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Titre: Explorant le paysage des compacti�cations de la corde hétérotique
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Résumé: L'objectif principal de cette thèse est

d'étudier l'espace des modules d'un large ensemble de

compacti�cations de la théorie des cordes hétérotiques

et, en particulier, de trouver et classer la liste des

groupes de jauge qui sont réalisés dans de telles théor-

ies. Nous commençons par analyser le cas des com-

pacti�cations sur un cercle, en développant une tech-

nique pour calculer et représenter les régions dans

l'espace des modules où il y a des groupes augmentés

de symétrie.

A l'aide des techniques des réseaux, nous énonçons

des critères généraux pour établir si un groupe de jauge

est réalisé ou non dans les compacti�cations sur T d,
créant une série d'algorithmes pour explorer complète-

ment ces espaces de modules. Pour d = 2, on trouve

que les groupes de jauge respectifs coïncident avec

toutes les �bres singulières possibles des surfaces ex-

trêmes K3, corroborant la dualité avec Théorie F sur

une surface K3. Nous construisons également une

méthode pour transformer les modules sous T-dualité

et construisons la carte qui relie les modules des cordes

hétérotiques E8 × E8 et SO(32) sur un tore.

Nous analysons également les compacti�cations

de la corde hétérotique sur les orbifolds asymétriques

T d/Z2 qui réalisent la dite corde CHL. Ceci est par-

ticulièrement intéressant car les cas d = 2 et d = 3
sont duaux respectivement de la théorie F et de la

théorie M sur un K3 à singularité �gée, qui ne sont

pas bien compris. Nous étudions en détail ces théor-

ies et, avec quelques modi�cations à nos algorithmes,

explorons et trouvons tous les groupes de symétrie,

véri�ant qu'ils satisfont une condition de centre sans

anomalie découverte très récemment.

En�n, nous obtienons la liste complète des groupes

de jauge qui sont réalisés dans la corde hétérotique en

7d et 6d, y compris les compacti�cations toroïdales

ordinaires, le CHL et quatre autres composants réal-

isés via des triplets d'holonomie non triviaux. Nous

dérivons une carte qui relie les groupes de jauge sur le

compacti�cations toroïdales aux autres composants.

En 7d, il coïncide avec le mécanisme de gel des singu-

larités en théorie M sur K3; tandis qu'en 6d on montre

que les gels possibles pour chaque groupe de jauge

sont déterminés par sa topologie.

Title: Exploring the landscape of heterotic string compacti�cations

Keywords: Heterotic String, Compacti�cations, Gauge Symmetry, Superstring Vacua, Dualities

Abstract: The main goal of this thesis is to study

the moduli space of a broad set of compacti�cations of

heterotic string theory and, in particular, to �nd and

classify the list of gauge groups that are realized in

such theories. We start by analyzing the case of circle

compacti�cations, developing a technique to compute

and represent the regions of enhancement on the mod-

uli space.

Using lattice embedding techniques, we state gen-

eral criteria to establish whether a gauge group is real-

ized or not on compacti�cations on T d, creating a

series of algorithms to completely explore these mod-

uli spaces. For d = 2, we �nd that the respective

gauge groups coincide with all possible singular �bers

of extremal K3 surfaces, corroborating the duality with

F-theory on a K3 surface. We also construct a method

to transform the moduli under T-duality and build

the map that relates the moduli of the E8 × E8 and

SO(32) heterotic strings on a torus.

We also analyse compacti�cations of the heterotic

string on T d/Z2 asymmetric orbifolds which realize

the so-called CHL string. This is of interest because

the d = 2 and d = 3 cases are dual respectively to

F-theory and M-theory on a K3 with a frozen singu-

larity, which are not well understood. We study in

detail these theories and, with some modi�cations to

our algorithms, explore and �nd all the symmetry en-

hancements, verifying that they satisfy a condition for

anomaly-free one-form center brought to light very re-

cently.

Finally, we obtain the complete list of gauge groups

that are realized in the heterotic string in 7d and 6d,

including the ordinary toroidal compacti�cations, the

CHL and four other components realized via non-trivial

holonomy triples. We derive a map that relates the

gauge groups on the toroidal compacti�cations to the

other components. In 7d, it coincides with the singu-

larity freezing mechanism in M-theory on K3; while in

6d we show that the possible freezings for each gauge

group are determined by its topology.



Título: Explorando el paisaje de las compacti�caciones de la cuerda heterótica

Palabras clave: Cuerda Heterótica, Compacti�caciónes, Simetría de gauge, Vacío de supercuerdas, Dualid-

ades

Resumen: El objetivo principal de la presente tesis es

estudiar el espacio de módulos de un amplio conjunto

de compacti�caciones de la teoría de cuerdas heterót-

ica y, en particular, encontrar y clasi�car la lista de

grupos de calibre que se realizan en dichas teorías.

Comenzamos analizando el caso de las compacti�ca-

ciones circulares, desarrollando una técnica para calcu-

lar y representar las regiones de aumento en el espacio

de módulos.

Usando técnicas de encajes de látices, enunciamos

criterios generales para establecer si un grupo de cal-

ibre se realiza o no en T d, creando una serie de algor-

itmos para explorar completamente estos espacios de

módulos. Para d = 2, encontramos que los respect-

ivos grupos de calibre coinciden con todas las posibles

�bras singulares de las super�cies extremas K3, lo que

corrobora la dualidad con la teoría F en una super�cie

K3. También construimos un método para transformar

los módulos bajo T-dualidad y construimos el mapa

que relaciona los módulos de las teorías heteróticas

E8 × E8 y SO(32) en un toro.

También analizamos las compacti�caciones de la

cuerda heterótica en orbifolds asimétricos T d/Z2 que

realizan la llamada cuerda CHL. Esto es de interés

porque los casos d = 2 y d = 3 son duales respectiva-

mente a la teoría F y la teoría M en un K3 con una

singularidad congelada, que no están bien entendidos.

Estudiamos en detalle estas teorías y, con algunas

modi�caciones a nuestros algoritmos, exploramos y en-

contramos todos los aumentos de simetría, veri�cando

que satisfacen una condición de centro sin anomalías

descubierta muy recientemente.

Finalmente, obtenemos la lista completa de grupos

de gauge que se realizan en la cuerda heterótica en 7d

y 6d, incluyendo las compacti�caciones toroidales or-

dinarias, la CHL y otras cuatro componentes realizadas

mediante triples de holonomía no triviales. Derivamos

un mapa que relaciona los grupos de calibre en las com-

pacti�caciones toroidales con las otras componentes.

En 7d, coincide con el mecanismo de congelamiento

de singularidades en la teoría M en K3; mientras que

en 6d mostramos que los posibles congelamientos para

cada grupo de calibre están determinados por su to-

pología.
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Chapter 1

Introduction

1.1 Motivation

String Theory is the most developed and promising framework to study quantum gravity. Many
efforts have been made to try to reproduce the Standard Model as a low energy effective theory
of some string model. The first string proposed, the bosonic string, only included bosons in
its spectrum and predicted a tachyon, which signaled an inconsistency in the theory. This
motivated the construction of the type I and II superstring theories, which have a tachyon-free
supersymmetric spectrum and are formulated in 10 space-time dimensions (this number is fixed
by consistency). Their low energy limit is supergravity in 10 dimensions.

Two important aspects of the Standard Model are that it is formulated in 4 dimensions and
that it contains some particles with non-Abelian gauge symmetries. A way of reducing the
number of dimensions from 10 to 4 is through the mechanism of compactification, that is, to
take six of those dimensions to have finite length (e.g. by making them periodic), generalizing
Kaluza-Klein theory. The 4-dimensional universe is then a low energy approximation of a more
fundamental theory. When one compactifies string theory in special ways, the particles acquire
non-Abelian gauge symmetries, making these theories plausible candidates for describing our
universe. While in Kaluza-Klein theory the momentum in the fifth dimension is quantized, in
string theory compactifications we have a similar situation, with the momentum associated to
the string states living on a lattice.

The so called heterotic string combines the bosonic and type II string theories [6]. For
consistency the low energy spectrum has two possible gauge group symmetries: Spin(32)

Z2
or

E8×E8, defining two different string theories. These heterotic strings also have super-symmetry
and live in a 10-dimensional space-time, so that they can also be compactified on different
geometries [7]. This feature was considered very promising, since the gauge groups of both
theories contain SO(10) and SU(5), while E8 also contains E6, which are the symmetries of the
principal Grand Unified Theories. In compactifications to lower dimensions, it is quite simple
to break the original gauge symmetries to their subgroups. Depending on the geometry of the
compact space, it is also possible to get an enhancement of the original symmetry, creating a
rich landscape of theories with very diverse gauge groups. The low energy limit of these theories
is just supergravity coupled to super Yang-Mills with the corresponding gauge group.

A simple question one could ask is: what are the possible gauge groups that can be obtained
from heterotic string theory in less than 10 dimensions? Can we classify them? This question
is relevant from a phenomenological point of view (building realistic examples of our universe);
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but it could be connected to a deeper puzzle: what are the possible theories that can be
consistently coupled to gravity?

Even for relatively simple geometries, little was known about the possible gauge groups that
can appear 1, let alone the special values for the parameters of the compactification where these
enhancements occur. This motivated us to study in detail the structure of the space of these
parameters (the moduli space) and to obtain a complete classification of the possible gauge
groups for some types of geometries.

Since the strings are extended objects, they can be wrapped along compact dimensions.
This originates an equivalence between different string configurations after compactification,
which is known as T-duality [8].

It was shown that all the different superstrings are related by this and other dualities, leading
to the idea that they are distinct limits of a higher dimensional theory coined M-theory [9]. A
strong motivation to study toroidal compactifications of heterotic strings is the dualities they
have with other theories: heterotic on T 4 is dual to type IIA on K3 [10], heterotic on T 3 is
dual to M-theory on K3, while heterotic on T 2 is dual to F-theory on an elliptically fibered K3.
This web of dualities provides a framework for exploring different aspects of string theory.

1.2 Results

The principal goal of this thesis is to answer the question of what gauge symmetries are allowed
in heterotic string compactifications on geometries that preserve all of the supersymmetry.
Although this is a very concrete and relatively simple question, an answer was only known
for the two simplest cases: circle compactifications through the Generalized Dynkin Diagram
(GDD) method [11–13] and, although indirectly, the 2-torus through duality with F-theory
from the classification of ADE types of singular fibers in elliptic K3 surfaces [14, 15]. As
we will explain in detail, for compact spaces of larger dimensions (which correspond to low-
energy effective theories with less dimensions) and for non-geometrical spaces, a great deal
of subtleties appears, turning the aforementioned goal into a highly no-trivial one. A related
problem that we will address is the study of the corresponding moduli spaces: their structure,
regions of symmetry enhancements and their relation to T-duality. We will take different but
complementary approaches.

In [1] we studied compactifications on the circle from the point of view of the 17-dimensional
moduli space defined by the parameters. Solving the mass and level matching equations as a
function of the moduli, we developed a method for charting the special regions where there
is symmetry enhancement to some non-Abelian group of rank 17, finding that the maximal
ones (i.e. to groups without U(1) factors) appear on the intersection points of curves where
there are non-maximal enhancements. This point of view allowed us to develop tools that are
ideal to gain intuition and understand this type of compactifications but, even though they
predict a rich variety of gauge symmetries, it was not possible to get all of them. Changing
the focus to the fact that the momenta of the spectrum of states are quantized in the even

1Compactifications on a circle being an exception.
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self-dual Lorentzian Narain lattice Γ1,17, we were able to obtain the complete classification of
enhancements, together with the regions on moduli space where they arise, using the GDD
method.

In [2] we treated the case of toroidal compactifications of arbitrary dimensions, where the
models realized also have 16 supercharges and the gauge groups are of ADE type (i.e. SU(n),
SO(2n), En) and have rank 16 + d. We found how the points in the moduli space are related
by T-duality and defined the map relating the moduli spaces of the compactified Spin(32)

Z2
and

E8×E8 theories. For T d with d > 1, the momentum lattice Γd,16+d is still even and self-dual but
not Lorentzian, making it impossible to construct a GDD. A certain gauge group appears in the
moduli space if its associated root lattice can be embedded in the corresponding momentum
lattice (satisfying certain conditions). This way of looking at the problem allowed us to state
some conditions for these groups to appear by using some theorems by Nikulin [16]. We carried
out an exhaustive classification of the allowed gauge groups in d = 2, finding that it matches
exactly the one obtained on the dual F -theory on elliptically fibered K3 surfaces [15], but
also giving the moduli defining the compactification that realizes each case. To perform this
classification we made an exploration algorithm which consists in moving from singular points
of maximal enhancement in moduli space to others via manipulations of their associated root
lattices in a controlled way. This algorithm was improved in subsequent works, allowing us to
explore T d compactifications with d > 2 and to compute the precise global data of the gauge
groups.

In [3] we performed a detailed study of compactifications on special T d/Z2 orbifolds2 (real-
izing the CHL string [17, 18]), which preserve the supersymmetry and present enhancements
of reduced rank d + 8. One peculiarity is that the gauge groups are not always of ADE type,
with groups Sp(n), SO(2n + 1) or F4 appearing in special regions. Another characteristic is
that the momentum lattice is not self-dual for d > 1 [19]. The latter implies that the criteria
stated before for lattices embedding does not apply anymore. This required many changes
in the methods developed in the previous work. With a generalization of our exploration al-
gorithm we found the list of gauge symmetries for d = 2, 3 and 4 (d = 1 enhancements can be
easily found using the associated GDD, which turns out to be the Dynkin diagram of E10). We
computed the precise form of their respective topologies by adapting our methods using results
of [20], and checked that they satisfy a condition for anomaly-free one-form center symmetries
given in [21].

For d = 1 and 2 the only known possible ranks for heterotic string compactifications pre-
serving 16 supercharges are d + 16 and d + 8, namely the Narain and CHL components3. In
contrast, for d ≥ 3 there are more possibilities: non-trivial holonomy triples of [23] produce
vacua with reduced ranks d+ 4, d+ 2 and d. We turned to these constructions in [4], adapting
and applying the machinery already developed in the previous works to the case of d = 3 and
obtaining the full list of maximal enhancements. These new moduli spaces have less maximal
enhancement points due to the reduced rank, but in some cases they present a richer variety

2It should be noted that this is just notation, as the Z2 acts on the gauge bundle.
3In 8d there are also the Z2-triple and the “no vector structure” constructions, which are dual to the

CHL [22,23].
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of gauge groups (e.g. gauge group G2 in the Z3-triple). Heterotic string on the T 3 is dual
to M-theory on a K3 surface. The gauge groups with reduced rank are realized in the latter
when there are partially frozen singularities on the K3 [23–25]. Exploiting lattices embedding
techniques, we found the explicit freezing rules that relate the gauge groups on the Narain
component with those appearing on the reduced rank ones. We found a perfect match of these
rules from the heterotic string side with the known results on M-theory. A generalization of
this analysis to d = 4 was done in [5], where we again obtained the complete classification of
groups for all the Zn-triples via our exploration algorithm.4 We discovered that the freezing
mechanism here involves the topology of the gauge groups, acting on those and only those that
are non-simply-connected. Strikingly, the freezing rules constructed coincide with the map
relating the moduli space components of flat G-bundles on T 2 with G non-simply-connected.

We only include in the present thesis the lists of gauge groups for the d = 1, 2 and 3
cases. For d = 4 we refer to [27], where we list the maximal gauge groups for all the 16
supercharges preserving compactifications with 6 or more space-time dimensions. In addition
to the Narain, CHL and triples components, there are many more listed there. In general they
do not correspond to heterotic string constructions. They were studied in [26], which is left out
of this thesis.

In Table 1.1 we list the main information concerning each of the compactifications studied.
It is notable that the number of groups that appear on T d or T d/Z2 increases exponentially
with d. Also, as expected, more types of groups are permitted when reducing the rank. Partial
explorations for d ≥ 5 exhibit the same exponential behavior, but the corresponding analysis
is not included here. The rules relating the gauge groups in toroidal compactifications to the
reduced rank theories found is summarized in Table 1.2.

4For d = 4 (as for d = 1 and 2) we have a recent confirmation that our lists are exhaustive from the results
in our very recent work [26], where all these gauge groups were reobtained from the Niemeier lattices.
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G d r Algebras Groups Information Types
∅ 0 16 2 2 DE
S1 1 17 44 44 ADE

S1/Z2 1 9 9 9 CHL ADE
T 2 2 18 325 341 Dual to F-theory on a K3 ADE

T 2/Z2 2 10 61 61 CHL/Z2-triple ACDE
T 3 3 19 1035 1232 Dual to M-theory on a K3 ADE

T 3/Z2 3 11 407 429 CHL/Z2-triple ABCDEF
T 3/Z3 3 7 50 52 Z3-triple ADEG
T 3/Z4 3 5 16 18 Z4-triple AD
T 3/Z5 3 3 3 3 Z5-triple A
T 3/Z6 3 3 3 3 Z6-triple A
T 4 4 20 2252 3396 Dual to IIA on a K3 ADE

T 4/Z2 4 12 1988 2540 CHL/Z2-triple ABCDEF
T 4/Z3 4 8 154 202 Z3-triple ADEG
T 4/Z4 4 6 101 127 Z4-triple ACDE
T 4/Z5 4 4 11 14 Z5-triple AD
T 4/Z6 4 4 36 40 Z6-triple ACG

Table 1.1: Geometry of the compactification space G, number of compactified dimensions d, rank r,
number of maximal algebras and groups found and their types.

d Algebra Order Transforms to
1 E8 2 ∅
2 Dn+8 2 Cn

3 Dn+4 2 Cn

3 En+4 2 Fn
3 En+6 3 Gn

3 En+7 4 Cn

3 E8 5, 6 ∅
4 Aqn−1 q = 2, 3, 4, 5, 6 An−1

4 Dn+2 2 (v) Cn

4 D2n 2 (s) Bn

4 E7 2 F4

4 E6 3 G2

4 D2n+3 4 (s) Cn

Table 1.2: Freezing rules for the simple factors in the gauge groups for d ≤ 4. We use the conventions
C1 ≡ A1 , F2 ≡ A2 , F3 ≡ B3 , G1 ≡ A1 ,

1.3 Structure of the thesis

This thesis is divided in six chapters: The first one is a short introduction to the thesis. Chapter
2 is an introduction to heterotic string and its toroidal compactification, with a detailed analysis
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of the structure of the moduli space an its enhancements of symmetry for the circle case based
on [1].

In Chapter 3, which is based on [2], we resume with the toroidal compactifications introduced
earlier, this time analyzing them from the point of view of lattice embeddings. We introduce
an exploration algorithm which we use to classify and give the list of symmetry enhancements
of T 2 compactifications.

In Chapter 4 we analyze in detail the CHL string and its compactifications, constructing
them from the heterotic string. We explore the moduli space and give the list of the rank
reduced gauge symmetry enhancements for nine and eight space-time dimensions. To this end
we improve and generalize the algorithm introduced in the previous chapter. This part is based
on [3].

In Chapter 5, based on [4,5], we study different orbifold constructions in 7 and 6 space-time
dimensions, obtaining the list of gauge groups that are realized not only on the Narain and CHL
components but also four other components realized via non-trivial holonomy triples. Finally,
we construct the general freezing rules relating the different components.

In Chapter 6 we summarize the conclusions of this thesis, while at the end we include five
appendices: A, B and C with complements to the second, third and fifth chapters; and D
with the lists of groups of maximal enhancement for the studied theories. Finally, Appendix E
provides a summary in French.
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Chapter 2

Heterotic string compactifications

A generic point in the moduli space of a compactified theory corresponds to one whose spec-
trum has Abelian gauge symmetry. To arrive at non-Abelian symmetries we have to choose
special regions where there is an enhancement of symmetry. After a brief introduction to
heterotic strings and general toroidal compactifications in Sections 2.1 and 2.2, we restrict to
one-dimensional compactifications for the rest of this chapter, in order to attack the problem of
exploring these special regions explicitly. These compactifications are described by the radius
R of the circle and the 16 values of the background field A called Wilson line. This will be the
subject of Section 2.3.

There are different configurations of these parameters giving equivalent theories, we say
they are related by the T-duality group. Examining the action of this group, we can see that
all points in moduli space where there is maximal symmetry enhancement1, namely to groups
that do not have U(1) factors, are fixed points of T-duality. In the simplest cases, such as those
listed below, the enhanced symmetry arises at the self-dual radius given by R2

sd = 1 − 1
2 |A|

2.
We explore the action of T-duality and its fixed points in Section 2.3.1. One can have other
points of symmetry enhancement, which are fixed points of duality symmetries that involve
shifts of Wilson lines on top of the exchange of momentum and winding.

To explore the whole moduli space of circle compactifications, we split the discussion into
the situations in which the Wilson line preserves the E8 ×E8 or SO(32) gauge symmetry, and
those where it breaks it. In Section 2.3.2 we explain the former case. The circle direction can
give a further symmetry enhancement to E8 × E8 × SU(2) at radius R = 1, and either to
SO(32)× SU(2) at R = 1 or to SO(34) at R = 1√

2 . When the Wilson line breaks the E8 ×E8

or SO(32) gauge symmetry, the pattern of gauge symmetries is very interesting. Not only is it
possible to restore the original E8×E8 or SO(32) gauge symmetry for specific values of R and
A, but also larger groups of rank 17 can be obtained. In Section 2.3.3 we explicitly work out
enhancements of the HO theory to SO(34) at R2 = 1

2 ; SU(18) at R2 = 1
4 ; Ep+1 × SO(32− 2p)

at R2 = 1 − p
8 ; Ep+1 × SU(16 − p) at R2 = 1 − 8

16−p , and in the HE to SO(34) at R2 = 1
18 ;

SU(18) at R2 = 1
9 ; SO(18) × E8 at R2 = 1

2 ; SU(2) × E8 × E8 at R2 = 1
4 . We depict slices of

the moduli space for different values of R and Wilson lines in several figures, which clarify the
analysis and neatly exhibit the curves and points with special properties. The technique used
is presented in Section 2.3.4

Finally, switching to a more lattice-oriented approach that will accompany us for the re-
minder of the thesis, we find in Section 2.4 all the possible maximal enhancement groups, and

1“Maximal” stands here for an enhanced semisimple and simply-laced symmetry group.
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the point in the fundamental region of moduli space where they arise, using the Generalized
Dynkin Diagram of the lattice Γ1,17 [11, 13].

We have included three appendices. Appendix A.1 collects some known facts about lattices
that are used throughout this chapter. Details of the procedures leading to construct the curves
of enhancement and more slices of the moduli space are contained in Appendices A.2 and A.3
, respectively.

2.1 Heterotic String

Both in the bosonic and type II strings, the equation of motion for the fields implies that we can
separate them in a left and right-moving part. This separation is translated to the commutation
of the operators associated to the left-moving and right-moving oscillations. This decoupling
between left and right degrees of freedoms allows us to define a new type of consistent theory,
the heterotic string, combining the left-moving fields of the bosonic string and the right-moving
fields of one of the superstrings. As for all closed strings, the states are just tensorial products
of left and right-moving states subject to the level matching constraint.

For consistency, the heterotic string is defined in 10 space-time dimensions. While the right
supersymmetric side is just the same as for the type II strings, the left side needs 26− 10 = 16
extra degrees of freedom as a consequence of this. There are two standard solutions: adding
16 left-moving bosons or adding 32 left-moving fermions. We will use the former, called the
bosonic formulation, as it is the best suited for studying toroidal compactifications. The world-
sheet left-moving degrees of freedom are the 10 bosonic fields Xµ

L(τ + σ) with µ = 0, . . . , 9 the
space-time directions plus 16 internal chiral bosons Y I with I = 1, . . . , 16. On the right side
we have the usual 10 bosonic fields Xµ

R(τ −σ) and their superpartners ψµR(τ −σ). The presence
of these fermionic fields guarantees, in combination with a GSO projection, that the spectrum
of states is supersymmetric.

The fields X correspond to space-time coordinates while Y correspond to internal degrees
of freedom. To achieve a consistent string theory, the Y I have to satisfy periodic boundary
conditions. Since they are chiral bosons (constrained by ∂+Y

I = 0), the only way of doing this
besides taking their associated momentum pI = 0 is by making them periodic. Just as in usual
string compactifications (or Kaluza-Klein theory), this periodicity induces a quantization of
their momentum, forcing it to live on some compact space Υ16. Moreover, for consistency this
space has to be a product of 16 circles of equal radius R =

√
α′ (from now on we are taking

α′ = 1).
On a well defined string theory, the 1-loop partition function presents modular invariance.

By computing and demanding it to be invariant under the transformation τ → τ + 1, we find
that 1

2 |p
I |2 ∈ Z (Υ16 is an even lattice); and by demanding invariance under τ → −1

τ
and using

the Poisson summation formula, we get Υ∗
16 = Υ16, with Υ∗

16 the dual lattice. In conclusion
the heterotic momentum lies on a very special type of lattice, an Euclidean, even and self-dual
one.2

2As we will see in Section 2.2, in toroidal compactifications of heterotic strings, the momentum will also live
on an even and self-dual (but not Euclidean) lattice.
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Even self-dual definite lattices exist only for rank multiple of 8. There are two possibilities
for rank 16: the lattice of weights of the group Spin(32)/Z2 and the lattice of weights of E8×E8,
denoted respectively by Γ16 and Γ8 ⊕ Γ8 with ΓN being defined as the set of N -dimensional
vectors with integer components together with the set of vectors with half-integer components
whose sum is an even number (see Appendix A.1 for details on these lattices). We have then two
different supersymmetric heterotic string theories, the so called Spin(32)/Z2 heterotic string or
HO, with heterotic momentum pI ∈ Γ16 and the E8×E8 heterotic string or HE with pI ∈ Γ8×Γ8:

Υ16 =

 Γ8 ⊕ Γ8 , for (HE)
Γ16 , for (HO)

. (2.1.1)

2.1.1 Spectrum

We now describe the spectrum of the HE and HO theories in the light-cone gauge. Since they
are closed strings, the possible states are made by taking the tensorial product between one
state from the left sector and one from the right, subject to the level matching condition.

The mass equation is m2
L = NL+ 1

2 |pL|
2−1, with NL the number operator for the left-moving

oscillators αµ−n and αA−n and pL the heterotic momentum.
For NL = pL = 0 we have the tachyonic vacuum state of bosonic string |0⟩.
On the massless level we have:

• (NL = 1, pL = 0): αµ−1 |0⟩ space-time vector with µ = 2, ..., 9.

• (NL = 1, pL = 0): αI−1 |0⟩ 16 Abelian gauge bosons (U(1)16 Cartan subalgebra of E8×E8

or SO(32)).

• (NL = 0, |pL|2 = 2): |pL⟩ = eip
IY I |0⟩, with pL a root of E8 × E8 or SO(32) (480 non-

Abelian gauge bosons).

We have an infinite tower of massive states for bigger values of N or |pL|2.
The right sector is identical to the other superstrings, the mass equation is

m2
R =

NR in R

NR − 1
2 in NS

,

with NR the number operator for the right-moving oscillators, ψ̄µ−n and ᾱµ−n. with the zero-point
energy being different in the Ramond (R) and Neveu-Schwarz (NS) sectors. We apply the same
GSO projection as in the type II strings, requiring for an odd (even) number of fermions on
the NS (R) sector; therefore, eliminating the tachyon |0⟩NS from the spectrum. The massless
states are:

• (NR = 1
2): ψ̄µ− 1

2
|0⟩NS space-time vector with µ = 2, ..., 9.

• (NR = 0): |s⟩R space-time spinor, superpartner of the vector.
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We again have an infinite number of massive states with bigger NR on both the NS and R

sectors.
The level matching condition is just m2

L = m2
R:

N + 1
2 |pL|

2 − 1 =

NR in R

NR − 1
2 in NS

(2.1.2)

The states of heterotic strings will be the product between one state on the left and one on
the right that satisfy this equation. The only negative value of the LHS is −1, but the RHS
is always bigger than −1

2 , expelling from the spectrum the tachyon inherited from the bosonic
string. The GSO projection on the right sector guarantees that each heterotic string state has
a superpartner, making the spectrum N = 1 supersymmetric in 10 dimensions.

The massless states are

• Supergravity sector:

– (NL = 1, pL = 0, NR = 1
2): αµ−1ψ̄

ν
− 1

2
|0⟩NS −→ graviton, Kalb-Ramond two-form and

dilaton.

– (NL = 1, pL = 0, NR = 0): αµ−1 |a⟩R −→ gravitino and dilatino.

• Gauge bosons of SO(32) or E8 × E8:

– (NL = 1, pL = 0, NR = 1
2): αI−1ψ̄

µ

− 1
2
|0⟩NS −→ 16 space-time vectors associated to

the Cartan subalgebra.

– (NL = 0, |pL|2 = 2, NR = 1
2): eip⃗IY I

ψ̄µ− 1
2
|0⟩NS −→ 480 space-time vectors associated

to the roots.

– (NL + 1
2 |pL|

2 = 1, NR = 0): αI−1 |a⟩R, eipIY I |a⟩R −→ the gaugini.

The low energy limit is then 10-dimensional N = 1 supergravity coupled to super Yang-Mills
theory with gauge groups Spin(32)/Z2 or E8×E8. Since both groups have dimension 496, both
strings have the same number of massless states. In fact, it is easy to prove that at each massive
level the number of states is the same for both theories.

2.2 Toroidal compactifications

As shown in the previous section, the states of the heterotic string live on a 10-dimensional
space-time: to make contact with our universe it is necessary to compactify 6 of these di-
mensions. If the characteristic length of the compact geometry is small enough, the low-energy
effective theory will be 4-dimensional. The simplest compactifications of d dimensions occur for
d-torus. As we will see, a rich and interesting pattern of gauge symmetries and some subtleties
appear already for the smallest values of d. In this section we will describe the compactification
on a torus of arbitrary dimension, focusing on the case d = 1 for the remainder of this chapter.
For a more complete review see [28].
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The bosonic part of the action for the non-linear sigma model of heterotic string is given
by S = Sb + Sh, with

Sb = 1
4π

∫
dτdσ

(
δαβGµν∂αX

µ∂βX
ν − iϵαβBµν∂αX

µ∂βX
ν
)

(2.2.1)

where we have the usual background fields of the gravitational sector: Gµν and Bµν (we are
taking Φ = 0) and

Sh = 1
8π

∫
dτdσ

(
δαβ∂αY

I∂βY
I − 2iϵαβAIµ∂αXµ∂βY

I
)

(2.2.2)

where we have an additional background field AIµ, with a space-time index µ = 0, . . . , 9 and a
heterotic chiral index I = 1, . . . , 16. α = 1, 2 are the world-sheet coordinates σ and τ . For both
actions we gauge fixed the world-sheet metric to δαβ and defined ϵ01 = 1.

Now we compactify on a T d, denoting the compact directions as i, j = 1, . . . , d. We turn on
constant background metric Gij, antisymmetric two-form Bij and U(1)16 gauge field AIi . For
simplicity we take the background dilaton to be zero. The d fields AIi have null field-strength
and are called Wilson lines, we will have one of them for each toroidal direction.

The set of vectors ei define a basis in the compactification lattice Λd such that the in-
ternal part of the target space is the d-dimensional torus T d = Rd/πΛd, they satisfy G =
ete

(
⇒ Gij = eaiδabe

b
j

)
. The vectors êa constitute the canonical basis for the dual lattice Λd∗,

i.e. êaieaj = δij, and thus they obey êtê = G−1
(
⇒ êa

iδabêb
j = Gij

)
.

The contribution from the internal sector to the world-sheet action (we consider only the
bosonic sector here) is

S = 1
4π

∫
M
dτdσ

(
δαβGij − iϵαβBij

)
∂αY

i∂βY
n

+ 1
8π

∫
M
dτdσ

(
δαβ∂αY

I∂βY
I − 2iϵαβAIi ∂αY i∂βY

I
)
, (2.2.3)

(recall we are always taking α′ = 1), Y I are chiral bosons and the currents ∂Y I form a maximal
commuting set of the SO(32) or E8 ×E8 current algebra. The internal string coordinate fields
satisfy

Y i(τ, σ + 2π) ≃ Y i(τ, σ) + 2πwi , (2.2.4)

where wi ∈ Z are the winding numbers. It is convenient to define holomorphic Y i
L(z) and

antiholomorphic Y i
R(z̄) fields as

Y i(z, z̄) = 1√
2

[
Y i
L(z) + Y i

R(z̄)
]
, z = exp(τ + iσ) , z̄ = exp(τ − iσ) , (2.2.5)

with Laurent expansion

Y i
L(z) = yiL − ipiL lnz + · · · , Y I

L (z) = yIL − ipI lnz + · · · , (2.2.6)

Y i
R(z̄) = yiR − ipiR lnz̄ + · · · , (2.2.7)
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the dots standing for the oscillators contribution. Then the periodicity condition is

Y i(τ, σ + 2π)− Y i(τ, σ) = 2π
(

1√
2

)
(piL − piR) = 2πwi . (2.2.8)

The canonical momentum has components3

Πi = i
δS

δ∂τY i
= 1

2π

[
iGij∂τY

n +Bij∂σY
j + 1

2A
I
i ∂σY

I
]
,

= 1
2π
√

2
[
Gij(pjL + pjR) +Bij(pjL − p

j
R)
]

+ 1
4πA

I
i p
I

ΠI = i
δS

δ∂τY I
= 1

4π
(
i∂τY

I − AIi ∂σY i
)

= 1
2π

[
pI − 1√

2A
I
i (piL − piR)

]
.

The chirality constraint on Y I and the condition of vanishing Dirac brackets between mo-
mentum components require the redefinitions ΠI → Π̃I = 2ΠI and Πi → Π̃i = Πi + 1

2A
I
i Π̃I .

Integrating over σ, we get the center of mass momenta

πi =
∫
dσΠ̃i = 2π

(
Πi + 1

2A
I
i Π̃I

)
= ni ∈ Z , (2.2.9a)

πI =
∫
dσΠ̃I = pI − AIiwi , (2.2.9b)

where we used univaluedness of the wave function in the first line. πi ≡ ni are integer vectors,
while modular invariance requires πI ∈ Γ16 or Γ8 ⊕ Γ8, corresponding to the HO or HE theory,
respectively.

From these equations we get

pRa = 1√
2
êa
i
[
ni − (Gij +Bij)wj − πIAIi −

1
2A

I
jA

I
iw

j
]
, (2.2.10a)

pLa = 1√
2
êa
i
[
ni + (Gij −Bij)wj − πIAIi −

1
2A

I
jA

I
iw

j
]
, (2.2.10b)

pI = πI + wiAIi . (2.2.10c)

The momentum p = (pR,pL), with pR = pRa, pL = (pLa, pI), transforms as a vector
under O(d, d+ 16;R). It expands the 2d+ 16-dimensional momentum lattice Γd,d+16 ⊂ R2d+16,
satisfying

p · p′ = pLaδ
abp′

Lb + pIp
′I − pRaδabp′

Rb = niω
′i + n′

iω
i + πIπ′I ∈ Z , (2.2.11)

and
p · p = pL

2 − pR
2 = 2wini + πIπI ∈ 2Z , (2.2.12)

because πI is on an even lattice, and therefore p forms an even (d, d + 16) Lorentzian lattice
for any values of the background fields called the Narain lattice. In addition, self-duality
Γd,d+16 = Γ∗

d,d+16 follows from modular invariance [7, 29]. Note that pL,pR depend on 2d + 16
3The unusual i factors are due to the use of Euclidean world-sheet metric.
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integer parameters ni, wi and πI , and on the background fields G, B and A.
The space of inequivalent lattices and inequivalent backgrounds reduces to

O(d, d+ 16;R)
O(d+ 16;R)×O(d;R)×O(d, d+ 16;Z) , (2.2.13)

where O(d, d+ 16;Z) is the T-duality group (we give more details about it in the next section).
The mass of the states and the level matching condition are respectively given by

m2 = pL
2 + pR

2 + 2
NL +NR −

1 R sector
3
2 NS sector

 , (2.2.14a)

0 = pL
2 − pR

2 + 2
NL −NR −

1 R sector
1
2 NS sector

 . (2.2.14b)

the difference between pL
2 and pR

2 is given by 2wini + πIπI , but the sum depends on the
background fields:

pL
2 + pR

2 = Gijninj +
(
Gij +GklCjlCik + AIiA

I
j

)
ωiωj+(

GklAIrA
J
l + δIJ

)
πIπJ − 2GikCkjniw

j − 2GikAIrniπ
I + 2

(
GikCijA

I
k + AIj

)
wjπI (2.2.15)

where Cij ≡ Bij + 1
2A

I
iA

I
j .

Because the Narain lattice is even and self-dual, we have modular invariance guaranteed for
all toroidal compactifications. It can be shown that, unlike the Euclidean case, these lattices are
unique except for a pseudo-orthogonal transformation O(d, d+16). Orthogonal transformations
O(d)×O(d+16) that do not mix pR and pL produce equivalent lattices, then the moduli space
of inequivalent compactifications would be given by O(d,d+16)

O(d)×O(d+16)
4, with the number of moduli

equal to
d2

2 + 16d = d(d+ 1)
2 + d(d− 1)

2 + 16d (2.2.16)

showing that the moduli space is parameterized by the components of Gij, Bij and the d Wilson
lines AIi .

2.2.1 Massless spectrum

In compactifications on T d, the spectrum depends on the background fields. When (NL, NR) =
(1, 1

2) there are the same number of massless states at any point in moduli space (we refer to
this as sector 1). When (NL, NR) = (0, 1

2), we see from (2.2.10) that there are no massless
states for generic values of the metric, B-field and Wilson lines AIi , while for certain values of
these fields the momenta can lie in the weight lattice of a rank 2d+16 group GL×GR (we refer
to this as sector 2). In this case, there is a subgroup with |(pR,pL)|2 = 2 which can give rise to
massless states. Subtracting (2.2.14a) and (2.2.14b) we see that massless states have pR = 0,

4Taking into account the equivalence of points on moduli space due to T-duality, the coset manifold charac-
terizing the distinct backgrounds is O(d,d+16)

O(d)×O(d+16)×O(d,d+16;Z) .
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and thus (unlike in the bosonic string theory), the non-Abelian gauge symmetry comes from
the left sector only. The group GL × U(1)dR in which the massless states transform defines the
gauge group of the theory, with GL a simply-laced group of rank 16 + d and dimension N ,
that depends on the point in moduli space (which is spanned by Gij, Bij, A

I
j ). Specifically, the

10− d dimensional massless bosonic spectrum are given by (µ, ν = 0, . . . , 9− d; i, j = 1, . . . , d;
I = 1, . . . , 16):

1. NL = 1, NR = 1
2 , pL = pR = 0:

• Common gravitational sector: Gµν , Bµν , D

αµ−1ψ̄
ν
− 1

2
|0, k⟩NS (2.2.17)

• d KK left Abelian gauge vectors: Giµ + Biµ ≡ aiµ and 16 Cartan generators of
SO(32) or E8 × E8: aIµ

αÎ−1ψ̄
µ

− 1
2
|0, k⟩NS (2.2.18)

where the index Î = (I, i) includes both the chiral “heterotic” directions and the
compact toroidal ones, labeling the Cartan sector of the gauge group GL.

• d KK right Abelian gauge vectors: Giµ −Biµ ≡ āiµ

αµ−1χ̄
i
− 1

2
|0, k⟩NS (2.2.19)

• d(d+ 16) scalars: Gij, Bij, a
I
i

αÎ−1χ̄
i
− 1

2
|0, k⟩NS (2.2.20)

2. NL = 0, NR = 1
2 , p2

L = 2, pR = 0:

• (N − d− 16) root vectors: aαµ

ψ̄µ− 1
2
|0, k, πα⟩NS , (2.2.21)

where α are the roots of GL (or equivalently the left momenta).

• (N − d− 16)× d scalars: aαi

χ̄i− 1
2
|0, k, πα⟩NS (2.2.22)

The massive states are obtained increasing the oscillation numbers NL and NR or choosing
|(pR, pL)|2 ≥ 4.

Due to the uniqueness of Lorentzian self-dual lattices [11] both heterotic theories on T d can
be connected continuously [7, 30], i.e. they belong to the same moduli space. The possible
enhanced non-Abelian gauge symmetry groups are those with root lattices admitting an em-
bedding into Γd,d+16. Although some theorems on lattice embeddings are known [16], it is a
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non-trivial problem to determine which groups admit an embedding5, as we will study in the
next chapter. Here we present a general discussion.

Using that pR = 0, we get from (2.2.10) that the massless states have left-moving mo-
mentum

pL =
(√

2 êaiwi, πI + wiAIi
)
, (2.2.23)

while their momentum number on the torus is given by

ni = (Gij +Bij)wj + πIAIi + 1
2A

I
jA

I
iw

j . (2.2.24)

Note that quantization of momentum number on the torus is a further condition to be imposed
on top of pL

2 = 2.
In the absence of Wilson lines AIi = 0, the d torus directions decouple from the 16 chiral

“heterotic directions” Y I ; pI = πI is a vector of the weight lattice of SO(32) or E8 × E8 and
then |pI |2 ∈ 2N. The only possible massless states then have either momenta pL = (0, πI)
with |π|2 = 2, or pL = (

√
2 eajwj, 0) with wiGijw

j = 1 (and additionally niw
i = 1). The

former are the root vectors of SO(32) or E8 × E8, while the latter have solutions only for
certain values of the metric and B-field on the torus and lead to the same groups as in the
(left sector of) bosonic string theory, namely all simply-laced groups H of rank d. The total
gauge group is then SO(32) × H × U(1)dR or E8 × E8 × H × U(1)dR. For d = 1, i.e. a circle
compactification, H is SU(2) at G11 = R2 = 1, and U(1) for any other value of the radius.
For compactifications on T 2, the possible groups of maximal enhancement (see footnote 1) are
SO(32)× SU(2)2

L × U(1)2
R (for a diagonal metric with both circles at the self-dual radius and

no B-field) or SO(32)×SU(3)L×U(1)2
R (equivalently SO(32)→ E8×E8). See [32] for details.

Turning on Wilson lines, the pattern of gauge symmetries is more complicated, and also
richer. In the sector with zero winding numbers, wi = 0, we have pI = πI as before, but
now requiring a quantized momentum number imposes πIAIi ∈ Z (see (2.2.24)) which, for a
generic Wilson line breaks all the gauge symmetry leaving only πI = 0, which corresponds
to the U(1)16 Cartan subgroup. The opposite situation corresponds to AIi ∈ Γ∗

g
6. For HE,

since Γ∗
g = Γ8 ⊕ Γ8, AIi is innocuous because the momentum (2.2.10) remains the same if one

substitutes ni → ni + πIAIi − 1
2A

I
jA

I
iw

j and πI → πI − wiAIi ; and thus the pattern of gauge
symmetries is as for no Wilson line. In the HO theory, the same conclusions hold if A ∈ Γ16, but
one has the more interesting possibility A ∈ Γv or A ∈ Γc, where the SO(32) symmetry is not
broken, and the 16 chiral heterotic directions can be combined with the torus ones, giving larger
groups which are not products. When analyzing the sectors with non-zero winding numbers we
can have an incredible variety of enhancements for AIi /∈ Γ∗

g, as we will show in the next section
for the circle case and in the next chapter for T 2.

Let us discuss the different groups that can arise in points of moduli space where the
enhancement is maximal. In that case, the matrices that embed the internal sector of the
heterotic theory on T d into a 16 + d-dimensional bosonic theory are related to the Cartan

5A preliminary attempt can be found in [31].
6We denote Γ∗

g the dual of the root lattice, and one has Γ∗
g = Γ8 × Γ8 for HE and Γ∗

g = Γw = Γ16 + Γv + Γc

for HO (see Appendix A.1 for more details).
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matrix C by [28]
(G+ 1

2A
IAI)ij 1

2Ai
I

1
2A

I
j GIJ

 = 1
2CÎĴ ,

 Bij
1
2Ai

I

−1
2A

I
j BIJ

 =


1
2CÎĴ for Î < Ĵ

−1
2CÎĴ for Î > Ĵ

0 for Î = Ĵ

(2.2.25)

One can then view the possible maximal enhancements from Dynkin diagrams. Let us first
consider Wilson lines that do not break the original gauge group, i.e. A ∈ Γ∗

g. We start with
the HO theory. The Dynkin diagram of SO(32) is

The Dynkin diagrams of the gauge symmetry groups arising at points of maximal enhancement
in the compactification of the HO theory on T d have d extra nodes, with or without lines in
between. Since the resulting groups have to be in the ADE class (they are all simply laced),
one cannot add nodes with lines on the left side. Therefore, the nodes should be added on the
right side, linked or not to the last node, and additionally add lines linking them to each other,
or not. For one dimensional compactifications (d = 1), the only possibilities are

corresponding respectively to SO(32)×SU(2) and SO(34). Since a line in the Dynkin diagram
means that the new simple root is not orthogonal to the former one, then the Cartan matrix for
this situation should have an off-diagonal term in the row corresponding to the new node and
the column of the previous node, which according to (2.2.25) means that there is a non-zero
Wilson line. Thus, no Wilson line (or a line in Γ16, which is equivalent to no Wilson line) gives
the enhancement group SO(32) × SU(2) and, as explained above, this enhancement works
as in the bosonic theory, at R = 1. The enhancement symmetry group SO(34) is obtained
with a Wilson line in the vector or negative-chirality spinor conjugacy classes, and will be
presented in detail in Section 2.3.3.1. For compactifications on T d, the d extra nodes give as
largest enhancement symmetry group SO(32 + 2d), and this happens when Wilson lines in all
directions are turned on. For less symmetric Wilson lines one gets smaller groups, and it is
easy to see from the Dynkin diagrams what are all the possible groups. Here we draw all the
possibilities for d = 2 only

corresponding respectively to SO(36), SO(34)×SU(2), SO(32)×SU(2)2 and SO(32)×SU(3).
For the HE theory, the situation is less rich in the cases in which the dimension of the

resulting group is larger than that of E8 × E8. As we explained above, since Γ∗
g = Γ8 ⊕ Γ8, a
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Wilson line that preserves the E8 ×E8 symmetry should be in the lattice, and thus equivalent
to no Wilson line. This can also be seen from the Dynkin diagram of E8 × E8

where we see immediately that the extra nodes cannot be linked to any of the E8’s, as any
extra line would get us away from ADE. Then the possible enhancements are groups which are
products of the form E8×E8×H, where H is any semisimple group of rank d, and each H arises
at the same point in moduli space as in the compactifications of the bosonic theory on T d [32].
However, maximal enhancement can still be obtained by breaking one of the E8 to SO(16),
and then the richness of the SO(32) case is recovered (e.g. enhancement to SO(18)× E8).

Points of enhancement are fixed points of some O(d, d + 16;Z) symmetry. Enhancement
groups that are not semisimple, i.e. that contain U(1) factors, arise at curves, surfaces or hyper-
surfaces in moduli space. On the contrary, maximal enhancement occurs at isolated points in
moduli space. This is developed in Section 2.3.1 for some compactifications on a circle, to which
we now turn.

2.3 Compactifications on a circle

In this section we will study in great detail the case of circle compactifications. We start by
specializing the previous chapter observations to d = 1.

The momentum components (2.2.10) are7

pR = 1√
2R

[
n−R2w − π · A− 1

2 |A|
2w
]
,

pL = 1√
2R

[
n+R2w − π · A− 1

2 |A|
2w
]
,

pI = πI + wAI , (2.3.1)

where |A|2 = AIAI = AκAt.8 The massless states, which satisfy pR = 0, have left-moving
momenta

pL = (
√

2Rw, πI + wAI) = (
√

2Rw, pI) , (2.3.2)

and momentum number on the circle

n =
(
R2 + 1

2 |A|
2
)
w + π · A . (2.3.3)

The condition |pL|2 = 2 can be written in the following form, that we shall use

|π + wA|2 = 2(1− w2R2) . (2.3.4)

7From now on, suppressed indices in p are orthonormal indices, i.e. pR ≡ pRa, pL ≡ pLa.
8We are abusing notation, as |A|2 = AκA is not a scalar under reparameterizations of the circle coordinate,

i.e. our definition is |A|2 = AI
iA

I
i where i here is just the circle coordinate. The scalar quantity is A2 = |A|2/R2

(see (2.3.6) below).
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In the sector pL = 0 one has n = w = πI = 0, and the massless spectrum corresponds to
the common gravitational sector and 18 Abelian gauge bosons: 16 from the Cartan sector of
E8 × E8 or SO(32) and 2 KK vectors, forming the U(1)18 gauge group.

The condition pL
2 = 2 can be achieved in two possible ways:

1) pL = (0, pI), with |pI |2 = 2,
2) pL = (±s, pI), with 0 < s ≤

√
2 , s2 + |pI |2 = 2.

From (2.3.2) we see that sector 1 has w = 0 and then (2.3.1) implies pI = πI . The condition
on the norm says that these are the roots of SO(32) or E8 × E8. But as explained in the
previous section, one has to impose further that n ∈ Z and thus from (2.3.3), π · A ∈ Z. We
divide the discussion into two cases, one in which this condition does not break the SO(32) or
E8×E8 symmetry, and the second one in which it does. This distinction is useful to understand
the enhancement process but, as we will see, is somewhat artificial: all enhancement groups,
including those with SO(32) or E8 × E8 as subgroups, can be achieved with Wilson lines that
are not in the dual lattice by appropriately choosing the radius.

2.3.1 T-duality

In this section we discuss the action of T-duality in the heterotic string compactified on a circle.
By T-duality we mean the action of certain type of transformations in O(1, 17,Z) that relate a
given heterotic theory with 16-dimensional lattice Γ, compactified on a circle of radius R and
Wilson line A, to another heterotic theory with lattice Γ′, compactified on a circle of radius R′

and Wilson line A′.
The “generalized metric” of the circle, given by a 18× 18 scalar matrix, is

M =


R2(1 + 1

2A
2)2 −1

2A
2 (1 + 1

2A
2)A

−1
2A

2 1
R2 − 1

R2 A

(1 + 1
2A

2)At − 1
R2 A

t I + 1
R2A

tA

 , (2.3.5)

where we have defined the scalar
A2 ≡ |A|

2

R2 . (2.3.6)

This is a symmetric element of O(1, 17), accounting for the degrees of freedom of the O(1,17)
O(17)

coset.
As in [33], p = (pR; pL, pI) can be expanded as

p = wk + nk + π · l , (2.3.7)

with basis

k = 1√
2

( 1
R

; 1
R
, 0
)
, k = 1√

2

(
−R− A2

2R ;R− A2

2R,
√

2AI
)
, lI =

(
− AI√

2R
;− AI√

2R
, uI

)
.

(2.3.8)
Here uI is a Cartesian 16-dimensional basis vector. The inner product is taken with the Lorent-
zian metric (−; +, . . . ,+). Thus k · k = k · k = 0, k · k = 1, lI · lJ = δIJ , k · lI = k · lI = 0. We

18



define the charge vector as the O(1, 17) vector

|Z⟩ = |w, n; πI⟩ . (2.3.9)

The change of basis to p is easily read from (2.3.7). In the rest of the thesis we will work
extensively on this basis.

The mass formula (2.2.14a) and level matching condition (2.2.14b) read

m2 = 2
NL +NR −

1 R sector
3
2 NS sector

+ ⟨Z|M|Z⟩ , (2.3.10)

0 = 2
NL −NR −

1 R sector
1
2 NS sector

+ ⟨Z|Z⟩ , (2.3.11)

respectively, with the inner product defined by the O(1, 17) invariant metric

η =


0 1 0
1 0 0
0 0 δIJ

 (2.3.12)

and giving
⟨Z ′|Z⟩ = w′n+ n′w + π′ · π . (2.3.13)

Note that these equations are invariant under the T-duality group O(1, 17;Z) acting as

|Z⟩ → Oη|Z⟩ , M→ OMOt , O ∈ O(1, 17,Z) . (2.3.14)

The group O(1, 17;Z) is generated by:

- Λ-parameter shifts associated to the addition of a vector ΛI to the Wilson line

OΛ =


1 −1

2 |Λ|
2 Λ

0 1 0
0 −Λt 116×16

 , Λ ∈ Υ16 , (2.3.15)

- Factorized duality, which is the generalization of the R→ 1/R circle duality, of the form

OD =


0 1 0
1 0 0
0 0 116×16

 , (2.3.16)

The transformation of the charges under the action of OΛ is

|w′, n′; π′I⟩ =
∣∣∣w, n− 1

2 |Λ|
2 + Λ · π; πI − ΛIw

〉
. (2.3.17)

The duality generated by OD is the usual T-duality transformation exchanging momentum
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and winding numbers
|w′, n′; π′I⟩ = |n,w; πI⟩ . (2.3.18)

Since π stays untouched, this duality is possible if Γ′ = Γ. Its action on the background fields
can be worked out from the generalized metric (2.3.5).The action of OD transforms it into

M′ = ODMOt
D =M−1 =


1
R2 −1

2A
2 − 1

R2 A

−1
2A

2 R2(1 + 1
2A

2)2 (1 + 1
2A

2)A
− 1
R2 A

t (1 + 1
2A

2)At I + 1
R2A

tA

 , (2.3.19)

and thus we get

A′ = − A

R2(1 + 1
2A

2) , R′ = 1
R (1 + 1

2A
2) (⇒ A′

R′ = −A
R

)

in agreement with the heterotic Buscher rules for scalars [34]. We get that a background has
R′ = R for

R2
sd = 1− 1

2 |A|
2 (⇒ R′ = R , A′ = −A ) (2.3.20)

Additionally, if 2A ∈ Γ′, then A′ = −A ∼ A, and therefore the background is fully self-dual,
satisfying M =M−1 up to discrete transformations.

All the examples of enhancement that we will discuss in Section 2.3.3 except for 2.3.3.8
satisfy the self-duality condition (2.3.20). By performing a Λ-shift to the Wilson line of 2.3.3.8
we can bring it to the equivalent one A =

(
(−3

4)2, (1
4)6, 08

)
, which satisfies (2.3.20).

For Wilson lines with only one non-zero component, we have that the fixed “points” of
this symmetry correspond actually to lines of non-maximal enhancement symmetry where the
Wilson lines are functions of the radius (A = A(Rsd)), and are such that A ∼ Asd, with
|Asd|2 = 2(1−R2

sd).

2.3.2 Enhancement of SO(32) or E8 × E8 symmetry

If we want the condition π · A ∈ Z not to select a subset of the possible πI in the root lattice,
or in other words not to break the SO(32) or E8 × E8 gauge symmetry, we have to impose

A ∈ Γ∗
g , (2.3.21)

with

Γ∗
g = Γ8 × Γ8 for E8 × E8 or Γ∗

g = Γw = Γ16 + Γv + Γc for SO(32) .

We restrict to this case now, and leave the discussion of the possible symmetry breakings to
the next section.

Sector 2 contributes states only at radii R2 = s2/(2w2). The momentum number of these
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states given in (2.3.3) becomes

n = 1
2

(
s2

w
+ |A|2w

)
+ π · A = 1

w

(
1− |π|

2

2

)
∈ Z , (2.3.22)

where in the last equality we have used (2.3.2) and |pL|2 = 2.
If A ∈ Γ,9 the condition |pI |2 < 2 can only be satisfied for pI = πI + wAI = 0. Then we

have s2 = 2 and the quantization condition is: 1
w

+ 1
2 |A|

2w ∈ Z. One has 1
2 |A|

2 ∈ Z, and thus
the only way to satisfy it is with w = ±1 and π = ∓A which gives two extra states at R = 1,
with momentum number n = ±(1− 1

2 |A|
2).

The condition 0 ̸= |pI |2 < 2 is only possible if A is not in the root lattice. And as it is
required to be in the weight lattice, this possibility arises in the HO theory only, for A ∈ Γv
or A ∈ Γc. For A ∈ Γv, π · A ∈ Z for π ∈ Γg and 1

2 |A|
2 = 1

2 (mod 1), so the only option is
s = 1, giving extra states with w = ±1 at R = 1/

√
2. These states enhance SO(32)× U(1) to

SO(34). We present an explicit example of this case in Section 2.3.3.1. For A ∈ Γc, π · A ∈ Z
for π ∈ Γg but now 1

2 |A|
2 ∈ Z and thus we cannot satisfy the quantization condition (2.3.22)

this way. However π ·A = 1
2 (mod 1) for π ∈ Γs and thus we recover that for these Wilson lines

there is an enhancement to SO(34) at R = 1/
√

2 as well, by states with w = ±1. Note that
A ∈ Γc is equivalent by a Λ-shift with Λ ∈ Γs to A ∈ Γv. As we can see from (2.3.17), by this
shift the winding number remains invariant, while π ∈ Γs gets shifted to π′ ∈ Γg.

We conclude that in circle compactifications with Wilson lines that do not break the original
SO(32) or E8 × E8 groups the pattern of gauge symmetry enhancement is (we give here only
the groups on the left-moving side):

• E8 × E8 × U(1)→ E8 × E8 × SU(2) at R = 1 if A ∈ Γ8 ⊕ Γ8

• SO(32)× U(1)→ SO(32)× SU(2) at R = 1 if A ∈ Γ16, or

• SO(32)× U(1)→ SO(34) at R = 1√
2 if A ∈ Γv or A ∈ Γc

In the following figures we show slices of the moduli space. To exhibit the increase in the
number of possible enhancement groups as the radius decreases and more winding numbers
contribute, as well as the symmetries in the Wilson lines, we present figures 2.1, 2.2, 2.3, 2.4
and 2.5 corresponding to compactification on a circle of generic radius R2 > 1 and at R2 = 1,
R2 = 3

4 , R2 = 1
2 and R2 = 1

4 , respectively.10 The circles in figures 2.3, 2.4 and 2.5 reflect
the dependence on |A|2 and invariance under rotations. Two dimensional slices given by one
parameter in the Wilson line and the radial direction are shown in figures 2.6 and 2.7. More
figures of slices of moduli space are given in Appendix A.3.

The first item above corresponds to the red points in figures 2.2b and 2.6b, while the second
and third ones correspond, respectively to the red and green points in figures 2.2a, 2.4a and
2.6a. Note that there are also red points in figure 2.5, but as we will see, these arise in a

9By Γ we mean Γ16 or Γ8 ⊕ Γ8, according to which heterotic theory one is looking at.
10For the HE theory, the Wilson lines chosen do not break the second E8 factor and therefore we display the

unbroken gauge group corresponding to the circle and first E8 directions. Figure 2.1b can be found in [35].
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different way as above, by a combination of breaking and enhancement. In the next section we
will show how the enhancement at some of the other special points in the figures arise.

(a) HO theory (b) HE theory

Figure 2.1: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A3,...,16 = 0, R = R0 with a generic R0 > 1

(a) HO (b) HE theory

Figure 2.2: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A3,...,16 = 0, R = 1.

(a) HO theory (b) HE theory

Figure 2.3: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A3,...,16 = 0, R2 = 3/4.
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(a) HO theory (b) HE theory

Figure 2.4: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A3,...,16 = 0, R2 = 1/2.

(a) HO theory (b) HE theory

Figure 2.5: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A3,...,16 = 0, R2 = 1/4.

(a) HO theory (b) HE theory

Figure 2.6: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A2,...,16 = 0.
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(a) HO theory
0.2 0.4 0.6 0.8 1.0
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A

(b) HE theory

Figure 2.7: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A,R, with Wilson line AI = (A, 07, A+ 1, 07).

HO theory:

(2.1a to 2.5a) →


U(1)3 × SO(28)
U(1)2 × SU(2)× SO(28)
U(1)2 × SO(30)

(2.6a) → U(1)2 × SO(30)

(2.7a) → U(1)2 × SU(2)× SO(28)

U(1)× SU(2)2 × SO(28)

U(1)× SU(3)× SO(28)

U(1)× SU(2)× SO(30)

U(1)× SO(32)

SU(2)× SU(3)× SO(28)

SU(2)× SO(32)

SO(34)

HE theory:

(2.1b to 2.5b) →


U(1)3 × SO(12)× E8

U(1)2 × SU(2)× SU(12)× E8

U(1)2 × SO(14)× E8

U(1)2 × E7 × E8

(2.6b) → U(1)2 × SO(14)× E8

(2.7b) → U(1)2 × SU(2)× SO(12)× E8

U(1)× SU(2)× E7 × E8

U(1)× SU(3)× SO(12)× E8

U(1)× SU(2)× SO(14)× E8

U(1)× SO(16)× E8

U(1)× E8 × E8

SU(3)× E7 × E8

SU(2)× E8 × E8

SO(18)× E8

2.3.3 Enhancement-breaking of gauge symmetry

Whenever the Wilson line is not in the dual root lattice, part or all of the original SO(32) or
E8×E8 symmetry is broken. However, this does not imply that no symmetry enhancement from
the circle direction is possible. The pattern of gauge symmetries can still be rich. We denote
these cases enhancement-breaking of gauge symmetry. This nomenclature can be confusing
however: for specific values of R and A, there is the possibility that the symmetry enhancement
is so large that it restores the original SO(32) or E8 × E8 symmetry, or even leads to a larger
group of rank 17. This means that we can have a maximal enhancement even if the Wilson line
is not in the dual root lattice, either to the groups listed at the end of the previous section, or
to any other simply-laced, semisimple group of rank 17, such as for example SO(18)× E8.
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The massless states for an arbitrary Wilson line are the following:
Sector 1 has w = 0 (and thus pI = πI) and consists of the roots of SO(32) or E8 × E8

satisfying π · A ∈ Z, which form a subgroup H ⊂ SO(32) or H ⊂ E8 × E8. We give examples
of Wilson lines preserving U(1)×SU(16) ⊂ SO(32), SO(2p)×SO(32− 2p) ⊂ SO(32), U(1)×
SU(p)×SO(32− 2p) ⊂ SO(32), U(1)×SU(9)×SO(16) ⊂ E8×E8, U(1)2×SU(8)×SU(8) ⊂
E8 × E8, SO(16)× E8 ⊂ E8 × E8, SU(2)× E7 × E8 ⊂ E8 × E8 in the following sections.

Sector 2 contains states only at radii R2 = s2/(2w2). Quantization of momentum gives the
condition (2.3.22).If there are states in this sector, there is an enhancement of H × U(1) to
H × SU(2) (where the SU(2) can be on the circle direction or along some direction mixing
the circle with the heterotic directions) or to a group that is not a product, like for example
enhancement of SO(16)× U(1) to SO(18), as we will show in detail.

On figures 2.6 to 2.11 and A.1 to A.16 sector 1 is represented by the horizontal lines and
sector 2 by the curves.

Now we show explicitly how the groups mentioned in sector 1 get enhanced respectively to
SO(34) at R2 = 1

2 ; SU(18) at R2 = 1
4 ; Ep+1 × SO(32− 2p) at R2 = 1− p

8 ; Ep+1 × SU(16− p)
at R2 = 1 − 8

16−p in the HO theory, and SO(34) at R2 = 1
18 ; SU(18) at R2 = 1

9 ; SO(18) × E8

at R2 = 1
2 ; SU(2)× E8 × E8 at R2 = 1

4 in the HE.

- Explicit examples for the HO theory
Here we present some examples of symmetry enhancement-breaking. The roots of SO(32)

are given by
SO(32) : (±1,±1, 014) , (2.3.23)

where underline means all possible permutations of the entries.

2.3.3.1 U(1)× SO(32)→ SO(34)

Consider the HO theory compactified on a circle of radius R = 1/
√

2 with a Wilson line
A = (1, 0, . . . , 0) ∈ Γv. The states with pR = 0 have left-moving momenta

pL = (w, πI + δA1 w ) , (2.3.24)

where the first entry corresponds to the circle direction. In sector 1, with w = 0, all the
momenta satisfy |πI |2 = 2 and π ·A ∈ Z. The last condition holds for any πI ∈ Γg, and thus in
this sector one has all the root vectors of SO(32) given in (2.3.23). In sector 2 we have s = 1
and w = ±1. Here we get massless states coming from three different sectors of the SO(32)
weight lattice, namely

2.a) |π|2 = 2, with π1 = ±1

pL = (±1, 0,±1, 0, 0, . . . , 0) (2.3.25)

(where the signs are not correlated). These are 60 states with n = 0.
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2.b) |π|2 = 0,

pL = (±1,±1, 0, . . . , 0) . (2.3.26)

These are 2 states, which have n = w.
2.c) |π|2 = 4, with π1 = ±2

pL = (∓1,±1, 0, . . . , 0) . (2.3.27)

Another 2 states with n = −w.
We thus get 64 extra states, which together with the Cartan direction of the circle, enhance

the SO(32) to SO(34). This point in moduli space is illustrated in green in figures 2.4a, 2.6a
and 2.7a. In figure 2.4a the other green points differ from this by a Λ-shift, while the other green
points in figures 2.6a and 2.7a, that appear at a different radii, will be explained in Section
2.3.4.

2.3.3.2 U(1)2 × SU(16)→ SU(18)

We now take the Wilson line A =
((

1
4

)
15
,−3

4

)
. In sector 1 (w = 0) we have the roots of SO(32)

that obey:
1
4

16∑
I=1

πI − π16 ∈ Z . (2.3.28)

Since the sum cannot be a multiple of 4, it has to vanish. Then we have the roots with two
non-zero entries of opposite signs, that is SU(16). For a generic R this is the gauge group, but
if R2 = 1

4 we get enhancement to the maximal group SU(18). In this case, the mass formula
(2.3.4) gives

15∑
I=1

(πI + w
4 )2 + (π16 − w + w

4 )2 =
16∑
I=1

(π̂I + w
4 )2 = 2− w2

2

where we defined π̂ = (π1, π2, . . . , π15, π16 − w). If w is even then π̂ is in (0) or (s), but if it is
odd then π̂ is in (v) or (c). We also have the quantization condition:

1
2 |π|

2 − 1
w

=
1
2 |π̂|

2 + 1
2w

2 + wπ̂16 − 1
w

=
1
2 |π̂|

2 − 1
w

+ w
2 + π̂16 ∈ Z . (2.3.29)

For w = 1, −∑16
I=1 π̂

I = 2|π̂|2 − 1, and the solutions are π̂ = −
(
1, 015

)
on (v) and π̂ =

−
(
(1

2)15,−1
2

)
on (c).

For w = 2, ∑16
I=1(π̂I + 1

2)2 = 0, with unique solution π̂ = −
((

1
2

)
16

)
.

They all obey the quantization condition, and add up to 66 additional states. Together
with the 240 roots of SU(16), they complete the 306 roots of SU(18).

2.3.3.3 U(1)× SO(2p)× SO(32− 2p)→ Ep+1 × SO(32− 2p)

Now we take a Wilson line A =
((

1
2

)
p
, 016−p

)
, 2 ≤ p ≤ 8, in the HO theory11.

11Note that p > 8 is equivalent, by a shift Λ = −
(( 1

2
)

16

)
, to p′ = 16− p < 8.

26



The massless states that survive in sector 1 (w = 0) are those with momentum πI satisfying

1
2

p∑
I=1

πI ∈ Z . (2.3.30)

Then the surviving states have momenta

pL = (0,±1,±1, 0p−2, 016−p) −→ SO(2p) ,

pL = (0, 0p,±1,±1, 014−p) −→ SO(32− 2p) .
(2.3.31)

For generic radius there are no states with non-zero winding, and then we get SO(2p) ×
SO(32− 2p). These points are illustrated for p = 2 by the cyan dots in figures 2.1a, 2.2a, 2.4a
and 2.5a; for p = 7, on the horizontal cyan line in figure 2.7a and for other values of p, at
half-integer values of the horizontal lines of the figures in Appendix A.3.

At special values of R some states with non-vanishing winding are massless. For example,
when R2 = 1 − p

8 for p < 8, the U(1) × SO(2p) is enhanced to Ep+1. In this case, the mass
formula (2.3.4) is

p∑
I=1

(πI + w
2 )2 +

16∑
I=p+1

π2
I = 2− 2w2(1− p/8) ≤ p

4 ,

and then if p < 8 the LHS must be smaller than 2. If the πI are half-integer, then the
LHS is always bigger than 2. Consequently, πI can only take integer values and we need∑16
I=p+1 π

2
I = β = 0, 1.

For w = 1 the solution must be of the form
(
(−1)k, 0p−k,±β, 015−p

)
and the equation is

solved for every p if β = 0. Then we get
(
(−1)k, 0p−k, 016−p

)
.

There is an additional constraint because |π|2 must be even, and then k must be even. The
number of states is equal to the way of choosing the value of the first p components. Choosing
the first p − 1 components, the last one is fixed by the constraint. There are 2 × 2p−1 = 2p

states with |w| = 1.
For w = 2 we get ∑p

I=1(πI + 1)2 = p− 6− β, which is only possible for p = 6, 7. The RHS
can only take the values 0 or 1. In the first case, all the πI must be equal to −1. Then we
get the solutions

(
(−1)7,±1, 08

)
for p = 7 and ((−1)6, 010) for p = 6 . The second case is only

possible for p = 7 and β = 0. One of the πI can take the value 0 (or −2) and the rest must
take the value −1:

(
−1± 1, (−1)6, 09

)
for p = 7. In total we have 2 states with |w| = 2 for

p = 6 and 2× (18 + 14) = 64 for p = 7.
For w ≥ 3 the equation cannot be satisfied. Then for p < 6 we get 2p states (all with
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|w| = 1), while for p = 6 and 7 we get 2 and 64 extra states respectively with |w| = 2.

U(1)× SO(4)→ SU(2)× SU(3) ≡ E3 (4 extra states)

U(1)× SO(6)→ SU(5) ≡ E4 (8 extra states)

U(1)× SO(8)→ SO(10) ≡ E5 (16 extra states)

U(1)× SO(10)→ E6 (32 extra states)

U(1)× SO(12)→ E7 (66 extra states)

U(1)× SO(14)→ E8 (192 extra states)

(2.3.32)

Recalling that E2 = U(1)×SU(2), this is also valid for p = 1, where we get the enhancement
at R2 = 7

8 :
U(1)2 ≡ U(1)× SO(2)→ U(1)× SU(2) ≡ E2 (2 extra states) . (2.3.33)

The enhancement group U(1)× SU(2)× SO(30), as any non-maximal enhancement, does not
arise at an isolated point, but at a line, displayed in blue in figure 2.6a.

Applying the statement to p = 8, appears an enhancement from U(1) × SO(16) to E9 at
R = 0. Since E9 has infinite dimension, we would need infinite massless states with infinitely
many different winding numbers. It is obvious that at R = 0 winding states do not cost any
energy, and thus one can have all the windings. The mass equation is:

8∑
I=1

(πI + w
2 )2 = 2− β . (2.3.34)

We see that for this value of p the RHS is independent of the winding number. If w = 1 then
π =

(
(−1)k, 08−k, 08

)
is a solution (if k is even). For any other odd value of w we have the

solution: π = −
((

w+1
2

)
k
,
(
w−1

2

)
8−k

, 08

)
. These, together with the states with even w, give

infinite massless states.
We can see all these enhancements at the intersections of the lines at A = 1/2 in figures

A.1 to A.16 that occur at R2 = 1− p
8 .

2.3.3.4 U(1)2 × SO(2p)× SU(16− p)→ SU(2)× Ep+1 × SU(16− p)

Consider the Wilson line A =
((

4
16−p

)
p
, 0p

)
, with 0 ≤ p ≤ 7.

The massless states that survive in sector 1 (w = 0) are those with momentum πI satisfying
4

16−p

16−p∑
I=1

πI ∈ Z. Then the surviving states have momenta

pL = (0, 016−p,±1,±1, 0p+2) −→ SO(2p)

pL = (0, 1,−1, 014−p, 0p) −→ SU(16− p)
(2.3.35)

For generic radii there cannot be states with non-zero winding, and then the symmetry
group is SO(2p)×SU(16−p). This is illustrated in the white spaces of the figures in Appendix
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A.3.
There are special values of R where some states with non-vanishing winding are massless.

For example, when R2 = 1 − 8
16−p , the U(1)2 × SO(2p) is enhanced to SU(2) × Ep+1. To see

this, consider the mass formula (2.3.4)

q∑
I=1

(πI + 4w
q

)2 +
16∑

I=q+1
π2
I = 2− 2w2(1− 8/q) where q ≡ 16− p .

For w ̸= 0, the RHS is smaller than or equal to 16/q and then the LHS must be smaller than
2. If the πI are integer, then we need ∑16

I=q+1 π
2
I = β = 0, 1 and it follows that

q∑
I=1

(πI + 4w
q

)2 = 2− 2w2(1− 8/q)− β .

For w = 1, ∑q
I=1(πI + 4

q
)2 = 16/q − β ≤ 16

9 . If one of the πI is different from 0 or −1 then the
LHS is larger than 16/q. So the solution must be of the form

(
(−1)k, 016−p−k,±β, 0p−1

)
and

then k = β = 0. There are only two states (considering also w = −1) with momentum (016).
For w = 2 we get ∑q

I=1(πI + 8/q)2 = −6 + 64/q − β which is only possible for q = 9, 10
(p = 7, 6). If p = 6 then we need β = 0, the RHS is 2

5 and we only have the solution ((−1)10, 06) .
If p = 7 then, for β = 0 and β = 1 the RHS takes the values 10

9 and 1
9 . The equation for β = 0

is impossible to satisfy, and then we get
(
(−1)9,±1, 06

)
. In total we have 2 states with |w| = 2

for p = 6 and 2× (14) = 28 for p = 7.
For w ≥ 3 we get ∑q

I=1(πI + 12/q)2 = 144/q − 16 − β ≤ 0. Then for q > 10 (p < 6) there
are 2 states (both with |w| = 1), while for p = 6 and 7 there are 2 and 28 extra |w| = 2 states
respectively.

If the πI are half-integer, then the last p values have to be ±1
2 :

q∑
I=1

(πI + 4w
q

)2 = q
4 − 2− 2w2(1− 8/q) (2.3.36)

For w = 1, ∑q
I=1(πI + 4

q
)2 = (q−8)2

4q ≤ 1 and the πI can only take the values ±1
2 . The solutions

are of the form
((

1
2

)
k
,
(
−1

2

)
16−p−k

,
(
±1

2

)
p

)
, and the equation implies k = 0. Then, for |w| = 1,

we get the 2× 2p+1+δp,0 solutions
((
−1

2

)
16−p

,
(
±1

2

)
p

)
.

For w = 2 we obtain ∑q
I=1(πI + 8

q
)2 = (q−8)(q−32)

4q ≤ 0, and then there are no states with
|w| > 1.

In total, for p < 6 we get 2 + 2p+δp,0 states (all of them with |w| = 1), while for p = 6 and 7
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we get 2 and 28 extra states respectively with |w| = 2.

U(1)2 → SO(4) ≡ SU(2)× E1 (4 extra states)

U(1)3 ≡ U(1)2 × SO(2)→ SU(2)× SU(2)× U(1) ≡ SU(2)× E2 (4 extra states)

U(1)2 × SO(4)→ SU(2)× SU(2)× SU(3) ≡ SU(2)× E3 (6 extra states)

U(1)2 × SO(6)→ SU(2)× SU(5) ≡ SU(2)× E4 (10 extra states)

U(1)2 × SO(8)→ SU(2)× SO(10) ≡ SU(2)× E5 (18 extra states)

U(1)2 × SO(10)→ SU(2)× E6 (34 extra states)

U(1)2 × SO(12)→ SU(2)× E7 (68 extra states)

U(1)2 × SO(14)→ SU(2)× E8 (158 extra states)

At p = 8 we seem to get an enhancement from U(1)2 × SO(16) to SU(2)× E9 at R = 0.
All of these enhancements can be seen on the intersections of the red and purple curves of

figures A.9 to A.16 that occur at R2 = 1− 8
q
.

- Explicit examples for the HE theory
The roots of E8 × E8 are

E8 × E8 : (±1,±1, 06, 08) , (08,±1,±1, 06) , (2.3.37)

((±1
2)8, 08) , (08, (±1

2)8) ,with even number of + signs

2.3.3.5 U(1)2 × SU(9)× SO(16)→ SO(34)

Consider the HE theory compactified with Wilson line A =
((

1
6

)
7
, 5

6 , 1, 07
)
. In sector 1 (w = 0)

we have the roots of E8 × E8 that obey:

1
6

7∑
I=1

πI + 5
6π

8 + π9 ∈ Z (2.3.38)

This breaks into two conditions, one for each E8:

1
6

7∑
I=1

πI + 5
6π

8 ∈ Z and π9 ∈ Z . (2.3.39)

For the first condition we have (0) and (s) roots. The (0) roots are vectors of the form(
±1,±1, 06

)
. The condition implies that if π8 = 0 then we need opposite signs for the two

non-zero entries. If π8 = ±1 then the other non-zero entry must have the same sign. We get(
1,−1, 05, 0

)
and ±

(
1, 06, 1

)
. These are 42 + 14 = 56 roots.

The (s) roots are vectors of the form
((
±1

2

)
8

)
with an even number of minus signs. The

condition is ∑7
I=1 π

I + 5π8 = 0 mod 6. The absolute value of the LHS can only be 0 or 6. In
the first case one of the first 5 components must have a different sign than the rest, and in the
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second case all the 8 components must have the same sign and we get ±
((

1
2

)
6
,−1

2 ,−
1
2

)
and

±
((

1
2

)
8

)
. These are 14 + 2 = 16 roots.

In total we have the 56 + 16 = 72 roots of SU(9).
The second condition leaves only the integer roots, and then we have SO(16).
For an arbitrary value of R there cannot be states with non-zero winding, and then the

gauge group is SU(9)× SO(16).
Now we show that when R2 = 1

18 there is enhancement of the gauge symmetry to SO(34).
The mass formula (2.3.4) is:

7∑
I=1

(πI + w
6 )2 + (π8 + 5w

6 )2 + (π9 + w)2 +
16∑
I=10

π2
I = 2− w2

9 < 2 . (2.3.40)

Then∑16
I=10 π

2
I can only take the values 0, 1 or 7

4 . In the last case, we also have that (π9+w)2 ≥ 1
4 ,

which means that there are no spinorial roots in the last 8 components. The only possibilities
are: (−w, 07) and (−w, 07) ±

(
1, 07

)
. The first (second) case requires w to be even (odd).

Defining π̂ = (π1, π2, . . . , π7,−π8 − w), we have:

8∑
I=1

(π̂I + w
6 )2 = 2− w2

9 −
1−(−1)w

2 (2.3.41)

but now the condition for the integer vectors is ∑8
I=1 π̂I odd (even) when w is odd (even); and

for the half-integer vectors we have the (s) conditions if w is odd and the (c) conditions if w is
even.

The quantization condition is

1
2 |π|

2 − 1
w

∈ Z→


|π|2 = 0 mod 2 for |w| = 1
|π|2 = 2 mod 4 for |w| = 2
|π|2 = 2 mod 6 for |w| = 3

(2.3.42)

If w = 1, −∑8
I=1 π̂I = 3|π̂I |2 − 2. The minimum value for |π̂I |2 is 1, and in that case we

have π̂ = −
(
1, 07

)
.

|π̂I |2 = 2 can only be achieved for the (s) conjugacy class, and then π̂ = −
((

1
2

)
8

)
.

|π̂|2 = 3 is for the (v) conjugacy class, −∑8
I=1 π̂I = 7, but this cannot be achieved. The

same happens for greater values of |π̂|2.
If w = 2, −∑8

I=1 π̂I = 3
2 |π̂I |

2 − 1. Then |π̂|2 has to be even. The minimum value is 0,
which could be achieved only on (0), and the equation cannot be solved. |π̂|2 = 2 can only be
achieved for (0) and we get

(
(−1)2, 06

)
. |π̂|2 = 4 has the solution π̂ = −

(
3
2 , (

1
2)7
)
. And for

|π̂|2 = 6 the equation cannot be satisfied.
If w = 3, ∑8

I=1(π̂I + 1
2)2 = 0, and the only solution is π̂ =

((
−1

2

)
8

)
. That is π =(

(−1
2)7,−5

2 ,−3, 07
)

+
(
08,±1, 07

)
. This has |π|2 = 12, 18 or 24, which do not obey the quant-

ization condition.
If w = 4, −∑8

I=1 π̂I = 3
4 |π̂|

2 + 1
6 . But this equation cannot be solved for integer |π̂|2.
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Defining 8 more components for a 16 dimensional π̂ such that π̂9 = π9 − w and the rest
equal to the last 7 components of π, one can write the additional states π̂ for R2 = 1

18 as(
±1, 07,±1, 07

)
and

(
±
(

1
2

)
8
,±1, 07

)
for |w| = 1 and ±

(
(1)2, 06, 08

)
and as ±

((
3
2 , (

1
2)7
)
, 08

)
for |w| = 2. The former are 256 + 32 = 288 states and the latter 56 + 16 = 72 states. In total
these 360 additional states added to the 184 roots of SU(9) × SO(16) give the 544 roots of
SO(34).

In figure 2.9 we show this maximal enhancement on the intersection between one red, two
yellow and one green curves. The integer states with |w| = 1 and |w| = 2 give the red curve, the
half-integer states with |w| = 1 give the green curve and the ones with |w| = 2 are represented
by the yellow curve. The additional states without winding are those in the yellow line.

0.2 0.4 0.6 0.8 1.0
R0.0

0.2

0.4

0.6

0.8

1.0
A

SU(8)× SO(16)× U(1)2

SO(32)× U(1)

SO(16)× SO(16)× U(1)

SU(9)× SO(16)× U(1)

E8 × SO(16)× U(1)

SU(8)× SO(18)× U(1)

+ + + SO(34)

+ E8 × SO(18)

Figure 2.9: HE with Wilson line AI = ((A)7, 1− A, 1, 07)

2.3.3.6 U(1)3 × SU(8)× SU(8)→ SU(18)

Consider the Wilson line A =
((

1
6

)
7
, 5

6 ,
(

1
6

)
7
, 5

6

)
in the HE theory.

In sector 1 (w = 0) we have the first condition of (2.3.39) for each of the E8, then we get
the 144 roots of SU(9)× SU(9). For an arbitrary value of R this is the gauge group.

For R2 = 1
9 there is enhancement of the gauge symmetry to SU(18). To see this, take the

mass formula (2.3.4)

7∑
I=1

(πI + w
6 )2 + (π8 + 5w

6 )2 +
15∑
I=9

(πI + w
6 )2 + (π16 + 5w

6 )2 = 2− 2w2

9 < 2 . (2.3.43)

Defining π̂ = (π1, π2, . . . , π7,−π8 − w, π9, π10, . . . , π15,−π16 − w) we have:

16∑
I=1

(π̂I + w
6 )2 = 2− 2w2

9 , (2.3.44)

but now π̂ has to be on the conjugacy classes (ss), (vv), (sv) or (vs) if w is odd and on (cc),
(00), (0c), (c0) if w is even.

We also have to obey the quantization condition
1
2 |π|2−1

w
∈ Z.
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If w = 1, −∑16
I=1 π̂I = 3|π̂|2 − 4 and π̂ is on (vv), (ss), (vs) or (sv). The minimum value

for |π̂I |2 is 2, and in that case (π̂, π̂′) = −
(
1, 07, 1, 07

)
.

|π̂|2 = 3 can only be achieved for the (vs) and (sv) conjugacy classes, and π̂ = −
(
1, 07, (1

2)8
)
,

−
(
(1

2)8, 1, 07
)
. |π̂|2 = 4 is for the (ss) and (vv) conjugacy classes, and π̂ = −

(
(1

2)16
)
. |π̂|2 = 5

is for the (sv) and (vs) conjugacy classes, −∑16
I=1 π̂I = 11 which cannot be achieved. The same

happens for greater values of |π̂|2.
If w = 2, −∑16

I=1 π̂I = 3
2 |π̂|

2 + 1 implies (00), (cc), (c0) or (0c). The minimum value for
|π̂I |2 is 0, but then the equation cannot be solved.
|π̂|2 = 2 can only be achieved for (00), (0c) or (c0), but there is no solution.
|π̂|2 = 4 implies −∑16

I=1 π̂I = 7 and this cannot be achieved. The same happens for greater
values of |π̂|2.

If w = 3, ∑16
I=1(π̂I + 1

2)2 = 0 has only a solution belonging to (ss), namely π̂ = −
((

1
2

)
16

)
.

It can be shown that all of these states obey the quantization condition. Then, the additional
states for R2 = 1

18 are ±
(
1, 07, 1, 07

)
, ±

(
1, 07, (1

2)8
)

and ±
(
(1

2)8, 1, 07
)

for |w| = 1 and π̂ =((
−1

2

)
16

)
for |w| = 3

(
±1, 07,±1, 07

)
and

(
±
(

1
2

)
8
,±1, 07

)
for |w| = 1 and ±

(
(1)2, 06, 08

)
and

±
((

1
2

)
16

)
for |w| = 2. The former are 128 + 32 = 160 states and the latter 2 states. In total

these are 162 additional states, which added to the 144 roots of SU(9) × SU(9) give the 306
roots of SU(18).

In figure 2.10 we show this maximal enhancement on the intersection between one red, two
yellow and one green curves. The integer states with |w| = 1 are represented by the red curve,
the half-integer states with |w| = 1 give the yellow curve, the states with |w| = 3 are represented
by the green curve and the additional states with w = 0 give the yellow horizontal line.

0.2 0.4 0.6 0.8 1.0
R0.0

0.2

0.4

0.6

0.8

1.0
A

SU(8)× SU(8)× U(1)3

SU(16)× U(1)2

SO(16)× SO(16)× U(1)

SU(9)× SU(9)× U(1)

E8 × E8 × U(1)

SU(8)× SU(8)× SU(2)× U(1)

+ + + SU(18)

+ E8 × E8 × SU(2)

Figure 2.10: HE with Wilson line AI = ((A)7, 1− A, (A)7, 1− A)

2.3.3.7 U(1)× SO(16)× E8 → SO(18)× E8

Consider the HE string compactified on a circle of radius R = 1√
2 , with Wilson line A =

(1, 07, 08), which is of the form (v0) according to the notation of Appendix A.1 (see (A.1.10)
in particular). This Wilson line leaves the second E8 unbroken, while from the first E8, the
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surviving states in sector 1 are the ones with integer entries, i.e. those in the first line of (2.3.37).
The group H from sector 1 is then SO(16)×E8 and the corresponding points in moduli space
are illustrated by the grey dots in figure 2.1b.

In sector 2 we have states with w = ±1 such that s = 1, |pI |2 = 1. The surviving states
have the following momenta

pL = (0,±1,±1, 06), w = 0, |π|2 = 2 112 roots

pL = (±1, 0,±1, 06), w = ±1, |π|2 = 2, 28 roots

pL = (±1,±1, 07), w = ±1, π = 0, 2 roots

pL = (±1,∓1, 07), w = ±1, |π|2 = 4, 2 roots ,

where the first entry corresponds to the circle and the subsequent ones to the 8 directions along
the Cartan of the first E8 factor. The first line contains the states of sector 1. These are the 144
roots of SO(18). This point in moduli space, together with its equivalent ones, are illustrated
by the green dots in figure 2.4b, 2.6b and 2.7b.

2.3.3.8 U(1)× SU(2)× E7 × E8 → SU(2)× E8 × E8

This is an interesting example of enhancement-breaking in the HE theory, where first the E8

is broken to SU(2) × E7 by the Wilson line A =
((

1
4

)
8
, 08

)
and then enhanced by the circle

direction to SU(2)× E8.
The Wilson line leaves the second E8 unbroken, while the surviving roots from the first E8

have 9-momenta
pL = ±(0, 1,−1, 06)

pL = ±
(
0,
(

1
2

)
8

)
pL =

(
0,
(

1
2

)
4
,−

(
1
2

)
4

) (2.3.45)

This, gives 128 roots, which together with the 8 Cartan directions, gives an unbroken gauge
group H = SU(2)× E7 ⊂ E8.

Additionally at R = 1
2 there are 114 states in sector 2: two with w = ±2 and 112 with

w = ±1 and momentum
pL =

(
±

√
2

2 ,∓
(

3
4

)
2
,±

(
1
4

)
6

)
pL =

(
±

√
2

2 ,±
(

3
4

)
2
,∓

(
1
4

)
6

) (2.3.46)

These states give a total of 114 extra states that add up to the previous 136 states, plus the
circle direction, adding up to the 251 states of SU(2)× E8. So at R = 1

2 we get enhancement
to SU(2) × E8 × E8, which works very differently than the enhancement occurring at R = 1,
mentioned in Section 2.3.2.

In figure 2.11 we present these maximal enhancements for the HE theory, and we also show
a maximal enhancement to SU(3)×E7×E8. The additional states with w = 0 are represented
by the cyan line and the states with |w| = 1 together with the ones with |w| = 2 are represented
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by the orange curve.

0.2 0.4 0.6 0.8 1.0
R0.0

0.2

0.4

0.6

0.8

1.0

A

E7 × E8 × U(1)2

SU(2)× E7 × E8 × U(1)

E8 × E8 × U(1)

+ SU(2)× E8 × E8

+ + SU(3)× E7 × E8

Figure 2.11: HE with Wilson line AI = ((A)8, 08)

2.3.4 Exploring a slice of moduli space

In this section we present a detailed analysis of the slice of moduli space for compactifications
of the heterotic theory on a circle at any radius and Wilson line given by

A = (A1, 015) . (2.3.47)

The results of this section are displayed in figure 2.6. Here we present the main ingredients of
the calculations, and leave further details to Appendix A.2.

For this type of Wilson line, the states with w = 0 (sector 1) that survive, are those satisfying

π1A1 ∈ Z . (2.3.48)

This preserves all the roots only if A1 ∈ Z for the Γ16 case, or A1 ∈ 2Z for the Γ8 ⊕ Γ8 case.
These correspond to the horizontal orange lines in figure 2.6, where at any generic radius, the
gauge symmetry is U(1)×SO(32), or U(1)×E8×E8. If A1 is an odd number, then the SO(32)
symmetry is unbroken, but the E8 × E8 is broken to SO(16) × E8, which is depicted with a
black line at A1 = 1 in figure 2.6b.

If A1 /∈ Z, then we have just the roots with π1 = 0. That is, the 420 roots of SO(30) or the
324 roots of SO(14)× E8. This corresponds to the white regions in figure 2.6.

Now, depending on the value of R, we can have additional states in sector 2, i.e. states with
non-zero winding12 which momenta satisfy |pL|2 = 2 and have a quantized momentum number

12From now on we take w > 0, keeping in mind that for every massless state with w there is also a massless
state with −w.
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on the circle. Then, according to (2.3.2) and (2.3.22), they should obey

|π + wA|2 = 2(1− w2R2) ,
1
w

(
1− 1

2 |π|
2
)
∈ Z .

(2.3.49)

The first equation implies R−1 ≥ w, and the simplest solution is

π =
(
±
√

2(1− w2R2)− wA1, 015

)
.

But π is in an even lattice, which implies π1 = −2q, q ∈ Z. The quantization condition for n
yields

2q2−1
w
∈ Z ,

so we have only the winding numbers that are divisors of the numbers that can be written as
2q2 − 1, for some integer q. In terms of q, the Wilson lines are of the form

A1 = 2q ±
√

2− 2w2R2

w
≡ aw,q(R) , {w, q, 2q2−1

w
} ∈ Z . (2.3.50)

If the radius also satisfies R < 1√
2w < 1

w
, we have additional solutions where some of the

other components of π are non-zero, such that

π + wA =
(
±
√

1− 2w2R2,±1, 014
)

for Γ16 ,

π + wA =
(
±
√

1− 2w2R2,±1, 06, 08
)

for Γ8 ⊕ Γ8 .

The quantization conditions are the same as before, but now the Wilson lines have the following
behavior as a function of the radius

A1 = 2q + 1±
√

1− 2w2R2

w
≡ bw,q(R) , {w, q, 2q2−1

w
} ∈ Z . (2.3.51)

If additionally R < (2
√

2w)−1 we have yet other possible solutions, but only for the HE
theory, where

π + wA =
(
±1

2

√
1− 8w2R2, (±1

2)7, 08
)

for Γ8 ⊕ Γ8.

The lines and quantization conditions are:

A1 =
q + 1

2 ±
√

1
4 − 2w2R2

w
≡ cw,q(R) , {w, q, q(q+1)

2w } ∈ Z ,
(2.3.52)

where we used (π1)2 = |π|2 − 7
4 and π1 = −

(
q + 1

2

)
.

For a given q and w, whenever the Wilson line is of the form aw,q in (2.3.50), we get 2
massless states (one for w > 0 and another one for w < 0). If there are no more states, then
we have enhancement to U(1) × SU(2) × SO(30) and U(1) × SU(2) × SO(14) × E8. These
correspond to the blue lines in figure 2.6, where for example in figure 2.6a, the long blue line
going from (R,A1) = (0,

√
2) to (1, 0) corresponds to a1,0 =

√
2(1−R2), while its mirror one
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along the axis A1 = 1 is a1,1 = 2− a1,0.
For Wilson lines of the form bw,q in (2.3.51), we get 60 extra states for the Γ16, and 28

for Γ8 ⊕ Γ8. The former promote the enhancement to U(1) × SO(32), while the latter to
U(1) × SO(16) × E8, and they correspond respectively to the orange lines in figure 2.6a and
the black lines in figure 2.6b. The largest curved orange line in the former and black line in the
latter going from (0, 0) to (0, 2) corresponds to b0,1 = 1±

√
1− 2R2, where the plus sign is for

the upper half of the curve, and the minus sign for the lower half.
Finally, Wilson lines of the form cw,q in (2.3.52) give in the HE theory, 2× 26 = 128 states

(the sign of one of the seven (±1
2) is determined by the sign of the other 6 and the sign chosen

for the Wilson line). Note that cw,q(R) = b2w,q(R). It is not hard to show that a Wilson line
that can be written as cw,q(R) can always be written as b2w,q(R), but the function b can also
have an odd w. Wilson lines b that can also be written as c bring then a total of 28+128 = 156
states, which corresponds to the enhancement to U(1) × E8 × E8 in the orange lines of figure
2.6b.

There are only two kinds of intersections between lines, and the points of intersection cor-
respond to points of maximal enhancement (see Appendix A.2 for details):

• between a blue curve a(R) with w1 and an orange curve b(R) with w2, where the en-
hancement group is SU(2) × SO(32) (SU(2) × E8 × E8) in the HO (HE) theory. These
are the red dots of figure 2.6, and arise at

(R,A1) =
 1√

w2
1 + 2w2

2

,
2
w1

(q ± w2R)
 =

(
1
C
,
2k
C

)
,

for some integer k, with C = 1, 3, 9, 11, ... are all the integers whose prime divisors are 1
or 3 (mod 8).

• between two blue a(R) with w1 and w2 and two orange (black) curves b(R) with w3 and
w4, where the enhancement group is SO(34) (SO(18) × E8) for the SO(32) (E8 × E8)
theory. These are the green dots of figure 2.6, and arise at13

(R,A1) =
 1√

w2
1 + w2

2

,
2
w1

(
q ± 1√

2w2R
) =

(
1√
2C

,
k

C

)
,

for some integer k, with C = 1, 5, 13, 17, ... are all the integers whose prime divisors are
Pythagorean primes.

In Appendix A.2 we give the details of the calculations and also prove that these are the
only possible intersections for this type of Wilson lines. In Appendix A.3 we present other slices
of moduli space given by the radius and Wilson lines determined by a single parameter A.

13We get additionally R = 1√
w2

1+w2
2

= 1√
2
√

w2
3+w2

4
.
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2.4 Generalized Dynkin Diagram of Γ1,17

As was explained previously, the momentum of the states associated to heterotic strings com-
pactified on a torus lies in an even self-dual lattice. In the case of the circle this is Γ1,17. It is
quite simple to obtain all the gauge group and their respective moduli for circle compactific-
ations of both heterotic strings by means of the Generalized Dynkin Diagram (GDD) of this
lattice. We refer to [11] for an introduction to root systems and associated GDDs of Lorentzian
Γ1,8m+1 lattices. The special case of Γ1,17 is discussed in detail in [33] and [13], precisely in
connection to circle compactifications of the heterotic string. It was originally considered by
Vinberg [36]. The reflective part of its group of automorphisms, which is actually the duality
group O(1, 17,Z) [13], can be encoded in the GDD as we review shortly.

The equivalence of the two heterotic strings on S1 is determined by the uniqueness of the
Γ1,17 root lattice. The Generalized Dynkin Diagram (GDD) of Γ1,17 is obtained by adding
roots associated with the crosses in the following extension of the SO(32) and E8×E8 Dynkin
diagrams respectively

(2.4.1)

(2.4.2)

The 17-dimensional moduli space of inequivalent compactifications can be chosen to be delim-
ited by 19 boundaries, each of them associated with one of the nodes of the GDD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1617
1819

(2.4.3)

A possible fundamental region for the moduli space is determined by the points satisfying
all of the inequalities in Table 2.12

Node Fund region for Γ16 Fund region Γ8 ⊕ Γ8

1 ≤ i ≤ 6 Ai ≤ Ai+1 Ai ≤ Ai+1
7 A7 ≤ A8 A7 ≤ A8 + 1
8 A8 ≤ A9

∑16
i=1 A

2
i ≥ 2− 2R2

9 A9 ≤ A10 A9 ≤ A10 + 1
10 ≤ i ≤ 15 Ai ≤ Ai+1 Ai ≤ Ai+1

16 A16 ≤ 1− A15 A16 ≤ −A15
17 −A2 ≤ A1 −A2 ≤ A1
18 ∑16

i=1 A
2
i ≥ 2− 2R2 ∑16

i=9 Ai ≥ 0
19 ∑16

i=1(Ai − 1
2)2 ≥ 2− 2R2 ∑8

i=1 Ai ≤ 0

Figure 2.12: Fundamental region for HE and HO in d = 1.
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This defines a 17-dimensional surface resembling a chimney [13]. In Γ16, the first 17 nodes
define walls parallel to the R direction and the last two nodes define hyperspheres which delimit
the bottom of the chimney. In Γ8⊕Γ8, there are 18 walls and only one hypersphere at the bottom
defined by the 8th node. At the borders of the fundamental region, where some equalities are
saturated, the gauge symmetry is enhanced. The enhanced gauge group is obtained by removing
all the nodes of the Generalized Dynkin Diagram except those with saturated inequality. Hence,
the maximally enhanced symmetries saturate all but 2 of the inequalities14. It can be shown
that all the possible combinations of saturated inequalities produce Dynkin diagrams of the
ADE classification.

Some sections of the bottom of the chimney are represented below in figures A.1 to A.16 by
the red curves that intersect the horizontal axis and the purple curves that intersect the A = 1

2
line. These are the sections of the hypersphere associated respectively to the nodes 18 and 19
in the Γ16 case. The absence of purple curves in the first eight figures is related to the fact that
for Wilson lines with more than 7 zeros there are no spinorial roots which makes the inequality
of the 19th node impossible to saturate.

All the possible enhancement groups in S1 compactifications can be obtained from the GDDs
[11–13] . Here we list all the possible maximal enhancements for the Γ16 and Γ8 ⊕ Γ8 theories,
together with the point in the fundamental region that gives that enhancement (p, q ∈ Z,
1 ≤ p, q ≤ 8)

Wilson line R−2 Gauge group(
08−p,

(
q

2(p+q)

)
p+q

,
(

1
2

)
8−q

)
8
(

1
p

+ 1
q

)
E9−p × E9−q × SU(p+ q)(

− q
2(6+q) ,

(
q

2(6+q)

)
7+q

,
(

1
2

)
8−q

)
2− 2

q+9 + 8
q

SU(9 + q)× E9−q(
−1

4 ,
(

1
4

)
14
,−1

4

)
+ (015, 1) 4 SU(18)(

08+q, (1
2)8−q

)
8
q

SO(16 + 2q)× E9−q

(015, 1) 2 SO(34)

Figure 2.13: Maximal enhancements for the HO theory.

Wilson line R2 Gauge group(
08−p,

(
1
p

)
p
,
(
−1
q

)
q
, 08−q

)
+ (07,−1, 1, 07) 1

2

(
1
p

+ 1
q

)
E9−p × E9−q × SU(p+ q)(

−1
6 ,
(

1
6

)
7
,
(
−1
q

)
q
, 08−q

)
+ (07,−1, 1, 07) 1

2

(
1
9 + 1

q

)
SU(9 + q)× E9−q(

−1
6 ,
(

1
6

)
7
,
(
−1

6

)
7
, 1

6

)
+ (07,−1, 1, 07) 1

9 SU(18)(
08,

(
−1
q

)
q
, 08−q

)
+ (07,−1, 1, 07) 1

2q SO(16 + 2q)× E9−q(
08,

(
−1

6

)
7
, 1

6

)
+ (07,−1, 1, 07) 1

18 SO(34)

Figure 2.14: Maximal enhancements for the HE theory.

When p and/or q equal 7 one gets E2 = SU(2)×U(1) and the enhancement is not maximal.
14Actually, if the group has one or two E2, 3 or 4 nodes have to be removed instead of 2.
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Now we will explain the construction of the GDD in more detail for the HE case. The HO
is analogous an can be read for example in [2].

2.4.1 Embedding of Γ8 ⊕ Γ8

We will describe the embedding of the HE lattice Γ8 ⊕ Γ8 in Γ1,17.

1
3

2
6

3
5

4
4

5
3

6
2

74

82

0
1

C 0′

1
6′

2
5′

3
4′

4
3′

5
2′

6
1′

3

7′ 4

8′ 2

Figure 2.15: Generalized Dynkin Diagram for the Γ1,17 lattice, with labels showing the embedding of
the extended Dynkin diagrams of E8 + E′

8. The Kac marks are shown in red.

The GDD is shown in Figure 2.15. It is composed by the extended Dynkin diagrams of E8

and E′
8 joined by a central node. The nodes can be specified in terms of the charge vectors

(2.3.9)

φi = |0, 0;αi, 08⟩, φi′ = |0, 0; 08, α′
i⟩, i = 1, ..., 8 ,

φ0 = |0,−1;α0, 08⟩, φC = |1, 1; 08, 08⟩, φ0′ = |0,−1; 08, α′
0⟩ .

(2.4.4)

where αi and α′
i are the simple roots of E8 and E′

8, given together with their fundamental
weights in Table 2.115. We have also written down the lowest root α0 = −∑8

k=1 κkαk, and
similarly for α′

0. The κi and κ′
i are the Kac marks, they are listed on the table and also shown

in red in the Figure 2.15. By definition κ0 = κ′
0 = 1 and sometimes we will set w0 = 0, w′

0 = 0.

i κi αi wi

1 3 (1, -1, 0, 0, 0, 0, 0, 0) -(- 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , -

5
2 )

2 6 (0, 1, -1, 0, 0, 0, 0, 0) -(0, 0, 1, 1, 1, 1, 1, -5)

3 5 (0, 0, 1, -1, 0, 0, 0, 0) -(0, 0, 0, 1, 1, 1, 1, -4)

4 4 (0, 0, 0, 1, -1, 0, 0, 0) -(0, 0, 0, 0, 1, 1, 1, -3)

5 3 (0, 0, 0, 0, 1, -1, 0, 0) -(0, 0, 0, 0, 0, 1, 1, -2)

6 2 (0, 0, 0, 0, 0, 1, -1, 0) (0, 0, 0, 0, 0, 0, -1, 1)

7 4 -(1, 1, 0, 0, 0, 0, 0, 0) -( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , -

7
2 )

8 2 ( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) (0, 0, 0, 0, 0, 0, 0, 2)

0 1 (0, 0, 0, 0, 0, 0, 1, -1) (0, 0, 0, 0, 0, 0, 0, 0)

Table 2.1: Simple roots αi, Kac marks κi and fundamental weights wi of E8.

15On our convention, α′
i and w′

i are given by changing the sign and reflecting the components of αi and wi.
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In [13] (see also [36]), the generators of the duality group O(1, 17,Z) were identified with
Weyl reflections in the lattice. To be more concrete, let us consider the transformations of
the charge vector |Z⟩ about the simple roots of Γ1,17 in (2.4.4), denoted collectively |φ⟩. Since
⟨φ|φ⟩ = 2, the Weyl transformation is

|Z ′⟩ = |Z⟩ − ⟨φ|Z⟩|φ⟩ . (2.4.5)

Once |Z ′⟩ is found, the action on the moduli is deduced by imposing that pR = 0 transforms
into p′

R = 0, i.e. n−Ew−π ·A = 0 goes into n′−E ′w′−π′ ·A′ = 0, where we have defined the
moduli space parameter E = R2 + 1

2A
2 as an alternative to R. This is a shortcut to requiring

invariance of the spectrum. For example, writing only the transformed quantities, from the
nodes 1, 0, and C we obtain

φ1 : π′1 = π2, π′2 = π1 ⇒ A′1 = A2, A′2 = A1, (2.4.6a)

φ0 : n′ = n− w + π7 − π8, π′7 = π8 + w, π′8 = π7 − w ⇒ A′7 = A8 − 1, A′8 = A7 + 1,

E ′ = E + A7 − A8 + 1, (2.4.6b)

φC : w′ = −n, n′ = −w ⇒ E ′ = 1
E
,A′ = A

E
. (2.4.6c)

Clearly, (2.4.6a) is a permutation of the first two components of the Wilson line. In general,
the reflections about nodes φi, or φ′

i, i = 1, . . . , 8, induce transformations of the Wilson line AI

which are just elements of the Weyl group of E8, or E′
8. In (2.4.6b) we recognize a translation

of AI by α0× 0, which belongs to Γ8⊕Γ8, combined with a permutation of A7 and A8. Finally,
(2.4.6c) is the generalization of the T-duality R → 1/R when A ̸= 0, already given in Section
2.3.1.

The fundamental region described in Table 2.12 can be rewritten in terms of the simple
roots of Γ1,17 in Table 2.1. On the HE case, the inequality for the nodes 1 ≤ i ≤ 8 on figure
2.15 can be expressed as A · (αi × 0) ≥ 0; for the 0 node it is A · (α0 × 0) ≥ −1 and for the C
node E ≥ 1. For the primed nodes it is the same as before but changing (αk×0) with (0×α′

k).
As explained above, the prescription to obtain a non-Abelian gauge group Gr is to delete

19− r nodes of the GDD such that the remaining ones give the Dynkin diagram of the desired
semisimple Lie Algebra. The total gauge group is Gr×U(1)17−r. The Wilson line and the radius
are determined by saturating the inequalities corresponding to the r undeleted nodes. In this
manner one can obtain all the allowed groups and the corresponding moduli. For example,
for maximal enhancement, all but 2 of the inequalities are saturated. The allowed groups of
maximal rank are precisely found by deleting one node in the E8 side and one node in the E′

8

side, while the central node C corresponding to E = 1 cannot be erased. We note that the
i-th node forming the first E8 will have its inequality saturated only when the Wilson line A is
orthogonal to αi, while the presence of the node 0 implies A · α0 = −1. From this it is easy to
see that the Wilson lines that give maximal enhancements are:

A = wk
κk
× w′

m

κ′
m

, (2.4.7)
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with the fundamental weights of E8 given in Table 2.1. As a check, see that the LHS of the
inequalities is

A · (αi × 0) = wk
κk
· αi = 1

κi
δik ,

A · (α0 × 0) = wk
κk
·

− 8∑
j=1

κjαj

 =

 −1 for 1 ≤ k ≤ 8
0 for k = 0

,

confirming that this Wilson line kills the nodes k and m′ while preserving the rest.
If the Wilson line A and the radius R are supplied, the resulting group can be determined by

checking which boundary conditions are saturated and keeping only the associated nodes in the
GDD. To this end we might need to first bring the given A and R to the fundamental region
by transformations including shifts and Weyl reflections of A in Γ8 ⊕ Γ8, and the T-duality
(2.4.6c).

From the GDD we can also determine the automorphisms of the lattice corresponding to
any enhanced gauge group. They are just generated by Weyl reflections (2.4.5) associated to
the surviving nodes. The fixed points of each reflection determine a 16-dimensional hyperplane
in moduli space where the inequality associated to the given node is saturated. The intersection
of r of these hyperplanes gives the (17− r)-dimensional subspace of moduli space where the
given rank r gauge group is realized (maximal enhancements are realized at a point). This
subspace is invariant under the subgroup of O(1, 17,Z) generated by the r Weyl reflections
associated to the surviving nodes.

There are 44 allowed groups with maximal rank r = 17, as can be seen by removing pairs
of nodes from the GDD. They were given in a condensed form in Tables 2.13 and 2.14 and
are shown with more details such as the global structure in Table D.116. On the other hand,
there are 1093 forbidden groups with r = 17, which clearly cannot be obtained from the GDD.
One interesting case is the r = 16 enhancement SO(16) × SO(16) × U(1). From the GDD it
is evident that there is only one way of selecting the nodes and it is impossible to add a node
without getting some non-ADE diagram. This group has an expected trivial enhancement to
SO(16)×SO(16)×SU(2), but this is one of the forbidden groups mentioned. It turns out that
the necessary self-dual radius (eq. (2.3.20)) would be equal to 0, which is out of the moduli
space. Another fact is that this is the only non-maximal group that cannot be enhanced. This
is reflected on figure A.8, where the cyan curves do not have any intersection inside the moduli
space17. In concordance to the previous observation, from this figure one can see that for R = 0
there are indeed intersections. To finish, we mention that the property of this moduli space of
having one non-maximal non-enhanceable point is also shared by the moduli spaces for T 2 and
T 3 compactifications of heterotic strings [37]. We will revisit this in the following chapters.

16Our method of removing nodes from the GDD only accounts for the algebra associated to the group, on
next chapters we will describe different methods for computing the global part of it.

17All the other curves of enhancement displayed in this thesis have at least one intersection.
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Chapter 3

Toroidal compactifications as lattice em-
beddings

In the previous chapter, we introduced T d compactifications of heterotic strings and focused
on the simplest case, d = 1, finding the 44 allowed gauge groups with maximal rank 17 and the
corresponding moduli. The main objective of this chapter is to generalize this result to any value
of d. To be able to obtain robust results it will be necessary to change the approach followed
in most of the previous chapter (moving around in moduli space) and focus on the lattices that
quantize the momenta. As it is well known, modular invariance requires that the momenta of
the world-sheet fields take values on the even self-dual lattice Γd,d+16 [7]. As a consequence, the
allowed gauge groups are such that their even positive definite root lattice can be embedded
there. Thus, they can in principle be found using lattice embedding techniques, in particular
the machinery developed by Nikulin [16], as advocated in [38]. For instance, Theorem 1.12.4
in [16] implies that any ADE group of rank less or equal than (d + 8) can be embedded in
Γd,d+16, and is thus realized in compactifications of the heterotic theory on T d.

For d = 2 all allowed gauge groups are known from the work of Shimada and Zhang
who classified all possible ADE types of singular fibers in elliptic K3 surfaces [14, 15]. As we
will explain, the classification provides all possible heterotic gauge groups because the lattice
embedding conditions are identical in the K3 and heterotic frameworks. This is consistent with
duality between heterotic on T 2 and F-theory on K3.

Another problem is to obtain the resulting gauge group for specific moduli. On the last
chapter we addressed this by organizing the left-moving component of the momenta into roots
of an ADE group (see also [31]). However, since this method is cumbersome, it is desirable
to develop a more powerful approach which could also be applied to the question of finding
all possible groups. When d = 1 both problems can be solved using the Generalized Dynkin
Diagram (GDD) associated to the Narain lattice Γ1,17.

The generalization of the powerful GDD algorithm to higher dimensional compactifications
clashes with the fact that, unlike O(1, 17;Z), the T-duality group O(d, d + 16;Z) is no longer
generated by simple reflections. In the absence of a Dynkin diagram to describe Γd,d+16, what
we can do to explore the landscape of heterotic strings on T d, for generic dimension d > 1, is
to develop alternative methods.

To begin we will revisit Nikulin’s criteria, and apply them to compactifications of the het-
erotic string on T d. The study of embeddings in Γd,d+16 will enable us to characterize the
allowed gauge groups in terms of lattice data consisting of the pair (L, T ), where L is the root
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lattice of the group, and T is the dual lattice of the right-moving momenta. Conversely, (L, T )
can be determined from the moduli that originate the group.

We also present other method to examine the toroidal landscape. We focus mainly on
maximal enhancement in T 2 compactifications of the HE theory, but the algorithm works in
higher dimensions. In particular, we will obtain all semisimple groups with maximal rank
d + 16, occurring in d = 1, 2. Moreover, the moduli in the HO theory can be deduced from
those of the HE theory by making use of an O(d, d + 16) transformation that generalizes the
map constructed in [39] for d = 1.

The idea of this exploration algorithm is to start from a point of maximal enhancement,
i.e. a rank d+ 16 group with no U(1) factors, move along lines in moduli space where there is
a breaking to a group with one U(1) factor, and then find all maximal enhancements that can
be reached from the neighborhood of the initial point. We have fully exploited this technique
in d = 2, finding all enhancements reported in [14]. We have also done explorations for d = 3
and 4, in connection to the work explained in Chapter 5.

This chapter is organized as follows. In Section 3.1, we briefly review the basics of het-
erotic compactification on T d and present a simple method to find the transformation of the
background fields under the action of O(d, d+ 16). We also review the map relating the charge
vectors and moduli of the HE and HO theories on the circle, and formulate it for generic d. In
Section 3.2 we state criteria, based on lattice embedding techniques, that can be used to detect
whether a group is allowed or not. We additionally explain how to translate between heterotic
moduli and lattice data. The notation and essential concepts about lattices that supplement
this section are contained in Appendices B.1 and B.2. Compactifications on T 2 are the subject
of Section 3.3. In Section 3.3.1, we present a computational algorithm to obtain the moduli un-
derlying semisimple groups of maximal rank, exploring the neighborhood of points of maximal
enhancement. In Section 3.3.2 we discuss several features of the models appearing in d = 2.
Tables containing all the groups of maximal enhancement in one and two dimensions, and the
points in moduli space where they arise, are presented in Appendix D.1.

3.1 Toroidal compactification of the heterotic string

Now we return to the toroidal compactifications introduced in Section 2.2. On the following we
will derive the transformation rules for the moduli and the map that relates the HE and HO
theories. It will be convenient to define the tensor Eij given by

Eij = Gij + 1
2Ai · Aj +Bij , (3.1.1)
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where Ai · Aj = AIiA
I
j . The d(d+ 16) parameters of the compactification are the d× d matrix

Eij and the d vectors AIi . The momenta 2.2.10 can be expressed as1

pR = 1√
2
[
ni − Eijwj − π · Ai

]
ê∗i , (3.1.2a)

pL = 1√
2
[
ni + (2Gij − Eij)wj − π · Ai

]
ê∗i =

√
2wiei + pR , (3.1.2b)

pI = πI + AIiw
i . (3.1.2c)

Recall the mass and level matching equations invariant under O(d, d + 16;Z) (2.2.14a) and
(2.2.14b). In the NS sector the lowest lying states have NR = 1

2 and their supersymmetric
partners in R have NR = 0. These states can be massless only if

pR = 0, pL
2 + 2(NL − 1) = 0 . (3.1.3)

where the left and right momenta were given in 2.2.10.
Moreover, from (2.2.12) it follows that

pL
2 = 2wini + π · π . (3.1.4)

For generic values of the moduli the only solution is wi = 0, ni = 0, πI = 0, implying pL = 0,
and NL = 1 in (3.1.3). It gives rise to the gravity multiplet plus gauge multiplets of U(1)d+16.
On the other hand, for special values of the moduli there can exist solutions with NL = 0, and
pL

2 = 2. The set of pL then gives the roots of a Lie group Gr of rank r ≤ d+ 16. In this case
there will be gauge multiplets of a group Gr×U(1)d+16−r. The non-Abelian piece Gr is in turn
a product of ADE factors of total rank r. Our main task for the next sections is to study which
groups can occur and to determine the underlying moduli.

We will mostly work with the HE theory. The results for the HO can be deduced from the
map discussed in Section 3.1.2.

3.1.1 Duality transformations of the moduli

In this section we present a simple way of finding the action of O(d, d+ 16) transformations on
the background fields (Gij, Bij, A

I
i ).

We first start by the transformation of the 2d+ 16 charge vectors, defined as

|Z⟩ = |wi, ni; πI⟩ . (3.1.5)

which are just generalizations to T d of the one introduced in Section 2.4.1 for the circle. The
1We clarify that the momenta can be written as a function of just E and A since Gij can be written as

1
2 (Eij + Eji −Ai ·Aj).
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inner product between charge vectors is computed using the O(d, d+ 16) invariant metric

η =


0 1d×d 0

1d×d 0 0
0 0 δIJ

 . (3.1.6)

and is given by
⟨Z ′|Z⟩ = w′ini + n′

iw
i + π′IπI . (3.1.7)

Given the generators O ∈ O(d, d+16;Z) presented in [1]2, the transformation of |Z̃⟩ ≡ η|Z⟩
is simply 3

|Z̃⟩ → O |Z̃⟩ , (3.1.8)

The transformation of the moduli can be obtained from the transformation of the generalized
metric for the torus. It is generally simpler though to find the transformation of the moduli
using the vielbein E for the generalized metric. This vielbein can be built using that the left
and right-moving momenta (3.1.2) are

p = E|Z̃⟩ . (3.1.9)

Under O(d, d+ 16), the vielbein transforms as

E → E ηOTη . (3.1.10)

From this transformation law it follows that the first d rows of ηE , which we write as

|Ẽa⟩ ≡
1√
2
êi∗a |Eik,−δij;AiI⟩, a = 1, ..., d, (3.1.11)

are O(d, d+ 16) vectors. Taking the transpose of (3.1.10) we find

|Ẽa⟩ → O |Ẽa⟩ . (3.1.12)

These vectors also form a negative definite orthonormal set:

⟨Ẽa|Ẽb⟩ = 1
2 ê

i∗
a ê

j∗
b (−2Eij + Ai · Aj) = 1

2 ê
i∗
a ê

j∗
b (−2Gij) = −δab. (3.1.13)

To get the transformation laws for the moduli under an O(d, d + 16;R) element we simply
construct the vectors |Ẽa⟩, transform them to |Ẽ ′

a⟩ = O |Ẽa⟩, and extract the transformed
moduli E ′

ij, A
′
i. In practice, however, this procedure can be simplified as follows. Construct the

d× (2d+ 16) matrix
A ≡

(
Eij −δij Ai

I
)
, (3.1.14)

with rows labeled Ai. These differ from the vectors |Ẽa⟩ in that the factor (1/
√

2)ê∗i
a is missing

(cf. eq. (3.1.11)). We may however interpret this as taking ê∗i
a =
√

2δia, so that the rows Ai can
2This specific content was not included on this thesis.
3For instance, when Bij → Bij + Θij , with Θij = −Θji ∈ Z, |Z⟩ → |wi, ni + Θijw

j ;πI⟩.
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also be transformed as O(d, d + 16) vectors, Ai → A′
i = OAi. From the new matrix A′ one

then extracts the moduli with the formula

(
E ′
ij −δij AI

′
i

)
= −


A′

1,d+1 · · · A′
1,2d

... . . . ...
A′
d,d+1 · · · A′

d,2d


−1

A′ , (3.1.15)

where on the right hand side we multiply by minus the inverse of the d× d middle block of A′,
which is the vielbein for the transformed metric e′

ai.
We now proceed to illustrate this method with a pair of examples where we restrict to the

T-duality group O(d, d + 16,Z). Consider first the case d = 2, and apply the transformation
given by the matrix

OΛ1 =



1 0 −1
2Λ2

1 0 Λ
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −Λt

1 0 116×16


, Λ1 ∈ Υ16 , (3.1.16)

which shifts A1 by Λ1. After transforming the rows of A with OΛ1 , we obtain

A′ =
E11 + 1

2Λ2 + Λ1 · A1 E12 −1 0 A1 + Λ1

E21 + Λ1 · A2 E21 0 −1 A2

 . (3.1.17)

Since the second 2×2 block of A remains invariant, minus its inverse, which appears in (3.1.15),
is the identity. The transformed Eij and Ai can then be read off from eq. (3.1.17). In terms of
the background fields Gij, B12, Ai, we see that

OΛ1 : G′
ij = Gij, B′

12 = B12 −
1
2Λ1 · A2, A′

1 = A1 + Λ, A′
2 = A2. (3.1.18)

This result highlights the fact that, generically, a shift of one Wilson line Ai by a vector Λi ∈ Υ16

must be accompanied by a b-field shift B′
ij = Bij − 1

2Λi · Aj. The components of the charge
vector |Z⟩ transform as

OΛi
: πI → πI −ΛI

iw
i, ni → ni−

1
2Λ2

iw
i + π ·Λi, nj → nj (j ̸= i) , wi → wi . (3.1.19)

Now let us use this method to obtain the factorized duality OD1 , which exchanges n1 ↔ w1

in generic dimension d. The action of OD1 on the matrix A exchanges the first and the (d+1)th
columns, and so

(
E ′
ij −δij AI

′
i

)
=


−E11 δi1

... ...
−Ed1 δd

i


−1
−δ1

1 E1i E11 −δi1 A1
I

... ... ... ... ...
−δ1

d Edi Ed1 −δdi Ad
I

 , i = 2, ..., d. (3.1.20)
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After performing this matrix operation, we obtain the transformation rules

E′ = 1
E11

(
1 −E1j

−Ei1 E11Eij − Ei1E1j

)
, A′

i = 1
E11

(
−A1

E11Ai − Ei1A1

)
, i, j = 2, ..., d . (3.1.21)

This result generalizes to a factorized duality in an arbitrary direction θ,

ODθ
: E ′

θθ = 1
Eθθ

, E ′
θj = −Eθj

Eθθ
, E ′

iθ = −Eiθ
Eθθ

, E ′
ij = EθθEij − EiθEθj

Eθθ
,

A′
θ = − Aθ

Eθθ
, A′

i = EθθAi − EiθAθ
Eθθ

, i, j = 1, ..., d ̸= θ

(3.1.22)

in agreement with the heterotic Buscher rules found originally in [40] and discussed also in [34].

3.1.2 The HE ↔ HO map

Due to the uniqueness of the Narain lattices, the HO and HE theories compactified on T d share
the same moduli space. For the circle, an explicit map relating the charge lattices of both
theories was given in [33] and the precise relation between the moduli was worked out in [39].

The O(1, 17) transformation relating a basis of vectors of the Γ8 ⊕ Γ8 embedding into Γ1,17

to another one of the Γ16 embedding is given by [33]

ΘE→O = OΛOOΩOP1OD1O−ΛE , (3.1.23)

where OΛE , OΛO are shifts of the Wilson line by

ΛE = (07, 1,−1, 07) , ΛO =
(

1
2

8
, 08

)
, (3.1.24)

OD1 is a T-duality in the circle direction, OP1 an inversion and OΩ a rescaling. Their action on
the charge vectors and moduli is given by

OΛ : |w, n; π⟩ → |w, n+ π · Λ− 1
2wΛ2; π − wΛ⟩ , (R,A)→ (R,A+ Λ),

OD1 : |w, n; π⟩ → |n,w; π⟩ , (R,A)→
(

R

R2 + 1
2A

2 ,−
A

R2 + 1
2A

2

)
,

OP1 : |w, n; π⟩ → |−w,−n; π⟩ , (R,A)→ (R,−A),

OΩ : |w, n; π⟩ → |2w, 1
2n; π⟩ , (R,A)→ (1

2R,
1
2A).

(3.1.25)

Hence the total transformation (3.1.23) gives

ΘE→O : w → 2w − 2n+ 2π · ΛE, n→ −2w + 2n+ π · (ΛO − 2ΛE),

π → w(ΛE − 2ΛO) + 2nΛO + π − 2ΛO(ΛE · π),

R→ R

2R2 + (A− ΛE)2 , A→ A− ΛE

2R2 + (A− ΛE)2 + ΛO,

(3.1.26)
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corresponding to the O(1, 17,R) matrix

ΘE→O =


2 −2 ΛO − 2ΛE

−2 2 2ΛE

2Λt
O Λt

E − 2Λt
O 116 − 2ΛO ⊗ ΛE

 , (3.1.27)

where ⊗ is an outer product.
Labeling EE = R2

E + 1
2A

2
E and the Wilson line AE in the HE theory, the transformation

(3.1.26) gives the HO moduli as [39]

(EO, AO) =
(

1 + AE · ΛO

2(EE + 1− AE · ΛE) ,
AE − ΛE

2(EE + 1− AE · ΛE) + ΛO

)
. (3.1.28)

The map from HO to HE is simply obtained by exchanging (EO, AO,,ΛO)↔ (EE, AE,ΛE).
To extend (3.1.27) from the circle to T d, it is sufficient to consider a decomposition of the

Narain lattice of the form

Γd,d+16 = Γ1,1 ⊕ · · · ⊕ Γ1,1 ⊕ Γ8 ⊕ Γ8, (3.1.29)

where the number of Γ1,1 lattices is d.4 We use ΘE→O to transform

ΘE→O : Γ1,1 ⊕ Γ8 ⊕ Γ8 → Γ1,1 ⊕ Γ16, (3.1.30)

choosing Γ1,1 to be in the direction given by the torus lattice vector e1, without loss of generality.
This brings the Narain lattice into the form

Γd,d+16 = Γ1,1 ⊕ · · · ⊕ Γ1,1 ⊕ Γ16. (3.1.31)

It follows that the desired extension is

Θ(d)
E→O → 1(2d−2)×(2d−2) ⊕ΘE→O =

1(2d−2)×(2d−2) 0
0 ΘE→O

 , (3.1.32)

which holds provided the ordering |Z⟩ = |w2, n2, ..., w
d, nd, w

1, n1; π⟩ is used. In practice one
may wish to keep the order in (3.1.5) and rearrange the entries of Θ(d)

E→O instead, which is
reasonable for low values of d.

To get the transformation rules for the moduli, we proceed constructively using the fac-
torized form of ΘE→O in (3.1.23), and generalizing each intermediate transformation. Each of
the generalized transformation rules can be obtained by the method detailed in Section 3.1.1,
which is valid not only for T-dualities but for generic O(d, d+ 16) transformations such as OΛO

(in HE) and OD1 .
Let us first take a detailed look at the map ΘE→O for d = 2. The generalization to ar-

bitrary d is straightforward. Preserving the usual ordering of the components of |Z⟩, namely
4Γ1,1 is the hyperbolic lattice with Gram matrix ( 0 1

1 0 ).
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|w1, w2, n1, n2; π⟩, we write

Θ(2)
E→O =



2 0 −2 0 ΛO − 2ΛE

0 1 0 0 0
−2 0 2 0 2ΛE

0 0 0 1 0
2Λt

O 0 2Λt
E − Λt

O 0 116×16 − 2ΛO ⊗ ΛE


, (3.1.33)

The transformation rules for the quantum numbers are exactly the same as in the d = 1 case
for w1,n1 and π, while w2 and n2 are invariant, as expected.

To work out the map, we proceed by applying the transformations in the RHS of (3.1.23)
in succession. The Wilson line shift in direction 1 acts as

OΛ : E →

E11 − Λ · A1 + 1 E12

E21 − Λ · A2 E22

 , A1 → A1 − Λ , A2 → A2. (3.1.34)

Note that E12 is invariant since the b-field is also shifted (see the footnote 3). The factorized
duality acts as

OD1 : E → 1
E11

 1 −E12

E21 detE

 , A1 → −
A1

E11
, A2 → A2 −

E21

E11
A1 , (3.1.35)

and finally OP1 and OΩ produce the transformations

OP1 : E →

 E11 −E12

−E21 E22

 , A1 → −A1 , A2 → A2 , (3.1.36)

OΩ : E →

1
4E11

1
2E12

1
2E21 E22

 , A1 →
1
2A1 , A2 → A2 . (3.1.37)

Putting all together, we get

E11 E12 A1

E21 E22 A2

→

 1 0 ΛO

ΛO · A2 E22 A2


+ 1
E11 − ΛE · A1 + 1

 1
2

ΛE · A2 − E21

(ΛO · A1 E12 A1 − ΛE

)
. (3.1.38)
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The map for generic d can be worked out in a similar fashion. The final result reads


E11 E12 · · · E1d A1

E21 E22 · · · E2d A2
... ... . . . ... ...
Ed1 Ed2 · · · Edd Ad

→


1 0 · · · 0 ΛO

ΛO · A2 E22 · · · E2d A2
... ... . . . ... ...

ΛO · Ad Ed2 · · · Edd Ad



+ 1
E11 − ΛE · A1 + 1



1
2

ΛE · A2 − E21
...

ΛE · Ad − Ed1


(
ΛO · A1 E12 · · · E1d A1 − ΛE

)
. (3.1.39)

In the forthcoming sections we will apply the HE-HO map in compactifications to d = 1 and 2
and give some examples for other values of d.

3.2 Embedding in Narain lattices

In this section we discuss how to determine which gauge groups Gr × U(1)d+16−r occur in the
compactification of perturbative heterotic strings on T d. We are mostly interested in heterotic
compactification on T 2, which is dual to F-theory compactifications on elliptic K3 surfaces [41].
Not surprisingly, for d = 2 the problem of finding all allowed Gr happens to be related to
the classification of possible singular fibers of ADE type in elliptic K3 surfaces. The explicit
solution has been obtained in the K3 framework in [14, 15], using Nikulin’s formalism. The
results are expected to hold in the heterotic context too. The reason is that in the K3 context,
the condition on the allowed Gr is that its even positive definite root lattice can be embedded
in Γ2,18 which is precisely the Narain lattice.

According to Theorem 1.12.4 in [16], any Gr of type ADE with r ≤ 10 is allowed for d = 2,
as indeed found in [15]. For larger r more complicated conditions have to be verified as we will
explain shortly. This program has been carried out in [15]. It turns out that for r = 11, 12, also
all ADE Gr can be embedded in Γ2,18. For r = 13, only 13A1 and 11A1 + A2 are precluded.
Henceforth Gr will be denoted by the chain of ADE factors of its algebra. For r = 14, except
8A1+E6, all other forbidden groups, e.g. 14A1, were predicted to be prohibited because singular
fibers with such Gr could not fit in a K3 where the vanishing degree of the discriminant must be
24. For r ≥ 15 there are many more forbidden groups. In particular, there are 1599 ADE groups
of rank 18 [15] but according to the analysis of [14, 15], only 325 are expected to be realized
in compactifications of the heterotic string on T 2. A natural question is why some groups are
forbidden. To answer it, we will present some tools that can be applied to decide when a group
is allowed or not. Our purpose is to illustrate the main ideas, not to do a systematic search as
in [14,15] for d = 2.

We will mostly focus on the case of maximal enhancement, i.e. Gr with r = d + 16. In
3.2.1, we will first discuss three criteria that can be applied for generic d. We then specialize
to d = 1, 2, and in less detail to d = 8. The criteria for groups with r < 16 + d are presented
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in Appendix B.2.1. The connection of the criteria to heterotic compactifications is addressed
in Section 3.2.2 for generic d and in Section 3.2.3 for d = 1. We refer to [42–44] for short
expositions of the main results of Nikulin’s [16] relevant for our analysis, see also [45–48]. On
Appendix B.1 we introduce the notation and some basic concepts that will be used in the
following.

3.2.1 Embeddings of groups with maximal rank r = d+ 16
The problem is to embed a lattice L of signature (0, d + 16) in the even unimodular Narain
lattice Γd,d+16. In the heterotic context L is the root lattice of a group of maximal rank arising
upon compactification on T d. Nikulin [16] provides powerful results that serve to determine
whether or not such embedding exists. In particular, adapting respectively Corollary 1.12.3
and Theorem 1.12.4(c) of [16] to the case at hand leads to the criteria

Criterion 1
If ℓ(AL) < d then L has a primitive embedding in Γd,d+16.

Criterion 2
L has a primitive embedding in Γd,d+16 if and only if there exists a lattice T of
signature (0, d) such that (AT , qT ) is isomorphic to (AL, qL).

Here AL and qL are respectively the discriminant group and the quadratic discriminant form
of L, whereas ℓ(AL) is the minimal number of generators of AL, and analogously for T (see
Appendix B.1 for details). Since ℓ(AT ) ≤ d, groups with ℓ(AL) = d could pass criterion 2 which
actually requires d(L) = d(T ). We will shortly explain how the lattice T can be determined
when d = 1, 2. There could exist more than one T , as found for some groups in [14]. Notice
that in our conventions (0, d) means positive signature.

Now, criteria 1 and 2 cannot be the whole story. We know groups with ℓ(AL) > d that can
be realized in heterotic compactifications on T d. For example, when d = 2, heterotic moduli
that give L = 3E6 are known. Hence, there should be an embedding of this L in Γ2,18 even
though ℓ(AL) = 3. We also know examples with d = 1. In particular, L = D16 + A1 with
ℓ(AL) = 3, would be forbidden by criterion 2 but must admit an embedding in Γ1,17 because it
certainly arises in the heterotic string on S1. For d = 1, the 44 groups with maximal rank in
Table 2.13 have ℓ(AL) ≤ 3. Only the groups with ℓ(AL) = 1, e.g. L = 2E8 + A1, could possibly
be allowed by criterion 2. The problem is that criteria 1 and 2 refer to primitive embeddings
and this need not be the case. From the arguments in [14, 15] it transpires that this condition
can be relaxed by demanding that L has an overlattice M which can be embedded primitively
in the Narain lattice. For instance, we know that D16 has an overlattice given by the even
unimodular HO lattice Γ16 with trivial discriminant group. Therefore, L = D16 + A1 has an
overlattice M = Γ16 + A1 with AM = Z2 and ℓ(AM) = 1. The overlattice M could then pass
criterion 2 with an even 1 dimensional lattice T equal to the A1 lattice.

The above arguments lead to a third criterion obtained adapting Theorem 7.1 [15]. It reads
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Criterion 3
L has an embedding in Γd,d+16 if and only if L has an overlattice M with the following
properties:

(i) there exists an even lattice T of signature (0, d) such that (AT , qT ) is isomorphic
to (AM , qM),

(ii) the sublattice Mroot of M coincides with L.

Since L is an overlattice of itself, criterion 2 is a subcase of criterion 3. As explained in Appendix
B.1, for an overlattice M to exist, there must be an isotropic subgroup HL of AL such that
M/L ∼= HL and |HL|2 = d(L)/d(M). When criterion 3 is satisfied, d(M) = d(T ). We then
obtain the useful relation

d(L) = d(T )|HL|2 . (3.2.1)

We will refer to T as the complementary lattice in the following.
In the K3 framework, in which d = 2, HL corresponds to the torsion part of the Mordell-Weil

group, called MW in [14]. It can be checked that all pairs (L, T ) in Table 2 of [14], reproduced
in our Table D.2, satisfy the relation (3.2.1). We remark that there could exist more than one
M , as found for some groups in [14].

In the work of Shimada and Zhang [14], the focus is on the classification of all possible
ADE types of singular fibers of extremal elliptic K3 surfaces. Such a surface, called X, is
characterized by having Picard number, ρ(X), equal to 20, and finite Mordell-Weil group [42].
In this case the Néron-Severi lattice, NSX , and the transcendental lattice, TX , have signatures
(1, 19) and (2, 0) respectively5. The lattice WX has signature (0, 18) and contains the sublattice
L(Σ) of rank 18, where Σ is the formal sum of the ADE types of singular fibers (determined
by the Kodaira classification). It follows that L(Σ) must admit an embedding in Γ2,18. Now,
in the heterotic compactification on T 2, the semisimple ADE groups of maximal rank 18 that
can occur are such that their root lattice can be embedded in the Narain lattice Γ2,18. Thus,
the results of [14] for all possible L(Σ) translate into all possible maximal enhancements in
the heterotic compactification on T 2. Notice that the complementary lattice of criteria 2 and
3 above is related to the transcendental lattice by a change of sign of the Gram metric, i.e.
T = TX⟨−1⟩. In Section 3.2.2 we will discuss to greater extent the connection to heterotic
compactifications.

We illustrate below the application of criteria 1,2,3 to the cases d = 1, 2. We will also
comment briefly on d = 8. In practice we first try criterion 1. If L passes it, then it is allowed.
If not, we continue with criterion 2. If L satisfies it, we are done, otherwise we apply criterion
3. If L also fails criterion 3 we conclude that L is not allowed. A consistency check is that
if L passes criterion 1 it must also fulfill criterion 3. Let us mention that the steps taken by
Shimada and Zhang to compile their list, cf. section 3 in [14], indicate that they run a computer
program based on the more general criterion 3.

5By definition, NSX = H1,1(X,R)∩H2(X,Z) and has signature (1, ρ(X)− 1). The transcendental lattice is
the orthogonal complement of NSX in H2(X,Z) and has signature (2, 20− ρ(X)). With the intersection form
of X, the second cohomology group H2(X,Z) is isometric to Γ3,19. The Néron-Severi lattice can be decomposed
as NSX = Γ1,1 ⊕WX , where Γ1,1 is generated by the zero section and the generic fiber. The lattice WX is the
orthogonal complement of Γ1,1 in NSX and has signature (0, ρ(X)− 2). Thus, Γ1,1 ⊕WX ⊕ TX ⊂ Γ3,19.
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3.2.1.1 d = 1

As a warm up we will study the d = 1 case which is simple yet instructive. Moreover, all
allowed groups of maximal enhancement appearing in heterotic compactification on S1 were
already listed in Section 2.4. Thus, there are many examples to illustrate the application of the
lattice embedding techniques.

When d = 1 the easy criterion 1 gives no information. When ℓ(AL) = 1 we then apply
criterion 2. In Table 3.1 we give some examples of allowed groups. It is easy to propose the
corresponding T because it must be d(T ) = d(L) and the (0,1) even lattices are of type A1⟨m⟩,
defined to be the A1 lattice rescaled so that its basis vector has norm u2

1 = 2m. One still has
to check that the discriminant forms do match, more precisely that there is an isomorphism
(AL, qL) ∼= (AT , qT ). For example, for L = D17, AL is generated by the spinor class with
s2 = 17

4 = 1
4 mod 2, so qL takes values j2

4 mod 2, j = 0, . . . 3. This matches the qT of A1⟨2⟩ which
takes the same values because (u∗

1)2 = 1
4 . It is more challenging to check L = E7 + A10. For the

proposed T , AT is generated by u∗
1 with (u∗

1)2 = 1
22 , whereas AL is generated by w56 ×w1 with

w2
56 = 3

2 and w2
1 = 10

11 . To see that qL and qT match it suffices to verify that
(

3
2 + 10j2

11 = 1
22 + 2k

)
is satisfied by integers j and k, e.g. j = 4, k = 8.

L AL T

2E8 + A1 Z2 A1
D17 Z4 A1⟨2⟩

E8 + D9 Z4 A1⟨2⟩
E7 + A10 Z2 × Z11 ∼= Z22 A1⟨11⟩

Table 3.1: Examples of allowed L with ℓ(AL) = 1, when d = 1.

The allowed groups with maximal enhancement of the form L = E8+E9−p+Ap, p = 1, . . . , 9,
p ̸= 7, all have ℓ(AL) = 1. Only for p = 8 there is an isotropic subgroup (actually for the A8

component) but the Mroot of the associated M is larger than L. Hence, all these groups should
be allowed by criterion 2. We find that the corresponding T is A1⟨p(p+1)

2 ⟩, p = 1, . . . , 6, and
A1⟨ (10−p)(p+1)

2 ⟩, p = 8, 9.
It is straightforward but cumbersome to check exhaustively which of the known groups with

maximal enhancement and ℓ(AL) = 1 satisfy criterion 2, and if not apply criterion 3. In many
cases, e.g. L = E7 + E6 + A4, AL = Z30, one can quickly see that an overlattice cannot exist
because there is no isotropic subgroup. Since this L is known to appear, criterion 2 should
allow it, and indeed T = A1⟨15⟩ fulfills the conditions.

A neat example with ℓ(AL) = 1 is L = A17, AL = Z18. The candidate T would be A1⟨9⟩
but the discriminant forms do not match because there are no integers j and k such that(

17j2

18 = 1
18 + 2k

)
is satisfied. Fortunately, A17 has an overlattice M associated to the isotropic

subgroup HL = Z3, generated by w6 with w2
6 = 4 = 0 mod 2. From (3.2.1) we see that d(T ) = 2

so it must be T = A1. Since d(M) = d(T ) also AM = Z2. It remains to check that the
discriminant forms of AM and AT coincide. To this end we need to determine the orthogonal
complement H⊥

L of HL in AL and restrict qL to H⊥
L /HL. We then look for weights orthogonal

to the generator w6, i.e. weights such that wi ·w6 = 0 mod 1. Besides w6 and w12 which belong
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to HL, w3, w9 and w15 are orthogonal. Now, w2
i = 1

2 mod 2, for i = 3, 9, 15. This confirms that
AM = Z2, with the discriminant form qM taking values 0 and 1

2 . These are the same values
taken by qT . Finally, the root sublattice of M is equal to L because w2

6 = 4.
We can also study known allowed groups with ℓ(AL) ≥ 2 where criterion 3 must be applied.

An example is the group with L = E6 + A11, AL = Z3 × Z12. There exists an overlattice with
HL = Z3 and it can be shown that criterion 3 is satisfied with T = A1⟨2⟩. For a second example
take L = A1 + A2 + A14, AL = Z2 × Z3 × Z15 ∼= Z6 × Z15. The piece L̃ = A2 + A14 has an
overlattice M̃ with d(M̃) = 5 so necessarily AM̃ = Z5. Thus, L has an overlattice M = A1 +M̃ ,
AM = Z2 × Z5 ∼= Z10 and a candidate T is A1⟨5⟩. With ℓ(AL) = 3 we already discussed how
L = D16 + A1 passes the test. In Table D.1 we give full results.

So far we have discussed groups with maximal enhancement which are known to occur. It is
reassuring that they are allowed by the lattice embedding criteria but our main motivation was
to understand why some groups are forbidden. Let us then finally offer a couple of examples
of forbidden groups. Take L = A6 + D11, AL = Z28. A candidate T is A1⟨14⟩, but qT ≇ qL. An
overlattice cannot exist because there is no isotropic subgroup of AL. Thus, this L fails criteria
2 and 3. A less trivial example is L = 2D8 + A1, AL = Z5

2. In Appendix B.1 we explained that
D8 admits E8 as an overlattice. For L this leads to a full overlattice given by M = 2E8 + A1.
Now AM = Z2 and an adequate T would be A1. However, condition (ii) in criterion 3 is not
satisfied. As remarked in Appendix B.1, the root sublattice of 2E8 is not equal to 2D8. Actually,
L admits also an overlattice M ′ = E8 + D8 + A1 with AM ′ = Z3

2 and ℓ(AM ′) = 3 so there can
be no associated T . It would be interesting to study more examples of forbidden groups.

3.2.1.2 d = 2

When d = 2, criterion 1 implies that lattices with ℓ(AL) = 1 give allowed groups. In Table 3.2
we present a few examples of this type.

L AL T

A18 Z19 [2, 1, 10]
A4 + E6 + E8 Z5 × Z3 ∼= Z15 [2, 1, 8]

A2 + A16 Z3 × Z17 ∼= Z51 [6, 3, 10]
A8 + A10 Z9 × Z11 ∼= Z99 [10, 1, 10]
A6 + A12 Z7 × Z13 ∼= Z91 [2, 1, 46]
E6 + A12 Z3 × Z13 ∼= Z39 [4, 1, 10]

Table 3.2: Examples of allowed L with ℓ(AL) = 1, when d = 2. T is denoted by its Gram matrix
[u2

1, u1 · u2, u
2
2].

Before considering examples with ℓ(AL) = 2 let us describe how to find the lattice T . To
begin, d(T ) is known because it must be equal to d(L) or d(M). Next, the even 2 dimensional
lattices of determinant less than 50 are listed in Table 15.1 of [49], and for larger d(T ) they
can be found using the SageMath module on binary quadratic forms [50]. Given T , the pair
(AT , qT ) can be deduced as explained in Appendix B.1. We then check if (AT , qT ) ∼= (AL, qL).

Criterion 2 must also hold when ℓ(AL) = 1 since in this case the existence of a primitive
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embedding is guaranteed by criterion 1. In Table 3.2 we have shown the corresponding matrices
T . For example, with d(T ) = 19 there is only the lattice [2, 1, 10]. It can be checked that
AT ∼= Z19 and that the values of qT are such that indeed (AT , qT ) is isomorphic to (AL, qL) for
L = A18. For L = A4 +E6 +E8 we need a T with d(T ) = 15. In this case there are two possible
lattices, [2, 1, 8] and [4, 1, 4], both with AT = Z15. It can be checked that only the discriminant
form of the first does match qL.

The allowed L’s are given in Table 2 in [14]. It is a simple task to find AL and ℓ(AL).
Groups accepted by criterion 2 have ℓ(AL) = 2 and MW = [0]. In our language trivial MW

means trivial HL, i.e. trivial overlattice M = L. There are many examples of this type. In
Table 3.3 we show a few. To find T we proceed as explained before, looking first for even
lattices of determinant d(T ) = d(L) and AT = AL. There might be more than one, the correct
ones must have (AT , qT ) ∼= (AL, qL). In Table 3.3 we have displayed in red candidates for
T that are discarded because qT is incongruent with qL. The incorrect T ’s are more or less
obvious. Checking the isomorphism for the correct ones is more laborious. For instance, for
L = E6 + D12, the distinct values that can appear in qL are in the set {0, 1

3 , 1,
4
3}. Both T ’s

have AT = Z2 × Z6, but the values of qL can only be matched to the values in the T with
Q−1 = [1

3 ,−
1
6 ,

1
3 ].

L AL T

2D9 Z4 × Z4 [4, 0, 4]
A4 + 2E7 Z5 × Z2 × Z2 ∼= Z10 × Z2 [4, 2, 6] [2,0,10]
E6 + D12 Z3 × Z2 × Z2 ∼= Z6 × Z2 [4, 2, 4] [2,0,6]
A1 + A17 Z2 × Z18 [4, 2, 10] [2,0,18]

Table 3.3: Examples of allowed L with ℓ(AL) = 2, when d = 2. The candidates for T with d(T ) = d(L),
but with (AT , qT ) ≇ (AL, qL), are displayed in red.

The example L = A1 + A17 is interesting because it also admits an overlattice. Indeed,
in section 3.2.1.1 we saw that L̃ = A17 has an overlattice M̃ with M̃/L̃ ∼= Z3, AM̃ = Z2 and
qM̃ = {0, 1

2}. Thus, the full L has an overlattice M = A1 + M̃ with AM = Z2 × Z2 and
M/L ∼= Z3. Now criterion 3 can be fulfilled with T = [2, 0, 2]. This agrees with results of [14]
for this L.

When ℓ(AL) ≥ 3 we can check that the allowed groups pass criterion 3 with the data given
in Table 2 of [14]. One example is L = 3A6, AL = Z3

7. There is an isotropic subgroup HL = Z7

generated by µ = w1(1) × w2(2) × w4(3), where wi(a) denotes weights of the ath A6 factor.
Notice that µ2 = 4 = 0 mod 2. From (3.2.1), d(M) = 7 so necessarily AM = Z7. Following the
procedure to determine qM shows that it matches the qT of T = [2, 1, 4] which is the unique
even 2-dimensional lattice with d(T ) = 7.

Finally we come to forbidden groups. Let us discuss the examples in Table 3.4. In all
three there are no suitable lattices T . The possible candidates, shown in red, are discarded
because their qT does not match qL. We conclude that these groups do not satisfy criterion 2
and continue to check criterion 3. In example 1 we know that D8 has an overlattice E8 so the
full L has an overlattice M = 2E8 + A2, M/L ∼= Z2 so d(M) = 3, consistent with AM = Z3.
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Now qM matches the qT of T = [2, 1, 2] but still criterion 3 fails because Mroot ̸= L. In example
2, there is an isotropic subgroup HL = Z2 generated by µ = v × w2, where v is the vector
weight of D15 and w2 is the weight of the 10 of A3. Since v2 = 1 and w2

2 = 1, µ2 = 2. From
(3.2.1), d(M) = 16

22 = 4. The only possible T with d(T ) = 4 is [2, 0, 2] and it could be that qT
matches qM . However, M has elements y + nµ, y ∈ L, n = 0, 1 and since µ2 = 2, Mroot ̸= L.
Hence, example 2 does not pass criterion 3. Concerning example 3, it flops criterion 3 because
there is no isotropic subgroup of AL. To see this, first observe that (3.2.1) implies that only
|HL| = 7 would be consistent with d(M) being an integer. Thus, HL would have to be Z7 and
its generator would have to be a product of weights of the A6’s, say µ = wi(1)×wj(2). However
it is not possible to obtain µ2 = 0 mod 2.

# L AL T

1 E8 + D8 + A2 Z2 × Z2 × Z3 ∼= Z2 × Z6 [2, 0, 6] [4,2,4]
2 D15 + A3 Z4 × Z4 [4,0,4]
3 2A6 + E6 Z7 × Z7 × Z3 ∼= Z7 × Z21 [14,7,14]

Table 3.4: Examples of forbidden L when d = 2.

In summary, we have provided several examples where it was relatively simple to apply
by hand the criteria that serve to determine whether a group of maximal rank is allowed or
not. Clearly, to make a full search, or even to check more complicated examples, would require
computer aid.

In Table D.2 we give the subgroups HL and the lattice T for all the allowed L’s found in
the K3 framework [14]. They correspond to all maximal enhancements arising in heterotic
compactifications on T 2.

3.2.1.3 d = 8

The case d = 8 is peculiar because there exists an even unimodular lattice of signature (0, 8),
namely E8. To see how this enters the analysis, consider L = 3E8 which has trivial AL. Since
ℓ(AL) = 0, this L easily passes criterion 1. Now, since criterion 2 must also be fulfilled there
has to be an even lattice of signature (0, 8) and trivial AT . This requires d(T ) = 1 so T = E8.
This indicates that in the heterotic on T 8 it is possible to obtain the group 3E8. Indeed, it can
be found in the HE by setting all the Wilson lines to zero and taking the internal torus with
metric Gij = 1

2G̃ij, where G̃ij is the Cartan matrix of E8. The antisymmetric field must be
chosen as

Bij =


1
2G̃ij, i < j,

−1
2G̃ij, i > j,

0, i = j.

. (3.2.2)

This is an example of the general type discussed in [11,33] in which pL−pR belongs to the root
lattice of an ADE group of rank d.

A second interesting example is L = 24A1, AL = Z24
2 . Since ℓ(AL) = 24, L fails criterion 1

and criterion 2 as well because ℓ(T ) ≤ 8. To apply criterion 3 we recall that this L admits an
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even unimodular overlattice given by one of the Niemeier lattices, say Nψ, with Nψ/L ∼= Z12
2

(see chapter 16 in [49]). It is also known that the root lattice of Nψ and L coincide. Thus, L
fulfills criterion 3 with M = Nψ and T = E8. By the same token L = 12A2 is also allowed by
criterion 3. Niemeier lattices in heterotic compactifications on T 8 have appeared in [51].

3.2.2 Connection to heterotic compactifications

We have seen that the groups of maximal rank that can be embedded in Γd,d+16 are characterized
by an ADE lattice L of rank d+16, the isotropic subgroup HL ⊂ AL, the associated overlattice
M and the complementary even lattice T of rank d, satisfying (AT , qT ) ∼= (AM , qM). The
isotropic subgroup HL is the torsion part of the embedding, in the sense that M/L ∼= HL. For
an embedding to exist, it must be that d(M) = d(T ) = d(L)/|HL|2. In the heterotic framework
L is the root lattice of some gauge group with maximal enhancement. We now want to identify
T , which we call the complementary lattice.

There is a natural candidate for an even lattice of rank d, namely the sublattice of Γd,d+16,
denoted K, obtained by setting pL = 0. This is

K =
{

(pR; pL) ∈ Γd,d+16 || pL = 0
}
. (3.2.3)

Let us next examine the consequences of setting pL = 0. First, from (3.1.2c) we find that
pI = 0 implies

πI = −wiAIi . (3.2.4)

Second, imposing pL = 0 leads to
ni = −wjEji , (3.2.5)

after substituting (3.2.4) in (3.1.2b). From pL = 0 it further follows that

pR = −
√

2wiei . (3.2.6)

Thus, pR lies in a lattice of rank d as long as all the windings wi are allowed to be different
from zero. Since π is a vector in the gauge lattice Υ16, the condition (3.2.4) can only be fulfilled
with wi ̸= 0 if the Wilson lines Ai are quantized, in the sense that they are given by a vector
in Υ16, divided by a positive integer. We define the order of the Wilson line Ai as the smallest
positive integer Ni such that

NiAi ∈ Υ16 (no sum in i) . (3.2.7)

If Ai = 0, its order is 1. All Ai must be quantized so that (3.2.4) does not force some windings
wi to be identically zero. The quantization condition in (3.2.5) is also very restrictive. It clearly
demands the Eij to be rational numbers. Taking into account quantization of the Wilson lines
then requires the T d metric components Gij = ei·ej to be rational numbers, which is consistent
with p2

R being even. From now on we assume that K has rank d.
The constraints on the Ai and Eij are compatible with having a gauge group of maximal
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enhancement, which is the case under study. In fact, recall that to this end there must exist
solutions to pR = 0 and pL

2 = 2. The former implies the condition ni = Eijw
j + π · Ai ∈ Z

(eq. (2.2.24)), which can be achieved with quantized Ai and rational Eij.
The even lattice K ⊂ Γd,d+16 has signature (d, 0) by construction. Applying Nikulin’s

Theorem 1.12.4 in [16], we learn that K admits a primitive embedding in Γd,d+16. It follows
that the orthogonal complement of K in Γd,d+16 also admits a primitive embedding in Γd,d+16.
This orthogonal complement is just the sublattice of Γd,d+16 defined by pR = 0 which we denote
M , i.e.

M = {(pR; pL) ∈ Γd,d+16 || pR = 0} . (3.2.8)

The name M is appropriate because it is indeed the overlattice of criteria 3 with Mroot = L.
The reason is that Mroot is the sublattice of M generated by vectors with pL

2 = 2 and it has
rank (d+ 16) by the assumption of maximal enhancement.

So far we have argued that M of signature (0, d + 16) is the orthogonal complement in
Γd,d+16 of K of signature (d, 0), and that K as well as M are primitively embedded in Γd,d+16.
In fact, Γd,d+16 is an overlattice of M ⊕K. We can then apply Lemma 2.4 in [14] to conclude
that there is an isomorphism (AM , qM) ∼= (AK ,−qK). A proof of this lemma is presented in
Appendix B.2.2. Finally, by Nikulin’s Proposition 1.12.1 [16] there exists T of signature (0, d)
satisfying (AM , qM) ∼= (AT , qT ). It is obtained by changing the sign of the Gram matrix of K,
i.e.

T = K⟨−1⟩ . (3.2.9)

Summarizing, the two rationality conditions NiAi ∈ Υ16 and Eij ∈ Q, guarantee the existence
of the even (0, d) lattice T , which in turn implies the existence of the even (0, d + 16) lattice
M with (AM , qM) ∼= (AT , qT ). Thus, the rationality conditions are necessary to have maximal
enhancement to a group of rank d+ 16. However, these conditions are not sufficient to ensure
that the sub-lattice Mroot has rank d+ 16. The additional constraint in criterion 3 is precisely
that the gauge lattice L of rank d+ 16 coincides with Mroot.

3.2.2.1 Moduli from lattice data

If we have the set of charge vectors |Z⟩ that generate certain L, it is quite easy to obtain the
associated moduli Ai and Eij. To see this, we rewrite the condition for massless states pR = 0
in terms of |Z⟩ and the moduli vectors |Ãi⟩ = |−δji , Eik;AIi ⟩6

⟨Ãi|Z⟩ = 0, i = 1, . . . , d (3.2.10)

We have d× (d+16) unknowns and d equations for each of the (d+16) independent vectors
|Z⟩, which makes it possible to get the moduli solving this system.

For simple Wilson lines there is a basis that is quite useful. For the HE theory, we write
them as:

Ai =
( 8∑
k=1

γkwk

)
×
( 8∑
k=1

γ′
kwk

)
(3.2.11)

6pL
2 = 2 translates to ⟨Z|Z⟩ = 2 and is satisfied trivially.
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for some rational coefficients γk and γ′
k with w the fundamental weights of E8 given in Table

2.1.
If |Z⟩ corresponds to one of the first eight simple roots of the original E8 × E8 symmetry,

|Z⟩ = |0, 0, 0, 0;αj, 08⟩, and eq. (3.2.10) is:
( 8∑
k=1

γkwk

)
· αj = γj = 0 (3.2.12)

If we want most of the original symmetry to be preserved, the Wilson lines should be orthogonal
to most of the roots. That is, most of the γk and γ′

k on (3.2.11) are zero. It is quite useful to
write the Wilson lines on this basis, as one can see from the subscripts of the wk that appear
on the Ai, which of the original simple roots are killed. We use this basis to express the results
in this chapter.7

3.2.2.2 Lattice data from moduli

Once we know the data (L, T ) of the allowed groups Gr we still have to determine specific
moduli Ai and Eij that give rise to them. Conversely, given Ai and Eij, in principle L is
obtained from the solutions of pR = 0, pL

2 = 2, which correspond to the roots of Gr. On the
other hand, T can be derived directly from the moduli as explained below.

The elements of T are of the form (3.2.6). Besides, the moduli must comply with the
conditions (3.2.4) and (3.2.5). To make more concrete statements, consider first the case in
which the Eij are integers so that (3.2.6) is satisfied by any wi. Then, a class of allowed values
for the wi are multiples of the Wilson lines orders, namely wi = ℓiNi (no sum over i), with
ℓi ∈ Z. If we assume that this class exhausts all possibilities, T will be generated by a basis

u1 =
√

2N1e1, u2 =
√

2N2e2, . . . , ud =
√

2Nded , (3.2.13)

where we dropped an irrelevant sign. The Gram matrix of T will then be given by

Qij = ui · uj = 2NiNjGij = NiNj(Eij + Eji − Ai · Aj) . (3.2.14)

Since this is valid for Eij integers and NiAi ∈ Υ16, we see that the Qij are integers and the
diagonal components are even, as required for an even lattice.

In some cases there might be more admissible values of the winding numbers wi. In general,
the allowed values are sets of integers (M1,M2, . . . ,Md) that satisfy

M1A1 +M2A2 + · · ·+MdAd ∈ Υ16 , (3.2.15a)

M1E1i +M2E2i + · · ·+MdEdi ∈ Z , i = 1, . . . , d . (3.2.15b)

In this situation a way to proceed is to obtain d solutions (M (k)
1 , . . . ,M

(k)
d ), k = 1, . . . , d,

7The original reason for using this basis in [2] was as a byproduct of the shift algorithm and some related
techniques.
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linearly independent (with Euclidean metric), such that the vectors

uk =
d∑
ℓ=1

√
2M (k)

ℓ eℓ (3.2.16)

generate a lattice with the least volume. For instance, the vectors in (3.2.13) are recovered
when Eij ∈ Z and the only solutions of (3.2.15a) are M (k)

ℓ = Nℓδℓk (no sum over ℓ). In the
general case we have to impose the condition of least volume. To be more precise, define the
matrix C with elements Ckℓ = M

(k)
ℓ , i.e. the rows of C are the solutions of (3.2.15). The Gram

matrix of T then reads
Qkℓ = uk · uℓ = 2(C GCt)kℓ , (3.2.17)

where we used Gij = ei ·ej. Therefore, detQ = 2d(detC)2 detG. Since the determinant of the
torus metric is fixed by the choice of moduli Ai and Eij, to obtain the least lattice volume it
suffices to choose C with least determinant. Hadamard’s inequality then instructs us to choose
d independent solutions (M (k)

1 , . . . ,M
(k)
d ) of (3.2.15) with the least norm. To check that Qkℓ are

integers and the diagonal elements are even, we write Gij = 1
2(Eij + Eji − Ai · Aj), and take

into account that the M (k)
i verify (3.2.15). Finally, Q is unique up to the action of GL(d,Z).

For d = 2 we can use the procedure described in section 3, Chapter 15, of [49] to bring Q to
the standard reduced form used in [14].

In the next sections we will discuss systematic methods to determine moduli associated to
groups of maximal enhancement when d = 1 and d = 2. We will then exemplify further how
T computed from the moduli matches the T from the lattice embedding data. Meanwhile it is
instructive to illustrate the main points in cases with generic d.

For a simple example, consider moduli Ai = 0, Gij = 1
2G̃ij, where G̃ij is the Cartan matrix

of an ADE group G̃d of rank d, and Bij is given in (3.2.2). The Eij moduli are found to be

Eij =


1
2 G̃ij, i = j,

G̃ij, i < j,

0, i > j

. (3.2.18)

Therefore, the Eij are either 1, −1 or 0. In this setup the gauge group of the heterotic string on
T d is 2E8 + G̃d in the HE or D16 + G̃d in the HO. This example is of the general type in which
all Wilson lines are set to zero and pL − pR ∈ Γ̃d, where Γ̃d is the root lattice of G̃d [11, 33].
From the lattice formalism we find that T = Γ̃d. From the moduli we obtain the same result
for T because the basis is given in (3.2.13) with ei = 1√

2 ẽi and Ni = 1.
A second example in the HO on T d has moduli [11,33]

eai = 1√
2
δai , Bij = 0 , AIi = δIi with i ≤ d (3.2.19)

It can be shown that the resulting group is Dd+16. All Wilson lines have order Ni = 2. Besides,
Eij = δij so that the condition (3.2.15b) does not constrain the Mi. For d = 1 we can just
take M1 = N1 = 2 so that u1 = 2 and T = A1⟨2⟩ as we found with the lattice formalism in
Section 3.2.1.1. For d ≥ 2 there are solutions to (3.2.15a) other than M (j)

i = 2δij. For instance,
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A1 ± A2 ∈ Γ16. The M (j)
i can be chosen so that the ui are the roots of Dd. Thus, T = Dd.

Another important question in the heterotic context is the meaning of the quadratic discrim-
inant form qT . The answer is that the values that p2

R can take are precisely given by qT mod 2.
This follows because pR generically lies in the dual lattice T ∗. When T has basis (3.2.13), it is
easy to see from (3.1.2a) that pR indeed takes values in a lattice generated by u∗i = 1√

2Ni
ê∗i,

with Gram matrix the inverse of Q in (3.2.14). When there are additional solutions to (3.2.15),
so that the basis for T is given by (3.2.16), pR lies in a lattice spanned by

u∗i = 1√
2

d∑
k=1

Ckiê∗k , (3.2.20)

where Cki = C−1
ki and as before Ckℓ = M

(k)
ℓ . Thus, u∗i · u∗j = Qij = Q−1

ij , with Q the Gram
matrix in (3.2.17). The fact that qT gives the values of p2

R is useful to determine the spectrum
of massive states.

3.2.3 Circle compactifications

In this section, we consider again compactifications of the heterotic string on the circle, where
the moduli are the radius R and the 16-dimensional Wilson line AI . The problems of finding
all possible gauge groups Gr × U(1)17−r and the corresponding moduli (R,AI), was solved in
Section 2.4 by means of the Generalized Dynkin Diagram (GDD) associated to Γ1,17. Here we
will discuss the connection with the lattice embedding formalism.

As mentioned previously, there are 44 different groups of maximal rank that are realized in
heterotic compactification on S1. We collect them in Table D.1 in Appendix D.1, where they
are denoted by its root lattice L. The Table includes the moduli (RE, AE) and (RO, AO) in the
HE and HO theories respectively. For both the moduli lie in the fundamental regions defined
in Table 2.12. As explained previously, they can be obtained by just saturating the inequalities
associated with the nodes we are keeping. In the case of the HE it is given by (2.4.7), with an
analogous expression for the HO. Also, the latter can be derived from the map (3.1.28) too.
In all cases EE = EO = 1. By looking at the GDD we deduce that all ADE Gr of r ≤ 9 are
allowed, which is consistent with Theorem 1.12.4 in the Nikulin formalism [16]. The diagram
also shows that for r = 10 all ADE Gr can appear and that for r = 11 only 11A1 is forbidden.

For each maximal group in Table D.1 we also give its discriminant group AL = L∗/L, its
appropriate isotropic subgroup HL, and its complementary lattice T . For the lattice T , the
notation A1⟨m⟩ is simplified to ⟨m⟩. Besides, d(T ) = 2m. It is easy to check that in all cases
d(L) = d(T )|HL|2 holds. For all groups we have verified the isomorphism (AM , qM) ∼= (AT , qT ),
which is less trivial when HL ̸= 1. Some examples were worked out in Section 3.2.1.1.

It is a compelling exercise to deduce the lattice T from the moduli as explained in Section
3.2.2. For d = 1 there is only one Wilson line and the simple result (3.2.13) is valid. Thus, T
is generated by

u =
√

2NR , (3.2.21)

where N is the order of A and we used e1 = R. The Gram matrix is then Q = 2N2R2 = d(T ).
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On the lattice side, T = A1⟨m⟩ with d(T ) = 2m. Therefore, it must be that

2N2R2 = 2N2(1− 1
2A

2) = 2m, (3.2.22)

where we used that E = 1 in all cases of maximal enhancement. It is straightforward to confirm
this relation using the data for m and A in Table D.1. In the HE case the Wilson line AE is
given in (2.4.7) and the order is

NE = κkκ
′
m

gcd(κk, κ′
m) . (3.2.23)

Another interesting question is the relation of generic pR to the complementary lattice T . In
Section 3.2.2 we argued that in general pR takes values in T ∗. When d = 1 the proof is rather
simple. Since E = 1, (2.3.1) reduces to

pR = 1√
2R

(n− w − π · A) . (3.2.24)

We now use that A has order N to set π · A = l̃/N , l̃ ∈ Z. Inserting in pR above gives
pR = l√

2NR , with l integer. Hence, pR lies in a lattice generated by u∗, with u the generator of
T in (3.2.21). We conclude that pR lies on T ∗ and the allowed values of p2

R are qT mod 2.

3.3 Compactifications on T 2

In heterotic compactification on T 2 there are 36 real moduli, namely {G11, G12, G22, B12}, plus
two 16-dimensional Wilson lines {AI1, AI2}. The Γ2,18 lattice vectors (pR; pL, pI), which depend
on these moduli, are given in (3.1.2). For the purpose of studying enhancement of symmetries
it is actually more appropriate to use as moduli the components Eij, cf. (3.1.1), together with
the AIi . Indeed, as we have seen in Section 3.2.2, enhancement requires the Eij to be rational
numbers and the Ai to be quantized in the sense of eq. (3.2.7). In Section 3.3.1 we treat the
problem of determining all gauge groups Gr × U(1)18−r that can appear, and the corresponding
moduli.

The extension of the systematic procedure discussed in Section 2.4 to compactifications on
T 2 would require the construction of a Generalized Dynkin Diagram for Γ2,18. However, it has
been argued that the even, self-dual lattices of signature (p, q) with both p, q > 1 (that is, with
a signature with more that one negative sign), do not possess a system of simple roots and
cannot be described in terms of generators and relations similar to Kac-Moody or Borcherds
algebras [52]. Nevertheless, although the addition of a new Kac-Moody simple root introduces
multiple links and loops in the structure of the quadruple extension of simple Lie algebras,
it was shown in [53] that the “simple-links” structure can be preserved if the extra root is a
Borcherds (imaginary) simple root. In any case, a GDD for Γ2,18 is not known and it is not
even clear whether it exists. Hence, we will proceed in a constructive way.

In Section 3.2 we explained that all allowed groups Gr × U(1)d+16−r in heterotic compac-
tification on T d can be obtained by lattice embedding techniques. For T 2 the full results are
known from the work of Shimada and Zhang who classified all possible ADE types of singular
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fibers in elliptic K3 surfaces [14, 15]. The classification translates into all possible heterotic
gauge groups because the lattice embedding conditions are the same in the K3 and heterotic
contexts.

Knowing all allowed groups it remains to compute the corresponding moduli. We will focus
in the HE since the moduli in the HO can be derived from the map elaborated in Section 3.1.2.
We will mostly consider the case of maximal enhancement, i.e. r = 18. As argued in Section
3.2.2, this can occur only if the Eij are rational numbers and the Ai are quantized.

In Section 3.3.1 we will develop a procedure in order to obtain all groups of maximal rank.
The results are summarized in Section 3.3.2.

3.3.1 Exploring the moduli space (Neighborhood algorithm)

To tackle the problem of getting all the maximal enhancements on T 2 compactifications, we
pursued different methods: construction of Extended Dynkin diagrams, the Fixed Wilson line
algorithm and the Neighborhood algorithm. Even though each one of them gives different
insights, we will only include in this thesis the latter, which is the one that succeeded in this
task. The former methods can be consulted in [2]. We will apply the algorithm in the HE theory.
The moduli for the Spin(32)/Z2 theory will then be determined using the map described in
Section 3.1.2.

The main idea is to find new maximal enhancements that are close to those already found.
More precisely, we start at a point of maximal enhancement where the group G18, and its 18
simple roots, are known. Then we move along surfaces in moduli space where the symmetry is
broken to G17 × U(1). On each of these 18 surfaces G17 will have 17 of the 18 original simple
roots. For each surface we collect the candidate extra simple root that would give back an ADE
group of rank 18. For each candidate we compute the moduli, Ai and Eij, by imposing that
the 18 simple roots correspond to states that satisfy the massless conditions8

n1 = E11w
1 + E12w

2 + π · A1, n2 = E21w
1 + E22w

2 + π · A2 , (3.3.1a)

π2 + 2w1n1 + 2w2n2 = 2 . (3.3.1b)

We then check that the torus metric Gij is well defined and finally read the gauge group from
the simple roots.9 We also compute the Gram matrix Q corresponding to the moduli, as
explained in Section 3.2.2.2, giving us the complementary lattice T . We end with a list of
points of maximal enhancement that are on the neighborhood of the original point, i.e. they
are connected through a 17-dimensional enhancement surface. The algorithm can be repeated
to explore regions of the moduli space that are far away from the starting point.

We illustrate the algorithm with an example defined by the starting point A1 = A2 = 0,
8Which in practice is done by imposing eq. (3.2.10).
9We developed a routine that takes a base of simple roots and detects if its Dynkin diagram is of ADE type

and, in that case, it identifies the group.
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Eij = δij, where the gauge group is 2A1 + 2E8. The charge vectors of the 18 simple roots are

φj = |0, 0, 0, 0;αj , 08⟩ , φ′
j = |0, 0, 0, 0; 08, α′

j⟩ , j = 1, . . . , 8,
φC1 = |1, 0, 1, 0; 08, 08⟩ , φC2 = |0, 1, 0, 1; 08, 08⟩ .

(3.3.2)

They form the DD of Figure 3.1.

1 2 3 4 5 6

7

8

C1

C2

6′ 5′ 4′ 3′ 2′ 1′

7′

8′

Figure 3.1: Dynkin diagram of 2A1 + 2E8

Now we want to move along directions that preserve 17 of the 18 simple roots by deleting
one node. Since the DD is symmetric under the interchange of the node [j] with the node [j′],
it suffices to remove one of the nodes [j]. We are then effectively breaking E8 + 2A1 by erasing
one node. The nodes C1 and C2 are also interchangeable. We choose to always keep C2. There
are thus only 9 inequivalent breakings, obtained by deleting either C1 or one of the 8 nodes of
E8. Altogether, the 17 surviving simple roots are the 18 original ones in (3.3.2), except for the
one corresponding to the removed node. Afterwards we add a new node which clearly cannot
be connected to any of the 8 nodes [j′] associated to the second E8, since the resulting diagram
has to be of type ADE. Hence, only algebras of the form G10 + E8 can arise. For convenience
we ignore the second E8 unless otherwise stated.

To further elaborate on the algorithm we analyze first the case in which the node C1 is
removed. The effect is simply to break E8 + 2A1 to E8 + A1. We then add one node, called N,
to its Dynkin diagram. The 2 possibilities for the connections of the new node are displayed in
Figure 3.2. Generically, the charge vector corresponding to N is

φN = |w1, w2, n1, n2; π1, . . . , π8, 08⟩ . (3.3.3)

The last 8 components of π are zero just because the new node is always disconnected from the
second E8. The way that N is linked in each of the possible Dynkin diagrams gives 9 conditions
for the 12 unknowns wi, ni, plus the eight non-zero components of π. We use these conditions
to determine all except 3 of the unknowns. It is convenient, and always possible, to leave w1

and w2 undetermined.

1 2 3 4 5 6

7

8
C2

N 1 2 3 4 5 6

7

8 C2

N

Figure 3.2: Dynkin diagrams corresponding to the possible ways of adding a node N to the diagram
of E8 + A1.

We just consider all possible values for the 3 unknowns, with a fixed bound for the maximum
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of their absolute values. For computational reasons, this truncation is necessary to avoid
infinitely many possibilities10. Concretely, we introduce two parameters λ1 and λ2, which
define the truncation, and consider only states with

|wi| ≤ λ1, |ni| ≤ λ2, |πI | ≤ λ2 . (3.3.4)

For this example it is enough to use λ1 = 1 and λ2 = 2. Afterwards, we filter all the candidates
by imposing that φN has norm squared 2 and π ∈ Υ16. In some cases it might occur that,
regardless of the values of λ1 and λ2, there are actually no solutions with wi, ni ∈ Z and
π ∈ Υ16.

The case of E8 +2A1, on the left in Figure 3.2, is rather trivial because we are just restoring
the deleted node C1. The algorithm will find charge vectors φN which are not necessarily equal
to φC1 , but at the end of the day all of them should be equivalent to it. When we compute
the moduli we obviously get Eij = δij, A1 = A2 = 0, or some T-dual point. We just restored
the simple root that we removed, thus returning to the original point in the moduli space. In
general, this possibility will occur in all the breakings.

In the less trivial case E8 + A2, on the right of Figure 3.2, N is linked to C2. Imposing
⟨φC2|φN⟩ = −1, implies n2 = −1 − w2. Considering all the possible values for the 3 unknowns
w1, w2 and n1, with the bounds in (3.3.4), and filtering by requiring ⟨φN|φN⟩ = 2, gives the list
|1, 0, 1,−1; 08, 08⟩, | − 1,−1,−1, 0; 08, 08⟩, |1,−1, 1, 0; 08, 08⟩, | − 1, 0,−1,−1; 08, 08⟩ . (3.3.5)

We next deduce the moduli by demanding that the charge vectors of the full set of 18 simple roots
satisfy the quantization conditions (3.3.1a). This is a well posed problem because in general there are
36 moduli to determine and the 18 simple roots give two equations each. In this case we readily find
A1 = 0 and A2 = 0. From φC2 we obtain E12 = 0 and E22 = 1, whereas from φN, n1 = E11w

1 and
−2w2 − 1 = E21w1. The 4 elements in the list (3.3.5) solve these equations with E11 = 1, and E21

equal to 1 or −1. It is easy to see that the corresponding Gij is well defined and that these points are
T-dual to each other.

The algorithm proceeds in the same fashion for all the 9 possible breakings of E8 + 2A1. For a
more fruitful example, let us consider the breaking to A7 + 2A1, obtained by removing the node φ1.
Appending a new node N leads to various possible enhancements. For instance, N can connect only to
φ8 to form A8 + 2A1. With λ1 = 1 and λ2 = 2 in the bounds (3.3.4), we find that the charge vectors
of φN can be one of

| − 1, 0, 1, 0;−w8, 08⟩ , |0,−1, 0, 1;−w8, 08⟩ , |1, 0,−1, 0;−w8, 08⟩ , |0, 1, 0,−1;−w8, 08⟩ . (3.3.6)

The moduli are determined as explained before. Taking into account all nodes except N, we arrive at

Eij = δij , A1 = γ1w1 × 0, A2 = γ2w1 × 0 , (3.3.7)

where (γ1, γ2) are some free parameters. The above moduli determine a slice of moduli space with
group SU(8)×SU(2)2×E8×U(1). Finally imposing the quantization conditions (3.3.1a) to the possible
charge vectors for φN, cf. (3.3.6), fixes (γ1, γ2) = ±(2

5 , 0), where underlining means permutations. With

10This limitation was overcome in subsequent more general versions of the algorithm made for the exploration
of the CHL string, which is the subject of the following chapter (see Section 4.3).
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these values we reach the rank 18 group with algebra A8 + 2A1 + E8.
There is a feature of the algorithm than can be explained considering again the enhancement

to A8 + 2A1, but now with A8 formed by connecting φN to φ6. The algorithm finds the charge
vector |0, 0, 0, 0;−w6, 08⟩ for φN. The moduli are again of the form (3.3.7), but now the quantization
conditions from φN imply (γ1, γ2) = (0, 0). Thus, the predicted moduli are A1 = A2 = 0, E = δij , and
we know that this point has trivial enhancement to 2E8+2A1. On the other hand, the Dynkin diagram
that results adding N indicates enhancement to A8 +2A1 +E8. The problem here is that the φN, which
has zero winding and momenta, corresponds to a root of E8. In fact, −w6 = α0 is the lowest root.
Since the quantization conditions are linear equations, if we replace one of the original simple roots of
2E8 + 2A1 with any other root, the moduli that solve the system will be the same, but the other root
is no longer simple. Our prescription to solve it is to classify all the enhancements, originating from
the same starting point, by the resulting moduli. If there is more than one enhancement for the same
moduli we just pick the one with higher dimensional group11. In this case, we choose 2E8 + 2A1 over
E8 + A8 + 2A1.

In Table 3.5 we collect the maximal enhancements in the neighborhood of the original point
A1 = A2 = 0, E = δij , which has G18 = 2E8 + 2A1. The node shown in the first column is removed
from the set in (3.3.2) at the start. The effect is to break G18 to G9×E8×U(1), with G9 given in the
second column. Appending a new node then leads to G10 × E8, with the various possibilities for G10

listed in the third column. To arrive at this list we have only kept the groups of higher dimension as
explained before, and we have used λ1 = 1 and λ2 = 2 in the bounds in (3.3.4).

deleted
node G9 G10

C1 E8 + A1 E8 + 2A1, E8 + A2

1 A7 + 2A1 A9 + A1, A8 + 2A1, D10

2 A4 + A2 + 3A1 D7 + A2 + A1, D5 + A4 + A1, A6 + A2 + 2A1, 2A4 + 2A1

3 A4 + A3 + 2A1 D6 + A4,A8 + 2A1,A6 + A3 + A1,E6 + A3 + A1,A5 + A4 + A1

4 D5 + A2 + 2A1 2D5, D7 + A2 + A1, E7 + A2 + A1, D5 + A4 + A1

5 E6 + 3A1 E6 + D4, E6 + A3 + A1

6 E7 + 2A1 E7 + A3,E7 + A2 + A1

7 A6 + 3A1 D9 + A1, A8 + 2A1, A6 + A3 + A1, A6 + A2 + 2A1

8 D7 + 2A1 D9 + A1, D7 + A2 + A1

Table 3.5: Maximal enhancements G10 + E8 in the neighborhood of A1 = 0, A2 = 0, Eij = δij , found
setting λ1 = 1 and λ2 = 2 in the bounds of (3.3.4).

The Neighborhood algorithm can be iterated and can ramify from a different point of maximal
rank. In particular, in this way we can find the maximal enhancements A3 + A6 + A9 and 3A6, which,
as argued in [2], cannot be deduced using the algorithm with fixed Wilson lines. To this end we will
set the bounds (3.3.4) as before. We will see that this is enough to obtain the missing groups, although
a priori there was no guarantee for it. We now start at a point with group G18 = A6 + A3 + A1 + E8,
which in turn was found by the algorithm initiating from the point Eij = δij , A1 = 0, A2 = 0
(cf. Table 3.5). Concretely, G18 arises after deleting the node φ3 in (3.3.2) and then appending

11This issue can be solved in a more systematic and elegant way with the saturation method described in
Section 4.3.1 (see footnote 10).
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the extra node N with charge vector φN = |0,−1,−1, 1;w3 − w1, 08⟩. The corresponding moduli are
A1 = −1

8w3 × 0, A2 = 1
4w3 × 0, Eij = δij . We can now readily apply the algorithm to G18 whose

Dynkin diagram is shown in Figure 3.3.a. All the enhancement points on the neighborhood of this
point can be computed. However, to reach the desired maximal enhancements, the nodes C1 and C2 will
be maintained during the whole process. Therefore, Eij will remain equal to the identity as we move
through the neighborhood. To proceed we remove the node 1′, thereby breaking G18 to G17 × U(1),
with G17 = A1 + A3 + A6 + A7, as shown in Figure 3.3.b. The neighboring point is on the surface
characterized by A1 = −1

8w3 × γ1w
′
1, A2 = 1

4w3 × γ2w
′
1. The algorithm then searches for new nodes

that can be consistently added. It finds N′ with charge vector | − 1,−1, 1, 0; 08,−w′
8⟩, which leads to

A3 + A6 + A9, as seen in Figure 3.3.c. The point is (γ1, γ2) = (−2
5 ,−

1
5). Luckily, from this point we

can attain 3A6 in a couple of steps. With the algorithm it is easy to see what is needed. As displayed
in Figure 3.3.d, the node 8′ is next removed to break the symmetry to 2A6 + A3 + A2, plus U(1). The
surface is given by A1 = −1

8w3× (−1
2w

′
8 +µ1(4w′

1− 5w′
8)), A2 = 1

4w3× (−1
4w

′
8 +µ2(4w′

1− 5w′
8)). The

algorithm then discovers the extra node S, with charge vector | − 1, 0, 1,−1;−w6, w
′
8−w′

1⟩, which has
enhancement to 3A6, as indicated in Figure 3.3.e. The point is (µ1, µ2) = (−1

8 , 0).

1 2 4 5 6

7
8C1

N C2

6′ 5′ 4′ 3′ 2′ 1′

7′

8′

1 2 4 5 6

7
8C1

N C2

6′ 5′ 4′ 3′ 2′

7′

8′

(a) (b)

1 2 4 5 6

7
8C1

N C2 N′

6′ 5′ 4′ 3′ 2′

7′

8′

1 2 4 5 6

7
8C1

N C2 N′

6′ 5′ 4′ 3′ 2′

7′

(c) (d)

1 2 4 5 6

7
8C1

N C2S N′

6′ 5′ 4′ 3′ 2′

7′

(e)

Figure 3.3: Dynkin diagrams for the steps leading to the enhancements A3 + A6 + A9 (c) and 3A6 (e),
starting from a point with A6 + A3 + A1 + E8 (a). Intermediate stages where the symmetry is broken
are shown in (b) and (d).

In conclusion, we have arrived at A3 + A6 + A9 and 3A6. The former has Wilson lines A1 =
−(1

8w3 × 2
5w

′
1), A2 = 1

4w3 × (−1
5w

′
1), and complimentary lattice T with Gram matrix Q = [2, 0, 140].

For the latter A1 = −1
8w3× (−1

2w
′
1 + 1

8w
′
8), A2 = 1

4w3× (−1
4w

′
8), and Q = [2, 1, 4]. For both, E = δij .

For d = 1 and 2, we know that this algorithm is exhaustive. By removing arbitrary roots from
the maximal enhancements we can obtain the non-maximal ones. As mentioned previously, there is
only one case for d = 1 and 2 that is missing, namely 2D8 and 4D4, respectively. To arrive at these
enhancements we can just use this algorithm but instead of starting with a maximal enhancement, we
start with any non-maximal enhancement of type G16 ×U(1)d.
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3.3.2 All maximal rank groups for d = 2
From the results in [14] we infer that there are 359 distinct maximally enhanced heterotic models
on T 2, some of which share the same gauge group 12. The number of distinct maximal rank gauge
groups found is 325 (if we do not take into account the global structure). Using the extended diagram
formalism developed in [2], we are able to obtain the moduli for 331 of these models. The more
powerful computational method described in 3.3.1 allow us to obtain the moduli for the remaining 28
models, as well as alternative moduli for the other 331.

In Table D.2, displayed in Appendix D.1, we show a representative for each of the 359 models in
the E8 × E′

8 heterotic theory. The data for each point consists of the root lattice L, which gives the
gauge group, the isotropic subgroup HL, the complementary lattice T , and the moduli Eij , A1, A2.
The lattice T is conveyed by its Gram matrix, computed from the moduli as described in Section
3.2.2.2. Once T is known we can determine the order of HL using the relation (3.2.1). We can then
check that the appropriate isotropic subgroup of AL exists as in the examples worked out in Section
3.2.1.2. In this way we can confirm the results of [14] for the HL corresponding to each pair (L, T ).

In contrast to the d = 1 case, we do not have an explicit form of the fundamental domain of the
moduli space, which would give us a clear criterion for choosing the moduli. Instead, we have selected
those that have the simplest form. In some cases we present two different sets of moduli, one in which
the Wilson lines are simple but the Eij have non-integer entries, and another where the opposite
happens. As expected from the general arguments of Section 3.2.2, in all cases the Eij are rational
numbers and the Wilson lines are quantized in the sense of eq. (3.2.1). Moreover, it can be shown
that for every pair (L, T ), it is always possible to find Wilson lines such that Eij = δij . Examples of
this result are # 15 or # 19 in Table D.2. The torus metric and the b-field can be easily derived from
the moduli Eij and Ai substituting in Gij = 1

2(Eij + Eji −Ai ·Aj) and Bij = 1
2(Eij − Eji).

For each model in Table D.2, the moduli in the HO theory can be obtained by using the map
described in Section 3.1.2. We have explicitly verified that the Gram matrices of the lattices L and
T are preserved under this map, which is to be expected from an orthogonal transformation. Some
examples of these transformed HO models are given in Table D.3.

12During this work we lacked a method for computing the overlattice of L. Later, we developed an algorithm
which was used to verify all of the HL reported here. This algorithm will be explained in Section 4.3.3.1. By
computing the precise global structure it is possible to distinguish two points both with L = A1 +A3 +A5 +A9,
H = Z2 and T = [10, 0, 12] but inequivalent generators for H: one is generated by the element k = (1, 2, 0, 5)
and the other by k = (0, 0, 3, 5), in the notation of Section 4.3.3. This results in 360 distinct models, with two
of them being identified as the same (#61) in Table D.2 of this thesis and Table 2 of [14].
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Chapter 4

Chaudhuri-Hockney-Lykken string

With the motivation to exhaustively explore the landscape of heterotic compactifications with max-
imal supersymmetry now we extend the analysis of the previous chapters to compactifications of the
HE string on T d/Z2 asymmetric orbifolds which realize the so-called CHL string [17, 18] (in 10 − d
dimensions with d ≥ 1). This Z2 acts by exchanging the two E8 components of the momentum lat-
tice, together with a shift by half a period along one of the compact directions. One of the effects
of this (freely acting) Z2 modding is to remove eight of the U(1) gauge bosons from the spectrum,
thereby reducing the rank of the gauge group by eight. The moduli space of the CHL string in 10− d
dimensions is locally SO(d,d+8)

SO(d)×SO(d+8) and world-sheet current algebras can be realized at level 2 or 1.
The momenta of the physical states of the 9-dimensional CHL string belong to the Lorentzian

even self-dual lattice Γ1,9 [19]. At generic points of the moduli space the (left) gauge symmetry is
Abelian, namely U(1)9. In the absence of Wilson lines and for generic values of the radius, some
vector states of the untwisted sector become massless and enhance the gauge group to E8 × U(1).
At the self-dual orbifold radius R =

√
2 (taking α′ = 1), two twisted states become massless and a

further enhancement to E8 × SU(2) takes place. Eight other non-Abelian ADE groups of maximal
rank 9 can be found at other special points of the moduli space. All of these groups have world-sheet
current algebras realized at level 2. In Section 4.1 we list these groups, which can be easily obtained
by deleting nodes from the Generalized Dynkin Diagram for Γ1,9 (which is the same as the Dynkin
diagram of the group E10), in an analogous way as we did in Section 2.4 for the S1 compactification.

In less than nine dimensions the lattice of momenta of the physical states (the so-called Mikhailov
lattice) is even but not self-dual [19]. This can be understood by noting that there is an asymmetry
between the possible winding states along the orbifolded direction and those along the remaining
ones, obstructing an automorphism that would make the lattice self-dual. On the other hand, this
asymmetry enriches the pattern of gauge symmetries with respect to those found from the Narain
lattice, and we find in addition gauge groups of BCF type.

As in the case of T d compactifications, there does not seem to exist a Generalized Dynkin Diagram
(GDD) from which one can extract all possible enhancements for d > 1. Although many different
GDDs can be constructed, it is uncertain whether they can produce the whole set of enhanced gauge
groups. Hence, we adapt the exploration algorithm that was introduced in Section 3.3.1 for the Narain
lattices to the Mikhailov lattices. We find that, for d = 2, the algorithm generates a list of 61 groups
of maximal enhancement. In this case, the CHL string is a realization of the anomaly free theories
with 16 supercharges and rank 10 gauge groups [54]. We find that the ADE groups arise at level 2
while C groups appear at level 1 (A1 also appears at level 1, but A1 = C1). Taking into account
that the exploration algorithm produces all possible maximal enhancements in T 2 compactifications
strongly indicates that these results exhaust all the possibilities.

Roughly half of the enhanced gauge groups in the CHL string in eight dimensions are multiply
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connected, while the rest are simply connected. Importantly, they are seen to satisfy the condition
derived in [21] for anomaly free 8d N = 1 supergravities, a result that can be proven in general also
for T 2 compactifications [20].

We note that our results for the 8d CHL string extend under T-duality to compactifications of
the HO theory string on tori without vector structure [22], as discovered in [55] and further discussed
in [23]. These theories are also dual to F-theory on K3 with a frozen singularity [22,56], hence it should
be possible to reproduce our results in that context. Similarly, the d = 1 case is dual to M-theory on
the Möbius strip [57, 58]. We do not dwell on these dualities here, focusing our attention only on the
(E8 × E8) heterotic side.

The chapter is organized as follows. In Section 4.1 we review the construction of the CHL string
in nine dimensions as an S1/Z2 orbifold of the HE string. We then find all the maximal enhancements
from the Generalized Dynkin Diagram and list them in Table D.4. The T-duality map among the
states of the theory is also checked. The more general setting of the CHL string in D = 10 − d

dimensions (with D ≤ 9) is considered in Section 4.2, where the theory is realized as an orbifold
of heterotic compactifications on T d. In Section 4.3 we explain the methods used in the algorithm
that searches for maximal enhancement points and illustrate them with an explicit example. We then
present the maximal enhancements generated by this procedure in the eight dimensional theory and
collect the final results in Table D.5 with the corresponding explanation in Section 4.3.4.

4.1 The nine-dimensional CHL String

In this section we review the construction of the CHL string in nine dimensions [17] as an S1/Z2

orbifold of the HE string [18] and fix our conventions. We recall the massless spectrum and study the
possible gauge symmetries from the point of view of lattice embeddings. We will see that, as in the
case of the heterotic string on S1, this problem is well under control.

4.1.1 Constructing the theory from the heterotic string
In Chapter 2, we considered the HE string with the coordinate x9 compactified on a circle of radius
R. We explained that varying R and turning on the Wilson line A on the compact direction we sweep
through the Narain moduli space

MNarain = O(1, 17,R)
O(17,R)

/
O(1, 17,Z), (4.1.1)

with the discrete T-duality group O(1, 17,Z) determining its global structure. These compactifications
yield theories with gauge group of rank 17 (ignoring the graviphoton). However, the class of nine-
dimensional theories with 16 unbroken supercharges also contains reduced rank theories, with gauge
groups of rank 9 and 1. Those of rank 9 are realized in the CHL string, and have moduli space

MCHL = O(1, 9,R)
O(9,R)

/
O(1, 9,Z), (4.1.2)

as will be made clear at the end of this section.
For our purposes, it is convenient to construct the CHL string as an orbifold of the E8×E′

8 heterotic
string following [18]. The orbifold symmetry g = RT consists of the outer automorphism R of the
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E8 × E′
8 lattice accompanied by a half turn T around the compactification circle, namely

R : ΓE8 ⊕ ΓE′
8
→ ΓE′

8
⊕ ΓE8 , T : x9 → x9 + πR. (4.1.3)

Since x9 ∼ x9 + 2πR in the parent theory, g2 = 1 and g defines a freely-acting Z2 orbifold.
To find the spectrum of this theory, we start by recalling the components of the internal momentum

of the heterotic string in nine dimensions eq. (2.3.1):

pR = 1√
2R

[
n− (R2 + 1

2A
2)w −Π ·A

]
, (4.1.4a)

pL = 1√
2R

[
n+ (R2 − 1

2A
2)w −Π ·A

]
, (4.1.4b)

pÎ = ΠÎ +AÎw , (4.1.4c)

where Î = 1, ...., 16, n ∈ Z is the momentum number on the circle, w ∈ Z is the winding number and
Π ∈ Γ8 ⊕ Γ8, with Γ8 ≡ ΓE8 . The momenta form the unique even self-dual Lorentzian lattice Γ1,17

(up to SO(1, 17) boosts given by the moduli), with vectors labeled by the quantum numbers w, n,ΠÎ .
We use the convention α′ = 1.

On the S1/Z2 orbifold, the Wilson lines are restricted to take the form

A = (a, a) , a ∈ R8. (4.1.5)

Similarly, it is convenient to decompose the heterotic momenta as

Π = (π, π′), π, π′ ∈ Γ8, (4.1.6)

and to define the symmetric and antisymmetric combinations

pI+ = 1√
2

(pI + pI+8), pI− = 1√
2

(pI − pI+8), I = 1, ..., 8 (4.1.7)

Defining moreover the symmetric combination

ρ = π + π′ ∈ Γ8 , (4.1.8)

the components (4.1.4) can be written as

pR = 1√
2R

[
n−R2w − a2w − ρ · a

]
, (4.1.9a)

pL = 1√
2R

[
n+R2w − a2w − ρ · a

]
= pR +

√
2Rw , (4.1.9b)

p+ = 1√
2

(ρ+ 2aw) , (4.1.9c)

p− = 1√
2

(π − π′) , (4.1.9d)

and the total internal momentum vector is P = (pR; pL) ≡ (pR; pL, p+, p−).
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The orbifold action on the momenta can be written as

g |pR; pL, p+, p−⟩ = e2iπv·P |pR; pL, p+,−p−⟩ , (4.1.10)

where the inner product is defined with respect to the metric diag(−1,+1, . . . ,+1). The shift vector
v is constrained by the condition that g has order two. Choosing v− = 0 implies that 2v belongs to
the Narain lattice Γ1,17. Besides, the condition that the shift corresponds to the geometric translation
of x9 by half a period amounts to e2iπv·P = eiπn and leads to

v = 1
2
√

2

(
−R− a2

R
;R− a2

R
, 2a, 0

)
. (4.1.11)

Notice that 2v equals the Narain lattice vector obtained by substituting w = 1, n = 0, and π = π′ = 0
in the formulae (4.1.9). The lattice vectors can be conveniently traded for states |w, n, π, π′⟩, which
depend on the quantum numbers and transform as

g |w, n, π, π′⟩ = eiπn|w, n, π′, π⟩, (4.1.12)

for all values of the moduli.
The action of g on the left-moving bosons living on ΓE8 ⊕ ΓE′

8
, denoted Y I and Y ′I = Y I+8,

I = 1, . . . , 8, is the exchange Y I ↔ Y ′I , or Y I
± → ±Y I

± where

Y I
± = 1√

2
(Y I ± Y ′I). (4.1.13)

The action on the space-time coordinates is just the translation in x9. The corresponding oscillators
then transform as

g(αI) = αI+8 , g(αI+8) = αI , g(αµ) = αµ, (4.1.14)

where µ = 2, ..., 9 refers to the space-time transverse coordinates. Notice also that g(αI±) = ±αI± for
the Y I

± oscillators.
In the untwisted sector, the spectrum consists of states of the parent theory invariant under the

orbifold action. The invariant states are superpositions of the form

|φ⟩untwisted = 1√
2

(
α |w, n, π, π′⟩+ (−1)ng(α) |w, n, π′, π⟩

)
, (4.1.15)

where α denotes any possible combination of oscillators and g(α) its image under g, given by (4.1.14).
In the twisted sector, the internal chiral bosons Y I and Y ′I satisfy the boundary conditions

Y I(σ + 2π) = Y ′I(σ) +QI , Y ′I(σ + 2π) = Y I(σ) +Q′I , (4.1.16)

where Q,Q′ are arbitrary (fixed) vectors in Γ8 which specify the precise way of exchanging E8 ↔ E′
8

[59]. The Y I
± then obey

Y I
±(σ + 2π) = ±Y I

±(σ) + 1√
2

(QI ±Q′I) , (4.1.17)
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and have oscillator expansions

Y I
+(τ + σ) = 1

2y
I
+,0 + 1

2πp
I
+(τ + σ) + i√

2
∑
n̸=0

αI+, n
n

e−in(τ+σ) ,

Y I
−(τ + σ) = 1

2y
I
−,0 + i√

2
∑

s∈Z+ 1
2

αI−, s
s

e−is(τ+σ) ,

(4.1.18)

where pI+ ≡ 1√
2(QI + Q′I) and yI−,0 ≡ 1√

2(QI − Q′I). The boson corresponding to the compact x9

dimension satisfies

X9(σ + 2π) = X9(σ) + πR+ 2πRw̃ ≡ X9(σ) + 2πRw, (4.1.19)

with w̃ ∈ Z, and hence w ∈ Z+ 1
2 .

The twisted states have three distinctive features: they have half-integer winding w, the occupation
numbers of their oscillators can be half-integer or integer valued, and they do not have antisymmetric
momentum pI−. We write them as

|φ⟩twisted = |w, n, ρ⟩ , (4.1.20)

up to the action of oscillators. Note that upon quantisation the symmetric momentum takes the form
p+ = 1√

2(ρ + 2aw), with ρ = Q + Q′ ∈ Γ8, coinciding with the untwisted symmetric momentum in
(4.1.7).

In the NS sector for the right movers (which gives the space-time bosons), the mass and level
matching conditions are

M2 = pL
2 + pR

2 + 2(NL +NR) + 2a− 1 , (4.1.21)

0 = pL
2 − pR

2 + 2(NL −NR) + 2a + 1 , (4.1.22)

where the zero point energy a is -1 in the untwisted sector, as usual, and −1
2 in the twisted sector, since

the left-moving side part receives contributions from 16 periodic bosons {Y I
+, X

µ} (with µ labeling the
8 transverse directions) and 8 anti-periodic bosons {Y I

−}. Concretely,

atwisted = 16× aperiodic + 8× aanti-periodic = −16× 1
24 + 8× 1

48 = −1
2 . (4.1.23)

It is convenient to define the modified ‘oscillator number’

N ′
L = NL + δ, δ =


1
2 p

2
− Untwisted

1
2 Twisted

, (4.1.24)

where p2
− is an integer (cf. (4.1.9)), and the nine-dimensional momentum

PL = (pL, p+), (4.1.25)
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which allows to rewrite the formulas (4.1.21) and (4.1.22) in an O(1, 9) covariant form as

M2 = P 2
L + p2

R + 2(N ′
L +NR)− 3 (4.1.26a)

= 1
2Z

THZ + 2(N ′
L +NR)− 3 (4.1.26b)

0 = P 2
L − p2

R + 2(N ′
L −NR)− 1 (4.1.27a)

= 1
2Z

T ηZ + 2(N ′
L −NR)− 1 . (4.1.27b)

Here we have defined the charge vector
Z ≡ |ℓ, n; ρ⟩ , (4.1.28)

with
ℓ ≡ 2w, (4.1.29)

and ρ is defined in (4.1.8). Note that ℓ is always an integer, and is odd (even) for twisted (untwisted)
states. H is the so-called ‘generalized metric’ (cf. (2.3.5))

H = 1
R2


E2/2 −a2 Ea

−a2 2 −2a
EaT −2aT R2 + 2aTa

 , (4.1.30)

where a is taken to be a row vector and the lower right R2 term is implicitly multiplied by 18 so that
H is a 10× 10 matrix, and

E ≡ R2 + a2 . (4.1.31)

Finally, η is the O(1, 9) metric

η =


0 1 0
1 0 0
0 0 18

 . (4.1.32)

The important result
Z2 ≡ ZT ηZ = 2ℓn+ ρ2 ∈ 2Z (4.1.33)

implies that the charge vectors Z span the even self-dual Lorentzian lattice Γ1,9 ≃ Γ1,1 ⊕ Γ8, since
ℓ, n ∈ Z and ρ ∈ Γ8. The correspondence between the states of the theory and the elements of Γ1,9

was derived in [19].
It can now be seen that the local structure of the moduli space (4.1.2) is O(1, 9,R)/O(9,R) due

to the reduction of the Wilson line from 16 to 8 components and the invariance of eqs. (4.1.26a)
and (4.1.27a) under O(9,R) rotations of PL. Furthermore, the automorphism group O(1, 9,Z) of
Γ1,9 corresponds to the T-duality group of the theory, giving the global structure for MCHL. The
similarities between MCHL and MNarain (cf. eq. (4.1.1)) allow to carry out an analysis of the nine-
dimensional CHL string mirroring the one performed for S1 compactifications in [13] and mentioned
in Section 2.4, namely constructing the fundamental region of the moduli space whose codimension
r ≤ 9 boundaries give enhanced semisimple gauge groups of rank r. This ensures that we are able to
easily find all possible gauge group enhancements in the theory, as we explain shortly.
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4.1.2 Massless vectors
From equations (4.1.26a) and (4.1.27a) we see that the NS sector contains massless states with NR = 1

2 ,
pR = 0 and

P 2
L = 2(1−N ′

L) ⇒ N ′
L = 0, 1, 1

2 . (4.1.34)

Of these, untwisted states can have NL = 0, 1 and twisted states NL = 0 (cf. eq. (4.1.24)). For NL = 1,
besides the universal gravitational sector, the massless spectrum contains the left Abelian KK gauge
vector

α9
−1ψ̄

µ

− 1
2
|0⟩NS , (4.1.35)

with ψ̄µ− 1
2

the coefficient of the Laurent expansion of the right-moving fermions, µ = 2, ..., 8, and the
8 symmetric combinations of the Cartan sector of the heterotic theory that survive the R projection

1√
2

(αI−1 + αI+8
−1 ) ψ̄µ− 1

2
|0⟩NS , (4.1.36)

implying that the gauge group of the theory has rank 9.
For NL = 0, the set of massless states depends on the point in moduli space. The pR = 0 condition

reads (cf. eq. (4.1.9a))
1
2E ℓ− n+ a · ρ = 0 , (4.1.37)

with E defined in (4.1.31), while the level matching condition (4.1.27b) becomes a constraint on the
norm of Γ1,9 vectors:

Z2 = 2ℓn+ ρ2 = 4(1−N ′
L) = 4 or 2. (4.1.38)

The states with Z2 = 4 correspond to N ′
L = 0, and from the definition of N ′

L given in (4.1.24) we
see that this is only possible in the untwisted sector, with π = π′. From eq. (4.1.15) we see that such
states could only exist with n even. However, substitution in (4.1.38) gives 2ℓn+ ρ2 = 4q + 4π2 = 4,
with q even, or π2 = 1 − q = odd, which is inconsistent since π ∈ Γ8. In compactifications to lower
dimensions, such massless states do appear, and correspond to roots of gauge algebras at level 1, being
long roots for non-ADE algebras (see Section 4.2). On the other hand, states with Z2 = 2 are allowed
in this case, and correspond to roots of ADE algebras at level 2. They come both from the twisted
and untwisted sectors (the latter with π = 0 or π′ = 0). We summarize this in Table 4.1.

twisted untwisted
Z2 2 2
ℓ odd even
n integer integer
ρ Γ8 Γ8

Table 4.1: Quantum numbers of the massless states in the twisted and untwisted sector in nine
dimensions. The states must satisfy (4.1.37) to be massless.

At a generic point in the moduli space there are no massless states (twisted or untwisted) other than
(4.1.35)-(4.1.36), since condition (4.1.37) can only be satisfied generically for Z = 0, and therefore
generically the gauge group is U(1)9. Enhanced gauge symmetry appears at special points in the
moduli space, as we will show.

Let us look at the simple situation where a = 0. The massless condition (4.1.37) is trivially satisfied
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for states with ℓ = n = 0, and the level matching condition (4.1.38) with ρ2 = 2, hence we get the
massless untwisted sates with charge vectors

Z = |0, 0; ρ⟩ , ρ2 = 2. (4.1.39)

These are just the 240 roots of the E8 arising from the symmetric combination of the two E8’s in the
parent theory. In the twisted sector, since ℓ is odd, eq. (4.1.37) is not satisfied for generic values of the
compactification radius, since R =

√
E in this case. The surviving gauge group for a = 0 and generic

R is then E8×U(1). Interestingly enough, taking R = 1 when a = 0 does not lead to additional states
that enhance the U(1) to SU(2), as occurs in the S1 compactification. For this enhancement to occur
we must actually take R =

√
2, i.e. E = 2, so that equations (4.1.37) and (4.1.38) are solved by

Z = ± |1, 1; 0⟩ , (4.1.40)

corresponding to two twisted states with winding number m = ±1
2 .

It can be shown that in this example the world-sheet realization of the E8 × SU(2) space-time
gauge symmetry is provided by a Kac-Moody algebra at level k = 2. It is interesting to compare the
radius that gives this enhancement in the orbifold theory with the self-dual radius Rk in the standard
S1 compactification where the enhancement occurs at Rk = 1 and the gauge group is realized at level
1. They are related as R =

√
kRk. For generic Wilson lines this enhancement occurs at

Ek = k−1E = 1. (4.1.41)

In the following section we show that this is a generic feature: while maximal enhancement in the
heterotic string on S1 occurs at E = 1 and the Kac-Moody algebra is realized at k = 1, in the
nine-dimensional orbifold theory they occur at E = 2 and k = 2, i.e. both enhancements occur at
Ek = 1. This is actually expected from T-duality. We will shortly explain that in the orbifold theory
the self-dual point is E = 2.

4.1.3 Maximal enhancements from the Generalized Dynkin Dia-
gram

As we have commented in Section 4.1.1, the structure of the moduli space of the nine-dimensional
CHL string,MCHL, is similar to that of S1 compactifications of the heterotic string,MNarain (studied
in Chapter 2). In particular, its global structure is given by O(1, 9,Z), the group of automorphisms
of a Lorentzian even self-dual lattice. This group is reflexive, meaning that it can be generated by
a finite set of Weyl reflections on the moduli space cover O(1, 9,R)/O(9,R), each of which fixes an
hyperplane at the boundary of the fundamental domain. Each one of these reflections is uniquely
associated to a short root quantum state that becomes massless on its fixed hyperplane, such that all
possible enhanced semisimple gauge groups of rank r may be found at their r-fold intersections (for
details see [13]).

The upshot is that given the set of 10 roots corresponding to the boundaries of MCHL, we may
simply impose that some of them satisfy the massless condition (4.1.37) (condition (4.1.38) is satisfied
by construction), so that they become the simple roots of some simply laced gauge algebra. This can
be done neatly by introducing the Generalized Dynkin Diagram (GDD) [11] for the lattice Γ1,9 shown
in Figure 4.1, which is the over-extended Dynkin Diagram for E8, usually denoted E10. The roots 1
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through 8 are the simple roots of E8, and we take them to have the following embedding in Γ1,9

Zi = |0, 0;αi⟩ , i = 1, ..., 8, (4.1.42)

where the αi are listed in Table 2.1. The root 0 corresponds to the lowest root of E8 with the additional
property that it has n = −1, i.e.

Z0 = |0,−1;α0⟩ . (4.1.43)

Finally, the root C lies in the hyperbolic sublattice Γ1,1 and reads

ZC = |1, 1; 0⟩ . (4.1.44)

1 2 3 4 5 6

7

8

0 C

Figure 4.1: Generalized Dynkin Diagram for the lattice Γ1,9. The coloring of the nodes 0 and C reflects
the fact the the associated states have non-zero momentum and/or winding, as opposed to the white
nodes.

Analogously to the case of the torus of Section 2.4, maximally enhanced (rank 9) non-Abelian
gauge groups are then found by deleting one node in the GDD such that the remaining nodes form
the Dynkin diagram of an ADE algebra. Imposing the condition (4.1.37) on the roots associated to
the remaining nodes gives rise to 9 constraints on the moduli and defines a singular point (E, a) at the
boundary of the fundamental domain with maximally enhanced gauge group. More generally, deleting
s nodes defines a subvariety of dimension s − 1 with generic semisimple gauge group of rank 10 − s,
given by the remaining Dynkin diagram.

Note that for maximal enhancements the node C cannot be broken, since the remaining diagram
corresponds to the infinite dimensional algebra E9. This means that all maximal enhancements must
contain this node, and from eq. (4.1.37) this implies that E = 2. The massless condition then reduces
to

a · ρ = ℓ− n. (4.1.45)

Deletion of the ith node, i = 0, ..., 8, corresponds to the Wilson line

a = 1
κi
wi, (4.1.46)

with no sum over i, where wi and κi are respectively the fundamental weight and Kac mark listed in
Table 2.1, similarly to 2.4.7. It is easy to show that this prescription exactly solves eq. (4.1.45) for the
remaining roots Zj ̸=i, while violating the one for Zi since wi ·αi/κi /∈ Z, i ̸= 0. In fact, these values for
the Wilson line correspond to those for a shift vector breaking E8 to a maximal regular subgroup [60].

The maximal enhancements are listed in Table D.4, where in all the cases the world-sheet Kac-
Moody algebra is realized at level 2. Moreover, note that the relation (4.1.41) is satisfied in all cases,
since E = 2.
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4.1.4 T-duality
The T-duality group of the nine-dimensional CHL string is O(1, 9,Z), the automorphism group of
Γ1,9. Of particular interest is the Weyl reflection, say T , generated by the root ZC, whose action on
the moduli and the quantum numbers ℓ, n, ρ is

T : E ↔ 4
E
, a↔ 2a

E
, ℓ↔ n, ρ↔ −ρ (4.1.47)

while N ′
L is invariant. Note that this transformation is not inherited from the T-duality group of the

parent theory on S1, although it is analogous to the transformation E → 1/E found there. In fact,
in the S1/Z2 orbifold some states in the untwisted sector are transformed under T to states in the
twisted sector. Twisted states with ℓ odd and n even are mapped to untwisted states with ℓ even and
n odd (cf. Table 4.1), and vice versa. This mixing of the two sectors under T-duality was originally
noted in [19].

It can be shown that the partition function of the S1/Z2 orbifold is invariant under T . One can
also see explicitly how the mixing of untwisted and twisted states occurs at the level of the Hilbert
space by taking into account the difference in the ground states and internal oscillators of the two
sectors. As a simple example consider the twisted state with ℓ = 1, n = 0, ρ = r, with r a root of
E8, and no left oscillators. Since T-duality preserves the norms of the momenta p2

R and P 2
L, it should

also preserve the value of N ′
L to leave the mass (4.1.26a) unaffected. In this case, N ′

L = 1
2 , and so the

transformed untwisted state must have p2
− = 1 (cf. eq. (4.1.24)). It is not hard to see that it should

take the form
1√
2

(|0, 1; r, 0⟩ − |0, 1; 0, r⟩) , (4.1.48)

where the notation is that of eq. (4.1.15).
The mapping is more complicated when oscillators are involved. Consider for instance the set of

twisted states with charge vector Z = |1, 0; 0⟩ and N ′
L = 2, i.e. NL = 3

2 . The allowed combinations of
oscillators along the eight directions I that can act on Z are

αI−,− 1
2
αJ−,− 1

2
αK−,− 1

2
, αI+,−1α

J
−,− 1

2
, αI−,− 3

2
, I, J,K = 1, . . . , 8, (4.1.49)

giving 120 + 64 + 8 = 192 states. Their T-dual untwisted states, labeled by |ℓ, n;π, π′⟩, must have
ℓ = 0, n = 1, π′ = −π since ρ = 0, and they must also add up to 192 states. For the first 120 twisted
states the T-duality is

αI−,− 1
2
αJ−,− 1

2
αK−,− 1

2
, |1, 0; 0, 0⟩ ↔ 1√

2
(|0, 1; r,−r⟩ − |0, 1;−r, r⟩) , (4.1.50)

where r is any of the 120 positive roots of E8 (the other 120 give the same states up to an overall
irrelevant sign). We see that p2

− = 2r2 = 4, hence N ′
L = 2 as required.

For the remaining states the mapping reads

αI+,−1α
J
−,− 1

2
|1, 0; 0, 0⟩ ↔ αI+,−1α

J
−,−1 |0, 1; 0, 0⟩ ,

αI−,− 3
2
, |1, 0; 0, 0⟩ ↔ αI−,−2 |0, 1; 0, 0⟩ .

(4.1.51)

Here we have used that in the untwisted sector the αI− oscillators have integer occupation number and
under the orbifold action pick up a minus sign so that the full states are invariant.
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4.2 The CHL string in D dimensions
We now consider the more general setting of the CHL string in D external dimensions, with D ≤ 9.
It is realized as an orbifold of heterotic compactifications on T d (with d = 10−D), where the orbifold
symmetry is again g = RT (cf. eq. (4.1.3)), with T a half-turn around one of the cycles of T d. We will
choose this cycle to be along x9, while the others remain unaffected.

4.2.1 Extending the nine-dimensional construction
The moduli of the E8 × E8 heterotic string on T d are the torus metric Gij , the antisymmetric tensor
Bij and the Wilson lines Ai, where i, j = 1, ..., d. Again, the Wilson lines have to be invariant under
the R symmetry, which implies that they are of the form Ai = (ai, ai). Generalizing (4.1.31), we define
the moduli

Eij = Gij +Bij + ai · aj , (4.2.1)

and the quantum numbers
ℓi ≡ 2wi, ni, ρI ≡ πI + π′I , (4.2.2)

where wi and ni are the winding and momentum numbers along the ith direction and πI , π′I are the
same as in (4.1.6). The momenta (4.1.9) are then generalized to

pR = 1√
2

(
ni − 1

2Eijℓ
j − ai · ρ

)
êi, (4.2.3a)

pL = 1√
2

(
ni + (Gij − 1

2Eij)ℓ
j − ai · ρ

)
êi = pR + 1√

2
ℓiei , (4.2.3b)

p+ = 1√
2

(
ρ+ ℓiai

)
, (4.2.3c)

p− = 1√
2

(π − π′) , (4.2.3d)

where ei is the vielbein for the torus metric, i.e. ei · ej = Gij , and êi its inverse.
The construction of the spectrum in Section 4.1 carries over with some differences. Basically, the

i = 1 direction behaves as in the nine-dimensional case, while the other directions i ≥ 2 behave as in
the usual T d compactification. In particular, the charge vectors

Z ≡ |ℓ1, ..., ℓd, n1, ..., nd; ρ⟩ (4.2.4)

have ℓ1 odd (even) for twisted (untwisted) states, but ℓ2, ..., ℓd are always even, while in general,
n1, ..., nd ∈ Z and ρ ∈ Γ8.

The Lorentzian metric (4.1.32) generalizes to

η =


0 1d 0
1d 0 0
0 0 18

 (4.2.5)

and, together with the allowed values for the quantum numbers, already suggests that the vectors Z
span the lattice

Γ(d) ≃ Γd−1,d−1(2)⊕ Γ1,9. (4.2.6)

80



The (2) at the right of Γd−1,d−1 ≃
d−1⊕ Γ1,1 means that the norm squared of its vectors is scaled by

a factor of 2, in this case due to ℓ2, ..., ℓd always being even. This is in agreement with [19], where
these lattices were initially introduced. We therefore refer to Γ(d) in this context as the Mikhailov
lattice. This is the analog of the Narain lattice Γd,d+16, but with the important difference that it is
not self-dual (except for the d = 1 case reviewed in Section 4.1).

The left-moving sector of the theory now includes d Abelian KK gauge vectors like (4.1.35), so
that the gauge group is of rank 8 + d. A generic point in the moduli space has gauge group U(1)d+8,
but at special points this group is enhanced. The novel feature for d > 1 compactifications is that
states with Z2 = 4 can become massless and certain enhanced gauge groups are not simply laced, as
we now show.

The zero mass and level matching conditions generalizing (4.1.37) and (4.1.38) are

1
2Eijℓ

j − ni + ai · ρ = 0, i = 1, ..., d , (4.2.7)

Z2 = 2ℓini + ρ2 = 4 or 2 . (4.2.8)

Let us take for the moment d = 2. An untwisted state with Z2 = 4 has n1 even and ρI = 2πI .
Substituting in (4.2.8) gives 2ℓ1n1 + 2ℓ2n2 + ρ2 = 2ℓ2n2 + 4q + 4π2 = 4, with q even, but in contrast
to the situation in d = 1, it can be solved by an appropriate choice of ℓ2 and n2. Indeed, the product
ℓ2n2 can be any even number, say 2p with p ∈ Z. Then (4.2.8) reduces to π2 = 1−q−p, which admits
solutions in Γ(2) if p is odd. As before, we have that Z2 = 4(1−N ′

L), which implies N ′
L = 0 and, from

(4.1.24), π = π′, then ρ ∈ Γ8(2). These states give rise to Cn gauge algebras at level 1, where they
play the role of long roots when n ≥ 2 (C1 = A1). For d ≥ 3 there are more possibilities such as Bn

and F4 algebras (see [61] for an introduction on this topic). In Table 4.2 we record the values of the
quantum numbers that massless states can have for d ≥ 2, together with the squared length Z2 of the
charge vector.

twisted untwisted
Z2 2 2 4
ℓ1 odd even even
n1 integer integer even
ℓi even even even
ni integer integer integer
ρ Γ8 Γ8 Γ8(2)

Table 4.2: Quantum numbers of the massless states in the twisted and untwisted sector. The index
i > 1 corresponds to further compactifications of the nine-dimensional theory. States with Z2 = 4 can
only be massless in D < 9 dimensions. The states must satisfy (4.2.7) to be massless.

4.3 Exploring the moduli space

As in T d compactifications of the heterotic string, there does not seem to exist a GDD for d > 1
from which one can extract all possible enhancements. One obstruction to obtaining such a GDD
is that the group of automorphisms for the Mikhailov lattice, similarly to the Narain lattice, is not
generated by simple reflections when d > 1. A workaround was found in the previous chapter: we
developed an algorithm for T d compactifications which, starting from a point p0 of the moduli space
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corresponding to a (semisimple) gauge group of maximal rank rmax = d + 16, gives a set of new
points of maximal enhancement. Heuristically, it searches for maximal enhancement points which are
connected to p0 through some variety with generic gauge group of rank rmax − 1. In the case of S1

and T 2 compactifications, this algorithm was proven to be exhaustive by comparing with previous
results [13,14].

We have modified this algorithm in order to apply it to the CHL compactifications. This is required
by the technicalities of working with Mikhailov lattices as opposed to Narain lattices, specially for
compactifications to spacetime dimensions lower than nine, where non-ADE root lattices appear.

In the following section we explain the methods used in our algorithm and illustrate them with an
explicit example. We explain the final results in Section 4.3.4 and present the maximal enhancements
generated by iterating this procedure in Table D.5.

4.3.1 Exploration algorithm
The purpose of our algorithm is to take as input some point p0 of maximal enhancement and return
a list of other such points pk related to p0 in some specific, controllable way. To this end, it is best
to specify p0 not by its moduli, but by its root lattice L0 via some generating matrix (in general, by
generating matrix we mean a matrix whose rows are a basis for some lattice) of simple roots embedded
in the Mikhailov lattice. Both sets of data are equivalent as one can recover one from the other using
equations (4.2.7) and (4.2.8). However, the lattice L0 is more amenable to discrete operations, which
we now describe.

Consider the (10 − d)-dimensional (d ≥ 1) CHL string at a point p0 in moduli space specified by
a set of d + 8 simple roots with quantum numbers ℓi, ni and ρ. Substituting each one of them in
(4.2.7) gives d real constraints on the d× (d+ 8) moduli. It follows that deletion of some simple root
r0 defines a d-dimensional subvariety in moduli space which contains p0. Generically, this subvariety
contains many more maximal enhancement points pk, each one corresponding to a distinct simple root
rk replacing r0, rk ̸= r0. It is in this sense that the pk are neighbors of p0. To generate such a root
rk we solve a system of equations stating that rk must have inner product 0,−1 or −2 with all other
roots, its squared length must be 2 or 4 and it must be embedded in the Mikhailov lattice Γ(d) in
accordance with Table 4.2.

In order to make sure that the root lattice obtained by replacing r0 → rk corresponds to the gauge
group Gk at pk, we have to take care of an ambiguity in the relation between the moduli of pk and
the root lattice Lk ≡ L of Gk. Even though the embedding of L in Γ(d) specifies the moduli via the
constraints mentioned above, it is also true that any sublattice L′ ⊆ L with rank(L′) = rank(L) will
give the same moduli. When we replace r0 → rk there is therefore the possibility that the lattice
obtained will not be L but some L′. This ambiguity is eliminated if we implement a procedure, which
we explain below, that takes L′ and returns L by adding the missing roots. This adding of roots will
be referred to as a saturation of L′ to L.

To saturate L′ we recall that all of its even overlattices are contained in the dual lattice L′∗, so
that in particular L′ ⊆ L ⊆ L′∗. It suffices then to compute the vectors dual to L′, select those which
correspond to roots embedded in Γ(d) and add them to L′. In practice this is done by iterating an
algorithm which replaces one root vector in the generating matrix for L′ such that detL′ gets smaller
(indicating that L′ has been extended) and is still embedded in Γ(d). When all attempts to do this
leave the determinant of the lattice invariant, L′ has been saturated to the true root lattice L at pk.
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4.3.2 Example
To illustrate this procedure we first consider an exploration of the neighborhood of the point in moduli
space corresponding to eight dimensional CHL with gauge algebra (A1 +A3 +D6)2, with the subscript
indicating that the world-sheet Kac-Moody algebra is realized at level 2, given by the moduli

Eij =
(

2 0
0 1

)
, a1 = (07, 1), a2 = (03,−1

2
4
, 1

2). (4.3.1)

The root lattice L0 is generated by the rows (ℓ1, ℓ2, n1, n2; ρ) of the 10× 12 matrix

G0 =



1 2 −1 −1 0 0 0 1 1 1 1 −2
0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 −1 −1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 1 0 0 0 −1 −1 0 0 0
1 0 −1 −1 0 0 0 0 0 0 0 −2

, (4.3.2)

from which the gauge algebra is read by computing its Gram matrix G0ηGT0 , with η given in (4.2.5).
Note also that G0 is not a square matrix due to the fact that it gives an embedding of a rank 10 lattice
into the rank 12 lattice Γ(2). We have chosen this particular vacuum because, as we explain below, it
neighbors another vacuum with globally non-trivial gauge group.

Starting from G0, one of the paths that our algorithm will follow is to remove, for example, the
6th row. This breaks (D6)2 → (2A1 + A3)2 and eliminates two real constraints on the moduli (cf. eq.
(4.2.7)), which taking into account the remaining 20− 2 = 18 constraints read

Eij =
(

2 x

0 y

)
, a1 = (03, x, (−x)3, 1), a2 = (03, y − 3

2 , (
1
2 − y)3,

1
2) , (4.3.3)

with the subindex 3 meaning that the quantity is repeated 3 times. In other words, the moduli are
now constrained to a plane (x, y) with generic gauge algebra (3A1 + 2A3)2. Our algorithm will now
generate a new simple root α by picking out a solution to the set of equationsG0,mnαn = km, km ∈ {0,−1,−2}, m ̸= 6

α2 = N, N ∈ {2, 4},
(4.3.4)

where α = (ℓi, ni; ρ) is constrained to lie in Γ(2), meaning that ℓ1, n1, n2 ∈ Z, ℓ2 ∈ 2Z and ρ ∈ Γ8. One
possible solution with N = 4 is

α =
[
0 2 −2 −3 0 0 0 0 2 2 2 −2

]
. (4.3.5)

The new matrix G1 resulting from this exchange of roots (α is now in the 6th row) is seen to generate
the root lattice L1 corresponding to the gauge algebra (2A1 + 2A3)2 + (C2)1 and the moduli are fixed
to

Eij =
(

2 0
0 5

4

)
, a1 = (07, 1), a2 = (03,−1

4 , (−
3
4)3,

1
2). (4.3.6)

To check that L1 contains all the solutions to equations (4.2.7) and (4.2.8), our algorithm calculates
the generating matrix G∗

1 for the dual lattice L∗
1:
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G∗
1 =



1
2 1 − 1

2 − 1
2 0 0 0 1

2
1
2

1
2

1
2 −1

0 0 0 0 1
2 − 1

2 − 1
2 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 − 1

2 − 1
2 − 1

2 0 0 0 0 0

1 1 0 − 3
2 0 0 0 0 1 1 1 −1

1
2 1 − 1

2 − 3
2 0 0 0 0 1 1 1 −1

0 0 0 1
4 0 0 0 − 1

4
1
4

1
4 − 3

4 0

0 0 0 1
2 0 0 0 − 1

2
1
2 − 1

2 − 1
2 0

0 0 3
4 0 0 0 0 − 3

4 − 1
4 − 1

4 − 1
4 0

1
2 0 − 1

2 − 1
2 0 0 0 0 0 0 0 −1



. (4.3.7)

It then constructs generic integer linear combinations of the rows corresponding to roots lying in Γ(2)

and adds them to L1 by replacing one of the rows of G1. This is done in an exhaustive way, but in
this particular case no such replacement decreases the determinant of G1, hence L1 is saturated. This
means that the gauge algebra at this point in moduli space is indeed (2A1 + 2A3)2 + (C2)1.

4.3.3 Matter states and global data
There are two other sets of data of importance that can be obtained by our methods, namely the
matter states in the lowest massive level associated to fundamental representations of the gauge group
G, and the global structure of G, i.e. the fundamental group π1(G). Both of these problems involve
finding overlattices of root lattices which are primitively embedded in the momentum lattice Γ(d) or
its dual Γ∗

(d), as we now explain.

4.3.3.1 Computing the overlattice

By primitively embedded overlattice we mean the intersection of the real span of the root lattice,
L ⊗ R, and the momentum lattice Γ(d) in the ambient space Rd+8,d. In terms of the momenta pL,R

this means all vectors which satisfy the constraint pR = 0 but pL is unconstrained. Generally such
an overlattice M corresponds to an extension of L by a set of fundamental weights {µ, µ′, ...}, and
the quotient M/L can be put in correspondence with a subgroup K of the center of the universal
cover G̃ of G, denoted Z(G̃) (cf. Table 4.3). It follows that the overlattice data can be encoded in the
generators {k, k′, ...} of K.

G̃ Z(G̃)
SU(n+ 1) Zn+1

Spin(2n+ 1), Sp(2n), E7 Z2
E6 Z3

Spin(4n+ 2) Z4
Spin(4n) Z2 × Z2

E8, F4, G2 1

Table 4.3: Center Z(G̃) of compact connected simple groups G̃.

Computing the weight vectors µi can be done by a slight generalization of the saturation algorithm
described at the end of Section 4.3.1. Indeed, what it basically does is a computation of an overlattice
of L which is also a root lattice. By relaxing this last constraint, the same algorithm can be used to
compute M . Returning to the example of Section 4.3.2, we apply this algorithm and find that L can
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be extended to an overlattice M in Γ(2) by adding the weight vector

µ = |2, 2,−1,−2; 0, 0,−1, 0, 2, 1, 1,−3⟩ . (4.3.8)

In other words, the vector µ satisfies pR = 0 (cf. eq. (4.2.7)) with the moduli given in (4.3.6), but is
not in L. Determining the precise K ⊂ Z(G̃) now amounts to determining the element in Z(G̃) to
which µ corresponds. To do this we recall that

Z(G̃) = Λweight/Λroot (4.3.9)

where Λweight is the weight lattice, which in particular contains M , and Λroot = L. The weight µ
together with all its L-translations constitutes an equivalence class [µ] ∈ Z(G̃).

In general, for G̃ a semisimple group with s simple factors, Z(G̃) is a product of s+ t cyclic groups,

Z(G̃) = Zp1 × · · · × Zps+t , (4.3.10)

where t is the number of D2n factors since they contribute each a Z2 ×Z2 group (see Table 4.3). Any
element of Z(G̃) can therefore be written as a tuple

k = (k1, ..., ks+t) , (4.3.11)

where ki ∼ ki+pi, and the ordering of the ki’s is appropriately specified in each case. In our example,
we have

G̃ = SU(2)2 × SU(4)2 × Sp(2), Z(G̃) = Z
2
2 × Z2

4 × Z2 , (4.3.12)

and each central element is of the form

k = (k1, k2, k3, k4, k5) mod (2, 2, 4, 4, 2) . (4.3.13)

To determine which equivalence class k contains the weight vector µ, we first note that each possible
k can be put in correspondence with a combination of fundamental weights of G̃. If for example
one looks at the fundamental weights wi of SU(n), one finds that [wi] = i ∈ Zn (up to the outer
automorphism of SU(n) which maps i → −i mod n). For Sp(2), the only non-trivial element of the
center contains the weight corresponding to the short simple root (or equivalently the spinor class in
Spin(5) = Sp(2)). Using these facts one finds that the µ given in (4.3.8) is contained in

k = (1, 1, 2, 2, 1) . (4.3.14)

To verify this, one can compute the fundamental weights (labeled by i) wj,i of each simple factor
(labeled by j) and check that the vector

w1,1 + w2,1 + w3,2 + w4,2 + w5,1 (4.3.15)

can be translated by roots in L to the given µ. Keep in mind that these calculations are performed
with respect to the particular embedding of L and M in Γ(2).

Having determined the explicit form of k = [µ] ∈ Z(G̃), we immediately find that K = Z2, since
2k = (2, 2, 4, 4, 2) = (0, 0, 0, 0, 0), i.e. k is an order 2 element. Moreover, it is uniquely in correspondence
with the fundamental representation (2,2,6,6,4) of G̃. Indeed, one can explicitly find all the states
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which form this representation with mass M2 = 4. It suffices to construct such a state from the weight
vector (4.3.8) and act on it with the Weyl group of the enhanced gauge group, which is a subset of
the subgroup of T-dualities that leave the moduli invariant. In this way all the states forming the
corresponding representation of G̃ are obtained.

4.3.3.2 Computing the fundamental group

As explained in [20] (see also [19]) the fundamental group of G can be computed as the quotient
M∨/L∨, where L∨ and M∨ are respectively the coroot lattice and the cocharacter lattice of G. For
every G, L∨ is embedded in the dual Mikhailov lattice Γ∗

(d)(2), where the (2) means that it is also
rescaled by a factor of

√
2 to make it even, and M∨ corresponds to its overlattice primitively embedded

in Γ∗
(d)(2). In practice this means that to compute the fundamental groups we need to find embeddings

of the lattices L∨ in the dual Mikhailov lattice and then apply the procedure explained before to get
the respective M∨.

Even though the exploration algorithm was designed to find points of maximal symmetry en-
hancement in moduli space, it can be considered on its own as an algorithm for finding embeddings of
lattices into other lattices. For this reason it can be used also to compute all possible root lattices in
Γ∗

(d)(2). This is due to the fact that the data that we manipulate through this algorithm corresponds
to the lattice vectors themselves and not the moduli or the momenta. A point that has to be made
clear however is that the condition for a vector in the lattice to be a root is that it is of norm 2, or
that it is of norm 4 and furthermore has even inner product with all other vectors in the lattice. This
is the statement which generalizes the conditions for massless states shown in Table 4.2 to any basis
for the momentum lattice that we choose. It applies both to Γ(d) and Γ∗

(d)(2).
In eight dimensions, for example, we have

Γ(2) = Γ1,1(2)⊕ Γ1,1 ⊕ E8 ⇒ Γ∗
(2)(2) = Γ1,1 ⊕ Γ1,1(2)⊕ E8(2) . (4.3.16)

We can take as a starting point for the exploration the root lattice of, say, B10, which can be constructed
by hand and is expected to embed into Γ∗

(2)(2) since it is the coroot lattice of C10 which embeds into
Γ(2). After a few steps, the algorithm produces a list of root lattices which correspond exactly to the
coroot lattices of the gauge algebras found by exploring the original lattice Γ(2). In particular, we find
the root lattice

L = 2A1(2)⊕ 2A3(2)⊕ B2, (4.3.17)

which corresponds to the coroot lattice L∨ of the model used in the examples of Sections 4.3.2 and
4.3.3.1. One may apply exactly the same procedure of the last section to compute its overlattice and
the subgroup of Z(G̃∨) to which it corresponds, where G̃∨ is the simply connected gauge group with
root lattice in (4.3.17). Since this subgroup coincides with M∨/L∨, its generators ki give precisely the
fundamental group π1(G) ⊂ Z(G̃) ≃ Z(G̃∨), which we refer to as H, i.e. G = G̃/H. In this case, we
find two generators

k = (0, 1, 0, 2, 1) , k′ = (1, 0, 2, 0, 1) (4.3.18)

of order 2, so that H = Z2 × Z2, and the gauge group is

G = SU(2)2 × SU(4)2 × Spin(5)
Z2 × Z2

. (4.3.19)

This result is in agreement with that of [20].
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4.3.3.3 Anomaly for center symmetries

It has been shown in [21] that in order for an 8d N = 1 supergravity theory with global gauge group
G = G̃/H to be consistent, the following condition must be satisfied:

s∑
i=1

αG̃i
mik

2
i = 0 mod 1 , (4.3.20)

where G̃i are the s simple factors in G̃, αG̃i
are the conformal dimensions of the Kac-Moody rep-

resentations which generate the center [62], mi are free parameters in the supergravity theory and
k = (k1, ..., ks) is the generator of H ∈ Z(G̃). This condition ensures that the H center symmetry is
free of anomalies. In the string theory whose low energy limit corresponds to this supergravity theory,
mi are the levels of the world-sheet current algebra of G̃i. It can be shown in general that (4.3.20) is
satisfied by construction for all G = G̃/H obtained from the heterotic string on T 2 and the 8d CHL
string [20]. Here we give a brief alternative proof for this fact in the T 2 case, and comment briefly on
the CHL case.

The fact that the gauge groups that arise from the Narain lattice Γ2,18 satisfy (4.3.20) by con-
struction is relatively easy to see. For this we recall that the conformal dimension αG̃i

can be written
as

αG̃i
= w2

i

α2
ℓ

, (4.3.21)

where wi is the fundamental weight that generates the center of the group G̃i and αℓ is the highest
root, which is a long root. In this case, all possible gauge groups are of ADE type, so that α2

ℓ = 2,
and have mi = 1. We can therefore rewrite (4.3.20) as

s∑
i=1

(wiki)2 = 0 mod 2 , (4.3.22)

which is the statement that the weight vector ∑s
i=1wiki is even. For ADE groups, the root and coroot

lattices are the same, and since the Narain lattice is also self-dual, the global structure is given by
the overlattice M which embeds primitively into Γ2,18 and is given by precisely this weight vector
(cf. Sections 4.3.3.1 and 4.3.3.2). It is of course possible that there is more than one weight vectors
involved, in which case the situation is analogous. Since the Narain lattice is even, all overlattices M
must also be even and so the condition (4.3.20) is satisfied by construction.

For the CHL string the situation is more subtle since the Mikhailov lattice is not self dual and
there are symplectic groups. One can understand why groups occurring in this case should satisfy
(4.3.20) by noting that all of them can be constructed from groups arising from the Narain lattice by
a suitable projection [20], and so they must also preserve condition (4.3.20). It is straightforward to
verify that this is the case given the H generators displayed in Table D.6.

4.3.3.4 Globally non-trivial groups of lower rank

So far we have discussed maximally enhanced gauge groups. For non-Abelian groups of lower rank
there are of course many more possibilities. In particular, the list of all possible gauge groups arising
in T 2 compactifications of the heterotic string is 3279, of which only 325 are of maximal rank1; this

1In this count we are ignoring the global part of the groups.
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was determined by Shimada in [15] from the point of view of elliptic K3 surfaces, and was verified for
heterotic string on T 2 as explained in Chapter 3.

An important fact that was noticed in [15] is that all possible gauge groups of rank lower than 18
(the maximal rank in T 2 compactifications) which are simply-connected can be obtained from those
of rank 18 which are also simply-connected by deleting nodes in the corresponding Dynkin diagram
(e.g. Am+n+1 → Am + An). For groups with non-trivial fundamental group H, this is not necessarily
true. For example, the gauge group Spin(8)4/(Z2 × Z2) cannot be enhanced to a higher rank group,
so that, conversely, it cannot be found by deleting a node as just described. We note that Shimada
has given a set of rules for obtaining such gauge groups (see theorems 2.4-2.7 of [15]), but they do not
correspond to arbitrary node deletion and are rather involved.

Here we will not attempt to repeat this analysis for the CHL string, but instead ask the following
question: what gauge groups with non-trivial H can be obtained by breaking maximally enhanced
groups via node deletion? Given that all maximal enhancements in 9d have trivial H (cf. Table D.4),
we will restrict ourselves to the 8d theory. In this case, there are 29 such groups, 24 with H = Z2 and
5 with H = Z2 × Z2 (cf. Table D.5).We record them with their corresponding k’s in Table D.6.

It is easier to find the answer to our question by brute force. Just delete one of the simple
roots in the embedding of the rank 10 root lattice L into the Mikhailov lattice Γ(2) and check if the
resulting rank 9 lattice L′ ⊂ L still has a non-trivial weight overlattice W ′ ⊂W . This will give rank 9
semisimple gauge groups with H = Z2 or Z2 × Z2 (as there are no other possibilities). Repeating the
same procedure gives groups of rank 8 with the same H, and so on. There is only one non-simply-
connected gauge group of rank 4, namely SU(2)4/Z2, and there are none for rank ≤ 3. On the other
hand, all of the 29 rank 10 groups can be broken to the rank 4 one. Analogously, SU(2)7/(Z2 × Z2)
is the only gauge group of rank 7 with H = Z2 × Z2. There are no groups with that H for rank ≤ 6
and all of the five rank 10 groups with that fundamental group can be broken to the rank 7 one. In
Figure 4.2 we present a graph which encodes the breaking patterns that preserve the Z2 × Z2.

7A1

6A1 + C2 5A1 + A3 4A1 + D4

4A1 +
A3 + C2

3A1 + 2A3 4A1 + A5
2A1 +

A3 + D4
3A1 + D6

2A1 +
2A3 + C2

3A1 +
A5 + C2

2A1 +
A3 + A5

A1 +
A3 + D6

2A1 + D8

Figure 4.2: Scheme of how deleting nodes in the Dynkin diagrams of maximally enhanced groups with
H = Z2 × Z2 leads to gauge groups with lower rank and also with H = Z2 × Z2.
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4.3.4 Results
We collect in Table D.5 the 61 maximally enhanced groups G = G̃/H that are realized in the eight-
dimensional CHL string, and give the point in moduli space where they arise. ADE groups are realized
at level 2 of the Kac-Moody algebra, while C groups arise at level 1. Our results for the algebras are
in complete agreement with those obtained in [63] from F-theory, which appeared while [3] was being
written.

There are 32 simply connected groups. The rest are of the form G̃/H with H = Z2 or Z2 × Z2.
The fundamental group H is generated in each case by the elements k ∈ Z(G̃) shown in Table D.6.
Our results are in perfect agreement with those in [20].

Most of the groups shown lie in the subspace of moduli space given by Eij = diag(2, 1), and it can
actually be shown that the remaining ones can be mapped to this subspace by applying T-dualities.
This is analogous to the situation in the heterotic string on T 2 with Eij = diag(1, 1) encountered on
Chapter 3. By performing the necessary T-dualities to realize the enhancement groups at such Eij ,
however, the Wilson lines get much more complicated, and difficult to handle.
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Chapter 5

Orbifolds and singularity freezing

By means of the asymmetric orbifold construction of [64], theories with 16 supercharges but with
gauge symmetry with reduced rank can be obtained. In particular, one finds the so called CHL
string component [17, 18] in 9d, studied in the previous chapter, for which the momentum lattice
was constructed by Mikhailov in [19]. In 8d the story is the same, but in 7d one finds four extra
components (six including the Narain and CHL component). These were constructed together with
their momentum lattices in [23].

In this chapter we extend this work to the six aforementioned components in 7d and 6d. To this
end it is necessary to state precisely how the enhanced symmetry groups can be obtained from the
momentum lattices, which we do by a natural generalization of the case for the CHL string . We see
that the lattice alone is not sufficient to determine the allowed gauge groups, but rather one must
impose a constraint in the embeddings characterized by an integer, which comes from the string theory
but is ad hoc from the point of view of the lattice (see Proposition 3). Implementing this constraint
in our algorithm we obtain a list of maximally enhanced gauge algebras for each component.

On the other hand it is well known that the heterotic string on T 3 is dual to M-theory on K3. Gauge
groups with reduced rank are realized in the later when there are so-called partially frozen singularities
on the K3 [23–25]. It is then natural to ask how this mechanism of partial freezing appears in the
heterotic string. We study this problem by exploiting relations between the reduced rank momentum
lattices and the Narain lattice and find a match with the known results in the M-theory side. General
freezing rules involving the topology of the gauge groups are obtained, generalizing the results of [20]
for the 8d CHL string.

It turns out that for d ≤ 4 all the gauge groups of the reduced rank components can be obtained
from those of the Narain component by means of a suitable map. At the level of the algebras this
has been known for a long time, for d = 2, in the dual frame of F-theory on K3, where reduced rank
algebras are obtained by partially “freezing” the singular fibers [22,56]. This situation extends to d = 3
using M-theory on K3 [23–25]. In the heterotic string these results can be reproduced by using lattice
embedding techniques, and in fact one can also see how the full gauge group is “frozen”. For d = 2 this
extension was done in [20], here we generalize these results for d = 3, by exploiting relations between
the reduced rank momentum lattices and the Narain lattice, finding a match with the known results
in the M-theory side. As will be shown later, for d ≤ 3 the map can be naively applied at the algebras
of the enhancements found on the toroidal compactification, giving the algebras associated to the
reduced rank components. In contrast, in d = 4 in order to apply it one must know the fundamental
group of the gauge group explicitly. This is due to the fact that the lattice which corresponds to the
frozen singularity in the heterotic frame is a root lattice for d = 1, 2, 3 but the weight lattice of a
non-simply-connected group for d = 4. Most remarkably, however, is the fact that the maps seem to
be exactly those which relate the “topologically non-trivial” components of the moduli space of flat
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connections of a non-simply-connected gauge group over T 2 (and not T 4) to the “topologically trivial”
component [55,65], although to our awareness an explanation for this is lacking.

As we did before for 9d and 8d compactifications, we have carried out an exploration of the
possible maximally enhanced gauge groups realized in the six components of the moduli space of
heterotic strings with 16 supercharges for 7d and 6d, with the results for 7d being listed in Appendix
D.2 and for 6d in the corresponding tables at [27]1. These results where in turn used to check the
freezing maps we derived.

This chapter is organized as follows. In Section 5.1 we review the construction of rank reduced
heterotic theories in nine to seven dimensions, emphasizing the role of outer automorphisms of the
gauge lattice in the framework of asymmetric orbifolds. Then in Section 5.2 we state the criteria for
gauge groups being realized in the relevant theories in terms of lattice embeddings. In Section 5.3 we
explain how the freezing maps for d = 1 to 4 are constructed for the CHL case, extending them to the
holonomy triples of [23] in 7d and 6d in Section 5.4. Finally, the results obtained with the exploration
algorithm are presented and discussed in Section 5.5.

5.1 Construction of rank reduced theories
In this section we review how rank reduced theories with 16 supercharges are constructed from the
heterotic string in nine to seven dimensions. The idea is to get an intuitive understanding of these
constructions through the manipulation of Dynkin Diagrams, illustrating the asymmetric orbifold con-
struction with an outer automorphism. This complements the more general (and abstract) treatment
in [23]. We go through the CHL string, the Spin(32)/Z2 heterotic theory compactification without
vector structure and the Zm-triples.

5.1.1 CHL string
As we detailed in the previous chapter, the CHL string in 9d can be realized as the HE string com-
pactified on an orbifold of a circle involving the outer automorphism θ which exchanges both E8’s and
a half-period shift a along the circle [18]. The resulting target space has an holonomy θ along the
compact direction which breaks the gauge group E8 × E8 to its diagonal E8. The shift a obstructs
the recovery of the broken E8 in the twisted sector and so it ensures that the rank of the total gauge
group is reduced.

Since θ is an outer automorphism of a gauge group, its implementation as an orbifold symmetry
naturally leads to a picture of Dynkin Diagram folding. In the case of the CHL string, one “folds one
E8 into the other”, and finds that the gauge group of the resulting theory is E8 (with an extra U(1)
for arbitrary radius). Turning on a Wilson line does not change this picture since it must break both
E8’s in the same way, and one then just folds one of the broken groups into the other.

Even though the length of a root is not by itself a meaningful concept, it is helpful to think that
the nodes that get superposed in folding a diagram correspond to shortened roots. The reason is that
this maps naturally to an increase in the level of the associated gauge algebra by a factor equal to the
order of the automorphism θ. In this case, the E8 × E8 at level 1 becomes an E8 at level 2. On the
other hand, connected diagrams containing invariant nodes correspond to algebras at level 1.

1For 6d its exhaustivity was proven in a recent work [26].
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The main idea here is that using the symmetry (a, θ) one constructs a vacuum of the heterotic
string with an holonomy that in particular projects out Cartan generator states. Such an holonomy
can not be implemented in the theory by merely turning on Wilson lines, as outer automorphisms are
not connected to the identity element in the gauge group. However, the set of holonomies that can be
obtained by orbifolding the target manifold is larger and includes those of this type. Together with
the diagram folding picture, this story generalizes to the other constructions reviewed below.

5.1.2 Compactification without vector structure
There is a theory dual to the 8d CHL string which is obtained from the Spin(32)/Z2 heterotic string
by compactifying it on a T 2 without vector structure [22]. The basic idea is that the spectrum of the
10d theory does not contain vector representations of Spin(32), and so one should consider topologies
of the gauge bundle which do not admit such representations. An obstruction of this type is measured
by a mod two cohomology class w̃2, analogous to the second Stieffel-Whitney class w2 which obstructs
spin structure.

This compactification is characterized by the fact that the two holonomies g1, g2 on the torus
commute as elements of Spin(32)/Z2, but do not commute when lifted to elements of the double cover
Spin(32). In other words, the commutator of these holonomies is lifted to a non-trivial element in
Spin(32) which is identified with the identity upon quotienting by one of the spinor classes in its
center. The lifting Spin(32)/Z2 → Spin(32) is therefore obstructed and no vector representations are
allowed.

Two such holonomies can not be put simultaneously on a maximal torus of the gauge group.
Similarly to the CHL string, one of them has to be realized by orbifolding the theory. The difference
in this case is that the 10d gauge group Spin(32)/Z2 does not have any outer automorphism. One can
however turn on a Wilson line along one of the compact directions such that from the point of view
of the remaining dimensions the gauge group is actually broken to one which does in fact have an
outer automorphism. Concretely, we turn on a Wilson line A = (1

2
8
, 08) which breaks Spin(32)/Z2 →

Spin(16)2/Z2. This can be represented diagrammatically as

A

θ

(5.1.1)

where the white nodes are simple roots and the black nodes represent the fundamental weight which
generates the Z2 in each case. We see that the RHS corresponds to a group with outer automorphism
θ. Orbifolding the theory by this symmetry and a half period shift along the second compact direction
we obtain a theory with gauge group Spin(16) × U(1)2 (for arbitrary values of the torus metric and
B-field). We note that the fundamental weight gets projected out by the orbifold symmetry, but the
gauge group is Spin(16)/Z2, as can be seen by breaking group #49 in Table D.6.

The commutator of the holonomies chosen is the exponential of

A− θ(A) = (1
2

8
, 08)− (08, 1

2
8) = (1

2
8
,−1

2
8), (5.1.2)

which does not yield the identity in Spin(32) but rather the element which gets identified with it in
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Spin(32)/Z2. This corresponds to the discussion above. More generally one can deform this Wilson
line by adding vectors symmetric in the first and last eight components, i.e. those of the form (δ, δ),
as to respect condition (5.1.2). One can also turn on another Wilson line A′ in the second compact
direction such that θ(A′) = A′, since the product of two holonomies on the same direction should
commute. Together with deformations of the metric and the B-field we reach other points in the
moduli space, which is equivalent to that of the 8d CHL string, where the equivalence is given by
T-duality [23].

5.1.3 Holonomy triples in 7d
The basic idea behind the construction just described can be applied to the heterotic string on a circle
and further compactifying two dimensions on a torus. This comes from the fact that there are various
9d gauge groups analogous to the 10d Spin(32)/Z2. It is enough to consider the following five:

(E7 × SU(2))2

Z2
,

(E6 × SU(3))2

Z3
,

(Spin(10)× SU(4))2

Z4
,

SU(5)4

Z5
,

(SU(2)× SU(3)× SU(6))2

Z6
. (5.1.3)

These correspond to breakings of E8 × E8 by a Wilson line A, so that it is most natural to work in
the framework of the HE string. Natural choices for these Wilson lines are, respectively,

A =



(06,−1
2 ,

1
2)× (−1

2 ,
1
2 , 06) (Z2)

(05,−1
3

2
, 2

3)× (−2
3 ,

1
3

2
, 05) (Z3)

(04,−1
4

3
, 3

4)× (−3
4 ,

1
4

3
, 04) (Z4)

(03,−1
5

4
, 4

5)× (−4
5 ,

1
5

4
, 03) (Z5)

(02,−1
6

5
, 5

6)× (−5
6 ,

1
6

5
, 02) (Z6)

. (5.1.4)

The Zm’s correspond not only to the fundamental group of each broken gauge group but also to the
cyclic group generated by the outer automorphism θ to be implemented. The name ‘Zm-triple’ refers
to this group together with the three holonomies consisting of (5.1.4) and the pair analogous to the
one discussed in the previous section, which we now discuss.

5.1.3.1 Z2-triple

Consider first the Z2-triple. From the point of view of the T 2 on which the 9d theory is compactified,
the gauge group is (E7×SU(2))2/Z2, which indeed has an order two outer automorphism, exchanging
the E7 × SU(2) factors. However, using this symmetry to orbifold the theory just gives us the CHL
string, as discussed in Section 5.1.1. Consider instead turning on a Wilson line A′ on one of the T 2

directions (x1), of the form
A′ = (05,−1

2 ,
1
2 , 0)× (0,−1

2 ,
1
2 , 0

5) . (5.1.5)

It has the effect of further breaking the gauge group to (E6 ×U(1)2)2. From the point of view of the
other T 2 direction (x2), the gauge group has then an order 2 outer automorphism corresponding to
the symmetry of each E6 diagram. To get a consistent theory (meaning that the partition function is
modular invariant), however, we have to take into account how the orbifold symmetry acts on the 16
internal directions and not only the 12 corresponding to the E6’s. Fortunately, it is not hard to find
such a consistent automorphism. One just has to take the one corresponding to the symmetry of the
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affine diagram of the original gauge algebra 2E7 + 2A1:

(5.1.6)

It can then be shown that, together with an order 2 shift in x2, one obtains a consistent theory with an
holonomy that breaks 8 Cartan generators, and the gauge group is F4×F4 at level 1 times U(1)3, for
arbitrary metric and B-field. The former is due to the automorphism having an associated projector
Pθ = 1 + θ of rank 8. The later comes from the fact that each E6 folds into an F4, where two nodes
are left invariant (cf. discussion in Section 5.1.1). As in the previous construction, we can represent
this breaking diagrammatically:

A′

θ

(5.1.7)

Let us now consider the commutator of the holonomies along the T 2. We find that

θ(A′)−A′ = (05, 1,−1, 0)× (0, 1,−1, 05) , (5.1.8)

which is just the fundamental weight represented as a black node in the above diagram. Its exponential
is a non-trivial element of (E7 × SU(2)2) which gets identified with the identity in the quotient (E7 ×
SU(2)2)/Z2, mirroring the situation in the compactification without vector structure as expected.
One may also deform the Wilson lines along all directions by adding vectors invariant under θ. This
restriction reduces the degrees of freedom of the theory with respect to the Narain moduli space in
the appropriate way.

Finally we note that here we have obtained a particular gauge group, F4 × F4 ×U(1)3, out of the
many possibilities that exist in the moduli space of the theory. The general construction carried out
in [23] leads to a momentum lattice analogous to the Narain lattice, with which we may systematically
explore this moduli space (as we discuss in next section). In this case, the momentum lattice is just
the Mikhailov lattice in 7d and the theory is equivalent to the 7d CHL string. We emphasize that the
Z2-triple does not involve the exchange of the E8’s (or subgroups thereof), and so strictly speaking
it does not correspond to the CHL string. Indeed, one can construct the CHL string but not the
Z2-triple in 9d. When they exist, they are equivalent by T-duality.

5.1.3.2 Z3-triple

Starting in the Z3-triple we find genuinely new rank-reduced moduli space components with respect
to the 8d case. Here the gauge group from the point of view of the T 2 is (E6 × SU(3))2/Z3. We turn
on a Wilson line along x1 of the form

A′ = (04,−1
3 ,

2
3 ,

1
3 , 0)× (0,−1

3 ,−
2
3 ,

1
3 , 0

4). (5.1.9)
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This breaks the gauge group to (SO(8)×U(1)4)2. To get the rank 3 automorphism we again consider
the symmetry of the affine diagram of the original group:

(5.1.10)

This descends to the triality of each SO(8) and folds them into G2 × G2 at level 1. The projector
Pθ = 1 + θ + θ2 is of rank 4, eliminating 12 Cartan generators, and so the resulting gauge group is
G2 ×G2 ×U(1)3 for arbitrary metric and B-field. Again, the orbifold includes an order 3 shift in x2.
The corresponding breaking diagram is

A′

θ

(5.1.11)

The commutator of A′ and θ is given by

θ(A′)−A′ = (04, 1,−1, 02)× (02, 1,−1, 04) , (5.1.12)

corresponding to the weight represented by the black node in the diagram above, and the story is the
same as before for the Z2-triple. In this case one can deform the three Wilson lines with four degrees
of freedom each, which is the rank of the projector Pθ. Together with the nine degrees of freedom
coming from the metric and B-field, the dimension of the moduli space is 21, and its local geometry
is given by the coset

SO(7, 3,R)
/
(SO(7,R)× SO(3,R)). (5.1.13)

In [23] it was proposed that the global structure is given by the automorphism group of the momentum
lattice of the theory, which was determined to be

Λ3 = Γ3,3 ⊕A2 ⊕A2, (5.1.14)

extending the results for the first two components of the moduli space where the Narain and the
Mikhailov lattice respectively play this role.

5.1.3.3 Z4-triple

For the Z4-triple we start with the 9d gauge group (Spin(10) × SU(4))2/Z4 and turn on the Wilson
line

A′ = 1
8(1,−1,−1,−3, 3, 1,−1, 5)× (−5, 1,−1,−3, 3, 1, 1,−1), (5.1.15)
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which breaks it to SU(3)2×U(1)12. The affine diagram of the original group has an order 4 symmetry:

(5.1.16)

The surviving SU(3)’s under the action of A′ correspond to the innermost nodes of the affine Spin(10)’s,
and they get identified under θ into SU(2) × SU(2) at level 1. The rank of the projector Pθ =
1 + θ+ θ2 + θ3 is 2, and so 14 Cartan generators are eliminated. There is again an order 4 shift in x2

in the orbifold symmetry, and we get the gauge group SU(2)× SU(2)× U(1)3 for generic metric and
B-field. The breaking diagram is

A′

θ

(5.1.17)

We remark that the roots obtained after the folding have norm 8, this being the reason that the SU(2)’s
are at level 1. This can be understood by noting that the affine diagram for D5 gets folded into a pair
of linked nodes with norms 2 and 8, respectively. Four nodes collapse into one corresponding to a root
with norm smaller by a factor of 4, while two linked nodes fold into one with invariant length. Upon
scaling, the shorter root that gets broken is of norm 2, while the remaining has norm 8.

We find that
θ(A′)−A′ = (03, 1, 03,−1)× (1, 03,−1, 03) , (5.1.18)

which is the weight in the LHS of the diagram above modulo a translation in the A3 sublattices. The
moduli space is of dimension 15, locally of the form

SO(5, 3,R)
/
(SO(5,R)× SO(3,R)), (5.1.19)

and the momentum lattice is
Λ4 = Γ3,3 ⊕A1 ⊕A1. (5.1.20)

5.1.3.4 Z5 and Z6-triples

For the Z5-triple we use Wilson line

A′ = 1
5(0,−1,−2, 3, 2, 1, 0,−1)× (1, 0,−1,−2,−3, 2, 1, 0) , (5.1.21)

which breaks SU(5)4/Z5 to U(1)16. The automorphism θ corresponds to the symmetry

× 2 × 2 (5.1.22)
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and has projector Pθ = 0. The rank of the gauge group is reduced by a factor of 16 and only the
Cartans coming from the T 3 compactification are present. We have that

θ(A′)−A′ = (02, 1,−1, 04)× (04, 1,−1, 02) , (5.1.23)

which is the weight associated to the Z5 quotient. The moduli space has dimension 9 and is locally of
the form

SO(3, 3,R)
/
(SO(3,R)× SO(3,R)), (5.1.24)

and the momentum lattice is just Γ3,3.
The story for the Z6-triple is basically the same, the only differences being that the Wilson line

used is
A′ = 1

12(1,−5, 7, 5, 3, 1,−1,−3)× (3, 1,−1,−3,−5,−7, 5,−1), (5.1.25)

the automorphism θ corresponds to the symmetry of the affine (SU(2)× SU(3)× SU(6))2 diagram,

(5.1.26)

and
θ(A′)−A′ = (0, 1,−1, 05)× (05, 1,−1, 01) . (5.1.27)

As in the previous case there are no Wilson line degrees of freedom, and the local and global data for
the moduli space are the same. One should note however that the groups which are realized at level 5
in the Z5-triple are realized in this case at level 6. Indeed, this information is not contained implicitly
in the momentum lattice.

5.2 Momentum lattices
Here we explain the basic machinery of how gauge symmetry groups can be obtained from the mo-
mentum lattices corresponding to certain heterotic string compactifications with 16 supercharges.
These include the Narain lattice for Tn compactifications and the Mikhailov lattice for the CHL string
(which we will revisit as they were already described in Sections 3.2.1 and 4.3.3) and the four extra
momentum lattices for components with further rank reduction obtained in [23].

5.2.1 The Narain construction
It was shown in [7] that the perturbative spectrum of the heterotic string on T d can be put in
correspondence with an even self-dual Lorentzian lattice Γd,d+16 of signature (−d,+d+16). This lattice
is spanned by vectors (pR; pL, P ), where P is the left gauge lattice momentum and pL,R are the right
and left internal space momenta.

The only massless states in the spectrum have pR = 0, and those which realize the adjoint rep-
resentation of the gauge algebra g also have P 2 + p2

L = 2. They correspond therefore to a set of
length

√
2 vectors in Γd,d+16 spanning a positive definite sublattice L, which is just the root lattice

of g. The question of what gauge algebras can be realized in the theory is then equivalent to the
question of what root lattices L can be embedded in the Narain lattice. Note that this embedding
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has to be such that the intersection of the real span of L with Γd,d+16 does not contain a larger root
lattice L′, since this would leave out extra states that do form part of the massless spectrum. We
can be more precise about the relation between gauge symmetries and lattice embeddings and in the
way gain more information. As discussed in Section 3.2.2, relaxing the condition P 2 + p2

L = 2 while
keeping pR = 0 defines an overlattice M ⊇ L corresponding to the weight lattice of the global gauge
group G. In this case, M is such that the intersection of its real span with Γd,d+16 is M itself, i.e. it
is primitively embedded in Γd,d+16 . The full statement regarding the possibility of some gauge group
G being realized in the heterotic string on T d is as follows:

Proposition 1. Let G = G̃/H be some semisimple group of rank r ≤ 16 + d, where G̃ and H are
respectively the universal cover and the fundamental group. G×U(1)16+d−r is realized in the heterotic
string on T d as a gauge symmetry group if and only if its weight lattice M admits a primitive embedding
in the Narain lattice Γd,d+16 such that the vectors in M of length

√
2 are roots.

At the end of the day, the classification of the possible gauge groups that can be obtained in the
heterotic string on T d turns out to be a (conceptually) simple problem of lattice embeddings. As
explained previously, using the exploration algorithm described in 4.3.1, we have collected a set of
points of maximal enhancement characterized by their root lattices L, i.e. their gauge algebras g. For
each point we compute the weight lattice M and from it the generators of the fundamental group H,
using the methods described in 4.3.3. The results are presented in Section 5.5.

5.2.2 The CHL string and Mikhailov lattice
The analog of the Narain lattice for this theory was constructed by Mikhailov in [19] and can be
written as

Γ(d) = Γd−1,d−1(2)⊕ Γ1,1 ⊕ E8 , (5.2.1)

where the (2) indicates that Γd−1,d−1 is scaled by a factor of
√

2. Depending on the dimension d, this
lattice may be rewritten in different ways using lattice isomorphisms. For d = 3, we have

Γ2,2(2)⊕ Γ1,1 ⊕ E8 ≃ Γ3,3 ⊕D4 ⊕D4 ≃ Γ3,3 ⊕ F4 ⊕ F4 . (5.2.2)

Here we have used the root lattice isomorphism D4 ≃ F4 (the corresponding root systems are of course
not isomorphic) to reflect the fact that the ‘canonical’ point in the theory has gauge algebra 2F4 and
not 2D4, as shown in Section 5.1.3.1.

The relation between lattice embeddings and realizability of gauge groups in the CHL string is
more complicated than for the usual heterotic string on tori. In the latter, the roots of the gauge
algebra correspond to the length

√
2 vectors in some positive definite lattice Λ primitively embedded

into Γd,d+16. In the CHL string the mass formulas are such that it is also possible for some but not all
vectors of length 2 to give roots. In order for such a vector v to correspond to a root, it must satisfy
the condition that its inner product with all other vectors in the whole Mikhailov lattice is even [19].
In this case we say that v is a level 2 vector (not to be confused with the level of the Kac-Moody
algebra for the gauge group). More generally, a vector v in a lattice Λ is said to be at embedding level
ℓ if the product of v with every vector in Λ is divisible by ℓ.

On the other hand, the statement that the global structure of the gauge group is given by the
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primitively weight overlattice M does not generalize to the case where the momentum lattice is not
self-dual and the gauge algebras are not of ADE type. The problem of obtaining this global data was
studied in detail in [20]. It was shown in particular that the fundamental group π1(G) of the gauge
group G is given by the quotient of the cocharacter lattice M∨ and the coroot lattice L∨ where the
later is embedded in the dual momentum lattice Γ∗

(d) and the former is the corresponding overlattice
which is primitively embedded in Γ∗

(d).
As explained in Section 4.3.3.2, one strategy to obtain all the possible gauge groups in the theory

is to apply the exploration algorithm described in 4.3.1 to the dual lattice Γ∗
(d) (which usually has to be

rescaled to be made even) and compute the lattices L and M the same way as for the Narain lattice,
but dualizing the algebra g → g∨ at the end. It can be shown that the embedding level condition
for vectors to be roots is the same as for the original lattice Γ(d). This was the method employed on
Chapter 4 to obtain the list of gauge groups for the CHL string in 8d.

Having dealt with this subtlety, a statement generalizing proposition 1 for the usual heterotic
string to the CHL string on T d can be made as follows:

Proposition 2. Let G = G̃/H be some semisimple group of rank r ≤ d + 8, where G̃ and H are
respectively the universal cover and the fundamental group. G × U(1)d+8−r is realized in the CHL
string on T d as a gauge symmetry group if and only if the weight lattice M∨ of the dual group G∨

admits a primitive embedding in the dual Mikhailov lattice Γ∗
(d)(2) such that the vectors in M∨ of

length
√

2ℓ at embedding level ℓ = 1, 2 in Γ∗
(d)(2) belong to L∨.

We see that the embedding level ℓ plays an important role in the theory, allowing to treat the problem
of finding the possible gauge groups without reference to the string theory itself, as in the case of the
original heterotic string.

Finally let us recall that the simple factors in G have associated Kac-Moody algebras at level
m = 1, 2 where 4/m is the squared length of the corresponding longest root. For d = 2 there are only
ADE groups at level 2 and symplectic groups at level 1 (including Sp(1) = SU(2)). For d ≥ 3 there
are more interesting possibilities including B3 and F4 at level 1.

5.2.3 Momentum lattices from Triples
Let us now turn to the Zm-triples reviewed in Section 5.1.3. The respective momentum lattices in 7d
are given in Table 5.1, where we also show the rank reduction of the respective gauge groups. Here
again we have chosen to write the lattices in terms of the canonical point groups using the lattice
isomorphisms D4 ≃ F4 and A2 ≃ G2. We also record the frozen singularity for each lattice Λm, which
in this context corresponds to the orthogonal complement of the embedding Λm ↪→ Γ3,19. This point
is discussed in more detail in the next section.

It is natural to ask whether we can extend propositions 1 and 2 to these lattices. An obvious
ansatz is the following:
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m Λm Ω r−
1 Γ3,3 ⊕ E8 ⊕ E8 ∅ 0
2 Γ3,3 ⊕ F4 ⊕ F4 D4 ⊕D4 8
3 Γ3,3 ⊕G2 ⊕G2 E6 ⊕ E6 12
4 Γ3,3 ⊕ A1 ⊕ A1 E7 ⊕ E7 14
5 Γ3,3 E8 ⊕ E8 16
6 Γ3,3 E8 ⊕ E8 16

Table 5.1: Momentum lattices Λm for the moduli spaces of 7d heterotic Zm-triples. The gauge group
rank for m = 1 is 19, which is just the Narain component. The case m = 2 is dual to but not the same
as the CHL component [23]. Ω is the frozen singularity corresponding to the orthogonal complement of
Λm ↪→ Γ3,19.

Proposition 3. Let G = G̃/H be some semisimple group of rank r ≤ rm, where G̃ and H are
respectively the universal cover and the fundamental group, and rm = 19, 11, 7, 5, 3, 3 respectively for
m = 1, ..., 6. G× U(1)19−rm is realized in the Zm-triple as a gauge symmetry group if and only if the
weight lattice M∨ of the dual group G∨ admits a primitive embedding in the dual momentum lattice
Λ∗
m(m) such that the vectors in M∨ of length

√
2ℓ at embedding level ℓ = 1,m in Λ∗

m(m) belong to L∨.
Simple factors are realized at level m = 2m/α2

long, where αlong is a long root in L ↪→ Λm.

The key ingredient is that the vectors of length
√

2m at embedding level m correspond to mass-
less states and give e.g. long roots for non-ADE gauge groups. This can in fact be explicitly proved in
the particular construction used in [23] to obtain the momentum lattices. This roughly corresponds
to the fact that in this construction there is a rescaling by a factor of

√
m involved, such that the

product of long roots, coming from invariant states in the parent theory of the orbifold, with all other
vectors is scaled by a factor of m. We will however confirm this for the general case by showing in
Section 5.4.1 that assuming this ansatz one can reproduce the mechanism of singularity freezing in
the dual M-theory on K3 from the heterotic side.

An extension of the exploration algorithm used for the CHL string to these lattices is straight-
forward and produces the results presented in Section 5.5.2. In Sections 5.3 and 5.4 we will see that
these can be reproduced by applying an appropriate projection map to the Narain component.

It was already noted by Mikhailov in [19] that the momentum lattice for the CHL string is prim-
itively embedded in the Narain lattice such that its orthogonal complement corresponds to the frozen
singularity on the dual F/M-theories on K3 (for d = 2, 3, respectively). This observation was extended
in [23] to the Zm-triples in 7d. On sections 5.3 and 5.4 we make use of it together with Proposition 3
to determine precisely how the ADE singularities are partially frozen in 7d (usually to give non-ADE
algebras) and recover the known “freezing rules” on the K3 side. We will also derive analogous rules
in 6d. As we will see in Section 5.4.2, Proposition 3 has to be generalized for 6d by permitting the
embedding level to be any divisor of m. This makes a difference only in the non-prime cases m = 4
and m = 6.

5.3 Mapping gauge groups from Narain to CHL
In this section we explain the general method for determining the map which connects the Narain
component with the CHL component and explicitly derive it for d = 1, 2, 3, 4. The case d = 2 was
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first obtained in [20] and the case d = 3 in [4]. Extensions to other rank reduced components are
considered in Section 5.4.

5.3.1 Setup and basic facts
In order to determine the map which applies to the gauge groups of the Narain component of the
moduli space to give those of the rank reduced components we have to relate the way in which these
are obtained in each case from the corresponding momentum lattices. We will illustrate this procedure
using the CHL string, and so the focus is on the Narain lattice ΓN and the Mikhailov lattice ΓM ,
which can be written as

ΓN ≃ Γd,d ⊕ E8 ⊕ E8 ,

ΓM ≃ Γd−1,d−1(2)⊕ Γ1,1 ⊕ E8 .
(5.3.1)

Here Γd,d ≃
⊕d

i=1 Γ1,1 is the unique even self-dual lattice with signature (+d,−d). The symbol (2)
denotes a rescaling of the lattice by

√
2, hence a rescaling of the Gram matrix by 2. The lattice E8 is

just the lattice generated by the roots of the algebra e8, but for the latter, as well as for the groups,
we will use the symbol E8 when there is no risk of ambiguity. The same applies for any other root
lattice of A-to-G type. We convene in taking the momentum lattices to have signature with mostly
pluses, unless stated otherwise.

For the Narain component of the moduli space one obtains all the possible gauge algebras by
finding embeddings of root lattices L into ΓN such that the intersection of L ⊗ R with ΓN is an
overlattice M ←↩ L whose maximal root sublattice is L itself. Here we mean by overlattice any lattice
of the same rank containing the lattice in question. Intersections of real slices such as L ⊗ R with
ΓN give lattices which are said to be primitively embedded, in this case in ΓN , hence the embedding
M ↪→ ΓN is primitive but L ↪→ ΓN is not unless M = L. By roots we mean vectors v ∈ ΓN with norm
v · v = 2, since these are the ones associated to root states in the adjoint representation of the gauge
algebra.

This discussion extends to the CHL component of the moduli space, with the only difference being
that roots are not only vectors with norm 2 but also vectors v with norm 4 satisfying the condition
v · u = 0 mod 2 for all vectors u ∈ ΓM [19]. This last condition is equivalent to the statement
that the coroot v∨ = 1

2v is in the dual lattice Γ∗
M , which is the language used in [20]. Note that

v∨ · v∨ = 1, hence this condition cannot be satisfied by any vector in the Narain lattice which is even
and self-dual. The same applies to ΓM when d = 1. For d ≥ 2, however, ΓM is not self dual and Γ∗

M

indeed contains vectors with norm 1. The appearance of non-simply-laced algebras seems therefore
to be intimately connected with the non-self-duality of the momentum lattice for the moduli space
component in question.

These facts allow to obtain the possible gauge algebras g in these moduli space components, but
we are also interested in the full gauge groups G. For this we need to compute the fundamental
group π1(G), which we denote by H. If G̃ is the universal cover of G, then G = G̃/H. In the
Narain component it suffices to compute the lattice quotient M/L, which gives a finite Abelian group
isomorphic to H due to the self-duality of ΓN , as discussed in the previous chapters. For example, if
M = L, then G is simply-connected. For the CHL component one must do a more precise analysis [20],
but the upshot is that H is given by the quotient M∨/L∨, where L∨ is the coroot lattice of g embedded
in the dual lattice Γ∗

M , and M∨ its overlattice which embeds primitively into Γ∗
M . Clearly, this is a
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generalization of the computation for ΓN . In both cases H is a subgroup of the center Z(G), specified
by a set of elements ki ∈ Z(G).

5.3.2 Construction of the map in d = 1, 2, 3
To relate the Narain and the CHL constructions just outlined we require some additional facts. For
d = 1, 2, 3, 4, ΓM can be written respectively as [19]

ΓM ≃ Γd,d ⊕ Ω , Ω =



E8 d = 1

D8 d = 2

D4 ⊕D4 d = 3

D∗
8(2) d = 4

, (5.3.2)

to which we restrict our attention in the following. In each case there is an embedding

ΓM ⊕ Ω ↪→ ΓN , (5.3.3)

where ΓM ↪→ ΓN and Ω ↪→ ΓN are primitive. Furthermore, the primitive embedding of Ω into ΓN
is unique (up to automorphisms of ΓN ), so that by constructing any such embedding one may take
its orthogonal complement which by necessity is just ΓM . As we will review, Ω can be interpreted as
the K3 frozen singularity (or singularities) in the dual geometric frame both for 8d and 7d, and so we
will refer to it as the frozen sublattice in the heterotic string context. We also use the terms mapping
(from Narain to reduced rank) and freezing interchangeably.

Consider now a lattice2 M ′ primitively embedded into ΓM , with root sublattice L′. It follows from
(5.3.3) that there is an embedding

M ′ ⊕ Ω ↪→ ΓN (5.3.4)

with M ′ (but not necessarily M ′⊕Ω) primitively embedded into ΓN . The intersection (M ′⊕Ω)⊗R∩ΓN
gives a lattice M primitively embedded into ΓN , with root sublattice L. This gives a priori a map
φ from a gauge algebra gCHL in CHL moduli space to another gNarain in Narain moduli space, but
since we are dealing with the full embedding data for each lattice, we can also obtain the fundamental
group of the gauge group and promote this map to one at the level of groups,

φ : GCHL 7→ GNarain . (5.3.5)

Consider conversely a lattice M primitively embedded into ΓN , with root sublattice L, such that
Ω is in turn primitively embedded into M (note that primitivity in this case is guaranteed by the fact
that Ω ↪→ ΓN is primitive). It follows that M has a sublattice of the form M ′ ⊕ Ω, where both M ′

and Ω are primitively embedded into M . Since the orthogonal complement of Ω in ΓN is just ΓM , it
follows that M ′ is primitively embedded into ΓM , and defines a gauge group GCHL. This gives a map

φ−1 : GNarain 7→ GCHL . (5.3.6)

We note however that the embedding Ω ↪→M is not necessarily unique so that this map is generically
2Here we prime the lattice M in the Mikhailov lattice since we will later focus on the map to and not from

the CHL component.
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one-to-many. As we will see, the form of this map has markedly different qualitative features depending
on the value of d. In the following we study explicitly the cases d = 1, 2, 3, 4.

5.3.2.1 d = 1

For d = 1, we have that ΓM ≃ Γ1,1 ⊕ E8 and Ω = E8 are even self-dual. Therefore, eq. (5.3.3) can be
replaced by a stronger statement (cf. eq. (5.3.1)),

ΓN ≃ ΓM ⊕ E8 , d = 1 . (5.3.7)

In this case, the lattice M ′ that we consider is a root lattice L′, since in nine dimensions all gauge
groups are simply-connected (as shown in Chapter 4). Therefore we have an embedding L′⊕E8 ↪→ ΓN .
This embedding is primitive, since L′ ↪→ ΓM is primitive and E8 is unimodular, so there does not
exist an even overlattice of L′ ⊕ E8 in ΓN . Moreover, L′ ⊕ E8 is a root lattice corresponding to a
simply-connected gauge group in Narain moduli space. We see therefore that to every gauge group
GCHL in the CHL component we can associate another group GNarain in the Narain component by
some map

φ : GCHL 7→ GNarain = GCHL × E8 , d = 1. (5.3.8)

Conversely, consider some root lattice of the form L′⊕E8 in ΓN . Similarly to the CHL component, all
of the associated groups are simply-connected. Since the primitive embedding of E8 into ΓN is unique,
it follows that L′ is primitively embedded into E⊥

8 ≃ ΓM . This means that any gauge group of the
form G×E8 in the Narain component necessarily has G = GCHL some group in the CHL component.
At the end of the day, the result is that by taking all gauge groups in the Narain component which
contain an E8 factor and deleting it one obtains all of the gauge groups in the CHL component. If
there are two E8 factors, they are equivalent by an automorphism of ΓN , so that there is no ambiguity
in deleting one or the other.

This same result can be obtained in a more concrete way by considering the GDDs for the lattices
ΓN and ΓM , shown in Figure 5.1. Gauge algebras in the Narain moduli space can be obtained by
deleting two or more nodes of the diagram such that the result is the Dynkin diagram for an ADE root
lattice. The same applies to the CHL component, but the minimum number of nodes one can delete
is one. As we can see, deleting the node 0′ in the GDD for ΓN gives the GDD for ΓM accompanied
by an E8 Dynkin diagram, from which it follows that the gauge algebras that can be obtained in each
moduli space component are related as deduced above. As commented, all of the relevant groups are
simply-connected.

1 2 3 4 5 6 0 C 0′ 6′ 5′ 4′ 3′ 2′ 1′

7′

8′

7
8 ΓN

1 2 3 4 5 6 0 C

7
8 ΓM

Figure 5.1: Generalized Dynkin Diagrams for the Narain lattice ΓN ≃ Γ1,17 and the Mikhailov lattice
ΓM ≃ Γ9,1 in nine dimension.
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5.3.2.2 d = 2

The map from the Narain to the CHL components of the moduli space for d = 2 was obtained at the
level of the full gauge groups in [20] using more group-theoretical language, and proven explicitly by
projecting the cocharacter lattice, which determines the topology, from ΓN to ΓM . Here we briefly
explain how it can be obtained in the framework of this chapter.

In eight dimensions we have ΓM ≃ Γ2,2⊕D8 and Ω = D8. We will consider a lattice M primitively
embedded into ΓN , which is the overlattice of a root lattice L, containing in turn a primitively
embedded D8 lattice. This condition restricts L to be of the form

L ≃ D8+n ⊕N , (5.3.9)

where n is some non-negative integer and N is some other ADE lattice. The orthogonal complement
of D8 in L is of the form Dn ⊕N , and has an overlattice M ′ primitively embedded into ΓM .

The question is if Dn ⊕ N is the maximal root sublattice of M ′, according to the definition of
roots in the CHL moduli space. This can indeed be verified for all points of symmetry enhancement.
The subtlety here is that as lattices, Dn and Cn are equivalent. The actual contribution to the gauge
algebra depends on which vectors correspond to massless states, and we find that in this case it is
actually spn and not so2n. We therefore write L = Cn ⊕N . We have then a simple rule for mapping
gauge algebras from the Narain component to the CHL component of the moduli space. Just take any
gauge algebra with a D8+n factor and replace it with Cn. Since it is possible to have gauge algebras
with terms D8+n ⊕ D8+m, with m ̸= n, this map is generically one-to-many. We recover the freezing
rule for F-theory on K3 in the reverse. Indeed, applying these rules to all the possible gauge algebras
in the Narain component gives those in the CHL component (Table D.5).

To promote this map to one at the level of groups we compute the fundamental group of the gauge
group associated to the embeddings L ↪→ ΓN and L ↪→ ΓM using the lattice methods outlined above,
and then see how they are related. We explain how this works by considering a gauge group, obtained
from the Narain lattice, of the form

G = G̃/H = G1 × · · · ×Gs × Spin(2n+ 16)/H , (5.3.10)

where H is generated by an element k = (k1, ..., ks, k̂) of the center Z(G̃). The corresponding group
in the CHL string will be of the form

G′ = G1 × · · · ×Gs × Sp(n)/H ′ , (5.3.11)

with H ′ generated by the element k′ = (k1, ..., ks, k̂
′) of the center Z(G̃′). As can be expected, only

the contribution of the partially frozen factor will change. Indeed the center of Spin(2n+16) and that
of Sp(n) are different. For n odd, we have k̂ ∈ Z4 and k̂′ ∈ Z2, and the projection reads

k̂ → k̂′ = k̂ mod 2 ({0, 1, 2, 3} → {0, 1, 0, 1}) , n = odd . (5.3.12)

For n even, we have k̂ ≡ (k̂(1), k̂(2)) ∈ Z2 × Z2 and again k̂′ ∈ Z2, and the projection reads

k̂ → k̂′ = k̂(1) + k̂(2) mod 2 ({0, s, c, v} → {0, 1, 1, 0}) , n = even , (5.3.13)

where {0, s, c, v} ≡ {(0, 0), (1, 0), (0, 1), (1, 1)}.
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As a simple example, consider the gauge group Spin(32)
Z2

× SU(2)2, whose fundamental group is
generated by only one element k = (s, 0, 0). Using the rules above, the associated gauge group in the
CHL component is Sp(8)

Z2
× SU(2)2 with k = (1, 0, 0). If we had the gauge group SO(32)× SU(2)2 with

k = (v, 0, 0), it would map to the simply-connected Sp(8)× SU(2)2. However, SO(2n) factors are not
present in the theory so that this last example does not arise. It’s interesting to note that SO(2n)
would map to the same gauge group as Spin(2n), making the mapping generically many-to-many and
not one-to-many.

Note also that the fundamental group of any two groups connected by this mapping are isomorphic.
This is in accordance with the fact that the topology of the gauge groups in the dual frame of F-theory
on elliptically fibered K3 is given by the torsional part of the Mordell-Weil group [66,67] which can be
obtained from the Weierstrass model for the fibration (see e.g. [68]), as the mechanism of singularity
freezing does not alter the Weierstrass model itself [56].

5.3.2.3 d = 3

In seven dimensions we have Ω = D4 ⊕ D4. Each D4 factor can be contained in algebras of D4+n

type, in which case the analysis for d = 2 goes through, including the way in which the contribution
of these factors to the fundamental group transform. The difference now is that we have two such
factors transforming simultaneously, e.g. Dn+4 ⊕ Dm+4 → Cn ⊕ Cm. This is not the only possibility,
however.

It is also possible for D4 to be primitively embedded into E6, E7 and E8. Taking the orthogonal
complement of D4 in each case we obtain the lattices A2(2), 3A1 ≃ B3 and D4 ≃ F4, respectively.
Similarly to the previous case, we can look at the points of symmetry enhancement in the CHL
component and determine that the contributions to the algebra are respectively su3, so7 and f4,
hence the use of these lattice isomorphisms. With respect to the gauge group’s topology, we have
that Z(SU(3)) ≃ Z(E6) ≃ Z3, Z(Spin(7)) ≃ Z(E7) ≃ Z2 and Z(F4) ≃ Z(E8) ≃ {0}, and that
the contributions of these factors to the {ki} remain invariant. This means that as for d = 2, the
fundamental group of two gauge groups related by the mapping are isomorphic. As in the previous
case, this coincides at the algebra level with results on the dual geometrical frame’s mechanism of
singularity freezing [23–25], in this case M-theory on K3 with two D4 frozen singularities. We are not
aware of how the fundamental group of the gauge group is encoded in the M-theory compactification,
but it should in any case be invariant under singularity freezing.

5.3.3 Algebra projection
In the previous constructions we have seen that the root system of the CHL gauge algebra corresponds
to a subset of the orthogonal complement lattice of Ω in the root lattice L′. This algebra is determined
precisely by checking each case algorithmically and the result is seen to correspond to a simple general
rule. Now we give a procedure whose result predicts this algebra directly, mapping the simple roots of
gNarain to those of gCHL. This procedure gives the correct results for d = 1, 2, 3, 4. We will illustrate
it case by case starting with d = 2, which exhibits the non-trivial features that generalize to larger d.

5.3.3.1 d = 2

We start by considering a primitive embedding of Ω = D8 into ΓN ≃ Γ2,2 ⊕ Γ16, where Γ16 is the
weight lattice of Spin(32)

Z2
. This description makes calculations easier because D8 embeds primitively
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(a)

α1 α2 α3 α4 α5 α6 α7 β1 βn

α8

(b)

α1 α2 α3 α4 α5 α6 α7 β′
1 β2 βn

α8

Figure 5.2: (a) Primitive embedding of D8 in Γ2,18 with simple roots αi extended to D8+n by βj (see
eqs. (5.3.14) and (5.3.15)). (b) Projection of the roots βj to the orthogonal complement of D8 gives a
Cn lattice and associated spn algebra in the CHL component.

into Γ16 but not into E8 ⊕ E8. A particularly simple embedding is

αi = |0, 0, 0, 0; 0i−1, 1,−1, 015−i⟩ , i = 1, ..., 7 ,

α8 = |0, 0, 0, 0;−1,−1, 014⟩ ,
(5.3.14)

where the first four entries correspond to the Γ2,2 part and the other 16 to Γ16. Suppose the associated
gauge algebra is enhanced to D8+n by adding n simple β1, ..., βn roots forming an An chain, with
β1 · α7 = −1. For example, take

βi = |0, 0, 0, 0; 0i+6, 1,−1, 08−i⟩ , i = 1, ..., n ≤ 8. (5.3.15)

We will take the projection of the roots βi along the space orthogonal to D8. The roots β2, ..., β8 are
obviously invariant under this projection, but β1 gets projected as

β1 → |0, 0, 0, 0; 08,−1, 07⟩ . (5.3.16)

However, this projection is not in ΓN , and so we multiply it by 2 to get a simple root β′
1 =

|0, 0, 0, 0; 08,−2, 07⟩. We see then that the simple roots of the An chain get projected into the simple
roots of Cn. This construction is represented in Figure 5.2, and applies to any other primitive embed-
ding of D8 since it is unique up to automorphisms of ΓN .

5.3.3.2 d = 3

For d = 3 we have Ω = D4 ⊕ D4, which has an easily describable primitive embedding into E8 ⊕ E8,
so we use the basis ΓN ≃ Γ3,3 ⊕ E8 ⊕ E8. This embedding reads

α1 = |0, 0, 0, 0; 1,−1, 06; 08⟩ , α2 = |0, 0, 0, 0; 0, 1,−1, 05; 08⟩ ,

α3 = |0, 0, 0, 0; 02, 1,−1, 04; 08⟩ , α4 = |0, 0, 0, 0;−1,−1, 06; 08⟩ ,

α′
1 = |0, 0, 0, 0; 08; 1,−1, 06⟩ , α′

2 = |0, 0, 0, 0; 08; 0, 1,−1, 05⟩ ,

α′
3 = |0, 0, 0, 0; 08; 02, 1,−1, 04⟩ , α′

4 = |0, 0, 0, 0; 08;−1,−1, 06⟩ .

(5.3.17)

As in the previous case, we can extend each D4 to D4+n with an An chain, which gets projected to
the orthogonal complement of Ω as a Cn. However, D4 can also be extended to E8 passing through
D5, E6 and E7. This D5 coincides with that of the generic extension D4+n with n = 1, and so it gives
rise to an A1(2) lattice with simple root, say,

β′
1 = |0, 0, 0, 0; 0, 0, 0, 0,−2, 03; 08⟩ , (5.3.18)
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which arises from projecting |0, 0, 0, 0; 0, 0, 0, 1,−1, 03; 08⟩. Extending D5 to E6 can be done by adding
the root |0, 0, 0, 0; 1

2
8
, 08⟩. Its projection multiplied by 2 is

β′
2 = |0, 0, 0, 0; 04, 14; 08⟩ , (5.3.19)

and so we see that β′
1 and β′

2 give rise to an A2(2) lattice, as expected. We can further add the roots
|0, 0, 0, 0; 04, 1,−1, 0, 0⟩ and |0, 0, 0, 0; 05, 1,−1, 0⟩, extending E6 to E7 and then E8. Since these roots
are orthogonal to Ω, they are invariant under the projection and we see that they extend A2(2) to B3

and then F4 as predicted.

5.3.3.3 d = 4

Here we have Ω = D∗
8(2). This lattice has a root sublattice LΩ = 8A1 and can be in fact interpreted

as the weight lattice of SU(2)8

Z2
with Z2 diagonal, i.e. k = (1, ..., 1). A suitable primitive embedding of

this lattice into ΓN ≃ Γ4,4 ⊕ E8 ⊕ E8 has simple roots

α1 = |0, 0, 0, 0; 1,−1, 06; 08⟩ , α2 = |0, 0, 0, 0; 0, 0, 1,−1, 04; 08⟩ ,

α3 = |0, 0, 0, 0; 04, 1,−1, 02; 08⟩ , α4 = |0, 0, 0, 0; 06, 1,−1; 08⟩ ,

α5 = |0, 0, 0, 0; 08; 1,−1, 06⟩ , α6 = |0, 0, 0, 0; 08; 0, 0, 1,−1, 04⟩ ,

α7 = |0, 0, 0, 0; 08; 04, 1,−1, 02⟩ , α8 = |0, 0, 0, 0; 08; 06, 1,−1⟩ .

(5.3.20)

The weight vector extending this root lattice to Ω is just

w = 1
2

8∑
i=1

αi = |0, 0, 0, 0; 1, 0, 1, 0, 1, 0, 1, 0; 1, 0, 1, 0, 1, 0, 1, 0⟩ . (5.3.21)

Requiring orthogonality with the roots is enough to get orthogonality with Ω, so we will not worry
about w. However we note that there exists also a primitive embedding of 8A1 into ΓN , which should
not be confused with Ω.

The first thing to note is that the lattice LΩ = 8A1 can be naively extended in many different ways
but not all of them are allowed extensions of Ω itself. For example, no A1 factor can be individually
extended to A2 with a root orthogonal to the other A1 factors. Any attempt to do this is easily
seen to fail. The next logical step is to attach a root to two A1 factors at the same time, e.g. with
|0, 0, 0, 0; 0, 1,−1, 05; 08⟩, in this case giving an A3. This vector gets projected to

β = |0, 0, 0, 0; 1, 1,−1,−1, 04; 08⟩ , (5.3.22)

and so we have that A3 freezes to3 A1(2). This is equivalent to D3 → C1, and forms part of the more
general rule D2+n → Cn, or so2n+4 → spn, in analogy with those we have for d = 2, 3. This is depicted
as

α1

α2 β1 βn β′
1 β2 βn

(5.3.23)

3It is more precise to say that A3 ⊕ 6A1 freezes to A1(2), but we are now focusing on the behavior under
projection of sublattices corresponding to simple algebras and not the whole lattice containing Ω.
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The next possibility is to attach n− 1 roots to n A1 factors in pairs such that one gets an A2n−1

chain. The case A3 → A1(2) above can be generalized e.g. to A5 → A2(2) with roots

β1 = |0, 0, 0, 0; 1, 1,−1,−1, 04; 08⟩ , β2 = |0, 0, 0, 0; 02, 1, 1,−1,−1, 02; 08⟩ , (5.3.24)

and more generally we find the rule A2n−1 → An−1(2), or su2n → sun, depicted as

α1

β1

α2 αn−1

βn−1

αn β′
1 β′

2 β′
n−1

(5.3.25)

From this rule we can actually get another by simply attaching a root βn to βn−1, namely D2n → Bn,
or so4n → so2n+1,

α1

β1

α2 αn−1

βn−1

αn

βn

β′
1 β′

2 β′
n−1βn

(5.3.26)

Finally, we can take the particular case n = 4 and attach a root to β3 to get the rule E7 → F4, or
e7 → f4,

α1 β1 α2 β2 α4

β3

β4

β′
1 β′

2 β3 β4 (5.3.27)

In summary we have found the following freezing rules at the level of the algebras:

so2n+4 → spn

su2n → sun

so4n → so2n+1

e7 → f4

(5.3.28)

where both the LHS and RHS algebras are at level 1 (the algebras unaffected by the freezing become
level 2). These rules cannot be applied arbitrarily, however. In order for the LHS algebras to be
reduced to those in the RHS, their roots must be connected with those of Ω as specified in each case
above. Any root of Ω left by itself is simply projected out, su2 → ∅.

5.3.4 Applying the map in d = 4
Having seen the possible ways in which subalgebras of a gauge algebra in the Narain component in
six dimensions can be transformed when mapping to the CHL component, we now treat the problem
of when these rules are applicable for a given gauge group G. In the cases d = 1, 2, 3 this problem is
trivial because the root lattices associated to Ω are uniquely embedded, so one always knows for any
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gauge group if its weight lattice contains Ω by a simple reading of the algebra. For d = 4, however,
the relevant root lattice is 8A1, which may or may not be associated to Ω. It is necessary therefore to
check explicitly, for each 8A1 sublattice, if it corresponds to Ω or not.

As a simple example let us consider the gauge group Spin(32)
Z2

, ignoring the extra four U(1) factors
for now. It turns out that the weight lattice of this group contains Ω as a sublattice, whose 8A1

sublattice correspond to the yellow nodes in the diagram

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15

α16

(5.3.29)

This can be shown explicitly by deleting the white nodes and checking that the weight vector of the
SU(2)8

Z2
weight lattice is in the Narain lattice (cf. eq. (5.3.21)). At the level of the algebras, then,

we have that so32 goes to so17. This is to be contrasted with the gauge group Spin(32), which is
simply-connected and therefore does not contain Ω in its weight lattice (which is a root lattice in
this case). From this we learn that the topology of the group dictates what are the allowed freezings.
Furthermore, we can explicitly compute the fundamental group of the gauge groups using the methods
described in Section 4.3.3, which extend to any d, and find that Spin(32)

Z2
gets mapped to Spin(17). In

other words, the element k′ = (1, 0) which generates π1(Spin(32)
Z2

) gets mapped to k = 0 in π1(Spin(17)).
In general, the gauge group to be mapped has more than one non-trivial element in its fundamental

group, which makes things more complicated. Consider for example

G = SU(2)× SU(4)× SU(4)× Spin(12)× E7
Z2 × Z2

, (5.3.30)

where the Z2 × Z2 consists of

k1 = (0, 2, 0, (1, 0), 1) , k2 = (1, 0, 2, (1, 1), 1) , k3 = (1, 2, 2, (0, 1), 0) . (5.3.31)

Any pair of these elements, which generate π1(G), corresponds to two vectors which extend the root
lattice L of G to its weight lattice M . They are inequivalent under translations in L. One can then
delete nodes in the Dynkin diagram of L such that the reduced root lattice still has a non-trivial
weight overlattice which might correspond to Ω, at which point any other reduction will not contain
weight vectors. In this special case, all such reductions lead to inequivalent embeddings of Ω in M ,
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represented by the yellow nodes in the diagrams

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

α13

α14 α15 α16 α17 α18

α19

α20

(5.3.32)

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

α13

α14 α15 α16 α17 α18

α19

α20

(5.3.33)

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

α13

α14 α15 α16 α17 α18

α19

α20

(5.3.34)

To each of these embeddings corresponds a different way of mapping G to the CHL component.
Using the rules in (5.3.28) and computing the fundamental group in each case we get, respectively,

G → SU(2)× SU(2)× SU(4)× Spin(7)× F4
Z2

, k = (1, 0, 2, 1, 0) , (5.3.35)

G → SU(4)× SU(2)× Sp(4)× F4
Z2

, k = (2, 0, 1, 0) , (5.3.36)

G → SU(2)× SU(2)× Spin(7)× E7
Z2

, k = (0, 0, 1, 1) . (5.3.37)

The first thing to note is that in the resulting gauge group the fundamental group always reduces by
a factor of Z2 (as already happened in the Spin(32)

Z2
→ Spin(17) case above). This can be understood

by noting that one is taking the orthogonal complement of Ω, which contains weight vectors. These
are also weight vectors in M , equivalent under translations in 8A1, so they can be related to one of
the elements in π1(G). For any such weight vector w, we have that 2w ∈ 8A1 and so the associated
k ∈ π1(G) generates a Z2. This is precisely the factor which is eliminated in mapping G, corresponding
respectively to k1, k2 and k3 above.

Now we need to know how the remaining k’s get transformed in each case. What we find is that
it suffices to mod every k by the one that is eliminated, call it kΩ,

k → k mod kΩ (5.3.38)

and then project it into the center of the resulting gauge group. In the case of a Spin(4n) factor, we
project the modded k contribution to 1 ∈ π1(Spin(2n+ 1)) = Z2 if it is not (0, 0). Of course, we also
have that kΩ → 0 so that this rule applies equally well to all the k’s of π1(G).

We see then that the only information we require to know how to map a group G to the CHL
component is the embedding of the roots of Ω into the root lattice L of G and its associated kΩ ∈ π1(G).
In fact, however, these two pieces of data are the same. One can take any k ∈ π1(G) of order 2 in Z(G)
and check if it corresponds to Ω in the following way. For each simple factor in G, if the corresponding
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entry in k is non-zero, its Dynkin diagram should be labeled according to one of the diagrams of
Section 5.3.3.3. The only simple factor which contains more than one order 2 element is D2n, in which
case kD2n = (1, 1) corresponds to the diagram (5.3.23) and kD2n = (0, 1), (1, 0) correspond to (5.3.26).
Coloring the nodes appropriately lead to those shown in the example above, as one can easily check.
If there are in total eight yellow nodes, this labeling will correspond to an embedding of Ω into M .
With this we can apply the mapping rules to the algebra and to the fundamental group of G.

We verified all of these statements by applying the procedures outlined above to a reasonably
exhaustive list of gauge groups in the Narain component, and checking the results against a list for
the CHL string. In the next section we look at other rank reduced components, where the results are
similarly verified against lists of symmetry enhancements. These lists can be obtained with the same
method as those of the 7d case and can be accessed at [27]. We provide various examples in Appendix
C.

5.4 Other rank reduced components
In this section we extend the freezing procedure explained above to other rank reduced components in
the moduli space of heterotic strings which appear in seven dimensions and below. These correspond
to the holonomy triples constructed in [23] and their torus compactifications.

5.4.1 Freezing map in 7d
As explained in Section 5.1, in seven dimensions there are six connected components in the moduli
space of supersymmetric heterotic strings. They can be obtained as asymmetric orbifolds of the
T 3 compactifications at points in the moduli space where the Narain lattice exhibits appropriate
symmetries. These orbifolds are of order 2 to 6, and they correspond to non-trivial holonomy triples
in the target space, hence they are called Zm-triples with m = 2, ..., 6.

For each Zm-triple, the momentum lattice can be obtained as the orthogonal complement of some
other lattice Ω. This data was shown in Table 5.1. The Z2-triple is equivalent to the CHL string
treated in Section 5.3.

For the Z3-triple, we have Ω = E6⊕E6, which can only be embedded into Ep⊕Eq with p, q = 6, 7, 8.
For each Ep factor, we have the algebra mapping

e6 → ∅ , e7 → su2 , e8 → g2 , (5.4.1)

while the corresponding contribution to any element k of the fundamental group is preserved. As
with the m = 2 component, we have that the gauge groups related by the mapping have isomorphic
fundamental groups.

For the Z4-triple, we have Ω = E7⊕E7, which embeds only into Ep⊕Eq with p, q = 7, 8. For each
Ep factor we have the algebra mapping

e7 → ∅ , e8 → su2 . (5.4.2)

The Z5 and Z6-triples both have Ω = E8 ⊕ E8 and so the only mapping allowed is e8 → ∅. All
the possible gauge groups involved in this mapping are simply-connected so here again they have
isomorphic fundamental groups, namely trivial ones.
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The full set of rules is summarized in Table 5.2

Algebra m Transforms to Contribution to Ω
Dn+4 2 Cn D4
En+4 2 Fn D4
En+6 3 Gn E6
En+7 4 Cn E7
E8 5, 6 ∅ E8

Table 5.2: Freezing rules for the simple factors in the gauge groups for 7d. Transformed algebras
appear at level 1 on the rank reduced theory.

where we are using the conventions:

C1 ≡ A1 , F2 ≡ A2 , F3 ≡ B3 , G1 ≡ A1 , (5.4.3)

The map for the group explained in Section 5.3.2.2 can be directly generalized to all the different
components in the moduli space of 7d theories treated here. Similarly, only the contributions to
the fundamental group coming from the partially frozen factors change. In the 7d CHL string the
rules for going from Dn+4 to Cn are equivalent to those for going from Dn+8 to Cn described above.
For example, we find that (Spin(24)/Z2) × Spin(14) maps to (Sp(8)/Z2) × Sp(3). For the freezing
E4+n → Fn (cf. Table 5.2), the center of the gauge group is unaltered and so is the corresponding
contribution to the fundamental group, i.e. k̂ → k̂′ = k̂. This is also true for the freezing E6+n → Gn

in the m = 3 case.
For m = 5, 6, the rule E8 → ∅ has no effect on the fundamental group other than shortening

(k1, ..., ks, k̂) to (k1, ..., ks). With these generalized freezing rules, one can project the enhancements
in the Narain component of the moduli space to the other five components treated in this chapter to
reproduce the results found with our exploration algorithm.

Like we encountered for the CHL string, these rules agree perfectly with the freezing mechanism
in M-theory on K3 [23,25]. When applied to the enhancements found in the Narain moduli space one
reproduces the results, at the level of the algebras, obtained with the exploration algorithm applied
to the remaining momentum lattices, as expected.

5.4.2 Extension of the freezing map in 6d
Let us now consider the compactifications of the 7d Zm-triples to 6d with m = 3, 4, 5, 6. Not surpris-
ingly, the mappings that we find here generalize naturally those of the m = 2 case.

5.4.2.1 6d Z3-triple

For m = 3, the momentum lattice is

Γ3,3 ⊕ Γ1,1(3)⊕A2 ⊕A2 , (5.4.4)

which can be shown to be the orthogonal complement of a lattice Ω in Γ4,20 isomorphic to the weight
lattice of SU(3)6

Z3
, with Z3 diagonal. There are two types of root lattices which can be obtained by

attaching nodes to the Dynkin diagram of this SU(3)6. First, we have those of the type A3n−1,
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obtained by adding roots between each pair of A2’s consecutively. These map to An. For example, we
have that A8 → A2,

α1 α2 β1 α3 α4 β2 α5 α6 β′
1 β′

2
(5.4.5)

The other possibility is to map E6 to G2,

α1 α2 β1 α3 α4

β2

β′
1 β2

(5.4.6)

A gauge group G in the Narain component can be mapped to this moduli space if π1(G) contains an
order 3 element kΩ such that its entries label exactly 12 nodes in the associated Dynkin diagram, in
a manner completely analogous to the case for the CHL string (see Section 5.3.4). The procedure for
mapping all the elements of π1(G) is the same. For example, the gauge group E3

6
Z3

with π1 generator
k = (1, 1, 1) maps to G3

2, and SU(3)2×SU(6)2×Spin(10)
Z6

with π1 generator k = (1, 1, 1, 1, 2) maps to
SU(2)2×Spin(10)

Z2
with k = (1, 1, 2). Similarly to the CHL string, the unaltered simple factors correspond

to level 3 algebras and the altered to level 1 ones, so that e.g. the latter has algebra (su2 ⊕ su2)1 ⊕
(spin10)3.

5.4.2.2 6d Z4-triple

For m = 4, the momentum lattice is Γ3,3⊕Γ1,1(4)⊕A1⊕A1, whose associated Ω is the weight lattice
of SU(2)2×SU(4)4

Z4
with Z4 generated by k = (1, 1, 1, 1, 1, 1). The roots of this lattice can be extended in

particular to A4n−1 and D2n+3, the latter with n = 1, 2. The algebras are respectively mapped to sun

and spn. For example, we have

α1 α2 α3 β1 α4 α5 α6 β2 α7 α8 α9 β′
1 β′

2
(5.4.7)

α1

α2 α3 β1 α4 β2 α5 β′
1 β′

2

(5.4.8)

In the latter case we see that the two A1’s of Ω are used up, so that one cannot extend to D9 and
beyond. The resulting gauge groups have current algebras at level 1, except for the case of A3 which
only involves two frozen A1’s and produces an A1 at level 2. Unaffected factors become level 4.

The element kΩ associated to this mapping is of order 4. In particular this means that 2kΩ is an
order 2 element, which turns out to be associated to the freezing to the CHL component of the moduli
space. This is reflected in the fact that the frozen sublattice of this moduli space component contains
the one for the CHL component. Indeed, the 2A1 part of LΩ can be extended to Dn and frozen to
Cn−2, as for the CHL freezing rule. This will be the case if kΩ has an order 2 contribution to a Dn

factor.
For example, the group SU(2)3×SU(4)×SU(8)2

Z8
with π1 generator k = (1, 1, 1, 1, 1, 1) maps to SU(2)6

Z2
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with π1 generator k = (1, 1, 1, 1, 1, 1) and algebra (su2⊕su2)1⊕(su2)2⊕(su2⊕su2⊕su2)4, showcasing the
possible ways in which current algebra levels can mix; here the mapping is associated to the order four
element 2k ≃ (0, 0, 0, 2, 2, 2). Another interesting example is given by the group SU(3)× SU(12)×Spin(14)

Z4

with π1 generator k = (0, 3, 3), which maps to SU(3)2× Sp(2), with algebra (sp2⊕ su3)1⊕ (su3)4; this
involves the freezing rule for D7, producing a simply-connected gauge group.

5.4.2.3 6d Z5,6-triples

For m = 5 the momentum lattice is Γ3,3⊕Γ1,1(5), whose associated Ω is the weight lattice of SU(5)4/Z5

with Z5 generated by k = (1, 1, 1, 1). The only extension allowed here is A5n−1, which maps to An−1,
generalizing the similar freezings in the previous cases.

For n = 6, we have momentum lattice Γ3,3⊕Γ1,1(6), whose Ω is the weight lattice of SU(2)2×SU(3)2×SU(6)2

Z6

with Z6 generated by (1, 1, 1, 1, 1, 1). Again, the only allowed freezing here will be from A6n−1 to An−1,
associated to an order 6 element in π1(G). However, this Ω includes the frozen sublattices of m = 2
and m = 3. Similarly to the m = 4 case including m = 2 freezing rules, here we also have the m = 2
and m = 3 rules which can be realized by two A1 factors and two A2 factors, respectively.

5.4.3 Freezing rules in 6d
In 6d, the connected components of moduli space of the heterotic string studied in this chapter have
momentum lattices and corresponding orthogonal complements in Γ4,20 (frozen sublattices) as shown
in Table 5.3. Here we have given Ω in terms of its root sublattice LΩ and the fundamental group of
the gauge group associated to Ω4. The gauge symmetry groups that can be realized in the n = 2, ..., 6
components can be obtained by applying a set of “freezing rules” to those of the n = 1 one.

n Momentum Lattice Γ Frozen root lattice LΩ π1(GΩ)
1 Γ4,20 ∅
2 Γ3,3 ⊕ Γ1,1(2)⊕D4 ⊕D4 8A1 Z2
3 Γ3,3 ⊕ Γ1,1(3)⊕ A2 ⊕ A2 6A2 Z3
4 Γ3,3 ⊕ Γ1,1(4)⊕ A1 ⊕ A1 2A1 ⊕ 4A3 Z4
5 Γ3,3 ⊕ Γ1,1(5) 4A4 Z5
6 Γ3,3 ⊕ Γ1,1(6) 2A1 ⊕ 2A2 ⊕ 2A5 Z6

Table 5.3: Momentum lattices and corresponding orthogonal complements in Γ4,20, given in terms of
their root sublattices and fundamental group of the associated gauge group.

For 7d it is guaranteed that the rules in 5.2 can be applied as long as the contributions to Ω result
in the ones listed in Table 5.1. In contrast, there is a particularity in 6d: to check if one of these
freezings can be done with a certain G, one looks for order n elements kΩ in π1(G) such that they
define an embedding of LΩ into the root lattice L of G. If this is the case, one applies the rules shown
in Table 5.4 according to this embedding, and obtains the fundamental group of the resulting gauge
group G′ by modding the elements of π1(G) by kΩ and projecting them onto the center of G′.

4The LΩ’s correspond to the singularities of K3× S1 orbifolds of order n in the dual M-theory [23].
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Algebra kΩ Order of kΩ Transforms to Contribution to Ω
Aqn−1 n q = 2, 3, 4, 5, 6 An−1 nAq−1
Dn+2 v 2 Cn 2A1
D2n s 2 Bn nA1
E7 1 2 F4 3A1
E6 1 3 G2 2A2

D2n+3 1 ≃ s 4 Cn nA1 + A3

Table 5.4: Freezing rules in 6d for the simple factors in the gauge groups according to the element kΩ
of the fundamental group associated to the freezing. For all the cases, the longest roots are of length
twice the order of kΩ. v and s denote the vector and spinor classes of the orthogonal groups.

These transformations also appear in a seemingly unrelated problem, namely in the relation
between the moduli space components of flat bundles over T 2 with non-simply-connected structure
group G [55] when G is simply-laced. The transformed group is simply-connected and describes the
so-called topologically non-trivial components of the moduli space for a certain G. In this sense, what
we find in the moduli space of 6d heterotic strings is a generalization to semisimple lie groups with
many factors and more complicated fundamental groups5.

5.5 Classification of gauge groups
The full tables with maximal enhancements and their global data for the Narain components and the
Zm-triples are given in Appendix D.2 for 7d and in the corresponding tables in [27] for 6d. Here we
give tables with the counting of the different gauge symmetries which are realized in each component
in 7d.

5.5.1 Narain Component
As explained before, obtaining the gauge groups for the Narain component is done with a straightfor-
ward extension of the original exploration algorithm developed in Chapter 3. However, here we have
also computed the full global data for each group, giving the explicit generators for the fundamental
groups using the methods in chapter 4 based on [20]. All the maximally enhanced groups in this
component are listed in Table D.7, with the generators of their fundamental groups in Table D.12.

We have for example the gauge group (#421)

SU(8)× SU(8)× Spin(10)
Z8

, (5.5.1)

where the fundamental group Z8 is generated by the element (1, 3, 1) of the center Z8×Z8×Z4 of the
universal cover SU(8)× SU(8)× Spin(10).

For each generator we give a sequence of numbers representing the contribution from the center
of each simple factor. In the example just given, the generator is 131. Note that the ordering of the
sequence corresponds to the ordering of the listed ADE type. To properly read the sequence one must
write expressions of the form A2

3D3
4 as (A3,A3,D4,D4,D4), assigning each number in the sequence to

each subsequent ADE factor. For D2n factors there are four order two elements in the center denoted
5We are not aware of a treatment of this general problem in the literature.
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v, c, s and 1, corresponding to the vector class, spinor classes and the identity, respectively. Note that
in some cases the fundamental group has more than one generator.

For 7d, we list the total number of distinct gauge algebras and distinct gauge groups for different
ranks of the semisimple part in Table 5.5. These have been obtained by deleting nodes in the Dynkin
Diagrams of the maximally enhanced groups, and we assume that this gives all the possibilities, as
discussed in Section 4.3.

Rank 1 Z2 Z22
Z3 Z4 Z23

Z24
Z25

Z5 Z6 Z32
Z2Z4 Z7 Z2Z6 Z42

Z8 Algebras Groups
19 652 381 68 51 37 5 1 6 16 3 2 1 2 1 2 1035 1232
18 852 492 89 52 35 9 1 4 10 3 6 1 1 1 1 1180 1557
17 827 442 73 39 23 8 1 2 4 2 3 1024 1424
16 694 334 47 25 12 4 1 1 1 1 1 1 794 1122
15 528 217 24 12 4 2 1 567 788
14 389 128 11 6 1 1 403 536
13 272 66 3 2 276 343
12 192 33 1 1 193 227
11 128 14 128 142
10 88 6 88 94
9 57 2 57 59
8 39 1 39 40
7 24 24 24
6 16 16 16
5 9 9 9
4 6 6 6
3 3 3 3
2 2 2 2
1 1 1 1

All 4779 2116 316 188 112 29 5 1 13 31 9 12 2 3 2 3 5845 7625

Table 5.5: Number of algebras and groups of each rank with a certain fundamental group for the
heterotic string on T 3. The gauge group with π1 = Z5

2 (cf. eq. (5.5.2)) does not admit further enhance-
ments.

We note that there are many cases in which two gauge groups have isomorphic fundamental groups
with inequivalent inclusions in the center of the universal covering (meaning that they are not related
by outer automorphisms of the group, as is the case e.g. for SO(2n) versus Spin(2n)/Z2 for n ̸= 4).
These were not distinguished in Table D.2, where we recorded 339 groups (the ordering goes only up
to 325 because we label them only with the algebra). The inequivalence is taken into account on the
T 2 table in [27] resulting in 341 different groups.

It is natural to assume that all points of maximal enhancement in moduli space can be reached with
our exploration algorithm, and it is in fact true for the cases d = 1, 2. Non-maximal enhancements can
be obtained from the maximal ones by simply removing an arbitrary number of roots. Remarkably, for
d = 1, 2 there are respectively only two gauge groups which can not be obtained in this way, namely
Spin(16)2/Z2 for d = 1 and Spin(8)4/Z2

2 for d = 2. In d = 3 there is also such gauge group,

G = SU(2)16

Z5
2

, (5.5.2)

where the fundamental group is given by

0000000011111111
0000111100001111
0011001100110011
0101010101010101
1001011001101001

(5.5.3)
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The pattern for all d is Spin(25−d)2d

Z
(2d−d)
2

. At the level of gauge algebras this was already noted in [37].
To obtain them we just use the exploration algorithm starting from an adequate non-maximal gauge
group. For 6d this pattern predicts an Abelian symmetry and is irrelevant for our study. Nonetheless,
there is a peculiarity in the T 4 moduli space: one maximal enhancement, SU(2)20

Z
8
2

, cannot be obtained
by just removing and adding a node to other maximal enhancements. To obtain it with our methods
it is necessary to first find SU(2)16

Z
5
2

by exploring the neighborhood of some non-maximal enhancement
we already have (or alternatively do a trivial compactification of (5.5.2) to 6d). We get all the missing
groups by continuously adding nodes, obtaining sequentially:

SU(2)16

Z5
2
→ SU(2)16

Z5
2
× SU(2)→ SU(2)18

Z6
2
→ SU(2)19

Z7
2
→ SU(2)20

Z8
2

(5.5.4)

5.5.2 Triples
The results for the components of the moduli space with rank reduction are obtained by an extension
of the exploration algorithm taking into account Proposition 3 for 7d and its generalization to 6d where
we accept as levels all the divisors of m for each Zm-triple. For 7d, the gauge groups are recorded in
tables D.8 to D.11 in Appendix D.2.1, while the generators for the fundamental groups are recorded in
Tables D.13 and D.14 in Appendix D.2.2. For 6d the gauge groups are recorded in the corresponding
tables of [27]. In the case of the Z5 and Z6-triples in 7d, we see that all the gauge groups are simply
connected and so no global data is required to specify them. As explained in Section 5.4, all the gauge
groups for the non-trivial Zm triples can be obtained from those of the Narain component using a
projection map generalizing the one obtained in [20] for the 8d CHL string (see Tables 5.2 and 5.4).
In Appendix C we give some examples of these freezings in 6d. For 7d, the total number of distinct
gauge algebras and distinct gauge groups are listed in Table 5.6.

Z2 triple
Rank 1 Z2 Z22

Z3 Z4 Z23
Z24 Algebras Groups

11 224 143 44 7 3 7 1 407 429
10 307 192 51 5 3 8 1 473 567
9 284 161 37 2 2 4 1 372 491
8 214 101 18 1 1 2 244 337
7 137 45 5 143 187
6 84 17 1 85 102
5 46 4 46 50
4 26 1 26 27
3 12 12 12
2 6 6 6
1 2 2 2

All 1342 664 156 15 9 21 3 1816 2210

Z3 triple
Rank 1 Z2 Z3 Algebras Groups

7 41 6 5 50 52
6 37 5 4 41 46
5 24 2 2 24 28
4 15 1 1 15 17
3 8 8 8
2 5 5 5
1 2 2 2

All 132 14 12 145 158

Z4 triple
Rank 1 Z2 Algebras Groups

5 13 5 16 18
4 10 4 11 14
3 6 2 6 8
2 4 1 4 5
1 2 2 2

All 35 12 39 47
Z5 and Z6 triples

Rank 1 Algebras Groups
3 3 3 3
2 2 2 2
1 1 1 1

All 6 6 6

Table 5.6: Number of algebras and groups of each rank with a certain fundamental group for the
heterotic Z2, Z3, Z4, Z5 and Z6 triples.

117



Chapter 6

Conclusions

The main objective of this thesis was to obtain and classify all the gauge groups appearing as sym-
metries of the massless spectrum of the half-maximal supersymmetric compactifications of heterotic
string. We succeeded in this task for theories with 9, 8, 7 and 6 space-time dimensions, with the results
collected in [27] and also on Appendix D for 7 or more dimensions1. With this goal in mind we studied
diverse aspects of the compactified theories, developing techniques and arriving at results serving not
only for answering elementary questions (e.g. what are the relations between these theories?) but also
for treating many unrelated problems. In the following we summarize these results and give possible
directions for future work.

In Chapter 2, after a brief introduction to heterotic string theory, we presented its toroidal com-
pactification and analyzed some generalities. The main goal of this chapter was to understand in an
explicit manner the structure of the moduli spaces, gaining intuition on symmetry enhancements. To
achieve this we quickly restricted to the circle case. The 17-dimensional moduli space of S1 compacti-
fications, involving the radius of the circle and the 16 components of the Wilson line along the Cartan
directions of the SO(32) or E8 × E8 gauge group, was studied in detail.

We presented the action of the standard T-duality exchanging momentum and winding number,
and studied its fixed points, which are at R2 = 1 − 1

2 |A|
2. At these points, the dual background has

the same radius and opposite Wilson line, A′ = −A. If 2A is in the root lattice, then A′ = −A ∼ A

and the full background is self-dual. For Wilson lines with only one non-zero component, as those
explored in Section 2.3.4, the fixed “points” of the T-duality symmetry are not really points, but in
this two-dimensional subspace of moduli space they correspond to lines of non-maximal enhancement
symmetry, where the Wilson line is a function of the radius (A = A(Rsd)), and is such that A ∼ Asd,
with |Asd|2 = 2(1−R2

sd).
The discussion of the explicit enhancement process was split into compactifications with π ·A ∈ Z

and π · A /∈ Z. Although all the enhancements can be obtained with Wilson lines that are not on
any lattice by appropriately choosing R, the distinction is useful to understand the enhancement
process. When the Wilson line has zero vacuum expectation value, or equivalently when the vacuum
expectation value is on the root lattice Γg, the gauge group of the uncompactified theory is unbroken
at generic radius, and the total gauge group on the external space is U(1)R × (U(1)× SO(32))L or
U(1)R × (U(1)× E8 × E8)L. At R = 1, there are additional states with momentum and winding that
become massless and enhance the U(1)L to SU(2)L. For other values of Wilson lines and generic
R, the gauge symmetry is determined by the subset of heterotic momenta π that have integer inner
product with the Wilson line. In the HO theory, one has the interesting possibility of a Wilson line
that has integer inner product with all π, i.e. a Wilson line in the dual root lattice, but which is not
in the lattice, namely A ∈ Γv or A ∈ Γc. These two possibilities lead to an unbroken SO(32) gauge

1We left out of this thesis the tables for 6d because they are too long.
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symmetry at any radius, while at R2 = 1
2 there are extra massless states with non-zero momentum

and/or winding number on the circle, giving a total 17-component left-moving momentum with mixed
circle and chiral heterotic directions which enhance the gauge symmetry to SO(34).

We developed a method for computing and drawing two dimensional slices of the 17-dimensional
moduli space which neatly exhibit the distribution of the enhanced groups. The family of functions
corresponding to each of the curves and the heterotic momentum of the additional massless states can
be obtained from this analysis. While non-maximal enhancement occurs at lines, maximal enhance-
ment occurs at isolated points. More interesting figures arise at smaller radii, and the smaller the
radius, the richer the pattern of enhanced gauge symmetries, as there are more winding numbers that
lead to massless states2. Moreover, we were able to univocally relate the intersections of the curves
in the figures with the enhanced groups obtained from the Generalized Dynkin Diagram (GDD). An
interesting output of the construction is that, in order to obtain groups that contain SO(32) from the
HE theory or groups that contain E8×E8 from the HO theory it is necessary to choose a slice where,
for a generic point, the group is SO(16)× SO(16) or a subgroup of it.

From the GDD for the Narain lattice Γ1,17, we found all the possible maximal enhancements for
heterotic string on a circle. In particular, we showed that the same enhancements can be achieved in
both heterotic theories (e.g. SO(34) enhancement from the HE string) and explained how to obtain
them.

The emphasis in this thesis has been to study gauge symmetry enhancement in compactifications
of perturbative heterotic string theory for the characterization of the string theory moduli space.
One interesting direction that could be studied is the inclusion of non-perturbative effects, where the
physics of symmetry enhancement plays an important part. In particular, winding heterotic E8 ×E8

states are related to the dynamics of D-particles in the presence of D8-branes and orientifold planes
in type I’ superstring theory, and have been crucial in the understanding of subtle aspects of the Type
I/heterotic duality [13, 35, 70, 71]. We hope that the methods developed here are useful to analyze
these questions further.

In Chapter 3 we aimed at generalizing the results of Chapter 2 to compactifications to lower
dimensions. To this end, we focused on the lattices that quantize the momenta. At special points
in moduli space, the (d + 16) U(1) symmetries can get enhanced, and we stated lattice embedding
criteria to determine whether a given gauge group is realized or not in a toroidal compactification.
The use of these criteria was explained in several examples.

We also introduced an algorithm to systematically explore the moduli space and applied it to
obtain all the semisimple groups of maximal rank for d = 1 and d = 2, as well as the values of the
corresponding background fields. Specifying the moduli is important for various reasons. First of all,
the vertex operators and the full 1-loop modular invariant partition function of the theory explicitly
depend on the momenta (3.1.2) [7,30]. Besides, the moduli could be relevant in the study of dualities
with other constructions and in phenomenological applications (combining with additional orbifold
actions).

Actually, our results include not only the groups with maximal enhancement, but also groups
Gr × U(1)d+16−r, with r ≤ (16 + d). For d = 1 all possible Gr can be deduced from the GDD as
mentioned previously, and for d = 2 they are listed in [15]. A natural question is whether different
Gr could arise in other non-chiral string constructions with 16 supercharges. For d = 2, our results
contain the groups with maximal enhancement found in the covariant lattice formulation [72]. It would

2These figures could be useful when interpreting R → 0 as a decompactification limit, where a tower of
massless states appears [69].
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be interesting to know if some other CFT construction could give for instance 8-dimensional theories
with 16 supercharges and an ADE gauge group of rank 18 that is forbidden in the heterotic on T 2

(such as E8 × SO(14) × SU(4)). It would also be helpful to understand if a theory with a forbidden
group could suffer from global anomalies as discussed in [73].

Our results show that all maximal enhancements in the heterotic compactification on T 2 coincide
with all possible singular fibers of extremal K3 surfaces classified in [14]. This gives relevant inform-
ation for the study of extremal K3 surfaces. Some realizations of these surfaces have been studied in
detail, see [42,74–77] and references therein. In the early days some examples were found by analyzing
F-theory on orbifold limits of K3 [78]. Other examples have been obtained more recently by consider-
ing enhancements at special points in the moduli space of K3 surfaces with Picard number less than
20 [79–81].

In Chapter 4 we have studied heterotic string compactifications that realize the CHL branch of
superstring vacua with 16 supercharges in (10 − d) dimensions, d ≥ 1. Such vacua, characterized by
left-moving gauge group of rank d+8, were first obtained in the context of type I strings [82] and later
derived in heterotic strings both in the fermionic [17] and bosonic formalism [18]. We have followed
the latter approach, based on compactification of the HE string on an asymmetric orbifold T d/Z2,
which enables a description at any point of the moduli space. In particular, we have focused on the
question of which non-Abelian groups of maximal rank can appear. We have given a complete answer
in d = 1, 2 in the form of a list of allowed groups and the corresponding moduli. We know that these
lists are exhaustive, as they can also be obtained from the exhaustive lists of gauge groups for the S1

and T 2 compactifications, respectively, by using the rules developed in Chapter 5.
Our analysis relies on the Mikhailov lattice Γ(d) underlying the T d/Z2 asymmetric orbifold. In

analogy with the Narain lattice Γd,d+16 associated to heterotic compactification on T d, the momenta
of all states in the orbifold spectrum lie in Γ(d) and symmetries of the spectrum correspond to auto-
morphisms of the lattice [19]. For our purposes an essential fact is that the root lattice of the resulting
non-Abelian groups must admit an embedding in Γ(d), which is even but not self-dual for d > 1. This
last property leads to both simply-laced and non-simply-laced groups realized at Kac-Moody levels 1
or 2. The embedding condition gives a systematic prescription to determine the groups that can arise
or not. Moreover, studying embeddings of the coroot and cocharacter lattices in the dual Mikhailov
lattice allows to determine the global structure of the gauge group [20]. In this way we have proven
that for d = 1 the groups are simply-laced and simply-connected whereas for d = 2 there are also
symplectic and doubly-connected groups.

Our results for the global groups exactly match those obtained in [20], where they were shown to
satisfy the condition for anomaly-free one-form center symmetries [21]. It would be interesting to check
if these results are also consistent with constraints imposed by triviality of cobordism classes [83]. A
partial check was carried out in [20].

As mentioned above, the automorphisms of the Mikhailov lattice are T-dualities of the theory.
As such they restrict the moduli space, and fixed points of discrete transformations are expected to
display gauge symmetry enhancement. Indeed, we have shown that this is the case in d = 1. A striking
feature of the T-duality in d = 1 is that it mixes untwisted and twisted states.

The 8-dimensional CHL string is known to have a dual F-theory description in terms of compac-
tification on a K3 surface with frozen singularities [22, 56]. The gauge groups arising in F-theory on
such K3 surfaces were worked out very recently in [63], and agree perfectly with the heterotic groups
of maximal enhancement given in Table D.5, giving yet more support to the exhaustiveness of our
algorithm.
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It is known that for d ≥ 3, superstring vacua with 16 supercharges exhibit a broader pattern of rank
reduction. In particular, in d = 3 there are components with rank 7, 5 and 3 for which an underlying
momentum lattice analogous to Γ(d) has been constructed [23]. In Chapter 5 we extended our analysis
to these theories. This was done by finding embeddings of weight lattices into the momentum lattices
constructed in [23], taking into account an extra constraint on the role of the lattice vectors as stated
in Proposition 3, stating the precise criteria for gauge groups being realized in the relevant theories.

Generalizing our previous algorithms we produced the list of maximally enhanced gauge groups
that are realized in the heterotic string in 7d and 6d, encompassing the usual Narain component,
and five other components with rank reduction realized via non-trivial holonomy triples. For 6d we
verified exhaustiveness of these lists in [26] by computing the possible embeddings of rank 20 Lie
algebra lattices on the Niemeier lattices. For 7d, since the explorations are simpler than for 6d, we
conjecture that they are also exhaustive.

Exploiting the relations between the lattices corresponding to different compactifications, we found
the general freezing rules for all these components, generalizing the results of [20] for the 8d CHL
string. We described this map as a projection of the root sublattice of the gauge group in the toroidal
compactification to the orthogonal complement of the singularity associated to each component. For
7d this map does not alter the fundamental group, and we found an explicit match with the mechanism
of singularity freezing in M-theory on K3. For 6d we found a novel feature, since the freezing map
explicitly involves the topology of the gauge groups, in particular acting only on non-simply-connected
ones. This relation is equivalent to that of connected components of the moduli space of flat G-bundles
over T 2 with G non-simply-connected.

The moduli space components that we have studied are not all. In [23] it was shown that there is
at least another component in 6d: a Z2 × Z2-quadruple, and an exhaustive list of the components of
the moduli space of heterotic strings in 6d with maximal supersymmetry is not known. However, the
map we have obtained is defined in terms of the fundamental group elements of the gauge groups and
seems to naturally extend to many other cases that may correspond to other moduli space components,
some of which require an M-theory description. This extension was the subject of [26].

On the other hand, the relation between these freezing rules and the problem of non-simply-
connected flat G-bundles over T 2 is not clear, as in the heterotic string we are considering bundles
over T 4. It may be better understood, perhaps, in a dual frame such as F-theory on K3 × T 2 where
one can more naturally isolate tori such as the fibers of the K3. As the former problem is rather
involved, it is tantalizing to think that it may play a role in constraining the possible theories with 16
supercharges that can be coupled to gravity (see e.g. [84] for recent results in this direction).

Note that our exploration algorithm can be implemented in arbitrary dimension. A classification
for the gauge groups appearing in less than 6 space-time dimensions was left for future work. An
important open question is if it is possible to find a set of freezing rules for 5 or less dimensions
analogous to the ones appearing in higher dimensions.

Finally, we note that our results serve to test Swampland conjectures [85], which are also easier to
study in high-dimensional theories with a large amount of supersymmetry (see e.g. [21,63,83]). More
generally, it would be very interesting if the methods developed here could be generalized to theories
with less supersymmetry such as [86].
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Appendix A

Supplements to Chapter 2

A.1 Lie algebras and lattices
Modular invariance of the one-loop partition function of the heterotic string implies that the 16-
dimensional internal momenta must take values in an even self-dual Euclidean lattice, Γ = Γ∗, of
dimension 16. There are only two of these: Γ8⊕Γ8, where Γ8 is the root lattice of E8, and Γ16, which
is the root lattice of SO(32) in addition to the (s) or (c) conjugacy class

Γ8 ⊕ Γ8 = Γg for E8 × E8 (A.1.1)

Γ16 = Γg + Γs for SO(32)

In this Appendix we summarize some basic notions on these lattices.
Given a Lie algebra g of rank n, taking arbitrary integer linear combinations of root vectors, one

generates an n-dimensional Euclidean lattice Γg, called the root lattice. E.g., for the rank n orthogonal
groups SO(2n), the n component simple root vectors are

(±1,±1, 0, . . . ) all other entries zero, (A.1.2)

and all permutations of these. For E8, the eight component vectors

(±1,±1, 0, 0, 0, 0, 0, 0) + permutations

(
±1

2 ,±
1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2

)
even number of “−′′ signs

(A.1.3)

contain the 240 roots, i.e. the 112 root vectors of SO(16) and 128 additional vectors.
Any Lie group G has infinitely many irreducible representations which are characterized by their

weight vectors. Irreducible representations fall into different conjugacy classes, and Γg can be thought
of as the (0) conjugacy class. Two different representations are said to be in the same conjugacy class
if the difference between their weight vectors is a vector of the root lattice.

While E8 has only one conjugacy class, namely (0), the SO(2n) algebras have four inequivalent
conjugacy classes:

• The (0) conjugacy class, i.e. the root lattice, contains vectors of the form

(n1, . . . , nn) , ni ∈ Z ,
n∑
i=1

ni = 0 mod 2 . (A.1.4)

122



• The vector conjugacy class, denoted by (v), contains vectors of the form

(n1, . . . , nn) , ni ∈ Z ,
n∑
i=1

ni = 1 mod 2 . (A.1.5)

• The spinor conjugacy class, denoted by (s), contains vectors of the form

(n1 + 1
2 , . . . , nn + 1

2) , ni ∈ Z ,
n∑
i=1

ni = 0 mod 2 . (A.1.6)

• The (c) conjugacy class contains vectors of the form

(n1 + 1
2 , . . . , nn + 1

2) , ni ∈ Z ,
n∑
i=1

ni = 1 mod 2 . (A.1.7)

The weight lattice Γw is formed by all weights of all conjugacy classes including the root lattice
itself. Clearly Γg ⊂ Γw, and for a simply-laced Lie algebra, which roots have squared modulus 2, it
can be shown that Γg = Γ∗

w. Therefore, the weight lattice of E8 contains the weights of the form

Γ8
w :

 (n1, . . . , n8)(
n1 + 1

2 , . . . , n8 + 1
2

)
,

∑8
i=1 ni = even integer

(A.1.8)

with ni ∈ Z, is identical to its root lattice, which implies that it is even self-dual. It is also identical
to the SO(16) lattice with the (0) and (s) conjugacy classes

A necessary condition for a self-dual lattice is that it be unimodular. The SO(2n) Lie algebra
lattices are unimodular if they contain two conjugacy classes. The weight lattice of Spin(32)/Z2 is
identical to the SO(32) lattice with the (0) and (s) conjugacy classes. It is even self-dual and it’s
vectors are:

Γ16
w :

 (n1, . . . , n16)(
n1 + 1

2 , . . . , n16 + 1
2

) ∑16
i=1 ni = even integer

(A.1.9)

Both the root lattice of E8 × E8 and the weight lattice of Spin(32)/Z2 contain 480 vectors of
(length)2 = 2 which are the roots of E8 × E8 and SO(32), respectively.

It is convenient to write the conjugacy classes of SO(32) in terms of conjugacy classes of rep-
resentations of SO(16) × SO(16). We denote by (xy) a vector with the first eight components in
the conjugacy class (x) of SO(16) and the last eight in the class (y). x and y can be 0, s, v or c.
We then have 16 conjugacy classes (xy). The SO(32) conjugacy classes correspond to the following
SO(16)× SO(16) pairs

(0) = (00), (vv)

(s) = (ss), (cc)

(c) = (sc), (cs)

(v) = (0v), (v0)

(A.1.10)

We have then
Γ16 = Γ16

0 + Γ16
s = (00), (vv), (ss), (cc)

Γ8 ⊕ Γ8 ≡ Γ8+8 = (Γ8
0 + Γ8

s)⊕ (Γ8
0 + Γ8

s) = (00), (ss), (0s), (s0)
(A.1.11)
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The dual to the root lattice of SO(32) is

(Γ16
0 )∗ = Γ∗

g = (00), (vv), (ss), (cc), (0v), (v0), (sc), (cs). (A.1.12)

We also use the following properties of the lattices

Γ8+8\Γ16 = (0s), (s0)

Γ16\Γ8+8 = (vv), (cc)

Γ16 ∩ Γ8+8 = (00), (ss)

(Γ16 ∩ Γ8+8)∗ = (00), (ss), (vv), (cc), (vc), (cv), (0s), (s0)

(Γ16 ∩ Γ8+8)∗\(Γ16 ∪ Γ8+8) = (vc), (cv) .

(A.1.13)

A.2 Maximal enhancement points for A = (A1, 015)
In this Appendix we show how to obtain the maximal enhancement points for the particular case of
Wilson lines with only one non-zero component, treated in Section 2.3.4. We also prove that the only
possible maximal enhancements for Wilson lines with only one non-zero entry are to SU(2)×SO(32),
SO(34), SU(2)× E8 × E8 and SO(18)× E8.

The maximal enhancement points are those where two or more curves intersect. There are three
types of intersections: aw1,q1(R) = aw2,q2(R), bw1,q1(R) = bw2,q2(R) and aw1,q1(R) = bw2,q2(R), that we
treat separately. In the case of Γ8 × Γ8, the curves b can in principle have a curve c on top of them.

A.2.1 aw1,q1(R) = aw2,q2(R)

aw1,q1(R) = 2q1±1
√

2−2w2
1R

2

w1
,

2q2
1−1
w1
∈ Z

aw2,q2(R) = 2q2±2
√

2−2w2
2R

2

w2
,

2q2
1−1
w2
∈ Z

(A.2.1)

imply
∓1w2

√
2− 2w2

1R
2 ±2 w1

√
2− 2w2

2R
2 = 2q1w2 − 2q2w1 ≡ C ′ = 2C ∈ 2Z . (A.2.2)

The case C = 0 is trivial, so we must assume C ̸= 0, which leads to

R2 = 2
C ′2 −

(2w2
1 + 2w2

2 − C ′2)2

8w2
1w

2
2C

′2 . (A.2.3)

Defining N = (1−2q2
1)

w1
w2 + (1−2q2

2)
w2

w1 + 4q1q2 ∈ Z, we can rewrite (A.2.3) as

N2 = 4− 2C ′2R2 . (A.2.4)

Since (1 − 2q2
i ) and wi are odd, N is even. Also, since C ′ and R are non-zero we get N2 < 4, which

implies N = 0, then R2 = 2
C′2 . Then the radius where a curve a with winding w1 intersects another

curve a with winding w2 is
R−2 = w2

1 + w2
2 . (A.2.5)
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The constraint

|q1w2 − q2w1| =
√

w2
1+w2

2
2 =⇒ w2

1+w2
2

2 must be a perfect square .

If w1 = w2 = w, then q1 = q2 ± 1. The winding must be a divisor of both 2q2
1 − 1 and 2q2

2 − 1, but
these numbers are coprime ∀q1. Then the only possible value of w is 1. In conclusion, the only curves
a with the same winding number that intersect are a1,q(R) and a1,q±1(R). And the intersection is on
R = 1√

2 .

A.2.2 bw1,q1(R) = bw2,q2(R)

bw1,q1(R) = 2q1+1±1
√

1−2w2
1R

2

w1
, 2q1(q1+1)

w1
∈ Z

bw2,q2(R) = 2q2+1±2
√

1−2w2
2R

2

w2
, 2q2(q2+1)

w2
∈ Z

(A.2.6)

In this case,

∓1w2

√
1− 2w2

1R
2 ±2 w1

√
1− 2w2

2R
2 = (2q1 + 1)w2 − (2q2 + 1)w1 ≡ C ∈ Z . (A.2.7)

If C = 0, then w1 = w2 and q1 = q2. If C ̸= 0

R2 = 1
2C2 −

(w2
1+w2

2−C2)2

8w2
1w

2
2C

2 . (A.2.8)

Defining N = 2q1(q1+1)
w1

w2 + 2q2(q2+1)
w2

w1 − (2q1 + 1)(2q2 + 1) ∈ Z, we get

N2 = 1− 2R2C2 < 1 =⇒ N = 0 , (A.2.9)

and then R2 = 1
2C2 . Replacing in (A.2.8), C2 = w2

1 + w2
2, and then the radius where curve b with

winding w1 intersects curve b with winding w2 is R−2 = 2(w2
1 + w2

2).
The constraint

|(2q1 + 1)w2 − (2q2 + 1)w1| =
√
w2

1 + w2
2 =⇒ w2

1 + w2
2 is a perfect square . (A.2.10)

If w1 = w2 = w then |2(q1 + q2)| =
√

2w. The LHS. is integer and the RHS is irrational, then there is
no winding such that bw,q1(R) = bw,q2(R).

A.2.3 aw1,q1(R) = bw2,q2(R)

aw1,q1(R) = 2q1±1
√

2−2w2
1R

2

w1
,

2q2
1−1
w1
∈ Z (A.2.11)

bw2,q2(R) = 2q2+1±2
√

1−2w2
2R

2

w2
, 2q2(q2+1)

w2
∈ Z (A.2.12)

∓1w2

√
2− 2w2

1R
2 ±2 w1

√
1− 2w2

2R
2 = 2q1w2 − (2q2 + 1)w1 = C ∈ Z . (A.2.13)

Since w1 is always odd, then C is also odd (in particular it is non-zero). Then

R2 = 1
C2 −

(w2
1 + 2w2

2 − C2)2

8w2
1w

2
2C

2 and N2 = 2− 2C2R2 , (A.2.14)

125



where N = (1−2q2
1)

w1
w2 − 2q2(q2+1)

w2
w1 + q1(2q2 + 1) ∈ Z, and then N = 0 or 1, which give R2 = 1

C2 or
R2 = 1

2C2 . From (A.2.14) we obtain C2 = w2
1 + 2w2

2 or C2 = (w1 − w2)2 + w2
2. Then the radii where

a curve a with w1 intersects another curve b with w2 are:

R−2 = w2
1 + 2w2

2 or R−2 = 2((w1 − w2)2 + w2
2) (A.2.15)

For each case we have one of these constraints:

|2q1w2 − (2q2 + 1)w1| =
√
w2

1 + 2w2
2 or |2q1w2 − (2q2 + 1)w1| =

√
(w1 − w2)2 + w2

2

and then w2
1 +2w2

2 or (w1−w2)2 +w2
2 must be a perfect square. If w1 = w2 = w we get the constraints:

|2q1 − (2q2 + 1)| =
√

3 or |2q1 − (2q2 + 1)| = 1 (A.2.16)

leaving only the second case, with q2 = q1 or q1 − 1. The quantization conditions imply that w must
be a divisor of both 2q2

1 − 1 and 2q1(q1 ± 1). But it can be shown that these numbers are coprime,
and then w = 1. The only curves with the same windings that intersect are a1,q(R) and b1,q(R) or
b1,q−1(R). The intersections are at R = 1√

2 .
Summarizing, we have:

aw1,q1 = aw2,q2 ⇐⇒ R−2 =w2
1 + w2

2 = C2

bw1,q1 = bw2,q2 ⇐⇒ R−2 =2(w2
1 + w2

2) = 2C2

aw1,q1 = bw2,q2 ⇐⇒ R−2 =

w
2
1 + 2w2

2 = C2

2((w1 − w2)2 + w2
2) = 2C2

(A.2.17)

The winding numbers on b can in principle be any positive integer and those on a can only be the
divisors of some number of the form 2q2 − 1, q ∈ Z.

A.2.4 Enhancements to SO(34) or SO(18)× E8

Here we prove that aw1,q1(R) = aw2,q2(R) implies that there exist integers w3, q3, w4 and q4 such that
aw1,q1(R) = bw3,q3(R) = bw4,q4(R).

We start with R−2 = w2
1 + w2

2. If w1 > w2, there are integers w3 and w4 such that w1 = w3 + w4

and w2 = w3 − w4, because w1 and w2 are odd numbers. Then

R−2 = w2
1 + (2w3 − w1)2 = 2(w2

1 − 2w3w1 + w2
3 + w2

3) = 2((w1 − w3)2 + w2
3) (A.2.18)

Since R−2 = 2((w1 − w4)2 + w2
4) as well, there exist integers w3, w4, q3 and q4 such that aw1,q1(R) =

bw3,q3(R) = bw4,q4(R). Note that we can always find q3 and q4 because the functions b admit any value
of w.

Replacing w3 = 1
2(w1 + w2) and w4 = 1

2(w1 − w2) we get

aw1,q1(R) = aw2,q2(R) =⇒ aw1,q1(R) = aw2,q2(R) = b(w1+w2)/2,q3(R) = b(w1−w2)/2,q4(R)

Note that we can also write the radius as 2(w2
3 + w2

4). We want to satisfy

(
√

2R)−1 = |2q1w3 − (2q3 + 1)w1| = |2q1w4 − (2q4 + 1)w1| = |(2q3 + 1)w4 − (2q4 + 1)w3| ,
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and we have that

(
√

2R)−1 = |q1w2 − q2w1| = |2q1w3 − (q1 + q2)w1| = |2q1w4 − (q1 − q2)w1|

= |(q1 + q2)w4 − (q1 − q2)w3| .

Then we need to identify q1 + q2 = 2q3 + 1 , q1 − q2 = 2q4 + 1.
We still have to prove that 2q3(q3 + 1) and 2q4(q4 + 1) are divisible by w3 and w4, respectively,

which amounts to proving that

wi is a divisor of 2q2
i − 1 and |q1w2 − q2w1| =

√
w2

1+w2
2

2

=⇒ w1 ± w2 is a divisor of (q1 ± q2)2 − 1
(A.2.19)

We checked that this is satisfied for the first 300 values of qi.
Then we have that

aw1,q1(R) = aw2,q2(R) =⇒ b(w1+w2)/2,(q1+q2−1)/2(R) = b(w1−w2)/2,(q1−q2−1)/2(R) .

To prove that bw3,q3(R) = bw4,q4(R) implies that there exists integers w1, q1, w2 and q2 such that
bw3,q3(R) = aw1,q1(R) = aw2,q2(R), we start with R−2 = 2(w2

3 + w2
4). Define integers w1 and w2 such

that w3 = 1
2(w1 + w2) and w4 = 1

2(w1 − w2) (we assume w3 > w4),

R−2 = 2((w1 − w3)2 + w2
3) and R−2 = 2((w2 − w3)2 + w2

3) .

But we still need to satisfy the constraint that w1 and w2 are divisors of 2q2
1 − 1 and 2q2

2 − 1 for two
integers q1 and q2. With the identifications q1 + q2 = 2q3 + 1 , q1 − q2 = 2q4 + 1, we get the correct
radius

R−1 =
√

2|(2q3 + 1)w4 − (2q4 + 1)w3| =
√

2|2q1w3 − (2q3 + 1)w1| ,

bw3,q3(R) = bw4,q4(R) =⇒ bw3,q3(R) = bw4,q4(R) = aw3+w4,q3+q4+1(R) = aw3−w4,q3−q4(R) .

We still have to prove that 2q2
1 − 1 and 2q2

2 − 1 are divisible by w1 and w2, respectively. This is the
same as proving that

qi is a divisor of 2qi(qi + 1) and |(2q3 + 1)w4 − (2q4 + 1)w3| =
√
w2

3 + w2
4

=⇒ w3 ± w4 is a divisor of 2 [(q3 + 1/2)± (q4 + 1/2)]2 − 1 ,
(A.2.20)

which we checked is satisfied.
In conclusion, we have that, for R−2 = w2

1 + w2
2, aw1,q1(R) = aw2,q2(R) ⇐⇒

aw1,q1(R) = aw2,q2(R) = b(w1+w2)/2,(q1+q2−1)/2(R) = b(w1−w2)/2,(q1−q2−1)/2(R)

⇐⇒ b(w1+w2)/2,(q1+q2−1)/2(R) = b(w1−w2)/2,(q1−q2−1)/2(R) .

The Wilson lines that give this enhancement can be written in four different ways

2q1
w1
±1
√

2Rw2
w1

= 2q2
w2
±2
√

2Rw1
w2

= 2q3 + 1
w3

±3
√

2Rw4
w3

= 2q4 + 1
w4

±4
√

2Rw3
w4

Using that w3 = w1+w2
2 , w4 = w1−w2

2 , q3 = q1+q2−1
2 and q4 = q1−q2−1

2 , after a few steps, we get
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∓4 = ±3 = ±2 = ∓1 and then the Wilson lines are

A1 = 2q1
w1
± w2
w1

√
2R, A1 = 2q2

w2
∓ w1
w2

√
2R,

A1 = 2q3 + 1
w3

∓ w4
w3

√
2R, A1 = 2q4 + 1

w4
± w3
w4

√
2R

(A.2.21)

From here,
(
√

2R)−1 = ∓(q1w2 − q2w1) ∈ Z (A.2.22)

and then, after a few steps, we can prove that

1√
2R

,
A√
2
, R√

2

(
1
2A

2 + 1
)
∈ Z , (A.2.23)

Defining integers m = (
√

2R)−1 and n = A/
√

2, all this type of enhancement points are given by

(R,A1) =
( 1
m
√

2
,
n

m

)
such that n

2 + 1
2m ∈ Z (A.2.24)

and then

R−2 = 2, 50, 338, 578, 1250, 1682, 2738, 3362, 5618, 7442, 8450, 10658, . . . (A.2.25)

These are all of the form 2C2 with C an integer with prime divisors congruent to 1 mod 4. That is:
1, 5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, . . . . Except for the 1, these numbers are all
Pythagorean primes or multiples of them.

We want to see if the b lines considered here can be interposed with a c line. q3 and q4 are suitable
for curves b with w3 and w4. For curves c to coincide with them, we need wi even and qi(qi+1)

wi
∈ Z. If

one of the two curves b has also a curve c then we have an intersection between an a and a c curve.
Analyzing all the possibilities, it can be shown that there are no c curves that intersect with more
than one other curve.

A.2.5 Enhancements to SU(2)× SO(32) or SU(2)× E8 × E8

The equality aw1,q1(R) = bw2,q2(R) arises for two type of radius

R−2 = w2
1 + 2w2

2 or R−2 = 2((w1 − w2)2 + w2
2) . (A.2.26)

The second type gives R−2 = w2
1 +w2

3 if w2 = w3+w1
2 , which implies that there is an intersection with

another curve a of winding w3. Then, we restrict to the first type, where R−2 is odd for odd w2
1. Thus

the even R−2 found in the previous section cannot have additional curves a or b on the intersection.
For R−2 = w2

1 + 2w2
2, the constraints are

|2q1w2 − (2q2 + 1)w1| =
√
w2

1 + 2w2
2 ,

2q2
1−1
w1
∈ Z , 2q2(q2+1)

w2
∈ Z (A.2.27)

The Wilson line can be written as

A1 = 2q1±12Rw2
w1

or A1 = 2q2+1±2Rw1
w2

, (A.2.28)
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and equating them leads to ±2 = ∓1 and

R−1 = ∓ (2q1w2 − (2q2 + 1)w1) , (A.2.29)

implying that R−1 is an odd number. After some algebra, we get

1
R
, A, R

(
1
2A

2 + 1
)
∈ Z , (A.2.30)

and then all this type of enhancement points satisfy

(R,A1) =
( 1
m
,
2n
m

)
(A.2.31)

for integer m = R−1 and n = R−1A1
2 , such that

2n2 + 1
m

∈ Z. (A.2.32)

We obtain
R−1 = 3, 9, 11, 17, 19, 27, 33, 41, 43, 51, 57, 59, . . . (A.2.33)

all integer numbers with prime divisors congruent to 1 or 3 (mod 8).
It is not hard to prove that all the curves b that intersect just one curve a are superimposed by a

curve c (in the Γ8 ⊕ Γ8 case).

A.3 Other slices of moduli space
Here we analyze two-dimensional slices of moduli space given by the radius and one parameter in
the Wilson lines. First we consider the HO theory compactified with Wilson lines of the form AI =
((A)p, 016−p). We then show how the Generalized Dynkin Diagrams give us the points of enhancement
located in the fundamental region (in the conventions of Section 2.4).

A.3.1 Slices for the HO theory
The results are summarized in the following figures, after which we present the calculations leading
to them.

129



0.2 0.4 0.6 0.8 1.0
R0.0

0.2

0.4

0.6

0.8

1.0

A

SO(30)× U(1)2

SU(2)× SO(30)× U(1)

SO(32)× U(1)

+ SU(2)× SO(32)

+ + + SO(34)

Figure A.1: HO with Wilson line AI = (A, 015)
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+ + SU(2)× SU(3)× SO(28)

Figure A.2: HO with Wilson line AI = ((A)2, 014)
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+ + SU(5)× SO(26)
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+ SU(2)× SO(32)

Figure A.3: HO with Wilson line AI = ((A)3, 013)
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Figure A.4: HO with Wilson line AI = ((A)4, 012)
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Figure A.5: HO with Wilson line AI = ((A)5, 011)
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Figure A.6: HO with Wilson line AI = ((A)6, 010)
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Figure A.7: HO with Wilson line AI = ((A)7, 09)
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Figure A.8: HO with Wilson line AI = ((A)8, 08)
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Figure A.9: HO with Wilson line AI = ((A)9, 07)

0.2 0.4 0.6 0.8 1.0
R0.0

0.2

0.4

0.6

0.8

1.0

A

SU(10)× SO(12)× U(1)2

SU(2)× SU(10)× SO(12)× U(1)

SO(20)× SO(12)× U(1)

SO(32)× U(1)

SU(10)× E7 × U(1)

+ SO(20)× E7

+ SU(2)× SU(10)× E7

+ SU(2)× SO(32)

Figure A.10: HO with Wilson line AI = ((A)10, 06)
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Figure A.11: HO with Wilson line AI = ((A)11, 05)
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Figure A.12: HO with Wilson line AI = ((A)12, 04)
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Figure A.13: HO with Wilson line AI = ((A)13, 03)
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Figure A.14: HO with Wilson line AI = ((A)14, 02)
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Figure A.15: HO with Wilson line AI = ((A)15, 0)
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Figure A.16: HO with Wilson line AI = ((A)16)

For Wilson lines of type AI =
(
(A)p , 016−p

)
there are families of curves of enhancement paramet-

erized by three integer numbers α, β and δ. Inside each family there are different curves corresponding
to different winding numbers and different integer values for q. If R is sufficiently small then w can
be arbitrarily large.

Aw,α,β,δ(R) =
pq + α− pδ

2 ±
√(

α− pδ
2

)2
− p (|α| − δα+ β + 4δ − 2 + 2w2R2)

pw

= pq + µ±
√
µ2 − p (λ+ 2w2R2)
pw

, (A.3.1)
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where we defined:

µ = α− pδ

2 and λ = |α| − δα+ β + 4δ − 2 .

The massless states associated with each family of curves are

π =
(
(q ± (1− 3

2δ))α, (q ±
1
2δ)p−α, β ± 1

2δ, (±
1
2δ)15−p

)
. (A.3.2)

The possible values of the parameters are listed in the following table, with the color we use to
identify them on the figures and the corresponding gauge group.

Colour δ β |α| Gauge group
Ap−1 ×D16−p

0 0 0 A1 ×Ap−1 ×D16−p

0 0 1 Ap ×D16−p

0 0 2 Dp ×D16−p

0 0 3 Ep ×D16−p

0 1 0 Ap−1 ×D17−p

0 1 1 D16

1 0 0 Ap−1 × E17−p

1 0 1 D16 for p = 12, A16 for p = 13, A15 ×A1 for p = 14, A15 ×D1 for p = 15
1 0 2 D16

The number of states for each of these curves is given by

2
(
p

|α|

)
(32− 2p)β2(15−p+δp,16)δ . (A.3.3)

The allowed values for q and w are the ones that satisfy the quantization condition

pq2 + 2µq + λ

2w ∈ Z . (A.3.4)

For arbitrary A, we get the 3p2−63p+480 roots of U(1)2×SU(p)×SO(32−2p). If A is half-integer
we get the 4p2 − 64p+ 480 roots of U(1)× SO(2p)× SO(32− 2p), so we can think of them as part of
the family with (δ, β, α) = (0, 0, 2) and w = 0 which give p2 − p additional states. For p = 2 (0, 0, 2)
is equivalent to (0, 0, 0).

If A1 is integer we get the 480 roots of SO(32) × U(1), so we can think of them as part of
the family with (δ, β, α) = (0, 1, 1) and w = 0 superimposed with another one of the family with
(δ, β, α) = (0, 0, 2) and w = 0, which give 63p − 3p2 = (64p − 4p2) + (p2 − p) additional states. For
p = 16 we only have the (0, 0, 2). We can classify some of the enhancements by the colors of the curves
that intersect, we list them on the table below:
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Colours Gauge group
+ A1 ×D16

+ A1 ×Ap−1 × E17−p

+ Ep+1 ×D16−p

+ Ap × E17−p

+ + A2 ×Ap−1 ×D16−p

A.3.2 Relation to Generalized Dynkin Diagrams
Here we show how some of the previous enhancement curves and points can be obtained from the
Generalized Dynkin Diagram in (2.4.3).

For Wilson lines of the form (016−p, (A)p) and at any radius, then the inequality −A2 ≤ A1, as
well as all the Ai ≤ Ai+1 inequalities are saturated except for A16−p = A17−p. This means that the
gauge group is given by the generalized diagram with all the nodes except for 16, 18, 19 and 16 − p.
Then the diagram that gives the enhancement symmetry is:

1 2 3 4 12 13 14 1515-p 17-p

17

(A.3.5)

which corresponds to the Ap−1 ×D16−p(×U(1)2) = SU(p)× SO(32− 2p)(×U(1)2) at a generic value
of A and R. Choosing particular values for them, we can saturate one or more inequalities associated
to the missing nodes. To obtain the horizontal lines we have to pick an arbitrary R, which discards
the nodes 18 and 19. To get the nodes 16−p or 16 we have only one possibility: A = 0 for the former,
and A = 1

2 for the latter. We get, respectively:

1 2 3 4 12 13 14 1516-p

17

(A.3.6)

1 2 3 4 12 13 14 1515-p 17-p

1617

(A.3.7)

and hence the gauge groups are D16 = SO(32) (×U(1)) and Dp × D16−p = SO(2p) × SO(32 − 2p)
(×U(1)) (blue and cyan lines). Finally, choosing a specific value of R, the inequality associated to the
18th or 19th node (not both at the same time) can be saturated. This gives maximal enhancements. In
the D16 case, the only possibility is to add the 18th node, which gives A1×D16 (intersection between
a blue and a red curve):

1 2 3 4 12 13 14 1516-p

17
18

(A.3.8)

In the Dp × D16−p case, one can add the 18th or the 19th node, depending on which part of the

138



diagram has less than 8 nodes

1 2 3 4 12 13 14 1515-p 17-p

1617
19

(A.3.9)

1 2 3 4 12 13 14 1515-p 17-p

1617
18

(A.3.10)

This accounts for Dp × E17−p (intersection between a cyan and other curves) and Ep+1 × D16−p

(intersection between a cyan and a purple curve).
For R(A) (with arbitrary A) saturating the inequality associated to the 18th node, we obtain

A1 ×Ap−1 ×D16−p (red curves):

1 2 3 4 12 13 14 1515-p 17-p

17
18

(A.3.11)

And in particular for A = 4
p , we have:

1 2 3 4 12 13 14 1515-p 17-p

17
1819

(A.3.12)

which gives the gauge group A1 ×E17−p ×Ap−1, considered in Section 2.3.3.4 and seen in the figures
at the intersections between the red and purple curves.

On the other hand, choosing R(A) so that it saturates the inequality associated to the 19th node,
we obtain E17−p ×Ap−1 (purple curves):

1 2 3 4 12 13 14 1515-p 17-p

17
19

(A.3.13)

Then we can color the dots on the Generalized Dynkin Diagram depending on which curves saturate
their inequality:

1 2 3 4 12 13 14 1516-p

1617
1819

(A.3.14)

The enhancements corresponding to each curve are obtained by removing all the colored nodes except
the node with that color. The intersections of curves give the group associated to the diagram obtained
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by keeping the nodes with the colors of the involved curves.
Something odd happens for p = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1617
1819

(A.3.15)

For generic A and R, this is D15. For A = 1 (cyan dot) we get D16 and if we also take R2 = 1
2 (red

dot) we get D17. If, on the other hand, we take A = 0 (blue dot) then we get D16 and if we also select
R2 = 1 (red dot) we get A1×D16. If we only take the appropriate R to have the red dot, then we get
A1 ×D15. To compare with figure A.1 we have to take into account that the cyan solutions are not
well defined for p < 2, and then we see them as blue curves.

For p = 15, the equation for the seventeenth node no longer holds, and then we have:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1617
1819

(A.3.16)

For generic A and R this is A14. Selecting a specific R, we can turn on the red and/or the purple
nodes to get A1 × A14 or D2 × A14. Selecting A = 1

2 (cyan dot) we obtain D15 and for A = 0 both
blue dots are turned on and we get D16. Only choosing R = 1 (red dot) we get A1 ×D16.

For p = 16 we have a very different situation:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1617
1819

(A.3.17)

For generic A and R this is A15. Selecting a specific R, the red and/or the purple nodes are turned on
and we get A1 × A15 or D2 × A15. Selecting A = 1

2 (cyan dot) we obtain D16 and for A = 0 (orange
dot) we get D16. Only choosing R = 1 (red or purple dot) we get A1 ×D16.

The enhancements of the curves that correspond to the other colors cannot be obtained with this
construction. On one hand we see from the figures that the Wilson lines that give these curves are not
in the fundamental region in the conventions of Section 2.4. On the other hand, if this region is the
fundamental region, it should contain all the possible enhancement groups, and as such all the curves
with the different colors. However, it is easy to see that using this method, the Wilson lines in the
fundamental region that give the missing enhancement groups are not of the form chosen, with p equal
components and the other zero. For example, to obtain the enhancement Ap ×D16−p corresponding
to the yellow curves, we would need to replace the 15th node with the 16th one (and then add the
18th one), which requires A16 = 1−A15 which is not within the ansatz chosen for the Wilson lines.
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Appendix B

Supplements to Chapter 3

B.1 Notation and basics concerning lattices
L, even positive definite lattice of rank r

Typically L will be the sum of ADE root lattices. There is a basis formed by roots αi with α2
i = 2.

The Gram matrix of L has elements αi ·αj . It is equal to the Cartan matrix when L is the root lattice
of an ADE group.

d(L), discriminant of L
It is defined to be the determinant of the Gram matrix of L. By assumption d(L) ̸= 0.

L∗, dual lattice
Lattice generated by the weights wi defined by wi · αj = δij . Clearly L ⊂ L∗.

AL, discriminant group
It is defined as AL = L∗/L, also named DL or GL in the literature.
It can be shown that AL is a finite Abelian group of order d(L).
Since E8 is unimodular, its discriminant group is trivial. For L = An,D2m+1,D2m,E6,E7,
AL ∼= Zn+1,Z4,Z2 × Z2,Z3,Z2.

ℓ(AL), minimal number of generators of AL
For example, for L = 2E6+A6, ℓ(AL) = 2, because Z3×Z3×Z7 ∼ Z3×Z21. Notice that ℓ(AL) ≤ r.

qL, discriminant quadratic form
It is a map qL : AL → Q/2Z, x+ L 7→ x2 mod 2.
For example for L = An, AL = Zn+1 is generated by the class of the fundamental weight [w1].

Thus qL([w1]) = w2
1 = n

n+1 , whereas qL([wj ]) = w2
j = j(n+1−j)

n+1 = j2n
n+1 , with equalities mod 2.

For L = D2m+1, AL = Z4 is generated by the spinor class [s] with qL([s]) = 2m+1
4 .

For D2m, AL = Z2 × Z2. One Z2 is generated by the spinor class [s] with qL([s]) = m
2 , and the

other Z2 by the vector class [v] with qL([v]) = 1.
For E6, AL = Z3 is generated by the fundamental weights of [27] with qL([27]) = 4

3 .
For E7, AL = Z2 is generated by the fundamental weights of [56] with qL([56]) = 3

2 .

T , even positive definite lattice of rank d
It is characterized by the Gram matrix (Q)ij = ui · uj , where ui are the basis vectors.
A generic even 1 dimensional lattice, denoted A1⟨m⟩, is a multiple by m of the A1 lattice. It

is generated by a vector u1 with u2
1 = 2m and has discriminant group Z2m, in turn generated by

(u∗
1)2 = 1

2m .
We will mostly consider d = 2 and as in [14], represent Q as [u2

1, u1 ·u2, u
2
2]. For classification of

even 2-dimensional lattices see chapter 15 in [49], and section 2 in [14] for a short account. Q can
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be brought to Smith normal form diag(s1, s2), with positive integer entries. Then AT ∼= Zs1 × Zs2 .
Notice that if s1 and s2 are coprimes then AT ∼= Zs1s2 . We will also need to compute the discriminant
form qT . From Q−1 we can read off u∗

i · u∗
j , where u∗

1, u∗
2 are the basis vectors of the dual lattice T ∗.

Besides, Q−1 gives the e∗
i in terms of ei. With this data we can then find the generators of AT and

derive qT . For example, for T with Q = [2, 1, 4], AT ∼= Z7 and Q−1 = [4
7 ,−

1
7 ,

2
7 ]. The generator of AT

can be taken to be u∗
2 which satisfies 7u∗

2 = −u1 + 2u2 ∈ T , and has the lowest norm. Then qT takes
values 2j2

7 mod 2, j = 0, . . . , 6.

HL, isotropic subgroup of AL
HL ⊂ AL is isotropic if qL

∣∣
H

= 0.
For instance, for L = A8, with AL = Z9, the subgroup HL = Z3 generated by w3 ∼ 3w1 is isotropic

because qL([w3]) = 18
9 = 2 = 0 mod 2.

Another example is L = D8, with AL = Z2 ×Z2. Now there is an isotropic HL = Z2 generated by
the spinor class with s2 = 8

4 = 2 = 0 mod 2.
An important example is L = D16 which has an isotropic group HL = Z2 generated by the spinor

weight with s2 = 16
4 = 4 = 0 mod 2.

Orthogonal complement
Given a sublattice S of Γ, S ⊂ Γ, the orthogonal complement of S in Γ is defined to be the set

S⊥ = {x ∈ Γ
∣∣x.y = 0 ∀y ∈ S}.

M , overlattice of L
If L ⊂M and the index [M : L] is finite then M is an overlattice of L. This means that M and L

have the same rank. In fact, [M : L]2 = d(L)/d(M). The index is also denoted by |M/L|.
The important Proposition 1.4.1 of Nikulin states that the set of even overlattices of L corresponds

bijectively with the set of isotropic subgroups of AL [16]. The overlattice corresponding to HL can
be constructed as MH = {x ∈ L∗∣∣[xmodL] ∈ HL}. (see e.g. proposition α in [44]). This means
that the elements of MH are weights that can be written as roots plus generators in HL. Besides,
the discriminant form qMH

is given by the discriminant form qL restricted to H⊥
L /HL. Orthogonality

is defined with respect to the bilinear quadratic form bL [44]. In practice, y ∈ H⊥
L if y ∈ AL and

y · x = integer for all x ∈ HL. To avoid cluttering we will drop the subscript in MH when HL has
been specified.

As an example, take L = A8 and HL = Z3 so that M/L ∼= Z3 and d(M) = 9
32 = 1. Then M has

elements x = y + nw3, with y ∈ L and n = 0, 1, 2. It can be shown that this M is isomorphic to E8,
which is the unique rank 8 even unimodular lattice.

For L = D8 the overlattice associated to HL = Z2 has elements x = y + ns, with y ∈ L and
n = 0, 1. This is nothing but E8, as expected since the overlattice has d(M) = 4

22 = 1.
For L = D16 the overlattice corresponding to HL = Z2 is the even unimodular lattice Γ16 with

elements x = y + ns, with y ∈ L and n = 0, 1. Unimodularity follows from M/L ∼= Z2 implying
d(M) = 4

22 = 1. Γ16 is the HO lattice.

Mroot, root sublattice of M
It is the sublattice of M generated by roots, i.e. by vectors of norm 2.
For example, for the overlattice of L = D16, Mroot = L. For L = D8 this is not the case because

the overlattice E8 has many more roots. This reflects the fact that for D8 the additional element s in
the overlattice has s2 = 2.

Primitive embedding
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A lattice S is primitively embedded in another lattice Γ if S ⊂ Γ and Γ/S is torsion-free.
For example, A8 ⊂ E8 but the embedding is not primitive because E8/A8 ∼= Z3 as explained above.

An example of primitive embedding is A3 ⊂ E8. Since A3 has rank 3 and E8 is even unimodular,
this follows from Theorem 1.12.4 of Nikulin [16] quoted below. It can then be shown that D5 ⊂ E8 is
primitive because D5 is the orthogonal complement of A3 in E8, and also that E8 is an overlattice of
D5 + A3.

Nikulin’s Theorem 1.12.4 [16]
Every even lattice of signature (t(−), t(+)) admits a primitive embedding in an even unimodular

lattice of signature (l(−), l(+)), with l(+) − l(−) ≡ 0 mod 8, if

t(+) ≤ l(+), t(−) ≤ l(−), t(+) + t(−) ≤
1
2(l(+) + l(−)) . (B.1.1)

In particular, if r ≤ (8 + d) then L of signature (0, r) admits a primitive embedding in Γd,d+16.

B.2 Complements to Section 3.2
In this appendix we present some additional material for the discussion of the lattice embedding
formalism.

B.2.1 Embeddings of groups with rank r < d+ 16
The problem is now to embed L of signature (0, r), r < d+ 16, in the even unimodular Narain lattice
Γd,d+16. In this case there are also three criteria that read

Criterion 1, from Corollary 1.12.3 [16]
If ℓ(AL) < 16 + 2d− r then L has an embedding in Γd,d+16.

Criterion 2, from Theorem 1.12.2(c) [16]
L has a primitive embedding in Γd,d+16 if and only if there exists a lattice T of signature
(d, d+ 16− r) such that (AT , qT ) is isomorphic to (AL, qL).

Criterion 3, from Theorem 7.1 [15]
L has an embedding in Γd,d+16 if and only if L has an overlattice M with the following
properties:

(i) there exists an even lattice T of signature (d, d + 16 − r) such that (AT , qT ) is iso-
morphic to (AM , qM ),

(ii) the sublattice Mroot of M coincides with L.

Recall that Theorem 1.12.4 [16] further implies that when r ≤ (8 + d) there is always a primitive
embedding. The above criteria clearly reduce to those in Section 3.2.1 setting r = d+ 16. The lattice
T now has indefinite signature so the application would be more complicated.
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B.2.2 More on the complementary lattice T of signature (0, d)
In Section 3.2.2 we have argued that T = K⟨−1⟩. To complete the proof that (AM , qM ) ∼= (AK ,−qK)
we can use the following theorem of [49]: Let L1 and L2 be two sublattices of a unimodular lattice L3

such that1

L1 ⊕ L2 ⊂ L3, L1 = (L1 ⊗ R) ∩ L3, L2 = (L2 ⊗ R) ∩ L3.

Then the discriminant groups L∗
1/L1 and L∗

2/L2 are isomorphic. The isomorphism is given by y1+L1 →
y2 + L2, where y1 ∈ L∗

1/L1 and y2 ∈ L∗
2/L2, whenever y = y1 + y2 generates an isotropic subgroup of

L1 ⊕ L2.
To apply this theorem to our problem we take L1 = M , L2 = K, and L3 = Γd,d+16, with K

and M given in (3.2.3) and (3.2.8). We have M ⊗ R = R0,d+16 and K ⊗ R = Rd,0. Moreover,
R0,d+16 ∩Γd,d+16 = M and Rd,0 ∩Γd,d+16 = K. It follows that M and K have isomorphic discriminant
groups. It remains to show that they have isomorphic discriminant forms. The Narain lattice Γd,d+16 is
generated by the lattice sum M⊕K together with some isotropic vectors (glue vectors in the language
of [49]). These vectors are generically of the form y = y1 + y2, where y1 and y2 are non-trivial vectors
in the discriminant groups of M and K, respectively, and are connected by the discriminant group
isomorphism. Since y must be even, we have y2 = 0 mod 2. Therefore, y2

1 + y2
2 = 0 mod 2, because

M and K are orthogonal. We thus find y2
1 = −y2

2 mod 2. This shows that qM ∼= −qK , and so T as
defined is the complementary lattice of M .

1L⊗ R means the set of all points obtained by real linear combinations of the basis vectors of L.
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Appendix C

Supplements to Chapter 5

Examples of freezings
Here we give some examples of freezings of gauge groups in 6d heterotic strings. For simplicity we
use the A-to-G notation for gauge groups. Whenever the length of an A factor is not 2, superscript
indicates half its length.

a) 2A1 + A11 + D7 with H = Z4 generated by k = (0, 0, 3, 3), with center (2, 2, 12, 4) can be frozen to

kΩ Singularity L H k Center
(0,0,6,2) 8A1/Z2 2A1 + C5 + A2

5 Z2 (0,0,1,3) (2,2,2,6)
(0,0,9,1) (2A1 + 4A3)/Z4 2A1 + C2

2 + A4
2 1 (2,2,2,3)

b) A3 + A11 + E6 with H = Z6 generated by k = (2, 2, 2), with center (4, 12, 3) can be frozen to

kΩ Singularity L H k Center
(2,6,0) 8A1/Z2 E6 + A2

1 + A2
5 Z3 (1,0,2) (3,2,6)

(0,4,1) 6A2/Z3 A3 + G2 + A3
3 Z2 (2,0,2) (4,1,4)

(2,2,2) (2A1 + 2A2 + 2A5)/Z6 G2 + A2
1 + A6

1 1 (1,2,2)

c) 3A1 + 2A4 + A9 with H = Z10 generated by k = (1, 1, 1, 4, 4, 1), with center (2, 2, 2, 5, 5, 10) can be
frozen to

kΩ Singularity L H k Center
(1,1,1,0,0,5) 8A1/Z2 2A4 + A2

4 Z5 (4,4,1) (5,5,5)
(0,0,0,3,3,2) 4A4/Z5 3A1 + A5

1 Z2 (1,1,1,1) (2,2,2,2)

d) 2A2 + 2A5 + E6 with H = Z2
3 generated by k1 = (0, 0, 2, 4, 1) and k2 = (1, 2, 0, 2, 1), with center

(3, 3, 6, 6, 3) can be frozen to

kΩ Singularity L H k Center
(0,0,2,4,1) 6A2/Z3 2A2 + G2 + 2A3

1 Z3 (1,1,0,0,0) (3,3,1,2,2)
(2,1,2,2,0) 6A2/Z3 E6 + 2A3

1 Z3 (1,0,0) (3,2,2)
(1,2,0,2,1) 6A2/Z3 A5 + G2 + A3

1 Z3 (2,0,0) (6,1,2)
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e) 3A1 + D10 + E7 with H = Z2
2 generated by k1 = (0, 0, 0, 1, 0, 1) and k2 = (1, 1, 1, 0, 1, 0), with center

(2, 2, 2, (2, 2), 2) can be frozen to

kΩ Singularity L H k Center
(1,1,1,1,1,1) 8A1/Z2 C8 + F4 Z2 (1,0) (2,1)
(1,1,1,0,1,0) 8A1/Z2 B5 + E7 Z2 (1,1) (2,2)
(0,0,0,1,0,1) 8A1/Z2 3A1 + B5 + F4 Z2 (1,1,1,1,0) (2,2,2,2,1)

f) 2A1 + 2A2 + A3 + A11 with H = Z12 generated by k = (1, 1, 2, 2, 1, 1), with center (2, 2, 3, 3, 4, 12) can
be frozen to

kΩ Singularity L H k Center
(0,0,0,0,2,6) 8A1/Z2 2A1 + 2A2 + A2

1 + A2
5 Z6 (1,1,2,2,1,1) (2,2,3,3,2,6)

(0,0,2,2,0,4) 6A2/Z3 2A1 + A3 + A3
3 Z4 (1,1,1,1) (2,2,4,4)

(1,1,0,0,3,3) (2A1 + 4A3)/Z4 2A2 + A4
2 Z3 (2,2,1) (3,3,3)

(0,0,1,1,2,2) (2A1 + 2A2 + 2A5)/Z6 2A1 + A2
1 + A6

1 Z2 (1,1,1,1) (2,2,2,2)

g) A1 + 3A5 + D4 with H = Z2 ×Z6 generated by k1 = (0, 0, 3, 3, (1, 1)) and k2 = (0, 1, 1, 2, (0, 1))), with
center (2, 6, 6, 6, (2, 2)) can be frozen to

kΩ Singularity L H k Center
(0,0,3,3,(1,1)) 8A1/Z2 A1 + A5 + C2 + 2A2

2 Z6 (0,5,1,1,2) (2,6,2,3,3)

(0,2,2,4,(0,0)) 6A2/Z3 A1 + D4 + 3A3
1 Z2

2
(0, (1, 0), 0, 1, 1)
(0, (0, 1), 1, 0, 1)

(2,(2,2),2,2,2)

(0,1,1,2,(0,1)) (2A1 + 2A2 + 2A5)/Z6 A1 + C2 + A3
1 Z2 (0,1,1) (2,2,2)

h) 4A1 + A2 + 2A7 with H = Z2×Z4 generated by k1 = (0, 0, 1, 1, 0, 2, 2) and k2 = (1, 1, 1, 1, 0, 0, 4), with
center (2, 2, 2, 2, 3, 8, 8) can be frozen to

kΩ Singularity L H k Center
(1,1,1,1,0,0,4) 8A1/Z2 A2 + A7 + A2

3 Z4 (0,2,2) (3,8,4)

(0,0,0,0,0,4,4) 8A1/Z2 4A1 + A2 + 2A2
3 Z2

2
(0, 1, 0, 1, 0, 2, 2)
(1, 0, 1, 0, 0, 2, 2)

(2,2,2,2,3,4,4)

(0,0,1,1,0,2,2) (2A1 + 4A3)/Z4 2A1 + A2 + 2A4
1 Z2 (1,1,0,0,0) (2,2,3,2,2)

i) 4A1 +2A3 +2D5 with H = Z2×Z4 generated by k1 = (0, 0, 0, 0, 1, 3, 1, 3) and k2 = (1, 1, 1, 1, 0, 0, 2, 2),
with center (2, 2, 2, 2, 4, 4, 4, 4) can be frozen to

kΩ Singularity L H k Center
(1,1,1,1,2,2,0,0) 8A1/Z2 2D5 + 2A2

1 Z4 (1,3,1,1) (4,4,2,2)
(1,1,1,1,0,0,2,2) 8A1/Z2 2A3 + 2C3 Z4 (1,3,1,1) (4,4,2,2)

(0,0,0,0,2,2,2,2) 8A1/Z2 4A1 + 2C3 + 2A2
1 Z2

2
(1, 1, 1, 1, 0, 0, 0, 0)
(0, 0, 0, 0, 1, 1, 1, 1)

(2,2,2,2,2,2,2,2)

(0,0,0,0,1,3,1,3) (2A1 + 4A3)/Z4 4A1 + 2A4
1 Z2 (1, 1, 1, 1, 0, 0) (2,2,2,2,2,2)
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j) 5A1 + D4 + D5 + D6 with H = Z3
2 generated by k1 = (0, 0, 0, 0, 1, (0, 1), 2, (0, 1)),

k2 = (0, 1, 1, 1, 0, (0, 0), 2, (1, 0))) and k3 = (1, 0, 0, 1, 0, (1, 1), 2, (1, 1))), with center
(2, 2, 2, 2, 2, (2, 2), 4, (2, 2)) can be frozen to

kΩ Singularity L H k Center

(0,0,0,0,1,(0,1),2,(0,1)) 8A1/Z2 4A1 + B3 + C2 + C3 Z2
2

(0, 1, 1, 1, 0, 1, 0)
(1, 0, 0, 1, 1, 1, 0)

(2,2,2,2,2,2)

(0,1,1,1,0,(0,0),2,(1,0)) 8A1/Z2 2A1 + B3 + C3 + D4 Z2
2

(0, 1, 1, 0, (0, 1))
(1, 0, 1, 0, (1, 1))

(2,2,2,2,(2,2))

(0,1,1,1,1,(0,1),0,(1,1)) 8A1/Z2 A1 + C2 + C4 + D5 Z2
2

(0, 0, 1, 2)
(1, 1, 0, 2)

(2,2,2,4)

(1,0,0,1,0,(1,1),2,(1,1)) 8A1/Z2 3A1 + C2 + C3 + C4 Z2
2

(0, 1, 1, 0, 0, 1)
(1, 0, 0, 1, 0, 1)

(2,2,2,2,2,2)

(1,0,0,1,1,(1,0),0,(1,0)) 8A1/Z2 2A1 + B3 + C2 + D5 Z2
2

(0, 0, 1, 1, 2)
(1, 1, 0, 0, 2)

(2,2,2,2,4)

(1,1,1,0,0,(1,1),0,(0,1)) 8A1/Z2 2A1 + B3 + C2 + D5 Z2
2

(1, 0, 1, 0, 2)
(0, 1, 0, 1, 2)

(2,2,2,2,4)

(1,1,1,0,1,(1,0),2,(0,0)) 8A1/Z2 A1 + C2 + C3 + D6 Z2
2

(0, 1, 0, (1, 0))
(1, 0, 0, (0, 1))

(2,2,2,(2,2))
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Appendix D

Tables of gauge groups

D.1 Groups of maximal enhancement in 9d and 8d
In this appendix we present the Tables containing all the groups of maximal enhancement in one and
two dimensions. The list of groups realized in S1 compactifications of the heterotic string is displayed
in Table D.1. The groups realized in T 2 compactifications of the E8 × E′

8 heterotic string are shown
in Table D.2. To simplify notation we dropped the primes in the E′

8 weights. In Table D.3 we give
the realization of some of these groups in the Spin(32)/Z2 theory. Tables D.4, D.5 and D.6 contain
the groups for the CHL string in 9d and 8d.

# L AL HL T R2
E AE R2

O AO

1 2E8 + A1 Z2 1 ⟨1⟩ 1 0× 0 1
16

1
4 (w7 + w9)

2 E8 + E7 + A2 Z6 1 ⟨3⟩ 3
4

1
2w6 × 0 1

12
1
6 (w6 + 2w9)

3 E8 + E6 + A3 Z12 1 ⟨6⟩ 2
3

1
3w5 × 0 3

32
1
8 (w5 + 3w9)

4 E8 + D9 Z4 1 ⟨2⟩ 1
2 0× 1

2w8
1
8

1
2 w7

5 E8 + D5 + A4 Z20 1 ⟨10⟩ 5
8

1
4w4 × 0 1

10
1

10 (w4 + 4w9)

6 E8 + A9 Z10 1 ⟨5⟩ 5
9 0× 1

3w1
5

49
1
7 (3w7 + w15)

7 E8 + A8 + A1 Z18 1 ⟨9⟩ 9
16

1
4w7 × 0 1

9
4
9 w9

8 E8 + A6 + A2 + A1 Z42 1 ⟨21⟩ 7
12

1
6w2 × 0 3

28
1

14 (w2 + 6w9)

9 E8 + A5 + A4 Z30 1 ⟨15⟩ 3
5

1
5w3 × 0 5

48
1

12 (w3 + 5w9)

10 E7 + E7 + A3 Z2 × Z2 × Z4 Z2 ⟨2⟩ 1
2

1
2w6 × 1

2w6
1
8

1
4 (w6 + w10)

11 E7 + E6 + A4 Z30 1 ⟨15⟩ 5
12

1
3w5 × 1

2w6
3

20
1

10 (2w5 + 3w10)

12 E7 + D10 Z2 × Z2 × Z2 Z2 ⟨1⟩ 1
4

1
2w6 × 1

2w
′
8

1
4

1
2 w6

13 E7 + D5 + A5 Z2 × Z4 × Z6 Z2 ⟨6⟩ 3
8

1
4w4 × 1

2w6
1
6

1
6 (w4 + 2w10)

14 E7 + A10 Z22 1 ⟨11⟩ 11
36

1
2w6 × 1

3w1
11
64

1
8 (3w6 + 2w15)

15 E7 + A9 + A1 Z2 × Z2 × Z10 Z2 ⟨5⟩ 5
16

1
4w7 × 1

2w6
1
5

2
5 w10

16 E7 + A7 + A2 + A1 Z2 × Z6 × Z8 Z2 ⟨12⟩ 1
3

1
6w2 × 1

2w6
3

16
1
8 (w2 + 3w10)

17 E7 + A6 + A4 Z70 1 ⟨35⟩ 7
20

1
5w3 × 1

2w6
5

28
1

14 (2w3 + 5w10)

18 E6 + E6 + A5 Z3 × Z3 × Z6 Z3 ⟨3⟩ 1
3

1
3w5 × 1

3w5
3

16
1
4 (w5 + w11)

19 E6 + D11 Z12 1 ⟨6⟩ 1
6

1
3w5 × 1

2w8
3
8

1
2 w5

20 E6 + D5 + A6 Z84 1 ⟨42⟩ 7
24

1
4w4 × 1

3w5
3

14
1

14 (3w4 + 4w11)

21 E6 + A11 Z3 × Z12 Z3 ⟨2⟩ 2
9

1
3w1 × 1

3w5
2
9

1
3 (w1 + w11)

22 E6 + A10 + A1 Z66 1 ⟨33⟩ 11
48

1
4w7 × 1

3w5
3

11
4

11 w11
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23 E6 + A8 + A2 + A1 Z3 × Z6 × Z9 Z3 ⟨9⟩ 1
4

1
6w2 × 1

3w5
1
4

1
6 (w2 + 2w11)

24 E6 + A7 + A4 Z120 1 ⟨60⟩ 4
15

1
5w3 × 1

3w5
15
64

1
16 (3w3 + 5w11)

25 D17 Z4 1 ⟨2⟩ 1
18

1
3w1 × 1

2w8
1
2 w1

26 D16 + A1 Z2 × Z2 × Z2 Z2 ⟨1⟩ 1
16

1
4w7 × 1

2w8 1 0

27 D14 + A2 + A1 Z2 × Z2 × Z6 Z2 ⟨3⟩ 1
12

1
6w2 × 1

2w8
3
4

1
2 w2

28 D13 + A4 Z20 1 ⟨10⟩ 1
10

1
5w3 × 1

2w8
5
8

1
2 w3

29 D12 + D5 Z2 × Z2 × Z4 Z2 ⟨2⟩ 1
8

1
4w4 × 1

2w8
1
2

1
2 w4

30 D5 + A12 Z52 1 ⟨26⟩ 13
72

1
4w4 × 1

3w1
13
50

1
10 (3w4 + 4w15)

31 D5 + A11 + A1 Z4 × Z12 × Z2 Z4 ⟨3⟩ 3
16

1
4w7 × 1

4w4
1
3

1
3 w12

32 D5 + A9 + A2 + A1 Z4 × Z10 × Z6 Z2 ⟨30⟩ 5
24

1
6w2 × 1

4w4
3

10
1

10 (2w2 + 3w12)

33 D5 + A8 + A4 Z180 1 ⟨90⟩ 9
40

1
5w3 × 1

4w4
5

18
1

18 (4w3 + 5w12)

34 D5 + D5 + A7 Z4 × Z4 × Z8 Z4 ⟨4⟩ 1
4

1
4w4 × 1

4w4
1
4

1
4 (w4 + w12)

35 A17 Z18 Z3 ⟨1⟩ 1
9

1
3w1 × 1

3w1
1
4

1
2 (w1 + w15)

36 A16 + A1 Z34 1 ⟨17⟩ 17
144

1
4w7 × 1

3w1
17
49

4
7 w15

37 A15 + A1 + A1 Z16 × Z2 × Z2 Z4 ⟨2⟩ 1
8

1
4w7 × 1

4w7
1
2

1
2 w16

38 A14 + A2 + A1 Z15 × Z6 Z3 ⟨5⟩ 5
36

1
3w1 × 1

6w2
5

16
1
4 (2w1 + w14)

39 A13 + A4 Z70 1 ⟨35⟩ 7
45

1
5w3 × 1

3w1
35

121
1

11 (3w3 + 5w15)

40 A13 + A2 + 2A1 Z14 × Z6 × Z2 Z2 ⟨21⟩ 7
48

1
4w7 × 1

6w2
3
7

2
7 w14

41 A12 + A4 + A1 Z130 1 ⟨65⟩ 13
80

1
5w3 × 1

4w7
5

13
1

13 (4w3 + 5w16)

42 A11 + 2A2 + 2A1 Z12 × Z6 × Z6 Z6 ⟨6⟩ 1
6

1
6w2 × 1

6w2
3
8

1
4 (w2 + w14)

43 A10 + A4 + A2 + A1 Z330 1 ⟨165⟩ 11
60

1
5w3 × 1

6w2
15
44

1
22 (6w3 + 5w14)

44 A9 + 2A4 Z10 × Z5 × Z5 Z5 ⟨5⟩ 1
5

1
5w3 × 1

5w3
5

16
1
4 (w3 + w13)

Table D.1: Data for allowed groups of maximal rank, d = 1. (RE, AE) and (RO, AO) are the radius
and Wilson line in the E8 × E′

8 and Spin(32)/Z2 heterotic theory.

# L HL T E11E21E22 E12 A1 A2

1 6A3 Z4 × Z4 [4, 0, 4] 1 0 1 1
2

w6
2 × w6

2

(
w2
4 − 3w6

4

)
×
(

w2
4 − 3w6

4

)
2 2A1 + 4A4 Z5 [10, 0, 10] 1 1

5 1 − 1
5

w3
5 × w3

5

(
w1 − 3w3

5

)
×
(

w1 − 3w3
5

)
3 2A2 + 2A3 + 2A4 1 [60, 0, 60] 1 0 11

12
5

12
w5
3 × w6

2

(
w2
3 − 2w5

3

)
×
(

w2
4 − 3w6

4

)
4 3A1 + 3A5 Z2 × Z6 [2, 0, 6] 1 0 1 0 w6

2 × w8
2

(
3w6

4 − w2
4

)
×
(

w2
2 − 3w4

4

)
5 4A2 + 2A5 Z3 × Z3 [6, 0, 6] 1 0 1 0 w5

3 × w5
3

(
w2
3 − 2w5

3

)
×
(

w2
3 − 2w5

3

)
6 A3 + 3A5 Z2 × Z3 [4, 0, 6] 1 0 1 0 w5

3 × w5
3

(
w1
2 − w5

2

)
×
(

w1
2 − w5

2

)
7 2A1 + 2A3 + 2A5 Z2 × Z2 [12, 0, 12] 1 0 1 0 w4

4 × w6
2

(
w7
2 − w4

2

)
×
(

w2
4 − 3w6

4

)
8 A1 + 2A2 + A3 + 2A5 Z2 × Z3 [6, 0, 12] 1 0 1 0 w5

3 × w2
6

(
w2
3 − 2w5

3

)
×
(

2w4
3 − w2

3

)
9 2A4 + 2A5 1 [30, 0, 30] 1 0 1 0 w3

5 × 0 0 × w3
5

10 2A2 + A4 + 2A5 Z3 [6, 0, 30] 1 0 1 0 w5
3 × w5

3

(
w1
2 − w5

2

)
×
(

w2
3 − 2w5

3

)
11 A1 + A3 + A4 + 2A5 Z2 [12, 0, 30] 1 0 1 0 w4

4 × w6
2

(
w7
2 − w4

2

)
×
(

w7
3 − 2w6

3

)
12 A1 + A2 + 2A3 + A4 + A5 Z2 [24, 12, 36] 1 0 1 0 w6

2 × w2
6

(
w7
3 − 2w6

3

)
×
(

3w3
4 − w2

2

)
13 3A6 Z7 [2, 1, 4] 1 0 1 0 w6

2 × w8
2

(
2w6

3 − w7
3

)
×
(

2w8
3 − w1

3

)
14 2A1 + 2A2 + 2A6 1 [42, 0, 42] 1 0 1 0 w2

6 × 0 0 × w2
6

15 2A3 + 2A6 1 [28, 0, 28]
1 0 19

20
7

20
w3
5 × w6

2

(
w1 − 3w3

5

)
×
(

w2
4 − 3w6

4

)
1 0 1 0 2w5

7 ×
(

4w1
7 + w5

7 − 2w7
7

) (
w1
2 − 5w5

8

)
×
(

w1
4 + 3w7

8 − 3w5
4

)
16 A2 + A4 + 2A6 1 [28, 7, 28] 1 0 1 0 w3

5 × w6
2 0 ×

(
w3
3 − 5w6

6

)
17 2A1 + A2 + 2A4 + A6 1 [50, 20, 50]

1 1
5

13
15 − 4

15
w2
6 × w3

5

(
w7 − 2w2

3

)
×
(

w1 − 3w3
5

)
1 0 1 0

(
w3
3 + w6

2 − 5w7
12

)
× w7

4

(
2w3

5 − w6
)

×
(

2w2
5 − w7

2

)
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18 A1 + A3 + 2A4 + A6 1
[20, 0, 70] 1 0 1 0 w3

5 × w6
2 0 ×

(
w2
4 − 3w6

4

)
[10, 0, 140] 1 0 1 0 w6

2 × w7
4

(
w7
3 − 2w6

3

)
×
(

8w2
15 − 2w7

3

)
19 A2 + 2A3 + A4 + A6 1 [24, 12, 76]

1 0 21
20

7
20

w3
5 × w6

2

(
w8 − 2w3

5

)
×
(

w2
4 − 3w6

4

)
1 0 1 0 w6

2 × w2
6

(
w1
5 + w7

5 − 7w6
10

)
×
(

3w3
4 − w2

2

)
20 A1 + 2A2 + A3 + A4 + A6 1 [30, 0, 84] 1 0 1 0 w4

4 × w5
3

(
w7
2 − w4

2

)
×
(

w2
3 − 2w5

3

)
21 2A1 + 2A5 + A6 Z2 [12, 6, 24] 1 0 1 0 w4

4 × w5
3

(
w2
2 − 3w4

4

)
×
(

w1
2 − w5

2

)
22 A1 + 2A3 + A5 + A6 Z2 [4, 0, 84] 1 0 1 0 w4

4 × w5
3

(
w7
2 − w4

2

)
×
(

w1
2 − w5

2

)
23 A1 + A2 + A4 + A5 + A6 1

[18, 6, 72]
1 0 1 − 5

12
w5
3 × w6

2

(
w7
2 − 2w5

3

)
×
(

w7
3 − 2w6

3

)
1 0 1 0

(
w1
3 + w4

3 − 2w7
3

)
× w2

6

(
10w1

21 + w7
21 − 4w4

21

)
×
(

w8 − w2
3

)
[30, 0, 42] 1 0 1 0 w2

6 × 0 0 × w3
5

24 A3 + A4 + A5 + A6 1 [12, 0, 70] 1 0 1 0 w3
5 × w6

2 0 ×
(

w7
3 − 2w6

3

)
25 4A1 + 2A7 Z2 × Z4 [4, 0, 4] 1 0 1 0 w4

4 × w4
4

(
w2
2 − 3w4

4

)
×
(

w2
2 − 3w4

4

)
26 2A2 + 2A7

Z2 [12, 0, 12] 1 0 1 0 w6
2 ×

(
w3
3 − 5w6

6

) (
w3
3 − 5w6

6

)
× w6

2

1 [24, 0, 24] 1 0 1 0 w3
5 × w5

3

(
w1 − 3w3

5

)
×
(

w2
3 − 2w5

3

)
27 A1 + A3 + 2A7 Z8 [2, 0, 4]

1 0 1 1
2

w6
2 × w6

2

(
w1
2 − 3w6

4

)
×
(

w2
4 − 3w6

4

)
1 0 1 0 w6

2 ×
(

w2
2 − w7

2

) (
w7
3 − 2w6

3

)
×
(

− 2w2
3 + 2w3

3 + w7
3

)
28 2A1 + 3A3 + A7 Z2 × Z4 [4, 0, 8] 1 0 1 0 w4

4 × w4
4

(
w4
2 − w7

2

)
×
(

w4
2 − w7

2

)
29 A2 + 3A3 + A7 Z4 [4, 0, 24] 1 0 1 0 w1

6 × w5
3

w1
3 ×

(
w2
3 − 2w5

3

)
30 2A2 + A3 + A4 + A7 1 [12, 0, 120] 1 0 1 0 w3

5 × w5
3 0 ×

(
w2
3 − 2w5

3

)
31 2A1 + A2 + A3 + A4 + A7 Z2 [20, 0, 24] 1 0 1 0 w2

6 × w6
2 0 ×

(
w2
4 − 3w6

4

)
32 A1 + 2A5 + A7 Z2 [6, 0, 24] 1 0 1 0 w2

6 × w6
2

(
w7 − 2w2

3

)
×
(

w7
3 − 2w6

3

)
33 3A1 + A3 + A5 + A7 Z2 × Z2 [8, 0, 12] 1 0 1 0 w4

4 × w4
4

(
w2
2 − 3w4

4

)
×
(

w4
2 − w7

2

)
34 A1 + A2 + A3 + A5 + A7 Z2 [12, 0, 24] 1 0 1 0 w2

6 × w6
2 0 ×

(
w7
3 − 2w6

3

)
35 2A1 + A4 + A5 + A7 Z2 [2, 0, 120]

1 0 23
24

5
12

w5
3 × w6

2

(
w3
2 − 5w5

6

)
×
(

w2
4 − 3w6

4

)
1 0 1 0 w6

2 ×
(

w2
2 − w7

2

) (
2w3

5 − w6
)

×
(

− w2
2 + w3

2 + w7
4

)
36 A2 + A4 + A5 + A7 1

[6, 0, 120] 1 0 1 0 w3
5 × w5

3 0 ×
(

w1
2 − w5

2

)
[24, 0, 30] 1 0 1 0 w6

2 ×
(

w3
3 − 5w6

6

) (
w7
3 − 2w6

3

)
× w6

2

37 A1 + 2A2 + A6 + A7 1 [24, 0, 42] 1 0 1 0 w2
6 × w6

2 0 ×
(

w3
3 − 5w6

6

)
38 2A1 + A3 + A6 + A7 Z2 [12, 4, 20] 1 0 1 0 w4

4 × w5
3

(
w4
2 − w7

2

)
×
(

2w5
3 − w7

2

)
39 A2 + A3 + A6 + A7 1 [4, 0, 168] 1 0 1 0 3w1

16 × w6
2

w1
3 ×

(
w7
3 − 2w6

3

)
40 A1 + A4 + A6 + A7 1

[18, 4, 32] 1 0 1 0 w3
5 × w5

3 0 ×
(

w3
2 − 5w5

6

)
[2, 0, 280]

1 0 37
40 − 7

20
w3
5 ×

(
w7
2 − w4

2

) (
w1 − 3w3

5

)
× w4

4

1 0 1 0 w6
2 ×

(
w2
2 − w7

2

) (
w3
3 − 5w6

6

)
×
(

− 7w2
12 + 7w3

12 + 7w7
24

)
41 A5 + A6 + A7 1 [16, 4, 22] 1 0 1 0 w3

5 × w5
3

(
w1 − 3w3

5

)
×
(

w1
2 − w5

2

)
42 2A1 + 2A8

1 [18, 0, 18] 1 0 1 0 w7
4 × 0 0 × w7

4
Z3 [4, 2, 10] 1 0 1 0 w3

5 × w4
4

(
w1 − 3w3

5

)
×
(

w2
2 − 3w4

4

)
43 A1 + 3A2 + A3 + A8 Z3 [12, 0, 18] 1 0 1 0 w2

6 × w5
3 0 ×

(
w2
3 − 2w5

3

)
44 2A1 + 2A4 + A8 1 [20, 10, 50] 1 0 1 0 w3

5 × w4
4 0 ×

(
w2
2 − 3w4

4

)
45 3A2 + A4 + A8 Z3 [12, 3, 12] 1 0 1 0 w5

3 ×
(

w3
3 − 5w6

6

) (
w2
3 − 2w5

3

)
× w6

2

46 A1 + A2 + A3 + A4 + A8 1 [6, 0, 180] 1 0 1 0 w3
5 × w4

4 0 ×
(

w4
2 − w7

2

)
47 A1 + 2A2 + A5 + A8 Z3 [6, 0, 18] 1 0 1 0 w2

6 × w5
3 0 ×

(
w1
2 − w5

2

)
48 A2 + A3 + A5 + A8 Z3 [4, 0, 18] 1 0 1 0 w5

3 ×
(

w3
3 − 5w6

6

) (
w1
2 − w5

2

)
× w6

2
49 A1 + A4 + A5 + A8 1 [18, 0, 30] 1 0 1 0 0 × w7

4
w3
5 × 0

50 2A1 + A2 + A6 + A8 1 [18, 0, 42] 1 0 1 0 0 × w7
4

w2
6 × 0

51 A1 + A3 + A6 + A8 1 [10, 4, 52] 1 0 1 0 w3
5 × w4

4

(
w1 − 3w3

5

)
×
(

w4
2 − w7

2

)
52 A4 + A6 + A8 1 [18, 9, 22] 1 0 1 0 w3

5 × w6
2 0 ×

(
w1
2 − 3w6

4

)
53 A1 + A2 + A7 + A8 1 [18, 0, 24] 1 0 1 0 w2

6 × w6
2 0 ×

(
w1
2 − 3w6

4

)
54 2A9

Z5 [2, 0, 2] 1 0 1 0 w3
5 × w3

5

(
w1 − 3w3

5

)
×
(

w1 − 3w3
5

)
1 [10, 0, 10] 1 0 1 0 w1

3 × 0 0 × w1
3

55 A1 + A2 + 2A3 + A9 Z2 [4, 0, 60] 1 0 1 0 w4
4 ×

(
w3
3 − 5w6

6

) (
w7
2 − w4

2

)
× w6

2

56 2A1 + 2A2 + A3 + A9 Z2 [6, 0, 60] 1 0 1 0 w2
6 × w4

4 0 ×
(

w4
2 − w7

2

)
57 A1 + 2A4 + A9 Z5 [2, 0, 10] 1 0 1 0 w3

5 × w3
5 0 × 0

58 3A1 + A2 + A4 + A9 Z2 [20, 10, 20] 1 0 1 0 w2
6 × w4

4 0 ×
(

w2
2 − 3w4

4

)
59 2A1 + A3 + A4 + A9 Z2 [10, 0, 20] 1 0 1 0 w6

2 × w7
4

(
w2
4 − 3w6

4

)
× 0

60 2A1 + A2 + A5 + A9 Z2 [12, 6, 18] 1 0 1 0 w4
4 ×

(
w3
3 − 5w6

6

) (
w2
2 − 3w4

4

)
× w6

2

61 A1 + A3 + A5 + A9 Z2 [10, 0, 12] 1 0 1 0 w6
2 × w7

4

(
w7
3 − 2w6

3

)
× 0

62 A4 + A5 + A9
1 [10, 0, 30] 1 0 1 0 w1

3 × 0 0 × w3
5

Z2 [10, 5, 10] 1 0 1 0 w6
2 ×

(
w1
2 − 3w6

4

) (
w7
3 − 2w6

3

)
× w6

2

63 3A1 + A6 + A9 Z2 [4, 2, 36] 1 0 1 0 w2
6 × w4

4

(
w7 − 2w2

3

)
×
(

w2
2 − 3w4

4

)
64 A1 + A2 + A6 + A9 1 [10, 0, 42] 1 0 1 0 w1

3 × 0 0 × w2
6
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65 A3 + A6 + A9 1 [2, 0, 140] 1 0 1 0 w6
2 × w8

2

(
w7
3 − 2w6

3

)
×
(

4w8
5 − 8w1

15

)
66 A2 + A7 + A9 1 [10, 0, 24] 1 0 1 0

(
w1
2 − 3w6

4

)
× w6

2
w6
2 ×

(
w3
3 − 5w6

6

)
67 A1 + A8 + A9 1 [10, 0, 18] 1 0 1 0 w1

3 × 0 0 × w7
4

68 A10 + A2 + 2A3 1 [24, 12, 28] 1 0 1 0
(

w3
8 − 3w1

8

)
× w6

2

(
2w1

3 − 2w3
9

)
×
(

w7
3 − 2w6

3

)
69 A1 + A10 + 2A2 + A3 1 [12, 0, 66] 1 0 1 0 w5

3 × w7
4

(
w2
3 − 2w5

3

)
× 0

70 A10 + 2A4 1 [10, 5, 30] 1 0 1 0
(

2w4
5 − w1

5

)
× w3

5

(
3w4

5 − 4w1
5

)
× 0

71 A10 + 2A2 + A4 1
[6, 3, 84] 1 0 1 0 w3

5 ×
(

w3
3 − 5w6

6

)
0 × w6

2

[24, 9, 24] 1 0 1 0 w5
3 ×

(
w1
2 − 3w6

4

) (
w2
3 − 2w5

3

)
× w6

2
72 2A1 + A10 + A2 + A4 1 [2, 0, 330] 1 0 1 0 w2

6 × w3
5 0 × 0

73 A1 + A10 + A3 + A4 1
[12, 4, 38] 1 0 1 0 w2

6 × w3
5

(
w7 − 2w2

3

)
× 0

[20, 0, 22] 1 0 1 0 w1
3 × w6

2 0 ×
(

w2
4 − 3w6

4

)
74 A1 + A10 + A2 + A5 1

[6, 0, 66] 1 0 1 0 w5
3 × w7

4

(
w1
2 − w5

2

)
× 0

[18, 6, 24] 1 0 1 0 w2
6 × w3

5 0 ×
(

w1 − 3w3
5

)
75 A10 + A3 + A5 1

[4, 0, 66] 1 0 1 0 w5
3 ×

(
w1
2 − 3w6

4

) (
w1
2 − w5

2

)
× w6

2

[12, 0, 22] 1 0 1 0 w1
3 × w6

2 0 ×
(

w7
3 − 2w6

3

)
76 2A1 + A10 + A6 1 [12, 2, 26] 1 0 1 0 w5

3 × w7
4

(
w3
2 − 5w5

6

)
× 0

77 A10 + A2 + A6 1
[4, 1, 58] 1 0 1 0 w3

5 ×
(

w3
3 − 5w6

6

) (
w1 − 3w3

5

)
× w6

2

[16, 5, 16] 1 0 1 0 w1
3 × w6

2 0 ×
(

w3
3 − 5w6

6

)
78 A1 + A10 + A7 1

[2, 0, 88] 1 0 1 0 w2
6 × w3

5

(
w7 − 2w2

3

)
×
(

w1 − 3w3
5

)
[10, 2, 18] 1 0 1 0 w2

6 × w3
5

(
w7 − 2w2

3

)
×
(

w8 − 2w3
5

)
79 A10 + A8 1 [10, 1, 10] 1 0 1 0 w1

3 × w6
2 0 ×

(
w1
2 − 3w6

4

)
80 A1 + A11 + 3A2 Z3 [6, 0, 12] 1 0 1 0 w2

6 ×
(

w3
3 − 5w6

6

)
0 × w6

2
81 3A1 + A11 + 2A2 Z2 × Z3 [2, 0, 12] 1 0 1 0 w2

6 × w2
6 0 × 0

82 A1 + A11 + 2A3 Z4 [4, 0, 6] 1 0 1 0 w4
4 ×

(
w1
2 − 3w6

4

) (
w7
2 − w4

2

)
× w6

2

83 A11 + 2A2 + A3
Z3 [4, 0, 12] 1 0 1 0 w1

3 × w5
3 0 ×

(
w2
3 − 2w5

3

)
Z2 × Z3 [4, 2, 4] 1 0 1 0

(
w3
3 − 5w6

6

)
×
(

w3
3 − 5w6

6

)
w6
2 × w6

2

84 2A1 + A11 + A2 + A3
Z4 [6, 0, 6] 1 0 1 0 w4

4 × w7
4

(
w4
2 − w7

2

)
× 0

Z2 [12, 0, 12] 1 0 1 0 w2
6 × w2

6 0 ×
(

w7 − 2w2
3

)
85 3A1 + A11 + A4 Z2 [6, 0, 20] 1 0 1 0 w4

4 × w7
4

(
w2
2 − 3w4

4

)
× 0

86 A1 + A11 + A2 + A4 1 [12, 0, 30] 1 0 1 0
(

2w4
5 − w1

5

)
× w2

6

(
3w4

5 − 4w1
5

)
× 0

87 2A1 + A11 + A5
Z2 × Z3 [2, 0, 4] 1 0 1 0 w2

6 × w2
6

(
w7 − 2w2

3

)
×
(

w7 − 2w2
3

)
Z2 [6, 0, 12] 1 0 1 0 w2

6 × w2
6

(
w7 − 2w2

3

)
×
(

w8 − w2
3

)
88 A11 + A2 + A5 Z3 [4, 0, 6] 1 0 1 0 w1

3 × w5
3 0 ×

(
w1
2 − w5

2

)
89 A1 + A11 + A6 1 [4, 0, 42] 1 0 1 0 w1

3 × w5
3 0 ×

(
w3
2 − 5w5

6

)
90 2A1 + A12 + 2A2 1 [12, 6, 42] 1 0 1 0 w2

6 ×
(

2w3
3 − 5w7

6

)
0 ×
(

w3
3 − w7

6

)
91 A1 + A12 + A2 + A3 1 [6, 0, 52] 1 0 1 0 w1

3 × w4
4 0 ×

(
w4
2 − w7

2

)
92 2A1 + A12 + A4 1

[2, 0, 130] 1 0 1 0 w3
5 × w7

4 0 × 0
[18, 8, 18] 1 0 1 0 w1

3 × w4
4 0 ×

(
w2
2 − 3w4

4

)
93 A12 + A2 + A4 1 [6, 3, 34] 1 0 1 0 w3

5 ×
(

w1
2 − 3w6

4

)
0 × w6

2

94 A1 + A12 + A5 1 [10, 2, 16] 1 0 1 0 w3
5 × w7

4

(
w1 − 3w3

5

)
× 0

95 A12 + A6 1 [2, 1, 46] 1 0 1 0 w3
5 ×

(
w1
2 − 3w6

4

) (
w1 − 3w3

5

)
× w6

2

96 A1 + A13 + 2A2
1 [6, 0, 42] 1 0 1 0

(
w3
3 − 5w6

6

)
× w7

4
w6
2 × 0

Z2 [6, 3, 12] 1 0 1 0 w2
6 ×

(
w1
2 − 3w6

4

)
0 × w6

2
97 3A1 + A13 + A2 Z2 [2, 0, 42] 1 0 1 0 w2

6 × w7
4 0 × 0

98 2A1 + A13 + A3 Z2 [6, 2, 10] 1 0 1 0 w2
6 × w7

4

(
w7 − 2w2

3

)
× 0

99 A13 + A2 + A3 1 [4, 0, 42] 1 0 1 0
(

w1
2 − 3w6

4

)
×
(

w3
3 − 5w6

6

)
w6
2 × w6

2

100 A1 + A13 + A4
1

[2, 0, 70] 1 0 1 0 w1
3 × w3

5 0 × 0
[8, 2, 18] 1 0 1 0

(
2w4

5 − w1
5

)
× w7

4

(
3w4

5 − 4w1
5

)
× 0

Z2 [2, 1, 18] 1 0 1 0 w2
6 ×

(
w1
2 − 3w6

4

) (
w7 − 2w2

3

)
× w6

2

101 A13 + A5 1 [4, 2, 22] 1 0 1 0 w1
3 × w3

5 0 ×
(

w1 − 3w3
5

)
102 A14 + 2A2 Z3 [4, 1, 4] 1 0 1 0 w1

3 ×
(

w3
3 − 5w6

6

)
0 × w6

2

103 2A1 + A14 + A2
Z3 [2, 0, 10] 1 0 1 0 w1

3 × w2
6 0 × 0

1 [12, 6, 18] 1 0 1 0
(

2w3
3 − 5w7

6

)
× w7

4

(
w3
3 − w7

6

)
× 0

104 A1 + A14 + A3 1 [10, 0, 12] 1 0 1 0 w1
3 × w2

6 0 ×
(

w7 − 2w2
3

)
105 A14 + A4 1 [10, 5, 10] 1 0 1 0 w1

3 ×
(

2w4
5 − w1

5

)
0 ×
(

3w4
5 − 4w1

5

)
106 3A1 + A15 Z4 [2, 0, 4] 1 0 1 0 w7

4 × w7
4 0 × 0

107 A1 + A15 + A2
Z2 [4, 0, 6] 1 0 1 0

(
w1
2 − 3w6

4

)
× w7

4
w6
2 × 0

1 [10, 2, 10] 1 0 1 0 w1
3 ×

(
2w3

3 − 5w7
6

)
0 ×
(

w3
3 − w7

6

)
108 A15 + A3 Z2 × Z2 [2, 0, 2] 1 0 1 0

(
w1
2 − 3w6

4

)
×
(

w1
2 − 3w6

4

)
w6
2 × w6

2

109 2A1 + A16 1
[4, 2, 18] 1 0 1 −1 w7

4 × 0 0 × w7
4

[2, 0, 34] 1 0 1 0 w1
3 × w7

4 0 × 0
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110 A16 + A2 1 [6, 3, 10] 1 0 1 0 w1
3 ×

(
w1
2 − 3w6

4

)
0 × w6

2

111 A1 + A17
1 [4, 2, 10] 1 0 1 −1 w1

3 × 0 0 × w7
4

Z3 [2, 0, 2] 1 0 1 0 w1
3 × w1

3 0 × 0
112 A18 1 [2, 1, 10] 1 0 1 −1 w1

3 × 0 0 × w1
3

113 2A4 + 2D5 1 [20, 0, 20] 1 0 1 0 w4
4 × 0 0 × w4

4
114 A3 + 2A5 + D5 Z2 [12, 0, 12] 1 0 1 0 w4

4 × w6
2 0 ×

(
w7
3 − 2w6

3

)
115 2A4 + A5 + D5 1 [20, 0, 30] 1 0 1 0 w3

5 × 0 0 × w4
4

116 A1 + A3 + A4 + A5 + D5 Z2 [12, 0, 20] 1 0 1 0 w4
4 × w6

2 0 ×
(

w2
4 − 3w6

4

)
117 A1 + 2A6 + D5 1 [14, 0, 28] 1 0 1 0 w4

4 × w5
3 0 ×

(
w3
2 − 5w5

6

)
118 2A2 + A3 + A6 + D5 1 [12, 0, 84] 1 0 1 0 w4

4 × w5
3 0 ×

(
w2
3 − 2w5

3

)
119 A1 + A2 + A4 + A6 + D5 1 [20, 0, 42] 1 0 1 0 w2

6 × 0 0 × w4
4

120 A2 + A5 + A6 + D5 1
[6, 0, 84] 1 0 1 0 w4

4 × w5
3 0 ×

(
w1
2 − w5

2

)
[12, 0, 42] 1 0 1 0 w4

4 × w6
2 0 ×

(
w3
3 − 5w6

6

)
121 A1 + A7 + 2D5 Z4 [2, 0, 8] 1 0 1 0 w4

4 × w4
4 0 × 0

122 A1 + A2 + A3 + A7 + D5 Z4 [6, 0, 8] 1 0 1 0 w4
4 × w4

4 0 ×
(

w4
2 − w7

2

)
123 2A1 + A4 + A7 + D5 Z2 [8, 0, 20] 1 0 1 0 w4

4 × w4
4

(
w2
2 − 3w4

4

)
× 0

124 A8 + 2D5 1 [8, 4, 20] 1 0 1 0 w3
5 × w4

4

(
w2 − 6w3

5

)
× 0

125 A1 + A4 + A8 + D5 1
[2, 0, 180] 1 0 1 0 w3

5 × w4
4 0 × 0

[18, 0, 20] 1 0 1 0 0 × w7
4

w4
4 × 0

126 A5 + A8 + D5 1 [12, 0, 18] 1 0 1 0 w3
5 × w4

4

(
w1 − 3w3

5

)
× 0

127 2A2 + A9 + D5 1 [6, 0, 60] 1 0 1 0 w4
4 ×

(
w3
3 − 5w6

6

)
0 × w6

2
128 2A1 + A2 + A9 + D5 Z2 [2, 0, 60] 1 0 1 0 w2

6 × w4
4 0 × 0

129 A1 + A3 + A9 + D5 Z2 [8, 4, 12] 1 0 1 0 w2
6 × w4

4

(
w7 − 2w2

3

)
× 0

130 A4 + A9 + D5 1 [10, 0, 20] 1 0 1 0 w1
3 × 0 0 × w4

4
131 A1 + A10 + A2 + D5 1 [14, 4, 20] 1 0 1 0 w2

6 × w3
5 0 ×

(
w2 − 6w3

5

)
132 2A1 + A11 + D5 Z4 [2, 0, 6] 1 0 1 0 w4

4 × w7
4 0 × 0

133 A11 + A2 + D5 Z2 [6, 0, 6] 1 0 1 0 w4
4 ×

(
w1
2 − 3w6

4

)
0 × w6

2

134 A1 + A12 + D5 1
[2, 0, 52] 1 0 1 0 w1

3 × w4
4 0 × 0

[6, 2, 18] 1 0 1 0 w3
5 × w7

4

(
w2 − 6w3

5

)
× 0

135 A13 + D5 1 [6, 2, 10] 1 0 1 0 w1
3 × w3

5 0 ×
(

w2 − 6w3
5

)
136 3D6 Z2 × Z2 [2, 0, 2] 1 0 1 0 w6

2 × w6
2

(
w8
2 − w6

2

)
×
(

w8
2 − w6

)
137 2A3 + 2D6 Z2 × Z2 [4, 0, 4] 1 0 1 0 w6

2 × w6
2

(
w6
2 − w8

2

)
×
(

w6
2 − w8

2

)
138 2A2 + 2A4 + D6 1 [30, 0, 30] 1 0 1 0 w5

3 × w6
2

(
w2
3 − 2w5

3

)
×
(

w6
2 − w8

2

)
139 2A1 + 2A5 + D6 Z2 × Z2 [6, 0, 6] 1 0 1 0 w4

4 × w6
2

(
w2
2 − 3w4

4

)
×
(

w6
2 − w8

2

)
140 A1 + 2A3 + A5 + D6 Z2 × Z2 [4, 0, 12] 1 0 1 0 w4

4 × w6
2

(
w4
2 − w7

2

)
×
(

w6
2 − w8

2

)
141 A3 + A4 + A5 + D6 Z2 [4, 0, 30] 1 0 1 0 w5

3 × w6
2

(
w1
2 − w5

2

)
×
(

w6
2 − w8

2

)
142 2A6 + D6 1 [14, 0, 14] 1 0 1 0 w3

5 × w6
2

(
w1 − 3w3

5

)
×
(

w6
2 − w8

2

)
143 A2 + A4 + A6 + D6 1 [6, 0, 70] 1 0 1 0 w3

5 × w6
2 0 ×

(
w6
2 − w8

2

)
144 A1 + 2A2 + A7 + D6 Z2 [6, 0, 24] 1 0 1 0 w2

6 × w6
2 0 ×

(
w6
2 − w8

2

)
145 A2 + A3 + A7 + D6 Z2 [4, 0, 24] 1 0 1 0 w6

2 ×
(

w3
3 − 5w6

6

) (
w8
2 − w6

2

)
× w6

2

146 A1 + A4 + A7 + D6 Z2 [6, 2, 14] 1 0 1 0 w2
6 × w6

2

(
w7 − 2w2

3

)
×
(

w6
2 − w8

2

)
147 A4 + A8 + D6 1 [4, 2, 46] 1 0 1 0 w3

5 × w4
4 0 ×

(
w8 − w4

2

)
148 A1 + A2 + A9 + D6 Z2

[4, 2, 16] 1 0 1 0 w2
6 × w4

4 0 ×
(

w8 − w4
2

)
[6, 0, 10] 1 0 1 0 w6

2 × w7
4

(
w8
2 − w6

2

)
× 0

149 A3 + A9 + D6 Z2 [4, 0, 10] 1 0 1 0 w6
2 ×

(
w1
2 − 3w6

4

) (
w8
2 − w6

2

)
× w6

2

150 A10 + A2 + D6 1 [6, 0, 22] 1 0 1 0 w1
3 × w6

2 0 ×
(

w6
2 − w8

2

)
151 A1 + A11 + D6 Z2 [4, 0, 6] 1 0 1 0 w4

4 × w7
4

(
w8 − w4

2

)
× 0

152 A12 + D6 1 [4, 2, 14] 1 0 1 0 w1
3 × w4

4 0 ×
(

w8 − w4
2

)
153 A2 + A5 + D5 + D6 Z2 [6, 0, 12] 1 0 1 0 w4

4 × w6
2 0 ×

(
w6
2 − w8

2

)
154 A7 + D5 + D6 Z2 [4, 0, 8] 1 0 1 0 w4

4 × w4
4 0 ×

(
w8 − w4

2

)
155 2A2 + 2D7 1 [12, 0, 12]

1 0 1 1
2

w5
3 ×

(
w4
2 − w8

) (
w2
3 − 2w5

3

)
×
(

w4
2 − w8

2

)
†

1 0 1 0
(

w1
4 + w2

4 − w7
2

)
× w8

2

(
w1
8 + 5w7

4 − 7w2
8

)
× 3w8

8

156 A2 + 3A3 + D7 Z4 [8, 4, 8] 1 0 1 0
(

w6
3 − w1

3

)
× w5

3

(
w1
3 − w6

3

)
×
(

w2
3 − 2w5

3

)
157 A1 + A2 + 2A4 + D7 1 [10, 0, 60] 1 0 1 0

(
w1
4 + w4

4 − w7
2

)
× w8

2

(
3w1

4 + w4
12 − w7

2

)
× w8

4

158 A2 + A3 + A6 + D7 1 [8, 4, 44] 1 0 1 0
(

w1
2 − w7

2

)
× 3w8

8

(
2w1

3 − w7
3

)
× w8

3

159 A1 + A4 + A6 + D7 1 [4, 0, 70] 1 0 1 0 w3
5 × w6

2 0 ×
(

w4
2 − w6

)
160 A5 + A6 + D7 1 [2, 0, 84] 1 0 1 0

(
w5
2 − w1

2

)
×
(

w8 − w4
2

)
w5
3 × w4

4

161 2A1 + A2 + A7 + D7 Z2 [4, 0, 24] 1 0 1 0 w2
6 × w6

2 0 ×
(

w4
2 − w6

)
162 A1 + A3 + A7 + D7 Z4 [2, 0, 8] 1 0 1 0 w4

4 × w4
4

(
w7
2 − w4

2

)
×
(

w8 − w4
2

)
163 2A1 + A9 + D7 Z2 [4, 0, 10] 1 0 1 0 w6

2 × w7
4

(
w4
2 − w6

)
× 0

164 A2 + A9 + D7 1 [2, 0, 60] 1 0 1 0 w4
4 ×

(
w3
3 − 5w6

6

) (
w8 − w4

2

)
× w6

2
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165 A1 + A10 + D7 1 [4, 0, 22] 1 0 1 0 w1
3 × w6

2 0 ×
(

w4
2 − w6

)
166 A11 + D7 Z4 [2, 1, 2] 1 0 1 0 w4

4 ×
(

w1
2 − 3w6

4

) (
w8 − w4

2

)
× w6

2

167 A1 + A5 + D5 + D7 Z2 [4, 0, 12] 1 0 1 0 w4
4 × w6

2 0 ×
(

w4
2 − w6

)
168 A5 + D6 + D7 Z2 [2, 0, 12] 1 0 1 0

(
w8 − w4

2

)
× w6

2
w4
4 ×

(
w6
2 − w8

2

)
169 2A1 + 2D8 Z2 × Z2 [2, 0, 2] 1 0 1 0 w6

2 ×
(

w4
2 − w6

) (
w4
2 − w6

)
× w6

2

170 2A2 + 2A3 + D8 Z2 [12, 0, 12] 1 0 1 0 w6
2 × w2

6

(
w8
2 − w6

2

)
×
(

3w3
4 − w2

2

)
171 2A5 + D8 Z2 [6, 0, 6] 1 0 1 0 w5

3 ×
(

w8 − w4
2

) (
w5
2 − w1

2

)
× w4

4

172 2A1 + A3 + A5 + D8 Z2 × Z2 [2, 0, 12] 1 0 1 0 w6
2 ×

(
w4
2 − w6

) (
w2
4 − 3w6

4

)
× w6

2

173 A1 + A4 + A5 + D8 Z2 [2, 0, 30] 1 0 1 0 w6
2 ×

(
w4
2 − w6

) (
w7
3 − 2w6

3

)
× w6

2

174 2A2 + A6 + D8 1 [12, 6, 24] 1 0 1 0
(

w8 − w4
2

)
× w5

3
w4
4 ×

(
w2
3 − 2w5

3

)
175 A1 + A2 + A7 + D8 Z2 [2, 0, 24] 1 0 1 0 w6

2 ×
(

w4
2 − w6

) (
w3
3 − 5w6

6

)
× w6

2

176 A1 + A9 + D8 Z2 [2, 0, 10] 1 0 1 0 w6
2 ×

(
w4
2 − w6

) (
w1
2 − 3w6

4

)
× w6

2

177 2D5 + D8 Z2 [4, 0, 4] 1 0 1 0 w4
4 × w4

4 0 ×
(

w5 − w4
2

)
178 A1 + A3 + D6 + D8 Z2 × Z2 [2, 0, 4] 1 0 1 0 w6

2 ×
(

w4
2 − w6

) (
w8
2 − w6

2

)
× w6

2
179 2D9 1 [4, 0, 4] 1 0 1 0 w8

2 × 0 0 × w8
2

180 A1 + 2A2 + A4 + D9 1 [12, 0, 30] 1 0 1 0 w5
3 ×

(
w4
2 − w6

) (
w2
3 − 2w5

3

)
× w6

2

181 A1 + A3 + A5 + D9 Z2 [4, 0, 12] 1 0 1 0 w4
4 ×

(
w8 − w4

2

) (
w7
2 − w4

2

)
× w4

4
182 A4 + A5 + D9 1 [4, 0, 30] 1 0 1 0 0 × w8

2
w3
5 × 0

183 A1 + A2 + A6 + D9 1 [4, 0, 42] 1 0 1 0 0 × w8
2

w2
6 × 0

184 2A1 + A7 + D9 Z2 [4, 0, 8] 1 0 1 0 w4
4 ×

(
w8 − w4

2

) (
w2
2 − 3w4

4

)
× w4

4
185 A1 + A8 + D9 1 [4, 0, 18] 1 0 1 0 0 × w8

2
w7
4 × 0

186 A9 + D9 1 [4, 0, 10] 1 0 1 0 0 × w8
2

w1
3 × 0

187 A4 + D5 + D9 1 [4, 0, 20] 1 0 1 0 0 × w8
2

w4
4 × 0

188 2A1 + 2A3 + D10 Z2 × Z2 [4, 0, 4] 1 0 1 0 w4
4 ×

(
w4
2 − w6

) (
w7
2 − w4

2

)
× w6

2

189 2A4 + D10 1 [10, 0, 10] 1 0 1 0 w3
5 ×

(
w8 − w4

2

)
0 × w4

4

190 A1 + A3 + A4 + D10 Z2 [2, 0, 20] 1 0 1 0 w6
2 × w8

2

(
w2
4 − 3w6

4

)
× 0

191 3A1 + A5 + D10 Z2 × Z2 [4, 2, 4] 1 0 1 0 w4
4 ×

(
w4
2 − w6

) (
w2
2 − 3w4

4

)
× w6

2

192 A3 + A5 + D10 Z2 [2, 0, 12] 1 0 1 0 w6
2 × w8

2

(
w7
3 − 2w6

3

)
× 0

193 A2 + A6 + D10 1 [2, 0, 42] 1 0 1 0 w6
2 × w8

2

(
w3
3 − 5w6

6

)
× 0

194 A8 + D10 1 [2, 0, 18] 1 0 1 0 w6
2 × w8

2

(
w1
2 − 3w6

4

)
× 0

195 A1 + A2 + D10 + D5 Z2 [4, 0, 6] 1 0 1 0 w4
4 ×

(
w4
2 − w6

)
0 × w6

2

196 A2 + D10 + D6 Z2 [2, 0, 6] 1 0 1 0 w6
2 × w8

2

(
w6
2 − w8

2

)
× 0

197 A1 + D10 + D7 Z2 [2, 0, 4] 1 0 1 0 w6
2 × w8

2

(
w4
2 − w6

)
× 0

198 2A2 + A3 + D11 1 [12, 0, 12] 1 0 1 0 w5
3 × w8

2

(
w2
3 − 2w5

3

)
× 0

199 A1 + A2 + A4 + D11 1 [6, 0, 20] 1 0 1 0 w2
6 ×

(
w8 − w4

2

)
0 × w4

4

200 A2 + A5 + D11 1 [6, 0, 12] 1 0 1 0 w5
3 × w8

2

(
w1
2 − w5

2

)
× 0

201 A1 + A6 + D11 1 [6, 2, 10] 1 0 1 0 w5
3 × w8

2

(
w3
2 − 5w5

6

)
× 0

202 2A1 + 2A2 + D12 Z2 [6, 0, 6] 1 0 1 0 w2
6 ×

(
w4
2 − w6

)
0 × w6

2

203 A1 + A2 + A3 + D12 Z2 [4, 0, 6] 1 0 1 0 w4
4 × w8

2

(
w4
2 − w7

2

)
× 0

204 2A1 + A4 + D12 Z2 [4, 2, 6] 1 0 1 0 w4
4 × w8

2

(
w2
2 − 3w4

4

)
× 0

205 A1 + D12 + D5 Z2 [2, 0, 4] 1 0 1 0 w4
4 × w8

2 0 × 0

206 D12 + D6 Z2 [2, 0, 2] 1 0 1 0 w4
4 × w8

2

(
w8 − w4

2

)
× 0

207 A1 + A4 + D13 1 [2, 0, 20] 1 0 1 0 w3
5 × w8

2 0 × 0

208 A5 + D13 1 [2, 0, 12] 1 0 1 0 w3
5 × w8

2

(
w1 − 3w3

5

)
× 0

209 D13 + D5 1 [4, 0, 4] 1 0 1 0 w3
5 × w8

2

(
w2 − 6w3

5

)
× 0

210 2A2 + D14 1 [6, 0, 6] 1 0 1 0
(

w3
3 − 5w6

6

)
× w8

2
w6
2 × 0

211 2A1 + A2 + D14 Z2 [2, 0, 6] 1 0 1 0 w2
6 × w8

2 0 × 0

212 A1 + A3 + D14 Z2 [2, 0, 4] 1 0 1 0 w2
6 × w8

2

(
w7 − 2w2

3

)
× 0

213 A4 + D14 1 [4, 2, 6] 1 0 1 0 w1
3 ×

(
w8 − w4

2

)
0 × w4

4

214 A1 + A2 + D15 1 [4, 0, 6] 1 0 1 0 w1
3 ×

(
w4
2 − w6

)
0 × w6

2
215 2A1 + D16 Z2 [2, 0, 2] 1 0 1 0 w7

4 × w8
2 0 × 0

216 A2 + D16 Z2 [2, 1, 2] 1 0 1 0
(

w1
2 − 3w6

4

)
× w8

2
w6
2 × 0

217 A1 + D17 1 [2, 0, 4] 1 0 1 0 w1
3 × w8

2 0 × 0
218 D18 1 [2, 0, 2] 1 0 1 −1 w1

3 × 0 0 × w8
2

219 3E6 Z3 [2, 1, 2] 1 0 1 −1 w5
3 × w5

3 0 × 0
220 2A3 + 2E6 1 [12, 0, 12] 1 0 1 0 w5

3 × 0 0 × w5
3

221 A1 + A3 + 2A4 + E6 1 [20, 0, 30] 1 0 1 0 w5
3 × w6

2 0 ×
(

w2
4 − 3w6

4

)
222 A1 + A5 + 2E6 Z3 [2, 0, 6] 1 0 1 0 w5

3 × w5
3 0 × 0

223 A2 + 2A5 + E6 Z3 [6, 0, 6] 1 0 1 0 w5
3 × w5

3

(
w1
2 − w5

2

)
× 0

224 2A2 + A3 + A5 + E6 Z3 [6, 0, 12] 1 0 1 0 w5
3 × w5

3

(
w2
3 − 2w5

3

)
× 0

225 A3 + A4 + A5 + E6 1 [12, 0, 30] 1 0 1 0 w3
5 × 0 0 × w5

3
226 A6 + 2E6 1 [6, 3, 12] 1 0 1 0 w4

4 × w5
3

(
w3 − 5w4

4

)
× 0
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227 A1 + A2 + A3 + A6 + E6 1
[6, 0, 84] 1 0 1 0 w4

4 × w5
3

(
w7
2 − w4

2

)
× 0

[12, 0, 42] 1 0 1 0 w2
6 × 0 0 × w5

3
228 2A1 + A4 + A6 + E6 1 [20, 10, 26] 1 0 1 0 w4

4 × w5
3

(
w2
2 − 3w4

4

)
× 0

229 A2 + A4 + A6 + E6 1 [18, 3, 18] 1 0 1 0 w5
3 × w6

2 0 ×
(

w3
3 − 5w6

6

)
230 A1 + A5 + A6 + E6 1 [6, 0, 42] 1 0 1 0 w5

3 × w5
3 0 ×

(
2w5

3 − w7
2

)
231 A1 + A4 + A7 + E6 1 [2, 0, 120] 1 0 1 0 w3

5 × w5
3 0 × 0

232 A5 + A7 + E6 1 [6, 0, 24] 1 0 1 0 w3
5 × w5

3

(
w1 − 3w3

5

)
× 0

233 2A2 + A8 + E6 Z3 [6, 3, 6] 1 0 1 0 w5
3 ×

(
w3
3 − 5w6

6

)
0 × w6

2
234 2A1 + A2 + A8 + E6 Z3 [2, 0, 18] 1 0 1 0 w2

6 × w5
3 0 × 0

235 A1 + A3 + A8 + E6 1 [12, 0, 18] 1 0 1 0 0 × w7
4

w5
3 × 0

236 A4 + A8 + E6 1 [12, 3, 12] 1 0 1 0 w5
3 × w6

2 0 ×
(

w1
2 − 3w6

4

)
237 A1 + A2 + A9 + E6 1 [12, 6, 18] 1 0 1 0 w2

6 × w4
4 0 ×

(
w3 − 5w4

4

)
238 A3 + A9 + E6 1 [10, 0, 12] 1 0 1 0 w1

3 × 0 0 × w5
3

239 2A1 + A10 + E6 1 [2, 0, 66] 1 0 1 0 w5
3 × w7

4 0 × 0

240 A10 + A2 + E6 1 [6, 3, 18] 1 0 1 0 w5
3 ×

(
w1
2 − 3w6

4

)
0 × w6

2

241 A1 + A11 + E6
Z3 [2, 0, 4] 1 0 1 0 w1

3 × w5
3 0 × 0

1 [6, 0, 12] 1 0 1 0 w4
4 × w7

4

(
w3 − 5w4

4

)
× 0

242 A12 + E6 1 [4, 1, 10] 1 0 1 0 w1
3 × w4

4 0 ×
(

w3 − 5w4
4

)
243 A3 + A4 + D5 + E6 1 [12, 0, 20] 1 0 1 0 w4

4 × 0 0 × w5
3

244 A1 + A6 + D5 + E6 1 [2, 0, 84] 1 0 1 0 w4
4 × w5

3 0 × 0

245 A7 + D5 + E6 1 [8, 0, 12] 1 0 1 0 w4
4 × w4

4

(
w3 − 5w4

4

)
× 0

246 D6 + 2E6 1 [6, 0, 6] 1 0 1 −1 w5
3 × w6

2 0 ×
(

w6
2 − w8

2

)
247 A2 + A4 + D6 + E6 1 [6, 0, 30] 1 0 1 0 w5

3 × w6
2 0 ×

(
w6
2 − w8

2

)
248 A6 + D6 + E6 1 [4, 2, 22] 1 0 1 0 w4

4 × w5
3

(
w8 − w4

2

)
× 0

249 A1 + A4 + D7 + E6 1 [4, 0, 30] 1 0 1 0 w5
3 × w6

2 0 ×
(

w4
2 − w6

)
250 D5 + D7 + E6 1 [4, 0, 12] 1 0 1 0 w4

4 × w8
2 0 × w8

4
251 A4 + D8 + E6 1 [8, 2, 8] 1 0 1 0

(
w8 − w4

2

)
× w5

3
w4
4 × 0

252 A1 + A2 + D9 + E6 1 [6, 0, 12] 1 0 1 0 w5
3 ×

(
w4
2 − w6

)
0 × w6

2
253 A3 + D9 + E6 1 [4, 0, 12] 1 0 1 0 0 × w8

2
w5
3 × 0

254 A1 + D11 + E6 1 [2, 0, 12] 1 0 1 0 w5
3 × w8

2 0 × 0

255 D12 + E6 1 [4, 2, 4] 1 0 1 0 w4
4 × w8

2

(
w3 − 5w4

4

)
× 0

256 2A2 + 2E7 1 [6, 0, 6] 1 0 1 0 w6
2 × 0 0 × w6

2
257 A1 + A3 + 2E7 Z2 [2, 0, 4] 1 0 1 0 w6

2 × w6
2 0 × 0

258 A4 + 2E7 1 [4, 2, 6] 1 0 1 0
(

w4 − 4w5
3

)
× 0 w5

3 × w6
2

259 A1 + 2A3 + A4 + E7 Z2 [4, 0, 20] 1 0 1 0 w6
2 × w6

2

(
w2
4 − 3w6

4

)
× 0

260 2A2 + A3 + A4 + E7 1 [12, 0, 30] 1 0 1 0 w5
3 × w6

2

(
w2
3 − 2w5

3

)
× 0

261 2A3 + A5 + E7 Z2 [4, 0, 12] 1 0 1 0 w6
2 × w6

2

(
w7
3 − 2w6

3

)
× 0

262 A1 + A2 + A3 + A5 + E7 Z2 [6, 0, 12] 1 0 1 0 w4
4 × w6

2

(
w7
2 − w4

2

)
× 0

263 2A1 + A4 + A5 + E7 Z2 [8, 2, 8] 1 0 1 0 w4
4 × w6

2

(
w2
2 − 3w4

4

)
× 0

264 A2 + A4 + A5 + E7 1 [6, 0, 30] 1 0 1 0 w3
5 × 0 0 × w6

2
265 A1 + 2A2 + A6 + E7 1 [6, 0, 42] 1 0 1 0 w2

6 × 0 0 × w6
2

266 A2 + A3 + A6 + E7 1 [4, 0, 42] 1 0 1 0 w6
2 × w6

2

(
w3
3 − 5w6

6

)
× 0

267 A1 + A4 + A6 + E7 1
[2, 0, 70] 1 0 1 0 w3

5 × w6
2 0 × 0

[8, 2, 18] 1 0 1 0 w5
3 × w6

2

(
w3
2 − 5w5

6

)
× 0

268 A5 + A6 + E7 1 [4, 2, 22] 1 0 1 0 w3
5 × w6

2

(
w1 − 3w3

5

)
× 0

269 2A2 + A7 + E7 1 [6, 0, 24] 1 0 1 0
(

w3
3 − 5w6

6

)
× w6

2
w6
2 × 0

270 2A1 + A2 + A7 + E7 Z2 [2, 0, 24] 1 0 1 0 w2
6 × w6

2 0 × 0

271 A1 + A3 + A7 + E7 Z2 [4, 0, 8] 1 0 1 0 w2
6 × w6

2

(
w7 − 2w2

3

)
× 0

272 A4 + A7 + E7 1 [6, 2, 14] 1 0 1 0 w3
5 × w5

3 0 ×
(

w4 − 4w5
3

)
273 A1 + A2 + A8 + E7 1 [6, 0, 18] 1 0 1 0 0 × w7

4
w6
2 × 0

274 A3 + A8 + E7 1 [4, 0, 18] 1 0 1 0 w6
2 × w6

2

(
w1
2 − 3w6

4

)
× 0

275 2A1 + A9 + E7 Z2 [2, 0, 10] 1 0 1 0 w6
2 × w7

4 0 × 0

276 A2 + A9 + E7
Z2 [4, 1, 4] 1 0 1 0

(
w1
2 − 3w6

4

)
× w6

2
w6
2 × 0

1 [6, 0, 10] 1 0 1 0 w1
3 × 0 0 × w6

2

277 A1 + A10 + E7 1
[2, 0, 22] 1 0 1 0 w1

3 × w6
2 0 × 0

[6, 2, 8] 1 0 1 0 w5
3 × w7

4

(
w4 − 4w5

3

)
× 0

278 A11 + E7 1 [4, 0, 6] 1 0 1 0 w1
3 × w5

3 0 ×
(

w4 − 4w5
3

)
279 D4 + 2E7 Z2 [2, 0, 2] 1 0 1 −1 w6

2 × w6
2 0 × 0

280 A2 + A4 + D5 + E7 1 [6, 0, 20] 1 0 1 0 w4
4 × 0 0 × w6

2
281 A1 + A5 + D5 + E7 Z2 [2, 0, 12] 1 0 1 0 w4

4 × w6
2 0 × 0

282 A6 + D5 + E7 1 [6, 2, 10] 1 0 1 0 w3
5 × w6

2

(
w2 − 6w3

5

)
× 0

283 A2 + A3 + D6 + E7 Z2 [4, 0, 6] 1 0 1 0 w6
2 × w6

2 0 ×
(

w6
2 − w8

2

)
284 A5 + D6 + E7 Z2 [4, 2, 4] 1 0 1 0 w4

4 × w6
2

(
w8 − w4

2

)
× 0

285 D5 + D6 + E7 Z2 [2, 0, 4] 1 0 1 −1 w6
2 × w4

4 0 × 0

286 A1 + A3 + D7 + E7 Z2 [4, 0, 4] 1 0 1 0 w6
2 × w6

2

(
w4
2 − w6

)
× 0
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287 A4 + D7 + E7 1 [2, 0, 20] 1 0 1 −1 w6
2 × w3

5 0 × 0
288 A1 + A2 + D8 + E7 Z2 [2, 0, 6] 1 0 1 −1 w6

2 × w2
6 0 × 0

289 A2 + D9 + E7 1 [4, 0, 6] 1 0 1 0 0 × w8
2

w6
2 × 0

290 A1 + D10 + E7 Z2 [2, 0, 2] 1 0 1 0 w6
2 × w8

2 0 × 0
291 D11 + E7 1 [2, 0, 4] 1 0 1 −1 w6

2 × w1
3 0 × 0

292 A2 + A3 + E6 + E7 1 [6, 0, 12] 1 0 1 0 w5
3 × 0 0 × w6

2
293 A1 + A4 + E6 + E7 1 [2, 0, 30] 1 0 1 0 w5

3 × w6
2 0 × 0

294 A5 + E6 + E7 1 [6, 0, 6] 1 0 1 0 w5
3 × w5

3

(
w4 − 4w5

3

)
× 0

295 D5 + E6 + E7 1 [2, 0, 12] 1 0 1 −1 w6
2 × w5

3 0 × 0
296 2A1 + 2E8 1 [2, 0, 2] 1 0 1 0 0 × 0 0 × 0
297 A2 + 2E8 1 [2, 1, 2] 1 0 1 −1 0 × 0 0 × 0

298 2A2 + 2A3 + E8 1 [12, 0, 12] 1 0 1 0 w5
3 × 0

(
w2
3 − 2w5

3

)
× 0

299 2A1 + 2A4 + E8 1 [10, 0, 10] 1 0 1 0 w4
4 × 0

(
w2
2 − 3w4

4

)
× 0

300 A1 + A2 + A3 + A4 + E8 1 [6, 0, 20] 1 0 1 0 w4
4 × 0

(
w4
2 − w7

2

)
× 0

301 2A5 + E8 1 [6, 0, 6] 1 0 1 0 w3
5 × 0

(
w1 − 3w3

5

)
× 0

302 A2 + A3 + A5 + E8 1 [6, 0, 12] 1 0 1 0 w5
3 × 0

(
w1
2 − w5

2

)
× 0

303 A1 + A4 + A5 + E8 1 [2, 0, 30] 1 0 1 0 w3
5 × 0 0 × 0

304 2A2 + A6 + E8 1 [6, 3, 12] 1 0 1 0
(

w3
3 − 5w6

6

)
× 0 w6

2 × 0

305 2A1 + A2 + A6 + E8 1 [2, 0, 42] 1 0 1 0 w2
6 × 0 0 × 0

306 A1 + A3 + A6 + E8 1 [6, 2, 10] 1 0 1 0 w2
6 × 0

(
w7 − 2w2

3

)
× 0

307 A4 + A6 + E8 1 [2, 1, 18] 1 0 1 −1 0 × w3
5 0 × 0

308 A1 + A2 + A7 + E8 1 [2, 0, 24] 1 0 1 −1 0 × w2
6 0 × 0

309 2A1 + A8 + E8 1 [2, 0, 18] 1 0 1 0 w7
4 × 0 0 × 0

310 A2 + A8 + E8 1 [6, 3, 6] 1 0 1 0
(

w1
2 − 3w6

4

)
× 0 w6

2 × 0

311 A1 + A9 + E8 1 [2, 0, 10] 1 0 1 0 w1
3 × 0 0 × 0

312 A10 + E8 1 [2, 1, 6] 1 0 1 −1 0 × w1
3 0 × 0

313 2D5 + E8 1 [4, 0, 4] 1 0 1 0 w4
4 × w4

4 0 × − w4
4

314 A1 + A4 + D5 + E8 1 [2, 0, 20] 1 0 1 0 w4
4 × 0 0 × 0

315 A5 + D5 + E8 1 [2, 0, 12] 1 0 1 −1 0 × w4
4 0 × 0

316 2A2 + D6 + E8 1 [6, 0, 6] 1 0 1 0 w6
2 × 0

(
w6
2 − w8

2

)
× 0

317 A4 + D6 + E8 1 [4, 2, 6] 1 0 1 0
(

w8 − w4
2

)
× 0 w4

4 × 0

318 A1 + A2 + D7 + E8 1 [4, 0, 6] 1 0 1 0
(

w4
2 − w6

)
× 0 w6

2 × 0

319 A1 + D9 + E8 1 [2, 0, 4] 1 0 1 0 w8
2 × 0 0 × 0

320 D10 + E8 1 [2, 0, 2] 1 0 1 −1 0 × w8
2 0 × 0

321 A1 + A3 + E6 + E8 1 [2, 0, 12] 1 0 1 0 w5
3 × 0 0 × 0

322 A4 + E6 + E8 1 [2, 1, 8] 1 0 1 −1 0 × w5
3 0 × 0

323 D4 + E6 + E8 1 [4, 2, 4] 1 0 1 0
(

w4
2 − w8

2

)
× 0

(
w4
2 − w8

)
× 0

324 A1 + A2 + E7 + E8 1 [2, 0, 6] 1 0 1 0 w6
2 × 0 0 × 0

325 A3 + E7 + E8 1 [2, 0, 4] 1 0 1 −1 w6
2 × 0 0 × 0

Table D.2: Data for all allowed groups of maximal rank, for the E8 × E′
8 heterotic on T 2.

# L E11 E21 E22 E12 A1 A2
1 6A3 1 0 3

2
1
4

1
4 (w6 + w10) 1

4 (w2 − w6 − w10 + w14)
2 2A1 + 4A4 1 0 1 − 1

4
1
4 (w3 + w13) w1 + w15 + 1

5 (w8 − 3w3 − 3w13)
13 3A6 1 0 1 0 1

2 w6
1
3 (2w6 − w9 − w15)

21 2A1 + 2A5 + A6 1 0 1 0 1
14 (3w4 + 4w11) 1

28 (14w2 − 15w4 − 6w11 + 14w15)
65 A3 + A6 + A9 1 0 1 0 1

2 w6
1

30 (3w6 − 16w15)
177 2D5 + D8 1 0 1 0 1

2 (w4 + w12) 1
4 (w4 − w12)− w9 − w11

196 A2 + D10 + D6 1 − 1
2 1 0 1

2 w6 0
219 3E6 1 0 1 − 3

4
1
4 (w11 + w5) 0

297 A2 + 2E8 1 0 1 − 1
4

1
4 (w7 + w9) 0

319 A1 + D9 + E8
5
4 0 1 0 1

2 w9 0

Table D.3: Data for some groups of maximal rank, for the HO theory on T 2.
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i Gauge group root lattice E −a
1 A9 2 (−1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,−

5
6)

2 A1 + A2 + A6 2 (0, 0, 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,−

5
6)

3 A4 + A5 2 (0, 0, 0, 1
5 ,

1
5 ,

1
5 ,

1
5 ,−

4
5)

4 D5 + A4 2 (0, 0, 0, 0, 1
4 ,

1
4 ,

1
4 ,−

3
4)

5 E6 + A3 2 (0, 0, 0, 0, 0, 1
3 ,

1
3 ,−

2
3)

6 E7 + A2 2 (0, 0, 0, 0, 0, 0, 1
2 ,−

1
2)

7 A1 + A8 2 (1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,−

7
8)

8 D9 2 (0, 0, 0, 0, 0, 0, 0,−1)
0 E8 + A1 2 (0, 0, 0, 0, 0, 0, 0, 0)

Table D.4: Maximal enhancements in the nine-dimensional CHL string, obtained by deleting the ith
node in the GDD shown in Figure 4.1. All groups arise at level 2. The Wilson line is always of the form
a = wi/κi (cf. Table 2.1).

# L H E11 E21 E22 E12 a1 a2

1 2A2 + 2A3 Z2 2 0 3 1 w3
4

w3
4 − w2

3

2 2A5 Z2 2 0 1 −1 w6
2

w7
3 − 2w6

3

3 2A1 + A3 + A5 Z
2
2 2 0 2 2 0 w7

3 − w6
6

4 A1 + A4 + A5 Z2 2 0 2 2 0 2w7
5 − w5

5

5 2A2 + A6 1 2 0 3 7
2

w2
6 0

6 A1 + A2 + A7 Z2 2 0 3
2 2 0 w2

6

7 A1 + A9 Z2 2 0 3 −2 0 w3
3

8 A1 + 2A2 + A4 + C1 1 2 0 1 0 w2
6

w2
3 − 2w5

3

9 A1 + A3 + A5 + C1 Z2 2 0 1 0 w8
2

5w8
6 − w3

3

10 A4 + A5 + C1 1 2 0 1 0 w3
5 0

11 A1 + A2 + A6 + C1 1 2 0 1 0 w2
6 0

12 2A1 + A7 + C1 Z2 2 0 1 0 w8
2

w2
3 − 2w8

3

13 A1 + A8 + C1 1 2 0 1 0 w7
4 0

14 A9 + C1 1 2 0 1 0 w1
3 0

15 2A1 + 2A3 + C2 Z
2
2 2 0 1 0 w8

2
w3
4 − w8

4

16 A1 + A3 + A4 + C2 Z2 2 0 1 0 w2
5

w2
2 − w1

17 2A4 + C2 1 2 0 1 0 w4 − 2w3
3

w3
5

18 3A1 + A5 + C2 Z
2
2 2 0 1 0 w8

2
w2
4 − 3w8

8

19 A3 + A5 + C2 Z2 2 0 1 2 0 w3
8

20 A2 + A6 + C2 1 2 0 1 2 0 w7
7

21 A8 + C2 1 2 0 1 −2 0 w3
7

22 2A2 + A3 + C3 1 2 0 1 0 w3
4

w3
2 − w2

3

23 A1 + A2 + A4 + C3 1 2 0 1 0 w2
10 − w2

6

24 A2 + A5 + C3 1 2 0 1 0 w6
2

w7
3 − 2w6

3

25 A1 + A6 + C3 1 2 0 1 0 w2
6 w8 − w2

3

26 2A1 + 2A2 + C4 Z2 2 0 1 0 w4
6

w2
6

27 A1 + A2 + A3 + C4 Z2 2 0 1 0 w7
2 − w4

3
w4
4

28 2A1 + A4 + C4 Z2 2 0 1 0 w2
5

w2
10

29 A1 + A4 + C5 1 2 0 1 0 0 w3
5

30 A5 + C5 1 2 0 1 0 w7
3 − w6

6
w6
2

31 2A1 + A2 + C6 Z2 2 0 1 0 0 w2
6

# L H E11 E21 E22 E12 a1 a2

32 2A2 + C6 1 2 0 1 0 w2
2 − w1

w2
6

33 A1 + A3 + C6 Z2 2 0 1 0 w3
4

w3
8

34 A4 + C6 1 2 0 1 0 w6
2

w3
5

35 A1 + A2 + C7 1 2 0 1 −2 w2
6 0

36 2A1 + C8 Z2 2 0 1 0 0 w7
4

37 A2 + C8 Z2 2 −1 1 0 0 w2
6

38 A1 + C9 1 2 0 1 0 0 w1
3

39 C10 1 2 0 1 −2 w1
3 0

40 2D5 Z2 2 0 1 −1 0 w4
4

41 A4 + C1 + D5 1 2 0 1 0 w4
4 0

42 A1 + A2 + C2 + D5 Z2 2 0 1 0 w4
6

w4
4

43 A1 + C4 + D5 Z2 2 0 1 0 0 w4
4

44 C5 + D5 1 2 0 1 −2 w4
4 0

45 A1 + A3 + D6 Z
2
2 2 0 2 2 0 w3

4

46 A2 + C2 + D6 Z2 2 0 1 2 0 w4
6

47 C4 + D6 Z2 2 0 1 0 w8
2

w6
2

48 A1 + C2 + D7 Z2 2 0 1 0 w8
2

w8
4

49 2A1 + D8 Z
2
2 2 0 1 −1 w4

2 − w6
w6
2

50 C1 + D9 1 2 0 1 0 w8
2 0

51 A4 + E6 1 2 0 1 −1 0 w5
3

52 A1 + A2 + C1 + E6 1 2 0 1 0 w5
6

w5
3

53 A3 + C1 + E6 1 2 0 1 0 w5
3 0

54 A1 + C3 + E6 1 2 0 1 0 0 w5
3

55 C4 + E6 1 2 0 1 −2 w5
3 0

56 A1 + A2 + E7 Z2 2 0 1 −1 0 w6
2

57 A2 + C1 + E7 1 2 0 1 0 w6
2 0

58 A1 + C2 + E7 Z2 2 0 1 0 0 w6
2

59 C3 + E7 1 2 0 1 0 w6
2

w6
2

60 A1 + C1 + E8 1 2 0 1 0 0 0

61 C2 + E8 1 2 0 1 −2 0 0

Table D.5: All groups of maximal enhancement in the 8-dimensional CHL string. The Wilson lines
are given in terms of the fundamental weights of E8, see Table 2.1. ADE groups arise at level 2 and C
groups at level 1.
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# L H k

1 2A2 + 2A3 Z2 0 0 2 2
2 2A5 Z2 3 3

3 2A1 + A3 + A5 Z2 × Z2
0 1 0 3
1 0 2 3

4 A1 + A4 + A5 Z2 1 0 3
6 A1 + A2 + A7 Z2 0 0 4
7 A1 + A9 Z2 1 5
9 A1 + A3 + A5 + C1 Z2 1 2 3 0
12 2A1 + A7 + C1 Z2 1 1 4 0

15 2A1 + 2A3 + C2 Z2 × Z2
0 1 0 2 1
1 0 2 0 1

16 A1 + A3 + A4 + C2 Z2 1 2 0 1

18 3A1 + A5 + C2 Z2 × Z2
0 0 0 3 1
1 1 1 0 1

19 A3 + A5 + C2 Z2 0 3 1
26 2A1 + 2A2 + C4 Z2 1 1 0 0 1
27 A1 + A2 + A3 + C4 Z2 0 0 2 1

# L H k

28 2A1 + A4 + C4 Z2 1 1 0 1
31 2A1 + A2 + C6 Z2 0 1 0 1
33 A1 + A3 + C6 Z2 1 0 1
36 2A1 + C8 Z2 0 0 1
37 A2 + C8 Z2 0 1
40 2D5 Z2 2 2
42 A1 + A2 + C2 + D5 Z2 1 0 1 2
43 A1 + C4 + D5 Z2 0 1 2

45 A1 + A3 + D6 Z2 × Z2
0 2 (1, 1)
1 0 (0, 1)

46 A2 + C2 + D6 Z2 0 1 (1, 0)
47 C4 + D6 Z2 1 (1, 1)
48 A1 + C2 + D7 Z2 1 1 2

49 2A1 + D8 Z2 × Z2
0 0 (0, 1)
1 1 (1, 0)

56 A1 + A2 + E7 Z2 1 0 1
58 A1 + C2 + E7 Z2 0 1 1

Table D.6: Maximal enhancement groups with non-trivial global structure for the 8-dimensional CHL
string. The k’s are the generators of H. All ADE groups arise at level 2 while C groups arise at level 1.

D.2 Maximal enhancements for 7d
In this appendix we record the maximally enhanced gauge groups realized in the 7d Zm-triples con-
structed from the heterotic string. The algebras and the fundamental groups are presented in Appendix
D.2.1, while the generators of the fundamental group are presented in Appendix D.2.2. The way in
which the data is encoded is explained in Section 5.5.

D.2.1 Maximally enhanced algebras and fundamental groups
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1 A1A6
3 Z

2
4 48 A4

2A5A6 Z3 95 A2
1A2

5A7 Z2 142 A2
1A4A5A8 189 A4

1A6A9 Z2

2 A5
3A4 Z4 49 A1A2

2A3A5A6 96 A2
1A2

5A7 Z
2
2 143 A2A4A5A8 190 A2

1A2A6A9

3 A1A2
2A2

3A2
4 50 A2

1A2
3A5A6 Z2 97 A2A2

5A7 144 A2A4A5A8 Z3 191 A2
2A6A9

4 A2
1A3

3A2
4 Z2 51 A2A2

3A5A6 98 A2
1A2

2A6A7 145 A1A2
5A8 192 A1A3A6A9

5 A2A3
3A2

4 52 A2
1A2A4A5A6 99 A3

2A6A7 146 A3
1A2A6A8 193 A1A3A6A9 Z2

6 A2
2A3A3

4 53 A2
2A4A5A6 100 A3

1A3A6A7 Z2 147 A1A2
2A6A8 194 A4A6A9

7 A3
1A4

4 Z5 54 A1A3A4A5A6 101 A1A2A3A6A7 148 A2
1A3A6A8 195 A3

1A7A9 Z2

8 A1A2A4
4 Z5 55 A2

4A5A6 102 A2
3A6A7 149 A2A3A6A8 196 A1A2A7A9

9 A3A4
4 Z5 56 A3

1A2
5A6 Z2 103 A2

3A6A7 Z2 150 A1A4A6A8 197 A3A7A9

10 A4
2A2

3A5 Z3 57 A1A2A2
5A6 104 A2

1A4A6A7 151 A5A6A8 198 A2
1A8A9

11 A2
1A2A2

3A4A5 Z2 58 A3A2
5A6 105 A2A4A6A7 152 A4

1A7A8 Z2 199 A2A8A9

12 A2
2A2

3A4A5 59 A3A2
5A6 Z2 106 A1A5A6A7 153 A2

1A2A7A8 200 A1A2
9

13 A1A3
3A4A5 Z2 60 A3

1A2
2A2

6 107 A1A5A6A7 Z2 154 A2
2A7A8 201 A1A2

9 Z5

14 A3
1A3A2

4A5 Z2 61 A1A3
2A2

6 108 A2
6A7 155 A1A3A7A8 202 A2

1A2
2A3A10

15 A1A2A3A2
4A5 62 A2

1A2A3A2
6 109 A5

1A2
7 Z2Z4 156 A4A7A8 203 A3

2A3A10

16 A2
3A2

4A5 63 A2
2A3A2

6 110 A3
1A2A2

7 Z4 157 A3
1A2

8 204 A1A2A2
3A10

17 A2
1A3

4A5 64 A1A2
3A2

6 111 A1A2
2A2

7 158 A3
1A2

8 Z3 205 A3
3A10

18 A1A4
2A2

5 Z
2
3 65 A3

1A4A2
6 112 A1A2

2A2
7 Z2 159 A1A2A2

8 206 A3
1A2A4A10

19 A2
1A2

2A3A2
5 Z6 66 A1A2A4A2

6 113 A2
1A3A2

7 Z2 160 A1A2A2
8 Z3 207 A1A2

2A4A10

20 A3
2A3A2

5 Z3 67 A3A4A2
6 114 A2

1A3A2
7 Z

2
2 161 A3A2

8 208 A2
1A3A4A10

21 A3
2A3A2

5 Z6 68 A2
1A5A2

6 115 A2
1A3A2

7 Z2Z4 162 A3A2
8 Z3 209 A2A3A4A10

22 A3
1A2

3A2
5 Z

2
2 69 A2A5A2

6 116 A2
1A3A2

7 Z8 163 A3
1A2

2A3A9 Z2 210 A1A2
4A10

23 A1A2A2
3A2

5 Z2 70 A1A3
6 Z7 117 A2A3A2

7 164 A1A3
2A3A9 211 A2

1A2A5A10

24 A3
3A2

5 Z2 71 A2
1A2

2A2
3A7 Z4 118 A2A3A2

7 Z2 165 A1A3
2A3A9 Z2 212 A2

2A5A10

25 A1A2
2A4A2

5 Z3 72 A3
1A3

3A7 Z2Z4 119 A2A3A2
7 Z4 166 A2

1A2A2
3A9 Z2 213 A1A3A5A10

26 A2
1A3A4A2

5 Z2 73 A1A2A3
3A7 Z4 120 A1A4A2

7 167 A2
2A2

3A9 214 A4A5A10

27 A2A3A4A2
5 74 A4

3A7 Z4 121 A1A4A2
7 Z2 168 A1A3

3A9 Z2 215 A3
1A6A10

28 A2A3A4A2
5 Z2 75 A4

3A7 Z2Z4 122 A5A2
7 169 A4

1A2A4A9 Z2 216 A1A2A6A10

29 A1A2
4A2

5 76 A3
1A2A3A4A7 Z2 123 A5A2

7 Z2 170 A2
1A2

2A4A9 217 A3A6A10

30 A4
1A3

5 Z2Z6 77 A1A2
2A3A4A7 124 A2

1A3
2A3A8 Z3 171 A3

2A4A9 218 A2
1A7A10

31 A2
1A2A3

5 Z6 78 A2
1A2

3A4A7 Z2 125 A4
2A3A8 Z3 172 A3

1A3A4A9 Z2 219 A2A7A10

32 A2
2A3

5 Z3 79 A2
1A2

3A4A7 Z4 126 A1A2
2A2

3A8 173 A1A2A3A4A9 220 A1A8A10

33 A2
2A3

5 Z
2
3 80 A2A2

3A4A7 127 A2
1A3

3A8 Z2 174 A1A2A3A4A9 Z2 221 A9A10

34 A1A3A3
5 Z2 81 A2A2

3A4A7 Z2 128 A2A3
3A8 175 A2

3A4A9 222 A4
1A2

2A11 Z6

35 A1A3A3
5 Z6 82 A4

1A2
4A7 Z2 129 A1A3

2A4A8 Z3 176 A2
1A2

4A9 223 A2
1A3

2A11 Z3

36 A4A3
5 83 A2

1A2A2
4A7 130 A2

1A2A3A4A8 177 A2
1A2

4A9 Z5 224 A2
1A3

2A11 Z6

37 A4A3
5 Z3 84 A2

2A2
4A7 131 A2

2A3A4A8 178 A2A2
4A9 Z5 225 A4

2A11 Z3

38 A1A3
2A2

3A6 85 A1A3A2
4A7 132 A1A2

3A4A8 179 A3
1A2A5A9 Z2 226 A3

1A2A3A11 Z2

39 A2
1A2

2A3A4A6 86 A4
1A3A5A7 Z

2
2 133 A3

1A2
4A8 180 A1A2

2A5A9 227 A3
1A2A3A11 Z4

40 A3
2A3A4A6 87 A2

1A2A3A5A7 Z2 134 A1A2A2
4A8 181 A1A2

2A5A9 Z2 228 A1A2
2A3A11

41 A1A2A2
3A4A6 88 A2

2A3A5A7 135 A3A2
4A8 182 A2

1A3A5A9 Z2 229 A1A2
2A3A11 Z2

42 A3
3A4A6 89 A1A2

3A5A7 Z2 136 A2
1A2

2A5A8 Z3 183 A2A3A5A9 230 A1A2
2A3A11 Z3

43 A3
1A2A2

4A6 90 A1A2
3A5A7 Z

2
2 137 A3

2A5A8 Z3 184 A2A3A5A9 Z2 231 A1A2
2A3A11 Z6

44 A1A2
2A2

4A6 91 A3
1A4A5A7 Z2 138 A3

1A3A5A8 Z2 185 A1A4A5A9 232 A2
1A2

3A11 Z2

45 A2
1A3A2

4A6 92 A1A2A4A5A7 139 A1A2A3A5A8 186 A1A4A5A9 Z2 233 A2
1A2

3A11 Z4

46 A2A3A2
4A6 93 A1A2A4A5A7 Z2 140 A1A2A3A5A8 Z3 187 A2

5A9 234 A2A2
3A11

47 A1A3
4A6 94 A3A4A5A7 141 A2

3A5A8 188 A2
5A9 Z2 235 A2A2

3A11 Z2
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236 A2A2
3A11 Z4 283 A6A13 330 A2A3A4A6D4 377 A2A3

3D2
4 Z

2
2 424 A2

1A4A8D5

237 A4
1A4A11 Z2 284 A3

1A2A14 331 A1A2
4A6D4 378 A1A2

5D2
4 Z

2
2 425 A2A4A8D5

238 A2
1A2A4A11 285 A3

1A2A14 Z3 332 A1A3A5A6D4 Z2 379 A2
2A7D2

4 Z2 426 A1A5A8D5

239 A2
1A2A4A11 Z2 286 A1A2

2A14 333 A4A5A6D4 380 A3
1D4

4 Z
4
2 427 A6A8D5

240 A2
2A4A11 287 A1A2

2A14 Z3 334 A1A2A2
6D4 381 A1A2

2A3
3D5 Z4 428 A3

1A2A9D5 Z2

241 A2
2A4A11 Z3 288 A2

1A3A14 335 A3A2
6D4 382 A2A4

3D5 Z4 429 A1A2
2A9D5

242 A1A3A4A11 289 A2A3A14 336 A2
1A3

2A7D4 Z2 383 A2
2A2

3A4D5 430 A1A2
2A9D5 Z2

243 A1A3A4A11 Z2 290 A2A3A14 Z3 337 A1A2
2A3A7D4 Z2 384 A1A3

3A4D5 Z4 431 A2
1A3A9D5 Z2

244 A2
4A11 291 A1A4A14 338 A2

1A2
3A7D4 Z

2
2 385 A2

1A2
2A2

4D5 432 A2A3A9D5

245 A3
1A5A11 Z2 292 A5A14 339 A2

1A2
3A7D4 Z2Z4 386 A1A2A3A2

4D5 433 A1A4A9D5

246 A3
1A5A11 Z6 293 A4

1A15 Z4 340 A2A2
3A7D4 Z2 387 A2

1A3
4D5 434 A1A4A9D5 Z2

247 A1A2A5A11 294 A2
1A2A15 341 A2A2

3A7D4 Z4 388 A3
1A2

3A5D5 Z
2
2 435 A5A9D5

248 A1A2A5A11 Z3 295 A2
1A2A15 Z2 342 A2

1A2A4A7D4 Z2 389 A1A2A2
3A5D5 Z2 436 A5A9D5 Z2

249 A3A5A11 296 A2
1A2A15 Z4 343 A2

2A4A7D4 390 A2
1A3A4A5D5 Z2 437 A2

1A2A10D5

250 A3A5A11 Z2 297 A2
2A15 344 A1A3A4A7D4 Z2 391 A2A3A4A5D5 438 A2

2A10D5

251 A3A5A11 Z3 298 A2
2A15 Z2 345 A3

1A5A7D4 Z
2
2 392 A1A2

4A5D5 439 A1A3A10D5

252 A3A5A11 Z6 299 A1A3A15 346 A1A2A5A7D4 Z2 393 A4
1A2

5D5 Z
2
2 440 A4A10D5

253 A2
1A6A11 300 A1A3A15 Z2 347 A3A5A7D4 Z2 394 A2

2A2
5D5 Z3 441 A3

1A11D5 Z2

254 A2
1A6A11 Z2 301 A1A3A15 Z4 348 A2

1A6A7D4 Z2 395 A2
2A2

5D5 Z6 442 A3
1A11D5 Z4

255 A2A6A11 302 A4A15 349 A2A6A7D4 396 A1A3A2
5D5 Z2 443 A1A2A11D5

256 A1A7A11 303 A4A15 Z2 350 A1A2
7D4 Z4 397 A4A2

5D5 444 A1A2A11D5 Z2

257 A8A11 304 A3
1A16 351 A1A3

2A8D4 Z3 398 A4A2
5D5 Z2 445 A1A2A11D5 Z4

258 A3
1A2

2A12 305 A1A2A16 352 A1A2A4A8D4 399 A1A2
2A3A6D5 446 A3A11D5 Z2

259 A1A3
2A12 306 A3A16 353 A2A5A8D4 Z3 400 A2A2

3A6D5 447 A3A11D5 Z4

260 A2
1A2A3A12 307 A2

1A17 354 A1A6A8D4 401 A2
1A2A4A6D5 448 A2

1A12D5

261 A2
2A3A12 308 A2

1A17 Z3 355 A2
1A2

2A9D4 Z2 402 A2
2A4A6D5 449 A2A12D5

262 A1A2
3A12 309 A2A17 356 A1A2A3A9D4 Z2 403 A1A3A4A6D5 450 A1A13D5

263 A3
1A4A12 310 A2A17 Z3 357 A2

1A4A9D4 Z2 404 A2
4A6D5 451 A1A13D5 Z2

264 A1A2A4A12 311 A1A18 358 A2A4A9D4 405 A1A2A5A6D5 452 A14D5

265 A3A4A12 312 A19 359 A1A5A9D4 Z2 406 A3A5A6D5 453 A2
2A2

3D4D5 Z2

266 A2
1A5A12 313 A5

3D4 Z2Z4 360 A6A9D4 407 A2
1A2

6D5 454 A3
2A4D4D5

267 A2A5A12 314 A2A3
3A4D4 Z2 361 A1A2

2A10D4 408 A2A2
6D5 455 A1A2

2A5D4D5 Z2

268 A1A6A12 315 A1A3
2A2

4D4 362 A2A3A10D4 409 A3
1A2

2A7D5 Z2 456 A2
1A3A5D4D5 Z2

2

269 A7A12 316 A2
2A3A2

4D4 363 A1A4A10D4 410 A2
1A2A3A7D5 Z2 457 A1A4A5D4D5 Z2

270 A4
1A2A13 Z2 317 A1A2A3

4D4 364 A5A10D4 411 A2
1A2A3A7D5 Z4 458 A2

5D4D5 Z2

271 A2
1A2

2A13 318 A2
1A2A2

3A5D4 Z
2
2 365 A2

1A2A11D4 Z2 412 A2
2A3A7D5 459 A2

2A6D4D5

272 A2
1A2

2A13 Z2 319 A1A3
3A5D4 Z

2
2 366 A2

2A11D4 Z3 413 A2
2A3A7D5 Z2 460 A1A2A7D4D5 Z2

273 A3
2A13 320 A1A2A3A4A5D4 Z2 367 A2

2A11D4 Z6 414 A1A2
3A7D5 Z4 461 A1A9D4D5 Z2

274 A3
1A3A13 Z2 321 A2A2

4A5D4 368 A1A3A11D4 Z2 415 A3
1A4A7D5 Z2 462 A2

1A2
2A3D2

5 Z2

275 A1A2A3A13 322 A3
1A2A2

5D4 Z
2
2 369 A1A3A11D4 Z4 416 A1A2A4A7D5 463 A1A2A2

3D2
5 Z4

276 A1A2A3A13 Z2 323 A1A2
2A2

5D4 Z6 370 A4A11D4 Z2 417 A3A4A7D5 Z2 464 A1A2
2A4D2

5

277 A2
3A13 324 A2

1A3A2
5D4 Z

2
2 371 A1A2A12D4 418 A2

1A5A7D5 Z2 465 A1A2
4D2

5

278 A2
1A4A13 325 A1A4A2

5D4 Z2 372 A2
1A13D4 Z2 419 A2A5A7D5 466 A2

1A2A5D2
5 Z2

279 A2
1A4A13 Z2 326 A3

5D4 Z6 373 A2A13D4 420 A1A6A7D5 467 A1A3A5D2
5 Z2

280 A2A4A13 327 A3
5D4 Z2Z6 374 A1A14D4 421 A2

7D5 Z8 468 A4A5D2
5

281 A1A5A13 328 A3
3A6D4 Z2 375 A15D4 Z4 422 A3

2A8D5 Z3 469 A1A2A6D2
5

282 A1A5A13 Z2 329 A1A2
2A4A6D4 376 A2

1A3
3D2

4 Z
3
2 423 A1A2A3A8D5 470 A2

1A7D2
5 Z2
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471 A2
1A7D2

5 Z4 518 A5A8D6 565 A1D3
6 Z

2
2 612 A2

2A4D4D7 659 A2
2A7D8 Z2

472 A2A7D2
5 Z4 519 A2

1A2A9D6 Z2 566 A1A2A3
3D7 Z4 613 A1A2A5D4D7 Z2 660 A1A3A7D8 Z2

473 A1A8D2
5 520 A2

2A9D6 567 A4
3D7 Z4 614 A2A6D4D7 661 A4A7D8 Z2

474 A9D2
5 521 A2

2A9D6 Z2 568 A2
1A3

2A4D7 615 A1A7D4D7 Z2 662 A1A2A8D8

475 A2
1A2D3

5 Z2 522 A1A3A9D6 Z2 569 A1A2
2A3A4D7 616 A1A3

2D5D7 663 A2
1A9D8 Z2

476 A4D3
5 523 A4A9D6 570 A2

1A2
3A4D7 Z2 617 A2

2A3D5D7 664 A2A9D8

477 D4D3
5 Z2 524 A4A9D6 Z2 571 A2A2

3A4D7 618 A1A2A4D5D7 665 A1A10D8

478 A1A3
2A2

3D6 Z2 525 A1A2A10D6 572 A2
1A2A2

4D7 619 A2
1A5D5D7 Z2 666 A11D8 Z2

479 A3
2A3A4D6 526 A3A10D6 573 A2

2A2
4D7 620 A2A5D5D7 667 A2

1A2A3D4D8 Z2
2

480 A1A2A2
3A4D6 Z2 527 A2

1A11D6 Z2 574 A1A3A2
4D7 621 A1A6D5D7 668 A2

2A3D4D8 Z2

481 A3
3A4D6 Z2 528 A2A11D6 575 A3

4D7 622 A7D5D7 Z2 669 A1A2
3D4D8 Z

2
2

482 A1A2
2A2

4D6 529 A2A11D6 Z2 576 A2
1A2A3A5D7 Z2 623 A1A2A3D6D7 Z2 670 A2

1A5D4D8 Z
2
2

483 A2A3A2
4D6 530 A1A12D6 577 A1A2

3A5D7 Z2 624 A2
3D6D7 Z2 671 A2

1A2
2D5D8 Z2

484 A4
2A5D6 Z3 531 A13D6 578 A3

1A4A5D7 Z2 625 A2A4D6D7 672 A3
1A3D5D8 Z

2
2

485 A3
1A2A3A5D6 Z2

2 532 A3
1A2

3D4D6 Z
3
2 579 A1A2A4A5D7 626 A1A5D6D7 Z2 673 A1A2A3D5D8 Z2

486 A1A2
2A3A5D6 Z2 533 A1A2A2

3D4D6 Z2
2 580 A3A4A5D7 627 A6D6D7 674 A2

1A4D5D8 Z2

487 A2
1A2

3A5D6 Z
2
2 534 A1A3A5D4D6 Z2

2 581 A2
1A2

5D7 Z2 628 A1D5D6D7 Z2 675 A1A5D5D8 Z2

488 A2A2
3A5D6 Z2 535 A4A5D4D6 Z2 582 A2

1A2
2A6D7 629 D2

6D7 Z2 676 A2
1D4D5D8 Z

2
2

489 A2
1A2A4A5D6 Z2 536 A2A7D4D6 Z2 583 A1A2A3A6D7 630 A1A2

2D2
7 677 A1D2

5D8 Z2

490 A2
2A4A5D6 537 A9D4D6 Z2 584 A2

3A6D7 631 A2
1A3D2

7 Z2 678 A3
1A2D6D8 Z

2
2

491 A1A3A4A5D6 Z2 538 A2
1A3D2

4D6 Z
3
2 585 A2

1A4A6D7 632 A2A3D2
7 679 A1A2

2D6D8 Z2

492 A2
4A5D6 539 A1A2

2A3D5D6 Z2 586 A2A4A6D7 633 A1A4D2
7 680 A2

1A3D6D8 Z
2
2

493 A3
1A2

5D6 Z
2
2 540 A2

1A2
3D5D6 Z

2
2 587 A1A5A6D7 634 A5D2

7 681 A2A3D6D8 Z2

494 A1A2A2
5D6 Z2 541 A2

2A4D5D6 588 A2
6D7 635 A3

1A2A2
3D8 Z

2
2 682 A1A4D6D8 Z2

495 A3A2
5D6 Z2 542 A1A3A4D5D6 Z2 589 A3

1A2A7D7 Z2 636 A1A2
2A2

3D8 Z2 683 A5D6D8 Z2

496 A3A2
5D6 Z

2
2 543 A2

4D5D6 590 A1A2
2A7D7 637 A2

1A3
3D8 Z

2
2 684 A1D4D6D8 Z

2
2

497 A1A3
2A6D6 544 A3

1A5D5D6 Z
2
2 591 A2

1A3A7D7 Z2 638 A2A3
3D8 Z2 685 D5D6D8 Z2

498 A2
2A3A6D6 545 A1A2A5D5D6 Z2 592 A2

1A3A7D7 Z4 639 A2
1A2A3A4D8 Z2 686 A2

1A2D7D8 Z2

499 A1A2
3A6D6 Z2 546 A3A5D5D6 Z2 593 A2A3A7D7 640 A2

2A3A4D8 687 A2
2D7D8

500 A1A2A4A6D6 547 A2A6D5D6 594 A2A3A7D7 Z2 641 A1A2
3A4D8 Z2 688 A1A3D7D8 Z2

501 A3A4A6D6 548 A1A7D5D6 Z2 595 A2A3A7D7 Z4 642 A1A2A2
4D8 689 A3

1D2
8 Z

2
2

502 A2
1A5A6D6 Z2 549 A8D5D6 596 A1A4A7D7 643 A4

1A2A5D8 Z
2
2 690 A1A2D2

8 Z2

503 A2A5A6D6 550 A1A3D4D5D6 Z2
2 597 A5A7D7 644 A3

1A3A5D8 Z
2
2 691 A3D2

8 Z
2
2

504 A1A2
6D6 551 A1A2D2

5D6 Z2 598 A2
1A2A8D7 645 A1A2A3A5D8 Z2 692 A1A3

2A3D9

505 A2
1A2

2A7D6 Z2 552 A4
1A3D2

6 Z
3
2 599 A1A3A8D7 646 A2

3A5D8 Z2 693 A2
2A2

3D9

506 A3
2A7D6 553 A2

1A2A3D2
6 Z

2
2 600 A4A8D7 647 A2

1A4A5D8 Z2 694 A2
1A2

2A4D9

507 A3
1A3A7D6 Z

2
2 554 A2

2A3D2
6 Z2 601 A3

1A9D7 Z2 648 A2A4A5D8 695 A3
2A4D9

508 A1A2A3A7D6 Z2 555 A1A2
3D2

6 Z
2
2 602 A1A2A9D7 649 A1A2

5D8 Z2 696 A1A2A3A4D9

509 A2
3A7D6 Z2 556 A3A4D2

6 Z2 603 A1A2A9D7 Z2 650 A1A2
5D8 Z

2
2 697 A2

1A2
4D9

510 A2
3A7D6 Z4 557 A2

1A5D2
6 Z

2
2 604 A3A9D7 651 A1A2

2A6D8 698 A2A2
4D9

511 A2
1A4A7D6 Z2 558 A2A5D2

6 Z2 605 A2
1A10D7 652 A2

1A3A6D8 Z2 699 A1A2
2A5D9

512 A2A4A7D6 559 A7D2
6 Z2 606 A2A10D7 653 A2A3A6D8 700 A2

1A3A5D9 Z2

513 A1A5A7D6 Z2 560 A3
1D4D2

6 Z
3
2 607 A1A11D7 654 A1A4A6D8 701 A2A3A5D9

514 A6A7D6 561 A1A2D4D2
6 Z

2
2 608 A1A11D7 Z2 655 A5A6D8 702 A1A4A5D9

515 A1A2
2A8D6 562 A3D4D2

6 Z
2
2 609 A1A11D7 Z4 656 A4

1A7D8 Z
2
2 703 A2

5D9

516 A2A3A8D6 563 A2
1D5D2

6 Z
2
2 610 A12D7 657 A2

1A2A7D8 Z2 704 A2
5D9 Z2

517 A1A4A8D6 564 A2D5D2
6 Z2 611 A2A2

3D4D7 Z2 658 A2
2A7D8 705 A2

1A2A6D9
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706 A2
2A6D9 753 A1A4D4D10 Z2 800 D7D12 Z2 847 A3A2

5E6 894 A1A2
4D4E6

707 A1A3A6D9 754 A5D4D10 Z2 801 A2
1A2

2D13 848 A3A2
5E6 Z2 895 A2

2A5D4E6 Z3

708 A4A6D9 755 A2
1A2D5D10 Z2 802 A1A2A3D13 849 A3A2

5E6 Z3 896 A1A3A5D4E6 Z2

709 A3
1A7D9 Z2 756 A2

2D5D10 803 A2
1A4D13 850 A3A2

5E6 Z6 897 A4A5D4E6

710 A1A2A7D9 757 A1A3D5D10 Z2 804 A2A4D13 851 A2
1A2A3A6E6 898 A1A2A6D4E6

711 A3A7D9 Z2 758 A4D5D10 805 A1A5D13 852 A2
2A3A6E6 899 A2

1A7D4E6 Z2

712 A2
1A8D9 759 A3

1D6D10 Z
2
2 806 A6D13 853 A1A2

3A6E6 900 A1A8D4E6

713 A2A8D9 760 A1A2D6D10 Z2 807 A1D5D13 854 A3
1A4A6E6 901 A9D4E6

714 A1A9D9 761 A3D6D10 Z2 808 D6D13 855 A1A2A4A6E6 902 A2
1A2

3D5E6 Z2

715 A1A9D9 Z2 762 A2
1D7D10 Z2 809 A3

1A2D14 Z2 856 A3A4A6E6 903 A2
1A2A4D5E6

716 A10D9 763 A2D7D10 810 A1A2
2D14 857 A2

1A5A6E6 904 A1A3A4D5E6

717 A1A5D4D9 Z2 764 A1D8D10 Z2 811 A1A2
2D14 Z2 858 A2A5A6E6 905 A2

4D5E6

718 A1A2
2D5D9 765 D9D10 812 A2

1A3D14 Z2 859 A1A2
6E6 906 A3

1A5D5E6 Z2

719 A1A4D5D9 766 A1A2
2A3D11 813 A2A3D14 860 A4

1A2A7E6 Z2 907 A3A5D5E6

720 A5D5D9 767 A2
1A2

3D11 Z2 814 A1A4D14 861 A3
1A3A7E6 Z2 908 A2

1A6D5E6

721 D2
5D9 768 A2A2

3D11 815 A1A4D14 Z2 862 A1A2A3A7E6 909 A2A6D5E6

722 A2
2D6D9 769 A2

1A2A4D11 816 A5D14 863 A2
1A4A7E6 910 A1A7D5E6

723 A1A3D6D9 Z2 770 A2
2A4D11 817 A1D4D14 Z2 864 A2A4A7E6 911 A8D5E6

724 A4D6D9 771 A1A3A4D11 818 D5D14 865 A1A5A7E6 912 A4D4D5E6

725 A1A2D7D9 772 A2
4D11 819 A2

1A2D15 866 A1A5A7E6 Z2 913 A1A2D2
5E6

726 A2
1D8D9 Z2 773 A3

1A5D11 Z2 820 A2
2D15 867 A6A7E6 914 A3D2

5E6

727 A1D2
9 774 A1A2A5D11 821 A1A3D15 868 A3

1A2A8E6 Z3 915 A2
2A3D6E6

728 A3
1A3

2D10 Z2 775 A3A5D11 822 A4D15 869 A1A2
2A8E6 Z3 916 A1A2

3D6E6 Z2

729 A2
1A2

2A3D10 Z2 776 A2
1A6D11 823 A3

1D16 Z2 870 A2
1A3A8E6 917 A1A2A4D6E6

730 A3
1A2

3D10 Z
2
2 777 A2A6D11 824 A1A2D16 871 A2A3A8E6 918 A3A4D6E6

731 A1A2A2
3D10 Z2 778 A1A7D11 825 A1A2D16 Z2 872 A2A3A8E6 Z3 919 A2

1A5D6E6 Z2

732 A3
3D10 Z2 779 A8D11 826 A3D16 Z2 873 A1A4A8E6 920 A2A5D6E6

733 A3
1A2A4D10 Z2 780 A2

2D4D11 827 A2
1D17 874 A5A8E6 921 A1A6D6E6

734 A1A2
2A4D10 781 A1A2D5D11 828 A2D17 875 A4

1A9E6 Z2 922 A7D6E6

735 A2
1A3A4D10 Z2 782 A2D6D11 829 A1D18 876 A2

1A2A9E6 923 A2D5D6E6

736 A2A3A4D10 783 A1D7D11 830 D19 877 A2
2A9E6 924 A2

1A2
2D7E6

737 A1A2
4D10 784 A3

1A2
2D12 Z2 831 A2

1A2A3
3E6 Z2 878 A1A3A9E6 925 A1A2A3D7E6

738 A4
1A5D10 Z

2
2 785 A1A3

2D12 832 A2
2A3

3E6 879 A1A3A9E6 Z2 926 A2
1A4D7E6

739 A2
1A2A5D10 Z2 786 A2

1A2A3D12 Z2 833 A1A2A2
3A4E6 880 A4A9E6 927 A2A4D7E6

740 A1A3A5D10 Z2 787 A2
2A3D12 834 A3

1A2A2
4E6 881 A3

1A10E6 928 A1A5D7E6

741 A1A3A5D10 Z2
2 788 A2

2A3D12 Z2 835 A2
1A3A2

4E6 882 A1A2A10E6 929 A6D7E6

742 A4A5D10 789 A1A2
3D12 Z2 836 A2A3A2

4E6 883 A3A10E6 930 A1D5D7E6

743 A4A5D10 Z2 790 A3
1A4D12 Z2 837 A1A3

4E6 884 A2
1A11E6 931 D6D7E6

744 A3
1A6D10 Z2 791 A1A2A4D12 838 A4

2A5E6 Z
2
3 885 A2

1A11E6 Z2 932 A2
1A3D8E6 Z2

745 A1A2A6D10 792 A3A4D12 Z2 839 A1A2
2A3A5E6 Z3 886 A2

1A11E6 Z3 933 A1A4D8E6

746 A3A6D10 793 A2
1A5D12 Z2 840 A2

1A2
3A5E6 Z2 887 A2

1A11E6 Z6 934 A5D8E6

747 A2
1A7D10 Z2 794 A2A5D12 841 A2A2

3A5E6 888 A2A11E6 935 D5D8E6

748 A2A7D10 795 A1A6D12 842 A2
2A4A5E6 Z3 889 A2A11E6 Z3 936 A2

1A2D9E6

749 A1A8D10 796 A1A2D4D12 Z2 843 A1A3A4A5E6 890 A1A12E6 937 A2
2D9E6

750 A9D10 797 A2
1D5D12 Z2 844 A2

4A5E6 891 A13E6 938 A1A3D9E6

751 A1A2
2D4D10 Z2 798 A2D5D12 Z2 845 A3

1A2
5E6 Z6 892 A1A4

2D4E6 Z3 939 A4D9E6

752 A2
1A3D4D10 Z2

2 799 A1D6D12 Z2 846 A1A2A2
5E6 Z3 893 A1A2

2A4D4E6 940 D4D9E6
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941 A3
1D10E6 Z2 979 A3A4A5E7 Z2 1017 A1A2A5D4E7 Z2 1055 D5D7E7 1093 A2

1A2A3A4E8 1131 A2A4D5E8

942 A1A2D10E6 980 A2
1A2

5E7 Z2 1018 A3A5D4E7 Z2 1056 A4
1D8E7 Z

2
2 1094 A2

2A3A4E8 1132 A1A5D5E8

943 A3D10E6 981 A2A2
5E7 1019 A2A6D4E7 1057 A2

1A2D8E7 Z2 1095 A1A2
3A4E8 1133 A6D5E8

944 A2
1D11E6 982 A2

1A2
2A6E7 1020 A1A7D4E7 Z2 1058 A2

2D8E7 1096 A3
1A2

4E8 1134 A1D2
5E8

945 A2D11E6 983 A3
2A6E7 1021 A8D4E7 1059 A1A3D8E7 Z2 1097 A1A2A2

4E8 1135 A1A2
2D6E8

946 A1D12E6 984 A1A2A3A6E7 1022 A3
1A2

2D5E7 Z2 1060 A4D8E7 1098 A3A2
4E8 1136 A2A3D6E8

947 D13E6 985 A2
3A6E7 1023 A2

1A2A3D5E7 Z2 1061 A1A2D9E7 1099 A3
1A3A5E8 Z2 1137 A1A4D6E8

948 A3
1A2

2E2
6 Z3 986 A2

1A4A6E7 1024 A2
2A3D5E7 1062 A3D9E7 1100 A1A2A3A5E8 1138 A5D6E8

949 A2
2A3E2

6 Z3 987 A2A4A6E7 1025 A1A2
3D5E7 Z2 1063 A2

1D10E7 Z2 1101 A2
3A5E8 1139 D5D6E8

950 A1A2
3E2

6 988 A1A5A6E7 1026 A1A2A4D5E7 1064 A2D10E7 1102 A2
1A4A5E8 1140 A2

1A2D7E8

951 A3
1A4E2

6 989 A2
6E7 1027 A3A4D5E7 1065 A2D10E7 Z2 1103 A2A4A5E8 1141 A2

2D7E8

952 A3A4E2
6 990 A3

1A2A7E7 Z2 1028 A2
1A5D5E7 Z2 1066 A1D11E7 1104 A1A2

5E8 1142 A1A3D7E8

953 A2
1A5E2

6 Z3 991 A1A2
2A7E7 1029 A2A5D5E7 1067 D12E7 1105 A3

1A2A6E8 1143 A4D7E8

954 A2A5E2
6 Z3 992 A1A2

2A7E7 Z2 1030 A2A5D5E7 Z2 1068 A3
1A3E6E7 Z2 1106 A1A2

2A6E8 1144 A1A2D8E8

955 A1A6E2
6 993 A2

1A3A7E7 Z2 1031 A1A6D5E7 1069 A1A2A3E6E7 1107 A2
1A3A6E8 1145 A2

1D9E8

956 A7E2
6 994 A2A3A7E7 1032 A7D5E7 1070 A2

3E6E7 1108 A2A3A6E8 1146 A2D9E8

957 A1A2D4E2
6 995 A1A4A7E7 1033 A1A2D4D5E7 Z2 1071 A2

1A4E6E7 1109 A1A4A6E8 1147 A1D10E8

958 A3D4E2
6 996 A1A4A7E7 Z2 1034 A2

1D2
5E7 Z2 1072 A2A4E6E7 1110 A5A6E8 1148 D11E8

959 A2
1D5E2

6 997 A5A7E7 1035 A2D2
5E7 1073 A1A5E6E7 1111 A4

1A7E8 Z2 1149 A3
1A2E6E8

960 A1D6E2
6 998 A2

1A2A8E7 1036 A2
1A2

2D6E7 Z2 1074 A6E6E7 1112 A2
1A2A7E8 1150 A2

1A3E6E8

961 D7E2
6 999 A2

2A8E7 1037 A3
2D6E7 1075 A2D4E6E7 1113 A2

2A7E8 1151 A2A3E6E8

962 A1E3
6 Z3 1000 A1A3A8E7 1038 A3

1A3D6E7 Z
2
2 1076 A1D5E6E7 1114 A1A3A7E8 1152 A1A4E6E8

963 A2
1A2

2A2
3E7 Z2 1001 A4A8E7 1039 A1A2A3D6E7 Z2 1077 D6E6E7 1115 A4A7E8 1153 A5E6E8

964 A3
2A2

3E7 1002 A3
1A9E7 Z2 1040 A2

3D6E7 Z2 1078 E2
6E7 1116 A3

1A8E8 1154 A1D4E6E8

965 A1A2
2A3A4E7 1003 A1A2A9E7 1041 A2

1A4D6E7 Z2 1079 A3
1A2E2

7 Z2 1117 A1A2A8E8 1155 D5E6E8

966 A2
1A2

3A4E7 Z2 1004 A1A2A9E7 Z2 1042 A2A4D6E7 1080 A1A2
2E2

7 1118 A3A8E8 1156 A2
1A2E7E8

967 A2A2
3A4E7 1005 A3A9E7 1043 A1A5D6E7 Z2 1081 A2

1A3E2
7 Z2 1119 A2

1A9E8 1157 A2
2E7E8

968 A2
1A2A2

4E7 1006 A3A9E7 Z2 1044 A6D6E7 1082 A2A3E2
7 1120 A2A9E8 1158 A1A3E7E8

969 A2
2A2

4E7 1007 A2
1A10E7 1045 A2D4D6E7 Z2 1083 A2A3E2

7 Z2 1121 A1A10E8 1159 A4E7E8

970 A1A3A2
4E7 1008 A2A10E7 1046 A1D5D6E7 Z2 1084 A1A4E2

7 1122 A11E8 1160 D4E7E8

971 A4
1A3A5E7 Z

2
2 1009 A1A11E7 1047 D2

6E7 Z2 1085 A5E2
7 1123 A1A3

2D4E8 1161 A3
1E2

8

972 A2
1A2A3A5E7 Z2 1010 A12E7 1048 A1A2

2D7E7 1086 A1D4E2
7 Z2 1124 A2

2A3D4E8 1162 A1A2E2
8

973 A2
2A3A5E7 1011 A1A2

2A3D4E7 Z2 1049 A2
1A3D7E7 Z2 1087 D5E2

7 1125 A1A2A4D4E8 1163 A3E2
8

974 A2
2A3A5E7 Z2 1012 A2

1A2
3D4E7 Z

2
2 1050 A2A3D7E7 1088 D5E2

7 Z2 1126 A2A5D4E8

975 A1A2
3A5E7 Z2 1013 A2

2A4D4E7 1051 A1A4D7E7 1089 A1A2
2A2

3E8 1127 A1A6D4E8

976 A3
1A4A5E7 Z2 1014 A1A3A4D4E7 Z2 1052 A5D7E7 1090 A2

1A3
3E8 Z2 1128 A2

1A2
2D5E8

977 A1A2A4A5E7 1015 A2
4D4E7 1053 A5D7E7 Z2 1091 A2A3

3E8 1129 A1A2A3D5E8

978 A3A4A5E7 1016 A3
1A5D4E7 Z

2
2 1054 A1D4D7E7 Z2 1092 A3

1A2
2A4E8 1130 A2

1A4D5E8

Table D.7: Algebras of maximal rank for the heterotic string on T 3.
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1 A2
1A3

3 Z
3
2 48 A3A4C2

2 Z2 95 A1A5C5 Z2 142 A4C2
1D5 189 C1C3E7 236 A2

1C7F2

2 A2A3
3 Z

2
2 49 A2

1A5C2
2 Z

2
2 96 A1A2

2C1C5 143 A1A3C2D5 Z
2
2 190 A1C2

1E8 237 A2C7F2

3 A1A2
5 Z

2
2 50 A2A5C2

2 Z2 97 A1A4C1C5 144 A1A2C1C2D5 Z2 191 C1C2E8 238 A1C8F2

4 A2
2A7 Z2 51 A7C2

2 Z2 98 A5C1C5 145 A2
1C2

2D5 Z
2
2 192 A1A4

2F2 Z3 239 C9F2

5 A2
2A2

3C1 Z2 52 A2A2
3C3 Z2 99 A2

2C2C5 146 A2C2
2D5 Z2 193 A1A2

2A4F2 240 A4C1D4F2

6 A3
2A4C1 53 A2

2A4C3 100 A1A3C2C5 Z2 147 A1C2C3D5 Z2 194 A1A2
4F2 241 C5D4F2

7 A1A2
2A5C1 Z2 54 A1A2A5C3 Z2 101 A4C2C5 148 A2

1C4D5 Z
2
2 195 A2

2A5F2 Z3 242 A4D5F2

8 A2
1A3A5C1 Z

2
2 55 A2A6C3 102 A1A2C3C5 149 A1C1C4D5 Z2 196 A1A3A5F2 Z2 243 A1A2C1D5F2

9 A1A4A5C1 Z2 56 A1A7C3 Z2 103 A2
1C4C5 Z2 150 C2C4D5 Z2 197 A4A5F2 244 A3C1D5F2

10 A2
5C1 Z2 57 A1A3

2C1C3 104 A1C2
5 151 C1C5D5 198 A1A2A6F2 245 A2C2D5F2

11 A2
2A6C1 58 A2

2A3C1C3 105 A1A2
2C6 Z2 152 C2

1D4D5 Z2 199 A2
1A7F2 Z2 246 A1C3D5F2

12 A1A2A7C1 Z2 59 A1A2A4C1C3 106 A2
1A3C6 Z

2
2 153 C1D2

5 Z2 200 A1A8F2 247 C4D5F2

13 A1A9C1 Z2 60 A2
1A5C1C3 Z2 107 A1A4C6 Z2 154 A2

1A3D6 Z
3
2 201 A9F2 248 A2C1D6F2

14 A2
1A2

2A3C2
1 Z2 61 A2A5C1C3 108 A5C6 Z2 155 A1A3C1D6 Z

2
2 202 A2

1A2
3C1F2 Z2 249 C3D6F2

15 A1A2A2
3C2

1 Z4 62 A1A6C1C3 109 A2
1A2C1C6 Z2 156 A1A2C2

1D6 Z2 203 A2
1A2A4C1F2 250 A1C1D7F2

16 A1A2
2A4C2

1 63 A7C1C3 Z2 110 A2
2C1C6 157 A3

1C2D6 Z
3
2 204 A1A3A4C1F2 251 C2D7F2

17 A1A2
4C2

1 64 A1A2A3C2C3 Z2 111 A1A3C1C6 Z2 158 A1A2C2D6 Z
2
2 205 A2

4C1F2 252 C1D8F2

18 A2
1A2A5C2

1 Z2 65 A2
3C2C3 Z2 112 A4C1C6 159 A3C2D6 Z

2
2 206 A3

1A5C1F2 Z2 253 D9F2

19 A1A3A5C2
1 Z2 66 A2A4C2C3 113 A3

1C2C6 Z
2
2 160 A2

1C1C2D6 Z
2
2 207 A3A5C1F2 254 A1A2E6F2

20 A4A5C2
1 67 A1A5C2C3 Z2 114 A1A2C2C6 Z2 161 A2C1C2D6 Z2 208 A2

1A6C1F2 255 A3E6F2

21 A1A2A6C2
1 68 A6C2C3 115 A3C2C6 Z2 162 A1C2

2D6 Z
2
2 209 A2A6C1F2 256 A2

1C1E6F2

22 A2
1A7C2

1 Z2 69 A1A2
2C2

3 116 A2
1C3C6 Z2 163 A1C1C3D6 Z2 210 A1A7C1F2 257 A1C2E6F2

23 A2
1A7C2

1 Z4 70 A2
1A3C2

3 Z2 117 A2C3C6 164 C2C3D6 Z2 211 A8C1F2 258 C3E6F2

24 A2A7C2
1 Z4 71 A2A3C2

3 118 A1C4C6 Z2 165 A1C4D6 Z
2
2 212 A2

2A3C2F2 259 A2E7F2

25 A1A8C2
1 72 A1A4C2

3 119 C5C6 166 C1C4D6 Z2 213 A1A2
3C2F2 Z2 260 A1C1E7F2

26 A9C2
1 73 A5C2

3 120 A2
2C7 167 A1C1C2D7 Z2 214 A1A2A4C2F2 261 C2E7F2

27 A3
1A2

3C2 Z
3
2 74 A2

1A2A3C4 Z
2
2 121 A1A2C1C7 168 C2

2D7 Z2 215 A3A4C2F2 262 A1E8F2

28 A1A2A2
3C2 Z

2
2 75 A2

2A3C4 Z2 122 A2C2C7 169 A2
1C1D8 Z

2
2 216 A2

1A5C2F2 Z2 263 C1E8F2

29 A1A3A5C2 Z
2
2 76 A1A2

3C4 Z
2
2 123 A1C3C7 170 A1C2

1D8 Z2 217 A2A5C2F2 264 A3
1A2

2F2
2 Z3

30 A4A5C2 Z2 77 A2
1A5C4 Z

2
2 124 A1A2C8 Z2 171 A1C2D8 Z

2
2 218 A1A6C2F2 265 A2

2A3F2
2 Z3

31 A2A7C2 Z2 78 A2
1A2

2C1C4 Z2 125 A2
1C1C8 Z2 172 C1C2D8 Z2 219 A7C2F2 266 A1A2

3F2
2

32 A9C2 Z2 79 A3
1A3C1C4 Z

2
2 126 A2C1C8 Z2 173 C2

1D9 220 A2
1A2

2C3F2 267 A3
1A4F2

2

33 A1A2
2A3C1C2 Z2 80 A1A2A3C1C4 Z2 127 A1C2C8 Z2 174 A4C1E6 221 A1A2A3C3F2 268 A3A4F2

2

34 A2
1A2

3C1C2 Z
2
2 81 A2

1A4C1C4 Z2 128 C3C8 Z2 175 A1A2C2
1E6 222 A2

1A4C3F2 269 A2
1A5F2

2 Z3

35 A2
2A4C1C2 82 A1A5C1C4 Z2 129 A1C1C9 176 A3C2

1E6 223 A2A4C3F2 270 A2A5F2
2 Z3

36 A1A3A4C1C2 Z2 83 A3
1A2C2C4 Z

2
2 130 C2C9 177 A2C1C2E6 224 A1A5C3F2 271 A1A6F2

2

37 A2
4C1C2 84 A1A2

2C2C4 Z2 131 A1C10 Z2 178 A1C1C3E6 225 A6C3F2 272 A7F2
2

38 A3
1A5C1C2 Z

2
2 85 A2

1A3C2C4 Z
2
2 132 C1C10 179 C2C3E6 226 A2

1A3C4F2 Z2 273 A1A2D4F2
2

39 A1A2A5C1C2 Z2 86 A2A3C2C4 Z2 133 A2
1A3C2D4 Z

3
2 180 C1C4E6 227 A1A4C4F2 274 A3D4F2

2

40 A3A5C1C2 Z2 87 A1A4C2C4 Z2 134 A1A3C1C2D4 Z2
2 181 C5E6 228 A5C4F2 275 A2

1D5F2
2

41 A2A6C1C2 88 A5C2C4 Z2 135 A3
1C2

2D4 Z
3
2 182 A1A2C1E7 Z2 229 A2

1A2C5F2 276 A1D6F2
2

42 A1A7C1C2 Z2 89 A2
1A2C3C4 Z2 136 A1A2C2

2D4 Z
2
2 183 A2

1C2
1E7 Z2 230 A2

2C5F2 277 D7F2
2

43 A8C1C2 90 A2
2C3C4 137 A3C2

2D4 Z
2
2 184 A2C2

1E7 231 A1A3C5F2 278 A1E6F2
2 Z3

44 A4
1A3C2

2 Z
3
2 91 A1A3C3C4 Z2 138 A2

1C1C4D4 Z
2
2 185 A2C2E7 Z2 232 A4C5F2 279 E7F2

2

45 A2
1A2A3C2

2 Z
2
2 92 A3

1C2
4 Z

2
2 139 A1C2C4D4 Z

2
2 186 A1C1C2E7 Z2 233 A3

1C6F2 Z2 280 A1A2
2A3F3 Z2

46 A2
2A3C2

2 Z2 93 A1A2C2
4 Z2 140 A3

1D2
4 Z

4
2 187 C2

2E7 Z2 234 A1A2C6F2 281 A2
1A2

3F3 Z
2
2

47 A1A2
3C2

2 Z
2
2 94 A3C2

4 Z
2
2 141 A2

1A2C2
1D5 Z2 188 A1C3E7 Z2 235 A3C6F2 282 A2

2A4F3
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283 A1A3A4F3 Z2 307 A2
1A4C2F3 Z2 331 A1C3D4F3 Z2 355 A6F2F3 379 A1A5C1F4 403 A1A4F2F4

284 A2
4F3 308 A2A4C2F3 332 A1A2D5F3 Z2 356 A2D4F2F3 380 A6C1F4 404 A5F2F4

285 A3
1A5F3 Z

2
2 309 A1A5C2F3 Z2 333 A2

1C1D5F3 Z2 357 A1D5F2F3 381 A1A2
2C2F4 405 A1D4F2F4

286 A1A2A5F3 Z2 310 A6C2F3 334 A2C1D5F3 358 D6F2F3 382 A2A3C2F4 406 D5F2F4

287 A3A5F3 Z2 311 A1A2
2C3F3 335 A1C2D5F3 Z2 359 E6F2F3 383 A1A4C2F4 407 A2

1A2F3F4

288 A2A6F3 312 A2
1A3C3F3 Z2 336 C3D5F3 360 A3

1A2F2
3 Z2 384 A5C2F4 408 A2

2F3F4

289 A1A7F3 Z2 313 A2A3C3F3 337 A2D6F3 Z2 361 A1A2
2F2

3 385 A2
1A2C3F4 409 A1A3F3F4

290 A8F3 314 A1A4C3F3 338 A1C1D6F3 Z2 362 A2
1A3F2

3 Z2 386 A2
2C3F4 410 A4F3F4

291 A3
1A2

2C1F3 Z2 315 A5C3F3 339 C2D6F3 Z2 363 A2A3F2
3 387 A1A3C3F4 411 D4F3F4

292 A2
1A2A3C1F3 Z2 316 A5C3F3 Z2 340 A1D7F3 Z2 364 A2A3F2

3 Z2 388 A4C3F4 412 A3
1F2

4

293 A2
2A3C1F3 317 A4

1C4F3 Z
2
2 341 C1D7F3 365 A1A4F2

3 389 A1A2C4F4 413 A1A2F2
4

294 A1A2
3C1F3 Z2 318 A2

1A2C4F3 Z2 342 A2E6F3 366 A5F2
3 390 A2

1C5F4 414 A3F2
4

295 A1A2A4C1F3 319 A2
2C4F3 343 A1C1E6F3 367 A1D4F2

3 Z2 391 A2C5F4

296 A3A4C1F3 320 A1A3C4F3 Z2 344 C2E6F3 368 D5F2
3 392 A1C6F4

297 A2
1A5C1F3 Z2 321 A4C4F3 345 A1E7F3 Z2 369 D5F2

3 Z2 393 C7F4

298 A2A5C1F3 322 A1A2C5F3 346 C1E7F3 370 A1A3
2F4 394 A1C1D5F4

299 A2A5C1F3 Z2 323 A3C5F3 347 C1E7F3 Z2 371 A2
2A3F4 395 C2D5F4

300 A1A6C1F3 324 A2
1C6F3 Z2 348 E8F3 372 A1A2A4F4 396 C1D6F4

301 A7C1F3 325 A2C6F3 349 A3
1A3F2F3 Z2 373 A2A5F4 397 A1E6F4

302 A2
1A2

2C2F3 Z2 326 A2C6F3 Z2 350 A1A2A3F2F3 374 A1A6F4 398 C1E6F4

303 A3
2C2F3 327 A1C7F3 351 A2

3F2F3 375 A2
1A2

2C1F4 399 E7F4

304 A3
1A3C2F3 Z

2
2 328 C8F3 352 A2

1A4F2F3 376 A1A2A3C1F4 400 A3
1A2F2F4

305 A1A2A3C2F3 Z2 329 A1A2C1D4F3 Z2 353 A2A4F2F3 377 A2
1A4C1F4 401 A2

1A3F2F4

306 A2
3C2F3 Z2 330 A2C2D4F3 Z2 354 A1A5F2F3 378 A2A4C1F4 402 A2A3F2F4

Table D.8: Algebras of maximal rank for the heterotic Z2 triple.

1 A3
1A2

2 Z3 7 A2A5 Z3 13 A1D6 19 A2
3G1 25 A1D5G1 31 A2A3G2

1 37 D5G2
1 Z2 43 A1D4G2 49 D4G1G2

2 A2
2A3 Z3 8 A1A6 14 D7 20 A2

1A4G1 26 D6G1 32 A2A3G2
1 Z2 38 A3

1A2G2 44 D5G2 50 A3
1G2

2

3 A1A2
3 9 A7 15 A1E6 Z3 21 A2A4G1 27 E6G1 33 A1A4G2

1 39 A2
1A3G2 45 A2

1A2G1G2 51 A1A2G2
2

4 A3
1A4 10 A1A2D4 16 E7 22 A1A5G1 28 A3

1A2G2
1 Z2 34 A5G2

1 40 A2A3G2 46 A2
2G1G2 52 A3G2

2

5 A3A4 11 A3D4 17 A3
1A3G1 Z2 23 A6G1 29 A1A2

2G2
1 35 A1D4G2

1 Z2 41 A1A4G2 47 A1A3G1G2

6 A2
1A5 Z3 12 A2

1D5 18 A1A2A3G1 24 A2D4G1 30 A2
1A3G2

1 Z2 36 D5G2
1 42 A5G2 48 A4G1G2

Table D.9: Algebras of maximal rank for the heterotic Z3 triple.

1 A3
1A2 Z2 3 A2

1A3 Z2 5 A2A3 Z2 7 A5 9 D5 11 A2
1A2A1 13 A1A3A1 15 D4A1 17 A1A2A2

1

2 A1A2
2 4 A2A3 6 A1A4 8 A1D4 Z2 10 D5 Z2 12 A2

2A1 14 A4A1 16 A3
1A

2
1 18 A3A2

1

Table D.10: Algebras of maximal rank for the heterotic Z4 triple. A1 denotes to an A1 at level 1.

1 A3
1

2 A1A2

3 A3

Table D.11: Algebras of maximal rank for the heterotic Z5 and Z6 triples.
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D.2.2 Fundamental group generators
4 A2

1A3
3A2

4 Z2 1122200 172 A3
1A3A4A9 Z2 001205 342 A2

1A2A4A7D4 Z2 11004s 455 A1A2
2A5D4D5 Z2 1003s2

11 A2
1A2A2

3A4A5 Z2 0102203 172′ A3
1A3A4A9 Z2 111005 344 A1A3A4A7D4 Z2 0204s 457 A1A4A5D4D5 Z2 103s2

13 A1A3
3A4A5 Z2 102203 174 A1A2A3A4A9 Z2 10205 346 A1A2A5A7D4 Z2 10340 458 A2

5D4D5 Z2 3302

14 A3
1A3A2

4A5 Z2 1112003 179 A3
1A2A5A9 Z2 000035 347 A3A5A7D4 Z2 204s 458′ A2

5D4D5 Z2 33s0

23 A1A2A2
3A2

5 Z2 000233 179′ A3
1A2A5A9 Z2 111005 348 A2

1A6A7D4 Z2 1104s 460 A1A2A7D4D5 Z2 004s2

23′ A1A2A2
3A2

5 Z2 102203 181 A1A2
2A5A9 Z2 00035 355 A2

1A2
2A9D4 Z2 01005s 461 A1A9D4D5 Z2 1502

24 A3
3A2

5 Z2 00233 182 A2
1A3A5A9 Z2 00035 356 A1A2A3A9D4 Z2 1005s 461′ A1A9D4D5 Z2 15s0

26 A2
1A3A4A2

5 Z2 002033 182′ A2
1A3A5A9 Z2 01205 356′ A1A2A3A9D4 Z2 10250 462 A2

1A2
2A3D2

5 Z2 1100222

26′ A2
1A3A4A2

5 Z2 110033 184 A2A3A5A9 Z2 0035 357 A2
1A4A9D4 Z2 0105s 466 A2

1A2A5D2
5 Z2 010322

28 A2A3A4A2
5 Z2 02033 186 A1A4A5A9 Z2 0035 359 A1A5A9D4 Z2 0350 467 A1A3A5D2

5 Z2 12302

34 A1A3A3
5 Z2 02033 188 A2

5A9 Z2 035 359′ A1A5A9D4 Z2 105s 470 A2
1A7D2

5 Z2 11402

50 A2
1A2

3A5A6 Z2 012230 189 A4
1A6A9 Z2 011105 365 A2

1A2A11D4 Z2 0006s 475 A2
1A2D3

5 Z2 110222

56 A3
1A2

5A6 Z2 011330 193 A1A3A6A9 Z2 1205 365′ A2
1A2A11D4 Z2 11060 477 D4D3

5 Z2 s222

59 A3A2
5A6 Z2 2330 195 A3

1A7A9 Z2 11105 368 A1A3A11D4 Z2 006s 478 A1A3
2A2

3D6 Z2 100022s

76 A3
1A2A3A4A7 Z2 0110204 226 A3

1A2A3A11 Z2 011006 370 A4A11D4 Z2 06s 480 A1A2A2
3A4D6 Z2 10220s

78 A2
1A2

3A4A7 Z2 110204 229 A1A2
2A3A11 Z2 00026 372 A2

1A13D4 Z2 0170 481 A3
3A4D6 Z2 2220v

81 A2A2
3A4A7 Z2 02204 232 A2

1A2
3A11 Z2 11006 379 A2

2A7D2
4 Z2 004ss 486 A1A2

2A3A5D6 Z2 00023s

82 A4
1A2

4A7 Z2 1111004 235 A2A2
3A11 Z2 0026 389 A1A2A2

3A5D5 Z2 102230 488 A2A2
3A5D6 Z2 0023s

87 A2
1A2A3A5A7 Z2 010034 237 A4

1A4A11 Z2 001106 390 A2
1A3A4A5D5 Z2 012032 489 A2

1A2A4A5D6 Z2 11003s

87′ A2
1A2A3A5A7 Z2 110204 239 A2

1A2A4A11 Z2 11006 396 A1A3A2
5D5 Z2 00332 491 A1A3A4A5D6 Z2 0203s

89 A1A2
3A5A7 Z2 10034 243 A1A3A4A11 Z2 0206 396′ A1A3A2

5D5 Z2 02330 491′ A1A3A4A5D6 Z2 1203v

89 A1A2
3A5A7 Z2 12230 245 A3

1A5A11 Z2 01106 396′′ A1A3A2
5D5 Z2 12032 494 A1A2A2

5D6 Z2 0033v

91 A3
1A4A5A7 Z2 001034 250 A3A5A11 Z2 206 398 A4A2

5D5 Z2 0332 495 A3A2
5D6 Z2 033v

93 A1A2A4A5A7 Z2 10034 254 A2
1A6A11 Z2 1106 409 A3

1A2
2A7D5 Z2 0110042 495′ A3A2

5D6 Z2 203s

95 A2
1A2

5A7 Z2 01034 270 A4
1A2A13 Z2 000107 410 A2

1A2A3A7D5 Z2 110240 495′′ A3A2
5D6 Z2 2330

95′ A2
1A2

5A7 Z2 11330 272 A2
1A2

2A13 Z2 01007 413 A2
2A3A7D5 Z2 00242 499 A1A2

3A6D6 Z2 1220s

100 A3
1A3A6A7 Z2 011204 274 A3

1A3A13 Z2 00107 415 A3
1A4A7D5 Z2 011042 502 A2

1A5A6D6 Z2 1130s

103 A2
3A6A7 Z2 2204 276 A1A2A3A13 Z2 1007 417 A3A4A7D5 Z2 2042 505 A2

1A2
2A7D6 Z2 01004s

107 A1A5A6A7 Z2 1304 279 A2
1A4A13 Z2 0107 418 A2

1A5A7D5 Z2 01340 508 A1A2A3A7D6 Z2 0024v

112 A1A2
2A2

7 Z2 00044 282 A1A5A13 Z2 107 418′ A2
1A5A7D5 Z2 11042 508′ A1A2A3A7D6 Z2 1004s

113 A2
1A3A2

7 Z2 11204 295 A2
1A2A15 Z2 0008 428 A3

1A2A9D5 Z2 001052 509 A2
3A7D6 Z2 024v

118 A2A3A2
7 Z2 0044 298 A2

2A15 Z2 008 428′ A3
1A2A9D5 Z2 111050 511 A2

1A4A7D6 Z2 0104s

121 A1A4A2
7 Z2 0044 300 A1A3A15 Z2 008 430 A1A2

2A9D5 Z2 10052 511′ A2
1A4A7D6 Z2 1104v

123 A5A2
7 Z2 044 303 A4A15 Z2 08 431 A2

1A3A9D5 Z2 01052 513 A1A5A7D6 Z2 104s

127 A2
1A3

3A8 Z2 112220 314 A2A3
3A4D4 Z2 02220s 431′ A2

1A3A9D5 Z2 01250 513′ A1A5A7D6 Z2 1340

138 A3
1A3A5A8 Z2 111230 320 A1A2A3A4A5D4 Z2 10203s 434 A1A4A9D5 Z2 1052 519 A2

1A2A9D6 Z2 0005s

152 A4
1A7A8 Z2 111140 325 A1A4A2

5D4 Z2 0033s 436 A5A9D5 Z2 350 519′ A2
1A2A9D6 Z2 0105v

163 A3
1A2

2A3A9 Z2 0010025 328 A3
3A6D4 Z2 2220s 441 A3

1A11D5 Z2 01160 521 A2
2A9D6 Z2 005s

165 A1A3
2A3A9 Z2 100025 332 A1A3A5A6D4 Z2 1230s 444 A1A2A11D5 Z2 0062 522 A1A3A9D6 Z2 005s

166 A2
1A2A2

3A9 Z2 010025 336 A2
1A3

2A7D4 Z2 110004s 446 A3A11D5 Z2 062 522′ A1A3A9D6 Z2 105v

168 A1A3
3A9 Z2 10025 337 A1A2

2A3A7D4 Z2 00024s 451 A1A13D5 Z2 170 522′′ A1A3A9D6 Z2 1250

169 A4
1A2A4A9 Z2 0111005 340 A2A2

3A7D4 Z2 0024s 453 A2
2A2

3D4D5 Z2 0022s2 524 A4A9D6 Z2 05s
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527 A2
1A11D6 Z2 006v 626 A1A5D6D7 Z2 13v2 711 A3A7D9 Z2 242 798 A2D5D12 Z2 02s

527′ A2
1A11D6 Z2 1160 628 A1D5D6D7 Z2 12s2 715 A1A9D9 Z2 152 799 A1D6D12 Z2 0vs

529 A2A11D6 Z2 06v 629 D2
6D7 Z2 ss2 717 A1A5D4D9 Z2 13s2 800 D7D12 Z2 2s

535 A4A5D4D6 Z2 03ss 631 A2
1A3D2

7 Z2 11222 723 A1A3D6D9 Z2 12s2 809 A3
1A2D14 Z2 0010s

536 A2A7D4D6 Z2 04sv 636 A1A2
2A2

3D8 Z2 00022s 726 A2
1D8D9 Z2 11s2 811 A1A2

2D14 Z2 100s

537 A9D4D6 Z2 50s 638 A2A3
3D8 Z2 0022s 728 A3

1A3
2D10 Z2 111000s 812 A2

1A3D14 Z2 010s

539 A1A2
2A3D5D6 Z2 10022s 638′ A2A3

3D8 Z2 0222v 729 A2
1A2

2A3D10 Z2 01002s 815 A1A4D14 Z2 10s

542 A1A3A4D5D6 Z2 1202s 639 A2
1A2A3A4D8 Z2 11020s 731 A1A2A2

3D10 Z2 1002s 817 A1D4D14 Z2 10s

545 A1A2A5D5D6 Z2 0032s 641 A1A2
3A4D8 Z2 0220s 732 A3

3D10 Z2 222v 823 A3
1D16 Z2 000s

546 A3A5D5D6 Z2 032s 645 A1A2A3A5D8 Z2 1003s 733 A3
1A2A4D10 Z2 11100s 825 A1A2D16 Z2 00s

546′ A3A5D5D6 Z2 230s 645′ A1A2A3A5D8 Z2 1023v 735 A2
1A3A4D10 Z2 0120s 826 A3D16 Z2 0s

548 A1A7D5D6 Z2 042v 646 A2
3A5D8 Z2 220s 739 A2

1A2A5D10 Z2 0003s 831 A2
1A2A3

3E6 Z2 1102220

548′ A1A7D5D6 Z2 140s 647 A2
1A4A5D8 Z2 0103s 740 A1A3A5D10 Z2 003s 840 A2

1A2
3A5E6 Z2 012230

551 A1A2D2
5D6 Z2 1022s 649 A1A2

5D8 Z2 033v 740′ A1A3A5D10 Z2 120s 848 A3A2
5E6 Z2 2330

554 A2
2A3D2

6 Z2 002ss 649′ A1A2
5D8 Z2 103s 740′′ A1A3A5D10 Z2 123v 860 A4

1A2A7E6 Z2 1111040

556 A3A4D2
6 Z2 20ss 652 A2

1A3A6D8 Z2 1120s 743 A4A5D10 Z2 03s 861 A3
1A3A7E6 Z2 011240

558 A2A5D2
6 Z2 03sv 657 A2

1A2A7D8 Z2 0004s 744 A3
1A6D10 Z2 1110s 866 A1A5A7E6 Z2 1340

559 A7D2
6 Z2 4vv 657′ A2

1A2A7D8 Z2 1104v 747 A2
1A7D10 Z2 114v 875 A4

1A9E6 Z2 011150

564 A2D5D2
6 Z2 02ss 659 A2

2A7D8 Z2 004s 751 A1A2
2D4D10 Z2 100ss 879 A1A3A9E6 Z2 1250

570 A2
1A2

3A4D7 Z2 112202 660 A1A3A7D8 Z2 004s 753 A1A4D4D10 Z2 10ss 885 A2
1A11E6 Z2 1160

576 A2
1A2A3A5D7 Z2 010232 660′ A1A3A7D8 Z2 024v 754 A5D4D10 Z2 30s 896 A1A3A5D4E6 Z2 123s0

577 A1A2
3A5D7 Z2 10232 661 A4A7D8 Z2 04s 755 A2

1A2D5D10 Z2 0102s 899 A2
1A7D4E6 Z2 114s0

577′ A1A2
3A5D7 Z2 12230 663 A2

1A9D8 Z2 015v 757 A1A3D5D10 Z2 102s 902 A2
1A2

3D5E6 Z2 112220

578 A3
1A4A5D7 Z2 111032 666 A11D8 Z2 6v 757′ A1A3D5D10 Z2 120s 906 A3

1A5D5E6 Z2 111320

581 A2
1A2

5D7 Z2 00332 668 A2
2A3D4D8 Z2 002ss 760 A1A2D6D10 Z2 00ss 916 A1A2

3D6E6 Z2 122s0

581′ A2
1A2

5D7 Z2 11330 671 A2
1A2

2D5D8 Z2 11002s 760′ A1A2D6D10 Z2 10vs 919 A2
1A5D6E6 Z2 113s0

589 A3
1A2A7D7 Z2 011042 673 A1A2A3D5D8 Z2 0022s 761 A3D6D10 Z2 0ss 932 A2

1A3D8E6 Z2 112s0

591 A2
1A3A7D7 Z2 11042 674 A2

1A4D5D8 Z2 1102s 762 A2
1D7D10 Z2 012s 941 A3

1D10E6 Z2 111s0

591′ A2
1A3A7D7 Z2 11240 675 A1A5D5D8 Z2 130s 764 A1D8D10 Z2 1vs 963 A2

1A2
2A2

3E7 Z2 0100221

594 A2A3A7D7 Z2 0242 675′ A1A5D5D8 Z2 132v 767 A2
1A2

3D11 Z2 11222 966 A2
1A2

3A4E7 Z2 012201

601 A3
1A9D7 Z2 00152 677 A1D2

5D8 Z2 022s 773 A3
1A5D11 Z2 11132 972 A2

1A2A3A5E7 Z2 000231

601′ A3
1A9D7 Z2 11150 679 A1A2

2D6D8 Z2 100ss 784 A3
1A2

2D12 Z2 01100s 974 A2
2A3A5E7 Z2 00231

603 A1A2A9D7 Z2 1052 681 A2A3D6D8 Z2 02vs 786 A2
1A2A3D12 Z2 0002s 975 A1A2

3A5E7 Z2 00231

608 A1A11D7 Z2 062 682 A1A4D6D8 Z2 10ss 786′ A2
1A2A3D12 Z2 1100s 975′ A1A2

3A5E7 Z2 12201

611 A2A2
3D4D7 Z2 022s2 683 A5D6D8 Z2 3sv 788 A2

2A3D12 Z2 002s 975′′ A1A2
3A5E7 Z2 12230

613 A1A2A5D4D7 Z2 103s2 685 D5D6D8 Z2 2vs 789 A1A2
3D12 Z2 002s 976 A3

1A4A5E7 Z2 011031

615 A1A7D4D7 Z2 04s2 686 A2
1A2D7D8 Z2 1102s 790 A3

1A4D12 Z2 0110s 979 A3A4A5E7 Z2 2031

619 A2
1A5D5D7 Z2 01322 688 A1A3D7D8 Z2 022s 792 A3A4D12 Z2 20s 980 A2

1A2
5E7 Z2 11031

622 A7D5D7 Z2 422 690 A1A2D2
8 Z2 00ss 793 A2

1A5D12 Z2 110s 980′ A2
1A2

5E7 Z2 11330

623 A1A2A3D6D7 Z2 102s2 700 A2
1A3A5D9 Z2 01232 796 A1A2D4D12 Z2 00ss 990 A3

1A2A7E7 Z2 001041

624 A2
3D6D7 Z2 22v2 704 A2

5D9 Z2 332 797 A2
1D5D12 Z2 002s 992 A1A2

2A7E7 Z2 10041

626′ A1A5D6D7 Z2 03s2 709 A3
1A7D9 Z2 01142 797′ A2

1D5D12 Z2 110s 993 A2
1A3A7E7 Z2 01041
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993′ A2
1A3A7E7 Z2 11240 1086 A1D4E2

7 Z2 0s11 839 A1A2
2A3A5E6 Z3 011021 442 A3

1A11D5 Z4 00131

996 A1A4A7E7 Z2 1041 1088 D5E2
7 Z2 211 842 A2

2A4A5E6 Z3 11021 445 A1A2A11D5 Z4 1031

1002 A3
1A9E7 Z2 00051 1090 A2

1A3
3E8 Z2 112220 846 A1A2A2

5E6 Z3 00221 447 A3A11D5 Z4 132

1002′ A3
1A9E7 Z2 11150 1099 A3

1A3A5E8 Z2 111230 849 A3A2
5E6 Z3 0221 463 A1A2A2

3D2
5 Z4 001111

1004 A1A2A9E7 Z2 0051 1111 A4
1A7E8 Z2 111140 868 A3

1A2A8E6 Z3 000131 471 A2
1A7D2

5 Z4 00211

1006 A3A9E7 Z2 051 10 A4
2A2

3A5 Z3 1111002 869 A1A2
2A8E6 Z3 00131 472 A2A7D2

5 Z4 0211

1011 A1A2
2A3D4E7 Z2 1002s1 20 A3

2A3A2
5 Z3 011022 872 A2A3A8E6 Z3 1031 510 A2

3A7D6 Z4 112v

1014 A1A3A4D4E7 Z2 120s1 25 A1A2
2A4A2

5 Z3 011022 886 A2
1A11E6 Z3 0041 566 A1A2A3

3D7 Z4 001111

1017 A1A2A5D4E7 Z2 003s1 32 A2
2A3

5 Z3 00222 889 A2A11E6 Z3 041 567 A4
3D7 Z4 01111

1018 A3A5D4E7 Z2 03s1 32′ A2
2A3

5 Z3 11022 892 A1A4
2D4E6 Z3 0111101 567′ A4

3D7 Z4 11112

1018′ A3A5D4E7 Z2 2301 37 A4A3
5 Z3 0222 895 A2

2A5D4E6 Z3 11201 592 A2
1A3A7D7 Z4 00121

1020 A1A7D4E7 Z2 1401 48 A4
2A5A6 Z3 111120 948 A3

1A2
2E2

6 Z3 0001111 595 A2A3A7D7 Z4 0121

1022 A3
1A2

2D5E7 Z2 1110021 124 A2
1A3

2A3A8 Z3 0011103 949 A2
2A3E2

6 Z3 11011 609 A1A11D7 Z4 031

1023 A2
1A2A3D5E7 Z2 010221 125 A4

2A3A8 Z3 011103 953 A2
1A5E2

6 Z3 00211 7 A3
1A4

4 Z5 0001122

1025 A1A2
3D5E7 Z2 12201 129 A1A3

2A4A8 Z3 011103 954 A2A5E2
6 Z3 0211 8 A1A2A4

4 Z5 001122

1028 A2
1A5D5E7 Z2 00321 136 A2

1A2
2A5A8 Z3 000123 962 A1E3

6 Z3 0111 9 A3A4
4 Z5 01122

1028′ A2
1A5D5E7 Z2 11301 137 A3

2A5A8 Z3 00123 2 A5
3A4 Z4 211110 177 A2

1A2
4A9 Z5 00114

1030 A2A5D5E7 Z2 0321 137′ A3
2A5A8 Z3 11103 71 A2

1A2
2A2

3A7 Z4 1100112 178 A2A2
4A9 Z5 0114

1033 A1A2D4D5E7 Z2 10s21 140 A1A2A3A5A8 Z3 01023 73 A1A2A3
3A7 Z4 002112 201 A1A2

9 Z5 024

1034 A2
1D2

5E7 Z2 01221 144 A2A4A5A8 Z3 1023 74 A4
3A7 Z4 02112 19 A2

1A2
2A3A2

5 Z6 0011255

1036 A2
1A2

2D6E7 Z2 1100s1 158 A3
1A2

8 Z3 00033 79 A2
1A2

3A4A7 Z4 111102 21 A3
2A3A2

5 Z6 011255

1039 A1A2A3D6E7 Z2 002s1 160 A1A2A2
8 Z3 0033 110 A3

1A2A2
7 Z4 011022 31 A2

1A2A3
5 Z6 110255

1040 A2
3D6E7 Z2 02s1 162 A3A2

8 Z3 033 119 A2A3A2
7 Z4 0222 35 A1A3A3

5 Z6 02255

1041 A2
1A4D6E7 Z2 110s1 223 A2

1A3
2A11 Z3 000114 227 A3

1A2A3A11 Z4 011013 222 A4
1A2

2A11 Z6 00111110

1043 A1A5D6E7 Z2 03v1 225 A4
2A11 Z3 00114 233 A2

1A2
3A11 Z4 00213 224 A2

1A3
2A11 Z6 1101110

1045 A2D4D6E7 Z2 0ss1 230 A1A2
2A3A11 Z3 01104 233′ A2

1A2
3A11 Z4 11013 231 A1A2

2A3A11 Z6 011210

1046 A1D5D6E7 Z2 02s1 241 A2
2A4A11 Z3 1104 236 A2A2

3A11 Z4 0213 246 A3
1A5A11 Z6 011210

1047 D2
6E7 Z2 sv1 248 A1A2A5A11 Z3 0024 293 A4

1A15 Z4 00114 252 A3A5A11 Z6 2210

1049 A2
1A3D7E7 Z2 01221 251 A3A5A11 Z3 024 296 A2

1A2A15 Z4 1104 323 A1A2
2A2

5D4 Z6 01111s

1053 A5D7E7 Z2 321 285 A3
1A2A14 Z3 00015 301 A1A3A15 Z4 024 326 A3

5D4 Z6 211s

1054 A1D4D7E7 Z2 1s21 287 A1A2
2A14 Z3 0015 341 A2A2

3A7D4 Z4 0112s 367 A2
2A11D4 Z6 112s

1057 A2
1A2D8E7 Z2 010s1 290 A2A3A14 Z3 105 350 A1A2

7D4 Z4 022s 395 A2
2A2

5D5 Z6 11112

1059 A1A3D8E7 Z2 10s1 308 A2
1A17 Z3 006 369 A1A3A11D4 Z4 013s 845 A3

1A2
5E6 Z6 011112

1059′ A1A3D8E7 Z2 12v1 310 A2A17 Z3 06 375 A15D4 Z4 4s 850 A3A2
5E6 Z6 2112

1063 A2
1D10E7 Z2 00s1 351 A1A3

2A8D4 Z3 011130 381 A1A2
2A3

3D5 Z4 1001111 887 A2
1A11E6 Z6 1122

1065 A2D10E7 Z2 0s1 353 A2A5A8D4 Z3 1230 382 A2A4
3D5 Z4 011112 70 A1A3

6 Z7 0123

1068 A3
1A3E6E7 Z2 111201 366 A2

2A11D4 Z3 1140 384 A1A3
3A4D5 Z4 111101 116 A2

1A3A2
7 Z8 01115

1079 A3
1A2E2

7 Z2 011011 394 A2
2A2

5D5 Z3 11220 411 A2
1A2A3A7D5 Z4 010121 421 A2

7D5 Z8 131

1081 A2
1A3E2

7 Z2 00211 422 A3
2A8D5 Z3 11130 414 A1A2

3A7D5 Z4 01122

1083 A2A3E2
7 Z2 0211 484 A4

2A5D6 Z3 111120 414′ A1A2
3A7D5 Z4 10121
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22 A3
1A2

3A2
5

Z2

Z2

0012203

0102230
493 A3

1A2
5D6

Z2

Z2

00033v

01103s
635 A3

1A2A2
3D8

Z2

Z2

011002s

101020c
741 A1A3A5D10

Z2

Z2

003s

120c

86 A4
1A3A5A7

Z2

Z2

0001034

0110204
493′ A3

1A2
5D6

Z2

Z2

01103s

10130s
637 A2

1A3
3D8

Z2

Z2

00022s

11200s
752 A2

1A3D4D10
Z2

Z2

010ss

1020c

90 A1A2
3A5A7

Z2

Z2

02204

10034
496 A3A2

5D6
Z2

Z2

033v

203s
643 A4

1A2A5D8
Z2

Z2

000103s

111003v
759 A3

1D6D10
Z2

Z2

000ss

1110c

96 A2
1A2

5A7
Z2

Z2

01034

10304
507 A3

1A3A7D6
Z2

Z2

00104s

110240
644 A3

1A3A5D8
Z2

Z2

00103s

01023v
971 A4

1A3A5E7
Z2

Z2

0011031

1101201

114 A2
1A3A2

7
Z2

Z2

00044

11204
533 A1A2A2

3D4D6
Z2

Z2

0022sv

1002cs
644′ A3

1A3A5D8
Z2

Z2

00103s

11020s
1012 A2

1A2
3D4E7

Z2

Z2

0102s1

1020c1

318 A2
1A2A2

3A5D4
Z2

Z2

010023s

100203c
534 A1A3A5D4D6

Z2

Z2

003ss

120cs
650 A1A2

5D8
Z2

Z2

033v

103s
1016 A3

1A5D4E7
Z2

Z2

0003s1

1110c1

319 A1A3
3A5D4

Z2

Z2

02220s

10023s
534′ A1A3A5D4D6

Z2

Z2

003ss

120sc
656 A4

1A7D8
Z2

Z2

00004s

11110s
1038 A3

1A3D6E7
Z2

Z2

0012v1

1100s1

322 A3
1A2A2

5D4
Z2

Z2

000033s

111003c
534′′ A1A3A5D4D6

Z2

Z2

0230s

103sv
667 A2

1A2A3D4D8
Z2

Z2

0002ss

1100cc
1056 A4

1D8E7
Z2

Z2

0001s1

1110v1

324 A2
1A3A2

5D4
Z2

Z2

00033s

01203c
540 A2

1A2
3D5D6

Z2

Z2

01022s

10202c
669 A1A2

3D4D8
Z2

Z2

002ss

020cc
313 A5

3D4
Z2

Z4

20022s

01111s

324′ A2
1A3A2

5D4
Z2

Z2

01203s

10230s
544 A3

1A5D5D6
Z2

Z2

00032s

11102c
670 A2

1A5D4D8
Z2

Z2

0130s

103sv
339 A2

1A2
3A7D4

Z2

Z4

11004s

111160

338 A2
1A2

3A7D4
Z2

Z2

00024s

112040
544′ A3

1A5D5D6
Z2

Z2

00132v

11030s
672 A3

1A3D5D8
Z2

Z2

01102s

10120c
30 A4

1A3
5

Z2

Z6

0011033

0101114

345 A3
1A5A7D4

Z2

Z2

001340

11004s
550 A1A3D4D5D6

Z2

Z2

02s2v

10c2s
676 A2

1D4D5D8
Z2

Z2

00s2s

11c0c
327 A3

5D4
Z2

Z6

033s

112c

377 A2A3
3D2

4
Z2

Z2

0022ss

0202cc
553 A2

1A2A3D2
6

Z2

Z2

0102sv

1002vs
678 A3

1A2D6D8
Z2

Z2

0010ss

1100vc
18 A1A4

2A2
5

Z3

Z3

0001122

0110024

378 A1A2
5D2

4
Z2

Z2

0330s

103sc
555 A1A2

3D2
6

Z2

Z2

002ss

020cc
680 A2

1A3D6D8
Z2

Z2

002vs

010sc
33 A2

2A3
5

Z3

Z3

00222

11024

388 A3
1A2

3A5D5
Z2

Z2

0010232

1102202
555′ A1A2

3D2
6

Z2

Z2

002ss

120sv
680′ A2

1A3D6D8
Z2

Z2

010ss

102sv
838 A4

2A5E6
Z3

Z3

001121

110022

393 A4
1A2

5D5
Z2

Z2

0011330

1101032
557 A2

1A5D2
6

Z2

Z2

003sv

110ss
684 A1D4D6D8

Z2

Z2

0svs

10sc
72 A3

1A3
3A7

Z4

Z2

0002112

0112004

456 A2
1A3A5D4D5

Z2

Z2

0103s2

1023c0
561 A1A2D4D2

6
Z2

Z2

00sss

10ccv
689 A3

1D2
8

Z2

Z2

000ss

011cv
75 A4

3A7
Z4

Z2

02112

22004

485 A3
1A2A3A5D6

Z2

Z2

001023v

110003s
562 A3D4D2

6
Z2

Z2

0sss

20cc
691 A3D2

8
Z2

Z2

0ss

2cv
109 A5

1A2
7

Z4

Z2

0001122

0111104

487 A2
1A2

3A5D6
Z2

Z2

00023s

01203v
563 A2

1D5D2
6

Z2

Z2

012sv

102vs
730 A3

1A2
3D10

Z2

Z2

00102s

01020c
115 A2

1A3A2
7

Z4

Z2

00222

11204

487′ A2
1A2

3A5D6
Z2

Z2

01220s

102230
565 A1D3

6
Z2

Z2

0ssv

0cvs
738 A4

1A5D10
Z2

Z2

00003s

01110c
1 A1A6

3
Z4

Z4

0011112

0101231
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376 A2
1A3

3D2
4

Z2

Z2

Z2

00022s s

00202cc

11002vv

538 A2
1A3D2

4D6

Z2

Z2

Z2

002ssv

010scs

100csc

560 A3
1D4D2

6

Z2

Z2

Z2

000sss

001ccv

1100cc

532 A3
1A2

3D4D6

Z2

Z2

Z2

00102ss

01020cs

100220c

552 A4
1A3D2

6

Z2

Z2

Z2

00002ss

00110cc

11010sv

380 A3
1D4

4

Z2

Z2

Z2

Z2

000sss s

000cccc

0110scv

1010cvs

Table D.12: Groups of maximal rank with non-trivial fundamental group and their generators for the
heterotic string on T 3.

4 A2
2A7 Z2 004 82 A1A5C1C4 Z2 1300 161 A2C1C2D6 Z2 001s 312 A2

1A3C3F3 Z2 01201

5 A2
2A2

3C1 Z2 00220 82′ A1A5C1C4 Z2 1301 163 A1C1C3D6 Z2 100s 316 A5C3F3 Z2 301

7 A1A2
2A5C1 Z2 10030 84 A1A2

2C2C4 Z2 10011 164 C2C3D6 Z2 10s 318 A2
1A2C4F3 Z2 01011

9 A1A4A5C1 Z2 1030 86 A2A3C2C4 Z2 0201 166 C1C4D6 Z2 01v 320 A1A3C4F3 Z2 1011

10 A2
5C1 Z2 330 87 A1A4C2C4 Z2 1011 167 A1C1C2D7 Z2 1012 320′ A1A3C4F3 Z2 1201

12 A1A2A7C1 Z2 0040 88 A5C2C4 Z2 310 168 C2
2D7 Z2 112 324 A2

1C6F3 Z2 0011

13 A1A9C1 Z2 150 89 A2
1A2C3C4 Z2 11001 170 A1C2

1D8 Z2 000s 326 A2C6F3 Z2 011

14 A2
1A2

2A3C2
1 Z2 1100200 91 A1A3C3C4 Z2 0201 172 C1C2D8 Z2 00s 329 A1A2C1D4F3 Z2 100s1

18 A2
1A2A5C2

1 Z2 010300 93 A1A2C2
4 Z2 0011 182 A1A2C1E7 Z2 1001 330 A2C2D4F3 Z2 01s1

19 A1A3A5C2
1 Z2 12300 95 A1A5C5 Z2 130 183 A2

1C2
1E7 Z2 01001 331 A1C3D4F3 Z2 10s1

22 A2
1A7C2

1 Z2 11400 100 A1A3C2C5 Z2 1210 185 A2C2E7 Z2 011 332 A1A2D5F3 Z2 1021

30 A4A5C2 Z2 031 103 A2
1C4C5 Z2 1110 186 A1C1C2E7 Z2 0011 333 A2

1C1D5F3 Z2 01021

31 A2A7C2 Z2 040 105 A1A2
2C6 Z2 1001 187 C2

2E7 Z2 011 335 A1C2D5F3 Z2 0121

32 A9C2 Z2 51 107 A1A4C6 Z2 101 188 A1C3E7 Z2 101 337 A2D6F3 Z2 0s1

33 A1A2
2A3C1C2 Z2 100201 108 A5C6 Z2 31 196 A1A3A5F2 Z2 1230 338 A1C1D6F3 Z2 00s1

36 A1A3A4C1C2 Z2 12001 109 A2
1A2C1C6 Z2 01001 199 A2

1A7F2 Z2 1140 339 C2D6F3 Z2 0s1

39 A1A2A5C1C2 Z2 00301 111 A1A3C1C6 Z2 1001 202 A2
1A2

3C1F2 Z2 112200 339′ C2D6F3 Z2 1v1

40 A3A5C1C2 Z2 0301 111′ A1A3C1C6 Z2 1201 206 A3
1A5C1F2 Z2 111300 340 A1D7F3 Z2 121

40′ A3A5C1C2 Z2 2301 114 A1A2C2C6 Z2 0011 213 A1A2
3C2F2 Z2 12210 345 A1E7F3 Z2 011

42 A1A7C1C2 Z2 0400 114′ A1A2C2C6 Z2 1001 216 A2
1A5C2F2 Z2 11310 347 C1E7F3 Z2 011

42′ A1A7C1C2 Z2 1401 115 A3C2C6 Z2 011 226 A2
1A3C4F2 Z2 11210 349 A3

1A3F2F3 Z2 111201

46 A2
2A3C2

2 Z2 00211 116 A2
1C3C6 Z2 0101 233 A3

1C6F2 Z2 11110 360 A3
1A2F2

3 Z2 011011

48 A3A4C2
2 Z2 2011 118 A1C4C6 Z2 101 280 A1A2

2A3F3 Z2 10021 362 A2
1A3F2

3 Z2 00211

50 A2A5C2
2 Z2 0301 124 A1A2C8 Z2 001 283 A1A3A4F3 Z2 1201 364 A2A3F2

3 Z2 0211

51 A7C2
2 Z2 400 125 A2

1C1C8 Z2 0001 286 A1A2A5F3 Z2 0031 367 A1D4F2
3 Z2 0s11

52 A2A2
3C3 Z2 0220 125′ A2

1C1C8 Z2 1101 287 A3A5F3 Z2 031 369 D5F2
3 Z2 211

54 A1A2A5C3 Z2 1030 126 A2C1C8 Z2 001 287′ A3A5F3 Z2 231 192 A1A4
2F2 Z3 011111

56 A1A7C3 Z2 040 127 A1C2C8 Z2 001 289 A1A7F3 Z2 141 195 A2
2A5F2 Z3 1121

60 A2
1A5C1C3 Z2 01300 128 C3C8 Z2 01 291 A3

1A2
2C1F3 Z2 1110001 264 A3

1A2
2F2

2 Z3 0001111

63 A7C1C3 Z2 400 131 A1C10 Z2 11 292 A2
1A2A3C1F3 Z2 010201 265 A2

2A3F2
2 Z3 11011

64 A1A2A3C2C3 Z2 10210 141 A2
1A2C2

1D5 Z2 110002 294 A1A2
3C1F3 Z2 12201 269 A2

1A5F2
2 Z3 00211

65 A2
3C2C3 Z2 2200 144 A1A2C1C2D5 Z2 10012 297 A2

1A5C1F3 Z2 00301 270 A2A5F2
2 Z3 0211

67 A1A5C2C3 Z2 0310 146 A2C2
2D5 Z2 0112 297′ A2

1A5C1F3 Z2 11301 278 A1E6F2
2 Z3 0111

67′ A1A5C2C3 Z2 1300 147 A1C2C3D5 Z2 1102 299 A2A5C1F3 Z2 0301 15 A1A2A2
3C2

1 Z4 001111

70 A2
1A3C2

3 Z2 11200 149 A1C1C4D5 Z2 0012 302 A2
1A2

2C2F3 Z2 110011 23 A2
1A7C2

1 Z4 00211

75 A2
2A3C4 Z2 0021 150 C2C4D5 Z2 012 305 A1A2A3C2F3 Z2 00211 24 A2A7C2

1 Z4 0211

78 A2
1A2

2C1C4 Z2 110001 152 C2
1D4D5 Z2 00s2 306 A2

3C2F3 Z2 0211

80 A1A2A3C1C4 Z2 00201 153 C1D2
5 Z2 022 307 A2

1A4C2F3 Z2 11011

81 A2
1A4C1C4 Z2 11001 156 A1A2C2

1D6 Z2 1000s 309 A1A5C2F3 Z2 0301
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2 A2A3
3

Z2

Z2

0022

0202
47′ A1A2

3C2
2

Z2

Z2

00211

12001
106 A2

1A3C6
Z2

Z2

0101

1021
158 A1A2C2D6

Z2

Z2

001s

100c

3 A1A2
5

Z2

Z2

033

103
49 A2

1A5C2
2

Z2

Z2

00301

11011
113 A3

1C2C6
Z2

Z2

00011

11110
159 A3C2D6

Z2

Z2

01s

20v

8 A2
1A3A5C1

Z2

Z2

01030

10230
74 A2

1A2A3C4
Z2

Z2

00021

11001
134 A1A3C1C2D4

Z2

Z2

0200s

1001c
160 A2

1C1C2D6
Z2

Z2

0100s

1001v

28 A1A2A2
3C2

Z2

Z2

00220

10021
76 A1A2

3C4
Z2

Z2

0021

0201
136 A1A2C2

2D4
Z2

Z2

0011s

1001c
162 A1C2

2D6
Z2

Z2

001s

010c

29 A1A3A5C2
Z2

Z2

0031

1201
77 A2

1A5C4
Z2

Z2

0130

1031
137 A3C2

2D4
Z2

Z2

011s

200s
165 A1C4D6

Z2

Z2

01v

10s

29′ A1A3A5C2
Z2

Z2

0231

1030
79 A3

1A3C1C4
Z2

Z2

011001

101200
138 A2

1C1C4D4
Z2

Z2

0001s

1100c
169 A2

1C1D8
Z2

Z2

000s

110c

34 A2
1A2

3C1C2
Z2

Z2

010201

102001
83 A3

1A2C2C4
Z2

Z2

001011

110001
139 A1C2C4D4

Z2

Z2

001s

110s
171 A1C2D8

Z2

Z2

00s

11c

38 A3
1A5C1C2

Z2

Z2

000301

111001
85 A2

1A3C2C4
Z2

Z2

00201

01011
143 A1A3C2D5

Z2

Z2

0202

1012
281 A2

1A2
3F3

Z2

Z2

01021

10201

38′ A3
1A5C1C2

Z2

Z2

001300

110301
85′ A2

1A3C2C4
Z2

Z2

01011

10210
145 A2

1C2
2D5

Z2

Z2

01012

10102
285 A3

1A5F3
Z2

Z2

00031

11101

45 A2
1A2A3C2

2
Z2

Z2

010201

100210
92 A3

1C2
4

Z2

Z2

00011

01101
148 A2

1C4D5
Z2

Z2

0012

1102
304 A3

1A3C2F3
Z2

Z2

001201

110011

47 A1A2
3C2

2
Z2

Z2

00211

02011
94 A3C2

4
Z2

Z2

011

201
155 A1A3C1D6

Z2

Z2

020v

100s
317 A4

1C4F3
Z2

Z2

000111

111001

1 A2
1A3

3

Z2

Z2

Z2

00022

00202

11002

44 A4
1A3C2

2

Z2

Z2

Z2

0000211

0011011

1101001

135 A3
1C2

2D4

Z2

Z2

Z2

00011s

00101c

11000s

157 A3
1C2D6

Z2

Z2

Z2

0001s

0010c

1100v

27 A3
1A2

3C2

Z2

Z2

Z2

001021

010201

100221

133 A2
1A3C2D4

Z2

Z2

Z2

0020s

0101s

1001c

154 A2
1A3D6

Z2

Z2

Z2

002v

010s

100c

140 A3
1D2

4

Z2

Z2

Z2

Z2

000ss

000cc

0110s

1010c

Table D.13: Groups of maximal rank with non-trivial fundamental group and their generators for the
heterotic Z2 triple.

17 A3
1A3G1 Z2 11121 32 A2A3G2

1 Z2 0211 1 A3
1A2

2 Z3 00011 7 A2A5 Z3 02

28 A3
1A2G2

1 Z2 011011 35 A1D4G2
1 Z2 0s11 2 A2

2A3 Z3 110 15 A1E6 Z3 01

30 A2
1A3G2

1 Z2 00211 37 D5G2
1 Z2 211 6 A2

1A5 Z3 002

Table D.14: Groups of maximal rank with non-trivial fundamental group and their generators for the
heterotic Z3 triple.

1 A3
1A2 Z2 0110 5 A2A3 Z2 02 10 D5 Z2 2 3 A2

1A3 Z2 002 8 A1D4 Z2 0s

Table D.15: Groups of maximal rank with non-trivial fundamental group and their generators for the
heterotic Z4 triple.
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Appendix E

Synthèse en Français

Motivation

La théorie des cordes est le cadre le plus développé et le plus prometteur pour étudier la gravité
quantique. De nombreux efforts ont été déployés pour tenter de reproduire le modèle standard en
tant que théorie effective à basse énergie d’un modèle de cordes. La première corde proposée, la corde
bosonique, ne comprenait que des bosons dans son spectre et prédisait un tachyon, ce qui signalait
une incohérence dans la théorie. Cela a motivé la construction des théories des supercordes de type I
et II, qui ont un spectre supersymétrique sans tachyon et sont formulées en 10 dimensions spatio-
temporelles (ce nombre est fixé par cohérence). Leur limite de basse énergie est la sueergravité dans
10 dimensions.

Deux aspects importants du modèle standard sont qu’il est formulé en 4 dimensions et qu’il contient
certaines particules avec des symétries de jauge non abéliennes. Une façon de réduire le nombre de
dimensions de 10 à 4 est de recourir au mécanisme de compactification, c’est-à-dire de faire en sorte que
six de ces dimensions aient une longueur finie (par exemple en les rendant périodiques), en généralisant
la théorie de Kaluza-Klein. Le modèle quadridimensionnel est alors une approximation à basse énergie
d’une théorie plus fondamentale. Lorsqu’on compacte la théorie des cordes de manière particulière, les
particules acquièrent des symétries de jauge non abéliennes, ce qui fait de ces théories des candidats
plausibles pour décrire notre univers. Alors que dans la théorie de Kaluza-Klein, le momentum dans
la cinquième dimension est quantifié, dans les compacités de la théorie des cordes, nous avons une
situation similaire, avec le momentum associé aux états des cordes vivant sur un réseau.

Ce qu’on appelle la corde hétérotique combine les théories bosonique et des cordes de type II [6].
Par souci de cohérence, le spectre de basse énergie présente deux symétries de groupe de jauge pos-
sibles : Spin(32)

Z2
ou E8 × E8, définissant deux théories de cordes différentes. Ces cordes hétérotiques

possèdent également une super-symétrie et vivent dans un espace-temps à 10 dimensions, de sorte
qu’elles peuvent également être compactées sur différentes géométries [7]. Cette caractéristique était
considérée comme très prometteuse, puisque les groupes de jauge des deux théories contiennent SO(10)
et SU(5), tandis que E8 contient également E6, qui sont les symétries des principales théories Grand
Unified. Dans les compactages à des dimensions inférieures, il est assez simple de décomposer les
symétries de jauge originales en leurs sous-groupes. Selon la géométrie de l’espace compact, il est
également possible d’obtenir une amélioration de la symétrie originale, créant ainsi un riche pays-
age de théories avec des groupes de jauge très divers. La limite de basse énergie de ces théories est
simplement la supergravité couplée au super Yang-Mills avec le groupe de jauge correspondant.

Une question simple que l’on pourrait poser est la suivante : quels sont les groupes de jauge
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possibles qui peuvent être obtenus à partir de la théorie hétérotique des cordes en moins de 10 dimen-
sions ? Pouvons-nous les classer ? Cette question est pertinente d’un point de vue phénoménologique
(construction d’exemples réalistes de notre univers) ; mais elle pourrait être liée à une énigme plus
profonde : quelles sont les théories possibles qui peuvent être couplées de manière cohérente à la
gravité ?

Même pour des géométries relativement simples, on sait peu de choses sur les groupes de jauge
possibles qui peuvent apparaître, et encore moins sur les valeurs spéciales des paramètres de la com-
pactification où ces améliorations se produisent. Ceci nous a motivé à étudier en détail la structure
de l’espace de ces paramètres (l’espace moduli) et à obtenir une classification complète des groupes
de jauge possibles pour certains types de géométries.

Puisque les cordes sont des objets étendus, elles peuvent être enveloppées dans des dimensions
compactes. Ceci donne lieu à une équivalence entre différentes configurations de cordes après compac-
tification, connue sous le nom de T-dualité [8].

Il a été démontré que toutes les différentes supercordes sont liées par cette dualité et d’autres, ce qui
conduit à l’idée qu’elles sont des limites distinctes d’une théorie de dimension supérieure appelée M-
théorie [9]. Une forte motivation pour étudier les compactifications toroïdales des cordes hétérotiques
est la dualité qu’elles ont avec d’autres théories : l’hétérotique sur T 4 est duale au type IIA sur K3 [10],
l’hétérotique sur T 3 est duale à la M-théorie sur K3, tandis que l’hétérotique sur T 2 est duale à la
F-théorie sur un K3 à fibres elliptiques. Ce réseau de dualités fournit un cadre pour l’exploration de
différents aspects de la théorie des cordes.

Résultats

L’objectif principal de cette thèse est de répondre à la question de savoir quelles symétries de jauge
sont autorisées dans les compactifications de cordes hétérotiques sur des géométries qui préservent
toute la supersymétrie. Bien qu’il s’agisse d’une question très concrète et relativement simple, une
réponse n’était connue que pour les deux cas les plus simples : les compactifications du cercle par la
méthode du Diagramme de Dynkin Généralisé (GDD) [11–13] et, bien qu’indirectement, le 2-torus par
la dualité avec la F-théorie à partir de la classification des types ADE des fibres singulières dans les
surfaces K3 elliptiques [14,15]. Comme nous l’expliquerons en détail, pour les espaces compacts de plus
grandes dimensions (qui correspondent aux théories effectives de basse énergie de moins de dimensions)
et pour les espaces non géométriques, de nombreuses subtilités apparaissent, transformant l’objectif
susmentionné en un objectif hautement non trivial. Un problème connexe que nous aborderons est
l’étude des espaces de moduli correspondants : leur structure, les régions de renforcement de la symétrie
et leur relation avec la T-dualité. Nous adopterons des approches différentes mais complémentaires.

Dans [1] nous avons étudié les compacités sur le cercle du point de vue de l’espace moduli à 17
dimensions défini par les paramètres. En résolvant les équations de correspondance de masse et de
niveau en fonction des moduli, nous avons développé une méthode pour cartographier les régions
spéciales où il y a un renforcement de symétrie vers un groupe non abélien de rang 17, en découvrant
que les renforcements maximaux (c’est-à-dire vers des groupes sans facteurs U(1)) apparaissent sur
les points d’intersection des courbes où il y a des renforcements non maximaux. Ce point de vue
nous a permis de développer des outils qui sont idéaux pour avoir l’intuition et comprendre ce type
de compactifications mais, même s’ils prédisent une riche variété de symétries de jauge, il n’a pas été
possible de les obtenir toutes. En nous concentrant sur le fait que les moments du spectre d’états sont
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quantifiés dans le réseau Lorentzien de Narain Γ1,17, nous avons pu obtenir la classification complète
des améliorations, ainsi que les régions de l’espace modulaire où elles apparaissent, en utilisant la
méthode GDD.

En [2], nous avons traité le cas des compactifications toroïdales de dimensions arbitraires, où les
modèles réalisés ont également 16 supercharges et les groupes de jauge sont de type ADE (c’est-à-dire
SU(n), SO(2n), En) et ont un rang 16+d. Nous avons trouvé comment les points de l’espace de moduli
sont reliés par la dualité T et défini la carte reliant les espaces de moduli des théories compactives
Spin(32)

Z2
et E8×E8. Pour T d avec d > 1, le treillis de momentum Γd,16+d est toujours pair et auto-duel

mais non Lorentzien, ce qui rend impossible la construction d’un GDD. Un certain groupe de jauge
apparaît dans l’espace moduli si le réseau racine qui lui est associé peut être intégré dans le réseau de
momentum correspondant (en satisfaisant certaines conditions). Cette façon de voir le problème nous
a permis d’énoncer certaines conditions d’apparition de ces groupes en utilisant certains théorèmes
de Nikulin [16]. Nous avons effectué une classification exhaustive des groupes de jauge autorisés en
d = 2, trouvant qu’elle correspond exactement à celle obtenue sur la F -théorie duale sur les surfaces
K3 à fibres elliptiques [15], mais donnant aussi les modules définissant la compactification qui réalise
chaque cas. Pour effectuer cette classification, nous avons réalisé un algorithme d’exploration qui
consiste à passer des points singuliers d’enrichissement maximal dans l’espace des moduli à d’autres
via des manipulations de leurs treillis de racines associés de manière contrôlée. Cet algorithme a été
amélioré dans des travaux ultérieurs, ce qui nous a permis d’explorer des compacités de T d avec d > 2
et de calculer les données globales précises des groupes de jauge.

Dans [3], nous avons effectué une étude détaillée des compactifications sur des orbifolds spéciaux
T d/Z2

1 (réalisant la corde CHL [17,18]), qui préservent la supersymétrie et présentent des enrichisse-
ments de rang réduit d+8. Une particularité est que les groupes de jauge ne sont pas toujours de type
ADE, avec des groupes Sp(n), SO(2n+ 1) ou F4 apparaissant dans des régions spéciales. Une autre
caractéristique est que le treillis de momentum n’est pas auto-dual pour d > 1 [19]. Ce dernier point
implique que les critères énoncés précédemment pour l’encastrement des treillis ne s’appliquent plus.
Cela a nécessité de nombreux changements dans les méthodes développées dans le travail précédent.
Avec une généralisation de notre algorithme d’exploration, nous avons trouvé la liste des symétries de
jauge pour d = 2, 3 et 4 (les améliorations de d = 1 peuvent être facilement trouvées en utilisant le
GDD associé, qui s’avère être le diagramme de Dynkin de E10). Nous avons calculé la forme précise de
leurs topologies respectives en adaptant nos méthodes à l’aide des résultats de [20], et vérifié qu’elles
satisfont une condition pour les symétries centrales à une forme sans anomalie donnée dans [21].

Pour d = 1 et 2, les seuls rangs possibles connus pour les compacités de cordes hétérotiques
préservant 16 supercharges sont d + 16 et d + 8, à savoir les composantes de Narain et CHL 2. En
revanche, pour d ≥ 3, les possibilités sont plus nombreuses : les triples holonomiques non triviaux
de [23] produisent des vacua de rangs réduits d + 4, d + 2 et d. Nous nous sommes tournés vers ces
constructions dans [4], en adaptant et en appliquant la machinerie déjà développée dans les travaux
précédents au cas de d = 3 et en obtenant la liste complète des améliorations maximales. Ces nouveaux
espaces de modulation ont moins de points d’amélioration maximale en raison du rang réduit, mais
dans certains cas ils présentent une variété plus riche de groupes de jauge (par exemple le groupe de
jauge G2 dans le triplé Z3). La corde hétérotique sur le T 3 est duale à la M-théorie sur une surface K3.
Les groupes de jauge de rang réduit sont réalisés dans cette dernière lorsqu’il existe des singularités
partiellement gelées sur la surface K3 [23–25]. En exploitant les techniques d’encastrement des treillis,

1Il convient de noter qu’il ne s’agit là que d’une notation, car le Z2 agit sur le faisceau de jauge.
2En 8d il y a aussi le Z2-triple et les constructions “sans structure vectorielle”, qui sont duales à la CHL [22,23].
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nous avons trouvé les règles de gel explicites qui relient les groupes de jauge sur la composante de Narain
avec ceux apparaissant sur ceux de rang réduit. Nous avons trouvé une correspondance parfaite de ces
règles du côté des cordes hétérotiques avec les résultats connus sur la M-théorie. Une généralisation
de cette analyse à d = 4 a été faite dans [5], où nous avons à nouveau obtenu la classification complète
des groupes pour tous les Zn-triples via notre algorithme d’exploration. 3 Nous avons découvert que
le mécanisme de congélation fait intervenir la topologie des groupes de jauge, en agissant sur ceux
et seulement ceux qui ne sont pas simplement connectés. Il est frappant de constater que les règles
de congélation construites coïncident avec la carte reliant les composantes de l’espace modulaire des
faisceaux plats de G sur T 2 avec G non-simplicitement-connecté.

Nous n’incluons dans la présente thèse que les listes de groupes de jauge pour les cas d = 1, 2 et 3.
Pour d = 4, nous nous référons à [27], où nous listons les groupes de jauge maximaux pour l’ensemble
des 16 supercharges préservant les compactages à 6 ou plus de dimensions spatio-temporelles. En
plus des composantes Narain, CHL et triples, beaucoup d’autres sont listées ici. En général, elles ne
correspondent pas à des constructions de cordes hétérotiques. Elles ont été étudiées dans [26], qui est
laissé de côté dans cette thèse.

Dans le tableau 1.1, nous listons les principales informations concernant chacune des compacités
étudiées. Il est notable que le nombre de groupes qui apparaissent sur T d ou T d/Z2 augmente ex-
ponentiellement avec d. De plus, comme prévu, plus de types de groupes sont autorisés lors de la
réduction du rang. Des explorations partielles pour d ≥ 5 présentent le même comportement expo-
nentiel, mais l’analyse correspondante n’est pas incluse ici. Les règles reliant les groupes de jauge dans
les compactifications toroïdales aux théories de rang réduit trouvées sont résumées dans le tableau 1.2.

G d r Algèbres Groupes Information Types
∅ 0 16 2 2 DE
S1 1 17 44 44 ADE

S1/Z2 1 9 9 9 CHL ADE
T 2 2 18 325 341 Dual à la F-théorie sur un K3 ADE

T 2/Z2 2 10 61 61 CHL/Z2-triple ACDE
T 3 3 19 1035 1232 Dual à la M-théorie sur un K3 ADE

T 3/Z2 3 11 407 429 CHL/Z2-triple ABCDEF
T 3/Z3 3 7 50 52 Z3-triple ADEG
T 3/Z4 3 5 16 18 Z4-triple AD
T 3/Z5 3 3 3 3 Z5-triple A
T 3/Z6 3 3 3 3 Z6-triple A
T 4 4 20 2252 3396 Dual à la IIA sur un K3 ADE

T 4/Z2 4 12 1988 2540 CHL/Z2-triple ABCDEF
T 4/Z3 4 8 154 202 Z3-triple ADEG
T 4/Z4 4 6 101 127 Z4-triple ACDE
T 4/Z5 4 4 11 14 Z5-triple AD
T 4/Z6 4 4 36 40 Z6-triple ACG

Table E.1: Géométrie de l’espace de compactification G, nombre de dimensions compactées d, rang r,
nombre d’algèbres et de groupes maximaux trouvés et leurs types.

3Pour d = 4 (comme pour d = 1 et 2) nous avons une confirmation récente que nos listes sont exhaustives
grâce aux résultats de notre travail très récent [26], où tous ces groupes de jauge ont été obtenus à nouveau à
partir des treillis de Niemeier.
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d Algèbre Ordre Il se transforme en
1 E8 2 ∅
2 Dn+8 2 Cn

3 Dn+4 2 Cn

3 En+4 2 Fn
3 En+6 3 Gn

3 En+7 4 Cn

3 E8 5, 6 ∅
4 Aqn−1 q = 2, 3, 4, 5, 6 An−1
4 Dn+2 2 (v) Cn

4 D2n 2 (s) Bn

4 E7 2 F4
4 E6 3 G2
4 D2n+3 4 (s) Cn

Table E.2: Règles de gel pour les facteurs simples dans les groupes de jauge pour d ≤ 4. Nous utilisons
les conventions C1 ≡ A1 , F2 ≡ A2 , F3 ≡ B3 , G1 ≡ A1 ,

Structure de la thèse

Cette thèse est divisée en six chapitres : Le premier est une brève introduction à la thèse. Le chapitre
2 est une introduction à la corde hétérotique et à sa compactification toroïdale, avec une analyse
détaillée de la structure de l’espace moduli et de ses améliorations de symétrie pour le cas du cercle
basé sur [1].

Dans le chapitre 3, qui est basé sur [2], nous reprenons les compacités toroïdales introduites précé-
demment, en les analysant cette fois du point de vue des encastrements de treillis. Nous introduisons
un algorithme d’exploration que nous utilisons pour classer et donner la liste des améliorations de
symétrie des compacités T 2.

Dans le chapitre 4 nous analysons en détail la chaîne CHL et ses compactifications, en les con-
struisant à partir de la chaîne hétérotique. Nous explorons l’espace moduli et donnons la liste des
améliorations de symétrie de jauge de rang réduit pour neuf et huit dimensions espace-temps. À cette
fin, nous améliorons et généralisons l’algorithme introduit dans le chapitre précédent. Cette partie est
basée sur [3].

Dans le chapitre 5, basé sur [4, 5], nous étudions différentes constructions d’orbitaux en 7 et 6
dimensions spatio-temporelles, obtenant la liste des groupes de jauge qui sont réalisés non seule-
ment sur les composantes Narain et CHL mais aussi sur quatre autres composantes réalisées via des
triples holonomes non triviaux. Enfin, nous construisons les règles générales de congélation reliant les
différentes composantes.

Dans le chapitre 6, nous résumons les conclusions de cette thèse, tandis qu’à la fin nous incluons
quatre annexes : A, B et C avec les compléments aux deuxième, troisième et cinquième chapitres ; et
D avec les listes des groupes d’enrichissement maximal pour les théories étudiées.
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