]. The
current FTSP-related literature mostly focuses on the traditional carrier-
to-shipper market. Little attention has been paid to the carrier-to-carrier
market, and the application of blockchain and smart contracts in such a
market is still a new research topic. The FTSP process is applied in a
cooperative/coopetive environment as (1) competing carriers agree to use
the same platform to gain a service auction, and (2) competing shippers
agree to use the same platform to find an adequate carrier. Both shipper
and carrier participants have a shared interest in using the blockchain-based
FTSP platform as the system has the potential to reduce operational costs,
increase the visibility of the carriers, and transparency and integrity of the
deliveries.

5.6 Conclusion

This chapter proposes two mechanisms to add flexibility to business-based
business process management systems.

We present a trustworthy change propagation mechanism comprising three
steps (change introduction, negotiation, and propagation) for declarative

5.6. CONCLUSION 101

choreography instances. Through this contribution, we aim at addressing
Objective 3. Regarding change introduction, a partner in a running DCR
choreography instance defines changes in its private process. Here, we declare
rules that specify the allowed and prohibited changes to ensure that no
deadlocks nor livelocks occur after the change. In other words, these rules
provide a correct-by-construction DCR choreography. This ensures that
the DCR choreography is safe and terminates in an acceptable state, i.e.,
deadlock-free after the change. The solution manages local changes off-chain.
Change requests impacting an interaction trigger the on-chain negotiation
phase. If the negotiation succeeds, the smart contract propagates the change
effect to the partners affected by the change. We suppose that all partners
project trustfully the updated DCR choreography. The smart contract
records partners’ involvement in a tamper-proof fashion during the change
negotiation and propagation stages. If misbehavior occurs, the blockchain
logs can be used as a shared source of truth.

We also propose a transparent and autonomous resource-binding protocol,
hence answering Objective 4. To do so, we leverage smart contracts as
a matching and binding mechanism. The smart contract (i) matches a
contractor with the best service provider and (ii) generates a digital agreement
stored in the blockchain to keep track of the service fulfillment. Transparency
appears at the data management level as the QoS of all available service
providers is stored in the blockchain. Transparency also occurs at the process
level as smart contracts objectively manage the binding.

Hence, through these research works, we address our second research
question (RQ2), which focused on the need to increase the flexibility of cross-
organizational processes managed on-chain. Moreover, we address the trust
challenge through smart contracts enforcing an agreed-upon binding protocol
and through the blockchain ledger offering a tamper-proof history of services.
In both approaches, blockchain addresses service providers’ and issuers’
collusion risks by design, as no single entity controls the cross-organizational
business process management platform. We also address the need for
process automation through management through smart contract hiring,
contractualization, and settlement stages. Our experiments finally confirm
the feasibility of these mechanisms, hence validating that we addressed (RQ2),
as well as Objectives 3 and 4.

The work presented in Section 5.3 has been published in the International
Conference on Business Process Management[27]. The work presented in
Section 5.4 has been published in the Hawaii International Conference on
System Sciences [90] and in the IEEE International Conference on Services
Computing[87].

In the following, we investigate the need for privacy of sensitive metrics
such as bidding content or payment transaction amount underlined by (DP3).

102 CHAPTER 5. CONTRIBUTION 2

Chapter 6

Sealed-bid Auctions and
Privacy-preserving Payment

Contents
6.1 Introduction . 103
6.2 Motivating example 105
6.3 Sealed-bid auctions 107

6.3.1 Basic concepts on encryption technics 107
6.3.2 Overall approach 109
6.3.3 Key initialization 111
6.3.4 Generating and forwarding FHE-ciphered offers to

the smart contract 112
6.3.5 Compare and allocate the service to the best offer 113

6.4 Privacy-preserving token payment 117
6.4.1 Overall approach 117
6.4.2 Payment token smart contract initialization 118
6.4.3 Request payment tokens 121
6.4.4 Service payment 121
6.4.5 Collaboration settlement and payment tokens

deactivation . 123
6.5 Implementation and evaluation 123

6.5.1 Sealed-bid auctions 124
6.5.2 Privacy-preserving payment 127

6.6 Conclusion . 131

6.1 Introduction

In the previous chapter, we proposed a dedicated allocation system that maps
delivery requests to the best available carrier. Smart contracts take action

103

104 CHAPTER 6. CONTRIBUTION 3

regarding the bids evaluation, service completion, and payment without
requiring a trusted third party. Such a system can, for accounting and
compliance purposes, (1) record all settled transactions in a tamper-resistant
fashion and (2) keep track of delivery information provided by different oracles
and tracking sensors. This configuration ensures information transparency as
the involved members can access past allocation history stored in the ledger
and access the tamper-proof delivery information.

In this context, auditability of the protocol and decision-making should
be accessible to all participants to ensure trust in the system. If a claim
occurs, participants must be able to rely on a tamper-proof database storing
the history of services. Moreover, bid privacy should be enforced to limit
information asymmetries and collusion risks between actors [7], as bids may
comprise differentiating criteria. Finally, once the service is fulfilled by
the service provider, the payment should remain private to preserve the
confidentiality of the exchange, e.g., if the price for a service varies from one
partner to another based on negotiation outcomes.

From the related work analysis presented in Section 3.5.2, dealing with
data privacy in a blockchain framework raises challenges regarding access
control enforcement and processing of sensitive data [170, 46, 208]. Regarding
sealed-bid auctions, despite several publications of blockchain-based allocation
protocols to map services and their procurement, there is a research gap in
allocating services based on multi-objective sorting in a privacy-preserving
fashion [132]. Regarding payment on blockchain systems, a middle-ground
trust hypothesis considers banks as reliable proxies for payments to palliate
a complex blockchain and key management setup scheme. Hence, in [79, 34],
banks are leveraged as trustworthy intermediates to carry on on-chain
payments. Cryptography technics such as zero-knowledge proof can moreover
ensure privacy [34]. Nonetheless, in both approaches, auditability is not
directly addressed.

Hence, this chapter sets out to answer the following questions:

1. How to manage and compute numeric information in a privacy-
preserving fashion using fully homomorphic encryption? (c.f.,
Section 1.3, RQ3.2)

2. How to ensure payment privacy in a cross-organizational process that
preserves privacy while offering public auditability? (c.f., Section 1.3,
RQ3.3). In light of the related work, we refine this question as follows:
How to implement a decentralized token payment system building on
banks as trustworthy proxies that preserves privacy while offering public
auditability?

In this chapter, building on the motivating example presented in
Section 6.2, we propose two main contributions aiming at answering the
aforementioned research questions:

6.2. MOTIVATING EXAMPLE 105

1. First, we propose in Section 6.3 a solution to leverage FHE in a
blockchain context while preventing deciphering and collusion issues
on the competitors’ side: we do so by combining the hybrid RSA/AES
ciphering technic with smart contracts and oracles to compare ciphered
vectors: (1) FHE encryption is used to compare bids that have been
previously ciphered; (2) the hybrid RSA/AES encryption scheme is
used to transfer ciphered bids confidentially in the blockchain, avoiding
deciphering attempts of the FHE layer on behalf of competitors. Our
approach differs from other literature approaches by using an oracle
to delegate FHE comparisons while preventing smart contracts’ rising
transaction costs.

2. We propose in Section 6.4 a solution that uses a bank and a per-
collaboration payment token linked to a random value to address this
research question. Parties can use per-collaboration tokens to proceed
to multiple payments while preserving the values’ privacy. Token
payment can be programmed to verify conditions coded in a smart
contract, put into escrow, and carry partial payment. Additionally,
external peers can audit trust-worthily token transactions as they are
stored on-chain.

Finally, we evaluate both contributions in Section 6.5.

6.2 Motivating example

In this section, we build on the motivating example of the flower delivery
business process presented in the introduction.

Figure 6.1 illustrates a sequence diagram for the blockchain-based flower
delivery service, where the blockchain acts as a trustworthy and autonomous
allocation service and settlement.

The florist uses the resource-binding smart contract to hire a carrier for
the shipment (Figure 6.1, step 1). The carrier choice is paramount as the
quality of the delivery directly impacts customer satisfaction and may have
significant financial consequences for the florist’s business. Hence, the florist
sets a maximum price threshold and a minimum capacity for offers to be
eligible: the truck capacity should be at least 5m3, and the service price
below 20$/m3/km. Additionally, if two or more bids are suitable, the offer
must be allocated to the carrier with the optimal bid.

Previously registered on the smart contract, four carriers, A1, A2, A3,
and A4, compete for the service. Table 6.1 presents the candidates’ bids with
a normalized truck capacity. The resource-binding smart contract compares
the QoS of competitors and allocates the delivery service to one of the carriers
(Figure 6.1, step 2). The underlying allocation mechanism and data processed
should be trustworthy to discourage actors’ collusion and data tampering.

106 CHAPTER 6. CONTRIBUTION 3

Figure 6.1: Sequence diagram of a blockchain-based service payment

Additionally, sensitive information encapsulated into carriers’ offers should
remain confidential (i.e., not accessible to other carriers). Hence, the following
question arises: how may smart contracts be leveraged to allocate the best
carrier to a service request while ensuring the confidentiality of price and
capacity? The resource-binding smart contract sends an event notification
to notify participants of the binding. Participants listening to the event will
thus be notified (Figure 6.1, steps 3-6). The delivery service occurs off-chain
(Figure 6.1, step 7), and the carrier requests his pay (Figure 6.1, step 8).

The smart contract reallocates the service funds put in escrow to the
carrier blockchain account (Figure 6.1, step 9). It sends a payment notification

Table 6.1: Competing carriers offers

Carrier Availability Location Price1 Capacity12

A1 D1 ϕ 10$/m3/km 10
A2 D1 ϕ 5$/m3/km 5
A3 D2 ϕ 10$/m3/km 5
A4 D2 ϕ 10$/m3/km 8

aSensitive metrics that should remain private.
bTruck capacity is normalized to scale 10.

6.3. SEALED-BID AUCTIONS 107

(e.g., under the shape of an event (Figure 6.1, steps 10-13)). The payment
is recorded as a transaction in the ledger. Hence, an auditing service can
access the payment transaction, e.g., assess compliance with regulation laws
or ease claim resolution.

Nonetheless, the payment value is accessible to carrier competitors (step
12). For example, competitors could use this information to renegotiate
contract terms with the client, which would hamper the adoption of
a blockchain-based solution. Consequently, the payment should remain
confidential to avoid any privacy leakage in such a competitive situation.
Hence a second question arises: how to carry on a privacy-preserving payment
while ensuring the auditability of the payment transactions?

6.3 Sealed-bid auctions

This section presents the trustworthy sealed-bid auctions protocol aiming at
preserving the privacy of sealed bid offers while preserving the trustworthiness
and auditing functionalities of blockchain. The solution leverages AES, RSA,
and FHE encryption algorithms. We first introduce basic concepts related
to these algorithms in Section 6.3.1. We then provide an overview of the
approach in Section 6.3.2. We finally dive into the details of each protocol
stage in the remaining subsections: first key initialization in Section 6.3.3,
offers ciphering and forwarding in Section 6.3.4, and finally ciphered offers
comparison in Section 6.3.5.

6.3.1 Basic concepts on encryption technics

(Fully) Homomorphic encryption

Homomorphic encryption, first proposed by Rivest et al. in 1978 [179]
belongs to the family of symmetric encryption: the same key is used to cipher
and decipher a number. This encryption protocol often helps address the
millionaire problem where two millionaires want to compare their wealth
without disclosing the exact amount of money they own [118]. The term
homomorphism refers to a homomorphism between plain and ciphertext
spaces. Indeed, this method preserves algebraic operations: one can carry
computations on encrypted data without requiring a decryption key.

Partial homomorphic encryption algorithms exist where only one type
of algebraic operation is possible (e.g., Paillier algorithm [160]). An FHE
scheme extends partial homomorphic encryption as it supports all algebraic
operations. The scheme was proposed by Craig Gentry in 2009 [75].

Figure 6.2 illustrates the FHE scheme. Let’s consider a number x and
its ciphered version cx. Computing an algebraic operation g on x will lead
to g(x)=y. Computing this operation on cx will lead to c′

x. If one tries
to decipher c′

x, the result will be y. Hence, one can carry on an algebraic

108 CHAPTER 6. CONTRIBUTION 3

Figure 6.2: FHE Scheme

operation on a ciphertext with homomorphic encryption without having
access to plaintext.

In more detail, the encryption first consists of translating plaintext into
a binary. Afterward, the binary goes through a set of Boolean circuits
composed of NAND gates as it is the only gate from which it can generate
the AND, OR, and NOR gates. Each circuit corresponds to an operation
(addition, multiplication, etc.). Among examples of usage of FHE stand
the comparison of two [25] or more [24, 200] numbers. It is to note that
successive operations may trigger noise; hence the deciphered output of
the computation may not be exact. To circumvent this issue, one may use
bootstrapping operations to reduce the noise [38].

Hybrid RSA/AES encryption

RSA stands for Rivest Shamir Adleman; it refers to the name of its three
inventors. RSA is an asymmetric cryptography algorithm [180]: two keys
are necessary to encrypt and decipher messages (c.f., Figure 6.3). It has two
uses, signature and ciphering. Anyone wishing to cipher a plaintext uses the
public key. The entity generating the two keys owns the private key, which
is used to decipher incoming ciphertext.

AES stands for Advanced Encryption Standard. It refers to the encryption
algorithm also known as Reijindael encryption [45]. It consists into a
symmetric encryption algorithm leveraging (1) a plaintext to be ciphered,
and (2) variable key lengths.

The RSA/AES hybrid encryption protocol, first proposed in [129],

6.3. SEALED-BID AUCTIONS 109

Figure 6.3: RSA Scheme

leverages RSA and AES, which are respectively asymmetric and symmetric.
They are combined to cipher and decipher long ciphertexts. The sender, Alice,
wishes to send a plaintext of a consequent length in a secured fashion to a
recipient Bob. She will proceed as follows: (1) Bob generates a private/public
key pair for the RSA algorithm, (2) Bob sends to Alice its public RSA key,
(3) Alice generates an AES key randomly and ciphers its plaintext with the
symmetric AES algorithm, (4) Alice ciphers the AES key with the RSA
encryption protocol, using Bob’s RSA public key, (5) Alice sends to Bob her
ciphertext ciphered with AES and her ciphered AES key. Hence, only Bob
can decipher Alice’s ciphertext.

6.3.2 Overall approach

Figure 6.4 presents the main stages of our sealed-bid auctions system. First,
we initialize the ciphering keys for the AES, RSA, and FHE algorithms. To
preserve the privacy of sensitive offers during the allocation protocol, we
separate the management of the encryption keys between five stakeholders.
The second stage consists of the smart contract gathering eligible candidates’
ciphered sensitive information and the RSA-ciphered AES key. The third
stage consists of deciding on the best offer: the oracle receives the ciphered
keys and bids, deciphers the key, then uses the deciphered key to access
FHE-ciphered offers, and finally computes the best offer by comparing the
FHE-ciphered data. The binding is then enacted, and service management
can begin[87]. We describe each stage in more detail hereinafter.

Figure 6.4: Privacy-preserving allocation and settlement stages

110 CHAPTER 6. CONTRIBUTION 3

The privacy-preserving allocation smart-contract holds a list of registered
service requests. Each registered service request comprises the blockchain
addresses of the service requester and allocated service provider (null at
first). It also comprises the open tendering and the service settling status.
The open tendering comprises the list of submitted bids, with each bid
attached to its issuer blockchain address, and the open tendering status. The
latter can be open: the smart-contract accepts new bids. It can be pending:
the smart-contract does not accept bids anymore and proceeds to the bids
comparison. It can finally be closed: the comparison has terminated, and
the service has been allocated. In this case, the blockchain address of the
service provider is populated with the address of the winning bid issuer. The
smart-contract also comprises three functions to manage the mechanism:

• a function registers or updates the RSA public key. The RSA public
key is updated by the oracle service only, the RSA public key value is
necessary for bidders to cipher their bids (c.f., Section 6.3.3);

• a function registers new bid offers: the bidder must forward the hash
of the ciphered offer and the hash of the ciphered AES key (c.f.,
Section 6.3.4);

• a function closes the open tendering and launches the offer comparison
by triggering an oracle service (c.f., Section 6.3.5);

Used formalism

• We refer to k as the ciphering key for the symmetric encryption of
type .

• We refer to (s , p) as the couple of respectively secret and public keys
for the asymmetric encryption algorithm of type .

• With x a natural number, we write C the ciphering function of type .
With x a natural number, then c = C (x, p) is the ciphered version
of x obtained after applying the ciphering protocol of type . With x
a natural number, we write D the ciphering function of type , and
x = D(c, s). For symmetric encryption, k is used for both ciphering
and deciphering.

• We define a service provider offer O as a vector of offers, where O[i] is
an array comprising sensitive metrics to evaluate.

• We refer to Oenc as the array where each element of O has been
ciphered with the public key of the encryption algorithm of type :
with i ∈ [0, size(O)− 1], Oenc[i]=C(O[i], p).

• We refer to L as the list of ciphered aggregated offers.

6.3. SEALED-BID AUCTIONS 111

Figure 6.5: Initialization of cipher keys

6.3.3 Key initialization

Our approach uses three encryption algorithms: FHE, AES, and RSA.
FHE is used to do blind calculations by comparing ciphered offers. Service
providers can decipher each other’s data using the same key. An asymmetric
encryption layer is thus necessary to preserve offers confidentiality. A
standard asymmetric encryption algorithm is RSA. Nonetheless, the FHE
ciphertext length is too large for RSA but not for AES. As AES is symmetric,
the issue of confidentiality rises again, and it must be combined with an
asymmetric scheme. To do so, we use the hybrid AES/RSA encryption
scheme presented in [129].

Figure 6.5 presents the sequence diagram of the initialization of the three
RSA, AES, and FHE ciphering keys. In this approach, three separate entities
manage the RSA, AES, and FHE key generation to avoid any deciphering
attempt by one of the entities.

• The service providers’ authority generates the FHE key kF HE (step 1)
that will be forwarded to service providers A1 and A2 once the auction
time finishes. The service providers will use this key to cipher their
offers.

• Each service provider generates its own AES encryption key (step2-3).
Only one key is generated due to the symmetric behavior of AES
encryption.

• The oracle generates the pair of private and public RSA keys sRSA and
pRSA used to cipher and decipher messages with the RSA algorithm
(step 4). The private key sRSA remains secret for the oracle to retrieve
offers ciphered with the RSA algorithm. The public key pRSA is saved
in IPFS to reduce storage costs in the smart contract (step 5). The

112 CHAPTER 6. CONTRIBUTION 3

Figure 6.6: Ciphering and gathering offers

IPFS hash used to retrieve the public key on the IPFS network, ψRSA,
is forwarded and stored in the smart contract (step 6).

Let’s consider the delivering procurement allocation of our motivating
example. The carriers’ authority generates kF HE . The four bidders of our
motivating example, A1, A2, A3, and A4, all subscribe to the smart contract
to participate in the bid. They each generate a private AES encryption
key kAES . The oracle generates the keyset {sRSA, pRSA} and publishes the
public RSA key to IPFS. It then publishes the hash of pRSA to the smart
contract.

6.3.4 Generating and forwarding FHE-ciphered offers to the
smart contract

Figure 6.6 depicts the generation of ciphered offers by each competitor and
the gathering of offers into the smart contract.

The service providers’ authority forwards the FHE key to each available
candidate via private channels (steps 1 and 2). In our motivating example, the
service providers’ authority sends kF HE to A1 and A2 via private channels.

Afterward, service providers cipher their offers. Let’s consider service
provider A1 in Figure 6.6. She triggers the smart contract to retrieve the IPFS

6.3. SEALED-BID AUCTIONS 113

hash of pRSA (step 3). The smart contract returns the hash to A1 (step 4). A1
connects to IPFS to retrieve pRSA (step 5). Afterward, A1 ciphers her offer
OA1 twice using FHE encryption first and then AES encryption. She applies
the following ciphering algorithms: CAES(CF HE(OA1, kF HE), kA1,AES) using
her personal AES key kA1,AES .

Afterward, service provider A1 forwards her offer to the smart contract.
To do so, she first saves the content of the offer in IPFS (step 6). She then
ciphers kA1,AES using the RSA algorithm and forwards it to IPFS (step 7).
She finally publishes the hashes of her ciphered offer and key to the smart
contract (step 8).

Service provider A2 proceeds to the same steps in parallel (steps 9-14).
In our motivating example, delivering driver A1 computes her ciphered

AES key is expressed as CRSA(kA1,AES , pRSA).
She also processes her ciphered offer as follows: OA1enc =[
CAES(CF HE(price, kF HE), kA1,AES)

CAES(CF HE(capacity, kF HE), kA1,AES)

]
.

6.3.5 Compare and allocate the service to the best offer

Once all offers are forwarded, the smart contract delegates the offers’
comparison to the oracle. Delegation occurs to avoid intensive computations
carried on the blockchain network. Indeed, the more calculation on the
blockchain, the more expensive the transaction’s time and transaction fees.

Shuffling and forwarding ciphered offers The smart contract
interchanges the randomly received ciphered offers (Figure6.7, step 1). By
so doing, we prevent an honest but curious oracle behavior that could lead
to an information leakage on the order of candidates’ submissions and hence
on the winning offer. The smart contract then forwards the interchanged
offers to the oracle for an argmax computation (Figure6.7, step 2).

To do so, the smart contract sends an API request to the oracle, specifying
the ID of the bid comparison to analyze. Meanwhile, the smart contract
sends an event comprising the list of hashes of the ciphered offers and AES
keys.

In the following, we refer to the interchanged offers as ΠOA1 and ΠOA2 .
In our motivating example, the smart contract interchanges the received

ciphered offers [OA1enc , OA2enc] randomly and forwards the interchanged
offers to the oracle for an argmax computation.

Retrieving FHE offers and computing the mean The oracle first
retrieves the list of ciphered offers and keys hashes specified in the comparison
request event. It then connects to IPFS to fetch the offers and keys (Figure6.7,
steps 3-4). The oracle uses the private key sRSA to decipher each AES key
of A1 and A2 (Figure6.7, step 5). It then uses each AES key to process the

114 CHAPTER 6. CONTRIBUTION 3

Figure 6.7: Ciphered comparison and allocation

corresponding FHE offers (Figure6.7, step 6): it will first decipher the offers
to retrieve the FHE offers and then compute each offer’s ciphered mean.

In our motivating example, the oracle deciphers the RSA layer of the AES
key of A1. It will then use this AES key to remove the AES encryption layer
of ΠOA1 . The oracle then computes the mean for the offer submitted by A1: it
obtains avg(ΠOA1) = (CF HE(capacityA1, kF HE + CF HE(priceA1, kF HE)/2.
The computation of avg(ΠOA1) gives CF HE(8, kF HE). The computation of
avg(ΠOA2) gives CF HE(5.5, kF HE).

As a side note, we chose a simple average as possible use. Alternative
computations can be carried on to aggregate offer metrics. For example,
Pareto optima could be computed or weighted mean with weighting factors
defined in the smart contract in the service request.

Comparing offers The oracle then proceeds to the pairwise comparison
of the processed offers (Figure6.7, step 7).

In FHE, the maximum between two ciphered numbers is also
ciphered [200]. Due to noise addition during ciphering and comparison, it is
not possible to reuse this result for another comparison without deciphering
it. Hence, it is not possible to directly compare more than two ciphered
numbers.

We propose in Algorithm 6 a way to circumvent this issue, using pairwise

6.3. SEALED-BID AUCTIONS 115

Algorithm 6: Ciphered numbers comparison algorithm
Data: L the list of ciphered aggregated offers, c1 and cn ciphered 1

and n, and p a prime number large enough to fulfill the
condition p > max(L)

Result: B a vector of size len(L) comprising the argmax of L
1 Function cipherCompare(O):
2 var B ← [];
3 for i ∈ [0, length(L)] do
4 for j ∈ [0, length(L)] do
5 if i != j then
6 var m← cmax(L[i], L[j]);
7 var b ← testEquality(L[i],m, c1, cn, p);
8 B[i]← B[i] + b;
9 return B

10 End Function

Algorithm 7: Function testEquality performing the equality
testing of numbers ciphered with FHE.

Data: p a large prime number, cone a ciphered one, cn a ciphered
number where n > 1, cx and cy two ciphered numbers where
x and y are non divisible by p.

Result: Returns c0 if x != y, and cn otherwise
1 Function testEquality(cx, cy, cone, cn, p):
2 var t← cx − cy;
3 for i ∈ [0, p− 1] do
4 t← t ∗ (cx − cy)
5 t← cn(cone − t) b
6 End Function

comparisons between offers as suggested in [200], and equality testing using
the Fermat little theorem. B will store the argmax of the ciphered offers
(Algorithm 6, line 2). A pairwise comparison is launched on L (Algorithm 6,
line 3-11). More precisely, the maximum cmax between two elements L[i]
and L[j] is assessed (Algorithm 6, line 6). An equality assessment between
L[i] and cmax is then determined (Algorithm 6, line 7): if L[i] is maximum,
the function testEquality returns a number cn where n > 1. Otherwise,
testEquality returns c0. We increment the argmax B[i] with the output of
each comparison (Algorithm 6, line 8). Once all pairwise comparisons are
performed, B comprises the ciphered argmax of L. The argmax will be the
index with the maximum value.

Algorithm 7 presents testEquality in more details. We build on the

116 CHAPTER 6. CONTRIBUTION 3

Fermat little theorem, as in [225, 219]: if p is a prime, and if x ̸≡ p, then
xp−1 ≡ 1 mod p. The function takes as argument two ciphered integers cx

and cy to test for equality, and a prime number p verifying p > x and p > y.
We compute (cx − cy)p−1 to test the equality between x and y (Algorithm 7,
l.2-5). We then compute C(1)-(cx − cy)p−1 and multiply the result by an
integer cn > 1 (Algorithm 7, l.6). We take cn > 1 to differentiate equality
(cn) from non equality (c0). Indeed, each computation on ciphered numbers
generates noise in FHE. Hence the variation between 1 and 0, as proposed
in the original Fermat little theorem, is hard to detect after deciphering.

In our motivating example, the forwarded ciphered offers are [ΠOA1 , ΠOA2].
The respective indexes of ΠOA1 and ΠOA2 are 0 and 1. We suppose n=10.
The oracle computes the comparison for [mean(ΠOA1), mean(ΠOA2)] and
[mean(ΠOA2),mean(ΠOA1)]. The argmax of the comparisons is B=[c0,c10].

Deciphering the argmax and retrieving the best offer After the
argmax computation, the oracle asks the service provider authority to
decipher the argmax (Figure 6.7, step 8). The service provider authority uses
its FHE key to decrypt the argmax. It then forwards the deciphered argmax
to the oracle (Figure 6.7, step 9). The oracle then transfers the argmax vector
to summarize the pairwise comparisons as an array to the smart contract
(Figure 6.7, step 10). The smart contract reverts the shuffling applied in step
1 on the received array (Figure 6.7, step 11). The smart contract sets the
winning offer (Figure 6.7, step 12). If there is only one maximum, the winner
is the service provider whose index is mapped to the array’s maximum. If
several offers are equal, the winner is the service provider that first submitted
its proposal. Such information comes from the blockchain logs generated
when submitting the ciphered offers (c.f., Figure 6.6, steps 8 and 14). The
smart contract emits an event to notify service providers of the auction’s
output and sets the service provider’s blockchain address with the winning
bid issuer (Figure 6.7, step 13-14).

In our motivating example, the oracle sends the ciphered argmax to
the carriers’ authority for deciphering. The carrier authority deciphers the
argmax and obtains Ldec=[10,0]. She forwards Ldec to the oracle, which
sends Ldec to the smart contract. The smart contract reverts the shuffling to
the original order on the deciphered argmax: it finds that A2 is the winning
offer. The smart contract sets the blockchain address of the service provider
with the address of the winning bid issuer. It also sends a notification to A1
to inform her that her bid has not been successful.

In summary, we have combined three ciphering algorithms to carry on a
privacy-preserving comparison on multi-objective offers. Using FHE instead
of partial homomorphic encryption enables the comparison of multi-objective
offers. Meanwhile, the hybrid RSA/AES algorithm enables a confidential
transfer of FHE-ciphered offers in the blockchain. The content of offers

6.4. PRIVACY-PRESERVING TOKEN PAYMENT 117

is tamper-proof and cannot be read by other competitors as they do not
hold the AES key. The only participant able to decipher the offers is the
comparison oracle, which holds the RSA secret key. Moreover, the content of
offers remains confidential, even for the comparison oracle, as it is ciphered
with FHE and can only be deciphered by FHE key holders.

Our approach, as in [192, 103] preserves bids’ privacy thanks to FHE
technics, bidders’ privacy thanks to blockchain pseudo-anonymity, and
bidders’ non-interactivity. Our approach interest comes from using FHE
technics to carry on bid comparison in such an ecosystem: any calculation
is theoretically accessible to compare offers without using trusted hardware
having access to cleared data. Additionally, the system offers a distributed
authority due to several entities managing bids comparison (the service
providers’ authority, the blockchain, and the ciphered computation oracle).
Finally, it provides a public auditability as the following information is
available on the ledger: IPFS hashes containing ciphered offers, bidders’
participation, and the winning result blockchain address.

6.4 Privacy-preserving token payment

After the contractualization stage, the client must pay the service provider
once the service is fulfilled. Nonetheless, participants may not be willing
to reveal the value of the accepted bid to other competitors. This section
proposes to leverage smart contracts and a bank to manage per-collaboration
payment tokens. The tokens are backed with fiat money with a conversion
rate that is kept secret between payment partners and the bank. Transactions
are stored in the ledger, hence offering auditability. Nonetheless, the real
payment value is not accessible on-chain, hence providing privacy.

In the following, we start by providing an overview of our approach
(Section 6.4.1), we then present the four stages composing our approach in
the following four sections. Section 6.4.2 presents the first step: the payment
token smart contract initialization. Section 6.4.3 presents the second step:
the payment tokens allocation to participants upon request. Section 6.4.4
describes the third step: a service payment using tokens. Finally, Section 6.4.5
presents the last step: the mechanism employed for collaboration settlement.

6.4.1 Overall approach

Figure 6.8 presents the four stages composing our approach. The first stage
consists of initializing the single-use payment token smart contract. The
value assigned to the payment token is set randomly and provided off-chain
to payment participants during this stage. The second step consists of giving
payment tokens to the payment sender willing to pay the payment receiver
confidentially for a service. The third stage consists of the privacy-preserving
service payment using payment tokens put into escrow in the smart contract.

118 CHAPTER 6. CONTRIBUTION 3

Payment
token ini-
tialization

Payment
tokens
provi-

sioning

On-chain
token

payment

Payment
token set-
tlement

Figure 6.8: Privacy-preserving smart contract payments with a bank: main
stages

Figure 6.9: Sequence diagram of the payment token smart contract
initialization (SC=Smart contract)

The last step consists of the payment token smart contract settlement once
the collaboration between the payment sender and the receiver terminates.

6.4.2 Payment token smart contract initialization

Figure 6.9 shows the sequence diagram of the payment token smart contract
initialization.

First, the payment receiver asks the smart contract manager, referred
to as ”Bank Contract” for a new collaboration token (Figure 6.9, step 1).
The transaction contains the blockchain public key of both payment sender
and receiver (respectively asender and areceiver), which serves as a unique
identifier for keeping track of the payment history.

Bank Contract emits an event stipulating that a new payment token
should be issued between the payment sender and payment receiver
(Figure 6.9, step 2). Participants who are listening to the smart contract
(namely, the bank, the payment receiver, and the payment sender) will thus

6.4. PRIVACY-PRESERVING TOKEN PAYMENT 119

be notified of this event.

Algorithm 8: Payment Channel h elements
1 Struct h contains

// declare participants and token addresses

2 address asender;
3 address areceiver;
4 address atoken;

// declare payment channel parameters

5 uint N // token supply

6 uint β // claim ratio

// declare payment

7 serviceStatus status // { INIT, DONE, CLAIM, PAYED }
8 uint t // target block

9 uint q // q

Algorithm 8 presents the structure of the payment channel h declared into
the smart contract. h is defined as a struct comprising the following elements:
(i) the service status (INIT when the channel is initialized, DONE when the
service is done and waits to be paid, CLAIM if a claim occurs regarding
the service delivery, and PAYED once payment has been fulfilled), (ii) the
payment sender address asender, the payment receiver address areceiver, and
the token contract blockchain address atoken, (iii) the token supply N , i.e.,
the total number of tokens to generate, (iv) the claim ratio used to reallocate
tokens put into escrow if a claim occurs β, (v) the target block t, that is,
the delay given to the payment sender to trigger a claim using the smart
contract, and (vi) the token price q, set upon a service request trigger, which
corresponds to the price of a service paid using tokens.

Upon receiving the event asking for a payment channel creation, the
bank initializes the new payment channel (Figure 6.9, step 3), deploys the
payment token smart contract on-chain (Figure 6.9, step 4) and emits an
event to confirm the creation of the token smart contract (Figure 6.9, step 5).
Algorithm 9 presents the initPaymentChannel function which comprises
steps 3-5 of Figure 6.9. The smart contract first verifies that the identity
of the transaction sender corresponds to abank (line 2). It then creates a
payment channel struct (line 3) and initializes each parameter of h (lines
4-12). Service status is set to INIT (line 8). The target block t is computed
based on the claim time d forwarded to the bank contract (line 9). The
smart contract triggers the token contract factory to generate a new token
contract Vtoken (line 11): it does so by specifying the owner of the tokens
(abank), as well as the token supply N . The address of the generated token
contract is saved into h (line 12). The smart contract then adds h to the list
of registered payment channels (line 13) and notifies with an event that the

120 CHAPTER 6. CONTRIBUTION 3

Algorithm 9: On-chain initialization of a new payment channel
Data: H list of payment channels

1 Function initPaymentChannel(asender, areceiver, N, β, d):
// VERIFY SENDER IDENTITY

2 require(asender == abank);
// GENERATE NEW PAYMENT TOKEN

3 new h;
4 h.asender ← asender;
5 h.areceiver ← areceiver;
6 h.N ← N ;
7 h.β ← β;
8 h.status ← serviceStatus.INIT ;
9 h.t ← block.number + d;

10 h.q ← 0;
11 Token Vtoken ← new Token(abank, N) // generate token contract

and fetch address

12 h.atoken ← Vtoken.a // set token address

13 H.push(h) // save channel

14 emit event(”token created”, abank, asender, areceiver);
15 End Function

token creation succeeded (line 14).
Afterward, the bank generates a random value α that is confidentially

assigned to the payment token value (Figure 6.9, step 6). The payment
token will be used to issue payment tokens to interested payment senders and
manage payment token transactions; token smart contract payment tokens
will be used as stable coins following the exchange rate 1T=α. Among token
smart contract payment token transactions are (i) putting payment tokens
into escrow when service is ongoing and (ii) allocating them to the interested
participants when the service terminates.

The bank database references the random value α and the associated
token smart contract payment token (Figure 6.9, step 7). Afterward, the bank
notifies the involved participants of the token smart contract deployment
and its associated random value (Figure 6.9, step 8-9).

As a side note, participants can initiate several payment tokens: tokens
will be referenced based on the public address of the token smart contract
atoken.

In our motivating example, we suppose α = 0.5e. The bank deploys the
token smart contract and generates a total supply of 50 payment tokens. As
a side note, the total amount of tokens is set to provide enough tokens during
the payment process. It is set independently by the bank in this use case, but
it could be set based upon negotiation between the payment sender and the

6.4. PRIVACY-PRESERVING TOKEN PAYMENT 121

payment receiver. The bank will save the token smart contract conversion
rate coin value off-chain in its database. The participants involved in the
confidential transaction, here the carrier, and the logistician, are noticed
off-chain of the payment token value 1T=0.5e.

In this approach, payment token transactions are publicly accessible as
they consist of public transactions stored on-chain. Nonetheless, their value
remains confidential as it is linked to a random number by the bank. The
tokens are backed with fiat money with a secret conversion rate: only the
bank and participants will know the value of the tokens exchanged.

6.4.3 Request payment tokens

The next step consists of payment token issuance to the participant wishing
to pay the payment receiver for a service.

First, the payment sender pays off-chain the bank in fiduciary money while
specifying atoken, in exchange for token smart contract payment tokens.The
bank generates the conversion between the provided amount in fiduciary
money and the payment token value using the payment token value stored
in the bank database referenced using the token payment on-chain address
atoken. It obtains a quantity of m payment tokens. The bank asks the
payment token to transfer these m payment tokens to the payment sender
blockchain address.

In our motivating example, if we suppose the sum paid to the bank equals
10e, and α = 0.5e, then the bank will ask the payment token smart contract
to transfer 20 payment tokens to the blockchain address of the logistician.

6.4.4 Service payment

Let q be the token equivalent to the price of the service agreed upon by the
payment receiver and the payment sender.

Figure 6.10 presents the sequence diagram of the service payment. Once
the payment tokens are transferred (c.f. subsection 6.4.3), the payment
sender launches the payment transaction request (Figure 6.10, step 1). It
does so by specifying the number of payment tokens q to be escrowed by
the smart contract. The bank smart contract will transfer these tokens to
the payment receiver once the service terminates. The payment sender first
authorizes the transfer of q from its token balance to the bank contract
balance using the allocate function (Figure 6.10, step 2). The bank contract
then verifies whether the payment sender has enough tokens (e.g., whether
q ⪯ n) using the allowance function (Figure 6.10, step 3). If there are not
enough payment tokens, the transaction is reverted (Figure 6.10, step 4).

Else, the transaction proceeds: the bank contract asks the token smart
contract to escrow q from the payment sender balance (Figure 6.10, step 5).
Upon service completion, the payment receiver notifies the bank contract

122 CHAPTER 6. CONTRIBUTION 3

Figure 6.10: Service fulfillment

of the contract fulfillment (Figure 6.10, step 6). The payment sender can
trigger a claim during the claim time. If the service is well fulfilled, the bank
smart contract asks the token smart contract to transfer entirely q to the
payment receiver balance (Figure 6.10, step 7). If a claim occurs during
claim time, the bank contract proceeds to a partial transfer following the
penalty factor β < 1 defined at the initialization of the payment channel. If a
claim occurs, the penalty factor is applied to the number of payment tokens
transferred: e.g., if β=0.4, then only 40 percent of the q payment tokens
are transferred to the payment receiver (Figure 6.10, step 8). Remaining
payment tokens e.g., (1-β)x = 0.6x are transferred back to the payment
sender balance (Figure 6.10, step 9).

As a side note, several payment token transactions can be executed
between the payment receiver and the payment sender in a privacy-preserving
fashion. Each payment transaction provides to auditors the transaction
timestamp (when), the number of tokens exchanged (what), and the sender
and receiver pseudonymous addresses (who). By so doing, a compromise is
reached between full confidentiality (e.g., by losing the track of transactions
between payments), and total traceability which implies revealing who
completed the transaction, what amount, and when it took place.

6.5. IMPLEMENTATION AND EVALUATION 123

Figure 6.11: Settlement of the payment channel and token deactivation

6.4.5 Collaboration settlement and payment tokens
deactivation

After all payment transactions have been carried on between the payment
receiver and the payment sender, the bank smart contract can deactivate the
payment tokens. Figure 6.11 presents the steps for settling the collaboration
between the payment sender and the payment receiver.

The bank checks the payment token balance of the payment sender and
payment receiver (Figure 6.11, step 1-2). Afterward, the bank converts
each payment token balance into fiduciary money, following the conversion
rate α, and pays back in an off-chain channel to the payment receiver and
the payment sender (Figure 6.11, step 3-4). Then, the bank asks for the
bank contract to close the payment channel (Figure 6.11, step 5). This
function triggers the token smart contract (Figure 6.11, step 6) to ask it
to self-destruct (Figure 6.11, step 7). The remaining tokens are set to null.
Finally, the bank deletes the token value from its database (Figure 6.11,
step 8).

6.5 Implementation and evaluation

We now investigate the feasibility and validity of the two privacy-preserving
mechanisms dedicated to auctions and payments. In Section 6.5.1, we
build a sealed-bid auctions mechanism and investigate (1) the ciphering
file sizes, (2) the smart contract transaction costs, and (3) the ciphered
comparison processing time required to enact our motivating example sealed-
bids allocation. These metrics are important because they provide insights
regarding the latency and scalability of the solutions. In Section 6.5.2, we
build a privacy-preserving payment service leveraging random-value tokens

124 CHAPTER 6. CONTRIBUTION 3

using Solidity smart contracts, and evaluate this mechanism using gas costs
necessary for the payment stage of our motivating example, as a way to
investigate the scalability of the solution.

6.5.1 Sealed-bid auctions

Implementation To demonstrate the approach’s feasibility of the
blockchain-based sealed-bid auctions, we build a C++ API that (i) gathers
ciphered offers hashes, (ii) retrieves IPFS hashes, and (iii) compares ciphered
offers using FHE1. We leverage the TFHE C++ library [41] that implements
FHE methods and the Cryptopp C++ encryption library2 to provide RSA
and AES ciphering facilities.

The C++ API holds the following functions: FHE, RSA, and AES key
generation, registration in IPFS, offers registration that populates a JSON
file comprising offers holding the hash of the AES+FHE ciphered offer and
the ciphered AES public key, and offers comparison using the content of the
provided JSON file. We leverage the C++ API to implement the proposed
mechanism in the Ethereum network. We deploy our smart contract on a
local test network to assess the approach. We use Infura3 as our API gateway
to IPFS. By this means, we can store the ciphered offers and keys into IPFS
and recover them using IPFS hashes. The comparison API is managed with
a personal computer with an Intel i5 core CPU and 4GB of RAM.

This testing prototype comprises two parts. The first part demonstrates
the offers registration part of the approach using Ethereum and Infura. It
covers RSA, AES, and FHE key generation. To mimic real-life behavior,
we initially generate FHE and RSA key pairs to mimic the key creation
stage and provide private keys to the service providers’ authority and oracle,
respectively. We publish the RSA public key to the smart contract to simulate
the initial oracle behavior and transfer the FHE key to carriers (Figure 6.12,
step 1).

Our prototype covers bidders’ local ciphering of offers: each bidder asks
the RSA key to the smart contract (Figure 6.12, step 2.a.), generates the
AES key pair locally, then ciphers the offer using FHE and AES private keys,
and the AES public key using the RSA public key. Bidders then publish
the offers hash into IPFS using Infura (Figure 6.12, step 2.b.). They then
register their offer in the smart contract (Figure 6.12, step 2.c.). The smart
contract takes care of the registration of competing offers. For bidders to
interact with the smart contract, the smart contract implements the following

1Code is accessible here: https://archive.softwareheritage.org/swh:1:dir:
e08b491a6240075052af4c13709f95a83ef52ae6;origin=https://github.com/tiphaineh
enry/fhe oracle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83cb2c953;an
chor=swh:1:rev:8666576002ad5f375f9550798630a468681f29c6.

2https://cryptopp.com/
3https://infura.io/docs/ipfs

https://archive.softwareheritage.org/swh:1:dir:e08b491a6240075052af4c13709f95a83ef52ae6;origin=https://github.com/tiphainehenry/fhe_oracle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83cb2c953;anchor=swh:1:rev:8666576002ad5f375f9550798630a468681f29c6
https://archive.softwareheritage.org/swh:1:dir:e08b491a6240075052af4c13709f95a83ef52ae6;origin=https://github.com/tiphainehenry/fhe_oracle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83cb2c953;anchor=swh:1:rev:8666576002ad5f375f9550798630a468681f29c6
https://archive.softwareheritage.org/swh:1:dir:e08b491a6240075052af4c13709f95a83ef52ae6;origin=https://github.com/tiphainehenry/fhe_oracle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83cb2c953;anchor=swh:1:rev:8666576002ad5f375f9550798630a468681f29c6
https://archive.softwareheritage.org/swh:1:dir:e08b491a6240075052af4c13709f95a83ef52ae6;origin=https://github.com/tiphainehenry/fhe_oracle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83cb2c953;anchor=swh:1:rev:8666576002ad5f375f9550798630a468681f29c6

6.5. IMPLEMENTATION AND EVALUATION 125

Figure 6.12: Protocol and key holders

functionalities: bid initialization, offer registration, and comparison launch.
The second part of the mechanism demonstrates the comparison part of

the approach, using a toy array of ciphered offers stored in IPFS. It mimics the
smart contract, the oracle, and the service providers’ authority interactions on
the reception of a JSON file populated with ciphered submissions. The API
receives the IPFS hashes of ciphered offers and fetches the data (Figure 6.12,
step 3.b.). Then, it proceeds to bids deciphering and comparison following
the strategy presented in section 6.3.5 (Figure 6.12, step 3.c.). The winning
bidder is allocated to the service request (Figure 6.12, step 3.d.), and the
service management and later on, the settlement can proceed (Figure 6.12,
step 4)

Evaluation We evaluate the protocol using three experiments that aim
respectively to measure (1) the ciphering file sizes, (2) the smart contract
transaction costs, and (3) the ciphered comparison processing time. These
metrics are important because they provide insights regarding the latency
and scalability of the solutions.

Table 6.2 gathers the size of the files generated during the execution
of the motivating example scenario. The heaviest file is the FHE key file
kF HE (109MB). The size depends on the initial parameters used to generate
the FHE key, which impacts the multiplicative depth chosen to carry on
bootstrapping operations, and noise reduction [41, 23]. In our approach, the
size of the FHE key is not a bottleneck, as it is forwarded by the service
providers’ authority to the bidders in private channels. The files to be stored
on IPFS are (1) the RSA public key, (2) offers ciphered content, and (3)

126 CHAPTER 6. CONTRIBUTION 3

Table 6.2: Size of files generated during the protocol (1 Mbit = 125 KB).
Acronyms: IS= competitors’ information system

Context Participant Storage Data type File size

Initialization

FHE key auth. IS kF HE 109MB
FHE key auth. IS FHE parameters 418B
Tender Initiator IPFS pRSA 160B
Tender Initiator Oracle sRSA 634B

Bid ciphering
Carrier Carrier kAES 128B
Carrier IPFS IV 16B
Carrier IPFS CAES(CF HE(offer)) 40KB

offers IV. The AES key file and IV file sizes are 128 and 16B. The ciphered
offer file is heavier with 40KB. It is to note that the length of ciphertext
is around a hundred times the plaintext size. Nonetheless, these file sizes
range in the file sizes accepted to be stored in IPFS (100MB per request
with Infura at the time of writing).

Table 6.3: Smart contract transaction costs.

Context Participant ETH Tx. fee
RSA Key IPFS hash storage Tender Initiator 0.00265454ETH
Offer creation Tender Initiator 0.00350124ETH
Offer registration IPFS hash storage Competitor1 0.00417978ETH
Comparison request Tender Initiator 0.152ETH

aAverage transaction fees for competitors registration, where competitors offers are
described in the motivating example (see Section 6.2)

Table 6.3 presents the transaction costs required to perform smart contract
executions on the Ethereum blockchain. The transaction costs needed to
store the RSA key on the blockchain are worth 0.00265454ETH (4.4e). They
are worth 0.00350124ETH (5.8e) for the offer creation. The average cost
paid by each competitor to register the IPFS hash of the ciphered offer
is worth 0.00488606ETH (8.1e). Finally, the most expansive transaction
consists of the comparison request performed by the tender initiator when
the auction terminates. It is worth 0.152ETH (252.9e). This transaction fee
does not depend on the number of offers to be compared, as offer content is
sent via an event to the oracle, and event triggers do not require transaction
fees. Instead, the price is fixed by the oracle, here Provable, and derives from
the need to compensate the oracle for its computing power.

6.5. IMPLEMENTATION AND EVALUATION 127

Figure 6.13: Comparison time according to the number of ciphered FHE
offers submitted

Finally, we investigate the time taken to compare integers ciphered
following the proposed encryption approach. To do so, we generate random
numbers between 0 and 9. We cipher each using FHE and then launch the
comparison algorithm. We measure the time needed to perform the pairwise
FHE comparison. Figure 6.13 depicts the comparison times recorded for
arrays of ciphered offers of increasing size. The time necessary to compare
offers depends on the number of offers at stake. The dotted line in the figure
represents a polynomial of degree 3 and illustrates the complexity in x3 of
our algorithm.

In summary, the size of files generated for the ciphering protocol implies
adapting the distributed storage facility such as IPFS in case large batches
of offers are compared. The gas fees required to leverage smart contracts
as trustworthy auctioning third parties are only slightly impacted by the
ciphering layers as only the hashes of the offers are stored on-chain. Instead,
gas fees depend more importantly on the service price stated by the oracle
service. Finally, the comparison time increases with the number of offers,
and this limitation calls for further scalability studies.

6.5.2 Privacy-preserving payment

We now study the feasibility of the privacy-preserving payment mechanism.
To do so, we build and evaluate a privacy-preserving payment service

128 CHAPTER 6. CONTRIBUTION 3

leveraging random-value tokens4. We then evaluate the prototype using
our motivating example use case.

Implementation Figure 6.14 illustrates the interaction between the actors
and the contracts and between the smart contracts themselves. The
main smart contract (the Bank contract) is deployed on the Ropsten
network. The history of transactions related to the smart contract can
be accessed using the smart contract address5 using Etherscan (https:
//ropsten.etherscan.io/address/). The smart contract manages
payment channels between payment senders and payment receivers. It
is a trustworthy interface between payment senders, receivers, and the bank.
The bank contract generates and interacts with a set of payment tokens
defined according to the Ethereum ERC20 standard for creating tokens.
Additionally, payment receivers and senders interact with the bank off-chain
to manage fiduciary money and the random token value. These interactions
are not displayed in Figure 6.14 for readability.

The Bank contract interface comprises five methods. The method
initPaymentChannel initializes a new payment channel. Then, getPayment
gets the payment sender address, the payment receiver address, the ERC20
contract address, and the token supply of a given payment channel.
serviceDone allows the payment receiver to signal that he provided the
service. With serviceClaim, the payment sender can raise a claim if she is
in the claiming time window. Finally, closePaymentChannel will close a
payment channel.

Generated tokens implement the ERC20 standard, which comprises the
following methods: (i) balanceOf gets the balance of an Ethereum address,
(ii) transfer allows the caller to transfer tokens; (iii) approve is used by
the caller to allow an address to spend a certain amount of tokens; (iv)
transferFrom is used by the caller to spend the tokens of a spender that
allowed her to spend; and (v) allowance is used to get the allowance of an
address to another one.

The deployment of the bank contract on the test network uses 2,353,462
gas (117.5e).

Evaluation We now evaluate the feasibility of our approach by enacting
the Pay(Customer −→ Florist) activity of our motivating example. In our
testing protocol, we suppose that Customer has paid the bank to obtain a

4Code of the implemented prototype is available at
https://archive.softwareheritage.org/swh:1:dir:60577355b219ab188003bdaa62

4a31cf564f2b98;origin=https://github.com/tiphainehenry/random-value-token-
payment;visit=swh:1:snp:dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:
1:rev:e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0

50x5F943a16Ba1Ea8E3E2FA87e8162181e3c5A6d2C0

https://ropsten.etherscan.io/address/
https://ropsten.etherscan.io/address/
https://archive.softwareheritage.org/swh:1:dir:60577355b219ab188003bdaa624a31cf564f2b98;origin=https://github.com/tiphainehenry/random-value-token-payment;visit=swh:1:snp:dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:1:rev:e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0
https://archive.softwareheritage.org/swh:1:dir:60577355b219ab188003bdaa624a31cf564f2b98;origin=https://github.com/tiphainehenry/random-value-token-payment;visit=swh:1:snp:dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:1:rev:e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0
https://archive.softwareheritage.org/swh:1:dir:60577355b219ab188003bdaa624a31cf564f2b98;origin=https://github.com/tiphainehenry/random-value-token-payment;visit=swh:1:snp:dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:1:rev:e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0
https://archive.softwareheritage.org/swh:1:dir:60577355b219ab188003bdaa624a31cf564f2b98;origin=https://github.com/tiphainehenry/random-value-token-payment;visit=swh:1:snp:dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:1:rev:e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0

6.5. IMPLEMENTATION AND EVALUATION 129

Figure 6.14: Interaction Contract/Contract & Actor/Contract

Table 6.4: Gas measurement for deploying 5 payment token smart contracts
(SC).

SC1 SC2 SC3 SC4 SC5
Gas 1,197,421 1,075,621 1,075,621 1,075,621 1,075,621
ETH 0.036 0.032 0.032 0.032 0.032

Cost in e 59.9 53.2 53.2 53.2 53.2

set of unique tokens assigned to a confidential random value. We evaluate
the gas consumed by the method calls required to go through the payment
process. We repeat the experiments with 100 tokens to assess whether the
number of tokens impacts gas. In the following, Customer is referred to as
the payment sender and Florist as the payment receiver.

We first investigate the payment token deployment costs. Table 6.4
presents the gas consumption according to the number of payment token
smart contracts deployed. The deployment of the first ERC20 token uses
1,197,421 gas (59.8e). Afterward, for each new token creation (we deployed
100 ERC20 contract deployments), the gas used stays constant at 1,075,621.
Hence, we only present the measurements for the first five smart contracts.
The first deployment is more expensive than the others. One reason is
that the bank contract must initialize the memory used for the first ERC20
contract deployment. The bank contract adds to the existing memory for
the other token creations without initialization. As a side note, the initial
bank contract deployment uses two times more gas than deploying a token

130 CHAPTER 6. CONTRIBUTION 3

Table 6.5: Gas measurement for the Bank Contract Methods during payment
and settlement stages.

Payment Settlement
Transfer Approve Request Done Pay Close

Gas 51,156 44,091 47,562 43,324 57,991 37,213
ETH 0.0015 0.0013 0.0014 0.0013 0.0017 0.0011

Cost in e 2.5 2.2 2.3 2.16 2.8 1.8

contract. This behavior can be explained in terms of code volume. Indeed,
the bank contract has to embed the ERC20 contract to deploy a new ERC20
contract.

We now investigate the payment and settlement stages’ transaction fees.
Table 6.5 presents the gas consumption of the functions available in the
Bank contract after creating one token. Experiments for 100 token creations
show that the number of payment channels created does not impact the gas
required to process or settle a payment. We detail below the gas consumption
for these stages. Regarding the payment stage, the payment sender can claim
a dispute if she is unhappy with the service provided. There are two scenarios.
Without a claim, the payment receiver receives the entire token amount,
consuming 57,991 gas. If the payment sender claims a dispute, tokens are
distributed using a given ratio (i.e., 60% goes to the payment receiver and
40% goes to the payment sender). Claiming a dispute will consume 28,346
gas.

It is to note that the claiming ratio value does not impact the gas. The
gas consumed to transfer tokens to the actors stays at 57,908 gas. Hence,
the token redistribution will consume 86,254 gas which takes 28,263 more
than without claim.

Regarding the settlement stage, closing a payment channel (destroying the
ERC20 contract and deleting the entry stored in the smart contract) requires
37,213 gas, which is 0.00111639 ETH (1.8e). The smart contract deletion
consumes less gas than creating a new one: 37,213 gas versus 1,075,621 gas.

In summary, the token deployment gas fee is constant: hence, the solution
is scalable to collaboration-intensive payments. Moreover, claiming a dispute
consumes additional gas, hence this behavior could be used as an additional
incentive for participants to carry on the services as agreed upon in the
contract. Finally, the payment collaboration settlement implies additional
gas fees related to the token contract deactivation. The perspective of
these additional gas fees could be less discouraging regarding adoption if
participants use this protocol for several payments.

6.6. CONCLUSION 131

6.6 Conclusion

In this chapter, we combine the blockchain with an ecosystem comprising a
computation oracle and a service provider authority managing encryption
keys to carry on sealed-bid auctions on-chain. Smart contracts manage
autonomously and transparently keys attribution, offers registration, and
bids allocation. This distributed authority preserves bids’ privacy and
bidders’ non-interactivity. The pseudo-anonymity of blockchain users also
ensures bidders’ privacy requirements. The comparison of offers takes place
on FHE-ciphered data. FHE enables the oracle to compare offers without
having access to the cleared data. To ensure data privacy end-to-end, we
propose a mechanism leveraging two complementary encryption algorithms:
RSA and AES. The hybrid RSA/AES encryption is used to transfer data in
the blockchain without directly revealing the FHE-ciphered offers to other
participants. Additionally, we ensure public auditability of the sealed-bid
auction as the following information is available on the ledger: IPFS hashes
containing ciphered offers, bidders’ participation, and the winning bidder’s
blockchain address. We focused on sealed-bid auctions as in such auctions,
bidders explicitly do not have access to bids from other competitors, and are
requested to submit only one bid per auction. However, the approach could
be studied in future work for other type of auctions such dutch auctions.

In this chapter, we also propose payment tokens assigned to a random
value stored off-chain to ensure a privacy-preserving service collaboration
payment. A bank contract manages collaboration settlement interactions
by issuing an on-demand token smart contract assigned to a random value.
Hence, payment receivers and payment senders can exchange tokens and
settle their services on-chain while ensuring (1) tamper-proof records of
payments for auditing purposes and (2) privacy of the fiduciary payment
value. One payment token smart contract can be used for multiple payments
between two actors, similar to a payment channel, but carried on the main
chain. Only the bank, the payment receiver, and the payment sender know
the exchange rate of tokens to fiduciary money. Banks do not need to manage
accounting entries: all accounting entries are collected on-chain. The ledger
keeps track in a tamper-proof fashion of the number of tokens exchanged and
the blockchain pseudo-identity of the payment issuers and receivers, which
can be used for auditing and claim resolution. An advantage of this approach
is the easy setup as no encryption key management is necessary: only the
bank manages token exchange rates. All transactions can take place using a
classical token smart contract payment token.

Through these contributions, we hence answer the research questions
(RQ3.2) and (RQ3.3), and validate the remaining objectives 5 and 6 presented
in Section 1.4.1. The experiments finally prove the feasibility of these
mechanisms, and thereby confirm the completion of these objectives.

The work presented in Section 6.3 has been submitted to the Journal

132 CHAPTER 6. CONTRIBUTION 3

of Banking and Financial Technology [89], and the work presented in
Section 6.4 has been published in the International Conference on Cooperative
Information Systems [88].

Chapter 7

Summary, Discussion and
Future Work

This chapter summarizes the research conducted in this thesis. We present
how our contributions answer the research questions (RQ1-3). We discuss
each contribution before describing future work stemming from this thesis
research outputs.

7.1 Summary

The thesis investigates the potential for trustworthy, flexible, and privacy-
preserving peer-to-peer business process management systems.

To address this challenge, we propose the three following research
questions: (RQ1) How to leverage smart contracts as a trustworthy
distributed tool for coordination and decision-making in cross-organizational
processes? (RQ2) How to deploy and execute in a flexible fashion cross-
organizational processes managed on-chain? (RQ3) How to ensure the privacy
of sensitive data processed on-chain while preserving blockchain systems’
integrity and verifiability properties?

To foster the use of smart contracts as a trustworthy distributed tool,
we proposed in Chapter 4 to focus on the deployment and execution of
blockchain-based DCR choreographies. This mechanism offers deployment
trustworthiness while preserving the separation of concerns, two main
challenges related to the property of transparency of blockchain systems.
The first contribution is a mechanism for the hybrid on/off-chain deployment
of DCR global choreographies. Participants build the global process
incrementally from a public view stored in a smart contract during
deployment. Each participant will compute off-chain its role projection
comprising public events where she is involved, and private events are kept
off-chain for privacy concerns. This way, private control flows remain in the
participants’ process engines, while blockchain systems ensure a tamper-proof

133

134 CHAPTER 7. DISCUSSION, CONCLUSION

public view. The blockchain cannot access private events; aggregating all role
projections will render the global process. The second contribution is a hybrid
on/off-chain mechanism for executing cross-organizational choreographies.
The roles complete their internal tasks off-chain in their local process
execution engine. Meanwhile, a smart contract manages public interactions.
When the smart contract receives an interaction request initiated from one
of the roles (sender or receiver(s)), it executes the task and communicates
its state back. The roles update their private states accordingly. Hence, we
achieve a trustworthy separation of concerns preserving partners’ private
processes’ privacy. Hence, through these contributions, we answer (RQ1).

We investigate in Chapter 5 the notion of flexibility through two
prisms: control-flow changes and partnerships changes. To improve control-
flow changes, we propose a protocol that extends the DCR choreography
management presented in Chapter 4. This protocol allows (i) partners
first to negotiate the change on-chain, (ii) then to dynamically update the
choreography process instance managed by the smart contract with the
new process change information, and (iii) finally propagate this information
across partners’ processes affected by the change. Regarding the flexibility
of partnerships, we propose an algorithm leveraging smart contracts to
filter and sort a set of available candidates based on their past blockchain
history. Such matching, done autonomously, generates a digital agreement
that can be linked to a BPMS to manage the settlement of the allocated
services. We thus provide a transparent and reliable protocol computing a
set of tamper-proof QoS ratings. In so doing, we contribute to the literature
by addressing the lack of research regarding the fair (i.e., trustworthy and
reliable) enactment of QoS allocations. Hence, through these research works,
we address our second research question focusing on increasing the flexibility
of cross-organizational processes managed on-chain. Moreover, we address
the trust challenge through smart contracts enforcing an agreed-upon binding
protocol and through the blockchain ledger offering a tamper-proof history
of services. In both approaches, blockchain addresses service providers’
and issuers’ collusion risks by design, as no single entity controls the cross-
organizational business process management platform. We also address the
need for process automation through management through smart contract
hiring, contractualization, and settlement stages.

Finally, in this manuscript, we focus on two cross-organizational activities
prone to both privacy and auditability requirements: auctions and payments.
Regarding auctions, we focused on sealed-bid auctions as in such auctions,
bidders explicitly do not have access to bids from other competitors, and
are requested to submit only one bid per auction. We propose a solution
to leverage FHE in a blockchain context while preventing deciphering and
collusion issues on the competitor’s side: we do so by combining the hybrid
RSA/AES ciphering mechanism with smart contracts and oracles to compare
ciphered vectors. The comparison of offers takes place on FHE-ciphered

7.2. DISCUSSIONS 135

data. FHE enables the oracle to compare offers without having access to
the cleared data. Smart contracts manage autonomously and transparently
keys attribution, offers registration, and bids allocation. This distributed
authority preserves bids’ privacy and bidders’ non-interactivity. The pseudo-
anonymity of blockchain users also ensures bidders’ privacy requirements.
Finally, we ensure public auditability of the sealed-bid auction as the following
information is available on the ledger: IPFS hashes containing ciphered offers,
bidders’ participation, and the winning bidder’s blockchain address. The
approach could be studied in future work for other type of auctions such
dutch auctions.Regarding payments, we propose a solution that uses a bank
and a per-collaboration payment token linked to a random value to address
this research question. Parties can use per-collaboration tokens to proceed
to multiple payments while preserving the values’ privacy. Token payment
can be programmed to verify conditions coded in a smart contract, put into
escrow, and carry partial payment. Additionally, external peers can audit
trust-worthily token transactions as they are stored on-chain. Hence, under
the prism of these contributions, we address (RQ3).

7.2 Discussions

7.2.1 Discussion on the DCR-choreography deployment and
execution blockchain-based system

The hybrid on/off-chain deployment and execution approach represents a first
effort to separate the public and private views of a declarative choreography
and proceed with its hybrid off/on-chain management. Results confirm
the advantages of separating public from private events to ensure privacy
while leveraging the blockchain technology as a decentralized execution
infrastructure. Moreover, the local execution of private events leads to time
and economic gains.

In this approach, the border case of a fully private process (i.e., the process
does not hold public events) is considered. Then, no public projection is
generated, and the process remains in the private information system of
the partner. Multi-instance choreographies are also possible: for each new
instance, a workflow instance is added to the smart contract.

Besides, experiments on graphs of alternative complexity (be it the
number of participants or activities) should confirm preliminary results
regarding latency gains induced by the hybrid on/offchain separation of
concerns. A limitation of our approach concerns the public/private exchange
of information. In our setting, the information published in the smart contract
is public. Consortium or private blockchains, coupled with off-chain oracles to
exchange sensitive information with the smart contract, or ciphering technics
such as the ones presented in Section 6 could answer privacy concerns.

Furthermore, we rely on the truthfulness of participants to execute their

136 CHAPTER 7. DISCUSSION, CONCLUSION

private projections, and we do not ensure the correct enforcement of private
processes. This concern, inherent to choreographies, is part of ongoing
research efforts.

For future work, it would be interesting to study the use of side
channels [163] to manage on-chain process instances to save transaction
costs and reduce task execution latency. Only two blockchain transactions
would be of need: one to instantiate the process execution channel and one
to settle it. It would also be interesting to integrate this work within the
eSourcing framework, as public views could be associated to the external-level
contractual collaboration processes identified in the framework, while role
projections would correspond to extended in-house processes where additional
process details are hidden.

7.2.2 Discussion on the DCR-choreography control-flow and
partners change mechanism

Control-flow flexibility prototype

The control-flow flexibility approach holds several limitations. In this
approach, we only consider the compatibility checks between public DCR
processes of partners as a correctness criterion. We are working on proving the
consistency checks between one partner’s private and public DCR processes.
Moreover, we focus on the current instance of the process. Nonetheless,
it is also interesting to consider the change at the process model level
and that after the change is validated, all future instances follow the
change. Additionally, the change initiator specifies the endorsers, which
could impede trust in the governance. An alternative design could be
as follows: choreography participants could alternatively agree on a pre-
specified list of endorsers before starting the process instance [125]. This way,
the change negotiation and propagation agreement can be placed off-chain.
Meanwhile, an on-chain transaction stating the agreement would be stored
in a multi-signed document in IPFS (this might require using a different
blockchain platform). However, even with multi-sig mechanisms, the risk of
private key loss remains, and recovery schemes such as using secured wallets
should be investigated [220]. Alternatively, change negotiation could be
delegated to decentralized autonomous organisations, where semantic rules
and negotiation strategies could be integrated as smart contracts for each
organization. Finally, governance should also be considered when choosing
the access control setup. Not every endorser should necessarily run their full
node for public blockchains to preserve the consensus. For permissionned
blockchains, governance should be well shared between change endorsers to
avoid tampering or transaction misuse.

7.2. DISCUSSIONS 137

Partnership flexibility prototype

Several limitations appear in the dynamic QoS assignment mechanism
proposed in Chapter 5. First, smart contracts use oracles to aggregate
blockchain-available QoS data. In return, oracles communicate with the
computation system via API calls. Issues related to API tampering may
occur. The oracle could call independent computation APIs and compare the
results to ensure results integrity. Additionally, a party wishing to claim a
computation failure may use blockchain data to verify computations. At last,
the QoS computation protocol should be considered modular. The protocol
should be adapted to the binding context: Pareto optima could be used
to find the best QoS instead of normalized means; an exponential moving
average could be used to update the QoS to put a heavier weight on the
latest services.

To be close to the field’s reality, we designed the artifact by extracting
the main allocation metrics used in the freight transportation procurement
process. For the user tests, we gathered a population without experience
with blockchain. Thus we can assume that their answers are close to carriers
discovering the technology for the first time. Furthermore, the focus groups
comprise logistics field experts: we can assume that we qualitatively assessed
the potential of blockchain-based freight transportation procurement process
mapping in the logistics context. Regarding internal validity and results
correctness, we tried to influence the least possible user testing experiments
by letting the users be free to use the application. The focus group panel was
also broad enough to underline the most salient benefits and challenges of
using blockchain-based freight transportation procurement process mappings.
However, we acknowledge that the logistics researchers and the industry
experts are an estimator of what happens in the logistics services’ procurement
process. Moreover, we use a public blockchain to demonstrate the feasibility
of the solution, which may lead to an inadequate balance of powers. To
ensure an adequate balance of powers between shippers and carriers, a future
solution would require a permissioned blockchain dedicated to the mapping
process, whose smart contracts are generated by a consortium of shippers
and carriers.

Finally, the design science research approach is anchored in a freight
transportation procurement process context, and thus findings are not
generalizable.

7.2.3 Discussion on the privacy-preserving auction and
payment mechanisms

Privacy preserving auctions

Experiments show the feasibility of the trustworthy FHE-based sealed-
bid auctions mechanism, though limitations arise regarding collusion risks,

138 CHAPTER 7. DISCUSSION, CONCLUSION

transaction costs, system scalability, and latency of comparison requests.
Collusion risks may arise in our system. First, using oracles implies a re-

centralization and requires trust in the output. Triangulation methods from
several oracles partially answer the risk of data tampering from a malicious
node. Additionally, a collusion risk may exist between the computation
oracle and the service providers’ authority. Indeed, the oracle possesses
FHE offers, and the service providers’ authority owns the decryption key.
Hence, removing interactions between competitors comes at the expense of a
centralized authority responsible for key issuance and argmax deciphering.
We aim to limit information leakage using offer permutation on the smart
contract size to prevent linking offer content to the pseudonymous identities
of participants.

The transaction costs required to launch a comparison request depend
on the oracle chosen, and the use of Provable may be prohibitive to perform
a ciphered comparison. Additionally, the protocol shall be tuned depending
on the use case regarding metrics aggregation and FHE parameter tuning
for noise addition. Such tuning can impact the FHE key and ciphered offers
size, as well as the comparison time, and shall be taken into account.

The computation time follows the comparison algorithm polynomial
complexity of x3, induced by the ciphered maximum computation of arrays:
the comparison time is directly proportional to the cube’s number of offers
to be compared. We implement the comparison asynchronously, using smart
contract events, as oracle requests have a maximum callback time often
exceeded with the FHE comparison. Hence, this approach does not apply to
time-dependent applications, especially if many offers are at stake. Ongoing
research in the field of FHE may help solve this latency issue [35].

Finally, scalability issues arise. The number of comparisons is limited
by the random access memory of the machine. In our testing configuration,
with a personal computer with an Intel i5 core CPU and 4GB of RAM, the
comparison works with a maximum of 15 offers. Additionally, public IPFS
storage can be limited if offer sizes are consequent, with multiple metrics. To
circumvent this issue, one could use a private or permissioned IPFS channel
to store offers in a decentralized fashion.

Privacy preserving payments

The main limitation of the random-value token payment approach could be
some centralization induced by the use of the bank to manage token payment
exchange rates, even if banks are often considered trusted entities. To defuse
the risk of privacy leakage, several banks could be used to manage each
collaboration token. Then, each bank would only have partial knowledge of
the token value. Furthermore, scalability issues may arise as we issue a new
payment token value each time a new collaboration requires a confidential
payment. This issue can be mitigated by using a sidechain [188] and by

7.2. DISCUSSIONS 139

regrouping transactions. We should address both issues in future work.
An extension to this approach consists of implementing smart contract-

based periodic negotiations to review and update the token exchange rate.
Additionally, payment senders could have the possibility to choose between
public or private pricing alternatives. If public pricing occurs, then a classic
payment is processed. Else, if privacy is required, a token smart contract is
initialized.

7.2.4 Summary

In summary, the limitations of this thesis can be listed as follows:

• Formal proofs of correctness: we demonstrate the feasibility of the
solutions through implemented prototypes. Nonetheless, formal proofs
are needed to ensure the correctness of the proposed DCR-to-Solidity
translation algorithms and consistency checks between one partner’s
private and public DCR processes.

• Private processes enforcement: the correct enforcement of private
processes is not ensured in this work. This concern, inherent to
choreographies, is part of ongoing research efforts.

• Transactions scalability: in current prototypes, the number of
comparisons to process, the size of DCR graphs to be deployed, or the
number of new token issuances is limited.

• Oracle use and latency: experiments demonstrate that latency
increases when oracles are included in the design of proposed
mechanisms, e.g., when processing comparisons, and especially FHE-
based comparisons. For now, proposed approaches leveraging oracles
do not apply to time-dependent applications, especially if many offers
are at stake.

• Collusion risks: Collusion risks may appear in our proposed systems.
First, the use of oracles for computation implies a re-centralization
and requires trust in the output (issue illustrated for QoS computation
(with or without FHE)). Moreover, when dealing with complex key
management schemes (e.g., in Chapter 6), a balance between privacy
and recentralization risks is at stake.

• Evaluation scope: Finally, the proposed mechanisms have been tested
on a logistic use case, and this study should be extended to other use
cases, with more complex business processes. Plus, we use a public
blockchain to demonstrate the feasibility of the solution, which may
lead to an inadequate balance of powers. To ensure an adequate balance
of powers between end-users such as customers and service providers, a

140 CHAPTER 7. DISCUSSION, CONCLUSION

future solution would require a permissioned blockchain, whose smart
contracts are generated by a consortium of partners’ representatives.

7.3 Future work

At last but not least, we list hereinafter the main technical and non-technical
challenges related to this thesis, calling for future work.

Technical challenges

We identify four main technical challenges: scalability of the blockchain
architecture, blockchain interoperability, security of the information system,
and the broadening of privacy-preserving technics in coopetition contexts.

Blockchain aims at solving disputes securely, and they do not address
efficiency requirements as, e.g., centralized cloud computing does. Scalability
of blockchain architectures is one of the main technical challenges to make the
system more viable and usable by the general public, e.g., to be competitive
for real-world applications [133]. Hence, increasing transaction throughput
while preserving enough decentralization for security purposes should be
studied [31]. Various strategies have been proposed to increase the number
of transactions per second. Some propose to reduce the block validation
time (e.g., decreasing from 10 minutes in Bitcoin to 2,5 minutes in Litecoin),
while others propose to increase the block size (e.g., increasing from 1
MB in Bitcoin to 8 MB in Bitcoin Cash). Another strategy consists of
gathering off-chain transactions in a file (e.g., school diplomas [40, 166]),
in a sidechain (e.g., Blockstream and Lightening Network on Bitcoin and
Slock.it on Ethereum), or in a shard chain (Ethereum 2.0) and recording a
unique on-chain transaction on the main chain. Some promising solutions
for interoperability and scalability1 should be further analyzed [17].

Additionally, the challenge of blockchain interoperability is to be addressed
in different configurations to ease cross-organizational collaborations:
companies could deploy permissioned blockchains for internal processes
but wish to connect one of the internal processes with a cross-organizational
one running on a public blockchain [84]. Several future works concern the
interoperability of homogeneous and heterogeneous blockchain systems, and

1Examples are Aion, Chainlink, Cosmos (Tendermint), Overledger, Plasma, or
Polkadot.

7.3. FUTURE WORK 141

the interoperability of assets and tokens [84, 185, 102]2.
A field of research with particular focus remains on the dependability

and security justification of blockchain-based business process management
systems [171]. Future work in this thesis hence calls for formal analysis and
model checking of the translation rules leading to smart contracts, as well as
a formal analysis of security and soundness of the change propagation rules
proposed in Chapter 5. Robust testing with real-world case studies (e.g.,
DCR graphs of different sizes) should confirm the interest in the approach
illustrated in this thesis. Furthermore, translation work should be extended
to other business model languages such as DMN [100] and CMMN [217]
smart contract translators. Finally, a special focus on the legal aspects
of blockchain-based business process management systems should also be
investigated by leveraging work exposed in [60].

Transparency and immutability are not always relevant for business
executions. Privacy of internal processes or competitive information should
be ensured in blockchain-based business process management systems. To
add a privacy layer to blockchain transactions, we proposed to leverage
cryptography protocols such as FHE in the context of sealed-bid auctions. In
future work, the FHE-based solution should be extended to more business-
sensitive activities, and improvements regarding computation times should
be investigated. Additionally, solutions should be analyzed for the privacy-
preservation of files that must transit from one process activity to another.
Finally, a standardized framework for using trusted execution environments
(TEEs) in business process management would be beneficial for theory
abstraction.

We also identify several non-blockchain challenges regarding adopting
blockchain-based information systems, to be investigated in future work.

7.3.1 Contextual challenges

Non-technical challenges should also be considered for adopting the
technology in a cross-organizational context.

The first challenge concerns the security of the data entries as one cannot
guarantee good input data, for example, in traceability use cases. Encrypted
RFID tags can identify wrong objects; hence, hardware oracles can input
false data into the blockchain. This issue is often referred to as the grapes
problem: how do we ensure the merchandise, and not only the package, is to

2(i) interoperability of homogeneous blockchain systems, e.g., between a first
Hyperledger Fabric blockchain managed by a first entity and a second Hyperledger
Fabric blockchain managed by a second entity; (ii) interoperability of heterogeneous
blockchain systems, e.g., between Ethereum blockchain and Hyperledger Besu blockchain;
(iii) interoperability of cryptocurrencies and assets/tokens, e.g., between ERC20 token
(Ethereum) and QRC20 token (Qtum); and (iv) interoperability of smart contracts deployed
in heterogeneous systems; e.g., between Ethereum smart contract and another blockchain
smart contract.

142 CHAPTER 7. DISCUSSION, CONCLUSION

be trusted?
The second challenge concerns the barriers to adoption: blockchain

network security increases with the number of users. Bad UI/UX of
decentralized applications or unfamiliarity or a lack of education can impede
the adoption of blockchain-based information systems. Hence, a comparative
study on the appropriation of different business process languages in the
context of a blockchain consortium should be carried out, as well as design
science research led by corporations for each new use case.

Finally, the issue of governance, both social and technical, is at stake.
Social governance refers to the number of entities managing the blockchain
system (e.g., only Ripple Labs for Ripple [177], only IBM for Hyperledger
Fabric [53]), the percentage and nationality of nodes, and, in the case of proof
of work, of mining pools. Such social governance raises concerns regarding
the decentralization of property and the independence of blockchain systems
[81, 106]. Technical governance refers to how the community of developers
agrees or disagrees on planned upgrades and reacts to unplanned upgrades,
sometimes leading to the split of blockchains (e.g., Ethereum Classic vs.
Ethereum after a disagreement on TheDao attack, or Bitcoin vs. Bitcoin
Cash after a disagreement on the block size). Such reaction impacts the
communities’ strengths, and the trust in the system [16]. Hence, social and
technical governance should be studied in real-world settings to foster the
adoption of blockchain-based information systems.

Bibliography

[1] Dero.io white paper, https://github.com/deroproject/documenta
tion/blob/master/WhitePaper.md

[2] van der Aalst, W.M., Weske, M.: The p2p approach to
interorganizational workflows. In: CAISE. pp. 140–156. Springer (2001)

[3] Ahmed, S., Rahman, M.S., Rahaman, M.S., et al.: A blockchain-based
architecture for integrated smart parking systems. In: 2019 IEEE
international conference on pervasive computing and communications
workshops (PerCom workshops). pp. 177–182. IEEE (2019)

[4] Al-Breiki, H., Rehman, M.H.U., Salah, K., Svetinovic, D.: Trustworthy
blockchain oracles: review, comparison, and open research challenges.
IEEE Access (Volume: 8) (2020)

[5] Alacam, S., Sencer, A.: Using blockchain technology to
foster collaboration among shippers and carriers in the trucking
industry: A design science research approach. Logistics 5(2) (2021).
https://doi.org/10.3390/logistics5020037, https://www.mdpi.com/2
305-6290/5/2/37

[6] Alpern, B., Schneider, F.B.: Recognizing safety and liveness.
Distributed computing 2(3), 117–126 (1987)

[7] Alvarez, R., Nojoumian, M.: Comprehensive survey on privacy-
preserving protocols for sealed-bid auctions. Computers & Security 88,
101502 (2020)

[8] Andrews, K., Steinau, S., Reichert, M.: Dynamically switching
execution context in data-centric bpm approaches. In: Enterprise,
Business-Process and Information Systems Modeling. Springer (2020)

[9] Androulaki, E., Camenisch, J., Caro, A.D., Dubovitskaya, M.,
Elkhiyaoui, K., Tackmann, B.: Privacy-preserving auditable token
payments in a permissioned blockchain system. In: Proceedings of
the 2nd ACM Conference on Advances in Financial Technologies. pp.
255–267 (2020)

143

https://github.com/deroproject/documentation/blob/master/WhitePaper.md
https://github.com/deroproject/documentation/blob/master/WhitePaper.md
https://www.mdpi.com/2305-6290/5/2/37
https://www.mdpi.com/2305-6290/5/2/37

144 BIBLIOGRAPHY

[10] of Antwerp Newsroom, P.: Smart port with blockchain (2019), https:
//www.portofantwerp.com/en/news/smart-port-blockchain,
Accessed on 2019-11-29

[11] Astigarraga, T., Chen, X., Chen, Y., Gu, J., Hull, R., Jiao, L., Li,
Y., Novotny, P.: Empowering business-level blockchain users with a
rules framework for smart contracts. In: International Conference on
Service-Oriented Computing. pp. 111–128. Springer (2018)

[12] Bach, L., Mihaljevic, B., Zagar, M.: Comparative analysis of blockchain
consensus algorithms. In: MIPRO. pp. 1545–1550. IEEE (2018)

[13] Bagozi, A., Bianchini, D., Antonellis, V.D., Garda, M., Melchiori, M.:
A three-layered approach for designing smart contracts in collaborative
processes. In: OTM Confederated International Conferences” On the
Move to Meaningful Internet Systems”. pp. 440–457. Springer (2019)

[14] Baranwal, P.R.: Blockchain based full privacy preserving public
procurement. In: International Conference on Blockchain. pp. 3–17.
Springer (2020)

[15] Bazarhanova, A., Magnusson, J., Lindman et al, J.: Blockchain-based
electronic identification: cross-country comparison of six design choices.
In: Proceedings of the 27th European Conference on Information
Systems (ECIS), Stockholm and Uppsala, Sweden (2019)

[16] Beck, R., Weber, S., Gregory, R.W.: Theory-generating design science
research. Information Systems Frontiers (2013)

[17] Belchior, R., Vasconcelos, A., Guerreiro, S., Correia, M.: A survey on
blockchain interoperability: Past, present, and future trends. ACM
Computing Surveys (CSUR) 54(8), 1–41 (2021)

[18] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-
interactive zero knowledge for a von neumann architecture. In: 23rd
{USENIX} Security Symposium ({USENIX} Security 14). pp. 781–796
(2014)

[19] Benet, J.: Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561 (2014)

[20] Bengtsson, M., Eriksson, J., Wincent, J.: Coopetition: new ideas for a
new paradigm. Coopetition: Winning strategies for the 21st century
pp. 19–39 (2010)

[21] Bermbach, D., Maghsudi, S., Hasenburg, J., Pfandzelter, T.: Towards
auction-based function placement in serverless fog platforms. In: 2020
IEEE International Conference on Fog Computing (ICFC). pp. 25–31.
IEEE (2020)

https://www.portofantwerp.com/en/news/smart-port-blockchain
https://www.portofantwerp.com/en/news/smart-port-blockchain

BIBLIOGRAPHY 145

[22] Blass, E.O., Kerschbaum, F.: Strain: A secure auction for blockchains.
In: European Symposium on Research in Computer Security. pp. 87–
110. Springer (2018)

[23] Bonnoron, G.: A journey towards practical fully homomorphic
encryption. Ph.D. thesis, Ecole nationale supérieure Mines-Télécom
Atlantique (2018)

[24] Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning
classification over encrypted data. In: NDSS. vol. 4324, p. 4325 (2015)

[25] Bourse, F., Sanders, O., Traoré, J.: Improved secure integer comparison
via homomorphic encryption. In: Cryptographers’ Track at the RSA
Conference. pp. 391–416. Springer (2020)

[26] Boutin, C.: Nist selects winner of secure hash algorithm (sha-3)
competition. Press release., October 2 (2012)

[27] Brahem, A., Henry, T., Bhiri, S., Devogele, T., Laga, N., Messai, N.,
Sam, Y., Gaaloul, W., Benatallah, B.: A trustworthy decentralized
change propagation mechanism for declarative choreographies. In:
International Conference on Business Process Management. pp. 418–
435. Springer (2022)

[28] Brahem, A., Messai, N., Sam, Y., Bhiri, S., Devogele, T., Gaaloul,
W.: Blockchain’s fame reaches the execution of personalized touristic
itineraries. In: 2019 IEEE 28th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE).
pp. 186–191. IEEE (2019)

[29] Buchanan, B., Naqvi, N.: Building the future of eu: Moving forward
with international collaboration on blockchain. The Journal of The
British Blockchain Association 1(1), 3579 (2018)

[30] Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy
in a smart contract world. In: International Conference on Financial
Cryptography and Data Security. pp. 423–443. Springer (2020)

[31] Buterin, V., et al.: A next-generation smart contract and decentralized
application platform. white paper 3(37) (2014)

[32] Caldarelli, G.: Understanding the blockchain oracle problem: A call
for action. Information 11(11), 509 (2020)

[33] Casilli, A.A., Posada, J.: The Platformization of Labor
and Society, pp. 293–306. Oxford University Press (2019).
https://doi.org/10.1093/oso/9780198843498.003.0018

146 BIBLIOGRAPHY

[34] Cecchetti, E., Zhang, F., Ji, Y., Kosba, A., Juels, A., Shi, E.:
Solidus: Confidential distributed ledger transactions via pvorm. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. pp. 701–717 (2017)

[35] Chatterjee, A., Sengupta, I.: Sorting of fully homomorphic encrypted
cloud data: Can partitioning be effective? IEEE Transactions on
Services Computing 13(3), 545–558 (2017)

[36] Chatzigiannis, P., Baldimtsi, F.: Miniledger: compact-sized anonymous
and auditable distributed payments. In: European Symposium on
Research in Computer Security. pp. 407–429. Springer (2021)

[37] Chebbi, I., Dustdar, S., Tata, S.: The view-based approach to
dynamic inter-organizational workflow cooperation. Data & Knowledge
Engineering (2006)

[38] Chen, H., Han, K.: Homomorphic lower digits removal and improved
fhe bootstrapping. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 315–337. Springer
(2018)

[39] Chen, Y., Ma, X., Tang, C., Au, M.H.: Pgc: decentralized confidential
payment system with auditability. In: European Symposium on
Research in Computer Security. pp. 591–610. Springer (2020)

[40] Cheng, J.C., Lee, N.Y., Chi, C., Chen, Y.H.: Blockchain and smart
contract for digital certificate. In: 2018 IEEE international conference
on applied system invention (ICASI). pp. 1046–1051. IEEE (2018)

[41] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully
homomorphic encryption over the torus. Journal of Cryptology 33(1),
34–91 (2020)

[42] Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts
for the internet of things. IEEE Access 4, 2292–2303 (2016).
https://doi.org/10.1109/ACCESS.2016.2566339

[43] Christin, N.: Traveling the silk road: A measurement analysis of a
large anonymous online marketplace. In: Proceedings of the 22nd
international conference on World Wide Web. pp. 213–224 (2013)

[44] CoinDesk: The world’s largest shipping firm now tracks cargo on
blockchain (2017), https://www.coindesk.com/worlds-larges
t-shipping-company-tracking-cargo-blockchain, Accessed on
2020-01-28

https://www.coindesk.com/worlds-largest-shipping-company-tracking-cargo-blockchain
https://www.coindesk.com/worlds-largest-shipping-company-tracking-cargo-blockchain

BIBLIOGRAPHY 147

[45] Daemen, J., Rijmen, V.: Reijndael: The advanced encryption standard.
Dr. Dobb’s Journal: Software Tools for the Professional Programmer
26(3), 137–139 (2001)

[46] Dasgupta, D., Shrein, J.M., Gupta, K.D.: A survey of blockchain from
security perspective. Journal of Banking and Financial Technology
3(1), 1–17 (2019)

[47] Debois, S., Hildebrandt, T.: The DCR Workbench: Declarative
Choreographies for Collaborative Processes, pp. 99–124. River
Publishers (2017)

[48] Debois, S., Hildebrandt, T., Slaats, T.: Safety, liveness and run-
time refinement for modular process-aware information systems with
dynamic sub processes. In: International Symposium on Formal
Methods. pp. 143–160. Springer (2015)

[49] Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement &
reachability: complexity in dynamic condition-response graphs. Acta
Informatica 55(6), 489–520 (2018)

[50] Decker, G., Weske, M.: Behavioral consistency for b2b process
integration. In: CAISE. pp. 81–95. Springer (2007)

[51] Desai, H., Kantarcioglu, M., Kagal, L.: A hybrid blockchain
architecture for privacy-enabled and accountable auctions. In: 2019
IEEE International Conference on Blockchain (Blockchain). pp. 34–43.
IEEE (2019)

[52] Deval, V., Norta, A., Dai, P., Mahi, N., Earls, J.: Decentralized
governance for smart contract platform enabling mobile lite wallets
using a proof-of-stake consensus algorithm. In: Blockchain Technology
and Innovations in Business Processes, pp. 67–93. Springer (2021)

[53] Dhillon, V., Metcalf, D., Hooper, M.: The hyperledger project. In:
Blockchain enabled applications, pp. 139–149. Springer (2017)

[54] Di Ciccio, C., Cecconi, A., Dumas, M., Garćıa-Bañuelos, L., López-
Pintado, O., Lu, Q., Mendling, J., Ponomarev, A., Binh Tran, A.,
Weber, I.: Blockchain support for collaborative business processes.
Informatik Spektrum 42(3), 182–190 (2019)

[55] Divya, M., Biradar, N.B.: Iota-next generation block chain.
International Journal of Engineering and Computer Science 7, 23823–
23826 (2018)

[56] Duffield, E., Diaz, D.: Dash: A privacycentric cryptocurrency (2015)

148 BIBLIOGRAPHY

[57] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Introduction to
business process management. In: Fundamentals of business process
management, pp. 1–33. Springer (2018)

[58] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.:
Fundamentals of business process management, vol. 1. Springer (2013)

[59] Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.: Fundamentals of
business process management. Springer Berlin Heidelberg (2018)

[60] Dwivedi, V., Norta, A.: Auto-generation of smart contracts from a
domain-specific xml-based language. In: Intelligent Data Engineering
and Analytics, pp. 549–564. Springer (2022)

[61] Enkhtaivan, B., Takenouchi, T., Sako, K.: A fair anonymous auction
scheme utilizing trusted hardware and blockchain. In: 2019 17th
International Conference on Privacy, Security and Trust (PST). pp. 1–5.
IEEE (2019)

[62] Eshuis, R., Norta, A., Roulaux, R.: Evolving process views. Information
and Software Technology 80, 20–35 (2016)

[63] Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B.,
Weidlich, M., Zugal, S.: Declarative versus imperative process modeling
languages: The issue of understandability. In: Enterprise, Business-
Process and Information Systems Modeling, pp. 353–366. Springer
(2009)

[64] Falazi, G., Hahn, M., Breitenbücher, U., Leymann, F., Yussupov,
V.: Process-based composition of permissioned and permissionless
blockchain smart contracts. In: 2019 IEEE 23rd International
Enterprise Distributed Object Computing Conference (EDOC). pp.
77–87. IEEE (2019)

[65] Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A new
design for anonymous cryptocurrencies. In: International conference
on the theory and application of cryptology and information security.
pp. 649–678. Springer (2019)

[66] Fdhila, W., Indiono, C., Rinderle-Ma, S., Reichert, M.: Dealing
with change in process choreographies: Design and implementation of
propagation algorithms. Information systems 49, 1–24 (2015)

[67] Fdhila, W., Indiono, C., Rinderle-Ma, S., Vetschera, R.: Multi-criteria
decision analysis for change negotiation in process collaborations. In:
2017 IEEE 21st International Enterprise Distributed Object Computing
Conference (EDOC). pp. 175–183. IEEE (2017)

BIBLIOGRAPHY 149

[68] Food, C.A.F.: la blockchain alimentaire (2020), https://actforfo
od.carrefour.fr/nos-actions/la-blockchain-alimentaire,
Accessed on 2020-02-03

[69] Frantz, C.K., Nowostawski, M.: From institutions to code: Towards
automated generation of smart contracts. In: 2016 IEEE 1st
International Workshops on Foundations and Applications of Self*
Systems (FAS*W). pp. 210–215 (2016). https://doi.org/10.1109/FAS-
W.2016.53

[70] Gaaloul, W.: La Découverte de WorkflowTransactionnel pour la
Fiabilisation desExécutions. (Mining transaction workflow for execution
reliability). Ph.D. thesis, Henri Poincaré University, Nancy, France
(2007), https://tel.archives-ouvertes.fr/tel-00124083

[71] Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the
ethereum blockchain. In: International Conference on Financial
Cryptography and Data Security. pp. 265–278. Springer (2018)

[72] Galal, H.S., Youssef, A.M.: Trustee: full privacy preserving vickrey
auction on top of ethereum. In: International Conference on Financial
Cryptography and Data Security. pp. 190–207. Springer (2019)

[73] Garćıa-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.:
Optimized execution of business processes on blockchain. In:
Business Process Management. pp. 130–146. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65000-5-8, https://link.springe
r.com/chapter/10.1007/978-3-319-65000-5-8

[74] Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized
anonymous payments. In: International Conference on Financial
Cryptography and Data Security. pp. 81–98. Springer (2016)

[75] Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
Proceedings of the forty-first annual ACM symposium on Theory of
computing. pp. 169–178 (2009)

[76] Goedertier, S., Vanthienen, J., Caron, F.: Declarative business process
modelling: principles and modelling languages. Enterprise Information
Systems 9(2), 161–185 (2015)

[77] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof systems. SIAM Journal on computing 18(1), 186–208
(1989)

[78] Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of
outsourced data via oblivious ram simulation. In: International

https://actforfood.carrefour.fr/nos-actions/la-blockchain-alimentaire
https://actforfood.carrefour.fr/nos-actions/la-blockchain-alimentaire
https://tel.archives-ouvertes.fr/tel-00124083
https://link.springer.com/chapter/10.1007/978-3-319-65000-5-8
https://link.springer.com/chapter/10.1007/978-3-319-65000-5-8

150 BIBLIOGRAPHY

Colloquium on Automata, Languages, and Programming. pp. 576–587.
Springer (2011)

[79] Green, M., Miers, I.: Bolt: Anonymous payment channels for
decentralized currencies. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. pp. 473–489
(2017)

[80] Gürcan, Ö., Agenis-Nevers, M., Batany, Y.M., Elmtiri, M., Le Fevre,
F., Tucci-Piergiovanni, S.: An industrial prototype of trusted energy
performance contracts using blockchain technologies. In: 2018 IEEE
20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). pp. 1336–1343. IEEE (2018)

[81] Hacker, P.: Corporate governance for complex cryptocurrencies?
a framework for stability and decision making in blockchain-based
organizations. Oxford University Press (2019)

[82] Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in
business process models: the provop approach. J SOFTW MAINT
EVOL-R 22(6-7), 519–546 (2010)

[83] Hara, K., Adams, A., Milland, K., Savage, S., Callison-Burch, C.,
Bigham, J.P.: A data-driven analysis of workers’ earnings on amazon
mechanical turk. In: Proceedings of the 2018 CHI conference on human
factors in computing systems. pp. 1–14 (2018)

[84] Hardjono, T., Lipton, A., Pentland, A.: Toward an interoperability
architecture for blockchain autonomous systems. IEEE Transactions
on Engineering Management 67(4), 1298–1309 (2019)

[85] Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.:
Tumblebit: An untrusted bitcoin-compatible anonymous payment hub.
In: Network and Distributed System Security Symposium (2017)

[86] Henry, T., Beck, R., Laga, N., Gaaloul, W., Pan, S.: Decentralized
procurement mechanisms for efficient logistics services mapping-a
design science research approach. In: Proceedings of the Annual Hawaii
International Conference on System Sciences. IEEE Computer Society
Press (2022)

[87] Henry, T., Brahem, A., Laga, N., Hatin, J., Gaaloul, W., Benatallah,
B.: Trustworthy cross-organizational collaborations with hybrid on/off-
chain declarative choreographies. In: International Conference on
Service-Oriented Computing. pp. 81–96. Springer (2021)

BIBLIOGRAPHY 151

[88] Henry, T., Hatin, J., Kazmierczak, L., Laga, N., Gaaloul, W., Bertin,
E.: Random-value payment tokens for on-chain privacy-preserving
payments. Cooperative Information Systems pp. 223–241 (2022)

[89] Henry, T., Hatin, J., Laga, N., Gaaloul, W.: Towards trustworthy and
privacy-preserving decentralized auctions. Preprint (2022)

[90] Henry, T., Laga, N., Hatin, J., Beck, R., Gaaloul, W.: Hire me fairly:
towards dynamic resource-binding with smart contracts. In: 2021 IEEE
International Conference on Services Computing (SCC). pp. 407–412.
IEEE (2021)

[91] Henry, T., Laga, N., Hatin, J., Gaaloul, W., Boughzala, I.: Cross-
collaboration processes based on blockchain and iot: a survey. In:
HICSS (2021)

[92] Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based
workflow as distributed dynamic condition response graphs. Electronic
Proceedings in Theoretical Computer Science 69, 59–73 (2011).
https://doi.org/10.4204/EPTCS.69.5, http://arxiv.org/abs/11
10.4161

[93] Hildebrandt, T.T., Slaats, T., López, H.A., Debois, S., Carbone, M.:
Declarative choreographies and liveness. In: International Conference
on Formal Techniques for Distributed Objects, Components, and
Systems. pp. 129–147. Springer (2019)

[94] Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol
specification. GitHub: San Francisco, CA, USA p. 1 (2016)

[95] Huang, H., Lin, J., Zheng, B., Zheng, Z., Bian, J.: When blockchain
meets distributed file systems: An overview, challenges, and open
issues. IEEE Access 8, 50574–50586 (2020)

[96] Hull, R., Batra, V.S., Chen, Y.M., Deutsch, A., Heath III, F.F.T.,
Vianu, V.: Towards a shared ledger business collaboration language
based on data-aware processes. In: International conference on service-
oriented computing. pp. 18–36. Springer (2016)

[97] IBM: Food trust (2020), https://www.ibm.com/blockchain/solut
ions/food-trust, Accessed on 2020-02-13

[98] Ihde, S., Pufahl, L., Lin, M.B., Goel, A., Weske, M.: Optimized resource
allocations in business process models. In: International Conference on
Business Process Management. pp. 55–71. Springer (2019)

[99] Indiono, C., Rinderle-Ma, S.: Dynamic change propagation for process
choreography instances. In: OTM Conferences. pp. 334–352. Springer
(2017)

http://arxiv.org/abs/1110.4161
http://arxiv.org/abs/1110.4161
https://www.ibm.com/blockchain/solutions/food-trust
https://www.ibm.com/blockchain/solutions/food-trust

152 BIBLIOGRAPHY

[100] Janssens, L., Bazhenova, E., De Smedt, J., Vanthienen, J., Denecker,
M.: Consistent integration of decision (dmn) and process (bpmn)
models. In: CAiSE forum. vol. 1612, pp. 121–128 (2016)

[101] Jia, Y., Sun, S., Zhang, Y., Zhang, Q., Ding, N., Liu, Z., Liu, J., Gu,
D.: Pbt: A new privacy-preserving payment protocol for blockchain
transactions. IEEE Transactions on Dependable and Secure Computing
(2020)

[102] Johnson, S., Robinson, P., Brainard, J.: Sidechains and interoperability.
arXiv preprint arXiv:1903.04077 (2019)

[103] Keizer, N.V., Ascigil, O., Psaras, I., Pavlou, G.: Flock: Fast,
lightweight, and scalable allocation for decentralized services on
blockchain. In: 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). pp. 1–9. IEEE (2021)

[104] Kerry, C.F., Gallagher, P.D.: Digital signature standard (dss). FIPS
PUB pp. 186–4 (2013)

[105] Khan, S.N., Loukil, F., Ghedira-Guegan, C., Benkhelifa, E., Bani-Hani,
A.: Blockchain smart contracts: Applications, challenges, and future
trends. Peer-to-peer Networking and Applications 14(5), 2901–2925
(2021)

[106] Khoshavi, N., Francois, W., Sargolzaei, A., Chintakunta, H.: A survey
on blockchain security. In: 2019 SoutheastCon. pp. 1–8. IEEE (2019)

[107] Klai, K., Tata, S., Desel, J.: Symbolic abstraction and deadlock-freeness
verification of inter-enterprise processes. In: BPM (2009)

[108] Köpke, J., Franceschetti, M., Eder, J.: Balancing privity and
enforceability of bpm-based smart contracts on blockchains. In: BPM
(2019)

[109] Krejci, S., Sigwart, M., Schulte, S.: Blockchain-and ipfs-based data
distribution for the internet of things. In: European conference on
service-oriented and cloud computing. pp. 177–191. Springer (2020)

[110] Król, M., Sonnino, A., Tasiopoulos, A., Psaras, I., Rivière, E.: Pastrami:
privacy-preserving, auditable, scalable & trustworthy auctions for
multiple items. In: Proceedings of the 21st International Middleware
Conference. pp. 296–310 (2020)

[111] Kurz, M., Schmidt, W., Fleischmann, A., Lederer, M.: Leveraging
cmmn for acm: examining the applicability of a new omg standard for
adaptive case management. In: Proceedings of the 7th international
conference on subject-oriented business process management. pp. 1–9
(2015)

BIBLIOGRAPHY 153

[112] Ladleif, J., Weske, M., Weber, I.: Modeling and enforcing blockchain-
based choreographies. In: International Conference on Business Process
Management. pp. 69–85. Springer (2019)

[113] Lafkihi, M., Pan, S., Ballot, E.: Freight transportation service
procurement: A literature review and future research opportunities in
omnichannel e-commerce. TRANSPORT RES E-LOG (2019)

[114] Laue, R., Kirchner, K.: Patterns for discussing and modelling variability
in business processes. In: EuroPLoP. pp. 1–10 (2018)

[115] Leiding, B.: The M2X Economy-Concepts for Business Interactions,
Transactions and Collaborations Among Autonomous Smart Devices.
Ph.D. thesis, Georg-August-Universität Göttingen (2019)

[116] Li, C., Palanisamy, B.: Decentralized privacy-preserving timed
execution in blockchain-based smart contract platforms. In: HiPC.
pp. 265–274. IEEE (2018)

[117] Li, Z., Kang, J., Yu, R., Ye, D., Deng, Q., Zhang, Y.: Consortium
blockchain for secure energy trading in industrial internet of things.
IEEE TII (2017)

[118] Lin, H.Y., Tzeng, W.G.: An efficient solution to the millionaires’
problem based on homomorphic encryption. In: International
Conference on Applied Cryptography and Network Security. pp. 456–
466. Springer (2005)

[119] Lockl, J., Schlatt, V., Schweizer, A., Urbach, N., Harth, N.: Toward
trust in internet of things ecosystems: Design principles for blockchain-
based iot applications. IEEE Transactions on Engineering Management
(2020)

[120] López-Pintado, O., Dumas, M., Garćıa-Bañuelos, L., Weber, I.:
Dynamic role binding in blockchain-based collaborative business
processes. In: CAISE (2019)

[121] López-Pintado, O., Dumas, M., Garćıa-Bañuelos, L., Weber, I.:
Controlled flexibility in blockchain-based collaborative business
processes. IS (2020)

[122] López-Pintado, O., Garćıa-Bañuelos, L., Dumas, M., Weber, I.:
Caterpillar: A blockchain-based business process management system.
BPM (Demos) 172 (2017)

[123] Loukil, F., Boukadi, K., Abed, M., Ghedira-Guegan, C.: Decentralized
collaborative business process execution using blockchain. World Wide
Web 24(5), 1645–1663 (2021)

154 BIBLIOGRAPHY

[124] Loukil, F., Ghedira-Guegan, C., Boukadi, K., Benharkat, A.N.:
Privacy-preserving iot data aggregation based on blockchain and
homomorphic encryption. Sensors 21(7), 2452 (2021)

[125] López-Pintado, O., Dumas, M., Garćıa-Bañuelos, L., et al.:
Controlled flexibility in blockchain-based collaborative business
processes. Information Systems (2020)

[126] Ma, J., Qi, B., Lv, K.: Fully private auctions for the highest bid. In:
Proceedings of the ACM Turing Celebration Conference-China. pp. 1–6
(2019)

[127] Madsen, M.F., Gaub, M., Høgnason, T., Kirkbro, M.E., Slaats, T.,
Debois, S.: Collaboration among adversaries: distributed workflow
execution on a blockchain. In: Symposium on Foundations and
Applications of Blockchain. p. 8 (2018)

[128] Magnani, M., Montesi, D.: Bpmn: How much does it cost? an
incremental approach. In: BPM. pp. 80–87. Springer (2007)

[129] Mahalle, V.S., Shahade, A.K.: Enhancing the data security in cloud
by implementing hybrid (rsa & aes) encryption algorithm. In: 2014
International Conference on Power, Automation and Communication
(INPAC). pp. 146–149. IEEE (2014)

[130] Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.:
Silentwhispers: Enforcing security and privacy in decentralized credit
networks. Cryptology ePrint Archive (2016)

[131] Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi,
S.: Concurrency and privacy with payment-channel networks. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. pp. 455–471 (2017)

[132] Mammadzada, K., Iqbal, M., Milani, F., Garćıa-Bañuelos, L.,
Matulevičius, R.: Blockchain oracles: A framework for blockchain-
based applications. In: International Conference on Business Process
Management. pp. 19–34. Springer (2020)

[133] Mechkaroska, D., Dimitrova, V., Popovska-Mitrovikj, A.: Analysis of
the possibilities for improvement of blockchain technology. In: 2018
26th Telecommunications Forum (TELFOR). pp. 1–4. IEEE (2018)

[134] Mehandjiev, N., Grefen, P.: Dynamic business process formation for
instant virtual enterprises, vol. 39. Springer (2010)

[135] Mendling, J., Weber, I., Aalst, W.V.D., Brocke, J.V., Cabanillas,
C., Daniel, F., Debois, S., Ciccio, C.D., Dumas, M., Dustdar, S.,

BIBLIOGRAPHY 155

et al.: Blockchains for business process management-challenges and
opportunities. ACM Transactions on Management Information Systems
(TMIS) 9(1), 1–16 (2018)

[136] Merkle, R.C.: Secrecy, authentication, and public key systems. Stanford
university (1979)

[137] Meroni, G., Plebani, P.: Combining artifact-driven monitoring with
blockchain: Analysis and solutions. In: International Conference on
Advanced Information Systems Engineering. pp. 103–114. Springer
(2018)

[138] Meroni, G., Plebani, P., Vona, F.: Trusted artifact-driven process
monitoring of multi-party business processes with blockchain. In: BPM
(2019)

[139] Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous
distributed e-cash from bitcoin. In: 2013 IEEE Symposium on Security
and Privacy. pp. 397–411. IEEE (2013)

[140] Mingxiao, D., Xiaofeng, M., Zhe, Z., Xiangwei, W., Qijun, C.: A review
on consensus algorithm of blockchain. In: 2017 IEEE international
conference on systems, man, and cybernetics (SMC). pp. 2567–2572.
IEEE (2017)

[141] Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy
adaptive case management with dynamic condition response graphs. In:
2013 17th IEEE International Enterprise Distributed Object Computing
Conference. pp. 127–136. IEEE (2013)

[142] Myung, S., Lee, J.H.: Ethereum smart contract-based automated
power trading algorithm in a microgrid environment. The Journal of
Supercomputing (2020)

[143] Nærland, K., Müller-Bloch, C., Beck, R., Palmund, S.: Blockchain
to rule the waves-nascent design principles for reducing risk and
uncertainty in decentralized environments. In: ICIS (2017)

[144] Nahabedian, L., Braberman, V., D’Ippolito, N., Kramer, J., Uchitel,
S.: Assured automatic dynamic reconfiguration of business processes.
Information Systems 104, 101850 (2022)

[145] Nahabedian, L., Braberman, V., D’ippolito, N., Kramer, J., Uchitel,
S.: Dynamic reconfiguration of business processes. In: BPM. pp. 35–51.
Springer (2019)

[146] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system.
Decentralized Business Review p. 21260 (2008)

156 BIBLIOGRAPHY

[147] Nardini, M., Helmer, S., El Ioini, N., Pahl, C.: A blockchain-based
decentralized electronic marketplace for computing resources. SN
Computer Science (2020)

[148] Narendra, N.C., Norta, A., Mahunnah, M., Ma, L., Maggi, F.M.: Sound
conflict management and resolution for virtual-enterprise collaborations.
Service Oriented Computing and Applications 10(3), 233–251 (2016)

[149] Narula, N., Vasquez, W., Virza, M.: {zkLedger}:{Privacy-Preserving}
auditing for distributed ledgers. In: 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). pp. 65–80
(2018)

[150] Noether, S., Noether, S.: Monero is not that mysterious. Technical
report (2014)

[151] Norta, A.: Creation of smart-contracting collaborations for
decentralized autonomous organizations. In: International Conference
on Business Informatics Research. pp. 3–17. Springer (2015)

[152] Norta, A.: Establishing distributed governance infrastructures for
enacting cross-organization collaborations. In: International Conference
on Service-Oriented Computing. pp. 24–35. Springer (2015)

[153] Norta, A.: Designing a smart-contract application layer for transacting
decentralized autonomous organizations. In: International Conference
on Advances in Computing and Data Sciences. pp. 595–604. Springer
(2016)

[154] Norta, A., Kormiltsyn, A., Udokwu, C., Dwivedi, V., Aroh, S.,
Nikolajev, I.: A blockchain implementation for configurable multi-
factor challenge-set self-sovereign identity authentication. In: 2022
IEEE International Conference on Blockchain (Blockchain). pp. 455–
461. IEEE (2022)

[155] Norta, A., Ma, L., Duan, Y., Rull, A., Kõlvart, M., Taveter,
K.: econtractual choreography-language properties towards cross-
organizational business collaboration. Journal of Internet Services and
Applications 6(1), 1–23 (2015)

[156] Norta, A., Othman, A.B., Taveter, K.: Conflict-resolution lifecycles
for governed decentralized autonomous organization collaboration. In:
Proceedings of the 2015 2nd International Conference on Electronic
Governance and Open Society: Challenges in Eurasia. pp. 244–257
(2015)

[157] Norta, A.: Exploring Dynamic Inter-Organizational Business Process
Collaboration. Ph.D. thesis, TU-Eindhoven, NL. (20O7)

BIBLIOGRAPHY 157

[158] Oliveira, L., Zavolokina, L., Bauer, I., Schwabe, G.: To token or
not to token: Tools for understanding blockchain tokens. In: 39th
International Conference on Information Systems, San Francisco (2018)

[159] Oranburg, S., Palagashvili, L.: The gig economy, smart contracts, and
disruption of traditional work arrangements. Smart Contracts, and
Disruption of Traditional Work Arrangements (2018)

[160] Paillier, P.: Public-key cryptosystems based on composite degree
residuosity classes. In: International conference on the theory and
applications of cryptographic techniques. pp. 223–238. Springer (1999)

[161] Palacin, L.: Accelerate blockchain technology adoption with bonita
bpm and chain core. URL https://vimeo. com/202058656. Accessed
pp. 04–08 (2018)

[162] Pan, S., Trentesaux, D., McFarlane, D., Montreuil, B., Ballot, E.,
Huang, G.Q.: Digital interoperability in logistics and supply chain
management: state-of-the-art and research avenues towards physical
internet. Computers in Industry 128, 103435 (2021)

[163] Papadis, N., Tassiulas, L.: Blockchain-based payment channel networks:
Challenges and recent advances. IEEE Access 8, 227596–227609 (2020)

[164] Papazoglou, M.P., Van Den Heuvel, W.J.: Business process
development life cycle methodology. Communications of the ACM
50(10), 79–85 (2007)

[165] Park, J., Chitchyan, R., Angelopoulou, A., Murkin, J.: A block-
free distributed ledger for p2p energy trading: Case with IOTA? In:
Advanced Information Systems Engineering. pp. 111–125. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21290-2-8, https:
//link.springer.com/chapter/10.1007/978-3-030-21290-2-8

[166] Pelaitis, D., Spathoulas, G.: Developing a universal, decentralized
and immutable erasmus credit transfer system on blockchain. In: 2018
Innovations in Intelligent Systems and Applications (INISTA). pp. 1–6.
IEEE (2018)

[167] Peltz, C.: Web services orchestration and choreography. Computer 36
(2003)

[168] Peng, L., Feng, W., Yan, Z., Li, Y., Zhou, X., Shimizu, S.:
Privacy preservation in permissionless blockchain: A survey. Digital
Communications and Networks 7(3), 295–307 (2021)

[169] Pinna, A., Ibba, S.: A blockchain-based decentralized system for
proper handling of temporary employment contracts. In: SI conference.
Springer (2018)

https://link.springer.com/chapter/10.1007/978-3-030-21290-2-8
https://link.springer.com/chapter/10.1007/978-3-030-21290-2-8

158 BIBLIOGRAPHY

[170] Pintado, O.L.: Challenges of blockchain-based collaborative business
processes: An overview of the caterpillar system. Blockchain and
Robotic Process Automation pp. 31–42 (2021)

[171] Piriou, P.Y., Boudeville, O., Deleuze, G., Tucci-Piergiovanni, S.,
Gürcan, Ö.: Justifying the dependability and security of business-
critical blockchain-based applications. In: 2021 Third International
Conference on Blockchain Computing and Applications (BCCA). pp.
97–104. IEEE (2021)

[172] Pittl, B., Starflinger, S., Mach, W., Schikuta, E.: Bazaar-contract: A
smart contract for binding multi-round bilateral negotiations on cloud
markets. In: FiCloud (2019)

[173] Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille,
P.: Confidential assets. In: International Conference on Financial
Cryptography and Data Security. pp. 43–63. Springer (2018)

[174] Pons, J.: Blockchains and smart contracts in the culture and
entertainment business. Réalités industrielles (2017)

[175] Pries-Heje, J., Baskerville, R., Venable, J.R.: Strategies for design
science research evaluation. ECIS Proceedings. 87. (2008)

[176] Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification
for business processes utilizing the bitcoin blockchain. FGCS 107, 816–
831 (2020)

[177] Rella, L.: Steps towards an ecology of money infrastructures:
materiality and cultures of ripple. Journal of Cultural Economy 13(2),
236–249 (2020)

[178] Reuters: Sweden tests blockchain technology for land registry (2020),
https://www.reuters.com/article/us-sweden-blockchain/swe
den-tests-blockchain-technology-for-land-registry-idUSKC
N0Z22KV, Accessed on 2020-01-28

[179] Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and
privacy homomorphisms. Foundations of secure computation 4(11),
169–180 (1978)

[180] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM
21(2), 120–126 (1978)

[181] Röck, D.: The foundation of distributed ledger technology for supply
chain management. In: HICSS (2020)

https://www.reuters.com/article/us-sweden-blockchain/sweden-tests-blockchain-technology-for-land-registry-idUSKCN0Z22KV
https://www.reuters.com/article/us-sweden-blockchain/sweden-tests-blockchain-technology-for-land-registry-idUSKCN0Z22KV
https://www.reuters.com/article/us-sweden-blockchain/sweden-tests-blockchain-technology-for-land-registry-idUSKCN0Z22KV

BIBLIOGRAPHY 159

[182] Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.:
Supporting the dynamic evolution of web service protocols in service-
oriented architectures. ACM Transactions on the Web (TWEB) 2(2),
1–46 (2008)

[183] Sambamurthy, V., Bharadwaj, A., Grover, V.: Shaping agility
through digital options: Reconceptualizing the role of information
technology in contemporary firms. MIS Quarterly 27, 237–263 (2003).
https://doi.org/10.2307/30036530

[184] Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
Virza, M.: Zerocash: Decentralized anonymous payments from bitcoin.
In: 2014 IEEE symposium on security and privacy. pp. 459–474. IEEE
(2014)

[185] Schulte, S., Sigwart, M., Frauenthaler, P., Borkowski, M.: Towards
blockchain interoperability. In: International conference on business
process management. pp. 3–10. Springer (2019)

[186] Scoping, S., Taskforce, T.: Information supplement: Pci dss
tokenization guidelines. Standard: PCI Data Security Standard (PCI
DSS) 24 (2011)

[187] Sharma, R., Wingreen, S., Kshetri, N., Hewa, T.: Design principles for
use cases of blockchain in food supply chains. In: AMCIS (2019)

[188] Singh, A., Click, K., Parizi, R.M., Zhang, Q., Dehghantanha, A.,
Choo, K.K.R.: Sidechain technologies in blockchain networks: An
examination and state-of-the-art review. Journal of Network and
Computer Applications 149, 102471 (2020)

[189] Slaats, T.: Flexible process notations for cross-organizational case
management systems (2015)

[190] Slaats, T., Hildebrandt, T.T., Carbone, M., Völzer, H.: Flexible
process notations for cross-organizational case management systems.
ITU Copenhagen (2015)

[191] Smiley, L.: Blockchain-based e-auction to fight corruption in ukraine,
https://cointelegraph.com/news/blockchain-based-e-auctio
n-to-fight-corruption-in-ukraine

[192] Sonnino, A., Król, M., Tasiopoulos, A.G., Psaras, I.: Asterisk: Auction-
based shared economy resolution system for blockchain. arXiv preprint
arXiv:1901.07824 (2019)

https://cointelegraph.com/news/blockchain-based-e-auction-to-fight-corruption-in-ukraine
https://cointelegraph.com/news/blockchain-based-e-auction-to-fight-corruption-in-ukraine

160 BIBLIOGRAPHY

[193] Amaral de Sousa, V., Burnay, C., Snoeck, M.: B-merode: a model-
driven engineering and artifact-centric approach to generate blockchain-
based information systems. In: International Conference on Advanced
Information Systems Engineering. pp. 117–133. Springer (2020)

[194] Strehle, E., Maurer, M.: The dibichain protocol: Privacy-preserving
discovery and exchange of supply chain information. In: International
Conference on Model and Data Engineering. pp. 231–247. Springer
(2021)

[195] Sturm, C., Scalanczi, J., Schönig, S., Jablonski, S.: A blockchain-based
and resource-aware process execution engine. FGCS (2019)

[196] Sun, S.F., Au, M.H., Liu, J.K., Yuen, T.H.: Ringct 2.0: A compact
accumulator-based (linkable ring signature) protocol for blockchain
cryptocurrency monero. In: European Symposium on Research in
Computer Security. pp. 456–474. Springer (2017)

[197] Suri, K., Cadavid, J., Alferez, M., Dhouib, S., Tucci-Piergiovanni,
S.: Modeling business motivation and underlying processes for
rami 4.0-aligned cyber-physical production systems. In: 2017 22nd
IEEE international conference on emerging technologies and factory
automation (ETFA). pp. 1–6. IEEE (2017)

[198] Szabo, N.: Formalizing and securing relationships on public networks.
First monday (1997)

[199] Telegraph, C.: Georgia records 100,000 land titles on bitcoin blockchain:
BitFury (2020), https://cointelegraph.com/news/georgia-recor
ds-100000-land-titles-on-bitcoin-blockchain-bitfury

[200] Togan, M., Pleşca, C.: Comparison-based computations over fully
homomorphic encrypted data. In: 2014 10th international conference
on communications (COMM). pp. 1–6. IEEE (2014)

[201] Tran, A.B., Lu, Q., Weber, I.: Lorikeet: A model-driven engineering
tool for blockchain-based business process execution and asset
management. In: BPM (Dissertation/Demos/Industry). pp. 56–60
(2018)

[202] Tripathy, S., Mohanty, S.K.: Mappcn: Multi-hop anonymous
and privacy-preserving payment channel network. In: International
Conference on Financial Cryptography and Data Security. pp. 481–495.
Springer (2020)

[203] Troncia, M., Galici, M., Mureddu et al, M.: Distributed ledger
technologies for peer-to-peer local markets in distribution networks.
Energies (2019)

https://cointelegraph.com/news/georgia-records-100000-land-titles-on-bitcoin-blockchain-bitfury
https://cointelegraph.com/news/georgia-records-100000-land-titles-on-bitcoin-blockchain-bitfury

BIBLIOGRAPHY 161

[204] Uahi, R., Pereira, J.L.: Task allocation in business processes supported
by bpms: Optimization perspectives. In: 2016 11th Iberian Conference
on Information Systems and Technologies (CISTI). pp. 1–6. IEEE
(2016)

[205] Underwood, S.: Blockchain beyond bitcoin. ACM 59(11), 15–17 (2016)

[206] Van Der Aalst, W.M., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.:
From public views to private views–correctness-by-design for services.
In: International Workshop on Web Services and Formal Methods. pp.
139–153. Springer (2007)

[207] Victor, F., Lüders, B.K.: Measuring ethereum-based erc20 token
networks. In: International Conference on Financial Cryptography
and Data Security. pp. 113–129. Springer (2019)

[208] De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G.,
Paraboschi, S., Samarati, P.: Distributed query evaluation over
encrypted data. In: IFIP Annual Conference on Data and Applications
Security and Privacy. pp. 96–114. Springer (2021)

[209] Vom Brocke, J., Mathiassen, L., Rosemann, M.: Business process
management (2014)

[210] Wang, D., Zhao, J., Wang, Y.: A survey on privacy protection of
blockchain: The technology and application. IEEE Access 8, 108766–
108781 (2020)

[211] Wang, S., Qu, X.: Blockchain applications in shipping, transportation,
logistics, and supply chain. In: Smart Transportation Systems 2019,
pp. 225–231. Springer (2019)

[212] Wang, S., Huang, X., Yu, R., Zhang, Y., Hossain, E.: Permissioned
blockchain for efficient and secure resource sharing in vehicular edge
computing. arXiv preprint arXiv:1906.06319 (2019)

[213] Weber, C.: Exploring dlt and blockchain for alternative finance: A
collection of case studies. Tech. rep., Technical report, European
Crowdfunding Network, November (2019)

[214] Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A.,
Mendling, J.: Untrusted business process monitoring and execution
using blockchain. In: International conference on business process
management. pp. 329–347. Springer (2016)

[215] Webster, J., Watson, R.: Analyzing the past to prepare for the
future: Writing a literature review. MIS Quarterly 26 (06 2002).
https://doi.org/10.2307/4132319

162 BIBLIOGRAPHY

[216] Weinhardt, C., Gimpel, H.: Market engineering: An interdisciplinary
research challenge. In: Dagstuhl seminar proceedings (2007)

[217] Wiemuth, M., Junger, D., Leitritz, M., Neumann, J., Neumuth,
T., Burgert, O.: Application fields for the new object management
group (omg) standards case management model and notation (cmmn)
and decision management notation (dmn) in the perioperative field.
International journal of computer assisted radiology and surgery 12(8),
1439–1449 (2017)

[218] Wood, G.: A secure decentralised generalised transaction ledger,
ethereum proj. Yellow Pap (2014)

[219] Xiang, G., Cui, Z.: The algebra homomorphic encryption scheme
based on fermat’s little theorem. In: 2012 international conference on
communication systems and network technologies. pp. 978–981. IEEE
(2012)

[220] Xiong, F., Xiao, R., Ren, W., Zheng, R., Jiang, J.: A key protection
scheme based on secret sharing for blockchain-based construction supply
chain system. IEEE Access 7, 126773–126786 (2019)

[221] Xu, X., Weber,
I., Staples, M.: Architecture for Blockchain Applications. Springer
International Publishing (2019). https://doi.org/10.1007/978-3-030-
03035-3, http://link.springer.com/10.1007/978-3-030-03035-3

[222] Xu, X., Weber, I., Staples, M.: Blockchain patterns. In: Architecture
for Blockchain Applications, pp. 113–148. Springer (2019)

[223] Xu, X., Weber, I., Staples, M.: Case Study: AgriDigital:
Blockchain Technology in the Trade and Finance of Agriculture
Supply Chains, pp. 239–255. Springer International Publishing (2019).
https://doi.org/10.1007/978-3-030-03035-3-12, http://link.springe
r.com/10.1007/978-3-030-03035-3-12

[224] Xue, X., Dou, J., Shang, Y.: Blockchain-driven supply chain
decentralized operations–information sharing perspective. Business
Process Management Journal (2020)

[225] Yeh, J.H.: A probabilistic homomorphic encryption algorithm over
integers-protecting data privacy in clouds. In: 2015 IEEE 12th Intl Conf
on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl
Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl
Conf on Scalable Computing and Communications and Its Associated
Workshops (UIC-ATC-ScalCom). pp. 653–656. IEEE (2015)

http://link.springer.com/10.1007/978-3-030-03035-3
http://link.springer.com/10.1007/978-3-030-03035-3-12
http://link.springer.com/10.1007/978-3-030-03035-3-12

BIBLIOGRAPHY 163

[226] Yu, B., Kermanshahi, S.K., Sakzad, A., Nepal, S.: Chameleon hash
time-lock contract for privacy preserving payment channel networks. In:
International Conference on Provable Security. pp. 303–318. Springer
(2019)

[227] Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier:
An authenticated data feed for smart contracts. In: Proceedings of
the 2016 aCM sIGSAC conference on computer and communications
security. pp. 270–282 (2016)

[228] Zhang, Y., Lee, C., Niyato, D., Wang, P.: Auction approaches
for resource allocation in wireless systems: A survey. IEEE
Communications Surveys Tutorials 15(3), 1020–1041 (2013).
https://doi.org/10.1109/SURV.2012.110112.00125

[229] Zhao, R.: An empirical analysis of supply chain BPM model based
on blockchain and IoT integrated system. In: Web Information
Systems and Applications. pp. 539–547. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30952-7-54, https://link.spr
inger.com/chapter/10.1007/978-3-030-30952-7-54

[230] Zouina, M., Outtai, B.: Towards a distributed token based
payment system using blockchain technology. In: 2019 International
Conference on Advanced Communication Technologies and Networking
(CommNet). pp. 1–10. IEEE (2019)

https://link.springer.com/chapter/10.1007/978-3-030-30952-7-54
https://link.springer.com/chapter/10.1007/978-3-030-30952-7-54

164 BIBLIOGRAPHY

Appendices

165

Examples of DCR graph
inputs

Delivery process - Customer view

pk[role=Driver] = 0x89033bC8f73Ef5b46CCb013f6F948b00954a06BB
pk[role=Florist] = 0x1ED034135e576A6c1bf3ee8E05aaDEEF24D4A819
pk[role=Customer] = 0x5AfBDd0e5DE3315a96504C06ac49bF34B5ECACB5

declare events

Choreography exchanges
e1[Shipping src=Driver tgt=Florist tgt=Customer]
e2[CheckDelivery src=Customer tgt= Florist tgt=Driver]
e3[Accept src=Customer tgt=Florist tgt=Driver]
e4[Reject src=Customer tgt=Florist tgt=Driver]
e5[Pay src=Customer tgt=Florist]
e6[UnloadTruck src=Driver tgt=Customer tgt=Florist]

link events
e1 --<> e2
e1 *--> e2

e2 *--> e3
e2 --<> e3
e2 *--> e4
e2 --<> e4

e3 -->+ e5
e3 *--> e5
e3 -->+ e6
e3 *--> e6

167

168 EXAMPLES OF DCR GRAPH INPUTS

exclude events
e3 -->% e3
e4 -->% e4

e4 -->% e5
e4 -->% e6

e5 -->% e5
e6 -->% e6

Delivery process - Driver view

declare events

Choreography exchanges
e1[Shipping src=Driver tgt=Florist tgt=Customer]
e2[CheckDelivery src=Customer tgt= Florist tgt=Driver]
e3[Accept src=Customer tgt=Florist tgt=Driver]
e4[Reject src=Customer tgt=Florist tgt=Driver]
e6[UnloadTruck src=Driver tgt=Customer tgt=Florist]
e7[PayDriver src=Florist tgt=Driver]

Internal processes
"ReturnTruck" [role=Driver]

link events
e1 --<> e2
e1 *--> e2

e2 *--> e3
e2 --<> e3
e2 *--> e4
e2 --<> e4

e3 -->+ e6
e3 *--> e6

ReturnTruck -->* e7
ReturnTruck *--> e7

169

e4 *--> e7
e5 *--> e7
e6 *--> e7

e4 *--> ReturnTruck
e5 *--> ReturnTruck
e6 *--> ReturnTruck

exclude events
e3 -->% e3
e4 -->% e4
e4 -->% e5
e4 -->% e6

e6 -->% e6
ReturnTruck -->% ReturnTruck

Delivery process - Florist view

pk[role=Driver] = 0x89033bC8f73Ef5b46CCb013f6F948b00954a06BB
pk[role=Florist] = 0x1ED034135e576A6c1bf3ee8E05aaDEEF24D4A819
pk[role=Customer] = 0x5AfBDd0e5DE3315a96504C06ac49bF34B5ECACB5

declare events

Choreography exchanges
e1[Shipping src=Driver tgt=Florist tgt=Customer]
e2[CheckDelivery src=Customer tgt= Florist tgt=Driver]
e3[Accept src=Customer tgt=Florist tgt=Driver]
e4[Reject src=Customer tgt=Florist tgt=Driver]
e5[Pay src=Customer tgt=Florist]
e6[UnloadTruck src=Driver tgt=Customer tgt=Florist]
e7[PayDriver src=Florist tgt=Driver]

Internal processes
"PrepareCommand" [role=Florist]
"CallShipper" [role=Florist]
"SettleCommand" [role=Florist]

link events
e1 --<> e2
e1 *--> e2

170 EXAMPLES OF DCR GRAPH INPUTS

e2 *--> e3
e2 --<> e3

e2 *--> e4
e2 --<> e4

e3 -->+ e5
e3 *--> e5
e3 -->+ e6
e3 *--> e6

PrepareCommand -->* CallShipper
PrepareCommand *--> CallShipper

CallShipper -->* e1
CallShipper *--> e1

e7 -->* SettleCommand
e7 *--> SettleCommand

e4 *--> e7
e5 *--> e7
e6 *--> e7

e4 *--> SettleCommand
e5 *--> SettleCommand
e6 *--> SettleCommand

exclude events
e3 -->% e3
e4 -->% e4

e4 -->% e5
e4 -->% e6

e5 -->% e5
e6 -->% e6
SettleCommand -->% SettleCommand

Proof of Concepts

• Hybrid on/off-chain DCR choreography deployment and execution
using blockchain https://archive.softwareheritage.org/swh:1:
dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https:
//github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:
6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:
a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97

• Hybrid on/off-chain DCR choreography deployment and execution
using blockchain with running instance change support https://
archive.softwareheritage.org/swh:1:dir:8bde592496c2
31084627448dbd2399446f1cf2ce;origin=https://github.c
om/tiphainehenry/adaptiveChangeDCR;visit=swh:1:snp:
89cd57a878c58593ac077da79d99a0f00cb8ac41;anchor=swh:1:
rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e

• Dynamic and trustworthy QoS-based allocation
https://archive.softwareheritage.org/swh:1:dir:cc1dc6
6c637f8427836d808745f1bf1630816527;origin=https://gith
ub.com/tiphainehenry/smart-logistics;visit=swh:1:snp:
d97e3a03446f13ef7112faba5abec02254568449;anchor=swh:1:
rev:e06b091de377c1bfe29644fb2b539af99381dd1e

• Trustworthy sealed-bids allocation using FHE https://archive.so
ftwareheritage.org/swh:1:dir:e08b491a6240075052af4c13709f
95a83ef52ae6;origin=https://github.com/tiphainehenry/fhe o
racle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83c
b2c953;anchor=swh:1:rev:8666576002ad5f375f9550798630a468
681f29c6

• Privacy-preserving payments with random-value tokens https://ar
chive.softwareheritage.org/swh:1:dir:60577355b219ab18
8003bdaa624a31cf564f2b98;origin=https://github.com/tip
hainehenry/random-value-token-payment;visit=swh:1:snp:
dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:1:rev:
e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0

171

https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97
https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97
https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97
https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97
https://archive.softwareheritage.org/swh:1:dir:211c6bdb1ce9f256c363caee54a56f53ada05d9b;origin=https://github.com/tiphainehenry/hybridChoreo;visit=swh:1:snp:6376000436aeaf872f39fb5f1a9d5aaa417c5cea;anchor=swh:1:rev:a5dd01e0ed0cb034c1e35daa0e6b3c6e08ff6d97
https://archive.softwareheritage.org/swh:1:dir:8bde592496c231084627448dbd2399446f1cf2ce;origin=https://github.com/tiphainehenry/adaptiveChangeDCR;visit=swh:1:snp:89cd57a878c58593ac077da79d99a0f00cb8ac41;anchor=swh:1:rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e
https://archive.softwareheritage.org/swh:1:dir:8bde592496c231084627448dbd2399446f1cf2ce;origin=https://github.com/tiphainehenry/adaptiveChangeDCR;visit=swh:1:snp:89cd57a878c58593ac077da79d99a0f00cb8ac41;anchor=swh:1:rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e
https://archive.softwareheritage.org/swh:1:dir:8bde592496c231084627448dbd2399446f1cf2ce;origin=https://github.com/tiphainehenry/adaptiveChangeDCR;visit=swh:1:snp:89cd57a878c58593ac077da79d99a0f00cb8ac41;anchor=swh:1:rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e
https://archive.softwareheritage.org/swh:1:dir:8bde592496c231084627448dbd2399446f1cf2ce;origin=https://github.com/tiphainehenry/adaptiveChangeDCR;visit=swh:1:snp:89cd57a878c58593ac077da79d99a0f00cb8ac41;anchor=swh:1:rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e
https://archive.softwareheritage.org/swh:1:dir:8bde592496c231084627448dbd2399446f1cf2ce;origin=https://github.com/tiphainehenry/adaptiveChangeDCR;visit=swh:1:snp:89cd57a878c58593ac077da79d99a0f00cb8ac41;anchor=swh:1:rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e
https://archive.softwareheritage.org/swh:1:dir:8bde592496c231084627448dbd2399446f1cf2ce;origin=https://github.com/tiphainehenry/adaptiveChangeDCR;visit=swh:1:snp:89cd57a878c58593ac077da79d99a0f00cb8ac41;anchor=swh:1:rev:fac4a9a64d86fac19dcb11515b35de2de402ff1e
https://archive.softwareheritage.org/swh:1:dir:cc1dc66c637f8427836d808745f1bf1630816527;origin=https://github.com/tiphainehenry/smart-logistics;visit=swh:1:snp:d97e3a03446f13ef7112faba5abec02254568449;anchor=swh:1:rev:e06b091de377c1bfe29644fb2b539af99381dd1e
https://archive.softwareheritage.org/swh:1:dir:cc1dc66c637f8427836d808745f1bf1630816527;origin=https://github.com/tiphainehenry/smart-logistics;visit=swh:1:snp:d97e3a03446f13ef7112faba5abec02254568449;anchor=swh:1:rev:e06b091de377c1bfe29644fb2b539af99381dd1e
https://archive.softwareheritage.org/swh:1:dir:cc1dc66c637f8427836d808745f1bf1630816527;origin=https://github.com/tiphainehenry/smart-logistics;visit=swh:1:snp:d97e3a03446f13ef7112faba5abec02254568449;anchor=swh:1:rev:e06b091de377c1bfe29644fb2b539af99381dd1e
https://archive.softwareheritage.org/swh:1:dir:cc1dc66c637f8427836d808745f1bf1630816527;origin=https://github.com/tiphainehenry/smart-logistics;visit=swh:1:snp:d97e3a03446f13ef7112faba5abec02254568449;anchor=swh:1:rev:e06b091de377c1bfe29644fb2b539af99381dd1e
https://archive.softwareheritage.org/swh:1:dir:cc1dc66c637f8427836d808745f1bf1630816527;origin=https://github.com/tiphainehenry/smart-logistics;visit=swh:1:snp:d97e3a03446f13ef7112faba5abec02254568449;anchor=swh:1:rev:e06b091de377c1bfe29644fb2b539af99381dd1e
https://archive.softwareheritage.org/swh:1:dir:e08b491a6240075052af4c13709f95a83ef52ae6;origin=https://github.com/tiphainehenry/fhe_oracle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83cb2c953;anchor=swh:1:rev:8666576002ad5f375f9550798630a468681f29c6
https://archive.softwareheritage.org/swh:1:dir:e08b491a6240075052af4c13709f95a83ef52ae6;origin=https://github.com/tiphainehenry/fhe_oracle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83cb2c953;anchor=swh:1:rev:8666576002ad5f375f9550798630a468681f29c6
https://archive.softwareheritage.org/swh:1:dir:e08b491a6240075052af4c13709f95a83ef52ae6;origin=https://github.com/tiphainehenry/fhe_oracle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83cb2c953;anchor=swh:1:rev:8666576002ad5f375f9550798630a468681f29c6
https://archive.softwareheritage.org/swh:1:dir:e08b491a6240075052af4c13709f95a83ef52ae6;origin=https://github.com/tiphainehenry/fhe_oracle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83cb2c953;anchor=swh:1:rev:8666576002ad5f375f9550798630a468681f29c6
https://archive.softwareheritage.org/swh:1:dir:e08b491a6240075052af4c13709f95a83ef52ae6;origin=https://github.com/tiphainehenry/fhe_oracle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83cb2c953;anchor=swh:1:rev:8666576002ad5f375f9550798630a468681f29c6
https://archive.softwareheritage.org/swh:1:dir:e08b491a6240075052af4c13709f95a83ef52ae6;origin=https://github.com/tiphainehenry/fhe_oracle;visit=swh:1:snp:05d0f85de663d57daabd74fe5fbc38a83cb2c953;anchor=swh:1:rev:8666576002ad5f375f9550798630a468681f29c6
https://archive.softwareheritage.org/swh:1:dir:60577355b219ab188003bdaa624a31cf564f2b98;origin=https://github.com/tiphainehenry/random-value-token-payment;visit=swh:1:snp:dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:1:rev:e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0
https://archive.softwareheritage.org/swh:1:dir:60577355b219ab188003bdaa624a31cf564f2b98;origin=https://github.com/tiphainehenry/random-value-token-payment;visit=swh:1:snp:dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:1:rev:e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0
https://archive.softwareheritage.org/swh:1:dir:60577355b219ab188003bdaa624a31cf564f2b98;origin=https://github.com/tiphainehenry/random-value-token-payment;visit=swh:1:snp:dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:1:rev:e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0
https://archive.softwareheritage.org/swh:1:dir:60577355b219ab188003bdaa624a31cf564f2b98;origin=https://github.com/tiphainehenry/random-value-token-payment;visit=swh:1:snp:dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:1:rev:e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0
https://archive.softwareheritage.org/swh:1:dir:60577355b219ab188003bdaa624a31cf564f2b98;origin=https://github.com/tiphainehenry/random-value-token-payment;visit=swh:1:snp:dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:1:rev:e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0
https://archive.softwareheritage.org/swh:1:dir:60577355b219ab188003bdaa624a31cf564f2b98;origin=https://github.com/tiphainehenry/random-value-token-payment;visit=swh:1:snp:dd7f3b87913aef5990d76d4c7fc3e11998cb0a8d;anchor=swh:1:rev:e2ad349e7d65c6a3dd735d48ce5a9e73ff9541c0

172 PROOF OF CONCEPTS

Résumé Etendu

La technologie Blockchain a été introduite comme un outil de
désintermédiation fiable pour la gestion des processus métiers inter-
organisationnels au cours de la dernière décennie. La blockchain assure
la traçabilité de l’exécution des activités tout en appliquant le flux de
contrôle préalablement convenu au moment de la conception avec les autres
partenaires. De plus, les contrats intelligents (smart contracts) peuvent
contribuer à l’automatisation fiable des tâches redondantes. Cependant,
assurer la confiance dans le protocole de déploiement et d’exécution, la
flexibilité des processus et la confidentialité des données reste un défi dans
l’environnement de la blockchain.

Tout d’abord, le protocole de déploiement et d’exécution des instances de
gestion des processus métier nécessite une séparation fiable des vues métier de
chacun des participants. En effet, les données internes telles que l’historique
d’exécution de tâches privées ne doivent pas être rendues visibles à d’autres
partenaires lors du cycle de vie du processus. Par conséquent, un compromis
entre la garantie de la confidentialité des processus privés des partenaires et
l’exposition des processus publics par l’intermédiaire du réseau blockchain
survient lors du déploiement et de l’exécution du processus.

De plus, la nature dynamique des processus inter-organisationnels
nécessite (i) une adaptation du processus à l’exécution et (ii) une affectation
dynamique des acteurs. La plupart des travaux connexes prennent
uniquement en compte les changements dans les orchestrations de processus.
De plus, les approches liant les acteurs aux rôles dans une collaboration de
processus demandent aux acteurs de vérifier eux-mêmes l’effet transitif des
nouveaux changements sur les nouvelles parties. Enfin, à notre connaissance,
aucune règle d’allocation basée sur les notes de qualité de service et gérée
par contrats intelligents n’a été proposée dans la littérature.

Le troisième défi concerne la confidentialité des données de processus
sensibles. En effet, les processus inter-organisationnels exploitent des
informations sensibles comme le prix des offres. Néanmoins, les propriétés
d’ouverture et de transparence de la blockchain mettent en cause cet
impératif de confidentialité totale ou partielle dans les processus métier
inter-organisationnels. Il existe une lacune dans l’état de l’art concernant (1)
l’allocation des services basée sur le tri multi-objectifs de manière à préserver

173

174 RÉSUMÉ ETENDU

la confidentialité tout en garantissant la vérifiabilité, ainsi que (2) une gestion
des paiements par contrat intelligent qui préserve la confidentialité des offres
et l’auditabilité des échanges sur le registre blockchain.

Dans ce manuscrit, nous proposons les trois contributions suivantes visant
à solutionner les problématiques susmentionnées.

Tout d’abord, nous concevons et mettons en œuvre une stratégie de
déploiement et d’exécution on/off-chain pour les processus chorégraphiques.
Cette solution assure une séparation fiable des vues métier entre les
participants à chaque étape du déploiement et de l’exécution des instances.
Ce faisant, nous tirons parti d’un langage de modèle de processus métiers
déclaratif, DCR, qui permet d’abstraire le flux de contrôle.

Deuxièmement, nous proposons d’apporter une flexibilité au flux de
contrôle du système de gestion de processus métier. Pour ce faire, nous
proposons un mécanisme de changement d’instances de chorégraphies DCR
en cours d’exécution sur la blockchain. Notre système permet à un partenaire
dans une instance en cours d’exécution de modifier son processus DCR privé.
Un changement affectant d’autres partenaires est propagé aux processus
concernés à l’aide d’un contrat intelligent. Nous proposons également un
système tirant parti des contrats intelligents pour une sélection dynamique de
fournisseurs de services. Le système analyse les performances des fournisseurs
de services stockées sous forme de logs blockchain et décide dynamiquement
de l’attribution d’une tâche en fonction des notes de qualité de service de
chacun des candidats.

Enfin, nous proposons deux mécanismes préservant la confidentialité
des enchères et des paiements dans un contexte blockchain. Le premier
mécanisme se base sur du chiffrement entièrement homomorphe. Les calculs
gérés par la blockchain opèrent ainsi sur des nombres chiffrés. En pratique,
un contrat intelligent rassemble et orchestre la comparaison des offres, tandis
qu’un oracle effectue les comparaisons sur des données chiffrées. Le deuxième
mécanisme utilise les banques en tant qu’intermédiaires de confiance. Cette
solution utilise une banque et un jeton de paiement lié à une valeur aléatoire.
Les partenaires peuvent utiliser des jetons pour procéder à plusieurs paiements
tout en préservant la confidentialité des valeurs. Ce système permet de plus
de préserver la traçabilité des offres, les transactions étant stockées dans
la blockchain. Ainsi, les pairs externes peuvent auditer de manière fiable
l’historique des paiements.

Nous démontrons la faisabilité de chaque contribution au travers d’un
prototype et son efficacité via des expérimentations ancrées dans le domaine
logistique.

Titre : Vers une gestion de processus métiers pair à pair fiable, flexible, et respectueuse de la vie privée

Mots clés : Processus métiers, chaı̂nes de blocs, chorégraphies

Résumé : La technologie blockchain peut être uti-
lisée comme outil de désintermédiation fiable pour la
gestion des processus métiers inter-organisationnels.
Elle assure la traçabilité de l’exécution des activités et
du flux de contrôle. Cependant, assurer la confiance
dans le protocole de déploiement et d’exécution, per-
mettre la flexibilité des processus et respecter la confi-
dentialité des données restent trois verrous à solution-
ner dans cet environnement.
Pour résoudre les problématiques susmentionnées ,
nous présentons les contributions suivantes.
D’abord, nous présentons un mécanisme de
déploiement et d’exécution on/off-chain pour les pro-
cessus chorégraphiques. Cette solution assure une
séparation fiable des vues entre les participants à
chaque étape du déploiement et de l’exécution des
instances. Ce faisant, nous tirons parti d’un langage
de modèle de processus métiers déclaratif, DCR, qui
permet d’abstraire le flux de contrôle.
Deuxièmement, nous proposons un mécanisme de

changement d’instances de chorégraphies DCR en
cours d’exécution sur la blockchain. Un changement
affectant d’autres partenaires est propagé aux pro-
cessus concernés via un contrat intelligent. Nous pro-
posons également une sélection dynamique de four-
nisseurs de services gérée par contrat intelligent.
Enfin, nous proposons deux mécanismes préservant
la confidentialité des enchères et des paiements dans
un contexte blockchain. Le premier mécanisme se
base sur du chiffrement entièrement homomorphe.
Les calculs gérés par la blockchain opèrent sur des
nombres chiffrés. Le deuxième mécanisme utilise
une banque et un jeton de paiement (NFT) à va-
leur aléatoire. Les partenaires utilisent ces jetons pour
procéder à plusieurs paiements tout en préservant la
confidentialité des valeurs.
Nous démontrons la faisabilité de chaque contribu-
tion au travers d’un prototype et son efficacité via des
expérimentations ancrées dans le domaine logistique.

Title : Towards trustworthy, flexible, and privacy-preserving peer-to-peer business process management sys-
tems

Keywords : Business Process Models, Blockchain, Choreographies

Abstract : Blockchain technology has been introdu-
ced as a trustworthy disintermediation tool for mana-
ging cross-organizational business processes in the
past decade. It ensures activities’ execution tracea-
bility while enforcing the control flow agreed upon at
design time with other partners.
However, ensuring trust in the deployment and execu-
tion protocol, process flexibility, and data privacy re-
mains challenging in this environment.
To address these challenges, we propose the three
following contributions in this manuscript.
First, we design and implement an on/off-chain de-
ployment and execution strategy for on/off-chain cho-
reographies, which enforces a trustworthy separation
of concern between participants at each step of the
deployment and execution. Meanwhile, we leverage
a constraint-based business model language, DCR,
abstracting the control flow under a set of constraints.
Second, we propose to bring control-flow flexibility
to the blockchain-based business process manage-
ment system through change management: a change
impacting other partners is propagated to affected

processes using a smart contract. We also leverage
smart contracts for a dynamic selection of service pro-
viders. The system analyses service providers’ per-
formance stored as blockchain logs and dynamically
decides on the allocation of a task based on the QoS
outputs.
Finally, we propose two mechanisms to reconcile pri-
vacy imperatives with the benefits of blockchain. The
first mechanism leverages fully homomorphic encryp-
tion for blockchain-based calculations such as sealed-
bid auctions. Smart contracts gather and orchestrate
bid comparison, while a computation oracle carries
comparisons over ciphered data. The second mecha-
nism leverages banks as trustworthy intermediaries
while secreting the payment value. Partners can use
per-collaboration tokens backed by a random value to
proceed to multiple payments confidentially.
We demonstrate the feasibility of each contribution
through an implemented prototype and its effective-
ness via experiments anchored in the logistics do-
main.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	List of Symbols and Acronyms
	List of Publications
	Introduction
	Research context
	Motivating example
	Research problem
	(RQ1) How to leverage smart contracts as a trustworthy distributed tool for coordination and decision making in cross-organizational processes?
	(RQ2) How to deploy and execute in a flexible fashion cross-organizational processes managed on-chain?
	(RQ3) How to ensure the privacy of sensitive data processed on-chain while preserving blockchain systems' integrity and verifiability properties?

	Thesis objectives, principles, and contributions
	Thesis objectives and principles
	Thesis contributions

	Thesis outline

	Basic Concepts on Business Process Management and Blockchain
	Business Process Management
	Business Process Lifecycle
	Business Process Modelization
	Business Process Execution

	Blockchain
	Identity: reaching pseudo-anonymity with public and private keys
	Transactions and record-keeping :
	Onchain execution logic with smart contracts

	Related Work
	Introduction
	Blockchain-based BPMS
	From empirical to model-based management of processes on-chain
	Modeling stakes: focus on the imperative and declarative approaches
	View-based approaches
	Business process instance deployment strategies

	Bringing flexibility to blockchain-based BPMS
	Control-flow flexibility with runtime process instance changes
	Partner flexibility with runtime blockchain-based procurement

	Bringing privacy to blockchain-based BPMS
	Privacy preservation for on-chain offer comparison
	On-chain privacy-preserving payments

	Comparison and Discussion
	Evaluation Criteria
	Summary

	Conclusion

	Declarative Choreography Management with Blockchain
	Introduction
	Basic concepts
	DCR graphs
	DCR choreography

	Motivating Example
	Design time: Generating Public and Private Views
	Public and private views of a DCR choreography
	Translating DCR graphs into bitvectors
	Hybrid on/off-chain generation of views

	Hybrid Off/On-chain Runtime Execution
	Managing internal execution requests off-chain
	Managing choreography events execution requests on-chain

	Implementation and Evaluation
	Implementation
	Evaluation

	Conclusion

	Control-flow and Partnership Flexibility
	Introduction
	Basic Concepts and Motivating Example
	Control-flow change
	Partner flexibility

	Control flow flexibility
	Step 1: Change Proposal
	Step 2: Change request and negotiation
	Step 3: Change propagation

	Actor flexibility
	Platform instantiation
	Filtering and sorting candidates
	Service binding and fulfillment

	Implementation and evaluation
	Runtime DCR change
	QoS-based resource allocation

	Conclusion

	Sealed-bid Auctions and Privacy-preserving Payment
	Introduction
	Motivating example
	Sealed-bid auctions
	Basic concepts on encryption technics
	Overall approach
	Key initialization
	Generating and forwarding FHE-ciphered offers to the smart contract
	Compare and allocate the service to the best offer

	Privacy-preserving token payment
	Overall approach
	Payment token smart contract initialization
	Request payment tokens
	Service payment
	Collaboration settlement and payment tokens deactivation

	Implementation and evaluation
	Sealed-bid auctions
	Privacy-preserving payment

	Conclusion

	Summary, Discussion and Future Work
	Summary
	Discussions
	Discussion on the DCR-choreography deployment and execution blockchain-based system
	Discussion on the DCR-choreography control-flow and partners change mechanism
	Discussion on the privacy-preserving auction and payment mechanisms
	Summary

	Future work
	Contextual challenges

	Appendices
	Appendix Examples of DCR graph inputs
	Appendix Proof of Concepts
	Appendix Résumé Etendu

