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Introduction

Proteins are fundamental components of life. They are indispensable to the struc-
ture and function of living cells and viruses and are in charge of many essential
processes in all living organisms. They can carry energy, transmit signals, provide
structure to cells or promote particular chemical reactions. Over the billions of years
of evolution, proteins have evolved to perform better and faster certain functions
or to achieve new functions in order to pursue the biological needs under diverse
and changing conditions.

Most proteins have a particular three dimensional structure which is directly
related to its specific function. The structure and the function of a protein arise
from a set of building blocks that compose a protein sequence, called amino acid
residues. For a given sequence length, the protein sequence space describes an
ensemble of possible combinations of amino acid residues at each sequential position.
For example, for a 100 residue protein, the sequence space contains 20100 sequences.
Naturally occurring proteins cover a very small amount of this space. A large
portion of sequences is unexplored by Nature and many functional proteins are
certainly yet to be discovered. In recent years, the interest for proteins with new
or improved properties has increased in many domains. However, synthesizing all
the possible sequences remains unimaginable. Despite the success of approaches
such as directed evolution, crowned by Frances Arnold’s Nobel prize in 2018, this
method has limited sequence space exploration abilities. Therefore, the need for
accurate computational methods is crucial in order to rationalize and speed-up the
conception of new proteins.

The last decade has been marked by major scientific advances that allowed a
deeper comprehension of proteins at different levels. Many biochemical and kinetic
data allowed better comprehension of proteins structural and functional properties
which in turn led to an extension of the structure-function paradigm to include
protein structural dynamics. X-ray crystallography, Nuclear Magnetic Resonance
spectroscopy and cryogenic electron microscopy have provided a huge number of
protein structures. Computational methods completely revolutionized the domain
of protein structure prediction [1]. Also, Molecular Dynamics simulations on pro-
teins, acknowledged by Martin Karplus and Michael Levitt’s Nobel prize in 2013,
allowed the investigation of proteins at the atomic level. All these advances greatly
contributed to refining our comprehension of proteins sequence-structure-function
relationship. The amount of available protein structures and our understanding of
their functions render structure-based Computational Protein Design (CPD) pos-
sible.

Because of the vastness of the sequence search space and the intractable com-
bination of many degrees of freedom of a protein, the most usual CPD approaches
model proteins as a single rigid protein backbone, and usually ignore protein flexibil-
ity. This traditional Single State Protein Design (SSD) contrasts with the increas-
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ing evidence that proteins do not remain fixed in a unique conformational state but
rather sample conformational ensembles. Furthermore, large-scale protein motions
ranging from local flexibility to large conformational rearrangements are known to
play key roles on protein properties and functions. The objective of this thesis
is, first, to develop a new method that alleviates SSD limitations by considering
several conformational states simultaneously, and second, to demonstrate the in-
terest in applying this method on relevant protein design examples for applications
in health and white biotechnology. The manuscript is structured in 3 parts and 8
chapters.

The first part provides background for this work. Chapter 1 introduces proteins
with more general notions about protein’s function, structure and flexibility. Chap-
ter 2 provides some details about basic principles in Molecular Modeling and Design
techniques. Computational Protein Design is then presented along with different
state-of-the art approaches. Chapter 3 introduces Computational Protein Design
methods based on the Cost Function Networks framework.

The second part of this thesis describes the development of new multistate de-
sign methods. Chapter 4 describes a MultiState Design (MSD) approach which
allows taking into account multiple conformational protein states simultaneously.
During this thesis, numerous interactions with our experimental collaborators al-
lowed improving our method through the introduction of new functionalities which
are presented in Chapter 5.

The third and the final part of this thesis presents the application of MSD to
two different case studies in which the computational predictions were experimen-
tally validated. The first case study focuses on the redesign of GH11 Xylanases,
an enzyme widely used in industrial bio-refinery processes. Chapter 6 describes
a Molecular Dynamics study that was conducted to gain deeper insights on the
structure-dynamics-activity relationship of this class of enzymes and identify the
molecular determinants governing their thermal stability and activity. In Chapter
7, characteristics revealed by the latter study were further used for designing new
xylanases with improved thermostability and catalytic activity. Finally, Chapter
8 presents the second case study where the computational design strategies were
used to redesign a synthetic humanized nanobody scaffold. Results showed that
this new nanobody is highly expressed and possesses suitable affinity with different
CDR loops.

At the end of this manuscript, a general conclusion provides a summary of dif-
ferent studies done during this PhD and gives some perspectives and future research
directions.



Part I

Background





Chapter 1

Proteins

Contents
1.1 Definition and function . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Structure representation . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 The primary structure of proteins . . . . . . . . . . . . . . . 8
1.2.2 The secondary structure of proteins . . . . . . . . . . . . . . 11
1.2.3 The tertiary and quaternary structure of proteins . . . . . . . 15

1.3 Protein flexibility . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Enzymes and Enzyme Engineering . . . . . . . . . . . . . . . 17

1.1 Definition and function

In all multicellular organisms, the smallest unit of life, the cell, can generate, from
one initial cell, hundreds of different kinds of cells. Cells have diverse properties
such as shape, size, color, surface composition and thus constitute our muscle, skin,
bone, neuron or blood cells. Cell’s structure and function are based on different
kinds of molecules that are fundamental to life. Proteins carry energy, transmit
signals, give cells structure and most essential function by performing most cellular
tasks [2]. Proteins are large, complex macromolecules that represent the main cell’s
building blocks and are designed to work in particular places within the cell. By
assuming a large variety of functions, proteins have been involved in a multitude of
fundamental biological processes over the billions of years of evolution. Therefore,
proteins can have many purposes ranging from biological sensors that can modify
different cell properties to structural components of a cell. They can import and
export substances across the membrane, bind to a specific gene in order to regulate
its expression. They can also be extracellular signals that are released from one cell
to communicate with other cells or intracellular signals carrying information within
the cell. They can be enzymes catalysing chemical reactions or antibodies that
defend against infections and foreign substances. All these are some of the examples
of proteins and their crucial functions within an organism. A basic foundation in
protein science states that a protein function is directly related to its structure [3].
In other words, understanding the role of proteins requires prior knowledge and
understanding of their corresponding structure.
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1.2 Structure representation

A protein is composed of one or several chains of amino acid residues. The as-
sociation of different amino acid residues is controlled by the genetic code, which
controls when and where proteins are created. The genes that are giving this in-
formation have a coding region which specifies the exact order of the amino acid
sequence, and a regulatory region that tells when and in which cell or part of the cell
this protein is being made. The concept of distinguishing proteins by their amino
acid sequences was first introduced by Frederic Sanger in 1952 who described this
sequential nature of proteins by studying and sequencing insulin. During protein
synthesis, amino acids are being attached to one another by creation of a pep-
tide bond. A particular order of amino acids in these polypeptide chains form an
amino acid sequence which further folds in order to generate compact, functional
three-dimensional protein structures. In the early 1970’s, Anfinsen declared that
the protein structure is only determined only by its sequence [4]. Know as the
Anfinsen’s dogma, this principle is the basis of what today is called the protein
sequence-structure-function relationship. Under physiological conditions, a protein
sequence does not remain in the form of a long unstructured filament. Instead, it
has different levels of structure, ranging from the unfolded sequence to its three-
dimensional (3D) structure. 3D protein structures are often relatively stable, well
determined, and convey a particular biological function.

Four different levels of protein structures have been defined (Figure 1.1):

• Primary structure: the unfolded amino acid sequence

• Secondary structure: the arrangements of amino acid residues in a local three-
dimensional structures

• Tertiary structure: three-dimensional structure, complete spatial organisation
of local structures

• Quaternary structure: association of multiple chains and their relative organ-
isation within the 3D structure

1.2.1 The primary structure of proteins

When referring to protein’s primary structure, we refer to its sequence, or in other
words its amino acid composition.

Amino Acids

There are 20 natural amino acids and each one of these small building blocks con-
sists of two different chemical moieties: a common backbone or main-chain and a
variable side-chain. The backbone is composed of an amino group (NH2) on one
side, a carboxyl group (COOH) on the other, and a central Cα carbon connected to
the two latter moieties, a hydrogen atom and the variable side-chain (Figure 1.2).
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Figure 1.1: Schematic representation of the four levels used to describe the protein
structure.
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Figure 1.2: The chemical structure of an amino acid. The common backbone
composed of the central α carbon (Cα), an amino group (NH2) and a carboxyl
group (COOH). The R group (R) represents the variable side chain which is specific
to every amino acid. This generic representation does not concern Proline which
has a cyclic form.

This variable side chain is what differentiates one amino acid from another and
what confers to each amino acid its specific physico-chemical properties. Based on
the chemical properties conferred by their side chain, the 20 natural amino acids
can be classified in different groups. The most common classification of amino acids
divides them in three groups: hydrophobic, polar and charged. Hydrophobic amino
acids are usually buried within the protein core and are known to contribute to the
protein stabilization by participating in Van der Waals interactions.

Other sub-classifications have been proposed such as: large or small, aliphatic
or aromatic, positively or negatively charged [5].

Because of their characteristics, each one of the 20 amino acids is located in a
different chemical environment and has a particular role within the protein struc-
ture. This is why it is very difficult to classify all amino acids of the same type
into the same group. This can be illustrated by some examples such as the case
of Tyrosine which is amphiphile. This amino acid can be found in two different
groups at the same time. Tyrosine can be considered as hydrophobic because of its
aromatic cycle (the phenol group), but also polar because of the hydroxyl -OH on
the phenol group. Histidine is another example which, depending on the environ-
ment and the pH of the solution, can be polar or charged. Another example that is
worth mentioning is Cysteine and its two different oxidation states : CS-S and CS-H.
According to some classifications cysteine is considered to be hydrophobic while
others consider it polar because of its usual presence at the protein surfaces and the
relative polarity of its thiol moiety. CS-S indicates that two cysteines are connected,
and form a disulphide bond. As the role of this amino acid is very dependent on
the cellular location of the protein, the formation of the covalent bond between two
cysteines is very rare within an intracellular environment. Thus, CS-H indicates its
free, unbound form.
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The peptide bond
The primary structure of a protein is simply a sequence of amino acids that compose
it. The linkage between amino acid residues is ensured by the formation of the
peptide bond between the carboxyl group of one amino acid with the amino group of
the next consecutive amino acid in the sequence (Figure 1.3). As the process repeats,
the polypeptide chain elongates, starting with an N-terminal end formed by the free
amino group of the first amino acid in the sequence and ending with a C-terminal
end formed by the free carboxyl group of the last amino acid in the sequence. The
atoms of the amino acid residues that are involved in the peptide bond define the
protein backbone. The creation of a carboxamide group upon the formation of the
peptide bond locks it in a quite rigid planar conformation. Therefore, the degrees
of freedom of the polypeptide chain exist mainly for the bonds formed by the Cα
carbon (NH-Cα and Cα-CO). These two rotations are identified as φ and ψ dihedral
angles and are shown in Figure 1.3. However, because of the steric hindrance, φ and
ψ angles are constrained and thus not all of the conformations are possible. Allowed
conformations defined for certain ranges of φ and ψ angles have been studied by
Ramachandran and coworkers in 1968 whose results are presented in the famous
Ramachandran plot that maps the entire conformational space of a polypeptide [6].

1.2.2 The secondary structure of proteins

We can think of the secondary structure of proteins as the local spatial rearrange-
ments occurring during the folding of a polypeptide chain. These arrangements
are called secondary structures and they represent the core elements of the protein.
The most frequent and most stable secondary structure elements are called α helices
and β sheets. These regular structures represent the majority of elements seen in
proteins, but there are other regions of irregular structures which are called loops
or coils.

α Helices
An α-helix is a secondary structure element created by the folding of the polypeptide
backbone into a spiral (Figure 1.4). The structure of the α helix is stabilized by
hydrogen bonding occurring in the core of the helix while the surface is covered in
side-chain groups. This hydrogen interaction within the core involves the carbonyl
oxygen of the peptide bond of the residue i and an amide hydrogen of the peptide
bond of the residue i+4. The α helix has 3.6 residues per helical turn.

There are other types of helices that have been observed in proteins: 310helix
and π helix. However these helices have an energetically less favorable geometry
and are therefore rare.

β Sheets
This type of secondary structure motif is also formed by hydrogen interactions be-
tween amide hydrogens and carbonyl oxygens of the peptide backbone of regularly
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Figure 1.3: Polypeptide chain of 3 amino acid residues (L-blue,V-green,W-yellow).
The main-chain atoms are linked through the Cα atoms. Each residue has two
degrees of freedom and thus can rotate around two bonds. The φ angle represents
the angle of rotation around the N-Cα bond and the ψ angle represents the angle
of rotation around the Cα-C bond.
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Figure 1.4: The α helix secondary structure element. The polypeptide backbone
folded into a spiral is shown in blue. Different hydrogen bonds that stabilize the
structure are shown in gray. The surface of the helix is covered with side chain R
groups of different amino acid residues (represented in orange).
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Figure 1.5: The β sheet secondary structure element. Representation of a simple
two-stranded β-sheet with antiparellel β strands. Different hydrogen bonds that
stabilize the structure are shown in gray. The side chain R groups of different amino
acid residues are represented in orange. The short turn between the β strands is
also stabilized by a hydrogen bonds (shown in green dashed lines).

arranged consecutive segments in the polypeptide chain. The part of the polypep-
tide chain that is engaged into a β sheet is called a β strand. These β strands can
adopt two different configurations in order to form a β sheet : anti-parallel and
parallel. In the parallel configuration, β strands are oriented in the same direction
with reference to their N-terminal ends. In the anti-parallel configuration, the ori-
entation of the residue side chains alternates between the two facets of the strand,
so that N-terminal of one strand is adjacent to the C-terminal of the other. Hydro-
gen bondings between the two strands are planar which makes this configuration of
beta sheets very stable (Figure 1.5). There is also another variant of the standard
β sheet which is the β bulge. This short structure is observed in anti-parallel β
sheets and can allow the polypeptide chain to change direction in space.

Turns
Turn represents another type of important secondary structure element present in
proteins. Turns are composed of three or four residues and are located at the
protein’s surface. They are stabilized by a hydrogen bond as shown in Figure 1.5
and exhibit just a few well-defined structures. They allow the polypetide chain to
be redirected and proteins to be folded into compact structures. The amino acids
residues commonly present in turns are glycine and proline.

Irregular secondary structures
Contrary to an α helix and a β sheet, a loop or coil is an irregular secondary
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structure and it represents the third most common secondary structure in proteins.
They are usually formed of 2 to 16 residues and are usually found in solvent exposed
areas such as the protein surface. They can be defined as the transitions connecting
the regular secondary structure elements, but contrary to turns, loops can be formed
in many different ways. They can be very flexible and their flexibility can have an
important impact on proteins function. As a matter of fact, loop flexibility can play
a key role in many protein-protein or protein-ligand interaction processes.

1.2.3 The tertiary and quaternary structure of proteins

The tertiary structure of a protein is the organization of the secondary structure
elements into a stable and functional three-dimensional structure or domain. While
backbone interactions are important for the formation of different secondary struc-
ture elements such as α helices or β sheets, the interactions between amino acids side
chains mainly contribute to the stabilization of the final three-dimensional struc-
ture. Because of the diversity of chemical properties of the 20 amino acids, there
are various types of interactions within the protein structure. The main molecu-
lar interaction that leads to protein folding is the hydrophobic effect [7]. Amino
acids with a hydrophobic side chain are kept away from the water molecules that
constitute the solvent and stay buried in the core of the protein, while other po-
lar and charged residues are usually located in solvent exposed areas such as the
protein surface. Along with hydrophobic interactions, other interactions such as
hydrogen bonds, salt bridges or covalent bonds (disulphide bridges) are also critical
for protein folding, for providing protein stability and flexibility.

The quaternary structure of the protein consists of an association of several
polypeptide chains, where each chain is called a monomer and the ensemble of
chains an oligomer. This association between the monomers can be formed by
the same different types of interactions mentioned above. Antibodies are one of
the examples of proteins that contain several domains and thus have a quaternary
structure. It is important to point out that the final protein structure depends on
the interactions that are made within the polypeptide chain but also between the
different domains (if there is more than one).

The Protein Data Bank (PDB) [8] is a database that contains information about
the experimentally determined 3D structures of proteins. In this database, each pro-
tein has a corresponding PDB file that describes the average protein conformational
state “in solution” with the corresponding 3D Cartesian coordinates of its consti-
tutive atoms. The PDB currently contains more than 170,000 protein structures
mainly determined by X-ray crystallography, nuclear magnetic resonance (NMR)
or transmission electron cryo-microscopy (cryoEM).

1.3 Protein flexibility

Understanding biological processes requires comprehension of protein function at
the atomic level. For decades, X-ray crystallography has been used for the deter-
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mination of protein structures and has become a powerful method for the study of
the structure-function relationship. Each crystallographic structure is represented
by a unique single conformation. In a given crystal structure, the relative vibra-
tional dynamics of each atom is quantified by the Debye-Waller factor (also known
as B-factor). However, this unique structure only reveals limited information on
the protein dynamics. In the cellular environments, proteins are in motion: they
fluctuate over a large number of conformational states. Thus the assumption by
which the “native” state of the protein can be represented by a single conformation
has been shown to be a considerable simplification [9]. Many three-dimensional
protein structures are highly flexible and undergo conformational changes allowing
proteins to adapt to environmental variations or respond to the presence of other
molecules. Protein flexibility has been characterized in many studies [10, 11, 12,
13] and has shown to play a crucial role in the function of proteins [14]. Some
experimental techniques such as cryoEM or NMR allow exploration of conforma-
tional fluctuations of proteins [15]. Computational methods can also contribute and
help further understanding of the protein structure-function relationship through
the prediction of protein flexibility [16, 17, 18, 19]. Molecular Dynamics simulation
is one of the techniques which is widely used for studying protein dynamics in a
simulated explicit environment based on a general physical model.

Figure 1.6: Dihedral χ angles in Lysine. Different fading conformations illustrate
some of lysine rotamers.

At some level, protein flexibility can be described by different degrees of freedom
that can be observed in the protein structure. As it was mentioned in the previous
section, the polypeptide chain is defined by the rotational freedom of bonds formed
by the α carbons, or more precisely the φ and ψ angles. However these are not the
only degrees of freedom within the protein, considering dihedral angles of amino
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acid side-chains which are referred to as χ angles (Figure 1.6). There are as many
χ angles as there are dihedrals for a given amino acids. These χ angles describe
the degrees of freedom of the amino acid side chains and were shown to adopt a
finite set of favored average conformations, know as rotamers. Rotamer libraries,
defined by a discrete set of conformations, contain statistically preferred χ angles
observed in natural proteins and are greatly used for all molecular modeling and
design methods.

1.4 Enzymes and Enzyme Engineering

Enzymes are proteins that have a unique ability to catalyse a wide range of biochem-
ical reactions. They are called biological catalysts. The function of many proteins
depends on their ability to bind other molecules or ligands. In the particular case of
enzymes, the molecules upon which enzymes react are called substrates. Enzymes
(E) bind specific substrates (S) to further convert them into different molecules
called products (P ) (Equation 1.1).

E + S 
 ES → E + P (1.1)

Likewise to any other chemical reaction, in which a given reactant is trans-
formed into a given reaction product, a change in the free energy of the reaction
pathway between the reactant and the product respective states is also observed in
enzymatic reactions. For any chemical reaction to occur, the system must have a
sufficient energy to be able to cross the reaction free energy barrier separating the
reactant state from the product state. In enzymatic reactions, such goal is achieved
by the ability of enzymes to lower the reaction free energy barrier in comparison
to equivalent uncatalysed chemical reactions. The enzyme-substrate complex (ES)
from Equation 1.1, undergoes rearrangement to one or several transition states prior
to the formation of the final product. These transition states possess a higher free
energy than the enzyme-substrate complex and usually involve bond-breaking and
bond-forming events [20]. The energy needed for bringing the free enzyme and the
substrate to the highest transition state of the ES complex is called the activation
energy. Enzymes accelerate the rate of chemical reactions by decreasing the acti-
vation energy and stabilizing transitions-states intermediates (Figure 1.7). One of
the ways of achieving the decrease in activation energy is by providing catalytic
residues that have catalytically active groups for a specific reaction mechanism.
Single substrate enzyme kinetics was first investigated by Henri in 1902 and fur-
ther generalized in 1913 by Michaelis and Menten. They proposed a mathematical
model which describes single substrate enzyme kinetics by relating the rate of the
reaction v to the concentration of the enzyme ([E]) and the concentration of the
substrate ([S]) (Equation 1.2) assuming many approximations. In the equation, the
rate constant (kcat) represents the maximum number of substrate molecules which
can be consumed per enzyme molecule per unit of time. Another parameter of the
Michaelis-Menten equation is the Michaelis constant, also known as KM . On the
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Figure 1.7: Free energy diagram - schematic comparison between catalyzed and
uncatalyzed reactions. The standard free energy of reaction (∆G) and activation
energies for catalyzed reaction (EAcat) and uncatalyzed reaction (EAuncat).

assumption that the dissociation of the enzyme-substrate complex into the reaction
products is the rate limiting step of the overall reaction scheme, KM can be taken
as a measure of the enzyme inverse affinity to the substrate. This equation, called
the Michaelis-Menten equation, is one of the best known models of enzyme kinet-
ics. The kinetic parameters KM , kcat and kcat/KM , which represents the specificity
constant that provides a measure of the overall enzyme’s efficiency, are the standard
parameters that are commonly used for describing the properties of any enzymatic
reaction. A more detailed presentation of enzymes and their catalytic power can
be found in textbook references [21, 20].

v = kcat[E][S]
KM + [S] (1.2)

Enzymes represent essential macromolecules that catalyse 99% of biochemical
reactions that occur in biological systems [20]. These catalytic proteins are thus
necessary in all living organisms.
Past years have been marked by an expansion of knowledge in the field of enzy-
mology, focusing more particularly on enzyme properties and catalytic mechanisms.
Enzymes also served as attractive models for fundamental studies that contributed
to the understanding of proteins structure-function relationship [10, 12]. In this
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regard, gaining deeper insights on catalytic mechanisms, but also on the enzyme’s
structure-function relationship had an important impact on the progress of modern
biology.
The catalytic properties of enzymes made them very attractive for biotechnolog-
ical developments and applications. “Exploiting” enzymes, isolated from natural
sources and further mass-produced using recombinant DNA technologies through
genetic engineering, has become of great interest for various industrial applications.
Enzyme engineering consists in modifying selected properties of available enzymes
to usually improve their activity and/or stability for a further large-scale use in
industry. With the on-going development of enzyme engineering, the number of
potential applications for enzyme catalysts in industry, in analytical techniques,
and medicine keeps on growing. Many industrial processes have evolved by the use
of enzymes. Enzyme engineering expanded the scope of applicability of many exist-
ing technologies and enabled the conception of enzymes with new features and with
increased catalytic efficiency for large-scale biotransformations. Different types of
industrial processes are now performed with enzymes: amylases are being used for
starch processing, cellulases for cellulosic biomass conversion, pectinases and es-
terases for food industry etc. Recently PET depolymerase has been engineered for
plastic degradation and recycling [22].

Being an essential catalyst in Nature, enzymes outperform traditional chemical
methods for catalyzing complex stereospecific transformations. Enzymatic reactions
also generate less by-products than pure chemistry-based reactions and enzymes are
typically active in conditions closer to those of biological environments, which makes
them environmental friendly. Therefore, motivated by environmental, technical and
economical advancements, demands for improved biocatalysts have been numerous.
Some studies have proposed that the optimal function of enzymes may be influenced
by the conformational changes that their respective 3D structure undergo. As a
protein structure and dynamics are often linked with its biological activity, getting
insights into enzyme structure-function-dynamics relationship is fundamental for
the conception of enzymes with new or improved properties.
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2.1 Basic principles

Molecular Modeling regroups a wide variety of theoretical and computational tech-
niques whose purpose is to mimic and/or simulate the behaviour of molecules.
Models are abstract representations of reality, and in this case, molecular systems.
Molecular modeling textbooks such as [23] introduce models by citing the Oxford
English Dictionary definition which says that models are “a simplified or idealised
description of a system or process, often in mathematical terms, devised to facilitate
calculations and predictions”.

Molecular models can be described at different levels of theory ranging from
subatomic particles (protons, neutrons and electrons) to a more general atomistic
level description. Consequently, two main types of molecular models exist: ab initio
models described by quantum mechanics and classical models described by molec-
ular mechanics and parametrized by an empirical force field. On one hand, the
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quantum mechanics approach explicitly represents electrons, which makes this type
of approach very precise. However, these methods are very time-consuming and
not adapted for large systems such as macro-molecules. Molecular mechanics, on
the other hand, is based on the principles of so-called Newton’s classical physics.
This classical model describes the nucleus and its electrons as a single entity, gives
the representation of the system on the atomic level and allows the determination
of the potential energy of the system. The potential energy of the system can be
calculated using a set of parameters, a force field, which defines and models inter-
actions between different atoms. These parameters are derived from experimental
data as well as from quantum chemistry calculations.

2.1.1 Force field and energy function

A force field represents a set of parameters and equations that define the terms of
the interaction energy and are used to model the potential energy of the system.
The total potential energy of a system is determined as a sum of energies describing
bonded and non-bonded interactions between atoms.

Etotal = Ebonded + Enon−bonded (2.1)

Within bonded-interactions, three different energy terms are considered: inter-
actions between pairs of bonded atoms that involve bond-stretching, formation of
bond angles between three consecutively bonded atoms and formation of dihedral
angles created by four successively bonded atoms. In addition to these three terms,
a term representing the improper dihedrals is also generally considered. This term
describes a spatial constraint affecting a group of four atoms that do not sequen-
tially follow each other and is generally used to enforce a relative planarity between
these four atoms. The full equation of bonded-interaction energy is written below
(Equation 2.2), where parameters l, θ and φ correspond to bond length, valence
angle and value of the dihedral angle respectively. l0, θ0 and φ0 refer to equilibrium
values, specified in the force field and initially derived from QM calculations, while
lt, θt and φt are values calculated over the course of the simulation. In the dihedral
term, n is a positive integer between 0 and 2π, and En is the value of the energy
barrier of the torsion potential.

Ebonded =
∑ 1

2kb(lt − l0)2︸ ︷︷ ︸
Bond length

+
∑ 1

2ka(θt − θ0)2︸ ︷︷ ︸
Bond angle

+
∑ En

2 [1 + cos(nφt − φ0)]︸ ︷︷ ︸
Dihedral angle

+
∑

Eimp︸ ︷︷ ︸
Improper dihedral
(2.2)

Non-bonded interactions are determined as a sum of Van der Waals and electrostatic
interactions that are modelled as Lennard-Jones and Coulomb potential.

Accordingly, the non-bonded interactions are calculated as:

Enon−bonded = 4ε[(σ
r

)12 − (σ
r

)6]︸ ︷︷ ︸
Lennard-Jones potential

+ q1q2
4πε0r︸ ︷︷ ︸

Coulomb potential

(2.3)
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Parameters ε, σ, r, q1 , and q2 represent respectively the depth of the potential
energy minima between two atoms, the distance at which the potential between two
atoms is zero and the distance between the two atoms and the atoms charge.

A force field is a physics based energy function mostly used in molecular dy-
namics simulations. Commonly used force fields in protein science are AMBER,
CHARMM, OPLS and GROMOS [24, 25, 26]. Along with physics based energy
functions, there are also knowledge-based energy functions or so-called statistical
energy functions. They are employed for other sorts of molecular modeling problems
such as protein structure prediction or computational protein design. Parametriza-
tion of the knowledge-based terms present in this type of energy function relies on
various statistical observations detected in the available experimental data. Many
knowledge-based methods are currently available [27, 28, 29, 30, 31]. The large
amount of data available in the PDB and the reduced computational cost required
for knowledge-based methods make them more and more attractive than physics
based methods. However, knowledge-based method can be biased by the static view
of macro-molecules 3D structure as obtained from X-ray crystallography, and thus
limited by their inability to take protein flexibility into account. To overcome this
limitation, hybrid energy functions which combine statistical and physical terms
have been developed. The ROSETTA [32] energy function is one example.

2.1.2 Solvation models

Macromolecules are functioning in a physiological environment which usually re-
quires the modeling of proteins in water and ions at physiological concentrations.
In this context, modeling the solvent represents an important aspect of molecular
modeling studies. However, accurately modeling the solvent still remains an impor-
tant challenge as it increases the complexity of the problem by adding new degrees
of freedom for each water molecule in the system. Hence, two types of solvation
models exist: implicit solvation [33] and explicit solvation model [34]. The explicit
model is more realistic: it takes into account the effects of polarisation as the co-
ordinates of the water molecules are explicitly defined. Explicit solvation models
are frequently used in Molecular Dynamics simulations [35]. Nonetheless, the ex-
plicit representation of the solvent implies adding a significant number of solvent
molecules and considering their contribution to the energy calculations. Contrar-
ily, the implicit model simplifies this by omitting water molecules from the system
and replacing them with an infinite continuum medium that has dielectric proper-
ties of water. It is represented by a specific energy term (Esolvent) that is added
to the potential energy calculations. Some of the most prominent implicit models
are the Generalized Born model [36] and the Poisson-Boltzmann model [37]. As a
general rule, the more explicit and therefore accurate the description of the pro-
tein environment is, the more realistic molecular modeling of the system can be.
However as the explicit models are very expensive computationally, implicit models
remain an attractive alternative widely used in protein structure prediction as well
as computational protein design problems.
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2.2 Molecular Dynamics Simulations

Molecular dynamics simulations enable the study of protein dynamics which is de-
scribed by a change of atomic coordinates as a function of time. Different configura-
tions of the systems are generated by integrating over time the Newton’s equations
of motions, resulting in a trajectory that defines the variation of particle’s posi-
tions and velocities over the simulation time. Velocities are applied on particles
and forces are calculated as a negative gradient of the potential energy, as follows:

mi
δ2ri
δt2

= fi = − δ

δri
E (2.4)

where mi represents the mass of the particle, ri the position of the particle i, fi the
resulting force exerted on the particle i and E the potential energy associated with
the particle displacement. The potential energy of the system is then calculated as a
cumulative sum of non-bonded and bonded interaction energies as explained earlier
(Equation 2.1). The initial configuration of the system must be defined. In order to
initiate the movement of all atoms of the system at the beginning of the simulation,
the attribution of the initial speed to each atom is necessary. These initial velocities
are generally randomly assigned according to a probabilistic distribution (Maxwell-
Boltzmann distribution) and are dependent on the simulated temperature. By
solving Newton’s equations of motion, the configuration of the system at time t
(Ct) can be determined. From the Ct configuration, the configuration Ct+δt of the
system at time t + δt can be computed at each step of the simulation. Thus, after a
defined time-step interval δt, forces and velocities previously determined at a time
t are being recalculated and then updated in order to permit the determination
of new set of positions at time t + δt. Several algorithms exist and are used to
numerically integrate the equations of motion. Most commonly used algorithms in
MD simulations are the Verlet algorithm [38], the Leap-Frog algorithm [39] or the
Beeman’s algorithm [40]. This algorithmic framework is appropriate for molecular
systems simulated to evolve in microcanonical ensemble, also called NVE ensemble
where N represents the total number of particles in the system, V the system’s
volume, and E the total energy, and each of them being constant.

However, under the physiological conditions and in the context of laboratory
experiments, systems are more subject to constant temperatures than constant
energies. Thus, the microcanonical ensemble can be inappropriate for simulating
systems that are subjected to constant pressure and/or temperature. For such sit-
uations, more appropriate ensembles exist such as the canonical (constant temper-
ature and volume, NVT) and the isothermal-isobaric (constant temperature and
pressure, NPT) ensembles. The NPT ensemble is the most commonly used en-
semble in Molecular Dynamics simulations. In order to maintain the temperature
and/or pressure constant, temperature and pressure coupling algorithms are added
to the classical algorithms for numerical integration of equations of motion. Several
temperature and pressure coupling methods have been developed and are widely
used in MD simulations. The most commonly used algorithms for thermostats and
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Figure 2.1: MD system representation: periodic boundary conditions allow a mini-
mal representation of the system as it evolves in a virtual environment with cubic
boxes (in this case) duplicated infinitely.

barostats are those of Brendensen [41], Nosé-Hoover [42, 43], Langevin [44] and
Andersen[45].

In biology, MD simulations are generally employed for the study of the confor-
mational dynamics of macromolecules in a solvated medium specifically modeled
to mimic their actual physiological environment. Therefore, macromolecules are
placed in a box of specific volume and with a finite number of particles. In order
to avoid boundary artefacts, the simulation box must be large enough to encom-
pass the volume of the system and satisfy the minimum image convention in the
presence of Periodic Boundary Conditions (PBC). Applying PBC means that the
primary box, also called a unit cell, is replicated to an infinite number of unit cells
by translation in all the three Cartesian directions (Figure 2.1). This technique
allows to overcome the finite size artifact which, in the absence of PBC, would be
observed at the boundaries of the box while limiting the number of molecules in
the simulation.

Over the last decades, MD simulations have become very famous and are nowa-
days widely used for studying molecular systems. By simulating dynamic behaviour
of macromolecules these methods allow us to calculate, predict and thus better un-
derstand biological properties of the system that is being studied. Protein’s ability
to adapt to environmental variations or respond to the presence of other molecules
is a crucial step for every biological process. This ability can be induced by pro-
tein motions ranging from local flexibility to large conformational rearrangements
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which can play key roles on protein functions. With the help of MD simulations, a
thorough study on a biological system can be performed at the atomic level to get
a detailed structural description and quantified energy assessment of functionally
relevant dynamic events occurring within the studied system. Quantitative infor-
mation, generated at the microscopic level over the course of the simulation, can
then be used to compute a macroscopic observable (pressure, energy etc.) using
statistical mechanics. Thus, by defining and measuring different observables over
the simulation time, different macroscopic or thermodynamic properties can be cal-
culated. Assuming that the dynamics of a molecular system is described by a given
observable, it is possible to estimate the average dynamical behavior of a given bi-
ological system by calculating the average of this observable over a sufficiently long
time interval.

In the past twenty years MD simulations have proven their importance in struc-
tural biology studies. By providing detailed insights on individual particle motions
over time, MD simulations allow to investigate relevant motions that have crucial
roles for protein functions. In this regard, MD simulations can be utilized to address
specific questions related to certain macromolecular properties and obtain informa-
tion inaccessible from experimental data [46, 47]. Combining molecular dynamics
studies with experiments, and in some way guiding and inspiring new experiments
with preliminary MD results, may allow to gain a deeper understanding of bio-
logical systems structural dynamics, along with better comprehension of proteins
structure-dynamics-function relationship.

2.3 Protein Structure Prediction

Since Anfinsen’s experiment on ribonuclease A, the theory stating that the amino
acid sequence determines the three-dimensional structure of proteins has been widely
accepted [4]. However, the principle that explains how a given amino acid sequence
of a protein can dictate its folding to a fully functional 3D structure remains un-
known. It is since the 1970’s that, “inspired by practical problems in biotechnology
and medicine, researchers are attempting to figure out the rules that govern protein
folding” [48]. The problem of predicting a protein’s three dimensional structure be-
came one of the most fascinating and greatest open questions in molecular biology
to the point where it has been called “the Holy Grail” of molecular biology [49, 50].
Understanding how and why proteins fold in a specific way means understanding
why some sequences fold into a specific α helix, β sheet, turn or loop, but also
figuring out how these elements pack further together. Better understanding of
the principles controlling the kinetics and thermodynamics of protein-folding would
allow a much better comprehension of many diseases caused by the misfolding of
essential proteins. In order to establish how a protein structure can only be deter-
mined only by its sequence, computational protein folding methods based on the
thermodynamic hypothesis formulated by Anfinsen [4] are used. The main goal
of these methods is to find, for a given amino acid sequence, a structure with the
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lowest folding free-energy. There are two different approaches that are commonly
used. The first approach consists in building a three-dimensional model directly
from the amino acid sequence, without using any structural information from pre-
viously solved structures. This kind of approaches are called ab initio or de novo
approaches. The second approach, the homology modeling method, is based on find-
ing “similar” proteins in known protein structural databases and then constructing
a 3D model by homology to these known structures. The main difficulty of the ho-
mology modeling methods relies on the determination of a suitable template, while
the ab initio or de novo methods encounter difficulties with the considerable size of
the search space.

2.3.1 Ab initio and de novo methods

Traditionally, ab initio prediction methods are based on a protocol in which dif-
ferent protein conformations are generated and further evaluated with the use of
an energy function. The large search space that is required in order to explore
different conformations makes this type of prediction method computationally very
expensive. The vastness of the conformational search space has been illustrated by
Levinthal’s paradox expressing the theory of protein folding [51]. Cyrus Levinthal
pointed out in 1968 that, due to a considerable number of degrees of freedom in
a polypeptide chain, a protein has a theoretically astronomical number of possible
conformations. Thus, the time needed to exhaustively search through every possi-
ble conformation would exceed the age of the known universe. Nonetheless, many
proteins fold spontaneously within a millisecond or even a microsecond time scale.
Therefore, a protein cannot fold by exhaustively sampling all the possible conforma-
tions and must have some sort of folding pathway [51]. Ab initio methods are based
on physical principles and aim at predicting protein structures “from scratch” by
applying stochastic methods in order to exhaustively search for possible solutions.
The global optimisation of a suitable energy function will further enable to shorten
the computational cost needed to find the lowest-energy conformation of a given
protein sequence.

De novo structure prediction aims at exploring possible conformations using
prior information obtained from the structure of small already known structural
fragments. This type of approach is called fragment-based approach and has shown
a great success [52, 53, 54, 55]. Taking small structural fragments from known pro-
tein structures in order to construct the final model enables a discretization of the
search space. However, even with the reduction of its size, the search space remains
important. With this respect, there is a crucial need for advanced sampling algo-
rithms to accelerate the resulting predictions. The simulated annealing that is used
in Rosetta macro-molecular modeling software is one example of available methods
for such application [56]. Other algorithms, such as evolutionary algorithms and
other population-based meta-heuristics are also used for this type of optimisation
problems [57, 58, 59, 60, 61, 62].
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2.3.2 Homology-based structure prediction methods

The foundation of the homology-based structure prediction methods relies on the
observation that similar sequences adopt similar protein structures [63, 64, 65]
and that protein structures/folds are more conserved than their sequences. These
methods are generally conducted in five stages:

• identification of structural templates

• alignment of the query sequence to the template

• model building for the query sequence

• model evaluation

• model refinement

Identification of the structural template and alignment of template-query sequences
represent the key steps in homology modeling. With the constant progress and
growth of experimental data from experimentally determined protein structures,
homology modeling methods have been improving and becoming more and more
efficient. Different ways exist and have been used for improving the sensitivity of
template identification and the quality of the template-query alignment. There are
methods that consider structure information, called threading methods, whose goal
is to align protein sequence with one or more structures in order to obtain the best
sequence structure compatibility. Other methods are instead purely sequence-based
and use multiple sequences from the same protein families. With the accumulation
of new protein sequences and the development of Position Specific Iterative BLAST
(PSI-BLAST) [66], profile-based homology studies have been enabled. Within PSI-
BLAST, a Position Specific Scoring Matrix (PSSM) can also be generated. From
the initial BLAST search and for a given multiple sequence alignment, this matrix
can calculate the position-specific scores for each position in the alignment. The
application of these techniques significantly increased the sensitivity of homology
detection. Some of the most famous homology modeling software are I-Tasser [67],
SWISS-MODEL [68], MODELLER [69], PHYRE2 [70].

Finally, it is worth mentioning that the long-standing race for solving one of
biology’s greatest challenges has been intensified in the past few years by the use
of new artificial intelligence approaches, and more particularly deep learning [71].
Deep learning methods became very popular for their ability to process huge amount
of information from the increasing mass of data available nowadays. In the past five
years many studies showed that deep learning methods can improve the accuracy of
protein structure predictions [72, 73, 74, 75, 76]. The use of deep learning for solving
the protein structure prediction problem has been revolutionized in 2018 during
the well-known Critical Assessment of Techniques for Protein Structure Prediction
(CASP13) competition. Google’s DeepMind work, a system called AlphaFold, made
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an unprecedented progress in the ability of computational methods to predict protein
structures and was ranked first during CASP13 competition [77]. Two years later
at CASP14, AlphaFold2 results were so impressive that CASP organizers stated
that the protein structure prediction problem is in some sense solved.

2.4 Computational Protein Design

2.4.1 Context and objective

Usually referred to as the inverse folding problem, Computational Protein Design
exploits the sequence-structure-function relationship with the objective of identi-
fying an amino acid sequence that folds into a known three-dimensional protein
structure and ultimately performs a desired function. In order to identify proteins
with the desired properties, an evaluation of different possible sequences is needed.
For a protein of N residues and a choice between 20 amino acids per residue, the
challenge of evaluating all possible sequences relies in the astronomical size of the
search space (20N ).

Traditionally, protein engineering relies on directed evolution [78] (random mu-
tagenesis or gene shuffling combined with high-throughput screening) and site-
directed mutagenesis. Despite the power of these approaches and the advances
they have enabled in the field of protein engineering, they still face a number of
limitations. One important problem of these approaches is the limited diversity of
protein sequences that can be generated and explored compared to the vastness of
the sequence space. This problem is further compounded by the fact that, in a
random mutant sequence library, the frequency of observing beneficial mutation is
extremely low [79, 80]. Moreover, the exploration of protein diversity is also limited
by the screening process. As high-throughput screening assays require extensive
research and development, they are not always available and can be laborious and
expensive to implement. Since it is only possible to test a very small fraction of
a large number of possible protein sequences, the use of computational methods
have become increasingly prominent in protein engineering strategies to explore in
silico large sequence spaces and pre-filter the most relevant protein sequences for
the targeted property/function prior to any experimental characterization. Such
approaches aim at considerably narrowing down the number of mutants to consider
for subsequently experimental testing while greatly increasing the chances of iso-
lating a suitable mutant with the desired property. In this regard, Computational
Protein Design (CPD) has become a powerful approach to fully rationalize and
speed-up the conception of new tailored proteins.

2.4.2 Modeling Protein Design Problem

CPD seeks to identify sequences that adopt a desired tertiary structure which pos-
sesses sufficient stability and ultimately performs a desired function. Therefore,
the CPD problem has been formulated as an optimisation problem which requires
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an energy function that accurately reflects protein stability and a reliable search
method to identify a sequence with a conformation of optimal stability (Global
Minimum Energy Conformation or GMEC). Because of the intractable combina-
tion of the many degrees of freedom of a protein and the non-convex form of energy
functions, this problem has been simplified by several assumptions: the energy is
supposed to be described as a pairwise decomposable function, the protein back-
bone degrees of freedom are fixed to an idealized target backbone conformation and
the side-chain of any given amino acid is assumed to adopt one conformation out
of a finite set of possible conformations or rotamers. Despite these simplifications,
the size of the search space remains exponentially large and the problem of search-
ing for a sequence with a minimum energy conformation is known to be decision
NP-complete [81]. For this reason, most CPD approaches rely on stochastic opti-
mization algorithms such as Monte Carlo Simulated Annealing [82, 83] or Genetic
algorithms [84], which provide only asymptotic convergence guarantees. However,
recent progress in guaranteed discrete optimization techniques showed that such
stochastic methods may durably fail to find or even get close to the GMEC when
the problem becomes hard. Despite years of CPU-time, a tuned Simulated Anneal-
ing algorithm was unable to find the global energy optima that was identified and
proved as optimal by Cost Function Networks (CFN) algorithms [85].

2.4.3 Successes and limitations

The chronological milestone road of CPD covers almost four decades [86]. It has
been since 1985 and the very first CPD experiment on a calmodulin-binding peptide
conducted by DeGrado [87] that CPD has been considered as a field in which com-
putational knowledge and human expertise are fundamental. This yet evolving field
consists of computationally designing proteins but also doing synthesis and exper-
imental characterization of suggested designs. Even though the early experiments
of CPD were mostly focusing on the methodological study that is at the core of
this technique, the term “computational protein design” only entered the literature
one decade later. Early attempts of CPD were marked by the use of the funda-
mental fact that the core of proteins is mainly composed of hydrophobic residues
while the surface is rather populated by hydrophilic residues. With the objective
of improving protein stability, CPD pioneers therefore focused on redesigning the
core of existing proteins [88, 89, 90, 91, 92, 93]. A real breakthrough in the CPD
field was presented in 2003 by Kuhlman and coworkers at the Baker lab with the
successful design of a 93-residues long protein with a novel α/β topology, called
TOP7. Kuhlman and coworkers achieved the very first systematic de novo CPD
which folded with an atomic-level accuracy of 1,2 Å into the designed template.

The relatively short history of CPD was particularly marked by the advances
made in the last decade. Development of new algorithms and energy functions
allowed the field to expand its objectives and thus also (re)design proteins involved
in complex interactions. Designing new drug delivery systems, enhancing catalytic
activities of enzymes or binding activities of antibodies and self-assembling protein
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Figure 2.2: Number of articles with the term “Computational Protein Design” in
the PubMed database since 1997 until today.

building blocks are just some of the successful examples of case studies in which
CPD has been of great benefit for health, green chemistry and bio-nanotechnology
applications [94, 95, 96, 97, 98, 99]. We have recently witnessed many exciting
achievements in this field. The design of new transmembrane proteins that allow
cells to take in certain chemicals, including charged ions and larger fluorescent
molecules [100] is one of the examples. Also, Lajoie and coworkers addressed the
problem of targeting only diseased cells by designing switches that bind to antigens
on the cell surface and, through a conformational change, are activated only when
there is a precise combination of antigens [101]. Just a while ago, CPD was also used
to design small proteins that protect cells from severe acute respiratory syndrome
coronavirus 2 (SARS-Cov-2), the virus that causes COVID-19 [102]. These success
stories clearly highlight present achievements in the CPD but also show the great
future potential that this field holds. Consequently, the significance of this field can
be nicely illustrated by the increasing number of related publications in the past 30
years as shown in Figure 2.2.

However, despite these remarkable achievements, the success rate in CPD re-
mains low. Numerous limitations need to be surpassed in order to allow CPD to
achieve results with greater efficiency and reliability. Several factors may explain
this: the CPD problem is ill-defined, suffers from a lack of expressiveness and lack
of accuracy. The CPD problem is defined as an inverse problem: finding an amino
acid sequence that folds in a given three-dimensional structure which performs a
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given function. The stability of the sequence in the given fold and its suitability
for the predetermined function are estimated by the energy function. Thus, we are
looking for a sequence that minimizes the energy on the given structure without
any certitude that the structure minimizes the energy of the sequence [103].

In other words, there could be another structure for which a given sequence
would give a lower energy. The commonly accepted definition of CPD is thus
inaccurate, even though proven to yield encouraging results in practice. Moreover,
the target protein structure space is restricted to native-like conformations, with
regular substructure patterns commonly observed in nature, which only represent
a small fraction of the space defined by rigid body degrees of freedom, backbone
torsion angles and amino acid side chains torsion angles. This inadequate definition
of the CPD problem is a limiting factor that excessively restricts the design process.

Another limitation of CPD methods is their limited ability or inability to take
protein flexibility into account. Protein flexibility is known to have a major impact
on protein functions and properties. However, integrating protein flexibility into a
CPD framework requires additional degrees of freedom to be taken into account and
thus increases the already colossal size of the search space. In order to make the
problem more manageable, and thus, to limit the exploration of the conformational
space, the modeling of the problem can be simplified by considering the protein
backbone “rigid” during the design process. This commonly used simplification
illustrates the lack of expressiveness of the CPD problem.

Finally, it is also worth mentioning that the energy function which is used for
the energy assessment of proteins is only an approximation. It typically includes
statistical terms, which define different protein interactions, and are trained on
naturally observed proteins. Such approximation of the energy function induces a
lack of accuracy in CPD problems. Furthermore, the energy function commonly
evaluates protein stability and ignores fitness objectives such as activity.

2.4.4 Stochastic and deterministic approaches

2.4.4.1 Stochastic approaches

Historically, the first computer simulation of a molecular system has been done using
the Metropolis-Monte Carlo simulation method, one of the most famous stochastic
approaches [104]. Monte Carlo methods are based on different computational algo-
rithms that sample configurations of a system by making changes to the positions,
orientations and conformations proportionally to an underlying distribution. The
principle is to iteratively propose a modification of the system and then to decide if
this modification is accepted or rejected according to a convergence criterion such
the Metropolis criterion. For a given CPD problem and a given energy function to
minimize, an MC algorithm randomly modifies the conformation of an amino acid
residue in the sequence and calculates the new energy of the system. If the energy
decreases, the modification is accepted. If the energy increases, the modification
is accepted with Boltzmann probability, according to a temperature parameter.
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Varying the temperature parameter allows crossing energy barriers and overcoming
multiple local minima of the energy landscape. Simulated annealing utilizes this
principle by heating the system and then cooling it down in order to gradually
decrease the probability of accepting high energy conformations. Therefore, it is
the most commonly used heuristic algorithm for the resolution of the CPD prob-
lem [82, 83], and is implemented in the well-known ROSETTA molecular modeling
and design software [54]. Other types of stochastic algorithms are also used within
other CPD frameworks such as genetic algorithms [105]. However, since stochastic
methods only provide asymptotic convergence proofs, for a given CPD problem this
type of method can give a different solution at each execution. Therefore, they do
not guarantee that the solution returned corresponds to the optimal solution of the
problem, the so-called Global Minimum Energy Conformation (GMEC). By explor-
ing the search space locally, stochastic methods can get trapped in local minimum
and give a solution that is far from the global minimum. Providing no finite-time
guarantee on the quality of the solution is a disadvantage of such approaches. This
is the reason why deterministic approaches have been developed in order to solve
the combinatorial optimization problem of CPD. They provide guarantees of finding
the GMEC or a sufficiently low-energy solution.

2.4.4.2 Deterministic approaches

Deterministic approaches do not involve any random process and perform a proof
that the identified solution is the best or a sufficiently good solution for a given prob-
lem. Unlike stochastic methods which start from a random solution and explore the
search space locally, deterministic methods explore a search tree. The nodes of the
tree are sub-problems of the original problem defined by an increasingly restricted
search space. A solution is found when the search space is reduced to a single
assignment: a leaf of the tree is reached. Some of the most famous deterministic
approaches are search tree algorithms such as Branch-and-Bound methods [106].

Search Trees and Branch-and-Bound

Search Tree algorithms are widely used for solving energy optimization prob-
lems. A search tree is represented by a hierarchical structure of linked nodes. Each
node of the tree represents a sub-problem of the original problem. When a node
has child nodes, it means that some variable has still several possible values. The
domain of such a variable can be split into a collection of sub-domains and each
child node has the domain of the corresponding variables restricted to a different
subset. A node without child nodes is called a leaf: all its variables have only one
possible value. A leaf defines a solution. The root of the tree corresponds to the
initial problem, when all variables have their initial domain. A solution is given by
the path from the root to one of the leaves. The aim of search tree algorithms is to
find a solution by exploring the tree from the root node and examining child nodes.
Several strategies exist for exploring a search tree. The Branch-and-Bound fam-
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ily of algorithms represents a widely used algorithmic framework for finding exact
solution to NP-hard optimization problems [107]. The branch-and-bound generic
algorithm starts by initializing a global energy upper bound, which keeps track of
the best solution found so far, from a heuristic solution (Algorithm 1). It main-
tains a list of so-called open nodes to explore. At each iteration, the algorithm
branches on a node from the list. If the node is a leaf, it is evaluated. When a new
best solution is found, a global upper bound on optimal energy is updated. If the
current node is not a leaf, a local lower bound on the energy of all leaves below
the current node is computed for each of its child nodes. If the lower bound of a
child node is lower than the current upper bound, the node is added to the list
of open nodes. Otherwise it is pruned, since it cannot lead to a better solution.
The algorithm terminates when the list of candidate node is empty. At this point,
every node in the tree has either been explored or pruned. Thus, the current best
solution is the global optimum. The way in which the algorithm explores the tree
is important and can follow different strategies. For example, the Best First Search
strategy explores the most promising node first and the Depth-First Search strategy
explores the deepest node first. When a node is selected, the choice of which vari-
able sees its domain split is crucial in terms of efficiency. It is usually determined
by sophisticated heuristics.

Algorithm 1 Branch and bound generic algorithm.
1: Inputs: P : problem
2: current_best = heuristicSolve(P)
3: upper_bound = eval(current_best)
4: L = candidateNodes(P)
5: while L 6= ∅ do
6: n = L.chooseCandidate()
7: if n.isLeaf() then
8: if eval(n.getSolution()) < upper_bound then
9: current_best = n.getSolution()

10: upper_bound = eval(current_best)
11: end if
12: else
13: for all c = n.children() do
14: if lowerBound(c) ≤ upper_bound then
15: L.enqueue(c)
16: end if
17: end for
18: end if
19: end while
20: Output: current_optimum



2.4. Computational Protein Design 35

Deterministic methods in CPD

A well-known Protein design software that relies on a deterministic approach
to solve CPD problem is Osprey [108]. In Osprey, a combination of Dead-End-
Elimination (DEE) [109] and A* [110] (Best First Search Branch and Bound) is
utilized in order to identify the GMEC. In the first step, DEE is used to eliminate
rotamers that are energetically dominated by other rotamers and that are therefore
not part of the optimal solution. This way, DEE reduces the search space of the
problem. A* subsequently explores the remaining search tree in order to find the
lowest energy solution. Even though this algorithm theoretically enables the iden-
tification of the GMEC, it is limited by its exponential time and space complexity
leading to high memory consumption.

The exponential space complexity comes from the way the A* algorithm explores
the search tree using the Best First Search method.
Other deterministic approaches employ Branch-and-Bound algorithms. Using the
Depth First Search instead of the Best First Search, they can avoid memory issues.
Besides the node exploring heuristics used, the efficiency of a Branch-and-Bound
algorithm depends on its ability to quickly find a good solution (upper bound) and
the ability to correctly estimate a floor value of the energy at each node of the
search tree (lower bound). One of the mathematical frameworks that offers a nice
and efficient way of calculating lower bounds is the graphical model called Cost
Function Network (CFN). Furthermore, it has been shown that the CPD problem
can be modeled as a CFN. This type of deterministic approach has been shown to
solve the CPD problem more rapidly than DEE/A* approach [111, 112, 113].
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3.1 Cost Function Networks (CFN)

3.1.1 Graphical Models

Graphical Models are used to describe mathematical functions of many variables
using decomposability [114]. Decomposability refers to the fact that some mathe-
matical functions can be decomposed into a combination of small functions, involv-
ing few variables. Thus graphical models serve as a powerful tool for representing
relationships between many variables, described as a graph. In this graph, nodes
correspond to variables and edges represent dependencies between the variables.
The graph then captures a description of the function decomposed as a combina-
tion of smaller functions, each depending only on a subset of the variables.

In the past years, graphical models became an influential tool in the field of Ar-
tificial Intelligence, Statistics and Statistical Physics for knowledge representation,
learning and reasoning tasks. For example, in their deterministic variants, they
are widely used for carrying out reasoning tasks such as planning, diagnosis and
prediction, design etc. [115]

There are few classifications of graphical models but the main one separates
them into probabilistic or deterministic graphical models. Some of the most fa-
mous probabilistic models are Bayesian networks and Markov Random Fields while
Constraint Networks and Cost Function Networks are some of the most famous de-
terministic models. Probabilistic networks capture the joint probability distribution
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of a set of random variables. This joint probability distribution can be decomposed
into a product of factors each depending only on a subset of the variables.

Constraint Networks model constraints between variables using Boolean func-
tions. Finding an assignment of variables which satisfies all constraints in a Con-
straint Network is known as the Constraint Satisfaction Problems (CSP) [116]. Cost
Function Networks extend the notion of Constraint Networks by weighting the con-
straints with a numerical value. Optimizing the joint function defined by a CFN
is the Weighted Constraint Satisfaction Problem (WCSP). This problem has been
introduced in Artificial Intelligence for automated reasoning [117].

3.1.2 Definition of Cost function networks

Definition 1. A CFN (X,W, k) is defined by:

• a set X of variables xi ∈ X indexed by I = {1, . . . , n}, each variable xi takes
its values in a finite domain Di of maximum cardinality d.

• a set of numerical cost functions wS ∈W each involving a subset {xi ∈ X | i ∈
S} of all variables.

• The cost k is a finite or infinite upper bound on costs: a cost of k or above is
considered as forbidden.

The set S ⊂ I of a cost function wS is called the scope of the cost function. We
denote by DS the Cartesian product of the domains of all variables indexed in S:
DS = ∏

i∈S Di.
The cost of an assignment t of all variables is defined as the sum ∑

wS∈W wS(t[S])
of all cost functions wS , where t[S] is the partial assignment of t with respect to
the scope S of function wS . If it is strictly less than k, it is said to be a solution.
Notice that the upper bound k plays the role as an infinite cost: any assignment
with cost k or above is considered as infeasible and is not a solution. A CFN model
can be customized by adding constraints in the form of new cost functions that
would yield a value greater than k if the constraint is not satisfied.

3.2 Modeling CPD as a Cost Function Network

CPD modeling as a cost function network is straightforward. In this section we
describe the CFN representation of CPD problems. In this thesis, toulbar2, a CFN
solver developed at MIAT, is used to solve CPD problems (https://github.com/
toulbar2/toulbar2).

3.2.1 Modeling Single State CPD with CFN

As we mentioned earlier, the usual approach of CPD simplifies the CPD problem
by fixing the protein backbone degrees of freedom to an idealized target backbone.
This kind of approach is called Single State Protein Design (SSD).

https://github.com/toulbar2/toulbar2
https://github.com/toulbar2/toulbar2
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We model the rigid discrete CPD problem using a CFN (X,W, k) with one
variable xi per position i in the design. At each position 1 ≤ i ≤ `, where l is the
number of residues, corresponds a set Si of possible amino acids. For each amino
acid a ∈ Si, we are given a set Ci,a of its allowed conformations. A pair r = (a, c),
where a ∈ Si and c ∈ Ci,a, is called a rotamer.

The domain of variable xi is the set of rotamers (a, c) ∈ Si × Ci,a available for
design at position i and the set of functions W contains the terms of the pairwise
decomposable energy functions: a constant term E() for the rigid bodies, one-body
terms E(xi) that capture internal side-chain energies and rotamer-backbone inter-
actions at position i and two-bodies terms E(xi, xj) which capture interactions be-
tween positions i and j. The objective is to find the combination of rotamers which
minimizes the joint cost/energy of the backbone. This is the optimum solution of
the WCSP [118, 119, 85].

3.2.2 Identification of guaranteed solution

Proving that a solution is optimal, means showing that no other solution can have a
better energy. To do so, CFN algorithms use a Search Tree algorithm as described
earlier and a mechanism that allows us to prune branches of the tree when we are
sure that they cannot improve the current best solution.

In toulbar2, the default search tree strategy is Hybrid Best-First Search (HBFS).
HBFS mixes the Depth-First Search and Best-First Search strategies: it maintains
a list of open nodes, similarly to Best-First Search, but expands each selected open
node in a Depth-First Search manner for a bounded number of nodes. Each un-
explored node pending at the end of the Depth-First Search is added to the open
node list.

Local consistency algorithms provide an efficient way of computing lower bounds,
further used to prune the search tree. Local consistency are enforced using so-called
Equivalence Preserving Transformations (EPTs). Different costs of a CFN can be
manipulated, moved between different cost functions, in order to reveal properties
which may improve the lower bound on the optimal cost. Thus, the new CFN has
an increased lower bound and is equivalent to the original network. There are sev-
eral levels of local consistencies which are defined by local consistency properties.
These properties can be of variable strengths and thus provide more or less “tight”
lower bounds. Two main types of strong local consistencies algorithms are used in
toulbar2 : Existential Directional Arc Consistency (EDAC) [120] and Virtual Arc
Consistency (VAC) [121].

3.3 Conclusion

The Single State Design method based on CFN framework has been implemented in
toulbar2 and can use any decomposable energy function such as the energy functions
available in ROSETTA molecular modeling and design software [54]. The recent
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design of the hyper-stable self-assembling β-propeller “Ika” using the CFN technol-
ogy [122] seems to indicate that guaranteed methods can also be useful in practice,
combining efficiency with the assurance that optimization did not fail. However,
considering a single rigid backbone as a target ignores backbone flexibility and cer-
tainly decreases the chances of designing a protein which folds and possesses desired
properties. In order to take protein flexibility into account during CPD process,
one should consider several backbone states simultaneously. This type of approach,
called Multistate Design (MSD), defines challenging computational problems that
are at the core of this thesis.
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4.1 Introduction

This chapter aims at combining the guarantees and efficiency of CFN algorithms
with the idea of defining the target structure as an ensemble of backbone con-
formations instead of a single idealized structure. Indeed, the traditional single
state protein design (SSD) contrasts with the increasing evidence that proteins do
not remain fixed in a unique conformational state but rather sample conforma-
tional ensembles. Compared to the usual SSD approach, multistate design (MSD)
has shown to provide enhanced design capacities [123] to stabilize an ensemble of
backbones [124, 125], to design conformational switches [126, 101] or proteins with
specific binding properties [127, 84, 128]. In 2017 Loffler and coworkers showed that
Rosetta modular framework for multistate design offered a 15% higher performance
than single-state design on a ligand-binding benchmark [129]. Multistate design
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was also used for understanding thermal adaptation of enzymes by rational design
of 100 adenylate kinases and prediction of their stability and adapted functions
through multistate modeling [130]. The use of multistate also allowed the design of
bispecific antibodies [131] or the design of switches that bind to antigens on the cell
surface and, through a conformational change, are activated only when a precise
combination of antigens is present [101]. In all these cases, MSD seeks to identify a
sequence that optimizes a function of its optimal energies on the different considered
states. This function, or “fitness”, is itself non trivial to compute, as it requires the
computation of optimal conformations of the sequence on several backbone states.
Many SSD optimization algorithms have been extended to MSD, with more or less
general fitness functions, including Monte Carlo with simulated annealing [126, 132,
133], genetic algorithms [134], the FASTER approach [135], cluster expansion [127],
and dead-end-elimination [136], also in combination with A* [137]. These methods
are often limited by the number of mutations they can explore across all states, usu-
ally going up to 30 mutations maximum. Recently, Sauer and coworkers proposed
an MSD approach based on Monte Carlo Simulated Annealing which samples the
sequence space on each state independently and then adds constraints so that the
search on all states converges to a unique sequence [133].

The nature of the fitness function intimately depends on the design problem.
The Boltzmann-weighted average of the energies in each state is ideal when the
aim is to stabilize any of the backbone states. When instead, it is to design a
sequence that must fit all conformational states, the fitness will typically be the
average of the energies on all states. These two cases are identified as positive
multistate design. The fitness improves when the energy of the sequence improves
in any state. However, some design problems involve undesirable states for which
this property is violated: the fitness worsen when the energy of the sequence in an
undesirable state improves. This can occur for the design of protein-ligand binding
or oligomeric association specificity. These design problems involve negative design
against unwanted binding partners present in the medium. Specificity then arises
from the preference for a given partner over the others. Thus, undesirable (negative)
molecular states also have to be considered.

In this chapter, we observe that the type of the fitness function has a profound
influence on the computational nature of the problem. The introduction of undesir-
able states makes the problem qualitatively more complex, shifting its complexity
from NP-complete to the much harder NPNP-complete category [138]. This result
has several implications. Negative MSD being qualitatively harder than SSD, opti-
mization methods may become unable to reach good quality solutions sooner than
in the SSD case. It also shows that positive MSD is an interesting target: it is
“just” NP-complete while capturing some backbone flexibility and dynamics [139].
Hence, we leverage the polynomial equivalence of NP-complete problems by in-
troducing efficient reductions of two variants of positive multistate design to Cost
Function Networks. The first variant uses a minimum energy fitness and the second
one a (weighted) average energy fitness. Beyond saving programming efforts, this
approach directly benefits from the advanced CFN processing machinery [140, 141].



4.2. Methods 45

On various positive MSD problems, we show that it is possible to identify an
optimal MSD sequence with associated optimal conformations in reasonable time,
on computationally extremely challenging design problems of a size far beyond what
has been solved with existing state-of-the-art guaranteed multistate design meth-
ods [137], including recent CFN based methods with dedicated algorithms [142].
Pompd is also natively able to exhaustively enumerate suboptimal sequences close
to the MSD optimum, which is convenient for sequence library design. Contrar-
ily to what has been previously described [124], we observe that the use of an
ensemble of NMR structures as a positive ensemble of backbones provides strong
improvements in terms of native sequence and sequence similarity recovery when
an average energy criteria is used. We also show that this improvement is reduced
but still present when a backrub generated ensemble derived from a single X-ray
structure is used. These results show that Positive Multistate Design is essentially
as hard to solve as Single State Design, both in theory and in practice. Given the
significant improvement that the multistate approach brings, it is our feeling that
positive MSD should be considered as a default design approach when specificity is
not the main target.

4.2 Methods

4.2.1 Our definition of multistate design

In discrete rigid MSD, we are given a set of positive backbones that represent the
target structure and a set of negative backbones that are undesirable. In either
the positive or negative case, these states have also been called “sub-states” [142].
The final fitness of a sequence is then defined as the difference of the fitness on the
positive and negative states. Various definitions of the fitness can be considered:

• If the set of states represents “possible backbones” that the sequence can
(de)stabilize, with no prior knowledge on which one will be adopted in prac-
tice, the Boltzmann-weighted energy over all the considered states (defined
as the sum of e−βEE, where β = 1

kBT
), is an attractive criteria. Because this

gives an exponential advantage to the backbone with lowest energy, it has
been approximated by the minimum energy [142]. This becomes equivalent
to what is called Multistate Analysis (MSA) [143].

• If instead the set of states represents structures that must be jointly (de)stabilized,
as in conformational switches design for example, it is important that the en-
ergy of every state contributes to the fitness: optimizing the average energy
is more adequate.

More formally, we are given a set of positive and negative rigid backbone states
B = B+ ∪B−, all with the same number ` of residues. At each position 1 ≤ i ≤ `,
we have a set Si of possible amino acids. For each a ∈ Si and each state Bj ∈ B,
we are given a set Cji,a of allowed conformations for the amino acid a at position i
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in state Bj . At position i, a pair r = (a, c) where a ∈ Si and c ∈ Cji,a is called a
rotamer.

We also assume that the energy Eb(a, c) of a backbone Bb equipped with a given
amino acid sequence a ∈

∏
i Si and conformations c ∈

∏
iC

j
i,a[i] is described as a sum

of terms that each involve at most two rotamers ri = (a[i], c[i]) and rj = (a[j], c[j]),
for 1 ≤ i, j ≤ `:

Eb(a, c) =

Eb() +
∑

1≤i≤`
Eb(ri) +

∑
1≤i<j≤`

Eb(ri, rj)

 (4.1)

To capture the different criteria that have been used, such as minimum or (weighted)
average energy, we imagine that a binary operator ⊕ is used to combine the energies
of the backbones. Optimizing the minimum energy is obtained using ⊕ = min. This
will be called min-MSD. Since the number of states is fixed, optimizing the average
energy is obtained using ⊕ = +. This will be called Σ-MSD.

More formally, the ⊕-MSD problem asks whether there exists a sequence a ∈∏
i Si (the sequence design space) such that ⊕

Bj∈B+

min
c∈

∏
i
Cj

i,a[i]

Ej(a, c)

−
 ⊕
Bj∈B−

min
c∈

∏
i
Cj

i,a[i]

Ej(a, c)

 ≤ k
When the set B− is empty, we say that this is a positive ⊕-MSD problem. The

problem is to identify a sequence a ∈
∏
i Si (the sequence design space) such that: ⊕

Bj∈B+

min
c∈

∏
i
Cj

i,a[i]

Ej(a, c)

 ≤ k
.

Here, we consider three types of design approaches: SSD, min-MSD (equivalent
to MultiState Analysis [143]) and Σ-MSD. These three approaches are described in
Figure 4.1 showing how different backbones are used to score various sequences in
each case.
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Figure 4.1: In SSD (left), a single state (yellow) is used to score and rank sequences
(1,2 and 3) according to their energy, which defines the sequence fitness (grey ar-
row): the best sequence is sequence 3. In ⊕-MSD, an ensemble of (here) four
backbone states (cyan, blue, red and green) is used to score and rank sequences.
The fitness of each sequence (grey arrow) can be computed using the min (center) or
the (weighted) sum of the sequence energies in each state (right). Depending on the
used operator, the ranking may change and different sequences can be selected. In
min-MSD sequence 2 is ranked first as it has the best energy on the green backbone.
In Σ-MSD, it is ranked last because of its bad energy on the cyan backbone.

4.2.2 Computational complexity

Since Pierce’s seminal paper [81], we know that the SSD problem is decision NP-
complete: given an arbitrary rigid backbone, and arbitrary pairwise decomposable
energy function and rotamer library, deciding whether there exists a sequence and
associated side-chain conformations with energy lower than a given threshold k is
NP-complete. This result proves that the SSD problem is among the hardest of all
the problems in its class: any other problem in NP can be reduced to it efficiently
(in a time that grows as a polynomial in the size of the problem).

Theorem 1. Assuming energies are represented as finite objects and that addition,
comparison and ⊕ can be computed in a time polynomial in the length of their
arguments, the positive ⊕-MSD problem is NP-complete and the general ⊕-MSD
problem is NPNP-complete (or Σp

2-complete).

This theorem was proved by Manon Ruffini, a colleague from MIAT laboratory,
and the proof can be found in the Supplementary materials of our Pompdarticle [144].

4.2.3 Positive min-MSD as a CFN

In positive min-MSD, one seeks a sequence that best stabilizes one backbone among
all backbones Bi ∈ B+ or equivalently that minimizes:
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min
Bb∈B+

min
c∈

∏
i
Cj

i,a[i]

Eb() +
∑

1≤i≤`
Eb(ri) +

∑
1≤i<j≤`

Eb(ri, rj)


where we use the decomposable form of the energy from Equation 4.1.
This problem can be tackled by solving the SSD problem on every backbone state

Bi ∈ B+ and using the sequence of the backbone with minimum energy Emin as
the solution. Given an energy gap of size ∆ > 0, a library of suboptimal sequences
whose energy is less than Emin + ∆ can be obtained by taking the union of the
libraries obtained with energy threshold ∆ on every backbone Bi ∈ B+. Because it
allows to consider each state independently, this approach is often referred as just
a “Multistate Analysis” (MSA) [123].

Instead of solving as many SSD problems as there are states, the problem can
be modelled as a single Cost Function Network whose optimal solution will define
both the optimal sequence and the state on which the optimum is reached. This
model exploits the fact that CFNs solvers can deal with terms involving more than
two variables.

For a set B+ of n states, we start from a model with the same variables as in
the SSD case: one variable xi per position i, with a domain equal to the set of
available rotamers at this position. We also introduce a variable xB with a domain
{1, . . . , b} that represents an index in the set of positive states. The CFN for SSD
of any of those backbones involves zero, one and two-bodies terms. We introduce
the new variable xb in the scope of each of these terms so that:

• all the constant terms Eb() for state Bb ∈ B+ are transformed in a one-body
function depending on the state index xb and equal to the constant term for
this state E(xb) = Exb

.

• for every position i, all the one-body terms Eb(xi) for states Bb ∈ B+ are
transformed in two-bodies terms E(xb, xi) = Eb(xi).

• for every pair of positions (i, j), all the two-bodies terms Eb(xi, xj) for all
statesBb ∈ B+ are transformed in three-bodies terms E(xb, xi, xj) = Eb(xi, xj).

A solution of the resulting CFN defines a state through its index xb and a
sequence-conformation for every position in xi. The cost of the solution is, by
definition of the terms above, equal to the energy of this sequence-conformation on
this backbone. An optimal solution minimizes the energy over all possible choices
of states and sequence-conformations and is therefore a solution of the positive
min-MSD problem.

This approach was tested but never found to outperform the simple approach
where each backbone is solved independently. We therefore used this latter method.
The reduction above has the advantage that it simplifies the construction of a
sequence library: it suffices to enumerate all suboptimal sequences within ∆ of the
optimum of this Cost Function Network to directly build the joint library.
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4.2.4 Positive Σ-MSD as a CFN

In positive Σ-MSD, one seeks a sequence that best simultaneously stabilizes all
states Bi ∈ B+ or equivalently that minimizes:

∑
Bb∈B+

min
c∈

∏
i
Cj

i,a[i]

Eb() +
∑

1≤i≤`
Eb(ri) +

∑
1≤i<j≤`

Eb(ri, rj)


This problem cannot be tackled by solving the SSD for every state Bb ∈ B+

and summing the energies because the optimal sequences for each SSD problem
may differ. To avoid this issue, we exploit the capacity of CFNs to represent hard
constraints using the cost “k”. Contrarily to stochastic search algorithms (that
could fail because of lack of ergodicity or require specific treatment to preserve it),
CFN algorithms have the capacity to actively exploit these constraints to accelerate
search by predicting inconsistent choices using local consistencies [140].

For each state Bb ∈ B+, we compute the SSD CFN defined in Chapter 3. We use
a superscript for all variables in these CFNs to identify the state they correspond
to: xbi is the variable representing position i in the SSD CFN of state Bb. We build
a Σ-multistate CFN as follow:

• the set of variables of the multistate CFN is the union of all the sets of
variables of each SSD CFN. For a positive Σ-MSD full redesign problem with
n backbones of length `, there will be n` variables, each with the same domain
as in the original SSD problems.

• the set of functions of the multistate CFN contains all the cost functions
Eb(), Eb(xbi), Eb(xbi , xbj) of every SSD CFN plus a set of two-bodies functions
SS(xbi , xb

′
i ) which, for every position i and every pair of state Bb and Bb′ ∈ B+,

enforce that the rotamers used in the states Bb and Bb′ for position i should
represent the same amino acid. SS(xbi , xb

′
i ) is equal to zero if xbi and xb

′
i

represent the same amino acid and is equal to the upper bound k in the
formal definition of cost function networks given in Chapter 3 otherwise.

A solution of the multistate CFN contains a solution defining a sequence and confor-
mation for every state Bb ∈ B+. By definition, the cost of this solution is the sum of
all energy terms over all states. Additionally, the SS(xbi , xb

′
i ) functions impose that

the same sequence is used in all states: an optimal solution defines a sequence that
minimizes the sum of energies. It therefore solves the positive Σ-MSD problem.

This generates a CFN with n` variables, n `(`+1)
2 energy terms and `n(n−1)

2 ad-
ditional SS(xbi , xb

′
i ) constraints. Since the SS(xbi , xb

′
i ) constraints define an equiva-

lence relation, transitivity implies that it is sufficient to only enforce this constraint
for every pair b, b+ 1 of successive states. This requires `(n− 1) constraints instead
of `n(n−1)

2 .
This reduction is used in the rest of the chapter to solve positive Σ-MSD: the

MSD problem is transformed in a CFN and the CFN solved. The use of a single
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CFN also allows to easily generate suboptimal sequences using the dedicated SCP-
branching strategy [145].

4.2.5 Benchmark Preparation

Two datasets have been prepared. The first one contains 15 NMR structures and
the second one 15 X-ray structures (see Figure 4.2) that have been extracted from
the Protein Data Bank (PDB) [8] and filtered with following criteria:

• monomeric proteins, no missing or nonstandard residues, no ligand

• maximum sequence length of 100 amino acid residues

• NMR resolved structures must contain at least 20 conformations

• X-ray structures must be resolved below 2 Å

The set of backbones in the NMR ensemble was submitted to RMSD-based hierar-
chical clustering using the Durandal software [146] in order to select the four most
diverse conformations.

The X-ray ensembles have been generated by RosettaBackrub [147] which uses
the BackrubEnsemble method for flexible protein backbone modeling in Rosetta [148,
149]. One hundred conformations were generated for each structure. This step was
followed by the same RMSD-based hierarchical clustering as for the NMR ensem-
bles in order to select the four most diverse among given conformations. Clustering
distance thresholds were set to reach the desired number of clusters (see Table 4.1).
The structures were relaxed using RosettaFastRelax with harmonic constraints, re-
sulting in output structures which are typically within 2 Å RMSD of the initial
structure. Pairwise energy matrices were computed with Dunbrack2010 rotamer li-
brary [150] and beta_nov16 scoring function [32], using PyRosetta 171 [151]. These
problems define huge search spaces (Table 4.2) with sizes that can exceed 10900 or
10540 if the effect of the SS constraints is taken into account.

We also used the 4 multistate problems provided with the multistate iCFN
solver at https://shen-lab.github.io/software/iCFN. All 4 problems include
eleven states of 3QDJ, a complex between TCR DMF5 and human Class I MHC
HLA-A2 with a bound MART-1(27-35) nonameric peptide, produced by an MD
simulation [142]. Each problem has a single residue to redesign (from 20 possible
amino acids, with 7 protonation states for Asp, Glu and His), all close residues are
considered as flexible. Because of a dense rotamer library (4, 731 rotamers), these
problems define large search spaces (Table 4.3).

https://shen-lab.github.io/software/iCFN
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Figure 4.2: Description of protein systems: For each instance: system name, ref-
erence PDB id, crystallographic resolution or number of conformations for NMR
structures, number of amino acid residues(N), SCOP stuctural classification(Class).
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Table 4.1: User-defined clustering distance thresholds (d) for each protein structure.

NMR structures X-ray structures
PBD ID d (Å) PBD ID d (Å)

5vso 2.0 1hyp 0.5
5l7b 0.4 1hoe 0.4

5mmc 2.0 1mjc 0.6
1gb1 0.3 1pga 0.4
5t8a 0.2 2b8i 0.4
2l5t 1.0 4y2k 0.4
2n6r 0.3 1f94 0.4

1bmw 1.2 1who 0.4
5ix5 0.6 1tud 0.5
5x0s 1.5 1yu5 0.15
6ews 0.5 1bxy 0.5
6fwn 0.8 1ctf 0.3
6qf8 1.2 1guu 0.3
6jlt 0.5 1wvn 0.5

6hkc 1.0 1ucs 0.3

4.2.6 Solving SSD, min-MSD and Σ-MSD with Pompd

Thanks to the three reductions of SSD, positive min-MSD and Σ-MSD to CFNs, it
is now possible to solve these problems using a CFN solver such as toulbar2.

For our benchmarking NMR and X-ray instances, we downloaded toulbar2 from
its repository, using its ’cpd’ branch. All instances were solved using the “-dee:
-O=-3 -B=1 -A –cpd” taken in a recent paper [85]. Compared to the default be-
havior, this command line deactivates Dead End Elimination and activates the
exploitation of the interaction structure (treewidth) and the strong ’Virtual Arc
Consistency’ bounds [140]. Computations were done on an Intel(R) Xeon(R) CPU
E5-2630 at 2.30GHz with 24GB of RAM. The overall workflow is described in Fig-
ure 4.3.

NMR structure

Rosetta
FastRelax

Pompd
Full redesign

BackrubX-ray structure

Clustering
4 protein

states

 Native sequence recoveries 

Fitness landscape analysis
Sequence enumeration

multistate

GMECs

Figure 4.3: Overall workflow for Xray and NMR structures.

4.2.7 Solving positive min -MSD with iCFN

Recently, a guaranteed CFN-based algorithm for both positive and negative min-
MSD was introduced as the iCFN method [142]. The authors did not use a re-
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Table 4.2: Multistate design problems: for each problem we give the average search
space of four SSD problems, search space for the min-MSD problem, defined as the
sum of all SSD search space sizes, the raw Σ-MSD search space size, defined by the
product of the size of all variable domains and the search space size reduced by the
SS constraints that impose that all states use the same sequence.

PBD ID average SSD min-MSD Σ-MSD Σ-MSD reduced
search space search space search space search space

NMR structures
5vso 1.3 10181 5.4 10181 8.5 10723 1.6 10431

5l7b 2.6 10170 1.0 10171 6.4 10680 3.1 10411

5mmc 5.6 10158 2.3 10159 4.1 10634 8.3 10380

1gb1 2.5 10137 1.0 10138 5.9 10547 1.6 10329

5t8a 9.4 10133 3.8 10134 5.9 10535 4.8 10297

2l5t 2.2 10185 9.0 10185 7.2 10738 2.1 10438

2n6r 3.4 10168 1.3 10169 4.0 10673 9.3 10376

1bmw 5.2 10229 2.1 10230 1.1 10914 1.4 10547

5ix5 4.4 10148 1.7 10149 2.0 10593 7.8 10327

5x0s 1.2 10119 4.9 10119 1.4 10470 2.0 10263

6ews 8.1 10155 3.2 10156 4.3 10622 5.4 10376

6fwn 2.8 10188 1.1 10189 2.4 10751 4.3 10419

6qf8 2.3 10188 9.1 10188 4.0 10750 9.3 10453

6jlt 6.9 10188 2.8 10189 1.5 10755 3.5 10458

6hkc 4.5 10174 1.8 10175 6.6 10694 1.2 10402

Xray structures
1hyp 2.1 10166 8.2 10166 3.2 10664 4.8 10375

1hoe 2.2 10171 8.9 10171 5.8 10684 8.6 10395

1mjc 4.3 10165 1.7 10166 10.0 10661 4.9 10392

1pga 4.7 10137 1.9 10138 1.5 10550 4.0 10331

2b8i 7.7 10189 3.1 10190 5.1 10758 1.5 10458

4y2k 2.5 10161 9.8 10161 1.7 10644 3.4 10390

1f94 2.9 10134 1.2 10135 1.4 10537 1.8 10291

1who 2.6 10227 1.0 10228 6.1 10907 7.8 10540

1tud 3.1 10146 1.3 10147 5.0 10585 3.3 10351

1yu5 9.4 10165 3.8 10166 2.9 10663 9.0 10401

1bxy 5.8 10147 2.3 10148 7.6 10590 5.0 10356

1ctf 5.2 10164 2.1 10165 1.9 10658 9.38 10388

1guu 1.2 10123 4.7 10123 1.4 10492 1.2 10293

1wvn 8.0 10179 3.2 10180 4.5 10718 6.8 10429

1ucs 5.9 10153 2.4 10154 7.9 10614 1.3 10365

duction of the problem to CFN but proposed and implemented a new algorithm
that exploits some of the underlying machinery of CFN algorithms (arc consisten-
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Table 4.3: iCFN multistate design problems: for each problem we give the position
of the redesigned residue, the number of flexible residues around the redesigned
residue and the search space for the min-MSD problem, defined as the sum of all
SSD search space sizes, the raw Σ-MSD search space size, defined by the product
of the size of all variable’ domains and the actual search space size, reduced by the
SS constraints that impose that all states use the same sequence.

redesigned # of flexible min-MSD Σ-MSD Σ-MSD
position residues search size search size reduced search size

26 18 7.6 1030 1.6 10323 7.7 10308

28 18 3.1 1034 6.3 10362 3.1 10348

98 19 4.9 1031 7.7 10334 3.7 10320

100 29 1.4 1042 5.2 10447 2.5 10433

cies [140]). The authors showed that their method outperforms the guaranteed
COMETS software [137]. We therefore decided to compare Pompd against iCFN
only.

The iCFN website (https://shen-lab.github.io/software/iCFN/) gives ac-
cess to both the software in binary format and to multistate design energy matri-
ces. We wrote a first python script to translate iCFN-formatted problems into the
cfn.gz CFN format that can be directly read by the CFN solver toulbar2. iCFN
uses double resolution floating point energies and the cfn.gz format relies on a
fixed point representation of energies. We used a “6 digits after the decimal point”
representation. We wrote a second python/PyRosetta script to generate energy
matrices in iCFN-format directly from PyRosetta. These scripts make it possible
to either apply Pompd to the positive min-MSD instances available on the iCFN
website or to apply the iCFN algorithm on our benchmark set (for the min-MSD
problem only as iCFN is not able to tackle Σ-MSD).

The iCFN command line used on the positive min-MSD problems was iCFN
-just_pos -ecutDEE=2 -ecutDEE_across=2 -ecutDEE_seq=10 -ecut_stability=5
-max_conf_seq=1
-max_dis_seq=9999 〈files〉 which asks for one solution of the min-MSD problem,
with no limitation on the number of mutations in the produced design sequence.
Except for the effect of the various pruning thresholds used by iCFN that reduce
computing time, this precisely matches the min-MSD problem we solve using CFN
reductions.

The iCFN multistate designs use a specific rotamer library that includes 2 extra
protonated states for glutamate (Glu) and aspartate (Asp) as well as 3 protonated
states for histidine (His). Because the ’cpd’ branch of toulbar2 relies on the one
letter code of amino acids, it is currently unable to process the corresponding energy
matrices. We therefore used the ’master’ branch of toulbar2 to solve these problems.
The command line used in this case is simply -m -hbfs: which deactivates the
default Hybrid Best First Search algorithm [152] for a simple Depth-First Search
and activates the median cost variable ordering heuristic [113]. All computations

https://shen-lab.github.io/software/iCFN/
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were done on a laptop equipped with 16GB of RAM and a Intel(R) Core(TM)
i7-7600U CPU at 2.80GHz.

4.3 Results and Discussion

4.3.1 Comparing SSD, min-MSD and Σ-MSD

Protein design problems can be modeled as SSD, min-MSD or Σ-MSD. SSD has
the advantage of simplicity: there is only one backbone to design. MSD approaches
have the advantage of accounting for protein backbone flexibility, with additional
modeling and computing costs. As we already mentioned, min-MSD seems more
suitable for situation of uncertainty: it is not known which, among all the available
backbones, is the suitable one. Instead Σ-MSD seems more suitable when there is
an explicit requirement that all states should be stabilized.

We assessed Pompd on our benchmark backbone conformational state ensem-
bles, either extracted from NMR structures or generated by backrub motions from
X-ray structures. Notice that our benchmark dataset represents a selection of full
protein design problems for structures of size varying between 53 and 96 residues.

Σ-MSD outperforms SSD and min-MSD in terms of sequence recovery
In order to compare the accuracy of these methods, we used the native sequence re-
covery (nsr) and native sequence similarity recovery (nssr), which have been used
extensively to evaluate protein design methods [153, 154, 129]. Native sequence
recovery is defined as the fraction of positions where the native and designed se-
quences are identical. Native sequence similarity is defined as the fraction of po-
sitions where the native and designed sequences have a positive similarity score in
BLOSUM62 protein similarity matrix. For SSD, nsr and nssr have been computed
as the average of the recovery for the four SSD conformations. The results of these
comparisons are shown in Table 4.4. Σ-MSD achieves on average a nsr of 64.7%
and 66.4% and a nssr of 74.4% and 73.9% for respectively back-rubbed X-ray and
NMR structure datasets. For every protein design in the X-ray structure dataset
and for 13 out of the 15 protein designs in the NMR structure dataset, Σ-MSD
provides the best native sequence recovery (p-value when comparing to respectively
average SSD and min-MSD over all proteins of 2.5 10−6 and 1.3 10−5, Wilcoxon
signed rank test). For NMR structures, Σ-MSD performs 15.6% better on average
than SSD and 8% better for X-ray structures. min-MSD achieves native sequence
recovery rates which can almost not be differentiated from those obtained by SSD
(p-value of 0.6 on the 30 proteins, Wilcoxon signed rank test). While min-MSD
and SSD achieve a better sequence recovery rate on the X-ray dataset than on the
NMR structures (7− 9% better on average), Σ-MSD is less sensitive to the dataset
type (1% better on average on X-ray dataset).

We expected Σ-MSD to perform better on NMR, given that the NMR ensemble
corresponds to likely states of the observed proteins and min-MSD to be more
adapted to the back-rubbed X-ray structures that just define a set of possible states.
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NMR SSD

NMR Σ-MSD

X-Ray SSD

X-Ray Σ-MSD

Figure 4.4: CPU time in seconds (Y logscale axis) vs. problem size (MB) for SSD
and Σ-MSD problems (X axis). Each point represents one instance, NMR structures
are in red, X-ray in blue. SSD problems are represented as circles, Σ-MSD problems
as squares.

Instead, Σ-MSD dominates even in the back-rubbed case. min-MSD is worse than
SSD on NMR ensembles but at least improves over SSD on back-rubbed X-ray
structures. It is possible that a set of 4 states is too small for min-MSD to have a
chance to find a suitable backbone while the more consensual approach of Σ-MSD
is able to extract local information from every backbone.

Analyzing the efficiency of Pompd on SSD and Σ-MSD: Because SSD and
⊕-MSD are NP-complete, we expect an exponential cpu-time growth as the sizes
of the problems solved increase. We plotted the cpu-time taken by Pompd to solve
the SSD and Σ-MSD problems against the problem size represented as the size (in
bytes) of the compressed file that contains the description of the problem solved in
wcsp format (see Figure 4.4). Empirically, we observe that for each class of problem
(SSD and Σ-MSD), an exponential function fits the CPU-time reasonably well and
that the Σ-MSD problems tend to be simpler to solve than the SSD problems, given
their larger size. In the end, the relatively slow increase in CPU time as the size
grows shows that full redesign problems using an SSD or a positive min-MSD and
Σ-MSD approach can be solved on a standard computer for proteins of size less than
100 amino acids in reasonable time, with guarantee on the fitness of the produced
sequence.

Comparing the computational efficiency of iCFN and Pompd We com-
pared Pompd to the recent iCFN solver [142]. iCFN can solve min-MSD problems
but not Σ-MSD problems. In our first comparison, we converted the 4 positive
multistate problems available on the iCFN web site (see Section 4.2.7) to a format
that we could process. We tackled the min-MSD problem on these four instances
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Table 4.4: Native sequence recoveries and similarity recoveries for SSD, min-MSD
and Σ-MSD on both NMR structure (left) and X-ray structure (right) datasets.
The protein sequences have length that vary from 53 to 96.

NMR structures X-ray structures
PBD ID SSD min-MSD Σ-MSD PBD ID SSD min-MSD Σ-MSD

Native sequence recoveries Native sequence recoveries
5vso 48.0% 44.0% 62.7% 1hyp 61.8% 67.5% 68.9%
5l7b 52.9% 53.6% 59.5% 1hoe 60.1% 59.4% 77.0%

5mmc 54.2% 60.0% 58.5% 1mjc 56.5% 53.6% 59.4%
1gb1 48.7% 46.4% 60.7% 1pga 52.7% 58.9% 73.2%
5t8a 39.7% 39.3% 37.7% 2b8i 48.4% 42.8% 57.1%
2l5t 58.4% 49.3% 83.1% 4y2k 62.7% 67.7% 70.8%
2n6r 53.9% 52.6% 67.1% 1f94 64.3% 65.1% 71.4%

1bmw 53.4% 56.4% 79.8% 1who 61.4% 62.7% 68.1%
5ix5 52.6% 48.5% 63.2% 1tud 45.8% 45.0% 48.3%
5x0s 42.9% 50.9% 58.5% 1yu5 64.1% 65.7% 68.6%
6ews 46.8% 46.1% 69.8% 1bxy 53.3% 50.0% 60.0%
6fwn 55.8% 54.1% 72.9% 1ctf 57.9% 50.7% 60.9%
6qf8 54.3% 51.3% 68.4% 1guu 53.4% 66.6% 66.6%
6jlt 54.9% 57.8% 65.7% 1wvn 41.9% 44.5% 50.0%

6hkc 45.0% 44.0% 66.6% 1ucs 66.1% 70.3% 70.3%
Average 50.8% 50.3% 66.4% Average 56.7% 58.0% 64.7%

Native sequence similarities Native sequence similarities
5vso 58.6% 54.6% 70.6% 1hyp 71.3% 75.7% 81.1%
5l7b 69.6% 65.2% 75.4% 1hoe 67.2% 68.9% 82.4%

5mmc 59.6% 63.1% 61.5% 1mjc 67.5% 66.7% 69.6%
1gb1 62.9% 60.7% 67.8% 1pga 62.9% 69.6% 80.3%
5t8a 52.5% 52.5% 49.2% 2b8i 63.3% 58.4% 71.4%
2l5t 71.1% 62.3% 90.9% 4y2k 66.1% 69.2% 75.4%
2n6r 64.5% 59.2% 73.7% 1f94 74.2% 73.0% 80.9%

1bmw 64.9% 64.9% 84.1% 1who 72.1% 73.4% 80.9%
5ix5 62.8% 58.8% 72.1% 1tud 55.0% 56.7% 55.0%
5x0s 51.9% 60.4% 75.5% 1yu5 72.4% 73.1% 74.6%
6ews 65.8% 73.0% 82.5% 1bxy 64.5% 58.3% 73.3%
6fwn 63.2% 61.1% 78.8% 1ctf 65.6% 59.4% 68.1%
6qf8 64.4% 64.4% 77.6% 1guu 69.6% 72.5% 82.4%
6jlt 62.5% 61.8% 71.1% 1wvn 57.1% 63.5% 62.2%

6hkc 59.3% 58.6% 78.6% 1ucs 73.0% 76.6% 78.1%
Average 62.2% 61.4% 73.9% Average 66.8% 67.7% 74.4%
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with 11 states with iCFN and Pompd. Since sequence recovery was shown to be
better on Σ-MSD, we also tried to solve Σ-MSD problem with Pompd only. This
is also the criteria that COMETS [137] uses.

The results are presented in Table 4.5. We observe that Pompd is much faster
than iCFN, by a non constant factor that increases with problem size. Further-
more, the Σ-MSD variant can also always be solved in reasonable time by Pompd
despite the vast search spaces (See Table 4.3). A possible explanation for this sur-
prising capacity to explore vast spaces of size larger than 10440 is that the several
backbones in each problem are sufficiently similar to define correlated regions of
low energies that enable both quick identification of optimal sequences and fast
optimality proof. To check if this intuition is true, we computed, for each protein
in the benchmark set, the difference ∆E between the average energy of the SSD
optimal sequences (SSD) and the optimal average energy provided by Σ-MSD (see
Table 4.6). With an average of respectively 19.2 kcal.mol−1 and 10.5 kcal.mol−1 for
respectively NMR and back-rubbed X-ray structures, these exact differences show
that the Σ-MSD sequences have higher energies than the SSD sequences: there is
a non negligible frustration generated by trying to fit all backbones together. This
frustration is also more important for NMR structures than X-ray structures (p-
value = 0.03, Wilcoxon rank sum test) indicating that the back-rubbed structures
are more compatible with each other energy-wise than the NMR structures.

Table 4.5: Comparison of the CPU-times (in seconds) for iCFN and Pompd for
solving min-MSD and for Pompd to solve the corresponding Σ-MSD.

redesigned iCFN Pompd speedup Pompd
position min-MSD min-MSD Σ-MSD

26 445.4 25.7 17.3 55.4
28 594.9 32.7 18.1 99.9
98 640.3 22.7 28.2 89.6
100 719.8 29.5 24.4 105.1

We also converted our benchmarking problems to a format suitable for iCFN
min-MSD algorithm. After 65 hours of computing, none of the full-redesign min-
MSD problems could be solved by iCFN. This was even the case for the smallest
protein of our dataset (PDB id: 1pga) which is solved by Pompd in less than 20
minutes. We therefore prepared several design problems with increasingly smaller
search spaces by decreasing the number of mutable amino acid residues, leaving
non-mutable residues as flexible. With a number of mutable residues reduced to 5,
iCFN was still unable to provide a solution after 24 hours. It’s only after fixing all
non-mutable residues in a rigid position that iCFN could finally produce a solution
in 247 seconds. Pompd solves this problem in 14.59 seconds.
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Table 4.6: Difference in energy for each protein in the benchmark between the
average of all SSD optimal sequences and the energy of the optimal Σ-MSD sequence
(kcal/mol).

NMR PDB Σ-MSD-SSD X-ray PDB Σ-MSD-SSD
5vso 16.0 1hyp 12.7
5l7b 10.4 1hoe 14.8

5mmc 14.3 1mjc 8.9
1gb1 11.6 1pga 12.8
5t8a 5.6 2b8i 13.3
2l5t 25.4 4y2k 5.5
2n6r 11.7 1f94 9.2

1bmw 44.9 1who 17.5
5ix5 21.7 1tud 4.2
5x0s 30.3 1yu5 6.3
6ews 14.8 1bxy 8.6
6fwn 31.0 1ctf 10.1
6qf8 16.9 1guu 8.0
6jlt 18.7 1wvn 20.4

6hkc 27.7 1ucs 9.9
Mean 20.1 Mean 10.8

4.3.2 Sequence enumeration for min-MSD and Σ-MSD

In addition to the optimal sequence, Pompd can provide an exhaustive list of sub-
optimal sequences within a given energy threshold of the MSD optimum. In order
to characterize the energy landscape of the min and Σ-MSD approaches, we enumer-
ated all sequences within a 1 kcal.mol−1 of the optimum for the largest protein of
our dataset (96 amino acid residues) whose structure has been solved by both NMR
(1bmw) and X-ray crystallography (1who). As expected, Σ-MSD enumerations are
computationally more costly than min-MSD enumerations (Table 4.7).

Table 4.7: Number of enumerated sequences and CPU-time taken for the enumer-
ation for 1who and 1bmw

min-MSD Σ -MSD
# of seq. CPU-time # of seq. CPU-time

1bmw 131,616 2’ 50” 94,522 43’30”
1who 56,790 2’32” 143,457 67’16”

Different important features of the fitness landscape of SSD problems have al-
ready been studied in [155]. We used some of these features to analyze the land-
scapes of min-MSD and Σ -MSD. The distribution of the Hamming distances to
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the optimal sequence (number of substitutions compared to the optimum) shows a
similar uni-modal distribution for both methods (Figure 4.5).

Figure 4.5: Distribution of Hamming distances to GMEC for 1bmw (top) and 1who
(bottom). min-MSD is shown in red and Σ-MSD in blue.

However, Σ-MSD shows a narrower distribution, with more solutions close to
the optimum (mode at distance 5 of the optimum instead of 7 and 10 respectively
for 1bmw and 1who in min-MSD). These results are consistent with the nsr and
nnsr computed for all enumerated sequences (average values shown in Table 4.8).

We also computed the local optima network defined by the enumerated se-
quences and a neighborhood at a Hamming distance of 1 (See Figure 4.6). For both
proteins, the networks for the Σ-MSD landscapes are much more densely connected
than the min-MSD networks. In min-MSD, the basin of the global optimum is often
disconnected from most of the other basins. Instead, the Σ-MSD landscapes show
far less wider basins which can be reached by all or a large fraction of the other
basins. This may explain why, despite the frustration generated by the requirement
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Table 4.8: Average nsr and nssr over all enumerated sequences.
nsr(%) nssr(%)

PBD ID min-MSD Σ-MSD min-MSD Σ-MSD
1who 62.9% 67.9% 74.7% 80.3%
1bmw 55.6% 79.5% 63.2% 84.3%

of fitting several backbones, Σ-MSD are easier to solve given their size: they more
clearly identify the globally optimal sequence.

Σ-MSDmin-MSD

1w
ho

1b
m
w

Figure 4.6: 2D views of the local optima networks of 1bmw and 1who for min-MSD
and Σ-MSD. The size of a node is proportional to the log size of the attraction
basin of the local minima. The energy of the local minima is represented as a color
gradient from blue (high energy) to red (low energy). Edge thickness is proportional
to the probability of escaping a basin to another basin assuming that the probability
to go from a solution to any of its neighbors is uniform.

From a biological perspective, the Σ-MSD fitness landscapes seem more relevant.
Considering that evolution occurs by random mutations, one can interpret these



62 Chapter 4. Positive Multistate Protein Design: modeling Protein Flexibility

networks as an abstract representation of the possible mutational paths that can
be explored by evolution. The densely connected Σ-MSD local optima networks
allow random mutations to easily escape local minima. By capturing the natural
flexibility of proteins in a more realistic manner, Σ-MSD leads to more natural
fitness landscapes.

4.4 Conclusions

We have shown that multistate protein design problems can be intrinsically much
harder than the usual NP-complete Single State Protein Design problem [81]. This
additional complexity can be precisely pinned down to the introduction of nega-
tive states. While negative states are crucial when the design target is to generate
specificity, when the aim is just to stabilize an ensemble of backbones, or to de-
sign conformational switches, positive states suffice. The positive MSD problem
is therefore a soft spot of multistate protein design, offering the ability to capture
some of the flexibility of protein backbones while remaining “only” NP-complete,
just as SSD.

To exploit this situation, we designed efficient reductions of the optimization
problem defined by positive MSD problems to the generic discrete optimization
framework of Cost Function Networks [140], a framework introduced in Artificial
Intelligence that has already shown its efficiency on SSD problems [119, 85]. On
a mixture of NMR and back-rubbed X-ray structures, Pompd shows that the av-
erage energy criteria is clearly superior to the MSA approach in terms of native
sequence recovery. In terms of efficiency, it also outperforms a very recent guaran-
teed multistate algorithm such as iCFN [142], which is also restricted to the simple
min-MSD (or MSA) problem. In our knowledge, this is the first time that it is
possible to access guaranteed optimal average energy full multistate redesigns of
proteins of size close to 100 amino acids, defining search space of size larger than
10500. Because it just relies on a reduction to CFN, this approach also inherits all
the capabilities of CFN solvers such as toulbar2, including the ability to exhaus-
tively enumerate sequences within a threshold of the optimum to directly produce
a sequence library.
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In this chapter we present additional features that were implemented during
this thesis. These additional features represent different functionalities that were
introduced in the previously developed algorithm to customize it for specific appli-
cations.

5.1 Hpatch

With the objective to perform a specific biological function, proteins must adopt a
stable folded conformational state and be soluble and functional in water for most
of them. Protein solubility is an important physicochemical property which is re-
lated to other functional properties and which can be influenced by a number of
environmental and internal factors. While the environmental factors may include
pH, ionic strength, temperature, and the presence of various solvent additives, the
internal factors that mostly influence protein solubility are defined by the physico-
chemical properties of the amino acids present at the protein surface [156]. It has
been shown that protein solubility is indeed determined by the amount of exposed
hydrophobic surface area in the protein folded state [157, 158]. In 2003, it has
been demonstrated that the rate of aggregation of proteins and peptides increases
as the amount of exposed hydrophobic surface area increases [159]. Therefore, with
protein solubility being strongly influenced by exposed hydrophobic surface area,
computational protein design tools must consider protein’s surface hydrophobicity
when designing new sequences. There are two key components that are required
for any computational protein design program: an energy function that accurately
reflects protein stability and a reliable search method that identifies a sequence with
a conformation of optimal stability. Jaramillo and co-workers showed that in pro-
tein design procedures, the free-energy function tend to select native-like protein
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sequence fragments for the design of the proteins core as opposed to their sur-
face [160]. Since then, the Rosetta molecular modeling software has implemented a
new scoring term, called hpatch. This term penalizes the formation of hydrophobic
patches on the surface of designed proteins [161]. Pompd can only use decompos-
able functions, and the addition of this scoring term within Pompd was not possible
due to its non-pairwise-decomposability. To overcome this limitation, we have ex-
ploited the fact that a CFN model can be customized by adding constraints in the
form of new cost functions. In this respect, we have implemented in Pompd an
additional feature also called hpatch. The hpatch option allows Pompd to control
and prevent creation of hydrophobic patches at the protein surface. If the option is
used, Pompd will disallow neighboring hydrophobic residues at the protein surface.
The algorithm 2 describes the hpatch procedure implemented in Pompd. Firstly,
all residues of the protein are mutated to leucine. Exposed surface residues are then
predicted with the pyrosetta software package. For each residue, the list of all its
exposed neighbors is computed. Finally, neighboring hydrophobic pairs identified
at the protein surface are forbidden with CFN constraints. The solvent exposure of
residues is quantified by its relative Solvent Accessible Surface Area (SASA). The
relative SASA of a residue is computed by normalizing its corresponding SASA by
its reference Gly-X-Gly tripeptide value [162]. If the relative SASA value is greater
than 0.5, the residue is considered exposed. In the wild type structure, it may
happen that residues with bulky side chains cover some other residues and prevent
them from being identified as exposed. For this reason the whole protein sequence is
mutated to leucine prior to relative SASA calculation. Two residues are considered
neighbors if there exist a binary cost function involving them which has at least one
non-zero value. In this work we consider A, V, I, L, M, F, P and W as hydrophobic
residues.

5.2 Weight attribution

In Pompd, by default, all states equally contribute to the total energy. By working
on different applications and evaluations, we noticed that one may want to control
the contribution of each state to the total energy. Weight attribution can be very
useful in the case of enzyme design, for example. When applying multistate design
to enzymes in free state and in complex with a given ligand, additional weight
can be added on enzyme/complex conformational state in order to ensure that the
enzymatic activity (binding) is preserved during the CPD procedure. Accordingly,
we have added a feature which allows this by weighting the contribution of each
state in the multi-state design problem. Concretely, the costs in all cost functions
applied on a given state s are multiplied by a weight ws.
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Algorithm 2 Hpatch in Pompd.
1: Inputs: C : protein conformation, cfn : cost function network
2: exp_residues = ∅
3: exp_neighbors = ∅
4: C = mutate_all_residues(C,"Leu")
5: for res in residues(C) do
6: if is_exposed(res) then
7: exp_residues = exp_residues ⋃ res
8: end if
9: end for

10: for res in residues(C) do
11: current_res_exp_neighbors = ∅
12: for all neighbor = neighbors(res) do
13: if neighbor ∈ exp_residues then
14: current_res_exp_neighbors = current_res_exp_neighbors ⋃ neighbor
15: end if
16: end for
17: exp_neighbors = exp_neighbors ⋃ current_res_exp_neighbors
18: end for
19: for res in residues(C) do
20: if res ∈ exp_residues then
21: for all neighbor ∈ exp_neighbors[res] do
22: add_constraints(cfn,res,neighbor)
23: end for
24: end if
25: end for
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5.3 Diversity constraints

In many applications of constraint programming, it is often impossible to capture
all the relevant information in one numerical criterion. In this case, it is useful
to produce a set of high-quality, yet diverse, solutions. In CPD, as in many other
real problems, the actual potential energy of the protein, that the algorithm aims
at optimizing, can only be approximated. This makes the protein design process
unreliable, as a typical workflow includes the expensive production and experimental
testing of a library containing several proteins. Ideally, this library should be a
set of diverse and low energy solutions, with the hope that a sufficient sequence
diversity will improve the likelihood that a functional protein is found. The sequence
diversity can be quantified by calculating the Hamming distance between selected
sequences. As an alternative, a “bio-chemical” diversity can also be estimated
with the use of existing protein dissimilarity matrices. Because of their important
applications, protein sequences can also be subject to patents. In such a case,
a newly designed sequence must absolutely satisfy a certain Hamming distance
constraint with respect to existing patented sequences. In this respect, I took
part in a research project whose objective was to consider the general problem of
producing a diverse set of high-quality solutions of a given Weighted Constraint
Satisfaction Problem, with guarantees both on solution quality and diversity. This
new feature, implemented in Pompd by Manon Ruffini, makes the program able
to generate large sets of diverse and high quality (low energy) optimized sequences
for a given CPD problem. By evaluating in silico the efficiency of this method
on real protein design problems, we have observed that sufficiently large diversity
requirements do improve the quality of sequence libraries when native proteins are
fully redesigned [163].
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6.1 Context

6.1.1 GH11 Xylanases

6.1.1.1 General and Biochemical Properties

Xylanases are enzymes degrading polysaccharides that are mainly composed of xy-
lans. Xylans represent a group of hemicelluloses that is one of the most abundant
biopolymers on Earth. Commonly known as xylanases, endo-1,4-β-xylanases catal-
yse the hydrolysis of the β-1,4 glycosidic linkage of the xylane backbone in heterox-
ylans (constituting the lignocellulosic plant cell wall) and produce mainly xylobiose
and, to a lesser extent, short xylo-oligosaccharides (XOS) [dumon2012progress].

Xylanases are widely used in industrial processes. The first industrial applica-
tions of xylanases were in pulp and paper industry, food industry and animal feed
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[164]. However, with the need of renewable and sustainable sources of fuels and
chemicals that could help reduce pollution and reduce global warming linked to
industrial activities, the importance of xylanases in bio-refinery processes has been
rapidly increasing [165]. Xylanases are classified within the Carbohydrate Active
Enzymes database (CAZy - common classification system of glycoside hydrolases
organized in different families according to sequence similarities) [166] in the Gly-
coside Hydrolase (GH) families 5, 8, 10, 11 and 43. Xylanases produced by bacteria
and fungi mostly belong to GH10 and GH11 families and are the ones that have
been widely studied. In this thesis, we are interested in xylanases from the GH11
family. The main feature that differentiates the GH11 family of xylanases from oth-
ers is that the GH11 family gathers all xylanases capable of exclusively hydrolysing
endo β-1,4 bonds. This family of enzymes is also characterized by a catalytic mech-
anism which leads to the retention of the configuration of the anomeric carbon at
the cleavage point.

6.1.1.2 Overall structure

GH11 xylanases are defined by a low molecular weight, generally ranging between
20 and 30 kDa. The first three dimensional X-ray crystallographic structures were
available in 1993 and allowed the first detailed studies on these enzymes [167, 168].
To date, there are 133 PDB entries in the Protein Data bank that correspond to
GH11 xylanases of bacterial and fungal origins. The three dimensional structure of
xylanases has been compared with the shape of a partially closed right hand and
different elements, such as fingers, thumb and palm, have been named accordingly.
The fold has a β-jelly roll architecture, which is highly conserved in all GH11
xylanases [165] (Figure 6.1). It is composed of 2 anti-parallel β-sheets (β-sheets A
and β-sheets B) which form the fingers of the hand and a unique α-helix packed
under the β-sheet B, which forms the palm together with a part of the twisted β-
sheet B. As the secondary structure elements dominate within the overall structure
of the enzyme, loops that connect these elements are quite short. There are however
two important exceptions called the “thumb” and the “cord” that are 10 to 12
residues long.

6.1.1.3 Active site and catalytic dyad mechanism

The active site of GH11 xylanases is a deep cleft where substrate recognition and
binding occur thanks to the presence of aromatic residues that are tightly packed
together in order to form a hydrophobic cleft and be able to fit the substrate. A
catalytic dyad is located in the middle of the cleft. The active site is composed of at
least four xylose-binding subsites, each of them accommodating one xylose moiety
from suitable xylan substrates. The enzymatic activity is mostly established by
the organization of the active site into subsites. A subsite defines the region of the
active site that is able to accommodate a single unit of the substrate. The subsites
are assigned with a positive or negative number depending on whether they bind the
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Figure 6.1: Typical three dimensional structure of a GH11 xylanase showing the
jellyroll fold with a visual representation of right-hand analogy regions (fingers,
palm, thumb, cord, helix). β-sheets A are shown in yellow while β-sheets B are
shown in blue and a unique α-helix in red. Crystal structure of NpXyn11A (PDB
ID 2C1F) is taken as example.
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Figure 6.2: Schematic representation of substrate binding subsites in glycosidases.
Circles represent xylose moieties linked to each other by β-1-4 bonds.

non-reducing (glycone) or reducing (aglycone) moiety of the substrate [169]. The
hydrolysis of glycosidic bonds occurs between the -1 and +1 subsites (Figure 6.2).
GH11 xylanases are usually limited to 3 subsites where amino acids such as tyrosine
and tryptophan establish π-hydrogen interactions with the pyranose ring of xylose
moities. Polar amino acids form hydrogen bonds with the hydroxyl groups of xylose
moities [170].

X-ray crystallographic studies are a good way of investigating enzyme-substrate
interactions and have allowed a better understanding of substrate binding in the
active site of the GH11 family of enzymes. By studying crystallographic structures
of GH11 xylanases in complex with xylobiose and xylotriose it has been suggested
that these enzymes can have up to six carbohydrate-binding subsites [171]. Binding
of oligosaccharide substrates at subsites -3 through +1 was also shown in another
crystallographic study using inactive variants [172]. Another study, using six xylose
subunits, provided unambiguous structural evidence that the active site of one par-
ticular GH11 xylanase, has six possible sugar-binding subsites from -3 to +3 [173].
Within the active site, the catalysis proceeds with retention of stereochemistry at
the anomeric carbon of the nonreducing (glycone) moiety of the product. Hydrolyis
involves two catalytic carboxylic amino acids (usually two glutamic acids) which act
as acid/base and nucleophile residues. The reaction occurs via a two-step mecha-
nism which involves the formation of a covalent glycosyl-enzyme intermediate. This
intermediate, formed during the first step of the mechanism, displays an inverted
anomeric configuration which is further inverted one more time during the second
step of the mechanims to lead to the final configuration identical to the ground
state (Figure 6.3). One glutamic acid acts as a general acid/base catalyst and has
a pKa value that is necessarily high (≈ 7) while the other glutamic acid plays the
role of a catalytic nucleophile and has a low pKA value (<5). Therefore, in order
for catalysis to take place, one glutamic acid must be protonated and the other
negatively charged.

6.1.1.4 Highly conserved regions

To date, there are more than a thousand GH11 xylanase sequences available in
the CAZy database. Some studies have analysed mature sequences and carried
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Figure 6.3: Catalytic mechanism of GH11 xylanses. Catalytic residues are repre-
sented in red and blue. Nuc is the nucleophile catalytic residue and A/B is the
acid/base catalytic residue. Adapted from [165].

out a comprehensive analysis in order to highlight the sequence homology observed
within the GH11 xylanase family [174, 165]. The conclusions made in these studies,
conducted on a total of 82 and 164 sequences respectively, underline the fact that
the active site of GH11 family of xylanases is highly conserved and thus explains
their restricted substrate specificity. Important conserved residues are also found
in the thumb and cord regions. With the increasing number of sequences that have
become available over the years following these respective studies, we have decided
to update the sequence homology analysis of this family of enzymes. To do so, we
selected more than 1000 sequences from the CAZy database and ran a blastp search
on each of them [175]. Using an E value threshold of 10, a final non-redundant set of
510 hits was collected. These 510 sequences have then been subjected to a multiple
sequence alignment with MAFFT [176]. Figure 6.4 shows the sequence entropy
of the selected 510 sequences, calculated with Sequester [177] and mapped on the
3D structure of the GH11 xylanase from Neocallimastix patriciarum. Conserved
residues are shown in red and less conserved residues in blue. The outcome of
this analysis confirms the results obtained previously on a much smaller number of
sequences [174, 165]. Many of the conserved residues are found in buried, solvent
inaccessible regions, while highly conserved residues are also found in the thumb
loop, palm loop and the cord region. This suggests that these regions might play
an important role in xylanases function.
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Figure 6.4: Cartoon representation of the GH11 xylanase from Neocallimastix pa-
triciarum indicating (in red) highly conserved regions and (in blue) less conserved
regions.
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6.1.1.5 Dynamics

The importance of protein flexibility and its role in protein function has already
been discussed in Chapter 1. In the specific case of enzymes, movements represent-
ing different conformational changes have been demonstrated. They indicate that
enzymes are highly dynamical macromolecules whose structures are in close rela-
tionship with their dynamics and catalysis [178]. Many enzymes undergo large con-
formational changes which can play an essential role in promoting substrate bind-
ing and catalysis. Therefore, investigating enzymes motions is essential for having
more comprehensive knowledge of their structure-dynamics-activity relationship.
In this regard, Molecular Dynamics simulations are often used in order to explore
possible enzyme conformations and the respective transitions from one conforma-
tion to another. Combining different multi-scale modeling methods has proven to
be a valuable strategy for analyzing important molecular motions and deciphering
the molecular basis underlying particular biochemical properties. Several Molecular
Dynamics simulations have been performed on GH11 xylanases, and different inves-
tigations have been undertaken. One study showed that the increase in temperature
induces a significant change in the dynamics of the thumb region [179]. This study
revealed that both the thumb loop and the palm regions separate at higher temper-
atures, going from a close conformation at lower temperature to an open one, thus
facilitating the substrate access to the active-site pocket. Similar works showed
that such conformational change was not only dependent on the temperature, but
also on the presence of the substrate [180, 181]. Molecular Dynamics simulations
were also used to analyse differences in thermotolerance between twelve members of
GH11 xylanases, including thermophilic and mesophilic ones [182]. Intramolecular
hydrogen bonds and salt bridges were analysed and revealed to be an important
factor, responsible for different thermostabilites between two structurally similar
GH11 xylanses [183]. Simulations of the free-enzyme, non-covalently bound and
covalently bound xylobiose intermediate showed that covalently bound substrate
induces a change in the structural conformation of the receptor and demonstrated
a high flexibility of the thumb region in the non-covalent complex compared to the
covalent complex [184]. When investigating the structural basis of catalysis and
other biochemical properties in enzymes, it is often required to characterize func-
tional molecular motions and understand how they contribute to enzymes functions.
The Molecular Dynamics simulations presented in studies previously mentioned try
to answer to this major question. Nonetheless, even though some useful informa-
tion about conformational changes and side chain movements can be seen over the
nanosecond range, the timescale of these simulations (maximum 45ns) is quite far
from the time needed for biological events to occur.

6.1.1.6 Thermostability of GH11 xylanases

Thermostable enzymes are very important as they can be used at high tempera-
tures and are therefore suitable for different industrial applications. Thermostable
enzymes are usually created using rational design by site-directed mutagenesis [185]
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or directed evolution by random mutagenesis on mesophilic enzymes [186]. Directed
evolution does not require any prior knowledge of an enzyme 3D structure to be
conducted unlike rational design, which is based on the introduction of site-directed
mutations at specific locations in an enzyme amino acid sequence, while taking into
consideration the impact a given mutation might have on the structure of an en-
zyme. Thermostabilization of enzymes at the experimental level includes numerous
demanding steps, such as evaluation of residual activity after heat treatment of the
mutants, determination of the melting temperature analysis (Tm) or optimal tem-
perature (Topt). The GH11 family of xylanases contains mesophilic, thermophilic
but also hyperthermophilic enzymes. The optimal temperature of xylanases gener-
ally ranges from 35°C to 85°C [165]. Among them, the thermophilic GH11 xylanases
have an optimal temperature ranging from 62°C to 85°C. Some of these thermophilic
xylanases are natural thermophilic or hyperthermophilic enzymes from organisms
such as Thermopolyspora flexuosa and Chaetomium thermophilium that have Topt
of 80°C [187]. Many engineering studies have been conducted on GH11 mesophilic
xylanases in order to turn them into thermophilic ones. Different factors respon-
sible for the thermostability of these enzymes have been exploited but they seem
to be quite unique to a given enzyme. However, some general features have been
identified as important for thermostability in all thermostable enzymes such as the
presence of more hydrogen bonds, disulfide bridges or salt bridges. Important re-
gions have also been identified (N-ter, C-ter and α-helix) and are considered as
“hot spots” where unfolding preferentially occurs [182]. Despite the fact that not
all features conferring thermostability are fully understood, many studies focused on
engineering the thermostability of these enzymes. Interactions or structural motifs
specific to thermophilic xylanases have been transferred to mesophilic enzymes [188,
189, 190]. Hot spot regions have been stabilized, and disulfide bridges have been
introduced [191, 192, 193]. Some studies also focused on rational design of glyco-
side hydrolases based on structural analysis, by linking the N- and C-terminal ends
or by optimizing β-turn structures to promote hydrophobic interactions [194]. In
this respect, long molecular dynamics simulations also remain a promising strategy
to unravel the molecular determinants governing the thermostability of xylanases.
Indeed, analysis of MD trajectories can assist in the identification of the regions
in a given enzyme 3D structure that are less stable than others and that can be
engineered in order to improve enzyme thermal stability.

6.2 Motivations

The three dimensional structure of an enzyme is intrinsically linked to its function.
By analyzing the structure of an enzyme, we can gain insights on its role on the
enzyme’s function. However, enzymes, as all proteins, possess a dynamic nature.
Their thermodynamic and kinetic properties define the conformational states they
are likely to adopt and the energy necessary to switch between these respective
conformational states. Thus, analyzing enzymes structural dynamics has already
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proven to be of great importance for understanding the interplay between their
structural features and their specific properties. In the context of this project, un-
derstanding the structural basis for thermostability or enzymatic activity of GH11
xylanases is of paramount interest for their biological and biotechnological appli-
cations. This chapter is devoted to a computational study which aims at investi-
gating the structure-dynamics-activity relationship of GH11 xylanases using long
MD simulations. We focus on two different enzymes of the GH11 family of xy-
lanases. The first one is a thermostable mutant of environmentally isolated GH11
xylanase, EvXyn11TS and is known to be hyperthermostable [195]. The other one is
known to be a particularly active GH11 xylanase from Neocallimastix patriciarum
(NpXyn11A) [171] but mesophilic. This study focuses on a comparative analysis
of both structural and dynamics properties that differentiate these two enzymes.
More specifically, the main objective is to identify a set of unique characteristics
that could explain their respectively high thermostability and activity. To fulfill this
objective, 1µs MD simulations of the free-enzymes and the enzymes in complex with
xylohexaose were performed at 310K and 340K. MD simulations at 310K allow us to
perform a comparative analysis at a temperature where both enzymes are known to
be active and stable. MD simulations at 340K allow us to enhance conformational
sampling, observe the impact that higher temperature can have on the mesophilic
NpXyn11A and analyze the physicochemical properties of thermostable EvXyn11-
TS. Shorter MD simulations were also done at very high temperature (500K) with
the objective of comparing the thermal resistance of these two enzymes and even-
tually observe details of the initial unfolding process.

From different MD trajectories, we have conducted a thorough comparative
analysis of the structural properties of these enzymes based on the comparison of
different structural and geometrical features which include intramolecular interac-
tions stabilizing their respective structures. An analysis focusing on the structural
differences of their active sites was also carried out.

6.3 Materials and Methods

6.3.1 Molecular modeling and molecular dynamics procedures

MD simulations of the ligand-free enzymes and the enzyme-xylohexaose complexes
were carried out at three temperatures: 310K, 340K and 500K. These simulations
were performed using the AMBER 18 suite using pmemd.CUDA on GPU [196, 197,
198, 199]. The AMBER package was preferred over other MD simulation packages
as it includes the state-of-the-art GLYCAM06 force field [200] for an optimal de-
scription of carbohydrate molecules and as it also supports the mixed scaling of 1-4
non-bonded electrostatic and van der Waals terms which is required for a correct
treatment of 1-4 non-bonded interactions in systems mixing proteins and carbohy-
drates.

The high-resolution structures of the particularly active GH11 xylanase from
Neocallimastix patriciarum, NpXyn11A (PDB code: 2C1F) [171], and the ther-
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mostable mutant of the environmentally isolated GH11 xylanase, EvXyn11TS (PDB
code: 2VUL) [195], were used as starting models for MD simulations. Xylohexaose
(X6) was manually docked in the binding cleft of NpXyn11A and EvXyn11TS, us-
ing as template the X-ray structure of the E177Q catalytic acid/base mutant of
the xylanase from Trichoderma reesei co-crystallized with xylohexaose (X6) (PDB
code: 4HK8)[173].

In both enzyme-xylohexaose complexes, the catalytic acid/base residue, (that
is GLU 201 for NpXyn11A and GLU 181 for EvXyn11TS) was protonated. MD
simulations were performed with the AMBER ff14SB [26] and the GLYCAM_06j-1
force fields [200], respectively used for describing the proteins and the xylohexaose
substrate. To neutralize the net charge of the simulated systems, an appropriate
number of counter-ions was included. Explicit solvation was performed with TIP3P
water molecules, using an octahedral box [201] with a minimum distance of 10 Å
between the solute and the simulation box edges.

Preparation of simulations consisted of four energy minimization steps (using
both steepest descent and conjugate gradient methods), a gradual heating of the
respective systems to a target temperature (310K, 340K or 500K depending on
the simulation) under constant volume over a period of 100 ps followed by an
equilibration of 100 ps under constant pressure (1 bar) and temperature. Harmonic
potential restraints of 25kcal/mol/Å2 were first applied on the solute atoms and then
subsequently gradually removed along the equilibration procedure. The simulations
productions were carried out in the NPT ensemble for 1 µs at constant temperature
of 310K or 340K and for 100 ns at constant temperature of 500K. The temperature
and the pressure were controlled by using the Berendsen algorithms [41]. Long-
range electrostatic interactions were handled by using the Particle-Mesh Ewald
method [202]. A 9 Å cut-off was used for non-bonded interactions. The integration
time-step was 2 fs and the SHAKE algorithm was used to constrain the lengths
of all covalent bonds involving hydrogen atoms to their equilibrium values [203].
Atomic coordinates for each simulation were saved every 10 ps.

6.3.2 Molecular dynamics trajectory analysis

The CPPTRAJ module implemented in AMBER [204] was utilized for processing all
MD trajectories, calculating different structural and geometrical properties as well
as for performing dynamic cross correlations and principal component analyses. The
"saltbr" plugin within VMD [205] was used to quantify the number of salt bridges
formed over the course of the simulation.

The first three residues at the N-ter region as well as the last three residues
of the C-ter region were excluded from these analyses, which only considered the
remaining 213 amino acid residues for NpXyn11A and 187 residues for EvXyn11TS.
Hence, in this chapter the protein residues have been renumbered accordingly.

Structural and Geometrical Properties
A set of geometrical and topological properties of each enzyme’s active site have
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been calculated with the CASTp 3.0 web-server [206]. More precisely, the residues
composing the respective active site have been identified and the negative volume
(the space encompassed by the atoms that form the active site) as well as the
surface area of the active site have been calculated. The PLIP web-server was used
to investigate the enzyme-xylohexahose interactions [207].

The root mean square deviation (RMSD) of backbone atoms, relative to the
starting structure, was calculated for each enzyme (free form or in complex with
X6) along each MD simulation. Per-residue B-factors averaged over the entire
trajectories were derived from the respective root mean square fluctuations (RMSF)
calculated on all backbone atoms. RMSF calculations provide a crude estimation of
the average atomic positional fluctuations over the course of a given MD simulation
trajectory. Prior to RMSF calculations, the MD snapshots were RMS-fitted onto
the average structure to remove all degrees of translations and rotations. The mass-
weighted fluctuations of the backbone atoms (C, Cα, and N) and B-factors for each
residue were calculated as follows:

RMSF =

√√√√ 1
nsteps

nsteps∑
i=1
‖ri(t)− 〈ri〉‖2 (6.1)

and

B − factor = RMSF 2(8
3)π2 (6.2)

where ri is the position of atom i at time t and 〈ri〉 the average position of the atom.
For comparative purposes and as the two studied enzymes differ in their amino acid
sequence length, the calculated B-factor values have been aligned between the two
enzymes by aligning their respective sequences and introducing gaps in regions
corresponding to insertions/deletions.

The number of hydrogen bonds (HBs) formed in each MD snapshot between
two molecular entities was calculated using the following geometric criteria: the
distance from a donor heavy atom D and an acceptor heavy atom A is less than 3
Å and the valence angle between A, a donor hydrogen atom H and D (A-H-D) is
greater than 135°. Dynamic and static HBs were determined. As the two enzymes
do not have the same amino acid sequence length, the number of static and dynamic
hydrogen bonds formed was normalized by the number of amino acid residues in
each enzyme. Thus, the results are given for each enzyme as the average number
of static or dynamic hydrogen bonds per residue. Static HBs represent the per-
residue average number of hydrogen bonds observed during the MD trajectory and
weighted by their probability of occurrence. In other words, it is the expectation of
hydrogen bonds per residue. Dynamic HBs correspond to the per-residue number
of hydrogen bonds observed in at least one snapshot of the MD trajectory. Enzyme
intramolecular HBs and enzyme-solvent HBs were determined from 1000 regularly
spaced snapshots taken along the 1 µs MD trajectory of each enzyme, carried out at
T310K and T340K. Enzyme-substrate HBs were calculated from 1000 snapshots of
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the first 100 ns of the respective MD trajectories performed at T310 K and T340K.
The number of salt bridges formed over the course of the MD simulations was
calculated assuming that a salt bridge can only be formed if the distance measured
between the oxygen atoms of acidic residues and the nitrogen atoms of basic residues
does not exceed 4 Å.

Dynamic Cross correlation

Dynamic cross-correlation method has been widely used in MD simulation anal-
ysis [208] to quantify the correlation coefficients of motions between atoms in molec-
ular structures [209]. In this study, dynamic cross-correlation matrices were calcu-
lated using the Cα atomic coordinates to quantify the correlated motions in the
studied enzyme’s backbone and identify potential domain motions over the course
of the respective MD trajectories. Cross correlation elements for Cα atoms of two
residues i and j are given by the following equation:

Cij = 〈ri · rj〉 − 〈ri〉〈rj〉√
[(〈r2

i 〉 − 〈ri〉2)(〈r2
j 〉 − 〈rj〉2)]

(6.3)

Highly correlated motions are denoted by Cij = 1 while Cij = −1 denotes highly
anti-correlated motions.

Principal Component Analysis
Principal Component Analysis (PCA) is a dimensionality reduction mathematical
method commonly used in Molecular Modeling for describing and classifying molec-
ular motions in macromolecules. It is also called Essential Dynamics method [210].
In general data analysis, the objective of a PCA is to apply a lossy compression to
an initial collection of points (here, atomic coordinates), and store the points in a
way that is observable in few dimensions by loosing as little precision as possible.
From a MD simulation trajectory, PCA is applied to reduce the number of di-
mensions needed to describe protein’s dynamics, and extract the largest amplitude
protein motions, also called collective motions [211]. A covariance matrix is first
constructed from the atomic coordinates of a selected set of atoms over the course
of a given MD trajectory. The diagonalization of the covariance matrix results in
a complete set of eigenvectors or principal components (directions of the atomic
motions in the conformational space) with corresponding eigenvalues (amplitude of
the respective atomic motions).

In this study, PCA was performed on all MD trajectories simulated at T310K
and T340K. Only Cα atoms were considered for the analysis. To remove global
proteins rotations and translations, the snapshots of each trajectory were aligned
to their calculated average coordinates.

For each MD simulation, the Kullback-Leibler divergence (KLD) between the
principal component histograms corresponding to the first and second half of each
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MD simulation was calculated using CPPTRAJ to assess the system convergence
[212].

The time dependent KLD is calculated as follows:

KLD(t) =
∑
i

(P(t,i) ln
P(t,i)
Q(t,i)

(6.4)

where P(t,i) and Q(t,i) represent different probability distributions of atomic coordi-
nates, i represents a histogram bin index (here 400 bins were used) and t represents
the time at which the histogram is being constructed.

Free-energy landscape
Once the collective motions are identified with PCA, the Free-Energy Landscape
(FEL) of a protein can be derived from a probability density function. MD simula-
tion serves as a sampling method that allows the exploration of conformations near
the native state structure [213, 214, 215]. The FEL was here constructed along the
first two Principal Components (PCs) using the following equation:

Ga = −kT ln ( P (qa)
Pmax(q)) (6.5)

where k is the Boltzmann constant, T is the temperature of the simulation,
P (qa) is the probability of a state a, and Pmax(q) is the probability of the most
probable state. Considering two PCs, i and j, the free-energy landscapes were
obtained from the joint probability distributions P (i, j) of the system.

6.4 Results and Discussion

6.4.1 Structural and biochemical properties

NpXyn11A is 26 residues longer than EvXyn11TS. Their respective 3D structures
are very similar and as in all GH11 enzyme members, it can be compared with the
shape of a partially closed right hand. Different elements such as fingers, thumb and
palm, have been named accordingly. The residues that compose these regions have
been identified in each enzyme and their corresponding index are given in Table 6.1
and shown in Figure 6.5. A feature worth mentioning is the presence of a disulfide
bridge at the N-terminal region of EvXyn11TS, absent in NpXyn11A. This disulfide
bridge is also present in the wild type thermostable EvXyn11 and is thus not the
unique responsible of EvXyn11TS hyperthermostability.

As it can be observed in Figure 6.5,the 3D structures are dominated by β-sheets
and one α-helix. Loops that connect these secondary structure elements may play
important roles on the stability and function of these enzymes by regulating their
structural dynamics. It is widely accepted by different studies which focused on
the comparison of the three-dimensional structures of thermophilic and mesophilic
enzymes that thermostable enzymes tend to be have more compact structure with
shorter loops and a more densely packed hydrophobic core [216]. When comparing
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Regions NpXyn11A EvXyn11TS

Fingers 1-59;72-92;197-213 1-49;59-74;175-187
Thumb 134-164 113-143

Palm; Palm loop 93-97,110-118,192-196 ; 98-109 75-79,85-91,168-174 ; 80-84
Helix; Helix loop 173-183 ; 184-191 151-162 ; 163-167

Cord 119-126 92-103
Loop B3-A5 60-72 50-58

Table 6.1: Definitions of structural regions of the NpXyn11A and EvXyn11TS

enzymes by residue number

Figure 6.5: 3D structures of NpXyn11A (left) and EvXyn11TS (right). Visual
representation of the right-hand analogy regions are indicated: the fingers in red,
palm region in yellow, the thumb region in blue, the cord in orange, the helical
region in cyan green and the loop B3-A5 in pink. The substrate binding cleft is
also shown.

the 3D structures of NpXyn11A and EvXyn11TS (Figure 6.5), we can see that
loops present major structural differences between the two enzymes, being generally
longer in NpXyn11A. More specifically, the length of the loops in the thumb, palm
and helix regions vary the most. In NpXyn11A, the thumb loop and the helix loop
are 9 residues long, whereas they are 6 residues long in EvXyn11TS. The loop of
the palm region varies the most with 12 residues in NpXyn11A and only 5 in Ev-
Xyn11TS. This palm loop is particularly long in NpXyn11A compared to any other
GH11 xylanases. The loop between the β-sheet B3 and A5 (loop colored in pink
in the figure 6.5) is also much longer in NpXyn11A, with the length of 13 residues
versus 9 in EvXyn11TS.

Specific activity on wheat arabinoxylan (WAX) and melting temperature (Tm)
of NpXyn11A and EvXyn11TS were previously measured in the TBI laboratory.
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NpXyn11A has an average specific activity of 3916.94 IU.mg-1 (standard deviation
of 43.22) while that of EvXyn11TS is 1012.0 IU.mg-1 (standard deviation of 12.39).
Tm values are 55.7°C and 101.1°C respectively.

6.4.2 System stability and convergence

PCA analysis was based on the first two principal components which explain around
30% of the total protein motions. For each frame, the projection of the transformed
coordinates along all eigenvectors (PCs) was calculated, and each eigenvector’s con-
tribution was derived from its respective eigenvalue.

Figure 6.6: Eigenvector contribution as a function of the eigenvector index. Only
the first 30 eigenvectors are shown.

Figure 6.6 shows that the contribution of PCs quickly decays to 0. Time de-
pendent KL divergence analysis was performed on the first two PCs (Figure 6.7).
In the free-enzyme form of NpXyn11A at 340K, the simulation probably converges
but the shape of the first PC curve does not allow us to conclude with certainty.
In all other simulations, we observe a flat curve after a few hundred nanoseconds
which indicates convergence.

MD simulations were further used to compare and investigate mesophilic Np-
Xyn11A and thermophilic EvXyn11TS. The stability of the studied systems at dif-
ferent temperatures was determined by monitoring the backbone root mean square
deviation (RMSD) as a function of time. This was firstly done for simulations
performed at very high temperature (500K) for 100 ns in order to compare the re-



84 Chapter 6. Thermal stability and activity of GH-11 xylanases

Figure 6.7: KL divergence on the first two PCs as a function of time.

sistance of these two enzymes with respect to thermal denaturation and eventually
observe their unfolding (see Figure 6.8). In the corresponding RMSD time series,
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Figure 6.8: Backbone Root Mean Square Deviation of systems in free-enzyme forms
and enzyme-substrate complexes at 500K.

we can clearly see a drastic increase in the RMSD of NpXyn11A from the beginning
of the simulation in the free-enzyme and the enzyme-substrate complex. In oppo-
sition to NpXyn11A, EvXyn11TS presents a relatively stable RMSD at such high
temperature, especially in the case of the enzyme-substrate complex. Figure 6.9
displays the secondary structure propensities over 100 ns of simulation time. It
confirms the greater thermostability of EvXyn11TS at high temperature and shows
the unfolding of NpXyn11A, which is mainly observed in the the N-terminal, α-helix
and thumb regions. This analysis reveals a striking difference in structural stability
between these two enzymes with respect to increasing temperature, in accordance
with previous experimental results. It also confirms the hyperthermostability of
EvXyn11TS in comparison to the mesophilic NpXyn11A.

RMSD analyses were further done on the free-enzymes and enzymes-substrate
complexes at 310K and 340K over 1 µ of simulation time (see Figure 6.10). In
general, we observe fluctuations in RMSD values during the first 200 ns, which are



86 Chapter 6. Thermal stability and activity of GH-11 xylanases

Figure 6.9: Secondary structure propensities during 100 ns of simulation time for
NpXyn11A (up) and EvXyn11TS (down) in free-enzyme forms (left) and enzyme-
substrate complexes (right) forms at 500K.

further followed by a stabilisation marked by a characteristic plateau reaching an
equilibrium value between 0.5 and 1.5 Å depending on the systems. However, in
the case of NpXyn11A at 340K, significant fluctuations in RMSD values can still
be observed between 600 ns and 900 ns in both free-enzyme and complex forms. As
the maximum RMSD for all systems does not exceed 2.0 Å and remains relatively
stable over time, one can conclude that the respective systems are all stable with
respect to the chosen MD parameters.

The RMSD fluctuations observed during the first 200 ns are visible in the KL
divergence calculations between first 500 ns and last 500 ns on the first PC only.
This suggests that these fluctuations are due to motions along a single direction.

As shown in the RMSD time series, both considered mesophilic or hyperther-
mophilic xylanases did not show any signs of denaturation over the course of the
simulation (1µs) at 310 and 340 K. Some structural changes were observed but the
structures did not show any significant unfolding at these temperatures. Figure 6.11
shows key regions RMSD and highlights differences in conformational rearrange-
ments between the two enzymes. The largest variations along time occur in the
cord region of the free-enzyme form of NpXyn11A, while in the enzyme-substrate
complex the helical region induces the most variations. In the case of EvXyn11TS,
RMSD values of the thumb region are the highest and contribute the most to the
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flexibility of this enzyme in its free from. In complex, this region becomes stable
but RMSD values stay high in the cord region and induce the largest variations.

Figure 6.10: Backbone Root Mean Square Deviation (in Å) of systems in the free-
enzyme and enzymes-substrate complex forms at different temperatures.

6.4.3 Flexibility analysis

In order to compare the backbone flexibility of these two enzymes, per-residue B-
factors were calculated and monitored over the course of the simulations from the
Root Mean square fluctuations (RMSF) on all backbone atoms.

Figure 6.12 shows the backbone B-factor values as a function of the residue index
for the free-enzyme and the enzyme-substrate complexes. To facilitate the analysis,
both NpXyn11A and EvXyn11TS structures have been aligned with respect to their
corresponding per-residue B-factor values.

The same backbone B-factor patterns can be observed in both forms of Np-
Xyn11A at 310K and 340K, although fluctuations of greater amplitude are noticed



88 Chapter 6. Thermal stability and activity of GH-11 xylanases

Figure 6.11: Backbone Root Mean Square Deviation (in Å) of each key region in
the free-enzyme and enzyme-substrate complex forms at different temperatures.
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Figure 6.12: Per-residue average backbone B-factor profiles calculated from MD tra-
jectories of NpXyn11A and EvXyn11TS in their free-enzyme and enzyme-substrate
complex forms at two different temperatures (310K and 340K). Gaps in curves
correspond to the gaps introduced in the alignment.

at higher temperature. Overall, EvXyn11TS exhibits lower backbone B-factor values
with smaller fluctuations compared to NpXyn11A. The B-factor profiles of Ev-
Xyn11TS in the free-enzyme and the enzyme-substrate complex are very similar at
310K and 340K. In its free form, NpXyn11A has an average B-factor value of 14.7
Å2 at 310K and 23.7 Å2 at 340K, while the free form of EvXyn11TS has an average
B-factor value of 18.2 and 15.5 Å2 respectively. In the respective enzyme-substrate
complexes, both enzyme’s backbones tend to be less flexible. Average B-factor
values are 13.3 Å2 for NpXyn11A at 310K, 14.2 Å2 at 340K and only 6.2 and 8.9
Å2 for EvXyn11TS at 310K and 340K respectively. One can observe a total of 7
major B-factor peaks in the B-factor profile of the free-enzyme form of NpXyn11A.
They are located in the N-ter, the fingers, the palm loop, the cord and the thumb
regions. We can observe that the cord region exhibits higher B-factor values at
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higher temperature, judging by the significantly higher B-factor peak observed in
this region at 340K in comparison to 310K. When observing the B-factor profiles
of the NpXyn11A enzyme-substrate complex, we can see that the backbone B-
factor values are generally smaller than in the free-enzyme. The thumb region and
the N-ter region present approximately the same flexibility as in the free-enzyme
form at both studied temperatures. The cord is less flexible in enzyme-substrate
complex, even at 340K. However, a new B-factor peak can be noticed in the region
spanning from the residue 180 to 200 in the enzyme-substrate complexes. This
increase in B-factor corresponds to the loop located between the α-helix and the
β-sheet B4 (here referred to as the helix loop). The palm loop B-factor is much
higher than in the free-enzyme forms, which suggests that this region is also more
flexible in the enzyme-substrate complexes. When comparing NpXyn11A with its
hyper-thermostable counterpart EvXyn11TS, we can clearly see that EvXyn11TS

is more stable and presents a much lower number of flexible regions. The N-ter
region as well as the fingers, palm loop and α-helix loop regions do not present any
apparent backbone flexibility in EvXyn11TS. The very low B-factor of the N-ter
region can explained by the presence of a disulfide bridge restraining the backbone
dynamics in this region. It is well known that disulfide bridges play an important
role on the stability of all xylanases of the GH11 family. Therefore, the presence
of this disulfide bridge at the N-ter region of EvXyn11TS plays a crucial role on
the stabilization of this particular region but may also play a role on the general
stability of this enzyme.

When looking at the B-factor profiles of EvXyn11TS in its free form, a high
peak can be noticed in the thumb region. Even though the thumb region seems
to be very flexible in the free-enzyme form of this hyper-thermostable mutant,
this peak becomes almost insignificant in complex form. This suggests that the
presence of the ligand stabilizes this region. In both, the free-enzyme and enzyme-
substrate complex forms of EvXyn11TS, the relatively high B-factor of the cord
region indicates that the binding of the ligand does not completely reduce its overall
flexibility.

The flexibility analysis of the mesophilic NpXyn11A and the hyperthermophilic
EvXyn11TS revealed that EvXyn11TS is globally less flexible than NpXyn11A, thus
more stable with respect to an increase of temperature. High B-factor values only
apply to the thumb region and only in the free-enzyme form. The greater stability
of this region in the enzyme-substrate complex can be explained by the presence of
the ligand and its important interactions with the thumb.

NpXyn11A has a greater number of flexible regions than EvXyn11TS and is
thus globally less stable. In order to confirm the previous results and get more
insights on the conformational dynamics of these flexible regions identified in both
enzymes, a comparison of the dynamic cross correlation of the backbone of their
respective 3D structures, in the presence and in the absence of the substrate, has
been performed.
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6.4.4 Dynamic cross correlation

Dynamically cross correlated motions have been analyzed for both enzymes at 310K
and 340K in their free-enzyme and enzyme-substrate complex forms (see Figure 6.13
and Figure 6.14). Both enzymes exhibit very similar global dynamics, with very
similar regions showing highly correlated motions. The fingers regions tend to be
dynamically correlated with the N-ter region (zone a in the Figure 6.13A and B).
A correlation of the cord region backbone dynamics with the finger region can be
observed in both enzymes (zone b). The backbone dynamics of the thumb region
also seems highly correlated with the one of the palm loop region in NpXyn11A
(Fig.6.13A zone c). This less pronounced correlation in EvXyn11TS (Fig.6.13B zone
c), is probably due to the short length of the palm loop in this enzyme. A correlation
involving of the β-sheet region 151-161 of the thumb with the cord region and its
prolongation can also be noticed (zone d). Finally, other correlations involving to
the helix region and its surroundings can be observed (zone e1 and e). Compared
to the free-enzyme forms, the enzyme-substrate complex forms present a higher
proportion of positively correlated motions. An important correlation is detected
between the region corresponding to the loop between β-sheets B3 and A5 with the
palm loop (zone f) and with the α-helix region (zone e1). This correlation is observed
in the free-enzyme and in the enzyme-substrate complex forms of NpXyn11A but is
much more pronounced in latter form (Fig.6.13A). In EvXyn11TS, the loop B3-A5
is correlated with the helix region (Fig.6.13B zone e1) but the correlation with the
palm loop is almost nonexistent (Fig.6.13B zone f). As mentioned previously, this
could be caused by the shorter length, thus minor mobility of the palm loop in
EvXyn11TS.

These results suggest that the palm loop may play an important role on the
higher flexibility of NpXyn11A. To validate this hypothesis, this region could be
engineered in further studies focusing on improving the thermal stability of GH11
xylanases.



92 Chapter 6. Thermal stability and activity of GH-11 xylanases

Figure 6.13: Dynamic cross-correlation analysis for NpXyn11A and EvXyn11TS in
their free-enzyme and enzyme-substrate complex forms at 310K.
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Figure 6.14: Dynamic cross-correlation analysis for NpXyn11A and EvXyn11TS in
their free-enzyme and enzyme-substrate complex forms at 340K.

6.4.5 Free energy landscapes

The FELs of both enzymes have been constructed based on the projections of the
first (PC1) and second (PC2) eigenvectors. Figures 6.15 and 6.16 show the FELs
of NpXyn11A and EvXyn11TS in their free-enzyme and enzyme-substrate complex
forms at 310K and 340K respectively. At 310K, only one free energy basin can be
observed for NpXyn11A in its free enzyme form, indicating the presence of one major
ensemble of conformational substates. Two basins can however be observed for the
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Figure 6.15: Free energy landscapes of NpXyn11A and EvXyn11TS at 310K in
their free-enzyme and enzyme-substrate complex forms as a function of the first
(PC1) and second (PC2) eigenvectors. The colorbar represents the free energy val-
ues in kJ/mol. The 3D structure corresponding to the global free-energy minimum
is displayed in orange cartoon, while the blue one refers to the alternative con-
formation corresponding to the free-energy minimum of the second basin for the
enzyme-substrate complexes.

enzyme-substrate form although the smallest basin presents a much higher energy
minima than the other one, thus corresponding to much less stable conformational
substates. At higher temperature (340K), two distinguished basins are observed
for both forms of the enzymes. This put in evidence the increased flexibility of
this enzyme at higher temperature, resulting from the enhanced conformational
sampling. EvXyn11TS presents more conformational sampling in its free-enzyme
form, in accordance with the previous B-factor and per region RMSD analyses
from which important movements of the thumb region in the free-enzyme form
were characterized. In complex with X6, EvXyn11TS presents only one main free-
energy basin at 310K, while having a greater number of conformational substates
at 340K.
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Figure 6.16: Free energy landscapes of NpXyn11A and EvXyn11TS at 340K in
their free-enzyme and enzyme-substrate complex forms as a function of the first
(PC1) and second (PC2) eigenvectors. The colorbar represents the free energy val-
ues in kJ/mol. The 3D structure corresponding to the global free-energy minimum
is displayed in orange cartoon, while the blue one refers to the alternative con-
formation corresponding to the free-energy minimum of the second basin for the
enzyme-substrate complexes.
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6.4.6 Salt bridges, Hydrogen bonding and SASA

Ionic interactions have been identified as one of the main factors contributing to
thermostability within the GH11 family of xylanases [217, 183]. Here we have mon-
itored different salt bridges which are formed within the protein structures over
1 µs of simulation time. The identified salt bridges are shown on the three di-
mensional structure of each enzyme in Figure 6.17. Surprisingly, a total of 8 salt
bridges stabilizes the structure of NpXyn11A against 4 in EvXyn11TS despite its
greater thermostability. However, salt bridges are present in 33 to 98% of the to-
tal simulation time for NpXyn11A, against 94 to 99% of the total simulation time
for EvXyn11TS (Table 6.2). Interestingly, the most stable salt bridge is formed by
the residue pair Asp142-Lys156 in the thumb region of NpXyn11A. The average
frequency of occurrence of this salt bridge is around 80%, which may explain the
relatively moderate flexibility of this region in NpXyn11A at both studied temper-
atures. Another salt bridge that may play a role in the stability of NpXyn11A is
formed by the residue pair Asp123-Lys137 located between the cord and the thumb
region. Analysis of B-factors in Section 6.4.3 revealed a very high backbone flexi-
bility of the cord region in the free-enzyme form of NpXyn11A at 340K. The high
backbone flexibility in this region may be explained by a lower ability for the residue
pair Asp123-Lys137 to form a salt bridge at 340K due to the increased mobility of
their respective side chains at this temperature (6.2)

Figure 6.17: Location of salt bridges in NpXyn11A and EvXyn11TS, colored by
their frequency of occurrence (red > 80%, pink between 50% and 80% and blue <
50%).

In EvXyn11TS, the residue pair Asp157-Arg56 forms a salt bridge located be-
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tween the α-helix and the loop B3-A5 (loop in pink in Figure 6.5). This salt bridge
is formed around 98% of the total simulation time. Its location is probably very
important for the global stability of the enzyme as the α-helix is considered to
be a "hot spot" where unfolding preferentially occurs. Overall, EvXyn11TS pos-
sesses more salt bridges with higher frequencies of occurrence which may explain
the greater thermostability of this enzyme in comparison with NpXyn11A.

Free enzyme Complex/X6 enzyme
310 340 310 340

NpXyn11A
Asp116-Lys165 38.9 - 33.8 35.8
Asp-123-Lys137 92.3 68.5 90.2 91.9
Asp142-Lys156 82.6 81.8 78.5 77.4
Asp207-Lys40 54.6 54.71 55.3 60.4
Glu115-Arg166 98.7 96.9 98.8 96.9
Glu179-Lys182 68.9 72.0 78.2 72.8
Glu19-Lys10 54.9 45.6 48.4 33.1
Glu198-Arg91 38.1 46.50 - -
EvXyn11TS

Asp157-Arg56 95.7 97.7 99.6 97.7
Asp186-Arg34 99.7 99.20 99.8 99.6
Asp90-Arg145 99.9 98.9 99.9 99.5
Glu85-Arg122 94.6 96.1 - -

Table 6.2: Occurrence fraction in percentage of salt bridges identified in MD simu-
lations.

The number of intra-molecular hydrogen bonds as well as the number of enzyme-
solvent hydrogen bonds in NpXyn11A and EvXyn11TS have been calculated over
the course of their respective MD trajectories. Table 6.3 shows the number of
calculated intramolecular static, dynamic and enzyme-solvent hydrogen bonds per
residue in the free-enzyme and enzyme-substrate complex forms at 310K and 340K.
EvXyn11TS has more static hydrogen bonds, which contribute to a higher num-
ber of stabilizing interactions. NpXyn11A possesses a higher number of dynamic
HBs which reflect the dynamic formation of competitive HB interactions. As op-
posed to static HBs, the transient existence of a greater number of dynamic HBs in
NpXyn11A may contribute to explain its greater flexibility. Furthermore, the num-
ber of enzyme-solvent hydrogen bonds is also higher for NpXyn11A. This results
may also suggest that the enzyme has more interactions with the solvent and thus
less static interactions within the protein what makes its structure more dynamic.
Another property that may explain the difference in stability between these two
enzymes is the Solvent accessible surface area (SASA). Table 6.4 shows average
SASA values for each enzymes. When averaged over the course of their respective
MD trajectories, NpXyn11A has a higher average SASA than EvXyn11TS. This re-
veals once again that NpXyn11A is less tightly packed than EvXyn11TS and which
establishes a greater number of static HBs.
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Static HB Dynamic HB HBs with solvent
NpXyn11A 310K 0.57 17.01 1473.03
NpXyn11A 340K 0.56 20.87 1356.64
EvXyn11TS 310K 0.62 16.53 1228.94
EvXyn11TS 340K 0.60 18.17 1125.52

NpXyn11A/X6 310K 0.56 16.54 1427.75
NpXyn11A/X6 340K 0.56 19.75 1327.13
EvXyn11TS/X6 310K 0.62 14.62 1115.26
EvXyn11TS/X6 340K 0.61 17.37 1068.98

Table 6.3: Number of hydrogen bonding intercations in NpXyn11A andEvXyn11TS.
Intra-molecular static, dynamic and the number of enzyme-solvent hydrogen bonds
are given.

SASA(Å2)
NpXyn11A 310K 8714.9
NpXyn11A 340K 8840.3
EvXyn11TS 310K 7224.6
EvXyn11TS 340K 7368.1

NpXyn11A/X6 310K 8549.5
NpXyn11A/X6 340K 8430.2
EvXyn11TS/X6 310K 6664.35
EvXyn11TS/X6 340K 6900.1

Table 6.4: Values of SASA of each system in their free-enzyme and enzyme-substrate
complex forms at 310K and 340K.
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6.4.7 Analysis of enzyme/substrate interactions

One of the main features of the compact globular structure of these enzymes is the
presence of a long cleft located in the center of the enzyme which contains the active
site (also shown in Figure 6.5). The active site of each enzyme has been analyzed
in terms of residues composition, negative volume and area of the pocket. The
figure 6.18 shows the negative volume of each enzyme’s active site as well as the
residues that compose it. In Table 6.5, we summarize the number of residues that
compose the active site of each enzyme as well as the values of negative volume
and area of each pocket. The volume of the active site of NpXyn11A is almost
six times bigger than the volume of the active site of EvXyn11TS. It encompasses
41 residues with a pocket area of 521.62 Å2 while EvXyn11TS possesses only 23
residues, and a pocket area of 173.27 Å2. The size of the pocket where substrate
binding occurs, shows that the three-dimensional structure of EvXyn11TS is more
compact. However, the size of the cleft may have an important role on the unusually
high activity displayed by the Neocallimastix enzyme. Given its size, the substrate
binding cleft of NpXyn11A is more extended and may better accommodate xylose
residues in each of its subsites.

Nb residues Volume (SA) Area (SA)
NpXyn11A 41 461.24 521.68
EvXyn11TS 23 77.12 173.27

Table 6.5: Geometrical and topological properties of each enzyme’s active site.

Figure 6.18: Volume of enzymes active site pockets in NpXyn11A and EvXyn11TS.

Different enzyme/substrate non-covalent interactions have been evaluated and
monitored using the PLIP webserver. To consider the most catalytically favor-
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able conformation of xylohexaose, we have chosen to use the 3D structure of Np-
Xyn11A/X6 and EvXyn11TS/X6 generated after the equilibration phase. Different
predicted interactions are presented in Figure 6.19 where we display the initial
equilibrated configuration of the respective enzymes in complex with xylohexaose.
There are in total 17 different hydrogen bonding interactions with xylohexaose in
NpXyn11A, versus 13 in EvXyn11TS. The list of residues involved in hydrogen
bonding interactions with xylohexaose in each enzyme is given in Table 6.6. One
salt bridge is observed in EvXyn11TS but there are no other types of non-covalent
enzyme/substrate interactions.

Figure 6.19: Non-covalent enzyme/substrate contacts found with the Plip web-
server on the equilibrated structure structures of NpXyn11A and EvXyn11TS. Hy-
drogen bonds are shown in blue lines and salt bridges in yellow lines.

NpXyn11A/X6 EvXyn11TS/X6
Gln8 (SC) Ser16 (SC)
Glu19 (SC) Trp18 (SC)
Arg55 (SC) Asn44 (SC)
Ser87 (BB) Asn70 (SC)
Gly88 (BB) Tyr76 (SC)
Asn89 (SC) Trp78 (SC)
Arg91 (SC) Glu85 (SC)
Tyr95 (SC) Tyr87 (SC)
Glu110 (SC) Arg122 (SC)
Tyr112 (SC) Pro126 (BB)
Pro146 (SC) Gln136 (SC)
Gln157 (SC) Tyr171 (SC)
Trp200 (SC)

Table 6.6: List of residues involved in hydrogen bonding with X6 in NpXyn11A and
EvXyn11TS equilibrated structures. The side chain (SC) or Backbone(BB) atoms
that contribute to the hydrogen bonding are given in parenthesis.

The intermolecular hydrogen bonds formed between the enzymes and the xylo-
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hexaose substrate were also monitored during the first 100ns of the respective MD
trajectories at 310K. A residue is counted as involved in a hydrogen bonding interac-
tion with the ligand if the interaction between the residue and the ligand is present
in at least one frame of the MD trajectory. By counting the number of frames in
which an interaction is formed between a given residue pair, we can calculate its
frequency of occurrence. Over the course of the MD trajectories, we do not observe
the formation of any other intermolecular hydrogen bonds than the ones already
observed in the initial equilibrated configuration. The tables 6.7 and 6.8 show the
percentage of occurrence (greater than 10%) of the intermolecular hydrogen bonds
established between NpXyn11A and xylohexaose and EvXyn11TS and xylohexaose
respectively. Figure 6.20 displays the residues involved in hydrogen bonding in
NpXyn11A andEvXyn11TS over the course of their respective simulations. These
residues are colored by their percentage of occurrence.

HBinter NpXyn11A/X6 310K
Gln8-X6 22
Glu19-X6 43
Ser87-X6 58
Asn51-X6 65
Asn89-X6 29
Tyr95-X6 21
Glu110-X6 77
Pro146-X6 79
Trp200-X6 10

Table 6.7: The percentage of occurrence of the inter-molecular hydrogen bonds
between NpXyn11A and xylohexaose at 310K.

HBinter EvXyn11TS/X6 310K
Asn44-X6 51
Asn70-X6 38
Tyr72-X6 24
Tyr76-X6 67
Glu85-X6 95
Asp101-X6 28
Arg122-X6 29
Pro126-X6 77
Gln136-X6 30
Tyr171-X6 80

Table 6.8: The percentage of occurrence of the inter-molecular hydrogen bonds
between EvXyn11TS and xylohexaose at 310K.

Some interactions, observed in the initial configuration, are present in less than
10% of the 100 ns of both NpXyn11A andEvXyn11TS. In NpXyn11A, this is the
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Figure 6.20: Residues involved in hydrogen bonding interactions with xylohexaose
in NpXyn11A and EvXyn11TS over the course of their respective MD simulations.
Residues are colored by their frequency of occurrence. Residues colored in blue
represent the residues involved in the less frequent interactions and residues colored
in red represent the residues involved in the most frequent interactions.

case for Arg55 which initially interacts with the xylose subunit in the subsite -2,
Arg91 which interacts with the xylose subunit in the subsite +1, Tyr112 which
interacts with both xylose subunits in both subsites +1 and -1 and Gln157 which
interacts with the xylose subunit in the subsite -1. In EvXyn11TS this is the case for
both Ser16 and Trp78 which initially interact with the xylose subunit in the subsite
-2, Trp18 which initially interacts with the xylose subunit in the susbiste -3 and
Tyr87 with the xylose subunit in the subsite +1. In comparison with NpXyn11A,
this result shows that the interactions with the -2 and -3 (glycone) subsites are
less conserved in EvXyn11TS. As HB interactions involving the glycone subsites
residues are crucial for the substrate binding and catalysis, the loss of interactions
identified in EvXyn11TS might explain the lower catalytic activity of this enzyme
in comparison with NpXyn11A. Another interesting observation is the presence
of an hydrogen bonding interaction with the amino acid Asp101 in EvXyn11TS.
This interaction is observed in MD analysis in 28% of time. Asp101 is located in
the cord region of the enzyme (Figure 6.20). In the initial structure, this amino
acids is located at 7Å distance from the ligand. This observation confirms that a
conformational adjustment of this flexible region is required to allow this amino
acid to interact with the substrate in the EvXyn11TS/X6 complex. It is probable
that the binding of the ligand triggers this conformational change and stabilizes the
cord region which has been shown to be highly flexible in the free-enzyme form.

The presence of a tryptophan residue at position 24 in NpXyn11A and at po-
sition 18 in EvXyn11TS seems important as it promotes a stacking interaction of
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the indole ring with the xylose moiety. Not surprisingly, this residue is highly con-
served in all GH11 xylanases and therefore seems crucial for the catalytic activity
of these enzymes [218]. A highly conserved proline in the GH11 family of xylanase
can also be found at position 149 in NpXyn11A and 126 in EvXyn11TS. This pro-
line is located in the thumb loop and is involved in forming a conserved pattern
of HB interactions in more than 70% of both enzymes MD trajectories (Table 6.7
and Table 6.8). Arg122 in EvXyn11TS, which is also located in the thumb region
close to this proline in EvXyn11TS, makes a polar contact with the +1 subsite
(Figure 6.19). A histidine (His143) residue is found at this position in NpXyn11A.
Another study has already suggested that this residue should be involved in forming
polar contacts with surrounding residues [171]. Along with Glu110 (NpXyn11A)
and Glu85 (EvXyn11TS), Tyr95 (NpXyn11A) and Tyr79 (EvXyn11TS) are also
known as catalytically important residues as they form intermolecular hydrogen
bonds with xylohexaose. These interactions are also frequent in the first 100 ns of
both enzyme-substrate complexes MD trajectories. Tyr95 interacts less frequently
with xylohexaose in NpXyn11A. This may be explained by the bigger NpXyn11A
active site pocket, especially in the glycone region, thus enabling the substrate to
interact with more residues over the course of the simulation.

Compared with EvXyn11TS, these results suggest that NpXyn11A establishes
more hydrogen bonding interactions with the substrate, possibly explaining its un-
usually high catalytic activity. The analyses of the unusually active NpXyn11A and
hyperthermostable EvXyn11TS in complex with xylohexaose revealed new details
on the substrate binding interactions in these two enzymes. The glycone-binding
subsites of xylanases are not well known due to the lack of structural and bio-
chemical data. Here, by providing detailed analysis of these two enzymes and their
specific interactions with xylohexaose, we were able to get new insights on the bind-
ing mode of xylohexaose which could be transposed to other similar xylanases in
the GH11 family.

6.5 Conclusion

In this study we investigated some dynamic properties of two different xylanases
from the GH11 family: the particularly active GH11 xylanase from Neocallimastix
patriciarum, NpXyn11A [171], and the thermostable mutant of environmentally iso-
lated GH11 xylanase, EvXyn11TS. We performed MD simulations of the respective
free-enzymes and enzymes-xylohexaose complexes. Diverse techniques for analyzing
these MD simulations were used to explore the differences in dynamics influencing
the activity and stability of these two enzymes. Analysis of backbone flexibility
combined with monitoring of some specific structural and geometrical properties
reveled that EvXyn11TS is more tightly packed and that its thermal stability is
enhanced by a higher number of intramolecular interactions. Some structural dif-
ferences, such as shorter loops or the presence of a disulfide bridge at the N-ter
region may also explain the increased stability of EvXyn11TS. Analysis at a very
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high temperature (500K) showed that during the first 100 ns, EvXyn11TS does not
undergo unfolding, while the unfolding occurs after a few ns in NpXyn11A. This
confirmed that EvXyn11TS has a higher capacity for resisting heat denaturation.

Analyses on enzymes flexibility and conformational rearrangements revealed
that EvXyn11TS is globally more stable, but has greater conformational variability
due to the conformational sampling observed in the thumb region. In comparison
with the free enzyme, the lower flexibility of the thumb region in the complex form
can be explained by the presence of the substrate which stabilizes the thumb region.
NpXyn11A has more flexible regions. N-terminal region seems to be very flexible
contrary to EvXyn11TS which possesses a disulfide bridge and a salt bridge helping
the stabilization of this part of the enzyme. Surprisingly, the thumb region of Np-
Xyn11A is moderately flexible in both free enzyme and complex forms, probably due
to the presence of an important salt bridge. This suggests that NpXyn11A, in both
bound and unbound forms, possesses a thumb conformation which is competent
for catalysis. Thus, the conformation of the thumb region is more stable in Np-
Xyn11A and might allow better catalytic efficiency. However, other regions were
found to have an important impact on the general flexibility of this mesophilic
enzyme. The cord region presents very high flexibility in free enzyme form but
seems to be stabilized in complex with xylohexaose. A quite high flexibility of
the palm loop and the helix loop is observed in NpXyn11A even when it is in its
complex form. A cross-correlation analysis showed that the global dynamics of both
enzymes is very similar. It confirmed the flexibility of previously identified regions,
and showed that these movements are correlated in NpXyn11A. Some important
correlations involving the palm loop or the B3-A5 loop are absent in EvXyn11-
TS. They represent, together with other identified regions, potential stabilization
hotspots.

In light of these analyses the thumb region and the larger catalytic site pocket
of NpXyn11A seem to play a major role on the activity of this enzyme. Its lower
thermal stability may be caused by higher flexibility of certain regions located
further from the active site. Regions such as the N-ter, β-turns located in the
fingers region, the palm loop, the helix and the B3-A5 loop seem to be less stable
than in hyperthermophilic EvXyn11TS and thus represent interesting targets for
engineering studies.
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7.1 Motivations

The previous Chapter devoted to GH11 xylanases highlighted the importance of this
enzyme and its applications in industrial processes. As we mentioned, xylanases, as
most enzymes, need to suit specific conditions to be integrated in different indus-
trial processes. We have studied two GH11 xylanases with MD techniques and we
have identified potentially destabilizing regions in the mesophilic NpXyn11A. In this
Chapter, we try to combine the use of the multistate CPD method developed during
this thesis and the knowledge gained by MD simulations and analysis. Our objective
is to improve the thermal stability of particularly active NpXyn11A and render it
suitable for industrial applications. By using its 3D structure, conformational states
previously generated with MD, and Pompd, we want to define a specific CPD ap-
proach and deliver sequences that possess desired properties: improved thermal
stability and preserved enzymatic activity. We apply our multistate CPD method
for thermostabilization of the xylanase NpXyn11A. For all real applications of CPD
methods and procedures, experimental validation is a mandatory step. Therefore,
computationally generated mutant sequences have been experimentally tested and



106 Chapter 7. Improving thermal stability of a GH11 xylanase

validated by our colleagues from TBI: Manon Darribere, Thomas Enjalbert, Sophie
Bozonnet, Cédric Montanier and Claire Dumon. Here, we present different com-
putational but also experimental methods that have been used in this study and
discuss obtained results.

7.2 Context

In the past years diverse techniques have been applied in order to enhance the
thermostability of enzymes [219]. Different techniques of protein engineering have
been explored, mostly based on rational design and site-directed mutagenesis. This
type of enzyme engineering is guided by the knowledge and information on protein
3D structure, sequence, and catalytic mechanism. The advantage of this kind of
methods, compared to traditional directed evolution, resides in the fact that they
focus on several specific mutation sites. High-throughput screening is not needed
and chances of obtaining active variants are higher. Rigidifying flexible sites (RFS)
is another engineering strategy that specifically targets flexible regions in enzymes
and tries to find mutations in these regions that would improve their thermosta-
bility [220, 221]. The success rate of this strategy remains low as it is not easy to
determine the best mutation candidates due to the impact they can have on en-
zyme’s activity. Therefore, the structure-dynamics-activity relationship is of great
importance as a trade-off has to be found between the rigidity, essential to improve
stability, and flexibility, essential to keep the enzymes active.

In the specific case of GH11 family of xylanases, many engineering studies have
been done and mostly by site-directed mutagenesis. As we mentioned in the previous
Chapter 6, GH11 xylanases were mainly engineered by transforming characteristics
of thermophilic enzymes into mesophilic ones, by introducing disulfide bonds, or by
introducing point mutations in regions considered as “hot spots” [222]. Different
studies showed the important contribution of the N-ter region to the general stability
of enzymes by substituting the whole N-ter of mesophilic xylanases with the N-ter
of thermophilic ones, or by mutating residues in order to mimic the corresponding
region from thermophilic xylanase. These experiences, as well as other rational
design approaches, induced an increased thermostability in GH11 xylanases [223,
189, 224].

However, site-directed mutagenesis methods remain time-consuming and are
limited by the diversity of protein sequences that can be generated and explored
compared to the vastness of the sequence space. Alternatively, CPD methods pos-
sess great potential for this type of challenging problems. The CPD method and dif-
ferent options, developed during this thesis represent a promising approach to fully
rationalize and speed-up the conception of optimized enzymes, and more precisely
in this case, GH11 xylanases. Recently, an engineering study improved thermal sta-
bility of a GH11 xylanase via computational library design [225]. Bu and co-workers
identified potentially stabilizing mutations by energy calculations with three differ-
ent programs (FoldX [226], Rosetta_ddg [227] and ABACUS [228]). The design
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protocol proposed by the authors requires an additional step of filtering chemically
unreasonable mutations by visual inspection and MD simulations. Experimental
verification is then done in two steps, first by testing mono-mutations and than
by recombining them. Here we propose a multistate CPD protocol for improving
thermal stability and specific activity of the GH11 xylanase from Neocallimastix
patriciarum. With Pompd [144], enzyme flexibly was taken into account and en-
zymatic activity was preserved by taking conformational states of the enzyme in
complex with its substrate during the CPD procedure. With our approach, 20
mutant variants were generated and directly assessed for their impact on specific
activity and thermostability. From these, 4 variants were found to possess better
specific activity and better thermostability than the wild-type NpXyn11A. These
4 xylanase variants possess improved properties and may represent more suitable
candidates for industrial applications.

7.3 Material and methods

7.3.1 Computational methods using Pompd

The high-resolution structure of NpXyn11A (PDB code: 2C1F) [171] was used to
construct our starting models for the design procedure. Two different models have
been used: free enzyme and enzyme/substrate model. Enzyme/substrate model
has been constructed with the xylohexaose substrate as described in the previous
Chapter (Chapter 6). Free enzyme and enzyme/xylohexaose complex were then
equilibrated and minimized with the AMBER ff14SB force-field [26] for the free en-
zyme and GLYCAM_06j-1 force field [200] for the xylohexaose substrate. In order
to use a multistate design (MSD) approach, conformational states were generated
with two different procedures. The first one consisted in generating conformational
states by Molecular Dynamics simulations. For each system (free enzyme and en-
zyme/substrate complex), we have generated one hundred conformations from the
first 100ns of MD simulations previously done on NpXyn11A and NpXyn11A/X6
(described in Chapter 6). Four of the most diverse conformational states were kept
(using RMSD-based hierarchical clustering [146]). The second procedure uses the
Rosetta Backrub [147] software for flexible protein backbone modeling [148, 149].
We have generated one hundred conformations for each structure and as with the
MD procedure, four of the most diverse conformational states were kept. The de-
sign strategy was mostly based on the analysis and information obtained from the
previous MD study. This study allowed us to reveal key regions of this enzyme,
in terms of stability, flexibility, interactions with the substrate etc. Thus, diverse
mutations were allowed or disallowed in each key region. Designable residues were
combined in 20 different ways, providing 20 scenarios which were further given
to Pompd for computational protein design. Computational protein design was
done by taking into account multiple conformational bound and/or unbound states
simultaneously but also by using the additional features (described in the Chap-
ter 5). The hpatch option was used in some of the scenarios to prevent formation
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of hydrophobic patches at the enzyme’s surface and weight attribution was used
in different ways on enzyme/complex conformational states in order to ensure that
the enzymatic activity (binding) was preserved during the CPD procedure. A gen-
eral workflow describing our CPD procedure is shown in Figure 7.1. Finally, 20
sequences were predicted and sent for experimental testing.

7.3.2 Materials, strains, media, and growth conditions

Unless otherwise stated, all chemicals were of analytical grade and purchased from
Sigma-Aldrich (St. Louis, MO, UA). The genes encoding for NpXyn11A11A mu-
tants were synthesized by GeneCust (Boynes, France) and sub-cloned in pET22 ex-
pression plasmids. The expression strains Escherichia coli BL21 (DE3) and Top10
were prepared using a commercial kit from Zymo Research (Irvine, U.S.A.). Wheat
arabinoxylan (WAX) was purchased from Megazyme(Bray, Ireland). Plasmid ex-
traction was performed using QIAprep Spin Miniprep kit (Qiagen, Germany).

7.3.3 Expression and purification of enzymes

A streak of E. coli BL21 (DE3) colonies harbouring an appropriate plasmid were
inoculated into 5 mL LB in the presence of appropriate antibiotics (kanamycin
or ampicillin at 50 µg/mL final) and grown with aeration (180 rpm) at 37 °C
for 16 h. The culture was then used as the inoculum for a 250 mL baffled flask
containing 50 mL of Terrific Broth supplemented with the appropriate antibiotics
at an optical density (OD600) of 0.1 nm and incubated at 37°C, 120 rpm. When the
optical density reached a value between 0.4 and 0.6, expression of the enzymes of
interest was induced by the addition of 1 mM isopropyl β-D-1-thiogalactopyranoside
(IPTG, Sigma-Aldrich). Cultures were stopped by centrifugation (15 min, 750
g at 18°C, Eppendorf Centrifuge 5804R). The cell pellet was resuspended in 1
mL of 50 mM sodium phosphate, 300 mM NaCl at pH 7.5, supplemented with
proteases inhibitor mixture (PIM x100). The cell lysis was achieved by supersonic
vibration (40 s, 6.5 M/s, FastPrep-24TM 5G, MP Biomedicals). The supernatant
was retrieved by centrifugation at 20,000xg for 10 min and then stored at 4°C. The
enzymes of interest were purified by Immobilized Metal Affinity Chromatography
(TALON® Metal Affinity Resin, Clontech, Clonetech). Aliquot of 0.5 mL of resin
was equilibrated in a column (20 ml, Clonetech) with the equilibration buffer (50
mM sodium phosphate, 300 mM NaCl, pH 7.5). The resin was washed with 10
column volumes using the equilibration buffer. Protein of interest was then eluted
with 2 column volumes of the equilibration buffer containing 200 mM imidazole.
Enzyme conformity and purity were assessed using SDS-PAGE (Any kD, Mini-
PROTEAN TGX Stain-Free. Protein Gels, Bio-rad, Hercules, CA, USA). Purified
enzymes were extensively dialysed against 50 mM sodium phosphate, pH7.5 (Pur-
A-Lyzer Midi Dialysis Kit, Sigma-Aldrich).
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Figure 7.1: General workflow of the CPD procedure.
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7.3.4 Activity assays on arabinoxylane

The activity of xylanase mutants was determined by measuring the release of re-
ducing sugar from WAX with 3,5-dinitrosalicylic acid (DNS). The reaction mixture
(1450 µL) was pre-incubated for 10 minutes at 37 °C and the reaction was initiated
by the addition of 50 µL of enzyme (5 nM final), under orbital agitation (1600 rpm,
Thermomixer, Eppendorf). Aliquots of 100 µL were regularly retrieved (t= 1, 2,
4, 6, 8, 10, 12, 14 min) and instantly mixed with 100 µL of DNS solution. At the
end of kinetics, all the samples were heated at 95 °C for 10 min, cool downed and
centrifuged ( 1500xg for 1 min) before 1 mL of milliQ water was added. Aliquots of
300 µL of each sample were transferred in a 96-well microplate and absorbance at
540 nm was read using a microplate reader (Infinite, M200 pro, Tecan, Männedorf,
Switzerland). A xylose dyeset (0, 0.1, 0.2, 0.4, 0.5, 1, 1.5 and 2 g/L) was systemat-
ically carried out in parallel as a standard curve. All reactions were performed in
triplicate.

7.3.5 Thermostability assay

To measure the thermostability of xylanase mutants, enzyme solutions were incu-
bated at 60 °C for 50 min. At intervals of 10 min, samples of 70 µL were collected
and stored at 4 °C. Samples were then used to measure residual activity on WAX
using the DNS method described in the previous section.

7.3.6 Determination of melting temperature

CFX96 Real-Time PCR Detection System (Bio-Rad) was used with Fluorescence
Resonance Energy Transfer (FRET) mode (excitation wavelengths: 450 - 490 nm
and detection wavelengths: 560-580 nm). A TCEP (tris(2-carboxyethyl) phosphine)
free PCR plate (in triplicate) was prepared by mixing 10 µM of protein, 50 mM
phosphate buffer pH 7.5 and 2 µL of SYPRO Orange (2.5x). A triplicate with
TCEP was also prepared (0.2 nM TCEP). The plate was filmed and centrifuged for
1 min at 4500xg. In the presence of TCEP, the plate was incubated for 1 hour at
4 °C. After centrifugation, SYPRO Orange was added.

7.4 Results and Discussion

NpXyn11A is used in this study as a suitable candidate for different biotechno-
logical applications achievable with GH11 xylanases. As described in the previous
Chapter, NpXyn11A possesses high specific activity and melting temperature which
is 55.7°C. Here, our objective was to preserve particularly high specific activity of
this enzyme while improving its thermal stability. To do so, we have used CPD ap-
proach with multistate design procedure. Modeling multiple conformational states
offers several benefits. Taking multiple conformational states into account during a
CPD procedure allows considering protein flexibility or modeling big conformational
changes. In the case of enzymes, multistate design allowed us to take into account
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Figure 7.2: SDS-PAGE expression analysis of 20 mutants generated with CPD
methods. CE: cell extract; P: purified protein; M: weight marker.

different systems simultaneously: the free enzyme and the enzyme in complex with
the substrate. In our protocol, we have generated different conformational states of
NpXyn11A in its free enzyme and enzyme/substrate form and thus provided data
for multistate CPD. We have analysed the typical β-jelly roll fold of NpXyn11A
and defined different important regions (Figure 6.1) in which design hotspots were
determined.

20 Mutants generated with Pompd
With our computational protocol, 20 sequences were generated containing between
7 and 12 mutations. Therefore, 20 NpXyn11A mutants were submitted to experi-
mental verification of improved thermal stability and preserved activity. The spe-
cific activity on the Wheat ArabinoXylan (WAX) substrate was measured as well
as the melting temperature (Tm ) which represents the temperature at which 50%
of the protein is denatured/unfolded. In order to enable an easy comparison with
the template sequence, all experiments were simultaneously done on the NpXyn11A
template. All of the mutants have been successfully expressed and purified. The
purified mutants were electrophoretically homogenous (SDS-PAGE) with a molec-
ular weight of 25kDa, which corresponds to the molecular weight of NpXyn11A
(Figure 7.2).

Specific activities have been examined for each mutant. Two mutants possess a
specific activity equal to the one of the template sequence while three mutants have
higher specific activity than the template. The other 15 mutants possess a lower
specific activity than that of the NpXyn11A template sequence (Figure 7.3A).
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Figure 7.3: Specific activity (A) and Tm (B)of 20 mutants generated with Pompd.
Orange line represents the value of the template NpXyn11A enzyme.

Results on the melting temperature (Tm) show that the Tm varies between 42.9
°C and 70.1 °C. Tm of NpXyn11A template is 55.7 °C. As shown in Figure 7.3B, 8
mutants have a Tm value that is superior to 55.7 °C and thus possess significantly
improved thermal stability. However, in four of these mutants the specific activ-
ity was reduced. This suggests that the mutations introduced in these sequences
allowed a strong gain in terms of thermal stability but simultaneously introduced
an important loss of specific activity. This is particularly the case for the mutant
number 19 which has a Tm of 70.1°C and specific activity of 257 IU/mg (loss of
93%).

4 Mutants have improved thermal stability and catalytic activity

When both properties, specific activity and melting temperature, are taken into
account, there are 4 very interesting mutants. As it is shown in Figure 7.4, 4 mutants
possess higher Tm but also higher or equally good specific activity. Mutant number
17 exhibited 13.8 °C higher Tm compared to the template. This indicates that
the mutations predicted with Pompd in different regions of the enzyme promoted
overall stability but also activity of this enzyme whose average specific activity was
improved by 13%. Other three mutants also represent very interesting variants
(Table 7.1) even though the improvement in Tm is slightly lower (varies between
5.8 and 9.7°C).

Thermal tolerance of these four mutants was determined by measuring their
residual activity after 10 minutes of incubation at 60 °C. As shown in the Figure 7.5,
resistance to temperature of these four mutants is confirmed. Compared to the
template, all four mutants showed a clear improvement. Mutants 2, 16 and 18 have
residual activity that is around 80%, compared to 40% of the template. Once again
mutant number 17 shows the best results with residual activity of 100%. Number
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Figure 7.4: Analysis of the best mutants in terms of Tm and specific activity. The
best variants (MutN2, 16, 17 and 18) are colored in green and the template Np-
Xyn11A enzyme is colored in orange.

Specific activity (IU/mg) Residual activity (%) Tm (°C) Nb of mutations
Template 4209 ±266 40±15 55.7±0.2 -
MutN2 4853±362 81±3 61.5±0.3 8
MutN16 5595±433 86±5 62.6±0.3 10
MutN17 4746±347 100±3 69.5±0.2 9
MutN18 4054±242 87±5 64.8 8

Table 7.1: Specific activity (average of triplicate), Residual activity (average of
duplicate) and Melting Temperature (Tm) of the four most interesting mutants
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Figure 7.5: Residual activity of the 4 best variants (in green) and template Np-
Xyn11A enzyme (in orange).

of mutations of each of these mutants compared to the template sequence is also
shown in Table 7.1 which summarizes different properties of the 4 mutants that are
considered as hits. A list of specific mutations for each mutant is given in Table 7.2.
Their location is shown in Figure 7.6.

Mutant number 17 represents the most interesting variant with improved ther-
mal stability by 14 °C, improved specific activity by 13% and 100% of residual
activity. Predicted stabilizing mutations of this mutant have been analysed more
in details in order to understand molecular basis for this improvement. On the
basis of predicted sequence and 3D structure of NpXyn11A template, we have con-
structed a 3D model of this mutant. Thus, different mutations were structurally
analysed. Mutant 17 possesses in total 9 mutations. These mutations are mostly
located in the N-ter, fingers, palm loop and helix regions. In the previous section,
our MD analysis revealed that these regions are thermally sensitive. N-ter, fingers
and the palm loop regions showed to be quite unstable while the region around the
α-helix was the first to go through unfolding at 500K MD simulation. This mutant
possesses two mutations that are located in the N-ter region of the enzyme. The
first (N16H) allows the introduction of a salt bridge instead of the polar interac-
tion between the asparagine 16 with aspartate at position 17 (Figure 7.8B). The
replacement of asparagine by a positively charged amino acid, a histidine (N16H),
enables the formation of a salt bridge between this histidine in position 16 and the
negatively charged aspartate at position 17. This molecular interaction is stronger
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Figure 7.6: Location of stabilizing mutations for each variant are shown in the
crystal structure of NpXyn11A.
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Figure 7.7: Model structure of the mutant 17, stabilizing mutations are shown in
orange.
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Mutations
MutN1 N16H; F19Y; D62E; R104D; N107E; S177I; A184E; Y194H
MutN2 N16H; T35I; S65A; D73E; R104K; N107D; Q167E; Q186E
MutN3 N10H; N16F; T35I; D78R; T82I; R104D; N107E; Q166M; Q167D; S177I
MutN4 N16H; F19Y; S38E; S65A; A80S; R104D; N107E; G189P; L213K
MutN5 N16H; T35V; A49P; N51E; R52N; A89L; S90N; R104D; N107E; S177I
MutN6 N16H; N31R; K68P; D71A; R104D; N107E; K130L; Q167E; Q186L; V216I
MutN7 V15F; N16H; F19Y; S20F; S38E; D62Q; R104K; N107E
MutN8 V15T; N16H; F19Y; S20Y; N51P; N107E; A184E; V216I
MutN9 N16H; F19Y; T35I; N51P; D73E; R104D; N107P; D178E
MutN10 V15T; N16H; N51P; R52N; D62E; R104D; N107E; Y194H
MutN11 Q9K; N10H; N16F; T35I; S38P; S65A; Q66R; K68I; R104D; N107E; Q167D; S177I
MutN12 T35I; S38P; T41A; S65A; R104D; N107E; Q186E; L213V
MutN13 N16H; F19Y; S38P; T41A; D73E; R104D; N107E; A184E; Y194H
MutN14 Q9K; N27H; T35V; S38P; N51D; R52N; S177I; G189P
MutN15 S38P; T41A; N51P; R104D; N107E; Q167E; Y194H
MutN16 N10F; V15T; N27H; T35I; S38P; N51P; R52N; R104K; N107E; D178E
MutN17 N16H; S38P; N51P; R52N; S90N; R104D; N107E; S177I; A184E
MutN18 V15T; N16H; S38P; T41A; N51P; R104D; N107E; Y194H
MutN19 V15Y; N16H; F19Y; S20F; T35V; Y83F; R104K; N107D; Q167E; S177I; Q186M; V216I
MutN20 V15F; N16H; S20Y; S38E; D62E; A80S; R104K; N107E; S177I; D178E; Q186E

Table 7.2: List of introduced mutations in all of the 20 variants.

and probably stabilizes the N-ter domain of NpXyn11A. The second mutation in
this region corresponds to the substitution of a serine at position 38 by a proline
(S38P). The region where the proline is introduced corresponds to a loop fragment
which is connecting two anti-parallel β-strands and which is allowing the change of
direction of the polypeptide chain. Loops as well as terminal tails are known to be
the least rigid fragments composing secondary structure of proteins. Prolines signif-
icantly reduce the flexibility of the polypeptide chain by restricting rotation around
the N-Cα bond to a relatively small region of conformational space [229, 230, 231].
Therefore, introduction of proline residue in this region may provide more rigidity.
Another proline mutation (N51P) is also introduced in the fingers region. Once
again, this mutation is found in a loop fragment connecting two anti-parallel β-
strands. At position 184, alanine is mutated to a negatively charged glutamic acid.
This mutation can certainly allow the introduction of another salt bridge (Glu184
with Lys68) located between the α-helix and the B3-A5 loop (Figure 7.8A). We
have seen in the previous study that the region around the α-helix represents a
hotspot where folding preferentially occurs. Also, in our comparison of NpXyn11A
with hyper-thermostable EvXyn11TS, we have observed a presence of a salt bridge
in this exact region. This salt bridge in EvXyn11TS (Asp157-Arg56) was present
97.7% of time during 1µs MD simulation which suggested that this salt bridge
plays an important role on the stability of this enzyme (Figure 6.17 and Table 6.2).
Hence, the introduction by Pompd of a salt bridge in this critical domain certainly
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Figure 7.8: Location of two salt bridges introduced in mutant 17. A Salt bridge
between the α-helix and B3-A5 loop. Interaction between mutated glutamic acid
(in orange) and lysine (in blue) B Salt bridge in the N-ter domain. Interaction
between mutated histidine (in orange) and asparate (in blue).

helps improve the thermal stability of NpXyn11A. Furthermore, mutations R104D
and N107E are found in the palm loop region. This region has previously (Chap-
ter 6) been identified as particularly long in NpXyn11A compared to other xylanases
and also as one of the most flexible regions in NpXyn11A. Therefore, introducing
these mutations in the palm loop must lead to a reorganization of the polar and/or
ionic interaction network, favorable for the stabilization of this very flexible region.
Finally, at position 177 there is a substitution of a polar residue, serine, by apo-
lar isoleucine (S177I). This mutation is probably important for the improvement
of hydrophobic packing in the protein core and introduction of hydrogen-bonding
interactions (Ile177-Lys181;Ile177-Ile75).

7.5 Conclusion

In this chapter, we exploit the knowledge obtained by a detailed MD analysis in or-
der to define computational design strategies for NpXyn11A. This analysis allowed
targeting regions whose redesign may have a positive impact on thermostabilization
of the enzyme. Protein flexibility, which is important for the enzyme’s function, was
taken into account in our MSD procedure. Our strategy aimed at proposing stabi-
lizing mutations while trying to keep a certain flexibility. 20 sequences were gen-
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erated and directly given for experimental verification. Experimental tests showed
that out of 20 sequences, 8 possess better thermal stability. However, in some of
these sequences catalytic activity was not preserved. When comparing both wanted
properties, catalytic activity and thermal stability, 4 sequences were found to have
improved properties. These four sequences were submitted to additional experi-
ments of residual activity which showed that all of the 4 mutant variants possess
better residual activity than the wild-type enzyme. One mutant was particularly
interesting with 14 °C improved Tm, improved specific and residual activity. This
mutant is considered as the most interesting variant and could be used as efficient
biocatalyst in harsh conditions of industrial and biotechnological processes.
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8.1 Context

8.1.1 Antibodies

Antibodies are highly specialized protein molecules essential for the immune system.
These proteins, also called immunoglobulins, are secreted by B-cells or expressed
on the surface of their membrane. Antibodies identify and help neutralize foreign
pathogens such as viruses and bacteria. The pathogen that is being targeted by an
antibody is called the antigen. Antibodies are produced by the immune system in
response to the presence of an antigen and every single antibody typically recognizes
a specific foreign antigen. In order to provoke an efficient immune response and
also avoid targeting self-proteins, antibodies must possess high affinity but also
high specificity to their antigens. They have a particular quaternary structure.
An antibody is a “Y”-shaped protein (Figure 8.1), formed by the association of
two identical heavy chains and two identical light chains. These chains contain
different domains called the Variable (V) or Constant (C) domains. Each heavy
chain is composed of one variable domain (VH) and several constant domains (CH1,
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Figure 8.1: Schematic representation of a conventional antibody structure. Heavy
and light chains are shown in blue and orange respectively. Fc region corresponds
to the crystallizable fragment, Fab region to the fragment antigen binding domains,
Fv to the variable fragments. CDR: Complementarity-Determining regions.

CH2, CH3). Each light chain contains one variable domain (VL) and one constant
domain (CL). The tail region of the antibody, or the base of the “Y” is called the
crystallizable fragment (Fc). This region binds to a variety of receptor molecules
and is responsible for the activation of the immune system. There are also two
fragment antigen binding domains (Fabs), at each side of the “Y”, directly linked
to the Fc region by a hinge region. Variable fragments (Fv), located at the tips of
the Fab region, are composed of a pair of variable domains (VH and VL). These
variable domains are the ones that directly interact with the antigen. Each variable
domain contains three hypervariable loops (H1, H2, H3 for VH and L1, L2, L3 for
VL). They are called Complementarity-Determining regions (CDRs) and are known
for playing a crucial role in the antigen binding.

Because of their high specificity for the target antigen, and possibilities to bind



8.1. Context 123

a wide range of potential antigens, antibodies have been revolutionizing the medical
sector in the past decades. Therapeutic antibodies, that are nowadays being devel-
oped almost exponentially by the pharmaceutical industries, represent as a matter
of fact years of research and development. The production of antibodies for diag-
nostic or therapeutic purposes has been revolutionized in 1975 by Georges Kohler
and Cesar Milstein [232] by a method called hybridoma. This method, awarded
in 1984 by a Nobel Prize, allows in vitro production of a large number of identi-
cal antibodies, called monoclonal antibodies. However, the limiting point of this
approach remains the necessity to immunize the animal at the beginning of the pro-
cess in order to provoke an immune response and retrieve the antibody producing
B-cells. Also, in the late 80’s, a multitude of mouse monoclonal antibodies were
developed but reported disappointing therapeutic results especially by inducing the
production of anti-mouse immunoglobulin antibodies (HAMA from Human Anti-
Mouse Anti-bodies) in patients treated for cancer [233]. Remarkable progresses in
genetic engineering and molecular biology enabled the cloning of genes that encode
the heavy and the light chains of antibodies. In order to avoid undesirable immune
reactions against injected mouse antibodies, combining DNA from mice with DNA
from genes encoding human antibodies allowed the creation of antibodies that are
closer to human antibodies. Today, thanks to this technological progresses, fully
humanized antibodies are mostly developed. This type of antibodies are called
recombinant antibodies because they are cloned in eukaryotic or prokaryotic ex-
pression vectors. Different forms of recombinant antibodies exist, but they usually
represent antibody fragments that consist of one Fab domain or heavy and light
chain of the variable region, also called single domain antibodies. Their reduced
size can improve their bioavailability and facilitate their production by bacteria
or yeasts. Indeed, it has been shown that the Fab domain possesses an increased
capacity to penetrate dense tissues such as solid tumors, and the single-chain Fv
domain seems to be even more effective [234]. Thus, some efforts have been done
in order to further reduce the size of fragments into a monomeric single domain
entity such as VH or VL domains only [235]. However, some properties such as sol-
ubility and affinity seem to lack in this type of antibody fragments. Recombinant
antibodies also allowed the development of new type of antibodies that are directly
expressed in living cells as intracellular antibodies, called intrabodies. In addition
to classical antibodies found in mammalian species, llamas, other camelidae (i.e
Camelus dromedarius, Camelus bactrianus, Lama glama, Lama guanoco, Lama al-
paca and Lama vicugna) and sharks produce a considerable fraction of heavy-chain
antibodies (HCAbs). This unusual type of antibodies that completely lack the light
chain, is composed of three instead of four globular domains. Their antigen-binding
site is formed only by a single domain called VHH (Variable domain of camelid
heavy chain antibody) in camelidae and VNAR (Variable domain of the shark new
antigen receptor) in sharks. Since it has been demonstrated that the VHH domain
alone, cloned and expressed in bacteria, is a monomeric single domain antigen bind-
ing entity [236], many companies and research groups focused on their therapeutic
applications [237].
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Figure 8.2: Schematic representation of a heavy-chain antibody (HCAbs) and
Nanobody

8.1.2 Nanobodies

The scientific breakthrough that actually stands behind the basis of the “Nanobody
technology” dates back to late 1980’s. As in many scientific discoveries, serendipity
played a crucial role in this one as well. At the Free University of Brussels, during
a practical course, a group of students working on the extraction of antibodies from
dromedary serum, discovered a new type of antibodies, they were smaller and did
not correspond to anything that was known then. In 1993 it has been confirmed
by Hamers-Casterman and his colleagues that camels, llamas and dromedaries con-
tain a special type of antibody which does not contain a light chain [238]. As we
just mentioned, this type of antibody is called heavy-chain antibody (HCAbs) and
possesses a heavy chain that has lower molecular weight than the conventional an-
tibody. As shown in the Figure 8.2 , the heavy chain of HCAbs does not contain
three constant domains, but only two (CH1, CH2). Antigen-binding domain corre-
sponds to the VHH region. When it was discovered that VHH can function as a
single entity, because of its particularly small size (nanometer range), it has been
named Nanobody.
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Figure 8.3: Schematic representation of a nanobody sequence organisation com-
posed of framework regions (FR1-4) and three CDR loops (CDR1-3). Mutations in
the framework 2 region (stars) correspond to the residues that are substituted by
hydrophilic residues in VHH compared to conventional antibody VH region where
these residues are hydrophobic. Orange lines represent disulfide bonds. There is
the conserved disulfide bond between framework 1 region (Cys22) and framework
3 region (Cys97) and an additional interloop disulfide bond between CDR1 and
CDR3 that is present in many dromedary VHHs

8.1.2.1 Structural and biochemical properties

The first crystal structure, in the early 2000’s, enabled a detailed structural analysis
of a nanobody [239, 240, 241]. It revealed that its structure is very similar to the
one of the standard VH domain. Just like V domain in the conventional antibodies,
the VHH domain contains three CDRs which are connected by four framework
regions (Figure8.3). They display a typical IgV fold with nine β strands and contain
a conserved disulfide bond between the framework 1 and 3 which stabilizes the
structure.

There are several very important features that differentiate structurally similar
VH and VHH domains [242]. The architecture of CDR loops is more diverse than
in standard VH domains. In fact, the loop CDR3 seems to play a crucial role for
the antigen-binding as it is much longer in nanobodies than in standard VH. In
standard antibodies, six loops of VH-VL contribute more or less equally to antigen-
binding, while in nanobodies, it has been shown that CDR3 loop dominates in
the antigen-binding [243]. The antigen-binding paratope of the VHH domain has
usually a convex form and the binding typically occurs in protein clefts or at the
domain-domain interfaces. The CDR3 loop, which possesses greater flexibility due
to its longer size, can sometimes be stabilized by an additional disulfide bridge
formed between CDR1 and CDR3 (Figure 8.3). The CDR3 loop can also fold over
the framework 2 region and thus form a flatter paratope. This enables nanobodies
to bind an antigen in many different ways while having only three CDR loops.
The affinity with which nanobodies bind their targets is very similar to the affinity
detected in the binding of conventional antibody [244].

Also, even though the sequence homology with the human V domain is particu-
larly notable, there are some important difference within the framework 2 region of
VHH [245, 244] sequence. In fact, in conventional antibodies, framework 2 region is
mainly composed of hydrophobic residues (such as Val37, Gly44, Leu45 and Trp47).
Conserved hydrophobic residues at these positions exist because they facilitates the
pairing with VL domain and thus form a hydrophobic interface with VL. These hy-
drophobic residues are substituted by hydrophilic residues in VHH (Val37→Phe or
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Tyr, Gly44→Glu or Gln, Leu45→Arg and Trp47→Gly, Phe or Leu), which makes
the former VL interface more hydrophilic. It has been shown that these substi-
tutions contribute to VHH’s high solubility with low aggregation propensity [246,
247]. The presence of hydrophilic amino acids in the framework 2 region is also
detected in VNAR shark domain. VNAR and VHH sequences are quite different,
however, the presence of polar and charged residues in the framework 2 (the VL
side of the domain) highlights structural and functional convergent evolution in this
region [248, 249].

Another important characteristic of nanobodies is their high stability. It has
been shown that nanobodies display high Tm values (60-80°C) and can also retain
their functionality after exposure to elevated temperatures (up to 90 °C) [247, 250,
251].

8.1.2.2 Generation of synthetic nanobodies

Although immunization techniques generally provide high affinity antibodies be-
cause of the benefit of the affinity maturation in the immune system of the host,
these conventional cloning techniques are quite confined. They depend on animal
experimentation (immunization phase for each antigen of interest), and are limited
by natural immunogenicity or toxicity of antigens. Synthetic nanobody libraries
confront these limitations by using totally in vitro techniques. They offer greater
diversity and so access to larger repertories. Recently, a synthetic VHH library
has been developed [252]. This library called “NaLi-H1: Nanobody Library Hu-
manized 1” uses a humanized scaffold that has been selected for its stability and
ease of expression. Even though stabilized nanobodies [253] and libraries [254] have
been described before, this library is the first synthetic library that produces at
high frequency functional intrabodies, while still containing two canonical cysteine
residues.

8.1.2.3 Applications with nanobodies

The unique properties of nanobodies such as high stability, affinity, small size and
ease of modification have enabled diverse applications. These applications range
from fundamental research to diagnostics and therapeutics. When they are ex-
pressed as intrabodies, with the ability to be stable in the reducing cytoplasmic
environment, they can serve as tools to trace and visualize antigens [249]. Thus,
with nanobodies it is possible to target protein-protein interactions, disrupt signal-
ing pathways, or directly observe and follow protein dynamics [255]. Nanobodies
can also be utilized as tools to crystallize proteins. Used as crystallization chap-
erones, they can serve to investigate different protein conformational states [256].
Their small size also allows them to be used in super-resolution microscopy. By
using GFP with nanobodies, it was possible to analyze dynamics of microtubules,
living neurons and yeast cells [257]. Nanobodies have also been used as probes
in biosensor applications or as in vivo imaging agents in imaging techniques such
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as radionuclide-based, optical and ultrasound [258]. Therapeutically, nanobodies
have been used as antagonistic drugs, or as targeting moieties of drug delivery
systems [259]. Many nanobodies are under clinical trials for a very wide range of
human diseases such as inflammation, infectious diseases, cancer therapy for brain
tumor, breast tumor and lung diseases. A more detailed presentation of diverse
nanobodies applications can be found in recent scientific review articles [260, 244,
261].

8.2 Motivations

Computational Design methods have been previously applied on antibody design.
Methods such as OptCDR [262], OptMAVEn [263], Abdesign[264] and RosettaAn-
tibody design [265] can be categorized as ab initio methods that aim at designing
new paratopes to improve antibody stability and affinity [266]. Some of the suc-
cessful antibody designs have been already mentioned in the Computational Design
section of this manuscript. Here, we do not aim at redesigning paratope regions
but at creating new optimized scaffold that could be universal for many CDR loops.
Recently a novel nanobody scaffold has been designed, based on conserved frame-
work sequences and starting from a sequence dataset of llama VHHs. This scaffold
has been validated by grafting the CDRs from two known nanobodies and seems
exploitable as universal scaffold for specific VHH bacterial expression and for the
construction of a large (> 1012 individual members) ribosome display DNA li-
brary [267]. However, this nanobody scaffold was not obtained using an automated
and generalizable computational approach.

In this chapter we aim at using our computational design tools to design new
universal nanobody scaffold that could potentially allow the development of new
synthetic library of nanobodies. Our starting point was the humanized nanobody
scaffold created by our colleagues from the Cancer Research Center of Toulouse
(CRCT) in 2016. This scaffold, optimized for intracellular stability was used for the
development of a highly diverse library which provides high affinity binders without
animal immunization [252]. This “NaLi-H1” library was screened against various
targets, and highly specific antibodies were selected against EGFP, mCherry, b-
tubulin, b-actin, heterochromatin protein HP1a, GTP-bound RHO, p53 and HER2.
The authors showed that this nanobody scaffold is usable as fluorescent intrabody
to track antigens in cells. Overall, in this study our colleagues reported for the
first time a large and diverse synthetic single domain antibody library enabling
fully in vitro selection of highly functional antibodies and intrabodies [252]. A
very important notion about intrabodies remains their dependence on the stability
of antibody fragments in the reducing environment of the cytosol which does not
allow a formation of the disulfide bond. Despite the presence of two canonical cys-
teine residues, their library produced functional intrabodies at high frequency. This
scaffold was further used in another study for engineering an analytical tool to selec-
tively degrade the GTP-bound form of endogenous RHOB. A phage display library
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with nanobodies that bind to RHOB-GTP was enriched, and cell-based assay for
screening the protein degradation of antigen/intrabody complexes was developed.
Our colleagues from CRCT identified several intrabodies that recognize RHO-GTP
proteins, and characterized one nanobody that showed greater selectivity to RHOB-
GTP [268]. The crystal structure of this complex has been obtained and is available
in the PDB. However, this nanobody scaffold along with the commercial use of the
library is under a patent application (filled under ref: WO/2015/063331). Our
objective was to create new cysteine-less nanobodies for ease of intracellular ex-
pression. This scaffold should be more or as stable as the old one and the sequence
should be beyond the patent framework. Therefore, in this chapter we present the
methods that have been employed in order to create this new cysteine-less nanobody
scaffold. We show different techniques of in silico evaluation that have been done
in order to chose between the most promising designs, that were further experimen-
tally tested by our colleagues at CRCT: Claudine Tardy, Coralie Morand, Patrick
Chinestra and Aurélien Olichon.

8.3 Materials and Methods

8.3.1 Computational Design

Preparation of the initial template
The crystal structure of human RHOB-GTP in complex with nanobody B6 was
used for the preparation of our initial nanobody template (PDB code: 6SGE). The
3D structure of RHOB-GTP (chain A) was removed and only the 3D structure of
the nanobody (chain B) was kept for further studies. The initial nanobody template
contains 126 residues.

Generation of conformational ensemble
In order to generate conformational states of the initial nanobody template struc-
ture, we used Rosetta Backrub protocol as described in Chapter 4, and gener-
ated 100 protein models. Protein models were then clustered using Durandal soft-
ware [146]. A clustering radius of 0.3 Å was used to obtain the cluster centers of
the four biggest clusters.

Design strategies
Different multi-state and single-state design strategies were used for the redesign
of the nanobody scaffold. Here we present the 6 multi-state strategies that led to
experimentally characterized artificial nanobody scaffolds. It is well-known that the
presence of hydrophobic patches on the surface of a protein usually leads to poor
expressability. We confirmed this for nanobodies in a quick pilot experiment where
we quickly redesigned the target nanobody using a standard single state design ap-
proach and Rosetta energy. Design was poorly expressed and poorly purified with
signs of aggregation, while the WT sequence was purified with high yield and more
than 95% purity. Therefore, we concentrated on defining strategies principally with
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multistate design approach but also by explicitly trying to prevent formation of
hydrophobic patches at the protein surface. CDR loops are never designed because
their composition of amino acids is essential for specific recognition. The following
list provides an explanation and preparation details on each of the 6 strategies.
Unless stated otherwise, each design strategy used an ensemble of four conforma-
tional states generated by Rosetta Backrub. Cysteine residues are always mutated
as the objective of the design is to create a cysteine-less nanobody scaffold. In
each strategy, residues that are not allowed to mutate are considered as flexible
(this includes CDR loops as well). This means that their side chains can adopt
any rotamer conformation available for the natural amino acid types in the rotamer
library. Mutable residues are allowed to mutate to any of the 20 natural amino
acids.

1. Design by forbidding mutations of conserved residues and VH desta-
bilization hotspots
In this strategy a total of 49 residues were allowed to mutate. 40 residues
identified as “conserved” in an alignment of all crystallized VHH domains
were forbidden to mutate. Another 5 residues identified as VH destabilizing
hotspots [269] were also forbidden to mutate. Figure 8.4 represents this first
design strategy on the nanobody template structure with mutable residues
shown in blue, forbidden residues from the scaffold shown in red and CDR
loops in gray.

Figure 8.4: First design strategy: forbidding mutations of conserved residues and
VH destabilization hotspots. Illustration of the design strategy on the template
3D structure of the nanobody. Residues that are allowed to mutate to any of the
20 amino acids are shown in blue, residues from the scaffold that are forbidden to
mutate are shown in red and CDR loops are shown in gray. The disulfide bridge
(also allowed to mutate) is represented in sticks.

2. Design by forbidding mutations of VH destabilization hotspots
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In this strategy, 90 residues are allowed to mutate. Here, in comparison the the
previous strategy, only VH destabilization hotspots are forbidden to mutate.
Figure 8.5 represents this strategy.

Figure 8.5: Second design strategy: forbidding mutations of VH destabilization
hotspots. Illustration of the design strategy on the template 3D structure of the
nanobody. Residues that are allowed to mutate to any of the 20 amino acids are
shown in blue, residues from the scaffold that are forbidden to mutate are shown
in red, and CDR loops are shown in gray. The disulfide bridge (also allowed to
mutate) is represented in sticks.

3. Design with diverse CDR loops ensembles
For this strategy, our collaborators from CRCT provided 6 sets of new CDR
loops sequences. These loops are already known to be functional on our
template nanobody structure as they derive from the synthetic VHH library
“NaLi-H1” [252]. However, 3D structures with these diverse CDR loops do
not exist. Therefore, we generated structure models of these CDR loops using
I-TASSER[67]. We have first separated CDR loops in 3 groups according to
their sequence length. For each group, we have generated one model using
one set of CDR loops. 3 models in total were generated with I-TASSER web-
server, one for each group, and other sequences were mapped on the model
generated for their group. A total of 6 new models with diverse CDR loops
was obtained (Figure 8.6). Short MD simulations of 20 ns at 310K were then
performed on each of the 6 models with Amber ff14SB force-field [26]. For
each model, the conformation from the last frame of the MD simulation was
taken. It was then prepared with FastRelax and Rosetta beta_nov16 scoring
function [32] for design procedure with Pompd. The objective of this design
strategy was to model and take into account multiple and diverse CDR loops in
order to increase the chances of designing a new universal nanobody scaffold.
Thus, in this strategy, instead of taking multiple conformational states of the
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same nanobody structure/sequence, we perform multistate design by taking
multiple nanobody structures with diverse CDR loops. This implied some
changes in Pompd. Initially in Pompd, amino acid type constraints were
added for each variable in the CFN, in order to ensure that each variable has
the same amino acid type in each conformational state. An upgrade of this
model was made by separating variables in two categories: mutable variables
and flexible variables. Hence, constraints need to be added only for mutable
variables. This modification allowed us to take into account sequences which
possess different length of flexible variables. Here, the 6 previously described
structures were given to Pompd as 6 conformational states. All residues in
the scaffold (95 residues) were allowed to mutate.

Figure 8.6: Third design strategy: design with diverse CDR loop ensembles. We
show 6 generated models, each having a unique set of CDR loops (shown in different
colors). All residues of the scaffold are allowed to mutate to any of all 20 natural
amino acids (blue part of the structure).

4. Design by allowing mutations at all positions (except CDR loops)
In this strategy we also allow all mutations. In total, 95 residues are allowed
to mutate.

5. Design by not allowing hydrophobic mutations observed in 4.
This strategy is guided by the solution/sequence obtained for the previous
strategy (strategy 4). In order to avoid hydrophobic patches at the pro-
tein surface, we have visually inspected the surface of the nanobody and the
impact of mutations introduced using the strategy number 4 (Figure 8.7).
14 hydrophilic surface residues from the WT sequence are mutated into hy-
drophobic residues using strategy number 4 (the location of these residues is
represented by spheres in Figure 8.7). In this new strategy, we disallow these
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14 residues to mutate and impose the native residue from the WT sequence
instead. Therefore in this strategy, 81 residues are allowed to mutate and 14
selected residues are kept flexible.

Figure 8.7: Fifth design strategy: not allowing hydrophobic mutations observed
in the design strategy 4. Representation of the nanobody structure and surface of
the variant designed with strategy number 4. Hydrophobic surface of this design
is shown in red as well as 14 residues that were mutated into hydrophobic amino
acids. For these 14 residues (locations represented in red spheres), the type of the
amino acid found in the WT sequence is now imposed. The rest of the scaffold is
allowed to mutate to any of the 20 natural amino acids.

6. Design with new Hpatch option
In this design strategy, we activated the hpatch constraint that was described
in Chapter 5 to prevent the formation of hydrophobic patches in an automated
manner and we allow all (95) residues to mutate.

Computational Nanobody Design
For each design strategy a multistate design procedure was performed with Pompd.
Each input (conformational state) was submitted to an additional relaxation step
using RosettaFastRelax with harmonic constraints on backbone atoms.Pairwise en-
ergy matrices were computed with Dunbrack2010 rotamer library [150] and beta_nov16
scoring function [32], using PyRosetta [151].

8.3.2 In silico evaluation of designed nanobodies

Each of the designed sequences was mapped on the initial nanobody template in
order to obtain a model of designed variants. Each of them was further evaluated
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in silico with two molecular modeling methods: Molecular Dynamics Simulation
and Forward Folding.

Molecular Dynamics Simulations
MD simulations were performed on the designed sequences as well as on the WT
nanobody with the following MD protocol: MD simulations were performed using
AMBER ff14SB force-field [26]. To obtain a neutral charge of the simulated systems,
a number of counter-ions were included. Each protein together with the counter-
ions was solvated with TIP3P water molecules, using an octahedral box [201] with
a minimum distance of 10 Å between the solute and the simulation box edges.
The system was energy-minimized with a restraint potential of 25kcal/mol/Å2 on
the solute. This minimization consisted of 500 steepest descent steps, followed
by 500 steps of conjugate gradient. The entire system was then gradually heated
from 100K to 310K during 100ps with the same harmonic positional restraints
of 25kcal/mol/Å2 on the solute atoms. Energy-minimization and equilibration of
the system has been done during 100 ps in the NVT ensemble and the positional
restraints have been gradually removed and followed by production MD run of
20 ns. During the production run, MD simulations were carried out at constant
temperature (310K) and pressure (1bar) using Berendsen algorithm [41]. Each
production run has a time-step of 2 fs, periodic boundary conditions, a 9 Å cut-
off for nonbonded interactions, and the Particle-Mesh Ewald (PME) method for
treating long range electrostatic interactions [202]. SHAKE algorithm [203] was
used to constrain hydrogens.

Ab initio forward folding
Forward folding experiments were performed on each of the designed sequences with
EdaRose software [270]. EdaRose is an ab initio fragment based protein structure
prediction software. Forward folding techniques in general, aim at assessing the
quality of a protein design by predicting whether it will fold in the target structure
or not. The advantage of ab initio structure prediction methods is that they pre-
dict protein structures exclusively based on their amino acid sequences. However,
their drawback remains their difficulty to deal with the astronomical size of the
conformational search space. This is the reason why ab initio structure prediction
methods are more efficient on small proteins (up to 150 residues). In this study, the
nanobody is 126 residues long, which makes its in silico evaluation with ab initio
forward folding method adequate and possible. 60 000 protein models were pre-
dicted for each design using EdaRose software with default parameters, and RMSD
to the template structure was computed for the 1000 top scoring models.

8.3.3 Experimental validation

Plasmids
All nanobodies sequences were gene synthesized (Twist Bioscience) and cloned us-
ing NcoI and NotI into bacterial expression vector pAOT7-hs2dAb-6His-Myc-6His
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for monovalent expression, or into the pFUSE-rIgG-Fc (Invivogen) for bivalent ex-
pression with a rabbit IgG Fc.

Protein expression and purification
2SHA-RHO protein purification: 2SHA-RHOA or 2SHA-CDC42 were expressed
in BL21(DE3) E.coli cells from a pET vector as previously described 26. Trans-
formed bacteria cells were used to grow 3mL LB-carbenicillin (100 µg/ml) cultures
overnight at 37°C prior to inoculation in baffled flasks containing 1 L of the same
media. Cells were allowed to grow at 37°C until OD600 reached 0.5-0.7. Cells
were then induced with IPTG at a final concentration of 100 µM and grown for
an additional 20 hours at 25°C. Cells were harvested by centrifugation at 4000g
for 20 min. The pellets were resuspended in lysis buffer (50 mM TrisHCl pH 8,
150 mM NaCl, 5 mM MgCl2, 0.1% triton, 1mM DTT, 1X lysozyme and DNase
I, protease inhibitors) and lyzed by sonication on ice prior to centrifugation (30
min, 15000g, 4°C). Strep-Tactin® SuperFlow Plus (IBA) matrix was equilibrated in
buffer A (50 mM Tri-sHCl pH 8.0, 150 mM NaCl, 5 mM MgCl2) and was incubated
with supernatant for 2 hours at 4°C. Then supernatant and matrix were loaded on
a simple column in order to maximise capture of 2SHA fused proteins. Matrix was
washed by 15 mL of washing buffer (50 mM TrisHCl pH 8.0, 300 mM Nacl, 5 mM
MgCl2, 0.1% tween20). RHO proteins were then eluted in buffer A containing 10
mM Biotin (Sigma). Dialysis was proceeded overnight against buffer A containing
15% glycerol.

For nanobody production, cytosolic expression of Hs2dAb-6His-myc-6His was
performed in BL21(DE3) E.coli cells from the pAOT7 vector [252]. Transformed
bacteria cells were used to grow 3 mL TB-kanamycin (35 µg/mL) cultures overnight
at 37°C prior to dilution of the pre-culture in baffled flasks containing 1 L of the
same media. Cells were allowed to grow at 37°C until OD600 reached 0.5 to 0.7.
Cells were then induced with IPTG at a final concentration of 100 µM and grown
for an additional 16 h at 20°C. Cells were harvested by centrifugation at 4000g
for 20 min. The pellets were re-suspended in lysis buffer (50 mM Na2HPO4 pH
8.0, 300 mM NaCl, 1X lysozyme and DNase I, protease inhibitors) and lysed by
sonication on ice prior to centrifugation (30 min, 15000g, 4°C). The protein extract
was incubated for 2 hours in the presence of complete His-Tag purification beads
(ROCHE®, Basel, Switzerland) previously equilibrated with an equilibration buffer
(50 mM Na2HPO4 pH 8.0, 300 mM NaCl, 10 mM imidazole). The beads were
washed with 30 mL of washing buffer (50 mM Na2HPO4 pH 8.0, 300 mM NaCl, 10
mM imidazole). Hs2dAb were then eluted with elution buffer (50 mM Na2HPO4
pH 7.0, 500 mM NaCl, 300 mM imidazole) and dialyzed against PBS containing
20% glycerol for 16 hours at 4°C, and purity was assessed by SDS-PAGE fol-lowed
by InstantBlueTM (Expedeon, Cambridgeshire, UK) Coomassie staining.

Bivalent hs2dAb were produced as fusion proteins with the Fc domain of Rabbit
IgG2. hs2dAb were sub-cloned in pFuse-RIgG-Fc2 plasmid (NcoI/NotI) inframe
between the interleukin-2 (IL2) secretion signal and the Fc domain [271]. 4 days
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after transient transfection in HEK293T cells seeded in 12 well plates, supernatants
were recovered and used directly in the ELISA assay.

Immunofluorescence
HeLa S3 cells expressing Histone H2B-GFP were grown on coverslip for 24 hours
then fixed in 3% paraformaldehyde and permeabilized with PBS (plus 0.05% saponin
and 0.2% BSA). hs2dAbs were co-incubated with 9E10 anti-Myc tag monoclonal for
90 min on cells. Cells were then washed quickly twice and incubated with secondary
antibodies for 30 min (Invitrogen - Thermofisher).

ELISA assays
Wells of strepTactin coated plates (IBA®, 2-4101-001) were coated with 100 nM of
recombinant proteins 2S-HA fused RHOAQ61L, RHOT19N or CDC42Q61L (200
µl in TBS by well) during 2 hours at room temperature (RT) and then blocked with
5% milk in TBS-Tween 0.05% (blocking buffer) for 1 hour at RT. Several dilutions
of hs2dAb 6His-Myc-6His in blocking buffer were applied to the ELISA plates in
duplicates for 1 hour at RT. Next, we added 1 µg/ml anti-myc HRP antibody (QED
Biosciences®, #18824P) in blocking buffer for 1 hour at RT. Alternatively, hs2dAb
Rabbit-Fc 6 fusion secreted in HEK293T supernatant were diluted 1/1 in blocking
buffer and further detected using Goat anti-Rabbit HRP-conjugated secondary anti-
body (Sigma). Plates were washed three times with washing buffer (TBS containing
0.05% (v/v) Tween 20) after each step. The reaction was revealed by the addition
of 100 µl chromogenic substrate (Thermoscientific®, 1-step ultraTMB, #34028) for
1 min. The reaction was stopped with 50 µl H 2 SO 4 1N and absorbance at
450 nm was measured using FLUOstar OPTIMA microplate reader. All steps are
performed under agitation (400 rpm).

8.4 Results and Discussion

8.4.1 In silico analysis of selected designs

In silico evaluation of our designs consisted of MD simulations and forward folding
experiments. After the short MD simulations, RMSD values of backbone atoms
relative to the starting structure were calculated for each design. Also, per-residue
B-factors along the MD trajectory were calculated from RMSF values, on all back-
bone atoms. For each design, these results were compared with the WT nanobody
on which the same procedure and calculations were performed. Furthermore, for-
ward folding experiments were carried out in order to assess the chances that the
design sequences possess to fold into the target structure. Out of 60 000 generated
structures, 1000 lowest energy structures were taken. Predicted structures plots
show their energy as a function of their RMSD. The lowest the energy and the
smallest the RMSD, the better the chances for the designed sequence to fold into
the target structure. All these results are presented in Figure 8.8, where a graph
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compares RMSD values with the WT nanobody, another compares B-factor val-
ues with the WT nanobody, and a last one shows forward folding results for each
selected design.

We can see that MD profiles are generally very similar to the WT MD profile,
which seems to be very stable. The RMSD profiles suggest that designs 2, 4, 5 and
6 are a bit less stable than the WT. However, all of them are stabilized after few
nanoseconds. In general 4 peaks are observed in the B-factor analysis. 3 of them
correspond to the 3 CDR loops (shown on the b-factor graph of design 1 in Figure
8.8). The fourth peak, observed between the CDR2 and CDR3 loops correspond
to a flexible loop that is in the vicinity of CDR loops. We can see that this loop
is generally more flexible in the designed sequences. This is particularly the case
for design 2, but similar observations can be found for designs 4 and 5. In some
designs, CDR loops also tend to be more flexible, such as CDR1 in design 2 or
CDR2 in design 4. On the contrary, designs 1, 3 and 5 seem to be more or as stable
as the WT nanobody.

Forward folding figures show a cloud of points representing the RMSD to native
of structural models as a function of energy. This cloud of points can be interpreted
in order to evaluate the folding propensity of sequences. We consider an evaluation
as successful if models at a distance of around 5Å (or less) from the native structure
are present among the lowest energy models. 5Å may seem a lot, but it is important
to note that any structural knowledge of homologous sequences has been excluded
from the prediction process. Therefore, designs 3, 4 and 6 possess satisfying forward
folding profiles with promising results. We can see that some of their lowest energy
structures have RMSD values around 5Å which means that these sequences are
likely to fold. On the contrary, designs 1, 2 and 5 do not present very good profiles.
Their lowest energy models are around 8 Å distance from the native structure.

8.4.2 Sequence screening and experimental characterisation

8.4.2.1 Sequence screening

The goal of this study was to design a new universal nanobody scaffold that could
potentially allow the development of new synthetic library of nanobodies. Thus,
the main objective was to create a cysteine-less nanobody scaffold which would, in
comparison with the WT nanobody, have preserved or improved biochemical prop-
erties such as stability and solubility. Experimental validation in this study was
under different time and budgetary constraints and was possible for only 6 com-
putationally designed sequences. Diverse nanobody sequences have been generated
with CPD techniques. Each of them was generated with different design strategies,
by using SSD, MSD or options such as Hpatch. 6 sequences were chosen based on
their sequence profiles, MD analysis and forward folding results (Figure 8.9) and
were further experimentally tested by our colleagues from CRCT.
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Figure 8.8: In silico evaluation of designed sequences with MD simulations and
Forward Folding experiments. Each mutant is evaluated in terms of backbone
RMSD profiles (left), per-residue average B-factor profiles (center) and forward
folding profiles (right). For the forward folding evaluation, 60 000 protein models
were predicted for each design. RMSD to the template structure was computed for
the 1000 top scoring models.
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Figure 8.9: Filtering procedure for choosing 6 sequences.
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Figure 8.10: Protein purification analysis of 6 selected sequences on SDS-PAGE
electrophoresis stained with Coomassie Blue. L = Cell Lysate; FT = Flow Through;
E = Elution. Behaviour of the WT nanobody is used as reference (orange rectangle).

8.4.2.2 Experimental characterization

Protein purification analysis on SDS-PAGE showed that 4 out of 6 designed pro-
teins were successfully purified and expressed (Figure 8.10). Designs 1 and 2 could
not be expressed and purified. This is in accordance with forward folding results
which showed quite bad profiles with lowest energy models around 8 Å away from
the native structure. MD results showed that design 1 was more or as stable as
the WT nanobody, suggesting that MD simulations were possibly too short to eval-
uate our designs and that longer simulations should be considered. Designs 3, 4
and 6 were correctly predicted by our forward folding experiments. Finally, design
5 forward folding profile was quite bad, with the lowest energy models being at
10Å distance from the native structure. However, this sequence is the one with the
best experimental results. This false negative underlines the fact that performing
forward folding with ab initio protein structure prediction methods remains a chal-
lenging task. It would be interesting to see how recent deep learning based methods
perform for this task.

Elisa tests and Immunofluorescence assays haven’t been done yet on designs 3
and 6. These experiments are ongoing and will be soon published with other results
presented in this manuscript.

To test whether the designed scaffolds were functional recombinant proteins,
they were gene synthesized with B6 CDR loops, cloned into a cytoplasmic expres-
sion vector under the control of T7 promotor, and expressed them in E.coli Bl21de3
strain. Following NiNTA purification in batch, the resulting nanobodies were tested
in an ELISA assay for the detection of one of the GTPase that the wild type B6
hs2dAb binds with a KD of 80nM, RHOA Q63L constitutively active mutant [268].
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As positive control we included the wild type B6 hs2dAb (Figure 8.11A) To check
the conformational selectivity and the specificity of target recognition, we also as-
sayed the binding to the inactive state of RHA GTPase using the T19N mutant or
to the related active GTPase CDC42 (Figure 8.11B). As shown in Figure 8.11, the
design 5 was able to give a dose response effect on active RHOA as the wild type
B6, with similar selectivity and specificity. No signal was observed with any of the
other monovalent binders tested, indicating that most of the scaffold mutant lost
the binding capacities of the B6 or lost affinity.

To test the latter hypothesis, a simple way to increase binding capacities of
nanobodies in immunoassays consist in increasing their avidity by expressing them
as bivalent IgG like antibodies. Thus we subcloned and expressed all the constructs
into a mammalian expression vector of Rabbit IgG [271]. Hs2dAb-RFc recom-
binant protein were secreted in cell culture supernatant and directly tested in a
similar ELISA assay for the detection of active RHOA, inactive RHOA or CDC42.
Again, only the design number 5 gave a signal similar to the wild type B6 and
none of the other construct were able to give a signal (Figure 8.12). This result
demonstrated that mutations in the scaffold most often lead to total loss of binding
if the parameters do not take into account hydrophobic patches on the surface of
the nanobody.

As the design 5 scaffold appeared, so far, the only one to keep the binding
properties of the wild type B6 hs2dAB, we wondered whether this was only due
to a preferential display of the CDR loops in the right orientation or if this scaf-
fold could withstand several combination of CDR loops. Therefore, we grafted by
gene synthesis the CDR loops sequence of other previously characterised hs2dAb
(RH12, Tub2, HGX44 in [252], RHB15 unpublished under CISBIO patent) or some
published llama VHH targeting GFP, LaminA/C [255] or HistoneH2A/H2B [272].

Design 5 scaffold grafted with CDR loops of various hs2dAb targeting RHO
GTPase with different selectivities is shown in Figure 8.13. RH12 wild type was
reported to bind RHOA, RHOB, RHOC with subnanomolar affinities, while RHB15
had a preferential binding to RHOB but poorly bind RHOA or RHOC. Design 5
-RH12 was able to bind active mutant of all three RHO GTPase, indicating that
this design can display other set of CDR loops than the one of the B6 clone.

For the other grafted loop, target antigens were intracellular proteins such as
ectopically expressed GFP, or endogenous Histone, Lamin or Tubulin. Thus, we
tested their capacity to give a signal in immunofluorescence on fixed cells. In a
preliminary experiment, the design 5 grafted with the CDR loops of the TUB2
hs2dAb [252] kept the potential binding to microtubule as the wild type binder
reported (Figure 8.14). However, no staining was observed with none of the other
grafted design 5 that we tested, although some lama VHH targeting chromatin
(S12) or lamin (lam) were reported to stain their antigen in fixed cells. It is not
trivial to conclude because the binding mode of these nanobodies are not known and
the paratope can involve residues from their original scaffold or can be constrained
by their scaffold. The display of the loops may also be disturbed due to adjacent
residues. The fact that the RH12 or Tub2 loops, as well as the B6 ones could be
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Figure 8.11: (A) Design 5 - selective detection of active conformation of RHOA
recombinant protein. Streptactin plates were coated at saturation with 2S HA
RHOAQ63L active GTP-bound mutant. (B) As a control, the inactive state mutant
2S HA RHOA T19N or the related GTPase active mutant 2S HA CDC42 Q61L
were used. Absorbance at 405 nm reflects myc signal after hs2dAb-6his-Myc-6His
dose-effect (0, 1nM, 10 nM or 100 nM)
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Figure 8.12: Design5 selective detection of active conformation of RHOA recom-
binant protein. Streptactin plates were coated at saturation with either 2S HA
RHOA Q63L active GTP-bound mutant, the inactive state mutant 2S HA RHOA
T19N or the related GTPase active mutant 2S HA CDC42 Q61L. Absorbance at
405 nm reflects rabbit Fc-hs2dAb fusion detection from HEK293 cells supernatant
incubation.

Figure 8.13: ELISA using design5 scaffold grafted with CDR loops form RH12 or
RHB15 hs2dAb. Streptactin plates were coated at saturation with either 2S HA
RHOA, RHOB, RHOC Q63L active GTP-bound mutant. Absorbance at 405 nm
reflects rabbit Fc-hs2dAb fusion detection from HEK293 cells supernatant incuba-
tion.
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Figure 8.14: Immunofluorescence stainng with design 5 scaffold grafted with
Tub2 CDR loops. HeLa S3 H2B-GFP cells were seeded for 24hours, fixed us-
ing paraformaldehyde, permeabilized using saponin and stained with non-purified
myc-tagged MSD10-Tub2-6His-Myc-6His and revealed with anti-Myc-Tag (9E10)
and secondary Rabbit-anti-mouse conjugated to Alexa564 (red), and stained with
DAPI to stain nuclear DNA (blue). Design 5 -Tub2 stained microtule cytoskeleton
in mitotic cell (upper panel) or interphase cells lower panels.

efficiently grafted reveals that the design 5 is a suitable scaffold for proper display
of CDR like aminoacid sequences.

8.5 Conclusion

In this chapter we focused on the design of a new universal nanobody scaffold
that could potentially be further used for a development of new synthetic library
of nanobodies. This work was based on an already known humanized nanobody
scaffold that has been under a patent application. Therefore, this study involved
many different design constraints. The new nanobody scaffold had to be beyond
the old patented framework, it had to be more or as stable compared to the original
scaffold, while being cysteine-less. It is important to mention that the disulfide
bridge present in nanobodies represent a trademark, present in 99.4% of all aligned
nanobody sequences. In this work, we showed that it is possible to computationally
design new stable cysteine-less nanobody scaffolds. Different experiments done by
our colleagues showed that some of the scaffolds designed with Pompd are highly
expressed, and that one of them possesses suitable affinity with different CDR loops.
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This study is still ongoing as another scaffold designed with hpatch (described in
Chapter 5) shows promising results.



Conclusions and perspectives

This thesis addressed the problem of computational protein design at different lev-
els. First, a new approach that takes protein flexibility into account during the
CPD procedure has been developed. In this approach, we define an average energy
criteria that needs to be satisfied by multiple conformational states simultaneously.
By providing multiple inputs for a given CPD problem, and not only one static
structure, this method improves the quality of CPD predictions. On a benchmark
composed of NMR and X-ray back-rubbed structures, we showed the superiority
in terms of native sequence recovery and efficiency of this method compared to
previous SSD, but also to state-of-the-art MSA approaches. For the first time, we
showed that it is possible to access guaranteed optimal average energy solutions on
full multistate design problems of proteins of size up to 100 amino acids, but also
to exhaustively enumerate sequences for a given energy threshold. We named this
method Pompd, for Positive Multistate Protein Design.

Experimental validation is a necessary step for CPD techniques. Furthermore,
perceptive feedback from the experimental evaluations helps improving computa-
tional modeling. Multiple interactions with our experimental collaborators inspired
the development of new functionalities in our software. Besides the possibility of
taking into account several conformational states, Pompd can prohibit hydrophobic
patches at the protein surface, give a greater weight to certain states and generate
a set of diverse, good quality solutions.

In this context, Pompd was applied on two different projects in white biotech-
nology and health domains. In the first one, the objective was to use our CPD
method to engineer a new GH11 xylanase enzyme, with improved thermal stability.
In the conception of this new enzyme and computational design procedure, molec-
ular dynamics simulations played a major role. Molecular dynamics simulations
at the atomic scale have allowed us to study and understand in greater depth the
molecular and structural basis of these systems. Thanks to our simulations, we have
been able to identify regions that are critical for the stability of the systems we have
studied, and thus to define appropriate design strategies. These design strategies
were applied and experimental evaluations showed that 4 enzymes mutants possess
improved thermal stability and catalytic activity.

Finally, in the last part, Pompd was applied to design a synthetic humanized
nanobody scaffold. This project included many design constraints. One of the most
important constraints was the objective to redesign a stable cysteine-less nanobody
scaffold that could be expressed as intrabody and be stable in the reducing cyto-
plasmic environment. The disulfide bridge usually found in the scaffold contributes
to its general stability. Redesigning this scaffold without it represented a clear chal-
lenge. Results on this new scaffold showed that the new nanobodies we designed
are highly expressed and possess suitable affinity with different CDR loops.
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Perspectives

The work presented in this thesis revealed multiple directions for future research.
First of all, our methods offer many possibilities that have yet to be explored.
Experimentally validated artificial proteins presented in this work demonstrate the
great potential of our CPD approach and we have only barely scratched the surface
of what could be done in terms of biotechnological or biomedical applications.

Molecular Dynamics simulations were exploited for identification of redesignable
regions. Various measures such as B-factors, RMSD and cross-correlations could be
used as input in an automated enzyme design protocol. Such a protocol would iden-
tify designable regions targeting thermostability without impacting the dynamicity
observed on very active enzymes nor the catalytic site itself.

The ability of our software to exhaustively enumerate sequences within a thresh-
old of the optimum, represents an important feature that could be exploited in
many ways. We could directly produce a batch of sub-optimal sequences and thus
augment the chances of success. Knowing that proteins are highly evolvable macro-
molecules, sequence enumeration could also be used in order to anticipate escape
mutations of pathogens for example [273, 274].

The Computational Protein Design field is today mature enough so that exper-
imental synthesis of completely artificial protein sequences is possible. Meanwhile,
the success rate of CPD relies on the nature of the application, and many exciting
challenges lie ahead of us. Enzyme design, for example, still represents a great chal-
lenge. During this thesis we successfully designed new optimized GH11 xylanases.
We achieved good results by designing enzymes regions that are quite far from
the active site and by an in-depth analysis of the dynamics of this enzyme, which
guided us through the design procedure. Being able to explicitly take into account
the catalytic activity into the design process would represent a landmark towards
the de novo design of highly active catalysts with new functions.

Positive Multistate design allows modeling local flexibility, large conformational
changes or molecular systems in free and complex forms. However, many applica-
tions require the ability to promote some conformations or molecular systems while
discouraging some others (negative design). For example, it is the case when mod-
eling ligand binding specificity or oligomeric association specificity. Negative design
represents a challenging task and is highly in demand for designing new therapeu-
tics and biosensors. Our Multistate approach could be extended in order to address
negative design problems.

Deep learning methods have recently become very popular for learning from
large datasets, doing both feature extraction and prediction. As we already men-
tioned in this manuscript, the use of deep learning recently revolutionized protein
structure prediction. Over the past years, the development of new algorithms, so-
phisticated architectures such as graphical neural networks and high-performance
computing tools have improved the performance of deep artificial neural networks
as a learning technique. These methods are capable of learning complex characteris-
tics from data, with a sufficient mass of data as a prerequisite. By freeing ourselves
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from the energy function and learning directly from structure and sequence data,
deep learning methods represent an interesting alternative to address the problem
of computational protein design. Newly learned energy potentials could replace or
expand the energy function used in our computational protein design framework.





Résumé long en français

Les protéines sont des composants fondamentaux de la vie. Elles sont indispens-
ables à la structure et au fonctionnement des cellules vivantes et des virus et sont
responsables de nombreux processus essentiels dans tous les organismes vivants.
Elles peuvent transporter de l’énergie, transmettre des signaux, fournir une struc-
ture aux cellules ou favoriser des réactions chimiques particulières. Au cours des
milliards d’années d’évolution, les protéines ont évolué pour remplir mieux et plus
rapidement certaines fonctions ou pour réaliser de nouvelles fonctions afin de répon-
dre aux besoins biologiques dans des conditions diverses et changeantes.

La plupart des protéines ont une structure tridimensionnelle particulière qui est
directement liée à leur fonction spécifique. La structure et la fonction d’une protéine
proviennent d’un ensemble d’éléments constitutifs qui composent une séquence de
protéines, appelés résidus d’acides aminés. Pour une longueur de séquence donnée,
l’espace de séquence de la protéine décrit un ensemble de combinaisons possibles
de résidus d’acides aminés à chaque position séquentielle. Par exemple, pour une
protéine de 100 résidus, l’espace de séquences contient 20100 séquences. Les pro-
téines naturelles couvrent une très petite partie de cet espace. Une grande partie
des séquences est inexplorée par la nature et de nombreuses protéines fonction-
nelles restent certainement à découvrir. Ces dernières années, l’intérêt pour les
protéines ayant des propriétés nouvelles ou améliorées s’est accru dans de nom-
breux domaines. Cependant, la synthèse de toutes les séquences possibles reste
inimaginable. L’approche par évolution dirigée, couronnée par le prix Nobel de
Frances Arnold en 2018, a des capacités limitées d’exploration des séquences mal-
gré son succès. Par conséquent, le besoin de méthodes computationelles précises
est crucial afin de rationaliser et d’accélérer la conception de nouvelles protéines.

La dernière décennie a été marquée par des avancées scientifiques majeures qui
ont permis une compréhension plus approfondie des protéines à différents niveaux.
De nombreuses données biochimiques et cinétiques ont permis de mieux compren-
dre les propriétés structurelles et fonctionnelles des protéines, ce qui a conduit à
une extension du paradigme structure-fonction pour inclure la dynamique struc-
turelle des protéines. La cristallographie aux rayons X, la spectroscopie par réso-
nance magnétique nucléaire et la microscopie électronique cryogénique ont permis
de mettre en évidence un très grand nombre de structures protéiques. Les méth-
odes computationnelles ont complètement révolutionné le domaine de la prédiction
de structures des protéines [1]. De plus, les simulations de dynamique moléculaire
sur les protéines, récompensées par le prix Nobel de Martin Karplus et Michael
Levitt en 2013, ont permis d’étudier les protéines au niveau atomique. Toutes
ces avancées ont largement contribué à affiner notre compréhension de la relation
séquence-structure-fonction des protéines. La quantité de structures protéiques
disponibles et notre compréhension de leurs fonctions rendent aujourd’hui possible
le design computationnel de protéines (CPD).
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En raison de la taille prohibitive de l’espace de recherche des séquences et de la
combinaison de nombreux degrés de liberté d’une protéine, les approches CPD les
plus courantes modélisent les protéines comme un seul squelette rigide, et ignorent
généralement la flexibilité des protéines. Cette approche traditionnelle “Single State
Design” (SSD) contraste avec la vision aujourd’hui admise des protéines comme
étant des entités flexibles et dynamiques. En outre, les mouvements des protéines à
grande échelle, allant de la flexibilité locale à de grands réarrangements conforma-
tionnels, sont connus pour jouer des rôles clés sur les propriétés et les fonctions des
protéines. L’objectif de cette thèse est, premièrement, de développer une nouvelle
méthode qui allège les limitations du SSD en considérant plusieurs états conforma-
tionnels simultanément, et deuxièmement, de démontrer l’intérêt d’appliquer cette
méthode sur des exemples pertinents de conception de protéines pour des applica-
tions en santé et en biotechnologie blanche. Le manuscrit est structuré en 3 parties
et 8 chapitres.

La première partie introduit les concepts permettant de comprendre le travail
présenté dans cette thèse. Le chapitre 1 présente les protéines avec des notions plus
générales sur leur fonction, structure et flexibilité. Le chapitre 2 fournit quelques dé-
tails sur les principes de base des techniques de modélisation moléculaire. Le design
computationnel de protéines est ensuite présenté, ainsi que différentes approches de
l’état de l’art. Le chapitre 3 présente les méthodes de design computationnel de
protéines basées sur l’optimisation de réseaux de fonctions de coûts (CFN).

La deuxième partie de cette thèse décrit le développement de nouvelles méthodolo-
gies de design computationnel. Le chapitre 4 décrit une approche de design multi-
états (MSD) qui permet de prendre en compte simultanément plusieurs états con-
formationnels des protéines. Au cours de cette thèse, de nombreuses interactions
avec nos collaborateurs expérimentaux ont permis d’améliorer notre méthode par
l’introduction de nouvelles fonctionnalités qui sont présentées dans le chapitre 5.

La troisième et dernière partie de cette thèse présente deux études de cas validant
expérimentallement les prédictions de la méthodologie de design computationnel.
La première étude de cas se concentre sur la conception de GH11 Xylanases, une
enzyme largement utilisée dans les processus de bioraffinage industriel. Le chapitre 6
décrit une étude de dynamique moléculaire menée dans le but de mieux comprendre
la relation structure-dynamique-activité de cette classe d’enzymes et d’identifier les
déterminants moléculaires régissant leur stabilité thermique et leur activité. Dans
le chapitre 7, les caractéristiques révélées par cette dernière étude sont exploitées
pour concevoir de nouvelles xylanases présentant une thermostabilité et une activité
catalytique améliorées. Enfin, le chapitre 8 présente la deuxième étude de cas où les
stratégies de design ont été utilisées pour concevoir un échafaudage de nanocorps
humanisés synthétiques. Les résultats ont montré que ce nouveau nanocorps est
hautement exprimé et possède une affinité appropriée avec différentes boucles CDR.

À la fin de ce manuscrit, une conclusion générale fournit un résumé des dif-
férentes études réalisées au cours de ce doctorat et donne quelques perspectives et
orientations de recherche futures.
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Cette thèse aborde le problème de design computationnel de protéines à dif-
férents niveaux. Tout d’abord, une nouvelle approche qui prend en compte la
flexibilité des protéines pendant la procédure de CPD a été développée. Dans cette
approche, nous définissons un critère d’énergie moyenne qui doit être satisfait par
plusieurs états conformationnels simultanément. En fournissant plusieurs entrées
pour un problème de CPD donné, et non pas seulement une structure statique, cette
méthode améliore la qualité de prédicition des aproches CPD. Sur un benchmark
composé de structures RMN et X-ray, nous avons montré l’efficacité de cette méth-
ode par rapport aux méthodes SSD, mais aussi aux approches de l’état de l’art.
Pour la première fois, nous avons montré qu’il est possible d’accéder à des solutions
garanties d’énergie moyenne optimale sur des problèmes de design multi-états com-
plets de protéines de taille allant jusqu’à 100 acides aminés, mais aussi d’énumérer
exhaustivement les séquences pour un seuil d’énergie donné. Nous avons appelé
cette méthode Pompd, pour Positive Multistate Protein Design.

La validation expérimentale est une étape nécessaire pour les techniques de
CPD. Les multiples interactions avec nos collaborateurs expérimentaux ont inspiré
le développement de nouvelles fonctionnalités dans notre logiciel. Outre la possibil-
ité de prendre en compte plusieurs états conformationnels, Pompd peut interdire
les patchs hydrophobes à la surface des protéines, donner un poids plus important
à certains états et générer un ensemble de solutions diverses et de bonne qualité.

Dans ce contexte, Pompd a été appliqué sur deux projets différents dans les
domaines de la biotechnologie blanche et de la santé. Dans le premier, l’objectif
était d’utiliser notre méthode CPD pour concevoir une nouvelle enzyme xylanase
GH11, avec une stabilité thermique améliorée. Dans la conception de cette nouvelle
enzyme, les simulations de dynamique moléculaire ont joué un rôle majeur. Des
simulations de dynamique moléculaire à l’échelle atomique nous ont permis d’étudier
et de comprendre plus en profondeur les bases moléculaires et structurales de ces
systèmes. Grâce à nos simulations, nous avons pu identifier les régions qui sont
critiques pour la stabilité des systèmes que nous avons étudiés, et ainsi définir des
stratégies de design appropriées. Ces stratégies de design ont été appliquées et
des évaluations expérimentales ont montré que 4 mutants d’enzymes possèdent une
stabilité thermique et une activité catalytique améliorées.

Enfin, dans la dernière partie, Pompd a été appliqué pour concevoir un échafaudage
de nanocorps humanisés synthétiques. Ce projet comportait de nombreuses con-
traintes de conception. L’une des contraintes les plus importantes était l’objectif de
concevoir un échafaudage stable de nanocorps sans cystéine qui pourrait être ex-
primé sous forme d’intra-corps et être stable dans l’environnement cytoplasmique
réducteur. Le pont disulfure que l’on trouve habituellement dans l’échafaudage
contribue à sa stabilité générale. La conception de cet échafaudage sans ce pont
a représenté un défi évident. Les résultats obtenus sur ce nouvel échafaudage ont
montré que les nouveaux nanocorps que nous avons conçus sont hautement exprimés
et possèdent une affinité appropriée avec différentes boucles CDR.

Ce travail révèle de multiples directions de recherche. Tout d’abord, nos méth-
odes offrent de nombreuses possibilités qui doivent encore être explorées. Les pro-
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téines artificielles validées expérimentalement présentées dans ce travail démontrent
le grand potentiel de notre approche de CPD et nous n’avons fait qu’effleurer la
surface de ce qui pourrait être fait en termes d’applications biotechnologiques ou
biomédicales.

Les simulations de dynamique moléculaire ont été exploitées pour l’identification
de régions pouvant être redesigner. Diverses mesures, telles que les facteurs B, le
RMSD et les corrélations croisées, pourraient etre utilisées dans un protocole au-
tomatisé de conception d’enzymes. Un tel protocole permettrait d’identifier au-
tomatiquement des espaces de design qui cibleraient la thermostabilité sans trop
nuire à la dynamicité observée sur les enzymes très actives ni au site catalytique
lui-même.

La capacité de notre logiciel à énumérer de manière exhaustive des séquences à
l’intérieur d’un seuil optimal représente une caractéristique importante qui pourrait
être exploitée de nombreuses manières. Nous pourrions produire directement un lot
de séquences sous-optimales et augmenter ainsi les chances de succès. Sachant
que les protéines sont des macromolécules hautement évolutives, les enumérations
de séquences pourraient également être utilisées, par exemple, afin d’anticiper les
mutations d’échappement des agents pathogènes [273, 274].

Le design computationnel de protéines est un domaine qui est aujourd’hui suff-
isamment mature pour permettre la synthèse expérimentale de séquences protéiques
entièrement artificielles. Toutefois, le taux de réussite du design computationnel de
protéines dépend de la nature de l’application, et de nombreux défis passionnants
nous attendent. La conception d’enzymes, par exemple, représente toujours un
grand défi. Au cours de cette thèse, nous avons réussi à concevoir de nouvelles xy-
lanases GH11 optimisées. Nous avons obtenu de bons résultats en redesignant des
régions d’enzymes assez éloignées du site actif et après une analyse approfondie de
la dynamique de cette enzyme. Pouvoir prendre en compte explicitement l’activité
catalytique dans le processus de conception représenterait un jalon vers la concep-
tion de novo de catalyseurs hautement actifs dotés de nouvelles fonctions.

Le design multi-états positif permet de modéliser la flexibilité locale, les grands
changements conformationnels ou les systèmes moléculaires sous des formes libres
et complexes. Toutefois, de nombreuses applications nécessitent la capacité de pro-
mouvoir certaines conformations ou systèmes moléculaires tout en décourageant
certaines autres (design négatif). C’est le cas, par exemple, de la modélisation de la
spécificité de liaison d’un ligand ou de la spécificité d’une association oligomérique.
Le design négatif est une tâche difficile qui trouve néanmoins de nombreuses ap-
plications comme la conception de nouvelles thérapies et de nouveaux biocapteurs.
Notre approche multi-états pourrait être étendue afin de résoudre les problèmes de
design négatif.

Les méthodes d’apprentissage profond sont de nos jours très populaires pour
apprendre à partir de grands ensembles de données. L’utilisation de l’apprentissage
profond a récemment révolutionné le domaine de la prédiction de structure de pro-
téine. Au cours des dernières années, le développement de nouveaux algorithmes
et d’architectures sophistiquées telles que les réseaux de neurones relationnels ainsi
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que les progrès matériels ont permis d’améliorer les performances des réseaux de
neurones artificiels profonds. En s’affranchissant de la fonction d’énergie et en ap-
prenant directement à partir des données de structures et de séquences, les méth-
odes d’apprentissage profond peuvent s’avérer très intéressantes pour répondre au
problème de design computationnel de protéines. Les potentiels énergétiques nou-
vellement appris pourraient remplacer ou étendre la fonction d’énergie utilisée dans
notre cadre de design computationnel de protéines.
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Abstract: Proteins are fundamental components of life. Over the billions of years of evolution, proteins
have evolved to perform certain functions better and faster or to achieve new functions in order to pursue
the biological needs under diverse and changing conditions. The field of protein engineering is becoming
a research domain of great importance. The interest of proteins with new or improved properties is
increasing in health, nano/biotechnology and green chemistry.

Computational Protein Design (CPD) plays a critical role in advancing the field of protein engineering
and accelerating the delivery of novel proteins displaying high specificity, high efficiency and better
stability. The CPD problem can be formalized as an optimization problem. Using an all-atom energy
function and a reliable search method, CPD tries to identify amino acid sequences that fold into a target
structure and ultimately perform a desired function. The traditional Single State Protein Design (SSD)
contrasts with the increasing evidence that proteins do not remain in a unique conformational state but
rather sample conformational ensembles. In this thesis we propose a MultiState Design (MSD) method
which aims at alleviating SSD limitations by simultaneously considering several conformational states.

In the second part of this thesis, MSD was applied on two projects that led to an experimental
characterization and validation. These two projects concern two application domains: health and white
biotechnologies. The first one targets GH11 Xylanases. To understand the molecular basis underlying
its thermal stability and activity, Molecular Dynamics simulations were used and revealed useful char-
acteristics to design this enzyme. This produced GH11 xylanases with improved thermal stability and
catalytic activity. The second project concerns the design of a synthetic humanized nanobody scaffold.
The resulting nanobody is highly expressed and shows suitable affinity with different CDR loops.

Keywords: Computational Protein Design, Multistate Design, Molecular Dynamics simulations,
GH11 Xylanases, Nanobodies

Résumé: Les protéines sont des composants fondamentaux de la vie. Au cours des milliards d’années
d’évolution, elles ont évolué pour mieux remplir leurs fonctions ou pour réaliser de nouvelles fonctions,
afin de répondre aux besoins biologiques dans des conditions diverses et changeantes. L’ingénierie des
protéines est ainsi un domaine de recherche d’une grande importance. L’intérêt pour les protéines ayant
des propriétés nouvelles ou améliorées augmente en santé, en bio/nanotechnologie et en chimie verte.

Le design computationnel de protéines (CPD) joue un rôle essentiel pour faire progresser le domaine
de l’ingénierie des protéines et accélérer la conception de nouvelles protéines présentant une haute spé-
cificité, une grande efficacité et une meilleure stabilité. Le problème de CPD peut être formalisé comme
un problème d’optimisation. A l’aide d’une fonction d’énergie et d’une méthode de recherche fiable, le
CPD tente d’identifier les séquences d’acides aminés qui adoptent une structure cible et qui remplissent
une fonction souhaitée. Le modèle classique à état unique (Single State Protein Design - SSD) néglige le
fait que les protéines adoptent un ensemble d’états conformationnels. Dans cette thèse, nous proposons
une méthode de conception multi-états (MSD) qui vise à atténuer les limitations du SSD en considérant
efficacement et simultanément plusieurs états conformationnels.

Dans la deuxième partie de cette thèse, le MSD a été appliqué à deux projets avec une caractérisation
et une validation expérimentale. Ces projets concernent deux domaines d’application différents : la santé
et les biotechnologies blanches. Le premier concerne les xylanases GH11. Pour comprendre les bases
moléculaires qui sous-tendent leur stabilité et leur activité, des simulations de dynamique moléculaire
ont révélé des caractéristiques utiles pour la conception de mutants plus thermostables et plus actifs. Le
second projet concerne la conception d’un squelette de nano-anticorps humanisés synthétiques. Certains
de ces chassis ont montré un haut niveau d’expression et l’affinité attendue avec différentes boucles CDR.

Keywords: Design Computationnel de Protéines, Design Multi-états, Dynamique Moléculaire,
Xylanases GH11, Nano-anticorps
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