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Abstract

Phosphate adsorption on oxides is of significant interest in heterogeneous catalysis. The
CoMoS/γ-Al2O3 hydrodesulfuration catalyst which is used at the scale of petroleum
refinement, uses phosphate additives for preparation. Its preparation follows the stages of
wet incipient impregnation, drying and activation by thermal treatment. Understanding
the chemistry involved in these processes requires models of the oxide-water and oxide-air
interfaces at different temperatures, which are also of interest in different fields. Oxide
surfaces like γ-Al2O3 are by themselves very complex, which renders the characterization
of surface phosphate species even more intricate.

Yet by today, improved NMR spectroscopic methods complemented with proven
computational models allowed us now to mold an atomistic model of phosphate speciation.
The present work starts with the creation of a systematic database by exploring more than
1000 geometries at different adsorption modes, adsorption sites, degrees of coverage and an
optimized hydrogen bond environment for two polyphosphate species. For the most stable
results magnetic shielding was calculated at DFT level. Good agreement was achieved
with 31P NMR experiments at drying conditions. Liquid conditions were simulated using
metadynamics and showed a different set of most stable species. The explored reaction
energies and kinetic barriers consistently show that elevated temperatures are needed
to form the experimentally observed species. A 31P NMR prediction model based on
machine learning of chemical shifts from the local structure was developed to access
chemical shifts in dynamic simulations.

3





Resumé

L’adsorption des phosphates sur les oxydes présente un intérêt significatif pour les
catalyseurs hétérogènes. Le catalyseur d’hydrodésulfuration CoMoS/γ-Al2O3 qui est
utilisé à l’échelle du raffinage du pétrole, utilise des additifs phosphatés pour sa préparation.
Sa préparation suit les étapes d’imprégnation humide, de séchage et d’activation par
traitement thermique. La compréhension de la chimie impliquée dans ces processus
nécessite des modèles des interfaces oxyde-eau et oxyde-air à différentes températures, qui
présentent également un intérêt dans différents domaines. Les surfaces d’oxyde comme la
γ-Al2O3 sont en elles-mêmes très complexes, ce qui rend la caractérisation des espèces de
phosphate de surface encore plus compliquée.

Pourtant, aujourd’hui, les méthodes améliorées de spectroscopie RMN complétées par
des modèles de calcul éprouvés nous ont permis d’élaborer un modèle atomique de spécia-
tion des phosphates. Le présent travail commence par la création d’une base de données
systématique en explorant plus de 1000 géométries à différents modes d’adsorption, sites
d’adsorption, degrés de couverture et un environnement de liaison hydrogène optimisé
pour deux espèces de polyphosphates. Pour obtenir les résultats les plus stables, le
blindage magnétique a été calculé au niveau DFT. Un bon accord a été obtenu avec les
expériences de 31P RMN dans des conditions de séchage. Les conditions liquides ont été
simulées en utilisant la métadynamique et ont montré un ensemble différent d’espèces
les plus stables. Les énergies de réaction et les barrières cinétiques explorées montrent
systématiquement que des températures élevées sont nécessaires pour former les espèces
observées expérimentalement. Un modèle de prédiction 31P RMN basé sur l’apprentissage
automatique des déplacements chimiques à partir de la structure locale a été développé
pour accéder aux déplacements chimiques dans les simulations dynamiques.
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Introduction

Catalysts consist of active sites at which the reactions take place that would not occur

otherwise due to considerable energy barriers. For a catalyst to be economically viable, it

has to be ensured that the amount of active sites is maximized. In heterogeneous catalysts,

this is typically done by dispersing the active phase on a support with a high specific

surface area. The preparation of these catalysts is delicate and demands well-controlled

processing steps. It starts from a suitable support material which is impregnated with

a solution containing, for example, metal precursors and additives. The impregnated

support is then dried to remove the solvent and activated by thermal treatment, whereby

catalytically active sites are formed.

The advantage of heterogeneous catalysts is that the support can be a cheap mineral

or oxide like alumina or silicates which carries small amounts of a highly dispersed active

phase. However, it also means that several components are involved in the course of

a reaction – at least the support, active phase and reactant. On top of this, several

additives are commonly used during preparation. At the mesoscale, material transport

within the support influences the preparation as well as the performance of the final

catalyst. Much of the knowledge about the preparation of heterogeneous catalysts is

based on empirical knowledge and it is difficult to rationalize the effect of each component

without accurate models. For example, several organic and inorganic compounds, e. g.

phosphoric acid, are known to improve the final catalyst, but it is yet unclear what the

effect of those additives is during preparation and how they can impact the catalytic
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Introduction

performance. Moreover, organic additives are typically removed during the drying or

activation steps of preparation, while phosphates would remain as part of the catalyst.

This raises more questions about the actual role of phosphates in every preparation step

and the final catalyst.

An important example for such a catalyst is the γ-Al2O3-supported cobalt molybdenum

sulfide catalyst (CoMoS/γ-Al2O3) that is used in petroleum refinement for hydrodesul-

furization (HDS) and hydrodenitrogenation (HDN) treatments.[1–3] At this scale, it is

critical to optimize the efficiency of the catalyst as well as the use of materials which also

includes ingredients for the catalyst. More aspects such as aging determine the overall

life span of the catalyst. An optimum phosphate concentration at the oxide support must

be targeted to avoid the formation of undesirable and inactive phases during activation.[2]

Precise control over the phosphorus content and its dispersion on the catalytic support

will not only impact the catalyst performance but can also minimize the consumption of

phosphates.

Van Cleve et al. have demonstrated that phosphonate deposition increases the hy-

drothermal stability of γ-Al2O3, hindering the phase transition to boehmite and thus

allowing the use of this support in aqueous phase reforming processes.[3] Phosphates

may be added to the impregnation solution in order to modify the interplay between

various metal ions in the solution and their behavior inside the alumina pores.[1] Here,

the authors argue that phosphorus influences the interaction of the metallic precursors

with the support and impacts the dispersion, size and morphology of the active phase.[4]

More recently, van Haandel et al. reported that the activity of hydrodesulfurization

CoMoS catalysts was improved by adding phosphate since it reduced the formation of the

undesired Co9S8 phase.[5] This is again showing that phosphorus impacts the synthesis of

the active phase.

Van Veen et al. suggest that an undesirable aluminium phosphate phase appears at

high phosphate loading, when only using phosphates and molybdates for the catalyst

8



preparation.[6,7] However, those are added together with other additives and metal

precursors during catalyst preparation, leading to a much more complex multicomponent

mixture. Combined spectroscopic studies (Raman, IR, UV/vis and Raman/NMR) show

that the phosphate–γ-Al2O3 interaction is most critical.[8,9] Phosphoric acid is usually

co-impregnated with other salts during catalyst preparation and Bergwerff et al. show

that the speciation of these co-impregnation solutions can be extremely complex.[1,8] In

some cases, the chemical equilibrium can shift towards the formation of precursor species

of aluminium phosphates at the surface of alumina.[10–12] Moreover, it was shown that

phosphate interacts more strongly with the alumina surface than molybdenum species by

various characterization techniques such as spatially resolved Raman, UV/vis and NIR

spectroscopy as well as by Magnetic Resonance Imaging combined to Streamline Raman

Imaging.[8,9]

According to the results of in situ EXAFS experiments by Nicosia et al.,[13] phosphates

increase the saturation of active edges in CoMoS/γ-Al2O3 catalysts. The authors ratio-

nalize their findings with support deactivation by phosphates. Several characterization

studies have already been devoted to the intricate connection between the speciation of

phosphate on the surface of the support as function of concentration, and its beneficial or

deleterious effects in catalysis. X-ray absorption spectroscopy revealed that the presence

of phosphate modifies the local environment of Mo at the metal-support interface.[13]

However, no direct insight into the phosphate local environment could be deduced from

those studies. Although IR-based experiments on dry samples and samples in solution

demonstrate an interaction between phosphate anions and γ-Al2O3 carriers, it remains

difficult to unambiguously assign the adsorption mode of phosphate anions.[14–16] At

the H2O/corundum interface, it was proposed that phosphate binds to corundum in a

bidentate adsorption mode (two phosphate oxygen bind to the surface).[17] These studies

rely on the comparison against the experimental spectra of known reference samples

or against DFT studies, but this assignment remains difficult to achieve in the case of
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Introduction

adsorbed phosphate anions, since the vibrational frequencies cannot be deconvoluted

unambiguously.

Computational models of the atomic scale of the materials can be of great help to

disentangle the findings of these studies. However, in order to do this, these models

must be developed in close connection with experiments. It is in fact straightforward

to construct a few model geometries and find patterns within them that match some

of the experimental observations. The problem with this approach is that it might be

biased towards the experimental observation, and this is ultimately not the same as an

open-ended systematic search. In contrast, it is much more complicated to demonstrate

that the model is plausible from a theoretical and experimental perspective. Even more

important, this approach paves the way for predictions of experimental results and

suggestions for new experiments. In the future, it might allow for the generation of new

catalyst designs by computational modelling. For this purpose, a catalyst model needs

to include all relevant components, and it must be shown that it is likely to form at

synthesis conditions, but – most importantly – it needs to be consistent with all the

experimental observations. At the same time, the model design needs to be feasible for

testing with the available computational resources. For the ambitious goal – to fully

understand the heterogeneous catalyst – one needs to know all interactions between the

individual components. This work intends to elaborate on one of these interactions, that

between phosphates and γ-Al2O3 during impregnation and at drying conditions.

The first challenge in this endeavor is to construct a model that accurately reflects the

experimental conditions. In order to avoid missing any potentially relevant structures and

to keep the research open-ended, the initial search was focussed on finding a computational

protocol that is feasible with the available resources, minimizes bias and is testable. For

phosphate adsorption on an oxide surface, the number of adsorption sites largely depends

on the complexity of the alumina surface. Moreover, phosphate itself is a complex

10



compound that due to its hygroscopic nature has to be discussed in context of water

content, and which can polymerize at drying conditions.

Chapter 3 gives a comprehensive insight into how more than 1000 geometries were

explored by density functional theory (DFT) calculations. Clearly, the real surface species

cannot be represented by a single reference adsorption state. However, it will be shown

in this chapter, how a relatively small number of structures can be chosen unambiguously.

The resulting geometries were selected by their free enthalpies. The second challenge is

to verify those model structures with experimental results.

In chapter 4, chemical shifts were calculated for these selected geometries and compared

with 31P-MAS NMR experiments, that were done in collaboration with researchers at

Centre de RMN à Très Hauts Champs (Université de Lyon) and IFP Energies nouvelles.

This work is published in ref. [18]. It is also illustrated here, how well the most stable

systems agree with experimental NMR spectra. Overall, excluding all but the most

favorable systems is a straightforward method of information reduction and allows to

extract conclusions by direct comparison.

It was also used later in chapter 5 in order to choose the adsorption mode for biased

molecular dynamics calculations. The questions in this chapter are, how does phosphate

behave under impregnation conditions? And which adsorption states are accessible by

kinetics? Biased molecular dynamics (metadynamics) were used in order to test the

adsorption and desorption mechanism as well as several more complex phosphorylation

reactions between phosphates, water and the most important surface sites. It is not

feasible to evaluate all geometries produced with the initial exploration, thus in chapters

3 to 5, trends are only identified within a hand full of structures. However, different

evaluation methods permit the use of hundreds or all of the test structures and extract

data in histograms and averaged structure parameters (bond lengths, angles, etc). Such

methods, today often referred to as data mining and machine learning, allow to search for
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complex patterns in the data. The difference between these two methods is quite subtle

as they are both used to give a rationale for certain trends and to obtain predictions.

This aims at a third challenge, which is to identify general trends in the produced

data. In chapter 6 we tested several chemical descriptors and machine learning methods

to construct NMR chemical shift prediction schemes. This prediction scheme is built

using the geometries from chapter 3 by identifying the complex structure-chemical shift

relationships. Chemical shift estimates are of comparable accuracy as DFT but orders of

magnitude faster, reducing the calculation time from several hours to fractions of a second.

This would allow 31P NMR predictions for larger adsorption systems and trajectories

from molecular dynamics. Beyond the mere construction of a faster prediction system

based on geometries, the presented machine learning methods can also give insight into

the leading components that influence the chemical shift.

In its broader context, this work is based on ongoing scientific efforts that aim at

an improved understanding of alumina surfaces and phosphate chemistry. Much work

has been done in the area of solid state NMR spectroscopy, while experimental method

development allows for more and more complex experiments. For computational modelling,

a variety of bulk and surface models of transition alumina are available nowadays,

some of them well established.[19–24] While several adsorption studies of phosphates

and phosphonates on oxide surfaces exist, the mechanistic insights are still limited.

Mechanistic studies of phosphates are much better covered in molecular biology and

one of the ideas tested in this thesis is if their methods can be transferred to mineral

surfaces. The following chapter gives an overview of what has been done in the area

of phosphate chemistry and applications in general as well as adsorption in particular.

That includes the currently available methods for sensitive 31P NMR experiments and

the current knowledge about reaction kinetics of several reactions involving phosphates.

12



1. State of the Art

This chapter will first present the role of phosphates and transition alumina in different

research areas as well as applications in several industrial sectors. The following sections

will give an overview of many fields where the different phosphate interactions are

important, followed by a review of the phosphate chemistry relevant in this work and the

currently available spectroscopic methods. In particular, recent improvements in surface

enhanced NMR techniques permitted complex 31P quantum correlation experiments and

the generation of two-dimensional 27Al– 31P NMR spectra.[18] The last sections review

the current state of the available γ-Al2O3 bulk and surface models.

1.1. Importance of phosphate-mineral interactions

Phosphate interactions with very different environments play a critical role in natural

and human-made materials but our understanding of these systems is still limited.

These materials include catalyst supports and minerals, which are important in the

chemical industry and agriculture, as well as macromolecules in biological systems. Most

phosphorus-containing chemicals are derived from phosphates, in which phosphorus binds

to four oxygen atoms. The simplest and most common phosphates are based on the

orthophosphate anion PO3–
4 and its protonated derivative HPO2–

4 , H2PO–
4 and H3PO4.

Orthophosphates are common in minerals and esters, typically with all protons substituted

by cations (Ca2+ in apatite, Al3+ in berlinite) or organic moieties. Phosphorus is rather

13



1. State of the Art

abundant (0.1wt% of the Earth’s crust, mostly in sediments of phosphate rock),[25,26]

and is involved in countless applications and natural processes. Its use in fertilizers,

agrochemicals, detergents, corrosion inhibitors, food additives and pharmaceuticals gives

it a critical role in modern civilization. Due to its range and scale of usage, phosphorus

is listed as a critical raw material by the European Commission.[27]

The synthesis of phosphorus chemicals is still wasteful and has a high potential for

optimization towards more energy-efficient processes and minimization of by-products.[28]

Moreover, phosphorus-based agrochemicals and detergents pose a yet incalculable risk to

surface waters.[29,30] In particular, the assessment of the environmental impact depends on

our understanding of adsorption and degradation processes on soil minerals. Agriculture

is certainly the most ubiquitous sector where the interaction of soluble phosphates with

aluminosilica in soil has an essential contribution to crop yields and fertilizer consumption.

Torres et al. studied the bioavailability of phosphate, that is the availability of monomers

(orthophosphate) in aqueous solution.[31] They found different rates for polyphosphate

hydrolysis and adsorption depending on the soil and the involved polyphosphates. These

bioavailable phosphates are free inorganic phosphates in groundwater and water bodies

like lakes, rivers and oceans. Eutrophication, due to fertilizers from mined phosphates that

accumulate in those water bodies, also becomes an emerging concern.[28] Its symptoms

are in some cases treated with alumina compounds. Phosphate management of lakes

is already done for more than 50 years by precipitation with Al(OH)3.[32] Its success,

however, depends a lot on the presence of other ions and aging characteristics which

demands a well tuned, holistic strategy.[33–35] In this context it would certainly be of

help to understand the adsorption kinetics of phosphates on Al(OH)3. Another recently

published study emphasized the importance of free phosphates in order to produce

accurate Earth system models for climate change prediction.[36]

Phosphate compounds are also one of many standard compounds needed in large

scale industrial processes. For heterogeneous catalysts based on alumina substrate,
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1.1. Importance of phosphate-mineral interactions

phosphoric acid is generally added during the impregnation step. It is reported that

phosphoric acid increases the final catalytic performance in hydrodenitrogenation (HDN)

as well as hydrodesulfurization (HDS) treatments.[4] This behaviour is rationalized as

a surface effect with the commonly used γ-Al2O3 substrate as well as inducing changes

to metalpolyanions in the impregnation solution. There is a general agreement in the

literature that phosphates and phosphonates strongly interact with γ-Al2O3 surfaces but

it was also reported that phosphate is incorporated in dissolved metal precursors.[1,3,8]

The presence of phosphorus in biomolecules like ATP, biopolymers like DNA or

biominerals such as tooth enamel, underlines its existential biological role.[37,38] Nucleic

acids like RNA and DNA are phosphate condensation products, as well as adenosine

polyphosphate like ATP and ADP for which there still remain many open questions

regarding their reactivity, formation and contributions to biochemical processes.[39,40]

A more fundamental question that may also involve mineral surfaces and phosphates

is, which chemical processes may have lead to the first proto-biochemical structures on

Earth.[41,42] According to Georgelin et al. a key piece for those early proto-biochemical

phosphate condensation reactions could be reactions on alternating wet and dry silicate

surfaces as produced at ocean shores by tides.[41] Kee et al. propose a reaction with a

phosphite precursor in presence of Ca2+ ions.[42]

All these examples show research in very different contexts but the problems that

were faced in them are similar throughout the areas of interest. Phosphates can strongly

interact with mineral surfaces or even be a part of a mineral, while they simultaneously

interact with several other components in the system, in solution or at dry surfaces.

One integral part of understanding any of those systems is to understand the role of

phosphates as adsorbate species. Based on accurate phosphate adsorption models, one

can add further components depending on the system of interest. This strategy should

enable one to eventually build comprehensive models and understand these complicated

systems in industry or nature in much more detail.
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Figure 1.1.: Condensed phosphoric acid molecules: a) orthophosphoric acid, H3PO4; b)

pyrophosphoric acid, H4P2O7; c) triphosphoric acid, H5P3O10; d) trimetaphosphoric acid,

H3P3O9; e) isotetrametaphosphoric acid, H4P4O12

1.1.1. The condensed phosphates

Phosphates can assemble in polymer chains, rings and even form cross-links between those

chains by condensation reactions, where for each link, one H2O is removed. Pyrophosphate

H4P2O7 (fig. 1.1b) is the first polyphosphate that consists of more than one phosphate

group, and besides orthophosphate (fig. 1.1a) the only polyphosphate with an individual

retained name. Longer phosphate chains are, for example, triphosphate H5P3O10 (fig. 1.1c)

or tetraphosphate H6P4O13. The chemical formula of such linear chains is Hn+2PnO3n+1

which is equivalent to (HPO3)n(H2O). HPO3 is a metaphosphate or phosphoryl group

(in this work it will always be referred to as metaphosphate).[43] Ring-shaped phosphate

polymers are called polymetaphosphates based on the fact that the molar weights of

their ions, [PO3]n –n are exact multiples of the metaphosphate group. The smallest

stable polymetaphosphate consists of three condensed phosphates and forms a six-

membered ring (fig. 1.1d). Their chemistry is similar to long polyphosphates, where the

number of terminal groups is negligible, but long polyphosphates are not water soluble.

Overall, they are less prone to hydrolysis which occurs preferably at the chain ends.[31,44]

Moreover, long polyphosphate chains slowly decompose at 60°C, thereby also forming

trimetaphosphate. Thilo theorizes that therefore the polyphosphate chains are folded or

in a helical structure.[43] Even higher degrees of condensation exist in form of cross-linked

polyphosphates where ring or chain phosphates are phosphorylated in a third direction.
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1.1. Importance of phosphate-mineral interactions

Those are characterized by a local chemical environment where, instead of one or two

P–O–P bridging bonds, three bridging bonds start from the same phosphorus atom.

Consequently, these bonds are higher in energy and significantly less stable. They may

occur in polyphosphate glasses at high temperatures and in absence of water. One small

molecular representative of these phosphates is the phosphorus oxide which forms P4O10

molecules, and the isotetrametaphosphate (fig. 1.1e) that is formed during hydrolysis of

the former.[43] There is considerable experimental research done in the field of phosphate

condensation, also including several accurate measurements of thermodynamic and kinetic

data that were carried out over the last decades.[31,44–47]

1.1.2. Computational studies of phosphate condensation

From a computational perspective, phosphate condensation studies can involve a wide

variety of condensation products. Early attempts (25 years ago) to computationally

reproduce the reaction energy for pyrophosphate hydrolysis only showed qualitative

agreement with experiments.[48] While accurate quantum mechanical methods were

used (Møller–Plesset perturbation theory, MP2), the models only represented static gas

phase molecules without entropy contributions. Nevertheless, these models still gave

a first insight with structural information like accurate molecule geometries including

intramolecular hydrogen bonds. A much more recent computational study by Tripathi

et al. disentangles the hydrolysis reaction mechanism of guanosine triphosphate involving

explicit solvent molecules in a mixed quantum mechanics/molecular mechanics (QM/MM

) metadynamics approach.[49] Compared to the early models, their study includes the

statistical dynamic properties and resolves free energy differences as well as barriers.

Similar studies by Prasad et al. and Glaves et al. address the same hydrolysis reaction in

different biochemical environments and discuss the mechanistic details, like concerted

or stepwise reactions.[50,51] Adsorption studies with inorganic material interfaces are, in

comparison to biochemical and organic chemical studies, still at their infancy, also because
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complex modelling techniques such as QM/MM are not always available due to the lack

of parameters for heavy elements in force field parts. On alumina or oxidized aluminium

surfaces, phosphate or phosphonate adsorption is commonly modelled as part of a range

of compounds; for example, in context of lubricant or corrosion inhibition studies.[52–54]

Hence, phosphate adsorption is embedded in context with several different adsorbing

groups, but mechanistic details of adsorption were not in the scope of these studies.

To my best knowledge, no studies exist that simultaneously include oxide adsorption

and condensation phenomena of phosphates. Phosphate condensation reactions are in

general phosphorylation reactions, but these reactions could not only occur at the alumina

surface but also with the surface itself. The following section will give a comprehensive

explanation of the challenges involved in phosphorylation reactions.

1.1.3. The phosphorylation reaction

In a simplified context, phosphates may be considered as constant structural PO4 units

which is justified in perspective of the strong P–O bonds involved. However, several

elementary reactions involve P–O bond breakage and formation. Among those are

polyphosphate condensation and hydrolysis as well as formation of phosphate esters,

both of which are critical reactions in biochemistry. In the context of surface speciation,

phosphorylation reactions have not yet been investigated. However, they might be crucial

in order to explain the formation of some surface species as during some of the preparation

steps, the reaction conditions are likely to allow these reactions.

Phosphorylation reactions have some noticeable similarities with nucleophilic substi-

tution reactions known in organic chemistry. A metaphosphate group (PO–
3 ) is moved

from one moiety to the other. With an attacking group Y and a leaving group X, this

can be written as:

XPO2−
3 + Y − −−→ X− + Y PO2−

3 (1.1)
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1.1. Importance of phosphate-mineral interactions

For simpler equations, X and Y are assumed to be anionic moieties with one negative

charge, and the metaphosphate moiety to be deprotonated. These conditions occur in

strong alkaline environments. In neutral or acidic environments, the reaction could be:

XPO3H− +HY −−→ HX + Y PO3H− (1.2)

with X and Y as well as the metaphosphate protonated. By substituting X = OH−

and Y = HPO2−
4 in eq. 1.1 or 1.2, the equations describe pyrophosphate condensation;

swapping X and Y results in pyrophosphate hydrolysis. Instead, one can also substitute

Y with a surface oxygen site, which would lead to the phosphorylation of that site. This

would allow to add phosphates in those positions where a substitution of oxide ions

would be otherwise unlikely. The protonation states in eq. 1.1 and 1.2 are a necessary

simplification to express reaction equations, since the actual protonation states are

generally not known. In fact, proton transfer reactions are critical components for

understanding phosphorylations.[40]

Most importantly, another reaction intermediate is possible. While nucleophilic substi-

tution reactions are well understood in terms of eliminations (SN1) or concerted reactions

(SN2), phosphorylations also allow for initial additions. In fact, stable penta- and even

hexavalent oxo-phosphate complexes are well known.[55,56] This leaves many more possible

reaction pathways than, for example, in case of nucleophilic substitutions. The overall

reaction is either limited by the P-O bond breakage/formation or by proton transfer.

Fig. 1.2 gives an overview of the range of possible reaction types. The two reaction

schemes summarize the range of reactions and intermediates for P–O bond formation

and cleavage as a starting point to systematically analyze the whole phosphorylation

reaction as a function of two bonds. Ref. [40] and [51] use a third axis to extend fig. 1.2 for

proton transfer. However, by including protonation states of PO–
3 , X- and Y- separately,

one needs to define up to three more axes in general, which corresponds to up to five
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Figure 1.2.: Phosphorylation reaction between sites X and Y, where vertical and horizontal

directions refer to bond cleavage and formation with each site, respectively. Either con-

certed reaction or two types of intermediates can be expected: the addition complex with

pentacoordinated phosphorus (top right) or elimination with a metaphosphate intermediate

(bottom left). In strong alkaline environments (a), the reaction is only driven by formation

and cleavage of phosphorus bonds. In neutral or acidic conditions (b), the reaction also

depends on proton transfer reactions that have to be considered in every reaction path.

dimensions for searching transition states and intermediates. According to ref. [51], it is

also important to ask for the number of involved H2O molecules in the proton transport,

which adds yet another dimension to the reaction mechanism.

The most fundamental reaction is the hydrolysis of pyrophosphoric acid (H4P2O7)

to form two orthophosphoric acid molecules (H3PO4) in aqueous solution. Several ex-

perimental studies have produced thermodynamic and kinetic data for this hydrolysis

reaction. The first deprotonation of orthophosphoric acid and the first two deprotonations

of pyrophosphate occur rapidly, hence the hydrolysis of H2P2O2–
7 to 2H2PO–

4 is a reason-

able assumption. At 25°C, the reaction free enthalpy and free enthalpy of activation of

this hydrolysis are −32 and 119 kJmol−1, respectively. To my best knowledge, the only

mechanistic studies of this particular reaction were conducted in the 1990s, neglecting

solvation and finite temperature effects.[48] Later studies based on molecular dynamics or
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Figure 1.3.: Polyphosphate 31P NMR chemical shift in aqueous solution depending on pH

with respect to 85% phosphoric acid. a: orthophosphoric acid, H3PO4 (black line); b:

pyrophosphoric acid, H4P2O7 (red line); c: triphosphoric acid, H5P3O10 (two blue lines).

Plot created with experimental data from Yoza et al.[57]

transition state search were focussed on specific, typically biochemical problems.[49–51]

Thus, our understanding of the fundamental mechanism of phosphoric acid condensation

in aqueous solutions is still limited. However, since thermodynamic data of the overall

reaction is available, this condensation reaction is simulated as a performance benchmark

in chapter 5.

1.1.4. Solid-state 31P NMR of phosphates

Nuclear Magnetic Resonance (NMR) is one of the most powerful techniques to reach

an atomic scale determination of phosphate interaction with alumina. It is an element-

selective method which allows to draw direct conclusions about the chemical environment

around the phosphorus atom. Yoza et al. produced 31P NMR spectra for a broad

range of phosphorus species in aqueous solution at a pH range from 3 to 11.[57] Fig. 1.3

shows their experimental results on the three smallest polyphosphates: orthophosphate,

pyrophosphate and triphosphate. The signal of orthophosphate is at 0 ppm at high

acidity and for increasing pH values the signal is shifted to slightly more positive
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values up to 3 − 5ppm. This is related to an increased shielding of the deprotonated

species. The pyrophosphate and triphosphate signals are clearly shifted to negative

values, and triphosphate produces two signals. Pyrophosphate consists of two groups

connected by oxygen, which produces a signal at -10 ppm at pH=3. Triphosphate

H5P3O10 is the first polyphosphate with one chain group connecting its two terminal

groups: H2O3P–O–(HPO2)–O–PO3H2. This leads to another signal for the central

phosphate group at about -22 ppm (pH=3). The shift is related to a deshielding when

substituting hydroxy groups in orthophosphate by one or two more electronegative

phosphate groups. As for orthophosphate, signals by terminal and chain phosphate

groups are gradually shifted to positive ppm values at higher pH as a consequence of

deprotonation.

NMR spectroscopy on solids can be evaluated in similar ways as solution NMR. However,

compared to solution NMR, the anisotropy of the chemical environment deteriorates

the signal resolution of solid state NMR. The rapid molecular movement in solution

produces an average isotropic environment where momentary anisotropy is “averaged

out”. In contrast, the orientation of the anisotropic chemical environment is constant in a

dry powder sample. As a consequence, the solid state NMR spectrum is an ensemble of

random anisotropic directions instead of well resolved averages. Orientation averaging is,

however, possible by rotating the probe i. e. by rapidly spinning the probe head. Using an

angle of about 55° relative to the magnetic field vector, all directions in three-dimensional

space are transformed into one another (c. f. fig. 1.4), provided that the spinning frequency

is fast enough. This can best be understood by imaging a cube spinning on its vertex.

The angle between any edge of the cube and the surface normal, or equivalently the

cube’s body diagonal, describes this magic angle. Fig. 1.4 provides another graphical

explanation of the angle and spinning operation. The spinning method is called magic

angle spinning (MAS) and, only by including this spinning operation, well resolved solid

state spectra are accessible. Bleam et al. conducted MAS 31P NMR experiments on
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Figure 1.4.: Probe spin-

ning geometry in MAS

NMR spectroscopy. The

probe spins around a de-

fined axis with respect to

the magnetic field B0.

Table 1.1.: 31P NMR isotropic chemical shifts (δiso) and principal

components of chemical shift tensors (δii, i = 1, 2, 3) and

the anisotropy ∆δ for several aluminium phosphate minerals.

∆δ = δ33−δ11 , δ11 < δ22 < δ33. Table and caption (rephrased)

from Bleam et al.[58]

several aluminium phosphate minerals and estimated the anisotropy of the signal.[58] The

principal components of the anisotropy tensor (tab. 1.1) vary over dramatic ranges of

50 to 100 ppm while the isotropic shift range of the presented minerals is only up to

20 ppm. The error estimates of isotropic chemical shifts (±0.1 ppm) are much lower than

anisotropic components.

1.1.5. Surface-sensitive 27Al and 31P NMR

For signal enhancement, cross-polarization (CP) experiments are performed, where an

abundant nucleus (usually 1H) is polarized, and which is brought into spin-thermal

contact via dipolar coupling. DeCanio et al. recorded 27Al and 31P NMR spectra, with

and without CP, of phosphate on γ-Al2O3 after impregnation with an aqueous solution

of phosphoric acid and then drying at 120°C.[12] A single broad peak is observed in

the {1H}31P CP NMR spectra in fig. 1.5c, which is shifted to lower ppm with higher

phosphate loading. The authors attribute this peak shift to an overlap of orthophosphate,
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Figure 1.5.: Direct polarization 27Al- and 31P-MAS NMR and cross polarization NMR of

dried phosphate species on γ-Al2O3. Plot created with experimental data from DeCanio

et al.[12]

pyrophosphate and an increasing amount of other short-chained polyphosphate species

with higher loading. At higher loading between 4 and 10wt% phosphate, a distinct peak

occurs at −32 ppm in the direct polarization 31P spectra in fig. 1.5b. This indicates

the formation of a water-free layer of aluminium phosphate, which does not contain

protons and is thus cannot be observed in the {1H}31P CP NMR spectra. In the direct

polarization 27Al spectra (see fig. 1.5a), the onset of formation of amorphous aluminium

phosphate can be seen starting at 4wt% phosphate by the appearance of a peak at 38

ppm. With a higher phosphate content, a narrower peak at 40 ppm, assigned to the

crystalline aluminium phosphate, appears.

A similar trend in 31P CP NMR spectra was observed by van Eck et al. studying the

adsorption from an ammonium phosphate solution on γ-Al2O3 (230 m2/g) dried at 110

°C.[59] Using 31P{27Al} REDOR and TRAPDOR experiments, the authors also suggest

the formation of both polyphosphates and a layer of aluminium phosphate. Despite

the insights gained by those studies, there are still fundamental questions concerning

the structure of the adsorbed species. For example, DeCanio et al. demonstrate that

phosphates adsorb predominantly in the form of monomeric species at phosphate loading
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below 1wt%, which corresponds to a coverage of approximately 0.3 monolayers.[12] For

higher phosphate loading it remains difficult to quantify at which point these species

form oligomers and precursors of aluminium phosphate. Moreover, the local structure

at the surface is still unknown. Yet, the dentation modes of phosphates adsorbed on

alumina as well as changes to the surface could give very useful insights about the role of

these species in catalysis.

Using surface signal enhancement techniques like Dynamic Nuclear Polarization Surface

Enhanced NMR Spectroscopy (DNP SENS) can vastly increase the signal gain which

improves the signal-to-noise ratio. DNP SENS has revolutionized solid-state NMR of

surfaces as the improved gain enables complex correlation experiments, which would take

too long to record with conventional methods. The idea is to add an exogenous diradical

solution to the sample, thereby creating a large electronic polarization on the sample

surface. This electronic polarization is then transferred to the nuclei by irradiating the

sample with a high-power microwave source, which results in improved signal gain of

up to a factor of 100.[60–63] In combination with CP, DNP SENS yields sufficient signal

intensity to record two-dimensional 27Al-31P correlation spectra, as well as 31P double

quantum and triple quantum coherence experiments, to directly detect oligomers.[18]

The determination of adsorption sites and modes at the surface of the alumina support

is highly challenging due to a high degree of complexity of local sites. Computational

modelling can be the key in order to complement experimental techniques.

1.1.6. Combined NMR and DFT studies

While the experimental work is critical to narrow down the requirements to the model,

at this point none of the presented publications was able to produce a coherent and

complete picture for phosphate-γ-Al2O3 interaction. Recently, by the combination of

DNP NMR and DFT calculations, it was possible to unravel the nature of Brønsted
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acid sites at the surface of amorphous silica-alumina.[64] Lately, it was also possible to

determine the location of hydroxyl groups at the edges of γ-Al2O3 crystallites thanks

to the combination of 1H NMR experiments and DFT calculations of chemical shifts.[65]

Those DFT calculations rely on complex γ-Al2O3 models detailed in the coming sections.

The requirement for these studies is an accurate prediction of NMR chemical shifts from

DFT electronic structure calculations. For periodic calculations with pseudopotentials,

the most common technique is the gauge-including projector-augmented wave (GIPAW)

method,[66,67] that allows accurate chemical shift estimates for all atoms in the system.

Many theoretical studies, devoted to the calculations of phosphorus NMR chemical shifts

inside various bulk materials, provide an accurate assignment of phosphate sites in various

minerals.[68–71] Wei Li et al. showed by combining REAPDOR NMR characterization

and GIPAW calculations that bridging bidentate phosphates would be adsorbed at the

interface of water/boehmite (γ-AlOOH).[72] Nevertheless, since the authors used a rather

simplified Al2 dinuclear cluster model for describing the boehmite surface, this may

provoke questioning about the transferability of the results to other types of aluminum

oxides such as γ-Al2O3. More recently, F. Tielens et al. investigated by GIPAW NMR

calculations the 17O and 31P spectroscopic features of phosphate adsorption at the

H2O—TiO2(anatase) interface and identified the bidentate adsorption mode.[73]

While GIPAW gives quantitative predictions of NMR chemical shifts, it does not provide

a rationale for its origin. Dawson and Ashbrook produced a set of empirical equations

involving average P–O distances and P–O–Al angles.[74] Multivariate regression of a test

set of DFT calculations on an aluminium phosphate model cluster was used for function

fitting. The authors later extended and applied their method based on experimental data

and a wider range of aluminium phosphates.[69,75] It is at the moment the only known

model to map structural parameters of aluminium phosphates to NMR spectroscopic

results.
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GIPAW calculations require calculations at DFT level, with high demands towards

precision of geometry and electronic structure. Thus, these simulations can be relatively

expensive, in particular if the number of relevant nuclei is small (in the simplest case of

orthophosphate adsorption, one electronic structure calculation produces one chemical

shift). Empirical models, like Dawson and Ashbrooks, can also be a useful tool for

reducing this computational expense. An early attempt to predict 31P NMR chemical

shifts by machine learning was done by West.[76] In 1993, he tried to train neural networks

using a large database of experimental chemical shifts for phosphorus compounds, but

the accuracy was not satisfactory. Recently, Chaker et al. tested several machine learning

methods to predict NMR iso-shifts of 17O, 27Al and 29Si in aluminosilicate glasses.[77]

Their results are instructive in how to produce an accurate machine learning model with

predictable error estimation relative to GIPAW results.

1.2. Building a γ-Al2O3 model

1.2.1. Characteristics of γ-Al2O3

Transition alumina is a versatile group of materials with well-characterized pore and

particle sizes as well as high specific surfaces.[78] Among them, γ-Al2O3 is economically

the most important one since it is used as a support in large scale industrial catalysis.

It has a disordered oxide structure, as characterized by X-ray diffraction (XRD) and

spectroscopic methods, which is a big obstacle for atomistic modelling. Nevertheless,

several surface models have been tested and established in the past decades. These models

allowed for the first time to build computational models to describe surface speciation on

γ-Al2O3. In this work, γ-Al2O3 model surfaces were used in order to establish a robust

understanding of phosphate speciation at different experimental conditions.

As one of the most common supports in heterogeneous catalysts, γ-Al2O3 is a critical

material in large scale industrial processes.[2,78] The properties of γ-Al2O3 are best
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understood in the context of its other polymorphs. Alumina are oxides of the composition

Al2O3 that can be synthesized by calcination from aluminium hydroxide Al(OH)3 and

aluminium oxide hydroxide AlOOH. Several configurations exist for all these minerals:

bayerite and gibbsite are both Al(OH)3 and the two most important oxide hydroxides are

diaspore (α-AlOOH) and boehmite (γ-AlOOH). The only stable alumina configuration

is corundum (α-Al2O3), but several metastable transition alumina are formed from one

another by temperature-controlled solid phase transformations.[78,79] Partial pressure of

water also influences the reaction process; even grinding and crushing can have an effect

on the reaction as it improves water release for a given temperature and it might be a

different energy source for phase transformations.[78,80]

γ-Al2O3 is formed as the first phase of boehmite dehydration. The sequence can be

illustrated like this:

boehmite 450 °C−−−→ γ-Al2O3
750 °C−−−→ δ-Al2O3

1000 °C−−−−→ θ-Al2O3
1200 °C−−−−→ corundum

From γ-Al2O3, the phase transitions to δ-Al2O3, θ-Al2O3 and γ-Al2O3 define the stability

order, with γ-Al2O3 as the least stable phase in accordance with Ostwald’s rule.[81] More

transition aluminas (χ-, κ- and η-Al2O3) can be obtained by direct calcination of bayerite

and gibbsite, forming different phase transition pathways.[78,79] All transition aluminas

form θ- and α-Al2O3 at 1000°C. γ-, δ- and θ-Al2O3 all share a similar distorted fcc crystal

lattice of oxygen atoms. While θ-Al2O3 is fully characterized and known to crystallize in a

β-Ga2O3-type lattice, γ-, and δ-Al2O3 are disordered systems with irregularly distributed

aluminium atoms. This was shown by various techniques including XRD, NMR, IR and

Raman spectra.[79] They nevertheless show a certain degree of crystallinity, most notably

a face-centered cubic (fcc) lattice of oxygen ions. 27Al NMR results show that in γ-Al2O3,

25− 31% of aluminium ions are in tetrahedral sites,[78] and this proportion is increased

to 35% in δ-Al2O3. For γ-Al2O3, new evaluations show that the number of tetrahedral
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sites might be slightly underestimated, and that the amount of tetrahedral sites is more

similar to δ-Al2O3.[82] Initially, γ-Al2O3 was described as a distorted spinel-like structure

and the high-temperature δ-Al2O3 as a less disordered, more spinel-like structure.[83]

This early observation is consistent with the distribution of aluminium in tetrahedral and

octahedral sites, but the authors did not try to rationalize the pronounced anisotropy

of γ-Al2O3, which would not occur in a cubic spinel structure. After calcination, both

polymorphs also contain pentacoordinated aluminium atoms.[79,84] On a mesoscopic level,

it is known that γ-Al2O3 is a porous compound that typically provides surface areas of

180 to 240m2 g−1. The disorder in those systems substantially compromises the efforts to

describe these materials on an atomistic level. Nevertheless, in the last decades, several

research groups proposed a range of models for the description of γ-Al2O3 and δ-Al2O3.

The following sections provide an overview of the available γ-Al2O3 bulk models, as well

as on how to produce surface models from them and the current understanding about

this system.

1.2.2. Bulk model system

Disorder is a problem for any kind of simulation as the atomic structure must be

fully defined first. In other words, we need to decide where to place the atoms to

create an approximate representation. For the γ-Al2O3 structure we only know two

bulk properties with certainty: the oxygen atoms are ordered in a distorted fcc lattice

and the aluminium atoms are distributed in approximately 1/3 tetrahedral and 2/3

octahedral sites. Beyond that, structural features similar to spinels can be imposed

from XRD intensities. This description already dates back to six decades ago.[83] Kinetic

considerations and other aspects, like the topotactic transformation from its precursor

boehmite, indicate that γ-Al2O3 should have a structural relation to boehmite as well.

The increase of computational capacities nowadays also allows for a systematic search for

structures within a large configuration space. Structures based on all these assumptions
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have been explored, and within the dedicated literature, spinel and nonspinel models are

typically distinguished.

A spinel is a crystal with the chemical formula MgAl2O4. It is a cubic oxide in which

Mg2+ and Al3+ are in defined tetrahedral and octahedral sites. Many mixed oxide

compounds are known with the same crystal structure but different cations, and it is

also known that spinels are to some degree disordered due to swapped ion positions.

To transfer the spinel structure of MgAl2O4 to Al2O3, Mg2+ are exchanged with 2/3

Al3+, which leaves ‘vacancies’ for every third stoichiometric unit as in Al 8
3
� 1

3
O4. The

primitive spinel unit cell contains two stoichiometric units of AB2X4; this is tripled for

the smallest defective spinel structure, hence it contains six AB2X4 (42 atoms) units or

eight Al2O3 units (40 atoms, without two defects), respectively.[19] The defect sites could

be on tetrahedral or octahedral sites but ab initio calculations showed that octahedral

defects are energetically favored, and tetrahedral sites are maximized, making up 37.5%

of all aluminium sites. As a slightly different approach, hydrogen spinels (HAl5O8) were

tested as well.[85] Wolverton and Hass compared both models and concluded that HAl5O8

is thermodynamically unfavorable compared to the hydrogen-free models and boehmite

but it might exist as a metastable phase.[19]

Based on a structural relation to boehmite, Krokidis et al. constructed a ‘dehydrated

boehmite’ model by removing OH and H from its layered structure and manually arranging

a structural collapse followed by identifying sensible tetrahedral site transitions.[22] The

resulting structure is the first nonspinel structure (see fig. 1.6). They tested structures

with 0 to 50% tetrahedral sites; among them, those with 25% lead to the most stable

configuration, followed by those with 31% and 37% tetrahedral sites. The structure with

25% was considered as the best case. This unit cell has a different shape and monoclinic

symmetry, but almost the same cell volume as the defect spinel models with the same

number of atoms.[86] In an exhaustive comparison of spinel and nonspinel models, Paglia

et al. generated more than 100k defect spinel models by alternating defect sites of super
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cells containing 32 Al2O3.[23] The authors then compared their results with more than

500k systematically generated nonspinel models and concluded that, on average, 40% of

the aluminium atoms occupy nonspinel sites. Moreover, they ruled out spinel models

based on the fact that their 100k generated variations generally produced mismatched

diffraction patterns. This was in qualitative agreement with Krokidis’ model, however

since the latter is not based on a spinel unit cell, the number of spinel vs nonspinel sites

cannot be clearly partitioned.

Paglia et al. and Ferreira et al. compared theoretical models from each group (defect

spinel,[19,20] hydrogen spinel,[21] Krokidis nonspinel[22] and Paglia nonspinel[23]) with

neutron diffraction experiments and 27Al NMR spectroscopic data.[86,87] The model fitting

to neutron diffraction data showed that Paglia’s nonspinel models were in the best

agreement with Rietveld refinement simulations, followed by Krokidis’ nonspinel, defect

spinel and hydrogen spinel in this order, but with overall comparable accuracies. 27Al-

MAS NMR iso-shifts showed similar results, but in particular the absence of a correct

prediction of pentacoordinated aluminium atoms indicated that surface aluminium atoms

are likely to contribute significantly to the experiments. It must be underlined, that

these comparative studies neglect surface effects.[86,87] Even though this is generally a

reasonable assumption, γ-Al2O3 in particular is known to have large specific surfaces,

increasing the number of contributing surface atoms. For example, Łodziana et al. showed

in 2004 that certain hydroxylated alumina surface models of the related θ-Al2O3 exhibit

a slightly “negative” surface energy, which means that the surfaces are thermodynamically

more stable than the bulk structure.[88] This is clearly impossible for clean surface cuts,

however, in principle adsorbates (here: H2O) can stabilize the surfaces. It must be noted

here that the negative surface energy reported here concerned only one of several surface

models, and at the time the computational models neglected more accurate descriptions

of long range dispersion interactions which are available today.[89]
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Busca summarized that none of the four computational γ-Al2O3 models can be ra-

tionally excluded on the basis of thermodynamic stability, since γ-Al2O3 is the first

transition alumina of boehmite, and neither the γ-Al2O3 nor the δ-Al2O3 phase are fully

characterized. A very stable model intended for γ-Al2O3 might rather be a good model

δ-Al2O3.[79] These considerations are in favor of Krokidis’ model, since it is the only model

involving a conceptual dehydration of boehmite and thus a construction that includes a

structural relation to its precursor. Krokidis’ model is also considered as one of the most

popular ones,[79,82] while, for example, hydrogen-containing γ-Al2O3 models are overall

rejected.[79] Prins recently reviewed the current knowledge of the γ-Al2O3 structure.[82]

It was pointed out that new 27Al NMR experiments and the previously available 17O

NMR data indicate that higher percentages (35− 37.5 ) of tetrahedral sites should be

expected; this indicates that the existing nonspinel models have too few aluminium atoms

in tetrahedral sites. On the other hand, the author discussed findings of a decreased

number of tetrahedral sites in γ-Al2O3 catalysts. As a consequence, the concerned

nonspinel models would still be useful to produce interface models. While Prins seems

to disregard Krokidis’ model based on his new analysis of NMR data, he acknowledged

its successful application starting from Digne’s hydrated surface studies,[24] followed by

many computational studies in heterogeneous catalysis.[18,90–92] While the author has a

valid concern regarding the underestimated fraction of tetrahedral aluminium atoms,

it does not exclude the Krokidis nonspinel per se. As mentioned above, Krokidis et al.

discussed a range of structures with up to 50% tetrahedral sites, with models composed

of slightly more tetrahedral alumina as additional candidates.

Generally, Busca and Prins concluded independently that structural disorder and

limits in experimental methods did not yet allow for an atomic level characterization of

γ-Al2O3.[79,82] Busca emphasized the disorder which can be demonstrated by multiple

experimental techniques and suggested to focus on θ-Al2O3 which is better characterized

for surface studies. Prins, on the other hand, recommended to evaluate resulting transition

32



1.2. Building a γ-Al2O3 model

alumina phases by using new high-temperature synthesis routes: Zhang et al. observed an

Al2O3 thin film formation after oxidation of NiAl alloys at 850°C, which they identified as

γ-Al2O3.[93] While Prins also raised concerns about the unexpected stability and possible

impurities of Ni stabilizing these phases, he suggested further analysis of these results as

the thin-films are much larger than γ-Al2O3 crystallites synthesized from boehmite.

Ultimately, our knowledge of γ-Al2O3 model systems is inconclusive, and their usability

and shortcomings are still discussed. Recent improvements regarding the characterization

of δ-Al2O3 are, however, promising. Kovarik et al. revealed that δ-Al2O3 is composed of

at least 4 phases that can intergrow in two crystallographic directions.[94] The authors

supported their proposal by DFT models and comparison with electron microscopy data.

Their results demonstrated how involved computational modelling along with experimental

investigations allows for a comprehensive characterization of complex irregular phases

such as in this case δ-Al2O3 – the structurally most similar polymorph to γ-Al2O3. It

should also be noted, that the δ-Al2O3 phases are not based on a defect spinel structure.

1.2.3. Surface models

While the bulk structure of γ-Al2O3 is of fundamental interest, its applications as a high

surface compound (i. e. as a catalyst substrate), raise even more interest in its surfaces.

It is established that γ-Al2O3 crystallites are products of a topotactic dehydration of

boehmite and that the most exposed facet is (1 1 0) with about 70% (cf. fig. 1.9).[78]

To construct surfaces from the γ-Al2O3 bulk model (fig. 1.6), the unit cell is cleaved

along one crystallographic direction, and repeated several times along the new surface

normal direction in order to mimic lower bulk layers, see fig. 1.7. Its thickness and the

available vacuum over the surface become parameters that determine how accurate the

surface is represented. However, this process is not straightforward as it has to be decided

along which surface direction the surface is cut and which atoms are exposed on the
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Figure 1.6.: Unit cell content of the γ-Al2O3 bulk model by Krokidis et al.[22]. Oxygen and

aluminium atoms are colored in red and blue. Cuts along the horizontal lead to (1 1 0) model

facets (illustrated as plane and normal vector), whereas cuts along the vertical produce (1 0 0)

model facets. Note that the Miller indices are with respect to the fcc lattice.

Figure 1.7.: Cutting a surface slab from a bulk unit cell (a). Several copies of the bulk unit cell

produce a surface slab (b) with a thickness that depends on the bulk geometry.

Figure 1.8.: Cutting a surface slab along arbitrary surface directions in (a): (0 1 0) with small

dashed line, (1 0 1) with dotted line, (1 1 1) with rounded dashed line. After choosing the Miller

indices, the slab can be cut along different layers (b), which lead to different surface terminations.
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Figure 1.9.: Shape of a γ-Al2O3 platelet after topotactic transformation from boehmite.

The (1 1 0) and (1 0 0) facets are most exposed. Miller indices are given with respect to the

oxygen fcc lattice (often referred to as “spinel” symmetry).

final surface model. Fig. 1.8 illustrates the decisions one has to make. For example,

the unit cell of Krokidis’ model (ball and stick model in fig. 1.6), was used to build

surface slabs for the (1 0 0) and (1 1 0) facet. In the (1 1 0) facet, the topmost layer

always consists of four aluminium atoms and six oxygen atoms, however, the atoms in

the next layer are differently arranged than the first. This alternative layer is topmost

if a different layer is chosen as illustrated in fig. 1.8. Consequently, the Krokidis bulk

model can be used to produce a range of different surface models. Most surface cuts

along these directions would, however, lead to asymmetric or nonstoichiometric models,

because top and bottom terminations are different, or the resulting slab cut has a different

stoichiometry than the bulk model. With these considerations, Digne et al. in 2002

identified useful model surfaces from Krokidis’ bulk model and tested them for surface

hydration.[24,95] The surface hydration can be summarized as follows: H2O adsorption

occurs at the unsaturated surface aluminium atoms, followed by water splitting at the

more acidic H2O sites that distributes the protons to the most basic alumina oxygen. For

comprehensive details, refer to chapter 3. The surface hydration is complete when the

aluminium coordination sites are occupied. Typically half of the H2O are dissociated.

Wischert et al. studied low hydration states of the (1 1 0) facet at H2O loads of at most

50% H2O molecules.[92] They discovered that at these conditions, the (1 1 0) model facet
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is subject to reconstruction by displacement of one aluminium atom to a neighboring

tetrahedral site. It was recently shown that this aluminium atom is rather labile at

aqueous conditions and might be subject to dissolution.[96] Since then, Digne’s slab models

were applied in several interface studies and good agreement with experimental results

was attested.[53,65,91,97]

Prins criticized the commonly studied (1 1 0) facet introduced by Digne et al. because

it is different from the spinel-like (1 1 0) surfaces, and does not produce considerable

surface reconstruction due to its stoichiometric termination.[82] Pinto et al. observed this

reconstruction on defect spinel models, however, surface hydration was neglected at the

time .[98] Prins also noted that, since γ-Al2O3 is formed in a topotactic phase transition

from boehmite, different surface terminations should be tested, as the cleaved model

surface by Digne is not the only candidate. A recent study systematically explored these

different surface terminations which should be expected by construction from boehmite

dehydration.[99] While Digne’s surface models are not the final answer, they remain useful

to study possible surface chemistry at γ-Al2O3 facets.

1.2.4. Surface adsorption

The goal of this study is to obtain a set of candidate structures that can account for

the adsorption modes obtained after impregnation in solution and drying. For that,

one first needs to know the predominant surface facets available for adsorption. About

70% of the facets are (1 1 0) and after that (1 0 0), as established in section 1.2.3.[78]

For exploration, the drying state was considered, which circumvents difficult modelling

of solvent effects. The initial assumption is that after drying, phosphates only bind to

aluminium atoms via oxygen sites that are accessible at the surface. The fully hydrated

surface models established by Digne et al. were used throughout this work.[24] In their

publication, the hydration state of several surface terminations was tested at varying
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(a) (b)

Figure 1.10.: Surface free enthalpy of γ-Al2O3(1 0 0) (a) and γ-Al2O3(1 1 0) (b) for different

degrees of hydration with coverage values θ given OHnm−2. The inset graphs show the

differential free enthalpy of H2O adsorption as a function of θ. This is the free enthalpy of

each adsorbing H2O molecule in the sequence of full hydration. Figures are from Digne et al.

in ref.[95].

temperatures. According to ref. [95], the (1 0 0) and (1 1 0) facets are each hydrated at

120°C, which also shown in fig. 1.10. The more recently discovered surface reconstruction

of (1 1 0) first described by Wischert et al.,[92] will be shown as crucial part of this study.

The model adsorption of phosphates on the surface can be carried out with various

strategies, but here the general idea was to substitute the surface hydroxyls in a reaction

similar to

H3PO4 +
?OH −−→ ?H2PO4 +H2O

where ? is the adsorption site of the hydroxy group. A similar computational adsorption

study was done by Luschtinetz et al. involving phosphonates (H2RPO3) and several

aluminium oxides and hydroxides.[52] The authors used the substitution approach with

hydroxy groups on these surfaces. In particular, they explored a wide range of adsorption

modes of two phosphonates on corundum, bayerite and boehmite surfaces by a systematic

substitution of surface oxygen and hydroxide sites. The challenge there was similar to

this adsorption study. However, adsorption on γ-Al2O3 is more complex because it has
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more diverse surface adsorption sites and complex hydrogen bond networks for each

adsorption structure.

The work in this thesis also includes a detailed study of coverage effects and pyrophos-

phate adsorption, which to my best knowledge has not been attempted before by means of

computational phosphate adsorption models. In chapter 3 the γ-Al2O3 surface structures

and the exploration of candidate geometry will be discussed in detail. Moreover, chapter 4

presents NMR chemical shift simulations which validates the created adsorption models

and gives unprecedented insight in the surface speciation of phosphates on γ-Al2O3.
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The results produced for this thesis are exclusively computational models of γ-Al2O3

surfaces with the ambition to create a detailed understanding of phosphate adsorption

on this material. Electronic structure calculations and construction principles of inter-

face models are well established, however they rely on numerous approximations and

assumptions that balance the accuracy of the results with computational performance.

This chapter gives a short description of the applied methods and lists all important

parameters used. A comprehensive discussion of the range of available methods as well

as accuracy considerations are given in appendix A.1 (p. 143).

2.1. Computational setup

The presented models have have to be assessed from three distinct point of views: (i)

electronic structure, (ii) structural aspects or geometry of atom positions, (iii) system

sampling. While all electronic structure calculations were done on a similar level of density

functional theory (DFT), there are several important differences in the technical details.

The surface models were adjusted to answer different questions efficiently. Sampling has

several meanings for the distinct challenges: for the database presented in chapter 3

and 4 it refers to a part of a global optimization to ensure that the identified geometry

minimizes the energy; in contrast the sampling in chapter 5 and 6 is a central contribution

in those results, where it contributes to the machine learning quality and free energy at
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the solid-liquid interface. The following sections summarize the employed approximations

on these levels separately.

2.1.1. Electronic structure of periodic DFT

All calculations were conducted using at PBE-D3 level of theory,[89,100] which is a very

common DFT exchange correlation potential based on the general gradient approximation

that is combined with a force-field like term included to add long range dispersion

interactions.

Small systems include single surface unit cells with unit cell parameters for the two

γ-Al2O3 facets: (1 0 0) 8.358Å×5.547Å and (1 1 0) 8.358Å×8.035Å. Each system contains

around 100 atoms. The larger systems are supercells constructed with two to three times

larger unit cell vectors for about 16Å×16Å sized surface unit cells. Together with a

17Å thick layer of water molecules, they contain 800–1000 atoms. The small systems

allow reaching higher accuracies for of electronic structure calculations than the latter.

A high accuracy was important here, since the systems were also used to calculate NMR

chemical shifts which are very sensitive the local structure. The larger systems are

surface supercells build for molecular dynamics, where fast calculations are much more

important.

For small systems with higher accuracy requirements, the electron structure was

spanned in projector-augmented wave functions (PAW) with a kinetic energy cutoff

at 500 eV and a density cutoff of 605 eV.[101] The PAW pseudopotentials are based on

a norm conserving reference density, which allowed such a smooth density cutoff.[102]

For efficient calculations, VASP (v. 5.3.5) was used.[103] Other parameters that can

influence the electronic structure are smearing (set to 10meV Gaussian-type smearing

which is negligible at the end of a geometry optimization but stabilizes certain stating

configurations) and two switches determining overall precision (PREC=accurate) and for
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optimized projector evaluation in real space (LREAL=automatic). The Brillouin zone

was sampled by Γ-centered Monkhorst-Pack grids of 2×3×1 and 2×2×1 on the (1 0 0)

and (1 1 0) model facets, reflecting the different surface cell vectors and the aperiodic

surface normal vector. These parameters were thoroughly benchmarked and lead to well

converged structures and energies.

The large systems were constructed as supercells with 16×16Å wide surface area, on

which a 17Å thick layer of water was equilibrated using molecular dynamics. The Brillouin

for these supercells is decreased such that calculations based only on the Γ-point have

equivalent accuracy as the 2×3 and 2×2 grids in the small systems. The calculations were

carried out with the QUICKSTEP module which is part of the CP2K software package.[104]

QUICKSTEP uses a Gaussian and plane wave (GPW) method to represent Kohn-Sham

orbitals and electron density. The difference to PAW calculations is explained in more

details in appendix A.1.3 (p. 151). Norm-conserving GTH pseudopotentials were used

together with molopt-DZVP basis sets.[104,105] The auxiliary density cutoff is set to 400Ry

(5442 eV). which is a bit higher than the software default of 280Ry. The value has to be

for higher accurate density transformation because the local basis used for orbitals in

CP2K is significantly harder; see appendix A.1.3 (p. 151) for a detailed explanation.

2.1.2. DFT chemical shift calculations

NMR chemical shift calculations were carried out using the gauge-including projector-

augmented plane wave method (GIPAW) by Yates, Pickard and Mauri.[66,106] The chemical

shift tensor is defined by the ratio of induced magnetic field and external field:

σ(rN) =
~Bind(rN)
~Bext

(2.1)

After careful convergence tests, the Monkhorst-Pack k-point grids were increased to

3×5×1 and 3×3×1 for the surface models. The calculation involves numerical k-space
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derivatives, for which step sizes of DQ = 0.003 were used and symmetry operations

were discarded where necessary (LNMR_SYM_RED=.TRUE). Furthermore, quadrupolar

coupling constants (Cq) were estimated using quadrupole moments of 146.6 and −25.58 for
27Al and 17O. To ensure accurate electronic convergence SCF convergence was continued

until consecutive values differed less than 10−8eV (EDIFF).

2.2. Phase space sampling

Theoretical models for phosphoric acid adsorption on γ-Al2O3 model facets require as

minimum a notion on how a phosphate group can adsorb to this interfaces. This notion

can be translated into several adsorption candidates for which different sites are identified

on the surface models. Depending on the number of candidates and our knowledge

about the system, there are many different sampling methods for atomistic structures.

Starting from manually testing individual adsorption mode with hand-made geometries

is common, and typically followed by exploring all remaining adsorption modes if feasible,

or at least several of them of the exploration space is too large. As alternative, one can

test automated sampling methods. Popular sampling methods include ab-initio molecular

dynamics (AIMD), Monte Carlo sampling or genetic algorithms,[107,108] which are more

or less suitable for the actual challenge. AIMD is often used to sample gas phase or

liquid phases, whereas Monte Carlo sampling and genetic algorithms can be used for

global optimizations with little to no initial knowledge about the system. When including

structural knowledge into the sampling, the situation is much more complicated, since

the choice on which parts to sample (i. e. adsorption sites and reactions) and which to

restrict (i. e. the surface model) have to be explicitly implemented. AIMD allows accurate

sampling of water at the γ-Al2O3 model interfaces,[96] which also allows to test adsorption

models, however at high computational cost.
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In this work, the adsorption sites were sampled by manual structure generation based

on a detailed analysis of surface patterns and a resulting combinatoric sample space.

In-depth considerations are given in sections 3.2 and 3.3 (p. 58). For the solid-liquid

interface, some of the most stable adsorption sites were simulated by means of AIMD.

In this context each sampled structure as well their AIMD simulations represent one

spot of the phase space. Even though AIMD in principle allows for dynamic change

between adsorption sites, the time scales of these simulations are in a range of 10 ps to

50 ps which is just enough to sample liquid water but not to observe scarce transitions.

In order to connect these spots, or in other words, to study the speciation mechanism at

the impregnation conditions, biased AIMD calculations were carried out. The biasing

approach applied here is metadynamics or metaD for short. This section also addresses

the free energy and free enthalpy estimates, since in contrast to the electronic energy,

which is only defined for a single geometry, it is directly related to the phase space by

the degrees of freedom available to the system.

2.2.1. Geometry optimization

More than 1000 geometry optimizations were carried out within the structural exploration

phase of this work. To focus on structure generation rather than correcting unsuccessful

optimizations, the optimization algorithm had to be more reliable than any of the

standard implementations in VASP. The fast inertial relaxation engine (FIRE)[109] was

implemented in VASP by Henkelman et al. for their nudged-elastic-band (NEB)[110]

based transition state search methods, but it can also be used separately. It is the

only method that efficiently optimizes internal rotamers like free Al–OH and P–OH

without user intervention, since it is only follows the force vector and adjusts its step

size during the optimization. The quasi-Newton method in VASP (IBRION=1)[111] does

not succeed for reasons explained in ref. [109]. The success of the optimizing algorithm

also depends on the precision with which the force were determined. This depends the
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electronic optimization, which in this case done until 10−6 eV (EDIFF), while the forces

were optimized until the largest force on all atoms was below 10meVÅ−1.

2.2.2. Partial Hessian matrix and harmonic free energies

Frequency calculations were carried out on the best candidate geometry for each adsorption

site. Since the data was acquired to compute vibrational component of the free energy

computations, the parameters were optimized as well. For the description of the relevant

vibrational surface modes, partial Hessian matrices were calculated by finite differences.

The electronic optimization was done until 10−8 eV, displacements of 0.015Å were used

for all atoms. To limit the number of atom displacements to the relevant area only surface

atoms and adsorbates were included. Without further processing, this partial Hessian

matrices contain frustrated translations due to the neglected subsurface atoms. These

are difficult to identify by hand, but they can be removed by projection, where they were

treated as free translations. The remaining partial Hessian matrix were diagonalized and

the resulting vibrational modes were checked for imaginary modes. If imaginary modes

occurred, the structures were reoptimized with tighter force criteria until the imaginary

mode vanished.

The vibrational frequencies were furthermore used to calculate thermodynamic correc-

tion terms for the Gibbs free enthalpy G. The overall free enthalpy is defined as

G = Eel + U + pV − TS (2.2)

where contributions to the inner energy U and entropy S of free molecules are separated

in translational, rotational and vibrational components:

U = Utrans + Urot + Uvib (2.3)

S = Strans + Srot + Svib (2.4)
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2.2. Phase space sampling

Each component can be determined by constructing their partition function.[112] They

whole expression for the free enthalpy is thus:

G = Eel + Utrans + Urot + Uvib + pV − T
(
Strans + Srot + Svib

)
(2.5)

It is necessary to calculate all terms for gas-phase reference molecules like H2O and

H3PO4. For the surfaces, translational and rotational components vanish, as well as pV

since surfaces do not have a partial pressure, leaving only vibrational contributions:

Gsurf = Eel + Uvib − TSvib (2.6)

The lowest vibrational frequencies have the most significant contribution to the overall

thermodynamic correction terms, which is the reason why it was important to remove

the frustrated translations discussed above. In connection with the phase space, the

calculation and diagonalization of a Hessian matrix for harmonic vibrational mode is

nothing else than a simple analytical alternative to sampling.

2.2.3. Molecular dynamics

The explicit solvation of the surface and surface species requires to include dynamic,

statistical effects of the solvent. For this, AIMD simulations were carried out at DFT

level as described in section 2.1.1. Room temperature calculations where simulated with

a slightly elevated simulation temperature of 330K using the CSVR thermostat (100 fs

time constant) in order to compensate for systematic errors known about PBE-D3.[113]

In order to increase simulation throughput, the hydrogen atomic weight was increased

to 3 gmol−1 which allowed to carry out the simulations with a step size of 1 fs. These

parameters were in all AIMD. Unbiased AIMD calculations were carried out for at least

10 ps to equilibrate the system before starting metadynamics simulations.
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s(r) =
1−

(
r−d0
r0

)n

1−
(

r−d0
r0

)m for r > d0

Figure 2.1.: Rational switching function

to define a coordination collective variable.

Four parameters, d0, r0, n and m define

its behavior.

2.2.4. Bias AIMD along collective variables

Biased AIMD simulations are a critical tool to study rare events. AIMD simulations are

carried out for time scales in the range of picoseconds, where the probability of most

chemical reactions is very low. Biases are used to nudge the system over reaction barriers.

There are many possible methods to do so, but regardless of the actual method, one

first needs to define a direction within phase space in which a bias should be applied. It

is important to note that really any differentiable system quantity can be used to add

biases to the system. When defined, a bias exerts an additional force at the atoms in

the system. The simplest variable to bias for chemical bond formation and cleavage is

the distance between the atoms of interest. For large systems, the difficult question is,

which distance to consider. For example in case of P–O bond breakage in PO3–
4 , one

can define any of the four bonds, whereas for bond formation with H2O, oxygen atoms

in several surrounding H2O molecules could be chosen. This complexity cannot be added

by means of a distance, which is only defined for a single pair of atoms, but coordination

is a much more suitable concept. In general, the coordination c is a collective variable
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2.2. Phase space sampling

(CV) which counts the number of bonds within the

same group: c =
N∑
i=1

N∑
j>i

s(rij) or different groups: c =
N∑
i=1

M∑
j=1

s(rij) (2.7)

A bond can be defined as an atom pair with a distance rij below a user-defined cutoff

distance. For a continuously differentiable definition, a smooth transition between bonded

and non-bonded pairs, a switching function has to be established. A common switching

function for the coordination CV is:

s(r) =


1−

(
r−d0
r0

)n

1−
(

r−d0
r0

)m , if r > d0

1 , otherwise
(2.8)

The function is plotted in fig. 2.1. The cutoff distance in this function is given d0 + r0,

where r0 stretches the overall function and d0 is a radial shift. The exponents n and m

change the stiffness and particularly influence the decay at long distances. For convenience,

they are typically chosen such that m = 2n. Only this ensures that the sum d0 + r0

can be used as a cutoff value: s(d0+r0) = n
m = 0.5. The definition of parameters is an

involved process which required months of testing, before identifying a set of parameters

that performs well. The most flexible set of parameters identified only depended on r0;

the other parameters were fixed at d0 = 0,n = 6,m = 12. For the coordination of P–O,

r0 is set to 2.2Å, for Al–O to 2.4Å, and for O–H to 1.4Å. This parameters are quite

specific to the targeted element pairs to be split or formed but with local effects, like

the coordination of octahedral and tetrahedral aluminium sites, or differences between

µ1-OH and µ3-O, these parameters are not necessarily ideal in all situations.

These functions are implemented in the PLUMED code,[114–116] which is compatible

with CP2K. The functionality is available with the COORDINATION keyword. It should

also be noted, that it is used as a general method to count the number of bonds within
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groups of atoms, which different from coordination numbers. Those describe the number

of other atoms to the same atomic center, however the coordination number of a single

atom can be described for one center, if this one is the only element in the group. For

brevity, this section just covered the most basic CVs used the most within chapter 5.

switching coordination function parametrized in this work to mathematically describe

coordinations as a sum. It should be noted that any differentiable function can be used

as a switching function switching function can be used and more complex quantities

than the sum in eq. 2.7 are needed in some cases. Those are described in appendix A.4

(p. 162).

2.2.5. Metadynamics

There are several methods to add a bias to AIMD along a set of CV’s. In this work,

metadynamics (metaD)[117] and, more specifically, well-tempered metadynamics (WT-

metaD)[118] were carried out to study phosphate adsorption at the solid-liquid interface.

The idea in these methods is to deposit a potential V (s, t) in form of gaussian functions

(in jargon hills) along positions of a CV s in order to force the system to leave this

particular area in the free energy surface (FES) F (s):

V (s, t) =
t∑

τ=0

W (τ) exp
(
−(s− sτ )2

2σ2

)
(2.9)

The potential is given as a sum over τ gaussian during the simulation time t, where the

σ parameter sets the gaussian width. The gaussian height in standard metadynamics is

a constant. It can be shown that the potential V(s,t) converges with the FES shifted by

a constant.[119] The process is illustrated in fig. 2.2. For WTmetaD, the gaussian height

is decreased depending on the existing bias potential V (s, t) at the point of the next
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2.2. Phase space sampling

(a) filling a known FES with gaussians (b) recreating the same FES from gaussians

Figure 2.2.: Illustration of how a collective variable (CV) is biased by metadynamics. The

free energy surface (FES) is based on an arbitrarily chosen polynomial (125− 45x+ 35x2 +

3x3 − 7x4 + 0.1x5 + 0.3x6), whereas the biasing potential is a sum of gaussians fixed on 25

grid points along the graph.

gaussian deposition at time t:

W (t) =W0 exp
(
−V (s, t)

∆T

)
(2.10)

where ∆T is another input parameter. The bias factor allows for an overall better conver-

gence behavior, since the growth rate of V (s, t) is limited, but even at full convergence,

V (s, t) does not fully compensate the FES:

V (s, t→∞) = − ∆T

∆T + T
F (s) + C (2.11)

Instead, V (s, t) would have to be scaled by a factor γ = −(T +∆T )/T . This factor γ is

referred to as bias factor and most commonly reported in publications instead of values

for ∆T . Overall, one needs to define a gaussian height W0 and width σ, a deposition

pace 1/t and a bias factor γ for a one-dimensional WTmetaD simulation. For further

dimensions, i. e. to bias multi-dimensional FES projections along further CV’s, one needs

to define additional width parameters along the CV directions. In this work, for all
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presented WTmetaD simulations, a deposition pace of 100 ps−1 was used, which is every

10 simulation steps. The bias factor was set to γ = ∆E
kBT = 72.9 assuming 200 kJmol−1 is

the largest barrier needed to be overcome. This bias factor is smaller than the one used

in previous work,[96] and therefore expected to allow slightly faster convergence. It also

is the default method to determine the best bias factor in a new derivative method of

WTmetaD.[120]

AIMD simulations are generally very time-consuming calculations, where WTmetaD is

no exception. The discussion above considers the modification of the AIMD trajectory

by constructing additional energy terms which generate forces in forthcoming simulation

steps. The overall bias potential can only build up in areas of this single trajectory. The

computation time that the trajectory, in this context referred to as walker, requires to

cover the overall area defined by the CV’s is the minimum calculation time. By adding

more walkers that simultaneously contribute to the bias potential, one can parallelize

the whole process. In fact, the original publication of the metadynamics (metaD)

method describes this parallelization technique.[117] The most obvious advantage of this

parallelization is reduced computation time at the cost of higher parallel workload. A

more subtle advantage is that the parallel walkers, while ultimately sampling different

areas of the FES, they can also limit initial oscillation effects from an alternating coverage

of different areas in the FES, if the starting points are distributed accordingly. For

example 100 walkers were used in ref. [120]. In case of AIMD, the limiting factor is the

overall available resources, hence for this work, the number of walkers was always limited

to 4.
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3. Structural exploration

The aim of the work presented in this chapter is a detailed exploration of all relevant

adsorption patterns of H3PO4 on hydrated γ-Al2O3. This exploration also sets the

foundation for all derived work, that will be discussed in chapters 4, 5 and 6. Compared

to other adsorption studies,[17,52] in which all surface oxygen sites were µ2-OH sites, the

hydrogen networks of γ-Al2O3 surface models are more complex. They involve partially

protonated µ3-O sites and µ1-OH as well as µ1-H2O sites with rotational degrees of

freedom. This requires an extended search for the protonation state of every generated

system, from reference to adsorption candidate. Overall, three reference structures

were used as a starting point for the adsorption states of phosphates on γ-Al2O3: two

Digne’s original surface models,[95] here referred to as (1 0 0) and n(1 1 0), and Wischert’s

reconstruction, R(1 1 0).[92] These reference structures were reoptimized at the applied

level of theory, including an initial, thorough exploration of the proton network. The most

stable configurations are illustrated in fig. 3.1b. The sites relevant for chemisorption in

these structures are oxygen atoms highlighted in red for sites that originate from surface

hydration and blue for the topmost layer of alumina oxygen atoms. This distinction is

arbitrary but a quite useful first hierarchical order in which phosphates may adsorb by

substitution at these sites: first substitution at hydration sites, then eventually sites of

the alumina network. The structures in fig. 3.1b reflect the chemical bonding situation

accurately and even vaguely map the hydrogen bond network of each surface, however,

but they are too complex to systematically address the exploration of different adsorption
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3. Structural exploration

patterns. Fig. 3.1a is an abstract representation of the top view of the three surfaces

that includes the coordination polyhedrons of the aluminium atoms and labels for the

highlighted oxygen atoms; lowercase labels for hydration sites, uppercase labels for

alumina network sites. Moreover, this surface representation includes symmetry aspects

of Digne’s (1 0 0) and n(1 1 0), see fig. 3.1i and ii. Except for the hydrogen network, these

symmetries overall reduce th number of possible hydration states, which considerably

reduces the number of adsorption modes. Thus also the labels were adjusted. Symmetry-

equivalent sites were provided with the same letters and one marked with a prime. For

example on fig. 3.1ii the site b and b′ These labels are important throughout the whole

thesis, because they are used to refer to individual adsorption sites where necessary.

With the involved challenges in finding the relevant adsorption modes, the next three

sections explain in detail, how all adsorption structures were sampled. First, some general

considerations are laid out, including an explanation on how structural exploration is

related to phosphate speciation at drying conditions and how the adsorption energy can

be interpreted at the solid-liquid interface. This is followed by a detailed description and

a notation for all the adsorption sites. After that, the most stable adsorption sites are

analyzed and construction principles for them are identified.

3.1. Drying conditions and structural exploration

For the purpose of covering all the targeted adsorption patterns, one needs to choose

the relevant environmental conditions. This choice is also strictly necessary in order to

quantitatively compare different adsorption candidates by their stability. The preparation

steps of a heterogeneous catalyst starting from the calcined γ-Al2O3 support are wet-

incipient impregnation, drying and activation. Of those, we are mostly interested

in impregnation (solid-liquid interface, 25°C, 1 atm) and drying conditions (solid-gas

interface, 120°C and 2 kPa for H2O – air moisture levels of 60% at ambient conditions).
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3.1. Drying conditions and structural exploration

(a) Abstract structural representation involving local symmetry patterns and global symmetry features. Al

atoms are in the center of their coordination octahedra (blue) and tetrahedra (green) and labelled with

Greek letters when necessary. Oxygen sites from adsorbed water are labelled with red lowercase while

alumina oxygen sites are labelled with blue upper case letters. Mirror planes are shown as thick black lines.
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(b) Top view (iv, v, vi) and side view (vii, viii, ix) structures including the protonation states of all individual

sites. Subsurface atoms are given in grey to complete the local coordination of the surface oxygen atoms.

Figure 3.1.: Three model reference surfaces of γ-Al2O3 (1 0 0)[24] (leftmost structures), n(1 1 0)[24]

(centered structures) and R(1 1 0)[92] (rightmost structures). Oxygen atoms are highlighted in all

structures to distinguish the sites of preadsorbed water (red) and alumina oxygen (blue). The

structures in (a) provide the necessary level of abstraction from (b), and in particular the labelling

that is critical to follow the discussion in this work in detail.
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3. Structural exploration

Starting from the impregnation conditions is impractical for structural exploration, since it

would require to simulate liquid water at the surface. Sampling of liquids using molecular

dynamics and comparing stabilities is computationally demanding and complicated. In

contrast, at drying conditions the surface model only involves adsorbed water with

comparably well-defined positions. The interaction with the gas phase over the surface

can be neglected, and the translational and rotational degrees of freedom in the gas

phase itself can be described with analytical terms within ideal gas and rigid rotor

approximations (cf. eq 2.5, p. 45 and ref. [112]). Thus, drying conditions can be simulated

by creating static models of surface adsorption, and comparing their energies. Only H2O

(g) has to be considered as a gas-phase reference state, as will be shown below. The

adsorption enthalpy of H2O was well described by Digne et al. using only (nowadays)

inexpensive static calculations.[24] Since these are isobaric conditions, i. e. the partial

pressure of H2O vapor is considered constant, the relevant energetic quantity is the free

enthalpy.

After impregnation with H3PO4, the stability of the adsorbed phosphate species at

drying conditions depends on a competition for sites between H2O and H3PO4 adsorbates.

It seems trivial to describe this by means of adsorption enthalpies, but it brings out a

subtle problem: while during impregnation, the adsorption of phosphate species can be

described in chemical balance with phosphates in solution, no such reference exists in

the dried state, since the solution had evaporated and phosphates or phosphoric acid are

not volatile at drying conditions. Hence, for a thermodynamic description of phosphates

at the dried interface, adsorption free enthalpies raise questions because no consistent

phosphate reservoir such as H3PO4(aq) exists. Consequently, it is not possible to define

an unambiguous adsorption free enthalpy, the only relevant quantities being free enthalpy

differences between model adsorption candidates. As a pragmatic choice (i. e. simple

reproducibility, knowability from the beginning of the study), the theoretical adsorption

free enthalpy is estimated with respect to H3PO4(g) using the same parameters as for H2O
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3.1. Drying conditions and structural exploration

(120°C and 2 kPa). An equally valid choice would be any related phosphate-containing

reference, for example the most stable adsorption state.

Since the surfaces are fully hydrated, there are two cases of H3PO4 adsorption: ph-

ysisorption or chemisorption after substitution of chemisorbed water, ?H2O. Moreover,

a single H3PO4 can substitute more than one ?H2O molecule, thereby forming higher

dentation modes which will be explained in detail in section 3.3. The adsorption reaction

for any such reaction of a single H3PO4 can be written in the following simplified way:

H3PO4 + x ?H2O −−→ ?H3PO4 + xH2O ↑ (3.1)

where the “?” indicates surface adsorbed species and the only variable x indicates the

amount of substituted water. Physisorption is described with x = 0. Even without

inspecting the reference surfaces in fig. 3.1b in full detail, it should be clear that most

surface species are actually hydroxyl moieties; the protonation state of the adsorbed

phosphate moreover defies chemical intuition. A more general reaction involving these

aspects is:

H3PO4 + (x−y) ?H2O+ y ?OH −−→ ?H3−zPO4 + (z−y) ?H+ xH2O ↑ (3.2)

In this equation, x still defines the number of substituted H2O, but the two additional

variables y account for substitution of hydroxyl moieties and z for the protonation state

of the adsorbed phosphate. The shifted proton is given as ?H which actually either forms
?OH or ?H2O. Only eq. 3.2 correctly describes the adsorption of orthophosphate species;

however, it should be noted that x is the only variable which changes the material balance

of the surface, and therefore eq. 3.1 is sufficient to determine the reaction free enthalpy.

Variables y and z only describe proton transitions on the surface. The adsorption free

enthalpy is calculated from the absolute free enthalpy (cf. eq. 2.6, p. 2.6) of the tested

candidates G[?H3PO4] with the reference surface G[?] (which includes preadsorbed ?H2O,
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cf. fig. 3.1b), and the gas-phase references G[H3PO4] and G[H2O]:

∆Gads = G[?H3PO4] + xG[H2O(g)]−G[?]−G[H3PO4(g)] (3.3)

The phosphate reservoir G[H3PO4(g)] is always constant but the surface reference, G[?]

depends on the facet. This is important when comparing two adsorption free enthalpies

from different model facets, because systematic errors in both reference calculations

can be different, limiting the accuracy of this comparison. Consequently, free enthalpy

comparisons between the (1 0 0) and (1 1 0) facet have to be discussed with more caution. It

also adds an important aspect to the comparison of the unreconstructed and reconstructed

structural references of (1 1 0), since for this facet it is desirable to use the same G[?]

in order to avoid this problem altogether. Wischert’s reconstruction was identified in a

study about low water coverage at high temperatures, which lead to the transition of the

β-aluminium atom (see fig. 3.1 ii and iii) from an octahedral to a tetrahedral site. This

structural change in fact reduces the number of available adsorption sites by one, hence

the number of preadsorbed H2O on R(1 1 0) is reduced compared to n(1 1 0) as well. The

reaction from one (1 1 0) structural reference [n] to another [R] is given by:

[n] −−⇀↽−− [R] +H2O , ∆G = +29 kJmol−1 (3.4)

The reconstructed structural reference R(1 1 0) is with a free enthalpy of this reaction

of 29 kJmol−1 less stable than the unreconstructed n(1 1 0). To my best knowledge this

parameter is reported by us for the first time, since Wischert discovered the reconstruction

in a study of high-temperature models with incomplete hydration,[92,121,122] and other

studies involving Wischert’s R(1 1 0) did not compare it with Digne’s n(1 1 0).[96] By

combining the reaction eq. 3.1 and eq. 3.4, one can calculate free enthalpies for adsorption
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3.1. Drying conditions and structural exploration

on both structural references with respect to the same surface reference:

∆G[R]
ads = G[?H3PO4] + (x+1)G[H2O(g)]−G[n]−G[H3PO4(g)] (3.5)

where G[n] is the unreconstructed reference. The reconstruction reaction in eq. 3.4 adds

1H2O to the equation. Overall, these considerations allow for an extensive exploration

of the most exposed (1 1 0) facet even including the possibility of reconstruction while

avoiding limits in the comparability.

For adsorption of more than one phosphate, as for orthophosphate coadsorption or

pyrophosphate adsorption, eq. 3.2 needs to be applied for both phosphate atoms, however,

this way we introduce a second phosphate from the arbitrarily chosen reference of H3PO4

in gas phase. For the sake of a good global comparison, average adsorption enthalpies

will be given, as the effect of the phosphate reference remains constant this way. For

the adsorption of two H3PO4, leading to a substitution of x and x′ H2O molecules, the

average adsorption free enthalpy is defined as:

∆G2P
ads =

1

2

{
G[2 ?H3PO4] + (x+x′)G[H2O(g)]−G[?]

}
−G[H3PO4(g)] (3.6)

where 2P indicates coadsorption. For pyrophosphate, the orthophosphate condensation

reaction needs to be included:

2H3PO4 −−→ H4P2O7 +H2O

Similar to the surface reconstruction in eq. 3.4, one additional H2O molecule is released.

The pyrophosphate adsorption enthalpy values are, like the other enthalpy values, reported

with respect to one mole H3PO4:

∆GP2
ads =

1

2

{
G [?H4P2O7] + (x+x′+1)G[H2O(g)]−G[?]

}
−G[H3PO4(g)] (3.7)
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where P2 is a short form for pyrophosphates. Finally, for coadsorption and pyrophosphate

adsorption on R(1 1 0), the free number of H2O molecules is again adjusted:

∆G2P
ads =

1

2

{
G[2 ?H3PO4] + (x+x′+1)G[H2O(g)]−G[?]

}
−G[H3PO4(g)] (3.8)

∆GP2
ads =

1

2

{
G [?H4P2O7] + (x+x′+2)G[H2O(g)]−G[?]

}
−G[H3PO4(g)] (3.9)

Eq. 3.3 and 3.5–3.9 describe the material balance based on x and x′. Structural con-

siderations are described by y and z in eq. 3.2, i. e. the substituted surface groups and

proton transfer from orthophosphoric acid to the surface. The latter is a general problem

for any adsorption structure that starts from a reference structure with an involved

hydrogen bond network. There is in fact no reason to assume that the adsorbate can be

constructed without significantly impacting the hydrogen bonds. In principle, it has to

be recreated for every adsorption. The next section will discuss how this can be done

based on a study of the reference states in fig. 3.1b.

3.2. Hydrogen bond network

In order to determine accurate phosphate adsorption free enthalpies, the correct hydrogen

bond network needs to be identified. Some of the adsorbing H2O molecules are disso-

ciated and produce hydroxide ions that form hydrogen bond networks which cover the

γ-Al2O3 facets. The quest for the best hydrogen bond network is a global optimization

problem and thus difficult to achieve with the “traditional” static DFT workflow, in

which geometries are optimized by following the force gradient towards the next local

minimum. Global optimizations are typically done either by combinatorics, i. e. exploring

all possible protonation states and hydrogen bonds by autogenerated structures, or by

random sampling (e. g. Monte Carlo simulations). These methods are computationally

demanding and require in-depth knowledge about the model system in order to establish
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3.2. Hydrogen bond network

the configuration space (in this case, of the considered protonations and hydrogen bond

networks).

As the first step, the original results from Digne and Wischert were adapted and

re-optimized at the considered level of theory (PBE-D3). For all the reference surfaces,

several starting configurations with different protonations were tested. The results are

overall consistent with the original structures by Digne, but slightly different hydrogen

bond networks for (1 1 0) were found to be most stable. The hydrogen bond networks

drawn in fig.3.1b are, for each structural reference, the most stable cases at this level of

theory.

In an attempt to rank the mobility of protons at the distinct sites, one should focus

on protonation states for symmetry-equivalent sites like, for example, b/b′, e/e′, A/A′

and D/D′ in fig. 3.1a. If these sites have different protonation states, they must be more

prone to protonation or deprotonation. In case of H2O substitution by an adsorbate that

increases or reduces the number of protons participating in the hydrogen bond network,

these sites can accept an additional proton or donate a proton to more basic sites. For

example, the site pairs b/b′ and e/e′ are µ1-OH/µ1-H2O while A/A′ is µ3-O/µ3-OH. In

contrast, D/D′ are each µ2-OH. Hydrogen bonds can stabilize the deprotonated states;

i. e. µ1-OH or µ3-O are either stabilized by hydrogen bonds or being protonated – or

neither of them, leading to a slightly less stable structure. For a complete picture they

need to be included. By listing the different oxygen µx bonding modes on n(1 1 0), we

see that:

• 1
2 of µ1 sites are OH or H2O;

• 2
3 of µ2 sites are OH and 1

3 are O (stabilized by 2 hydrogen bonds);

• 2
3 of µ3 sites are OH and 1

3 are O (stabilized by 1 hydrogen bond).
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3. Structural exploration

The similarity between µ2 and µ3 is surprising, since µ2 should be more basic than µ3.

It seems that, while the local environment of the site matters, it is also important that

the protons are regularly dispersed. With H3PO4 adsorption the number of protons in

the system changes depending on the number of substituted H2O. The capability of the

sites to yield or remove protons depends on their proton affinities. Most information for

this lies in the reference surfaces, but after the first adsorption tests of phosphate it was

found that this adsorbate typically dissociates and transfers one or two protons to the

surface (more for higher dentation). All these considerations lead to proton affinities that

can be ranked in the following way:

µ1-O >> µ2-O > P−O ≈ µ3-O ≈ µAlO
1 -OH︸ ︷︷ ︸

mobile

> µAlT
1 -OH >> µ2-OH,µ3-OH,µ4-O (3.10)

Here, µAlO
1 and µAlT

1 are oxygen atoms at octahedral and tetrahedral aluminium atoms.

For most adsorption candidates, this allowed to limit the range of protonation states

to only a 3-4 test calculations which were calculated by DFT. Still, in some cases the

number of combinations was more than 30, thus the number of calculations was limited

to about 15 cases for which the protons were well dispersed over the surface and layers.

On average, six hydrogen bond networks were tested per considered site, which lead to

around 1000 geometry optimizations for the whole phosphate adsorption database. The

following section describes which sites were actually considered.

3.3. Surfaces and adsorption modes

To understand all tested phosphate surface species in detail, one has to combine all

possible adsorption modes with the given surface models. The adsorption modes of

chemisorbed molecules or ions can be understood by the number of bonds they form

with the surface and by the actual surface sites they bind to. A simple adsorption
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Figure 3.2.: Adsorption modes of orthophosphates on γ-Al2O3. Physisorption (ν0) and

several dentation patterns are possible: monodentates (ν1), bidentates (ν2) and tridentates

(ν3). All phosphate oxygen atoms are coordinated with at least one more atom other than

phosphorus. The dentation sites are highlighted in red for substituted water adsorption

sites, and blue for alumina oxygen sites.

species that only binds to the surface via a single atom is commonly described in a

notation like µx, where x refers to the number of surface atoms it binds to. For more

complex adsorption cases, like for phosphates binding via several oxygen atoms to the

surface, there is no generally accepted notation available, but the bond patterns are

described as dentations.[52,72] In this work, a short notation is introduced based on the

Greek letter ν. For one orthophosphate (PO4) unit, x in νx refers to the number of

phosphate oxygen atoms binding to the surface. Notably, the variable x in the reaction

eq. 3.2 and x in νx are equivalent, because by the definition of the reference surfaces, the

phosphate adsorption always involves substitution of OH or H2O, releasing an equivalent

amount of water. Fig. 3.2 shows all the considered adsorption modes from physisorption

(ν0) to tridentates (ν3). Except for physisorption, all adsorption modes are constructed

by substitution of preadsorbed water sites (cf. red colored surface sites in fig. 3.1),

which are mostly µ1-OH and µ1-H2O. For the higher dentation modes (ν2 and ν3), the

actual adsorption requires to identify matching adsorption site patterns. In case of ν2,

a minimum requirement is two neighboring adsorption sites with a matching distance,

whereas ν3 needs an arrangement of three adsorption sites close to a regular triangle.

Based on the findings of Luschtinetz et al.,[52] the distance criterion was held on relatively
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3. Structural exploration

Table 3.1.: 51 adsorption site candidates on the three surface models. The site labels in

superscript are given in fig. 3.1i, ii and iii. The full structure exploration included all possible

adsorption combinations based on neighboring sites. The struck through structures are

excluded later on, since two phosphate oxygen atoms bind to the same aluminium atom.

Facet Monodentate Bidentate Tridentate

(1 0 0) νa1 , νb1, νc1 νab2 , νaa′2∗ , νbc2 , νcb2∗ νabc3 , νacb3∗ , νaa′B3∗ , νaa′C3∗ , νabA3

n(1 1 0) νa1 , νb1, νd1 , νe1 νab2 , νbb′2 , νde2 , νee′2 νabA3 , νabD3 , νbb′B3 , νbb′E3 , νdeA3 ,

νdeD3 , νee′B3 , νee′E3

R(1 1 0) νa1 , νb1, νc1, νd1 , νe1 νab2 , νac2 , νbc2 , νde2 , νabA3 , νabD3 , νacC3 , νacF3 , νbcB3 ,

νdC2 , νdF2 , νeB2 , νeE2 νbcE3 , νdeD3 , νdeA3 , νcBC
3 , νcEF

3

∗sites are not in direct view of fig. 3.1i due to periodic boundary conditions

strictly, ignoring “distant” neighbors with distances larger than 3Å. Since these patterns,

in particular the triangular patterns are not easily attained, alumina oxygen sites (cf.

blue colored surface sites in fig. 3.1) were included in the construction of several higher

dentation modes. A known reaction mechanism to form such adsorption species is the

phosphorylation, as discussed in section 1.1.3 (p. 18).

Now, the systematic exploration of all possible adsorption is a major challenge, because

despite four distinct adsorption modes, the three structural references provide a consider-

able number of adsorption sites. In order to constrain the number of explored structures

to the most relevant cases, selection criteria were identified and applied for next explored

structures. Overall the three model surfaces are comprised of 15 water adsorption sites

and 18 alumina oxygen sites. In order to keep track of every tested adsorption site, the

νx notation is extended by the site with the labels given in fig. 3.1a. For example, on

(1 0 0) the monodentate, bidentate and tridentate adsorption modes are labelled νa1 , νab2

and νabc3 , respectively. Due to symmetry, the overall number of adsorption sites can be

slightly reduced, which if reflected in the labels, e. g. b and b′ on n(1 1 0) are equivalent.
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3.3. Surfaces and adsorption modes

What followed based on these considerations was the systematic listing of all possible

sites. Even after excluding symmetry-equivalent cases, this left at least 51 chemisorbed

candidate sites which are tabulated in tab. 3.1. Physisorption (ν0) was handled separately

by positional screening of the surfaces, leading up to 16 test structures (including

hydrogen bond optimization, see section 3.2) for each physisorption result. Without

further knowledge, it is difficult to reduce this number. It should be noted that for

each site, sampling the hydrogen bond network are necessary, leading to hundreds of

calculations, as discussed in section 3.2. Moreover, for the purpose of processing the

results and extending this data base with relevant candidates, further selection criteria

are needed. A full list of free enthalpies is given in tab. A.1 (appendix, p. 154). After

analyzing the free enthalpies of all candidates on (1 0 0) and n(1 1 0), the following criteria

were derived:

1. Two phosphate oxygen atoms never bind to the same aluminium atom.

2. Substitution of µ1-O is generally preferred over µ2-O and µ3-O.

3. Free phosphate oxygen atoms are either protonated or stabilized by hydrogen bonds.

The first criterion is consistent with one of the findings in ref. [52]. It simplified the

structural exploration on R(1 1 0), where several of the candidates in tab. 3.1 were

discarded. However, it should be noted that some of the unfavorable adsorption structures

lead to a critical further insight. For example, n(1 1 0)νee′B3 leads to the reconstruction

of R(1 1 0)νeB3 , which is one of the most stable adsorption modes discovered; it in fact

showed that it was necessary to include models based on Wischert’s reconstruction.

(1 0 0)νabA3 , while clearly violating the first criterion, is only 10 kJmol−1 less stable than

(1 0 0)νabc3 . After all, while there are some exceptions, many adsorption candidates can be

excluded only based on the first criterion. As shown in tab. 3.1, only eight ν3 candidates

remain out of originally 23. Overall it reduces the number of relevant sites to 30 from

originally 51 candidates. The second criterion excludes monodentates on alumina oxygen
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3. Structural exploration

sites, which in most cases were not considered due to steric limitations, but it would also

exclude two water adsorption sites, νa1 on n(1 1 0) and R(1 1 0). As a consequence of the

third criterion, the phosphate protonation state for most cases was HPO2–
4 , as at least

one oxygen protrudes from the surface and hence cannot be stabilized in a hydrogen

bond.

Based on the results for adsorption of a single orthophosphate on the three γ-Al2O3

model facets, two additional cases were studied: coadsorption of two orthophosphates

and pyrophosphate adsorption. This was critical since it is well established by 31P NMR

that the phosphate species change with coverage.[12,59] While there is no tight control over

coverage for the computational model, the actual modelled coverage can be calculated

based on the surface unit cell. For one phosphate on the (1 0 0) facet, the coverage

is 2.2Pnm−2, on (1 1 0) it is 1.5Pnm−2. These values double when adding a second

phosphate to the surface model (4.3 and 3.0Pnm−2). The νx notation for coadsorption

is concatenated in case of coadsorption like in νx+νx′ . The new variable x′ also leads

to water desorption as given in reaction eq. 3.2, depending on the adsorption mode νx′

of the additional phosphate. For polyphosphates like pyrophosphate, the νx notation

was extended by additional digits, such as νxx′ . The superscript site information is

comma-separated, e. g. νbc,eB22 .

Even after elimination of several candidates by the first criterion for the adsorption of

single orthophosphates, the number of adsorption combinations is overwhelming. The full

scope of coadsorption includes all combinations of x and x′ in νx+νx′ . With values from

0 to 3, this gives 10 combinations from lowest to highest overall adsorptions, i. e. ν00 to

ν33. As shown in tab. 3.1, four adsorption modes lead to at least 30 adsorption candidates,

after selecting a subset of structures from 51 initial chemisorption candidates. One also

needs to add physisorption here, which adds one candidate for each structural reference,

and thus 33 single adsorption cases for recombination to coadsorption and pyrophosphate

adsorption. These 33 sites are ten on (1 0 0), ten on n(1 1 0) and 13 on R(1 1 0). The upper
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3.3. Surfaces and adsorption modes

limit of combinations for a coadsorption is first estimated by calculating the number

of inequivalent site combinations with
∑

n=10,10,13
n(n−1)

2 = 168. This higher than the

actual number of combinations since, for example on R(1 1 0), νb1, νbc2 and νbcB3 all involve

site b and thus cannot coexist. Nevertheless, by counting only possible combinations,

107 new coadsorption structures remain. This can be slightly reduced by excluding the

less stable site µa2-OH site on n(1 1 0) and R(1 1 0) leaving 86 candidates. The same

considerations apply for pyrophosphates νxx′ , with combinations for x and x′. Several

more combinations can be excluded due to the limited flexibility of the H4P2O7 molecule,

but still up to 73 structures would require testing. In the end this leaves us with 180

additional site combinations for coadsorption and pyrophosphates, which would each

involve additional sampling for the hydrogen bond network (cf. section 3.2).

We chose to restrict the number of combinations even further, only including those

systems systematically, that involve one of the best single orthophosphate adsorption

modes. These are combinations of 12 best adsorption geometries with one another, or if

this is not possible, involving second best structures of each adsorption mode. Additional

calculations were done for the more interesting cases. Overall 118 site combinations were

tested. The tested sites are listed in tab. A.2 and A.3 (appendix, p. 156). Based on this

exploration a fourth selection criterion was identified:

4. If possible, coadsorbed phosphates are well distributed over the surface.

That means coadsorbed phosphates maximize their distance to one another and avoid

neighboring sites if possible. Identifying all important adsorption site candidates on

(1 0 0), n(1 1 0) and R(1 1 0) started from single orthophosphate adsorbates, which were

evaluated based on their free enthalpies. The best adsorption modes were used to

study coadsorption and pyrophosphate, which gave additional insight into coverage

effects. Overall 159 of these sites and site combinations were optimized. This way,

selection criteria for new adsorption sites were developed, of which only the first is a
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3. Structural exploration

Table 3.2.: Most favorable adsorption sites and free enthalpies ∆G and enthalpies ∆H in

kJmol−1 at drying conditions, 120°C and 2 kPa H2O partial pressure.

Facet Physisorption Monodentate Bidentate Tridentate

∆G (∆H) ∆G (∆H) ∆G (∆H) ∆G (∆H)

(1 0 0) ν0 −126 (−232) νa1 −121 (−148) νab2 −156 (−106) νabc3 −122 (+8)

n(1 1 0) ν0 −56 (−147) νe1 −105 (−121) νde2 −132 (−75) νdeA3 −150 (−22)

R(1 1 0) ν0 −66 (−79) νb1 −120 (−62) νeB2 −160 (−30) νbcB3 −168 (+41)

strict limitation (two phosphate oxygen atoms never bind to the same aluminium atom).

While – conservatively estimated – up to 203 structures could have been included (i. e. by

application of this first criterion), the other three criteria also allow for a more selective

approach, within which all plausible sites and site combinations are included in the data

set.

3.4. The most stable adsorption modes

As pointed out in sections 3.2 and 3.3 with considerations for creating hydrogen bond

networks and with site selection criteria, there are several general rules which can be used

to identify a manageable number of candidate structures. Nevertheless, the most stable

results comprise exceptional structural features that will be discussed here. It should

also be noted that the reported absolute free enthalpy values heavily depend on the

environmental conditions, whereas enthalpies are less dependent on temperature. Tab. 3.2

summarizes the results of the four different adsorption modes on the three reference

surfaces. The free enthalpy values ∆G and enthalpy values ∆H show very different

trends, which can be explained by considering the significant vapor entropy gain after

releasing H2O in the substitution. Comparing systems like, for example n(1 1 0)ν0 and

R(1 1 0)ν3, one should also consider the amount of water released. For physisorption, no

66



3.4. The most stable adsorption modes

(a)

(b)

Figure 3.3.: Gibbs free enthalpy (a) and enthalpy (b) of H3PO4 adsorption per mole of

phosphate at 120°C as a function of the number of released water molecules from the

reference surfaces. For R(1 1 0), the common energy reference of the n(1 1 0) surface was

used, hence adsorption occurs after removal of one H2O. Only the lowest enthalpy system

of each category is included. Left panels: adsorption on the (1 0 0) surface. Right panels:

adsorption on the (1 1 0) facets, n(1 1 0) with filled symbols, R(1 1 0) with empty symbols.

Only the free enthalpy of the most favorable system at a given degree of water abstraction

was included.

water is released as no substitution occurred but on R(1 1 0)ν3, three H2O are released for

the ν3 adsorption and one for surface reconstruction (cf. eq. 3.5). The enthalpy difference

between n(1 1 0)ν0 and R(1 1 0)ν3 is −188 kJmol−1 but the free enthalpy 112 kJmol−1,

which corresponds to the difference of the entropy contribution T ·∆S. In this example

it is T ·∆S = 300 kJmol−1 for a vapor entropy gain after releasing four H2O. When
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(1 0 0)ν0 is compared with R(1 1 0)ν3, the result is similar, with T ·∆S = 315 kJmol−1.

While identifying the most stable structures, at drying conditions they are ν2 and ν3

on R(1 1 0) – indicating that entropy gain by water release is the most decisive term

in the free enthalpy results. ∆H and ∆S also slightly depend on the temperature, but

the most favorable adsorption sites still remain the same. This balance of enthalpy ∆H

and entropy ∆S is linear dependent on the temperature due to T ·∆S, which means

that the order by free enthalpy of the tabulated structures in tab. 3.2 is sensitive to the

temperature. For example at ambient conditions, i. e. the free enthalpy of R(1 1 0)ν3 is

118 kJmol−1 and 152 kJmol−1 for (1 0 0)ν0 (cf. tab. A.1, appendix, p. 154). It is also not

the case for higher coverages, such as the calculated coadsorption and pyrophosphate

adsorption cases. For a general overview in fig. 3.3, ∆G and ∆H were plotted against

the number of released H2O. With eq. 3.3 and 3.5–3.9, the number of released H2O

varies from 0 to 7 relative to the water-covered reference structures. Coadsorption is less

favorable than single orthophosphates, which means that phosphate adsorbates compete

for surface area, and there is no cooperative adsorption found. This is consistent with

the observation, that structures with maximum phosphate distance minimize the free

enthalpy. Pyrophosphates are generally less stable even though there are some cases in

which pyrophosphates are slightly better stabilized. At drying conditions, up to three or,

respectively, four H2O are substituted on the (1 0 0) and (1 1 0) facets. Substitution of

further H2O is endergonic at 120°C, but becomes exergonic at higher temperatures (for

more data, cf. tab. A.2, appendix, p. 156).

Energy comparisons between the facets (1 0 0) and (1 1 0) are not ideal for two reasons.

First, those energies are based on calculations of two different reference surfaces, neither

of which is free of model errors. Second, both systems describe different coverages due to

different areas of their surface unit cell. These two aspects are actually very complex

to include into a quantitative model, since the coverages on both facets would differ

significantly even for slightly different adsorption free enthalpies. It would require to
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calculate accurate adsorption energies for a range of coverages which would allow us to

generate estimates for two local coverages based on the phosphate loading in the sample.

In the following sections the coverage on both facets will be considered as equivalent.

The coverage effect is qualitatively separated in high and low model coverage domains.

Orthophosphate coadsorption and pyrophosphates effectively represent the same coverage,

thus the coadsorption is the preferred reference to quantify the stability of pyrophosphates

relative to orthophosphates.

3.4.1. Single orthophosphates

Since the order of most stable structures can vary with environmental conditions, the

focus on most stable few structures can become arbitrary. In fig. 3.4 three adsorption

species from each reference surface were selected based on their exceptional structural

features. They are also within the most stable candidates, but at different temperatures.

Physisorption is the most stable adsorption mode on (1 0 0) at ambient conditions (see

fig. 3.4a). It is adsorbed as HPO2–
4 ion, in which the three free P–O oxygen atoms

are stabilized by a hydrogen bond pocket consisting of six protons, i. e. two hydrogen

bonds per phosphate oxygen. In contrast, the much less stable physisorption cases on

n(1 1 0) and R(1 1 0) (cf. tab. 3.2) are H2PO–
4 ions, stabilized by hydrogen bonds from

additional three protons (for two phosphate oxygen, i. e. 1.5 hydrogen bonds each). The

high dentation cases n(1 1 0)νdeA3 and R(1 1 0)νeB2 , where the adsorbed species is fully

deprotonated (PO3–
4 ), are given in fig. 3.4b and 3.4c. Similar to the hydrogen pocket in

fig. 3.4a, the free P–O oxygen atoms of the adsorbed species are additionally stabilized

by two and four hydrogen bonds from H2O and OH sites in their vicinity. R(1 1 0)νeB2 is

the only case where such stabilization is possible with two hydrogen bonds stabilizing

both remaining free P–O oxygen atoms; other bidentates, like n(1 1 0)νde2 , are HPO2–
4

ions with only one P–O oxygen atom in hydrogen bonds.
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... .....
...

.. ...

(a) (1 0 0)ν0 physisorbed HPO2–
4

ion with two hydrogen bonds

per phosphate oxygen

...

...

(b) n(1 1 0)νdeA
3 , tridentated PO3–

4

ion; substituted alumina

oxygen on µAlO
1 , µAlT

1 and µ3

...
...

...
...

(c) R(1 1 0)νeB
2 , bidentated PO3–

4

ion; substituted alumina

oxygen on µAlT
1 and µ2

Figure 3.4.: Ball-stick models of the most stable cases on n(1 1 0) and R(1 1 0) at 120°C

and of (1 0 0) at 25°C. These species are some of the overall best orthophosphate adsorption

cases, depending on environmental conditions. µAlT
1 and µAlO

1 are µ1 sites from tetrahedral

or octahedral oxygen atoms. Hydrogen atoms are white, oxygen atoms red, aluminium

atoms blue and phosphorus atoms yellow. Hydrogen bonds are illustrated with dots.

It is a remarkable fact that the most stable adsorption mode is found on the recon-

structed surface reference, since the hydrated structural reference of n(1 1 0) is 29 kJmol−1

more stable than R(1 1 0) before phosphate adsorption. This stabilization is clearly trig-

gered by the adsorption, but the question is, how exactly. Tab. 3.3 lists all stable bidentate

and tridentate adsorption modes ordered by their location on the surface on n(1 1 0) and

R(1 1 0). In most of these cases, i. e. νbc2 , νde2 , νbcE3 and νdeA3 , the trend is the same as

for the reference, with n(1 1 0) being consistently 16 to 35 kJmol−1 more stable than

R(1 1 0). Only νbcB3 is stabilized by 46 kJmol−1 on R(1 1 0). A second adsorption mode,

R(1 1 0)νeB2 , is considerably more stable than any of the adsorption modes on n(1 1 0),

despite the reconstruction. Both sites νeB2 and νbcB3 involve the alumina oxygen site B

which transforms from a µ3-O site on n(1 1 0) to a µ2-OH site on R(1 1 0). For illustration

see fig. 3.1 and note that the reconstruction breaks the symmetry in n(1 1 0); thus b′
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Table 3.3.: Comparison of bidentate on tridentate free enthalpies, ∆G in kJmol−1, of the

same sites on n(1 1 0) and R(1 1 0) at drying conditions, 120°C and 2 kPa H2O partial pressure.

Labels are given for R(1 1 0), on n(1 1 0) c is equivalent to b′.

νbc2 νde2 νeB2 νbcB3 νbcE3 νdeA3

n(1 1 0) −132 −132 — −122 −137 −150

R(1 1 0) −113 −97 −160 −168 −106 −134

becomes c. It shows, that Wischert’s reconstruction is a phenomenon of Digne’s (1 1 0)

surface model that can occur at low water coverage due to high temperature,[92] or in

solution, provided that it can be stabilized with a suitable adsorbate at alumina oxygen

site B. In general, it underlines the complexity of these adsorption phenomena, since

adsorbate-induced surface reorganization like this one is still very difficult to predict.

3.4.2. Coadsorption and pyrophosphate adsorption

Coadsorption and pyrophosphate enthalpies are determined as described before with

eq. 3.6–3.9, where for better comparison with single orthophosphate adsorption, av-

erage phosphate adsorption enthalpies are reported. The two best coadsorption and

pyrophosphate cases are tabulated in tab. 3.4. Compared to the adsorption of a single

orthophosphate on the reference surfaces, coadsorption and pyrophosphate adsorption

reach a limit in terms of water abstraction. For single orthophosphate adsorptions, the

free enthalpy was dominated by the entropy term, with R(1 1 0)ν3 (4H2O) being the most

stable case at 120°C. In comparison, the coadsorption case with most water desorption

is R(1 1 0)ν3+ν3 (7H2O), which is with ∆G = −113 kJmol−1 less stable than the most

favorable coadsorption cases on n(1 1 0) and R(1 1 0). Removal of 4 or 5H2O seems to be

the limit for phosphate adsorption at these conditions. A similar trend is observed on

the (1 0 0) facet.
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Table 3.4.: Free enthalpies of the most favorable adsorption mode for coadsorption and

pyrophosphates in comparison to the nextmost stable case with different overall dentation

x+x′ in νx+νx′ and νxx′ , sorted by dentation. ∆G in kJmol−1 at drying conditions, 120°C

and 2 kPa H2O partial pressure.

Facet Orthophosphate coadsorption Pyrophosphate adsorption

sites ∆G sites ∆G sites ∆G sites ∆G

(1 0 0) νab2 +νa1 −119 νaa2 +νbc2 −116 νa,a11 −99 νbc,a21 −106

n(1 1 0) νbc2 +νde2 −127 νbcE3 +νde2 −128 νe,b ∗11 −100 νde,b21 −97

R(1 1 0) νeB2 +νd1 −132 νbcB3 +νd1 −121 νeB,b
21 −105 νbcB,e

31 −117

∗νe,b
11 is a pyrophosphate species that binds with its P–O–P bond positioned over

alumina oxygen sites A and B, leaving boundaries of unit cell depictions in fig. 3.1ab.

Regarding adsorption site combinations, it is clear that the second adsorbing phosphate

is limited to the remaining sites. One would generally expect that the most favorable

sites are occupied first followed by the second most favorable site. However, the sites

in tab. 3.3 and tab. 3.4 are not consistent in this regard. In fact, only (1 0 0)νab2 +νa1

and n(1 1 0)νbc2 +νde2 specifically fit this expectation. On (1 0 0), the adsorption of two

bidentates is only possible by one pattern νaa′2 +νbc2 that excludes the most stable single

bidentate νab2 , since the remaining sites a′ and c are not direct neighbors. The free

adsorption energy of the monodentate R(1 1 0)νd1 is ∆G = −86 kJmol−1, which makes

it very unfavorable on R(1 1 0); νc1 (−120 kJmol−1) and νe1 (−98 kJmol−1) are better

alternatives. Nevertheless, νd1 is the most stable candidate as coadsorbate with νeB2 and

νbcB3 , where in each case better sites would be still available. This is likely related to the

hydrogen bonds formed with those sites to stabilize νeB2 and νbcB3 . The νd1 adsorption is –

for construction of the most favorable site – the best choice, as it does not destabilize the

other site. The structures comprise different hydrogen bond patterns but the differences

are subtle.

A similar overall trend can be observed for pyrophosphates. The available range of sites
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Figure 3.5.: The most stable pyrophosphate

species, R(1 1 0)νbcB,e
31 at drying conditions

(120°C, 2kPa H2O partial pressure). With

∆G = −117 kJmol−1 it is still clearly less sta-

ble than the other coadsorption candidates that

were identified.

is more constraint than in case of coadsorbed orthophosphates since both phosphate groups

are connected with a bridging P–O–P bond. From their free enthalpies (cf. tab. 3.4), it

is evident that pyrophosphates are not better stabilized than coadsorbed orthophosphates

at the surface. However, in two cases on R(1 1 0) (νbcB,e
31 and νbc,eB22 ), the stabilization

is rather close to coadsorbed phosphates. Noticeably, the R(1 1 0) sites B, b, c and e

are arranged in such a way that they can bind a pyrophosphate on four sites, while still

staying with the selection criteria discussed in section 3.3.

3.5. Summary and perspectives

The result of this structural exploration is a database of overall more than 1000 DFT

calculations based on 159 adsorption site candidates. To ensure that the most stable

cases were identified, the exploration was done on multiple levels of complexity. With

a defined set of structural references, candidate sites had to be defined. This first

involved labelling of the relevant surface oxygen sites given in fig. 3.1a, followed by

defining a set of relevant adsorption modes based on oxygen site combinations. These

adsorption modes were recombined to obtain candidate structures for orthophosphate

coadsorption and pyrophosphates. All structures identified in this process required a

test for several relevant hydrogen bond networks by applying combinatorics described
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in section 3.2. Several general trends and features were identified just by comparing

their thermodynamic properties. One of the important findings is that the presence of

phosphates leads to surface reorganization, here observed by the stabilization of Wischert’s

reconstruction. It was proposed in several experimental studies,[12,59] but this work is the

first successful attempt to reconstruct these effects in computational atomistic models.

The database collected as described in this chapter was the basis for further studies.

As an attempt to verify the result database, GIPAW chemical shift simulations were

conducted for the most stable structures. The results and performance in comparison

to the experiment are discussed in chapter 4. With the ambition to better understand

the structure- NMR relationship, the chemical shift simulations of this database were

used to train a machine learning model. The outcome of this is given in chapter 6.

Finally, in order to cover phosphate species at impregnation conditions, the best database

structures were used as target geometries in state-of-the-art metadynamics simulations

(chapter 5). In particular, high dentation patterns were probed in order to see whether

they can form by means of a phosphorylation. Moreover, based on thermodynamic

estimates, the condensation of pyrophosphates was excluded within the tested models.

This has important consequences, as experimental evidence demonstrates their presence.

Pyrophosphate and other polyphosphates either come from the solution, they condensate

faster than the most stable adsorption modes can form or they are a consequence of

inhomogeneous distribution in the material. These three alternatives are discussed in

detail in section 4.3 (p. 4.3), after a detailed analysis of the prediction performance of

these models for 31P NMR spectroscopy.
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Experimental and theoretical work have always been complementary. The discussed 31P

and 27Al NMR experiments involve – even without computational models – a considerable

theoretical foundation in order to infer chemically relevant information from the raw

spectral data. Many regular single component systems can be well characterized with

different experimental methods, allowing accurate experimentally derived models. In

contrast, disordered multicomponent mixtures are usually too complex to permit a

complete atomic scale description that is exclusively based on experimental insight. In

the past, these knowledge gaps had been commonly filled with more or less speculative

hypotheses in lack of better alternatives. Computational modelling is different from

the theory needed to interpret experiments, since it is carried out separately. As such,

computational results can be evaluated independently, but since they do not involve

any measurements of a real chemical system, their relevance is sometimes disputed.

Combining NMR cross-polarization experimental studies with computational modelling

can therefore improve the discussion at both sides.

In the structural exploration (chapter 3), we presented computational results, identified

several trends within the most stable adsorption modes and sites and rationalized them by

the balance between enthalpy and H2O vapor entropy. As described there, the exploration

was comprehensive and it is therefore unlikely that the most representative structures were

overlooked – but that only includes the three model surfaces tested. From a computational

perspective, it is very difficult to proof that the explored phosphate adsorption geometries

75
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are relevant models to describe the real systems, thus the structures have to be validated

against the experimental results. On the other hand, the unambiguous discussion of

the experimental findings requires a lot of results to be reconciled, where drawn figures

of adsorption patterns are often speculative. In computational models, however, these

presumptions can be evaluated and compared quantitatively; essentially by composing

structures in silico, and benchmarking it by computation of spectroscopic data from the

model geometry. For this work, it is particularly beneficial to compare calculated chemical

shifts of different adsorption modes and sites and compare them with the experiment.

This is also considerably different to some studies with a strong focus on experimental

results and only few computational models that are produced to illustrate the conclusions.

The goal in this chapter is to determine the extent to which the model geometries repre-

sent the real phosphate speciation on γ-Al2O3. It requires to identify which computational

models reproduce the experimental 31P NMR signal band of dried H3PO4-impregnated

γ-Al2O3. This also requires a computational NMR reference, because – equivalently to

NMR measurements – a reference substance needs to be computed in order to compare

the computational findings with literature data. Since simulations of 85% phosphoric

acid, the 31P NMR standard reference, are not feasible, aluminium phosphate minerals

with known crystal structures and NMR iso-shifts were used instead. While a single

one could be used as a reference, three compounds – berlinite, variscite and wavellite –

were used in order to minimize systematic errors. The reference is explained in detail in

appendix A.3. In order to compare the most stable candidates discussed in section 3.4

and 3.4.2, correlation graphs were produced where the chemical shifts from GIPAW

calculations are plotted against the phosphate adsorption free enthalpy.

4.1. Experimental results

As discussed in section 1.1.5 (p. 23), DeCanio et al. showed with 31P NMR, that two

aluminium phosphate phases can form when preparing samples with 4 to 10wt% H3PO4
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into γ-Al2O3, which corresponds to coverages of approximately 3.6 to 9Pnm−2. They

rationalized the initial signal shift from 1 to 4wt% (≈0.9–3.6 P nm−2) with polyphosphate

formation.[12] Moreover, DeCanio et al. observed a sudden drop in γ-Al2O3 pore volume

between phosphate loadings of 6 and 10wt% (≈5.4–9Pnm−2), which is one reason

why our experimental collaborators focussed only on loadings up to 4.1Pnm−2. Some

experimental work on similar systems also attempted to resolve the adsorption mode

of phosphates. Li et al. studied the adsorption of phosphates on boehmite using 31P

REAPDOR CP MAS NMR experiments. They identified bidentation (ν2) as a more

favorable adsorption mode than monodentation (ν1) of orthophosphates on boehmite

on dried and wet samples.[72,123] While this is an important finding and a comparable

behaviour is expected on γ-Al2O3, the authors did not include other adsorption modes

like tridentates (ν3) or physisorption (ν0). Overall, these studies set a range of species

and adsorption modes to be identified, and also a “confined” range of requirements that

the computational models need to satisfy. The focus here is on phosphate loadings at

which DeCanio et al. proposed that condensed phosphates would influence the 31P NMR

signal the most.

Fig. 4.1 shows NMR spectra acquired by D. Wisser and A. Lesage on γ-Al2O3 samples

provided by IFPEN based on Dynamic Nuclear Polarization Surface Enhanced NMR

Spectroscopy (DNP SENS) techniques.[18] The 31P CP NMR signal in fig. 4.1a confirms

the trend observed by DeCanio et al.: an almost featureless signal ranging from 0 to

−20 ppm at low coverage. With increasing coverage, the signal broadens and its maximum

is shifted to lower values. At the highest experimentally tested coverage of 4.1Pnm−2,

the signal band covers an area with an upfield shift to −30 ppm. For the first time they

detected the presence of pyrophosphates and other short-chained polyphosphates by using

double and triple quantum correlation spectra (fig. 4.1b and 4.1c). The 31Al– 27Al-INEPT

NMR experiments in fig. 4.1d showed clearly that the phosphates are chemisorbed to

the γ-Al2O3 surfaces by P–O–Al bonds. However, it is surprising that this apparently
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31P chemical shift, ppm 31P chemical shift, ppm 31P chemical shift, ppm

(a) Full 31P NMR signal at

varying coverage.

(b) 31P NMR experiment to

measure 31P–31P coupled

signal selectively.

(c) 31P NMR experiment to

measure 31P–31P triple

quantum coupling.

(d) 31P– 27Al through-bond INEPT correlation spectra. The 1D 31P CP MAS spectra (red line) as

well as the projections along the indirect dimension of the 2D through-bond (black line) and

through-space (blue line) spectra are reported on the left of the 2D maps. The projection along

the 27Al dimension is shown above the plots.

Figure 4.1.: Different DNP enhanced NMR techniques recorded at 9.4T (400MHz 1H

resonance, 263GHz microwave frequency). The 31P NMR signal (a) is shifted with the

overall phosphate coverage. The results of the 1D INADEQUATE experiments (b) and

(c) provide the evidence for the presence of condensed phosphates. Vertical line follows

the signal maximum at a coverage of 2.8Pnm−2. The 2D 31P– 27Al INEPT correlation

experiments (d) lead to new conclusions regarding the nature of P–O–Al bonds with the

surface (discussed in main text). NMR spectra obtained at CRMN by D. Wisser and A.

Lesage on γ-Al2O3 samples provided by IFPEN with the ROAD4CAT project.[18]
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does not concern all phosphate centers. The comparison between through-bond and

through-space 31Al– 31P-INEPT experiments (left side of the 2D graphs in fig. 4.1d)

reveals that the signal bands deviate significantly, which indicates that the down-field

part of the overall signal is represented by physisorbed phosphates or dangling groups

of terminally binding polyphosphates. A more subtle observation is that also the 27Al

signals are slightly shifted to positive values for increasing phosphate loading. As previous

work and these results show, many relevant aspects of phosphate adsorption are accessible

by experiments. However, currently there is no alternative to computational methods

and simulations in order produce a coherent model which can be benchmarked against

the experimental observations. Moreover, future experiments on even more complex

systems could rely on such models as foundation.

4.2. Computational chemical shifts

In order to completely characterize phosphate adsorption at the γ-Al2O3 surface, one

should take into account the following aspects:

• Formation of aluminium phosphate phases[12,59]

• Polyphosphate formation[12]

• Coadsorption or coverage effect (interaction with other phosphates in vicinity)

• Adsorption mode effect (i. e. dentation, for boehmite discussed in ref. [123])

• Adsorption site effect

• Stability (discussed for calcination in ref. [12])

Several of these have been studied before, but it was not yet possible to include these

aspects in a coherent model. The coming chapters demonstrate how DFT calculations can

enhance our understanding by comparing these results with model chemical shifts. The

GIPAW method[66,106] employed in this work explicitly calculates the shielding tensor from

the electronic structure for every nucleus of the system. Nevertheless, in the following

sections, only the chemical shift of 31P nuclei will be considered.
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Figure 4.2.: (a) Plot of the relationship between chemical shift and free enthalpy for single

adsorbed phosphates (1.5–2.2 Pnm−2). (b) Structures of the four most stable adsorption

sites. Oxygen sites from H2O adsorption are labelled in red and alumina oxygen sites in

blue.

4.2.1. Chemical shift of orthophosphate

For a single adsorbed orthophosphate species, the coverage of each model facet is

determined by the surface area of the unit cell, that is 0.46 nm2 for the (1 0 0) facet and

0.66 nm2 for the (1 1 0) facet. This corresponds to local coverages of 2.2 and 1.5P nm−2.

These local coverage values cannot be related to experimental phosphate loadings, as the

phosphates are not expected to be equally distributed over the different facets. When

comparing the results with experimental data, one also needs to bear in mind that

theoretical models are built at the pH corresponding to the point of zero charge. For

the computational models, it just means that the calculated systems are uncharged,

but for the experimental part it is required to ensure the absence of ions except for the

phosphates during sample preparation. GIPAW calculations were conducted for the most

stable sites for each adsorption mode – ν0, ν1, ν2 and ν3 – and structural reference, (1 0 0),

n(1 1 0), R(1 1 0). The stability of the modelled phosphate species was already discussed
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in detail in chapter 3. In this chapter, only the most stable systems are considered for

each adsorption mode. In fig. 4.2, the simulated 31P chemical shifts are plotted against

the phosphate adsorption free enthalpies defined in section 3.1 (p. 52).

The adsorption on the (1 0 0) facet is less stable than on (1 1 0), thus more phosphates

are expected to bind to the latter. The signals of phosphates on (1 0 0) are between 12 and

4 ppm, which is not within the experimental signal range that starts from 0ppm. Thus,

the phosphate does not seem to adsorb on the (1 0 0) at low coverage. For the (1 1 0)

facet, the most stable adsorption modes describe the upfield half of the experimental
31P NMR spectrum. The best candidate is the tridentate R(1 1 0)ν3 with a chemical

shift of −2 ppm, which is at the most positive end of the experimental range. The

other tridentate, n(1 1 0)ν3, leads to a chemical shift of −11 ppm, just close to the band

maximum of the lowest coverage in fig. 4.1a. The bidentates R(1 1 0)ν2 and n(1 1 0)ν2

are both deshielded compared to their tridentate counterparts. Hence, if the amount of

bidentate increases, the overall signal would be shifted to lower values. The most stable

monodentates (ν1) and physisorption cases (ν0) are 20 kJmol−1 less stable than the most

favorable site on each reference structure, and in most cases not in the chemical shift

experimental range. The fact that the most stable adsorption structures are in agreement

with the experiment is a clear validation of our computational method, and allows us to

analyze further trends. The next section takes a more elaborate view on 31P chemical

shift for coadsorption.

4.2.2. Orthophosphate coadsorption

As explained in section 3.1 (p. 52), the coadsorption free enthalpy is the average free

enthalpy of adsorption for both phosphates. This is the only value that can be directly

compared with single orthophosphate adsorption. Nevertheless, each coadsorption system

produces two results for the GIPAW 31P chemical shift simulations. Fig. 4.3a presents the
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Figure 4.3.: (a) Plot between chemical shift and free enthalpy of orthophosphate coadsorption

(3.0–4.3 Pnm−2). Colors and symbols refer to the reference surfaces (cf. fig 3.1) and

adsorption modes, respectively. The chemical shifts of two 31P nucleus in the same system

are connected by a horizontal line. (b) Chemical environment of the three most stable

adsorption sites combinations.

results for coadsorption in all cases that involve at least one bidentate (ν2) or tridentate

(ν3), as the other systems are less stable and thus less likely to be present. This does

not strictly exclude physisorption and monodentates, only the combinations ν0 + ν0,

ν1 + ν0 and ν1 + ν1 are not shown. The most stable adsorption mode combination is

R(1 1 0)ν2 + ν1 since the number of abstracted water molecules per surface unit is limited

by the balance between entropy gain and enthalpy loss, as discussed in section 3.4. All

the three most stable systems (cf. fig. 4.3b) consist of one or two bidentates, whereas only

one also consists of one tridentate. This is a stability related change of the adsorption

mode, from ν3 to ν2 with coverage increase. As proposed in the previous section, this

change of the predominant adsorption mode should lead to a chemical shift to lower

values. In fact, the chemical shifts of the three systems range from 2 to −13 ppm but

with most of signal at lower values, confirming this trend. The (1 0 0) facet, which was

excluded based on the modelled chemical shifts for single orthophosphate adsorption,
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now produces several 31P signals at chemical shifts of coadsorbed monodentates (ν1)

around −5 ppm albeit all of them are coadsorbed with another predicted signal that

is outside the experiment range. Even though it should in general be expected to find

phosphates on the (1 0 0) facet, as soon as the most stable adsorption sites on (1 1 0)

facet are occupied, these monodentation (ν1) signals could as well be characteristic to

any of the monodentates. Monodentates on all facets produce calculated 31P chemical

shifts between 6 and −6 ppm. This also concludes our findings for the influence of the

adsorption mode. The predominant species, bidentate (ν2) and tridentate (ν3), can

contribute to an upfield shift of the 31P NMR signal, whereas lower dentation modes

(ν0, ν1) should have a minor influence to the NMR signal. Another aspect is the decreased

free enthalpy difference between adsorption based on the n(1 1 0) reference structure and

R(1 1 0). The chemical shifts on n(1 1 0) are clearly at more negative values than those on

R(1 1 0). However these differences are not easy to disentangle with the general view on

the best adsorption mode combinations, but require a closer look at individual adsorption

sites. This is given in fig. 4.4 and will be discussed in the next section.

4.2.3. Coverage and site effect

The previous sections validated the models by comparison with the chemical shift

calculations and furthermore analyzed the effect of the predominant ν2 and ν3 adsorption

modes. In this section, the chemical shifts of the six most stable adsorption candidates at

varying coverages will be compared. With data for the orthophosphate adsorption and

coadsorption, two different model coverages are already tested. To calculate chemical

shifts at lower model coverages than in case of single orthophosphate adsorption, the unit

cell surface was increased by constructing p(
√
2×
√
2) super cells. GIPAW calculations

were carried out on those surface super cells, providing model coverages decreased by

50%. This means that three model coverages are available on both facets; on (1 0 0) they

are 1.1, 2.2 and 4.3Pnm−2 whereas on (1 1 0) they are 0.8, 1.5 and 3.0Pnm−2.
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Figure 4.4.: (a) Coverage effect on the 31P chemical shift for six selected sites, i. e. the two

most stable adsorption sites of each reference structure: (1 0 0)νa1 , (1 0 0)νab2 , n(1 1 0)νde2 ,

n(1 1 0)νdeA3 , R(1 1 0)νeB2 and R(1 1 0)νbcB2 (for labels cf. fig. 3.1a, p. 53). The phosphate

coverages are given as ranges, because the two model facets have different surface areas.

The same sites are connected by lines. At the highest coverage, the site of the coadsorbing

phosphate cannot be chosen unambiguously, so several cases were plotted.

The highest coverages (coadsorption) depend on the choice of the other coadsorbing

phosphate. Since there is no simple criterion to pick this other phosphate, all adsorption

mode combinations were plotted. Fig. 4.4a shows the effect of coverage while keeping

the site constant and fig. 4.4b provides structures of the tested sites. Note that this

plot has a focus on sites which means that all connected points not only share the same

structural reference and the adsorption mode, but they are bound to the model surface at

the same position and orientation. They are different in where and how their surrounding

rearranges depending on the presence of neighboring phosphates. It seems that there is a

small trend of decreasing chemical shifts at higher coverage, which could be called “direct”

coverage effect. The only exception is the monodentate (1 0 0)νa1 , which shows a strong

deshielding for the highest coverage. As this observation is unique to monodentates,

which are much less stable based on the thermodynamic results (cf. fig. 4.2), this aspect
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was not further examined.

The five considered bidentates (ν2) and tridentates (ν3) lead to fairly separated chemical

shifts all over the range. The chemical shift of each site does not change systematically

with increased coverage but might be different within a range of 5–10 ppm depending

on their surrounding. The chemical shift difference between the adsorption sites is in

comparison much more significant. For all bidentates (ν2) and tridentates (ν3), the signals

are in distinct areas, even at high coverage where overlapping ranges are overall in the

same order. Combined with the stabilization of adsorption on n(1 1 0) sites, this would

introduce a significant change of chemical shift to negative values for increased coverage,

if these sites become more populated. At low coverage, the predominant adsorption

species are found at reconstructed R(1 1 0) surface sites. With increasing the coverage,

contributions of adsorption sites identified on the n(1 1 0) structural references become

more and more important.

4.2.4. Adsorbed pyrophosphates

Pyrophosphates are the only condensed phosphates discussed in this work, due to the

excessively large phase space that would need to be explored otherwise for additional

polyphosphates. They are evaluated in a similar way as the coadsorption cases, where

also each system produces two chemical shifts and one free enthalpy.

The two most stable pyrophosphates, R(1 1 0)νbcB,e
31 and R(1 1 0)νbc,eB22 (for labels cf.

fig. 3.1a, p. 53), share the same oxygen surface sites and have almost the same free

enthalpy. Their calculated signals are in a range from −16 to −27 ppm (cf. fig. 4.5). The

third most stable pyrophosphate is on the (1 0 0) facet. The chemical shift of both groups

is at about −10 ppm, which is in agreement with the experimental range. Of all calculated

chemical shifts on the (1 0 0) facet, pyrophosphates are the only results that align well

with the experiment. Hence it is possible that pyrophosphates are more present than
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Figure 4.5.: (a) Correlation between chemical shift and stability of pyrophosphates

(1.5–2.2 Pnm−2). The chemical shift of two 31P nuclei of the pyrophosphate are con-

nected by a horizontal line. (b) Chemical environment of the three most stable adsorption

sites.

orthophosphate species on (1 0 0). The thermodynamic prediction on the model surfaces

disfavor the presence of pyrophosphate, which is a weakness of the model at this stage.

This is likely to improve by exploring higher coverages (4.5-6.5 P nm−2), i. e. a comparison

of three orthophosphate coadsorption νx+νx′+νx′′ vs. pyrophosphate/orthophosphate

coadsorption νxx′+νx′′ vs. triphosphates νxx′x′′ . Since the most stable adsorption sites

are generally occupied with two phosphates, and physisorption is in most cases much less

stable, pyrophosphates might be more favorable at this stage. Overall the pyrophosphate

adsorption cannot yet be conclusively explained, but different rationales for the presence

of pyrophosphates are presented in the discussion in section 4.3.

4.2.5. Terminal pyrophosphates or physisorbed orthophosphates

The 27Al– 31P-INEPT NMR experiments (see fig. 4.1d) showed that a significant part of

phosphates does not directly bind to the alumina surface. The through-bond INEPT
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signal projected for 31P nucleus, is shifted by around −6 ppm relative to the through-space

INEPT signal, which shows that different phosphate species are involved in both cases.

The best candidates in for those nonbonded cases are

• physisorbed phosphates, ν0 and

• terminal pyrophosphates, νx0.

The calculated 31P chemical shifts for physisorption are in most cases at significantly

more positive values than the experimental range. The few exception that match the

experiment are significantly less stable than the former. In contrast both computed 31P

NMR chemical shifts for any of the νx0 are in agreement with experiment. While it

might still be possible that physisorbed phosphates are misrepresented due to their more

dynamic behaviour (without covalent anchors they are more mobile), from the current

data, pyrophosphates provide a good rationale for these experimental findings.

4.3. Summary and perspectives

The computed chemical shifts of the most stable model adsorption candidates agree

well with the experiments. In particular the most stable adsorption modes – bidentates

(ν2) and tridentates (ν3) on (1 1 0) – consistently cover experimental range of 31P NMR

chemical shifts from 0 to −15. The computed pyrophosphate model systems complement

the calculated 31P chemical shifts for orthophosphate by covering a 31P NMR signal

range from −10 to −28 ppm. Several different aspects were tested that change with

coverage. The preferred adsorption mode shifts from tridentates (ν3) to bidentates (ν2)

at increased coverage, given the change in thermodynamic stability and simultaneously in

agreement with the downfield shift of the 31P NMR signal. Fig. 4.1d clearly shows the site

dependence of chemical shifts, whereas the effect of different phosphates and protonation

networks does not change the 31P chemical shift in a clear direction. Pyrophosphates and
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longer polyphosphate chains were for the first time directly detected by our collaborators’
31P INADEQUATE double and triple quantum correlation experiments. The calculated
31P chemical shifts of orthophosphate on the (1 0 0) facet are in most cases at considerably

more positive values, indicating that the facet is almost negligible compared to the (1 1 0)

facet. Pyrophosphates models on (1 0 0) are in a much better agreement, which is expected

due to the downfield chemical shift of condensed phosphates. Similar to the cases on the

(1 0 0) facet, the chemical shifts of physisorbed orthophosphates do not agree well with the

experiments. While the difference between through-space and through-bond 31P– 27Al

INEPT spectra, is evidence for nonbonded phosphate sites, rather than physisorbed

phosphates, those are more likely dangling groups of νx0 bonded pyrophosphates.

The thermodynamic prediction for phosphate adsorption does not permit the presence

of pyrophosphates, because coadsorbed orthophosphates are overall more stable. This

result is not in alignment with the experimental findings, as pyrophosphate are clearly

observed. There are three rationales for this. One possibility is that pyrophosphates

come from the solution and adsorbed before being hydrolyzed. This is probable if

they were part of the impregnation solution due to their kinetic stability.[45,47] It is not

expected that they form in aqueous solution, due to the positive reaction enthalpy;[47]

significant phosphate condensation only occurs at high phosphate concentrations with

trace amounts of water.[124] This possibility can be tested by reevaluation of the synthesis.

Another rational could be found in a more complex relationship between local coverages

and phosphate loading. If phosphate chemisorption is rapid and the adsorbates at the

solid-liquid interface are too stable, then the adsorption process is exclusively under

diffusion control. In turn, phosphates are immobile and remain at the sites they bound

to first would lead to an inhomogeneous surface distribution of phosphates, between

outermost areas and pores. The same trend is expected if the most stable adsorption sites

are concentrated at relatively small facets, which in turn produce high local phosphate

coverages there. Since this initial rapid chemisorption would only occur on the reactive
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surface sites, this effect should be more stronger in case of low phosphate loadings

since the remaining free phosphates would adsorb elsewhere after the most stable sites

are occupied. Testing this hypothesis would involve additional structure/free enthalpy

explorations at higher coverage and likely needs to be extended by different surface

models. Atomic scale and mesoscale models for phosphate diffusion in the pores might be

needed as well. As last alternative, pyrophosphates may also form at the surface at lower

coverage, if they are kinetically more stabilized than coadsorption. However, this also

requires that the reaction barrier of the most stable orthophosphate adsorption modes is

too high for these cases to occur, which would exclude some of the most stable model

adsorption structure based on kinetics.

In general the GIPAW calculations for 31P NMR demonstrate that different structural

aspects as well as facet distribution have to be considered simultaneously. The com-

putational models provide a considerably expanded foundation to discuss these effects.

However, we are still at the beginning of understanding all aspects of phosphate surface

speciation. Reaction kinetics need to be studied in order improve the comparison between

orthophosphates and pyrophosphates. This is much more complicated and computa-

tionally demanding, but as a first step in this direction, the kinetics of one adsorption

reaction H2O/γ-Al2O3 interface and several phosphorylation reactions (cf. section 1.1.3,

p. 18) will be studied in chapter 5.
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After exploration of phosphate adsorption on dried γ-Al2O3, one can define a set of target

geometries and ask how they formed through wet incipient impregnation. The most

stable adsorption modes in dry samples, bidentates (ν2) and tridentates (ν3), may not

be the most stable modes during impregnation.[125] However, experiments showed that

once impregnated, the phosphates cannot be removed easily without specific leaching

treatment. This chapter provides insight into stabilities of the explored adsorption modes

in chapter 3 and demonstrates how well-tempered metadynamics (WTmetaD) can be used

to explore reaction paths producing some of the described dentations. The most favorable

adsorption sites under drying conditions were in focus. In particular, the presence of

adsorbed pyrophosphates is evident and they likely have a key role to rationalize the

coverage-dependent 31P NMR shift. Here, we want to take a closer look at how the initial

adsorption could take place and how pyrophosphate can be involved in some reaction

steps. The goal is in particular to find out whether the higher dentation states, i. e.

bidentates and tridentates that involve alumina oxygen atoms, are kinetically possible

and if they are still stable compared to the other adsorption modes. This chapter also

focussed on the (1 1 0) facet, since chapter 4 showed that the (1 0 0) facet is less active

for H3PO4 adsorption.
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The adsorption of orthophosphates can in general be thought of a reaction sequence

from physisorption to the highest possible dentation mode:

H3PO4(aq) −−→ ν0
−?H2O−−−−⇀↽−−−−
+?H2O

ν1
−?H2O−−−−⇀↽−−−−
+?H2O

ν2
−?H2O−−−−⇀↽−−−−
+?H2O

ν3 (5.1)

Starting from phosphoric acid in solution, the adsorption species are formed in the

sequence: physisorption (ν0), monodentate (ν1), bidentate (ν2), and tridentate (ν3). The

first reaction of physisorption of H3PO4(aq) from bulk water was not tested here. On

the other hand the reaction to form monodentates (ν1) involves the substitution of one

adsorbed ?H2O molecule as discussed in section 3.1 (p. 52). This can occur a second time,

in which a free P–O oxygen in the monodentate substitutes another preadsorbed ?H2O.

The preadsorbed water sites are either µ1-H2O or µ1-OH, the latter of which has to be

protonated before desorption. Unlike in the drying state, this desorbed water molecules

become part of the solution, hence the entropy effect is expected to be significantly

lower. The H2O abstraction mechanism to form tridentates (ν3) on the (1 1 0) facet is

considerable more complex, since the formation of another bond with the γ-Al2O3 surface

now involves a triangular pattern of surface oxygen sites. On the (1 1 0) facet this always

involves at least one alumina oxygen atom.

The next section demonstrates the possibility of predicting barriers with WTmetaD

simulations by computationally reproducing the experimentally determined orthophos-

phate condensation barrier. Then the focus is on the first chemisorption steps for the

formation of mono- and bidentates (ν1, ν2) from physisorbed orthophosphate (ν0). At last

the question whether tridentates (ν3) can form at the solid liquid interface is addressed.

All WTmetaD calculations were done at a simulation temperature of 330K with a bias

factor γ of 72.9 and gaussian depositions with a height of 3 kJmol−1 every 10 fs if not

noted otherwise. Furthermore parallelization using four walkers, with two starting at the

initial state and two at the final state of the reaction.
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5.1. Phosphate condensation in bulk water

5.1. Phosphate condensation in bulk water

The condensation and hydrolysis of pyrophosphate is the most fundamental phosphoryla-

tion reaction (cf. section 1.1.3, p. 18) because it only involves the two smallest polyphos-

phates, orthophosphate and pyrophosphate. At 120°C, 10% of water-free orthophosphoric

acid is converted to pyrophosphate, and trace amounts of longer polyphosphate chains can

be measured.[124] However, pyrophosphate is not thermodynamically stable in aqueous

solutions, thus they do not form such solutions, but existing phosphates hydrolyze at very

slow rates (more than 21 h half-life at 65°C,[45] or several days at room temperature).[31]

In particular the cyclic polymetaphosphates can remain in solution for weeks, before

significant decomposition.[31] In this section, the pyrophosphate hydrolysis reaction is

discussed in aqueous solution. It is used as a testbed of the method since the barrier and

reaction energy are known by experiments for the hydrolysis.[47] Then in the next sections,

these findings are compared to phosphate speciation reactions via phosphorylation on

γ-Al2O3.

Condensation and hydrolysis in phosphorylation reactions are quite complex as they

involve two P–O bond formations and may also include several proton shifts, involv-

ing the solvation shell.[40,50,51] Several theoretical studies were done using AIMD and

metadynamics, but typically within the context of biochemistry, involving nucleoside

polyphosphates in presence of magnesium and within enzymes.[49,51] To our best knowl-

edge, the reaction of the pure compounds (the phosphates in water) was not yet simulated

by AIMD/WTmetaD. For brevity, the following discussion only refers to the condensation

reaction and neglects the hydrolysis since it is equivalent. The system consists of 124H2O

and two H3PO4 which reflects a solution of 1M phosphoric acid with pH=1-2. It is

generally complicated to identify good collective variables (CV). Since the system is sym-

metric, starting from two orthophosphates, one would ideally find CV that respect this

symmetry. However, the symmetry is broken in the course of the reaction, in which only
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(0, 8)

H2PO–
4

(1, 8)

[H2O3PO–PO4H2]2–

(0, 7)

PO–
3

(1, 7)

H2P2O2–
7

+ H2PO–
4

+ H2PO–
4

+ H
2 PO –4

–OH –, –H +

–O
H

–,–H
+

–O
H

–,–H
+

Figure 5.1.: Schematic of the orthophos-

phate condensation of phosphoric acid

in aqueous solution. H2PO–
4 is more sta-

ble than H3PO4. The coordinates of the

different structures of each path in the

basis of CN(P–Oall) and CN(P–Obridge)

(see main text) on x and y-axis are given

as 2D vectors (x, y).

one phosphate provides the bridging oxygen atom. For a two-dimensional well-tempered

metadynamics simulation, that was discussed in section 1.1.3 (p. 18), the following two

collective variables were identified: (i) a variable which counts the number of phosphorus-

bridging oxygen atoms keeps track of the pyrophosphate bond formation, CN(P–Obridge),

and (ii) the number of phosphate-binding oxygen atoms, CN(P–Oall), counts the total

number of oxygen atom binding to phosphorus. The CN(P–Obridge) should vary from 0

(orthophosphate) to 1 (pyrophosphate) and CN(P–Oall) from 8 (2H3PO4) to 7 (H4P2O7).

Both variables are explained in detail in appendix A.4, p. 162.

This means that in the basis of these CV, one can find the orthophosphates at (0, 8)

and the pyrophosphate at (1, 7). The scheme of a phosphorylation reaction (cf. sec-

tion 1.1.3, p. 18) is given in fig. 5.1. three possible reactions can be distinguished:

addition-activated, concerted and elimination-activated reaction. Addition-activated

means, that the reaction coordinate passes through an addition complex (1, 8); concerted

means, no intermediate complex occurs and the reaction passes through a single barrier;

the elimination-activated process requires the dissociation of H2O from the phosphate,

forming an intermediate metaphosphate PO–
3 at (0, 7). Fig. 5.2c shows the FES for a

two-dimensional WTmetaD simulation based on CN(P–Oall) and CN(P–Obridge). The

actually observed coordinates are shifted from this idealized integer values, due to the
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5.1. Phosphate condensation in bulk water

(a) 2H2PO–
4 −−−→

–H2O
PO–

3 +H2PO–
4 (b) PO–

3 +H2PO–
4 −−→ H2P2O2–

7

2 P

P2

(c) Free energy surface, iso-lines in kJmol−1. (d) Number of H+ in least protonated phosphate

Figure 5.2.: 2D WTmetaD simulation of two H3PO4 (2P) condensation to H4P2O7 (P2)

in a box with 124 H2O molecules. (a) Optimized paths of H2O elimination to form PO–
3

(metaphosphate, mP) followed by H2PO–
4 addition. (b) H2PO–

4 addition to PO–
3 . (c) The

free energy surface is defined by the number of bridging oxygen CN(P–Obridge) and the

overall number of phosphorus-coordinating oxygen CN(P–Oall) The well in the top left

corner of the graph at (0.1, 7.6) represents the situation with two H3PO4 with a total of

8 oxygen binding to phosphorus but none bridging. In the bottom right, a well appears

around (1.0, 6.8) which shows a total of 7 phosphorus binding oxygen and 1 bridging as in

H2P2O
2–
7 . (d) The number of H+ in the least protonated phosphate, 0 (purple), 1 (dark

green), 2 (bright green), 3 (yellow).
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smooth switching functions. Walls were used to avoid the escape of walkers from the

vicinity of this rectangle, starting for values of CN(P–Oall)<6.7 and CN(P–Obridge)>1.2.

These values were chosen after careful analysis of (unbiased) AIMD simulations such

that those are not affected by the walls.

As the FES in fig. 5.2c shows, the reaction is activated by initial elimination of water

from one phosphate leading to a short-lived metaphosphate ion PO–
3 :

2H2PO−
4 −−⇀↽−− PO−

3 +H2PO−
4 +H2O −−⇀↽−− H2P2O2−

7 +H2O (5.2)

With a free energy of 95 kJmol−1, the PO–
3 (positioned at (0.1, 6.7) in fig. 5.2c) is far

more likely to react back to orthophosphate (F ‡ = 9 kJmol−1) than to pyrophosphate

(F ‡ = 33 kJmol−1). In fact it cannot be excluded that the small barrier of F ‡ =

9 kJmol−1 vanishes at longer simulation time. The activation by initial addition of

water to orthophosphate was also covered at (1.0, 7.7) but with a higher free energy of

119 kJmol−1. Overall, H2PO–
4 is 27 kJmol−1 more stable than the H2P2O2–

7 , which is

consistent with experimental findings of 32 kJmol−1.[46] The total barrier for condensation

is F ‡ = 127 kJmol−1, and 100 kJmol−1 for the hydrolysis. The hydrolysis barrier is

19 kJmol−1 lower than the result of G‡ = 119 kJmol−1 reported by Stockbridge and

Wolfenden.[47] This is still an excellent agreement, since it is well known, that PBE, the

used DFT functional, tends to underestimate barriers and ab initio WTmetaD simulation

times are difficult to converge.

Besides P–O bond reformations, the reaction also consists of proton transfer reactions

in order to form the activated metaphosphate ion PO–
3 . The protonation states cannot

be retrieved from the FES directly, but by evaluation of the biased trajectory. Fig. 5.2d

is a scatter plot where each dot refers to the protonation of the less protonated phosphate

center. This plot clearly shows the most common protonation states in each area of

the FES: The orthophosphoric acid is clearly deprotonated once to H2PO–
4 and the
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5.2. Orthophosphate adsorption in presence of water

metaphosphate is PO–
3 ; the pyrophosphate is an interesting case, since the protonation

varies between 0 and 1, which is mostly an intramolecular protonation:

[HO3P−O−PO3H]2− −−⇀↽−− [O3P−O−PO3H2]
2− (5.3)

The right-side configuration forms after addition of H2PO–
4 to PO–

3 , but it is surprisingly

common in the simulation. In fig. 5.2d this is visible as overlapping dark green and

purple points reflecting protonations of 0 an 1 in one of the phosphate groups The overall

protonation of the pyrophosphate ion can be identified in a different scatter plot (not

shown) that estimates the protonation of both phosphate centers, which is in nearly all

points 2 and validates eq. 5.3. This is also the case for the transition state at the highest

barrier around (0.4, 6.7), which validates eq. 5.2 The deprotonation of the orthophosphate

occurs in a concerted mechanism with water elimination which is visible in fig. 5.2d

as a sharp transition from two protons (bright green dots) to zero (purple dots) at

CN(P−Obridge ≈ 6.8).

The simulation reveals a high level of complexity due to the protonation transfer

reactions. Those reactions would, for further exploration, involve dedicated CV for

different protons. Moreover, the proton transfer in aqueous solution most likely involves

one or several H2O. Prasad et al. indicated that the number of H2O may vary in

unexpected ways which are difficult to explore.[51]

5.2. Orthophosphate adsorption in presence of water

The γ-Al2O3 (1 1 0) model facet comprises dentation sites for two sites to form bidentates.

Following the labels introduced in fig. 3.1a on page 53, they can be located as neighboring

oxygen atoms at sites de and bb’ (or bc on R(1 1 0)). The de sites bind to tetrahedral

and octahedral aluminium atoms (labelled as α and β in fig. 3.1ii and iii, p. 53), whereas
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5. Towards alumina impregnation

bb’ are sites from two symmetry-equivalent octahedral aluminium atoms (labelled with γ

and γ’). The de adsorption reaction is much more complicated, due to the tetrahedral

aluminium binding site α, potentially involving the adsorption of one or two additional

H2O molecules in an intermediate octahedral complex around the aluminium atom α,

similar to those shown in [96]. With these aspects, the formation of the νde2 bidentate

would require a difficult and time-consuming simulation. The bb’ site, on the other

hand, is limited to a much simpler elimination-addition process as it only involves two

symmetry-equivalent sites. In this chapter, we focus on the adsorption on the bb’ site.

The relevant collective variables for the reaction are CNw, the coordination number of

the two relevant aluminium atoms (with γ-label in 3.1ii on page 53) with water oxygen

(Alγ –Obw), and CNp, number of phosphate oxygen atoms binding to the same site b

(Alγ –Obp). Since the H3PO4 adsorption requires the initial desorption of H2O from b,

there is only a single possible pathway to form the monodentate νb1. This monodentate

can, again, only form the bidentate νbb′2 after desorption of the second H2O from site b′.

Both, the reactions ν0 −→ νb1 and νb1 −→ νbb
′

2 decrease CNw by 1 and increase CNp by 1.

Knowing this, CNw and CNp can be combined to a single CV:

CV = CNw − CNp (5.4)

For this CV, bidentate, monodentate and physisorption occur at well distinguished values:

νbb
′

2 −→ CV = −2 , νb1 −→ CV = 0 and ν0 −→ CV = 2

Fig. 5.3 shows the results of a one-dimensional well-tempered metadynamics simulation.

At the end of the simulation, the bidentate (νbb′2 , structure I in fig. 5.3) is clearly the

most stable state followed by monodentate (νb1, structure III) and physisorption (ν0,

structure V). The free energies of νb1 and νbb
′

2 formation are, −58 and −88 kJmol−1,

respectively, relative to the physisorbed state ν0. The first and second adsorption barrier
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5.2. Orthophosphate adsorption in presence of water

(a) Free energy surface (b) Visited area for independent CNw and CNp

−1.2 −0.1 0.5 1.5 2.2

(c) Local geometry at minima and transition states. Protonation state of phosphate neglected in this

illustration. The determined of CNw−CNp for each geometry are given below each structure. They

are shift relative to their ideal values of, from left to right, -2, -1, 0, 1 and 2.

Figure 5.3.: (a) 1D WTmetaD simulation of phosphate adsorption to γ-Al2O3 by H2O

substitution at the (1 1 0)bb’ sites. The CV is the difference of coordination numbers of

Al–O with phosphate oxygen and water oxygen: CNw−CNp (a) Consecutive FES in steps of

1000 gaussian hills each (hair lines), the last FES is highlighted as thick line. (b) Projection

of trajectories on CNw+CNp. This reveals the progression of the simulation along CNw and

CNp (equivalent to diagonals, north-east: CNw, north-west: CNp). Four different colors

indicate each walker (section 2.2.5), p. 48). (c) Structures at minima and transition states.

Both aluminium atoms are octahedral sites. Gaussian hills: σ = 0.04,W0 = 3 kJmol−1;

deposition rate: 100 ps−1.

are 66 kJmol−1 (structure IV in fig. 5.3) and 41 kJmol−1 (structure II) respectively. Thus

the adsorption is clearly exergonic which indicates that phosphate rapidly and irreversibly

binds to the surface as νbb′2 . This is interesting since the higher dentations like ν2 under

drying conditions are only stabilized due to the H2O vapor entropy. Transferred to the
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5. Towards alumina impregnation

solid-liquid interface, this vapor entropy is substituted for a H2O liquid entropy that

contributes the overall FES. At drying conditions the free enthalpy difference between

νb1 and νbb
′

2 is 32 kJmol−1 (cf. tab. A.1, p. 154), which is almost equal to the to the

solid-liquid interface (30 kJmol−1). While it is possible that νbb′2 is also the most stable

adsorption mode at the solid-liquid interface it is unexpected to observe it with the

same free energy as for drying conditions. One likely reason here is that the WTmetaD

simulation is not ideally converged. Nevertheless, the same trend, i. e. stability order is

clearly visible for the last 10 ps of the simulation, hence at least the stability is expected

to be correct.

In order to verify the combined CV in eq. 5.4, the positions of the minima are studied

in more detail. The minima are not exactly at 2, 0 and −2 because CNw and CNp

are defined by smooth functions and surrounding water and phosphate oxygen atoms

still produce subtle contributions at distances around 4Å, which would definitely not

be considered coordination. Note that these smooth functions are necessary in order to

generate the forces that pull the to-be-bonded oxygen atoms to its site. It is possible to

achieve numeric values close to 2, 0 and −2 by using stiff functions for the coordination,

but this is at the expense of a less effective metadynamics sampling, since the forces

vanish too quickly around the cutoff distance (cf. section 2.2.4, p. 46) Fig. 5.3c illustrates

the adsorption modes and transition states, and provides the actual values at which the

adsorption modes occurred. The transition states are expected at CV=−1 and CV=1,

that are the positions where H2O is desorbed, but the phosphate did not yet adsorb to

the available coordination site. Consequently, the aluminium atom (label γ in fig. 3.1ii)

is pentacoordinated in the transitions states. Fig. 5.3b plots the trajectories projected

on CNw−CNp and CNw+CNp, which is equivalent to plotting CNw against CNp and

rotating the plot by 45°. Along this projection the trajectories generate a W-shaped,

rectilinear area, in which the edges represent the three adsorption modes connected by

two transition state. While the positions of the minima and transition state positions are
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fluctuating during the simulations (cf. hair lines in fig. 5.3a), the edges of the W-shape

in fig. 5.3b are accurately spaced with distances of ΔCV=2 between the adsorption

modes. The overall positive shift observed for CNw−CNp and CNw+CNp is due to the

larger number H2O contributing to CNw compared to four oxygen atoms in H3PO4.

Overall, the one-dimensional WTmetaD successfully sampled the adsorption sequence

from physisorption to bidentate.

Compared to these barriers, a large free energy landscape of more than 300 kJmol−1

was carved out throughout the simulation, which is visible at the ordinate of fig. 5.3a.

Hence towards the end of it, less probable states like additional hydration barriers of

aluminium atoms (CV >3, see fig. 5.3) can be overcome. Besides parallelization, the use

of multiple walkers serves the purpose of minimizing oscillations during the exploration

of the free energy landscape. Nevertheless, these walkers tend to diverge and explore

separate areas, given to the fact that they generate a potential that repels itself and other

walkers. In this simulation, four walkers simultaneously explored the FES projection

along one CV. In particular for the exploration of the more stable adsorption modes and

barrier (structures I-IV) are sampled by three of the walkers, in fig. 5.3a green, purple

and yellow, whereas physisorption (structure V) is only sampled by one walker (blue),

which also contributes to the transition state (structure IV). At some point, the blue

walker starts to determine a new local minimum at CV ≈4, which can occur, given that

relative to structure V (ν0) a potential of 250 kJmol−1 forces this walker to proceed along

the CV towards in this case irrelevant areas. In the meantime of the simulation, the

remaining ones continue to improve the minima for ν2 and ν1 (I and III in fig. 5.3). This

problem is intrinsic standard metadynamics (metaD) but also WTmetaD only in parts

overcomes this problem. In particular for the overall short simulation times at DFT level,

it can introduce artefacts that require excessively long simulation times to “smoothen”.

In order to avoid these irrelevant areas of the free energy surface from the beginning of

the simulation, additional wall biases can be introduced. These additional biases keep
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the walkers from diverging into areas of “irrelevant” chemistry by effectively limiting the

area covered within the metadynamics simulation. For the other simulations presented in

the following sections, such walls were introduced. However, in the region of interest, this

does not change the overall conclusion that the adsorption process is exergonic and readily

occurs at room temperature. While one can expect a similar trend for the much more

complex νde2 bidentate formation involving two different adsorption sites, one being the

tetrahedral aluminium atom α (cf. fig. 3.1ii, p. 53), the result may not be exactly the same.

According to new geochemical models based on in situ ATR-IR and zetametry,[125] a

significant bonding mode of phosphoric acid at the solid-liquid interface is a monodentate

binding to tetrahedral aluminium sites. This in general means that adsorption is also

favorable on tetrahedral alumina, even though possibly as monodentate. Nevertheless

the results in this sections indicate, that the monomer νd1 is in a fast equilibrium with

the bidentate νde2 .

5.3. Phosphorylation barrier of the γ-Al2O3 surface

Monodentates and most bidentates are readily accessible via substitution of µ1-OH

hydroxy groups from preadsorbed water, as shown in section 5.2. While some of these

structures were rather stable, the most stable candidates in the dry state are tridentates

and a bidentate, where an alumina oxygen is substituted. However, these alumina oxygen

are µ2-OH, µ3-OH or µ3-O, which cannot be substituted directly, since they do not easily

desorb from the surface. Thus, it is important to determine how and when they can form.

Here, we test the phosphorylation reaction of those sites, which could be similar to the

reaction:

ν2 + µ2-O −−→ ν3 +H2O := (5.5)
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The phosphate oxygen atoms are highlighted in red and the alumina oxygen in blue.

The H2O leaving the surface was formed from a P–OH moiety. This is similar to the

pyrophosphate condensation, which is a phosphorylation between two orthophosphates.

It completes the reaction sequence as an exploration of reactions up to ν3 in eq. 5.1. Since

pyrophosphates are also present at the surface, this reaction could also start from an

adsorbed pyrophosphate and form an orthophosphate as leaving group instead of water:

ν20 + µ2-O −−→ ν3+ν0 := (5.6)

The same coloring of oxygen applies here with additional green labels for phosphate oxygen

of the leaving orthophosphate. In this reaction, the alumina phosphorylation reaction

occurs together with pyrophosphate hydrolysis, however, the only change compared to

eq. 5.5 is the leaving group of H2PO–
4 . At least for the simulations, this leaving group

cannot diffuse into bulk H2O, hence it is described as physisorption (ν0). The presence

of pyrophosphate was discussed in detail in chapter 3 and 4, with a proposed rationale

for 31P NMR[12] and direct 31P NMR measurements[18] at the dry γ-Al2O3 surface. The

possible paths for both phosphorylation reactions are illustrated in fig.5.4. It should be

noted, that these two reactions are simplified, as they only show one possible scenario

for proton transfer reactions. In general, the concerned proton transfer reactions are

not known and have to be included in several cases as well. The overall considerations

of phosphorylation reactions were explained in more detail in section 1.1.3 (p. 18) In

the following sections, these reactions were explored by means of WTmetaD with focus

on the P–O bond cleavage and formation. At the dry surfaces, the most stable single

orthophosphate adsorption structure is identified as R(1 1 0)νbcB3 with labels given in

fig. 3.1iii (p. 53). The formation of this species involves the alumina oxygen site µB2 -OH,

that needs to be phosphorylated in order to form this adsorption structure. Similarly
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on the unreconstructed facet, the most stable structure is n(1 1 0)νdeA3 , requiring the

phosphorylation of µA3 -O (see fig. 3.1ii). Another special case is R(1 1 0)νeB2 , which is

the second most stable adsorption structure identified. As opposed to n(1 1 0)νbb′2 , which

was discussed to describe the chemisorption from ν0 to ν2 in the last section, R(1 1 0)νeB2

involves the same µB2 -OH site as in νbcB3 . It is therefore more similar to the tridentates,

which cannot form by water substitution. Reactions to form any of these adsorption

structures can be explored by adapting the reaction in eq. 5.5 for the specific site. In

case of n(1 1 0)νdeA3 the µ2-O is substituted by µA3 -O whereas it is substituted by µB2 -OH

for R(1 1 0)νbcB3 and νeB2 . For phosphorylation of µ2-OH it was thus also necessary to

add a CV for deprotonation of this site. Furthermore, the starting structures can be

specified: νde2 for νdeA3 , νbc2 for νbcB3 and νe1 for νeB2 .

5.3.1. The collective variables and bias

Three distinct sites were chosen to carry out WTmetaD simulations of the surface

phosphorylation, using two different reactions (eq. 5.5 and eq. 5.6). The principle is

the same in all cases: the collective variables (CV) for the surface phosphorylations in

fig. 5.4 are established as coordination (cf. section 2.2.4, p. 46). Oxygen atoms in the

systems are grouped in order to create the coordination CV CNa and CNw which each

follow the bond formation with the specific alumina oxygen (µA3 -O or µB3 -OH) and bond

cleavage with H2O oxygen. The coordination CNa quantifies the number of bonds to

the alumina oxygen site that is phosphorylated; since it is only one site, CNa can only

vary between 0 and 1. CNw counts the number of free P–O bonds and all oxygen atoms

in H2O. The values of CNw depend on the free P–O bonds, which are 2 and 1 for ν2

and ν3 structures (also illustrated in eq. 5.5 and fig. 5.4a). For the formation of νeB2

from νe1 the value varies from 3 to 2. In the case of the pyrophosphate reaction (eq. 5.6)

CNw is replaced by the P–O coordination CNp with the four oxygen atoms from the

leaving phosphate group; in all cases CNp varies between 0 and 1, since pyrophosphate
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(µ1O)2HPO2 [µ2O–(µ1O)2PO2H]–

[(µ1O)2PO]+ (µ2O)(µ1O)2PO

+ µ2O–

+ µ2O–

+
µ
2 O –+ H +

, –H
2 O

+
H

+,–H
2 O

+
H

+,–H
2 O

(a) ν2 + µ2O −−→ ν3 +H2O

(µ1O)2HP2O–
6 [µ2O–(µ1O)2P2O6H]2–

[(µ1O)2PO]+ (µ2O)(µ1O)2PO

+ µ2O–

+ µ2O–

+
µ
2 O ––HPO 2–4

–H
PO

2–4

–H
PO

2–4

(b) ν20 + µ2O −−→ ν3+ν0

Figure 5.4.: γ-Al2O3 surface phosphorylation reaction schematics for the reactions according

to (a) eq. 5.5, with the formation of H2O as leaving group, and (b) eq. 5.6, with instead

the formation of a phosphate ion at the surface. Concerning proton transfers and charges,

the figures are simplified by only involving µxO sites with x = 1 for water substitution sites

(cf. section 5.2) and x = 2 for alumina oxygen, each assumed to carry one negative formal

charge. The released HPO2–
4 can be protonated to H2PO

–
4 but it is assumed that it stays

close to the interface. The desorption into bulk H2O is neglected.

is characterized by a single P–O–P bridge, which is hydrolyzed during the reaction.

Regardless of the different integer values of the different coordinations, their range is

always ΔCN=1 and equivalent WTmetaD simulations can be carried out to explore

the FES of those phosphorylations. As before, the minima of the resulting FES are not

exactly at the described integer values, due to the smooth switching functions employed

to define a P–O coordination. The bias is applied by depositing gaussians in the visited

FES regions, thereby “flooding” minima and automatically exploring the FES area of

interest. Here, a gaussian height of 3 kJmol−1 was used, and for CNa, CNw and CNp

gaussian widths of 0.04. In section 5.3.3 an additional CV was required for deprotonation

of µB2 -OH. The additional dimension was included with a gaussian width of 0.15, and the
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gaussian height increased to 5 kJmol−1. Tab. 5.1 provides an overview of the WTmetaD

simulation times and the evaluated reaction free energies and free energy barriers.

5.3.2. Tridentate νdeA
3 on n(1 1 0)

The results of two WTmetaD simulations for the formation of n(1 1 0)νdeA3 are given in

fig. 5.5. Both simulations follow the schemes in fig. 5.4, starting either from a preadsorbed

orthophosphate νde2 or pyrophosphate νde20 . The lowest reaction path is a concerted reaction

regardless of the leaving group. This conclusion is not only based on the fact that the

reaction path is approximately described as diagonal through the two graphs but also

because it does not include intermediates in contrast to the phosphate condensation. It

is clearly visible in fig. 5.5b that the phosphorylation starting from orthophosphate is

endergonic (33 kJmol−1 cf. tab. 5.1), while the reaction with pyrophosphate in fig. 5.5d is

exergonic (-27 kJmol−1). The free energy barriers are 146 kJmol−1 for the orthophosphate

and 115 kJmol−1 for pyrophosphate. Overall the barrier is decreased when considering

pyrophosphate but it is still slightly higher than the estimate for phosphate hydrolysis

(100 kJmol−1). The relevant comparison is the hydrolysis, since the pyrophosphate is

split into orthophosphates (while phosphorylation, thus no H2O is formed here).

Regarding the elimination-activated path observed for phosphate condensation in bulk

liquid, it is not expected to occur based on the high free energy region at (0.1, 1.3) in

coordinates of CNa and CNw of fig. 5.5b. The free energy in the same region in fig. 5.5d

seems to be lower, but one has to keep in mind that, the phosphorylation reaction with a

phosphate leaving group is in competition with the analogous reaction of leaving water.

While sampling CNa, thereby cleaving the bond without immediate addition of phosphate,

would lead to the elimination state around (0.1, 0.0) in coordinates of CNa and CNp.

This reacts spontaneously with water and even in another alumina oxygen site, thereby

escaping the relevant FES region, i. e. the state at (0.1, 0.0) is usually not a metaphosphate
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(a) νde
2 + µA

3 -O −−⇀↽−− νdeA
3 + H2O

(b) FES of (a), iso-lines in kJmol−1

(c) νde
20 + µA

3 -O −−⇀↽−− νdeA
3 + ν0

(d) FES of (b), iso-lines in kJmol−1

Figure 5.5.: Two 2D WTmetaD simulations for formation of νdeA3 on n(1 1 0). Bias along

coordination number of P–Oalumina (CNa), P–Owater (CNw) and P–Ophosphate (CNp). Iso-

lines in free energy surface in kJmol−1. (a): Minimum energy path of the phosphorylation

reaction of alumina oxygen “A” (cf. fig. 3.1ii, p. 53), starting from the bidentate νde2 with H2O

as leaving group. (b): Free energy surface of (a). (c): Minimum energy path of the same

phosphorylation with a ν20 pyrophosphate, such that the leaving group is orthophosphate.

(d): Free energy surface of (c). See eq. 5.5 and 5.6 on page 102 for the reaction mechanism.

structure like [(µ1O)2PO)]+ (cf. fig. 5.4b). It is therefore not possible to make reliable

statements about the elimination path, however, the concerted reaction seems to be

favored by the system. Additional wall biases were included that artificially disfavor water

adsorption in order to circumvent this problem, however these wall biases did not entirely

suppress the competing reactions. In consequence, the all biases keep the walkers of the

simulation ”on track” and allow to sample the desired area but the elimination-activated
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(0, 1)

(µB
2 -O)–H

(1, 1)

O3P–(µB
2 -O)–H

(0, 0)

(µB
2 -O)

(1, 0)

O3P–(µB
2 -O)

+ PO–
3

+ PO–
3

–H
+

–H
+

Figure 5.6.: The local coordination of µB
2 was

biased with two CV, CNa (x-axis) and CNh (y-

axis), in order to describe the deprotonation

and phosphorylation of this site. The coordi-

nates (x, y) correspond to CNa and CNh.

mechanism for pyrophosphate cannot be sampled reliably. It must be emphasized that

this problem is intrinsic to the tested reaction for this system and independent of the

added walls. This concerns all surface reactions involving pyrophosphate when using the

chosen collective variables.

5.3.3. Bidentate νeB
2 and tridentate νbcB

3 on R(1 1 0)

The two most stable adsorption sites found at drying conditions are R(1 1 0)νbcB3 and

R(1 1 0)νeB2 . They involve a different alumina site, the hydroxide µB2 -OH, which is always

protonated at the water interface. This is in contrast to µA3 from n(1 1 0)νdeA3 discussed

in section 5.3.2; this site can be protonated as µA3 -OH but it is not required to be.

Unbiased AIMD simulations, which consist of 2×2 unit cells with symmetry-equivalent

pairs of A/A′, in total 8 sites representing the behavior of A, showed that some sites are

protonated but there are always several unprotonated sites. Here, the protonation of µA3

was neglected, assuming that some of these sites are always deprotonated. The alumina

oxygen site µB2 is however always protonated – it rapidly recovers this protonation in

AIMD simulations, if a starting geometry involving µB2 -O was chosen.

This requires a deprotonation during the reaction in order to form µB2 -O–PO3. It

was included as a third CV, CNh which is used to bias the µB2 -O–H coordination. The

WTmetaD simulation is thus three-dimensional which may lead to considerably slower

convergence. The three-dimensional FES cannot be plotted directly, thus the extra CNh
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(a) νbc
2 + µB

2 -OH −−⇀↽−− νbcB
3 + H2O

(b) projected FES of (a), iso-lines in kJmol−1

(c) projected FES of (a) for proton transfer

(d) νbc
20 + µB

2 -OH −−⇀↽−− νbcB
3 + ν0

(e) projected FES of (d), iso-lines in kJmol−1

(f) projected FES of (d) for proton transfer

Figure 5.7.: Two 3D WTmetaD simulations as candidate reactions to form νbcB3 on R(1 1 0).

Bias along coordination number of P–Oalumina (CNa), P–Owater (CNw), P–Ophosphate (CNp) and

µB
2 -O–H (CNh). Iso-lines in free energy surface in kJmol−1. (a): Minimum energy path of the

phosphorylation of alumina oxygen “B” (cf. fig. 3.1ii, p. 53), starting from the bidentate νbc2 with

H2O as leaving group. (b): Free energy surface of (a). (c): Free energy surface of proton transfer

in (a). (d): Minimum energy path of the same phosphorylation with a ν20 pyrophosphate, such

that the leaving group is orthophosphate. Path incomplete in order to include correct transition

state (software limitation). (e): Free energy surface of (d). (f): Free energy surface of proton

transfer in (d). See eq. 5.5 and 5.6 on page 102 for the reaction mechanism.
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5. Towards alumina impregnation

dimension was integrated out. The result is a two-dimensional plot of CNa and CNw

which is shown in fig. 5.7b. Even though CNh was biased, it is here treated like one

(of many) hidden variables. Fig. 5.7b is equivalent to the phosphorylation scheme in

fig. 5.4a. From this it is immediately visible, that this reaction is concerted like the

phosphorylation of n(1 1 0)µA3 for the formation of νdeA3 . Moreover, the third dimension

provides information about the protonation state along the reaction path. For this a

different two-dimensional FES was extracted from the simulation, this time by integrating

out CNw. That way, CNh and CNa are kept, which describes the local coordination of

the µB2 site. The scheme for the different coordination states is given in fig. 5.6. While

the reaction path in the phosphorylation FES in fig. 5.7b roughly describes a diagonal,

indicating a concerted phosphorylation, reaction path in fig. 5.7c goes through the corners.

That means, the deprotonation occurs independently from the phosphorylation. The

reaction is possible by initial deprotonation as well as deprotonation after phosphorylation,

where the latter is preferred, since the lowest free energy path leads through point (1, 1)

in fig. 5.7c, which corresponds to O3P–(µB2 -O)–H. In the phosphorylation starting

from pyrophosphate, shown in fig. 5.7e and fig. 5.7f, the same trends are observed and

the tendency to deprotonate after phosphorylation is even more pronounced. This is

most likely due to the more stable orthophosphate leaving group, which provides the

necessary free energy to bind to µB2 -OH directly. The same trend is observed for the

phosphorylation reaction to form νeB2 from the monodentated orthophosphate νe1 and

the pyrophosphate νe10, shown in fig. 5.8

As summarized in tab. 5.1, the reaction free energies also follow the same trend in all

four cases of formation of νeB2 and νbcB3 from orthophosphate and pyrophosphate. The

reactions of orthophosphate in fig. 5.7b and fig. 5.8b are endergonic and have a very

high barrier of 232 kJmol−1 and 220 kJmol−1. The similar reactions of pyrophosphate

in fig. 5.7e and fig. 5.8e are exergonic and have lower barriers of 109 kJmol−1 and

176 kJmol−1. In particular the value of 109 kJmol−1 is surprisingly low, however, here

110



5.3. Phosphorylation barrier of the γ-Al2O3 surface

(a) νe
1 + µB

2 -OH −−⇀↽−− νeB
2 + H2O

(b) projected FES of (a), iso-lines in kJmol−1

(c) projected FES of (a) for proton transfer

(d) νe
10 + µB

2 -OH −−⇀↽−− νeB
2 + ν0

(e) projected FES of (d), iso-lines in kJmol−1

(f) projected FES of (d) for proton transfer

Figure 5.8.: Two 3D WTmetaD simulations as candidate reactions to form νeB2 on R(1 1 0).

Bias along coordination number of P–Oalumina (CNa), P–Owater (CNw), P–Ophosphate (CNp) and

µB
2 -O–H (CNh). Iso-lines in free energy surface in kJmol−1. (a): Minimum energy path of the

phosphorylation of alumina oxygen “B” (cf. fig. 3.1ii, p. 53), starting from the bidentate νe2 with

H2O as leaving group. (b): Free energy surface of (a). (c): Free energy surface of proton transfer

in (a). (d): Minimum energy path of the same phosphorylation with a ν20 pyrophosphate, such

that the leaving group is orthophosphate. (e): Free energy surface of (d). (f): Free energy surface

of proton transfer in (d).
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5. Towards alumina impregnation

it has to be considered that this WTmetaD simulation was much shorter than the

others. As a consequence of the third CV, CNh, the overall convergence time of these

simulations increases by an order of magnitude. Moreover, the carried out simulations

were shorter than the simulations for n(1 1 0)νdeA3 formation (cf. tab. 5.1). Consequently,

the convergence of the presented FES differs from one another. The big differences in

the barriers indicate that those are strongly affected by this, whereas the reaction free

energies are consistent. This is actually expected, since the bias potential generated

WTmetaD does not fully compensate for the minima in the FES (“flat target”), but

converges to a “well-tempered target”. It is a target which depends on the bias factor and

allows sampling of the FES by flattening it up to the point where thermal overcomes the

barrier (see eq. 2.11, p. 49 for details). As consequence, minima are still better sampled

than transition states, because they are still visited more often throughout the simulation.

With the limited simulation time, this shows in much less accurate barriers than reaction

energies.

Regarding the apparent preference of νe10 → νeB2 +ν0 (fig. 5.8e) for an elimination-

activated reaction: this is rather likely in this case, but for the same reason as in the

previous section, the minimum at (0, 0) cannot be reliably sampled due to competing

reactions Therefore, this possibility was not evaluated.

5.3.4. Summary and perspectives

In this chapter, well-tempered metadynamics (WTmetaD) simulations were used to ex-

plore the formation of several phosphate surface species on γ-Al2O3(1 1 0) that were iden-

tified as the most stable model adsorption structures at drying conditions: R(1 1 0)νbcB3 ,

R(1 1 0)νeB2 and n(1 1 0)νdeA3 (cf. fig. 3.1, p. 53). The idea was a comprehensive study of

surface phosphorylation reactions targeting the aforementioned most stable of orthophos-

phate species. The precursor of these reactions are orthophosphates at the next lower
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5.3. Phosphorylation barrier of the γ-Al2O3 surface

Table 5.1.: WTmetaD results of the six conducted explorations for γ-Al2O3 surface phos-

phorylation: Reaction free energies and free energy barriers by the end of the simulations

and the number of included CV and simulation size in hills are given. The leaving groups

indicate, which of eq. 5.5 and eq. 5.6 are used. HPO2–
4 is considered physisorbed (ν0). The

hills implicitly include a simulation time, since 100 hills are added per picosecond, however,

this time is the sum of four walkers producing 4 biased trajectories in parallel.

n(1 1 0)νdeA3 R(1 1 0)νbcB3 R(1 1 0)νeB2
leaving group : H2O HPO2–

4 H2O HPO2–
4 H2O HPO2–

4

∆Fr, kJmol−1 : 33 −27 46 −37 25 −77

∆F ‡, kJmol−1 : 146 115 232 109 220 176

number of CV : 2 2 3 3 3 3

hills× 1000 : 29 27 19 6 19 18

dentation, only involving ν1 adsorption sites which are accessible by water substitution,

R(1 1 0)νbc2 , R(1 1 0)νe1 and n(1 1 0)νde2 , and the related pyrophosphate species, R(1 1 0)νbc20,

R(1 1 0)νe10 and n(1 1 0)νde20 . As demonstrated in section 5.2, these types of chemisorp-

tions in form of bidentates (ν2) and monodentates (ν1) are the predominant species.

For benchmarking the method and as a reference for comparisons, the condensation of

two orthophosphates to pyrophosphate was simulated in bulk water. The focus in all

cases was also on the activation mechanism of the reaction, simultaneously covering

elimination-activated, concerted and addition-activated mechanisms. Based on the results

of seven simulations, the addition-activated mechanism can be excluded, whereas the

elimination-activated path was only observed in bulk water. The concerted reaction is

observed as the only mechanism of surface phosphorylation, however, convergence of the

barriers was only satisfactory in the two simulations on n(1 1 0): νde2 → νdeA3 +H2O and

νde20 → νdeA3 + ν0. In the four simulations on R(1 1 0) the barriers are much higher, but

this is most likely due to inaccurate sampling of those more demanding three-dimensional
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5. Towards alumina impregnation

WTmetaD simulations. The reaction free energy is not affected by this and shows the

same trend as for νdeA3 : the surface phosphorylation using an orthophosphate precur-

sor is endergonic, whereas the phosphorylation using pyrophosphate is exergonic. The

barrier for the pyrophosphate-based phosphorylation is with 115 kJmol−1 similar the

related pyrophosphate hydrolysis in bulk water (100 kJmol−1), which means that surface

phosphorylation may already occur slowly during impregnation, provided that pyrophos-

phate or other polyphosphates are present in solution. However, it is overall unlikely

to be a driving factor of surface speciation during impregnation at room temperature,

which confirms that the chemisorption described in section 5.2 indeed leads to the most

relevant species during impregnation: bidentates and monodentates. Even though the

three-dimensional WTmetaD simulations on R(1 1 0) (fig. 5.7 and fig. fig:reB) are not

accurately converged, they show trends regarding the site deprotonation of µB2 -OH: the

deprotonation typically occurs after phosphorylation, which means the deprotonation

does not occur readily by itself.

While the results in this chapter certainly do not directly support the presence of

high dentations involving the phosphorylation of alumina oxygen sites, they are not

excluded either. For example in Wischert’s reconstruction,[92] a water adsorption site is

formally removed, and the R(1 1 0)µB2 becomes more reactive (much more basic), than

n(1 1 0)µB3 (cf. fig. 3.1a, p. 53). More elaborate reconstructions may effectively allow

the exchange of alumina oxygen sites at a lower barrier than phosphorylation, but such

reactions are unknown and difficult to explore. As it seems, the surface species may

change considerably during the drying step. AIMD simulations of those surfaces could

be used to explore formation of such species under these conditions. Simulations of

the dry surface are difficult to achieve without ambiguity, since the protonation states

cannot change without solvent contact. The presented results also do not yet include

the coverage considerations, in fact the model surface coverage is with 0.38P nm−2 lower

than most experiments. Further simulations of thin layers (monolayer, double layer)
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of different phosphoric acid content may be use to complete the atomistic description

by filling the void between impregnation step and drying as well as allowing to test for

surface coverage effects. This requires the use of more complex collective variables (CV)

such as those described in appendix A.4 (p. 162). Even though open questions remain,

the most likely surface species were identified as bidentates and potentially monodentates

which form exclusively by water substitution from µ1 sites. These are νbc2 and νde2 but it

excludes the most stable bidentate at drying conditions, νeB2 as it binds to an alumina

oxygen site.

The formation of higher dentations involving alumina oxygen sites can be excluded dur-

ing impregnation since they are endergonic at reaction conditions, except in the presence

of polyphosphates in solution. As alternative to pyrophosphates during impregnation,

the same types of surface phosphorylation may occur at the drying conditions, since

temperatures are higher and a drop in H2O solvent should activate the reaction. It would

be interesting to explore the drying process with a similar set of calculations in which the

phosphorylation reaction is explored for orthophosphates. Different phosphate loadings

could actually induce further reactions, including polyphosphate condensation. Chapter 3

indicated, which model coverages would have to be reached.

115





6. Machine learning NMR chemical shifts

During the last decade, the field of machine learning got a tremendous amount of attention

in all material sciences.[126–128] The two main reasons for this growing interest are (i) the

availability of computing resources for this type of research and (ii) the availability of

steadily growing databases. Still, the field is very new and at this time, without generally

established strategies.

There are very different problems that could be addressed by machine learning methods.

The overall idea is to build a structure-activity relationship model on complex data sets

with many variables, where subtle correlations can be exploited in an automated way,

without the need of human intervention to discover and quantify them. This, however,

does not necessary mean that the prediction model cannot anymore be interpreted,

but that interpretation follows the model construction. Interpretation of the prediction

scheme is usually not straightforward and in many cases not necessary. In such cases,

machine learning models are used as “black box”. A good example for this would be

a machine learning interpolation of the potential energy surface (PES) for geometry

optimization.[129] The success of this method is easily understood when considering that

most geometry optimization algorithms are at best based on a parabolic approximation to

the real potential hyperplane, which only applies in close proximity to the real minimum.

The machine learning approximation for the PES is used to update the structure, and the

structures improve the estimate. The final result is not further transferable however, at

least in case of ref. [129], because the machine learning estimates are based on cartesian
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coordinates, which are difficult to generalize. For that purpose, dedicated chemical

descriptors exist which are explained in section 6.1.

Long before computational NMR predictions, empirical relations between 31P NMR

and structural parameters were tested.[76,130] In case of 31P NMR, typically only single

parameters like average bond distance or bond angles were correlated with an NMR

chemical shift. Dawson and Asbrook unravelled the combined effect P–O bond distances

and P–O–Al angles in aluminium phosphates by screening calculations at DFT level and

GIPAW chemical shift simulation and multivariate regression. Their results demonstrated

that the NMR prediction depends on multiple structural features, of which P–O bonds and

P–O–Al angles are the leading contributions. The authors proposed several regression

functions with mean absolute errors (MAE) of 0.49 ppm – much more accurate than

simpler correlations of 31PNMR with either P–O bonds (quadratic fit: MAE=3.9 ppm) or

P–O–Al angles (linear fit: MAE=7.1 ppm), that both were used in previous works.[130,131]

Their work method can be applied to a range of aluminium phosphates, however, it cannot

be transferred to more complex chemical environments that involve bonds other than a

local structure of [P(OAl)4]. Dawson and Asbrook’s first study was even more specific by

only studying aluminium phosphate clusters with tetrahedral aluminium atoms, which

they extended for more complex compounds involving octahedral alumina.[69,75]

Chaker et al. recently identified a reliable method to learn chemical shifts from ab

initio calculations by combining several local chemical descriptors with different machine

learning methods.[77] Their work was focussed on the solid-state NMR chemical shift

prediction of 29Si, 17O, 23Na and 27Al nuclei in aluminosilica glasses based on DFT

geometry data and GIPAW calculations. The authors combined three atom centered

descriptors with seven common machine learning algorithms and found that the SOAP

descriptor (smooth overlap of atomic positions) in combination with linear ridge regression

(LRR) produces accurate results for their purpose (29Si: RMSE=1.3; 17O: RMSE=1.5;
23Na: RMSE=1.5; 27Al: RMSE=1.5) This chapter applies the methodology of Chaker
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et al. to the calculated 31P chemical shifts results from the database generated in

chapter 3. As starting point prediction schemes based on SOAP/LRR were used to

generate a prediction model for 31P chemical shifts. This work was only possible in

collaboration with Tao Jiang, Research Engineer at ENSL, who carried out the machine

learning parametrizations and helped during evaluation.

6.1. Chemical descriptors

The value of machine learning frameworks is to accept arbitrarily complex input data and

systematically process it in order to extract relevant information. Those involve regression

models, i. e. machine learning algorithms like LRR, neural networks or boosted trees.

For a table with property columns and one set of data points per line, machine learning

algorithms are typically applied directly, for example to train a prediction algorithm

for one property based on correlation with the others. More complex, unstructured

data, such as pixel information in images, require considerable adjustments in order to

preprocess the information before using it as input for a machine learning algorithm.

For pixel images, those might be scanning of local image snippets on a grid which is

necessary to learn features irrespective of their global position in an image. Similar

considerations have to be made when processing atomistic data. There are two common

types of encoding atoms in chemistry: first by defining a connectivity graph, and second

by explicitly providing atomic coordinates in space. The former is most common for

molecules – essentially IUPAC names of molecules are an encoding of such graphs;

the latter are typically geometry representations which could be a computed or for

instance crystallographic positions. Even though connectivity graphs contain much less

information than the atomic coordinates, Jonas and Kuhn recently used an experimental

database of 43k molecules to successfully generate accurate prediction schemes for 1H and
13C NMR chemical shifts using graph neural networks, with RMSE=1.2 ppm (13C).[132]
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Efforts towards empiric NMR chemical shift predictions are not new, HOSE codes are

well established for 13C and 1H NMR for more than 30 years (albeit lower accuracy,

for 13C RMSE=4.2 ppm).[132,133] West explored similar graph neural network methods

experimental 31P NMR data in 1993, but did not reach satisfactory accuracy (at best

about 20 ppm).[76] The author rationalized this with errors in the included databases and

weaknesses in the applied descriptors and machine learning methods at the time. This

is consistent with Jonas and Kuhn, who also filtered the available database, removing

about 25% based on various criteria and added several input features (like hybridization

and aromaticity) for each atom explicitly.[132] It shows that the applied neural networks

do not automatically derive such information, even though most of them are implicitly

contained in the molecular graph. As an alternative to the connectivity graph, one can

also consider atomic representations as lists of cartesian coordinates, which is physically

much more accurate since these contain exact positions and with it bond distances

and angles. However, even bonds are not defined in a coordinate list, this is left to be

recognized by an algorithm. In some cases, machine learning algorithms can use them

directly, like in interpolation schemes which produce estimates on few data points,[129] but

in most cases one needs to process the atom list in a way that allows for generalization

over a wide range of different systems with different size. Those generalizations are

chemical descriptors where the structural information in the atom list is encoded in a

well defined form. A descriptor must fulfill the following requirements:[134]

• It must faithfully represent the properties of interest. No two different structures

should generate the same descriptor.

• It should be continuous and differentiable to quantify structural similarities.

• The size and dimensionality of the descriptor needs to be constant, independent of

the input size.
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• The descriptor should be invariant to rotations, translations, inversion, and list

permutations.

Furthermore, the descriptor can be global, capturing the whole geometry or local, atom-

centered, in which case it is constructed to capture a chemical environment. It may

or may not be suitable for periodic structures like crystals. A simple global descriptor

is the Coulomb matrix, a matrix that contains two-body terms ZiZj

|ri−rj | of the Coulomb

repulsion of the nuclei. The Coulomb matrix is a unique representation of the system of

interest (which means that it is “faithful”) and it is invariant to rotation, translation and

inversion by construction, and can be made invariant to list permutations by sorting (but

at the cost of differentiability).[135] Several extensions of the Coulomb matrix for periodic

structures exist,[135,136] as well as derived representations like the Bag of Bonds.[137] The

size of a Coulomb matrix depends on the number of atoms; a constant descriptor size

can be achieved by zero-padding. A different global descriptor is the many-body tensor

representation (MBTR), which uses bond lengths and angles based on the chemical

element. It uses one-body (g1, elements), two-body (g2, distance or inverse distances) and

three-body terms (g3, angles in degree or cosine). These motifs are grouped by elements,

element pairs and all possible element triples, and then added together on a range D.

The scalar values are then broadened with a gaussian kernel density estimate and the

range is sampled on a numerical grid, similar to a histogram:

D(χ) =
∑
gn

1

σ
√
2π

exp
(
−(χ− g)2

2σ2

)
, with (6.1)

g =
{
g1(Zi), g2(ri, rj), g3(ri, rj , rk)

}
(6.2)

where χ is a grid point and σ is the broadening. Altogether the ranges of g1, g2 and g3

define the descriptor. g1 is equivalent to the system stoichiometry, g2 and g3 characterize

element distances and angles in a way that is independent of the number of atoms in the

system. It is straightforward to derive a local variant of MBTR (LMBTR) by defining a
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central atom and using a subset of ranges: g1 is removed, since stoichiometry is difficult

to establish as a local system property, and only g2 and g3 involving the central atom are

included. The central atom is typically treated separately, independent from the element.

Since the NMR chemical shift is a local property of the chemical shielding by the local

electron density around a nucleus, local descriptors are a natural choice. A popular local

descriptor is the smooth overlap of atomic positions (SOAP).[138] It encodes the local

environment of a central atom as smoothened atomic positions by a local expansion

in orthonormal functions based on spherical harmonics Ylm and radial basis functions

gn. The coefficients cnlm of these basis functions for one atom sort are defined as inner

product:

cnlm =

∫∫∫
V
dV gn(r)Ylm(θ,φ)ρ(r) (6.3)

Those basis functions make the SOAP descriptor naturally a faithful descriptor of the

local environment, which is differentiable, invariant to translation and permutation, and

of constant size, based on a finite basis set and the number of involved elements. In order

to achieve rotational invariance, the SOAP descriptor defines a partial power spectrum

vector p of the angular momenta of all atoms in the vicinity. An element pZ1Z2
nn′l of this

vector is calculated by:

pZ1Z2
nn′l =

√
8π2

2l + 1

∑
m

cZ1
nlm · c

Z2
n′lm (6.4)

Note that in the implementation used here, real-valued (tesseral) spherical harmonics

were used;[136] for complex-valued spherical harmonic, the multiplication is with the

complex conjugate cZ1 ∗
nlm . There are other local descriptors like atom-centered symmetry

functions (ACSF) or angular and radial distribution functions (ARDF),[139,140] which

use a different methodology to sample the distribution of atoms in a vicinity. Both

can be used to construct continuous differentiable, invariant descriptors of constant size.

The ACSF descriptor is different to the other descriptors, since its components are all
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6.2. Machine learning methods

user-defined allowing more flexibility, but it leaves it to the user to ensure faithfulness.[136]

ARDF provides a consistent framework similar to SOAP, however, the author promises a

much higher efficiency for systems involving multiple chemical species.[140]

Chaker et al. tested SOAP, ARDF and a simple implementation of ACSF involving only

two-body terms for performance in predicting NMR chemical shifts. They demonstrated

that of these descriptors, SOAP clearly leads to the most accurate prediction models.

In this work, the SOAP descriptor was compared with the LMBTR in order to test the

performance of this new descriptor. In comparison to SOAP, LMBTR explicitly encodes

three-body terms including all atoms within its vicinity. This should be advantageous in

comparison to SOAP, since angles, such as the P–O–Al angle discussed by Dawson and

Ashbrook[74] needed to accurately predict the 31P NMR chemical shift.

6.2. Machine learning methods

Overall, the two descriptors SOAP and LMBTR were combined with three machine

learning methods: linear ridge regression (LRR),[141] the multilayer perceptron (MLP)[142]

and extreme gradient boosting (XGBoost).[143] LRR is a simple technique in which a

regularization term is added to a least square fit:

LRR = min


∑
i

(
yi −

∑
k

(mkxik − b)
)

︸ ︷︷ ︸
linear least squares

+ λ
∑
k

m2
k︸ ︷︷ ︸

regularization

 (6.5)

where xik are k independent variables for data points i for regression and yi values are

to be predicted. The linear least square fit part needs to be overdetermined (i >> k) in

order to quantify uncertainties. On the other hand, least square fit is not possible if the

system is underdetermined (i < k). The regularization term is effectively a bias, leading

to a systematic deviation from the least square fit results, but it provides solutions to
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6. Machine learning NMR chemical shifts

the minimization in eq. 6.5 even if the system is underdetermined. While this seems

ill-advised for the low-dimensional case or in case the independent variables are truly

independent,[144] ridge regression can be very useful to identify the most important

components in underdetermined data sets, provided that the variables are strongly

correlated, i. e. linear dependent.[145] Like indicated, LRR works extraordinary well for

linear regressions in which the input is heavily correlated, but it fails where non-linear

components are crucial. The parameter λ is a so-called hyperparameter, since it is fixed

by the user, as opposed to the parameters mk and b which are optimized in the regression.

MLP and XGBoost are more advanced techniques; the former is an artificial neural

network and the latter based on boosted decision tree algorithms. They offer more

flexibility and are suitable for very complex data structures. It means that while LRR

cannot take into account nonlinear components, and hence is inherently limited, the

prediction accuracy of MLP and XGBoost can be arbitrarily improved by adding more

data (and adding parameters). MLP requires defining a neural network topology between

input neurons (defined by the feature array) and the output neurons (here, a single one

that returns a chemical shift estimate). This can be very complex, as one can choose

the number of neuron layers as well as the dimensions of each layer and the connectivity

between all the neurons in every layer. For simplicity, here the number of layers is limited

to a single, fully connected layer. Only the number of neurons was varied.

6.3. The data set

For the presented results, the DFT GIPAW calculations of the phosphate species at

the γ-Al2O3 model surfaces were used to train different machine learning algorithms

to predict the 31P chemical shift based on the geometry. The original set of GIPAW

calculations only included the most favorable cases of the sampled hydrogen bond

networks described in section 3.2 (p. 58), which were 361 data points in total including
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6.3. The data set

(a) RMSE comparison of smaller data set which only

includes the most favorable adsorption sites (361 data

points) and the full data set (1227 data points).

(b) Randomized fractions of large

data set. RMSE of training, vali-

dation and test set.

Figure 6.1.: RMSE change with respect to data set size, in case of the use of on SOAP/LRR. (a)

Scaled histograms of RMSE (x-axis) for small an large data set; y-axis in arbitrary units. (b)

RMSE (y-axis) dependent on the data set size (x-axis).

single adsorption, coadsorption and pyrophosphates. An even smaller subset of those

was discussed in chapter 4. This number of data points is small for machine learning

purposes, hence additional GIPAW calculations were carried out for the less stable

hydrogen bond networks from the previous sampling. Only orthophosphate coadsorption

and pyrophosphate adsorption cases were used as they produce two data points per

calculation. With the additional calculations, the number of data points was increased

to 1227. All data points were used without filtering outliers. While it does not seem to

disturb machine learning results, in one (faulty) system a peroxide geometry PO3(O2)3–

was identified, which apparently did not substantially affect the results, and was therefore

kept. Fig. 6.1a provides a comparison between the original set of 361 data points of the

most stable structures, and the extended set of 1227 data points. A core issue of machine

learning is overfitting, which means that a machine learning algorithm can produce

accurate fits of the data, but the result is not transferable to new data. The RMSE of

the training set actually increases, since with more data points, the degree of overfitting

is reduced. The test and validation sets (explanation is given the next section) are on
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6. Machine learning NMR chemical shifts

the other hand significantly improved. This effect on the training accuracy is due to the

fact that the same method needs to find a regression on more data points for a constant

set of features, which overall reduces overfitting, but also shows that one can only reach

limited accuracy with the used algorithm based on SOAP/LRR. Fig. 6.1b shows a more

systematic plot of this size effect. The size effect was in this case determined by picking

data points from the large data set at random, which produces clear trends. The RMSE of

training and test/validation converges with additional data, but the RMSE is still larger

than zero. Based on the full data set, the RMSE converges between 2.7 and 3.6 ppm.

This simply reflects the systematic error introduced by the machine learning model itself,

in this case SOAP/LRR. Consequently, in order to improve the prediction, the machine

learning model has to be changed, either by an improved structural descriptor or a better

fitting algorithm.

6.4. Parametrization

Parametrization in machine learning is a global optimization problem in which hyperpa-

rameters of an algorithm are varied in order to maximize prediction performance. In this

work, it means to minimize the RMSE of the machine learning predictions of 31P GIPAW

results. By combining the descriptors SOAP and LMBTR with the machine learning

algorithms LRR, MLP and XGBoost six different methods were generated. Besides

the hyperparameters, the descriptors also depend on parameters. Since the parameters

depend on one another in non-trivial ways, for all six combinations test calculations

were carried out. To keep track of overfitting, cross-validation and testing were done as

described by Chaker et al.[77] A test set of 10% of the database was separated at random.

For cross-validation, the remaining 90% were split in 5 groups, 72% for training and

18% for validation. Training and validation were conducted for 5 times, i. e. in every

case and the fraction for the validation set was swapped in the groups. Based on this

procedure, descriptor parameters and machine learning hyperparameters were scanned.
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6.4. Parametrization

6.4.1. Descriptor parameters

The SOAP descriptor can be manipulated by defining different basis sets of the radial

(nmax) and angular (lmax) components. Furthermore, one has to define a radial cutoff

which restricts vicinity and with it the number of included atoms. Lastly the atomic

positions are smeared out by a gaussian kernel which can be adjusted by a parameter

sigma. We tested the radial cutoff in a range from 5 to 9Å and equal values for nmax and

lmax from 2 to 9. This corresponds to a feature size of 108 for lmax/nmax=2 and 4752

for lmax/nmax=9. Fig. 6.2 contains the results for the tests of SOAP parameters. From

the ranges of the RMSE, it becomes clear that the LRR produces the most accurate

predictions. Training and validation graphs of MLP and XGBoost contain notable noise,

which indicates that both methods need more data points in order to work reliably.

This is consistent with findings by Chaker et al.,[77] who also observed overall lower

performance for more complex methods.

For LMBTR, a slightly different approach was used. In contrast to SOAP, in LMBTR

ranges and grid resolution of such ranges have to be defined for the two-body and three-

body terms. The two-body terms were defined in inverse units to improve resolution

for small distances from 0.182 to 1.2Å−1, which corresponds to a cutoff value at 5.5Å.

two-body (n2) and three-body (n3) ranges were tested with numeric grid densities from

20 to 100 corresponding to descriptor sizes of 800 to 4000 features. Fig. 6.3 contains

the results for the tests of parameters. For n2 < 50, or n3 < 50 more irregularities are

observed. In particular, LMBTR/MLP leads to bad predictions if n2 and n3 are not

balanced. LRR is as before better than XGBoost, which is itself better than MLP.

Since 28% of the database were used for test and validation, just about 880 data

points are included in each training, which means that the system was in most cases

underdetermined for regression, but the features were strongly correlated. The parameter

scans of LMBTR seemed overall more noisy than the results for SOAP; this is misleading
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6. Machine learning NMR chemical shifts

(a) SOAP/LRR, λ = 0.75

(b) SOAP/MLP, 100 neurons, 1 hidden layer

(c) SOAP/XGBoost, 500 trees, depth = 1

Figure 6.2.: Test of the SOAP

descriptor against three differ-

ent machine learning algorithms

for (a) LRR, (b) MLP, (c) XG-

Boost; rcut and lmax/nmax

see the text. Comparison of

training data (left), validation

(middle) and test data (right).

Color coded range describes the

RMSE, ranges defined individ-

ual for each graph. Validation

and test RMSE were higher for

MLP and XGBoost.
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(a) LMBTR/LRR, λ = 0.02

(b) LMBTR/MLP, 100 neurons, 1 hidden layer

(c) LMBTR/XGBoost, 500 trees, depth = 1

Figure 6.3.: Test of the LMBTR

descriptor against three dif-

ferent machine learning algo-

rithms for (a) LRR, (b) MLP,

(c) XGBoost; n2 bins and n3

bins, see text. Comparison of

training data (left), validation

(middle) and test data (right).

Color coded range describes the

RMSE, ranges defined individ-

ual for each graph. Validation

and test RMSE were higher for

MLP and XGBoost. The RMSE

ranges of LRR and XGBoost

were narrow as n2 bins and n3

bins are well converged.

129



6. Machine learning NMR chemical shifts

λ

(a) LRR

Neurons

(b) MLP (c) XGBoost

Figure 6.4.: Fine tuning the parameters of LRR, MLP and XGBoost with the SOAP descriptor.

The λ parameter is the only adjustable parameter for LRR. The graph in (a) shows the fitting result

at rcut= 5.9 and lmax/nmax=8; λ=40 minimizes training, validation and test set RMSE. The

MLP consists of a predefined topology of neurons, (b) plots the best fitting result by SOAP/MLP

parameters at each data point. Beyond 200 neurons the accuracy does not improve for the test and

validation sets. The tree depth and number of trees of XGBoost are indications of the permitted

complexity of the model. (c) plots of the best fitting results for SOAP/XGBoost parameters at

each data point for tree depth and number of trees. Tree depths beyond 1 improved training but

deteriorated prediction quality.

in case of LRR and XGBoost, since the RMSE range for both methods is very narrow.

In contrast, the MLP neural network was too small for the much larger feature input,

leading to substantial fluctuations.

6.4.2. Hyperparameters

For LRR, the regularization parameter λ was scanned, MLP was limited to a single

hidden layer, for which the number of all-to-all connected neurons was varied, and for

XGBoost, both the tree depth and number of trees were scanned. The scans of all three

hyperparameters give different insight into the machine learning performance.

The effect of different values for λ were tested at fixed SOAP parameters (rcut=5.9,

lmax/nmax=8) (fig. 6.4a), whereas the hyperparameters for MLP and XGBoost were

130



6.5. SOAP vs. LMBTR

tested together with the SOAP parameters by performing a three-dimensional scan

of the SOAP parameters and each hyperparameter. Fig. 6.4b and c provide the best

RMSE results of the SOAP parameter scan for a given hyperparameter. As expected,

the lowest RMSE were observed for the training set, while RMSE for validation and

test set are similar, which means that in all cases a certain degree of overfitting was

observed due to the finite database. The ‘J’ shaped curves for increasing λ indicate

an initial performance improvement followed by monotonous increase of RMSE where

regularization overly restricts the regression procedure. MLP converges with respect to

the number of neurons while in contrast, increasing tree depth quickly leads to overfitting

with XGBoost. Regarding overfitting, it also seems clear that it cannot be entirely

avoided for a given data set with LRR and MLP. The difference between training RMSE

and validation/testing RMSE was in both cases nearly constant 0.9 ppm. With XGBoost,

the tree depth rapidly improved the training RMSE, while testing/validation RMSE only

improves only up to a tree depth of 3. Increasing the tree depth therefore can improve

the prediction performance, but it quickly leads to overfitting.

6.5. SOAP vs. LMBTR

The previous sections have shown that for the conducted tests, LRR outperforms the

two more complex machine learning algorithms. This is consistent with the results of

Chaker et al.[77] who found that LRR works better than any other tested algorithm for

chemical shift estimations. Their data also indicate that similar algorithms like gaussian

kernel ridge regression (GKRR) and elastic net regression (ENR) produce similar results

with SOAP, while different local descriptors with LRR, like Behler-Parinello symmetry

functions (BPSF) and the angular and radial distribution function (ARDF), were clearly

inferior to SOAP. However, our results show that the prediction accuracy is improved by

replacing SOAP/LRR with LMBTR/LRR. These trends imply that the limitation in the
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6. Machine learning NMR chemical shifts

(a) SOAP/LRR, λ = 40 (b) LMBTR/LRR, λ = 0.02

Figure 6.5.: Performance of machine learning result with respect to GIPAW training data.

LMBTR/LRR produces more accurate predictions, than SOAP/LRR. Value for λ has been

optimized separately.

prediction scheme is based on the descriptor, SOAP, rather than the algorithm, LRR.

Fig. 6.5 provides a direct comparison between both methods. As opposed to the previous

cross-validation scheme, the machine learning scheme uses 90% of all data for training

and 10% for testing, thus test and training RMSE are more similar than in section 6.3.

Due to overfitting, the training RMSE is still lower than the validation/test RMSE. As

shown in fig. 6.1b, the training RMSE and validation/test RMSE asymptotically converge

with the data set size. While it is certainly possible to extrapolate the RMSE trend,

at this stage we can assume that the training RMSE as optimistic and test RMSE as

conservative estimate of the accuracy of the same method for a much larger data set.

The two values provide a lower and upper boundary to the real RMSE. Since the test

RMSE value of LMBTR/LRR is lower than the training RMSE of SOAP/LRR, we can

conclude that LMBTR/LRR is a better prediction scheme than SOAP/LRR. This trend

is consistent for all the tested machine learning algorithms, which demonstrates that

the LMBTR descriptor is more suitable for predicting 31P NMR chemical shifts. For

chemical shift estimates, the descriptor which provides the most relevant information

should perform best. It is not trivial to compare both descriptors based on their features,
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6.5. SOAP vs. LMBTR

Figure 6.6.: LMBTR/LRR coefficients

between the central phosphorus atom

and distances for all elements in the

system.

Each point is an LMBTR g2 grid point

(cf. eq. 6.1), lines added for guidance.

The y-axis describes the slope (mk) in

eq. 6.5. Positive coefficients describe

higher NMR shielding compared to the

average structures.

since their methodologies are very different. However, both provide distance and angular

information. SOAP encodes it as two-dimensional power spectrum based on gaussian

radial functions and spherical harmonics, hence distances and angles are grid positions in

the spectrum. This is equivalent to other descriptors which include only two-body terms,

including angular information but only from the central atom X with the motif A-X-B,

even though implicitly this also includes other angles. LMBTR also encodes angles

around neighboring atoms such as X-A-B directly. Simple machine learning algorithms

like LRR cannot recognize implicit angular information, thus the SOAP descriptor is

inherently restricted by these aspects. This is also in agreement with findings by Dawson

and Ashbrook who parametrized distances and angles manually using a multivariate

regression.[74] LMBTR can be used as one possible way of generalizing their findings.

As discussed earlier, both SOAP and LMBTR discard information compared to the

original geometry by smoothening atomic positions, and forming smooth distributions

from distances and angles. Fig. 6.6 is a plot of the radial part of the numerical grid. The

P–O distance around 1.5Å reflects P–O bonds. The smallest P–O bonds are correlated

with deshielding which is due to few significantly distorted phosphate adsorbates with
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free P–O bonds. They are actually too unstable to be relevant here, and should thus be

excluded from the data set. At slightly higher values, the P–O bonds lead to slightly

positive contributions from P–O–X. The large values between 1.7 and 2.0Å are again

exceptionally distorted geometries. For the smallest P–H, P–Al and P–P distances,

another positive correlation is observed, which is followed by an even stronger negative

correlation at a slightly larger distance in case of P–Al and P–P. This is related to the

P–O–(P,Al) angles that are directly connected with P–(P,Al) distances. The lowest

P–Al and P–P distances at 2.5 and 2.7Å minimize P–O–Al and P–O–P angles, which

leads to high amounts of electron density around phosphorus. At larger distances, which

are 3.1Å for P–P, 3.0Å for P–AlIV and 3.5Å for P–AlVI, the angles approach 180° which

leads to deshielding of phosphorus due to bond competition in the O-pσ orbital of the

phosphate (electron pulling of Lewis acidic moieties is not effective at small angles). At

further distances the effects are overall more subtle except for the P–O distance, which

leads to a deshielding from 3.1 to 4.5Å.

6.6. LRR performance

It is important to note that the chemical descriptors SOAP and LMBTR are both derived

from the geometry and encoded in a numerical form that allows to unambiguously capture

a wide range of chemical environments. For this, both methods are excessively large,

saving hundreds to thousands of values as a fingerprint of generally less than 20 atoms in

the vicinity. It is therefore expected that these values, when used as independent variables

for regression, are strongly correlated. As discussed, ridge regression methods perform

very well in automatically identifying such correlations and scaling such correlated features

simultaneously. It seems that NMR chemical shift predictions are in large parts driven

by a linear correlation to structural features. Up to this point, it was more important

to identify the most important structural features in order to generate an 31P NMR
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prediction scheme, than to find the most suitable algorithm. Dawson et al.[69,74,75] started

from hand-selected structural features like bond distances and angles, whereas Chaker

et al.[77] combined recently developed local descriptors and various more complex machine

learning algorithms. Here, we also tested two algorithms despite LRR, but in agreement

with Chaker et al., we realized that those do not outperform simpler regression schemes.

Nevertheless, a more elaborate machine learning algorithm should outperform LRR if

the descriptor captures all the relevant structural motifs, as well as potentially other

quantities such as atomic charges (e. g. by Bader or Hirshfeld) Successful examples for

the use of neural networks for NMR prediction exist in the literature, however, those also

heavily rely on the design of the descriptor.[132]

6.7. Summary and perspectives

This machine learning project is not yet complete; however, it already provides valuable

insights into the challenges for building a machine learning-based 31P NMR chemical shift

predictor. Recent work showed that both complex algorithms like neural networks and

simple regression schemes like LRR likewise allow for accurate machine learning chemical

shift predictions,[77,132] but this largely depends on the descriptors and data set size. The

comprehensive tests by Chaker et al. indicate that the choice of a good descriptor, in

their case SOAP, leads to the biggest improvement in NMR prediction accuracy. The

simplest machine learning method, LRR, produced the best result. The success of LRR is

overall surprising, but it might mean that better descriptors have to be identified before

more sophisticated machine learning methods can improve the prediction model. In this

study, it was demonstrated that with LMBTR, a clear improvement is observed for all

machine learning methods tested. One rationale for this improvement is that LMBTR

describes angles and distances independently.
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At the current state many perspectives for future work are possible. One important

task is to further ensure the consistence of the database. Optimizing all hyperparameters

of the tested descriptor/algorithm combinations is necessary in order to complete this

work. Further adjustments to the LMBTR descriptor like exchanging the representation

of the angular part (g3), using the angle directly instead of the cosine, has now proven to

be more accurate. The search could also include squared components of the g2 component

of the descriptor, in alignment with the work of Dawson and Ashbrook.[74] In order

to improve the system description, atomic charges might improve accuracy. They can

be derived from DFT results as Bader or Hirshfeld charges. Testing more complex

algorithms could also improve the prediction performance. Elastic net regression might

improve the learning model, since the method is more suited for removing irrelevant

components. Since the XGBoost worked best with the shallowest trees, so-called stumps

(tree depth=1), a simpler boosted tree method, AdaBoost, could be an alternative.

Based on the available GIPAW data, a similar machine learning method could also

be applied to 27Al NMR. This would provide insights into NMR shifts of aluminium

surface species. Overall, using machine learning for 31P chemical shifts allows for a

different pathway of evaluating the chemical shifts at drying conditions. By evaluating

the chemical shift in whole AIMD trajectories, it might be possible to quantify the

contributions of each adsorption mode individually based on the experimental band

instead of the model free enthalpy estimates.
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The main goal of this work was to generate a better understanding of how phosphates

interact with γ-Al2O3 surfaces at the atomic scale. This γ-Al2O3/H3PO4/H2O system is

of special interest in the context of industrial heterogeneous catalysis in which γ-Al2O3 is

a widely used support material. In addition, this work can be instructive in improving our

understanding of different phosphate-mineral interactions and reactivity. The strategy

here was to first explore the phase space for the most relevant candidates by systematic

geometry generation at the DFT level of theory based on three established surface

models, and including other aspects like hydrogen bond networks (cf. chapter 3). The

geometry generation was carried out in two stages: first, testing all orthophosphate

adsorption modes based on substitutions of water adsorption sites; then, the most stable

single orthophosphate adsorption modes were again used for input generation in order

to generate datasets of orthophosphate coadsorption, mimicking a higher phosphate

coverage, and pyrophosphate adsorption. To the best of our knowledge, this is the first

phosphate adsorption study that includes changing coverages and phosphate condensation

phenomena of surface species. Altogether, this involved more than thousand surface

geometries after detailed analysis of the problem and filtering potential redundancies.

Most of those came from different hydrogen bond networks involving the same adsorption

site. Data for 159 sites are provided in appendix A.2, with discussion for a small subset

of the most stable candidates. These are based on more than a thousand geometry

optimizations in order to explore the hydrogen bond network in each case. On the (1 1 0)
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facet, phosphate species stabilize the reconstruction of the surface, which was earlier

identified at high-temperature models in which undersaturation of water adsorbates is

accommodated by shifting a surface aluminium atom from an octahedral to a tetrahedral

site, thereby reducing the degree of undersaturation. The stabilization by phosphates is

clearly different, since the discussed systems are always coordinatively saturated. Hence

it could also be expected that the reconstruction is (in the absence of chemisorbed

phosphates) less stable at drying conditions. We also identified an alumina oxygen

site, which is destabilized in the reconstruction and which is much more stable after

phosphorylation. This initial exploration in chapter 3 was the basis for all following

chapters, which was also a motivation for the phase space search that was carried out.

While exclusively theoretical models can improve our understanding of the more

complex real systems, its foundation should be regularly justified on experimental grounds.

In chapter 4, magnetic shielding tensors of the explored model surface species were

calculated using the GIPAW method. The magnetic shielding was used in order to

estimate experimental 31P chemical shifts. Overall, the model structures could reproduce

most of the experimental observations. 31P chemical shifts of phosphate species are

well-known to produce a broad signal band that is broadened and shifted to lower values

when increasing phosphate loading. The comparison between the coverage-dependent

chemical shifts allowed us to elaborate on changes that actually occur at the atomic scale.

We can distinguish surface between the interaction effects from (i) the adsorption site,

(ii) the adsorption mode and (iii) direct coverage effects (influence of phosphate increase

in the vicinity of the adsorbed phosphate). The strongest effect identified was the site

effect (i), which means that the relative weight of the site distribution changes with the

phosphate loading. The free enthalpy estimates from DFT confirm this in comparison

between single orthophosphate adsorption versus coadsorption of two orthophosphates

on the (1 1 0) facet. After this the adsorption mode (ii) influences the chemical shift, in

particular bidentates (ν2) show lower chemical shift values than tridentates (ν3). For the
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direct coverage effect (iii), additional chemical shift calculations with larger unit cells

(lower coverage) were carried out for the selected adsorption sites. The interaction of

orthophosphate with the surface can rationalize 31P chemical shifts down to −15 ppm, but

the experimental chemical shift bands can reach values down to around −30 ppm.[12,18,59]

Two explanations for this trend exist: polyphosphate formation and aluminium phosphate

formation. Our experimental collaborators recently produced evidence for the presence

of polyphosphates at dry surfaces. Pyrophosphate adsorbates can actually fill the gap

from −15 to −30 ppm based on the presented DFT models; however, based on the

free enthalpy estimates, they might not be stable enough. Moreover, the presence of

terminally bound pyrophosphates can also rationalize discrepancies in two-dimensional
31P– 27Al NMR INEPT experiments, which show two different distributions of phosphate

species for through-bond and through-space correlation. The alternative rationale for this

discrepancy are physisorbed (ν0) orthophosphates, although those are much less stable

than the chemisorbed species on (1 1 0). Aluminium phosphate formation, which was

discussed earlier by Van Eck et al.[59] and DeCanio et al.[12] also depends on the overall

phosphate loading. Our experimental data and our computational models show that up

to a phosphate loading of 4.5wt% or 4.1Pnm−2, the adsorption site distribution and

polyphosphate condensation are crucial to rationalize the change of chemical shift for

different phosphate loadings.

An important open question from chapters 3 and 4 is how the most stable adsorp-

tion structure can actually form at the involved experimental conditions. The initial

impregnation is done in aqueous solution, in which phosphate from bulk water reaches

the surface through the solid-liquid interface. Do the most stable structures at drying

conditions already form during impregnation or does the solid-liquid interface produce

different adsorption modes? This was studied in chapter 5. As an initial benchmark,

the reaction mechanism of orthophosphate condensation to pyrophosphate was tested by

well-tempered metadynamics. Even though the reaction was not yet simulated by this
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approach, its reaction free energy and the barriers are known experimentally and were

successfully reproduced with this method. While the initial adsorption could also be

assumed to happen, based on experimental observation, it was tested by a well-tempered

metadynamics exploration. It was confirmed for octahedral aluminium sites, that water

substitution by phosphates readily occurs for the explored case, leading to strongly

adsorbed bidentates (ν2). The phosphorylation of alumina oxygen sites in order to

form tridentates was explored by well-tempered metadynamics for the three most stable

adsorption sites identified at drying conditions on the (1 1 0) facet. It also included one

case of a bidentate constructed from an alumina oxygen. Two configurations for the

reactions were used for each site: preadsorbed orthophosphates ν2 −−⇀↽−− ν3+H2O and

pyrophosphates ν20 −−⇀↽−− ν3+ν0, which only differ in the leaving group, i. e. water and

another orthophosphate. The bidentate (ν2) starts from ν1 and ν10. The trend in all

cases is that the reaction free energy is positive for all cases involving orthophosphates,

and negative for the reaction starting from pyrophosphate. This means that, based on

reaction energies, none of the reaction products are stable, as even after the pyrophos-

phate hydrolysis, the phosphorylated alumina oxygen can be hydrolyzed as well, i. e.

ν20 −−→−ν0
ν3 −→ ν2. Only two of the six surface phosphorylation reaction barriers were

converged; compared to pyrophosphate hydrolysis in water, with a calculated value of

100 kJmol−1, they showed a higher phosphorylation barrier (115 kJmol−1 starting from

n(1 1 0)ν20, 146 kJmol−1 starting from n(1 1 0)ν2). Consequently, since pyrophosphate

hydrolysis is a slow reaction at room temperature, taking overall several days, higher

dentations cannot even form temporarily during impregnation based on such barriers.

These barriers also indicate that, once formed, the tridentates should be stable enough

to resist hydrolysis for some time. It is also consistent with the results of Van Cleve

et al. who demonstrated how phosphonate adsorption on γ-Al2O3 improves hydrothermal

stability.[3] Overall, dentations involving alumina oxygens do not occur at the solid-liquid

interface, but they are more likely under drying conditions. Once formed, these bonds
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are quite stable. At this point, the mechanistic studies under drying conditions are a

very interesting topic for future studies.

As a result, we clearly see that higher dentations involving alumina oxygen are limited

to drying conditions. This fact can also hold as an a posteriori justification for using 120°C

as reference of the dry model surfaces (chapter 3) for comparison with the experimental
31P MAS NMR results. Those experiments were done with samples dried at 120°C

but they were kept at room temperature in contact with air. Hence, it was an open

question which temperature is the better reference. In fact, the most stable adsorption

structure identified was (1 0 0)ν0 at room temperature, but this structure is on a minority

facet and does not reproduce the 31P chemical shift (chapter 4). Only by assuming the

thermodynamic stability ordering at the drying conditions themselves, free enthalpy

estimates and experimental results are consistent. The barriers identified in chapter 5

rationalize why this is the case: at room temperature, surface hydration of P–O–Al

bonds is kinetically inhibited.

The last chapter, chapter 6, demonstrates that it is possible to generate efficient

prediction schemes of 31P chemical shifts based on atomic positions based on linear ridge

regression, a simple machine learning regression algorithm. This study was only possible

due to the large structural exploration carried out in chapter 3 (p. 51), which allowed to

generate 1227 data points for 31P GIPAW chemical shifts as the basis for this work. To the

best of our knowledge, this work is the first application of machine learning on31P NMR of

phosphate surface species; nevertheless, several previous studies dealt with bulk materials

involving many more data points per GIPAW calculation or cluster models.[69,74,75,77] The

recent local chemical descriptor LMBTR (local many-body tensor representation)[146]

was applied for the regression, leading to a significant improvement over one of the most

popular local descriptors (smooth overlap of atomic positions, SOAP).[138] This opens the

possibility for future work: a study of the chemical shift including dynamic properties

of the system, potentially quantifying the proportions at which different adsorption
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Conclusions and Perspectives

modes contribute to the 31P NMR signal. Those can be sampled by (biased) molecular

dynamics, for which GIPAW calculations would be prohibitively expensive. A similar

study could also be conducted for 27Al NMR in order to computationally reproduce the

two-dimensional INEPT correlation NMR experiments.

Overall, the discussed structures are the first realistic adsorption models available

for the γ-Al2O3/H3PO4/H2O system at the time, and as such they should be used as

the basis for future DFT studies of heterogeneous catalyst models involving γ-Al2O3,

phosphate additives and other active compounds. Their plausibility was demonstrated by

comparison with 31P NMR experimental results (chapter 4, p. 75), with a perspective on

further quantification of the spectra by generating a machine learning NMR prediction

scheme and using it to test NMR chemical shifts on trajectories of molecular dynamics.

The metadynamics simulations presented in chapter 5 (p. 91) allowed to disentangle

which adsorption structures occurred at which of the two tested conditions, dried or wet

surface. In the context of future research, this work vastly improves our understanding

of the effects of phosphates at γ-Al2O3 surfaces which paves the way to construct new,

more holistic models of heterogeneous catalysts.
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A. Appendix

A.1. Electronic structure methods

Today, computational chemists have access to a wide variety of methods in order to

produce atomistic models for their systems of interest. These methods can largely vary

in computational expense and general accuracy as well as in robustness and practicality.

To start from the fundamentals, the most basic approximations are introduced in this

section with a short description of the underlying physics, followed by an outline of a few

notable methods. Since quantum mechanical particles are represented by wave functions

which are continuous probability amplitudes, the underlying set of basis functions is a

crucial part for the accuracy of the systems. Both aspects are explained in more detail

below.

A.1.1. The total energy

A system’s energy is a conserved quantity of any physical system from large interacting

bodies down to molecules and crystals. The latter are described in atomistic models

of atom nuclei and electrons. An accurate determination of the behavior of either of

these particles requires quantum mechanics. The total energy of a quantum mechanical

system is given by the Schrödinger’s equation which defines the Hamilton operator Ĥ
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that is applied on a wave function |Ψ〉 in order to determine the total energy, E, of the

system:[147]

Ĥ |Ψ(rN, re)〉 = E |Ψ(rN, re)〉 (A.1)

For non-stationary states with its time-dependent form,

ih̄
d

dt
|Ψ(re, rN, t)〉 = Ĥ |Ψ(re, rN, t)〉 (A.2)

The wave function |Ψ〉 is a descriptor that – in accordance with Heisenberg’s uncertainty

principle – represents the many-body system of particles by probability amplitudes of their

positions re (electrons) and rN (nuclei). By taking advantage of the Dirac notation,[148]

we can use a short form to multiply with the conjugate transpose of the wave function

(implying that it is represented by some matrix), in order to separate observables and

wave functions. For example, eq.A.1 becomes

〈Ψ(rN, re)| Ĥ |Ψ(rN, re)〉 = E (A.3)

Analogously to classical mechanics, the Hamilton operator for charged particles can be

written as a sum of all operators that determine the kinetic energy of translation T̂ and

Coulomb potential energy V̂ operators for every particle and particle pair:[149][148]

Ĥ =
∑
i

T̂i +
∑
i

V̂i = − h̄
2

2

∑
i

∆i

mi
+

1

4πε0

∑
i

∑
j<i

qiqj
|ri − rj |

(A.4)

Since the Coulomb terms are sums over particle pairs, they rapidly grow with the number

of particles. If we are furthermore interested in dynamic information of, i. e. structural

changes over time, we would have to solve the time-dependent Schrödinger equation. As
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first approximation, we separate nuclear and electronic terms:

Ĥ = T̂N + V̂NN︸ ︷︷ ︸
nuclei

+ T̂e + V̂Ne + V̂ee︸ ︷︷ ︸
electrons

(A.5)

The terms each refer to the sum of operators of involved electrons e and nuclei N, i. e.

V̂NN refers to the electrostatic repulsion of all nuclei. Nuclear movement is much smaller

than electronic movement given their mass ratio of mN/me > 103, as considered in the

Born-Oppenheimer approximation.[149] Nuclei are then given as fixed point charges, and

T̂N is zero by that definition. V̂NN is included to the electron part as constant term. Even

though this is not strictly necessary, it simplifies the construction of energy derivatives

like forces and Hessian matrices. The full Schrödinger equation can be approximated by

its (stationary) electronic part and an independent term TN for nuclear motion.

〈Ψ(rN, re)| Ĥ |Ψ(rN, re)〉 ≈ TN + 〈ψe(re)| Ĥe(rN) |ψe(re)〉 (A.6)

In prospect of molecular dynamics, this equation provides the total energy of a dynamic

system, where the nuclear positions change over time, rN(t), while the electronic ground

state is stationary, that means the electrons instantly adapt to the moving coordinates.

In general TN is the expectation value of a nuclear wave function that is only defined by

nuclear movement in the potential given by the electronic wave function and V̂NN. In

order to solve the electronic part of the Schrödinger equation, a mathematical expression

for the wave function is needed.

The first approximative solution was given by Hartree in 1927 a year after publication

of the Schrödinger equation itself.[150][148] He expressed the many-electron wave function

as product of single-electron wave functions, the Hartree product. Since it violates the

principle of antisymmetry of proton exchange in the wave function,[151] it was extended

in the following few years by constructing a determinant of Hartree products, the Slater

determinant, which is a construction that satisfies this principle. This method, later
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referred to as Hartree-Fock method, does not directly produce solutions to a ground state

wave functions but is capable of iteratively improving a trial wave function by optimizing

the one-electron states or orbitals in the average electric field of the other orbitals. Hence

it is also called self-consistent field (SCF) method. The most critical approximation

here stems from the fact that each electron orbital is expressed in the mean-field of the

other electrons. In consequence, electron correlation phenomena other than covalent

bonds, like van-der-Waals interaction cannot be reproduced. To alleviate this problem,

many improvements were proposed, for example based on perturbation theory, where

the Hartree-Fock solution which is exact for single electrons is improved by adding

perturbation terms to approximate the neglected Coulomb correlation effects. Most

noteworthy is Møller-Plesset perturbation method since it can efficiently produce accurate

results by even current standards,[152] while it was published in 1934 where calculations

were limited to the simplest atomic or diatomic cases. Only in 1951 the Hartree-Fock

method was supplied with an improved mathematical framework by Roothaan as one of

the first steps that allowed it to be run on computers.[153] The Møller-Plesset perturbation

method is the earliest post-Hartree-Fock method and was long seen as ”gold-standard”

for ab-initio models of organic molecules, however its approximation is only accurate

for large energy gaps between occupied and virtual orbitals, and, as opposed to the

Hartree-Fock method, it is not variational. As a consequence, perturbation methods

are difficult to improve other than by including higher order correction terms. It is

common to interpret the additional terms as excitations with first order terms as single

excitations, second order terms as double excitations, etc, however, rather than real

excitation phenomena, they are terms formed by excited state Slater determinants from

the ground state optimized Hartree-Fock orbitals. Since the single excitations do not

overlap with the ground state, the first perturbative correction is achieved by inclusion of

double excitations, within the second order Møller-Plesset perturbation method (MP2).

Higher order corrections like triple excitations in MP3 or beyond may improve the
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accuracy of the result at computational expense and numerical stability. The fact that

virtual excited states are included also leads to high demands for the used basis functions,

needing a more “complete basis” set in order to be accurate.

In modern jargon, Hartree-Fock and in particular post-Hartree-Fock methods termed

as wave function methods. They include methods that can be exact in principle, like

configuration interaction and are rather computationally demanding, limiting its applica-

bility to a smaller scale. The reason is the electron-electron repulsion term which rapidly

increases computational cost with the number of electrons which leads to an asymptotic

computation time of O(n4). Many alternatives were proposed, which are related with

wave function methods in the sense that they solve the electronic Schrödinger equation

while replacing some of the terms in eq.A.5 by numerically simpler ones. The most

common is based on density functional theory (DFT) in which the explicit calculation

of the largest sum V̂ee can be substituted. While otherwise iteratively minimizing the

total energy. Density functional theory (DFT) is presented in the following section in

more detail. Empirical or semiempirical methods can be characterized by replacing the

iterative procedure by empirical parameters, for example to build a wave function and

access orbital energies and total energies by a single diagonalization, or by replacing the

whole electronic wave function in eq.A.6 by classic spring potentials and force fields that

mimic forces of the electron structure on the nuclei.

A.1.2. Density functional theory

DFT arisen with the study of the inhomogeneous electron gas of Hohenberg and Kohn,

who proved that the density distribution ρ0 can completely describe the physics of a

quantum mechanical ground state system, like the electronic wave function |ψe(re)〉.[154]

The Hohenberg and Kohn theorem was reformulated and generalized over the years,[155]

but it is just a proof of existence and does not give any guidance on how to replace a
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wave function by a density. It was also demonstrated to break down on excited states;[156]

while this does not disqualify DFT as a method, it shows its limits. It nevertheless proved

to be superior in terms of computational efficiency and comparable accuracy.

The general idea is that the ground state density of a system is, like the total energy,

an observable of the system. It can be determined from the wave function by summation

over the orbital densities:

ρ(r) =
∑
i

|ϕi(r)|2 (A.7)

According to the Hohenberg and Kohn theorem, in principle, this relationship can be

reversed, i. e. |ψe(re)〉 = |ψe[ρ0]〉, where the brackets indicate that the wave function is a

functional of the ground state density. If the wave function is fully determined by its

density, the Schrödinger equation can be expressed as density functional as well:

Eel = 〈ψ[ρ0]| Ĥe |ψe[ρ0]〉 = Eel[ρ0] (A.8)

This implies that for most cases should be possible to replace a many body wave function,

a complex 3N-dimensional construction comprised of densities for every particle N, it

contains by one single 3-dimensional density distribution. Consequently calculations

based on the density are much less time consuming, and, regarding numerical stability

for convergence, much more robust. Most of the terms shown in eq.A.4 and eqA.5 are

Coulomb interactions, which can be expressed as integrals over the density:[157]

Eel[ρ0] = Te[ρ0] + VNe[ρ0] + Vee[ρ0]

= Te[ρ0] +

∫
drVN(r)ρ0(r) +

e2

2

∫∫
drdr′ ρ0(r)ρ0(r

′)

|r− r′| (A.9)

VN is the static Coulomb field of the nuclei, which is commonly generalized as external

field. The integration over r and r′ is over the density and pair density and is usually

implemented as numerical integration. With these integrals it is possible to calculate
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the potential energy components of the electronic structure exactly, and only based on

the electron density. However, there is currently no exact density functional known

for the kinetic energy Te[ρ0]. Thomas and Fermi independently found an analytical

approximation for the kinetic energy in 1927:[158,159]

TTF
e [ρ0] =

3h2

40me

(
3

π

) 2
3
∫
[ρ0(r)]

5
3 dr (A.10)

While this model was also extended to account for exchange energy correctly,[160] the

approximation is not even accurate enough to predict covalent bonds in molecules.[159]

This problem can in principle be overcome by finding a better approximation for Te[ρ0].

Recently Snyder et al. demonstrated that it is possible to find an improved kinetic energy

term by machine learning,[161] and several other groups explored different possible machine

learning approaches.[162,163] While these may improve in the future, and allow systematic

improvement of a “pure” kinetic energy functional, the most established method involves

the same mean-field kinetic energy terms as in the Hartree-Fock method. Kohn and

Sham combined the DFT terms in eq.A.9 with a wave function build from single Slater

determinant of non-interacting electrons in a fictitious potential. The Kohn-Sham kinetic

energy can be expressed by the orbitals |ϕi(r)〉 of this wave function:

TKS
e [ρ0] =

∑
i

〈ϕi(r)| −
h̄2∆

2m
|ϕi(r)〉 (A.11)

The Kohn-Sham kinetic energy is much more accurate than any analytical approximation,

but introduces the subtle errors, inherited from the mean field approximation. It is

generally collected in an unknown term, the exchange-correlation potential Vxc[ρ0], which

is empirically approximated based on the density. It is the only approximative term of

the Kohn-Sham energy:

EKS
el [ρ0] = Te[ρ0] + VNe[ρ0] + Vee[ρ0] + Vxc[ρ0] (A.12)
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The non-interacting electrons in the wave function part are produced by SCF minimization.

Their orbital energy levels εi are given by:

εi = 〈ϕi(r)|
[
− h̄2∆

2m
+ Vs(r)

]
|ϕi(r)〉 (A.13)

The fictitious potential Vs(r) depends on the density itself:

Vs(r) = VN(r) + e2
∫

ρ(r′)
|r− r′| dr

′ + Vxc(r) (A.14)

Starting from an initial guess, the density and orbitals are iteratively optimized, and new

densities produced by eq. A.7. Kohn-Sham DFT is a compromise between wave function

method and pure DFT. While the wave function based kinetic energy introduces a single

reference determinant, it allows for an accurate estimate of the kinetic energy; hence the

correction added in Vxc(r) is smaller and would therefore introduce smaller inaccuracies.

The mix between both sides sides also leads to a clear computational advantage, since

the V̂ee part could be substituted by a much smaller integral Vee[ρ0]. Its asymptotic

computation times scales with O(n3) for a system of size n. Several approximations are

available for the exchange-correlation potential which can be ordered by a dependence on

the local density, its first derivatives, and further corrective measures: the local density

approximation (LDA) only includes terms that scale with the density, while general

gradient approximations (GGAs) include density changes and meta-GGAs add kinetic

energy corrections to Vxc[ρ]. As alternative, so-called hybrid DFT methods substitute

varying amounts of their approximate exchange by exact exchange from Hartree-Fock

terms. Perdew described this process of including increasingly complex terms into a

successively more accurate method with the figure of speech of Jacob’s ladder.[164] In

more recent years the focus was on improving the description of dispersion interaction,

which is included in wave function methods like MP2 but at high computational cost.

Grimme et al. created several method agnostic correction potentials which, irrespective
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of the functional, add an empirical term based on the atomic positions.[89] These schemes

aim to determine long range correlation effects by parametrized force fields independent

of the density. The method was also adapted for charge-dependent polarizability by

estimating atom charges from the density.[165] On the other hand Klimeš et al. built

whole new functionals from scratch.[166] Overall, DFT methods are still evolving, with

continuous development of more accurate functionals and efficient implementations.

A.1.3. Basis functions and pseudopotentials

The electronic structure is described by a set of mathematical functions that do not only

have to be well suited to describe its topology but they also need to ensure numerical

stability for ground state optimization. At the same time it must be possible to evaluate

their accuracy and transferability, while in particular small basis sets should be reasonably

accurate.

In computational chemistry, which emerged from wave function methods, in the past

almost exclusively Gaussian orbitals were used. Gaussian orbitals are localized at the

atomic positions and are parametrized to describe atomic orbitals and molecular orbitals

alike. Angular components are included by multiplying with spherical harmonics. They

are commonly “contracted” in fixed linear combinations to approximate more physically

sound Slater-type orbitals without increasing the number of available basis functions.

Since Gaussian orbitals are not orthogonal, but the determined molecular orbitals must be

orthogonal, one has to ensure, that linear dependencies are avoided. This is unproblematic

as long as the Gaussian basis set does not include too diffuse basis functions.

In periodic boundary conditions the most “natural” functions are plane waves (PW).

They are likely the most popular basis set in computational solid state physics for decades.

Plane waves are similar to a particle in a box, where a quantum mechanical particle

is described by a superposition of a infinite discrete set of trigonometric functions. In
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contrast to Gaussian basis sets, PW basis sets are defined by the unit cell dimensions and

independent of the number of atoms in the system. To actually allow computations with

PW basis sets, it has to be truncated to a finite size, usually by choosing a maximum

frequency. Plane waves are ideal to describe smooth continuous densities, however, local

density spikes like atom nuclei would require a very large number of plane waves. For the

interfacial systems described here, it is also important to note that even vacuum volume

in surface models contributes to the basis set size.

To effectively save computation time without affecting the accuracy of the chemi-

cally most relevant valence states (which are relatively smooth), the core electrons are

substituted by pseudopotentials. Pseudopotentials are in essence radial functions that

describe the same electrostatic field as the nucleus at long distances, while the core region

is optimized in such a way that the remaining electron orbitals as well as the overall

density remains the same outside of the core region given by the pseudopotential. Thus,

effectively the number of explicitly calculated electrons is reduced to valence electrons.

Calculations with Gaussian basis sets can be done without pseudopotentials, but in

particular heavy elements are not accurately represented without relativistic models

of the core electrons. To avoid more costly relativistic methods, the pseudopotentials

are constructed including relativistic effects. For PW methods, pseudopotentials are

crucial in order to smoothen the electron density in close proximity to the nuclei. This

in fact changes the density description in close vicinity to the nucleus without physical

justification. A simple method for this is the use of norm-conserving pseudopotentials.[167]

While the shape of the density close to the nuclei is changed, the number of valence

electrons is maintained. Ideally, one would be able to recover the all-electron density

after carrying out pseudopotential calculations. This can be in principle be achieved

within Blöchl’s projector-augmented wave (PAW) formalism.[101] The method uses a

much smaller PW basis to built Kohn-Sham orbitals than for the electron density. With

the method, all-electron densities can be produced from pseudo-orbitals. Nevertheless
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the most common application of PAW is as theoretical generalization of Vanderbilt’s

ultrasoft pseudopotentials (USPP),[168] as for example implemented in VASP.[102] The

motivation of USPP is, rather than constructing an all-electron density, to soften the

requirement for the orbital plane waves beyond limitations due to norm conservation by

introducing local components to the plane wave orbitals.

In Kohn-Sham DFT, the kinetic energy is calculated by the construction of non-

interacting Kohn-Sham orbitals in an effective field that is depends on the electron

density. The other terms of the total energy are directly determined as functionals

of the electron density. For the choice of basis functions and pseudopotentials, this

combination of orbitals and electron density leads to inconsistent numeric requirements.

Calculations based on the density improve with a larger, more flexible basis set, but the

computational cost for orbital energy calculations in plane wave basis functions increases

rapidly, ultimately leading to the bottleneck of this method. As described above, within

Gaussian basis sets this problem is addressed by keeping the number of available basis

functions constant, and improving their quality in contractions that are more suitable to

describe orbitals than single Gaussian orbital functions. For the PAW method, a small

PW basis set is used for description of the orbitals, and a larger auxiliary basis for the

density.

The Gaussian and plane wave (GPW) method does the same separation between Kohn-

Sham orbitals and density calculations, where the former is calculated with Gaussian

orbitals and the latter – after transformation of the Gaussian basis – in an auxiliary plane

wave basis. The Gaussian basis sets are adapted for the use of the same pseudopotential

as the auxiliary basis.[104] Compared to PW methods, GPW is similar to the use of norm-

conserving pseudopotentials, both basis sets rely on the same pseudopotentials. However

it is much more efficient and scalable since orbitals and densities can be much better

evaluated in those basis sets, while additional computational load by transformation is

usually negligible.
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A.2. Database tables

Table A.1.: Free enthalpy of adsorption of phosphate in kJmol−1 and

31P NMR shift in ppm with respect to to 85% H3PO4 for the (at 393

K) most stable system of every tested single adsorption site, labelled

according to fig. 3.1a (p. 53).
ΔGads

31P NMR
facet site (25°C) (120°C) (300°C)

(1 0 0) ν0 −152 −126 −78 7.1
(1 0 0) νa1 −128 −121 −108 6.3
(1 0 0) νb1 −87 −83 −75 13.5
(1 0 0) νc1 −95 −88 −74 13.5
(1 0 0) νaa

′
2 −99 −113 −138 5.7

(1 0 0) νab2 −144 −156 −178 4.2
(1 0 0) νbc2 −126 −140 −166 6.3
(1 0 0) νcb2 −97 −111 −136 13.0
(1 0 0) νaa

′B
3 −41 −72 −129 5.4

(1 0 0) νaa
′C

3 −76 −107 −165 5.7
(1 0 0) νabA3 −81 −112 −170 8.2
(1 0 0) νabc3 −91 −122 −181 11.7
(1 0 0) νacb3 −31 −63 −123 13.3

n(1 1 0) ν0 −78 −56 −15 11.9
n(1 1 0) νa1 −81 −76 −67 5.6
n(1 1 0) νb1 −103 −100 −95 1.5
n(1 1 0) νd1 −91 −85 −75 8.6
n(1 1 0) νe1 −109 −105 −98 2.6
n(1 1 0) νab2 −60 −74 −100 1.9
n(1 1 0) νbb

′
2 −118 −132 −158 −8.6

n(1 1 0) νde2 −119 −132 −159 −15.0
n(1 1 0) νee

′
2 −98 −112 −138 10.9

n(1 1 0) νbb
′B

3 −90 −122 −182 −4.9
n(1 1 0) νbb

′E
3 −106 −137 −195 −6.5

n(1 1 0) νdeA3 −119 −150 −209 −11.0
R(1 1 0) ν0 −69 −66 −59 1.3
R(1 1 0) νa1 −72 −85 −111 4.1
R(1 1 0) νb1 −96 −112 −143 −1.0

continued on next page
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Table A.1: continued from previous page
ΔGads

31P NMR
facet site (25°C) (120°C) (300°C)

R(1 1 0) νc1 −106 −120 −147 −4.1
R(1 1 0) νd1 −72 −86 −112 −3.6
R(1 1 0) νe1 −83 −98 −125 3.7
R(1 1 0) νab2 −75 −108 −170 −0.1
R(1 1 0) νbc2 −79 −113 −177 −5.4
R(1 1 0) νcB2 −72 −103 −159 −0.6
R(1 1 0) νca2 −30 −63 −126 −1.7
R(1 1 0) νde2 −63 −97 −161 −1.1
R(1 1 0) νeB2 −129 −160 −219 −4.4
R(1 1 0) νabA3 4 −46 −139 −5.5
R(1 1 0) νbcB3 −118 −168 −263 −1.7
R(1 1 0) νbcE3 −54 −106 −203 −13.6
R(1 1 0) νcEF

3 6 −45 −141 −11.4
R(1 1 0) νdeA3 −85 −134 −227 −7.2
R(1 1 0) νdeD3 0 −50 −144 1.9
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Table A.2.: Average free enthalpy of adsorption of two orthophosphates in kJmol−1

and 31P NMR shift in ppm with respect to to 85% H3PO4 for the (at 393 K) most

stable system of every tested single adsorption site, labelled according to fig. 3.1a

(p. 53).
ΔGads

31P NMR
facet sites (25°C) (120°C) (300°C) 1st 2nd

(1 0 0) ν0+ν0 −98 −74 −27 2.1 1.3
(1 0 0) νa1+ν0 −93 −77 −47 −3.2 5.5
(1 0 0) νb1+ν0 −105 −91 −64 −2.0 4.1
(1 0 0) νc1+ν0 −84 −69 −41 −8.8 9.0
(1 0 0) νa1+ν

a
1 −82 −75 −62 5.5 −6.2

(1 0 0) νa1+ν
b
1 −102 −97 −86 11.6 −5.3

(1 0 0) νa1+ν
c
1 −90 −85 −75 −11.1 4.9

(1 0 0) νab2 +ν0 −107 −101 −88 1.6 −6.0
(1 0 0) νbc2 +ν0 −119 −114 −102 1.5 12.1
(1 0 0) νab2 +νa1 −116 −119 −126 12.7 −6.0
(1 0 0) νab2 +νc1 −91 −95 −101 8.8 0.4
(1 0 0) νbc2 +νa1 −105 −110 −118 −2.6 −0.6
(1 0 0) νaa2 +νbc2 −102 −116 −141 1.7 8.3
(1 0 0) νaa2 +νcb2 −66 −80 −106 8.8 12.4
(1 0 0) νabc3 +ν0 −77 −80 −85 9.6 −4.7
(1 0 0) νabc3 +νa1 −91 −105 −132 −0.8 −4.9
(1 0 0) νaaC3 +νbc2 −84 −106 −148 9.4 6.4
(1 0 0) νaaC3 +νcb2 −76 −98 −139 1.0 7.7

n(1 1 0) ν0+ν0 −101 −77 −33 4.7 0.1
n(1 1 0) νb1+ν0 −112 −99 −72 10.6 8.1
n(1 1 0) νe1+ν0 −89 −75 −48 −10.7 0.3
n(1 1 0) νb1+ν

e′
1 −111 −106 −96 −8.3 3.4

n(1 1 0) νe1+ν
e′
1 −83 −78 −69 12.3 9.6

n(1 1 0) νde2 +ν0 −102 −97 −88 −15.0 13.4
n(1 1 0) νbb

′
2 +νe1 −89 −92 −99 −13.7 9.3

n(1 1 0) νde2 +νb1 −101 −106 −115 −14.2 −0.2
n(1 1 0) νbb

′
2 +νde2 −114 −127 −153 −13.2 −10.9

n(1 1 0) νdeA3 +ν0 −89 −93 −101 −9.4 13.3
n(1 1 0) νbb

′E
3 +νd1 −76 −90 −116 −6.4 0.0

continued on next page
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Table A.2: continued from previous page
ΔGads

31P NMR
facet sites (25°C) (120°C) (300°C) 1st 2nd

n(1 1 0) νbb
′E

3 +νe1 −90 −103 −126 −9.2 5.2
n(1 1 0) νdeA3 +νb1 −101 −114 −138 −17.6 7.7
n(1 1 0) νdeA3 +νb

′
1 −97 −110 −134 −11.7 5.9

n(1 1 0) νdeA3 +νf1 −95 −108 −132 −7.2 0.8
n(1 1 0) νbb

′E
3 +νde2 −106 −128 −169 −11.3 −9.4

n(1 1 0) νdeA3 +νbb
′

2 −105 −127 −169 −13.9 −7.9
n(1 1 0) νdeA3 +νbb

′E
3 −68 −100 −159 −10.8 −20.2

R(1 1 0) ν0+ν0 −76 −61 −34 3.9 8.7
R(1 1 0) ν0+ν0 −81 −68 −41 2.8 12.5
R(1 1 0) νc1+ν0 −102 −97 −85 −2.0 −2.5
R(1 1 0) νb1+ν

c
1 −71 −75 −83 10.3 −7.5

R(1 1 0) νc1+ν
d
1 −97 −101 −109 16.5 −6.6

R(1 1 0) νc1+ν
e
1 −105 −110 −120 5.0 −3.0

R(1 1 0) νbc2 +ν0 −75 −81 −91 −16.8 7.2
R(1 1 0) νeB2 +ν0 −95 −99 −105 −4.0 1.1
R(1 1 0) νbc2 +νd1 −93 −108 −136 −15.2 −9.7
R(1 1 0) νbc2 +νe1 −95 −108 −133 −26.5 4.2
R(1 1 0) νeB2 +νb1 −83 −96 −121 −9.8 8.3
R(1 1 0) νeB2 +νc1 −100 −113 −139 −8.3 −4.7
R(1 1 0) νeB2 +νd1 −120 −132 −155 −5.1 2.2
R(1 1 0) νbc2 +νeB2 −56 −79 −121 −24.9 −9.4
R(1 1 0) νbcB3 +ν0 −89 −102 −126 1.1 3.6
R(1 1 0) νbcB3 +νa1 −96 −119 −161 0.8 3.3
R(1 1 0) νbcB3 +νd1 −99 −121 −164 −3.1 −1.9
R(1 1 0) νbcB3 +νe1 −87 −109 −152 −2.7 8.5
R(1 1 0) νbcE3 +νeB2 −36 −68 −127 −8.7 −15.4
R(1 1 0) νdeA3 +νeB2 −66 −98 −157 −14.9 −12.3
R(1 1 0) νbcB3 +νdeA3 −73 −113 −188 −11.7 −6.8
R(1 1 0) νbcE3 +νdeA3 −36 −76 −153 −20.5 −16.5
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Table A.3.: Free enthalpy of surface pyrophosphate formation in kJmol−1

and 31P NMR shift in ppm with respect to to 85% H3PO4 for the (at 393 K)

most stable system of every tested single adsorption site, labelled according to

fig. 3.1a (p. 53). Free enthalpy reported with respect to a single orthophosphate

in gas phase, in order to allow comparison with orthophosphate adsorption.
ΔGads

31P NMR
facet site (25°C) (120°C) (300°C) 1st 2nd

(1 0 0) ν00 −49 −35 −8 −7.9 1.7
(1 0 0) νa10 −96 −89 −76 −19.2 −23.8
(1 0 0) νa,a11 −95 −99 −107 −18.0 −10.2
(1 0 0) νa,b11 −74 −78 −86 −13.9 −10.7
(1 0 0) νa,c11 −79 −82 −87 −22.3 −10.7
(1 0 0) νab20 −94 −97 −104 −9.7 −8.5
(1 0 0) νbc,a21 −93 −106 −130 −11.0 −10.4
(1 0 0) νcb,a21 −84 −97 −122 −4.0 −12.7
(1 0 0) νabc30 −49 −62 −88 −3.0 −16.4

n(1 1 0) ν00 −66 −52 −26 −5.8 −7.6
n(1 1 0) νa10 −63 −58 −49 −18.7 −11.1
n(1 1 0) νb10 −83 −78 −70 −8.7 −7.0
n(1 1 0) νd10 −78 −73 −62 −16.7 −1.8
n(1 1 0) νe10 −86 −81 −71 −10.3 −5.5
n(1 1 0) νa,d11 −81 −85 −92 −10.4 −8.9
n(1 1 0) νb,b

′

11 −94 −99 −109 −17.3 −21.2
n(1 1 0) νb,d11 −51 −56 −64 −17.2 −11.5
n(1 1 0) νb

′,a
11 −69 −72 −79 −17.5 −14.6

n(1 1 0) νd,e11 −83 −87 −95 −12.9 −18.4
n(1 1 0) νe,b11 −97 −100 −106 −5.7 −13.5
n(1 1 0) νe,e

′

11 −89 −94 −102 −13.6 −15.4
n(1 1 0) νab20 −48 −51 −58 −6.7 −9.4
n(1 1 0) νbb

′
20 −63 −68 −79 −23.6 −8.8

n(1 1 0) νde20 −82 −85 −92 −26.3 −9.0
n(1 1 0) νbb

′,e
21 −75 −88 −113 −32.6 −4.8

n(1 1 0) νde,a21 −69 −81 −105 −33.0 −14.0
n(1 1 0) νde,b21 −84 −97 −122 −25.2 −10.5
n(1 1 0) νbb

′,ee′
22 −46 −69 −112 2.7 −34.3

continued on next page
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Table A.3: continued from previous page
ΔGads

31P NMR
facet site (25°C) (120°C) (300°C) 1st 2nd

n(1 1 0) νde,ab22 −51 −74 −117 −25.9 −35.9
n(1 1 0) νee

′,bc
22 −35 −59 −103 −32.6 4.7

n(1 1 0) νbb
′E

30 −20 −34 −59 −16.1 −5.0
n(1 1 0) νdeA30 −43 −56 −83 −27.0 −5.6
n(1 1 0) νbb

′E,e
31 −61 −84 −125 −21.6 −13.8

n(1 1 0) νdeA,b
31 −57 −79 −121 −25.2 −8.6

n(1 1 0) νbb
′B,ee′

32 −35 −67 −127 −18.3 8.3
n(1 1 0) νbb

′E,ee′
32 4 −28 −89 −14.1 12.0

n(1 1 0) νdeA,ab
32 −16 −47 −107 −21.7 −13.7

R(1 1 0) ν00 −84 −79 −69 −6.3 −13.6
R(1 1 0) νc10 −81 −85 −94 −14.0 −15.1
R(1 1 0) νb,c11 −82 −96 −123 −15.8 −25.6
R(1 1 0) νc,d11 −68 −82 −107 −30.0 −21.0
R(1 1 0) νc,e11 −54 −67 −92 −17.4 −21.4
R(1 1 0) νbc20 −72 −86 −112 −35.3 −16.2
R(1 1 0) νeB20 −86 −99 −123 −10.6 −13.5
R(1 1 0) νbc,B21 −9 −31 −72 −27.8 −1.3
R(1 1 0) νbc,E21 19 −3 −44 −19.7 −14.3
R(1 1 0) νbc,F21 −11 −33 −75 −20.5 −6.2
R(1 1 0) νbc,e21 −64 −87 −131 −30.4 −12.2
R(1 1 0) νbc,e21 −54 −77 −122 −35.5 −23.2
R(1 1 0) νeB,b

21 −83 −105 −147 −19.3 −12.5
R(1 1 0) νeB,c

21 −70 −92 −134 −13.7 −10.4
R(1 1 0) νeB,d

21 −78 −100 −142 −17.8 −19.0
R(1 1 0) νeB,bc

22 −84 −116 −175 −27.4 −15.9
R(1 1 0) νbcB30 −66 −87 −127 −17.2 −16.0
R(1 1 0) νbcE30 −58 −79 −119 −20.4 −10.4
R(1 1 0) νbcB,e

31 −85 −117 −176 −19.7 −18.7
R(1 1 0) νbcE,e

31 −38 −70 −130 −22.3 −21.3
R(1 1 0) νdeA,ab

32 55 13 −66 −17.4 −15.6
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A.3. Computational 31P NMR reference

Experimental NMR data is by convention tabulated with respect to a well defined

reference compound. These compounds are usually liquids as NMR spectroscopy is

particularly suitable for molecules in solution. In case of 31P NMR, 85% H3PO4 is

used as reference which defines the origin of the 31P NMR scale by convention. GIPAW

calculations calculate the chemical shift from the electronic structure by estimating

the shielding tensor of the all-electron wave function. Its reference for the chemical

shift is hence the “naked” nucleus, P31+, which is experimentally impractical. Thus, in

order to compare experiment and theory, a similar reference needs to be established.

Computational modelling is much easier for static structures, like isolated molecules (gas

phase) or crystalline solids. Here aluminium phosphate minerals were considered, since

they should have a rather similar bonding as the discussed surface adsorptions. Three

minerals were considered: berlinite, variscite and wavellite. All of them are characterized

by X-ray crystallography and solid state MAS NMR.[58,169–171] Berlinite is the only water-

free aluminium phosphate with a AlPO4 stoichiometry and which has the same structure

as β-quartz (both aluminium and phosphorus are in tetrahedral coordination). Variscite

(AlPO4 ·H2O) is structurally similar to berlinite in that it consists of a three-dimensional

mesh of alternating P and Al units; the Al units are in octahedral coordination due

to hydration. Wavellite is an aluminium phosphate hydroxide, Al3(PO4)2(OH)3 · 5H2O,

with a reduced relative phosphate content. Hence, wavellite might be structurally most

similar to the discussed surface adsorption states. The phosphate sites in all three

minerals are equivalent, producing only a single signal.

It is well known that NMR results are very sensitive to the local geometry. Three

different geometries were tested starting from the experimental X-ray crystal structure.

Since X-ray diffraction cannot resolve hydrogen positions, they were optimized at the

DFT level. In case of Wavellite, free water molecules are in cavities, which were reported
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Table A.4.: Tested 31P NMR references at different levels of theory. The experimental

MAS NMR iso-shifts are given with respect to 85% H3PO4, while the computational

results are given as calculated. The zero-shifts are the difference between experimental and

computational value, i. e. the extrapolated values for 85% H3PO4. A: GIPAW calculation

at PBE-D3 level on the experimental X-ray structure; B: Full optimization and GIPAW

calculation at PBE-D3 level; C: Full optimization and GIPAW calculation at TPSS-D3(BJ)

level; D: Full optimization at TPSS-D3(BJ) level, GIPAW calculation at PBE-D3 level.

31P iso-shift, δ zero-shift to 85% H3PO4, δ

Berlinite Variscite Wavellite Berlinite Variscite Wavellite average

exp. −25.3 −19.2 −11.2

A −331.4 −324.7 −318.6 −306.1 −305.5 −307.4 −306.4

B −322.7 −313.7 −305.3 −297.4 −294.5 −294.1 −295.3

C −325.1 −318.6 −314.1 −299.8 −299.4 −302.9 −300.7

D −324.3 −318.7 −310.4 −299.0 −299.5 −299.2 −299.2

as 1/2 occupancies. These were also fully relaxed at the DFT level. The other two

geometry tests were full optimizations at DFT level, one with the standard functional of

this work, PBE-D3, and another test of TPSS-D3(BJ), a more accurate but also more

costly method. Tab. A.4 summarizes the results for the GIPAW calculations. A limitation

of the VASP code is the lack of pseudopotentials for any functional that is not PBE. This

problem might have unpredictable effects when using a different functional to optimize

the pseudized orbitals, since we then mix the description of core-electrons (described

by PBE) and valence electrons (described by TPSS). Grimme’s dispersion corrections

were used in all tests.[89] Hence for the test with TPSS both cases are presented, one

that uses TPSS-D3(BJ) only for geometry optimization, and another that is based on

the electronic structure of TPSS (last two rows in tab. A.4).

Overall, the different structures lead to significant iso-shift variations, up to 13.3 ppm

for wavellite and 11.1 on average. While the clear choice is to use the same functional that
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is also used throughout the work (PBE-D3) the structural effects provide information

about the overall accuracy that can be expected. The deviations within the zero-shift

should be negligible if any of the three minerals provided an accurate reference system.

For PBE-D3 the deviations from berlinite to variscite and wavellite is notable with 3 ppm.

PBE results based on the TPSS-D3(BJ) geometry seems to be most accurate, however,

when using the electronic structure of TPSS, the zero-shift prediction of wavellite changes

by 3.7 ppm compared to the PBE electronic structure on the TPSS geometry. Tab. A.4

summarizes the results for the GIPAW calculations. It is likely that zero-shift of the

TPSS-D3(BJ) structure, that is 299.2 ppm, is the most accurate estimate produced

here. However, since the surface structures are computed at PBE-D3 level, they should

follow the same trend and be slightly shifted with respect to a more accurate result.

Consequently, all GIPAW results of the adsorbed phosphate species were shifted by

295.3 ppm. Tab. A.4 summarizes the results for the GIPAW calculations.

A.4. Metadynamics: complex collective variables

Basic collective variables (CVs) are scalar values, like the coordination discussed in

section 2.2.4, p. 46. For complex reactions like the condensation of two orthophosphates

(cf. section 5.1, p. 93) requires as a bare minimum a CV which can produce the bridging

P–O–P bond in H4P2O7 and a different CV that follows the H2O abstraction. Since it

is not known which orthophosphate will provide the oxygen atom in the P–O–P bridge

and which abstracts H2O, one ideally uses CVs that do not decide how to break this

symmetry. Similar to the coordinations definition as sum in eq. 2.7, bridging atoms

within a group k connecting two structures represented by the atoms i and j can be

counted with:

b =
∑
i

∑
j

∑
k

sik · sjk (A.15)
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Here, sik and sjk are switching functions as defined in eq. 2.8. The product of both

elements is only 1 if both switching functions are describing a bond, i. e. atom k connects

i and j, 0 otherwise.

As an alternative to counting the number of bonds, one can count the number atoms

binding to another group of atoms. For the orthophosphate condensation, 2H3PO4 and

H4P2O7 both produce eight P–O bonds, thus the simple coordination as defined in

section 2.2.4) does not work. However, the number of oxygen atoms differs from 8 to

7. These numbers are accessible in PLUMED[114–116] with the keyword COORDINATION-

NUMBER, introduced in ref. [172]. Instead of summing the whole coordination within one

or between two groups of atoms, as described in section 2.2.4, the coordination number

cni of each atom i in one group is calculated and accessible for further operation:

cni =
∑
j

s(rij) (A.16)

Any scalar quantities can be derived from these values, like e. g. the mean value or the

quantity of cni smaller than a particular value, or within a range. In order to reach a

smooth transition from 0 to 1 bond, a different switching function (based on a gaussian

curve) was used:

sg(x) =


exp

(
− (x−d0)2

2x2
0

)
, if x > d0

1 , otherwise
(A.17)

The smoothness is set with x0 as gaussian width. This switching function vanishes rapidly

with the difference x−d0, whereas a switching function such as in eq. 2.8 produces a “tail

end” which slowly converges with 0 (see also fig. 2.1, p. 46). Such a tail end is undesirable

as we want to use the result from a switching function in cni and this does not permit

convergence with 0 or 1 as a result, since if cni = 1, then s(cni) > 0.

163



A. Appendix

For counting phosphorus binding oxygen atoms n, cni of 1 or larger were counted:

n =
∑
i

1− sg(cni) , x0 = 0.2 , d0 = 0.4 (A.18)

Here, the quantity of cni of one or more was used in order to count the oxygen atoms

that bind to phosphorus, irrespective of the number of P–O bonds. The parameters

x0 and d0 were chosen such that sg(1) ≈ 0. To carry out a WTmetaD calculation for

exploration of the orthophosphate condensation, CVs based on eq. A.15 and eq. A.18

were used. These variables are defined independently and satisfy the indistinguishability

of the two phosphate centers.
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Theoretical Studies on the Adsorption of Phosphoric Acid on γ-Al2O3 at the Solid-Liquid Interface

Abstract

Phosphate adsorption on oxides is of significant interest in heterogeneous catalysis. The

CoMoS/γ-Al2O3 hydrodesulfuration catalyst which is used at the scale of petroleum

refinement, uses phosphate additives for preparation. Its preparation follows the

stages of wet incipient impregnation, drying and activation by thermal treatment.

Understanding the chemistry involved in these processes requires models of the oxide-

water and oxide-air interfaces at different temperatures, which are also of interest in

different fields. Oxide surfaces like γ-Al2O3 are by themselves very complex, which

renders the characterization of surface phosphate species even more intricate.

Yet by today, improved NMR spectroscopic methods complemented with proven

computational models allowed us now to mold an atomistic model of phosphate

speciation. The present work starts with the creation of a systematic database by

exploring more than 1000 geometries at different adsorption modes, adsorption sites,

degrees of coverage and an optimized hydrogen bond environment for two polyphosphate

species. For the most stable results magnetic shielding was calculated at DFT level.

Good agreement was achieved with 31P NMR experiments at drying conditions. Liquid

conditions were simulated using metadynamics and showed a different set of most

stable species. The explored reaction energies and kinetic barriers consistently show

that elevated temperatures are needed to form the experimentally observed species. A
31P NMR prediction model based on machine learning of chemical shifts from the local

structure was developed to access chemical shifts in dynamic simulations.


