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15 Résumé

Résumé

La vie sur terre dépend de l’océan car 71% de la planète est couverte par l’océan. Naturellement,
les gens s’en préoccupent profondément, avec sa vie abondante et ses vastes ressources. L’océan
a une signification différente pour chacun d’entre nous. Nous avons tous nos propres intérêts.
Par exemple, des générations de pêcheurs ont tiré leur subsistance de l’océan. Les défenseurs de
la nature s’engagent à le protéger, tandis que le capitaine d’un porte-conteneurs a besoin d’eaux
profondes et d’un accès direct au port par le chemin le plus court.

Où se situent nos priorités lorsqu’une zone marine abrite à la fois la pêche de la faune et
la navigation? Et si la situation est compliquée par les minéraux que l’industrie minière veut
extraire, ou si un investisseur prévoit de construire un parc éolien ? Le planificateur responsable,
généralement un fonctionnaire, doit relever de nombreux défis pour faire face à toutes ces
demandes ; comment satisfaire exactement toutes ces personnes et leurs intérêts? Comment
concilier l’utilisation et la protection d’un même espace océanique?

La planification de l’espace marin (PEM) est un moyen relativement nouveau de gérer les
activités humaines qui se déroulent dans l’océan. Il s’agit d’un processus stratégique à long
terme qui permet de déterminer où, quand et comment les activités humaines ont lieu. Cela peut
être utile lorsqu’il existe des possibilités de nouvelles utilisations ou lorsque les activités ont
un impact sur la nature. La planification de l’espace maritime peut contribuer à équilibrer des
intérêts contradictoires, en veillant à ce que la société en bénéficie tout en protégeant le milieu
marin.

Tout d’abord, la planification de l’espace maritime est mieux réalisée par un groupe de planifica-
tion mandaté, doté d’une vision commune forte et d’objectifs clairs quant aux objectifs à atteindre.
Le planificateur doit écouter le plus grand nombre possible de parties intéressées, non seulement
au début, mais tout au long du processus, en collaborant avec toutes les parties prenantes qui
ont un intérêt pour l’océan. Les planificateurs veillent à ce que les usagers de la mer établissent
une relation de confiance, s’engagent dans le processus et s’approprient le plan produit avec leur
aide. Bien sûr, cela soulèvera des questions pour beaucoup d’entre eux. Devons-nous exclure
l’exploitation minière des zones de pêche importantes? Devons-nous détourner les voies de
navigation pour faire de la place à la faune marine? Peut-on concilier tourisme et conservation
au même endroit ?

La PEM commence par une analyse de la situation actuelle. Par exemple, quels sont les endroits
qui ont la plus grande valeur naturelle? Qui utilise la zone de planification? Quelles sont
les priorités du gouvernement concernant l’océan et son utilisation? En rassemblant le plus
d’informations possible sur tout, des zones de pêche aux voies de navigation, des habitats
naturels importants aux gisements de pétrole et de gaz, nous pouvons cartographier les détails
pour comprendre certains des problèmes clés que le plan doit aborder. Ensuite, la PEM identifie
les conflits et les synergies possibles, les activités qui peuvent être facilement combinées et celles
qui s’excluent mutuellement. Les options pour l’avenir sont également prises en compte dans
les différents secteurs. Les exploitations minières en eaux profondes pourraient chercher à se
développer, mais que se passe-t-il si les gisements minéraux nouvellement découverts s’étendent
jusqu’aux zones de conservation de la nature et de tourisme?

Cela nous met en mesure de développer des alternatives et de décider de l’option spatiale
préférée. Cela peut impliquer des compromis entre les intérêts. Pour parvenir à un compromis, il
faudra négocier, mais cela mais celle-ci ne peut aboutir que si les parties prenantes sont présentes
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à la table et peuvent être entendues.

Une fois que l’on s’est mis d’accord sur les solutions spatiales qui répondent le mieux aux
besoins de chacun et aux objectifs du plan, il est temps de définir les actions qui garantiront le
succès du plan.

Il peut s’agir de zones ou de politiques qui donnent la priorité à certaines utilisations, comme
l’exploitation minière ou les parcs éoliens, ou encore de réorienter les voies de navigation
pour donner plus d’espace aux baleines. Ces mesures de gestion doivent être élaborées avec la
participation de tous les utilisateurs et groupes d’intérêt du milieu marin afin de garantir que
le plan soit soutenu par le plus grand nombre possible de parties prenantes. Une fois le plan
convenu et adopté, il doit être mis en œuvre. A partir de ce jour, il guidera tous les utilisateurs
marins où, quand et comment leurs activités se déroulent dans l’espace océanique.

Enfin, la PEM est un processus continu. Elle implique un suivi, une évaluation et une révision
réguliers. Est-ce que atteint-il son objectif ? Que devons-nous faire mieux la prochaine fois? De
quelles autres De quelles informations supplémentaires avons-nous besoin? Naturellement, les
choses changent ; le climat, les investisseurs, les intérêts, les politiciens, et leurs priorités. Le plan
devra donc être adopté au fil du temps. S’il est bien fait, un plan spatial marin bien fait, un plan
spatial marin soutiendra non seulement les moyens de subsistance d’aujourd’hui, mais aussi
ceux des générations futures, et ce pour cette excellente raison. Il n’est pas surprenant que la
planification de l’espace marin se répande désormais dans toutes les mers et tous les océans du
monde.

Cependant, lorsqu’un ensemble de ressources, de droits, de charges, d’avantages ou de coûts
est temporairement détenu en commun par un groupe de secteurs, les débats se poursuivent sur
les meilleures stratégies de gestion de l’aménagement du territoire pour les répartir entre eux.

En outre, la question de l’allocation de l’espace est devenue plus importante à la lumière des
récents points chauds politiques, alimentés par les luttes de pouvoir politique et la demande
sans cesse croissante d’espace marin/terrestre pour les utilisations traditionnelles et émergentes
de l’espace marin/terrestre.

L’objectif ambitieux de cette thèse serait de développer une approche appropriée d’allocation
de l’emplacement dans le cadre d’un processus plus large de prise de décision spatiale, où les
utilisateurs marins interagissent les uns avec les autres afin de parvenir à un accord d’allocation
spatiale à travers leurs objectifs conflictuels.

Cet objectif difficile peut être considéré comme un problème complexe, la gestion du zonage
pour le système multi-objectifs multi-agents (SMOMA) avec l’application au PEM. La complexité
ne doit pas être confondue avec la complication. Là où un problème compliqué comporte de
nombreuses parties différentes et bien définies avec des comportements bien connus et peut
être réduit à des problèmes plus simples (un puzzle, par exemple, peut être divisé en plus petits
puzzles avant d’être résolu), un problème complexe est défini par un nombre important de
petites parties en interaction, et ce sont leurs interactions qui produisent le comportement global.
Un problème complexe est comme un système complexe. Une partie d’un système complexe est
guidée par des règles simples et individuelles. Le comportement du système ne peut être prédit
à partir des règles individuelles : " le tout est plus grand que la somme des parties " [Fun10].

Les problèmes complexes du monde réel mentionnés ci-dessus peuvent être trouvés dans une
pluralité de domaines et de sciences. Ces problèmes comportent trois aspects qui les rendent
impossibles à résoudre par les processus décisionnels centralisés classiques et les logiciels
d’optimisation commerciaux existants dans le monde entier. La résolution de tels problèmes est
un sujet important en informatique. Premièrement, il s’agit de problèmes d’optimisation multi-
objectifs, où la résolution du problème pour chaque objectif conduit à une solution différente.

Par conséquent, une approche est nécessaire pour trouver un ensemble de solutions mathémati-
quement "égales" appelées solutions optimales de Pareto. Différentes méthodes de résolution ont
été développées. Elles sont communément classées en deux catégories : les méthodes exactes et
inexactes. La première garantit de trouver (si elle existe) la solution optimale. Cependant, comme
elles explorent tout l’espace de recherche, elles sont trop lentes et ne peuvent pas être appliquées
pour résoudre des problèmes complexes.
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Les méthodes approximatives trouvent une solution en utilisant une heuristique ou des méta-
heuristiques (MHs) pour traverser l’espace de recherche. Un inconvénient important de toutes
ces méthodes est qu’elles ne peuvent pas gérer la dynamique, qui est l’une des caractéristiques
des problèmes complexes. Deuxièmement, il s’agit de problèmes multi-agents, où les préférences
de tous les agents possibles doivent être incorporées dans le processus de décision.

Par conséquent, une approche d’optimisation interactive est nécessaire pour prendre en compte
les préférences des agents et trouver un compromis optimal en conséquence. Cette interaction
agent-optimisateur aide les agents à apprendre le problème et leur permet de modifier et de chan-
ger leurs préférences progressivement. Le troisième aspect est l’interdépendance entre les agents
qui affecte leurs décisions. Ce problème nécessite un mécanisme de collaboration mécanisme
de collaboration entre les agents pour partager l’information ou même gérer les préférences et
les contraintes conflictuelles. Grâce à ce mécanisme de collaboration d’agent à agent, les agents
peuvent modifier leurs préférences et leurs contraintes et finalement mettre à jour leurs décisions.
Cette méthodologie peut résoudre un tel problème d’optimisation multi-objectif et multi-agent
en fournissant un optimiseur d’agent à agent et un mécanisme de collaboration d’agent à agent
avec une application d’optimisation, qui n’existe ni théoriquement ni en tant que méthodologie
décisionnelle.

Exposé détaillé du problème et objectifs
L’objectif principal de cette thèse est la coordination des activités marines et la résolution des

problèmes d’allocation d’emplacement qui pourraient potentiellement conduire à des conflits
spatiaux. Le défi consiste à choisir une stratégie de zonage appropriée dans le cadre d’un
processus décisionnel spatial plus large, où les utilisateurs marins interagissent les uns avec les
autres pour parvenir à un accord d’allocation spatiale. Il n’est pas simple de parvenir à un tel
accord lorsque les utilisateurs poursuivent leurs objectifs internes et particuliers, qui sont le plus
souvent en conflit avec d’autres. Pour faire face à ce problème, un processus de prise de décision
efficace doit être développé dans lequel trois exigences différentes, comme le montre la Figure 1,
doivent être satisfaites comme suit :

Form ulat ion M odélisat ion Optim isat ion N égociat ion M ise en ? uvre

FIGURE 1 : Proposition d’approche décisionnelle

• Formulation et modélisation : formuler et modéliser le problème dans le cadre d’un sys-
tème d’information géographique (SIG) réaliste, et développer un modèle mathématique
pour le résoudre,

• Optimisation : mise à l’échelle du problème afin de fournir des solutions optimales pour
les cas à grande échelle,

• Négociation et mise en œuvre : développement d’un processus de prise de décision qui
aide plusieurs acteurs à résoudre d’éventuels conflits en parvenant à un compromis.

Conformément aux objectifs susmentionnés, cette thèse présente un système multi-agent multi-
objectif (SMAMO) pour modéliser les processus de prise de décision à plusieurs niveaux de la
gestion du zonage spatial des utilisations marines, avec trois contributions principales :

1. Programmation linéaire en nombres entiers multi-objectifs (LEMO) : Solutions d’allocation
optimales pour des problèmes de taille acceptable, garantissant l’efficacité de Pareto et
l’allocation de tout l’espace revendiqué.

2. Algorithmes évolutionnaires multi-objectifs (AEMO) : MHs approxime des solutions quasi-
optimales pour des problèmes à grande échelle. pour des problèmes à grande échelle.
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3. Processus de décision coopératif avec les systèmes multi-agents (SMA) et les méthodes
heuristiques : Dans le contexte d’une collaboration à long terme, soutenir les parties pre-
nantes multi-objectifs dans la négociation et l’obtention de l’allocation la plus appropriée
et équitable en termes de zonage de la zone marine. de zonage de la zone marine.

Questions de recherche
Cette thèse apporte des contributions pour répondre aux trois questions de recherche suivantes,

qui sont au cœur de cette méthodologie complexe d’aide à la décision.

1. Comment formuler un modèle linéaire exact en tant que LEMO pour le problème de
gestion du zonage spatial dans la PEM?

2. Comment résoudre le modèle proposé et déterminer la solution optimale pour le modèle
exact? Quelles méthodes exactes doivent être utilisées?

3. Comment résoudre la complexité informatique de ce modèle LEMO en le mettant à
l’échelle? Quelles méthodes approximatives doivent être choisies pour résoudre les cas à
grande échelle?

4. Comment développer un mécanisme où les multi-utilisateurs collaborent efficacement
pour partager les informations et apprendre les préférences en termes de solutions des
autres utilisateurs, ainsi que pour modifier leurs propres solutions, en particulier en cas de
conflit? Comment développer un mécanisme basé sur la négociation pour atteindre un
accord d’allocation spatiale à travers leurs objectifs conflictuels?

Proposition de cadre général pour chaque chapitre
Le présent manuscrit est organisé en quatre chapitres principaux, à savoir : Contexte de l’aména-

gement de l’espace marin, Modèle de zonage exact pour l’aménagement de l’espace marin, Extensions des
approches évolutionnaires pour la gestion du zonage dans l’aménagement de l’espace marin, et Gestion
coopérative du zonage multi-objectif multi-agent pour l’aménagement de l’espace marin.

Chaque chapitre comprend différentes phases pour nous rapprocher des objectifs de cette thèse.
Le reste du manuscrit est structuré comme suit :

• Dans le chapitre [2], un état des lieux du développement de la planification spatiale
est dressé en passant en revue l’état de l’environnement côtier et océanique et l’histoire
de la planification. Nous orientons cet état des lieux vers les études d’aménagement
du territoire pour répondre à la principale raison de la transition de l’aménagement de
l’espace terrestre (AET) au PEM. Pour caractériser ces méthodes, nous proposons leur
problématique principale, le zonage.
Ce chapitre fait le point sur les enjeux disponibles de l’environnement côtier et océanique
en expliquant les principaux éléments qui en découlent. Au cours des 5 à 10 dernières
années, la PEM est apparu comme un nouvel outil de gestion des eaux nationales et
internationales et a déjà attiré un nombre important de recherches multidisciplinaires sur
ses objectifs et ses processus politiques.
À l’échelle mondiale, la planification des zones marines, des régions côtières aux régions de
haute mer, est créée pour promouvoir la gestion et la gouvernance durables des océans. Ce
processus de planification est le plus souvent appelé PEM, mais il porte également de nom-
breux autres noms, notamment planification spatiale maritime, planification des océans,
planification marine, zonage des océans, gestion spatiale marine, gestion de l’utilisation
des mers, etc.
Ce chapitre présente l’histoire de la planification avec différentes définitions. Alors que la
planification spatiale a évolué au fil des décennies en tant qu’outil de gestion du dévelop-
pement et de l’utilisation de l’environnement terrestre, le développement de systèmes de
planification spatiale pour l’environnement marin n’en est qu’à ses débuts. Pour tenter
d’initier une telle approche de gestion, ce chapitre passe en revue l’aménagement du
territoire et explore la relation entre la PEM et son cousin terrestre, l’AET en clarifiant
leur transition. Une condition préalable importante pour l’application efficace de la PEM
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est l’utilisation d’approches intégrées appropriées. En particulier, le développement de
schémas de zonage pourrait s’avérer précieux pour la répartition des zones où des acti-
vités spécifiques devraient avoir lieu avec des intérêts concurrents. Par conséquent, ce
chapitre se termine par une description des avantages du zonage, en se concentrant sur
son application intégrée dans le cadre de la PEM et en mentionnant la première question
de recherche potentielle qui devrait être abordée dans cette thèse.

• Dans le chapitre [3], étant donné que l’un des principaux problèmes de la PEM est de
localiser et d’allouer une zone optimale pour une nouvelle activité humaine tout en
tenant compte des autres activités existantes, un nouveau problème dans le cadre du
zonage en la PEM est défini et décrit. Ensuite, nous nous concentrons sur la formulation
d’un modèle linéaire exact comme un LEMO pour ce problème en travaillant sur des
données matricielles. Nous présentons les méthodes exactes de résolution qui ont permis
de résoudre et de déterminer les solutions optimales. Ensuite, après avoir souligné leurs
principaux inconvénients, nous présentons des méthodes qui peuvent gérer et améliorer
la résolution du modèle en utilisant des techniques de mise en mémoire tampon. Enfin,
nous validons et étudions les approches en générant un ensemble de jeux de données
artificielles.
Comme mentionné dans le chapitre [2], la PEM a récemment gagné en popularité en tant
qu’outil efficace de prise de décision. La PEM est un processus stratégique à long terme qui
réunit de nombreux utilisateurs concurrents de l’océan dans le but de trouver un équilibre
entre la simplification des choix sur le lieu, le moment et la manière dont chaque utilisation
durable des ressources marines pourrait avoir lieu et la protection de l’environnement
côtier et marin. Pour résoudre ce problème, l’un des enjeux de la PEM est de déterminer
la meilleure zone pour localiser chaque activité disponible tout en gardant à l’esprit les
contraintes et les relations de compatibilité des autres activités existantes. La majorité des
techniques de zonage spatial, en particulier pour les usages multiples, sont écrites comme
des modèles d’optimisation non linéaires avec des objectifs multiples, qui sont souvent
résolus à l’aide d’algorithmes de recherche stochastique, ce qui donne des résultats sous-
optimaux. Dans ce chapitre, nous proposons de modéliser le problème comme un LEMO
pour une seule nouvelle activité afin de déterminer une zone optimale pour l’implanter
tout en tenant compte des emplacements fixes des autres activités existantes dans cette
étude. Le modèle est développé pour des données matricielles et cherche à maximiser
l’intérêt de la zone dédiée à la nouvelle activité tout en optimisant sa compacité spatiale.
Nous étudions deux méthodes de résolution : premièrement, une méthode de la somme
pondérée (SP) des deux objectifs, et deuxièmement, une approche interactive basée sur
une version augmentée améliorée de la technique des ϵ-contraintes, AUGMECON2. Nous
faisons des expériences sur des données créées artificiellement pour valider et étudier le
modèle. Nos résultats expérimentaux révèlent que AUGMECON2 est la stratégie la plus
prometteuse en termes de pertinence et de diversité des solutions, de compacité et de
temps de calcul.

• Dans le chapitre [4], à partir d’une analyse des manques du chapitre [3], de nouvelles
méthodes pour gérer le problème de complexité de calcul des modèles LEMO en utilisant
l’AEMO sont décrites. Après une introduction à MHs, l’accent est mis sur l’AEMO pour
définir une algorithme génétique de tri non-dominé basé sur un hypervolume synchrone-II
(SH-NSGA-II) et algorithme mémétique (MA). Nous montrons les différentes expériences
et tests que nous avons effectués pour régler les paramètres des deux algorithmes, les
valider et les comparer sur des jeux de données artificiels. Enfin, une preuve de la cohérence
des solutions avec la méthode exacte pour des cas à petite échelle est proposée.
Dans le chapitre [3], un modèle LEMO exact pour la gestion du zonage spatial en la PEM
est développé comme modèle d’optimisation et validé par des études expérimentales. Ce-
pendant, en raison de la complexité de calcul des modèles LEMO, les résultats du chapitre
[3] sont limités à une petite échelle et ne prennent pas en charge le problème donné avec
une application réelle à grande échelle. Par conséquent, ce chapitre présente et compare
les résultats de deux AEMO, SH-NSGA-II, qui est une extension de NSGA-II, et un MA
dans lequel SH-NSGA-II est amélioré par une recherche locale. Ces algorithmes proposés
sont utilisés pour résoudre le problème multi-objectif d’optimisation du zonage spatial,
qui cherche à maximiser la valeur d’intérêt de la zone attribuée à la nouvelle activité tout
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en maximisant simultanément sa compacité spatiale. Nous introduisons plusieurs innova-
tions dans ces algorithmes proposés afin de tenir compte des contraintes du problème et
d’améliorer la robustesse des approches traditionnelles NSGA-II et MA. Contrairement
aux approches traditionnelles, une condition d’arrêt différente, des opérateurs multiples
de croisement, de mutation et de réparation, ainsi qu’un opérateur de recherche locale,
sont développés. Nous présentons une étude comparative des résultats obtenus à l’aide
des deux algorithmes. Pour garantir des résultats robustes pour les deux algorithmes, leurs
paramètres sont calibrés et réglés à l’aide de la méthodologie de la surface multi-réponse
(MSMR). Les composantes effectives et non effectives, ainsi que la validité des modèles
de régression, sont déterminées à l’aide de la méthode d’analyse de la variance. Bien
que SH-NSGA-II ait révélé une bonne efficacité, ses performances peuvent encore être
améliorées en utilisant un schéma de recherche locale au sein de SH-NSGA-II, qui est
spécialement adapté aux caractéristiques du problème.

• Chapitre [5] s’appuie sur résolution des conflits (RC) dans systèmes multi-agents et les
contributions applicatives pour proposer SMOMA coopératif pour le problème donné.
SMOMA est une système multi-agent pour résoudre une approche décisionnelle multi-
objectifs basée sur l’évolution afin de laisser les multi-utilisateurs négocier pour une PEM
coopérative à long terme. Ce chapitre présente les différents scénarios et expériences que
nous avons réalisés pour classer et valider différents modèles de négociation sur des
ensembles de données artificielles.

Même si cette thèse a jusqu’à présent partiellement justifié la gestion du zonage spatial pour
une seule nouvelle activité en ayant une relation semi-coopérative avec d’autres activités
dans les chapitres [3] et [4], elle ne répond toujours pas au deuxième objectif posé dans le
chapitre [1] sur la négociation. Ce chapitre présente une approche formelle et exécutable
pour résoudre un conflit dans SMOMA de gestion du zonage spatial par la négociation. La
modélisation SMOMA fournit un cadre puissant pour simuler les processus décisionnels
à plusieurs niveaux de l’allocation optimale de l’utilisation marine dans un processus
collaboratif et décentralisé d’aide à la décision. Les niveaux de décision comprennent le
mécanisme de collaboration agent-optimisateur et agent-agent. Nous développons un
système heuristique basé sur la négociation qui classe les paramètres SMOMA sur la base
d’une structure de négociation en chaîne. Cette stratégie est mise en œuvre après avoir
exécuté l’algorithme MA pour chaque agent et rassemblé leurs solutions Pareto optimales.
Différentes stratégies de négociation pour RC sont également présentées, testées et classées
à l’aide de la méthode d’agrégation de Condorcet. Les résultats montrent comment les
agents peuvent arriver à de bonnes solutions en utilisant les stratégies ci-dessus.

• Enfin, dans le chapitre [6], les contributions, les limites et les perspectives sont présentées,
d’un point de vue scientifique et applicatif.

L’objectif notable de cette thèse est de créer un système d’aide à la décision spatiale permettant
de localiser et d’allouer des zones d’espace marin à diverses parties prenantes, malgré des
objectifs et des contraintes éventuellement contradictoires.

Pour surmonter ce problème, nous nous concentrons sur trois besoins distincts dans cette thèse :

1. Définir et modéliser le problème dans un environnement SIG réaliste, ainsi que développer
un modèle mathématique pour le traiter,

2. Être capable de fournir des solutions à des problèmes à grande échelle,

3. Développer un cadre de prise de décision coopérative pour aider de nombreuses parties
prenantes à régler des conflits potentiels par la négociation.

Résumé des contributions
En somme, pour répondre aux objectifs mentionnés, cette thèse propose une SMOMA. Cette

approche a permis de représenter dans une certaine mesure les processus décisionnels à plusieurs
niveaux de la gestion du zonage spatial pour les utilisations marines, avec les contributions
suivantes :
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• Formulation et modélisation du problème de zonage :
Étant donné que la localisation et l’attribution d’une zone optimale pour une nouvelle
activité humaine tout en gardant à l’esprit les autres activités présentes est l’une des
questions clés de la PEM, un nouveau problème dans le cadre de la gestion du zonage
dans la PEM est identifié et discuté. Le chapitre [2] a rendu compte de la raison de
l’utilisation généralisée de la planification spatiale en passant en revue la littérature
pertinente. Pour modéliser ce problème, la technique la plus répandue est basée sur des
modèles multi-objectifs non linéaires, qui sont souvent résolus à l’aide d’algorithmes de
recherche stochastique, ce qui aboutit à des solutions sous-optimales. Ainsi, la première
contribution ici conduit à formuler un modèle linéaire exact comme un LEMO qui vise à
maximiser l’intérêt de la surface de la zone dédiée à une activité marine, tout en maximisant
sa compacité spatiale. Ensuite, pour rendre le modèle proche de la réalité plutôt que des
données vectorielles, on choisit de travailler sur des données matricielles, qui couvrent
entièrement les données géospatiales des zones. Dans le chapitre [3], un nouveau modèle
mathématique multi-objectifs est proposé pour résoudre le problème.

• Résolution exacte :
Deux approches de résolution sont utilisées pour résoudre le modèle LEMO et établir
la meilleure solution : SP et AUGMECON2. En raison du grand nombre de variables
et de contraintes entières dans ce modèle LEMO, la résolution est améliorée dans une
étape de prétraitement en appliquant la technique de mise en mémoire tampon. Cette
étude, présentée au chapitre [3], confirme les résultats selon lesquels AUGMECON2 est
la technique la plus prometteuse en termes de pertinence et de variété des solutions, de
compacité et de temps de calcul. En effet, AUGMECON2 peut être utilisé pratiquement à
chaque exécution pour fournir une réponse unique. Elle nous permet également de réguler
simplement le nombre de solutions créées. SP fournit des solutions moins équilibrées entre
les deux objectifs d’intérêt et de compacité tout en étant moins sensible à l’approche de
mise en mémoire tampon. Dans l’ensemble, ces approches spécifiques sont limitées à une
petite échelle et ne prennent pas en charge la question concernée à grande échelle. Afin
d’évaluer toutes les méthodologies et d’analyser la sensibilité des méthodes de résolution
et des temps de calcul concernant divers paramètres, un ensemble de jeux de données
artificielles est établi pour toutes les évaluations expérimentales.

• MHs :
Des obstacles peuvent apparaître, entre-temps, lorsqu’on tente d’élargir le problème. Ces
obstacles sont le coût de calcul élevé et la difficulté de calcul des solveurs exacts pour
les cas à grande échelle du problème. Dans le chapitre [4], à partir d’une analyse des
limitations du chapitre [3], de nouvelles méthodes pour gérer ces obstacles du modèle
LEMO en utilisant AEMO sont décrites. Après une introduction aux MHs, nous mettons
l’accent sur deux nouvelles P-métaheuristiques basées sur GA développées pour résoudre
le problème d’optimisation du zonage spatial (SH-NSGA-II et MA). Plusieurs innovations
et contributions sont suggérées et appliquées dans l’initialisation, la condition d’arrêt, le
codage des chromosomes, les opérateurs de croisement, de mutation, de vérification et de
réparation, les méthodologies de gestion des contraintes et la structure de l’algorithme
basée sur les données matricielles. Ces AEMO visent à optimiser non seulement l’intérêt
mais aussi la compacité de la nouvelle zone d’activité. Pour régler les paramètres des
AEMO, nous utilisons des MSMR. Nous mettons en place un Design d’expérience comme
Box-Behnken Design (BBD), qui implémente un modèle de régression multi-réponse pour
trois tailles de cartes différentes du problème afin de déterminer la valeur optimale des
paramètres de AEMO. De plus, l’efficacité de tous les modèles est validée par l’analyse de
la variance. Différentes mesures de performance sont proposées et calculées pour mieux
caractériser les solutions de Pareto afin de comparer les deux AEMO. Il en résulte une
analyse plus efficace des deux algorithmes pour des problèmes à petite ou grande échelle.
La valeur significative des tests de Wilcoxon Signed-Rank (WSRT) de toutes les mesures de
performance pour la méthode exacte, SH-NSGA-II, et MA dans les trois niveaux de taille
de problème est évaluée et comparée pour valider toutes les conclusions. 24 cas de test avec
30 répétitions sont utilisés pour illustrer la surperformance de la méthode AEMO suggérée.
Les résultats montrent qu’en moyenne, le MA proposé fournit de meilleures solutions
en moins de temps de calcul et présente une meilleure cohérence que le SH-NSGA-II.
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Enfin, une série de (24× 30) WSRT indique que la MA proposée surpasse largement la
SH-NSGA-II.

• RC :

Pour répondre au troisième besoin de l’objectif de la thèse, il faut ajouter l’hypothèse
d’une coopération entre de multiples intérêts concurrents. Cette exigence nous guide vers
le développement un cadre RC dans le processus de décision coopératif en utilisant des
méthodes de la système multi-agent et heuristiques dans le chapitre [5]. Cette méthode
vise à aider les demandeurs à trouver un compromis dans lequel on leur propose des
alternatives qui maximisent le bénéfice qui leur est alloué et qui garantissent l’équité et
un niveau hautement satisfaisant pour la coopération à long terme. Les mécanismes de
collaboration d’agent à optimiseur et d’agent à agent constituent les niveaux de décision
dans SMOMA. Nous proposons une méthode heuristique basée sur la négociation pour
classer les propriétés de SMOMA en utilisant une structure de négociation en chaîne. Tout
d’abord, au niveau de décision agent-optimiser, les agents complètent leur module de
perception. Une fois l’algorithme SMOMA exécuté sur chaque agent et leurs solutions Pa-
reto optimales collectées, le niveau de décision agent-à-agent est mis en œuvre. Dans cette
technique, les agents dans une négociation prennent toujours une ou plusieurs décisions et
entreprennent une ou plusieurs actions afin d’atteindre le compromis raisonnable optimal
tout en évitant les goulots d’étranglement. Les coûts de communication de la négociation
sont minimes car le nombre de messages transmis est limité et les agents ne sont pas tenus
de divulguer toutes les informations les concernant. Divers scénarios de négociation sont
également décrits, évalués et notés à l’aide de l’approche d’agrégation de Condorcet. Les
résultats montrent comment les agents peuvent arriver à de bonnes solutions en utilisant
les techniques susmentionnées.

Limitations et perspectives
Les limites et les perspectives de cette thèse pourraient être énumérées comme suit :

1. Dans notre modèle LEMO, nous couvrons les contraintes globales et ne creusons pas plus
profondément les contraintes de chaque activité. Par exemple, dans le monde réel, l’une
des contraintes difficiles pour certaines activités maritimes, comme le transport maritime,
est la planification du temps. Ce problème consiste à déterminer les temps d’arrivée,
de départ et d’attente de chaque navire dans chaque port pour servir la cargaison. Par
conséquent, des fenêtres de temps (dures ou souples) peuvent être ajoutées aux contraintes
des problèmes de routage et d’ordonnancement des navires. Bien que la prise en compte
d’un plus grand nombre de contraintes rende le modèle LEMO plus complexe, elle est plus
susceptible de faciliter le mécanisme de négociation au final. Étant donné que la plupart
des conflits proviennent de ces restrictions, leur assouplissement par les décisions des
agents au cours de la négociation pourrait les aider à trouver un compromis.

2. Dans notre modèle LEMO, nous définissons les fonctions objectives globales, qui ne sont
que deux. Ce sont les fonctions objectives globales pour toutes les utilisations marines
considérées. L’ajout de quelques fonctions objectives supplémentaires pourrait aider à
couvrir plus de critères et de préférences des acteurs. Par conséquent, d’autres fonctions
objectives pourraient être ajoutées, comme la minimisation du coût de l’allocation des
zones localisées à chaque utilisation marine tout en maximisant le profit total pour chacune
d’entre elles.

L’amélioration du modèle exact en considérant plus de deux fonctions objectives pourrait
être évaluée par deux idées dans le cadre de recherches futures. Par exemple, une idée
pourrait considérer les objectifs globaux comme des objectifs généraux et utiliser les
méthodes d’optimisation à deux niveaux pour chaque acteur. En procédant ainsi, les
objectifs de chaque acteur imbriqués dans les objectifs globaux seraient d’abord atteints et
aideraient ensuite à optimiser les objectifs généraux.

Un autre choix consiste à avoir deux fonctions objectives différentes ou plus pour chaque
agent. Par conséquent, trouver les méthodes de résolution applicables comme MHs pour-
rait être un défi pour ces idées.
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Dans notre modèle LEMO, qui est un problème de zonage spatial semi-coopératif, une nou-
velle activité humaine doit être localisée et allouée en fixant d’autres activités humaines.
Par conséquent, une question qui n’est pas abordée est la modélisation de la programma-
tion mathématique exacte par localisation-allocation de plusieurs nouvelles utilisations
marines en même temps. Le développement de la programmation mathématique pour
ce type de problème (SMOMA) pourrait faire passer le modèle de linéaire à non linéaire
et beaucoup plus compliqué. Disposer du modèle mathématique de SMOMA pourrait
aider à trouver les solutions optimales, et non des solutions approximatives pour tous les
acteurs. Cette idée nécessite davantage de recherches et d’investigations.

3. Dans les méthodes de résolution, bien que les conclusions de SMOMA aient permis de
résoudre en partie le problème spécifique donné à grande échelle, d’autres améliorations
seraient possibles pour réduire le temps de calcul tout en augmentant la vitesse de conver-
gence. Par exemple, certaines améliorations des opérateurs de génération de population
pourraient aider à cet égard en diminuant le besoin d’opérateurs de réparation, puisqu’un
temps remarquable dans notre AEMO est consacré à ces opérateurs.
De plus, l’évaluation et le développement d’autres AEMO à comparer avec ceux proposés
actuellement pourraient aider à trouver le AEMO le plus rapide pour ce problème. Cette
perspective pourrait être atteinte avec un morceau d’extension dans l’algorithme actuel.
Une autre méthode de recherche future que nous pourrions étudier est celle des algo-
rithmes Matheuristiques. Il s’agit d’algorithmes heuristiques créés par l’interopérabilité des
MH et des techniques de programmation mathématique, ce qui serait intéressant. Cette
méthode pourrait mélanger le modèle actuel LEMO avec AEMO d’une certaine manière.

4. Les modèles AEMO et LEMO, dans notre recherche, sont basés sur des données matricielles.
Cependant, la recherche actuelle n’est pas conçue pour évaluer ces modèles sur la base
de données vectorielles. Bien que la prise en compte des données matricielles augmente
la précision de nos solutions et soit plus préférable pour les compagnies maritimes, les
données vectorielles réduisent le coût de calcul et la difficulté de nos algorithmes.
Par conséquent, le développement d’un modèle non linéaire basé sur le polygone pour
faciliter la transformation tout en utilisant les données vectorielles plutôt que les données
matricielles pourrait être évalué dans des travaux futurs.
La présente thèse n’a examiné que la certitude des paramètres sans tenir compte de leur
incertitude. L’incertitude des données d’entrée, en particulier lorsque les données d’entrée
incorporent statistiquement de nombreuses distributions, et la dynamicité des données
d’entrée sont deux défis essentiels à relever dans les problèmes d’optimisation du monde
réel. Pour rendre les méthodes plus compatibles avec le monde réel, la prise en compte
de l’hypothèse d’incertitude pourrait être utile. Par exemple, une approche de recherche
intéressante pour l’incertitude des données pourrait consister à utiliser des techniques ML
telles que les algorithmes de regroupement (par exemple, k-means, SOM) pour regrouper
les données d’entrée dans le but de différencier les données avec diverses distributions.
Ces classes de données peuvent ensuite être utilisées/intégrées pour relever le défi de
l’optimisation.
On peut penser à l’optimisation robuste ou à la programmation stochastique. Deux facteurs
principaux permettent de les distinguer :

• Dans l’optimisation stochastique, on suppose presque toujours que l’on connaît la
distribution de probabilité (éventuellement sous la forme de probabilités discrètes
de chaque scénario) des paramètres aléatoires. En optimisation robuste, on suppose
généralement (mais pas toujours) que l’on ne connaît pas la distribution.
Dans l’optimisation stochastique, le but est généralement d’optimiser la valeur atten-
due de la fonction objectif (coût attendu minimum, bénéfice attendu maximum, etc.).
Dans l’optimisation robuste, comme nous ne connaissons pas les probabilités, nous
optimisons plutôt une autre mesure. Les mesures courantes consistent à optimiser le
résultat le plus défavorable (par exemple, minimiser le coût maximum, maximiser
le profit minimum, etc. – parfois sur un sous-ensemble seulement des scénarios
possibles. Il existe également de nombreux autres objectifs communs.

En ce qui concerne la dynamique des données, des approches d’apprentissage automatique
(ML) peuvent être utilisées pour surveiller/prédire l’évolution des données d’entrée et,
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lorsqu’une nouvelle évolution est identifiée, les variables d’optimisation sont modifiées en
conséquence.

5. L’SMOMA est considéré comme un système fermé, et non comme un système ouvert. Le
système ouvert permet aux nouveaux agents de s’intégrer de manière transparente tout
au long du processus. Ce faisant, il pourrait être possible que les agents apparaissent et
disparaissent au cours du processus. Par conséquent, cette hypothèse pourrait rendre le
mécanisme de négociation plus flexible pour les agents tout en réduisant les communica-
tions inutiles entre eux. Elle pourrait donc conduire à une réduction de la complexité et
des coûts de la négociation.
Cette idée devrait être mise en œuvre par la nouvelle heuristique de négociation.

6. L’interaction entre l’environnement et le système par rétroaction n’est pas considérée.
L’ajout de l’hypothèse de rétroaction à SMOMA pourrait aider les agents à atteindre la
meilleure solution de compromis. Par exemple, les agents pourraient retourner à leur
environnement optimiseur pendant la négociation en fournissant un retour d’informa-
tion tout au long ou à la fin de la négociation. Ce faisant, la communication interactive
entre l’optimiseur et les agents pourrait permettre à l’optimiseur de rester informé des
changements de solution.
Cette idée devrait être mise en œuvre par la nouvelle heuristique de négociation.

7. Certaines autres techniques pour aborder l’analyse RC pour les usages multiples, qui
devraient aider à aborder la gestion du zonage dans la PEM, pourraient être les suivantes.
Cette perspective pourrait se définir comme une nouvelle recherche. Ces orientations
ouvrent également d’autres questions de recherche qui méritent d’être approfondies.

• évaluant le mélange de l’apprentissage par renforcement ou de l’apprentissage pro-
fond avec des techniques d’optimisation. Cependant, ces techniques nécessiteraient
une quantité considérable de données synthétiques ou réelles précises pour démon-
trer leur efficacité. L’accès à des ensembles de données réelles est une préoccupation
future pour la recherche la PEM.

• étudie l’optimisation polyédrique et hiérarchique multi-objectifs basée sur l’appren-
tissage hybride pour SMOMA. Cette méthode pourrait aider à satisfaire non seule-
ment les contraintes et les objectifs globaux, mais aussi les objectifs spécifiques à
chacun d’entre eux.

• mélangeant les modèles de simulation basés sur les agents et les techniques d’optimi-
sation (en utilisant l’optimisation AnyLogic qui est construite au-dessus du moteur
d’optimisation OptQuest, l’un des outils d’optimisation les plus flexibles et les plus
conviviaux du marché). Bien qu’Anylogic soit un logiciel propriétaire, qui n’est pas
utilisable pour une étude de recherche, il pourrait être appliqué à des cas réels dans
l’industrie.
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Abstract

In recent decades, the increasing demand for the use of marine space has led to conflicts due to
the overlap of various human activities (e.g., renewable energy facilities, aquaculture, fisheries,
etc.) with economic development, social objectives, and environmental protection (European
Maritime Affairs Commission, 2017). To effectively address these potential conflicts, a planning
approach is needed to analyze and spatially and temporally allocate human activities in marine
areas. This planning process is commonly referred to as Marine Spatial Planning (MSP), an
ecosystem constraint-based spatial organization process that aims to allocate marine spatial areas
to multiple actors to ensure that human activities at sea occur in an efficient, safe, and sustainable
manner.

The challenging issue of this thesis is to develop a spatial decision support system for locating
and allocating areas of marine space to multiple actors, despite potentially conflicting initial
objectives and constraints.

To address this issue, in this thesis, we focus on three different requirements as follows:

• Modeling the problem in a realistic Geographical Information System (GIS) framework
and formulating a mathematical model to solve it,

• Being able to propose solutions for large-scale problems,

• Developing a decision-making process that helps multiple actors to resolve possible
conflicts by reaching a trade-off.

According to these objectives, this thesis proposes a Multi-Objective Multi-Agent System
(MOMAS) that simulates the multi-level decision-making processes of marine use spatial zoning
management with three main contributions:

1. Multi-Objective Integer Linear Programming (MOILP): Optimal allocation solutions for
problems of reasonable size that guarantee Pareto efficiency, where all claimed space is
allocated.

2. Multi-Objective Evolutionary Algorithms (MOEAs): Near-optimal solutions for large-scale
problems, approximated by Meta-Heuristics (MHs).

3. Cooperative decision-making process with Multi-Agent Systems (MAS) and heuristics
methods: Helping multi-objective actors to negotiate and select the most appropriate
and fair set of allocation solutions in terms of zoning of the maritime space, in view of
long-term cooperation.

This thesis proposes a formal and executable approach to address the spatial zoning man-
agement problem with both multiple objectives and actors. In the case of conflict, different
cooperation scenarios are compared and ranked. The experimental results on synthetic datasets
highlight the fact that good tradeoffs can be reached when the actors agree to cooperate. The
proposed work paves the way for future online decision support tools applied to real-world
cases.
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1.1 Preamble

Life on earth depends on the ocean because 71% of the planet is covered by the ocean. Naturally,
people care deeply about it, with its abundant life and vast resources. The ocean means something
different to all of us. We all have our own interests. For example, generations of fishermen have
gained a livelihood from the ocean. Conservationists are committed to protecting it, while a
container ship’s captain needs deep water and direct access to the port via the shortest route.
Where do our priorities lie when a marine area is home to wildlife fishing and shipping at the
same time? What if the situation is complicated by minerals the mining industry wants to extract,
or if an investor plans to build a wind farm? The responsible planner, typically a government
official, faces many challenges in dealing with all these demands; exactly how do you satisfy
all these people and their interests? How do you balance using and protecting the same ocean
space?

Marine Spatial Planning (MSP) is a relatively new way to manage human activities that occur
in the ocean. It is a long-term and strategic process that guides where, when, and how human
uses take place. This can be useful where there are opportunities for new uses or where activities
impact nature. MSP can help to balance competing interests, making sure society benefits while
protecting the marine environment.

Firstly, MSP is best carried out by a mandated planning group with a strong shared vision and
clear goals regarding what needs to be achieved. The planner must listen to as many interested
parties as possible, not just at the start, but right through the process by working together with
all those stakeholders that have an interest in the ocean. Planners ensure that marine users
build trust, commit to the process, and feel ownership of the plan produced with their help. Of
course, this will raise questions for lots of them. Shall we exclude mining from important fishing
grounds? Shall we reroute the shipping lanes to make space for marine wildlife? Can we have
tourism and conservation at the same time in the same location?

MSP begins with an analysis of the current situation. For example, which locations have the
highest natural value? Who is using the planning area? What are the government’s priorities for
the ocean and its use? By drawing together as much information as we can on everything from
fishing grounds to shipping lanes, from important natural habitats to oil and gas fields, we can
map the details to understand some of the key issues that the plan must address. Next, MSP
identifies where conflicts and synergies may lie, which activities can be easily combined, and
which are mutually exclusive. Options for the future are also considered; what trends do we
expect in different industries? Deep-sea mining operations might look to expand, but what if
newly discovered mineral deposits extend into nature conservation and tourism areas? This puts
us in a position to develop alternatives and decide on the preferred spatial option. This might
involve trade-offs between interests. Reaching a compromise will require negotiation, but this
can only be successful if the stakeholders are at the table and can be heard.

Once spatial solutions that best accommodate everyone’s needs and meet the plan’s objectives
have been agreed upon, it is time to set out actions that will ensure the success of the plan.
These may include areas or policies that prioritize certain uses, such as mining or wind farms,
or rerouting shipping lanes to give more space to wales. Such management actions should be
developed with the input of all marine users and interest groups to help ensure that the plan is
supported by as many stakeholders as possible. Once the plan is agreed upon and adopted, it
must be implemented. From this day on, it will guide all marine users where, when, and how
their activities occur in ocean space.

Finally, MSP is an ongoing process. It involves regular monitoring, evaluation, and revision. Is
it achieving what it was supposed to? What do we need to do better next time? What further
information do we need? Naturally, things change; the climate, investors, interests, politicians,
and their priorities. So the plan will need to be adopted over time. If done well, a marine spatial
plan will support not just today’s livelihoods but those of future generations for that very good
reason. It is no surprise that MSP is now spreading across the world’s seas and oceans.

Taken together, however, whenever a bundle of resources, rights, burdens, benefits, or costs are
held temporarily in common by a group of sectors, debates continue about the best strategies
for spatial zoning management to distribute them among them. Moreover, this issue has grown
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in importance in light of recent political hotspots, fueled by political power struggles and the
continuously increasing demand for marine/land space for both traditional and emerging
marine/land uses.

The challenging objective of this thesis would be to develop an appropriate location-allocation
approach within a wider spatial decision-making process, where marine users interact with each
other in order to reach a spatial allocation agreement through their conflicting objectives.

This challenging objective can be considered a complex problem, the zoning management
for Multi-Objective Multi-Agent System (MOMAS) with the application to MSP. Complexity
should not be mistaken for complicated. Where a complicated problem has many different and
well-defined parts with well-known behaviors and can be reduced to simpler problems (a puzzle,
for example, can be divided into smaller puzzles before being solved), a complex problem is
defined by an important number of interacting little parts, and it is their interactions that produce
the global behavior. A complex problem is like a complex system. Part of a complex system is
guided by simple and individual rules. The behavior of the system cannot be predicted from
individual rules: “the whole is greater than the sum of the parts” [Fun10].

The above-mentioned complex real-world problems can be found in a plurality of domains
and science. These problems contain three aspects that make them impossible to be solved by
classical centralized decision-making processes and existing commercial optimization software
all around the world. Solving such problems is an important subject in computer science.

Firstly, they are Multi-Objective Optimization Problems (MOOPs), where solving the problem
for each objective leads to a different solution. Accordingly, an approach is required to find
a set of mathematically “equal” solutions called Pareto optimal solutions. Different solving
methods have been developed. They are commonly classified into two categories: exact and
inexact methods. The first one guarantees to find (if it exists) the optimal solution. Still, as
they explore the whole search space, they are too slow and cannot be applied to solve complex
problems. Approximate methods find a solution using a heuristic or Meta-Heuristics (MHs)
to cross the space search. An important drawback of all of those methods is that they cannot
manage dynamics, which is one of the characteristics of complex problems.

Secondly, they are multi-agent problems, where the preferences of all possible agents should
be incorporated into the decision process. Therefore, an interactive optimization approach is
required that effectively takes the agents’ preferences and finds a compromise optimal decision
accordingly. This agent-to-optimizer interaction helps agents learn about the problem and allows
them to modify and change their preferences progressively. The third aspect is the interdepen-
dency between the agents that affects their decisions. This issue necessitates a collaborative
mechanism between agents to share information or even handle conflicting preferences and
constraints. Through this agent-to-agent collaboration mechanism, agents can modify their
preferences and constraints and finally update their decisions. This methodology can solve such
a multi-objective and multi-agent optimization problem by providing an agent-to-optimizer and
an agent-to-agent collaborative mechanism with an application to MSP, which exists neither
theoretically nor as a decisional methodology.

1.2 Detailed Problem Statement and Objectives

The main objective of this thesis is the coordination of marine activities and the solution of
location-allocation problems that could potentially lead to spatial conflicts. The challenge is to
choose an appropriate zoning strategy within a wider spatial decision-making process, where
marine users interact with each other to reach a spatial allocation agreement. Reaching such
an agreement is not straightforward when users follow their internal and particular objectives,
which are mostly in conflict with others. To cope with this issue, an efficient decision-making
process needs to be developed in which three different requirements, as shown in Figure 2 should
be met as follows:

• Formulation and Modelization: formulating and modeling the problem in a realistic
Geographical Information System (GIS) framework, as well as developing a mathematical
model to address it,



Chapter 1. Introduction 4

• Optimization: scaling up the problem to provide optimal solutions for large-scale cases,

• Negotiation and Implementation: developing a decision-making process that helps
multiple actors to resolve possible conflicts by reaching a trade-off.

Formulation Modelization Optmization Negotiation Implementation

Figure 2: Proposed decision-making approach

According to above-mentioned objectives, this thesis presents a MOMAS to model the multi-
level decision-making processes of marine use spatial zoning management, with three primary
contributions:

1. Multi-Objective Integer Linear Programming (MOILP): Optimal allocation solutions for
problems of acceptable size, ensuring Pareto efficiency and allocating all claimed space.

2. Multi-Objective Evolutionary Algorithms (MOEAs): MHs approximates near-optimal
solutions for large-scale problems.

3. Cooperative decision-making process with Multi-Agent Systems (MAS) and heuristics
methods: In the context of long-term collaboration, supporting multi-objective stakehold-
ers in negotiating and reaching the most appropriate and equitable allocation set in terms
of zoning of marine area.

1.3 Research Questions

This thesis contributes by bringing contributions to answer the three following research questions,
which are at the core of this complex decision-aiding methodology.

1. How to formulate an exact linear model as a MOILP for the spatial zoning management
problem in MSP?

2. How to solve the proposed model and determine the optimal solution for the exact model?
Which exact methods should be used?

3. How to solve the computing complexity of this MOILP model through scaling it up?
Which approximate methods should be selected to solve the large-scale cases?

4. How to develop a mechanism where the multi-uses effectively collaborate to share the
information and learn the preferences in terms of the solutions of the other uses as well as
modify their own ones, especially when facing a conflict. How to develop a negotiation-
based mechanism to reach a spatial allocation agreement through their conflicting objec-
tives?

1.4 Organization of Manuscript

The present manuscript is organized into four main chapters, including Marine Spatial Planning
Context, Exact Zoning Model for Marine Spatial Planning, Extensions to Evolutionary Approaches for
Zoning Management in Marine Spatial Planning, and Cooperative Multi-Objective Multi-Agent Zoning
Management for Marine Spatial Planning (Figure 3).

Each chapter includes different phases to bring us close to the objectives of this thesis. The
horizontal axis shows the direction of the complexity level from the start point of non-cooperative
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to cooperative methods applied to the problem. The execution of all stick notes is in order from
left to right for each phase of each chapter.

Chapter 2

MSP Context
Reviewing the emergence process of MSP  
and its big dilemma

Chapter 3
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Chapter 4
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Chapter 5
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Figure 3: Illustration of the organization of the manuscript, allowing to visualize the con-
tributions related to the different deployment phases, reaching to Cooperative Systems.

The rest of the manuscript is structured as follows:

• In Chapter [2], a state-of-the-art in the development of spatial planning is made by review-
ing the status of the coastal and ocean environment and the history of planning. We direct
this state-of-the-art toward land-use planning studies to answer the main reason for the
transition from Terrestrial Spatial Planning (TSP) to MSP. To characterize those methods,
their main issue, zoning, is proposed.

• In Chapter [3], since one of the main issues in MSP, is to locate and allocate an optimal zone
for a new human activity while considering the other existing activities, a new problem in
the scope of zoning in MSP is defined and described. Then, we focus on formulating an
exact linear model as a MOILP for this problem by working on raster data. We present the
resolution exact methods which solved and determined the optimal solutions. Then, after
pointing out their major drawbacks, we present methods that can manage and improve
the model resolution by using buffering techniques. Finally, we validate and study the
approaches by generating a set of artificial datasets.

• In Chapter [4], from an analysis of the lacks in Chapter [3], new methods to manage the
computing complexity issue of MOILP models using MOEAs are described. After an intro-
duction to MHs, a focus is made on MOEAs to define Synchronous Hypervolume-based
Non-dominated Sorting Genetic Algorithm-II (SH-NSGA-II) and Memetic Algorithm
(MA). We show the different experiments and tests we have performed to tune the param-
eters of both algorithms, validate them, and compare them on artificial datasets. Finally,
proof of the coherence of solutions with the exact method for small-scale cases is proposed.

• Chapter [5] relies on Conflict Resolution (CR) in MAS and applicative contributions to
propose the cooperative MOMAS for the given problem. MOMAS is a MAS to solve a
multi-objective evolutionary-based decision-making approach to let multi-uses negotiate
for long-term cooperative MSP. This chapter shows the different scenarios and experiments
we have performed to rank and validate different negotiation models on artificial datasets.

• Finally, in Chapter [6], contributions, limitations, and perspectives are made, from a
scientific and an applicative point-of-view.
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ABSTRACT

This chapter reports the available issues of the coastal and ocean environment by explaining
the main affecting elements. Over the last 5–10 years, MSP has emerged as a new man-
agement tool for national and international waters and has already attracted a substantial
body of multi-disciplinary research on its goals and policy processes. Globally, marine area
planning, from coastal to open-ocean regions, is being created to promote sustainable ocean
management and governance. This planning process is most commonly referred to as MSP,
but it also goes by many other names, including maritime spatial planning, ocean planning,
marine planning, ocean zoning, marine spatial management, sea use management, and
so on. This chapter presents the history of planning with different definitions. Whilst
spatial planning has evolved as a tool to manage the development and use of the terrestrial
environment over decades, the development of spatial planning systems for the marine
environment is in its infancy. In an attempt to initiate such a management approach, this
chapter reviews land-use planning and explores the relationship between MSP and its
land-based cousin, TSP by clarifying their transition. An important prerequisite for the
effective application of MSP is the use of appropriate integrated approaches. In particular,
the development of zoning schemes could be valuable for the location-allocation of areas
where specific activities should occur with competing interests. As a result, last but not
least, this chapter ends up with a description of the advantages of zoning, focusing on its
integrated application in the framework of MSP and mentioning the first potential research
question that should be addressed in this thesis.

2.1 Introduction

The creation of a European Marine Strategy Framework Directive and special UK MSP law
reflects an international increase in effort aimed at better protecting the marine environment and
planning and managing human interaction with the sea in a more thoughtful and coordinated
manner. UNESCO defines MSP as “a public process of analyzing and distributing the geographi-
cal and temporal distribution of human activities in marine areas to fulfill ecological, economic,
and social objectives that are normally established via a political process” [ED+09].

The development of MSP as a unique and distinct sector of environmental governance has
resulted in an increasing amount of policy and intellectual discussion on the nature of MSP,
its potential advantages, and normative norms for its implementation. The discourse has been
diverse, attracting an interdisciplinary community of researchers who have covered topics such
as the identification of key policy drivers [VMC09], reviews of initial MSP experiences [ED+09],
and territory-specific analysis of institutional arrangements [Ard+08].

Furthermore, there have been a few attempts to describe the social side of MSP, such as the
influence on coastal communities [FC08] and the participation of other stakeholders [RE10;
Cal+12]. Some scholars have conducted evaluations of the growing legislative frameworks for
MSP (e.g., [Mae08]) and the function of MSP in promoting certain economic activity [Jay10].
Given the precedence of its land-based relative, TSP 1, it is unavoidable that the focus has shifted
to this to guide and explain the evolution of MSP.

A variety of organizations, including the Intergovernmental Oceanographic Commission
and the Man and the Biosphere Programme of UNESCO, have acknowledged the potential
advantages of this specific field of inquiry [ED07].

There, however, has been remarkably little interaction between practitioners or academics
within the larger terrestrial planning community to date [Cla06]. While this growing body of
work has been extremely useful in informing the emerging institutional structures and policy

1The term ’TSP’ is used here to differentiate it from the previous practice of land use planning from
which it emerged.
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regimes for MSP, as a generalization, it has tended to lack the deeper reflexivity 2. Reflexivity
has been a more common feature of the social scientific evaluation of TSP, which has resulted
in the production of a substantial body of theoretical literature related to both the purpose and
process of planning.

However, when we look at the burgeoning literature on MSP, we see relatively few attempts
to connect larger theoretical arguments to practice and pose questions about the virtues of
the developing institutions, practices, and governance regimes of MSP. While some work has
begun to explore and direct issues about economic development and environmental protection
to address potential marine spatial conflicts [PL04; Pla08], we believe that the necessity for
practical engagement with MSP has not been underlined sufficiently, nor has it yet contributed
substantively to spatial zoning management.
We are interested in triggering such a conversation by drawing on TSP’s long legacy of critical
thought on the planning process and demonstrating how this may enrich the new area of MSP
theory. The main goals of this chapter are to investigate the background of MSP, as well as to
discuss the potential value of using zoning in MSP and to encourage further theoretical and
practical discussion on reaching a negotiation-based decision-making platform for competing
interests across the land/sea.

As a result, the chapter first investigates the contextual differences and similarities that must be
recognized when exchanging TSP and MSP experience before moving on to investigate a variety
of issues related to the planning activity process where theoretical exchange between the two
regulatory systems could be instructive. Particular emphasis is placed on the UK’s experience,
which has been a worldwide leader in the establishment of formal MSP provisions and where
the new system has been heavily influenced by terrestrial planning regulations. The chapter
finishes by outlining a number of topics where theoretical interchange between MSP and TSP
may be beneficial, as well as calling for a second generation of MSP research that would provide
a critical turn to this thesis contribution in this burgeoning field.

2.1.1 The Status of the Coastal and Ocean Environment

News of increased degradation, ongoing over-exploitation, escalating conflict, the effects of
climate change, and even unexpected environmental problems affecting our ocean and coastlines
are reported every day. While there are some small-scale success stories, the race is on for a new
paradigm and new method of doing business, the ocean management business. The continued de-
terioration of the global ocean and its shores endangers human well-being worldwide. Although
coastal and marine ecosystems are dynamic, they are changing faster than ever [ass05].

Human pressures on coastal and marine resources jeopardize the supply of several ecological
services critical to the well-being of coastal peoples and national economies. Coastal fishing
stocks, like those of most offshore fisheries, have been severely reduced. According to the most
recent UN Food and Agriculture Organization assessment, over 80% of commercially fished
stocks worldwide are at capacity or over-exploited [FAO09]. According to a recent analysis
of global fisheries’ management, it is impossible to identify a single coastal nation that is not
influenced by the overcapacity of fishing fleets or the perverse incentives for fisheries growth.
While there is considerable disagreement about whether fisheries management can keep up
with the increasing pressures to supply fisheries products for consumption, support agriculture,
and even provide fertilizers for landscaping, even conservative fisheries managers generally
agree that better management is required [Wor+09]. Depletion of fisheries stocks not only causes
resource scarcity (and significant wealth inequality in many parts of the world), but also impacts
the productivity of coastal and marine food webs, affecting the provision of other services
important to humanity [Day+95; TD02].

Among these services are coastal development protection from erosion and storm damage,
as well as boosting the value of recreational and tourism experiences. Biological modifications
are linked to physical changes in the coastal zone and marine area. Habitat change persists

2By ‘reflexivity’ we refer here to both the overt reflection on previous experience to inform current
practice, and a deeper exploration of the intuitive predispositions of those engaged in planning that
predetermine conscious practice [HL02].
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in the coastal zone, and degradation of habitats within and outside these systems contributes
to reduced ecological functioning. Similarly, human activities far inland, such as agriculture
and forestry, have an influence on coastal and marine ecosystems by diverting freshwater from
estuaries and introducing land-based contaminants into coastal waterways (nearly 80 percent of
the pollutant load reaching the oceans comes from terrestrial sources). These chemical changes
have an influence on the viability and capability of coastal systems to offer services. Thus,
changes in ecosystems and services occur as a result of land use, freshwater usage, and sea-based
activities, despite the fact that these land-freshwater-marine links are frequently ignored (Figure
4).

Figure 4: Schematic of coastal system [OK20]

In general, management of coastal resources and human influences in these places is insuffi-
cient or poor, resulting in conflict, reductions in services, and diminished resilience of natural
systems to changing environmental conditions. Inadequate fisheries’ management occurs, fre-
quently because Decision-Makers (DMs) are uninformed when marine resource management
is inadequate, while coastal zone management seldom tackles problems caused by land-based
sources of pollution and degradation [KA17]. Funds are seldom available to support long-term
management solutions, resources become over-used and subsequently unavailable, and disputes
escalate. A new paradigm, or, at the absolute least, a significant increase in really effective
management, is urgently required. It seems doubtful that traditional management techniques
and practices will be enough to tackle these ever-increasing, and sometimes freshly developing,
issues.

But what is the primary priority for a brighter future for the ocean? Like many other
studies and publications before and subsequently, the 2006 National Academy of Sciences book
Increasing Capacity Building for Stewardship of Oceans and Coasts: A Priority for the 21st Century
[Cou+07] highlighted fragmentation of management as one of the most persistent and significant
challenges to sustainable marine management.

2.1.2 The History of Planning

However, to find the best answer for the above-mentioned question, it is necessary to emphasize
on the crucial element in management. The critical and fundamental role in management is
planning. Planning specifies how the objectives will be met and predicts the actions in advance,
implying that planning should come before doing. According to George R. Terry, “planning is
crucial to the three core management responsibilities of organizing, actuating, and controlling.”
Without the actions established by planning, there would be nothing to organize, no one to
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actuate, and no need to control. The significance of planning in the management process is
remarkable. To begin with, let go through the history of the planning.

The history of “planning” began in the late nineteenth century in Britain with the creation
of land use planning under the influence of intellectuals such as Patrick Geddes. After WWII,
the core characteristics of town and country planning were embraced and widely applied,
particularly in the United Kingdom. While the system’s initial focus was on urban planning
[Che96], it has now grown to provide a more complete system of land use control throughout
both urban and rural regions, as well as to support to sustainable development goals and the
implementation of good environmental management [ABS02]. The concept of sea use planning
emerged much later, in the 1970s, [YF75]. The practical development of such a system, together
with the reform of national land use planning systems and the rise of larger spatial planning
in the context of an enlarged Europe with complicated social and economic integration to the
need, has led to a resurgence of interest in public sector planning [Ald16]. Meanwhile, academic
circles have largely ignored the concurrent growth of spatial planning for the economic sector
and governmental agencies. The scope of planning, particularly “spatial” planning, has been
hotly contested in recent years, but some agreement has arisen over the linked terms mentioned
in Table 2.

Table 2: Definitions of “Planning” in terrestrial and maritime environments

Land-Use Planning: A field of public policy that deals with facilitating and regulating the use
and development of land and property opportunities to balance economic development and
environmental quality [Tau07]. Strategic plans with goals are frequently at the heart of such
systems, which guide instruments like zoning, permits, and development control legislation.
Other words for land-use planning that are often used in the English-speaking world include
town and country planning and development planning. Urban and regional planning are
both concerned with urban and regional land use planning.

Spatial Planning: A broader concept and activity than land-use planning that connects the
former with economic, social, and environmental development policies, operating at all spatial
scales but focusing on the regional level to provide a roadmap and framework for future
regional development and resource allocation and investment. Commonly emphasizes the
notion of balance and long-term polycentric growth [BCS10].

Strategic Planning: Organizational or sectoral planning aimed at increasing the long-term
efficacy of operations. Based on some type of macro-environmental study of social, technical,
and political trends, or scenarios that describe internal and external causes of future growth
[Min94]. Depending on the function of the organization, there may or may not be a spatial
component.

Sea Use Planning: The creation of integrated management plans for a marine area with
the goal of harmonizing ocean-related regulations, such as protected area management and
sectoral activities [SV91].

MSP: A strategic, forward-thinking planning tool for regulating, managing, and protecting the
marine environment, including through space allocation, that addresses multiple, cumulative
and potentially conflicting uses of the sea, ideally through a series of nested 20-year plans
at different spatial scales, focused on marine regions and based on an ecosystem-approach
[GL08].

2.2 Land-Use Planning

The concept of spatial planning has long been useful in controlling land uses [Tau07; DT+16]. In
the 1950s, the concepts of “sustainable development goal” and a “system approach” began to
be incorporated into land-based spatial planning in response to the dangerous environmental
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consequences left by the industrial revolution, as well as the need to satisfy ongoing economic
growth [Dou08; Smi+11; DT+16].

As previously stated, a substantially integrated land use planning system has emerged since
its inception in the mid-twentieth century. It is beyond the scope of this thesis to go into depth
on land use planning. Rather, the goal is to call attention to specific temporal and spatial
aspects of land use planning that are particularly important in the current context. It is worth
mentioning that most of the early development of thought and actual application occurred in
Britain, beginning in the late nineteenth century [Che96]. The creation of a development planning
system to guide the development control process was a prominent subject in the early phases of
land use planning.

In contrast to many areas of environmental policy, where EC policy has pushed development,
land planning systems have been affected by national agendas and needs rather than supra-
national ones. As a result, land use planning has evolved autonomously at the national level,
affected by each country’s distinct legal, administrative, and socioeconomic settings [Ald16;
FO09]. Despite the resulting diversity of planning systems, some characteristics are similar.
These include the allocation of development types in metropolitan regions, such as industrial,
commercial, and residential land.

Many systems also included provisions for restricting urban expansion through the use of green
belt policies applicable to the rural-urban fringe, such as the restricted zones in the Ley de Costas
(Spain, 1988-); the littoral band in the Loi Littoral (France, 1986-); and the Galasso Law (Italy, 1986-).
To control development, national parks and other designations such as Areas of Outstanding
Natural Beauty (England and Wales 1949-); the Conservatoire littoral (France, 1975-); landscape
reserves and National Parks under the Federal Nature Conservation Act (Germany, 1998-); and
protected dune areas (Belgium, 1995-) have been established.

However, such designations have been founded on a static conception, with a tendency toward
rigidity of application. As economic development has advanced, such classifications have become
less suited for dealing with dynamic economic, social and environmental change. Beginning in
the United Kingdom in the 1960s and now widespread throughout Europe, a multilayered and
flexible strategic planning strategy has evolved to better account for the dynamics of land use
change. These new procedures have permitted comprehensive local or municipal plans to be
developed within the framework of larger strategic plans generated at the county and regional
levels, albeit there has been some difference in whether these plans apply to all land areas (both
urban and rural).

Throughout much of Europe, the rise of these systems is related to the rebirth of regional
governance, as well as with the increasing concept of regional competence in the context of
economic growth [KMT04] and associated European policy including the ESDP, referred to above.
The offshore oil sector had significant development in the 1960s, particularly in Scotland and
Norway. This had a significant impact on terrestrial planning systems, with coastal planning
regulations focused on huge sites like platform yards, oil and gas terminals, and gas processing
plants.

In Scotland, the answer was the limited implementation of both national planning and extra
local planning measures in Shetland and Orkney. Notably, in both instances, the law stretched
over the land-sea interface (Zetland County Council Act 1974). In Sweden, in response to
possible offshore growth, municipal terrestrial planning systems were extended to 12 nautical
miles offshore in 1985 [Tau98]. Since 1996, Norway has had a regional coastal planning scheme
[HS07].

German federal Länder have lately had their spatial planning rights extended to the territorial
waters and, more recently, the EEZ. Significant development demands from tourism, renewable
energy, ports, and shipping have resulted in particular planning policy guidelines from national
governments to assist the formulation of land use plans for coastal regions. The ongoing
pressure for large-scale infrastructure and industrial projects in the United Kingdom has now
been recognized in the national planning system with the establishment of the Infrastructural
Planning Commission, whose writ will run at sea and on land, constituting a second direct
integration of land and sea use planning. It also highlights the link between spatial planning and



13 2.3. From Terrestrial Spatial Planning to Marine Spatial Planning

actual regional economic strategy.

Finally, land use planning evolved as a set of national systems that affected urban growth and,
to a lesser degree, the rural-urban fringe. Rural regions are increasingly being incorporated
into planning schemes. Transportation provision—railways, highways, airports, and huge
ports—and coastal planning for the offshore oil sector are two famous instances of this process.
There are strategic plans for really rural regions, as well as those developed long ago for large
estates and accompanying rural farms, as well as those for places of landscape and recreational
significance, such as national parks, on a more local scale.

As large-scale spatial plans for regions and devolved administrations are developed, the spatial
framework for both urban and rural development should become explicit, longer-term, and
more strategic [Ald16]. However, managing the implementation of real spatial planning systems
and determining the essential linkages with economic regional, following the guidelines is a
challenging task that requires a high level of institutional integration.

2.3 From Terrestrial Spatial Planning to Marine Spatial Plan-
ning

Figure 5 shows the long-term development of MSP measures. Figure 5 offers an overview
of major shifts in thinking in TSP that drive the development of the present spatial planning
methodology, and by then how this understanding might feed critical reflection on the growing
MSP process. To begin, unlike MSP, which has tended to have natural scientific foundations both
in the UK and overseas, the early years of TSP as a field were strongly founded on an art-based
physical design approach intimately related to architecture and engineering.

Early 20th century1 Mid 20th century2 Late 20th century3

Planning as a 
design process

Early 20th century4

Planning as a 
scientific process

Planning as a 
communicative process

Spatial planning: 
integrative, holistic

Figure 5: Changing planning paradigms

However, with the rise of notions like as [McL+69]’s system thinking, which depended on
breakthroughs in the natural sciences and cybernetics of the time, this approach came under
increased scrutiny in the 1960s. [McL+69] envisioned planning as a rational and scientific process,
rather than a creative one, involving the meticulous collection and analysis of data pertaining to
urban systems. Unsurprisingly, given its inspiration, this perspective on planning resonates with
several areas of current MSP action and discussion.

Thus, it is beneficial to explore the broad critique of the systems approach to planning that
has developed from a variety of points of view. For example, planning theorists have argued
for many years (e.g., [FFS98; Lin18] that the practicalities of most planning situations mean that
time and resources are limited, and that the ambitions for rationality and comprehensiveness
implicit in systems thinking are frequently replaced by a piecemeal, incremental, opportunistic,
pragmatic, and politicized process. An alternative and even more fundamental line of criticism,
based on complexity theory and associated notions of “wicked problems” relates to a growing
acceptance of the impossibility of constraining the intense complexity of terrestrial planning
situations and their intricate and ever-changing web of interactions [Hea06]. These lines of
argument suggest that the search for rationality and comprehensiveness in both TSP and MSP
is unrealistic or, at the very least, heavily bounded, implying that planning styles geared more
towards trial-and-error experimentation, controlled risk-taking, long-term adaptation, and the
realpolitik of governance may be more appropriate in such a “age of uncertainty” [Chr85; Plø04].
An underlying movement in philosophical thought from modernism inspires such ideas to



Chapter 2. Marine Spatial Planning Context 14

post-modernism in the late twentieth century, which brought with it the basic questions about
the very concept of impartial rationality in planning procedures.

This underlying change is crucial because the “planning paradigm”, in both its art and science
forms, shares the concept of the planner as an expert who, through the application of specialist
knowledge and skill using powers granted by the state, makes decisions on behalf of the broad
public about what types of environments are desirable to build. This notion of an unbiased or
value-free planning process, however, has been increasingly challenged, with some arguing that
planning is not only a descriptive process concerned with explaining the world, but also a prescrip-
tive activity that intervenes in economic, social, and environmental processes for predetermined
purposes. Planning is thus essentially political [Tay98].

As a result, a new vision of the planning process arose in the late twentieth century, which
regarded the planner as a communicator and mediator between various interests, and planning
as a transactive process aimed at facilitating communicative or collaborative action. This method,
developed by authors such as [Hea20], recognizes the existence of various points of view
and emphasizes the significance of consensus building in producing equitable, resilient, and
implementable planning solutions. Such approaches are based on a growing understanding of the
complexities of current planning issues such as urban regeneration, climate change, river basin
management, and sustainable development, which have highlighted the need for coordinated
or integrated action across traditional sectoral and territorial divides [CM03]. Facilitation,
communication, multi-party cooperation, and listening skills are crucial traits for planners in
this perspective of the planning process.

Although incorporated in many terrestrial planning systems across the world, this communica-
tive vision of planning has been challenged as idealist, possibly deceptive, and even naive in its
lack of acknowledgement of power in the planning process [HY00; TJGM10]. Thus, as terrestrial
planning progressed, such discussions continuously changed and altered the planning process,
and the contemporary paradigm that holds sway in many areas of the world, spatial planning,
may be understood to reflect a synthesis and refinement of all that has gone before.

For example, Figure 6 depicts two of the key major axes of debate in TSP, highlighting on the
one hand the extent to which planners should lead or facilitate the planning process, reflecting
dominant issues of governance, power, and democracy, and on the other the epistemological
basis of planning, which has shifted from the “softer” arts to an attempt to incorporate “harder”
quantitative analysis. These dimensions may be considered as symbolizing some of the most
powerful dialectic effects on modern spatial planning, which can be philosophically understood
as aiming to find a balance between these numerous factors, which is why it is placed in the
center of this figure. On the other side, we may conceptualize MSP as part of a more modernist,
technologically driven industry, and its endeavor to moderate both scientific evidence and
stakeholder interests [Gle+10].

The first large-scale development of integrated MSP, however, occurred in the 1970s, con-
currently with the introduction of structural planning in the UK, but on the opposite side of
the world, on the Australian Great Barrier Reef. This was a deliberate strategy that prioritized
spatially constrained conservation and research zones while subjecting the vast majority of
the Reef to two levels of general use zones. Except for the concurrent United States Federal
Coastal Zone Management Act of 1972; offshore planning in the US State of Oregon; and regional
planning in New Zealand’s Territorial Waters, there has been minimal full-scale development
since then.

In Europe, the development of MSP systems, principally at national level, is most advanced in
the core region of North West Europe, notably the Netherlands, Belgium, Germany and the UK
[DE08; Dou+07], including separate powers for Scotland where two tiers of offshore planning
have been established under a Marine Act (2010). Two distinct characteristics stand out when
MSP systems are being developed. The first is the three-dimensional aspect of sea use planning,
as opposed to the two-dimensional nature of land use planning. The design of the land under
the sea—the seabed—might be simpler to grasp because all main use groups have defined
unchanging qualities in respect to the seabed. Planning the water column, including the sea
surface, includes overlays of the fundamental sea use groups, which are typically extremely
distinct. Some of them, most notably pelagic fisheries and some sea routes, are not even static
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Figure 6: Spatial planning incorporates planning process traditions

with respect to the bottom underneath and may have no visible links to it.

The second distinguishing feature of MSP is its early relationship with an Ecosystem Approach
(EA). This is not only because the Great Barrier Reef, the first big example, prioritized marine
conservation. Rather, it is linked to the post-1990s recognition of the critical relevance of marine
ecosystem management for the world’s dwindling fisheries as well as other sea uses. This
insight did not exist at a comparable previous level of land use planning. This complicates the
introduction of MSP since understanding of marine ecosystems is, with few exceptions, rather
restricted.

It also emphasizes the significance of the relationships between spatial planning, on the one
hand, and the parallel development of other tools in the environmental management toolbox,
such as science and information management, as well as the various manifestations of assessment
and professional practice. An important requirement for spatial planning is to provide accessible
knowledge that represents the state-of-the-art of physical and ecological features of the zones at
issue, existing and prospective users, and their potential consequences on ecosystems and on
each other.

Marine planning strives for an optimal allocation for all relevant activities (historical, present,
and future) based on balanced management decisions that take into account not only economic
and social benefits, but also the characteristics of the various zones and the environmental effects
produced by the activities currently taking place or planned [Mae+07].

As previously discussed, a set of spatial planning systems involving both land and sea are
currently developing. Although land use planning systems are typically well established, marine
use planning systems are still in their beginnings. These offshore planning systems, which are
being developed in a number of nations, are concerned not just with the “urban” seas mentioned
before, but also with the larger “rural” seas.

Clearly, integration across diverse planning regimes is required to maintain the coherence of
objectives in both a temporal and spatial sense. There are two approaches to integration. The
first is concerned with spatial planning frameworks in general and involves the integration
of land and sea use planning systems. The second entails the operation of these systems
within the framework of environmental management. As new offshore plans emerge or are
considered across Europe, attention is focused on the coastal zone, where these contrasting
planning systems intersect, often alongside a variety of other plans such as flood and coastal



Chapter 2. Marine Spatial Planning Context 16

erosion risk management plans, river basin management plans, and conservation plans.

Although the line between land and sea use planning differs from nation to country, as dis-
cussed below, there is still a need to promote consistency across this artificial barrier [FO09].

The interconnection of land and offshore systems promotes the need for integration of terrestrial
and marine planning systems, despite administrative and institutional inertia making this
integration challenging. Both systems must deal with situations that develop “out of their
area”. However, in practice, there has traditionally been limited opportunity for local terrestrial
interests to contribute to the use of maritime space, since national sectoral agencies have planned
it with little local engagement [SS07].

The large-scale spatial development and regional seas methods being advanced in Europe also
require that coastal zones be seen as integrated to larger socioeconomic and ecosystem-based
systems and linked areas, rather than as boundary zones.

There are a variety of processes and tactics that can help integrate in the setting of the land-sea
divide. Before considering the integration of spatial planning systems, particularly the function
of Integrated Coastal Zone Management (ICZM) in bringing together land and marine systems,
a review of traditional land and sea use planning systems is performed. Finally, an assessment
of spatial planning integration within overall environmental management is given. This is done
initially at the general concept level, which includes organizational and associated geographical
scales, technical management inter-relationships with spatial planning, policy, and the function
of strategic planning by organizations. ICZM and Strategic Environmental Assessment (SEA) are
two examples. Other European environmental requirements will require cross-coast planning, as
well as increased guidance and capacity training to promote greater awareness and knowledge
of the needs of both marine and terrestrial components. This will cause solid connections among
those engaged in establishing the various strategies.

It may also necessitate the employment of strong and suitable planning “advice” and accompa-
nying assistance in order for marine and terrestrial planning groups to adjust their professional
practice to each other’s demands. Among the mechanisms mentioned above, ICZM has been
proposed by a diverse group of academics, policymakers, and policy documents to improve the
integration of the planning system while drawing attention to the broader field of environmental
management and the role of spatial planning within it. This is proposed not just at the European
level, such as in the European Integrated Maritime Policy (COM 2007/575), but also at the
national and regional levels.

In the United Kingdom, for example, while the Marine and Coastal Access Act 2009 is being
created, great attention is being paid to this element. Despite the development of a European
Recommendation and Strategy in the early 2000s, there is significant diversity in the understand-
ing and application of ICZM at all levels (2000 and 2002, respectively). EU Member States have
been urged to establish national ICZM policies to help achieve fundamental concepts of good
practice and effective coastal resource governance, and nations bordering the Mediterranean
must now comply with the recently adopted ICZM protocol under the Barcelona Convention.

To yet, however, much of the ICZM effort has come from grassroots, local initiatives. In practice,
this local development and nurturing of ICZM has meant that ICZM initiatives and their modus
operandi have been shaped and driven by local issues and needs, even if some of these initiatives
and modus operandi have been partially funded from Europe in the context of a somewhat “loose”
European ICZM concept. There is no “quick fix”, straightforward answer to employing ICZM
as a vehicle for improving land-sea integration of planning systems because of the variety of
ICZM across Europe and even within individual Member States. There is, without a doubt, no
comprehensive system of coastal zone planning throughout the whole European area capable of
“zipping” together land and sea-based planning systems.

There are a few common features of ICZM projects and initiatives that may assist to recognize
the potential of ICZM as an integrative tool. On the plus side, ICZM places a clear emphasis on
participatory planning and stakeholder participation, both of which could improve integration
[SB09a]. Although the extent to which ICZM programs address land and sea components of
coastal regions varies, most projects pay some attention to land-sea inter-linkages [Bal+08].
Furthermore, many ICZM efforts go beyond the planning process itself and involve capacity
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building, collaborative projects between partners, and measures targeted at influencing human
behavior and attitudes. However, many ICZM activities are limited to tiny segments of the coast
and have minimal institutional support [SB09b; SS07].

Furthermore, with a few exceptions, 3 they have a weak legal foundation and have little or no
acknowledgment in either land or sea use planning possibilities [Tau07]. Current ICZM practice
has also failed to adequately address the allocation of the coastal zone to fulfill its objectives.

With ICZM practice at a stalemate, several policy documents and policymakers argue that the
ICZM principles, rather than the ad hoc ICZM projects themselves, are the distinguishing feature
of ICZM and should be the focus of land-sea planning integration.

Given that the ICZM principles were designed as principles of good environmental governance
[Com02]), these do indeed have considerable credence in the land-sea planning integration
context, particularly as the ICZM principles include participatory planning and wide stakeholder
engagement. Given that both ICZM and MSP have been identified to share similar aims of
reducing jurisdictional fragmentation among governmental levels and sectors, a variety of
international and national programs and contexts have recognized ICZM principles to facilitate
MSP. This includes, for example, the PLANCOAST handbook on Integrated Maritime Spatial
Planning for the Adriatic, Baltic and Black Sea areas [SZ+08]. On the contrary, others suggest
that MSP can make the ICZM principles more operational by better defining what they imply in
space and time [DM09].

While ICZM may not be the cure for land-sea integration as academic research suggests,
integration between sectors and plans may be encouraged in the near term by needs to comply
with other, tougher EU regulations. This includes the need for all statutory plans (including
terrestrial and marine ones) to undergo SEA under the SEA Directive (2001/42).

Compliance with the demands of the Habitats Regulations for the marine site appears to have
provided a legally binding driver for the partnership work and the associated coordination
of “relevant” and “competent authorities” plans in the Severn Estuary, a major coastal plain
estuary in the UK [BS10]. In relation to the Water Framework Directive, [HW02] and [PK03]
have suggested that the Directive will provide for new networks and governance arrangements
as the river basin management process involves a diverse range of water environment users
in both the formulation and implementation of river basin plans. Given the river basin plans’
catchment-to-coast view and tight links to land-based planning systems, these plans are an
important piece of the “integrating” coastal zone puzzle.

In a broader context, there are five areas of concern in the promotion of integration.

1. The organizations and decision-making involved, as well as related geographical scales;

2. The relationships between technical management tools and associated professional prac-
tice, on the one hand, and spatial planning, on the other;

3. The role of policy;

4. The role of strategic planning by organizations in the public, private, and voluntary sectors;

5. The role of strategic planning by organizations in the public, private, and voluntary sectors.

It is critical in this portion of the chapter to situate MSP within the larger framework of
environmental management when discussing the integration of land and MSP. The organizations
involved, as well as the relevant geographical scales on which they operate, serve as the beginning
point. The historical reality is that the emergence of MSP over the last four decades, first as an
idea and now as an emerging reality, has been primarily associated in Europe and elsewhere
with the extension of state jurisdiction to 200 nautical miles seaward of the coast, as agreed in

3On 22 January 2008, the parties to the Barcelona Convention in the Mediterranean Sea chose a clear legal
framework for ICZM by adopting a Protocol on Integrated Coastal Zone Management. ICZM motivated the
Protocol not just by threats to coastal zones caused by climate change and the recognition that the coastal
zone is a shared natural and cultural legacy that should be protected for the benefit of present and future
generations.
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the 1982 United Nations Convention on the Law of the Sea (UNCLOS). In Europe, the national
scale, or collection of scales, is the most important. However, as actual application advances, the
new scales will be mostly sub-national and local, such as those connected to ports, fisheries, and
marine conservation, as well as the national and local organizations principally responsible for
these applications.

The need to protect biological diversity and establish networks of Marine Protected Areas
(MPAs) by 2012 is one of the driving forces behind the introduction of MSP, as reflected in
decisions taken by the Conference of the Parties in the 1992 Convention on Biological Diversity
(CBD), in the Plan of Implementation accepted at the 2002 World Summit on Sustainable Devel-
opment, and at the EU level. 4 Parties decided to employ Integrated Marine and Coastal Area
Management as the best framework for addressing human impact on marine and coastal biolog-
ical variety and promoting conservation and sustainable use of marine and coastal biological
diversity at the CBD COP2 in Jakarta (1995). Institutional, administrative, and legal procedures
should be developed, as well as plans and strategies for marine and coastal regions, for this
integrated management. In addition, the EU Marine Policy asks for MSP to regulate competing
maritime economic activity and to protect biodiversity. It will be critical for any policy to be
based on practical realities and influenced by in-depth stakeholder interaction.

Organizational strategic planning—not to be confused with land and MSP—is a vital role
that includes policy creation and implementation. In a world where quick appears to play a
prominent role in both the public and private sectors, it is critical to emphasize that significant
organizations in all sectors employ long-term planning techniques that include their operations.
Oil and shipping businesses, government departments and organizations, and the International
Council for the Exploration of the Sea are all notable examples. Finally, understanding the time
scales involved in the evolution of spatial planning systems is critical. As previously stated,
notions in a maritime setting are founded in the establishment of the UNCLOS process in the
1960s and 1970s, along with the theory and implementation of coastal zone management and
more strategically oriented land use planning. However, with the notable exception of the Great
Barrier Reef, it has taken four decades for definite and functional national MSP systems to evolve.

2.4 Zoning

By definition, ocean zoning decreases fragmentation by pushing managers from all sectors that
use marine resources and ocean space to think strategically and plan for long-term use. Proper
management is crucial in the face of a climate-changed and difficult future with over 8 billion
people to house and feed. Only healthy and well-functioning ecosystems can adapt to changing
environmental conditions while continuing to provide the commodities and services that keep
life on Earth running. Only laws and standards designed with the active involvement of those
who will be affected will be acceptable, resulting in the least amount of conflict and harm to
national security. However, “zoning” is a collection of regulatory mechanisms used to execute
MSP, which are similar to land-use planing in that they outline authorized uses throughout
the target environment(s). Different zones accommodate various purposes or degrees of use.
Regulations, like municipal zoning, address restrictions, authorized uses, or both. Because
zoning restrictions are always area-based, all Zoning Plans (ZPs) are depicted on maps. Most
recent publications on maritime area management, for example [Gub96; Sal+00; Cou01], allude to
the notion of zoning to separate conflicting uses or to protect sensitive, biologically significant, or
recovering regions free of usage. [Ken03] explains why and how zoning was first implemented
in the Great Barrier Reef (GBR). Zoning has been widely considered as the cornerstone of GBR
administration since the first GBR ZPs were developed in 1981. The following are the broad aims
of zoning in the GBR Marine Park:

1. conservation of the Great Barrier Reef;

4The EU Birds Directive (1979) establishes a framework for identifying and classifying Special Protection
Areas (SPAs) for migratory birds that are uncommon, vulnerable, or occur on a regular basis. The Habitats
Directive (1992) mandates member states to choose, designate, and safeguard Special Areas of Conservation
(SACs) that sustain certain natural habitats or species of plants or animals. Natura 2000’s goal is to establish
networks of SACs and SPAs throughout the EU.
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2. management of Marine Park usage in order to safeguard the GBR while enabling appro-
priate human use of the GBR Region;

3. the regulation of activities that exploit the resources of the GBR Region in order to minimize
their impact on the GBR;

4. the reservation of some areas of the GBR for public appreciation and enjoyment;

5. the preservation of some areas of the GBR in their natural state, untouched by man except
for scientific research purposes.

The Act requires GBR ZPs outlining the reasons for which sections of the Marine Park may
be used or entered. They permit legitimate activities like as tourism, fishing, boating, diving,
and research to take place in certain places while also separating conflicting uses by zones and
determining the appropriateness of particular extractive activities (refer to the zoning matrix
in Figure 7). A multiple-use zoning system protects specific regions while allowing a variety
of reasonable uses, including certain extractive industries, to continue in other zones. Zoning
in the Marine Park has developed and altered since the initial ZPs, as have other management
measures. Significant experience with zoning has now been obtained in terms of what has
worked effectively and what has not, both inside the GBR and in other Australian MPAs. Many
characteristics, such as enabling but segregating conflicting usage, have shown to be quite
effective. However, experience has revealed that some zoning elements required to be refined;
also, what works in the GBR may not necessarily function elsewhere and may need to be modified
in other maritime circumstances.

Figure 7: Zoning matrix for the Great Barrier Reef Marine Park’s Far Northern Section
[Day02]

However, to generally speaking, the main purposes of ZPs in marine spatial zoning manage-
ment are aimed to:

1. protect biologically and ecologically important habitats, ecosystems, and ecological pro-
cesses;

2. clarifying the human activities’ relation by compatibility matrix to separate conflicting
human activities or combine compatible human activities;

3. protect the natural values of the marine management area while also allowing reasonable
human uses of the area;

4. location and allocation areas for reasonable human uses while minimizing the effects of
these human uses on each other and nature;



Chapter 2. Marine Spatial Planning Context 20

5. preserve some areas of the marine managed area in their natural state, undisturbed by
humans except for scientific or educational purposes;

6. identify areas where financial investments in certain sectors (activities) should be beneficial
[ED+09].

The difficulty of present analytical techniques to MSP to incorporate several types of zones at
the same time to reflect the variety of management measures or conservation activities being
considered as part of a spatial plan is a fundamental restriction. Indeed, several conflicting
stakeholders carry out a wide range of management measures. Furthermore, human activities
take place within a matrix of different land and sea uses, many of which are in conflict with
marine spatial goals. Zoning is a typical management method used to define regions for certain
functions, both geographically and temporally [Rah+78a; Wat+09b]. When considering these
opposing objectives, ZPs give an explicit strategy to resolving conflicts between activities and
calculating trade-offs [Hal+08].

2.5 Conclusion

To sum up, MSP is an ecosystem-based spatial organization technique that tries to allocate
marine spatial to various sectors in order to guarantee human activities at sea are efficient,
safe, and sustainable. When a collection of resources, rights, burdens, advantages, or expenses
held temporarily in common by a number of sectors must be dispersed among them, marine
spatial allocation difficulties occur. This problem has turned into a political flashpoint, spurred
by governmental power struggles as well as the ever-increasing demand for maritime space
from both conventional and developing marine users. In this case, we should make a decision
about where and how the resources should be allocated. The difficult goal of this thesis would
be to establish an effective allocation technique inside a larger geographical decision-making
process, where maritime users engage with one another in order to reach a spatial allocation
agreement despite their competing aims. Therefore, to begin with, the problem formulation, like
identifying stakeholders to participate in the CR process, classifying the stakeholders, identifying
the constraints, and GIS data collection, should be defined. Mathematical modeling is the
conversion of problems from an application zone into manageable mathematical formulations
using a hypothetical and arithmetic analysis to give perception, solutions, and advice for the
application developer. Mathematical modeling is useful in a variety of applications because
it provides accuracy and strategy for problem-solving, while also allowing for a systematic
knowledge of the system being modelled. It also enables improved system design, control, and
the optimal use of contemporary computer capabilities. Hence, It should model this formulation
using the mathematical modeling to determine desirable spaces for each marine use. However,
the main research question here is developing the exact linear mathematical model for resource
allocation in the MSP. To take all this into account, in the first step, we start the next chapter by
defining the problem formulation and presenting some exact methods to develop and solve the
spatial zoning model.
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ABSTRACT

As mentioned in Chapter [2], MSP has lately gained popularity as an effective decision-
making tool. MSP is a long-term strategic process that brings together many competing
ocean users with the goal of balancing between simplifying choices on where, when, and
how each sustainable use of marine resources could take place and protecting the coastal and
marine environment. To tackle this problem, one of the issues in MSP is determining the
best zone to locate each available activity while keeping other existing activities’ constraints
and compatibility relations in mind. The majority of spatial zoning techniques especially for
multi-uses are written as non-linear optimization models with multiple objectives, which
are often solved using stochastic search algorithms, resulting in sub-optimal results. In
this chapter, we suggest modeling the problem as a MOILP for a single new activity to
determine an optimal zone to locate it while taking into account the fixed locations of the
other existing activities in this study. The model is developed for raster data and seeks to
maximize the interest of the zone dedicated to the new activity while also optimizing its
spatial compactness. We investigate two resolution methods: first, a Weighted Sum (WS)
of the two objectives, and second, an interactive approach based on an enhanced augmented
version of the ϵ-constraint technique, AUGMECON2. We do experiments on artificially
created data to validate and investigate the model. Our experimental results reveal that
AUGMECON2 is the most promising strategy in terms of relevance and diversity of
solutions, compactness, and computing time.

3.1 Introduction

MSP is to the ocean what land-use planning is to the land: a method of organizing activities that
aims to prevent conflicts between actors and activities, develop synergies, and reduce environ-
mental consequences. For many years, maritime activities were not supervised because the sea
was thought to be unlimited and its resources infinite [DC+09]. However, it is now obvious that
human activities have an influence on the maritime environment (pollution, biodiversity loss,
etc.) and its resources (overfishing and pollution). As a result, sectorial administration of these
activities has gradually arisen (quotas for fishing, traffic management, . . . ). However, each sector
created its own planning, with little regard for continuity with the others. This is where MSP
attempts to rise above these constraints as a systemic approach whose purpose is to organize
human activities in the ocean sustainably while accounting for interactions between diverse
activities and stakeholders [Aga15].

One activity of MSP is related to marine zoning. Its goal is to determine areas in the sea for
locating different types of uses (e.g., fishing areas, restricted areas, . . . ). The interest in locating
such a use in a specific area of the ocean depends on various elements, like the distance to other
activities, the distance to the coast, and possibly other environmental factors that influence the
optimal location of the activity (interest for an activity, risk of polluting, fauna density, wind
probability, . . . ) [Aga10].

Marine zoning is therefore a set of legislative actions that go in the way of MSP [Aga10],
which is a more comprehensive idea that includes an ecological, social, and economic objective
cyclical process for the study and allocation of space and time, as needed [Ade+19]. MSP and
marine zoning are used to achieve various objectives in various environments. As the spatial
zoning in MSP is a multi-objective and multi-use location-allocation problem, developing a
linear mathematical model could be impossible. To address this issue, this chapter addresses the
ocean zoning issue for a new human activity in order to improve MSP implementation. This
activity considers the impact of existing activities occurring in the same maritime region and at
the same time. A crucial element in this problem is to introduce spatial compactness and interest
objectives. These objectives are used to address the problem of locating and allocating the new
activity not only at the highest possible interesting zone map but also at maximum compactness.

Therefore, a challenge lies in developing and implementing linear mathematical programming
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for this problem by considering suitable combined Multi-Criteria Decision Making (MCDM),
Multi-Objective Optimization (MOO), and GIS techniques. Generally speaking, optimization
techniques (another subset of MCDM techniques) can be combined with GIS to support the
spatial design of marine ZPs. The purpose of this chapter is to express the zoning issue in MSP,
model it using a raster-based MOILP, and then suggest and compare different exact resolution
techniques.

This chapter is based on the published article [Bas+21] and structured as follows. Section
[3.2] provides a review of the literature on the topic and a summary of the contributions. In
Section [3.3], the problem is defined at hand. Section [3.4] proposes its MOILP formulation, while
we suggest different resolution methods in Section [3.5], which may lead to different results.
In Section [3.6] an experimental setting is described to solve the proposed formulation with
computational results on artificially generated synthetic instances shown in Section [3.7]. We
draw conclusions in Section [3.8].

3.2 Literature Review

The world’s seas are vital to both economic and food security, as well as a worldwide conservation
priority. Over the last several decades, the demand for ocean space for many uses has skyrocketed
due to the rise of both conventional uses (such as fisheries and maritime transportation) and
new applications (such as energy development and aquaculture). Overfishing and ecosystem
degradation are causing a fast ecological change in the world’s ocean resources, with far-reaching
consequences. The resources, the people who use and consume them, the production processes,
the management institutions, the environment that sustains them, and the local, national, and
international legal instruments that control their ownership and usage will all be affected. Low-
income people in different countries will be hurt the hardest when their frail buying power
and frequently precarious access to the resources on which they rely for food and livelihoods
is further diminished [All]. Competition and conflict for space and resources characterizes the
waters [Sal+07]. Because of some of the highest rates of population growth, as well as increasing
food and development needs, marine areas are now experiencing increased levels of conflict
and social unrest as a result of differing and uneven levels of economic development, resource
use, and technological change within a country. Economic and technological advancements over
the previous 15 years have resulted in significant disparities in access to maritime resources
[PBM+14; Pom+07].

Marine space uses and abuses such as fisheries, tourism, aquaculture, energy, and land-based
pollutants interact in complicated ways, as do natural catastrophes, climate change, and climatic
variability [FMM11]. Increased activity in the ocean environment has resulted in two types of
conflict in the region: (1) conflicts between human uses (user-user conflicts), and (2) conflicts
between human uses and the marine environment (user-environment conflicts, such as aquacul-
ture development and mangrove clearing). These disputes erode the ocean’s ability to supply
the essential ecological services on which people and all other species rely.

To address this growing competition and conflict, a variety of ocean and coastal management
paradigms have been proposed and implemented in many regions over the years, including
conventional fisheries’ management, Ecosystem Approach to Fisheries, Ecosystem Approach
to Fisheries Management, Integrated Coastal Management (ICM), MPAs, regional ocean gov-
ernance, ICM, and Ecosystem Based Management (EBM) [Ves+11]. Despite the language of
integrated management, these paradigms have had inconsistent success, most times because of
real separate sector management practices. Recently, spatial planning as a new paradigm for
influencing the placement of human activities in space and time has been introduced.

Spatial planning has traditionally been used to manage land usage [Tau07; DT+16]. By recog-
nizing the dangerous environmental consequences left by the industrial revolution, and while
needing to satisfy the ongoing economic growth, the concepts of “sustainable development goals”
and an “system approach” began to be incorporated into land-based spatial planning in the
1950s [Dou08; Smi+11; DT+16].

Similarly, in the marine environment, even though spatial management of fisheries has long
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been standard practice, the increasing number of additional economic uses has prompted the
need for a more precautionary, comprehensive, and long-term approach to planning [SPS00;
Nor10].

3.2.1 Spatial-Decision Support System

As explained before, the area of “resource allocation” deals with the spatial distribution of
(natural-) resources such as water or land. On the one hand, to ensure the effective development
of spatial distribution in MSP, several key phases should be fulfilled, as shown in Figure 8.

Figure 8: Different phases of MSP

On the other hand, implementation of MSP begins with a Pre-planning phase (Phase 1) that
includes the definition of planning objectives, conflicting uses, and, very importantly, the or-
ganization of stakeholder engagement in the process [ED+09]. Analysis for planning (Phase 2)
pertains to the definition and analysis of both present (As-Is) and future conditions (To-Be) (e.g.,
ecological, oceanographic), by collecting and mapping data on existing biophysical conditions
and human activities, and identifying corresponding overlaps including conflicts and compati-
bility. Based on the collected information, having developed and analyzed alternative scenarios
according to stakeholders’ preferences, a desired future spatial vision should be selected. In
Management plan development (Phase 3), while management actions are spatially explicated, an
ocean zoning scheme is developed to support their implementation [Aga10; Bas+20]. Ocean
zoning should be based, not only on conservation targets but on socio-economic considerations
[TT11]. This can be done by incorporating human uses early in the progress, e.g., by optimization
algorithms [TT11]. Having the plan completed and approved (Phases 4 and 5), implementing the
plan starts (phase 6). Then, evaluating and adopting the plan will make it ready to use (phase 7).

Nonetheless, spatial distribution is a complex issue, as it often involves multiple stakeholders
with conflicting goals and objectives. Therefore, much attention has been paid to solving a
different range of problems in this domain, like land/marine use allocation problems with
MCDM.

Recent research on spatial planning focused on combining MCDM with a GIS. This appears to
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be a powerful combination since land/marine use allocation problems both involve multiple
objectives and criteria, as well as geographically dependent spatial attributes [Aer02; AH02;
Cov99; CC00a; CC00b].

Both GIS and MCDM techniques are derived from relatively technical areas of geography and
operations research. Practical use of such techniques often requires a thorough understanding,
and non-technical DMs may find using these techniques difficult. However, combined GIS-
MCDM techniques can be operationalized for non-technical users by integrating these techniques
in Spatial-Decision Support Systems (SDSSs) that are dedicated to a user. A series of SDSSs were
built using only GIS-based mapping and visualization tools to provide background information
on the planning area. Some SDSSs successfully combined Multi Criteria Analysis techniques
(subsets of MCDM) with GIS, enabling the interactive evaluation of spatial land/marine use
plans against a pre-defined set of criteria [UJ03; PD93]. The combination of MCDM-GIS can be
useful in SDSSs environment when both the alternatives have been clearly defined [RH98].

3.2.2 Zoning in a Geographical Information System Framework

Comprehensive Ocean Zoning (COZ) has the potential to be a powerful tool for integrating
marine management at ecosystem scales. In Marine Ecosystem And Management, they look at
areas where zoning is used and answer the following questions (for more details, readers could
refer [Wil+20]):

1. What exactly is COZ, and what advantages does it offer?

2. What distinguishes zoning at the water from zoning on land?

3. How may zoning be accomplished considering various property-rights regimes?

4. Given the fairly static nature of the zoning technique, how should the dynamics of marine
ecosystems be addressed?

5. What are the most difficult aspects of zoning implementation?

However, here we are focusing on the answers to a few numbers of the above questions. Ocean
zoning is a collection of regulatory mechanisms used to put MSP into action. Marine spatial
plans, like land-use plans, identify authorized uses in all regions of the target habitat or ecosys-
tems. Diverse zones accommodate different purposes or degrees of use, such as fishing, oil
drilling, shipping, conservation, and research. Ocean zoning regulations, like municipal zoning
regulations, address limitations or approval for such uses. Because the restrictions are area-based,
the ZPs are depicted on maps.

Contrary to popular belief, maritime zoning and MSP are not synonymous. According to
[ED+09], who led a UNESCO study to examine MSP and its potential to encourage ecosystem-
based management, ocean zoning is simply an instrument. Marine planners and environmental-
ists are increasingly seeing the value in adopting zoning to assist integrate marine management
and make it more ecosystem-based. They proposed that COZ could help to resolve conflicts
within and across interest groups, including ensuring that these activities have a strong interest
in the long-term health of resources.

Today, many nations are at various stages of designing and implementing MSP and marine
zoning. While MSP and zoning are increasingly recognized as important ocean resource man-
agement measures. Governments in the areas are restricted in their implementation due to a
range of capacity, technical, legal, and institutional problems. Furthermore, numerous countries
that have already begun to adopt MSP and zoning are having difficulties with enforcement and
legislative backing. These measures will be successful only if governments provide the necessary
legal instruments to enforce and implement regulations and policies at the national and local
levels for inter-agency, multi-sectoral, and transboundary decision-making and coordination.

The first phenomenon mentioned above was made “zoning” another cornerstone of MSP,
which, in this thesis, is considered a management tool in the wider context of MSP [Day+12].
Zoning is the process of locating and partitioning a territory into zones that allow or prohibit
certain activities to maintain the supply of an overall set of ecosystem services offered by the
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zoned area. Zones are often defined utilizing a variety of analytical and decision support tech-
niques (e.g., GIS) [Ade+19]. One of the primary goals of GIS [Mas+21; SP21] is the identification
of regions and the partitioning of space using spatial analysis techniques. Zoning is an essential
part of MSP and an effective management tool[Day+12; Rah+78b; KOR96; LHF00; Day02; RZ03;
SA04; FHCS05; Hal+08; La05]. The ramifications of allowing several conflicting and potentially
competing activities to occur at the same site require special consideration during the zoning
process. ZPs offer a detailed method for resolving conflicts between activities and identifying
trade-offs while balancing opposing interests [Hal+08]. Zoning is used across the world to serve
the many goals of marine parks (most notably in Australia’s GBR Marine Park [La05]).

Overall, COZ may give advantages over other maritime management approaches. These
possible advantages include:

1. Moving management away from fragmented sectoral initiatives and toward integrated,
effective EBM that encompasses all ocean users and consequences;

2. Overcoming the limitations of small-scale protected zones;

3. Recognizing the relative ecological importance and vulnerability of various places;

4. Allowing for compatibility with terrestrial land use and coastal planning; Outlining
private sector roles, responsibilities, and market potential; and reducing conflict between
incompatible uses.

On one hand, since MSP problems are geographical in nature, they may be organized and han-
dled utilizing GIS features and mathematical models. GIS not only allows for the administration,
modification, and spatial analysis of land/marine use data, but it also provides a platform for
visualizing, exploring, and assessing different land/marine use scenarios. On the other hand,
with developments in GIS and computer technology, several spatial optimization methodologies
have been presented for land use planning during the last few decades and less for MSP [YZM18].
Multiple concerns have been considered for different applications in land use planning, including
compactness of selected regions, contiguity of equal land use, compatibility of different land
uses, and environmental and ecological impacts, among others, which could be used for MSP as
well [Aer+03; LCJ08; SJv04a; Ön+16]. Cartographic representations, for example, which allow
for the comparison, superimpose maps, and visualization of siting outcomes, are among the GIS
benefits. Figure 9 displays an actual MSP map as well as all competing applications in a given
maritime area.

The starting point of spatial planning is geospatial or geographic data, about the geographic
location of features and boundaries on the earth’s surface, such as natural features, land areas,
ocean surfaces, etc. That is, spatial data represents data related to or containing information about
locations on the Earth’s surface. Spatial data is a foundation of a number of decision problems
such as land-use planning [GC20], biodiversity conservation planning [Yan+19], maritime spatial
planning [Pin+20], or military planning [LSW03].

3.2.3 Data Modeling in Geographical Information System

As well, we know the importance of data and how the representation of data should be un-
derstood in order to achieve better results. Referenced information, especially geographic, is
managed, analyzed, and displayed using the GIS, a computer-based tool. Spatial data is a data
structure or type available in GIS, and it can be maintained either as raster data or vector data.
The relationship of geodata can be easily visualized and understood in the form of maps, charts,
and reports, among others, by the utilization of GIS. Raster data is quite useful as it is applicable
in a vast range of applications. The main categories under raster data include rasters as basemaps,
surface maps, thematic maps, and features attributes. Vector-based files are also commonly used,
and sometimes users do not realize it. For instance, font files are widely used, yet some do not
realize they are vector graphics. The fonts remain clear even after the text size is increased, either
it is to be viewed online or offline, for instance, in a Word document. Raster data and vector data
have differences, including the data to be represented and the mode of data representation. The
definition, from a GIS perspective, will be divided into three sections: In information theory, a
description of the rules by which data is defined, organized, queried, and updated within an
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Figure 9: Real MSP map [Bas+21]

information system (usually a database management system). In ArcGIS, a set of database design
specifications for objects in a GIS application. A data model describes the thematic layers used in
the application (for example, hamburger stands, roads, and counties); their spatial representation
(for example, point, line, or polygon); their attributes; their integrity rules and relationships (for
example, counties must nest within states); their cartographic portrayal; and their metadata
requirements. With respect to the data model, the vector and raster data model are defined as
follows as shown in Figure 10:

1. Vector data model: A representation of the world using points, lines, and polygons. Vector
models are useful for storing data that has discrete boundaries, such as country borders,
land parcels, and streets.

2. Raster data model: A representation of the world as a surface divided into a regular grid
of cells. Raster models are useful for storing data that varies continuously, as in an aerial
photograph, a satellite image, a surface of chemical concentrations, or an elevation surface.

Raster data is more detailed because it represents square areas. In this case, they describe
the interiors in detail rather than the boundaries of their representation, which is the situation
with vector data. Vector data are more preferable when storing captured spatial details, while
raster data should be applied for analyzing stored data like temperature that vary with location.
Satellite imagery and aerial images are also stored in the raster data format in the GIS. When
the geospatial data needed is supposed to be more specific, raster data can be used, although it
might not apply to all aspects, for instance, the latitudes and longitudes represented in the vector
data.

Vector data and spatial data are primary structures of spatial data in the GIS. The nature of the
data to be represented should be considered before choosing the structure to apply. Accuracy
is a crucial factor as data restructuring in raster data can cause spatial inaccuracies compared
to vector data which remains the same and maintains quality even after scaling is done. The
representation of raster data is on a grid matrix, while vector data uses vertices or sequential
points.
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Figure 10: Vector and Raster Data GIS [Mcc37]

The top-left square of Figure 11 shows a satellite image. The associated raster data could for
example represent the vegetation density in each of the pixels. As shown in the top-right grid,
the resolution chosen for this example is 1 meter per pixel. The value contained in each of the
elements of the raster grid corresponds to an average density measure of the vegetation in each
of the cells. It is also possible to assign a color (bottom-right) to each of the cells, through a
legend (bottom-left).

Most of these methodologies and applications, however, have depended on raster data struc-
tures employing regular grid cells to accomplish them, owing to their simplicity and ease of
measuring spatial connections across land grids, such as proximity and adjacency. Except for
[CHX09; CY13; MMH13; SJv04a], little work has been done in MSP to use vector data for
decision-making units.
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Figure 11: Raster concept [LT92]

3.2.4 Resolution Approaches

The development of integrated MCDM and GIS approaches appropriate for deployment in
SDSSs for land/marine use allocation problems remains a challenge. In the absence of other
options, optimization techniques (another subset of MCDM approaches) can be integrated with
GIS to help the spatial design of land/marine use allocation plans. In formal terms, all decision
problems dealing with related concerns are optimization problems in which we must determine
the ideal position and/or form of a spatial region for a specific goal, given certain constraints.
Hence, optimization techniques using GIS are known as spatial design techniques [Aer02; AH02;
SV02].

Exact Methods VS. Approximate Methods

In general, to address an optimization problem, two phases are involved: model formulation
and solution. The problem may initially be stated verbally. It is then translated into a set of
mathematical equations. These equations tend to involve discrete (integer) as well as continuous
decision variables – decision variables are the unknowns whose values determine the solution
of the problem under consideration – especially for dealing with indivisible raster elements. A
system of such equations is called a Mixed Integer Programming (MIP) model. Once a problem
is formulated as such, it is solved by either heuristic or exact methods. Heuristic methods are
designed to find approximate solutions in reasonable times and are useful for solving large-
scale models (as is often the case with raster space). Exact methods, on the other hand, aim to
find the best (or optimal) solutions with respect to criteria explicitly considered. If there is no
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significant difference between their computational performances, exact methods are preferred.
Even when exact methods are not available, good heuristic methods should be able to tell
how good the solutions obtained are relative to possible optima. Thus, whether a problem is
solved approximately or exactly, for solutions to be correctly evaluated, the problem needs to
be formulated exactly. Many region selection criteria have been successfully formulated in MIP
format [WRC83; GHR85; BW91; CC00a; Wil02b].

To begin with, all the mentioned phases in MSP problems were addressed initially by using the
heuristic approaches [Pre+93; PPD97]. However, later, they were formulated as Mixed Integer
Linear Programs (MILP) in the framework of the Set Covering Problem (SCP) and Maximal
Covering Problem (MCP) [PCGY01; CR74; CSD96; CB89; Kir83; PCGY01; PBA00; TR73; Und94;
WR97]). On the one hand, the most important advantage of using MILP to design MSP is that it
can provide a globally optimal solution. On the other hand, an important disadvantage of MILP
is related to problem-solving time, which is very likely to have a direct correlation with data size
and complexity [O’H09]).

However, the Mathematical Programming of these problems, with the thousand variables,
constraints, and multiple objectives, can indeed be solved in seconds or minutes. To do so,
solving multiple sub-optimization issues at the same time is a relatively new class of optimization
problems, and there has not been much study on it in the literature.

Single Objective VS. Multi-Objective Optimization

Multiple Objective Mathematical Programming (MOMP) is applied, referring to the solution of
Mathematical Programming problems with more than one objective function. Given that usually,
there is no unique optimal solution (optimizing all objective functions simultaneously), the aim
is to find the most preferred among the Pareto optimal solutions [Dem91].

In other words, unlike mono-objective optimization problems, the optimal solution for MOOPs
is a group of solutions known as Pareto optimal solutions, rather than a single solution [Cen77;
BAJH20]. If it is not feasible to improve one goal without worsening at least another, the solution
is Pareto optimal. This set of ideas reflects a compromise between several objectives that are in
conflict. The Pareto optimal set and, as a result, the Pareto front are the primary goals of MOOPs
resolution[Tal09].

Aside from the foregoing, despite numerous research publications dealing with MSP, the
problem has yet to be condensed, since each actor must handle multiple technological, geograph-
ical, economic, environmental, and social objectives, as well as restrictions that are typically
conflicting. Mathematical models that are integrated into the optimal zoning of these criteria
must be more complex and computationally intensive than SCP and MCP formulations. To
tackle Mathematical Programming issues with more than one objective function, MOMP is used.
Given that there is rarely a single optimum solution (optimizing all objective functions at the
same time), the goal is to determine the most favored among the Pareto optimal alternatives
[Dem91].

MOMP approaches must mix optimization and decision support to be efficient. The solution
procedure may be separated into two steps to handle this issue: The first is the generation
of Pareto optimum solutions (all or a subset of them). The second is the decision-subsequent
maker’s involvement if all the information is available (the so-called MCDM process).

Depending on whether DMs are involved before, during, or after the search, available method-
ologies for these two stages are often categorized into three ways [CM75; Chi+12]: a priori,
interactive, and a posteriori approaches. Among the various techniques in MOMP, the a posteri-
ori method is the most computationally intensive. However, as calculating speed has increased
and mathematical programming tools have advanced, the a posteriori method has grown more
appealing to today’s DMs. Although the best solutions from these formulations are economically
efficient, they frequently lack spatial requirements. Spatial criteria might take many shapes
[HS09; WS05].

Compactness and connectivity are the most commonly used criteria [FC03; JH13; ÖB03; TM08;
WRC83], proximity to selected sites [Bri02; Dis+12; Mil+09; Nal+02; ÖB02; Rot99; Rul+03; Wil08],
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habitat fragmentation [ÖB05; ÖB02], contiguity [CP05; Cer+10; CC00a; DCM11; JH13; MRS08;
ÖB06; Tót+09; ÖW08; Wil02a; Car+13], existence of buffers and corridors [Con+12; WR96; WR98;
WRL05], and accessibility [ÖY07; Rul+03]. .

[CCC15] introduced two MPAs spatial zoning models based on MOILP: a Buffer Cells Model
and a External Border Cells (EBC) model. These methods allow MPAs design with multi-
objective zones that meet numerous conservation aims while assuring optimal results. Because
both neglect buffer cells, the EBC model was chosen for comparison with Marxan with zones.
To summarize, the EBC model has significant benefits over Marxan for MPAs spatial zoning.
It ensures optimality conditions while giving a compactness/cost trade-off for DMs to explore
based on their choices.

[Zen+19] developed a procedure to resolve transboundary water conflicts in the Gaunting
reservoir basin based on the theory of a hybrid game and mathematical planning model to
optimize water and pollutant discharge while maximizing net aggregate benefit and reducing
water supplies and pollution prevention costs.

[Fox+19] used a connectivity-based approach to design the MPAs networks for MOO. The
authors developed a MHs algorithm that investigated two marine realistic networks in order to
obtain the Pareto optimal set for networks with up to 100 websites.

[ZJK19] used the Ecosystem Service Value calculation to investigate the problems between
marine development and exploitation and ecological protection. The findings demonstrate
the benefits of optimizing the utilization of the marine area (Dengsha estuary area). They
may address the multi-sector conflict issue and provide a new design for optimizing spatial
arrangement.

Based on the literature review, the main contributions of this chapter can be summarized as
follows:

• Problem definition: Since one of the main issues in MSP is to locate and allocate an
optimal zone for a new human activity while considering the other existing activities, a
new problem in the scope of zoning in MSP is defined and described,

• Problem formulation: Given the current state of the art, the most common approach is
based on nonlinear multi-objective models, which are usually solved using stochastic
search algorithms, resulting in sub-optimal solutions. Working on raster data is chosen,
and hence the contribution is to formulate an exact linear model as a MOILP which aims
at maximizing the interest of the area of the zone dedicated to one actor while maximizing
its spatial compactness.

• Problem resolution: To solve this model and determine the optimal solution, two resolu-
tion methods are used: a WS of the objectives and AUGMECON2 (an interactive approach
based on the classical ϵ-constraint method). Due to a very large number of integer vari-
ables and constraints in this MOILP model, the improvement of its resolution by using
buffering techniques in a preprocessing phase is implemented.

• Experimental validation: A set of artificial datasets is generated to validate the approach
and study both the sensitivity of the resolution methods and computation times with
respect to various parameters.

3.3 Multi-Objective Single New Marine-Use Zoning Problem
in Marine Spatial Planning

The study of the literature in this chapter reveals, among other things, that MSP requires the use
of formal techniques to aid decision-making and lead to an overall sustainable strategy for the
use of marine resources. As previously stated, we focus on the zoning problem in this chapter,
which is a special sub-topic of MSP. To make the linear mathematical formulation possible for
this problem, we suppose that a certain number of human activities already exist in a certain
maritime region and the best site for a new activity must be established. The existing activities of
the area are deemed permanent and cannot be altered. The overall appeal of the new activity’s
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location is determined by a map that is provided for the entire region and shows the degree to
which it is worthwhile or unattractive to carry out the activity at that place.

The existing activities in the area can be classified into 3 categories :

• shipping lanes A freight lane is any regular route that a carrier follows. Freight lanes can
also be referred to as shipping lanes or trucking lanes. These lanes might connect several
cities or transportation centers. They can be direct point-to-point connections, connect
numerous points of any form, and go in any direction. Shipping lanes are also known as
sea lanes or sea routes, which are routinely utilized as navigable routes for big ships that
cannot interfere with new activity. These shipping lanes could also represent underwater
cables,

• ports (also known as harbors), is a commercial water facility where ships and their goods
may unload. A port provides numerous handy amenities for ships since it is equipped
with cranes, forklifts, warehouses, and docks. A harbor is a piece of shoreline where ships
and other watercraft are anchored or stored.

• restricted areas in the ocean, which depict other activities that are incompatible with the
new activity. These restricted areas might include maritime protected zones, wind or tidal
turbine farms, recreational areas, military bases, and so on. These are sections of the ocean
where the government has imposed restrictions on human activities. Many limited places
allow individuals to use the region in environmentally friendly ways.

Furthermore, the specific position of the new activity is determined not only by the interest map
but also by the distance between the various parts of the three categories of existing activities.
In general, in this problem, we will set limitations on the minimum and maximum distances of
the new activity from the various existing activities. In other words, the new activity should be
situated as follows:

• at a minimum distance of each of the existing activities (depending on each existing
activity),

• at a maximum distance of each of the existing activities (depending on each existing
activity).

Finally, in this case, it is preferred that the new activity zone be as compact as possible in order
to prevent potential conflicts with other new activities that may appear in the region in the
future.

The goal of this task is to find the best place for the new activity that optimizes both its interest
and its compactness. Meanwhile, it must adhere to set minimum and maximum distances from
the existing activities (and therefore without overlapping with them).

Figure 12 depicts this problem description and its numerous aspects in a fictive marine en-
vironment. The upper dark gray section of the Figure (with the topographic isolines) shows
the mainland, on which four ports are located. The lower half illustrates the marine region
where the new activity (e.g., fishing) must be situated and where many other activities already
exist: numerous shipping lanes, a windmill farm (restricted area), and a national protected area
(restricted area). The amount of interest in the new activity is displayed on the backdrop map
in three shades of gray (the more interesting the area, the darker it is). The new activity must
be placed within a defined minimum distance of the shipping lanes (d⩾

s ′), a given minimum
and maximum distance of the closest port (d⩾

p ′ and d
⩽
p ′), and a provided minimum distance of

restricted areas (d⩾
r ′). In this problem, the new activity has to be located at a given minimum

distance of the shipping lanes (d⩾
s ′), at a given minimum and a given maximum distance of the

closest port (d⩾
p ′ and d

⩽
p ′ ), as well as at a given minimum distance of restricted areas (d⩾

r ′ ). Figure
12 depicts three places for the new activities. A is situated in an area of the sea that is ideal for
the new activity. B, on the other hand, is in a less interesting section of the marine region, but C
is in a highly interesting part of the maritime area. The star rating represents the three regions’
average interest (1 star corresponds to a low interest, 3 stars to a high interest). Furthermore,
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Figure 12: Problem Definition

each of these three sections has a distinct compactness evaluation: B is quite compact since it
is a rectangle, A is fairly compact, and C is not very compact. The squares rating on the figure
represents this compactness. Choosing between these three locations merely based on their
compactness and interest is a challenging task, as none of them surpasses the others on either
measure. In addition, the graphic depicts some of the distance constraints. Area A, for example,
checks all minimal distance restrictions, but B exceeds a maximum distance constraint to the
nearest port (d⩽

p ′) and a minimal distance requirement to the restricted windmill farm (d⩾
r ′).

Finally, region C violates the minimum distance constraint concerning the shipping lane (d⩾
s ′).

As a result of these constraints violations, B and C are no longer considered for this new activity,
and only A is admissible.

3.4 Mathematical Formulation

The beginning point of the problem at hand, as described in Section [3.3], is geospatial data,
which represents data connected to or including information about places on the Earth’s surface.
In this thesis, we used raster data given as a regular grid of cells or pixels. A value is assigned to
each pixel in a raster, which reflects some unit of measurement about the underlying geographical
area. The quality of raster data is mainly determined by its resolution.

As a result, we assume that the interest map for the new activity is a two-dimensional matrix
of uniform cells on a regular grid with nrow rows and ncol columns, yielding a total of nrow ·
ncol = m cells. This grid’s cells are supposed to have a homogeneous interest value for the
particular activity. Let I⊞ be the set of cells on the grid. Following the problem specification, let
L be the set of nl shipping lanes, which are represented on the raster grid as a set of cells L⊞.
Let P be a collection of np ports represented as a collection of cells P⊞. Finally, consider R to be
a collection of nr restricted areas (with which the new activity cannot intersect) represented as a
set of cells R⊞.

In addition, in order to maintain an interactive process with the numerous stakeholders engaged
in the zoning problem, we will not only seek one best spot for the new activity, but will also
retain a record of alternative options, leaving the ultimate decision to the DMs. As a result, the
optimization process should generate a number of possible zones for the new activity (which
we will refer to as the optimization problem’s solutions). Each solution is constructed around a
central cell, to which adjacent cells are assigned in order to structure the solution areas.
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The notations related to sets, input parameters, and decision variables are described below
before giving the formal mathematical formulation.

Sets

I⊞ : The set of m possible cells for the new activity in the ocean
P : The set of ports
P⊞ : The set of cells representing the ports
R : The set of restricted areas
R⊞ : The set of cells representing all the restricted areas
S : The set of shipping lanes
S⊞ : The set of cells representing all the shipping lanes

Parameters

c : The total number of central cells, referring to the total number of solu-
tions sought

u : The maximum number of cells around a central cell assigned to a solu-
tion

l : The minimum number of cells around a central cell assigned to a solution
vi : The interest value of cell i (∀i ∈ I⊞), i.e., of each raster cell of the interest

map
dki : The Euclidean distance between a central cell k and a cell i to be assigned

to this central cell (∀i, k ∈ I⊞)
dpi : The Euclidean distance between the center of a cell belonging to a port

and the center of a cell of the interest map (∀p ∈ P⊞, ∀i ∈ I⊞)
dri : The Euclidean distance between the center of a cell belonging to a re-

stricted area and the center of a cell of the interest map (∀r ∈ R⊞, ∀i ∈ I⊞)
dsi : The Euclidean distance between the center of a cell belonging to a ship-

ping lane and the center of a cell of the interest map (∀s ∈ S⊞, ∀i ∈ I⊞)
d
⩽
p ′ : The maximum distance of each cell of the new activity to each cell of

port p ′ (∀p ′ ∈ P)
d
⩽
r ′ : The maximum distance of each cell of the new activity to each cell of

restricted area r ′ (∀r ′ ∈ R)
d
⩽
s ′ : The maximum distance of each cell of the new activity to each cell of

shipping lane s ′ (∀s ′ ∈ S)
d
⩾
p ′ : The minimum distance of each cell of the new activity to each cell of

port p ′ (∀p ′ ∈ P)
d
⩾
r ′ : The minimum distance of each cell of the new activity to each cell of

restricted area r ′ (∀r ′ ∈ R)
d
⩾
s ′ : The minimum distance of each cell of the new activity to each cell of

shipping lane s ′ (∀s ′ ∈ S)

Decision Variables

xki


1, if cell i ∈ I⊞ is selected and belongs to the area of the new activity

centred at cell k ∈ I⊞,
0, otherwise.

(1)

xkk

{
1, if cell k ∈ I⊞ is selected as a central for the new activity
0, otherwise

(2)

Objectives:

max
m∑
k=1

m∑
i=1

vi · xki (3)
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min
m∑
k=1

m∑
i=1,i ̸=k

dki · xki (4)

Subject to:

m∑
k=1

xkk = c (5)

m∑
i=1

xki ⩽ u · xkk ∀k ∈ L⊞ (6)

m∑
i=1

xki ⩾ l · xkk ∀k ∈ L⊞ (7)

m∑
k=1

xki ⩽ 1 ∀i ∈ L⊞ (8)

dpi · xki ⩽ d
⩽
p ′ ∀p, k, i ∈ L⊞, ∀p ′ ∈ P (9)

dpi · xki ⩾ d
⩾
p ′ ∀p, k, i ∈ L⊞, ∀p ′ ∈ P (10)

dri · xki ⩽ d
⩽
r ′ ∀r, k, i ∈ L⊞, ∀r ′ ∈ R (11)

dri · xki ⩾ d
⩾
r ′ ∀r, k, i ∈ L⊞, ∀r ′ ∈ R (12)

dsi · xki ⩽ d
⩽
s ′ ∀s, k, i ∈ L⊞, ∀s ′ ∈ S (13)

dsi · xki ⩾ d
⩾
s ′ ∀s, k, i ∈ L⊞, ∀s ′ ∈ P (14)

The objective function (3) maximizes the overall interest of a solution. The objective function
(4) minimizes the sum of distances from individual cells in each solution to the center cell of that
solution. As a result, with this goal, a solution for the new activity is as compact and contiguous
as possible. Constraint (5) guarantees that only c central cells (i.e., solutions) are chosen for the
new activity. Constraint (6) ensures that if the cell k is chosen as a central cell, i.e., xkk = 1,
then up to u more cells can be assigned to the solution built around the cell k. Constraint (7)
expresses a similar concept as a constraint (6), except that it defines the minimal size of a solution.
Constraint (8) states that each cell can belong at most to one solution. Constraints (9), (11), (13)
ensure that a solution is not located further than a maximum distance from each port, restricted
area, and shipping lane. Similarly, constraints (10), (12), (14) guarantee that a solution is not
located closer than a minimal distance from each port, restricted area, and shipping lane.
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3.5 Exact Methods

To solve the proposed MOILP, we investigate two approaches for MOO to achieve the appropriate
exact Pareto front: first, an a priori method that considers the WS of the two objectives as a single
objective function, and second, a posteriori method that uses an improved version of the classical
ϵ-constraint method (called AUGMECON2 by [MF13]).

Before attempting to solve the program for different issue sizes, it is worth noting that inequa-
tions (9) to (14) produce a significant number of constraints involving a big number of integer
variables. Each of these inequations, more specifically, provides m3 constraints associated to m2

integer variables, where m = nrow ·ncol. For a map with a resolution of 100 cells by 100 cells,
this equates to 1012 constraints and 108 integer variables.

To address this challenge, we propose solving the problem in two steps:

1. Reduce the feasible solution space for the mathematical program by deleting areas where
no solution can be found using the “buffer” approach described below,

2. Remove the distance constraints (9) to (14) from the program and solve it using one of the
two previously suggested strategies.

3.5.1 Buffering Technique

A buffer is an area surrounding a geographic feature that contains locations that are within a
certain distance of the feature [LT92; JJ12]. The idea of buffer is used to describe the minimal and
maximal distance constraints (9) to (14).

On the one hand, constraints (10), (12), and (14) are utilized to ensure that a solution is not too
close to existing ports, activities, or shipping lanes. If we consider a feasible area for the new
activity on the interest map, these constraints suggest that these ports, activities, and shipping
lanes, as well as the buffers surrounding them, whose radiuses are specified by the d

⩾
p ′ , d

⩾
r ′ and

d
⩾
s ′ parameters should be deleted.

Constraints (9), (11) and (13), on the other hand, ensure that a solution is not located too far
away from these existing elements. Again, in terms of the feasible region for the new activity
this entails deleting parts that are outside a buffer surrounding the ports, activities, or shipping
lanes, the radiuses of which are specified by the d

⩽
p ′ , d

⩽
r ′ and d

⩽
s ′ parameters.

Figure 13 depicts an exemplary scenario from Section [3.3] in which the buffer approach is
used to define the central restricted area. The two white regions of the image show sections of
the feasible zone for the new activity that have been excluded due to two distance constraints
concerning that specific area (a minimal (12) and a maximal (11) constraints). As a result,
solutions B and C are no longer possible since they are not entirely within the remaining feasible
zone. The same method is followed for the other locations, ports, and shipping channels until
the final feasible zone is discovered.

Once the feasible zone has been reduced using this buffering strategy, the simpler mathematical
program (without distance limitations) finally becomes:

Objectives:

max
m∑
k=1

m∑
i=1

vi · xki (15)

min
m∑
k=1

m∑
i=1,i ̸=k

dki · xki (16)
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Figure 13: Modification of the feasible region by the buffering technique

Subject to:

m∑
k=1

xkk = c (17)

m∑
i=1

xki ⩽ u · xkk ∀k ∈ L⊞ (18)

m∑
i=1

xki ⩾ l · xkk ∀k ∈ L⊞ (19)

m∑
k=1

xki ⩽ 1 ∀i ∈ L⊞ (20)

3.5.2 Weighted Sum and AUGMECON2

The simplified model described above can be solved using either the WS or the AUGMECON2
technique. The first resolution method that is studied in this chapter is the WS, using a linear
combination of the two objectives (3) and (4). Therefore, the new objective becomes :

max
(
λ

m∑
k=1

m∑
i=1

vi · xki − (1 − λ)

m∑
k=1

m∑
i=1,i ̸=k

dki · xki

)
, (21)

Equation (21) is a WS formulation, where λ ∈ [0, 1] is a parameter. If λ = 0, then only the
compactness objective is considered, and if λ = 1, then only the interest objective is used.

AUGMECON2 [MF13] is the second resolution technique employed. It is an enhancement of
the classical ϵ-constraint approach, which is one of the two most common resolution methods
for solving multi-objective integer linear systems, together with the previously published WS
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method. It enables the creation of representations of the Pareto front, which is the set of non-
dominated solutions. As indicated in [Mav09], the ϵ-constraint technique, together with its
improvements, offers several advantages over the WS method, particularly for discrete variables.

[MF13] further reinforced AUGMECON in AUGMECON2 by incorporating a bypass coefficient
as well as a form of lexicographic optimization on all objective functions, the order of which was
trivial in AUGMECON:

max f1(x) + ϵ× (
s2

r2
+ 10−1 s3

r3
+ ... + 10−(p−2) sp

rp
)

Subject to:
f2(x) − s2 = e2

· · ·
fp(x) − sp = ep

x ∈ S and si ∈ R+

(22)

In Equation (22), x is the vector of decision variables, and f1(x), f2(x), . . . , fp(x) are the p
objective functions. rk is the range of kth (k = 2, ..., p) objective function obtained from the
payoff table. sk is the slack (or surplus) variables of the respective constraints, ϵ is a small
number (usually between 10−6 and 10−3, and S is the space of efficient solutions. With this
formulation in Equation (22), the solver will find the optimal for f1(x) and then it will try
to optimize f2(x) , then f3(x) and so on. In the AUGMECON formulation, the sequence of
optimizations of f2(x), . . . , fp(x) was indifferent, while now in the AUGMECON2, the sequential
optimization of the constrained objective functions (in the case of alternative optima) is forced.
As it is explained, for each objective function 2, ..., p, we calculate the objective function range
rk. Then we divide the range of the kth objective function to qk equal intervals using (qk − 1)
intermediate equidistant grid points. Thus, we have in total (qk + 1) grid points that are used to
vary parametrically the RHS (ek) of the kth objective function. The total number of runs becomes
(q2 + 1)× (q3 + 1)× ...× (qp + 1). Then the discretization step for this objective function is given
as:

stepk = rk/qk (23)

The RHS of the corresponding constraint in the tth iteration in the specific objective function
will be:

ek = fmink + t× stepk (24)

where fmink is the minimum from the payoff table and t the counter for the specific objective
function. In each iteration, we check the slack/surplus variable that corresponds to the innermost
objective function. Then we calculate the bypass coefficient as:

b = int(sk/stepk) (25)

Using the bypass coefficient, AUGMECON2 exploits the information provided by the slack/-
surplus variables of the constrained objective functions to accelerate solutions by avoiding many
redundant iterations, leading to computation time reduction. The jumps in the innermost loop
not only make the grid scanning quicker but also allow for decreasing the step of the process and
therefore increasing the grid points; by doing so, the exact Pareto set can be identified [Nik+20].
To customize our model with this method, the interest objective function (15) is set as f1(x) and
the compactness objective function (16) as f2(x) is shifted to the constraints.
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3.6 The Experimental Validation

In order to validate the proposals and to study how they behave when confronted with data,
three following questions are proposed:

• validity: Are the mathematical model and the resolution methods capable of finding
the optimal solution?

• sensitivity: How do the parameters of the resolution methods influence the solution?

• complexity: How do the resolution methods compare w.r.t. to calculation times?

To address these three problems, we first present a geographic data generator capable of
producing artificial datasets with varying properties (in terms of interest maps, number, and types
of shipping lanes, ports, restricted areas, etc.). The experimental procedure will be described
then, followed by the results.

3.6.1 Data Generation

Without losing generality, we construct geospatial raster data in which the raster grid’s “bottom
row” and “right column” are considered the mainland. This is depicted in Figure 14, where
mainland is represented by dark gray cells with no letters or numbers.

As a result, the rest of this data is the marine region in which the new activity must be placed.
Each cell in this maritime area has an interest value that reflects how interesting it is to locate
the new activity in that cell. The 6 levels of gray linked with 6 levels of interest are illustrated in
Figure 14 (1 corresponding to the less interesting cells, and 6 to the most interesting ones).

Let np be the number of ports to be generated for a given dataset. For generating these ports,
we simply randomly select np cells from the mainland cells. In Figure 14 this is represented by
the light gray cells marked with a white “P” on the mainland.

The restricted zones are contiguous marine areas where the new activity cannot be found. To
create one such region, we first choose a cell at random from the maritime area (the centroid).
Then we randomly choose cells from the centroid neighboring cells and allocate them to the
restricted area under construction. We next select cells at random from these cells’ neighboring
cells and repeat this process repeatedly until the area is equal to the desired size.

Two categories of restricted regions are examined for this data: restricted areas that enable
shipping lanes to traverse them (e.g., marine protected zones, fishing areas, and so on), and
restricted areas that do not allow for junctions with routes (e.g. windmill farms, islands, etc.).
For simplicity, the first kind of limited region is referred to as “protected areas”, labeling them
“A” in Figure 14, and the second type of restricted area as “windmill farms”, labeling them “W”
in Figure 14. For a particular dataset, let na be the number of protected areas and nw be the
number of windmill farms to be created.

With respect to the restricted areas, the following algorithm 1 is applied:

Let ns be the number of shipping lanes that will be created. Ports are where shipping channels
begin and terminate. The shortest path method is employed, which is an adaption of the A∗

algorithm [HNR68], to build such a path. The method finds the shortest path between two points,
taking into account barriers (the second type of limited region from above, denoted “W” on
Figure 14). Figure 14 also depicts three shipping lanes with cells linked by a continuous white
line.

By taking all mentioned into account, three types of interest maps could be generated, as shown
in Figure 15.

The first technique, called “Totally random”, assigns a random integer interest value vi,
vi ∈ {1, 2, 3, 4, 5, 6}, to each cell in the maritime region. In both “controlled” techniques, one
or more interesting regions in the feasible region are fixed by setting vi to its maximum value
(6). The Normalized Discrete Compactness (NDC) metric, proposed by [LGC13], is a typical
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Figure 14: A sample fictive map generated by artificial datasets

Types of interest maps

(1) Totally
random

(2) Controlled random
with one interesting area

Very
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compact

(3) Controlled random with
multiple interesting areas

Very
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Compact
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compact

Figure 15: Different types of interest maps

approach for measuring compactness. Because the NDC technique is scale-invariant, it can be
applied when computing the compactness of shapes with holes on raster datasets.

The concept is to count the number of cell sides LD shared by pixels representing a shape S,
and then compute the measure CNDC. This is stated as Equation (26):

CNDC =
LD − LDmin

LDmax
− LDmin

(26)
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Algorithm 1 Pseudo-code Restricted Area Generator

1: procedure ADJACENT-COLLECTOR(x, y,R⊞,dirArray)▷ Finding all neighbour cells
2: R⊞ : The set of cells representing all restricted areas
3: R⊞

k : The list of k cells randomly selected from R⊞

4: dirArray : The list of added values sets to cover 8 directions
5: for i in dirArray[0] do
6: for j in dirArray[1] do
7: allAdj← [(x+ i, y+ j)]
8: if x, y in R⊞ then
9: Add (x, y) to the set of possible adjacent cells posAdj

10: Selecting one random cell from allAdj random

11: for i in dirArray[2] do
12: for j in dirArray[3] do
13: for d, nd in enumerate(random) do
14: for x, y in [(random[k][0]+i),(random[k][1]+j)] do
15: if x, y in R⊞ then
16: Add (x, y) to the set of possible adjacent cells posAdj

1: procedure RESTRICTED-AREA-GENERATOR(R⊞
k ,dirArray) ▷ Make a compact

restricted zone
2: for i, ci in enumerate(R⊞

k ) do
3: R← ADJACENT-COLLECTOR(R⊞

k [i][0], R⊞
k [i][1], R⊞, dirArray)

where LDmin
and LDmax

are the lowest and maximum limits of the number of cell sides that
can be shared with the same amount of pixels inside S. Equations (27)-(29) may be produced by
defining p as the number of border edges and n as the total number of pixels in S, LD , LDmin

and LDmax
:

LD =
4n− p

2
(27)

LDmin
= n− 1 (28)

LDmax
= 2(n−

√
n) (29)

In each case, to compare those interesting areas three degrees of compactness are chosen which
are defined as:

• Very Compact: contiguous zone with no hole (0.5 < NDC)

• Compact: contiguous zone with one hole (0 < NDC ⩽ 0.5)

• Not Compact: not contiguous zone with more than one hole (NDC ⩽ 0)

The controlled datasets will obviously be utilized for validation, whilst the random ones
will help us investigate the differences between the different resolution techniques in terms of
solution types as well as complexity/calculation times. In all, this results in the creation of seven
different types of fake datasets about the interest map.

Additionally, for each of the seven categories of interest maps, multiple sizes and layouts of
the ports, shipping routes, protected areas, and windmill farms have been developed. Table 1
summarizes the data generation parameters.
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Table 1: Data generation parameters for exact methods

Parameter name Possible values Description
nrow 55 number of rows of the raster grid
ncol 55 number of columns of the raster grid
np 4, 6, 10 number of ports
ns 4, 6, 8 number of shipping lanes
na 2, 3, 4 number of protected areas
nw 1, 3, 5 number of windmill farms
u 20 maximum size of a solution
l 3 minimum size of a solution
(d⩽

i , d
⩾
i ) (1, 55), (3, 45) minimal and maximal distance to ports,

shipping lanes and restricted areas
(windmill farms and protected areas),
i ∈ {p ′, s ′, r ′}

In terms of problem-specific parameters, we modify the lowest and maximal distance con-
straints to the various existing ocean activities, as indicated in Table 1. The total number of
artificial datasets generated is 7× 34 × 2 = 1134.

3.6.2 Experimental Protocol

Algorithms Configuration and Metrics

The WS resolution approach requires a fixed parameter (λ) that provides the trade-off between
the two objectives under consideration. During some pre-tests, we examined the influence of 11
various values (between 0 and 1) of the λ parameter on the WS of the objectives on a sample of
21 datasets, and we discovered that it varied linearly with λ. As a result, for our more extensive
experiments, we determined that three λ values are adequate, as shown in Table 2.

Table 2: WS parameter

Parameter name Possible values Description
λ 0.25, 0.50, 0.75 tradeoff between the two objectives (compact-

ness and interest)

The AUGMECON2 parameters are set to create three optimum Pareto front solutions. Multi-
ple metrics could be observed for each algorithm configuration, and the following will be
presented in the results section [3.7]:

■ Computation times (separately for the buffering technique and the optimization part)

■ Location of the optimal solution

■ Characteristics of the optimal solution
• Compactness
• Number of cell candidates

To address the first question about validation, the algorithms are run with their different
parameter configurations on the controlled random datasets. For each run and each dataset,
we check if the obtained solution is equal to or included in the (or one of the) best artificially
generated locations of the interest maps.

Then, to answer the sensitivity question, we use the totally random datasets. We first measure
the compactness of the solutions with respect to the variations of the algorithms’ parameters,
as well as the influence of the distance parameters on the compactness. Then we compare the
outputs of the algorithms to check if they produce the same or different solutions. In the second
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case, we also check if the solutions are intersecting, included one in the other, or totally disjoint.
The effect of the distance parameters is also studied on the compactness of the solutions and
their sizes.

Finally, to answer the complexity question, we evaluate the effect of the distance parameters
on the resolution methods, by separating the buffer generation time from the optimization time.

Implementation

The MOILP model is implemented in Python, version 3.8, by using the PuLP module, an LP
modeler written in Python which calls an optimization software tool (CPLEX) as a solver. All
experimental tests are implemented on a laptop with AMD Ryzen 5 PRO 2500u w/ Radeon Vega
Mobile GFX 2.598GHZ processor with 16 GB RAM running Linux/Ubuntu 20.04.1 LTS.

Statistical Methods

Statistical tests were performed to examine the significance of the data in order to support the
conclusions stated in this chapter. To be more explicit, a Fisher-Snedecor approach was used to
examine the difference between the various sub-samples. At a 95% level of confidence, all the
provided results are significant.

3.7 Computational Results

After completing all validation, sensitivity analysis, and computing time tests, the primary
results are as follows:

■ Validation : (On controlled data)

As previously stated, to demonstrate the model’s validity, we must demonstrate that 100%
of the attained solution is equivalent to or contains the (or one of the) artificially constructed
optimal locations of the interest maps using controlled random regions. Concerning the
various forms of interest maps for controlled datasets shown in Figure 15, we choose
three as examples to demonstrate how the validity is validated: extremely compact and
compact controlled random with one interesting region, and non-compact of that with
several interesting areas. Figure 16 depicts a geospatial raster-based map, in which the
controlled random region and the best solution are represented with white and dark gray
raster cells in the maritime area.

As observed, the white cells correspond to both the ideal zone and a portion of the
controlled random region, while the other two dark gray cells round out the rest of the
random area. Because of two holes in the regulated area, we classify it as “not very
compact”. In general, the restricted region encompasses the whole optimal solution; that
is, the ideal solution is located exactly within that area. It is worth noting that in all three
circumstances, the model returns not only the smallest but also the most interesting answer.
According to the tests, we may infer that the given answer is either %100 equivalent to or
contained in the controlled random generated zone.

■ Sensitivity Analysis : (On the random data)

1. Compactness:

The compactness metric was averaged across all setups for the two distinct buffer
levels. First, raising the λ for WS increases the weight of the interest function while
lowering the weight of compactness. As a result, in the presented findings, the bigger
the λ, the less compact the solutions. Figure 19 represents the box plots for both
resolution methods w.r.t compactness for different λ values in WS in subplot 19b
and different solutions in AUGMECON2 in subplot 19a. Figure 19 depicts the link
between the compactness of the solution and the algorithm parameters. Figure 19b
demonstrates that raising the λ causes WS to move from compact to non-compact
solutions.
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Figure 16: The sample validity map with one compact area

While, the sensitivity of AUGMECON2 to the compactness requirement is different.
Figure 20 shows the convergence of two objective functions by highlighting an
example of Pareto-optimal solutions produced by the AUGMECON2 technique.

The objective function (4) is related to the minimum distance between the center
cell of the solution and the candidate cells around it. As can be seen in Pareto-front
Figure 20, by increasing this objective function (4) which is shifted into constraints,
we are relaxing this constraint and going toward the maximum value of the objective
function (3) which represents the interest. However, since the algorithm has to satisfy
both objective functions at the same time, it tries to return different shapes by keeping
nearly the same compactness, instead of giving less compact solutions. Therefore,
the more objective function (4) (solution), the less the variability, illustrated in Figure
19a. On the other hand, increasing the objective (4) shifts the algorithm’s focus to the
maximum interest value by selecting more and more cells, but the size constraint,
which has the highest value, imposes another limitation on the algorithm, forcing it
to find fewer different solutions with varying compactness.

2. Number of candidate cells:

Figure 21 represents the box plots for both resolution methods w.r.t the average
candidate cells. Figure 21 shows that the average number of candidate cells in the
solution for WS is unaffected by buffer size, whereas AUGMECON2 is. The method
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Figure 17: The sample validity map with one very compact area

returns fewer candidate cells when the buffer size is increased. Significant statistical
tests (p-value<0.05) confirm these results. One probable explanation is that the
difference between the two buffers under consideration is not great enough to have
a worldwide influence on the number of WS candidate cells, but AUGMECON2 is
quite sensitive to the buffer and the solution space.

■ Computation Time : (On the random data)
Figure 22 represents the box plots for both resolution methods w.r.t the computation time.
The sum of the optimization and buffer times yields the overall computing time. Figure
22 shows the difference in overall computing time between WS and AUGMECON2. As
demonstrated, the MOILP model is solved in less time for both WS and AUGMECON2 for
a smaller feasible region (i.e. greater buffer size) than for a larger solution space (i.e. smaller
buffer size). We see a longer computation time for AUGMECON2 with a smaller buffer
(p-value<0.05). However, because of its buffer size sensitivity, AUGMECON2 becomes
more efficient with a bigger buffer ((p-value<0.05).
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Figure 18: The sample validity map with multiple non-compact areas



47 3.7. Computational Results

(a) (b)

Figure 19: The Average Compactness Comparison between WS and AUGMECON2: (a)
3 Pareto-optimal solutions of AUGMECON2 with increasing the objective function (4);
(b) that of WS w.r.t λ

Figure 20: The Pareto Front of AUGMECON2
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Figure 21: The Average Candidate Cells of all Configurations for each Buffer Size
between WS and AUGMECON2

Buffer(1) Buffer(2)
Buffer Sizes

0

250

500

750

1000

1250

1500

1750

Co
m

pu
ta

ti
on

al
 T

im
e(

s)

Algorithms
WS
AUGMECON2

Figure 22: The Average Time Comparison of all Configurations for each Buffer Size
between WS and AUGMECON2



49 3.8. Conclusion

3.8 Conclusion

In this chapter, a novel multi-objective mathematical model is proposed to solve the problem of
locating and allocating a new human activity optimally in a given marine area. The proposed
approach highlights an exact resolution of the problem. To solve it, we analyzed two resolution
methods, a WS of the objectives and AUGMECON2, an enhanced version of the classical ϵ-
constraint method. Empirical study based on synthetic data proves the ability of both methods
to yield optimal solutions.

Our study shows also that AUGMECON2 represents the most promising approach in terms
of relevance and diversity of the solutions, compactness, and computation time. Indeed, AUG-
MECON2 is able to exploit almost every run to produce a different solution. It also offers the
possibility to easily control the number of generated solutions. On the opposite, WS provides
less balanced solutions between the two objectives of interest and compactness, while being less
sensitive to the buffering technique.

The next challenge is to scale up the problem resolution to larger problems. This objective is
achieved in the next chapter by developing MHs that are faster while providing solutions that
are close to optimality. To be more compatible with reality, another extension of this work would
concern the determination of the best location for multiple new activities at the same time.
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ABSTRACT

In Chapter [3], an exact MOILP model for the spatial zoning management in MSP is
developed as an optimization model and validated by experimental studies. However, due to
the computing complexity of MOILP models, the findings of Chapter [3] are limited to small
scale and do not support the given problem with real-world application on a large scale.
Therefore, this chapter presents and compares the results of two MOEAs, SH-NSGA-II,
which is an extension of NSGA-II, and an MA in which SH-NSGA-II is enhanced with a
local search. These proposed algorithms are used to solve the multi-objective spatial zoning
optimization problem, which seeks to maximize the zone interest value assigned to the new
activity while simultaneously maximizing its spatial compactness. We introduce several
innovations in these proposed algorithms to address the problem constraints and to improve
the robustness of the traditional NSGA-II and MA approaches. Unlike traditional ones, a
different stop condition, multiple crossover, mutation, and repairing operators, and also a
local search operator, are developed. We present a comparative study of the results obtained
using both algorithms. To guarantee robust results for both algorithms, their parameters
are calibrated and tuned using the Multi-Response Surface Methodology (MRSM) method.
The effective and non-effective components, as well as the validity of the regression models,
are determined using Analysis Of Variance (ANOVA). Although SH-NSGA-II has revealed
good efficiency, its performance can still be improved by using a local search scheme within
SH-NSGA-II, which is specially tailored to the problem characteristics.

4.1 Introduction

Spatial management planning is a resource location-allocation strategy described as the process
of locating and allocating distinct human activities or uses to the specified units of areas on the
Earth’s surface [Doo+18; GK17]. One of the first and foremost prerequisites for properly MSP is
spatial data, often known as geospatial or geographic data. That is, data about the geographic
position of features and boundaries on the Earth’s surface, such as natural features, land regions,
ocean surfaces, and so on. Coordinates and topologies are commonly used to map and store
spatial data [SE21; Bas+21]. A wide range of decision problems in the spatial planning strategy,
such as land-use planning [GC20], and MSP [Bas+21] make use of spatial data.

Formally, MSP decision problems are optimization problems in which we must identify the
optimal position and form of a spatial region for a new activity, given certain restrictions. Solving
these two sub-optimization issues at the same time is a relatively new class of optimization
problem, and there has not been much study on it in the literature [Cen77; BAJH20]. The majority
of spatial zoning approaches are expressed as multi-objective non-linear optimization models,
which are frequently solved using stochastic search techniques, resulting in sub-optimal solutions
[SP22]. Nevertheless, in Chapter [3], we offered an exact mathematical zoning model for MSP as
an MOILP problem [Bas+21].

Difficulties arise, however, when an attempt is made to increase the size of the problem. The
main limitations in the exact solvers for generating the optimal solutions are referred to as their
high computational cost and computational hardness1 [Lok+18]. Therefore, to reach good enough
solutions in practice, using evolutionary-based approaches like heuristic or MHs algorithms is
typically sufficient for real MOOPs case studies on a large scale [SJv04b; LBR19].

As a result, a challenge in this chapter lies in developing and implementing different MHs to
solve the given MOOPs, the spatial zoning problem in MSP. To do so, two novel population-
based MOEAs are proposed. To increase the reliability of measures, the experimental tests are

1A computational hardness assumption in computational complexity theory is the assumption that
a certain problem cannot be solved effectively (where efficiently typically means “in polynomial time”).
It is unknown how to show the (unconditional) hardness of practically any important problem. Instead,
computer scientists use reductions to formally link the hardness of a new or complicated problem to a
computational hardness assumption about a better-understood problem [Wik21]
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designed and validated. Finally, the comparative analysis among MOEAs and the exact results
in small size and between both MOEAs in large size is studied.

The chapter is structured as follows. Section [4.2] provides a review of the literature on the
topic and a summary of the contributions. In Section [4.3], we propose the MOEAs algorithms for
the problem at hand to find the optimal solutions. In Section [4.4], we describe an experimental
design to tune the parameters of the proposed algorithms, while in Section [4.5], we explain
the experimental validation metrics. In Section [4.6] we propose the computational results on
artificially generated synthetic instances. We draw conclusions in Section [4.7]. It is worth noting
that this chapter is based on an accepted conference paper and an under-review journal article,
which are mentioned in the publications list at the end of the manuscript.

4.2 Literature Review

As already explained, land-use planning [GC20], biodiversity conservation planning [Yan+19],
MSP [Bas+21], and military planning [LSW03] are only a few of the decision issues in the
spatial planning strategy that employ spatial data. Due to competing goals and restrictions in
the mentioned problems, selecting the optimum zone(s) or area(s) for a certain purpose using
geographical data may be challenging. In contrast to land-use planning, maritime activities
were not handled for many years, since the sea was thought to be unbound and its resources
inexhaustible [DC+09; Bas+21]. Today, protecting the global marine environment has become
critical, and the MSP strategy is a central tool for developing sustainable human activities in the
ocean, taking into account the interactions between different activities and stakeholders [Aga15].

In MSP, decision issues are optimization problems in which we must determine the best
location and/or shape of a geographic region for a certain activity, given certain constraints. Two
sub-optimization difficulties here are the appropriate location and shape of a spatial region.

The complexity of a problem indicates the difficulty of the problem. It is also necessary to
understand the size of input instances that the method is expected to solve. Even though a
problem is NP-hard, an exact approach may be used to address small instances. Furthermore,
the structure of the instances is important. Exact algorithms may solve some medium- or
even large-size instances with a specified structure in the optimization problem. Finally, the
search time required to solve a particular problem is a significant consideration when choosing
an optimization technique [Tal09]. When there are efficient, exact methods available, it is
inappropriate to apply MHs to solve issues. The P class of optimization issues is an example
of this type of problem. MHs are worthless when the exact algorithms provide an “acceptable”
search time to solve the target cases. For example, one should not utilize MHs to discover the
shortest path or minimal spanning tree in a graph. There are known polynomial-time exact
algorithms for these issues. As a result, MHs are rarely applied for simple optimization issues.
So the first step in solving a problem is to assess its complexity.

Despite progress in reformulating our MOILP model and the invention of more efficient
techniques, such as the buffering technique, our MOILP problem continues to be difficult to
solve in an acceptable time for moderate and large cases. To deal with this issue, implementing
MOEAs such as single Solution-Based Metaheuristics (S-metaheuristics) or Population-Based
Metaheuristics (P-metaheuristics) can be applied [SJv04b; LBR19]. Unlike exact approaches,
MHs enable the handling of large-scale issue instances by providing adequate solutions in a
reasonable amount of time. There is no certainty that global optimum or even bounded solutions
will be found.

4.2.1 Meta-Heuristics

In the class of approximate methods, two subclasses of algorithms may be distinguished: approx-
imation algorithms and heuristic algorithms. Unlike heuristics, which usually find reasonably
“good” solutions in a reasonable time, approximation algorithms provide provable solution
quality and verifiable run-time bounds. Heuristics find “good” solutions to large-scale problem
instances. They allow obtaining acceptable performance at an acceptable cost in a wide range of
problems. In general, heuristics do not have an approximation guarantee on the solutions they
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get. They may be classified into two families: specific heuristics and MHs. Specific heuristics are
tailored and designed to solve a specific problem and/or instance. MHs are general-purpose
algorithms that can be applied to solve almost any optimization problem. They may be viewed
as general upper-level methodologies that can be used as a guiding strategy in designing un-
derlying heuristics to solve specific optimization problems [Tal09]. The word heuristic has its
origin in the old Greek word heuriskein, which means the art of discovering new strategies (rules)
to solve problems. The suffix meta, also a Greek word, means “upper-level methodology”. The
term MHs was introduced by F. Glover in the paper [[Glo86]]. MHs search methods can be
defined as upper level general methodologies (templates) that can be used as guiding strategies
in designing underlying heuristics to solve specific optimization problems.

In the last 20 years, MHs have grown in prominence. Using MHs to solve MOOPs has been a
particularly active research and development topic in recent years. Their employment in a variety
of applications demonstrates their efficiency and efficacy in resolving huge and complicated
issues, like;

• Engineering design, topology optimization, and structural optimization in electronics and
VLSI, aerodynamics, fluid dynamics, telecommunications, autonomy, and robotics are
some fields where MHs are used.

• Data mining and machine learning in bioinformatics and computational biology, as well
as finance.

• Control, signal, and image processing; system modeling, simulation, and identification in
chemistry, physics, and biology.

• Routing problems, robot planning, scheduling and production issues, logistics and trans-
portation, supply chain management, and so on.

Optimization is omnipresent; optimization issues are frequently difficult, and then there
are MHs everywhere. Even in the scientific community, the number of MHs-related sessions,
seminars, and conferences is increasing considerably. The pedigree of multiple MHs is depicted in
Figure 23 [PC04] proposed the heuristic concept for solving optimization issues in 1945. [Dan51]
developed the simplex method in 1947 as a local search algorithm for linear programming
problems. [Edm71] published the greedy heuristic in the combinatorial optimization literature
for the first time in 1971. The following MHs initial references are based on their application to
optimization and/or machine learning problems: Ant Colonies Optimization (ACO) [Dor92],
Artificial Immune Systems [BV90; FPP86], Bee Colony [See09; YK96], Cultural Algorithms
[Rey94], Co-Evolutionary Algorithms [Hil90; Hus91], Covariance Matrix Adaptation Evolution
Strategy [HO96], Differential Evolution [PRI94; SP97], Estimation of Distribution Algorithms
[Bal94], Evolutionary Programming (EP) [Fog62], Evolution Strategies (ES) [RTE65], Genetic
Algorithms (GAs) [Hol62; Hol75], Great Deluge Algorithm [Due93], Guided Local Search [Vou98;
VT95], Genetic Programming (GP) [Koz+92], Greedy Adaptive Search Technique [FR89], Iterated
Local Search [MOF91], Noisy Method [CH93], Particle Swarm Optimization (PSO) [KE95],
Simulated Annealing (SA) [Čer85; KGJV83], Smoothing Method [GM86], Scatter Search (SS)
[Glo77], Threshold Accepting [DS90], Tabu Search (TS) [Glo86; Han86], Variable Neighborhood
Search (VNS) [MH97].

4.2.2 Single-Solution Based VS. Population-Based Meta-Heuristics

Regardless, when the MHs are used, the objective is to generate a Pareto optimum approxima-
tion that has two properties: convergence to the Pareto optimal front and consistent diversity.
The first condition ensures that near-optimal Pareto solutions are generated, while the second
property indicates that the acquired solutions are well distributed on the Pareto optimal front,
ensuring that no valuable information is lost [CH08]. Exploring the search space (diversifica-
tion) and exploding the best solutions identified (intensification) are two contradictory criteria
to consider when building an MH, as seen in Figure 24. In general, basic S-metaheuristics are
more exploitation oriented, whereas basic P-metaheuristics are more exploration oriented. The
acquired “good” solutions help identify promising areas. Intensification involves digging deeper
into promising areas in the hope of discovering more effective solutions. Non-investigated
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Figure 23: MHs ancestry. As per the original date, the application to optimization
and/or machine learning is considered. [Tal09].

parts of the search space must be visited during diversification to ensure that all regions of the
search space are equally explored and that the search is not limited to a few regions. In terms of
exploration (resp. exploitation) in this design space of Figure 24, random search algorithms are
the most extreme (resp. iterative improvement local search). At each iteration of the random
search, a new random solution is generated in the search space. At each iteration of the basic
steepest local search algorithm, the best adjacent solution that improves the results is selected.

Figure 24: Two conflicting criteria in designing MHs: exploration (diversification) versus
exploitation (intensification) [Tal09].

In other words, during the search, S-metaheuristics (such as local search and SA) control and
transform a single solution, whereas P-metaheuristics (such as PSO and Evolutionary Algorithms
(EAs)) evolve an entire population of solutions. S-metaheuristics are exploitation-focused; they
can increase the search in small regions. Exploration-oriented MHs are P-metaheuristics that
allow for more variety throughout the whole search space. As a result, utilizing some strategies
in these algorithms that enhance the underestimated local search section might be useful to
empower P-metaheuristics.

As mentioned above, solving the multi-objective decision issues in MSP entails developing
a collection of Pareto optimum solutions that satisfy the conditions of convergence to the true
Pareto front and uniform diversity. The majority of research on MHs for MOO focuses on
P-metaheuristics, such as EAs, which are more suited to solving MOOPs [CLVV+07; Deb01]. The
creation of MHs that allow the approximation of the Pareto front in addressing MOP issues is
our primary focus.

Figure 25 provides the number of research documents using MOEA algorithms in the spatial
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optimization field from 2010 to 2022 (Scopus). As already mentioned, MOEA algorithms are
popular choices for solving complex large-scale spatial optimization problems. There have
been several MHs algorithms, such as NSGA-II [WH+21], Strength Pareto Evolutionary Algo-
rithms (SPEA, SPEA-II) [FLT21], PSO[CPP17], SA [Gon+21], Multi-Objective Genetic Algorithm
[LWM08], ACO [Wan+21b], Harmony Search [Wan+21a], Hill Climbing [Liu+06], TS [LC08], and
Greedy Algorithms (GA) [XGS21].

Figure 25 shows that NSGA-II has recently been widely used in solving complex, large-scale
spatial optimization problems.

Figure 25: The trend of MOEAs in spatial optimization during recent 13 years

For example, in 2019, [Fox+19] applied a connectivity-based method for MOO to the design
of MPA networks. The authors developed the MHs algorithm to find the Pareto optimal set for
networks up to 100 sites by examining two real-world marine networks.

[Aer+03] used SA to solve the spatial goal programming for the land use allocation problem.
This work determines the multi-site allocation between different land uses, which is a kind of
partitioning problem without considering the existing elements as constraints.

[Yao+19] highlights the prominent sustainability concerns in land use planning and suggests a
generalized multi-objective spatial optimization model facilitates conventional planning. They
developed an evolutionary-based algorithm to solve the land use optimization problem. One
limitation of this work, however, is that it focuses on the simple partitioning problem without
considering the influence of the land uses on each other. Moreover, the developed heuristic
algorithm is a traditional GA.

According to [SJ14], an improved land use optimization model is proposed for land use
planning with a new spatial component. A GA is developed to solve the optimization problems.
The context relates to interactive decision support for land use planning, in which the data
is stored in a vector-based GIS, which is the extension of earlier work by the authors for a
grid (raster) structure. However, again, the weaknesses of this work concern the mathematical
formulation, which is nonlinear, and it is a kind of partitioning problem solved by a traditional
GA, which is not compared with any other algorithm.

In the research of [WC04], an intelligent GIS-based spatial zoning system with a multi-objective
hybrid MHs algorithm was developed to draw territory lines for geographical or spatial zones
for space control. In this method, a GIS and a hybrid MHs (i.e., TS and SS algorithms) were used
to generate non-dominated alternatives.

[Li+11] attempted to use the urban cellular automata coupled with ACO to solve a zoning
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problem of the protected natural area in a changing landscape. The performance of this method
against three traditional optimization algorithms, i.e., SA, Iterative Relaxation, and Density
Slicing, has been tested and confirmed in the metropolitan region of Guangzhou, China, using
Geographical Simulation and Optimization System software.

In 2017, [KZ+17] offered a spatial zoning approach simulating the long-term expansion of
Mashhad city in Iran. In this method, a mix of external and internal variables for predicting urban
growth was considered. In addition, this spatial zoning method differentiates the local-scale
urban dynamics in districts from the socio-economic characteristics. First, Thiessen polygons
were used in this method to identify districts with different morphology and functional attributes.
Urban growth was then simulated for each district using a multi-layer perceptron neural network
and Markov chains analysis. Finally, the multi-layer perceptron and Markov chains algorithms
were used to derive transition maps from non-urban to urban use of land and to determine the
spatial evolution of built-up areas at the metropolitan scale.

4.2.3 Hybrid Meta-Heuristics

In the field of optimization, interest in hybrid MHs has grown significantly in recent years. Hy-
brid algorithms produce the best results for many real-world or classical optimization problems
[Tal02]. P-metaheuristics, S-metaheuristics, mathematical programming, Constraint Program-
ming, and machine learning approaches have been used to create very strong search algorithms.

As stated above, the design of MHs is guided by two competing goals: exploration and
exploitation. Exploration is required to guarantee that every area of space is sufficiently examined
to offer an accurate estimate of the global optimum. Exploitation is vital since refining the present
solution typically results in a better solution. P-metaheuristics (e.g., EAs, SS, particle swarm,
Ant Colonies) are effective in exploring the search space but ineffective in implementing the
solutions identified. As a result, the most efficient P-metaheuristics have been combined with S-
metaheuristics such as local search, SA, and TS, all of which are effective optimization approaches
in terms of exploitation. The strengths and disadvantages of the two kinds of algorithms are
complementary. The S-metaheuristics attempt to optimize locally, whereas the P-metaheuristics
attempt to optimize worldwide. In Low-Level Teamwork Hybrid (LTH), MHs are incorporated
in a P-metaheuristic2 (Figure 26). This type of hybrid method is widely common and has been
successfully applied to a wide range of optimization problems. The majority of cutting-edge
P-metaheuristics merge into S-metaheuristics.

Figure 26: A combination of LTH. P-metaheuristics contain S-metaheuristics [Tal09].

In the research of [Lu+19], MA was used to solve the multiple Traveling Repairman Problem
with Profits (TRPP). In this MA, a randomized greedy construction method for initial solution
generation, a VNS for local refinement, and a dedicated route-based crossover operator for solu-
tion recombination were combined. The effectiveness of the developed MA was demonstrated
in solving an extensive set of instances of TRPP.

[EK20] developed another MA with optimal recombination for the asymmetric traveling
salesman problem. In this MA, a crossover operator based on an exact algorithm was used
to solve the optimal recombination problem on cubic digraphs, and a mutation operator was

2This class of hybrid MHs includes MAs
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employed to make random jumps in 3-opt or 4-opt neighborhoods. In addition, a greedy
constructive heuristic was used in this MA to generate the initial population.

[Hua+19] proposed a so-called niching MA for multi-solution traveling salesman problem. In
this MA, a niche preservation technique to enable the parallel search, an adaptive neighborhood
strategy to balance the exploration and exploitation, a critical edge-aware method to provide
effective guidance to the reproduction, and a local search strategy to improve the search efficiency
were proposed. Comprehensive experiments were conducted to confirm the effectiveness of the
proposed MA.

[YATZ19] proposed an MA for closed-loop supply chain network design. In this MA, a
priority-based encoding/decoding method based on a flexible combinatorial neighborhood
search strategy was developed. Moreover, a technique to convert the discrete representation to a
continuous one was proposed to avoid the time-consuming repair process in the discrete solution
representation. Finally, a multi-start simulation annealing is integrated into the MA to enhance
the search performance. The outperformance of the proposed MA, compared to commercial
solvers and GA, was validated in various test problems ranging from small size to large size.

For the hub location and routing problem with the distinct collection and delivery tours,
[YBD19] proposed a MILP model and the related MA to solve it. For scheduling and planning
problems with a single objective, [RCR20; Ala+19; YK20; Jin+20] have developed various versions
of MA to them.

For MOO, there have been a number of research works using MA, such as [Gon+19; Dec+19;
Abe+20; ZWY20; STJ19; PL19; Sun+19].

MA has been used to solve many other optimization problems such as gene selection problem in
microarray data [Gho+19a], training recurrent neural networks for the energy efficiency problem
[RCP19], preventing epidemic spreading in networks [Wan+20], medical data classification
[Bal+19], feature selection for handwritten word recognition [Gho+19b], composing distributed
data-intensive Web services [SMC19], the 3-D protein structure prediction problem [LCD20], etc.

Following the reviewed studies in this field, the major knowledge gap addressed in this chapter
is designing the efficient MOEAs to be able to:

1. solve spatial zoning optimization problems, which is more than a simple partitioning
problem.

2. be applicable for any real spatial zoning problems in large-scale maps.

3. converging to good enough solutions in a reasonable computing time.

4. be compatible with the raster data.

On the basis of the knowledge gaps identified, this chapter presents the following contributions.

1. Problem resolution: We present two different population-based MOEAs (SH-NSGA-II
and MA), which are Pareto-based techniques, to address the computational hardness
issue of the exact method for the large-scale spatial zoning optimization problem in MSP.
Initialization, stop condition, chromosome encoding, crossover, mutation, check and
repair operators, constraint management methodologies, and algorithm structure in raster
data are all suggested as innovations. The proposed MOEAs are used to simultaneously
optimize the interestingness and compactness objectives of the new activity zone.

2. Experimental validation: MRSM for parameter tuning: we set up an Design Experiment
(DOE) as Box-Behnken Design (BBD), which implements a multi-response regression
model for three different map sizes of the problem in order to determine the optimal value
of the algorithm parameters. Moreover, the effectiveness of all models is validated by
ANOVA.

3. Comparison Analysis: To compare two MOEAs, different performance measures are
indicated and calculated for better characterization of the Pareto solutions, resulting in a
more precise analysis of two algorithms for small- and large-scale problems. To guarantee
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all conclusions, the significance value of the Wilcoxon Signed-Rank Test (WSRT) (paired
samples) tests of all performance measures for the exact method, SH-NSGA-II, and MA, in
the three problem size levels are calculated and compared.

4.3 Multi-Objective Evolutionary Algorithms

[Wei91] was the first to establish the baselines of heredity from parents to offspring in the
nineteenth century. The idea of evolution was then proposed by [Dar59] in his renowned book
On the Origin of Species in 1859. These theories of the emergence and development of new species
prompted computer scientists to develop EAs in the 1980s. During the last 40 years, three main
schools of EAs have evolved independently: GAs, primarily developed in Michigan, USA, by
[Hol62; Boo+05]; ES, developed in Berlin, Germany, by [RTE65; Hun76] and [Sch95]; and EP,
developed in San Diego, USA, [Fog62; Fog98]. [Koz+92] later suggested GP around the end of
the 1980s.

EAs are stochastic P-metaheuristics that have been successfully applied to a wide range of real-
world and complicated issues. They are the most studied P-metaheuristics. Their effectiveness
in addressing tough optimization problems in a variety of fields has given rise to the subject
known as Evolutionary Computation [BFM18]. EAs are built on the concept of competition. They
are a type of iterative optimization technique that simulates species evolution (Figure 27). They
are based on the evolution of a population of individuals.

Population Parents

Offspr ings

Selection

Reproduction: 
Recombination, Mutation

Replacement

Figure 27: A generation in EAs

All the studies reviewed so far confirmed using the P-metaheuristics and LTH like MA as the
suitable choices to solve the spatial zoning optimization problem described precisely in Section
[3.3]. Therefore, in this section, we propose two MOEAs; SH-NSGA-II and MA. At their core, two
P-metaheuristics are lied, based on the well-known high-level template for NSGA-II endowed
with novelties in problem-specific coding, decoding, and recombination operators. The aim
is to compare the efficiency of the two MOEAs based on the randomly generated datasets for
the problem. In this context, the DMs, finally, are intended to find the most preferred solutions
called the Pareto optimal set or Pareto frontier. In this section, both MOEAs, along with all their
common components, are explained in detail.

4.3.1 Solution Encoding Schema

One of the first tasks in successfully implementing MHs is to choose the solution representation.
In the spatial planning, the problem solution representation could involve geographic location
dimensions (“cells”, “patches”, or “grids”).

To randomly produce a feasible initial population of solutions, we must consider various
constraints while solving MOOPs. For the spatial zoning optimization problem, there is a set of
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constraints as follows:

• The size of each solution is a fixed number of cells (the required solution size).

• Intersections between the solutions and other existing activities are not permitted.

• No hole is accepted in each solution because if a zone is closed and bounded, then it is
compact [Bas22; Veb04].

• The solution’s layout and structure should be uninterrupted, that is, without a break in
continuity to make a solution compact.

Figure 28 depicts a mapping between the space of solution and the space of encoding. On
the left of Figure 28, a raster reflects a specified zone of an activity on a map. This raster-based
zone includes a regular grid of cells or pixels. Each raster cell contains a single value, and the
coordinate of each raster cell relates to the center of the cell ((xi, yi) in Figure 28). Each cell can
be defined by a cell dimension, such as the width and height of the cell. As cells in a raster are
frequently square, their width and height will be the same.

In the GAs, the term “chromosome” is used to represent one single solution, while the term
“population” is used for a given number of chromosomes. Therefore, the chromosome shown on
the right of Figure 28 illustrates the encoded solution as a chromosome.

In Figure 28, the direction of generating a chromosome in a raster starts from the south-west
of the map shown by the numbers 1 to 15 as an example (1 is located in the first cell and 15 in
the last one, that is, the order of their selection). However, our proposed algorithms lead to a
Pareto front including multiple different chromosomes (solutions) on the map for one specific
activity, one of those is illustrated in Figure 28. Therefore, if we translate and gather multiple
chromosomes all together in one matrix, we will reach the matrix of population 30 (Poplist).
By doing so, the solution representation in this chapter is a multi-dimensional matrix (m×n),
in which m shows the number of rows of the matrix and n declares the number of columns.
In other words, n reveals the size of each chromosome, that is, the total number of cells in its
equivalent zone, while m is the given population size in the proposed algorithms (Npop).

(x15,y15)(x1,y1) (x2,y2) (x3,y3) ...

151 2 3 ...

A chromosome

Solution encoding

A solution of the problem

Figure 28: Mapping between the space of solution and the space of encoding.

Poplist =



(x11, y11) · · · (x1j, y1j) · · · (x1n, y1n)
...

...
...

(xi1, yi1) · · · (xij, yij) · · · (xin, yin)
...

...
...

(xmi, ymi) · · · (xmj, ymj) · · · (xmn, ymn)


m×n

(30)
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4.3.2 Synchronous Hypervolume-Based Non-dominated Sorting Genetic
Algorithm-II

MOEAs optimize two or more conflicting objectives by considering a collection of Pareto opti-
mum solutions. [Deb+00] presented one of the efficient approaches to achieving Pareto frontiers,
called NSGA-II. The key challenges in MOEAs are (1) computing complexity and (2) non-elitism
approach, to name a few. To deal with computational complexity, NSGA-II employs a fast
non-dominated sorting strategy. To address constrained MOOPs, NSGA-II employs an effective
constraint-handling approach. It also explains how to use an elite approach to prevent losing out
on the best answer and to increase the robustness of the system.

Figure 29 is a graphical depiction of NSGA-II. Figure 29 provides how the given set of five
solutions (F1-F5) are classified into three non-dominated fronts (Pt+1). As can be seen on the left
of Figure 29, Pt is a population that NSGA-II randomly generates with respect to population size
Np. Following that, Ot is the chosen chromosomes by the selection operator for the offspring
population, with regard to a crossover rate Pc and a mutation rate Pm. As shown in the first
rectangle on the left of Figure 29, NSGA-II then combines Pt and Ot to generate Rt, which it
then sorts into numerous non-dominated fronts Fi based on coverage and fitness function. These
sorted Fis, which are shown in the next rectangle, give rise to the next population, Pt+1 as the
last rectangle on the right, in which the best Fis form Pt+1. Because the size of Pt+1 should be
the same as that of Pt, all elements of Fi may not be in Pt+1 like F4 and F5 marked as “Rejected”
in the figure. As a result, crowding sorting is used to complete Pt+1 by adding an incomplete
front in the crowding distance technique, in which the required population is created by the
top of the front elements, such as F1, F2, and F3 in Figure 29, without sacrificing good solutions
(elitism). NSGA-II generates Ot+1 from Pt+1 similarly as Ot. It then iterated the preceding
processes to achieve the best Pareto solutions while keeping a stopping criterion in mind. For
further information on NSGA-II, readers might consult [Deb11; Deb+00]. The chromosomes in
Pt are then sorted into numerous fronts of non-dominated solutions.

Figure 29: Graphical representation of NSGA-II [Deb11]

In this chapter, we propose the SH-NSGA-II architecture for solving the spatial zoning opti-
mization problem. Compared to the typical NSGA-II, the suggested one employs a different
initialization approach, stop criterion, four crossover operators, and three mutation operators
throughout the search phase [Deb+00]. Furthermore, offspring chromosomes, which are pro-
duced by the four crossovers and three mutations, may compete with parent chromosomes
for survival from generation to generation. Furthermore, the proposed SH-NSGA-II includes
a check and repair mechanism that prevents the search process from being trapped in local
optima. In other words, the proposed SH-NSGA-II is capable of preventing repeating solutions
by producing solutions with various structures and without discarding non-feasible solutions: it
can fix those that require minimal changes to make them feasible/acceptable. The suggested
SH-NSGA-II components will be described in depth in the following sections.

In Figure 30, the flowchart of the SH-NSGA-II is presented. This flowchart starts with the
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Figure 30: The flowchart of SH-NSGA-II for spatial zoning optimization problem

first randomly generated set of non-dominated populations. Next, the set of current initial
zones is assessed by computing their objective functions. By doing so, the main loop of the
algorithm launches. One of four crossovers is chosen at random in the initial phase to create non-
iterative and acceptable offspring, and this random selection is repeated until the crossover rate
is reached. On the other hand, if the probability of mutation is satisfied, the same procedure as a
random selection in the crossover is repeated for three mutation operators to produce offspring.
Following that, all populations and the achieved offspring are grouped to form a union set,
which is then evaluated. Because the size of a union set should be the same as the beginning
population, all zones may not be included in a union set at this point. As a consequence, the
crowding distance approach is utilized to complete it by adding an incomplete front, in which the
needed population is formed by the top of the front components without losing good solutions
(elitism). Furthermore, it must attain the Pareto front in each iteration in order to compute the
stop criteria, which is the number of non-improved Hyper-Volume (HV) values and will be
explained in detail in Subsection 4.3.6. As a result, if this stop requirement is not met, the final
selected solution set is saved, and the next generation begins. Otherwise, the final Pareto front is
stated. The pseudo-code 10 presents SH-NSGA-II in more detail shown in AppendixB.

4.3.3 Hybrid Synchronous Hypervolume-based Non-dominated Sorting Ge-
netic Algorithm-II Using Local Search (Memetic Algorithm)

As mentioned, applying some strategies to empower the local search ability in MOEAs helps
to reduce the likelihood of premature convergence. Therefore, we propose another MOEA
as a hybrid SH-NSGA-II using local search (MA) to enforce and compare with the proposed
SH-NSGA-II. The MA combines an evolutionary search-based optimization algorithm with a
problem-specific local search to balance the exploration and exploitation of the algorithm and
therefore improve the quality of the solution [DW17; Dec+18]. MA has recently been shown
to be useful and powerful in tackling difficult large-scale optimization issues [Gon+19; PRV18;
ZBW20].

As can be seen in the flowchart of MA Figure 31, the MA starts similarly to SH-NSGA-II with
a population that is formed with respect to a predefined population size. The main difference
between the two is concerning to extra local search operator. Unlike the NSGA-II, no binary
tournament is used in the selection process. It should be noted that three notations pm and pl in
Figure 31 represent the probability of mutation and the probability of local search, respectively.
In addition, the details of the proposed MA components will be presented in the subsequent
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Sections.

The pseudo-code 2 describes our proposed MA to solve the spatial zoning optimization problem.
In this pseudo-code, two different colors, red and black, are used. The red lines are added to
SH-NSGA-II in black to make the MA algorithm. Unlike the traditional MA [Deb+00], the
proposed one employs four crossover operators, three mutations, and a local search operator
during the search process. The proposed MA added a local search strategy to SH-NSGA-II to
improve its search efficiency.
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Figure 31: The flowchart of MA for the spatial zoning optimization problem

As can be seen in the pseudo-code 2, the start point for both algorithms is similar, that is
generating a random population with respect to the predefined population size (Npop), and then
it is evaluated. To begin with, all three groups of populations, including crossover, mutation, and
local search indicated by popcross, popmutation, poplocal in order, will start with the initial
population. Afterward, on the basis of the crossover rate, this operator begins to make a list of
new offspring. In each turn, up to the crossover rate, a crossover (i) is randomly selected between
four different crossover operators. In case of not being in the offspring list, the feasible generated
offspring would be added. After making the offspring list of crossover, the mutation loop will be
started by meeting the mutation probability. The initial population would be mated by three
different mutation operators (i) which are selected randomly iteratively. Then, the output of
them would be saved in the offspring list of mutation if it is not already there. Following that,
the local search process would be launched by local probability. Unlike SH-NSGA-II, no binary
tournament is used in the local search operator selection process. Instead, a lower selective
pressure is applied to select a number of the population. By doing so, it ensures that each
chromosome in the selected population gets an opportunity to pass on its genes to the next
generation, promoting variety and avoiding premature convergence. Then, a union set would
be updated by combining all gathered offspring from the crossover, mutation, and local search
operators. Next, using the crowding distance, the union set is adjusted to a certain size. Finally,
the stop condition which is the number of non-improved HV values (K) which will be explained
in detail in Subsection 4.3.6, is calculated, and all population lists along with their evaluations
are updated to check if to continue or stop the main loop.

4.3.4 Search Components

MOEAs employ different common search components (e.g., selection, variation operators (muta-
tion and recombination3), and replacement) as their major mechanism to carry out the evolution-

3Also called crossover and merge.
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Algorithm 2 Pseudo-code MA

1: procedure MA(Npop, Rc, Rm, Pm, Rl, Pl)
2: pop← random_population(Npop) ▷ Create a random initial population set
3: F← evaluation_Fitness(pop) ▷ Evaluate the initial population
4: popcross, popmutation, poplocal ← pop

5: Fcross, Fmutation, Flocal ← F

6: while not stop criterion(counter < K) do
7: while not crossover rate do
8: Ci ← crossoveri(popcross, Fcross) ▷ For ith crossover of 4
9: Offspringcrossi ← non_repeat(Ci) ▷ Clearing and Collecting offspring

10: if mutation probability then
11: while not mutation rate do
12: Mi ← mutationi(popmutation, Fmutation) ▷ For ith mutation of 3
13: Offspringmutationi

← non_repeat(Mi) ▷ Clearing and Collecting
offspring

14: if local probability then
15: Offspringlocal ← local_search(poplocal, Flocal)
16: pop← insert(pop, popcross, popmutation, poplocal) ▷ Create a union set
17: F← evaluation_Fitness(pop) ▷ Evaluate union set
18: Fpareto, Npareto ← pareto_front_finding(F,Npop) ▷ Finding the pareto

front
19: hv← HV(Fpareto, Npareto) ▷ Calculating HV
20: counter← count(hvlist) ▷ Counting the non-improved HV value
21: pop← selection(Npop, pop, F) ▷ Do selection among union set
22: F← evaluation_Fitness(pop)
23: Updating popcross, popmutation, poplocal, Fcross, Fmutation, and Flocal

24: Reporting the final Pareto front based on the Crowding Distance
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ary process. This section explains all the operators used in SH-NSGA-II and MA.

The Initialization Operators

The Pareto front can be generated more rapidly and produce more possible solutions with
well-initialized populations, but the process is less efficient if the starting answers are poorly
chosen. In spatial planning optimization issues, maps including existing activities and feasible
areas to be found as the new activity should be incorporated into the iteration process, and
initialization operators should generate 100% random solutions. Instead of checking distances
on all possible grids, the utilized technique for generating the random population is similar to
circle filling on a grid by bounding box, in which we save a lot of time by examining a much
smaller region without looking at the rest of the grid. Compared to other basic algorithms, this
may be able to construct compact zones with sufficient diversity that match all the restrictions
listed in Section 4.3.1.

The following is a summary of the steps in this algorithm:

1. The square bounding box must be defined first

2. Getting all the cells in this box together

3. Choosing cells that match all the following criteria:

• Starting with radius 1, being within the circle (if it is less or equal than the radius,
then mark it)

• Being feasible

• Being non-repetitive

4. Step 3 is repeated until the upper-bound solution size is reached, and the radius is increased
to the maximum preset radius in each iteration (8)

As can be seen in Figure 32, it is a sample of circular fill of radius 3.5 with a bounding box. The
values shown in Figure 32 are the centroid distances of the grid from the center yellow point.
The bounding box is defined by the four bounds; left, right, bottom, and top. Having gathered
all feasible cells within this rectangle, the checking approach begins. Here, we select the number
of cells with respect to the solution size, starting with radius 1. Among all the inside gathered
(x, y)s, those are marked that not only meet the maximum radius distance restriction but also
have yet-to-be selected (as shown in dark green). In order to increase the variety structure of
the generated zones, another algorithm is used in which, instead of filling the circle, the square
surrounding this circle (the bounding box) is considered.

Crossover Operators

Two proposed MOEAs utilize four crossovers, namely Crossover-1 (4.3.4), Crossover-2 (4.3.4),
Crossover-3 (4.3.4), and Crossover-4 (4.3.4), which are explained in details in this section. They
are applied to three separate sections of the chromosome, to thoroughly investigate the search
space of the problem. We must choose two parents as inputs for this operator for each crossover.
As a result, binary tournament selection is chosen as a selection method for picking two selective
parents [Deb+00]. The chromosomes of both parents are then encoded and sorted according to
x-coordinate/y-coordinate.

Having selected a random crossover i as mentioned on line 8 of the pseudo-code 2, the parent
populations go through the tournament selection and two of them are selected. The selected
parents are mated by the selected crossover operator and generate maximum two offspring after
passing the check and repair operator. The parents of the remained offspring are deleted from
the parent population list. The updated parent list will be returned to the crossover loop, and
this action is iterative until the crossover rate is reached.
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Figure 32: Random population using circle filling on a grid by bounding box

Single-Point Vertical Cutting Crossover (Crossover-1)

In this crossover, two parents representing two zones, together with their encoded chromo-
somes, are represented in purple and yellow in Figure 33. Then, as shown in Figure 33, a
cut-point cell is chosen at random along the length of each chromosome. The next step is to
create the center cell of these two cut-point cells, which is labeled “C” in red. As a result, each
parent is split into three sections: before cut-point, cut-point, and after cut-point.

This split is done vertically since both parents are ordered based on the x-coordinate to begin
with, which is why this crossover is named “Single-Point Vertical Cutting Crossover”. After
locating the middle cell, the other two parts are vertically swapped and transformed to the new
center point, i.e., the “left-hand” side of “Parent-1” and the “right-hand” side of “Parent-2”are
shifted to the middle cell that forms “Offspring-1”.

The “left-hand” side of “Parent-2” and the “right-hand” side of “Parent-1” are substituted
with the identical middle cell, resulting in another offspring, “Offspring-2”.

Figure 33: Single-point vertical cutting crossover (Crossover-1)

Figure 33 shows different numbers in the offspring chromosomes than those of parents because
the coordinates of parent cells are changed by the new center point to other locations on the map.
The output of each crossover is two offspring (children). By implementing this crossover leading
to replacement through the map, some offspring may become infeasible due to the violation of
certain constraints of the spatial zoning optimization problem. Therefore, it is needed to check
and repair all offspring chromosomes to ensure their feasibility. This check and repair operator
is explained in detail in Section 4.3.4. It is noted that four crossovers are not related, and they
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usually have different inputs but always unique outputs.

For more clarification, line 8 of pseudo-code 10 and 2 for SH-NSGA-II and MA, is explained in
detail hereafter. Algorithm 3 is proposed for implementing Crossover-1.

Algorithm 3 Pseudo-code Crossover-1

1: procedure CROSSOVER-1(popcross, Fcross)
2: P1, P2 ← binary_tournament_selection(popcross, Fcross) ▷ Select two parent

chromosomes
3: P1, P2 ← sort_x(P1, P2) ▷ Sorting parent chromosomes based on x-coordinate
4: cut_point← rand(1, 15) ▷ Determining one random cut-point
5: xP1[cut_point] < xP2[cut_point]▷ Defining the order of the cut-point x-coordinate

between parents
6: middle_cell← average(P1[cut_point], P2[cut_point]) ▷ Finding the middle

cell
7: P ′

1, P
′
2 ← transform(P1, P2,middle_cell)

8: Offspring1 ← insert(P ′
1[: middle_cell], P ′

2[middle_cell :])
9: Offspring2 ← insert(P ′

2[: middle_cell], P ′
1[middle_cell :])

10: Check and repair both offspring chromosomes
11: Outputs : Offspring1,Offspring2 maximum two acceptable offspring chromo-

somes

Single-Point Horizontal Cutting Crossover (Crossover-2)

The cutting direction is switched from vertical to horizontal, unlike Crossover-1. To put it
another way, the y-coordinate is used to arrange two parent chromosomes. As shown in Figure
34, it should be noted that the random cut point in this example is the cell number (5). The
graphical representation of this crossover is shown in Figure 34. Next, the middle cell of these
two cut-point cells (number 5) is made, which is called “C” in red. Each parent is divided into
three parts; before cut-point, cut-point, and after cut-point, respectively. As both parents are
sorted based on the y-coordinate, this division is done horizontally, that is the reason why this
crossover is called “Single-Point Horizontal Cutting Crossover”. Having found the middle
cell, the other two parts are horizontally swapped and transformed to the new center point, that
is, “bottom” of “Parent-1” and “top” of “Parent-2” are shifted to the middle cell that forms the
“Offspring-1”. On the other side, “bottom” of “Parent-2” and “top” of “Parent-1” are replaced
to the same middle cell making another offspring, “Offspring-2”.

Figure 34: Single-point horizontal cutting crossover (Crossover-2)

As in line 8 of pseudo-code 10 and 2 for SH-NSGA-II and MA mentioned each crossover,
Algorithm 11 is presented in AppendixB for implementing Crossover-2.

Semi-Proportional Vertical Single-Point Cutting Crossover (Crossover-3)
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The structure (shape and size) and position of each zone are the two fundamental concerns in
the spatial zoning optimization problem, as far as can be deduced. That is why the fundamental
goal of the two first crossovers is to create well-diversified offspring in the parent neighborhoods
from a structural standpoint. However, the goal of the following two crossovers is to produce
well-diversified offspring in proximity to the parents. Therefore, Crossover-3 and Crossover-4
are built to focus on positioning the new activity in highly interesting zones. Therefore, the
cutting type in Crossover-3 and -4 is the same as Crossover-1 (vertical single-point cutting).

However, after selecting the cutting cells at random in the parents, the new rule is used to
locate the cell “C” among the offspring. The method for locating the cell “C” is based on the first
objective function, which is the interestingness value of parents.

However, after randomly selecting the cutting cells in the parents, the new rule is applied
to find the cell “C” in the offspring. The approach to finding the cell “C” is based on the first
objective function, namely, the interestingness value of parents.

The difference between the initial objective function values of two parent chromosomes is
calculated using the indicator “proportion” in Crossover-3. Following the proportional value,
three situations are considered:

1. Zero proportion: When both parents’ first objective function values are equivalent, the
middle cell in the distance between the parents’ selected cutting cells (1/2×A) is picked
as the new “C” cell. The cells of the offspring are created by modifying the parent
chromosomes, depending on the sort of cutting used here, which is vertical.

2. Negative proportion: When the initial objective function value of “Parent-1” is smaller
than “Parent-2”, a new “C” cell is drawn toward the “Parent-2” placed in the distance
(2/3×A) from the “Parent-1”, resulting in one of the offspring. The other offspring, on
the other hand, is formed in the middle distance as previously. The rest of the procedure is
identical to that of a zero proportion.

3. Positive proportion: The direction of the movement of the “C” cell is exactly the opposite
of the negative proportion. Because the objective value of “Parent-1” is greater than that
of the other. As a result, one of the children is drawn to the first parent, while the other
stays in the center. The rest of the procedure remains unchanged.

For example, in Figure 35, the negative proportion is shown. As this crossover is called semi-
proportional single-point vertical cutting crossover, the first offspring stays in the middle, and
the other goes toward the parent with a higher first objective function (interestingness value).

Algorithm 12 in AppendixB is proposed for implementing Crossover-3.

Full-Proportional Vertical Single-Point Cutting Crossover (Crossover-4)

The only difference between Crossover-3 and -4 is that in the case of positive and negative
proportions, both offspring intend to get closer toward the parent with higher objective function.
Therefore, we could call it as full-proportional vertical single-point cutting crossover. All 4
crossovers are implemented iteratively through a loop. In each iteration, the check and repair
operator checks the feasibility of the offspring (explained in Section 4.3.4). If each offspring is
validated, it will be added to the list of offspring. This insertion will continue until the crossover
rate is reached.

Algorithm 13 in AppendixB is proposed for implementing Crossover-4.

Mutation Operators

Vertical and horizontal reconfiguration of the solutions are examined to employ well-diversified
solutions around the parent chromosomes, as demonstrated in the crossover operators. Three
mutation operators, on the other hand, are utilized to better explore the problem’s search space.
After a certain number of iterations within the main loop of the suggested MOEAs, the mutation
operators will randomly be chosen. The proposed MOEAs employ three mutation operators,
namely Mutation-1, Mutation-2, and Mutation-3. These operators start to be applied to each
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Figure 35: Semi-proportional vertical single-point cutting crossover Crossover-3

chromosome. The structure of mutations is based on a mix of four-directional motions (right,
left, up, and down) and rotational symmetry of the solution across solution space (90°, 180°,
270°). Each mutation has two parent chromosomes as inputs, just like the crossover operators
in Section 4.3.4 (binary tournament selection). Each chromosome is shifted to the other side of
the search space in Mutation-1, Algorithm 4, with each parent’s moving step between the list of
four directions chosen at random. On the one hand, each gen coordinate (x, y) in each parent
chromosome should be rotated counterclockwise by a specified angle around a given origin in
Mutation-2, Algorithm 5, in addition to the 4-direction movement. In Mutation-3, Algorithm 6,
however, the rotation process is the only factor that affects each parent chromosome. There could
only be two offspring chromosomes after confirming the feasibility and correcting the result of
each mutation.

Algorithm 4 Pseudo-code Mutation-1

1: procedure MUTATION-1(popmutation, Fmutation)
2: P1, P2 ← binary_tournament_selection(popmutation, Fmutation) ▷ Select two

parent chromosomes
3: m1,m2 ← rand(move_list) ▷ Moving step value for each chromosome
4: Offspring1 ← move(P1,m1)
5: Offspring2 ← move(P2,m2)
6: Check and repair both offspring chromosomes
7: Outputs : Offspring1,Offspring2 maximum two acceptable offspring chromo-

somes

Check and Repair Operators

Some challenges may arise throughout the solution development process. One challenge is
that new solutions must be generated inside the possible solution space, not outside of it or
in conflict with existing activity. Another challenge is recreating the solutions in a compact
manner (i.e. without any hole). Two distinct check and repair operators, “check-and-repair” and
“compacity-improver”, are employed to fix these difficulties. Three potential situations for the
first issue and one scenario for the second issue might occur as follows:

• Scenarios pertaining to the first problem are as follows:
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Algorithm 5 Pseudo-code Mutation-2

1: procedure MUTATION-2(popmutation, Fmutation)
2: P1, P2 ← binary_tournament_selection(popmutation, Fmutation) ▷ Select two

parent chromosomes
3: m1,m2 ← rand(move_list) ▷ Moving step value for each chromosome
4: point1, point2 ← rand(point_list) ▷ Selecting randomly the rotation origin

point
5: angle1, angle2 ← rand(angle_list) ▷ Selecting randomly the rotation angle
6: Offspring1 ← move_rotate(P1,m1, point1, angle1)
7: Offspring2 ← move_rotate(P2,m2, point2, angle2)
8: Check and repair both offspring chromosomes
9: Outputs : Offspring1,Offspring2 maximum two acceptable offspring chromo-

somes

Algorithm 6 Pseudo-code Mutation-3

1: procedure MUTATION-3(popmutation, Fmutation)
2: P1, P2 ← binary_tournament_selection(popmutation, Fmutation) ▷ Select two

parent chromosomes
3: point1, point2 ← rand(point_list) ▷ Selecting randomly the rotation origin

point
4: angle1, angle2 ← rand(angle_list) ▷ Selecting randomly the rotation angle
5: Offspring1 ← rotate(P1, point1, angle1)
6: Offspring2 ← rotate(P2, point2, angle2)
7: Check and repair both offspring chromosomes
8: Outputs : Offspring1,Offspring2 maximum two acceptable offspring chromo-

somes
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1. The chromosomes are not included inside the solution space (map).

2. The chromosomes are located within the solution space, but they overlap with the
activities that already exist.

• Scenarios related to the second issue:

1. Holes or discontinuities can be seen in the chromosomes.

The following are some possible solutions for each scenario.

• The following is the recommended solution for the first issue, which uses the “check-and-
repair” operator:

1. A random population generator generates and replaces a completely new chromo-
some.

2. Counting the number of overlapping cells; if there are less than 5, the search proce-
dure continues to look for alternatives in nearby cells while maintaining or expanding
the compacity; otherwise, the cell is completely deleted. The overlapping cell’s feasi-
ble and non-iterative 4-direction ((-1, 0), (0, 1), (0, -1), (1, 0) neighbors are collected.

• The following is the proposed solution for the second issue, which employs the “compacity-
improver” operator:

1. The “0-1” solution matrix is bound by the number “2”.

2. Examining the rows and columns for any “1” or solitary “0” completely encircled by
“1”.

3. Removing the zero detected rows/columns and replacing the single encircled ele-
ment “0” in the outer layer of the matrix with one of the possible elements “1”.

The solutions mentioned for “check-and-repair” are coded as explained in pseudo-code 7 to
repair infeasible chromosomes to meet all the constraints and requirements of the spatial zoning
optimization problem. In pseudo-code 7, the first proposed solution is coded in red and the
second one in blue. In line 16 of this algorithm, all feasible and non-iterative 4-direction ((-1, 0),
(0, 1), (0, -1), (1, 0)) neighbors of the overlapped cell are gathered.

Figure 36 is a given example to better understanding how the “compacity-improver” operator
works. In Figure 36, one achieved solution with one hole and interruptions is shown in the shape
“1”. The “compacity-improver” first bounds the matrix of solution with value “2”. Next, the
operator starts detecting the rows and columns without “1” like the green row in matrix “2”.
After deleting all zero rows and columns, the initial solution turned into the shape “3” with a
hole. Afterward, the operator makes a list of zeros with 2× 1 or 4× 1 connected components
in their neighbors. Like blue zero in matrix “4” which is surrounded by 4× 1 in red. Next, the
zero is changed to 1 in orange as shown in matrix “5” and from the outer layer, one of the ones is
changed to 0 in purple. Finally, the repaired shape is “6” which is well-compact.

Figure 36: Compacity improver operator

All crossover, mutation, and local search operators include these two repairing operators in
their bodies.
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Algorithm 7 Pseudo-code Check-and-Repair

1: procedure CHECK-AND-REPAIR(pop, area, feasible_cells)
2: counter← 0
3: remove_list← ∅
4: check_list← ∅
5: for i in pop do
6: for j in i do
7: if j not in area then
8: i← random_population(Npop) ▷ Replacing the new chromosome
9: else if j not in feasible_cells then

10: counter← counter+ 1
11: check_list← j

12: if 1 ⩽ counter ⩽ 4 then
13: for k in check_list do
14: neighbour← get_adjacent(Npop)
15: if neighbour ̸= ∅ then
16: One of neighbor which leads to a more compact solution is chosen
17: else
18: remove_list← i

19: else
20: remove_list← i

21: pop← delete(pop, remove_list)▷ Deleting the remove_list from the population
list

Local Search Operator

In addition to the crossovers and mutations which are used in both MOEAs, the suggested MA
utilizes a local search operator that performs a tiny modification on a given solution to extensively
search the neighborhood of that solution and boost the spatial zoning optimization problem
convergence speed to the optimality. Using tournament selection, the parent chromosomes of
the local search are chosen from the population with the size of the local search rate, and the
offspring chromosomes are provided following the repair process.

This operator focuses on improving the interestingness values of the cells whose values are 2
units lower than the maximum value. Therefore, it starts to search for the best replacements in the
neighbors of these cells. In this replacing process, the priority is on the higher value neighbors.
However, it is noted that only if the 4-direction neighbors of the considered parent’s gen are not in
the parent chromosome, this replacement would be done. In other words, removing the selected
gene bounded by other cells in the parent chromosome would result in the non-compacity and
hole in the offspring chromosome. Next, among these neighbors, one of them is randomly
selected as the replacement. The offspring chromosome of the local search may be infeasible
because some constraints can be violated after employing the local search operator. Therefore,
the local search requires employing the repair process.

The pseudo-code of the proposed local search operator is presented in Algorithm 8.

4.3.5 Evaluation and Selection Operators

Two different objective functions are used to calculate the fitness value of each chromosome
(solution quality). The first objective function is obtained by adding the interest values of the zone
cells, and the compactness value is determined using the NDC metric, proposed by [LGC13].

Each time, the population is classified into distinct non-dominance levels through the selection
procedure. The fitness of any solution is equal to its level of non-dominance (“1” will be ascribed
to the first non-dominated front). This procedure is for the minimization problems, but otherwise,
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Algorithm 8 Pseudo-code Local_Search

1: procedure LOCAL_SEARCH(poplocal, Rl, param_v)
2: P_list← tournament_selection(poplocal, Flocal, Rl) ▷ Select the parent

chromosomes
3: for i in P_list do
4: for j in i do
5: condition← feasibility_check(j) ▷ Checking the feasibility of the

selected parent’s gen
6: if param_v[j] ⩽ (max(param_v) − 2) and condition then
7: while C ⩽ (max(param_v) − param_v[j] − 2) do
8: selected_neighbours← get_adjacent_higher(j) ▷ Starting with

(max(param_v) −C) value
9: if selected_neighbours ̸= ∅ then

10: j← choice(selected_neighbours)
11: else
12: C← C+ 1

the maximization problems could be altered to minimization by multiplying by “-1”.

This approach allows for simultaneous non-dominated sorting and filling of population steps
based on crowding distance until the population size requirement is reached. As a consequence,
each time, a non-dominated front finding operator was used to determine if the acquired solution
could be included in the Pareto set. Otherwise, there is no reason to continue sorting. If the
number of identified solutions exceeds the population size, the excess will be removed using the
crowding-distance metric from the previous front that could not be fully accommodated.

When two solutions are compared, the crowded comparison operator gives the tournament
winner. The winner is determined by two factors in the population: the non-dominance ranking
ri and the local crowding distance di. The search space surrounding a ith solution in its front
(marked with solid circles) that is not filled by any other solution in the population is measured
by the crowding distance attribute of that solution. The perimeter of the cuboid produced by
employing the nearest neighbors as vertices (solid circles (i − 1) and (i + 1)) is estimated as di,
shown in Figure 37 by the dashed box (called the crowding distance). The binary crowding
tournament selection operator, which is based on ri and di, operates as follows: A solution i wins
a tournament over a solution j if any of the following criteria are true:

1. If ri < rj, the chosen solution is on a better non-dominated front.

2. If ri = rj and di > dj (When both solutions are on the same front and the criteria above
cannot be met, this is used; in this situation, the solution that is located in a less congested
region and has a bigger di , wins).

4.3.6 Stop Condition of Multi-Objective Evolutionary Algorithms

Different termination criteria may be utilized in MOEAs, including 1) a predetermined amount
of iterations, and 2) convergence to a solution of a specified quality [Tal09; Sid+12]. We created a
novel stop criterion that may alleviate some shortcomings of duplicate generations while also
lowering the ratio of solution quality to processing time. This condition is used to halt the
operation after the algorithm has completed a particular number of iterations without improving.
It is based on the HV value, MOEAs Pareto sets diversity and convergence control measure, over
a set of iterations. For multi-objective issues, HV is a well-known performance metric. It adheres
to the Pareto principle and is based on the volume difference between a predetermined reference
point and the solution offered. As a result, the HV necessitates the establishment of a reference
point that is greater than the Pareto front’s maximum value named by r in figure 38 [CSR15]. It
determines the area/volume dominated by the set of solutions provided in relation to a reference
point [Paq+22; GMF21].
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Figure 37: Crowding-distance calculation. Points marked in filled circles are solutions of
the same non-dominated front [BAJH20]

The figure 38 depicts a two-objective example, in which the area dominated by a set of points
(p(1), p(2), and p(3)) is shown in gray. Whereas the goal with this metric is to increase the distance
to the reference point, to maximize its performance. The more HV value, the less distance to the
Pareto front is.

Figure 38: HV indicator for a non-dominated approximation set of solutions [FPLI06]

This metric is also used for the stop criterion in the proposed MOEAs algorithms. That is, at
the end of each iteration in both algorithms, the HV of the optimal Pareto front is calculated and
compared with that of the previous iteration. Then, the number of non-improved HV values in
each iteration is determined. If this number violates the predefined maximum bound, the main
loop of each MOEA will be stopped and the optimal Pareto front will be returned. The approach
to defining this upper bound is explained in Subsection 4.3.6.

4.4 Tuning Parameters

To compare the performance of the two MOEAs, it needs to tune their parameters. However,
before that, a DOE approach is used to explore the impacts of the components. Next, the MOEAs
parameters, which have a substantial influence on the quality of the solution explored and
then optimized by using the Response Surface Methodology (RSM). RSM contributes to the
improvement and optimization of processes by creating an analytical link between the input
and result variables in experiments. However, most previous RSM-based solutions focused on
single-response problems, with multi-response scenarios receiving fewer attention [TTW+10].
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Therefore, in this section, the appropriate tuning approach for our problem is explained (4.4.1)
and the final obtained values of tuned parameters are reported (4.4.2).

4.4.1 Multi-Response Surface Methodology Optimization

According to research, the optimal factor settings for one performance feature are not always
consistent with those for other performance qualities. Finding compromising circumstances
in input variables that are moderately favorable to all responses might be addressed in more
general situations [Kök08]. More details on RSM related design and optimization of response
surfaces are given in [Kle08] and [Mye+04].

In order to determine the substantial factors, MRSM developed a special type of Fractional
Factorial Experiments to reduce the large number of experiments required in it [Kar+19]. BBD
with one central point is used to run the experiments, even though the responses may have
curvature over the search ranges of the factors [Mye+04]. There are k = 4 factors for SH-NSGA-II
and k = 6 factors for MA, each with three levels, i.e. low, medium, and high, and each signed by
−1, 0, and +1, respectively. The data generation parameters of the spatial zoning optimization
problem are summarized in Table 3. We vary these problem-specific parameters in three different
levels (low, medium, and high) for three different map sizes (55× 55, 300× 300, 1000× 1000)
as shown in Table 3. The total number of artificial datasets for each map size that have been
generated is 34 = 81. Among 81 datasets, 8 of them are randomly selected to be used in all
evaluations for each map size. Moreover, the anonymous link where anyone with the link can
view all coded algorithms along with all data is provided in the repository [Bas22].

Using the data in Table 3, the coded MOEAs were executed based on the BBD for four factors in
three levels with one center point for SH-NSGA-II and six factors in three levels with one center
point for MA, shown in Table 4.

Table 3: Data generation parameters for MOEAs

Parameter Names Possible Values Description
nrow 55, 300, 1000 Number of rows of the raster grid
ncol 55, 300, 1000 Number of columns of the raster grid
np 6, 8, 10 Number of ports
ns 6, 7, 8 Number of shipping lanes
na 3, 4, 5 Number of protected areas
nw 2, 3, 4 Number of windmill farms

Table 4: Search range of algorithm parameters

Algorithm Actual Values Coded Values Low(-1) Medium(0) High(+1)

SH-NSGA-II

Population_size (Npop) x1 100 150 200
Crossover_rate (Rc) x2 0,4 0,6 0,8
Mutation_rate (Rm) x3 0,1 0,4 0,7

Mutation_probability (Pm) x4 0,25 0,5 0,75

MA

Population_size (Npop) x1 100 150 200
Crossover_rate (Rc) x2 0,4 0,6 0,8
Mutation_rate (Rm) x3 0,1 0,4 0,7

Mutation_probability (Pm) x4 0,25 0,5 0,75
Local_rate (Rl) x5 0,1 0,5 0,8

Local_probability (Pl) x6 0,45 0,6 0,8

Multi-Response Optimization Problems (MROPs) have been examined from a variety of per-
spectives and can be divided into three groups:

• Desirability viewpoints: in this category, researchers try to aggregate the information of
all responses into one response, and then an optimization method is performed on a single
objective called the total desirability function.
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• Priority based methods: some cases have responses with different importance degrees,
in such problems, we must consider the most important response for optimization and
if the solutions were not unique, then get the best solution by comparing the status of
other responses with alternative solutions and the aforesaid steps are repeated till all the
responses are considered or a unique optimal solution is found.

• Loss function: in this category, based on the Taguchi loss function, all response values are
aggregated and converted to a single one. A wide range of research has been studied to
develop and generalize the Taguchi loss function concerning the special trait of its cases
[Hej+12].

The third category of MRSM achieves a balance between resilience and optimization for
multiple response issues by incorporating some well-established methods in it, such as GA,
Artificial Neural Network, the Taguchi loss function, and desirability function. So, we create a
hybrid technique that uses the Taguchi method’s loss function to compact and calculate multi-
responses. In this chapter, all response values (multi-objectives) of MROPs are aggregated and
converted to a single one using the Taguchi loss function.

The proposed approach has the following steps:

• Identifying the experimental variables, and parameters, affecting the solution as consider-
able factors and responses.

• Applying a proper design, running experiments, and fitting the response surfaces.

• Getting information about the importance weights of response variables by implementing
some feature selection methods.

• Forming a multi-response model.

• Solving the model to achieve the optimal combination of factors, which is the stationary
point in the original units in RSM.

There are two types of factors in the loss function of the Taguchi method; noise factors N, and
controllable factor S. Since MOEAs have multiple runs to obtain better solutions, the signal-to-
noise ratio (S/N) is used in this research to analyze the results. The signal-to-noise ratio measures
how the response varies relative to the nominal or target value under different noise conditions.

Three metrics are used to assess MOEAs in this chapter: HV, Number of Pareto Solutions (NPS),
and Best Solution (Best Sol). NPS metric presents the number of Pareto optimal solutions that are
obtained by each algorithm. For each set of solutions, the values of both objective functions, each
weighted 0.5, are put together to identify the best solution. After that, Best Sol is picked as the
best answer, the maximum (similar to how the Simple Additive Weighting Algorithm (SAWA) in
MCDM handles [Zan+98]. Because the goal is to maximize efficiency, the higher the HV, NPS,
and Best Sol values, the better.

There are four different formulations to calculate signal-to-noise ratios [Hec+02]. Following the
objective of our experiment, we selected the first type in which for the signal-to-noise ratio, the
larger is better, whose aim is to get the maximum S/N determined in Equation 31:

S

N
= −10 log(

1
n

n∑
i=1

1
sum2

i

) (31)

Where sumi is the response in the Taguchi method, and n is the number of replications (n = 3).
S/N is the MRSM response. Since the largest S/N value corresponds to the optimal combination
of parameter values, this response should be maximized. A regression equation can be used
to determine the relevance of individual process factors and their interactions. It calculates the
relationship between the response and the parameters of the input process.

To compute the S/N, the resulting metrics are merged into a single value (using SAWA in the
MCDM approach with equal weight). As an example, Table 5 shows the values of the metrics
for SH-NSGA-II obtained based on different combinations of parameters after meeting the stop
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criteria of the SH-NSGA-II execution for one dataset. The last column, namely, Sum, is the
summation of the four metrics that will be used as the response of the loss function (S/N) in the
Taguchi method. Note that the highest Sum is the best value in evaluating MOEAs in terms of
the merged metrics using the SAWA method.

Table 5: Results of metrics for SH-NSGA-II

Npop Rc Rm Pm HV NPS Best Sol Sum
100 0,4 0,4 0,5 5,782 3 0,520 9,302
200 0,4 0,4 0,5 5,718 2 0,518 8,236
100 0,8 0,4 0,5 5,709 4 0,517 10,226
200 0,8 0,4 0,5 5,545 3 0,505 9,049
100 0,6 0,1 0,5 5,706 3 0,516 9,222
200 0,6 0,1 0,5 5,718 2 0,518 8,236
100 0,6 0,7 0,5 5,788 5 0,520 11,308
200 0,6 0,7 0,5 5,532 4 0,517 10,049
100 0,6 0,4 0,25 5,699 4 0,514 10,214
200 0,6 0,4 0,25 5,709 2 0,517 8,226
100 0,6 0,4 0,75 4,566 2 0,502 7,069
200 0,6 0,4 0,75 5,189 2 0,519 7,709
150 0,4 0,1 0,5 5,627 2 0,511 8,138
150 0,8 0,1 0,5 5,414 2 0,506 7,919
150 0,4 0,7 0,5 5,709 4 0,516 10,225
150 0,8 0,7 0,5 5,785 4 0,519 10,304
150 0,4 0,4 0,25 5,709 3 0,517 9,226
150 0,8 0,4 0,25 5,718 2 0,518 8,236
150 0,4 0,4 0,75 5,709 3 0,517 9,226
150 0,8 0,4 0,75 4,934 3 0,5 8,434
150 0,6 0,1 0,25 5,706 5 0,516 11,222
150 0,6 0,7 0,25 5,712 3 0,517 9,229
150 0,6 0,1 0,75 5,019 3 0,506 8,525
150 0,6 0,7 0,75 5,715 3 0,517 9,232
150 0,6 0,4 0,5 5,718 2 0,518 8,236

The design points, along with the results of the experiments for small size of SH-NSGA-II, is
represented in Table 6. The small size of MA and the other map size for both algorithms are
represented in Tables 20–24 in the AppendixA, respectively.
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Table 6: Computational results obtained for the tuning parameters of SH-NSGA-II for
small map size.

Run Order x1 x2 x3 x4 Signal_Noise
1 -1 -1 0 0 19,269
2 -1 1 0 0 19,234
3 1 -1 0 0 19,265
4 1 1 0 0 19,605
5 0 0 -1 -1 20,687
6 0 0 -1 1 20,923
7 0 0 1 -1 20,034
8 0 0 1 1 19,867
9 -1 0 0 -1 19,098
10 -1 0 0 1 18,205
11 1 0 0 -1 18,965
12 1 0 0 1 19,741
13 0 -1 -1 0 20,641
14 0 -1 1 0 20,398
15 0 1 -1 0 19,390
16 0 1 1 0 20,369
17 -1 0 -1 0 20,840
18 -1 0 1 0 19,229
19 1 0 -1 0 19,624
20 1 0 1 0 20,043
21 0 -1 0 -1 19,454
22 0 -1 0 1 19,876
23 0 1 0 -1 19,852
24 0 1 0 1 19,183
25 0 0 0 0 19,529

To estimate the response functions, the developed algorithms and experimental DOE tests are
programmed in Python 3.8 and R version 4.1.2, respectively. I did all experimental tests on an
OpenStack virtual machine running Linux/Ubuntu 20.04.1 LTS with 20 VCPU, 10 GB disk, and
30 GB RAM.

Then, the response function is estimated and optimized using MRSM. Furthermore, for each
MOEAs in each size, the design should fit the second-order regression model (a quadratic
model), that is, the one containing squared terms, the product of two factors, linear terms, and
an intercept. To find the subset of variables in the dataset resulting in the best performing
model, that is, a model that lowers prediction error, the feature selection technique is applied to
iteratively add and remove predictors in the predictive model.

In this chapter, we employed a feature selection strategy for all regression models that combined
stepwise regression and cross-validation to produce the highest-performing model. All final
models are solved using the coded parameters, and the algorithm finds the best combination of
parameters (a stationary point in the original units). The summary table and ANOVA results of
the best regression functions are reported in Tables 7–27 for SH-NSGA-II and MA, respectively.

ANOVA on the proposed multi-response optimization models was performed to estimate the
coefficients of the polynomial equation in Equation 32.
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Table 7: Summary table SH-NSGA-II for small map size

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.564 0.141 138.581 <2.2e-16 ***
x1 0.113852 0.108 1.0559 0.3088910
x2 -0.105908 0.108 -0.9822 0.343
x3 -0.180506 0.108 -1.674 0.116
x4 -0.024356 0.108 -0.226 0.824
x1^2 -0.382 0.156 -2.451 0.0279735 *
x3^2 0.734 0.156 4.708 0.0003359 ***
x1:x3 0.507455 0.187 2.717 0.0166845 *
x1:x4 0.417154 0.187 2.234 0.0423352 *
x3:x2 0.305370 0.187 1.635 0.1242988
x4:x2 -0.272812 0.187 -1.461 0.1661494
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-Squared: 0.81, Adjusted R-Squared: 0.68
F-statistic: 5.98 on 10 and 14 DF, p-value: 0.001417

ANOVA Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2, x3, x4) 4 0.688 0.172 1.2333 0.341
PQ(x1, x3) 2 5.2575 2.629 18.842 0.000107
x1:x3 1 1.030 1.030 7.383 0.016684
x1:x4 1 0.696 0.696 4.989 0.042335
x3:x2 1 0.373 0.373 2.673 0.124299
x4:x2 1 0.297 0.297 2.133 0.166149
Residuals 14 1.953 0.139
Lack of fit 14 1.953 0.139
Pure error 0 0.0
Stationary point of response surface: x1 x2 x3 x4

0.149 0.00 0.13 0.00
Stationary point in original units: Npop Rc Rm Pm

157.45 0.60 0.44 0.50
rsm(formula=Signal_Noise∼ FO(x1 , x2 , x3 , x4 )+(x1:x3)+(x1:x4)+
+(x2:x3)+(x2:x4) + PQ(x1, x3), data = BBD)
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Statistical significance was checked by F-value and p-value (significant probability value).
Terms whose p-value is less than 0.05 have a significant effect on the response. Based on the
ANOVA results, the equations of the response surface models, which relate the significant factors
to responses, were obtained, as shown in Equation (33).

S

N
= 19.564140 + x1 + x2 + x3 + x4 + 0.113852 x1 − 0.105908x2 − 0.180506 x3

− 0.024356 x4 − 0.382041 x2
1 + 0.733790 x2

3 + 0.507455 x1 × x3

+ 0.417154 x1 × x4 + 0.305370 x3 × x2 − 0.272812 x4 × x2

(33)

The quality of fit of the polynomial model was evaluated by the determination of coefficients
R-Squared, adjusted R-Squared, p-value, and acceptable stationary point in original units. These
coefficients imply that the models are adequate for representing the relationship between the
factors and response (S/N). As can be seen in Table 7, all these coefficients are promising for
SH-NSGA-II of small map size, and the established response surface models are reliable and
capable of expressing the relationship between important factors and response accurately. The
results for other map size for both algorithms are represented in AppendixA in Tables 25–27,
respectively.

(a) (b)

(c) (d)

Figure 39: The response surface 3D plots of interaction of important factors on S/N: (a)
interaction of population size and mutation rate; (b) interaction of population size and
mutation probability; (c) interaction of mutation rate and crossover rate; (d) interaction
of mutation probability and crossover rate

By means of best fitted regression models, the interactions of important factors on the response
surface were evaluated. Finally, the optimal combination is obtained, which is the stationary
point based on the generated response surface model. One caution about DOE and MRSM
is related to the extrapolation of the stationary point, that is, whether this point is outside
the experimental space or not? In other words, since a quadratic model will always show an
optimum point, its accuracy depends on the accuracy of the model. Therefore, to validate the
best MRSM model, it is necessary to make a balance between the accuracy of the optimal point
and the regression model at the same time. Figure 39 and 40 represent an example of response
surface 3D plots between population size and mutation rate, population size and mutation
probability, mutation rate and crossover rate, and mutation probability and crossover rate for the
SH-NSGA-II algorithm for small size maps. The graphs show the significant impact on S/N.
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Figure 40: The response surface 3D plots of interaction of important factors on S/N: (a)
interaction of population size and mutation rate; (b) interaction of population size and
mutation probability; (c) interaction of mutation rate and crossover rate; (d) interaction
of mutation probability and crossover rate

For example, from Figure 39a, the contour plot shows that the mutation rate around 0.4 and
population size between 150 and 160 led to the best value for S/N. By doing so for all other three
plots, we can easily figure out that the obtained stationary point is driven correctly, and it is
compatible with and in the range of all interactions between important factors.
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4.4.2 Final Tuned Parameters

The optimal values of the parameters related to the stationary point are tuned as shown in Table 8
after finding the best fitted MRSM regression model for three distinct map sizes for each MOEAs.
The parameter setting may vary depending on the magnitude of the challenge in terms of the
size of the map. As a result, we fit a distinct MRSM model to each map size, resulting in various
adjusted parameters.

Table 8: Tuned parameters for SH-NSGA-II and MA

Solving Methodologies Parameters
Size

Small Medium Large

SH-NSGA-II
Npop 157 179 150
Rc 0,6 0,67 0,69
Rm 0,44 0,43 0,46
Pm 0,5 0,5 0,5

MA
Npop 150 163 124
Rc 0,55 0,6 0,6
Rm 0,4 0,5429 0,4
Pm 0,5 0,5 0,583
Rl 0,776 0,586 0,4
Pl 0,667 0,625 0,64

As we divided our spatial zoning optimization problem into three different size levels, for
each of them, this stop criterion should be defined. To discover the ideal value for these criteria,
we run 8 various problems with a set number of repetitions 3000 to examine the trend of HV
value for estimating each size of both methods. The average number of repetitions without
improvement for each size is then used as a stop condition. Table. 9 declares the stop condition
value for the MOEAs in each size.

Table 9: Stopping Condition for SH-NSGA-II and MA

Solving Methodologies
Size

Small Medium Large

SH-NSGA-II 600 600 600

MA 400 500 500

4.5 Experimental Validation

Once the parameters have been tuned, the goal is to compare the performances of SH-NSGA-II
vs. MA. To evaluate both methods, 8 different randomly selected datasets are used, as presented
in Table 3. Then, to evaluate a much more robust comparison, each instance is implemented
30 times, and each reported value is the median of 30 runs of each problem with its respective
method. Before presenting the results, the selected performance metrics are presented.

The fact that the result of the optimization process is a set of solutions representing an approxi-
mation of the Pareto front, rather than a single solution, is a major challenge in MOO assessment.
Because of the conflicting nature of the Pareto set solutions, we need to utilize certain perfor-
mance measurements to evaluate the given methods [BD20]. We cannot tell if the algorithm has
converged to the exact optimum until we know the Pareto-front. However, we can see when the
algorithm has made the most progress during optimization and, as a result, whether the number
of iterations should be reduced or increased. Additionally, the measurements allow the two
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algorithms to be compared to each other. To assess the performance of different, multi-objective
MHs, non-dominated sets of solutions must be compared [Tal09]. Although various measures
for non-dominated sets have been proposed, there is no universally acknowledged performance
evaluation standard. To categorize quality indicators, many attributes can be employed.

The quality indicators are listed in the order in which they meet two separate performance goals:
1) convergence to the ideal Pareto front and 2) diversity of alternatives along the front. They
are usually based on metrics of cardinality, distance, or volume. Cardinality-based indicators
necessitate a limited approximation of the Pareto set. In general, distance-based indicators are
sensitive to the scope of the objectives. As a result, all objective magnitudes must be standardized.
It should be noted that relying solely on one quality indicator is invariably insufficient. From
each class of measurements, at least one indicator must be chosen. Therefore, in addition to
the metrics outlined in Section 4.4.1, iteration number and three other performance metrics are
used in order to evaluate and compare both MOEAs algorithms. NPS, BestSol, and HV are the
diversity-based, convergence-based, and hybrid categories of quality indicators, respectively.

The higher the three other performance criteria, the greater the quality of the solution we have.

Mean Ideal Distance (MID):

This measure depicts the proximity of the Pareto solution to the ideal point (0, 0), which is a
convergence-based indicator as given in Equation 34:

MID =

∑n
i=1 ci
n

(34)

where n is the number of the non-dominated set and ci =
√
f1i

2 + f2i
2 , and f1i, f2i are

the value of the non-dominated solution of ith for the first and second objective functions,
respectively.

Spread of Non-Dominance Solution (SNS):

A diversity-based metric that analyzes the uniformity of the generated solution distribution in
terms of dispersion and extension is the spread of a non-dominance solution. The formula for
this indicator may be found in Equation 35.

SNS =

√∑n
i=1(MID− ci)2

n− 1
(35)

The Rate of Achievement to two objectives Simultaneously (RAS):

The balance in reaching to objective functions is another convergence-based quality metrics. In
the following Equation (36) Fi = min(f1i, f2i).

RAS =

∑n
i=1|

f1i−Fi
Fi

|+ |
f2i−Fi

Fi
|

n
(36)

4.6 Computational Results

Therefore, this section investigates the effectiveness of the proposed MA algorithm using defined
indicators. To analyze these two MOEAs with respect to each indicator, we did the WSRT (paired
samples) tests to check the null hypothesis that the MA algorithm works better than SH-NSGA-II
with respect to each indicator. These conclusions are supported by significant Wilcoxon tests
(p − value < 0.05).
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The WSRT tests the null hypothesis that two related paired samples come from the same
distribution. In particular, it tests whether the distribution of the differences (x− y) is symmetric
about zero. It is a non-parametric version of the paired T-test.

To prove the validity of the algorithms, we need to show the gap between the optimal and
MOEAs solutions. As the solutions for the small size from the exact method are available, we
could do the validation for this size. Table 10 shows the performance indicators with respect
to the exact methods and the two MOEAs. As shown in Table 10 according to each measure,
although both MOEAs achieved promising values and are pretty well close to exact solutions,
MA has less gap than SH-NSGA-II with exact and optimal solutions in small size. In Figures 41,
the differences between all three methods are shown.

Table 10: The comparison between MOEAs and the optimal solution

Problems Map Size
HV Best Sol MID SNS RAS

Exact SH-NSGA-II MA Exact SH-NSGA-II MA Exact SH-NSGA-II MA Exact SH-NSGA-II MA Exact SH-NSGA-II MA

1

Small

5,866 5,5173 5,7448 0,563 0,5315 0,5462 78,859 76,0040 76,4613 3,038 2,215 2,984 0,995 0,9903 0,9913

2 6,310 5,7088 6,3004 0,557 0,5210 0,5570 85,126 79,5036 83,0024 4,936 1,730 4,455 0,996 0,9909 0,9940

3 6,313 5,6567 6,3004 0,558 0,5205 0,5570 84,002 79,0040 83,1690 6,725 1,368 4,627 0,995 0,9904 0,9940

4 6,310 5,7088 6,3034 0,557 0,5214 0,5570 85,112 79,1463 83,0024 5,039 1,891 4,553 0,996 0,9904 0,9940

5 6,316 5,7119 6,3004 0,557 0,5220 0,5570 85,126 79,3371 83,3357 4,814 2,060 4,455 0,996 0,9901 0,9940

6 6,313 5,7149 6,3004 0,557 0,5205 0,5570 85,751 79,3374 83,3357 5,158 1,869 4,502 0,996 0,9904 0,9940

7 6,310 5,6299 6,3004 0,558 0,5205 0,5570 85,223 79,0040 83,0023 5,606 2,060 4,231 0,996 0,9901 0,9939

8 6,310 5,7149 6,3004 0,557 0,5181 0,5570 85,112 79,3368 83,0024 5,314 2,079 4,293 0,996 0,9901 0,9939

Average 6,2556 5,6704 6,2313 0,5580 0,5219 0,5557 84,2891 78,8342 82,2889 5,0789 1,9090 4,2625 0,9958 0,9903 0,9936
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Finally, besides the small size, for the other two problem sizes, the results of both MOEAs
regarding the performance metrics are shown in Table 11. For each set of problems, seven
performance metrics are investigated which show execution improvement through the MA
algorithm. MA outperforms SH-NSGA-II by taking all mentioned metrics into account.

Table 11: The result of MOEAs

Problems Map Size
HV Best Sol MID SNS RAS

SH-NSGA-II MA SH-NSGA-II MA SH-NSGA-II MA SH-NSGA-II MA SH-NSGA-II MA

1

Medium

5,7088 6,1241 0,5163 0,5441 78,4038 81,6018 0,8989 2,6722 0,9901 0,9946

2 5,7088 5,8651 0,5196 0,5330 77,8921 78,2774 1,5506 2,1082 0,9901 0,9897

3 5,7088 6,1287 0,5172 0,5450 78,3789 81,2689 0,8721 2,9073 0,9901 0,9937

4 5,7057 6,1333 0,5154 0,5450 78,4323 81,0321 0,8692 2,9057 0,9901 0,9932

5 5,7057 6,1272 0,5154 0,5450 78,4038 81,4758 0,9147 2,8806 0,9901 0,9940

6 5,8636 5,8513 0,5356 0,5255 78,4328 77,3799 2,5409 1,6422 0,9898 0,9888

7 5,7057 6,1303 0,5154 0,5450 78,3675 81,2245 0,8647 2,9648 0,9899 0,9938

8 5,6451 6,1015 0,5163 0,5436 78,3789 80,7083 0,8421 2,8663 0,9899 0,9934

Average 5,7190 6,0577 0,5189 0,5408 78,3363 80,3711 1,1691 2,6184 0,9900 0,9927

1

Large

5,8958 6,1704 0,5129 0,5215 80,6714 82,8363 1,2377 2,0048 0,9901 0,9911

2 5,9640 6,1187 0,5145 0,5201 80,6714 81,2543 1,4120 1,3426 0,9897 0,9902

3 5,8881 6,0367 0,5168 0,5198 80,2547 81,2951 1,1655 1,5255 0,9895 0,9905

4 5,8881 6,2283 0,5155 0,5364 80,6714 83,1792 1,2235 2,6565 0,9894 0,9911

5 5,8138 6,1126 0,5054 0,5254 80,6463 82,2531 0,4633 1,9388 0,9888 0,9914

6 5,8850 6,0065 0,5129 0,5211 80,3623 80,8038 1,0260 1,7866 0,9895 0,9910

7 5,8942 6,3204 0,5103 0,5570 81,0039 81,8038 1,0945 2,7866 0,9900 0,9940

8 5,8881 5,9352 0,5103 0,5235 80,5050 80,9838 0,8421 1,7966 0,9897 0,9906

Average 5,8896 6,1161 0,5123 0,5281 80,5983 81,8012 1,0581 1,9798 0,9896 0,9912

Additionally, for small-, medium-, and large-scale problems, we compare the results of both
algorithms w.r.t the computational time. For small-, medium-, and large-scale problems, the
computational time MA is almost 50%, 29%, and 17% faster than SH-NSGA-II with higher
solution convergence quality. That is, MA not only gets to the optimal Pareto front faster, but its
Pareto front also contains solutions with higher interesting values.

When MOEAs are used to solve a problem, they generate a set of Pareto solutions from which
DMs can choose the best one. Because this decision is like those made in Multi-Attribute
Decision-Making problems, one method used in them is the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS), which is similar to an ideal solution [JV14], the fuzzy
hierarchical TOPSIS [WCH09], Simple Additive Weighting (SAW) [Meh14], the fuzzy SAW
[LW13], and the linear programming technique for multidimensional analysis.

4.7 Conclusion

Two novel P-metaheuristics based on GA have been developed to solve the spatial zoning opti-
mization problem (SH-NSGA-II and MA). To demonstrate the outperformance of the proposed
MOEAs, 24 test cases with 30 times replications were used. The results show that, on average, the
proposed MA provided better solutions in less computational time, and that, when compared to
SH-NSGA-II, the proposed MA has a better consistency. Finally, a set of (24× 30) WSRT revealed
that the proposed MA outperforms the SH-NSGA-II significantly. Although these findings have
gone some ways toward solving the given specific problem on a large scale, more improvements
could be possible to reduce the computational time while increasing the convergence speed.
Moreover, some improvements in population generator operators could help in this regard to
diminishing the need for repairing operators. A further study could assess and develop more
MOEAs to compare with the current proposed ones. Finally, we will investigate the spatial
zoning optimization problem’s applicability in the real world and test the robustness of the
proposed MA on more complex spatial data with multi-agents in the future.
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ABSTRACT

Even though this thesis up to now did partially substantiate the spatial zoning management
for a single new activity by having semi-cooperative relationship with other activities in
Chapters [3] and [4], it does not still address the second objective posed in Chapter [1]
about negotiation. This chapter presents a formal and executable approach to resolve a
conflict in MOMAS of spatial zoning management by negotiation. MOMAS modeling
provides a powerful framework for simulating the multi-level decision-making processes of
marine use optimization allocation in a collaborative, decentralized decision-aiding process.
The decision levels include the agent-to-optimizer and the agent-to-agent collaborative
mechanism. We develop a heuristic negotiation-based system that classifies MOMAS
settings on the basis of a chaining negotiation structure. This strategy is carried out after
running the MA algorithm for each agent and gathering their Pareto optimal solutions.
Different negotiation strategies for CR are also presented, tested, and ranked using the
Condorcet aggregation method. Results highlight how agents can arrive at good solutions
by using the above strategies.

5.1 Introduction

Most coastal and marine regions throughout the world are multi-use zones where many human
activities occur. Coastal and marine environments attract a range of competing uses, which can
overlap and have adverse effects on each other (user-user conflicts) or have an influence on
the coastal marine environment (user-environment conflicts). As a result, several governments
are trying to control conflicts among marine and coastal resource users while also preventing
damage to the ecosystem. In MSP, different institutional, economic, and social actors compete
for maritime resources and have conflicting objectives and contradictory preferences. In such
spatial conflicts, the challenge is to choose an appropriate allocation strategy within a wider
spatial decision-making process, where marine users interact with each other to reach a spatial
allocation agreement.

Classically, centralized decision-making processes are employed in such complex systems, i.e.,
a single Decisional Center is acquainted with all information of the system [Mar+17]. Figure
42 illustrates the classical centralized decision-making process with a downstream level that
can still be decomposed into further subsystems. As shown in Figure 42, the central node is in
charge of the system planning and owns the power to manage the operations performed by all
the sub-elements, or agents. This central node also performs the decision-making by optimizing
the objectives of the entire system [HAR08; Ale+11]. Such centralized decision processes mostly
ignore the interaction between the subsystems.

Through the 4th industrial revolution and due to the emergence of the Internet-of-Things
paradigm, decisional processes have moved toward decentralized decision-making models,
where each individual element of the system makes its own decisions, trying to optimize its
own objectives [Mar+17]. Depending on the collaboration degree, the elements will more or
less take into account the decisions of the other agents. In order to work smoothly, such a
system necessitates collaborative mechanisms to coordinate the agents’ decisions and exchange
information and preferences between the various agents. In a decentralized decision-making
process, each independent agent has its own objective functions that could conflict with the
objectives of the other agents and which are subject to the specific constraints of that element.
Inter-agent constraints may also be incompatible, and the responsibility of the collaborative
mechanism is to overcome and settle down these incompatibilities. In addition, other agents’
decisions and the flows of information between the levels often influence the decision variables
for each agent. To manage such interdependent relationships in a decentralized decision-making
process, it is necessary to define a decision framework that is capable of coordinating the
decisions made by the different agents, as well as information they exchange. Figure 43 shows
a collaborative decentralized decision-making process, where agents make independent and
collaborative decisions at the same time.
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Figure 42: Centralized decision-making process with no collaboration between subsys-
tems
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Figure 43: Decentralized decision-making process with collaboration between subsys-
tems

Our current mentioned real-world problem in MSP (and many others) contains three aspects
that make them impossible to be solved by classical centralized decision-making processes and
existing commercial optimization software all around the world. Firstly, they are MOOPs, where
solving the problem for each objective leads to a different solution. Accordingly, an approach
is required to find a set of mathematically “equal” solutions called Pareto optimal solutions.
Secondly, they can be modeled as multi-agent problems, where the preferences of all possible
agents should be incorporated into the decision process. Therefore, an interactive optimization
approach is required that effectively takes the agent preferences and finds a compromise optimal
decision accordingly. This agent-to-optimizer interaction helps the agents learn about the
problem and allows them to modify and change their preferences progressively. The third aspect
is the interdependency between the agents who affect their decisions. This issue necessitates
a collaborative mechanism between agents to share information or even to handle conflicting
preferences and constraints. Through this agent-to-agent collaboration mechanism, agents can
modify their preferences in terms of solutions and constraints and finally update their decisions.

Therefore, this methodology can solve such a multi-objective multi-agent optimization problem
by providing the agent-to-optimizer and the agent-to-agent collaborative mechanism. Figure 44
shows the structure of such a multi-objective multi-agent collaborative-interactive decentralized
decision-aiding process.

The contribution proposed in this chapter aims at tackling the following research questions:

1. How could we develop an optimizer that solves a multi-objective problem to find a



Chapter 5. Cooperative Multi-Objective Multi-Agent Zoning Management for MSP 90

Optimizer

Subsytem 1 Subsytem 2 Subsytem N

DC DC DC

Agent-to-Agent Collaboration

A
gent-to-O

ptim
izer 

Interaction

Figure 44: Multi-objective multi-agent collaborative-interactive decentralized decision-
making process

compromise optimal solution and provides a mechanism where agents effectively interact
with the optimizer and not only learn about the problem but also guide the optimization
process by modifying their preferences?

2. How could we develop a mechanism where the agents effectively collaborate to share
information and learn the preference of the other agents, as well as modify their own
preferences accordingly. In case of facing a conflict, how do we develop a negotiation-based
mechanism to reach a spatial allocation agreement through their conflicting objectives?

To address the first question, an idea is to develop one or more MOEAs. This question
is answered in Chapter [4], by validated MOEA, MA. Then, an agent-to-optimizer interaction
mechanism is developed using labeling methods to determine the compatibility relations between
the Pareto set of different agents.

To deal with the second question, first, the preferences of different agents are characterized
by the assumption of a priority order between different agents. By considering the compat-
ibility matrix between all agents, an agent-to-agent collaboration mechanism is designed by
gathering agents with compatible, compatible under certain conditions, and conflicting prefer-
ences/constraints. Next, they share their preferences to either translate the constraints to buffer
technique (if possible) and modify their decisions or start the negotiation-based mechanism.
The interactions could be designed with different scenarios depending on the level of agents’
cooperation.

The chapter is structured as follows. In section 5.2, we describe the theoretical framework
of MAS and some relevant concepts that have guided our work, In Section 5.3, we review the
state-of-the-art with a focus on MAS applied to spatial zoning. In Section 5.4, we propose our
multi-agent negotiation-based model for the spatial zoning problem. In Section 5.5, we describe
an experimental design to test the proposed algorithms, while in Section 5.6, we propose the
computational results on artificially generated synthetic instances. Conclusions and discussions
are drawn in Section 5.7. It is worth noting that this chapter is based on an under-review journal
article, which is mentioned in the publications list at the end of the manuscript.

5.2 Multi-Agent Systems and Their Properties

The first notion of MAS was discovered in the 1980s, namely in the Distributed Artificial Intelli-
gence (DAI) research field. The intelligence in those systems was spread across many entities:
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the agents. According to [WJ95; Fer99], an agent is a software or physical entity like robots,
humans, or human teams that:

• is autonomous,

• is located in an environment and is able to interact with it,

• has communication abilities with other agents,

• has skills.

“Perception - Decision - Action” is the common triptych used to describe the life cycle of an
agent. The agent perceives information from its environment in the first stage. The agent decides
what action to take based on its observations in the decision stage. Finally, in the last phase,
the agent does the previously determined action(s). This life cycle enables the agent to adjust
its behavior in response to dynamic events. There are several agent implementations. They
differ in the location of the intelligence on the agent. We might think of reactive or cognitive
agents as examples [Gle11]. A reactive agent responds to changes in its environment. Reactions,
like reflexes, are determined by senses and internal states rather than memory. A cognitive
agent, on the other hand, is more complicated. Such an agent has an explicit representation
of its surroundings as well as the other agents in the system. A cognitive agent also has a
complex communication strategy. Cognitive agents are often used in systems with a few agents
(∼ 10) whereas reactive agents are used in large systems (∼ 100). Other characteristics include
located agents, whose perceptions are determined by their location in the environment, and
communicative agents, which can communicate with other agents regardless of their location.
They are autonomous in the sense that they determine what action to take, whereas objects are
execution units that do what is asked of them. Thus, agents are proactive, but objects are reactive:
if no one asks them, they do nothing. Objects are implementation strategies in the realm of MAS.

Now that we have defined an agent, we can answer the question “What is a MAS?” Formally,
[Fer99] proposes to define the MAS as a system that has the following characteristics:

• set of entities E, located into an environment ENV,

• set of agents A such as A ∈ E,

• set of actions ACT, that agents can perform in ENV,

• communication systems.

A MAS is a group of agents that are placed in an environment and interact with one another to
achieve a local goal. MAS are naturally intriguing for solving decentralized problems. Indeed,
knowledge and competencies are distributed among the agents in such a system. Furthermore,
a MAS might be close or open. A close MAS suggests the agents are the same throughout the
execution, whereas an open MAS allows the agents to appear and disappear. Agents in such a
MAS can be added by humans or formed directly by existing agents. External operators or a
suicide ability might possibly be to blame for the disappearance. Finally, MAS agents may or
may not be unique. Thus, MAS can be classified as homogeneous if all agents follow the same
pattern, or as heterogeneous if individuals have diverse models.

5.2.1 Environment

As previously stated, MAS is a system that exists in an environment in which agents evolve
concurrently. This environment encompasses anything that is not part of the system. As a
result, agents will interact with and modify it. Thus, the system and its environment are
coupled together. The system acts on the environment, which answers using feedback. Figure 45
represents such a feedback loop.

As the system and the agents, the environment is often characterized using the following
properties ([Bre96; Lin01]):

• Accessible / Inaccessible
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System S Environment E

Action

Feedbacks

Figure 45: The feedback loop

• Accessible: the system can have complete, updated, and true information on its
environment,

• Inaccessible: only partial information is available,

• Continuous / Discrete
• Continuous: number of possible actions and perceptions is infinite,
• Discrete: actions and perceptions are distinct and clearly defined,

• Deterministic / non-deterministic
• Deterministic: each action has a single effect on the environment: the current state of

the environment determines the next one,
• Non-deterministic: an action has no guaranteed effect,

• Dynamic / Static
• Dynamic: environment states depend on system actions but also on actions of

different processes. External events can produce effects on the environment, but
those changes cannot be predicted,

• Static: environment cannot evolve without system actions.

5.2.2 Interactions

A MAS is a sophisticated system made up of numerous interacting elements, known as agents,
that have basic and local behaviors. Each agent is autonomous and not managed at the macro
level. Furthermore, no entity has complete control over the system. Interactions between agents
generate the emergent property: the system function. Thus, the key to designing MAS that
perform the desired function is to identify appropriate local interactions and implement agents
that follow those rules. The theory of MOMAS [VMPP98] proposes a theoretical framework to
design such complex systems. These techniques are built on agent interactions and the concept
of cooperation.

According to [Jen99], there are three types of interactions: antinomic, neutral, and cooperative.
An entity has an antinomic interaction when its action interferes with another entity ability to
complete its activity. The interaction is neutral if the activity does not disrupt yet does not benefit
either party. Finally, if the conduct of one entity benefits the behavior of another, the relationship
between them is cooperative. System classification is also possible. Thus, the system is in a
cooperative state if all interactions between the system and its environment are cooperative;
otherwise, the system is in a non-cooperative state if interactions are neutral or antinomic.

From the agent’s standpoint, cooperation is defined as their ability to collaborate in order to
achieve their goals. To enable cooperative interactions, four properties must be met [Gli01]:

• Sincerity: an agent is sincere, which implies that it never lies,

• Willingness: a request is always satisfied if it is coherent with the agent state and if it has
the skills to perform it.

• Fairness: when it is possible, the agent with the lowest level of non-satisfaction degree is
favored to be satisfied.

• Reciprocity: all agents know those properties and respect them.
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5.2.3 Cooperation VS. Non-Cooperation

A major MAS idea is cooperation [CMS88; DM91; DLC89; Fer97]. Four generic goals for
agent collaboration have been proposed by [DL89]: (1) increase task completion rates through
parallelism; (2) increase the number of concurrent tasks by sharing resources (information,
expertise, devices, etc.); (3) increase task completion chances through duplication and the
ability to use different modes of realization; (4) reduce task interference by avoiding negative
interactions. Cooperation in agent-based systems, on the other hand, is at best ambiguous and at
worst very inconsistent, which will be assessed through reviewing the research studies.

Cooperative agents are made up of many modules that reflect a division of their physical,
cognitive, and social abilities (Figure 46). During the agent’s life cycle, each module represents a
distinct resource.

■ Agent interactions are managed by two modules: perception and action modules,

• the perception module represents the inputs the agent receives from its environment,

• the action module represents the output and the way the agent can act on its envi-
ronment,

■ the skill module concerns the knowledge that enables the agents to realize their local
function,

■ the representation module concerns the beliefs an agent has on its environment and
includes the representation of other agents,

■ the aptitude module contains generic and external tools an agent needs to accomplish its
treatment,

■ the cooperation module concerns all cooperative attitudes of the agent. It manipulates
the skills and representations modules, in order to anticipate or detect and repair Non-
Cooperative Situation (NCS).

Figure 46: The different modules of a cooperative agent [GPB04]
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The preceding section suggests that when a system is cooperative, the appropriate function is
created. As a result, a system is never completely cooperative. Certain NCS scenarios may arise.
Agents may have competing goals or might not understand each other. Seven NCS scenarios
have been found in [Gle11].

• Incomprehension: the agent does not understand the message it has received,

• Ambiguity: a single message can be understood in different ways,

• Incompetence: an agent has no skill to treat information it has perceived,

• Unproductivity: even if the agent has understood the message, it cannot get useful
information,

• Conflict: the action performed by an agent will be discordant with one performed by
another agent,

• Concurrence: an action chosen by an agent puts it in concurrence with another one,

• Uselessness: the agent produces an action that is not useful for the system.

Figure 47 depicts the seven scenarios and their occurrences during the agent life cycle. Thus,
ambiguity and incomprehension are associated with the perception stage, incompetence, unpro-
ductivity with the decision step, and ultimately concurrence, conflict, and uselessness with the
action step.

Environment

Incomprehension 
Ambiguity

Incompetence 
Unproductiveness

Concurrence
Conflict

Uselessness

Perceive

Decide Act

Figure 47: NCS in the agent life-cycle

In MOMAS, agents must try to be cooperative to avoid NCS. They must possess mechanisms
to anticipate and detect them and to act in consequence. Thanks to those mechanisms, an agent
is able to self-adapt its behavior, and so to modify its interactions. Thus, cooperation is the key
to the self-organization of the system. We can describe the algorithm of a cooperative agent in a
conflict situation as follows: if an NCS is detected, the agent uses the negotiation mechanisms
to come back to a cooperative state, where it performs its nominal behavior. Thus, to solve a
problem using MOMAS, the cooperation of all the agents is the key. As a cooperative entity, a
cooperative agent spontaneously communicates its relevant information to its neighbors and
helps its neighbor that encounters more difficulties.



95 5.2. Multi-Agent Systems and Their Properties

5.2.4 Negotiation Heuristics

Various protocols for negotiation exist in the MAS literature. In [RRR01], three different tech-
niques are presented for complex negotiations. These include: (i) negotiation through an arbitrary
leader - in this method, an arbitrary leader is selected to arbitrate the conflict (interference) reso-
lution process between the agents, (ii) negotiation through chaining – in this method, a ranked
order assigned to each agent based on when they join the group is used for CR, and (iii) ne-
gotiation through cloning - in this method, each agent creates a “restricted” clone (agent for
negotiation) and passes them to every other agent in the group. In this method, we assign a rank
to each of the agents based on their pre-defined priorities. On one hand, through designing a
negotiation protocol, certain normative requirements and circumstances must be satisfied, some
of which are presented in Table 12, based on the literature [LWJ03; SW03; LF15].

Table 12: Requirements for a negotiation protocol

1
Incentive

Compatibility

A protocol should be incentive
compatible, meaning that the agents
expose some private information in

accordance with the protocol design.

2
Individual
Rationality

Participation in the negotiation must be
profitable; otherwise, an agent would not

participate if it would result in a loss.

3
Behavioral

Stability
A protocol should provide incentives to
encourage agents to behave predictably.

4
Guaranteed

Success
Under all circumstances, a protocol

should find consensus.

5 Simplicity
The best agent technique should be

simple to understand and implement.

6 Privacy
The agents should be required to give as

little information as possible.

7 Scalability
A protocol should be scalable in terms of
computation for numerous problems and

agents.

In the social sciences, there are two main approaches to the formulation of negotiation theorems.
The formal theory of bargaining is the first approach. This formal game-theoretic technique
provides an explicit analysis of numerous circumstances as well as precise results on which
strategy a negotiator should employ. However, it necessitates creating tight assumptions and
requiring the agents to adhere to stringent negotiating protocols, which are not always viable in
real-world situations. The second approach, which we call the negotiation guides approaches,
comprises informal theories that aim to suggest possible strategies for a negotiator and assist him
in reaching good results [Kra97; GK96; FU81]. This negotiating guide does not take into account
the strict constraints and assumptions offered by game-theory models. Because no formal theory
or strategies can be employed, applying these methods to the hybrid of MCDM and Artificial
Intelligence (AI) problems is more challenging than utilizing the first approach. These methods,
on the other hand, can be used in domains where people engage with one another and with
automated agents, as well as scenarios where automated agents interact in surroundings with no
pre-defined rules.

These informal models can be used as guidance to develop negotiation heuristics [KL95] or
as a foundation to develop a logical negotiation model [KNS93]. Heuristics for collaboration
and coordination among multi-agent, based on successful human cooperation and interaction
strategies, may be effective in non-structured and unpredictable environments. From any
Operational Research point of view, despite the fact that relevant data are frequently accessible,
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companies may not be able to address their planning challenges optimally due to time or
computational resource restrictions. That is why approximation techniques and heuristics are
routinely used instead of optimal computations. In many situations, heuristic techniques are
recognized to produce satisfactory, near-optimal results in a short amount of time [BR03].

5.3 Multi-Agent Systems Applied to Spatial Zoning Manage-
ment Planning

The purpose of this section is to review recent research concerning the use of MAS in the field of
spatial zoning management in Subsection[5.3.1]. Then, we will end up with the research gaps
and objectives for this issue in Subsection[5.3.2].

5.3.1 Selected Literature Review

One major barrier to MSP is that the science for assessing and communicating tradeoffs among
human uses of the ocean, as well as identifying strategies to mediate these tradeoffs, has been
slow to catch up with policy opportunities emerging from efforts to implement ecosystem-based
management, MSP, and MPAs [Les+13]. All of these management approaches are primarily
about making decisions that affect trade-offs across multiple sectors [ATJ09]. However, because
trade-offs are rarely addressed directly or transparently, they frequently go unmet or are poorly
judged. One key reported advantage of MSP is that it makes trade-offs clear; nonetheless, this
requires analytical tools for analyzing spatial conflicts and synergies among sectors. Despite
numerous pieces of research implementing different approaches for successful marine spatial
allocation to stakeholders, it is still a non-straightforward issue, as many parameters should be
considered: technological, spatial, economic, environmental, and social, wherein stakeholders
are in conflict. In particular, the identification of a permitted area of the sea for zoning each
marine use, as well as allocation of such area, is a complex geographical and multi-criteria
decision problem.

Overall, in a situation where several activities/agents compete for limited resources and each
of them has different economic, environmental, and social objectives to be optimized, we can
implement it based on MOMAS. Despite the fact that many real-world problem domains are
intrinsically multi-objective, the bulk of MAS implementations tries to optimize agents’ policies
with regard to a single objective. MOMAS clearly analyzes the potential trade-offs between
opposing objective functions. In MOMAS, the agents have different preferences regarding each
objective and different (possibly contradictory) constraints (technical, economic, geographical,
etc.). In addition, they have no information about the other activities and may not have enough
knowledge about the problem and possible outcomes. In addition to MSP, another application
of such a situation is a production system, in which different subsystems (i.e., a machine, a
workstation, a workshop, a department, or even higher aggregated levels) compete for limited
production resources while jointly generating a unique overall outcome.

Intelligent decision-making models and systems, however, have seen recent advancements.
Businesses typically face complex decisions involving large amounts of data. In recent years,
MCDM and AI techniques have been successfully applied to aid decision-making on a wide
range of complex real-world issues. The use of MCDM and AI together brings up new options
for organizing complex decision issues in both static and distributed contexts. Large data
volumes, ill-structured data modeling, advanced decision models, and effective computational
optimization strategies for issue resolution are just a few examples [HAR08]. The goal of DAI
research is to better comprehend information and reasoning procedures required for intelligent
coordination, as well as to embody and evaluate this understanding in computer systems
[Als+07].

Meanwhile, MAS have gained significant interest in the past two decades [SCV04; Qin+16;
FND18; Wan+16]. Technological advances have enabled the deployment of multi-agent networks
to many engineering applications from commercial to military uses [Hua+21; CLS04; BH20;
McA+07]. Other major issues arise as a result of decentralization, such as conflicts between
agents and their distinct agendas. This is due to the fact that each agent’s information may be
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inadequate, and agents’ interests may contradict. As a result, in MAS, CR is a significant and
implicit issue [Als+07].

Several requirements often regulate agents interactions in MAS such as cooperation, competi-
tion, or co-existence [Als+07; Cd95; BG14] to collaboratively complete a necessary task or reach a
certain objective.

In MAS, interactions between agents are justified by their dependency in these three dimensions
[Als+07]: I) Objectives Compatibility, that is, the MAS challenge is to establish whether the
various agents in the system have compatible goals. II) Agent Capacity, i.e., task completion via
agent interaction, is the MAS issue. The MAS challenge is the discovery and resolution of agent
conflicts (III) Resource Relationships.

CR entails the detection of conflicts, the search for solutions, and the communication with
agents to establish an agreement on the CR option to pursue. CR is a regular occurrence in
MAS due to its fundamental properties [AMK00; LJ95]. Knowledge and skill are often spatially,
functionally, or temporally decomposed in application areas where MAS technology is applicable.

However, most of the methods suffer from some serious limitations on the idea of a negoti-
ation/cooperation in CR to reach spatial allocation agreements between agents through their
conflicting objectives. Most studies in the field of spatial zoning management planning have
only focused on the theoretical point of view in negotiation strategies, not the practical.

In the following, we will take a look at some of these studies.

[Wat+09a; Ven+21] describe Marxan with Zones, an extension of Marxan that provides land-use
zoning options in geographical regions for biodiversity conservation. The major new element in
the decision problem is the ability to assign any parcel of land or sea to a specific zone, rather
than just reserved or unreserved. Each zone can then choose its own actions, objectives, and
constraints, with the flexibility to define each zone’s contribution to meeting targets for pre-
specified features (e.g. species or habitats). The goal is to keep the total cost of implementing the
zoning plan as low as possible while meeting a variety of conservation and land-use objectives.
Moreover, in [Cho+22; Han+22], the prioritizr R package, MILP techniques are used to provide
a flexible interface for developing and solving conservation planning problems. It supports a
wide range of conservation planning objectives, constraints, and penalties that can be used to
tailor conservation planning problems to the specific needs of a conservation planning exercise.
As mentioned, these pieces of software are focusing on conservation planning, which is totally
different from the spatial zoning problem defined in this thesis. They are trying to prioritize
different conservation zones by using partitioning techniques. Partitioning is focusing on the
allocation, not location-allocation problem. The other issue which is not considered through
them is negotiation and collaboration possibility between different zones or actors. Specially
those who are in conflict or have some special constraints. Even having the optimal solutions/
zones for each actor could be likely to face some conflicts between some actors. The compatibility
relationship between different actors is one of the most important elements but has received
less attention. The primary advantage of the agent-based negotiation system is its flexibility to
control multiple agents at the same time, which is over one simple zoning problem. As a result,
the concept of a negotiation/cooperation in CR to reach spatial allocation agreements between
agents with competing objectives is not included in these pieces of software.

[Kyr+17] developed a decision-making procedure based on cooperative game theory to dis-
tribute disputed areas of specific size among heterogeneous players of the Dogger Bank Special
Area of Conservation in the North Sea, which involves three totally or partially conflicting activi-
ties, namely, fishing, nature conservation, and wind farm development. The authors tested a
given set of alternatives that are fair enough between shareholders but not with the optimization
algorithm. Moreover, the problem is not modeled as MOOPs.

[Mas+14] applied a methodology based on a combination of GIS, MCDM, and an optimization
algorithm to efficiently install a marine energy farm in a suitable area. Integration of GIS and
MCDM is at the core of the search process for the best-suited marine areas, taking into account
geographical constraints, such as human activity and technological opportunities. The optimiza-
tion step of the approach evaluates the most appropriate technologies and farm configurations
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in order to maximize the quantity of energy produced while minimizing the cost of the farm.
However, there has been no CR in this problem.

[Ale+12] developed a method to facilitate the implementation of the EA by locating offshore
renewable energy devices. Using a real-time interactive mapping device (touch-table) and
stakeholder workshops, the authors gathered data and facilitated the negotiation of spatial trade-
offs at a potential site for tidal renewable energy off the Mull of Kintyre (Scotland). Conflicts
between the interests of tidal energy developers and commercial and recreational users of the area
were identified, and the preferences and concerns of stakeholders were highlighted. However,
no negotiation or cooperative mechanism is presented to overcome these conflicts.

[TSR14] applied MSP to manage conflicts in a multi-use coastal area of Kenya. Their approach
includes several steps supported by GIS, MCDM, and optimization. GIS was used to identify
overlapping coastal uses and map conflict hotspots. MCDM was used to incorporate the prefer-
ences of user groups and managers into a formal decision analysis procedure. Optimization was
applied to generate optimal allocation alternatives to competing uses. However, this problem is
neither MOOPs, nor spatial zoning. Moreover, no CR or negotiation mechanism is suggested.

[Zen+19] suggested an Hybrid Game Theory and Mathematical Programming Model (HGT-
MPM) is for resolving trans-boundary water conflicts in the Guanting Reservoir Basin between
two cities in north China (Zhangjiakou and Beijing). A water allocation model is constructed
that takes into account both water quality and quantity to optimize water consumption and
pollutant discharge in the two cities, maximizing net aggregate benefits and lowering costs for
water delivery and pollution treatment. By solving the proposed HGT-MPM with reciprocal
benefit claim restrictions, the strategy spaces of the two players are demarcated. To determine
the equilibrium of bargaining, the Rubinstein bargaining solution approach is used. The findings
not only give a foundation for allocating trans-jurisdictional water and pollutant discharge rights
equitably and efficiently, but also provide some inspiration for management policy enhancement,
such as the establishment of water rights trading system. However, no negotiation or cooperative
mechanism is presented to overcome these conflicts.

Multiple agents and stakeholders with differing viewpoints and interests are frequently in-
volved in urban planning. [Fas+20] presents a decision-analytic approach for analyzing stake-
holder disputes in urban planning. First, the stakeholders express their preferences for actions
using a set of criteria and assign a weight to each criterion. Then, for each action, a conflict
index and overall value are calculated. Then, by solving an optimization problem with varying
levels of conflict as a resource constraint, a collection of effective Pareto portfolios of actions is
constructed. Finally, the actions are subjected to a sensitivity analysis. Real-world survey data
from the municipality of Upplands Väsby, Sweden, is used to show the concept. However, no
negotiation or cooperative mechanism is presented to overcome these conflicts.

When considering these conflicting objectives, ZPs give an explicit strategy for resolving
conflicts between activities and calculating trade-offs. Zoning is used to support the numerous
aims of marine parks all over the world [Wat+09b]. To tackle spatial multiple-use difficulties,
MSP is required, but first, all current uses, restrictions, and conflicts must be identified and
mapped. In a multiple-use Brazilian estuary, [Pre+16] suggested usage conflicts connected
to multi-legislative government, disregard for fishermen’s concerns, and increasing industrial
expansion due to economic development were identified. The overlaps between the places that
are now used for fishing and the areas where this activity is prohibited were examined. A GIS
dataset was used to collect and superimpose information on legislation creating no-fishing zones,
the most significant fishing spots, and fishing records. However, no negotiation or cooperative
mechanism is presented to overcome these conflicts.

[Kra97] suggested that combining AI approaches with methods and techniques from a variety
of multi-agent domains, including game theory, operations research, physics, and philosophy, is
advantageous in addressing the difficulty of developing coordinated and cooperated intelligent
agents. To back up this assertion, they have used an interdisciplinary approach with great success.
They explained the advantages of using multi-agent techniques, as well as the adjustments,
tweaks, and extensions required to solve DAI challenges. In such situations, all the agents work
together toward the satisfaction of a joint goal, not multi-objectives.
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[AMM12] introduces a multi-unit combinatorial auction and the winner determination issue
is addressed using an efficient novel algorithm. Making no assumptions about the number of
activities, shared resources, or agents, the suggested technique may tackle complicated large-
scale multi-agent situations. Furthermore, their strategy allows for the release of agents at
random times as they come dynamically along the planning horizon. They proposed a novel
distributed MAS using the auctions-based negotiation (DMAS/ABN) approach for resolving
resource conflicts and allocating multiple different types of shared resources amongst multiple
competing agents. The DMAS/ABN is put through its paces on a regular set of issue scenarios.
The findings are compared to three cutting-edge decentralized algorithms, as well as two current
centralized approaches. However, this problem neither is solved by the optimization algorithm,
nor is modeled as MOOPs.

5.3.2 Research Gaps and Objectives

Taken together, the reviewed studies were either theoretically proposing some strategies to
address CR in MAS, or practically solving the problems which were not MOOPs. Moreover,
some of them were out of the current study field. In one hand, difficulties arise, however, when
an attempt is made to implement the policy to find a set of Pareto optimal solutions through the
conflicting objectives in MOOPs. On the other hand, the possibility of finding a compromise
optimal decision which not only incorporates all preferences of multi-agents but also resolves the
conflict between non-compatible ones, should be evaluated. Therefore, these mentioned issues
are some limits to how far the idea of CR in MOMAS can be taken.

Therefore, in a much more systematic study of this chapter, we propose how to address the
problem of constructing linked and collaborative intelligent agents in the given application by
merging AI approaches with methodologies and techniques from a number of multi-agent areas,
such as operations research, agent-based modeling, and MCDM. We show how to adopt multi-
agent methodologies for the spatial zoning application in MSP, as well as the changes, tweaks,
and extensions that are required to tackle this specific intelligent decision-making problem. In
sum up, the main objective of this chapter is to develop a decentralized decision-aiding system
for cooperative multi-objective multi-agent spatial zoning management for MSP that:

• helps multiple agents with different economic, environmental, and social objectives and
preferences to solve their various types of MOOPs,

• provides the agent-to-optimizer interaction mechanism, where the agents learn the prob-
lem, modify/change their preferences (if necessary), and guide the optimization process
toward a most preferred solution,

• provides an agent-to-agent collaboration mechanism, where the agents collaborate/nego-
tiate with other agents for sharing information and handling conflicting preferences/con-
straints, and finally to relax/change/modify their constraints and decisions.

5.4 A Cooperative Multi-Objective Multi-Agent System

In Chapter [4], we presented two promising MOEAs for single marine use to employ for a
decision-making problem known as the multi-objective spatial zoning optimization problem
[Bas+21]. The algorithms lead to agent-goal allocation, and they eventually converge on solutions
in which a single marine use fulfills all the goals and constraints. Moreover, we have shown that
computing complexity is negligible, and there is no need for explicit communication. In addition
to these characteristics, we have shown that the proposed algorithms are close to optimal.

However, in real life, it is clear that multiple marine uses would often result into conflicts that
need to be solved. Our contribution aims at proposing a negotiation-based algorithm in order
to add cooperation to our decision support system. Figure 48 shows the cooperative MOMAS
diagram for spatial zoning management in MSP. This diagram is made of three different phases;
Initialization, Compatibility, and Communication.
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Following the MAS properties explained in Section [5.2], hypotheses considered in this pro-
posed cooperative MOMAS are represented in Table 13. The diagram is encoded by the pseudo-
code 9 hereafter. The details of this pseudo-code are explained in this section.

Table 13: Assumptions of MOMAS

Agents homogeneous, communicative, and proactive

MAS decentralized, close, multi-objective, and cooperative

Environment continuous, deterministic, and static

Algorithm 9 Pseudo-code MOMAS for Spatial Zoning Management

1: procedure MULTI-AGENT(agent1, agent2, agent3,

feasible_matrix1, feasible_matrix2)
2: pop1 ←MA(agent1) ▷ Initialization step by achieving the Pareto set with the

agent-to-optimizer connection
3: pop2 ←MA(agent2)
4: pop3 ←MA(agent3)
5: agent1 > agent2 > agent3 ← Ranking agents based on the chaining protocol
6: popCompatible, popsemi−Compatible ← Labelling the agents based on Compati-

bility Matrix by three terms (Compatible, semi-Compatible, and Conflicting).
7: suggestion_list1−2 ← (popCompatible, popsemi−Compatible ▷ Adding

popCompatible and popsemi−Compatible to the feasible solution list
8: binary_matrix1−2 ← overlap_finding(pop1, pop2))[0] ▷ Determining if two

solutions of pop1 and pop2 are overlapped or not by True or False
9: cord_matrix1−2 ← overlap_finding(pop1, pop2))[1] ▷ Saving the coordinates of

the overlapped cells
10: suggestion_list1−2 ← check_repair_2agent(pop1, pop2, feasible_matrix1,

feasible_matrix2, binary_matrix1−2, cord_matrix1−2) ▷ Checking and repair
each overlapped solutions of pop1 and pop2

11: binary_matrix1−3 ← overlap_finding(suggestion_list1−2, pop3))[0] ▷
Determining if two solutions of repaired pop1 and pop3 are overlapped or not by
True or False

12: cord_matrix1−3 ← overlap_finding(suggestion_list1−2, pop3)[1] ▷ Saving the
coordinates of the overlapped cells

13: suggestion_list1−3 ← check_repair_3agent(suggestion_list1−2, pop3,

feasible_matrix1, feasible_matrix3, binary_matrix1−3, cord_matrix1−3) ▷
Checking and repair each overlapped solutions of pop1 and pop3

14: binary_matrix12−3 ← overlap_finding(suggestion_list1−2,

suggestion_list1−3))[0] ▷ Determining if two solutions of repaired pop2 and pop3
are overlapped or not by True or False

15: cord_matrix12−3 ← overlap_finding(suggestion_list1−2,

suggestion_list1−3)[1] ▷ Saving the coordinates of the overlapped cells
16: suggestion_list12−3 ← check_repair_3agent(suggestion_list1−2,

suggestion_list1−3, feasible_matrix2, feasible_matrix3, binary_matrix12−3,

cord_matrix12−3)[0] ▷ Checking and repair each overlapped solutions of pop2 and
pop3

5.4.1 Initialization

As shown in Figure 48, there are one optimizer and three different agents; Agent1, Agent2, and
Agent3. It should be noted that the number of agents as three is considered here as an example,
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convenient for presentation purpose. Otherwise, it is quite straightforward to generalize the
approach for multi-agents. Following the flowchart depicted in figure 48, the process starts
with the activation of the agent-to-optimizer link, which is the first part of the decentralized
decision-aiding system. In this initialization phase, each agent connects directly to the optimizer
to achieve nearly optimal allocation solutions that guarantee Pareto efficiency. Following the
outperformed MOEA in Chapter [4], the MA algorithm is selected as an optimizer. According to
the life-cycle presented in Figure 47, this phase represents the Perception module of the agents.
That is, agents perceive their environment by connecting to their optimizer. The optimizer
helps them learn about the problem, providing them with the Pareto optimal sets. This step is
described in lines 2-4 of the pseudo-code 9.

5.4.2 Compatibility

Next, two agents should be selected to determine their compatibility relation. An assumption
here is to adopt a ranking approach and to assume that all actors will accept this priority list.
Then, according to the chaining protocol, the agents are ranked and the first two ranked are
selected as mentioned in line 5 pseudo-code 9. As shown in Figure 48, Agent1 and Agent2
are selected by the green checked-in circle. The compatibility matrix of the selected agents is
developed using the overlap finder 2-Agent operator.

This operator labels the compatibility relation between each couple of agents by three terms; I)
compatible, II) compatible under certain conditions, and III) conflicting agents.

If two agents are compatible, it means that in the case of having an intersection between
their zones, they can keep on with their activities without any issue. For some agents, this
situation could be possible, provided their constraints are met. That is, they are compatible
under certain conditions. However, for two agents in conflict, this situation is impossible. These
three compatibility relation statuses are shown in Figure 48 by three stickers; happy, sad, and
angry. This module is encoded in the line 6 pseudo-code 9.

5.4.3 Communication

Having the compatibility statuses between two agents clarified, the conflicting agents start to
communicate. The communication module plays the role of agent-to-agent interconnection in the
decentralized decision-aiding system. This module lets agents negotiate, cooperate, collaborate,
and communicate with each other to reach a compromise.

The procedure of this module is encoded in lines 7-16 of the pseudo-code 9. This module
includes two different processes called 2-agent and 3-agent. The former deals with the negotiation
mechanism when we have two agents. However, the latter handles the issues when another
agent is added to the previous two agents.

Hereafter, the details of these lines are explained as follows:

1. Having the agents labeled by three different terms in line 6 pseudo-code 9, the assessment
of the first two ranked agents begins in line 8-9 of the pseudo-code 9. The compatible
solutions of them are added to the suggestion_list1−2 as mentioned in line 7 pseudo-
code 9. This list contains possible solution combinations for these two agents. However,
regarding the second category of the solutions called compatible solutions under condition,
one suggesting algorithm could be buffer technique as mentioned in Figure 48. we suppose
one of the main constraints for these agents could be the distance. The details of this
technique are explained in Subsection 3.5.1. This technique translates the minimal and
maximal distance constraints into buffers around each solution. By doing so, it reduces
the feasible solution space for agents by deleting areas where no solution can be found. By
doing so, first, the constraints of the agents are met, then the refreshed solutions can be
rechecked to determine their status. It is worth mentioning that the conflicting agents have
already agreed to solve their conflict through the negotiation process. Therefore, these
agents are loyal by standing on their commitments.

2. In the case of conflict (binary_matrix == True), the coordinates of the overlapped cells
are saved in a matrix called cord_matrix. In this step, the agents decide by which share
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percentage the Share Divider Operator divides the overlapped cells between them. By doing
so, the decision module of the agent life cycle is defined here. The share percentage is one
of the decisions that should be made by the agents in this MOMAS. Here, as an example,
we imagine that they select an equal number (50%-50%). For each agent, 50% of the cells
are kept called fixed cells, and the rest 50% should be replaced called incomplete cells. This
selection gives an equal chance to both agents through their negotiation.

3. The repairing process starts with the agent by higher order Agent1 in line 10 pseudo-code
9. In the Removal Process, the 50% fixed cells of Agent1, first, is removed from its possible
cells set. The possible cells set is a set that includes the feasible cells to choose for a new
agent.

The agents decide to consider equilibrium hypothesis or not. This hypothesis, in addition
to the fixed cells of Agent1, removes the fixed cells of Agent2 from possible cells set of
Agent1 before its repairing. This hypothesis tries to empower the decentralized system by
balancing the fairness between agents. This hypothesis is equally carried out for Agent2
before its repairing. This hypothesis is another decision module of the agent life cycle.
Following these decisions, the agents apply some measurements. The Removal Process
and Share Divider Operator, therefore, are defined as the actions of the agent life cycle. Then,
to the remaining 50% cells, using the initialization operators 4.3.4, alternative compact
zones will be generated.

Having calculated their objective functions, the minimum first objective function among
these alternatives would be selected and added to Agent1. As mentioned in Chapter [3],
the first objective function maximizes the overall interest of a solution. The reason why
only this objective function is considered is that the second one would be already met
by using the initialization operator. Moreover, the incomplete part of each agent after
removing the overlapped cells is already compact.

For Agent2, the fixed cells of Agent1 and the incomplete cells of Agent2 would be removed
from the possible cells set of Agent2. The same process as Agent1 to find the best combina-
tion for the lack number of cells would be repeated for Agent2. Then, this process would
be repeated for all two solutions of Agent1 and Agent2 which are in conflict.

4. Then, the repaired solutions for both agents are added to suggestion_list1−2 in line 10
pseudo-code 9. So far, the 2-agent process is done.

5. Each solution of Agent3 is checked with the solutions of Agent1 in suggestion_list1−2,
to see whether or not they are in conflict. Now, the 3-agent process initiates in line 11-12 of
the pseudo-code 9.

6. If a conflict occurs, through the Removal Process, the agents decide to consider the equilib-
rium hypothesis or not. If yes, the solution of Agent2 in the current set of suggestion_list1−2,
the fixed cells of Agent1, and Agent3 are removed from possible cells set of Agent1. Then,
by using the compact square zone generator algorithm 4.3.4, different alternative compact
zones will be generated. The minimum one with respect to the first objective function
would be selected and added to Agent1. Next, for repairing Agent3, the solutions of
Agent1, Agent2, and its fixed cells are removed from possible cells set Agent3. Next, the
mentioned algorithm will find the best alternative to repair its solution. These solutions
are saved in the suggestion_list1−3 in line 13 pseudo-code 9

7. Next, this process will be repeated to check the current solutions of Agent3 with its
equivalent solution of Agent2 in the suggestion_list1−3 in line 14-15 of the pseudo-code
9.

8. In the end, the final suggestion_list12−3 in line 16 pseudo-code 9, including different
combinations of the solutions of all three agents, would be proposed to the DMs to select
the best choice from their point of view.

All the mentioned modules, through the agent life cycle, work together, communicate, and
exchange information to obtain all the common global constraints and the target of all agents.
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5.4.4 Illustrative Example of Multi-Objective Multi-Agent System

Figure 49 shows the graphical CR between three agents as an example of how to solve their
conflicts using the proposed negotiation-based MOMAS.
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Figure 49: The graphical CR between three agents: (a) the conflict between Agent1 and
Agent2; (b) the conflict between Agent1 and Agent3; (c) the conflict between Agent2
and Agent3

As can be seen in Figure 49, three different agents which are in conflict start the negotiation
process. Following the chaining structure between them, the order of rank is Agent1, Agent2,
and Agent3 sequentially. To begin with, in Figure 49a, the share percentage determines how many
overlapped cells (in gray) should be allocated to each agent (here it is 50% - 50%). Then, Agent1
will start the process by finding the alternatives for its overlapped cells. Meanwhile, all the cells
of Agent2 have already been deleted from the possible cells set of Agent1. That is, the equilibrium
hypothesis is considered. Having found the best alternative for this agent, the fixed cells are
removed from the possible cells set of Agent2. The local search operator will start to find the best
alternative for Agent2. In Figure 49b, after fixing the first two agents, the third agent is added.
In the case of a conflict, the CR will start with Agent1 and Agent3. Among gray-overlapped
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cells, those related to these two agents are determined. The same conflict-resolving process as
explained will repeat for these two. However, in this step, the cells of Agent2 and Agent3 will be
deleted from the possible cells set of the Agent1. After finding and fixing the cells of both agents,
the resolving process will start for the Agent2 and Agent3, as shown in Figure 49c. In this
process, the fixed solution of Agent1 should be removed from the possible cells set of other agents.
By doing so, the conflict between all three agents is solved, and they reached the compromises
which are proposed as a list of possible combinations between all agents.

5.5 Experimental Validation

For the collaborative MOMAS, meeting some requirements could influence the quality and
satisfactory level of different agents through the negotiation process [Kra97]. Therefore, in this
section, we study the effect of these requirements on our MOMAS model in Subsection[5.5.1].
Then, we compare all the proposed negotiation models by ranking methods in Subsection[5.5.2].

5.5.1 Scenarios and Parameters Setting

The parameter setting of different scenarios are designed in Table 14.

Table 14: Experimental protocol

Scenario Actual Values Coded Values

Scenario-1 (Share Percentage)
(0%, 100%) SH0
(30%, 70%) SH1
(50%, 50%) SH2
(70%, 30%) SH3
(100%, 0%) SH4

Scenario-2 (Equilibrium)
Without equilibrium NE

With equilibrium E

Scenario-3 (Cooperation Level)
Non-cooperative NC

cooperative C

• Scenario(1): Negotiation process with different share percentages
For this scenario, five different probabilities are considered as the degree of collaboration
between agents, in which the first number in each set declares the share percentage of the
strongest agent and the second one that of the weaker agent. This scenario is shown by
notation SH from 0 to 4.

• Scenario(2): Negotiation process without equilibrium rule
In this scenario, including regulation, the equilibrium rule is considered by applying
the removal process for both agents at the same time. That is, before the compact zone
generator starts looking for alternatives to the stronger agent, the remained cells of the
weaker agent would be removed from the possible cells set of the stronger one. On the
other hand, for the weaker agent, it would remove the confirmed zone of the stronger agent
from its possible cells set. This scenario is shown by the notation NE for non-equilibrium
and E for equilibrium.

• Scenario(3) : Non-cooperative Negotiation process
In this scenario, the communication and computational costs are studied. Instead of
starting with the Pareto optimal set for each agent, we will start the process with the Pareto
set for the stronger agent. For example, Agent1, Agent2, and Agent3 are in descending
order. First, we will run the MA algorithm for the Agent1. Next, having saved all Pareto
solutions for each solution of Agent2, first, its equivalent agent-solution has to be deleted
from the possible cells set of Agent2. By considering this updated set of possible cells,
the MA algorithm will generate the optimal solutions for the Agent2. Again, for Agent3,
each set of solutions, including Agent1 and Agent2, is removed from the possible cells set



Chapter 5. Cooperative Multi-Objective Multi-Agent Zoning Management for MSP106

of Agent3. Then, for each combination, the MA algorithm should run. This scenario has
not only a higher computational time but also less equilibrium and cooperation between
agents. Therefore, it is more likely not to ensure the collective gains from cooperation. This
scenario is shown by the notation NC for non-cooperative and C for cooperative.

All possible negotiation models, including the combination of three scenarios, are coded in
Table 15.

Table 15: The coded negotiation models

Model
Problem

1 2 3 4 5 6 7 8

MA + SH0
E + C 11 12 13 14 15 16 17 18

NE + C 21 22 23 24 25 26 27 28

MA + SH1
E + C 31 32 33 34 35 36 37 38

NE + C 41 42 43 44 45 46 47 48

MA + SH2
E + C 51 52 53 54 55 56 57 58

NE + C 61 62 53 64 65 66 67 68

MA + SH3
E + C 71 72 73 74 75 76 77 78

NE + C 81 82 83 84 85 86 87 88

MA + SH4
E + C 91 92 93 94 95 96 97 98

NE + C 101 102 103 104 105 106 107 108

MA + NC 111 112 113 114 115 116 117 118

As shown in Table 15, the “model” column includes two sub-columns. The first sub-column
starts with MA, which is referred to as the optimizer name, and + the share percentage sce-
nario, SH. In the second sub-column, all possible combinations of equilibrium scenarios with
cooperative assumptions are written. The first and second sub-columns together make the
name of the negotiation model, for example, MA+ SH0 + E+C. The “problem” column refers
to the artificial datasets. We summarize the data generation parameters of the spatial zoning
optimization problem in Table 17. We vary these problem-specific parameters at two different
levels (low and high) for two different map sizes (55× 55 and 1000× 1000) as shown in Table 17.
The total number of generated artificial datasets is 25 = 32. Among 32 datasets, 8 of them are
randomly selected to be used in all evaluations for each model.

Table 17: Data generation parameters for MOMAS

Parameter names Possible values Description

nrow 55, 1000 Number of rows of the raster grid
ncol 55, 1000 Number of columns of the raster grid
np 6, 10 Number of ports
ns 6, 8 Number of shipping lanes
na 3, 5 Number of protected areas
nw 2, 4 Number of windmill farms

nsol 15 The number of cells assigned to a solu-
tion (solution size)
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vi (1-6), (7-12), (13, 20) The interest value of each cell of the in-
terest map for each agent

The output value for each model with respect to each dataset is a matrix as shown in Equation
(37). The length of this matrix (m) is the multiplicity of the number of Pareto sets of the three
agents (NPS1, NPS2, and NPS3). In f1

ij, f
1 refers to the first objective function value in the

problem (interestingness objective) and ij indicates the number of Pareto sets and number of
agents in order.

F =



f1
11 f1

12 f1
13

...
...

...
f1
i1 f1

ij f1
i3

...
...

...
f1
m1 f1

mj f1
m3


m×3

(37)

m = (NPS1 ×NPS2 ×NPS3) (38)

To calculate the matrix mentioned in Equation (37) for each proposed negotiation model, the
following steps should be carried out:

• First, 25 = 32 artificial datasets are generated and 8 of them are selected randomly. They
are used in the MA algorithm to achieve the optimal Pareto set of each agent. It is worth
noting that, in each run, the dataset of all agents is considered the same, only with respect
to their interestingness value.

• Second, the solutions achieved are evaluated by each negotiation model.

• Third, to evaluate a much more robust comparison between different negotiation models,
each instance is implemented 20 times by each model, and each digit is the median of 20
runs of each problem.

However, for a sake of clarity, in Table 15, instead of writing the solution list of each model
for each dataset, the coded value of each list is named by using the row number (model)
and the column number (dataset) as shown. For example, in 12, 1 refers to the first scenario
(MA+ SH0 + E+C) and 2 refers to the second dataset.

5.5.2 Ranking Methods

In order to compare different developed negotiation models, aggregation methods are needed
first to report the best solution on the Pareto front of each dataset.

For each dataset, we used the WS method to aggregate the values of the first normalized
objective function for the three agents. For normalization, we used Equation (39). Then, for
each agent, the normalized objective functions are aggregated (yi in Equation 41) with the same
weight shown in Equation (40). The highest value of yi (Equation 41) for each negotiation model
(1 ⩽ m ⩽ 11) is selected as the best y∗m for each dataset (Equation (42)). Finally, by including all
datasets, the matrix of the final table could be shown as Equation (43) in which n is equal to 8
datasets.

f∗ij = f1
ij/

√√√√ m∑
i=1

(f1
ij)

2 (39)

W =
[
w1 w2 w3

]
(40)
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yi =

3∑
j=1

wjf
∗
ij (41)

y∗m =
{

maxi yi ∀ 1 ⩽ m ⩽ 11
}

(42)

Y =



y∗11 · · · y∗1j · · · y∗1n
...

...
...

y∗i1 · · · y∗ij · · · y∗in
...

...
...

y∗m1 · · · y∗mj · · · y∗mn


m×n

(43)

Having prepared the normalized aggregated values for each dataset, the ranking process will
start.

The Condorcet winner technique is selected to rank different negotiation models made up of
the following stages.

1. Make a list of all possible head-to-head matchups between the candidates (negotiation
models).

2. With each matchup, go through all the table columns and award all the voters in that
column to the matchup’s favorite candidate.

3. The Condorcet winner is the candidate who has defeated all other candidates in matchups.

The main advantage of the Condorcet ranking method in comparison with the other methods,
like Borda, is in removing the effect of arbitrary voting value.

The developed algorithms and experimental tests have been programmed in Python3.8.. All ex-
perimental tests have been carried out on an OpenStack virtual machine running Linux/Ubuntu
20.04.1LTS with 20VCPU, 10GBdisk, and 30GBRAM.

5.6 Computational Results

As explained in the previous section, the normalized value of the aggregated objective functions
for each dataset and model is calculated in Table 18.

Then, for each dataset, the values of y∗ are ranked in ascending order (the smallest value is
ranked as 1) and their ranks are written r(y∗) as shown in Table 19.

By comparing all pairs of models, the model that beats the others, with respect to the given
award in the total datasets, would be the winner and would be ranked down again as the last
rank shown in the last column of Table 19.

According to the final Condorcet ranking, it should be concluded the results of MA+SH2+E+
C is the most efficient, the results close to MA+ SH2 +NE+C as jointly efficient, the outcomes
close to MA+ SH0 +NE+ C as socially fair. The first main result is that the configurations
with cooperation (C) performed considerably better than without cooperation (NC) in terms
of the first objective function performance. MA+ SH4 + E+C is not significantly better than
MA+NC in terms of Pareto results. The higher share percentage for the weaker agent is supposed
to increase the welfare of that, especially with a lower equilibrium in the removal process. The
combination of both might lead to better negotiation result. The use of a non-cooperative model
does not lead to significant Pareto improvement without sharing; however, with cooperation,
they lead to significantly better Pareto results. SH0 +C with NE is better compared to SH0 +C
with E, but vice versa for SH2 +C. In the case of a NC model, only the general model is free
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Table 18: Aggregated normalized value of the first objective functions

Model y∗
i1 y∗

i2 y∗
i3 y∗

i4 y∗
i5 y∗

i6 y∗
i7 y∗

i8

MA + SH0
E + C 0,30654 0,19662 0,61223 0,08211 0,06770 0,54783 0,24783 0,54783

NE + C 0,32466 0,22391 0,69639 0,14477 0,22027 0,43784 0,37836 0,73784

MA + SH1
E + C 0,29037 0,30509 0,59155 0,24986 0,05878 0,57695 0,27695 0,51695

NE + C 0,31626 0,04752 0,69513 0,75690 0,18255 0,72449 0,32449 0,62449

MA + SH2
E + C 0,33888 0,45310 0,81233 0,66119 0,23506 0,52601 0,42601 0,82601

NE + C 0,32262 0,39013 0,70518 0,52116 0,28614 0,76444 0,36444 0,66444

MA + SH3
E + C 0,28233 0,38467 0,45891 0,10841 0,02375 0,43163 0,23163 0,43163

NE + C 0,29019 0,12065 0,45460 0,68820 0,08060 0,66603 0,36603 0,46603

MA + SH4
E + C 0,26920 0,40648 0,34281 0,50199 0,02408 0,34966 0,14966 0,34966

NE + C 0,28056 0,01372 0,36600 0,32444 0,08974 0,41141 0,21141 0,41141

MA + NC 0,27706 0,00372 0,26600 0,12440 0,13974 0,45141 0,11141 0,30141

Table 19: Finalized Condorcet rank

Model r(y∗
i1) r(y∗

i2) r(y∗
i3) r(y∗

i4) r(y∗
i5) r(y∗

i6) r(y∗
i7) r(y∗

i8) Condorcet Rank

MA + SH0
E + C 7 5 7 1 4 7 5 7 6

NE + C 10 6 9 4 9 4 10 10 3

MA + SH1
E + C 6 7 6 5 3 8 6 6 7

NE + C 8 3 8 11 8 10 7 8 4

MA + SH2
E + C 11 11 11 9 10 6 11 11 1

NE + C 9 9 10 8 11 11 8 9 2

MA + SH3
E + C 4 8 5 2 1 3 4 4 8

NE + C 5 4 4 10 5 9 9 5 5

MA + SH4
E + C 1 10 2 7 2 1 2 2 10

NE + C 3 2 3 6 6 2 3 3 9

MA + NC 2 1 1 3 7 5 1 1 11

of other assumptions. However, it not only increases the computational time substantially but
worsens the performance through cooperation. For one set of solutions in a problem with three
agents, the average computational time of the cooperative models is almost 63% faster than the
non-cooperative ones, with higher solution quality by less loss of optimality.

Taken together, one bullet point that should be paid attention to is that the higher the share
percentage of the weaker agent, the better rank we achieve. In the share percentage, the first
percentage belongs to the stronger agent and the second one to the weaker one. Therefore, the
stronger agent already has one bonus over the weaker one. We could interpret the way how they
try to balance and compensate for this inequality under different circumstances.

When the agents decide on the non-equal share percentage, they prefer to compensate for their
inequality by having more options to select in their repairing process. By selecting the NE, the
fewer removed cells from the solution space, the more possibilities are given to them to repair
their incomplete cells. Moreover, the higher the share percentage is given to the weaker agent, the
higher the rank would be given to the model.

Therefore, that is the reason why NE is better for SH0, SH1, and SH3 sequentially. However,
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when they decide on the equal share percentage, they do not still compensate the priority bonus of
the stronger agent for the weaker one in their first decision. So, the second decision could be
E instead of NE. If they select NE, the stronger agent will have more chances in the repairing
process than the weaker one as the starting agent. Finally, that is why E is placed in higher rank
than NE for SH2. In our ranking process, we tested the Borda Count method, but due to the
arbitrarily given value to each candidate, the Condorcet method is selected. Although the main
disadvantage of the Condorcet method is facing the cycle in pairs comparison, in case of not
happen, it leads to a promising ranking. In our comparisons, we had not faced this issue, that is
the reason why we reached the promising final ranking by this method.

5.7 Discussion

The goal of this chapter was to create a generic model that would aid in the resolving conflict in
MOMAS of spatial zoning management in the MSP. When agents understand they may be in
conflict with each other based on their existing perceptions and decision modules, they adopt a
cooperative strategy. In our system, agents always choose one or more actions in a negotiation
to obtain the greatest possible compromise (in terms of preferences) while avoiding deadlocks.
Because the quantity of exchanged messages is minimal, and it is not required for agents to
communicate all information about them, the communication cost of negotiation is low. The
results confirm that the negotiation mechanism is effective when agents are in conflict. To be able
to solve the conflict between different agents, the optimality would be a bit attacked. However,
in this algorithm, by doing a local search around the remaining part of the optimal solution of
each agent and finding the most interesting zone, this loss would be diminished. The use of the
compact zone generator to perform the local search avoids the proposal of non-compact zones.

However, in addition to the mentioned merits, a number of limitations need to be considered.
First, considering a priority order between agents is a strong assumption that needs to be refined
in future work. Even though the decision about a share percentage by agents gives a chance to
deal with this issue and enter a win-win negotiation, an a priori hierarchy between actors is not
always available in real life.

Another limitation lies in the fact that the approach is designed only for two objective functions
for each agent. Two other options that could be considered are: first, considering equal to or more
than two different objective functions for each agent, and second, considering more than two
general objective functions the same for all agents. Finding the most appropriate optimization
method for this type of problem would be challenging. Moreover, this MOMAS is considered
a closed system, not an open one. In an open system, it could be possible for the agents to
appear and disappear during the process. This assumption will allow the integration of new
agents throughout the process. Third, the interaction between the environment and the system
by feedback is not considered. However, a future study could assess if the agents could be back
in their optimizer environment during the negotiation by giving their preferences as feedback
during or at the end of the negotiation. Fourth, meeting the constraints of the agents at the same
time in CR is not studied. Another perspective deals with the extension of the MOMAS model,
currently based on raster data, to vector data.

The last but not the least perspective could tackle this issue with a reasonable approach, like a
hybrid of reinforcement and preference learning with optimization techniques for CR in MOMAS.
Nevertheless, such approaches would need a significant amount of realistic synthetic or real-
world data in order to prove their efficiency. Having access to concrete datasets remains a future
challenge for research in MSP.
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The notable goal of this thesis is to create a spatial decision support system for locating and
allocating areas of marine space to various stakeholders, despite possibly competing objectives
and constraints.

To overcome this issue, we focus on three distinct needs in this thesis:

1. Defining and modeling the problem in a realistic GIS environment, as well as developing
a mathematical model to handle it,

2. Being capable of providing solutions to large-scale problems,

3. Developing a cooperative decision-making framework to assist many stakeholders in
settling potential conflicts through negotiation.

6.1 Summary of the Contributions

All in all, to address the mentioned objectives, this thesis offers a MOMAS. This approach has
gone some way toward representing the multi-level decision-making processes of spatial zoning
management for marine uses, with the following contributions:

• Formulation and modeling of the zoning problem:
Though since locating and allocating an optimal zone for a new human activity while
keeping other present activities in mind is one of the key issues in the MSP, a new problem
in the scope of zoning management in the MSP is identified and discussed. Chapter
[2] has given an account of the reason for the widespread use of spatial planning by
reviewing the relevant literature. To model this problem, the most prevalent technique
is based on nonlinear multi-objective models, which are often solved using stochastic
search algorithms, resulting in sub-optimal solutions. Hence, the first contribution here
leads to formulating an exact linear model as a MOILP which aims at maximizing the
interest of the area of the zone dedicated to one marine activity, while maximizing its
spatial compactness. Second, to make the model close to reality rather than vector data,
working on raster data is chosen, which fully covers the geospatial data of the areas. In
Chapter [3], a novel multi-objective mathematical model is proposed to solve the problem.

• Exact resolution:
Two resolution approaches are utilized to solve the MOILP model and establish the best
solution: WS and AUGMECON2. Because of the huge number of integer variables and
constraints in this MOILP model, the resolution is improved in a preprocessing step by
applying the buffering technique. This study, presented in Chapter [3], supports the results
that AUGMECON2 is the most promising technique in terms of solution relevance and
variety, compactness, and computing time. Indeed, AUGMECON2 can be used practically
in every run to provide a unique answer. It also allows us to simply regulate the number
of solutions created. WS delivers less balanced solutions between the two goals of interest
and compactness while being less sensitive to the buffering approach. Overall, these
specific approaches are limited to a small scale and do not support the concerning issue on
a large scale. To evaluate all methodologies and analyze the sensitivity of the resolution
methods and computation times concerning various parameters, a set of artificial datasets
is established for all experimental assessments.

• MHs:
Barriers may result, meanwhile, when an attempt is taken to enlarge the problem. These
barriers are the high computational cost and computational hardness of the exact solvers
for large-scale cases of the problem. In Chapter [4], from an analysis of the limitations in
Chapter [3], new methods to manage these barriers of the MOILP model using MOEAs
are described. After an introduction to MHs, we put focus on two novel P-metaheuristics
based on GA developed to solve the spatial zoning optimization problem (SH-NSGA-II
and MA). Several innovations and contributions are suggested and applied in initialization,
stop condition, chromosome encoding, crossover, mutation, check and repair operators,
constraint management methodologies, and algorithm structure based on raster data.
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These MOEAs are aimed to optimize not only the interestingness but also the compactness
of the new activity zone. To tune the parameters of MOEAs, we use MRSM. We set up a
DOE as BBD, which implements a multi-response regression model for three different map
sizes of the problem to determine the optimal value of the MOEAs parameters. Moreover,
the effectiveness of all models is validated by ANOVA. Different performance metrics
are suggested and calculated for better characterization of the Pareto solutions in order
to compare the two MOEAs. Doing so results in more efficient and effective analysis
of two algorithms from small- to large-scale issues. The significant value of the WSRT
tests of all performance metrics for the exact method, SH-NSGA-II, and MA in the three
problem size levels is evaluated and compared to validate all findings. 24 test cases with
30 times replications are utilized to illustrate the outperformance of the suggested MOEAs.
The results show that, on average, the proposed MA provided better solutions in less
computational time and has a higher consistency than SH-NSGA-II. Finally, a series of
(24× 30) WSRT indicated that the suggested MA greatly outperforms the SH-NSGA-II.

• CR:
To address the third need of the thesis goal, the assumption of cooperation between
multiple competing interests should be added. This requirement guides us to developing
a CR framework in the cooperative decision-making process using MAS and heuristics
methods in Chapter [5]. This method set out to support the claimants with a compromise
in which they are provided with alternatives that maximize the allocated benefit to them
and guarantee fairness and a highly satisfactory level for long-term cooperation. The agent-
to-optimizer and agent-to-agent collaborative mechanisms make up the decision levels
in MOMAS. We propose a heuristic negotiation-based method for classifying MOMAS
properties using a chaining negotiation structure. First, at the agent-to-optimize decision
level, the agents complete their perception module. Having the MA algorithm run on each
agent and their Pareto optimum solutions collected, the agent-to-agent decision level is
implemented. In this technique, agents in a negotiation always make one or more decisions
and take one or more actions in order to reach the optimum reasonable compromise while
avoiding bottlenecks. Negotiation communication costs are minimal because the number
of messages transmitted is limited and agents are not required to disclose all information
about them. Various CR negotiating scenarios are also described, evaluated, and rated
using the Condorcet aggregation approach. The findings demonstrate how agents can
arrive at good solutions by employing the aforementioned techniques.

6.2 Limitations and Perspectives

The limitations and perspectives of this thesis could be listed as follows:

1. In our MOILP model, we cover the global constraints and do not dig deeper into the con-
straints of each activity. For example, in the real world, one of the challenging constraints
for some marine activities, such as shipping, is time scheduling. This issue comprises
determining the arrival, departure, and waiting times of each ship to each port to serve
the cargo. Therefore, time windows (hard or soft) could be added to the constraints for the
ship routing and scheduling problems. Although considering more constraints makes the
MOILP model more complex, it is more likely to make the negotiation mechanism easier
in the end. Since most of the conflict comes up from these restrictions, relaxing them by
the agents’ decisions through the negotiation could help them reach the compromise.

2. In our MOILP model, we define the global objective functions, which are only two.
They are the global objective functions for all considered marine uses. Adding some
more objective functions could help to cover more criteria and preferences of the actors.
Therefore, some other objective functions could be added, like minimizing the cost of
allocation of the located zones to each marine use while maximizing total profit for each of
them.
Improving the exact model by considering more than two objective functions could be
assessed by two ideas through future research. For example, one idea could consider the
global objectives as general ones and use the bi-level optimization methods for each actor.
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By doing so, the objectives of each actor nested within the global ones would be met first
and then help to optimize the general ones.

Another choice includes having equal to or over two different objective functions for
each agent. Accordingly, finding the applicable resolution methods like MHs could be
challenging for these ideas.

3. In our MOILP model, which is a semi-cooperative spatial zoning problem, one new human
activity is to be located and allocated by fixing other human activities. Therefore, an issue
that is not addressed is modeling exact mathematical programming by location-allocation
of multiple new marine uses at the same time. Developing the mathematical programming
for this type of problem (MOMAS) might change the model from linear to non-linear and
much more complicated. Having the mathematical model of MOMAS could help to catch
up with the optimal solutions, not approximate ones for all actors. This idea needs more
research and investigation.

4. In resolution methods, although MOEAs findings have gone some way toward solving
the given specific problem on a large scale, more improvements could be possible to
reduce the computational time while increasing the convergence speed. For instance, some
improvements in population generator operators could help in this regard by diminishing
the need for repair operators, since a remarkable time in our MOEAs is dedicated to these
operators.

Moreover, assessing and developing more MOEAs to compare with the current proposed
ones could help to find the fastest MOEAs for this problem. This perspective could be
reachable with a piece of extension in the current algorithm.

Another method for the future research we could investigate is the Matheuristics algo-
rithms. They are heuristic algorithms made by the interoperation of MHs and mathematic
programming techniques, would be interesting. This method could mix the current MOILP
model with MOEAs in a way.

5. The MOEAs and MOILP models, in our research, are based on raster data. However, the
current research is not designed to evaluate these models based on vector data. Although
considering the raster data increases the precision of our solutions and is more preferable
to the marine companies, the vector data reduces the computational cost and hardness of
our algorithms.

Therefore, developing a non-linear model based on the polygon to make the transformation
easier while using the vector data rather than raster data could be evaluated in future
work.

6. The current thesis has only examined certainty in the parameters without involving
uncertainty in them. The uncertainty of input data, particularly when the input data
statistically incorporates many distributions, and the dynamicity of the input data are two
essential challenges to address in real-world optimization problems. To make the methods
more compatible with the real world, considering the uncertainty hypothesis could help.
For example, one intriguing research approach for data uncertainty might be to use ML
techniques such as clustering algorithms (e.g., k-means, SOM) to cluster the input data
with the goal of differentiating data with various distributions. These data classes can then
be used/integrated to address the optimization challenge at hand.

Robust optimization or stochastic programming could be an idea. There are two main
factors that distinguish them:

• In stochastic optimization, it is nearly always assumed that we know the probability
distribution (possibly in the form of discrete probabilities of each scenario) of the
random parameters. In robust optimization, it is usually (but not always) assumed
that we do not know the distribution.

• In stochastic optimization, the goal is usually to optimize the expected value of
the objective function (min expected cost, max expected profit, etc.). In robust
optimization, because we do not know the probabilities, we instead optimize some
other measure. Common measures are to optimize the worst-case outcome – e.g.,
minimize the maximum cost, maximize the minimum profit, etc. – sometimes over
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only a subset of the possible scenarios. There are lots of other common objectives,
too.

For data dynamicity, Machine Learning (ML) approaches may be used to monitor/pre-
dict the development of the input data, and when a new evolution is identified, the
optimization variables are changed suitably.

7. The MOMAS is considered a closed system, not an open one. The open system lets the new
agents integrate seamlessly throughout the process. By doing so, it could be possible for
the agents to appear and disappear during the process. Therefore, this assumption could
make the negotiation mechanism more flexible for the agents while reducing unnecessary
communication between them. Therefore, it could lead to a reduction in negotiation
complexity and costs.
This idea should be implemented through the new negotiation heuristic.

8. The interaction between the environment and the system by feedback is not considered.
Adding the feedback assumption to MOMAS could help the agents reach the best com-
promised solution. For example, the agents might return to their optimizer environment
during the negotiation by providing feedback throughout or at the end of the negotiation.
By doing so, the interactive communication between the optimizer and agents could keep
the optimizer updated regarding the solution changes.
This idea should be implemented through the new negotiation heuristic.

9. Some other techniques to address CR analysis for multi-uses, which should help address
the zoning management in MSP, could be as follows. This perspective could define as new
research. These directions also open other research questions that are worthy for further
investigations.

• assessing the mixing of reinforcement learning or deep learning with optimization
techniques. However, such techniques would require a considerable amount of
accurate synthetic or real-world data to show their efficacy. Access to actual datasets
is a future concern for MSP research.

• investigating the Hybrid Learning-Based Multi-Objective Polyhedral and Hierar-
chical Optimization for MOMAS. This method might help meet not only global
constraints and objectives but also the specific ones for each of them.

• mixing the agent-based simulation-based models and optimization techniques (Us-
ing AnyLogic optimization which is built on top of the OptQuest Optimization
Engine, one of the most flexible and user-friendly optimization tools on the market).
Although Anylogic is proprietary software, which is not usable for research study, it
could be applied for real-case use in the industry.
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Appendix A

Tables

Table 20: Computational results obtained for the tuning parameters of SH-NSGA-II for
medium map size in Subsection [4.4.1]

Run Order x1 x2 x3 x4 Signal_Noise
1 -1 -1 0 0 20,199
2 -1 1 0 0 21,106
3 1 -1 0 0 20,804
4 1 1 0 0 23,267
5 0 0 -1 -1 19,756
6 0 0 -1 1 20,890
7 0 0 1 -1 20,491
8 0 0 1 1 22,035
9 -1 0 0 -1 21,079
10 -1 0 0 1 21,534
11 1 0 0 -1 20,827
12 1 0 0 1 20,840
13 0 -1 -1 0 20,361
14 0 -1 1 0 21,482
15 0 1 -1 0 21,025
16 0 1 1 0 20,456
17 -1 0 -1 0 20,684
18 -1 0 1 0 20,279
19 1 0 -1 0 20,107
20 1 0 1 0 22,062
21 0 -1 0 -1 20,495
22 0 -1 0 1 20,994
23 0 1 0 -1 20,722
24 0 1 0 1 20,706
25 0 0 0 0 22,294
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Table 21: Computational results obtained for the tuning parameters of SH-NSGA-II for
large map size in Subsection [4.4.1]

Run Order x1 x2 x3 x4 Signal_Noise
1 -1 -1 0 0 19,422
2 -1 1 0 0 17,823
3 1 -1 0 0 18,792
4 1 1 0 0 20,042
5 0 0 -1 -1 18,693
6 0 0 -1 1 18,245
7 0 0 1 -1 18,854
8 0 0 1 1 19,025
9 -1 0 0 -1 19,809
10 -1 0 0 1 19,560
11 1 0 0 -1 17,949
12 1 0 0 1 17,755
13 0 -1 -1 0 17,173
14 0 -1 1 0 18,553
15 0 1 -1 0 19,556
16 0 1 1 0 21,042
17 -1 0 -1 0 17,080
18 -1 0 1 0 17,473
19 1 0 -1 0 19,366
20 1 0 1 0 18,725
21 0 -1 0 -1 19,532
22 0 -1 0 1 19,041
23 0 1 0 -1 17,413
24 0 1 0 1 18,001
25 0 0 0 0 18,520

Table 22: Computational results obtained for the tuning parameters of MA for small
map size in Subsection [4.4.1]

Run Order x1 x2 x3 x4 x5 x6 Signal_Noise
1 -1 -1 0 0 0 0 6,0738
2 1 -1 0 0 0 0 5,9897
3 -1 1 0 0 0 0 5,8388
4 1 1 0 0 0 0 6,1284
5 -1 0 -1 0 0 0 5,6148
6 1 0 -1 0 0 0 5,7023
7 -1 0 1 0 0 0 5,9356
8 1 0 1 0 0 0 6,2064
9 -1 0 0 -1 0 0 5,9291
10 1 0 0 -1 0 0 6,1875
11 -1 0 0 1 0 0 5,5990
12 1 0 0 1 0 0 5,9862
13 -1 0 0 0 -1 0 5,9112
14 1 0 0 0 -1 0 6,0874
15 -1 0 0 0 1 0 5,9913
16 1 0 0 0 1 0 5,9983
17 -1 0 0 0 0 -1 5,8264
18 1 0 0 0 0 -1 6,1187
19 -1 0 0 0 0 1 5,7696
20 1 0 0 0 0 1 6,0717
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Table 22 continued from previous page
21 0 -1 -1 0 0 0 5,5075
22 0 1 -1 0 0 0 6,1086
23 0 -1 1 0 0 0 6,3044
24 0 1 1 0 0 0 6,1880
25 0 -1 0 -1 0 0 5,8952
26 0 1 0 -1 0 0 6,0828
27 0 -1 0 1 0 0 5,7706
28 0 1 0 1 0 0 5,9275
29 0 -1 0 0 -1 0 5,952
30 0 1 0 0 -1 0 6,1481
31 0 -1 0 0 1 0 6,0383
32 0 1 0 0 1 0 6,1187
33 0 -1 0 0 0 -1 6,1096
34 0 1 0 0 0 -1 5,9573
35 0 -1 0 0 0 1 6,0490
36 0 1 0 0 0 1 5,9113
37 0 0 -1 -1 0 0 5,8748
38 0 0 1 -1 0 0 6,3023
39 0 0 -1 1 0 0 5,5594
40 0 0 1 1 0 0 5,8613
41 0 0 -1 0 -1 0 5,7685
42 0 0 1 0 -1 0 6,2078
43 0 0 -1 0 1 0 5,9467
44 0 0 1 0 1 0 6,0555
45 0 0 -1 0 0 -1 6,112
46 0 0 1 0 0 -1 5,9037
47 0 0 -1 0 0 1 5,5400
48 0 0 1 0 0 1 5,9878
49 0 0 0 -1 -1 0 6,1911
50 0 0 0 1 -1 0 5,8647
51 0 0 0 -1 1 0 6,0778
52 0 0 0 1 1 0 5,8252
53 0 0 0 -1 0 -1 6,1218
54 0 0 0 1 0 -1 5,7822
55 0 0 0 -1 0 1 6,2058
56 0 0 0 1 0 1 5,9441
57 0 0 0 0 -1 -1 6,2225
58 0 0 0 0 1 -1 5,5603
59 0 0 0 0 -1 1 5,9229
60 0 0 0 0 1 1 5,9453
61 0 0 0 0 0 0 5,9826

Table 23: Computational results obtained for the tuning parameters of MA for medium
map size in Subsection [4.4.1]

Run Order x1 x2 x3 x4 x5 x6 Signal_Noise
1 -1 -1 0 0 0 0 5,6378
2 1 -1 0 0 0 0 5,6342
3 -1 1 0 0 0 0 5,4515
4 1 1 0 0 0 0 5,6007
5 -1 0 -1 0 0 0 5,6748
6 1 0 -1 0 0 0 5,6505
7 -1 0 1 0 0 0 5,5797
8 1 0 1 0 0 0 5,7132
9 -1 0 0 -1 0 0 5,6864
10 1 0 0 -1 0 0 5,6490
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Table 23 continued from previous page
11 -1 0 0 1 0 0 5,6784
12 1 0 0 1 0 0 5,6774
13 -1 0 0 0 -1 0 5,604
14 1 0 0 0 1 0 5,6825
15 -1 0 0 0 1 0 5,7178
16 1 0 0 0 0 0 5,7411
17 -1 0 0 0 0 -1 5,8931
18 1 0 0 0 0 1 5,9033
19 -1 0 0 0 0 1 5,5219
20 1 0 0 0 0 0 5,6353
21 0 -1 -1 0 0 0 5,5559
22 0 1 -1 0 0 0 5,666
23 0 -1 1 0 0 0 5,7551
24 0 1 1 0 0 0 5,6808
25 0 -1 0 -1 0 0 5,7228
26 0 1 0 -1 0 0 5,7512
27 0 -1 0 1 0 0 5,5129
28 0 1 0 1 0 0 5,5655
29 0 -1 0 0 -1 0 5,505
30 0 1 0 0 1 0 5,7047
31 0 -1 0 0 1 0 5,7157
32 0 1 0 0 0 0 5,6121
33 0 -1 0 0 0 -1 5,6938
34 0 1 0 0 0 1 5,5253
35 0 -1 0 0 0 1 5,5933
36 0 1 0 0 0 0 5,6111
37 0 0 -1 -1 0 0 5,6637
38 0 0 1 -1 0 0 5,7445
39 0 0 -1 1 0 0 5,5554
40 0 0 1 1 0 0 5,7481
41 0 0 -1 0 -1 0 5,6798
42 0 0 1 0 1 0 5,6915
43 0 0 -1 0 1 0 5,6803
44 0 0 1 0 0 0 5,6697
45 0 0 -1 0 0 -1 5,7207
46 0 0 1 0 0 1 5,8052
47 0 0 -1 0 0 1 5,5943
48 0 0 1 0 0 0 5,6586
49 0 0 0 -1 -1 0 5,6642
50 0 0 0 1 1 0 5,6779
51 0 0 0 -1 1 0 5,6094
52 0 0 0 1 0 0 5,7411
53 0 0 0 -1 0 -1 5,8335
54 0 0 0 1 0 1 5,9573
55 0 0 0 -1 0 1 5,6485
56 0 0 0 1 0 -1 5,6784
57 0 0 0 0 1 -1 5,6423
58 0 0 0 0 -1 1 5,8411
59 0 0 0 0 1 1 5,5680
60 0 0 0 0 0 0 5,6364
61 0 0 0 0 0 0 5,7814
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Table 24: Computational results obtained for the tuning parameters of MA for large
map size in Subsection [4.4.1]

Run Order x1 x2 x3 x4 x5 x6 Signal_Noise
1 -1 -1 0 0 0 0 5,5069
2 1 -1 0 0 0 0 5,7999
3 -1 1 0 0 0 0 5,7164
4 1 1 0 0 0 0 5,7134
5 -1 0 -1 0 0 0 5,3670
6 1 0 -1 0 0 0 5,7984
7 -1 0 1 0 0 0 5,6145
8 1 0 1 0 0 0 5,6678
9 -1 0 0 -1 0 0 5,8562
10 1 0 0 -1 0 0 5,8804
11 -1 0 0 1 0 0 5,5735
12 1 0 0 1 0 0 5,933
13 -1 0 0 0 -1 0 5,657
14 1 0 0 0 -1 0 5,7651
15 -1 0 0 0 1 0 5,6800
16 1 0 0 0 1 0 5,7498
17 -1 0 0 0 0 -1 5,5157
18 1 0 0 0 0 -1 6,0049
19 -1 0 0 0 0 1 5,8153
20 1 0 0 0 0 1 5,7693
21 0 -1 -1 0 0 0 5,5509
22 0 1 -1 0 0 0 5,8061
23 0 -1 1 0 0 0 5,5889
24 0 1 1 0 0 0 5,6754
25 0 -1 0 -1 0 0 5,7666
26 0 1 0 -1 0 0 5,6816
27 0 -1 0 1 0 0 5,2774
28 0 1 0 1 0 0 5,8137
29 0 -1 0 0 -1 0 5,5858
30 0 1 0 0 -1 0 5,7544
31 0 -1 0 0 1 0 5,7651
32 0 1 0 0 1 0 5,7241
33 0 -1 0 0 0 -1 5,6344
34 0 1 0 0 0 -1 5,5069
35 0 -1 0 0 0 1 5,5509
36 0 1 0 0 0 1 5,7589
37 0 0 -1 -1 0 0 5,7651
38 0 0 1 -1 0 0 5,595
39 0 0 -1 1 0 0 5,4506
40 0 0 1 1 0 0 5,8122
41 0 0 -1 0 -1 0 5,4628
42 0 0 1 0 -1 0 5,9168
43 0 0 -1 0 1 0 5,7651
44 0 0 1 0 1 0 5,5904
45 0 0 -1 0 0 -1 5,9593
46 0 0 1 0 0 -1 5,6237
47 0 0 -1 0 0 1 5,6662
48 0 0 1 0 0 1 5,590
49 0 0 0 -1 -1 0 5,8076
50 0 0 0 1 -1 0 5,7651
51 0 0 0 -1 1 0 5,616
52 0 0 0 1 1 0 5,6616
53 0 0 0 -1 0 -1 5,8440
54 0 0 0 1 0 -1 5,7482
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Table 24 continued from previous page
55 0 0 0 -1 0 1 5,7938
56 0 0 0 1 0 1 5,6831
57 0 0 0 0 -1 -1 5,4793
58 0 0 0 0 1 -1 6,0945
59 0 0 0 0 -1 1 5,5919
60 0 0 0 0 1 1 5,7210
61 0 0 0 0 0 0 5,6402
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Table 25: Summary table SH-NSGA-II for medium map size in Subsection [4.4.1]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.293804 0.511 43.585 1.77e-15 ***
x1 0.543194 0.148 3.679 0.002781 **
x2 0.405784 0.148 2.748 0.016598 *
x3 0.166822 0.148 1.130 0.278985
x4 0.016797 0.148 0.114 0.911171
x1^2 -0.468 0.304 -1.539 0.147876
x2^2 -0.593 0.304 -1.948 0.073293 .
x3^2 -0.895 0.304 -2.941 0.011461 *
x4^2 -0.781 0.304 -2.565 0.023522 *
x1:x2 0.389 0.256 1.520 0.152325
x2:x3 -0.4220 0.256 -1.6512 0.122626
x2:x4 0.590 0.256 2.3067 0.038183 *
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-Squared: 0.768, Adjusted R-Squared: 0.571
F-statistic: 3.903 on 11 and 13 DF, p-value: 0.01136

ANOVA Df Sum Sq Mean Sq F value Pr(>F)
FO(x1 , x2 , x3 , x4) 4 5.85 1.463 5.59 0.0076
PQ(x1 , x2 , x3 , x4) 4 2.67 0.667 2.55 0.089
x1:x2 1 0.605 0.604 2.312 0.152
x2:x3 1 0.713 0.713 2.727 0.123
x2:x4 1 1.392 1.392 5.3208 0.038
Residuals 13 3.401 0.261
Lack of fit 13 3.401 0.261
Pure error 0 0.000
Stationary point of response surface: x1 x2 x3 x4

0.58 0.34 0.09 0.01
Stationary point in original units: Npop Rc Rm Pm

178.99 0.67 0.43 0.50
rsm(formula=Signal_Noise∼FO(x1 , x2 , x3 , x4) + (x1:x2 ) + (x2:x3) +
(x2:x4) + PQ(x1 , x2 , x3 , x4), data = BBD
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Table 26: Summary table SH-NSGA-II for large map size in Subsection [4.4.1]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.726 0.034 168.698 <2.2e-16 ***
x1 0.037 0.018 2.03 0.059 .
x2 0.065 0.018 3.59 0.0024 **
x3 0.030 0.018 1.69 0.11
x4 -0.0027 0.018 -0.154 0.879
x2^2 -0.070 0.028 -2.47 0.0259 *
x3^2 -0.070 0.028 -2.48 0.025 *
x4^2 -0.084 0.028 -2.957 0.009 **
x2:x3 0.050 0.031 1.597 0.130
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-Squared: 0.682, Adjusted R-Squared: 0.523
F-statistic: 4.293 on 8 and 16 DF, p-value: 0.006382

ANOVA Df Sum Sq Mean Sq F value Pr(>F)
FO(x1 , x2 , x3 , x4) 4 0.078 0.019 4.968 0.0085
PQ(x2 , x3 , x4) 3 0.047 0.016 3.97 0.027
x2:x3 1 0.01 0.01 2.55 0.1297
Residuals 16 0.063 0.004
Lack of fit 16 0.063 0.004
Pure error 0 0.00
Stationary point of response surface: x1 x2 x3 x4

0.00 0.46 0.21 -0.017
Stationary point in original units: Npop Rc Rm Pm

150.0 0.69 0.46 0.5
rsm(formula = Signal_Noise ∼FO(x1 , x2 , x3 , x4) + (x2:x3) + PQ(x2 , x3 , x4),
data = BBD)
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Table 27: Summary table MA for small map size in Subsection [4.4.1]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.922 0.020 289.154 <2.2e-16 ***
x1 0.099 0.024 4.124 0.0001503 ***
x2 0.036 0.024 1.492 0.1424554
x3 0.161 0.024 6.679 2.509e-08 ***
x4 -0.137 0.024 -5.704 7.536e-07 ***
x5 -0.036 0.024 -1.494 0.1419021
x6 -0.018 0.024 -0.762 0.4498483
x2^2 0.072 0.030 2.390 0.0209104 *
x5^2 0.055 0.030 1.8343 0.0729486 .
x1:x2 0.093 0.054 1.734 0.0894593 .
x2:x3 -0.179 0.054 -3.330 0.0016981 **
x3:x5 -0.083 0.054 -1.534 0.1317846
x3:x6 0.164 0.054 3.046 0.0037986 **
x5:x6 0.171 0.054 3.178 0.0026234 **
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-Squared: 0.7522, Adjusted R-Squared: 0.6837
F-statistic: 10.98 on 13 and 47 DF, p-value: 3.159e-10

ANOVA Df Sum Sq Mean Sq F value Pr(>F)
FO(x1 , x2 , x3 , x4, x5 , x6) 6 1.151 0.192 16.532 3.919e-10
PQ(x2, x5) 2 0.089 0.045 3.843 0.029
x1:x2 1 0.035 0.035 3.007 0.090
x2:x3 1 0.129 0.129 11.086 0.0017
x3:x5 1 0.028 0.027 2.352 0.132
x3:x6 1 0.108 0.108 9.276 0.0038
x5:x6 1 0.117 0.117 10.099 0.0026
Residuals 47 0.545 0.012
Lack of fit 47 0.545 0.012
Pure error 0 0.000

Stationary point of response surface: x1 x2 x3 x4 x5 x6
0.00 -0.25 0.00 0.00 0.328 0.00

Stationary point in original units: Npop Rc Rm Pm Rl Pl
150.0 0.5497 0.40 0.50 0.56 0.625

rsm(formula = Signal_Noise ∼FO(x1 , x2 , x3 , x4, x5 , x6) + (x1:x2) +(x2:x3) +
(x3:x5) + (x3:x6) + (x5:x6) + PQ(x2,x5), data = BBD)
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Table 28: Summary table MA for medium map size in Subsection [4.4.1]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.73 0.022 255.803 <2.2e-16 ***
x1 0.022 0.016 1.35 0.182
x2 0.0012 0.017 0.07 0.94462
x3 0.030 0.017 1.85 0.07 .
x4 -0.009 0.016 -0.55 0.58
x5 0.027 0.016 1.67 0.10
x6 -0.082 0.0169 -5.0774 6.190e-06 ***
x1^2 -0.041 0.022 -1.89 0.06474 .
x2^2 -0.094 0.022 -4.278 8.961e-05 ***
x3^2 -0.032 0.022 -1.4469 0.15443
x5^2 -0.035 0.02 -1.5561 0.12626
x2:x3 -0.0463 0.036 -1.27 0.21043
x2:x5 -0.079 0.036 -2.188 0.03367 *
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-Squared: 0.5445, Adjusted R-Squared: 0.4306
F-statistic: 4.781 on 12 and 48 DF, p-value: 4.309e-05

ANOVA Df Sum Sq Mean Sq F value Pr(>F)
FO(x1 , x2 , x3 , x4, x5 , x6) 6 0.172 0.029 5.39 0.00025
PQ(x1 , x2 , x3, x5) 4 0.099 0.025 4.67 0.0029
x2:x3 1 0.009 0.009 1.6113 0.21
x2:x5 1 0.025 0.025 4.7817 0.034
Residuals 48 0.255 0.005
Lack of fit 48 0.255 0.005
Pure error 0 0.00

Stationary point of response surface: x1 x2 x3 x4 x5 x6
0.27 0.006 0.48 0.00 0.39 0.00

Stationary point in original units: Npop Rc Rm Pm Rl Pl
163.32 0.60 0.543 0.50 0.59 0.625

rsm(formula = Signal_Noise ∼FO(x1 , x2 , x3 , x4, x5 , x6) + (x2:x3) +(x2:x5) +
PQ(x1 , x2 , x3 , x5 ), data = BBD)
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Table 29: Summary Table MA for large map size in Subsection [4.4.1]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.60 0.034 165.05 <2.2e-16 ***
x1 0.074 0.025 2.97 0.0049 **
x2 0.065 0.025 2.600 0.013 *
x3 0.023 0.025 0.92 0.36
x4 -0.044 0.024 -1.83 0.07 .
x5 0.0189 0.025 0.75 0.45
x6 -0.013 0.025 -0.53 0.60
x1^2 0.07 0.033 2.173 0.035 *
x4^2 0.067 0.033 2.060 0.046 *
x5^2 0.062 0.0333 1.84 0.07 .
x6^2 0.073503 0.0333 2.20 0.034 *
x1:x2 -0.074 0.054 -1.36 0.179
x1:x3 -0.095 0.054 -1.74 0.089 .
x1:x4 0.084 0.054 1.55 0.129
x1:x6 -0.130 0.054 -2.39 0.021 *
x2:x4 0.155 0.054 2.87 0.0065 **
x2:x6 0.077 0.054 1.44 0.157
x3:x4 0.133 0.054 2.45 0.018 *
x3:x5 -0.164 0.054 -3.047 0.004 **
x6:x5 -0.090 0.054 -1.68 0.099 .
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Multiple R-Squared: 0.6456, Adjusted R-Squared: 0.4813
F-statistic: 3.93 on 19 and 41 DF, p-value: 0.0001194

ANOVA Df Sum Sq Mean Sq F value Pr(>F)
FO(x1 , x2 , x3 , x4, x5 , x6) 6 0.28 0.047 4.03 0.0029
PQ(x1, x4, x5 , x6) 4 0.11 0.027 2.26 0.0787
x1:x2 1 0.022 0.022 1.86 0.179
x1:x3 1 0.036 0.036 3.04 0.089
x1:x4 1 0.030 0.028 2.40 0.13
x1:x6 1 0.068 0.067 5.71 0.02
x2:x4 1 0.097 0.096 8.21 0.006
x2:x6 1 0.024 0.024 2.07 0.157
x3:x4 1 0.071 0.071 6.01 0.0186
x3:x5 1 0.11 0.109 9.28 0.004
x6:x5 1 0.03 0.033 2.84 0.0995
Residuals 41 0.48219 0.01176
Lack of fit 41 0.48219 0.01176
Pure error 0 0.00000

Stationary point of response surface: x1 x2 x3 x4 x5 x6
-0.52 0.0 0.0 0.33 -0.15 0.09

Stationary point in original units: Npop Rc Rm Pm Rl Pl
123.78 0.60 0.40 0.58 0.397 0.64

rsm(formula = Signal_Noise ∼FO(x1 , x2 , x3 , x4, x5 , x6) + (x1:x2) +(x1:x3)+(x1:x4)+
(x1:x6)+(x2:x4)+(x2:x6)+(x3:x4)+(x3:x5)+(x5:x6)+PQ(x1 , x4 , x5 , x6 ), data = BBD)
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Appendix B

Pseudo-code

Algorithm 10 Pseudo-code SH-NSGA-II in Subsection[4.3.2]

1: procedure SH-NSGA-II(Npop, Rc, Rm, Pm)
2: pop← random_population(Npop) ▷ Create a random initial population set
3: F← evaluation_Fitness(pop) ▷ Evaluate the initial population
4: popcross, popmutation ← pop

5: Fcross, Fmutation ← F

6: while not stop criterion(counter < K) do
7: while not crossover rate do
8: Ci ← crossoveri(popcross, Fcross) ▷ For ith crossover of 4
9: Offspringcrossi ← non_repeat(Ci)▷ Clearing and Collecting offsprings

10: if mutation probability then
11: while not mutation rate do
12: Mi ← mutationi(popmutation, Fmutation) ▷ For ith mutation of 3
13: Offspringmutationi

← non_repeat(Mi) ▷ Clearing and Collecting
offsprings

14: pop← insert(pop, popcross, popmutation) ▷ Create a union set
15: F← evaluation_Fitness(pop) ▷ Evaluate union set
16: Fpareto, Npareto ← pareto_front_finding(F,Npop) ▷ Finding the pareto

front
17: hv← HV(Fpareto, Npareto) ▷ Calculating HV
18: counter← count(hvlist) ▷ Counting the non-improved HV value
19: pop← selection(Npop, pop, F) ▷ Do selection among union set
20: F← evaluation_Fitness(pop)
21: Updating popcross, popmutation, poplocal, Fcross, Fmutation, and Flocal

22: Reporting final Pareto front based on the Crowding Distance
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Algorithm 11 Pseudo-code Crossover-2 in Subsection[4.3.4]

1: procedure CROSSOVER-2(popcross, Fcross)
2: P1, P2 ← binary_tournament_selection(popcross, Fcross) ▷ Select two parent

chromosomes
3: P1, P2 ← sort_y(P1, P2) ▷ Sorting parent chromosomes based on y-coordinate
4: cut_point← rand(1, 15) ▷ Determining one random cut-point
5: yP1[cut_point] < yP2[cut_point]▷ Defining the order of the cut-point y-coordinate

between parents
6: middle_cell← average(P1[cut_point], P2[cut_point]) ▷ Finding the middle

cell
7: P ′

1, P
′
2 ← transform(P1, P2,middle_cell)

8: Offspring1 ← insert(P ′
1[: middle_cell], P ′

2[middle_cell :])
9: Offspring2 ← insert(P ′

2[: middle_cell], P ′
1[middle_cell :])

10: Check and repair both offspring chromosomes
11: Outputs : Offspring1,Offspring2 maximum two acceptable offspring chromo-

somes

Algorithm 12 Pseudo-code Crossover-3 in Subsection[4.3.4]

1: procedure CROSSOVER-3(popcross, Fcross)
2: P1, P2 ← binary_tournament_selection(popcross, Fcross) ▷ Select two parent

chromosomes
3: P1, P2 ← sort_x(P1, P2) ▷ Sorting parent chromosomes based on x-coordinate
4: cut_point← rand(1, 15) ▷ Determining one random cut-point
5: xP1[cut_point] < xP2[cut_point]▷ Defining the order of the cut-point x-coordinate

between parents
6: middle_cell← average(P1[cut_point], P2[cut_point]) ▷ Finding the middle

cell
7: F1P1 , F1P2 ← Fcross(P1, P2) ▷ The first objective values of parents
8: Proportion← (F1P1 − F1P2)/F1P1

9: if proportion = 0 then
10: mid_cell1,mid_cell2 ← middle_cell
11: if proportion < 0 then ▷ That means F1P1 < F1P2

12: added_value← ((middle_cell//3) ∗ abs(proportion)) ▷ The movement
value toward higher parent

13: mid_cell1 ← middle_cell ▷ Fixed at the middle cell
14: mid_cell2 ← transform(middle_cell, added_value) ▷ Get closer to the

cutting cell of P2

15: if proportion > 0 then ▷ That means F1P1 > F1P2

16: added_value← ((middle_cell//3) ∗ abs(proportion)) ▷ The movement
value toward higher parent

17: mid_cell1 ← transform(middle_cell, added_value) ▷ Get closer to the
cutting cell of P1

18: mid_cell2 ← middle_cell ▷ Fixed at the middle cell
19: P ′

1 ← transform(P1,mid_cell1)
20: P ′

2 ← transform(P2,mid_cell2)
21: Offspring1 ← insert(P ′

1[: mid_cell1], P
′
2[mid_cell2 :])

22: Offspring2 ← insert(P ′
2[: mid_cell2], P

′
1[mid_cell1 :])

23: Check and repair both offspring chromosomes
24: Outputs : Offspring1,Offspring2 maximum two acceptable offspring chromo-

somes
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Algorithm 13 Pseudo-code Crossover-4 in Subsection[4.3.4]

1: procedure CROSSOVER-4(popcross, Fcross)
2: P1, P2 ← binary_tournament_selection(popcross, Fcross) ▷ Select two parent

chromosomes
3: P1, P2 ← sort_x(P1, P2) ▷ Sorting parent chromosomes based on x-coordinate
4: cut_point← rand(1, 15) ▷ Determining one random cut-point
5: xP1[cut_point] < xP2[cut_point]▷ Defining the order of the cut-point x-coordinate

between parents
6: middle_cell← average(P1[cut_point], P2[cut_point]) ▷ Finding the middle

cell
7: F1P1 , F1P2 ← Fcross(P1, P2) ▷ The first objective values of parents
8: Proportion← (F1P1 − F1P2)/F1P1

9: if proportion = 0 then
10: mid_cell1,mid_cell2 ← middle_cell
11: if proportion < 0 then ▷ That means F1P1 < F1P2

12: added_value← ((middle_cell//3) ∗ abs(proportion)) ▷ The movement
value toward higher parent

13: mid_cell1,mid_cell2 ← transform(middle_cell, added_value) ▷ Get
closer to the cutting cell of P2

14: if proportion > 0 then ▷ That means F1P1 > F1P2

15: added_value← ((middle_cell//3) ∗ abs(proportion)) ▷ The movement
value toward higher parent

16: mid_cell1,mid_cell2 ← transform(middle_cell, added_value) ▷ Get
closer to the cutting cell of P1

17: P ′
1 ← transform(P1,mid_cell1)

18: P ′
2 ← transform(P2,mid_cell2)

19: Offspring1 ← insert(P ′
1[: mid_cell1], P

′
2[mid_cell2 :])

20: Offspring2 ← insert(P ′
2[: mid_cell2], P

′
1[mid_cell1 :])

21: Check and repair both offspring chromosomes
22: Outputs : Offspring1,Offspring2 maximum two acceptable offspring chromo-

somes
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Titre :  Gestion du zonage dans l'aménagement de l'espace marin : Optimisation multi-

objectifs et résolution de conflits basée sur des agents 

Mots clés :  Système Multi-Agents Multi-Objectifs, Gestion du Zonage, Algorithmes Basés sur l'évolution, 
Planification de l'espace Marin, Résolution des Conflits, Système d'aide à la Décision. 

Résumé : Le défi de cette thèse est de développer un 
système d'aide à la décision spatiale pour localiser et 
allouer des zones d'espace marin à de multiples 
acteurs, malgré des objectifs et des contraintes 
initiaux potentiellement conflictuels. 
  Pour répondre à cette question, dans cette thèse, 
nous nous concentrons sur trois exigences différentes 
comme suit : 1) Modéliser le problème dans un cadre 
Système d'Information Géographique réaliste et 
formuler un modèle mathématique pour le résoudre, 
2) Être capable de proposer des solutions pour des 
problèmes à grande échelle, 3) Développer un 
processus de prise de décision qui aide les multiples 
acteurs à résoudre les conflits possibles en parvenant 
à un compromis.  
  En fonction de ces objectifs, cette thèse propose un  
Système Multi-Objectifs Multi-Agents qui simule les 
processus décisionnels multi-niveaux de la  gestion 

du zonage spatial des usages marins avec trois 
contributions principales : 1) Programmation 
Linéaire Multi-Objectifs Entiers, 2) Algorithmes 
Évolutionnaires Multi-Objectifs, 3) Processus de 
décision coopératif avec des Systèmes Multi-Agents 
et des méthodes heuristiques. 
  Cette thèse propose une approche formelle et 
exécutable pour traiter le problème de gestion du 
zonage de l'espace avec des objectifs et des acteurs 
multiples. En cas de conflit, différents scénarios de 
coopération sont comparés et classés. Les résultats 
expérimentaux sur des jeux de données 
synthétiques mettent en évidence le fait que de bons 
compromis peuvent être atteints lorsque les acteurs 
acceptent de coopérer. Les travaux proposés 
ouvrent la voie à de futurs outils d'aide à la décision 
en ligne appliqués à des cas réels.  

 

Title :  Zoning Management in Marine Spatial Planning: Multi-Objective Optimization 
and Agent-Based Conflict Resolution 

Keywords :  Multi-Objective Multi-Agent System, Zoning Management, Evolutionary-Based Algorithms, 
Marine Spatial Planning, Conflict Resolution, Decision-Aiding System 

Abstract :  The challenging issue of this thesis is to 
develop a spatial decision support system for 
locating and allocating areas of marine space to 
multiple actors, despite potentially conflicting initial 
objectives and constraints.   
  To address this issue, in this thesis, we focus on 
three different requirements as follows: 1) Modeling 
the problem in a realistic Geographic Information 
System (GIS) framework and formulating a 
mathematical model to solve it, 2) Being able to 
propose solutions for large-scale problems, 3) 
Developing a decision-making process that helps 
multiple actors to resolve possible conflicts by 
reaching a trade-off.  
  According to these objectives, this thesis proposes a 
Multi-Objective Multi-Agent System (MOMAS) that 
simulates the multi-level decision-making processes 

of marine use spatial zoning management with 
three main contributions: 1) Multi-Objective Integer 
Linear Programming (MOILP), 2) Multi-Objective 
Evolutionary Algorithms (MOEAs), 3) Cooperative 
decision-making process with Multi-Agent Systems 
(MAS) and heuristics methods. 
  This thesis proposes a formal and executable 
approach to address the spatial zoning management 
problem with both multiple objectives and actors. In 
the case of conflict, different cooperation scenarios 
are compared and ranked. The experimental results 
on synthetic datasets highlight the fact that good 
tradeoffs can be reached when the actors agree to 
cooperate. The proposed work paves the way for 
future online decision support tools applied to real-
world cases. 
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