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Résumé: La �abilité des véhicules est un enjeu
majeur pour les constructeurs automobiles. En
particulier, la fatigue mécanique est une préoccupation
importante du bureau d'études. En e�et, la fatigue
est un phénomène complexe qui dépend du design
de la pièce (géométrie, matériaux utilisés), des
procédés de fabrication, et des chargements externes
subis par la pièce. Le dimensionnement à la
fatigue repose sur une modélisation numérique de
la pièce et sur l'application de critères de fatigue
déterministes a�n d'identi�er de potentielles faiblesses
sur la conception. Ces critères, bien qu'e�caces
sur des géométries simples, ne su�sent pas à
prédire correctement les risques d'amorçage sur des
composants complexes. Cela entraîne un allongement
des temps de développement et une augmentation des
coûts liés aux prototypes physiques. Pour y remédier,
les constructeurs automobiles recherchent de nouvelles
méthodes digitales, pour mieux identi�er les zones
critiques sur de nouvelles conceptions.

Dans cette thèse, nous construisons une base
de données fatigue, à partir d'informations mises à
disposition par Stellantis, regroupant des résultats

numériques et des comptes rendus d'essais de fatigue.
Une analyse non supervisée du jeu de données
est réalisée, permettant de mieux comprendre sa
structure ainsi que les liens entre les covariables
disponibles. Ensuite, l'application de méthodes
d'apprentissage supervisé (régression logistique, forêts
aléatoires, SVM à noyau...) permet d'estimer des
critères de fatigue o�rant de meilleures prédictions
que le critère mécanique déterministe usuel. Une
di�culté de l'analyse provient du fait que l'étiquetage
des zones est a�ecté par un bruit asymétrique,
ce qui motive une approche originale fondée sur
l'apprentissage positif-non labellisé (PU learning).
Cette approche est abordée suivant tous les angles:
théorique, méthodologique et appliqué. De nouvelles
bornes de risques adaptées à ce cadre spéci�que sont
démontrées. Une méthodologie est proposée pour
l'estimation d'un classi�eur PU à partir des données.
En�n, la méthodologie est évaluée sur des jeux de
données simulés ainsi que sur les données de fatigue.
Les performances obtenues con�rment l'intérêt de la
méthode et son utilité pour le constructeur automobile.

Title: A statistical point of view on fatigue criteria: from supervised classi�cation to positive-unlabeled learning
Keywords: Fatigue criterion, Classi�cation, Label noise, PU learning, Risk bounds.

Abstract: The reliability of vehicles is a major issue for
automotive manufacturers. In particular, mechanical
fatigue is an important preoccupation of the design
o�ce. Indeed, fatigue is a complex phenomenon that
depends on the design of the part (geometry, materials
used), the manufacturing and on the external loads
it is subjected to. In order to design a safety part
against fatigue, the part is numerically modeled and
a deterministic fatigue criterion is applied to identify
potential weaknesses. If these criteria prove to be
e�ective when evaluated on experimental test data
with standardized specimens, they are less e�ective for
rig tests with prototypes. This results in an increase
in development costs and duration. In order to remedy
this issue, car manufacturers seek new digital tools to
better predict the fatigue risks on new design proposals.

In this thesis, we build a fatigue database,
based on information provided by Stellantis, gathering
numerical results along with fatigue test reports on
prototypes. Unsupervised machine learning methods

are applied o�ering a better understanding of the
structure of the database and the relations between the
available features. Then, the application of supervised
machine learning methods (logistic regression, random
forests, kernel SVM...) allows to estimate fatigue
criteria o�ering better predictions than the standard
fatigue criterion. However, the binary labels in
this classi�cation task are a�ected by a completely
asymmetric label noise. This motivates an original
approach to fatigue criteria estimation based on
Positive-Unlabeled learning (PU learning). This
problem is studied from all angles: theory, methodology
and application. First, new risk bounds, adapted to
this speci�c framework, are proved. Then, we develop
a practical methodology to estimate a PU classi�er.
Finally, the methodology is evaluated on simulated
data and on the fatigue database. The prediction
performances con�rm the interest of the methodology
and its utility for car manufacturers.
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Introduction générale (en français)

Au cours de sa durée de vie, la structure d'un véhicule est soumise à diverses contraintes
mécaniques résultant des charges externes transférées par les roues et les suspensions à l'ensemble
de la voiture. On distingue les charges statiques liées au poids du véhicule et à sa charge utile, et
les charges dynamiques induites par les mouvements du véhicule. Ces charges dynamiques sont
dues aux conditions de route (nids de poule, dos d'âne...) et aux actions du conducteur (freinage,
accélération, virage...).

Après une longue durée d'utilisation, l'accumulation de contraintes combinées à des concentrations
de contraintes (dues à la géométrie des composants mécaniques, aux procédés de fabrication...)
peuvent provoquer l'amorçage de micro-�ssures sur certaines zones du véhicule. Ces micro-�ssures
peuvent progressivement conduire à l'amorçage d'une macro-�ssure qui se propage jusqu'à la
rupture complète de la pièce mécanique. Ce phénomène, appelé fatigue mécanique, est extrêmement
dangereux car il peut entraîner la défaillance brutale d'une pièce mécanique dans des conditions
normales d'utilisation sans sollicitation excessive. La fatigue est donc un phénomène dangereux
et complexe qui dépend du choix des matériaux, des procédés de fabrication et des contraintes
locales lors de l'utilisation du véhicule (Schijve, 2005; Bathias and Pineau, 2010).

L'objectif du dimensionnement à la fatigue est donc de s'assurer que le véhicule répondra
aux exigences en termes de performances mais aussi en termes de �abilité et de durabilité : par
exemple, une durabilité d'au moins 10 ans ou 100 000 kilomètres, représentant l'ordre de grandeur
de la durée de vie d'une voiture concernée. La �abilité du véhicule doit être assurée pour une
grande variété de modèles et de conditions d'utilisation (conditions de route, sévérités clients...).
Ceci est d'autant plus important pour les pièces de sécurité du véhicule où une défaillance peut
avoir des conséquences dangereuses pour la sécurité des passagers : arbres d'essieu, système de
direction, système de transmission, éléments de suspension, système de freinage...

Ainsi, l'optimisation de la conception des pièces mécaniques est devenue une préoccupation
essentielle des constructeurs automobiles. En e�et, l'objectif est de construire des véhicules
plus légers a�n de réduire leur consommation d'énergie tout en assurant leur �abilité et leur
durabilité. Par ailleurs, la conception doit être la plus rapide possible pour réduire les coûts de
développement.

Le travail présenté dans cette thèse est le fruit d'une collaboration entre l'Inria (équipe
Celeste) et la société Stellantis dans le cadre de l'Openlab IA avec le soutien �nancier de l'ANRT
pour le contrat CIFRE n°2019/1131.

L'équipe de recherche Celeste de l'Inria travaille sur des sujets liés aux statistiques, à l'apprentissage
automatique et à l'optimisation en mettant l'accent sur les liens entre théorie, algorithmes et
applications.

Stellantis est un constructeur automobile né de la récente fusion entre le groupe italo-
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américain Fiat Chrysler Automobiles (FCA) et le Groupe PSA (français). Plus précisément, ce
travail de recherche a été mené au sein d'une équipe de Recherche et Développement de Stellantis
travaillant à l'interface entre la modélisation numérique, l'optimisation et la science des données.
Le projet est né d'un besoin exprimé par les équipes impliquées dans la conception et la validation
des composants de la Liaison Au Sol (LAS) des véhicules. Il s'inscrit dans l'axe stratégique full
digital visant à réduire le nombre d'essais physiques de validation en favorisant la modélisation
numérique. Il a été mené en collaboration avec le réseau DIM de Stellantis rassemblant des
experts en conception et dimensionnement mécanique. Ainsi, ce projet a béné�cié d'échanges
fructueux avec divers acteurs de l'entreprise, en particulier des experts en dimensionnement à la
fatigue, en modélisation numérique, en procédés de fabrication et en essais de validation.

Le dimensionnement à la fatigue des composants mécaniques chez Stellantis repose sur la
méthode contrainte-résistance (cf. Thomas et al., 2005). Cette approche probabiliste prend en
compte la diversité des usages clients et la dispersion des résistances, et vise à s'assurer que la
résistance à la fatigue est su�samment élevée compte tenu des choix de conception (matériaux,
géométries des composants, procédés de fabrication...).

Le développement d'une pièce mécanique commence par une phase de conception où la
géométrie et les matériaux sont dé�nis. Ensuite, un modèle numérique de la pièce permet de
simuler les contraintes sur la pièce sous chargement extérieur. Ces résultats numériques sont
post-traités et un critère de fatigue est appliqué a�n de localiser les faiblesses potentielles de la
conception (par exemple le critère de Dang Van, cf. Ballard et al., 1995). Une fois la conception
satisfaisante, des essais de fatigue sur prototypes réels sont réalisés pour valider la résistance à
la fatigue et véri�er qu'elle répond aux exigences de durabilité (cf. Beaumont et al., 2012).

En raison de la complexité des pièces et du processus de développement, des problèmes
peuvent survenir lors de la conception des composants du châssis du véhicule : par exemple, les
tests de fatigue ne permettent parfois pas de valider les choix de conception. Par conséquent, la
conception doit être corrigée et des tests physiques supplémentaires doivent être e�ectués. Les
essais de fatigue sont particulièrement longs car ils nécessitent de soumettre plusieurs prototypes à
des sollicitations cycliques répétitives sur une durée représentative de la durée de vie de la voiture.
Plus concrètement, un seul essai peut durer plusieurs semaines et l'ensemble d'une campagne
d'essais plusieurs mois. Par conséquent, les itérations entre validation et conception retardent
considérablement le développement d'un véhicule. Dans ce contexte, l'objectif de Stellantis est de
réduire drastiquement le nombre de tests et de tendre vers une conception entièrement digitale
qui ne nécessiterait qu'une seule campagne d'essais de validation.

Les di�cultés récurrentes de validation des composants LAS sont dues à de mauvaises
corrélations entre les résultats de simulation numérique et les expérimentations physiques. En
d'autres termes, le critère de fatigue appliqué aux résultats numériques ne permet pas d'identi�er
certaines faiblesses de la conception. Ces faiblesses sont alors découvertes lors des essais physiques.
Cela nécessite une modi�cation de la conception et une nouvelle campagne d'essais de validation.
Pour réduire ces allers-retours entre conception et validation et accélérer le développement d'un
véhicule, Stellantis s'intéresse à de nouvelles approches pour améliorer l'identi�cation des zones
critiques (zones à risques d'initiation de �ssures) à partir du modèle numérique. L'enjeu est
d'autant plus important que le passage de la voiture thermique à la voiture électrique nécessite
la conception de nouvelles plateformes pour les véhicules. Dans ce contexte, il est crucial de
capitaliser sur les expérimentations et les résultats acquis sur les véhicules thermiques pour ne
pas repartir de zéro.

Au cours des dernières années, plusieurs projets de thèse ont été menés à Stellantis (ex-
Groupe PSA) dans le cadre du dimensionnement à la fatigue, portant sur les protocoles d'essais
de fatigue accélérés (cf. Beaumont, 2013), la caractérisation des propriétés de fatigue des soudures
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(cf. Florin, 2015), la modélisation numérique des points de soudure électriques (cf. Mainnemare,
2021), et l'étude et la modélisation des contraintes résiduelles dues au procédé de soudage (cf.
Tryla, 2022). Deux projets de thèse en cours portent sur l'amélioration de la méthode Contrainte-
Résistance avec une description multivariée des sévérités de chargement en service (cf. Baroux
et al., 2022) ; et l'analyse des spectres de chargement multiaxiaux et d'amplitude variable pour
l'évaluation des dommages dus à la fatigue (cf. Bellec et al., 2022).

L'historique des modèles numériques et des rapports d'essais de validation de fatigue sur les
conceptions précédentes représente une source de données riche et importante qui n'a pas été
complètement exploitée jusqu'à présent. L'objectif de cette thèse est donc de mener une analyse
exploratoire de cette base de données fatigue et de développer de nouveaux outils statistiques
pour améliorer la prédiction des phénomènes de fatigue sur de nouveaux modèles numériques.
Ces analyses statistiques peuvent o�rir plusieurs avantages en complément de l'approche actuelle.
Tout d'abord, ils s'appuient sur des données numériques et expérimentales de pièces mécaniques
complexes, alors que les prédictions de fatigue classiques sont fondées sur des critères de fatigue
calibrés par des essais sur éprouvettes. Les éprouvettes utilisées consistent généralement en
des géométries simples qui ne sont pas nécessairement représentatives de la diversité et de la
complexité des pièces mécaniques réelles. Ensuite, l'approche proposée peut prendre en compte
des descripteurs physiques et géométriques supplémentaires à ceux considérés dans les critères
de fatigue traditionnels (triaxialité, gradients de contraintes, caractéristiques descriptives des
singularités...). En outre, l'analyse statistique peut guider le choix des variables appropriées
pour prédire les risques de d'amorçage sur les pièces mécaniques. En�n, les modèles statistiques
peuvent rendre compte de la dispersion des résultats d'essais de fatigue, ce qui est essentiel
lorsque l'on s'intéresse au phénomène de fatigue.

Ces axes o�rent un fort potentiel d'amélioration des prédictions du critère de fatigue actuellement
mis en ÷uvre. Un critère de dimensionnement à la fatigue amélioré devrait mieux identi�er les
zones critiques sur une nouvelle conception numérique et aider à anticiper les problèmes de
validation. Cela se traduirait par moins d'itérations entre conception et essais de validation et
donc un développement accéléré du véhicule.

D'un point de vue statistique, l'estimation d'un critère de fatigue peut être vue comme
une tâche de classi�cation qui pose des problèmes originaux du fait de la nature spéci�que des
données (conditions expérimentales, essais interrompus). Lors des essais, la présence d'amorçage
de �ssures assure la criticité d'une zone. Cependant, l'absence de �ssure n'est pas une preuve
de sécurité : une �ssure aurait pu amorcer sous une sévérité plus élevée ou si l'essai avait été
prolongé. Ce problème est lié à l'apprentissage positif-non labellisé (apprentissage PU), un cadre
de classi�cation semi-supervisé où seul un sous-ensemble d'observations positives est étiqueté
(cf. Bekker and Davis, 2020). En particulier, l'apprentissage PU sous l'hypothèse Selected At
Random (SAR, i.e. lorsque le sous-ensemble des instances étiquetées est a�ecté par un biais
de sélection) n'a reçu que peu d'attention dans la littérature (Bekker and Davis, 2018b; He
et al., 2018; Gong et al., 2021). Une étude théorique de l'apprentissage PU sous l'hypothèse
SAR pourrait apporter un nouvel éclairage sur la problématique industrielle et guider le choix
de méthodologies appropriées pour la résoudre.

Les paragraphes suivants donnent un bref aperçu de la structure globale de ce manuscrit,
organisé en quatre chapitres.

Le chapitre 1 introduit le phénomène de fatigue mécanique et les modèles classiques de la
littérature pour représenter et caractériser les risques de fatigue. Une distinction importante est
faite entre les modèles de durée de vie en fatigue et les critères de fatigue : les premiers cherchent à
modéliser la durée de vie en fatigue d'une pièce mécanique soumise à un chargement répété tandis
que les seconds s'attachent à prédire si une pièce satisfait ou non aux exigences de durabilité
et consistent donc en des prédictions binaires. Même si les objectifs poursuivis sont di�érents,
les deux types de modèles sont étroitement liés. Le chapitre explique ensuite précisément le rôle
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des modèles de fatigue dans le dimensionnement de pièces mécaniques automobiles à la fatigue.
En particulier, les rôles de la modélisation numérique et des essais de fatigue sont détaillés,
conduisant à la formulation des enjeux industriels et des objectifs de cette thèse : une approche
statistique pour améliorer l'identi�cation des défauts de conception sur un modèle numérique et
ainsi aider à réduire les itérations entre conception et validation.

Le chapitre 2 présente la base de données de fatigue Stellantis, construite à partir de résultats
numériques sur d'anciennes conceptions combinés à des rapports d'essais de fatigue expérimentaux.
Constatant le déséquilibre important entre le nombre d'observations avec et sans initiation
de �ssure, une méthode est proposée pour changer l'unité d'analyse en considérant des zones
(groupes d'éléments) au lieu d'éléments individuels. Cela permet de réduire considérablement le
déséquilibre. De plus, un ensemble de variables descriptives appropriées est introduit, comprenant
des variables standards en fatigue (invariants de contrainte) mais aussi de nouveaux descripteurs
spéci�ques aux zones (moyennes spatiales d'invariants de contrainte) et aux singularités (soudures
et bords de tôles). Une analyse non supervisée de la base de données est e�ectuée, mettant en
évidence des corrélations importantes entre les variables et simultanément une structure entre les
individus (zones). Puis, passant à la caractérisation des risques de fatigue, une version probabiliste
du critère de fatigue de Dang Van est proposée, permettant d'estimer et de prendre en compte la
dispersion du phénomène de fatigue dans un cadre multiaxial. Ce critère est estimé et validé au
travers de résultats d'essais de fatigue sur éprouvettes soudées mais montre ses limites lorsqu'il
est étendu à des pièces mécaniques complexes de la base de données fatigue. Par conséquent, la
construction d'un critère de fatigue est reformulée comme une tâche de classi�cation supervisée,
et des techniques d'apprentissage automatique standards sont appliquées. Ces critères de fatigue
basés sur la classi�cation peuvent prendre en compte tous les descripteurs disponibles dans la
base de données et conduisent à de meilleures performances en prédiction. Il s'agit donc d'une
première réponse aux enjeux industriels de la thèse.

Cependant, les techniques de classi�cation standard ignorent un mécanisme de bruit d'étiquette
a�ectant les observations binaires. Si les amorçages de �ssures assurent la présence de défauts
de conception sur les pièces mécaniques, l'absence de rupture par fatigue n'est pas une preuve
de sécurité. Ainsi, certaines zones critiques des pièces mécaniques ne sont pas détectées lors
des essais (et donc non étiquetées) du fait par exemple d'une sévérité trop faible ou d'un essai
interrompu trop tôt. Ainsi, la construction d'un critère de fatigue consiste en une tâche spéciale
de classi�cation semi-supervisée appelée apprentissage positif-non labellisé (apprentissage PU).

Le chapitre 3 présente l'apprentissage PU et sa spéci�cité par rapport à la classi�cation
standard. Après une revue bibliographique des approches et méthodologies existantes adaptées à
ce cadre de classi�cation, le chapitre se concentre sur une analyse théorique de l'apprentissage PU
sous l'hypothèse Selected At Random (SAR). Cette hypothèse stipule que le bruit d'étiquetage
a�ectant l'observation peut dépendre de covariables. De nouvelles bornes de risque supérieures et
inférieures sont fournies, soulignant l'impact du bruit d'étiquetage sur les taux de convergence des
classi�eurs. Ces taux de convergence sont illustrés empiriquement par des expériences numériques.

Le chapitre 4 traite de l'application pratique de l'apprentissage PU pour estimer un critère
de fatigue. La construction d'un critère de fatigue est exprimée sous la forme d'une tâche
d'apprentissage PU sous l'hypothèse SAR et l'ensemble des variables in�uençant le bruit d'étiquetage
sont identi�ées. Nous proposons un modèle paramétrique adapté à l'application fatigue, et
l'identi�abilité de ce modèle est discutée. Ensuite, une méthodologie basée sur l'algorithme
Expectation-Maximization (EM) (cf. Dempster et al., 1977) est développée pour estimer les
paramètres du modèle. L'intérêt de cette méthodologie est illustré par des expérimentations
numériques sur des données simulées. En�n, la méthode est appliquée à la base de données
fatigue de Stellantis, fournissant un nouveau type de critère de fatigue.

Pour résumer, les principales contributions de cette thèse sont les suivantes :

1. Une présentation originale des modèles de fatigue mettant en évidence les liens entre la
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fatigue du point de vue de la �abilité et de la durabilité (cf. Chapitre 1). Cette connexion
est illustrée sur la �gure 1.7 et ouvre la voie à des approches fondées sur la classi�cation
pour construire de nouveaux critères de fatigue.

2. Une version probabilisée du critère de fatigue de Dang Van utilisé pour l'identi�cation des
zones critiques sur une conception (cf. Chapitre 2). La nouveauté de ce critère réside dans
sa calibration, permettant d'estimer jointement les paramètres matériau et la dispersion
du critère multiaxial.

3. Une analyse exploratoire de la base de données fatigue de Stellantis à l'aide de techniques
classiques d'apprentissage supervisé et non supervisé (cf. Chapitre 2). Une dé�nition de
zones est proposée pour remédier à l'important déséquilibre du jeu de données et faciliter
les analyses statistiques. L'analyse non supervisée permet de mieux comprendre la diversité
des conditions de contraintes et des singularités géométriques sur des pièces mécaniques
complexes, et comment elles peuvent être caractérisées avec des variables appropriées. Des
critères basés sur les données de fatigue peuvent ensuite être estimés à l'aide de méthodes de
classi�cation supervisée. L'originalité de ces critères de fatigue est leur capacité à prendre en
compte de nombreux descripteurs en plus de ceux traditionnellement considérés, conduisant
à de meilleures performances en prédiction.

4. Une nouvelle approche basée sur l'apprentissage PU pour construire un critère de dimensionnement
à la fatigue (Chapitres 3 et 4). Comme les essais de fatigue ne permettent d'identi�er qu'un
sous-échantillon de zones critiques, la méthode de classi�cation doit tenir compte de cette
source de bruit d'étiquetage asymétrique dans l'estimation du critère. Les contributions
dans ce domaine sont doubles :

(a) Une étude théorique de l'apprentissage PU sous l'hypothèse Selected At Random
(SAR), c'est-à-dire lorsque la probabilité qu'une instance positive demeure non étiquetée
dépend de ses covariables. Nous avons prouvé de nouvelles bornes de risque pour
l'apprentissage PU, soulignant comment le taux de convergence dépend du bruit
d'étiquetage (Chapitre 3).

(b) Le développement d'une méthodologie pratique pour estimer un classi�eur PU adapté
au problème de dimensionnement à la fatigue. La méthodologie a été illustrée sur des
données simulées et appliquée à la base de données Stellantis (Chapitre 4).

Certaines des contributions ci-dessus font partie de publications soumises au cours de la
thèse :

� une version préliminaire de l'analyse non supervisée du chapitre 2 (Coudray et al., 2020b)
complétée par l'application de méthodes de classi�cation standard pour l'estimation de
critères de fatigue (cf. Coudray et al., 2020a, présentée à la conférence Lambda-Mu) ;

� une analyse spéci�que des soudures de la base de données de fatigue où des indicateurs
supplémentaires sont calculés pour améliorer les prédictions de fatigue (cf. Coudray et al.,
2021, présenté à la conférence SIA Simulation) ;

� la présentation des résultats théoriques du chapitre 3 (cf. Coudray et al., 2022a, soumis au
Journal of Machine Learning Research, JMLR). Des simulations numériques illustrant ces
résultats théoriques ont été présentées à la "Conférence pour l'Apprentissage automatique"
(cf. Coudray et al., 2022b).
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General introduction

Over its service life, the structure of a vehicle is subjected to various mechanical stresses resulting
from external loads transferred by the wheels and suspensions to the whole car. A distinction
is made between static loads related to the weight of the vehicle and its live load, and dynamic
loads induced by the vehicle's motions. These dynamic loads are due to the road conditions
(potholes, humps...) and to the driver's actions (braking, acceleration, turn...).

After a long duration of use, the accumulation of stresses combined with stress concentrations
(due to the geometry of mechanical components, manufacturing processes...) can cause the
initiation of micro-cracks on certain zones of the vehicle. These micro-cracks can progressively
lead to the initiation of a macro-crack which propagates until the complete fracture of the
mechanical component. This phenomenon, called mechanical fatigue, is extremely dangerous as
it can lead to the sudden failure of a mechanical part in normal conditions of use without any
excessive load. Fatigue is thus a dangerous and complex phenomenon depending on the choice
of materials, the manufacturing processes, and the local stresses during the use of the vehicle
(Schijve, 2005; Bathias and Pineau, 2010).

The objective of fatigue design is thus to make reasonably sure that the vehicle will meet the
requirements in terms of performance but also in terms of reliability and durability: for instance,
a durability of at least 10 years or 100 000 kilometers, representing the order of magnitude of a
relevant car's lifetime. The reliability of the vehicle must be ensured for a large variety of models
and usage conditions (road conditions, customer severities...). This is even more crucial for safety
parts of the vehicle where a failure can have dangerous consequences regarding the security of
passengers: axle shafts, steering system, transmission system, suspension components, braking
system...

Therefore, optimizing the conception of mechanical parts has become an essential preoccupation
of car manufacturers. Indeed, the objective is to construct lighter vehicles in order to reduce
their energy consumption while ensuring their reliability and durability. At the same time, the
conception should be as fast as possible to reduce the development costs.

The work presented in this thesis is the result of a collaboration between Inria (Celeste team)
and the company Stellantis in the framework of the Openlab AI with the �nancial support of
the ANRT for the CIFRE contract n°2019/1131.

Celeste research team at Inria works on subjects related to statistics, machine learning and
optimization with a focus on the relations between theory, algorithms, and applications.

Stellantis is a car manufacturer born from the recent merger between the Italian-American
group Fiat Chrysler Automobiles (FCA) and the French Groupe PSA. More precisely, this
research work was conducted within a Research and Development team at Stellantis working at
the interface between numerical modeling, optimization, and data science. The project emerged
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as a need expressed by teams involved in the design and validation of chassis components of
vehicles. It is part of the full digital strategic axis aiming at reducing the number of physical
validation tests by fostering numerical modeling. It was led in collaboration with the DIM
network at Stellantis gathering experts in mechanical design and structural integrity. Thus,
this project has bene�ted from fruitful exchanges with diverse actors in the company, including
experts in fatigue design, numerical modeling, manufacturing processes, and validation tests.

The fatigue design of mechanical components at Stellantis relies on the Stress-Strength
method (cf. Thomas et al., 2005). This probabilistic approach considers the diversity of customer
usage and the dispersion of resistances, and aims at ensuring that the fatigue resistance is high
enough given the conception choices (materials, geometries of the components, manufacturing
processes...).

The development of a mechanical part begins with a conception phase where the geometry
and materials are de�ned. Then, a numerical model of the part allows to simulate the stresses
on the part under external loads. These numerical results are post-processed and a fatigue
criterion is applied in order to locate potential weaknesses in the conception (for example Dang
Van criterion, cf. Ballard et al., 1995). Once the conception is satisfying, fatigue tests on real
prototypes are carried out to validate the resistance to fatigue and check that it meets the
durability requirements (cf. Beaumont et al., 2012).

Due to a huge and complex framework, project roadblocks may occur when it comes to
designing chassis components of the vehicle: for instance, the fatigue tests sometimes fail to
validate the design choices. Therefore, the conception needs to be corrected, and additional
physical tests must be performed. Fatigue tests are particularly long as they require subjecting
multiple prototypes to repetitive cyclic loads over a duration representing the objective lifetime
of the car. More concretely, a single test can last several weeks and a whole test campaign
several months. Consequently, numerous iterations between validation and conception strongly
delay the development of a vehicle. In this context, the objective of Stellantis is to drastically
reduce the number of tests and tend towards a full digital design that would require only one
�nal validation test.

The recurring di�culties in validating chassis components are due to poor correlations between
numerical simulation results and physical experiments. In other words, the fatigue criterion
applied to the numerical results fails to identify some weaknesses of the conception. These
weaknesses are then discovered during the physical tests. This requires a modi�cation of the
conception and another validation test campaign. To reduce design loops and accelerate the
development of a vehicle, Stellantis seeks new approaches to improve the identi�cation of critical
zones (zones with crack initiation risks) on a numerical model. The issue is all the more critical
as the transition from thermal to electric cars necessitates the design of new vehicle platforms.
In this context, it is crucial to capitalize on the experiments and results acquired on thermal
vehicles in order not to restart from scratch.

Over the past years, multiple thesis research projects were conducted at Stellantis (ex-Groupe
PSA) in the context of fatigue design, addressing accelerated fatigue test protocols (cf. Beaumont,
2013), the characterization of fatigue properties of welded joints (cf. Florin, 2015), the numerical
modeling of spot welds (cf. Mainnemare, 2021), and the study and modeling of residual stresses
due to welding processes (cf. Tryla, 2022). Two ongoing thesis projects focus on improving the
Stress-Strength method with a multivariate description of in-service stress severities (cf. Baroux
et al., 2022); and the analysis of multiaxial and variable-amplitude load spectra for fatigue
damage assessments (cf. Bellec et al., 2022).

The history of numerical models and fatigue validation tests reports about previous designs
represents a rich and sizeable source of data that was not completely exploited so far. The
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objective of this thesis is thus to conduct an exploratory analysis of this fatigue database and
develop new statistical tools to improve the prediction of fatigue phenomena on new numerical
models. These statistical analyses can o�er several advantages in addition to the current approach.
First, they rely on numerical and experimental data from complex mechanical parts, whereas the
classical fatigue predictions are based on fatigue criteria calibrated through coupon tests. The
coupon specimens used usually consist in simple geometries that are not necessarily representative
of the diversity and complexity of real mechanical parts. Second, the proposed approach can
account for additional physical and geometric descriptors to those considered in traditional
fatigue criteria (triaxiality, stress gradients, descriptive features on singularities...). Third,
the statistical analysis can guide the choice of appropriate features to predict fatigue risks on
mechanical parts. Finally, statistical models can account for the dispersion of fatigue test results
which is essential when dealing with fatigue phenomena.

These axes o�er great potential for improving the predictions of the fatigue criterion currently
implemented. An improved fatigue design criterion should better identify critical zones on a new
numerical conception and help anticipate validation issues. This would result in fewer iterations
between conception and validation tests and thus an accelerated development of the vehicle.

From a statistical point of view, the estimation of fatigue criteria can be viewed as a
classi�cation task that raises original issues due to the speci�c nature of the data (experimental
conditions, interrupted tests). During tests, the presence of crack initiation asserts the criticality
of a zone. However, the absence of crack is not an evidence of safety: a crack could initiate
under higher severity or if the test was extended. This issue is connected to Positive Unlabeled
learning (PU learning), a semi-supervised classi�cation framework where only a subset of positive
observations is labeled (cf. Bekker and Davis, 2020). In particular, PU learning under the Selected
At Random assumption (SAR, i.e. when the set of labeled instances is a�ected by a selection bias)
has received only few attention in the literature (Bekker and Davis, 2018b; He et al., 2018; Gong
et al., 2021). A theoretical study of PU learning under the SAR assumption could provide a new
point of view on the industrial issue and guide the choice of appropriate methodologies to solve it.

The following paragraphs provide a brief overview of the global structure of this manuscript,
organized in four chapters.

Chapter 1 introduces the mechanical fatigue phenomenon and the classic models from the
literature to represent and characterize fatigue risks. An important distinction is made between
fatigue lifetime models and fatigue criteria: the former seeks to model the fatigue lifetime of a
mechanical part subjected to repetitive loads while the latter focuses on predicting whether or not
a part satis�es the durability requirements and thus consists in binary predictions. Even if the
objectives pursued are di�erent, the two types of models are closely connected. The chapter then
precisely explains the role of fatigue models in designing automotive mechanical parts against
fatigue. In particular, the roles of numerical modeling and fatigue tests are detailed, leading
to the formulation of the industrial issues and objectives of this thesis: a statistical data-based
approach to improve the identi�cation of design �aws on numerical conceptions and thus to help
reduce design loops.

Chapter 2 presents Stellantis fatigue database, constructed upon past results from numerical
models combined with experimental fatigue test reports. Noting the severe imbalance between
the number of observations with and without fatigue crack initiation, a method is proposed
to change the unit of analysis by considering zones (groups of elements) instead of individual
elements. This allows to signi�cantly reduce the imbalance. In addition, a set of appropriate
descriptive features is introduced, including standard variables in fatigue (stress invariants) but
also new descriptors speci�c to zones (spatial averages of stress invariants) and to singularities
(welds and edges). An unsupervised analysis of the database is carried out, highlighting important
correlations among features and simultaneously a structure among individuals (zones). Then,
moving to the characterization of fatigue risks, a probabilistic version of Dang Van fatigue
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criterion is proposed allowing to estimate and account for the dispersion of fatigue phenomenon
in a multiaxial framework. This criterion is estimated and validated through fatigue test results
on welded coupon specimens but shows its limits when applied to complex mechanical parts
of Stellantis fatigue database. Hence, the construction of a fatigue criterion is reformulated as
a supervised classi�cation task, and standard machine learning techniques are applied. These
classi�cation-based fatigue criteria can account for all the descriptors available in the database
and lead to improved prediction performances. Therefore, this is a �rst answer to the industrial
issues of the thesis.

However, standard classi�cation techniques ignore a label noise mechanism a�ecting the
binary observations. If crack initiations assert the presence of design �aws on mechanical parts,
the absence of fatigue failure is not evidence of safety. Therefore, some critical zones of mechanical
parts may remain undetected at testing (and thus unlabeled) if the severity was not high enough
or if the test was interrupted too soon. This means that the construction of a fatigue criterion
consists in a special semi-supervised classi�cation task called Positive-Unlabeled learning (PU
learning).

Chapter 3 introduces PU learning and its speci�city compared to the standard classi�cation
setting. After a bibliographic review of existing approaches and methodologies adapted to PU
learning, the chapter focuses on a theoretical analysis of PU learning under the Selected At
Random (SAR) assumption. This assumption states that the label noise a�ecting the observation
can depend on covariates. New upper and lower risk bounds are provided, highlighting the impact
of the label noise on the convergence rates of classi�ers. These convergence rates are empirically
illustrated in numerical experiments.

Chapter 4 deals with the practical application of PU learning to estimate a fatigue criterion.
The construction of a fatigue criterion is expressed as a PU learning task under the SAR
assumption and the set of variables impacting the label noise are identi�ed. We propose a
parametric model adapted to the fatigue application, and the identi�ability of this model is
discussed. Then, a methodology based on the Expectation-Maximization (EM) algorithm (cf.
Dempster et al., 1977) is developed to estimate the model's parameters. The interest of this
methodology is illustrated through numerical experiments on simulated data. Finally, the method
is applied to Stellantis fatigue database, providing a new type of fatigue criterion.

To outline, the main contributions of this work are the following:

1. An original presentation of fatigue models highlighting the links between fatigue under
the two points of view of reliability and durability (cf. Chapter 1). This connection is
illustrated in Figure 1.7 and paves the way for classi�cation-based approaches to construct
new fatigue criteria.

2. A probabilistic version of Dang Van fatigue criterion used in the identi�cation of critical
zones on a design proposal (cf. Chapter 2). The novelty of this criterion lies in its
calibration, allowing to jointly estimate the material parameters and the dispersion of
the multiaxial criterion.

3. An exploratory analysis of Stellantis fatigue database using classical supervised and unsupervised
machine learning techniques (cf. Chapter 2). A construction of zones is proposed to remedy
the severe imbalance of the data set and facilitate statistical analyses. The unsupervised
analysis allows to better understand the diversity of stress conditions and geometric singularities
on complex mechanical parts, and how they can be characterized with appropriate descriptive
features. Fatigue data-based criteria can then be estimated using supervised classi�cation
methods. The originality of these fatigue criteria is their ability to account for many
features in addition to those traditionally considered, leading to better predictive performances.
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4. A new approach based on PU learning to construct a fatigue design criterion (Chapters
3 and 4). As fatigue tests only allow the identi�cation of a sub-sample of critical zones,
the classi�cation method needs to account for this source of asymmetric label noise in the
estimation of the criterion. The contributions in this domain are twofold:

(a) A theoretical study of PU learning under the Selected At Random (SAR) assumption,
i.e. when the probability for a positive instance to remain unlabeled depends on
its covariates. We provided new risk bounds for PU learning, highlighting how the
convergence rate depends on the amount of label noise (Chapter 3).

(b) The development of a practical methodology to estimate a PU classi�er adapted to
the fatigue design problem. The methodology was illustrated on simulated data and
applied to Stellantis database (Chapter 4).

Some of the above contributions are part of publications submitted during the thesis:

� a preliminary version of the unsupervised analysis of Chapter 2 (Coudray et al., 2020b)
completed by the application of standard classi�cation methods to the estimation of fatigue
criteria (cf. Coudray et al., 2020a, presented at Lambda-Mu conference);

� a speci�c analysis of welds of the fatigue database where additional features are computed
to improve the fatigue predictions (cf. Coudray et al., 2021, presented at SIA Simulation
conference);

� the presentation of the theoretical results of Chapter 3 (cf. Coudray et al., 2022a, submitted
at the Journal of Machine Learning Research, JMLR). Numerical simulations illustrating
these theoretical results were presented at the "Conférence pour l'Apprentissage automatique"
(cf. Coudray et al., 2022b).
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1
Fatigue design of automotive chassis parts

During the vehicle design, the manufacturer needs to ensure that the mechanical components are
able to resist the in-service loads they will be subjected to over the car usage. To do so, engineers
have to choose appropriate materials and geometries to meet these requirements. Among the
di�erent existing failure modes, fatigue is of critical importance. Fatigue a�ects parts whose
mechanical characteristics are modi�ed after a repetition of loadings: it is a wear phenomenon.
Fatigue fracture is thus very dangerous because it can happen when a part is subjected to loads
below its mechanical resistance. Besides, the fatigue phenomenon is very hard to appraise: a
numerical simulation is usually unable to fully characterize the fatigue resistance of a mechanical
part. Indeed, numerical models rely on simpli�cations (e.g. geometric simpli�cations due to
meshing, "nominal" material parameters used, poor load representativeness). Therefore, the
design against fatigue always requires an experimental validation to ensure that a given part is
robust enough.

Section 1.1 introduces the fatigue phenomenon in mechanics and explains why it is di�cult to
characterize. In Section 1.2, we introduce classic fatigue models in the literature to characterize
the fatigue risks. Section 1.3 presents the methodology Stress-Strength method to design and
validate complex mechanical parts. Its implementation in the context of fatigue design at
Stellantis is also detailed. Finally, in Section 1.4, we present the main issues of this thesis
and introduce our approach to solve these challenges.

1.1 - Fatigue of materials

The resistance of a mechanical parts to external loads depends on the material and on the
intensity of the force it is subjected to. Multiple failure modes exist (Subsection 1.1.1) including
fatigue. Fatigue is a particularly complex failure mode because it is the result of repeated loads
and usually happens after a long duration (Subsection 1.1.2). Besides, the fatigue resistance
depends on many parameters which makes the characterization of fatigue risks on complex parts
very challenging (Subsection 1.1.3).
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Figure 1.1: Coupon traction test.

1.1.1 Strength of materials

In mechanics of materials, the strength of a given material is usually studied through a
traction test (cf. Fortunier, 2001). This test consists in applying a given force F on a sample of
the material. The sample used is an elementary geometry called coupon specimen (cf. Fig. 1.1).
If A denotes the area of the section of the specimen, the local stress σ at the center of the
specimen is:

σ =
F

A
.

For a given value of F (and thus σ), the induced deformation (strain ε) of the specimen is
measured:

ε =
l − l0
l0

where l0 is the nominal length of the specimen and l is the length under load F .

Remark. During the traction test, the area of the section A changes due to Poisson e�ect :
an elongation of the specimen results in a decrease in the section area. This phenomenon is not
of primary importance here. Usually, we consider that:

σ =
F

A0

where A0 is the nominal section of the specimen.

The stress as a function of the strain is represented on a stress-strain diagram: the curve
characterizes the behaviour of the material (cf. Fig. 1.2). If the stress σ exceeds a certain limit
called ultimate strength (σu), the specimen breaks directly. Below this ultimate strength, the
elastic limit σy de�nes a boundary between plastic and elastic deformations. In the plastic
domain (i.e. for σ between σy and σu), the deformations are not reversible, meaning that once
the force F is set back to 0, the specimen does not get back to its initial state. A repetition
of such loads can entail a mechanical damage and result in breaking the specimen. For stresses
below the elastic limit σy, the deformation is said to be elastic: under this regime, the strain
can usually be modeled as a linear function of the stress. Besides the deformation is reversible,
meaning that once the force F is set back to 0, the specimen gets back to its initial state.

Even under repeated elastic stresses, a specimen can eventually break. The reason is that
the deformation is not fully reversible as there can be plastic deformations at the microscopic
scale. This creates micro-cracks on the specimen that propagate and merge to form a macro-
crack, hence leading to the failure of the specimen (Schijve, 2009; Bathias and Pineau, 2010).
This failure mode is called fatigue. A material is thus characterized by an additional limit σe
called fatigue limit or endurance limit. This limit represents the stress under which the lifetime
of the specimen is in�nite. This concept remains quite theoretic. For practical purposes, the
endurance limit is usually associated to a lifetime su�ciently high considering the application
(e.g. 106 cycles, cf. Subsection 1.2.1).
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Figure 1.2: Stress-strain diagram: the blue curve characterizes the mechanical properties of a
material

Figure 1.3: Example of cyclic loading.

1.1.2 De�nition of fatigue

Fatigue is a mechanical failure mode for a specimen subjected to cyclic loading. This means
that the loading is time-dependent and possibly periodic. Considering the illustrative example
of Subsection 1.1.1, we now assume that the loading F is a T -periodic function of time t 7→ F (t).
The local stress at the center of the specimen is also time-dependent and T -periodic:

σ(t) =
F (t)

A
.

Usually (σ(t))0≤t<T is summarized by its maximum and minimum values σmax and σmin
which allow to compute the stress mean and amplitude (cf. Fig. 1.3):

σm =
1

2
(σmax+σmin)

σa = (σmax−σmin)

Another useful parameter is the load ratio R de�ned as:

R =
σmin
σmax

.
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Figure 1.4: Example of S-N diagram with arti�cial data. The dotted green line represents the
endurance limit σe.

A particular case is when the mean stress is 0 and thus R = −1 (fully reversed).

The lifetime N of a specimen is de�ned as the number of load cycles the specimen can endure
before breaking. Fatigue is commonly divided into two sub-�elds. On the one hand, the Low
Cycle Fatigue (LCF) applies to situations where the stresses are above the elastic limit, thus
inducing non-reversible macroscopic plastic deformations. In this case, the lifetimes considered
are usually below 104 cycles (Schijve, 2009). On the other hand, High Cycle Fatigue (HCF)
covers the elastic domain and lifetimes usually superior to 104 cycles. In the scope of this thesis,
we are interested in HCF as the objective is to ensure the resistance of mechanical parts over
the lifetime of the car, evaluated as 106 cycles. Under the load intensities considered, there is no
macro-plastic deformation as the stresses are below the elastic limit σy.

The fatigue lifetime N is usually divided in two phases: �rst, the initiation of a macro-
crack on the specimen (Ni); then, its propagation until the complete failure of the specimen
(Np). In the context of fatigue design in the automotive industry, Np is usually small compared
to Ni. Besides, the objective is to ensure the absence of crack initiation over the vehicle's
lifetime; contrary to aeronautics where crack propagation is part of a comprehensive design and
maintenance framework. Hence, Ni is the quantity of interest and the lifetime N considered is
the number of cycles before observing a visible macroscopic crack.

The fatigue resistance of a material is experimentally characterized by performing tests on a
series of coupon specimens subjected to a sinusoidal load with di�erent intensities. Usually the
mean stress is �xed and only the amplitude stress σa changes. Multiple specimens are tested for
di�erent levels of stress: for each test, the experimental lifetime N of the specimen is obtained.
The results are represented in an S-N diagram (cf. Fig. 1.4) with the lifetime N on the x-axis
and the stress amplitude σa on the y-axis (usually with logarithmic scale on both axes). The
Wöhler curve (Schijve, 2009; Bathias and Pineau, 2010) represents the mean fatigue resistance
as a function of the lifetime N and characterizes the fatigue properties of the material. Test
results usually exhibit an important dispersion, especially in the HCF domain. Subsection 1.2.1
will provide standard models to build Wöhler curves taking into account the randomness of crack
initiation.
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1.1.3 Parameters in�uencing the fatigue resistance of metallic materials

Even considering a uniaxial coupon test (elementary and homogeneous geometry) in a controlled
environment, the experimental fatigue results are scattered (cf. Fig. 1.4). The reason is that
the micro-structure parameters (grain size and shapes, cristallographic structure of the material,
inclusions...) have an impact on the fatigue resistance. Hence, even two macroscopically identical
specimens have a di�erent microscopic arrangements of grains which leads to di�erent lifetimes
under an identical loading. As these parameters are usually impossible to control, it is important
to correctly account for the dispersion of fatigue lifetimes.

The fatigue strength of a specimen also depends on macroscopic parameters characterizing
the specimen and the stresses it is subjected to.

� The average lifetime of a specimen is a decreasing function of the stress amplitude σa. The
mean stress σm also has an in�uence on the fatigue lifetime (cf. Dowling, 2004). More
generally, when considering complex mechanical parts under more complex loading, the
stress is usually neither uniaxial nor univariate. The fatigue properties therefore depend
on the triaxiality of the stress.

� The fatigue phenomenon also depends on the geometry of a specimen. First, the distribution
of local stresses on a mechanical part depends on its geometry. Second, geometric singularities
like holes, corners or notches induce stress concentrations that can accelerate or delay
fatigue crack initiations. Third, fatigue depends on the size of the specimen (cf. Sun et al.,
2016). Indeed, fatigue is a weakest link mechanism: a part is as weak as its weakest element,
therefore the probability of having a weaker element increases with the size of the specimen.
This is true as far as the stress is uniformly distributed on the specimen, but this rationale
is also applicable to more complex cases.

� The material and the manufacturing process have a signi�cant impact on the fatigue
resistance. As previously mentioned, the Wöhler curve representing the fatigue properties
of a specimen depends on the material it is made of. Besides, the transformations applied
to the material prior to or during the assembling of the part (manufacturing process) can
modify its fatigue properties. Manufacturing processes (welding, stamping, machining, shot
peening, ...) introduce either micro-structural modi�cations altering the fatigue resistance
of the material or residual stresses that need to be considered in addition to the load stresses
(cf. Godefroid et al., 2014; Jimenez-Martinez, 2020).

� The environment interactions also have an impact on fatigue phenomenon (e.g. corrosion,
cf. Schijve, 2009, Chapter 16).

All in all, fatigue is a speci�c failure mode in mechanics occurring under repeated cyclic loads
of moderate intensity (stresses below the elastic limit). Accounting for fatigue risk in the design
of automotive parts is essential as the vehicle is subjected to external loads over its lifetime and
must resist without any crack initiation on safety parts. The fatigue properties of a material
can be characterized experimentally using Wöhler curves. These studies are however limited
to simple specimens (coupon specimens) under uniaxial loading conditions and in controlled
environments. Indeed, the fatigue lifetime of a specimen depends on many parameters including
the stresses, the geometry, the material and the manufacturing processes. Even after accounting
for all these parameters, the fatigue phenomenon remains scattered because it also depends on
the speci�c micro-structure of a specimen.
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1.2 - Modeling fatigue risks

In this section, we give an overview of standard fatigue models. We can classify these models
in two groups serving di�erent purposes. On the one hand, S-N models consist in characterizing
the lifetime of a specimen as a function of the stress. On the other hand, fatigue criteria seek
to characterize the fatigue endurance of a specimen, i.e. the stress conditions under which the
fatigue lifetime is in�nite. The two types of models are however interconnected. On the one
hand, the calibration of multiaxial fatigue criteria usually relies on multiple S-N curves. On the
other hand, multiaxial fatigue criteria can be extended to the �nite lifetime domain: instead
of characterizing the endurance limit of a material, the fatigue criteria characterizes the fatigue
limit for a �xed �nite lifetime N0 < +∞.

Subsection 1.2.1 presents standard S-N models to characterize the distribution of the lifetime
of a specimen as a function of the stress under uniaxial loading conditions. Under multiaxial
loads, the stress can no longer be represented by a univariate feature σ. Subsection 1.2.2 presents
the concept of stress tensor and shows how it can be used to characterize multiaxial stress
conditions through stress invariants. In Subsection 1.2.3, we present the general principles of
multiaxial fatigue criteria. Finally, Subsection 1.2.4 focuses on the de�nition of Dang Van fatigue
criterion and the calibration of its parameters.

1.2.1 S-N fatigue models

A S-N model is a statistical model adjusting the Wöhler curve, i.e. the fatigue lifetime of a
specimen subjected to a uniaxial cyclic stress. The mean stress σm is assumed to be �xed and
thus, only the e�ect of the stress amplitude σa is accounted for. The general form of an S-N
model is the following:

log(N) |σa = g(σa) + ε . (1.1)

The regression function g usually consists in a parametric model describing the Wöhler curve.
The noise ε represents the randomness of fatigue failures. Di�erent choices for each part of the
model are provided in Paragraphs a and b. Parameters of a S-N model are estimated on fatigue
test results, hence providing an estimate of the Wöhler curve and the dispersion of fatigue test
results.

a. Regression models for S-N curves

Di�erent parametric models exist in the literature to model the relation between the mean
fatigue lifetime N and the stress amplitude σa.

The standard fatigue model called Basquin model assumes a linear relation between the
logarithm of the lifetime log(N) and the logarithm of the stress amplitude log(σa) (cf. Basquin,
1910):

g(σa) = −b log (σa) + c (1.2)

where b and c are parameters characterizing the material and the type of test. In particular, the
regression coe�cient b is called Basquin slope and is a crucial fatigue parameter. Basquin model
is popular for its simplicity and its e�ciency in the domain of HCF with limited endurance (for
stresses above the endurance limit σe). One major limit of this model is that it does not assume
the existence of an endurance limit: according to Basquin model, in�nite lifetime is reached when
the stress amplitude σa tends toward 0.

Other models have been developed to integrate the existence of a fatigue limit. Some consider
an additional unknown parameter σe representing the endurance limit (Stromeyer, 1914):

g(σa) = −b log
(
[σa − σe]+

)
+ c (1.3)
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where [·]+ = max (·, 0) denotes the positive part. This model is adapted to the description of
the Wöhler curve in the HCF domain.

Another model allows a good representation of the Wöhler curve both in HCF and LCF
domains (cf. Bastenaire, 1972). It relies on an additional parameter d:

g(σa) = − log
(
[σa − σe]+

)
−
(
[σa − σe]+

b

)d
+ c . (1.4)

In the context of fatigue design in the automotive industry, Basquin model is generally used
as it provides a good description of the fatigue properties in the HCF domain under limited
endurance. The fact that it does not account for the endurance limit is not restrictive as we are
usually interested in the fatigue limits for a �xed number of cycles N0 representing the lifetime
of the car (usually N0 = 106).

b. Modeling the dispersion of S-N test results

Modeling the dispersion of fatigue test results is crucial as the engineers in reliability are
usually interested in low order quantiles of the distribution of log(N) rather than just the
median (or mean) Wöhler curve. Di�erent distributions can be used to model the dispersion
of the fatigue lifetime N (Schijve, 2005). The most common class of models assume that log(N)
follows a Gaussian distribution: hence ε (from Eq. 1.1) follows a centered Gaussian distribution
with unknown variance (Normal Fatigue Model).

Another popular choice of distribution for N is the Weibull distribution (Weibull fatigue
model): in this case the logarithm log(N) and thus ε follow a Gumbel distribution with unknown
location and scale parameters µ and γ. The cumulative distribution function of ε is given by:

F (u) = P (ε ≤ u) = 1− e
− exp

(
u−µ
γ

)
.

As explained by Schijve (2009), the validation of these models in practice requires a lot
of experimental data points which is rarely the case. The normal fatigue model is the most
commonly used.
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S-N models are useful models to estimate Wöhler curves and fatigue lifetime dispersion using
a series of uniaxial tests on coupon specimens. However, the geometry of mechanical parts are
far more complex than coupon specimens and the stress state is usually multiaxial. Indeed,
even a uniaxial load can generate multiaxial local stresses on a complex part. In the context of
the design of chassis components, the parts of interest are simultaneously subjected to multiple
multiaxial loads: longitudinal (acceleration, braking), lateral (turns), vertical (potholes and
humps)... Therefore, more complex fatigue models are needed in order to describe the fatigue
risks.

1.2.2 Stress tensors and invariants

When studying complex mechanical parts under cyclic loading, the stress state on each point
of the part is often multiaxial and thus requires multiple physical indicators to be fully described.
In continuum mechanics, the stresses on each point of the structure are represented by stress
tensors (cf. Paragraph a). As the components of a stress tensor depend on the basis it is expressed
in, it is common to compute stress invariants to characterize and compare the stresses on each
location of the structure (cf. Paragraph b).

a. Stress tensor

Let us consider a structure subjected to an external static load. The external load generates
a stress �eld on the structure. The stress on an element of the structure is represented by a
stress tensor σ. Let us �rst consider a two-dimensional setting. In this case, the stress tensor σ
is a 2× 2 symmetric matrix expressed in a given basis (ex, ey):

σ =

(
σxx σxy
σxy σyy

)
.

Considering an in�nitesimal square around the element, σxx and σxy represent the normal and
tangential stresses applied on the right edge (cf. Fig. 1.5). Similarly, σyy and σxy are the normal
and tangential stresses applied on the upper edge. Since the part is at equilibrium, the stresses on
the left and lower edges are symmetric (cf. �g. 1.5). There exists an orthonormal basis (e1, e2)
in which the tensor matrix is diagonal. In this particular basis, the stresses applied on each
edge of the in�nitesimal square around the element are only normal stresses (cf. Fig. 1.6). Their
values σ1 and σ2 are the eigenvalues of σ (principal stresses) and (e1, e2) are the corresponding
eigenvectors (principal directions).

These de�nitions generalize to the three-dimensional setting. In this case, a stress tensor is
a symmetric 3× 3 matrix expressed in a given basis (ex, ey, ez):

σ =

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 (1.5)

The interpretation of the components of σ is the following. Considering an in�nitesimal box
around the element of interest, the vector (σxx σxy σxz) represents the stress applied on the face
with normal ex, (σxy σyy σyz) is the stress on the face with normal ey and (σxz σyz σzz) is the
stress on the face with normal ez. More generally, if u is a normed column vector, the vector
σ × u is the stress applied on the face with normal u.

Similarly, the matrix σ can be diagonalized. By convention, the principal stresses σ1, σ2 and
σ3 are sorted in decreasing order. The associated principal directions are denoted e1, e2 and e3.
The components of the stress tensor depend on the basis the tensor is expressed in. Therefore,
comparing the stress tensors of two elements from two di�erent structures is meaningless as the
structures can have di�erent orientations and coordinate systems.
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Figure 1.5: Two-dimensional stress tensor in
the nominal basis
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Figure 1.6: Two-dimensional stress tensor in
the principal basis

b. Stress invariants

Stress invariants are physical quantities derived from the stress tensor that are independent of
the coordinate system the tensor is expressed in. These physical quantities are suitable features
to compare the stresses of di�erent elements from di�erent structures.

Hydrostatic stress. The �rst invariant of the stress tensor σ is its trace, denoted I1:

I1 = σxx + σyy + σzz = σ1 + σ2 + σ3 .

An important mechanical quantity based on this invariant is the hydrostatic stress P equal to
the average of the principal stresses:

P =
1

3
I1 .

It represents the mean of normal stresses applied on the in�nitesimal element. A negative P
means that the element is globally subjected to compressive forces which tends to delay the
initiation and propagation of cracks. Conversely, a positive P means that the element globally
works in traction which facilitate cracks development.

Von Mises stress. A stress tensor σ can be decomposed into a spherical part and a deviatoric
part:

σ = P I + (σ − P I)

where I denotes the identity matrix.

� P I is the spherical part.

� D = σ − P I is the deviatoric part containing the information about shear stresses.

By de�nition, the trace of D is 0. An important quantity is the second invariant J2 of the
deviatoric part of the stress tensor de�ned as:

J2 =
1

2
Tr(D2)

where Tr stands for the trace. This quantity is related to Von Mises stress V :

V =
√

3 J2 .

By de�nition, V is homogeneous to a stress and is always positive.
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Tresca shear stress. Tresca invariant τ is another measure of shear stress. It is de�ned as
the amplitude between the maximum and minimum principal stresses and is also positive:

τ =
1

2
(σ1 − σ3) .

Stress triaxiality. Stress triaxiality T is an indicator characterizing the type of stress an
element is subjected to. It is de�ned as the ratio between the hydrostatic stress P and Von
Mises shear stress V and is thus a quantity without unit:

T =
P

V
.

The sign of T is identical to the sign of P , therefore positive under traction normal stresses
and negative under compressive normal stresses. When T = 0, the stress tensor only involves
shearing. The triaxiality is equal to 1/3 under uniaxial traction (−1/3 under uniaxial compression)
and 2/3 under equi-biaxial traction. A high triaxiality means that the deviatoric part of the stress
tensor is negligible compared to the spherical part.

The stress invariants de�ned in this paragraph o�er a representation of the stress independent
from the coordinate system chosen. We will see that these invariants are involved in di�erent
multiaxial fatigue criteria. It is important to note that others stress invariants exist even if they
are not useful here.

1.2.3 Multiaxial fatigue criteria

During the design of complex structures, engineers want to ensure that every point of the
structure is resistant enough to fatigue risks. As the stresses are usually multiaxial, modeling the
lifetime of the structure can be very challenging. Besides, engineers only seek a binary answer,
i.e. whether or not the structure is resistant enough to fatigue crack initiations. Fatigue criteria
are then used for this purpose.

Paragraph a clari�es the role and objectives of a fatigue criterion compared to a S-N model.
In Paragraph b, we introduce the general formalism of a multiaxial fatigue criterion. Paragraph
c presents the di�erent categories of multiaxial fatigue criteria.

a. Objective of a fatigue criterion

A S-N curve represents the mean fatigue lifetime of a specimen (simple, small and homogeneous
structure) depending on the stress it is subjected to. If the objective is to characterize the
conditions under which the lifetime is in�nite, we are no longer interested in the whole S-N curve
but only on its asymptote. A fatigue criterion provides a binary answer to the question: is
this stress over or below the endurance limit of the material (Nadjitonon, 2010)? The di�erence
between an S-N model and a fatigue criterion is illustrated in Figure 1.7 considering a uniaxial
setting. On the left �gure, fatigue test data points are represented. After N cycles at stress
amplitude σa, we denote Y the result of the test: Y = 0 (blue points on the graph) if no crack
is observed and Y = 1 (red stars on the graph) if a crack initiated. Hence the S-N model
characterizes the risk (probability of crack initiation) of a specimen with stress amplitude σa
tested over N cycles to fail during testing. The right �gure represents the objective of a fatigue
criterion, i.e. to predict whether a specimen under stress amplitude σa is over (Z = 1, orange)
or below (Z = 0, green) the endurance limit σe. An element with stress amplitude over the
endurance limit is a critical element.
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Figure 1.7: S-N curve and fatigue criterion : a uniaxial example (arti�cial data). In both �gures,
X-axis represents test duration and Y-axis is the stress amplitude. On the left, red stars represent
crack initiations, blue points are non-broken specimens. The �gure on the right corresponds to
the outputs of the fatigue criterion (orange for critical elements, green for safe elements).

In a uniaxial setting, S-N models and fatigue criteria are connected. Indeed, using for instance
Stromeyer or Bastenaire S-N model, one can obtain an estimate of the asymptote of the S-N
curve, which de�nes a uniaxial fatigue criterion.

The concept of fatigue criterion is usually extended beyond the unlimited endurance setting
(Fares, 2006). In applications, it is very common to consider fatigue criteria predicting whether
a specimen is over or below the fatigue limit for a speci�ed �nite lifetime N0 (N0 = 106 in the
automotive industry). Again, in a uniaxial setting, standard S-N models (including Basquin
model, cf. Subsection 1.2.1) can provide an estimate of this fatigue limit and hence help calibrate
the fatigue criterion.

Another important di�erence between S-N models and fatigue criteria is that the Wöhler
curve is used for uniaxial, cyclic and constant-amplitude loads whereas fatigue criteria can be
de�ned for multiaxial (and constant-amplitude) cyclic loads.

b. General formulation of a multiaxial fatigue criterion

A multiaxial fatigue criterion is based on a real-valued function h, called fatigue function (cf.
Weber, 1999) indicating whether or not the stress cycle on an element of a structure exceeds the
endurance limit (in�nite lifetime) or the fatigue limit at N0 cycles (�nite lifetime). We recall
that the fatigue phenomenon is due to the repetition of a cyclic load on a mechanical part. The
response of the structure is characterized by a stress �eld. In particular, the stress cycle on a
given point of the structure is characterized by its stress tensor over a period (σ(t))0≤t<T . Hence,
the fatigue function h depends on the whole stress cycle (σ(t))0≤t<T and on the material M . By
convention, the multiaxial fatigue criterion predicts that the element is:

� safe if h ((σ(t))0≤t<T ,M) < 1;

� critical if h ((σ(t))0≤t<T ,M) > 1.

The fatigue limit of the material M is reached when h ((σ(t))0≤t<T ,M) = 1.

This formulation remains very general: most fatigue functions only account for a limited
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number of features extracted from the stress cycle. Usually two types of information are taken
into account.

1. Shear stress is the principal cause of crack initiation and thus an important parameter of
the fatigue function. Usually, it is represented by the maximum shear stress over the cycle
using either Von Mises stress max(V (t)) or Tresca shear stress max(τ (t)).

2. Hydrostatic stress can accelerate (traction) or delay (compression) crack initiation and is
thus also an important parameter. Depending on the criterion, some fatigue functions
account for the amplitude, mean and maximum of hydrostatic stress over the cycle.

Moreover, the fatigue function h depends on material parameters that need to be identi�ed
empirically. Usually, the calibration of a fatigue criterion requires the knowledge of material
fatigue limits in at least two di�erent types of loading (traction and torsion for instance). As
explained in Subsection 1.1.3, the fatigue strength not only depends on the material but also on
the manufacturing processes (stamping, welding...).

c. Categories of multiaxial fatigue criteria

The literature on fatigue criteria is very rich: the existing criteria can be classi�ed in several
ways. Let us consider here the classi�cation proposed by Nadjitonon (2010) with four categories.

1. Empirical fatigue criteria are adapted to the characterization of the material fatigue limit
for a given type of multiaxial stress. Their main limit is that they are only suited for a
single type of loading and thus cannot generalize to di�erent types of loading. An example
of such a criterion is the one proposed by Gough & Pollard (Gough et al., 1951).

2. Critical plane fatigue criteria consider that a crack is more likely to initiate along a speci�c
plane called critical plane. The critical plane is de�ned as the one maximizing a criterion
involving stresses applied on that particular plane. The �nal fatigue function h depends on
invariants of the stress tensor and stresses applied on the critical plane. Dang Van fatigue
criterion (Dang Van and Griveau, 1989) commonly used in the automotive industry, belongs
to this class. It will be presented in further details in the next Subsection.

3. Fatigue criteria based on an integral approach consider the contribution of each plane to
the degradation by calculating an integral over all the possible planes of a given function
(for instance Fogue criterion, cf. Fogue and Bahuaud, 1985).

4. Global approach fatigue criteria are based on stress tensor invariants. For instance, Crossland
criterion involves a linear combination between the maximum of the �rst stress invariant
I1,max and the amplitude of the second invariant J2,a (Crossland, 1956). Sines criterion
also consider J2,a but in addition to the mean of the �rst invariant I1,m (Sines and Ohgi,
1981).
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1.2.4 Dang Van fatigue criterion

Dang Van criterion is a critical plane fatigue criterion commonly used in the automotive
industry (Thomas et al., 2005). As we will frequently refer to this criterion in the rest of the
thesis, the purpose of this subsection is to introduce it. Paragraph a explains the construction
of Dang Van criterion and the underlying assumptions. In Paragraph b, we show how the
corresponding fatigue function is calculated in practice, focusing on proportional and sinusoidal
loadings which will be su�cient in the scope of this thesis. Finally, Paragraph c investigates the
calibration of the material constants involved in Dang Van criterion.

a. De�nition of Dang Van criterion

Dang Van criterion is based on considerations at the microscopic scale of the material. The
initiation of fatigue cracks is due the plastic deformations occurring at the microscopic scale in
the material. Because of the repetition of stress cycles, micro-cracks progressively appear and can
lead to the apparition of a macroscopic crack. Dang Van designed a criterion of non-initiation
according to which micro-cracks (and thus fatigue cracks) cannot initiate if the behaviour of
the material remains elastic at the microscopic scale (Dang Van and Griveau, 1989). At the
microscopic scale, a metallic material consists in a complex arrangement of grains. Dang Van
states that no crack initiation can happen if the grains with the worse orientation do not break.
The fatigue function associated to Dang Van criterion, denoted hDV , depends on the hydrostatic
stress P (t) and on the maximum mesoscopic shear stress1 taken over all possible planes τmes(t).
The criterion considers a linear combination of both quantities maximized over the stress cycle:

hDV

(
(σ(t))1≤t<T ,M

)
= max

0≤t<T

τmes(t) + αM P (t)

τM
. (1.6)

Here, τM and αM are material parameters that need to be calibrated (cf. Paragraph c).

b. Practical implementation of Dang Van criterion

The application of Dang Van criterion requires the calculation of the hydrostatic stress
P (t) and of the maximum mesoscopic shear stress τmes(t). The computation of the former
is straightforward knowing the stress tensor at every time t (σ(t)) whereas the second is much
more complex to calculate. Dang Van provided a practical methodology to compute τmes(t) and
thus apply the criterion (Dang Van and Griveau, 1989; Ballard et al., 1995).

First, the deviatoric part D(t) of the stress tensor is computed for every time t. Then, the
residual mesoscopic shear s is calculated as the center of the smallest circumscribing hypersphere
to the load path in the deviatoric space (D(t))0≤t<T . The mesoscopic stress tensor is de�ned
as the di�erence between the macroscopic stress tensor and the residual mesoscopic shear:
σmes(t) = σ(t) − s. Finally τmes(t) is obtained as Tresca shear stress invariant computed
on the mesoscopic stress tensor σmes(t).

The second step involving the computation of the smallest hypersphere's center remains
complex in general. In the scope of the thesis, we will be considering sinusoidal and a�ne stress
cycles of the form:

σ(t) = σm + cos

(
2π t

T

)
σa .

σm and σa denote the mean and amplitude tensors.
Let us show how the maximum mesoscopic shear stress can be derived in this setting. First,

the deviatoric part of tensor σ(t) can be expressed as a function of the deviatoric parts of σm
1Shear stress at the grain scale of the material (cf. Paragraph b for its calculation in practice).
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Figure 1.8: Example of stress path (P (t), τmes(t))0≤t<T in Dang Van plane (blue curve) and
representation of the fatigue criterion (red dashed line, with intercept τM and slope −αM ). The
element is safe if the stress path remains in the green zone, critical if it reaches the red zone.

(Dm) and σa (Da):

D(t) = Dm + cos

(
2π t

T

)
Da .

Then, in this speci�c case, the load path in the deviatoric space is a straight line whose center
is Dm. Hence, the mesoscopic stress tensor can be easily derived:

σmes(t) = σ(t)−Dm

= PmI + cos

(
2π t

T

)
σa

where Pm is the mean hydrostatic stress (hydrostatic stress of σm) and I denotes the identity
matrix.

Finally, denoting τa the Tresca shear stress invariant applied to σa, we can remark that the
maximum mesoscopic shear stress τmes(t) only depends on τa:

τmes(t) =
∣∣∣ cos(2π t

T

) ∣∣∣× τa .

The hydrostatic stress P (t) can also be expressed in terms of Pm (mean) and Pa (amplitude):

P (t) = Pm + Pa cos

(
2π t

T

)
.

Dang Van criterion can be represented in a Dang Van diagram featuring the hydrostatic stress
(x-axis) and the maximum mesoscopic shear stress (y-axis). In this plane, Dang Van criterion
is a line with intercept τM and slope −αM (cf. Fig. 1.8). A stress path (P (t), τmes(t))0≤t<T
can be visualized in this plane: the stress cycle is safe if it remains below the criterion line. In
practice, as the stress cycles we will be analyzing all have this "V" shape, we only need to check
the relative position of the top right point (critical instant tc) to Dang Van line (cf. Fig. 1.8).
The values of hydrostatic stress and maximum mesoscopic shear stress at critical instant tc will
be referred as critical hydrostatic stress (Pc) and critical shear stress (τc).
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The value of Dang Van fatigue function (cf. Eq. 1.6) can be easily expressed in terms of Pc
and τc. Engineers usually prefer to compute the danger coe�cient (CD):

CD = hDV

(
(σ(t))1≤t<T ,M

)
− 1 =

αM Pc + τc
τM

− 1 .

It is a measure of criticality of a stress path: CD is negative for safe instances and positive
for critical ones. Besides, one can note that iso-CD lines in Dang Van plane are parallel to Dang
Van criterion line.

c. Calibration of Dang Van criterion

The fatigue function hDV characterizing Dang Van criterion depends on two material parameters:
αM and τM . Those constants are calculated based on two types of uniaxial fatigue test from
which two fatigue limits are estimated. Usually traction and torsion tests are used2. For each type
of test, multiple coupon specimens are tested for di�erent load intensities in order to estimate
the Wöhler curve. Once the two Wöhler curves are estimated, the fatigue limits at lifetime N0

are calculated: σtrac(N0) and σtors(N0) are the fatigue limits for the traction and torsion tests.
Since each test is characterized by di�erent stress tensors, we can calculate their coordinates in
Dang Van plane.

� For the uniaxial traction test, the stress tensor is of the form:

σ = cos

(
2π t

T

) σtrac 0 0
0 0 0
0 0 0

 .

The critical hydrostatic and shear stresses are:

Pc =
σtrac
3

and τc =
σtrac
2

.

� For the uniaxial torsion test, the stress tensor is:

σ = cos

(
2π t

T

)  0 σtors 0
σtors 0 0
0 0 0

 .

The critical hydrostatic and shear stresses are:

Pc = 0 and τc = σtors .

Using the fatigue limits σtrac(N0) and σtors(N0), the two corresponding points are reported
in Dang Van plane. The criterion is then de�ned as the line passing by these two points (cf.
Fig. 1.9). In particular, the intercept τM and the slope −αM are:

τM = σtors(N0) and αM = 3

(
σtors(N0)

σtrac(N0)
− 1

2

)
.

Dang Van criterion can be de�ned for any objective lifetime N0, even in�nite: in this
case, the criterion will describe the endurance limit. In the context of fatigue design for the
automotive industry, we will be considering the standard objective lifetime N0 = 106, usually
being representative of the service life of a car.

To sum up, multiaxial fatigue criteria (including Dang Van criterion) can be used to assess
whether a point of a structure, given its local stress cycle, will be resistant to crack initiation
over a �xed lifetime N0. During the fatigue design of a mechanical part, the objective is to
ensure that the whole structure (de�ned by its geometry, materials, manufacturing processes) is
resistant enough to fatigue risks.

2A usual roadblock considering steel sheets is that it is di�cult to design a coupon torsion test.
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Figure 1.9: Calibration of Dang Van criterion at N0 cycles using the fatigue limits for uniaxial
traction test σtrac(N0) and torsion test σtors(N0).

1.3 - Fatigue design of complex mechanical parts

During the design of a new vehicle, engineers propose a solution that meets some requirements
in terms of functionality, durability and reliability. This is particularly crucial for safety parts of
the vehicle for which the reliability requirements are high (cf. Thomas et al., 2005). During the
development phase, engineers need to ensure that the components of the vehicle are resistant
enough to the in-service loads they may encounter. The fatigue design strategy and the resistance
objectives are de�ned through a Stress-Strength method (cf. Subsection 1.3.1). Then, the
validation of the components is carried out using fatigue tests on prototypes (cf. Subsection
1.3.2). As validation fatigue tests are long and expensive, it is important for engineers not
to wait for the validation tests and to be able to assess the resistance of the mechanical part
through numerical simulations. This pre-validation stage usually relies on the application of a
fatigue criterion that can help anticipate potential design �aws on a design proposal, prior to the
validation tests (cf. Subsection 1.3.3).

1.3.1 Stress-Strength interference method

The Strength-Stress interference method is a probabilistic approach to the fatigue design of
structures (cf. Thomas et al., 2005; Echard et al., 2014). The safety requirements on a structure
set a maximum failure probability acceptable pmax. The general objective of fatigue design is to
ensure that the probability for a random customer to exceed the fatigue limit of a component is
lower than pmax. The safety requirement can thus be translated into a mathematical formulation:

P (S > R) ≤ pmax . (1.7)

The variable S represents the stress (load) applied to the part during the utilization of the
vehicle and R is the resistance of the part, i.e. the limit stress value over which the part will fail
(crack initiation).

Multiple sources of variability need to be accounted for in S: the motion of the vehicle
(acceleration, braking, turns), the road conditions (asphalt, cobblestones, potholes, humps...),
the payload of the vehicle and the driving style (smooth, aggressive). The distribution of S
is usually modeled by a univariate Gaussian distribution with mean µS and variance σ2S (cf.
Fig. 1.10, orange curve).

The variability of R is due to the material properties of the part and the manufacturing
process: even two macroscopically identical parts will have di�erent resistances. Hence, the
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resistance (or strength) is represented by a random variable R following a Gaussian distribution
with mean µR and variance σ2R (cf. Fig. 1.10, blue curve).

Hence, S represents the intensity of the damages the part is subjected to: the greater S is,
the more severe the customer is for the part. The resistance R is the maximum severity the part
can endure. Equation 1.7 expresses the durability objective for the car manufacturer: over its
service life (e.g. 105 kilometers), the risk for the part to fail in service should be less than pmax.
For safety parts, pmax is very low, typically 10−6.

Since S and R are assumed independent, the probability P (S > R) from Equation 1.7 can
be expressed in terms of µS , σS , µR and σR.

The parameters of the stress distribution (µS and σS) are estimated using customer usage
data. The knowledge of these parameters allows to de�ne an "objective customer" (or "reference
customer") as a certain quantile of the distribution of S. At Stellantis (ex-PSA), the objective
customer is de�ned as the quantile of S of a certain level 1 − 1/M . It represents the severity
value that only 1 customer over M will exceed on average. The objective customer Fn is used as
a baseline for de�ning the loading intensity to be simulated on numerical models (cf. Subsection
1.3.3) and for de�ning the acceptance criterion for prototype validation tests (cf. Subsection
1.3.2). The objective customer Fn is often parameterized as:

Fn = µS + ασS (1.8)

where the parameter α only depends on the quantile of level 1/M of the normal distribution.
Let us now explain how the design requirement of Equation 1.7 is translated into a criterion

on the mean resistance µR of the structure. Resistance parameters µR and σR are unknown.
Nevertheless, the coe�cient of variation q = σR/µR is assumed to be known through expert
knowledge on the materials and manufacturing process (cf. Bergamo et al., 2017). This leaves
only one unknown parameter: the mean resistance µR. The safety requirement of Equation
1.7 is satis�ed if and only if the mean resistance µR satis�es a certain validation criterion. This
validation criterion is often written in terms of the relative position between µR and the objective
customer Fn (cf. Fig. 1.10):

µR ≥ Fn + βσR , (1.9)

where β depends on µS , σS , σR and on the maximum failure probability pmax. Hence, if Equation
1.9 is satis�ed, the probability for a random customer S to encounter a mechanical part with a
weaker resistance R is less than pmax.

1.3.2 Fatigue rig tests for validation

Once the conception of a mechanical part is done, fatigue rig-tests are performed in order
to validate its resistance to fatigue. Di�erent series of fatigue tests are carried out for di�erent
types of loading. They represent di�erent types of external forces the mechanical part will be
subjected to when the car is in service (cornering, longitudinal, transversal, vertical...).

The objective of a fatigue test for a given type of loading is to validate the design by checking
that the mean resistance µR e�ectively satis�es the durability requirements (cf. Eq. 1.9). For
that purpose, multiple tests are performed and the mean resistance is estimated thanks to the
outcomes of the tests (cf. Paragraph a). We will present two di�erent test protocols: Staircase
protocol (cf. Paragraph b) and Locati protocol (cf. Paragraph c). As Locati protocol consists
in incrementing the severity (loading amplitude) during the fatigue test, the test is no longer
performed at constant amplitude. Therefore, an equivalent severity is calculated in order to
estimate the resistance. Paragraph d will be dedicated to the introduction of this concept of
fatigue equivalent.
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Figure 1.10: Stress-Strength method for fatigue design: the blue curve represents the distribution
of R (strength) and the orange curve the distribution of S (stress). The objective customer Fn
is an extreme quantile of the stress distribution.

a. General principles on fatigue tests on prototypes

For a given type of loading, a bench is designed in order to reproduce the external forces the
part will be subjected to in real conditions (cf. example in Fig. 1.11).

Usually, not less than three identical prototypes are tested. For each prototype, the load
cycle is repetitively applied over a certain duration (usually more than 106 cycles) or until one
or multiple cracks initiate on the part. Testing a single prototype can take several weeks, hence
a test campaign may last several months. This is also why companies cannot a�ord to test much
more prototypes.

Depending on the test protocol, the prototype is inspected at the end of the test, and possibly
also during the test. This inspection allows to detect potential crack initiations that occurred
during testing. As the cracks may be small, penetrant inspection can be used to help detect
defects. It consists in using a high contrast liquid on the surface of the mechanical part to help
crack's identi�cation (cf. Fig. 1.12).

The �nal objective is to validate the design by estimating the mean resistance of the mechanical
part, i.e. the severity for which no crack will appear before 106 cycles. For that purpose, only the
�rst crack initiation is important: the number of cycles before the �rst crack initiation de�nes
the lifetime of the prototype. Nevertheless, it is common to continue the test further (especially
for the Locati protocol, cf. Paragraph c) as far as the �rst crack initiation does not modify
signi�cantly the behavior of the part. This way, additional cracks can initiate, informing about
others potential weaknesses of the part.

Tests are carried out according to a precise protocol. There are di�erent types of protocols
(Beaumont et al., 2012; Beaumont, 2013): Paragraph b presents the Staircase protocol, Paragraph c
deals with the Locati protocol which is an accelerated testing protocol also popular in the
automotive industry.
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Figure 1.11: Example of bench for testing a cradle model under cornering loading.

Figure 1.12: Penetrant inspection for fatigue crack detection using a pink liquid to help crack's
identi�cation.

b. Staircase fatigue test protocol

The Staircase fatigue test protocol consists in performing constant amplitude tests and
adapting the severity of the test (i.e. the value of the load amplitude) from the outcome of
the previous one (Lin et al., 2001; Zhao and Yang, 2008).

Let fi denote the severity of test number i. The test is carried out over 106 cycles and the
outcome of the test is binary: presence or absence of crack initiation. If a crack initiation is
observed, then the severity of the following test is decreased: fi+1 = fi − finc. Else, if no crack
is observed, the severity is increased: fi+1 = fi + finc (cf. Fig. 1.13).

The severity of the �rst test f1 is usually chosen close to the target mean resistance µR
that needs to be validated. The increment finc between the tests is usually set as the standard
deviation of the target resistance σR.

The mean resistance can be estimated using the outcome of all the tests (Dixon and Mood,
1948).
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Figure 1.13: Illustration of staircase fatigue test protocol: red stars (green points) represent tests
with (without) crack initiation before 106 cycles.

Figure 1.14: Illustration of a Locati test with initial severity fi. The orange line represents the
Locati test: severity (Y -axis) as a function of the number of cycles (X-axis). The blue line
represent the equivalent test at constant severity over 106 cycles. In terms of fatigue damage,
the equivalent test is equivalent to the Locati test.

c. Locati protocol

Locati protocol is an accelerated test life protocol that consists in incrementing the severity
during the test (Locati, 1955; Brevet et al., 1978). This way, every prototype is tested until
failure. The protocol is characterized by the following parameters:

� the increment in severity during testing finc;

� the number of cycles between two increments Ninc.

Let fi denote the initial severity of test number i. Every Ninc cycles, the severity is increased
by finc. Finally, the number of cycles Ni before the �rst crack initiation is observed (cf.
Fig. 1.14). An equivalent severity feq(fi, Ni, finc, Ninc) is calculated to estimate the resistance of
the prototype. The interpretation is the following: the Locati test with parameters (fi, Ni, finc, Ninc)
performed is equivalent in terms of fatigue damage to a constant amplitude test at severity
feq(fi, Ni, finc, Ninc) over N0 = 106 cycles (cf. Fig. 1.14). The details about the de�nition of the
equivalent severity are given in the next Paragraph.
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Once all the k prototypes have been tested, the mean resistance µR is estimated as:

µ̂R =
1

k

k∑
i=1

feq(fi, Ni, finc, Ninc) .

In the scope of this thesis, the test results were obtained through the Locati protocol.

d. Fatigue equivalent severity of a Locati test

The usual fatigue models (S-N models and fatigue criteria) always rely on the assumption that
the stress cycle is repeated over time. During a Locati test though, the severity is incremented
gradually, hence this assumption is no longer satis�ed. In order to assess the resistance of a
mechanical part given the parameters of the Locati test (fi, Ni, finc, Ninc), engineers calculate
the severity of an equivalent test (in terms of fatigue damage) performed over 106 cycles with
constant severity. The severity of this test is called equivalent severity at 106 cycles and is
denoted feq(fi, Ni, finc, Ninc).

The calculation of the equivalent severity relies on two ingredients:

1. a cumulative damage law (Miner rule is the simplest and the most frequently used);

2. an S-N curve for the material (in our case, the S-N curve is assumed to follow a Basquin
model with a known slope b).

Miner cumulative damage rule (Miner, 1945; Palmgren, 1924) Consider a prototype
subjected to n1 cycles at severity f (1), n2 cycles at severity f (2),..., and np cycles at severity f (p).
We assume that a crack initiated at the end of the test.

Now, let us denote Nj the lifetime of the prototype at severity f (j), for j ranging from 1 to
p: this means that for a severity f (j), we observe a crack initiation after Nj cycles. The damage
undergone by the part is then equal to 1. Miner rule states that the damages are accumulated
linearly. Hence, nj cycles at severity f (j) generate a damage:

Dj =
nj
Nj

. (1.10)

Besides the total damage D endured by the part is the sum of the individual damages from
Equation 1.10:

D =

p∑
j=1

nj
Nj

. (1.11)

It is thus assumed that the total damage is independent of the order according to which the
di�erent load cycles are applied.

If a crack initiation is observed at the end of the test, the cumulative damage is then equal
to 1. Hence, knowing that the part failed at the end of the test, we have the following equality:

p∑
j=1

nj
Nj

= 1 . (1.12)
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Basquin model. We now assume that the lifetime given the stress amplitude follows a
Basquin model with a known Basquin slope b (cf. Subsection 1.2.1). As the stress amplitude is
proportional to the severity, the relation of Basquin model can be directly written in terms of
the lifetime N and the severity f :

log(N) = a− b log(f) . (1.13)

If feq denotes the severity at which the prototype has a lifetime equal to N0 = 106 cycles, we
have the following relation:

log(N0) = a− b log(feq) .

We can thus replace the unknown parameter a in Equation 1.13, which yields:

log

(
N0

N

)
= −b log

(
feq
f

)
.

Hence, 1/N can be expressed as a function of N0, feq, f and b:

1

N
=

1

N0

(
f

feq

)b
.

Now, considering the cumulative damage given by Equation 1.12, we can re-express 1/Nj for
every j by using the previous equation:

p∑
j=1

nj
N0

(
f (j)

feq

)b
= 1 . (1.14)

Noting that the only unknown variable in Equation 1.14 is feq, it can be expressed as a function
of the remaining variables and parameters:

feq =

 p∑
j=1

nj
N0

(
f (j)

)b 1
b

. (1.15)

The resulting quantity feq is the equivalent severity in the sense that a crack initiation after n1
cycles at severity f (1),..., np cycles at severity f (p) is equivalent to a crack initiation after N0

cycles at severity feq.

Equivalent severity for a Locati test. The Locati test is characterized by the parameters
of the increments (Ninc, finc), the initial severity f0 and the total number of cycles before crack
initiation N . Let (q, r) denote the quotient and rest of the euclidean division of N by Ninc, the
part was subjected to:

� Ninc cycles at severity f0;

� Ninc cycles at severity f0 + finc;

� ...

� Ninc cycles at severity f0 + (q − 1) finc;

� r cycles at severity f0 + q finc.
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Figure 1.15: Sensitivity analysis of the fatigue equivalent severity to Basquin parameter b. The
blue curve represents the Locati test. The other curves represent the fatigue equivalent severity
feq(f0, N, finc, Ninc) as a function of the number of cycles N for a given set of parameters (f0,
Ninc and finc).

Applying the fatigue equivalent formula of Equation 1.15, we obtain the equivalent severity
of the Locati test:

feq(f0, N, finc, Ninc) =

 1

N0

q−1∑
j=0

[
Ninc (f0 + j finc)

b
]
+

r

N0
(f0 + q finc)

b

 1
b

. (1.16)

Figure 1.15 represents the equivalent severity feq(f0, N, finc, Ninc) as a function of the number
of cycles N . The other variables are �xed. Multiple colors correspond to di�erent choices of
Basquin slope b. A parameter b = 4 is standard for welds. Higher values like b = 15 are
common for metal sheets. The value b = 8 represents an intermediate and is often chosen as a
default value to compute the equivalent severity associated to a complex mechanical part (i.e.
containing assembled metal sheets with welds and edges). As far as the number of cycles before
failure remains between 800 000 and 2 000 000 cycles, the equivalent severity has similar values
for b = 4, b = 8 and b = 15 (the di�erence is below 10%). Hence, for these values, the equivalent
severity is not very sensitive to the parameter b. Finally, the dark solid line (b = 100) allows to
visualize the behavior of the fatigue equivalent as b gets higher: the contribution of the cycles
with lower intensity decreases and the equivalent severity tends to be identical to the maximum
severity of the test.
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Figure 1.16: Application example of Dang Van criterion on a cradle model under cornering
loading (cf. associated test in Fig. 1.11). The left �gure represents the position of each element
of the model on Dang Van plane. Three points are located over the Dang Van line and thus
represent critical points. The right �gure represents the FEM where elements are coloured from
blue (low CD) to red (high CD). The three critical points are located (red arrows).

1.3.3 Pre-validation of a conception through numerical simulation

When the resistance estimated through fatigue validation tests satis�es the fatigue design
requirements, the design proposal is validated. However, if this is not the case, the design needs
to be updated. The crack initiations detected during testing show more precisely which zones of
the mechanical part need to be strengthened. Once the new conception is ready, a new fatigue
test campaign is launched to validate the corrected conception. As the fatigue tests are both long
and expensive, engineers are not expected to wait for the fatigue tests to evaluate the resistance
of the mechanical part. Indeed, they resort to numerical models to compute the stresses over
the part and identify potential crack initiation locations through fatigue criteria.

Hence, prior to testing, the mechanical part is modeled using a Finite Element Model (FEM)
and the load cycle is simulated. The FEM allows to calculate the stress cycle on each position of
the mechanical part. Then, a fatigue criterion is applied on each position (Ballard et al., 1995).
For example, in order to apply Dang Van fatigue criterion, the critical hydrostatic stress Pc and
the critical shear stress τc are computed for every element of the FEM and represented in a Dang
Van diagram. The points located above the line de�ning the endurance limit are considered
critical and thus represent potential weaknesses of the part (cf. Fig. 1.16, left). Alternatively, a
danger coe�cient CD is calculated on each position on the FEM: locations where CD is positive
are critical points of the part. (cf. Fig. 1.16, right) This allows to iterate on the design before
launching any test.

1.3.4 Conclusion

The fatigue design of a complex mechanical part is carried out through the Stress-Strength
interference method. Knowledge about customer usage allows to de�ne the distribution of
severities the part will be exposed to in real situations. In order to satisfy the durability
requirements, the fatigue design aims at assessing the resistance of the part. Fatigue validation
tests on prototypes are performed in order to estimate the resistance of the part and check
that the requirements are met. Prior to that, a pre-validation is performed through FEM and
the application of a fatigue criterion on the numerical results. This step is essential in order to
identify potential �aws in a design proposal before launching a long and expensive test campaign.
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Figure 1.17: Design work�ow from design proposal to validation.

1.4 - Issues and objectives

The design of a mechanical component against fatigue includes di�erent stages from the
de�nition of the part to the experimental validation of its functionality and durability. The
work�ow is represented in Figure 1.17. The �rst step is the design proposal of the part which
consists in choosing the geometry, the materials and the assembly of the part (location of the
welded joints...). Then, the mechanical part is modeled numerically using a FEM which allows
to simulate the stresses at each location of the part under external loading. A fatigue design
criterion is then applied as a pre-validation step, allowing to detect potential design �aws on the
design. Once the design is satisfying, fatigue rig tests on prototypes can be launched to validate
the resistance of the part.

An ideal work�ow would imply only one pass through the design process, and thus only
one campaign of validation tests at the end certifying that the durability requirements are met.
Unfortunately, this is rarely the case. Numerous roadblocks may occurs during the validation
step meaning that the experimental tests fail to validate the design choices. Therefore, the
design needs to be corrected, and another test campaign has to be launched to validate the
corrected design. These design loops between design proposal and validation strongly delay the
development of the part: indeed, the experimental tests are particularly long and expensive.

Numerical computations through FEM o�er a signi�cantly faster and cheaper way to assess
the behavior of a mechanical part and its resistance to fatigue. Hence, it is preferable to detect
design �aws during the pre-validation stage as the iteration between conception and numerical
modeling is quick. Unfortunately, the fatigue criterion applied on numerical results fails to
identify all the critical elements of the conception. Some weaknesses of the conception are thus
discovered only in the validation phase. In other words, the numerical models do not correlate
well on experimental fatigue rig tests. The limits of numerical modeling in the characterization of
fatigue risks are due to various reasons. First, the fatigue criterion applied on FEM are calibrated
on coupon fatigue tests, i.e. simple geometries that are not necessarily representative of the
diversity and complexity of zones of the designed components. Then, the fatigue predictions
given by Dang Van criterion are based on two physical variables (critical hydrostatic stress Pc
and critical shear stress τc) while the fatigue phenomenon is very complex and depends on many
additional parameters (stress concentrations, geometric singularities, manufacturing process...).
Finally, the fatigue predictions do not account for various sources of variability: on the one hand,
the uncertainties related to the FEM (modeling of welds, mesh size...); on the other hand, the
dispersion inherent to fatigue phenomena (cf. Subsection 1.2.1) that can be ampli�ed due to the
complexity of the parts and the manufacturing processes.

The objective of car manufacturers is to accelerate the development of vehicles. To do so, the
e�ciency of the pre-validation stage in anticipating design issues needs to be improved. Hence,
Stellantis seeks new design tools to better detect design �aws through numerical simulations.

In this context, the purpose of this thesis is to exploit an alternative source of data consisting
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in the history of numerical results and fatigue tests reports on previous designs. The analysis of
this database can highlight parameters leading to poor correlations between numerical models
and experimental results. More generally, this database can help de�ne additional design tools
in order to improve the fatigue predictions through numerical modeling. Hence, the objective of
this thesis is to conduct an exploratory analysis of this fatigue database and develop statistical
methods allowing to construct new fatigue criteria. These new design tools should help engineers
in their conception choices, improve the detection of critical elements in the pre-validation stage,
and thus accelerate the whole design work�ow.
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2
Fatigue database: presentation and �rst analyses

This chapter focuses on the introduction of Stellantis fatigue database and on �rst statistical
analyses carried out on this database. Section 2.1 details how the fatigue database is built and
which features are available. Section 2.2 proposes a methodology to group elements in zones
and presents appropriate features to describe a zone. In section 2.3, unsupervised analyses
are carried out in order to appraise the variability in the data set and understand correlations
between variables. Section 2.4 focuses on an auxiliary data set of welded coupon specimens
where we propose a methodology to construct a probabilistic fatigue criterion. In section 2.5, we
use classical supervised machine learning methods to estimate statistical fatigue criteria based
on the fatigue database. Finally, section 2.6 brie�y introduces Positive Unlabeled learning and
motivates its use in order to better address the construction of a fatigue criterion.

2.1 - Presentation of the database

In this section, we introduce Stellantis fatigue database relating numerical simulation results
to fatigue test results. One of the �rst steps of conception consists in using a �nite element
model to represent a mechanical part and simulate its behavior under external loadings. Once
the part's design is chosen (shape, size, thickness, materials), validation tests are performed on
prototypes in order to check the good resistance against fatigue. Hence, di�erent information
are gathered during simulations (Subsection 2.1.1) and tests (Subsection 2.1.2). The fatigue
database is constructed by linking data from test reports to numerical results (Subsection 2.1.3).

2.1.1 Simulation results from �nite element models

During conception, a mechanical part is modeled by a �nite element model (FEM) that
consists in a meshing of the part in small elements. Then for a given loading (i.e. external
forces applied to the part), one can compute the response of the structure to these external
forces, described by the distribution of mechanical local stresses on each element of the FEM (cf.
Fig. 2.1).

From now on, a case study will consist in a numerical model of a mechanical part along with
the simulation results for one type of loading. The database contains a total of 39 case studies
with two types of mechanical parts (cradles and cross-members), multiple geometries for each
type of part and di�erent types of solicitation (longitudinal, cornering, vertical, transversal).

For each case study, the simulation results give access on each element of the model to
di�erent information describing the coordinates of the element, the material, the type of element
(sheet, sheet edge, weld) and the local stresses. The mechanical loading of interest is sinusoidal
with period T > 0. It can be represented as a vector-valued function (F (t))0≤t≤T representing
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Figure 2.1: On the left, longitudinal loading on a cradle model: instant of maximal loading
corresponds to the blue lines, minimum instant to the green lines. On the right, response of the
cradle to the longitudinal loading on each element of the structure: the colors represent the value
of the �rst component of the stress tensor at maximum instant (low stress values in blue, higher
stress values in light green).

the force applied to the mechanical part:

F (t) = Fm + cos

(
2πt

T

)
F a .

The simulated loading F (t) corresponds to the objective customer Fn (cf. Subsection 1.3.1):
the quantities Fm and Fa represent the loading mean and amplitude. For an element e of the
�nite element model, the simulation results only provide the stress tensors σmax(e) and σmin(e)
representing the local stresses at instants t = 0 and t = T/2 on the loading cycle. Recall that
a stress tensor is a symmetric square matrix (cf. Subsection 1.2.3, Paragraph a). Since the
FEM is linear, this information is su�cient to know the stress tensor at any time t. For fatigue
applications, we are rather interested by the mean and amplitude tensors that can be calculated
as:

σm(e) =
1

2
(σmax(e) + σmin(e)) and σa(e) =

1

2
(σmax(e)− σmin(e)) .

Besides, the elements are two-dimensional shell elements (cf. Cazenave, 2013) which means that
they have distinct stress results on the top shell and on the bottom shell. Indeed, there is no
interest in looking at any other integration point within the thickness. Hence, each element e has
a total of four stress tensors: two mean stress tensors, σtopm (e) and σbottomm (e); and two amplitude
tensors, σtopa (e) and σbottoma (e).

In particular, Dang Van fatigue criterion introduced in Subsection 1.2.4 uses two mechanical
variables from these stress tensors: the critical hydrostatic stress Pc (maximum hydrostatic stress
over the loading cycle) and the critical shear stress τc (Tresca shear stress calculated over the
amplitude stress tensor). We recall that the danger coe�cient CD is then de�ned as:

CD =
αPc + τc
τmat

− 1 .

where α et τmat are material parameters corresponding to the slope and intercept of Dang Van
criterion (cf. Subsection 1.2.4, Paragraph c). As layers top and bottom have di�erent stress
tensors, we have two danger coe�cient values per element (CDtop and CDbottom). The danger
coe�cient of the element is de�ned as the maximum of the two. Besides, the corresponding values
of Pc and τc represent the critical hydrostatic and shear stresses of the element. Other features
are accessible through the FEM results, they will be listed in Subsection 2.2.3 and summarized
in Table 2.1. The danger coe�cient is a measure of criticality of an element.
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2.1.2 Rig test reports

For each case study, a series of fatigue tests are performed on real prototypes to validate
the design proposal. These parts are tested for solicitations identical to those simulated on the
numerical model. Usually, between three and seven identical prototypes are tested.

In order to reduce the tests duration, tests are not exactly carried out at the nominal severity
"1Fn" representing the objective customer. The test series follow an accelerated testing protocol
in which the severity is incremented gradually (Locati protocol, see Subsection 1.3.2, Paragraph
c). Actually, the severity only a�ects the amplitude of the loading. Hence, under severity αFn
(α > 0), the loading Fα(t) is:

Fα(t) = Fm + α cos

(
2πt

T

)
F a .

By linearity of the numerical model, the amplitude tensors are a�ected by the same multiplicative
constant α while the mean tensors remain the same.

Rig tests reports contain several informations for each prototype tested and each detected
crack:

� photo of the crack allowing to identify its location on the part;

� test conditions: initial severity, number of cycles before crack detection and number of
cycles before the end of the test.

In the Locati tests analyzed here, the number of cycles between increments along with the value
of the increments are �xed: Ninc = 300 000 and finc = 0.1Fn (cf. Subsection 1.3.2, Paragraph c).

2.1.3 Including rig test information in the simulation results

As explained above, rig test results provide a set of crack initiations detected on real prototypes.
Thanks to the photos of the cracks, it is possible to identify the element or set of elements where a
crack initiated and link this information to the numerical models (cf. Fig. 2.2). More particularly,
we introduce a binary �ag on each element of the numerical model indicating whether or not it is
on a crack initiation zone. The initial severity and the total number of cycles of the test are also
accessible in the test report and are thus included. This association between numerical models
and fatigue tests is the baseline of Stellantis fatigue database.

The process of manually tagging elements on crack zones is not always straightforward.
Sometimes, the crack has time to propagate before a photo is taken which makes the identi�cation
of the initiation point di�cult. This is why, instead of tagging a unique element, we prefer tagging
a set of elements in order to be sure that it contains the initiation point of the crack. By doing
so, we necessarily introduce labeling errors in the database. This issue will be solved by changing
the unit of analysis from elements to groups of elements (zones, cf. Section 2.2).
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Figure 2.2: Correspondence between numerical models and test results: on the left, crack
initiation location from a test report; on the right, the corresponding zone on the FEM. The
color scale on the FEM represents the danger coe�cient.

2.2 - From elements to groups of elements: de�nition of zones

The previous section introduced Stellantis fatigue database and explained its construction.
In this section, we motivate and present a methodology to change the unit of analysis on the
fatigue database: an observation in the database will no longer be an element but a zone, i.e. a
group of elements (Subsections 2.2.1 and 2.2.2). Zones will be described by appropriate features
de�ned in Subsection 2.2.3.

2.2.1 Grouping elements by zones: motivations

The analysis of the fatigue database raises multiple di�culties. First, the data set is extremely
imbalanced. Indeed, each numerical model contains about 105 elements and usually no more than
10 crack initiations. Second, the stress �eld remains low on the majority of the mechanical parts.
Figure 2.3 illustrates this fact, showing that for a majority of elements, the stress is weak. Hence
we only have a few potentially dangerous locations on the part. Third, the stress �eld over the
mechanical part is continuous. Therefore stress values on close elements are very correlated and
provide similar information. Figure 2.3 provides examples of such groups of elements. Finally,
as explained in Subsection 2.1.3, it is not always straightforward to locate precisely the element
responsible for the crack initiation. It appears that the large majority of cracks initiate and
propagate near singularities (edges, holes, corners, welds). Hence, in order to model the risk of
crack initiation, it may be relevant to account for features describing the whole zone and not
just a single element. All these considerations led us to reduce the number of observations by
grouping elements from FEM.

2.2.2 Method for grouping elements

We now describe the method used to build groups of elements. It is based on two main
principles. The �rst one is that the analysis should focus only on relevant zones which means
that we will only consider zones with a su�cient level of stress. We rely on the danger coe�cient
CD (from Dang Van criterion, cf. Subsection 1.2.3) to perform this selection: only elements with a
danger coe�cient greater or equal to−0.8 are selected. This threshold value is empirically chosen:
at the same time small enough so that every tagged element (with detected crack initiation) is
selected, and su�ciently high to limit the number of selected points. The second one is that,
as fatigue is a local phenomenon, any statistical criterion de�ned should remain local; hence
we limit the radius of each zone to 25 millimeters. This size allows to account for singularities
located near critical points. At the same time, it provides �exibility on the location of the crack:
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Figure 2.3: Simulation results on a cradle case study: each point represents an element of
the model, stars highlight cracks detected during rig tests. Results are represented in Dang
Van diagram: X-axis features hydrostatic stress, Y-axis represents critical shear stress. Both
quantities are normalized by the material fatigue parameter corresponding to the element.
Ellipses represents some groups of neighboring FEM elements.

Figure 2.4: Construction of a zone: starting from a selected element with danger coe�cient
higher than −0.8 (left �gure), the zone is iteratively extended by adding neighbors until all
elements in a radius of 25 millimeters have been selected (center and right �gures).

in other words, if the crack initiation was not precisely located on the numerical model, the
zone should cover it. Hence, for each selected element, a zone is built around it by performing a
Breadth-First Search (Cormen et al., 2022, Chap. 22) over the FEM graph to �nd elements at
distance less than 25 millimeters. This way, only elements connected to the center through the
FEM and at distance less than 25 millimeters are part of the zone. The algorithm is illustrated
on an example (cf. Fig. 2.4).

This pre-processing leads to a reduced data set. For instance, on the case study of Fig. 2.3,
the number of observations is drastically reduced: from about 83 000 elements to 357 zones.
Meanwhile, the number of descriptive features per individual increases as we are now considering
groups of elements which gives access to additional information: indeed, instead of having only
covariates describing a single element, we now have a set of covariates describing each element
of a zone.
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2.2.3 Features to describe zones

The unit of analysis has now changed: an individual in the fatigue database does not consist
in a single element anymore but in a group of elements representing a zone. Di�erent zones may
contain di�erent numbers of elements. We therefore need appropriate features to describe zones.

a. Most critical element of a zone

Since each element of a zone can be described by a set of features and since we want to
identify whether or not the zone is critical, a classical idea in fatigue is to consider that a zone
is as weak as its weakest element (weakest link theory, cf. Wormsen and Härkegård, 2004). It is
then natural to represent a zone by the features of its most critical element. Dang Van danger
coe�cient provides a way to compare the elements of the zone and the one with the maximum
danger coe�cient can be considered as the location most likely to initiate. Hence, for each zone,
we will consider the descriptive covariates of its most critical element according to Dang Van
danger coe�cient. As the local stresses on this element are characterized by four stress tensors
(cf. Subsection 1.2.3, Paragraph a), we extract the following tensor invariants from each: Von
Mises stress (V ), Tresca shear stress (τ ), hydrostatic stress (P ) and stress triaxiality (T ). Recall
that these so-called tensor invariants do not depend on the basis the tensor is expressed in (cf.
Subsection 1.2.3, Paragraph b). Finally, for each feature obtained, we compute the mean and
amplitude between top and bottom layers. The mean gives a synthesis of the feature evaluated
on the element while the amplitude provides a notion of gradient over the thickness of the sheet.

Example Let us consider the features derived from hydrostatic stress invariant P on an a zone
with critical element e. First, the hydrostatic stress is computed on the four stress tensors (mean
and amplitude tensors on top and bottom layers): σtopm (e), σbottomm (e), σtopa (e), σbottoma (e). This
gives access to the mean and amplitude hydrostatic stresses on top and bottom layers: P topm (e),
P bottomm (e), P topa (e), P bottoma (e). Finally, the means and amplitudes over the layers are computed
giving the �nal features:

Pmm (e) =
1

2

(
P topm (e) + P bottomm (e)

)
Pma (e) =

1

2

(
P topa (e) + P bottoma (e)

)
P am(e) =

1

2

∣∣∣P topm (e)− P bottomm (e)
∣∣∣

P aa (e) =
1

2

∣∣∣P topa (e)− P bottoma (e)
∣∣∣

The absolute value is considered in the amplitude in order to keep the formula symmetric:
indeed, an identical element with top and bottom layers exchanged represents the same risk of
crack initiation and thus should have the same feature values.

This naming convention for variables will be used throughout the chapter: blue subscript m
or a stands for mean or amplitude over the cycle load while red superscript m or a represents
the mean or amplitude between top and bottom layers.
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Note We decided not to include the two variables Pc and τc involved in Dang Van criterion.
Indeed, this information is already contained in the considered features: Pc is the maximum
hydrostatic stress (sum of the mean and amplitude over the cycle load) and τc is Tresca shear
stress calculated over the amplitude stress tensor. Both values are calculated on the most critical
shell (top or bottom).

The stresses on the most critical element are described by 16 features. In addition, we consider
the thickness of the element H (geometric information) and the material fatigue parameter τmat .
This amounts to a total of 18 features (cf. Table 2.1).

b. Features averaged over the zone

The above process for de�ning features can result in a loss of valuable information about
the zone. Hence, in addition to considering the features of the most critical element, we can
also compute spatial averages of physical values over the zone or over subparts of the zones. As
we have access to the coordinates of the nodes delimiting the elements of the mesh, the spatial
averages are easily accessible.

The interest of such features is illustrated on Figure 2.5. In this example, we compare
two zones centered around a welded joint. Both are characterized by the same material fatigue
parameter at the critical point of the zone (weld). However, the material parameter τmat averaged
over each zone is di�erent. This is due to the fact that the �rst zone contains other welds in its
neighborhood while the second does not. Hence, adding spatial average features o�ers a richer
basis for comparison between the two zones highlighting a geometric di�erence: while both are
centered around welds, the �rst contains more singularities in its neighborhood.

In the scope of this study, only averages on the whole zone will be considered. Hence, in
addition to the features describing the most critical element of a zone, we consider the same set
of features averaged over the zone (18 features, cf. Table 2.1).

c. Features speci�c to welds and edges

More than 90% of the crack instances in the database are located near singularities, more
speci�cally near edges and welds. In order to enhance the characterization of failures, it is
interesting to better describe those speci�c singularities. In particular, the relative orientation
of the stresses and the singularity may be relevant for the identi�cation of critical zones.

For each element tagged as weld or edge, we identify a local coordinate system attached to
the element: an X-axis parallel to the edge or weld, a Y-axis orthogonal to the singularity (cf.
Fig. 2.6). By expressing the stress tensor in this local coordinate system, we obtain stresses
oriented with respect to the singularity which better characterize the stress state around the
singularity: longitudinal traction, transverse traction and shear stress. These physical quantities
are implied in the growth of micro-cracks (Lemaignan, 2012). These features are computed for
each of the four stress tensors on the element and with similar operations as in Paragraph 2.2.3.a
in order to calculate the mean and amplitude features between top and bottom layers (12 features
in total).

These features are computed element-wise and only on weld and edge elements. When
considering the whole zone, we only retain the features describing the most critical edge and
the most critical weld (24 features). If a zone does not contain any edge or weld, the values along
these features are set to 0 by default.
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Figure 2.5: Illustration of spatial average features on two zones: material fatigue parameter
τmat (lower left), Von Mises stress (lower right) averaged spatially for two zones. The zones are
represented above. The curves represent the spatial averages of these quantities: X-axis denotes
the radius over which the spatial mean is calculated. For radius r ranging from 0 to 25, spatial
averages are considered over elements located at distance lower than r from the center of the
zone. For r = 0, only the center is considered while for r = 25, the spatial average over the
whole zone is considered.

Figure 2.6: De�nition of a local coordinate system attached to weld (left) and edge (right)
elements

d. Wrapping up

All in all, the fatigue database contains 19 367 zones among which 291 are tagged as crack
initiations. Each zone of the database is described by a set of 60 features:

� features describing the most critical element of the zone (18 features);

� features averaged over the zone (18 features);

� features speci�c to singularities (24 features).
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The detailed list of features along with the notations are summarized in Table 2.1. In the
next section, we will investigate about potential relations between the de�ned features through
unsupervised analyses.
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Table 2.1: List of features and notations. For stress features, blue subscripts a (m) refer to the amplitude (mean) stress tensors over the load cycle
while red superscripts a (m) indicate that amplitude (mean) between top and bottom shell is considered. The material and thickness variables are
independent from the loading and the shell.

Mean over cycle load (·m) Amplitude over cycle load (·a)
Notation Shell mean (·m) Shell amplitude (·a) Shell mean (·m) Shell amplitude (·a)

Most critical element:

Von Mises stress V V m
m V a

m V m
a V a

a

Tresca shear stress τ τmm τam τma τaa
Hydrostatic stress P Pmm P am Pma P aa

Triaxiality T Tmm T am Tma T aa
Material parameter τmat τmat

Thickness H H

Spatial averages:

Von Mises stress V V m
m V a

m V m
a V a

a

Tresca shear stress τ τmm τam τma τaa
Hydrostatic stress P Pmm P am τma τaa

Triaxiality T Tmm T am Tma T aa
Material parameter τmat τmat

Thickness H H

Weld features

Longitudinal traction WL WLmm WLam WLma WLaa
Transversal traction WT WTmm WT am WTma WT aa

Shear stress WS WSmm WSam WSma WSaa
Edge features

Longitudinal traction EL ELmm ELam ELma ELaa
Transversal traction ET ETmm ET am ETma ET aa

Shear stress ES ESmm ESam ESma ESaa

4
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2.3 - Unsupervised analysis

While the mechanical Dang Van fatigue criterion relies on two features to predict whether a
zone is critical or not, we de�ned 60 features describing zones and wish to use them to better
identify and characterize critical zones. In this section, we carry out a multivariate analysis of
the fatigue data set. Among the 60 available features, many are very correlated: hence we use a
dimensional reduction technique (Principal Component Analysis) in order to identify potential
interesting directions of observation (Subsection 2.3.1). Then, as some variables report similar
information, we will identify groups of variables through feature clustering (Subsection 2.3.2).
Finally, noting that covariates can be associated with types of zones, we apply a co-clustering
technique which leads to di�erent groups of features and provides simultaneously groups of zones,
resulting in useful insights on the data set (Subsection 2.3.3).

2.3.1 Principal Component Analysis

In this subsection, we carry out a Principal Component Analysis (PCA) on the fatigue data
set. PCA is a linear dimensionality reduction technique that consists in changing the basis of
representation of the data in order to highlight the directions explaining most of the variance
(cf. Esco�er and Pagès, 1998, Chap. 1).

The fatigue data set is represented as a matrix X of size (n, p) where n = 19 367 is the
number of individuals (i.e. zones) and p = 60 is the number of features. Columns of X represent
variables and rows represent individuals. The vector of observed labels Y (crack initiation or
not) is not part of the analysis. It will be only added as an illustrative variable. Prior to the
analysis, the features of matrix X are centered and scaled. We keep the same notation X for
the standardized matrix. Then the correlation matrix can be calculated as:

C =
1

n
XT X

where XT denotes the transpose of X. The correlation matrix C is a symmetric matrix with
entries in [−1, 1] and with 1 on the diagonal. Entry Cj1,j2 represents the correlation between
features j1 and j2.

The correlation matrix is represented on Figure 2.7. It already highlights some couples
of highly correlated variables and some structure. For instance, it appears that Von Mises
stress (V r

q ) and Tresca shear stress (τ rq ) are very correlated no matter the quantity considered
(q = a or m, r = a or m). This is perfectly understandable from a mechanical point of view as
both physical variables convey very similar information. Similarly, it appears that the stresses
speci�c to welds (WL, WT , WS) are correlated.

We then perform the PCA. Let λ1 ≥ ... ≥ λp denote the ordered eigenvalues of C (inertia of
the principal axes) and u1, ...,up the corresponding eigenvectors (principal vectors). The pro�le
of the eigenvalues (Fig. 2.8) shows that the �rst ten principal axes represent almost 80% of the
total inertia.

We now analyze the projection of the data set along the �rst principal axes. For 1 ≤ k ≤ p,
the kth principal component F k is:

F k = Xuk .

Besides, the contributions of each variableX .,j (jth column ofX) to the kth principal component
can be calculated through the squared cosines:

Rj,k =
1

λk n2
⟨XT

.,j , F k⟩2 .
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Figure 2.7: Correlation matrix

Figure 2.8: Decreasing pro�le of the singular values in the PCA decomposition (left) and
cumulative percentage of explained variance (right).

In the above equation, ⟨v, w⟩ denotes the dot product between vectors v and w in Rn:

⟨v, w⟩ =
n∑
i=1

viwi .
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Figure 2.9: Projection of the observations (left) and of the variables (right) on the �rst principle
plane (top �gures) and second principal plane (bottom �gures). Crack initiations are highlighted:
red stars when the critical element of the zone is a weld, orange cross when it is an edge and
green "plus" sign when it is a plain metal sheet.

It is then possible to represent the principal components along with their correlation circles:
the �rst two principal planes are represented in Figure 2.9. Due to the great number of variables,
only the 15 variables contributing the most to the principal plane are represented. Zones with
crack initiations are highlighted along with the type of singularity: red stars when the critical
element of the zone is a weld, orange cross when it is an edge and green "plus" sign when it is a
plain metal sheet.

The �rst principal plane (cf. Fig. 2.9) is characterized mainly by two sets of variables: on the
one hand, variables related to mean stresses over the loading cycle (on the upper right quadrant
of the correlation circle) and spatial averages of amplitude stresses over the zone (lower right
quadrant). In particular, a group of crack initiations is very well characterized on this plane (cf.
dashed circle on Fig. 2.9): it appears that the critical zones of this group are characterized by
important mean stress values. In fact these critical zones belong to cross-member models under
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vertical loading. While cradle models are not a�ected by mean stress values, it is not the case
for cross-members that support the weight of the car. The e�ect of this mean stress is even
more visible when the loading is vertical. More generally, the data points in the upper part of
the �rst principal plane belong (for the majority) to cross-member models. The fact that the
remaining crack initiations are not well characterized in this �rst plane means that the spatial
average stresses alone (well represented on this �rst plane) can help identify critical zones but
are not su�cient.

The second principal plane (cf. Fig. 2.9) leads to a better characterization of the majority of
failure points. Features most correlated to the third principal component are stress invariants
commonly used in fatigue criteria. In particular, it is worth noting that Dang Van criterion
variables (Pc and τc) are correlated to this axis. Besides, variables speci�c to welds and edges
signi�cantly contribute to this third principal axis. The fourth principal axis is also interesting
as it is characterized by variables related to the triaxiality and thus accounts for the type of local
stresses on the zone.

We can analyze the type of singularity of crack initiations displayed in the PCA results (cf.
Fig. 2.9). The �gure con�rms that the majority of crack initiations is related to welds and only a
minority is located on plain metal sheet. Nevertheless, the type of singularity for crack initiation
zones is not well characterized on the �rst two planes.

The �rst four principal axes explain 53% of the total inertia. The following axes with lower
inertia are not represented: they do not provide useful insights and are harder to interpret from
a mechanical point of view. All in all, this multivariate analysis shows that there are important
correlations among the 60 available features. Besides, not all of them help the characterization
of critical zones. Indeed, we saw for instance that the spatial average stresses characterizing the
�rst axis do not really allow the identi�cation of critical zones.

2.3.2 Feature clustering

The correlation matrix and the PCA performed in subsection 2.3.1 already highlight interesting
correlations among features. It seems that a lot of features provide very similar information. In
order to investigate further these correlations, we use hierarchical clustering. The objective is to
identify groups of highly correlated variables.

Hierarchical clustering (Hastie et al., 2009, Chap. 14) is an unsupervised classi�cation technique
that does not require the speci�cation of the number of clusters. The algorithm relies on a
measure of dissimilarity between groups of observations to iteratively build a tree. In order
to cluster individuals (rows), Euclidean distance can be used. In order to cluster standardized
variables (columns) we resort to the cosine similarity (correlation) as a similarity measure. We
thus have a natural metric to compare pairs of variables.

In fact, hierarchical clustering algorithm needs a linkage strategy to compare groups of
variables. At each stage, the two groups closest to each other are grouped together. When the
distance metric is euclidean, Ward linkage is the usual choice. Other strategies (compatible with
the cosine similarity metric) exist to de�ne the similarity between groups of variables: average,
single and complete linkage measure this similarity as the average, maximum and minimum
similarity of pairs of each groups. We choose the average linkage strategy which is a compromise
between the two others. In our case though, each linkage strategy yield to quite similar results.

The results of hierarchical feature clustering on the fatigue data set are represented in
Figure 2.10 as a dendogram representing the hierarchical structure between the variables. This
representation �rst con�rms some preliminary remarks on the high correlation between Von Mises
stress (V ) and Tresca shear stress (τ ). Besides, it is interesting to note that features speci�c
to edges (EL, ET , ES) are grouped together. Finally, the geometric and material information
(τmat , τmat , H , H ) appear close to each other.
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Figure 2.10: Dendogram for feature hierarchical clustering on the fatigue data set using average
linkage strategy. Selection of the number of clusters was not performed. However, a threshold
indicates the groups obtained by setting the number of clusters to 17 (number of clusters
considered later for co-clustering). This will allow to compare it to the partition estimated
through co-clustering in Subsection 2.3.3 for a same number of clusters.

While feature clustering study the structure on columns of the data matrix X, we also have
an heterogeneity between the zones (individuals). In particular, crack initiations happen on
di�erent types of singularities (welds, edges, both) with di�erent geometries, hence each type of
zone will trigger di�erent physical indicators. It is thus interesting to account simultaneously for
the structure on individuals when trying to identify groups of variables. This can be achieved
using co-clustering techniques.
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2.3.3 Co-clustering

In this subsection, we carry on the unsupervised analysis on the fatigue data set. The
objective is to study simultaneously the structure of rows and columns of the data set. We use
a Gaussian Latent Block Model to estimate this structure.

a. Gaussian Latent Block Model

Latent Block Model is a model-based approach for co-clustering (Govaert and Nadif, 2013;
Keribin et al., 2017). For a speci�ed number of row clusters (K) and column clusters (L), the
entries of the matrix X are modeled as a mixture model. More formally, let matrix Z of size
(n,K) denote the row cluster memberships and matrix W of size (p, L) the column cluster
memberships: Zi,k = 1 if individual i belongs to cluster k (else Zi,k = 0) and Wj,l = 1 if variable
j belongs to cluster l (elseWj,l = 0). The model assumes that the variables (Zi)1≤n and (W j)1≤p
are independent, distributed respectively according to multinomial distributions M (1,π) and
M (1,ρ) where π = (π1, ..., πK) and ρ = (ρ1, ..., ρL) satisfying:

K∑
k=1

πk =
L∑
l=1

ρl = 1 .

The conditional distributions of the entries Xi,j of matrix X given the cluster memberships
(Z,W ) are assumed independent and belong to a same family of parametric probability densities
(fθ)θ∈Θ whose parameter only depends on the row and column cluster memberships:

(Xi,j |Zi,kWj,l = 1) ∼ fθk,l .

When studying continuous data, a natural choice is the Gaussian family of distributions (Lomet,
2012). In our case, the variance parameter σ2 is shared by each cluster.

The unknown parameters θ = (θk,l)1≤k≤K,1≤l≤L, σ, π and ρ are estimated by maximizing
the likelihood L(θ, σ,π,ρ;x):

L (θ, σ,π,ρ;x) =
∑
z,w

∏
i,j,k,l

π
zi,k
k ρ

wj,l

j

(
fθk,l (xi,j)

)zi,kwj,l .

The direct maximization of the likelihood is intractable. An approximation of the maximum
likelihood estimate can be calculated using a variational approximation (Block Expectation
Maximization algorithm, BEM, Govaert and Nadif, 2008). Besides, as stated at the beginning
of the paragraph, the number of row and column clusters are both speci�ed. The best model
(i.e. the best number of clusters) can be chosen using an ICL criterion (Integrated Complete
Likelihood, cf. Biernacki et al. 2000 for the general principle and Lomet et al. 2012 for the
Gaussian LBM case).

b. Application to the fatigue data set

We use the R package Blockmodels (Leger, 2016) in order to perform the estimation for
Gaussian LBM along with the model selection. To take into account the exponentially growth
of the execution time with the number of rows and columns, the analysis is carried out on a sub-
sample of size n = 2 000 of the fatigue data set. The sub-sample contains every crack initiation
zones and a random sub-sample of zones without crack initiation.

Figure 2.11 represents the ICL as a function of the total number of clusters (row and column
clusters). The ICL reaches its maximum for almost 97 clusters (74 row clusters and 23 column
clusters) which is large considering the number of individuals (n = 2000) and variables (p = 60).
We will study the results for a more reasonable number of clusters even if it does not maximize
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Figure 2.11: ICL as a function of the total number of clusters (row clusters and column clusters).

the ICL: K = 23 row clusters and L = 17 column clusters. The relative gap between the ICL
for this solution and the optimal one is about 5%.

Using the estimated classes, we represent the re-ordered matrix X (cf. Fig. 2.12). The
resulting clusters have very heterogeneous sizes: in particular, some row clusters are small (less
than 30 individuals). Detailed statistics on the row clusters are reported in Table 2.2: number of
individuals per cluster and percentage of crack initiations. The composition of column clusters is
presented in Table 2.3. The clusters of variables are quite di�erent from those obtained through
feature clustering (cf. Fig. 2.10). In particular, the clusters are more balanced in size and most
groups of features obtained are easily interpretable. For instance, it is clear that column clusters
2, 6, 7 and 17 contain features speci�c to edges and column clusters 10, 12 and 14 are speci�c
to welds (see Table 2.3).

The analysis of co-clusters is insightful as we can relate some clusters of individuals to groups
of variables characterizing them. The composition of row and column clusters is detailed in
Tables 2.2 and 2.3, where groups of individuals containing more than 10% of crack initiations
are highlighted. Using Figure 2.12, we can interpret these clusters:

� Row cluster 1 contains 60% of crack initiations (but only 7% of the total number of crack
initiations) and is mainly characterized by feature cluster 6 representing amplitude stresses
on edges.

� Row clusters 4 and 19 are well characterized by feature clusters 14 and 15 containing
variables speci�c to welds and standard fatigue criterion features, even though this characterization
is less visible for cluster 19 than for cluster 4. Cluster 19 contains 42.5% of the total number
of crack initiations.

� Row cluster 11 contains zones with high mean stresses represented by variables of cluster
4.

� Finally, row cluster 17 contains high values for features of cluster 15 representing the shear
stress amplitude. This group contains high stress zones on plain metal sheet, without
nearby singularities.
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Figure 2.12: Co-clustering results: matrix X re-ordered according to the estimated class
memberships (green for low values, red for high values). Row clusters are ordered from bottom
to top and column clusters from left to right. Compositions of the clusters are provided in Tables
2.2 and 2.3.

Table 2.2: Descriptive statistics on row clusters. Highlighted clusters are localized on Fig. 2.12.

Cluster Number of individuals Number of cracks Percentage of cracks (%)

1 15 9 60.0

2 70 4 5.7
3 97 4 4.1
4 56 12 21.4

5 104 3 2.9
6 187 4 2.1
7 123 0 0.0
8 256 22 8.6
9 8 0 0.0
10 23 0 0.0
11 23 3 13.0

12 118 7 5.9
13 101 2 2.0
14 25 1 4.0
15 38 0 0.0
16 240 2 0.8
17 31 8 25.8

18 126 1 0.8
19 181 41 22.7

20 35 3 8.6
21 52 0 0.0
22 73 0 0.0
23 44 0 0.0

TOTAL 2026 126 6.2

The co-clustering analysis carried out in this subsection is interesting as an exploratory
analysis of the fatigue data set. It allows to better understand the structure of the data set.
However, this unsupervised analysis cannot yield a satisfying characterization of the critical
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Table 2.3: Co-clustering results: list of features for each column cluster. Highlighted clusters
are localized on Fig. 2.12.

Cluster number List of features

1 V m
a , τma , V a

a , τ
a
a , V a

a , τaa
2 ETmm , ETma
3 T am, T am, T

a
a , T aa , τmat

4 V m
m , τm

m , V m
m , τm

m , P a
m

5 H , H
6 ELa

a, ET a
a , ESa

a

7 ELam, ET
a
m, ES

a
m

8 Pma , Tma , Pma , Tma , WLma

9 P aa , P aa
10 WLmm, WTmm , WSmm , WTma , WSma

11 V a
m, τ

a
m, V a

m, τam
12 WLam, WT am, WSam

13 Pmm , Tmm , Pmm , Tmm
14 WLa

a, WT a
a , WSa

a

15 V m
a , τm

a

16 τmat
17 ELm

m, ESm
m , ELm

a , ESm
a

zones.

2.3.4 Conclusion

The unsupervised analyses carried on in this section provide useful insights on the fatigue
data set. The PCA allows to better understand the distribution of the data by highlighting
interesting directions of observations. In particular, some variables carry similar information as
those involved in Dang Van criterion. However, other features like triaxiality, edge and weld
speci�c features seem to help the characterization of critical zones. The clustering of features
helps to identify groups of correlated variables. Looking at the same time at the structure among
individuals and variables allow some interesting interpretations on the fatigue data set. All in all,
this exploratory analysis shows that there is heterogeneity among zones and among features: in
particular, di�erent types of crack initiations are characterized by di�erent groups of variables.

2.4 - Probabilistic fatigue criterion using welded coupon specimen

In fatigue design, engineers resort to fatigue criteria to identify critical zones on a FEM
(cf. Subsection 1.3.3). One of the limits of the fatigue criteria used in fatigue design is that
the variability inherent to the tests is poorly addressed. Hence, in this section, we propose
a methodology to construct a probabilistic fatigue criterion. The underlying model extends a
traditional uniaxial fatigue S-N model to a multiaxial setting. More importantly, the method
provides an estimation of the variability essential to account for the randomness of crack initiation.

The methodology is illustrated on Fayard welded coupon specimens (cf. Fayard, 1996). This
auxialiary data set contains elementary geometries of welded specimens, i.e. small-scale structures
containing welded joints. The Dang Van fatigue criterion used at Stellantis for welds is based
on this data set. Subsection 2.4.1 introduces Fayard coupon specimens and the corresponding
data set and presents the methodology used to estimate the deterministic Dang Van criterion
on welds. Then, in Subsection 2.4.2, we construct a probabilistic Dang Van fatigue criterion.
Finally, Subsection 2.4.3 presents the results obtained on Fayard coupon specimens.
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Figure 2.13: Fayard FE structural model for welds: picture of the real weld on the left, its FE
modeling on the right. This example is taken from Stellantis fatigue database.

2.4.1 Fayard welded specimens and estimation of a deterministic fatigue criterion

Welded joints are zones of particular interest for the design of automotive mechanical parts
as the majority of crack initiations are observed on this type of singularity. During the welding
process, under the e�ect of high temperature, the material warps locally and the metallic micro-
structure is altered. After cooling, residual stresses and defects appear locally, potentially
a�ecting the material resistance. Hence, the fatigue material properties of these zones are very
hard to characterize because an important number of parameters have to be accounted for:
geometry of the weld, stress concentration, residual stresses linked to the process e�ects.

Fayard (1996) introduced a FEM model speci�c for welds allowing to compute stresses at
the welds toes (cf. Paragraph a). In parallel to numerical modeling, multiple fatigue tests on
elementary geometries of welds were carried out (cf. Paragraph b), allowing to calibrate an
appropriate Dang Van fatigue criterion (cf. Paragraph c).

a. Fayard structural modeling for welds

Fayard (1996) developed a structural modeling of welds for complex mechanical parts. In
FEM, welds are meshed using this speci�c methodology (Fig. 2.13). Actually, the set of elements
used to model the welds do not represent the exact geometry of the weld (which would be
very complex) but allow to account for the structural e�ects induced by the welding. More
particularly, the geometric stresses calculated at the weld toe elements characterize the risk of
crack initiation.

b. Fayard welded coupon specimens

Fayard (1996) then proposed a fatigue criterion adapted to welds: it uses the same formalism
as Dang Van criterion but requires the estimation of the corresponding fatigue parameters (slope
and intercept). For that purpose, Fayard used welded coupon specimens, i.e. di�erent elementary
geometries of welded components under di�erent types of loading (cf. Fig. 2.14). Each geometry
is meshed using the structural modeling for welds and the FEM allows to compute the stress
tensors on each element. In parallel, real specimens are tested under similar loading conditions.
In this section only, we consider this data set which is built upon the same principles as Stellantis
fatigue database.

For each geometry and each loading conditions, we obtain the stress tensors calculated on
each element of the structure. Test results provide the severity of the test (force or moment F
applied to the structure) and the number of cycles before crack initiation N for each specimen
tested. This data set is in many ways less complex than Stellantis fatigue database. First, for each
model, there is only one critical element and this element is known. We therefore only consider
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Figure 2.14: Fayard coupon specimens: geometries and loadings

the stresses on the critical element. More particularly, only the variables Pc and τc involved in
Dang Van criterion are considered. Second, every test is performed until crack initiation, there
is no censorship. Finally, unlike the Locati protocol used on prototypes, the testing procedure is
standard: the loading amplitude and mean remain constant along the test. Hence, the observed
lifetime N and the loading F are su�cient to describe the testing conditions.

c. Fayard methodology for the calibration of a fatigue criterion

For each geometry and loading condition, results can be represented in a Wöhler diagram
(Fig. 2.15). Instead of a traditional S-N diagram where the Y -axis represents the stress (cf.
Subsection 1.1.2), here the Y -axis features the load F . The principle, however, remains identical.
Di�erent loading ratios are considered (see Subsection 1.1.2 for the de�nition of the loading ratio
R). For each geometry, loading type and ratio, a Basquin S-N model is used to represent the
fatigue lifetime N as a function of the loading F (cf. Fig. 2.16, left for the case of Structure A
under fully reversed loading, R = −1).

Each one of the 11 estimated S-N curves leads to an estimate of the fatigue limit Flim at
N = 106 cycles. The FE models are then used to calculate the corresponding values of critical
hydrostatic stress Pc and shear stress τc for this loading F = Flim. This is illustrated in Figure
2.16 for the case of welded structure A under fully reversed loading (R = −1).

For each structure, loading type and ratio, the same methodology is applied in order to obtain
the fatigue limits and critical stresses through FEM. The 11 points obtained are than reported
on a Dang Van diagram, and a linear regression is performed to estimate the �nal criterion (cf.
Fig. 2.17).

The model used by Fayard contains a lot of parameters compared to the number of observations
(n = 144): 22 parameters for the estimation of S-N curves (2 for each), 2 parameters (slope and
intercept) in the �nal linear regression. In particular, the estimation of Basquin slope in S-N
models is impossible in situations where all the experiments are carried out for the same loading
level (for instance, for structure A with load ratio R = 0). In that case, Fayard assumed the
slope to be identical to the same tests with another load ratio R for which it can be properly
estimated. Besides, the estimation is performed in two distinct stages: �rst the estimation of
the S-N curves, then the estimation of the fatigue criterion using the estimated fatigue lifetimes
at �rst stage. In particular, the uncertainties on the fatigue lives estimations are not accounted
for in the second stage. As a result, we do not have a proper estimate of the variance of the
estimated fatigue criterion. Our objective is to construct a probabilistic fatigue criterion that
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Figure 2.15: Experimental results on Fayard coupon specimens in S-N diagrams. The di�erent
colors indicate di�erent load ratios.

Figure 2.16: Identi�cation of critical stresses (Pc, τc) for welded structure A under Fx loading.
The fatigue limit Flim is identi�ed on the S-N curve (left plot). Then, the FEM (right �gure)
allows to calculate the stresses at the critical point (weld toe) under loading Flim.

Figure 2.17: Criterion identi�ed by Fayard, �gure from Fayard (1996)

estimates this variability.
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2.4.2 Construction of a probabilistic Dang Van criterion

We now seek to construct a probabilistic fatigue criterion based on Dang Van variables:
critical hydrostatic and shear stresses (Pc, τc). In other words, given some point with coordinates
(Pc, τc) in Dang Van plane, the criterion should output a probability for this point to be critical.
This problem of accounting for the scattering of fatigue results was addressed in the literature.
In uni-axial loading settings, S-N models account for this variability. Castillo and Fernández-
Canteli (2009) and Fouchereau (2014) introduced probabilistic modeling of S-N curves. In the
multiaxial setting, Sghaier et al. (2007) proposed a methodology to construct a probabilistic
Crossland fatigue criterion: as the material parameters are identi�ed using two types of loadings
(bending and torsion), the variability of the estimates of the two fatigue limits are modeled and
propagated in the �nal criterion. Other works consider an extension of S-N curves beyond the
uni-axial setting by replacing the uni-axial stress by a multiaxial damage parameter (cf. Susmel
and Lazzarin, 2002; Correia et al., 2017). In the context of Dang Van fatigue criterion, Roux
et al. (2014) used a linear combination of the critical hydrostatic stress Pc and shear stress τc
as a multiaxial damage parameter. Our approach also consider such a linear combination in a
generalized S-N model. The originality is that the regression coe�cient involved in this linear
combination (slope of Dang Van criterion) is unknown and thus jointly estimated with the other
fatigue parameters.

In the uniaxial setting, Basquin model can be used to relate the loading amplitude to the
number of cycles to failure: F ×N b is assumed constant where F is the loading, N the lifetime
and b Basquin slope. However, the di�erent welded geometries are tested under di�erent loadings
that are not comparable: for structure A, the loading is measured as a force whereas the structure
C is subjected to a moment. Hence, we cannot have a general model relating the loading F to the
lifetime N covering every geometries, loading types and ratio. Instead, we directly rely on the
local stresses at the critical spots of the specimens. More particularly, Basquin model states that
N ×Sb is constant where b is Basquin slope and S is the stress amplitude. Following Susmel and
Lazzarin (2002) and Correia et al. (2017), the uniaxial stress S can be replaced by a multiaxial
invariant. As Dang Van criterion suggests that the risk of crack initiation depends on a linear
combination of critical hydrostatic stress (Pc) and critical shear stress (τc), S can be replaced
by αPc + τc, where α is the unknown slope of Dang Van criterion. Then, by assuming that the
variations of log(N) are Gaussian, we have the following model:

log (N) |Pc,τc = a− b log (αPc + τc) + σ ε . (2.1)

In the above equation, θ = (a, b, α, σ) is the unknown parameter and ε is a standardized Gaussian
noise. The components of θ represent physical fatigue parameters:

� a is related to the intercept of Dang Van criterion;

� b is Basquin slope, an important fatigue parameter;

� α is the slope of Dang Van criterion;

� σ represents the variability of the fatigue lifetime and will be related to the variability of
the fatigue criterion.

Remark The load ratio R does not appear in the model of Equation 2.1 because it is already
accounted for in the local stresses (Pc, τc). Indeed, the numerical FEM simulation is performed
for each structure and each load type and ratio: in particular, di�erent load ratio leads to di�erent
stresses (Pc, τc).
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Table 2.4: Maximum likelihood estimates with the 95% asymptotic con�dence intervals.

inf 95% mean sup 95%

a 34.37 37.21 40.06
b 4.39 4.94 5.48
α 0.26 0.35 0.44
σ 0.66 0.75 0.83

The model in Equation 2.1 directly leads to a probabilistic fatigue criterion. An element
with stresses (Pc, τc) is considered critical if its lifetime is below 106 cycles. This happens with
probability:

p (Pc, τc) = P
(
N ≤ 106 |Pc, τc

)
= Φ

(
log
(
106
)
− a+ b log (αPc + τc)

σ

)
(2.2)

where Φ denotes the cumulative distribution function of the standardized normal distribution.
The probability p (Pc, τc) is a function of the parameter θ. Hence, by plugging in an estimate of
the unknown parameter θ̂ = (â, b̂, α̂, σ̂) in Eq. 2.2, we obtain an estimate of the probability for
a zone with stresses (Pc, τc) to be critical:

p̂ (Pc, τc) = Φ

(
log
(
106
)
− â+ b̂ log (α̂ Pc + τc)

σ̂

)
.

2.4.3 Results on Fayard coupon specimens

We now use the fatigue results on Fayard coupon specimens to estimate the parameter θ
characterizing the probabilistic fatigue criterion of Equation 2.1. The data set consists in n = 144
independent observations of lifetimes (Ni)1≤i≤n for given values of critical hydrostatic and shear
stresses (Pc,i, τc,i)1≤i≤n. The likelihood ℓ(θ) can be expressed as:

ℓ(θ) = −n
2
log(2π σ2)−

n∑
i=1

[log(Ni)− a+ b log(αPc,i + τc,i)]
2

2σ2
. (2.3)

An estimator θ̂ of the parameter is obtained through maximum likelihood. Since the maximization
of the log-likelihood in Eq. 2.3 cannot be solved analytically, a numerical approximation is found
using Newton's method. The estimates are presented in Table 2.4 along with the 95% asymptotic
con�dence intervals. The estimate of α is very close to the slope identi�ed by Fayard. In addition,
the value of Basquin fatigue parameter b is perfectly standard for welds (cf. Bergamo et al., 2017).
Finally, we provide an estimate of the variability through σ.

The �t can be visualized in a "S-N like" diagram by representing the lifetime on the x-axis
and α̂ pc+ τc on the y-axis (cf. Fig. 2.18). The probabilistic Dang Van criterion is represented in
Fig. 2.19. This criterion is no longer represented as a line in Dang Van plane but as a probability
�eld. Coupon specimens test results are also represented in Dang Van diagram of Fig. 2.19
indicating those that failed before 106 cycles and those that failed after. These observations
agree with the estimated criterion. In addition, the deterministic criterion identi�ed by Fayard is
represented. It is very close to the probabilistic criterion at the level of probability 0.5 (white part
of the diagram in Fig. 2.19). The added value of our methodology is that it provides con�dence
intervals on the estimated parameters. Besides, the variability of the criterion, represented by
σ, is also estimated.

62



2.5. SUPERVISED CLASSIFICATION METHODS FOR FATIGUE CRACK PREDICTIONS

Figure 2.18: Estimated regression line in an
S-N like diagram (log scale on both axes): y
axis represents the linear combination of Pc et
τC with the estimated slope α̂.

Figure 2.19: Illustration of probabilistic Dang
Van criterion: blue (red) represents low (high)
probability of failure before 106 cycles. Blue
points (red stars) represent tests with lifetime
superior (inferior) to 106 cycles.

2.4.4 Conclusion

In this section, we introduced a methodology to construct a multiaxial probabilistic fatigue
criterion based on an S-N regression model. Using the model on the lifetime N of the zone, one
can estimate the probability for N to be lower than 106 and thus for the zone to be critical. This
criterion only involves two variables (Pc, τc). If this criterion is well adapted to the prediction of
crack initiations on simple geometries like Fayard coupon specimens, it unfortunately generalizes
poorly to the fatigue database which contains welds with more complex geometries. Figure 2.20
represents the numerical results from Stellantis fatigue database (only welded zones) on top of the
probabilistic fatigue criterion. It clearly shows that multiple critical welds are poorly identi�ed
by the criterion.

In order to identify a fatigue criterion better adapted to the complexity of mechanical parts,
we need to estimate this criterion on the fatigue database directly. Besides, as there are very
di�erent types of zones, it may be bene�cial to consider additional features to improve the
predictions.

2.5 - Supervised classi�cation methods for fatigue crack predictions

In this section, we seek to estimate a fatigue criterion directly using the fatigue database. This
problem can be viewed as a supervised machine learning problem where the goal is to �nd a binary
classi�cation rule able to discriminate crack initiation zones from the others (Subsection 2.5.1).
Di�erent classi�cation methods are considered, listed in Subsection 2.5.2. Subsection 2.5.3 de�nes
appropriate performance metrics for classi�cation under class imbalance. Finally, the results on
the fatigue database are presented in Subsection 2.5.4.
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Figure 2.20: Probabilistic Dang Van criterion and welded zones in the fatigue database. Each
point represents a zone of Stellantis fatigue database where the critical element is a weld.
The position of the points depend on the critical hydrostatic and shear stresses calculated
through FEM: red stars (blue points) represent zones with lifetime below (over) 106 cycles.
The background color represents the probabilistic criterion estimated in Subsection 2.4.3.

2.5.1 Fatigue crack prediction as a supervised classi�cation task

The fatigue database consists in a set of n = 19 367 zones (Xi, Yi)1≤i≤n where Xi ∈ Rp is a
covariate vector of size p = 60 describing the geometry and the stresses on the zone, and Yi is
the binary output indicating whether (Y = 1) or not (Y = 0) a crack initiated on the zone.

The objective is, for a new zone with covariates x ∈ Rp, to predict whether it can fail (Y = 1)
or not (Y = 0) before 106 cycles under the customer objective load. On the one hand, we do
not want the criterion to fail in identifying zones that could break: indeed, in that case, the
conception would not pass the validation tests and thus require an additional iteration. On the
other hand, the criterion should not be too strict in order to avoid useless reinforcements. As Y
is a binary target, this problem is a binary classi�cation task. This statistical criterion will be
estimated using the fatigue data set.

This approach o�ers several advantages compared to traditional fatigue criteria. First, it relies
on fatigue data from complex geometries and loadings to de�ne the fatigue criterion: hence,
we can expect this statistical criterion to be better suited for the fatigue design of complex
components. Instead, traditional fatigue criteria are usually calibrated on simple specimens
(coupon tests) and thus tend to generalize poorly to complex geometries (cf. Section 2.4 for
welds). Second, as explained in the Section 2.3, the fatigue database contains 60 descriptive
features for each zone which is more informative than the two features used in Dang Van
probabilistic criterion of Section 2.4. Hence, the classi�cation method can account for this
additional information. Finally, the probabilistic interpretation of the criterion will remain:
indeed, most classi�cation methods provide an estimate of the probability for a new instance to
be positive (Y = 1). However, contrary to the probabilistic Dang Van criterion, these purely
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statistical criteria do not have any mechanical founding.
In the application of binary classi�cation methods to fatigue criterion estimation, we are

faced with multiple challenges. First, despite the pre-processing of Section 2.2 to gather elements
by zones, the fatigue data set remains imbalanced: only 1.5% of the observations are positive
(Y = 1). This imbalance issue will be taken into account in the training phase and in the
evaluation of performances (cf. 2.5.3) by using appropriate metrics. Second, if the number of
features (p = 60) is low compared to the size of the data set (n = 19 367), it is of the same order
as the number of observations from the positive class (only n+ = 291 crack initiations). Finally,
the fatigue data set is a�ected by an asymmetric label noise: while a crack initiation asserts
the criticality of a zone, some unbroken zones may be critical due to the duration of the test
(the test may have been stopped before crack initiation) and the randomness of fatigue crack
initiation. This issue will be ignored in this section: it will be the subject of further developments
in Chapters 3 and 4.

2.5.2 Supervised classi�cation methods

In this subsection, we give a brief overview of the classi�cation methods we will use. Let us
�rst describe the general setting for supervised classi�cation.

The objective of supervised binary classi�cation is to �nd a binary function g∗ : Rp −→ {0, 1}
minimizing the prediction errors:

g∗ ∈ Arginf
g :Rp−→{0,1}

P (g(X) ̸= Y ) .

The optimal classi�er is known as Bayes classi�er and can be expressed in terms of P:

g∗(x) = 1P(Y=1 |X=x)≥ 1
2
.

Therefore, a classi�er can be obtained by estimating the function h(x) = P(Y = 1|X = x)
representing the conditional probability of Y given x, and setting a threshold t so that the
predicted class is 1 if h(x) ≥ t, else 0 (the natural threshold being t = 1/2).

As the distribution of the data is unknown, we rely on a training sample (Xi, Yi)1≤i≤n to
built an estimator ĝ of the classi�cation rule. For that purpose, there exists multiple classi�cation
methods. Each rely on two main ingredients.

1. A model G, i.e. a set of classi�ers assumed to contain the optimal classi�er (or at least
close to the optimal one). This set can be restricted to linear classi�ers (logistic regression,
linear Support Vector Machine), piece-wise constant functions (tree-based methods) or
more complex sets of functions (Support Vector Machine with Gaussian kernel).

2. A loss function ℓ (g(x), y) measuring the quality of a class prediction g(x) (or prediction
probability h(x)) given the true class y (logistic loss for logistic regression, hinge loss for
Support Vector Machine...).

The estimator ĝ is built by minimizing the risk R(g) = E [ℓ (g(X), Y )] estimated by the empirical
mean:

R̂(g) =
1

n

n∑
i=1

ℓ (g(Xi), Yi)

over the set of classi�ers G. Di�erent methods will be considered in this section:

� Logistic Regression with Lasso regularization (LR);

� Linear and Quadratic Discriminant Analysis (LDA, QDA);

� Support Vector Machine (SVM) with linear and Gaussian kernels;

� Random Forests (RF).
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a. Logistic Regression with Lasso regularization (LR)

Logistic Regression (cf. Hastie et al., 2009, Chapter 4) is a linear classi�cation model.
Observations (Yi)1≤i≤n are assumed independent and Yi is assumed to follow a Bernoulli distributions
with parameter p(Xi). The probability p is a function of a linear regression on x with coe�cients
β and intercept β0. A natural choice is the logistic function which leads to the following function
p:

p(x) =
1

1 + e−β0−βT x
,

where β0 ∈ R and β ∈ Rp are unknown parameters.
The criterion minimized is the opposite of the log-likelihood, also known as logistic loss. As

the dimension is large, a L1 penalization is added in order to force the estimated vector β̂ to be
sparse. Hence, the parameters are estimated by solving the following optimization problem:

(β0, β) ∈ Arginf
β0,β

λ ||β||1 +
n∑
i=1

[
Yi log

(
1 + e−β0−β

TXi

)
+ (1− Yi) log

(
1 + eβ0+β

TXi

)]
,

where ||·||1 denotes the L1 norm and λ is an hyper-parameter which can be selected using cross-
validation (cf. Hastie et al., 2009, Chap. 7).

b. Linear and Quadratic Discriminant Analysis (LDA, QDA)

In QDA, the conditional distributions of X given Y = 0 and Y = 1 are assumed to be
Gaussian with parameters (µ0,Σ0) and (µ1,Σ1) (cf. Hastie et al., 2009, Chapter 4). The class
prior π = P (Y = 1) is also unknown. The parameter θ = (π, µ0,Σ0, µ1,Σ1) is estimated through
maximum likelihood:

θ̂ ∈ Argsup
θ

n∑
i=1

Yi log (π fµ1,Σ1(Xi)) + (1− Yi) log ((1− π) fµ0,Σ0(Xi)) ,

where fµ1,Σ1 (fµ0,Σ0) is the density of the Gaussian distribution with mean vector µ1 (µ0) and
covariance matrix Σ1 (Σ0). The posterior probability ĥ(x) is computed using Bayes theorem:

ĥ(x) =
π̂ f

µ̂1,Σ̂1
(x)

π̂ f
µ̂1,Σ̂1

(x) + (1− π̂) f
µ̂0,Σ̂0

(x)
.

The corresponding classi�er g(x) uses the threshold t = 1/2 to output the binary prediction:

g(x) = 1
ĥ(x)≥ 1

2
.

The decision function for QDA is quadratic. Compared to QDA, LDA further assumes that
both distributions share the same covariance (Σ0 = Σ1) which leads to a linear decision function.
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c. Support Vector Machine (SVM)

In this paragraph only, we will assume that instances of the negative class are encoded as
Y = −1 (instead of Y = 0) while instances of the positive class are still represented as Y = 1.
Linear SVM consists in �nding a linear classi�cation rule by minimizing a hinge loss with a
penalization term proportional to the L2 norm of the parameter (Bishop and Nasrabadi, 2006,
Chap. 7):

ĝ ∈ Arginf
β0,β

n∑
i=1

[
1− Yi

(
β0 + βTXi

)]
+
+ λ||β||2,

where λ is an hyper-parameter, ||·|| denotes the L2 norm and [·]+ = max (0, ·) is the positive part.

The above optimization problem is equivalent to a constrained optimization problem whose
dual only involves the dot products of pairs of elements (XT

i Xj)1≤i,j≤n (cf Bishop and Nasrabadi,
2006, Chap. 7 for the detailed formulation). It is thus common to extend SVM to non-linear
boundaries by mapping the covariate vectors (Xi)1≤i≤n to a higher dimensional space (Φ(Xi))1≤i≤n.
A linear decision function in this higher dimensional space F then results in a non-linear boundary
in the original feature space Rp. In practice, neither the mapping Φ nor the higher dimensional
space F need to be explicit. One only needs to specify the dot products of elements in the new
feature space ⟨·, ·⟩ which can be represented by a kernel function K:

K(Xi, Xj) = ⟨Φ(Xi),Φ(Xj)⟩ .

This is the kernel trick. Of course, choosing K(Xi, Xj) = XT
i Xj boils down to linear SVM.

Another popular choice of kernel is the Radial Basis Function (or Gaussian kernel) of the form:

K(Xi, Xj) = e−
||Xi−Xj ||

2

2σ2 .

d. Random Forest (RF)

Random Forest is a classi�cation method that consists in estimating an ensemble of classi�cation
trees and aggregating the predictions (Breiman, 2001). A classi�cation tree is a partition of
the feature space Rp in regions R1, ..., Rm where each region Ri can be mapped to a class ci
representing the class obtaining the majority of votes in the leaf. The classi�er g is then of the
form:

g(x) =
m∑
i=1

ci1x∈Ri .

A classi�cation tree is estimated by �nding iteratively binary splits in the feature space. Each
split is performed over a unique feature. Both the feature and the splitting point are chosen as a
minimizer of a criterion: standard choices are Gini index and cross-entropy. The size of the tree
is controlled by additional hyper-parameters like the maximum depth of the tree or the minimum
number of samples per leaf.

Random forest considers a set of B classi�cation trees (ĝk)1≤k≤B. The trees are di�erent.

� Each of them is trained on a random bootstrap re-sample of the original training set.

� During the estimation of the trees, the binary splits are chosen among a sub-sample of the
original features.

Finally, the �nal classi�er ĝ is given by the majority of votes among the B individual trees of the
forest. In addition, for a given instance x, the proportion of trees predicting 1 can be interpreted
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as a prediction probability:

ĥ(x) =
1

B

K∑
k=1

ĝk(x) .

Of course, the classi�er ĝ returns 1 if ĥ(x) ≥ 1/2, else 0.

2.5.3 Performance metrics for classi�cation

Prior to training, the data set is randomly split between train and test sub-samples. Once a
classi�cation model is estimated on the training set, one needs to evaluate its performances on
the test set. Multiple metrics exist to measure the performances of a classi�er. In the context of
fatigue applications, we need appropriate evaluation metrics for imbalanced classes.

Let us consider a trained classi�er and (xi, yi)1≤i≤n a test data set (unseen during training).
We usually have access to prediction probabilities ĥ(xi) and not directly labels. In order to
provide the predicted labels for covariate vectors (xi)1≤i≤n, we can specify a threshold t not
necessarily equal to 1/2 which de�nes the decision rule:

ŷi = 1
ĥ(xi)≥t .

There are two types of performance metrics for classi�cation: those that evaluate the quality
of the predicted labels and those that directly rely on the prediction probabilities.

a. Performance metrics on binary predictions

The most common metric for evaluating the quality of the predicted labels is the accuracy
that measures the proportion of well classi�ed instances:

accuracy =
1

n

n∑
i=1

1ŷi=yi .

However, the accuracy is a poor choice of metric in imbalanced settings. For instance, in the
context of our fatigue application, there are only 1.5% of positive instances. This means that
a naive classi�er always predicting 0 will get an accuracy of 98.5%. However such a classi�er
cannot characterize any crack initiation.

In imbalanced setting, it is thus crucial to look at other metrics. Let us �rst introduce the
confusion matrix which gathers the number of truly and wrongly predicted instances for each
class: True Positives (TP), False Positive (FP), True Negatives (TN), False Negatives (FN).
The formulas are given below (Eq. 2.4) and the matrix is presented in Fig. 2.21 with an example
using the probabilistic Dang Van criterion of Section 2.4.

TP =
n∑
i=1

1ŷi=1,yi=1 FN =

n∑
i=1

1ŷi=0,yi=1

FP =
n∑
i=1

1ŷi=1,yi=0 TN =

n∑
i=1

1ŷi=0,yi=0 .

(2.4)

From the four above quantities, we can de�ne appropriate metrics focusing on the performances
of a classi�er on the minority class (positive class).

� The recall (also called True Positive Rate, or sensitivity) measures the proportion of well
classi�ed positive instances:

Recall =
TP

TP + FN
.
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Figure 2.21: Confusion matrix for Dang Van probabilistic criterion with standard threshold
t = 0.5. The matrix is evaluated on the whole fatigue data set.

In the context of fatigue, the recall represents the proportion of cracks detected by the
criterion. We expect it to be as high as possible.

� The precision is the proportion of true positive instances among the positive predictions:

Precision =
TP

TP + FP
.

In fatigue, it characterizes the proportion of true cracks among the positive zones identi�ed
by the criterion.

� The False Positive Rate (FPR) measures the proportion of prediction errors on the negative
instances:

FPR =
FP

FP + TN
.

� As we usually seek a compromise between Precision and Recall, a popular metric is the F1
score, de�ned as the harmonic mean of the two:

F1 =
2

1
Recall +

1
Precision

.
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Table 2.5: Performances of Dang Van probabilistic criterion on the fatigue database for di�erent
thresholds.

t = 0.01 t = 0.5 t = 0.99

Recall 0.85 0.57 0.22
Precision 0.03 0.04 0.07
FPR 0.44 0.20 0.05

F1 score 0.06 0.08 0.10

Figure 2.22: ROC (on the left) and PR (on the right) curves for probabilistic Dang Van criterion.
Black dashed lines represent the performances of a random classi�er. Purple dashed lines
represent the performances obtained by setting the threshold to t = 0.5.

b. Performance metrics on prediction probabilities

As explained in the introduction of this subsection, the performance metrics de�ned in the
previous paragraph depend on the threshold t used to provide the predicted labels (ŷi)1≤i≤n given
the predicted probabilities (ĝ(xi))1≤i≤n. For instance, Table 2.5 presents the binary performance
metrics of probabilistic Dang Van criterion for di�erent choices of thresholds. Increasing the
threshold tends to improve the Precision and reduce the FPR but at the same time reduces the
Recall.

In order to assess the performances of a classi�er without having to specify the threshold
t, we study the Receiver Operating Characteristic (ROC) curve and the Precision Recall curve
(PR).

� ROC curve represents the recall (Y-axis) as a function of the FPR (X-axis) for every choice
of threshold.

� PR curve similarly represents the precision (Y-axis) as a function of the recall (X-axis).

ROC and PR area under the curve (AUC) represent the area under ROC and PR curve and
can be used as global performance metrics. Assuming there exists a perfect classi�er separating
the two classes, its ROC and PR AUC will be equal to 1. For a random classi�er, ROC AUC
will be 0.5 and PR AUC will be equal to the proportion of positive instances. ROC and PR
curves for probabilistic Dang Van criterion are illustrated in Fig. 2.22: in the context of fatigue
applications, Dang Van criterion leads to small precision scores, lower than 10%, for a recall
higher than 20%.

ROC and PR curves lead to similar metrics as they both integrate the performances of a
classi�er over all the possible thresholds. Nevertheless, they can lead to di�erent conclusions.
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The crucial di�erence is that while both metrics consider the recall, ROC relies on the FPR while
PR computes the precision. Saito and Rehmsmeier (2015) argue that, for highly imbalanced data
sets, PR curves may be more informative than ROC curves. One drawback though of the PR
AUC metric compared to ROC AUC is that the baseline performance (performance of a random
classi�er) depends on the proportion of positive instances, and thus changes from one data set
to another. This is why, we will consider both ROC and PR AUC when evaluating classi�cation
performances.

Remark This is not the only solution to deal with imbalanced classes in classi�cation. An
alternative solution would be to down-sample the majority class. We do not consider this solution
as the imbalance is quite severe. Down-sampling the negative class would result in eliminating
a lot of zones which would reduce signi�cantly the size of the data set.

2.5.4 Application to the fatigue database

In this subsection, we apply the supervised classi�cation methods listed in Subsection 2.5.2
to the fatigue data set. We will thus obtain several fatigue criteria calibrated through machine
learning techniques. Their performances will be evaluated and compared to the Dang Van fatigue
criterion.

Paragraph a describes the procedure to estimate the classi�ers, select hyper-parameters and
evaluate the performances. This procedure will be illustrated in Paragraph b by considering a
LR classi�er on the fatigue data set with all features (p = 60). Finally, Paragraph c presents the
classi�cation results for the di�erent methods.

a. Description of the procedure

The fatigue data set is randomly split in two sub-samples of equal sizes: training and test
sets. The classi�cation rule is estimated on the training set and its performances are evaluated
on the test set.

Some classi�cation methods require the speci�cation of hyper-parameters:

� multiplicative coe�cient on the L1 penalty in LR (Lasso regularization);

� multiplicative coe�cient on the L2 penalty in SVM (linear and Gaussian kernels);

� maximum depth of the trees in RF.

These hyper-parameters are selected during the training phase using K-fold cross-validation with
K = 5 (cf. Hastie et al., 2009, Chap. 7). The training set is divided in K sub-samples. For k
ranging from 1 to K, a classi�er is estimated on the training set except the kth fold. Then the
classi�er performances on the kth fold are evaluated. The mean performances over the K folds
is then calculated. This experiment is performed for multiple values of the hyper-parameter: the
value achieving the best performance is selected.
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Figure 2.23: Cross-validation PR AUC scores for di�erent values of hyper-parameter C. Error
bars represent the standard deviation over the 5-fold performance estimates. Red dashed line
represent the hyper-parameter value resulting in the maximum PR AUC.

Remarks:

1. The random partition in K folds is strati�ed to ensure that the proportion of positive
instances in each fold is approximately the same (Strati�ed K-Folds cross-validation). In
particular, this ensures that each fold contains samples of the minority class.

2. The choice of the number of folds, K = 5, is standard and often recommended in the
literature (cf. Hastie et al., 2009, Chap. 7).

Once the hyper-parameter is selected, a �nal classi�er is estimated over the whole training
set using the optimal value for the hyper-parameter. Finally, the performances are evaluated on
the test set.

We will see that the performance results change depending on the initial random split between
train and test sets. The reason is that there are few positive instances in the data set which
leads to a high variance in the estimation of the performance results. In order to assess the
performances with more consistency, the whole procedure is repeated B = 100 times. Hence, for
each method, we will be looking at the distribution of the performances over the B repetitions.

b. Illustration of the procedure

We illustrate here the general procedure described above on an example: the classi�cation
model is a LR (with Lasso regularization). The hyper-parameter C = 1/λ is selected through
5−fold cross-validation. The mean and standard deviation over the PR AUC scores for di�erent
choices of hyper-parameter C are presented in Fig. 2.23. For low values of C (high penalty),
the performances are close to 0: the penalization is too strong compared to the logistic loss.
Conversely, as hyper-parameter becomes high (low penalty), the penalization is small compared
to the loss function: the model tends to perform as if there was no variable selection, which also
results in poor performances. From these results, we can identify the optimal hyper-parameter
Copt ≃ 2× 10−2.

The �nal model is trained on the whole training set using the optimal hyper-parameter
Copt. The classi�er is then evaluated on the test set. In this illustration example, the whole
experiment is only performed once. In the next subsection, it will be repeated B = 100 times
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Figure 2.24: ROC (left) and PR (right) curves for trained LR and Dang Van criterion. Dashed
lines represent the performances of a random classi�er.

in order to account for the variability on the performance estimates. Figure 2.24 represents the
ROC and PR curves for the estimated classi�er. The performances of Dang Van criterion are also
represented highlighting the substantial gain in performances achieved by the machine learning
model. Indeed, ROC AUC score on the test set is equal to 0.90 (0.81 for Dang Van criterion)
and PR AUC score is 0.18 (0.05 for Dang Van classi�er). We will see that this gain is consistent
when repeating the same procedure on multiple train-test splits (cf. Subsection c).

c. All classi�cation results

We now extend the comparison of the results for all the supervised classi�cation methods
presented in Subsection 2.5.2 on our two scenarii of interest:

1. a �rst scenario where only the two variables involved in Dang Van criterion are considered
(p = 2);

2. a second scenario where all the variables (as de�ned in Subsection 2.2.3) are considered
(p = 60).

This allows us to compare the two scenarii and thus assess the potential gain in performances
when using all the information contained in the fatigue data set to help identify critical zones.
As presented in Paragraph a, for each scenario and each method, the estimation and evaluation
procedure is repeated B = 100 times in order to study the distribution of performance scores.
Classi�cation performances of Dang Van criterion are also evaluated on the test set (for each
experiment). Contrary to the supervised classi�cation methods, Dang Van criterion is not
estimated on the training data set, as it is a priori de�ned.
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Figure 2.25: First scenario (p = 2): distribution of ROC AUC (left) and PR AUC (right)
performances for Dang Van criterion (hatched boxplots) and supervised classi�cation methods.

Figure 2.26: First scenario (p = 2): ROC (left) and PR (right) curves for Dang Van criterion
(orange) and Random Forest (blue). Dashed ellipses highlight the part of the curves for which
recall is over 0.6.

First scenario The results on the �rst scenario are presented in Figure 2.25. The ROC AUC
performances of classi�cation methods are not signi�cantly di�erent from Dang Van criterion.
In terms of PR AUC, the results are more heterogeneous. While, LR and Linear SVM have a
similar behavior and provide performances comparable to Dang Van criterion, Kernel SVM and
RF are di�erent. In particular, the distribution of PR AUC scores for RF is signi�cantly higher
than Dang Van criterion which seems surprising at �rst glance because ROC AUC scores are
similar. In order to help understand this phenomenon, Figure 2.26 represents the ROC and PR
curves for Dang Van criterion and RF (p = 2 variables). The major di�erence between the two
PR curves occurs for small values of recall. This means that the Random Forest can identify
the most critical zones with higher precision than Dang Van criterion. However, the ROC curve
shows that Dang Van is better than RF for a recall higher than 0.6. This di�erence is not visible
in the PR plot because both methods yield similar small precision scores (cf. dashed ellipses in
Fig. 2.26).
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Figure 2.27: Second scenario (p = 60): distribution of ROC AUC (left) and PR AUC (right)
performances for Dang Van criterion (hatched boxplots) and supervised classi�cation methods.

Figure 2.28: Second scenario (p = 60): ROC (left) and PR (right) curves for Dang Van criterion
(orange), Random Forest (blue) and Linear SVM (green).

Second scenario Performance results on the second scenario (p = 60 variables) are represented
in Figure 2.27. This time, the gain in performances of supervised classi�cation methods compared
to Dang Van criterion is signi�cant, both in terms of ROC AUC and PR AUC. Linear models
(LR and Linear SVM) exhibit similar behaviors. Kernel SVM results are more scattered than
the other methods (especially for ROC AUC performances). Random Forest achieves the best
mean performances both in terms of ROC AUC and PR AUC. As for the �rst scenario, we can
analyze further the di�erences of PR AUC scores among the methods. Figure 2.28 presents a
comparison between the ROC and PR curves obtained for Dang Van criterion, a linear classi�er
(Linear SVM) and a non-linear one (RF). Again, the main di�erences between the classi�ers on
the PR curve are concentrated on its �rst part, i.e. for a recall lower than 0.4.

75
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In this section, supervised machine learning algorithms were implemented in order to estimate
fatigue criteria based on the fatigue data set. The results con�rm the limits of Dang Van variables
(Pc, τc) to characterize critical zones on complex specimens: indeed, linear and non-linear
classi�cation methods do not achieve a signi�cant improvement over Dang Van fatigue criterion in
this case. When all the covariates are considered though, it is clear that the classi�cation methods
provide better performances: for instance, Logistic Regression with Lasso regularization yields a
mean improvement of 0.11 in terms of ROC AUC and 0.10 in terms of PR AUC.

From a more practical point of view, the Logistic Regression can identify 50% of true crack
initiations with a precision of approximately 14% (only 4% for Dang Van criterion). If the recall
is now set to 90% (as the objective is to identify most of the crack initiations), the precision
drops to 4% (2% for Dang Van criterion). Hence, despite the additional variables, some critical
zones are still poorly characterized.

2.6 - Conclusion

In this chapter, we introduced Stellantis fatigue database built upon numerical simulation
results and reports from fatigue tests on prototypes. The database contains zones of numerical
models characterized by several features (describing the geometry and the stresses) along with
the test results indicating whether or not a crack initiated on each zone. We introduced a notion
of zone, allowing to reduced signi�cantly the severe imbalance between positive and negative
instances, better appraise the local distribution of stresses, and account for nearby singularities
through appropriate features. A multivariate analysis allowed to better understand the variance
in the data set and the correlation structure among variables. Besides, we identi�ed and
characterized simultaneously a structure among individuals and variables through co-clustering.
As the objective of fatigue design is to identify critical zones on a numerical model, we analyzed
the Dang Van fatigue criterion for welds and proposed a probabilistic version of it accounting for
the randomness of crack initiation. This criterion is based on di�erent structures of standardized
welded specimens. Although Dang Van criterion works well on standardized specimens, it
generalizes poorly to the more complex zones contained in the fatigue database. Considering the
estimation of a fatigue criterion as a supervised classi�cation task, we estimated and compared
classic classi�ers. Contrary to Dang Van criterion (which relies on critical hydrostatic and shear
stresses), these criteria account for all the variables available in the fatigue data set (p = 60),
which leads to better prediction performances. This means that the classi�cation-based criteria
can better identify critical zones on a design, which would help to reduce iterations between
conception and validation.

Still, the prediction performances of fatigue criteria estimated through supervised classi�cation
are far from being perfect. In particular, some crack initiations are still poorly characterized by
the available features. The FEM is an important source of uncertainty because it does not
account for several phenomena in�uencing the resistance against fatigue: complex geometric
e�ects (stress concentrations), manufacturing processes generating residual stresses (arc welding,
stamping)... Hence, having access to these variables could help the characterization of critical
zones and thus improve the performances of classi�cation-based fatigue criteria. Unfortunately,
the current FEM do not provide that information. Even if the improvement of FEM is an active
topic in the automotive industry, it is beyond the scope of this thesis.

While evaluating supervised classi�cation methods on the fatigue data set, we could notice
that there are many false positives (non-broken zones predicted as positive) which results in the
precision being low: 14% precision for a 50% recall (Logistic Regression). This is due to the fact
that not every critical zone breaks during testing. Hence, only a subset of critical zones e�ectively
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broke during testing. However, the objective of a fatigue criterion should not be the prediction
of crack initiations but rather the prediction of the criticality of a zone. As only some critical
zones are labeled, the construction of a fatigue criterion can be viewed as a classi�cation task
under a completely asymmetric label noise. This task, known as Positive-Unlabeled learning
(PU learning) is an important contribution of this thesis and will be the subject of the next
two chapters: Chapter 3 introduces PU learning and states new theoretical risk bounds for
classi�cation in this particular setting, Chapter 4 focuses on the application of PU learning to
the fatigue data set.
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3
Theoretical risk bounds for Positive-Unlabeled Learning under

the Selected At Random assumption

The estimation of a fatigue criterion using Stellantis fatigue database is a classi�cation task (cf.
Chapter 2): the goal is to predict whether or not a zone of a mechanical part is critical, i.e.
whether or not a crack can initiate before 106 cycles. However, this classi�cation is not fully
supervised: only a subset of positive instances (critical zones) are actually observed and thus
labeled positive (crack initiations). Besides an unlabeled zone (without crack initiation) can
either be critical (because the severity was not high enough to observe the crack) or safe. This
task is known as Positive-Unlabeled learning (PU learning). The challenge is then to �nd the
correct classi�er despite this lack of information.

In this chapter, we are interested in establishing risk bounds for PU learning under the
general Selected At Random assumption, i.e. when the probability for a positive instance to
be labeled depends on its covariates. In addition, we quantify the impact of label noise on PU
learning compared to the standard classi�cation setting. Finally, we provide a lower bound on
the minimax risk proving that the upper bound is almost optimal.

Section 3.1 introduces the traditional classi�cation setting and recall risk bounds results.
In section 3.2, we introduce the PU learning setting. Section 3.3 presents an overview of
existing approaches on PU learning. Section 3.4 focuses on the bias issue with labeled-unlabeled
classi�cation and motivates the use of an unbiased empirical risk. In 3.5, we present the main
results of this chapter: a general upper bound on the excess risk for PU learning under covariate-
dependent label noise and a lower bound on the minimax risk. Section 3.6 illustrates the
theoretical results through numerical experiments. The proofs and technical lemma can be
found in Section 3.7.

3.1 - Traditional classi�cation setting

In this section, we introduce the standard classi�cation setting (Subsection 3.1.1) and recall
risk bounds results (Subsection 3.1.2). This will be the opportunity to introduce general notations
used throughout the chapter.
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3.1.1 General setting

Let (X1, Z1), ..., (Xn, Zn) be independent couples of random variables in Rd×{0, 1} identically
distributed according to some unknown distribution denoted P. For each i, Xi is a covariate
vector with marginal distribution PX and Zi is the class, either negative (Zi = 0) or positive (Zi =
1). Let π = P (Z = 1) denote the class prior. Using P0 (P1) the conditional distribution of X
given that the class is negative, Z = 0 (positive, Z = 1), we write the convenient decomposition:

PX = (1− π)P0 + πP1 . (3.1)

In classi�cation, the goal is to �nd a classi�er, i.e. a binary function g : Rd → {0, 1},
minimizing some risk function R. In this chapter, R will denote the misclassi�cation risk:

R (g) = P (g(X) ̸= Z) .

Given the regression function η(x) = P (Z = 1|X = x), the minimizer of misclassi�cation risk is
Bayes classi�er g∗ that depends explicitely on P:

g∗(x) = 1η(x)≥ 1
2
.

In order to assess how close a given classi�er g is to the optimal one g∗, we are interested in
the excess risk ℓ (g, g∗):

ℓ (g, g∗) = R (g)−R (g∗) .

Since P is unknown, neither g∗ nor the risk function R can be computed. We rely instead
on the training sample (X1, Z1), ..., (Xn, Zn) to build a classi�er ĝ. Let r (g, (X,Z)) = 1g(X )̸=Z

the misclassi�cation error for one observation, the true risk R can be estimated by the empirical
mean:

R̂n (g) =
1

n

n∑
i=1

r (g, (Xi, Zi)) .

An empirical classi�er ĝ is then identi�ed as a minimizer of the empirical risk over a prede�ned
class of classi�ers G.

ĝ ∈ Argmin
g∈G

R̂n (g) .

This procedure is known as Empirical Risk Minimization. Let gG be the minimizer of the true
risk R over G. The excess risk of the classi�er ĝ can be decomposed as follows:

ℓ(ĝ, g∗) =
(
R
(
gG
)
−R (g∗)

)
+
(
R (ĝ)−R

(
gG
))

where the �rst term is the approximation error depending on G and the second one is the
statistical error. Since we are only interested in assessing the statistical error, we assume that
Bayes classi�er g∗ belongs to G, hence the �rst term vanishes. It is important to note that
ℓ (ĝ, g∗) depends on P (through the risk R) and on the training sample (X1, Z1), ..., (Xn, Zn).
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3.1.2 Risk bounds in the standard classi�cation

In order to assess the convergence rate of the excess risk ℓ (ĝ, g∗) in a non-asymptotic
framework, we need an upper bound on E [ℓ (ĝ, g∗)]. The expectation is taken with respect
to the distribution of the training sample P⊗n. Moreover the upper bound needs to be uniform
over a set of distributions P. We introduce P (G) a set of probability distributions on Rd×{0, 1}
such that g∗ belongs to G. In this case, Lugosi (2002) proved that for some absolute constant
C1 > 0:

sup
P∈P(G)

E [ℓ (ĝ, g∗)] ≤ C1

√
V

n
, (3.2)

where V is the Vapnik-Chervonenkis dimension of G (VC dimension, see Vapnik, 1999, Chapter 3).
We recall that the VC dimension is the maximum integer V such that there exists V points
x1, ..., xV in Rd shattered by G, namely classi�ed in every way possible by elements of G. In other
words:

V = sup
v∈N∗

{
v s.t. ∃x1, ..., xv ∈ Rd, |{(g(x1), ..., g(xv)) , g ∈ G}| = 2v

}
.

The VC dimension V measures the complexity of class G and has to be �nite for Equation 3.2
to be meaningful, which we assume for the rest of the chapter.

The upper bound in Equation 3.2 remains true regardless of the form of the regression function
η. Actually, η is closely linked to the label noise: when η(x) is close to 1/2, the observed class
can be positive or negative with probability close to 1/2, which makes the classi�cation of x more
di�cult. Hence, the closer η is to 1/2, the noisier the observed class is. Massart and Nédélec
(2006) showed that whenever η(x) is uniformly and symmetrically bounded away from 1/2 by a
quantity h >

√
V/n, the upper bound on the risk excess can be improved. Let P (G, h) denote

the subset of probability distributions in P (G) such that for every x ∈ Rd, |2η(x) − 1| ≥ h.
Massart and Nédélec (2006) showed that there exists an absolute constant C2 > 0 such that:

sup
P∈P(G,h)

E [ℓ (ĝ, g∗)] ≤ C2
V

nh

(
1 + log

(
nh2

V

))
. (3.3)

Hence, as h gets higher, the label noise gets smaller, and the convergence rate can be improved
up to V/n, letting aside the logarithm. However, when h is smaller than

√
V/n, Equation 3.2

remains better. Equation 3.3 provides a �ne control on the excess risk depending on the di�culty
of the classi�cation task, accounted through h.

A lower bound was obtained by Lugosi (2002), extended by Massart and Nédélec (2006),
allowing to prove the optimality of the convergence rates. In fact, the optimality of the re�ned
bound of Equation 3.3 is up to the logarithmic term.

3.2 - PU learning context

In the standard classi�cation setting, the classes (Zi)1≤i≤n are observed. This is no longer
the case in PU learning where only an incomplete set of positive data is available, the remaining
is unlabeled. For each i, the observed label Yi is 1 if the class Zi is positive and selected (i.e.
labeled). Otherwise, the label Yi is 0 (unlabeled). The objective of PU learning is to use the
incomplete information (X1, Y1), ...(Xn, Yn) to build a classi�er able to predict the class Z given
a new instance with covariates X.

PU learning is motivated by various applications listed in Subsection 3.2.1. It can arise in
di�erent settings: one-sample setting or two-sample setting (cf. Subsection 3.2.2). The label noise
in PU learning is usually represented by a propensity function which can be assumed constant
or covariate-dependent (cf. Subsection 3.2.3)
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3.2.1 PU learning applications

PU learning is motivated by various kinds of applications.

� Reliability : this work is primarily motivated by an application in mechanical design
against fatigue. The idea is to use past simulation data combined with test results to
build a classi�er able to predict critical zones on new numerical models. In this scenario,
experimental tests only provide a fraction of critical zones that e�ectively broke during
testing. However, the absence of crack initiation is not an evidence of safety: maybe other
zones could have initiated a crack if the tests had been extended. Hence all the other zones
need to be considered unlabeled.

� Health: PU learning has been widely applied to gene disease detection. The objective is
to identify genes related to various human diseases. Each gene is described by di�erent
biological information used as features. However, only a fraction of genes are known to
be related to a disease. Hence, the task of identifying disease-related genes among the
remaining unlabeled examples is a PU Learning task (Yang et al., 2012, 2014; Nikdelfaz and
Jalili, 2018). Another class of applications is about automatic diagnosis. Chen et al. (2020)
uses MRI (Magnetic Resonance Imaging) data to predict early-stage Alzheimer disease.
When traditional classi�cation methods considers non-diagnosed patients as negative examples,
PU learning is able to account for the fact that some non-diagnosed patients can be positive
(but not yet diagnosed).

� Text classi�cation: PU learning naturally arises in text classi�cation problems where the
task is to identify texts related to a certain topic. Usually, the training set is made of only
a few known positive instances (texts related to the topic of interest). Other documents
are added to the training set, but as the labeling processes is long, they are not labeled.
This scenario motivated the �rst PU learning methods (Liu et al., 2002, 2003).

� Spam review detection: in many commercial websites, customers are free to leave a comment
regarding the product or service they purchased. However, some comments turn out to be
fake reviews that could wrongly in�uence potential buyers. Spam review detection aims at
identifying fake reviews. Since labeling is complicated, only a sample of fake reviews are
labeled and PU learning techniques are used to build a classi�er (Fusilier et al., 2015; Li
et al., 2014; He et al., 2020).

� Anomaly detection is a general topic that often belongs to the category of PU learning tasks.
In this kind of applications, the training set contains a sample of identi�ed anomalies,
however the rest of the training set may still contain anomalies mixed with "normal"
examples. In this �eld, PU learning has been applied to predict newborn defects (Jiang
et al., 2018), quality �aws on web pages (Ferretti et al., 2014), intrusion detection in
cybersecurity (Luo et al., 2018),...
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3.2.2 PU learning settings

Missing labels in PU learning can arise from di�erent settings.

� In the two-sample setting, the positive and unlabeled instances are sampled separately and
are therefore not identically distributed. A �rst sample (Xi)1≤i≤nL only contains labeled
instances (Y = 1) distributed according to the conditional distribution of X given Z = 1.
A second sample (Xi)nL+1≤i≤n is distributed according to the marginal distribution of X
and remains unlabeled (Y = 0). The quantity nL denotes the number of labeled instances.
It is a case-control situation.

� In the one-sample setting, all the instances (Xi)1≤i≤n are i.i.d and some positive instances
are labeled. We will focus on this setting in the rest of the thesis.

There is also an important distinction between transductive and inductive PU learning.

� In a transductive PU learning task, the goal is to use the set of positive and unlabeled
instances to predict the class of the unlabeled instances of the set.

� In an inductive PU learning task, the goal is to use the same training set to predict the
class of a new instance. In the scope of the thesis, we will be interested in this setting.

3.2.3 Propensity function and assumptions

In PU learning, the true classes are a�ected by a class-dependent (thus asymmetric) label
noise. The probability for a positive instance to be labeled is generally called the propensity
(Bekker and Davis, 2020) and it may depend on the covariates:

e(x) = P (Y = 1|Z = 1, X = x) .

On the other hand, negative instances are never labeled:

P (Y = 1|Z = 0, X = x) = 0 .

The regression function associated with Y , η̃(x) = P (Y = 1|X = x) depends on this additional
label noise:

η̃(x) = e(x) η(x) . (3.4)

This concept of completely asymmetric label noise was �rst pointed out by Elkan and Noto
(2008). It is now common to de�ne two general types of assumptions: Selected Completely At
Random (SCAR) and Selected At Random (SAR).

SCAR: PU learning without selection bias. The propensity e(x) = em does not depend on
the covariates x. This applies in situations where every positive instance has an equal
probability to be selected (labeled). In this case, the conditional distributions of X given
Z = 1 (P1) and given Y = 1 (P̃1) are the same. In other words, labeled instances are a
representative sub-sample of positive instances.

SAR: PU learning with selection bias. The probability for a positive instance to be labeled
depends on its covariates. Hence, labeled instances are a biased sample of positive instances.
For example, in mechanical design, a specimen subjected to higher stress is more likely to
break, which results in a higher probability of a crack being detected. This is clearly a
situation where the SCAR assumption does not hold. This is why, we will focus on the
SAR assumption.
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3.3 - State of the art on PU learning methodologies

In this section, we present an overview of existing methods to address PU learning tasks.
The di�culty lies in the fact that unlabeled data may contain positive instances. Besides, the
set of labeled instances may not be a representative sample of positive instances: the propensity
e(x) = P (Y = 1 |Z = 1, X = x) may depend on x (SAR assumption). The majority of existing
methods only work under the SCAR assumption (e(x) = e > 0). Nevertheless, over the past few
years, new methods emerged to address speci�cally the more general SAR assumption (when
e(·) is not constant).

3.3.1 Non-traditional classi�ers

A �rst way to address PU learning tasks is to simply ignore the label noise. Non-traditional
classi�cation techniques consist in considering unlabeled data as negative and labeled data as
positive. Then, a classi�er is estimated based on the noisy labels (xi, yi)1≤i≤n and this learned
classi�er is used to predict the class Z of a new data point X. From a theoretical point of view
(cf. Cannings et al., 2020), a non-traditional classi�er remains consistent as far as the amount of
label noise is limited (see Subsection 3.4.1).

Besides, a non-traditional classi�er under the SCAR assumption (e(x) = e) can still rank
correctly data points in terms of their probability of being positive. This can be helpful even if it
cannot yield a proper estimate of the output probability. This consideration lies on the following
remark (cf. Elkan and Noto, 2008):

P (Y = 1 |X = x) = P (Y = 1 |Z = 1, X = x)× P (Z = 1 |X = x)

= e× P (Z = 1 |X = x) .

Hence P (Z = 1 |X = x) is proportional to P (Y = 1 |X = x). If one can get a good estimate
of P (Y = 1 |X = x), then, under the SCAR assumption, it can provide a correct ranking on
the predictions. Additionally, if one can get a good estimate of e, the target probability can
be estimated. Elkan and Noto (2008) use this key principle to construct a PU classi�er upon
a non-traditional classi�er. The authors rely on a validation set to provide an estimate of the
constant propensity e.

3.3.2 Two-step methods

The di�culty of PU learning lies in the absence of tagged negative data. An important class
of methods addresses this issue by using heuristics to identify reliable negative instances among
the unlabeled data. The PU classi�er is then obtained by training a standard classi�er using
the labeled positive instances and the reliable negative data. These methods are called two-step
methods. Di�erent techniques can be used for both steps.

The �rst step consists in identifying reliable negative examples among the unlabeled ones.
Liu et al. (2002) suggests to contaminate the unlabeled set with some labeled instances (spies)
and then to learn a non-traditional classi�er. The reliable negative examples are then identi�ed
as those for which the output probability is below the output probability of spies. This, however,
relies on the assumption that the set of spies is representative of the positive unlabeled instances,
which boils down to assuming SCAR assumption. Some strategies rely on di�erent metrics to
identify reliable negatives as those that are far enough from labeled instances. Most of them use
a non-traditional classi�er and use its output probability as a criterion to select reliable negative
instances, for example Naive Bayes classi�er (cf. Liu et al., 2002)), Rochhio classi�cation (cf.
Li and Liu, 2003) or 1-DNF that consists in identifying strong positive features (cf. Hwanjo Yu
et al., 2004)). Most of these techniques were speci�cally designed for text classi�cation as it was
one of the �rst application to be addressed by PU learning.
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The second step consists in applying a standard classi�cation technique using labeled and
reliable negative data. A common choice is to use a SVM classi�er (Li and Liu, 2003; Li et al.,
2010).

Usually both steps are iterated, meaning that the classi�er estimated in the second step is
used to update the set of reliable negative data. Then a new classi�er is estimated using the
updated reliable negative instances. Bekker and Davis (2020) provides an exhaustive list of
existing methods for both steps.

Up to now, most applications of PU learning use two-step strategies: text classi�cation Liu
et al. (2002, 2003); Li and Liu (2003); Ferretti et al. (2014), fake reviews detection Li et al.
(2014); He et al. (2020) and disease genes identi�cation Yang et al. (2012); Nikdelfaz and Jalili
(2018).

3.3.3 Neyman-Pearson classi�cation

Under the SCAR assumption, the conditional probability of X given Y = 1 is the same as the
conditional probability of X given Z = 1. Hence, Blanchard et al. (2010) made two fundamental
remarks. First, for a given classi�er g : Rd → {0, 1}, the risk of predicting 0 instead of 1 is:

R1(g) = P (g(X) ̸= 1 |Z = 1) = P (g(X) ̸= 1 |Y = 1) , (3.5)

which can be estimated using PU data.
Besides, even if the second type riskR0(g) = P (g(X) ̸= 0 |Z = 0) cannot be directly estimated

using PU data, one can compute an estimate of the unlabeled risk RU (g) = P (g(X) ̸= 0 |Y = 0).
Blanchard et al. (2010) provide theoretical guarantees showing that the following optimization
problem:

Arginf
g∈G, R1(g)≤α

R0(g) (3.6)

is equivalent to
Arginf

g∈G, R1(g)≤α
RU (g) . (3.7)

From a hypothesis testing point of view, the second problem consists in �nding an optimal α-level
test for testing whether the distribution of a new instance X is P (· |Z = 1) (null hypothesis) or
P (· |Y = 0). When both distributions have a density, the test statistics is given by the ratio of
the densities (Neyman-Pearson lemma).

The method proposed by Blanchard et al. (2010) consists in using the training set to estimate
both P1 and PU densities, and then use their ratio to predict the class of new data. Of course, the
ratio of densities do not provide the output probabilities but a criterion giving a ranking on the
output probabilities. We can then use a validation set in order to calibrate a correct threshold
for predictions.

3.3.4 PU learning as cost-sensitive learning

PU learning tasks under SCAR or SAR assumption can be re-written as cost-sensitive
learning. The idea is to assign speci�c weights to labeled and unlabeled instances in order
to correct the bias of non-traditional classi�ers. This approach is introduced in this subsection
and will be studied in further details in Sections 3.4 and 3.5 for 0− 1 loss, leading to theoretical
guarantees (consistency, risk bounds). Numerical experiments will also be performed using a
logistic loss function (cf. Section 3.6).

The cost-sensitive approach to PU learning is not restrained to 0−1 and logistic loss functions.
In fact, any binary classi�cation loss function is suitable. Let l be a loss function, i.e. a positive
function de�ned on R × {0, 1}. Plessis et al. (2014, 2015); Bekker et al. (2020) showed that
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minimizing the expected risk L(h) = E [l (h(X), Z)] for h : Rd → R in a prede�ned set of
functions H, is equivalent to minimizing:

LPU (h) = π (E [l (h(X), 1)− l (h(X), 0) |Z = 1]) + E [l (h(X), 0)] (3.8)

= E
[
1Y=1

e(X)
(l (h(X), 1)− l (h(X), 0))

]
+ E [l (h(X), 0)] (3.9)

where π = P (Z = 1) denotes the class prior. Each of the expectations in Eq. 3.9 can be estimated
using PU data if the propensity e(·) is known for labeled observations. A PU classi�er is then
estimated as a minimizer of the empirical risk:

ĥPU ∈ Arginf
h∈H

1

n

n∑
i=1

[
1Yi=1

e(Xi)
(l (h(Xi), 1)− l (h(Xi), 0))

]
+

1

n

n∑
i=1

l (h(Xi), 0) . (3.10)

Under SCAR assumption, Plessis et al. (2014, 2015) suggest to minimize an empirical risk
that does not depend on the constant propensity e, but on the class prior π = P (Z = 1). The
estimator rely on an empirical estimate of Eq. 3.8. In this case, the classi�er is identi�ed as:

ĥPU ∈ Arginf
h∈H

π

nL

n∑
i=1

[Yi (l (h(Xi), 1)− l (h(Xi), 0))] +
1

n

n∑
i=1

l (h(Xi), 0) .

Multiple choices of loss functions were discussed. A crucial remark is that even if the loss
function l is convex, the PU learning optimization problem is not necessarily convex because
the di�erence of two convex functions (l (·, 1)− l (·, 0)) is not necessarily convex. In fact Plessis
et al. (2015) show that for the PU problem to remain convex, the function l (·, 1)− l (·, 0) must be
linear, which is the case for logistic loss, but not for hinge loss (used in Support Vector Machine).

Besides, the unbiased risk estimate methodology was extended to more complicated models
including deep learning architectures by Kiryo et al. (2017). When the number of parameters
increases, the cost-sensitive PU learning tends to over�t rapidly. They explained this trend by
the fact that the empirical risk in PU learning can take negative values whereas the true risk
is always positive. Then, an over-parameterized model tends to reach a minimal value that is
negative and this results in severe over�tting. To address this issue, the authors introduced a
non-negative risk estimator under SCAR assumption:

ĥnnPU ∈ Arginf
h∈H

π

nL

n∑
i=1

Yi (l (h(Xi), 1)) + max

{
0,

1

n

n∑
i=1

l (h(Xi), 0)−
π

nL

n∑
i=1

Yi l (h(Xi), 0)

}
.

It can be extended to SAR assumption following Bekker et al. (2020), by minimizing the following
non-negative empirical risk:

ĥnnPU ∈ Arginf
h∈H

1

n

n∑
i=1

[
1Yi=1

e(Xi)
(l (h(Xi), 1))

]
+max

{
0,

1

n

n∑
i=1

l (h(Xi), 0)−
1Yi=1

e(Xi)
l (h(Xi), 0)

}
.

The term with the maximum operates as a regularization by preventing the estimated negative
risk (the risk of predicting 1 when Z is 0) from taking negative values.

As previously mentioned, the weights used in the empirical risk depend either on the class
prior (under SCAR assumption), or on the propensity (under SAR assumption). Hence, for this
method to be applied, one needs to know this additional information. In practice, this is rarely
the case. For instance, under the SCAR assumption, π is usually estimated which is another
challenge: class prior estimation for PU learning has been an important research topic over the
last decade (cf. Blanchard et al., 2010; Plessis et al., 2016; Jain et al., 2016; Bekker and Davis,
2018a; Garg et al., 2021). Under the more general SAR assumption, the propensity is required, at
least for labeled instances. A solution to overcome this issue is to estimate the propensity, which
however results in an even more di�cult task than class prior estimation. The joint estimation
of the classi�er and propensity has been recently addressed by several authors (cf. Bekker and
Davis, 2018b; Gong et al., 2021).
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3.3.5 Ensemble methods

Ensemble techniques were suggested in order to address PU learning. Mordelet and Vert
(2014) introduced a bagging-SVM classi�er that consists in �tting several SVM classi�ers with
the labeled data and bootstrap samples of unlabeled data. The �nal classi�er averages the
predictions of all the classi�ers. Claesen et al. (2015) resort to a similar procedure but also re-
sample labeled instances. One of the interest of bagging procedures is to reduce the instability
of the estimated classi�er.

Yang et al. (2014) used an ensemble of di�erent PU classi�er for gene disease identi�cation
(Ensemble PU learning).

3.3.6 Deep Generative Modeling

Over the past few years, several authors have worked on deep learning methods adapted
to PU learning under both SCAR and SAR assumptions, relying on recent advances in Deep
Generative Models. Na et al. (2020) present a method based on variational autoencoders. Hou
et al. (2017); Chiaroni et al. (2018) use GANs (Generative Adversarial Networks) in order to
obtain a generative model for the distribution of negative instances (and also for positive instances
in Hou et al. (2017)). The authors applied these methods to image PU classi�cation tasks.

3.3.7 Conclusion

In the application of PU learning to the de�nition of a fatigue criterion, assuming SCAR
assumption would be highly restrictive. This is why we will focus on the SAR assumption. For
that purpose, we will consider approaches based on unbiased empirical risk minimization (cf.
Section 3.4) and provide theoretical risk bounds (cf. Section 3.5). Chapter 4 will be dedicated
to the application of PU learning to fatigue design.

3.4 - Unbiased risk estimators for PU learning

In this section, we focus on the de�nition of loss functions that enable learning in PU learning
setting. After explaining why labeled-unlabeled classi�ers are limited (Subsection 3.4.1), we will
introduce an unbiased empirical risk for PU learning under the SCAR assumption (Subsection
3.4.2), which generalizes to the SAR assumption (Subsection 3.4.3).

3.4.1 Bias issue with labeled-unlabeled classi�cation

A natural idea to address a PU learning problem is to consider labeled instances as positive
and every unlabeled instance as negative. Standard classi�cation methods then allow to identify
a classi�er ĝNT . In the literature, such a classi�er is called a non-traditional classi�er (Elkan
and Noto, 2008) because it is meant to give good predictions on Y instead of Z. As the number
of training examples increases, we can then expect ĝNT to get closer to Bayes classi�er g̃∗ for
the classi�cation of Y given X which is not what we are looking for. Indeed, g̃∗ is a priori
di�erent from g∗ as the regression function η̃(x) = P (Y = 1|X = x) is di�erent from η(x) (cf.
Equation 3.4).

Nevertheless, in speci�c situations, the non-traditional classi�er is robust to PU learning label
noise. Cannings et al. (2020) showed for example that g̃∗ = g∗ if:

e(x) ≥ 1

2η(x)
, for all x ∈ Rd such that η(x) ≥ 1

2
. (3.11)
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In fact, this is part of a more general result from Cannings et al. (2020) that encompasses
binary classi�cation with asymmetric and instance-dependent label noise. Under the conditions
from Equation 3.11, any consistent non-traditional classi�er is a consistent traditional classi�er.
In other words, as the training sample size increases, ĝNT gets closer to g̃∗ which is identical to g∗.

This condition requires every positive instance (η(x) > 1
2) di�cult to classify (η(x) close to

1
2) to have propensity close enough to 1. Instances easier to classify (η(x) close to 1) can undergo
label noise without harming the consistency. However, the label noise cannot exceed 1

2 or, in
other words, the propensity can never be smaller than 1

2 .
This condition is thus restrictive in the context of PU learning under the SAR assumption

for two main reasons. On the one hand, in many realistic situations, the propensity (i.e. the
probability for a positive instance to be labeled) is correlated to the di�culty of classifying
the observation. A positive instance di�cult to classify tends to have low propensity, which
clearly violates the condition given in Equation 3.11. On the other hand, we cannot expect the
propensity to be greater than 1

2 . In text classi�cation or spam review detection, as the process
of labeling is both di�cult and time-consuming, only a small fraction of positive instances gets
labeled, which suggests a propensity lower than 1

2 .
Before dealing with convergence rates, it is crucial to have methods for building consistent

classi�ers under more general conditions than Equation 3.11.

3.4.2 Unbiased empirical risk minimization under the SCAR assumption

In this subsection, we assume that the SCAR assumption is satis�ed, which means that the
propensity is constant:

e(x) = em > 0 .

In order to compensate for label noise due to PU Learning under the SCAR assumption,
Plessis et al. (2014) showed in the case-control setting that a consistent classi�er can be found
by minimizing an unbiased version of the risk. Using the convenient decomposition of PX
distribution (Equation 3.1), the misclassi�cation risk can be rewritten only with PX and P1.

R (g) = π P1 (g(X) ̸= 1) + (1− π)P0 (g(X) ̸= 0)

= π (P1 (g(X) ̸= 1)− P1 (g(X) ̸= 0)) + PX (g(X) ̸= 0) . (3.12)

Therefore, as labeled instances are a representative sub-sample of positive instances, a consistent
classi�er can be found by minimizing the following risk:

R̂SCARn (g) =
π

NL

n∑
i=1

1Yi=1

[
1g(Xi )̸=1 − 1g(Xi) ̸=0

]
+

1

n

n∑
i=1

1g(Xi )̸=0

where NL =
∑n

i=1 1Yi=1 is the number of labeled instances. In fact, Plessis et al. (2014)
considered the case-control setting where the number of labeled instances NL is �xed which
is slightly di�erent from our setting. One of the main properties of R̂SCARn (g) is that it is an
unbiased estimate of the true risk, as we have:

E
[
R̂SCARn (g)

]
= P (g(X) ̸= Z) .

The proof of Plessis et al. (2014) extends to the one-sample-setting where NL is random:

E
[
R̂SCARn (g)

]
=

n∑
i=1

E
[
π

NL
1Yi=1E

[
1g(Xi )̸=1 − 1g(Xi )̸=0 |Yi

]]
+ PX (g(X) ̸= 0)
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=
n∑
i=1

E
[
π

NL
1Yi=1 [P (g(Xi) ̸= 1 |Yi)− P (Yi = 1, g(Xi) ̸= 0 |Yi)]

]
+ PX (g(X) ̸= 0)

= π

n∑
i=1

E
[
1Yi=1

NL
(P1 (g(X) ̸= 1)− P1 (g(X) ̸= 0))

]
+ PX (g(X) ̸= 0) (3.13a)

= π [P1 (g(X) ̸= 1)− P1 (g(X) ̸= 0)] + PX (g(X) ̸= 0) . (3.13b)

Equation 3.13a results from the fact that under the SCAR assumption the conditional distribution
of X given Y = 1 is the same as the conditional distribution of X given Z = 1 (P1). Finally,
Equation 3.13b matches the decomposition of Equation 3.12, ending the proof.

Computing the risk R̂SCARn requires π to be known. Alternatively, another empirical risk can
be written:

R̂′SCAR
n (g) =

1

n

n∑
i=1

[
1Yi=1

em

(
1g(Xi )̸=1 − 1g(Xi) ̸=0

)
+ 1g(Xi) ̸=0

]
. (3.14)

This risk remains unbiased and consistent but requires the knowledge of the constant propensity

em instead of the class prior π. The unbiasedness of R̂′SCAR
n will be proved in Subsection 3.4.3

as a special case of the more general SAR setting.

3.4.3 Extension to PU learning under the SAR assumption

For now, PU learning under the SAR assumption is a di�cult problem and there are only
a few results in the literature (cf. Bekker et al., 2020; He et al., 2018; Gong et al., 2021). We
recall that empirical risk minimization under the SCAR assumption requires extra knowledge on
the model (class prior or propensity). In practice, these parameters are usually estimated (cf.
Blanchard et al., 2010; Plessis et al., 2016; Jain et al., 2016; Bekker and Davis, 2018a; Garg et al.,
2021). In order to provide a consistent empirical risk in the SAR setting, additional assumptions
are needed to avoid identi�ability issues. In the literature, di�erent settings have been studied.
He et al. (2018) assume that the propensity e(x) is an increasing function of η(x). Bekker and
Davis (2018b) and Gong et al. (2021) suggest a parametric model on the propensity. Bekker
et al. (2020) studied the case where the propensity is known for labeled instances which enables
an empirical risk minimization approach similar to Plessis et al. (2014).

In this chapter, following Bekker et al. (2020), we will focus on PU learning under the SAR
assumption where the propensity is known for labeled instances. We argue that this setting is
su�cient to derive interesting risk bounds and assess the di�culty of PU learning tasks. However
restrictive this assumption may seem, we insist that only the propensity for labeled instances
is needed; therefore an exhaustive knowledge of the propensity is not required. In practice, the
propensity can be estimated using prior knowledge on the labeling mechanism (when available)
or by de�ning a parametric model on the propensity (Bekker and Davis, 2018b; Gong et al.,
2021).

Under this assumption, Bekker et al. (2020) generalized the empirical risk in Equation 3.14 to
obtain an unbiased empirical risk for PU learning under the SAR assumption. More particularly,
they de�ne the following loss function:

rSAR (g, (X,Y )) =
1Y=1

e(X)

(
1g(X )̸=1 − 1g(X )̸=0

)
+ 1g(X )̸=0

=
1Y=1

e(X)

(
21g(X) ̸=1 − 1

)
+ 1g(X )̸=0 .

The empirical risk is then the empirical mean:

R̂SARn (g) =
1

n

n∑
i=1

rSAR (g, (Xi, Yi)) . (3.15)
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This time, the labeled instances are weighted by the inverse of their propensity. Clearly, R̂′SCAR
n

in Equation 3.14 is a special case of R̂SARn under the SCAR assumption (e(x) = em).
Bekker et al. (2020) studied maximum deviations between this latter empirical risk R̂SARn

and the empirical risk for standard classi�cation R̂n. They then used concentration inequalities
to derive an upper bound with high probability on the deviations between the two quantities.
As we are interested in studying the deviations between R̂SARn and the true risk R directly, we

compute the total expectation of E
[
R̂SARn (g)

]
= E [rSAR (g, (X,Y ))] shedding light on the fact

that for any g, R̂SARn (g) is an unbiased estimate of the true risk R(g).

E [rSAR (g, (X,Y ))] = E [E [rSAR (g, (X,Y )) |X]]

= E
[

1

e(X)

(
1g(X) ̸=1 − 1g(X) ̸=0

)
P (Y = 1|X)

]
+ PX (g(X) ̸= 0)

= E
[

1

e(X)

(
1g(X) ̸=1 − 1g(X) ̸=0

)
η(X)e(X)

]
+ PX (g(X) ̸= 0)

= E
[(
1g(X )̸=1 − 1g(X )̸=0

)
1Z=1

]
+ PX (g(X) ̸= 0)

= π (P1 (g(X) ̸= 1)− P1 (g(X) ̸= 0)) + PX (g(X) ̸= 0)

= R(g) .

where the last line comes from Equation 3.12. Then, R̂SARn is indeed unbiased:

E
[
R̂SARn (g)

]
=

1

n

n∑
i=1

E [rSAR (g, (Xi, Yi))] = P (g(X) ̸= Z) = R(g) . (3.16)

3.5 - Upper and lower risk bounds for PU learning under the

SAR assumption

We are now in a position to state our results. We �rst present an upper bound on the excess
risk for PU learning under the SAR assumption. We then show that the rate achieved is almost
optimal by providing a lower bound on the minimax risk. Both bounds explicitly quantify the
impact of label noise due to PU learning.

3.5.1 An upper bound for PU learning excess risk under the SAR assumption

We recall that, in PU learning, the true classes (Zi)1≤i≤n are no longer available for training.
A classi�er is then built as a minimizer of the unbiased empirical risk introduced in Equation 3.15:

ĝPU ∈ Argmin
g∈G

R̂SARn (g) .

We recall that the risk R̂SARn is unbiased (Equation 3.16) and we will denote RSARn the
centered empirical risk:

RSARn (g) = R̂SARn (g)− P (g(X) ̸= Z) .

Bekker et al. (2020) study the deviations between R̂SARn (ĝPU ) and R̂n (ĝPU ) and provide an
upper bound in the case where G is a �nite family of classi�ers. Besides, the in�uence of e(·)
on the upper bound is not discussed. Our objective here is to provide a uniform upper bound
on ℓ(ĝPU , g∗) and explicitly show its dependence in e(·). In our setting, G is an in�nite set of
functions. Its complexity is controlled by its VC dimension V < +∞. Following Massart and
Nédélec (2006), we consider the following separability assumption which is key to work with the
possibly uncountable class G:
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(A1) There exists a countable subset G′ dense in G in the sense that for each g ∈ G, there
exists a sequence (gk)k≥0 such that, for every (x, y) ∈ Rd × {0, 1}:

rSAR (gk, (x, y)) −→
k→+∞

rSAR (g, (x, y)) .

In addition, we want our upper bound on the excess risk to explicitly account for the di�culty of
the classi�cation task. Then, as |2η(x)− 1| quantify the di�culty of classifying x, we introduce
the following assumption (Massart and Nédélec, 2006):

(A2) ∃h > 0, ∀x ∈ Rd, |2η(x)− 1| ≥ h .

Assumption (A2) will be referred to as Massart noise assumption in the rest of the chapter.

We are now able to state our upper bound for PU learning under the SAR assumption.

Theorem 3.5.1: Upper risk bound for PU learning under the SAR assumption

Let ĝPU be a minimizer of the unbiased empirical risk for PU learning under the SAR
assumption:

ĝPU ∈ Argmin
g∈G

R̂SARn (g) .

Suppose that separability (A1) and Massart noise (A2) assumptions hold, and that the
propensity e(·) is greater than em > 0. Then, we have the following upper bound on the
excess risk:

E [ℓ (ĝPU , g
∗)] ≤ κ1

[
V

n em h

(
1 + log

(
nh2

V
∨ 1

))
∧
√

V

n em

]
(3.17)

where κ1 > 0 is an absolute constant.

Remarks: The upper bound in Equation 3.17 is uniform on the set of probability distributions
for which g∗ ∈ G and Massart noise condition (A2) is satis�ed with constant h (P (G, h)). This
can be re-written as follows:

sup
P∈P(G,h)

E [ℓ (ĝPU , g
∗)] ≤ κ1

[
V

n em h

(
1 + log

(
nh2

V
∨ 1

))
∧
√

V

n em

]
(3.18)

The assumption e(x) ≥ em is an additional assumption on the label noise. As the biased
regression function is η̃(x) = η(x) e(x) (cf. Equation 3.4), this assumption together with assumption
(A2) control the di�culty of the PU learning task.

In Equation 3.17, the convergence rate is of order O( V
nh em

) (if we let aside the logarithmic

term) when h is higher than
√
V/n em. When h becomes smaller than

√
V/n em, the rate is of

order O(
√
V/n em). These two regimes are analogous to standard classi�cation risk bounds as

recalled in Subsection 3.1.2. In particular, when em = 1, all positive examples are labeled and
we are then in a standard classi�cation setting (Y = Z). In this case, the upper bound exactly
matches the known upper bound rates in the standard classi�cation setting (Equation 3.3 and
Equation 3.2). Conversely, as em gets lower, the upper bound increases. This means without
surprise that PU learning deteriorates the generalization bound: Theorem 3.5.1 quanti�es this
e�ect through the coe�cients 1/em and 1/

√
em.

Let NL be the number of labeled instances in the training set. Under the SCAR assumption
(e(x) = em), n em from Equation 3.17 is linked to the expectation of the number of labeled
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instances in the training set:

E [NL] = E

[
n∑
i=1

1Yi=1

]
= nP (Y = 1) = nπ em

where π = P (Z = 1) is the class prior. This illustrates a natural intuition on PU learning:
the upper bound on the excess risk is related to the number of fully labeled examples. Hence,
good prediction performances cannot be expected if the number of labeled examples among the
positives is too low, or equivalently if the propensity is too low.

The detailed proof of Theorem 3.5.1 can be found in Subsection 3.7.1. It consists in establishing
controls on the variance of increments of rSAR(·) and uniform bounds on the empirical process(
RSARn (g)

)
g∈G

. A general risk bound result for empirical risk minimizers is then applied.

So far, we have provided an upper bound on generalization risk for unbiased empirical risk
minimization in PU learning under the SAR assumption. There is however no proof that this
rate is optimal. In other words, is there another procedure that can learn a classi�er ĝ that
outperforms ĝPU? A lower bound will help to answer this question.

3.5.2 A lower bound on the minimax risk

In order to assess the optimality of the upper bound (Equation 3.17), we analyze and provide
a lower bound on the minimax risk.

The minimax risk is the risk of the classi�cation procedure that performs best in the worst
case. For any given estimate ĝ, we recall that its generalization risk is measured as E [ℓ (ĝ, g∗)].
The minimax risk is denoted R (G, h) and is de�ned as follows:

R (G, h) = inf
ĝ∈G

[
sup

P∈P(G,h)
E [ℓ (ĝ, g∗)]

]

where the in�mum is taken over the set of functions ĝ of (Xi, Yi)1≤i≤n such that ĝ belongs to G.

The bound in Equation 3.18 is an obvious upper bound on the minimax risk. Theorem 3.5.2
establishes a lower bound on the minimax risk for PU learning under the SCAR assumption.
Proposition 3.5.1 extends it to the SAR assumption.

Theorem 3.5.2: Lower bound on the minimax risk under the SCAR assumption

Suppose that V ≥ 2 and n em ≥ V . Let h′ =
√

V
n em

.

Assuming e(x) = em, ∀x ∈ Rd, there exists an absolute constant κ2 > 0 such that:

(C1) if h ≥ h′:

R (G, h) ≥ κ2
V − 1

hn em
; (3.19)

(C2) if h ≤ h′:

R (G, h) ≥ κ2

√
V − 1

n em
. (3.20)

Remarks

The lower bounds in Theorem 3.5.2 explicitly depend on V , n, h and em. The cases (C1) and
(C2) highlight a trade-o� between the expected number of fully labeled instances (proportional
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to n em), the complexity of the model V and the noise condition (A2) represented by h. The
restriction of these results to the standard classi�cation setting (em = 1) exactly matches existing
results (see Massart and Nédélec, 2006). Theorem 3.5.2 moreover provides the in�uence of
propensity em in PU learning framework under the SCAR assumption. As for the upper bound
(cf. Theorem 3.5.1), the lower bound (Equation 3.19) is a�ected the same way with a degradation
of order 1/em over the minimax rate when Massart noise condition (A2) is satis�ed with h high
enough, in case (C1). In this case, the lower bound rate almost matches the upper bound up
to a logarithmic factor. In the second case (C2), the lower bound (Equation 3.20) is of order√
V/n em which exactly matches the rate of the upper bound in this regime. In this sense, ĝPU

obtained through unbiased empirical risk minimization is almost optimal as it almost achieves
the minimax convergence rates.

The detailed proof of Theorem 3.5.2 can be found in the Paragraph a of Subsection 3.7.2. It
makes use of similar arguments as for minimax lower bounds in the standard classi�cation setting.
First, the expression of the minimax risk is simpli�ed by choosing a speci�c set of probabilities
satisfying the noise conditions. Then Assouad lemma (Yu, 1997) is applied to provide a lower
bound on this simpli�ed expression, where the singularity of PU learning mainly interferes.

To extend the result to the SAR assumption, we need an extra condition:

(A3) ∀ ε > 0, ∃ (x1, ..., xV ) ∈
(
Rd
)V

shattered by G and such that:

sup
i∈{1,...,V }

e(xi) ≤ em + ε .

This assumption is technical. It is used in the �rst step of the proof of the minimax lower bound
as it allows us to choose a convenient family of discrete probability distributions satisfying the
noise assumptions. Assumption (A3) is ful�lled in natural situations, for example, when e(·) is
continuous and G is the set of linear classi�ers in Rd.

Proposition 3.5.1: Lower bound on minimax risk under the SAR assumption

Theorem 3.5.2 extends to the SAR assumption if the propensity e(·) greater than em > 0
and if assumption (A3) is satis�ed.

The proof of the above proposition can be found in the Paragraph b of Subsection 3.7.2. The
same remarks as for Theorem 3.5.2 remain valid under the SAR assumption when assumption
(A3) is satis�ed. In particular, in regimes (C1) and (C2), the minimax rate still matches the
upper bound rate Equation 3.17 up to the logarithmic factor.

3.6 - Numerical experiments

In this section, we now study numerically the performances of the PU estimator minimizing
the empirical risk of Equation 3.15. Subsection 3.6.1 describes the simulation setting. Then, we
show that using the PU learning empirical risk enables to estimate the right classi�er when the
naive non-traditional approach fails to do so (Subsection 3.6.2). Then, the convergence rates
are studied empirically, emphasizing how they are a�ected by both the sample size and the
propensity (Subsection 3.6.3). Finally, Subsection 3.6.4 extends the study beyond the scope of
the theoretical results by considering a convex loss function instead of the 0 − 1 loss in the PU
learning empirical risk.
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Figure 3.1: Example of simulation with n = 1000, h = 0.5 and logistic propensity (with em =
0.05). On the left, the histograms of the positive and negative instances (true labels); on the
right, the histograms of labeled and unlabeled instances (noisy labels). We can note a signi�cant
overlap between the distributions in both �gures.

3.6.1 Simulation setting

We consider examples of PU learning tasks in one dimension (d = 1), as the minimization of
the 0−1 loss function remains tractable. Of course, a natural solution to overcome this di�culty
is to resort to convex surrogate loss, which will be discussed in Subsection 3.6.4. For every i,
the covariate Xi is drawn i.i.d. according to the standard normal distribution. The distribution
of Z given X is chosen to satisfy Assumption (A2) with h > 0. We simplify it by choosing
P (Z = 1|X = x) equal to either 1+h

2 (when X ≥ 0) or 1−h
2 (when X < 0). For each i:

Zi ∼ B
(
1 + h

2
1Xi≥0 +

1− h

2
1Xi<0

)
,

where B denotes the Bernoulli distribution and h is a constant in (0, 1).
Under this setting, the Bayes classi�er f∗ is known explicitly:

f∗(x) = 1x≥0 .

In order to generate the labels (Yi)1≤i≤n, we de�ne two models of propensity:

1. constant propensity (SCAR assumption):

e(x) = em, with em > 0 (3.21)

2. logistic propensity (SAR assumption):

e(x) = max

(
em,

1

1 + ex−1

)
, with em > 0 . (3.22)

This propensity mimics a selection bias on the positive instances. It is lower bounded by
em > 0 and thus respects the assumptions of Theorem 3.5.1.

An example of simulation is shown in Figure 3.1. In these simulations, the objective is to use
only the observations (Xi, Yi)1≤i≤n (cf. Fig. 3.1, right) to estimate the classi�er.
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Figure 3.2: Comparison between the di�erent empirical risk functions and R evaluated on the
simulated data depicted on Fig. 3.1: R̂T in green (cf. Eq. 3.23), R̂NT in blue (cf. Eq. 3.24)
and R̂ in red (cf. Eq. 3.25). Abscissa represents the threshold m corresponding to the classi�er
x 7→ 1x≥m. Estimated curves are represented within the 95% con�dence intervals.

3.6.2 PU learning empirical risks

In this simulation setting, searching a linear classi�er is equivalent to identifying a threshold
m ∈ R for the classi�cation. Hence, we consider the following hypothesis space G = {x 7→ 1x≥m, m ∈ R}.

We recall that di�erent empirical risks exist to approximate the true risk R(f):

1. the traditional approach in standard binary classi�cation using the proportion of missclassi�ed
training instances:

R̂T (g) =
1

n

n∑
i=1

1g(Xi) ̸=Zi
(3.23)

which is inapplicable in PU learning context since the true classes are unobserved;

2. the non-traditional approach uses an analogous empirical risk by ignoring the label noise
due to PU learning:

R̂NT (g) =
1

n

n∑
i=1

1g(Xi )̸=Yi ; (3.24)

3. the unbiased empirical risk that accounts for the propensity:

R̂(g) =
1

n

n∑
i=1

[
1Yi=1

e(Xi)

(
21g(Xi )̸=1 − 1

)
+ 1g(Xi) ̸=0

]
. (3.25)

These three empirical risks are compared to the true risk in Fig. 3.2. Despite a higher
variance, R̂ correctly estimates R and can at least identify its minimum. Instead, R̂NT is clearly
a biased estimate of R and fails to identify the right classi�er.
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Figure 3.3: Mean excess risk as a function of em for n �xed (n = 28 and n = 216), log scale on
both axes.

3.6.3 Convergence rates

We now illustrate numerically the rates of convergence of PU learning empirical risk minimizers
when the number of observations n and the minimum propensity em change. To do so, we repeat
B times the following steps:

1. simulate a training set of size n with propensity e(·) (chosen among the models described
in Eq. 3.21 and 3.22)

2. estimate a classi�er ĝ as a minimizer of PU learning empirical risk.

3. evaluate the excess risk ℓ(ĝ, g∗) = R (ĝ)−R (g∗)

We then estimate the mean excess risk by the empirical average over the B runs. Multiple
experiments were realized with n ranging from 100 to 30,000 and em ranging from 0.05 to 1.
Massart noise parameter is �xed for these experiments: h = 0.25. This value for parameter h
was chosen low enough to allow both convergence regimes (cf. Eq. 3.17) to be observable.

The results for both propensity models are presented in Fig. 3.3, 3.4 and 3.6, each on
logarithmic scale. In Fig. 3.3, we clearly see that the mean excess risk decreases when em
increases but the decrease happens faster when n is high for both SCAR and SAR situations.
On the other hand, we can notice that the SCAR selection bias (e(x) = em) jeopardizes the
classi�cation more than the SAR selection bias (e(x) ≥ em). In addition, a small value of em in
the SAR propensity model does not alter much the propensity function, we could even choose
em = 0. This means that, in practice, we can allow the propensity to take arbitrary small values
as far as this occurs with small probability. When em is greater, the SAR propensity behaves
almost like the SCAR propensity (cf. Eq. 3.22).

Fig. 3.4 shows that the mean excess risk e�ectively depends on the term n × em which is
closely related to the expected number of labeled instances. We �nd the two convergence speeds:
fast when n × em is higher than 200, slow when n × em is lower. The behaviour of the mean
excess risk under SAR assumption con�rms the observations of Fig. 3.3: when n is �xed, the
performances remain almost identical when em vanishes and follow SCAR propensity when em
tends to 1.
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Figure 3.4: Mean excess risk for both propensity models (SCAR and logistic SAR) for di�erent
values of n and em, log scale on both axes. Experiments under logistic SAR model are split in
two: in orange those for which em ≤ 0.2, in green the rest. Aligned orange points correspond to
equal values of n (cf. annotations).

The results of mean excess risk as a function of n× em under SCAR assumption remain a bit
scattered even if the general trend is well captured. Representing n× em

2−em in abscissa seems to
better explain the observed results (cf. Fig. 3.6). In fact, looking closer at the theoretical result,
the proof shows that the risk upper bound depends on em through the term 2−em

em
which was then

upper bounded by 2
em

in the �nal result (cf. Subsection 3.7.1). A linear regression is performed
at the logarithmic scale on the results under SCAR assumption for n em ≥ 200. The estimated
slope is close to −1 ([−1.012,−0.993], 95% con�dence interval). Hence, this allows to identify

the value of the exponent on
(
2−em
n em

)
and asserts the decrease in O

(
2−em
n em

)
of the excess risk.

3.6.4 Using a tractable loss function

The theoretical results of Section 3.5 are based on a procedure that consists in minimizing an
empirical risk based on 0− 1 loss. If this framework is convenient to study theoretical properties
of PU learning, it is not directly useful for applications because the minimization of 0 − 1 loss
requires solving di�cult combinatorial optimization problems. It is thus natural to resort to
convex loss functions instead. The use of convex loss functions adapted to PU learning was
discussed in Plessis et al. (2014) under SCAR assumption. Bekker et al. (2020) present a natural
extension to SAR assumption.

In this section, we investigate the use of a continuous and convex loss function which is of
course more suitable for applications.

Coming back to our simulation example (d = 1), we change the estimation of the classi�er.
Replacing the 0− 1 loss function by a logistic loss yields the following optimization problem:

ĝ ∈ Argmin
g∈G

R̂C(g),
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Figure 3.5: Comparison between the di�erent loss functions: in green the traditional logistic
loss function using the true classes (Zi)1≤i≤n, in blue the non-traditional logistic loss function
ignoring the label noise, in red the logistic loss adapted to PU learning (cf. Eq. 3.26). Around
the curves are represented the 95% con�dence intervals.

where G = {x 7→ x−m, m ∈ R} and where

R̂C(g) =
1

n

n∑
i=1

[
−1Yi=1

e(Xi)
g(Xi) + log

(
1 + eg(Xi)

)]
. (3.26)

The corresponding classi�er is f̂(x) = 1ĝ(x)≥0. This time the loss function (as a function of
m ∈ R) is continuous, convex and one can check that it remains an unbiased estimate of the
logistic risk:

E
[
R̂C(g)

]
= E

[
−Zg(X) + log

(
1 + eg(X)

)]
. (3.27)

As in Subsection 3.6.2, we can check that the PU learning empirical risk provides a good
estimate of the true one contrary to the non-traditional risk, i.e. ignoring the label noise (cf.
Fig. 3.5).

We perform similar experiments as in Subsection 3.6.3, using now the logistic loss function to
estimate the classi�er. We study the mean excess risk under both propensity models (cf. Fig. 3.7).
The numerical results con�rm, at least for the SCAR propensity model, that the mean excess
risk depends on n em

2−em . Unless, this time, the estimated slope is around −1
2 ([−0.508, −0.495],

95% con�dence interval) which suggests a decrease of the mean excess risk at the parametric rate

O
(√

2−em
n em

)
. This is not surprising as the logistic regression is a parametric model optimized

through maximum of likelihood, it is then normal to retrieve a parametric rate of convergence
on the mean excess risk.
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Figure 3.6: Estimated mean excess risk for
both propensity models (SCAR and logistic
SAR), log scale on both axes. Contrary
to Fig. 3.4, abscissa corresponds to n ×
em

2−em .

Figure 3.7: Mean excess risk as a function
of 2−em

n em
. A linear regression on the

experiments under the SCAR assumption
allows to estimate a slope close to −1

2 which
asserts a convergence rate in

√
n em/

√
2− em.

3.6.5 Conclusion

In this section, we provided a numerical study of convergence rates for PU learning under
the SAR assumption. Our simulations highlight two convergence rates depending on the value
of n em as stated by Theorem 3.5.1: slow in

√
n em or fast in 1/n em. Besides, we extended

our experiments to a tractable loss function that is suitable for applications. In this case, we
observed a parametric convergence rate on the mean excess risk.

3.7 - Proofs and technical lemmas

This section contains the proofs of the theoretical results presented in Section 3.5. Subsection
3.7.1 presents the proof of Theorem 3.5.1 and Subsection 3.7.2 the proofs of Theorem 3.5.2 and
Proposition 3.5.1. Finally, Subsection 3.7.3 recall useful de�nitions and properties concerning
the universal entropy metrics and Subsection 3.7.4 provides the proof of some technical lemmas.

3.7.1 Proof of Theorem 3.5.1

The proof is organized as follows. We �rst state a general upper bound result for empirical
risk minimizers adapted to the case where the loss function takes values in an arbitrary interval
[a, b] with a < b (cf. Paragraph a). Then, we show that the PU learning loss function satis�es
the assumptions of this general result (cf. Paragraph b). Finally, we deduce the upper bound as
the solution of a �xed point equation (cf. Paragraph c).
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a. General risk upper bound on empirical risk minimizers

We begin by stating a general upper bound theorem for empirical risk minimizers.

Theorem 3.7.1: General upper bound for empirical risk minimizers

Let r be an unbiased loss function with values in [a, b], R̂n the empirical risk, Rn the
centered empirical risk. Let g∗ denote the Bayes classi�er and let ĝ be a minimizer of the
empirical risk over a class G for which we assume separability condition (A1). Let ℓ denote
the excess risk. We assume that:

(B1) there exists a positive and symmetric function d such that for any couple of classi�ers
(g, g′):

V ar
[
r
(
g′, (X,Y )

)
− r (g, (X,Y ))

]
≤ d2

(
g′, g

)
;

(B2) there exists a non-decreasing function w continuous on R+, such that x 7→ w(x)
x is

non-increasing on R∗
+, with w(

√
b− a) ≥ b− a and ensuring for any classi�er g:

d(g∗, g) ≤ w
(√

ℓ(g∗, g)
)
;

(B3) there exists a non-decreasing function Φ continuous on R+, such that x 7→ Φ(x)
x is

non-increasing with Φ(b− a) ≥ b− a and ensuring:

∀h ∈ G′,
√
nE

[
sup

g∈G′,d(g,h)≤σ
Rn(h)−Rn(g)

]
≤ Φ(σ).

for every positive σ such that Φ(σ) ≤
√
n σ2

b−a , where G′ comes from separability
condition (A1).

Then there exists an absolute constant κ > 0 such that:

E [ℓ(g∗, ĝ)] ≤ κ ε2∗, (3.28)

where ε∗ is the unique positive solution of the following equation:

√
n ε2∗ = Φ(w (ε∗)) . (3.29)

Proof. The above result follows from the application of Massart and Nédélec's theorem (2006,

Theorem 2) using the re-scaled risk r̃ = r−a
b−a and the functions d̃(g, g′) = d(g,g′)

b−a , w̃(x) =
1
b−a w

(
x
√
b− a

)
and Φ̃(x) = 1

b−aΦ ((b− a)x). This leads to the upper bound in Equation 3.28
solution of Equation 3.29.

It is worth noting that now, contrary to Massart and Nédélec's original result, (B2) and (B3)
explicitly involve the length of the interval [a, b]. This will be accounted for in our proof.
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b. Veri�cation of assumptions of Theorem 3.7.1 in the PU learning setting

We �rst recall the de�nition and the main property of PU learning loss function as de�ned
in Subsection 3.4.3. We then exhibit three functions d, w, Φ ful�lling conditions (B1), (B2) and
(B3). Hence we show that the general upper bound result (i.e. Theorem 3.7.1) can be applied
in PU learning context.

In the context of PU learning under the SAR assumption, we recall that the loss function
rSAR is de�ned as follows:

rSAR (g, (X,Y )) =
1Y=1

e(X)

(
21g(X )̸=1 − 1

)
+ 1g(X )̸=0

where e(x) = P (Y = 1 |Z = 1, X = x) is the propensity assumed to be known for labeled
observations. Knowing that the propensity is greater than em > 0, the loss function is then

at values in
[
1− 1

em
, 1
em

]
, an interval of length:

Ce =
2

em
− 1 . (3.30)

We have seen that this empirical risk is an unbiased estimate of the true risk (cf. Equation 3.16):

E [rSAR (g, (X,Y ))] = P (g(X) ̸= Z) .

In order to apply the general upper bound theorem (Theorem 3.7.1) to the PU learning risk
minimizer, we need to identify three functions d, w, Φ satisfying conditions (B1), (B2) and
(B3). These functions are crucial since the upper bound is the solution of a �xed point equation
involving them. The choice of functions d, w and Φ will be a consequence of Propositions 3.7.1,
3.7.2 and 3.7.3.

Proposition 3.7.1

For any pair of classi�ers (g, g′):

V ar
[
rSAR

(
g′, (X,Y )

)
− rSAR (g, (X,Y ))

]
≤ 2Ce E

[
|g(X)− g′(X)|2

]
,

where Ce is given by Equation 3.30.

Remark A direct consequence of the above proposition is that the function d de�ned as:

d(g, g′) =
√
2Ce

√
E [|g(X)− g′(X)|2] (3.31)

satis�es condition (B1).

Proof. We �rst provide an upper bound on the variance of increments of rSAR:

V ar
[
rSAR (g)− rSAR

(
g′
)]

≤ E
[(
rSAR (g)− rSAR

(
g′
))2]

= E

[(
g(X)− g′(X)

)2(
1− 21Y=1

e(X)

)2
]

= E

[(
g(X)− g′(X)

)2 E[(1− 21Y=1

e(X)

)2

|X

]]
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= E
[(
g(X)− g′(X)

)2(
1 + 4η(X)

1− e(X)

e(X)

)]
(3.32a)

≤
(
1 + 4

1− em
em

)
E
[(
g(X)− g′(X)

)2]
(3.32b)

≤ 2Ce E
[(
g(X)− g′(X)

)2]
.

We then use the fact that E [1Y=1|X] = η(X) e(X) to get Equation 3.32a. And Equation 3.32b
results from the fact that η(X) is less than 1 and e(X) is greater than em.

Proposition 3.7.2

For any classi�er g:

d(g, g∗) ≤
√

2Ce
h

√
ℓ(g, g∗) .

for d de�ned in Equation 3.31.

Remark As a consequence, the function w de�ned as:

w(x) =

√
2Ce
h

x . (3.33)

satis�es Assumption (B2): w is continuous on R+, non-decreasing, such that x 7→ w(x)
x is non-

increasing and w
(√
Ce
)
≥ Ce, and such that:

d(g∗, g) ≤ w
(√

ℓ (g∗, g)
)
.

Let h′ =
√
V/n em. Then, the function

w0(x) =
√

2Ce ∨ x
√
2Ce/h′ (3.34)

also satis�es assumption (B2).

Proof. The excess risk can be expressed in terms of η(X) as follows:

ℓ(g, g∗) = P (g(X) ̸= Z)− P (g∗(X) ̸= Z)

= E
[
|g(X)− g∗(X)|2|2 η(X)− 1|

]
.

(3.35)

Then, using the noise assumption (A2) and the de�nition of d (cf. Equation 3.31), we have
the following lower bound on the excess risk:

ℓ(g, g∗) = E
[
(g(X)− g∗(X))2 |2 η(X)− 1|

]
≥ hE

[
(g(X)− g∗(X))2

]
=

h

2Ce
d2(g, g∗) .

Taking the square root on both sides �nishes the proof.

The next proposition states the existence of Φ ful�lling (B3). We recall that the subset G′ ⊂ G
is given by the separability assumption (A1) and that the constant Ce is de�ned in Equation 3.30.
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Proposition 3.7.3

Assume G has �nite VC dimension V and G′ is given by separability assumption (A1).
There exists an absolute constant K ≥ 1 such that the function Φ de�ned as

Φ(σ) = Kσ

√
V

[
1 + log

(
Ce
σ

∨ 1

)]
(3.36)

satis�es:
√
nE

[
sup

g∈G′,d(g,h)≤σ
RSARn (g0)−RSARn (g)

]
≤ Φ(σ)

for all g0 ∈ G′ and for every σ such that Φ(σ) ≤
√
n σ2

Ce
.

Proof. We consider a �xed g0 ∈ G′ along the proof and use the notation:

W = sup
g∈G′,d(g,g0)≤σ

RSARn (g0)−RSARn (g) .

The main steps of the proof are: (i) rewrite W as the supremum of an empirical process
over a class of functions; (ii) split the expression of W in two terms depending on the sign
of (g0(x)− g(x)) (W+ and W−) that will be processed similarly and independently; (iii) provide
an upper bound on E [W+] using a symmetrization principle (cf. Bousquet et al., 2003); (iv)
apply a chaining inequality and Haussler bound (Bousquet et al., 2003; Massart and Nédélec,
2006); (v) a few calculations �nish the proof. This proof uses the notion of entropy metrics: the
de�nition and some useful properties are recalled in Subsection 3.7.3.

(i) We start by rewriting the expression inside the supremum in W :

RSARn (g0)−RSARn (g) = R̂SARn (g0)− R̂SARn (g)− E
[
R̂SARn (g0)− R̂SARn (g)

]
=

1

n

n∑
i=1

(rSAR (g0, (Xi, Yi))− rSAR (g, (Xi, Yi)))− E
[
R̂SARn (g0)− R̂SARn (g)

]
=

1

n

n∑
i=1

(g0(Xi)− g(Xi))

(
21Yi=1

e(Xi)
− 1

)
− E

[
(g(X)− g0(X))

(
21Y=1

e(X)
− 1

)]
= (Pn − P) (fg),

where Pnfg and Pfg denote the empirical mean and the expectation of the function fg:

fg : (x, y) 7→ (g0(x)− g(x))

(
21y=1

e(x)
− 1

)
.

Hence, denoting F(σ) = {fg : g ∈ G′, d(g0, g) ≤ σ}, we can write W as the supremum of the
empirical process (Pn − P)(·) over the set of functions F(σ):

W = sup
f∈F(σ)

(Pn − P)(f).
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(ii) For any g ∈ G′, we can decompose fg depending on the sign of (g0(x)− g(x)):

fg (x, s) =

(
21s=1

e(x)
− 1

)
1g(x)>g0(x) −

(
21s=1

e(x)
− 1

)
1g0(x)>g(x) .

Then, introducing the following classes of functions

F+(σ) =

{
f : Rd × {0, 1} → R, ∃ g ∈ G′, f(x, s) =

[
21s=1

e(X)
− 1

]
1g(x)>g0(x) , d(g0, g) ≤ σ

}
F−(σ) =

{
f : Rd × {0, 1} → R, ∃ g ∈ G′, f(x, s) =

[
21s=1

e(X)
− 1

]
1g(x)<g0(x) , d(g0, g) ≤ σ

}
and the corresponding suprema

W+ = sup
f∈F+(σ)

(Pn − P)(f)

W− = sup
f∈F−(σ)

(P− Pn)(f),

we decompose E [W ] as follows:

E [W ] ≤ E
[
W+

]
+ E

[
W−] .

We now process both terms separately focusing on W+ (the proof for the other term is almost
identical).

(iii) We �rst apply a symmetrization principle to provide an upper bound on E [W+] depending
on a Rademacher average (cf. Bousquet et al., 2003):

E
[
W+

]
≤ 2

n
E

[
sup

f∈F+(σ)

n∑
i=1

εif(Xi, Yi)

]
where (εi)1≤i≤n are i.i.d. Rademacher variables (i.e. P (εi = 1) = P (εi = −1) = 1

2).

(iv) Let δ2 = supf∈F+(σ) Pn
(
f2
)
∨ σ2. We apply a chaining inequality (lemma A.2, Massart

and Nédélec 2006) which gives us the following inequality:

E
[
W+

]
≤ 6√

n
E

δ +∞∑
j=0

2−j
√
H (2−j−1δ,F+(σ))

 (3.37)

where H is the universal entropy metric (cf. Subsection 3.7.3).
Let A+ =

{
1g(x)>g0(x), g ∈ G′}, which can be consider as a set of classi�ers and has VC

dimension V at most. Using the fact that H (·,F+(σ)) is non-increasing (cf. Proposition 3.7.4),
we have ∀j ≥ 0:

H
(
2−j−1δ,F+(σ)

)
≤ H

(
2−j−1σ,F+(σ)

)
.

Applying Proposition 3.7.5, we obtain the following upper bound on the entropy of F+(σ) in
terms of the entropy of A+:

H
(
2−j−1δ,F+(σ)

)
≤ H

(
2−j−1 σ

Ce
, A+(σ)

)
.

We are then in a position to apply Haussler bound (Proposition 3.7.6), to get an upper bound
on the entropy in terms of the VC dimension of A+ which is no more than V :

H
(
2−j−1δ,F+(σ)

)
≤ κV

(
1 + log

(
2j+1Ce

σ
∨ 1

))
(3.38)

for some absolute constant κ > 1.
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(v) Injecting Equation 3.38 in Equation 3.37, we get:

E
[
W+

]
≤ 6

√
κV

n

+∞∑
j=0

2−j

√
1 + log

(
2j+1

Ce
σ

∨ 1

) E [δ]

≤ C(σ)

√
V

n
E [δ] (3.39a)

≤ C(σ)

√
V

n

√
E [δ2] (3.39b)

where C(σ) = 12 (1 + log(2))
√
κ
√
1 + log

(
Ce
σ ∨ 1

)
. Equation 3.39a is a consequence of technical

Lemma 3.7.1 in Subsection 3.7.4, Equation 3.39b follows from Cauchy-Schwartz inequality.
Now, we provide an upper bound on E

[
δ2
]
in terms of E [W+]:

E
[
δ2
]
≤ σ2 + E

[
sup

f∈F+(σ)
Pn
(
f2
)]

≤ σ2 + Ce E

[
sup

f∈F+(σ)
Pn (f)

]

≤ σ2 + Ce E

[
sup

f∈F+(σ)
(Pn − P) (f)

]
+ Ce sup

f∈F+(σ)
P(f) (3.40)

Let f ∈ F+(σ) and de�ne g ∈ G′ such that f(x, s) =
[
21s=1
e(x) − 1

]
1g0(x)>g(x) (and d(g0, g) ≤

σ). We have:

P(f) = E
[
E
[
21Y=1

e(X)
− 1|X

]
1g0(X)>g(X)

]
= E

[
(2η(X)− 1)1g0(X)>g(X)

]
≤ E

[
|g0(X)− g(X)|2

]
=
d2(g0, g)

2Ce

≤ σ2

2Ce

using Equation 3.31 and the de�nition of F+(σ). We can note that the above upper bound does
not depend on f ∈ F+(σ). Hence, we can use it in Equation 3.40 to obtain:

E
[
δ2
]
≤ Ce E

[
W+

]
+

3

2
σ2

Hence, coming back to E [W+]:

E
[
W+

]
≤ C(σ)

√
V

n

√
Ce E [W+] +

3

2
σ2 .

Taking the square on both sides and solving the second-order inequation in E [W+] yields:

E
[
W+

]
≤ 1

2
C(σ)

√
V

n

(
C(σ)Ce

√
V

n
+

√
C(σ)2C2

e V

n
+ 6σ2

)
.

Therefore, whenever σ ≥ C(σ)Ce

√
V
n :

√
nE

[
W+

]
≤ 2σ C(σ)

√
V .
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We can prove a similar upper bound on E [W−]. If we de�ne Φ(σ) = 4σ C(σ)
√
V , for all σ

such that Φ(σ) ≤
√
n σ2

Ce
(condition of Proposition 3.7.3):

σ ≥ C(σ)Ce

√
V

n
.

Hence, we have the desired upper bound on E [W ]:
√
nE [W ] ≤ Φ(σ) .

Besides, the constant K = 4C(σ) is greater than 1.

c. Upper bounds on the risk

In the previous paragraph, we checked that Theorem 3.7.1 can be applied to PU learning
under the SAR assumption. Hence, the upper bound on risk excess ε2∗ is the unique solution to
the �xed point equation: √

n ε2∗ = Φ(w(ε∗)) (3.41)

where w is given in Equation 3.33 (or w0 in Equation 3.34) and Φ in Equation 3.36.

w(x) =

√
2Ce
h

x ,

w0(x) =
√
2Ce ∨ x

√
2Ce
h′

,

Φ(σ) = Kσ

√
V

[
1 + log

(
Ce
σ

∨ 1

)]
.

We cannot explicitly solve this equation, but we can provide an upper bound on the solution
which is enough to complete the proof of Theorem 3.5.1. The choice of w as Equation 3.33
or Equation 3.34 leads to two di�erent upper bounds that together complete the proof of
Theorem 3.5.1.

First case Using the known de�nitions of w in Equation 3.33 and Φ in Equation 3.36,
Equation 3.41 can be rewritten as:

√
n ε2∗ = K ε∗

√
2Ce
h

√
V

[
1 + log

(√
Ce h√
2ε∗

∨ 1

)]
Because the logarithmic term is always non-negative and K ≥ 1, we get:

ε∗ ≥
√

2Ce V

nh
.

Using this on the logarithmic term, we obtain the following upper bound on ε∗:

ε∗ ≤ K

√
2Ce V

nh

√
1 + log

(√
nh

2
√
V

∨ 1

)

≤ K

√
2Ce V

nh

√
1 + log

(
nh2

V
∨ 1

)
Noting that Ce ≤ 2

em
, we get the desired result:

ε2∗ ≤ 4K2 V

nh em

[
1 + log

(
nh2

V
∨ 1

)]
.

■
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Second case We now consider Equation 3.41 where w is given by Equation 3.34. We can note
that the logarithmic term is necessarily 0. If we assume that the solution ε∗ of Equation 3.41

satis�es ε∗ ≥
√
h′, then w(x) = ε∗

√
2Ce
h′ . We obtain:

ε2∗ ≤ 4K2

√
V

n em
.

Else, ε∗ ≤
√
h′ which implies that

ε2∗ ≤ h′ =

√
V

n em
.

Both bounds provide the same convergence rate.
Paragraphs c and c together complete the proof of Theorem 3.5.1.

■

3.7.2 Proof of minimax lower bounds

We remind the reader that the minimax risk is de�ned as:

R (G, h) = inf
ĝ∈G

[
sup

P∈P(G,h)
E [ℓ (ĝ, g∗)]

]
.

The lower bound on the minimax risk is proved in Paragraph a for the SCAR assumption (cf.
Theorem 3.5.2) and in Paragraph b for the SAR assumption (cf. Proposition 3.5.1).

a. Under the SCAR assumption (proof of Theorem 3.5.2)

The proof consists in exhibiting a �nite subset of probability distributions on which the
excess risk is worst. It is organised as follows: (i) we provide a lower bound on the minimax
risk expression by restricting ourselves to this subset of distributions; (ii) we use Massart noise
condition and simplify the remaining expression; (iii) the application of Assouad lemma �nishes
the proof.

(i) We start by introducing a family of probability distributions which plainly exploits the noise

condition (A2). Let x1, ..., xV be V points of Rd shattered by G. This is possible because the VC
dimension of G is V . For some parameter p < 1

V−1 , we de�ne a discrete probability distribution
on {x1, ..., xV } ⊂ Rd verifying:

P (X = xi) = p ∀ i ≤ V − 1 and P (X = xV ) = 1− p (V − 1) .

For some binary vector b ∈ {0, 1}V−1, we consider Pb the probability distribution such that:

∀ 1 ≤ i ≤ V − 1, Pb (Z = 1 |X = xi) =
1

2
[1 + (2 bi − 1) h]

for h > 0. We can consider by default that each point in Rd \ {x1, ..., xV−1} has class 0 almost
surely. This has no incidence on the rest of the proof. Moreover:

Pb (Y = 1 |X = xi, Z = y) = y e(xi)

following the de�nition of propensity.
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Hence, (Pb)b∈{0,1}V −1 de�nes a family of distributions on (X,Y ) that satis�es Massart noise
condition (A2) at its limit: the regression function |2η(xi)−1| equals h for every i ∈ {1, ...V − 1}.
Furthermore, for every b ∈ {0, 1}V−1, the Bayes classi�er g∗b is known:

∀ 1 ≤ i ≤ V − 1, g∗b (xi) = bi .

As (x1, ..., xV ) is shattered by G, g∗b necessarily belongs to G.
Hence, (Pb)b∈{0,1}V −1 ⊂ P (G, h) and therefore:

R (G, h) ≥ inf
ĝ∈G

[
sup

b∈{0,1}V −1

Eb [ℓ (ĝ, g∗b )]

]

where Eb denotes the expectation according to Pb distribution.

(ii) Let ĝ be a classi�er, function of the training sample (Xi, Yi)1≤i≤n. We use the following
decomposition of ℓ (cf. Equation 3.35):

ℓ(ĝ, g∗b ) = E [|2η(X)− 1||ĝ(X)− g∗b (X)|] .

Combined with Massart noise condition (A2), this yields:

R (G, h) ≥ h inf
ĝ∈G

[
sup

b∈{0,1}V −1

Eb [|ĝ(X)− g∗b (X)|]

]

For every ĝ, we de�ne b̂ such that:

b̂ = Argmin
b∈{0,1}V −1

EX [|g∗b (X)− ĝ(X)|]

where the expectation is taken with respect to the marginal distribution of X and conditionally
to the training sample. Hence, b̂ is a function of the training sample (Xi, Yi)1≤i≤n. By triangular

inequality and then by de�nition of b̂:

|g∗
b̂
(X)− g∗b (X)| ≤ |g∗

b̂
(X)− ĝ(X)|+ |ĝ(X)− g∗b (X)| ≤ 2 |ĝ(X)− g∗b (X)| .

Hence:

R (G, h) ≥ h

2
inf
ĝ∈G

[
sup

b∈{0,1}V −1

Eb
[
|g∗
b̂
(X)− g∗b (X)|

]]

=
h

2
inf

b̂∈{0,1}V −1

[
sup

b∈{0,1}V −1

Eb
[
|g∗
b̂
(X)− g∗b (X)|

]]

=
p h

2
inf

b̂∈{0,1}V −1

[
sup

b∈{0,1}V −1

Eb

[
V−1∑
i=1

1
bi ̸=b̂i

]]

where the last line is obtained by developing the expectation according to the marginal distribution
of X which is discrete.
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(iii) With this simpli�ed expression, we apply Assouad lemma (cf. Yu, 1997) which provides
the following general lower bound:

inf
b̂∈{0,1}V −1

[
sup

b∈{0,1}V −1

Eb

[
V−1∑
i=1

1
bi ̸=b̂i

]]
≥ V − 1

2
(1−√

γ n)

where γ is an upper bound on the square Hellinger distance between probability distributions Pb
and P′

b on (X,Y ) when b and b′ only di�er on one coordinate. Using technical Lemma 3.7.2 in
Subsection 3.7.4, we have the following upper bound on the square Hellinger distanceH2 (Pb,Pb′):

H2 (Pb,Pb′) ≤ 2 p em h
2 . (3.42)

Applying Assouad lemma together with Equation 3.42, we get the following inequality:

R (G, h) ≥ p h

4
(V − 1)

(
1−

√
2 p em h2 n

)
.

In case (C1), we choose p = 2
9 em h2 n

that is lower than 1
V−1 , we obtain the desired lower

bound on R (G, h):
R (G, h) ≥ V − 1

54 em hn
.

Else, in case (C2), we choose p = 2
9 em h′2 n

where we recall that h′ =
√

V
n em

. As h ≤ h′:

R (G, h) ≥ R
(
G, h′

)
≥ V − 1

54 em h′ n
≥ 1

54
√
2

√
V − 1

n em
.

■

b. Proof of Proposition 3.5.1

This proof relies on the same tools as SCAR assumption case. We alter (i) by choosing
x1, ..., xV satisfying assumption (A3) for ε > 0. (ii) remains unchanged. In (iii), the upper
bound in Equation 3.42 has to be replaced by 2 p h2 (em + ε). This yields the following lower
bounds:

1. in case (C1):

R (G, h) ≥ V − 1

54 (em + ε) hn
;

2. in case (C2):

R (G, h) ≥ 1

54
√
2

√
V − 1

(em + ε) hn
.

It remains to note that these lower bounds are valid for any ε > 0 to complete the proof.

■
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3.7.3 Universal entropy metric and related properties

In this subsection, we recall some de�nitions and properties concerning the universal entropy
metric. These properties are used for the proof of Proposition 3.7.3 in Subsection 3.7.1.

Let us consider (Xi, Yi)1≤i≤n i.i.d. random variables with values in Rd × {0, 1} and F a set
of functions on Rd × {0, 1}.

De�nition 3.7.1: Universal entropy metric, cf. Massart and Nédélec (2006)

Let ε > 0 and Q be a probability measure. De�ne h (F , ε,Q) as the logarithm
of the largest number N of functions f1, ..., fN separated by a distance ε, namely

EQ

[
(fi(X,Y )− fj(X,Y ))2

]
> ε2, ∀i ̸= j. Then the universal entropy metric H (F , ε)

is de�ned as:
H (F , ε) = sup

Q
h (F , ε,Q) .

Proposition 3.7.4

For a �xed F , H (F , ·) is a decreasing function.

Proposition 3.7.5

Let ψ be a function de�ned on Rd × {0, 1} and F be a family of functions such that:

F = {(x, s) 7→ ψ(x, s) g(x, s) , g ∈ G}

where G is another family of functions on Rd × {0, 1}. Then:

∀ε > 0, H (F , ε) ≤ H

(
G, ε

||ψ||∞

)
.

Proof. Let Q be a probability distribution and N such that h
(
G, ε

||ψ||∞ ,Q
)
< log(N). Then, for

any set of functions g1, ..., gN , there is i ̸= j such that EQ

[
(gi(X,Y )− gj(X,Y ))2

]
≤
(

ε
||ψ||∞

)2
.

This implies that EQ

[
(ψ(X,Y ) [gi(X,Y )− gj(X,Y )])2

]
≤ ε2 and then that h (F , ε,Q) < log(N).

Then, we have that h (F , ε,Q) ≤ h
(
G, ε

||ψ||∞ ,Q
)
. Considering the supremum over the probability

distributions Q, we obtain the desired result.

Finally, we recall Haussler bound which provides an upper bound on the universal entropy
metric of a set of classi�ers in terms of its VC dimension.

Proposition 3.7.6: Haussler bound, cf. Bousquet et al. (2003)

Assuming that F is a set of indicator functions with �nite Vapnik dimension V . Then,
∀ε > 0:

H (F , ε) ≤ κV
(
1 + log

(
ε−1 ∨ 1

))
where κ ≥ 1 is an absolute constant.
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3.7.4 Technical lemmas

Lemma 3.7.1

Let Ce > 1 and σ > 0. Then:

+∞∑
j=0

2−j

√
1 + log

(
2j+1

Ce
σ

∨ 1

)
≤ 2 (1 + log(2))

√
1 + log

(
Ce
σ

∨ 1

)

Proof.

+∞∑
j=0

2−j

√
1 + log

(
2j+1

Ce
σ

∨ 1

)
≤

+∞∑
j=0

2−j

√
1 + (j + 1) log(2) + log

(
Ce
σ

∨ 1

)

≤
+∞∑
j=0

2−j
√
1 + (j + 1) log(2)

√
1 + log

(
Ce
σ

∨ 1

)

≤
+∞∑
j=0

2−j
(
1 + (j + 1)

log(2)

2

)√
1 + log

(
Ce
σ

∨ 1

)

= 2 (1 + log(2))

√
1 + log

(
Ce
σ

∨ 1

)

Lemma 3.7.2

Let x1, ..., xV be vectors of Rd. Let e be a function on Rd with values in (0, 1]. Let p ≤ 1
V−1

and consider (Pb)b∈{0,1}V −1 the family of probability distributions on {x1, ..., xV } × {0, 1}
de�ned in Paragraph i of Subsection 3.7.2. If b and b′ are binary vectors of {0, 1}V−1 which
only di�er at coordinate i, then:

H (Pb,Pb′) ≤ 2 p e(xi)h
2 .

Proof. Recall that b and b′ only di�er at coordinate i, hence:

H2 (Pb,Pb′) =
1

2

V∑
j=1

(√
Pb (X = xj , Y = 1)−

√
Pb′ (X = xj , Y = 1)

)2

+
1

2

V∑
j=1

(√
Pb (X = xj , Y = 0)−

√
Pb′ (X = xj , Y = 0)

)2

=
1

2

(√
Pb (X = xi, Y = 1)−

√
Pb′ (X = xi, Y = 1)

)2
+

1

2

(√
Pb (X = xi, Y = 0)−

√
Pb′ (X = xi, Y = 0)

)2
.

Let us now calculate the probabilities using the de�nition of Pb:

Pb (X = xi, S = 1) = p
e(xi)

2
[1 + (2bi − 1) h] ,

Pb (X = xi, S = 0) = p

(
1− e(xi)

2
[1 + (2bi − 1) h]

)
.
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Noting that either (bi, b′i) = (0, 1) or (bi, b′i) = (1, 0), we have in both cases:(√
Pb (X = xi, Y = 1)−

√
Pb′ (X = xi, Y = 1)

)2
= p e(xi)

[
1−

√
1− h2

]
,

and (√
Pb (X = xi, Y = 0)−

√
Pb′ (X = xi, Y = 0)

)2
= p

[
2− e(xi)− 2

√
1− e(xi)

2
(1 + h)

√
1− e(xi)

2
(1− h)

]
.

We then sum the two results together:

H2 (Pb,Pb′) =
p

2

[
2− e(xi)

√
1− h2 − 2

√
1− e(xi) +

e(xi)2

4
(1− h2)

]

= p

1− e(xi)

2

√
1− h2 −

√(
1− e(xi)

2

√
1− h2

)2

− e(xi)
(
1−

√
1− h2

)

= p

[
1− e(xi)

2

√
1− h2

]1−
√√√√√√1−

e(xi)
(
1−

√
1− h2

)
[
1− e(xi)

2

√
1− h2

]2


≤
p e(xi)

(
1−

√
1− h2

)
1− e(xi)

2

√
1− h2

≤ 2 p e(xi)h
2

In the above calculation, we applied the inequality 1−
√
1− h2 ≤ h2 for h2 ∈ [0, 1].
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4
Fatigue criterion construction through Positive-Unlabeled

Learning

As seen in Chapter 2, a fatigue criterion is used to predict critical zones of a mechanical part
(i.e. zones that may result in crack initiation for customers) given simulation results obtained
from a numerical model. Fatigue rig tests are also carried out on prototypes. After the test,
the part is inspected and zones with crack initiations are identi�ed as critical. Every critical
zone does not result in failure because fatigue crack initiation is a random event and depends
on di�erent parameters like the severity of the test or the observability of the crack. The
construction of a fatigue criterion can then be viewed as a PU learning problem. The objective
of this chapter is to de�ne and calibrate a fatigue criterion through PU classi�cation. The
de�nition of the PU classi�cation model involves a classi�er and the propensity (cf. Chapter
3). In fatigue applications, the classi�er is the fatigue criterion we want to estimate and the
propensity represents the risk for a critical zone to fail during testing: it can then be modeled
using fatigue lifetime models (S-N curves).

Section 4.1 explains how the construction of a fatigue criterion can be viewed as a PU learning
task and speci�es how the propensity can be modeled. In Section 4.2, we indicate which PU
learning methodologies can be used for fatigue applications and provide parametric models for
the classi�er and the propensity suited for fatigue applications. In section 4.3 we discuss the
identi�ability of the proposed models. Section 4.4 presents SAR-EM, a methodology introduced
by Bekker and Davis (2018b) that consists in jointly estimating the classi�er and the propensity.
We show how this general methodology applies to our parametric models. In section 4.5, we
illustrate the interest of the methodology through numerical experiments on simulated data.
Finally, in section 4.6 we apply the method to Stellantis data set and analyze the results.

4.1 - Fatigue criterion under the point of view of PU learning

From a statistical point of view, a fatigue criterion is a binary classi�er that predicts the
criticality of a zone. Since the tests cannot assert the safety of a zone, only the zones with
observed crack initiations are labeled. This can be viewed as a label noise and more particularly
as a PU label noise. The estimation of the fatigue criterion is then a PU learning task. In order
to estimate the classi�er, we need to account for the propensity, which is, by de�nition, the
probability of crack initiation for a critical zone. It depends on the features describing the zone
(local stresses, material, geometry, test conditions), hence the SCAR assumption does not hold,
we are then under the SAR assumption. Besides, this propensity can be modeled using S −N
fatigue models.
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4.1.1 Fatigue criterion and PU classi�cation

The fatigue data set consists in a set of n individuals (xi, yi)1≤i≤n representing zones of a
tested prototype.

� The covariate vector xi ∈ Rd can be divided in two sub-vectors (x̃i, ti) ∈ Rd1×Rd2 (d1+d2 =
d):

� x̃i contains data from the numerical simulation results on the zone (material, stresses)
when the part is subjected to a nominal loading representing the client objective
(nominal severity, see Section 1.3).

� ti represents the testing conditions: initial severity, number of cycles before ending
the test. We recall that the tests follow an accelerated test protocol in order to reduce
their duration (fatigue tests with Locati method, see Section 1.3).

� The response yi is a binary label indicating whether or not a crack initiated on the zone
during the test (yi = 1 or yi = 0). We say that an instance is labeled if yi = 1 and
unlabeled if yi = 0.

For a mechanical part to be valid, every zone must be set below the endurance limit. In other
words, there should not be any crack initiation over the car lifetime. Therefore, for each zone
with covariates xi = (x̃i, ti), we seek to predict a binary class Zi indicating whether the zone
may fail over the car lifetime (Zi = 1, critical) or not (Zi = 0, safe). In fact, the fatigue criterion
should only depend on x̃i and not on ti because we are only interested in predicting the criticality
of the zone for the nominal severity. Our objective is then to estimate the classi�cation rule η
where:

η(x) = P (Z = 1 |X = x) = P
(
Z = 1 | X̃ = x̃

)
. (4.1)

We remark that the true classes (Zi)1≤i≤n are not fully observed. The observed labels only
provide limited information about the true classes. An observed crack asserts the criticality of a
zone:

P (Z = 1 |X = x, Y = 1) = 1 . (4.2)

However, not every critical zone will fail during testing. In other words, the probability for a
positive instance to be labeled is not necessarily 1:

P (Y = 1 |X = x, Z = 1) = e(x) ∈ (0, 1]. (4.3)

A particular case is when the propensity is equal to 1, which corresponds to the standard
classi�cation setting (Z = Y almost surely).

In the estimation of a classi�er η given a set of training observations (xi, yi)1≤i≤n, the above
quantity (Eq. 4.3) is the propensity and represents the probability for a critical zone to fail under
speci�c testing conditions.
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Figure 4.1: Example of critical zone on a cradle model under longitudinal sollicitations. The
picture on the left represents the zone on the sixth specimen tested. The �gure on the right
represents the severity (multiplicative coe�cient of the client objective Fn) of the seven tests
performed. Only two (the red ones) resulted into a crack initiation.

4.1.2 Modeling the propensity in fatigue

We now consider the calibration of a fatigue criterion as a PU learning task: the goal is to
estimate η (see Eq. 4.2) given a set of observations (xi, yi)1≤i≤n a�ected by PU learning label
noise. The probability for an instance to be labeled is:

P (Y = 1 |X = x) = P (Z = 1 |X = x)× P (Y = 1 |Z = 1, X = x) = η(x̃)× e (x̃, t) . (4.4)

Even if we are only interested in estimating η, the propensity e plays a crucial role and will need
to be characterized to solve the classi�cation problem.

The propensity represents the probability for a critical zone to fail during testing: it can be
viewed as a selection bias, i.e. the probability for a positive instance with covariates x to be
labeled. The phenomenon is observable considering the multiplicity of the tests performed for a
same design. For instance, Fig. 4.1 (left) represents a crack initiation detected on a cradle part
which asserts the criticality of the zone. Among the seven identical prototypes tested, only two
resulted in a crack initiation at this speci�c location (see Fig. 4.1, right). This also means that if
only the �rst �ve prototypes had been tested, the critical zone would not have been labeled. It is
then likely that several critical zones remain unlabeled. This clearly illustrates the PU learning
label noise a�ecting the observations. It is important to note that this label noise is completely
asymmetric: we only have false negatives (unlabeled positive instances) but no false positive
(labeled negative instance). Moreover, Fig. 4.1 illustrates the randomness of crack initiation:
although tests on prototypes 4 and 6 have a similar severity, only the latter resulted in crack
initiation.

The testing conditions t can in�uence the propensity in several ways. A higher severity can
accelerate the initiation of a crack in a critical zone. Furthermore, increasing the duration of the
test will leave more time for a crack to initiate and propagate enough to be observable. Hence,
the severity and the number of cycles both have an in�uence on the propensity. Usually, we rely
on a single variable to represent the testing conditions: the equivalent severity that depends on
the initial severity of the test and the total number of cycles (cf. Section 1.3). Fig. 4.1 already
illustrates the e�ect of equivalent severity on propensity as we clearly see that the critical zone
broke for two of the most severe tests. We can con�rm this statement looking at the severity
for every known critical zone of the database, i.e. those that broke at least for one test among
the repetitions (cf. Fig. 4.2, left). Even if the two histograms seem close, a rough estimate of
propensity for each bin (Fig. 4.2, right), asserts the increasing trend of propensity when the
equivalent severity increases.

The propensity also depends on the covariates x̃ (or at least some of them). Indeed, a higher
local stress and lower material resistance will accelerate the crack initiation in a critical zone.
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Figure 4.2: In�uence of test severity on propensity. On the left, blue (red) histogram represents
the empirical distribution of test severity for unbroken (broken) critical zones. Each bin leads
to an estimate of propensity (as the frequency of crack initiations among the total number of
observations in the bin) represented on the right.

Figure 4.3: Multiple cracks detected in close locations during a test on a cradle part under
longitudinal solicitations. The crack labeled "PSE 405" initiated after the two others during
testing.

It also depends on the size of the crack and more generally on its observability. A crack in a
hidden location on the mechanical part is less likely to be detected. Likewise, the size of the
crack and the e�ort to detect crack initiations on the part have an in�uence on the label noise.
In some testing experiments, penetrant inspection is used to help detect crack initiations (cf.
Section 1.3). This makes the detection of cracks easier and thus increases the propensity.

Finally, let us recall that multiple cracks can initiate on a same part during testing. Sometimes,
di�erent cracks initiate on close locations (e.g. Fig. 4.3). Hence, there can be a dependence
e�ect facilitating the initiation of cracks around an already broken zone or making it harder.
Unfortunately, these parameters are not easily accessible and thus cannot be properly accounted
for.

Hence we will stick to a propensity only depending on the available information, i.e. the
covariates x = (x̃, t).

Since the propensity represents a probability of crack initiation for a critical zone (a zone
with �nite lifetime), S-N models can provide useful ways of modeling it.

Let us �rst consider a one-dimensional setting where t is a scalar representing the total
number of cycles and where the tests are performed at constant severity. A regression model on
the lifetime N of an individual given the local stresses x̃ can yield to a model on the propensity
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because the probability for a crack to be observed is, by de�nition, given by the cumulative
distribution function of the lifetime N :

e (x) = e (x̃, t)

= P
(
N ≤ t | X̃ = x̃

)
.

In order to reduce the test duration, acceleration strategies are used. We recall that it consists
in increasing gradually the severity during the test to accelerate potential crack initiations. For
further details on the test protocol, refer to Section 1.3. The test conditions are described by two
features: t = (f, n) where f is the initial severity of the fatigue test with Locati method and n
is the duration of the test (number of cycles). We compute feq (t) that represents the equivalent
severity at n0 = 106. Section 1.3 explains how this equivalent severity is calculated. A crack
initiation under testing conditions t is equivalent to a crack initiation under a constant-severity
feq (t) test before n0 cycles. Then, we can also rely on a S −N model to de�ne the propensity:

e (x) = P
(
N ≤ n0 | X̃ = x̃eq

)
, (4.5)

where x̃eq denotes the local stresses under loading severity feq (t). Hence x̃eq ∈ Rd1 .

4.1.3 Conclusion

We have seen that the estimation of a fatigue criterion is a PU learning task. In order to
estimate the criterion η depending on covariates x̃ describing the local stresses at the nominal
severity, we have to account for the test conditions t that may increase the propensity e(x̃, t), i.e.
the probability of observing a crack initiation during testing. Since the propensity represents a
probability of crack initiation for critical zones, we can resort to classical S-N models to model
it.

4.2 - PU learning: methods and models

We showed that estimating a fatigue criterion from simulation and rig test results is a PU
classi�cation task. Besides, the propensity depends on the covariates: SCAR assumption does
not hold. In Chapter 3, we approached this question from the theoretical point of view and
gave theoritical risk bounds under the general SAR assumption, extending the particular SCAR
case. We now need a practical method to estimate the classi�er. In this section, we �rst analyze
which PU learning methods are suited for fatigue applications. Then, we de�ne a parametric PU
learning model by specifying the parametric models both on the classi�er and the propensity.

4.2.1 Methods

In Section 3.3, we presented the main categories of methodologies to address PU learning
tasks. Some methods like Semi-Supervised Novelty Detection and bagging strategies strongly
rely on the SCAR assumption. Thus, they are not suited for fatigue applications because this
assumption does not hold. Two-step methods do not explicitly assume the SCAR assumption,
but they rely on heuristics to identify reliable negative instances. They are thus di�cult to apply
in our context. Finally, methods based on the minimization of an unbiased empirical risk can
handle the SAR assumption setting. However, they require the knowledge of the propensity scores
for labeled observations which are unavailable in practice. In order to overcome this di�culty,
the methodology SAR-EM introduced by Bekker and Davis (2018b) consists in jointly estimating
the classi�er and the propensity. This approach is well suited for the fatigue application since
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we already know how to model the propensity (cf. Subsection 4.1.2). In the next Subsection, we
provide further details on the models chosen for both the classi�er and the propensity.

In numerical experiments and application (Sections 4.5 and 4.6), this PU methodology will
be compared to a non-standard approach to estimate the classi�er. The non-standard approach
is in fact the method used in Section 2.5: a classi�er is estimated ignoring the PU learning label
noise. Hence Y is considered as the target to predict.

4.2.2 Models

Our objective is to estimate the classi�cation rule η(x) = P (Z = 1 |X = x). For that purpose,
we need to provide a model on η. However, since we only observe (xi, yi)1≤i≤n, we also provide
a model on e(x) = P (Y = 1 |Z = 1, X = x). We choose parametric models for both. Hence,
from now on, a PU learning model will consist in a couple of parametric models described
by parameters (θ, ϕ) where θ characterizes the classi�cation rule and ϕ the propensity. The
conditional distribution of Y given X = x is denoted Pθ,ϕ:

Pθ,ϕ (Y = 1 |X = x) = ηθ(x)× eϕ(x) .

Besides, we recall that the classi�cation rule only depends on a subset of variables x̃ whereas the
propensity may depend on all the features x = (x̃, t) so that:

Pθ,ϕ (Y = 1 |X = (x̃, t)) = ηθ(x̃)× eϕ(x̃, t) .

We now provide explicit parametric models for the classi�cation rule and the propensity.

a. Classi�cation models

There are two ways of modeling the classi�er η(x̃). A �rst solution is to directly provide a
model on the conditional probability of Z given X̃. A second solution is to model the conditional
probabilities of X̃ given Z = 1 and Z = 0, and then use Bayes theorem to retrieve the probability
distribution of Z given X̃.

Linear logistic regression: In the �rst case, we use a linear logistic regression to model the
class probability ηθ(x̃):

ηθ(x̃) =
1

1 + e−α0−αT x̃
(4.6)

where θ = (α0, α) ∈ R× Rd1 .

Linear Discriminant Analysis In the second case, we resort to a Linear Discriminant
Analysis model. Hence, we assume that the conditional distributions of X̃ given Z = 1 and
Z = 0 are Gaussian with parameters (µ1,Σ) and (µ0,Σ). The mean vectors µ1 and µ0 are both
in Rd1 . The shared covariance Σ is a symmetric positive de�nite matrix in Rd1×d1 . The class
prior is π = P (Z = 1). The posterior class probability can be obtained using Bayes rule:

ηθ(x̃) =
π fµ1,Σ(x̃)

π fµ1,Σ(x̃) + (1− π)fµ0,Σ(x̃)
(4.7)

where θ = (π, µ0, µ1,Σ) is the set of parameters and fµ1,Σ (fµ0,Σ) is the density of X̃|Z = 1
(X̃|Z = 0).
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b. Propensity models

In Subsection 4.1.2 we gave a list of factors in�uencing the propensity and showed that it
could be modeled using S-N fatigue models. Given a feature vector (x̃, t), we can calculate the
test equivalent severity feq(t) and then the local stresses x̃eq ∈ Rd1 at the equivalent severity:
x̃eq ∈ Rd′1 represents a transformed feature vector depending on x̃ and t. Then, the probability
of crack initiation is modeled as:

eϕ(x) = F
(
log
([
βT x̃eq

]
+

))
(4.8)

where F belongs to a parametric family of cumulative distribution functions and β ∈ Rd′1 .
Di�erent choices are possible for the parametric family F belongs to: we will consider the

log-normal fatigue model and the Weibull fatigue model.
In the log-normal fatigue model, the fatigue lifetime follows a log-normal distribution meaning

that the logarithm of fatigue lifetime follows a normal distribution, hence F belongs to the family
(Fσ)σ∈R∗

+
where Fσ denotes the cumulative distribution function of a centered normal distribution

with variance σ2. The propensity eϕ is then represented by the set of parameters ϕ = (β, σ).
In the Weibull fatigue model, the fatigue lifetime follows a Weibull distribution, hence its

logarithm follows a Gumbel distribution: F belongs to
{
Fa,b, a, b ∈ R× R∗

+

}
where Fa,b denotes

the cumulative distribution function of a Gumbel distribution with parameters (a, b):

Fa,b(u) = 1− e− exp(u−a
b ) .

The propensity eϕ is then represented by the set of parameters ϕ = (β, a, b).
The two above models are derived from classic S-N models in the literature and are thus

speci�c to fatigue applications (cf. Castillo and Fernández-Canteli, 2009). In addition, we also
consider a general statistical model consisting in a logistic regression based on the transformed
feature vector x̃eq (Logistic propensity):

eϕ(x) =
1

1 + e−β0−β
T x̃eq

.

The set of parameters is ϕ = (β0, β) ∈ R× Rd′1 .

c. Summary

A PU learning model is the combination of a classi�cation model on η(·) and a propensity
model on e(·). Tables 4.1 and 4.2 summarize the list of parametric models considered for
the classi�er and the propensity. From now on, a PU learning model will be represented by
the parameter (θ, ϕ) where θ characterizes the classi�er and ϕ the propensity. No matter the
propensity model, we will talk about:

� PU Logistic Regression (PU-LR) when the classi�er is a linear logistic regression model;

� PU Discriminant Analysis (PU-DA) when the classi�er is a Linear Discriminant Analysis.

119



CHAPTER 4. FATIGUE CRITERION CONSTRUCTION THROUGH PU LEARNING

Table 4.1: List of parametric models used for the classi�er η

Model name Formula Parameters

Linear Logistic
Regression

ηθ(x̃) =
1

1+e−α0−αT x̃
θ = (α0, α) ∈ R× Rd1

Linear Discriminant
Analysis

ηθ(x̃) =
π fµ1,Σ(x)

π fµ1,Σ(x)+(1−π)fµ0,Σ(x)
θ = (π, µ0, µ1,Σ)

∈ [0, 1]× Rd1 × Rd1 × Rd1×d1

Table 4.2: List of parametric models used for the propensity e

Model name Formula Parameters

Normal fatigue model
eϕ(x) = Fσ

(
log
([
βT x̃eq

]
+

))
Fσ(u) =

∫ u

−∞

1√
2π σ2

e−
s2

2σ2 ds

ϕ = (β, σ) ∈ Rd′1 × R

Weibull fatigue model eϕ(x) = Fa,b

(
log
([
βT x̃eq

]
+

))
Fa,b(u) = 1− e−a exp(b u)

ϕ = (β, a, b) ∈ Rd′1×R∗
+×R∗

+

Logistic propensity eϕ(x) =
1

1+e−β0−βT x̃eq
ϕ = (β0, β) ∈ R× Rd′1

4.3 - Identi�ability

In Subsection 4.2.2, we de�ned a parametric PU learning model consisting in a model on the
classi�er ηθ and another on the propensity e(ϕ). Hence, the estimation is performed on the set
of parameters (θ, ϕ). Before studying the estimation of the parameters (θ, ϕ), we need to ensure
that the PU learning model is identi�able. A PU model (Pθ,ϕ)θ∈Θ,ϕ∈Φ is identi�able if and only
if the parameters (θ, ϕ) uniquely characterize the distribution Pθ,ϕ:

Pθ,ϕ = Pθ′,ϕ′ =⇒ (θ, ϕ) =
(
θ′, ϕ′

)
.

We remark that, if we drop the parametric assumptions on η and e, the decomposition

P (Y = 1 |X = x) = η(x)× e(x) .

is not unique. In general, the classi�er and the propensity are clearly not identi�able. In this
section, we provide su�cient conditions ensuring the identi�ability of the PU learning parametric
model. First, we assume that the parametric model on the propensity is identi�able:

(E)
(
∀x̃, t, eϕ (x̃, t) = eϕ′ (x̃, t)

)
=⇒

(
ϕ = ϕ′

)
.

This assumption is necessary for PU-LR and PU-DA settings. Indeed, if the model on the
propensity is not identi�able, then the PU cannot be identi�able. The propensity models de�ned
in Subsection 4.2.2 satisfy condition (E).

Subsections 4.3.1 and 4.3.2 provide su�cient conditions for the identi�ability in the PU
logistic regression setting and the PU discriminant analysis setting.
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4.3.1 Identi�ability in PU-LR setting

In this paragraph, we consider the PU-LR setting, meaning that the model on the classi�er
is a logistic regression. In this setting Pθ,ϕ is the conditional distribution of Y given X:

Pθ,ϕ (Y = 1 |X = x) = ηθ(x̃)× eϕ (x̃, t) .

Proposition 4.3.1 provide su�cient conditions for the PU learning model to be identi�able.

Proposition 4.3.1: Identi�ability for PU-LR

Consider a PU learning model (Pθ,ϕ)θ∈Θ,ϕ∈Φ where the classi�cation model is a logistic
regression. Assume that the propensity model satis�es (E) and that the logistic regression
classi�cation model is identi�able. The model (Pθ,ϕ)θ∈Θ,ϕ∈Φ is identi�able if:

(D1) ∀ϕ ∈ Φ, ∀x̃, sup
t∈Rd2

eϕ (x̃, t) = 1 .

Before proving the proposition, let us make a few comments on the conditions.

Remarks:

1. The logistic regression model is identi�able, at least if the covariates are not linearly
dependent. Condition (D1) is naturally adapted to fatigue applications. Indeed, coavariate
vectors x̃eq represent local stresses and contain strictly positive values. Besides, increasing
the stress results in a higher probability to break (higher propensity): hence we will assume
that the regression parameter β in the propensity also contains positive values. Therefore,
when the equivalent severity feq(t) tends to +∞, local stresses also tend to +∞, and the
propensity tends to 1. Thus, condition (D1) is satis�ed.

2. We will see that the proof for Proposition 4.3.1 can be extended beyond the logistic
regression model. In fact, we only need the classi�cation model (ηθ)θ∈Θ to be identi�able.
Hence, Proposition 4.3.1 remains true if we replace the logistic regression model by any
identi�able model on the conditional distribution of Z given X.

Let us now prove Proposition 4.3.1.

Proof. Suppose there exists (θ, ϕ) and (θ′, ϕ′) such that Pθ,ϕ = Pθ′,ϕ′ . We then have:

∀ x̃, t, ηθ(x̃) eϕ (x̃, t) = ηθ′(x̃) eϕ′(x̃, t) . (4.9)

Taking the supremum over t in Eq. 4.9 yields:

∀x̃, ηθ(x̃) = ηθ′(x̃)

because the model satis�es condition (D1). Using the identi�ability of the classi�cation model,
θ = θ′. Now, coming back to Eq. 4.9, we have:

∀x̃, t, eϕ (x̃, t) = eϕ′(x̃, t)

which implies ϕ = ϕ′ because the model on the propensity is identi�able (E).
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4.3.2 Identi�ability in PU-DA setting

We now consider the PU-DA setting, the classi�cation model is thus a Linear Discriminant
Analysis. In this setting, Pθ,ϕ is the distribution of (X,Y ):

Pθ,ϕ (Y = y,X = x) = [πfµ1,Σ(x̃)eϕ(x̃, t)]
y [πfµ1,Σ(x̃)(1− eϕ(x̃, t)) + (1− π)fµ0,Σ(x̃)]

1−y .
(4.10)

Proposition 4.3.2 provides su�cient conditions for identi�ability under this setting.

Proposition 4.3.2: Identi�ability for PU-DA

Consider a PU learning model (Pθ,ϕ)θ∈Θ,ϕ∈Φ where the classi�cation model is a Linear
Discriminant Analysis. Assume that the propensity model satis�es (E). The model
(Pθ,ϕ)θ∈Θ,ϕ∈Φ is identi�able if:

(D2) ∀ θ, ∀ϕ, ∃x, such that πfµ1,Σ(x̃)eϕ(x̃, t) > (1− π)fµ0,Σ(x̃) .

Let us make a few comments on this result.

Remarks

1. Condition (D2) is a compatibility condition that requires the density of labeled positive
instances to be higher than the density of negative instances for some x̃ ∈ Rd1 . If condition
(D2) is not ful�lled, there are at most two sets of parameters representing the distribution
of (X,Y ). Below, we provide such an example.

2. Condition (D1) implies (D2). Indeed, since fµ0,Σ and fµ1,Σ are densities of Gaussian
distributions with same covariance matrix, there exists x̃ such that π fµ1,Σ(x̃) > (1 −
π) fµ1,Σ(x̃). Then condition (D1) allows us to choose t such that condition (D2) is ful�lled
with x = (x̃, t). This means that conditions (D2) is less restrictive than (D1). However,
we can note that the assumptions on the classi�er are stronger in the case of Linear
Discriminant Analysis since the conditional distributions of X̃ given Z = 1 and Z = 0
are assumed to be Gaussian. This is not the case for logistic regression.

3. As we will see, the proof of Proposition 4.3.2 can be extended to other classi�cation models
similar to Linear Discriminant Analysis. As far as the mixture model on the marginal
distribution of X̃ is identi�able, the same proof remains valid. For instance, a Quadratic
Discriminant Analysis would also lead to an identi�able PU model.

Example of non-identi�able propensity when (D2) is not ful�lled: In this example,
we consider a one-dimensional setting (d1 = 1) and drop the dependency on t so that both η
and e both only depend on x = x̃ ∈ R. The set of parameters θ = (π, µ0, µ1,Σ) for the Linear
Discriminant Analysis model ηθ is chosen as follows:

π = 0.4, µ0 = −1.5, µ1 = 1.5, Σ = 2 .

Let us denote f (·, Y = 1) and f (·, Y = 0) the densities of labeled and unlabeled instances. In
this example, condition (D2) is not satis�ed. And the model is not identi�able, indeed we can
exhibit two sets of parameters θ = (π, µ0, µ1,Σ) and θ′ = (1− π, µ1, µ0,Σ) along with propensity
functions e and e′ leading to the same distribution on (X̃, Y ) (cf. Fig. 4.4). However, in this
example, if condition (D2) were ful�lled, only one of the two solutions would have been admissible
and the model would be identi�able. This shows that condition (D2) is necessary.

Let us now prove Proposition 4.3.2.
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Figure 4.4: Non-identi�able example in PU-DA when condition D2 is not ful�lled: the �gure on
the left represent the densities of positive and negative instances along with the density of labeled
instances. Note that the densities f (x, Z = 0) and f (x, Z = 1) were inverted. In the middle
the corresponding propensity functions are represented. These two situations lead to the same
distributions of labeled and unlabeled instances (�gures on the right). Hence the distribution on
(X,Y ) can arise either from parameter θ with propensity e (upper-left �gures) or from parameter
θ′ with propensity e′ (lower-left �gures).

Proof. Assume that the model satis�es (D2) and that there exists (θ, ϕ) and (θ′, ϕ′) such that
Pθ,ϕ = Pθ′,ϕ′ . Recall that in this setting, Pθ,ϕ and Pθ′,ϕ′ represent probability distributions on
(X,Y ). The equality Pθ,ϕ = Pθ′,ϕ′ implies that the marginal distributions over X are equal.
Hence, after integrating Equation 4.10 over y, we have:

∀x̃, π fµ1,Σ(x̃) + (1− π) fµ0,Σ(x̃) = π′ fµ′1,Σ′(x̃) + (1− π′) fµ′0,Σ′(x̃) .

Since the mixture of Gaussian densities is identi�able up to a permutation of the components,
we necessarily have either

(π, µ0, µ1,Σ) =
(
π′, µ′0, µ

′
1,Σ

′) , (4.11)

or
(π, µ0, µ1,Σ) =

(
1− π′, µ′1, µ

′
0,Σ

′) . (4.12)

Using that Pθ,ϕ (Y = 1, X = x) = Pθ′,ϕ′ (Y = 1, X = x) for all x yields either

∀x̃, t, eϕ′(x̃, t) = eϕ(x̃, t) if Eq. 4.11 is satis�ed (4.13)

or

∀x̃, t, eϕ′(x̃, t) =
πfµ1,Σ(x̃)eϕ(x̃, t)

(1− π)fµ0,Σ(x̃)
if Eq. 4.12 is satis�ed. (4.14)

However, if Eq. 4.14 were true, condition (D2) would imply the existence of x such that eϕ′(x) > 1
which is impossible. Hence, only Eq. 4.11 and 4.13 are valid. Together with the fact that the
model on the propensity e is identi�able, we have:

(θ, ϕ) = (θ′, ϕ′) .
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4.3.3 Conclusion

We have provided su�cient conditions ensuring the identi�ability of the parametric PU
learning model under PU Logistic Regression and PU Discriminant Analysis settings. The
identi�ability of the propensity model (E) is always ful�lled for the models de�ned in Section
4.2. Conditions (D1) and (D2) are also ful�lled in our fatigue application.

4.4 - Joint estimation of classi�cation rule and propensity

We have de�ned a parametric model (Pθ,ϕ)θ∈Θ,ϕ∈Φ, and conditions (Propositions 4.3.1 and
4.3.2) to satisfy its identi�ability. In this section, we deal with the estimation of the parameters
on training observations through maximum likelihood. Since we are in the presence of missing
data, we will use EM algorithm to maximize the likelihood.

In Subsection 4.4.1, we explain why the EM algorithm is well suited for optimizing the log-
likelihood for PU learning models. Then, in Subsection 4.4.2, we recall the general principle of
the EM algorithm. Subsections 4.4.3 and 4.4.4 motivate the use of the EM algorithm in PU-LR
and PU-DA settings and provide the detailed steps of the EM algorithm for maximum likelihood
estimation.

In PU-LR setting, the methodology is identical to the one used by Bekker and Davis (2018b).
In PU-DA setting though, we no longer perform the estimation conditionally to the covariates
which leads to a di�erent objective function and thus a di�erent algorithm.

4.4.1 Maximum likelihood with the EM algorithm

We consider a set of n independent observations (X̃, T, Y ) = (X̃i, Ti, Yi)1≤i≤n. Let us denote
ℓ(θ, ϕ | X̃, T, Y ) the log-likelihood. The objective is to �nd the parameters (θ̂, ϕ̂) maximizing
the log-likelihood: (

θ̂, ϕ̂
)
= Argmax

θ,ϕ
ℓ
(
θ, ϕ | X̃, T, Y

)
. (4.15)

The maximization of Eq. 4.15 is di�cult to solve directly. Besides we have latent variables
(Zi)1≤i≤n and we will show that under both PU-LR and PU-DA settings, the maximization of
the complete log-likelihood ℓ(θ, ϕ | X̃, T, Z, Y ) results in a much simpler optimization problem.
Hence, Expectation Maximization (EM) algorithm is well suited for maximizing the log-likelihood.

4.4.2 EM algorithm

The EM algorithm, introduced by Dempster et al. (1977), enables the calculation of maximum
of likelihood estimates for models with latent variables. The algorithm consists in iterating
through an expectation step (E step) and a maximization step (M step) (cf. Algorithm 1).
The likelihood increases at each iteration and the algorithm stops when it reaches a local
maximum. As the likelihood is not necessarily convex, there can be multiple local maxima.
Therefore, depending on the initialization, the algorithm does not necessarily converge to the
global maximum. Initialization of the EM algorithm for PU learning will be discussed in
Subsection 4.4.5.
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Algorithm 1 General EM algorithm for PU learning

Initialization: start with initial parameters
(
θ(0), ϕ(0)

)
Iterate until convergence:

E step Given the parameters
(
θ(c), ϕ(c)

)
obtained at step c, compute the conditional

expectation of the complete log-likelihood:

Q(c) (θ, ϕ) = E
[
ℓ
(
θ, ϕ |X̃, T, Z, Y

) ∣∣∣ X̃, T, Y , θ̂(c), ϕ̂(c)
]

M step Maximize the conditional expectation over (θ, ϕ):(
θ̂(c+1), ϕ̂(c+1)

)
= Argmax

θ,ϕ
Q(c) (θ, ϕ)

4.4.3 Estimation for PU logistic regression

In the PU-LR setting, the estimation is done conditionally to the covariates. The log-
likelihood is:

ℓ
(
θ, ϕ | X̃, T, Y

)
=

n∑
i=1

[
Yi log

(
ηθ(X̃i) eϕ(X̃i, Ti)

)
+ (1− Yi) log

(
1− ηθ(X̃i) eϕ(X̃i, Ti)

)]
.

(4.16)
Even if the form of the log-likelihood looks similar to a logistic regression, it cannot be written

as a generalized linear model. Besides, we cannot separate the e�ects of θ and ϕ. The complete
log-likelihood, however, separates the e�ects of both models and can be optimized e�ciently. It
is given by:

ℓ
(
θ, ϕ | X̃, T, Z, Y

)
=

n∑
i=1

[
Zi log

(
ηθ(X̃i)

)
+ (1− Zi) log

(
1− ηθ(X̃i)

)]
+

n∑
i=1

Zi

[
Yi log

(
eϕ(X̃i, Ti)

)
+ (1− Yi) log

(
1− eϕ(X̃i, Ti)

)]
(4.17)

Hence, the EM algorithm is well suited for optimizing the log-likelihood in PU-LR setting.
This methodology was used by Bekker and Davis (2018b). Let us rewrite the expectation and
maximization steps in this setting, with a propensity given by one of the models of Table 4.2.

a. Expectation

Let us assume that the parameter after iteration c in the EM algorithm is
(
θ(c), ϕ(c)

)
. We

want to calculate Q(c) (θ, ϕ). Thanks to the linearity of the expectation, we only need to compute

the posterior probabilities γ(c)i :

γ
(c)
i = E

[
Zi
∣∣ X̃i, Ti, Yi, θ

(c), ϕ(c)
]
= Pθ(c),ϕ(c)

(
Zi = 1

∣∣ X̃i, Ti, Yi

)
.

We recall that, in PU learning, a labeled instance (Yi = 1) is necessarily positive, hence:

Pθ(c),ϕ(c)
(
Zi = 1

∣∣ X̃i, Ti, Yi = 1
)
= 1 .

The posterior probability for unlabeled instances can be computed using Bayes theorem:

Pθ(c),ϕ(c)
(
Zi = 1

∣∣ X̃i, Ti, Yi = 0
)
= Pθ(c),ϕ(c)

(
Zi = 1 | X̃i, Ti, Yi = 0

)
125



CHAPTER 4. FATIGUE CRITERION CONSTRUCTION THROUGH PU LEARNING

=
Pθ(c),ϕ(c)

(
Zi = 1, Yi = 0 | X̃i, Ti

)
Pθ(c),ϕ(c)

(
Yi = 0 | X̃i, Ti

)
=
ηθ(c)(X̃i)

(
1− eϕ(c)(X̃i, Ti)

)
1− ηθ(c)(X̃i) eϕ(c)(X̃i, Ti)

.

The conditional expectation of the log-likelihood is then:

Q(c) (θ, ϕ) =
n∑
i=1

[
γ
(c)
i log

(
ηθ(X̃i)

)
+ (1− γ

(c)
i ) log

(
1− ηθ(X̃i)

)]
+

n∑
i=1

γ
(c)
i

[
Yi log

(
eϕ(X̃i, Ti)

)
+ (1− Yi) log

(
1− eϕ(X̃i, Ti)

)]
.

b. Maximization

The conditional expectation of the log-likelihood can be separated in two terms, one involving
only θ, the other involving only ϕ. Hence, the maximization step consists in solving two
maximization problems:

θ(c+1) ∈ Argmax
θ

n∑
i=1

[
γ
(c)
i log

(
ηθ(X̃i)

)
+ (1− γ

(c)
i ) log

(
1− ηθ(X̃i)

)]
ϕ(c+1) ∈ Argmax

ϕ

n∑
i=1

γ
(c)
i

[
Yi log

(
eϕ(X̃i, Ti)

)
+ (1− Yi) log

(
1− eϕ(X̃i, Ti)

)]
(4.18)

The �rst maximization problem is a weighted logistic regression where each observation is
considered as positive with weight γ(c)i and negative with weight 1−γ(c)i . The second is a weighted
logistic regression based on the observed labels (Yi)1≤i≤n and with a link function depending on
the propensity model: log-normal for log-normal fatigue model, Gumbel for Weibull fatigue
model and logistic for the logistic propensity.

4.4.4 Estimation for PU-DA

In PU-DA setting, we model the joint distribution of (X,Y ). The log-likelihood is then:

ℓ
(
θ, ϕ | X̃, T, Y

)
=

n∑
i=1

[
Yi log

(
π fµ1,Σ(X̃i) eϕ(X̃i, Ti)

)]
+

n∑
i=1

[
(1− Yi) log

(
π fµ1,Σ(X̃i)(1− eϕ(X̃i, Ti)) + (1− π) fµ0,Σ(X̃i)

)]
.

(4.19)

The direct maximization of 4.19 is di�cult because of the sum in the logarithm of the second
term in Eq. 4.19. Besides, we have latent classes (Zi)1≤i≤n and, as for PU-LR, the complete

log-likelihood ℓ
(
θ, ϕ | X̃, T, Z, Y

)
results in a much simpler optimization problem.
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a. Expectation

The expectation step is similar to the PU-LR setting. The same formula remains valid for
calculating the posterior probabilities. For Linear Discriminant Analysis, ηθ(x̃) is obtained as:

ηθ(x̃) =
πfµ1,Σ(x̃)

πfµ1,Σ(x̃) + (1− π)fµ0,Σ(x̃)
.

The conditional expectation of the log-likelihood is:

Q(c) (θ, ϕ) =
n∑
i=1

[
γ
(c)
i (log(π) + log (fµ1,Σ(x̃i))) + (1− γ

(c)
i ) (log(1− π) + log (fµ0,Σ(x̃i)))

]
+

n∑
i=1

γ
(c)
i [yi log (eϕ(x̃i, ti)) + (1− yi) log (1− eϕ(x̃i, ti))] (4.20)

b. Maximization

As for the previous model, the maximization step consist in solving two separate maximization
problems. The maximization involving the propensity model is strictly identical to Eq. 4.18. The
other maximization consists in performing a weighted Linear Discriminant Analysis:

θ(c+1) ∈ Argmax
θ=(π,µ0,µ1,Σ)

n∑
i=1

[
γ
(c)
i log (fµ1,Σ(x̃i)) + (1− γ

(c)
i ) (log (fµ0,Σ(x̃i)))

]
+

n∑
i=1

[
γ
(c)
i log(π) + (1− γ

(c)
i ) log(1− π)

]
which can be solved explicitly:

π(c+1) =
1

n

n∑
i=1

γ
(c)
i

µ
(c+1)
0 =

∑n
i=1(1− γ

(c)
i )X̃i∑n

i=1(1− γ
(c)
i )

µ
(c+1)
1 =

∑n
i=1 γ

(c)
i X̃i∑n

i=1 γ
(c)
i

Σ(c+1) =
1

n

n∑
i=1

[
γ
(c)
i

(
X̃i − µ

(c+1)
1

)T (
X̃i − µ

(c+1)
1

)
+
(
1− γ

(c)
i

)(
X̃i − µ

(c+1)
0

)T (
X̃i − µ

(c+1)
0

)]
In fact, the updating of θ is similar to the maximization step in EM algorithm when estimating
the parameters of a Gaussian mixture model. The di�erence is that, here, some of the posterior
probabilities are exactly equal to 1 (every label instance is positive). In this sense, PU Discriminant
Analysis is an intermediate between fully supervised Linear Discriminant Analysis and unsupervised
Gaussian mixture models. In the �rst case, the coe�cients (γi)1≤i≤n would be replaced by the
observed classes (Zi)1≤i≤n; in the second, each posterior probability would be in (0, 1). PU
Discriminant analysis clearly operates in a semi-supervised setting as the posterior probabilities
are 1 for labeled instances and lie in (0, 1) for unlabeled ones.

127



CHAPTER 4. FATIGUE CRITERION CONSTRUCTION THROUGH PU LEARNING

4.4.5 Initialization and stopping criterion

As mentioned earlier, EM algorithm does not necessarily converge to the global optimum
depending on the initialization. In order to overcome this issue, we use the Small EM strategy
(cf. Biernacki et al. (2003)). We perform multiple runs of the EM algorithm with random
intializations over a few iterations. Then we keep the model that reaches the highest likelihood
and continue its optimization until convergence. In practice, we stop the algorithm when the
likelihood does not increase more than a prede�ned tolerance threshold.

4.4.6 Conclusion

Since we have missing data in the data set, the joint estimation of the PU classi�er and
the propensity can be performed through EM algorithm. It involves basic calculations in the
expectation step and weighted classi�cation problems in the maximization step (cf. Algorithm 2).

The maximization step can be performed independently on the classi�cation model and on
the propensity model. The algorithm is thus very �exible as we can easily change either the
classi�cation model or the propensity without having to worry about the interactions between
the two.

The iterative procedure is similar to two-step methods (cf. Subsection 3.3.2). The weights
computed in the expectation step represent the probability (given the current parameters) for the
instances to be positive. To some extent, this is a way to identify reliable negative instances. In
the maximization step, the classi�er is updated based on the weights calculated in the expectation
step, which is also very similar to step 2 in two-step methods. The key di�erence is that the
identi�cation of reliable negative instances no longer relies on heuristics, but is part of EM
algorithm used to maximize the likelihood.

4.5 - Numerical experiments on simulated data

In this section, we illustrate the methodology for estimating PU learning models introduced
in Section 4.4. We �rst rely on simulated data in order to validate the methodology and assess
its performances. Multiple experiments are carried out highlighting the interest of PU learning
approach compared to a non-traditional approach ignoring the PU label noise.
Subsection 4.5.1 explains how the arti�cial data sets are generated. In Subsection 4.5.2, we
analyze the convergence of the EM algorithm and illustrate the estimation results on a few exam-
ples. Subsection 4.5.3 provides a detailed analysis of the classi�cation performances obtained for
di�erent series of experiments: the impact of sample size, separability between the classes and
misspeci�cation are studied.

4.5.1 Simulation setting

We seek to simulate positive unlabeled data under the SAR assumption in order to test the
estimation method described in Section 4.4. In this subsection we describe how the arti�cial data
sets are generated. The simulation is done in three steps: �rst generate the covariates vectors
and their corresponding classes (X̃i, Zi)1≤i≤n, then simulate the observed labels (Yi)1≤i≤n by
applying a selection bias on the positive instances, �nally drop the information about the classes
(Zi)1≤i≤n in order to keep only the PU data. In the two-dimensional examples considered, the
classi�cation and the propensity will each depend on one variable. This way, we can check
whether or not the PU learning classi�er is able to identify which variable is related to the
classi�cation and which one in�uences the propensity.
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Algorithm 2 Detailed EM algorithm for PU learning

Initialization: start with initial parameters
(
θ(0), ϕ(0)

)
Iterate until convergence:

E step Given the parameters
(
θ(c), ϕ(c)

)
obtained at step c, compute the posterior

probabilities (γci )1≤i≤n:

γci =


1 if Yi = 1
η
θ(c)

(X̃i)
(
1−e

ϕ(c)
(X̃i,Ti)

)
1−η

θ(c)
(X̃i) eϕ(c) (X̃i,Ti)

if Yi = 0

M step Update parameters (θ, ϕ):

Classi�er (θ)

1. PU Logistic Regression setting: solve the following weighted logistic
regression problem.

θ(c+1) ∈ Argmax
θ

n∑
i=1

[
γ
(c)
i log

(
ηθ(X̃i)

)
+ (1− γ

(c)
i ) log

(
1− ηθ(X̃i)

) ]
.

2. PU Discriminant Analysis setting:

π(c+1) =
1

n

n∑
i=1

γ
(c)
i

µ
(c+1)
0 =

∑n
i=1(1− γ

(c)
i )X̃i∑n

i=1(1− γ
(c)
i )

µ
(c+1)
1 =

∑n
i=1 γ

(c)
i X̃i∑n

i=1 γ
(c)
i

Σ(c+1) =
1

n

n∑
i=1

[
γ
(c)
i

(
X̃i − µ

(c+1)
1

)T (
X̃i − µ

(c+1)
1

)
+
(
1− γ

(c)
i

)(
X̃i − µ

(c+1)
0

)T (
X̃i − µ

(c+1)
0

) ]
Propensity (ϕ) Solve the following weighted logistic regression problem (link function

depending on the model on e):

ϕ(c+1) = Argmax
ϕ

n∑
i=1

γ
(c)
i

[
Yi log

(
eϕ(X̃i, Ti)

)
+ (1− Yi) log

(
1− eϕ(X̃i, Ti)

)]
.
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a. Generation of the covariate vectors and the classes

Without loss of generality, we consider 2-dimensional examples meaning that each covariate
vector X̃i is in R2. Two simulation settings are then considered: a �rst setting where the classes
are drawn according to a logistic regression model; a second where the assumptions of Linear
Discriminant Analysis are satis�ed.

� PU-LR simulation setting: this represents a setting where the classi�er satis�es the
assumptions of PU-LR. In this setting the vectors (X̃i)1≤i≤n is an i.i.d. sample following a
multivariate Gaussian distribution with �xed mean vector µ and covariance matrix C1:

µ = (2, 2) and C1 =

(
0.5 0
0 0.5

)
Then, the classes Zi are drawn independently according to Bernoulli distribution with
parameter ηθ(X̃i) where ηθ depends on X̃i through a logistic regression model with parameter
θ = (α0, α) ∈ R× R2:

ηθ(x) =
1

1 + e−α0−αT x
.

In the examples, choosing the parameters of the form α0 = −2 ρ and α = (ρ, 0) with a
strictly positive ρ allows to control the overlap between the two classes according to ρ:
a small value of ρ will lead to a poor separation while a high value will lead to a better
separability.

� PU-DA simulation setting: it satis�es the assumptions of PU-DA setting. In this
setting, we �rst draw an i.i.d. sample of size n of Bernoulli variables (Zi) with parameter
p = 0.5. Then, for each i, X̃i is generated according to a multivariate normal distribution
with mean vector µZi and covariate vector C2 (only the mean depends on the class). In
our examples:

µ0 = (2− ν, 1) , µ1 = (2 + ν, 1) and C2 =

(
0.25 0
0 0.25

)
.

Similarly to ρ in PU-LR simulation setting, the parameter ν > 0 controls how well the
classes are separated: a small value of ν will induce a signi�cant overlap between the
classes while a higher ν will lead to a better separability.

Examples of simulations are represented in Fig. 4.5. We can note that, in both settings, the
optimal classi�ers are identical and only involve the �rst variable.

b. Generation of the labels

In order to mimic fatigue applications, we simulate a severity Fi for every instance representing
the equivalent severity instance i was tested at. Recall that the severity depends only on
the testing conditions and a�ects the probability of crack initiation on critical zones. In our
experiments, the Fi are drawn independently and uniformly between fmin and fmax. We compute
X̃i,eq = Fi × X̃i which represents the transformed covariate vector in the test conditions. Then
each positive instance with equivalent covariates X̃i,eq is labeled with probability eϕ(X̃i,eq) where
eϕ is a propensity functions chosen among the models of Table 4.2 with a given parameter ϕ.
From this step, the data can be represented either with the covariates X̃i or with the transformed
covariates X̃i,eq.

Examples based on the simulations of Fig. 4.5 are represented in Fig. 4.6. The propensity
model used for simulation is a logistic regression propensity (cf. Table 4.2).
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Figure 4.5: Simulated data (X̃i, Zi)1≤i≤n where (X̃i)1≤i≤n are the covariate vectors and (Zi)1≤i≤n
are the classes (n = 1000): PU-LR simulation setting on the left (ρ = 5), PU-DA simulation
setting on the right (ν = 0.8). Note that the optimal classi�er (Bayes classi�er) only involves
the �rst variable.

Figure 4.6: Simulated data with transformed covariate vectors (X̃i,eq)1≤i≤n, classes (Zi)1≤i≤n and
labels (Yi)1≤i≤n (n = 1000): PU-LR simulation setting on the left (ρ = 5), PU-DA simulation
setting on the right (µ = 0.8). The propensity function used in both simulations is a logistic
regression propensity with parameters: β0 = −14 and β = (β1, β2) = (0, 6).

c. PU data set

Once the labels are simulated, we drop the information about the classes (Zi)1≤i≤n: only the
labels are available for training. When testing the performances of the estimated classi�ers, we
will keep the knowledge of the classes Z in the test data sets which gives us access to the ground
truth. This will allow assessing the performances of the estimated classi�ers. Unfortunately, for
real applications, we only have PU data even for testing: this means that we will not be able to
evaluate our methods in the same way.

Examples of simulated PU data sets are represented in Fig. 4.7. They follow from Fig. 4.5
and 4.6. These examples were chosen so that the theoretical classi�er only involves the �rst
variable. At the same time, the selection bias depends on the second variable. This explains why
most labeled instances appear in the top right of the diagrams.
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Figure 4.7: Simulated PU data sets (n = 1000): PU-LR simulation setting on the left (ρ =
5), PU-DA simulation setting on the right (µ = 0.8). The propensity function used in both
simulations is the same as in Fig. 4.6.

Figure 4.8: Convergence of the EM algorithm in the PU-LR setting on the left, PU-DA setting
on the right. Each line represents the log-likelihood values over a run of the EM algorithm with
a random initialization (Small EM). Some trajectories converge toward local maxima.

4.5.2 Parameter estimation

We now want to illustrate the methodology presented in Section 4.4 using these simulated
data sets. We will check that the EM algorithm correctly converges and that classi�er and the
propensity are correctly estimated.

In this subsection, we consider the two simulated data sets of Subsection 4.5.1. In each case,
we apply the initialization strategy described in Subsection 4.4.5. We perform multiple runs
of the EM algorithm over 20 iterations. For some runs, the log-likelihood remains stuck in a
local maxima (cf. Fig. 4.8). For others, the log-likelihood seem to converge to the same value
which appears to be the global maximum. We therefore keep the run that reaches the highest
likelihood after the 20 iterations and optimize it until convergence. We remark that the majority
of trajectories have already converged after 20 iterations, which shows that the convergence of
EM algorithm is quite fast. This illustrates the interest of the Small EM initialization strategy
of the EM algorithm for PU learning.

We then check that the parameters of the PU learning models are correctly estimated. For
this purpose, we study the empirical distribution of the maximum likelihood estimate (θ̂, ϕ̂) over
B = 200 replicated data sets and verify that the estimation is coherent with the theoretical values
(cf. Fig. 4.9 and 4.10). The estimation is satisfactory as the histograms are centered around the
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Figure 4.9: Empirical distribution of maximum likelihood estimate in PU-LR setting (B = 200
experiments on data sets of size n = 1000): on the left, the parameters of the classi�er θ̂ = (α̂0, α̂);
on the right, the parameters of the logistic propensity ϕ̂ = (β̂0, β̂).

Figure 4.10: Empirical distribution of maximum likelihood estimate in PU-DA setting (B = 200
experiments on data sets of size n = 1000): on the left, some of the parameters of the classi�er
µ̂0 = (µ̂0,1, µ̂0,2) and µ̂1 = (µ̂1,1, µ̂1,2); on the right, the parameters of the logistic propensity
ϕ̂ = (β̂0, β̂). The histograms on µ̂0,2 and µ̂1,2 are almost confounded, which is logical because
the theoretical parameters are identical.

theoretical values. This therefore illustrates the methodology of Section 4.4.
Finally, we assess the performances of the estimated classi�ers. For that purpose, we use

test data set simulated in the same conditions as the training set but keeping the information of
the classes Z. The performance metric used is the area under Receiver Operating Characteristic
curve (ROC AUC, cf. 2.5.3). It will be used throughout this subsection. We insist on the
fact that the performances are calculated on the predictions of the classes Z and not of the
labels Y . The performances are compared to a non-traditional classi�cation method: Logistic
Regression or Linear Discriminant Analysis on Y given X̃ depending on the setting. We also
report the performances of the theoretical Bayes classi�er which represents the optimal (cf. Table
4.3). In both settings, the performance of the PU learning classi�er is close to the optimal one.
Conversely, the non-traditional classi�ers are signi�cantly outperformed by PU learning.

These �rst experiments illustrate the interest of the methodology introduced in Section 4.4.
The EM algorithm for PU learning leads to a correct estimation of the parameters of the model
and yields to almost optimal classi�cation performances.
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Setting Bayes classi�er (optimal) Non-traditional classi�cation PU learning
PU-LR 0.98 0.85 0.98

PU-DA 0.99 0.90 0.98

Table 4.3: Classi�cation performances (ROC AUC). Comparison of the PU learning approach
with a non-traditional classi�cation and the optimal performances given by Bayes classi�er. The
table presents the estimates of the mean performances. Standard deviations are below 0.01.

Figure 4.11: Classi�cation performances on simulated data depending on the training sample
size: PU-LR simulation setting on the left, PU-DA simulation setting on the right.

4.5.3 Classi�cation performances on multiple experiments

We now carry out multiple series of experiments to study the sensitivity of PU classi�ers
to di�erent simulation parameters. The objective is to degrade the simulation setting (small
sample size, poor separability, misspeci�cation) and to see how the performances of PU learning
are a�ected.

a. Sample size

In this �rst case of experiments, we keep the same simulation settings and parameters as in
Subsection 4.5.2 and only alter the size of the training set. Sample sizes range from 50 to 1000.
For each sample size, B = 100 identical experiments are repeated in order to estimate the mean
performances along with their variability. The results show that the performances tend to the
optimal ones (fully supervised classi�cation) when the sample size increases whereas the non-
traditional classi�cation performances do not increase (cf. Fig. 4.11). We remark that for very
small sample sizes though (n < 100), PU learning performances are highly scattered compared
to non-standard classi�cation. In such situations, we may prefer the stability of non-standard
classi�cation, despite its bias.
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Figure 4.12: Classi�cation performances on simulated data depending on the separability: ρ
parameter in PU-LR simulation setting (left), ν parameter on the PU-DA simulation setting
(right).

b. Separability

The sample size n is now set to 1000. In this paragraph, we are interested in the performances
of PU learning when the separability is poor which of the course makes the classi�cation problem
more di�cult. In the PU-LR simulation setting, we study the performances of PU learning as a
function of ρ. Recall that it controls the overlap between the two classes. In the PU-DA setting
we will change the distance between the means of the Gaussian distributions of the classes. We
will therefore play with parameter ν (cf. Subsection 4.5.1).

Results are presented in Fig. 4.12. The separability has a clear impact on the performances in
both settings which is logical: less separable classes lead to a more di�cult classi�cation problem.
Therefore the maximum achievable performance (i.e. performance for the optimal classi�er) also
decreases. However, we observe that the performances of PU learning remain close to the optimal
classi�er. Again, the performances for non-traditional classi�cation are signi�cantly below which
illustrates the interest of PU learning.

c. Misspeci�cation

In this paragraph, we study the behaviour of PU learning classi�cation performances when
the PU learning parametric model used does not correspond to the simulation setting. More
particularly, we want to know how a PU-DA model will perform on a data set not respecting
the Gaussian assumptions. Hence, experiments are performed using a PU-LR model on PU-DA
simulated data and vice versa. Similar experiments are carried out regarding the propensity
models. In summary, four simulation examples are studied:

1. PU-LR simulation labeled with logistic propensity;

2. PU-LR simulation labeled with normal fatigue propensity;

3. PU-DA simulation labeled with logistic propensity;

4. PU-DA simulation labeled with normal fatigue propensity.

For each simulation, we use the four di�erent PU models to estimate the classi�er and compare
the performances (cf. Table 4.4). It seems that the classi�cation model does not have much
e�ect on the classi�cation performances. Hence, using a PU-LR model or a PU-DA model on
PU-DA or PU-LR simulated data yield approximately the same performances. This is not the
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Table 4.4: Classi�cation performances depending on the PU learning model used (for
classi�cation and propensity). Each experiment is repeated 20 times. The table reports the
mean performances along with the standard deviations (mean± std). Normal propensity refers
to the normal fatigue model on propensity (cf. Table 4.2).

Classi�cation model PU-LR PU-DA

Simulation example

Propensity model
Logistic Normal Logistic Normal

Ex 1: PU-LR / logistic propensity 0.80 ± 0.01 0.76± 0.06 0.79± 0.02 0.75± 0.09
Ex 2: PU-LR / normal propensity 0.79± 0.04 0.79 ± 0.01 0.77± 0.08 0.77± 0.08
Ex 3: PU-DA / logistic propensity 0.80± 0.01 0.75± 0.07 0.79 ± 0.02 0.75± 0.09
Ex 4: PU-DA / normal propensity 0.78± 0.07 0.79± 0.02 0.77± 0.05 0.80 ± 0.01

case, however, for the propensity model as we see on Ex 1 and Ex 3 that the models with logistic
propensity perform better and are more stable.

4.5.4 Conclusion

In this section, we illustrated the bene�ts of the methodology introduced in Section 4.4
on simulated data. The advantage of using simulated data is that we can obtain the classes
(ground truth) which allow us to properly estimate the performances of PU classi�ers. Multiple
experiments were performed to study the classi�cation performances of PU learning in di�erent
conditions illustrating the interest of the methodology.

4.6 - Application of PU learning to the estimation of a fatigue

design criterion

We now want to apply PU learning classi�cation methods in order to identify a fatigue
criterion for the design of mechanical parts. Recall that the fatigue criterion denoted η is a
classi�er designed to predict whether a zone is critical or not. Dang Van mechanical fatigue
criterion rely on two features: maximum hydrostatic pressure and critical shear stress. After
describing the estimation and evaluation procedure, we apply PU learning to the fatigue data
set in a two-dimensional setting only using the two features involved in Dang Van criterion. We
highlight some instability issues that can be solved by simplifying the model on the propensity.
Finally, we move on to the application of PU learning using additional features which leads to
better prediction results.

4.6.1 Estimating and evaluating fatigue criteria

In this subsection, we describe the experimental setting for estimating and testing PU learning
fatigue criteria.

The data set is split in two sub-samples with equal sizes: one will be used for training,
the other one for testing. In the training phase, the parameters of the PU learning model are
estimated on the training data. The model used is PU-LR with a logistic propensity. In parallel,
an analogous non-traditional classi�er is estimated. This analogous classi�er is of the same type
as the classi�cation model in the PU learning model: Logistic Regression. The major di�erence,
is that the non-traditional classi�er ignores the propensity.

Once the estimation is done, we evaluate the performances of the models on the test set. As
previously mentioned, the test data is itself PU data, therefore it does not provide the ground
truth on the classes. Hence, we cannot properly assess the performances of the estimated classi�er
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η̂. We have two alternative ways to evaluate the PU learning model.

1. For a covariate vector (x̃, t), the probability of crack initiation (Y = 1) is modeled as a
product η(x̃)× e(x̃, t). Using the estimated classi�er η̂ and propensity ê, it is thus possible
to estimate this probability p̂(x̃, t):

p̂ = η̂(x̃)× ê(x̃, t) .

Thus, comparing these posterior probabilities to the labels on the test set provides a �rst
set of performance indicators.

2. Even if the true classes (Zi)1≤i≤n are not available, we have access at least to a sub-
sample of positive instances. Indeed, we already know that labeled instances (Y = 1,
crack initiations) are critical (Z = 1). Besides, we have access to multiple test outputs for
each zone (usually 3 to 7). In particular, a zone with at least one crack initiation among
the tests performed is critical. Hence, we know that these instances share the same class
(Z = 1), even those that did not result in crack initiation. It is worth noting that the
corresponding individuals in the data set are not strictly identical as the test severities are
di�erent. Therefore, we have access to the knowledge of an extended subset of positive
instances (critical zones). We denote Z̃ the variable indicating whether a zone initiated at
least once (Z̃ = 1) or never (Z̃ = 0). These "approximate classes" Z̃i can be compared to
the classi�cation predictions η̂(xi), allowing to assess the performances of the PU classi�er.
We insist though that these evaluations may be biased since Z̃i does not provide the ground
truth on the classes.

Performances are computed on three models: the PU learning model of interest, its non-traditional
counterpart and Dang Van fatigue criterion. As in Section 2.5, the performances are evaluated
in terms of ROC and PR AUC (cf. Subsection 2.5.3).

As noted in Section 2.5, performance assessment is particularly di�cult as the variance on
the performance estimation is important. In order to evaluate our models with more consistency,
we repeat several times the procedure described above. For each repetition, the train-test split
is randomly chosen. This gives us access to the distribution of the performances and will allow
us to compare the models.

4.6.2 PU learning: 2D criterion using Dang Van variables

We apply the PU learning methodology de�ned in Section 4.4 to the fatigue data set in a
two-dimensional setting. The two variables used here are the standard variables involved in Dang
Van fatigue criterion: critical hydrostatic stress Pc and critical shear stress τc.

Looking at the quantitative performances overB = 100 repetitions of the estimation-evaluation
procedure, we can observe that the PU learning method performs similarly as the non-traditional
classi�cation method when evaluating the method on the prediction of labels Y (cf. Fig. 4.13,
top). However, we notice that the performances measured on the class predictions are extremely
variable for PU learning and that the non-traditional approach is preferable in this case (cf.
Fig. 4.13, bottom).

The estimation results for one experiment are represented in Figure 4.14. The left diagram
features the estimated classi�cation rule η

θ̂
of interest (fatigue criterion) as a function of the

covariates x̃ = (Pc, τc) representing the stresses at the nominal severity. The diagram on the
right focuses on the estimated propensity function e

ϕ̂
as a function of the transformed feature

vector x̃eq = (Pc,eq, τc,eq) representing the stresses at the equivalent severity of the test. We
recall that x̃eq depends on t. The estimated probability of being labeled is given by the product
η
θ̂
(x̃)× e

ϕ̂
(x̃eq).
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Figure 4.13: Quantitative performances of models with two variables: prediction performances
on the labels (top, η× e) and on the classes (bottom, η). The metrics used are ROC AUC (left,
blue) and PR AUC (right, orange). Each boxplot represents the distribution of the prediction
performances. Each series of three boxplots corresponds to (from left to right): PU-LR, non-
traditional Logistic Regression and mechanical Dang Van criterion.

Figure 4.14: Example of PU learning classi�cation results with two variables: estimated fatigue
criterion on the left, estimated propensity on the right. On the left, the background color
represents the criticality: from green (low values of η) to orange (high values of η). On the right,
the background color represents the propensity: red for high values, blue for low values.

In the results of Figure 4.14, the estimated classi�er is quite di�erent from the Dang Van
criterion commonly used in fatigue design of automotive parts as the linear criterion has a
positive slope whereas Dang Van criterion has a negative slope. According to this PU criterion,
the probability for a zone to be critical is an increasing function of τc and a decreasing function of
Pc. The estimated propensity shows that the probability of crack initiation for critical instances
is an increasing function of Pc,eq and τc,eq calculated at the test equivalent severity, which is
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Figure 4.15: Quantitative performances of models with the simpli�ed propensity (cf. Eq. 4.21):
prediction performances on the labels (top, η × e) and on the classes (bottom, η). The metrics
used are ROC AUC (left) and PR AUC (right). Each boxplot represents the distribution of
the prediction performances. Each series of three boxplots corresponds to (from left to right):
PU-LR, non-traditional Logistic Regression and mechanical Dang Van criterion.

natural. This example allows to understand the quantitative performances described above.
Indeed, while the product η

θ̂
(x̃)× e

ϕ̂
(x̃eq) provides decent performances in the predictions of the

labels (Y ), the classi�er alone η
θ̂
estimates poorly the risk for a zone to be critical (Z).

This unwanted behaviour of PU classi�er is mainly explained by the high correlation between
the feature vector x̃ used in the classi�cation model η and the transformed vector x̃eq involved
in the propensity e. Besides x̃ and x̃eq both have a similar in�uence on the crack initiation
probability: a higher nominal stress results in a higher probability for a zone to be critical and,
at the same time, in a higher probability for this zone to crack. In some sense, the estimated
propensity in Figure 4.14 absorbed part of the information that should be contained in the
classi�er η. It is thus crucial to clearly separate the e�ects accounted for in the classi�cation
model and in the propensity. We achieve this separation by simplifying the propensity model
so that it only accounts for the testing conditions t through the equivalent severity feq(t). This
way, the probability for an instance to be labeled is modeled as:

Pθ,ϕ (Y = 1 |X = (x̃, t)) = ηθ(x̃)× eϕ (feq(t)) . (4.21)

In addition, this model remains perfectly logical from a physical point of view. The classi�er η is
the fatigue criterion predicting the criticality of a zone given the stresses x̃. On the other hand,
the propensity e characterizes the probability of crack initiation for critical zone: considering two
zones with equal criticality, then the probability of crack initiation depends on the test conditions
t, through the equivalent severity feq(t).

This simpler PU learning model satis�es the conditions for identi�ability presented in 4.3
and the estimation methodology presented in Section 4.4 can be applied identically.

The results show that the performances are far more stable (cf. Fig. 4.15). The performances
evaluated on label predictions (Fig. 4.15, upper diagram) show that the PU learning models
seem to better predict the risk of crack initiation compared to Dang Van criterion and the
non traditional classi�er (higher prediction performances in terms of PR AUC). This e�ect is
logical in the sense that the PU learning explicitly account for the e�ect of test conditions on
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Figure 4.16: Quantitative performances (ROC AUC) of models with �ve variables: prediction
performances on the labels (top, η × e) and on the classes (bottom, η). The metrics used are
ROC AUC (left) and PR AUC (right). Each boxplot represents the distribution of the prediction
performances. Each series of three boxplots corresponds to (from left to right): PU-LR, non-
traditional Logistic Regression and mechanical Dang Van criterion.

crack initiation. When evaluating the predictions of the classi�er alone, the performances of PU
learning are quite similar to non-traditional classi�cation.

4.6.3 PU learning with additional variables

We now consider additional variables in order to better characterize critical zones. In this
subsection, the covariate vector x̃ contains �ve variables:

� the critical shear stress τma ;

� the mean triaxiality Tmm ;

� the mean material parameter τmat over the zone;

� the maximum longitudinal stress over the edges elements of the zone ELaa;

� the maximum transversal stress over the welds of the zone WLaa.

These features not only characterize the stress on the zone but also account for the singularities
(edges and welds). For further information on the features, refer to Chapter 2.

We carry out the same experiments as in Subsection 4.6.2 and compare the prediction
performances of PU learning, non-traditional classi�cation and Dang Van criterion. We recall
that Dang Van criterion still rely on two variables whereas both PU learning and non-traditional
classi�cation use the variables listed above. The results are presented in Figure 4.16.

We notice that both statistical methods get higher performances compared to Dang Van
criterion. In the prediction of labels, PU learning seems to outperform non-traditional classi�cation
(higher PR AUC scores).
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Figure 4.17: Performance comparisons (PR AUC): label predictions on the left, class predictions
on the right. For each �gure, the boxplot on the left represents the di�erence of performances
between PU learning and Dang Van criterion, the second compares PU learning and non-
traditional classi�cation.

In order to compare more e�ciently PU learning to non-traditional classi�cation, let us
look at the di�erences of performance achieved experiment by experiment. For j between 1
and 100, denote sPUj and sNTj the scores of PU learning and non-traditional classi�cation for
the jth experiment. Now, instead of looking at the empirical distributions (sPUj )1≤j≤100 and
(sNTj )1≤j≤100 separately, we rather consider (sPUj −sNTj )1≤j≤100. This is legitimate as for each j,
sPUj and sNTj are calculated over the same test set for models estimated over the same training
sets. A similar comparison is provided between PU learning and Dang Van criterion. Results
are presented in Figure 4.17. Looking at the performances on the label and class predictions,
PU learning outperforms Dang Van criterion for every experiment with a signi�cant median gain
of approximately 0.14 over PR AUC. On label predictions, PU learning provides a median gain
of approximately 0.08 over non-traditional classi�cation. Finally, when comparing PU learning
to non-traditional classi�cation, it appears that both methods provide similar performances for
class predictions. This can seem surprising: indeed, as the goal of PU learning is to better
estimate the classi�er by accounting for PU label noise, we should expect better performances
on class predictions. However, as explained earlier, the performances of the PU classi�er may
remain biased as we do not know all the critical zones in the test set. Hence, the results only tell
that PU learning classi�er is as good as its non-traditional counterpart in characterizing already
labeled critical zones.

4.6.4 Conclusion

In this section, we applied PU learning to the identi�cation of a fatigue criterion. The
results con�rm those of Chapter 2 in the sense that additional features signi�cantly improve the
identi�cation of critical zones. PU learning seems to provide slightly better results than non-
traditional classi�cation in the prediction of crack initiations. The results on class predictions
are similar but remain biased as we do not have access to the true classes to properly evaluate
the methods. More importantly, PU learning is able to account for the presence critical zones
among the unlabeled ones. Finally, the fatigue criterion is far from being perfect as some critical
zones are still poorly characterized through this statistical criterion. This is due to the fact that
we are still lacking important variables to characterize critical zones (e�ects of manufacturing
processes, residual stresses...).
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Conclusion générale

L'objectif de cette thèse était le développement de critères de fatigue via l'utilisation de
méthodes statistiques pour mieux identi�er les défauts de conception sur un modèle numérique
de pièce mécanique. Cette amélioration de la détection et de la caractérisation des zones
dites critiques permet d'éviter des itérations longues et coûteuses entre conception et essais
de validation. Par conséquent, le coût et la durée de développement peuvent être réduits. Les
résultats présentés dans cette thèse s'appuient sur une base de données fatigue rassemblant un
historique de données de modèles numériques et d'essais de validation correspondants. Alors
que la plupart des modèles de fatigue sont calibrés sur des géométries élémentaires (essais sur
éprouvettes), nous avons étudié comment cette nouvelle source de données pouvait être exploitée
pour améliorer la prédiction des risques de fatigue.

Nous avons introduit les principaux modèles de fatigue existants en mettant en évidence
une di�érence entre les modèles de durée de vie en fatigue et les critères de fatigue. Les
premiers cherchent à modéliser la durée de vie d'une pièce mécanique compte tenu des contraintes
auxquelles elle est soumise : d'un point de vue statistique, il s'agit d'une tâche de régression. Les
seconds visent à indiquer si le cycle de contrainte appliqué à la pièce mécanique est supérieur ou
non à la limite de fatigue : il s'agit d'une tâche de classi�cation. L'objectif du dimensionnement
à la fatigue étant de garantir que la pièce satisfait aux exigences de durabilité, nous nous sommes
intéressés aux critères de fatigue.
Nous avons ensuite e�ectué une analyse exploratoire de la base de données fatigue de Stellantis.
Un pré-traitement des données a permis de regrouper les observations par zones avec un avantage
triple. Tout d'abord, le déséquilibre entre zones cassées et non cassées a été considérablement
réduit. Deuxièmement, cela a permis de considérer les observations (zones) comme indépendantes
alors que deux éléments proches (sur un modèle à éléments �nis) sont fortement corrélés. Troisièmement,
cette notion de zone est plus robuste aux erreurs de localisation des amorces de �ssures. Un
ensemble de variables appropriées a été introduit pour décrire les zones : invariants de contraintes
sur l'élément le plus critique de la zone, moyenne spatiale de grandeurs physiques sur la zone,
informations géométriques et caractéristiques propres aux singularités (soudures et bords de
tôles). La richesse de la base de données fatigue a été étudiée dans le cadre d'une analyse non
supervisée permettant d'identi�er di�érents types de zones caractérisées par di�érents groupes
de variables. Même si cette analyse préliminaire n'aide pas à l'identi�cation des zones critiques,
elle a fourni des informations utiles sur la structure des données.
Nous avons ensuite abordé l'estimation de critères de fatigue multiaxiale. Une version probabilisée
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du critère de Dang Van a été introduite, permettant d'estimer jointement les paramètres matériau
et de dispersion. Ce critère a été estimé sur un jeu de données auxiliaire rassemblant des résultats
numériques et des données d'essais de fatigue sur des structures élémentaires avec soudures
(éprouvettes). Cependant, ce critère probabiliste montre ses limites lorsqu'il est appliqué à
l'identi�cation de zones critiques sur des pièces mécaniques réelles et complexes. Par conséquent,
nous nous sommes directement appuyés sur la base de données Stellantis pour estimer des critères
de fatigue à l'aide de méthodes de classi�cation supervisée. Ces critères statistiques de fatigue
o�rent des performances en prédiction meilleures que le critère de Dang Van. La principale
valeur ajoutée de ces critères par rapport aux méthodes standards est leur capacité à prendre en
compte un plus grand nombre de descripteurs, ce qui explique ce gain de performance signi�catif.

Les méthodes de classi�cation supervisée ne traitent que les amorces de �ssures comme des
observations positives. Cependant, une zone sans amorce de �ssure détectée peut en réalité
être critique. En e�et, du fait de la sévérité de l'essai, de sa durée et du caractère aléatoire
de l'amorçage de �ssure, une zone critique peut ne pas être détectée lors d'un essai de fatigue
et donc rester non étiquetée. A l'inverse, une amorce de �ssure est une zone critique avérée.
La prise en compte de ce bruit d'étiquette asymétrique dans la classi�cation est l'objectif de
l'apprentissage PU (Positive Unlabeled). Dans un certain sens, l'apprentissage PU peut être
considéré comme un mécanisme de censure dans un cadre de classi�cation. Alors que la censure
a�ecte généralement l'estimation des modèles de régression (modèles de durée de vie en �abilité
par exemple), l'apprentissage PU traite de l'estimation des classi�eurs lorsqu'une partie des
osbervations de la classe positive est censurée. Ce problème a été étudié sous les angles théorique,
méthodologique et pratique.

D'un point de vue théorique, nous avons étudié l'apprentissage PU sous l'hypothèse SAR
(Selected At Random), c'est-à-dire lorsque la probabilité qu'une observation de classe positive
soit étiquetée (i.e. la propension) dépend des covariables. Nous avons démontré des bornes
de risque supérieures et inférieures en soulignant comment le taux de convergence dépend de
la propension (i.e. la quantité de bruit d'étiquetage). Les résultats ont été illustrés par des
expériences numériques qui permettent de retrouver les taux de convergence théoriques.
Globalement, les résultats théoriques permettent de comprendre la di�culté de l'estimation d'un
classi�eur dans le cadre de l'apprentissage PU. Une faible propension se traduit par moins
d'observations positives étiquetées et donc une tâche plus di�cile. Inversement, lorsque la
propension tend vers 1, les performances de l'apprentissage PU tendent vers celles de la classi�cation
supervisée. Le rôle de la propension est donc crucial. Dans les applications de fatigue, l'augmentation
de la sévérité (ou de la durée) de l'essai augmente la probabilité qu'une zone critique amorce et
soit ainsi étiquetée. Par conséquent, la propension est augmentée. Ainsi, l'augmentation de la
sévérité des essais de fatigue peut faciliter l'estimation des critères de fatigue par apprentissage
PU. Cependant, en pratique, la sévérité de l'essai ne peut pas être augmentée indé�niment :
cela exposerait la pièce mécanique à d'autres modes de défaillance qui ne font pas partie du
dimensionnement à la fatigue (plasticité par exemple). In �ne, les résultats théoriques renforcent
un principe déjà bien établi dans la validation de la résistance à la fatigue: les essais de fatigue
doivent être réalisés pour une sévérité proche de la résistance de la pièce. Si la sévérité est trop
faible, il est peu probable que le composant casse à l'essai et la résistance à la fatigue risque
d'être impossible à estimer.

Nous avons en�n développé une méthodologie pratique pour estimer un classi�eur PU adapté
à la problématique de fatigue mécanique. Cette méthodologie s'appuie sur des modèles paramétriques
à la fois sur le critère de fatigue (classi�eur) et sur la propension. La propension rend compte
des conditions d'essais par le calcul d'une sévérité équivalente. L'estimation des paramètres est
réalisée par maximum de vraisemblance à l'aide de l'algorithme EM. L'intérêt de la méthodologie
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Figure A: Prédictions pour le classi�eur PU (gauche) et le critère de Dang Van (droite) sur un
modèle à éléments �nis (berceau sous chargement longitudinal) : le rouge correspond aux zones
critiques, le bleu aux zones sûres. Les zones grises n'ont pas été sélectionnées durant la phase
de pré-traitement (construction des zones, cf. sous-section 2.2.2) : elles doivent être considérées
comme bleues. Les zones d'amorçage sur cette face de la pièce sont repérées par des cercles noirs.

est illustré sur des données simulées. Ensuite, l'application de la méthode au jeu de données de
fatigue fournit des résultats intéressants. Les performances du classi�eur PU sont comparées
à la classi�cation standard et au critère de Dang Van. Par rapport aux classi�eurs standards,
l'apprentissage PU modélise mieux le risque d'amorçage de �ssure. Lors de l'évaluation des
modèles sur les classes prédites, les classi�eurs standards et PU fournissent des performances
similaires. Cependant, les mesures d'évaluation peuvent être biaisées en raison de la présence de
bruit d'étiquette PU y compris dans les données de test. Comme pour les méthodes supervisées
classiques, les performances des classi�eurs PU dans l'identi�cation des zones critiques sont
signi�cativement supérieures à celles du critère Dang Van traditionnel. En�n, l'intérêt principal
de l'apprentissage PU réside dans la modélisation qui sépare les e�ets du critère de fatigue
(classi�eur PU) et des conditions d'essai (propension) qui ont une in�uence sur les étiquettes
observées.

Dans le cadre de cette thèse, nous avons développé de nouveaux outils statistiques pour
l'identi�cation de zones critiques à partir de modèles numériques : des classi�eurs obtenus par
des méthodes classiques de classi�cation supervisée et des classi�eurs PU qui tiennent compte
du bruit d'étiquette spéci�que aux essais de fatigue. Une fois les classi�eurs estimés, ils peuvent
être facilement déployés dans un logiciel d'analyse par éléments �nis pour fournir des prédictions
sur di�érentes zones d'une conception. Comme pour le coe�cient de danger du critère de Dang
Van, il est simple d'évaluer la probabilité que chaque zone soit critique.

Le déploiement de la méthodologie est représenté sur la Figure A. Sur cet exemple de modèle
de berceau sous chargement longitudinal, les prédictions du critère de Dang Van et celles du
classi�eur PU sont comparées. Rappelons que le coe�cient de danger d'une zone est dé�ni
comme le coe�cient de danger maximal parmi les éléments de la zone. Il est tout d'abord
important de noter que le critère identi�é par apprentissage PU ne met en évidence que quelques
zones critiques, la majorité reste bleue (sûre). A l'inverse, le coe�cient de danger de Dang Van est
élevé (valeurs proches du seuil 0 ou au-dessus) pour un grand nombre de zones. Par conséquent,
suivre les prédictions du critère de Dang Van nécessiterait de nombreux renforcements de la pièce,
la plupart de ces renforcements étant probablement inutiles. Au lieu de cela, l'apprentissage PU
génère moins de faux positifs et est plus à même de guider les équipes de conception a�n qu'elles
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se concentrent sur les zones les plus critiques (celles qui ont le plus de chance de casser à l'essai).
De plus, les zones connues d'amorçage de �ssures sont mieux identi�ées par le critère PU que
par le coe�cient de danger de Dang Van. Globalement, ces observations con�rment le gain
substantiel en performances obtenu par les critères statistiques de fatigue par rapport au critère
classique de Dang Van.

Perspectives

Ces travaux ont ouvert la voie au développement et au déploiement de critères statistiques de
fatigue facilitant le dimensionnement à la fatigue des pièces de sécurité des véhicules. Plusieurs
directions de recherche restent ouvertes et pourraient conduire à des améliorations signi�catives
de la méthodologie et de son e�cacité.

Extension de l'approche à d'autres pièces

Dans le cadre de cette thèse, seuls des modèles de berceaux et de traverses ont été considérés.
Ces pièces de sécurité des véhicules concentrent la majorité des problèmes de dimensionnement du
fait de leur complexité (géométrie, grand nombre de soudures...). Cependant, le dimensionnement
à la fatigue ne se limite pas à ces deux types de pièces mécaniques. Par conséquent, la méthodologie
développée dans cette thèse peut être étendue au-delà de ces deux types de pièces mécaniques
et même au-delà du périmètre de la Liaison Au Sol (LAS) : par exemple, des applications au
système de propulsion (packs batteries) pourraient être envisagées. Un dé� supplémentaire serait
de mélanger des modèles à éléments �nis volumiques (3D) avec des modélisations coques (2D)
dans la base de données fatigue et dans l'estimation des critères de fatigue. Pour l'instant, seuls
des modèles coques sont considérés. En�n, une autre perspective serait d'étudier l'applicabilité
de cette méthodologie à la fatigue vibratoire.

Amélioration de la base de données fatigue

Initialement composée de quelques études de cas, la base de données a ensuite été enrichies au
cours de la thèse, atteignant environ 40 études de cas et 300 observations de �ssures. Cependant,
le potentiel de données disponibles est bien plus conséquent. L'augmentation de la taille de la
base de données permettrait d'accroître la diversité des géométries et des chargements considérés
et ainsi de renforcer les critères statistiques estimés.

D'un point de vue pratique, le développement de la base de données fait face à deux principaux
dé�s. Tout d'abord, cette base s'appuie sur deux sources de données di�érentes (résultats de
calculs par éléments �nis et rapports d'essais de fatigue). Les calculs numériques et les essais
de fatigue n'étant pas réalisés par les mêmes équipes, il n'est pas toujours aisé de rassembler a
posteriori un résultat de calcul par éléments �nis avec le rapport d'essai de fatigue correspondant.
Par ailleurs, la construction de la base de données fatigue nécessite d'étiqueter manuellement les
zones d'amorçage de �ssure sur le modèle numérique. Ce processus d'étiquetage manuel est
parfois compliqué car nous n'avons accès qu'aux photos des amorces de �ssures (via le rapport
d'essai de fatigue) et il n'est pas toujours simple de localiser ces zones critiques sur le modèle
numérique.

À l'avenir, il serait certainement plus facile de faire l'étiquetage lors des essais de fatigue. En
e�et, les équipes en charge des essais de validation pourraient mieux localiser les zones d'initiation
de �ssures car elles ont accès au prototype et n'ont pas à se �er aux photos. De plus, comme
les calculs par éléments �nis sont e�ectués avant les essais, le modèle numérique pourrait être
transmis à l'équipe en charge de la conduite des essais de fatigue a�n qu'elle puisse reporter les
résultats des essais sur le modèle numérique. Cela permettrait d'alimenter la base de données de
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façon continue et e�cace.

Un autre axe d'amélioration concernant la base de données est la précision des calculs par
éléments �nis. Dans ce travail (et dans le dimensionnement en fatigue en général), les critères de
fatigue appliqués reposent sur des grandeurs physiques calculées à l'aide du modèle numérique.
Les résultats des calculs par éléments �nis restent incertains, en particulier sur certaines zones à
géométrie complexe (trous, encoches, soudures...). Une grande partie des di�cultés des modèles
de fatigue à prévoir les zones critiques est due aux limites de la modélisation par éléments
�nis qui ne tient pas compte de plusieurs phénomènes (procédés de fabrication, contraintes
résiduelles). L'amélioration de ces modèles étant un sujet actif dans l'industrie automobile, nous
pouvons nous attendre à ce que les modèles à éléments �nis gagnent en précision dans un futur
proche. En conséquence, la base de données fatigue pourrait béné�cier de jeux de données de
meilleure qualité, ce qui améliorerait également la caractérisation des phénomènes de fatigue par
l'utilisation des méthodologies développées dans cette thèse.

Meilleure prise en compte de la géométrie dans les critères de fatigue

Les critères de fatigue développés dans cette thèse s'appuient sur plusieurs variables dont
des descripteurs géométriques de zones (épaisseur, contraintes exprimées dans un repère local
pour les singularités...). Ces caractéristiques géométriques ont été choisies au début de l'étude
(cf. Chapitre 2). À l'avenir, il serait intéressant d'étudier comment ces choix peuvent être
justi�és statistiquement et d'explorer d'autres méthodes qui pourraient mieux rendre compte
de la géométrie.

Rappelons tout d'abord que la construction des zones repose sur certains paramètres choisis
empiriquement dans la section 2.2 : un critère de sélection pour limiter le nombre de zones et
un rayon délimitant la taille d'une zone. Il serait intéressant d'étudier comment les modèles
et performances estimés dépendent de ces hyper-paramètres. Cela aiderait à concevoir une
méthodologie pour sélectionner ces hyper-paramètres.

De plus, parmi les 60 variables introduites dans la sous-section 2.2.3, certaines caractérisent
l'élément le plus critique de la zone. Cet élément est identi�é comme celui ayant le coe�cient
de danger de Dang Van maximal sur la zone, considéré comme l'élément ayant le plus de chance
d'amorcer à l'essai. Cette hypothèse pourrait être assouplie en laissant le modèle d'apprentissage
traiter l'incertitude concernant l'emplacement précis de l'initiation de la �ssure. En particulier,
le Multiple Instance Learning (MIL, cf. Sabato and Tishby, 2012; Herrera et al., 2016) pourrait
fournir une solution à ce problème. Le MIL est une méthode de classi�cation supervisée où seuls
des sacs (groupes) d'observations sont étiquetés. Dans le cadre binaire, un groupe d'observations
est étiqueté positif si au moins une observation est positive ; sinon, il est étiqueté négatif. Par
conséquent, le MIL semble bien adapté à notre tâche, car nous n'avons que des zones étiquetées
(groupes d'éléments) et ne savons pas avec certitude quel(s) élément(s) a causé l'initiation de la
�ssure.

En�n, les critères de fatigue estimés dans le cadre de cette thèse ne tiennent compte que d'un
nombre limité de caractéristiques géométriques. Comme nous l'avons vu, certaines zones critiques
sont encore mal identi�ées par les critères en raison des limites et des incertitudes du modèle à
éléments �nis. Une meilleure prise en compte de la géométrie pourrait aider à identi�er les zones
critiques. Même si les e�ets liés aux procédés de fabrication et aux contraintes résiduelles ne
peuvent pas être calculés, deux zones avec une géométrie et des matériaux similaires auront une
résistance à la fatigue similaire. Par conséquent, considérer l'ensemble de la géométrie de la zone
(forme, courbure, ...) dans le critère pourrait aider à améliorer les prédictions. Une perspective
intéressante serait de considérer la zone comme une image tridimensionnelle et d'utiliser des
méthodes d'apprentissage profond adaptées pour extraire des caractéristiques permettant de
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Figure B: Exemple de zone sur un modèle à éléments �nis (gauche) et de sa conversion en nuage
de points (droite).

mieux prédire le risque d'initiation de �ssures. Bien entendu, une image tridimensionnelle
(voxels) n'est probablement pas le format le plus approprié, les pièces mécaniques étant des
structures planes. Une solution serait de convertir une zone en nuage de points en échantillonnant
des points sur la zone (cf. Fig. B) et de considérer ce format pour les données d'entrée. Une autre
solution serait de considérer directement les données brutes (maillage de la zone) : une zone peut
ainsi être considérée comme un graphe avec des sommets (éléments) et des arêtes (liens entre
éléments). Au cours des dernières années, di�érentes architectures de réseaux de neurones ont
été développées pour répondre à ce type de tâches. Par exemple, PointNet est une architecture
de réseau de neurones conçue pour résoudre des tâches d'apprentissage supervisé en considérant
les nuages de points comme données d'entrée (cf. Qi et al., 2017). De même, MeshCNN est conçu
pour des prédictions à partir de données de maillage (Hanocka et al., 2019). Ces architectures font
partie d'un cadre émergent dans l'apprentissage profond appelé Geometric Deep Learning qui
vise à développer des architectures de réseaux de neurones pour résoudre des tâches impliquant
des structures de données spéci�ques telles que des nuages de points, des graphes, des maillages
et des variétés (Bronstein et al., 2017). Ces méthodes pourraient aider à prédire les �ssures de
fatigue et pourraient également servir à d'autres applications impliquant l'analyse de modèles à
éléments �nis.

Perspectives pour l'apprentissage PU

L'une des principales contributions de cette thèse est l'étude de l'apprentissage PU sous
l'hypothèse SAR et le développement d'une méthodologie pratique pour estimer des critères de
fatigue. L'apprentissage PU demeure un sujet de recherche actif et certains problèmes restent
ouverts.

Une extension naturelle des résultats théoriques démontrés dans le chapitre 3 serait d'étudier
l'apprentissage PU pour des fonctions de perte convexes. En e�et, ce travail se concentre sur
un risque empirique fondé sur une fonction de perte 0 − 1 qui est intéressante pour étudier
les propriétés théoriques de l'apprentissage PU. Cependant, en pratique, l'optimisation d'un tel
risque est intractable numériquement. Une solution classique pour surmonter cette di�culté est
de considérer des fonctions de perte convexes pour lesquelles l'optimisation est tractable. Il serait
donc intéressant d'étendre les garanties théoriques à ces fonctions de perte. Ce problème a déjà
été étudié dans le cadre de la classi�cation binaire standard (cf. Bartlett et al., 2006; Blanchard
et al., 2008). En outre, Plessis et al. (2014) ont prouvé des bornes de risque sous l'hypothèse
SCAR en utilisant des fonctions de perte convexes, mettant en évidence un taux de convergence
paramétrique. Dans la thèse, des expériences numériques ont été réalisées sous l'hypothèse SAR
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en utilisant une perte logistique, qui présente également un taux de convergence paramétrique
a�ecté par la propension (cf. Section 3.6).

Les bornes de risque du chapitre 3 dépendent de la propension, plus particulièrement de
son minimum qui est supposé strictement positif. Cette hypothèse sur la propension reste forte
et il serait intéressant d'étudier dans quelle mesure elle pourrait être relâchée. Par exemple,
on pourrait autoriser la propension à prendre des valeurs arbitrairement proches de 0 dans la
mesure où cela ne se produirait qu'avec une faible probabilité. Les simulations de la section 3.6
traitent le cas d'une propension logistique écrêtée a�n de rester au-dessus d'une valeur minimale
em > 0. Cependant, lorsque em tend vers 0, l'excès de risque se stabilise, ce qui signi�e que nous
avons toujours un taux de convergence similaire même si la propension peut prendre des valeurs
arbitrairement petites.

La méthodologie d'apprentissage PU développée dans ce manuscrit soulève également d'autres
dé�s. D'abord, la sélection de variables reste un problème crucial, surtout si le nombre de
variables est du même ordre de grandeur que le nombre d'observations étiquetées. Ce problème
est même double car on pourrait avoir besoin de sélectionner des variables à la fois dans le modèle
de classi�cation et dans la propension.

Ensuite, une autre direction intéressante serait de considérer d'autres modèles de classi�cation
comme classi�eur PU (SVM, forêts aléatoires...) et d'adapter la méthodologie à ces modèles.
En particulier, nous avons vu que les forêts aléatoires obtenait de meilleurs résultats que la
régression logistique sur le jeu de données de fatigue en classi�cation standard (cf. Section 3.1).
Par conséquent, nous pouvons nous attendre à de meilleures performances de classi�cation en
tirant parti de ces méthodes dans le cadre de l'apprentissage PU.

En�n, une approche alternative à l'apprentissage PU est la classi�cation de Neyman-Pearson.
Blanchard et al. (2010) ont développé une méthodologie d'apprentissage PU dans ce cadre
sous l'hypothèse SCAR. L'intérêt de la classi�cation de Neyman-Pearson est qu'elle vise à
minimiser le risque de seconde espèce (taux de faux positifs) sous contrôle du risque de première
espèce (taux de faux négatifs). Ceci est particulièrement intéressant pour l'application au
dimensionnement à la fatigue car on n'accorde pas la même importance aux deux types de
risques : le risque de première espèce est plus important (proportion de zones critiques non
identi�ées) que celui de seconde espèce (proportion de zones sûres prédites comme critiques). Par
conséquent, il serait intéressant d'étudier l'extension potentielle de la classi�cation de Neyman-
Pearson à l'apprentissage PU sous l'hypothèse SAR.
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General conclusion

The objective of this thesis was the development of statistical fatigue criteria to better identify
weaknesses in numerical models of mechanical parts. This improvement in the detection and
characterization of so-called critical zones can avoid lengthy and expensive iterations between
conception and validation tests. Consequently, the development cost and duration can be
reduced. The results presented in this thesis rely on a fatigue database gathering data from
previous numerical designs along with corresponding validation tests. While most fatigue models
are calibrated on small-scale and elementary components (coupon tests), we investigated how
this new source of data could be leveraged to improve the prediction of fatigue risks.

We introduced existing fatigue models highlighting a di�erence between fatigue lifetime
models and fatigue criteria. The former seeks to model the lifetime of a mechanical part given
the stresses it is subjected to: from a statistical point of view, this is a regression task. The
latter aims at indicating whether or not the stress cycle applied to the mechanical part is above
the fatigue limit: this is a classi�cation task. As the objective of fatigue design is to guarantee
that the part satis�es the durability requirements, we are interested in fatigue criteria.
We then carried out an exploratory analysis of Stellantis fatigue data set. A pre-processing
of the data allowed to group observations by zones with a triple bene�t. First, the imbalance
between broken and unbroken zones was drastically reduced. Second, it allowed to consider the
observations (zones) as independent whereas two nearby elements are strongly correlated. Third,
it is more robust to errors in the localization of crack initiations. A set of appropriate features
was introduced to describe zones: stress invariants on the most critical element of the zone,
spatial average of physical quantities, geometric information and features speci�c to singularities
(welds and edges). The richness of the fatigue database was demonstrated by conducting an
unsupervised analysis helping to identify di�erent types of zones characterized by di�erent groups
of variables. Even if this preliminary analysis did not help the identi�cation of critical zones, it
provided useful insights on the data set.
We then addressed the estimation of multiaxial fatigue criteria. A probabilistic Dang Van
criterion was introduced, allowing to jointly estimate the material and dispersion parameters.
This criterion was estimated on an auxiliary data set gathering numerical results and fatigue test
data on welded elementary structures. However, this probabilistic criterion poorly generalizes
to the identi�cation of critical zones on real-scale and complex mechanical parts. Therefore, we
directly relied on Stellantis data set to estimate fatigue criteria using supervised classi�cation
methods. These statistical fatigue criteria provide improved prediction performances compared
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to Dang Van criterion. The main added value of these criteria compared to the standard ones
is their ability to account for a larger number of features, which explains this signi�cant gain in
performance.

The supervised classi�cation methods treat only the crack initiations as positive instances.
However, a zone without detected crack initiation can still be critical. Indeed, due to the severity
of the test, its duration and the randomness of crack initiation, a critical zone may remain
undetected during a fatigue test and thus unlabeled. Conversely, a crack initiation is an asserted
critical zone. Accounting for this asymmetric label noise in classi�cation is the objective of PU
learning. In some sense, PU learning can be seen as a censorship mechanism in a classi�cation
framework. While censorship usually a�ects the estimation of regression models (lifetime models
in reliability for instance), PU learning deals with the estimation of classi�ers under censorship
among class observations. This problem was studied theoretically and practically.

From a theoretical point of view, we studied PU learning under the SAR assumption, meaning
that the probability for a positive instance to be labeled (i.e. the propensity) depends on the
covariates. We proved upper and lower risk bounds emphasizing how the convergence rate
depends on the propensity (i.e. the amount of label noise). The results were illustrated through
numerical experiments that support the theoretical convergence rates.
Overall, the theoretical results help understanding the di�culty of the estimation of a PU learning
classi�er. A low propensity results in fewer positive instances labeled and thus a more di�cult
task. Conversely, as the propensity tends to 1, the performances of PU learning tend to those
of fully supervised classi�cation. The role of propensity is thus crucial. In fatigue applications,
augmenting the severity (or duration) of the test increases the probability for a critical zone to
initiate and thus be labeled. Hence, the propensity is increased. Therefore, increasing the severity
of fatigue tests can facilitate the estimation of PU learning fatigue criteria. However, in practice,
the test severity cannot be augmented inde�nitely: this would expose the mechanical part to
other failure modes that are not part of fatigue design (plasticity). All in all, the theoretical
results strengthen an already well established principle in the validation of resistance in fatigue
design: the fatigue tests should be performed at a severity close to the resistance of the part.
If the severity is too low, the component is unlikely to fail and the fatigue resistance might be
impossible to estimate.

We �nally developed a practical methodology to estimate a PU learning classi�er adapted to
the context of fatigue. This methodology relies on parametric models both on the fatigue criterion
(classi�er) and the propensity. The propensity accounts for the testing conditions through the
calculation of an equivalent severity. The estimation of the parameters is carried out through
maximum likelihood using the EM algorithm. The interest of the methodology is illustrated on
simulated data. Then, the application of the method to the fatigue data set provides interesting
results. The performances of PU learning are compared to standard classi�cation and to Dang
Van criterion. Compared to standard classi�ers, PU learning better models the risk of crack
initiation. When evaluating the models on the predicted classes, both non-traditional and PU
classi�er provide similar performances. However, the evaluation metrics may be biased due
to the presence of PU label noise in the testing data. As for classical supervised methods,
the performances of PU learning classi�ers in the identi�cation of critical zones are signi�cantly
higher than those of the traditional Dang Van criterion. Finally, the main interest of PU learning
lies in the model that separates the e�ects of the fatigue criterion (PU classi�er) and the testing
conditions (propensity) that impact the observed labels.

In the scope of this thesis, we have developed new statistical tools for the identi�cation of
critical zones in numerical models: classi�ers obtained through classical supervised classi�cation
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Figure A: PU learning predictions (left) and Dang Van criterion (right) on a FEM (cradle model
under longitudinal loading): dangerous zones in red, safe zones in blue. The grey zones on the
FEM were not selected during the pre-processing (construction of zones, cf. Subsection 2.2.2):
they should be considered as blue. The crack initiation locations on this side of the part are
highlighted as dark circles.

methods and PU classi�ers that account for label noise speci�c to fatigue tests. Once the
classi�ers are estimated, they can be easily deployed in Finite Element software to provide
predictions on di�erent zones of a conception. As for the danger coe�cient of Dang Van criterion,
it is straightforward to evaluate the probability for each zone to be critical.

The deployment of the methodology is represented in Figure A. On this example of cradle
model under longitudinal loading, the predictions of Dang Van criterion and those of PU learning
are compared. We recall that the danger coe�cient of a zone is de�ned as the maximum danger
coe�cient among the elements of the zone. It is �rst important to note that PU learning criterion
highlights only a few critical zones, the majority remains blue (safe). Conversely, Dang Van
danger coe�cient is high (values close to the threshold 0 or above) for a large number of zone.
Hence, following the predictions of Dang Van criterion would require many reinforcements on the
part: most of these reinforcement may be unnecessary. Instead, PU learning has less false alarms
and is more likely to guide the conception teams into focusing on the most critical locations (those
that are more likely to fail during testing). Moreover, the known crack initiation locations are
better identi�ed by PU learning criterion than through Dang Van danger coe�cient. Overall,
these observations con�rm the substantial gain in performances achieved by statistical fatigue
criteria compared to the classical Dang Van criterion.

Perspectives

This work paved the way for the development and deployment of statistical fatigue criteria
improving the numerical design of safety parts of vehicles. Several research directions remain
open and could lead to signi�cant improvements on the methodology and on its e�ciency.
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Extending the approach to other mechanical parts

In the scope of this thesis, only cradle and cross-member models were considered. These safety
parts of the vehicles concentrate the majority of design issues due to their complexity (complex
geometry, great number of welds...). However, fatigue design is not limited to these two types of
mechanical parts. Therefore, the methodology developed in this thesis can be extended beyond
these two types of mechanical parts and even beyond the scope of chassis components: for
instance, applications to propulsion system (battery packs) could be considered. An additional
challenge would be to mix volumetric FEM with shell models in the fatigue database and in
the estimation of fatigue criteria. For now, only shell models are considered. Finally, another
perspective would be to study the applicability of this methodology to vibration fatigue.

Improving the fatigue database

Initially composed of a few case studies, the database was consequently developed during
the thesis, reaching about 40 case studies and 300 crack instances. However, the potential of
available data is far more consequent. Increasing the size of the database would allow to enhance
the diversity of geometries and loadings considered and thus strengthen the estimated statistical
criteria.

From a practical point of view, the development of the database faces two main challenges.
First, it relies on two di�erent sources of data (FEM results and fatigue test reports). As the
numerical calculations and the fatigue tests are not performed by the same teams, it is not always
easy to gather a posteriori a FEM result with the corresponding fatigue test report. Besides,
the construction of the fatigue database requires to manually label the crack initiation zones
on the numerical model. This manual labeling process is sometimes complicated as we only
have access to photos of crack initiations (through the fatigue test report) and it is not always
straightforward to identify these critical locations on the numerical model.

In the future, it would be easier to do the labeling during the fatigue tests. Indeed, the
teams in charge of validation tests could better locate crack initiation zones as they can see the
prototype and do not have to rely on photos. Besides, as the FEM calculations are performed
before testing, the numerical model could be transferred to the team in charge of conducting the
fatigue tests so that they can report the tests outcome on the FEM. This would allow to develop
continuously and e�ciently the database.

Another axis of improvement regarding the database is the accuracy of FEM calculations.
In this work (and in fatigue design in general), the fatigue criteria applied rely on physical
quantities calculated through numerical models. The FEM results remain uncertain, especially
on locations with complex geometry (holes, notches, welds...). A great part of the di�culties of
fatigue models in predicting critical zones is due to the limits of FEM that do not account for
several phenomena (manufacturing processes, residual stresses). As the improvement of FEM is
an active topic in the automotive industry, we can expect the FEM to gain in accuracy in the
near future. As a consequence, the fatigue database could bene�t from higher quality data sets,
which would also improve the characterization of fatigue phenomena using the methodologies
developed in this thesis.
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Better account for geometry in fatigue criteria

The fatigue criteria developed in this thesis rely on multiple features including geometric
descriptors of zones (thickness, stresses expressed in a local coordinate system for singularities...).
These geometric features were chosen at the beginning of the study (cf. Chapter 2). As future
perspective, it would be interesting to investigate how these choices can be justi�ed statistically
and to explore other methods that could better account for the geometry.

First, we recall that the construction of zones relies on a few parameters empirically chosen
in Section 2.2: a selection criteria to limit the number of zones and a radius delimiting the
size of the zone. It would be interesting to study how the estimated models and performances
depend on these hyper-parameters. This would help designing a methodology to select those
hyper-parameters.

Second, among the 60 features introduced in Subsection 2.2.3, some of them characterize the
most critical element of the zone. This element is identi�ed as the one with the maximum Dang
Van fatigue coe�cient over the zone, considered as the element most likely to cause the crack
initiation. This assumption could be relaxed by letting the machine learning model deal with the
uncertainty concerning the precise location of crack initiation. In particular, Multiple Instance
Learning (MIL, cf. Sabato and Tishby, 2012; Herrera et al., 2016) might provide a solution to
this issue. MIL is a supervised classi�cation method where only bags (groups) of observations
are labeled. In the binary setting, a group of observations is labeled positive if at least one
observation is positive; else, it is labeled negative. Hence, MIL seems to be well suited for the
task as we only have labeled zones (groups of elements) and we do not know for sure which
element(s) caused the crack initiation.

Finally, the fatigue criteria estimated in the scope of this thesis only account for a limited
number of geometric features. As we have seen, some critical zones are still poorly identi�ed
by the criteria due to the limits and uncertainties in FEM. Accounting better for the geometry
may help the identi�cation of critical zones. Even if manufacturing process e�ects and residual
stresses cannot be calculated, two zones with similar geometry and materials will have similar
fatigue resistance. Therefore, considering the whole geometry of the zone (shape, curvature,
...) in the criterion can help improve the predictions. An interesting perspective would be to
consider the zone as a three-dimensional image and use adapted deep learning methods to extract
high level features and predict the risk of crack initiation. Of course, a three-dimensional image
(voxels) may not be the most appropriate format: as the mechanical parts are planar structures,
such a representation will raise sparsity issues. Alternatively, a zone can be easily converted into
a point cloud by sampling points on the zone (cf. Fig. B). Another solution is to consider directly
the raw data entry (meshing of the zone): a zone can thus be considered as a graph with vertices
(elements) and edges (links between elements). Over the past few years, di�erent neural network
architectures have been developed to address this kind of tasks. For instance, PointNet is a
neural network architecture designed to solve tasks considering point clouds as entry data (cf. Qi
et al., 2017). Similarly, MeshCNN is designed for predictions based on meshing data (Hanocka
et al., 2019). These architectures are part of an emerging framework in deep learning called
Geometric Deep Learning that aims at developing neural network architectures for solving tasks
involving speci�c data structures like point clouds, graphs, meshes and manifolds (Bronstein
et al., 2017). These methods could help predict fatigue cracks and could also serve for other
applications involving the analysis of FEM.

155



CONCLUSION AND PERSPECTIVES

Figure B: Example of zone on FEM (left) and its conversion as a point cloud (right).

Perspectives on PU learning

One of the main contributions of this thesis is the study of PU learning under the SAR
assumption and the development of a practical methodology to estimate fatigue criteria. PU
learning remains an active research topic and some problems remain open.

A natural extension to the theoretical results proved in Chapter 3 would be to study PU
learning with surrogate loss functions. Indeed, this work focus on an empirical risk based on a
0− 1 loss function which is interesting to study theoretical properties of PU learning. However,
in practice, the optimization of such a risk is numerically intractable. A standard solution
to overcome this di�culty is to consider convex loss functions for which the optimization is
numerically tractable. It would thus be interesting to extend the theoretical guarantees to
these loss functions. This problem was already studied for standard binary classi�cation setting
(cf. Bartlett et al., 2006; Blanchard et al., 2008). Besides, Plessis et al. (2014) proved risk
bounds under the SCAR assumption using surrogate loss functions, highlighting a parametric
convergence rate. In the thesis, numerical experiments were carried out under the SAR assumption
using a logistic loss, which also exhibits a parametric convergence rate a�ected by the propensity
(cf. Section 3.6).

The risk bounds of Chapter 3 depend on the propensity through its minimum which is
assumed to be strictly positive. This assumption on the propensity remains strong and it would
be interesting to investigate if it could be relaxed. For instance, one could only assume that
the propensity can take values arbitrarily close to 0 as far as this occurs with small probability.
The simulations of Section 3.6 cover the case of a logistic propensity clipped to remain above a
minimum value em > 0. However, as em tends to 0 the excess risk stabilizes meaning that we
still have a similar convergence rate even if the propensity can take arbitrarily small values.

The PU learning methodology developed in this manuscript also raises additional challenges.
First, variable selection remains a crucial problem especially if the number of features is of the
same order as the number of labeled instances. This challenge is even double as there may be
variable selection at the same time in the classi�cation model and in the propensity.

Then, another interesting direction would be to consider other classi�cation models as PU
classi�er (SVM, Random Forest...) and adapt the methodology to these models. In particular, we
have seen that Random Forest achieved better results than Logistic Regression on the fatigue data
set in non-traditional classi�cation (cf. Section 3.1). Therefore, we can expect better classi�cation
performances by leveraging these methods in the PU learning framework.

Finally, an alternative approach to PU learning is Neyman-Pearson classi�cation. Blanchard
et al. (2010) developed a PU learning methodology based on this framework under the SCAR
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assumption. The interest of Neyman-Pearson classi�cation is that it aims at minimizing the
second type risk (False Positive Rate) given a control on the �rst type risk (False Negative Rate).
This is particularly interesting in fatigue design application as we do not give the same importance
to both types of risks: the �rst type risk is more important (proportion of critical zones that are
not identi�ed) than the second type (proportion of safe zones predicted as critical). Therefore,
it would be interesting to study the potential extension of Neyman-Pearson classi�cation to PU
learning under the SAR assumption.
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Titre: Un point de vue statistique sur les critères de fatigue : de la classi�cation supervisée à l'apprentissage
positif-non labellisé
Mots clés: Critère de fatigue, Classi�cation, Bruit d'étiquetage, Apprentissage positif-non labellisé, Bornes de
risque.

Résumé: La �abilité des véhicules est un enjeu
majeur pour les constructeurs automobiles. En
particulier, la fatigue mécanique est une préoccupation
importante du bureau d'études. En e�et, la fatigue
est un phénomène complexe qui dépend du design
de la pièce (géométrie, matériaux utilisés), des
procédés de fabrication, et des chargements externes
subis par la pièce. Le dimensionnement à la
fatigue repose sur une modélisation numérique de
la pièce et sur l'application de critères de fatigue
déterministes a�n d'identi�er de potentielles faiblesses
sur la conception. Ces critères, bien qu'e�caces
sur des géométries simples, ne su�sent pas à
prédire correctement les risques d'amorçage sur des
composants complexes. Cela entraîne un allongement
des temps de développement et une augmentation des
coûts liés aux prototypes physiques. Pour y remédier,
les constructeurs automobiles recherchent de nouvelles
méthodes digitales, pour mieux identi�er les zones
critiques sur de nouvelles conceptions.

Dans cette thèse, nous construisons une base
de données fatigue, à partir d'informations mises à
disposition par Stellantis, regroupant des résultats

numériques et des comptes rendus d'essais de fatigue.
Une analyse non supervisée du jeu de données
est réalisée, permettant de mieux comprendre sa
structure ainsi que les liens entre les covariables
disponibles. Ensuite, l'application de méthodes
d'apprentissage supervisé (régression logistique, forêts
aléatoires, SVM à noyau...) permet d'estimer des
critères de fatigue o�rant de meilleures prédictions
que le critère mécanique déterministe usuel. Une
di�culté de l'analyse provient du fait que l'étiquetage
des zones est a�ecté par un bruit asymétrique,
ce qui motive une approche originale fondée sur
l'apprentissage positif-non labellisé (PU learning).
Cette approche est abordée suivant tous les angles:
théorique, méthodologique et appliqué. De nouvelles
bornes de risques adaptées à ce cadre spéci�que sont
démontrées. Une méthodologie est proposée pour
l'estimation d'un classi�eur PU à partir des données.
En�n, la méthodologie est évaluée sur des jeux de
données simulés ainsi que sur les données de fatigue.
Les performances obtenues con�rment l'intérêt de la
méthode et son utilité pour le constructeur automobile.

Title: A statistical point of view on fatigue criteria: from supervised classi�cation to positive-unlabeled learning
Keywords: Fatigue criterion, Classi�cation, Label noise, PU learning, Risk bounds.

Abstract: The reliability of vehicles is a major issue for
automotive manufacturers. In particular, mechanical
fatigue is an important preoccupation of the design
o�ce. Indeed, fatigue is a complex phenomenon that
depends on the design of the part (geometry, materials
used), the manufacturing and on the external loads
it is subjected to. In order to design a safety part
against fatigue, the part is numerically modeled and
a deterministic fatigue criterion is applied to identify
potential weaknesses. If these criteria prove to be
e�ective when evaluated on experimental test data
with standardized specimens, they are less e�ective for
rig tests with prototypes. This results in an increase
in development costs and duration. In order to remedy
this issue, car manufacturers seek new digital tools to
better predict the fatigue risks on new design proposals.

In this thesis, we build a fatigue database,
based on information provided by Stellantis, gathering
numerical results along with fatigue test reports on
prototypes. Unsupervised machine learning methods

are applied o�ering a better understanding of the
structure of the database and the relations between the
available features. Then, the application of supervised
machine learning methods (logistic regression, random
forests, kernel SVM...) allows to estimate fatigue
criteria o�ering better predictions than the standard
fatigue criterion. However, the binary labels in
this classi�cation task are a�ected by a completely
asymmetric label noise. This motivates an original
approach to fatigue criteria estimation based on
Positive-Unlabeled learning (PU learning). This
problem is studied from all angles: theory, methodology
and application. First, new risk bounds, adapted to
this speci�c framework, are proved. Then, we develop
a practical methodology to estimate a PU classi�er.
Finally, the methodology is evaluated on simulated
data and on the fatigue database. The prediction
performances con�rm the interest of the methodology
and its utility for car manufacturers.


	Remerciements
	Introduction générale (en français)
	General introduction
	Fatigue design of automotive chassis parts
	Fatigue of materials
	Strength of materials
	Definition of fatigue
	Parameters influencing the fatigue resistance of metallic materials

	Modeling fatigue risks
	S-N fatigue models
	Stress tensors and invariants
	Multiaxial fatigue criteria
	Dang Van fatigue criterion

	Fatigue design of complex mechanical parts
	Stress-Strength interference method
	Fatigue rig tests for validation
	Pre-validation of a conception through numerical simulation
	Conclusion

	Issues and objectives

	Fatigue database: presentation and first analyses
	Presentation of the database
	Simulation results from finite element models
	Rig test reports
	Including rig test information in the simulation results

	From elements to groups of elements: definition of zones
	Grouping elements by zones: motivations
	Method for grouping elements
	Features to describe zones

	Unsupervised analysis
	Principal Component Analysis
	Feature clustering
	Co-clustering
	Conclusion

	Probabilistic fatigue criterion using welded coupon specimen
	Fayard welded specimens and estimation of a deterministic fatigue criterion
	Construction of a probabilistic Dang Van criterion
	Results on Fayard coupon specimens
	Conclusion

	Supervised classification methods for fatigue crack predictions
	Fatigue crack prediction as a supervised classification task
	Supervised classification methods
	Performance metrics for classification
	Application to the fatigue database

	Conclusion

	Risk bounds for PU learning under the SAR assumption
	Traditional classification setting
	General setting
	Risk bounds in the standard classification

	PU learning context
	PU learning applications
	PU learning settings
	Propensity function and assumptions

	State of the art on PU learning methodologies
	Non-traditional classifiers
	Two-step methods
	Neyman-Pearson classification
	PU learning as cost-sensitive learning
	Ensemble methods
	Deep Generative Modeling
	Conclusion

	Unbiased risk estimators for PU learning
	Bias issue with labeled-unlabeled classification
	Unbiased empirical risk minimization under the SCAR assumption
	Extension to PU learning under the SAR assumption

	Upper and lower risk bounds for PU learning
	An upper bound for PU learning excess risk under the SAR assumption
	A lower bound on the minimax risk

	Numerical experiments
	Simulation setting
	PU learning empirical risks
	Convergence rates
	Using a tractable loss function
	Conclusion

	Proofs and technical lemmas
	Proof of Theorem 3.5.1
	Proof of minimax lower bounds
	Universal entropy metric and related properties
	Technical lemmas


	Fatigue criterion construction through PU learning
	Fatigue criterion under the point of view of PU learning
	Fatigue criterion and PU classification
	Modeling the propensity in fatigue
	Conclusion

	PU learning: methods and models
	Methods
	Models

	Identifiability
	Identifiability in PU-LR setting
	Identifiability in PU-DA setting
	Conclusion

	Joint estimation of classification rule and propensity
	Maximum likelihood with the EM algorithm
	EM algorithm
	Estimation for PU logistic regression
	Estimation for PU-DA
	Initialization and stopping criterion
	Conclusion

	Numerical experiments on simulated data
	Simulation setting
	Parameter estimation
	Classification performances on multiple experiments
	Conclusion

	Application of PU learning to fatigue design
	Estimating and evaluating fatigue criteria
	PU learning: 2D criterion using Dang Van variables
	PU learning with additional variables
	Conclusion


	Conclusion et perspectives (en français)
	Conclusion and perspectives
	Bibliography

