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25

26 ABSTRACT

27 Identifying dosage sensitive genes is a key to understand the mechanisms 

28 underlying intellectual disability in Down syndrome (DS). The Dp(17Abcg1-Cbs)1Yah DS 

29 mouse model (Dp1Yah) show cognitive phenotype and needs to be investigated to identify 

30 the main genetic driver. Here, we report that, in the Dp1Yah mice, 3 copies of the 

31 Cystathionine-beta-synthase gene (Cbs) are necessary to observe a deficit in the novel 

32 object recognition (NOR) paradigm. Moreover, the overexpression of Cbs alone is 

33 sufficient to induce NOR deficit. Accordingly targeting the overexpression of human CBS, 

34 specifically in Camk2a-expressing neurons, leads to impaired objects discrimination. 

35 Altogether this shows that Cbs overdosage is involved in DS learning and memory 

36 phenotypes. In order to go further, we identified compounds that interfere with the 

37 phenotypical consequence of CBS overdosage in yeast. Pharmacological intervention in 
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38 the Tg(CBS) with one selected compound restored memory in the novel object 

39 recognition. In addition, using a genetic approach, we demonstrated an epistatic 

40 interaction between Cbs and Dyrk1a, another human chromosome 21 gene encoding the 

41 dual-specificity tyrosine phosphorylation-regulated kinase 1a and an already known target 

42 for DS therapeutic intervention. Further analysis using proteomic approaches highlighted 

43 several pathways, including synaptic transmission, cell projection morphogenesis, and 

44 actin cytoskeleton, that are affected by DYRK1A and CBS overexpression. Overall we 

45 demonstrated that CBS overdosage underpins the DS-related recognition memory deficit 

46 and that both CBS and DYRK1A interact to control accurate memory processes in DS. In 

47 addition, our study establishes CBS as an intervention point for treating intellectual 

48 deficiencies linked to DS.

49

50 SIGNIFICANT STATEMENT

51 Here, we investigated a region homologous to Hsa21 and located on mouse 

52 chromosome 17. We demonstrated using three independent genetic approaches that the 

53 overdosage of the Cystathionine-beta-synthase gene (Cbs) gene, encoded in the 

54 segment, is necessary and sufficient to induce deficit in novel object recognition (NR).

55 In addition, we identified compounds that interfere with the phenotypical 

56 consequence of CBS overdosage in yeast and in mouse transgenic lines. Then we 

57 analyzed the relation between Cbs overdosage and the consequence of DYRK1a 

58 overexpression, a main driver of another region homologous to Hsa21 and we 
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59 demonstrated that an epistatic interaction exist between Cbs and Dyrk1a affecting 

60 different pathways, including synaptic transmission, cell projection morphogenesis, and 

61 actin cytoskeleton. 

62

63 INTRODUCTION

64 Down Syndrome (DS) is the most common aneuploidy observed in human. The 

65 presence of an extra copy of the Human chromosome 21 (Hsa21; Hsa for Homo sapiens) 

66 is associated with intellectual disabilities and several morphological and physiological 

67 features. Phenotypic mapping in human with partial duplication highlighted the 

68 contribution of several regions of the Hsa21 in DS features (1, 2). Additional information 

69 was collected from trisomic and monosomic mouse models to detect genomic regions 

70 sensitive to dosage and able to induce impairments in behaviour and other DS related 

71 traits (3-11). Most of the efforts focused on the region homologous to the Hsa21 located 

72 on mouse chromosome 16 (Mmu16; Mmu for Mus Musculus), highlighting the contribution 

73 of the Amyloid precursor protein (App) (12), of the Glutamate receptor, ionotropic, kainate 

74 1 (Grik1) or of the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) 

75 (13, 14) overdosage to DS cognitive defects. At present, DYRK1A is a main target for 

76 therapeutic intervention with a few compounds inhibiting the protein kinase activity, 

77 improving mainly cognition in DS mouse models (15-20). However, models carrying 

78 trisomy of the region of Mmu17 homologous with the Hsa21, also showed learning and 

79 memory defects (21, 22) and appeared to have a major impact on DS phenotypes in 
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80 mouse models (23). The Dp(17Abcg1-Cbs)1Yah (called here Dp1Yah) mice are defective 

81 in the novel object recognition test and show a long-lasting in vivo long-term potentiation 

82 (LTP) in the hippocampus while the corresponding monosomy, Ms2Yah, have defects in 

83 social discrimination with increased in vivo LTP (24). Interestingly, as observed in the 

84 rotarod test, the locomotor phenotype of the Tc1 transchromosomic model carrying an 

85 almost complete Hsa21 is rescued when the dosage of the Abcg1-Cbs region is reduced 

86 in Tc1/Ms2Yah mice (25). Similarly the trisomy of a larger overlapping segment on Mmu17 

87 from Abcg1 to Rrp1b induces an increased LTP as compared to control in the Dp(17)Yey 

88 model (22) and was shown to genetically interact with the trisomy of the Lipi-Zbtb21 

89 interval. More specifically the trisomy of both this Abcg1-Rrp1b region and the Cbr1-

90 Fam3b region was detrimental for learning and memory in the Morris water maze and for 

91 LTP in DS mouse models (23).

92 Among the 11 trisomic genes in the Dp1Yah model, the cystathionine-beta-

93 synthase gene, Cbs, encodes a pyridoxal phosphate-dependent enzyme converting 

94 homocysteine to cystathionine. This first step of the transulfuration pathway removes 

95 homocysteine from the methionine cycle thereby also affecting the folate and the 

96 methylation pathways, while contributing to the cysteine cycle. Of note, in human, 

97 homozygous loss-of-function mutations in CBS are associated with homocystinuria 

98 (OMIN236200) a metabolic condition with intellectual disability. CBS is also the major 

99 enzyme catalysing the production of H2S from L-cysteine (26) or from the condensation 

100 of homocysteine with cysteine (27). H2S is now considered a major gaseotransmitter in 

101 the brain (28) and interferes with synaptic transmission. Considering the upregulated 
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102 expression of CBS in several brain regions of the Dp1Yah model and its impact on 

103 intellectual disability, we decided to focus on Cbs and decipher the role of CBS in DS 

104 cognitive phenotypes. To this end, we generated and characterized constitutive and 

105 conditional changes in Cbs dosage in the nervous system of various mouse models. In 

106 addition we selected pharmacological drugs able to counteract the phenotypical 

107 consequence of CBS overexpression, in particular behavioural impairments, and finally 

108 further analysed molecular changes induced by Cbs dosage changes to understand the 

109 mechanisms perturbed in DS models.

110
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111 MATERIALS AND METHODS

112 Ethics Statement, mouse lines and genotyping

113 Animal experiments were approved by the Com’Eth N°17 (project file: 2012-069) 

114 and accredited by the French Ministry for Superior Education and Research and in 

115 accordance with the Directive of the European Parliament: 2010/63/EU, revising/replacing 

116 Directive 86/609/EEC and with French Law (Decret n° 2013-118 01 and its supporting 

117 annexes entered into legislation 01 February 2013) relative to the protection of animals 

118 used in scientific experimentation. YH was granted the accreditation 67-369 to perform 

119 the reported experiments in the animal facility (Agreement C67-218-40). For all these 

120 tests, mice were kept in Specific Pathogen free conditions with free access to food and 

121 water. The light cycle was controlled as 12 h light and 12 h dark (lights on at 7AM). All the 

122 behavioural tests were done between 9:00 AM and 4:00 PM.

123 Several mouse lines were used to decipher the influence of Cbs: the trisomic 

124 mouse model, Dp(17Abcg1-Cbs)1Yah, named here Dp1Yah, carries a segmental 

125 duplication of the Abcg1-Cbs region of the Mmu17 (21) kept on the C57BL/6J; the 

126 inactivated allele of C57BL/6J.Cbstm1Unc (29); and the PAC transgenic line 

127 Tg(CBS)11181Eri (named here Tg(CBS)), originally identified as 60.4P102D1 (30) and 

128 backcrossed on C57BL/6J for more than 7 generations. We designed, generated and 

129 selected the transgenic mouse line Tg(Prp-gfp-CBS)95-157ICS, named here Tg(Prp-gfp-

130 CBS), to overexpress the human CBS cDNA from the murine prion promoter region 

131 (containing a 8477 bp region upstream of the ATG of the murine prion gene, ie 6170 bp 
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132 promoter region, exon1, intron 1 and beginning of exon 2)  after the excision of a loxP-

133 gfp-loxP interrupting cassette (Figure 3A) on C57BL/6J background. We used the 

134 transgenic Tg(Camk2a-cre)4Gsc mouse line (31), named here Tg(Camk2a-cre), and bred 

135 further on C57BL/6J, as a glutamatergic neuron-specific Cre driver. The Dyrk1a BAC 

136 transgenic mouse line,  named here Tg(Dyrk1a) was generated previously in our lab (32). 

137 All lines were generated and bred on the C57BL/6J genetic. The genotype identification 

138 was done from genomic DNA isolated from tail biopsies with specific PCR reaction 

139 (Supplementary table 1).

140 Behavioural analysis

141 The sample size was estimated according to our similar experiments done 

142 previously while investigating behaviour in DS mouse models (5, 25, 33). To investigate 

143 the role of Cbs in the Dp1Yah cognitive phenotypes, we generated 2 independent cohorts 

144 (cohort 1 (C1): wild type (wt) littermates n=11; Cbstm1Unc/+, n=8; Dp1Yah, n=8; 

145 Dp1Yah/Cbstm1Unc, n=11; and cohort 2 (C2): wt littermates n=18; Cbstm1Unc/+, n=15; 

146 Dp1Yah, n=15; Dp1Yah/Cbstm1Unc, n=10). All cohorts were evaluated in the open field (C1: 

147 33 weeks; C2: 14-16 weeks), Novel Object Recognition (NOR) (C1: 33 weeks; C2:14-16 

148 weeks) in adult mice. In addition we performed the Y maze (C2: 15-19 weeks) and the 

149 rotarod tests (C2: 25-28 weeks of age). 

150 Wild-type littermates (n=13) and Tg(CBS)/0 (n=17) hemizygotes were tested for 

151 circadian actimetry (14 weeks), Y Maze (16 weeks), open field (17 weeks) and NOR (17 

152 weeks). We added an additional group of wt (n=9) and Tg(CBS)/0 (n=10) to validate the 
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153 results from the NOR; animals were tested at the same age (17 weeks). A cohort with 4 

154 genotypes (wt (n=13), Tg(Camk2-Cre)/0 (n=11), Tg(Prp-gfp-CBS)/0 (n=12), and 

155 Tg(Camk2-Cre)/0;Tg(Prp-gfp-CBS)/0 (n=14)) was evaluated through the same 

156 behavioural tests with rotarod (14 weeks), Y maze (16 weeks), open field (19-20 weeks) 

157 and NOR (19-20 weeks). 14 wt, 15 Tg(Dyrk1a), 13 Dp1Yah and 13 Dp1Yah/Tg(Dyrk1a) 

158 mutant mice were evaluated for open field exploration (11-12 weeks), novel object 

159 recognition (11-12 weeks) and Y maze (13 weeks). A second independent cohort with 11 

160 wt, 10 Tg(Dyrk1a), 14 Dp1Yah and 10 Dp1Yah/Tg(Dyrk1a) was used for Morris water 

161 maze learning (14-16 weeks). The behavioural protocols for open-field, Y maze and novel 

162 object recognition, rotarod, water maze were are detailed in the supplementary 

163 information.

164 Drug screening in yeast 

165 All plasmids were generated using standard procedures. Restriction enzymes and 

166 Taq polymerase were obtained from New England Biolabs (Evry, France). T4 DNA ligase 

167 was purchased from Promega and purified synthetic oligonucleotides from Eurogentec. 

168 Routine plasmid maintenance was carried out in DH5α and TOP10 bacteria strains. Yeast 

169 cystathionine b-synthase (Cys4) coding sequence was amplified from the genomic DNA 

170 of the W303 WT strain (see genotype below) using Bam-Cys4-F: 

171 CGGGATCCCGATGACTAAATCTGAGCAGCAAG and Xho-Cys4-R: 

172 GCCTCGAGTCTTATGCTAAGTAGCTCAGTAAATCC (that introduced BamHI and Xho1 

173 restriction sites) and subcloned in the high copy number 2 µ-derived vectors p424-GPD 

174 and p426-GPD, each time under the control of the strong constitutive GDP promoter (34). 
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175 Transformation of yeast cells was performed using a standard lithium acetate method 

176 (35). 

177 The yeast strain used in this study is derived from the W303 WT strain: MATa, leu2-

178 3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15. The media used for yeast growth were: 

179 YPD [1% (w/v) yeast extract, 2% (w/v) peptone, 2% (w/v) glucose, for untransformed cells 

180 and Synthetic Dextrose Minimal medium (SD medium) (composed of 0.67% (w/v) Yeast 

181 Nitrogen Base w/o amino acids and complemented with 0.1% (w/v) casamino acid, 40 

182 mg/l adenine and 2% (v/v) glucose for Cys4-transformed cells. Solid media contained 2% 

183 (w/v) agar. 

184 For the drug screening, yeast cells were grown in uracil- and tryptophan-free 

185 minimal liquid medium (SD-Ura/Trp) in overnight liquid cultures at 29 °C. The following 

186 day, cells were diluted to OD600~0.2 in in fresh medium and grown for 4 hours to reach 

187 exponential phase. Then three hundred and fifty microliters of exponentially growing yeast 

188 cells overexpressing Cys4, adjusted to an OD600 of 0.5, were spread homogeneously with 

189 sterile glass beads (a mix of ∼1.5 and 3 mm diameter) on a square Petri dish (12 cm × 

190 12cm) containing uracil-, tryptophan- and methionine-free minimal agar-based solid 

191 medium (SD-Ura/Trp/Met) containing 2% (w/v) serine. Sterile filters (Thermo Fisher 

192 similar to those used for antibiograms) were placed on the agar surface, and 2 μl of 

193 individual compound from the various chemical libraries were applied to each filter. In 

194 addition, for each Petri plate, DMSO, the vehicle, was added as a negative control on the 

195 top left filter, and 2 nmol of methionine as a positive control on the bottom right filter. Plates 

196 were then incubated at 33 °C for 3 days and scanned using a Snap Scan1212 (Agfa).

Page 10 of 59Human Molecular Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

11

197 Two repurposed drug libraries were screened: the Prestwick Chemical Library® 

198 (1200 drugs) and the BIOMOL’s FDA Approved Drug Library (Enzo Life Sciences, 640 

199 drugs). In addition, the Prestwick Phytochemical library (691 green compounds, most of 

200 them being in use in Human) was also screened. The compounds were supplied in 96-

201 well plates as 10 mM (for the two Prestwick® libraries) and 2 mg/ml (BIOLMOL®) DMSO 

202 solutions. Disulfiram was purchased from Sigma-Aldrich and resuspended in DMSO. 

203

204 Mouse model treatment with Disulfiram (DSF)

205 A pre-clinical protocol was designed to target cognitive defects correlated to CBS 

206 overexpression in Tg(CBS) mice brain (figure 4D). The selected molecule was Disulfiram 

207 (DSF), a potent inhibitor of mitochondrial aldehyde dehydrogenase (ALDH) used for the 

208 treatment of chronic alcoholism. We based our experiment on the work of Kim et al. (36) 

209 in which the DSF effect on ethanol sensitization in mice was demonstrated. 

210 Behavioural studies were conducted in 12-16 week old animals; to do so, we 

211 generated 3 independent cohorts, in which we tested 4 conditions taking into account the 

212 dose of DSF (or vehicle alone) and the genotype. For the cohorts (C1 to C3), we produced 

213 respectively 5,7,3 (n=15 in total) wild type (wt) treated with vehicle, 5,3,6 (n=14 in total) 

214 transgenic for human CBS (Tg(CBS)) treated with vehicle, 7,5,3 (n=15 in total) wt treated 

215 with 10mg/kg/day of DSF, 6,6,8 (n=20 in total)  Tg(CBS) treated with 10mg/kg/day of DSF 

216 based on the dose previously administrated in the reference publication (36). The local 

217 ethics committee, Com’Eth (n°17), approved the mouse experimental procedures, under 
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218 the accreditation number APAFIS#1564-2015083114276031 with YH as the principal 

219 investigator in this study. All assessments were scored blind to genotype and animals 

220 were randomly distributed to experimental groups and treatment as recommended by the 

221 ARRIVE guidelines (37, 38). DSF was prepared at 10 mg/mL in DMSO, aliquoted and 

222 stored below -20°C. The final formulation was prepared just prior to use as a 1 mg/mL 

223 solution diluted in Cremophor EL Castor oil (BASF)/H2O ready for injection (15/75), to 

224 reach a final DMSO/Cremophor/H2O 10/15/75 (v/v/v) mix. Treated animals received a 

225 daily dose (10 days) of this formulation by intra-peritoneal injection of 10 mg/kg/day. Non-

226 treated animals received the same formulation without DSF. On day 10 of treatment, the 

227 animal were habituated 30 min into the arena. On day 11, animals were tested in NOR 

228 paradigm to assess recognition memory after 1hour retention as described in the Open 

229 field and Object recognition task protocols (Supplementary information).

230 Quantitative proteomic analysis

231 We collected 5 hippocampi of littermates with the 4 genotypes: wt, Dp1Yah, 

232 Tg(Dyrk1a)/0 and [Dp1Yah,Tg(Dyrk1a)/0] after the behavioural evaluation at the age of 

233 25-27 weeks. Samples were reduced, alkylated and digested with LysC and trypsin at 

234 37°C overnight. Five sets of samples with one sample from each genotypes (4 in total) 

235 were labelled with Thermo Scientific Tandem Mass isobaric tag (TMT), pooled and then 

236 analysed using an Ultimate 3000 nano-RSLC (Thermo Scientific, San Jose California) 

237 coupled in line with an Orbitrap ELITE (Thermo Scientific, San Jose California). An 

238 additional set was done comparing all the wt controls together. Briefly, peptides were 

239 separated on a C18 nano-column with a linear gradient of acetonitrile and analysed in a 
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240 Top 15 HCD (Higher collision dissociation) data-dependent mass spectrometry. Data 

241 were processed by database searching using SequestHT (Thermo Fisher Scientific) with 

242 Proteome Discoverer 1.4 software (Thermo Fisher Scientific) against a mouse Swissprot 

243 database. Precursor and fragment mass tolerance were set at 7 ppm and 20 ppm 

244 respectively. Trypsin was set as enzyme, and up to 2 missed cleavages were allowed. 

245 Oxidation (M) and TMT labelled peptides in primary amino groups (+229.163 Da K and 

246 N-ter) were set as variable modification, and Carbamidomethylation (C) as fixed 

247 modification. We then compared our 5 wt samples to determine the sample closer to 

248 average score from the group, and defined it as the reference sample. All the protein 

249 quantification was done based on the reference wt sample. In total, we detected 1655 

250 proteins filtered with false discovery rate (FDR) at 5% with a minimum of 2 peptides for a 

251 given protein detected per genotypes. We calculated the mean of the fold change for each 

252 proteins from all the samples (Dp1Yah, Tg(Dyrk1a) and Dp1Yah/Tg(Dyrk1a) compared to 

253 control. From the preliminary data, we selected 208 proteins with variability level below 

254 40% and a fold change below 0.8 or above 1.2. 

255 Western Blot analysis 

256 Ten microgram of total proteins from cortex extracts were electrophoretically 

257 separated in SDS–polyacrylamide gels (10%) and then transferred to nitrocellulose 

258 membrane (120V) during 1h30. Non-specific binding sites were blocked with 5% skim milk 

259 powder in Tween Tris buffer saline (T.T.B.S.) 1 h at room temperature. Immunoblotting 

260 was carried out with primary antibody (Supplementary table 2) incubated overnight at 4°C. 

261 The next day, we started with 3 washing baths with T.T.B.S, followed by secondary 
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262 conjugated with horseradish peroxidase. The immunoreactions were visualized by ECL 

263 chemiluminescence system (Clarity™ western ECL substrate – Bio-Rad); 

264 Epifluorescence was captured with Amersham™ Imager 600. Bands were detected at 18, 

265 25 and 75 kDa respectively for SNCA, SNAP25 and FUS; Signals were quantified with 

266 ImageJ.
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267 RESULTS 

268 Three copies of Cbs are necessary to induce cognitive impairments in the Dp1Yah 

269 mice.

270 In order to challenge the hypothesis that three copies of Cbs are necessary to 

271 induce behavioural deficits in the Dp1Yah mice, we combined the Dp1Yah mice with the 

272 Cbstm1Unc/+ knock-out model (29) and we compared the Dp1Yah with Dp1Yah/Cbstm1Unc 

273 (in which only two copy of Cbs are functional), wild type (wt) and Cbstm1Unc/+ heterozygote 

274 controls. In the open field test, most of the genotypes displayed similar exploratory 

275 behaviour, except for the Dp1Yah/Cbs mice that travelled more distance in the open field 

276 arena with a higher speed (Figure 1A left panel; On way ANOVA on distance, post hoc 

277 Tukey Test: Dp1Yah vs Dp1Yah/Cbs+/tm1Unc p=0.002; Figure 1A right panel; On way 

278 ANOVA on speed, post hoc Tukey Test: wt vs Dp1Yah/Cbs+/tm1Unc p=0.004; Cbs+/tm1Unc vs 

279 Dp1Yah/Cbs+/tm1Unc p=0.05; Dp1Yah vs Dp1Yah/Cbs+/tm1Unc p=0.007). Similarly when the 

280 mice performed the Y maze, we confirmed the increased activity with a higher number of 

281 arm entries for the Dp1Yah/Cbstm1Unc compared to the other genotypes (Figure 1B; 

282 Kruskal-Wallis One way ANOVA on Ranks – genotypes, post hoc Dunn’s method: wt vs 

283 Dp1Yah/Cbs+/tm1Unc p<0.05; Dp1Yah vs Dp1Yah/Cbs+/tm1Unc p<0.05) but no impact on 

284 spontaneous alternation (One way ANOVA, F(3,87)=2.486 p=0.066). To determine if 

285 motor activity was altered in the Dp1Yah/Cbstm1Unc model, we used the rotarod test. After 

286 the first day of training we did not find any change in the maximum speed reached before 

287 falling for all tested genotypes (Figure 1C; Speed: repeated measures ANOVA variable « 

288 genotype » and « day », F(3;110)=1.816 p=0.155). Nevertheless,  we observed a 
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289 decrease in the locomotor learning in the Dp1Yah mice comparing to the next following 

290 days of training which was rescued in the Dp1Yah/Cbstm1Unc mutant (Figure 1C; Speed : 

291 repeated measures 2 way ANOVA variable « genotype » and « day », F(2;165)=17.171 

292 p<0.001 post hoc Tuckey method wt «day1 vs day3» p=0.002; Cbstm1Unc/+ «day1 vs day3» 

293 p<0,001; Dp1Yah «day1 vs day3» p=0.238; Dp1Yah/Cbstm1Unc «day1 vs day3» p=0.017). 

294 During the test phase, we found that the Dp1Yah individuals showed a weaker 

295 performance compared to Cbstm1Unc/+ and Dp1Yah/Cbstm1Unc (ANOVA, variable « speed » 

296 and « genotype » F(3;385)=5.544 p<0.001 post hoc Tuckey method; «wt vs Dp1Yah» 

297 p=0.099; «Cbstm1Unc/+ vs Dp1Yah» p=0.001; «Dp1Yah vs Dp1Yah/Cbstm1Unc» p=0.01).

298 Then we tested the object memory. No difference was observed during the 

299 exploration of the familiar object in the presentation phase of the test (Figure 1D top left 

300 panel). However, during the discrimination phase, after 1h of retention, the Dp1Yah 

301 mutant mice were not able to differentiate the familiar versus the novel object whereas the 

302 wt, Cbstm1Unc/+ and the Dp1Yah/Cbstm1Unc spent significantly more time on the new object 

303 compared to the familiar one (Figure 1D, left bottom panel; two ways ANOVA, variables 

304 “genotype” and “objects”: F(3;56)= 2.86 with p=0.045; post hoc Tuckey method wt “fam 

305 vs new” q= 4.885 and p= 0.001; Cbstm1Unc/+ q= 3.913 and p= 0.008; Dp1Yah, q= 0,503 

306 and p= 0.724; Dp1Yah/Cbstm1Unc/+ q= 4.715 and p= 0.002). Accordingly, the recognition 

307 index showed that the restoration of two functional copies of Cbs in the Dp1Yah mice 

308 rescued memory performance in object recognition (Figure 1D right panel; One sample t-

309 test: wt p=0.05; Cbstm1Unc/+ p= 0.01; Dp1Yah p=0.82; Dp1Yah/Cbstm1Unc/+ p=0.05).  
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310 Overall this set of experiments demonstrated that 3 copies of Cbs were necessary 

311 for inducing the Dp1Yah phenotypes in novel object recognition. In addition rescuing Cbs 

312 dosage induced a slight hyperactive phenotype during the exploration of a new 

313 environment and restored performance in the rotarod activity. Interestingly, returning back 

314 to wt level of expression of Cbs in the Abcg1-Cbs region enables another trisomic gene 

315 from this region to impact on the exploratory behaviour of the mouse 

316 The sole overexpression of a human CBS transgene impacts the object recognition 

317 and the locomotor activity. 

318 We used the Tg(CBS), a PAC transgenic line encompassing a 60kb fragment with 

319 the human CBS locus (30) to analyse the impact of the sole increase of Cbs dosage on 

320 behaviour and cognition. As shown in figure 2A, no difference in locomotor activity was 

321 observed during the exploration of a new environment in the open field test between wt 

322 and transgenic littermates (Student t-test distance: wt vs Tg(CBS)/0 p=0.925; speed wt vs 

323 Tg(CBS)/0 p=0.925). However we found higher circadian activity for isolated individuals 

324 (Figure 2C; student t-test wt vs Tg(CBS)  p<0.001) which results from an increased 

325 locomotor activity during the habituation and the dark phase (Figure 2B). In the Y maze 

326 (Figures 2D-E), no difference was detected for the number of arm entries and the 

327 spontaneous alternation. In the novel object recognition test, (Figures 2F-H) the 

328 Tg(CBS)/0 animals spent more time sniffing the two identical objects during the 

329 presentation phase than their control littermates (Figure 2F; Student t-test wt vs 

330 Tg(CBS)/0 p=0.05) but were impaired in object recognition as shown by the absence of 

331 discrimination between novel and familiar objects for the transgenic mice (Figure 2G: 
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332 Student paired t-test wt “Fo vs No” p= 0.008; Tg(CBS) “Fo vs No” p=0.174) resulting in a 

333 recognition index (time on the new object / total time) not significantly different from the 

334 50% chance level, (Figure 2H: one sample t test, significant difference from 50%, wt p= 

335 0.008; Tg(CBS)/0 p= 0.174). Consequently we demonstrated that CBS overexpression is 

336 sufficient to induce deficit in novel object recognition memory and decreased locomotor 

337 activity during dark phase while having no effect during the light phase. 

338 Cbs overexpression in hippocampal and cortical neurons induces behavioural 

339 defects similar to Dp1Yah 

340 We checked if we could induce the cognitive deficits observed in DS mouse models 

341 by overexpressing Cbs mostly in the hippocampal and cortical neurons involved in 

342 learning and memory. Hence we engineered the Tg(Prp-gfp-CBS) mouse strain in which 

343 the human CBS cDNA can be expressed from the Prion promoter after the excision of the 

344 gfp cassette flanked by loxP sites (Figure 3A) and selected one Tg(Prp-gfp-CBS) line with 

345 a pattern of expression in the anterior part of the adult brain (Figure 3B). We chose the 

346 Tg(Camk2a-cre) (31), to direct the cre expression in the cortical and hippocampal 

347 glutamatergic neurons and we verified the expression of the human CBS in different brain 

348 regions of the double transgenic (Tg(Prp-gfp-CBS)/0;Tg(Camk2a-cre)/0). As expected we 

349 found expression levels comparable to the endogenous murine Cbs gene in cerebellum 

350 while human CBS was overexpressed in the hippocampus and the cortex (Figure 3C). 

351 Littermate animals carrying wt, the two single transgenic constructs and the two 

352 transgenes were produced and tested for object recognition. During the test, the control 

353 groups, namely wt, Tg(Prp-gfp-CBS)/0 and Tg(Camk2a-cre)/0, spent more time on the 
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354 new object (No) than the familiar one (Fo) as expected, while the double transgenic 

355 individuals were not able to differentiate the new object from the familiar one as shown by 

356 the recognition index or the percentage of exploration time (Figure 3D; Recognition index: 

357 One sample t-test: wt p=0.03; Tg(Camk2a-cre)/0 p=0.03; Tg(Prp-gfp-CBS)/0 p=0.001; 

358 (Tg(Prp-gfp-CBS)/0; Tg(Camk2a-cre)/0) p=0.90; exploration time; two ways ANOVA, 

359 variables “genotype” and “objects”: F(3; 76)= 8.59 with p<0.001; post hoc Tuckey method 

360 wt «No vs Fo» p<0,001; Tg(Camk2a-cre)/0 «No vs Fo» p=0.001 and Tg(Prp-gfp-CBS)/0 

361 «No vs Fo» p<0.001; (Tg(Prp-gfp-CBS)/0; Tg(Camk2a-cre)/0)) «No vs Fo» p=0,861).  

362 Measurements of the travelled distance in the open field and number of visited 

363 arms in the Y maze revealed hyperactivity of the Tg(Camk2cre)/0 carrier groups (Figures 

364 3E-F; Openfield: One way ANOVA F(3,49)=4.80 p=0.005; post hoc Holm-Sidak «wt vs 

365 Tg(Camk2-Cre)/0» unadjusted p=0.002; «Tg(Prp-gfp-CBS)/0 vs Tg(Camk2-Cre)/0» 

366 p=0.003) - Y maze: One way ANOVA F(3,46)=6.04 p=0.001; post hoc Holm-Sidak «wt vs 

367 Tg(Camk2-Cre)/0» p=0.04; «Tg(Prp-gfp-CBS)/0 vs Tg(Camk2-Cre)/0» p=0.009; Tg(Prp-

368 gfp-CBS)/0 vs Tg(Prp-gfp-CBS)/0;Tg(Camk2a-cre)/0p=0.04). Like for the Dp1Yah and 

369 Tg(CBS) animals, we did not found any alteration in the spontaneous alternation in the Y 

370 maze test (One way ANOVA: F(3,43)=0.691 p=0.563). All the mice, whatever their 

371 genotype, performed equally well during the training session of the rotarod (Figure 3G) 

372 (training: repeated measures ANOVA, variables « genotype » and « day », F(3;90)=2.011 

373 p=0.126; test: repeated measures ANOVA, variables « genotype » and « day », 

374 F(2;90)=44.783 p<0.001) as well as during the test session with increasing speed 

375 (Repeated measures ANOVA, variables « genotype » and « speed », F(18;322)=0.631 
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376 p=0.875). Thus, as expected from the role of the cerebellum in locomotor coordination, 

377 the overdose of CBS restricted to cortical and hippocampal neurons did not interfere with 

378 the locomotor activity. 

379 Hence, overexpression of CBS is necessary and sufficient to induce object memory 

380 defect in a 1h retention test with limited impact on other phenotypes. As such, CBS is a 

381 new gene whose overdosage alters cognition in DS mouse models and as a consequence 

382 is likely to contribute to DS phenotypes.

383 Identification of drugs that suppress the effects of Cys4/CBS overexpression both 

384 in yeast and mouse

385 A few studies have reported the identification of CBS inhibitors (39-44) but most of 

386 them were based on in vitro assays using a recombinant CBS enzyme as a drug target 

387 and led to the isolation of inhibitors with relatively low potency and limited selectivity, 

388 hence leading to the idea that CBS may be an undruggable enzyme.  Therefore we 

389 oriented toward an in cellulo phenotype-based assay that would allow screening drugs 

390 that interfere with the phenotypical consequences of CBS overexpression and thereby 

391 that do not necessarily directly target the CBS enzyme. The budding yeast 

392 Saccharomyces cerevisiae contains a functional homolog of CBS and has been shown to 

393 be a relevant system to model pathophysiological mechanisms involved in a number of 

394 human disorders and to perform chemobiological approaches that aim at identifying both 

395 drugs and new therapeutic targets (45-51). We thus decided to create a yeast model in 

396 which the phenotypical consequences of CBS overexpression may be easily and 

Page 20 of 59Human Molecular Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

21

397 conveniently monitored in order to get a potential in cellulo high throughput drug screening 

398 procedure. We reasoned that if we overexpressed CBS at a sufficient level, this should 

399 lead to a decreased intracellular level of methionine, similarly to what was shown in 

400 patients, and therefore that yeast cells would  become methionine auxotroph and thereby 

401 unable to grow on methionine-free minimal media. As the human CBS protein is not very 

402 stable in yeast cells and therefore cannot be expressed at high levels (52), we decided to 

403 overexpress Cys4p, the CBS homolog in S. cerevisiae. Cys4p presents the same domains 

404 and domain organization than CBS apart from the N-terminal heme-binding domain which 

405 is absent in the yeast protein (53). To get a degree of methionine auxotrophy sufficient to 

406 allow an efficient screening, we expressed Cys4 from the strong constitutive GPD 

407 promoter from two different high copy number 2 µ vectors (each present at ~50 copies 

408 per cell) and supplement the growth medium with serine, which is one of the Cys4p/CBS 

409 substrates that could otherwise become limiting upon Cys4 overexpression (Figure 4A).

410 Using this model, we tested ≈ 2200 compounds from 3 different chemical libraries 

411 consisting mainly of repurposed drugs for their ability to suppress the methionine 

412 auxotrophy induced by Cys4p overexpression. We exploited a similar principle as a yeast-

413 based screening setup previously (46, 47, 49, 54). Briefly, we spread, on a solid agar-

414 based methionine-free minimal medium, yeast cells overexpressing Cys4. Then we put 

415 filters on the agar surface and add different drugs from chemical libraries on each filters. 

416 After 3 days of incubation at 33°c, active compounds were identified by a halo of 

417 restored/enhanced growth around the filter on which they were loaded (Figure 4B). The 

418 advantage of this method is that, in one simple experiment, it allows numerous 
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419 compounds to be tested across a large range of concentrations due to the diffusion of the 

420 molecule in the medium surrounding the filter onto which it was deposited. This design 

421 drastically improves the sensitivity of the screen because the screened compounds can 

422 be toxic at high concentrations whereas being active at subtoxic concentrations. We 

423 identified four different compounds, among which disulfiram (DSF, Figure 4C). 

424 Next we tested if DSF was able to restore the object recognition of the mouse model 

425 overexpressing human CBS. Three independent cohorts of Tg(CBS) and control 

426 littermates were treated with DSF (10mg/kg/day) for 10 days before being tested for the 

427 novel object recognition. As shown in figure 4D,  DSF-treated transgenic animals were 

428 restored in the novel object recognition paradigm whereas non treated mutant animals 

429 were still not able to discriminate the new versus the familiar object. Interestingly the wt 

430 treated individuals were no more able to perform the discrimination while the vehicle 

431 treated controls were able to do so (Student paired t-test: vehicle treated wt «No vs Fo» 

432 p=0,006; DSF treated wt «No vs Fo» p=0.11 and vehicle treated Tg(CBS) «No vs Fo» 

433 p=0.59; DSF treated Tg(CBS)  «No vs Fo» p=0,05). This goes in line with the fact that 

434 loss-of-function mutations in CBS also leads to cognitive defects as observed in 

435 homocystinuria patients. Hence, this latter result confirm that DSF does affect CBS 

436 activity, directly or indirectly. Altogether these results confirm that the phenotypical 

437 consequences of the overexpression of CBS could be targeted by drugs to restore some 

438 of the cognitive performance altered in DS models. They also emphasize that the inhibition 

439 of CBS, direct or indirect, should be mild and only partial as a strong inhibition may be 
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440 detrimental as illustrated by the cognitive dysfunction observed in homocystinuria and 

441 here in wt mice treated with DSF.

442

443 Epistatic interaction between Dyrk1a and the Abcg1-Cbs region drives recognition memory 

444 in DS mouse models 

445 Dyrk1a is a major driver gene of DS cognitive defects (55) and a decrease in Cbs 

446 dosage is known to change the expression of Dyrk1a in brain and other organs (56-58). 

447 Thus in order to test the functional interaction of Cbs and Dyrk1a overdosage, we 

448 combined the Dp1Yah with the Tg(Dyrk1a) mouse model, with Dyrk1a mRNA expression 

449 ratio around 1.5 compared to control littermate (32). Tg(Dyrk1a) mice present increased 

450 spontaneous activity compared to wt in the Open field test. This hyperactivity was also 

451 observed in the double transgenic Dp1Yah/Tg(Dyrk1a) while it was absent from Dp1Yah 

452 animals (Figure 5A; Student t test wt vs Dp1Yah p=0,460; wt vs Tg(Dyrk1a) p=0.002 and 

453 wt vs Dp1Yah/Tg(Dyrk1a) p=0.006; Tg(Dyrk1a) vs Dp1Yah/Tg(Dyrk1a) p=0,200). 

454 Hyperactivity was confirmed in the Y-maze, with both Tg(Dyrk1a) and Dp1Yah/Tg(Dyrk1a) 

455 having more arms visits than the controls and Dp1Yah (Figure 5B; Student t test wt vs 

456 Dp1Yah p=0,800; wt vs Tg(Dyrk1a) p=0.005 and wt vs Dp1Yah/Tg(Dyrk1a) p=0.005; 

457 Tg(Dyrk1a) vs Dp1Yah/Tg(Dyrk1a) p=0,881). The working memory defect observed in the 

458 Y maze for Tg(Dyrk1a) mice was not rescued in Dp1Yah/Tg(Dyrk1a) double transgenics 

459 (Figure 5B; One way ANOVA F(3,48)=4.14 p=0.011; post hoc Tukey method wt vs 

460 Tg(Dyrk1a) p=0.042; wt vs Dp1Yah/Tg(Dyrk1a) p=0,019 and Tg(Dyrk1a) vs 
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461 Dp1Yah/Tg(Dyrk1a) p=0.203). Then, we tested the Novel Object Recognition memory 

462 after 1h of retention (Figure 5C). As expected, the 2 single mutants were impaired (Two 

463 ways ANOVA, variables “genotype” and “objects”: F(3;70)=7.09 with p<0.001, post hoc 

464 Tukey Test: Dp1Yah “fam vs new” q=1.333 and p=0.349; Tg(Dyr1a) q=1.732 and p=0.225 

465 - Recognition Index: One sample t-test mean vs 50%: Dp1Yah p=0.253; Tg(Dyrk1a) 

466 p=497) but the double transgenic mice Dp1Yah/Tg(Dyrk1a)  were able to discriminate the 

467 novel object as wt littermates (Two ways ANOVA, variables “genotype” and “objects”: 

468 F(3;70)=7.09 with p<0.001, post hoc Tukey Test: wt “fam vs new” q=4.543 and p=0.002; 

469 Dp1Yah/Tg(Dyr1a) q=5.289 and p<0.001 - Recognition Index: One sample t-test: wt 

470 p=0.048; Dp1Yah/Tg(Dyrk1a) p=0.011), suggesting that the effects of Dyrk1a 

471 overexpression are compensated by  3 copies of the Abcg1-Cbs region. 

472 Lastly we checked the learning and spatial memories using the Morris Water Maze 

473 task, followed by a probe test 24h after the learning period (Figure 5D). Even if all the 

474 groups increased their performance during the learning phase for reaching the platform 

475 after 6 days of training (J1-J6), wt and Dp1Yah mice found the platform with lower latency 

476 than the Tg(Dyrk1a) and Dp1Yah/Tg(Dyrk1a) (Two ways ANOVA variable genotype, 

477 F(3;280)=14.80 p<0.001; post hoc Tuckey test: wt vs Tg(Dyrk1a) q=6.160 with p<0,001; 

478 wt vs Dp1Yah/Tg(Dyrk1a) q=4.752 with p=0.004 – Dp1Yah vs Tg(Dyrk1a) q=8.103 with 

479 p<0,001; Dp1Yah vs Dp1Yah/Tg(Dyrk1a) q=6.641 with p<0,001). During the probe test, 

480 24h after the learning phase, controls and Dp1Yah animals were searching most of their 

481 time in the platform quadrant (T), whereas Tg(Dyrk1a) and double transgenic mice 

482 searched randomly across the entire space (One sample t-test vs 50% mean: wt p=0.02; 
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483 Dp1Yah p=0.05; Tg(Dyrk1a) p=0.99 and Dp1Yah/Tg(Dyrk1a) p=0.57). Hence, 

484 overexpressing Cbs and Dyrk1a does not rescue the Dyrk1a-dosage dependent working 

485 and spatial memory deficits observed in the Y maze and the Morris water maze 

486 respectively neither the hyperactivity observed  in the open-field, but rescued the object 

487 recognition impairment in the NOR. 

488 Proteomics unravels complex intermingled proteomic changes influenced by 

489 DYRK1A overexpression and by Dp1Yah trisomic genes

490 In order to unravel the impact of CBS and DYRK1A on cellular mechanism within 

491 the hippocampus that could lead to the memory phenotype observed in the novel object 

492 recognition (NOR) test, we profiled the proteome in the hippocampi isolated from Dp1Yah, 

493 Tg(Dyrk1a) and double (Dp1Yah,Tg(Dyrk1a)) animals, and compared them to the wt 

494 control littermates. We collected the samples after the behavioral evaluation and 

495 performed a Tandem Mass Tag labeling (Thermo Scientific, Illkirch) followed by LC-

496 MS/MS orbitrap analysis. We were able to detect 1655 proteins of which 546 were 

497 detected in all the 3 genotypes with a variability below 40% (Supplementary table 3), and 

498 among which 338 proteins were expressed at the same level as control ones. A total of 

499 208 proteins were found differentially expressed with levels of expression above 1.2 (206) 

500 or below 0.8 (2) in Dp1Yah, Tg(Dyrk1a) and double mutant mice (Figure 6A). Nine proteins 

501 were upregulated in all 3 genotypes: the RIKEN cDNA 6430548M08 gene product 

502 (6430548M08RIK), Actin related protein 2/3 complex, subunit 1A (ARPC1A), Bridging 

503 Integrator 1 (BIN1), the Family with sequence similarity 213, member A (Fam213a), 

504 Glyoxalase 1 (GLO1), Importin 5 (LPO5), NADH dehydrogenase (ubiquinone) Fe-S 
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505 protein 1 (NDUFS1), Prostaglandin reductase 2 (PTGR2) and Synaptosomal-associated 

506 protein 25 (SNAP25). Toppcluster analysis of the protein content unraveled a general 

507 common network with interacting proteins modified by the 3 genetic conditions (Figure 

508 6B-C). Functional analysis using gene ontology highlighted several cellular components 

509 affected in the 3 genotypes including synaptic particles, neuron projection, 

510 presynapse/synapse, axon, myelin sheath and different types of vesicles (Supplementary 

511 table 4). Cell/neuron projection development, morphogenesis, and differentiation, as well 

512 as secretion, synaptic and anterograde trans-synaptic signaling were affected in Dp1Yah 

513 while aldehyde catabolic processes and regulation of anatomical structure size were 

514 modified in Tg(Dyrk1a). Interestingly all these biological process were not be disturbed in 

515 double transgenic animals. Likewise molecular functions controlling ubiquitin protein 

516 ligase, calcium ion binding and dicarboxylic acid transmembrane transporter activity in 

517 Dp1Yah, or cytoskeletal protein and myosin binding in Tg(Dyrk1a) were restored 

518 (Dp1Yah,Tg(Dyrk1a)). On the contrary oxidoreductase activity was newly modified in the 

519 double transgenic hippocampi. 

520 We selected three proteins with different proteomic profiles in hippocampi and 

521 studied their expression in another brain region, the cerebral cortex, using western blot 

522 analysis: The alpha synuclein (SNCA), the Fused in sarcoma (FUS) that are associated 

523 with neurodegenerative disease (59-62) and the synaptosomal-associated protein 25 

524 (SNAP25), a component of the SNARE complex involved in calcium-triggered exocytosis 

525 (63-65).  As shown in figure 5D, levels of SNCA were similar to wt level. We did observe 

526 increased amount of this protein in the (Dp1Yah,Tg(Dyrk1a)) animals contrary to what 
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527 was observed in the proteome analysis. The presynaptic SNAP25 protein was significantly 

528 up-regulated in cortical regions of the (Dp1Yah,Tg(Dyrk1a)) animals and to a lesser extent 

529 in the Dp1Yah and Tg(Dyrk1a) ones (student t-test wt versus Tg(Dyrk1a) p=0,233; wt 

530 versus Dp1Yah p=0,06; wt versus D1Yah/Tg(Dyrk1a) p=0,02). Hence, in the proteomic 

531 approach, we also observed the increase previously detected in the hippocampus of those 

532 three transgenic lines.  The RNA-binding protein FUS was found overexpressed in the 

533 Dp1Yah brains and to a lesser extent in the (Dp1Yah,Tg(Dyrk1a)) ones, similarly to what 

534 was observed in the proteomic analysis (student t-test Dp1Yah compared to wt p=0,02 

535 and D1Yah/Tg(Dyrk1a) compared to wt p=0,09). 

536

537 DISCUSSION 

538 In this report we demonstrated that the genetic overdosage of Cbs is necessary 

539 and sufficient to induce defective novel object recognition in 3 different types of DS 

540 models. CBS overdosage is certainly the main driver of the learning and memory 

541 phenotypes detected previously in DS models for the Mmu17 region (22, 33) but we 

542 cannot rule out the possibility that one or more other gene(s) contribute with Cbs to the 

543 phenotype. Previous analysis of CBS overdosage with the same transgenic line Tg(CBS) 

544 on the FVB/N genetic background showed no change in fear learning task and locomotor 

545 activity but increased LTP-dependent synaptic plasticity (66); a phenomenon also 

546 detected in vitro and in vivo in other DS models where Cbs is trisomic in the C57BL/6J 

547 genetic background (22, 33). Nevertheless no positive effect on cognition is associated 
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548 with increase CBS dosage as previously proposed by Régnier et al. (66). Instead the 

549 overdosage of CBS always impairs the hippocampal-dependent novel object recognition 

550 test suggesting that increased synaptic plasticity found in Cbs trisomic models may alter 

551 synaptic functions. Increased synaptic plasticity could occur via increased H2S as it has 

552 been shown that H2S facilitates LTP by stimulating the post-synaptic NMDA receptors (67, 

553 68).  Moreover, a role of H2S has been foreseen in calcium homeostasis regulation which 

554 is also crucial for neuronal synaptic plasticity (69). 

555 DSF was isolated from a drug screening performed in yeast cells overexpressing 

556 CBS homolog Cys4p and looking for drugs counteracting its effect on methionine 

557 auxotrophy. Although DSF has been first identified as an inhibitor of mitochondrial 

558 aldehyde dehydrogenase (ALDH)  (70), it is a relatively nontoxic substance, which has 

559 been on the market for more than 40 years to support the treatment of chronic alcoholism 

560 by producing an acute sensitivity to ethanol, thanks to its ability to inhibit aldehyde 

561 dehydrogenases, thus leading to an accumulation of acetaldehyde in blood when alcohol 

562 is ingested. As acetaldehyde is responsible for many of the unpleasant effects that follow 

563 ingestion of large quantities of alcohol (“hangover”), DSF treatment discourages the 

564 patients to sustain a regular alcohol consumption by exacerbating and accelerating its 

565 unpleasant side effects. Our preliminary data about the mechanism of action of DSF 

566 suggest that this molecule may not directly inhibit CBS enzymatic activity but probably 

567 rather acts on the cellular consequences of CBS overexpression. The assay used for the 

568 screening, in principle, leads to the isolation of drugs acting both directly or not on 

569 CBS/Cys4. This latter point is of importance given that CBS may not be a druggable target 
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570 enzyme. And indeed, at present, we do not know if the DSF is acting directly or indirectly 

571 on CBS but we must assume the function altered by CBS overdosage, whatever it is, is 

572 conserved and similarly sensitive to DSF treatment in both yeast and mouse. Of note, 

573 upon absorption DSF is rapidly reduced to diethyldithiocarbamate (DDC), which then 

574 reacts with thiol groups. Both DSF and DCC are potent copper chelators, thereby possibly 

575 affecting the activity of copper-dependent enzymes such as monooxygenases, the Cu-Zn 

576 superoxide dismutase, amine oxidase, ADN methyltransferases and cytochrome oxidase. 

577 As a result, DSF has been shown to affect various cellular processes such as cocaine 

578 metabolism and catecholamine synthesis, and proteasome inhibition,  and is thus under 

579 study for multiple clinical applications that include struggle against alcohol addiction, 

580 cancer chemotherapy, treatment of copper-related disorders and anti-viral treatment for 

581 hepatitis C and Human Immunodeficiency Virus (71). Here, we describe a new possible 

582 clinical application of DSF in DS cognition through its effect on CBS overexpression. CBS 

583 clearly represents a new relevant therapeutic target for improving DS cognition and DSF, 

584 as such, opens new therapeutic avenues in DS patients. 

585 We also demonstrated that CBS interacts genetically with Dyrk1a, a well-known 

586 therapeutic target for DS. Mutual relationships between DYRK1A and CBS were shown 

587 previously, with decreased DYRK1A protein observed in the liver (Hamelet et al. 2009) 

588 and increased expression observed in the brain of Cbs+/- mice (Planque et al. 2013), while 

589 overexpression (or under-expression) of DYRK1A induce accumulation (or reduction) of 

590 CBS expression in the liver (72). In order to explore the genetic interactions between 

591 DYRK1A and CBS, we overexpressed Dyrk1a in the Dp1Yah context by combining the 
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592 Tg(Dyrk1a) and the Dp1Yah mice. Surprisingly, this experiment restored the object 

593 recognition deficit observed in the Dp1Yah mouse model but neither the increased 

594 locomotor activity in the open-field or the Y maze, nor the working and spatial memory 

595 deficits. Thus the compensation is restricted to a specific cognitive function, recognition 

596 memory, which is defective in both TgDyrk1a and Dp1Yah models. Why this dosage effect 

597 is restricted to recognition memory remains speculative. We may hypothesize that Cbs 

598 and Dyrk1a overdosage only interact in specific regions of the adult brain involved in 

599 object discrimination explaining why the increased locomotor activity and the working and 

600 visuo-spatial phenotypes induced in Tg(Dyrk1a) animals are not affected. Alternatively, 

601 objects recognition deficit is likely to result from an impact of DYRK1A on adult brain 

602 function while the other phenotypes are the result of an impact during earlier stage of brain 

603 development. On the one hand, object recognition has been shown to require undamaged 

604 hippocampal perforant path connecting ento/perirhinal cortex with the dentate gyrus for 

605 long retention intervals (> 15 min) in rat (73-78). On the other hand, synaptic exchanges 

606 between the median prefrontal cortex (mPFC) and the hippocampus seems to be 

607 sufficient to support the processing of short-term memory such as working memory 

608 observed in the Y maze (79, 80) and hyperactivity is associated with the prefrontal cortex, 

609 basal ganglia and cerebellum (81-84). Moreover, long-term recognition memory has been 

610 shown to appear in the rat at weaning (post-natal day 21 in the mouse), (85), a period 

611 corresponding to the end of neurogenesis and synaptogenesis in the dentate of the 

612 hippocampus, and reflecting the general observation of ‘infantile amnesia’ observed on 

613 long-term memory tasks but not on short-term memory ability (86).
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614 Our proposal go farther than the demonstration by Zhang et al (23) that the Hsa21 

615 homologous region on the Mmu17 is a key determinant cognitive deficits in DS mouse 

616 models. We showed here that CBS is a key gene for DS related phenotypes in mice with 

617 the other homologous interval Cbr3-Fam3b located on Mmu16, encompassing Dyrk1a. 

618 We should also consider that in people with DS, both genes are trisomic and thus the 

619 recognition memory deficit observed in DS persons and in the complete T21 mouse model 

620 (87) certainly depends not only on the interplay between DYRK1A and CBS but also on 

621 interaction with other Hsa21 genes that may affect different pathways or different parts of 

622 the brain.

623 The molecular mechanisms involved in Cbs-Dyrk1a genetic interaction have been 

624 investigated through a quantitative proteomic approach. Although limited due to the 

625 complexity of the hippocampus, the results highlight proteins networks interactions 

626 between the two trisomic regions. 208 proteins were found deregulated, corresponding to 

627 148 GO categories and pathways, with 72 specific to Dp1Yah (out of 121) and 9 to Dyrk1a 

628 transgenic model (out of 32; Supplementary table 3) and 5 common to both Dp1Yah and 

629 Tg(Dyrk1a). More interestingly, GO terms such as cortical cytoskeleton or cytoskeletal 

630 protein binding were respectively affected in Dp1Yah and in the Tg(Dyrk1a) but were 

631 restored in the double transgenic animals, unravelling somehow the nature of the 

632 pathways controlled by the epistatic interaction between CBS and DYRK1A overdosage. 

633 DYRK1A is found mainly associated to and modulates the actin cytoskeleton (88). CBS is 

634 the major enzyme involved in H2S production in the central nervous system (67). 

635 Interestingly increase of H2S activates RAC1 leading to rearrangement of actin 
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636 cytoskeleton during endothelial cell migration (89). Thus a simple hypothesis would be 

637 that the overdosage of CBS will lead to increased H2S production and further activation of 

638 RAC1 with effect on actin cytoskeleton rearrangement, a key mechanism involved in 

639 synaptic transmission. Remarkably DYRK1A interacts with p120-Catenin-Kaiso and can 

640 then modulate Rac1 (90). Thus one working hypothesis is based on CBS and DYRK1A 

641 pathways connected through RAC1. 

642 DYRK1A is the main driver of defects in DS mouse models for the homologous 

643 region to Hsa21 located on Mmu16 (55). Based on study done in DS models for the 

644 Mmu16 homologous region (91), DYRK1A has been selected as a drug target. As 

645 reported previously, a treatment with epigallocatechin-3-gallate (EGCG), an inhibitor of 

646 DYRK1A kinase activity, can restore some cognitive aspects found altered in people with 

647 DS but the gain was limited (92, 93). Nevertheless our results, by adding CBS to the 

648 limited number of DS therapeutic targets, may improve the efficiency of DS treatment, in 

649 particular by combining multiple therapies for improving the life of DS patients. Finally, an 

650 important point to emphasize is that, for DYRK1A as well as for CBS, both loss of function 

651 mutations and overdosage lead to intellectual deficiencies. This is important to keep in 

652 mind when considering pharmacological intervention that aims at inhibiting one or the 

653 other, or both, of these enzymes. Therefore, drug treatment that lead to only a mild 

654 inhibition of CBS and/or DYRK1A should be favoured.

655
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673

674 Figure 1: The Dp1Yah phenotypes are dependent on Cbs dosage. 

675 Dp1Yah trisomic mice (n=23) were compared with Dp1Yah carrying a KO of Cbs 

676 (Dp1Yah/Cbstm1Unc, n=21), Cbstm1Unc/+(n=23) and wt littermates (n=29). Animals were 
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677 analysed for the open field (A), the Y maze (B) and the novel object recognition (D) in two 

678 independent cohorts; the rotarod (C) was assessed on one cohort with wt (n=18) 

679 Cbstm1Unc/+ (n=15), Dp1Yah (n=15) and Dp1Yah/Cbstm1Unc (n=10) littermates. (A) Distance 

680 travelled and medium speed during the 30min of the test were increased in the 

681 Dp1Yah/Cbstm1Unc compared to the wild type genotype. (B) Increased exploration activity 

682 was confirmed for the Dp1Yah/Cbstm1Unc mice compared to control littermates in the Y 

683 maze while spontaneous alternation was not affected. (C) During the training session (left 

684 panel), the Dp1Yah mice were not able to improve their performance on the rotarod by 

685 increasing the maximum of speed before they fall from the rod compared to the other 

686 genotype. Nevertheless no change was observed between individuals with the four 

687 genotypes during the test phase (right panel). (D) The exploration time in the first session 

688 of the novel object recognition (left upper panel) was not statistically different in the four 

689 genotypes but during the recognition phase, after 10 min of retention, the recognition index 

690 (right upper panel; time spent on the new object / total time of exploration) was clearly 

691 lower in Dp1Yah mice as compared to the other genotypes and not statistically different 

692 from chance (50%). Accordingly the exploration time (left lower panel) spent by the 

693 Dp1Yah/Cbstm1Unc mice to explore the object showed that they were able to differentiate 

694 the novel (No) versus the familiar (Fo) object while the Dp1Yah were not. Data are 

695 represented as one point per individual tested and the mean of the group. (Values 

696 represent means + S.E.M. *P<0.05, **P<0.01, ***P<0.001).
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697

698 Figure 2: Transgenic mice overexpressing human CBS display DS-related 

699 behaviour phenotypes. 
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700 Wt (n=13) and Tg(CBS)/0 littermates (n=17), hemizygotes for a human PAC containing 

701 the CBS gene, were tested for open field (A), circadian actimetry (B,C), Y maze (D-E) and 

702 novel object recognition (F,G and H). No phenotype was found in the Tg during the 

703 exploration of a new environment in the open field in the total distance travelled (left) and 

704 the speed (right) but increased activity was observed during home cage monitoring over 

705 a light-dark-light cycle (B) with an increase of the distance travelled (C). In the Y maze 

706 (E), Tg(CBS)/0 animals displayed altered spontaneous alternation with no change in the 

707 number of arm entries (D). In the novel object recognition (F), Tg(CBS)/0 mice displayed 

708 similar exploration activity compared to wt littermates but they do not discriminate the 

709 novel versus the familiar object when looking at the discrimination index (G) and the 

710 percentage of exploration time for both objects (H). (Values represent means + S.E.M. 

711 *P<0.05, **P<0.01, ***P<0.001). 

Page 37 of 59 Human Molecular Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

38

712

Page 38 of 59Human Molecular Genetics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

39

713 Figure 3: Selective overexpression of hCBS in the glutamatergic neurons leads to 

714 impaired object recognition and altered locomotor activity. 

715 (A) a conditional transgene Tg(Prp-gfp-CBS) was designed to overexpress the human 

716 CBS cDNA from the murine Prion promoter after the deletion of an interrupting GFP-

717 coding cassette flanked by loxP sites. The GFP allowed to select one line that lead to 

718 expression in the anterior part of the brain (B). When  Cre is expressed from the 

719 Tg(Camk2-Cre) transgene, the deletion can be monitored in the brain of the animals (C) 

720 and the overexpression of hCBS mRNA is detected in different part of the brain of the 

721 Tg(Camk2-Cre)/0;Tg(Prp-gfp-CBS)/0 animals (Hs, orange bar, B) with no change in the 

722 endogeneous murine CBS without Cre expression detected in wt animals (Mm, white bar 

723 B) or Tg(Camk2-Cre)/0;Tg(Prp-gfp-CBS)/0 animals (Mm, orange bar, B). Wt (n=13), 

724 Tg(Camk2-Cre)/0 (n=11), Tg(Prp-gfp-CBS)/0 (n=12), and Tg(Camk2-Cre)/0;Tg(Prp-gfp-

725 CBS)/0 (n=14) littermates were evaluated through for object discrimination (D), open field 

726 (E), Y maze (F), rotarod (G). Mice overexpressing hCBS in the glutamatergic neurons 

727 were unable to discriminate the novel versus the familiar object as compared to the other 

728 control genotypes (D). Tg(Camk2-Cre)/0 mice displayed an enhanced locomotor activity 

729 in the open field but no change was detected in the control, wt and Tg(Prp-gfp-CBS)/0, or 

730 in double transgenic animals (E). In the Y maze animals carrying the Tg(Prp-gfp-CBS)/0 

731 or the activated form, Tg(Camk2-Cre)/0;Tg(Prp-gfp-CBS)/0, displayed reduced 

732 exploration with a lower number of arm entries but no change in the spontaneous 

733 alternation (F). No phenotypes was altered in the rotarod test with similar progress during 
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734 the learning and the test phases (G). (Values represent means + S.E.M. *P<0.05, 

735 **P<0.01, ***P<0.001)

736

737 Figure 4. Pharmacological intervention to suppress the consequence of CBS 

738 overexpression in yeast (A, B and C) and mouse (D). Development of a yeast 

739 screening assay based on Cys4-overexpressing cells and identification of DSF as able to 

740 suppress methionine auxotrophy induced by Cys4 overexpression. The sensitivity of the 
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741 strain to the absence of methionine in the medium was evidenced by serial dilutions of a 

742 yeast strain expressing different levels of Cys4 (A). For the drug screening, the yeast 

743 strain overexpressing Cys4 from both p424 & p426 multicopy 2 µ plasmids was spread 

744 on a square Petri plate containing solid agar-based methionine-free medium. DMSO was 

745 used as a negative control and added to the upper right filter and methionine, the positive 

746 control, was deposited on the bottom left filter (B). At the remaining positions, individual 

747 compounds from the chemical libraries were added, and plates were incubated for 3 d at 

748 33 °C. The dose-dependent effect of DSF on Cys4-overexpressing cells is shown, and its 

749 molecular structure is depicted (C). Note that DSF is toxic at high concentrations (close 

750 to the filter) whereas it becomes active at sub-toxic concentrations. To test DSF in mice, 

751 a treatment was done on Tg(CBS) cohort starting at D1 and ending at D10 (D). Each 

752 groups received a daily dose of 10mg/kg/day of DSF for 10 days followed by an open field 

753 paradigm (D10) with the object recognition test performed on D11 (with one hour of 

754 retention time). The graph at the bottom showed the percentage of time spent on the novel 

755 versus the familiar object during the tests. The vehicule-treated wt mice were able to 

756 distinguish both objects as the DSF-treated Tg(CBS) animals. On the contrary non-treated 

757 transgenic animals were not able to do so and the DSF-treated wt animals were impaired 

758 in the test confirming that the drug affects CBS activity in vivo (Values represent means + 

759 S.E.M. *P<0.05, **P<0.01, ***P<0.001).
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760

761 Figure 5: CBS and DYRK1A overdosages interact for controlling behaviour and 

762 cognition

763 Behavioural and cognitive analysis of transgenic animals overexpressing Cbs and Dyrk1a 

764 (14 wt, 15 Tg(Dyrk1a), 13 Dp1Yah and 13 Dp1Yah/Tg(Dyrk1a)) mutant mice in the open 

765 field (A), the Y maze (B), the object recognition (C) and the Morris water maze (D). 

766 Increased activity in the open field (A) and in the number of arm entries in the Y maze (B) 

767 were found in the Tg(Dyrk1a) and Dp1Yah/Tg(Dyrk1a) animals with also reduced 
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768 spontaneous alternation in the Y maze (B). Both the Dp1Yah and Dp1Yah/Tg(Dyrk1a) 

769 mutant mice were impaired in object recognition (C) but the double mutant animals 

770 showed restored object discrimination similar to wt littermates. The Tg(Dyrk1a) and 

771 Dp1Yah/Tg(Dyrk1a) animals displayed delayed learning in the Morris water maze with no 

772 memory of the platform location in the probe test compared to Dp1Yah and wt littermates 

773 (D). (Values represent means + S.E.M. *P<0.05, **P<0.01, ***P<0.001)
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775 Figure 6: Pattern of protein expression is disrupted upon changes in DYRK1A and 

776 CBS dosage.

777 (A) Analyzing the 1655 proteins detected in the Orbitrap ELITE experiment, we extracted 

778 from Proteome Discoverer 1.4 © a list of 208 proteins dysregulated in our different sample 

779 conditions. The association between proteins, pathways and genotype is summarized in 

780 two Venn diagrams (B-C). We deduced that the trisomic alleles induced most of the 

781 perturbations; moreover, the combination of increased DYRK1A and trisomic condition 

782 leaded to new dysregulations. (D) Western blot validation of 3 protein candidates SNCA, 

783 SNAP25 and FUS. SNAP25 expression is increased in samples overexpressing DYRK1A. 

784 More interestingly, FUS was found significantly upregulated in Dp1Yah - plots represent 

785 every sample values normalized with -actin level). (Values represent means + S.E.M. 𝛽
786 *P<0.05, **P<0.01, ***P<0.001)
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Abstract 

The identification of genes which overexpression contributes to intellectual disability in Down 

syndrome (DS) is crucial to develop new therapies. We have recently shown that the triplication of Cbs 

(cystathionine β-synthase) in mouse is necessary and sufficient to induce a deficit in the novel object 

recognition test, suggesting that the triplication of this gene may participate to the cognitive defect in 

patients with DS. However, so far, the search for CBS inhibitors has only led to the identification of 

compounds with low potency and limited selectivity, hence leading to the idea that CBS may be an 

undruggable enzyme. To circumvent this problem, we recently developed a yeast-based assay to screen 

for molecules that interfere with the phenotypical consequences of the overexpression of yeast homolog 

CBS (called CYS4). Using this model, we identified three families of FDA-approved compounds which 

rescue a number of phenotypes due to CYS4 overexpression in yeast. We have previously reported that 

one of this molecule, Disulfiram, is also active in a mouse model expressing three copies of Cbs. We 

describe here the mechanism of action of these molecules and report that CYS4 overexpression induces 

amino starvation in yeast, which in turn leads to TORC1 inactivation. We also investigated the 

functional relationship between CYS4 and YAK1, the yeast homolog of DYRK1A, so far the main target 

for therapeutic research to improve cognition in DS. These results thus validate our method as an 

effective screening approach to identify drugs active against the phenotypic consequences of CBS 

overexpression. 

 

Keywords: Down syndrome, intellectual disability, drug screening, pH homeostasis, Cys4, Yak1 



INTRODUCTION 

Down syndrome (DS) is the most frequent chromosomic aberration, with a prevalence of one in 650 to 

1 000 live births worldwide. This condition results from the presence of an extra copy of chromosome 

21, as first described by J. Lejeune and colleagues (Lejeune et al., 1959). The triplication of this 

chromosome, and of its ~225 genes, leads to a complex phenotype that includes particular craniofacial 

features, hypotonia, cardiac and digestive defects, high incidence of leukemia, early onset of 

Alzheimer’s disease (AD) and intellectual disability. While the detailed consequence of the 

overexpression of all these individual genes has not been defined yet, a few genes have been suggested 

to be of crucial importance in the development of certain phenotypic aspects. Regarding the cognitive 

defect related to this pathology, Amyloid precursor protein (APP) (Salehi et al., 2006), the Glutamate 

receptor, ionotropic, kainate 1 (GRIK1) (Roizen and Patterson, 2003) and the dual-specificity tyrosine 

phosphorylation-regulated kinase 1A (DYRK1A) (Altafaj et al., 2013; García-Cerro et al., 2014) are 

considered as highly relevant candidate genes. Lately, DYRK1A has been the main target for therapeutic 

research with the identification of compounds that inhibit its protein kinase activity and are able to 

improve cognition in mouse models for DS (De la Torre et al., 2014; Guedj et al., 2009; Kim et al., 

2016; Nakano-Kobayashi et al., 2017; Neumann et al., 2018; Nguyen et al., 2018; de la Torre et al., 

2016). However, the efficiency in DS patients was found to be rather limited, showing the need to 

combine multiple therapies to improve cognitive defects and thus the life of patients with DS. 

More recently, we have shown that triplication of the cystathionine β-synthase (CBS) gene also 

contributes to the cognitive phenotype of DS and that CBS and DYRK1A show epistatic interactions 

(Maréchal et al., 2018), which is of crucial importance for the development of therapeutic strategies. 

CBS gene encodes a pyridoxal 5’-phosphate-dependent enzyme that catalyzes the condensation of 

homocysteine and serine to form cystathionine. This reaction represents the first committed step in the 

transsulfuration pathway for cysteine and glutathione (GSH) synthesis (Fig. 1A). In mammals, this 

pathway plays important roles in clearing homocysteine (which is toxic at high levels), in methionine 

homeostasis, and in providing cysteine, especially in cells that exhibit a high turnover of the major 

cellular antioxidant, glutathione. In human, loss-of-function mutations of CBS cause homocystinuria 

(OMIM 236200) (Kraus et al., 1999), a metabolic condition characterized by the presence of 

homocysteine in patients’ urine and featuring intellectual disability (Mudd et al., 1964, 1985). CBS is 

also the major enzyme catalyzing the production of H2S from L-cysteine (Kimura, 2011) or from the 

condensation of homocysteine with cysteine (Chen et al., 2004). H2S is now considered as a major 

gasotransmitter in the brain that interferes with synaptic transmission (Kamat et al., 2015). In the last 

years, several groups have tried to identify inhibitors of CBS by in vitro screenings that, unfortunately, 

only led to the identification of compounds with relatively low potency and limited selectivity 

(Asimakopoulou et al., 2013; Druzhyna et al., 2016; Thorson et al., 2013, 2015; Zhou et al., 2013), thus 

leading to the idea that CBS may be an undruggable enzyme. Hence, innovative screening methods are 



needed to isolate drugs that would be more likely to inhibit CBS in vivo or that would compensate for 

CBS overexpression, in order to develop new therapeutic strategies. For this purpose, the budding yeast 

Saccharomyces cerevisiae, which has already proven to be a convenient chemobiological model for 

various human genetic diseases (Voisset and Blondel, 2014), and for which a number of genetic tools 

are available, appeared an appealing model. The functional counterpart of CBS in S. cerevisiae is 

encoded by CYS4, which inactivation leads to the inability of yeast cells to synthesize cysteine (Kruger 

and Cox, 1994). 

Therefore, we developed a phenotype-based yeast model that allows the screening of drugs that interfere 

with the phenotypical consequences of CYS4 overexpression, i.e. methionine auxotrophy, without 

necessarily directly targeting the enzyme (Maréchal et al., 2018). Using this model, we tested ~ 2200 

compounds from 3 different chemical libraries consisting mainly of repurposed drugs. We thereby 

identified three families of FDA-approved compounds that counteract CYS4-overexpression phenotype, 

the main hits being Disulfiram (DSF), Clioquinol (CQ) and Zn-Pyrithione (ZPT). DSF has been shown 

to also save the cognitive defects induced by CBS triplication in mice (Maréchal et al., 2018), hence 

proving that the mechanisms involved in the phenotypic rescues are conserved between yeast and 

mammals. In the present work, we aimed to investigate the mechanism of action of the identified 

compounds at the cellular level. We report herein that in addition to methionine auxotrophy, CYS4 

overexpression provokes cytosolic pH acidification. We showed that the molecules we identified save 

both methionine auxotrophy and cytosolic acidification by targeting the balance between increased 

amounts of thiols and decreased methionine levels in CYS4-overexpressing cells. The identification of 

genetic modifiers of these phenotypes suggest the implication of TORC1 signaling pathway. As the 

yeast homolog of DYRK1A, Yak1p, is also involved in TORC1 signaling pathway, we here reveal a 

new functional link between these two proteins, which are both overexpressed in Down syndrome. 

Taken together, these results thus emphasize the importance of Cys4p/CBS dosage in fundamental 

cellular functions and provide new hypothesis to explain the cognitive defects caused both by a loss-of-

function or the triplication of CBS. 

 

  



MATERIALS AND METHODS 

Yeast strains and plasmids 

Yeast strains used in this study are listed in Table 1.  

Yeast strains were grown at 29°C under agitation. The media used for yeast growth were: YPD [1% 

(w/v) yeast extract, 2% (w/v) peptone, 2% (w/v) glucose] for untransformed cells and Synthetic 

Dextrose minimal media (SD medium) [composed of 0.67% (w/v) Yeast Nitrogen Base w/o amino acids 

and supplemented with appropriate amino acids and 2% (v/v) glucose] for transformed cells. Solid 

media contained 2% (w/v) agar. Cultures in exponential growth phase, obtained by diluting overnight 

cultures and incubation for 4-5h to reach OD600~0.6-1, were used in all experiments. Yeast deletion in 

the W303 background were performed by standard one-step gene replacement with PCR-generated 

cassettes (Longtine et al., 1998). Transformation of yeast cells was performed using a standard lithium 

acetate method (Gietz and Schiestl, 2007). 

All plasmids were generated using standard procedures. Restriction enzymes and polymerases were 

obtained from New England Biolabs (Evry, France). T4 DNA ligase was obtained from Promega 

(Charbonnières-les-Bains, France). Purified synthetic oligonucleotides were obtained from Eurogentec 

(Angers, France). Routine plasmid maintenance was carried out in Top10 bacteria strains.  

The CYS4 coding sequence was amplified from the genomic DNA of a W303 WT strain and cloned into 

high copy number 2 µ-derived expression vectors of the pRS42X series under the control of the strong 

constitutive GPD promoter (Mumberg et al., 1995). pRS415-CYC-phluorin was a kind gift from S. Léon 

(IJM, Paris). The pHluorin coding sequence was subcloned into a pRS416-ADH plasmid for use in all 

experiments when the URA3 marker was available. The coding sequences of MUP1, MMP1, STP2 and 

LEU2 were amplified from the pFL44L plasmids extracted from the library used for the genetic screen 

and subcloned into pRS416-GPD plasmids. The coding sequences of UBP11, UBP7 and MCK1 were 

similarly amplified and subcloned into pRS426-TEF plasmids. pRS416-SNA3-GFP was a kind gift from 

V. Albanèse. The YAK1 coding sequence was cloned into either a pRS416-GPD (CEN) or a pRS426-

GPD (2µ). 

Yeast protein extracts and western-blot 

Five milliliters of 0.8–1.0 OD600 exponentially growing cells were collected and cell pellets were 

resuspended into 300 μl of lysis buffer (25 mM Tris-HCl pH 6.8; 10% glycerol; 5% β-mercaptoethanol; 

5% SDS; 8 M Urea; 0.02% bromophenol blue). Protein extraction was performed by mechanical 

disruption with sterile glass beads, samples were then centrifuged and the resulting supernatants were 

harvested. Protein quantification was performed by the Bradford method. Equal protein quantities and 

volumes of all samples were loaded onto 10% NuPAGE Bis-Tris gels (Invitrogen), and transferred onto 

0.45 μm nitrocellulose membranes (GE Healthcare). Membranes were blocked during 1 h at room 

temperature in PBS 1X containing 0.1% Igepal and 5% milk. 



Membranes were incubated overnight with the following primary antibodies: anti-CBS goat monoclonal 

antibody (Santa-Cruz, 1:200), anti-GFP mouse monoclonal antibody (Roche, 1:1,000) or anti-GAPDH 

mouse monoclonal antibody (Abcam, 1:5,000). The following day, membranes were washed with fresh 

PBS 1X + 0.1% Igepal and incubated for 45 min with rabbit anti-goat (Southern Biotech) or goat anti-

mouse secondary antibodies (Dako) conjugated to horseradish peroxidase at a 1:3,000 dilution, and 

analysed by enhanced chemiluminescence (ECL, GE Healthcare) using a Vilbert-Lourmat 

Photodocumentation Chemistart 5000 imager.  

Determination of glutathione contents 

Intracellular glutathione levels were measured with the GSH/GSSG-Glo™ Assay (Promega, ref: V6611) 

according to the manufacturer’s instructions, except that yeast cells were first lysed in the lysis buffer 

provided in the kit with an additional step of mechanic, glass beads-based method as indicated in Ozer 

et al., 2015. Measurements were performed using a Varioskan LUX multimode microplate reader 

(Thermofisher) in a luminescence reading mode. 

Quinacrine staining 

Quinacrine staining experiments were performed following the protocol from Baggett et al., 2003. 

Briefly, 1 mL of OD600=0.7 cultures was gently spun down for 3 to 10 min at 300 g at room temperature 

(RT) and pellets were incubated on ice for 5 min. Then, cells were resuspended in 900 μL of YPD with 

100 μL of HEPES 1 M pH 7.6 and 10 μL of quinacrine 20 mM resuspended in HEPES 1 M pH 7.6 (final 

concentration of quinacrine: 200 μM). After a 30 min incubation at 29°C with an agitation of 220 rpm 

in darkness, cells were spun down for 3 min at 300 g at RT. Pellets were incubated on ice for 5 min, and 

resuspended in 50 μL of an ice cold solution of 2% glucose with 100 mM HEPES. Finally, cells were 

spotted on microscope slides and immediately (within 10 minutes) observed under an epifluorescence 

microscope (Zeiss Axio Imager 2 M2) with a FITC filter. 

Growth on alkaline media 

Cells in exponential growth phase were diluted to an OD600=0.08, and serial 1/5 dilutions were spotted 

on solid agar-based plates containing either unbuffered YPD, YPD pH 7.5 (buffered with 50 mM MES 

and 50 mM MOPS and adjusted to the indicated pH with NaOH), or YPD pH 7.5 supplemented with 60 

mM CaCl2. Plates were then incubated at 29°C for 3 days. 

Determination of cytosolic pH 

Yeast strains were transformed by a pRS416-ADH (or pRS415-CYC when URA3 marker could not be 

used) plasmid containing the ratiometric pHluorin coding sequence (Dechant et al., 2010; Miesenböck 

et al., 1998). OD600 of each culture in exponential growth phase was measured before centrifugation of 

10 mL of culture, 10 min at 3500 rpm. Cells were then resuspended in 500 μL of fresh minimal medium 

(MML, prepared with 6.7 g/L yeast nitrogen base without amino acids). Aliquots of 100 μL of each 

culture were placed in triplicate in a black 96-well plate with clear bottomed half wells, and read with a 

Varioskan LUX multimode microplate reader (Thermofisher) at two excitation wavelengths (410 nm 



and 470 nm) and a fix emission wavelength (508 nm) for quantitative measurement. The resulting values 

were then used to calculate the I410/I470 ratio, and expressed as a percent of the corresponding controls. 

Tests with drugs were performed by adding the indicated final concentrations of drugs, or the 

corresponding volume of DMSO as a control, in culture media during growth phase. For microscopic 

observations, 2.5 μL of each culture were spotted on microscope slides, and observed under an 

epifluorescence microscope (Zeiss Axio Imager 2 M2), with an EGFP filter. 

Drug screening in yeast 

To obtain a reproducible and sustained methionine auxotrophy allowing drug screening, CYS4 had to be 

expressed from two 2 µ high copy plasmids, under the control of a strong constitutive GPD promoter 

(Fig 1C), which led to an increase of about 15 fold in Cys4p levels compared to the endogenous protein 

(Supp Fig 1A). In addition, serine, which is a limiting substrate in this reaction, had to be added at 

1.5 mM (final concentration) in the culture medium (Fig 1C).  

For the screening, yeast cells overexpressing CYS4 (CYS4-OE) were grown in uracil- and tryptophan-

free minimal liquid medium (SD-Ura/Trp) in overnight cultures at 29 °C. The following day, cells were 

diluted to OD600~0.5 in fresh medium and grown for 4 hours to reach exponential phase. Then, 350 µL 

of yeast cells in exponential growth phase, adjusted to an OD600 of 0.2, were spread homogeneously 

with sterile glass beads (a mix of ∼1.5 and ∼3 mm diameter) on a square Petri dish (12 cm × 12 cm) 

containing uracil-, tryptophan- and methionine-free minimal agar-based solid medium (SD-

Ura/Trp/Met) containing 2% (w/v) serine. Sterile filters (Thermo Fisher, similar to those used for 

antibiograms) were placed on the agar surface, and 2 μL of individual compound from the various 

chemical libraries were applied to each filter. In addition, for each Petri plate, DMSO, the vehicle, was 

added as a negative control on the top left filter, and 2 nmol of methionine as a positive control on the 

bottom right filter. Plates were then incubated at 33°C for 3 days and scanned using a Snap Scan1212 

(Agfa).  

Two repurposed drug libraries were screened: the Prestwick Chemical Library® (1200 drugs), and the 

BIOMOL’s FDA Approved Drug Library (Enzo Life Sciences, 640 drugs). In addition, the Prestwick 

Phytochemical library (691 green compounds, most of them used for medical purpose in human) was 

also screened. Compounds were supplied in 96-well plates as 10 mM (for the two Prestwick® libraries) 

and 2 mg/mL (BIOLMOL®) DMSO solutions.  

All molecules were purchased from Sigma-Aldrich (Saint Quentin Fallavier , France) and resuspended 

in DMSO.  

Yeast-based genetic screen 

A yeast genomic DNA library (a kind gift from F. Lacroute), constructed by inserting ∼4 kb genomic 

DNA fragments (obtained by Sau3A partial digestion) at the unique BamHI site in the replicative 2 μ 

multicopy pFL44L vector containing URA3-marker, was used to transform a yeast strain overexpressing 



CYS4 (CYS4-OE with pRS423-GPD and pRS424-GPD plasmids). Transformants were selected on 

solid minimal medium lacking tryptophan, histidine, methionine and uracil and supplemented with 1.5 

mM of serine, which is a limiting substrate for Cys4p activity. Plasmids originated from the pFL44L-

based library were extracted and purified with the Zymoprep kit (Zymo Research), and amplified in 

Escherichia coli and then retransformed into the yeast strain overexpressing CYS4 to confirm their 

ability to reverse methionine auxotrophy. The extremities of the confirmed clones were sequenced using 

the following primers: F- 5′ GTGCTGCAAGGCGATTAAGT 3′ and R- 

5′TGTGGAATTGTGAGCGGATA 3′. 

  



RESULTS 

Characterization of the phenotypes induced by CYS4 modulation in yeast 

In the last ten years, phenotypic cell-based drug screening has been shown to be particularly powerful 

to identify lead compounds and probe the cellular mechanisms underlying certain human diseases 

(Tardiff et al., 2014). In particular, the budding yeast Saccharomyces cerevisiae, in which almost half 

of human genes and about 30% of disease causing genes are conserved, is a convenient model to perform 

both genetic and drug screening. CBS homolog in yeast is CYS4. Amino-acid sequences of both proteins 

share 72% similarity and functional assays in yeast have confirmed the ability of human CBS to 

complement the cysteine auxotrophy (absence of growth on medium without cysteine) associated to 

CYS4 deletion (Kruger and Cox, 1994). 

In order to identify strong, reproducible and convenient read-outs that can be used for drug or genetic 

screenings, we first sought to determine the different phenotypes caused by CYS4 modulation. As Cys4p 

is a key enzyme located at a metabolic hub making a connection between methionine and 

cysteine/glutathione production, its deregulation can be expected to lead to important metabolic 

modifications (Fig. 1A). In agreement to what has been previously described in yeast (Suzuki et al., 

2011), we observed that CYS4 deletion results in decreased intracellular levels of total glutathione 

whereas, on the opposite, CYS4 overexpression increases glutathione production (Fig. 1B). However, as 

levels of glutathione can vary depending on growth conditions or redox state of the cell, this phenotype 

cannot be easily adapted for drug screening. We thus focused our attention on amino acid auxotrophy. 

Whereas CYS4 deletion induces cysteine auxotrophy, CYS4 overexpression in yeast leads to the 

incapacity to grow without external supply of methionine (Fig. 1C), in agreement with the fact that CYS4 

activity consumes methionine through the use of homocysteine (Fig 1A). This phenotype can be easily 

monitored and restored by drugs or genes able to interfere with Cys4p activity. However, to ensure the 

specificity of the hits obtained, we wanted to identify another phenotype that could be used as a 

secondary screening. As cys4Δ cells have previously been reported to have defects in the acidification 

of their vacuole (the equivalent of the lysosome in yeast) (Oluwatosin and Kane, 1997), we thus 

investigated pH homeostasis. Surprisingly, we observed that CYS4 modulation does not seem to provoke 

major disturbances in vacuolar pH (Supp Fig 1). We next assessed the effect of CYS4 modulation on 

cytosolic pH using a pH-sensitive ratiometric GFP variant, named pHluorin (Miesenböck et al., 1998) 

which is only expressed in the cytosol and nucleus but which is excluded from the vacuole. We observed 

that cys4Δ cells completely lacked cytosolic pHluorin signal compared to a wild-type (WT) strain 

(Fig. 1D), indicative of a more alkaline cytosolic environment. This observation was confirmed by 

quantitative measurements based on the I410/I470 ratio of pHluorin (Fig. 1D). As cys4Δ strain is cysteine 

auxotroph and cannot grow in selective media without glutathione (GSH) supplementation (Kruger and 

Cox, 1994), the effect of GSH supplementation on the cytosolic pH of a WT strain was assessed but as 

shown in Fig. 1D, it did not have any effect, suggesting that the increased cytosolic pH is specific to 



CYS4 deletion. Conversely, cells overexpressing CYS4 (CYS4-OE) led to a significant increase in 

fluorescence intensity, and decreased I410/I470 ratio (Fig. 1E), suggestive of a more acidic cytosolic pH. 

We thus conclude from all these data that CYS4 deletion leads to increased cytosolic pH and that on the 

contrary, CYS4-OE leads to decreased cytosolic pH. 

Defects in cytosolic pH homeostasis have never been reported for cys4Δ or CYS4-OE cells. To better 

understand the relationship between cytosolic acidification and the other phenotypic characteristics of 

CYS4-OE cells, we investigated the role of the glutathione:proton exchangers Gex1p and Gex2p (Dhaoui 

et al., 2011)) in this process. These proteins, located at the vacuolar and plasma membrane, extrude 

glutathione out of the cytosol in exchange for protons entry, thus affecting cytosolic pH homeostasis. 

As described by Dhaoui and colleagues, a gex1Δgex2Δ strain has an increased cytosolic pH (Supp 

Fig. 1E). In addition, CYS4-OE in this strain was unable to induce cytosolic acidification (Supp Fig. 1E), 

suggesting that cytosolic acidification of CYS4-OE cells is probably related to increased intracellular 

GSH levels, which in turn activate Gex1p/Gex2p exchangers that allow proton entry into the cell. Taken 

together, these data suggest that increased cytosolic acidification of CYS4-OE cells is directly linked to 

increased GSH levels and that this phenotype can be used as a secondary screening. 

Identification of drugs that suppress phenotypes caused by CYS4 overexpression 

Using CYS4-OE cells spread on medium lacking methionine, we screened ~ 2200 compounds from 3 

different chemical libraries consisting mainly of FDA-approved drugs, for their ability to suppress 

methionine auxotrophy using the set-up previously described (Maréchal et al., 2018). Briefly, CYS4-OE 

cells were spread on a solid agar-based methionine-free medium supplemented with serine, a substrate 

of the reaction, to ensure a reproducible and sustained methionine auxotrophy allowing drug screening 

(Fig. 1C). Then filters were placed on the top of the agar surface and drugs from chemical libraries were 

loaded on filters. After 3 days of incubation at 33°C, active compounds were identified by a halo of 

restored growth around the filters on which they were loaded. The advantage of this method is that, in 

one simple experiment, numerous compounds can be tested across a large range of concentrations due 

to the diffusion of the molecules in the medium surrounding the filters. This design drastically improves 

the sensitivity of the screening as tested compounds can be toxic at high concentrations but active at 

subtoxic concentrations. Using this set-up, we identified 4 molecules that restore CYS4-OE cell growth 

on methionine-free medium: disulfiram (DSF), merbromin and two members of the 8-hydroxyquinoline 

family: clioquinol (CQ) and chloroxine (CHX) (Fig. 2A). 

Merbromin is an organomercuric disodium salt compound with a fluorescein. Because of its mercury 

content, it is no longer used in medicine. We thus did not pursue the characterization of the mode of 

action of this molecule. Interestingly, the three other molecules (DSF, CQ and CHX) have been reported 

to act as metal (such as iron, copper or zinc) chelators or ionophores (Ding and Lind, 2009). We thus 

tested several other metal chelators for their ability to restore yeast growth on medium lacking 



methionine, but none of them was able to rescue CYS4-OE methionine auxotrophy (Supp Table 1). The 

notion of chelator implies that the drug chelates and sequesters a metal ion, rendering it biologically 

unavailable. On the opposite, ionophores are molecules that bind extracellular metals and transport them 

directly across membranes (independently of active metal pumps or transporters) in cellular 

compartments in which the concentration of metal is lower. Thus to check whether the ionophore activity 

may be involved in the action of the molecules we identified, we used two members of another family 

of metal ionophores (Ding and Lind, 2009): sodium (NaPT) and zinc pyrithione (ZPT), which were not 

present in the chemical libraries we tested, and two other members of the dithiocarbamate family (to 

which DSF belongs), pyrrolidine dithiocarbamate (PDTC), known as a zinc ionophore (Kim et al., 

1999), and sodium diethyldithiocarbamate, the product of DSF’s reduction, described as a potent copper 

ionophore (Lushchak et al., 2005). We found that these four molecules were able to restore yeast growth 

on medium without methionine (Fig. 2A), suggesting that a metal ionophore, but not a metal chelation 

function, is important for the rescue of growth of CYS4-overexpressing cells on medium without 

methionine. Similarly, members of the three families of ionophores decreased cytosolic acidification 

both in CYS4-OE cells and WT cells in a dose-dependent manner (Fig. 2B-C). Taken together, these 

results show that the molecules identified in our screening specifically target the consequences of CYS4-

OE and may share a common mode of action, involving metal ion import. 

Zinc rescues CYS4-overexpression phenotypes 

As molecules of families 1, 3 and 4 are zinc ionophores (Andersson et al., 2009; Ding et al., 2005; 

Wiggins et al., 2015), we assessed the consequences of the modulation of intracellular zinc levels on 

CYS4-OE cells. We observed that the diameter of the halo of growth restoration increased in the presence 

of zinc, which suggests that zinc ions enhanced the rescue capacity of CQ, CHX and DSF (Fig. 3A). 

Interestingly, we also observed that zinc on its own was able, at high concentrations (above 9 µmol, 

right panel), to restore cell growth of CYS4-OE cells on a methionine-free medium (Fig. 3A). Similarly, 

we observed that zinc was also able to increase intracellular pH, both in CYS4-OE and WT cells (Fig. 

3C). As intracellular levels of copper and zinc are known to be strictly regulated by compensatory 

mechanisms (Brewer, 2001), we also evaluated the effect of copper on CYS4-OE phenotypes. 

Accordingly, we observed that copper addition to the medium had the opposite effect of zinc (Supp Fig. 

2A-C) and that intracellular copper depletion was beneficial to CYS4-OE cells: the severity of both 

methionine auxotrophy and cytosolic acidification was decreased in a strain deleted for MAC1, the 

transcription factor activating the expression of copper transporters in yeast (Supp Fig. 2D-E). 

Altogether these results suggest that increasing intracellular zinc levels, either by adding directly zinc 

to the medium or through the action of zinc ionophores such as DSF, CQ, CHX and ZPT, participates 

to the rescue of CYS4-OE phenotypes. 

 



Thiol-reactive molecules rescue phenotypes resulting from CYS4-OE 

Pagani and coworkers have suggested that exposure of yeast cells to high levels of zinc (4-6 mM) leads 

to a situation of oxidative stress, with a consumption of low-molecular mass thiols like glutathione, and 

similar consequences on gene expression as those induced by thiol oxidants such as diamide (Pagani et 

al., 2007). They found that concentration of oxidized glutathione (GSSG) increased in parallel with the 

presence of zinc in the medium and, as a consequence, the oxidized/total glutathione ratio increased up 

to fourfold in zinc-stressed cells (Pagani et al., 2007). Interestingly, DSF and ZPT have been previously 

shown to significantly decrease the GSH/GSSG ratio but without causing total glutathione depletion 

(Cen et al., 2002 ; Currier et al., 2016). This is very similar to what we observed in CYS4-OE cells. In 

our case, decreased toxicity and activity on cell growth of DSF, CQ, CHX and ZPT was found when 

reduced glutathione (GSH) or cysteine was added on filters (Fig. 4A, upcoming results). In contrast, 

addition of buthionine sulphoximine (BSO), an irreversible inhibitor of γ-glutamylcysteine synthetase 

(Gsh1p) that leads to glutathione depletion, did not restore CYS4-OE cell growth on medium lacking 

methionine. Taken together, these results suggest that the molecules we identified in our screen mediate 

their action through targeting thiol (including glutathione and cysteine) accumulation through CYS4-

OE. To further investigate their mode of action, we tested molecules that can quench thiols, such as N-

ethylmaleimide (NEM) and iodoacetamide or a thiol-oxidant, such as diamide, that rapidly oxidizes 

GSH to GSSG. NEM is an alkylating reagent that permanently blocks sulfhydryls (e.g., reduced 

cysteines) to prevent disulfide bond formation. Diamide is an oxidant that reacts specifically with 

thiols, oxidizing them. As shown on Fig. 4, both types of molecules were able to rescue both 

methionine auxotrophy and cytosolic acidification induced by CYS4-OE (Fig. 4B-C). Taken together, 

these results suggest that the molecules identified in our screen mediate their action through targeting 

the excess intracellular amount of reduced thiols, either by masking them (as NEM does) or by oxidizing 

them (as diamide does), probably preventing them to form disulphide bonds with cysteine residues from 

enzymatic active-sites. Again, these results suggest that CYS4-OE related phenotypes (e.g., methionine 

auxotrophy and increased cytosolic acidification) directly result from increased thiol production at the 

cost of methionine synthesis.  

 

Identification of genetic modifiers of CYS4 OE-induced phenotypes 

To get better insights into the cellular mechanisms involved in CYS4-OE phenotypes, we sought to 

identify genetic modifiers by genetic screening. The genes having the strongest capacity to save the 

methionine auxotrophy of CYS4-OE cells (Fig. 5A) and rescue cytosolic acidification (Fig. 5B) belong 

to two distinct groups. The first group is composed of MUP1 and MMP1 which encode a methionine 

and a S-methylmethionine permease, respectively and STP2, a transcription factor that activates the 

transcription of several amino acid permease genes such as BAP2 (coding a high-affinity leucine 



permease), BAP3 (coding a permease involved in the uptake of cysteine, leucine, isoleucine and valine) 

and AGP1 (coding a low-affinity amino acid permease with broad substrate range). Taken together, 

these results suggest that in addition to methionine auxotrophy, CYS4-OE cells have decreased 

availability of other amino acids, including leucine, and that overexpression of amino acid permeases 

can rescue their phenotypic consequences (Fig. 5A-B). The second group of genes identified in the 

genetic screen contains UBP7 and UBP11 (Fig. 5A), encoding two ubiquitin specific proteases that can 

both deubiquitinate Rsp5 substrates. Rsp5 is an essential E3 ubiquitin–protein ligase that mediates the 

endocytosis and degradation of a number of receptors (ion channels and amino acid permeases, 

including Mup1p, Mmp1p and leucine transporters Bap2p and Bap3p), suggesting that overexpression 

of UBP7 or UBP11 in CYS4-OE cells may lead to the deubiquitination of amino acid permeases, 

preventing them from endocytosis and degradation by Rsp5. We first assessed the effect of UBP7 and 

UBP11 expression on cytoplasmic pH. Similarly to their effect on methionine auxotrophy, the 

overexpression of UBP7 or UBP11 rescued the cytosolic acidification defect of CYS4-OE cells (Fig. 

5B). Then, as RSP5 is essential, we tested CYS4 overexpression in a yeast strain carrying a mutation in 

RSP5 promoter that leads to a 90% decrease in Rsp5 protein level (npi1 mutant, (Hein et al., 1995). In 

this strain, we observed that CYS4-OE was not able to cause cytosolic acidification (Fig. 5C), which is 

consistent with the hypothesis that the inhibition of Rsp5-dependent endocytosis and degradation of 

amino acid permeases can rescue CYS4-OE phenotypic consequences.  

As both leucine (Hara et al., 1998; Nicklin et al., 2009; Sancak et al., 2008) and methionine (Dyachok 

et al., 2016; Ruckenstuhl et al., 2014) have been reported to play important roles in the regulation of 

TORC1 kinase complex, we wondered whether their decreased availability resulting from CYS4-OE 

may lead to TORC1 inhibition. Indeed, TORC1 is a major regulator of cell growth and responds to 

several environmental signals (such as amino acid availability) arresting growth under nutrient 

starvation and stress conditions, and reestablishing growth when favorable conditions are restored. We 

thus tested the phosphorylation status of the Sch9 kinase, a major TORC1 substrate (Urban et al., 2007) 

and showed that TORC1 is inactivated in CYS4-OE cells (Fig. 5D, upcoming results). In agreement with 

these results, we identified, in the genetic screen, LEU2, which codes for an enzyme of the leucine 

biosynthesis pathway, as a gene able to rescue methionine auxotrophy of CYS4-OE cells (Fig. 5E). 

Interestingly, TORC1 activity is required for the full activity of Pma1p, a plasma membrane H+-ATPase 

which is responsible for the regulation of cytosolic pH by pumping out protons from the cytosol, and 

inhibition of TORC1 has been shown to lead to decreased proton efflux and subsequent decreased 

intracellular pH (Mahmoud et al., 2017). Consequently, inactivation of Pma1p through TORC1 

inhibition may contribute to the decreased pH observed in CYS4-OE cells. In agreement with this 

hypothesis, leucine or methionine supplementation in the medium were both found to be able to increase 

cytosolic pH in CYS4-OE cells (Supp Fig. 3A). Taken together, these results suggest that CYS4-OE cells 



have an inhibition of the TORC1 complex, due to decreased intracellular levels of methionine and 

leucine. 

Interestingly, TORC1 inhibition has been shown to activate Rsp5-mediated endocytosis and degradation 

of amino acid transporters (Beck et al., 1999; Crapeau et al., 2014; Iesmantavicius et al., 2014; Jones et 

al., 2012; Zhao et al., 2013), probably as a mechanism to recycle amino acids through increased protein 

turnover. We thus hypothesized that as TORC1 is inhibited in CYS4-OE cells, Rsp5p-related processes 

may be activated, participating to the amino acid decreased uptake in these cells. To check this 

hypothesis, we monitored the internalization and degradation of a glucose transporter Hxt3-GFP, a 

known Rsp5p target, upon switching from glucose to raffinose as the sole carbon source (time zero). In 

glucose, HXT3 transcription was activated and Hxt3-GFP was visible on the plasma membrane of both 

WT and CYS4-OE strains. However, when we monitored the internalization and degradation of Hxt3-

GFP after switching to raffinose, we observed that its localization appeared slightly earlier in the 

vacuole, suggesting increased endocytosis and degradation of Hxt3-GFP in CYS4-OE cells. This was 

confirmed by measuring by western-blot analysis the amount of free GFP, corresponding to the 

degradation of Hxt3-GFP, in both strains at each time (Supp Fig. 3B). Similar results were also obtained 

with Sna3-GFP, another Rsp5 target, which is a marker of endosomal trafficking towards the vacuole. 

Similarly to Hxt3-GFP, slightly increased free GFP was observed in CYS4-OE cells (Supp Fig. 3C). All 

these results suggest that CYS4-OE cells have increased Rsp5p-dependent internalisation and 

degradation of amino acid permeases, which thus contribute to the enforcement of the phenotype of 

CYS4-OE cells, that is to say, decreased availability of amino acids, TORC1 inhibition and increased 

intracellular acidification (Fig. 5F). 

 

Investigation of the genetic interaction between CYS4 and YAK1 

As on their own, both CBS and DYRK1A triplication has been shown to be crucial for cognitive function 

in mouse, it is important to better understand the relationship between these two genes in order to 

identify therapeutic leads adapted to the situation in Down syndrome, in which both genes are triplicated. 

A functional relationship between CBS and DYRK1A has been reported in several studies (Hamelet et 

al., 2009; Maréchal et al., 2018) but it is not clear and appears to depend on the tissue of interest (liver 

versus brain). To better understand the relationship between these two genes, we thus decided to 

investigate the impact of the deletion and/or overexpression of their yeast homologs, CYS4 and YAK1. 

First, we observed that YAK1 overexpression by itself induced methionine auxotrophy in a dose-

dependent manner on medium supplemented with serine (Supp Fig 4A) and that YAK1 overexpression 

worsened CYS4-OE phenotype (Fig. 6A). This activity appeared to be mediated by the kinase activity 

of YAK1 as this effect was lost when a kinase dead (KD) form (K398R, Moriya et al., 2001) of YAK1 

was used (Fig. 6A). In addition, YAK1 overexpression induced similar acidification defects as CYS4-OE 

and combined effect of CYS4 and YAK1 overexpression was additive (Fig. 6B). On the opposite, YAK1 



deletion rescued methionine auxotrophy due to CYS4 overexpression (Fig. 6C). Similarly, yak1  cells 

had increased intracellular pH and CYS4 overexpression in a yak1 strain was unable to induce 

acidification defects (Fig. 6D). Taken together these results suggest that Yak1p promotes Cys4p activity 

through its kinase activity and that, in the absence of Yak1p, Cys4p activity is reduced. Interestingly, 

we observed that epigallocatechin-3-gallate (EGCG), an inhibitor of Dyrk1A (De la Torre et al., 2014), 

which is also a zinc ionophore (Dabbagh-Bazarbachi et al., 2014), increased intracellular pH in both 

CYS4-OE and WT strains (Supp Fig. 4B), suggesting that common therapeutical leads aiming at 

decreasing both DYRK1A and CBS activities could be investigated. 

Interestingly, we identified in the genetic screen another kinase, MCK1, which is the homolog of 

mammalian glycogen synthase kinase-3 (GSK3). As shown on Fig 6E, MCK1 overexpression 

counteracted CYS4-OE induced methionine auxotrophy, but in a kinase-independent manner as a kinase 

dead (KD) form of MCK1 (K68R, Lim et al., 1993) was as efficient as wild-type MCK1 to restore growth 

on methionine-free medium (Fig 6E). Similarly, MCK1 overexpression restored cytosolic acidification 

in CYS4-OE cells (Fig. 6F). Interestingly, MCK1 deletion only slightly increased methionine auxotrophy 

of CYS4-OE cells (Fig. 6G). In addition, we observed that mck1  cells displayed a dose-dependent serine 

sensitivity (Supp Fig 4C), which could be restored by the re-expression of wild-type MCK1 but not by 

the kinase dead form (Supp Fig 4D), possibly suggesting that these cells may have excess serine. Taken 

altogether, these results suggest that Yak1p activates (probably through phosphorylation) Cys4p, but 

that Cys4p full activity depends on other factors regulated by Mck1p, possibly the availability of serine. 

In the absence of MCK1, Cys4p can be fully activated by Yak1p whereas when MCK1 is overexpressed, 

Cys4 is inactive even in the presence of Yak1. 

  

  



DISCUSSION 

Identification of FDA-approved compounds that counteract CYS4 overexpression induced 

phenotypes 

The budding yeast Saccharomyces cerevisiae, a highly tractable model organism for which a number of 

genetic tools are available, has already proven to be a convenient eukaryotic model to study various 

human genetic diseases. Due to the recently described role of CBS in cancer (Bhattacharyya et al., 2013; 

Szabo et al., 2013) and in the cognitive pathophysiology of Down syndrome (Maréchal et al., 2018), the 

identification of pharmacological inhibitors of this enzyme is urgently required. However, the attempts 

to identify such molecules have only led to the identification of compounds with low potency and limited 

selectivity, leading to the idea that CBS may be undruggable. To circumvent this problem, we developed 

an original phenotypical assay aimed at finding molecules that could counteract the in vivo consequences 

of CYS4 overexpression. To ensure the specificity of our screen, we used two different phenotypical 

reads-out to select active molecules. In addition to the methionine auxotrophy that can be expected from 

CYS4 metabolic function in the transsulfuration pathway, we also used the cytosolic acidification defects 

that we characterised in this study. Strikingly, in the screening, we isolated very few molecules (only ∼4 out of 2300 molecules tested, corresponding to <0.2%), indicative of a high stringency. All these 

molecules were also able to counteract cytosolic acidification defects of CYS4-OE cells in a dose-

dependent manner. Of note, some molecules identified in previous screens for CBS inhibitors (mainly 

in vitro) (Thorson et al., 2013), including aminooxyacetic acid (AOAA), were not active in our model. 

One the molecule identified in our screening, DSF, is also able to restore cognitive function in triplicated 

Cbs mice (Maréchal et al., 2018), confirming the in vivo biological relevance of our screening method. 

Interestingly, the four molecules identified (DSF, CHX, CQ and merbromin) share similar properties: 

cationic metals and/or sulfur binding, suggesting a common mechanism of action. Accordingly, we did 

not observe any synergy between the different molecules. This observation led us to test two members 

of another family of ionophores that were not present in the chemical libraries we screened: sodium and 

zinc pyrithione (ZPT), that were also found active in our system. 

DSF has been used clinically for the last 60 years for the treatment of alcoholism via its inhibitory 

function of the enzyme aldehyde dehydrogenase (ALDH), which is responsible for the breakdown of 

the alcohol metabolite acetaldehyde. ALDH inhibition thus results in the accumulation of acetaldehyde, 

which is toxic and leads to a series of aversive symptoms that deter alcohol consumption (Kitson, 1977). 

DSF is reductively activated to diethyldithiocarbamate and both compounds can react with free thiol 

groups on proteins and glutathione; they also have high affinity for heavy metals such as copper and 

zinc (Hogarth, 2012). More recently, DSF has been shown to have anticancer properties against various 

types of cancers. Most of them were attributed to its properties to form copper complex, which exhibits 

highly efficacious and specific toxicity for cancer cells, both in vitro and in vivo, through a variety of 

mechanisms including proteasome and/or NFKB inhibition (Cvek and Dvorak, 2008). Similarly, 8-



hydroxyquinoline and its derivatives (such as CQ and CHX) are known weak, bidentate chelators that 

bind metal ions through the oxygen and nitrogen atoms. These donor atoms provide a preference for 

Cu2+ and Zn2+. The chelating properties of 8-hydroxyquinoline and dithiocarbamate families of 

molecules have been reported to have different cellular consequences: i) the removal of an important 

metal ion in metal ion-containing proteins, affecting their function, structure and/or activity (Lushchak 

et al., 2005); or ii) the generation of metal ion-dependent toxicity (such as copper or zinc-dependent 

toxicity) that leads to the generation of reactive oxygen species and subsequent disruption of biological 

processes (Chen et al., 2006). Given the high membrane permeability and weak zinc-binding property 

of CQ, recent studies have suggested that this drug may also act as a zinc ionophore (Colvin et al., 2008; 

Ding et al., 2005, 2008), shuttling free zinc in or out of cells, depending on the free zinc concentration 

gradient. Similar observations have also been reported for DSF and ZPT (Wiggins et al., 2015). To 

investigate whether these different molecules function as chelator or ionophores in CYS4-OE cells, we 

showed that the efficiency of the molecules was dependent on the availability of extracellular levels of 

zinc. On the contrary, the activity of tested molecules was decreased in the presence of copper, 

suggesting that the molecules bound to copper are not able to mediate their positive action on CYS4-OE 

cells. According to the Irving–Williams series of affinities for metals binding to ligands, copper is 

predicted to bind more tightly to our molecules than zinc, which would explain why chelation of 

extracellular copper by BCS increased their activity. Of note, we also tested the effect of other metals 

such as Fe2+, Mn2+ and Mg2+
 but we did not observe any effect of magnesium or manganese whereas 

iron mimicked copper effects, although less strongly (data not shown). This is in agreement with the 

fact that CQ and DSF also have affinity for iron (Mathieu et al., 2015; Todorich and Connor, 2004). 

 

Role of zinc in the rescue of CYS4-OE resulting phenotypes 

Similar ranges of concentrations of zinc that we used in our study (4-6 mM) have been shown to induce 

oxidative stress in yeast cells (Pagani et al., 2007), leading to decreased intracellular amount of reduced 

glutathione (GSH). We showed that molecules that can quench thiols, such as N-ethylmaleimide (NEM) 

and iodoacetamide or a thiol- specific oxidant, such as diamide, were also able to counteract CYS4-OE 

induced phenotypes, suggesting that the regulation of the redox state of the thiol content of the cell is 

central to the consequences of CYS4-OE. Taken together, all these observations suggest that the drugs 

identified in our screen probably act through thiol oxidation and/or sulfhydryl masking to rescue both 

cytosolic pH and methionine auxotrophy. Indeed, all our identified molecules have thiol-reactive 

properties and we observed that their action and toxicity were decreased by adding reduced glutathione 

or cysteine, in agreement to what has been previously reported for DSF (Kwolek-Mirek et al., 2012).  

Interestingly, Pagani and coworkers also showed that yeast cells exposed to 5 mM of zinc upregulated 

a number of genes, including MET28, a transcriptional activator of several MET genes involved in 



methionine synthesis, and the methionine permeases MUP1 and MUP3 (Pagani et al., 2007). Similarly, 

a transcriptomic study of yeast cells subjected to CQ also show increased expression of MUP1, MMP1, 

MUP3, UBP7 and UBP11 (Li et al., 2010). It is thus possible that, through zinc import, the molecules 

identified in the screening also participate to increased methionine production and import through 

increased expression of methionine permeases. This role of zinc in regulating methionine synthesis 

and/or intracellular glutathione levels have already been reported in a few studies: under low 

concentrations of zinc, elevated levels of GSH are observed (Wu et al., 2007) probably through the 

activation of Yap1p (North et al., 2012), a transcription factor required for oxidative stress tolerance 

that activates the expression of GSH1, GSH2, the genes encoding the two enzymes involved in 

glutathione synthesis from cysteine, and CYS3 and CYS4, the genes involved in cysteine synthesis from 

homocysteine (Fig. 1A) (Orumets et al., 2012), thus leading to increased GSH synthesis at the cost of 

methionine. Conversely, increasing zinc concentration decreases intracellular levels of GSH (Pagani et 

al., 2007; Steiger et al., 2017), leaving the methionine pool available. In addition, a parallel between the 

action of zinc and diamide has been made by Pagani and coworkers on the basis of the profile of genes 

induced by exposure to these two molecules. Indeed, the transcriptomic profile of genes induced by zinc 

is much more similar to the one produced by exposure to diamide than to menadione or hydrogen 

peroxide. These results are in agreement with the fact that menadione was only faintly active on CYS4-

OE phenotypes and that cadmium, another oxidant, did not rescue CYS4-OE cell growth but on the 

contrary, worsened its phenotypes (data not shown), probably because cadmium exposure up-regulates 

genes of the transsulfuration pathway in yeast (CYS3, CYS4, GSH1 and GSH2) (Dormer et al., 2000; 

Fauchon et al., 2002). Regarding NEM, it has been shown in mammalian cells that NEM exposure 

induces increased intracellular levels of zinc (Gibon et al., 2010; Haase and Beyersmann, 2002). 

Although this has not been confirmed in yeast, it is possible that NEM treatment thus results in similar 

transcriptional modifications than zinc in CYS4-OE cells. These data thus confirm that not all oxidant 

molecules have the same effects on cell metabolism and that in our case, molecules which can both 

decrease/mask reduced thiol intracellular levels and increase the synthesis and/or import of methionine 

rescue the phenotypes due to CYS4-OE. 

 

Consequences of intracellular acidification due to CYS4 overexpression 

We showed in this study that CYS4 modulation induces cytosolic acidification defects, which had not 

been previously reported. A defect of vacuolar acidification had previously been shown for cys4  cells 

(Oluwatosin and Kane, 1997; Sambade, 2005), but our results suggest that cys4  cells have an 

intermediate phenotype, less severe than the one initially reported by Oluwatosin and Kane and closer 

to what has been described by Sambade and colleagues. Changes in intracellular pH can have many 

consequences, from modifying the activity of virtually any enzyme to altering protein folding, through 



polar lipids management and vesicular trafficking. Very few elements regarding these consequences 

have been well defined compared to the theoretical huge range of impact that a change in pH can have 

in living cells (reviewed by Orij et al., 2011). Intracellular pH affects many cellular processes, and even 

a slight deviation can affect intracellular metabolic reactions (Bracey et al., 1998; Krebs et al., 1983). 

For example, it can lead to the inhibition of glycolysis (Pearce et al., 2001) and therefore the reduction 

of the cell's ability to generate ATP. This can be a problem as the cellular activities counteracting 

acidification, such as Pma1 function, and anion accumulation consume ATP (Holyoak et al., 1999; Piper 

et al., 1998). Intracellular pH is also a critical component of the total electro-chemical gradient which is 

responsible for the transport of molecules across membranes (Orij et al., 2011). We showed in this study 

that CYS4-OE cells have decreased amino acid uptake and increased Rsp5p-mediated endocytosis and 

degradation of certain receptors. Although this hypothesis remains to be tested, one could hypothesize 

that these defects may translate to impaired synaptic transmission in human brain. Accordingly, NEDD4, 

the human homolog of RSP5, plays an important role in neuronal development, and is responsible for 

the formation and arborisation of dendrites in neurons (Kawabe et al., 2010). Our results are also in 

agreement with previous studies reporting that cytosolic acidification leads to decreased amino acid 

uptake (probably in order to decrease proton co-transport) (Ding et al., 2013), and more particularly 

leucine (Hueso et al., 2012; Kawahata et al., 2006). Interestingly, when studying the effect of acetic acid 

exposure (which causes intracellular acidification) on yeast growth, Hueso and coworkers identified 

LEU2 as a gene important for tolerance to intracellular acidification: they showed that it acts by 

removing the dependency of their leu2 mutant host strain on the uptake of extracellular leucine. Indeed, 

they showed that leucine transport is inhibited by intracellular acidification, and that either leucine over-

supplementation in the medium or overexpression of the leucine transporter gene BAP2 improved yeast 

growth in the presence of acetic acid (Hueso et al., 2012). Similarly, Ding and coworkers screened a 

yeast gene deletion library for acetic acid-resistant mutants, and found an enrichment in endocytosis and 

ubiquitination mutants (Ding et al., 2013). Altogether, these results fit well with our data, showing that 

intracellular acidification (in our case due to Gex1p/Gex2p proton import) leads to decreased amino acid 

uptake, including leucine, thus increasing the initial effects of CYS4-OE (Fig. 7), and that endocytosis 

inhibition rescues CYS4-OE phenotypes (Fig. 5C). Interestingly, both diamide and NEM have also been 

shown to inhibit endocytosis (Sandvig et al., 1988). It is thus possible that these two molecules also act 

through this mechanism to prevent amino acid starvation and TORC1 inactivation and thus counteract 

CYS4-OE phenotypes.  

The deletion of yeast NHX1 (which codes for a Na+/H+ antiporter located at the plasma membrane), 

which leads to decreased cytosolic pH, has been reported to cause an accumulation of early endosomes 

because cytoplasmic acidification prevents their maturation into later endosomes and lysosomes (Brett 

et al., 2005; Samuelson et al., 1988; Wolkoff et al., 1984). Similarly, we observed that CYS4-OE cells 

have more plurilobed vacuoles. Interestingly, Down syndrome patients have been shown to display 



enlarged early endosomes (Cataldo et al., 2000) or rather an accumulation of little endosomes, 

suggesting impaired vesicular trafficking. This observation fits well with the fact that YAK1 

overexpression also induces cytosolic acidification defects and that these acidification defects are more 

severe in cells overexpressing both YAK1 and CYS4, which is the situation found in Down syndrome 

patients.  

 

Genetic relationship between CYS4 and YAK1 

The founding member of the DYRK family, the Saccharomyces cerevisiae Yak1p kinase, is a gene 

which deletion suppresses loss of function of the cAMP-PKA (protein kinase A) pathway and which 

expression is highly induced by arrest in early cell cycle, suggesting that Yak1p acts downstream and/or 

in parallel to PKA (Garrett and Broach, 1989; Garrett et al., 1991). The different phenotypes associated 

with deletion or overexpression of the S. cerevisiae YAK1 gene suggest that Yak1p acts as a negative 

regulator of growth and modulates PKA-regulated processes, suggesting that PKA may be inhibited in 

CYS4-OE cells. In addition, a role of Yak1p has been shown in TORC1 signaling pathway. Yak1p is 

activated and translocated to the nucleus when TORC1 is inactivated. Yak1 is thus a mediator common 

to the PKA and TORC1 signaling pathways. Here, we showed a complex genetic interaction between 

CYS4 and YAK1 and it is not really clear whether Cys4p acts upstream or downstream Yak1p or both. 

Inactivation of TORC1 (and possibly PKA) in CYS4-OE cells probably activate Yak1p. However, the 

fact that YAK1 deletion saves CYS4-OE induced phenotypes is more in favor of a role of Yak1p upstream 

Cys4p, suggesting that Yak1p is necessary to activate Cys4p, probably through phosphorylation. The 

complexity of the regulation of the TORC1 and PKA pathways between different cell types and/or types 

of cellular stress may explain the apparent contradictory results obtained in the different studies on the 

relationship between CBS and DYRK1A. 

 

Zn as a relevant therapeutic strategy to use in patients with Down syndrome 

As drug development can be expensive and cumbersome, finding new applications of existing drugs 

appears as an effective means to accelerate the process. Here we identified molecules (DSF, CQ, and 

dithiocarbamate derivatives) that are under study and that are currently approved for the treatment of 

various pathological disorders, including brain diseases. DSF has been shown to have in vitro and in 

vivo anticancer properties against various types of cancers and in the last years, there has been renewed 

interest in this molecule for cancer therapy because DSF is an attractive candidate for drug repurposing 

given its low cost, well characterized toxicity profile and good safety track record (Chick, 1999; 

Johansson, 1992). DSF is an oral agent convenient to administer, well-tolerated and that crosses the 

blood brain barrier (Oskarsson and Lind, 1985), with potential efficacy for central nervous system 

diseases. Similarly, zinc acetate has been approved by the US FDA in 1997 for the treatment of Wilson’s 



disease as a good alternative to anticopper drugs such as D-penicillamine and trientine (Brewer et al., 

1998). The only side effect is some degree of initial gastric irritation in ~10% of patients, which usually 

decreases and becomes insignificant over time. In our case, it is important to note that zinc acetate does 

not work, probably because the acetate counteracts the positive action of zinc on intracellular pH 

however zinc gluconate may be a good alternative. Interestingly, zinc metabolism has been reported to 

be impaired in patients with Down syndrome (DS) (Lima et al., 2010), possibly because of the 

triplication of SOD1 that encodes the Cu-Zn-dependent superoxide dismutase, a zinc-dependent 

enzyme. Zinc supplementation in DS patients has been shown to be beneficial for several aspects 

including immune and endocrinological problems associated with thyroid dysregulation. It would thus 

be interesting to see whether zinc combined to ionophores such as DSF or CQ that would help to bring 

zinc in brain may also help at the cognitive level. 
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LEGENDS TO FIGURES 

Figure 1: Characterization of the cellular phenotypes caused by CYS4 modulation. (A) Simplified 

representation of the transsulfuration pathway in yeast. CYS4 encodes the cystathionine β-synthase, 

CYS3, the cystathionine gamma-lyase and GSH1 and GSH2, the γ-glutamylcysteine synthetase and 

glutathione synthetase, respectively. Cys4p is located at a metabolic hub, its down-regulation leading to 

a decreased synthesis of cysteine and GSH in favour of S-adenosylmethionine (SAM), S-

adenosylhomocysteine (SAH) and methionine synthesis whereas Cys4p overexpression favours cysteine 

and GSH synthesis at the cost of methionine metabolism. (B) Measurement of total intracellular 

glutathione in cys4  and CYS4 overexpressing (CYS4-OE) cells. As expected from the role of Cys4p in 

the transsulfuration pathway, CYS4 deletion leads to decreased intracellular glutathione (GSH + GSSG) 

levels whereas CYS4-OE increases its levels. (C) Amino acid auxotrophy of cys4  and CYS4-OE cells. 

Cysteine and methionine auxotrophy, revealed by the absence of growth on medium lacking cysteine or 

methionine, were assessed by streaking cys4  cells on medium without cysteine or spotting serial 

dilutions of wild-type cells transformed with two 2µ plasmids either empty (Ø) or containing CYS4, 

which expression is driven by the strong GPD promoter. Note that methionine auxotrophy is exacerbated 

by the addition of serine, a substrate of Cys4p, in the medium. (D) Effect of CYS4 deletion on cytosolic 

alkalinization assessed by pHluorin-dependent fluorescence intensity. cys4  cells showed significantly 

increased cytosolic pH. As cys4  cells need glutathione (GSH) supplementation to grow (due to their 

cysteine auxotrophy), we also assessed the effect of GSH supplementation on the pH but did not observe 

any effect of GSH on a wild-type (WT) strain. (E) Effect of CYS4-OE on cytosolic acidification assessed 

by pHluorin-dependent fluorescence intensity. CYS4-OE cells showed significantly increased cytosolic 

acidification. Student t-test: **, p<0.05; ****, p<0.0001, ns: not statistically significant. 

 

Figure 2: Identification of molecules that counteract the phenotypes induced by CYS4-

overexpression. (A) Dose-dependent growth rescue of CYS4-OE cells on medium without methionine 

is shown for several positive compounds. The initial hits obtained in the screen are disulfiram (DSF), 

merbromin, chloroxine (CHX) and clioquinol (CQ), belonging to three families of molecules (1-3). In 

addition, a few other members of these 3 families of molecules or of another family of ionophores 

(pyrithione, family 4) but not present in the libraries were tested and were also found positive. Note that 

several of these molecules are toxic at high concentrations (close to the filter) but are active at sub-toxic 

concentrations. (B-C) Dose-dependent effect of a representative member of each family (CQ, DSF and 

ZPT) on cytosolic alkalinization rescue of CYS4-OE cells (B) and wild-type (WT) cells (C). Student t-

test: **, p<0.05, ****, p<0.0001, ns: not statistically significant. 

 



Figure 3: Effect of zinc on the action of molecules identified in the screen. (A) Increasing amounts 

of ZnSO4 were added on filters either alone (filters on the left of the plate) or in combination with the 

molecule of interest (60 nmol of CQ, CHX or DSF, filters on the right). Zinc addition on filters appears 

to potentialize the effect of CQ, DSF and CHX on cell growth of CYS4-overexpressing cells. Note that 

at high concentrations (9 µmol), ZnSO4 on its own is sufficient to restore cell growth (right plate, bottom 

left filter). DMSO, added on the filter on the bottom right side of the plate for CQ and DSF and on the 

top right side for CHX, was used as a negative control and the drug alone (without ZnSO4), spotted on 

filter of the top right side of the plate for CQ and DSF and on the top left side for CHX, was used as a 

positive control. Note that although both molecules have a similar chemical structure, CHX and CQ 

display a different behavior in the presence of zinc: whereas increasing concentrations of zinc regularly 

increased the halo of growth restoration of CQ, zinc had a more drastic effect on CHX’s activity. (B) 

Upcoming results. (C) Effect of zinc on cytosolic pH. Addition of rising amounts of ZnSO4 increased 

in a dose-dependent manner the intracellular pH of CYS4-OE cells and, to a lesser extent, wild-type 

(WT) cells, suggesting that it is probably through the import of extracellular zinc that DSF, CQ and 

CHX mediate their action on CYS4-OE induced phenotypes. Student t-test: **, p<0.05, ****, p<0.0001. 

 

Figure 4: Thiol-reactive molecules are able to restore CYS4-OE induced phenotypes. (A) Effect of 

low molecular thiols such as GSH or cysteine on the action of DSF, CQ, CHX and ZPT. (B) Dose-

dependent effect of alkylating molecules such as N-ethylmaleimide (NEM) and thiol-specific oxidant 

molecules, such as diamide, on cell growth of CYS4-OE cells on a medium lacking methionine. (C) 

Dose-dependent effect of NEM and diamide on the cytosolic pH of CYS4-OE and WT cells. Student t-

test: **, p<0.05; ***, p<0.001; ****, p<0.0001, ns: not statistically significant. 

 

Figure 5: Identification of genetic modifiers of CYS4-OE phenotypes point out a defect in amino 

acid uptake. (A) Genes that were the most effective in rescuing CYS4-OE induced methionine 

auxotrophy can be divided into two groups, the first group contains genes related to amino acid import: 

MUP1, MMP1 and STP2. The second group is composed of two genes coding ubiquitin-specific 

proteases UBP11 and UBP7. (B) Similarly to the methionine auxotrophy results, increased methionine 

uptake via MUP1 overexpression or overexpression of UBP7 or UBP11 were able to restore normal 

cytoplasmic pH levels in CYS4-OE cells. (C) Effect of Rsp5p decreased expression (npi1 mutant) on 

cytoplasmic pH of CYS4-OE cells. Decreased Rsp5p-dependent internalization and degradation of 

receptors and amino acid permeases through mutation in RSP5 gene counteracts the effect of CYS4-OE 

on cytosolic acidification. (D) TORC1 is inhibited in CYS4-OE cells. CYS4-OE cells transformed by a 

Sch9-HA construct were tested by western-blot using an antibody directed against a short Sch9 peptide 

including the phosphorylated residue Thr737, which is targeted by TORC1. (E) Increasing leucine 



synthesis through LEU2 overexpression restores cell growth of CYS4-OE cells on a methionine-free 

medium and their acidification defects. (F) Schema depicting the situation in CYS4-OE compared to 

wild-type cells. Due to increased synthesis of cysteine and glutathione (GSH), CYS4-OE cells have 

decreased methionine levels and increased GSH production. The latter activates Gex1p/Gex2p 

glutathione:proton exchangers which increase the amount of intracellular protons. Decreased 

methionine availability results in TORC1 inactivation, which in turn, leads to Pma1p inhibition (and 

thus decreased proton efflux) and increased Rsp5p-mediated endocytosis and degradation intensifying 

the low amino acid (including leucine) uptake. Leucine or methionine supplementation and/or synthesis 

can thus stop this self-activating loop by reactivating TORC1 and restore growth on methionine-free 

medium or normal intracellular pH. Student t-test: ***, p<0.001; ****, p<0.0001, ns: not statistically 

significant.  

 

Figure 6: Genetic interaction between CYS4 and genes coding the kinases YAK1 and MCK1. (A) 

YAK1 overexpression enhances methionine auxotrophy in CYS4-OE cells. This effect depends on the 

kinase activity of YAK1 as a kinase dead form of YAK1 (YAK1-KD) is not able to strengthen CYS4-OE 

induced phenotype. Note that we used in these experiments a methionine-free medium without serine 

supplementation to be able to see stronger methionine auxotrophy than the one caused by CYS4-OE. (B) 

Similarly, YAK1 and CYS4 overexpression have additive effect on cytosolic acidification. (C) On the 

contrary, YAK1 deletion rescues CYS4-OE methionine auxotrophy. (D) Similarly, CYS4-OE is not able 

to induce acidification defects in cells deleted for YAK1 suggesting that Yak1p is necessary for Cys4p 

activity. (E) MCK1 overexpression is able to restore growth of CYS4-OE cells on methionine-lacking 

medium. Note that this activity seems to be independent of Mck1p kinase domain. (F) Similarly, MCK1 

overexpression restores normal intracellular acidification of CYS4-OE cells. (G) CYS4-OE cell growth 

on methionine-free medium is only partially improved in mck1  cells. Student t-test: *, p<0.01; **, 

p<0.05; ***, p<0.001; ****, p<0.0001. 

 

Figure 7: Consequences of CYS4 overexpression in yeast cells. Our data show that CYS4-OE induces 

increased GSH production, which in turns leads to increased cytosolic acidification through the action 

of the Gex1p/Gex2p glutathione/proton exchangers. In parallel, decreased methionine synthesis leads to 

TORC1 inhibition, which in turn leads to the inhibition of the membrane H+-ATPase Pma1p, which 

normally pumps out protons from the cytosol. Several studies have shown that cytosolic acidification 

decreases amino acid import in the cell, particularly leucine. In parallel, TORC1 inhibition leads to the 

activation of Rsp5p-dependent endocytosis and degradation of amino acid permeases, causing a 

situation close to amino acid starvation, which contributes to the inactivation of TORC1. As shown in 

this study, the molecules we identified act probably either by reducing the amounts of reduced thiols 



and/or by increasing the synthesis/import of methionine. Similarly, the genetic modifiers (represented 

in red) we identified in this study, act at different levels but probably prevent TORC1 inhibition by 

increasing methionine and/or leucine synthesis or import. 

  



FIGURES AND TABLES 

Table 1. List of yeast strains used in this study. FL = full length. 

Strain Genotype Source 

S. cerevisiae   

   S288C strains   

BY WT BY4743 MATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 met15Δ0/MET15 LYS2/lys2Δ0 ura3Δ0/ura0 Euroscarf 

cys4Δ BY4743 except cys4::kanMX4/cys4::kanMX4 Euroscarf 

vma1Δ BY4742 (MATα ura3Δ0 leu2Δ0 his3Δ1 lys2Δ0) vma1::kanMX4 Euroscarf 

gex1Δ/gex2Δ BY4742 except gex1::KanMX6 gex2::HIS3 Dhaoui et al., 

2011 

npi1 BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) except npi1::kanMX4 Hein et al., 1995 

HXT3-GFP 

yak1Δ 

BY4742 except HXT3-GFP::kanMX4 

BY4742 except yak1::kanMX4 

Lang et al., 2014 

Euroscarf 

   W303 strains   

W303 WT MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 Lab collection 

mac1Δ 

mck1Δ 

W303 except mac1::kanMX4 

W303 except mac1::kanMX4 

This study 

This study 

 

 



 

  



 

  



 

  



 



 



 

  



 

 

  



SUPPLEMENTARY DATA 

Supp table 1. The capacity of several metal chelators to rescue the growth of CYS4-overexpressing 

cells on medium lacking methionine was tested by loading the indicated amounts of molecules on 

filters.  

Chelator Amounts tested 

on filters  

Ability to rescue 

growth 

EDTA 1-100 nmol - 

DTPA 20 nmol  - 

Deferoxamine 50 nmol - 

Atovaquone 20 nmol - 

Halofantrine 20 nmol - 

TPEN 2 et 20 nmol - 

D-penicillamine 2 et 20 nmol - 

BCS 300-600 nmol - 

Trientine 0.2-20 nmol - 

Neocuproïne 0.2 nmol - 

Ammonium 

tetrathiomolybdate 

20-500 nmol - 

 

Supp Fig. 1: Characterization of possible vacuolar pH defects in cys4Δ and CYS4-overexpressing 

(CYS4-OE) cells. (A) A semi-quantitative western-blot shows that W303 cells transformed with 2µ 

plasmids expressing CYS4 under the control of the strong GPD promoter expresses approximately 15 

times more Cys4p protein compared to the amount of endogenous Cys4p. (B) Assessment of cell growth 

on alkaline medium. As vma mutants are unable to grow on alkaline media and show sensitivity to high 

calcium concentrations, we also tested the sensitivity of cys4Δ cells to these growth conditions. cys4  

cells showed an intermediate sensitivity to alkaline medium and high calcium concentrations compared 

to vma1  mutants, confirming that vacuolar acidification is only slightly impaired in cys4  cells. (C) 

Vacuolar acidification of cys4Δ and CYS4-overexpressing (CYS4-OE) cells assessed by quinacrine 



staining. Whereas control vma1Δ cells (deleted for the subunit A of the V1 peripheral membrane domain 

of V-ATPase), which are known to entirely lack vacuolar acidification, showed a clear absence of 

quinacrine in their vacuole, cys4  cells revealed an intermediate phenotype with less quinacrine staining 

than a wild-type (WT) strain, but more than a vma1  strain. As for CYS4-OE, it only led to a slight 

increase of quinacrine fluorescence compared to a WT strain, suggestive of slightly increased vacuolar 

acidification. (E) A strain deleted for GEX1 and GEX2 genes, both encoding glutathione:proton 

exchangers, has higher cytosolic pH confirming the importance of these proteins in the regulation of 

intracellular pH. CYS4 overexpression in gex1 /gex2  cells is not able to induce cytosolic acidification, 

confirming the role of these exchangers in the cytosolic acidification phenotype in CYS4-OE cells. 

Student t-test: ****, p<0.0001. 

 

Supp Fig. 2: Effect of copper on the action of molecules identified in the screen. As 3 of the 

identified molecules (DSF, ZTP, CQ) have been previously described to bind copper (Chen and Dou, 

2008), we tested the effect of copper on their action. (A) Increasing amounts of copper decreased, in a 

dose-dependent manner, the rescue by CHX of CYS4-OE cell growth on medium without methionine. 

Increasing amounts of CuSO4 (90 pmol to 3 nmol) were added to the filters without (on the left) or with 

6 nmol of CHX (on the right). CHX appeared less active in the presence of copper as it was active at 

higher concentrations, as shown by the closer proximity to the filter of the halo of growth restoration, 

and less toxic. (B) Addition of 10 µM of CuSO4 in the medium completely reversed the effect of CQ, 

CHX and DSF on growth restoration whereas the addition in the medium of 50 µM of bathocuproine 

disulphonate (BCS), a copper chelator, enhanced the effect of the molecules. DMSO, added on the filter 

on the bottom right side of the plate, was used as a control. C) A CHX-copper complex was less efficient 

to restore cell growth of CYS4-OE cells on medium without methionine, compared to CHX (filters on 

the left side of the plate). When 50 nmol of CuSO4 was added on filters (right side of the plate), both 

molecules lost their activity, suggesting that, to be active, they had to be unbound (without a metal) or 

bound to another metal ion than copper. The amount in nmol of drugs dropped on filters are indicated 

on the left panel. DMSO, added on the filter on the top and bottom right side of the plate, was used as a 

negative control. (D-E) Confirmation, using a genetic approach, of the effect of copper on CYS4-OE 

cellular phenotypes. We used a strain deleted for MAC1, the transcription factor activating the 

expression of copper transporters in yeast. Strains expressing CYS4 (CYS4-OE) or control empty 

plasmids (Ø) were spotted in serial dilutions on control medium containing methionine and on a 

methionine-free medium to assess their growth. Methionine auxotrophy due to CYS4 overexpression 

was less severe in a mac1  strain (which has intracellular copper depletion) than in wild-type (WT) cells 

(D). Similarly, MAC1 deletion rescued the acidification defects of CYS4-OE cells (E), suggesting that 

.the mode of action of CQ, CHX and DSF is not based on their capacity to import extracellular copper 

into the cell. Student t-test: **, p<0.05, ns: not statistically significant.  



 

Supp Fig. 3: CYS4-OE cells have a general defect in amino acid uptake that can be restored by 

supplementation or decreased endocytosis of amino acid permeases. (A) Addition of leucine or 

methionine in the medium increase cytoplasmic pH, confirming a role of these amino acids in the 

acidification defects of CYS4-OE cells. (B) CYS4-OE cells have increased Hxt3-GFP internalization and 

degradation. Hxt3-GFP endocytosis was monitored by fluorescence microscopy at different times after 

the switch from glucose to raffinose (T0) that promotes Hxt3p internalization. Quantification of free 

GFP (corresponding to the degradation of Hxt3-GFP in the vacuole) was measured in a representative 

western-blot analysis, showing slightly quicker degradation of Hxt3-GFP in CYS4-OE cells. (C) Sna3-

GFP degradation was assessed by western-blot. Similarly to Hxt3-GFP, slightly increased free GFP was 

observed in CYS4-OE cells, suggesting increased vacuolar degradation of Sna3. Student t-test: **, 

p<0.05. 

 

Supp Fig. 4: Genetic interaction between CYS4, YAK1 and MCK1, the yeast homologs of CBS, 

DYRK1A and GSK3. (A) YAK1 overexpression by itself induced methionine auxotrophy in a dose-

dependent manner on medium supplemented with serine. (B) Epigallocatechin-3-gallate (EGCG), a 

known DYRK1A inhibitor, which is also a zinc ionophore, is able to restore cytosolic acidification 

defects of CYS4-OE cells. (C) Cells deleted for MCK1 have sensitivity to serine supplementation but do 

not have methionine auxotrophy. (D) Serine sensitivity of mck1  cells depends on Mck1p kinase 

function. Student t-test: *, p<0.01; **, p<0.05; ***, p<0.001; ns: not statistically significant. 
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Titre : Etude des conséquences cellulaires de la surexpression de la Cystathionine β-Synthase et 
identification de suppresseurs pharmacologiques. 

Mots clés : Cystathionine β-synthase, syndrome de Down, levure, criblage pharmacologique. 

Résumé : La Cystathionine β-Synthase (CBS) est 

une enzyme dérégulée dans deux pathologies 
caractérisées par une déficience intellectuelle : 
l’homocystinurie, majoritairement causée par des 
mutations homozygotes de CBS, et le syndrome de 
Down (trisomie 21), où CBS est tripliqué du fait de sa 
localisation sur le chromosome 21. Les travaux 
présentés dans cette thèse rapportent dans un 
premier temps l’implication de la triplication de CBS 
dans le phénotype cognitif de souris, ce qui fait de 
CBS une cible thérapeutique pertinente pour 
diminuer déficience intellectuelle des patients 
atteints du syndrome de Down. Nous rapportons par 
ailleurs le développement d’un modèle levure de la 
surexpression de ce gène, qui nous a permis d’isoler 
des molécules pharmacologiques capables de 
contrecarrer les défauts induits par la surexpression 
de la CBS de levure (CYS4). 

L’une des molécules candidates issue de ce 
criblage en levure s’est révélé efficace pour 
restaurer le fonctionnement cognitif des souris 
ayant une triplication de CBS. En outre, nous avons 
mis en évidence les conséquences cellulaires de la 
surexpression de CYS4 dans notre modèle, et 
étudié le mécanisme d’action des molécules isolées 
lors du criblage pharmacologique. Ces travaux 
révèlent que la surexpression de CYS4 affecterait 
l’homéostasie des acides aminés dans la cellule, ce 
qui conduirait à une inactivation de la voie TORC1, 
aggravant les défauts d’internalisation des acides 
aminés. Nous avons également observé que la 
modulation de CYS4 perturbe le pH cytosolique des 
levures, phénotype qui n’avait pas été rapporté 
auparavant. Ainsi, ces travaux ont permis de mieux 
caractériser les conséquences cellulaires de la 
modulation de CYS4, et de proposer des molécules 
candidates pour corriger ces défauts. 

 

Title : Investigation of the cellular consequences of Cystathionine β-Synthase overexpression and 
identification of pharmacological suppressors. 

Keywords : Cystathionine β-synthase, Down syndrome, yeast, pharmacological screen. 

Abstract : Cystathionine β-Synthase (CBS) is an 
enzyme that is misregulated in two conditions 
characterized by intellectual deficiency : 
homocystinuria, which is caused by homozygous 
mutations in CBS, and Down syndrome (trisomy 21), 
in which CBS is triplicated due to its localization on 
chromosome 21. Currently, there is no therapeutic 
solution to improve the cognitive function of Down 
syndrome patients. The work presented here first 
reports the involvement of CBS triplication in the 
cognitive phenotype of mice, which makes CBS a 
relevant therapeutic target to alleviate intellectual 
deficiency in Down syndrome patients. In addition, 
we report the development of a yeast model 
overexpression of this gene, which allowed us to 
isolate pharmacological molecules capable of 
counteract the defects induced by the 
overexpression of yeast CBS (CYS4). 

One of the candidate molecules isolated from this 
pharmacological screen also restores the cognitive 
function of mice carrying CBS triplication. Besides, 
we investigated the cellular consequences of CYS4 
overexpression in our yeast model, and studied the 
mechanism of action of isolated drugs. This work 
reveals that CYS4 overexpression affects amino 
acids homeostasis, leading to TORC1 inactivation, 
which worsen the defects in amino acids 
internalization. We also observed that CYS4 
modulation alters cytosolic pH in yeast, a phenotype 
that had not been reported before. Hence, this work 
allowed us to better characterize the cellular 
consequences of CYS4 modulation, and to propose 
candidate molecules for correct these defects. 

 


