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Ĉx Data Sample Covariance Matrix

Id Identity matrix of dimension d

Sets
Cx Unknown theoretical data covari-

ance matrix

Γ Set of frequencies

ΩM Original set of indexes of all
dipoles of an active patch

ΩG Set of constraints applied to the
leadfield matrix

ΩwL Set of linear constraints applied to
the beamforming filters

ΩwQ Set of quadratic constraints ap-
plied to the beamforming filters

ΩwRR Set of reduced rank constraints
applied to the beamforming filters

ΩwS Set of shrinkage constraints ap-
plied to the beamforming filters

Ωw Set of constraints applied to the
beamforming filters

ΩM̂ Estimated set of indexes of all
dipoles of an active patch

Ωk Set of the dipoles indexes for the
k-th SOI

{ν(t)} Second order wide-sense station-
ary ergodic noise random process

{s(t)} Second order wide-sense station-
ary ergodic source random pro-
cess

{x(t)} Second order wide-sense station-
ary ergodic EEG signals random
process

Norms and modifiers
E

[
...

]
Mathematical expectation

||...||2 Euclidian norm

||...||F Frobenius norm

||...||∞ Uniform norm or supremum
norm

xx NOMENCLATURE



||...||1 L1 norm

Exponents and indices
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Résumé de la thèse

Contexte et motivation

L’épilepsie est l’une des maladies neurologiques les plus courantes qui affectent en-
viron 2,4 millions de personnes dans le monde. Il s’agit d’une entité clinique hété-
rogène et multifactorielle caractérisée par l’apparition soudaine d’une activité élec-
trique hyper-synchronisée dans une ou plusieurs régions corticales. Cette activité
anormale entraîne des dysfonctionnements cérébraux qui ont un impact sur l’inté-
grité physique, la santé mentale et la vie sociale du patient. Dans la plupart des cas,
les patients épileptiques peuvent être traités avec succès par des médicaments, qui
empêchent les crises d’épilepsie ou permettent d’en réduire la fréquence. Toutefois,
20 à 30%de ces patients sont dit pharmaco-résistant, ce qui signifie qu’ils nemontrent
aucun signe d’amélioration après la prise de médicaments. Pour ces patients, une in-
tervention chirurgicale ou une stimulation transcrânienne peuvent être envisagées
pour arrêter ou atténuer les crises. Cependant, ces alternatives thérapeutiques né-
cessitent une délimitation précise de la zone épileptogène.

Avant de subir une intervention chirurgicale ou une stimulation, les patients doivent
généralement se soumettre à une évaluation pré-chirurgicale approfondie, compre-
nant des séances d’électroencéphalogramme (EEG) de longue durée et des enregis-
trements d’EEG stéréotaxique (SEEG). L’EEG est une modalité plutôt bon marché
directement liée à l’activité électrique du cerveau car elle enregistre les potentiels de
champs locaux produits par des milliers de neurones qui se sont propagés jusqu’au
cuir chevelu. Cette diffusion électrique entre la surface corticale et les capteurs EEG
du scalp peut être modélisée avec précision en fournissant un modèle de tête réa-
liste et un modèle de source puis en résolvant l’approximation quasi-statique des
équations deMaxwell. Ce processus appelé le problème direct crée la matrice dite de
leadfield qui réduit l’EEG à un système linéaire. Le processus inverse, cependant, est
plus compliqué. En effet, la localisation de la zone épileptogène et la reconstruction
de son activité sont possibles en résolvant le système linéaire EEG.Malheureusement,
comme nous ne disposons pas d’autant d’électrodes que de sources, ce système est
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un problème inverse mal posé au sens de Hadamard et nécessite des méthodes indi-
rectes pour être résolu.

L’imagerie des sources cérébrales basée sur l’EEG (BSI-EEG), est la discipline qui
regroupe l’ensemble des méthodes permettant de résoudre le problème inverse en
EEG. C’est un domaine en constante évolution grâce aux avancées en neurophysio-
logie, en mathématiques et en algorithmique. Ces découvertes sont à l’origine des
aprioris qui sont des connaissances nécessaires pour développer une méthode adé-
quate. La classification de toutes les approches d’imagerie des sources cérébrales peut
donc se faire selon trois aspects :

1. D’un point de vue physique, selon l apriori formulé sur l’espace source (pa-
ramétrique/non paramétrique) ou la distribution (distribution lisse/parcimo-
nieuse) ;

2. D’un point de vue mathématique, selon la formulation du problème d’optimi-
sation (moindres carrés régularisés/tenseur) ou la forme de la solution (image
estimée/noyau d’inversion) ;

3. D’un point de vue technique, selon le niveau de développement et d’accessibi-
lité de la méthode (mature/expérimentale).

Pour l’épilepsie, le premier problème est de choisir une méthode qui soit compatible
avec les caractéristiques de la maladie. En l’état actuel de la littérature, il est bien
admis que l’épilepsie est physiologiquement mieux représentée par un ensemble
de zones corticales étendues plus ou moins connectées avec une activité est hyper-
synchronisée. Ce modèle, appelé modèle de source distribuée, implique l’utilisation
de méthodes non paramétriques. Cependant, il n’est pas rare de voir des méthodes
paramétriques utilisées en pratique car elles peuvent néanmoins fournir une solu-
tion de départ à d’autres algorithmes. De plus, certaines méthodes paramétriques
exploitent des hypothèses spéciales qui ne sont pas encore prises en compte pour
le modèle de source distribuée. Malheureusement, elles ont parfois été mal utilisées
pour coller à cemodèle sans considérer les inconvénients de l’approche, comme dans
le cas du beamforming.

Le deuxième problème se pose après le choix de la méthode : il s’agit de sa mise
en pratique. En effet, selon la méthode choisie, le degré de développement peut va-
rier d’un simple article original comme support (méthode expérimentale) à une so-
lution logicielle prête à l’emploi (méthode mature). Cette dernière peut également
bénéficier de l’aide d’une communauté et d’une documentation solide qui répond
aux questions de réglage de l’algorithme. En revanche, les méthodes expérimentales
peuvent connaître un destin aléatoire allant de l’oubli à la valorisation par un petit
nombre d’utilisateurs. Pour éviter cela, il est de bonne pratique de fournir un pipeline
détaillé en complément de la nouvelle méthode. En effet, le pipeline de la méthode
joue un rôle crucial dans la localisation et la reconstruction des sources cérébrales et
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assure la reproductibilité des expériences pour les utilisateurs externes.

Objectifs

L’objectif principal de cette thèse est d’étendre une famille de méthodes paramé-
triques appelée beamforming pour résoudre le problème inverse en BSI-EEG pour
l’épilepsie. Afin d’atteindre cet objectif, nous i) faisons abstraction du modèle de
sources adapté à l’épilepsie pour classifier, implémenter, tester et améliorer les mé-
thodes de beamforming dans un cadre optimal et ii) proposons une version nouvelle
et bien adaptée du beamforming pour le modèle de source distribuée. Des évalua-
tions quantitatives et qualitatives sur des données simulées et réelles seront fournies
à chaque étape ainsi que des pipelines détaillés pour faciliter la diffusion des mé-
thodes proposées en dehors de la phase expérimentale.

Contributions

La première partie de cette thèse est consacrée à l’étude et à l’évaluation des diffé-
rentes pratiques de beamforming utilisées en BSI. En effet, les méthodes de beamfor-
ming sont employées depuis de nombreuses années en magnétoencéphalographie
et récemment en EEG. Malheureusement, le domaine du beamforming étant large,
des raccourcis méthodologiques peuvent être observés dans certains articles, comme
l’utilisation de noms inappropriés pour uneméthode ou lamauvaise utilisation dans
le modèle des sources distribuées. De plus, les étapes de prétraitement et de post-
traitement constituant le pipeline sont souvent négligées, alors qu’elles sont la clé de
la précision des résultats. Cette partie a pour but d’offrir un résumé synthétique et
complet de l’état de l’art du beamforming pour tous les utilisateurs. Une fois toutes
les pratiques identifiées, une étude comparative est réalisée entre les différents pipe-
lines les mieux adaptés à une application réelle. Une partie de cette étude a déjà été
partagée lors de la conférence Virtual Physiological Human (VPH) 2020 [2]. Cette
partie est complétée par la proposition d’un nouveau terme de régularisation pour
lesméthodes de beamforming qui améliore demanière significative la reconstruction
des sources réelles. Cette addition s’applique à de nombreusesméthodes de beamfor-
ming que nous avons rassemblées sous le nom de beamforming basée sur le lissage
temporel.

La deuxième partie de cette thèse est consacrée à la proposition d’une nouvelle mé-
thode de beamforming nommée SABLE (Sparsity And Beamforming for brain source
Localization and Estimation) pour le modèle de source distribuée adapté à l’épilepsie.
Cette méthode sera présentée depuis les hypothèses mathématiques jusqu’au pipe-
line utilisé pour la rendre mature et la préparer à une diffusion plus large. Une étude
préliminaire sur SABLE a été publiée lors de la conférence IEEE Statistical Signal Pro-
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cessing (SSP) [3]. Ce travail est conclu par une comparaison qualitative entre SABLE
et trois méthodes matures implémentées dans le logiciel Brainstorm pour démontrer
ses capacités à localiser trois sources étendues présentant une activité corrélée.

Contenu du manuscrit de thèse

Dans le chapitre 1, nous présentons le contexte de la localisation de source a partir de
signaux EEG. À cette fin, nous avons présenté successivement l’anatomie, l’histologie
et la physiologie du cerveau jusqu’à une brève description de l’épilepsie. Nous avons
également mis l’accent sur le modèle EEG et les signaux caractéristiques de l’épi-
lepsie. Ces signaux sont les éléments clés du diagnostic et sont indispensables pour
localiser la zone épileptogène. En conclusion, un bref état de l’art sur le problème
inverse a été présenté afin d’introduire les méthodes de beamforming.

Dans le chapitre 2, nous avons recensé toutes les méthodes de beamforming exis-
tantes et analysé les pratiques dans la littérature. Le résultat de ce travail a donné
lieu à trois tableaux dont le contenu combiné permet de couvrir l’ensemble des pra-
tiques en BSI-EEG. De nouvelles approches ont également été introduites pour com-
pléter celles existantes. L’analyse comparative réalisée sur des données simulées EEG
épileptiques réalistes a montré que la méthode de rétrécissement de Ledoit (Ledoit’s
shrinkage method), issue de la théorie des matrices aléatoires, est le meilleur prétraite-
ment pour le beamforming. Le beamforming AOLS (Asymptomatically Optimal Linear
Shrinkage), qui utilise une autre forme de rétrécissement, améliore également les ré-
sultats pour les sources non corrélées. Enfin, la métrique de similarité EEG nouvel-
lement introduite s’avère être la meilleure méthode de post-traitement. Appliqué à
des données réelles, ce pipeline a permis de localiser efficacement la zone épilepto-
gène. Néanmoins, les signaux reconstruits présentent quelques imperfections car ils
sont contaminés par l’activité d’autres sources. Par conséquent, nous avons proposé
une nouvelle méthode régularisée appelée beamforming basée sur le lissage tem-
porel (Temporal-Smoothing-based beamforming) pour améliorer la reconstruction de la
source sur des données réelles. Le développement mathématique montre que cette
méthode peut être facilement mise en œuvre car elle n’a d’impact que sur la matrice
de covariance des données. Cette contrainte améliore le conditionnement de la ma-
trice de covariance en plus d’obliger la distribution des sources estimées à être lisse.
Les résultats de l’estimation des sources des méthodes de beamforming basées sur le
lissage temporel présentent une amélioration significative sur les données simulées
et réelles.

Dans le chapitre 3, nous avons présenté une nouvelleméthode qui étend lesméthodes
traditionnelles de beamforming au modèle de source distribuée adapté à l’épilepsie.
En effet, lesméthodes classiques de beamforming sont plus généralement appliquées
au modèle de source équivalent pour localiser et reconstruire des activités de source
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non corrélées. Au-delà des utilisations abusives, notre revue recense les tentatives
sérieuses précédentes d’utilisation de la beamforming au modèle de source étendu.
Cependant, elles nécessitent de connaître la position des sources à l’avance, ce qui est
une hypothèse trop forte en pratique. La nouvelle méthode SABLE surmonte ce pro-
blème en utilisant une variable latente et en exploitant les méthodes UG (Unit Gain)
et SISSY (Source Imaging based on Structured Sparsity). Les résultats préliminaires des
simulations montrent que SABLE est plus efficace que ces deux méthodes pour loca-
liser une source distribuée pour des valeurs de ratio signal sur bruit (SNR) élevées.
Cependant, elle nécessite un réglage fin de l’hyper-paramètre entre chaque fonction
de coût pour des valeurs de SNR faibles. Afin d’améliorer ces résultats préliminaires,
nous présentons un pipeline pour SABLE et évaluons ses capacités par rapport à trois
méthodes matures de la littérature, à savoir wMNE (weighted Minimum Norm Esti-
mate), sLORETA (standardized Low-Resolution Electromagnetic Tomography) et cMEM
(coherent Maximum Entropy on the Mean). Bien que ce pipeline soit fortement inspiré
de ceux implémentés dans Brainstorm afin de fournir une comparaison équitable, il
contient également de nouvelles pratiques telles que l’usage du fondu enchainé, la
suppressiondu corps calleux et l’usage d’unnouveau critère de sélection du rang. Les
résultats quantitatifs sur simulations montrent que SABLE est, d’un point de vue gé-
néral, aussi efficace que SISSY et surpasse les trois méthodes traditionnelles wMNE,
sLORETA et cMEM, pour localiser trois patchs étendus avec une activité synchroni-
sée. Plus précisément, en utilisant le nouveau critère nommé le ratio d’amplitude par
patch (Patch Amplitude Ratio), nous montrons que la partie beamforming de SABLE
permet une meilleure distribution de l’énergie entre les patchs, ce que SISSY ne per-
met pas. Cette caractéristique permet de mettre en évidence des zones épileptogènes
potentielles cachées par un défaut de l’algorithme, comme nous l’avons constaté sur
des données réelles.

Perspectives

Cette thèse se situe à l’interface de trois domaines : physique, mathématique et algo-
rithmique. Le travail présenté a été réalisé en tenant compte de ces trois dimensions
avec leurs contraintes uniques. Les perspectives peuvent être distinguées entre celles
concernant les méthodes et celles qui concernent les pipelines. En ce qui concerne la
perspective des méthodes, la première qui pourrait résulter de l’ensemble du travail
de thèse est celle de la proposition d’une fusion entre la beamforming basée sur le
lissage temporel et SABLE. Cependant, comme l’ont montré les résultats du cas réel,
il n’y a aucun intérêt à les fusionner puisque les résultats de reconstruction de SABLE
sont déjà lisses. De plus, cela nécessiterait de régler encore plus d’hyper paramètres,
ce qui pour lemoment reste à régler à lamain.Unedeuxièmeperspective pour SABLE
serait de tester son effet en combinaison avec la méthode de beamforming avec nor-
malisation de la leadfield (array gain). En effet, si l’on prend les méthodes wMNE
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et sLORETA, toutes deux ont introduit un a priori sur la profondeur de la source
au moyen d’une matrice de poids. Cette hypothèse peut être à l’origine des résultats
observés sur des données réelles et est similaire à la méthode de normalisation de
la leadfield. Comme l’ajout d’une telle méthode de prétraitement n’est pas simple
en raison de problèmes d’échelle, il serait intéressant de proposer et d’évaluer une
nouvelle forme de la méthode SABLE. Enfin, nous devons étendre notre étude qua-
litative à un ensemble plus important de données réelles pour terminer le travail de
valorisation de SABLE. Il ne nous restera plus qu’à renforcer le pipeline pour garantir
la stabilité des résultats, ce qui fait l’objet du paragraphe suivant.

En ce qui concerne les perspectives du pipeline, un travail supplémentaire est justi-
fié pour étudier de nouvelles stratégies de réglage des hyper paramètres. En effet, la
méthodologie proposée dans la méthode SISSY est assez particulière et la fonction
de l’hyper paramètre est différente des méthodes traditionnelles [1]. En raison de la
substitution des variables dans les normesL1, l’hyper paramètre entre les contraintes
et la fonction de coût jouemaintenant un rôle de seuillage dans l’opérateur proximal.
Bien que ce nouveau rôle soit intéressant, il ne compense pas la perte de la capacité à
mettre l’accent sur la fidélité des données ou sur les contraintes en fonction du niveau
de bruit. Ainsi, nous devons revoir la stratégie des hyper paramètres pour SISSY et
par extension pour SABLE. De plus, nous aimerions parfaire la méthode de sélec-
tion des rangs proposée dans le pipeline pour catégoriser plus finement les valeurs
propres appartenant aux sources d’intérêt, aux bruits structurés et aux bruits Gaus-
sien. Ces hypothèses sont déjà utilisées dans le domaine du traitement d’antennes et
sont prometteuses dans le domaine de l’imagerie de sources cérébrales, notamment
sur les questions de débruitage [2]. Une fois ces deux sujets abordés, nous serons en
mesure de proposer un pipeline entièrement automatisé pour SABLE.
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Introduction

Context and motivation

Epilepsy is one of the most common neurological diseases that affects about 2.4 mil-
lion people worldwide. It is a heterogeneous andmultifactorial clinical entity charac-
terized by the sudden occurrence of a hyper-synchronized electrical activity in one or
more cortical regions. This abnormal activity leads to brain dysfunctions that impact
the physical integrity and the patient’s mental health and social life. In most cases,
epileptic patients can be successfully treated with drugs, which prevents epileptic
seizures or allows to reduce their frequency. However, 20-30% of these patients are
drug-resistant, meaning they show no sign of improvement after medication. These
cases are among themost severe and often originate fromone brain region or a delim-
ited network of connected areas. Surgical intervention or transcranial Direct-Current
Stimulation (tDCS) can be considered to stop or attenuate seizures. However, those
therapeutic alternatives require the precise delimitation of the epileptogenic zone.

Before surgery or transcranial stimulation, patients must usually undergo extensive
pre-surgical evaluation, including long-term ElectroEncephaloGraphy (EEG) ses-
sions and Stereotactic EEG (SEEG) recordings. EEG is a cheap modality directly re-
lated to the brain’s electrical activity as it records the local field potentials produced
by thousands of neurons that have spread to the scalp. This electrical diffusion be-
tween the cortical surface and the scalp EEG sensors can be accurately modeled by
providing a realistic head model and a source model and solving the quasi-static
approximation of Maxwell equations. This process called the forward problem (see
figure 1) creates the so-called leadfield matrix that reduces the EEG mathematically
as a linear system of equations. The other way around, however, is more complicated.
Indeed, the localization of the epileptogenic zone and the reconstruction of its activ-
ity are possible by solving the EEG linear system. Unfortunately, since we do not
have as many electrodes as sources, this system is an ill-posed inverse problem in the
Hadamard sense and requires indirect methods to be solved.
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Figure 1: Illustration of the EEG forward and inverse problems.

Brain Source Imaging based on EEG (BSI-EEG), is the discipline that regroups all
the methods that solve the inverse problem in EEG. It is a constantly evolving field
through advances in neurophysiology, mathematics and algorithmic. These discov-
eries are at the origin of priors which are necessary knowledge for developing an ad-
equate method. The classification of all BSI-EEG approaches can therefore be done
according to three aspects:

1. From a physical point of view, according to the prior formulated on the source
space (parametric/non-parametric) or distribution (smoothness/sparsity);

2. From amathematical point of view, according to the optimization problem for-
mulation (regularized least-squares/tensor) or the solution form (estimated
image/inversion kernel);

3. From an engineering point of view, according to the method’s level of develop-
ment and accessibility (mature/experimental).

For epilepsy, the first problem is to choose a method that is compatible with the dis-
ease behaviors. As the literature stands, it is well accepted that epilepsy is physiologi-
cally better represented by a set of connected cortical areaswith a hyper-synchronized
activity. This model, called distributed source model, implies using non-parametric
methods. However, it is not uncommon to see parametric methods used in practice
as they can provide a good first solution to the inverse problem. In addition, some of
them exploit specific assumptions which are not yet considered for the distributed
source model. Unfortunately, they have sometimes been misused to fit the opposite
modelwithout considering the approach drawbacks, like in the case of beamforming.
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Figure 2: Overall scheme of the work carried out during the thesis.

The second problem arises after the method has been chosen: it is its practical im-
plementation. Indeed, depending on the selected method, the degree of the devel-
opment may vary from a mare original paper as support (experimental method) to
a ready-made software solution (mature method). The latter may also have the help
of a community and solid documentation that answers algorithm tuning issues. In
contrast, the former may have a random fate ranging from being forgotten to being
valued by a small number of users. To prevent this, it is good practice to provide a
detailed pipeline to complement the newmethod. Indeed, themethod pipeline plays
a crucial role in the localization and reconstruction of brain sources and ensures the
reproducibility of experiments for external users.

Objectives

The main objective of this thesis is to extend a family of parametric methods called
beamforming to solve the inverse problem in BSI-EEG for epilepsy. In order to achieve
this goal, we proceed to i) disregard the sourcemodel suitable for epilepsy to classify,
implement, test and improve beamforming methods in an optimal setting and ii)
suggest a novel and well-adapted version of beamforming for the distributed source
model. Quantitative and qualitative evaluations on simulated and real data will be
provided on each step (see figure 2) as well as detailed pipelines to facilitate the
release of the proposed methods outside the experimental phase.

3



Contributions

The first part of this thesis is dedicated to study and assess the different beamforming
practices used in BSI. Indeed, beamforming methods have been employed for many
years inMagnetoEncephaloGraphy (MEG) and recently in EEG.Unfortunately, since
the field of beamforming is broad,methodological shortcuts can be observed in some
papers, such as the use of inappropriate names for a method or the misuse in dis-
tributed sources model. Moreover, the preprocessing and postprocessing steps con-
stituting the pipeline are often overlooked, although these are the key to accurate
results. This part aims to offer a synthetic and comprehensive summary of the beam-
forming state-of-the-art for all users. Once all practices have been identified, a com-
parative study is carried out between different pipelines best suited for a real appli-
cation. Part of this study has already been shared in the Virtual Physiological Hu-
man 2020 conference [3]. This part is completed by proposing a novel regularization
term for beamforming methods that significantly improve the reconstruction of real
sources. This fine addition applies tomany beamformingmethods that we have gath-
ered under the name Temporal-Smoothing-based beamforming.

The second part of this thesis is dedicated to proposing a new beamforming method
namedSparsityAndBeamforming for brain source Localization andEstimation (SAB-
LE) for the distributed source model suitable for epilepsy. It will be presented from
themathematical priors to the pipeline used tomature it and prepare it for wider dis-
tribution. A preliminary study on SABLEwas published in the IEEE Statistical Signal
Processing Workshop [4]. This work is concluded with a qualitative comparison be-
tween SABLE and three mature methods implemented in the Brainstorm software to
demonstrate its capacities to locate three extended correlated sources.

Thesis outline
Chapter 1 presents the background knowledge necessary for understanding this the-
sis, which includes presenting the different brain structures, electrogenesis, epilepsy,
EEG modeling and the various methods of solving the inverse problem. Chapter 2
presents the detailed state-of-the-art of beamforming methods. It is completed by a
comparative study of the approaches requiring the least prior on real data and then
on simulated data. It is concluded by presenting a simple improvement that can be
applied to almost all beamformingmethods.Chapter 3 presents a new beamforming
method named SABLE designed for a suitable sourcemodel for epilepsy. The chapter
concludes with the presentation of a pipeline applicable to simulated and real data
and a comparative study between mature inverse problem methods and SABLE.
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Chapter 1
Physiological origin and modeling
of EEG signals

This first chapter provides general information necessary to understand the context
of this thesis. In section 1.1, basic aspects of brain anatomy, histology and functions
are presented. The origin of electromagnetic brain signals and the mechanisms by
which they are generated are described. In section 1.2, we give an introduction to
epilepsy and its effect on brain signals. In section 1.3, the EEG is presented alongside
the headsets configurations used in this thesis. Then, we formulate the mathematical
model for the EEG in the specific context of epileptic signals in section 1.4. Thismodel
will be the cornerstone for designing the simulations as well as for processing the
real data. Finally, section 1.5 provides a short state-of-the-art review of the various
methods used to reconstruct and localize brain electrical signals from surface EEG.

1.1 Short review on the brain structure and function

1.1.1 Brain anatomy

The human brain is composed of several structures generally heavily protected by
bones [5]. Froman anatomical viewpoint (figure 1.1), they are organized fromcaudal
to cranial (neck to the top of the head) [6, 7] as:

— The medulla

— The pons

— The cerebellum

— The mesencephalon

— The diencephalon

— The telencephalon (also called the cerebrum)
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Figure 1.1: Representation of the human brain structures.

The telencephalon of the human species is the most highly developed of all verte-
brates [8] due to its evolutionary needs. It provides the capacity for a higher level
of information processing and a wider range of complex social emotions [9]. As a
result, it takes up the most space inside the head. Since it is also the most external, its
activity would be more likely to be recorded by EEG or MEG external sensors than
other structures. The telencephalon is, therefore, the structure of interest with regard
to EEG in this thesis (section 1.3).

The telencephalon comprises two hemispheres linked by a set of nerve fibers called
the corpus callosum. Each hemisphere corresponds to a thick layer of neuronal tis-
sues, folded into ridges (gyri) and grooves (sulci). From an external perspective, the
central sulcus, the lateral sulcus, and the preoccipital notch divide each hemisphere
into the frontal, parietal, temporal, and occipital lobes (figure 1.2a). From an internal
perspective, the limbic lobe (1.2b) is a hidden arc-shaped region organized above
and below the corpus callosum. It roughly follows the cingulate sulcus.

Figure 1.2: Representation of the human brain lobes from an outside viewpoint in a) and an inside
viewpoint in b).
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From a practical perspective, when one wishes to refer to a specific cortical area, it
uses a purely anatomical mapping or atlas defined by each gyrus and sulcus name
[10]. Additionally, brain atlases can also rely on the cellular organization of a cortical
region [11, 12] or on a physiological function [13]which are of clinical and functional
interest. It is noteworthy that all atlases do not necessarily overlap with each other
but are generally identical from one person to another. In this thesis, visual support
will be provided with the name of the targeted brain area when necessary.

The coronal view in figure 1.3 shows the internal organization of the telencephalon.
It reveals that the cerebrum comprises an outer 2 − 5 mm layer of grey matter called
the cortex and an inner layer of white matter. Various grey matter nuclei forming the
basal ganglia are located within the white matter. The coloration white/grey corre-
sponds to different cell organization as visible in the box of Figure 1.3. As we will
see in the next section, these cells structured in networks are responsible for brain
activity.

Figure 1.3: Connection between cortex and brain structure. 1

1.1.2 Brain histology

The brain is made up of biological tissue unique to the nervous system called ner-
vous tissue. The nervous tissue comprises two types of cells: neurons and glial cells,
which contribute to creating and transmitting the electrochemical activity respon-
sible for brain functions. Neurons generate electricity either automatically or in re-
sponse to stimulation. They are present in large quantities (of the billion order [15])
in the cortex, basal ganglia and other brain structures. They present a wide variety
of morphology (unipolar, bipolar, pyramidal), function (excitatory, inhibitory) and

1. Public domain picture available at [14]
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electrical properties, whichmake themdifficult to classify [16]. Nevertheless, despite
this diversity, it is well accepted that almost all neurons present the same element of
architecture with four distinctive parts (figure 1.4):

— The dendrite, which receives information from other cells;

— The cell body, also called soma, ensures the survival and functioning of the cell;

— The axon, which transmits electrical impulses to other cells;

— The axon terminal containsmultiple connection points between numerous neu-
rons.

Those connections are called synapses and involve complex chemical mechanisms to
transfer the electrical activity from one neuron to another.

Figure 1.4: Schematic representation of the different parts of a neuron and its connection with two
postsynaptic cells.

Glial cells provide support, nutrition, and protection to neurons. Among them, oligo-
dendrocytes play a significant structural role by enveloping multiple axons around
theirmembrane. Itmay also providemultiple layers of fat tissue, calledmyelin sheath,
that accelerates the transmission of the electrical activity by isolating the axon.

Back to the anatomic organization (figure 1.3), the white matter is mainly composed
of myelinated axons. These axons connect the deepest layer of the cortex with other
brain structures (box in figure 1.3), thus forming a macroscopic network between
brain structures. This network allows more complex brain tasks to be performed.

The cortical grey matter comprises six layers (figure 1.5) of neurons linked together
with unmyelinated axons. As depicted by figures 1.5A and B, the microscopic net-
work formed by those neurons is dense, and the number of connections for one neu-
ron is of the order of a thousand. In layer III of the cortex (figure 1.5B), pyramidal
neurons have an orientation perpendicular to the cortical surface. Due to their spa-
tial organization, it is commonly admitted that the electrical activity recorded at the
scalp’s surface originates mainly from these pyramidal cells (see in section 1.3). The
following section explains the mechanism allowing the creation of this electrical ac-
tivity.
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Figure 1.5: Microphotography of the Golgi Cox impregnated neuron layers of the associative cortex
region in the human cortex 2. Figure A represents the six layers of the cortex. Figure B zooms in on
layer III to highlight the pyramidal cells. It should be noted that pyramidal cells are also represented in
other layers (V and VI).

1.1.3 Neurons electrophysiology

Neurons are excitable cellswhichmeans they produce an electrical response to stimu-
lation. This responsive behavior is due to a natural electric potential difference formed
between both sides of the cytoplasmic membrane caused by a difference in the con-
centration of positive and negative ions [17]. In short, these concentrations will cause
the extracellular surface of the neuron to be positively polarized instead of the in-
tracellular surface. These differences in concentration and polarity on either side of
the membrane will have the effect of creating an electrochemical gradient: the ions
will naturally seek to diffuse towards the less concentrated or the inversely polar-
ized milieu. However, ions cannot pass directly through the cytoplasmic membrane
and must use a voltage-gated ion channel that is closed during the neuron resting
state. If the basis of the axon is sufficiently depolarized (i.e., if the stimulation is suf-
ficient), the channels open. The resulting ion flux will create a typical electrical re-
sponse which, when reaching a sufficient threshold, can trigger an action potential.
This response will be sent along the axon by means of a chain reaction on its way to
other neurons. The electrical impulse ends its course in the axon terminal and pro-
vokes the release of uniquemolecules, the neurotransmitters, in the synapse cleft (see
section 1.1.2). Neurotransmitters will interact with proteins of the dendrites of neigh-
boring neurons (called postsynaptic neurons), opening ion channels and changing
their inner electric potentials. In other words, neurotransmitters will act as stimuli
for the postsynaptic cells. If the neurotransmitters are excitatory, the postsynaptic
potential increases, thus promoting the continuation of the stimulation. If the neuro-

2. Free to share and use licensed pictures published in [18]
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transmitters are inhibitory, the postsynaptic potential decreases. Since a postsynaptic
neuron possesses multiple dendrites, all postsynaptic potential will be summed up.
The results will determine if the fore all stimulus-response is passed along, stopped
or even amplified.

The ionic movement produced by this phenomenon generates current flows inside
and outside of each postsynaptic cell. On the inside, this current is called the primary
or intracellular current. It reflects the direct activity of the neuron. If the current goes
towards the interior of the cell (depolarization by positive ions entry = excitatory
stimulus), the extracellularmilieu at the synapse becomesmore negative and forms a
current sink. Conversely, if it is inhibitory, we have a current source. This can bemod-
eled by a current dipole, which is oriented along the cell’s dendrite and constitutes
the basis for mathematical models of brain activity. On the outside, the extracellular
(or secondary) current will generate a local field potential [19]. This electric field is
additive, meaning the local field potential from neighboring neurons will amplify it
or, on the contrary, decrease it. In the case of synchronous activity of a large popu-
lation of neurons (≈ 250000 [20]), the resulting local field potential will be strong
enough to propagate beyond the tissues to reach the scalp. It is the activity that will
be recorded by the scalp EEG. In addition, we can add that the primary currents
generate local magnetic fields that will be recorded by the MEG. These two modali-
ties can provide information on brain functions [21] and dysfunctions [22, 23] in the
form of characteristic signals. These characteristic markers in the case of epilepsy are
presented in the next section.

1.2 Epilepsy

Epilepsy is one of the most common neuronal diseases and concerns about 50 mil-
lion people worldwide, according to theWorld Health Organization. It is a heteroge-
neous and multifactorial disease characterized by the sudden occurrence of a hyper-
synchronized electrical activity called paroxysmal discharge in one or more cortical
regions. This discharge provokes a large variety of symptoms [24, 25], such as mo-
tor symptoms, loss of consciousness, and sensations (aura), depending on regions
involved by this abnormal activity. However, it always leads to temporary dysfunc-
tions of the electrical brain activity called seizures.

Each type of epileptic paroxysms forms a specific local field potential that will be
transcribed into a characteristic grapho-element [23] on the EEG recording (see fig-
ure 1.6). Those grapho-elements are used to refine the diagnosis of the patient and
used to locate the pathogenic zone. For example, ictal discharges (figure 1.6A) are
grapho-elements that can be seen during a seizure. They last several seconds to a
few minutes and are characterized by a rhythmic activity. Between seizures, brief
paroxysms, called interictal spikes (figure 1.6B), occur in irregular intervals. They
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are polymorphous and are represented by spikes or spikes-wave complex. This the-
sis will focus on interictal spikes as they are a marker of epilepsy between seizures
and can be accurately modeled with the neural mass models (see section 1.4.2).

Figure 1.6: Example of characteristic grapho-elements in scalp EEG 3. A: Examples of interictal parox-
ysms. B: Examples of ictal paroxysms.

In most cases, epileptic patients can be successfully treated with drugs, which pre-
vents epileptic seizures or allows to reduce their frequency. However, of the 500.000
patients treated in France, 20-30% are drug-resistant, meaning they show no sign of
improvement aftermedication [28]. These cases of drug-resistant epilepsy are among
the most severe and often originate from one brain region or from a delimited net-
work of connected regions called the Epileptogenic Zone (EZ). These brain areas can
be removed without leading to critical functional deficiencies, and surgical interven-
tion can be considered to stop the occurrence of seizures. In that case, it is clear that
the precise delimitation of the EZ is crucial. To do so, patients must usually undergo
extensive pre-surgical evaluation, including long-termEEG sessionswith videomon-
itoring as well as intracranial SEEG recordings.

1.3 EEG applied to epilepsy

EEG is a non-invasive technique that measures the scalp’s electric potential using
a set of electrodes placed on the scalp. More precisely, it records the difference in
the electric potential between each sensor and a reference electrode. It is the pre-
ferred modality for diagnosing epilepsy [28] as it is cheaper and less restrictive than
other modalities like MEG or functional Magnetic Resonance Imaging (fMRI). Ac-
cordingly, it allows a more extended time recording section of the brain activity and
in a different condition such as recording during patient sleep or a particular activity.

EEG headset used for standard clinical procedure comprises 32 electrodes, whereas

3. Pictures adapted from [26, 27]
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dense EEG (also called high resolution-EEG (hr-EEG)) used for research can include
up to 256 sensors. The electrodes are positioned on the scalp according to standard-
ized placement systems since the configuration and the number of electrodes sub-
stantially impact various applications based on EEG (see [29] for an extensive re-
view).

(a) 32 EEG headset (b) 64 EEG headset (c) 256 EEG headset

Figure 1.7: Example of EEG headsets.

EEG is directly related to the electrophysiological brain mechanisms (see section
1.1.2). Therefore, it offers an excellent temporal resolution of the order of millisec-
onds, which permits the analysis of the epileptic paroxysms (see the previous sec-
tion). It is possible to model it physically and mathematically, which allows the de-
velopment of methods to locate the epileptic zone.

1.4 Modeling epilepsy

1.4.1 Modeling the EEG

As described in section 1.1.3, the current flow generated by the active neurons can be
modeled as a current dipole oriented from the dendrites to the cell body. From the
scalp perspective, the activity of one neuron alone is unnoticeable as the current is
not sufficient enough to go through all the brain tissues. In the particular case of pyra-
midal neurons (section 1.1.2), this dipole is oriented perpendicularly to the cortical
surface. Moreover, since a population of pyramidal neurons forms a dense network
of parallel-oriented cells, their activities will sum up to form an equivalent dipole
which activity can become recordable at the level of EEG sensors.

A brain source is characterized by the number of current dipoles composing it, its
amplitude, orientation, and position. Based on the assumptionswemade on these pa-
rameters, we define a source model. Two source models (figure 1.8) are often found
in the literature: i) the equivalent current dipole considers a point source with a free
position inside the brain volume ii) the dipole layer considers amore extended source
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with complex geometry confined on a surface layer. The former (figure 1.8a) is less
prone to segmentation errors and can allow us to use more accurate diffusion priors
but at the cost of a longer computation time. The latter (figure 1.8b) allows to con-
sider the physiological prior formulated above and reduce the search space, which is
error-prone when it is oversimplified (see section 1.4.3). Still, it offers a more physi-
ologically plausible and time-saving solution than the former and, therefore, will be
used in this thesis. Complementary assumptions will be made on the source model
depending on the head model conception in section 1.4.3 and the method used to
estimate source activities in section 1.5.2.

Figure 1.8: Representation of the two source models: a) Equivalent current dipole b) Dipole layer.

Fromamathematical viewpoint, it iswell established [30] that the EEG signals record-
ed at the head surface constitute a linear combination of the electric brain sources.
Indeed, the EEG signals at time t are assumed to be a realization of anN -dimensional
Second-Order wide-sense Stationary Ergodic (SOSE) random process {x(t)} given
by:

x(t) = Gs(t) + ν(t) (1.1)

where {s(t)} is an L-dimensional SOSE source random process and where {ν(t)}
is a SOSE noise random process. G is the so-called leadfield matrix, which models
the electrical propagation of the sources to the scalp sensors (see section 1.4.3). The
equation (1.1) will be used for simulations where all parameters are known and for
real applications where source activity and noise are unknown. Variations of this
formula are possible. They will be specified in the manuscript if used.

1.4.2 Modeling the epileptic electrical activity

As exposed in section 1.1.2, the neurons are organized in microscopic networks in
the cortex. In a healthy brain, the activity of pyramidal neurons is finely regulated by
GABAergic inhibitory interneurons [31]. In epilepsy, this system is disrupted, pro-
ducing abnormal states that lead to the observed interictal spikes. The situation may
gradually evolve into a general unstable system responsible for the seizures. These
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networks can be studied by modeling approaches in order to understand how phys-
iological or pathological (i.e. epileptic in our case) signals are generated [32]. Such
modeling approaches have been developed in our team for several years. It is not
the topic of this thesis to describe them in detail. In short, in macroscopic neural
mass models, a population of neurons can be modeled as an electrical system in-
volving transfer function between the three neurons type (pyramidal, slow Gamma-
AminoButyric Acid (GABA) and fast GABA) [33, 32]. This system can then bemath-
ematically expressed as a set of ordinary differential equations that need to be solved
to create the physiologically plausible signal. Thismodel involves fine-tuning param-
eters that generate either epileptic or normal brain activities. The latter are also called
background activities, as they are not of interest in this thesis.

Figure 1.9: Example of 200 physiologically plausible interictal spike signals generated by our team and
used in this thesis.

This model can be combined with a model of cortical geometry based on a biophys-
ical model of dipolar sources [34] to simulate signals at the level of extended brain
sources most appropriate source model for epilepsy (see section 1.5.2).

1.4.3 Source space, head model and leadfield matrix

As described in section 1.4.1, the source model chosen is a dipole layer. This source
model constrains the dipole location to a source space defined by the cortical grey
matter. Their orientation is generally constrained to the normal of the cortical surface,
but it can remain free depending on the inverse problem methods (see section 2.1).

To accurately model the EEG, the geometry and the physical parameters (conduc-
tivity) that impact the diffusion of electric fields in the head (head model) must be
considered. The leadfield matrix G carries this information (see equation 1.1) that
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can be calculated by solving the forward problem. The simplest head model consists
of several nested spheres with homogeneous conductivity representing the brain,
the skull, and the scalp. Other surfaces like the cerebrospinal fluid or the spongious
part of the skull can also be added to refine the model [35]. In MEG, this model is
generally sufficient. However, it is considered an oversimplified model for EEG that
is firmly dependent on conductivity variations. To obtain accurate source imaging
results in the context of epilepsy (see the following section), a realistic head model
should be derived by segmenting anatomical images (T1-Magnetic Resonance Imag-
ing (MRI)). Moreover, the segmentation allows the categorization of the different
brain tissues (the grey/white matter (section 1.1.2)) and the scalp. The remaining
surfaces are estimated using other algorithms which we will not develop in detail
here. In practice, we used in our studies the Freesurfer package [36, 37, 38].

Figure 1.10: Illustration of a realistic head model with three compartments representing the brain, the
skull, and the scalp and a source space that consists of a large number of dipoles (represented by black
dots) 4.

The segmented brain tissues discretized the source space as triangles and vertices
forming a more or less precise cortical surface mesh. Regarding the positioning, the
dipole can be fixed at the mesh’s vertices or at the centroid of the mesh triangles to
complete the source model. The former contains fewer elements and leads to similar
results with less computational effort than the latter. Therefore, dipoles are consid-
ered on the vertices in this thesis using software like Brainstorm [40]. From a strict
anatomical point of view, this layer can represent the gray-white interface (called
white) or an intermediate layer between this one and the surface of the cortex (called
mid). One must be cautious of mesh errors attributable to the MRI or the segmen-
tation algorithms like holes in the mesh or uneven representation of a brain region.
Everymodification on the discretized source space can lead us away from the proper

4. Picture from [39]
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anatomy of the patient and, therefore, away from the true solution. There is, there-
fore, a trade-off between precision and condition that requires a consensus between
the different manipulators.

Once the head model and the source space are defined, the lead field matrix (G in
1.1) can be computed numerically by solving quasi-static approximation of Maxwell
equations [41]. This step is called the forward problem. Assuming no current flow
outside themodel, theymathematically link the source activities to potential recorded
scalp electrodes. The method used to solve those equations depends on the con-
ductivities considered, the head geometry and the source activity. In our case, the
Boundary Element Methods (BEM) is used since we have surfaces with homoge-
neous and isotropic conductivities. Compared to the others, it is considered fast be-
cause it involves linear systems that can be easily reversed. However, it has two flaws
that should be considered: i) in the presence of a significant difference in conductiv-
ity between two surfaces, it is subject to numerical errors ii) when two surfaces are
too close, its accuracy drops drastically [41]. These problems can be circumvented
depending on the implementation as in the OpenMEEG software [42] used in this
thesis. However, it is essential to mention the importance of checking the surface be-
fore solving the inverse problem.

1.5 Solving the inverse problem

The source model, the leadfield matrix and the EEG recordings are the only infor-
mation available for the localization of epileptic sources in a patient. In order to find
the epileptic zone, the source activities must be estimated from (1.1) using a brain
source imaging method.

1.5.1 Source activities reconstruction

BSI-EEG (Brain Source Imaging based on EEG) aims at reconstructing the electrical
activity everywhere within the brain from EEG recordings. The location and the time
courses of these electrical brain sources provide information which is essential i) to
understand physiopathologies at different scales, ii) to provide a valuable aid for the
diagnosis of somediseases and iii) to understand the brain (dys)functions [21, 22, 23]
or interactions with our environment [43, 44].

In order to localize active sources and reconstruct their activities, a linear system of
equations needs to be solved. This is achieved by solving the so-called EEG inverse
problem. This problem is challenging because of its severe ill-posedness due to the
attenuation of electrical activitywhen propagating from the brain to the head surface,
and the small number of observations compared to the number of sources to be re-
constructed. Thus the solution to such a problem is not unique, and constraints need
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to be set in order to identify the appropriate solution among the multiple possible
candidates.

1.5.2 State of the art of the inverse problem

Various BSI-EEG methods have been developed [45]. Based on the source model,
they can be distinguished into two categories: parametric and non-parametric meth-
ods. The parametric approaches, also mentioned as equivalent source dipole meth-
ods, consider that few isolated dipoles represent the brain current sources with un-
known positions and moments. For non-parametric approaches, also referred to as
distributed sources methods, each brain current source is characterized by a large
number of dipoleswith possibly fixed orientations,which are distributed in thewhole
brain volume or cortical surface. It is well accepted that the latter is more physiolog-
ically plausible for the characterization of epileptic regions.

Regarding the parametric methods, they can broadly be classified into three types:
dipole fitting approaches [46, 47, 48], subspace methods [49, 50], and beamforming
[51]. The dipole fitting approaches aim at estimating a dipolemoment (six non-linear
parameters per dipole related to the position, the orientation and the amplitude see
section 1.4.1) by minimizing a data-fit cost function of the residual energy. Among
the subspace methods, Multiple-Signal Classification (MUSIC) [49] is the most pop-
ular. Based on the eigenvalue decomposition of the covariance matrix of measure-
ments, the idea of MUSIC is to divide the vector space of the data into two orthogo-
nal subspaces, the signal subspace and the noise subspace. One can also mention the
2q-Recursively Applied and Projected MUSIC (RAP-MUSIC) [52] algorithm and its
extensions to higher-order statistics [50], where MUSIC is successively applied after
removing the contribution of the previously identified sources. The third class con-
siders the beamforming techniques. Basically, the beamforming approaches exploit
the data covariance matrix to perform a spatial filtering of the scalp data in order to
estimate the temporal activity of the dipoles of interest, called Source(s) Of Interest
(SOI(s)), while vanishing the contribution of the other dipoles.

The non-parametric methods can be categorized into three main classes, according
to the exploited hypotheses and constraints. The first class is the well-known regu-
larized least-squares method which aims at finding the solution that best describes
the measurements in a least-squares sense. This class encompasses i) the Minimum
Norm Estimate (MNE) and other more general minimum-norm algorithms such as
weightedMNE(wMNE) [53], Low-ResolutionElectromagnetic Tomography (LORE-
TA) [54], standardized LORETA (sLORETA) [55], constrained LORETA (cLORETA)
[56], Local Auto Regressive Average (LAURA) [57] ii) methods that consider the
spatial sparsity of the SOIs [58] or sparsity in a transformed domain [59], where
the representation of the sources is sufficiently sparse [45], and iii) techniques that
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impose constraints in different domains [60, 61]. For instance L1,2-Source Imaging
based on Structured Sparsity (L1,2-SISSY) [62] simultaneously imposes sparsity in a
space transformed domain and smoothness in the time domain. The second class
concerns the tensor-based approaches [63] which construct a q-dimensional data
tensor (q > 2) by exploiting data variability over an additional tensor mode (i.e.
frequency, wave-vector, subject or realization), in addition to conventional spatio-
temporal methods. The last class covers the Bayesian methods [64, 65, 66], which
are based on a probabilistic model of the data by considering the observations, the
sources and the noise. More precisely, these techniques attempt to maximize the pos-
terior distribution of the sources for given measurements. Depending on the way
used to infer the hyper-parameter, different algorithmic frameworks can be designed
such as empirical/variational Bayesian approaches [67]. Note that other distributed
source algorithms have been proposed, such as 2q-Extended Source-Multiple Signal
Classification (2q-ExSo-MUSIC) [68], which can be considered as an extension of the
2q-MUSICmethod [69] to the case of distributed sources, where 2q-th order statistics
with q > 1 of the data are exploited, instead of second-order statistics.

1.6 Conclusion

As argued in the introduction, the choice of a suitable BSI-EEG method remains an
open issue and strongly depends on the application context. For instance, this choice
can be guided by using the adequate source model, the best trade-off between the
complexity/accuracy of the used method and the assumptions made on the statisti-
cal relations between SOI(s). However, as stated, it is not uncommon to see paramet-
ric approaches being misused to locate distributed sources as they provide unique
information. There would therefore be gain in adapting them. The next chapter will
focus on the equivalent source dipole model and, more specifically, on beamforming
methods [70, 71, 72, 73]. Indeed, under some assumptions, beamforming methods
allow us to analytically and efficiently estimate the time course of the dipoles. More
discussed in the MEG context than EEG, these parametric methods provide a good
initialization to complex distributed source localization algorithms in order to im-
proved confidence in the estimated sources. They can also be exploited to propose a
hybrid combination of parametric and non-parametric approaches [74, 75, 76]. How-
ever, they present some severe drawbacks as they are known to cancel the electrical
activity of correlated sources, which is, to a certain degree, incompatible with the
distributed source model. In addition, the behavior of the beamforming techniques
is strongly influenced by the preprocessing applied to the data and the metric used
to localize SOIs (post-processing step) after filtering. Therefore, we must first carry
out a state-of-the-art review of all the practices in beamforming.
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Chapter 2
Beamforming for brain source
imaging: a comparative performance
study using epileptic EEG signals

Our first objective for this thesis is to conduct an extensive analysis of the perfor-
mance of different beamforming pipelines in the context of EEG, both in terms of
SOI localization and reconstruction accuracy. Currently, it can be noticed that all ex-
isting studies [77, 78, 79, 80] propose to evaluate either the beamforming filter cal-
culation or the post-processing step, but never to assess the efficiency of the global
beamforming pipeline, namely the preprocessing, the filtering (beamforming) and
the post-processing. Several experiments are proposed on realistic simulated epilep-
tic EEG data to determine the best beamforming pipeline. That one will be applied to
256-channel hr-EEG interictal spikes acquired from a drug-resistant partial epileptic
patient who underwent a full presurgical evaluation.

This chapter is organized as follows: in section 2.1, we formulate the assumptions
made throughout this chapter. Section 2.2 proposes a taxonomy of the beamforming
pipelines (preprocessingmethods, filtering and post-processingmetrics). Section 2.3
is devoted to the proposition of adequate pipelines that will be evaluated in our ap-
plication context. Then, we provide in section 2.4 the results of the conducted study
on simulated and on real EEG data. Finally, in section 2.5, a new regularization is pro-
posed to overcome a significant problem of source reconstruction on real data. This
regularization, named Temporal-Smoothing-based beamforming, can be applied to
all beamforming methods and makes a fine addition that concludes this chapter.
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2.1 Assumptions

Lets us recall the mathematical model, the EEG recordings at time t are assumed to
be a realization of an N -dimensional SOSE random process {x(t)} given by:

x(t) = Gs(t) + ν(t) (2.1)

where {s(t)} is an L-dimensional SOSE source random process and where {ν(t)}
is a SOSE noise random process. G is the so-called leadfield matrix, which models
the electrical propagation of the sources to the scalp sensors. It is computed from
a realistic head model by solving Poisson equation with the BEM [81] (see section
1.4.3). The source orientation is fixed to the outward unit normal vector of the cortical
surface. Thus, this thesis deals with the scalar beamforming methods as opposed to
vector beamforming algorithms [77]. Moving from one to the other requires only a
few changes in the notation; however, the latter adds an extra step of finding the best
orientation like in the Synthetic Aperture Magnetometry (SAM) method [82]. This
step may be the subject of further discussion [83, 84] which will be out of the scope
of this thesis.

Beamforming spatial filters or beamformers can directly be applied to (1.1) to recon-
struct each source activity independently:

ŝ(θℓ, t) = w(θℓ)Tx(t) with w(θℓ)T = f(Ĉx,G) (2.2)

wherew(θℓ) stands for the band filteringweights for position θℓ.Weight optimization
usually leads to an analytical solution depending on the leadfield matrix G and the
data Sample Covariance Matrix (SCM) Ĉx defined as:

Ĉx = 1
T − 1

T∑
t=1

(x(t) − x)(x(t) − x)T (2.3)

Due to the SCM, beamformers are also called linear data-driven estimators as op-
posed to data-independent estimators [85, 86].

2.2 Beamforming review

Each beamforming method can be decomposed into three steps: preprocessing, fil-
ter design and post-processing. These steps contain various techniques that will be
carefully described in this section in a broad sense. However, we focus on methods
with a solid theoretical foundation.
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2.2.1 Preprocessing

All inverse methods start with a preprocessing step during which raw data are trans-
formed to fit some required priors. Preprocessing is sometimes included, like in the
array gain beamforming technique [77].

Leadfield normalization

Deep sources have a leadfield vector norm lower than the surfacic ones, which im-
plies a spatial dependency. Normalizing each leadfield vector by its norm avoids lo-
calization errors due to low leadfield norms [77].

Spatial filtering

Scalp electrodes recordings present shared activities which can be filtered before-
hand. The Surface Laplacian method [87, 88] diminishes shared activities coming
from deep sources. A Laplacian matrix is applied to the system in order to focus on
the evolution of the signal between the electrodes. Several variants exist based on the
way to build the Laplacian. It improves the quality of the beamformer for superficial
sources at the expense of deep sources.

Shared activities coming from noises can also be filtered using a whitening filter.
Under the SOSE assumption, the noise SCM Ĉν of {ν(t)} can be computed from EEG
recordings with no signal of interest. A whitening operator is then calculated from
the inverse of the square root of Ĉν . Once applied to (1.1), a new system is obtained
with a noise SCM equal to the identity matrix.

Data denoising

Raw recordings include physiological artifacts, which may impact source localiza-
tion. Blind Source Separation (BSS) methods aim at reformulating data as a linear
mixture, fromwhich noise and artifacts can be identified and removed. Independent
Component Analysis (ICA) [89, 90], Signal Space Projection (SSP) [91] and Signal
Space Separation (SSS) [92] with its extensions [93, 94] have already been used for
denoising in beamforming. Note that SSS approaches are restricted to spherical head
models for MEG.

Principal ComponentAnalysis (PCA) removes redundant information and improves
the localization of deep sources [95, 96]. When applied to the data SCM and com-
binedwithmeta-heuristic algorithms [97], it tackles the problemof correlated sources
in beamforming.When other information like sensor space parcelization is available,
Partial Least-Squares (PLS) [96] is used instead. In general, BSS methods improve
the results [98] but have a major flaw: imposing a linear mixture model with fewer
components than sensors makes the new data SCM be rank deficient (see 2.2.1).
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Table 2.1: Preprocessing for beamforming

Prior Transformed input Method and references

Leadfield
normalization Depth dependent direct problem g̃(θℓ) = g(θℓ)

||g(θℓ)||2 Array gain beamforming [77]

Spatial filtering
Source at the surface of the cortex x̃(t) = Lx(t) Surface Laplacian beamforming [88]

Whitening x̃(t) = Ĉν
− 1

2 x(t) Noise whitening [102]

Data denoising Linear mixture x̃(t) = Ay(t) ICA [90] / SSP [91] / SSS [92, 93, 94]
PCA [97, 95] / PLS [96]

Spectral
targeting

Narrowband signal z(f0) DICS beamforming [99]

Broadband signal z(f) for f ∈ Γ FAB beamforming [100]

Frequency band known x̃(t, f) = hf (t) ∗ x(t)
for f ∈ Γ

Filtering [72]

Time frequency analysis x̃(τ, f) = hf (τ) ∗ x(τ)
for f ∈ Γ and τ ∈ t

Time frequency beamforming [101]

Robust covariance
estimation and
reconditioning

Non full-rank
covariance matrix C̃x = Ĉx + µIN

Diagonal loading [103, 77]
Bayesian PCA [104]

Bad covariance
matrix estimation C̃x = α1Ĉx + (1 − α1)µIN

Oracle Approximating Shrinkage [105]
Ledoit shrinkage [100]

with L, A, hf (t), z denote the surface Laplacian matrix, the mixing matrix, the impulse response for frequency f and the Fourier transform
of x, respectively.

Spectral targeting

The SOI may show specific attributes in the frequency domain. Using Fourier trans-
form to enhance the EEG dataset, new spatial filters with a frequency specificity can
be designed. In that case, the cross-spectrummatrix, the frequency counterpart of the
SCM is used. Once the filters are computed, they are applied to the original EEG time
series as in the Dynamic Imaging of Coherent Sources (DICS) beamforming method
[99]. However, they are efficient only if the frequency of interest is unique or inside
a small set.

In the case of broadband signals in the frequency domain, the filters are applied di-
rectly to an averaged cross-spectrum matrix [100]. Another way to deal with broad-
band signals is to apply multiple Finite Impulse Response (FIR) frequency filters.
Data will then become specific to the frequency band given by the impulse response.
Moreover, beamforming-based time-frequency analysis is also achievable by using
those filters with a time window [101].

Robust covariance estimation and reconditioning

All beamforming methods use the SCM and mainly its inverse. When this matrix
is rank deficient or poorly conditioned, computing its inverse is subject to errors.
The regularization method of diagonal loading is used to ensure a correct inversion
by adding a small value µ to the diagonal components of the SCM, which has to
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Table 2.2: Filtering for beamforming

(Piece-wise) stationnary and ergodic sources Noises Criteria

Location Known
reference Correlated Required

covariance
Spatially

decorrelated
Beamformer

type

Unit Gain [77] / SAM [82] Unknown no no no no MV

Unit Noise Gain [103, 77] Unknown no no no yes MV

Standardized MV [85, 79] Unknown no no no no MV

AOLS beamforming [107, 108] Unknown no no no no MV

LCMV [109] Unknown no yes no no MMSE

Common Spatial Pattern [110, 111] Unknown no no no no Max SNR

Spatial Notch [112, 113, 114] Unknown yes no no no MMSE

LMMSE [108] Unknown yes no no no MMSE

Nulling Beamformers [115, 116, 117, 118, 80] Known no yes no no MV

Dual-Source [119] / Dual-Core [120] Known no yes no no MV

MV-PURE [109] Unknown no yes yes no MMSE

be chosen by the user. The Bayesian PCA technique [104] can be used to select an
appropriate value of µ.

Another problem arises when there are not enough time samples to compute the
SCM, making it a bad estimator of the unknown theoretical covariance matrix. From
RandomMatrix Theory (RMT), shrinkage methods robustify the SCM estimator us-
ing priors. TheOracle Approximating Shrinkage (OAS) [105] and Ledoit’s shrinkage
[106] have already been used for beamforming applied to BSI-EEG.

Beamforming as a preprocessing

Since beamformingmethods reconstruct source time-course activities, they have been
used in other inverse problem methods as a preprocessing step. For instance, they
are used in meta-heuristic methods as an update step [74, 76] or in minimum norm
approaches with the Array-Gain Constraint Minimum Norm with Recursively Up-
dating Gram matrix (AGCMN-RUG) beamformer [75, 79].

2.2.2 Beamforming

Choosing an appropriate beamformer constitutes the core of an inverse problem
method based on beamforming. In BSI, three main classes of optimum beamform-
ers [121] have been used:

— Minimum Variance (MV) / Minimum Power (MP)

— MinimumMean Square Error (MMSE)

— Max Signal-Noise-Ratio (Max SNR)
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Minimum Variance / Power Beamforming

The idea is to design a band-pass spatial filter that is as focused as possible on a spe-
cific location. Unfortunately, like frequency band-pass filters, it is nearly impossible
to have a complete rejection of elements in the stop band. In order to attenuate the
contribution from other directions, the output power of the filter must be minimized
with respect to directional constraints. Hence, MV/MP beamformers are based on
the same optimization:

min
w(θℓ)

w(θℓ)TĈyw(θℓ) s.t. w(θℓ) ∈ Ωw,G ∈ ΩG (2.4)

where Ωw and ΩG denote the sets of constraints applied to the beamforming filters
and the leadfield matrix, respectively. w(θℓ) is the filter computed for position θℓ.
The choice of y ∈ {ν, x} in equation (2.4) determines if a Minimum Variance (ν) or
a Minimum Power (x) problem is studied. This difference is sometimes only seman-
tic as the optimization with suitable constraints leads to the same filter[80]. If the
distinction is clearly mentioned in the signal processing field, the confusion is often
made in BSI. In order to remain consistent with the literature, we decide to keep the
termminimum variance even if y = x. Since the diversity of the MVmethods comes
from the choice of the constraints, which are discussed below.

Linear constraints Linear constraints have the following common formulation:

ΩwL =
{
w(θℓ1)TG(θ) = rT}

, θ = [θℓ1 , θℓ2 , . . . , θℓI
] (2.5)

where θ contains the locations of interest, where G(θ) = [g(θℓ1), g(θℓ2), . . . , g(θℓI
)]

and where rT = [1, 0, . . . , 0] is their desired filter response. A natural response for a
spatial filter is to let the signal pass from the studied location θℓ by giving it a unitary
gain. This linear constrain named distortion-less constraint is the basis of beamform-
ing and can be found alone in the Unit Gain (UG)method [77]. In order to refine the
spatial filter and deal with interferences, null responses can be imposed on specific
locations that require stronger priors (see appendix A.2).

Quadratic constraints Quadratic constraints are used to normalize or regularize
the analytical solution. They are combined to linear constraints as follows:

ΩwQ =
{
ΩwL

}
∪

{
||w(θℓ)TB||2

2 = 1
}
, B ∈

{
IN , Ĉx

− 1
2 }

(2.6)

When B is the identity matrix, the beamformer is qualified by the Unit Noise Gain
(UNG) term [77], initially called Borgiotti andKaplan beamformer [122]. Otherwise,
it is the Standardized minimum variance beamformer (Stdr) [85, 79]. Those normal-
izations are equivalent to dynamic Statistical Parametric Maps (dSPM) [123] and
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sLORETA [55], which give a minimum norm inverse solution offsetting the depth
bias. Their effect on the solution is still amatter of discussion regarding signal spread-
ing [124].

Shrinkage constraint The shrinkage problem discussed in section 2.2.1 can also be
applied to design beamforming filters. It consists of computing the optimal weights
between the analytical solution of a UG beamforming filter (w1) and amatched filter
(w2) based on a data-independent estimator [125]. The constraint is presented as
follows:

ΩwS =
{
ΩwL

}
∪

{
w(θℓ) = α1w1(θℓ, Ĉx) + α2w2(θℓ)} (2.7)

The unknown theoretical covariance matrix will replace the data SCM in the cost
function (2.4). The optimizationwill be donewith respect toα1 andα2 assuming that
this covariance matrix is known. In the end, an asymptotic convergence analysis will
enable us to free ourselves from this knowledge. The resulting analytical filter, named
Asymptomatically Optimal Linear Shrinkage (AOLS), is better suited to deal with
short events as shown in [108]. Note that this method has not yet been introduced in
BSI.

MMSE Beamformers

MMSE is defined as follows (see appendix A.3 for full mathematical development):

MMSE =E
[
||s(t)−ŝ(t)||2

2

]
(2.2)= E

[
||s(t)−WTx(t)||2

2

] (2.8)

When the L-dimensional reference signal {s(t)} is unknown, the Minimum Mean
Square Error (MMSE) cannot be minimized right away. For that reason, a reformu-
lation is required [126]:

MMSE
(1.1)+(2.2)= E

[
||s(t)−WT(Gs(t)+ν(t))||2

2

]
=E

[
||(IL−WTG)s(t)||2

2︸ ︷︷ ︸
Bias2

]
+Tr

{
WTCνW

}︸ ︷︷ ︸
Variance

(2.9)

with two conditions: i) the source random process {s(t)} and the noise random pro-
cess {ν(t)} are uncorrelated and ii) the noise {s(t)} is zeromean. From this equation,
a new MV-like beamformer can be designed [127]:

min
W

Tr
{
WTĈνW

}
s.t. WTG = IL (2.10)

This optimization problem has multiple names depending on the field of study: Best
LinearUnbiasedEstimator (BLUE) for linear estimation [126], distortionless-constrained
estimator for array processing [128], andLinearConstraintsMinimumVariance (LCMV)
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in BSI [80]. If the equivalence between the MV and MP problems is accepted, the
noise SCM can be replaced with the data SCM. Note that it is a special case of MV
beamformer (2.4) for which all the filters are computed simultaneously. A null con-
straint is applied to all positions except the one of interest making this matrix beam-
former the perfect set of pass band filters. However, the underlying minimization
problem is ill-posed, involving the inversion of a rank-deficient matrix. As an aside,
we would like to point out that there are many uses of the term LCMV in BSI-EEG. In
many cases, it refers to the UG with a free source orientation in relation to the intro-
ductory paper by Van Veen [71]. This is legitimate as LCMV is a vague term design-
ing the characteristic of the constraint. In this thesis, it is used to define a beamformer
that currently has no alternative name to the knowledge of the author.

Max SNR Beamformer

Previous beamformingmethods do not take into account both noise and data covari-
ance matrices. In the Brain-Computer Interface (BCI) field, it is common to design a
filter that maximizes the Signal to Noise Ratio (SNR) at its output:

argmax
w

SNR = argmax
w

wTĈxw

wTĈνw
(2.11)

This optimization problem can be solved using the Common Spatial Pattern (CSP)
method [129], which does not involve the leadfield matrix. The absence of the lead-
field matrix is unique to BCI [130, 105, 131]. On the one hand, it allows us to avoid
physics modeling errors. But on the other hand, it does not ensure to reconstruct
brain source activities.

Other beamformers

Beamformers presented above do not require strong priors. This section presents
those which need extra priors in order to give better results.

Known reference Regarding (2.8), if a clean reference of the SOI is known, the
optimization problem is easier to solve. Spatial notch beamformer [112, 113] is a stop-
band filter using a P300 reference signal for cognitive task analysis. This method is
also sensitive to correlated sources [113]. If only the source of interest variance is
available, there is amore directmethod namedLinearMinimumMean Squared Error
(LMMSE) [107, 108].

Interferences In the case of interferences correlatedwith the SOI, the distortion-less
constraint of the UG beamformer (see appendix A.2) will involve the cancellation of
all of them (interferences and source of interest). This effect can be avoided if a null
response filter [116, 132] is applied to every position of source correlated with the
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source currently reconstructed. This method, called nulling beamforming, requires
the knowledge of the correlated source position which appears as a too strong as-
sumption in practice.

In the case of two correlated sources with known locations (θℓ1 and θℓ2), their corre-
sponding leadfield vectors can be merged [119, 120]:

ΩG =
{
g(θℓ) = B

[
g(θℓ1)
g(θℓ2)

] }
,B ∈ {[α, (1 − α)] , I2} (2.12)

Those methods are used with the free-oriented source model, proposing a way of
estimating the orientation. Otherwise, more generic strategies have been suggested
to estimate the correlated source location: partial sensory coverage [133] or short-
term energy estimation mapping [134].

Dealing with over-constrained system Adding nulling constraints to (2.5) will
make the spatial constraint dimension grow. It will result in an over-constrained op-
timization problem that needs to be relaxed. Let’s introduce the Reduced Rank (RR)
beamformers with the following constraint:

ΩwRR =
{
||w(θℓ)TG(θ) − rT||2

2 < ϵ
}

(2.13)

This constraint named eigenvector constraint [121] requires to estimate the rank k

ofG(θ). In order to find an analytical solution, the Truncated Singular Value Decom-
position (TSVD) [117] is used:

G(θ) = [UGk UGN−k]
[
ΣGk 0
0 ΣGN−k

] [
VGk

T

VGN−k
T

]
≈ UGk ΣGk VGk

T (2.14)

An improvement using subspace suppression has been proposed [118], but it is dif-
ficult to apply to real scenarios due to a high computational cost. MinimumVariance
- Pseudo Unbiased low-Rank Estimator (MV-PURE) uses an approach similar to the
LCMV technique. The constraint will not be limited to the use of the Euclidian norm
but more generally it considers the union of unitarily invariant norms (Frobenius,
spectral, etc.). The analytical solution of MV-PURE is relatively compact but it in-
volves to estimate the source covariance matrix Ĉs:

WMVPURE = UE
k UE

k
TWLCMV

with E = (GTĈx
−1
G)−1 − 2Ĉs

(2.15)

The nulling MV-PURE [135] beamformer uses an extra nulling constraint to cancel
connected interferences explicitly.
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Alternative optimization Regarding the optimization, all the above beamformers
are solved using the Lagrangian method in order to find an analytical solution. But
beamforming optimization problems have also been rewritten using the Global Side-
lobe Canceller (GSC) method [136, 137, 138] or the Frost algorithm [139] which is
a way to create real adaptive filters [121]. Note that the iterative Second Order Cone
Programming (SOCP) technique was used too [140].

Extended sources Nulling beamformers [117, 118], LCMV andMV-PURE are tech-
nically compatible with the case of spatially extended sources (see appendix A.2).
But, specific solutions have been proposed either by changing the sourcemodel [141]
or designing specific beamformers [142, 143]. Beamforming strategies can also be
combinedwithminimumnormmethods like in Sparsity And Beamforming for brain
source Localisation and Estimation (SABLE) [4] that will be presented in Chapter 3.

2.2.3 Post-processing

Once beamformers have been computed, an estimate of the source activities is ob-
tained using (2.2). Post-processing methods are used to ensure a correct reconstruc-
tion of sources and to highlight helpful information on the SOI.

SNR increaser

As discussed in section 2.2.1, the number of time samples selected for the compu-
tation of the data SCM is crucial in beamforming. It also influences the SNR of the
reconstructed sources [144], which depends on the number of electrodes too [145].
In order to improve the SOI reconstruction, the beamformer can be projected onto the
signal (plus interference) subspace. The projector is defined from the eigenvalue de-
composition of the SCM leading to a MV-PURE-like solution (2.15). Note that it can-
not be applied directly in the case of null constraints since the subspace spanned by
leadfield vectors is not necessarily included in the signal subspace of the SCM. New
strategies, including a Gram-Schmidt orthogonalization [77] or a patch constraint
optimization [80], have been proposed for this aim. Those methods are compatible
with the GSC beamformer [146] (see section 2.2.2).

Source analysis

Once the source time activities are reconstructed, amanual review can be done to find
the SOI location. When the SOI presents characteristic grapho-elements like inter-
ictal spikes, High-Frequency Oscillations (HFO), Event-Related Potential (ERP), tra-
ditional signal processing tools can be used to locate them in time and space. Tools
based on time-frequency analysis [147] or wavelet analysis [148] can be used. If an
assumption-free exploration of the SOI is preferred, the source-space ICA method
[90] decomposes the reconstructed sources into independent principal components
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Table 2.3: Post-processing for beamforming

Priors Form Name

SNR increaser SNR degradation by noise W̃ = UĈx
k UĈx

k

T
W Eigenspace

projection [146, 77]

Source analysis Linear mixture between
SOI and noise S̃ = AΣŜ

kV Ŝ
k Source-space ICA [90]

Source mapping

High variance / power
for sources

σ(θℓ)2 = w(θℓ)TĈxw(θℓ)
p(θℓ, f)2 = w(θℓ)TĈz(f)w(θℓ)

Variance [71]
pSPM [99]

High SNR filter
output for sources SNR(θℓ) = w(θℓ)TCw(θℓ)

w(θℓ)TĈνw(θℓ)
output SNR [77]

Non gaussian SOI κ(θℓ) = 1
T

∑T
t

(ŝ(θℓ,t)−¯̂s(θℓ))4

σ(θℓ)4
Excess kurtosis [149]

SAM(g2) [150]

Functional coupling
between sources γ(θℓ, θref) = |w(θℓ)TĈz(f)w(θref)|2

p2(θℓ,f)p2(θref,f) Coherence [99]

The UG analytic solution
injected into the ouput SNR m(θℓ) = g(θℓ)TC1g(θℓ)

g(θℓ)TC2g(θℓ)

PZ [151] / NAI [71]
ZER (SPA) [152, 153]

rZER [78]

Multiple
source localizers /

Iterative beamformers

Nullify methods mM(θℓ) = Tr{G(θr
ℓ)TC1G(θr

ℓ)(G(θr
ℓ)TC2G(θr

ℓ))−1}
with θr

ℓ = [θref, θℓ]

MPZ / MAI
MER (SIA/MIA)
rMER [78, 153]

Deflation method
mRAP(θℓ) = g(θℓ)TC̃ν

−1
g(θℓ)

g(θℓ)TC̃x
−1
g(θℓ)

with C̃x = P(θref)ĈxP(θref)
P(θref) = IN −G(θref)G(θref)†

Iterative/RAP
beamformer [102]

with Ĉz(f) the cross-spectrummatrix (see section 2.2.1), C the data SCM Ĉx or the SCM Ĉx of the data averaged over several epochs and {C1,C2}
the couple {Ĉx

−1
, Ĉx

−1
ĈνĈx

−1
}, {Ĉν

−1
, Ĉx

−1
} and {Ĉx

−1
ĈxĈx

−1
, Ĉx

−1
} for PZ, NAI and ZER, respectively. θref is the location of the previously

identified SOI.

that can be reviewed. However, this BSS method cannot be applied in practice due to
the high dimension of ŝ and alternative strategy must be considered.

Source mapping

As the number of sources is often too high to review each time course by hand,
source mapping methods represent a simple topographic map of SOI properties in
the source space. Weights generated from these mapping methods will also be used
as metrics to localize SOIs mathematically. This section lists all the SOI properties
currently used in beamforming.

Variancemapping The first sourcemapping introduced in EEG/MEGwas the esti-
mated source variance. The idea is that each SOI has a superior variance in compari-
son with that of background activities. The variance has dual metric in the frequency
domain called source power Statistic Parametric Map (pSPM).

Output SNR mapping When the noise covariance matrix is known or well esti-
mated, the variancemapping can be enhanced by considering an SNRmappingwhich
decreases the variance of the sources outside the SOIs. Usually the SCM defined in
equation (2.3) is used, whereas using averaged data between n epochs has been sug-
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gested as a better alternative to process ERP signals.

Ĉx = 1
T − 1

T∑
t=1

(xn(t) − xn)(xn(t) − xn)T (2.16)

with xn(t) = 1
N

∑N
n=1 x(n)(t) being the averaged data over N epochs and Ĉx the aver-

aged data SCM.

Fourth-order mapping Since brain signals of interest such as interictal spikes are
generally non-Gaussian, higher order statistics may be useful. Using the Excess kur-
tosis, source activity with extreme variations will have a higher weight.

Coherence mapping In the frequency domain, the coherence function is similar to
the output SNR. However, it requires to determine a reference beforehand to reduce
the computation time drastically. Finding this reference remains an issue and mul-
tiple solutions have been suggested [99] like taking for instance the maximum of a
minimum norm [99, 80].

SNR-derived mapping Since the solution for w(θℓ) is analytic, it can be inserted
into the output SNR formula leading to a new metric. Using the UG solution (see
section 2.3.3), the Pseudo-Z (PZ) metric is obtained directly using mathematical
simplification. If the equivalence between the MV and MP problems is considered
(section 2.2.2), then the PZ metric can be reformulated as the Neural Activity Index
(NAI) metric [71]. The remaining metrics do not directly involve the beamformer in
both cases and depend on the SCM and the leadfield vectors. Localizer to the Event-
Related (ZER) and reduced localizer to the Event-Related (rZER)metrics are defined
the same way using the averaged data SCM. The Single-step Peak Approach (SPA)
is a search approach dedicated to the ZER metric [153].

Localizers

All the above source mappings can be used to localize one SOI by finding the maxi-
mum value of the corresponding metric. But in the case of multiple sources, an iter-
ative (deflation) scheme has to be implemented. Localizers or iterative beamformers
will localize multiple SOIs by sequentially deleting the contribution of the sources
already localized (also called referenced sources). Although these methods were
developed for SNR-derived methods, they may be adapted to all source mapping
methods.

Nullify metrics The first method consists in inserting the referenced source lead-
field vectors into the derived-SNR metric. Thus, from the PZ, NAI, ZER, and rZER
metrics, we can derive theMultiple PseudoZ (MPZ),Multiple Activity Index (MAI),
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Multiple Event-Related (MER), and reduced Multiple Event-Related (rMER) met-
rics, respectively. The aim is to vanish the leadfield vector highly correlated to the
referenced leadfield vector by means of the inversion. The reference location will
grow progressively until the energy of new located sources is too weak to be con-
sidered as that of SOIs. The Single-step Iterative Approach (SIA) and Multiple-step
Iterative Approach (MIA) are search approaches proposed for theMERmetric [153].
taking into account theMV-PURE beamformer methodology [109], an improvement
has been suggested for the MAI metric using a projector [154].

Deflation metric The second approach consist in removing the contribution of lo-
cated dipoles to the data covariance matrix using a deflation scheme. An orthogo-
nal projector P(θref) derived from the RAP-MUSIC [52] method is defined using the
leadfield vectors corresponding to the already founded location θref.

2.3 Toward the BSI-EEG beamforming pipeline

This part summarizes the mathematical calculations and considerations for these
methods from the three beamforming steps. The first part of this section explains
which methods were not considered for the pipeline, while the second part gives
algorithmic details to solve the inverse problem using beamforming.

2.3.1 Choice of the beamforming pipeline

Depending on the BSI-EEGapplication,wemayhave a certain amount of prior knowl-
edgewhich can be exploited by beamformingmethods like the knowledge of the cor-
tical region involved in a specific task or the frequency support of the SOIs. We must
discard some methods previously introduced in the review as we aim at offering a
versatile study.

For the preprocessing (Table 2.1), the spatial filtering method named surface Lapla-
cian is not considered as it assumes the position of SOI to be shallow. Data denoising
methods are also not retained, as they demand to know the number of SOI in ad-
vance, which is particularly difficult to obtain in practice. Spectral targeting methods
are put aside as they are linked to the signals or the studied cognitive task. Regarding
the robust estimation of the data SCM, we decide to keep Ledoit’s shrinkage method
as it offers an analytical solution that does not imply the arbitrary selection of µ. All
other methods have been kept and presented in the following section.

For the beamformers (Table 2.2), we remove methods that do not allow localization
such as Max SNR beamformers. Like in preprocessing, methods that require know-
ing the location of the sources are removed. Likewise, we withdraw those requiring
a reference or an accurate estimate of the source covariance matrix.
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For the post-processing (Table 2.3), SNR increasers methods and source analysis are
removed since they require to know the number of SOIs. However, the coherence
metric has been adapted to be applicable in the signal domain called EEG similar-
ity (see section 2.3.4). Finally, the mapping methods using the UG solution have all
been removed since they are specific to one beamformer except the deflation scheme,
which can technically work for any metric.

2.3.2 Preprocessing

The preprocessing methods kept for the experiment are the leadfield normalization
method, the whitening method and Ledoit’s shrinkage method. In addition, we have
added two combinations that may be interesting to study: the first is called shrink-
aged whitening and it considers the conditioning of the noise SCM while the sec-
ond, named ALL, combined the Leadfield normalization, Ledoit’s shrinkage and the
shrinkaged whitening. From this point, we considered that the data SCM is com-
puted using all the samples available in order to not advantage shrinkage methods.
Mathematically, there are some elements to add to table 2.1 except for the leadfield
normalization.

Whitening

For the whitening, the whitened operator is obtained using the Singular Value De-
composition (SVD) decomposition:

Ĉν
− 1

2 = UΣ− 1
2UT (2.17)

The baseline time samples used for the computation of the symmetric noise SCM are
selected between spikes from the interictal EEG data.

Ledoit’s shrinkage method

Ledoit’s shrinkagemethod [106] aims at providing an estimate of the covariancema-
trix that is both well-conditioned and more accurate than the data SCM. To do so, it
is needed to solve the following optimization problem:

min
α1

||C̃x − Cx||2F s.t. α1Ĉx + (1 − α1)µIL (2.18)

where Cx is the unknown true covariance matrix. The solution is analytic and uses
asymptotic convergence proofs to alleviate the presence of Cx. Convergence results
define µ as the mean of the diagonal of Cx and the scale parameter ρ1 as:

α1 = 1
T 2

T∑
t=1

||x(t)x(t)T − Ĉx||2
F

||Ĉx − µIL||2
F

, α1 ∈ [0, 1] (2.19)
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Shrinkaged whitening

Usually, if the whitening operator is well defined, the whitened noise SCM should
be equal to the identity matrix. However, like the data SCM, the noise SCM may be
ill-conditioned or rank deficient, leading to an operator whichwill not properly clean
the data. This error may have repercussions on beamforming localization and recon-
struction results. Therefore,we use a shrinkagedwhitening, based onLedoit’s shrink-
age method on the noise SCM before computing the whitening operator. A compar-
ison will be made between the traditional whitening and the shrinkaged whitening
through the first experiment.

ALL

The ALL preprocessing scenario consist in merging all the previous preprocessing
methods, conducted in the following order:

— The noise SCM is regularized by Ledoit’s shrinkage method;

— The whitening operator is computed from the regularized noise SCM and ap-
plied to both the data and leadfield matrices;

— Ledoit’s shrinkage method is applied on the whitened data SCM;

— The leadfield normalization is applied on the whitened leadfield matrix.

2.3.3 Beamformers

The beamformer used through the experiments appear in an opaque font in Table
2.2. This section presents the mathematical resolution of the optimization problem
for each selected beamforming method and highlights a few commonalities.

Unit Gain family

Before dealing with the UG beamforming and its normalized version (UNG and
Stdr), let us recall how to solve the following optimization problem:

min
w(θℓ)

w(θℓ)TĈxw(θℓ) s.t. w(θℓ)Tg(θℓ) = r (2.20)

From an optimization point of view, this problem can be solved analytically by min-
imizing the Lagrangian function:

L(w(θℓ), α(θℓ)) = w(θℓ)TĈxw(θℓ) + α(θℓ)(w(θℓ)Tg(θℓ) − r) (2.21)

where α(θℓ) is the Lagrangian multiplier and r is the filter response fixed to 1 in the
case of the UG beamformer or relaxed to τ(θℓ) in the case of the UNG and Stdr beam-
formers. Vanishing the derivative of the Lagrangian function leads to the following:

2.3. Toward the BSI-EEG beamforming pipeline 33



w(θℓ) = Ĉx
−1
g(θℓ)α(θℓ) (2.22)

where only the Lagrangian multiplier remains to be found. It happens that we can
inject this primary solution directly into the various constraint in order to compute
it.

Unit Gain The UG constraint is:

w(θℓ)Tg(θℓ) = 1 (2.23)

Inserting (2.22) into (2.23) leads to the following value of the Lagrangian multiplier:

α(θℓ) = 1
g(θℓ)TĈx

−1
g(θℓ)

(2.24)

Unit Noise Gain The UNG constraints are:

w(θℓ)Tg(θℓ) = τ(θℓ) and w(θℓ)Tw(θℓ) = 1 (2.25)

First, the solution (2.22) is inserted into the first constraint leading to the following
solution:

α(θℓ) = τ(θℓ)
g(θℓ)TĈx

−1
g(θℓ)

(2.26)

Second, the value of τ(θℓ) is computed using the second constraint. Then we obtain:

α(θℓ) = 1√
g(θℓ)TĈx

−2
g(θℓ)

(2.27)

Standardized The Stdr constraints are:

w(θℓ)Tg(θℓ) = τ(θℓ) and w(θℓ)TĈxw(θℓ) = 1 (2.28)

The analytical solution is computed in the same way as for the UNG beamformer:

α(θℓ) = 1√
g(θℓ)TĈx

−1
g(θℓ)

(2.29)

From (2.24) and (2.26), we can conclude that UG, UNG and Stdr approaches are
equivalent within one scalar factor: τ(θℓ). This factor depends on the location and is
used to correct for depth bias, as discussed in paragraph 2.2.2.
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AOLS

The AOLS method uses a shrinkage constraint which imposes a trade off between
the matched and the UG filters. The corresponding optimization problem is written
given by:

min
α1(θℓ),α2(θℓ)

w(θℓ)TCxw(θℓ) s.t. w(θℓ)Tg(θℓ)=1

and w(θℓ)= Ĉx
−1
g(θℓ)α1(θℓ)+g(θℓ)α2(θℓ)

(2.30)

It can be reformulated as:

min
α(θℓ)

α(θℓ)TΓ (θℓ)TCxΓ (θℓ)α(θℓ) s.t. α(θℓ)TΓ (θℓ)Tg(θℓ) = 1 (2.31)

where α(θℓ) ≜ [α1(θℓ), α2(θℓ)]T is the vector Lagrangian multiplier and Γ (θℓ) ≜

[Ĉx
−1
g(θℓ), g(θℓ)] is the filter basis. The optimization is solved exactly like (2.20) and

leads to a familiar result:

α(θℓ) = (Γ (θℓ)TCxΓ (θℓ))−1Γ (θℓ)Tg(θℓ)
g(θℓ)TΓ (θℓ)(Γ (θℓ)TCxΓ (θℓ))−1Γ (θℓ)Tg(θℓ)

(2.32)

Using thematrix inversion definition and developing the partitionmatrixΓ (θℓ) leads
to a first analytical result. However, it contains both the theoretical covariance matrix
and the estimated one. By means of the random matrix theory and asymptotically
convergence studies [108], equivalences are only expressed in terms of SCM and a
ratio c ∈ [0, 1] equals to the ratio of the number of electrodes over the number of time
samples used to estimate the SCM:

α(θℓ)=
[
α1(θℓ)
α2(θℓ)

]
=

[
(1 − c)(a+

ℓ a−
ℓ (1 − c) − 1)

ca−
ℓ

]
a−

ℓ (a+
ℓ a−

ℓ (1 − c)2 − 2(1 − c) + 1)
(2.33)

where a−
ℓ = g(θℓ)TĈx

−1
g(θℓ) and a+

ℓ = g(θℓ)TĈxg(θℓ).

LCMV

The LCMV presented here can handle correlated sources by means of nulling con-
straints on every other sources except the computed one:

min
W

Tr
{
WTĈxW

}
s.t.WTG = IL (2.34)

Its solution is analytic, similar to (2.22) and allows us the computation of all filters
at the same time:

WLCMV = Ĉx
−1
G(GTĈx

−1
G)−1 (2.35)
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However, this solution is not directly computable since we cannot guarantee that
GTĈx

−1
G is invertible. In order to have a good estimation, we use the pseudo inverse

based on the singular value decomposition. Singular values close to the computer
floating point accuracy ϵ are put to 0:

(GTĈx
−1
G)† = UΣ−1

k>ϵU
T (2.36)

Towards correlated sources

As presented in [71], the cost function of beamforming can be developed to under-
stand the underlying optimization mechanisms. It also highlights the reason why
beamforming methods are sensitive to the case of correlated sources. Lets us take
two correlated sources at positions θℓ1 and θℓ2 (section 2.2.2). It gives the following
decomposition (see appendix A.2 for full development):

w(θℓ1)T̂Cxw(θℓ1)= ||w(θℓ1)Tg(θℓ1)||2
2σ

2(θℓ1)

+
L∑

i=2
||w(θℓi

)Tg(θℓi
)||2

2σ
2(θℓi

)

+2w(θℓ1)Tg(θℓ1)σ(θℓ1)σ(θℓ2)g(θℓ2)Tw(θℓ2)

(2.37)

where σ(θℓ1)σ(θℓ2) is the cross-correlation between the two correlated sources. This
cross-term is not guaranteed to be positive for w(θℓ1). Recall that the beamforming
criterion chooses a w(θℓ1) to minimize (2.37) in accordance to spatial constraints. In
the case of the UG family, the minimum will be obtained by i) convergence to a con-
stant on the first term due to the distortionless constraint, ii) convergence to zero on
the second term as it is guaranteed to be positive, iii) assignment of a negative value
for the cross-term to compensate for the constant in the first term. If this occurs, then
the source estimated variance is significantly less than its true value. This estimation
error will lead to reconstruction and localization errors; thus, this method is incom-
patible with correlated sources. The same observations can be extended to the AOLS
beamforming, which embedded the UG analytic results. Regarding the constraint of
the LCMV as we defined it, they force the cross-terms between θℓ1 and θℓ2 to be null.
Moreover, it forces every other cross-term to be null such that we do not have to know
the position of the correlated sources in advance (see section 2.2.2). If the constraint
is well respected, it will correctly estimate the variance of the source at θℓ1 , as such,
it is technically compatible with correlated sources.

2.3.4 Post-processing

The post-processing methods (table 2.3) kept for the experiments are the variance
mapping, the output SNR mapping, the kurtosis mapping and an adapted version
of the coherence mapping called EEG similarity mapping.
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EEG similarity

It is well-accepted that interictal spikes appear in EEG signals as soon as they spark
in the brain. These grapho-elements can be used as a reference to find the location of
spike-like sources. EEG similarity is a two-step post-processingmethod that classifies
estimated sources according to their similitude of shape (γ1) and amplitude (γ2)with
the activity recorded on a reference electrode (nref):

γ2(θℓ, nref)=
{

||x(nref)−g(nref, θℓ)ŝ(θℓ)||2
2 if |γ1(θℓ, nref)|>δthr

0 otherwise

with γ1(θℓ, nref)= 1
T − 1

ŝ(θℓ)−¯̂s(θℓ)
σ(θℓ)

(x(nref)−x̄(nref)
σ(nref)

)T
(2.38)

where δthr is a threshold set at a certain percentage of themaximum of γ1(θℓ, nref). In
the rest of the chapter, it is fixed to 65 % of the maximum and the reference electrode
nref is selected as the one with the highest activity at interictal spike maximal activity
by direct observation.

Source localization

In order to localize one source, we will take the maximum of each metric as per es-
tablished practice except for the EEG similarity. For this particular criterion, we need
to take the maximum of its inverse as we are looking for the source that minimizes
the MMSE for this metric. In the case of two sources, we will take both maxima of
the variance, EEG similarity and kurtosis metrics. As for the output SNR, we will use
the deflationmethod as discussed in section 2.2.3. However, the orthogonal projector
will be applied on the primary system (2.4) instead of using it directly in the metric.
Then, the filter is recomputed and will not contain a contribution of the first source.

mRAP(θℓ) = w̃(θℓ)TĈxw̃(θℓ)
w̃(θℓ)TĈνw̃(θℓ)

w̃ = f(P(θ̂SNR)x,P(θ̂SNR)G)
(2.39)

Normalization and post-processing

Thenormalizationprocessmodifies the reconstructed sources in order to avoidmodel
artefacts in the case of leadfield normalization (section 2.2.1) and to raise the signal
coming from deep sources for UNG and Stdr beamformers(section 2.2.2). In beam-
forming, its behavior can be directly studied since we have only an analytic solution.

Beamformer normalization In the case of normalized beamformers within the UG
family, we concluded in section 2.3.3 that the filter is equivalent up to a factor τ(θℓ)
and, using the linear system in (2.2), the reconstructed sources as well. We aim at

2.3. Toward the BSI-EEG beamforming pipeline 37



verifying that it is the same for post-processing criteria. Using theUNGgain solution,
we have:

σUNG(θℓ)2 =τ(θℓ)2wUG(θℓ)TĈxwUG(θℓ)

=τ(θℓ)2σUG(θℓ)2

SNRUNG(θℓ)= τ(θℓ)2wUG(θℓ)TĈxwUG(θℓ)
τ(θℓ)2wUG(θℓ)TĈνwUG(θℓ)

(2.40)

=SNRUG(θℓ)

κUNG(θℓ)= 1
T

T∑
t=1

τ(θℓ)4(ŝUG(θℓ, t)−¯̂sUG(θℓ))4

τ(θℓ)4σUG(θℓ)4

=κUG(θℓ)

As we can see, only the Variance will show different results between the UG and
the UNG beamforming methods. It can be extended to the Stdr beamformer as well.
Regarding the EEG similarity mapping, the first step can be developed like for the
Kurtosis metric and is identical for the UG, UNG and Stdr beamformers. As for as
the MMSE criterion is concerned, we have:

γ2UNG(θℓ, nref) = ||x(nref)−g(nref, θℓ)τ(θℓ)ŝUG(θℓ)||2
2 (2.41)

As we can see, the reconstructed sources and the EEG signals have not the same
scale. Thus, they generate an amplitude bias. The EEG similaritymetric is not directly
applicable to the UNG and Stdr beamformers. The factor must be reabsorbed, which
comes down to use the UG beamformer.

Leadfield normalization The leadfield normalization preprocessing method can
be developed in a same manner as for the UNG and Stdr beamformers by using
the normalized leadfield vector g̃(θℓ) introduced in table 2.1. From equations (2.22)-
(2.24), we derive the following normalized version of the UG filter:

w̃UG(θℓ)= Ĉx
−1
g̃(θℓ)

g̃(θℓ)T̂Cx
−1
g̃(θℓ)

= ||g(θℓ)||2
2

||g(θℓ)||2

Ĉx
−1
g(θℓ)

g(θℓ)T̂Cx
−1
g(θℓ)

= ||g(θℓ)||2wUG(θℓ)

(2.42)

The leadfield normalization leads to the same behavior as the UNG and Stdr beam-
formers in terms of post-processing metrics: a change will be noticeable for the Vari-
ance criterion or a direct mapping of the source activity at a specific time. For this
preprocessing, it means an absorption of model errors (see section 2.2.1). These as-
sumptions are also valid for the AOLS and LCMV beamforming methods.
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Figure 2.1: Data used in the simulations: a - Time courses and positions of the SOIs used in the one
source scenario on the left side (a.1) and two sources scenarios on the right (a.2), b - Example of real
interictal spike EEG data, c - Examples of simulated interictal spike EEG data for different input SNR
values. When identifiable, interictal spikes are indicated using a black arrow.

As a side note, there is no interest in mixing the normalization preprocessing with
the normalized beamformingmethods since the latter embedded the former through
the constraint relaxation τ(θℓ).

2.4 Results

Three experiments were considered in this section to quantitatively and qualitatively
evaluate the efficiency of beamforming pipeline. The first two experiments were per-
formed on realistic simulated data in the context of focal epilepsy (figure 2.1). The ob-
jective of the first onewas to assess the preprocessingmethods and the post-processing
metric performance involved in the beamforming pipeline. The second experiment
aims to evaluate the second step of the pipeline, namely the used beamforming al-
gorithm. Both experiments were conducted in two different scenarios: one source vs
two sources. The use of the single source will permit us to evaluate the behaviors of
the used pipelines as a function of SNR, and the two sources scenario will assess the
influence of the correlation between the two sources on the used pipeline. Eventually,
the third experiment was performed on human epileptic recordings to qualitatively
measure the efficiency of the best beamforming pipeline on real hr-EEG signals.

2.4.1 Datasets and performance criteria

2.4. Results 39



Generation of simulated data

To quantitatively evaluate the performance of the beamforming pipeline, we simu-
late a 257 channels EEG data (hr-EEG) using a realistic head model, representing
the brain, the skull and the scalp, whose intermedium surfaces were extracted from
the segmentation of a subject’s anatomical 3D T1-weighted MRI. The source space
consisted in a mesh made of 15002 vertices obtained from the segmentation of the
grey-whitematter interface from the same anatomical T1-weighted 3D-MRI using the
software BrainVisa [155]. The source spacemesh has been refinedusing the iso2mesh
algorithm [156]which ensure that each vertex approximately cover the same amount
of brain surface. Each vertex was associated to an elementary current dipole except
for the vertices (≈ 1500) inside the Corpus Callosum since they are not of interest
[157]. The time course of each source, was provided by the output of a computational
neural mass model [33, 31], in which parameters can be adjusted to generate either
background-like activity or interictal-spikes. Using this realistic head model, the for-
ward problem was then numerically calculated for each vertex using BEM [42, 40]
to obtain the lead field vectors contained in the matrix G (257 × 15002), which gives
the contribution of each dipole of the mesh at the level of 257 scalp electrode po-
sitions. More particularly, for each experiment of simulated data, two source con-
figurations were considered to generate epileptiform spike-like activity of 200 times
samples with a sampling rate of 512 Hz (see figure 2.1): i) a single equivalent dipole
source located in the right frontal lobe, and ii) two equivalent dipole sources located
in the right and left frontal regions. For both experiment, the remaining vertices of the
mesh were grouped into 1000 sets, called scouts. The dipoles within a scout were as-
sociated to neuronal population that generates background activity. The activity be-
tween scouts is uncorrelated. All simulations are repeated for 50 Monte Carlo (MC)
trials with different spike-like signals and background activities.

Performance criteria

The performance of the used beamformer pipeline is evaluated in terms of source
localization and source reconstruction. The localization performance is assessed by
calculating: the Euclidean distance between the estimate source position (θ̂i), and the
true position (θi) over the 50 realizations:

dEuc
θi

= ||θ̂i − θi ||2 (2.43)

Regarding the evaluation of the times course reconstruction of the SOI, we compute
the following Mean-Squared Error (MSE):

MSE = 1
T

∑
t

(
se(θ, t)

σse

− ŝe(θ̂, t)
σŝe

)2
(2.44)
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where ŝe(θ̂, t) is the estimate time course at the estimate position and se(θ, t) is the
time course at the true position. σse and σŝe are the standard deviation of the corre-
sponding signals.

Simulations results will be presented in boxplot format in order to study both the
accuracy and variability of each preprocessing and beamforming methods.

2.4.2 Simulated data

Experiment 1: Influence of the used preprocessing methods and post-processing
metrics

The behaviors of the chosen preprocessing procedures and post-processing metrics
are evaluated in terms of source localization and reconstruction as a function of SNR
and correlation level. To this aims the beamforming filter is always calculated using
theUGfilter algorithm.More precisely six cases of preprocessing procedures, namely
No-Preprocessing, Normalization, Whitening, Shrinkage, Shrinkage Whitening and
ALL, and four post-processing metrics, namely Variance, SNR, Kurtosis and EEG
similarity are compared (see sections 2.3.2 and 2.3.3 for details).

Single source scenario The simulated 257 channels EEG data are generated from
a single epileptic source by varying the SNR values from -40 dB to 10 dB with a step
of 10 dB. Figures 2.2a, 2.2b, 2.2c, 2.2d (left column) represent the Euclidian distances
calculated between the true position of the spike-like source and the source position
estimated using Variance, SNR, Kurtosis and EEG similarity metrics, respectively.
For high SNR values (≤ 0 dB), the localization of the SOI is perfect (dEuc

θi
= 0) what-

ever the used preprocessing algorithm and post-processing metrics. In the cases of
realistic SNR values of -20 dB and -10 dB (see figure 2.1), all preprocessing meth-
ods permit an excellent localization when using SNR, Kurtosis and EEG similarity
metrics. In contrast, the variance metric performs poorly, except when the ALL pre-
processing procedure is applied. For very low SNR values (SNR ∈ {−30, −40} dB),
where the spike-like activity is entirely hidden in noisy simulated data as depicted
in figure 2.1, we can see that all used pipelines fail to localize the SOI, except for
an SNR value of -30 dB where i) the Kurtosis metric succeeds in the localization of
the target source for all preprocessing procedures, and ii) the EEG similarity gives
a quasi-perfect localization when the Whitening, Shrinkage Whitening and ALL are
used.

As far as the times course reconstruction quality is concerned, figures 2.2e, 2.2f, 2.2g,
2.2h (right column), the MSE values show clearly that the SNR, Kurtosis and EEG
similarity outperform the Variance metrics, for all SNR and all preprocessing meth-
ods. We can also conclude that the preprocessing Shrinkage methods seem to be the
most effective, followed by the ALL method preprocessing procedure. More finely,
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even if the performances of the Kurtosis and the EEG similarity remain reasonable
for the SNR of -30 dB, we globally observe that for very low SNR, of -40 dB and -30
dB, the signal reconstruction quality is poorer whatever the used pipeline.

Two sources scenario Here the simulated EEGdata are generated using two epilep-
tic sources (see figure 2.1). The aim is to access the influence of the preprocessing
and the post-processing on the beamformer BSI-EEG pipeline in the presence of cor-
related sources. To do so, we fix the SNR value to -10 dB and vary the correlation
coefficient between the two SOIs. The left column displays the Euclidian distances
between the two true positions of the SOIs and the estimated ones.We observed that,
for a correlation coefficient equal 1 (the two SOIs are perfectly correlated), all used
pipelines fail in localizing the two sources, except the ones that using the Whiten-
ing, Shrinkage Whitening and ALL preprocessing methods and the EEG similarity
post-processing metric (figure 2.3d). In fact, in those cases, even if the localization
is not perfect, it still reasonable (Euclidian distances around 5 mm). Concerning the
other correlation coefficient values (≥ 0.9), figure 2.3a, shows that the Variance met-
ric gives lower performance than other post-processingmetrics, exceptwhen theALL
preprocessing procedure is applied. This result is in agreementwith the one obtained
in the single source scenario. In figure 2.3b, we remark that the SNRmetric gives per-
fect results (for correlation coefficient values ≤ 0.9) only when the Shrinkage and the
ALL techniques are performed before applying UG algorithm. Indeed, for the four
other cases, even if the boxplots present very small medians, the SNR metric fails to
localize SOIs in several MC trials.

Regarding the MSE results, in agreement to the single source scenario, figures 2.3e,
2.3f, 2.3g, 2.3h, show that theVariancemetric is less effective than other post-processing
metrics. In addition, no pipeline is able to properly rebuild the SOIs for a perfect cor-
relation of 1. We can also conclude that in the case of low correlations (≤ 0.5), the
Shrinkage and the ALL preprocessing are more efficient that other preprocessing
methods and gives interesting performances with MSEs around 0.5.

Discussion: part 1 All previous results conclude that the leadfield Normalization
method does not improve performance. Indeed, it presents similar results when no
preprocessing is applied,whatever the SNRand the coefficient correlation level.Noise
whitening (Whitening), which aims to enhance the SNR (section III.A.2), shows
some interest in the -30 dB and sometimes -40 dB scenarios, especially when a data-
driven post-processing metric (EEG similarity) is applied. However, it is crucial to
be aware that the Noise Whitening preprocessing needs to select a priori a segment
of EEG with only background activity (without any SOIs) to estimate the noise co-
variance (section 2.3.2). In practice, it is very tricky to visually select such a part of
EEG signal for bad SNR (see figure 2.1). The regularization method Ledoit is ap-
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(a) Variance localization error (e) Variance reconstruction error

(b) SNR localization error (f) SNR reconstruction error

(c) Kurtosis localization error (g) Kurtosis reconstruction error

(d) EEG similarity localization error (h) EEG similarity reconstruction error

Figure 2.2: Effect of different preprocessing methods on the unit gain beamformer for one source: lo-
calization results are on the left and signal reconstruction on the right. The dashed lines represent the
limit of baseline identification.
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(a) Variance localization error (e) Variance reconstruction error

(b) SNR localization error (f) SNR reconstruction error

(c) Kurtosis localization error (g) Kurtosis reconstruction error

(d) EEG similarity localization error (h) EEG similarity reconstruction error

Figure 2.3: Effect of different preprocessing methods on the unit gain beamformer for two sources de-
pending on the correlation level: localization results are on the left and signal reconstruction on the
right.
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plied to i) the SCM of the data in the case of Shrinkage algorithm, ii) the SCM of
the noise before whitening in Shrinkaged Whitening method, and iii) on both SCMs
of the data and the noise in the ALL procedure. In our case, the size of SCMs of
the data is (257 × 257) and we numerically verified that using classical estimators
leads to not well-conditioned SCMs matrices. Applying Ledoit’s shrinkage method
improves the conditioning of the SCMs of the data. It gives a more robust estimation
of their inverse matrices, explaining the good performance for almost all SNR values
and the tested correlations. However, when Ledoit’s shrinkage algorithm is applied
to the noise SCMs, we hardly notice any benefit. This can be explained by the fact that
in the major part of the used pipelines, we do not need to inverse the noise SCMs,
and therefore, we lose the interest of such preprocessing. Note that the use of the
ShrinkagedWhitening and the ALLmethods remains problematic in practice for the
same reasons mentioned previously for the Whitening method, i.e. the difficulty in
estimation of the noise SCMs.

Now, if we focus on the post-processing metrics, the Variance metric is less effective,
especially for low SNR values (≤ -10 dB). This is due to the fact that this metric
exploits the SCMs (see table 2.3) of the data and seems to be less robust to their bad
estimations. The same remark also remains valid for the SNRmetrics, even if the latter
appears to bemore robust for realistic SNR values of -20 dB and -10 dB. Nevertheless,
because of the need of the estimation of the noise variance in the calculation of the
SNR metric, as showed in table 2.3, its application in practice is not straightforward.
The good performances of the Kurtosis and the EEG similarity can be explained by
the fact that: i) in the case of Kurtosis, interictal spikes, considered as SOIs, have
higher fourth-order moments than the simulated noise, which is close to Gaussian
noise, i.e. with very small fourth order moments, and ii) the EEG similarity differs
from other metrics as it explicitly exploits the time course of the surface EEG. We do
not need to estimate any data statistics, which makes it less dependent on the sizes
of the data matrix (number of electrodes and number of time samples).

In the rest of the thesis, taking into account the results and conclusions obtained
in Experiment 1, we decide to select the Shrinkage preprocessing method (Ledoit’s
shrinkage method on the SCM of the data) for all the following studied pipelines.
Indeed, in addition to give very satisfactory results, it is suited to use it in practice.
Regarding the choice of the post-processing method, we decide to keep two metrics,
namely the Kurtosis and because the EEG similarity. The Variancemetric is discarded
because of these poor performances. For the SNR metric, even if it gives quite satis-
factory results, we do not take it into account because its practical use is not obvious,
as stated above. Since the UG, UNG and Stdr beamforming methods are equivalent
for the Kurtosis and the EEG similaritymetric is incompatiblewith theUNG and Stdr
as demonstrated in 2.3.4, only the UG results will be shown in the next experiment
with the denomination UG family.
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(a) Kurtosis localization error (c) Kurtosis reconstruction error

(b) EEG similarity localization error (d) EEG similarity reconstruction error

Figure 2.4: Effect of different beamforming methods with the Shrinkage preprocessing method in the
single source scenario: localization results are on the left and signal reconstruction on the right. The
dashed lines represent the limit of baseline identification.

Experiment 2: Beamforming algorithms efficiency

This second experiment aims to compare beamforming methods with the best pre-
processing and post-processing determined in the previous section. As indicated in
section (2.3.1), the aim of this chapter is to give a versatile study to evaluate different
beamformers pipelines in the context of BSI-EEG. Thus, as justified in sections 2.3.4
and 2.4.2 only the UG family algorithms, AOLS and LCMV (table 2.2), are consid-
ered in the following. A similar scheme of experiment 1 is also adopted hereafter: i)
single-source scenario to study the influence of the SNR, and ii) two sources scenario
to address the influence of the correlation level between the two sources. In addition,
as stated in section (2.4.2), only Shrinkage preprocessing and the Kurtosis and the
EEG similarity metrics are used in the evaluated pipelines.

Single source scenario Figure 2.4 displays the Euclidian distance and the MSE cri-
terion for the different studied pipelines as a function of SNR. We observe that UG
andWAOLS present quasi-identical behaviors whatever the SNR level and the stud-
ied pipeline. WAOLS seems to be a little bit more efficient than the UG family to
reconstruct the SOIs. For all SNR ≥ -20 dB, the performances of these two beam-
formers, in terms of SOIs localization, are perfect (Euclidean distance equal zero)
and the SOIs reconstruction quality is also very promising for both post-processing
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(a) Kurtosis localization error (c) Kurtosis reconstruction error

(b) EEG similarity localization error (d) EEG similarity reconstruction error

Figure 2.5: Effect of different beamforming methods with the Shrinkage preprocessing method in the
two sources scenario: localization results are on the left and signal reconstruction on the right.

metrics. Regarding the LCMV, it seems that for SNR ≥ -20 dB, the algorithm is very
effective when the EEG-Similarity metric is used. Indeed, the Euclidian distance and
the MSE are very small. In the case where the Kurtosis metric is exploited in post-
processing step, the LCMV gives very satisfactory results for realistic SNR values
(SNR ∈ {−20, −10} dB); but these performances deteriorate for the SNRs ≥ 0 dB.
Regarding very low SNR value of -40 dB, clearly all beamformers fail to localize and
reconstruct the SOIs. However, at -30 dB, it is interesting to show that all beamform-
ers perfectly localize the SOIs when the Kurtosis metric is used. In addition, their
reconstruction quality still also reasonable in this case, especially for LCMV.

Two sources scenario As in experiment 1, the SNR value is fixed to -10 dB and the
coefficient correlation between the two SOIs is changed. As can be seen in figures
2.5a and 2.5b, the UG family and the AOLS algorithms, which are not designed to
manage the correlated sources, give very interesting localization quality for all corre-
lation coefficients≤ 0.9. However, the reconstruction quality deteriorates for a perfect
correction between the SOIs, especially for the pipelines where the Kurtosis metric is
used. Concerning the reconstruction errors (figures 2.5c and 2.5d), UG and WAOLS
exhibit acceptable results for correlation of 0.5 and totally decorrelated SOIs. Both
methods tend to be less effective as the correlation coefficient increases. Contrary to
UG andWAOLSfilters, the LCMVbeamformerwas developed to process both uncor-
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Figure 2.6: Absolute current density map of reconstructed sources at the maximum of the interictal
spike before post-processing step for the three beamformers (a - UG Family, b - AOLS, c - LCMV). The
dipole with the maximum activity is represented by a red arrow.

related and correlated SOIs. We can effectively see that, when the EEG similarity is
used in the post-processing step, the localization (figure 2.5b) and the reconstruction
(figure 2.5d) of both SOIs are very effective whatever the correlation level. However,
the LCMV performances are questionable when the Kurtosis metric is exploited (fig-
ures 2.5a and 2.5c). Indeed, in the case of one source scenario, these performances
tend to deteriorate for strong SNR values (figure 2.4c). Furthermore, as displayed in
figure 2.5a, the localization quality is unsatisfactory for two source scenario.

Discussion: part 2 Experiment 2 shows that, as expected, the behaviors of the UG
familymethods are identical to those obtained in experiment 1, where the UG is used
in the second step of the pipeline. Indeed, as discussed and demonstrated in section
2.3.3, the filters calculated by the UG, UNG and Stdr methods are equivalent up to
a multiplicative scalar. However, the use of the Kurtosis and the EEG similarity met-
rics overcome this ambiguity (see section 2.3.4 for details). The performances of the
AOLS beamformer are also quasi-equivalent with those of the UG family. This is ex-
plained by the fact that this algorithm is an all-in-one method where the Shrinkage
preprocessing and the beamformer calculation steps are merged in one step (see sec-
tion 2.3.3). Experiment 2 proves that a two-step strategy (Shrinkage + UG family)
and the all-in-one strategy (AOLS) behave similarly.

The most intriguing results are those presented by the LCMV method followed by
the Kurtosis metric. As pointed previously, in the case of one source scenario, these
performances tend to deteriorate for strong SNR values. Likewise, the LCMV is not
effective when the Kurtosis metric is used in post-processing, whatever the level of
correlation between the two SOIs (two sources scenario). The behavior of the LCMV
can be explained as follows: we have shown in section 2.3.3 that theoretically, the
LCMV can handle correlated sources. In practice, the LCMV suffers from signal leak-
age. In other words, it generates an extended solution, i.e., a patch around the SOIs.
This problem is illustrated in figure 2.6, where we clearly see that contrary to UG
and AOLS family methods which give a very focal source solution, the LCMV gener-
ates an extended solution. The results of Experiment 2 show that the Kurtosis metric,
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which is based only on the statistics of the estimated sources, is not robust to this sig-
nal leakage phenomenon. Indeed, the metric tends to select a source in the vicinity
of the SOIs. On the other hand, the EEG similarity metric seems to be more robust to
the signal leakage problem and can choose the good SOIs among different sources
of the patch.

Considering the conclusions of experiments 1 and 2, we propose to process and com-
pare the results of four different pipelines on the real data. These pipelines are built
as follows i) in step 01, the Shrinkage algorithm is used to preprocess the data, ii) in
step 02, AOLs and LCMV are retained, and iii) in step 03, the new proposed metric
EEG similarity is compared to the Kurtosis one.

Figure 2.7: Representation of the four selected pipelines applied to real data.

2.4.3 Experiment 3: Application on real data

In this experiment, we propose to qualitatively measure the efficiency of the best
beamformingpipelines on real hr-EEGdata acquired frompatientswith drug-resistant
partial epilepsy, for whom a surgical intervention can be considered to remove the
epileptogenic brain regions. Indeed, in this case, a precise delineation of the epilep-
tic regions is essential for the success of resective surgery. As indicated at the end of
section 2.4.2, the beamformers AOLS and LCMV will be used on data preprocessed
with the shrinkage method. The SOI localization will be done using the Kurtosis and
the EEG Similarity metrics.

Data acquisition

A256-channel hr-EEGwas recorded for one hour, at 1000Hz following the procedure
approved by theNational Ethics Committee for the Protection of Persons (CPP, agree-
ment number 2012-A01227-36). The patient gave hiswritten informed consent to par-
ticipate in this study. This scalp recording revealed interictal spike activity at the left
frontal basal electrode AFP9h, located above the subject left eyebrow (figure 2.7a).
From this interictal epileptic activity, 8 spikes were visually selected away from the
occurrence of any artefacts (muscle activity, blood pulsation, eye blinks). Each spike
was centered in a 1 second window and all 8 windows were averaged to improve the
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Figure 2.8: Patient-specific data. In a), the hr-EEG headset with 257 sensors. The sensor with the maxi-
mum of activity is point out in red. In b), the EEG recording in which the clear portion represents the
time point selected for the SCM computation. In b), sensors on the depth electrodes are depicted in
yellow. The area of spike maximal activity is represented in red. It covers approximately 5 cm2 of cortex
with parts of the left medial orbital sulcus, the left gyrus rectus and the left suborbital sulcus. The areas
of spike propagation are depicted in orange and concerns multiple zone (left gyrus rectus, suborbital
sulcus, anterior cingulate sulcus and medial anterior cingulate sulcus).

SNR ratio (figure 2.7b). As part of the presurgical evaluation, SEEG recordings were
also performed using 8 intracerebral electrodes (10±18 lead, length: 2mm, diameter:
0.8 mm, 1.5 mm apart, sampling frequency: 512Hz) placed intracranially according
to the Talairachs stereotactic method in the left frontal and temporal regions. The
positioning of the electrodes was determined from an available non-invasive infor-
mation and hypotheses about the localization of his EZ. The exact 3D coordinates
of each electrode contact were determined after co-registering the CT scan showing
the intracerebral leads onto the structural MRI image using a 6-parameters rigid-
body transformation [158, 159]. Segmented anatomical data obtainedwith Freesurfer
from the patient 3D-T1 MRI as well as the location of depth electrode contacts were
imported within Brainstorm [40]. The areas of spike maximal activity and of spike
propagation were delineated on the patient cortical mesh according to conclusions
obtained after visual analysis of intracerebral interictal activity by the expert neu-
rologist. They are represented in figure 2.7c in red and orange, respectively. Thanks
to the presurgical evaluation, it has been determined that the EEG signal observed
results from the activity of one source. This experiment is therefore similar to that
of experiment 1 in section 2.4.2. The SCM matrix is computed using 350 time points
around the spike (clear part in 2.7b).

Qualitative results

Figure 2.11 displays the localization and the SOIs reconstruction results obtained by
the four pipelines. It can be seen that the AOLS + EEG Similarity pipeline offers the
best localization performance. Indeed, the SOI is localized inside the targeted area
delineated by the expert neurologist (red area on the Groundtruth). The three other
pipelines are not able to well localize the SOIs. We can also remark that even if the re-
constructed SOI of the AOLS + EEG Similarity pipeline seems to be contaminated by
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Figure 2.9: Effect of the AOLS and LCMV beamforming methods applied on real data. The upper part
shows the localization results of the kurtosis criterion for the AOLS (a) and LCMV (b) methods, re-
spectively. The lower part shows the localization results of the EEG similarity (c and d). The brain view
has been carefully oriented to present the areas containing the SOI. On the side of the results is the
estimated SOI activity. It is presented along a vertical and horizontal axis corresponding to the time
index of the interictal spike maximum and the reference, respectively.

slowwaves, it gives an interesting correlation level of 70% between the reconstructed
SOI and the SEEGmeasured spike. The obtained results on real data are in agreement
with those obtained in simulated data. Indeed, we can see that the good performance
is given using an adequate combination of the beamformer and the post-processing
metric, namely AOLS + EEG Similarity. Clearly, EEG Similarity which exploits the
time course of the EEG data is very efficient to well localize the SOIs. Regarding the
SOIs time course reconstruction, it can depend on either: i) the robustness of the re-
sponse of the pipeline used with respect to noise, or ii) the considered source model.
Indeed, for the latter, it is important to underline that even if the studied patient
presents a very focal EZ, the targeted SOI is a distributed source. This can possibly
explain that the shape of the reconstructed SOI is not perfect.

2.4.4 Conclusion

In this section, we propose to classify different beamforming pipelines to solve the
BSI-EEG problem for an equivalent source model. Indeed, although the efficiency of
such methods is extensively discussed in the MEG context, only a few studies are
provided when EEG data are used. In addition, whatever the used data, most ex-
isting studies propose to evaluate either the beamforming filter calculation or the
post-processing method, but never to assess the efficiency of the global beamform-
ing pipeline, namely the preprocessing, the filtering (beamformer) and the post-
processing. To found the more suitable pipeline, we surveyed all of those practices
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to formulate different pipeline candidates. Then, we assess these candidates through
various scenarios, in the context of simulated epileptic EEG data, to identify those
that can be effective on real data. The results on simulated data show that Ledoit’s
shrinkagemethod, theAOLSbeamformer and the newEEGsimilaritymetric pipeline
offers the best performances in term of EZ localization and sources reconstruction
when only one source is to be found. In the case of correlated sources, the LCMV
beamformer seems to offers the best result, but attention must be paid to leakage ef-
fect that can lead to poor localization. Obtained results on real data of one epileptic
patient, where the observed epileptic EEG signature seems to be generated from the
activity of one source, are in agreementwith those obtained in simulateddata. Indeed
the Ledoit’s shrinkage method, the AOLS beamformer and the new EEG similarity
metric pipeline give the best approximation of the EZ. However, even if the qual-
ity of the reconstructed SOIs is quite satisfactory, we noted that their baselines are
not smooth enough compared to the real sEEG. This improper reconstruction may
be deleterious as it is involved in the localization criteria. To solve this problem, we
propose to estimate the beamformer filter under an additional temporal-smoothing
constraint.

2.5 Temporal-Smoothing-based beamforming method

Considering that the non-perfect reconstruction of the SOIs is due to a flaw in the
beamforming methods, we propose to add a regularization term to promote the sig-
nal smoothness. This regularization term will be merged into the covariance matrix
during the optimization step without too much methodological adjustment to the
original methods already presented. In the sequel, beamforming methods contain-
ing this regularization term will be called Temporal-Smoothing-based beamforming
methods.

2.5.1 Method

The main contribution of the Temporal-Smoothing-based beamforming methods is
the sole addition of an extra constraint in the cost function. The Temporal-Smoothing
constraint reduces the amplitude difference between each time sample, which can be
smoothly done using a L2 norm and a differential operator [160, 161, 162, 60]. Let us
define the differential operator D∈ RT ×T , whose elements Dt1,t2 are given by:

Dt1,t2 =


1 if t1 = t2

−1 if t1 = t2 + 1
0 otherwise

(2.45)
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Then a general definition of the Temporal-Smoothing-based beamforming can be
stated as the following:

min
w(θℓ)

w(θℓ)TCxw(θℓ) + λ||s(θℓ)D||2
F

s. t. w(θℓ)Tg(θℓ)=r, s(θℓ) = w(θℓ)TX
(2.46)

where X is a matrix containing multiple realizations of the N -dimensional SOSE
random process {x(t)}. λ is a hyper-parameter that makes the trade-off between the
beamforming cost-function and the Temporal-Smoothing constraint. The time sup-
port used on the observations X is chosen to contain the interictal spike correspond-
ing to the time support used to compute the data SCM. As for all the methods in this
chapter, we can solve the optimization problem using the Lagrangian method such
as:

L(w(θℓ), α(θℓ)) = w(θℓ)TĈxw(θℓ) + λ||w(θℓ)TXD||2
F + α(θℓ)(w(θℓ)Tg(θℓ) − r) (2.47)

where Ĉx is the data SCM and r is the desired beamformer response. Since all the el-
ements in (2.47) are differentiable, the optimal point is reachedwhere the Lagrangian
derivative is null. Using the followingproperty of the Trace [163] Tr(ABC) = Tr(BCA),
we get:

δ{L(w(θℓ), α(θℓ))}
δ{w(θℓ)}

= 2Ĉxw(θℓ) + 2λXDDTXTw(θℓ) + α(θℓ)g(θℓ) = 0

2(Ĉx + λXDDTXT)w(θℓ) = α(θℓ)g(θℓ)

2˜̂Cxw(θℓ) = α(θℓ)g(θℓ) (2.48)

w(θℓ) = 1
2

˜̂Cx
−1
g(θℓ)α(θℓ)

Excluding the new data SCM ˜̂Cx = (Ĉx +λXDDTXT), this final form is identical to the
one formulated for the Unit Gain family of beamforming methods (2.22). Hence, the
analytical solution proposed in the previousmethodology for the UG, UNG and Stdr
are directly applicable for the Temporal-Smoothing-based beamforming provided
a new data SCM ˜̂Cx. This development can be also applied to the LCMV and the
AOLS as well. The latter being a trade-off between the Temporal-Smoothing-based
UG beamformer and the matched filter.

In conclusion, the only condition to applied the Temporal-Smoothing-based beam-
forming is to provide themodified SCM ˜̂Cx. It is interesting to note that the Temporal-
Smoothing constraint can be viewed as a preprocessing step since the impact of the
regularization modify Ĉx(cf table 2.1). In the first instance, the hyper-parameter λ

value has been fixed to 1.
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(a) EEG similarity localization error (b) EEG similarity reconstruction error

Figure 2.10:Comparison between the classic beamforming and Temporal-Smoothing-based beamform-
ing on the preprocessing scenario for one source with the best pipeline: localization results are on the
left and signal reconstruction on the right. The dashed line represents the limit of baseline identifica-
tion.

2.5.2 Experimental results

In this section, a comparative study is proposed to assess the temporal smoothing
effect. To do so, the best pipeline deduced in the previous experiments for the one-
source scenario, namely the Ledoit’s shrinkage method, the AOLS beamformer and
the new EEG similarity metric, with and without temporal-smoothing, is studied on
simulated and real data. Note that to satisfy readers’ curiosity, all the experiments
results are presented in figures 2.2 to 2.5 are also provided in appendix B, where the
temporal-smoothing regularization term is added.

Simulated results

As for experiment 1, the simulated 257 channels EEG data are generated from a sin-
gle epileptic source by varying the SNR from -40 dB to 10 dB with a step of 10 dB.
To assess the sources localization behaviors, figure 2.10a (left column) represents the
Euclidian distances calculated between the true position of the spike-like source and
the estimated source position. The quality of the time courses reconstructions is de-
picted in figure 2.10b (right column). In both figures, black and gray colors stand
to the best pipeline without and with temporal-smoothing, respectively. For all SNR
values, the localization performances of the temporal smoothing-based beamformer
are quasi-identical with those of the initial beamformer pipeline. This suggests that
the temporal smoothing does not provide any advantage to an accurate delineation
of the EZ. Regarding the sources reconstruction quality, we clearly observe that the
temporal smoothing beamformer gives the best results for all SNR. This improvement
is particularly visible for realistic SNR values of -20 dB and -10 dB.
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Figure 2.11: Effect of the Temporal-Smoothing-based beamforming methods applied on real data. The
lower part shows the localization results of the best pipeline for the classic beamforming and the
Temporal-Smoothing-based beamforming (a and b). The brain view has been carefully oriented to
present the areas containing the SOI. On the side of the results is the estimated SOI activity. It is shown
along a vertical and horizontal axis corresponding to the time index of the interictal spike maximum
and the reference, respectively.

2.5.3 Real data analysis

The temporal-smoothing constraint is employed with the best pipeline on the real
data. As we can expect from the simulations results, the localization does not change
for the real source application. The SOI is still located in the EZ situated in the sub-
orbital sulcus. As we can observe in figure 2.11, only the reconstruction results are
different. Indeed, the reconstructed source using temporal smoothing (figure 2.11.b)
looks more like the one recorded by SEEG (figure 2.11.c). No slow waves seem to
be observed, contrary to the initial pipeline (figure 2.11.a). Moreover, the top of the
spike perfectly matches the time sample of the maximum scalp activity (represented
with the dashed line). We can conclude that the Temporal-Smoothing-based beam-
forming approach is more efficient than traditional beamforming to reconstruct real
sources activity.

2.6 Conclusion

In this chapter, the main motivation is to give insights into how best to exploit beam-
forming to solve the BSI-EEGproblem. Indeed, as stated before, beamforming is used
mainly in MEG, but they are currently understudied in EEG. Another key question
addressed here concerns the selection of the best beamforming pipeline by the ana-
lyzed data. Indeed, existing studies propose to evaluate the beamforming filter calcu-
lation or either the post-processing method, but never to assess the efficiency of the
global beamforming pipeline, namely the preprocessing, the filtering (beamformer)
and the post-processing.Hence,wefirst present a taxonomyof possible beamforming
pipelines by giving crucial theoretical details. After that, a prior selection of the ad-
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equate pipeline candidates is selected to be evaluated in the BSI-EEG context. More
precisely, the choice of the beamformer pipelines is underpinned on practical con-
siderations, such as i) the lack of knowledge of the position and the number of SOIs
in EEG context, ii) the need or not of an additional reference and iii) the ability of
the beamformer filter to both localize and reconstruct the SOIs. Some new improve-
ments have also been proposed to complement existing ones. They consist of a new
post-processing metric, named EEG similarity, which is particularly suitable in the
EEG context, and a new beamformer filter that promotes the smoothness of the re-
constructed SOIs.

In this thesis, the epileptic EEG context is chosen to study the behaviors of different
pipelines. More precisely, a comparative analysis is first performed on realistic sim-
ulated epileptic EEG data to help us determine the most efficient pipeline. The result
is that Ledoit’s shrinkage method, coming from the random matrices theory, gives
the best results as a preprocessing. The AOLS beamformer, which uses another form
of shrinkage, also improves the quality of results for uncorrelated sources. Finally,
the proposed EEG similarity metric offers the best localization results. This trio ap-
plied to real data allows an exact localization of the EZ. However, we noticed that real
data’s estimated source time courses are not as smooth as the ground truth, hinder-
ing correct localization. To solve this problem, the new Temporal-Smoothing-based
beamforming pipeline, applied to real data, shows a significant improvement in re-
constructing epileptic sources in all experiments.

Even if the best pipeline gives very promising results both in simulated and real data,
all experiments assume an equivalent source dipole model. However, as stated in the
introduction and chapter 1, the distributed sourcemodel ismore physiologically suit-
able for SOIs localization and reconstruction in a different practical situation, such
as epilepsy. The dipole equivalent model has been used in this chapter to under-
stand and review the beamforming methods since it was designed for it. Despite
the extensive review on the subject in section 2.2, it is troublesome to find a suitable
beamforming method dedicated to distributed sources that do not require challeng-
ing prior knowledge, such as the SOIs position. Regarding the LCMV beamformer,
which can theoretically manage both punctual and distributed sources, the results
reveal a constant location bias even for advantageous scenarios. For this reason, this
method is considered unreliable and is excluded as a valid candidate for distributed
sources-based beamforming. However, we cannot rule out all beamforming meth-
ods. Indeed, in contrast to most existing BSI methods, they allow us to efficiently
reconstruct the time course of the SOI with a mathematical solution usually straight-
forward and analytical. Therefore, we hypothesize that the extended source-based
beamformingmethodwill improve confidence in the estimated source. Thus, the ob-
jective of the next chapter will be to propose a new way to localize and reconstruct
extended sources with beamforming.
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Chapter 3
Beyond traditional beamforming
methods: distributed source
localization

As discussed in the previous chapter, beamforming methods efficiently estimate the
time course of the sources in the equivalent dipole source model. The solution of the
mathematical problem is usually straightforward and analytical. Its main flaw is its
sensitivity to interference generated by correlated sources. Solutions have been pro-
posed to limit their effect, but they are challenging to set up in the context of spatially
distributed sources since they require strong priors such as the location of the dipoles
within the SOIs (see section 2.2.2). Moreover, the beamformer specially designed to
handle such a model of sources, or LCMV, requires to invert a rank-deficient ma-
trix. As we underlined in the previous study, the algorithm proposed to solve such a
problem presents a localization bias.

On the other hand, non-parametric methods are compatible with the distributed
sourcemodelwithout the knowledge of any obligingpriors. Someof themalso present
a straightforward and analytical solution to the inverse problem like wMNE and
sLORETA. However, it has been shown that these methods are not the most suitable
for the epileptic source location problem as they promote a smooth spatial distribu-
tion. On the contrary, regularized least-squares methods promoting sparsity such as
Variation-Based Sparse Cortical Current Distribution (VB-SCCD) [59], Elastic Net
[164], Source Imaging based on Structured Sparsity (SISSY) [62] give promising re-
sults. These require more complex algorithms to be solved, but the subject has been
widely covered, and nowadays, they are pretty simple to implement. The advantage
of regularization methods is that the more constraints they present, the better they
work provided a correct trade-off between each constraint, i.e., the hyper-parameters
are correctly tuned (see section 2.5.1). Hence these questions: could such approaches
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be more efficient by regularizing them in a beamforming way? And how does such
a method differ from traditional methods in terms of efficiency?

In order to answers those questions, this chapter is organized as follows: in section
3.1, we formulate the assumptions on the distributed source model made through-
out this chapter. Section 3.2 presents a new distributed brain source method named
SABLE (Sparsity And Beamforming for brain source Localization and Estimation)
that showshowboth beamforming steps (i.e., filtering and localization) can bemerged
to deal with spatially distributed sources. A preliminary set of numerical experi-
ments show the promising good behavior of SABLE in the context of epilepsy. Sec-
tion 3.3 is devoted to the proposition of an adequate pipeline to compare SABLEwith
other methods. This pipeline is inspired by those implemented in the software Brain-
storm. Nevertheless, it proposes innovative solutions to problems occurring in the
analysis of EEG data. Finally, in section 3.4, the localization results of Sparsity And
Beamforming for brain source Localization and Estimation (SABLE) will be com-
pared against three BSI methods, namely wMNE, sLORETA and coherentMaximum
Entropy on the Mean (cMEM), on refined simulated data and real epileptic data.

3.1 Assumptions for the distributed source model

Compared to the previous chapter, we focus on an optimization problem rather than
on statistical prior. Thus, we adopt a different notation system using vector and ma-
trix form to ease the reading. Let x be an N -dimensional EEG vector recorded at a
given point in time. This vector can be assumed to stand for one realization of an
N -dimensional random vector with covariance matrix denoted by Cx such as:

x = Gs+ ν (3.1)

where s denotes the corresponding L-dimensional brain source activity vector and
where ν stands for an instrumental noise vector. G remains the so-called leadfield
matrix and the source orientation is still fixed to the normal of the cortical surface.
For the distributed source case, if we consider the hyper-synchronicity of the dipoles
into small delimited cortical regions named patches, the EEG system can be further
developed such as:

x = Gs+ ν

=
K∑

k=1

Lk∑
ℓk∈Ωk

g(θℓk
)s(θℓk

) +
∑

ℓ/∈∪K
k=1Ωk

g(θℓ)s(θℓ) + ν

=
K∑

k=1
G(e)

k s
(e)
k +G(b)s(b) + ν (3.2)
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= G
K∑

k=1
ϕks̄(e)

k + ν ′ with ϕks̄(e)
k = s(e)

k

whereΩk is the set of indexes of the dipoles that belong to the k-th epileptic extended
source. s(e) is the Lk-dimensional epileptic source activities vector of the k-th patch
and s(b) is the complementary background activity vector. G(e)

k is the matrix whose
columns are the leadfield vectors of the epileptic dipoles inside the k-th distributed
source. Equivalently G(b) is a matrix whose columns are the leadfield vectors of the
background dipoles. If the electrical hyper-synchronicity of the epileptic sources is
assumed (section 1.2), s(e)

k can be seen as a fixed time series allocated to different
positions. Therefore, it can be considered as the product of two parameters, one for
the time series and the other with the spatial information. This assumption is at the
basis of the last proposition where s̄(e)

k is the mean electrical activity of the k-th SOI
and where the L-dimensional vector ϕk is a sparse vector that informs us on the
spatial support of that particular SOI.

Figure 3.1: Schematic representation of the new proposed system with the role of ϕk.

The new method presented in this thesis aims at estimating both the spatial support
ϕk of all K epileptic sources and their mean activity s̄k. For now, we suggest to use
a deflation scheme to iteratively estimate the SOIs as we already did for beamform-
ing localization methods (see section 2.3). As depicted in figure 3.1, ϕk will delimit
Region(s) Of Interest (ROI(s)) that can be spatially distant; hence, K represents the
number of SOIs within the electrical activity is the same instead of the number of
ROIs.
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3.2 SABLE: a novel distributed source beamforming method

In this section, the novel method called SABLE is presented and evaluated on a pri-
mary set of simulations to answer the first objective of this chapter. In particular, we
will rely on the new mathematical model elaborated above and on the experimental
pipeline presented in the previous chapter (see section 2.4).

3.2.1 Methods

At first, lets us recall the principle of the UG beamforming and present the SISSY
approach on the basis of which SABLE is formed. As an aside, the UG beamforming
has been chosen over the AOLS beamformer as its optimization problem is the most
convenient handle for an initial proposition.

Unit Gain beamforming

Beamforming methods aim at creating a spatial filter w(θℓ), which reconstructs the
source time course at a given position θℓ when it is applied to the EEG signals. The
classical UG method solves the following minimization problem:

min
w(θℓ)

w(θℓ)TCxw(θℓ) s. t. w(θℓ)Tg(θℓ) = 1 (3.3)

The constraint w(θℓ)Tg(θℓ) = 1 ensures that the signal coming from the position θℓ

goes through the filter without distortion (see section 2.2). However, it also allows
signals from other locations to pass through if and only if they are correlated with
the one coming from θℓ. This correlation is the cause of the source cancellation effect,
which gradually deteriorates the reconstructed correlated sources.

In order to overcome this problem, it was proposed to combine the leadfield vectors
of correlated sources [119, 120] and to calculate a single filter for these correlated
sources provided that we know their number and their location. Such an approach
cannot be used for spatially distributed sources since we do not know the position
and the number of the dipoles constituting the SOI in advance.

Once the filter is applied, localization is performed by optimizing a metric computed
from the estimated signals. In the equivalent dipole source model, we will look for
an extremum while thresholding near the extremum will be used for spatially dis-
tributed sources. The latter solution is a little abusive, but it avoids formulating the
aforementioned strong priors [142, 141, 143].
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Source imaging based on structured sparsity

SISSY is a regularized least-squares method which aims at finding the solution that
best describes the measurements in a least-squares sense. Initially named Sparse
Variation-Based Sparse Cortical Current Distribution (SVB-SCCD) [165], the SISSY
method solves the following optimization problem:

min
s

||x−Gs||22 + λ(||Ts||1 + α||s||1) (3.4)

where the L2 norm stands for the reconstruction error, where the L1 norms promote
sparsity in the (transformed) spatial domain andwhere T is the space gradient oper-
ator. This combination of L1 norms, well-known as the fused Least Absolute Shrink-
age and Selection Operator (LASSO) [166], promotes a piece-wise constant solution
containing few active dipoles with few activity differences. Hyper-parameters λ and
α play a balancing role between the three penalty terms and must be adjusted by
hand. The Alternating Direction Method of Multipliers (ADMM) [167] is used to
solve this minimization problem.

The ADMM algorithm is an efficient and straightforward algorithm for constrained
convex optimization. It is based on the idea of alternatively updating the augmented
Lagrangian variables and multipliers until convergence. Consequently, latent vari-
ables can be introduced and used to ease the update computation, which the origi-
nal author of SISSY chose to deal with the L1. Compared to others [62], SISSY was
found to facilitate source separation and to better estimate the source spatial extent.
Moreover, this method does not need priors on the source number/position.

3.2.2 The proposed SABLE method

The SABLE method aims at taking advantage of both techniques. Then it was de-
signed by i) merging both steps of the beamforming procedure (i.e., filtering and
localization) and ii) modeling the hyper-synchronous nature of the activity within
a SOI. This idea led us to consider the following minimization problem:

min
w,ϕ

wTCxw+λ1||x−Gs||22+λ2(||Tϕ||1 + λ3||ϕ||1)

s. t. s = ϕs̄, s̄ = wTx and wTGϕ = 1 (3.5)

where λi is the i-th penalty parameter and ϕ is a sparse vector that informs us on the
spatial support of one of the SOI. In our first set of simulations, λ1 will be set to 1 in
order to give the same weight to both steps of the UG procedure (i.e., filtering and
localization). We decided to solve the problem (3.5) using the ADMM optimization
technique. Then let us consider the following augmented Lagrangian function:
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Lρ,λ(w,ϕ,ψ,γ,u,v,z) = wTCxw +λ1 ||x− ḡwTx||22
+λ2||ψ||1+λ2λ3||γ||1+u(wTḡ − 1) + vT(Tϕ −ψ) (3.6)

+zT(ϕ − γ) + ρ

2(||wTḡ − 1||22 + ||Tϕ −ψ||22 + ||ϕ − γ||22)

where ρ stands for a penalty parameter, ḡ = Gϕ is the average leadfield vector and
u ∈ R, v ∈ RP and z ∈ RL are the scaled Lagrangian multipliers. Note that both con-
straints s = ϕs̄ and s̄ = wTxwere directly inserted into the penalty term ||x−Gs||22.
In addition, two latent variablesψ ∈ RP and γ ∈ RL were used to replace Tϕ and ϕ,
respectively, in order to split the initial minimization problem. The augmented La-
grangian function (3.6) is then alternativelyminimized using the following updating
rules:

wn+1 =
[
2λ1ḡ

T
n ḡn ⊗ xxT + 2Cx + 2ρḡnḡ

T
n

]−1[
2λ1xx

Tḡn − ρḡnuT
n + ρḡn

]
ϕn+1 =

[
2λ1G

TG⊗wT
n+1xx

Twn+1+ρ(GTwn+1w
T
n+1G) + ρ(T TT + Id)

]−1[
λ1G

TxxTwn+1 +GTwn+1(ρ − un) + T T(ρψn − vn) + (ργn − zn)
]

ψn+1 =proxλ2
ρ

(
Tϕn+1 + 1

ρ
vn

)
(3.7)

γn+1 =proxλ2λ3
ρ

(
ϕn+1 + 1

ρ
zn

)
un+1 =un + ρ(wT

n+1ḡn+1 − 1)

vn+1 =vn + ρ(Tϕn+1 −ψn+1)

zn+1 =zn + ρ(ϕn+1 − γn+1)

Note that ϕ is initialized as a unit vector with all its entries equal to 1, which implies
that all positions are eligible candidates at the beginning. The update of the latent
variables ψ and γ is formulated using the proximity operator defined as:

proxβ (a) = argmin
b

{1
2 ||a− b||22 + β||b||1

}
(3.8)

The proximity operator of the L1 norm is well-known as the soft thresholding op-
erator, which is a shrinkage operator (i.e., it moves a point toward zero) [168]. The
SABLE algorithm finishes either after convergence of the variables w or ϕ, or if a
maximum number of iterations is reached.

3.2.3 Primary results on simulations

In this part, the performance of the SABLE algorithm is studied on realistic simulated
epileptic interictal EEG signals compared to the UG and SISSY methods.
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Experiment and performance criterion

The simulated data are generated following the model presented in equation (1.1).
First, a surface head model is computed from a T1 MRI of a reference patient with
a segmentation method. The head tissues have been separated into 5 boundaries:
grey/white matters, inner/outer skulls and scalp. The source space corresponding to
the middle of the grey matter is composed of L = 15002 vertices on each of which a
current dipole oriented perpendicularly has been assigned. The source matrix is cre-
ated using signals generated using the neural mass model [31]. The epileptic source
region is modeled by epileptic patches including 33 grid dipoles on the right gyrus
parietalis inferior with a part inside the superior temporal sulcus. The remaining
dipoles are distributed among 1000 scouts with the same background activity within
a scout and uncorrelated activity between scouts. The scalp EEG of N = 257 elec-
trodes, T = 5120 samples and the sampling rate of 512 Hz is generated. In addition,
to assess the efficiency of the proposed method, different intensities of background
EEG are added to the simulated epileptic data leading to different values of SNR
(SNR ∈ {−10, 0, 10} dB), and all presented results are averaged over 25 Monte Carlo
runs. Regarding the hyper-parameters involved in the methods, λ1 is fixed to 1, λ2

is adjusted by hand to a value proportional to the noise level and λ3 is set to 0.07 as
recommended in [62].

Concerning the performance criteria, we first determine the active patch by thresh-
olding the intensity of estimated sources at its sample with maximal power, which
corresponds to the maximum of the epileptic spike. To do so, thresholding is applied
for all methods in which all sources with an intensity superior or equal to 75% of the
absolute maximal intensity are retained. Then, the Dipole Localisation Error (DLE)
is used to quantify the source localization accuracy of the compared methods. The
DLE presents a measure of similarity between the original and the estimated source
configuration. The DLE is defined as:

DLE= 1
2LM

∑
m∈ΩM

min
k∈Ω

M̂

||θm−θk||2 + 1
2LM̂

∑
m∈Ω

M̂

min
k∈ΩM

||θm−θk||2

whereΩM andΩM̂ denote the original and the estimated sets of indexes of all dipoles
of an active patch, respectively. LM and LM̂ are the numbers of original and esti-
mated active dipoles. θm is the position of the m-th source.

Computer results

The DLE results of the three approaches, namely SABLE, UG and SISSY, are pre-
sented in Table 3.1 as a function of SNR. As it can be seen, SABLE clearly outper-
forms the other methods for SNRs equal to 0 and 10 dB. For an SNR value of -10
dB, the results of SABLE and UG are not satisfactory (even if the DLE of SABLE is
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better than the one of UG). The bad performance of SABLE for weak SNR values is
mainly due to the beamforming term included in its cost function. In other words,
the hyper-parameters λ1 and λ2 should be tuned more finely in order to best balance
the localization step. Figure 1 illustrates an example of BSI results obtained with the
different methods for an SNR value of 10 dB. Obviously, the SABLE algorithm pro-
vides a better localization than the SISSY approach which tends to under-estimate
the patch. Besides, figure 3.1 shows the difficulties encountered with the UG algo-
rithm to handle the distributed source, even if we consider a set of estimated sources
associated with the maximum selected by the thresholding step.

Table 3.1: Performance of SABLE in terms of DLE

DLE

Scenario -10dB 0dB 10dB

UG 25.48 16.91 6.98

SABLE 16.54 2.97 1.88

SISSY 4.98 5 4.96

Figure 3.2: Source localization results at the output of UG, SABLE and SISSY for an SNR value of 10dB.

Conclusions

In this section,we propose a newmethod, named SABLE, for EEG-based brain source
imaging. The SABLEmethod establishes a bridge between beamforming approaches
and regularized least-squares methods promoting sparsity. The comparative study
conducted using realistic EEG data, in the context of drug-resistant epilepsy tends
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to show that SABLE is a promising method for the localization of brain spatially dis-
tributed sources. In order to mature this new method, we need to propose a refined
pipeline to extend these preliminary results. To this aim, we will rely on method-
ologies already embedded in a computer application that is majorly adopted by the
neuroscience community. That way, we approach the real conditions of applications
and the possible diffusion of the SABLE algorithm. Our attention went to Brainstorm
thanks to its ease of use and its data management system among the many existing
softwares [169]. But before even considering the diffusion of this new method, we
must first evaluate its performances compared to reference methods. The following
section is dedicated to present the pipeline that we decided to apply on SABLE and
the inverse method chosen from Brainstorm for a preliminary comparative study.

3.3 Toward the SABLE pipeline and the comparative study

The Brainstorm software [40] is a user-friendly open-source tool that brings together
a large community of active users. From a technical point of view, it gathers essen-
tial functions for analyzing EEG and MEG data [170], such as i) the management
of the database, ii) the resolution of the forward problem (i.e., the calculation of the
leadfield matrix) and iii) the display of the results on a 3D mesh. The latter includes
thresholding and analysis tools that facilitate interpreting the results. In fact, we used
them to produce most of the imaging results in this thesis. The application also en-
capsulates external libraries like Brain Entropy in space and time (BEst) [171], MNE
[172, 173] or OpenMEEG [81, 174]. In this section, we aim at realizing a compara-
tive study between the mature BSI methods implemented in Brainstorm and both
experimental methods SISSY and SABLE to assess their localization efficiency.

3.3.1 BSI methods of the Brainstorm software

Three BSI methods of Brainstorm have been retained: wMNE [53], sLORETA [55]
and cMEM [175, 176]. The first two methods are classical and very used in EEG.
They propose a quick and direct solution to the inverse problem, but the latter is not
always physiologically plausible. As far as cMEM is concerned, it presents an exciting
approach using parcellization and probability distribution to estimate the activation
map of the brain. The smoothness is local and restricted inside the parcel, making it
more physiologically plausible for locating epileptic sources.

Regarding the remaining BSImethods of Brainstorm, those specially designed for the
equivalent source model have been discraded since they are not appropriate to the
current BSI problem (see results of UG in the previous section). For the beamforming
method LCMV, the Brainstorm implementation has not been retained as it strongly
differs from the implementation given in the original paper. Indeed, the proposed
beamformer seems to have been coded as a UG beamformer. Both remaining entropy
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methods wMEM [177] and rMEM [178], from the BEst library, are not considered
since they use priors based on wavelets that are out of the scope of this thesis.

Aftermastering the software structure, the Brainstormmethods can be called froman
automated script regrouping the other methods and the other steps of the pipeline.
Before presenting more deeper the pipeline, let us recall the assumptions and reso-
lution process used by the Brainstorm methods.

wMNE

The wMNEmethod originates from the MNE [53] method, the first inverse problem
method introduced for BSI. It has been proposed as an improvement to correct the
depth bias of MNE, which favors the superficial source over the deep sources. To
circumvent this bias, wMNE imposes a weight on each leadfield vector to equalize
their energy. It is a methodology similar to the array gain beamforming presented
in the previous chapter (see section 2.2). From an optimization point of view, it is a
regularized least-squares based on the L2 norm only contrarily to SISSY:

min
s

||x−GKs||22 + λ||s||2 (3.9)

whereK ∈ RL×L is the diagonal weight matrix of leadfield whose element Kℓ1,ℓ2 are
defined as:

Kℓ1,ℓ2 =


1

||g(θℓ1 )||2 if ℓ1 = ℓ2

0 otherwise
(3.10)

Unlike the L1 norm, which promulgated sparsity, the L2 norm in the constraint pro-
motes a smooth spatial distribution. The solution is analytical and, in the case of
whitened data, has the following form:

ŝwMNE = KTGT(GKKTGT + λIE)−1x (3.11)

sLORETA

The sLORETA method is a topographic method, meaning that it does not aim at
reconstructing the true source activity but rather a property map of of the latter. It
relies on the wMNE solution to highlight the source standardized current density.
The proposition (3.11) can be reformulated as:

ŝwMNE = W T
wMNE x with W T

wMNE = KTGT(GKKTGT + λIE)−1 (3.12)

whereWwMNE can be called the filter or the kernel of wMNE. The main idea behind
sLORETA is that this filter brings some variability to the original source [73]. Indeed,
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the resolutionmatrix generated by the productW T
wMNEG leads to spread the sources

since it corresponds to the estimated source variance. Thus, by dividing the filter by
each variance induced by the resolution matrix, sLORETA reconstructs a standard-
ized version of the sources:

msLORETA = W T
wMNEK

′x (3.13)

where m symbolizes a SOI metric like NAI in beamforming (see section 2.2.3) and
K ′ ∈ R

T ×T is the diagonal weight matrix whose elements K ′
ℓ1,ℓ2

are defined as fol-
lows:

K ′
ℓ1,ℓ2 =


1

|wwMNE(θℓ1 )Tg(θℓ1 ) | if ℓ1 = ℓ2

0 otherwise
(3.14)

Similar to the UNG and Stdr beamforming filters, sLORETA is a method which can
be also used as post-processing.

cMEM

cMEM is a stochastic method [179] that treats the measurements, the sources, and
the noises as realizations of stochastic random processes. In this context, the recon-
struction of the sources consist in estimating the source distribution. The EEG system
is rewritten as follows:

x =
∫
Gsdp(s) (3.15)

where dp(s) is the source probability distribution. For the generic case of the Max-
imum Entropy on the Mean (MEM) framework, the goal is to select a distribution
dp(s) that provides the maximum missing information carried by the data or µ-
entropy [180, 175, 176, 181]. The estimation of the source distribution dp̂(s) is achieved
by optimizing a convex function. The primary interest of this method is that we can
consider the distribution probabilities of the sources as the product of a probability
density f(s) and a reference distribution dv(s). The latter promotes source proper-
ties assumed by the user. The contribution of the cMEMmethod is twofold. First, the
parcellization of the brain into P patches [182, 181] allows us to consider dv(s) as a
joint probability:

dv(s) =
P∏

p=1
dvp(sp) (3.16)

where dvp(sp) is the distribution for the parcel p. Second, the distribution of each
parcel is defined as a Bernouilli-Gaussian distribution [183, 184]:

dvp(sp) = (1 − ρp)δp + ρpN (µp,Cp)(sp)dsp (3.17)

where ρp is the probability of activation of the parcel p. δp and N (µp,Cp) provide
the parcel distribution: a Dirac distribution that shuts down the parcel or a Gaussian
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distribution of mean µp and variance Cp, respectively.

3.3.2 Preprocessing

Our goal is to compare the localization results of thematuremethodswMNE, sLORE-
TA and cMEM with the experimental SISSY and SABLE techniques. Then, we posi-
tion ourselves as a standard user for the former and as an expert user for the lat-
ter. Hence, the pipelines proposed in Brainstorm remain untouched for the wMNE,
sLORETA and cMEM methods, but the used variables are identical. In this part, we
describe the pipeline used upstream of SISSY and SABLE. This pipeline is inspired by
those implemented natively in Brainstorm for cMEM. The two exceptions are i) the
exclusive use of whitening for wMNE and sLORETA which is essential for the esti-
mation of the hyper-parameter 1 and ii) the normalization preprocessing for cMEM,
SISSY and SABLE that relies on a preliminary calculation of the wMNE solution.

Defining an extendedportion of signal Ona longEEG recording session, thewhole
signal is not necessarily of interest. Indeed, some parts contain artifacts or do not
present SOIs. In this case, the manipulator can extract some portions of the raw sig-
nal and concatenate them to create a mixed signal. For our application, the signals
of interest are the interictal spikes. However, the direct junction of both portions can
lead to jumps in the data, which is not aesthetic and even misleading. We propose
an alternative solution called cross-fading. It is a blending method used in music to
smooth the transition between two audio signals. Assuming that both signals have
the same mean and variance [185, 186], the cross-fading operation progressively re-
duces the end of the outgoing signal. It increases the beginning of the ongoing signal
without loss of the signals characteristics. This operation corresponds to the applica-
tion of complementary weights on both signals, as shown in figure 3.3. The weights
applied on both signals are determined using specific functions such as tangent or
linear that respect some desire constraints (see [185] for details).We recommend tak-
ing at least a portion of signal of 0.5s to combine both signals for acceptable results.
Preferably, this fusion should be done on a portion that has not any grapho-element
of interest (i.e., avoiding the spike fusion). In practice, we observe slight changes in
the values of the noise SCM as well as in the distribution of its eigenvalues.

Removing Corpus Callosum In chapter 1, we stated that the corpus callosum was
only composed of nerve fibers which make the junction between both cerebral hemi-
spheres. Those nerves are wrapped into a myelin sheath, an insulating material that
increases the transmission of neural activity. Therefore, there is a very lowprobability
that the sources which generate the EEG activity are at this location. By default, the
segmentation method represents the corpus callosum because it allows us a closed

1. The whitening function is commented in the cMEM solver.

68 Chapter 3 Beyond traditional beamforming methods: distributed source
localization



Figure 3.3: Example of signal mixing using cross-fading technique between two baseline signals on one
electrode.

3D structure that can be easier to manipulate for specific algorithms.

However, for the studied inverse problem, it does not seems to be essential. On the
contrary, since the dipoles constituting this anatomical structure are deep, they have
an insignificant leadfield vector. The removal of such dipole allows us to limit the ap-
pearance of artifacts due to low leadfield norms. Moreover, we decrease the number
of dipoles to estimate and thus increase the computational speed and the condition-
ing of inverse problem solutions.

Applying average reference Regarding the conditions of acquisition of real data,
the EEG headset records the difference of potentials according to a reference elec-
trode. As for the leadfield matrix, it is computed according to an infinite reference.
Thus, we have to provide the same reference the EEG data and the leadfieldmatrix in
order to have a valid mathematical system. The question of a good re-referencing is
subject to discussion [187]; we opt for an averaged re-referencing like in Brainstorm.
The average referencing corresponds to an artificial reference obtained by subtracting
the time signal averaged over all sensors from the data of each channel. The following
development shows how we achieve an identical referencing between the elements:

X257 = G∞S
x1 − x257

x2 − x257
...

x257 − x257 = 0

 =


g1 − g∞

g2 − g∞
...

g257 − g∞

S
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x1 − x257

x2 − x257
...
0

 − 1
N

N∑
n=1

(xn − x257) =


g1 − g∞

g2 − g∞
...

g257 − g∞

 − 1
N

N∑
n=1

(gn − g∞)S


x1 − x257 −

∑N
n=1

1
N xn + x257

x2 − x257 −
∑N

n=1
1
N xn + x257

...
−

∑N
n=1

1
N xn + x257

 =


g1 − g∞ − 1

N

∑N
n=1 gn + g∞

g2 − g∞ − 1
N

∑N
n=1 gn + g∞

...
g257 − g∞ − 1

N

∑N
n=1 gn + g∞

S


x1 −

∑N
n=1

1
N xn

x2 −
∑N

n=1
1
N xn

...
x257 −

∑N
n=1

1
N xn

 =


g1 − 1

N

∑N
n=1 gn

g2 − 1
N

∑N
n=1 gn

...
g257 − 1

N

∑N
n=1 gn

S

Xavg = GavgS

where X257, G∞, Xavg and Gavg represent the data matrix referenced on the 257-th
electrode, the leadfieldmatrix referenced to infinity and their equivalent re-referenced
on the average, respectively. xi and gi are the data vector and the leadfield vector for
the electrode i, respectively. It should be noted that the average reference is sensible to
the dipole source orientation and the electrodes coverage [96]. There are potentially
other solutions to improve this preprocessing method, but this is not the subject of
this thesis.

Covariance matrix computation All methods require either the noise or signal co-
variance matrix. Therefore, we provide the best estimates of these matrices, i.e., the
SMC of noise and signal refined with Ledoit’s shrinkage method, as argued in Chap-
ter 2.

Normalization by value In optimization, it is well-accepted that problems with
normalized inputs are easier to solve. An example that often comes up by means
of machine/deep learning is the gradient descent, in which the convergence rate of
gradient descent is linear and depends on the condition number of theHessian [188].
Hence, the problem is better bounded when the ratio of the largest and smallest
eigenvalues of the Hessian is small. ADMM uses a gradient ascent to update the La-
grangian multipliers, which will influence the updates of the other variables. There-
fore, their convergence rate is essential. Otherwise, one constraint that converges
faster than the other may take the lead and result in an over-constraint solution. The
normalization suggested in the cMEM pipeline proposes to scale the system as fol-
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lows:

x

||G||∞||s||∞
= G

||G||∞
s

||s||∞
+ ν

||G||∞||s||∞
(3.18)

x̃ = G̃s̃+ ν̃ (3.19)

The maximum amplitude of the sources ||s||∞ can be estimated using the solution of
the wMNE method. Indeed, this analytical solution method is not subject to con-
vergence speed problems. Naturally, the inverse problem method will estimate a
normalized source activity which we will have to denormalize through the post-
processing.

New rank selectionmethod Asdefined in section 3.1, SABLE is a deflationmethod.
It means that each source is successively estimated and removed from the data until
no more SOI is left. However, knowing the number of SOI in advance is challeng-
ing to evaluate and a few strategies have been proposed. In the cMEM pipeline, the
number of SOI is considered to be equal to the number of eigenvalues whose sum
constitutes 95% of the total sum of the eigenvalues. This criterion, called inertia, is
efficient, but we observed that it overestimates the rank when the eigenvalues dis-
persion is narrow. Thus, we propose in this thesis a new measure inspired by the
field of RMT (RandomMatrix Theory), which fits our mathematical model and give
a more precise thresholding value. Let us make the following assumptions :

A.3.1 The empirical spectral distribution of the eigenvalues of the Gaussian random
SCMmatrix is close to a deterministic distribution when N

T → c > 0 for N, T →
∞;

A.3.2 The deterministic distribution of the eigenvalues of the Gaussian random SCM
matrix corresponds to the Marchenko-Pastur (M-P) distribution;

A.3.3 Eigenvalues of non-Gaussian activities lie outside theM-P distribution support;

A.3.4 The EEG datamatrix in our application is a Gaussian randommatrix perturbed
by small rank matrices containing non-Gaussian activities.

AssumptionA.3.1 is one of the bases of RMT that starts in nuclear physics. The empir-
ical spectral measure of the eigenvalues of a Gaussian random matrix is close to the
semi-circle distribution [189]. For a covariance matrix, which is considered a partic-
ular case of the Wishart matrix [190, 191], the empirical distribution has been shown
to follow the M-P distribution [192], hence the assumptionA.3.2. As the mathemati-
cal demonstration is long, we accept those assumptions without evidence other than
the vast bibliography. We recommend the book [193] with almost complete mathe-
matical development to introduce such a matter.

Assumption A.3.3 extends the first ones to the analysis of real signals and defines
what we called the "spiked models" (unrelated to interictal spikes). In this model,
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a small number of eigenvalues are outside the M-P support with a multiplicity 1
[194]. Those eigenvalues represent any activities that are not Gaussian and possess
a significant higher-order statistic value (skewness, kurtosis).

Assumption A.3.4 is compatible with our mathematical model (3.2) if we consider
that ν ′ is a randomGaussian vector [195, 196, 197]. It should be noted that some high
eigenvalues coming from structured noises can appear. In the case of uncleaned data
with muscle activity, we will stray further from the spiked model and assumption
A.3.3. In that case, the problem is trickier [2] and will be reviewed in another work.
For the moment, these assumptions are verified and the number of SOI can be ob-
tained by counting the number of eigenvalues outside the M-P distribution support
of the data SCM.

The M-P distribution p is defined as follows:

p(ΣCx
i ) =

 1
2πΣCx

i
cσ2

√
(b − ΣCx

i )(ΣCx
i − a) ΣCx

i ∈ [a, b]

0 otherwise
(3.20)

where ΣCx
i is the i-th eigenvalue of the data SCM and a = σ2(1−

√
c)2 and b = σ2(1+

√
c)2 are the limit of the support of theM-P distribution. c is the number of electrodes

divided by the number of time points already defined for Ledoit’s shrinkagemethod.
Finally, all the eigenvalues superior to the value of b can be considered as SOI. The
choice/estimation of the variance value (σ2) will influence the threshold, we prefer
to take the maximum variance of the data SCM (σX). In that case, we can assure
to take only the most essential SOI. If we take the maximum variance of the noise
SCM (σN), some structured noises will be considered. The application of this new
selectionmethod is illustrated in figure 3.4 in the case of one SOI and a few structured
noises.

Figure 3.4: Eigenvalues repartition and Marchenko-Pastur distributions depending on the considered
variance.
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3.3.3 Post-processing

Oncemethods have been used, an estimate of the source activities or a statistical map
is obtained. Post-processing methods are used to ensure a correct reconstruction of
sources and highlight helpful information on the SOI.

Source reconstruction At the end of each method, we obtain:

— The kernel for wMNE and the standardized kernel for sLORETA;

— The reconstructed sources for SISSY;

— The probability distribution of the sources for cMEM;

— The filter and the spatial support for SABLE.

In order to reconstruct the sources for wMNE and sLORETA, we have to apply the
kernel on the data using (3.12) and (3.13). For cMEM, we use the output of the
method without modification. For SABLE, we reconstruct the source time series at
each position using the following equation:

ˆ̃s =
K∑

k=1
ϕkw

T
kx̃ (3.21)

Denormalization During the preprocessing step, input variables have been nor-
malized for cMEM, SISSY and SABLE. For the former, the post-processing is already
handled inside the BEst software. For SISSY and SABLE, the true values of the sources
are restored by using the amplitude previously normalized (see previous section
called normalization by value):

ŝ = ˆ̃s||s||∞ (3.22)

3.4 Results

In this part, the performance of the SABLE algorithm is studied on realistic simu-
lated epileptic interictal EEG signals compared to the wMNE, sLORETA, cMEM and
SISSYmethods. The simulation pipeline has been refined in order to simulate a more
complex scenario with multiple ROIs with hyper synchronized activity.

3.4.1 Datasets and performance criteria

Generation of simulated data

In the same way as the previous simulations, we simulate a 257 channels EEG data
(dense-EEG) using a realistic head model, representing the brain, the skull and the
scalp, whose intermedium surfaces were extracted from the segmentation of a sub-
ject’s anatomical 3D T1-weighted MRI. The source space consisted in a mesh made
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Figure 3.5:Data used in the simulations: a - Time courses and positions of the used extended sources, b
- Example of real interictal EEG data, c - Examples of simulated interictal EEG data once the spikes have
been extracted and averaged. When identifiable, interictal spikes are indicated using a black arrow.

of 15002 vertices before the removal of the corpus callosum obtained from the seg-
mentation of the grey-white matter interface from the same anatomical T1-weighted
3D-MRI using the software BrainVisa [155]. The source space mesh has been refined
using the iso2mesh algorithm [156] which ensures that each vertex covers the same
brain surface approximately. The time course of each source, was provided by the
output of a computational neural mass model [33, 31], in which parameters can be
adjusted to generate either background-like activity or interictal-spikes. Using this
realistic head model, the forward problem was then numerically calculated for each
vertex using BEM [42, 40] to obtain the lead field vectors contained in the matrix G
(257 × 15002), which gives the contribution of each dipole of the mesh at the level of
257 scalp electrode positions.

In this set of simulation, the epileptic source region is modeled by three epileptic
patches including 50 grid dipoles each on the middle occipital gyrus, the inferior
parietal gyrus and the triangular part of the inferior frontal gyrus. The remaining
dipoles are distributed among 1000 scouts with the same background activity within
a scout anduncorrelated activity between scouts. In addition, special scaling has been
applied to obtain a scenario similar to the case of real data. Indeed, the samples were
scaled so that i) the maximum value of the spike is approximately 100µV and ii)
the maximum value of the background is at half the height of the spike. The corre-
sponding SNR for such a scenario ranges from -13db to -10dB, validating the previ-
ous chapter assumption. From this simulated EEG data, each spike was selected and
centered in a 1 second window and all widows were averaged to improve the SNR
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like for real data. All presented results are averaged over 50 Monte Carlo runs. The
hyper-parameters involved in SISSY and SABLE have been tuned by hand, including
λ1.

Performance criteria

The localization results are analyzed from a different angle using various qualita-
tive and quantitative criteria for this last experiment. First, the overall efficiency will
be assessed using the Receiver Operating Characteristic (ROC) curves and the Area
Under Curve (AUC). After a reasonable choice of thresholding values, the analysis
will be refined using criteria that will evaluate the similarity (Dice) [198, 199], the
localization error (DLE) [200, 62] and the Spatial Dispersion (SD) [201, 202] of the
estimated extended source. The remaining energy outside the estimate will also be
considered using the Ratio of distant Spurious Activity (RSA) [203]. Finally, we pro-
pose a new criterion that informs on the energy distribution between the patches.

ROCandAUC The ROC is a graphical representation of the classifier efficiency as a
function of the variation of a specified parameter. In this experiment, the parameter
will be the coefficient of amplitude thresholding. For each coefficient, we compute
the number of correctly identified source dipoles (called True Positive (TP)) and the
number of source dipoles erroneously associatedwith the distributed sources (called
False Positive (FP)). Once divided by the dimension of their respective domain, they
form the True Positive Fraction (TPF) and False Positive Fraction (FPF) used to form
the ROC:

TPF = TP
#ΩM

=
LM∩M̂

LM

FPF = FP
#ΩM

=
LM̂ − LM∩M̂

L − LM

where #ΩM is the cardinal of the complement set of ΩM and where LM∩M̂ is the
number of dipoles that are both in the original and estimated sets. The interpretation
for such a criterion is qualitative as we are looking for the curve that is the closest to
the top left corner of the axis. This corner corresponds to a perfect solution of 100%
TPF for a 0% FPF. The ROC presented in the result are plotted for an FPF ranging
from 0 to 20% for visibility.

The AUC [176] is a quantitative criterion calculated from a ROC. It can be view as
a general accuracy ratio to evaluate the quality of an extended source localization
method. Indeed, a high value of AUC underlines an earlier and faster increase of the
ROC. It is estimated by using numerical integration on the whole ROC, although it is
possible to concentrate the calculations on a smaller portion. It should be noted that
a value of 80% is considered as a good detection accuracy [176, 181].

3.4. Results 75



Thresholding choices For the other analyzing criteria, the threshold value must
be fixed beforehand. Contrarily to the previous experiment (see section ), it will be
inappropriate to choose a fixed percentage of amplitude as the methods do not have
the same priors. Indeed, the source estimates can vary considerably in size and form
depending on those priors. For the sake of fairness, we propose twoways to delineate
the estimated solution:

1. By taking the thresholding value that corresponds to the best ratio TPF/FPF in
the ROC. It comes down to find the point with the minimum distance to the
top-left corner;

2. By taking a solution composed with the 150 dipoles with the highest energy.
This threshold will show which method is the fastest to locate sources.

With these twoways of thresholding, we can consider the equity of treatment of each
localization method. An equivalent TPF/FPF will be provided for both correspond-
ing threshold values alongside the other criterion.

Dice similarity coefficient (Dice) The Dice coefficient, also called Sorensen-Dice
similarity coefficient [198, 199], is a complementary criterion of the TPF and FPF
criteria. It is a statistic which evaluates the degree of equivalence between two binary
images, in our case, between original and estimated extended sources. Unlike both
other statistics, Dice considers the number of sources which are not localized by the
source localization method, i.e. False Negative (FN) value.

Dice =
2LM∩M̂

LM + LM̃
= 2TP

2TP + FP + FN

A high value of Dice underlines a good localization (TP) without overestimation
(FP) or underestimation (FN).

Dipole Localization Error (DLE) Identical to the one used in the previous exper-
iment, the DLE is used to quantify the source localization accuracy . Let us recall its
definition:

DLE= 1
2LM

∑
m∈ΩM

min
k∈Ω

M̂

||θm−θk||2 + 1
2LM̂

∑
m∈Ω

M̂

min
k∈ΩM

||θm−θk||2

A low value of DLE signifies that the estimated indexes are inside or near the original
extended source.

Spatial Dispersion (SD) The SD criterion [201, 202] measures the spatial spread
of the estimated source distribution around the original source location. Its definition
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is the following:

SD=

√√√√√∑
m∈Ω

M̂
d2

mŝ(θm)2∑
m∈Ω

M̂
ŝ(θm)2 with dm = min

k∈ΩM
||θm−θk||2

where dm is the minimal distance between the estimated source and the set of all
original sources. A low value of SD means that the dipoles with high energy are
inside the original extended source.

Ratio of distant Spurious Activity (RSA) The RSA criterion [203] provides infor-
mation on any high activity located outside the estimated sources:

RSA=

∑
m/∈Ω

M̂
ŝ(θm)2∑L

ℓ=1 ŝ(θℓ)2

A lowvalue of RSAmeans that there is nomore energy outside the estimated patches.
It should be noted that all the above criteria depend on the size of the estimated sets
of indexes, hence on the threshold method.

Patch amplitude ratio (Par) The patch amplitude ratio evaluates the energy dis-
tribution between the different distant ROIs. It provides information on the equality
of treatment of each ROI by the method and the existence of a localization bias. The
former ensures that a manipulator may not overlook potential sources due to its low
amplitude caused by a method defect. For the latter, there is a localization bias if the
100% value is missing. The metric is defined as the follows:

Park = |ŝ(θm)|
||ŝ||∞

with m ∈ ΩMk
(3.23)

where ΩMk
is the set of indexes inside the k-th patch. A high value in each patch

means that there is a common treatment. We consider that a value under 50% under-
lines a difference of treatment.

3.4.2 Simulated data

The behavior of the five chosen BSI-EEG methods is evaluated in terms of source lo-
calization with a realistic SNR value. To this aim, multiple quantitative criteria have
been proposed illustrating different aspects of the results. Two thresholding meth-
ods have been selected for the measures requiring a thresholded solution (see the
previous section for details). Criterion results have been synthesized into figure 3.6
and tables 3.2 to 3.5. Examples of thresholded results have been presented in figures
3.7 and 3.8, and in appendix B.3 with a different angle.
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Figure 3.6: The ROC criterion at the output of 5 BSI methods.

Broad analysis using ROC and AUC Figure 3.6 presents the ROC criterion of all
the five BSI-EEGmethods for FPF values ranging from 0 to 20%. The ROC depicts an
apparent distinctive behavior between the traditional methods and the experimental
ones. Indeed, for FPF values under 20%, the ROC criterion at the output of wMNE,
sLORETA and cMEM is systematically lower than that of SISSY and SABLE. The ROC
criterion at the output of SABLE has the highest start of all methods and is the first
to reach the TPF value of 80%. It is caught up soon after by the one given by SISSY
method, which will remains above for this point on. The sLORETAmethod does not
outperform wMNE in this kind of scenario, probably because there are limited deep
sources. The cMEM performance improves after an FPF value of 5%.

Table 3.2: The AUC criterion at the output of 5 BSI methods

wMNE sLORETA cMEM SISSY SABLE

AUC 91.48% 88.75% 93.79% 97.20% 96.70%

Table 3.2 quantitatively summarizes the observations derived fromfigure 3.6. sLORE-
TA shows the worst localization performance but still has an AUC of 80%, which
means that it remains a good localization method according to the hypotheses for-
mulated in the previous section. sLORETA is followed by wMNE and cMEM with
an AUC of approximately 91.5% and 94%. SISSY and SABLE present astonishing re-
sults close to 97%. The slight difference of 0.5% between these two methods can be
partially interpreted by means of figure 3.6, where a slight difference in efficiency
appears at an FPF value of 5% and remains until 100%.

As we can understand from those results, SISSY is the best method for overall lo-
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Table 3.3: Comparison of 5 BSI methods through 6 performance criteria using the best threshold

wMNE sLORETA cMEM SISSY SABLE

TPF 84.8% 82.1% 88.6% 95.3% 93.6%

FPF 14.3% 17.5% 13.9% 4.8% 4.7%

Dice 11.8% 9.5% 12.6% 31.7% 31.7%

DLE 9.36 10.79 8.90 5.40 6.28

SD 12.79 17.5 9.69 5.75 5.26

RSA 0.09 0.12 0.01 0.05 0.05

calization performances for this scenario. However, it is followed very closely by
SABLE, of which it is partially at the origin. Let us recall that SABLE presented much
worse outcomes than SISSY for an SNR value of -10dB in the preliminary results
(see section 3.2.3) due, as we claimed to the beamforming term. We can observe
that this is no longer the case by means of a fine-tuning of the hyper-parameter λ1.
Moreover, SABLE overcomes SISSY for low FPF values, which may explain its bet-
ter performance for specific fixed thresholding values. For such a scenario, methods
implemented in Brainstorm, namely wMNE, sLORETA and cMEM, present decent
overall localization results. cMEM is the best performing of the three methods and
sLORETA the worst. Now, let us fix the thresholding value to that providing the best
ratio TPF/FPF, using the ROC criterion to refine our analysis.

Quantitative results with the best thresholding Table 3.3 summarizes the perfor-
mance achieved with the different source imaging algorithms in terms of TPF, FPF,
similarity, DLE, SD and RSA for the optimal thresholding value. All values show that
SABLE and SISSY still outperform the other distributed source localization methods
for the considered scenario.

Regarding the coefficient of index proportion, table 3.3 reveals that the three tradi-
tionalmethods are groupedwith an FPF value approximately equal to 15%.However,
cMEM can be considered as the best traditional method with a TPF value of 88.5%.
On the other hand, SISSY and SABLE have a sensibility greater than 90% for only a
specificity of 5%. Those observations corroborate with the ones presented in the pre-
vious session. If we consider the similarity coefficient or the Dice criterion, which is
more reliable since, in addition to encompassing the FP and TP values, it also con-
siders the FN value. The performance values for traditional methods are below 15%,
while SISSY and SABLE exhibit a similarity value of 31.7%.

Regarding the other quantitative criteria, cMEM has the best DLE, SD and RSA com-
pared to the traditional methods. The main thing to notice is its very low value of
RSA, which means that this method presents very focused results, probably due to
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Figure 3.7: Source localization results using the best threshold at the output of wMNE, sLORETA,
cMEM, SISSY and SABLE for an SNR value of approximately -10dB (Sagittal left). The patches out-
line is represented by a plain black line.

how it assigns values to parcels. However, wemust recall that RSA is a criterion influ-
enced by the number of indexes taken into account in the thresholded solution. Thus,
it cannot be directly computed at the output of SABLE and SISSY since the latter have
about half the number of indexes that cMEM (see section 3.4.1). On the other hand,
sLORETA has a high RSA value due to a general increase in the energy of all esti-
mated dipoles induced by the normalization. For the experimental methods, SABLE
shows an SD value inferior to that given by SISSY for the same RSA value, which
suggests a more focused solution for the former. SISSY has a better DLE value than

80 Chapter 3 Beyond traditional beamforming methods: distributed source
localization



Table 3.4: Comparison of 5 BSI methods through 6 performance criteria using the 150 first indexes
threshold

wMNE sLORETA cMEM SISSY SABLE

TPF 40.9% 26.8% 31% 60.1% 64%

FPF 0.67% 0.82% 0.78% 0.45% 0.41%

Dice 40.9% 26.9% 31% 60.1% 63.9%

DLE 3.96 7.28 5.66 2.08 2.22

SD 5.65 8.71 6.45 2.14 2.02

RSA 0.51 0.72 0.31 0.23 0.14

SABLE which can be explained by the fact that SABLE will preferably locate sources
further away than extending the borders of already found sources. These observa-
tions can be supported by a direct observation of the threshold solutions provided in
figure 3.7.

Regarding the source localization solutions presented in figure 3.7, all methods ex-
cept cMEM localized the third patches correctly. We can observe a high amplitude
dipole located outside the patch underlying a localization bias for the latter. For the
first and second patches, wMNE and sLORETA cannot differentiate both patches as
they consider them like one large patch. This behavior is a problem known from
the L2 norm constraint method. For cMEM, dipoles with relatively high amplitude
(about half of the max) are located inside both patches. However, we can also ob-
serve other high activities outside the patch outlines which would be considered as
spurious distant sources for another threshold. For SISSY and SABLE, we notice that
both of them assign relatively strong energy inside both patches. However, it is more
visible for SABLE than SISSY. We can also confirm the assertion made in the previ-
ous paragraph that SISSY will preferably expand the already localized sources and
SABLE will seek new sources.

Quantitative results on 150 first indexes Table 3.4 summarizes the performance
achieved by each source imaging method for a thresholded solution containing only
the 150 dipoles with the highest amplitudes. Since the number of estimated dipoles
is now fixed, criteria depending on this value are now identical. Globally, we can see
that the SABLE method gives the best results in terms of coefficient (PSF, FPF and
Dice). Indeed, as we claimed by looking at the ROC results, SABLE is the quickest to
locate sources because it is more focused than SISSY. Moreover, it is also more con-
centrated as it presents the lowest SD and RSA values. Contrary to the results of the
previous methods, wMNE presents the best results among the traditional methods
like the ROC results let it suggested. It should be noted that the RSA and the Dice
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Figure 3.8: Source localization results thresholded with the first 150 indexes at the output of wMNE,
sLORETA, cMEM, SISSY and SABLE for an SNR value of approximately -10dB (Sagittal left). The
patches outline is represented by a plain black line.

values are superior to those mentioned in the previous table due to the size of the
estimated index.

Regarding the source localization solutions presented in figure B.7, all methods ex-
cept sLORETA present activities in the three patches. The sLORETA solution ex-
hibits a wide activity concentrated around the patch alternative thresholding. cMEM
presents a localization bias for such a scenario. The wMNE solution presents diffuse
activity outside the patches. SABLE shows a more focus solution than SISSY has the
coloration indicates.
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Patch amplitude ratio analysis The table 3.5 quantitatively summarizes the ampli-
tude ratio for each method. We can observe that cMEM never achieves 100%, which
means that the maximum amplitude is located outside of the three patches. Thus it
confirms a localization bias for a certain number of MC runs. Otherwise, its energy
distribution between each patch is pretty good as it does not fall under 30%. Besides
cMEM, all other methods attribute the maximum of energy to the third patch. More-
over, SABLE is the one which distributes its energy more uniformly. Indeed, we ob-
serve a difference of 45% between patch 3 and the least energetic patch 1 while it
is 65% for the wMNE and SISSY methods and 55% for sLORETA. From these ob-
servations, we can conclude that SABLE will be more conducive to highlight distant
correlated sources. For sLORETA, the standardized version of wMNE, we can see a
net amelioration in terms of energetic distribution with respect to the original one.

Table 3.5: Energy ratio of each patch

wMNE sLORETA cMEM SISSY SABLE

Par1 44.9% 45.1% 81% 35.5% 71%

Par2 33.9% 55% 77.1% 45.2% 54.8%

Par3 100% 100% 52.29% 100% 100%

Discussion on simulated data In this section, we assess the behavior of three tra-
ditional methods and two experimental methods in terms of localization results for a
scenario with three strongly correlated extended sources: one isolated and two very
close to each other. A multitude of quantitative criteria was used to study the effects
from all perspectives, and a new one was introduced. From the results, we can say
that, for this kind of scenario, the considered traditional methods are not efficient
enough. Indeed, wMNE and sLORETA consider both nearby sources as one large
extended source and cMEM presents a localization bias which is not insignificant.
SISSY provides a good solution but may have some flaws when the energy is dis-
persed between several sources. Indeed, this method will give more weight to a sin-
gle extended source which can be deleterious during a thresholding operation. The
experiment shows that the SABLE method overcomes this problem by presenting
more focus activity inside each patch due to the beamforming constraint. However,
we have to pay attention to the hyper-parameter setting that makes the weight be-
tween both cost functions which compose it as shown in the previous experiments.
Considering those results, we propose to process and compare the results of the five
methods on real data using the same pipeline. The subject studied is the same as the
one we presented in the previous chapter since now we explore the hypothesis that
a new source model could improve the localization and reconstruction results.
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Figure 3.9: Source localization results at the output of wMNE (a), sLORETA (b), cMEM (c), SISSY
(d) and SABLE (e) on real data. The estimated ground-truth is presented alongside in (f). The brain
view has been carefully oriented to display the areas of maximum activity located in the center of the
black and white ring. On the side of the results is the estimated SOI activity. It is shown along a vertical
and horizontal axis corresponding to the time index of the interictal spike maximum and the reference,
respectively.

3.4.3 Application on real data

In this experiment, we propose tomeasure qualitatively the efficiency of eachmethod
efficiency on real hr-EEG data acquired from the patient studied in chapter 2. Lets us
start by recalling its characteristics before presenting the results.

Data acquisition

A 256-channel hr-EEG was recorded for one hour, at 1000 Hz following the proce-
dure approved by the National Ethics Committee for the Protection of Persons (CPP,
agreement number 2012-A01227-36). The patient gave his written informed consent
to participate in this study. This scalp recording revealed interictal spike activity at
the left frontal basal electrode AFP9h, located above the subject left eyebrow. From
this interictal epileptic activity, 8 spikes were visually selected away from the occur-
rence of any artefacts (muscle activity, blood pulsation, eye blinks). Each spike was
centered in a 1 secondwindow and all 8 windowswere averaged to improve the SNR
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ratio. As part of the presurgical evaluation, Stereotactic EEG (SEEG) recordingswere
also performed using 8 intracerebral electrodes (10±18 lead, length: 2mm, diameter:
0.8 mm, 1.5 mm apart, sampling frequency: 512Hz) placed intracranially according
to the Talairachs stereotactic method in the left frontal and temporal regions. The
positioning of the electrodes was determined from an available non-invasive infor-
mation and hypotheses about the localization of his EZ. The exact 3D coordinates
of each electrode contact were determined after co-registering the CT scan showing
the intracerebral leads onto the structural MRI image using a 6-parameters rigid-
body transformation [158, 159]. Segmented anatomical data obtainedwith Freesurfer
from the patient 3D-T1 MRI as well as the location of depth electrode contacts were
imported within Brainstorm [40]. The areas of spike maximal activity and of spike
propagation were delineated on the patient cortical mesh according to conclusions
obtained after visual analysis of intracerebral interictal activity by the expert neurol-
ogist. Thanks to the presurgical evaluation, it has been determined that the observed
EEG signal results from the activity of one source. The new rank selection method
presented in section 3.3.2 confirmed this assumption. The hyper-parameters has been
tuned by hand.

Qualitative results

Figure 3.9 displays the localization and the SOI reconstruction results obtained by
the five methods. It can be seen that the SABLE method is the one which presents its
maximum activity and which is the closest to the EZ. Indeed, although a little higher
than the suborbital sulcus, the white striped circle can be seen on the other side of the
gyrus rectus. Regarding the other methods, sLORETA and SISSY present a solution
a little further from the estimated EZ in the orbital gyrus/sulcus. For the former, we
can see a discontinuous band of high intensity which goes towards the interior of the
brain. In contrast, we can see its activity propagating in the orbital sulcus like SABLE
for the latter. ForwMNEand cMEM, themaximumactivity is located on the temporal
lobe and the fronto-marginal gyrus, respectively. Their solution is therefore found too
far for the EZ. For wMNE, we observe the samewideband as for sLORETA. Concern-
ing the general dispersion of the activities, we find a similar attitude as for patches
2 and 3 of the simulations: wMNE and sLORETA have a very spread solution while
SISSY and SABLE are very focused. Furthermore, cMEM seems to perform the local-
ization with a localization bias but a focus solution. Regarding the SOI time course
reconstruction, all methods faithfully reproduce the activity observed in sEEG. Con-
trarily to the one observed with the traditional beamforming, none of them shows
strong oscillations in their reconstruction.

Figure 3.10 displays the localization results obtained by the five methods with a dif-
ferent view inside the brain. This view is the most suited for observing the estimated
EZ as stated in the previous chapter. As we can see, all methods show some activ-
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Figure 3.10: Source localization results at the output of wMNE (a), sLORETA (b), cMEM (c), SISSY (d)
and SABLE (e) on real data. The estimated ground-truth is presented alongside in (f) with, in red, the
estimated Epileptic Zone (EZ) and in orange the spike propagation. The brain view has been oriented
to the parasagittal view of the left hemisphere.

ity inside the cingular gyrus. For wMNE and sLORETA, it is again a spread activity
that diffuses into the EZ and the spike propagation area. On the contrary, SABLE
displays a very focused activity near a considered spike propagation zone. For SISSY
and cMEM, the activity is shallow but still present. From these two sets of figures,
we would be tempted to assume a 1 SOI for a 3 ROI scenario: one in the temporal
lobe, one around the orbital gyrus and one in the anterior cingular gyrus. In that
case, we can use the Par values in table 3.5 previously determined in the simulation
to threshold the solution.

Figure 3.11 displays the thresholded localization results obtained by the five meth-
ods with both different views. Although we are not in the same configuration as the
simulations, we can make similar observations. Indeed, SABLE shows three zones
of high energies contrarily to SISSY for which it is more diffuse. Moreover, the third
patch in SISSY can be mistaken for a background activity as the thresholded solu-
tion contained multiple zones with similar energies. cMEM displays only one zone
even after thresholding which is always far from one of the identified ROIs in sEEG.
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Figure 3.11: Thresholded source localization results at the output of wMNE (a), sLORETA (b), cMEM
(c), SISSY (d) and SABLE (e) on real data. The threshold value applied correspond to those estimated
with the Patch amplitude ratio criterion as three ROIs can be identified on the raw solutions.

wMNE and sLORETA are the only ones to show a high but scattered activity on the
estimated EZ. One explanation could be that they exploit information of the depth
of the sources using a weighted matrix. The same operation can be associated with
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the array gain beamforming and may be adapted for SABLE and SISSY in future
work. Even so, the preliminary results are deemed satisfactory and exciting for a
newmethod and should be deployed to a more large set of real data to support these
preliminary claims.

3.5 Conclusion

In this chapter, the main motivation is to propose and assess a new beamforming
method for the distributed source model. Indeed, as stated in chapter 2, beamform-
ing is used mainly for the equivalent source model partly on account of their sen-
sitivity to correlated sources. However, the distributed source model is more suit-
able for epilepsy and, despite our intensive review, no beamforming method seems
appropriate for this model. Another critical question addressed here concerns the
practical application and the ability of this new distributed beamforming method to
locate and reconstruct SOIs. Indeed, as a novel method, a pipeline must be provided
in order to bring it out of the experimental phase. Moreover, its performance must
be evaluated against other BSI methods to identify its benefits and drawbacks. For
these reasons, we first propose the new beamformingmethod named SABLE (Source
Imaging based on Structured Sparsity) by developing its theoretical aspect and by
presenting a set of preliminary results. After that, an adequate pipeline is proposed
to be used in the BSI-EEG context. More precisely, this pipeline is inspired by those
already implemented in the software Brainstorm with some additional novelty. Fi-
nally, a quantitative/qualitative study comparing wMNE, sLORETA, cMEM, SISSY
and SABLE is performed on simulated and real data.

In this thesis, we reviewed all beamforming methods in chapter 2 and identified the
best beamforming pipeline for the equivalent source model. Despite promising sim-
ulation results, the application on real data shows its limitation attributable to the
use of a source model not adapted for epilepsy. Convinced that these methods can
improve confidence in the estimated source, we propose a new beamformingmethod
suitable for the distributed source model. This novel method named SABLE merges
both the reconstruction and the localization steps into one problem. SABLE proved to
be more efficient than the traditional UG beamforming method and the regularized
least-squares method SISSY methods with a high SNR value. However, like SISSY,
SABLE requires a fine tuning of the hyper-parameter, making the trade-off between
both cost functions for negative SNR values. Otherwise, the beamforming part takes
the lead and results in solutions worst than SISSY. Compared to other methods used
in the BSI-EEGfield, SABLE depicts a better localization solution in the case of an SOI
scenario distributed among several ROIs. Indeed, While other methods will present
either a spatially overextended area or several low-energy areas, SABLE will present
a set of relatively high energy regions. Although the SISSY method is more accurate
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in estimating the spatial extent at the expense of energy distribution, SABLE provides
a better trade-off between the estimate of amplitude and and that of spatial extension.
Compared with the beamforming methods (see chapter 2) for real data application,
it gives a faithful reconstruction of the source activity, and the localization results
have been judged satisfactory by a neurologist expert.

Even if this new method gives auspicious results both in simulated data, the results
on real data are not precisely consistent with the information provided by SEEG.
However, it is worth remembering that the defined EZ is only an estimate and that
the true ground truth in the real case is unknown. Even if the results are deemed sat-
isfactory, future work will include a diversification of simulation scenarios and real
data sets to rule on SABLE true capabilities. Moreover, with a fewmore adjustments,
the SABLE pipeline can also be automated and thus made available to a more signifi-
cant number of users. These adjustments include an effective estimation of the hyper-
parameters scheme and a more accurate rank estimation criterion based on random
matrix theory. These are both last limiting factors for the departure of SABLE from
the experimental setting to a clinical use.
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Conclusion and perspectives

The present work had as main objective to study, the taxonomy, the assessment and
the extension fo the beamforming methods to solve the inverse problem in BSI-EEG
for epilepsy. Four main contributions can be highlighted from this work.

The first contribution is to perform a complete taxonomy of all existing beamform-
ing methods, summarized by means of three tables whose combined content makes
it possible to cover all practices in BSI-EEG. Furthermore, new approaches coming
from the array processing field have also been introduced to supplement existing
ones. This work has been completed with a comparative analysis performed on re-
alistic epileptic EEG simulated data in order to identify the best pipeline. It shows
that Ledoit’s shrinkage method, coming from the RMT (Random Matrix Theory),
is the best preprocessing for beamforming. The AOLS beamformer, which uses an-
other form of shrinkage, depicts the best results for the one-source and uncorrelated
sources scenarios. The LCMV beamformer could be considered as the most efficient
for correlated sources, but we chose not to pursue its development further. Indeed, it
features a localization bias which is very challenging to overcome and leads to unre-
liable results for real data. Finally, the newly introduced EEG similaritymetric proves
to be the best post-processing method.When applied to real data, this pipeline could
efficiently locate the epileptogenic zone. Still, the reconstructed signals present some
imperfections as they are contaminated by other source activities.

The second contribution is the proposition of a new regularizedmethod calledTempo-
ral-Smoothing-based beamforming to improve the source reconstruction on real data.
The mathematical development proves that it can be easily implemented as it only
impacts the data covariance matrix. This constraint not only obliges the distribution
of the estimated sources to be smooth but also improves the conditioning of the co-
variance matrix. As a result, the source estimation results of Temporal-Smoothing-
based beamforming methods display a significant improvement on both simulated
and real data.

The third contribution is the proposal of a new rank selectionmethod based on RMT.
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Indeed, as claimed throughout this thesis, knowing the number of SOI from the
observation is challenging to obtain. In the cMEM pipeline, a strategy called iner-
tia based on eigenvalues has been suggested to estimate this parameter (see section
3.3.2). However, we did not find any reference on such a method in the literature. On
the other hand, the RMT field proposes a solution to characterize the support of the
eigenvalues corresponding to random Gaussian activities. More precisely, it allows
us to estimate the support boundaries values. The rank of the SOI corresponds to
the number of eigenvalues over that range as they correspond to structured noise ac-
tivities or epileptic activities. A judicious choice of variance allows us to distinguish
between noise and epileptic activity as a first approximation, but othermore complex
methods will allow a more refined categorization.

The fourth contribution is the proposal of a new method that extends the traditional
beamforming methods to the distributed source model suitable for epilepsy. Indeed,
classical beamforming methods are more generally applied to the equivalent source
model to localize and reconstruct uncorrelated source activities. Beyond themisuses,
our review lists previous serious attempts to use beamforming to the extended source
model. However, they require knowing the source position in advance, which ap-
pears to be a too strong assumption in practice. The novel method, named SABLE
(Sparsity And Beamforming for brain source Localization and Estimation), over-
comes this problem by using a latent variable and by exploiting both the UG and
the SISSY methods. As a result, it localizes and estimates source activity at the same
time. Preliminary results on simulations show that SABLE is more efficient than both
methods to localize one distributed source for high SNR values. However, it requires
a fine-tuning of the hyper-parameter between each cost function for low SNR values.

The fifth contribution of this thesis is the formulation of the SABLE pipeline and
its assessment against three mature methods from the literature, namely wMNE,
sLORETA and cMEM. Although this pipeline is strongly inspired by those imple-
mented in Brainstorm to provide a fair comparison, it also contains new practices
such as cross-fading, the removal of the corpus callosum and the new rank selec-
tion criterion based on RMT. Note that the latter requires the choice of a variance
value that can be considered arbitrarily. Quantitative results on simulations show
that SABLE is, from a broad perspective, as effective as SISSY and outperforms the
three traditional methods wMNE, sLORETA and cMEM, to localize three extended
patcheswith synchronized activity.More precisely, by using the new criterion named
PatchAmplitudeRatio,we show that the beamforming part of SABLE allows us a bet-
ter distribution of energy between the patches, which SISSY does not provide. This
feature makes it possible to highlight potential epileptogenic zones hidden by an al-
gorithm flaw, as we have seen through real data. However, we must remain cautious
about these preliminary results as we only have one real data set.
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This thesis is at the interface of three domains: physic, mathematics and algorith-
mic. The work was carried out taking into account these three dimensions with their
unique constraints. This conjoint work leads to the proposition of new methods and
pipelines assessed for both simulated and real epileptic data. Therefore, the per-
spectives of this work can be distinguished between these two topics. Regarding the
method perspectives, one of the first perspectives which could emerge from this the-
sis work is to propose a fusion between Temporal-Smoothing-based beamforming
and SABLE. However, as the results for the real case showed, there is no interest in
merging them since the reconstruction results of SABLE are already smooth. How-
ever, there is an interest to work with the AOLS beamformer instead of the UG one
at the basis of SABLE leading to a double shrinkage scenario. A second perspective
for SABLE would be to test its effect in combination with the array gain beamform-
ing method. Indeed, if we take the wMNE and sLORETA methods, both introduced
priors on the source depth by means of a weight matrix. This assumption may be at
the origin of the results observed on real data and is similar to the array gainmethod.
Since the addition of such a preprocessingmethod is not straightforward due to scal-
ing issues, it should be interesting to propose and assess a new SABLE method. Fi-
nally, we need to extend our qualitative study to a more extensive set of real data. We
will have to strengthen the pipeline to guarantee the stability of the results, which is
the subject of the next paragraph.

Regarding the pipeline perspectives, further work is warranted on investigating new
hyper-parameters tuning strategies. Indeed, the methodology proposed through the
SISSYmethod is quite particular and the role of the hyper-parameter is different from
that of traditional methods [1]. Due to the variables substitution in the L1 norms, the
hyper-parameter between the constraints and the cost function now plays a thresh-
olding role in the proximal operator. Although this new role is interesting, it does
not compensate for the loss of the ability to emphasize either data fidelity or con-
straint depending on the noise level. Consequently, the hyper-parameter strategy for
SISSY needs to be revised and extended to SABLE. Furthermore, wewould like to ex-
tend the proposed rank selectionmethod proposed in the pipeline to categorizemore
finely the eigenvalues belonging to the sources of interest, a structured noise and a
Gaussian noise. These assumptions are already used in the field of array processing
and are promising in the field of BSI, especially on denoising issues [2]. Once these
two topics are addressed, a fully automated pipeline will be available for SABLE.
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Appendix A
Supplementary methods and
materials

The following chapter needs these three assumptions:

A.A.1 The source random process
{
s(t)

}
and the noise random process

{
ν(t)

}
are

statistically independent to the second-order for any fixed index t;

A.A.2 The SOSE noise randomprocess {ν(t)} is a Gaussian randomprocess with zero
mean and with a covariance matrix equals to Ĉν ;

A.A.3 For any random vector a and non random matrix B, the following equality
holds: E

{
aTBa

}
= Tr

{
BCa

}
+ āTBā .

The assumptions (A.A.1) and (A.A.2) are generally well-accepted or can be met us-
ing whitening. For assumption (A.A.3), we provide the following proof originating
from [204]:

E
{
aTBa

}
= E

{ n∑
i=1

n∑
j=1

aT
i bi,jaj

}
= E

{ n∑
i=1

n∑
j=1

bi,jaT
i aj

}
=

n∑
i=1

n∑
j=1

bi,jE
{
aT

i aj
}

=
n∑

i=1

n∑
j=1

bi,j(Cai,j + āiāj)

=
n∑

i=1

n∑
j=1

bi,jCai,j +
n∑

i=1

n∑
j=1

bi,jāiāj

=
n∑

i=1

[
BCa

]
i,i

+ āTBā = Tr
{
BCa

}
+ āTBā

(A.1)

97



A.1 Mathematical link between EEG data SCM and source
SCM

The EEG recordings at time t are assumed to be a realization of an N -dimensional
SOSE random process {x(t)} given by:

x(t) = Gs(t) + ν(t) (A.2)

where {s(t)} is an L-dimensional SOSE source random process and where {ν(t)} is
a SOSE noise random process.G is the so-called leadfield matrix, which models the
electrical propagation of the sources to the scalp sensors. Using assumptions A.A.1
andA.A.2, we can link the statistical properties of the EEG recordings and the sources
with the following equations:

x = E[x(t)]
(A.2)= E[Gs(t) + ν(t)] (A.3)

= E[Gs(t)] + E[ν(t)]

= Gs + ν

Ĉx = E[(x(t) − x)(x(t) − x)T]

= E[(Gs(t) + ν(t) −Gs − ν)(Gs(t) + ν(t) −Gs − ν)T]

= E[Gs(t)s(t)TGT] + E[Gs(t)ν(t)T] − E[Gs(t)sTGT] − E[Gs(t)νT]

+ E[ν(t)s(t)TGT] + E[ν(t)ν(t)T] − E[ν(t)sTGT] − E[ν(t)νT] (A.4)

− E[Gss(t)TGT] − E[Gsν(t)T] + E[GssTGT] + E[GνT]

− E[νs(t)TGT] − E[νν(t)T] + E[νsTGT] + E[ννT]

= GE[s(t)s(t)T]GT − 2GE[ss(t)T]GT +GE[ssT]GT

+ E[ν(t)ν(t)T] − 2E[ν(t)νT] + E[ννT]

+ 2G(E[s(t)ν(t)T] − E[s(t)νT] − E[sν(t)T] + E[sνT])

= GE[(s(t) − s)(s(t) − s)T]GT + E[(ν(t) − ν)(ν(t) − ν)T]

+ 2GE[(s(t) − s)(ν(t) − ν)T]
(A.A.2)= GĈsG

T + Ĉν + 2GE[(s(t) − s)(ν(t) − ν)T]
(A.A.1)= GĈsG

T + Ĉν
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A.2 Beamforming optimization step development: proof of the
optimality of beamforming

As defended in chapter 2, beamforming methods allow us to analytically and effi-
ciently estimate the time course of the dipole. This efficiency is due to the optimiza-
tion process that returns an unbiased and non-distorted signal estimator if sources
are uncorrelated. In cases of correlated sources, the optimization step backfires as it
will cancel their activities. Thus, if the sources of interest are correlated or in case
of interferences, it will be impossible to find them. In the previous section of this
manuscript, we studied this effect using simulations. In this appendix, we explain
this phenomenon through mathematical development. Considering the estimation
of the source activity ŝ at the position θℓi

, the beamforming can be express in terms
of mean and the covariance as:

¯̂s(θℓi
) = E[w(θℓi

)Tx(t)]

= w(θℓi
)Tx

σ̂(θℓi
)2 = E[(s(θℓi

, t) − ¯̂s(θℓi
))(s(θℓi

, t) − ¯̂s(θℓi
)T]

= E[(w(θℓi
)Tx(t) −w(θℓi

)Tx)(x(t)Tw(θℓi
) − xTw(θℓi

))]

= w(θℓi
)TE[(x(t) − x)(x(t)T − xT)]w(θℓi

)

= w(θℓi
)TCxw(θℓi

)

(A.5)

Injecting expression (A.4) of Cx into (A.5) leads to the following expression of the
variance:

σ̂(θℓi
)2 = w(θℓi

)TCxw(θℓi
)

= w(θℓi
)T(GCsG

T + Cν)w(θℓi
)

= w(θℓi
)TGCsG

Tw(θℓi
) +w(θℓi

)TCνw(θℓi
)

(A.6)

The noise is considered to be null to simplify to demonstration, i.e.w(θℓi
)TCνw(θℓi

) =
0. We will consider that the SOI is at the position i = 1.

We must now distinguish several cases:

— The case where the dipoles are uncorrelated;

— The case where the dipoles are correlated;

Uncorrelated source scenario In the uncorrelated source scenario, the source co-
variance matrix Cs is a diagonal matrix with the source variance θℓi

located at the i -th

row and i -th column. The equation (A.6) can therefore be further developed as such:

σ̂(θℓ1)2 = w(θℓ1)TGCsG
Tw(θℓ1)

A.2. Beamforming optimization step development: proof of the optimality of
beamforming
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= w(θℓ1)T
L∑

i=1

(
g(θℓi

)σ(θℓi
)2g(θℓi

)T
)
w(θℓ1)T (A.7)

= w(θℓ1)Tg(θℓ1)σ(θℓ1)2g(θℓ1)Tw(θℓ1)T +
L∑

i=2
w(θℓ1)Tg(θℓi

)σ(θℓi
)2g(θℓi

)Tw(θℓ1)T

= ||w(θℓ1)Tg(θℓ1)||2
2σ(θℓ1)2 +

L∑
i=2

||w(θℓ1)Tg(θℓi
)||2

2σ(θℓi
)2

When only the distortionless constraint is used (like in UG), it allows us to put the
first term ||w(θℓ1)Tg(θℓ1)||2

2 to the unit. The optimization process will ensure that the
second term will be put to 0 since the minimum for a squared term is 0. Thus, the
result of the whole optimization is the constant variance σ(θℓi

)2. We can conclude
that the estimate σ̂(θℓ1)2 is equal to the true value of the source variance hence an
optimal estimation. Note that the optimization is done correctly because all terms
are positive.

σ̂(θℓ1)2 = ||w(θℓ1)Tg(θℓ1)||2
2︸ ︷︷ ︸

=1

σ(θℓ1)2︸ ︷︷ ︸
cst

+
L∑

i=2
||w(θℓ1)Tg(θℓi

)||2
2︸ ︷︷ ︸

→0

σ(θℓi
)2︸ ︷︷ ︸

cst

= σ(θℓ1)2

(A.8)

Correlated source scenario Assuming now that some sources are correlated, we
repeat the set of computational steps used previously considering the cross-term el-
ement of the source covariance matrix σ(θℓi

)σ(θℓj
) located at the i -th row and j -th

column.

σ̂(θℓ1)2 = w(θℓ1)TGCsG
Tw(θℓ1) (A.9)

= w(θℓ1)T
L∑

i=1

(
g(θℓi

)σ(θℓi
)2g(θℓi

)T
)
w(θℓ1)T

+w(θℓ1)T
L∑

i=1

L∑
j=i+1

(
g(θℓi

)σ(θℓi
)σ(θℓj

)g(θℓj
)T + g(θℓj

)σ(θℓj
)σ(θℓi

)g(θℓi
)T

)
w(θℓ1)T

= w(θℓ1)Tg(θℓ1)σ(θℓ1)2g(θℓ1)Tw(θℓ1)T +w(θℓ1)T
L∑

i=2

(
g(θℓi

)σ(θℓi
)2g(θℓi

)T
)
w(θℓ1)T

+w(θℓ1)T
L∑

j=2

(
g(θℓ1)σ(θℓ1)σ(θℓj

)g(θℓj
)T + g(θℓj

)σ(θℓj
)σ(θℓ1)g(θℓ1)T

)
w(θℓ1)

+w(θℓ1)T
L∑

i=2

L∑
j=i+1

(
g(θℓi

)σ(θℓi
)σ(θℓj

)g(θℓj
)T + g(θℓj

)σ(θℓj
)σ(θℓi

)g(θℓi
)T

)
w(θℓ1)

= w(θℓ1)Tg(θℓ1)σ(θℓ1)2g(θℓ1)Tw(θℓ1)T +w(θℓ1)T
L∑

i=2

(
g(θℓi

)σ(θℓi
)2g(θℓi

)T
)
w(θℓ1)T
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+ 2w(θℓ1)T
L∑

j=2

(
g(θℓ1)σ(θℓ1)σ(θℓj

)g(θℓj
)T

)
w(θℓ1)

+ 2w(θℓ1)T
L∑

i=2

L∑
j=i+1

(
g(θℓi

)σ(θℓi
)σ(θℓj

)g(θℓj
)T

)
w(θℓ1)

= ||w(θℓ1)Tg(θℓ1)||2
2σ(θℓ1)2 +

L∑
i=2

||w(θℓ1)Tg(θℓi
)||2

2σ(θℓi
)2

+ 2w(θℓ1)T
L∑

j=2

(
g(θℓ1)σ(θℓ1)σ(θℓi

)g(θℓj
)T

)
w(θℓ1)

+ 2w(θℓ1)T
L∑

i=2

L∑
j=i+1

(
g(θℓi

)σ(θℓi
)σ(θℓj

)g(θℓj
)T

)
w(θℓ1)

Aswe can see, if only the distortionless constraint is applied, the positivity is not guar-
anteed for all elements. Indeed, the 3rd and 4th terms are not null and not squared.
Thus, nothing prevents the optimization from assigning a negative value to these
terms and decreases the total to zero.

σ̂(θℓ1)2 = ||w(θℓ1)Tg(θℓ1)||2
2︸ ︷︷ ︸

=1

σ(θℓ1)2︸ ︷︷ ︸
→cst

+
L∑

i=2
||w(θℓ1)Tg(θℓi

)||2
2︸ ︷︷ ︸

→0

σ(θℓi
)2︸ ︷︷ ︸

→cst

(A.10)

+ 2
L∑

i=2
w(θℓ1)Tg(θℓ1)︸ ︷︷ ︸

=1

σ(θℓ1)σ(θℓi
)︸ ︷︷ ︸

→cst

g(θℓi
)Tw(θℓ1)︸ ︷︷ ︸
→<0

+ 2
L∑

i=2

L∑
j=i+1

w(θℓ1)Tg(θℓi
)︸ ︷︷ ︸

→<0

σ(θℓi
)σ(θℓj

)︸ ︷︷ ︸
→cst

g(θℓj
)Tw(θℓ1)︸ ︷︷ ︸
→<0

≤ σ(θℓ1)2

This behavior leads to a decrease or even a cancellation of σ(θℓ1)2. Our estimation
as well as the source localization and reconstruction are consequently altered. Note
that, we generalize the notion of covariance. Indeed, there are no differences done
between:

— The correlation between the epileptic activities;

— The correlation between the epileptic activities and the background activities;

— The correlation within the background activities;

Constraint added by the nulling beamforming: The correlated sources are forced
to be null bymeans of an additional constraint with nulling beamforming. If there are
only two sources located at the known positions θℓ1 and θℓ2 , the constraint is written
as such: w(θℓ1)g(θℓ2) = 0. The proposition for the filter w(θℓ1) becomes:

A.2. Beamforming optimization step development: proof of the optimality of
beamforming
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σ̂(θℓ1)2 = ||w(θℓ1)Tg(θℓ1)||2
2︸ ︷︷ ︸

=1

σ(θℓ1)2︸ ︷︷ ︸
→cst

+
L∑

i=2
||w(θℓ1)Tg(θℓi

)||2
2︸ ︷︷ ︸

→0

σ(θℓi
)2︸ ︷︷ ︸

→cst

(A.11)

+ 2w(θℓ1)Tg(θℓ2)︸ ︷︷ ︸
=0

σ(θℓ2)σ(θℓ1)︸ ︷︷ ︸
→cst

g(θℓ1)Tw(θℓ1)︸ ︷︷ ︸
=1

= σ(θℓ1)2

Again, we have an optimal estimator. However, the assumption of two unique corre-
lated sources is, in practice, unachievable. Moreover, the knowledge of the exact po-
sition of these correlated sources is also impossible to have. Hence, the proposition
of the LCMV beamformer that imposes a cancellation constraint on every location
except the one studied:

σ̂(θℓ1)2 = ||w(θℓ1)Tg(θℓ1)||2
2︸ ︷︷ ︸

=1

σ(θℓ1)2︸ ︷︷ ︸
→cst

+
L∑

i=2
||w(θℓ1)Tg(θℓi

)||2
2︸ ︷︷ ︸

=0

σ(θℓi
)2︸ ︷︷ ︸

→cst

(A.12)

+ 2
L∑

i=2
w(θℓ1)Tg(θℓ1)︸ ︷︷ ︸

=1

σ(θℓ1)σ(θℓi
)︸ ︷︷ ︸

→cst

g(θℓi
)Tw(θℓ1)︸ ︷︷ ︸
=0

+ 2
L∑

i=2

L∑
j=i+1

w(θℓ1)Tg(θℓi
)︸ ︷︷ ︸

=0

σ(θℓi
)σ(θℓj

)︸ ︷︷ ︸
→cst

g(θℓj
)Tw(θℓ1)︸ ︷︷ ︸
=0

= σ(θℓ1)2

The problem with this method is the dimension of the constraints, which poses a
second ill-posed inverse problem in the Hadamard sense. Hence the proposition of
solving techniques that may bring distortion or bias (see section 2.3.3).

A.3 Development MMSE

The objective of MMSE beamforming methods is to find a filter that will decrease
the expectation of the estimation error ||s(t) − ŝ(t)||2

2. To do so, we need to find an
estimator that minimizes both the variance and the bias.

Then, the MMSE can be simplified as follows:

E[||s(t) − ŝ(t)||2
2]

(2.2)= E[||s(t) − WTx(t)||2
2]

(1.1)= E[||s(t) − WT(Gs(t) + n(t))||2
2]

= E[||s(t) − WTGs(t) + WTn(t)||2
2] (A.13)

= E[
(
s(t) − WTGs(t) + WTn(t)

)T(
s(t) − WTGs(t) + WTn(t)

)
]

= E[s(t)Ts(t) − s(t)TWTGs(t) + s(t)TWTn(t)
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− s(t)TGTs(t) + s(t)TGTWTGs(t)

− s(t)TGTWTn(t) + n(t)TWs(t)

− n(t)TWWTGs(t) + n(t)TWWTn(t)]

= E[s(t)Ts(t) − s(t)TWTGs(t) − s(t)TGTs(t)

+ s(t)TGTWTGs(t)] + E[s(t)TWTn(t)]

− E[s(t)TGTWTn(t)] + E[n(t)TWs(t)]

− E[n(t)TWWTGs(t)] + E[n(t)TWWTn(t)]

= E[||s(t) − WTGs(t)||2
2] + E[s(t)TWTn(t)]

− E[s(t)TGTWTn(t)] + E[n(t)TWs(t)]

− E[n(t)TWWTGs(t)] + E[n(t)TWWTn(t)]

= E[||s(t) − WTGs(t)||2
2] + E[n(t)TWWTn(t)]

= E[||s(t) − WTGs(t)||2
2] + E[n(t)TWILWTn(t)]

(A.A.3)= E[||s(t) − WTGs(t)||2
2] + Tr

{
ILC(WTn(t))

}
= E[||s(t) − WTGs(t)||2

2] + Tr
{
E[WTn(t)n(t)TW ]

}
= E[||(IL − WTG)s(t)||2

2] + Tr
{
WTCνW

}
This last equality contained two parts that will be the localization bias and the vari-
ance of the output beamformer [126, 127]:

MMSE = E[||(IL − WTG)s(t)||2
2]︸ ︷︷ ︸

Bias

+Tr
{
WTCνW

}︸ ︷︷ ︸
Variance

(A.14)

A good estimator WT must minimize the mean square error, but above all, must be
unbiased. In order to eliminate the bias, the constraint WT = IL must be respected
[205]. This can be formulated as a MMSE beamformer as we saw in section 2.2.2:

minimize
W

Tr{WTCνW}

subject to WTG = IL

(A.15)

The main problem is that the solution is not easy to obtain, and often optimization
strategies will sacrifice the bias constraint to reach a lower MMSE value. Thus we
get a solution whose localization is not reliable, as we have seen in the results of
simulations and on real data with the proposed LCMV (see section 2.4).

A.4 Full mathematical development of SABLE algorithm

In chapter 3, we presented a new method named SABLE. In this appendix, we offer
the full mathematical development of this method. Let us recall the optimization
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problem posed in SABLE:

min
w,ϕ

wTCxw+λ1||X −GS||2
F+λ2(||Tϕ||1 + λ3||ϕ||1) (A.16)

s. t. S = ϕs̄, s̄ = wTX and wTGϕ = 1

This problem can be simplified by substituting parameters as such:

min
w,ϕ

wTCxw+λ1||X −GϕwTX||2
F+λ2(||Tϕ||1 + λ3||ϕ||1) (A.17)

s. t. wTGϕ = 1

Variable substitution to handle L1 norm The L1 cannot be derived directly and
require the substitution by latent variables as suggested in the SISSY method:

min
w,ϕ,ψ,γ

wTCxw+λ1||X −GϕwTX||2
F+λ2(||ψ||1 + λ3||γ||1) (A.18)

s.t. wTGϕ = 1

ψ = Tϕ

γ = ϕ

Formulation of the augmented Lagrangian According to [167], the minimization
problem above can be solved using theADMMalgorithm. It is an algorithm intended
to blend multiple dual ascent sub-problem with a superior convergence property
brought by the multipliers method. The main idea is to successively update primal
and dual variables of the augmented Lagrangian until we reach convergence. The
augmented Lagrangian of (A.18) can be written as:

Lρ,λ(w,ϕ,ψ,γ,u,v,z) = wTCxw +λ1 ||X − ḡwTX||2
F

+λ2||ψ||1+λ2λ3||γ||1+un(wTḡ − 1) + vT(Tϕ −ψ) (A.19)

+zT(ϕ − γ) + ρ

2(||wTḡ − 1||2
2 + ||Tϕ −ψ||2

2 + ||ϕ − γ||2
2)

The ADMM algorithm of this augmented Lagragian is formulated as follows:
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initialization;
while n<itMax do

wn+1 = argmin
w

{
L(w,ϕn,ψn,γn, un,vn, zn)

}
;

ϕn+1 = argmin
ϕ

{
L(wn+1,ϕ,ψn,γn, un,vn, zn)

}
;

ψn+1 = argmin
ψ

{
L(wn+1,ϕn+1,ψ,γn, un,vn, zn)

}
;

γn+1 = argmin
γ

{
L(wn+1,ϕn+1,ψn+1,γ, un,vn, zn)

}
;

un+1 = un + ρ(wn+1Gϕn+1 − 1);
vn+1 = vn + ρ(ψn+1 − Tϕn+1);
zn+1 = zn + ρ(γn+1 − ϕn+1);

end
Algorithm 1: Pseudo-algorithm of ADMM for SABLE

The objective now is then to provide an analytical solution forwn+1, ϕn+1, ψn+1 and
γn+1.

Analytical solution for wn+1: The notation ḡn = Gϕn is used to simplify the writ-
ing since we do not optimize according to ϕ. This variable represents the mean lead-
field vector of the distributed source.

wn+1 = argmin
w

{
L(w,ϕn,ψn,γn, un,vn, zn)

}
= argmin

w

{
wTCxw +λ1 ||X − ḡnw

TX||2
F+un(wTḡn−1)+ ρ

2 ||wTḡn−1||2
2

}
(A.20)

= argmin
w

{
wTCxw +λ1 Tr{XTwḡT

n ḡnw
TX} − 2Tr{XTḡnw

TX}+un(wTḡn−1)

+ ρ

2 ||wTḡn−1||2
2

}
For the second and third terms, we use the derivative solution (118) in [206] and the
property of the trace presented in section 2.5.1, respectively. It goes as follows:

δ

δw

{
Tr{XTwḡT

n ḡnw
TX}

}
= δ

δw

{
Tr{AwBwTC}

}
= ATCTwBT + CAwB (A.21)

= 2XXTwḡT
n ḡn

δ

δw

{
Tr{XTḡnw

TX}
}

= δ

δw

{
Tr{XXTḡnw

T}
}

= XXTḡn (A.22)

With these definitions and by using the vectorization operator, the following deriva-
tion is valid to find the minimum argument of w:
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0 =2Cxwn+1+(2λ1ḡ
T
n ḡn ⊗ XXT)wn+1 − 2XXTḡn+unḡn +ρḡnḡ

T
nwn+1−ρḡn[

2Cx+2λ1ḡ
T
n ḡn ⊗ XXT + ρḡnḡ

T
n

]
wn+1 = 2XXTḡn+ḡn(un − ρ) (A.23)

wn+1 =
[
2Cx + 2λ1ḡ

T
n ḡn ⊗ XXT + 2ρḡnḡ

T
n

]−1[
2λ1XXTḡn + ḡn(un − ρ)

]

Analytical solution for ϕn+1:

ϕn+1 = argmin
ϕ

{
L(wn+1,ϕ,ψn,γn, un,vn, zn)

}
(A.24)

= argmin
ϕ

{
λ1||X −GϕwT

n+1X||2
F+un(wT

n+1Gϕ − 1) + vT
n(Tϕ −ψn) +zT

n(ϕ − γn)

+ ρ

2(||wT
n+1Gϕ − 1||2

2 + ||Tϕ −ψn||2
2 + ||ϕ − γn||2

2)
}

Using the properties used to computewn+1, we can easily obtain the following equal-
ity:

0 =2λ1w
T
n+1XXTwn+1ϕn+1G

TG− 2λ1G
TXXTwn+1 + unG

Twn+1

+ ρGTwn+1(wT
n+1Gϕn+1 − 1) + T Tvn + zn + ρT T(Tϕn+1 −ψn) + ρ(ϕn+1 − γn)[

2λ1G
TG⊗wT

n+1XXTwn+1+ρ(T TT + Id +GTwn+1w
T
n+1G)

]
ϕn+1 =

2λ1G
TXXTwn+1 +GTwn+1(ρ − un) + T T(ρψn − vn) + (ργn − zn) (A.25)

ϕn+1 =
[
2λ1G

TG⊗wT
n+1XXTwn+1+ρ(T TT + Id +GTwn+1w

T
n+1G)

]−1[
λ1G

TXXTwn+1 −GTwn+1(ρ − un) + T T(ρψn − vn) + (ργn − zn)
]

Analytical solution for ψn+1: Finding the global minimum of a L1 norm is not
straightforward. We need to reformulate the augmented Lagrangian in a form that
can be compatible with the proximal operator see (3.8) in section 3.2.2.

ψn+1 = argmin
ψ

{
L(wn+1,ϕn+1,ψ,γn, un,vn, zn)

}
= argmin

ψ

{
λ2||ψ||1 − vT

nψ + ρ

2 ||Tϕn+1 −ψ||2
2

}
= argmin

ψ

{
λ2||ψ||1 − vT

nψ + ρ

2(ϕT
n+1T

TTϕn+1 − 2ψTTϕn+1 +ψTψ)
}

(A.26)

= argmin
ψ

{
λ2||ψ||1 + ρ

2(ϕT
n+1T

TTϕn+1 − 2ψTTϕn+1 +ψTψ − 2
ρ
vT

nψ)
}

= argmin
ψ

{
λ2||ψ||1 + ρ

2(ϕT
n+1T

TTϕn+1 − 2ψTTϕn+1 +ψTψ − 2
ρ
vT

nψ) + 2
ρ
vnTϕn+1 + 1

ρ2v
T
nvn)

}
= argmin

ψ

{
λ2||ψ||1 + ρ

2 ||ψ − (Tϕn+1 + 1
ρ
vT

n)||2
2

}
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= argmin
ψ

{
||ψ||1 + ρ

2λ2
||ψ − (Tϕn+1 + 1

ρ
vT

n)||2
2

}
= proxλ2

ρ

(
Tϕn+1 + 1

ρ
vT

n

)

Analytical solution for γn+1:

γn+1 = argmin
γ

{
L(wn+1,ϕn+1,ψn+1,γ, un,vn, zn)

}
= argmin

γ

{
λ2λ3||γ||1 −zTγ + ||ϕ − γ||2

2)
}

(A.27)

= proxλ2λ3
ρ

(
ϕn+1 + 1

ρ
zn

)
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Appendix B
Supplementary results

This appendix gathers all the additional results that were not presented in the main
part.

B.1 Additional results for classic beamforming

This part contains additional results to the beamforming algorithms efficiency study
provided in section 2.4.2.
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(a) Variance localization error (e) Variance reconstruction error

(b) SNR localization error (f) SNR reconstruction error

(c) Kurtosis localization error (g) Kurtosis reconstruction error

(d) EEG similarity localization error (h) EEG similarity reconstruction error

Figure B.1: Effect of different beamforming methods with the Shrinkage preprocessing method in the
single source scenario: localization results are on the left and signal reconstruction on the right. The
dashed line represents the limit of baseline identification.
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(a) Variance localization error (e) Variance reconstruction error

(b) SNR localization error (f) SNR reconstruction error

(c) Kurtosis localization error (g) Kurtosis reconstruction error

(d) EEG similarity localization error (h) EEG similarity reconstruction error

Figure B.2: Effect of different beamforming methods with the Shrinkage preprocessing method in the
two sources scenario: localization results are on the left and signal reconstruction on the right.
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B.2 Additional results for Temporal-Smoothing-based beamform-
ing

This part contains all results for the Temporal-Smoothing-based beamforming on the
data of experiment 1 and 2 in section 2.4.2 and organized in the same manner.
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(a) Variance localization error (e) Variance reconstruction error

(b) SNR localization error (f) SNR reconstruction error

(c) Kurtosis localization error (g) Kurtosis reconstruction error

(d) EEG similarity localization error (h) EEG similarity reconstruction error

Figure B.3: Effect of different preprocessing methods on the Temporal-Smoothing-based UG beam-
former for one source: localization results are on the left and signal reconstruction on the right. The
dashed line represents the limit of baseline identification.
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(a) Variance localization error (e) Variance reconstruction error

(b) SNR localization error (f) SNR reconstruction error

(c) Kurtosis localization error (g) Kurtosis reconstruction error

(d) EEG similarity localization error (h) EEG similarity reconstruction error

Figure B.4: Effect of different preprocessing methods on the Temporal-Smoothing-based UG beam-
former for two sources depending on the correlation level: localization results are on the left and signal
reconstruction on the right.
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(a) Variance localization error (e) Variance reconstruction error

(b) SNR localization error (f) SNR reconstruction error

(c) Kurtosis localization error (g) Kurtosis reconstruction error

(d) EEG similarity localization error (h) EEG similarity reconstruction error

Figure B.5: Effect of different Temporal-Smoothing-based beamforming methods with the Shrinkage
preprocessing method in the single source scenario: localization results are on the left and signal re-
construction on the right. The dashed line represents the limit of baseline identification.
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(a) Variance localization error (e) Variance reconstruction error

(b) SNR localization error (f) SNR reconstruction error

(c) Kurtosis localization error (g) Kurtosis reconstruction error

(d) EEG similarity localization error (h) EEG similarity reconstruction error

Figure B.6: Effect of different Temporal-Smoothing-based beamforming methods with the Shrinkage
preprocessing method in the two sources scenario: localization results are on the left and signal recon-
struction on the right.
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B.3 Additional results for comparative study

This part contains additional simulation results to the comparative study of chapter
3.

Figure B.7: Source localization results thresholded with the best ratio at the output of wMNE,
sLORETA, cMEM, SISSY and SABLE for an SNR value of approximately -10dB (back). The patches
outline is represented by a plain black line.
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Figure B.8: Source localization results thresholded with the first 150 indexes at the output of wMNE,
sLORETA, cMEM, SISSY and SABLE for an SNR value of approximately -10dB (back). The patches
outline is represented by a plain black line.
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Titre: Identification des réseaux épileptogènes dans le cas des épilepsies partielles pharmaco-résistantes

Mot clés: Beamforming, imagerie de sources cérébrales, EEG-hd, localisation de sources, reconstruc-
tion de sources, SABLE.

Résumé: L’épilepsie est l’une des maladies neuro-
logiques les plus courantes, touchant 2,4 millions
de personnes dans le monde. 20 à 30% de ces
patients sont résistants aux médicaments et né-
cessitent des procédures alternatives pour réduire
la fréquence ou la sévérité des crises. Ces procé-
dures nécessitent la localisation de la zone épilep-
togène qui s’obtient en résolvant un problème in-
verse mal posé au sens de Hadamard. Une plé-
thore de méthodes sont disponibles pour résoudre
ce problème. Parmi elles, les méthodes de beam-
forming présentent des aprioris uniques mais sont
souvent mal utilisées pour être compatibles avec
le modèle de source distribuée connu pour être
adapté à l’épilepsie. Dans cette thèse, nous pro-
posons tout d’abord de réaliser une étude appro-
fondie des méthodes de beamforming existantes
afin d’identifier les problèmes actuels sur le su-
jet. En plus d’un travail littéraire et mathématiques,
nous réalisons également une étude sur des don-

nées simulées et réelles qui conduira à la propo-
sition du meilleur pipeline de beamforming pour
la localisation de sources ponctuelles épileptiques
ainsi qu’à l’introduction de nouvelles pratiques. La
deuxième contribution de cette thèse est la propo-
sition d’une nouvelle méthode appelée SABLE qui
adapte le beamforming au cas des sources dis-
tribuées. Cette dernière exploite conjointement la
méthode du beamforming UG (Unit Gain) et la mé-
thode SISSY (Source Imaging based on Structu-
red Sparsity ) pour surmonter les défauts inhérents
au beamforming. Les résultats sur des données
simulées et réelles ont révélé un gain d’efficacité
supérieur aux méthodes traditionnelles d’imagerie
des sources cérébrales. La dernière contribution
de ce manuscrit est la proposition d’un pipeline re-
pensé qui amène SABLE à un niveau de maturité
algorithmique équivalente aux méthodes tradition-
nelles.

Title: Identification of epileptogenic networks in drug-resistant partial epilepsy

Keywords: Beamforming, brain source imaging, hr-EEG, source localization, source reconstruction,
SABLE

Abstract: Epilepsy is one of the most common
neurological diseases, affecting 2.4 million peo-
ple worldwide. 20-30% of these patients are drug-
resistant and require alternative procedures to re-
duce the frequency or severity of seizures. These
procedures require the localization of the epilep-
togenic zone which is obtained by solving an
ill-posed inverse problem in Hadamard’s sense.
A plethora of methods are available to solve
this problem. Among them, beamforming meth-
ods present unique prior but are often misused to
be compatible with the distributed source model
known to be suitable for epilepsy. In this thesis,
we first propose carrying out an in-depth study of
the existing beamforming methods to identify the
current problems on the subject. In addition to lit-
erary and mathematical work, we also perform a

study on simulated and real data that will lead to
the proposal of the best beamforming pipeline for
the localization of epileptic point sources as well
as the introduction of new practices. The second
contribution of this thesis is the proposal of a new
method called SABLE which adapts beamforming
to the case of distributed sources. The latter jointly
exploits the UG (Unit Gain) beamforming method
and the SISSY (Source Imaging based on Struc-
tured Sparsity) method to overcome the inherent
defects of beamforming. The results on simulated
and real data revealed a gain in efficiency beyond
the traditional Brain Source Imaging methods. The
last contribution of this manuscript is the proposal
of a redesigned pipeline that brings SABLE to a
level of algorithmic maturity equivalent to traditional
methods.
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