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Abstract

The Fifth Generation of mobile communications (5G) networks are expected to meet the ever
increasing number of demands, connected devices and data traffic volume, which pushes network
operators to their limits in terms of flexibility, elasticity and profitability. Software-Defined Network-
ing (SDN), Network Function Virtualization (NFV), Network Slicing, Machine Learning (ML) and
Cloud computing are considered as the key technologies to tackle these problems. However, the design
and the maturity of these technologies raise new problems in terms of traffic engineering and routing
optimization, network infrastructure sharing and distributed SDN control management. In this context,
we address, in this thesis, the following problems: 1) how to reactively and proactively define the flow
rules and where to place them in order to avoid network congestion, 2) how to create an isolated and
efficient End-to-End (E2E) network slice by taking into account NFV and SDN to optimize the traffic
routing and avoid congestion in a specific network slice, 3) how many SDN controllers needed, where
to place them and their corresponding data plane domains in order to improve the performances, and
4) how to leverage intelligence via ML in SDN in order to solve complex problems arising in routing
optimization, Network Slicing and controller placement, while guaranteeing the requested Quality of
Service (QoS).

Our first contribution presents an SDN-based rules placement approach that aims to dynamically:
i) predict traffic congestion by using mainly Neural Network (NN), then ii) learn optimal paths and
reroute traffic to improve network link utilization by deploying a Deep Q-Network (DQN) agent. To
do so, we first formulate the QoS-aware routing problem as an optimization problem whose objective
is to minimize the total network delay and link utilization. Then, we propose, a simple yet efficient
heuristic algorithm to solve it. Numerical results through emulation demonstrate that the proposed
approach can significantly improve the performances in terms of decreasing the link utilization, the
packet loss and the total network delay.

As a second contribution of this thesis, we design and implement an SDN based architecture
for E2E network slicing, which proactively and dynamically adapts radio slices to the transport
network slices. The developed architecture enables the creation, modification and continuity of
radio and transport network slices, while considering their resource and QoS requirements. It
leverages ML for predicting radio slices capacities, improving network resource utilization, and
predicting congestion within each network slice. We also formulate this network slicing problem as
an optimization problem, whose objective is to minimize the total network delay. Finally, we propose
an efficient heuristic algorithm with low time complexity and high estimation accuracy to solve large
problem instances. Experimental results using the OpenAirInterface (OAI) platform, Flexible and
Programmable Platform for Software Defined Radio Access Network (SD-RAN) (FlexRAN), Open
Network Operating System (ONOS) SDN Controllers and OVS demonstrate the efficiency of our
approach in terms of guaranteeing low latency and high network throughput.



In the third and last contribution, we present a new method that dynamically computes the optimal
number of controllers, determines their optimal locations, and at the same time partitions the set
of data plane switches into clusters and assigns them to these controllers. First, we mathematically
formulate the controller placement as an optimization problem, whose objectives are to minimize
the controller response time, that is the delay between the SDN controller and assigned switches,
the control load as well as the intra-cluster delay. Second, we propose a simple yet computationally
efficient heuristic, called Deep Q-Network based Dynamic Clustering and Placement (DDCP), that
leverages the potential of reinforcement and deep learning techniques to solve the aforementioned
optimization problem. Experimental results using ONOS controller show that the proposed approach
can significantly improve the network performances in terms of response time and resource utilization.

Keywords
5G, Software-Defined Networking (SDN), Network Function Virtualization (NFV), Network

Slicing, Quality of Service (QoS), Open Networking Operating System (ONOS), Machine Learning
(ML), Prediction, Neural Networks (NN), Deep Q-Network (DQN), Long Short-Term Memory
(LSTM).
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Résumé de la thèse

1 Introduction

Dans cette thèse, nous nous sommes intéressés à l ’ingénierie du trafic réseau et, à d’optimisation du
routage, du tranchage réseau et de la gestion distribuée des contrôleurs SDN. Dans ce chapitre, nous
résumons le contexte et les contributions de cette thèse. Nous commencerons par le contexte et les
motivations de nos travaux. Puis, nous décrirons les approches qu’on a proposées.

2 Contexte et motivations

Avec le développement de nouvelles technologies telles que la 5G, le trafic réseau devrait croître à
un rythme exponentiel, en raison de la large gamme d’applications, avec des exigences strictes et
hétérogènes, telles que des applications de streaming en temps réel, des communications massives, des
communications haut débit et à faible latence, des applications big data et cloud, des services Over The
Top (OTT). De plus, avec l’avènement de nouvelles technologies telles que NFV [59], les flux de trafic
dans les réseaux de paquets peuvent avoir besoin de passer par différents équipement intermédiaires
matérielles et logicielles telles que Network Address Translators (NAT), proxy, pare-feu. Cela rend le
Traffic Engineering (TE) difficile, en particulier le routage compatible QoS et la télémétrie réseau où
les flux de trafic doivent être attribués à chaque réseau en fonction de Service Level Agreement (SLA)
et les exigences de flux doivent être satisfaites en termes de collecte des statistiques avec précision
depuis le trafic transitant par les réseaux de paquets.

De plus, ces applications necessitent une infrastructure programmable et flexible, qui permet de
controler et d’orchestrer les ressources. Elle permet également le tranchage du réseau physique [19],
qui qui prend en charge l’optimisation des services heterogenes. Ces services sont exécuté dans des
réseaux virtuels (Virtual Network ou Virtual Network (VN)) independant. En particulier, dans les
réseaux mobiles, le tranchage du réseau est généralement applicable à la fois dans les domaines Radio
Access Network (RAN) [1] et dans le cœur du réseau. Les tranches radio partagent des ressources
radio entre divers services (c’est-à-dire IoT, enhanced Mobile Broadband (eMBB)) en réservant une
partie appropriée de la bande passante (certain nombre de RB) à utiliser à partir de cette tranche
pour un intervalle de temps précis. D’autre part, le tranchage du réseau de transport consiste à créer
des Packet Networks (PN) isolés composés de commutateurs physiques ou virtuels attribués à un
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tenant par le fournisseur de réseau qui, à son tour, possède les ressources physiques correspondantes.
Cependant, la création d’une tranche de réseau de bout en bout isolée et efficace reste difficile, en
particulier lorsque l’on considère la qualité de service QoS au niveau du routage et la télémétrie
réseau.

SDN [116] est l’une des technologies émergentes clés pour la vision 5G, permettant aux four-
nisseurs de contrôler et d’orchestrer leurs ressources via le tranchage du réseau tout en considérant
à la fois le routage compatible à la QoS et à la télémétrie réseau. SDN permet la dynamicité,
l’automatisation, la flexibilité et la gestion centralisée du réseau sous-jacent contrairement aux réseaux
traditionnels, en séparant le plan de contrôle qui est chargé de prendre les décisions de routage et
le plan de transfert. Cette communication est activée via Application Program Interface (API) tel
que API sur l’interface nord et le protocole OpenFlow sur l’interface sud. Bien que la séparation du
contrôle et des plans de données apporte des avantages techniques, elle peut entraîner plusieurs défis
tels que le nombre de contrôleurs nécessaires, leurs problèmes de placement correspondants, quels
dispositifs de plan de données doivent être contrôlés et par quel contrôleur.

Bien que SDN apporte des avantages permettant la mise en place du tranchage réseau tout en
considérant à la fois le routage compatible à la QoS et à la télémétrie réseau de manière distribuée, il
a toujours besoin de connaissances pour la gestion du réseau. En fait, les éléments actuels du plan de
données sont équipés de capacités de stockage et de calcul améliorées qui permettent une surveillance
efficace en temps réel (c’est-à-dire la télémétrie réseau), en fournissant au plan de contrôle des données
de configuration et d’état du réseau ainsi que des paquets et des flux en temps réel. informations des
granularités. De cette manière, l’intégration de l’intelligence via l’apprentissage automatique ML[167]
au plan de contrôle SDN est cruciale pour résoudre les problèmes complexes qui se posent dans le
tranchage réseau, et l’optimisation du routage tout en garantissant la QoS demandée. Cependant,
en raison du nombre élevé de flux de trafic provenant de la large gamme d’applications, la taille de
l’espace de solution ainsi que la complexité du problème d’optimisation sont augmentées puisque le
plan de contrôle est responsable de la gestion du réseau sous-jacent et de la résolution du problème.
Certains auteurs [45] ont introduit le Plan de Connaissance Knowledge plane (KP) au paradigme
conventionnel SDN, tout en effectuant la telemetrie reseau sur une plate-forme Network Analytics
(Network Analytics (NA)) centralisée. De cette façon, le plan de connaissance Knowledge plane (KP)
exploite les données provenant du NA comme entrée pour alimenter les algorithmes ML, tels que les
techniques Deep Reinforcement Learning (DRL), qui les convertiront en forme de connaissance.

Dans ce contexte, cette thèse aborde le problème de la construction et de l’exécution d’un
framework pour assurer le contrôle prédictif des ressources supportant plusieurs tranches en utilisant
des contrôleurs distribués et coopératifs SDN suivant le paradigme KDN. Tout d’abord, nous nous
concentrons sur TE dans SDN, plus précisément, le routage compatible QoS et la télémétrie réseau.
Ensuite, sur la base de la solution proposée, nous abordons le problème du tranchage de réseau de bout
en bout dans les réseaux mobiles, plus précisément, nous adoptons SDN et KDN comme technologies
habilitantes clés pour concevoir et optimiser la prochaine génération réseaux mobiles 5G. Enfin, nous
nous concentrons sur l’aspect distributif du plan de contrôle dans les réseaux SDN, à cette fin, nous
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abordons le problème du clustering et du placement des éléments des plans de contrôle et de données
SDN.

Dans ce qui suit, nous résumons les différentes contributions dans la Section 3. Ensuite, nous
présentons l’organisation de cette thèse dans la Section 4.

3 Contributions

Nous avons abordé dans cette thèse, les problèmes suivants : 1) comment définir de manière réactive
et proactive les règles de flux et où les placer afin de supprimer la congestion du réseau, 2) comment
créer des tranches réseaux de bout en bout isolés et efficaces en prenant en compte NFV et SDN pour
optimiser le routage du trafic et éviter la congestion dans une tranche de réseau spécifique, 3) combien
de contrôleurs SDN nécessaires, où les placer et leurs domaines de plan de données correspondants
afin d’améliorer les performances, et 4) comment tirer parti de l’intelligence via ML dans SDN afin de
résoudre des problèmes complexes survenant dans l’optimisation du routage, le découpage réseau et
le placement des contrôleurs, tout en garantissant la qualité de service QoS demandée. Ces problèmes
sont traités en trois contributions comme suit:

3.1 Optimisation du routage réseau basée sur l’apprentissage profond par renforce-
ment (Deep Q-Network) et la prédiction du trafic

Comme première contribution, nous proposons une solution pour ingénierie du trafic réseau appelé :
Optimisation du routage réseau basée sur l’apprentissage profond par renforcement (Deep Q-Network)
et la prédiction du trafic DTPRO, dans laquel nous optimisons le routage du flux du réseau via DQN et
la prévision du trafic. Plus précisément, notre solution proposée se compose de trois phases principales.
Premièrement, nous optimisons dynamiquement le routage des flux dans le réseau en formant un
agent DQN. Deuxièmement, nous prédisons la congestion et ajustons la fonction de récompense
DQN pour fournir de meilleures configurations de routage. Enfin, nous acheminons le trafic réseau
sur la base d’un ensemble de poids de liens trouvés par l’agent DQN, et en même temps réacheminons
ceux existants loin des chemins encombrés en résolvant un problème d’optimisation. Le problème
est formulé comme un Programme Linéaire LP, et représente le problème de placement des règles
de flux, où l’objectif est de minimiser le retard total du réseau, la perte de paquets et l’utilisation de
la liaison. De plus, nous proposons une heuristique qui interagit avec l’agent DQN et le module du
prédiction de trafic afin de résoudre le problème formulé et d’optimiser les performances du réseau.
Les résultats expérimentaux montrent que l’approche proposée offre une amélioration prometteuse
par rapport aux algorithmes de routage statique traditionnels.

Cette contribution fait l’objet de deux publications de conférence dans la Global Communications
Conference (GLOBECOM) [34], [35] et une éventuelle publication de revue dans Elsevier Journal of
Network and Computer Applications (JNCA) [33].
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Fig. 1 Framework du tranchage de bout en bout

3.2 Apprentissage en ligne pour le tranchage prédictif de bout en bout du réseau dans
les réseaux 5G

Dans la deuxième contribution, nous abordons la conception et la mise en œuvre d’une nouvelle
architecture basée sur les techniques SDN et ML pour permettre la création, la modification et la
continuité de tranches de réseaux radio et de transport, tout en considérant leurs performances et
exigences en termes de QoS, comme le montre la figure 1. Pour ce faire, notre solution s’appuie
sur l’outil OAI, FlexRAN, ONOS et une version étendue de Open Virtual Switch (OVS) que nous
avons modifié pour lire les paquets GPRS Tunnelling Protocol (GTP). Deuxièmement, la solution
proposée permet un partage efficace des ressources RAN et du réseau de paquets en ajustant de
manière proactive les capacités des tranches radio et en les adaptant aux tranches de réseau de paquets
correspondantes, puis un équilibre de la charge de trafic et de la prévention de la congestion a été
proposé pour améliorer le routage et éviter la congestion au sein de chaque tranche de réseau de
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paquets. À cette fin, nous formulons mathématiquement le problème comme un Linear Program (LP)
qui vise à minimiser la latence totale du réseau et proposons un algorithme de placement de règle
de flux et d’équilibrage de charge et de prédiction de congestion (CLR) pour le résoudre avec une
faible complexité temporelle et haute précision d’estimation. Les résultats expérimentaux montrent la
faisabilité de la solution proposée de gestion de la continuité de découpage E2E en temps réel. Plus
précisément, les résultats montrent la surperformance de l’utilisation des techniques ML en temps
réel sur d’autres schémas en termes d’augmentation du débit et de diminution de la perte de paquets
et de la latence. Cette contribution fait l’objet d’une publication de conférence dans la Conférence
Internationale des Communications (ICC) [36].

3.3 Partitionnement dynamique de commutateurs du réseau définis par logiciel et
placement de contrôleurs à l’aide de l’apprentissage par renforcement profond

Comme troisième contribution, nous proposons une approche pour déterminer, dans un réseau SDN,
le nombre optimal de contrôleurs, leurs emplacements optimaux et le partitionnement optimal des
commutateurs de plan de données tout en considérant le délai de propagation entre les commutateurs
et le contrôleur, l’utilisation des ressources du contrôleur, le délai intra-cluster. À cette fin, nous
formulons d’abord mathématiquement le problème de placement, où le problème d’optimisation
correspondant est de minimiser le délai entre les contrôleurs et les commutateurs, l’utilisation des
ressources de contrôle et le délai intra-cluster. Comme le problème d’optimisation formulé est
un problème Non-deterministic Polynomial-time Hard (NP-Hard), dont la solution optimale est
très difficile à obtenir en général. Pour résoudre le problème formulé, nous proposons d’abord
de modéliser le problème comme un Markov Decision Process (MDP) et de le résoudre par une
approche d’apprentissage par renforcement profond. Ensuite, nous proposons une heuristique efficace
appelée Partitionnement dynamique de commutateurs du réseau définis par logiciel et placement de
contrôleurs à l’aide de l’apprentissage par renforcement profond (DDCP) qui interagit dynamiquement
avec l’agent d’apprentissage par renforcement profond pour obtenir le partitionnement optimal et le
placement des contrôleurs. Les résultats de la simulation montrent l’efficacité de l’utilisation du DQN
pour le regroupement et le placement des contrôleurs et des commutateurs. De plus, le DQN surpasse
la méthode de partitionnement bien connue K-means, en termes de diminution du délai de contrôle,
de la charge de contrôle et de la latence intra-cluster. Notez que cette contribution a été soumise pour
publication dans Computer Networks [32].

4 Organisation de la thèse

Cette thèse est organisée en 7 chapitres. Les chapitres de base sont dérivés de différentes publications
de recherche publiées au cours des travaux de doctorat comme suit:



4 Organisation de la thèse 6

Chapitre 2 fournit un aperçu de l’architecture, des défis et des concepts de 5G, en mettant
davantage l’accent sur le GTP pour le tranchage réseau. Ensuite, il donne un aperçu de l’architecture
SDN et du protocole OpenFlow. Enfin, il met en évidence le paradigme KDN en mettant davantage
l’accent sur les méthodes ML utilisées pour la prédiction et l’optimisation du trafic réseau.

Chapitre 3 présente l’état de l’art, dans lequel nous soulignons et revoyons la problématique de
la thèse, identifions les lacunes et proposons nos contributions.

Chapitre 4 étudie le problème de routage basé sur le paradigme KDN. Plus précisément, nous
présentons notre première contribution sur l’ptimisation du routage réseau basée sur l’apprentissage
profond par renforcement (Deep Q-Network) et la prédiction du trafic (DTPRO).

Chapitre 5 aborde le problème du tranchage de bout en bout du réseau basé sur les méthodes
proposées dans le chapitre 4. Plus précisément, nous présentons notre deuxième contribution sur
l’apprentissage en ligne pour le tranchage prédictif de bout en bout du réseau dans les réseaux 5G.

Chapitre 6 étudie le problème de la détermination du nombre de contrôleurs, leur placement
ainsi que du partitionnement des commutateurs dans le plan de données dans une architecture
SDN distribuée, en présentant notre dernière contribution sur le partitionnement dynamique de
commutateurs du réseau définis par logiciel et placement de contrôleurs à l’aide de l’apprentissage
par renforcement profond.

Chapitre 7 conclut cette thèse et synthétise les objectifs de la thèse et les contributions associées
et présente une perspective pour des travaux futurs.
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1.1 Context and Motivation

WITH the development of new technologies such as 5G, the network traffic is expected to grow
at an exponential rate, due to the wide range of applications with stringent and heterogeneous

requirements, such as real-time streaming applications, massive machine-type communications, ultra-
reliable low-latency, enhanced mobile broadband communications, big data and cloud applications,
OTT services. In addition, with the advent of new technologies like NFV [59], the traffic flows in
packet networks may need to pass through different hardware and software applications middle-boxes
such as NAT, proxies, firewalls. This makes the TE challenging, in particular, the QoS-aware routing
and Network Telemetry where the traffic flows should be assigned to each network based on SLA and
the flows requirements should be satisfied by accurately and timely measuring the traffic volumes
flowing through the packet networks.

Furthermore, these applications require a programmable and a flexible infrastructure, which
allows to control and orchestrate the resources and enables the sharing of the same physical net-
work infrastructure through the concept of Network slicing [19], which enables optimal support
for heterogeneous services, by running them in an independent VN, on a common shared Physical
Network Infrastructure (PNI), such that each VN is allocated a fixed or dynamic portion of the PNI
resources. In particular, in mobile networks, Network slicing is generally applicable in both RAN
[1] referred to as radio slicing and transport and Core Network domains, referred to as transport
network slicing. Radio slices share radio resources among diverse services (i.e., IoT, eMBB) by
reserving an appropriate portion of bandwidth (i.e., a number of RB) to be used from that slice for a
specific time interval. On the other hand, transport network slicing consists in creating isolated PN
composed of physical or virtual switches assigned to a tenant by the network provider that, in turn,
owns the corresponding physical resources. However, creating an isolated and efficient end-to-end
network slice remains challenging, particularly when considering the QoS-aware routing and Network
Telemetry.

SDN [116] is one of the key emerging technologies for the 5G vision, allowing the providers
to control and orchestrate their resources through Network Slicing while considering both the QoS-
aware routing and Network Telemetry. SDN allows dynamicity, automation, flexibility and centralized
management of the underlying network contrary to traditional networks, by separating the control
plane that is responsible for making routing decisions and the forwarding plane, that is only required
to perform packet forwarding according to the received routing strategies from the control plane.
This communication is enabled via API such as API on the northbound interface and the OpenFlow
protocol on the southbound interface. Even the separation of the control and the data planes brings
technical benefits, it can cause several drawbacks such as the number of controllers needed, their
corresponding placement problems and which data plane devices to be controlled by which controller.

Even SDN paves the way to efficiently enable Network Slicing while considering both QoS-
aware routing and Network Telemetry in a distributed fashion, it still needs the knowledge for the
network management. In fact, current data plane elements are equipped with improved storage and
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computing capabilities which enable efficient real time monitoring (i.e., Network Telemetry), by
providing the control plane, with configuration and network state data as well as real-time packet and
flow-granularity information. In this way, incorporating intelligence via ML [167] to the SDN control
plane is crucial to solve complex problems arising in Network Slicing, routing optimization while
guaranteeing the requested QoS. However, due to the high number of traffic flows flowed from the
wide range of applications, the size of the solution space as well as the complexity of the optimization
problem are increased since the control plane is responsible of managing the underlying network and
solving the problem with a global view. KDN [45], is well placed to cope with these challenges, by
introducing the Knowledge plane KP to the conventional SDN paradigm, while reporting the Network
Telemetry to a centralized NA platform. In this way, the KP plane exploits the data coming from the
NA as input to be fed to ML algorithms, such as DRL techniques, which will convert them to the
form of knowledge.

In this context, this thesis addresses the problem of building and running a framework to ensure
the predictive control of resources supporting multiple slices using distributed and cooperative SDN
controllers following the KDN paradigm. First, we focus on TE in SDN, more specifically, QoS-aware
routing and Network telemetry. Then, based on the proposed solution, we address the problem of
E2E Network Slicing in mobile networks, more specifically, we adopt SDN and KDN as key enabling
technologies to design and optimize next generation mobile networks 5G. Finally, we focus on the
distributive aspect of the control plane in SDN networks, to this end, we address the problem of
clustering and placement of SDN control and data planes elements. In what follows, we summarize the
different contributions in Section 1.2. Then, we present the organization of this thesis in Section 1.3.

1.2 Contributions

This thesis contributions can be broadly classified into 3 major categories. The first contribution
addresses the QoS-aware routing in Software Defined Networking. The second contribution extends
the first one to be used in an E2E Network Slicing approach. The last contribution addresses the
optimal controllers and switches placement in a distributed SDN architecture. In what follows, we
present in a nutshell these contributions.

1.2.1 Deep Q-Network and Traffic Prediction based Routing Optimization in Soft-
ware Defined Networking

As a first contribution, we propose a dynamic and efficient TE scheme, called DTPRO for Deep
Q-Network (DQN) and Traffic Prediction based Routing Optimization, in which we optimize the
network flow routing based on DQN and traffic prediction. Specifically, our proposed solution consists
of three main phases. Firstly, we dynamically optimize the flow routing in the network by training a
DQN agent. Secondly, we predict congestion and adjust the DQN reward function to provide better
routing configurations. Finally, we route the network traffic based on a set of link weights found by the
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DQN agent, and at the same time reroute the existing ones away from the congested paths by resolving
an optimization problem. The problem is formulated as a LP, the formulated problem represents the
flow rules placement problem, where the objective is to minimize the total network delay, packet
loss and link utilization. Moreover, we propose an heuristic that interacts with the DQN agent and
the traffic prediction in order to solve the formulated problem and optimize network performances.
Experimental results show that the proposed approach provides a promising enhancement against
traditional static routing algorithms. This contribution is the object of two conference publications in
the Global Communications Conference (GLOBECOM) [34], [35] and a possible journal publication
in Elsevier Journal of Network and Computer Applications (JNCA) [33].

1.2.2 Online based learning for predictive end-to-end network slicing in 5G networks

As a second contribution, we address the design and implementation of a novel architecture based on
SDN and ML techniques for enabling creation, modification and continuity of radio and transport
network slices, while considering their performances and QoS requirements. To do so, our solution
relies on OAI tool, FlexRAN, ONOS and an extended version of OVS that we patched to handle
GTP packets. Second, the proposed solution enables efficient sharing of RAN and Packet Network
resources by proactively adjusting radio slices capacities and adapt them to the corresponding Packet
Network slices, then a balancing of traffic load and congestion prevention have been proposed for
improving routing and avoiding congestion within each Packet Network slice. To this end, we
mathematically formulate the problem as a LP that aims to minimize the total network delay and
propose a Congestion prediction and Load balancing Rule (CLR) placement algorithm to solve it
with low time complexity and high estimation accuracy. Experimental results show the feasibility
of the proposed solution of handling E2E slicing continuity in real-time. Specifically, results show
the outperformance of using ML techniques in real-time on other schemes in terms of increasing
throughput and decreasing packet loss and latency. This contribution is the object of a conference
publication in the International Conference on Communications (ICC) [36].

1.2.3 Dynamic Clustering of Software Defined Network Switches and Controller place-
ment using Deep Reinforcement Learning

As a third contribution, we propose an approach to determine, in an SDN network, the optimal
number of controllers, their optimal placements and the optimal clustering of data plane switches
while considering the propagation delay between the switches and the controller, the controller
resource utilization, the intra-cluster delay and the dynamicity of the network. To this end, we first
mathematically formulate the placement problem, where the corresponding optimization problem
is to minimize the delay between controllers and switches, the control resource utilization and the
intra-cluster delay. As the formulated optimization problem is an NP-Hard problem, the optimal
solution of which is very difficult to obtain in general. To solve the formulated problem, we first
propose to model the problem as a MDP and solve it by a deep reinforcement learning approach. Then,



1.3 Outline 11

we propose an efficient heuristic called Deep Q-Network based Dynamic Clustering and Placement
(DDCP) that dynamically interacts with the Deep Reinforcement Learning agent to get the optimal
clustering and controllers placement. Simulation results, show the efficiency of using the DQN
for controllers and switches clustering and placement. Moreover, the DQN outperforms the well
known clustering method K-means, in terms of decreasing the control delay, the control load and
the intra-cluster latency. Note that this contribution has been submitted for publication in Computer
Networks [32].

1.3 Outline

This thesis is organized in 7 chapters, the core chapters are derived from different research publications
issued during the PhD works as follows:

Chapter 2 first, provides an overview of the 5G architecture, challenges and concepts, with
more focus on the GTP for Network Slicing. Then, it provides an overview of the SDN architecture
and OpenFlow protocol. Finally, it highlights the KDN paradigm with more focus on ML methods
used for network traffic prediction and optimization.

Chapter 3 presents the state of the art, in which we highlight and review the problematic of our
thesis, identify the shortcoming and propose our contributions.

Chapter 4 investigates the QoS-aware routing problem based on the KDN paradigm. More
specifically, we present our first contribution, namely, Deep Q-Network and Traffic Prediction based
Routing Optimization in Software Defined Networking (DTPRO).

Chapter 5 addresses the problem of E2E Network Slicing based on the methods proposed in
Chapter 4. More specifically, we present our second contribution, namely, Online based learning for
predictive E2E network slicing in 5G networks.

Chapter 6 investigates the problem of determining the number of controllers, their placement
as well as the data plane devices clustering in a distributed SDN architecture, by presenting our last
contribution, namely, Dynamic Clustering of Software Defined Network Switches and Controller
placement using Deep Reinforcement Learning.

Chapter 7 concludes this thesis, synthesizes the thesis objectives and the associated contribu-
tions and presents a perspective for future works.
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2.1 Introduction

THE fifth generation networks 5G are expected to meet the rising and future data traffic demand
while accommodating a multitude of services, with stringent and heterogeneous requirements

such as latency, security, data rates, energy consumption, reliability, etc. Mobile networks in particular,
are envisioned to accommodate new services such as Virtual Realities (VR/AR), which have various
requirements. In this way, SDN, NFV, Network Slicing, Cloud Computing (CC) and ML are
considered as the most important key technologies to meet these requirements and achieve the goals
of 5G.

In this context, this chapter provides an overview of the main technologies used to optimize
network performances. We first start by an overview of the 5G requirements and challenges in
Section 2.2 and its detailed architecture in Section 2.3, then, we overview the SDN technology in
Section 2.4, followed by an overview of a specific set of ML techniques in Section 2.5. Finally,
Section 2.6 concludes this chapter.

2.2 5G Requirements and Challenges

The mobile wireless evolution progressed through several generations. The First Generation (1G)
in 1981 and the Second Generation (2G) with analog voice communication, then, there was the
Third Generation (3G) with multimedia support, spread spectrum transmission. After that, the Fourth
Generation of mobile communications (4G) with all Internet Protocol (IP) Switched networks in
2011. The 4G, which refers to Long Term Evolution (LTE), firstly introduced by the Third Generation
Partnership Project (3GPP) release 8, in the EPS project [139]. Its objective is to enable a flat IP-based
network as well as inter-operability between different sorts of networks by standardizing network
elements and interfaces. The next generation mobile networks referred to as the 5G.

The 5G networks are expected to meet a wide range of use-cases scenarios with heterogeneous
QoS requirements, which, according ITU-R [138], are classified as: i) eMBB which provides a huge
bandwidth for mobile devices on demand, ii) massive Machine Type communications (mMTC) to
connect a very large number of IoT devices, and iii) ultra Reliable Low Latency communications
(uRLLC) which supports low-latency transmissions with high reliability.

Therefore, these requirements bring new challenges due to the additional management and control
complexity increases in SDN and NFV architectures, the share of computing resources among multiple
tenants and the need for automation of network operations to reduce the manpower load. In what
follows we describe some challenges.

• Heterogeneous Demands: the functionalities and architecture of future 5G networks are
expected to be agile in order to provide services per requirement and accommodate the use
cases, in terms of throughput and mobility in eMBB, transmission latency and reliability in
uRLLC, and energy efficiency in mMTC.
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• Network Slicing and Agility: Network slicing aims to assure service customization, isolation
and multi-tenancy support on a common physical network infrastructure by enabling logical
and physical separation of network resources [16], encouraging thus vertical players to use
operators’ networks rather than deploying their own infrastructure. On the other hand, the
network agility aims to assure the flexibility to rapidly change infrastructure’s capability.

• Big data: the ever growing heterogeneous traffic, mobile network subscribers and online
services have lead to a huge flood of data which can be defined as volume, variety and velocity
[131].

• Cloudification and resource orchestration: which can be achieved by enabling deployments
on private, public or hybrid cloud as well as adopting service orchestration and processes
automation.

Figure 2.1 shows the 5G ecosystem, which is characterized by a set of use cases in the top of
the triangle. To achieve these use cases, a multitude of services, with stringent and heterogeneous
requirements should be accommodated. In this way, a set of enablers should be considered to realize
5G concepts such as Network Slicing. In the following sections, we detail some concepts and enablers
used in our work.

Fig. 2.1 5G Ecosystem (based on [98])

2.3 Detailed 5G E2E Architecture

3GPP has specified 8 possible configurations or Options for connecting to an Evolved Packet Core
(EPC) or new 5G core network [84]. The architectural options identified encompass all potential
deployment scenarios starting from the legacy LTE to full-fledged 5G. These options are grouped
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into two categories, the first one called Non Stand-Alone (NSA) in which the options using dual
Connectivity are grouped together where 5G radio access technology (New Radio (NR)) and LTE are
used simultaneously to provide radio access, the second one called Standalone (SA) characterized by
using only the new radio access technology. Moreover, the Option 3 allows the re-use of existing EPC
Core functionality, which is expected to be initially used to deploy 5G. In this way, we extending an
existing 4G LTE platform by opting for the Option 3 to deploy an E2E 5G architecture, as depicted in
figure 2.2.

Figure 2.2 shows the detailed 5G E2E architecture [98], which consists of the RAN, and the Core
Network (CN) EPC. By the mean of network elements and standardized interfaces between them
in both the core and access network, it will be possible to provide the user with IP connectivity to a
Packet Data Network (PDN) for running services such as IP Multimedia Subsystem (IMS) services,
accessing the Internet as well as to allow multi-vendor interoperability. The core network as well as
the access network parts are described bellow.

Fig. 2.2 Detailed 5G E2E Architecture (option 3) (based on [98])

2.3.1 The core network EPC

As shown in figure 2.2, the EPC represents the fundamental part of the entire system, since it lays
between the access network and the external PDN services that a User User Equipment (UE) wants to
communicate with. Its main responsibilities include the overall control of the UE and establishment
of the bearers. The EPC consists of multiple nodes, where the main ones being Mobility Management
Entity (MME), Home Subscriber Server (HSS), Serving Gateway (SGW) and Packet Data Network
Gateway (PGW). Besides of these main nodes, the EPC also may include other elements such as the
Policy and Charging Rules Function (PCRF). These nodes are described as follows [98]:

• MME: it is the control node located at the edge of the core network EPC, its main functions
include: 1) processing the signaling between the UE and the core network using Non Access
Stratum (NAS) protocol, 2) user authentication and roaming with HSS using S6a interface, 3)
establishment, maintenance and release of the bearers, 4) establishment of the connection and
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security between the network and UE, and 5) mobility management (tracking and the paging of
UE).

• HSS: is a database that contains permanent subscription details, it provides user authentication
information and profiles to the corresponding MME through the S6a interface. Furthermore, it
helps service providers, managing in real time their subscribers, by holding information such as
the PDN address (i.e., in the form of an Access Point Name (APN)), calls and IP session Setup
and the identity of the MME corresponding to the current attached or registered subscribers.

• SGW: is the point of interconnection between the access network and the EPC using the
S1-U interface, its main functions include: 1) dealing with the user plane, by transporting the
incoming and outgoing IP data traffic between the UE and the external networks, 2) serving as
a mobility anchor point for the UE when it moves from one Next Generation Node-B (gNB) to
another, 3) buffering the data destined to the UE in the downlink, when a UE is in idle mode,
and 4) serving as the mobility anchor point for inter-3GPP handover such as inter-working with
General Packet Radio Service (GPRS).

• PGW: is the point of interconnection between the EPC and the external networks using the
SGi interface. The main functions supported by PGW include: 1) IP address allocation for
the UE, 2) enabling the forwarding of user data traffic to and from external PDN networks, 3)
performing policy enforcement, packet filtering and charging according to the rules provided
by the PCRF, and 4) serving as the mobility anchor point for handover between 3GPP and
non-3GPP technologies.

• PCRF: is the policy management entity designed to specify the service policy and the QoS
information, enabling thus more flexibility in engineering and policy control of resources and
guaranteeing subscribers services according to their contracts. Its main functions include: 1)
Enabling service-based policy control, 2) Providing charging information and rating parameters,
and 3) Deciding what policies to install in the network based on subscription and network
parameters.

2.3.2 The access network

The access network deployment refers to Cloud Radio Access Network (C-RAN)[41], in which, the
traditional base station (BS) functionality is splitted into centralized BaseBand Unit (BBU) and the
Remote Radio Head (RRH). The BBU can be implemented on commodity hardware and executed on
a virtualized environment, that makes it possible to be pooled in a cloud data center. On the other
hand, the RRHs are present at cell sites. Due to scalability and performance requirements, Next
Generation Fronthaul Interface (NGFI) redefined the baseband processing split between BBU and
RRH, where BBU is redefined as Radio Cloud Center (RCC), and RRH as Remote Radio Unit (RRU).
Furthermore, to facilitate RAN virtualization and reduce fronthaul capacity and latency requirements,
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the BBU is still splitted into Digital Unit (DU) and Central Unit (CU). Note that, in our work, we
make use of the Co-located CU and DU forming together one block [11].

Moreover, the C-RAN is deployed following an SD-RAN architecture, in which the RAN control
and data planes are separated using a Radio Controller. In this thesis, we make use of the SD-RAN
controller FlexRAN [63] which is the first open-source flexible and programmable SD-RAN platform,
which is implemented as an extension to a modified version of the OAI LTE platform [63]. It is
designed for the mobile RAN and implemented in an SDN-based fashion by incorporating an API to
separate control and data planes, where its objective is to make real-time RAN control applications
feasible. In the context of RAN platforms. FlexRAN provides a great degree of flexibility to easily
and dynamically coordinate among base stations, while adapts control over time and easier evolution
to the 5G networks following SDN/NFV principles.

Fig. 2.3 SD-RAN FlexRAN Architecture (based on [63])

Figure 2.3 shows the overall architecture of the SD-RAN FlexRAN controller, which is made up
of three main components: Control Plane, Data Plane and Management Plane. The Control Plane
consists of a Master Controller connected with a set FlexRAN agents located in the gNBs through
the FlexRAN Protocols. Based on these protocols, the agent sends the gNB statistics, configurations
and events to the master and the latter issues control commands that define the operation of the
agents. Moreover, as the master controller and the FlexRAN agents located in separated hosts, the
communication channel would be a high-bandwidth and low-latency channel (e.g., optical fiber).

Similar to the SDN southbound interface (i.e., OpenFlow protocol), the control and data planes
are separated based on the FlexRAN Agent API. On the hand, contrary to SDN controllers logic
found in the wired domain, the data plane is charged to apply the Medium Access (MAC) scheduling
decision dictated by the master controller, such as the fraction of RBs that the corresponding user
connection type is allowed to use.

The management plane lies on top of the master controller and communicates with it through the
northbound API, which incorporates the programmability aspect of the FlexRAN design. Its RAN
control and management applications leverages the statistics and events gathered from the gNBs in
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the FlexRAN control plane to modify the state of the network infrastructure (gNBs and UEs) such as
monitoring applications, modifying the state of the RAN (e.g., MAC scheduler).

In this context, the access network consists of a set of gNB interconnected by the means of the
X2 interface and connected to the SGW and MME, in the core network EPC, by the means of S1-U
and S1-MME interfaces respectively, as shown in figure 2.2. The C-RAN is responsible of radio
resource management, its main functions include: 1) radio admission control, 2) gNB measurement,
configuration and provision, 3) scheduling and dynamic allocation of resources to UEs, 4) connection
mobility control, 5) radio bearer control, and 6) inter cell interference coordination.

2.3.3 EPS Bearer

Figure 2.4 shows the EPS bearer service architecture [58]. The E2E IP connection between a UE and
a PDN corresponds to EPS session, which is identified by the combination of PDN identifier (PDN
ID or APN) and the corresponding UE IP address. The EPS session IP traffic can be classified into
different classes and transported as an aggregated data flows through different logical associations
between the UE and the PGW, which refers to as EPS Bearers. The EPS Bearer is a pipe that
transports IP packets that have a common QoS, over the LTE network, which is allocated by the MME
and corresponds to a specific QoS Class Identifier (QCI), where the QCI is used as a reference to a
specific packet forwarding behavior (e.g. packet loss rate, packet delay budget). There are two types
of bearers:

• Default Bearer: corresponds to the bearer established at the UE initial attache of the UE to the
network and the connection to the corresponding PDN. A default Bearer provides the users
with always-on IP connectivity that remains established throughout the lifetime of the EPS
session or PDN connection.

• Dedicated Bearer: is established and associated with a default bearer of the same EPS connec-
tion and dedicated for applications based on QoS parameter. The user traffic flows are mapped
to the corresponding Bearer by the means of the PCRF node.

As shown in figure 2.4, an EPS bearer is composed of three segments:

• Data Radio Bearer (DRB): established between the gNB and the UE over the radio interface
and handled by the gNB such as association of DRB IDs to users.

• S1 Bearer: established between the gNB and the SGW over the S1-U interface and transports
user data based on the GTP.

• S5/S8 Bearer: established between the SGW and the PGW over the S5/S8 interface and
transports user data based on the GTP protocol.
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Fig. 2.4 EPS Bearer Service Architecture (based on [58])

2.3.4 GPRS Tunneling Protocol (GTP)

GTP is a tunneling protocol defined by the 3GPP used to carry encapsulated user packets and signalling
messages in the LTE network [57]. Its main idea is to encapsulate a packet (user or signaling packet)
by adding an outer IP header and a GTP header to the original packet. This mechanism of tunneling
helps, in one side, the user to keep its assigned IP address when it moves from one place to another,
and on the other side, to see the PGW as the first IP hop once the latter decapsulates the GTP packet
and sends it to the corresponding PDN. GTP consists of the following types:

• GTP Control Plane (GTP-C): used to carry signalling messages in the interfaces S11 between
MME and SGW, and S5 between SGW and PGW, such as activating deactivating subscribers
sessions, mobility and QoS management.

• GTP User Plane (GTP-U): used to carry encapsulated user data packets in the interfaces S1
between gNB and SGW, and S5 between SGW and PGW.

• GTP Prime (GTP’): used to carry charging data.

As the GTP-U transports the user data packets, it corresponds to the implementation of the S1 and
S5/S8 Bearers, where each Bearer consists of two UpLink and DownLink tunnels while each tunnel
is identified by a unique 32 bit Tunnel Endpoint Identifier (TEID), witch referred to as Uplink (UL)
TEID and Downlink (DL) TEID respectively and used to identify the corresponding Bearer, as shown
in figure 2.4.

Once the UE attached to the network, its data is transported separately through the UpLink
towards the PDN and the DownLink from the PDN. To this end, the PGW, SGW and gNB create
respectively UL S5/S8 TEID, UL S1 TEID and DRB ID and send them respectively to SGW, gNB
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and UE to transport the user packet in the UpLink direction. In the same way, the gNB and SGW
create respectively DL S5/S8 TEID and DL S1 TEID and send them respectively to SGW and PGW
to transport the user packet in the DownLink direction.

2.4 Software Defined Networking (SDN)

2.4.1 History of Programmable Networks

The decoupling of the control and data planes, and the programmability on the control plane have
been proposed as a way to facilitate network evolution. In particular, SDN is an emerging networking
architecture, that decouples the network intelligence from the network devices, enabling thus more
flexibility and simplicity to design, operate, configure and monitor, by allowing software developers
to deploy services and features in the network by programming on controllers.

Decoupling of control and data planes, and programmable networks were taken long ago
[60][90][115]. In the mid 1990s, Active Networks [149] [148] was the early approaches proposed for
enabling the programmability of network infrastructure for customized services.

DCAN [102], Open Signaling [39], ForCES [162], 4D Project [67], NCP [140], Tempest [103],
RCP [38] are the earliest initiatives on separating data and control planes. In the mid 1990s, the DCAN
project was proposed to design and develop the necessary infrastructure to improve the management
of ATM networks. The focus was the separation of the control and management functions from the
devices (i.e., the ATM switches) to be delegated to external entities. In 2003, the Internet Engineering
Task Force (IETF) released the Forwarding and Control Element Separation (ForCES) framework,
which makes use of an API to separate the control and packet forwarding elements. In 2004, the 4D
Project as well supports the idea of centralized management by decoupling the routing decision logic
from the protocols dedicated for the interaction between network devices. The Path Computation
Element (PCE) architecture [13] was presented in 2006 to improve management in multi-protocol
label switching (MPLS) and Generalized MPLS networks. In 2007, the Ethane (i.e., SANE) project
was proposed [40], which represents the immediate predecessor of the OpenFlow protocol [101],
where a centralized controller is responsible for routing decisions in top of simple flow-based Ethernet
switches.

2.4.2 SDN Benefits and Challenges

With the separation of the control and data planes, the control is logically centralized in a dedicated
entity controller while network switches become simple forwarding devices. This brings potential
benefits of enhanced configuration, improved performance, and encouraged innovation in network
architecture and operations [157].

• enhanced configuration with the heterogeneity of current networks design adding new network
elements is challenging and involves a certain level of manual processing. SDN is well placed to
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cope with such challenges by automatically configure divers network devices from a centralized
controller.

• improved performance in the traditional networks design, the coexistence of heterogeneous
technologies, and the lack of global view makes it difficult to improve the infrastructure use as
well as the QoS. SDN will help to remedy with such a situation, by having a global view with
more accuracy over all the data plane devices.

• encouraged innovation the programmability in SDN encourages innovation by designing and
implementing new ideas in the separated controller without any need to modify the data plane
devices.

Despite the benefits of SDN, the technology is still maturing and introduces new challenges
[90][157], including standardization and interoperability, scalability and resilience as the most urgent
ones:

• standardization and interoperability SDN is still suffering from the immaturity or the lacking
of standardization such as the missing of a standard north-bound API or a high level program-
ming language for SDN application development, service on boarding and orchestration as
well as network control are not yet fully standardized. Moreover, it suffers from the lack of
interoperability with traditional networks.

• scalability in SDN networks, the control plane needs to be able to process millions of flows
per second without compromising the quality of its service. However, this could increase the
network load which could be a potential bottleneck. Furthermore, an extra latency can be
introduced by the flow setup process, where the flow tables of devices must be configured in
real time.

• resilience relocating the SDN control plane functionality may compromise the communications
between the control and data planes and result in the loss of availability, in particular the critical
control plane functions such as those related to link failure detection, congestion and traffic
load balancing.

2.4.3 SDN Architecture

As suggested by ONF [116] in Figure 2.5, a logical view of the SDN architecture can be depicted as a
composition of different layers, namely an infrastructure layer, a control layer, and an application
layer, each layer has its own specific functions.

Instead of enforcing policies, understanding and processing thousands of protocol standards, SDN
greatly reduces the network devices in the infrastructure layer (e.g. switches, routers, etc.), to dumb
devices, that only perform the forwarding action. On the other hand, the control logic and network
intelligence are moved to the controllers or Network Operating System (NOS) in the control layer,
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Fig. 2.5 Detailed SDN Architecture (based on [90])

specifying through the southbound interface a set of functions to be performed by the data plane. The
control layer provides the application layer access to services and applications through the northbound
interface. In what follows, we introduce each layer.

Infrastructure layer

The infrastructure layer consists of a set of simple forwarding switching devices (switches, routers,
middlebox appliances, etc.), with no embedded intelligence to take decisions and responsible only for
processing packets as well as gathering and reporting network status based on pr-installed forwarding
rules. In comparison with conventional networking equipments, the network intelligence is logically
centralized to an external entity, namely, SDN controller or NOS.

The SDN switching device stores the received rules from the controller, including packet forward-
ing rules, in its local memory such as Static Random Access Memory (SRAM), Ternary Content
Addressable Memory (TCAM) [79]. Then, based on these rules, it performs the packet forwarding.
Due to the limited capacity of the onboard memory (i.e., TCAM, SRAM) in the switching devices,
SDN helps introducing several approaches such as route aggregation or summarization and proper
cache replacement policy. Moreover, unlike the legacy networks where the packet forwarding is
generally based on IP or MAC addresses, the SDN packet forwarding is extended to additional
parameters such as Virtual Local Area Network (VLAN) tag, TCP or UDP port, tunnel identifier and
ingress switch port to forward a packet.



2.4 Software Defined Networking (SDN) 23

Software switches as well are now used extensively in data centers and virtualized network
infrastructures. In this context, several solutions have been implemented to support SDN architecture
and OpenFlow protocol, such as Xorplus [14], OVS [120], [88], ofsoftswitch13 [54], OpenFlow
Reference [123], Switch Light [28] and Pantou [160].

Southbound interfaces or APIs are the crucial instrument connecting the control and data planes,
and plays in important role in introducing and accepting any new technology based on SDN architec-
ture. In SDN, one of the most accepted standard for the southbound interface is OpenFlow, due to
its flexibility in the network usage and operation as well as the ability to operate switches (software,
hardware) and routers from divers vendors. Several APIs for southbound interfaces have also been
proposed in SDN, such as OVS Database (OVSDB) [23], ForCES [162], OpenState [27], OpFlex
[99], hardware abstraction layer (HAL) [125], programmable abstraction of data path (PAD) [25],
revised open-flow library (ROFL) [144] and POF [142].

In our work, we opted for OVS, which is an SDN based multi-layer open source virtual switch
targeted at virtualized environments, introduced the first time by Pfaff et al. in [127]. It was designed
to enable network automation through programmability, while supporting standard management
interfaces and protocols such as OpenFlow. OVS is included in the Linux kernel since version 3.3 and
licensed under the open source Apache 2 license [121].

Control layer

The control layer bridges the infrastructure layer and the application layer and consists of a set of NOS
or controllers, representing the core component in the SDN architecture, where the intelligence and
complexity reside. With NOSs in SDN, there is no need to care about the low-level details for each
device separately and networking functionalities such as network topology information, network state,
device discovery, and network distribution, will be moved to the NOS component. In the following
paragraphs, we describe the main components corresponding to the control layer: the northbound
interface and the core controller.

Figure 2.5 depicts the common elements extracted from existing control platforms such as ONOS
[26], NOX [68], ForCES [162] and OpenDaylight [122]. In general NOS platforms, the control
layer translates SDN application requirements in the application layer into packet forwarding rules
and policies and provides them with a synchronized global view, through the northbound interface,
such as high-level programming languages and Representational State Transfer (REST) APIs [135].
The high-level languages for SDN controllers are classified in two categories [157]. The first one is
characterized by special features designed to improve the network behavior control for SDN, such
as FML [73], Frenetic [62], Nettle [153]. The second category utilizes the Software Development
Kit (SDK) provided with libraries for desirable networking features, in existing mature languages
such as Python, C++ and Java.

The SDN controller or NOS consists of a set of services such as Packet Forwarding, Notification
Manager, Statistics Manager, Device Manager, Topology Manager and Security Mechanisms, as
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illustrated in Figure 2.5. The logical operating mechanism of these services can be described based on
the upward and downward interacting with the application and infrastructure layers respectively. In
the downward direction, the controller translates the applications requirements into networking rules
and configurations in the corresponding services, such as the transformation of routing application
policies into packet forwarding rules in the Packet Forwarding service. The upward direction is
related to collecting statistics, global network status from the infrastructure for network monitoring
and decision making.

In our work, we opted for ONOS as SDN controller. In fact, ONOS is the leading open source
SDN controller that is firstly released by Open Networking Lab [117], [119]. ONOS is written
completely based on Java as Open Services Gateway initiative (OSGi) bundles and modules that can
be installed and started dynamically in a single Java Virtual Machine (JVM), which allows ONOS to
be running in different Operating System (OS) platforms.

Application layer

As depicted in figure 2.5, the application layer consists of applications in a wide variety of networked
environments and interacts with the services in the control layer via the northbound interface (i.e., the
API). By having a global view with instantaneous status on the underlying physical networks as well
as the programmability using the high programming languages, these applications can dynamically
change the network behavior. SDN applications can be grouped [157], [90], [115] in several areas
such as Routing and TE, Green Networking, Data Center Networking, Network Virtualization and
Network Security.

In particular, TE refers to the process of improving the QoS and user experience, network
performances, by efficient use of resources, analyzing network traffic, optimizing traffic routing and
load balancing. In SDN the centralized view, monitoring capabilities as well as the programmability
features pave the way for new TE techniques and better traffic control and management. On the other
hand, Green Networking refers to reduction of unnecessary energy consumption in the networking
domain, where data-centers and networking infrastructure rely on under-utilized energy-consuming
powerful devices. SDN has gained attention as a suitable solution to address the QoS, congestion,
energy consumption, flexibility and resiliency issues in data centers networks because of its centralized
control and programmability features.

2.4.4 OpenFlow

The OpenFlow protocol is the driving force behind the wide-spread adoption of SDN and its imple-
mentation in both hardware and software [116]. OpenFlow is the first standard interface designed
specifically for SDN, which structures and standardizes communication between the control and data
planes and allows applications to dynamically program the flow table of different data plane devices.
It was developed, firstly, as an academic project at the Standford University in 2008 [101]. Then,
in 2011, the standardization of OpenFlow specification was moved to ONF [117]. The OpenFlow
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specification has evolved through several releases [118], each with new features. The first release of
OpenFlow, version 1.0, was published on December 31, 2009, and the last version 1.5 which was
released on March 2015.

In the OpenFlow architecture, illustrated in figure 2.6 [118], the OpenFlow switch, communicates
with the external controller through one or more OpenFlow channels and forwards packets based on a
pipeline of flow tables where each entry of a flow table contains a set of flow entries: 1) a matching
rule 2) instructions to apply to matching packets, 3) counters that keep statistics of particular matching
packets/flow, such as number of received packets, number of bytes and duration of the flow, 4) priority
that determines the flow rule to be selected when a packet is matched against several flow entries in the
flow table, where higher priority rules are installed above lower priority ones, 5) timeouts corresponds
to the maximum time (i.e., hard time-out) or idle time before flow entry is removed from the flow
table, 6) cookie enables OpenFlow to filter flows selected for flow modification and deletion requests,
and 7) flags used to change the management of flow entries in the flow table.

Fig. 2.6 OpenFlow Architecture (based on [118])

Upon the arrival of new packets at an OpenFlow switch, the lookup process starts in the first flow
table and may continue to additional flow tables of the pipeline and ends either with a match in which
the switch applies the appropriate set of instructions, or actions, associated with the matched flow
entry or with a miss if no match is found in the flow tables pipeline, where the action will depend on
the instructions defined by the table-miss flow entry. Instructions in each flow entry consists of a set
of actions that determine packet forwarding, packet modification and group table processing as well
as describe the pipeline processing when a packet needs to be sent to subsequent tables for further
processing. One of the actions is to send packets to Group Tables for flooding, and more complex
forwarding such as multi-path, fast reroute, and link aggregation.
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OpenFlow messages

The controller exchanges control messages with OpenFlow switch through the OpenFlow channel that
is usually encrypted by using Transport Layer Security (TLS). These messages can be categorised in
three types, each with their own setup of sub-types [118]: controller-to-switch, asynchronous, and
symmetric. The message types used by OpenFlow are described as follows:

• controller-to-switch messages used by the controller to directly manage and inspect the
OpenFlow switch.

• asynchronous messages are initiated by the switch without a solicitation from the controller,
to denote network events such as packet arrival or switch state change.

• symmetric messages are triggered either by the switch or the controller and sent without
solicitation.

2.4.5 Distributed SDN Architecture

In SDN, the control plan can be logically centralized, by having a global view for the entire network,
while physically centralized in a single controller or distributed in multiple controller nodes. Even the
physically centralized control plane gives more simplicity for the network design, studies on several
centralized controllers such as NOX [68], Floodlight [61] and Beacon [56] have revealed several
issues in terms of:

• robustness and vulnerability: using a single controller to manage all forwarding devices of the
network can be a single point of failure and bottlenecks for the whole network, where a failure
in the controller entails failure in the entire network. Moreover, attacking on control plane
communications such as Denial-of-Service (DoS) attacks, can compromise the controller–device
link and cause failure in the whole network [89].

• scalability and reliability: in large scale networks such as Data Centers and Service Provider
Networks, the control of thousands of switching elements with millions of flows and events
to process per second can be challenging which may involve high latencies and can generate
overhead and bandwidth degradation [21].

Contrary to a physically centralized controller, maintaining the logical centralized control plan over
a physically distributed NOS or controllers, is well placed to cope with the challenges of centralized
SDN architectures mentioned above (i.e., scalability, reliability, robustness and vulnerability) from
small to large-scale networks, as demonstrated in several distributed controllers such as Onix [87],
ONOS [26], Hyperflow [150], Kandoo [71]. As in the distributed design, the controllers can be spread
across the network, dealing thus with the single point of failure issue by assigning devices of the
failed controller to a neighbor controller. Moreover, the scalability and resilience can be improved
while reducing latency since each controller node will manage a specific network segment.
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Fig. 2.7 Distributed SDN Architectures (based on [78])

In the physically distributed design of SDN controllers, two main topology-related architectures
can be identified [78]: i) a flat SDN controller design, in which the network is partitioned horizontally
into different controller domains, where each domain is handled by a single controller in charge of
managing a disjoint subset of SDN-enabled switches, as depicted in figure 2.7 (a). ONOS [26], Onix
[87] and Hyperflow [150] are examples of distributed SDN controllers supporting the flat design, and
ii) a hierarchical SDN controller design, in which, the network is partitioned vertically into different
controller domains, based on the locality requirements, where applications with frequent events may
be handled by local controllers close to the switch, as shown in figure 2.7 (b). Kandoo [71] is an
example of distributed SDN controllers supporting a hierarchical design.

2.5 Machine Learning Techniques Applied to Software Defined Net-
working (SDN)

2.5.1 Knowledge Defined Networking (KDN)

The concept of KP, was originally introduced by D. Clark et al. in [45]. Which corresponds to a
new network design that embodies cognitive system and ML to self-driving network, by introducing
network automation and providing knowledge to decide on how to operate the network. Contrary to
traditional networks, where this concept can be challenging due to the partial vision of the network as
well as the lack of monitoring data, SDN separates the control and data planes which, in one side,
provides a global view to the KP, and on the other side, paves the way to new network monitoring
techniques (i.e., network telemetry) that dynamically provides the KP with information generated in
the network and collected to an external NA platform. In this way, the combination of a KP to the
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conventional SDN paradigm as well as network telemetry, and NA unveils a new paradigm called
KDN [104].

Figure 2.8 shows the overall architecture of KDN [45],[104], in which two main plains are added
to the SDN architecture: management plane and knowledge plane. These functional planes can be
described as follows:

• management plane: takes as input data collected directly from the data plane such as packet-
level network state using In-band Network Telemetry (INT) [85] or through controller modules
such as network topology and devices configuration, to ensure network operation and perfor-
mance by acting directly on the controller or providing richer global view from these information
to ML modules in the Knowledge plane to take further decisions on how to operate the network.

• knowledge plane: takes advantages of the rich view provided by both the control and man-
agement planes to learns the behavior of the network by processing the NAs collected by the
management plane and converts them to the form of knowledge via ML modules, which enables
automatic decisions or recommends the best actions for human intervention on how to operate
the network.

Fig. 2.8 Knowledge Defined Networking (KDN) Architecture (based on [45][104])
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2.5.2 Machine Learning Paradigms

Usually, two main phases are needed to build a machine learning model, which are mainly: the training
phase and the decision making phase [158]. After data preparation, the data is usually partitioned into
a training set and a test set. In this way, the machine learning algorithm learns the system model from
the training data, in the training phase, and uses the test data to evaluate the learning. In the decision
making phase, new inputs can be presented to the trained model and the output is the estimated value.

ML methods can be classified according to different criteria [167],[31]. Based on the parameters of
the model, the ML methods can be classified in two categories: a linear model which is characterised
by a linear combination of features and nonlinear model which includes Deep Learning and traditional
models. According to task type, the ML can be classified into four categories: classification, clustering,
regression and rule extraction. The classification problems identify the category of new observation.
Whereas, clustering problems group similar observations together. The regression problems estimates
the relationship between a set of new input observations and a set of discrete or continuous observations.
Rule extraction problems determine statistical relationships in data.

Based on the training method, ML algorithms are basically classified into four categories [31]:
the supervised learning, the unsupervised learning, the semi-supervised learning and reinforcement
learning. These categories can be described as follows:

• supervised Learning: creates models based on labeled training datasets, consisting of a set
of training examples (i.e., inputs and known outputs). This learning technique is used to infer
patterns or behaviors in the “known” training datasets. In this way, the trained model can be
used to estimate “unknown” outputs for new inputs. Typically, all regression and classification
algorithms are supervised learning methods. Supervised learning algorithms are widely used in
many SDN applications. We will focus on those used, in our work, for traffic prediction, such
as LR, ARIMA and LSTM.

• unsupervised Learning: Contrary to supervised learning, the unsupervised learning algorithm
is given unlabeled training datasets to create models that can reveal discrimination between
patterns in the sample data and thus cluster them into different groups based on these patterns.
In this approach, the most commonly used method is "clustering" such as the well-known
clustering algorithm K-means [65].

• semi-supervised Learning: is a learning method that combines supervised learning (with only
labeled data) with unsupervised learning (with no labeled data). In many practical problems, it
is difficult to acquire a large amount of labeled data comparing to unlabeled data. Moreover,
the performance of the trained model can be improved while using unlabeled data during the
training. Which lead to the development of semi-supervised learning approach that makes the
best use of both labeled and unlabeled data. In SDN applications, the traffic from unknown
applications can be handled using semi-supervised approach.
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• reinforcement Learning: contrary to the previous approaches, where the learning is based on
examples in the training dataset, reinforcement learning is a technique based on an agent that
interacts with its environment to learn the best action to maximize a numerical reward. The
objective is to train an agent based on a set of state-action pairs and rewards in order to find a
suitable action model or to learn the best policy (i.e. sequence of actions) that would maximize
the cumulative reward of the agent. Typically, DRL can be classified in this category.

2.5.3 Linear Regression (LR)

The LR is a largely statistical prediction method that attempts to model the relationship between an
explanatory independent variables and a dependent variable, by fitting a linear equation to observed
data, where the objective is to predict the outcome of the dependent variable from the explanatory
independent variables [82]. Equation (2.1) shows the LR model:

ŷi = λ 0xi0 +λ 1xi1 +λ 2xi2 + ...+λ pxip + ε i =
p

∑
j=0

λ jxi j + ε i (2.1)

Where x j = [x0 j,x1 j, ...,xn j] are the explanatory variables, ŷ = [ŷ0, ŷ1, ..., ŷn] is the dependent
variable, λ j are the regressors that determine the model and ε i is the error of the model which
expresses the missing information in the model.

One of the most used methods to estimate the regressors (i.e., the λ j parameters) in a LR model
called Ordinary List Squares method (OLS) [155]. Its main idea is to minimize the sum of the
squares of the differences between the predicted variables (i.e., dependent variables (i.e., ŷi) and the
explanatory variables (i.e., x j). Equation (2.1) can be written in a matrix form as follows:

Xλ = Y (2.2)

Where

X =


x1,0 x1,1 · · · x1,p

x2,0 x2,1 · · · x2,p
...

...
. . .

...
xn,0 xn,1 · · · xn,p

 ,λ =


λ 0

λ 1
...

λ p

 ,Y =


y1

y2
...

yn


The regressor or coefficient vector λ can be determined based on the OLS method as shown in

equation (2.3), where XT denotes the matrix transpose of X and the (−1) denotes the matrix inverse.

λ = (XT X)
−1

XT Y (2.3)

If the matrix X consists of only two explanatory variables (xi0,xi1), then, the corresponding model
refers to simple regression model, which can be represented as follows:

ŷi = λ 0 +λ 1xi + ε i (2.4)
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The coefficient vector λ can be determined in equation (2.5), where Cov and Var denote respec-
tively the covariance and the variance.

λ =
∑xiyi− 1

n ∑xi ∑yi

∑x2
i −

1
n(∑xi)2

=
Cov(x,y)
Var(x)

(2.5)

The LR can be interpreted geometrically as finding the line or the plane that best fits the set of
(xi,yi) points, by minimizing the sum of the squared distances between each data point.

2.5.4 Auto-Regressive Integrated Moving Average (ARIMA)

ARIMA is a time series forecasting model, which attempts to identify the behavior of time series, based
on its own past values (i.e., its own lags and the lagged forecast errors), in order to predict or forecast
the future evolution [37]. ARIMA is extending the Auto-Regressive Moving Average (ARMA) model
to support the non-stationarity in the evolution of data.

In the ARIMA model, the Integrated (I) part represents the number of differentiation in order
to make the series stationary. On the other hand, the Auto-Regressive (AR) part represents the
relationship between an evolving variable Yt and its own lagged values in previous time intervals
Yt−1,Yt−2, ...,Yt−p, as shown in equation (2.6), where, Y t− i are the lags of the time series, φ i are the
coefficients of lags that the model estimates and c is the intercept term.

Y t = c+φ 1Y t−1 +φ 2Y t−2 + ...+φ pY t− p (2.6)

The Moving Average (MA) part represents the relationship between an evolving variable Yt and
its lagged forecast errors et ,et−1,et−2, ...,et−q which are the errors of the AR models, as shown in
equation (2.7), where θ j are the coefficients of error terms.

Y t = c+ et +θ 1et−1 +θ 2et−2 + ...+θ qet−q (2.7)

The ARIMA model can be represented by combining AR and MA terms as shown in the following
equation:

Y t = c+
p

∑
i=1

φ iY t− i +
q

∑
j=0

θ jet− j (2.8)

As shown in (2.8), the ARIMA model is characterized by the three parameters (p,d,q) represent-
ing respectively the number of AR terms (i.e., p), the degree of differentiation needed for stationarity
(i.e., d) and the number of lagged forecast errors (i.e., q).

In order to determine the order of differencing d , the Augmented Dickey Fuller (ADF) test can be
used [110]. The idea is to keep difference the time series and increment d while there is no stationarity.
On the other hand, the required number of AR terms p can be determined by inspecting the Partial
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Autocorrelation Function (PACF) plot [37]. Similarly to the PACF plot, the PACF plot can be used to
determine the number of MA terms q.

2.5.5 Long Short Term Memory (LSTM)

LSTM is a variation of Recursive Neural Network (RNN), in which the output from a step is fed as
input of the next step. It was designed to tackle the problem of long-term dependencies of RNN by
preserving the error that can be back-propagated through time and layers [74]. It consists of Memory
blocks containing memory cells that store the temporal state of the network Ct , while controlling the
flow of information by a special multiplicative unit called Operation Gates which are mainly Forget
Gate, Input Gate and Output Gate, as shown in figure 2.9.

Fig. 2.9 LSTM node (based on [74])

The Forget Gate, as shown in equation (2.9), decides what information to remove from the cell
state Ct−1 based on the Sigmoid function (σ ), it looks at: 1) the concatenation of the input X t and the
previous activation output X t−1, 2) the bias b f , and outputs a vector f t of values between 0 and 1,
whose values that are closer to 0 mean forgetting the information that matches in memory Ct−1.

f t = σ(W f .[ht−1,xt ]+b f ) (2.9)

The aim of the Input Gate is to propose new information C̃t (2.10), and to choose which informa-
tion to put in the memory Ct−1, by using it in (2.11).

C̃t = tanh(WC.[ht−1,xt ]+bC) (2.10)

it = σ(W i.[ht−1,xt ]+bi) (2.11)

Based on the Forget and Input Gates, the memory is updated as follows:

Ct = f t ∗Ct−1 + it ∗C̃t (2.12)
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Finally, the Output Gate aims at firstly pushing the memory Ct values in {−1,1} by using tanh
function in (2.14), then it decides which part of the memory Ct will be in the output by using the
Sigmoid function in (2.13).

ot = σ(W o.[ht−1,xt ]+bo) (2.13)

X t +1 = ot ∗ tanh(Ct) (2.14)

Note that the Sigmoid σ and tanh functions are defined as follows :

σ(x) =
1

1+ e−x , tanh(x) =
1− e−2x

1+ e−2x

2.5.6 K-means

The K-means is the most commonly used unsupervised learning algorithm for clustering, which is
widely used in network partition problems [18]. Its objective is to identify a set of unlabeled data into
different clusters. The K-means algorithm takes as input only two parameters: 1) the initial dataset, 2)
the number of clusters k, and outputs the set of k clusters with their corresponding elements.

The K-means algorithm works as follows [65]: 1) select p random points as cluster centers called
Centroids, 2) assign each point to the closest cluster based on the Euclidean norm, 3) recalculate the
centroid for each cluster by computing the average of the assigned points, 4) repeat steps 2 and 3 until
none of the cluster assignments change.

Fig. 2.10 Example of K-means algorithm (based on [158])

Figure 2.10 shows an example of the K-means algorithm. Using the number of clusters k = 2,
initially two points have been chosen randomly as centroids in (a), then in (b) assigning or labeling
each node with closest centroid chosen in (a), thereafter, measuring the Euclidean centroids in (c). In
(d) assignment of the nodes based on the new centroids, and finally the algorithm converges in (e),
where none of the cluster assignments change.

2.5.7 Deep Reinforcement Learning (DRL)

The machine learning technique QL-earning (QL) basically based on an autonomous agent that
interacts with the environment by sequentially taking actions while maximizing cumulative rewards
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[106][107]. As shown in figure 2.11, this can be described as MDP in which the next state si+1

depends on the current state si and the selected action by the agent according to a specific state
transition probability distribution P(si,ai,si+1), which represents the probability of switching to state
si+1 after action ai in state si. In QL, the agent senses the environment by identifying the current state
si and then selects the action ai to execute. The environment subsequently feeds back a reward to
the agent while updating the current state to the new state. Then, the trajectory of states, actions and
rewards constitute a MDP: s0,a0,r0,s1,a1,r1... The objective is to learn the best policy π(ai|si) while
maximizing the cumulative rewards of the current and next states:

R =
n

∑
i=0

ϕ
iri+1 (2.15)

Where ϕ ∈ [0,1] is a factor to discount future rewards. Given a policy π , the expectation of
accumulated rewards from action ai in a state si can be estimated by the the Q-value function
Qπ(si,ai) = E[R|si,ai,π]. Thereafter, the best policy corresponds to the highest Q-value in each
state: Q∗(si,ai) = maxπQπ(si,ai), this function can be defined recursively according to the Bellman
equation as follows:

Fig. 2.11 Deep Q-Network (DQN) Model (based on [106][107])

Qπ(si,ai) = ri +ϕ.Q∗(si+1,ai+1) (2.16)

The policy π can be improved by dynamically updating the Qπ(si,ai) as follows:
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Qπ(si,ai)← Qπ(si,ai)+η .∆ (2.17)

∆ = ri +ϕ.maxai+1Qπ(si+1,ai+1)−Qπ(si,ai) (2.18)

Where η ∈ [0,1] is the learning rate, and the temporal difference (T D) error ∆ corresponds to
the correction for the Q-value estimation. The QL technique stores and updates the Q-values in
look-up tables, which makes it slow to reach the best policy when exploring the entire table when
the number of possible states becomes very large, which affects significantly the performance of
Q-learning. To cope with this challenge the DQN makes use of NN to approximate the estimation
of the Q-value function. The DQN networks take as input the state vector and the output is a vector
of action Q-values, and its corresponding Loss function is constructed based on the mean square
deviation defined as follows :

L(θ i) = (TargetQ−Q(si,ai,θ i))
2 (2.19)

TargetQ = ri +ϕ.maxai+1Q(si+1,ai+1,θ i) (2.20)

Where θ i is the network parameter at iteration i. The convergence of the Loss function L(θ i) is
not stable when using only one NN. To improve the convergence stability, DQN adopts the method
called Experience Replay, which corresponds to creating two NNs, that have the same architecture,
with parameters θ and θ

′
. The first one is used to retrieve Q-values while the second one includes all

updates in the training. After C steps the target network parameters θ ′ are updated. This mechanism
is illustrated in Figure 2.11.

2.6 Conclusion

This chapter overviewed the main technologies used in this thesis namely 5G mobile networks, SDN
and ML. Firstly, we gave an overview of the 5G requirements and challenges and the 5G detailed
architecture used in this work. Thereafter, we overviewed the main enabler SDN, the OpenFlow
protocol and distributed SDN architecture. Finally, we gave a brief overview of the main ML learning
techniques used in this thesis for traffic prediction and optimisation namely LR, ARIMA, LSTM,
K-means and DRL.

Traffic prediction and optimisation, SDN controller placement and Network Slicing sill involve a
number of challenges that we aim to address in this thesis. As a first step towards this, in the next
chapter, we will review the state-of-the-art related to Data-driven Dynamic Optimization of Traffic
Workload and Network Slicing for 5G Networks and beyond.
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3.1 Introduction

IN this chapter, we will provide an overview of the approaches found in the literature regarding
our three axes of research identified in this thesis. We will start by reviewing the network traffic

monitoring approaches based on SDN and OpenFlow protocol as accurate traffic monitoring is the
key challenge to optimize QoS. Then, we will discuss the ML based QoS aware routing approaches.
Next, we will discuss different approaches on E2E network slicing. In particular, we will focus on
the 5G architecture, IoT platform and transport network used in the context of ML. Finally, we will
discuss different approaches on SDN controller placement. Particularly, we will review strategies
proposed for SDN control and data plane clustering.

3.2 Research Axes: State of the Art

3.2.1 Deep Q-Network and Traffic Prediction based Routing Optimization in Soft-
ware Defined Networks

In the following, we first survey the literature on traffic monitoring approaches to the collection of
data plane statistics in SDN. Then, we focus on the ML techniques used for traffic prediction and
routing optimization.

Traffic Monitoring

Recently, SDN [116] with OpenFlow protocol [101] implementation is getting a lot of attention. There
are many OpenFlow software implementing the SDN architecture, where the most used in the control
plane ONOS [26], POX [81], Ryu [8], and OVS [120] in the data plane. In traditional networks,
many monitoring tools are available. SNMP [15], Cisco NetFlow [6], sFlow [10]. However, these
monitoring tools are not compatible with the OpenFlow network. Several works have been proposed
in OpenFlow monitoring. Authors in [44] proposed PayLess, a network monitoring framework for
SDN, which is built on top of an OpenFlow controller’s northbound API and provides a high-level
RESTful API, and offers an adaptive scheduling algorithm for polling, which achieves the same level
of accuracy as continuous switch polling with much less communication overhead. In [152], authors
proposed OpenNetMon, a network monitoring tool based on OpenFlow, that collects statistics such as
throughput and packet loss from the edge devices in order to improve the measurement accuracy and
reduce the computation overhead. PathMon [105] provides a way to collect per-flow statistics such as
throughput and packet loss by inserting a separate set of flow entries called monitoring entries into
every switch along a path to be monitored. In these works, statistics can be collected proactively by
using FlowStatisticsRequest message or reactively by using the FlowRemoved notification massage.
However, they did not provide mechanisms to measure latency by using only the OpenFlow protocol.

There have been many studies on latency measurement in SDN using OpenFlow protocol
[20][164]. The most relevant work is described in [164] in which the authors present SLAM, a
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framework for Software-defined Latency Monitoring between any two network switches. The delay is
measured inside the network by capturing directly path information from network devices. Instead of
measuring latency for a specific path as described in these works, we propose to measure metrics,
such as latency throughput per-flow size, for all critical links in the network, where the probability of
congestion is important. In this way, an important number of paths can be covered without affecting
performances.

Machine Learning based QoS-aware Routing

Optimizing flow routing in SDN-based networks is crucial to meet the needs for efficient resource
allocation. For that reason, a wide range of solutions have been proposed in the literature.

In [134], authors propose approaches based on genetic and ant-colony algorithms to optimize flow
rule placement. However, these approaches are limited to certain situations and do not cover more
complicated routing problems. Several research works have been made to install flow rules across
pre-computed optimal paths, by exploiting the SDN controller's global visibility. In [70], authors
propose an approach to reduce power consumption and network congestion, where they compute the
optimal topology that can accommodate the expected traffic demands, then a traffic load balancing
by distributing flows across k-shortest paths of optimal topology, by resolving an Integer Linear
Program (ILP) Problem.

Holt–Winters (HW), ARMA/ARIMA models [46] are traditional linear prediction methods, that
are widely used for network traffic forecasting. Works in [24] and [22] both deploy NN based on
SDN for network Traffic Matrix (TM) prediction. Authors in [24] presented an approach to predict
aggregated Ethernet traffic with NNs employing multiresolution learning (MRL). They consider
the problem of forecasting the transfer rate, by predicting future values, given a set of transfer
rates observed on a specific link. The experimental results show that nonlinear traffic prediction
based on NNs outperforms linear forecasting models (e.g. ARMA, Auto-regressive Auto-regressive
(ARAR), HW) which cannot meet the accuracy requirements. In [22], authors present a LSTM based
RNN framework which makes use of model parameters to train prediction models for large scale
TM prediction, by training and comparing LSTM models at various numbers of parameters and
configurations. Simulations show that the proposed LSTM models converge quickly and achieves
high prediction accuracy in a few seconds of computation.

Authors in [83] used Reinforcement Learning techniques in the context of routing optimization,
where they present a Q-Routing algorithm discovering efficient routing policies in dynamically
changing networks, without having to know in advance the network topology and traffic patterns. As
in Q-Routing algorithms, the Q-Value is stored in a packet traversing the network. Even solutions
proposed in these works can achieve low latency, high throughput, and adaptive routing, it can be
inefficient when it comes to the Q-Table storage space and the time to reach the best policy.

DRL addresses this challenge by taking advantage of Deep Neural Network (DNN) to train
the learning process of reinforcement learning algorithms. Most relevant works are described in
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[165][128], where the DRL agent interacts with the network through three signals: state (TM),
action (link-weight vector), and reward (improving network performances). DQN [106][107] is one
of the most used DRL methods in network routing optimization. Authors in [143] presented an
adaptive Deep Q-Network based energy and latency-aware routing protocol (DQELR) that adopts a
DQN algorithm with both off-policy and on-policy methods to make routing decisions adaptively in
different network conditions. In [96], authors presented DRL-R (DRL-based Routing) to cope with
the problem of coexistence of Elephant flow/Mice flow/Coflow and multiple resources (bandwidth,
cache and computing). The proposed approach built using DQN and Deep Deterministic Policy
Gradient (DDPG). Experimental results demonstrated the effectiveness of the proposed solution
in improving network performances. However, these works did not take into account the traffic
prediction, since the DRL agent is triggered only once the first PacketIn comes to the controller.
Moreover, actions depend only on link weights modification not on flow rules installation.

To sum up, these works present the following shortcomings: (i) the non-consideration of the
mapping history between the network state and the corresponding action when predicting congestion,
and (ii) the non-consideration of current and predicted congestion when rewarding actions. Based on
these observations, we propose to train a DQN agent capable of optimizing routing by dynamically
choosing the optimal path according to a rewarding function, while taking into account latency,
throughput, and packet loss. In addition, we propose to deploy a traffic Prediction module to predict
network congestion.

Table 3.1 highlights the added-values of our first contribution in regard to the state-of-the-art
approaches, where Rate Monit and Latency Monit denote respectively the monitoring of throughput
and latency.

3.2.2 Online based learning for predictive end-to-end network slicing in 5G networks

Recently, there has been a dense specific research interest for network slicing and its impact on
resource management. Recall that, network slicing can be applicable in both RAN referred to as radio
slicing and transport and CN domains, referred to as transport network slicing [133].

Most of the literature on CN converge toward a common commitment, which consists in separating
control plane and user plane functions of the EPC elements (i.e., MME, and S/PGW). In [92][137],
authors investigate the feasibilities to virtualize gateway entities used in the CN (SGW, PGW), by
proposing new architectures in which they decouple the control plane from the user plane by using
SDN controllers and GTP based OpenFlow switches to encapsulate/decapsulate UE data. Although
using the SDN controller in the CN gives more flexibility and does not introduce a consequent delay,
the authors do not consider the forwarding of the GTP packets in the S1-U interface, where all
the UEs traffic flows through one single path. In [112], authors introduce the emerging concept of
network slicing and summarizing the preliminary research efforts to enable E2E network slicing of
5G networks. Authors in [132], investigate the problem of mapping core slices for content delivery to
a virtualized EPC-based 5G. Their objective is to allocate resources at minimum cost, while meeting
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Table 3.1 Added-value of our first contribution

Reference Emulated
Platform

Rate
Monit

Latency
Monit

Pred-
iction

DRL Optimal Heuristic

[Chowdhury et al. 2014] ✓ ✓ ✗ ✗ ✗ ✗ ✓

[van Adrichem et al. 2014] ✓ ✓ ✗ ✗ ✗ ✗ ✗

[Ming-Hung Wang et al. 2016] ✓ ✓ ✗ ✗ ✗ ✗ ✗

[Yu et al. 2015] ✓ ✗ ✓ ✗ ✗ ✗ ✗

[Reza Parsaei et al. 2017] ✗ ✗ ✗ ✗ ✗ ✓ ✓

[Han et al. 2014] ✗ ✗ ✗ ✗ ✗ ✓ ✓

[Cortez et al. 2006] ✗ ✗ ✗ ✓ ✗ ✗ ✗

[Barabas et al. 2011] ✗ ✗ ✗ ✓ ✗ ✗ ✗

[Azzouni and Pujolle 2017] ✓ ✗ ✗ ✓ ✗ ✗ ✗

[Khodayari et al. 2005] ✗ ✗ ✗ ✗ ✓ ✗ ✗

[Yu et al. 2018] ✓ ✗ ✗ ✗ ✓ ✗ ✗

[Pham Tran Anh et al. 2019] ✓ ✗ ✗ ✗ ✓ ✓ ✓

[Mnih et al. 2013] ✗ ✗ ✗ ✗ ✓ ✓ ✓

[Mnih et al. 2015] ✗ ✗ ✗ ✗ ✓ ✓ ✓

[Su et al. 2019] ✗ ✗ ✗ ✗ ✓ ✓ ✓

[Liu 2019] ✗ ✗ ✗ ✗ ✓ ✓ ✗

Our 1st contribution ✓ ✓ ✓ ✓ ✓ ✓ ✓

QoS requirements over each slice. In [66], authors present a testbed implementation towards E2E
slicing of 5G cellular systems, in which, two VNs with different QoS requirements are considered
where each network slice tries to satisfy its users requirements through a pre-agreed share of the
available resources.

The concept of radio slicing can be traced back to the idea of network sharing defined by 3GPP
[12]. Several network sharing models are proposed such as Multi-Operator Core Network (MOCN)
where the RAN spectrum is shared among multiple operators [80]. Authors in [69] present RadioVisor,
a slicing plane that dynamically slice Three Dimensions (3D) resource grid based on traffic among
operators, where the creation and configuration of slices are dynamic based on a logically centralized
controller. In [91], authors propose a fully programmable Network Slicing architecture based on
the 3GPP Dedicated CN (DCN) and a Flexible RAN to enforce Network Slicing, which enables a
two-level MAC scheduler to abstract and share the physical resources among Slices. Authors in [64],
present Orion, a RAN slicing system that enables the dynamic on-the-fly virtualization of base stations,
the flexible customization of slices to meet their respective service needs and which can be used
in an E2E network slicing setting. Moreover, they present a concrete prototype implementation of
Orion for LTE, with experimental results. Authors in [166], present a radio slicing architecture based
on resource allocation and mobility management for the three major 5G services (eMBB, uRLLC,
mMTC). Authors in [47][48] proposed a radio slicing solution for enabling efficient coexistence of
eMBB and IoT services, by implementing a northbound SDN application which enables the creation
and configuration of IoT slices on demand, while considering the QoS requirements.
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Other research works consider the network slicing as a VN mapping/embedding problem, which
consists in mapping the VN request describing the set of resources required by a tenant, to the
available resources [133]. Authors in [133], present a solution for the dynamic slicing problem in
terms of both mixed integer linear programming formulations and heuristic algorithms, where a VN
is assigned a resource slice with just enough resources to match the current service needs. However,
this work does not consider the traffic load and network congestion and focus only on the resources
allocated to VNs.

On the other hand, ML techniques have been used widely to solve various complex problems
arising in routing optimization and TE [31]. Much researches leveraging ML in QoS-aware routing
problem specifically in SDN based networks, especially when there are multiple flows requesting
resources and coexisting in the same network. Authors in [24], showed the out-performance of the
ML techniques ARMA/ARIMA on RNN in terms of network routing optimization and congestion
prediction based on SDN. LSTM is one of the most successfully RNNs solutions used for handwriting
recognition and language modeling [22]. Authors in [114] [159] investigates the prediction accuracy
of ML techniques such as Multi-Layer Perceptron (MLP), Multi-Layer Perceptron with Weight Decay
(MLPWD), and Support Vector Machine (SVM) in order to maximize the resource usage for network
operators. In [129], authors predict wireless traffic based on certain spatial-temporal information by
exploiting the RNN. Authors in [161] predict mobile traffic and they compared their approach to
random-based predictions.

Table 3.2 Added-value of our second contribution

Reference 5G Plat-
form

Monit-
oring

Radio
Slicing

Predic-
tion

Transport
Slicing

Core
Slicing

Heuristic

[Ksentini et al. 2016] ✗ ✗ ✗ ✗ ✗ ✓ ✓

[Sama et al. 2014] ✗ ✗ ✗ ✗ ✗ ✓ ✗

[Nakao et al. 2017] ✓ ✗ ✓ ✗ ✓ ✗ ✗

[Rayani et al. 2018] ✓ ✗ ✗ ✗ ✗ ✓ ✗

[Gebremariam et al. 2017] ✓ ✗ ✓ ✗ ✗ ✓ ✗

[Katsalis et al. 2017] ✗ ✗ ✓ ✗ ✗ ✓ ✗

[Zhang et al. 2017] ✗ ✗ ✓ ✗ ✗ ✗ ✗

[Costanzo et al. 2018] ✓ ✓ ✓ ✗ ✗ ✗ ✓

[Gudipati et al. 2014] ✗ ✗ ✓ ✗ ✗ ✗ ✓

[Ksentini et al. 2017] ✓ ✓ ✓ ✗ ✗ ✗ ✗

[Foukas et al. 2017] ✓ ✗ ✓ ✗ ✗ ✗ ✗

[Qiu et al. 2018] ✗ ✓ ✗ ✓ ✗ ✗ ✓

[Xu et al. 2019] ✗ ✓ ✗ ✓ ✗ ✗ ✓

[Nikravesh et al. 2016] ✗ ✓ ✗ ✓ ✗ ✗ ✗

[Yamada et al. 2018] ✗ ✓ ✗ ✓ ✗ ✗ ✗

[Raza et al. 2018] ✗ ✓ ✗ ✗ ✓ ✗ ✓

Our 2nd contribution ✓ ✓ ✓ ✓ ✓ ✓ ✓
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To sum up, all the above works present the following shortcomings: 1) the non consideration of
routing the UE packets in S1-U interface based on GTP, 2) the non consideration of slicing continuity
based on the UE connection and finally 3) the non consideration of traffic prediction when it comes to
E2E network slicing, and 4) the focusing is principally on the process of instantiating and deploying
the Network Slices, while ignoring how they are enforced in the mobile network. Based on these
observations, we address the design and implementation of a system capable of: i) forwarding the UE
traffic in multi paths in the S1-U interface, by patching OVS to be able to handle GTP traffic, and ii)
creating an E2E network slices by considering the bandwidth prediction of radio slices to scale in and
out the PN slices, as well as network congestion inside each PN slice, while taking into account the
flows QoS.

Table 3.2 highlights the added-values of our second contribution in regard to the state-of-the-art
approaches.

3.2.3 Dynamic Clustering of SDN Switches and Controller placement using Deep Re-
inforcement Learning

In recent years, with the development of distributed controller architecture such as DevoFlow [49],
Kandoo [71], HyperFlow [150], Onix [87], the problem of determining the number of controllers and
their placements in SDN has received considerable attention and attracted many researchers ([111],
[76], [29]).

The authors in [51] present a comprehensive survey on the controller placement problem (CPP)
in SDN. The objective of this survey is to introduce the CPP in SDN and highlight its significance.
Then, presenting the classical CPP formulation along with its supporting system model as well as
discussing a wide range of the CPP modeling choices and associated metrics. In [154], authors
tackled the multi-controller placement issue in SDN and proposed a new approach with network
partition technique. In this approach, the entire network is divided into multiple sub-networks and for
each sub-network, one or more controllers are deployed correspondingly. Specifically, the clustering
algorithm is leveraged to partition the network into sub-networks and an optimized K-means algorithm
is proposed to shorten the maximum latency between the centroid and associated switches in the
sub-network. The authors optimized the K-means algorithm for clustering to minimize the overall
latency of the network.

Lange et al. [94] consider node-to-controller latency for their controller placement optimization.
They present POCO, a framework for Pareto-based Optimal Controller placement that provides opera-
tors with Pareto optimal placements with respect to different performance metrics. This framework
does not segment the network into multiple domains by treating the network as a whole and the
controllers work collaboratively, which requires frequent exchange of state information between the
controllers to achieve an accurate global state.

Authors in [163], defined a capacitated controller placement problem (CCPP), taking into consid-
eration the load of controllers, and they introduced an efficient algorithm to solve the problem. The
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objective is to reduce the number of controllers and their loads. However, the placement is not based
on these criteria. Instead of considering the propagation delay between the switches and the controller
and ignoring the critical factor in the actual network which is the switch weights, the authors in [147]
defines a new metric : total- f low-request-cost. This metric takes into account the switch weights,
switch-to-controller routing costs, and inter controller routing costs, where the goal of this metric is to
minimize Packet-in messages cost from switch to controller, and information exchange cost between
controllers.

In [75], authors first, consider the controller placement problem from the perspective of energy
consumption then, they formulate the energy-aware controller placement problem based on a binary
integer program (BIP), which has the latency of paths and the load of controllers as constraints for
minimizing the energy consumption and they proposed a genetic algorithm to solve the formulated
problem. Authors in [100] investigate different approaches to determine the optimal number of
controllers for deployment in a given SDN network, by taking into account the latency objective. This
study was followed by determining the optimal placements of the SDN controllers. In [146], [43],
authors considered several parameters such as the number of controllers, the location of controllers
and the set of switches of the network to achieve a high reliability. In [43], authors introduced
QoS-Guaranteed Controller Placement problem, which is to place the minimum number of controllers
in the network such that response time of controllers can meet a given delay bound. Three heuristics
was proposed for the proposed approach: incremental greedy algorithm, primal-dual-based algorithm
and network partition-based algorithm. Results show superiority of the proposed incremental greedy
method on the other two methods on all input topologies.

Recently, ML techniques have been used widely to solve complicated decision-making complex
problems arising in Virtual Network Function (VNF) placement and TE in SDN based networks.
Authors in [130] addressed the allocation of Virtual Network Function-Forwarding Graph (VNF-FGs)
for realizing network services. First, they modeled the VNF-FG allocation problem as a MDP then
they solved it by a DRL approach. The simulation results clearly show the effectiveness of the deep
learning process, where the performance of the proposed approach is improved over time. In [108],
authors proposed a simple heuristic algorithm to identify number of controllers and their locations
in SDN networks leveraging a learning automaton (LA) approach, while ensuring that propagation
latency from any node to its closest controller does not exceed a threshold.

Different from these works, we propose a Deep Q-Network based Dynamic Clustering and
Placement (DDCP) approach for SDN networks, by exploring the potential of reinforcement learning
techniques for the clustering and placement of controllers, while taking into account the propagation
delay between the switches and the controller, the controller resource utilization, the intra-cluster
latency and the dynamicity of the network.

Table 3.3 highlights the added-values of our third contribution in regard to the state-of-the-art
approaches, where Ctrl Plane Load, Ctrl Plane Delay denote respectively the control plane load and
latency. Ctrl to SW Load and Ctrl to SW Delay denote respectively the controller to switch load and
latency.



3.3 Conclusion 44

Table 3.3 Added-value of our third contribution

Reference Ctrl
Plane
Load

Ctrl
Plane
Delay

Data
Plane
Load

Data
Plane
Delay

Ctrl
to SW
Load

Ctrl
to SW
Delay

RL/DRL

[Müller et al. 2014] ✓ ✗ ✓ ✗ ✓ ✗ ✗

[Wang et al. 2016] ✗ ✗ ✗ ✓ ✗ ✓ ✗

[Lange et al. 2015] ✗ ✓ ✗ ✗ ✓ ✓ ✗

[Yao et al. 2014] ✗ ✗ ✓ ✓ ✓ ✓ ✗

[Tao et al. 2018] ✓ ✓ ✓ ✓ ✓ ✓ ✗

[Hu et al. 2017] ✗ ✗ ✗ ✓ ✗ ✓ ✗

[Mamushiane et al. 2018] ✗ ✗ ✗ ✓ ✗ ✓ ✗

[Tanha et al. 2016] ✓ ✗ ✓ ✓ ✗ ✓ ✗

[Cheng et al. 2015] ✓ ✗ ✗ ✓ ✓ ✓ ✗

[Quang et al. 2019] ✗ ✗ ✗ ✗ ✗ ✗ ✓

[Mostafaei et al. 2018] ✗ ✗ ✗ ✓ ✗ ✓ ✓

[Chen et al. 2018] ✓ ✗ ✓ ✗ ✗ ✓ ✗

Our 3rd contribution ✓ ✓ ✓ ✓ ✓ ✓ ✓

3.3 Conclusion

This chapter provided an overview of the state of the art of the research axes that we identified in
this thesis, which are traffic optimization, network slicing and SDN controllers placement. We first
discussed different network traffic monitoring approaches. Then, we reviewed ML based QoS-aware
routing strategies. Next, we discussed E2E Network slicing approaches based on 5G mobile network
architecture and IoT Platform. Finally, we reviewed the SDN controller placement approaches.
Moreover, we highlighted our added values by dressing three tables comparing our three contributions
with respect to the state-of-the art approaches.

The next chapter will target the first contribution namely, Deep Q-Network and Traffic Prediction
based Routing Optimization in Software Defined Networks (DTPRO).
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4.1 Introduction

AS stated previously, SDN is an emerging networking architecture, that decouples the network
intelligence from the network devices enabling thus the centralization of network intelligence, a

flexibility in traffic control and simplicity in network management and operation. However, as the size
of the network and the number of flows increase, the computational complexity of the control plane
increases exponentially. Therefore, adapting traditional network policies to the continually changing
network behavior is challenging. In this way, to effectively avoid congestions and overloading links,
both latency and throughput must be monitored continually and proactively in order to quickly
route packets to less used links. One of the first SDN protocol standards is OpenFlow [101] that
enables direct interaction with the forwarding plane of network devices. Although OpenFlow provides
a mechanism to request throughput statistics, latest specifications of this protocol do not provide
mechanisms to measure latency.

Moreover, existing routing algorithms are not suitable for SDN due to their limits in convergence,
the adaptability to network topology changing, and the absence of a future vision on the evolution of
network traffic.

To this end, we propose, in this chapter, a dynamic and efficient TE scheme, called DTPRO,
based on a DQN agent and a traffic prediction module in order to optimize the network flow routing.
Specifically, our proposed solution consists of three main phases. Firstly, we dynamically optimize
the flow routing in the network by training a DQN agent. Secondly, we predict congestion and adjust
the DQN reward function to provide better routing configurations. Finally, we route the network
traffic based on a set of link weights given by the trained DQN agent, and at the same time reroute the
existing ones away from the congested paths by resolving a LP. The formulated LP represents the
flow rules placement problem, where the objective is to minimize the total network delay, packet loss
and link utilization. Note that, during the third phase, we have proposed an heuristic that interacts with
the DQN agent and the traffic prediction in order to solve the formulated LP and optimize network
performances. Experimental results using the ONOS controller and Mininet show that the proposed
approach provides a promising enhancement against traditional routing algorithms.

The main contributions of this chapter can be summarized as follows:

• First, we train a DQN agent with appropriate states and actions, in order to optimize the flow
routing in the network.

• Second, we predict congestion and adjust the DQN reward function to provide better routing
configurations.

• Third, we mathematically model the QoS-aware routing problem as a LP, which takes as inputs
routing strategy given by the trained DQN agent and the predicted traffic. Our objective is to
minimize the E2E delay, E2E link utilization and E2E packet loss. Then, we propose a simple
yet efficient heuristic algorithm called DTPRO to solve the LP.
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• Fourth, we implement the DTPRO approach using ONOS controller and Mininet.

The remainder of this chapter is organized as follows. In Section 4.2, we discuss the architecture
of the proposed framework and the rules placement algorithm. Section 4.3 evaluates the proposed
method. We finally conclude this chapter in Section 6.5.

4.2 Proposed DQN and Traffic Prediction based Routing Optimization
(DTPRO) Approach

Combining ML techniques with SDN is crucial to improve network performances. In this section,
we first present our DTPRO approach. We start by explaining the global architecture. Thereafter,
we describe the Network Measurement modules (i.e., Latency Measurement, Statistics), the DQN
and Traffic Prediction modules. Finally, the mathematical model and the proposed heuristic will be
described in the Proactive Forwarding module.

4.2.1 DTPRO Architecture

Although SDN provides the centralization of network intelligence, a flexibility in traffic control and
simplicity in network management and operation is still needed. KDN has been introduced as a
new paradigm to bring the intelligence to the network management, using the telemetry data, which
suggests to add the KP to the conventional SDN paradigm, by adopting Artificial Intelligence (AI)and
cognitive system to build the network model.

In this context, we propose to design our framework according to the KDN paradigm, in which we
exploit the control plane to have a global view of the network (cf. Fig. 4.1). As depicted in Fig. 4.1,
our proposed architecture consists of four planes: Data plane, Control plane, Management plane and
Knowledge plane.

The Data plane consists of programmable forwarding devices in charge of data packet processing
and forwarding. These devices have no embedded intelligence to take decisions and rely on the control
plane to populate their forwarding tables and update their configurations based on the OpenFlow
protocol.

The Control plane is considered as the brain of the SDN network, which incorporates the whole
intelligence by centralizing the management and global view of the network in a specialized central
controller, in which we deploy two main modules: Network Measurement and Proactive Forwarding
modules. The Network Measurement module consists of two sub-modules: Statistics which continu-
ously collects metrics such as the number of packets and bytes per flow to measure the throughput,
and Latency Measurement. This latter sub-module measures continuously the network latency by
periodically sending a packet probe to the data plane. On the other hand, the Proactive Forwarding
module is responsible for determining the optimal routing strategy as well as the predicted traffic
from the KP by resolving an optimization problem as will be explained later in sub-section 4.2.5.
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Fig. 4.1 Deep Reinforcement Learning and Traffic Prediction based Routing Optimization Architecture

The Management plane ensures the correct operation and performance of the network by collecting
the network measurement from the control plane, specifically from the Network Measurement module,
in order to provide network analytic. The collected statistics will be analyzed and sent to the KP.

Finally, the KP exploits the control and the management planes by taking the data from the
Management plane as input to be fed to ML algorithms, which convert them to the form of knowledge.
Precisely, they learn the behavior of the network, by processing the collected statistics, then extract
the optimal paths, representing the knowledge, to route flows by deploying a DQN agent, and
finally, predict network congestion using prediction methods (i.e., LSTM, ARIMA, LR) in the Traffic
Prediction module. Note that the routing strategy is determined by the DQN agent by exploiting the
historical data of routing configurations.

In what follows, we detail further these modules.

4.2.2 Network Measurement

The Network Measurement module ensures the data plane monitoring based on the OpenFlow protocol,
which is crucial in network management, and helps Operators to make decisions about Load Balancing,
Routing, QoS, SLA and so on. The collection of statistics from the data plane can be either active or
passive. In the active mode, the Controller sends and receives probe packets to the entire data plane
network to measure statistics such as the Round-Trip-Time (RTT), Latency, Packet Loss. On the other
hand, the passive mode corresponds to querying the statistics information from switches by using
standard OpenFlow messages.

As stated earlier, the Network Measurement module consists of two sub-modules: Statistics and
Latency Measurement. The Statistics module monitors the data plane according to the passive mode
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using the OpenFlow standard messages to read the information from the control plane. Specifically,
it uses the OFPStatsReply message type, in which, the switch periodically reports its statistics
through two types of messages: PortStatsReply and FlowStatsReply, to respectively measure
the throughput and the per-flow size. Note that, the throughput can be measured based on the number
of sent/received packet or bit reported in the PortStatsReply message.

The Latency Measurement module, on the other hand, uses the active monitoring mode by sending
periodically a packet probe to the data plane to measure the latency based on the notifications’ arrival
times at the control plane. Specifically, it consists in firstly, measuring the time that takes a packet
probe from the controller and traverse the path and return back to the controller (TotalDelay). Secondly,
it measures the time that takes the packet probe to go from the controller to the first switch (i.e., t1)
and the last switch on the path (i.e., t2), as shown in Fig. 4.2. [145][24].

Fig. 4.2 Latency computation mechanism

Some specific monitoring rules must be installed at the first and last switches (src, dst) respec-
tively on the path that contains "Send to Controller", in order to measure the delay between the
controller and the switches (i.e., t1, t2, as shown in Fig. 4.2) and to send the packet probe back to the
controller at the last switch of the path. The switches between the first and the last switches in the
path forward the packet probe by a pre-installed forwarding flow rules corresponding to the packet
probe. The delay needed corresponds to the time t3, and can be determined as follows:

t3 = TotalDelay− (t1 + t2 +dsrc +ddst + c) (4.1)

Where dsrc, ddst are the processing times in the devices (src, dst) respectively, and c is the
processing time in the controller. In order to accurately estimate the TotalDelay, t1 and t2 delays, the
time is encapsulated in nanoseconds in the packet probe. Moreover, the monitoring rules installed to
guide the packet probe do not interfere with the normal traffic.
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It is worth noting that the Latency Measurement module is designed according to the OSGi
standard that implements an application as a complete and dynamic component model. It is indeed
composed of four components: Monitoring Flow Rules Installation, Probe Packet Generator, Packet
Processing and Latency Measurement, as shown in Fig. 4.3. When activating the Latency Measurement
module we start by installing the probe packet flow rules to guide the probe packet along the path
to be monitored. The Probe Packet Generator will then send periodically a specific probe packet to
the data plane, that matches the monitoring flow rules already installed by the previous component.
Thereafter, the Packet Processing component listens to the incoming PacketIn, then, if the latter
corresponds to the probe packet, the Packet Processing component extracts the times between the
controller and switches and sends them to the Latency Measurement component that measures the
latency as explained above and stores the latency in a centralized database.

Fig. 4.3 Latency Measurement Design

4.2.3 Traffic Prediction Models

In order to avoid congestion and improve network performances, it is important to predict the future
evolution of network traffic.

To do so, we propose here to use the well-known LSTM model to predict the network latency and
compare it with two other prediction models: ARIMA, and LR. In what follows, we detail these three
models and show how we adapt them to predict the E2E network latency.
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Linear Regression (LR)

as described in figure 4.4, a valuable way of modeling the relationship between the measuring time of
delays (i.e., the explanatory variable t) and estimated ones (i.e., the dependent variable D̂elay) is by
using LR as indicated in equation (2.5). In this way, we can build the regression equation between the
time of sampling and the delay, by using the equation (4.2) :

D̂elay = λ .t +µ + ε (4.2)

Where t is the sampling time, λ and µ are obtained by applying the OLS method on the set of
measurements: (i.e., Delay, Measurement time t) so that the gap between the sum of the squares of
the differences between the predicted variables (i.e., D̂elay) and the explanatory variables (i.e., t) is
minimized. Note that the regression quality is determined by using the correlation coefficient [82].

Fig. 4.4 Linear Regression LR

ARIMA Model

we propose to model the time series latency according to the ARIMA(p,d,q) model [37]. In which
the latency is considered as a stochastic process, that can be explained as a linear combination of
p past observations (i.e., Latency Measurement): Dt−1,Dt−2, ...,Dt− p, and q past white noises:
et−1,et−2, ...,et−q, together with a random error in the same series, as shown in the following
equation:

Dt = c+φ 1Dt−1 + ...+φ pDt− p + et +θ 1et−1 + ...+θ qet−q (4.3)

Where, p, the number of past observations that Dt depends on, which represents the Auto-
Regressive (AR) degree, q represents the number of Moving Average (MA) order and d is the degree
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of differentiation [37]. It is worth noting that Dt is the latency to be predicted using previous samples
of the latency time series.

Recall that the identification of the ARIMA model involves several steps where the mains are:
i) checking the stationarity to be able to use correctly the ARIMA model, ii) order (p,d,q) must be
estimated, we refer to Autocorrelation Function (ACF) and PACF to estimate these orders [37].

Long Short-Term Memory (LSTM)

with the continuous development of internet technology, network services, the network traffic is
constantly expanding showing more burst and self-similar, and the complexity is becoming higher and
higher. Consequently, the traffic evolution shows non-linearity. This makes the RNNs LSTM well
placed to learn complex non-linear patterns. One of the advantages of LSTM is that several models
can be used based on each type of time series forecasting such as the shape of the input/output of
the NN. In this way, we propose to model the traffic latency prediction using LSTM model [74] for
multi-step time series forecasting as follows:

• LSTM Inputs:

– Sample: S

– Time Steps: T

– Features: n

– Learning Window: w

– Units: nbr_units

– Delay Vector: D̂ ={d̂( u,v)}

• LSTM Output:

– Predicted Delay Vector: D̂ ={d̂( u,v)}

Where the samples S represents the number of training examples, the Timesteps T refers to the
LSTM memory capacity and the Feature n is the amount of features in every time step. These three
elements construct the three-dimensional structure [Samples,Timesteps,Features] expected by the
LSTM model. The Learning Window w refers to the number of previous time-slots to learn from in
order to predict the future Delay vector. This parameter is used to avoid learning in long sequences
that can result in high computational complexity. The nbr_unit parameter represents the number of
neurons and finally the Delay vector refers to the previous latency Measurements to be fed to the
LSTM Model. The output of the LSTM model is the predicted vector of link delays. Figure 4.5 shows
the overall architecture of the used LSTM model.

It is worth noting that, before applying an LSTM model on the dataset and predicting, we need to
transform the data as follows: i) the Time series data must be stationary, ii) the Time series must be
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Fig. 4.5 LSTM based Latency prediction

transformed into a supervised learning problem. More specifically, the previous observations are used
to predict the current observation, and iii) It was necessary to have a specific scale responding to the
default tangent hyperbolic activation function Tanh of the LSTM model.

4.2.4 Routing Optimization Model based on DQN

To meet the requested QoS, flows must be routed following the best routing strategy. As the traffic
state (stream) depends on the type of data transported in the network, choosing the best routing path to
that stream improves its QoS. To this end, we propose here to deploy a DQN agent that dynamically
determines the optimal path. We model this DQN as follows:
Given a network topology represented as a non-oriented graph G(V,E,C) where V , E and C are,
respectively, the vertex, the edge and the link capacity sets, and |V | = n represents the number of
network nodes, the DQN agent interacts with the environment through three signals: State, Action,
and Reward. "State" is the (n×n) Traffic Matrix representing the current network load. The "Action"
taken by the agent is the link-weight vector, and the "Reward" r of the agent is related to the QoS
parameters, which are mainly: the average of Network latency (L), the average of Data rate (W ) and
the average of Packet Loss (PL). In this case, the Reward r can be determined as follows:

r = α.W −β .L− γ.PL (4.4)

Where α,β ,γ ∈ [0,1] are the adjustable weights determined by the routing strategy. Our objective
here is to determine the optimal policy π mapping the set of states to the set of actions in order
to maximize the reward r. Note that the routing strategy is determined by a set of weights and
periodically updated at the beginning of each time epoch T DQN , which is initialized to 1 hour in this
work.
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4.2.5 Proactive Forwarding Formulation and Resolution

The Proactive Forwarding module is responsible for routing flows according to the optimal routing
strategy, by using the current and predicted Traffic Matrix. It is designed according to the OSGi model
and combines four components: (i) Load Predicted Traffic, (ii) Load Weights, (iii) Packet Processing
and (iv) Flow Rules Generator, as shown in Fig. 4.6. The two sub-modules Load Predicted Traffic
and Load Weights are respectively responsible for collecting the predicted traffic and the set of link
weights from the KP layer. The Packet Processing listens to the PacketIn coming from the data
plane and finally the Flow Rules Generator is responsible for flow routing. Two events automatically
trigger the latter: the first one corresponds to generating flow rules for new incoming flows by using
the collected weights by Load Weights sub-modules, to calculate their corresponding paths, and the
second one happens when a congestion is detected, where the action is to reroute the current traffic to
the less used paths.

Fig. 4.6 Proactive Forwarding Design

The idea here is to give more accuracy to the routing strategy selected by the DQN agent as
explained in the previous sub-section 4.2.4, by incorporating the prediction aspect, where the objective
is to determine which link to route which flow in order to minimize the E2E network latency and
balance the network load by minimizing link utilization.

In this context, the physical infrastructure can be represented by a capacitated graph G(V,E,C),
where V denotes the set of nodes or switches and E the set of edges representing the physical or
virtual links in the network. Each link is characterized by its current and predicted propagation
delay d(u,v), d̂(u,v), bandwidth capacity C(u,v) and threshold T S(u,v). We assume the network has m
nodes (|V |= m), ne links (|E|= ne) and l flows. The current and predicted Traffic Matrix T M, T̂ M
representing, respectively, the current and predicted volume of traffic flows between all pairs of origin
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and destination nodes in the network. Each flow fi is characterized by its size FS( fi,u,v) and the path
to which is affected Pfi .

The network may have the capacity limitation constraint. To this end, we define three variables
E( fi,u,v), LU (u,v), MLU (u,v) as follows :

E( fi,u,v) =

1, if f i ∈ (u,v)

0, otherwise
(4.5)

LU (u,v) = ∑
fi∈F

(E( fi,u,v)× FS( fi,u,v)) (4.6)

MLU (u,v) =C(u,v) ∗λ (u,v) (4.7)

Where the symmetric Binary matrix E = E( fi,u,v) denotes whether the flow rule f is allocated to
the link (u,v) or not. Also LU(u,v) denotes the current link utilization and MLU(u,v) represents the
Maximum Link Utilization of link (u,v). In the equation (4.7), λ depends on link characteristics and
C(u,v) is the link capacity.

As the network traffic may have several classes based on latency sensitivity, it will be necessary to
give more priority to those latency sensitive applications. To this end, we also define two variables: δ

and st fi,s j . We assume each switch has q priority, the variable δ represents the priority of flow fi in
switch s j and the decision variable st fi,s j denotes whether the flow fi is being routed or waiting in the
queue.

δ =

δ fi,s j , δ fi,s j ∈ [1,q], if f i ∈ s j

0, otherwise
(4.8)

st fi,s j =

1, if f i is routed

0, if f i is waited
(4.9)

Hence, our problem can be formulated mathematically as a LP as follows:

• Objective:

– Minimize τ.D+ν .LU +ζ .PL

• Subject to:

– Delay limitation: ∀(u,v) ∈ E :
Max(d(u,v), d̂(u,v)) < T S(u,v)

– Link capacity limitation:
∀(u,v) ∈ E : LU(u,v) < MLU(u,v)
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– Path capacity limitation:
∀(u,v) ∈ FP: MLU(u,v)−LU(u,v)

≤Cap_Av_Path( FP)

– Path Flow priority:
∀sk ∈ Path P,∀ fi, f j ∈ s2

k :
δ fi,P > δ f j,P⇒ ∑

sk∈P
st fi,sk ≥ ∑

sk∈P
st f j,sk

– Demand satisfaction:
∀(u,v) ∈ Path P,∀ fi ∈ F :

∑
(u,v)∈Path, fi∈F

FS( fi,u,v) = demi

The delay and link capacity limitation constraints are specified so that we force each link to not
be delayed and overloaded. The Path Flow priority constraint ensures that the flow with high priority
must be routed first and finally the Demand satisfaction constraint ensures that the traffic demand
demi sent through any path source srci must be equal to that in the path destination dsti. Our objective
is to minimize the network delay D, the link utilization LU and the packet loss PL, while the total
demands are always satisfied. Note that τ,ν ,ζ are the weighting factors related to the degree of
importance of D,LU and PL, respectively. These latters are defined as follows:

D =
1
ne ∑

(u,v)∈E
d(u,v) (4.10)

LU =
1
ne ∑

(u,v)∈E
LU(u,v) (4.11)

PL =
1
ne ∑

fi∈F
(demi− ∑

(u,v)∈Pfi

FS( fi,u,v)) (4.12)

The formulated problem can be considered as a multi-commodity flow problem, which are known
to be NP-Hard. Furthermore, it is assumed to be solved by the SDN Controller for each incoming flow.
However, as the size of the network and the number of flows increase, the computational complexity
increases exponentially. Clearly, such approach is not feasible in practice, since it generates high
overhead due to the frequent updates of the flow tables.

To cope with this problem, and reduce the computation time and complexity, we propose here
a simple yet efficient heuristic algorithm, called DTPRO algorithm. DTPRO allows a high-quality
traffic allocation, while minimizing the total network latency and packet loss. Algorithm 1 shows
the detail of the proposed heuristic. It takes as inputs the current and predicted Traffic Matrix (TM
and T̂ M, respectively), the current and predicted matrix of link delays (D and D̂, respectively), and
the matrix of link delays threshold TS that defines the maximum tolerable delays of each link (u,v).
It is worth noting that, the DTPRO is executed for each incoming flow as well as when detecting a
congestion.
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Algorithm 1: DTPRO algorithm

1: procedure (G(V,E,C),T M,T̂ M)
2: schedule_every (T DQN)
3: Links_Weights← get optimal Weights
4: f rom DQN agent
5: U pdate_Net_Con f ig(Links_Weights)
6: end schedule
7: t← 0
8: while (d(u,v) > T S(u,v) or d̂(u,v) > T S(u,v) or LU (u,v) > MLU (u,v)) do
9: CP← Get_Congested_Path(u,v)

10: F ← Sorted_Flows_Priority(CP,δ )
11: R← F [t]. f low
12: SP← Sorted_Backup_Paths(R)
13: for each path p ∈ SP do
14: if p can route R then
15: Install_Rule(p,R)
16: Remove_Rule(CP,R)
17: Break
18: end if
19: end for
20: t← t +1
21: end while
22: Ad just_Reward(α,β ,γ)
23: end procedure
24: ω ← 10−2, α,β ,γ ← 10−1

25: procedure ADJUST_REWARD(α,β ,γ)
26: if d(u,v) > T S(u,v) or d̂(u,v) > T S(u,v) then
27: β ← β +ω

28: if LU (u,v) > MLU (u,v) then
29: α ← α +ω

30: γ ← γ +ω

31: end procedure

Our algorithm works as follows. At the beginning of each time epoch T DQN , it requests the DQN
agent to get the optimal link weights Links_Weights, then it updates the network configuration (lines
2-6). It is worth noting that, the T DQN corresponds to the time interval to apply a new routing strategy
obtained from the DQN agent. Moreover, to show the impact of using different network configurations
or routing strategies, this parameter is initialized to 1 hour. However, this parameter can be modified
by the network administrator in the order of days or weeks.

Thereafter, since we measure continuously current and predicted Traffic Matrix, if a congestion
occurs, in which the current or predicted link delay is greater than a certain threshold or the link is
overloaded (line 8), our algorithm finds the flow rule R corresponding to the flow with maximum size
in the congested path CP. Then, it sorts all other paths (denoted by SP) by the delay matching the flow
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rule R (lines 9-12). In this case, the flow rule R must be rerouted to a path in SP (lines 13-19). If no
path in SP can accommodate the corresponding flow size, the flow is discarded and our algorithm goes
to the next flow in the CP (line 20). Finally, it adjusts the parameters (α,β ,γ) of the DQN reward
function r, so that the DQN agent avoids a similar transition (line 22). The Ad just_Reward function
(lines 25-31) adjusts the parameter β (equation. 4.4) if a link is delayed or predicted to be delayed.
On the other hand, the α and γ parameters are adjusted when a link is overloaded or is predicted to be
overloaded.

4.3 Performance Evaluation

In this section, we evaluate the efficiency of our proposed approach. We start by presenting our
environmental setup. Then, we present the experimental results.

4.3.1 Experimental setup

First, we implement the Network Measurement module (Latency Measurement and Statistics) as well
as the Proactive Forwarding module as cooperating modules for the Java-based OpenFlow controller
ONOS [26], based on our previous framework developed in [34]. Then, the DQN agent and the Traffic
Prediction are implemented based on Python1, which are dockerized on Docker2 Containers. Note
that the DQN agent and the Traffic Prediction interact with the Proactive Forwarding module based
on the ONOS Northbound API. We used the network emulation tool OVS [126] to implement the
experimental topology illustrated in Fig. 4.1. To generate traffic among hosts, we used Iperf3, which
consists of a set of flows between a set of hosts (h1, . . . , h8). The Network Measurement module
collects statistics (network latency, throughput, and per-flow size) from the devices and reports those
time-series statistics to the InfluxDB4 database each time interval Ti which is equals to 5 seconds.
The link-labels in Fig. 4.7 show the capacity C for each link.

Fig. 4.7 Emulated Topology

1https://www.python.org/
2https://www.docker.com/
3https://iperf.fr/
4https://www.influxdata.com/time-series-platform/influxdb/
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We built and trained the DQN model by using the Tensorflow5 library, by deploying separately
two NNs, one for Q-Network and the other for Q-target, which have the same architecture. The
parameters of the DQN are illustrated in table I. In particular, both the Q-Network and the Q-target
consists of 2 dense layers. In order to show the impact of the action space size, which corresponds
to the number of network configurations for each input traffic matrix state, we trained separately
three DQN agents with 24, 60 and 120 network configuration, respectively. The state vector size is
48, which corresponds to the input shape of each NN, and the outputs of the NNs for each training
correspond to the actions space sizes 24, 60 and 120, respectively. Consequently, the architectures
corresponding to each training are (48, 24), (48, 60) and (48, 120). During the training phase, we
adopt ε-greedy method as action selection method and the final exploration rate is fixed at 0.2, while
the Q-target parameters are copied from the Q-Network every 300 steps. The learning rate and
discounted factor are, respectively, 0.01 and 0.95. Finally, as we trained three different DQN agents,
each training corresponds to 120 episodes.

Table 4.1 DQN parameters for DTPRO

Name Values
Dense layers 2

State size 48
Action space size / Output shape 24,60,120

Q-target network update frequency 300
Learning rate 0.01

Discounted factor 0.95
Mini-batch size 32

Final exploration rate 0.2
Memory size 500 units

Number of episodes 120
Episode capacity 360000 steps

On the other hand, we built and trained the LSTM model by using Keras6 Library, where the
number of dense layers is 2. We used Adam [86] for learning the NN parameters with a learning rate
0.01. We used Relu as activation function. The LSTM method outputs a predicted vector. To this end,
we referred to the traffic matrices used for DQN, by dividing them into multiple input/output samples
and the size of the output sample corresponds to the prediction interval Pi.

Note that, in order to improve the performances, the training of ARIMA, LSTM and DQN models
is done offline. These trained models are then saved in such a way that only one step is needed to
get the optimal path from the DQN agent or the predicted traffic from LSTM or ARIMA. In parallel,
these models continue to learn from these new steps.

5https://www.tensorflow.org/
6https://keras.io/
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4.3.2 Prediction accuracy evaluation

To quantitatively evaluate the overall performance of our prediction models, we use the Root Mean
Square Error (RMSE), defined as the difference between the predicted values and the actual values by
computing the root of the average sum of squared errors. It can be expressed as follows:

RMSE(model) =

√
1
N

N

∑
i=1

(x̂i−xi)2 (4.13)

where x̂i and xi are, respectively, the normalized predicted value and the normalized actual value
for the same time interval and N corresponds to the total number of predictions or the size of the
prediction interval Pi, which is initialized to 5 seconds.

4.3.3 Experimental results

In order to evaluate the performance of our proposed DTPRO solution, we first select the best
predictions models to the network traffic evolution. Then, we evaluate the DQN model, while using
different parameters and configurations and finally, we compare the proposed solution with different
routing schemes, while taking into account the obtained traffic predictions models.

First, we estimate the best ARIMA model to the proposed network traffic evolution, which is
done by estimating the ARIMA parameters [37] : the order of the AR term (p), the order of the MA
term (q) and the number of differencing needed to make the time series stationary (d). The time
series should be stationary by having values around a defined mean. However, the network traffic
could have non-stationary evolution over time. To this end, differencing the time series is a one way
to make it stationary and the right order of differencing corresponds to (d). In our experiments, we
referred to the ACF plot [37] for differencing and the ADF [110] to check if the series is stationary.
In this way, while the differenced series are not stationary, we increment d. The order of the AR term
p corresponds to the number of lags (xt−1,xt−2, ...,xt− p) that must be used as predictors. In this
work, we referred to the PACF [37] to estimate the parameter p, by checking if there is a correlation
between a specific lag and the time series. Finally, the parameter q corresponds to the number of
lagged prediction errors needed in the ARIMA model and similar to PACF to estimate the parameter
p, we used the ACF to estimate the parameter q.

Fig. 4.8 compares the prediction and forecasting accuracy of a set of best ARIMA models to our
network traffic, using the RMSE metric. The parameters are estimated based on methods presented
above. In this way, the forecasting term is used to indicate the prediction of future values given past
values of time series, while the prediction term is used to do estimation whether in future, current
or past. From this figure, we can see that models with d = 1 give a good prediction and forecasting
accuracy regarding the network traffic. The evolution can be repeated over time. We hence refer to
this model with best prediction accuracy as the one with (p = 9,d = 1,q = 1). This model will be
used in our next experiments.
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Fig. 4.8 Selecting ARIMA models while varying the p,d,q parameters

Regarding the LSTM model, in order to ensure that its estimation accuracy is good enough and
to avoid the over-fitting problem when the network is trained, it is required to find the best number
of neurons and the number of training epochs. To this end, we plot in Fig. 4.9 the average of the
Loss function and the average of RMSE under different number of training epochs. In this way, we
measure both the RMSE and Loss function for each 500 epochs. For the sake of simplicity, we fixed
the number of nodes to 100 nodes. In this experiment, we decided about the number of training
epochs when the Loss function converges and starts to be stable, which is ensured from this figure by
both the RMSE and Loss function. We can see also that both the RMSE and Loss function start to be
stable and achieve a good estimation accuracy when the number of training epochs is 9000. The next
experiment will focus on identifying the number of hidden nodes.

Fig. 4.9 LSTM Loss and RMSE under different number of training epochs
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As stated earlier, the number of hidden nodes of the LSTM network is crucial to achieve a stable
network configuration. To this end, we plot in Fig. 4.10 the average of the Loss function and the
average of RMSE under different number of hidden nodes by increasing the number of hidden nodes
by 10 for each measurement. Similar to the previous experiment, we decided about the number of
hidden nodes when the Loss function converges and starts to be stable. We can clearly see from that
figure that both the Loss function and the RMSE converge and start to be stable and achieve a good
estimation accuracy when the number of hidden nodes is 150.

Fig. 4.10 LSTM Loss and RMSE under different number of hidden nodes

From the results obtained in the two previous experiments, we decided about the best LSTM
model, which corresponds to 9000 training epochs and 150 hidden nodes, alongside to the initial
parameters presented above in this section.

On the other hand, the LR parameters λ and µ , as indicated in equation (2.1), are estimated online,
which means that when the prediction is triggered, the Traffic Prediction based LR looks for the N
previous measurement, to identify the parameters λ and µ , then it predicts the future evolution of
network traffic by using the equation (2.1). In Fig. 4.11, we plot the variation of λ ,µ parameters
while training the LR prediction model. We can see that these parameters are dynamically changed
while changing the data intervals.

Fig. 4.12 compares the prediction accuracy of the different methods presented earlier (i.e., LSTM,
ARIMA and LR) by measuring the impact of the prediction interval Pi on the RMSE metric, which is
increased by 3 seconds for each measurement. Recall that the ARIMA model used in this experiment
is (p = 9,d = 1,q = 1) and the used LSTM model is the one with 9000 training steps and 150 hidden
nodes and the LR model is dynamically estimated.

From Fig. 4.12, we can see that the RMSE of LSTM is quasi-stable when increasing the prediction
interval Pi. We can see also that ARIMA achieves a clear stability when increasing the prediction
interval Pi, due to the nature of the network traffic, which is periodic in a certain level. However, the
increase in the LR RMSE is clearly visible, which can be interpreted as the increasing of the distance
between the predicted points in the line λ .t +µ and the dispersed traffic points. Furthermore, we can
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Fig. 4.11 LR parameters λ ,µ under different data intervals

Fig. 4.12 RMSE of LSTM, ARIMA and LR prediction methods

see that ARIMA outperforms LR due to its capacity to estimate the correlation with the previous lags
of the time series. Finally, it is clearly visible that LSTM outperforms all others prediction methods
due to its capacity to learn long term dependencies. In what follows, we determine the best DQN
model for the proposed network traffic evolution.

Recall that, the principal idea of the proposed DQN model is to learn the best policy mapping the
set of states (i.e., traffic matrices) to the set of actions (i.e., network configurations), while maximizing
a numerical reward defined in equation (4.4). In this way it is required to find the best action structure,
in order to ensure a good estimation accuracy of the DQN model, while avoiding the over-fitting
problem when the DQN is trained. To this end, we plot in Fig. 4.13 the evolution of the average of
the Loss function and the average of the reward function under different number of training episodes
and the three action space sizes (24, 60, 120). The DQN is trained based on the initial parameters as
stated earlier in this section. In the experiment, we decide about the best action structure when the
Loss function converges and the reward function starts to be stable.

From Fig. 4.13 we can see that the Loss function for the three action space configuration converge.
However, we can observe from Fig. 4.13 (b) that the more we increase the action space capacity,
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Fig. 4.13 Impact of varying the action space size while training the DQN agent

the more the reward function is increased. The increasing reflects the existence of appropriate new
network configurations (i.e., network paths), so the queues of nodes could be unloaded and lead to
decreasing both packet loss and network latency. As a result from this experiment, we decide to take
the action space size as 120.

As mentioned in the equation (4.4), the reward function is related to Data rate (W ), Network
latency (L) and Packet Loss (PL) with parameters α , β and γ , respectively. These parameters play
an important role to determine, in one side, the importance of each factor and on the other side the
convergence of the Loss function. To this end, we plot in Fig. 4.14 the evolution of the average of
the Loss function under different number of training episodes, while changing the reward function
parameters. From Fig. 4.14 we can see that, the less we give importance to both packet loss and
network latency, the more the Loss function converges and gives small values. As a result, we
decide that the best DQN model corresponds to the one with action space size 120, and the reward
function parameters (α = 0.3,β = 1,γ = 1). In the next experiments, we assess the performance of
our proposed heuristic while using the aforementioned DQN model and prediction methods.

In order to evaluate the performance of our proposed solution DTPRO, which corresponds to
combining the best obtained DQN and LSTM models, we compare it with the following baselines:

• Hop-count (HC) based routing, which is the default routing metric used by ONOS.

• Reduced DTPRO by using the obtained DQN model for routing optimization and at the same
time disabling the Traffic Prediction module.

• DTPROv1, which consists in using the obtained DQN model for routing optimization and the
obtained ARIMA model (instead of LSTM) for Traffic Prediction.
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Fig. 4.14 Impact of varying the reward function parameters α,β ,γ while training the DQN agent

• DTPROv2, which consists in using the obtained DQN model for routing optimization and LR
for Traffic Prediction.

Fig. 4.15 plots the packet loss, the delay and the link utilization for all schemes (DTPRO,
DTPROv1, DTPROv2, Reduced DTPRO, and HC). We can see that the HC approach causes obviously
considerable packet loss and increases the link utilization, since all the flows are forwarded to shortest
paths that shares the same link with minimum capacity. On the other hand, when using the DQN
agent without prediction (i.e., the Reduced DTPRO scheme), considerable packet loss is still observed,
increasing thus the link utilization, due to the incapacity of DQN to predict the future evolution of
network traffic. Finally, we can see that DTPRO outperforms all other schemes, especially DTPROv1
and DTPROv2, where the packet loss, delay and link utilization are decreased. This is related to the
high accuracy of LSTM in predicting network congestion, compared to ARIMA and LR prediction
methods.

We plot in Fig. 4.16 the number of predicted congestion, while combining the DQN with different
traffic predictions methods. It is worth noting that, the congestion happens when the network latency
or traffic load exceed a certain threshold which is fixed to 80% of each link capacity. In the proposed
network traffic evolution from 3000 states defined above in this section, we force certain states
to overload the network for some specific network configurations. From this figure, we can see
that LSTM outperforms others methods due to its high accuracy for predicting the future evolution
compared to ARIMA and LR.

To improve the Quality of Experience (QoE), it is necessary to provide wider varieties of services
than just a single class of best-effort service [141]. To this end, we propose to evaluate our DTPRO
approach with and without priority according to the following simulation scenario: we use initially
specific paths for Latency Sensitive Application (LSA), Throughput Sensitive Application (TSA) and
Packet Loss Sensitive Application (PLSA). Then, we force these paths to be delayed and congested.
Based on a specific set of priorities (p1, p2, p3), Fig. 4.17 compares the following baselines:
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Fig. 4.15 Packet Loss, Delay and Link utilization under rule placement algorithm based on DQN with
and without prediction

Fig. 4.16 Number of predicted congestion while combining the DQN with different traffic predictions
methods

• DTPRO_Flow_Size corresponds to the proposed DTPRO heuristic which sorts the traffic flows
according to their size to reroute the traffic once there is a congestion.
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• DTPRO_Priority corresponds to the proposed DTPRO heuristic which sorts the traffic flows
according to their priority to reroute the traffic once there is a congestion.

The set of priorities are selected as follows:

• p1: p(LSA) = 10, p(T SA) = 5, p(PLSA) = 1

• p2: p(LSA) = 5, p(T SA) = 10, p(PLSA) = 1

• p3: p(LSA) = 1, p(T SA) = 5, p(PLSA) = 10

Fig. 4.17 DTPRO with and without priority

From Fig. 4.17 (a) we can see that, when giving more priority to LSA in p1, DTPRO_Priority
performs better than DTPRO_Flow_Size in decreasing the E2E Delay. However, when giving more
priority to TSA in p2 and PLSA in p3 the E2E Delay for both schemes is close to each other. On
the other hand, we can see from Fig. 4.17 (b) that, when giving more priority to TSA in p2 or PLSA
in p3, DTPRO_Priority performs better than DTPRO_Flow_Size in decreasing the E2E Throughput.
However, when giving more priority to LSA in p1, the performances for both schemes are close
with no improvement in the E2E Throughput. The reason of improving the performances is that the
flows corresponding to these application types in the congested paths are routed first. This allows
the DTPRO approach to be used in a context of Network Slicing where each slice is dedicated for
specific traffic types.

Fig. 4.18 plots the impact of varying the TDQN time interval on the network performance (i.e.,
Number of Predicted Network Congestion, the E2E Delay and the E2E Throughput or Rate). This
parameter is varied in the set of intervals: [1h, 2h, 4h, 6h, 8h, 12h, 24h]. Recall that, the TDQN

parameter corresponds to the time interval to apply a new routing strategy obtained from the DQN
agent.

From this figure we can observe that both the Network Congestion and E2E throughput increase
with the increase of the time interval TDQN . On the other hand, the E2E Delay decreases with the
increase of TDQN . The reason is that the DQN state space increases with the increasing of the TDQN
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Fig. 4.18 Impact of varying the TDQN time interval on the network performance

time interval, where new transitions and new network configurations are detected. Moreover, the
LSTM model in the Traffic Prediction module is able to predict new traffic evolutions, which leads to
predict new network congestion and rerouting the traffic more efficiently, decreasing thus the E2E
Delay and increasing the E2E Throughput.

Fig. 4.19 Comparative analysis between DTPRO, TOL, DRL-R and DQELR

Finally, Fig. 4.19 shows a comparative analysis between the proposed approach DTPRO and
three main approaches indicated in the related works: 1) Deep Reinforcement Learning-based
Routing (DRL-R) [96], which represents a traffic optimization solution based on DQN, 2) Traffic
Optimization based on LSTM (TOL) [22], which corresponds to the use of the LSTM RNN framework
for predicting the network traffic matrix, and 3) Deep Q-Network-based Energy and Latency-aware
Routing (DQELR) [143], which is a routing optimization solution based on DQN.

As the design of DTPRO is modular, in which the knowledge plane consists of two separated
modules: i) routing optimization based on DQN and ii) Traffic Prediction based on LSTM, the
comparison of our proposed approach with DRL-R and DQELR is done by deactivating the traffic
prediction module and using only the routing optimization module. On the other hand, for the TOL
approach, we used only the Traffic Prediction module.
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We used the same experimental topology, shown in Fig. 4.7, for all approaches. For DRL-R
[96], the DQN Q-Network and Q-Target consist of two hidden layers with 30 neurons. The Relu
corresponds to the activation function and the learning rate is fixed to 0.001, as proposed in [96]. For
the DQELR model [143], the input layer consists of four nodes. Three hidden layers with 300, 150
and 15 nodes, respectively, are also used. Finally, the TOL approach consists in using the LSTM
model in [22]. All these models are trained based on the aforementioned parameters. Then, we
measured the E2E Delay, the E2E Throughput and the E2E Packet Loss for each approach for a time
interval of 24h, as shown in Fig. 4.19.

From this figure, we can see that the TOL approach causes obviously more packet loss and delay,
and provides less network throughput compared to all other approaches. This can be explained by
the fact that, this approach does not take into account the best routing strategy, increasing thus the
number of congestion links and leading to a new network behavior with low prediction accuracy.
Second, we can see that DRL-R and DQELR perform better than TOL since both approaches consist
in defining routing strategies by training DQN agents, while maximizing certain rewards related
specifically to network throughput and delay. On the other hand, DRL-R performs slightly better
than DQELR, since adding DQN based routing decisions to packets in the DQELR approach impacts
the performances and decentralizes the routing decisions, which is contradictory to the SDN design.
Finally, the superiority of our proposed DTPRO method over all other approaches, in terms of E2E
Throughput, E2E Delay and E2E Packet Loss, is clearly visible. The reasons are: i) different from
DRL-R and DQELR, the action of our proposed DQN model is to modify the links weights vector,
which is equivalent to defining all flow paths in one action instead of defining the path for each
incoming flow, as defined in DRL-R and DQELR, ii) the TOL approach predicts only the traffic
matrix without considering the routing strategy, and iii) combining the DQN agent with the traffic
prediction based on LSTM allows unseen transitions from the DQN agent to be predicted by the
traffic prediction module by considering the previous experiences in the DQN agent and at the same
time the future behavior of network traffic in LSTM.

4.4 Conclusion

In this chapter, we presented a method for rules placement in Software-defined Networks based
on real-time statistics measurement and traffic prediction, which are implemented separately as a
cooperating modules on both the Control Plane and the KP layers. By taking advantage of the KP, the
network routing is dynamically optimized by deploying a DQN agent that dynamically determines the
optimal policy mapping the set of states (Traffic Matrices) to the set of actions (changing the vector
of link weights). In addition, we proposed to deploy a Traffic Prediction module based on the well
known prediction methods LSTM, in order to avoid congestion. To this end, we have mathematically
formulated the QoS-aware routing problem as a LP, where the corresponding optimization problem
is to minimize the total network latency, packet loss and link utilization. To solve this optimization
problem, a simple yet efficient heuristic algorithm was proposed and implemented, called DTPRO
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that dynamically interacts with the external DQN agent module to get the set of link weights, and
the Traffic Prediction to avoid congestion. Experimental results using the ONOS controller and OVS,
showed that the DQN agent is able to learn a mapping between the Traffic Matrix state and the set
of link weights to route the traffic flows. However, DQN itself is not well adapted for predicting the
future evolution of the network traffic. By combining DQN with Traffic Prediction, we showed that
network latency, packet loss and link utilization can be decreased. Moreover, we showed that LSTM
achieves a high estimation accuracy, which outperforms traditional prediction methods, and decreases
both E2E delay and packet loss.

The next chapter will leverage the proposed architecture as well as the corresponding ML methods
in an E2E network slicing of a 5G platform.
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5.1 Introduction

NFV [59] and SDN [116] are the key complementary technologies for the 5G vision, allowing
together high flexible and programmable radio and transport network. NFV decouples Network

Function (NF) from hardware resources and provides flexibility by dynamically instantiating a VNF as
a virtual machines running on top of servers, switches or routers. On the other hand, SDN decouples
the control plane from the underlying infrastructure and assigns the control logic to a centralized
controller. These new technologies allow the providers to control and orchestrate their resources and
enable the sharing of the same physical network infrastructure through the concept of Network Slicing
[19].

Network slicing enables optimal support for heterogeneous services, by running them in an
independent Virtual Networks (VN)s, on a common shared Physical Network Infrastructure (PNI),
such that each VN is allocated a fixed or dynamic portion of the PNI resources. In the most general
case, network slicing is generally applicable in both RAN referred to as radio slicing and transport
and core network domains, referred to as transport network slicing. Radio slices share radio resources
among diverse services (i.e., IoT, eMBB) by reserving an appropriate portion of bandwidth (i.e. a
number of RBs) to be used from that slice for a specific time interval [47]. Transport network slices
consist in creating isolated PN composed of physical or virtual switches or routers assigned to a tenant
by the network provider that, in turn, owns the corresponding physical resources [80].

Creating an isolated and efficient end-to end network slice remains challenging, particularly when
considering the bandwidth prediction of radio slices to scale in and out the PN slices, as well as
congestion inside each PN slice taking into account the slices QoS.

To this end, we design and implement, in this chapter, an SDN based architecture for E2E network
slicing which proactively and dynamically adapts radio slices to the transport network slices. The
developed architecture enables the creation, modification and continuity of radio and transport network
slices while considering their resource and QoS requirements. It leverages machine learning for
predicting radio slices capacities, improving network resource utilization, and predicting congestion
within each network slice. We also formulate this network slicing problem as a LP aiming to minimize
the total network delay. Finally, we propose an efficient heuristic algorithm with low time complexity
and high estimation accuracy to solve large problem instances. In addition, we validate our proposal
using an experimental C-RAN prototype, which makes use of OAI [113], an open-source software
implementation of LTE, spanning the full protocol stack of E-UTRAN and EPC [2], the ONOS SDN
controller [26], and the SD-RAN FlexRAN controller [63].

The main contributions of this chapter can be summarized as follows:

• First, we design and implement a Northbound SDN application on top of ONOS and FlexRAN
controllers to enable dynamic creation of E2E network slices (i.e., eMBB, mMTC), while
considering the corresponding QoS.
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• Second, we propose a ML based algorithm to predict the capacities of radio slices and adapt
them to the PN slices in order to improve network resource utilization.

• Third, we consider the network slicing problem as a flow rules placement problem and formulate
it as a LP aiming to minimize the total network delay. We then propose an efficient heuristic
algorithm with low time complexity and high estimation accuracy to solve large problem
instances.

• Forth, we validate our proposal using an experimental prototype.

The remainder of this chapter is organized as follows. In Section 5.2, we discuss the architecture
of our framework and the proposed rules placement algorithm. Section 5.3 presents the environmental
setup and evaluates the proposed method. We finally conclude this chapter in Section 5.4.

5.2 SDN-based dynamic network slicing continuity and traffic predic-
tion

In this section, we detail our approach for SDN-based dynamic network slicing continuity and
traffic prediction to enable efficient E2E slicing. Firstly, we explain the overall system architecture.
Thereafter, radio slicing, PN slicing, E2E slicing and proactive E2E slicing will be described.

5.2.1 SDN-based dynamic network slicing continuity and traffic prediction Frame-
work

Figure 5.1 presents the system architecture considered in this chapter, which consists of two inter-
connected technology domains. The first is the radio domain, which provides mobile broadband and
IoT services. IoT Gateways connect IoT sensors/devices to the IoT platform in the cloud through
the C-RAN network, so that data can be sent back-and-forth periodically between them. According
to the C-RAN concept [1], i.e., the RAN functionalities are split between RRU, which includes a
remote radio transceiver, that is interconnected via a Front-Haul (FH) interface to the RCC node.
Moreover, we deploy C-RAN following an SD-RAN architecture, in which the RAN control and data
planes are separated using a Radio Controller. This architecture offers significant benefits to the RAN,
including the global view of the network state allowing us to dynamically handle slicing process.
As will be detailed in the subsection 5.2.2, the radio slicing is performed by a northbound SDN
application which communicates with the Radio Controller through the northbound API (Northbound
Interface (NBI)) as shown in figure 5.1.

The second is the transport domain, which provides connectivity services to the Radio domain.
This domain consists of SDN devices (switches, routers), that we modified to handle the GTP traffic,
referred to us PN that connects the RAN to the core network. More specifically it connects the
RCC to: a) the MME through the S1-MME interface and b) the SGW through the S1-U interface,
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Fig. 5.1 SDN-based dynamic network slicing continuity and traffic prediction Framework

where the traffic can be routed through multiple paths. Moreover, in order to efficiently handle
PN slicing, we centralize the control plane using an SDN Controller on top of these devices. The
interface between the SDN Controller and the devices is defined by the OpenFlow protocol [101],
allowing the instruction of devices on how to handle incoming UEs data packets. It is worth noting
that, the PN slicing, as will be detailed in the subsection 5.2.3, is performed by a northbound SDN
application, which requests the SDN Controller through the northbound API (NBI) to install flow
rules corresponding to UEs packets.
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In the considered architecture, the radio and PN slicing are performed by the network provider
with the help of an orchestration layer that periodically collects statistics about data planes on both
radio and PN slices from the SDN and SD-RAN Controllers, respectively, and performs slicing
creation and modification. Furthermore, these statistics can be exposed, through the Orchestrator's
NBI, to tenant applications. It is worth noting that, the orchestration of resource slices provisioning
between tenants is outside the scope of this work. We are rather focusing on the slicing continuity,
predicting radio slices capacities and traffic load balancing in the PN slices. In what follows, we detail
these properties.

5.2.2 Radio Slicing

Fig. 5.2 Radio Slicing Architecture

Figure 5.2 shows the proposed radio slicing architecture. We distinguish between three layers.
The first one is the orchestration layer, which consists of a radio slicing module. This module
communicates with the SD-RAN Controller through the northbound API and dynamically performs
slicing based on statistics collected and stored in the RAN Information Base (RIB). In this architecture,
the slice creation requests come from the tenants for subscribers located in a specific area. Then, the
Orchestrator decides whether the requested amount of resources can be allocated, while guarantying
the slices QoS and SLA. Through the northbound API, the Orchestrator can create radio slices by
setting a set of parameters, such as i) slice_percentage which corresponds to the number of RBs that
the corresponding slice is allowed to use, as a fraction of the whole bandwidth, ii) slice_duration
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representing the number of transmission time interval (TTI), and iii) slice_QoS which corresponds to
the QoS requirements to satisfy subscribers demands such as the required throughput.

The second layer is the Control plane, which is represented by an SD-RAN Controller, performing
the slicing scheduling algorithm. This algorithm can be decomposed into two parts: the control part
that makes the decisions for the radio link, which is located in the SD-RAN Controller and the action
part that is responsible for applying those decisions, which is located in the data plane. For example,
the modulation, the coding scheme and the RB allocation, are scheduling decisions that have to be
performed by the control part.

Finally, the Data plane layer, composed of the RCC, which is freed from the control responsibilities
and handles only the decisions made by the SD-RAN controller, by means of a RCC scheduler agent.
This latter defines a set of functions, through a specific southbound interface (SBI), to apply MAC
scheduling decisions for RB allocation as well as request and obtain statistics such as transmission
queue sizes of UEs, etc.

5.2.3 Packet Network Slicing

In the current EPS architecture, the traffic flowing from a RCC can be routed only through one single
path in the S1-U interface, even if there are multiple paths. Since data are transported with GTP
protocol, where the same outer headers (Ethernet, IP and Transport headers) are added to UE packets,
SDN based routing of these packets using the information encapsulated on these layers (IP, MAC
addresses, etc) through different paths is not possible. On the other hand, the UE connections can be
identified by a specific field TEID of the GTP header encapsulated on top of these layers. The idea is
thus to deploy a set of bridges capable of routing GTP traffic based on TEID identifiers, in order to
provide more flexibility and visibility over the mobile network data traffic.

To this end, we have extended the open source implementation of OVS, to support the GTP
forwarding feature. In fact, OVS is a multi-layer software switch which uses OpenFlow protocol to
connect with Controllers. It consists of two main components, the first one is implemented on the
kernel openvswitch.ko and the second one is implemented on the user-space part ovs-vswitchd. In
such a way, when a GTP packet is captured by an OVS Datapath it will be processed by the kernel
module and skip the legacy Linux network stack. By taking this into account, we have extended the
kernel module to be able to extract informations from the GTP header, in particular the TEID field,
and the high layers (i.e., IP, UDP port, etc). Based on preinstalled GTP rules, we will be able to
forward directly the GTP packets to a specific Datapath, without sending the packet to high layers.
Doing so, the GTP flow rules are installed remotely following the SDN paradigm.

A PN slice is hence composed of OVS switches and links capable of routing the traffic flow from
a pre-created radio slice and ensure continuity, as will be explained in the next section.
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5.2.4 E2E network slicing

Figure 5.3 illustrates our proposed procedures of E2E network slicing according to the SDN paradigm.
It is composed of two main steps. The first one is Slices Creation, in which the tenant begins by
querying the Orchestrator to create a slice while guaranteeing a specific QoS target. The Orchestrator
triggers the creation of Radio and PN Slices by contacting respectively the SD-RAN and SDN Con-
trollers. Thereafter, the Orchestrator associates the Radio and PN slice informations such as slice_id,
the set of OVS devices and their corresponding links and ports, and save them in the centralized
Database. After that, the Tenant triggers a request to the Orchestrator to add some subscribers,
identified by their International Mobile Subscriber Identity (IMSI), to the created slice. The latter
associates the slice informations to the user identifiers and save them in the Database. The second
step happens when a new connection is established (i.e., after UE Initial Attachment and Bearer
creation and exchange of UpLink and DownLink TEIDs between RCC et SGW). In this case, the
SD-RAN triggers the Orchestrator of the new connection event. The latter then, triggers the SD-RAN
to assign the connection IMSI to the corresponding Radio slice. Thereafter, the Orchestrator requests
the UpLink and DownLink TEIDs, the RCC and SGW IPs and some informations about devices such
as port_in, port_out, from the Database by communicating the new connection IMSI. The latter
finally assigns the connection to the PN Slice while the traffic flows from a Radio Slice is continued
to the PN Slice.

Fig. 5.3 E2E network slicing procedures
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5.2.5 Proactive E2E Slicing

To meet the requested flow's QoS requirements, the sizes of Radio slices must be adjusted proactively
and dynamically. To this end, we suppose that, initially, the number of resource blocks that the tenant's
radio slice is allowed to use is fixed as a fraction of the whole bandwidth. However, we propose
to proactively allocate additional unused resource blocks from other radio slices to the overloaded
slices, which exceed their authorized capacity, by predicting the future evolution of resource blocks
requirement, using the LR method [82]. On the other hand, these radio slices must be adapted
proactively and dynamically to the PN slices. Furthermore, while scaling in/out the PN slices, we
distribute the traffic load over the same slice topology. Then, to avoid congestion, we proactively
route flows following the paths with less delay and large capacity. To this end, we build on our
previous contribution proposed in chapter 4, in which we deployed two main modules on the SDN
Controller. The first module is the Network Measurement that periodically collects statistics (i.e.,
latency, throughput, flow size, link/device state, etc.) from the data plane (i.e., PN slice) and stores
them in a centralized Traffic Matrix. The second module is the Proactive Forwarding in which we aim
to balance the traffic load over the slice topology. Based on the Traffic Prediction module deployed
on the Orchestration layer, it avoids congestion by rerouting flows to the less delayed paths. This
problem can be defined as a rules placement problem, where the objective is to determine which
link to route which flow in order to minimize the total network delay and balance the network load
by minimizing link utilization while scaling in/out the PN slice. We mathematically formulate this
problem as a LP as follows:

• Inputs:

– Network topology: G(Vi ,Ei)

– Traffic matrix: T Mi

– Predicted Traffic Matrix: T̂ Mi

– Matrix of link delay: Di = {d(u,v)}

– Matrix of predicted link delay: D̂i ={d̂( u,v)}

– Matrix of link delay thresholds: T Si = {T S(u,v)}

– Size of flow f allocated to (u,v): S( f ,u,v )

– Link Capacity: ∀(u,v) ∈ E: C(u,v)

– Set of flows: F = { f1, f2, f3, ..., fl}

• Objective:

– Minimize α.D+β .LU + γ.PL

• Constraints:
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– Delay limitation: ∀(u,v) ∈ E i :
Max(d(u,v), d̂(u,v)) < T S(u,v)

– Link capacity limitation:
∀(u,v) ∈ E i : LU(u,v) < MLU(u,v)

– Path capacity limitation:
∀(u,v) ∈ P: MLU(u,v)−LU(u,v) ≤Cap_Av_Path( P)

– Demand satisfaction:
∀(u,v) ∈ E i,∀ f ∈ F : ∑ S( f ,u,v) ≤ RSDi

Scale_Out i =

{
1 i f R̂SDi > T SDi

0 Otherwise

Where MLU(u,v) (Maximum Link Utilization of link (u,v)) denotes the adjusted maximum link
capacity in order to avoid congestion. It is defined as follows:

MLU (u,v) = c(u,v) ∗θ (u,v) (5.1)

where c(u,v) denotes the link capacity, and 0 < θ (u,v) < 1 is a constant depending on link charac-
teristics. Also, LU (u,v) determines the utilization of the link (u,v), which is defined as follows:

∀ f ∈ F : LU (u,v) = ∑(E( f ,u,v)× S( f ,u,v)) (5.2)

where the symmetric Binary matrix E = {e( f ,u,v)} denotes whether the flow rule f is allocated to
the link (u,v) or not. The capacity and delay limitation constraints force each link (u,v) to not exceed
its threshold MLU and to not be delayed. The demand satisfaction constraint ensures the PN slice to
send or receive the same amount of traffic from the Radio slice and proactively scale in/out the PN
slice if the predicted traffic exceeds certain threshold, where T SDi and R̂SDi denote, respectively, the
threshold and predicted demand of Radio Slice i. It is worth noting that the threshold T SDi can be
fixed or determined dynamically while predicting radio traffic.

The objective is to minimize the total delay D, the total link utilization LU and the total packet
loss PL, where α,β ,γ are parameters related to the degree of importance of D,LU and PL, the latter
are defined as follows:

D = ∑
(u,v)∈E

d(u,v) (5.3)

LU = ∑
(u,v)∈E

LU(u,v) (5.4)

PL = ∑
f∈F

(dem f − ∑
(u,v)∈E

S( f ,u,v)) (5.5)
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where the variable dem f represents traffic demand incoming to the network and

∑
(u,v)∈E

S( f ,u,v) represents the traffic after traversing the network.

Solving the mathematically formulated problem in the Orchestrator for each incoming flow could
be time consuming, as the size of the network and the number of flows increase. Consequently,
the computational complexity increases exponentially. Therefore, such approach is not feasible in
practice, since it generates high overhead due to the frequent updates of the flow tables.

To cope with this problem, and reduce the computation time and complexity, we propose a
simple yet efficient heuristic algorithm, called Congestion prediction and Load balancing based Rule
placement algorithm (CLR). CLR can efficiently find a feasible and near optimal solution, while
minimizing the total network latency and packet loss.

Algorithm 2: CLR Rule placement algorithm

1: procedure CONGEST_REM(G(Vi ,Ei),T Mi,T̂ Mi)
2: for all link (u,v) ∈ E do
3: t← 0
4: while Max(d(u,v), d̂(u,v))> T S(u,v) or LU (u,v) > MLU (u,v) do
5: CP← Get_Congested_Path(u,v)
6: F ← Sorted_Flows(CP)
7: R← F [t]. f low
8: SP← Sorted_Backup_Paths(R)
9: for each path p ∈ SP do

10: if p can route R then
11: Install_Rule(p,R)
12: Remove_Rule(CP,R)
13: Break
14: t← t +1
15: end procedure
16: procedure LOAD_BALANCING(G(Vi ,Ei),T Mi)
17: for all f low f ∈ sorted F do
18: list_P← Paths that can route f in Slicei

19: for all P ∈ list_P do
20: if Scale_Out i then
21: if mp(P) + f .size < mt then
22: Assign f to P
23: mt ←Max(LU (u,v), ∀(u,v) ∈ E)
24: if Scale_Ini then
25: if mp(P) + f .size < MLU(P) then
26: Assign f to P
27: end procedure

Algorithm 1 shows the detail of the proposed heuristic. It consists of two procedures: CON-
GEST_REM and LOAD_BALANCING that take as inputs the Network topology G(Vi ,Ei) the current
and predicted Traffic Matrix (TM and T̂ M, respectively).
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The CONGEST_REM procedure is called to delete a congestion and it works as follows. Upon
measuring continuously the current and predicted Traffic Matrix, if a congestion occurs in the PN
Slicei, in which the current or predicted link delay is greater than a certain threshold or the link is
overloaded, this algorithm finds the flow rule R corresponding to the flow with minimum size in the
congested path CP. Then, it sorts all other paths (denoted by SP) by the delay matching the flow rule
R (lines 5-8). In this case, the flow rule R must be rerouted to a path in SP (line 9-13). If no path in
SP can accommodate the corresponding flow size, the flow is discarded, and the algorithm goes to the
next flow in the CP (line 14).

On the other hand, the LOAD_BALANCING procedure triggered periodically and when scaling
in/out a PN Slicei, and it works as follows. For each flow f in F sorted in descending order, it evaluates
possible paths list_P that can route the flow f . Among these considered paths, we distinguish two
situations. The first one, when scaling out the PN Slicei, in which we distribute the flows over the
new paths, to this end we minimize the overall LU determined as follows:

mt = Max(LU (u,v), ∀(u,v) ∈ E) (5.6)

The second one happens when scaling in the PN Slicei, in this case the path sizes increase and we
distribute the flows over the original paths while avoiding overloading each link. Note that, mp(P)
denotes the maximum path utilization, it is determined as follows:

mp(P) = Max(LU (u,v), ∀(u,v) ∈ P) (5.7)

Whereas MLU(P) denotes the maximum threshold determining the maximum tolerable load of
all link composing P. It is determined as follows:

MLU(P) = Max(MLU (u,v), ∀(u,v) ∈ P) (5.8)

5.3 Performance Evaluation

In this section, we evaluate the efficiency of our proposed approach. We start by presenting the IoT
platform, thereafter, the E2E setup. Then, we present the experimental results.

5.3.1 IoT Platform

Figure 5.4 shows the IoT Platform architecture, which consists of four components namely: connected
things component, communication and identification component, computation component and services
and applications component [17][72].
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Fig. 5.4 IoT Platform (based on [17][72])

Connected things component

We make use of the Bosch XDK Sensor (XDK110) as the main element in this part of the IoT platform.
The Bosch XDK is an all-in-one universal programmable sensor device and prototyping platform [30],
which allows to measure a broad range of parameters such as humidity, pressure, temperature based
on its embedded Micro-electromechanical systems (MEMS) sensors, which makes it suitable for
divers IoT applications. The data collected by the sensors is converted and sent to specific destination
in the cloud through a specific gateway.

Communication and identification component

The communication and identification component is a set of equipments and protocols that transport
the collected data by the connected things to a remote computation platform as well as transporting
configuration and instruction from the management system. The IoT gateway in particular connects
a specific sensor when it is not possible to connect it via a specific protocol. Several protocols can
be used to establish communication between the sensor and the remote management system. In this
work, we make use of the Message Queue Telemetry Transport (MQTT) protocol, Nokia IoT Gateway
and Eclipse Kura.

• MQTT protocol: is a messaging protocol implemented over TCP/IP to connect embedded
devices in the connected things to networks with applications and middleware [50], it uses
message broker server in the middle in communication between devices. Moreover, it supports
Secure Sockets Layer (SSL) and TLS to transport sensing data.

• Eclipse Kura: is a Java/OSGi-based framework for building and running IoT gateway Machine-
to-Machine (M2M) applications [124]. It provides a specific driver that can be used to interact
with Bosch XDK110 devices. Based on this, we make use of the Nokia IoT Gateway that
supports the new Bluetooth LE APIs and has this driver. In this way the XDK Workbench tool
[156] can be used to implement applications that collect data from the XDK110 devices. Then,
this application can be embedded to the Nokia IoT Gateway which in turn forward the collected
data to the corresponding database or management system such as Eclipse Kapua, by the mean
of the MQTT protocol.
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Computation component

The computation component represents the processing unit which provides the computational capabil-
ity of the IoT platforms, which is located in the cloud to process the data collected from sensors and
devices. In this way, we make use of Eclipse Kapua [55] which is an open-source modular frame-
work for IoT-Cloud integration, which is based on Java OSGi and message brokering. It provides
connection to the IoT devices through IoT gateways by the mean of the MQTT protocol.

Services and applications component

The Services and applications component represents the brain of the IoT platform, which provides
services, based on data collected by the sensors and devices, such as data collection, analytics,
monitoring, management and security. It is interconnected with the Computation component via
MQTT or WebSockets.

5.3.2 E2E Architecture

Figure 5.5 illustrates the logical building blocks of our framework, which consists of two intercon-
nected technology domains. The first one is the radio domain deployed according to an experimental
C-RAN infrastructure [1], in which the baseband processing functions are carried out at the RCC node
that is interconnected via a FH to the RRU node. By making use of OAI software [113] and Docker
container technology [52], we deployed the RRU and RCC on separated physical machines. The
physical machine hosting the RRU container is connected to an Ettus Universal Software Radio Periph-
eral (USRP) B210 card [151] via an USB 3.0 interface. Note that we used 20 MHz channel bandwidth
for our USRP B210 cards, which means that the total available RBs is equal to 25. The C-RAN
infrastructure provides 4G connectivity to two Nokia IoT Gateways, one 4G Android smartphone and
Bandluxe C501 LTE modem. The Nokia IoT Gateways in turn provide Bluetooth Low Energy (BLE)
connectivity to Bosch XDK110 sensors. Note that, by making use of XDK-Workbench [156] tool,
we developed a software for XDK senor that periodically sends Humidity, Pressure, Temperature,
through the IoT Gateway by the mean of MQTT protocol [50], to a remote IoT framework. The latter
is deployed based on Eclipse Kapua [55] on a remote machine as a cluster of Docker containers,
as demonstrated in figure 5.4. Also, we connect a computer to the Bandluxe C501 LTE modem in
order to generate UpLink and DownLink traffic. The second domain is PN, which consists of a set of
OVS devices, created by deploying, on a physical machine, a specific OVS version that we extended
to support GTP traffic. This PN is connected to the core network EPC, where the EPC functions
are deployed in a cluster composed of two physical machines by the means of Docker container
technology. The EPC contains the PGW function serving as a Gateway to the external networks such
as Internet and Kapua IoT Platform.

In order to enable remote control of the OAI MAC Layer, we deployed the SD-RAN FlexRAN
controller [63] on top of RCC function. We deployed the OpenFlow controller ONOS [26] to control
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Fig. 5.5 E2E Slicing Prototype

the PN. On top of these two Controllers the Orchestrator is deployed by using Docker. The Radio
Slicing module, the PN slicing module, the Slicing continuity module, and the Traffic Prediction
module are developed based on Python [7], which interact with SD-RAN and SDN controllers through
the FlexRAN and ONOS northbound API, respectively. Furthermore, the statistics needed to enable
automation of slicing continuity such as GTP TEID, are extracted from the MongoDB database [5].
It is worth noting that, we implement the Network Measurement module (Latency Measurement
and Statistics) as well as the Proactive Forwarding module (the module deploying the proposed
heuristic) as cooperating modules for the Java based OpenFlow controller ONOS, based on our
previous framework developed in chapter 4.

It is worth noting that, the main prediction method used in the proposed solution is LSTM.
Therefore, we built and trained the LSTM model by using Keras Library [4], where the number of
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dense layers is 2 and the number of nodes is 42. Note that, in order to improve the performances of
our system, we saved the trained LSTM model, in such a way that only one step is needed to get the
predicted traffic from the LSTM. In parallel, these models continue to learn from these new steps.
Furthermore, it is expected that several RCCs share the same physical transport network through
different PN slices. To this end, and to show the capacity of our proposed heuristic in predicting
congestion and balancing the traffic load among the set of available paths, we have added an external
emulated IoT and eMBB traffics to the PN part.

As for ONOS and FlexRAN controllers, the radio nodes (i.e., RRU, RCC) and the core network
nodes (i.e., SGW, PGW, MME, HSS) are Docker based deployment. They are placed and managed
by the containers clustering and scheduling tool Docker Swarm [53].

5.3.3 Experimental results

Fig. 5.6 IoT traffic profile and fixed and dynamic proactive radio slicing

In order to evaluate the performance of the proactive and dynamic radio slicing, we compare it
to the radio slicing without prediction. Specifically, as shown in figure 5.5, we created two radio
slices (i.e., IoT and eMBB). Then, we generated two Iperf traffics from two hosts. The first one is
connected to the Bandluxe C501 LTE modem and the second one is connected to the IoT Gateway.
Initially, we allocate 60% of the total RBs to the IoT slice and 40% of the total RBs to the eMBB
slice. Thereafter, we generated an Iperf traffic from the IoT slice characterized by periodical sessions
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which can exceed the slice capacity. On the other hand, the traffic generated in the eMBB slice is
regular which takes regularly 70% of the RBs allocated to the eMBB slice. Figure 5.6 (a) shows the
amount of RB requested by the IoT slice when all the bandwidth is allocated to this slice, and the
maximum RB that this slice is allowed to use (i.e., 15 RB), during a period of 60 time intervals of 5
seconds. From figure 5.6 (b), it can be observed that the throughput is increased while predicting the
future behavior of the traffic, and allocating additional RB not used from the other slice. However,
the throughput remains stable at certain threshold, by using fixed slices capacities, since there is no
dynamicity and the absence of future vision on the traffic evolution, which causes service degradation
and packet loss.

To show the accuracy of our prediction method LR used to predict the RB allocation, we plot in
figure 5.7 the MSE [22], calculated as follows:

MSE(LR) =
1
D

D

∑
i=1

(RBi− R̂Bi)
2 (5.9)

where RBi and R̂Bi are, respectively, the real and predicted RBs computed at time interval i (which
is fixed to 5 seconds) and D corresponds to the total number of time intervals of 5 seconds (which is
fixed to 60 time interval). From that figure, we can see that LR achieves a good estimation accuracy
since the associated MSE values remain very low.

Fig. 5.7 MSE of LR used to predict RB requirements

In order to evaluate the proposed E2E network slicing solution, we propose to run it under two
main strategies: i) Static, in which the amount of resource blocks and the capacity of PN slices
are fixed and no scaling in/out, and ii) Zero_touch, where both the Radio and PN slices capacities
are changed dynamically and proactively by the Orchestrator. In this latter strategy, we distinguish
between the following schemes:

• CLR, which corresponds to the proposed heuristic while using LSTM for Traffic Prediction in
PN slices and LR in the corresponding Radio Slices
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• CLRv1, which corresponds to CLR while using LSTM for Traffic Prediction in PN slices and
no prediction in the corresponding Radio slices.

• CLRv2, which corresponds to CLR while using LR for Traffic Prediction in PN slices and LR
in the corresponding Radio Slices.

• HC based routing, which is the default routing metric used by ONOS, while using LR for Radio
traffic prediction.

Note that the action of scaling in/out after predicting the radio traffic consists in adding or
removing a set of paths in the PN slice in order to improve the performances.

First, we compare in figure 5.8 the prediction accuracy of the different methods used for traffic
prediction (i.e., LSTM and LR) inside a PN slice for the eMBB traffic, by using the current and
predicted link delays in the MSE. From that figure, we can see that LSTM achieves a good prediction
accuracy, due to its capacity to learn long-term dependencies. On the other hand, we can observe that
LSTM performs better than LR. The reason is that LR is not well adapted to random behavior.

Fig. 5.8 MSE of CLR using LR and LSTM prediction methods

Figure 5.9 plots the E2E delay, packet loss and throughput for all schemes (CLR, CLRv1, CLRv2,
HC and Static). We can see that the Static approach causes obviously considerable packet loss and
decreases the throughput, since the slices capacities either in Radio or PN are fixed in advance. In
addition, there is no scaling in/out. On the other hand, the Zero_touch approaches outperform the
Static one, since the capacities associated to each slice are dynamic, based on traffic prediction and PN
scaling. Specifically, HC outperforms the static approach since the Radio slicing is dynamic. However,
it still causes considerable packet loss and decreases the throughput and latency, since all the flows
are forwarded to shortest paths which are not always the optimal ones. On the other hand, the two
approaches CLRv1 (i.e., using LSTM to predict congestion and no Radio prediction) and CLRv2 (i.e.,
using LR to predict congestion in both PN and Radio domains), improve the network performances
in terms of decreasing the packet loss and increasing the throughput. However, a certain level of
packet loss is still observed in these two schemes due to the incapacity of LR to predict the future
evolution of network traffic in CLRv2 and the absence of traffic prediction in CLRv1. Finally, we
can see that CLR outperforms all other schemes, where both the delay and packet loss are decreased,
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and the throughput is increased. This is related to the high accuracy of LSTM in predicting network
congestion, compared to LR prediction method, while using LR to predict the Radio traffic.

Fig. 5.9 Delay, Packet Loss and Throughput under CLR based rule placement algorithm with and
without prediction

Finally, figure 5.10 plots the maximum link utilization of our scheme CLR under two prediction
methods (LSTM and LR) compared to HC. We can see that CLR outperforms HC, since some links
and devices are overloaded and experiencing congestion while other are under-utilization in the HC
approach. However, when using CLR, the traffic load is balanced, which minimizes the link utilization.
Moreover, LSTM shows better performances compared to LR thanks to its accuracy in congestion
prediction.



5.4 Conclusion 89

Fig. 5.10 Maximum link utilization under CLR based rule placement algorithm with and without
prediction

5.4 Conclusion

In this chapter, we have addressed the design and implementation of a novel architecture based on
SDN and ML techniques for enabling creation, modification and continuity of radio and transport
network slices, while considering their performances and QoS requirements. To do so, our solution
relies on OAI tool, FlexRAN, ONOS and an extended version of OVS that we patched to handle
GTP packets. Second, the proposed solution enables efficient sharing of RAN and PN resources by
proactively adjusting radio slices capacities and adapt them to the corresponding PN slices, then
a balancing of traffic load and congestion prevention have been proposed for improving routing
and avoiding congestion within each PN slice. To this end, we have mathematically formulated
the problem as a LP which aims to minimize the total network delay and proposed a Congestion
prediction and Load balancing Rule (CLR) placement algorithm to solve it with low time complexity
and high estimation accuracy. Experimental results show the feasibility of the proposed solution of
handling E2E slicing continuity in real-time. Specifically, results show the outperformance of using
ML techniques in real-time on other schemes in terms of increasing throughput and deceasing packet
loss and latency.

Incorporating intelligence to SDN paradigm through ML can improve considerably the perfor-
mances and pave the way to address the control plane scalabity. This will be the target of the next
chapter.
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6.1 Introduction

SDN is an emerging paradigm that allows dynamicity, automation, flexibility and centralized
management of the underlying network contrary to traditional networks making it ideal to

designing Beyond 5G networks (B5G) that involve essentially higher capacity and lower latency.
SDN separates the control plane that is responsible for making routing decisions and the Forwarding
Plane, that is only required to perform packet forwarding according to the received routing strategies
from the control plane. This communication is enabled via API such as the REST on the northbound
interface and OpenFlow on the southbound interface. Even the separation of the control and data
planes brings technical benefits, it can cause several drawbacks such as the number of controllers
needed, their optimal corresponding placement and which data plane devices to be controlled by
which controller.

With the advent of B5G networks, the network size grows exponentially. Therefore, the de-
ployment of a single controller to control the whole network brought greater challenges to the SDN
controller’s processing capabilities in terms of scalability, performance and reliability. To this end, the
use of multiple controllers is primordial, which can be achieved by two main strategies: distributed
controllers and replicated controllers. In the replicated controllers strategy, several copies of the
SDN controllers have always the same information and keep the full state of the network. Even
the fast recovery time when a controller fails, keeping the set of replicated controllers aware of
every networking operation, can bring expensive overhead in terms of resource utilisation such as
Central Processing Unit (CPU), Random Access Memory (RAM) and storage. On the other hand,
the distributed controllers strategy fragments the network into smaller domains, each supervised by a
dedicated controller. The set of controllers supervising these domains communicate to each other by
their west/eastbound interfaces.

The distributed controllers strategy unveils several challenges that must be considered such as :
i) the optimal number of controllers needed for a given network topology, in such a way that, each
controller must be not overloaded neither underutilized, ii) the optimization of the controller placement
is another concern, as it widely impacts on several fronts such as flow setup latency, resiliency and
load balancing and iii) the clustering of the data plane devices in order to improve the intra-cluster
performances.

To this end, we propose, in this chapter, a new approach that determines, the optimal number of
controllers, their optimal placements as well as the optimal clustering of data plane switches. To do
so, we first mathematically formulate the controller placement problem as an optimization one, whose
objective is to minimize the controller response time, which corresponds to the delay between the
SDN controller and assigned switches, the controller resource utilization, the ICD and the ICT. As
the formulated optimization problem is an NP-Hard problem, we first propose to model the problem
as a MDP and solve it by a DQN approach. Then, we propose a simple yet efficient heuristic, DDCP
that dynamically interacts with the DQN agent to solve the aforementioned optimization problem.
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To the best of our knowledge, we are the first to propose and validate such solution using DQN
approach. The main contributions of our chapter can be summarized as follows:

• First, we mathematically model the controllers clustering and placement problem as an opti-
mization problem whose objective is to minimize the controller response time, the controller
resource utilization, the ICD and the ICT.

• Second, we formalize our problem as MDP with appropriate states and actions, then propose
using a DQN approach to solve it.

• Third, we propose simple yet efficient heuristic algorithm called DDCP, that takes as inputs the
set of switches and controllers, the trained DQN agent and outputs the optimal clustering in
both the control and data planes.

The remainder of this chapter is organized as follows. Section 6.2 discusses the key assumptions
and ideas of DDCP. In Section 6.3, we discuss the architecture of the proposed framework, describes
the problem formulation and presents our DQN-based heuristic. Section 6.4 evaluates the proposed
method. We finally conclude this chapter in Section 6.5.

6.2 DDCP Key Assumptions and Ideas

Different from the approaches proposed in related works, we propose in this chapter the DDCP
approach, by exploring the potential of reinforcement learning techniques, such as DQN, for the
clustering and placement of controllers, while taking into account four performance metrics: the CD,
the CL, the ICD and the ICT. The idea behind using a DQN approach to solve the clustering and
controllers’ placement problem, is to use only one step (after training) to get the optimal controllers
placement as well as the corresponding data plane domains of switches, while considering the four
performance metrics. The advantage of using DQN is the ability to improve network performances,
while maximizing or minimizing a certain reward. This reward can be modeled as an extensible
function, taking into account several parameters (that will be listed in the next section) and can be
further extended after training. Moreover, to overcome the problem of scalability and extensibility
presented in related works, we implement our DQN agent in the knowledge plane, which is not part of
the SDN architecture. This makes our DDCP approach independent of the technology implemented
in both the control and data planes.

6.3 DDCP Approach

In this section, we present our approach for the clustering and placement of controllers in SDN using
DQN. Firstly, we explain the overall framework. Thereafter, the problem formulation and the Deep
Q-Network Agent will be described.
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6.3.1 DDCP Architecture

We design our framework according to the KDN paradigm [45], by introducing the knowledge plane
to the conventional SDN paradigm, in which we exploit the control plane to have a global view of the
network (cf. Fig. 6.1).

Fig. 6.1 DDCP Architecture

Fig. 6.1 presents our system architecture, which consists of four planes: Data plane, Control Plane,
Management Plane and Knowledge Plane.

The data plane that consists of programmable forwarding devices, in charge of data packet
processing and forwarding. These devices have no embedded intelligence to take decisions and rely
on the control plane to populate their forwarding tables and update their configurations based on the
OpenFlow protocol. Moreover, the data plane is divided into multiple domains and each of them is
supervised by a dedicated controller.

The control plane is considered as the brain of the SDN network, which incorporates the whole
intelligence by abstracting the management and global view of the network in a set of distributed con-
trollers in different locations. Each controller may not have full control or knowledge of the network
status and has the responsibility for only a portion of the network (i.e., domain). It communicates
with the other controllers through the West/Eastbound interfaces.

The management plane ensures the correct operation and performance of the network by collecting
the network measurement from the control plane Network Measurement module, in order to provide
network analytic. The collected statistics will be analyzed and sent to the knowledge plane.

In order to not affect the control plane performances, the process of deploying distributed con-
trollers needs to be fully automated and can be ensured by the knowledge plane. This latter exploits
the control plane and the management plane by taking the data from the management plane as input
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to be fed to ML algorithms, which will convert them to the form of knowledge. Precisely, it learns
the behavior of the network, by processing the collected statistics, then determines the number of
controllers, their locations and the set of switches embedded in each controller’s domain, by deploying
a DQN agent. The output of the DQN agent is transmitted to the control plane through the Northbound
SDN controller API.

In what follows, we present our controller placement problem formulation, then we detail the
Deep Q-Network Agent.

6.3.2 Problem Formulation

We model the SDN network as an undirected graph G = (V,E), where V = {v j} is the set of switches
and |V | = k is the number of switches and E is the set of edges (i.e., links between switches).
The control plane consists of a set of controllers C = {ci}, where |C| = n denotes the number of
controllers. On the other hand, the data plane is fragmented into a set of domains W = {wl}, each
domain wl = {v j},v j ∈V supervised by a controller, and |W |= p denotes the number of domains.
The solution of our Controller Placement Problem (CPP) can be represented as a binary vector
F = (F1,F2, ...,Fn) ∈ Rn, where F i is given by:

F i =

1, if controller ci is selected

0, otherwise
(6.1)

Since our objective is to optimize the number of deployed controllers, while guaranteeing the
QoS requirements of all traffic requests in the network, we define here-after four different variables to
compute the number of selected controllers: Control Load (CL), Control Delay (CD), Intra-Cluster
Delay (ICD), and Intra-Cluster Throughput (ICT).

Number of Selected Controllers

To determine the number of deployed controllers p (i.e., the number of data plane domains), we first,
define the variable Rt

i j representing the total flow request from switch ( j) to controller (i) at time
(t), which corresponds to the number of Packet-In messages generated by the switch. It is worth
noting that, the Packet-In messages are generated and sent from switches to the controller when there
is no matching flow entries in their flow tables. Secondly, we assume that the portion of resources
consumed by one flow request concerns essentially the CPU and RAM, and can be written as follows:

λ i =
CPU f lowi

CPU i
+

RAM f lowi

RAMi
(6.2)

Where CPU i and RAMi correspond, respectively, to the maximum capacity of CPU and RAM
of the controller ci. As CPU and RAM use different units, we divide them over their corresponding
maximum values to get normalized data. Therefore, the number of selected controllers can be written
as follows:
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p =
n

∑
i=1

k

∑
j=1

Rt
i, j.λ i (6.3)

Control Load (CL)

We define the CL as the load incurred by all the switches belonging to the same domain. To this end,
we use a decision variable Ht

i, j to determine the relationship between the controller (i) and the switch
( j) as follows:

Ht
i, j =

1, if switch v j is controlled by ci at time t

0, otherwise
(6.4)

The load of the controller ci can be thus given by:

CLt
i =

k

∑
j=1

Ht
i, j.R

t
i, j.λ i (6.5)

To avoid the overloading of some controllers and the under-utilization of others, we balance the
traffic load between the set of selected p controllers. To this end, we determine the global CL as
follows:

CLt =
1
p

p

∑
i=1
|CLt

i−CLt
avg| (6.6)

Where CLt
avg denotes the average of the CL of all selected p controllers.

Control Delay (CD)

The CD corresponds to the average response time of the controller ci, which is defined as follows:

CDt
i = PDt

i +2.CMDt
i (6.7)

Where PDt
i and CMDt

i are, respectively, the processing delay and the communication delay of the
controller ci at time t. We used two times of the communication delay since the Packet-In comes from
the switch to the controller and returns back to the switch. In this way, the global CD is determined as
the average of the CD of the set of selected controllers, which can be written as follows:

CDt =
1
p

p

∑
i=1

CDt
i (6.8)

According to [95], the processing delay is determined as follows:

PDt
i =

1
ϕ i−θ i

(6.9)
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Where ϕ i and θ i are, respectively, the capacity and the workload of the controller ci. The
communication delay is determined as follows:

qt
i =

k

∑
j=1

Ht
i, j (6.10)

CMDt
i =

k

∑
j=1

Ht
i, j.d

t
i, j

qt
i

(6.11)

Where qt
i denotes the number of switches supervised by the controller ci and dt

i, j denotes the delay
between the controller ci and the switch v j. The latter is measured based on our previous work in [34].

Intra-Cluster Delay (ICD)

This metric corresponds to the average value of the propagation delays between all the switches
belonging to the same cluster i, which can be written as follows:

ICDt
i = ∑

ve∈wi,vm∈wi

A(ve,vm).ψ(ve,vm)

ςi
(6.12)

Where A(ve,vm) denotes the delay between nodes ve and vm in the domain wi, ςi is the number of
links of the cluster i, and ψ(ve,vm) is a decision variable representing the relationship between any
two switches, which is defined as follows:

ψ(ve,vm) =

1, if ve is connected to vm

0, otherwise
(6.13)

Then, the global ICD of the set of p clusters is determined as follows:

ICDt =
1
p

p

∑
i=1

ICDt
i (6.14)

Intra-Cluster Throughput (ICT)

This metric corresponds to how much data can be transferred by a specific data plane cluster (i)
within a given timeframe, which referred to us ICT t

i . Then, the global ICT of the set of p clusters is
determined as follows:

ICT t =
1
p

p

∑
i=1

ICT t
i (6.15)

6.3.3 Controller Placement and Switches Migration

We consider the controllers as images installed in different servers located in different locations. In
this way, the action of controllers placement refers to instantiating a container from the image in
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the corresponding server located in a specific location. To this end, we consider ci, i ∈ [1,n] as the
instance of the controller in the server or location i. Also, the deselection follows the same logic by
just deleting the instance or container ci.

It is worth noting that the clustering of control and data planes as well as the placement of the
controllers happen when certain controllers are overloaded, while others are under-utilized. Hence,
we define in equation (6.16) the load balancing factor between clusters, calculated as follows:

CLmig =
CLt

max(CLi)
×100 (6.16)

Note that, finding new data plane clusters leads to migrating a set of switches from old clusters
controlled by specific controllers to new clusters controlled by new controllers.

Fig. 6.2 Demonstration of the DQN State and Action spaces using a simple topology

6.3.4 Proposed Optimization Model

The objective of our optimization model is to minimize the aforementioned performance metrics
including CL, CD, ICD and ICT. This can be achieved as follows:

Min(α× CDt

CDmax
+β × CLt

CLmax
+ γ× ICDt

ICDmax
−ρ× ICT t

ICT max
) (6.17)

Subject to :

∀ i ∈ [1, p] : CLt
i < M.Fi (6.18)
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∀ (wu,wv) ∈W 2 : wu∩wv =⊘ (6.19)

if controllers ci and c j are selected: ci ̸= c j (6.20)

|W |= p (6.21)

∀ (i, l) ∈ [1, p]2,∀ j ∈ [1,k] : (di, j < dl, j)⇒ (Ht
i, j > Ht

l, j) (6.22)

∀ j ∈ [1,k] : Ht
i, j ≤ Fi (6.23)

∀ i ∈ [1, p] : (
k

∑
j=1

Ht
i, j = 0)⇒ (Fi = 0) (6.24)

∀ i ∈ [1, p] : CDt
i ≤ σi (6.25)

∀ (ve,vm) ∈V 2 : A(ve,vm)≤ δ (6.26)

As the objective function involves different parameters with different measurement units, we
have divided each metric over its corresponding maximum value to have a normalized objective
function. Note that these maximum values are determined by the network operator and correspond
to physical characteristics of involved network devices. Note also that α,β ,γ , and ρ are adjustable
weighting factors determining the degree of importance of the CD, the CL, the ICD and the ICT
metrics, respectively, such that α +β + γ +ρ = 1.

Constraint (6.18) forces all controllers to not be overloaded. Constraint (6.19) means that all
domains do not overlap and each node belongs to only one domain. Constraint (6.20) forces the set of
controllers to be selected only once. Constraint (6.21) insures that the number of selected controllers
is the same as the number of data plane domains. Constraint (6.22) is the mapping constraint ensuring
that a switch must be mapped to the closest controller in terms of delay. Recall that, we refer to
our work in [35] to measure the delay between the switches in the data plane as well as between
the switches and their corresponding controllers, where the delay is measured based on the times of
sending and receiving a specific packet probe from the controller to the switches in the data plane.
Constraint (6.23) means that a switch is mapped to a controller if the latter exists and is selected.
Constraint (6.24) means that if there is no switch mapped to a controller then the latter will be powered
off. Constraint (6.25) forces the CD metric to not exceed a certain threshold σi, and finally constraint
(6.26) forces the links of each cluster to not be delayed.

The formulated optimization problem is an NP-Hard problem, where the optimal solution is very
difficult to obtain in general. To this end, we propose to solve it by modeling and training a Deep
Q-Network Agent, as will be detailed in the next section.

6.3.5 Deep Q-Network Agent

To dynamically determine the optimal number of controllers and their optimal placements while
considering the propagation delay between the switches and the controller, the controller resource
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utilization, the ICD and the ICT, we propose to model a DQN Agent based on a MDP. In this way,
the DQN agent interacts with the environment through three signals: State,Action and Reward.

State

The State St,p corresponds to the partitioning of the data plane into p domains. To do so, we define it
as a vector of wt,i (i ∈ [1, p]), and can be written as follows:

St,p = [wt,1,wt,2, ...,wt,p]

Where wt,i = [ve, ...,vm],∀(ve,vm) ∈ w2
t,i is a vector representing a cluster of switches, such that

∑
p
i=1 |wt,i|= k. Recall that, k corresponds to the total number of switches in the data plane.

Let Sp denote the set of all states corresponding to a specific value of p, written as follows:

Sp = [S1,p,S2,p, ...,STp,p]

Where Tp corresponds to the number of states corresponding to p clusters. It is worth noting that,
the set of states are constructed by respecting the set of constraints indicated in Section 6.3.4.

Action

The action taken by the agent Ar,p is characterized by a vector representing a selected set of p
controllers from the available n controllers, which is defined as follows:

Ar,p = [cr,1, ...,cr,p],∀cr,i ∈C

Where r represents the action number. We denote the set of all actions corresponding to a specific
value of p as follows:

Ap = [A1,p,A2,p, ...,ARp,p]

Where Rp corresponds to the number of actions corresponding to p clusters. It is worth noting
that, the set of actions are constructed by respecting the set of constraints (6.20) and (6.21) indicated
in Section 6.3.4. Recall that, constraint (6.20) avoids selecting one controller for more that one cluster
and constraint (6.21) ensures that the number of controllers is the same as the number of data plane
domains.

Reward

The "Reward" function R of the agent consists in minimizing the normalized objective function
defined in (6.17), and can be thus written as follows:
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R = α× CD
CDmax

+β × CL
CLmax

+ γ× ICD
ICDmax

−ρ× ICT
ICT max

(6.27)

It is worth noting that the proposed DQN agent consists in determining the best mapping between
the set of states and the set of actions, while maximizing 1/R (i.e., minimizing R).

In order to give more detail on the DQN design, we propose to illustrate it graphically in a small
topology with 9 switches in the data plane and 5 controllers in the control plane, as shown in Fig. 6.2.
We can see that, when p = 3 the data plane is fragmented into three domains as well as only three
controllers are used to supervise each domain and the rest of controllers are not instantiated. In this
case, the state corresponds to the selected three domains and the action corresponds to the selected
three controllers. When p = 4, we can see that the shapes of the state and action vectors are changed,
where four controllers from five are selected for each action and the data plane is fragmented into four
domains.

Recall that, the number of controllers to be selected, corresponds to the number of data plane
domains or clusters, and can take values from 1 to n, where n corresponds to the total number of
controllers in the control plane.

6.3.6 DDCP Heuristic

As the state St,p and action Ar,p take different forms or shapes for each value of p, we propose to split
the state space (i.e., training data) based on p values. Then, we train the DQN agent separately for
each value of p (i.e., DQN(St,p, Ar,p)). In this way, to determine the optimal number of controllers p
and the best mapping between the set of states (clusters of switches) and the set of p controllers, we
propose the DDCP heuristic (i.e., Algo. 3):

The DDCP algorithm consists of two main procedures: Clust and Migration. The Clust procedure
is called to determine the set of controllers and their corresponding placements as well as the set
of data plane clusters. It works as follows: it takes as input the set of splitted states and the set of
splitted actions based on p: S = {S1,S2, ...,Sn},A = {A1,A2, ...,An}. Recall that, Sp corresponds to
the space of states where the number of controllers as well as the number of data plane domains is
p. Then, by using the trained DQN Agent, it finds the optimal State, Action corresponding to the
maximum reward (lines 4-15) iteratively for each sub-states Sp ∈ S, p ∈ [1,n]. The output of the Clust
procedure is the optimal number of controllers to be deployed (Select_p), their corresponding ID
(Select_Act ∈ ASelect_p), and the corresponding set of switch clusters (Select_St ∈ SSelect_p) (line 16).

On the other hand, the Migration procedure is called when the control plane load is not well-
balanced (lines 19). In this case, it takes as input the output of the Clust procedure (i.e., Select_p,
Select_Act, Select_St). Then, it migrates the set of switches to the new cluster if the new controller is
different from the old one (lines 20-31).

Note that, the Map function indicates if a switch in Select_St is mapped to a controller in
Select_Act. The CT RL_old represents the controller of a specific switch before migration.
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Algorithm 3: DDCP algorithm
1: procedure CLUST(S = {S1, ...,Sn},A = {A1, ...,An})
2: Max_Reward← 0
3: p← 1
4: while p≤ n do
5: for each state ∈ Sp do
6: Reward, Action← DQN(state,Sp,Ap)
7: if Reward > Max_Reward then
8: Max_Reward← Reward
9: Select_St← State

10: Select_Act← Action
11: Select_p← p
12: end if
13: end for
14: p← p+1
15: end while
16: return Select_St,Select_Act,Select_p
17: end procedure
18: procedure MIGRATION(Select_St,Select_Act)
19: if CLmig > T hreshold then
20: for each CT RL ∈ Select_Act do
21: for each Domain ∈ Select_St do
22: if Map(CT RL,Domain) then
23: for each Switch : s ∈ Domain do
24: if CT RL_old(s) ̸=CT RL then
25: Remove(s,CT RL_old)
26: Assign(s,CT RL)
27: end if
28: end for
29: end if
30: end for
31: end for
32: end if
33: end procedure

6.4 Performance Evaluation

In this section, we evaluate the efficiency of our proposed approach. We start by presenting our
experimental setup. Then, we present the experimental results.

6.4.1 Experimental Setup

First, the control plane is deployed as a cluster of a set of dockerized OpenFlow ONOS [26] controllers.
Then, the DQN agent is implemented based on Python [7] and dockerized on Docker Containers [52].
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Table 6.1 DQN parameters for DDCP

Name Value
Dense layers 2

Control plane capacity 10
Data plane capacity 32

Minimum number of switches per cluster 1
Maximum number of switches per cluster 13

Q-target network update frequency 200
Learning rate 0.01

Discounted factor 0.6
Mini-batch size 32

Final exploration rate 0.2
Memory size 2000 units

Number of episodes 1000

The latter interacts with the control plane based on the ONOS Northbound API. The control plane
consists of 12 controllers. We used the network emulation tool OpenvSwitch [120] to implement the
experimental topology, which consists of 32 nodes. To generate traffic among hosts, we used Iperf
[77]. The control plane Network Measurement modules collect statistics (latency, throughput, and
per-flow size) from the devices and report those time-series statistics to the InfluxDb database [3].
Note that, to show the importance of using DQN on a large space of states and actions, we augmented
the collected statistics by using data generated with Python.

Recall that, the DQN model consists of two neural networks, designed to improve the convergence
of the Cost Function in (2.19). One neural network is called Q-Network to estimate the Q-Values
and the second one is called the Q-target to estimate the target network, according to the mechanism
shown in Fig. 2.11.

We built and trained the DQN model by using the Tensorflow library [9], by deploying separately
the two neural networks (i.e., Q-Network, Q-target), which have the same architecture. The DQN
parameters are illustrated in Table 6.1. In particular, both the Q-Network and the Q-target consist of
2 dense layers. The number of data plane switches is 32 and the number of controllers in the control
plane is 10.

Considering the implemented topology, and in order to not have a huge state space size, the
training data are built as follows: i) the minimum and maximum number of switches in each cluster
are fixed to 1 and 13, respectively, ii) the clusters where no link between the generated switches of a
specific cluster are ignored. On the other hand, the training data (i.e., the set of States) can be classified
based on p, as the State corresponds to a vector of p sub-vectors. In this way, both the set of States
and the set of Actions are splitted based on p, as illustrated in Fig. 6.3. Then, we trained separately a
set of DQN agents according to p. Recall that, we denoted the number of states corresponding to p by
Tp and the number of actions corresponding to p by Rp in Sections 6.3.5 and 6.3.5, respectively. This
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Fig. 6.3 Number of States and Actions under different number of clusters p

mechanism of splitting the training data helps our proposed DDCP approach to determine the best
clustering of control and data planes, as we need to go through the set of all trained DQN agents.

It is worth noting that, the global number of States and Actions is selected based on a set of
parameters: i) the global number of switches in the data plane (i.e., 32 switches in our case) and
the number of controllers in the control plane (i.e., 10 controllers in our case), ii) the maximum and
minimum capacity of each cluster, and iii) the convergence of the Cost function, while training the set
of DQN agents based on p.

During the training phase, we adopt ε-greedy method as action selection method. The final
exploration rate is fixed at 0.2, while the Q-target parameters are copied from the Q-Network every
200 steps. The learning rate and discounted factor are fixed to 0.01 and 0.6, respectively, which
correspond to η and ϕ parameters in equations (2.17) and (2.18). In addition, each training process
corresponds to 1000 episodes. Finally, we fixed the T hreshold, indicated in Algorithm 3, to 30% to
avoid overloading the control plane, as will be justified in the next section.

6.4.2 Experimental Results

In order to evaluate the performance of our proposed DDCP approach, we first determine the best
DQN model based on the reward function weighting factors. Then, we determine the number of
controllers (i.e., clusters) p to be deployed. To do so, we compare our approach with the well-known
K-means clustering method. Then, we show the benefit of our approach in term of data plane
partitioning i.e., which switch assigned to which cluster. Thereafter, we evaluate its performances
in terms of CD, CL, ICD and ICT metrics. Finally, we perform a comparative analysis between
our proposed DDCP approach and three main schemes proposed in the literature: 1) Optimal and
Dynamic Controller Placement (ODCP) [109], 2) Dynamic SDN Controller Placement in Elastic
Optical Datacenter Networks (DSCP) [97], and 3) A Hierarchical K-means Algorithm for Controller
Placement in SDN-based WAN Architecture (HKCP) [93].
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As mentioned in equation (6.27), the reward function is composed of four performance metrics
(i.e., CD (CDt

i), CL (CLt
i), ICD (ICDt

i) and ICT (ICT t
i)) weighted by four parameters α , β , γ and ρ ,

respectively. These weighting factors play an important role to determine, in one side, the importance
of each performance metric, and on the other side the convergence of the Loss function, shown in
equation (2.19). To this end, we depict, in Fig. 6.4, the average value of each performance metric (i.e.,
CD, CL, ICD, ICT) after training the DQN agent under different number of training episodes (1000
episodes in total), while changing the weighting factors according to the following strategies:

• S1: this strategy considers only the control plane performance metrics (i.e., CD and CL):
α = 1

2 , β = 1
2 , γ = 0, ρ = 0.

• S2: this strategy considers only the data plane performance metrics (i.e., ICD and ICT): α =

0, β = 0, γ = 1
2 , ρ = 1

2 .

• S3: this strategy considers delay-throughput performance metrics (i.e., CD, ICD, ICT): α =
1
3 , β = 0, γ = 1

3 , ρ = 1
3 .

• S4: this strategy gives importance to all performance metrics: α = 1
4 , β = 1

4 , γ = 1
4 , ρ = 1

4 .

Fig. 6.4 Impact of varying the reward function weighting factors α,β ,γ,ρ on the CD, the CL, the
ICD and the ICT metrics

From Fig. 6.4, we can see that considering only the data plane performance metrics in strategy S2

causes obviously high values of CD, CL and ICD, while decreasing the ICT metric. The reason is
that some controllers are overloaded and experiencing congestion, while others are under-utilized. On
the other hand, strategy S3 shows better performances compared to strategy S2, since the CD metric
is taken into account. However, the control load (CL) is still high compared to the two remaining
strategies (S1 and S4) since this metric is not taken into account in the reward function of strategy S3.
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Considering the CL metric in strategy S1 improves the performances compared to the two strategies
S2 and S3. This shows the importance of balancing the load between the set of controllers in the
control plane. Finally, strategy S4, which takes into account all performance metrics (i.e., CD, CL,
ICD and ICT), outperforms all others strategies, showing high throughput, low intra-cluster delay,
low control delay, and low control load. Hence, according to these results, we adopt strategy S4 (i.e.,
α = 1

4 , β = 1
4 , γ = 1

4 , ρ = 1
4 ) for our subsequent experiments.

Let us now determine the optimal number/range of controllers (i.e., clusters) to be deployed p. To
do so, we plot in Fig. 6.5 the evolution of the reward and loss functions (as defined in equations (6.27)
and (2.19)) under different number of training episodes and using the aforementioned weighting
factors by adopting the strategy S4. We compare in Fig. 6.5(a) the following baselines:

• R4,R5,R6,R7,R8,R9: where Rp corresponds to the reward under the number of clusters p,
p ∈ [4..9].

Similarly, we compare in Fig. 6.5(b) the following baselines:

• C4,C5,C6,C7,C8,C9: where Cp corresponds to the cost under the number of clusters p, p ∈
[4..9].

Fig. 6.5 Impact of varying the number of clusters and the controllers placement while training the
DQN agent

From Fig. 6.5 (b), we can see that the Loss function for all studied baselines converges. On the
other hand, we can observe from Fig. 6.5 (a) that the mean reward increases while increasing the
number of clusters in the fist part of the range where p ∈ [4..6]. However, it starts to decrease in the
second part of the range where p ∈ [7..9]. The increase in the first part reflects the existence of new
clustering configurations (i.e., based on link latency) and controllers placement that lead to minimize
the CD, the CL and the ICD metrics. The decreasing in the second part of the range of p, can be
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Fig. 6.6 WCSS of K-means models under different number of clusters

explained by the fact that the increase in the number of controllers in the control plane impacts the
performances such as the CL metric. As a result, the number of controllers or clusters to be deployed,
according to our DDCP approach, corresponds to that of the maximum reward, which is equal to 6 in
our experiments. Next, for the sake of comparison, we take this range [4..6] for the variable p.

Let us now see the returned number of controllers p to be deployed when using the well-known
K-means clustering method. Recall that K-means is widely used in network partition problems [65]
and includes four main steps: 1) select p random points as cluster centers called Centroids, 2) assign
switches to the closest cluster based on the latency of links and their locations, 3) recalculate the
centroid for each cluster by computing the average of the assigned switches, 4) repeat steps 2 and 3
until none of the cluster assignments change.

To determine the number of controllers to be deployed using the K-means algorithm, we refer to
the Within Cluster Sum of Squares (WCSS) method [136], which computes the distance (i.e, delay in
our case) between a centroid of a cluster and each observation (i.e., switch in our case) based on which
it assigns the observation to the nearest cluster. To do so, we plot, in Fig. 6.6, the WCSS method after
training the K-means algorithm for maximum 300 iterations under different number of clusters of
switches, where WCSS is determined as follows:

WCSS =
p

∑
i=1

|wi|

∑
j=1

(x j− yi)
2 (6.28)

x j = (vsrc,vdst ,A(vsrc,vdst)),(vsrc,vdst) ∈ w2
i (6.29)

Where x j represents a link in the domain wi, in which vsrc,vdst are data plane switches and
A(vsrc,vdst) is the delay between them, the yi denotes the centroid of the domain wi. In this way, the
WCSS method consists in clustering the set of points x j in order to minimize the latency between
switches.

From Fig. 6.6, we can see that the average controller response time of WCSS continues to de-
crease, while increasing the number of clusters, since the more we increase the number of clusters, the
more we have a small number of switches in each cluster wi, which leads to minimizing the latency.
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However, this can lead to overload the control plane due to the increase of the number of controllers.
To this end, we select the number of clusters (i.e., controllers) when the WCSS starts to have low
values and be stable. Moreover, for the sake of comparison using our approach (i.e., DDCP), we
select a range of p values when the WCSS converges. This leads us to choose the range [7,8,9] for
the number of clusters p based on the K-means algorithm. This results in higher deployed clusters
compared to our DDCP approach, where the identified range of p is [4..6].

Fig. 6.7 Demonstration of the network clustering for the Reduced DDCP scheme
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Fig. 6.8 Demonstration of the network clustering for the DDCP scheme

To further show the benefit of our DDCP approach in term of data plane partitioning (i.e., which
switch is assigned to which cluster), we first compare it with the following baseline:

• Reduced DDCP, which corresponds to our proposed approach in which the data plane clustering
is determined by the K-means algorithm instead of the DQN agent, and where the number of
controllers to be deployed is p ∈ [4..6] (for the sake of comparison) and identified statically.

Fig. 6.7 and Fig. 6.8 depict the data plane devices allocated to each cluster by using the Reduced
DDCP and DDCP schemes, respectively, under different values of p. It is noteworthy that, we have
used the p values in the range [4,5,6]. Also, the reward function parameters of the DQN agent
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correspond to the strategy S4 (i.e., α = 1
4 , β = 1

4 , γ = 1
4 , ρ = 1

4 ). We can see that, when the number of
clusters p is equal to 4, the allocation of switches following the two schemes (i.e., Original DDCP and
Reduced DDCP) in Fig. 6.7(a) and 6.8(a) is completely different, since the DDCP scheme is based on
DQN that uses the previous clustering experiences, while the K-means method used in the Reduced
DDCP scheme, is based on recalculating the centroid of each cluster for each step of the model
training. When p = 5 (cf. Fig. 6.7(b) and Fig. 6.8(b)), we can observe more similarity, compared to
those when p = 4, mostly in the last cluster. When p = 6 (cf. Fig. 6.7(c) and Fig. 6.8(c)) the two
schemes achieve interestingly a close clustering result with a superiority of the DDCP approach in
terms of average CD, CL, ICD and ICT metrics, as clearly depicted in Fig. 6.9. This convergence in
clustering can be explained by the fact that, as the K-means considers only the clustering in the data
plane, referring to the DDCP approach to determine the number of clusters improves the performances.
However, it still causes some degradation comparing to the DDCP approach since the controllers are
identified statically in the reduced one, which increase the CD, the CL and the ICD metrics, as clearly
depicted in Fig. 6.9.

Finally, we perform, in the following, a comparative analysis between our proposed DDCP
approach and three main approaches proposed in the literature:

• ODCP [109], which consists in using a quadratic program to solve the controller placement
problem and determines the number of switches in each switch domain. After solving the
controller placement problem, it dynamically migrates switches in case of controller overload.

• DSCP [97], which is based on dynamically matching the set of controllers to the set of data
plane switches in order to maximize the resource utilization. Moreover, it dynamically balances
the traffic load and deploys the controllers.

• HKCP [93], which is a SDN network partitioning method based on the hierarchical K-means
algorithm. It considers the latency between the switches and their controllers as well as the load
balancing between the set of controllers.

We used the same experimental topology, described in Section 6.4.1, for all approaches. In
addition, to have a fair comparison, we have compared all approaches before and after switch
migration. Recall that the action that triggers the switch migration is the overloading of the control
plane. To this end, we used the following scenario:

We consider the set of controllers and data plane clusters obtained by using our DDCP approach
from Fig. 6.8, where the number of clusters is 5 before switch migration. Then, we force the switches
to overload the set of controllers by sending a high number of Packet_In. This will force the four
studied approaches (DDCP, ODCP, DSCP, and HKCP) to perform the migration of some switches to
new clusters and change the network topology.

First, it is interesting to see the impact of varying the Threshold defined in our DDCP approach
in the switch migration procedure. To do so, we vary this parameter, denoted by T h, between 10%
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Fig. 6.9 Comparing dynamic clustering and placement based on DQN and K-means methods

Fig. 6.10 Impact of varying the Threshold (T h) on the number of migrated switches and control delay
in the DDCP approach

and 40% and depict the number of migrated switches in Fig. 6.10(a). Recall that CLmig, defined
in equation (6.16) and used in the switch migration procedure, refers to the load balancing factor
between clusters. The more this factor is high, the more some controllers are overloaded compared to
the others. In this way, when CLmig exceeds the Threshold (T h), the migration process is triggered.
From Fig. 6.10(a), we can observe that the number of migrated switches increases while decreasing
T h, due to the difference in the load between the set of controllers. However, giving small values
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Fig. 6.11 Average resource utilization before and after switch migration

to T h may impact network performances since the migration will happen more frequently in this
case, which increases the control delay, as shown in Fig. 6.10(b). On the other hand, when T h is
high, the number of switches to migrate is low. However, clusters will be unbalanced in this case
since some controllers will be overloaded compared to the others. This results in increasing again
but more significantly the control delay, as shown in Fig. 6.10(b). A trade-off between the clusters’
load and the number of switches to migrate is thus necessary. According to Fig. 6.10, this trade-off is
achieved when the Threshold is equal to 30%. Hence, in our subsequent experiments, we fixed T h to
this obtained value.

Fig. 6.11 shows the average resource utilization in terms of CPU and RAM before and after switch
migration under all schemes. First, we can observe that, the migration process reduces considerably
the average resource utilization for all schemes. The gain is more significant when using our DDCP
approach, since it considers both control and data plane performance metrics (i.e., CD, CL, ICD and
ICT) in the reward function when deploying a new cluster, as opposed to the other schemes. Indeed,
the DDCP approach shows a decrease in CPU usage (respectively, RAM usage) of approximately 24%
(respectively, 28%). Compared to ODCP, DSCP, and HKCP, these gains are reduced to 10%, 5%, and
7%, respectively, for the CPU usage. On the other hand, for the RAM usage, these gains are reduced to
10%, 7%, and 9%, respectively. However, we note here that this implies an additional deployment of
a cluster (controller) in our DDCP approach since the number of clusters after migration is increased
to 6 in our experiment. In contrast, the three other approaches ODCP, DSCP and HKCP keep using
the same number of clusters already defined by the network operator.

Fig. 6.12 depicts the number of migrated switches for all schemes. We can see that both ODCP
and DDCP reduce the number of migrated switches. On the other hand, this number is higher in the
two remaining approaches (i.e. DSCP and HKCP), impacting thus the robustness of the network. In
fact, having a high number of switches to migrate increases the signalling overhead, impacting thus
the controllers’ load and the network stability.
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To further show the benefit of our DDCP approach, we plot in Fig. 6.13 the delay-throughput
performance metrics (i.e., CD, ICD and ICT) for all schemes. We can see that the DSCP scheme
increases the intra-cluster delay and decreases the throughput, since those metrics are not considered
when clustering the network. On the other hand, both HKCP and ODCP schemes show better
performances, as they take into account additional parameters such as the delay between the controllers.
Finally, we can see that our DDCP approach outperforms all other schemes, showing higher throughput
and lower delay compared to the others, thanks to the use of the DQN agent with a more complete
reward function to solve the controllers’ placement problem. However, this comes at the expense of
an additional deployment of a cluster/controller in the control plane, as stated previously. It is worth
noting that, as several controllers need to be deployed in several locations, the network will be more
susceptible to different security challenges and threats.

Fig. 6.12 Comparison of number of migrated switches under ODCP, DSCP, HKCP and DDCP schemes

Fig. 6.13 Delay-Throughput metrics evaluation under ODCP, DSCP, HKCP and DDCP schemes
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6.5 Conclusion

How many controllers to use in the control plane, where to place them, which switch in the data plane
must be controlled by which controller represent challenging questions in SDN. To address these
important questions, we used optimization techniques to determine the optimal number of controllers,
their optimal placements and the optimal clustering of data plane switches. Because the formulated
optimization problem is NP-Hard, a simple yet computationally efficient heuristic algorithm, called
DDCP, was proposed and implemented. Our approach solution approach can be used as part of
the knowledge plane to optimize control and data plane operations, by deploying a DQN agent that
dynamically determines the optimal policy mapping the set of states (clusters of switches) to the set of
actions (the set of controllers in specific locations). Experimental results, showed the effectiveness of
our approach in identifying the appropriate number of controllers to be deployed and the clustering of
data plane switches around these controllers. Moreover, our experiments showed that, the DQN agent
outperforms the well known K-means clustering method as well as three main methods proposed in the
literature by decreasing the control delay, the control load, and the intra-cluster delay and increasing
the intra-cluster throughput. However, this comes at the expense of an additional deployment of a
cluster/controller in the control plane.
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7.1 Conclusion

SOFTWARE Defined Networks (SDN), Network Function virtualization (NFV), Network Slicing,
Cloud Computing (CC) and Machine Learning (ML) are the key enablers towards the fifth

generation (5G) networks. More specifically, combining ML with these technologies to achieve
automation and high performances has gaining momentum in the last few years, due to the availability
of a large amount of data, the global view of the network as well as its separation from the hardware.
In this way, we addressed, in this thesis, QoS-aware routing, Network Slicing and SDN controller
placement by taking advantages from ML techniques in a context of a physical and emulated testbeds.
After a detailed overview of the main concepts used in this thesis such as 5G requirements and
challenges, 5G architecture, SDN and ML, as well an overview of the approaches found in the literature
regarding our three axes of research identified in this thesis, we describe our three contributions.

Our first contribution was to present a method for rules placement following the Knowledge
Defined Networking (KDN) paradigm, in which the network routing is dynamically optimized by
deploying in one side a Deep Q-Network (DQN) agent that dynamically determines the optimal
policy mapping the set of states (Traffic Matrices) to the set of actions (changing the vector of
link weights) and on the other side, a Traffic Prediction module based on three prediction methods
LSTM, ARIMA and LR on the Knowledge Plane (KP), in order to avoid congestion. Thereafter,
we mathematically formulated the problem of minimization of the total delay, packet loss and link
utilization as a linear program (LP). Then, we proposed a heuristic called DQN and Traffic Prediction
based Routing Optimization (DTPRO) that dynamically interacts with the KP, DQN and Traffic
Prediction modules. Results showed that our approaches are able to achieve significant gains in terms
of routing optimization. Moreover, by combining DQN with Traffic Prediction, we showed that delay,
packet loss and link utilization can be decreased, more specifically with the prediction method LSTM,
that achieved a high estimation accuracy compared to traditional prediction methods ARIMA and LR.

As a second contribution for this thesis, we have addressed the design and implementation of a
novel architecture based on SDN and Machine Learning techniques for enabling creation, modification
and continuity of radio and transport network slices, while considering their performances and QoS
requirements. To this end, we have firstly incorporated the SDN paradigm to an 5G architecture in
both the Radio Access Network (RAN) through FlexRAN and the Packet Network through ONOS.
Moreover, we have extended a version of OVS that we patched to handle GTP packets. Thereafter,
we mathematically formulated the sharing of RAN and PN resources as a LP, where the optimization
problem is to minimize the total network delay, link utilization and packet loss. To solve the formulated
problem, we have proposed a Congestion prediction and Load balancing Rule (CLR) placement
algorithm. Experimental results showed the feasibility of our proposed solution for handling E2E
slicing continuity in real-time. More specifically, the use of ML techniques improves dramatically the
performances in terms of latency, packet loss and throughput as compared to classical schemes.

Our third and last contribution focused on the SDN controller placement. We have presented a
method that dynamically determines how many controllers to use in the control plane, how to place
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them and the corresponding controller for each switch. To this end, we have firstly mathematically
modeled the problem. Thereafter, we have proposed and implemented a heuristic called Deep Q-
Network based Dynamic Clustering and Placement (DDCP) algorithm following the KDN paradigm,
which interacts with a deployed DQN agent that dynamically determines the optimal policy mapping
the set of states (clusters of switches) to the set of actions (the set of controllers in specific locations).
Results showed the efficiency of using the DQN for controllers and switches clustering and placement
as compared to the clustering method K-means, in terms of decreasing the control delay, the control
load and the intra-cluster latency.

It is worth noting that in chapter 5, one of our contributions consisted in building a novel testbed
for evaluating our proposed approach, due to the lack of implementation from related works. In this
way, we built and implemented an E2E 5G platform according to the SDN paradigm, in which we
introduced the SD-RAN FlexRAN controller to the access network and the SDN controller ONOS to
the transport network of the 5G architecture. Moreover, two real slices have been installed namely
eMBB based on mobile connectors as well as an IoT platform to investigate the network slicing
concept. Furthermore, the whole testbed was implemented and deployed based on container and
orchestration technologies such as Docker and Docker Swarm.

7.2 Future Work

In this thesis, we addressed routing optimization, congestion detection, traffic prediction, network
slicing and controller placement in SDN networks. However, there is still work to be done and our
contributions can open up further research directions.

In chapter 4, we addressed the routing optimisation and traffic prediction according to the KDN
paradigm, where two modules have been deployed in the Knowledge Plane (KP). Moreover, a
Network Measurement module is deployed on the control plane to dynamically collect statistics from
the data plane. Due to the maturity of SDN technology, there are lack of implementation of SDN in
physical switches. As a result, the Network Measurement module feeds the KP module from emulated
traffic. It is thus challenging to apply these approaches in real networks. To this end, future directions
will consider data collected from a large real networks. Additionally, adding new layers to the SDN
architecture in the KDN paradigm might limit the performances in terms of inter-layer delay. As such,
considering this factor is also one of our future directions. Finally, in future works the application
type will be considered to take decision such as traffic routing and prediction.

In chapter 5, we addressed the creation, modification and continuity of radio and transport network
slices in a 5G architecture in both the RAN and the Packet Network. As the traffic is transported in
the 5G platform through the GTP protocol, we extended a version of OVS to handle GTP packets.
However, this extension did not support the OpenFlow protocol which prevents us from using a
large transport network. Extending the OpenFlow protocol in OVS to support GTP traffic will be the
target of future works. In addition, the proposed approach supports only two types of slices : eMBB
and IoT and these slices are detected in the Packet Network through the slices identifiers not from
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inspecting the packet, which can be challenging in the case of several slices. In this way, identifying
traffic type based on SDN as well as increasing the number of slices will be considered in future
directions. Moreover, the traffic is limited when using the USRP card in the RAN. To this end, the
use of collected data from real network can be targeted in future works. Finally, the network slicing is
implemented only in the Access and Packet Networks. Implementing Network Slicing in the Core
Network is also one of our future perspectives.

We proposed in chapter 6 a method based on DQN to dynamically determine how many controllers
to deploy in the control plane, where to place them and their corresponding data plane domains. As a
first perspective here, only the K-means method was used to compare with the proposed approach. To
this end, more clustering methods will be considered in future works to evaluate the DDCP algorithm.
Moreover, combining the proposed solution with the E2E network slicing concept will be targeted in
future works.

7.3 Publications

This section lists our published papers within our thesis.

Journals:

1. E. H. Bouzidi, A. Outtagarts, R. Langar, and R. Boutaba. Dynamic Clustering of Software
Defined Network Switches and Controller placement using Deep Reinforcement Learning.
Submitted to Elsevier Computer Networks.

2. E. H. Bouzidi, A. Outtagarts, R. Langar, and R. Boutaba. Deep Q-Network and Traffic
Prediction based Routing Optimization in Software Defined Networking. submitted to Elsevier
Journal of Network and Computer Applications (JNCA), under revision for a second round.

Conferences:

1. E. H. Bouzidi, D. Luong, A. Outtagarts, A. Hebbar, and R. Langar. Online-based learning for
predictive network latency in software-defined networks. In 2018 IEEE Global Communications
Conference (GLOBECOM), pages 1–6, Dec 2018. doi: 10.1109/GLOCOM. 2018. 8648063.

2. E. H. Bouzidi, A. Outtagarts, and R. Langar. Deep reinforcement learning application for
network latency management in Software Defined Networking. In 2019 IEEE Global Commu-
nications Conference (GLOBECOM), pages 1–6, 2019.

3. E. H. Bouzidi, A. Outtagarts, A. Hebbar, R. Langar, and R. Boutaba. Online based learning for
predictive end-to-end network slicing in 5g networks. In ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), pages 1–7, 2020.
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Workshops/Demonstrations:

1. E. H. Bouzidi, A. Outtagarts, A. Hebbar, and R. Langar. "Slicing Optimisé des Réseaux
5G pour l’Internet des Objets", (FUI SCORPION project, 2020), Nokia Bell Labs France,
Paris-Saclay, 7 Route de Villejust, 91620 Nozay, France, 10 Sept. 2019.

Technical Reports:

1. E. H. Bouzidi, and A. Outtagarts, "SDN-based dynamic network slicing continuity", (Deliver-
able 4.3, FUI SCORPION Project), partnering with University Gustave Eiffel, Vertical M2M,
Virtual Open Systems, and University La-Rochelle, 23 Aug. 2019.
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