

Etude des conséquences cellulaires de la sur expression de la Cystathionine β -Synthase et identification de suppresseurs pharma cologiques

Alice Léon

► To cite this version:

Alice Léon. Etude des conséquences cellulaires de la sur expression de la Cystathionine β -Synthase et identification de suppresseurs pharma cologiques. Médecine humaine et pathologie. Université de Bretagne occidentale - Brest, 2018. Français. NNT: 2018 BRES0089 . tel-03934726

HAL Id: tel-03934726 https://theses.hal.science/tel-03934726

Submitted on 11 Jan2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIVERSITE BIOLOGIE BRETAGNE SANTE LOIRE

THESE DE DOCTORAT DE

L'UNIVERSITE DE BRETAGNE OCCIDENTALE Comue Universite Bretagne Loire

ECOLE DOCTORALE N° 605 Biologie Santé Spécialité : Génétique, génomique, bioinformatique

Par Alice LEON

Etude des conséquences cellulaires de la surexpression de la Cystathionine β-Synthase et identification de suppresseurs pharmacologiques.

Thèse présentée et soutenue à Brest, le 12 décembre 2018 Unité de recherche : Inserm UMR 1078 – Groupe PRIME

Rapporteurs avant soutenance :

Sébastien LÉON Fabien FAUCHEREAU	Directeur de Recherche, Institut Jacques Monod, Paris Maitre de Conférences, Institut Jacques Monod, Paris
Composition du Jury :	
Présidente : Pascale MARCORELLES	Professeur, Université de Bretagne Occidentale
Examinateurs : Sébastien LÉON Fabien FAUCHEREAU Yann HÉRAULT Vianney PICHEREAU	Directeur de Recherche, Institut Jacques Monod, Paris Maitre de Conférences, Institut Jacques Monod, Paris Directeur de Recherche, Université de Strasbourg Professeur, Université de Bretagne Occidentale
Dir. de thèse : Gaëlle FRIOCOURT	Chargée de Recherche, Université de Bretagne Occidentale

Remierciements

Je remercie tout d'abord les membres du jury qui ont accepté d'évaluer ces travaux de thèse. Merci à Sébastien Léon et Fabien Fauchereau d'avoir accepté d'être rapporteurs de ce travail, et à Yann Hérault, Vianney Pichereau et Pascale Marcorelles d'en être les examinateurs.

Merci à Claude Férec et Emmanuel Génin, qui se sont succédés à la direction de l'unité 1078, de m'avoir permis de travailler dans cette unité.

Je souhaite remercier, d'une manière générale, toutes les personnes qui m'ont entourée et soutenue au cours de ces trois années de thèse, qui ont été rythmées par des moments chouettes et des moments moins chouettes. À chaque étape, j'ai pu apprécier la sympathie et la bienveillance de beaucoup de personnes, de l'unité 1078 et d'ailleurs, ça m'a énormément aidée.

Un grand merci à Gaëlle Friocourt, pour ton encadrement et ton soutien à toute épreuve. Merci de m'avoir fait confiance pour travailler avec toi sur ce projet, et de m'avoir encouragée au fil des difficultés et jusqu'au bout (et c'est vraiment pas rien !). Merci à Marc Blondel d'avoir codirigé ce travail au début, et pour toutes les discussions que nous avons eues.

Je remercie également Cécile Voisset, pour ta bienveillance et le soutien que tu m'as apporté également. Merci aussi pour tes conseils, qu'ils aient été scientifiques ou humains.

Je remercie Claire Rollet, tu as été une stagiaire géniale et tu es une personne rayonnante et intelligente. Merci pour ces 8 mois, pour ta contribution sur ce travail et pour la bonne humeur permanente et le fun que tu as apporté tout ce temps. Merci également à Alice Blondel d'avoir partagé un peu de temps avec moi sur ce projet (il y a longtemps maintenant), travailler avec toi a été un plaisir.

Merci à Olivier Billant, de m'avoir encadrée à l'origine, mais surtout pour tout ce qu'on a partagé tout ce temps. Merci pour tout ce que j'ai appris à tes côtés et pour toutes les fois où tu m'as épaulée.

Merci à Mona, pour ce temps de coloc génial et ton amitié précieuse. Merci à Méline pour ton fun et ta fraicheur. Merci à Valériane pour ta spontanéité pis pour m'avoir changé les idées avec tes histoires d'éthnobotanique. Merci les gars, je vous aime. Merci à Maël pour ta patience et ton amour. Merci à maman, merci à papa, de m'avoir permis d'arriver jusque-là, de m'avoir soutenue et d'accepter mon choix de ne pas poursuivre dans cette voie. ©

Table des matières

١.	INTRO	DUCTION	1
	1. LE SYN	drome de Down	1
	1. 1.	Identification de cibles thérapeutiques	2
	a.	Etudes chez l'homme	2
		Les trisomies partielles	2
	b.	Exemples de gènes importants pour le phénotype	3
	c.	Etudes chez la souris : les modèles génétiques	4
		Reproduction de la totalité du phénotype	5
		Identification des gènes impliqués dans certains aspects du phénotype du syndrome de Down	7
	1. 2.	Stratégies thérapeutiques à l'étude	8
	1. 3.	Implication de CBS dans le phénotype cognitif	9
	2. Номс	ICYSTINURIE	11
	3. VOIES	MÉTABOLIQUES IMPLIQUANT CBS	12
	3. 1.	Réactions catalysées par CBS	12
	3. 2.	Cycle de la méthionine	14
	3. 3.	Production de cystéine et de glutathion	15
	3.4.	Formation de sulfure d'hydrogène	15
	4. Profil	MÉTABOLIQUE DES PATIENTS DOWN ET HOMOCYSTINURIQUES	16
	4. 1.	Patients atteints d'homocystinurie	16
		Traitements disponibles pour l'homocystinurie	18
	4. 2.	Patients atteints du syndrome de Down	18
	5. Expres	ssion et structure de CBS	20
	5. 1.	Expression de la protéine	20
		Système nerveux central	20
		Localisation subcellulaire	21
	5. 2.	Gène CBS & facteurs de transcription	22
		Facteurs de transcription régulant CBS	23
	5. 3.	Description de la protéine	24
	a.	Structure de la protéine	24
		Le domaine catalytique	25
		Le domaine de liaison à l'hème	25
		Le domaine C-terminal	
	b.	Cristallographie	29
	5.4.	Conservation de la protéine au cours de l'évolution	29
		Utilisation du modèle levure pour étudier la fonctionnalité de mutations de CBS	
	5. 5.	Voies de régulation de CBS	
		Modifications post-traductionnelles	
	b.	Recherche de partenaires moléculaires	35

	6. SUREXPI	RESSION DE CBS DANS CERTAINS CANCERS	36
	7. RECHER	CHE D'INHIBITEURS SPÉCIFIQUES DE CBS	38
	8. Objecti	FS DU PROJET DE THÈSE	40
١١.	RÉSULT	ATS	41
	1. ARTICLE	1	41
	1. 1.	Implication de CBS dans le phénotype cognitif associé au syndrome de Down	
	2. ARTICLE	2	
	2. 1.	Caractérisation des conséquences cellulaires de la surexpression de CYS4	
	2. 2.	Molécules	
	2. 3.	Voies de signalisation affectées par la surexpression de CYS4	
	2.4.	Mode d'action des molécules	101
III.	DISC	USSION	160
	1. Conséq	UENCES CELLULAIRES DE LA SUREXPRESSION DE CYS4	160
	2. Modèle	ELEVURE DE SUREXPRESSION DE CYS4 : INTÉRÊT ET LIMITES	163
	3. Moléci	JLES IDENTIFIÉES	164
	4. CRIBLAG	E GÉNÉTIQUE	165
	5. RELATIO	N ENTRE <i>CYS4</i> ET <i>YAK1</i>	166
	6. SUREXPI	RESSION DE <i>CBS</i>	169
	6. 1.	Conséquences de la surexpression de CBS en cellules de mammifères	169
	6. 2.	Effet sur le pH cytosolique	
	7. LOCALIS	ATION DE CYS4 ET CBS	171
	7. 1.	Localisation subcellulaire de Cys4	
	7. 2.	Localisation subcellulaire de CBS	
	8. IMPLICA	tions pour le syndrome de Down	178
	9. IMPLICA	TIONS POUR LE CANCER	179
ıv.	RÉFÉ	RENCES	180

Liste des abréviations

3-MST: 3-Mercaptopyruvate SulfurTransferase 5-Me THF : 5-Methyltetrahydrofolate 5,10-Me THF : 5,10-Methylenetetrahydrofolate ADN : Acide DésoxyriboNucléique ARN : Acide RiboNucléique ARNm : Acide RiboNucléique messager AOAA : AminoOxyAcetic Acid AMP : Adénosine MonoPhosphate **AMPK**: AMP-activated Protein Kinase **APP** : Amyloid Precursor Protein ATP : Adénosine TriPhosphate **BAC** : Bacterial Artificial Chromosome BCECF-AM: 2',7'-Bis-(2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein, Acetoxymethyl Ester BHMT : Betaine-Homocysteine S-MethylTransferase BiP/GRP78 : Binding immunoglobulin Protein/ 78 kDa Glucose-Regulated Protein **BSO** : L-Buthionine-Sulfoximine **CBS** : Cystathionine β -Synthase **CBL** : Cystathionine β -Lyase CGH : Comparative Genomic Hybridation **CGL** : Cystathionine γ -Lyase **CGS** : Cystathionine γ -Synthase **CHX**: Chloroxine **ClC** : Chloride Channel CO : Carbon monoxide (monoxyde de carbone) CQ : Clioquinol DSCR : Down Syndrome Critical Region DSF: Disulfiram

DYRK1A : Dual specificity tyrosine(Y)phosphorylation-Regulated Kinase 1A EGCG : Épigallocatéchine gallate FL : Full Length (pleine longueur) GCL : Glutamate Cystéine Ligase GEF1 : Glycerol Ethanol, Ferric requiring 1 GEX1 : Glutathione EXchanger 1 GEX2 : Glutathione EXchanger 2 γ -Glu-Cys : L- γ -glutamyl-L-cystéine GS : Glutathione Synthase GSH : Reduced Glutathione (Glutathion réduit) GSSG : Oxidized Glutathione (Glutathion oxydé) H₂S : Hydrogen Sulfide (sulfure d'hydogène) H_2O_2 : Hydrogen Peroxide (peroxyde de d'hydrogène) HAA1 : Homolog of Ace1 Activator 1 HGS : Hepatocyte Growth factor-regulated tyrosine kinase Substrate HMGN1 : High Mobility Group Nucleosome Binding Domain 1 HPC2 : Human Polycomb 2 HSA21 : Homo SApiens chromosome 21 HSF1 : Heat Shock Factor 1 HTT : Huntingtin IMPDH : Inosine-5'-MonoPhosphate DeHydrogenase KLF : Krüppel-Like Factors LanCL1 : Lanthionine synthetase C-Like 1 LEU2 : LEUcine biosynthesis 2 MAT : Méthionine AdénosylTransférase MCK1 : Meiosis and Centromere regulatory

Kinase

MMP1 : MethylMethionine Permease 1 MPT : Modification Post-Traductionnelle MS : Methionine Synthase MSN2 : Multicopy suppressor of SNF1 mutation 2 MSN4 : Multicopy suppressor of SNF1 mutation 4 MT : MéthylTransférase mTOR : mammalian Target Of Rapamycin MUP1 : Methionine UPtake 1 NAD : Nicotinamide Adénine Dinucléotide NEDD4 : Neural precursor cell Expressed Developmentally Down-regulated protein 4 **NF-Y**: Nuclear Factor Y NGS : Normal Goat Serum NMDA : N-Methyl-D-Aspartate **NO** : Nitric Oxide (monoxyde d'azote) **PBS** : Phosphate-Buffered Saline **PDH1**: PrpD Homolog 1 **PDI** : Protein Disulfide Isomerase PDTC : Pyrrolidine DiThioCarbamate **PFA** : ParaFormAldéhyde **PIAS1** : Protein Inhibitor Of Activated STAT 1 PIAS3 : Protein Inhibitor Of Activated STAT 3 **PKG** : Protein Kinase G PLP: 5'-PyridoxalPhosphate

PLT : Potentialisation à Long Terme **RSP5** : Reverses Spt- Phenotype 5 STP2 : Species-specific tRNA Processing 2 SAM : S-Adénosyl-L-Méthionine SAH : S-Adénosyl-L-Homocystéine SAHH : S-Adénosyl-L-Homocystéine Hydrolase SCV : Système CardioVasculaire siRNA : small interfering RNA SNC : Système Nerveux Central SOD1 : Cu,Zn-SuperOxide Dismutase SOK1 : Suppressor Of Kinase 1 TGN-38 : TransGolgi Network integral membrane protein 38 THF : Tetrahydrofolate **TMAO** : Trimethylamine-N-Oxide **TORC1** : Target Of Rapamycin Complex 1 **UBC** : Ubiquitin C **UBC9** : UBiquitin-Conjugating 9 **UBP7** : UBiquitin-specific Protease 7 **UBP11**: UBiquitin-specific Protease 11 UPR : Unfolded Protein Response (réponse aux protéines mal repliées) VAMP2 : Vesicle-Associated Membrane Protein 2 **WT** : Wild Type (sauvage) **YAK1** : Yet Another Kinase 1 **ZPT** : Zinc Pyrithione

Liste des figures

Figure 1. Représentation schématique des régions synténiques du chromosome 21 humains (HSA21) par ra	pport
aux chromosomes murins (Mmu10, 16 et 17)	6
Figure 2. Voies métaboliques et réactions catalysées par CBS	13
Figure 3. Représentation schématique du profil métabolique des patients atteints de syndrome de Down	19
Figure 4. Représentation schématique du mode de régulation de l'activité de CBS par son domaine C-termir	nal.
	28
Figure 5. Conservation de CBS et évolution de la voie de transsulfuration chez différentes espèces	30
Figure 6. Conservation de CBS chez l'homme (hCBS), la drosophile (dCBS) et la levure (yCBS)	31
Figure 7. Evaluation de la production d' H_2 S induite par la surexpression de CYS4	161
Figure 8. Effet du traitement à l'Ebselen sur le pH cytosolique de levures qui surexpriment CYS4	162
Figure 9. Quantification du glutathion total dans des cellules qui surexpriment CBS	169
Figure 10. Evaluation des changements de pH cytosolique induits par la surexpression de CBS	170
Figure 11. Localisation de Cys4 en levure	173
Figure 12. Localisation de CBS dans une lignée de cellules hépatiques (HepG2)	175
Figure 13. Les mutations K211R et L540Q modifient la localisation de la protéine CBS	176
Figure 14. Colocalisation de CBS-FL avec les mitochondries et la protéine BiP/GRP78	177

Liste des tableaux

Tableau 1. Caractéristiques biochimiques des protéines CBS de l'homme (hCBS), la drosophile (dCBS) et la levure
(yCBS)

I. Introduction

Au cours de cette thèse, nous avons focalisé notre étude sur l'homologue levure du gène codant la cystathionine β -synthase (CBS). Cette introduction a pour but d'aborder les différentes connaissances rapportées à ce jour à propos de ce gène, en particulier chez l'homme car le gène de levure n'a fait l'objet que de très peu d'études. Son implication dans différents contextes pathologiques sera abordée, pour mettre en évidence les conséquences physiologiques d'une surexpression ou d'une perte de fonction chez l'homme.

1. Le syndrome de Down

Le syndrome de Down (OMIM : 190685), autrement appelé trisomie 21, est une maladie génétique qui se caractérise par une morphologie faciale particulière, une déficience intellectuelle variable, une hypotonie musculaire, des malformations du cœur et du tractus digestif fréquentes et un développement précoce de la maladie d'Alzheimer. C'est l'anomalie chromosomique la plus fréquente et l'une des plus étudiées. Elle affecte 1 naissance vivante sur 650 à 1000 dans le monde, et 1 sur 2000 naissances vivantes en France.

Les caractéristiques phénotypiques de cette pathologie ont été définies par John L. Down (Down, 1866), remplaçant le terme de mongolien, utilisé jusque-là pour désigner cette pathologie, par le nom « syndrome de Down ». Le développement de cette pathologie est dû à la présence de trois chromosomes 21 au lieu de deux, d'où le nom de trisomie 21 (Lejeune *et al.*, 1959). Chez l'homme, seules les trisomies des chromosomes 21, 18 et 13, lorsqu'elles sont constitutives, conduisent à des individus viables. La cause prédominante de trisomie est la non-disjonction des chromosomes lors de la première division méiotique chez la femme (Hassold et Hunt, 2001). Le risque de ce type d'évènement lors de la méiose augmente avec l'âge, c'est pourquoi un lien entre l'âge maternel et le risque de trisomie 21 a rapidement été mis en évidence (Penrose, 1933). Cependant, bien que moins fréquente, l'origine du déséquilibre peut également être paternelle (Bennett et Abroms, 1979 ; Fisch *et al.*, 2003).

Actuellement, le quotidien des patients atteints peut être amélioré grâce à une prise en charge éducationnelle précoce et maintenue tout au long de la vie, alliant kinésithérapie, psychomotricité, orthophonie, et aide à l'intégration sociale du patient. Le diagnostic du syndrome de Down implique également un suivi médical particulier incluant la surveillance d'autres problèmes médicaux souvent associés à cette pathologie, tels que la perte d'audition, les otites, les problèmes oculaires, ou l'apnée du sommeil (observés dans plus de 50% des cas), mais aussi les défauts cardiaques congénitaux, les problèmes gastro-intestinaux et un dysfonctionnement thyroïdien, observés dans moins de la moitié des cas mais avec des conséquences plus sévères (Ivan et Cromwell, 2014). Pour ces types de troubles, les patients peuvent recevoir les traitements spécifiques habituellement utilisés, c'est pourquoi l'espérance de vie médiane des patients atteints du syndrome de Down a considérablement augmenté et dépasse actuellement les 50 ans. Cependant, et malgré de nombreuses stratégies thérapeutiques testées, aucun traitement médicamenteux spécifique pour la déficience intellectuelle dans la trisomie 21 n'existe à ce jour (Hart *et al.*, 2017). De ce fait, de nombreuses études sont encore nécessaires pour mieux définir les mécanismes physiopathologiques à cibler pour améliorer les fonctions cognitives des patients de manière efficace.

1. 1. Identification de cibles thérapeutiques

Le chromosome 21 est le plus petit chromosome humain en termes de paires de bases et le moins riche en gène. Il contient environ 250 gènes, qui vont donc tous être présents en trois copies au lieu de deux en cas de trisomie de la totalité du chromosome 21, comme dans la majorité des cas. La surexpression de ces gènes peut avoir des conséquences variables, notamment selon leur fonction, du niveau de surexpression réel, de leur interaction avec des gènes situés sur d'autres chromosomes, etc. De nombreuses études se sont donc attachées à définir quels gènes ou groupes de gènes surexprimés seraient responsables du phénotype, et dans quelle mesure.

a. Etudes chez l'homme

Les trisomies partielles

Dans de rares cas, les patients qui ont un phénotype associé au syndrome de Down ne présentent qu'une triplication partielle du chromosome. Cette observation a permis de proposer deux hypothèses : (1) la surexpression de tous les gènes du chromosome 21 n'est pas nécessaire pour provoquer le syndrome de Down et (2) la surexpression d'un groupe de gènes seulement serait suffisante pour provoquer la totalité du phénotype associé au syndrome de Down.

Plusieurs études ont donc été menées chez ces patients pour tenter de définir une région chromosomique nécessaire et suffisante pour entraîner l'apparition de la pathologie. Ces études ont conduit à la définition de la Down Syndrome Chromosome Region (DSCR) (HGNC : 2708), localisée en 21q22.3 (Epstein *et al.*, 1991 ; Rahmani *et al.*, 1990). Une cartographie phénotypique a également été établie d'après ce type d'observations, mettant en évidence les zones chromosomiques les plus importantes pour le développement de certains symptômes (Epstein *et al.*, 1991). Cependant, l'hypothèse d'une zone réduite du chromosome 21 ou d'un groupe de gènes comme seule cause génétique du syndrome de Down a très rapidement été abandonnée.

En effet, une étude par Comparative Genomic Hybridation (CGH) array a montré, chez l'homme, que certains cas de trisomies partielles provoquent la majorité des symptômes du syndrome de Down sans pour autant comprendre la DSCR précédemment définie (Lyle *et al.*, 2009). En réalité, le phénotype des patients atteints du syndrome de Down serait la conséquence de la surexpression de plusieurs gènes du chromosome 21, mais aussi de leur interaction entre eux et avec des gènes situés sur d'autres chromosomes. De ce fait, l'intégralité des symptômes de cette pathologie ne peut pas être expliquée uniquement par la surexpression d'un nombre réduit de gènes. Pour certains symptômes cependant, il apparaît clairement que la surexpression de certains gènes est particulièrement importante.

b. Exemples de gènes importants pour le phénotype

Plusieurs symptômes associés au syndrome de Down peuvent être, au moins en partie, la conséquence de la surexpression de gènes particuliers. Par exemple, le développement précoce de la maladie d'Alzheimer chez les patients, caractérisé par la formation de plaques amyloïdes, à l'extérieur des neurones, et de dégénérescences neurofibrillaires, dans les neurones, touche environ 80% des patients entre 30 et 40 ans, et presque 100% au-delà de 40 ans (Mann, 1988). Le syndrome de Down est donc un facteur de risque de développement précoce de la maladie d'Alzheimer (Beyreuther *et al.*, 1993), ce qui signifie qu'un (ou plusieurs) des gènes du chromosome 21 serait impliqué dans le développement de cette pathologie. Différents arguments plaident en faveur de l'importance du gène *APP* (Amyloid Protein Precursor) dans ce phénomène. En effet, ce gène est situé sur le chromosome 21 et est surexprimé dans le cerveau des patients adultes atteints du syndrome de Down (Cheon *et al.*, 2008 ; Oyama *et al.*, 1994). Par ailleurs, de rares cas de formes familiales de maladie d'Alzheimer sont dus à des mutations de ce gène (Murrell *et al.*, 2000 ; Wu *et al.*, 2012), et la duplication de ce gène provoque également le développement précoce de la maladie d'Alzheimer (Rovelet-Lecrux *et al.*, 2006). Cependant, une étude récente rapporte que la

triplication de gènes du chromosome 21 autres qu'*APP* a également une influence sur l'apparition d'agrégats amyloïdes (Wiseman *et al.*, 2018), ce qui souligne de nouveau la complexité des mécanismes physiopathologiques associés au syndrome de Down.

En ce qui concerne l'incidence élevée de leucémies chez les patients atteints du syndrome de Down, l'explication majeure est la trisomie 21 en soi. En effet, la présence d'un chromosome 21 surnuméraire est la modification cytogénétique la plus commune des cellules malignes dans la leucémie lymphoblastique aiguë (Third International Workshop on Chromosomes in Leukemia, 1981). Une étude récente suggère qu'elle pourrait plus précisément être la conséquence de la surexpression du gène *HMGN1* (High Mobility Group Nucleosome binding domain 1), également situé sur le chromosome 21, qui favorise le développement de leucémies lymphoblastiques aiguës de type B *in vivo* (Lane *et al.*, 2014).

Pour la déficience intellectuelle dans le syndrome de Down, deux gènes candidats ont été identifiés : *CBS* (Cystathionine β -Synthase) et *DYRK1A* (Dual specificity serine-thréonine et tyrosine (Y) Kinase 1 A). En effet, ils sont situés sur le chromosome 21, surexprimés dans le cerveau des patients adultes (Dowjat *et al.*, 2007 ; Ichinohe *et al.*, 2005) et, par leurs fonctions respectives, sont impliqués dans le fonctionnement cérébral. Le rôle de ces deux gènes dans la physiopathologie du syndrome de Down a été mis en évidence grâce à des observations effectuées chez les patients atteints de trisomie 21, mais également grâce au développement de modèles souris.

c. Etudes chez la souris : les modèles génétiques

La compréhension et l'étude du syndrome de Down ont beaucoup évolué grâce à la modification génétique de souris, utilisées comme modèles de la pathologie. De nombreuses lignées murines ont été générées pour tenter de reproduire le plus fidèlement possible la pathologie, dans le but de les utiliser à la fois pour des études phénotypiques détaillées, mais aussi pour évaluer l'effet *in vivo* de traitements potentiels. Par ailleurs, ces modèles permettent des études plus ciblées sur l'impact de la surexpression d'un ou plusieurs gènes sur le phénotype des souris. Les trois critères majeurs pour définir la validité d'un modèle souris sont de reproduire la cause de la pathologie (dans le cas de la trisomie 21, la présence de trois copies de tout ou partie des gènes homologues de ce chromosome chez la souris), d'en reproduire les symptômes et de s'assurer de son aspect prédictif, surtout en ce qui concerne la réponse aux traitements (Crawley, 2004).

Reproduction de la totalité du phénotype

Dans le cas du syndrome de Down, la complexité de la création d'un modèle murin fidèle est lié au fait que l'intégralité du chromosome 21 humain ne correspond pas à un seul chromosome chez la souris. En effet, la première cartographie comparative du chromosome 21 humain par rapport à la souris a révélé qu'une partie du chromosome 21 chez l'homme, comprenant plusieurs gènes de la DSCR, correspondait chez la souris à une région du chromosome 16 (Cox et Epstein, 1985). Des souris portant une trisomie 16 (Ts16) ont donc été créées dès les années 80 (Epstein *et al.*, 1985) pour tenter de reproduire la pathologie chez la souris. Cependant, ces souris ne constituaient pas un bon modèle de syndrome de Down, notamment parce que la trisomie 16 entraîne une létalité *in utero*. En outre, des homologues murins de gènes du chromosome 21 sont situés sur d'autres chromosomes que le 16 chez la souris, et inversement, le chromosome 16 de la souris contient de nombreux gènes absents du chromosome 21 humain (figure 1).

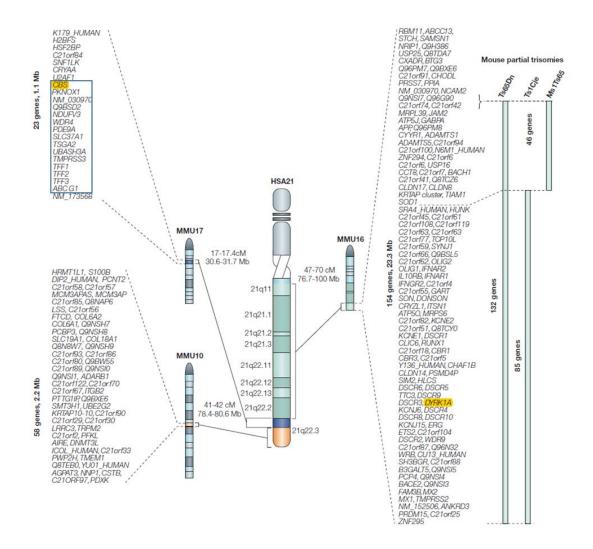


Figure 1. Représentation schématique des régions synténiques du chromosome 21 humains (HSA21) par rapport aux chromosomes murins (Mmu10, 16 et 17). Les gènes *CBS* et *DYRK1A* sont surlignés en jaune. La région tripliquée dans le modèle Dp1Yah est encadrée en bleu. Adapté de Antonarakis *et al.*, 2004.

De ce fait, d'autres modifications génétiques ont été réalisées chez la souris dans le but de reproduire au mieux les symptômes observés chez l'homme. Le modèle actuellement le plus utilisé et le plus décrit est la souris Ts65Dn (Davisson *et al.*, 1993). Ce modèle est caractérisé par la trisomie partielle de la partie distale du chromosome 16 de la souris, qui contient 136 gènes dont la plupart sont des homologues des gènes présents sur le chromosome 21 humain, et permet la reproduction de certains symptômes pouvant être associés au syndrome de Down tels qu'un poids réduit à la naissance, un tremblement musculaire, une stérilité chez les mâles et une dysmorphie (Reeves *et al.*, 1995). Bien que ce modèle ne permette pas de reproduire toutes les caractéristiques du syndrome de Down, c'est le modèle de référence dans le cadre d'études sur cette pathologie.

Plusieurs lignées murines ont été créées depuis pour tenter de reproduire plus fidèlement l'intégralité du phénotype des patients atteints du syndrome de Down. Deux stratégies différentes ont été envisagées : introduire chez les souris la totalité du chromosome 21 humain, sous forme de chromosome artificiel (O'Doherty *et al.*, 2005) ; ou surexprimer uniquement les régions synténiques du chromosome 21 chez la souris (Yu *et al.*, 2010). Ces modifications génétiques permettent effectivement de restituer plus fidèlement les altérations cognitives dues à la trisomie 21 observées chez l'homme. Il s'agit donc de deux modèles murins du syndrome de Down qui reproduisent mieux les symptômes observés chez les patients, mais ils présentent également leurs propres limites. Par exemple, pour le modèle Tc1, le chromosome 21 humain supplémentaire n'est pas intact et n'est pas maintenu dans toutes les cellules (O'Doherty *et al.*, 2005). De plus, il présente des réarrangements (une délétion, six duplications et plus de 25 réarrangements structuraux *de novo*) (Gribble *et al.*, 2013). Ces observations, ajoutées aux limites inhérentes à l'expression de gènes humains chez la souris, remettent en cause la validité du modèle. Aujourd'hui, le modèle Ts65Dn reste largement le plus utilisé pour les tests pharmacologiques.

Identification des gènes impliqués dans certains aspects du phénotype du syndrome de Down

En dehors des modèles créés pour reproduire le plus fidèlement possible la totalité du phénotype des patients atteints du syndrome de Down, l'étude de pathologies génétiques complexes nécessite également la création de modèles intermédiaires permettant d'étudier l'impact de la surexpression d'un ou plusieurs gènes sur un aspect particulier du phénotype associé à la pathologie.

Concernant la déficience intellectuelle, l'intérêt des chercheurs s'est rapidement porté sur le gène *DYRK1A* et les conséquences de sa triplication. En effet, ce gène est compris dans la DSCR définie au début des années 90 et il est surexprimé dans le cerveau des fœtus atteints de trisomie 21. Par ailleurs, une mutation de l'homologue de ce gène chez la drosophile, nommé minibrain (*mnb*), entraîne des défauts d'apprentissage et une hypoactivité (Tejedor *et al.*, 1995). Un modèle souris de la triplication de *Dyrk1a* seulement (TgDyrk1A) présente également des défauts défauts développementaux et cognitifs, suggérant un rôle causal dans la déficience intellectuelle et les défauts moteurs dans le syndrome de Down (Altafaj *et al.*, 2001). Par ailleurs, la normalisation du nombre de copies de *Dyrk1A* dans le modèle Ts65Dn améliore les mémoires de travail et de référence, et restaure la prolifération et la différentiation des cellules de l'hippocampe, ainsi que la

densité de marqueurs GABAergiques et glutamatergiques dans la couche moléculaire de l'hippocampe (Altafaj *et al.*, 2013 ; García-Cerro *et al.*, 2014).

Par ailleurs, vu que le modèle Ts65Dn est le plus utilisé mais ne représente qu'une triplication d'une région du chromosome 16 de souris, des modèles de triplication des autres régions, situées sur les chromosomes 10 et 16, ont également été générés. En particulier, un modèle de triplication de la région *Abcg1-U2af1* (modèle Ts1Yah) présente des défauts cognitifs similaires à d'autres modèles murins du syndrome de Down, révélés par le test de reconnaissance de nouvel objet, l'open-field et le Y-maze, soulignant l'implication de cette région dans le fonctionnement cognitif (Pereira *et al.*, 2009).

1. 2. Stratégies thérapeutiques à l'étude

Les premières tentatives d'intervention thérapeutique consistaient essentiellement à administrer aux patients des vitamines et minéraux, sans réelles améliorations des fonctions cognitives des patients (Bidder *et al.*, 1989 ; Harrell *et al.*, 1981 ; Pueschel *et al.*, 1980 ; Weathers, 1983). Par la suite, les études réalisées notamment sur le modèle souris Ts65Dn ont permis de mieux définir les mécanismes à cibler.

Elles ont permis, par exemple, de mettre en évidence une suractivation des récepteurs au Nmethyl-D-aspartate (NMDA) dans le modèle Ts65Dn qui peut être corrigée par l'administration d'un antagoniste de ces récepteurs, la mémantine, pour améliorer les performances d'apprentissage et de mémorisation des souris (Costa *et al.*, 2008 ; Rueda *et al.*, 2012). Cependant, les tests cliniques sur l'homme n'ont pas révélé de bénéfice du traitement à la mémantine par rapport à un placebo, ni pour les capacités cognitives d'individus jeunes (Boada *et al.*, 2012), ni pour le déclin cognitif de patients atteints âgés (Hanney *et al.*, 2012). Une étude de phase II est pourtant en cours avec la mémantine chez des jeunes adultes atteints du syndrome de Down (ClinicalTrials.gov NCT02304302). De même, des molécules telles que le donépézil (Kishnani *et al.*, 2009) ou la rivastigmine (Spiridigliozzi *et al.*, 2016), qui étaient efficaces sur le modèle Ts65Dn, ont montré des bénéfices nuls ou limités chez les individus atteints de syndrome de Down.

La fluoxétine, commercialisée sous le nom de Prozac, est un inhibiteur spécifique de la recapture de la sérotonine. Elle est connue pour augmenter la neurogenèse dans l'hippocampe et présente des effets bénéfiques chez les souris Ts65Dn adultes (Clark *et al.*, 2006), mais aussi

lorsqu'elle est administrée en prénatal (Guidi *et al.*, 2014). L'approche du traitement prénatal dans le cas de la trisomie 21 est particulièrement intéressante car (1) l'essentiel de la neurogenèse a lieu *in utero* et (2) la pathologie du fœtus est généralement identifiée avant la naissance grâce aux méthodes de dépistage. Une étude avec 21 femmes enceintes a été lancée au Texas pour tester l'efficacité de l'administration de fluoxedine en prénatal (Wert *et al.*, 2017), mais aucun résultat n'a été publié à ce jour.

Une autre stratégie donnant des résultats encourageants est l'inhibition de DYRK1A par une molécule contenue dans les feuilles de thé vert, l'epigallocatechin-3-gallate (EGCG). Un traitement avec cette molécule améliore la potentialisation à long terme au niveau de l'hippocampe, essentielle à la plasticité neuronale, et corrige les déficits cognitifs des souris Ts65Dn (De la Torre *et al.*, 2014 ; Xie *et al.*, 2008). De plus, une étude pilote réalisée avec 31 jeunes adultes atteints de trisomie 21 montre que le traitement à court terme avec l'EGCG améliore les capacités cognitives des patients à la fois sur le plan physiologique (meilleure mémoire de reconnaissance visuelle et meilleure mémoire de travail spatiale) qu'en termes de qualité de vie et de fonctionnement social (De la Torre *et al.*, 2014). D'autres équipes ont cependant rapporté une absence d'effet bénéfique, voire certains effets délétères sur le modèle Ts65Dn, ce qui nuance les résultats encourageants obtenus par de la Torre et ses collaborateurs (Stagni *et al.*, 2017). De manière similaire, l'utilisation d'un autre inhibiteur de DYRK1A, la leucettine L41, permet de corriger les défauts cognitifs de différentes lignées de souris qui surexpriment *DYRK1A* (Nguyen *et al.*, 2018).

Des stratégies thérapeutiques visant d'autres mécanismes, tels que la norépinephrine, les œstrogènes, la mélatonine, la voie sonic hedgehog et les antioxydants, sont également à l'étude (Hart *et al.*, 2017). De manière générale, il apparaît donc très difficile d'identifier des molécules efficaces pour améliorer les fonctions cognitives des patients atteints de syndrome de Down, ce qui s'explique en partie par la complexité de cette pathologie, et les connaissances encore limitées à ce jour en ce qui concerne les causes de la déficience intellectuelle des patients.

1. 3. Implication de CBS dans le phénotype cognitif

L'implication de CBS dans les défauts cognitifs a depuis longtemps été proposée (Chadefaux *et al.*, 1985). Certains travaux ont été réalisés pour tenter d'analyser l'impact de la triplication de *CBS* chez la souris. De manière surprenante, l'étude de V. Régnier et ses collaborateurs (Régnier *et*

al., 2012) rapporte que l'ajout d'une copie du gène *CBS* humain chez la souris entraine une favorisation de la potentialisation à long terme (PLT) de l'hippocampe, processus important pour la plasticité synaptique et donc la mémorisation (Lynch, 2004). Cette observation concorde avec l'hypothèse qu'une triplication de *CBS* conduit à une augmentation de la production d'H₂S, capable de faciliter la PLT par une activation des récepteurs NMDA. L'analyse des acides aminés souffrés dans des extraits de cervelets des souris n'est par ailleurs pas modifiée par rapport aux individus contrôles. De plus, les souris ne présentaient pas de défaut pour les tests comportementaux réalisés (rotarod et passive avoidance). D'après cette observation, les auteurs suggèrent que la triplication de *CBS* dans le syndrome de Down aurait en réalité un effet bénéfique sur le fonctionnement cognitif des patients.

Au contraire, des résultats récents montrent l'impact de la surexpression de *CBS* sur le phénotype cognitif (Maréchal et al., 2018 ; Résultats – Article 1). Pour résumer, les souris qui présentent une triplication d'une région synténique de la partie distale du chromosome 21 humain située sur le chromosome 17 (région *Abcg1-Cbs*, modèle Dp1Yah) (figure 1), présentent des altérations cognitives, révélées par des anomalies du test comportemental de reconnaissance d'objets. Ces altérations ne sont pas observées lorsque, parmi les gènes de cette région, seul le gène *Cbs* n'est présent qu'en deux copies. Ces résultats suggèrent que le surdosage de *Cbs* est nécessaire pour provoquer ce phénotype. Par ailleurs, la triplication de *Cbs* (souris Tg(*CBS*)) seul entraîne également un défaut de reconnaissance d'objets chez la souris. De ce fait, il semble que la surexpression de *Cbs* est suffisante pour provoquer des défauts cognitifs chez la souris. Ces observations font de CBS une autre cible thérapeutique pertinente pour réduire la déficience intellectuelle dans le syndrome de Down.

Au cours de cette thèse, nous avons focalisé nos travaux sur le gène *CBS* qui, d'après les données obtenues chez la souris par l'équipe de Y. Hérault, jouerait un rôle dans la déficience intellectuelle associée au syndrome de Down. L'impact d'une dérégulation de ce gène sur le fonctionnement cognitif est par ailleurs souligné par le fait qu'une perte de fonction de *CBS* entraîne également une déficience intellectuelle dans l'homocystinurie. Contrairement à la trisomie 21, il s'agit d'une pathologie monogénique, où seul le gène *CBS* est affecté. L'étude de cette perte de fonction apporte des éléments importants dans la compréhension du rôle de ce gène et des conséquences de sa modulation, elle fera donc l'objet du chapitre suivant.

2. Homocystinurie

L'homocystinurie est une maladie métabolique autosomique récessive rare, dont la prévalence est de 1 à 9/100 000 (OMIM : 236200), et qui est la conséquence de mutations perte de fonction du gène *CBS*. Elle est caractérisée sur le plan clinique notamment par une déficience intellectuelle plus ou moins sévère, une ectopie du cristallin, des anomalies du squelette et un thromboembolisme.

Cette pathologie a été découverte indépendamment par deux groupes de chercheurs en 1962, qui ont analysé les urines de plusieurs patients atteints de déficience intellectuelle à la recherche d'un défaut métabolique. Leurs études ont détecté une accumulation d'homocystéine dans les urines chez un enfant (Gerritsen *et al.*, 1962) et deux sœurs (Carson et Neill, 1962). Dans la deuxième publication, les auteurs qualifient ce défaut d'homocystinurie, terme toujours utilisé à ce jour pour désigner la pathologie. En 1964, il a été mis en évidence que ce défaut était dû à l'absence ou la réduction de l'activité de la cystathionine β -synthase : son activité enzymatique indétectable dans le foie (Mudd *et al.*, 1964) et le produit direct de la réaction catalysée par cette enzyme, la cystathionine, était indétectable dans le cerveau d'un patient atteint (Gerritsen et Waisman, 1964). Par ailleurs, le fait que ce défaut ait été retrouvé dans l'étude de 1962 de Gerritsen et ses collaborateurs chez deux sœurs, qui avaient un frère non atteint, a poussé les chercheurs à étudier le mode de transmission de la pathologie. Il a alors été mis en évidence qu'il s'agissait d'une pathologie à transmission autosomique récessive (Finkelstein *et al.*, 1964).

Ainsi, l'étude des patients atteints d'homocystinurie permet d'observer les conséquences d'une diminution de fonction de CBS, variable selon la localisation des mutations sur la protéine. Il existe plus de cent mutations pathogéniques décrites, distribuées sur l'ensemble de la protéine. Les patients étant le plus souvent hétérozygotes composites, il est parfois difficile de faire une corrélation génotype/phénotype, mais de nombreuses études *in vitro* ont permis de caractériser les conséquences fonctionnelles, et notamment le degré de perte de fonction, de la plupart des mutations isolément.

La conséquence principale de la diminution de fonction de CBS est l'accumulation d'homocystéine dans les urines et dans le sang des patients (Mudd *et al.*, 1964). L'homocystéine est un acide aminé servant d'intermédiaire pour la formation de cystéine à partir de méthionine. Elle est retrouvée à des concentrations plasmatiques faibles (<15 μ M) dans des conditions physiologiques normales, et s'élève à plus de 50 μ M en néonatal et plus de 100 μ M chez les individus plus âgés en cas d'homocystinurie (Sacharow *et al.*, 1993). L'étude et la gestion thérapeutique des patients se sont ensuite beaucoup basées sur les voies métaboliques impliquant CBS, c'est pourquoi elles seront détaillées dans le paragraphe suivant.

3. Voies métaboliques impliquant CBS

3. 1. Réactions catalysées par CBS

La réaction principale catalysée par CBS est la condensation de l'homocystéine et de la sérine pour former la cystathionine et de l'eau (figure 2A, réaction 1). Cette réaction s'inscrit dans la voie de transsulfuration, qui se définit par le transfert d'un atome de soufre d'une molécule à une autre ; faisant ainsi le lien entre les acides aminés soufrés, la méthionine et la cystéine (figure 2B). Cette réaction s'inscrit dans un nœud métabolique essentiel faisant le lien entre le cycle de la méthionine et la formation de glutathion (GSH), qui seront détaillés dans cette partie. En dehors de cette réaction dite canonique, CBS participe également à la production de sulfure d'hydrogène (H₂S) par plusieurs réactions alternatives (figure 2A, réactions 2-5) (Singh *et al.*, 2009).

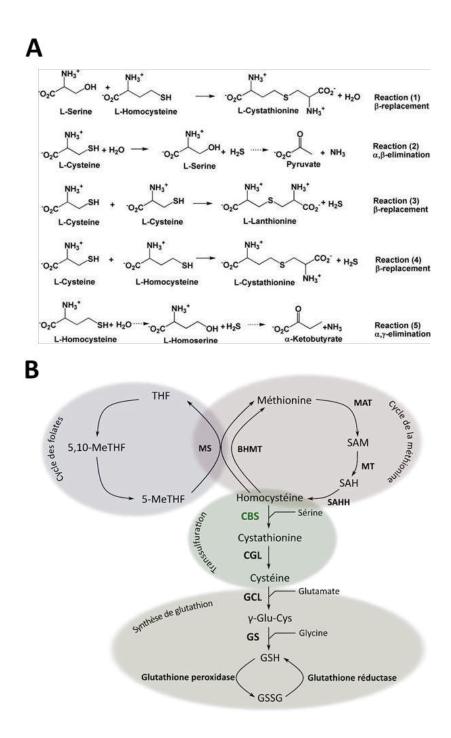


Figure 2. Voies métaboliques et réactions catalysées par CBS. (**A**) Réactions catalysées par CBS, d'après Singh *et al.*, 2009. Les flèches en pointillés correspondent aux réactions pour lesquelles aucune preuve n'a été obtenue au cours de l'étude. (**B**) Voie de transsulfuration (en vert) et voies métaboliques associées. Dans cette représentation, seule la réaction « canonique » de CBS (réaction 1 de la partie A) est représentée. 5-Me THF : 5-Methyltetrahydrofolate ; 5,10-Me THF : 5,10-Methylenetetrahydrofolate ; BHMT : bétaine-homocystéine méthyltransférase ; CBS : cystathionine β -synthase ; CGL : cystathionine γ -lyase ; GCL : glutamate cystéine lyase ; γ -Glu-Cys : L- γ -glutamyl-L-cystéine ; GS : glutathione synthase ; GSH : glutathion réduit ; GSSG : glutathion oxydé ; MAT : méthionine

adénosyltransférase ; MS : méthionine synthase ; MT : méthyltransférase ; SAH : S-adénosylhomocystéine ; SAM ; S-adénosylméthionine ; THF : tétrahydrofolate.

3. 2. Cycle de la méthionine

La méthionine captée de l'alimentation sert de précurseur à la formation de Sadénosylméthionine (SAM), par l'action de la méthionine adenosyltransférase (MAT), qui transfère de l'ATP sur la méthionine. La SAM est nécessaire à la synthèse des polyamines, et c'est un donneur essentiel de groupement méthyle (-CH₃). Elle est utilisée comme substrat par les méthyltransférases (MT), comme les ADN méthyltransférases ou les histone-méthyltransférases, ce qui confère à la SAM un rôle essentiel dans la régulation de l'expression génique. Elle est également utilisée pour la méthylation des phospholipides et des neurotransmetteurs tels que l'adrénaline, la dopamine et la sérotonine. A l'issue de ces réactions de méthylation, la SAM ayant perdu son groupement méthyle devient la S-adénosylhomocystéine (SAH). La SAH est un métabolite intermédiaire qui, par l'action de la S-adénosylhomocystéine hydrolase (SAHH), permet la formation d'homocystéine et d'adénosine. L'homocystéine ainsi formée peut alors suivre deux voies métaboliques distinctes : soit une dégradation irréversible en entrant dans la voie de transsulfuration pour former de la cystéine (paragraphe suivant), soit une reméthylation pour rester dans le cycle de la méthionine. Si les niveaux de méthionine et de SAM sont faibles, la voie de reméthylation est favorisée pour conserver ces métabolites.

La reméthylation de l'homocystéine est essentiellement catalysée par la méthionine synthase, une enzyme exprimée de manière ubiquitaire (Li *et al.*, 1996). Cette réaction utilise la cobalamine, ou vitamine B12, comme cofacteur et la 5-méthyltetrahydrofolate (5 Me-THF) provenant du cycle des folates, comme substrat donneur de groupement méthyle. La reméthylation de l'homocystéine peut également être catalysée par la bétaine-homocystéine méthyltransférase (BHMT), une enzyme exprimée essentiellement dans le foie et les reins (Sunden *et al.*, 1997).

Le cycle de la méthionine est donc composé de plusieurs éléments essentiels au fonctionnement cellulaire. La méthionine est un acide aminé essentiel chez l'homme : il s'agit du premier acide aminé de toutes les protéines. La SAM, outre son rôle régulateur de CBS, est un donneur essentiel de groupements méthyle, elle est ainsi impliquée dans diverses fonctions telles que la régulation de l'expression génique ou la synthèse de neurotransmetteurs (Bottiglieri, 2002).

3. 3. Production de cystéine et de glutathion

Si la quantité de méthionine est suffisante en revanche, l'homocystéine suivra une voie de dégradation irréversible : la voie de transsulfuration (Finkelstein *et al.*, 1988). La première réaction de cette voie consiste, par l'action de CBS, à coupler l'homocystéine avec de la sérine pour former de la cystathionine et de l'eau. La cystathionine ainsi formée est ensuite clivée par la deuxième enzyme de la voie de transsulfuration, la cystathionine γ -lyase (CGL), qui la transforme en cystéine et en acide α -cétobutyrique. La cystéine est un acide aminé très instable, qui peut être rapidement oxydé en cystine et provoquer la production d'H₂O₂ dans les cellules. La quantité de cystéine libre est donc généralement maintenue à un niveau faible, une partie étant notamment utilisée pour la synthèse protéique. Mais la cystéine peut également servir à la synthèse de glutathion (GSH), un tripeptide composé de cystéine, de glycine et d'acide glutamique, qui permet le maintien du potentiel redox dans le cytoplasme des cellules.

3. 4. Formation de sulfure d'hydrogène

L'H₂S est connu depuis le XVIIIème siècle, notamment suite à une série d'intoxications observées chez des égoutiers parisiens. L'H₂S est un gaz incolore mais qui dégage une odeur typique « d'œufs pourris », sa présence est donc facilement détectable par l'odorat. Cependant, lorsque la quantité d'H₂S dépasse un seuil aujourd'hui non déterminé, il peut ne pas être détecté de manière olfactive, probablement à cause d'un effet toxique immédiat sur le tissu olfactif. Une fois inhalé, à forte dose, l'H₂S a un effet toxique direct sur le système nerveux, et un effet considéré comme plus indirect sur le système respiratoire. L'atteinte respiratoire est souvent considérée comme la cause du décès des personnes exposées à des quantités très élevées d'H₂S, comme dans les égouts (Adelson et Sunshine, 1966). L'H₂S a donc longtemps été considéré comme un gaz toxique. Cependant, il s'avère que l'H₂S est également produit de manière endogène chez les mammifères. Il est même qualifié de « gasotransmetteur », comme le monoxyde de carbone (CO) et le monoxyde d'azote (NO). De ce fait, la quantité d'études concernant l'H₂S a drastiquement augmenté à partir des années 2000 (Szabo, 2017), révélant son rôle de médiateur dans un large champ de fonctions cellulaires. Il reste cependant de nombreuses inconnues et hypothèses à confirmer quant aux voies de signalisation affectées par ce gaz. Les rôles de l'H₂S produit de manière endogène les mieux décrits à ce jour concernent principalement le système nerveux central (SNC) et le système cardiovasculaire (SCV). Dans le SNC, l'H₂S facilite la potentialisation à long terme (PLT), un élément essentiel de la plasticité neuronale, via l'activation des récepteurs NMDA (Abe et Kimura, 1996). Dans le SCV, il exerce une action vasodilatatrice notamment via l'ouverture des canaux potassium sensibles à l'ATP (canaux K_{ATP}) (Zhao *et al.*, 2001).

Chez l'homme, trois enzymes sont capables de synthétiser de l'H₂S à partir de différents substrats : deux enzymes de la voie de transsulfuration, CBS et CGL, ainsi que la 3mercaptopyruvate sulfurtransferase (3-MST) (Huang et Moore, 2015). CBS a d'abord été considérée comme étant la seule enzyme capable de synthétiser de l'H₂S dans le cerveau car il a été rapporté que des souris *cbs^{-/-}* ne présentaient pas de quantités mesurables d'H₂S (Eto *et al.*, 2002). Cependant, cet article a ensuite été rétracté en 2004 car des analyses complémentaires ont révélé que l'H₂S avait été sous-estimé dans les expériences rapportées dans cet article : les souris *cbs^{-/-}* présentent en fait un niveau d'H₂S dans le cerveau similaire aux souris *wt*, du fait de l'activité de la 3-MST (Shibuya *et al.*, 2009).

Une modification du dosage de CBS peut donc théoriquement affecter ces différentes voies métaboliques, et la mesure de ces différents composés dans les contextes pathologiques tels que l'homocystinurie ou le syndrome de Down est nécessaire pour évaluer les changements et proposer des mécanismes expliquant le développement d'une déficience intellectuelle dans ces deux pathologies.

4. Profil métabolique des patients Down et homocystinuriques

4. 1. Patients atteints d'homocystinurie

La connaissance des métabolites pouvant être affectés par l'activité de CBS a permis de définir les éléments à quantifier chez les patients atteints d'homocystinurie, afin de mieux caractériser et comprendre leur profil métabolique.

Ainsi, il ressort qu'en plus de l'accumulation d'homocystéine, les patients présentent des concentrations de méthionine, de SAM et de SAH plasmatiques augmentées (Heil *et al.*, 2007), des concentrations en sérine et en cystathionine largement réduites (Orendáč *et al.*, 2003) et une

concentration de cystéine généralement diminuée (Hargreaves *et al.*, 2002 ; Orendáč *et al.*, 2003). Bien que la cystéine constitue le précurseur majeur pour la formation de GSH, un élément essentiel dans la gestion du stress oxydatif dans les cellules, ce dernier ne semble pas diminué chez les patients (Hargreaves *et al.*, 2002 ; Orendáč *et al.*, 2003).

Parmi ces modifications métaboliques, l'élément majoritairement incriminé dans la physiopathologie de l'homocystinurie semble être l'accumulation d'homocystéine. En effet, la toxicité de l'homocystéine a largement été démontrée (revu par Jakubowski, 2004; Obeid et Herrmann, 2006). Une augmentation de l'homocystéine plasmatique constitue un facteur de risque important pour les maladies cardiovasculaires et les accidents vasculaires cérébraux (Homocysteine Studies Collaboration, 2002). Dans le système nerveux central, l'accumulation d'homocystéine provoque une excitotoxicité via une activation des récepteurs NMDA (Obeid et Herrmann, 2006 ; Olney *et al.*, 1987).

Par ailleurs, CBS est également l'une des enzymes impliquées dans la formation d'H₂S, notamment à partir de cystéine. La mesure de ce dernier paramètre a pendant longtemps manqué dans l'analyse biochimique des patients atteints d'homocystinurie, probablement à cause des diverses difficultés techniques (Nagy et al., 2014; Olson et al., 2014). Pour pallier à ce manque d'information, Viktor Kozich et ses collaborateurs ont utilisé une méthode plus indirecte, basée sur le dosage des thioéthers plasmatiques qui sont plus stables que l'H₂S et reflètent la quantité d'H₂S produite (Kožich et al., 2016). De manière contre-intuitive, leurs résultats semblent indiquer que la quantité d'H₂S est en réalité augmentée chez les patients homocystinuriques. Les auteurs proposent que ce résultat serait dû à une compensation de la perte de fonction de CBS par une augmentation de l'activité de CGL. Cette hypothèse peut en effet être émise au vu des résultats d'analyses sanguines, mais ne reflète pas forcément les modifications au niveau du cerveau des patients, où l'H₂S joue un rôle important. Or la CGL n'est exprimée que très faiblement dans les neurones (Awata et al., 1995; Diwakar et Ravindranath, 2007): elle ne serait responsable que d'environ 5% de la production d'H₂S dans le cerveau (Kabil et al., 2011). On peut donc penser que le mécanisme compensatoire proposé par Kozich et ses collaborateurs pourrait ne pas être valable en ce qui concerne le cerveau. D'après l'étude des souris cbs^{-/-}, en l'absence de CBS, l'H₂S reste produite par l'action de la 3-MST (Shibuya et al., 2009), on peut ainsi imaginer que chez les patients homocystinuriques, l'H₂S est toujours produit dans le cerveau. On ne peut cependant pas savoir si sa synthèse est diminuée, maintenue à un niveau similaire aux contrôles sains, ou augmentée suite à un mécanisme compensatoire impliquant une augmentation de l'activité totale de la 3-MST pour la synthèse d'H₂S.

D'autre part, étant donné que la SAM et la SAH, qui sont des éléments clés de la machinerie de méthylation, sont augmentées dans l'homocystinurie, on pourrait s'attendre à une modification globale de la méthylation chez ces patients, et ainsi un impact global sur la régulation de l'expression génique. Cependant, les données chez l'homme sont à ce jour insuffisantes et souvent contradictoires concernant cet aspect, on ne peut donc pas vraiment évaluer l'impact de ce facteur sur la physiopathologie de l'homocystinurie (Heil *et al.*, 2007 ; Mandaviya *et al.*, 2014).

Traitements disponibles pour l'homocystinurie

Une fois l'origine génétique et ses conséquences métaboliques déterminées chez les patients homocystinuriques, plusieurs possibilités de traitements ont été proposées, notamment pour réduire la quantité d'homocystéine dans le sang et les urines des patients.

La première stratégie consiste à administrer de fortes doses de vitamine B6, ou pyridoxine, qui est un précurseur de pyridoxal 5-phosphate (PLP), cofacteur de CBS. Cette stratégie vise ainsi à favoriser directement l'activité de CBS. Cependant, ce traitement n'est pas adapté pour certaines mutations de CBS (un peu plus de 50%) qui entraînent une insensibilité à cette supplémentation en vitamine B6 (patients « B6 non-responsive ») et qui ont généralement un phénotype plus sévère que les patients « B6 responsive » (Mudd *et al.*, 1985 ; Skovby *et al.*, 2010). Des stratégies thérapeutiques plus indirectes, également basées sur une prise en charge diététique, peuvent alors être appliquées pour réduire les taux d'homocystéine de ces patients « B6 non-responsive ». Un régime pauvre en méthionine peut permettre de réduire l'apport de substrat pour la formation de d'homocystéine, et la supplémentation en bétaine, en acide folique et/ou en vitamine B12 peuvent permettre d'augmenter l'utilisation d'homocystéine pour la formation de méthionine ou pour alimenter le cycle des folates, réduisant son accumulation (Barber et Spaeth, 1967 ; Komrower *et al.*, 1966 ; Smolin *et al.*, 1981).

4. 2. Patients atteints du syndrome de Down

Chez les patients atteints du syndrome de Down, l'augmentation de l'activité de CBS conduit à une perturbation de la voie de transméthylation, avec notamment une diminution des niveaux d'homocystéine (Chadefaux *et al.*, 1985), de méthionine, de SAM et de SAH plasmatique (Pogribna *et al.*, 2001). En outre, la quantité de sérine plasmatique est diminuée tandis que celle de cystéine est augmentée (Lejeune *et al.*, 1992), conséquences directes de l'augmentation de l'activité de CBS chez ces patients (figure 3).

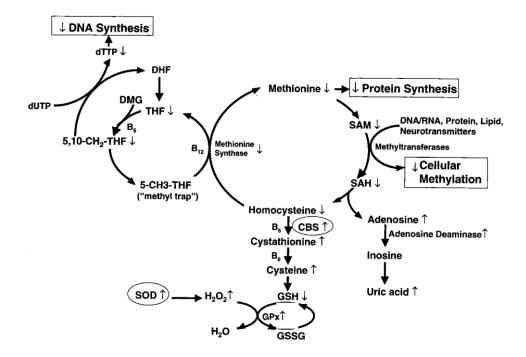


Figure 3. Représentation schématique du profil métabolique des patients atteints de syndrome de Down. D'après Pogribna et al., 2001.

La diminution de méthionine observée chez les patients atteints pourrait avoir une importance cruciale dans la physiopathologie de la trisomie 21, étant donné l'importance de cet acide aminé dans la synthèse protéique. De plus, la diminution de SAM, donneur essentiel de groupement méthyl, pourrait perturber les réactions de méthylation de l'ADN et donc avoir un large spectre de conséquences sur la régulation de l'expression d'autres gènes. Par ailleurs, la perturbation de la voie de transméthylation pourrait avoir des conséquences sur le cycle des folates, altérant ainsi l'ensemble des voies de méthylation de l'ADN, élément essentiel des régulations épigénétiques, ce qui peut provoquer des troubles cognitifs (Mann, 1988).

Alors que la quantité de cystéine, substrat nécessaire pour la synthèse de glutathion, est augmentée dans le sang des patients Down, le glutathion plasmatique est diminué (Pogribna *et al.*, 2001). Cela reflèterait la nécessité accrue de détoxification du peroxyde d'hydrogène (H₂O₂) produit par l'enzyme SOD1 (superoxyde dismutase 1), dont le gène est également situé sur le chromosome 21.

Enfin, il a été proposé que la surexpression de CBS dans le syndrome de Down augmenterait la production d'H₂S, et que cette augmentation serait en partie responsable de l'hypotonie et de la déficience intellectuelle des patients (Belardinelli *et al.*, 2001 ; Kamoun, 2001 ; Kamoun *et al.*, 2003). Cette hypothèse repose notamment sur un parallèle entre les observations cliniques et biologiques effectuées chez les patients atteints du syndrome de Down et ceux qui ont subi une intoxication chronique au sulfure d'hydrogène. En effet, des études biochimiques ont révélé une augmentation des thiosulfates, dérivé principal du sulfure d'hydrogène, dans les urines des patients Down, et l'hypotonie musculaire, les défauts de vision et les troubles cognitifs font partie des signes cliniques d'une intoxication à l'H₂S. Cependant, cette hypothèse n'a pas été plus approfondie depuis. Comme pour l'homocystinurie, l'impact réel de la modulation de CBS sur la production d'H₂S est donc à ce jour indéterminé.

5. Expression et structure de CBS

5. 1. Expression de la protéine

L'expression de CBS est majoritairement retrouvée dans le foie, le cerveau et le pancréas chez les mammifères (Mudd *et al.*, 1965), mais aussi dans les reins et les yeux (Bao *et al.*, 1998 ; Persa *et al.*, 2006).

Système nerveux central

Dans le système nerveux central, CBS est exprimée le plus fortement au niveau de l'hippocampe et du cervelet.

Les types cellulaires dans lesquels CBS est exprimée ont fait l'objet de controverses. En effet, une étude publiée en 2003 a rapporté que la protéine CBS est exprimée fortement dans les neurones de l'hippocampe et dans les cellules de Purkinje chez la souris (Robert *et al.*, 2003). Une autre étude rapporte également une localisation de CBS dans les neurones de différentes zones du cerveau et de la moelle épinière chez l'homme (Chertok *et al.*, 2011). Au contraire, plusieurs études ont rapporté que l'expression de CBS serait majoritairement astrocytaire, chez la souris et chez l'homme (Enokido *et al.*, 2005 ; Ichinohe *et al.*, 2005 ; Lee *et al.*, 2009 ; Linden *et al.*, 2008). Une analyse transcriptomique haut débit a par ailleurs révélé un enrichissement de l'expression de CBS de 23,4 fois dans les astrocytes de souris par rapport aux neurones (Cahoy *et al.*, 2008).

La différence entre les résultats de l'étude de K. Robert et de celles qui ont suivi peut s'expliquer par un problème de spécificité de l'anticorps utilisé. De manière générale, les difficultés pour obtenir un anticorps dirigé contre CBS suffisamment spécifique, mais aussi pour les études d'hybridation *in situ*, pourraient être dues à la présence d'un pseudogène CBS-like sur le bras court du chromosome 21. Pour les anticorps, une autre explication serait que l'antigène utilisé soit une partie de la protéine présentant une homologie avec d'autres protéines : la partie N-terminale peut être partagée par d'autres hémoprotéines, la partie catalytique par d'autres enzymes ayant une activité métabolique proche de CBS, et les domaines CBS en C-terminal sont partagés avec d'autres enzymes présentant des fonctions très différentes de CBS. D'après des expériences d'immunofluorescence et de western blot réalisées par Aline Dubos et Véronique Brault (IGBMC, Strasbourg), il apparait que plusieurs anticorps commerciaux dirigés contre CBS ne sont pas spécifiques, étant donné qu'on observe un signal dans des cellules issues de souris *cbs^{-/-}*, et une bande d'intensité équivalente à celle des souris *wt* en western blot pour les extraits de cerveau.

L'expression de CBS dans les astrocytes semble dépendre de la présence de cellules neuronales, comme révélé chez le rat (Miyamoto *et al.*, 2015). Dans les astrocytes, l'H₂S provoque un influx de calcium (Nagai *et al.*, 2004), qui par la suite peut affecter l'environnement synaptique (Kamat *et al.*, 2015). La modulation de l'expression de CBS dans les astrocytes pourrait donc effectivement avoir des conséquences fonctionnelles sur les capacités cognitives, mais elles n'ont pas encore été clairement définies ni dans le contexte de l'homocystinurie, ni dans celui du syndrome de Down.

Localisation subcellulaire

Dans une étude de 2013, L. Casique et ses collaborateurs ont observé que certaines mutations de CBS entrainaient un défaut de sa localisation (Casique *et al.*, 2013). En effet, les auteurs rapportent que l'expression de la protéine CBS *WT* dans des cellules HEK-293 entraine une localisation majoritairement cytoplasmique diffuse, alors que deux mutants, T87N et D234N, présentent une localisation ponctuée. Des expériences de colocalisation avec différents marqueurs (réticulum endoplasmique, Golgi, lysosome) n'ont pas permis d'identifier le type de structure

cellulaire correspondant à cette localisation. Cette étude suggère donc que la protéine WT a une localisation cytoplasmique homogène. Cependant, sur la base de données Human Protein Atlas¹, la localisation de CBS est rapportée comme étant vésiculaire et nucléolaire dans différentes lignées cellulaires. Par ailleurs, une localisation de CBS dans le nucléole et au niveau des mitochondries a également été rapportée (Bhattacharyya *et al.*, 2013 ; Kabil *et al.*, 2006 ; Szabo *et al.*, 2013).

5. 2. Gène CBS & facteurs de transcription

Le gène *CBS* est localisé sur le chromosome 21 humain, en position 21q22.3 (Münke *et al.*, 1988). En 1998, l'équipe de Jan P. Kraus a publié la séquence complète du gène CBS humain, ainsi que les produits résultant d'épissages alternatifs, l'analyse de son promoteur et la description de certains polymorphismes fréquemment retrouvés (Kraus *et al.*, 1998). D'après cette étude, le gène s'étend sur une région d'environ 30 kb et il contient 23 exons, dont 16 exons codants. Les exons - 1a à -1e et l'exon 0 sont situés dans la région 5'UTR, et la région 3'UTR est composée de l'exon 17 complet et d'une partie de l'exon 16.

Le gène CBS humain code cinq ARNm (Bao *et al.*, 1998), qui diffèrent uniquement au niveau de leur partie 5'UTR. Ils contiennent tous l'exon 0, et l'un des exons -1 (a à e). Les formes majoritairement retrouvées sont celles qui contiennent les exons -1a ou -1b ; les autres n'étant que faiblement exprimées ou non détectables dans la plupart des tissus étudiés.

L'analyse de Kraus et ses collaborateurs a également permis de caractériser les régions promotrices de CBS. Ils ont mis en évidence la présence de deux régions promotrices, l'une nommée -1a et située en amont de l'exon -1a sur environ 375 pb, l'autre nommée -1b, située sur environ 480 bp avant l'exon -1b. Ces deux promoteurs ont la particularité de ne pas présenter de TATAbox, et d'avoir un pourcentage de GC autour de 80%. D'après leurs résultats, le promoteur -1b est plus fort que le -1a, et est considéré comme le promoteur majeur de CBS, c'est donc celui qui a été le plus étudié par la suite.

A la suite de ces études sur la structure du gène *CBS*, d'autres ont suivi, visant notamment à identifier les mécanismes de régulation de l'expression de ce gène.

¹ Accessible à l'adresse : https://www.proteinatlas.org/ENSG00000160200-CBS/cell

Facteurs de transcription régulant CBS

Les facteurs de transcription affectant l'expression de *CBS* ont été beaucoup étudiés par Y. Ge et ses collaborateurs au début des années 2000 (Ge *et al.*, 2001a, 2001b, 2002, 2003). Se basant sur l'analyse des régions promotrices de J. P. Kraus et ses collaborateurs en 1998, leurs études visaient à mieux caractériser le promoteur majeur de *CBS* (promoteur -1b) et à en définir les régulateurs. Leurs expériences montrent la liaison des facteurs Sp1 et Sp3 aux GC-box, du facteur USF1 à la E-box et des facteurs NF-Y et NF1-like aux CAAT-box. Ces facteurs de transcription sont ubiquitaires, mais des interactions entre ces différentes liaisons pourraient mener à une régulation tissu-spécifique, dépendant de stimuli externes, de l'expression de *CBS* (Ge *et al.*, 2001a).

Pour illustrer ce phénomène, ils ont comparé les niveaux de fixation des facteurs Sp1/Sp3 entre des cellules de la lignée HepG2 (cellules hépatiques qui expriment CBS à un niveau relativement élevé) et de la lignée HT1080 (fibroblastes qui expriment peu *CBS*) (Ge *et al.*, 2001b). Leurs résultats indiquent que la différence d'expression de CBS est corrélée à une diminution de la fixation des facteurs de transcription Sp1/Sp3 sur son promoteur -1b, malgré un niveau protéique similaire de ces facteurs entre les deux lignées cellulaires. Ils ont également montré que cette fixation dépendait de la phosphorylation des facteurs Sp1/Sp3, proposant ainsi un mécanisme de régulation de la transcription du gène *CBS*. Ils ont également mis en évidence une synergie entre Sp1 et le nuclear factor Y (NF-Y), et que la présence d'isoformes de NF-Y différemment épissés pouvait interférer avec cette synergie. Or, la lignée HT1080 exprime moins de NF-Y *WT* et plus d'isoformes, ce qui pourrait également contribuer à la différence d'expression de CBS observée entre ces deux lignées (Ge *et al.*, 2002). Bien que ces études n'aient été réalisées que sur deux lignées cellulaires différentes, il est probable que les niveaux d'expression de *CBS* dans différents tissus dépendent également, au moins en partie, de ces mécanismes de régulation transcriptionnelle.

Plus tard, l'équipe de J. P. Kraus a permis de compléter les informations fournies par Y. Ge et ses collaborateurs (Maclean *et al.*, 2004). D'une part, ils ont mis en évidence que la présence de Sp1 est nécessaire à l'activation transcriptionnelle du promoteur -1b : dans une lignée déficiente en Sp1 (mais qui contient les facteurs Sp3 et NF-Y), aucune expression ni activité de CBS n'est détectée. L'expression de Sp1 dans ces cellules à partir d'un plasmide provoque une forte expression et activité de CBS. De plus, ils ont montré que les facteurs de transcription Sp1 et Sp3 pouvaient avoir une action synergique sur l'activation transcriptionnelle du promoteur -1b de CBS. Leurs résultats sont donc en accord avec ceux de Ge et ses collaborateurs, suggérant que la synergie entre les différents facteurs de transcription pourrait contribuer à la tissu-spécificité de l'expression de *CBS*. Leurs expériences montrent également que l'activation transcriptionnelle par Sp1 est responsable de l'expression de *CBS* en fonction du cycle cellulaire, car l'arrêt de croissance diminue la fixation de Sp1 au promoteur -1b de *CBS*.

En outre, leur étude révèle l'intervention de facteurs de transcription Krüppel-like (Krüppellike factors ou KLF) dans l'activation transcriptionnelle de CBS. Au contraire de Sp1, qui est ubiquitaire, les KLF ont une expression relativement tissu-spécifique. D'après leurs résultats, des facteurs Krüppel-like peuvent réprimer l'activation transcriptionnelle des promoteurs -1a et -1b de CBS par Sp1. Par exemple, l'expression du KLF de poumon (LKLF) dans des cellules hépatiques (lignée HepG2) supprime presque complètement l'activité de CBS. Or CBS est très peu voire pas exprimée dans le poumon (Mudd *et al.*, 1965 ; Quéré *et al.*, 1999). Ces résultats donnent donc clairement l'un des mécanismes expliquant la tissu-spécificité de l'expression de CBS. Plus tard, l'influence d'autres facteurs, tels que l'insuline (Ratnam *et al.*, 2002) ou le NFKB (Li *et al.*, 2012 ; Yuan *et al.*, 2015) sur la transcription de CBS a également été rapportée.

Pour résumer, l'activation transcriptionnelle de CBS est donc dépendante (1) de synergies entre les différents facteurs de transcription qui se lient à son promoteur, (2) de la phosphorylation de ces facteurs de transcriptions et (3) de l'intervention de répresseurs tels que les facteurs Krüppellike.

5. 3. Description de la protéine

a. Structure de la protéine

La protéine CBS humaine est une enzyme de 551 acides aminés, avec une masse moléculaire d'environ 61 kDa. Elle est majoritairement présente et active sous forme d'homotétramère (Ereno-Orbea *et al.*, 2013).

S'agissant d'une enzyme, elle est composée d'un domaine catalytique central, qui a la particularité de contenir un site de liaison au pyridoxal 5'-phosphate (PLP). Par ailleurs, elle contient des domaines additionnels de part et d'autre de ce domaine catalytique : un domaine de liaison à l'hème en N-terminal, et deux domaines CBS en tandem en C-terminal, capables de lier la SAM.

Le domaine catalytique

Le domaine catalytique de CBS (acides aminés 71 à 397) appartient à la famille des domaines pyridoxal 5'-phosphate-dépendents (PALP – pfam00291), partagé avec d'autres enzymes principalement impliquées dans le métabolisme des acides aminés telles que la cystathionine γ lyase, la tryptophane synthase, l'O-acétylsérine sulfhydrase, la thréonine déhydratase, la sérine hydroxyméthyltransférase, etc. (Eliot et Kirsch, 2004). Au total, plus de 50 protéines humaines utilisent le PLP comme cofacteur. Le PLP forme une liaison covalente au niveau de la lysine 119 de CBS, appelée base de Schiff, ainsi que des liaisons hydrogènes avec la serine 349 (Ser349) et l'aspartate 149 (Asn149) de CBS. On retrouve également une boucle de liaison au phosphate composée des résidus 256 à 260 de CBS, qui lient le groupement phosphate du PLP par d'autres liaisons hydrogènes, consolidant ainsi la liaison entre l'enzyme et son cofacteur (Meier *et al.*, 2001).

Le domaine de liaison à l'hème

La présence d'un domaine de liaison à l'hème dans la protéine CBS humaine a été décrite en premier lieu par Kery et ses collaborateurs en 1994 sur la protéine de rat (Kery *et al.*, 1994). L'hème se fixe sur la protéine de manière non-covalente sur la cystéine en position 52 (Cys⁵²) et l'histidine en position 65 (His⁶⁵) (Meier *et al.*, 2001). CBS est la seule protéine dépendante du PLP contenant ce type de domaine, et son rôle a fait l'objet de nombreuses controverses. La présence du domaine hème dans CBS n'est pas indispensable ni directement impliquée dans son activité catalytique (Bruno *et al.*, 2001 ; Green *et al.*, 2001), mais une protéine délétée de ce domaine (CBS Δ 1-70) présente une activité largement réduite par rapport à une protéine normale (Oliveriusová *et al.*, 2002). De ces observations, deux hypothèses ont été émises : le domaine hème aurait un rôle régulateur de l'activité de CBS et/ou le domaine hème influencerait le repliement et l'assemblage de la protéine CBS.

La première hypothèse a été essentiellement soutenue par l'équipe de Taoka et ses collaborateurs par des études *in vitro* sur l'enzyme purifiée (Taoka et Banerjee, 2001 ; Taoka *et al.*, 1998, 1999, 2001, 2002). Ils ont d'abord montré que l'activité de CBS pouvait être corrélée à l'état d'oxidation de l'atome de fer contenu dans l'hème lié à l'enzyme : à l'état ferreux Fe(II) (suite à l'exposition à des agents réducteurs), l'activité enzymatique est inhibée d'environ 1,7 fois, alors que la réoxydation en fer ferrique Fe(III) (suite à l'exposition à un agent oxydant), conduit à la restauration de l'activité enzymatique (Taoka *et al.*, 1999). Cette observation est en accord avec les

résultats de Kashiwamata et Greenberg, qui avaient montré l'inhibition de l'enzyme en cas d'ajout d'agents réducteurs (Kashiwamata et Greenberg, 1970). Des expériences complémentaires leur ont permis de montrer que c'est bien l'hème, et non le motif oxydoréductase CXXC (Meier *et al.*, 2001), qui servirait de « senseur redox » dans ces conditions (Taoka *et al.*, 2002). Par ailleurs, la fixation du monoxyde de carbone (CO) et du monoxyde d'azote (NO) sur l'atome de fer contenu dans l'hème entraine l'inhibition de l'activité enzymatique de CBS (Bruno *et al.*, 2001 ; Taoka et Banerjee, 2001 ; Taoka *et al.*, 1999 ; Weeks *et al.*, 2009). L'affinité du NO semble insuffisante pour que la liaison ait lieu *in vivo*, dans des conditions physiologiques. Mais l'affinité de CBS pour le CO, qui est du même ordre de grandeur que celle d'une protéine bactérienne senseur de CO (CooA), suggère la forte probabilité que la liaison ait lieu *in vivo*. Cette observation corrobore l'hypothèse d'un rôle régulateur de l'hème sur l'activité de CBS.

En parallèle de cette hypothèse du rôle régulateur de l'hème, l'équipe de Jan P. Kraus favorise davantage la possibilité d'un rôle de la liaison de CBS à l'hème dans l'assemblage et le repliement de la protéine. Premièrement, la modification de l'activité de CBS par l'environnement redox a été par la suite invalidée (Frank *et al.*, 2008 ; Pazicni *et al.*, 2004, 2005). En effet, le pH joue un rôle sur le statut de l'atome de fer de l'hème, mais n'influencerait pas pour autant l'activité catalytique de l'enzyme. L'observation de Taoka et ses collaborateurs en 1999 serait due à un biais technique qui conduit à la perte de l'activité de l'enzyme lorsque le fer est sous forme ferreux Fe(II) (Cherney *et al.*, 2007). En revanche, la liaison de l'hème au domaine N-terminal de CBS aurait un rôle dans le repliement de la protéine et son assemblage en oligomères (Majtan *et al.*, 2008 ; Oliveriusová *et al.*, 2002), ainsi que sur sa stabilité (Majtan *et al.*, 2014). En effet, l'expression de la protéine humaine complète dans des modèles cellulaires qui ne contiennent pas d'hème (levure ou bactérie) conduit à une forte diminution du niveau protéique de l'enzyme, et donc de son activité, mais pas par une régulation catalytique. Par ailleurs, l'ajout d'une chaperonne chimique, la triméthylamine N-oxide (TMAO), restaure les niveaux protéiques et l'activité de l'enzyme jusqu'à 82% par rapport à l'enzyme contenant de l'hème.

Le domaine C-terminal

Le domaine C-terminal de CBS (acides aminés 398 à 551) est un domaine régulateur autoinhibiteur de l'activité de CBS (Kery *et al.*, 1998). Il contient deux domaines CBS en tandem, décrits pour la première fois par Alex Bateman en 1997, qui les a ainsi nommés « domaines CBS » (Bateman, 1997). Ces domaines sont retrouvés dans plusieurs protéines dont les fonctions sont très diverses, telles que l'AMP-activated protein kinase (AMPK), l'inosine monophosphate déshydrogénase (IMPDH), les canaux chlorures de la famille des ClC (CLCN1, CLCN2, CLC5, CLCN7), etc. Ils ont toujours un rôle régulateur, mais les modes de régulation peuvent être différents en fonction des protéines : ils impactent le plus souvent la liaison à des ligands contenant des groupements adénosyl (ATP, AMP, SAM, NAD, etc.), mais peuvent également influencer l'oligomérisation, le trafic et/ou la localisation des protéines (Baykov *et al.*, 2011).

Dans le cas de CBS, ce domaine C-terminal constitue la région de liaison avec son activateur allostérique, la SAM (Kery *et al.*, 1998). La protéine CBS peut se trouver dans deux conformations différentes : une conformation « basale », dans laquelle le domaine C-terminal empêche l'accès des substrats au site catalytique, et une conformation « active », provoquée par la liaison à la SAM, qui libère le site actif et permet donc l'activité catalytique de l'enzyme (Ereno-Orbea *et al.*, 2013).

De nombreuses études ont été réalisées sur une protéine CBS tronquée de son domaine Cterminal régulateur (Ereno-Orbea et al., 2013; Kery et al., 1998; Oliveriusová et al., 2002 par exemple), obtenue soit par protéolyse, soit par mutagénèse par délétion. En effet, une digestion par la trypsine entraîne une coupure de la protéine entre le domaine catalytique et le domaine régulateur, résultant en une protéine d'environ 45 kDa, définie comme le « cœur catalytique » (catalytic core) de l'enzyme. L'une des caractéristiques majeures de cette protéine tronquée est qu'elle est métaboliquement plus active que la protéine complète. L'absence du domaine Cterminal ne modifie pas la liaison de la protéine au PLP et à l'hème. En revanche, l'affinité de cette forme pour l'homocystéine est augmentée d'environ trois fois, bien que celle pour la sérine soit la même (Kery *et al.*, 1998). D'après des études structurelles, il semble que la prósence du domaine C-terminal de CBS occlue le site actif de l'enzyme (Ereno-Orbea *et al.*, 2013 ; Janošík *et al.*, 2001). Ainsi, son absence rend la protéine constitutivement active, alors que sur la protéine complète la liaison à la SAM est nécessaire pour libérer le site actif, en provoquant une modification conformationnelle (Figure 4).

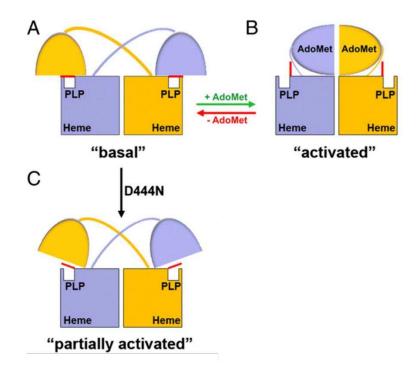


Figure 4. Représentation schématique du mode de régulation de l'activité de CBS par son domaine C-terminal. Etant donné que la structure de CBS n'a été analysée que sur des mutants capables de ne former que des dimères (CBSΔ516-525), seuls des dimères sont représentés. Dans une conformation basale, le domaine C-terminal masque la cavité catalytique de l'enzyme. En cas de liaison à la SAM (ici nommée AdoMet), le domaine C-terminal change de conformation, provoquant une libération de la cavité donc une activation de l'enzyme (forme « activated »). La mutation D444N, retrouvée chez certains patients atteints d'homocystinurie, provoque une libération partielle du site, et donc une activation partielle de la protéine même en l'absence de liaison à la SAM ; cependant, elle répond moins à la SAM qu'une protéine WT. Adapté de Ereño-Orbea *et al.*, 2014.

Par ailleurs, la protéine tronquée ne forme plus que des dimères, alors que la protéine complète forme essentiellement des tétramères *in vivo*, et même des oligomères plus grands en solution (Kraus *et al.*, 1978). Cette particularité pourrait conférer un autre rôle régulateur du domaine C-terminal *in vivo*, venant s'ajouter à l'activation par la SAM. En effet, C.-G. Zou et R. Banerjee ont observé qu'un traitement des cellules HepG2 (lignée de cellules hépatiques) par du TNF α provoque une diminution de la quantité de protéine CBS à 63 kDa (poids moléculaire apparent de la protéine complète) et l'apparition d'une protéine CBS tronquée d'environ 45 kDa, comme celle obtenue après protéolyse *in vitro* (Zou et Banerjee, 2003). L'apparition de cette forme s'accompagne d'une augmentation de l'activité de l'enzyme (avec une augmentation subséquente de glutathion) et d'une insensibilité à la SAM. Dans ces conditions, la protéine semble donc subir un clivage protéolytique, mais les acteurs de ce processus n'ont pas été clairement identifiés dans le

cadre de cette étude, et aucune autre étude n'a rapporté d'événement similaire. Les auteurs proposent cependant que leur observation serait le résultat d'une régulation sur un modèle de « senseur redox », impliquant le fonctionnement de la mitochondrie et la formation d'ions superoxydes (O_2^{-}) (Banerjee et Zou, 2005 ; Zou et Banerjee, 2003).

Il apparaît donc que le domaine C-terminal de la protéine CBS a un rôle régulateur de l'activité catalytique de la protéine, servant à la liaison de son activateur allostérique (la SAM), mais également de son oligomérisation et son agrégation en solution.

b. Cristallographie

Etudier la structure de la protéine CBS s'est révélé être un véritable défi, car la protéine pleine longueur (ou « full length », FL) a une forte propension à s'agréger. Cette agrégation est liée à la présence des domaines CBS en C-terminal et, dès 2001, la structure cristallographique de la protéine tronquée de ce domaine a été publiée (Meier *et al.*, 2001). A ce jour, cependant, la protéine humaine complète n'a toujours pas été cristallographiée. Seule une version modifiée, délétée des acides aminés 516 à 525 du domaine C-terminal (CBS Δ 516-525), a été cristallographiée (Ereno-Orbea *et al.*, 2013). Cette version, comme celle publiée précédemment, ne forme que des dimères au lieu des tétramères normalement formés par la protéine CBS humaine. Elle ne représente donc probablement pas complètement la structure de la protéine *in vivo*. Chez les eucaryotes, seule la structure cristallographique de la protéine CBS complète de la drosophile (*Drosophilia melanogaster*) a été publiée (Koutmos *et al.*, 2010), qui naturellement ne forme que des dimères. La protéine CBS de la levure de boulanger (*Saccharomyces cerevisiae*) pose les mêmes problèmes que la protéine humaine car, comme cette dernière, elle forme des tétramères lorsqu'elle est complète et a tendance à s'agréger. De ce fait, seule la structure cristallographique du cœur catalytique a été publiée (Tu *et al.*, 2018).

5. 4. Conservation de la protéine au cours de l'évolution

Au cours de l'évolution, la protéine CBS est relativement conservée, notamment chez les eucaryotes. On retrouve cependant des différences selon les organismes en fonction des caractéristiques de leur(s) voie(s) de transsulfuration. En effet, on en distingue deux voies principales : la voie dite « forward », composée de la cystathionine β -lyase (CBL) et la cystathionine γ -synthase (CGS) ; et la voie « reverse », composée de CBS et CGL. Alors que les mammifères ne

possèdent que la voie reverse, permettant la synthèse de cystéine à partir de la méthionine captée dans l'alimentation, la plupart des plantes et des bactéries ne possèdent que la voie forward. En effet, elles disposent de la voie d'assimilation du soufre qui leur permet de synthétiser de la cystéine, celle-ci servant par la suite à la synthèse de méthionine. Chez certaines levures, comme celles de la classe des Saccharomycètes (*Saccharomyces cerevisiae* et *Kluyveromyces lactis* par exemple) mais pas *Schizosaccharomyces pombe* (Brzywczy et Paszewski, 1994), les deux voies de transsulfuration sont présentes (figure 5).

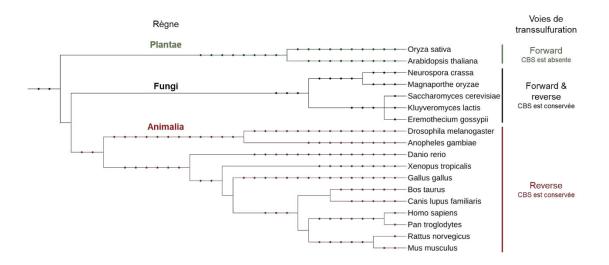
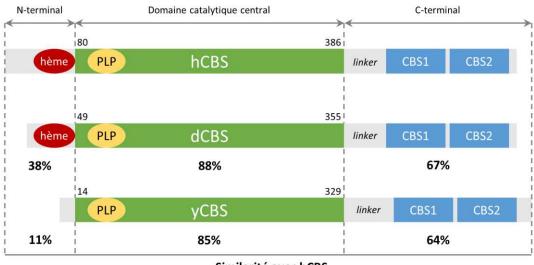



Figure 5. Conservation de CBS et évolution de la voie de transsulfuration chez différentes espèces, généré avec PhyloT d'après les données de HomoloGene (NCBI).

Parmi les organismes disposant de la voie de transsulfuration reverse, la protéine CBS est relativement bien conservée avec par exemple une similarité de séquence protéique de 72% entre la protéine humaine et celle de levure (Kruger et Cox, 1994). En outre, l'expression d'une protéine humaine dans des levures délétées de leur gène *CBS* endogène (*CYS4*) permet une complémentation fonctionnelle, observée via une restauration de croissance sur un milieu dépourvu de cystéine. On retrouve cependant des divergences en termes d'organisation en domaines et de régulation au cours de l'évolution de la protéine (figure 6).

Similarité avec hCBS

Figure 6. Conservation de CBS chez l'homme (hCBS), la drosophile (dCBS) et la levure (yCBS). Les pourcentages indiqués correspondent à la similarité entre chaque domaine, obtenu par alignement de séquences avec l'outil « Align » du site UniProt.org. Adapté de Majtan *et al.*, 2014.

La région la plus conservée parmi les protéines CBS eucaryotes est le domaine catalytique dépendant de la PLP. Ainsi, toutes les protéines CBS catalysent les mêmes réactions, mais leurs propriétés biochimiques et leurs modes de régulation diffèrent. Une étude approfondie de ces caractéristiques, réalisée par T. Majtan et ses collaborateurs, a permis de mettre en évidence les points communs et différences entre les trois protéines CBS eucaryotes représentées dans le tableau 1 (Majtan *et al.*, 2014).

Tableau 1. Caractéristiques biochimiques des protéines CBS de l'homme (hCBS), la drosophile (dCBS) et la levure (yCBS). Les activités catalytiques basales (en l'absence de SAM) pour chaque réaction sont exprimées en considérant celle de la protéine humaine = 1, d'après les données de Majtan *et al.*, 2014.

	hCBS	dCBS	yCBS
Liaison à l'hème	Oui	Oui	Non
Oligomérisation	FL : tétramères	FL : dimères	FL : tétramères
	ΔC : dimères	ΔC : insoluble	ΔC : dimères
Liaison à la SAM	Oui	Non	Oui
Activation par la SAM	Oui	Non	Non
	Activités catalytiques basales		
$Hcy + Ser \rightarrow Cth + H_20$ ou $Cys + Cys \rightarrow Lth + H_2S$	1	5	5
$Cys + H_2O \rightarrow Ser + H_2S$	1	5	3
$Cys + Hcy \rightarrow Cth + H_2S$	1	4	10

Il ressort ainsi de leur étude que les protéines de levure et de drosophile sont globalement plus actives que la protéine humaine pour toutes les réactions testées. En parallèle, on observe qu'elles ne sont pas régulées par la SAM. Elles peuvent donc être considérées comme constitutivement actives par rapport à la protéine humaine. Du point de vue de l'évolution, cela peut s'expliquer par le contexte physiologique de chacun des organismes. Chez les mammifères, étant donné que la voie de transsulfuration est irréversible, il est important que l'activité de CBS soit régulée en fonction de la quantité de méthionine disponible. Ainsi, le fait que l'activité de CBS soit augmentée par la SAM, un métabolite direct de la méthionine, permet aux organismes de faire fonctionner CBS pour former de la cystéine uniquement lorsque la situation est adéquate. Chez la drosophile, CBS est constitutivement active pour permettre à l'organisme de faire face à un régime globalement pauvre en acides aminés (Koutmos *et al.*, 2010). Par ailleurs, l'activité de CBS peut être contrebalancée par la voie de transsulfuration forward, rendant ainsi inutile pour ces deux dernières enzymes d'être régulées par la SAM.

De manière intéressante, la protéine CBS de levure n'est pas régulée par la SAM, mais elle est quand même capable de la lier au niveau de sa partie C-terminale. L'importance biologique et l'intérêt évolutif de la conservation de cette liaison ne sont pas connus à ce jour. Pourtant, la suppression de ce domaine C-terminal provoque une augmentation d'environ 2 fois de son activité, accompagnée de la formation de dimères uniquement. Cette observation suggère que la formation de tétramères *via* le domaine C-terminal a un effet auto-inhibiteur sur l'activité enzymatique des protéines. Cependant, il ne s'agit probablement pas à proprement parler d'un mécanisme de régulation de l'activité de CBS car la présence endogène de la forme délétée du domaine C-terminal n'a jamais été rapportée chez la levure.

Utilisation du modèle levure pour étudier la fonctionnalité de mutations de CBS

Le fait que CBS soit conservée de la levure à l'homme présente plusieurs avantages. Premièrement, la levure *S. cerevisiae* est l'un des organismes modèles couramment utilisés pour étudier des mécanismes cellulaires eucaryotes conservés au cours de l'évolution. Par ailleurs, la levure possède des homologues pour plus de 50% des gènes humains, et environ 30% des gènes humains impliqués dans des pathologies.

De ce fait, la levure a été beaucoup utilisée pour étudier les conséquences fonctionnelles de certaines mutations de *CBS* retrouvées dans l'homocystinurie. En effet, en 1994, W. D. Kruger et D. R. Cox ont développé un système d'expression de la protéine CBS humaine en levure (Kruger et Cox, 1994). Leur stratégie consiste à utiliser une souche de levure délétée de son gène *CBS* endogène, appelé *CYS4* (souche *cys4*Δ), qui présente un phénotype d'auxotrophie à la cystéine. Dans ces cellules, l'expression de la protéine CBS humaine sauvage conduit à un sauvetage phénotypique, qui se traduit par une restauration de la prototrophie des cellules pour la cystéine. Ainsi, la fonctionnalité de mutants de CBS peut être analysée dans ce système, en observant leur capacité à restaurer le phénotype des levures *cys4*Δ (Kruger et Cox, 1995). Ce modèle a par la suite été mis à profit pour étudier des mutants pathogéniques de CBS et tester des stratégies pour rétablir leur fonctionnalité (Shan *et al.*, 2001 ; Singh *et al.*, 2010).

5. 5. Voies de régulation de CBS

a. Modifications post-traductionnelles

Outre les modes de régulation abordés précédemment, CBS subit également des modifications post-traductionnelles (MPT). Peu d'études ciblées ont été conduites à ce sujet, mais les bases de données révèlent plusieurs sites et plusieurs types de MPT, les plus souvent issues

d'études haut débit. La base de données BioGrid² (Stark *et al.*, 2006) révèle que CBS peut être modifiée par ubiquitinylation, sumoylation, mais aussi neddylation (Bonacci *et al.*, 2014). Par ailleurs, la base de données PhosphoSite Plus³ (Hornbeck *et al.*, 2012) référence les sites de MPT de CBS, révélant des sites de phosphorylation, d'ubiquitinylation, de sumoylation, et d'acétylation. Parmi les 20 sites de MPT identifiés sur la protéine humaine, seuls 2 sont issus d'études ciblées.

Premièrement, une étude de O. Kabil et ses collaborateurs en 2006, qui visait à identifier les partenaires moléculaires de CBS par une technique de double-hybride, a révélé une interaction entre CBS et plusieurs éléments de la machinerie de sumoylation, à savoir UBC9, PIAS1, PIAS3, HPC2 (Kabil *et al.*, 2006). Ils montrent que le domaine C-terminal de la protéine est indispensable à l'interaction avec ces différents facteurs, car une protéine composée uniquement des résidus 1 à 409 ne présente pas d'interaction avec UBC9 et PIAS1. A l'aide d'expériences de sumoylation *in vitro*, ils ont mis en évidence le site de sumoylation de CBS : la lysine 211 (Lys211). Cette lysine est située au sein du domaine catalytique, et à la surface de la protéine dans sa conformation tridimensionnelle. Comme la sumoylation des protéines provoque parfois une modification de leur localisation subcellulaire, et notamment leur adressage au noyau, les auteurs proposent que cette MPT pourrait entrainer sa localisation vers le noyau, où elle serait ensuite désumoylée pour pouvoir exercer son activité d'une manière localisée. Par ailleurs, des études complémentaires ont révélé que la sumoylation *in vitro* de CBS entrainait une inhibition de son activité enzymatique (Agrawal et Banerjee, 2008).

Cette étude est la seule qui rapporte un test en double hybride avec CBS comme appât. Alors qu'une étude double hybride est supposée permettre d'identifier les interactants potentiels d'une protéine, il est étonnant que seuls des composants de la machinerie de sumoylation en soient sortis. Une explication possible de ces résultats serait que la protéine CBS humaine exprimée en levure s'agrège. En effet, leurs résultats indiquent que la présence du domaine C-terminal de la protéine est nécessaire à la liaison aux protéines de la machinerie de sumoylation, or ce domaine est connu pour provoquer une agrégation. Par ailleurs, leurs résultats concernant la localisation subcellulaire de CBS dans des cellules humaines ont été obtenus par marquage immunofluorescent avec un

² Accessible à l'adresse : https://thebiogrid.org/107321/summary/homo-sapiens/cbs.html

³ Accessible à l'adresse : https://www.phosphosite.org/proteinAction.action?id=1171715&showAllSites=true

anticorps précédemment utilisé dans l'étude de E. Mosharov, mais dont la spécificité n'a pas été démontrée (Mosharov *et al.*, 2000).

Une autre étude a permis de montrer que CBS peut être phosphorylée sur la sérine 227 (Ser227) par la protéine kinase G (PKG), augmentant l'activité de la protéine (d'Emmanuele di Villa Bianca *et al.*, 2015). Cette étude a été réalisée sur une lignée cellulaire de vessie (lignée T24), et aucune autre étude n'a mis en évidence ce type de modification dans un autre contexte.

Concernant l'ubiquitinylation, on retrouve sur la base de données BioGrid une interaction entre la protéine CBS et la Polyubiquitine-C (UBC), rapportée d'après une étude protéomique haut débit (Matsumoto *et al.*, 2005). Par ailleurs, 4 sites d'ubiquitinylation sont rapportés sur la base de donnée PhosphoSite Plus pour la protéine humaine : les lysines 72, 75, 394 et 481. J. W. Pridgeon et ses collaborateurs ont montré une interaction entre le motif d'interaction avec l'ubiquitine de l'hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) et CBS (Pridgeon *et al.*, 2009). Encore une fois, la signification fonctionnelle de cette interaction n'est pas connue et n'a pas été davantage étudiée. Bien que ces différentes informations n'aient pas été confirmées par des études ciblées, il n'est pas exclu que CBS soit également régulée par ubiquitinylation.

La quantité d'études sur les MPT de CBS est donc relativement limitée, mais ce type de régulation s'ajoute à la régulation de CBS par son activateur allostérique, la SAM, la disponibilité de son cofacteur, le PLP, et l'impact de la présence d'hème, pour réguler finement l'activité de l'enzyme.

b. Recherche de partenaires moléculaires

En dehors des modificateurs rapportés dans le paragraphe précédent, d'autres interactants de CBS ont été décrits. Comme pour les MPT, de nombreuses interactions rapportées dans les bases de données proviennent d'études haut débit et n'ont pas été confirmées ou davantage caractérisées. En parallèle, des articles plus ciblés rapportent des interactions entre CBS et d'autres protéines, mais à chaque fois leur signification fonctionnelle n'est pas claire.

En 1998, J. M. Bouttell et ses collaborateurs ont utilisé la technique du double hybride pour identifier les protéines interagissant avec la partie N-terminale de l'Huntingtine (HTT) (acides aminés 1 à 170). Ils ont ainsi identifié la protéine CBS de rat. L'interaction entre cette dernière et les protéines HTT humaine et de rat a été confirmée *in vitro*. Les auteurs proposent une implication éventuelle de CBS dans la physiopathologie de la maladie de Huntington, mais une étude réalisée plus tard dans leur laboratoire révèle que la localisation de CBS dans le cerveau des patients atteints de la maladie de Huntington est similaire à celle des patients contrôles, rendant l'hypothèse de l'implication de CBS dans la pathologie peu probable (Jones, 1999).

Une étude plus récente rapporte une interaction entre la lanthionine synthetase C-like protein 1 (LanCL1) et CBS, réduisant l'activité de CBS (Zhong *et al.*, 2012). La fonction de LanC1 étant mal définie, l'impact fonctionnel de cette interaction est, là encore, indéterminé.

6. Surexpression de CBS dans certains cancers

Dans une étude publiée en 2013, S. Bhattacharyya et ses collaborateurs rapporte pour la première fois un lien entre la surexpression de *CBS*, la production d'H₂S et le cancer épithélial de l'ovaire (Bhattacharyya *et al.*, 2013). En effet, ils rapportent que *CBS* est surexprimée dans les cancers primaires de l'épithélium ovarien ainsi que dans plusieurs lignées cellulaires de cancer ovarien. De plus, dans ces lignées, la diminution de l'expression de *CBS* par siRNA et son inhibition par l'acide aminooxyacétique (AOAA) perturbent la prolifération de ces cellules, suggérant un rôle fonctionnel de la surexpression de *CBS* sur le processus tumoral. Par des expériences complémentaires, ils montrent que la diminution de CBS a peu d'effet sur la quantité d'homocystéine dans les cellules, mais conduit à une diminution de la synthèse d'H₂S et une réduction drastique de la quantité de glutathion totale. Les auteurs proposent que l'augmentation de *CBS*, sont centrales dans la résistance des cellules cancéreuses aux agressions cytotoxiques, et pourrait donc être responsable d'une résistance aux agents chimiothérapeutiques tels que la cisplatine. Ils confirment cette hypothèse *in vivo*, en montrant que la diminution de l'expression de *Cbs* par siRNA dans un modèle murin de cancer ovarien sensibilise au traitement à la cisplatine.

La même année, C. Szabo et ses collaborateurs rapportent des observations similaires dans le cas du cancer du côlon (Szabo *et al.*, 2013). En effet, ils constatent une surexpression de *CBS* dans les tissus tumoraux de 3 patients atteints de cancer du côlon par rapport aux tissus non-cancéreux ; ainsi qu'une surexpression de *CBS* et une augmentation d'H₂S dans les lignées cellulaires de cancer de côlon LoVo, HCT116 et HT29. Pour eux, l'augmentation de la production d'H₂S est l'élément

central dans le développement tumoral, en augmentant les processus bioénergétiques (consommation d'oxygène, production d'ATP, glycolyse, etc.) des cellules tumorales et en favorisant l'angiogenèse. Il n'est cependant pas fait mention du glutathion dans cet article, alors qu'aucune de leur expérience ne permet d'exclure son rôle, peut-être même majeur, dans les résultats qu'ils présentent.

Dans ces deux études, les auteurs rapportent une localisation de CBS au niveau des mitochondries qui n'avait pas été rapportée précédemment, et qui n'a pas été rapportée ensuite. Dans les deux cas, les expériences sont réalisées sur des cellules qui surexpriment CBS, il est donc possible que cette localisation soit spécialement retrouvée en cas de surexpression.

Par la suite, le rôle de CBS dans le cancer du sein a également été révélé, en particulier dans la résistance des cellules cancéreuses aux macrophages activés (Sen et al., 2015). En effet, les auteurs rapportent une augmentation de la quantité de protéine CBS dans des tissus de cancer du sein, et démontrent que la diminution de l'expression de CBS par un siRNA augmente la sensibilité des cellules cancéreuses aux macrophages activés, bien que n'affectant pas la capacité de prolifération des cellules en soi. D'après leurs travaux, c'est l'augmentation de la synthèse d'H₂S qui est centrale dans ce phénomène, car la modulation de l'expression de CBS par siRNA n'affecte pas la quantité de GSH dans ces cellules, et l'utilisation du Buthionine sulfoximine (BSO), un inhibiteur de synthèse de GSH, n'influence pas non plus la sensibilité des cellules cancéreuses aux macrophages activés. L'année suivante, les auteurs ont publié un article supplémentaire rapportant un rôle antiapoptotique de l'accumulation de cystathionine, retrouvée dans ces cellules (Sen et al., 2016), qui pourrait éventuellement s'ajouter à l'effet de l'augmentation de la production d'H₂S. Puis, contrairement à ce qu'ils avaient rapporté dans l'étude de 2015, la même équipe a de nouveau publié un article sur le rôle de la surexpression de CBS dans le cancer du sein, indiquant cette fois que la modulation de CBS affecte finalement beaucoup à la fois la quantité de glutathion totale, mais aussi le ratio glutathion oxydé/réduit (GSH/GSSG), et que cela conduirait à la résistance des cellules cancéreuses aux traitements (Kawahara et al., 2017). Il semble donc que la surexpression de CBS pourrait affecter le processus tumoral de diverses manières, mais la contribution de chacun des changements induits par cette surexpression reste difficile à évaluer ; le plus probable étant que chacun des paramètres modifiés par la surexpression de CBS contribue ensemble au processus.

7. Recherche d'inhibiteurs spécifiques de CBS

L'identification d'inhibiteurs de CBS aurait plusieurs intérêts : d'un point de vue thérapeutique, cela permettrait de proposer des molécules allant à l'encontre du développement de pathologies dans lesquelles la surexpression de CBS est impliquée (syndrome de Down, cancer) ; d'un point de vue plus technique et fondamental, l'utilisation d'inhibiteurs permet de mieux comprendre la contribution de l'enzyme dans certains processus en observant l'impact d'une diminution de son activité. Dans ce dernier contexte, la fondation Jérôme Lejeune a lancé en 2004 le projet CiBleS21, qui avait pour objectif d'identifier des inhibiteurs de CBS qui seraient des candidats médicaments pour la déficience intellectuelle dans le syndrome de Down. Cependant, les différents criblages n'ont pas conduit à l'identification de tels candidats, car le peu de molécules actives présentaient des inconvénients majeurs pour cette application (toxicité, problème de passage de la barrière hématoencéphalique, etc.). Les résultats de ces criblages sur la protéine purifiée ne sont par ailleurs pas référencés dans PubMed. Par ailleurs, la mise en évidence relativement récente de l'implication de la surexpression de CBS dans certains cancers a relancé cette recherche d'inhibiteurs.

Dans plusieurs études, l'acide aminooxyacétique (AOAA) a été utilisé comme inhibiteur spécifique de CBS (Bhattacharyya *et al.*, 2013 ; Roy *et al.*, 2012 ; Szabo *et al.*, 2013 ; d'Emmanuele di Villa Bianca *et al.*, 2015 ; Zheng *et al.*, 2016). Cette molécule a effectivement un effet inhibiteur sur CBS, mais il s'agit en fait d'un inhibiteur des enzymes PLP-dépendantes (Beeler et Churchich, 1976). Elle ne peut donc pas être considérée comme inhibiteur spécifique de CBS. Pour éviter ce type de confusion, A. Asimakopoulou et ses collaborateurs ont testé de manière systématique les molécules identifiées comme inhibiteurs de la biosynthèse d'H₂S sur les deux enzymes PLP-dépendantes de la voie de transsulfuration, CBS et CGL, *in vitro*. Il est ressorti de leur étude qu'aucune de ces molécules n'est sélective de CBS (Asimakopoulou *et al.*, 2013). De ce fait, la nécessité de rechercher de nouveaux inhibiteurs qui soient à la fois puissants et sélectifs de CBS a mené plusieurs équipes à réaliser de nouveaux criblages pharmacologiques.

Pour cela, différentes méthodes de criblages ont été utilisée. Des criblages récents pour identifier des molécules inhibant CBS se sont surtout basés sur la production d'H₂S, qui peut être suivie simplement à l'aide de sondes fluorescentes (Druzhyna *et al.*, 2016 ; Thorson *et al.*, 2013,

2015). Cependant, de nombreuses molécules efficaces sur la protéine recombinante purifiée le sont beaucoup moins dans un contexte cellulaire complet. D'autres stratégies, basées sur d'autres méthodes de criblage mais toujours sur la protéine purifiée, ont permis d'identifier des candidats encourageants, mais là encore les résultats dans des modèles cellulaires sont mitigés, et la plupart des molécules présentent des cibles de cellulaires autres que CBS (McCune *et al.*, 2016 ; Niu *et al.*, 2017). La difficulté d'identifier des molécules efficaces dans un contexte cellulaire complet souligne la nécessité d'établir de nouvelles méthodes de criblages qui permettraient d'identifier des suppresseurs de la surexpression de *CBS* dans des cellules et, par extension, dans un organisme complet, tout en étant compatible avec le test d'un grand nombre de molécules en peu de temps et en suivant facilement leur efficacité.

8. Objectifs du projet de thèse

Ce projet de thèse s'est donc inscrit dans un contexte où, d'après la littérature, peu de molécules identifiées dans le cadre de criblages pharmacologiques sur la protéine CBS purifiée ont un effet bénéfique dans un contexte cellulaire complet. Par ailleurs, peu de travaux ont été réalisés concernant la protéine *CYS4* en levure, ce qui souligne l'intérêt d'acquérir de nouvelles connaissances sur son rôle et l'effet de sa dérégulation dans cet organisme modèle, qui pourraient permettre de découvrir de nouveaux éléments concernant les homologues de mammifères. Ainsi, nous avons développé un modèle levure de la surexpression de CBS pour :

- Etudier les conséquences cellulaires de la surexpression de CYS4 en levure, de manière à :
 - ✓ Identifier un phénotype utilisable pour un criblage pharmacologique
 - ✓ Définir les voies affectées par une dérégulation de l'activité de cette protéine.
- Identifier des suppresseurs de cette surexpression, et étudier leur mécanisme d'action pour définir les mécanismes à cibler afin de contrecarrer les conséquences d'une suractivation de CYS4 ou CBS.
- Etudier les conséquences cellulaires de la surexpression de CBS chez les mammifères.
- Tester les molécules identifiées sur des modèles cellulaires et murins pour confirmer leur efficacité dans d'autres organismes.

1. Article 1

1. 1. Implication de CBS dans le phénotype cognitif associé au syndrome de Down

Dans cet article, l'objectif était d'abord d'analyser la contribution du gène *Cbs* dans le phénotype cognitif des souris présentant une triplication de la région *Abcg1/Cbs* du chrommosome 17 de souris (modèle Dp1Yah). Les résultats démontrent que la triplication de *Cbs* est en effet nécessaire pour induire des défauts cognitifs dans ce modèle, car la normalisation du nombre de copie de *Cbs* (souris Dp1Yah/*Cbs^{tm1Unc}*) permet de sauver le phénotype de reconnaissance de nouvel objet du modèle. Par ailleurs, la surexpression du gène *CBS* seul suffit à induire ce défaut, que ce soit en cas de triplication (souris Tg(*CBS*)) ou en cas de surexpression uniquement dans les neurones de l'hippocampe et du cortex (souris Tg(*Prp-gfp-CBS*)). D'après ces résultats, CBS est donc une cible thérapeutique pertinente pour diminuer les défauts cognitifs des patients atteints du syndrome de surexpression de *CBS* provoque un sauvetage du défaut de reconnaissance d'objet du modèle levure de surexpression confirme l'intérêt d'utiliser le modèle levure pour identifier des molécules candidates, mais aussi que les défauts induits par la surexpression de *CBS* et de *CYS4* sont conservés.

Human Molecular Genetics

Human Molecular Genetics

Cbs overdosage is necessary and sufficient to induce cognitive phenotypes in mouse models of Down syndrome and interacts genetically with Dyrk1a

Journal:	Human Molecular Genetics	
Manuscript ID	HMG-2018-D-00872	
Manuscript Type:	2 General Article - UK Office	
Date Submitted by the Author:	13-Oct-2018	
Complete List of Authors:	Damien, Marechal; IGBMC, Translational Medicined and Neurogenetics Brault, Veronique; IGBMC, Translational Medicined and Neurogenetics Leon, Alice; Inserm U613, Molecular Genetics and epidemiology Martin, Dehren; IGBMC, Translational Medicined and Neurogenetics Lopes Pereira, Patricia; TAAM UPS44, NA Loaec, Nadege; Inserm UMR 1078, Université de Bretagne Occidentale Birling, Marie-Christine; PHENOMIN, ICS Friocourt, Gaelle; Inserm U613, Molecular Genetics and epidemiology Blondel, Marc; Inserm U613, Molecular Genetics and epidemiology Herault, Yann; IGBMC, Translational Medicined and Neurogenetics	
Key Words:	Down syndrome, gene dosage, genetic interaction, candidate gene	

×

Cbs overdosage is necessary and sufficient to induce cognitive phenotypes in mouse models of Down syndrome and interacts genetically with *Dyrk1a*

5 AUTHORS

Damien Marechal^{1,2,3,4}, Véronique Brault^{1,2,3,4}, Alice Leon⁵, Dehren Martin^{1,2,3,4}, Patricia
Lopes Pereira⁶, Nadege Loaëc⁵, Marie-Christine Birling⁷, Gaelle Friocourt^{5,#}, Marc
Blondel^{5,#} and Yann Herault^{1,2,3,4,7,*}

9 Affiliations

¹ Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries,
 67404 Illkirch, France

12 ² Centre National de la Recherche Scientifique, UMR7104, Illkirch, France

13 ³ Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France

14 ⁴ Université de Strasbourg, Illkirch, France.

15 ⁵ Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des

16 Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest,

17 Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France.

⁶ Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la
 Férollerie 45071 Orléans, France

⁷ CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, ICS, 1 rue Laurent Fries, 67404
 Illkirch, France

[#]Both authors contributed equally.

23 * Corresponding author: Yann Hérault

26 ABSTRACT

Identifying dosage sensitive genes is a key to understand the mechanisms underlying intellectual disability in Down syndrome (DS). The Dp(17Abcg1-Cbs)1Yah DS mouse model (Dp1Yah) show cognitive phenotype and needs to be investigated to identify the main genetic driver. Here, we report that, in the Dp1Yah mice, 3 copies of the Cystathionine-beta-synthase gene (*Cbs*) are necessary to observe a deficit in the novel object recognition (NOR) paradigm. Moreover, the overexpression of Cbs alone is sufficient to induce NOR deficit. Accordingly targeting the overexpression of human CBS, specifically in Camk2a-expressing neurons, leads to impaired objects discrimination. Altogether this shows that *Cbs* overdosage is involved in DS learning and memory phenotypes. In order to go further, we identified compounds that interfere with the phenotypical consequence of CBS overdosage in yeast. Pharmacological intervention in

the Tg(CBS) with one selected compound restored memory in the novel object recognition. In addition, using a genetic approach, we demonstrated an epistatic interaction between Cbs and Dyrk1a, another human chromosome 21 gene encoding the dual-specificity tyrosine phosphorylation-regulated kinase 1a and an already known target for DS therapeutic intervention. Further analysis using proteomic approaches highlighted several pathways, including synaptic transmission, cell projection morphogenesis, and actin cytoskeleton, that are affected by DYRK1A and CBS overexpression. Overall we demonstrated that CBS overdosage underpins the DS-related recognition memory deficit and that both CBS and DYRK1A interact to control accurate memory processes in DS. In addition, our study establishes CBS as an intervention point for treating intellectual deficiencies linked to DS. e pe

SIGNIFICANT STATEMENT

Here, we investigated a region homologous to Hsa21 and located on mouse chromosome 17. We demonstrated using three independent genetic approaches that the overdosage of the Cystathionine-beta-synthase gene (Cbs) gene, encoded in the segment, is necessary and sufficient to induce deficit in novel object recognition (NR).

In addition, we identified compounds that interfere with the phenotypical consequence of CBS overdosage in yeast and in mouse transgenic lines. Then we analyzed the relation between Cbs overdosage and the consequence of DYRK1a overexpression, a main driver of another region homologous to Hsa21 and we 59 demonstrated that an epistatic interaction exist between *Cbs* and *Dyrk1a* affecting 60 different pathways, including synaptic transmission, cell projection morphogenesis, and 61 actin cytoskeleton.

63 INTRODUCTION

Down Syndrome (DS) is the most common aneuploidy observed in human. The presence of an extra copy of the Human chromosome 21 (Hsa21; Hsa for Homo sapiens) is associated with intellectual disabilities and several morphological and physiological features. Phenotypic mapping in human with partial duplication highlighted the contribution of several regions of the Hsa21 in DS features (1, 2). Additional information was collected from trisomic and monosomic mouse models to detect genomic regions sensitive to dosage and able to induce impairments in behaviour and other DS related traits (3-11). Most of the efforts focused on the region homologous to the Hsa21 located on mouse chromosome 16 (Mmu16; Mmu for Mus Musculus), highlighting the contribution of the Amyloid precursor protein (App) (12), of the Glutamate receptor, ionotropic, kainate 1 (*Grik1*) or of the dual-specificity tyrosine phosphorylation-regulated kinase 1a (*Dyrk1a*) (13, 14) overdosage to DS cognitive defects. At present, DYRK1A is a main target for therapeutic intervention with a few compounds inhibiting the protein kinase activity, improving mainly cognition in DS mouse models (15-20). However, models carrying trisomy of the region of Mmu17 homologous with the Hsa21, also showed learning and memory defects (21, 22) and appeared to have a major impact on DS phenotypes in

Human Molecular Genetics

mouse models (23). The Dp(17Abcg1-Cbs)1Yah (called here Dp1Yah) mice are defective in the novel object recognition test and show a long-lasting in vivo long-term potentiation (LTP) in the hippocampus while the corresponding monosomy, Ms2Yah, have defects in social discrimination with increased in vivo LTP (24). Interestingly, as observed in the rotarod test, the locomotor phenotype of the Tc1 transchromosomic model carrying an almost complete Hsa21 is rescued when the dosage of the Abcg1-Cbs region is reduced in Tc1/Ms2Yah mice (25). Similarly the trisomy of a larger overlapping segment on Mmu17 from *Abcg1* to *Rrp1b* induces an increased LTP as compared to control in the Dp(17)Yey model (22) and was shown to genetically interact with the trisomy of the Lipi-Zbtb21 interval. More specifically the trisomy of both this Abcg1-Rrp1b region and the Cbr1-Fam3b region was detrimental for learning and memory in the Morris water maze and for LTP in DS mouse models (23).

Among the 11 trisomic genes in the Dp1Yah model, the cystathionine-beta-synthase gene, Cbs, encodes a pyridoxal phosphate-dependent enzyme converting homocysteine to cystathionine. This first step of the transulfuration pathway removes homocysteine from the methionine cycle thereby also affecting the folate and the methylation pathways, while contributing to the cysteine cycle. Of note, in human, homozygous loss-of-function mutations in CBS are associated with homocystinuria (OMIN236200) a metabolic condition with intellectual disability. CBS is also the major enzyme catalysing the production of H₂S from L-cysteine (26) or from the condensation of homocysteine with cysteine (27). H₂S is now considered a major gaseotransmitter in the brain (28) and interferes with synaptic transmission. Considering the upregulated

expression of CBS in several brain regions of the Dp1Yah model and its impact on intellectual disability, we decided to focus on Cbs and decipher the role of CBS in DS cognitive phenotypes. To this end, we generated and characterized constitutive and conditional changes in Cbs dosage in the nervous system of various mouse models. In addition we selected pharmacological drugs able to counteract the phenotypical consequence of CBS overexpression, in particular behavioural impairments, and finally further analysed molecular changes induced by Cbs dosage changes to understand the mechanisms perturbed in DS models.

111 MATERIALS AND METHODS

112 Ethics Statement, mouse lines and genotyping

Animal experiments were approved by the Com'Eth N°17 (project file: 2012-069) and accredited by the French Ministry for Superior Education and Research and in accordance with the Directive of the European Parliament: 2010/63/EU, revising/replacing Directive 86/609/EEC and with French Law (Decret n° 2013-118 01 and its supporting annexes entered into legislation 01 February 2013) relative to the protection of animals used in scientific experimentation. YH was granted the accreditation 67-369 to perform the reported experiments in the animal facility (Agreement C67-218-40). For all these tests, mice were kept in Specific Pathogen free conditions with free access to food and water. The light cycle was controlled as 12 h light and 12 h dark (lights on at 7AM). All the behavioural tests were done between 9:00 AM and 4:00 PM.

Several mouse lines were used to decipher the influence of *Cbs*: the trisomic mouse model, Dp(17Abcg1-Cbs)1Yah, named here Dp1Yah, carries a segmental duplication of the Abcg1-Cbs region of the Mmu17 (21) kept on the C57BL/6J; the inactivated allele of C57BL/6J.Cbstm1Unc (29); and the PAC transgenic line Tg(CBS)11181Eri (named here Tg(CBS)), originally identified as 60.4P102D1 (30) and backcrossed on C57BL/6J for more than 7 generations. We designed, generated and selected the transgenic mouse line Tg(Prp-gfp-CBS)95-157ICS, named here Tg(Prp-gfp-CBS), to overexpress the human CBS cDNA from the murine prion promoter region (containing a 8477 bp region upstream of the ATG of the murine prion gene, ie 6170 bp

promoter region, exon1, intron 1 and beginning of exon 2) after the excision of a loxP-gfp-loxP interrupting cassette (Figure 3A) on C57BL/6J background. We used the transgenic Tg(Camk2a-cre)4Gsc mouse line (31), named here Tg(Camk2a-cre), and bred further on C57BL/6J, as a glutamatergic neuron-specific Cre driver. The Dyrk1a BAC transgenic mouse line, named here Tg(Dyrk1a) was generated previously in our lab (32). All lines were generated and bred on the C57BL/6J genetic. The genotype identification was done from genomic DNA isolated from tail biopsies with specific PCR reaction (Supplementary table 1).

140 Behavioural analysis

The sample size was estimated according to our similar experiments done previously while investigating behaviour in DS mouse models (5, 25, 33). To investigate the role of *Cbs* in the Dp1Yah cognitive phenotypes, we generated 2 independent cohorts (cohort 1 (C1): wild type (wt) littermates n=11; Cbs^{tm1Unc/+}, n=8; Dp1Yah, n=8; Dp1Yah/Cbstm1Unc, n=11; and cohort 2 (C2): wt littermates n=18; Cbstm1Unc/+, n=15; Dp1Yah, n=15; Dp1Yah/Cbs^{tm1Unc}, n=10). All cohorts were evaluated in the open field (C1: 33 weeks; C2: 14-16 weeks), Novel Object Recognition (NOR) (C1: 33 weeks; C2:14-16 weeks) in adult mice. In addition we performed the Y maze (C2: 15-19 weeks) and the rotarod tests (C2: 25-28 weeks of age).

150 Wild-type littermates (n=13) and Tg(CBS)/0 (n=17) hemizygotes were tested for 151 circadian actimetry (14 weeks), Y Maze (16 weeks), open field (17 weeks) and NOR (17 152 weeks). We added an additional group of wt (n=9) and Tg(CBS)/0 (n=10) to validate the

Human Molecular Genetics

results from the NOR; animals were tested at the same age (17 weeks). A cohort with 4 genotypes (wt (n=13), Tg(Camk2-Cre)/0 (n=11), Tg(Prp-gfp-CBS)/0 (n=12), and Tq(Camk2-Cre)/0;Tq(Prp-qfp-CBS)/0 (n=14)) was evaluated through the same behavioural tests with rotarod (14 weeks), Y maze (16 weeks), open field (19-20 weeks) and NOR (19-20 weeks). 14 wt, 15 Tg(Dyrk1a), 13 Dp1Yah and 13 Dp1Yah/Tg(Dyrk1a) mutant mice were evaluated for open field exploration (11-12 weeks), novel object recognition (11-12 weeks) and Y maze (13 weeks). A second independent cohort with 11 wt, 10 Tg(Dyrk1a), 14 Dp1Yah and 10 Dp1Yah/Tg(Dyrk1a) was used for Morris water maze learning (14-16 weeks). The behavioural protocols for open-field, Y maze and novel object recognition, rotarod, water maze were are detailed in the supplementary information.

164 Drug screening in yeast

All plasmids were generated using standard procedures. Restriction enzymes and Tag polymerase were obtained from New England Biolabs (Evry, France). T4 DNA ligase was purchased from Promega and purified synthetic oligonucleotides from Eurogentec. Routine plasmid maintenance was carried out in DH5a and TOP10 bacteria strains. Yeast cystathionine b-synthase (Cys4) coding sequence was amplified from the genomic DNA of the W303 WT strain genotype below) using Bam-Cys4-F: (see CGGGATCCCGATGACTAAATCTGAGCAGCAAG and Xho-Cys4-R: GCCTCGAGTCTTATGCTAAGTAGCTCAGTAAATCC (that introduced BamHI and Xho1 restriction sites) and subcloned in the high copy number 2 µ-derived vectors p424-GPD and p426-GPD, each time under the control of the strong constitutive GDP promoter (34). 175 Transformation of yeast cells was performed using a standard lithium acetate method176 (35).

The yeast strain used in this study is derived from the W303 *WT* strain: *MATa*, *leu2*-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15. The media used for yeast growth were: YPD [1% (w/v) yeast extract, 2% (w/v) peptone, 2% (w/v) glucose, for untransformed cells and Synthetic Dextrose *Minimal medium* (SD medium) (composed of 0.67% (w/v) *Yeast* Nitrogen Base w/o amino acids and complemented with 0.1% (w/v) casamino acid, 40 mg/l adenine and 2% (v/v) glucose for Cys4-transformed cells. Solid media contained 2% (w/v) agar.

For the drug screening, yeast cells were grown in uracil- and tryptophan-free minimal liquid medium (SD-Ura/Trp) in overnight liquid cultures at 29 °C. The following day, cells were diluted to OD_{600} ~0.2 in in fresh medium and grown for 4 hours to reach exponential phase. Then three hundred and fifty microliters of exponentially growing yeast cells overexpressing Cys4, adjusted to an OD₆₀₀ of 0.5, were spread homogeneously with sterile glass beads (a mix of ~1.5 and 3 mm diameter) on a square Petri dish (12 cm × 12cm) containing uracil-, tryptophan- and methionine-free minimal agar-based solid medium (SD-Ura/Trp/Met) containing 2% (w/v) serine. Sterile filters (Thermo Fisher similar to those used for antibiograms) were placed on the agar surface, and 2 µl of individual compound from the various chemical libraries were applied to each filter. In addition, for each Petri plate, DMSO, the vehicle, was added as a negative control on the top left filter, and 2 nmol of methionine as a positive control on the bottom right filter. Plates were then incubated at 33 °C for 3 days and scanned using a Snap Scan1212 (Agfa).

Two repurposed drug libraries were screened: the Prestwick Chemical Library® (1200 drugs) and the BIOMOL's FDA Approved Drug Library (Enzo Life Sciences, 640 drugs). In addition, the Prestwick Phytochemical library (691 green compounds, most of them being in use in Human) was also screened. The compounds were supplied in 96well plates as 10 mM (for the two Prestwick® libraries) and 2 mg/ml (BIOLMOL®) DMSO solutions. Disulfiram was purchased from Sigma-Aldrich and resuspended in DMSO.

04 Mouse model treatment with Disulfiram (DSF)

A pre-clinical protocol was designed to target cognitive defects correlated to CBS overexpression in Tg(*CBS*) mice brain (figure 4D). The selected molecule was Disulfiram (DSF), a potent inhibitor of mitochondrial aldehyde dehydrogenase (ALDH) used for the treatment of chronic alcoholism. We based our experiment on the work of Kim et al. (36) in which the DSF effect on ethanol sensitization in mice was demonstrated.

Behavioural studies were conducted in 12-16 week old animals; to do so, we generated 3 independent cohorts, in which we tested 4 conditions taking into account the dose of DSF (or vehicle alone) and the genotype. For the cohorts (C1 to C3), we produced respectively 5,7,3 (n=15 in total) wild type (wt) treated with vehicle, 5,3,6 (n=14 in total) transgenic for human CBS (Tg(CBS)) treated with vehicle, 7,5,3 (n=15 in total) wt treated with 10mg/kg/day of DSF, 6,6,8 (n=20 in total) Tg(CBS) treated with 10mg/kg/day of DSF based on the dose previously administrated in the reference publication (36). The local ethics committee, Com'Eth (n°17), approved the mouse experimental procedures, under

the accreditation number APAFIS#1564-2015083114276031 with YH as the principal investigator in this study. All assessments were scored blind to genotype and animals were randomly distributed to experimental groups and treatment as recommended by the ARRIVE guidelines (37, 38). DSF was prepared at 10 mg/mL in DMSO, aliquoted and stored below -20°C. The final formulation was prepared just prior to use as a 1 mg/mL solution diluted in Cremophor EL Castor oil (BASF)/H2O ready for injection (15/75), to reach a final DMSO/Cremophor/H2O 10/15/75 (v/v/v) mix. Treated animals received a daily dose (10 days) of this formulation by intra-peritoneal injection of 10 mg/kg/day. Non-treated animals received the same formulation without DSF. On day 10 of treatment, the animal were habituated 30 min into the arena. On day 11, animals were tested in NOR paradigm to assess recognition memory after 1 hour retention as described in the Open field and Object recognition task protocols (Supplementary information).

230 Quantitative proteomic analysis

We collected 5 hippocampi of littermates with the 4 genotypes: wt, Dp1Yah, Tg(Dyrk1a)/0 and [Dp1Yah,Tg(Dyrk1a)/0] after the behavioural evaluation at the age of 25-27 weeks. Samples were reduced, alkylated and digested with LysC and trypsin at 37°C overnight. Five sets of samples with one sample from each genotypes (4 in total) were labelled with Thermo Scientific Tandem Mass isobaric tag (TMT), pooled and then analysed using an Ultimate 3000 nano-RSLC (Thermo Scientific, San Jose California) coupled in line with an Orbitrap ELITE (Thermo Scientific, San Jose California). An additional set was done comparing all the wt controls together. Briefly, peptides were separated on a C18 nano-column with a linear gradient of acetonitrile and analysed in a

Human Molecular Genetics

Top 15 HCD (Higher collision dissociation) data-dependent mass spectrometry. Data were processed by database searching using SequestHT (Thermo Fisher Scientific) with Proteome Discoverer 1.4 software (Thermo Fisher Scientific) against a mouse Swissprot database. Precursor and fragment mass tolerance were set at 7 ppm and 20 ppm respectively. Trypsin was set as enzyme, and up to 2 missed cleavages were allowed. Oxidation (M) and TMT labelled peptides in primary amino groups (+229.163 Da K and N-ter) were set as variable modification, and Carbamidomethylation (C) as fixed modification. We then compared our 5 wt samples to determine the sample closer to average score from the group, and defined it as the reference sample. All the protein quantification was done based on the reference wt sample. In total, we detected 1655 proteins filtered with false discovery rate (FDR) at 5% with a minimum of 2 peptides for a given protein detected per genotypes. We calculated the mean of the fold change for each proteins from all the samples (Dp1Yah, Tg(Dyrk1a) and Dp1Yah/Tg(Dyrk1a) compared to control. From the preliminary data, we selected 208 proteins with variability level below 40% and a fold change below 0.8 or above 1.2.

255 Western Blot analysis

Ten microgram of total proteins from cortex extracts were electrophoretically separated in SDS–polyacrylamide gels (10%) and then transferred to nitrocellulose membrane (120V) during 1h30. Non-specific binding sites were blocked with 5% skim milk powder in Tween Tris buffer saline (T.T.B.S.) 1 h at room temperature. Immunoblotting was carried out with primary antibody (Supplementary table 2) incubated overnight at 4°C. The next day, we started with 3 washing baths with T.T.B.S, followed by secondary conjugated with horseradish peroxidase. The immunoreactions were visualized by ECL
chemiluminescence system (Clarity[™] western ECL substrate – Bio-Rad);
Epifluorescence was captured with Amersham[™] Imager 600. Bands were detected at 18,
25 and 75 kDa respectively for SNCA, SNAP25 and FUS; Signals were quantified with
ImageJ.

RESULTS

268 Three copies of *Cbs* are necessary to induce cognitive impairments in the Dp1Yah 269 mice.

In order to challenge the hypothesis that three copies of *Cbs* are necessary to induce behavioural deficits in the Dp1Yah mice, we combined the Dp1Yah mice with the Cbstm1Unc/+ knock-out model (29) and we compared the Dp1Yah with Dp1Yah/Cbstm1Unc (in which only two copy of Cbs are functional), wild type (wt) and Cbs^{tm1Unc/+} heterozygote controls. In the open field test, most of the genotypes displayed similar exploratory behaviour, except for the Dp1Yah/Cbs mice that travelled more distance in the open field arena with a higher speed (Figure 1A left panel; On way ANOVA on distance, post hoc Tukey Test: Dp1Yah vs Dp1Yah/Cbs^{+/tm1Unc} p=0.002; Figure 1A right panel; On way ANOVA on speed, post hoc Tukey Test: wt vs Dp1Yah/Cbs+/tm1Unc p=0.004; Cbs+/tm1Unc vs Dp1Yah/Cbs^{+/tm1Unc} p=0.05; Dp1Yah vs Dp1Yah/Cbs^{+/tm1Unc} p=0.007). Similarly when the mice performed the Y maze, we confirmed the increased activity with a higher number of arm entries for the Dp1Yah/Cbs^{tm1Unc} compared to the other genotypes (Figure 1B; Kruskal-Wallis One way ANOVA on Ranks – genotypes, post hoc Dunn's method: wt vs Dp1Yah/Cbs^{+/tm1Unc} p<0.05; Dp1Yah vs Dp1Yah/Cbs^{+/tm1Unc} p<0.05) but no impact on spontaneous alternation (One way ANOVA, F(3,87)=2.486 p=0.066). To determine if motor activity was altered in the Dp1Yah/Cbstm1Unc model, we used the rotarod test. After the first day of training we did not find any change in the maximum speed reached before falling for all tested genotypes (Figure 1C; Speed: repeated measures ANOVA variable « genotype » and « day », F(3;110)=1.816 p=0.155). Nevertheless, we observed a

decrease in the locomotor learning in the Dp1Yah mice comparing to the next following days of training which was rescued in the Dp1Yah/Cbstm1Unc mutant (Figure 1C; Speed : repeated measures 2 way ANOVA variable « genotype » and « day », F(2;165)=17.171 p<0.001 post hoc Tuckey method wt «day1 vs day3» p=0.002; Cbstm1Unc/+ «day1 vs day3» p<0,001; Dp1Yah «day1 vs day3» p=0.238; Dp1Yah/Cbs^{tm1Unc} «day1 vs day3» p=0.017). During the test phase, we found that the Dp1Yah individuals showed a weaker performance compared to Cbstm1Unc/+ and Dp1Yah/Cbstm1Unc (ANOVA, variable « speed » and « genotype » F(3;385)=5.544 p<0.001 post hoc Tuckey method; «wt vs Dp1Yah» p=0.099; «Cbs^{tm1Unc/+} vs Dp1Yah» p=0.001; «Dp1Yah vs Dp1Yah/Cbs^{tm1Unc}» p=0.01).

Then we tested the object memory. No difference was observed during the exploration of the familiar object in the presentation phase of the test (Figure 1D top left panel). However, during the discrimination phase, after 1h of retention, the Dp1Yah mutant mice were not able to differentiate the familiar versus the novel object whereas the wt, Cbstm1Unc/+ and the Dp1Yah/Cbstm1Unc spent significantly more time on the new object compared to the familiar one (Figure 1D, left bottom panel; two ways ANOVA, variables "genotype" and "objects": F(3;56)= 2.86 with p=0.045; post hoc Tuckey method wt "fam vs new" q = 4.885 and p = 0.001; *Cbs^{tm1Unc/+}* q = 3.913 and p = 0.008; Dp1Yah, q = 0.503and p= 0.724; Dp1Yah/Cbs^{tm1Unc/+} q= 4.715 and p= 0.002). Accordingly, the recognition index showed that the restoration of two functional copies of Cbs in the Dp1Yah mice rescued memory performance in object recognition (Figure 1D right panel; One sample t-test: wt p=0.05; *Cbs^{tm1Unc/+}* p= 0.01; Dp1Yah p=0.82; Dp1Yah/*Cbs^{tm1Unc/+}* p=0.05).

Overall this set of experiments demonstrated that 3 copies of Cbs were necessary for inducing the Dp1Yah phenotypes in novel object recognition. In addition rescuing Cbs dosage induced a slight hyperactive phenotype during the exploration of a new environment and restored performance in the rotarod activity. Interestingly, returning back to wt level of expression of Cbs in the Abcg1-Cbs region enables another trisomic gene from this region to impact on the exploratory behaviour of the mouse The sole overexpression of a human CBS transgene impacts the object recognition and the locomotor activity. We used the Tg(CBS), a PAC transgenic line encompassing a 60kb fragment with the human CBS locus (30) to analyse the impact of the sole increase of Cbs dosage on behaviour and cognition. As shown in figure 2A, no difference in locomotor activity was observed during the exploration of a new environment in the open field test between wt and transgenic littermates (Student t-test distance: wt vs Tg(CBS)/0 p=0.925; speed wt vs Tg(CBS)/0 p=0.925). However we found higher circadian activity for isolated individuals (Figure 2C; student t-test wt vs Tg(CBS) p<0.001) which results from an increased locomotor activity during the habituation and the dark phase (Figure 2B). In the Y maze (Figures 2D-E), no difference was detected for the number of arm entries and the spontaneous alternation. In the novel object recognition test, (Figures 2F-H) the Tg(CBS)/0 animals spent more time sniffing the two identical objects during the presentation phase than their control littermates (Figure 2F; Student t-test wt vs Tg(CBS)/0 p=0.05) but were impaired in object recognition as shown by the absence of discrimination between novel and familiar objects for the transgenic mice (Figure 2G:

Student paired t-test wt "Fo vs No" p= 0.008; Tg(*CBS*) "Fo vs No" p=0.174) resulting in a recognition index (time on the new object / total time) not significantly different from the 50% chance level, (Figure 2H: one sample t test, significant difference from 50%, wt p= 0.008; Tg(*CBS*)/0 p= 0.174). Consequently we demonstrated that CBS overexpression is sufficient to induce deficit in novel object recognition memory and decreased locomotor activity during dark phase while having no effect during the light phase.

338 Cbs overexpression in hippocampal and cortical neurons induces behavioural 339 defects similar to Dp1Yah

We checked if we could induce the cognitive deficits observed in DS mouse models by overexpressing Cbs mostly in the hippocampal and cortical neurons involved in learning and memory. Hence we engineered the Tg(Prp-gfp-CBS) mouse strain in which the human CBS cDNA can be expressed from the Prion promoter after the excision of the gfp cassette flanked by loxP sites (Figure 3A) and selected one Tg(Prp-gfp-CBS) line with a pattern of expression in the anterior part of the adult brain (Figure 3B). We chose the Tg(Camk2a-cre) (31), to direct the cre expression in the cortical and hippocampal glutamatergic neurons and we verified the expression of the human CBS in different brain regions of the double transgenic (Tg(Prp-gfp-CBS)/0;Tg(Camk2a-cre)/0). As expected we found expression levels comparable to the endogenous murine Cbs gene in cerebellum while human CBS was overexpressed in the hippocampus and the cortex (Figure 3C). Littermate animals carrying wt, the two single transgenic constructs and the two transgenes were produced and tested for object recognition. During the test, the control groups, namely wt, Tg(Prp-gfp-CBS)/0 and Tg(Camk2a-cre)/0, spent more time on the

Human Molecular Genetics

new object (No) than the familiar one (Fo) as expected, while the double transgenic individuals were not able to differentiate the new object from the familiar one as shown by the recognition index or the percentage of exploration time (Figure 3D; Recognition index: One sample t-test: wt p=0.03; Tg(Camk2a-cre)/0 p=0.03; Tg(Prp-gfp-CBS)/0 p=0.001; (Tg(Prp-gfp-CBS)/0; Tg(Camk2a-cre)/0) p=0.90; exploration time; two ways ANOVA, variables "genotype" and "objects": F(3; 76)= 8.59 with p<0.001; post hoc Tuckey method wt «No vs Fo» p<0,001; Tg(Camk2a-cre)/0 «No vs Fo» p=0.001 and Tg(Prp-gfp-CBS)/0 «No vs Fo» p<0.001; (Tg(Prp-gfp-CBS)/0; Tg(Camk2a-cre)/0)) «No vs Fo» p=0,861).

Measurements of the travelled distance in the open field and number of visited arms in the Y maze revealed hyperactivity of the Tg(Camk2cre)/0 carrier groups (Figures 3E-F; Openfield: One way ANOVA F(3,49)=4.80 p=0.005; post hoc Holm-Sidak «wt vs Tg(Camk2-Cre)/0» unadjusted p=0.002; «Tg(Prp-gfp-CBS)/0 vs Tg(Camk2-Cre)/0» p=0.003) - Y maze: One way ANOVA F(3,46)=6.04 p=0.001; post hoc Holm-Sidak «wt vs Tg(Camk2-Cre)/0» p=0.04; «Tg(Prp-gfp-CBS)/0 vs Tg(Camk2-Cre)/0» p=0.009; Tg(Prp-gfp-CBS)/0 vs Tg(Prp-gfp-CBS)/0;Tg(Camk2a-cre)/0p=0.04). Like for the Dp1Yah and Tg(CBS) animals, we did not found any alteration in the spontaneous alternation in the Y maze test (One way ANOVA: F(3,43)=0.691 p=0.563). All the mice, whatever their genotype, performed equally well during the training session of the rotarod (Figure 3G) (training: repeated measures ANOVA, variables « genotype » and « day », F(3;90)=2.011 p=0.126; test: repeated measures ANOVA, variables « genotype » and « day », F(2;90)=44.783 p<0.001) as well as during the test session with increasing speed (Repeated measures ANOVA, variables « genotype » and « speed », F(18;322)=0.631

p=0.875). Thus, as expected from the role of the cerebellum in locomotor coordination,
the overdose of CBS restricted to cortical and hippocampal neurons did not interfere with
the locomotor activity.

Hence, overexpression of CBS is necessary and sufficient to induce object memory defect in a 1h retention test with limited impact on other phenotypes. As such, *CBS* is a new gene whose overdosage alters cognition in DS mouse models and as a consequence is likely to contribute to DS phenotypes.

383 Identification of drugs that suppress the effects of Cys4/CBS overexpression both 384 in yeast and mouse

A few studies have reported the identification of CBS inhibitors (39-44) but most of them were based on *in vitro* assays using a recombinant CBS enzyme as a drug target and led to the isolation of inhibitors with relatively low potency and limited selectivity, hence leading to the idea that CBS may be an undruggable enzyme. Therefore we oriented toward an *in cellulo* phenotype-based assay that would allow screening drugs that interfere with the phenotypical consequences of CBS overexpression and thereby that do not necessarily directly target the CBS enzyme. The budding yeast Saccharomyces cerevisiae contains a functional homolog of CBS and has been shown to be a relevant system to model pathophysiological mechanisms involved in a number of human disorders and to perform chemobiological approaches that aim at identifying both drugs and new therapeutic targets (45-51). We thus decided to create a yeast model in which the phenotypical consequences of CBS overexpression may be easily and

Human Molecular Genetics

conveniently monitored in order to get a potential in cellulo high throughput drug screening procedure. We reasoned that if we overexpressed CBS at a sufficient level, this should lead to a decreased intracellular level of methionine, similarly to what was shown in patients, and therefore that yeast cells would become methionine auxotroph and thereby unable to grow on methionine-free minimal media. As the human CBS protein is not very stable in yeast cells and therefore cannot be expressed at high levels (52), we decided to overexpress Cys4p, the CBS homolog in S. cerevisiae. Cys4p presents the same domains and domain organization than CBS apart from the N-terminal heme-binding domain which is absent in the yeast protein (53). To get a degree of methionine auxotrophy sufficient to allow an efficient screening, we expressed Cys4 from the strong constitutive GPD promoter from two different high copy number 2 µ vectors (each present at ~50 copies per cell) and supplement the growth medium with serine, which is one of the Cys4p/CBS substrates that could otherwise become limiting upon Cys4 overexpression (Figure 4A).

Using this model, we tested \approx 2200 compounds from 3 different chemical libraries consisting mainly of repurposed drugs for their ability to suppress the methionine auxotrophy induced by Cys4p overexpression. We exploited a similar principle as a yeast-based screening setup previously (46, 47, 49, 54). Briefly, we spread, on a solid agar-based methionine-free minimal medium, yeast cells overexpressing Cys4. Then we put filters on the agar surface and add different drugs from chemical libraries on each filters. After 3 days of incubation at 33°c, active compounds were identified by a halo of restored/enhanced growth around the filter on which they were loaded (Figure 4B). The advantage of this method is that, in one simple experiment, it allows numerous

419 compounds to be tested across a large range of concentrations due to the diffusion of the 420 molecule in the medium surrounding the filter onto which it was deposited. This design 421 drastically improves the sensitivity of the screen because the screened compounds can 422 be toxic at high concentrations whereas being active at subtoxic concentrations. We 423 identified four different compounds, among which disulfiram (DSF, Figure 4C).

Next we tested if DSF was able to restore the object recognition of the mouse model overexpressing human CBS. Three independent cohorts of Tg(CBS) and control littermates were treated with DSF (10mg/kg/day) for 10 days before being tested for the novel object recognition. As shown in figure 4D, DSF-treated transgenic animals were restored in the novel object recognition paradigm whereas non treated mutant animals were still not able to discriminate the new versus the familiar object. Interestingly the wt treated individuals were no more able to perform the discrimination while the vehicle treated controls were able to do so (Student paired t-test: vehicle treated wt «No vs Fo» p=0,006; DSF treated wt «No vs Fo» p=0.11 and vehicle treated Tg(CBS) «No vs Fo» p=0.59; DSF treated Tg(CBS) «No vs Fo» p=0,05). This goes in line with the fact that loss-of-function mutations in CBS also leads to cognitive defects as observed in homocystinuria patients. Hence, this latter result confirm that DSF does affect CBS activity, directly or indirectly. Altogether these results confirm that the phenotypical consequences of the overexpression of CBS could be targeted by drugs to restore some of the cognitive performance altered in DS models. They also emphasize that the inhibition of CBS, direct or indirect, should be mild and only partial as a strong inhibition may be

detrimental as illustrated by the cognitive dysfunction observed in homocystinuria and here in wt mice treated with DSF.

Epistatic interaction between Dyrk1a and the Abcg1-Cbs region drives recognition memory in DS mouse models

Dyrk1a is a major driver gene of DS cognitive defects (55) and a decrease in Cbs dosage is known to change the expression of *Dyrk1a* in brain and other organs (56-58). Thus in order to test the functional interaction of Cbs and Dyrk1a overdosage, we combined the Dp1Yah with the Tg(Dyrk1a) mouse model, with Dyrk1a mRNA expression ratio around 1.5 compared to control littermate (32). Tg(Dyrk1a) mice present increased spontaneous activity compared to wt in the Open field test. This hyperactivity was also observed in the double transgenic Dp1Yah/Tg(Dyrk1a) while it was absent from Dp1Yah animals (Figure 5A; Student t test wt vs Dp1Yah p=0,460; wt vs Tg(Dyrk1a) p=0.002 and wt vs Dp1Yah/Tg(Dyrk1a) p=0.006; Tg(Dyrk1a) vs Dp1Yah/Tg(Dyrk1a) p=0,200). Hyperactivity was confirmed in the Y-maze, with both Tg(Dyrk1a) and Dp1Yah/Tg(Dyrk1a) having more arms visits than the controls and Dp1Yah (Figure 5B; Student t test wt vs Dp1Yah p=0,800; wt vs Tg(Dyrk1a) p=0.005 and wt vs Dp1Yah/Tg(Dyrk1a) p=0.005; Tg(Dyrk1a) vs Dp1Yah/Tg(Dyrk1a) p=0,881). The working memory defect observed in the Y maze for Tg(Dyrk1a) mice was not rescued in Dp1Yah/Tg(Dyrk1a) double transgenics (Figure 5B; One way ANOVA F(3,48)=4.14 p=0.011; post hoc Tukey method wt vs Tg(Dyrk1a) p=0.042; wt vs Dp1Yah/Tg(Dyrk1a) p=0,019 and Tg(Dyrk1a) vs

Dp1Yah/Tg(Dyrk1a) p=0.203). Then, we tested the Novel Object Recognition memory after 1h of retention (Figure 5C). As expected, the 2 single mutants were impaired (Two ways ANOVA, variables "genotype" and "objects": F(3;70)=7.09 with p<0.001, post hoc Tukey Test: Dp1Yah "fam vs new" q=1.333 and p=0.349; Tg(Dyr1a) q=1.732 and p=0.225 - Recognition Index: One sample t-test mean vs 50%: Dp1Yah p=0.253; Tg(Dyrk1a) p=497) but the double transgenic mice Dp1Yah/Tg(Dyrk1a) were able to discriminate the novel object as wt littermates (Two ways ANOVA, variables "genotype" and "objects": F(3;70)=7.09 with p<0.001, post hoc Tukey Test: wt "fam vs new" q=4.543 and p=0.002; Dp1Yah/Tg(Dyr1a) g=5.289 and p<0.001 - Recognition Index: One sample t-test: wt p=0.048; Dp1Yah/Tg(Dyrk1a) p=0.011), suggesting that the effects of Dyrk1a overexpression are compensated by 3 copies of the Abcg1-Cbs region.

Lastly we checked the learning and spatial memories using the Morris Water Maze task, followed by a probe test 24h after the learning period (Figure 5D). Even if all the groups increased their performance during the learning phase for reaching the platform after 6 days of training (J1-J6), wt and Dp1Yah mice found the platform with lower latency than the Tg(Dyrk1a) and Dp1Yah/Tg(Dyrk1a) (Two ways ANOVA variable genotype, F(3;280)=14.80 p<0.001; post hoc Tuckey test: wt vs Tg(*Dyrk1a*) q=6.160 with p<0,001; wt vs Dp1Yah/Tg(Dyrk1a) q=4.752 with p=0.004 – Dp1Yah vs Tg(Dyrk1a) q=8.103 with p<0,001; Dp1Yah vs Dp1Yah/Tg(Dyrk1a) g=6.641 with p<0,001). During the probe test, 24h after the learning phase, controls and Dp1Yah animals were searching most of their time in the platform quadrant (T), whereas Tg(Dyrk1a) and double transgenic mice searched randomly across the entire space (One sample t-test vs 50% mean: wt p=0.02;

Human Molecular Genetics

483 Dp1Yah p=0.05; Tg(*Dyrk1a*) p=0.99 and Dp1Yah/Tg(*Dyrk1a*) p=0.57). Hence, 484 overexpressing Cbs and Dyrk1a does not rescue the Dyrk1a-dosage dependent working 485 and spatial memory deficits observed in the Y maze and the Morris water maze 486 respectively neither the hyperactivity observed in the open-field, but rescued the object 487 recognition impairment in the NOR.

488 Proteomics unravels complex intermingled proteomic changes influenced by 489 DYRK1A overexpression and by Dp1Yah trisomic genes

In order to unravel the impact of CBS and DYRK1A on cellular mechanism within the hippocampus that could lead to the memory phenotype observed in the novel object recognition (NOR) test, we profiled the proteome in the hippocampi isolated from Dp1Yah, Tg(Dyrk1a) and double (Dp1Yah,Tg(Dyrk1a)) animals, and compared them to the wt control littermates. We collected the samples after the behavioral evaluation and performed a Tandem Mass Tag labeling (Thermo Scientific, Illkirch) followed by LC-MS/MS orbitrap analysis. We were able to detect 1655 proteins of which 546 were detected in all the 3 genotypes with a variability below 40% (Supplementary table 3), and among which 338 proteins were expressed at the same level as control ones. A total of 208 proteins were found differentially expressed with levels of expression above 1.2 (206) or below 0.8 (2) in Dp1Yah, Tg(Dyrk1a) and double mutant mice (Figure 6A). Nine proteins were upregulated in all 3 genotypes: the RIKEN cDNA 6430548M08 gene product (6430548M08RIK), Actin related protein 2/3 complex, subunit 1A (ARPC1A), Bridging Integrator 1 (BIN1), the Family with sequence similarity 213, member A (Fam213a), Glyoxalase 1 (GLO1), Importin 5 (LPO5), NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1), Prostaglandin reductase 2 (PTGR2) and Synaptosomal-associated protein 25 (SNAP25). Toppcluster analysis of the protein content unraveled a general common network with interacting proteins modified by the 3 genetic conditions (Figure 6B-C). Functional analysis using gene ontology highlighted several cellular components affected in the 3 genotypes including synaptic particles, neuron projection, presynapse/synapse, axon, myelin sheath and different types of vesicles (Supplementary table 4). Cell/neuron projection development, morphogenesis, and differentiation, as well as secretion, synaptic and anterograde trans-synaptic signaling were affected in Dp1Yah while aldehyde catabolic processes and regulation of anatomical structure size were modified in Tg(Dyrk1a). Interestingly all these biological process were not be disturbed in double transgenic animals. Likewise molecular functions controlling ubiquitin protein ligase, calcium ion binding and dicarboxylic acid transmembrane transporter activity in Dp1Yah, or cytoskeletal protein and myosin binding in Tg(Dyrk1a) were restored (Dp1Yah,Tg(Dyrk1a)). On the contrary oxidoreductase activity was newly modified in the double transgenic hippocampi.

We selected three proteins with different proteomic profiles in hippocampi and studied their expression in another brain region, the cerebral cortex, using western blot analysis: The alpha synuclein (SNCA), the Fused in sarcoma (FUS) that are associated with neurodegenerative disease (59-62) and the synaptosomal-associated protein 25 (SNAP25), a component of the SNARE complex involved in calcium-triggered exocytosis (63-65). As shown in figure 5D, levels of SNCA were similar to wt level. We did observe increased amount of this protein in the (Dp1Yah,Tg(*Dyrk1a*)) animals contrary to what

was observed in the proteome analysis. The presynaptic SNAP25 protein was significantly up-regulated in cortical regions of the (Dp1Yah,Tg(Dyrk1a)) animals and to a lesser extent in the Dp1Yah and Tg(Dyrk1a) ones (student t-test wt versus Tg(Dyrk1a) p=0,233; wt versus Dp1Yah p=0,06; wt versus D1Yah/Tg(Dyrk1a) p=0,02). Hence, in the proteomic approach, we also observed the increase previously detected in the hippocampus of those three transgenic lines. The RNA-binding protein FUS was found overexpressed in the Dp1Yah brains and to a lesser extent in the (Dp1Yah,Tg(Dyrk1a)) ones, similarly to what was observed in the proteomic analysis (student t-test Dp1Yah compared to wt p=0,02 and D1Yah/Tg(Dyrk1a) compared to wt p=0,09).

DISCUSSION

In this report we demonstrated that the genetic overdosage of *Cbs* is necessary and sufficient to induce defective novel object recognition in 3 different types of DS models. CBS overdosage is certainly the main driver of the learning and memory phenotypes detected previously in DS models for the Mmu17 region (22, 33) but we cannot rule out the possibility that one or more other gene(s) contribute with Cbs to the phenotype. Previous analysis of CBS overdosage with the same transgenic line Tg(CBS) on the FVB/N genetic background showed no change in fear learning task and locomotor activity but increased LTP-dependent synaptic plasticity (66); a phenomenon also detected in vitro and in vivo in other DS models where Cbs is trisomic in the C57BL/6J genetic background (22, 33). Nevertheless no positive effect on cognition is associated

with increase CBS dosage as previously proposed by Régnier et al. (66). Instead the overdosage of CBS always impairs the hippocampal-dependent novel object recognition test suggesting that increased synaptic plasticity found in *Cbs* trisomic models may alter synaptic functions. Increased synaptic plasticity could occur via increased H₂S as it has been shown that H₂S facilitates LTP by stimulating the post-synaptic NMDA receptors (67, 68). Moreover, a role of H₂S has been foreseen in calcium homeostasis regulation which is also crucial for neuronal synaptic plasticity (69).

DSF was isolated from a drug screening performed in yeast cells overexpressing CBS homolog Cys4p and looking for drugs counteracting its effect on methionine auxotrophy. Although DSF has been first identified as an inhibitor of mitochondrial aldehyde dehydrogenase (ALDH) (70), it is a relatively nontoxic substance, which has been on the market for more than 40 years to support the treatment of chronic alcoholism by producing an acute sensitivity to ethanol, thanks to its ability to inhibit aldehyde dehydrogenases, thus leading to an accumulation of acetaldehyde in blood when alcohol is ingested. As acetaldehyde is responsible for many of the unpleasant effects that follow ingestion of large quantities of alcohol ("hangover"), DSF treatment discourages the patients to sustain a regular alcohol consumption by exacerbating and accelerating its unpleasant side effects. Our preliminary data about the mechanism of action of DSF suggest that this molecule may not directly inhibit CBS enzymatic activity but probably rather acts on the cellular consequences of CBS overexpression. The assay used for the screening, in principle, leads to the isolation of drugs acting both directly or not on CBS/Cys4. This latter point is of importance given that CBS may not be a druggable target

Human Molecular Genetics

enzyme. And indeed, at present, we do not know if the DSF is acting directly or indirectly on CBS but we must assume the function altered by CBS overdosage, whatever it is, is conserved and similarly sensitive to DSF treatment in both yeast and mouse. Of note, upon absorption DSF is rapidly reduced to diethyldithiocarbamate (DDC), which then reacts with thiol groups. Both DSF and DCC are potent copper chelators, thereby possibly affecting the activity of copper-dependent enzymes such as monooxygenases, the Cu-Zn superoxide dismutase, amine oxidase, ADN methyltransferases and cytochrome oxidase. As a result, DSF has been shown to affect various cellular processes such as cocaine metabolism and catecholamine synthesis, and proteasome inhibition, and is thus under study for multiple clinical applications that include struggle against alcohol addiction, cancer chemotherapy, treatment of copper-related disorders and anti-viral treatment for hepatitis C and Human Immunodeficiency Virus (71). Here, we describe a new possible clinical application of DSF in DS cognition through its effect on CBS overexpression. CBS clearly represents a new relevant therapeutic target for improving DS cognition and DSF, as such, opens new therapeutic avenues in DS patients.

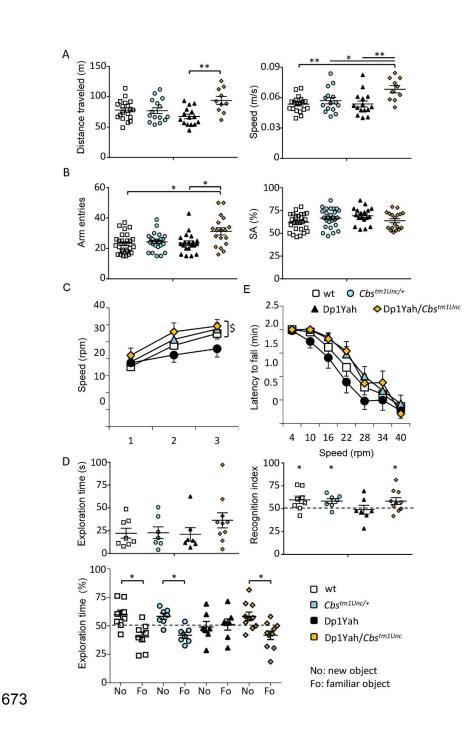
585 We also demonstrated that *CBS* interacts genetically with *Dyrk1a*, a well-known 586 therapeutic target for DS. Mutual relationships between DYRK1A and CBS were shown 587 previously, with decreased DYRK1A protein observed in the liver (Hamelet et al. 2009) 588 and increased expression observed in the brain of $Cbs^{+/-}$ mice (Planque et al. 2013), while 589 overexpression (or under-expression) of DYRK1A induce accumulation (or reduction) of 590 CBS expression in the liver (72). In order to explore the genetic interactions between 591 DYRK1A and CBS, we overexpressed *Dyrk1a* in the Dp1Yah context by combining the

Tg(Dyrk1a) and the Dp1Yah mice. Surprisingly, this experiment restored the object recognition deficit observed in the Dp1Yah mouse model but neither the increased locomotor activity in the open-field or the Y maze, nor the working and spatial memory deficits. Thus the compensation is restricted to a specific cognitive function, recognition memory, which is defective in both TgDyrk1a and Dp1Yah models. Why this dosage effect is restricted to recognition memory remains speculative. We may hypothesize that Cbs and Dyrk1a overdosage only interact in specific regions of the adult brain involved in object discrimination explaining why the increased locomotor activity and the working and visuo-spatial phenotypes induced in Tg(Dyrk1a) animals are not affected. Alternatively, objects recognition deficit is likely to result from an impact of DYRK1A on adult brain function while the other phenotypes are the result of an impact during earlier stage of brain development. On the one hand, object recognition has been shown to require undamaged hippocampal perforant path connecting ento/perirhinal cortex with the dentate gyrus for long retention intervals (> 15 min) in rat (73-78). On the other hand, synaptic exchanges between the median prefrontal cortex (mPFC) and the hippocampus seems to be sufficient to support the processing of short-term memory such as working memory observed in the Y maze (79, 80) and hyperactivity is associated with the prefrontal cortex, basal ganglia and cerebellum (81-84). Moreover, long-term recognition memory has been shown to appear in the rat at weaning (post-natal day 21 in the mouse), (85), a period corresponding to the end of neurogenesis and synaptogenesis in the dentate of the hippocampus, and reflecting the general observation of 'infantile amnesia' observed on long-term memory tasks but not on short-term memory ability (86).

Our proposal go farther than the demonstration by Zhang et al (23) that the Hsa21 homologous region on the Mmu17 is a key determinant cognitive deficits in DS mouse models. We showed here that CBS is a key gene for DS related phenotypes in mice with the other homologous interval Cbr3-Fam3b located on Mmu16, encompassing Dyrk1a. We should also consider that in people with DS, both genes are trisomic and thus the recognition memory deficit observed in DS persons and in the complete T21 mouse model (87) certainly depends not only on the interplay between DYRK1A and CBS but also on interaction with other Hsa21 genes that may affect different pathways or different parts of the brain.

The molecular mechanisms involved in Cbs-Dyrk1a genetic interaction have been investigated through a quantitative proteomic approach. Although limited due to the complexity of the hippocampus, the results highlight proteins networks interactions between the two trisomic regions. 208 proteins were found deregulated, corresponding to 148 GO categories and pathways, with 72 specific to Dp1Yah (out of 121) and 9 to Dyrk1a transgenic model (out of 32; Supplementary table 3) and 5 common to both Dp1Yah and Tg(*Dyrk1a*). More interestingly, GO terms such as cortical cytoskeleton or cytoskeletal protein binding were respectively affected in Dp1Yah and in the Tg(Dyrk1a) but were restored in the double transgenic animals, unravelling somehow the nature of the pathways controlled by the epistatic interaction between CBS and DYRK1A overdosage. DYRK1A is found mainly associated to and modulates the actin cytoskeleton (88). CBS is the major enzyme involved in H_2S production in the central nervous system (67). Interestingly increase of H₂S activates RAC1 leading to rearrangement of actin

636 cytoskeleton during endothelial cell migration (89). Thus a simple hypothesis would be 637 that the overdosage of CBS will lead to increased H_2S production and further activation of 638 RAC1 with effect on actin cytoskeleton rearrangement, a key mechanism involved in 639 synaptic transmission. Remarkably DYRK1A interacts with p120-Catenin-Kaiso and can 640 then modulate Rac1 (90). Thus one working hypothesis is based on CBS and DYRK1A 641 pathways connected through RAC1.

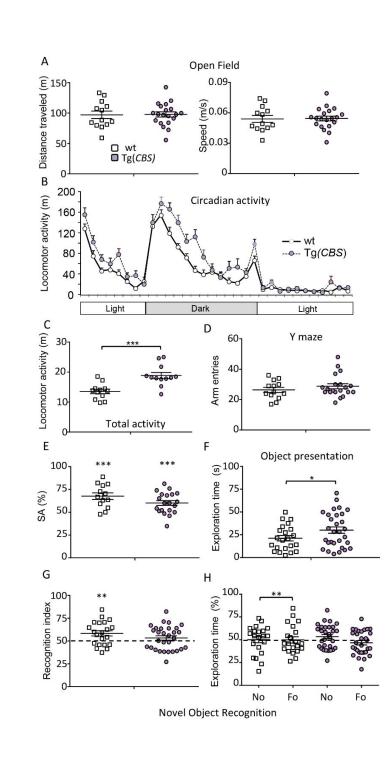

DYRK1A is the main driver of defects in DS mouse models for the homologous region to Hsa21 located on Mmu16 (55). Based on study done in DS models for the Mmu16 homologous region (91), DYRK1A has been selected as a drug target. As reported previously, a treatment with epigallocatechin-3-gallate (EGCG), an inhibitor of DYRK1A kinase activity, can restore some cognitive aspects found altered in people with DS but the gain was limited (92, 93). Nevertheless our results, by adding CBS to the limited number of DS therapeutic targets, may improve the efficiency of DS treatment, in particular by combining multiple therapies for improving the life of DS patients. Finally, an important point to emphasize is that, for DYRK1A as well as for CBS, both loss of function mutations and overdosage lead to intellectual deficiencies. This is important to keep in mind when considering pharmacological intervention that aims at inhibiting one or the other, or both, of these enzymes. Therefore, drug treatment that lead to only a mild inhibition of CBS and/or DYRK1A should be favoured.

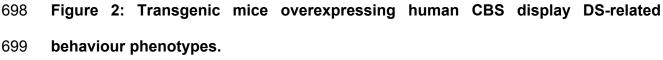
656 ACKNOWLEDGEMENTS

Human Molecular Genetics

We thank Dr David Patterson for granting access to the 60.4P102D1 transgenic mice, and Dr. Nathalie Janel for providing the CBS KO mice, Dr. Henri Blehaut for his initial support on the study and the Fondation Jerome Lejeune for making the transgenic line available and their support. We are grateful to members of the research group, of the proteomic platform of the IGBMC laboratory, and of the Mouse Clinical institute (MCI-ICS) for their help and helpful discussion during the project. The project was supported by the French National Centre for Scientific Research (CNRS), the French National Institute of Health and Medical Research (INSERM), the ITMO ("Institut Thématique Multiorganisme") BCDE ("Biologie Cellulaire, Développement & Evolution"), the University of Strasbourg and the "Centre Europeen de Recherche en Biomedecine", the "Fondation Jerome Lejeune" and the French state funds through the "Agence Nationale de la Recherche" under the frame programme Investissements d'Avenir labelled (ANR-10-IDEX-0002-02, ANR-10-LABX-0030-INRT, ANR-10-INBS-07 PHENOMIN). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

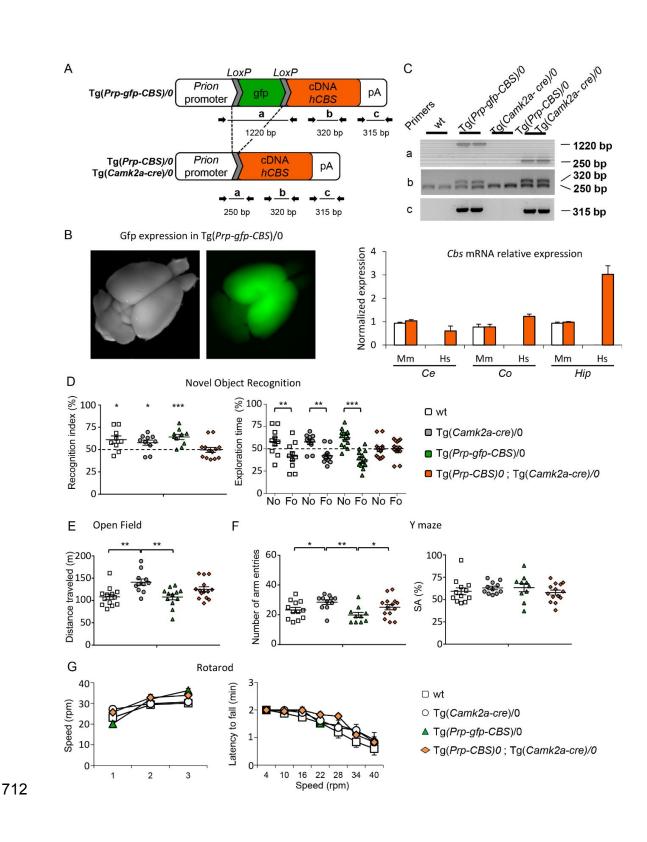
LEGENDS TO FIGURES

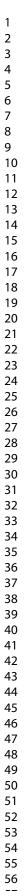



Figure 1: The Dp1Yah phenotypes are dependent on *Cbs* dosage.

675 Dp1Yah trisomic mice (n=23) were compared with Dp1Yah carrying a KO of *Cbs* 676 (Dp1Yah/*Cbs*^{tm1Unc}, n=21), *Cbs*^{tm1Unc/+}(n=23) and wt littermates (n=29). Animals were

Human Molecular Genetics


analysed for the open field (A), the Y maze (B) and the novel object recognition (D) in two independent cohorts; the rotarod (C) was assessed on one cohort with wt (n=18) Cbstm1Unc/+ (n=15), Dp1Yah (n=15) and Dp1Yah/Cbstm1Unc (n=10) littermates. (A) Distance travelled and medium speed during the 30min of the test were increased in the Dp1Yah/Cbs^{tm1Unc} compared to the wild type genotype. (B) Increased exploration activity was confirmed for the Dp1Yah/Cbstm1Unc mice compared to control littermates in the Y maze while spontaneous alternation was not affected. (C) During the training session (left panel), the Dp1Yah mice were not able to improve their performance on the rotarod by increasing the maximum of speed before they fall from the rod compared to the other genotype. Nevertheless no change was observed between individuals with the four genotypes during the test phase (right panel). (D) The exploration time in the first session of the novel object recognition (left upper panel) was not statistically different in the four genotypes but during the recognition phase, after 10 min of retention, the recognition index (right upper panel; time spent on the new object / total time of exploration) was clearly lower in Dp1Yah mice as compared to the other genotypes and not statistically different from chance (50%). Accordingly the exploration time (left lower panel) spent by the Dp1Yah/Cbstm1Unc mice to explore the object showed that they were able to differentiate the novel (No) versus the familiar (Fo) object while the Dp1Yah were not. Data are represented as one point per individual tested and the mean of the group. (Values represent means + S.E.M. *P<0.05, **P<0.01, ***P<0.001).



Human Molecular Genetics

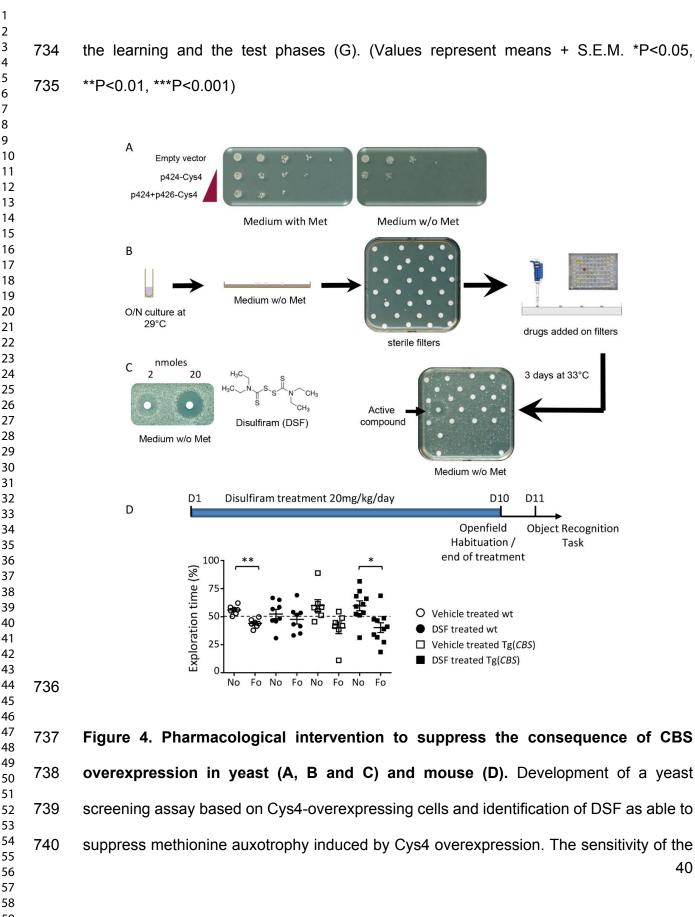
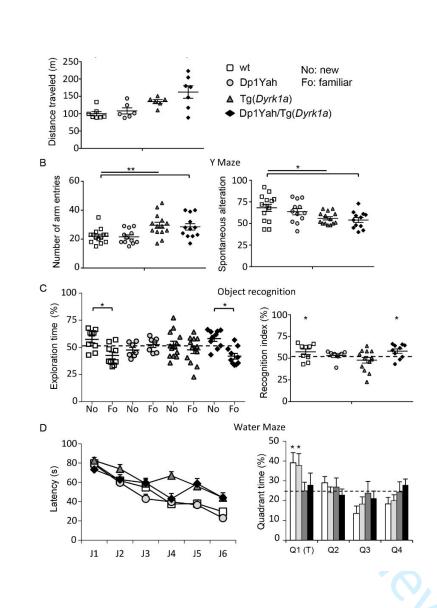
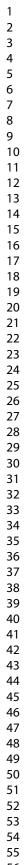

Wt (n=13) and Tg(CBS)/0 littermates (n=17), hemizygotes for a human PAC containing the CBS gene, were tested for open field (A), circadian actimetry (B,C), Y maze (D-E) and novel object recognition (F,G and H). No phenotype was found in the Tg during the exploration of a new environment in the open field in the total distance travelled (left) and the speed (right) but increased activity was observed during home cage monitoring over a light-dark-light cycle (B) with an increase of the distance travelled (C). In the Y maze (E), Tg(CBS)/0 animals displayed altered spontaneous alternation with no change in the number of arm entries (D). In the novel object recognition (F), Tg(CBS)/0 mice displayed similar exploration activity compared to wt littermates but they do not discriminate the novel versus the familiar object when looking at the discrimination index (G) and the percentage of exploration time for both objects (H). (Values represent means + S.E.M. *P<0.05, **P<0.01, ***P<0.001). Perez.

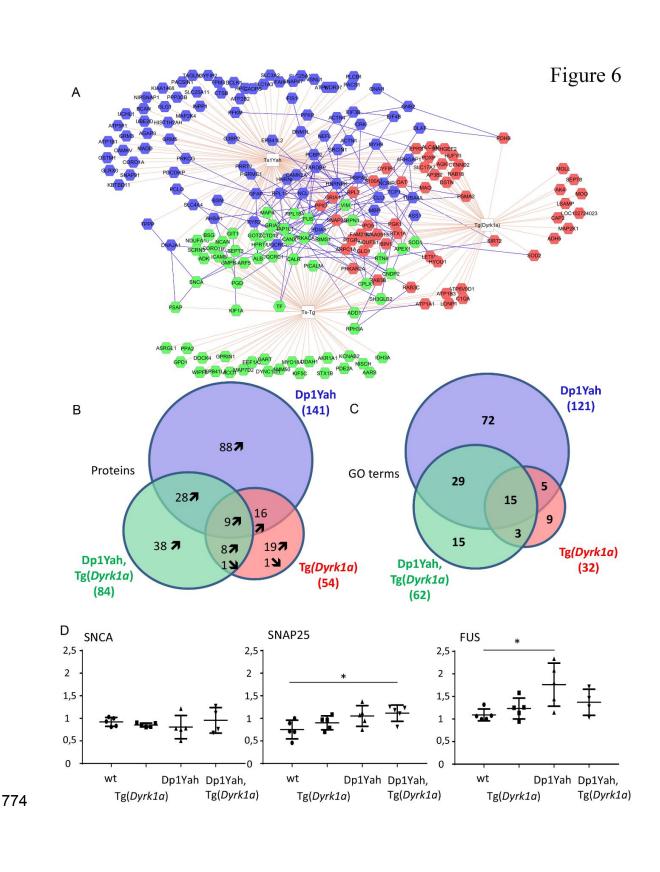
Figure 3: Selective overexpression of *hCBS* in the glutamatergic neurons leads to impaired object recognition and altered locomotor activity.

(A) a conditional transgene Tg(*Prp-gfp-CBS*) was designed to overexpress the human CBS cDNA from the murine Prion promoter after the deletion of an interrupting GFP-coding cassette flanked by loxP sites. The GFP allowed to select one line that lead to expression in the anterior part of the brain (B). When Cre is expressed from the Tg(Camk2-Cre) transgene, the deletion can be monitored in the brain of the animals (C) and the overexpression of hCBS mRNA is detected in different part of the brain of the Tg(Camk2-Cre)/0;Tg(Prp-gfp-CBS)/0 animals (Hs, orange bar, B) with no change in the endogeneous murine CBS without Cre expression detected in wt animals (Mm, white bar B) or Tg(Camk2-Cre)/0;Tg(Prp-gfp-CBS)/0 animals (Mm, orange bar, B). Wt (n=13), Tg(Camk2-Cre)/0 (n=11), Tg(Prp-gfp-CBS)/0 (n=12), and Tg(Camk2-Cre)/0;Tg(Prp-gfp-CBS)/0 (n=14) littermates were evaluated through for object discrimination (D), open field (E), Y maze (F), rotarod (G). Mice overexpressing hCBS in the glutamatergic neurons were unable to discriminate the novel versus the familiar object as compared to the other control genotypes (D). Tg(Camk2-Cre)/0 mice displayed an enhanced locomotor activity in the open field but no change was detected in the control, wt and Tg(Prp-qfp-CBS)/0, or in double transgenic animals (E). In the Y maze animals carrying the Tg(Prp-gfp-CBS)/0 or the activated form, Tg(Camk2-Cre)/0;Tg(Prp-gfp-CBS)/0, displayed reduced exploration with a lower number of arm entries but no change in the spontaneous alternation (F). No phenotypes was altered in the rotarod test with similar progress during

Human Molecular Genetics

strain to the absence of methionine in the medium was evidenced by serial dilutions of a yeast strain expressing different levels of Cys4 (A). For the drug screening, the yeast strain overexpressing Cys4 from both p424 & p426 multicopy 2 µ plasmids was spread on a square Petri plate containing solid agar-based methionine-free medium. DMSO was used as a negative control and added to the upper right filter and methionine, the positive control, was deposited on the bottom left filter (B). At the remaining positions, individual compounds from the chemical libraries were added, and plates were incubated for 3 d at 33 °C. The dose-dependent effect of DSF on Cys4-overexpressing cells is shown, and its molecular structure is depicted (C). Note that DSF is toxic at high concentrations (close to the filter) whereas it becomes active at sub-toxic concentrations. To test DSF in mice, a treatment was done on Tg(CBS) cohort starting at D1 and ending at D10 (D). Each groups received a daily dose of 10mg/kg/day of DSF for 10 days followed by an open field paradigm (D10) with the object recognition test performed on D11 (with one hour of retention time). The graph at the bottom showed the percentage of time spent on the novel versus the familiar object during the tests. The vehicule-treated wt mice were able to distinguish both objects as the DSF-treated Tg(CBS) animals. On the contrary non-treated transgenic animals were not able to do so and the DSF-treated wt animals were impaired in the test confirming that the drug affects CBS activity in vivo (Values represent means + S.E.M. *P<0.05, **P<0.01, ***P<0.001).


Figure 5: CBS and DYRK1A overdosages interact for controlling behaviour and
 cognition

Behavioural and cognitive analysis of transgenic animals overexpressing *Cbs* and *Dyrk1a* (14 wt, 15 Tg(*Dyrk1a*), 13 Dp1Yah and 13 Dp1Yah/Tg(*Dyrk1a*)) mutant mice in the open field (A), the Y maze (B), the object recognition (C) and the Morris water maze (D). Increased activity in the open field (A) and in the number of arm entries in the Y maze (B) were found in the Tg(*Dyrk1a*) and Dp1Yah/Tg(*Dyrk1a*) animals with also reduced

spontaneous alternation in the Y maze (B). Both the Dp1Yah and Dp1Yah/Tg(*Dyrk1a*) mutant mice were impaired in object recognition (C) but the double mutant animals showed restored object discrimination similar to wt littermates. The Tg(*Dyrk1a*) and Dp1Yah/Tg(*Dyrk1a*) animals displayed delayed learning in the Morris water maze with no memory of the platform location in the probe test compared to Dp1Yah and wt littermates (D). (Values represent means + S.E.M. *P<0.05, **P<0.01, ***P<0.001)

CBS dosage.

Figure 6: Pattern of protein expression is disrupted upon changes in DYRK1A and

(A) Analyzing the 1655 proteins detected in the Orbitrap ELITE experiment, we extracted from Proteome Discoverer 1.4 © a list of 208 proteins dysregulated in our different sample conditions. The association between proteins, pathways and genotype is summarized in two Venn diagrams (B-C). We deduced that the trisomic alleles induced most of the perturbations; moreover, the combination of increased DYRK1A and trisomic condition leaded to new dysregulations. (D) Western blot validation of 3 protein candidates SNCA,

SNAP25 and FUS. SNAP25 expression is increased in samples overexpressing DYRK1A.

More interestingly, FUS was found significantly upregulated in Dp1Yah - plots represent

every sample values normalized with β -actin level). (Values represent means + S.E.M.

*P<0.05, **P<0.01, ***P<0.001)

REFERENCES

Korbel, J.O., Tirosh-Wagner, T., Urban, A.E., Chen, X.N., Kasowski, M., Dai, L., Grubert, F., Erdman, C., Gao, M.C., Lange, K. et al. (2009) The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proceedings of the National Academy of Sciences of the United States of America, 106, 12031-12036.

Lyle, R., Bena, F., Gagos, S., Gehrig, C., Lopez, G., Schinzel, A., Lespinasse, J., Bottani, A., Dahoun, S., Taine, L. et al. (2009) Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. European Journal of Human Genetics, , 454-466.

Reeves, R.H., Irving, N.G., Moran, T.H., Wohn, A., Kitt, C., Sisodia, S.S., Schmidt, C., Bronson, R.T. and Davisson, M.T. (1995) A MOUSE MODEL FOR DOWN-SYNDROME EXHIBITS LEARNING AND BEHAVIOR DEFICITS. Nature Genetics, 11, 177-184.

Yu, T., Li, Z.Y., Jia, Z.P., Clapcote, S.J., Liu, C.H., Li, S.M., Asrar, S., Pao, A., Chen, R.Q., Fan, N. et al. (2010) A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Human *Molecular Genetics*, **19**, 2780-2791.

Duchon, A., Pothion, S., Brault, V., Sharp, A.J., Tybulewicz, V.L.J., Fisher, E.M.C. and Herault, Y. (2011) The telomeric part of the human chromosome 21 from Cstb to Prmt2 is not necessary for the locomotor and short-term memory deficits observed in the Tc1 mouse model of Down syndrome. Behavioural Brain Research, **217**, 271-281.

Glahn, D.C., Thompson, P.M. and Blangero, J. (2007) Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Hum Brain Mapp, 28, 488-501.

Brault, V., Duchon, A., Romestaing, C., Sahun, I., Pothion, S., Karout, M., Borel, C., Dembele, D., Bizot, J.C., Messaddeq, N. et al. (2015) Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13-App region. PLoS Genet, , e1005062.

Herault, Y., Duchon, A., Velot, E., Maréchal, D. and Brault, V. (2012) The in vivo Down syndrome genomic library in mouse. Prog Brain Res, 197, 169-197.

Jiang, X., Liu, C., Yu, T., Zhang, L., Meng, K., Xing, Z., Belichenko, P.V., Kleschevnikov, A.M., Pao, A., Peresie, J. et al. (2015) Genetic dissection of the Down syndrome critical region. Hum Mol Genet.

Hall, J.H., Wiseman, F.K., Fisher, E.M., Tybulewicz, V.L., Harwood, J.L. and Good, M.A. (2016) Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory. Neurobiol Learn Mem, **130**, 118-128.

Lana-Elola, E., Watson-Scales, S., Slender, A., Gibbins, D., Martineau, A., Douglas, C., Mohun, T., Fisher, E.M. and Tybulewicz, V.L.j. (2016) Genetic dissection of Down syndrome-associated congenital heart defects using a new mouse mapping panel. *Elife*, **5**.

Salehi, A., Delcroix, J.D., Belichenko, P.V., Zhan, K., Wu, C., Valletta, J.S., Takimoto-Kimura, R., Kleschevnikov, A.M., Sambamurti, K., Chung, P.P. et al. (2006) Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron, 51, 29-42.

García-Cerro, S., Martínez, P., Vidal, V., Corrales, A., Flórez, J., Vidal, R., Rueda, N., Arbonés, M.L. and Martínez-Cué, C. (2014) Overexpression of Dyrk1A is implicated in several cognitive, electrophysiological and neuromorphological alterations found in a mouse model of Down syndrome. PLoS One, 9, e106572.

Altafaj, X., Martín, E.D., Ortiz-Abalia, J., Valderrama, A., Lao-Peregrín, C., Dierssen, M. and Fillat, C. (2013) Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis, 52, 117-127.

- Guedj, F., Sébrié, C., Rivals, I., Ledru, A., Paly, E., Bizot, J.C., Smith, D., Rubin, E., Gillet, B., Arbones, M. et al. (2009) Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS One, 4, e4606. De la Torre, R., De Sola, S., Pons, M., Duchon, A., de Lagran, M.M., Farré, M., Fitó, M., Benejam, B., Langohr, K., Rodriguez, J. et al. (2014) Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol Nutr Food Res, 58, 278-288. de la Torre, R., de Sola, S., Hernandez, G., Farré, M., Pujol, J., Rodriguez, J., Espadaler, J.M., Langohr, K., Cuenca-Royo, A., Principe, A. et al. (2016) Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol, 15, 801-810. Kim, H., Lee, K.S., Kim, A.K., Choi, M., Choi, K., Kang, M., Chi, S.W., Lee, M.S., Lee, J.S., Lee, S.Y. et al. (2016) A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. *Dis Model Mech*, 9, 839-848. Nakano-Kobayashi, A., Awaya, T., Kii, I., Sumida, Y., Okuno, Y., Yoshida, S., Sumida, T., Inoue, H., Hosoya, T. and Hagiwara, M. (2017) Prenatal neurogenesis induction therapy normalizes brain structure and function in Down syndrome mice. Proc Natl Acad Sci U S A, 114, 10268-10273. Neumann, F., Gourdain, S., Albac, C., Dekker, A.D., Bui, L.C., Dairou, J., Schmitz-Afonso, I., Hue, N., Rodrigues-Lima, F., Delabar, J.M. et al. (2018) DYRK1A inhibition and cognitive rescue in a Down syndrome mouse model are induced by new fluoro-DANDY derivatives. Sci Rep, 8, 2859. Pereira, P.L., Magnol, L., Sahun, I., Brault, V., Duchon, A., Prandini, P., Gruart, A., Bizot, J.C., Chadefaux-Vekemans, B., Deutsch, S. et al. (2009) A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Human Molecular Genetics, 18, 4756-4769. Yu, T., Liu, C.H., Belichenko, P., Clapcote, S.J., Li, S.M., Pao, A.N., Kleschevnikov, A., Bechard, A.R., Asrar, S., Chen, R.Q. et al. (2010) Effects of individual segmental trisomies of human chromosome 21 syntenic regions on hippocampal long-term potentiation and cognitive behaviors in mice. Brain Research, , 162-171. Zhang, L., Meng, K., Jiang, X., Liu, C., Pao, A., Belichenko, P.V., Kleschevnikov, A.M., Josselyn, S., Liang, P., Ye, P. et al. (2014) Human chromosome 21 orthologous region on mouse chromosome 17 is a major determinant of Down syndrome-related developmental cognitive deficits. Hum Mol Genet, 23, 578-589. Sahún, I., Marechal, D., Pereira, P.L., Nalesso, V., Gruart, A., Garcia, J.M., Antonarakis, S.E., Dierssen, M. and Herault, Y. (2014) Cognition and Hippocampal Plasticity in the Mouse Is Altered by Monosomy of a Genomic Region Implicated in Down Syndrome. Genetics, 197, 899-912.

867 25 Marechal, D., Lopes Pereira, P., Duchon, A. and Herault, Y. (2015) Dosage of the Abcg1-U2af1
868 region modifies locomotor and cognitive deficits observed in the Tc1 mouse model of Down syndrome.
869 *PLoS One*, **10**, e0115302.

- ⁷
 870 26 Kimura, H. (2011) Hydrogen sulfide: its production, release and functions. *Amino Acids*, **41**, 113871 121.
- 872 27 Chen, X., Jhee, K.H. and Kruger, W.D. (2004) Production of the neuromodulator H2S by
 873 cystathionine beta-synthase via the condensation of cysteine and homocysteine. *J Biol Chem*, 279, 52082 874 52086.
- ¹⁵
 875 28 Kamat, P.K., Kalani, A. and Tyagi, N. (2015) Role of hydrogen sulfide in brain synaptic remodeling.
 17 876 Methods Enzymol, 555, 207-229.
- 877 29 Watanabe, M., Osada, J., Aratani, Y., Kluckman, K., Reddick, R., Malinow, M.R. and Maeda, N.
 878 (1995) MICE DEFICIENT IN CYSTATHIONINE BETA-SYNTHASE ANIMAL-MODELS FOR MILD AND SEVERE
 879 HOMOCYST(E)INEMIA. Proceedings of the National Academy of Sciences of the United States of America,
 880 92, 1585-1589.
- 881 30 Butler, C., Knox, A.J., Bowersox, J., Forbes, S. and Patterson, D. (2006) The production of transgenic
 882 mice expressing human cystathionine beta-synthase to study Down syndrome. *Behav Genet*, **36**, 429-438.
- 883 31 Mantamadiotis, T., Lemberger, T., Bleckmann, S.C., Kern, H., Kretz, O., Martin Villalba, A., Tronche,
 884 F., Kellendonk, C., Gau, D., Kapfhammer, J. *et al.* (2002) Disruption of CREB function in brain leads to
 885 neurodegeneration. *Nat Genet*, **31**, 47-54.
- 886 32 Guedj, F., Pereira, P.L., Najas, S., Barallobre, M.J., Chabert, C., Souchet, B., Sebrie, C., Verney, C.,
 887 Herault, Y., Arbones, M. *et al.* (2012) DYRK1A: a master regulatory protein controlling brain growth.
 888 Neurobiol Dis, 46, 190-203.
- ³⁷ 889 33 Lopes Pereira, P., Magnol, L., Sahún, I., Brault, V., Duchon, A., Prandini, P., Gruart, A., Bizot, J.,
 ³⁸ 890 Chadefaux-Vekemans, B., Deutsch, S. *et al.* (2009) A new mouse model for the trisomy of the Abcg1-U2af1
 ³⁹ 891 region reveals the complexity of the combinatorial genetic code of down syndrome. *Hum Mol Genet*, **18**,
 ⁴⁰ 4756-4769.
- ⁴³ 893 34 Mumberg, D., Muller, R. and Funk, M. (1995) YEAST VECTORS FOR THE CONTROLLED EXPRESSION
 ⁴⁴ 894 OF HETEROLOGOUS PROTEINS IN DIFFERENT GENETIC BACKGROUNDS. *Gene*, **156**, 119-122.
- ⁴⁶ 895 35 Ito, H., Fukuda, Y., Murata, K. and Kimura, A. (1983) Transformation of intact yeast cells treated ⁴⁷ 896 with alkali cations. *J Bacteriol*, **153**, 163-168.
- 897 36 Kim, A.K. and Souza-Formigoni, M.L.O. (2010) Disulfiram impairs the development of behavioural sensitization to the stimulant effect of ethanol. *Behavioural Brain Research*, **207**, 441-446.

899 37 Karp, N.A., Meehan, T.F., Morgan, H., Mason, J.C., Blake, A., Kurbatova, N., Smedley, D., Jacobsen,
900 J., Mott, R.F., Iyer, V. *et al.* (2015) Applying the ARRIVE Guidelines to an In Vivo Database. *PLoS Biol*, 13,
901 e1002151.

902 38 Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M. and Altman, D.G. (2010) Improving bioscience
 903 research reporting: the ARRIVE guidelines for reporting animal research. *PLoS Biol*, **8**, e1000412.

190439Asimakopoulou, A., Panopoulos, P., Chasapis, C.T., Coletta, C., Zhou, Z., Cirino, G., Giannis, A.,2905Szabo, C., Spyroulias, G.A. and Papapetropoulos, A. (2013) Selectivity of commonly used pharmacological3906inhibitors for cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE). Br J Pharmacol, 169,4907922-932.

908 40 Thorson, M.K., Van Wagoner, R.M., Harper, M.K., Ireland, C.M., Majtan, T., Kraus, J.P. and Barrios,
 909 A.M. (2015) Marine natural products as inhibitors of cystathionine beta-synthase activity. *Bioorg Med* 910 *Chem Lett*, **25**, 1064-1066.

911 41 Thorson, M.K., Majtan, T., Kraus, J.P. and Barrios, A.M. (2013) Identification of cystathionine β-912 synthase inhibitors using a hydrogen sulfide selective probe. *Angew Chem Int Ed Engl*, **52**, 4641-4644.

913 42 Zhou, Y., Yu, J., Lei, X., Wu, J., Niu, Q., Zhang, Y., Liu, H., Christen, P., Gehring, H. and Wu, F. (2013)
914 High-throughput tandem-microwell assay identifies inhibitors of the hydrogen sulfide signaling pathway.
915 Chem Commun (Camb), 49, 11782-11784.

 916
 917
 918
 43 Chao, C., Zatarain, J.R., Ding, Y., Coletta, C., Mrazek, A.A., Druzhyna, N., Johnson, P., Chen, H., 917
 918
 43 Chao, C., Zatarain, J.R., Ding, Y., Coletta, C., Mrazek, A.A., Druzhyna, N., Johnson, P., Chen, H., 100
 918
 43 Chao, C., Zatarain, J.R., Ding, Y., Coletta, C., Mrazek, A.A., Druzhyna, N., Johnson, P., Chen, H., 100
 918
 918
 43 Chao, C., Zatarain, J.R., Ding, Y., Coletta, C., Mrazek, A.A., Druzhyna, N., Johnson, P., Chen, H., 100
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918
 918</l

Druzhyna, N., Szczesny, B., Olah, G., Módis, K., Asimakopoulou, A., Pavlidou, A., Szoleczky, P., Gerö, D., Yanagi, K., Törö, G. et al. (2016) Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β -synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer. Pharmacol Res, 113, 18-37.

40
41
45 Lasserre, J.P., Dautant, A., Aiyar, R.S., Kucharczyk, R., Glatigny, A., Tribouillard-Tanvier, D., Rytka,
42
43
45 Lasserre, J.P., Dautant, A., Aiyar, R.S., Kucharczyk, R., Glatigny, A., Tribouillard-Tanvier, D., Rytka,
43
45 Lasserre, J.P., Dautant, A., Aiyar, R.S., Kucharczyk, R., Glatigny, A., Tribouillard-Tanvier, D., Rytka,
45 J., Blondel, M., Skoczen, N., Reynier, P. *et al.* (2015) Yeast as a system for modeling mitochondrial disease
43
43
44
45
45
46
47
47
48
49
49
49
49
49
40
41
41
42
43
44
45
44
45
44
45
45
46
47
47
47
48
48
49
49
49
49
40
40
41
41
42
43
44
44
44
45
45
46
47
47
48
48
49
49
49
49
49
49
49
40
40
41
41
41
42
43
44
44
44
44
45
44
45
45
46
47
47
47
48
49
49
49
49
49
49
40
40
41
41
41
42
44
44
44
44
45
44
45
44
45
44
45
44
44
44
44
44
44
45
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44<

45 927 46 Voisset, C., Daskalogianni, C., Contesse, M.A., Mazars, A., Arbach, H., Le Cann, M., Soubigou, F.,
 46 928 Apcher, S., Fahraeus, R. and Blondel, M. (2014) A yeast-based assay identifies drugs that interfere with
 47 929 Epstein-Barr virus immune evasion. *Dis Model Mech*.

930 47 Couplan, E., Aiyar, R.S., Kucharczyk, R., Kabala, A., Ezkurdia, N., Gagneur, J., St Onge, R.P., Salin, B.,
931 Soubigou, F., Le Cann, M. *et al.* (2011) A yeast-based assay identifies drugs active against human
932 mitochondrial disorders. *Proc Natl Acad Sci U S A*, **108**, 11989-11994.

Khurana, V., Tardiff, D.F., Chung, C.Y. and Lindquist, S. (2015) Toward stem cell-based phenotypic screens for neurodegenerative diseases. Nat Rev Neurol, 11, 339-350.

Bach, S., Talarek, N., Andrieu, T., Vierfond, J.M., Mettey, Y., Galons, H., Dormont, D., Meijer, L., Cullin, C. and Blondel, M. (2003) Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nat Biotechnol, 21, 1075-1081.

Khurana, V. and Lindquist, S. (2010) OPINION Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast? Nature Reviews Neuroscience, 11, 436-449.

Lista, M.J., Martins, R.P., Billant, O., Contesse, M.A., Findakly, S., Pochard, P., Daskalogianni, C., Beauvineau, C., Guetta, C., Jamin, C. et al. (2017) Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nature Communications, 8.

Mayfield, J.A., Davies, M.W., Dimster-Denk, D., Pleskac, N., McCarthy, S., Boydston, E.A., Fink, L., Lin, X.X., Narain, A.S., Meighan, M. et al. (2012) Surrogate genetics and metabolic profiling for characterization of human disease alleles. Genetics, 190, 1309-1323.

Kruger, W.D. and Cox, D.R. (1994) A yeast system for expression of human cystathionine beta-synthase: structural and functional conservation of the human and yeast genes. Proc Natl Acad Sci U S A, , 6614-6618.

Aiyar, R.S., Bohnert, M., Duvezin-Caubet, S., Voisset, C., Gagneur, J., Fritsch, E.S., Couplan, E., von der Malsburg, K., Funaya, C., Soubigou, F. et al. (2014) Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders. *Nat Commun*, **5**, 5585.

Duchon, A. and Herault, Y. (2016) DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome. Front Behav Neurosci, 10, 104.

Hamelet, J., Noll, C., Ripoll, C., Paul, J.L., Janel, N. and Delabar, J.M. (2009) Effect of hyperhomocysteinemia on the protein kinase DYRK1A in liver of mice. Biochem Biophys Res Commun, 378, 673-677.

Planque, C., Dairou, J., Noll, C., Bui, L.C., Ripoll, C., Guedj, F., Delabar, J.M. and Janel, N. (2013) Mice deficient in cystathionine beta synthase display increased Dyrk1A and SAHH activities in brain. J Mol Neurosci, 50, 1-6.

Noll, C., Planque, C., Ripoll, C., Guedj, F., Diez, A., Ducros, V., Belin, N., Duchon, A., Paul, J.L., Badel, A. et al. (2009) DYRK1A, a novel determinant of the methionine-homocysteine cycle in different mouse models overexpressing this Down-syndrome-associated kinase. PLoS One, 4, e7540.

Kwiatkowski, T.J., Jr., Bosco, D.A., LeClerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E.J., Munsat, T. et al. (2009) Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. Science, 323, 1205-1208.

1		
2 3 4 5 6 7 8 9 10 11 2 3 14 5 16 7 18 9 20 1 22 3 24 5 26 7 28 9 30 1 3 2 3 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 9 20 1 22 23 24 5 26 7 28 9 30 1 3 2 3 3 4 5 3 6 7 8 9 40 1 4 2 4 3 4 4 5 46 7 8 4 9 5 1 5 2 5 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	967 968 969	Vance, C., Rogelj, B., Hortobagyi, T., De Vos, K.J., Nishimura, A.L., Sreedharan, J., Hu, X., Smith, B., Ruddy, D., Wright, P. <i>et al.</i> (2009) Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6. <i>Science</i> , 323 , 1208-1211.
	970 971 972	Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R. <i>et al.</i> (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. <i>Science</i> , 276 , 2045-2047.
	973 974	52 Spillantini, M.G., Schmidt, M.L., Lee, V.M.Y., Trojanowski, J.Q., Jakes, R. and Goedert, M. (1997) alpha-synuclein in Lewy bodies. <i>Nature</i> , 388 , 839-840.
	975 976 977	63 Sorensen, J.B., Nagy, G., Varoqueaux, F., Nehring, R.B., Brose, N., Wilson, M.C. and Neher, E. (2003) Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. <i>Cell</i> , 114 , 75- 86.
	978 979 980	64 McMahon, H.T. and Sudhof, T.C. (1995) SYNAPTIC CORE COMPLEX OF SYNAPTOBREVIN, SYNTAXIN, AND SNAP25 FORMS HIGH-AFFINITY ALPHA-SNAP FINDING SITE. <i>Journal of Biological Chemistry</i> , 270 , 2213-2217.
	981 982	5 Zhou, Q., Zhou, P., Wang, A.L., Wu, D., Zhao, M., Südhof, T.C. and Brunger, A.T. (2017) The primed SNARE-complexin-synaptotagmin complex for neuronal exocytosis. <i>Nature</i> , 548 , 420-425.
	983 984 985	66 Régnier, V., Billard, J.M., Gupta, S., Potier, B., Woerner, S., Paly, E., Ledru, A., David, S., Luilier, S., Bizot, J.C. <i>et al.</i> (2012) Brain phenotype of transgenic mice overexpressing cystathionine β-synthase. <i>PLoS</i> <i>One</i> , 7 , e29056.
	986	67 Kimura, H. (2002) Hydrogen sulfide as a neuromodulator. <i>Mol Neurobiol</i> , 26 , 13-19.
	987 988	68 Kimura, H. (2000) Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun, 267 , 129-133.
	989 990	69 Hu, L.F., Lu, M., Hon Wong, P.T. and Bian, J.S. (2011) Hydrogen sulfide: neurophysiology and neuropathology. <i>Antioxid Redox Signal</i> , 15 , 405-419.
	991 992	Johansson, B. (1992) A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. <i>Acta Psychiatr Scand Suppl</i> , 369 , 15-26.
	993 994	71 Barth, K.S. and Malcolm, R.J. (2010) Disulfiram: an old therapeutic with new applications. <i>CNS Neurol Disord Drug Targets</i> , 9 , 5-12.
	995 996 997	Delabar, J.M., Latour, A., Noll, C., Renon, M., Salameh, S., Paul, J.L., Arbones, M., Movassat, J. and Janel, N. (2014) One-carbon cycle alterations induced by Dyrk1a dosage. <i>Mol Genet Metab Rep</i> , 1 , 487-492.
	998 999	Antunes, M. and Biala, G. (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. <i>Cognitive Processing</i> , 13 , 93-110.
56 57		51
58 59 60		

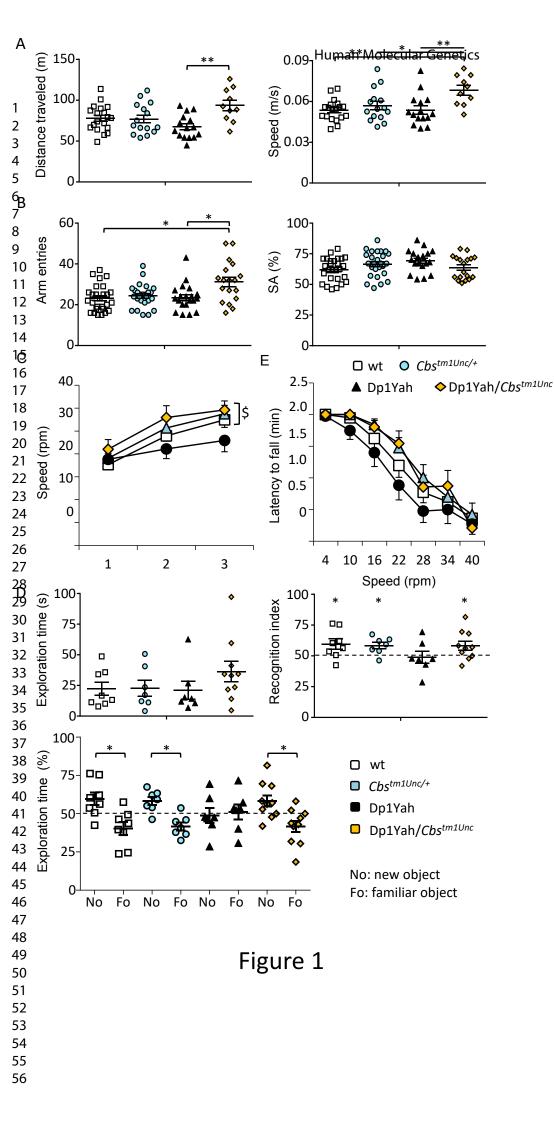
Clark, R.E., Zola, S.M. and Squire, L.R. (2000) Impaired recognition memory in rats after damage to the hippocampus. Journal of Neuroscience, 20, 8853-8860.

Clarke, J.R., Cammarota, M., Gruart, A., Izquierdo, I. and Delgado-Garcia, J.M. (2010) Plastic modifications induced by object recognition memory processing. Proceedings of the National Academy of Sciences of the United States of America, **107**, 2652-2657.

- Reger, M.L., Hovda, D.A. and Giza, C.C. (2009) Ontogeny of Rat Recognition Memory Measured by the Novel Object Recognition Task. Developmental Psychobiology, 51, 672-678.
- Stackman, R.W., Cohen, S.J., Lora, J.C. and Rios, L.M. (2016) Temporary inactivation reveals that the CA1 region of the mouse dorsal hippocampus plays an equivalent role in the retrieval of long-term ₁₇ 1009 object memory and spatial memory. Neurobiology of Learning and Memory, 133, 118-128.
- **1010** Warburton, E.C. and Brown, M.W. (2015) Neural circuitry for rat recognition memory. Behavioural 20 1011 Brain Research, 285, 131-139.
- Benchenane, K., Peyrache, A., Khamassi, M., Tierney, P.L., Gioanni, Y., Battaglia, F.P. and Wiener, S.I. (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron, 66, 921-936.
- 27 1015 Wei, J., Bai, W.W., Liu, T.T. and Tian, X. (2015) Functional connectivity changes during a working 28 1016 memory task in rat via NMF analysis. Frontiers in Behavioral Neuroscience, 9.
- ³⁰ 1017 Lin, J.D., Wu, P.H., Tarr, P.T., Lindenberg, K.S., St-Pierre, J., Zhang, C.Y., Mootha, V.K., Jager, S., Vianna, C.R., Reznick, R.M. et al. (2004) Defects in adaptive energy metabolism with CNS-Linked hyperactivity in PGC-1 alpha null mice. Cell, 119, 121-+.
- Vallone, D., Picetti, R. and Borrelli, E. (2000) Structure and function of dopamine receptors. 36 1021 Neuroscience and Biobehavioral Reviews, 24, 125-132.
- Bymaster, F.P., Katner, J.S., Nelson, D.L., Hemrick-Luecke, S.K., Threlkeld, P.G., Heiligenstein, J.H., Morin, S.M., Gehlert, D.R. and Perry, K.W. (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in Attention ₄₂ 1025 Deficit/Hyperactivity Disorder. *Neuropsychopharmacology*, **27**, 699-711.
- 44 1026 Cador, M., Robbins, T.W. and Everitt, B.J. (1989) INVOLVEMENT OF THE AMYGDALA IN STIMULUS 45 1027 REWARD ASSOCIATIONS - INTERACTION WITH THE VENTRAL STRIATUM. Neuroscience, 30, 77-86.
- Anderson, M.J., Barnes, G.W., Briggs, J.F., Ashton, K.M., Moody, E.W., Joynes, R.L. and Riccio, D.C. (2004) Effects of ontogeny on performance of rats in a novel object-recognition task. Psychological *Reports*, **94**, 437-443.
- **1031** Rudy, J.W. and Morledge, P. (1994) ONTOGENY OF CONTEXTUAL FEAR CONDITIONING IN RATS -**1032** IMPLICATIONS FOR CONSOLIDATION, INFANTILE AMNESIA, AND HIPPOCAMPAL SYSTEM FUNCTION. 54 1033 Behavioral Neuroscience, 108, 227-234.

Belichenko, P.V., Kleschevnikov, A.M., Becker, A., Wagner, G.E., Lysenko, L.V., Yu, Y.E. and Mobley, W.C. (2015) Down Syndrome Cognitive Phenotypes Modeled in Mice Trisomic for All HSA 21 Homologues. Plos One, 10.

Park, J., Sung, J.Y., Song, W.J., Chang, S. and Chung, K.C. (2012) Dyrk1A negatively regulates the actin cytoskeleton through threonine phosphorylation of N-WASP. J Cell Sci, 125, 67-80.


Zhang, L.J., Tao, B.B., Wang, M.J., Jin, H.M. and Zhu, Y.C. (2012) PI3K p110α isoform-dependent ¹² 1040 Rho GTPase Rac1 activation mediates H2S-promoted endothelial cell migration via actin cytoskeleton reorganization. PLoS One, 7, e44590.

Hong, J.Y., Park, J.I., Lee, M., Muñoz, W.A., Miller, R.K., Ji, H., Gu, D., Ezan, J., Sokol, S.Y. and McCrea, P.D. (2012) Down's-syndrome-related kinase Dyrk1A modulates the p120-catenin-Kaiso 18 1044 trajectory of the Wnt signaling pathway. J Cell Sci, 125, 561-569.

Herault, Y., Delabar, J.M., Fisher, E.M.C., Tybulewicz, V.L.J., Yu, E. and Brault, V. (2017) Rodent models in Down syndrome research: impact and future opportunities. Dis Model Mech, 10, 1165-1186.

de la Torre, R., de Sola, S., Hernandez, G., Farre, M., Pujol, J., Rodriguez, J., Espadaler, J.M., Langohr, K., Cuenca-Royo, A., Principe, A. et al. (2016) Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebocontrolled, phase 2 trial. Lancet Neurology, 15, 801-810.

De la Torre, R., De Sola, S., Pons, M., Duchon, A., Martinez de lagran, M., Farre, M., Fito, M., Benejam, B., Langohr, K., Rodriguez, J. et al. (2014) Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Molecular Nutrition & Food Research, , 278-288. Lien

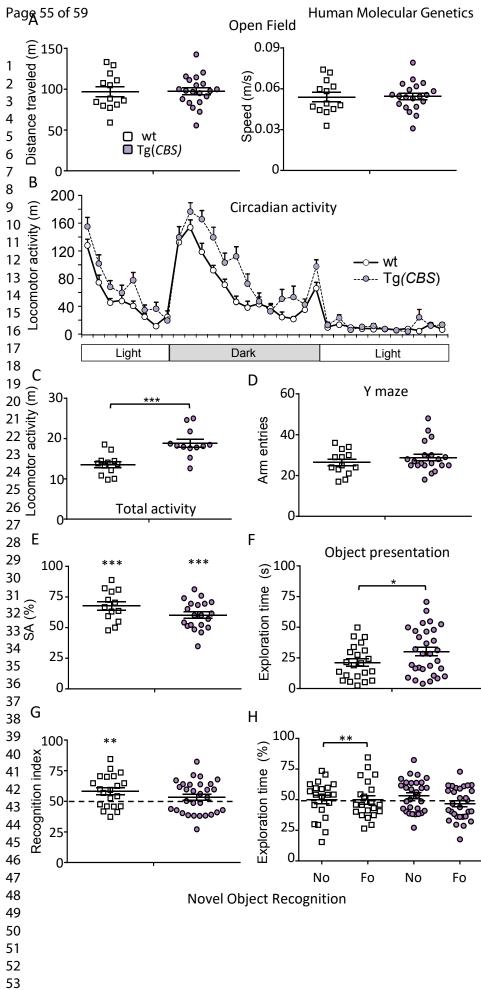
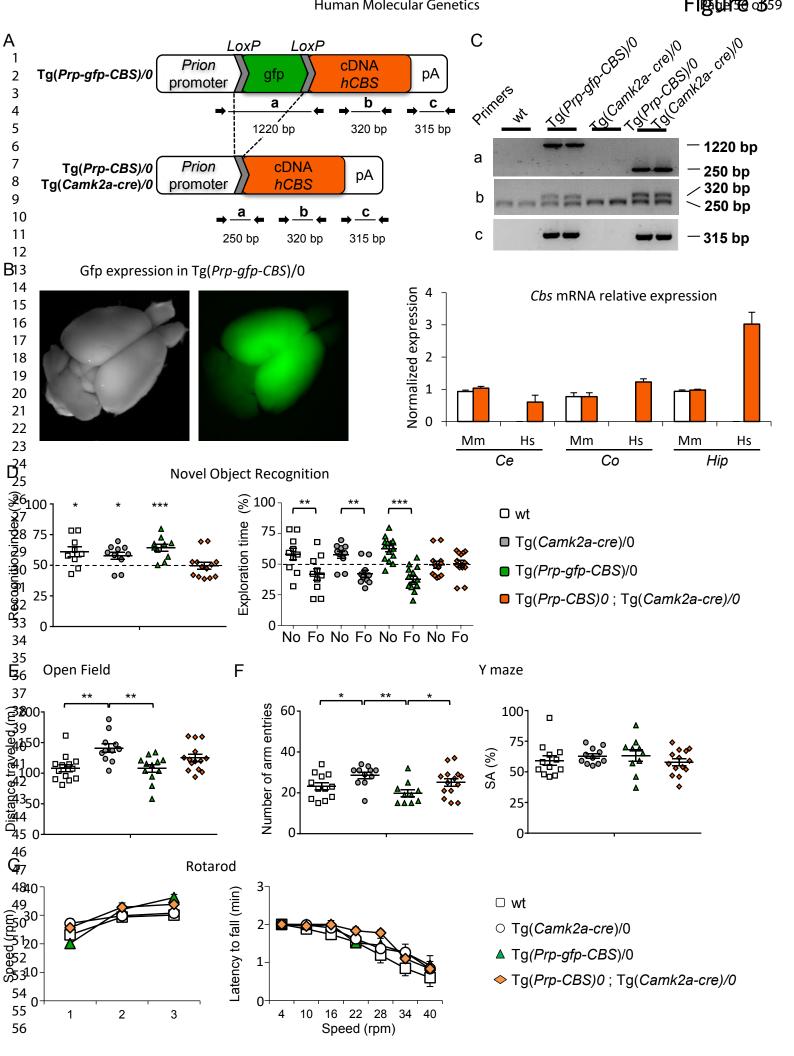
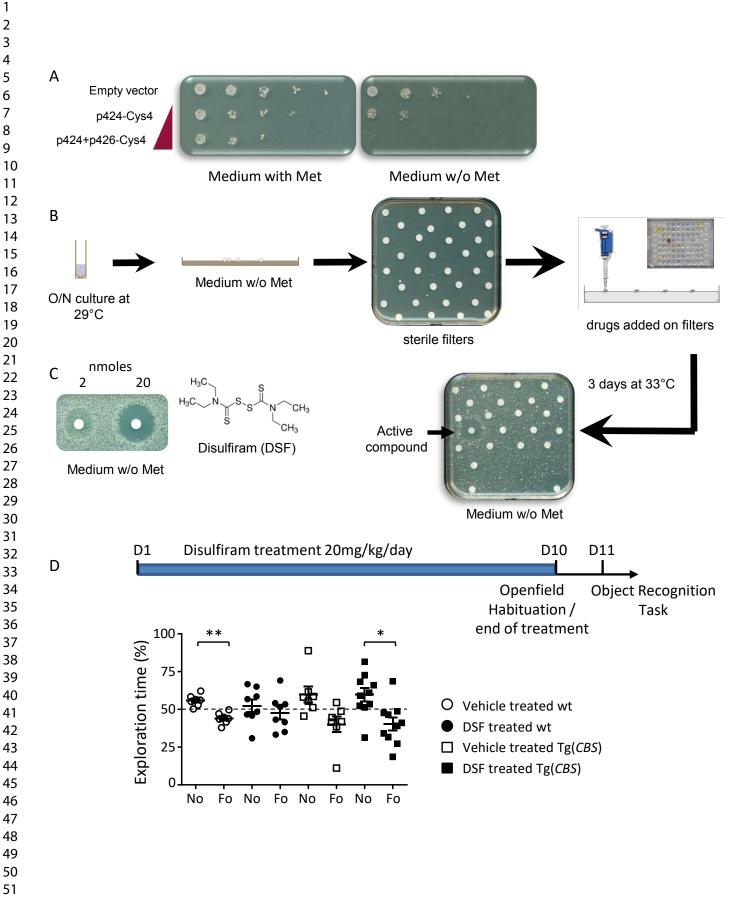




Figure 2

Human Molecular Genetics

Figuerse 359

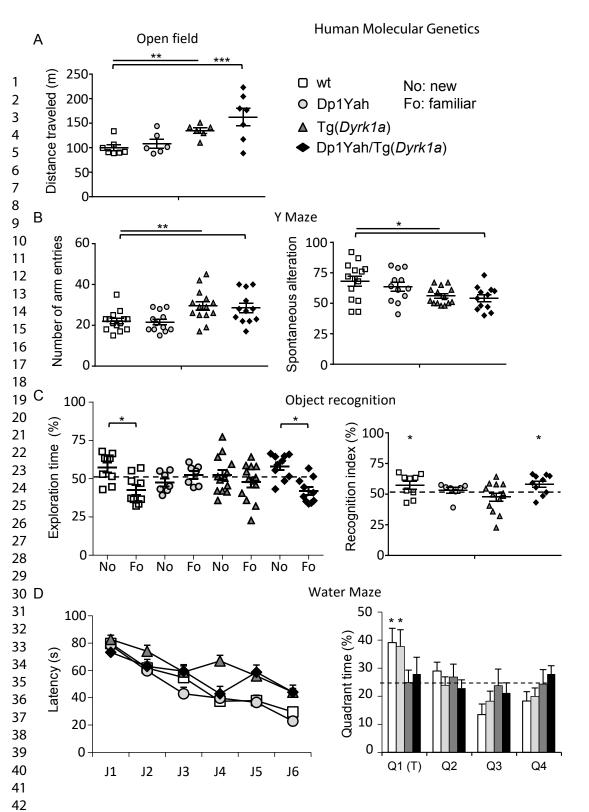
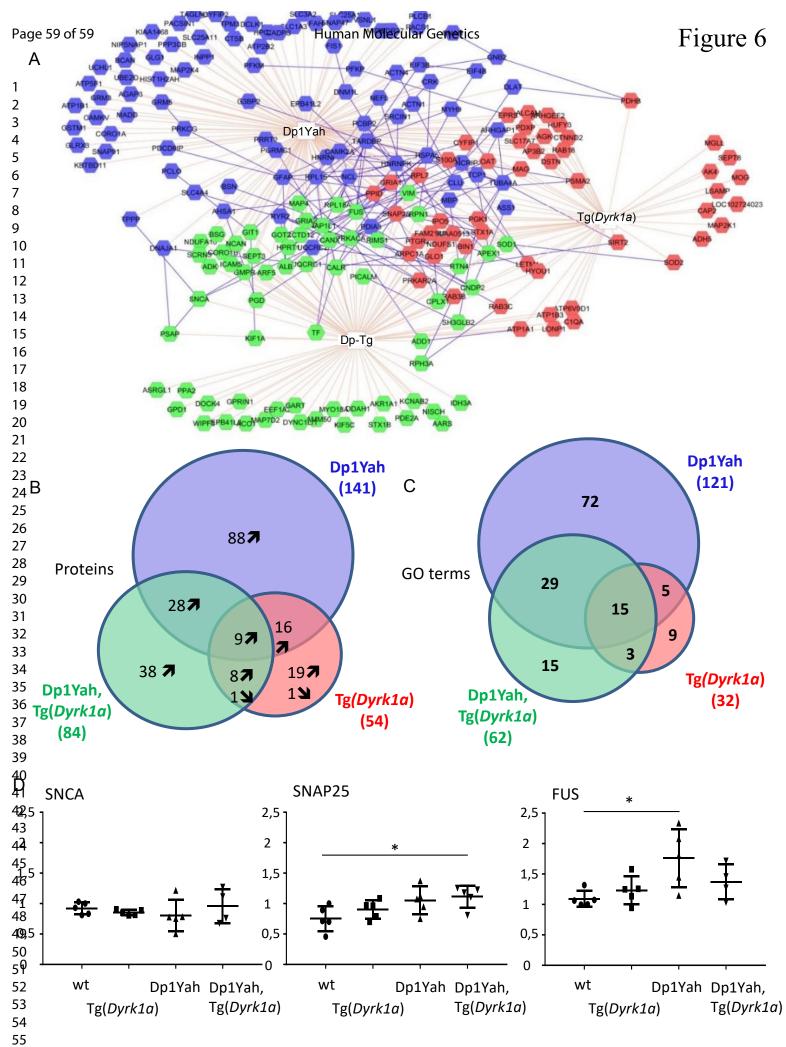



Figure55

2. Article 2

Suite aux résultats présentés dans l'article 1, nous avons voulu investiguer de manière plus approfondie les conséquences cellulaires de la surexpression de *CYS4*, pour mieux définir le mécanisme d'action des molécules isolées lors du criblage pharmacologique.

2. 1. Caractérisation des conséquences cellulaires de la surexpression de CYS4

Dans le but d'identifier un phénotype utilisable pour isoler des composés pharmacologiques capables de contrecarrer l'effet de la surexpression de *CYS4*, mais aussi de caractériser les conséquences de sa dérégulation, nous avons mesuré plusieurs paramètres. Nous nous sommes d'abord basés sur la voie métabolique dans laquelle *CYS4* est impliquée, et observé que la surexpression de *CYS4* conduisait à une augmentation des niveaux intracellulaires de glutathione, et une surconsommation de méthionine (auxotrophie à la méthionine). Par ailleurs, nous avons montré que la modulation de *CYS4* affectait également le pH cytosolique des levures, sa surexpression conduisant à une acidification accrue.

2.2. Molécules

Par un criblage pharmacologique, nous avons identifié 3 familles de molécules capables de corriger l'auxotrophie à la méthionine des levures qui surexpriment *CYS4*. Nous avons ensuite confirmé leur action sur le pH cytosolique, ce qui indique qu'elles sont capables d'affecter les différents phénotypes induits par la surexpression de *CYS4*. Nous avons montré que l'activité des molécules impliquait l'une de leurs caractéristiques communes : leur capacité à transporter des métaux (activité ionophore), en particulier le zinc, dans les cellules. Nous avons également montré que le zinc seul à forte dose était capable de restaurer les défauts induits par la surexpression de *CYS4*.

2. 3. Voies de signalisation affectées par la surexpression de CYS4

D'après les résultats d'un criblage génétique que j'ai réalisé au cours de mon stage de M2, nous avons mis en évidence que la surexpression de perméases à la méthionine (*MUP1*) ou à d'autres acides aminés (*STP2*) ou d'un gène de synthèse de la leucine (*LEU2*) permettait de contrecarrer les conséquences de la surexpression de *CYS4*. Cela suggère qu'en dehors d'un défaut de méthionine, la surexpression de CYS4 conduirait à un défaut plus général en acides aminés dans les cellules. Chez la levure comme chez l'homme, un stress nutritif comme un déficit en acides aminés peut conduire à la modulation de différentes voies de signalisation comme les voies impliquant les kinases PKA (protéine kinase A) ou TORC1/mTOR (target of rapamycin complex 1/mammalian target of rapamycin), afin de déclencher des mécanismes de réponse au stress (Kim et Guan, 2011). En particulier, il a été rapporté qu'une restriction en méthionine chez la levure peut conduire à une inactivation de TORC1 (Laxman et al., 2014 ; Ruckenstuhl et al., 2014). Des expériences sont en cours au laboratoire pour vérifier le statut d'activation de TORC1 via l'état de phosphorylation de Sch9, l'une de ses cibles majeures souvent utilisée comme marqueur de son activité (Loewith et Hall, 2011 ; Urban et al., 2007), notre hypothèse étant que la surexpression de CYS4 induit une inactivation de TORC1. L'inactivation de TORC1 peut conduire à de nombreuses conséquences cellulaires, via la régulation de nombreux facteurs en aval de son activité (González et Hall, 2017). En particulier, une inhibition de TORC1 peut provoquer une augmentation de l'internalisation de perméases aux acides aminés contrôlées par Rsp5, une ubiquitine ligase de la famille NEDD4 (Barthelemy et al., 2017 ; Jones et al., 2012 ; MacGurn et al., 2011), ainsi qu'une inactivation de la pompe à proton membranaire Pma1, qui fait sortir les protons intracellulaires de manière ATP-dépendante (Mahmoud et al., 2017). L'inactivation de Pma1 expliquerait l'acidification du cytoplasme suite à la surexpression de CYS4, car il s'agit du régulateur majeur du pH cytoplasmique chez la levure (Eraso et Gancedo, 1987).

Par ailleurs, l'augmentation de la dégradation des protéines membranaires Rsp5-dépendante pourrait conduire à une diminution globale de l'entrée d'acides aminés dans la cellule. Plusieurs observations concordent avec cette hypothèse. D'abord, la surexpression des déubiquitinylases *UBP11* et *UBP7*, qui déubiquitinylent les cibles de la protéine Rsp5, pourraient préserver ainsi les transporteurs à la membrane plasmique, ce qui restaurerait l'entrée d'acides aminés capables de réactiver TORC1. En accord avec ces résultats, nous avons observé qu'en l'absence de Rsp5, le pH cytosolique des levures qui surexpriment *CYS4* n'est pas modifié, ce qui confirme l'implication de Rsp5 dans le phénotype induit par la surexpression de *CYS4*, probablement par son rôle dans la dégradation des transporteurs. Les cellules surexprimant *CYS4* seraient donc dans une situation de déficit global en acides aminés, pas seulement en méthionine. Enfin, la leucine entraine une activation de TORC1 par différents mécanismes (Han *et al.*, 2012; Wolfson *et al.*, 2016; Zoncu *et al.*, 2011). Nous avons observé que la surexpression de *LEU2* ou de *STP2*, qui conduit à une augmentation des quantités de leucine intracellulaire (par une augmentation de sa biosynthèse ou de son import par des perméases), induit un sauvetage des phénotypes dus à la surexpression de *CYS4*. Ce résultat concorde avec l'hypothèse que la réactivation de TORC1 par la leucine permettrait de corriger les défauts, induits à l'origine par la déficience en méthionine, impliquant une inactivation de TORC1.

2. 4. Mode d'action des molécules

Ayant identifié à la fois les défauts induits par la surexpression de CYS4 et des suppresseurs pharmacologiques, nous avons ensuite voulu déterminer le mode d'action des molécules. Au contraire du mode d'action des gènes identifiés dans le criblage pharmacologique, ces molécules ne semblent pas affecter directement l'activité de TORC1 ou l'homéostasie des acides aminés. En revanche, nous avons montré que le fait d'apporter du zinc dans les cellules semblait essentiel dans le processus de sauvetage phénotypique. Il a été rapporté qu'une augmentation du zinc intracellulaire diminue les quantités de glutathion intracellulaire (Pagani et al., 2007; Steiger et al., 2017), qui sont augmentées du fait de la surexpression de CYS4. Par ailleurs, certaines molécules comme le DSF sont également capables de masquer les groupements thiols, ce qui suggère qu'elles pourraient également avoir un effet direct sur le glutathion. Nous avons en effet confirmé que le masquage des thiols, par d'autres molécules qui partagent cette propriété, conduit également à un sauvetage phénotypique. Ces observations suggèrent que l'augmentation du glutathion intracellulaire est également un facteur qui contribue aux défauts induits par la surexpression de CYS4. Il a été rapporté qu'une augmentation de glutathion en levure pouvait affecter l'homéostasie du pH par l'intermédiaire des échangeurs proton:glutathion Gex1 et Gex2 (Dhaoui et al., 2011). Nous avons pu montrer que l'absence de ces échangeurs empêchait l'acidification accrue du cytoplasme suite à la surexpression de CYS4, ce qui indique qu'ils sont également en partie responsables de l'accumulation de protons dans la cellule. L'acidification du cytosol en soi est également capable d'inactiver mTOR chez la levure, la drosophile et dans des cellules humaines (Dechant et al., 2014 ; Deprez et al., 2018 ; Heublein et al., 2010). De plus, l'acidification peut bloquer l'import de leucine dans les cellules, ce qui contribuerait également à l'inactivation de TORC1 (Hueso et al., 2012). Nous avons donc émis l'hypothèse que le blocage de l'acidification cytosolique provoquée par l'augmentation de glutathion pourrait permettre d'empêcher l'inactivation de TORC1, expliquant ainsi comment les molécules identifiées sauvent le phénotype induit par la surexpression de *CYS4*.

Cystathionine β-Synthase overexpression in yeast induces TORC1 inactivation that can be rescued with pharmacological compounds

Alice Léon¹, Claire Rollet¹, Nadège Loaëc¹, Marc Blondel¹, Frédéric Bihel⁶, Cécile Voisset^{1*}, Yann Hérault^{2,3,4,5,7*}, Gaëlle Friocourt¹

¹ UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", INSERM, EFS, Université de Brest, IBSAM, CHRU de Brest, Brest, France

² Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France

³ Centre National de la Recherche Scientifique, UMR7104, Illkirch, France

⁴ Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France

⁵ Université de Strasbourg, Illkirch, France.

⁶ CNRS, Université de Strasbourg, UMR7200 Laboratoire d'Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France.

⁷ CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, ICS, 1 rue Laurent Fries, 67404 Illkirch, France

* Both authors contributed equally.

Corresponding author: Gaëlle Friocourt

Tel: +33 (0)2 98 01 83 87

E-mail: gaelle.friocourt@univ-brest.fr

Abstract

The identification of genes which overexpression contributes to intellectual disability in Down syndrome (DS) is crucial to develop new therapies. We have recently shown that the triplication of Cbs (cystathionine β -synthase) in mouse is necessary and sufficient to induce a deficit in the novel object recognition test, suggesting that the triplication of this gene may participate to the cognitive defect in patients with DS. However, so far, the search for CBS inhibitors has only led to the identification of compounds with low potency and limited selectivity, hence leading to the idea that CBS may be an undruggable enzyme. To circumvent this problem, we recently developed a yeast-based assay to screen for molecules that interfere with the phenotypical consequences of the overexpression of yeast homolog CBS (called CYS4). Using this model, we identified three families of FDA-approved compounds which rescue a number of phenotypes due to CYS4 overexpression in yeast. We have previously reported that one of this molecule, Disulfiram, is also active in a mouse model expressing three copies of Cbs. We describe here the mechanism of action of these molecules and report that CYS4 overexpression induces amino starvation in yeast, which in turn leads to TORC1 inactivation. We also investigated the functional relationship between CYS4 and YAK1, the yeast homolog of DYRK1A, so far the main target for therapeutic research to improve cognition in DS. These results thus validate our method as an effective screening approach to identify drugs active against the phenotypic consequences of CBS overexpression.

Keywords: Down syndrome, intellectual disability, drug screening, pH homeostasis, Cys4, Yak1

INTRODUCTION

Down syndrome (DS) is the most frequent chromosomic aberration, with a prevalence of one in 650 to 1 000 live births worldwide. This condition results from the presence of an extra copy of chromosome 21, as first described by J. Lejeune and colleagues (Lejeune et al., 1959). The triplication of this chromosome, and of its ~225 genes, leads to a complex phenotype that includes particular craniofacial features, hypotonia, cardiac and digestive defects, high incidence of leukemia, early onset of Alzheimer's disease (AD) and intellectual disability. While the detailed consequence of the overexpression of all these individual genes has not been defined yet, a few genes have been suggested to be of crucial importance in the development of certain phenotypic aspects. Regarding the cognitive defect related to this pathology, Amyloid precursor protein (APP) (Salehi et al., 2006), the Glutamate receptor, ionotropic, kainate 1 (GRIK1) (Roizen and Patterson, 2003) and the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) (Altafaj et al., 2013; García-Cerro et al., 2014) are considered as highly relevant candidate genes. Lately, DYRK1A has been the main target for therapeutic research with the identification of compounds that inhibit its protein kinase activity and are able to improve cognition in mouse models for DS (De la Torre et al., 2014; Guedj et al., 2009; Kim et al., 2016; Nakano-Kobayashi et al., 2017; Neumann et al., 2018; Nguyen et al., 2018; de la Torre et al., 2016). However, the efficiency in DS patients was found to be rather limited, showing the need to combine multiple therapies to improve cognitive defects and thus the life of patients with DS.

More recently, we have shown that triplication of the cystathionine β -synthase (CBS) gene also contributes to the cognitive phenotype of DS and that CBS and DYRK1A show epistatic interactions (Maréchal et al., 2018), which is of crucial importance for the development of therapeutic strategies. CBS gene encodes a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the condensation of homocysteine and serine to form cystathionine. This reaction represents the first committed step in the transsulfuration pathway for cysteine and glutathione (GSH) synthesis (Fig. 1A). In mammals, this pathway plays important roles in clearing homocysteine (which is toxic at high levels), in methionine homeostasis, and in providing cysteine, especially in cells that exhibit a high turnover of the major cellular antioxidant, glutathione. In human, loss-of-function mutations of CBS cause homocystinuria (OMIM 236200) (Kraus et al., 1999), a metabolic condition characterized by the presence of homocysteine in patients' urine and featuring intellectual disability (Mudd et al., 1964, 1985). CBS is also the major enzyme catalyzing the production of H₂S from L-cysteine (Kimura, 2011) or from the condensation of homocysteine with cysteine (Chen et al., 2004). H₂S is now considered as a major gasotransmitter in the brain that interferes with synaptic transmission (Kamat et al., 2015). In the last years, several groups have tried to identify inhibitors of CBS by *in vitro* screenings that, unfortunately, only led to the identification of compounds with relatively low potency and limited selectivity (Asimakopoulou et al., 2013; Druzhyna et al., 2016; Thorson et al., 2013, 2015; Zhou et al., 2013), thus leading to the idea that CBS may be an undruggable enzyme. Hence, innovative screening methods are

needed to isolate drugs that would be more likely to inhibit CBS *in vivo* or that would compensate for *CBS* overexpression, in order to develop new therapeutic strategies. For this purpose, the budding yeast *Saccharomyces cerevisiae*, which has already proven to be a convenient chemobiological model for various human genetic diseases (Voisset and Blondel, 2014), and for which a number of genetic tools are available, appeared an appealing model. The functional counterpart of CBS in *S. cerevisiae* is encoded by *CYS4*, which inactivation leads to the inability of yeast cells to synthesize cysteine (Kruger and Cox, 1994).

Therefore, we developed a phenotype-based yeast model that allows the screening of drugs that interfere with the phenotypical consequences of CYS4 overexpression, i.e. methionine auxotrophy, without necessarily directly targeting the enzyme (Maréchal et al., 2018). Using this model, we tested ~ 2200 compounds from 3 different chemical libraries consisting mainly of repurposed drugs. We thereby identified three families of FDA-approved compounds that counteract *CYS4*-overexpression phenotype, the main hits being Disulfiram (DSF), Clioquinol (CQ) and Zn-Pyrithione (ZPT). DSF has been shown to also save the cognitive defects induced by CBS triplication in mice (Maréchal et al., 2018), hence proving that the mechanisms involved in the phenotypic rescues are conserved between yeast and mammals. In the present work, we aimed to investigate the mechanism of action of the identified compounds at the cellular level. We report herein that in addition to methionine auxotrophy, CYS4 overexpression provokes cytosolic pH acidification. We showed that the molecules we identified save both methionine auxotrophy and cytosolic acidification by targeting the balance between increased amounts of thiols and decreased methionine levels in CYS4-overexpressing cells. The identification of genetic modifiers of these phenotypes suggest the implication of TORC1 signaling pathway. As the yeast homolog of DYRK1A, Yak1p, is also involved in TORC1 signaling pathway, we here reveal a new functional link between these two proteins, which are both overexpressed in Down syndrome. Taken together, these results thus emphasize the importance of Cys4p/CBS dosage in fundamental cellular functions and provide new hypothesis to explain the cognitive defects caused both by a loss-offunction or the triplication of CBS.

MATERIALS AND METHODS

Yeast strains and plasmids

Yeast strains used in this study are listed in Table 1.

Yeast strains were grown at 29°C under agitation. The media used for yeast growth were: YPD [1% (w/v) yeast extract, 2% (w/v) peptone, 2% (w/v) glucose] for untransformed cells and Synthetic Dextrose minimal media (SD medium) [composed of 0.67% (w/v) Yeast Nitrogen Base w/o amino acids and supplemented with appropriate amino acids and 2% (v/v) glucose] for transformed cells. Solid media contained 2% (w/v) agar. Cultures in exponential growth phase, obtained by diluting overnight cultures and incubation for 4-5h to reach OD_{600} ~0.6-1, were used in all experiments. Yeast deletion in the W303 background were performed by standard one-step gene replacement with PCR-generated cassettes (Longtine *et al.*, 1998). Transformation of yeast cells was performed using a standard lithium acetate method (Gietz and Schiestl, 2007).

All plasmids were generated using standard procedures. Restriction enzymes and polymerases were obtained from New England Biolabs (Evry, France). T4 DNA ligase was obtained from Promega (Charbonnières-les-Bains, France). Purified synthetic oligonucleotides were obtained from Eurogentec (Angers, France). Routine plasmid maintenance was carried out in Top10 bacteria strains.

The *CYS4* coding sequence was amplified from the genomic DNA of a W303 *WT* strain and cloned into high copy number 2 μ -derived expression vectors of the pRS42X series under the control of the strong constitutive *GPD* promoter (Mumberg *et al.*, 1995). pRS415-*CYC*-phluorin was a kind gift from S. Léon (IJM, Paris). The pHluorin coding sequence was subcloned into a pRS416-*ADH* plasmid for use in all experiments when the *URA3* marker was available. The coding sequences of *MUP1*, *MMP1*, *STP2* and *LEU2* were amplified from the pFL44L plasmids extracted from the library used for the genetic screen and subcloned into pRS416-*GPD* plasmids. The coding sequences of *UBP11*, *UBP7* and *MCK1* were similarly amplified and subcloned into pRS426-*TEF* plasmids. pRS416-*SNA3*-*GFP* was a kind gift from V. Albanèse. The *YAK1* coding sequence was cloned into either a pRS416-*GPD* (CEN) or a pRS426-*GPD* (2 μ).

Yeast protein extracts and western-blot

Five milliliters of 0.8-1.0 OD₆₀₀ exponentially growing cells were collected and cell pellets were resuspended into 300 µl of lysis buffer (25 mM Tris-HCl pH 6.8; 10% glycerol; 5% β-mercaptoethanol; 5% SDS; 8 M Urea; 0.02% bromophenol blue). Protein extraction was performed by mechanical disruption with sterile glass beads, samples were then centrifuged and the resulting supernatants were harvested. Protein quantification was performed by the Bradford method. Equal protein quantities and volumes of all samples were loaded onto 10% NuPAGE Bis-Tris gels (Invitrogen), and transferred onto 0.45 µm nitrocellulose membranes (GE Healthcare). Membranes were blocked during 1 h at room temperature in PBS 1X containing 0.1% Igepal and 5% milk.

Membranes were incubated overnight with the following primary antibodies: anti-CBS goat monoclonal antibody (Santa-Cruz, 1:200), anti-GFP mouse monoclonal antibody (Roche, 1:1,000) or anti-GAPDH mouse monoclonal antibody (Abcam, 1:5,000). The following day, membranes were washed with fresh PBS 1X + 0.1% Igepal and incubated for 45 min with rabbit anti-goat (Southern Biotech) or goat anti-mouse secondary antibodies (Dako) conjugated to horseradish peroxidase at a 1:3,000 dilution, and analysed by enhanced chemiluminescence (ECL, GE Healthcare) using a Vilbert-Lourmat Photodocumentation Chemistart 5000 imager.

Determination of glutathione contents

Intracellular glutathione levels were measured with the GSH/GSSG-GloTM Assay (Promega, ref: V6611) according to the manufacturer's instructions, except that yeast cells were first lysed in the lysis buffer provided in the kit with an additional step of mechanic, glass beads-based method as indicated in Ozer *et al.*, 2015. Measurements were performed using a Varioskan LUX multimode microplate reader (Thermofisher) in a luminescence reading mode.

Quinacrine staining

Quinacrine staining experiments were performed following the protocol from Baggett *et al.*, 2003. Briefly, 1 mL of OD_{600} =0.7 cultures was gently spun down for 3 to 10 min at 300 g at room temperature (RT) and pellets were incubated on ice for 5 min. Then, cells were resuspended in 900 µL of YPD with 100 µL of HEPES 1 M pH 7.6 and 10 µL of quinacrine 20 mM resuspended in HEPES 1 M pH 7.6 (final concentration of quinacrine: 200 µM). After a 30 min incubation at 29°C with an agitation of 220 rpm in darkness, cells were spun down for 3 min at 300 g at RT. Pellets were incubated on ice for 5 min, and resuspended in 50 µL of an ice cold solution of 2% glucose with 100 mM HEPES. Finally, cells were spotted on microscope slides and immediately (within 10 minutes) observed under an epifluorescence microscope (Zeiss Axio Imager 2 M2) with a FITC filter.

Growth on alkaline media

Cells in exponential growth phase were diluted to an $OD_{600}=0.08$, and serial 1/5 dilutions were spotted on solid agar-based plates containing either unbuffered YPD, YPD pH 7.5 (buffered with 50 mM MES and 50 mM MOPS and adjusted to the indicated pH with NaOH), or YPD pH 7.5 supplemented with 60 mM CaCl₂. Plates were then incubated at 29°C for 3 days.

Determination of cytosolic pH

Yeast strains were transformed by a pRS416-*ADH* (or pRS415-*CYC* when *URA3* marker could not be used) plasmid containing the ratiometric pHluorin coding sequence (Dechant *et al.*, 2010; Miesenböck *et al.*, 1998). OD₆₀₀ of each culture in exponential growth phase was measured before centrifugation of 10 mL of culture, 10 min at 3500 rpm. Cells were then resuspended in 500 μ L of fresh minimal medium (MML, prepared with 6.7 g/L yeast nitrogen base without amino acids). Aliquots of 100 μ L of each culture were placed in triplicate in a black 96-well plate with clear bottomed half wells, and read with a Varioskan LUX multimode microplate reader (Thermofisher) at two excitation wavelengths (410 nm

and 470 nm) and a fix emission wavelength (508 nm) for quantitative measurement. The resulting values were then used to calculate the I_{410}/I_{470} ratio, and expressed as a percent of the corresponding controls. Tests with drugs were performed by adding the indicated final concentrations of drugs, or the corresponding volume of DMSO as a control, in culture media during growth phase. For microscopic observations, 2.5 µL of each culture were spotted on microscope slides, and observed under an epifluorescence microscope (Zeiss Axio Imager 2 M2), with an EGFP filter.

Drug screening in yeast

To obtain a reproducible and sustained methionine auxotrophy allowing drug screening, *CYS4* had to be expressed from two 2 μ high copy plasmids, under the control of a strong constitutive *GPD* promoter (Fig 1C), which led to an increase of about 15 fold in Cys4p levels compared to the endogenous protein (Supp Fig 1A). In addition, serine, which is a limiting substrate in this reaction, had to be added at 1.5 mM (final concentration) in the culture medium (Fig 1C).

For the screening, yeast cells overexpressing *CYS4* (CYS4-OE) were grown in uracil- and tryptophanfree minimal liquid medium (SD-Ura/Trp) in overnight cultures at 29 °C. The following day, cells were diluted to OD_{600} ~0.5 in fresh medium and grown for 4 hours to reach exponential phase. Then, 350 µL of yeast cells in exponential growth phase, adjusted to an OD_{600} of 0.2, were spread homogeneously with sterile glass beads (a mix of ~1.5 and ~3 mm diameter) on a square Petri dish (12 cm × 12 cm) containing uracil-, tryptophan- and methionine-free minimal agar-based solid medium (SD-Ura/Trp/Met) containing 2% (w/v) serine. Sterile filters (Thermo Fisher, similar to those used for antibiograms) were placed on the agar surface, and 2 µL of individual compound from the various chemical libraries were applied to each filter. In addition, for each Petri plate, DMSO, the vehicle, was added as a negative control on the top left filter, and 2 nmol of methionine as a positive control on the bottom right filter. Plates were then incubated at 33°C for 3 days and scanned using a Snap Scan1212 (Agfa).

Two repurposed drug libraries were screened: the Prestwick Chemical Library® (1200 drugs), and the BIOMOL's FDA Approved Drug Library (Enzo Life Sciences, 640 drugs). In addition, the Prestwick Phytochemical library (691 green compounds, most of them used for medical purpose in human) was also screened. Compounds were supplied in 96-well plates as 10 mM (for the two Prestwick® libraries) and 2 mg/mL (BIOLMOL®) DMSO solutions.

All molecules were purchased from Sigma-Aldrich (Saint Quentin Fallavier, France) and resuspended in DMSO.

Yeast-based genetic screen

A yeast genomic DNA library (a kind gift from F. Lacroute), constructed by inserting ~4 kb genomic DNA fragments (obtained by *Sau3A* partial digestion) at the unique BamHI site in the replicative 2 μ multicopy pFL44L vector containing *URA3*-marker, was used to transform a yeast strain overexpressing

CYS4 (CYS4-OE with pRS423-GPD and pRS424-GPD plasmids). Transformants were selected on solid minimal medium lacking tryptophan, histidine, methionine and uracil and supplemented with 1.5 mM of serine, which is a limiting substrate for Cys4p activity. Plasmids originated from the pFL44Lbased library were extracted and purified with the Zymoprep kit (Zymo Research), and amplified in Escherichia coli and then retransformed into the yeast strain overexpressing CYS4 to confirm their ability to reverse methionine auxotrophy. The extremities of the confirmed clones were sequenced using the following primers: F-5' GTGCTGCAAGGCGATTAAGT 3' and R-5'TGTGGAATTGTGAGCGGATA 3'.

RESULTS

Characterization of the phenotypes induced by CYS4 modulation in yeast

In the last ten years, phenotypic cell-based drug screening has been shown to be particularly powerful to identify lead compounds and probe the cellular mechanisms underlying certain human diseases (Tardiff *et al.*, 2014). In particular, the budding yeast *Saccharomyces cerevisiae*, in which almost half of human genes and about 30% of disease causing genes are conserved, is a convenient model to perform both genetic and drug screening. *CBS* homolog in yeast is *CYS4*. Amino-acid sequences of both proteins share 72% similarity and functional assays in yeast have confirmed the ability of human *CBS* to complement the cysteine auxotrophy (absence of growth on medium without cysteine) associated to *CYS4* deletion (Kruger and Cox, 1994).

In order to identify strong, reproducible and convenient read-outs that can be used for drug or genetic screenings, we first sought to determine the different phenotypes caused by CYS4 modulation. As Cys4p is a key enzyme located at a metabolic hub making a connection between methionine and cysteine/glutathione production, its deregulation can be expected to lead to important metabolic modifications (Fig. 1A). In agreement to what has been previously described in yeast (Suzuki et al., 2011), we observed that CYS4 deletion results in decreased intracellular levels of total glutathione whereas, on the opposite, CYS4 overexpression increases glutathione production (Fig. 1B). However, as levels of glutathione can vary depending on growth conditions or redox state of the cell, this phenotype cannot be easily adapted for drug screening. We thus focused our attention on amino acid auxotrophy. Whereas CYS4 deletion induces cysteine auxotrophy, CYS4 overexpression in yeast leads to the incapacity to grow without external supply of methionine (Fig. 1C), in agreement with the fact that CYS4 activity consumes methionine through the use of homocysteine (Fig 1A). This phenotype can be easily monitored and restored by drugs or genes able to interfere with Cys4p activity. However, to ensure the specificity of the hits obtained, we wanted to identify another phenotype that could be used as a secondary screening. As $cys4\Delta$ cells have previously been reported to have defects in the acidification of their vacuole (the equivalent of the lysosome in yeast) (Oluwatosin and Kane, 1997), we thus investigated pH homeostasis. Surprisingly, we observed that CYS4 modulation does not seem to provoke major disturbances in vacuolar pH (Supp Fig 1). We next assessed the effect of CYS4 modulation on cytosolic pH using a pH-sensitive ratiometric GFP variant, named pHluorin (Miesenböck et al., 1998) which is only expressed in the cytosol and nucleus but which is excluded from the vacuole. We observed that $cys4\Delta$ cells completely lacked cytosolic pHluorin signal compared to a wild-type (WT) strain (Fig. 1D), indicative of a more alkaline cytosolic environment. This observation was confirmed by quantitative measurements based on the I_{410}/I_{470} ratio of pHluorin (Fig. 1D). As $cys4\Delta$ strain is cysteine auxotroph and cannot grow in selective media without glutathione (GSH) supplementation (Kruger and Cox, 1994), the effect of GSH supplementation on the cytosolic pH of a WT strain was assessed but as shown in Fig. 1D, it did not have any effect, suggesting that the increased cytosolic pH is specific to *CYS4* deletion. Conversely, cells overexpressing *CYS4* (*CYS4*-OE) led to a significant increase in fluorescence intensity, and decreased I_{410}/I_{470} ratio (Fig. 1E), suggestive of a more acidic cytosolic pH. We thus conclude from all these data that *CYS4* deletion leads to increased cytosolic pH and that on the contrary, *CYS4-OE* leads to decreased cytosolic pH.

Defects in cytosolic pH homeostasis have never been reported for $cys4\Delta$ or CYS4-OE cells. To better understand the relationship between cytosolic acidification and the other phenotypic characteristics of CYS4-OE cells, we investigated the role of the glutathione:proton exchangers Gex1p and Gex2p (Dhaoui *et al.*, 2011)) in this process. These proteins, located at the vacuolar and plasma membrane, extrude glutathione out of the cytosol in exchange for protons entry, thus affecting cytosolic pH homeostasis. As described by Dhaoui and colleagues, a $gex1\Delta gex2\Delta$ strain has an increased cytosolic pH (Supp Fig. 1E). In addition, CYS4-OE in this strain was unable to induce cytosolic acidification (Supp Fig. 1E), suggesting that cytosolic acidification of CYS4-OE cells is probably related to increased intracellular GSH levels, which in turn activate Gex1p/Gex2p exchangers that allow proton entry into the cell. Taken together, these data suggest that increased cytosolic acidification of CYS4-OE cells is directly linked to increased GSH levels and that this phenotype can be used as a secondary screening.

Identification of drugs that suppress phenotypes caused by CYS4 overexpression

Using *CYS4*-OE cells spread on medium lacking methionine, we screened ~ 2200 compounds from 3 different chemical libraries consisting mainly of FDA-approved drugs, for their ability to suppress methionine auxotrophy using the set-up previously described (Maréchal *et al.*, 2018). Briefly, *CYS4*-OE cells were spread on a solid agar-based methionine-free medium supplemented with serine, a substrate of the reaction, to ensure a reproducible and sustained methionine auxotrophy allowing drug screening (Fig. 1C). Then filters were placed on the top of the agar surface and drugs from chemical libraries were loaded on filters. After 3 days of incubation at 33°C, active compounds were identified by a halo of restored growth around the filters on which they were loaded. The advantage of this method is that, in one simple experiment, numerous compounds can be tested across a large range of concentrations due to the diffusion of the screening as tested compounds can be toxic at high concentrations but active at subtoxic concentrations. Using this set-up, we identified 4 molecules that restore *CYS4*-OE cell growth on methionine-free medium: disulfiram (DSF), merbromin and two members of the 8-hydroxyquinoline family: clioquinol (CQ) and chloroxine (CHX) (Fig. 2A).

Merbromin is an organomercuric disodium salt compound with a fluorescein. Because of its mercury content, it is no longer used in medicine. We thus did not pursue the characterization of the mode of action of this molecule. Interestingly, the three other molecules (DSF, CQ and CHX) have been reported to act as metal (such as iron, copper or zinc) chelators or ionophores (Ding and Lind, 2009). We thus tested several other metal chelators for their ability to restore yeast growth on medium lacking

methionine, but none of them was able to rescue CYS4-OE methionine auxotrophy (Supp Table 1). The notion of chelator implies that the drug chelates and sequesters a metal ion, rendering it biologically unavailable. On the opposite, ionophores are molecules that bind extracellular metals and transport them directly across membranes (independently of active metal pumps or transporters) in cellular compartments in which the concentration of metal is lower. Thus to check whether the ionophore activity may be involved in the action of the molecules we identified, we used two members of another family of metal ionophores (Ding and Lind, 2009): sodium (NaPT) and zinc pyrithione (ZPT), which were not present in the chemical libraries we tested, and two other members of the dithiocarbamate family (to which DSF belongs), pyrrolidine dithiocarbamate (PDTC), known as a zinc ionophore (Kim et al., 1999), and sodium diethyldithiocarbamate, the product of DSF's reduction, described as a potent copper ionophore (Lushchak et al., 2005). We found that these four molecules were able to restore yeast growth on medium without methionine (Fig. 2A), suggesting that a metal ionophore, but not a metal chelation function, is important for the rescue of growth of CYS4-overexpressing cells on medium without methionine. Similarly, members of the three families of ionophores decreased cytosolic acidification both in CYS4-OE cells and WT cells in a dose-dependent manner (Fig. 2B-C). Taken together, these results show that the molecules identified in our screening specifically target the consequences of CYS4-OE and may share a common mode of action, involving metal ion import.

Zinc rescues CYS4-overexpression phenotypes

As molecules of families 1, 3 and 4 are zinc ionophores (Andersson et al., 2009; Ding et al., 2005; Wiggins et al., 2015), we assessed the consequences of the modulation of intracellular zinc levels on CYS4-OE cells. We observed that the diameter of the halo of growth restoration increased in the presence of zinc, which suggests that zinc ions enhanced the rescue capacity of CQ, CHX and DSF (Fig. 3A). Interestingly, we also observed that zinc on its own was able, at high concentrations (above 9 µmol, right panel), to restore cell growth of CYS4-OE cells on a methionine-free medium (Fig. 3A). Similarly, we observed that zinc was also able to increase intracellular pH, both in CYS4-OE and WT cells (Fig. 3C). As intracellular levels of copper and zinc are known to be strictly regulated by compensatory mechanisms (Brewer, 2001), we also evaluated the effect of copper on CYS4-OE phenotypes. Accordingly, we observed that copper addition to the medium had the opposite effect of zinc (Supp Fig. 2A-C) and that intracellular copper depletion was beneficial to CYS4-OE cells: the severity of both methionine auxotrophy and cytosolic acidification was decreased in a strain deleted for MACI, the transcription factor activating the expression of copper transporters in yeast (Supp Fig. 2D-E). Altogether these results suggest that increasing intracellular zinc levels, either by adding directly zinc to the medium or through the action of zinc ionophores such as DSF, CQ, CHX and ZPT, participates to the rescue of CYS4-OE phenotypes.

Thiol-reactive molecules rescue phenotypes resulting from CYS4-OE

Pagani and coworkers have suggested that exposure of yeast cells to high levels of zinc (4-6 mM) leads to a situation of oxidative stress, with a consumption of low-molecular mass thiols like glutathione, and similar consequences on gene expression as those induced by thiol oxidants such as diamide (Pagani et al., 2007). They found that concentration of oxidized glutathione (GSSG) increased in parallel with the presence of zinc in the medium and, as a consequence, the oxidized/total glutathione ratio increased up to fourfold in zinc-stressed cells (Pagani et al., 2007). Interestingly, DSF and ZPT have been previously shown to significantly decrease the GSH/GSSG ratio but without causing total glutathione depletion (Cen et al., 2002; Currier et al., 2016). This is very similar to what we observed in CYS4-OE cells. In our case, decreased toxicity and activity on cell growth of DSF, CQ, CHX and ZPT was found when reduced glutathione (GSH) or cysteine was added on filters (Fig. 4A, upcoming results). In contrast, addition of buthionine sulphoximine (BSO), an irreversible inhibitor of γ -glutamylcysteine synthetase (Gsh1p) that leads to glutathione depletion, did not restore CYS4-OE cell growth on medium lacking methionine. Taken together, these results suggest that the molecules we identified in our screen mediate their action through targeting thiol (including glutathione and cysteine) accumulation through CYS4-OE. To further investigate their mode of action, we tested molecules that can quench thiols, such as Nethylmaleimide (NEM) and iodoacetamide or a thiol-oxidant, such as diamide, that rapidly oxidizes GSH to GSSG. NEM is an alkylating reagent that permanently blocks sulfhydryls (e.g., reduced cysteines) to prevent disulfide bond formation. Diamide is an oxidant that reacts specifically with thiols, oxidizing them. As shown on Fig. 4, both types of molecules were able to rescue both methionine auxotrophy and cytosolic acidification induced by CYS4-OE (Fig. 4B-C). Taken together, these results suggest that the molecules identified in our screen mediate their action through targeting the excess intracellular amount of reduced thiols, either by masking them (as NEM does) or by oxidizing them (as diamide does), probably preventing them to form disulphide bonds with cysteine residues from enzymatic active-sites. Again, these results suggest that CYS4-OE related phenotypes (e.g., methionine auxotrophy and increased cytosolic acidification) directly result from increased thiol production at the cost of methionine synthesis.

Identification of genetic modifiers of CYS4 OE-induced phenotypes

To get better insights into the cellular mechanisms involved in *CYS4*-OE phenotypes, we sought to identify genetic modifiers by genetic screening. The genes having the strongest capacity to save the methionine auxotrophy of *CYS4*-OE cells (Fig. 5A) and rescue cytosolic acidification (Fig. 5B) belong to two distinct groups. The first group is composed of *MUP1* and *MMP1* which encode a methionine and a S-methylmethionine permease, respectively and *STP2*, a transcription factor that activates the transcription of several amino acid permease genes such as *BAP2* (coding a high-affinity leucine

permease), BAP3 (coding a permease involved in the uptake of cysteine, leucine, isoleucine and valine) and AGP1 (coding a low-affinity amino acid permease with broad substrate range). Taken together, these results suggest that in addition to methionine auxotrophy, CYS4-OE cells have decreased availability of other amino acids, including leucine, and that overexpression of amino acid permeases can rescue their phenotypic consequences (Fig. 5A-B). The second group of genes identified in the genetic screen contains UBP7 and UBP11 (Fig. 5A), encoding two ubiquitin specific proteases that can both deubiquitinate Rsp5 substrates. Rsp5 is an essential E3 ubiquitin-protein ligase that mediates the endocytosis and degradation of a number of receptors (ion channels and amino acid permeases, including Mup1p, Mmp1p and leucine transporters Bap2p and Bap3p), suggesting that overexpression of UBP7 or UBP11 in CYS4-OE cells may lead to the deubiquitination of amino acid permeases, preventing them from endocytosis and degradation by Rsp5. We first assessed the effect of UBP7 and UBP11 expression on cytoplasmic pH. Similarly to their effect on methionine auxotrophy, the overexpression of UBP7 or UBP11 rescued the cytosolic acidification defect of CYS4-OE cells (Fig. 5B). Then, as *RSP5* is essential, we tested *CYS4* overexpression in a yeast strain carrying a mutation in RSP5 promoter that leads to a 90% decrease in Rsp5 protein level (*npi1* mutant, (Hein *et al.*, 1995). In this strain, we observed that CYS4-OE was not able to cause cytosolic acidification (Fig. 5C), which is consistent with the hypothesis that the inhibition of Rsp5-dependent endocytosis and degradation of amino acid permeases can rescue CYS4-OE phenotypic consequences.

As both leucine (Hara et al., 1998; Nicklin et al., 2009; Sancak et al., 2008) and methionine (Dyachok et al., 2016; Ruckenstuhl et al., 2014) have been reported to play important roles in the regulation of TORC1 kinase complex, we wondered whether their decreased availability resulting from CYS4-OE may lead to TORC1 inhibition. Indeed, TORC1 is a major regulator of cell growth and responds to several environmental signals (such as amino acid availability) arresting growth under nutrient starvation and stress conditions, and reestablishing growth when favorable conditions are restored. We thus tested the phosphorylation status of the Sch9 kinase, a major TORC1 substrate (Urban et al., 2007) and showed that TORC1 is inactivated in CYS4-OE cells (Fig. 5D, upcoming results). In agreement with these results, we identified, in the genetic screen, LEU2, which codes for an enzyme of the leucine biosynthesis pathway, as a gene able to rescue methionine auxotrophy of CYS4-OE cells (Fig. 5E). Interestingly, TORC1 activity is required for the full activity of Pma1p, a plasma membrane H⁺-ATPase which is responsible for the regulation of cytosolic pH by pumping out protons from the cytosol, and inhibition of TORC1 has been shown to lead to decreased proton efflux and subsequent decreased intracellular pH (Mahmoud et al., 2017). Consequently, inactivation of Pma1p through TORC1 inhibition may contribute to the decreased pH observed in CYS4-OE cells. In agreement with this hypothesis, leucine or methionine supplementation in the medium were both found to be able to increase cytosolic pH in CYS4-OE cells (Supp Fig. 3A). Taken together, these results suggest that CYS4-OE cells

have an inhibition of the TORC1 complex, due to decreased intracellular levels of methionine and leucine.

Interestingly, TORC1 inhibition has been shown to activate Rsp5-mediated endocytosis and degradation of amino acid transporters (Beck et al., 1999; Crapeau et al., 2014; Iesmantavicius et al., 2014; Jones et al., 2012; Zhao et al., 2013), probably as a mechanism to recycle amino acids through increased protein turnover. We thus hypothesized that as TORC1 is inhibited in CYS4-OE cells, Rsp5p-related processes may be activated, participating to the amino acid decreased uptake in these cells. To check this hypothesis, we monitored the internalization and degradation of a glucose transporter Hxt3-GFP, a known Rsp5p target, upon switching from glucose to raffinose as the sole carbon source (time zero). In glucose, HXT3 transcription was activated and Hxt3-GFP was visible on the plasma membrane of both WT and CYS4-OE strains. However, when we monitored the internalization and degradation of Hxt3-GFP after switching to raffinose, we observed that its localization appeared slightly earlier in the vacuole, suggesting increased endocytosis and degradation of Hxt3-GFP in CYS4-OE cells. This was confirmed by measuring by western-blot analysis the amount of free GFP, corresponding to the degradation of Hxt3-GFP, in both strains at each time (Supp Fig. 3B). Similar results were also obtained with Sna3-GFP, another Rsp5 target, which is a marker of endosomal trafficking towards the vacuole. Similarly to Hxt3-GFP, slightly increased free GFP was observed in CYS4-OE cells (Supp Fig. 3C). All these results suggest that CYS4-OE cells have increased Rsp5p-dependent internalisation and degradation of amino acid permeases, which thus contribute to the enforcement of the phenotype of CYS4-OE cells, that is to say, decreased availability of amino acids, TORC1 inhibition and increased intracellular acidification (Fig. 5F).

Investigation of the genetic interaction between CYS4 and YAK1

As on their own, both *CBS* and *DYRK1A* triplication has been shown to be crucial for cognitive function in mouse, it is important to better understand the relationship between these two genes in order to identify therapeutic leads adapted to the situation in Down syndrome, in which both genes are triplicated. A functional relationship between *CBS* and *DYRK1A* has been reported in several studies (Hamelet *et al.*, 2009; Maréchal *et al.*, 2018) but it is not clear and appears to depend on the tissue of interest (liver versus brain). To better understand the relationship between these two genes, we thus decided to investigate the impact of the deletion and/or overexpression of their yeast homologs, *CYS4* and *YAK1*. First, we observed that *YAK1* overexpression by itself induced methionine auxotrophy in a dosedependent manner on medium supplemented with serine (Supp Fig 4A) and that *YAK1* overexpression worsened *CYS4*-OE phenotype (Fig. 6A). This activity appeared to be mediated by the kinase activity of *YAK1* as this effect was lost when a kinase dead (KD) form (K398R, Moriya *et al.*, 2001) of *YAK1* was used (Fig. 6A). In addition, *YAK1* overexpression induced similar acidification defects as *CYS4*-OE and combined effect of *CYS4* and *YAK1* overexpression was additive (Fig. 6B). On the opposite, *YAK1* deletion rescued methionine auxotrophy due to *CYS4* overexpression (Fig. 6C). Similarly, *yak1* Δ cells had increased intracellular pH and *CYS4* overexpression in a *yak1* Δ strain was unable to induce acidification defects (Fig. 6D). Taken together these results suggest that Yak1p promotes Cys4p activity through its kinase activity and that, in the absence of Yak1p, Cys4p activity is reduced. Interestingly, we observed that epigallocatechin-3-gallate (EGCG), an inhibitor of Dyrk1A (De la Torre *et al.*, 2014), which is also a zinc ionophore (Dabbagh-Bazarbachi *et al.*, 2014), increased intracellular pH in both *CYS4*-OE and WT strains (Supp Fig. 4B), suggesting that common therapeutical leads aiming at decreasing both DYRK1A and CBS activities could be investigated.

Interestingly, we identified in the genetic screen another kinase, MCK1, which is the homolog of mammalian glycogen synthase kinase-3 (*GSK3*). As shown on Fig 6E, MCK1 overexpression counteracted *CYS4*-OE induced methionine auxotrophy, but in a kinase-independent manner as a kinase dead (KD) form of MCK1 (K68R, Lim *et al.*, 1993) was as efficient as wild-type MCK1 to restore growth on methionine-free medium (Fig 6E). Similarly, MCK1 overexpression restored cytosolic acidification in *CYS4*-OE cells (Fig. 6F). Interestingly, MCK1 deletion only slightly increased methionine auxotrophy of *CYS4*-OE cells (Fig. 6G). In addition, we observed that $mck1\Delta$ cells displayed a dose-dependent serine sensitivity (Supp Fig 4C), which could be restored by the re-expression of wild-type MCK1 but not by the kinase dead form (Supp Fig 4D), possibly suggesting that these cells may have excess serine. Taken altogether, these results suggest that Yak1p activates (probably through phosphorylation) Cys4p, but that Cys4p full activity depends on other factors regulated by Mck1p, possibly the availability of serine. In the absence of MCK1, Cys4p can be fully activated by Yak1p whereas when MCK1 is overexpressed, Cys4 is inactive even in the presence of Yak1.

DISCUSSION

Identification of FDA-approved compounds that counteract *CYS4* overexpression induced phenotypes

The budding yeast Saccharomyces cerevisiae, a highly tractable model organism for which a number of genetic tools are available, has already proven to be a convenient eukaryotic model to study various human genetic diseases. Due to the recently described role of CBS in cancer (Bhattacharyya et al., 2013; Szabo et al., 2013) and in the cognitive pathophysiology of Down syndrome (Maréchal et al., 2018), the identification of pharmacological inhibitors of this enzyme is urgently required. However, the attempts to identify such molecules have only led to the identification of compounds with low potency and limited selectivity, leading to the idea that CBS may be undruggable. To circumvent this problem, we developed an original phenotypical assay aimed at finding molecules that could counteract the *in vivo* consequences of CYS4 overexpression. To ensure the specificity of our screen, we used two different phenotypical reads-out to select active molecules. In addition to the methionine auxotrophy that can be expected from CYS4 metabolic function in the transsulfuration pathway, we also used the cytosolic acidification defects that we characterised in this study. Strikingly, in the screening, we isolated very few molecules (only ~4 out of 2300 molecules tested, corresponding to <0.2%), indicative of a high stringency. All these molecules were also able to counteract cytosolic acidification defects of CYS4-OE cells in a dosedependent manner. Of note, some molecules identified in previous screens for CBS inhibitors (mainly in vitro) (Thorson et al., 2013), including aminooxyacetic acid (AOAA), were not active in our model. One the molecule identified in our screening, DSF, is also able to restore cognitive function in triplicated Cbs mice (Maréchal et al., 2018), confirming the *in vivo* biological relevance of our screening method. Interestingly, the four molecules identified (DSF, CHX, CQ and merbromin) share similar properties: cationic metals and/or sulfur binding, suggesting a common mechanism of action. Accordingly, we did not observe any synergy between the different molecules. This observation led us to test two members of another family of ionophores that were not present in the chemical libraries we screened: sodium and zinc pyrithione (ZPT), that were also found active in our system.

DSF has been used clinically for the last 60 years for the treatment of alcoholism *via* its inhibitory function of the enzyme aldehyde dehydrogenase (ALDH), which is responsible for the breakdown of the alcohol metabolite acetaldehyde. ALDH inhibition thus results in the accumulation of acetaldehyde, which is toxic and leads to a series of aversive symptoms that deter alcohol consumption (Kitson, 1977). DSF is reductively activated to diethyldithiocarbamate and both compounds can react with free thiol groups on proteins and glutathione; they also have high affinity for heavy metals such as copper and zinc (Hogarth, 2012). More recently, DSF has been shown to have anticancer properties against various types of cancers. Most of them were attributed to its properties to form copper complex, which exhibits highly efficacious and specific toxicity for cancer cells, both *in vitro* and *in vivo*, through a variety of mechanisms including proteasome and/or NFKB inhibition (Cvek and Dvorak, 2008). Similarly, 8-

hydroxyquinoline and its derivatives (such as CQ and CHX) are known weak, bidentate chelators that bind metal ions through the oxygen and nitrogen atoms. These donor atoms provide a preference for Cu^{2+} and Zn^{2+} . The chelating properties of 8-hydroxyquinoline and dithiocarbamate families of molecules have been reported to have different cellular consequences: i) the removal of an important metal ion in metal ion-containing proteins, affecting their function, structure and/or activity (Lushchak et al., 2005); or ii) the generation of metal ion-dependent toxicity (such as copper or zinc-dependent toxicity) that leads to the generation of reactive oxygen species and subsequent disruption of biological processes (Chen et al., 2006). Given the high membrane permeability and weak zinc-binding property of CQ, recent studies have suggested that this drug may also act as a zinc ionophore (Colvin et al., 2008; Ding et al., 2005, 2008), shuttling free zinc in or out of cells, depending on the free zinc concentration gradient. Similar observations have also been reported for DSF and ZPT (Wiggins et al., 2015). To investigate whether these different molecules function as chelator or ionophores in CYS4-OE cells, we showed that the efficiency of the molecules was dependent on the availability of extracellular levels of zinc. On the contrary, the activity of tested molecules was decreased in the presence of copper, suggesting that the molecules bound to copper are not able to mediate their positive action on CYS4-OE cells. According to the Irving–Williams series of affinities for metals binding to ligands, copper is predicted to bind more tightly to our molecules than zinc, which would explain why chelation of extracellular copper by BCS increased their activity. Of note, we also tested the effect of other metals such as Fe²⁺, Mn²⁺ and Mg²⁺ but we did not observe any effect of magnesium or manganese whereas iron mimicked copper effects, although less strongly (data not shown). This is in agreement with the fact that CQ and DSF also have affinity for iron (Mathieu et al., 2015; Todorich and Connor, 2004).

Role of zinc in the rescue of CYS4-OE resulting phenotypes

Similar ranges of concentrations of zinc that we used in our study (4-6 mM) have been shown to induce oxidative stress in yeast cells (Pagani *et al.*, 2007), leading to decreased intracellular amount of reduced glutathione (GSH). We showed that molecules that can quench thiols, such as N-ethylmaleimide (NEM) and iodoacetamide or a thiol- specific oxidant, such as diamide, were also able to counteract *CYS4*-OE induced phenotypes, suggesting that the regulation of the redox state of the thiol content of the cell is central to the consequences of *CYS4*-OE. Taken together, all these observations suggest that the drugs identified in our screen probably act through thiol oxidation and/or sulfhydryl masking to rescue both cytosolic pH and methionine auxotrophy. Indeed, all our identified molecules have thiol-reactive properties and we observed that their action and toxicity were decreased by adding reduced glutathione or cysteine, in agreement to what has been previously reported for DSF (Kwolek-Mirek *et al.*, 2012).

Interestingly, Pagani and coworkers also showed that yeast cells exposed to 5 mM of zinc upregulated a number of genes, including *MET28*, a transcriptional activator of several *MET* genes involved in

methionine synthesis, and the methionine permeases MUP1 and MUP3 (Pagani et al., 2007). Similarly, a transcriptomic study of yeast cells subjected to CQ also show increased expression of MUP1, MMP1, MUP3, UBP7 and UBP11 (Li et al., 2010). It is thus possible that, through zinc import, the molecules identified in the screening also participate to increased methionine production and import through increased expression of methionine permeases. This role of zinc in regulating methionine synthesis and/or intracellular glutathione levels have already been reported in a few studies: under low concentrations of zinc, elevated levels of GSH are observed (Wu et al., 2007) probably through the activation of Yap1p (North et al., 2012), a transcription factor required for oxidative stress tolerance that activates the expression of GSH1, GSH2, the genes encoding the two enzymes involved in glutathione synthesis from cysteine, and CYS3 and CYS4, the genes involved in cysteine synthesis from homocysteine (Fig. 1A) (Orumets et al., 2012), thus leading to increased GSH synthesis at the cost of methionine. Conversely, increasing zinc concentration decreases intracellular levels of GSH (Pagani et al., 2007; Steiger et al., 2017), leaving the methionine pool available. In addition, a parallel between the action of zinc and diamide has been made by Pagani and coworkers on the basis of the profile of genes induced by exposure to these two molecules. Indeed, the transcriptomic profile of genes induced by zinc is much more similar to the one produced by exposure to diamide than to menadione or hydrogen peroxide. These results are in agreement with the fact that menadione was only faintly active on CYS4-OE phenotypes and that cadmium, another oxidant, did not rescue CYS4-OE cell growth but on the contrary, worsened its phenotypes (data not shown), probably because cadmium exposure up-regulates genes of the transsulfuration pathway in yeast (CYS3, CYS4, GSH1 and GSH2) (Dormer et al., 2000; Fauchon et al., 2002). Regarding NEM, it has been shown in mammalian cells that NEM exposure induces increased intracellular levels of zinc (Gibon et al., 2010; Haase and Beyersmann, 2002). Although this has not been confirmed in yeast, it is possible that NEM treatment thus results in similar transcriptional modifications than zinc in CYS4-OE cells. These data thus confirm that not all oxidant molecules have the same effects on cell metabolism and that in our case, molecules which can both decrease/mask reduced thiol intracellular levels and increase the synthesis and/or import of methionine rescue the phenotypes due to CYS4-OE.

Consequences of intracellular acidification due to CYS4 overexpression

We showed in this study that *CYS4* modulation induces cytosolic acidification defects, which had not been previously reported. A defect of vacuolar acidification had previously been shown for *cys4* Δ cells (Oluwatosin and Kane, 1997; Sambade, 2005), but our results suggest that *cys4* Δ cells have an intermediate phenotype, less severe than the one initially reported by Oluwatosin and Kane and closer to what has been described by Sambade and colleagues. Changes in intracellular pH can have many consequences, from modifying the activity of virtually any enzyme to altering protein folding, through polar lipids management and vesicular trafficking. Very few elements regarding these consequences have been well defined compared to the theoretical huge range of impact that a change in pH can have in living cells (reviewed by Orij et al., 2011). Intracellular pH affects many cellular processes, and even a slight deviation can affect intracellular metabolic reactions (Bracey et al., 1998; Krebs et al., 1983). For example, it can lead to the inhibition of glycolysis (Pearce et al., 2001) and therefore the reduction of the cell's ability to generate ATP. This can be a problem as the cellular activities counteracting acidification, such as Pma1 function, and anion accumulation consume ATP (Holyoak et al., 1999; Piper et al., 1998). Intracellular pH is also a critical component of the total electro-chemical gradient which is responsible for the transport of molecules across membranes (Orij et al., 2011). We showed in this study that CYS4-OE cells have decreased amino acid uptake and increased Rsp5p-mediated endocytosis and degradation of certain receptors. Although this hypothesis remains to be tested, one could hypothesize that these defects may translate to impaired synaptic transmission in human brain. Accordingly, NEDD4, the human homolog of *RSP5*, plays an important role in neuronal development, and is responsible for the formation and arborisation of dendrites in neurons (Kawabe et al., 2010). Our results are also in agreement with previous studies reporting that cytosolic acidification leads to decreased amino acid uptake (probably in order to decrease proton co-transport) (Ding et al., 2013), and more particularly leucine (Hueso et al., 2012; Kawahata et al., 2006). Interestingly, when studying the effect of acetic acid exposure (which causes intracellular acidification) on yeast growth, Hueso and coworkers identified LEU2 as a gene important for tolerance to intracellular acidification: they showed that it acts by removing the dependency of their *leu2* mutant host strain on the uptake of extracellular leucine. Indeed, they showed that leucine transport is inhibited by intracellular acidification, and that either leucine oversupplementation in the medium or overexpression of the leucine transporter gene BAP2 improved yeast growth in the presence of acetic acid (Hueso et al., 2012). Similarly, Ding and coworkers screened a veast gene deletion library for acetic acid-resistant mutants, and found an enrichment in endocytosis and ubiquitination mutants (Ding et al., 2013). Altogether, these results fit well with our data, showing that intracellular acidification (in our case due to Gex1p/Gex2p proton import) leads to decreased amino acid uptake, including leucine, thus increasing the initial effects of CYS4-OE (Fig. 7), and that endocytosis inhibition rescues CYS4-OE phenotypes (Fig. 5C). Interestingly, both diamide and NEM have also been shown to inhibit endocytosis (Sandvig et al., 1988). It is thus possible that these two molecules also act through this mechanism to prevent amino acid starvation and TORC1 inactivation and thus counteract CYS4-OE phenotypes.

The deletion of yeast *NHX1* (which codes for a Na⁺/H⁺ antiporter located at the plasma membrane), which leads to decreased cytosolic pH, has been reported to cause an accumulation of early endosomes because cytoplasmic acidification prevents their maturation into later endosomes and lysosomes (Brett *et al.*, 2005; Samuelson *et al.*, 1988; Wolkoff *et al.*, 1984). Similarly, we observed that *CYS4*-OE cells have more plurilobed vacuoles. Interestingly, Down syndrome patients have been shown to display

enlarged early endosomes (Cataldo *et al.*, 2000) or rather an accumulation of little endosomes, suggesting impaired vesicular trafficking. This observation fits well with the fact that *YAK1* overexpression also induces cytosolic acidification defects and that these acidification defects are more severe in cells overexpressing both *YAK1* and *CYS4*, which is the situation found in Down syndrome patients.

Genetic relationship between CYS4 and YAK1

The founding member of the DYRK family, the Saccharomyces cerevisiae Yak1p kinase, is a gene which deletion suppresses loss of function of the cAMP-PKA (protein kinase A) pathway and which expression is highly induced by arrest in early cell cycle, suggesting that Yak1p acts downstream and/or in parallel to PKA (Garrett and Broach, 1989; Garrett et al., 1991). The different phenotypes associated with deletion or overexpression of the S. cerevisiae YAK1 gene suggest that Yak1p acts as a negative regulator of growth and modulates PKA-regulated processes, suggesting that PKA may be inhibited in CYS4-OE cells. In addition, a role of Yak1p has been shown in TORC1 signaling pathway. Yak1p is activated and translocated to the nucleus when TORC1 is inactivated. Yak1 is thus a mediator common to the PKA and TORC1 signaling pathways. Here, we showed a complex genetic interaction between CYS4 and YAK1 and it is not really clear whether Cys4p acts upstream or downstream Yak1p or both. Inactivation of TORC1 (and possibly PKA) in CYS4-OE cells probably activate Yak1p. However, the fact that YAK1 deletion saves CYS4-OE induced phenotypes is more in favor of a role of Yak1p upstream Cys4p, suggesting that Yak1p is necessary to activate Cys4p, probably through phosphorylation. The complexity of the regulation of the TORC1 and PKA pathways between different cell types and/or types of cellular stress may explain the apparent contradictory results obtained in the different studies on the relationship between CBS and DYRK1A.

Zn as a relevant therapeutic strategy to use in patients with Down syndrome

As drug development can be expensive and cumbersome, finding new applications of existing drugs appears as an effective means to accelerate the process. Here we identified molecules (DSF, CQ, and dithiocarbamate derivatives) that are under study and that are currently approved for the treatment of various pathological disorders, including brain diseases. DSF has been shown to have *in vitro* and *in vivo* anticancer properties against various types of cancers and in the last years, there has been renewed interest in this molecule for cancer therapy because DSF is an attractive candidate for drug repurposing given its low cost, well characterized toxicity profile and good safety track record (Chick, 1999; Johansson, 1992). DSF is an oral agent convenient to administer, well-tolerated and that crosses the blood brain barrier (Oskarsson and Lind, 1985), with potential efficacy for central nervous system diseases. Similarly, zinc acetate has been approved by the US FDA in 1997 for the treatment of Wilson's

disease as a good alternative to anticopper drugs such as D-penicillamine and trientine (Brewer *et al.*, 1998). The only side effect is some degree of initial gastric irritation in ~10% of patients, which usually decreases and becomes insignificant over time. In our case, it is important to note that zinc acetate does not work, probably because the acetate counteracts the positive action of zinc on intracellular pH however zinc gluconate may be a good alternative. Interestingly, zinc metabolism has been reported to be impaired in patients with Down syndrome (DS) (Lima *et al.*, 2010), possibly because of the triplication of *SOD1* that encodes the Cu-Zn-dependent superoxide dismutase, a zinc-dependent enzyme. Zinc supplementation in DS patients has been shown to be beneficial for several aspects including immune and endocrinological problems associated with thyroid dysregulation. It would thus be interesting to see whether zinc combined to ionophores such as DSF or CQ that would help to bring zinc in brain may also help at the cognitive level.

Acknowledgements: We wish to thank Sébastien Léon, Véronique Albanèse and Rosine Haguenauer for helpful discussions. *npi1*, HXT3-GFP and Sna3-GFP strains were kindly given by S. Léon (Institut Jacques Monod) and $gex1\Delta/gex2\Delta$ strain by Naïma Belgareh-Touzé (Institut de Biologie Physico-chimique, Paris).

REFERENCES

- Abe, K., and Kimura, H. (1996). The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071.
- Adelson, L., and Sunshine, I. (1966). Fatal hydrogen sulfide intoxication. Report of three cases occurring in a sewer. Arch. Pathol. 81, 375–380.
- Agrawal, N., and Banerjee, R. (2008). Human Polycomb 2 Protein Is a SUMO E3 Ligase and Alleviates Substrate-Induced Inhibition of Cystathionine β-Synthase Sumoylation. PLoS ONE 3, e4032.
- Altafaj, X., Dierssen, M., Baamonde, C., Martí, E., Visa, J., Guimerà, J., Oset, M., González, J.R., Flórez, J., Fillat, C., et al. (2001). Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum. Mol. Genet. 10, 1915– 1923.
- Altafaj, X., Martín, E.D., Ortiz-Abalia, J., Valderrama, A., Lao-Peregrín, C., Dierssen, M., and Fillat, C. (2013). Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome. Neurobiol. Dis. 52, 117–127.
- Andersson, D.A., Gentry, C., Moss, S., and Bevan, S. (2009). Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+. Proc. Natl. Acad. Sci. U. S. A. 106, 8374–8379.
- Antonarakis, S.E., Lyle, R., Dermitzakis, E.T., Reymond, A., and Deutsch, S. (2004). Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat. Rev. Genet. 5, 725–738.
- Asimakopoulou, A., Panopoulos, P., Chasapis, C.T., Coletta, C., Zhou, Z., Cirino, G., Giannis, A., Szabo, C., Spyroulias, G.A., and Papapetropoulos, A. (2013). Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE): Characterization of CSE and CBS inhibitors. Br. J. Pharmacol. 169, 922–932.
- Awata, S., Nakayama, K., Suzuki, I., Sugahara, K., and Kodama, H. (1995). Changes in cystathionine gammalyase in various regions of rat brain during development. Biochem. Mol. Biol. Int. 35, 1331–1338.
- Baggett, J.J., Shaw, J.D., Sciambi, C.J., Watson, H.A., and Wendland, B. (2003). Fluorescent labeling of yeast. Curr. Protoc. Cell Biol. 4–13.
- Banerjee, R., and Zou, C.-G. (2005). Redox regulation and reaction mechanism of human cystathionine-betasynthase: a PLP-dependent hemesensor protein. Arch. Biochem. Biophys. 433, 144–156.
- Bao, L., Vlček, Č., Pačes, V., and Kraus, J.P. (1998). Identification and Tissue Distribution of Human Cystathionine β-Synthase mRNA Isoforms. Arch. Biochem. Biophys. 350, 95–103.
- Barber, G.W., and Spaeth, G.L. (1967). PYRIDOXINE THERAPY IN HOMOCYSTINURIA. The Lancet 289, 337.
- Barthelemy, C., Barry, A.O., Twyffels, L., and André, B. (2017). FTY720-induced endocytosis of yeast and human amino acid transporters is preceded by reduction of their inherent activity and TORC1 inhibition. Sci. Rep. 7, 13816.
- Bateman, A. (1997). The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci. 22, 12–13.
- Baykov, A.A., Tuominen, H.K., and Lahti, R. (2011). The CBS domain: a protein module with an emerging prominent role in regulation. ACS Chem. Biol. 6, 1156–1163.
- Beck, T., Schmidt, A., and Hall, M.N. (1999). Starvation Induces Vacuolar Targeting and Degradation of the Tryptophan Permease in Yeast. J. Cell Biol. 146, 1227–1238.
- Beeler, T., and Churchich, J.E. (1976). Reactivity of the phosphopyridoxal groups of cystathionase. J. Biol. Chem. 251, 5267–5271.
- Belardinelli, M.-C., Chabli, A., Chadefaux-Vekemans, B., and Kamoun, P. (2001). Urinary Sulfur Compounds in Down Syndrome. Clin. Chem. 47, 1500–1501.
- Bennett, J.W., and Abroms, K.I. (1979). Gametogenesis and incidence of Down syndrome. The Lancet 314, 913.
- Beyreuther, K., Pollwein, P., Multhaup, G., Mönning, U., König, G., Dyrks, T., Schubert, W., and Masters, C.L. (1993). Regulation and expression of the Alzheimer's beta/A4 amyloid protein precursor in health, disease, and Down's syndrome. Ann. N. Y. Acad. Sci. 695, 91–102.

- Bhattacharyya, S., Saha, S., Giri, K., Lanza, I.R., Nair, K.S., Jennings, N.B., Rodriguez-Aguayo, C., Lopez-Berestein, G., Basal, E., Weaver, A.L., et al. (2013). Cystathionine Beta-Synthase (CBS) Contributes to Advanced Ovarian Cancer Progression and Drug Resistance. PLoS ONE 8, e79167.
- Bidder, R.T., Gray, P., Newcombe, R.G., Evans, B.K., and Hughes, M. (1989). The effects of multivitamins and minerals on children with Down syndrome. Dev. Med. Child Neurol. 31, 532–537.
- Billack, B., Pietka-Ottlik, M., Santoro, M., Nicholson, S., Młochowski, J., and Lau-Cam, C. (2010). Evaluation of the antifungal and plasma membrane H+-ATPase inhibitory action of ebselen and two ebselen analogs in S. cerevisiae cultures. J. Enzyme Inhib. Med. Chem. 25, 312–317.
- Boada, R., Hutaff-Lee, C., Schrader, A., Weitzenkamp, D., Benke, T.A., Goldson, E.J., and Costa, A.C.S. (2012). Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial. Transl. Psychiatry 2, e141.
- Bottiglieri, T. (2002). S-Adenosyl-l-methionine (SAMe): from the bench to the bedside—molecular basis of a pleiotrophic molecule. Am. J. Clin. Nutr. 76, 1151S–1157S.
- Bracey, D., Holyoak, C.D., and Coote, P.J. (1998). Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH? J. Appl. Microbiol. 85, 1056–1066.
- Breton, A., and Surdin-Kerjan, Y. (1977). Sulfate Uptake in Saccharomyces cerevisiae: Biochemical and Genetic Study. J. Bacteriol. 132, 224–232.
- Brett, C.L., Tukaye, D.N., Mukherjee, S., and Rao, R. (2005). The yeast endosomal Na+ (K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol. Biol. Cell 16, 1396–1405.
- Brewer, G.J. (2001). Zinc acetate for the treatment of Wilson's disease. Expert Opin. Pharmacother. 2, 1473–1477.
- Brewer, G.J., Dick, R.D., Johnson, V.D., Brunberg, J.A., Kluin, K.J., and Fink, J.K. (1998). Treatment of Wilson's disease with zinc: XV long-term follow-up studies. J. Lab. Clin. Med. 132, 264–278.
- Bruno, S., Schiaretti, F., Burkhard, P., Kraus, J.P., Janosik, M., and Mozzarelli, A. (2001). Functional properties of the active core of human cystathionine beta-synthase crystals. J. Biol. Chem. 276, 16–19.
- Brzywczy, J., and Paszewski, A. (1994). Sulfur amino acid metabolism in Schizosaccharomyces pombe: occurrence of two O-acetylhomoserine sulfhydrylases and the lack of the reverse transfulfuration pathway. FEMS Microbiol. Lett. 121, 171–174.
- Burrone, J., Li, Z., and Murthy, V.N. (2006). Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin. Nat. Protoc. 1, 2970–2978.
- Busciglio, J., and Yankner, B.A. (1995). Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro. Nature 378, 776–779.
- Cahoy, J.D., Emery, B., Kaushal, A., Foo, L.C., Zamanian, J.L., Christopherson, K.S., Xing, Y., Lubischer, J.L., Krieg, P.A., Krupenko, S.A., et al. (2008). A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function. J. Neurosci. 28, 264–278.
- Carson, N.A.J., and Neill, D.W. (1962). Metabolic Abnormalities Detected in a Survey of Mentally Backward Individuals in Northern Ireland. Arch. Dis. Child. 37, 505–513.
- Casique, L., Kabil, O., Banerjee, R., Martinez, J.C., and De Lucca, M. (2013). Characterization of two pathogenic mutations in cystathionine beta-synthase: Different intracellular locations for wild-type and mutant proteins. Gene 531, 117–124.
- Cataldo, A.M., Peterhoff, C.M., Troncoso, J.C., Gomez-Isla, T., Hyman, B.T., and Nixon, R.A. (2000). Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157, 277–286.
- Cen, D., Gonzalez, R.I., Buckmeier, J.A., Kahlon, R.S., Tohidian, N.B., and Meyskens, F.L. (2002). Disulfiram induces apoptosis in human melanoma cells: a redox-related process. Mol. Cancer Ther. 1, 197–204.
- Chadefaux, B., Rethoré, M.O., Raoul, O., Ceballos, I., Poissonnier, M., Gilgenkranz, S., and Allard, D. (1985). Cystathionine beta synthase: gene dosage effect in trisomy 21. Biochem. Biophys. Res. Commun. 128, 40– 44.
- Chan, G., Hardej, D., Santoro, M., Lau-Cam, C., and Billack, B. (2007). Evaluation of the antimicrobial activity of ebselen: role of the yeast plasma membrane H+-ATPase. J. Biochem. Mol. Toxicol. 21, 252–264.

- Chen, D., and Dou, Q.P. (2008). New uses for old copper-binding drugs: converting the pro-angiogenic copper to a specific cancer cell death inducer. Expert Opin. Ther. Targets 12, 739–748.
- Chen, D., Cui, Q.C., Yang, H., and Dou, Q.P. (2006). Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 66, 10425–10433.
- Chen, W., Zebaze, L.N., Dong, J., Chézeau, L., Inquimbert, P., Hugel, S., Niu, S., Bihel, F., Boutant, E., Réal, E., et al. (2018). WNK1 kinase and its partners Akt, SGK1 and NBC-family Na + /HCO3 cotransporters are potential therapeutic targets for glioblastoma stem-like cells linked to Bisacodyl signaling. Oncotarget 9, 27197–27219.
- Chen, X., Jhee, K.-H., and Kruger, W.D. (2004). Production of the Neuromodulator H2S by Cystathionine β-Synthase via the Condensation of Cysteine and Homocysteine. J. Biol. Chem. 279, 52082–52086.
- Cheon, M.S., Dierssen, M., Kim, S.H., and Lubec, G. (2008). Protein expression of BACE1, BACE2 and APP in Down syndrome brains. Amino Acids 35, 339–343.
- Cherney, M.M., Pazicni, S., Frank, N., Marvin, K.A., Kraus, J.P., and Burstyn, J.N. (2007). Ferrous Human Cystathionine β-Synthase Loses Activity during Enzyme Assay Due to a Ligand Switch Process [†]. Biochemistry (Mosc.) 46, 13199–13210.
- Chertok, V.M., Kotsyuba, A.E., and Kotsyuba, E.P. (2011). Cystathionine β-synthase in structural elements of the human brain and spinal cord. Cell Tissue Biol. 5, 573–579.
- Chick, J. (1999). Safety issues concerning the use of disulfiram in treating alcohol dependence. Drug Saf. 20, 427–435.
- Clark, S., Schwalbe, J., Stasko, M.R., Yarowsky, P.J., and Costa, A.C.S. (2006). Fluoxetine rescues deficient neurogenesis in hippocampus of the Ts65Dn mouse model for Down syndrome. Exp. Neurol. 200, 256– 261.
- Colvin, R.A., Bush, A.I., Volitakis, I., Fontaine, C.P., Thomas, D., Kikuchi, K., and Holmes, W.R. (2008). Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am. J. Physiol. Cell Physiol. 294, C726-742.
- Cost, G.J., and Boeke, J.D. (1996). A useful colony colour phenotype associated with the yeast selectable/counterselectable marker MET15. Yeast 12, 939–941.
- Costa, A.C.S., Scott-McKean, J.J., and Stasko, M.R. (2008). Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a fear conditioning test. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 33, 1624–1632.
- Cox, D.R., and Epstein, C.J. (1985). Comparative gene mapping of human chromosome 21 and mouse chromosome 16. Ann. N. Y. Acad. Sci. 450, 169–177.
- Crapeau, M., Merhi, A., and André, B. (2014). Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins. J. Biol. Chem. 289, 22103–22116.
- Crawley, J.N. (2004). Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment. Retard. Dev. Disabil. Res. Rev. 10, 248–258.
- Currier, J.M., Cheng, W.-Y., Menendez, D., Conolly, R., and Chorley, B.N. (2016). Developing a Gene Biomarker at the Tipping Point of Adaptive and Adverse Responses in Human Bronchial Epithelial Cells. PLOS ONE 11, e0155875.
- Cvek, B., and Dvorak, Z. (2008). The value of proteasome inhibition in cancer. Can the old drug, disulfiram, have a bright new future as a novel proteasome inhibitor? Drug Discov. Today 13, 716–722.
- Dabbagh-Bazarbachi, H., Clergeaud, G., Quesada, I.M., Ortiz, M., O'Sullivan, C.K., and Fernández-Larrea, J.B. (2014). Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model. J. Agric. Food Chem. 62, 8085–8093.
- Davisson, M.T., Schmidt, C., Reeves, R.H., Irving, N.G., Akeson, E.C., Harris, B.S., and Bronson, R.T. (1993). Segmental trisomy as a mouse model for Down syndrome. Prog. Clin. Biol. Res. 384, 117–133.
- De la Torre, R., De Sola, S., Pons, M., Duchon, A., de Lagran, M.M., Farré, M., Fitó, M., Benejam, B., Langohr, K., Rodriguez, J., et al. (2014). Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol. Nutr. Food Res. 58, 278–288.
- Dechant, R., Binda, M., Lee, S.S., Pelet, S., Winderickx, J., and Peter, M. (2010). Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J. 29, 2515–2526.

- Dechant, R., Saad, S., Ibáñez, A.J., and Peter, M. (2014). Cytosolic pH regulates cell growth through distinct GTPases, Arfl and Gtr1, to promote Ras/PKA and TORC1 activity. Mol. Cell 55, 409–421.
- Delabar, J.-M., Latour, A., Noll, C., Renon, M., Salameh, S., Paul, J.-L., Arbones, M., Movassat, J., and Janel, N. (2014). One-carbon cycle alterations induced by Dyrk1a dosage. Mol. Genet. Metab. Rep. 1, 487–492.
- Deprez, M.-A., Eskes, E., Wilms, T., Ludovico, P., and Winderickx, J. (2018). pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity. Microb. Cell Graz Austria 5, 119–136.
- Dhaoui, M., Auchère, F., Blaiseau, P.-L., Lesuisse, E., Landoulsi, A., Camadro, J.-M., Haguenauer-Tsapis, R., and Belgareh-Touzé, N. (2011). Gex1 is a yeast glutathione exchanger that interferes with pH and redox homeostasis. Mol. Biol. Cell 22, 2054–2067.
- Dickhout, J.G., Carlisle, R.E., Jerome, D.E., Mohammed-Ali, Z., Jiang, H., Yang, G., Mani, S., Garg, S.K., Banerjee, R., Kaufman, R.J., et al. (2012). The integrated stress response modulates cellular redox state via induction of cystathionine γ-lyase: cross-talk between the integrated stress response and thiol metabolism. J. Biol. Chem. jbc.M111.304576.
- Ding, W.-Q., and Lind, S.E. (2009). Metal ionophores an emerging class of anticancer drugs. IUBMB Life 61, 1013–1018.
- Ding, J., Bierma, J., Smith, M.R., Poliner, E., Wolfe, C., Hadduck, A.N., Zara, S., Jirikovic, M., van Zee, K., Penner, M.H., et al. (2013). Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl. Microbiol. Biotechnol. 97, 7405–7416.
- Ding, W.-Q., Liu, B., Vaught, J.L., Yamauchi, H., and Lind, S.E. (2005). Anticancer activity of the antibiotic clioquinol. Cancer Res. 65, 3389–3395.
- Ding, W.-Q., Yu, H.-J., and Lind, S.E. (2008). Zinc-binding compounds induce cancer cell death via distinct modes of action. Cancer Lett. 271, 251–259.
- Diwakar, L., and Ravindranath, V. (2007). Inhibition of cystathionine-gamma-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem. Int. 50, 418–426.
- Dormer, U.H., Westwater, J., McLaren, N.F., Kent, N.A., Mellor, J., and Jamieson, D.J. (2000). Cadmiuminducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J. Biol. Chem. 275, 32611–32616.
- Dowjat, W.K., Adayev, T., Kuchna, I., Nowicki, K., Palminiello, S., Hwang, Y.W., and Wegiel, J. (2007). Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci. Lett. 413, 77–81.
- Down, J.L. (1866). Observations on an ethnic classification of idiots. Heredity 21, 695-697.
- Druzhyna, N., Szczesny, B., Olah, G., Módis, K., Asimakopoulou, A., Pavlidou, A., Szoleczky, P., Gerö, D., Yanagi, K., Törö, G., et al. (2016). Screening of a composite library of clinically used drugs and wellcharacterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer. Pharmacol. Res. 113, 18–37.
- Dyachok, J., Earnest, S., Iturraran, E.N., Cobb, M.H., and Ross, E.M. (2016). Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism. J. Biol. Chem. 291, 22414–22426.
- Eliot, A.C., and Kirsch, J.F. (2004). Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383–415.
- Enokido, Y., Suzuki, E., Iwasawa, K., Namekata, K., Okazawa, H., and Kimura, H. (2005). Cystathionine betasynthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 19, 1854–1856.
- Epstein, C.J., Cox, D.R., and Epstein, L.B. (1985). Mouse trisomy 16: an animal model of human trisomy 21 (Down syndrome). Ann. N. Y. Acad. Sci. 450, 157–168.
- Epstein, C.J., Korenberg, J.R., Annerén, G., Antonarakis, S.E., Aymé, S., Courchesne, E., Epstein, L.B., Fowler, A., Groner, Y., and Huret, J.L. (1991). Protocols to establish genotype-phenotype correlations in Down syndrome. Am. J. Hum. Genet. 49, 207–235.

- Eraso, P., and Gancedo, C. (1987). Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett. 224, 187–192.
- Ereno-Orbea, J., Majtan, T., Oyenarte, I., Kraus, J.P., and Martinez-Cruz, L.A. (2013). Structural basis of regulation and oligomerization of human cystathionine -synthase, the central enzyme of transsulfuration. Proc. Natl. Acad. Sci. 110, E3790–E3799.
- Eto, K., Ogasawara, M., Umemura, K., Nagai, Y., and Kimura, H. (2002). Hydrogen sulfide is produced in response to neuronal excitation. J. Neurosci. Off. J. Soc. Neurosci. 22, 3386–3391.
- Fauchon, M., Lagniel, G., Aude, J.C., Lombardia, L., Soularue, P., Petat, C., Marguerie, G., Sentenac, A., Werner, M., and Labarre, J. (2002). Sulfur sparing in the yeast proteome in response to sulfur demand. Mol. Cell 9, 713–723.
- Fei, E., Jia, N., Yan, M., Ying, Z., Sun, Q., Wang, H., Zhang, T., Ma, X., Ding, H., Yao, X., et al. (2006). SUMO-1 modification increases human SOD1 stability and aggregation. Biochem. Biophys. Res. Commun. 347, 406–412.
- Finkelstein, J.D., Mudd, S.H., Irreverre, F., and Laster, L. (1964). Homocystinuria due to Cystathionine Synthetase Deficiency: The Mode of Inheritance. Science 146, 785–787.
- Finkelstein, J.D., Martin, J.J., and Harris, B.J. (1988). Methionine metabolism in mammals. The methioninesparing effect of cystine. J. Biol. Chem. 263, 11750–11754.
- Fisch, H., Hyun, G., Golden, R., Hensle, T.W., Olsson, C.A., and Liberson, G.L. (2003). The Influence of Paternal Age on Down Syndrome. J. Urol. 169, 2275–2278.
- Forsburg, S.L. (2001). The art and design of genetic screens: yeast. Nat. Rev. Genet. 2, 659-668.
- Frank, N., Kent, J.O., Meier, M., and Kraus, J.P. (2008). Purification and characterization of the wild type and truncated human cystathionine beta-synthase enzymes expressed in E. coli. Arch. Biochem. Biophys. 470, 64–72.
- García-Cerro, S., Martínez, P., Vidal, V., Corrales, A., Flórez, J., Vidal, R., Rueda, N., Arbonés, M.L., and Martínez-Cué, C. (2014). Overexpression of Dyrk1A is implicated in several cognitive, electrophysiological and neuromorphological alterations found in a mouse model of Down syndrome. PloS One 9, e106572.
- Garrett, S., and Broach, J. (1989). Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev. 3, 1336–1348.
- Garrett, S., Menold, M.M., and Broach, J.R. (1991). The Saccharomyces cerevisiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Mol. Cell. Biol. 11, 4045–4052.
- Ge, Y., Matherly, L.H., and Taub, J.W. (2001a). Transcriptional Regulation of Cell-specific Expression of the Human Cystathionine -Synthase Gene by Differential Binding of Sp1/Sp3 to the -1b Promoter. J. Biol. Chem. 276, 43570–43579.
- Ge, Y., Konrad, M.A., Matherly, L.H., and Taub, J.W. (2001b). Transcriptional regulation of the human cystathionine beta-synthase -1b basal promoter: synergistic transactivation by transcription factors NF-Y and Sp1/Sp3. Biochem. J. 357, 97–105.
- Ge, Y., Jensen, T.L., Matherly, L.H., and Taub, J.W. (2002). Synergistic regulation of human cystathionine-betasynthase-1b promoter by transcription factors NF-YA isoforms and Sp1. Biochim. Biophys. Acta 1579, 73–80.
- Ge, Y., Jensen, T.L., Matherly, L.H., and Taub, J.W. (2003). Transcriptional regulation of the cystathionine-βsynthase gene in Down syndrome and non–Down syndrome megakaryocytic leukemia cell lines. Blood 101, 1551–1557.
- Gerritsen, T., and Waisman, H.A. (1964). Homocystinuria: Absence of Cystathionine in the Brain. Science 145, 588–588.
- Gerritsen, T., Vaughn, J.G., and Waisman, H.A. (1962). The identification of homocystine in the urine. Biochem. Biophys. Res. Commun. 9, 493–496.
- Gibon, J., Tu, P., Frazzini, V., Sensi, S.L., and Bouron, A. (2010). The thiol-modifying agent N-ethylmaleimide elevates the cytosolic concentration of free Zn(2+) but not of Ca(2+) in murine cortical neurons. Cell Calcium 48, 37–43.

- Gietz, R.D., and Schiestl, R.H. (2007). High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34.
- González, A., and Hall, M.N. (2017). Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 36, 397-408.
- Green, E.L., Taoka, S., Banerjee, R., and Loehr, T.M. (2001). Resonance Raman characterization of the heme cofactor in cystathionine beta-synthase. Identification of the Fe-S(Cys) vibration in the six-coordinate lowspin heme. Biochemistry (Mosc.) 40, 459–463.
- Gribble, S.M., Wiseman, F.K., Clayton, S., Prigmore, E., Langley, E., Yang, F., Maguire, S., Fu, B., Rajan, D., Sheppard, O., et al. (2013). Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome. PloS One 8, e60482.
- Griffioen, G., Branduardi, P., Ballarini, A., Anghileri, P., Norbeck, J., Baroni, M.D., and Ruis, H. (2001). Nucleocytoplasmic Distribution of Budding Yeast Protein Kinase A Regulatory Subunit Bcy1 Requires Zds1 and Is Regulated by Yak1-Dependent Phosphorylation of Its Targeting Domain. Mol. Cell. Biol. 21, 511–523.
- Guedj, F., Sébrié, C., Rivals, I., Ledru, A., Paly, E., Bizot, J.C., Smith, D., Rubin, E., Gillet, B., Arbones, M., et al. (2009). Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PloS One 4, e4606.
- Guidi, S., Stagni, F., Bianchi, P., Ciani, E., Giacomini, A., De Franceschi, M., Moldrich, R., Kurniawan, N., Mardon, K., Giuliani, A., et al. (2014). Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model. Brain J. Neurol. 137, 380–401.
- Haase, H., and Beyersmann, D. (2002). Intracellular zinc distribution and transport in C6 rat glioma cells. Biochem. Biophys. Res. Commun. 296, 923–928.
- Hamelet, J., Noll, C., Ripoll, C., Paul, J.-L., Janel, N., and Delabar, J.-M. (2009). Effect of hyperhomocysteinemia on the protein kinase DYRK1A in liver of mice. Biochem. Biophys. Res. Commun. 378, 673–677.
- Han, J.M., Jeong, S.J., Park, M.C., Kim, G., Kwon, N.H., Kim, H.K., Ha, S.H., Ryu, S.H., and Kim, S. (2012). Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410–424.
- Hanney, M., Prasher, V., Williams, N., Jones, E.L., Aarsland, D., Corbett, A., Lawrence, D., Yu, L.-M., Tyrer, S., Francis, P.T., et al. (2012). Memantine for dementia in adults older than 40 years with Down's syndrome (MEADOWS): a randomised, double-blind, placebo-controlled trial. Lancet Lond. Engl. 379, 528–536.
- Hara, K., Yonezawa, K., Weng, Q.P., Kozlowski, M.T., Belham, C., and Avruch, J. (1998). Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484–14494.
- Hargreaves, I.P., Lee, P.J., and Briddon, A. (2002). Homocysteine and cysteine–albumin binding in homocystinuria: assessment of cysteine status and implications for glutathione synthesis? Amino Acids 22, 109–118.
- Harrell, R.F., Capp, R.H., Davis, D.R., Peerless, J., and Ravitz, L.R. (1981). Can nutritional supplements help mentally retarded children? an exploratory study. Proc. Natl. Acad. Sci. U. S. A. 78, 574–578.
- Hart, S.J., Visootsak, J., Tamburri, P., Phuong, P., Baumer, N., Hernandez, M.-C., Skotko, B.G., Ochoa-Lubinoff, C., Liogier D'Ardhuy, X., Kishnani, P.S., et al. (2017). Pharmacological interventions to improve cognition and adaptive functioning in Down syndrome: Strides to date. Am. J. Med. Genet. A. 173, 3029–3041.
- Hassold, T., and Hunt, P. (2001). To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291.
- Heil, S.G., Riksen, N.P., Boers, G.H., Smulders, Y., and Blom, H.J. (2007). DNA methylation status is not impaired in treated cystathionine beta-synthase (CBS) deficient patients. Mol. Genet. Metab. 91, 55–60.
- Hein, C., Springael, J.-Y., Volland, C., Haguenauer-Tsapis, R., and André, B. (1995). NPI1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin—protein ligase. Mol. Microbiol. 18, 77–87.
- Heublein, S., Kazi, S., Ogmundsdóttir, M.H., Attwood, E.V., Kala, S., Boyd, C. a. R., Wilson, C., and Goberdhan, D.C.I. (2010). Proton-assisted amino-acid transporters are conserved regulators of proliferation and aminoacid-dependent mTORC1 activation. Oncogene 29, 4068–4079.

- Hogarth, G. (2012). Metal-dithiocarbamate complexes: chemistry and biological activity. Mini Rev. Med. Chem. 12, 1202–1215.
- Holyoak, C.D., Bracey, D., Piper, P.W., Kuchler, K., and Coote, P.J. (1999). The Saccharomyces cerevisiae weakacid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J. Bacteriol. 181, 4644–4652.
- Homocysteine Studies Collaboration (2002). Homocysteine and risk of ischemic heart disease and stroke: a metaanalysis. JAMA 288, 2015–2022.
- Huang, C.W., and Moore, P.K. (2015). H2S Synthesizing Enzymes: Biochemistry and Molecular Aspects. Handb. Exp. Pharmacol. 230, 3–25.
- Hueso, G., Aparicio-Sanchis, R., Montesinos, C., Lorenz, S., Murguía, J.R., and Serrano, R. (2012). A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress. Biochem. J. 441, 255–264.
- Ichinohe, A., Kanaumi, T., Takashima, S., Enokido, Y., Nagai, Y., and Kimura, H. (2005). Cystathionine βsynthase is enriched in the brains of Down's patients. Biochem. Biophys. Res. Commun. 338, 1547–1550.
- Iesmantavicius, V., Weinert, B.T., and Choudhary, C. (2014). Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells. Mol. Cell. Proteomics 13, 1979–1992.
- Ivan, D.L., and Cromwell, P. (2014). Clinical practice guidelines for management of children with Down syndrome: part II. J. Pediatr. Health Care Off. Publ. Natl. Assoc. Pediatr. Nurse Assoc. Pract. 28, 280–284.
- Iyer, A.M., van Scheppingen, J., Milenkovic, I., Anink, J.J., Adle-Biassette, H., Kovacs, G.G., and Aronica, E. (2014). mTOR Hyperactivation in down syndrome hippocampus appears early during development. J. Neuropathol. Exp. Neurol. 73, 671–683.
- Jakubowski, H. (2004). Molecular basis of homocysteine toxicity in humans. Cell. Mol. Life Sci. CMLS 61, 470– 487.
- Janošík, M., Kery, V., Gaustadnes, M., Maclean, K.N., and Kraus, J.P. (2001). Regulation of Human Cystathionine β-Synthase by S-Adenosyl-l-methionine: Evidence for Two Catalytically Active Conformations Involving an Autoinhibitory Domain in the C-Terminal Region. Biochemistry (Mosc.) 40, 10625–10633.
- Johansson, B. (1992). A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatr. Scand. Suppl. 369, 15–26.
- Jones, C.B., Ott, E.M., Keener, J.M., Curtiss, M., Sandrin, V., and Babst, M. (2012). Regulation of Membrane Protein Degradation by Starvation-Response Pathways. Traffic 13, 468–482.
- Kabil, H., Kabil, O., Banerjee, R., Harshman, L.G., and Pletcher, S.D. (2011). Increased transsulfuration mediates longevity and dietary restriction in Drosophila. Proc. Natl. Acad. Sci. 108, 16831–16836.
- Kabil, O., Zhou, Y., and Banerjee, R. (2006). Human Cystathionine β-Synthase Is a Target for Sumoylation. Biochemistry (Mosc.) 45, 13528–13536.
- Kaganovich, D., Kopito, R., and Frydman, J. (2008). Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088–1095.
- Kamat, P.K., Kalani, A., and Tyagi, N. (2015). Role of Hydrogen Sulfide in Brain Synaptic Remodeling. Methods Enzymol. 555, 207–229.
- Kamoun, P. (2001). Mental retardation in Down syndrome: a hydrogen sulfide hpothesis. Med. Hypotheses 57, 389–392.
- Kamoun, P., Belardinelli, M.-C., Chabli, A., Lallouchi, K., and Chadefaux-Vekemans, B. (2003). Endogenous hydrogen sulfide overproduction in Down syndrome. Am. J. Med. Genet. 116A, 310–311.
- Kashiwamata, S., and Greenberg, D.M. (1970). Studies on cystathionine synthase of rat liver properties of the highly purified enzyme. Biochim. Biophys. Acta BBA Enzymol. 212, 488–500.
- Kawabe, H., Neeb, A., Dimova, K., Young, S.M., Takeda, M., Katsurabayashi, S., Mitkovski, M., Malakhova, O.A., Zhang, D.-E., Umikawa, M., et al. (2010). Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 65, 358–372.
- Kawahara, B., Moller, T., Hu-Moore, K., Carrington, S.J., Faull, K.F., Sen, S., and Mascharak, P.K. (2017). Attenuation of Antioxidant Capacity in Human Breast Cancer Cells by Carbon Monoxide Through Inhibition of Cystathionine β-synthase Activity: Implications in Chemotherapeutic Drug Sensitivity. J. Med. Chem.

- Kawahata, M., Masaki, K., Fujii, T., and Iefuji, H. (2006). Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 6, 924–936.
- Kery, V., Bukovska, G., and Kraus, J.P. (1994). Transsulfuration depends on heme in addition to pyridoxal 5'phosphate. Cystathionine beta-synthase is a heme protein. J. Biol. Chem. 269, 25283–25288.
- Kery, V., Poneleit, L., and Kraus, J.P. (1998). Trypsin cleavage of human cystathionine β-synthase into an evolutionarily conserved active core: structural and functional consequences. Arch. Biochem. Biophys. 355, 222–232.
- Kim, C.H., Kim, J.H., Hsu, C.Y., and Ahn, Y.S. (1999). Zinc is required in pyrrolidine dithiocarbamate inhibition of NF-kappaB activation. FEBS Lett. 449, 28–32.
- Kim, H., Lee, K.-S., Kim, A.-K., Choi, M., Choi, K., Kang, M., Chi, S.-W., Lee, M.-S., Lee, J.-S., Lee, S.-Y., et al. (2016). A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis. Model. Mech. 9, 839–848.
- Kimura, H. (2011). Hydrogen sulfide: its production, release and functions. Amino Acids 41, 113-121.
- Kishnani, P.S., Sommer, B.R., Handen, B.L., Seltzer, B., Capone, G.T., Spiridigliozzi, G.A., Heller, J.H., Richardson, S., and McRae, T. (2009). The efficacy, safety, and tolerability of donepezil for the treatment of young adults with Down syndrome. Am. J. Med. Genet. A. 149A, 1641–1654.
- Kitson, T.M. (1977). The disulfiram--ethanol reaction: a review. J. Stud. Alcohol 38, 96–113.
- Komrower, G.M., Lambert, A.M., Cusworth, D.C., and Westall, R.G. (1966). Dietary treatment of homocystinuria. Arch. Dis. Child. 41, 666–671.
- Koutmos, M., Kabil, O., Smith, J.L., and Banerjee, R. (2010). Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine β-synthase. Proc. Natl. Acad. Sci. U. S. A. 107, 20958–20963.
- Kožich, V., Krijt, J., Sokolová, J., Melenovská, P., Ješina, P., Vozdek, R., Majtán, T., and Kraus, J.P. (2016). Thioethers as markers of hydrogen sulfide production in homocystinurias. Biochimie 126, 14–20.
- Kraus, J., Packman, S., Fowler, B., and Rosenberg, L.E. (1978). Purification and properties of cystathionine betasynthase from human liver. Evidence for identical subunits. J. Biol. Chem. 253, 6523–6528.
- Kraus, J.P., Oliveriusová, J., Sokolová, J., Kraus, E., Vlček, Č., de Franchis, R., Maclean, K.N., Bao, L., Bukovská, G., Patterson, D., et al. (1998). The human cystathionine β-synthase (CBS) gene: complete sequence, alternative splicing, and polymorphisms. Genomics 52, 312–324.
- Kraus, J.P., Janosík, M., Kozich, V., Mandell, R., Shih, V., Sperandeo, M.P., Sebastio, G., de Franchis, R., Andria, G., Kluijtmans, L.A., et al. (1999). Cystathionine beta-synthase mutations in homocystinuria. Hum. Mutat. 13, 362–375.
- Krebs, H.A., Wiggins, D., Stubbs, M., Sols, A., and Bedoya, F. (1983). Studies on the mechanism of the antifungal action of benzoate. Biochem. J. 214, 657–663.
- Kruger, W.D., and Cox, D.R. (1994). A yeast system for expression of human cystathionine beta-synthase: structural and functional conservation of the human and yeast genes. Proc. Natl. Acad. Sci. 91, 6614–6618.
- Kruger et Cox (1995). A yeast assay for functional detection of mutations in the human cystathionine beta-synthase gene. PubMed NCBI.
- Kwolek-Mirek, M., Zadrag-Tecza, R., and Bartosz, G. (2012). Ascorbate and thiol antioxidants abolish sensitivity of yeast Saccharomyces cerevisiae to disulfiram. Cell Biol. Toxicol. 28, 1–9.
- Lane, A.A., Chapuy, B., Lin, C.Y., Tivey, T., Li, H., Townsend, E.C., van Bodegom, D., Day, T.A., Wu, S.-C., Liu, H., et al. (2014). Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nat. Genet. 46, 618–623.
- Lang, M.J., Martinez-Marquez, J.Y., Prosser, D.C., Ganser, L.R., Buelto, D., Wendland, B., and Duncan, M.C. (2014). Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization by down-regulating recycling. J. Biol. Chem. 289, 16736–16747.
- Laxman, S., Sutter, B.M., Shi, L., and Tu, B.P. (2014). Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites. Sci. Signal. 7, ra120.
- Lee, M., Schwab, C., Yu, S., McGeer, E., and McGeer, P.L. (2009). Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol. Aging 30, 1523–1534.

- Lee, P., Paik, S.-M., Shin, C.-S., Huh, W.-K., and Hahn, J.-S. (2011). Regulation of yeast Yak1 kinase by PKA and autophosphorylation-dependent 14-3-3 binding: Regulation of Yak1 by PKA and 14-3-3. Mol. Microbiol. 79, 633–646.
- Lejeune, J., Gautier, M., and Turpin, R. (1959). Etude des chromosomes somatiques de neuf enfants mongoliens. Comptes Rendus Hebd. Séances Académie Sci. 248, 1721–1722.
- Lejeune, J., Rethoré, M.O., de Blois, M.C., Peeters, M., Naffah, J., Megarbane, A., Cattaneo, F., Mircher, C., Rabier, D., and Parvy, P. (1992). [Amino acids and trisomy 21]. Ann. Genet. 35, 8–13.
- Li, C., Wang, J., and Zhou, B. (2010). The Metal Chelating and Chaperoning Effects of Clioquinol: Insights from Yeast Studies. J. Alzheimers Dis. 21, 1249–1262.
- Li, L., Xie, R., Hu, S., Wang, Y., Yu, T., Xiao, Y., Jiang, X., Gu, J., Hu, C.-Y., and Xu, G.-Y. (2012). Upregulation of Cystathionine Beta-Synthetase Expression by Nuclear Factor-Kappa B Activation Contributes to Visceral Hypersensitivity in Adult Rats with Neonatal Maternal Deprivation. Mol. Pain 8, 1744-8069-8– 89.
- Li, Y.N., Gulati, S., Baker, P.J., Brody, L.C., Banerjee, R., and Kruger, W.D. (1996). Cloning, mapping and RNA analysis of the human methionine synthase gene. Hum. Mol. Genet. 5, 1851–1858.
- Lim, M.-Y., Dailey, D., Martin, G.S., and Thorner, J. (1993). Yeast MCK1 protein kinase autophosphorylates at tyrosine and serine but phosphorylates exogenous substrates at serine and threonine. J. Biol. Chem. 268, 21155–21164.
- Lima, A.S., Cardoso, B.R., and Cozzolino, S.F. (2010). Nutritional status of zinc in children with Down syndrome. Biol. Trace Elem. Res. 133, 20–28.
- Linden, D.R., Sha, L., Mazzone, A., Stoltz, G.J., Bernard, C.E., Furne, J.K., Levitt, M.D., Farrugia, G., and Szurszewski, J.H. (2008). Production of the gaseous signal molecule hydrogen sulfide in mouse tissues. J. Neurochem. 106, 1577–1585.
- Loewith, R., and Hall, M.N. (2011). Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control. Genetics 189, 1177–1201.
- Loiselle, F.B., and Casey, J.R. (2010). Measurement of Intracellular pH. Methods Mol. Biol. Clifton NJ 637, 311–331.
- Longtine, M.S., McKenzie, A., Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast Chichester Engl. 14, 953–961.
- Lushchak, V., Semchyshyn, H., Lushchak, O., and Mandryk, S. (2005). Diethyldithiocarbamate inhibits in vivo Cu,Zn-superoxide dismutase and perturbs free radical processes in the yeast Saccharomyces cerevisiae cells. Biochem. Biophys. Res. Commun. 338, 1739–1744.
- Lyle, R., Béna, F., Gagos, S., Gehrig, C., Lopez, G., Schinzel, A., Lespinasse, J., Bottani, A., Dahoun, S., Taine, L., et al. (2009). Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur. J. Hum. Genet. EJHG 17, 454–466.
- Lynch, M.A. (2004). Long-term potentiation and memory. Physiol. Rev. 84, 87-136.
- MacGurn, J.A., Hsu, P.-C., Smolka, M.B., and Emr, S.D. (2011). TORC1 Regulates Endocytosis via Npr1-Mediated Phosphoinhibition of a Ubiquitin Ligase Adaptor. Cell 147, 1104–1117.
- Maclean, K.N., Kraus, E., and Kraus, J.P. (2004). The Dominant Role of Sp1 in Regulating the Cystathionine -Synthase -1a and -1b Promoters Facilitates Potential Tissue-specific Regulation by Kruppel-like Factors. J. Biol. Chem. 279, 8558–8566.
- Mahmoud, S., Planes, M.D., Cabedo, M., Trujillo, C., Rienzo, A., Caballero-Molada, M., Sharma, S.C., Montesinos, C., Mulet, J.M., and Serrano, R. (2017). TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis. FEBS Lett. 591, 1993–2002.
- Mahon, M.J. (2011). pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Adv. Biosci. Biotechnol. 02, 132–137.
- Majtan, T., Singh, L.R., Wang, L., Kruger, W.D., and Kraus, J.P. (2008). Active cystathionine beta-synthase can be expressed in heme-free systems in the presence of metal-substituted porphyrins or a chemical chaperone. J. Biol. Chem. 283, 34588–34595.

- Majtan, T., Pey, A.L., Fernández, R., Fernández, J.A., Martínez-Cruz, L.A., and Kraus, J.P. (2014). Domain Organization, Catalysis and Regulation of Eukaryotic Cystathionine Beta-Synthases. PLoS ONE 9, e105290.
- Mandaviya, P.R., Stolk, L., and Heil, S.G. (2014). Homocysteine and DNA methylation: A review of animal and human literature. Mol. Genet. Metab. 113, 243–252.
- Mann, D.M. (1988). The pathological association between Down syndrome and Alzheimer disease. Mech. Ageing Dev. 43, 99–136.
- Maréchal, D., Brault, V., Léon, A., Martin, D., Lopez Pereira, P., Loaëc, N., Birling, M.-C., Friocourt, G., Blondel, M., and Hérault, Y. (2018). Genetic and pharmacological interventions unravel the contribution of Cbs to the cognitive defects in mouse models of Down syndrome through epistatic interaction with Dyrk1a. Submiss.
- Martínez-Muñoz, G.A., and Kane, P. (2008). Vacuolar and Plasma Membrane Proton Pumps Collaborate to Achieve Cytosolic pH Homeostasis in Yeast. J. Biol. Chem. 283, 20309–20319.
- Mathieu, C., Duval, R., Xu, X., Rodrigues-Lima, F., and Dupret, J.-M. (2015). Effects of pesticide chemicals on the activity of metabolic enzymes: focus on thiocarbamates. Expert Opin. Drug Metab. Toxicol. 11, 81–94.
- McCune, C.D., Chan, S.J., Beio, M.L., Shen, W., Chung, W.J., Szczesniak, L.M., Chai, C., Koh, S.Q., Wong, P.T.-H., and Berkowitz, D.B. (2016). "Zipped Synthesis" by Cross-Metathesis Provides a Cystathionine β-Synthase Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model. ACS Cent. Sci. 2, 242–252.
- Meier, M., Janosik, M., Kery, V., Kraus, J.P., and Burkhard, P. (2001). Structure of human cystathionine βsynthase: a unique pyridoxal 5'-phosphate-dependent heme protein. EMBO J. 20, 3910–3916.
- Mendes, M.I.S., Colaço, H.G., Smith, D.E.C., Ramos, R.J.J.F., Pop, A., van Dooren, S.J.M., Tavares de Almeida, I., Kluijtmans, L.A.J., Janssen, M.C.H., Rivera, I., et al. (2014). Reduced response of Cystathionine Beta-Synthase (CBS) to S-Adenosylmethionine (SAM): Identification and functional analysis of CBS gene mutations in Homocystinuria patients. J. Inherit. Metab. Dis. 37, 245–254.
- Miesenböck, G., De Angelis, D.A., and Rothman, J.E. (1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195.
- Mitchell, S.F., Jain, S., She, M., and Parker, R. (2012). Global analysis of yeast mRNPs. Nat. Struct. Mol. Biol. 20, 127–133.
- Miyamoto, R., Otsuguro, K., Yamaguchi, S., and Ito, S. (2015). Neuronal regulation of expression of hydrogen sulfide-producing enzyme cystathionine β-synthase in rat spinal cord astrocytes. Neurosci. Res. 97, 52–59.
- Moriya, H., Shimizu-Yoshida, Y., Omori, A., Iwashita, S., Katoh, M., and Sakai, A. (2001). Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev. 15, 1217–1228.
- Mosharov, E., Cranford, M.R., and Banerjee, R. (2000). The Quantitatively Important Relationship between Homocysteine Metabolism and Glutathione Synthesis by the Transsulfuration Pathway and Its Regulation by Redox Changes[†]. Biochemistry (Mosc.) 39, 13005–13011.
- Mudd, S.H., Finkelstein, J.D., Irreverre, F., and Laster, L. (1964). Homocystinuria: an enzymatic defect. Science 1, 1.
- Mudd, S.H., Finkelstein, J.D., Irreverre, F., and Laster, L. (1965). Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J. Biol. Chem. 240, 4382–4392.
- Mudd, S.H., Skovby, F., Levy, H.L., Pettigrew, K.D., Wilcken, B., Pyeritz, R.E., Andria, G., Boers, G.H., Bromberg, I.L., Cerone, R., et al. (1985). The natural history of homocystinuria due to cystathionine βsynthase deficiency. Am. J. Hum. Genet. 37, 1.
- Mumberg, D., Müller, R., and Funk, M. (1995). Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122.
- Münke, M., Kraus, J.P., Ohura, T., and Francke, U. (1988). The gene for cystathionine beta-synthase (CBS) maps to the subtelomeric region on human chromosome 21q and to proximal mouse chromosome 17. Am. J. Hum. Genet. 42, 550–559.
- Murrell, J.R., Hake, A.M., Quaid, K.A., Farlow, M.R., and Ghetti, B. (2000). Early-onset Alzheimer disease caused by a new mutation (V717L) in the amyloid precursor protein gene. Arch. Neurol. 57, 885–887.

- Nagai, Y., Tsugane, M., Oka, J.-I., and Kimura, H. (2004). Hydrogen sulfide induces calcium waves in astrocytes. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 18, 557–559.
- Nagy, P., Pálinkás, Z., Nagy, A., Budai, B., Tóth, I., and Vasas, A. (2014). Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim. Biophys. Acta BBA Gen. Subj. 1840, 876–891.
- Nakano-Kobayashi, A., Awaya, T., Kii, I., Sumida, Y., Okuno, Y., Yoshida, S., Sumida, T., Inoue, H., Hosoya, T., and Hagiwara, M. (2017). Prenatal neurogenesis induction therapy normalizes brain structure and function in Down syndrome mice. Proc. Natl. Acad. Sci. U. S. A. 114, 10268–10273.
- Narayanaswamy, R., Levy, M., Tsechansky, M., Stovall, G.M., O'Connell, J.D., Mirrielees, J., Ellington, A.D., and Marcotte, E.M. (2009). Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc. Natl. Acad. Sci. 106, 10147–10152.
- Neumann, F., Gourdain, S., Albac, C., Dekker, A.D., Bui, L.C., Dairou, J., Schmitz-Afonso, I., Hue, N., Rodrigues-Lima, F., Delabar, J.M., et al. (2018). DYRK1A inhibition and cognitive rescue in a Down syndrome mouse model are induced by new fluoro-DANDY derivatives. Sci. Rep. 8, 2859.
- Nguyen, T.L., Duchon, A., Manousopoulou, A., Loaëc, N., Villiers, B., Pani, G., Karatas, M., Mechling, A.E., Harsan, L.-A., Limanton, E., et al. (2018). Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A. Dis. Model. Mech. 11.
- Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., Yang, H., Hild, M., Kung, C., Wilson, C., et al. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534.
- Niu, W., Wu, P., Chen, F., Wang, J., Shang, X., and Xu, C. (2017). Discovery of selective cystathionine β-synthase inhibitors by high-throughput screening with a fluorescent thiol probe. Med Chem Commun 8, 198–201.
- Noll, C., Planque, C., Ripoll, C., Guedj, F., Diez, A., Ducros, V., Belin, N., Duchon, A., Paul, J.-L., Badel, A., et al. (2009). DYRK1A, a Novel Determinant of the Methionine-Homocysteine Cycle in Different Mouse Models Overexpressing this Down-Syndrome-Associated Kinase. PLoS ONE 4, e7540.
- North, M., Steffen, J., Loguinov, A.V., Zimmerman, G.R., Vulpe, C.D., and Eide, D.J. (2012). Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet. 8, e1002699.
- Obeid, R., and Herrmann, W. (2006). Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 580, 2994–3005.
- O'Connell, J.D. (2012). Systemic protein aggregation in stress and aging restructures cytoplasmic architecture.
- O'Doherty, A., Ruf, S., Mulligan, C., Hildreth, V., Errington, M.L., Cooke, S., Sesay, A., Modino, S., Vanes, L., Hernandez, D., et al. (2005). An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309, 2033–2037.
- Oliveriusová, J., Kery, V., Maclean, K.N., and Kraus, J.P. (2002). Deletion mutagenesis of human cystathionine beta-synthase. Impact on activity, oligomeric status, and S-adenosylmethionine regulation. J. Biol. Chem. 277, 48386–48394.
- Olney, J.W., Price, M.T., Salles, K.S., Labruyere, J., Ryerson, R., Mahan, K., Frierdich, G., and Samson, L. (1987). L-homocysteic acid: an endogenous excitotoxic ligand of the NMDA receptor. Brain Res. Bull. 19, 597– 602.
- Olson, K.R., DeLeon, E.R., and Liu, F. (2014). Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide 41, 11–26.
- Oluwatosin, Y.E., and Kane, P.M. (1997). Mutations in the CYS4 gene provide evidence for regulation of the yeast vacuolar H+-ATPase by oxidation and reduction in vivo. J. Biol. Chem. 272, 28149–28157.
- Ono, B., Ishii, N., Fujino, S., and Aoyama, I. (1991). Role of hydrosulfide ions (HS-) in methylmercury resistance in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 57, 3183–3186.
- Orendáč, M., Zeman, J., Stabler, S.P., Allen, R.H., Kraus, J.P., Bodamer, O., Stöckler-Ipsiroglu, S., Kvasnička, J., and Kožich, V. (2003). Homocystinuria due to cystathionine β-synthase deficiency: Novel biochemical findings and treatment efficacy. J. Inherit. Metab. Dis. 26, 761–773.
- Orij, R., Brul, S., and Smits, G.J. (2011). Intracellular pH is a tightly controlled signal in yeast. Biochim. Biophys. Acta 1810, 933–944.

- Orumets, K., Kevvai, K., Nisamedtinov, I., Tamm, T., and Paalme, T. (2012). YAP1 over-expression in Saccharomyces cerevisiae enhances glutathione accumulation at its biosynthesis and substrate availability levels. Biotechnol. J. 7, 566–568.
- Oskarsson, A., and Lind, B. (1985). Increased lead levels in brain after long-term treatment with lead and dithiocarbamate or thiuram derivatives in rats. Acta Pharmacol. Toxicol. (Copenh.) 56, 309–315.
- Outinen, P.A., Sood, S.K., Liaw, P.C.Y., Sarge, K.D., Maeda, N., Hirsh, J., Ribau, J., Podor, T.J., Weitz, J.I., and Austin, R.C. (1998). Characterization of the stress-inducing effects of homocysteine. Biochem. J. 332, 213– 221.
- Oyama, F., Cairns, N.J., Shimada, H., Oyama, R., Titani, K., and Ihara, Y. (1994). Down's syndrome: upregulation of beta-amyloid protein precursor and tau mRNAs and their defective coordination. J. Neurochem. 62, 1062–1066.
- Ozer, H.K., Dlouhy, A.C., Thornton, J.D., Hu, J., Liu, Y., Barycki, J.J., Balk, J., and Outten, C.E. (2015). Cytosolic Fe-S Cluster Protein Maturation and Iron Regulation Are Independent of the Mitochondrial Erv1/Mia40 Import System. J. Biol. Chem. jbc.M115.682179.
- Ozkan, P., and Mutharasan, R. (2002). A rapid method for measuring intracellular pH using BCECF-AM. Biochim. Biophys. Acta 1572, 143–148.
- Pagani, M.A., Casamayor, A., Serrano, R., Atrian, S., and Ariño, J. (2007). Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study. Mol. Microbiol. 65, 521–537.
- Pazicni, S., Lukat-Rodgers, G.S., Oliveriusová, J., Rees, K.A., Parks, R.B., Clark, R.W., Rodgers, K.R., Kraus, J.P., and Burstyn, J.N. (2004). The redox behavior of the heme in cystathionine beta-synthase is sensitive to pH. Biochemistry (Mosc.) 43, 14684–14695.
- Pazicni, S., Cherney, M.M., Lukat-Rodgers, G.S., Oliveriusová, J., Rodgers, K.R., Kraus, J.P., and Burstyn, J.N. (2005). The heme of cystathionine beta-synthase likely undergoes a thermally induced redox-mediated ligand switch. Biochemistry (Mosc.) 44, 16785–16795.
- Pearce, A.K., Booth, I.R., and Brown, A.J. (2001). Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae. Microbiol. Read. Engl. 147, 403–410.
- Penrose, L.S. (1933). The relative effects of paternal and maternal age in mongolism. 1933. J. Genet. 88, 9-14.
- Pereira, P.L., Magnol, L., Sahún, I., Brault, V., Duchon, A., Prandini, P., Gruart, A., Bizot, J.-C., Chadefaux-Vekemans, B., Deutsch, S., et al. (2009). A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum. Mol. Genet. 18, 4756– 4769.
- Persa, C., Osmotherly, K., Chao-Wei Chen, K., Moon, S., and Lou, M.F. (2006). The distribution of cystathionine beta-synthase (CBS) in the eye: implication of the presence of a trans-sulfuration pathway for oxidative stress defense. Exp. Eye Res. 83, 817–823.
- Piper, P., Mahé, Y., Thompson, S., Pandjaitan, R., Holyoak, C., Egner, R., Mühlbauer, M., Coote, P., and Kuchler, K. (1998). The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J. 17, 4257–4265.
- Planque, C., Dairou, J., Noll, C., Bui, L.-C., Ripoll, C., Guedj, F., Delabar, J.-M., and Janel, N. (2013). Mice Deficient in Cystathionine Beta Synthase Display Increased Dyrk1A and SAHH Activities in Brain. J. Mol. Neurosci. 50, 1–6.
- Pogribna, M., Melnyk, S., Pogribny, I., Chango, A., Yi, P., and James, S.J. (2001). Homocysteine metabolism in children with Down syndrome: in vitro modulation. Am. J. Hum. Genet. 69, 88–95.
- Prelich, G. (2012). Gene Overexpression: Uses, Mechanisms, and Interpretation. Genetics 190, 841-854.
- Pridgeon, J.W., Webber, E.A., Sha, D., Li, L., and Chin, L.-S. (2009). Proteomic analysis reveals Hrs ubiquitininteracting motif-mediated ubiquitin signaling in multiple cellular processes: Hrs UIM-mediated protein interactions. FEBS J. 276, 118–131.
- Pueschel, S.M., Reed, R.B., Cronk, C.E., and Goldstein, B.I. (1980). 5-hydroxytryptophan and pyridoxine. Their effects in young children with Down's syndrome. Am. J. Dis. Child. 1960 134, 838–844.
- Quéré, I., Paul, V., Rouillac, C., Janbon, C., London, J., Demaille, J., Kamoun, P., Dufier, J.L., Abitbol, M., and Chassé, J.F. (1999). Spatial and temporal expression of the cystathionine beta-synthase gene during early human development. Biochem. Biophys. Res. Commun. 254, 127–137.

- Quinones, Q.J., de Ridder, G.G., and Pizzo, S.V. (2008). GRP78: a chaperone with diverse roles beyond the endoplasmic reticulum. Histol. Histopathol. 23, 1409–1416.
- Rahmani, Z., Blouin, J.L., Créau-Goldberg, N., Watkins, P.C., Mattei, J.F., Poissonnier, M., Prieur, M., Chettouh, Z., Nicole, A., and Aurias, A. (1990). Down syndrome critical region around D21S55 on proximal 21q22.3. Am. J. Med. Genet. Suppl. 7, 98–103.
- Ratnam, S., Maclean, K.N., Jacobs, R.L., Brosnan, M.E., Kraus, J.P., and Brosnan, J.T. (2002). Hormonal regulation of cystathionine beta-synthase expression in liver. J. Biol. Chem. 277, 42912–42918.
- Reeves, R.H., Irving, N.G., Moran, T.H., Wohn, A., Kitt, C., Sisodia, S.S., Schmidt, C., Bronson, R.T., and Davisson, M.T. (1995). A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat. Genet. 11, 177–184.
- Régnier, V., Billard, J.-M., Gupta, S., Potier, B., Woerner, S., Paly, E., Ledru, A., David, S., Luilier, S., Bizot, J.-C., et al. (2012). Brain Phenotype of Transgenic Mice Overexpressing Cystathionine β-Synthase. PLOS ONE 7, e29056.
- Robert, K., Vialard, F., Thiery, E., Toyama, K., Sinet, P.-M., Janel, N., and London, J. (2003). Expression of the Cystathionine β Synthase (CBS) Gene During Mouse Development and Immunolocalization in Adult Brain. J. Histochem. Cytochem. 51, 363–371.
- Roizen, N.J., and Patterson, D. (2003). Down's syndrome. Lancet Lond. Engl. 361, 1281-1289.
- Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerrière, A., Vital, A., Dumanchin, C., Feuillette, S., Brice, A., Vercelletto, M., et al. (2006). APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24–26.
- Roy, A., Khan, A.H., Islam, M.T., Prieto, M.C., and Majid, D.S.A. (2012). Interdependency of cystathione γ-lyase and cystathione β-synthase in hydrogen sulfide-induced blood pressure regulation in rats. Am. J. Hypertens. 25, 74–81.
- Ruckenstuhl, C., Netzberger, C., Entfellner, I., Carmona-Gutierrez, D., Kickenweiz, T., Stekovic, S., Gleixner, C., Schmid, C., Klug, L., Sorgo, A.G., et al. (2014). Lifespan Extension by Methionine Restriction Requires Autophagy-Dependent Vacuolar Acidification. PLoS Genet. 10, e1004347.
- Rueda, N., Flórez, J., and Martínez-Cué, C. (2012). Mouse Models of Down Syndrome as a Tool to Unravel the Causes of Mental Disabilities.
- Sacharow, S.J., Picker, J.D., and Levy, H.L. (1993). Homocystinuria Caused by Cystathionine Beta-Synthase Deficiency. In GeneReviews[®], M.P. Adam, H.H. Ardinger, R.A. Pagon, S.E. Wallace, L.J. Bean, H.C. Mefford, K. Stephens, A. Amemiya, and N. Ledbetter, eds. (Seattle (WA): University of Washington, Seattle), p.
- Salehi, A., Delcroix, J.-D., Belichenko, P.V., Zhan, K., Wu, C., Valletta, J.S., Takimoto-Kimura, R., Kleschevnikov, A.M., Sambamurti, K., Chung, P.P., et al. (2006). Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51, 29–42.
- Sambade, M. (2005). A Genomic Screen for Yeast Vacuolar Membrane ATPase Mutants. Genetics 170, 1539–1551.
- Samuelson, A.C., Stockert, R.J., Novikoff, A.B., Novikoff, P.M., Saez, J.C., Spray, D.C., and Wolkoff, A.W. (1988). Influence of cytosolic pH on receptor-mediated endocytosis of asialoorosomucoid. Am. J. Physiol. 254, C829-838.
- Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L., and Sabatini, D.M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501.
- Sandvig, K., Olsnes, S., Petersen, O.W., and van Deurs, B. (1988). Inhibition of endocytosis from coated pits by acidification of the cytosol. J. Cell. Biochem. 36, 73–81.
- Schmelzle, T., Beck, T., Martin, D.E., and Hall, M.N. (2004). Activation of the RAS/Cyclic AMP Pathway Suppresses a TOR Deficiency in Yeast. Mol. Cell. Biol. 24, 338–351.
- Schwappach, B., Stobrawa, S., Hechenberger, M., Steinmeyer, K., and Jentsch, T.J. (1998). Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p. J. Biol. Chem. 273, 15110–15118.

- Sen, S., Kawahara, B., Gupta, D., Tsai, R., Khachatryan, M., Roy-Chowdhuri, S., Bose, S., Yoon, A., Faull, K., Farias-Eisner, R., et al. (2015). Role of cystathionine β-synthase in human breast Cancer. Free Radic. Biol. Med. 86, 228–238.
- Sen, S., Kawahara, B., Mahata, S.K., Tsai, R., Yoon, A., Hwang, L., Hu-Moore, K., Villanueva, C., Vajihuddin, A., Parameshwar, P., et al. (2016). Cystathionine: A novel oncometabolite in human breast cancer. Arch. Biochem. Biophys. 604, 95–102.
- Shan, X., Jr, D., L, R., Christopher, S.A., and Kruger, W.D. (2001). Mutations in the regulatory domain of cystathionine β–synthase can functionally suppress patient-derived mutations in cis. Hum. Mol. Genet. 10, 635–643.
- Shibuya, N., Tanaka, M., Yoshida, M., Ogasawara, Y., Togawa, T., Ishii, K., and Kimura, H. (2009). 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal. 11, 703–714.
- Singh, L.R., Gupta, S., Honig, N.H., Kraus, J.P., and Kruger, W.D. (2010). Activation of Mutant Enzyme Function In Vivo by Proteasome Inhibitors and Treatments that Induce Hsp70. PLoS Genet. 6, e1000807.
- Singh, S., Padovani, D., Leslie, R.A., Chiku, T., and Banerjee, R. (2009). Relative Contributions of Cystathionine -Synthase and -Cystathionase to H2S Biogenesis via Alternative Trans-sulfuration Reactions. J. Biol. Chem. 284, 22457–22466.
- Skovby, F., Gaustadnes, M., and Mudd, S.H. (2010). A revisit to the natural history of homocystinuria due to cystathionine β-synthase deficiency. Mol. Genet. Metab. 99, 1–3.
- Skrott, Z., Mistrik, M., Andersen, K.K., Friis, S., Majera, D., Gursky, J., Ozdian, T., Bartkova, J., Turi, Z., Moudry, P., et al. (2017). Alcohol-abuse drug disulfiram targets cancer via p97 segregase adapter NPL4. Nature 552, 194–199.
- Smolin, L.A., Benevenga, N.J., and Berlow, S. (1981). The use of betaine for the treatment of homocystinuria. J. Pediatr. 99, 467–472.
- Spiridigliozzi, G.A., Hart, S.J., Heller, J.H., Schneider, H.E., Baker, J.A., Weadon, C., Capone, G.T., and Kishnani, P.S. (2016). Safety and efficacy of rivastigmine in children with Down syndrome: A double blind placebo controlled trial. Am. J. Med. Genet. A. 170, 1545–1555.
- Stagni, F., Giacomini, A., Emili, M., Guidi, S., Ciani, E., and Bartesaghi, R. (2017). Epigallocatechin gallate: A useful therapy for cognitive disability in Down syndrome? Neurogenesis Austin Tex 4, e1270383.
- Steiger, M.G., Patzschke, A., Holz, C., Lang, C., Causon, T., Hann, S., Mattanovich, D., and Sauer, M. (2017). Impact of glutathione metabolism on zinc homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res. 17.
- Sun, F.-C., Wei, S., Li, C.-W., Chang, Y.-S., Chao, C.-C., and Lai, Y.-K. (2006). Localization of GRP78 to mitochondria under the unfolded protein response. Biochem. J. 396, 31–39.
- Sunden, S.L., Renduchintala, M.S., Park, E.I., Miklasz, S.D., and Garrow, T.A. (1997). Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch. Biochem. Biophys. 345, 171–174.
- Suzuki, T., Yokoyama, A., Tsuji, T., Ikeshima, E., Nakashima, K., Ikushima, S., Kobayashi, C., and Yoshida, S. (2011). Identification and characterization of genes involved in glutathione production in yeast. J. Biosci. Bioeng. 112, 107–113.
- Szabo, C. (2017). A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator. Biochem. Pharmacol.
- Szabo, C., Coletta, C., Chao, C., Modis, K., Szczesny, B., Papapetropoulos, A., and Hellmich, M.R. (2013). Tumor-derived hydrogen sulfide, produced by cystathionine- -synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl. Acad. Sci. 110, 12474–12479.
- Taoka, S., and Banerjee, R. (2001). Characterization of NO binding to human cystathionine beta-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J. Inorg. Biochem. 87, 245–251.
- Taoka, S., Ohja, S., Shan, X., Kruger, W.D., and Banerjee, R. (1998). Evidence for heme-mediated redox regulation of human cystathionine β-synthase activity. J. Biol. Chem. 273, 25179–25184.
- Taoka, S., West, M., and Banerjee, R. (1999). Characterization of the Heme and Pyridoxal Phosphate Cofactors of Human Cystathionine β -Synthase Reveals Nonequivalent Active Sites[†]. Biochemistry (Mosc.) 38, 2738–2744.

- Taoka, S., Green, E.L., Loehr, T.M., and Banerjee, R. (2001). Mercuric chloride-induced spin or ligation state changes in ferric or ferrous human cystathionine β-synthase inhibit enzyme activity. J. Inorg. Biochem. 87, 253–259.
- Taoka, S., Lepore, B.W., Kabil, O., Ojha, S., Ringe, D., and Banerjee, R. (2002). Human cystathionine betasynthase is a heme sensor protein. Evidence that the redox sensor is heme and not the vicinal cysteines in the CXXC motif seen in the crystal structure of the truncated enzyme. Biochemistry (Mosc.) 41, 10454– 10461.
- Tardiff, D.F., Khurana, V., Chung, C.Y., and Lindquist, S. (2014). From yeast to patient neurons and back again: Powerful new discovery platforms: YEAST-TO-HUMAN CELL DUAL DISCOVERY PLATFORMS. Mov. Disord. 29, 1231–1240.
- Tejedor, F., Zhu, X.R., Kaltenbach, E., Ackermann, A., Baumann, A., Canal, I., Heisenberg, M., Fischbach, K.F., and Pongs, O. (1995). minibrain: A new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron 14, 287–301.
- The Third International Workshop on Chromosomes in Leukemia (1981). The Third International Workshop on Chromosomes in Leukemia: Lund, Sweden, July 21–25, 1980. Cancer Genet. Cytogenet. 4, 95–100.
- Thorson, M.K., Majtan, T., Kraus, J.P., and Barrios, A.M. (2013). Identification of Cystathionine β-Synthase Inhibitors Using a Hydrogen Sulfide Selective Probe. Angew. Chem. Int. Ed. 52, 4641–4644.
- Thorson, M.K., Van Wagoner, R.M., Harper, M.K., Ireland, C.M., Majtan, T., Kraus, J.P., and Barrios, A.M. (2015). Marine natural products as inhibitors of cystathionine beta-synthase activity. Bioorg. Med. Chem. Lett. 25, 1064–1066.
- Tlili, A., Jacobs, F., de Koning, L., Mohamed, S., Bui, L.-C., Dairou, J., Belin, N., Ducros, V., Dubois, T., Paul, J.-L., et al. (2013). Hepatocyte-specific Dyrk1a gene transfer rescues plasma apolipoprotein A-I levels and aortic Akt/GSK3 pathways in hyperhomocysteinemic mice. Biochim. Biophys. Acta BBA - Mol. Basis Dis. 1832, 718–728.
- Todorich, B.M., and Connor, J.R. (2004). Redox metals in Alzheimer's disease. Ann. N. Y. Acad. Sci. 1012, 171– 178.
- de la Torre, R., de Sola, S., Hernandez, G., Farré, M., Pujol, J., Rodriguez, J., Espadaler, J.M., Langohr, K., Cuenca-Royo, A., Principe, A., et al. (2016). Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 801–810.
- Tu, Y., Kreinbring, C.A., Hill, M., Liu, C., Petsko, G.A., McCune, C.D., Berkowitz, D.B., Liu, D., and Ringe, D. (2018). Crystal Structures of Cystathionine β-Synthase from Saccharomyces cerevisiae: One Enzymatic Step at a Time. Biochemistry (Mosc.) 57, 3134–3145.
- Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., Wanke, V., Anrather, D., Ammerer, G., Riezman, H., et al. (2007). Sch9 Is a Major Target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26, 663–674.
- Urra, H., Dufey, E., Avril, T., Chevet, E., and Hetz, C. (2016). Endoplasmic Reticulum Stress and the Hallmarks of Cancer. Trends Cancer 2, 252–262.
- d'Emmanuele di Villa Bianca, R., Mitidieri, E., Esposito, D., Donnarumm, E., Russo, A., Fusco, F., Ianaro, A., Mirone, V., Cirino, G., Russo, G., et al. (2015). Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium. PLOS ONE 10, e0136859.
- Voisset, C., and Blondel, M. (2014). [Chemobiology at happy hour: yeast as a model for pharmacological screening]. Med. Sci. MS 30, 1161–1168.
- Wang, Y., Lin, F., and Qin, Z.-H. (2010). The role of post-translational modifications of huntingtin in the pathogenesis of Huntington's disease. Neurosci. Bull. 26, 153–162.
- Weathers, C. (1983). Effects of nutritional supplementation on IQ and certain other variables associated with Down syndrome. Am. J. Ment. Defic. 88, 214–217.
- Weeks, C.L., Singh, S., Madzelan, P., Banerjee, R., and Spiro, T.G. (2009). Heme regulation of human cystathionine beta-synthase activity: insights from fluorescence and Raman spectroscopy. J. Am. Chem. Soc. 131, 12809–12816.
- Werstuck, G.H., Lentz, S.R., Dayal, S., Hossain, G.S., Sood, S.K., Shi, Y.Y., Zhou, J., Maeda, N., Krisans, S.K., Malinow, M.R., et al. (2001). Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J. Clin. Invest. 107, 1263–1273.

- Wert, G. de, Dondorp, W., and Bianchi, D.W. (2017). Fetal therapy for Down syndrome: an ethical exploration. Prenat. Diagn. 37, 222–228.
- Wiggins, H.L., Wymant, J.M., Solfa, F., Hiscox, S.E., Taylor, K.M., Westwell, A.D., and Jones, A.T. (2015). Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells. Biochem. Pharmacol. 93, 332–342.
- Wiseman, F.K., Pulford, L.J., Barkus, C., Liao, F., Portelius, E., Webb, R., Chávez-Gutiérrez, L., Cleverley, K., Noy, S., Sheppard, O., et al. (2018). Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP. Brain 141, 2457–2474.
- Wolfson, R.L., Chantranupong, L., Saxton, R.A., Shen, K., Scaria, S.M., Cantor, J.R., and Sabatini, D.M. (2016). Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48.
- Wolkoff, A.W., Klausner, R.D., Ashwell, G., and Harford, J. (1984). Intracellular segregation of asialoglycoproteins and their receptor: a prelysosomal event subsequent to dissociation of the ligandreceptor complex. J. Cell Biol. 98, 375–381.
- Wu, C.-Y., Bird, A.J., Winge, D.R., and Eide, D.J. (2007). Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency. J. Biol. Chem. 282, 2184–2195.
- Wu, L., Rosa-Neto, P., Hsiung, G.-Y.R., Sadovnick, A.D., Masellis, M., Black, S.E., Jia, J., and Gauthier, S. (2012). Early-onset familial Alzheimer's disease (EOFAD). Can. J. Neurol. Sci. J. Can. Sci. Neurol. 39, 436–445.
- Xie, W., Ramakrishna, N., Wieraszko, A., and Hwang, Y.-W. (2008). Promotion of neuronal plasticity by (-)epigallocatechin-3-gallate. Neurochem. Res. 33, 776–783.
- Yu, T., Li, Z., Jia, Z., Clapcote, S.J., Liu, C., Li, S., Asrar, S., Pao, A., Chen, R., Fan, N., et al. (2010). A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum. Mol. Genet. 19, 2780–2791.
- Yuan, B., Tang, W.-H., Lu, L.-J., Zhou, Y., Zhu, H.-Y., Zhou, Y.-L., Zhang, H.-H., Hu, C.-Y., and Xu, G.-Y. (2015). TLR4 upregulates CBS expression through NF-kappaB activation in a rat model of irritable bowel syndrome with chronic visceral hypersensitivity. World J. Gastroenterol. 21, 8615–8628.
- Zhao, C., Chen, X., Yang, C., Zang, D., Lan, X., Liao, S., Zhang, P., Wu, J., Li, X., Liu, N., et al. (2017). Repurposing an antidandruff agent to treating cancer: zinc pyrithione inhibits tumor growth via targeting proteasome-associated deubiquitinases. Oncotarget 8, 13942–13956.
- Zhao, W., Zhang, J., Lu, Y., and Wang, R. (2001). The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. 20, 6008–6016.
- Zhao, Y., MacGurn, J.A., Liu, M., and Emr, S. (2013). The ART-Rsp5 ubiquitin ligase network comprises a plasma membrane quality control system that protects yeast cells from proteotoxic stress. ELife 2.
- Zheng, H., Zhu, H.-Y., Zhang, X.-Y., Wang, M., Xiao, Y., Xu, G.-Y., and Jiang, X.-H. (2016). Upregulation of cystathionine β-synthetase in the arcuate nucleus produces pain hypersensitivity via PKC upregulation and GluN2B phosphorylation in rats with chronic pancreatitis. Sheng Li Xue Bao 68, 575–584.
- Zhong, W., Wang, Y., Peng, L., Ge, X., Zhang, J., Liu, S., Zhang, X., Xu, Z., Chen, Z., and Luo, J. (2012). Lanthionine Synthetase C-like Protein 1 Interacts with and Inhibits Cystathionine β-Synthase: A TARGET FOR NEURONAL ANTIOXIDANT DEFENSE. J. Biol. Chem. 287, 34189–34201.
- Zhou, Y., Yu, J., Lei, X., Wu, J., Niu, Q., Zhang, Y., Liu, H., Christen, P., Gehring, H., and Wu, F. (2013). Highthroughput tandem-microwell assay identifies inhibitors of the hydrogen sulfide signaling pathway. Chem. Commun. Camb. Engl. 49, 11782–11784.
- Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y., and Sabatini, D.M. (2011). mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase. Science 334, 678–683.
- Zou, C.-G., and Banerjee, R. (2003). Tumor Necrosis Factor-α-induced Targeted Proteolysis of Cystathionine β-Synthase Modulates Redox Homeostasis. J. Biol. Chem. 278, 16802–16808.

LEGENDS TO FIGURES

Figure 1: Characterization of the cellular phenotypes caused by CYS4 modulation. (A) Simplified representation of the transsulfuration pathway in yeast. CYS4 encodes the cystathionine β -synthase, CYS3, the cystathionine gamma-lyase and GSH1 and GSH2, the γ -glutamylcysteine synthetase and glutathione synthetase, respectively. Cys4p is located at a metabolic hub, its down-regulation leading to a decreased synthesis of cysteine and GSH in favour of S-adenosylmethionine (SAM), Sadenosylhomocysteine (SAH) and methionine synthesis whereas Cys4p overexpression favours cysteine and GSH synthesis at the cost of methionine metabolism. (B) Measurement of total intracellular glutathione in $cys4\Delta$ and CYS4 overexpressing (CYS4-OE) cells. As expected from the role of Cys4p in the transsulfuration pathway, CYS4 deletion leads to decreased intracellular glutathione (GSH + GSSG) levels whereas CYS4-OE increases its levels. (C) Amino acid auxotrophy of $cys4\Delta$ and CYS4-OE cells. Cysteine and methionine auxotrophy, revealed by the absence of growth on medium lacking cysteine or methionine, were assessed by streaking $cvs4\Delta$ cells on medium without cysteine or spotting serial dilutions of wild-type cells transformed with two 2μ plasmids either empty (Ø) or containing CYS4, which expression is driven by the strong GPD promoter. Note that methionine auxotrophy is exacerbated by the addition of serine, a substrate of Cys4p, in the medium. (D) Effect of CYS4 deletion on cytosolic alkalinization assessed by pHluorin-dependent fluorescence intensity. $cvs4\Delta$ cells showed significantly increased cytosolic pH. As cys4 Δ cells need glutathione (GSH) supplementation to grow (due to their cysteine auxotrophy), we also assessed the effect of GSH supplementation on the pH but did not observe any effect of GSH on a wild-type (WT) strain. (E) Effect of CYS4-OE on cytosolic acidification assessed by pHluorin-dependent fluorescence intensity. CYS4-OE cells showed significantly increased cytosolic acidification. Student t-test: **, p < 0.05; ****, p < 0.0001, ns: not statistically significant.

Figure 2: Identification of molecules that counteract the phenotypes induced by *CYS4*-overexpression. (A) Dose-dependent growth rescue of *CYS4*-OE cells on medium without methionine is shown for several positive compounds. The initial hits obtained in the screen are disulfiram (DSF), merbromin, chloroxine (CHX) and clioquinol (CQ), belonging to three families of molecules (1-3). In addition, a few other members of these 3 families of molecules or of another family of ionophores (pyrithione, family 4) but not present in the libraries were tested and were also found positive. Note that several of these molecules are toxic at high concentrations (close to the filter) but are active at sub-toxic concentrations. (B-C) Dose-dependent effect of a representative member of each family (CQ, DSF and ZPT) on cytosolic alkalinization rescue of *CYS4*-OE cells (B) and wild-type (*WT*) cells (C). Student t-test: **, p < 0.05, ****, p < 0.0001, ns: not statistically significant.

Figure 3: Effect of zinc on the action of molecules identified in the screen. (A) Increasing amounts of ZnSO₄ were added on filters either alone (filters on the left of the plate) or in combination with the molecule of interest (60 nmol of CQ, CHX or DSF, filters on the right). Zinc addition on filters appears to potentialize the effect of CQ, DSF and CHX on cell growth of *CYS4*-overexpressing cells. Note that at high concentrations (9 μ mol), ZnSO₄ on its own is sufficient to restore cell growth (right plate, bottom left filter). DMSO, added on the filter on the bottom right side of the plate for CQ and DSF and on the top right side for CHX, was used as a negative control and the drug alone (without ZnSO₄), spotted on filter of the top right side of the plate for CQ and DSF and CQ and DSF and on the top left side for CHX, was used as a positive control. Note that although both molecules have a similar chemical structure, CHX and CQ display a different behavior in the presence of zinc: whereas increasing concentrations of zinc regularly increased the halo of growth restoration of CQ, zinc had a more drastic effect on CHX's activity. **(B)** *Upcoming results*. **(C)** Effect of zinc on cytosolic pH. Addition of rising amounts of ZnSO₄ increased in a dose-dependent manner the intracellular pH of *CYS4*-OE cells and, to a lesser extent, wild-type (WT) cells, suggesting that it is probably through the import of extracellular zinc that DSF, CQ and CHX mediate their action on *CYS4*-OE induced phenotypes. Student t-test: **, p < 0.05, ****, p < 0.0001.

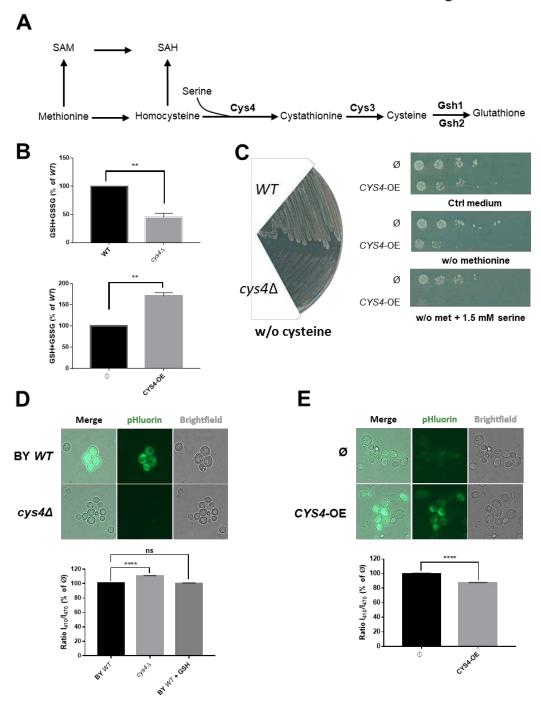
Figure 4: Thiol-reactive molecules are able to restore *CYS4*-OE induced phenotypes. (A) Effect of low molecular thiols such as GSH or cysteine on the action of DSF, CQ, CHX and ZPT. (B) Dose-dependent effect of alkylating molecules such as N-ethylmaleimide (NEM) and thiol-specific oxidant molecules, such as diamide, on cell growth of *CYS4*-OE cells on a medium lacking methionine. (C) Dose-dependent effect of NEM and diamide on the cytosolic pH of *CYS4*-OE and WT cells. Student t-test: **, p < 0.05; ***, p < 0.001; ****, p < 0.0001, ns: not statistically significant.

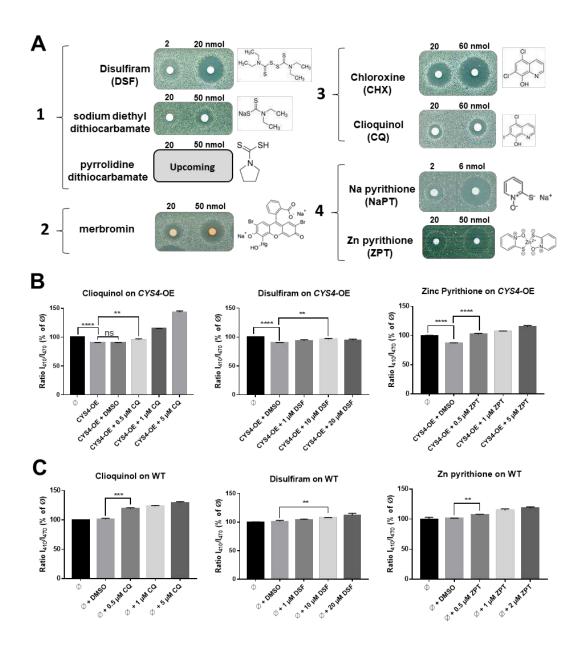
Figure 5: Identification of genetic modifiers of *CYS4-OE* **phenotypes point out a defect in amino acid uptake. (A)** Genes that were the most effective in rescuing *CYS4-OE* induced methionine auxotrophy can be divided into two groups, the first group contains genes related to amino acid import: *MUP1, MMP1* and *STP2*. The second group is composed of two genes coding ubiquitin-specific proteases *UBP11* and *UBP7.* **(B)** Similarly to the methionine auxotrophy results, increased methionine uptake via *MUP1* overexpression or overexpression of *UBP7* or *UBP11* were able to restore normal cytoplasmic pH levels in *CYS4-OE* cells. **(C)** Effect of Rsp5p decreased expression (*npi1* mutant) on cytoplasmic pH of *CYS4-OE* cells. Decreased Rsp5p-dependent internalization and degradation of receptors and amino acid permeases through mutation in *RSP5* gene counteracts the effect of *CYS4-OE* on cytosolic acidification. **(D)** TORC1 is inhibited in *CYS4-OE* cells. *CYS4-OE* cells transformed by a Sch9-HA construct were tested by western-blot using an antibody directed against a short Sch9 peptide including the phosphorylated residue Thr737, which is targeted by TORC1. **(E)** Increasing leucine

synthesis through *LEU2* overexpression restores cell growth of *CYS4*-OE cells on a methionine-free medium and their acidification defects. **(F)** Schema depicting the situation in *CYS4*-OE compared to wild-type cells. Due to increased synthesis of cysteine and glutathione (GSH), *CYS4*-OE cells have decreased methionine levels and increased GSH production. The latter activates Gex1p/Gex2p glutathione:proton exchangers which increase the amount of intracellular protons. Decreased methionine availability results in TORC1 inactivation, which in turn, leads to Pma1p inhibition (and thus decreased proton efflux) and increased Rsp5p-mediated endocytosis and degradation intensifying the low amino acid (including leucine) uptake. Leucine or methionine supplementation and/or synthesis can thus stop this self-activating loop by reactivating TORC1 and restore growth on methionine-free medium or normal intracellular pH. Student t-test: ***, p<0.001; ****, p<0.0001, ns: not statistically significant.

Figure 6: Genetic interaction between *CYS4* and genes coding the kinases *YAK1* and *MCK1*. (A) *YAK1* overexpression enhances methionine auxotrophy in *CYS4*-OE cells. This effect depends on the kinase activity of *YAK1* as a kinase dead form of *YAK1* (*YAK1*-KD) is not able to strengthen *CYS4*-OE induced phenotype. Note that we used in these experiments a methionine-free medium without serine supplementation to be able to see stronger methionine auxotrophy than the one caused by *CYS4*-OE. (B) Similarly, *YAK1* and *CYS4* overexpression have additive effect on cytosolic acidification. (C) On the contrary, *YAK1* deletion rescues *CYS4*-OE methionine auxotrophy. (D) Similarly, *CYS4*-OE is not able to induce acidification defects in cells deleted for *YAK1* suggesting that Yak1p is necessary for Cys4p activity. (E) *MCK1* overexpression is able to restore growth of *CYS4*-OE cells on methionine-lacking medium. Note that this activity seems to be independent of Mck1p kinase domain. (F) Similarly, *MCK1* overexpression restores normal intracellular acidification of *CYS4*-OE cells. (G) *CYS4*-OE cell growth on methionine-free medium is only partially improved in *mck1*Δ cells. Student t-test: *, p<0.01; ***, p<0.001; ****, p<0.001.

Figure 7: Consequences of *CYS4* **overexpression in yeast cells.** Our data show that *CYS4*-OE induces increased GSH production, which in turns leads to increased cytosolic acidification through the action of the Gex1p/Gex2p glutathione/proton exchangers. In parallel, decreased methionine synthesis leads to TORC1 inhibition, which in turn leads to the inhibition of the membrane H⁺-ATPase Pma1p, which normally pumps out protons from the cytosol. Several studies have shown that cytosolic acidification decreases amino acid import in the cell, particularly leucine. In parallel, TORC1 inhibition leads to the activation of Rsp5p-dependent endocytosis and degradation of amino acid permeases, causing a situation close to amino acid starvation, which contributes to the inactivation of TORC1. As shown in this study, the molecules we identified act probably either by reducing the amounts of reduced thiols


and/or by increasing the synthesis/import of methionine. Similarly, the genetic modifiers (represented in red) we identified in this study, act at different levels but probably prevent TORC1 inhibition by increasing methionine and/or leucine synthesis or import.


FIGURES AND TABLES

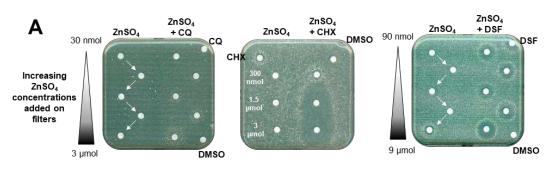
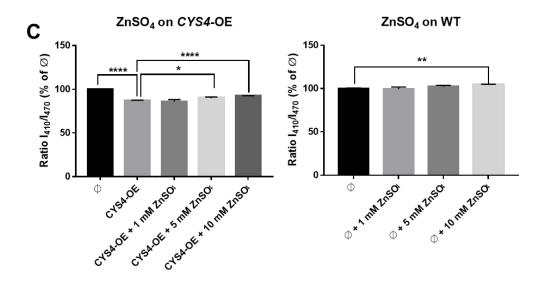

Strain	Genotype	Source
S. cerevisiae		
S288C strains		
BY WT	BY4743 MATa/ α his3 Δ 1/his3 Δ 1 leu2 Δ 0/leu2 Δ 0 met15 Δ 0/MET15 LYS2/lys2 Δ 0 ura3 Δ 0/ura0	Euroscarf
$cys4\Delta$	BY4743 except cys4::kanMX4/cys4::kanMX4	Euroscarf
$vmal\Delta$	BY4742 (MAT α ura3 Δ 0 leu2 Δ 0 his3 Δ 1 lys2 Δ 0) vma1::kanMX4	Euroscarf
gex1∆/gex2∆	BY4742 except gex1::KanMX6 gex2::HIS3	Dhaoui et al.,
		2011
npil	BY4741 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0) except npi1∷kanMX4	Hein et al., 1995
HXT3-GFP	BY4742 except HXT3-GFP::kanMX4	Lang et al., 2014
yak1∆	BY4742 except yak1::kanMX4	Euroscarf
W303 strains		
W303 WT	MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15	Lab collection
mac1 <i>A</i>	W303 except mac1::kanMX4	This study
mck1 <i>A</i>	W303 except mac1::kanMX4	This study

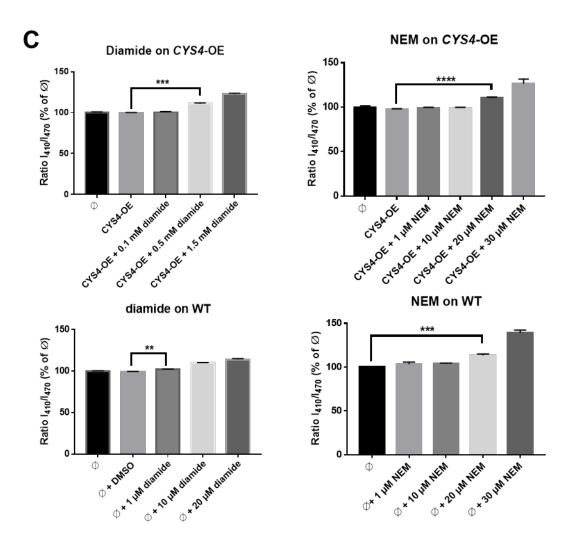
Table 1. List of yeast strains used in this study.FL = full length.

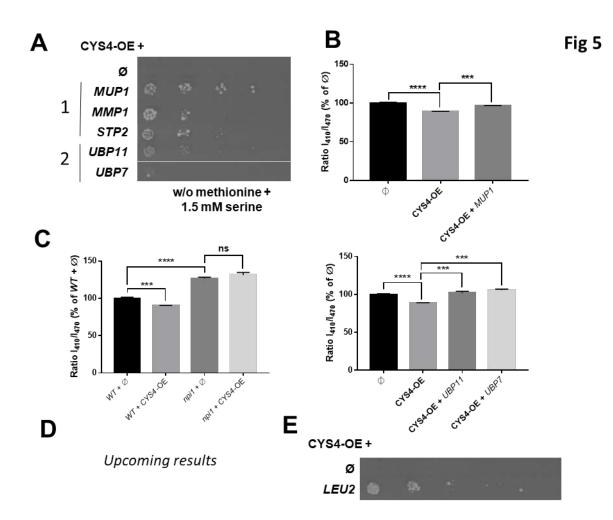
Fig 1



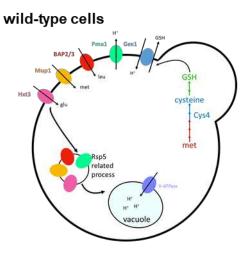
В

Upcoming results

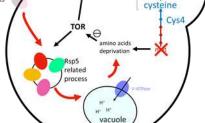


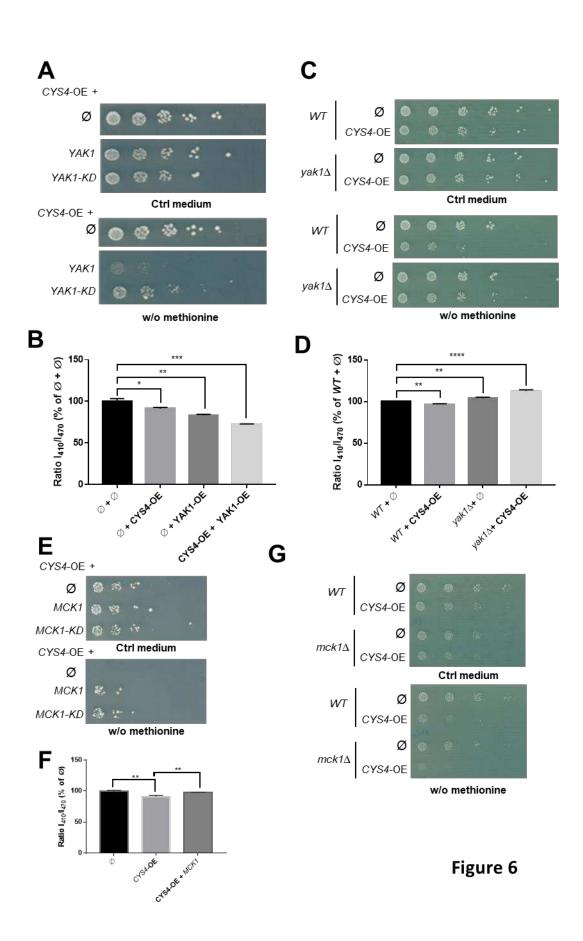

Α

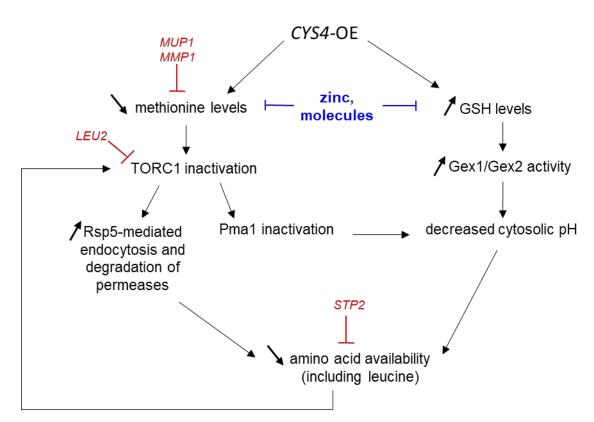
Upcoming results


В

Upcoming results






F

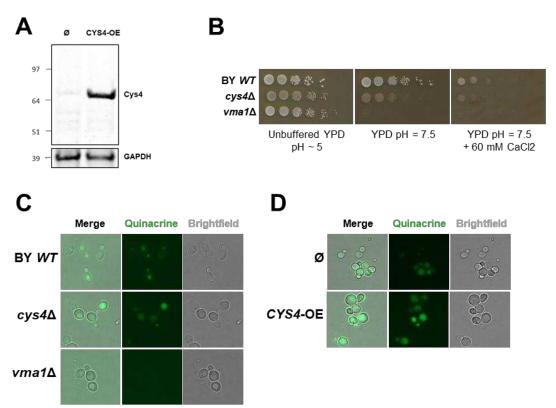
CYS4-OE cells BAP2/3 Mup1 **SSH** 0 Hxt3 cysteine Cys

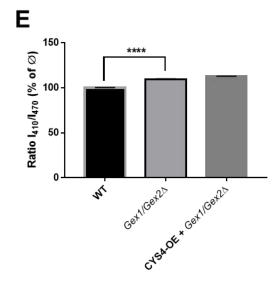
SUPPLEMENTARY DATA

Supp table 1. The capacity of several metal chelators to rescue the growth of *CYS4*-overexpressing cells on medium lacking methionine was tested by loading the indicated amounts of molecules on filters.

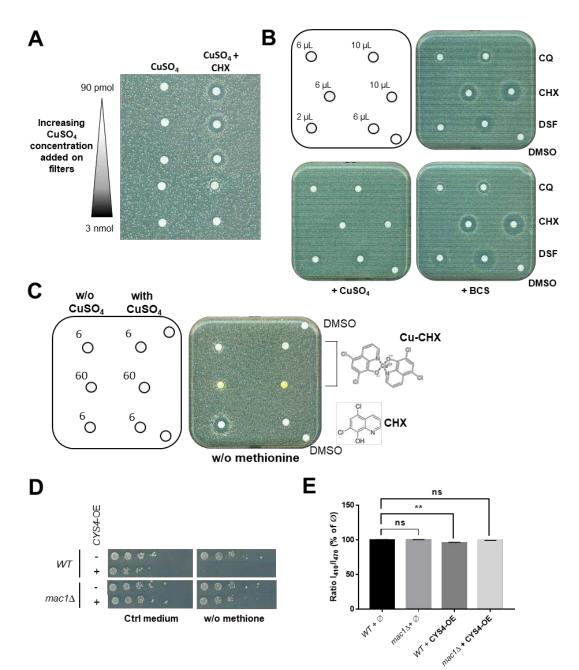
Chelator	Amounts tested on filters	Ability to rescue growth
EDTA	1-100 nmol	-
DTPA	20 nmol	-
Deferoxamine	50 nmol	-
Atovaquone	20 nmol	-
Halofantrine	20 nmol	-
TPEN	2 et 20 nmol	-
D-penicillamine	2 et 20 nmol	-
BCS	300-600 nmol	-
Trientine	0.2-20 nmol	-
Neocuproïne	0.2 nmol	-
Ammonium tetrathiomolybdate	20-500 nmol	-

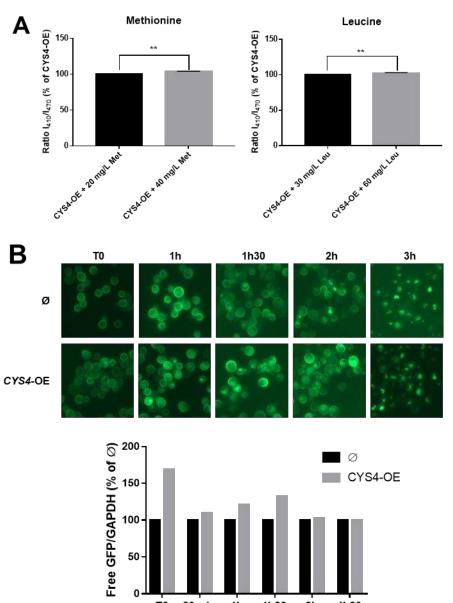
Supp Fig. 1: Characterization of possible vacuolar pH defects in *cys4* Δ and *CYS4*-overexpressing (*CYS4*-OE) cells. (A) A semi-quantitative western-blot shows that W303 cells transformed with 2µ plasmids expressing *CYS4* under the control of the strong GPD promoter expresses approximately 15 times more Cys4p protein compared to the amount of endogenous Cys4p. (B) Assessment of cell growth on alkaline medium. As *vma* mutants are unable to grow on alkaline media and show sensitivity to high calcium concentrations, we also tested the sensitivity of *cys4* Δ cells to these growth conditions. *cys4* Δ cells showed an intermediate sensitivity to alkaline medium and high calcium concentrations compared to *vma1* Δ mutants, confirming that vacuolar acidification is only slightly impaired in *cys4* Δ cells. (C) Vacuolar acidification of *cys4* Δ and *CYS4*-overexpressing (*CYS4*-OE) cells assessed by quinacrine

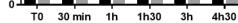

staining. Whereas control *vma1* Δ cells (deleted for the subunit A of the V1 peripheral membrane domain of V-ATPase), which are known to entirely lack vacuolar acidification, showed a clear absence of quinacrine in their vacuole, *cys4* Δ cells revealed an intermediate phenotype with less quinacrine staining than a wild-type (WT) strain, but more than a *vma1* Δ strain. As for *CYS4*-OE, it only led to a slight increase of quinacrine fluorescence compared to a WT strain, suggestive of slightly increased vacuolar acidification. (E) A strain deleted for *GEX1* and *GEX2* genes, both encoding glutathione:proton exchangers, has higher cytosolic pH confirming the importance of these proteins in the regulation of intracellular pH. *CYS4* overexpression in gex1 Δ /gex2 Δ cells is not able to induce cytosolic acidification, confirming the role of these exchangers in the cytosolic acidification phenotype in *CYS4*-OE cells. Student t-test: ****, *p*<0.0001.

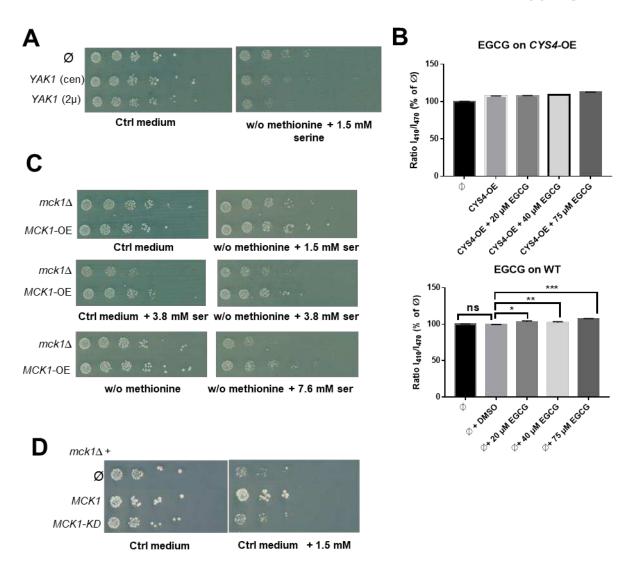

Supp Fig. 2: Effect of copper on the action of molecules identified in the screen. As 3 of the identified molecules (DSF, ZTP, CQ) have been previously described to bind copper (Chen and Dou, 2008), we tested the effect of copper on their action. (A) Increasing amounts of copper decreased, in a dose-dependent manner, the rescue by CHX of CYS4-OE cell growth on medium without methionine. Increasing amounts of CuSO₄ (90 pmol to 3 nmol) were added to the filters without (on the left) or with 6 nmol of CHX (on the right). CHX appeared less active in the presence of copper as it was active at higher concentrations, as shown by the closer proximity to the filter of the halo of growth restoration, and less toxic. (B) Addition of 10 μ M of CuSO₄ in the medium completely reversed the effect of CQ, CHX and DSF on growth restoration whereas the addition in the medium of 50 µM of bathocuproine disulphonate (BCS), a copper chelator, enhanced the effect of the molecules. DMSO, added on the filter on the bottom right side of the plate, was used as a control. C) A CHX-copper complex was less efficient to restore cell growth of CYS4-OE cells on medium without methionine, compared to CHX (filters on the left side of the plate). When 50 nmol of CuSO₄ was added on filters (right side of the plate), both molecules lost their activity, suggesting that, to be active, they had to be unbound (without a metal) or bound to another metal ion than copper. The amount in nmol of drugs dropped on filters are indicated on the left panel. DMSO, added on the filter on the top and bottom right side of the plate, was used as a negative control. (D-E) Confirmation, using a genetic approach, of the effect of copper on CYS4-OE cellular phenotypes. We used a strain deleted for MACI, the transcription factor activating the expression of copper transporters in yeast. Strains expressing CYS4 (CYS4-OE) or control empty plasmids (\mathcal{O}) were spotted in serial dilutions on control medium containing methionine and on a methionine-free medium to assess their growth. Methionine auxotrophy due to CYS4 overexpression was less severe in a macl Δ strain (which has intracellular copper depletion) than in wild-type (WT) cells (D). Similarly, MAC1 deletion rescued the acidification defects of CYS4-OE cells (E), suggesting that the mode of action of CQ, CHX and DSF is not based on their capacity to import extracellular copper. into the cell. Student t-test: **, p < 0.05, ns: not statistically significant.

Supp Fig. 3: *CYS4*-OE cells have a general defect in amino acid uptake that can be restored by supplementation or decreased endocytosis of amino acid permeases. (A) Addition of leucine or methionine in the medium increase cytoplasmic pH, confirming a role of these amino acids in the acidification defects of *CYS4*-OE cells. (B) *CYS4*-OE cells have increased Hxt3-GFP internalization and degradation. Hxt3-GFP endocytosis was monitored by fluorescence microscopy at different times after the switch from glucose to raffinose (T0) that promotes Hxt3p internalization. Quantification of free GFP (corresponding to the degradation of Hxt3-GFP in the vacuole) was measured in a representative western-blot analysis, showing slightly quicker degradation of Hxt3-GFP in *CYS4*-OE cells. (C) Sna3-GFP degradation was assessed by western-blot. Similarly to Hxt3-GFP, slightly increased free GFP was observed in *CYS4*-OE cells, suggesting increased vacuolar degradation of Sna3. Student t-test: **, p < 0.05.


Supp Fig. 4: Genetic interaction between CYS4, YAK1 and MCK1, the yeast homologs of CBS, DYRK1A and GSK3. (A) YAK1 overexpression by itself induced methionine auxotrophy in a dosedependent manner on medium supplemented with serine. (B) Epigallocatechin-3-gallate (EGCG), a known DYRK1A inhibitor, which is also a zinc ionophore, is able to restore cytosolic acidification defects of CYS4-OE cells. (C) Cells deleted for MCK1 have sensitivity to serine supplementation but do not have methionine auxotrophy. (D) Serine sensitivity of $mck1\Delta$ cells depends on Mck1p kinase function. Student t-test: *, p<0.01; **, p<0.05; ***, p<0.001; ns: not statistically significant.


Supp Fig 1





Supp Fig 3

Supp Fig 4

III. Discussion

Pour résumer les travaux décrits dans ce manuscrit, il semble que (1) la surexpression de *CYS4* provoque une auxotrophie à la méthionine et des changements de l'acidification du cytosol en levure, (2) les molécules identifiées à l'aide d'un criblage pharmacologique sont capables de restaurer ces défauts et (3) l'identification de gènes modificateurs de ces phénotypes nous a permis de mieux caractériser les conséquences physiologiques de la surexpression de *CYS4*, ainsi que le mode d'action des molécules.

1. Conséquences cellulaires de la surexpression de CYS4

Au cours de ces travaux, nous avons pu déterminer que la surexpression de CYS4 provoquait une auxotrophie à la méthionine, une augmentation de la production de GSH ainsi qu'une acidification du cytosol. Etant donné l'implication de CBS dans la production d'H2S, et l'importance de ce facteur dans divers processus pathologiques (aussi bien en termes de fonctionnement cognitif que de cancer), nous avons également voulu déterminer si la production d'H₂S était augmentée dans notre modèle. En 2011, T. Suzuki et ses collaborateurs ont rapporté qu'une surexpression de CYS4 était capable, en plus d'augmenter la production de glutathion, d'augmenter effectivement la production d'H₂S (Suzuki et al., 2011). Nous avons voulu reproduire leurs résultats, en utilisant la même méthode. Ce test est basé sur l'utilisation d'un milieu contenant de l'acétate de plomb, qui peut réagir avec l'H2S, formant un dépôt de couleur foncée (Cost et Boeke, 1996 ; Ono et al., 1991). La délétion du gène MET15 (présente dans la souche BY4741) conduit à l'accumulation d'H₂S car l'enzyme Met15 catalyse la formation d'homocystéine à partir de l'H₂S formé par la voie d'assimilation des sulfites extracellulaire (Ono *et al.*, 1991) ; le dépôt de cette souche sur le milieu contenant de l'acétate de plomb conduit effectivement à une coloration des colonies (figure 7). En revanche, nous n'avons pas observé d'effet de la surexpression de CYS4, contrairement aux résultats présentés dans l'étude de T. Suzuki et ses collaborateurs.

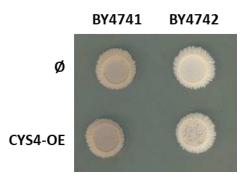


Figure 7. Evaluation de la production d'H₂S induite par la surexpression de *CYS4*. Les levures BY4741 (*met15* Δ) et BY4742 (*MET15*) ont été transformées par des plasmides pRS423-*GPD* et pRS426-*GPD* vides ou pRS423-*GPD*-*CYS4-FL* et pRS426-*GPD*-*CYS4-FL*. Les cultures en phase exponentielles de croissance ont été déposées sur un milieu YPD contenant 0,2% d'acétate de plomb, puis incubées 48h à 29°C. La souche BY4741 délétée pour *MET15* contient en effet plus d'H₂S mais la surexpression de *CYS4* ne semble pas provoquer d'accumulation d'H₂S.

Cys4 est, comme CBS, capable de catalyser la formation d'H₂S *in vitro*, mais une étude suggère que, vu les quantités de substrats intracellulaires, les réactions formant de l'H₂S seraient de manière compétitive inhibées par la quantité de sérine en levure (Singh *et al.*, 2009). La levure possède par ailleurs une voie d'assimilation des sulfites extracellulaires qui conduit à la production d'H₂S, contrairement aux cellules de mammifères (Breton et Surdin-Kerjan, 1977). La formation d'H₂S par l'activité de Cys4 n'est donc pas indispensable et ce n'est pas son rôle majeur, ce qui pourrait expliquer pourquoi nous n'avons pas pu observer d'augmentation drastique de la production d'H₂S par la surexpression de *CYS4*.

En dehors du fait que la surexpression de *CYS4* provoque une acidification accrue du cytosol constitue un bon moyen d'étudier le mode d'action des molécules identifiées lors du criblage pharmacologique, il s'agit d'un phénotype qui n'avait pas été rapporté précédemment. En revanche, dans une étude haut débit visant à identifier les gènes impliqués dans la régulation du pH cytosolique des levures, la délétion de *CYS4* a été identifié comme provoquant une alcalinisation (Orij *et al.*, 2011). Ce résultat conforte nos observations, bien que les mécanismes impliqués n'aient pas été révélés dans cette étude.

Chez la levure, la pompe à protons membranaire Pma1 est considérée comme le régulateur majeur de l'acidité du cytosol. Dans le cas d'une surexpression de *CYS4*, les protons s'accumulent dans le cytoplasme, ce qui suggère que l'activité de Pma1, ou sa présence à la membrane plasmique, n'est pas suffisante pour exporter l'excès de protons vers le milieu extracellulaire. Nous avons émis

l'hypothèse dans l'article 2 que cela pourrait s'expliquer par l'inactivation de TOR, qui affecte l'activité de Pma1 (Mahmoud *et al.*, 2017). Bien que nous n'ayons pas testé directement l'activité ou la présence à la membrane de Pma1 dans la souche qui surexprime *CYS4*, nous avons observé que l'utilisation d'ebselen, qui a un effet inhibiteur sur Pma1 (Billack *et al.*, 2010 ; Chan *et al.*, 2007), n'affecte pas leur pH cytosolique, alors que l'on observe une diminution du pH dans une souche *WT* (figure 8). Cette observation suggère que la protéine Pma1 pourrait effectivement être absente de la membrane des levures surexprimant *CYS4*, ou être déjà inhibée.

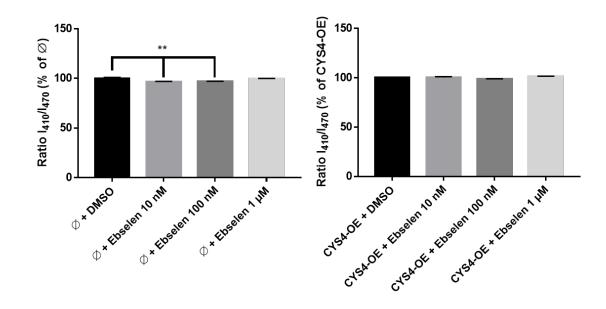


Figure 8. Effet du traitement à l'ebselen sur le pH cytosolique de levures qui surexpriment CYS4.

L'autre manière dont la surexpression de *CYS4* peut affecter l'acidification vacuolaire peut passer par une activation des échangeurs glutathion:protons Gex1 et Gex2, via l'augmentation de la quantité de glutathion. Nous avons émis l'hypothèse que c'est en agissant sur ce mécanisme que les molécules que nous avons identifiées restaurent les phénotypes dus à la surexpression de *CYS4*. Nous n'avons cependant pas pu tester l'effet du traitement par les molécules sur la quantité de glutathion intracellulaire, car le test que nous avons utilisé pour le dosage ne nous a pas permis d'obtenir des résultats suffisamment reproductibles.

L'activité de la V-ATPase joue également un rôle dans la régulation du pH cytoplasmique des levures (Martínez-Muñoz et Kane, 2008). Dans notre cas, nous n'avons cependant pas mis en évidence de défaut majeur d'acidification de la vacuole en cas de modulation de *CYS4*, suggérant

que la V-ATPase fonctionne normalement. Ces résultats sont en contradiction avec l'étude publiée par Y. E. Oluwatosin et P. M. Kane, dans laquelle les auteurs rapportent une absence de marquage à la quinacrine dans une souche *cys4* Δ par rapport à une souche *WT* (Oluwatosin et Kane, 1997). D'abord surpris par ce résultat, nous l'avons confirmé dans différents fonds génétiques (W303 et BY4743) et à l'aide d'une méthode complémentaire basée sur la sensibilité des levures aux pH alcalins. Finalement, les résultats que nous avons obtenus sont similaires à ceux publiés dans une autre étude, qui rapporte une sensibilité très limitée de la souche *cys4* Δ aux pH alcalins (Sambade, 2005).

Une modification du pH cytoplasmique des cellules peut avoir un large champ de conséquences, car la majorité des processus et réactions cellulaires dépendent du pH environnant. Elles sont d'ailleurs tellement diverses qu'elles sont difficiles à délimiter, bien que certains mécanismes de régulations pH-dépendants ont été décrits (revu par Orij et al., 2011). Il s'agit d'un paramètre très finement régulé, notamment en réponse aux stress nutritifs. Au cours de ces travaux de thèse, nous avons émis des hypothèses quant aux conséquences que la modification du pH cytosolique suite à la surexpression de *CYS4*. Cependant, il est probable que cette modification ait un impact beaucoup plus large. Il serait donc intéressant d'étudier de manière plus approfondie le profil métabolique complet des levures surexprimant *CYS4*, notamment en termes de métabolisme du glucose ou des autres acides aminés.

2. Modèle levure de surexpression de CYS4 : intérêt et limites

Nous avons développé un modèle levure de la surexpression de *CYS4* dans le but d'identifier des molécules capables d'aller à l'encontre des conséquences de cette surexpression dans un contexte cellulaire complet. Plusieurs éléments ont motivé cette démarche. D'une part, la recherche d'inhibiteurs spécifiques de CBS n'a pas conduit à l'identification de candidats efficaces une fois testés dans un contexte cellulaire complet, bien qu'ils présentaient des caractéristiques intéressantes sur la protéine CBS purifiée. D'autre part, les résultats présentés dans l'article de D. Maréchal montrent l'implication de la surexpression de *CBS* dans le fonctionnement cognitif des souris, il est donc pertinent de rechercher des molécules capables de corriger ces défauts. Et en effet, le traitement des souris Tg(*CBS*) par le DSF permet de corriger leur défaut dans le test de reconnaissance d'objets. Ces résultats soulignent l'intérêt d'utiliser le modèle levure pour identifier des molécules candidates pour restaurer les défauts induits par la surexpression de *CBS*.

Les molécules actives dans notre modèle ne ciblent cependant pas nécessairement directement Cys4 ou CBS. Il s'agit encore moins d'inhibiteurs spécifiques, car toutes les molécules que nous avons isolées ont de multiples cibles cellulaires rapportées dans la littérature.

Par ailleurs, bien qu'une cellule de levure et une cellule humaine présentent de nombreuses caractéristiques communes, certains processus cellulaires ne sont pas conservés. Par exemple, il n'y a pas d'équivalent rapporté d'échangeur protons:glutathion comme Gex1 et Gex2 chez les mammifères.

3. Molécules identifiées

Pour identifier des molécules capables de contrecarrer les conséquences de la surexpression de *CYS4*, nous avons utilisé le phénotype d'auxotrophie à la méthionine comme outil de criblage primaire. En effet, seul ce phénotype était compatible avec la mise en place d'un criblage pharmacologique car il permet de cribler un grand nombre de molécules sur un large spectre de concentrations, grâce à la diffusion des molécules autour des filtres. Par ailleurs, les molécules criblées étaient issues de chimiothèques contenant des molécules approuvées par la Food and Drugs Administration (FDA), ce qui permet d'envisager un repositionnement thérapeutique dans le cas où une molécule s'avère apporter des effets bénéfiques significatifs dans le contexte des pathologies. Nous avons observé que toutes les molécules ayant un effet bénéfique sur ce phénotype étaient également capables de restaurer les défauts de pH cytosolique. Bien que cela ne signifie pas nécessairement que l'action des molécules soit directe (par inhibition de *CYS4*), cette observation indique que les deux phénotypes sont liés et résultent tous deux de la surexpression de *CYS4*.

Nous avons par ailleurs testé certaines des molécules inhibant la protéine CBS *in vitro* rapportées dans la littérature, pour évaluer leur efficacité dans notre modèle. Nous avons observé qu'aucune des molécules testées ne restaurait le phénotype d'auxotrophie à la méthionine des levures qui surexpriment *CYS4*. Cela peut s'expliquer par plusieurs possibilités : soit ces molécules n'inhibent pas la protéine de levure, soit elles n'entrent pas dans les levures, qui possèdent une paroi, ou encore elles ne présentent pas d'effet bénéfique dans un contexte cellulaire complet. Même l'AOAA, souvent utilisée pour inhiber CBS *in vivo* bien que non-spécifique, ne provoque pas de

restauration de la croissance des souches qui surexpriment *CYS4*. Cela suggère donc que cette molécule n'inhibe pas la protéine de levure, alors qu'elle est efficace sur la protéine de mammifères.

4. Criblage génétique

La levure est un modèle eucaryote dont le génome est bien caractérisé et qui peut être modifié génétiquement relativement facilement. Par ailleurs, de nombreux outils de criblages génétiques ont été développés et utilisés pour identifier les gènes importants dans certains processus cellulaires tels que le cycle cellulaire, le trafic protéique, la résistance aux molécules toxiques, etc. (revu par Forsburg, 2001; Prelich, 2012). Dans cette étude, nous avons réalisé un criblage de surexpression, dans le but d'identifier des gènes dont la surexpression peut contrecarrer les conséquences de la surexpression de *CYS4*. Ce type de criblage permet de définir les éléments pouvant être ciblés pour corriger les défauts du modèle, mais aussi de mieux comprendre les conséquences cellulaires de la surexpression de *CYS4*, comme présenté dans l'article 2.

Nous avons ainsi isolé 7 gènes dont la surexpression supprime le phénotype d'auxotrophie à la méthionine dû à la surexpression de *CYS4* : *MUP1*, *MMP1*, *STP2*, *LEU2*, *UBP11*, *UBP7* et *MCK1*. Ces 7 gènes peuvent être regroupés en trois groupes : les gènes affectant le transport ou la synthèse d'acides aminés (*MUP1*, *MMP1*, *STP2* et *LEU2*), deux déubiquitinylases (*UBP11* et *UBP7*) et *MCK1*, l'un des homologues levure de la glycogen synthase kinase 3 (GSK3).

L'analyse des deux premiers groupes de gènes nous a permis d'élaborer des hypothèses sur les conséquences de la surexpression de *CYS4*, et surtout comment elle conduit aux phénotypes que nous observons. En revanche, la manière dont la surexpression de *MCK1* provoque un sauvetage des phénotypes associés à la surexpression de *CYS4* n'a pas été clairement déterminée au cours de ces travaux. En effet, aucune relation entre *CYS4* et *MCK1* n'a été rapportée dans la littérature. Par ailleurs, la protéine Cys4 présente un site putatif de phosphorylation par des kinases de type GSK-3, mais nous avons observé que l'activité de kinase de Mck1 n'était pas nécessaire au sauvetage. Ces résultats suggèrent donc que Mck1 n'agirait pas en phosphorylant directement Cys4.

Il aurait par ailleurs été intéressant d'associer à cette analyse un criblage de délétion, permettant d'identifier les gènes nécessaires au phénotype. Un tel criblage aurait pu nous permettre à la fois de confirmer les pistes qui se sont dégagées du criblage de surexpression, mais aussi d'identifier d'autres acteurs clés dans les phénotypes liés à la surexpression de *CYS4*.

5. Relation entre CYS4 et YAK1

Au cours de ces travaux de thèse, nous avons voulu étudier la relation entre les homologues de CBS et DYRK1A en levure, dont les gènes sont chez l'homme tous les deux situés sur le chromosome 21 et qui constituent tous les deux des gènes candidats pour la déficience intellectuelle dans le syndrome de Down. Il est en effet important de comprendre l'impact de l'un par rapport à l'autre sachant qu'ils sont tous les deux surexprimés dans les cellules de patients trisomiques.

Ces deux gènes sont en effet surexprimés dans le syndrome de Down, et la surexpression de chacun séparément peut induire des défauts cognitifs chez la souris (Altafaj et al., 2001 ; Maréchal et al., 2018). Plusieurs études ont rapporté une relation fonctionnelle entre ces deux gènes, dont il est difficile de tirer un tableau clair : la modulation de l'un de ces gènes peut affecter l'expression de l'autre et/ou l'expression et l'activité de la protéine correspondante. Mais pas de la même manière en fonction des tissus étudiés. En effet, la première étude évoquant un lien fonctionnel entre ces deux gènes est celle publiée par J. Hamelet et ses collaborateurs, qui rapporte que des souris hyperhomocystéinémiques (Cbs+/-) présentent une diminution de la quantité protéique de DYRK1A dans le foie, alors que l'expression de son ARNm est inchangée (Hamelet et al., 2009). Au niveau du cerveau en revanche, une déficience en CBS (chez les mêmes souris que dans l'étude précédente) est associée à une augmentation des niveaux protéiques et de l'activité de DYRK1A (Planque et al., 2013). Ces observations suggèrent une corrélation positive entre l'expression de CBS et les niveaux protéiques et/ou l'activité de DYRK1A au niveau du foie, mais une corrélation négative dans le cerveau, sans que l'expression génique de DYRK1A soit modifiée. La manière dont la modulation de CBS conduit à une modulation de DYRK1A n'est cependant pas déterminée à ce jour.

Des observations similaires ont été rapportées lorsque l'expression de DYRK1A est altérée. D'abord, la surexpression de *DYRK1A* dans le foie de souris hyperhomocystéinémiques (*Cbs*^{+/-}), par l'administration d'un adénovirus contenant *DYRK1A*, conduit à une augmentation de l'activité de CBS, suggérant qu'une modification de l'expression de *DYRK1A* peut également influencer l'activité de CBS (Tlili *et al.*, 2013). Ces travaux font suite à ceux publiés par C. Noll et ses collaborateurs, qui rapportaient que l'ajout d'une copie du gène *Dyrk1a* chez ces souris à l'aide d'un BAC n'affectait ni l'expression ni l'activité de CBS au niveau du foie (Noll *et al.*, 2009). La différence entre les résultats rapportés dans les deux publications pourrait être due au fait qu'une triplication ne soit pas suffisante pour observer une modification de l'activité de CBS, car l'utilisation d'un adénovirus conduit à une surexpression plus forte. Cependant, dans une autre étude, les auteurs rapportent que même une triplication de *Dyrk1a* conduit à une diminution de l'activité de CBS au niveau du foie (Delabar *et al.*, 2014). Dans cette même étude, il est également montré qu'une diminution de l'expression de *Dyrk1a* (souris *Dyrk1a^{+/-}*) est associée à une augmentation de l'activité de CBS dans le foie. Ces observations confirment l'existence d'une corrélation négative entre les activités de CBS et de DYRK1A au niveau du foie. Les données concernant le cerveau sont moins complètes, mais l'étude de C. Planque et ses collaborateurs suggère que la corrélation serait négative (Planque *et al.*, 2013). Il semble donc que la relation entre les deux gènes implique des facteurs qui peuvent varier entre différents types cellulaires.

Etant donné que les deux gènes sont situés sur le chromosome 21 et surexprimés dans le syndrome de Down, cette interaction doit être mieux déterminée à la fois pour mieux comprendre l'impact de chacun dans le phénotype cognitif associé à la pathologie, mais aussi pour mieux adapter les stratégies thérapeutiques qui concernent ces deux cibles. En effet, si le fait d'affecter l'activité de l'une des protéines a un impact sur l'activité de l'autre, alors il s'agit d'un facteur à prendre en compte dans l'analyse de l'efficacité d'un traitement qui cible CBS ou DYRK1A.

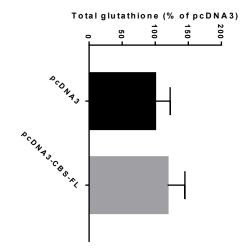
Dans l'article 1, les travaux présentés ont permis de mettre en évidence que, alors que la triplication de *CBS* (souris Tg(*CBS*)) ou *DYRK1A* (souris Tg(*DYRK1A*)) seule conduit à des défauts de reconnaissance d'objets, la triplication des deux gènes ensemble, chez les souris Dp1Yah/Tg(*DYRK1A*) restaure les défauts induits par chaque gène individuellement.

Outre ces observations réalisées chez la souris, les résultats présentés ici suggèrent que les homologues de *CBS* et *DYRK1A*, *CYS4* et *YAK1* respectivement, ont également une relation fonctionnelle. En effet, la surexpression de *YAK1* augmente les défauts induits par une surexpression de *CYS4*, et la délétion de *YAK1* semble les contrebalancer. Ces résultats révèlent donc qu'il existe également un lien fonctionnel entre ces deux gènes en levure, avec une corrélation positive qui se rapprocherait plutôt des observations réalisées dans le foie des animaux.

Nous avons par ailleurs observé que l'effet de *YAK1* sur les phénotypes liés à surexpression de *CYS4* dépendait de son activité kinase. La séquence protéique de Cys4 ne contient cependant pas

de site putatif de phosphorylation par un membre de la famille DYRK, ce qui suggère que Yak1 ne phosphorylerait pas directement Cys4. La protéine Yak1 en levure a fait l'objet de quelques études, mais aucun lien direct avec *CYS4* ou les phénotypes associés à la surexpression de *CYS4* (auxotrophie à la méthionine et pH cytosolique) n'a été auparavant rapporté dans la littérature.

Le gène YAKI en levure a été décrit pour la première fois comme un suppresseur de la perte des gènes RAS (RASI et RAS2) et des gènes codant les sous unités de la protéine kinase AMPcdependante (PKA, gènes TPK1, TPK2 et TPK3 en levure) (Garrett et Broach, 1989). Dans des conditions où l'activité de la PKA est basse, comme lors d'une privation de nutriments, Yak1 est transloquée dans le noyau (Lee *et al.*, 2011), où elle exerce son activité kinase sur différentes cibles. Parmi celles-ci, on retrouve des facteurs de transcriptions impliqués dans la réponse aux stress tels que Hsf1 (heat shock transcription factor 1), Msn2 et Msn4 (Multicopy suppressor of SNF1 mutation 2 et 4) (Lee et al., 2008), ou encore Sok1, Pdh1 et Haa1 (Malcher et al., 2011).


L'induction de la localisation nucléaire de Yak1 est également provoquée par un traitement à la rapamycine, qui inhibe la voie TOR (Schmelzle *et al.*, 2004), ce qui suggère que Yak1 serait un acteur en aval de la voie TORC1 pour répondre aux stress cellulaires. Il est donc possible que Yak1 soit activée par la surexpression de *CYS4*, via l'inactivation de TORC1. La sous-unité de régulatrice de la PKA, Bcy1, est également régulée par une phosphorylation par Yak1, qui influence sa localisation subcellulaire (Griffioen *et al.*, 2001). Il est donc possible que, si Yak1 est activée par la surexpression de *CYS4*, la voie PKA soit également affectée, il serait donc intéressant de l'analyser.

Dans cette étude, nous avons montré que la surexpression de *YAK1* seule entrainait une acidification du cytosol. De manière intéressante, une réduction du pH cytosolique peut également inactiver la PKA et entraîner une activation de Msn2 (Dechant *et al.*, 2010). Par ailleurs, la délétion des gènes *GEX1* et *GEX2* conduit également à une perturbation de l'activité de Msn2, empêchant sa localisation nucléaire et donc son activité ; possiblement par l'alcalinisation du cytoplasme de ces cellules (Dhaoui *et al.*, 2011). Or lorsque *CYS4* est surexprimée, le pH cytosolique est diminué, probablement en partie suite à une augmentation de l'activité des échangeurs Gex1 et Gex2, on peut donc imaginer que la protéine Msn2 serait également activée.

6. Surexpression de CBS

6 <u>-</u> Conséquences de la surexpression de CBS en cellules de mammifères

triplication de CBS. modèle d'étude intermédiaire entre les levures qui surexpriment CYS4 et le modèle souris de phénotype aurait pourtant été très utile dans notre étude, car cela nous aurait permis d'avoir un phénotype robuste de la surexpression de CBS en cellules de mammifères. L'identification d'un tel aurait nécessité l'utilisation d'HPLC. Globalement, nous n'avons pas été capables d'identifier un succès. Idéalement, la mesure des changements métaboliques induits par la surexpression de CBS d'un plasmide (figure 9). Nous avons également tenté de mesurer les quantités de cystéine, sans mais nous n'avons pas observé de changements significatifs suite à la surexpression de CBS à partir cellulaires de la surexpression de CBS. Nous avons en particulier mesuré la production de GSH, Au cours de ces travaux de thèse, nous avons également voulu déterminer les conséquences

glutathion intracellulaire total a été mesurée à l'aide du kit GSH/GSSG-Glo Assay (Promega) H1299 ont été transfectées par un plasmide pcDNA3 vide ou pcDNA3-CBS-FL pendant 48h, puis la quantité de Figure 9. Quantification du glutathion total dans des cellules qui surexpriment CBS. Des cellules de la lignée

6. 2. Effet sur le pH cytosolique

l'aide d'un promoteur CMV, comme nous l'avons fait en levure, pour tenter de détecter une mammifères. Pour cela, nous avons choisi dans un premier temps de surexprimer fortement CBS à levure, nous Après avoir mis en évidence l'impact de la surexpression de CYS4 sur le pH intracellulaire en avons voulu étudier l'effet d'une surexpression de CBS dans des cellules de

modification. Pour mesurer le pH cytosolique des cellules, nous avons utilisé la pHluorin, comme en levure, dans le but d'obtenir des données comparables entre les organismes. Dans un premier temps, nous avons utilisé la même séquence codant la pHluorin, en la plaçant dans un vecteur d'expression de mammifère (pcDNA3). Cependant, nous n'avons pas pu détecter de signal correspondant à la pHluorin, ni dans les conditions contrôle, ni lorsque CBS était surexprimé. Nous avons donc ensuite utilisé une version améliorée, la pHluorin2 (Mahon, 2011), qui permet d'obtenir un signal suffisant pour être détecté dans ces cellules. Avec cette construction, nous avons en effet été capables de détecter un signal correspondant à la pHluorin2. Des expériences préliminaires n'ont cependant pas permis de détecter de changement significatif dû à la surexpression de CBS, ni dans une lignée cellulaire de foie humaine (HepG2), ni dans une lignée neuronale de souris (N2a) (figure 10). Par ailleurs, les résultats que nous avons obtenus n'étaient pas reproductibles.

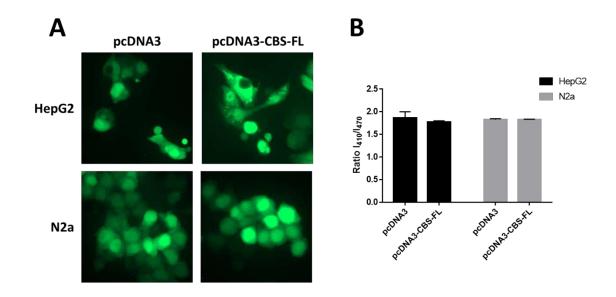


Figure 10. Evaluation des changements de pH cytosolique induits par la surexpression de CBS. Des cellules des lignées HepG2 et N2a ont été transfectées par un plasmide pcDNA3 vide et pcDNA3-pHluorin2 ou pcDNA3-*CBS-FL* et pcDNA3-pHluorin2 pendant 48h. (A) Les cellules ont été fixées au PFA 4% et observées en microscopie à fluorescence avec un filtre GFP. (B) Les cellules ont été lavées au PBS, puis la fluorescence a été mesurée à deux longueurs d'onde d'excitation (410 nm et 470 nm) avec une longueur d'onde d'émission à 508 nm. Le ratio I₄₁₀/I₄₇₀ a ensuite été calculé.

Le fait que l'utilisation de cette méthode ne nous ait pas permis de détecter des changements significatifs ne permet cependant pas d'infirmer l'hypothèse que la modulation de CBS puisse avoir un impact sur le pH cytoplasmique des cellules. En effet, l'utilisation de la pHluorin2 pour obtenir une estimation du pH des cellules n'est probablement pas la méthode la plus adaptée. Bien que la pHluorin2 présente une localisation cytoplasmique et émette un signal quantifiable dépendant du pH environnant (Mahon, 2011), aucune étude fonctionnelle réalisée en cellules de mammifère ne rapporte son utilisation pour réellement évaluer des différences de pH cytoplasmique. Dans la plupart des cas, cet outil est utilisé sous une forme couplée à une protéine servant de marqueur d'un processus cellulaire, la plus utilisée étant la synapto-pHluorin (fusion de la protéine VAMP2 (vesicle-associated membrane protein 2) avec la pHluorin pour suivre le trafic vésiculaire) (Burrone *et al.*, 2006 ; Miesenböck *et al.*, 1998). Une limite majeure de cette approche est l'efficacité de transfection, et surtout de co-transfection : toutes les cellules n'ont pas forcément les deux plasmides. Difficile donc de conclure sur les résultats que nous avons obtenus.

Plusieurs méthodes pour mesurer le pH cytoplasmique de cellules de mammifères sont rapportées dans la littérature (revu par Loiselle et Casey, 2010). Il est par exemple possible de mesurer le pH cytoplasmique de cellules isolées en y insérant une microélectrode, ou en utilisant la spectroscopie à résonance magnétique nucléaire. Cependant, ces deux méthodes requièrent des équipements et du savoir-faire spécifiques et coûteux, dont nous ne disposons pas au laboratoire. Les méthodes basées sur des sondes fluorométriques sont donc plus adaptées. Etant donné que nous n'avons pas été capables de mesurer de manière reproductible le pH cytoplasmique des cellules en utilisant la pHluorin2, nous pourrions tenter d'utiliser une sonde chimique telle que le BCECF-AM (2',7'-Bis-(2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein, Acetoxymethyl Ester), qui s'accumule dans le cytoplasme des cellules de mammifère et émet une fluorescence en fonction du pH environnant. En effet, son utilisation est rapportée dans plusieurs études fonctionnelles concernant le pH intracellulaire dans des cellules de mammifères (Chen *et al.*, 2018 ; Ozkan et Mutharasan, 2002).

7. Localisation de Cys4 et CBS

Au cours de ces travaux de thèse, nous avons étudié la localisation subcellulaire de Cys4 et de CBS, à la fois dans des conditions normales et en cas de surexpression.

7. 1. Localisation subcellulaire de Cys4

Pour étudier la localisation subcellulaire de Cys4, nous avons construit un plasmide permettant d'exprimer une protéine fusionnée à la GFP. Pour obtenir une expression proche des niveaux endogènes, nous avons utilisé un plasmide centromérique et conservé le promoteur du gène CYS4, et transformé une souche cys4 Δ Ainsi, nous avons observé que la protéine présentait une localisation partiellement cytoplasmique diffuse, mais dans la majorité des cellules nous retrouvions également une localisation sous forme de foci (figure 11). Bien que la localisation de Cys4 n'ait pas fait l'objet d'études ciblées, plusieurs informations provenant d'études haut débit et de bases de données confirment ces observations. D'abord, la base de données de localisation de protéines de levure couplées à la GFP LoQAtE⁴, la localisation de Cys4 est annotée comme cytoplasmique et ponctuée, même en l'absence de stress (condition SD). Dans ce cas, le couplage des protéines à la GFP est réalisé au génome, ce qui suggère qu'en effet, la protéine a tendance à former des foci même lorsqu'elle est exprimée à un niveau basal et dans des conditions normales. Par ailleurs, deux études haut débit apportent des informations complémentaires qui corroborent nos observations. D'abord, l'étude de R. Narayanaswamy rapporte que Cys4 fait partie des protéines qui forment des foci en cas de stress, bien qu'ils ne rapportent pas sa localisation dans des conditions de phase exponentielle de croissance et en l'absence de stress (Narayanaswamy et al., 2009). Leurs résultats ont été obtenus à la fois en observant la localisation de la protéine couplée à la GFP et en réalisant une analyse par spectrométrie de masse sur la fraction insoluble des protéines, suggérant que le tag GFP n'est pas responsable des résultats obtenus.

De plus, la localisation de Cys4 est rapportée comme étant cytoplasmique et en foci à la fois dans des cellules en phase exponentielle de croissance et en cas de privation de glucose (Mitchell *et al.*, 2012). Cette étude indique également que la protéine Cys4 aurait la capacité à lier des ARN, propriété qui n'avait pas été mise en évidence auparavant. Parmi les autres enzymes métaboliques ayant cette propriété, on retrouve de manière surprenante les protéines de la famille des inosine monophosphate dehydrogenase (IMDPH) qui, comme Cys4, contiennent des domaines CBS. Par ailleurs, une perturbation des domaines CBS de la protéine Gef1 (canal chlorure) conduit à une modification de sa localisation (Schwappach *et al.*, 1998). Ces différents éléments suggèrent que les domaines CBS pourraient influencer la localisation des protéines qui en contiennent et, dans notre cas, la suppression de ces domaines conduit en effet à la perte de ces foci, Cys4- Δ C présentant exclusivement une localisation cytoplasmique diffuse (figure 11).

⁴ Accessible à l'adresse : https://www.weizmann.ac.il/molgen/loqate/gene/view

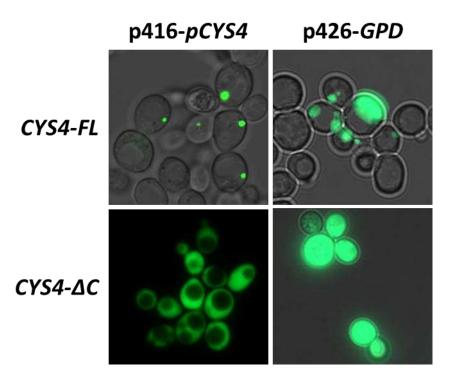


Figure 11. Localisation de Cys4 en levure. Les levures W303 *cys4* transformées par des vecteurs pRS416*pCYS4-CYS4-FL*, pRS416-*pCYS4-CYS4-* ΔC (expression de *CYS4* sous son promoteur endogène) ou W303 *WT* transformées par pRS426-*GPD-CYS4-FL* ou pRS426-*GPD-CYS4-* ΔC (expression de *CYS4* sous le promoteur fort GPD) en phase exponentielle de croissance ont été observées en microscopie à fluorescence avec un filtre GFP.

Chez la levure, de nombreuses enzymes présentent ce type de localisation, soit dans des conditions normales, soit lorsque les cellules subissent un stress. Plusieurs hypothèses ont été émises concernant l'explication de cette localisation : (1) la focalisation de flux métaboliques, (2) d'un moyen de « stockage » d'enzymes pour les libérer rapidement en cas de stress ou (3) une agrégation de protéines dysfonctionnelles ou mal repliées (O'Connell, 2012).

Dans nos conditions, nous n'avons pas déterminé si la portion de protéine localisée en foci est fonctionnelle. Cependant, nous avons observé que la surexpression de la protéine Cys4- Δ C conduit à une auxotrophie à la méthionine plus forte que la protéine pleine longueur. Cela suggère que la localisation en foci n'est pas nécessaire à cette fonction. Il se peut donc que seule la portion cytoplasmique diffuse soit active. Cependant, la surexpression de la protéine Cys4- Δ C ne provoque pas de défauts au niveau du pH cytoplasmique, ce qui suggère au contraire qu'elle n'a pas les mêmes conséquences que la protéine pleine longueur en termes de métabolisme.

Une autre possibilité est que la surexpression de Cys4 conduise à un mauvais repliement de la protéine, conduisant à son adressage dans une structure récemment identifiée et caractérisée, l'Insoluble Protein Deposit (IPOD) (Kaganovich *et al.*, 2008), ce qui entrerait dans le cadre de la troisième hypothèse. Cependant, bien que plusieurs protéines semblent être dirigées vers l'IPOD lorsqu'elles sont mal repliées en levure, il n'existe pas de marqueur exclusif de l'IPOD, ce qui rend difficile son identification. Nous avons tout de même traité nos cellules surexprimant *CYS4* au nocodazole, une molécule qui dépolymérise les microtubules, nécessaires à la formation de l'IPOD, mais nous n'avons pas observé de différence en termes de quantité ou de taille de foci formés par Cys4, ce qui suggère qu'il pourrait ne pas s'agir de l'IPOD.

7. 2. Localisation subcellulaire de CBS

Pour compléter notre étude, nous avons également étudié la localisation de CBS dans des cellules de mammifères. Tout d'abord, nous avons voulu étudier la localisation de la protéine exprimée de manière endogène dans différentes lignées cellulaires. Pour cela, nous avons utilisé plusieurs anticorps (Abcam, Sigma), et les résultats étaient similaires : la protéine semble localisée en petits foci dans le cytoplasme des cellules (figure 12, mock). Ces résultats concordent à la fois aux données publiées par les fournisseurs et ceux rapportés dans la base de données Human Protein Atlas⁵. Bien que nous n'ayons pas identifié quel type de structure correspond à ces petits foci, il semble que, contrairement à ce qui est généralement considéré, CBS n'est pas localisée de manière homogène dans le cytopol.

Nous avons observé que la surexpression de CBS conduisait également à la formation de foci de taille variable, et que cette localisation dépend également du domaine C-terminal de la protéine, qui contient les domaines CBS (figure 12). Nous avons d'abord tenté de déterminé s'il s'agissait d'agrégats, en particulier de type amyloïde, en utilisant le marqueur Thioflavin S. Cependant, les amas cytoplasmiques de CBS ne sont pas marqués par la Thioflavin S, indiquant qu'il ne s'agit pas d'agrégats de type amyloïdes.

⁵ Accessible à l'adresse : https://www.proteinatlas.org/ENSG00000160200-CBS/cell

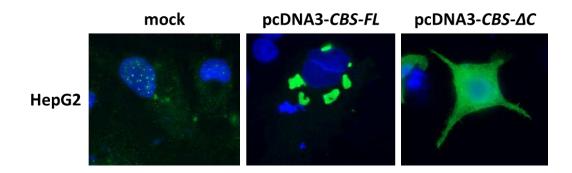


Figure 12. Localisation de CBS dans une lignée de cellules hépatiques (HepG2). Les cellules HepG2 non transfectées (mock) ou transfectées par pcDNA3-CBS-FL ou pcDNA3-CBS-ΔC pendant 48h ont été fixées au PFA 4% pendant 20 minutes, puis lavées 2 fois au PBS et incubées dans une solution de blocage composée de PBS 0,3%, Triton X100, 10% Normal Goat Serum (NGS) pendant 1h à température ambiante. A l'issue du blocage, 150 µL de solution d'anticorps primaire anti-CBS (anti-CBS de souris - Abcam ab124276) diluée au 1/500 dans la solution de blocage diluée au 1/10 dans du PBS ont été ajoutés et incubés sur la nuit à 4°C. Les cellules ont ensuite été lavées au PBS, puis 150 µL d'une solution d'anticorps secondaire anti-souris couplé au FITC dilué au 1/500 dans la solution de blocage diluée au 1/10 dans du PBS ont été ajoutés et incubés 3h à température ambiante. Après 3 lavages au PBS, les lamelles ont été montées pour l'observation avec une solution contenant du DAPI et observées en microscopie à fluorescence avec un filtre FITC.

Etant donné qu'une sumoylation peut conduire à une modification de la localisation de protéines, nous avons étudié la localisation d'une protéine mutée au niveau de son site majeur de sumoylation rapporté par O. Kabil et ses collaborateurs, le mutant CBS-K211R (Kabil *et al.*, 2006). Nous avons observé que cette mutation conduisait à une réduction visible de la quantité de protéines localisées en foci quand la protéine est surexprimée, suggérant que la sumoylation de CBS pourrait effectivement être l'un des mécanismes qui conduit à son « agrégation » (figure 13). Des résultats similaires ont été rapportés pour d'autres protéines ayant une tendance à s'agréger telles que la Huntingtin ou SOD1 (Fei *et al.*, 2006 ; Wang *et al.*, 2010), bien que les mécanismes soient probablement différents. Par ailleurs, nous avons observé qu'une mutation ponctuelle dans le domaine C-terminal de la protéine (mutant CBS-L540Q) peut également conduire à une forte diminution de l'agrégation (figure 13). Ce mutant présente une absence de réponse à la SAM (Mendes *et al.*, 2014), suggérant que la liaison à la SAM pourrait également être un mécanisme par lequel la protéine CBS s'accumule de manière localisée dans le cytoplasme des cellules.

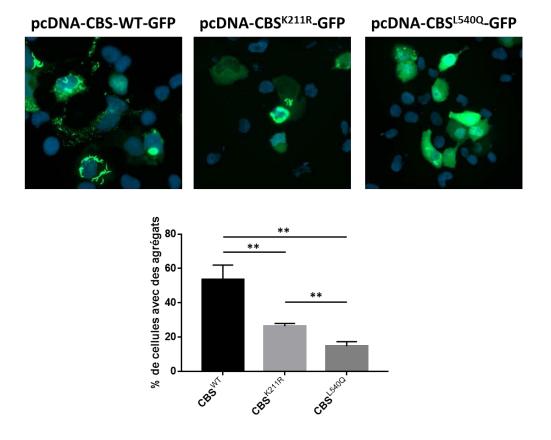


Figure 13. Les mutations K211R et L540Q modifient la localisation de la protéine CBS. Des cellules H1299 ont été transfectées par un plasmide pcDNA3-*CBS*-*WT-GFP*, pcDNA3-*CBS*^{K211R}-*GFP* ou pcDNA3-*CBS*^{L540Q}-*GFP* pendant 48h. Les cellules ont ensuite été fixées au PFA 4% pendant 20 minutes et montées avec un milieu contenant du DAPI, puis observées en microscopie à fluorescence avec un filtre GFP. Le pourcentage de cellules contenant des agrégats a été calculé à partir d'un comptage d'environ 500 cellules par condition à l'aide du logiciel ImageJ.

Nous avons par la suite tenté d'identifier le type de structure dans lequel la protéine CBS surexprimée s'accumule. Par des expériences de colocalisation, nous n'avons pas observé de correspondance entre cette localisation et le réticulum endoplasmique (PDI), ni le trans-Golgi (TGN-38). En revanche, nous avons observé une colocalisation partielle entre les amas de CBS et les mitochondries, révélée par l'utilisation du Mitotracker Deep Red (Invitrogen), et avec la protéine BiP/GRP78 (figure 14).

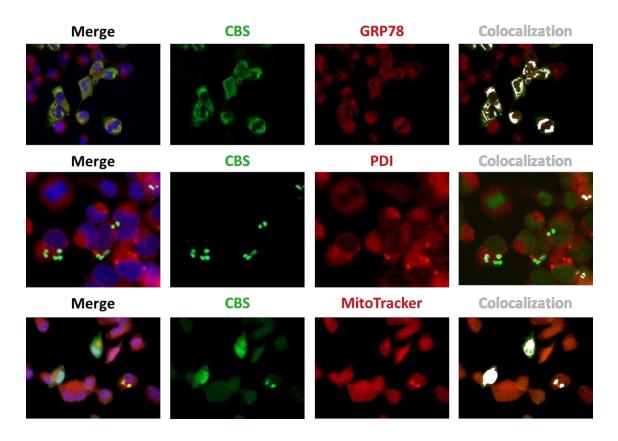


Figure 14. Colocalisation de CBS-FL avec les mitochondries et la protéine BiP/GRP78. Des cellules H1299 ont été transfectées par pcDNA3-CBS-FL pendant 48h, puis fixées au PFA 4% pendant 20 min et immunomarquées comme décrit dans la légende de la figure 13, avec des anticorps anti-CBS, anti-GRP78 ou anti-PDI. Le marquage des mitochondries a été réalisé avec 100 nM de MitoTracker DeepRed-FM (Invitrogen) pendant 45 minutes à 37°C. Les images de colocalisation ont été obtenues avec le plugin Colocalization d'ImageJ.

La colocalisation de CBS avec les mitochondries a déjà été rapportée par deux études (Bhattacharyya *et al.*, 2013 ; Szabo *et al.*, 2013) dans le cadre du cancer, où CBS est surexprimée de manière endogène. La colocalisation avec la protéine BiP/GRP78, en revanche, n'a pas été publiée auparavant. Cette protéine est généralement considérée comme une chaperone du réticulum endoplasmique, bien qu'elle semble avoir d'autres fonctions (Quinones *et al.*, 2008) et intervient dans la réponse au stress du réticulum endoplasmique (unfolded protein response, UPR). Dans des conditions normales, elle est localisée au niveau du réticulum endoplasmique, mais elle est majoritairement mitochondriale en cas d'UPR (Sun *et al.*, 2006). Comme nous n'avons pas mis en évidence de colocalisation entre CBS et la lumière du réticulum endoplasmique (voir PDI), il est donc très probable que cette colocalisation n'ait lieu qu'avec la fraction de BiP qui n'est pas au niveau du réticulum endoplasmique. De ce fait, nos résultats suggèrent que la surexpression de CBS pourrait être associée à un stress du réticulum endoplasmique. Bien que dans notre système la

surexpression de *CBS* soit artificielle, les résultats rapportés par les équipes de Battacharyya et Szabo suggèrent que, dans les cellules cancéreuses où *CBS* est surexprimée, un stress UPR pourrait avoir lieu. Or le déclenchement de l'UPR est un mécanisme par lequel les cellules cancéreuses peuvent résister à des conditions de stress (Urra *et al.*, 2016), qu'il serait donc intéressant d'étudier.

Dans la littérature, il a été rapporté que l'accumulation d'homocystéine, en cas d'hyperhomocystéinémie, induit une augmentation de l'expression de BiP/GRP78 (Outinen *et al.*, 1998 ; Werstuck *et al.*, 2001). Au contraire, chez des souris ATF4^{-/-}, les niveaux protéiques de CBS sont augmentés, alors que ceux de la CGL sont diminués (Dickhout *et al.*, 2012), mettant en évidence un lien entre l'UPR et la voie de transulfuration.

De manière intéressante, une interaction entre les homologues levure de CBS et BiP/GRP78, Cys4 et Kar2, est rapportée sur la base de données BioGrid⁶. Même si ce n'est pas le cas pour les protéines humaines, nos résultats suggèrent un lien entre ces deux protéines. Par manque de temps nous n'avons cependant pas pu poursuivre cette étude.

8. Implications pour le syndrome de Down

Les travaux rapportés dans l'article présenté dans ce manuscrit suggèrent que la modulation de l'activité cystathionine beta synthase pourrait avoir un effet sur le pH cytoplasmique des cellules. Nous avons mis en évidence que l'augmentation de la production de GSH et la diminution de méthionine, pouvant induire une inactivation de la voie TOR, sont impliqués dans le processus d'acidification du cytoplasme, et que les molécules ou les gènes allant à l'encontre de ces deux éléments pouvaient contrecarrer les conséquences de la surexpression de *CYS4*.

Dans le contexte du syndrome de Down, cependant, la quantité plasmatique de GSH est diminuée, probablement du fait de la surexpression de *SOD1* qui est également situé sur le chromosome 21 (Busciglio et Yankner, 1995 ; Pogribna *et al.*, 2001). Concernant la voie TOR, il a été rapporté qu'elle serait suractivée chez les patients atteints de syndrome de Down (Iyer *et al.*, 2014). De ce fait, il se peut que les mécanismes que nous avons identifiés dans ces travaux ne s'appliquent pas à la situation chez les patients atteints de cette pathologie, en particulier du fait de

⁶ Accessible à l'adresse : https://thebiogrid.org/33403/summary/saccharomyces-cerevisiae/cys4.html

la triplication de nombreux autres gènes qui interfèrent avec les conséquences d'une triplication de *CBS* seule.

9. Implications pour le cancer

Comme évoqué dans l'introduction, l'implication de la surexpression de *CBS* dans certains types de cancers a été révélée dans plusieurs études récentes, et plusieurs mécanismes ont été proposés pour expliquer ce phénomène. Les mécanismes que nous avons décrits en levure pourraient donc plus s'appliquer dans ce contexte, bien que la physiologie d'une cellule tumorale ne se limite généralement pas à la modification de l'expression d'un seul gène.

D'un point de vue thérapeutique, si la surexpression de CBS est effectivement un élément central du développement tumoral et/ou de la résistance aux traitements, les molécules que nous avons identifiées au cours de ces travaux pourraient constituer une stratégie thérapeutique pertinente. Par ailleurs, des propriétés anticancéreuses ont déjà été rapportées pour le DSF (Skrott *et al.*, 2017), le CQ (Ding *et al.*, 2005) et le ZPT (Zhao *et al.*, 2017), dont les bénéfices pourraient éventuellement s'ajouter aux effets relatifs à la surexpression de *CBS*. Ces molécules pourraient donc dans un premier temps être testées dans les modèles cellulaires des types de cancers dans lesquels la surexpression de *CBS* est impliquée.

- Abe, K., and Kimura, H. (1996). The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071.
- Adelson, L., and Sunshine, I. (1966). Fatal hydrogen sulfide intoxication. Report of three cases occurring in a sewer. Arch. Pathol. *81*, 375–380.
- Agrawal, N., and Banerjee, R. (2008). Human Polycomb 2 Protein Is a SUMO E3 Ligase and Alleviates Substrate-Induced Inhibition of Cystathionine β -Synthase Sumoylation. PLoS ONE 3, e4032.
- Altafaj, X., Dierssen, M., Baamonde, C., Martí, E., Visa, J., Guimerà, J., Oset, M., González, J.R., Flórez, J., Fillat, C., et al. (2001). Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum. Mol. Genet. 10, 1915–1923.
- Altafaj, X., Martín, E.D., Ortiz-Abalia, J., Valderrama, A., Lao-Peregrín, C., Dierssen, M., and Fillat, C. (2013). Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome. Neurobiol. Dis. 52, 117–127.
- Andersson, D.A., Gentry, C., Moss, S., and Bevan, S. (2009). Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+. Proc. Natl. Acad. Sci. U. S. A. *106*, 8374–8379.
- Antonarakis, S.E., Lyle, R., Dermitzakis, E.T., Reymond, A., and Deutsch, S. (2004). Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat. Rev. Genet. 5, 725–738.
- Asimakopoulou, A., Panopoulos, P., Chasapis, C.T., Coletta, C., Zhou, Z., Cirino, G., Giannis, A., Szabo, C., Spyroulias, G.A., and Papapetropoulos, A. (2013). Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE): Characterization of CSE and CBS inhibitors. Br. J. Pharmacol. *169*, 922–932.
- Awata, S., Nakayama, K., Suzuki, I., Sugahara, K., and Kodama, H. (1995). Changes in cystathionine gamma-lyase in various regions of rat brain during development. Biochem. Mol. Biol. Int. *35*, 1331–1338.
- Baggett, J.J., Shaw, J.D., Sciambi, C.J., Watson, H.A., and Wendland, B. (2003). Fluorescent labeling of yeast. Curr. Protoc. Cell Biol. 4–13.
- Banerjee, R., and Zou, C.-G. (2005). Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Arch. Biochem. Biophys. 433, 144–156.
- Bao, L., Vlček, Č., Pačes, V., and Kraus, J.P. (1998). Identification and Tissue Distribution of Human Cystathionine β-Synthase mRNA Isoforms. Arch. Biochem. Biophys. 350, 95–103.
- Barber, G.W., and Spaeth, G.L. (1967). PYRIDOXINE THERAPY IN HOMOCYSTINURIA. The Lancet *289*, 337.

- Barthelemy, C., Barry, A.O., Twyffels, L., and André, B. (2017). FTY720-induced endocytosis of yeast and human amino acid transporters is preceded by reduction of their inherent activity and TORC1 inhibition. Sci. Rep. *7*, 13816.
- Bateman, A. (1997). The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci. *22*, 12–13.
- Baykov, A.A., Tuominen, H.K., and Lahti, R. (2011). The CBS domain: a protein module with an emerging prominent role in regulation. ACS Chem. Biol. *6*, 1156–1163.
- Beck, T., Schmidt, A., and Hall, M.N. (1999). Starvation Induces Vacuolar Targeting and Degradation of the Tryptophan Permease in Yeast. J. Cell Biol. *146*, 1227–1238.
- Beeler, T., and Churchich, J.E. (1976). Reactivity of the phosphopyridoxal groups of cystathionase. J. Biol. Chem. 251, 5267–5271.
- Belardinelli, M.-C., Chabli, A., Chadefaux-Vekemans, B., and Kamoun, P. (2001). Urinary Sulfur Compounds in Down Syndrome. Clin. Chem. 47, 1500–1501.
- Bennett, J.W., and Abroms, K.I. (1979). Gametogenesis and incidence of Down syndrome. The Lancet 314, 913.
- Beyreuther, K., Pollwein, P., Multhaup, G., Mönning, U., König, G., Dyrks, T., Schubert, W., and Masters, C.L. (1993). Regulation and expression of the Alzheimer's beta/A4 amyloid protein precursor in health, disease, and Down's syndrome. Ann. N. Y. Acad. Sci. 695, 91– 102.
- Bhattacharyya, S., Saha, S., Giri, K., Lanza, I.R., Nair, K.S., Jennings, N.B., Rodriguez-Aguayo, C., Lopez-Berestein, G., Basal, E., Weaver, A.L., et al. (2013). Cystathionine Beta-Synthase (CBS) Contributes to Advanced Ovarian Cancer Progression and Drug Resistance. PLoS ONE 8, e79167.
- Bidder, R.T., Gray, P., Newcombe, R.G., Evans, B.K., and Hughes, M. (1989). The effects of multivitamins and minerals on children with Down syndrome. Dev. Med. Child Neurol. 31, 532–537.
- Billack, B., Pietka-Ottlik, M., Santoro, M., Nicholson, S., Młochowski, J., and Lau-Cam, C. (2010). Evaluation of the antifungal and plasma membrane H+-ATPase inhibitory action of ebselen and two ebselen analogs in S. cerevisiae cultures. J. Enzyme Inhib. Med. Chem. 25, 312–317.
- Boada, R., Hutaff-Lee, C., Schrader, A., Weitzenkamp, D., Benke, T.A., Goldson, E.J., and Costa,A.C.S. (2012). Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial. Transl. Psychiatry 2, e141.
- Bottiglieri, T. (2002). S-Adenosyl-l-methionine (SAMe): from the bench to the bedside—molecular basis of a pleiotrophic molecule. Am. J. Clin. Nutr. 76, 1151S–1157S.
- Bracey, D., Holyoak, C.D., and Coote, P.J. (1998). Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH? J. Appl. Microbiol. *85*, 1056–1066.
- Breton, A., and Surdin-Kerjan, Y. (1977). Sulfate Uptake in Saccharomyces cerevisiae: Biochemical and Genetic Study. J. Bacteriol. *132*, 224–232.

- Brett, C.L., Tukaye, D.N., Mukherjee, S., and Rao, R. (2005). The yeast endosomal Na+ (K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol. Biol. Cell *16*, 1396– 1405.
- Brewer, G.J. (2001). Zinc acetate for the treatment of Wilson's disease. Expert Opin. Pharmacother. 2, 1473–1477.
- Brewer, G.J., Dick, R.D., Johnson, V.D., Brunberg, J.A., Kluin, K.J., and Fink, J.K. (1998). Treatment of Wilson's disease with zinc: XV long-term follow-up studies. J. Lab. Clin. Med. *132*, 264–278.
- Bruno, S., Schiaretti, F., Burkhard, P., Kraus, J.P., Janosik, M., and Mozzarelli, A. (2001). Functional properties of the active core of human cystathionine beta-synthase crystals. J. Biol. Chem. 276, 16–19.
- Brzywczy, J., and Paszewski, A. (1994). Sulfur amino acid metabolism in Schizosaccharomyces pombe: occurrence of two O-acetylhomoserine sulfhydrylases and the lack of the reverse transfulfuration pathway. FEMS Microbiol. Lett. *121*, 171–174.
- Burrone, J., Li, Z., and Murthy, V.N. (2006). Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin. Nat. Protoc. *1*, 2970–2978.
- Busciglio, J., and Yankner, B.A. (1995). Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro. Nature *378*, 776–779.
- Cahoy, J.D., Emery, B., Kaushal, A., Foo, L.C., Zamanian, J.L., Christopherson, K.S., Xing, Y., Lubischer, J.L., Krieg, P.A., Krupenko, S.A., et al. (2008). A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function. J. Neurosci. 28, 264–278.
- Carson, N.A.J., and Neill, D.W. (1962). Metabolic Abnormalities Detected in a Survey of Mentally Backward Individuals in Northern Ireland. Arch. Dis. Child. *37*, 505–513.
- Casique, L., Kabil, O., Banerjee, R., Martinez, J.C., and De Lucca, M. (2013). Characterization of two pathogenic mutations in cystathionine beta-synthase: Different intracellular locations for wild-type and mutant proteins. Gene *531*, 117–124.
- Cataldo, A.M., Peterhoff, C.M., Troncoso, J.C., Gomez-Isla, T., Hyman, B.T., and Nixon, R.A. (2000). Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157, 277–286.
- Cen, D., Gonzalez, R.I., Buckmeier, J.A., Kahlon, R.S., Tohidian, N.B., and Meyskens, F.L. (2002). Disulfiram induces apoptosis in human melanoma cells: a redox-related process. Mol. Cancer Ther. 1, 197–204.
- Chadefaux, B., Rethoré, M.O., Raoul, O., Ceballos, I., Poissonnier, M., Gilgenkranz, S., and Allard, D. (1985). Cystathionine beta synthase: gene dosage effect in trisomy 21. Biochem. Biophys. Res. Commun. *128*, 40–44.
- Chan, G., Hardej, D., Santoro, M., Lau-Cam, C., and Billack, B. (2007). Evaluation of the antimicrobial activity of ebselen: role of the yeast plasma membrane H+-ATPase. J. Biochem. Mol. Toxicol. *21*, 252–264.

- Chen, D., and Dou, Q.P. (2008). New uses for old copper-binding drugs: converting the proangiogenic copper to a specific cancer cell death inducer. Expert Opin. Ther. Targets *12*, 739–748.
- Chen, D., Cui, Q.C., Yang, H., and Dou, Q.P. (2006). Disulfiram, a clinically used antialcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 66, 10425– 10433.
- Chen, W., Zebaze, L.N., Dong, J., Chézeau, L., Inquimbert, P., Hugel, S., Niu, S., Bihel, F., Boutant, E., Réal, E., et al. (2018). WNK1 kinase and its partners Akt, SGK1 and NBCfamily Na + /HCO3 – cotransporters are potential therapeutic targets for glioblastoma stemlike cells linked to Bisacodyl signaling. Oncotarget 9, 27197–27219.
- Chen, X., Jhee, K.-H., and Kruger, W.D. (2004). Production of the Neuromodulator H2S by Cystathionine β -Synthase via the Condensation of Cysteine and Homocysteine. J. Biol. Chem. 279, 52082–52086.
- Cheon, M.S., Dierssen, M., Kim, S.H., and Lubec, G. (2008). Protein expression of BACE1, BACE2 and APP in Down syndrome brains. Amino Acids *35*, 339–343.
- Cherney, M.M., Pazicni, S., Frank, N., Marvin, K.A., Kraus, J.P., and Burstyn, J.N. (2007). Ferrous Human Cystathionine β-Synthase Loses Activity during Enzyme Assay Due to a Ligand Switch Process [†]. Biochemistry (Mosc.) 46, 13199–13210.
- Chertok, V.M., Kotsyuba, A.E., and Kotsyuba, E.P. (2011). Cystathionine β-synthase in structural elements of the human brain and spinal cord. Cell Tissue Biol. *5*, 573–579.
- Chick, J. (1999). Safety issues concerning the use of disulfiram in treating alcohol dependence. Drug Saf. 20, 427–435.
- Clark, S., Schwalbe, J., Stasko, M.R., Yarowsky, P.J., and Costa, A.C.S. (2006). Fluoxetine rescues deficient neurogenesis in hippocampus of the Ts65Dn mouse model for Down syndrome. Exp. Neurol. *200*, 256–261.
- Colvin, R.A., Bush, A.I., Volitakis, I., Fontaine, C.P., Thomas, D., Kikuchi, K., and Holmes, W.R. (2008). Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am. J. Physiol. Cell Physiol. 294, C726-742.
- Cost, G.J., and Boeke, J.D. (1996). A useful colony colour phenotype associated with the yeast selectable/counter-selectable marker MET15. Yeast *12*, 939–941.
- Costa, A.C.S., Scott-McKean, J.J., and Stasko, M.R. (2008). Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a fear conditioning test. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. *33*, 1624–1632.
- Cox, D.R., and Epstein, C.J. (1985). Comparative gene mapping of human chromosome 21 and mouse chromosome 16. Ann. N. Y. Acad. Sci. *450*, 169–177.
- Crapeau, M., Merhi, A., and André, B. (2014). Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins. J. Biol. Chem. *289*, 22103–22116.

- Crawley, J.N. (2004). Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment. Retard. Dev. Disabil. Res. Rev. 10, 248–258.
- Currier, J.M., Cheng, W.-Y., Menendez, D., Conolly, R., and Chorley, B.N. (2016). Developing a Gene Biomarker at the Tipping Point of Adaptive and Adverse Responses in Human Bronchial Epithelial Cells. PLOS ONE *11*, e0155875.
- Cvek, B., and Dvorak, Z. (2008). The value of proteasome inhibition in cancer. Can the old drug, disulfiram, have a bright new future as a novel proteasome inhibitor? Drug Discov. Today *13*, 716–722.
- Dabbagh-Bazarbachi, H., Clergeaud, G., Quesada, I.M., Ortiz, M., O'Sullivan, C.K., and Fernández-Larrea, J.B. (2014). Zinc ionophore activity of quercetin and epigallocatechingallate: from Hepa 1-6 cells to a liposome model. J. Agric. Food Chem. 62, 8085–8093.
- Davisson, M.T., Schmidt, C., Reeves, R.H., Irving, N.G., Akeson, E.C., Harris, B.S., and Bronson, R.T. (1993). Segmental trisomy as a mouse model for Down syndrome. Prog. Clin. Biol. Res. 384, 117–133.
- De la Torre, R., De Sola, S., Pons, M., Duchon, A., de Lagran, M.M., Farré, M., Fitó, M., Benejam, B., Langohr, K., Rodriguez, J., et al. (2014). Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol. Nutr. Food Res. 58, 278–288.
- Dechant, R., Binda, M., Lee, S.S., Pelet, S., Winderickx, J., and Peter, M. (2010). Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J. 29, 2515–2526.
- Dechant, R., Saad, S., Ibáñez, A.J., and Peter, M. (2014). Cytosolic pH regulates cell growth through distinct GTPases, Arf1 and Gtr1, to promote Ras/PKA and TORC1 activity. Mol. Cell 55, 409–421.
- Delabar, J.-M., Latour, A., Noll, C., Renon, M., Salameh, S., Paul, J.-L., Arbones, M., Movassat, J., and Janel, N. (2014). One-carbon cycle alterations induced by Dyrk1a dosage. Mol. Genet. Metab. Rep. 1, 487–492.
- Deprez, M.-A., Eskes, E., Wilms, T., Ludovico, P., and Winderickx, J. (2018). pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity. Microb. Cell Graz Austria 5, 119–136.
- Dhaoui, M., Auchère, F., Blaiseau, P.-L., Lesuisse, E., Landoulsi, A., Camadro, J.-M., Haguenauer-Tsapis, R., and Belgareh-Touzé, N. (2011). Gex1 is a yeast glutathione exchanger that interferes with pH and redox homeostasis. Mol. Biol. Cell 22, 2054–2067.
- Dickhout, J.G., Carlisle, R.E., Jerome, D.E., Mohammed-Ali, Z., Jiang, H., Yang, G., Mani, S., Garg, S.K., Banerjee, R., Kaufman, R.J., et al. (2012). The integrated stress response modulates cellular redox state via induction of cystathionine γ-lyase: cross-talk between the integrated stress response and thiol metabolism. J. Biol. Chem. jbc.M111.304576.
- Ding, W.-Q., and Lind, S.E. (2009). Metal ionophores an emerging class of anticancer drugs. IUBMB Life 61, 1013–1018.
- Ding, J., Bierma, J., Smith, M.R., Poliner, E., Wolfe, C., Hadduck, A.N., Zara, S., Jirikovic, M., van Zee, K., Penner, M.H., et al. (2013). Acetic acid inhibits nutrient uptake in

Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl. Microbiol. Biotechnol. *97*, 7405–7416.

- Ding, W.-Q., Liu, B., Vaught, J.L., Yamauchi, H., and Lind, S.E. (2005). Anticancer activity of the antibiotic clioquinol. Cancer Res. *65*, 3389–3395.
- Ding, W.-Q., Yu, H.-J., and Lind, S.E. (2008). Zinc-binding compounds induce cancer cell death via distinct modes of action. Cancer Lett. *271*, 251–259.
- Diwakar, L., and Ravindranath, V. (2007). Inhibition of cystathionine-gamma-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem. Int. *50*, 418–426.
- Dormer, U.H., Westwater, J., McLaren, N.F., Kent, N.A., Mellor, J., and Jamieson, D.J. (2000). Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J. Biol. Chem. 275, 32611–32616.
- Dowjat, W.K., Adayev, T., Kuchna, I., Nowicki, K., Palminiello, S., Hwang, Y.W., and Wegiel, J. (2007). Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci. Lett. 413, 77–81.
- Down, J.L. (1866). Observations on an ethnic classification of idiots. Heredity 21, 695-697.
- Druzhyna, N., Szczesny, B., Olah, G., Módis, K., Asimakopoulou, A., Pavlidou, A., Szoleczky, P., Gerö, D., Yanagi, K., Törö, G., et al. (2016). Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer. Pharmacol. Res. *113*, 18–37.
- Dyachok, J., Earnest, S., Iturraran, E.N., Cobb, M.H., and Ross, E.M. (2016). Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism. J. Biol. Chem. 291, 22414– 22426.
- Eliot, A.C., and Kirsch, J.F. (2004). Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383–415.
- Enokido, Y., Suzuki, E., Iwasawa, K., Namekata, K., Okazawa, H., and Kimura, H. (2005). Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 19, 1854–1856.
- Epstein, C.J., Cox, D.R., and Epstein, L.B. (1985). Mouse trisomy 16: an animal model of human trisomy 21 (Down syndrome). Ann. N. Y. Acad. Sci. *450*, 157–168.
- Epstein, C.J., Korenberg, J.R., Annerén, G., Antonarakis, S.E., Aymé, S., Courchesne, E., Epstein, L.B., Fowler, A., Groner, Y., and Huret, J.L. (1991). Protocols to establish genotypephenotype correlations in Down syndrome. Am. J. Hum. Genet. 49, 207–235.
- Eraso, P., and Gancedo, C. (1987). Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett. 224, 187–192.
- Ereno-Orbea, J., Majtan, T., Oyenarte, I., Kraus, J.P., and Martinez-Cruz, L.A. (2013). Structural basis of regulation and oligomerization of human cystathionine -synthase, the central enzyme of transsulfuration. Proc. Natl. Acad. Sci. *110*, E3790–E3799.

- Eto, K., Ogasawara, M., Umemura, K., Nagai, Y., and Kimura, H. (2002). Hydrogen sulfide is produced in response to neuronal excitation. J. Neurosci. Off. J. Soc. Neurosci. 22, 3386–3391.
- Fauchon, M., Lagniel, G., Aude, J.C., Lombardia, L., Soularue, P., Petat, C., Marguerie, G., Sentenac, A., Werner, M., and Labarre, J. (2002). Sulfur sparing in the yeast proteome in response to sulfur demand. Mol. Cell 9, 713–723.
- Fei, E., Jia, N., Yan, M., Ying, Z., Sun, Q., Wang, H., Zhang, T., Ma, X., Ding, H., Yao, X., et al. (2006). SUMO-1 modification increases human SOD1 stability and aggregation. Biochem. Biophys. Res. Commun. 347, 406–412.
- Finkelstein, J.D., Mudd, S.H., Irreverre, F., and Laster, L. (1964). Homocystinuria due to Cystathionine Synthetase Deficiency: The Mode of Inheritance. Science *146*, 785–787.
- Finkelstein, J.D., Martin, J.J., and Harris, B.J. (1988). Methionine metabolism in mammals. The methionine-sparing effect of cystine. J. Biol. Chem. *263*, 11750–11754.
- Fisch, H., Hyun, G., Golden, R., Hensle, T.W., Olsson, C.A., and Liberson, G.L. (2003). The Influence of Paternal Age on Down Syndrome. J. Urol. *169*, 2275–2278.
- Forsburg, S.L. (2001). The art and design of genetic screens: yeast. Nat. Rev. Genet. 2, 659-668.
- Frank, N., Kent, J.O., Meier, M., and Kraus, J.P. (2008). Purification and characterization of the wild type and truncated human cystathionine beta-synthase enzymes expressed in E. coli. Arch. Biochem. Biophys. 470, 64–72.
- García-Cerro, S., Martínez, P., Vidal, V., Corrales, A., Flórez, J., Vidal, R., Rueda, N., Arbonés, M.L., and Martínez-Cué, C. (2014). Overexpression of Dyrk1A is implicated in several cognitive, electrophysiological and neuromorphological alterations found in a mouse model of Down syndrome. PloS One 9, e106572.
- Garrett, S., and Broach, J. (1989). Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev. *3*, 1336–1348.
- Garrett, S., Menold, M.M., and Broach, J.R. (1991). The Saccharomyces cerevisiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Mol. Cell. Biol. *11*, 4045–4052.
- Ge, Y., Matherly, L.H., and Taub, J.W. (2001a). Transcriptional Regulation of Cell-specific Expression of the Human Cystathionine -Synthase Gene by Differential Binding of Sp1/Sp3 to the -1b Promoter. J. Biol. Chem. *276*, 43570–43579.
- Ge, Y., Konrad, M.A., Matherly, L.H., and Taub, J.W. (2001b). Transcriptional regulation of the human cystathionine beta-synthase -1b basal promoter: synergistic transactivation by transcription factors NF-Y and Sp1/Sp3. Biochem. J. *357*, 97–105.
- Ge, Y., Jensen, T.L., Matherly, L.H., and Taub, J.W. (2002). Synergistic regulation of human cystathionine-beta-synthase-1b promoter by transcription factors NF-YA isoforms and Sp1. Biochim. Biophys. Acta *1579*, 73–80.
- Ge, Y., Jensen, T.L., Matherly, L.H., and Taub, J.W. (2003). Transcriptional regulation of the cystathionine-β-synthase gene in Down syndrome and non–Down syndrome megakaryocytic leukemia cell lines. Blood *101*, 1551–1557.

- Gerritsen, T., and Waisman, H.A. (1964). Homocystinuria: Absence of Cystathionine in the Brain. Science 145, 588–588.
- Gerritsen, T., Vaughn, J.G., and Waisman, H.A. (1962). The identification of homocystine in the urine. Biochem. Biophys. Res. Commun. *9*, 493–496.
- Gibon, J., Tu, P., Frazzini, V., Sensi, S.L., and Bouron, A. (2010). The thiol-modifying agent Nethylmaleimide elevates the cytosolic concentration of free Zn(2+) but not of Ca(2+) in murine cortical neurons. Cell Calcium *48*, 37–43.
- Gietz, R.D., and Schiestl, R.H. (2007). High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34.
- González, A., and Hall, M.N. (2017). Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. *36*, 397–408.
- Green, E.L., Taoka, S., Banerjee, R., and Loehr, T.M. (2001). Resonance Raman characterization of the heme cofactor in cystathionine beta-synthase. Identification of the Fe-S(Cys) vibration in the six-coordinate low-spin heme. Biochemistry (Mosc.) *40*, 459–463.
- Gribble, S.M., Wiseman, F.K., Clayton, S., Prigmore, E., Langley, E., Yang, F., Maguire, S., Fu, B., Rajan, D., Sheppard, O., et al. (2013). Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome. PloS One 8, e60482.
- Griffioen, G., Branduardi, P., Ballarini, A., Anghileri, P., Norbeck, J., Baroni, M.D., and Ruis, H. (2001). Nucleocytoplasmic Distribution of Budding Yeast Protein Kinase A Regulatory Subunit Bcy1 Requires Zds1 and Is Regulated by Yak1-Dependent Phosphorylation of Its Targeting Domain. Mol. Cell. Biol. 21, 511–523.
- Guedj, F., Sébrié, C., Rivals, I., Ledru, A., Paly, E., Bizot, J.C., Smith, D., Rubin, E., Gillet, B., Arbones, M., et al. (2009). Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PloS One *4*, e4606.
- Guidi, S., Stagni, F., Bianchi, P., Ciani, E., Giacomini, A., De Franceschi, M., Moldrich, R., Kurniawan, N., Mardon, K., Giuliani, A., et al. (2014). Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model. Brain J. Neurol. 137, 380–401.
- Haase, H., and Beyersmann, D. (2002). Intracellular zinc distribution and transport in C6 rat glioma cells. Biochem. Biophys. Res. Commun. 296, 923–928.
- Hamelet, J., Noll, C., Ripoll, C., Paul, J.-L., Janel, N., and Delabar, J.-M. (2009). Effect of hyperhomocysteinemia on the protein kinase DYRK1A in liver of mice. Biochem. Biophys. Res. Commun. 378, 673–677.
- Han, J.M., Jeong, S.J., Park, M.C., Kim, G., Kwon, N.H., Kim, H.K., Ha, S.H., Ryu, S.H., and Kim, S. (2012). Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1signaling pathway. Cell 149, 410–424.
- Hanney, M., Prasher, V., Williams, N., Jones, E.L., Aarsland, D., Corbett, A., Lawrence, D., Yu, L.-M., Tyrer, S., Francis, P.T., et al. (2012). Memantine for dementia in adults older than 40 years with Down's syndrome (MEADOWS): a randomised, double-blind, placebo-controlled trial. Lancet Lond. Engl. 379, 528–536.

- Hara, K., Yonezawa, K., Weng, Q.P., Kozlowski, M.T., Belham, C., and Avruch, J. (1998). Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484–14494.
- Hargreaves, I.P., Lee, P.J., and Briddon, A. (2002). Homocysteine and cysteine–albumin binding in homocystinuria: assessment of cysteine status and implications for glutathione synthesis? Amino Acids 22, 109–118.
- Harrell, R.F., Capp, R.H., Davis, D.R., Peerless, J., and Ravitz, L.R. (1981). Can nutritional supplements help mentally retarded children? an exploratory study. Proc. Natl. Acad. Sci. U. S. A. 78, 574–578.
- Hart, S.J., Visootsak, J., Tamburri, P., Phuong, P., Baumer, N., Hernandez, M.-C., Skotko, B.G., Ochoa-Lubinoff, C., Liogier D'Ardhuy, X., Kishnani, P.S., et al. (2017). Pharmacological interventions to improve cognition and adaptive functioning in Down syndrome: Strides to date. Am. J. Med. Genet. A. 173, 3029–3041.
- Hassold, T., and Hunt, P. (2001). To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. *2*, 280–291.
- Heil, S.G., Riksen, N.P., Boers, G.H., Smulders, Y., and Blom, H.J. (2007). DNA methylation status is not impaired in treated cystathionine beta-synthase (CBS) deficient patients. Mol. Genet. Metab. 91, 55–60.
- Hein, C., Springael, J.-Y., Volland, C., Haguenauer-Tsapis, R., and André, B. (1995). NPI1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin—protein ligase. Mol. Microbiol. *18*, 77–87.
- Heublein, S., Kazi, S., Ogmundsdóttir, M.H., Attwood, E.V., Kala, S., Boyd, C. a. R., Wilson, C., and Goberdhan, D.C.I. (2010). Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene 29, 4068–4079.
- Hogarth, G. (2012). Metal-dithiocarbamate complexes: chemistry and biological activity. Mini Rev. Med. Chem. *12*, 1202–1215.
- Holyoak, C.D., Bracey, D., Piper, P.W., Kuchler, K., and Coote, P.J. (1999). The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J. Bacteriol. *181*, 4644–4652.
- Homocysteine Studies Collaboration (2002). Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288, 2015–2022.
- Huang, C.W., and Moore, P.K. (2015). H2S Synthesizing Enzymes: Biochemistry and Molecular Aspects. Handb. Exp. Pharmacol. *230*, 3–25.
- Hueso, G., Aparicio-Sanchis, R., Montesinos, C., Lorenz, S., Murguía, J.R., and Serrano, R. (2012). A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress. Biochem. J. 441, 255–264.
- Ichinohe, A., Kanaumi, T., Takashima, S., Enokido, Y., Nagai, Y., and Kimura, H. (2005). Cystathionine β -synthase is enriched in the brains of Down's patients. Biochem. Biophys. Res. Commun. 338, 1547–1550.

- Iesmantavicius, V., Weinert, B.T., and Choudhary, C. (2014). Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells. Mol. Cell. Proteomics *13*, 1979–1992.
- Ivan, D.L., and Cromwell, P. (2014). Clinical practice guidelines for management of children with Down syndrome: part II. J. Pediatr. Health Care Off. Publ. Natl. Assoc. Pediatr. Nurse Assoc. Pract. 28, 280–284.
- Iyer, A.M., van Scheppingen, J., Milenkovic, I., Anink, J.J., Adle-Biassette, H., Kovacs, G.G., and Aronica, E. (2014). mTOR Hyperactivation in down syndrome hippocampus appears early during development. J. Neuropathol. Exp. Neurol. 73, 671–683.
- Jakubowski, H. (2004). Molecular basis of homocysteine toxicity in humans. Cell. Mol. Life Sci. CMLS *61*, 470–487.
- Janošík, M., Kery, V., Gaustadnes, M., Maclean, K.N., and Kraus, J.P. (2001). Regulation of Human Cystathionine β-Synthase by S-Adenosyl-l-methionine: Evidence for Two Catalytically Active Conformations Involving an Autoinhibitory Domain in the C-Terminal Region. Biochemistry (Mosc.) 40, 10625–10633.
- Johansson, B. (1992). A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatr. Scand. Suppl. *369*, 15–26.
- Jones, C.B., Ott, E.M., Keener, J.M., Curtiss, M., Sandrin, V., and Babst, M. (2012). Regulation of Membrane Protein Degradation by Starvation-Response Pathways. Traffic *13*, 468–482.
- Kabil, H., Kabil, O., Banerjee, R., Harshman, L.G., and Pletcher, S.D. (2011). Increased transsulfuration mediates longevity and dietary restriction in Drosophila. Proc. Natl. Acad. Sci. *108*, 16831–16836.
- Kabil, O., Zhou, Y., and Banerjee, R. (2006). Human Cystathionine β-Synthase Is a Target for Sumoylation. Biochemistry (Mosc.) 45, 13528–13536.
- Kaganovich, D., Kopito, R., and Frydman, J. (2008). Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088–1095.
- Kamat, P.K., Kalani, A., and Tyagi, N. (2015). Role of Hydrogen Sulfide in Brain Synaptic Remodeling. Methods Enzymol. 555, 207–229.
- Kamoun, P. (2001). Mental retardation in Down syndrome: a hydrogen sulfide hpothesis. Med. Hypotheses 57, 389–392.
- Kamoun, P., Belardinelli, M.-C., Chabli, A., Lallouchi, K., and Chadefaux-Vekemans, B. (2003). Endogenous hydrogen sulfide overproduction in Down syndrome. Am. J. Med. Genet. 116A, 310–311.
- Kashiwamata, S., and Greenberg, D.M. (1970). Studies on cystathionine synthase of rat liver properties of the highly purified enzyme. Biochim. Biophys. Acta BBA Enzymol. *212*, 488–500.
- Kawabe, H., Neeb, A., Dimova, K., Young, S.M., Takeda, M., Katsurabayashi, S., Mitkovski, M., Malakhova, O.A., Zhang, D.-E., Umikawa, M., et al. (2010). Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 65, 358–372.
- Kawahara, B., Moller, T., Hu-Moore, K., Carrington, S.J., Faull, K.F., Sen, S., and Mascharak, P.K. (2017). Attenuation of Antioxidant Capacity in Human Breast Cancer Cells by Carbon

Monoxide Through Inhibition of Cystathionine β-synthase Activity: Implications in Chemotherapeutic Drug Sensitivity. J. Med. Chem.

- Kawahata, M., Masaki, K., Fujii, T., and Iefuji, H. (2006). Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 6, 924–936.
- Kery, V., Bukovska, G., and Kraus, J.P. (1994). Transsulfuration depends on heme in addition to pyridoxal 5'-phosphate. Cystathionine beta-synthase is a heme protein. J. Biol. Chem. *269*, 25283–25288.
- Kery, V., Poneleit, L., and Kraus, J.P. (1998). Trypsin cleavage of human cystathionine β-synthase into an evolutionarily conserved active core: structural and functional consequences. Arch. Biochem. Biophys. *355*, 222–232.
- Kim, C.H., Kim, J.H., Hsu, C.Y., and Ahn, Y.S. (1999). Zinc is required in pyrrolidine dithiocarbamate inhibition of NF-kappaB activation. FEBS Lett. 449, 28–32.
- Kim, H., Lee, K.-S., Kim, A.-K., Choi, M., Choi, K., Kang, M., Chi, S.-W., Lee, M.-S., Lee, J.-S., Lee, S.-Y., et al. (2016). A chemical with proven clinical safety rescues Down-syndromerelated phenotypes in through DYRK1A inhibition. Dis. Model. Mech. 9, 839–848.
- Kimura, H. (2011). Hydrogen sulfide: its production, release and functions. Amino Acids *41*, 113–121.
- Kishnani, P.S., Sommer, B.R., Handen, B.L., Seltzer, B., Capone, G.T., Spiridigliozzi, G.A., Heller, J.H., Richardson, S., and McRae, T. (2009). The efficacy, safety, and tolerability of donepezil for the treatment of young adults with Down syndrome. Am. J. Med. Genet. A. 149A, 1641–1654.
- Kitson, T.M. (1977). The disulfiram--ethanol reaction: a review. J. Stud. Alcohol 38, 96–113.
- Komrower, G.M., Lambert, A.M., Cusworth, D.C., and Westall, R.G. (1966). Dietary treatment of homocystinuria. Arch. Dis. Child. *41*, 666–671.
- Koutmos, M., Kabil, O., Smith, J.L., and Banerjee, R. (2010). Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine β-synthase. Proc. Natl. Acad. Sci. U. S. A. *107*, 20958–20963.
- Kožich, V., Krijt, J., Sokolová, J., Melenovská, P., Ješina, P., Vozdek, R., Majtán, T., and Kraus, J.P. (2016). Thioethers as markers of hydrogen sulfide production in homocystinurias. Biochimie 126, 14–20.
- Kraus, J., Packman, S., Fowler, B., and Rosenberg, L.E. (1978). Purification and properties of cystathionine beta-synthase from human liver. Evidence for identical subunits. J. Biol. Chem. 253, 6523–6528.
- Kraus, J.P., Oliveriusová, J., Sokolová, J., Kraus, E., Vlček, Č., de Franchis, R., Maclean, K.N., Bao, L., Bukovská, G., Patterson, D., et al. (1998). The human cystathionine β -synthase (CBS) gene: complete sequence, alternative splicing, and polymorphisms. Genomics *52*, 312–324.

- Kraus, J.P., Janosík, M., Kozich, V., Mandell, R., Shih, V., Sperandeo, M.P., Sebastio, G., de Franchis, R., Andria, G., Kluijtmans, L.A., et al. (1999). Cystathionine beta-synthase mutations in homocystinuria. Hum. Mutat. 13, 362–375.
- Krebs, H.A., Wiggins, D., Stubbs, M., Sols, A., and Bedoya, F. (1983). Studies on the mechanism of the antifungal action of benzoate. Biochem. J. 214, 657–663.
- Kruger, W.D., and Cox, D.R. (1994). A yeast system for expression of human cystathionine betasynthase: structural and functional conservation of the human and yeast genes. Proc. Natl. Acad. Sci. 91, 6614–6618.
- Kruger et Cox (1995). A yeast assay for functional detection of mutations in the human cystathionine beta-synthase gene. PubMed NCBI.
- Kwolek-Mirek, M., Zadrag-Tecza, R., and Bartosz, G. (2012). Ascorbate and thiol antioxidants abolish sensitivity of yeast Saccharomyces cerevisiae to disulfiram. Cell Biol. Toxicol. 28, 1– 9.
- Lane, A.A., Chapuy, B., Lin, C.Y., Tivey, T., Li, H., Townsend, E.C., van Bodegom, D., Day, T.A., Wu, S.-C., Liu, H., et al. (2014). Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nat. Genet. 46, 618–623.
- Lang, M.J., Martinez-Marquez, J.Y., Prosser, D.C., Ganser, L.R., Buelto, D., Wendland, B., and Duncan, M.C. (2014). Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization by down-regulating recycling. J. Biol. Chem. 289, 16736–16747.
- Laxman, S., Sutter, B.M., Shi, L., and Tu, B.P. (2014). Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites. Sci. Signal. 7, ra120.
- Lee, M., Schwab, C., Yu, S., McGeer, E., and McGeer, P.L. (2009). Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol. Aging *30*, 1523–1534.
- Lee, P., Paik, S.-M., Shin, C.-S., Huh, W.-K., and Hahn, J.-S. (2011). Regulation of yeast Yak1 kinase by PKA and autophosphorylation-dependent 14-3-3 binding: Regulation of Yak1 by PKA and 14-3-3. Mol. Microbiol. *79*, 633–646.
- Lejeune, J., Gautier, M., and Turpin, R. (1959). Etude des chromosomes somatiques de neuf enfants mongoliens. Comptes Rendus Hebd. Séances Académie Sci. 248, 1721–1722.
- Lejeune, J., Rethoré, M.O., de Blois, M.C., Peeters, M., Naffah, J., Megarbane, A., Cattaneo, F., Mircher, C., Rabier, D., and Parvy, P. (1992). [Amino acids and trisomy 21]. Ann. Genet. 35, 8–13.
- Li, C., Wang, J., and Zhou, B. (2010). The Metal Chelating and Chaperoning Effects of Clioquinol: Insights from Yeast Studies. J. Alzheimers Dis. 21, 1249–1262.
- Li, L., Xie, R., Hu, S., Wang, Y., Yu, T., Xiao, Y., Jiang, X., Gu, J., Hu, C.-Y., and Xu, G.-Y. (2012). Upregulation of Cystathionine Beta-Synthetase Expression by Nuclear Factor-Kappa B Activation Contributes to Visceral Hypersensitivity in Adult Rats with Neonatal Maternal Deprivation. Mol. Pain *8*, 1744-8069-8–89.

- Li, Y.N., Gulati, S., Baker, P.J., Brody, L.C., Banerjee, R., and Kruger, W.D. (1996). Cloning, mapping and RNA analysis of the human methionine synthase gene. Hum. Mol. Genet. 5, 1851–1858.
- Lim, M.-Y., Dailey, D., Martin, G.S., and Thorner, J. (1993). Yeast MCK1 protein kinase autophosphorylates at tyrosine and serine but phosphorylates exogenous substrates at serine and threonine. J. Biol. Chem. *268*, 21155–21164.
- Lima, A.S., Cardoso, B.R., and Cozzolino, S.F. (2010). Nutritional status of zinc in children with Down syndrome. Biol. Trace Elem. Res. *133*, 20–28.
- Linden, D.R., Sha, L., Mazzone, A., Stoltz, G.J., Bernard, C.E., Furne, J.K., Levitt, M.D., Farrugia, G., and Szurszewski, J.H. (2008). Production of the gaseous signal molecule hydrogen sulfide in mouse tissues. J. Neurochem. *106*, 1577–1585.
- Loewith, R., and Hall, M.N. (2011). Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control. Genetics *189*, 1177–1201.
- Loiselle, F.B., and Casey, J.R. (2010). Measurement of Intracellular pH. Methods Mol. Biol. Clifton NJ 637, 311–331.
- Longtine, M.S., McKenzie, A., Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast Chichester Engl. 14, 953–961.
- Lushchak, V., Semchyshyn, H., Lushchak, O., and Mandryk, S. (2005). Diethyldithiocarbamate inhibits in vivo Cu,Zn-superoxide dismutase and perturbs free radical processes in the yeast Saccharomyces cerevisiae cells. Biochem. Biophys. Res. Commun. *338*, 1739–1744.
- Lyle, R., Béna, F., Gagos, S., Gehrig, C., Lopez, G., Schinzel, A., Lespinasse, J., Bottani, A., Dahoun, S., Taine, L., et al. (2009). Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur. J. Hum. Genet. EJHG 17, 454–466.
- Lynch, M.A. (2004). Long-term potentiation and memory. Physiol. Rev. 84, 87-136.
- MacGurn, J.A., Hsu, P.-C., Smolka, M.B., and Emr, S.D. (2011). TORC1 Regulates Endocytosis via Npr1-Mediated Phosphoinhibition of a Ubiquitin Ligase Adaptor. Cell *147*, 1104–1117.
- Maclean, K.N., Kraus, E., and Kraus, J.P. (2004). The Dominant Role of Sp1 in Regulating the Cystathionine -Synthase -1a and -1b Promoters Facilitates Potential Tissue-specific Regulation by Kruppel-like Factors. J. Biol. Chem. 279, 8558–8566.
- Mahmoud, S., Planes, M.D., Cabedo, M., Trujillo, C., Rienzo, A., Caballero-Molada, M., Sharma, S.C., Montesinos, C., Mulet, J.M., and Serrano, R. (2017). TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis. FEBS Lett. 591, 1993–2002.
- Mahon, M.J. (2011). pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Adv. Biosci. Biotechnol. *02*, 132–137.
- Majtan, T., Singh, L.R., Wang, L., Kruger, W.D., and Kraus, J.P. (2008). Active cystathionine beta-synthase can be expressed in heme-free systems in the presence of metal-substituted porphyrins or a chemical chaperone. J. Biol. Chem. *283*, 34588–34595.

- Majtan, T., Pey, A.L., Fernández, R., Fernández, J.A., Martínez-Cruz, L.A., and Kraus, J.P. (2014). Domain Organization, Catalysis and Regulation of Eukaryotic Cystathionine Beta-Synthases. PLoS ONE *9*, e105290.
- Mandaviya, P.R., Stolk, L., and Heil, S.G. (2014). Homocysteine and DNA methylation: A review of animal and human literature. Mol. Genet. Metab. *113*, 243–252.
- Mann, D.M. (1988). The pathological association between Down syndrome and Alzheimer disease. Mech. Ageing Dev. 43, 99–136.
- Maréchal, D., Brault, V., Léon, A., Martin, D., Lopez Pereira, P., Loaëc, N., Birling, M.-C., Friocourt, G., Blondel, M., and Hérault, Y. (2018). Genetic and pharmacological interventions unravel the contribution of Cbs to the cognitive defects in mouse models of Down syndrome through epistatic interaction with Dyrk1a. Submiss.
- Martínez-Muñoz, G.A., and Kane, P. (2008). Vacuolar and Plasma Membrane Proton Pumps Collaborate to Achieve Cytosolic pH Homeostasis in Yeast. J. Biol. Chem. 283, 20309– 20319.
- Mathieu, C., Duval, R., Xu, X., Rodrigues-Lima, F., and Dupret, J.-M. (2015). Effects of pesticide chemicals on the activity of metabolic enzymes: focus on thiocarbamates. Expert Opin. Drug Metab. Toxicol. *11*, 81–94.
- McCune, C.D., Chan, S.J., Beio, M.L., Shen, W., Chung, W.J., Szczesniak, L.M., Chai, C., Koh, S.Q., Wong, P.T.-H., and Berkowitz, D.B. (2016). "Zipped Synthesis" by Cross-Metathesis Provides a Cystathionine β-Synthase Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model. ACS Cent. Sci. 2, 242–252.
- Meier, M., Janosik, M., Kery, V., Kraus, J.P., and Burkhard, P. (2001). Structure of human cystathionine β-synthase: a unique pyridoxal 5'-phosphate-dependent heme protein. EMBO J. 20, 3910–3916.
- Mendes, M.I.S., Colaço, H.G., Smith, D.E.C., Ramos, R.J.J.F., Pop, A., van Dooren, S.J.M., Tavares de Almeida, I., Kluijtmans, L.A.J., Janssen, M.C.H., Rivera, I., et al. (2014). Reduced response of Cystathionine Beta-Synthase (CBS) to S-Adenosylmethionine (SAM): Identification and functional analysis of CBS gene mutations in Homocystinuria patients. J. Inherit. Metab. Dis. *37*, 245–254.
- Miesenböck, G., De Angelis, D.A., and Rothman, J.E. (1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature *394*, 192–195.
- Mitchell, S.F., Jain, S., She, M., and Parker, R. (2012). Global analysis of yeast mRNPs. Nat. Struct. Mol. Biol. 20, 127–133.
- Miyamoto, R., Otsuguro, K., Yamaguchi, S., and Ito, S. (2015). Neuronal regulation of expression of hydrogen sulfide-producing enzyme cystathionine β-synthase in rat spinal cord astrocytes. Neurosci. Res. *97*, 52–59.
- Moriya, H., Shimizu-Yoshida, Y., Omori, A., Iwashita, S., Katoh, M., and Sakai, A. (2001). Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev. *15*, 1217–1228.
- Mosharov, E., Cranford, M.R., and Banerjee, R. (2000). The Quantitatively Important Relationship between Homocysteine Metabolism and Glutathione Synthesis by the

Transsulfuration Pathway and Its Regulation by Redox Changes[†]. Biochemistry (Mosc.) *39*, 13005–13011.

- Mudd, S.H., Finkelstein, J.D., Irreverre, F., and Laster, L. (1964). Homocystinuria: an enzymatic defect. Science 1, 1.
- Mudd, S.H., Finkelstein, J.D., Irreverre, F., and Laster, L. (1965). Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J. Biol. Chem. 240, 4382–4392.
- Mudd, S.H., Skovby, F., Levy, H.L., Pettigrew, K.D., Wilcken, B., Pyeritz, R.E., Andria, G., Boers, G.H., Bromberg, I.L., Cerone, R., et al. (1985). The natural history of homocystinuria due to cystathionine β-synthase deficiency. Am. J. Hum. Genet. 37, 1.
- Mumberg, D., Müller, R., and Funk, M. (1995). Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene *156*, 119–122.
- Münke, M., Kraus, J.P., Ohura, T., and Francke, U. (1988). The gene for cystathionine betasynthase (CBS) maps to the subtelomeric region on human chromosome 21q and to proximal mouse chromosome 17. Am. J. Hum. Genet. *42*, 550–559.
- Murrell, J.R., Hake, A.M., Quaid, K.A., Farlow, M.R., and Ghetti, B. (2000). Early-onset Alzheimer disease caused by a new mutation (V717L) in the amyloid precursor protein gene. Arch. Neurol. *57*, 885–887.
- Nagai, Y., Tsugane, M., Oka, J.-I., and Kimura, H. (2004). Hydrogen sulfide induces calcium waves in astrocytes. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 18, 557–559.
- Nagy, P., Pálinkás, Z., Nagy, A., Budai, B., Tóth, I., and Vasas, A. (2014). Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim. Biophys. Acta BBA Gen. Subj. *1840*, 876–891.
- Nakano-Kobayashi, A., Awaya, T., Kii, I., Sumida, Y., Okuno, Y., Yoshida, S., Sumida, T., Inoue, H., Hosoya, T., and Hagiwara, M. (2017). Prenatal neurogenesis induction therapy normalizes brain structure and function in Down syndrome mice. Proc. Natl. Acad. Sci. U. S. A. 114, 10268–10273.
- Narayanaswamy, R., Levy, M., Tsechansky, M., Stovall, G.M., O'Connell, J.D., Mirrielees, J., Ellington, A.D., and Marcotte, E.M. (2009). Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc. Natl. Acad. Sci. 106, 10147–10152.
- Neumann, F., Gourdain, S., Albac, C., Dekker, A.D., Bui, L.C., Dairou, J., Schmitz-Afonso, I., Hue, N., Rodrigues-Lima, F., Delabar, J.M., et al. (2018). DYRK1A inhibition and cognitive rescue in a Down syndrome mouse model are induced by new fluoro-DANDY derivatives. Sci. Rep. 8, 2859.
- Nguyen, T.L., Duchon, A., Manousopoulou, A., Loaëc, N., Villiers, B., Pani, G., Karatas, M., Mechling, A.E., Harsan, L.-A., Limanton, E., et al. (2018). Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A. Dis. Model. Mech. 11.

- Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., Yang, H., Hild, M., Kung, C., Wilson, C., et al. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell *136*, 521–534.
- Niu, W., Wu, P., Chen, F., Wang, J., Shang, X., and Xu, C. (2017). Discovery of selective cystathionine β-synthase inhibitors by high-throughput screening with a fluorescent thiol probe. Med Chem Commun 8, 198–201.
- Noll, C., Planque, C., Ripoll, C., Guedj, F., Diez, A., Ducros, V., Belin, N., Duchon, A., Paul, J.-L., Badel, A., et al. (2009). DYRK1A, a Novel Determinant of the Methionine-Homocysteine Cycle in Different Mouse Models Overexpressing this Down-Syndrome-Associated Kinase. PLoS ONE 4, e7540.
- North, M., Steffen, J., Loguinov, A.V., Zimmerman, G.R., Vulpe, C.D., and Eide, D.J. (2012). Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet. *8*, e1002699.
- Obeid, R., and Herrmann, W. (2006). Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. *580*, 2994–3005.
- O'Connell, J.D. (2012). Systemic protein aggregation in stress and aging restructures cytoplasmic architecture.
- O'Doherty, A., Ruf, S., Mulligan, C., Hildreth, V., Errington, M.L., Cooke, S., Sesay, A., Modino, S., Vanes, L., Hernandez, D., et al. (2005). An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science *309*, 2033–2037.
- Oliveriusová, J., Kery, V., Maclean, K.N., and Kraus, J.P. (2002). Deletion mutagenesis of human cystathionine beta-synthase. Impact on activity, oligomeric status, and S-adenosylmethionine regulation. J. Biol. Chem. *277*, 48386–48394.
- Olney, J.W., Price, M.T., Salles, K.S., Labruyere, J., Ryerson, R., Mahan, K., Frierdich, G., and Samson, L. (1987). L-homocysteic acid: an endogenous excitotoxic ligand of the NMDA receptor. Brain Res. Bull. *19*, 597–602.
- Olson, K.R., DeLeon, E.R., and Liu, F. (2014). Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide *41*, 11–26.
- Oluwatosin, Y.E., and Kane, P.M. (1997). Mutations in the CYS4 gene provide evidence for regulation of the yeast vacuolar H+-ATPase by oxidation and reduction in vivo. J. Biol. Chem. 272, 28149–28157.
- Ono, B., Ishii, N., Fujino, S., and Aoyama, I. (1991). Role of hydrosulfide ions (HS-) in methylmercury resistance in Saccharomyces cerevisiae. Appl. Environ. Microbiol. *57*, 3183–3186.
- Orendáč, M., Zeman, J., Stabler, S.P., Allen, R.H., Kraus, J.P., Bodamer, O., Stöckler-Ipsiroglu, S., Kvasnička, J., and Kožich, V. (2003). Homocystinuria due to cystathionine β-synthase deficiency: Novel biochemical findings and treatment efficacy. J. Inherit. Metab. Dis. *26*, 761–773.
- Orij, R., Brul, S., and Smits, G.J. (2011). Intracellular pH is a tightly controlled signal in yeast. Biochim. Biophys. Acta 1810, 933–944.

- Orumets, K., Kevvai, K., Nisamedtinov, I., Tamm, T., and Paalme, T. (2012). YAP1 overexpression in Saccharomyces cerevisiae enhances glutathione accumulation at its biosynthesis and substrate availability levels. Biotechnol. J. *7*, 566–568.
- Oskarsson, A., and Lind, B. (1985). Increased lead levels in brain after long-term treatment with lead and dithiocarbamate or thiuram derivatives in rats. Acta Pharmacol. Toxicol. (Copenh.) 56, 309–315.
- Outinen, P.A., Sood, S.K., Liaw, P.C.Y., Sarge, K.D., Maeda, N., Hirsh, J., Ribau, J., Podor, T.J., Weitz, J.I., and Austin, R.C. (1998). Characterization of the stress-inducing effects of homocysteine. Biochem. J. 332, 213–221.
- Oyama, F., Cairns, N.J., Shimada, H., Oyama, R., Titani, K., and Ihara, Y. (1994). Down's syndrome: up-regulation of beta-amyloid protein precursor and tau mRNAs and their defective coordination. J. Neurochem. *62*, 1062–1066.
- Ozer, H.K., Dlouhy, A.C., Thornton, J.D., Hu, J., Liu, Y., Barycki, J.J., Balk, J., and Outten, C.E. (2015). Cytosolic Fe-S Cluster Protein Maturation and Iron Regulation Are Independent of the Mitochondrial Erv1/Mia40 Import System. J. Biol. Chem. jbc.M115.682179.
- Ozkan, P., and Mutharasan, R. (2002). A rapid method for measuring intracellular pH using BCECF-AM. Biochim. Biophys. Acta 1572, 143–148.
- Pagani, M.A., Casamayor, A., Serrano, R., Atrian, S., and Ariño, J. (2007). Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study. Mol. Microbiol. 65, 521–537.
- Pazicni, S., Lukat-Rodgers, G.S., Oliveriusová, J., Rees, K.A., Parks, R.B., Clark, R.W., Rodgers, K.R., Kraus, J.P., and Burstyn, J.N. (2004). The redox behavior of the heme in cystathionine beta-synthase is sensitive to pH. Biochemistry (Mosc.) 43, 14684–14695.
- Pazicni, S., Cherney, M.M., Lukat-Rodgers, G.S., Oliveriusová, J., Rodgers, K.R., Kraus, J.P., and Burstyn, J.N. (2005). The heme of cystathionine beta-synthase likely undergoes a thermally induced redox-mediated ligand switch. Biochemistry (Mosc.) 44, 16785–16795.
- Pearce, A.K., Booth, I.R., and Brown, A.J. (2001). Genetic manipulation of 6-phosphofructo-1kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae. Microbiol. Read. Engl. *147*, 403–410.
- Penrose, L.S. (1933). The relative effects of paternal and maternal age in mongolism. 1933. J. Genet. 88, 9–14.
- Pereira, P.L., Magnol, L., Sahún, I., Brault, V., Duchon, A., Prandini, P., Gruart, A., Bizot, J.-C., Chadefaux-Vekemans, B., Deutsch, S., et al. (2009). A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum. Mol. Genet. 18, 4756–4769.
- Persa, C., Osmotherly, K., Chao-Wei Chen, K., Moon, S., and Lou, M.F. (2006). The distribution of cystathionine beta-synthase (CBS) in the eye: implication of the presence of a transsulfuration pathway for oxidative stress defense. Exp. Eye Res. *83*, 817–823.
- Piper, P., Mahé, Y., Thompson, S., Pandjaitan, R., Holyoak, C., Egner, R., Mühlbauer, M., Coote, P., and Kuchler, K. (1998). The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J. 17, 4257–4265.

- Planque, C., Dairou, J., Noll, C., Bui, L.-C., Ripoll, C., Guedj, F., Delabar, J.-M., and Janel, N. (2013). Mice Deficient in Cystathionine Beta Synthase Display Increased Dyrk1A and SAHH Activities in Brain. J. Mol. Neurosci. 50, 1–6.
- Pogribna, M., Melnyk, S., Pogribny, I., Chango, A., Yi, P., and James, S.J. (2001). Homocysteine metabolism in children with Down syndrome: in vitro modulation. Am. J. Hum. Genet. *69*, 88–95.
- Prelich, G. (2012). Gene Overexpression: Uses, Mechanisms, and Interpretation. Genetics 190, 841–854.
- Pridgeon, J.W., Webber, E.A., Sha, D., Li, L., and Chin, L.-S. (2009). Proteomic analysis reveals Hrs ubiquitin-interacting motif-mediated ubiquitin signaling in multiple cellular processes: Hrs UIM-mediated protein interactions. FEBS J. 276, 118–131.
- Pueschel, S.M., Reed, R.B., Cronk, C.E., and Goldstein, B.I. (1980). 5-hydroxytryptophan and pyridoxine. Their effects in young children with Down's syndrome. Am. J. Dis. Child. 1960 *134*, 838–844.
- Quéré, I., Paul, V., Rouillac, C., Janbon, C., London, J., Demaille, J., Kamoun, P., Dufier, J.L., Abitbol, M., and Chassé, J.F. (1999). Spatial and temporal expression of the cystathionine beta-synthase gene during early human development. Biochem. Biophys. Res. Commun. 254, 127–137.
- Quinones, Q.J., de Ridder, G.G., and Pizzo, S.V. (2008). GRP78: a chaperone with diverse roles beyond the endoplasmic reticulum. Histol. Histopathol. *23*, 1409–1416.
- Rahmani, Z., Blouin, J.L., Créau-Goldberg, N., Watkins, P.C., Mattei, J.F., Poissonnier, M., Prieur, M., Chettouh, Z., Nicole, A., and Aurias, A. (1990). Down syndrome critical region around D21S55 on proximal 21q22.3. Am. J. Med. Genet. Suppl. 7, 98–103.
- Ratnam, S., Maclean, K.N., Jacobs, R.L., Brosnan, M.E., Kraus, J.P., and Brosnan, J.T. (2002). Hormonal regulation of cystathionine beta-synthase expression in liver. J. Biol. Chem. 277, 42912–42918.
- Reeves, R.H., Irving, N.G., Moran, T.H., Wohn, A., Kitt, C., Sisodia, S.S., Schmidt, C., Bronson, R.T., and Davisson, M.T. (1995). A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat. Genet. 11, 177–184.
- Régnier, V., Billard, J.-M., Gupta, S., Potier, B., Woerner, S., Paly, E., Ledru, A., David, S., Luilier, S., Bizot, J.-C., et al. (2012). Brain Phenotype of Transgenic Mice Overexpressing Cystathionine β-Synthase. PLOS ONE 7, e29056.
- Robert, K., Vialard, F., Thiery, E., Toyama, K., Sinet, P.-M., Janel, N., and London, J. (2003). Expression of the Cystathionine β Synthase (CBS) Gene During Mouse Development and Immunolocalization in Adult Brain. J. Histochem. Cytochem. 51, 363–371.
- Roizen, N.J., and Patterson, D. (2003). Down's syndrome. Lancet Lond. Engl. 361, 1281–1289.
- Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerrière, A., Vital, A., Dumanchin, C., Feuillette, S., Brice, A., Vercelletto, M., et al. (2006). APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24–26.

- Roy, A., Khan, A.H., Islam, M.T., Prieto, M.C., and Majid, D.S.A. (2012). Interdependency of cystathione γ -lyase and cystathione β -synthase in hydrogen sulfide-induced blood pressure regulation in rats. Am. J. Hypertens. 25, 74–81.
- Ruckenstuhl, C., Netzberger, C., Entfellner, I., Carmona-Gutierrez, D., Kickenweiz, T., Stekovic, S., Gleixner, C., Schmid, C., Klug, L., Sorgo, A.G., et al. (2014). Lifespan Extension by Methionine Restriction Requires Autophagy-Dependent Vacuolar Acidification. PLoS Genet. 10, e1004347.
- Rueda, N., Flórez, J., and Martínez-Cué, C. (2012). Mouse Models of Down Syndrome as a Tool to Unravel the Causes of Mental Disabilities.
- Sacharow, S.J., Picker, J.D., and Levy, H.L. (1993). Homocystinuria Caused by Cystathionine Beta-Synthase Deficiency. In GeneReviews[®], M.P. Adam, H.H. Ardinger, R.A. Pagon, S.E. Wallace, L.J. Bean, H.C. Mefford, K. Stephens, A. Amemiya, and N. Ledbetter, eds. (Seattle (WA): University of Washington, Seattle), p.
- Salehi, A., Delcroix, J.-D., Belichenko, P.V., Zhan, K., Wu, C., Valletta, J.S., Takimoto-Kimura, R., Kleschevnikov, A.M., Sambamurti, K., Chung, P.P., et al. (2006). Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51, 29–42.
- Sambade, M. (2005). A Genomic Screen for Yeast Vacuolar Membrane ATPase Mutants. Genetics *170*, 1539–1551.
- Samuelson, A.C., Stockert, R.J., Novikoff, A.B., Novikoff, P.M., Saez, J.C., Spray, D.C., and Wolkoff, A.W. (1988). Influence of cytosolic pH on receptor-mediated endocytosis of asialoorosomucoid. Am. J. Physiol. 254, C829-838.
- Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L., and Sabatini, D.M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501.
- Sandvig, K., Olsnes, S., Petersen, O.W., and van Deurs, B. (1988). Inhibition of endocytosis from coated pits by acidification of the cytosol. J. Cell. Biochem. *36*, 73–81.
- Schmelzle, T., Beck, T., Martin, D.E., and Hall, M.N. (2004). Activation of the RAS/Cyclic AMP Pathway Suppresses a TOR Deficiency in Yeast. Mol. Cell. Biol. *24*, 338–351.
- Schwappach, B., Stobrawa, S., Hechenberger, M., Steinmeyer, K., and Jentsch, T.J. (1998). Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p. J. Biol. Chem. 273, 15110–15118.
- Sen, S., Kawahara, B., Gupta, D., Tsai, R., Khachatryan, M., Roy-Chowdhuri, S., Bose, S., Yoon, A., Faull, K., Farias-Eisner, R., et al. (2015). Role of cystathionine β-synthase in human breast Cancer. Free Radic. Biol. Med. 86, 228–238.
- Sen, S., Kawahara, B., Mahata, S.K., Tsai, R., Yoon, A., Hwang, L., Hu-Moore, K., Villanueva, C., Vajihuddin, A., Parameshwar, P., et al. (2016). Cystathionine: A novel oncometabolite in human breast cancer. Arch. Biochem. Biophys. 604, 95–102.
- Shan, X., Jr, D., L, R., Christopher, S.A., and Kruger, W.D. (2001). Mutations in the regulatory domain of cystathionine β–synthase can functionally suppress patient-derived mutations in cis. Hum. Mol. Genet. 10, 635–643.

- Shibuya, N., Tanaka, M., Yoshida, M., Ogasawara, Y., Togawa, T., Ishii, K., and Kimura, H. (2009). 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal. 11, 703–714.
- Singh, L.R., Gupta, S., Honig, N.H., Kraus, J.P., and Kruger, W.D. (2010). Activation of Mutant Enzyme Function In Vivo by Proteasome Inhibitors and Treatments that Induce Hsp70. PLoS Genet. 6, e1000807.
- Singh, S., Padovani, D., Leslie, R.A., Chiku, T., and Banerjee, R. (2009). Relative Contributions of Cystathionine -Synthase and -Cystathionase to H2S Biogenesis via Alternative Transsulfuration Reactions. J. Biol. Chem. 284, 22457–22466.
- Skovby, F., Gaustadnes, M., and Mudd, S.H. (2010). A revisit to the natural history of homocystinuria due to cystathionine β -synthase deficiency. Mol. Genet. Metab. 99, 1–3.
- Skrott, Z., Mistrik, M., Andersen, K.K., Friis, S., Majera, D., Gursky, J., Ozdian, T., Bartkova, J., Turi, Z., Moudry, P., et al. (2017). Alcohol-abuse drug disulfiram targets cancer via p97 segregase adapter NPL4. Nature 552, 194–199.
- Smolin, L.A., Benevenga, N.J., and Berlow, S. (1981). The use of betaine for the treatment of homocystinuria. J. Pediatr. 99, 467–472.
- Spiridigliozzi, G.A., Hart, S.J., Heller, J.H., Schneider, H.E., Baker, J.A., Weadon, C., Capone, G.T., and Kishnani, P.S. (2016). Safety and efficacy of rivastigmine in children with Down syndrome: A double blind placebo controlled trial. Am. J. Med. Genet. A. 170, 1545–1555.
- Stagni, F., Giacomini, A., Emili, M., Guidi, S., Ciani, E., and Bartesaghi, R. (2017). Epigallocatechin gallate: A useful therapy for cognitive disability in Down syndrome? Neurogenesis Austin Tex 4, e1270383.
- Steiger, M.G., Patzschke, A., Holz, C., Lang, C., Causon, T., Hann, S., Mattanovich, D., and Sauer, M. (2017). Impact of glutathione metabolism on zinc homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res. 17.
- Sun, F.-C., Wei, S., Li, C.-W., Chang, Y.-S., Chao, C.-C., and Lai, Y.-K. (2006). Localization of GRP78 to mitochondria under the unfolded protein response. Biochem. J. *396*, 31–39.
- Sunden, S.L., Renduchintala, M.S., Park, E.I., Miklasz, S.D., and Garrow, T.A. (1997). Betainehomocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch. Biochem. Biophys. 345, 171–174.
- Suzuki, T., Yokoyama, A., Tsuji, T., Ikeshima, E., Nakashima, K., Ikushima, S., Kobayashi, C., and Yoshida, S. (2011). Identification and characterization of genes involved in glutathione production in yeast. J. Biosci. Bioeng. *112*, 107–113.
- Szabo, C. (2017). A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator. Biochem. Pharmacol.
- Szabo, C., Coletta, C., Chao, C., Modis, K., Szczesny, B., Papapetropoulos, A., and Hellmich, M.R. (2013). Tumor-derived hydrogen sulfide, produced by cystathionine--synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl. Acad. Sci. 110, 12474–12479.

- Taoka, S., and Banerjee, R. (2001). Characterization of NO binding to human cystathionine betasynthase: possible implications of the effects of CO and NO binding to the human enzyme. J. Inorg. Biochem. *87*, 245–251.
- Taoka, S., Ohja, S., Shan, X., Kruger, W.D., and Banerjee, R. (1998). Evidence for heme-mediated redox regulation of human cystathionine β-synthase activity. J. Biol. Chem. *273*, 25179–25184.
- Taoka, S., West, M., and Banerjee, R. (1999). Characterization of the Heme and Pyridoxal Phosphate Cofactors of Human Cystathionine β-Synthase Reveals Nonequivalent Active Sites [†]. Biochemistry (Mosc.) *38*, 2738–2744.
- Taoka, S., Green, E.L., Loehr, T.M., and Banerjee, R. (2001). Mercuric chloride-induced spin or ligation state changes in ferric or ferrous human cystathionine β-synthase inhibit enzyme activity. J. Inorg. Biochem. *87*, 253–259.
- Taoka, S., Lepore, B.W., Kabil, O., Ojha, S., Ringe, D., and Banerjee, R. (2002). Human cystathionine beta-synthase is a heme sensor protein. Evidence that the redox sensor is heme and not the vicinal cysteines in the CXXC motif seen in the crystal structure of the truncated enzyme. Biochemistry (Mosc.) 41, 10454–10461.
- Tardiff, D.F., Khurana, V., Chung, C.Y., and Lindquist, S. (2014). From yeast to patient neurons and back again: Powerful new discovery platforms: YEAST-TO-HUMAN CELL DUAL DISCOVERY PLATFORMS. Mov. Disord. 29, 1231–1240.
- Tejedor, F., Zhu, X.R., Kaltenbach, E., Ackermann, A., Baumann, A., Canal, I., Heisenberg, M., Fischbach, K.F., and Pongs, O. (1995). minibrain: A new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron 14, 287–301.
- The Third International Workshop on Chromosomes in Leukemia (1981). The Third International Workshop on Chromosomes in Leukemia: Lund, Sweden, July 21–25, 1980. Cancer Genet. Cytogenet. 4, 95–100.
- Thorson, M.K., Majtan, T., Kraus, J.P., and Barrios, A.M. (2013). Identification of Cystathionine β-Synthase Inhibitors Using a Hydrogen Sulfide Selective Probe. Angew. Chem. Int. Ed. *52*, 4641–4644.
- Thorson, M.K., Van Wagoner, R.M., Harper, M.K., Ireland, C.M., Majtan, T., Kraus, J.P., and Barrios, A.M. (2015). Marine natural products as inhibitors of cystathionine beta-synthase activity. Bioorg. Med. Chem. Lett. 25, 1064–1066.
- Tlili, A., Jacobs, F., de Koning, L., Mohamed, S., Bui, L.-C., Dairou, J., Belin, N., Ducros, V., Dubois, T., Paul, J.-L., et al. (2013). Hepatocyte-specific Dyrk1a gene transfer rescues plasma apolipoprotein A-I levels and aortic Akt/GSK3 pathways in hyperhomocysteinemic mice. Biochim. Biophys. Acta BBA - Mol. Basis Dis. 1832, 718–728.
- Todorich, B.M., and Connor, J.R. (2004). Redox metals in Alzheimer's disease. Ann. N. Y. Acad. Sci. *1012*, 171–178.
- de la Torre, R., de Sola, S., Hernandez, G., Farré, M., Pujol, J., Rodriguez, J., Espadaler, J.M., Langohr, K., Cuenca-Royo, A., Principe, A., et al. (2016). Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. *15*, 801–810.

- Tu, Y., Kreinbring, C.A., Hill, M., Liu, C., Petsko, G.A., McCune, C.D., Berkowitz, D.B., Liu, D., and Ringe, D. (2018). Crystal Structures of Cystathionine β-Synthase from Saccharomyces cerevisiae: One Enzymatic Step at a Time. Biochemistry (Mosc.) 57, 3134– 3145.
- Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., Wanke, V., Anrather, D., Ammerer, G., Riezman, H., et al. (2007). Sch9 Is a Major Target of TORC1 in Saccharomyces cerevisiae. Mol. Cell *26*, 663–674.
- Urra, H., Dufey, E., Avril, T., Chevet, E., and Hetz, C. (2016). Endoplasmic Reticulum Stress and the Hallmarks of Cancer. Trends Cancer *2*, 252–262.
- d'Emmanuele di Villa Bianca, R., Mitidieri, E., Esposito, D., Donnarumm, E., Russo, A., Fusco, F., Ianaro, A., Mirone, V., Cirino, G., Russo, G., et al. (2015). Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium. PLOS ONE *10*, e0136859.
- Voisset, C., and Blondel, M. (2014). [Chemobiology at happy hour: yeast as a model for pharmacological screening]. Med. Sci. MS *30*, 1161–1168.
- Wang, Y., Lin, F., and Qin, Z.-H. (2010). The role of post-translational modifications of huntingtin in the pathogenesis of Huntington's disease. Neurosci. Bull. *26*, 153–162.
- Weathers, C. (1983). Effects of nutritional supplementation on IQ and certain other variables associated with Down syndrome. Am. J. Ment. Defic. 88, 214–217.
- Weeks, C.L., Singh, S., Madzelan, P., Banerjee, R., and Spiro, T.G. (2009). Heme regulation of human cystathionine beta-synthase activity: insights from fluorescence and Raman spectroscopy. J. Am. Chem. Soc. 131, 12809–12816.
- Werstuck, G.H., Lentz, S.R., Dayal, S., Hossain, G.S., Sood, S.K., Shi, Y.Y., Zhou, J., Maeda, N., Krisans, S.K., Malinow, M.R., et al. (2001). Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J. Clin. Invest. 107, 1263–1273.
- Wert, G. de, Dondorp, W., and Bianchi, D.W. (2017). Fetal therapy for Down syndrome: an ethical exploration. Prenat. Diagn. *37*, 222–228.
- Wiggins, H.L., Wymant, J.M., Solfa, F., Hiscox, S.E., Taylor, K.M., Westwell, A.D., and Jones, A.T. (2015). Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells. Biochem. Pharmacol. 93, 332–342.
- Wiseman, F.K., Pulford, L.J., Barkus, C., Liao, F., Portelius, E., Webb, R., Chávez-Gutiérrez, L., Cleverley, K., Noy, S., Sheppard, O., et al. (2018). Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP. Brain 141, 2457– 2474.
- Wolfson, R.L., Chantranupong, L., Saxton, R.A., Shen, K., Scaria, S.M., Cantor, J.R., and Sabatini, D.M. (2016). Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48.
- Wolkoff, A.W., Klausner, R.D., Ashwell, G., and Harford, J. (1984). Intracellular segregation of asialoglycoproteins and their receptor: a prelysosomal event subsequent to dissociation of the ligand-receptor complex. J. Cell Biol. 98, 375–381.

- Wu, C.-Y., Bird, A.J., Winge, D.R., and Eide, D.J. (2007). Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency. J. Biol. Chem. 282, 2184–2195.
- Wu, L., Rosa-Neto, P., Hsiung, G.-Y.R., Sadovnick, A.D., Masellis, M., Black, S.E., Jia, J., and Gauthier, S. (2012). Early-onset familial Alzheimer's disease (EOFAD). Can. J. Neurol. Sci. J. Can. Sci. Neurol. 39, 436–445.
- Xie, W., Ramakrishna, N., Wieraszko, A., and Hwang, Y.-W. (2008). Promotion of neuronal plasticity by (-)-epigallocatechin-3-gallate. Neurochem. Res. *33*, 776–783.
- Yu, T., Li, Z., Jia, Z., Clapcote, S.J., Liu, C., Li, S., Asrar, S., Pao, A., Chen, R., Fan, N., et al. (2010). A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum. Mol. Genet. 19, 2780–2791.
- Yuan, B., Tang, W.-H., Lu, L.-J., Zhou, Y., Zhu, H.-Y., Zhou, Y.-L., Zhang, H.-H., Hu, C.-Y., and Xu, G.-Y. (2015). TLR4 upregulates CBS expression through NF-kappaB activation in a rat model of irritable bowel syndrome with chronic visceral hypersensitivity. World J. Gastroenterol. 21, 8615–8628.
- Zhao, C., Chen, X., Yang, C., Zang, D., Lan, X., Liao, S., Zhang, P., Wu, J., Li, X., Liu, N., et al. (2017). Repurposing an antidandruff agent to treating cancer: zinc pyrithione inhibits tumor growth via targeting proteasome-associated deubiquitinases. Oncotarget 8, 13942–13956.
- Zhao, W., Zhang, J., Lu, Y., and Wang, R. (2001). The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. 20, 6008–6016.
- Zhao, Y., MacGurn, J.A., Liu, M., and Emr, S. (2013). The ART-Rsp5 ubiquitin ligase network comprises a plasma membrane quality control system that protects yeast cells from proteotoxic stress. ELife 2.
- Zheng, H., Zhu, H.-Y., Zhang, X.-Y., Wang, M., Xiao, Y., Xu, G.-Y., and Jiang, X.-H. (2016). Upregulation of cystathionine β-synthetase in the arcuate nucleus produces pain hypersensitivity via PKC upregulation and GluN2B phosphorylation in rats with chronic pancreatitis. Sheng Li Xue Bao 68, 575–584.
- Zhong, W., Wang, Y., Peng, L., Ge, X., Zhang, J., Liu, S., Zhang, X., Xu, Z., Chen, Z., and Luo, J. (2012). Lanthionine Synthetase C-like Protein 1 Interacts with and Inhibits Cystathionine β-Synthase: A TARGET FOR NEURONAL ANTIOXIDANT DEFENSE. J. Biol. Chem. 287, 34189–34201.
- Zhou, Y., Yu, J., Lei, X., Wu, J., Niu, Q., Zhang, Y., Liu, H., Christen, P., Gehring, H., and Wu, F. (2013). High-throughput tandem-microwell assay identifies inhibitors of the hydrogen sulfide signaling pathway. Chem. Commun. Camb. Engl. 49, 11782–11784.
- Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y., and Sabatini, D.M. (2011). mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase. Science *334*, 678–683.
- Zou, C.-G., and Banerjee, R. (2003). Tumor Necrosis Factor-α-induced Targeted Proteolysis of Cystathionine β-Synthase Modulates Redox Homeostasis. J. Biol. Chem. 278, 16802– 16808.

UNIVERSITE BIOLOGIE BRETAGNE SANTE LOIRE

Titre : Etude des conséquences cellulaires de la surexpression de la Cystathionine β -Synthase et identification de suppresseurs pharmacologiques.

Mots clés : Cystathionine β -synthase, syndrome de Down, levure, criblage pharmacologique.

Résumé : La Cystathionine β-Synthase (CBS) est une enzyme dérégulée dans deux pathologies caractérisées par une déficience intellectuelle : l'homocystinurie, majoritairement causée par des mutations homozygotes de CBS, et le syndrome de Down (trisomie 21), où CBS est tripliqué du fait de sa localisation sur le chromosome 21. Les travaux présentés dans cette thèse rapportent dans un premier temps l'implication de la triplication de CBS dans le phénotype cognitif de souris, ce qui fait de CBS une cible thérapeutique pertinente pour diminuer déficience intellectuelle des patients atteints du syndrome de Down. Nous rapportons par ailleurs le développement d'un modèle levure de la surexpression de ce gène, qui nous a permis d'isoler des molécules pharmacologiques capables de contrecarrer les défauts induits par la surexpression de la CBS de levure (CYS4).

L'une des molécules candidates issue de ce criblage en levure s'est révélé efficace pour restaurer le fonctionnement cognitif des souris ayant une triplication de CBS. En outre, nous avons mis en évidence les conséquences cellulaires de la surexpression de CYS4 dans notre modèle, et étudié le mécanisme d'action des molécules isolées lors du criblage pharmacologique. Ces travaux révèlent que la surexpression de CYS4 affecterait l'homéostasie des acides aminés dans la cellule, ce qui conduirait à une inactivation de la voie TORC1, aggravant les défauts d'internalisation des acides aminés. Nous avons également observé que la modulation de CYS4 perturbe le pH cytosolique des levures, phénotype qui n'avait pas été rapporté auparavant. Ainsi, ces travaux ont permis de mieux caractériser les conséquences cellulaires de la modulation de CYS4, et de proposer des molécules candidates pour corriger ces défauts.

Title : Investigation of the cellular consequences of Cystathionine β -Synthase overexpression and identification of pharmacological suppressors.

Keywords : Cystathionine β-synthase, Down syndrome, yeast, pharmacological screen.

Abstract : Cystathionine β -Synthase (CBS) is an enzyme that is misregulated in two conditions by intellectual characterized deficiency homocystinuria, which is caused by homozygous mutations in CBS, and Down syndrome (trisomy 21), in which CBS is triplicated due to its localization on chromosome 21. Currently, there is no therapeutic solution to improve the cognitive function of Down syndrome patients. The work presented here first reports the involvement of CBS triplication in the cognitive phenotype of mice, which makes CBS a relevant therapeutic target to alleviate intellectual deficiency in Down syndrome patients. In addition, we report the development of a yeast model overexpression of this gene, which allowed us to isolate pharmacological molecules capable of counteract the defects induced by the overexpression of yeast CBS (CYS4).

One of the candidate molecules isolated from this pharmacological screen also restores the cognitive function of mice carrying CBS triplication. Besides, we investigated the cellular consequences of CYS4 overexpression in our yeast model, and studied the mechanism of action of isolated drugs. This work reveals that CYS4 overexpression affects amino acids homeostasis, leading to TORC1 inactivation, which worsen the defects in amino acids internalization. We also observed that CYS4 modulation alters cytosolic pH in yeast, a phenotype that had not been reported before. Hence, this work allowed us to better characterize the cellular consequences of CYS4 modulation, and to propose candidate molecules for correct these defects.