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Résumé: L'objectif principal de cette thése est
d'étudier I'espace des modules d'un large ensemble de
compactifications de la théorie des cordes hétérotiques
et, en particulier, de trouver et classer la liste des
groupes de jauge qui sont réalisés dans de telles théor-
ies. Nous commencons par analyser le cas des com-
pactifications sur un cercle, en développant une tech-
nique pour calculer et représenter les régions dans
I'espace des modules ol il y a des groupes augmentés
de symétrie.

A I"aide des techniques des réseaux, nous énoncons
des critéres généraux pour établir si un groupe de jauge
est réalisé ou non dans les compactifications sur T,
créant une série d’algorithmes pour explorer compléte-
ment ces espaces de modules. Pour d = 2, on trouve
que les groupes de jauge respectifs coincident avec
toutes les fibres singuliéres possibles des surfaces ex-
trémes K3, corroborant la dualité avec Théorie F sur
une surface K3. Nous construisons également une
méthode pour transformer les modules sous T-dualité
et construisons la carte qui relie les modules des cordes
hétérotiques Eg x Eg et SO(32) sur un tore.

Nous analysons également les compactifications
de la corde hétérotique sur les orbifolds asymétriques
T9/Z5 qui réalisent la dite corde CHL. Ceci est par-
ticuliérement intéressant car les cas d = 2 et d = 3
sont duaux respectivement de la théorie F et de la
théorie M sur un K3 a singularité figée, qui ne sont
pas bien compris. Nous étudions en détail ces théor-
ies et, avec quelques modifications a nos algorithmes,
explorons et trouvons tous les groupes de symétrie,
vérifiant qu’ils satisfont une condition de centre sans
anomalie découverte trés récemment.

Enfin, nous obtienons la liste compléte des groupes
de jauge qui sont réalisés dans la corde hétérotique en
7d et 6d, y compris les compactifications toroidales
ordinaires, le CHL et quatre autres composants réal-
isés via des triplets d’holonomie non triviaux. Nous
dérivons une carte qui relie les groupes de jauge sur le
compactifications toroidales aux autres composants.
En 7d, il coincide avec le mécanisme de gel des singu-
larités en théorie M sur K3; tandis qu’en 6d on montre
que les gels possibles pour chaque groupe de jauge
sont déterminés par sa topologie.

Title: Exploring the landscape of heterotic string compactifications
Keywords: Heterotic String, Compactifications, Gauge Symmetry, Superstring Vacua, Dualities

Abstract: The main goal of this thesis is to study
the moduli space of a broad set of compactifications of
heterotic string theory and, in particular, to find and
classify the list of gauge groups that are realized in
such theories. We start by analyzing the case of circle
compactifications, developing a technique to compute
and represent the regions of enhancement on the mod-
uli space.

Using lattice embedding techniques, we state gen-
eral criteria to establish whether a gauge group is real-
ized or not on compactifications on T, creating a
series of algorithms to completely explore these mod-
uli spaces. For d = 2, we find that the respective
gauge groups coincide with all possible singular fibers
of extremal K3 surfaces, corroborating the duality with
F-theory on a K3 surface. We also construct a method
to transform the moduli under T-duality and build
the map that relates the moduli of the Eg x Eg and
SO(32) heterotic strings on a torus.

We also analyse compactifications of the heterotic

string on T9/Z, asymmetric orbifolds which realize
the so-called CHL string. This is of interest because
the d = 2 and d = 3 cases are dual respectively to
F-theory and M-theory on a K3 with a frozen singu-
larity, which are not well understood. We study in
detail these theories and, with some modifications to
our algorithms, explore and find all the symmetry en-
hancements, verifying that they satisfy a condition for
anomaly-free one-form center brought to light very re-
cently.

Finally, we obtain the complete list of gauge groups
that are realized in the heterotic string in 7d and 6d,
including the ordinary toroidal compactifications, the
CHL and four other components realized via non-trivial
holonomy triples. We derive a map that relates the
gauge groups on the toroidal compactifications to the
other components. In 7d, it coincides with the singu-
larity freezing mechanism in M-theory on K3; while in
6d we show that the possible freezings for each gauge
group are determined by its topology.
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Resumen: El objetivo principal de la presente tesis es
estudiar el espacio de médulos de un amplio conjunto
de compactificaciones de la teoria de cuerdas heterét-
ica y, en particular, encontrar y clasificar la lista de
grupos de calibre que se realizan en dichas teorias.
Comenzamos analizando el caso de las compactifica-
ciones circulares, desarrollando una técnica para calcu-
lar y representar las regiones de aumento en el espacio
de médulos.

Usando técnicas de encajes de latices, enunciamos
criterios generales para establecer si un grupo de cal-
ibre se realiza o no en T'%, creando una serie de algor-
itmos para explorar completamente estos espacios de
mddulos. Para d = 2, encontramos que los respect-
ivos grupos de calibre coinciden con todas las posibles
fibras singulares de las superficies extremas K3, lo que
corrobora la dualidad con la teoria F en una superficie
K3. También construimos un método para transformar
los médulos bajo T-dualidad y construimos el mapa
que relaciona los médulos de las teorias heteréticas
Eg x Egy SO(32) en un toro.

También analizamos las compactificaciones de la

cuerda heterética en orbifolds asimétricos T%/Z, que
realizan la llamada cuerda CHL. Esto es de interés
porque los casos d = 2 y d = 3 son duales respectiva-
mente a la teoria F y la teoria M en un K3 con una
singularidad congelada, que no estan bien entendidos.
Estudiamos en detalle estas teorias y, con algunas
modificaciones a nuestros algoritmos, exploramos y en-
contramos todos los aumentos de simetria, verificando
que satisfacen una condicién de centro sin anomalias
descubierta muy recientemente.

Finalmente, obtenemos la lista completa de grupos
de gauge que se realizan en la cuerda heterética en 7d
y 6d, incluyendo las compactificaciones toroidales or-
dinarias, la CHL y otras cuatro componentes realizadas
mediante triples de holonomia no triviales. Derivamos
un mapa que relaciona los grupos de calibre en las com-
pactificaciones toroidales con las otras componentes.
En 7d, coincide con el mecanismo de congelamiento
de singularidades en la teoria M en K3; mientras que
en 6d mostramos que los posibles congelamientos para
cada grupo de calibre estan determinados por su to-
pologia.




To Sabrina,

for her immeasurable support.



Publications
This thesis is based on the following publications [1-5]:

o Fraiman, B., Grana, M., Nunez, C.A. A new twist on heterotic string compactific-
ations. J. High Energ. Phys. 2018, 78 (2018).

doi.org/10.1007/JHEP09(2018)078 arXiv:1805.11128

o Font, A., Fraiman, B., Grana, M., Nunez, C.A., Parra De Freitas, H. Exploring the
landscape of heterotic strings on 7. J. High Energ. Phys. 2020, 194 (2020).
doi.org/10.1007/JHEP10(2020)194 arXiv:2007.10358

o Font, A., Fraiman, B., Grana, M., Nunez, C.A., Parra De Freitas, H. Exploring the
landscape of CHL strings on 7. J. High Energ. Phys. 2021, 95 (2021).
doi.org/10.1007/JHEP08(2021)095 arXiv:2104.07131

o Fraiman, B., Parra De Freitas, H. Symmetry Enhancements in 7d Heterotic Strings.
J. High Energ. Phys. 2021, 2 (2021).
doi.org/10.1007 /JHEP10(2021)002 arXiv:2106.08189

o Fraiman, B., Parra De Freitas, H. Freezing of Gauge Symmetries in the Heterotic
String on 7. J. High Energ. Phys. 2022, 7 (2022).
doi.org/10.1007 /JHEP04(2022)007 arXiv:2111.09966



Contents

Introduction
1.1 Motivation . . . . . . . o
1.2 Results . . . . o .

1.3 Structure of the thesis . . . . . . . . . .

Heterotic string compactifications

2.1 Heterotic String . . . . . . . . . L
2.1.1  Spectrum . . ...

2.2 Toroidal compactifications . . . . . . . ..o
2.2.1 Massless spectrum . . . . . ...

2.3 Compactifications on a circle . . . . . . . . .. ... L
2.3.1 T-duality . . . . ..
2.3.2  Enhancement of SO(32) or Eg x Eg symmetry . . . . . . ... ... ...
2.3.3 Enhancement-breaking of gauge symmetry . . . . . .. ... ... L.
2.3.4 Exploring a slice of moduli space . . . . . . ... ... ... ...

2.4 Generalized Dynkin Diagram of I'y 17 . . . . . . . ..o 000000
2.4.1 Embeddingof I's®Ts . . . . . . .. ..

Toroidal compactifications as lattice embeddings

3.1 Toroidal compactification of the heterotic string . . . . . .. .. ... ... ...
3.1.1 Duality transformations of the moduli . . . . . . ... ... ... ....
3.1.2 TheHE < HOmap . . .. .. . .. .. ... ...

3.2 Embedding in Narain lattices . . . . . . . . .. ... L 0oL
3.2.1 Embeddings of groups with maximal rank r=d+16 . . . . . ... ...
3.2.2  Connection to heterotic compactifications . . . . . . . . ... .. ... ..
3.2.3 Circle compactifications . . . . . . . . .. ... L

3.3 Compactifications on T2 . . . . . . . . ..
3.3.1 Exploring the moduli space (Neighborhood algorithm) . . . .. ... ..
3.3.2 All maximal rank groups ford =2 . . . . ... .. ... .. ... ...

Chaudhuri-Hockney-Lykken string

4.1 The nine-dimensional CHL String . . . . . . .. .. .. ... .. ... ... ...
4.1.1 Constructing the theory from the heterotic string . . . . . . .. ... ..
4.1.2 Massless vectors . . . . . . ..o
4.1.3 Maximal enhancements from the Generalized Dynkin Diagram . . . . . .
4.1.4 T-duality . . . . . .

4.2 The CHL string in D dimensions . . . . . . .. .. .. ... ... ... .....

10
13
17
18
20
24
35
38
40

43
44
45
48
51
o2
o8
62
63
64
69



4.2.1 Extending the nine-dimensional construction . . . . . . . .. .. ... ..

4.3 Exploring the moduli space . . . . . . .. ..o
4.3.1 Exploration algorithm . . . . . . .. . ... ... L
4.3.2 Example . . . . . .
4.3.3 Matter states and global data . . . . . . .. .. ... .00
434 Results. . . . . . .

Orbifolds and singularity freezing

5.1 Construction of rank reduced theories . . . . . . . . ... ... ... L.
5.1.1 CHL string . . . . . . . . .
5.1.2 Compactification without vector structure . . . . .. . ... . ... ...
5.1.3 Holonomy triplesin 7d . . . . . .. ... ... ... oL

5.2 Momentum lattices . . . . . . . ..o
5.2.1 The Narain construction . . . . . . . . . . ... ... ... ...
5.2.2  The CHL string and Mikhailov lattice . . . . ... ... ... ... ...
5.2.3 Momentum lattices from Triples . . . . . . . .. .. ... ...

5.3 Mapping gauge groups from Narain to CHL . . . . ... ... .. ... ... ..
5.3.1 Setup and basic facts . . . . . . ...
5.3.2 Construction of the mapind=1,2,3 . . . ... ... ... ... ... ...
5.3.3 Algebra projection . . . . . .. ...
5.3.4 Applyingthemapind=4. .. ... .. ... .. ... .. ........

5.4 Other rank reduced components . . . . . . .. .. ...
5.4.1 Freezingmapin 7d . . . . . . ..o
5.4.2  Extension of the freezing mapin6d . . . . . . ... ... ... ... ...
5.4.3 Freezingrulesin6d . . . . . .. ..o

5.5 Classification of gauge groups . . . . . . . .. ... Lo
5.5.1 Narain Component . . . . . . . . . . ...
5.5.2 Triples . . . . . Lo

Conclusions

Supplements to Chapter 2

A.1 Lie algebras and lattices . . . . . . . . . . . ...

A.2 Maximal enhancement points for A = (A;,045) . . . . . .. ..o
A21 aw, q(R)=aw,qu(R) - - o o o oo
A22 by, qn(R)=buw,q(R) - - o o o oo
A23 aw, q(R)=bw,uR) - - . oo
A.2.4 Enhancements to SO(34) or SO(18) x Eg . . . . . .. ... ... ....
A.2.5 Enhancements to SU(2) x SO(32) or SU(2) x Es x Eg . . . . ... ...

A.3 Other slices of moduli space . . . . . . . . ... Lo
A.3.1 Slices for the HO theory . . . . . . . ... ... ... ... ... .....

A.3.2 Relation to Generalized Dynkin Diagrams . . . . . ... ... ... ...

90
91
91
92
93
97
97
98
99
100
101
102
105
108
111
111
112
114
115
115
117

118



Supplements to Chapter 3

B.1 Notation and basics concerning lattices . . . . . . ... ... ..o L.

B.2 Complements to Section 3.2 . . . . .

B.2.1 Embeddings of groups with rank r <d+16 . . . . . .. ... ... ...
B.2.2 More on the complementary lattice T of signature (0,d). . . . . . . . ..

Supplements to Chapter 5

D Tables of gauge groups

D.1  Groups of maximal enhancement in 9d and 84 . . . . . . . . ... ...

D.2 Maximal enhancements for 7d . . . .

D.2.1 Maximally enhanced algebras and fundamental groups . . . . ... ...

D.2.2 Fundamental group generators

Synthése en Frangais

141
141
143
143
144

145

148
148
157
157
165

171



Chapter 1

Introduction

1.1 Motivation

String Theory is the most developed and promising framework to study quantum gravity. Many
efforts have been made to try to reproduce the Standard Model as a low energy effective theory
of some string model. The first string proposed, the bosonic string, only included bosons in
its spectrum and predicted a tachyon, which signaled an inconsistency in the theory. This
motivated the construction of the type I and II superstring theories, which have a tachyon-free
supersymmetric spectrum and are formulated in 10 space-time dimensions (this number is fixed
by consistency). Their low energy limit is supergravity in 10 dimensions.

Two important aspects of the Standard Model are that it is formulated in 4 dimensions and
that it contains some particles with non-Abelian gauge symmetries. A way of reducing the
number of dimensions from 10 to 4 is through the mechanism of compactification, that is, to
take six of those dimensions to have finite length (e.g. by making them periodic), generalizing
Kaluza-Klein theory. The 4-dimensional universe is then a low energy approximation of a more
fundamental theory. When one compactifies string theory in special ways, the particles acquire
non-Abelian gauge symmetries, making these theories plausible candidates for describing our
universe. While in Kaluza-Klein theory the momentum in the fifth dimension is quantized, in
string theory compactifications we have a similar situation, with the momentum associated to
the string states living on a lattice.

The so called heterotic string combines the bosonic and type II string theories [6]. For
Spin(32)
Z2
Eg x Eyg, defining two different string theories. These heterotic strings also have super-symmetry

consistency the low energy spectrum has two possible gauge group symmetries: or
and live in a 10-dimensional space-time, so that they can also be compactified on different
geometries [7]. This feature was considered very promising, since the gauge groups of both
theories contain SO(10) and SU(5), while Eg also contains Eg, which are the symmetries of the
principal Grand Unified Theories. In compactifications to lower dimensions, it is quite simple
to break the original gauge symmetries to their subgroups. Depending on the geometry of the
compact space, it is also possible to get an enhancement of the original symmetry, creating a
rich landscape of theories with very diverse gauge groups. The low energy limit of these theories
is just supergravity coupled to super Yang-Mills with the corresponding gauge group.

A simple question one could ask is: what are the possible gauge groups that can be obtained
from heterotic string theory in less than 10 dimensions? Can we classify them? This question

is relevant from a phenomenological point of view (building realistic examples of our universe);



but it could be connected to a deeper puzzle: what are the possible theories that can be
consistently coupled to gravity?

Even for relatively simple geometries, little was known about the possible gauge groups that
can appear !, let alone the special values for the parameters of the compactification where these
enhancements occur. This motivated us to study in detail the structure of the space of these
parameters (the moduli space) and to obtain a complete classification of the possible gauge
groups for some types of geometries.

Since the strings are extended objects, they can be wrapped along compact dimensions.
This originates an equivalence between different string configurations after compactification,
which is known as T-duality [8].

It was shown that all the different superstrings are related by this and other dualities, leading
to the idea that they are distinct limits of a higher dimensional theory coined M-theory [9]. A
strong motivation to study toroidal compactifications of heterotic strings is the dualities they
have with other theories: heterotic on 7% is dual to type ITA on K3 [10], heterotic on T? is
dual to M-theory on K3, while heterotic on T2 is dual to F-theory on an elliptically fibered K3.

This web of dualities provides a framework for exploring different aspects of string theory.

1.2 Results

The principal goal of this thesis is to answer the question of what gauge symmetries are allowed
in heterotic string compactifications on geometries that preserve all of the supersymmetry.
Although this is a very concrete and relatively simple question, an answer was only known
for the two simplest cases: circle compactifications through the Generalized Dynkin Diagram
(GDD) method [11-13] and, although indirectly, the 2-torus through duality with F-theory
from the classification of ADE types of singular fibers in elliptic K3 surfaces [14,15]. As
we will explain in detail, for compact spaces of larger dimensions (which correspond to low-
energy effective theories with less dimensions) and for non-geometrical spaces, a great deal
of subtleties appears, turning the aforementioned goal into a highly no-trivial one. A related
problem that we will address is the study of the corresponding moduli spaces: their structure,
regions of symmetry enhancements and their relation to T-duality. We will take different but
complementary approaches.

In [1] we studied compactifications on the circle from the point of view of the 17-dimensional
moduli space defined by the parameters. Solving the mass and level matching equations as a
function of the moduli, we developed a method for charting the special regions where there
is symmetry enhancement to some non-Abelian group of rank 17, finding that the maximal
ones (i.e. to groups without U(1) factors) appear on the intersection points of curves where
there are non-maximal enhancements. This point of view allowed us to develop tools that are
ideal to gain intuition and understand this type of compactifications but, even though they
predict a rich variety of gauge symmetries, it was not possible to get all of them. Changing

the focus to the fact that the momenta of the spectrum of states are quantized in the even

!Compactifications on a circle being an exception.



self-dual Lorentzian Narain lattice I'; 7, we were able to obtain the complete classification of
enhancements, together with the regions on moduli space where they arise, using the GDD
method.

In [2] we treated the case of toroidal compactifications of arbitrary dimensions, where the
models realized also have 16 supercharges and the gauge groups are of ADE type (i.e. SU(n),

SO(2n), E,) and have rank 16 + d. We found how the points in the moduli space are related
Spin(32)
Z3

Ej x Eg theories. For T with d > 1, the momentum lattice ['i 1614 is still even and self-dual but

by T-duality and defined the map relating the moduli spaces of the compactified and
not Lorentzian, making it impossible to construct a GDD. A certain gauge group appears in the
moduli space if its associated root lattice can be embedded in the corresponding momentum
lattice (satisfying certain conditions). This way of looking at the problem allowed us to state
some conditions for these groups to appear by using some theorems by Nikulin [16]. We carried
out an exhaustive classification of the allowed gauge groups in d = 2, finding that it matches
exactly the one obtained on the dual F-theory on elliptically fibered K3 surfaces [15], but
also giving the moduli defining the compactification that realizes each case. To perform this
classification we made an exploration algorithm which consists in moving from singular points
of maximal enhancement in moduli space to others via manipulations of their associated root
lattices in a controlled way. This algorithm was improved in subsequent works, allowing us to
explore T¢ compactifications with d > 2 and to compute the precise global data of the gauge
groups.

In [3] we performed a detailed study of compactifications on special T9/Z, orbifolds?® (real-
izing the CHL string [17,18]), which preserve the supersymmetry and present enhancements
of reduced rank d + 8. One peculiarity is that the gauge groups are not always of ADE type,
with groups Sp(n), SO(2n + 1) or Fy appearing in special regions. Another characteristic is
that the momentum lattice is not self-dual for d > 1 [19]. The latter implies that the criteria
stated before for lattices embedding does not apply anymore. This required many changes
in the methods developed in the previous work. With a generalization of our exploration al-
gorithm we found the list of gauge symmetries for d = 2, 3 and 4 (d = 1 enhancements can be
easily found using the associated GDD, which turns out to be the Dynkin diagram of Eo). We
computed the precise form of their respective topologies by adapting our methods using results
of [20], and checked that they satisfy a condition for anomaly-free one-form center symmetries
given in [21].

For d = 1 and 2 the only known possible ranks for heterotic string compactifications pre-
serving 16 supercharges are d + 16 and d + 8, namely the Narain and CHL components®. In
contrast, for d > 3 there are more possibilities: non-trivial holonomy triples of [23] produce
vacua with reduced ranks d+4, d + 2 and d. We turned to these constructions in [4], adapting
and applying the machinery already developed in the previous works to the case of d = 3 and
obtaining the full list of maximal enhancements. These new moduli spaces have less maximal

enhancement points due to the reduced rank, but in some cases they present a richer variety

2Tt should be noted that this is just notation, as the Z acts on the gauge bundle.
3In 8d there are also the Z,-triple and the “no vector structure” constructions, which are dual to the
CHL [22,23].



of gauge groups (e.g. gauge group G in the Zs-triple). Heterotic string on the T° is dual
to M-theory on a K3 surface. The gauge groups with reduced rank are realized in the latter
when there are partially frozen singularities on the K3 [23-25]. Exploiting lattices embedding
techniques, we found the explicit freezing rules that relate the gauge groups on the Narain
component with those appearing on the reduced rank ones. We found a perfect match of these
rules from the heterotic string side with the known results on M-theory. A generalization of
this analysis to d = 4 was done in [5], where we again obtained the complete classification of
groups for all the Z,-triples via our exploration algorithm.* We discovered that the freezing
mechanism here involves the topology of the gauge groups, acting on those and only those that
are non-simply-connected. Strikingly, the freezing rules constructed coincide with the map
relating the moduli space components of flat G-bundles on 72 with G non-simply-connected.

We only include in the present thesis the lists of gauge groups for the d = 1, 2 and 3
cases. For d = 4 we refer to [27], where we list the maximal gauge groups for all the 16
supercharges preserving compactifications with 6 or more space-time dimensions. In addition
to the Narain, CHL and triples components, there are many more listed there. In general they
do not correspond to heterotic string constructions. They were studied in [26], which is left out
of this thesis.

In Table 1.1 we list the main information concerning each of the compactifications studied.
It is notable that the number of groups that appear on T% or T/Z, increases exponentially
with d. Also, as expected, more types of groups are permitted when reducing the rank. Partial
explorations for d > 5 exhibit the same exponential behavior, but the corresponding analysis
is not included here. The rules relating the gauge groups in toroidal compactifications to the

reduced rank theories found is summarized in Table 1.2.

4For d = 4 (as for d = 1 and 2) we have a recent confirmation that our lists are exhaustive from the results
in our very recent work [26], where all these gauge groups were reobtained from the Niemeier lattices.



’ G ‘ d ‘ r ‘ Algebras | Groups Information Types
O 0|16 2 2 DE
St 1]17 44 44 ADE
Sz, 11| 9 9 9 CHL ADE
T 2|18 325 341 Dual to F-theory on a K3 ADE
T%/75 | 2 | 10 61 61 CHL/Z,-triple ACDE
T3 3119 1035 1232 | Dual to M-theory on a K3 ADE
T3/75 | 3| 11 407 429 CHL/Z,-triple ABCDEF
T3/75 |3 | 7 50 52 Z3-triple ADEG
T3/Z74 3| 5 16 18 Z 4-triple AD
T3/Zs5 | 3| 3 3 3 Zs-triple A
T3/Z¢ | 3| 3 3 3 Zs-triple A
T 4120 2252 3396 Dual to ITA on a K3 ADE
TYZy | 4| 12 1988 2540 CHL/Zs-triple ABCDEF
TYZ, (4] 8 154 202 Zs-triple ADEG
TYZ, [4] 6 101 127 Z,-triple ACDE
TVZ5 | 4| 4 11 14 Z5-triple AD
TZ6 | 4| 4 36 40 Zg-triple ACG

Table 1.1: Geometry of the compactification space GG, number of compactified dimensions d, rank 7,

number of maximal algebras and groups found and their types.

Table 1.2: Freezing rules for the simple factors in the gauge groups for d < 4. We use the conventions
Ci=A, Fo=Ay, F3=B;3, Gi=Aq,

’ d H Algebra Order ‘ Transforms to ‘
1 Eg 2 0
2 Duis P C,
3 D.,ia 2 Cn
3 E,i4 2 F,
3 E.6 3 G,
3 E,i7 4 Cn
3 Eg 5, 6 0
4 Apa |q=2,3,4506 A,y
4 Dn+2 2 (V) Cn
4 D,, 2 (s) B,
4 E-, 2 Fy
4 Eg 3 Gy
4 || Dopys 4 (s) C,

1.3 Structure of the thesis

This thesis is divided in six chapters: The first one is a short introduction to the thesis. Chapter

2 is an introduction to heterotic string and its toroidal compactification, with a detailed analysis
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of the structure of the moduli space an its enhancements of symmetry for the circle case based
on [1].

In Chapter 3, which is based on [2], we resume with the toroidal compactifications introduced
earlier, this time analyzing them from the point of view of lattice embeddings. We introduce
an exploration algorithm which we use to classify and give the list of symmetry enhancements
of T? compactifications.

In Chapter 4 we analyze in detail the CHL string and its compactifications, constructing
them from the heterotic string. We explore the moduli space and give the list of the rank
reduced gauge symmetry enhancements for nine and eight space-time dimensions. To this end
we improve and generalize the algorithm introduced in the previous chapter. This part is based
on [3].

In Chapter 5, based on [4,5], we study different orbifold constructions in 7 and 6 space-time
dimensions, obtaining the list of gauge groups that are realized not only on the Narain and CHL
components but also four other components realized via non-trivial holonomy triples. Finally,
we construct the general freezing rules relating the different components.

In Chapter 6 we summarize the conclusions of this thesis, while at the end we include five
appendices: A, B and C with complements to the second, third and fifth chapters; and D
with the lists of groups of maximal enhancement for the studied theories. Finally, Appendix E

provides a summary in French.



Chapter 2

Heterotic string compactifications

A generic point in the moduli space of a compactified theory corresponds to one whose spec-
trum has Abelian gauge symmetry. To arrive at non-Abelian symmetries we have to choose
special regions where there is an enhancement of symmetry. After a brief introduction to
heterotic strings and general toroidal compactifications in Sections 2.1 and 2.2, we restrict to
one-dimensional compactifications for the rest of this chapter, in order to attack the problem of
exploring these special regions explicitly. These compactifications are described by the radius
R of the circle and the 16 values of the background field A called Wilson line. This will be the
subject of Section 2.3.

There are different configurations of these parameters giving equivalent theories, we say
they are related by the T-duality group. Examining the action of this group, we can see that
all points in moduli space where there is maximal symmetry enhancement!, namely to groups
that do not have U (1) factors, are fixed points of T-duality. In the simplest cases, such as those
listed below, the enhanced symmetry arises at the self-dual radius given by R?, = 1 — %|A|2.
We explore the action of T-duality and its fixed points in Section 2.3.1. One can have other
points of symmetry enhancement, which are fixed points of duality symmetries that involve
shifts of Wilson lines on top of the exchange of momentum and winding.

To explore the whole moduli space of circle compactifications, we split the discussion into
the situations in which the Wilson line preserves the Fg x Fg or SO(32) gauge symmetry, and
those where it breaks it. In Section 2.3.2 we explain the former case. The circle direction can
give a further symmetry enhancement to Eg X Fg x SU(2) at radius R = 1, and either to
SO(32) x SU(2) at R=1or to SO(34) at R = % When the Wilson line breaks the Eg x Eg
or SO(32) gauge symmetry, the pattern of gauge symmetries is very interesting. Not only is it
possible to restore the original Eg x Eg or SO(32) gauge symmetry for specific values of R and
A, but also larger groups of rank 17 can be obtained. In Section 2.3.3 we explicitly work out
enhancements of the HO theory to SO(34) at R? = £; SU(18) at R? = 1; E,1 x SO(32 — 2p)
at R =1—-% E, .4 x SU(16 —p) at R* = 1 — %_p, and in the HE to SO(34) at R* = ;
SU(18) at R? = §; SO(18) x Eg at R? = 1; SU(2) x Es x Eg at R?* = 1. We depict slices of
the moduli space for different values of R and Wilson lines in several figures, which clarify the
analysis and neatly exhibit the curves and points with special properties. The technique used
is presented in Section 2.3.4

Finally, switching to a more lattice-oriented approach that will accompany us for the re-

minder of the thesis, we find in Section 2.4 all the possible maximal enhancement groups, and

l«“Maximal” stands here for an enhanced semisimple and simply-laced symmetry group.



the point in the fundamental region of moduli space where they arise, using the Generalized
Dynkin Diagram of the lattice I'y ;7 [11,13].

We have included three appendices. Appendix A.1 collects some known facts about lattices
that are used throughout this chapter. Details of the procedures leading to construct the curves
of enhancement and more slices of the moduli space are contained in Appendices A.2 and A.3

, respectively.

2.1 Heterotic String

Both in the bosonic and type II strings, the equation of motion for the fields implies that we can
separate them in a left and right-moving part. This separation is translated to the commutation
of the operators associated to the left-moving and right-moving oscillations. This decoupling
between left and right degrees of freedoms allows us to define a new type of consistent theory,
the heterotic string, combining the left-moving fields of the bosonic string and the right-moving
fields of one of the superstrings. As for all closed strings, the states are just tensorial products
of left and right-moving states subject to the level matching constraint.

For consistency, the heterotic string is defined in 10 space-time dimensions. While the right
supersymmetric side is just the same as for the type II strings, the left side needs 26 — 10 = 16
extra degrees of freedom as a consequence of this. There are two standard solutions: adding
16 left-moving bosons or adding 32 left-moving fermions. We will use the former, called the
bosonic formulation, as it is the best suited for studying toroidal compactifications. The world-
sheet left-moving degrees of freedom are the 10 bosonic fields X} (7 + o) with p=0,...,9 the
space-time directions plus 16 internal chiral bosons Y! with I = 1,...,16. On the right side
we have the usual 10 bosonic fields X} (7 — o) and their superpartners ¢ (7 — o). The presence
of these fermionic fields guarantees, in combination with a GSO projection, that the spectrum
of states is supersymmetric.

The fields X correspond to space-time coordinates while Y correspond to internal degrees
of freedom. To achieve a consistent string theory, the Y have to satisfy periodic boundary
conditions. Since they are chiral bosons (constrained by 9, Y? = 0), the only way of doing this
besides taking their associated momentum p! = 0 is by making them periodic. Just as in usual
string compactifications (or Kaluza-Klein theory), this periodicity induces a quantization of
their momentum, forcing it to live on some compact space Y14. Moreover, for consistency this
space has to be a product of 16 circles of equal radius R = v (from now on we are taking
o =1).

On a well defined string theory, the 1-loop partition function presents modular invariance.
By computing and demanding it to be invariant under the transformation 7 — 7 + 1, we find
that 1[p’|?> € Z (Y14 is an even lattice); and by demanding invariance under 7 — =! and using
the Poisson summation formula, we get Y74 = T4, with 174 the dual lattice. In conclusion
the heterotic momentum lies on a very special type of lattice, an Euclidean, even and self-dual

one.?

2As we will see in Section 2.2, in toroidal compactifications of heterotic strings, the momentum will also live
on an even and self-dual (but not Euclidean) lattice.



Even self-dual definite lattices exist only for rank multiple of 8. There are two possibilities
for rank 16: the lattice of weights of the group Spin(32)/Z, and the lattice of weights of Eg x Eg,
denoted respectively by I'ig and I's @ I's with I'y being defined as the set of N-dimensional
vectors with integer components together with the set of vectors with half-integer components
whose sum is an even number (see Appendix A.1 for details on these lattices). We have then two
different supersymmetric heterotic string theories, the so called Spin(32)/Z, heterotic string or
HO, with heterotic momentum p’ € I'js and the Eg x Eg heterotic string or HE with p! € TgxTs:

Ty @Dy, for (HE
T16={ s ®Ts, for (HE) (2.1.1)

F16 y for (HO)

2.1.1 Spectrum

We now describe the spectrum of the HE and HO theories in the light-cone gauge. Since they
are closed strings, the possible states are made by taking the tensorial product between one
state from the left sector and one from the right, subject to the level matching condition.

The mass equation is m? = N+ % Ipr|?—1, with Nz, the number operator for the left-moving
oscillators o”,, and o, and py, the heterotic momentum.

For Ni, = p;, = 0 we have the tachyonic vacuum state of bosonic string |0).

On the massless level we have:
e (N, =1,p,=0): ", |0) space-time vector with = 2,...,9.

o (N =1, pr,=0): a’;]0) 16 Abelian gauge bosons (U(1)'® Cartan subalgebra of Eg x Eg
or SO(32)).

o (N, =0,|pp]? =2): |p) = e®"|0), with p, a root of Eg x Ey or SO(32) (480 non-

Abelian gauge bosons).

We have an infinite tower of massive states for bigger values of N or |py|*.

The right sector is identical to the other superstrings, the mass equation is

NR in R
Np—1 in NS~

T2

2 _
mp =

with Ny the number operator for the right-moving oscillators, ¥*,, and &",,. with the zero-point
energy being different in the Ramond (R) and Neveu-Schwarz (NS) sectors. We apply the same
GSO projection as in the type II strings, requiring for an odd (even) number of fermions on
the NS (R) sector; therefore, eliminating the tachyon |0) ¢ from the spectrum. The massless

states are:

e (Ng= %) @Eﬁ% |0) vg Space-time vector with p =2, ...,9.

]
=
|
(@)

): |s) p space-time spinor, superpartner of the vector.



We again have an infinite number of massive states with bigger Nz on both the NS and R
sectors.

The level matching condition is just m? = m%:

1 N, in R
N+-lpff-1={"" (2.1.2)
2 Np—3i inNS

The states of heterotic strings will be the product between one state on the left and one on
the right that satisfy this equation. The only negative value of the LHS is —1, but the RHS
is always bigger than —%, expelling from the spectrum the tachyon inherited from the bosonic
string. The GSO projection on the right sector guarantees that each heterotic string state has
a superpartner, making the spectrum N = 1 supersymmetric in 10 dimensions.

The massless states are
e Supergravity sector:

— (N =1,p, = 0,Ng = 1): o/ 9", |0) v — graviton, Kalb-Ramond two-form and

dilaton.

— (N =1,p, =0,Ng =0): o, |a), — gravitino and dilatino.
» Gauge bosons of SO(32) or Eg x Es:

— (N, = 1,p, = 0,Ng = 3): ol 9", ]0) s — 16 space-time vectors associated to
2
the Cartan subalgebra.

— (N =0,|pL]>* =2,Nr = 1) eiﬁlylg/;ﬁ% |0) yg — 480 space-time vectors associated

to the roots.

— (N + %|pL|2 =1,Ng =0): o |a)p, e'Y! la) , — the gaugini.

The low energy limit is then 10-dimensional A/ = 1 supergravity coupled to super Yang-Mills
theory with gauge groups Spin(32)/Z, or Eg X Eg. Since both groups have dimension 496, both
strings have the same number of massless states. In fact, it is easy to prove that at each massive

level the number of states is the same for both theories.

2.2 Toroidal compactifications

As shown in the previous section, the states of the heterotic string live on a 10-dimensional
space-time: to make contact with our universe it is necessary to compactify 6 of these di-
mensions. If the characteristic length of the compact geometry is small enough, the low-energy
effective theory will be 4-dimensional. The simplest compactifications of d dimensions occur for
d-torus. As we will see, a rich and interesting pattern of gauge symmetries and some subtleties
appear already for the smallest values of d. In this section we will describe the compactification
on a torus of arbitrary dimension, focusing on the case d = 1 for the remainder of this chapter.

For a more complete review see [28].
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The bosonic part of the action for the non-linear sigma model of heterotic string is given
by S = S, + Sp, with

1
Sy = [ drdo (50“5@“”8&)(“05)(" - ie“’BBm,@aX“(?ﬁX”) (2.2.1)

where we have the usual background fields of the gravitational sector: G, and B, (we are
taking ® = 0) and

1
Sn= - [ drdo (&lﬁaayfaﬁyf - ZiGQﬁAﬁaaX“ﬁgYI) (2.2.2)

T
where we have an additional background field Alﬂ, with a space-time index ¢ =0,...,9 and a
heterotic chiral index I = 1,...,16. a = 1,2 are the world-sheet coordinates o and 7. For both

actions we gauge fixed the world-sheet metric to 6*? and defined €' = 1.
Now we compactify on a T¢, denoting the compact directions as i, = 1,...,d. We turn on

constant background metric G;;, antisymmetric two-form B;; and U(1)'® gauge field A!. For

ijs
simplicity we take the background dilaton to be zero. The d fields Al have null field-strength
and are called Wilson lines, we will have one of them for each toroidal direction.

The set of vectors e; define a basis in the compactification lattice A% such that the in-
ternal part of the target space is the d-dimensional torus T¢ = R?/mA¢, they satisfy G =
ele (:> Gij = €% 0pe? j). The vectors é, constitute the canonical basis for the dual lattice A%,
ie. &'e?; = 0'j, and thus they obey &'¢ = G~ (= &,'67¢ = GY).

The contribution from the internal sector to the world-sheet action (we consider only the

bosonic sector here) is
1 af - _af ) n
S = - /M drdo (§7Gyy — i’ By;) 0,Y 05
1 .
+— / drdo (5°99, YY" — 2ic*? A19,Y 95y | (2.2.3)
8T JMm

(recall we are always taking o/ = 1), Y! are chiral bosons and the currents Y’ form a maximal
commuting set of the SO(32) or Eg x Eg current algebra. The internal string coordinate fields
satisfy

Yi(r,0+271) ~Y'(1,0) + 21w’ | (2.2.4)

where w' € Z are the winding numbers. It is convenient to define holomorphic Y} (z) and

antiholomorphic Y;(Z) fields as
Yi(z,2) = % {YLZ(Z) + Yé(é)} , z=-exp(T+i0), z=-exp(r —io) , (2.2.5)
with Laurent expansion

Yi(z) = yb —iptlnz+---, Yi(2) =yl —ipllnz+--- | (2.2.6)

Yi(Z) = yh—iphlnz+---, (2.2.7)
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the dots standing for the oscillators contribution. Then the periodicity condition is

Yi(r,o +2m) = Y'(r,0) = 27 (5) (b}, — pip) = 27w’ . (2.2.8)

The canonical momentum has components?

. s 1
50, Yt 21

1 . . . ‘ 1
s G W}, + ph) + By}, — )| + - Alp!

f i = (0 - AI0YY) = o [ — Al )]

|
I, = {zG”&Y” + Bijao'yj + QAZIaaYI] )

The chirality constraint on Y’ and the condition of vanishing Dirac brackets between mo-
mentum components require the redefinitions 1I; — ﬁI = 2II; and II; — ﬁ, =1II;, + %AZI fII.

Integrating over o, we get the center of mass momenta
~ 1 I
™ = ‘/dO'Hz =27 (Hz + 2A1HI> =n; €7, (229&)
al = /daf[I =p' — Alw', (2.2.9b)

where we used univaluedness of the wave function in the first line. m; = n; are integer vectors,
while modular invariance requires 7/ € 'y or I's @ I'g, corresponding to the HO or HE theory,
respectively.

From these equations we get

1., . 1 ;
PRa = Eea {nz —(Gij + By)w’ — WIA{ - 2A§AE‘TU’]} ) (2.2.10a)
1., , 1 ;
PLa = ﬁea l:nz + (Gij — Bij)w’ — mlA] - 2A§Ai]w3} ) (2.2.10b)
pl = 7l +wAl (2.2.10c)

The momentum p = (pr,Pr), With PR = Pra; PL = (Pra,p’), transforms as a vector
under O(d,d + 16; R). It expands the 2d + 16-dimensional momentum lattice ['g 4,16 C R?4T16
satisfying

PP = prad®ply + 00" — pradp, = nw +nlw' +7lnl € Z, (2.2.11)
and
2 2 _ o, i I_1I
P'P=pPL —Pr =2wn+7mm €21, (2.2.12)
because 7! is on an even lattice, and therefore p forms an even (d,d + 16) Lorentzian lattice

for any values of the background fields called the Narain lattice. In addition, self-duality

Laar16 = I 4116 follows from modular invariance [7,29]. Note that pr, pr depend on 2d + 16

3The unusual ¢ factors are due to the use of Euclidean world-sheet metric.
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integer parameters n,;, w' and 7/, and on the background fields G, B and A.

The space of inequivalent lattices and inequivalent backgrounds reduces to

O(d,d + 16;R)
O(d+ 16;R) x O(d;R) x O(d,d + 16;2)

(2.2.13)

where O(d, d+ 16; Z) is the T-duality group (we give more details about it in the next section).

The mass of the states and the level matching condition are respectively given by

1 R sect
m?=pr2 4+ pr>+2 [N+ Ng—{, 7 (2.2.14a)
5 NS sector
1 R sect
0=p®—pr*+2 (N - Ne—{, ). (2.2.14D)
3 NS sector

the difference between pr,? and pr? is given by 2w'n; + 77!, but the sum depends on the

background fields:

p.’ +pr’ = Gijninj + (Gij + leleC'ik + AZ-IAJI») Wil +

(GMALA] + 6" w'x! = 26 Chynaw’ — 26 Alnym! + 2 (G*Cyy AL + A]) win! (2.2.15)

where Cj; = B;; + %A{AJI

Because the Narain lattice is even and self-dual, we have modular invariance guaranteed for
all toroidal compactifications. It can be shown that, unlike the Euclidean case, these lattices are
unique except for a pseudo-orthogonal transformation O(d, d+16). Orthogonal transformations

O(d) x O(d+16) that do not mix pr and pr, produce equivalent lattices, then the moduli space

of inequivalent compactifications would be given by %4, with the number of moduli
equal to

d? d(d+1 d(d—1

5+16d: <2+)—|— (2 )+16d (2.2.16)

showing that the moduli space is parameterized by the components of G;, B;; and the d Wilson

lines Al

2.2.1 Massless spectrum

In compactifications on T%, the spectrum depends on the background fields. When (N, Ng) =
(1,3) there are the same number of massless states at any point in moduli space (we refer to
this as sector 1). When (N, Ng) = (0,3), we see from (2.2.10) that there are no massless
states for generic values of the metric, B-field and Wilson lines A!, while for certain values of
these fields the momenta can lie in the weight lattice of a rank 2d+ 16 group G x Gg (we refer
2

to this as sector 2). In this case, there is a subgroup with |(pr, pr)|* = 2 which can give rise to

massless states. Subtracting (2.2.14a) and (2.2.14b) we see that massless states have pr = 0,

4Taking into account the equivalence of points on moduli space due to T-duality, the coset manifold charac-

terizing the distinct backgrounds is 0(d)><o(f+(féc)lig)ﬁ()d T167) "
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and thus (unlike in the bosonic string theory), the non-Abelian gauge symmetry comes from
the left sector only. The group G x U(1)% in which the massless states transform defines the
gauge group of the theory, with G a simply-laced group of rank 16 4+ d and dimension N,
that depends on the point in moduli space (which is spanned by G;;, B;j, A]I- ). Specifically, the
10 — d dimensional massless bosonic spectrum are given by (u,v =0,...,.9—d;i,5=1,...,d;
I=1,...,16):

1. Ny =1,Ng =35, pL=pr = 0:

B,.,,D

« Common gravitational sector: G, B,

o/ilq;i% 10, ) g (2.2.17)

o d KK left Abelian gauge vectors: G, + B;, = a;, and 16 Cartan generators of
SO(32) or Eg x FEg: al,

“w

ail@zﬁ% 10, k) g (2.2.18)

where the index I = (I,4) includes both the chiral “heterotic” directions and the

compact toroidal ones, labeling the Cartan sector of the gauge group Gy.

« d KK right Abelian gauge vectors: G;, — B;, = a;,

ozﬁl)_(i_% 10,k) yg (2.2.19)
o d(d+16) scalars: Gyj, Byj, al
al X1 [0, k) g (2.2.20)
2. Ny=0,Ng=1,p} =2, pr=0:
¢ (N —d—16) root vectors: aj,
Y10,k Ta) s (2.2.21)

where « are the roots of G, (or equivalently the left momenta).

o (N —d—16) x d scalars: aq;
5(7% |07k77T0é>NS (2222)

The massive states are obtained increasing the oscillation numbers Ny and Ny or choosing
|(pr, pL)[* > 4.

Due to the uniqueness of Lorentzian self-dual lattices [11] both heterotic theories on T can
be connected continuously [7,30], i.e. they belong to the same moduli space. The possible
enhanced non-Abelian gauge symmetry groups are those with root lattices admitting an em-

bedding into I'y4i16. Although some theorems on lattice embeddings are known [16], it is a
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non-trivial problem to determine which groups admit an embedding®, as we will study in the
next chapter. Here we present a general discussion.
Using that pr = 0, we get from (2.2.10) that the massless states have left-moving mo-
mentum
pL = (\/ﬁew 4 wiA{) , (2.2.23)

while their momentum number on the torus is given by
: 1 ,
n; = (Gij + Bij) w’ + WIAil + iAjl-Ain] ) (2.2.24)

Note that quantization of momentum number on the torus is a further condition to be imposed
on top of pr,? = 2.

In the absence of Wilson lines A/ = 0, the d torus directions decouple from the 16 chiral
“heterotic directions” Y/; p! = 7! is a vector of the weight lattice of SO(32) or Eg x Eg and
then |pf|> € 2N. The only possible massless states then have either momenta py, = (0, 7?)
with |72 = 2, or pL = (V2equ,0) with w'Gjjuw’ = 1 (and additionally n;u’ = 1). The
former are the root vectors of SO(32) or Eg x Eg, while the latter have solutions only for
certain values of the metric and B-field on the torus and lead to the same groups as in the
(left sector of) bosonic string theory, namely all simply-laced groups H of rank d. The total
gauge group is then SO(32) x H x U(1)4 or Eg x FEg x H x U(1)4. For d = 1, i.e. a circle
compactification, H is SU(2) at G;; = R? = 1, and U(1) for any other value of the radius.
For compactifications on T2, the possible groups of maximal enhancement (see footnote 1) are
SO(32) x SU(2)? x U(1)% (for a diagonal metric with both circles at the self-dual radius and
no B-field) or SO(32) x SU(3) x U(1)% (equivalently SO(32) — Eg X Fg). See [32] for details.

Turning on Wilson lines, the pattern of gauge symmetries is more complicated, and also
richer. In the sector with zero winding numbers, w’ = 0, we have p! = 7! as before, but
now requiring a quantized momentum number imposes 7/ Al € 7 (see (2.2.24)) which, for a
generic Wilson line breaks all the gauge symmetry leaving only 7/ = 0, which corresponds
to the U(1)'® Cartan subgroup. The opposite situation corresponds to A] € I'; °. For HE,
since I'; = I's @ I's, A/ is innocuous because the momentum (2.2.10) remains the same if one
substitutes n; — n; + 7l Al — %AJI»AZ-ij and 7! — 7l — w'Al; and thus the pattern of gauge
symmetries is as for no Wilson line. In the HO theory, the same conclusions hold if A € T'yg, but
one has the more interesting possibility A € ', or A € T, where the SO(32) symmetry is not
broken, and the 16 chiral heterotic directions can be combined with the torus ones, giving larger
groups which are not products. When analyzing the sectors with non-zero winding numbers we
can have an incredible variety of enhancements for A] ¢ T, as we will show in the next section
for the circle case and in the next chapter for T2.

Let us discuss the different groups that can arise in points of moduli space where the
enhancement is maximal. In that case, the matrices that embed the internal sector of the

heterotic theory on 79 into a 16 + d-dimensional bosonic theory are related to the Cartan

°A preliminary attempt can be found in [31].
5We denote I'; the dual of the root lattice, and one has I'y = I's x I's for HE and I'y =Ty, = I'ig + 'y + T'¢
for HO (see Appendix A.1 for more details).
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matrix C by [28]

((G+ 1AL ALY, ;AJ> 1,

%A[j GIJ - 2 IJj>
lA I %ij for f < j (2‘2'25)
By oA} ) e i g
—1A. By, 2v1 0TS 2
270 0 for I =J

One can then view the possible maximal enhancements from Dynkin diagrams. Let us first
consider Wilson lines that do not break the original gauge group, i.e. A € I',. We start with
the HO theory. The Dynkin diagram of SO(32) is

.—I—H—Q—H—Q—Q—Q—Q—Q—Q—Q—.

The Dynkin diagrams of the gauge symmetry groups arising at points of maximal enhancement
in the compactification of the HO theory on T have d extra nodes, with or without lines in
between. Since the resulting groups have to be in the ADE class (they are all simply laced),
one cannot add nodes with lines on the left side. Therefore, the nodes should be added on the
right side, linked or not to the last node, and additionally add lines linking them to each other,

or not. For one dimensional compactifications (d = 1), the only possibilities are

0—1—0—0—0—0—0—0—0—0—0—0—0—0—0. 0—:—0—0—0—0—0—0—0—0—0—0—0—0—0—.

corresponding respectively to SO(32) x SU(2) and SO(34). Since a line in the Dynkin diagram
means that the new simple root is not orthogonal to the former one, then the Cartan matrix for
this situation should have an off-diagonal term in the row corresponding to the new node and
the column of the previous node, which according to (2.2.25) means that there is a non-zero
Wilson line. Thus, no Wilson line (or a line in I'j5, which is equivalent to no Wilson line) gives
the enhancement group SO(32) x SU(2) and, as explained above, this enhancement works
as in the bosonic theory, at R = 1. The enhancement symmetry group SO(34) is obtained
with a Wilson line in the vector or negative-chirality spinor conjugacy classes, and will be
presented in detail in Section 2.3.3.1. For compactifications on T, the d extra nodes give as
largest enhancement symmetry group SO(32 + 2d), and this happens when Wilson lines in all
directions are turned on. For less symmetric Wilson lines one gets smaller groups, and it is
easy to see from the Dynkin diagrams what are all the possible groups. Here we draw all the

possibilities for d = 2 only

.—I—.—Q—Q—.—Q—H—Q—Q—O—Q—Q—O—H O—I—Q—O—Q—Q—O—Q—Q—O—Q—Q—O—Q—Q—..
.—I—.—H—.—Q—H—Q—H—Q—H.. O—I—H—H—O—H—O—Q—H—Q—.H

corresponding respectively to SO(36), SO(34) x SU(2), SO(32) x SU(2)? and SO(32) x SU(3).
For the HE theory, the situation is less rich in the cases in which the dimension of the

resulting group is larger than that of Eg x Fg. As we explained above, since I'; = T's & I's, a
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Wilson line that preserves the Fg x Eg symmetry should be in the lattice, and thus equivalent

to no Wilson line. This can also be seen from the Dynkin diagram of Fg x Fg

O—Q—I—O—Q—H.—O—I—H—O—Q

where we see immediately that the extra nodes cannot be linked to any of the Ey’s, as any
extra line would get us away from ADFE. Then the possible enhancements are groups which are
products of the form Fgx Egx H, where H is any semisimple group of rank d, and each H arises
at the same point in moduli space as in the compactifications of the bosonic theory on T [32].
However, maximal enhancement can still be obtained by breaking one of the Eg to SO(16),
and then the richness of the SO(32) case is recovered (e.g. enhancement to SO(18) x Ey).
Points of enhancement are fixed points of some O(d,d + 16;Z) symmetry. Enhancement
groups that are not semisimple, i.e. that contain U (1) factors, arise at curves, surfaces or hyper-
surfaces in moduli space. On the contrary, maximal enhancement occurs at isolated points in
moduli space. This is developed in Section 2.3.1 for some compactifications on a circle, to which

we now turn.

2.3 Compactifications on a circle

In this section we will study in great detail the case of circle compactifications. We start by
specializing the previous chapter observations to d = 1.

The momentum components (2.2.10) are’

— L P2, _1 2 ]
PR = 73R [n Rw—m-A 2|A| w|
— 1{ bR A AP ]
pr = NoT: n w—T 5l Al
pl = wl +wAl, (2.3.1)

where |A]? = ATAT = AkA'® The massless states, which satisfy pr = 0, have left-moving

momenta

pL = (V2Rw, n! + wAl) = (v2Rw, p!), (2.3.2)

and momentum number on the circle
2 L
n:(R +2|A|>w+7r-A. (2.3.3)
The condition |pg|? = 2 can be written in the following form, that we shall use

T+ wA|* =2(1 —w’R?). (2.3.4)

“From now on, suppressed indices in p are orthonormal indices, i.e. pr = pra,PL = PLa-

8We are abusing notation, as |A|?> = AxA is not a scalar under reparameterizations of the circle coordinate,
i.e. our definition is |A|? = Al A! where i here is just the circle coordinate. The scalar quantity is A = |A|?/ R?
(see (2.3.6) below).
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In the sector pr, = 0 one has n = w = w/ = 0, and the massless spectrum corresponds to
the common gravitational sector and 18 Abelian gauge bosons: 16 from the Cartan sector of
Eg x Eg or SO(32) and 2 KK vectors, forming the U(1)!® gauge group.

The condition pr,2 = 2 can be achieved in two possible ways:

1) pr, = (0,p"), with [p|* =2,

2) pr, = (£s,p"), with 0 < s < V2, s+ p/|> =2.

From (2.3.2) we see that sector 1 has w = 0 and then (2.3.1) implies p’ = 7. The condition
on the norm says that these are the roots of SO(32) or Eg x Eg. But as explained in the
previous section, one has to impose further that n € Z and thus from (2.3.3), 7- A € Z. We
divide the discussion into two cases, one in which this condition does not break the SO(32) or
Eg x Eg symmetry, and the second one in which it does. This distinction is useful to understand
the enhancement process but, as we will see, is somewhat artificial: all enhancement groups,
including those with SO(32) or Eg x Ej as subgroups, can be achieved with Wilson lines that

are not in the dual lattice by appropriately choosing the radius.

2.3.1 T-duality

In this section we discuss the action of T-duality in the heterotic string compactified on a circle.
By T-duality we mean the action of certain type of transformations in O(1,17, Z) that relate a
given heterotic theory with 16-dimensional lattice I', compactified on a circle of radius R and
Wilson line A, to another heterotic theory with lattice I'', compactified on a circle of radius R’
and Wilson line A’.

The “generalized metric” of the circle, given by a 18 x 18 scalar matrix, is

RA(1+3A%)%  —IA* (14 3A%)A
M= —1p < -5A |, (2.3.5)
(1+31a%) At —L A" T+ -LAA

where we have defined the scalar

) _ AP
A= R (2.3.6)
This is a symmetric element of O(1,17), accounting for the degrees of freedom of the 00(21173)
coset.
As in [33], p = (pr; pr,p’) can be expanded as

with basis

1 /1 1 — 1 A2 A2 Al Al
k:z(;,O), k=—-R— == R——,V2A'|, U'=(-—"ei——=u).
V2 \R' R V2 ( 2R 2R V2R V2R
(2.3.8)
Here u! is a Cartesian 16-dimensional basis vector. The inner product is taken with the Lorent-

zian metric (—;+,...,+). Thus k- k=k-k=0, k- k=1, 111" =67 k- 1! =k -1 =0. We
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define the charge vector as the O(1,17) vector
|Z) = |w,n; ") (2.3.9)

The change of basis to p is easily read from (2.3.7). In the rest of the thesis we will work
extensively on this basis.
The mass formula (2.2.14a) and level matching condition (2.2.14b) read

1 R sect
m2=2(N,+Np—{, ) 1zm|z) (2.3.10)
5 NS sector
1 R sector
0=2|N; — Np — +(Z\|Z) , 2.3.11
( L R {; NS sector) (212) ( )

respectively, with the inner product defined by the O(1, 17) invariant metric

01 0
n=110 0 (2.3.12)
0 0 drs
and giving
(Z'1Z) =wn+nw+7n 7. (2.3.13)

Note that these equations are invariant under the T-duality group O(1,17;Z) acting as
\Z) = On|Z), M—=O0MO", 0e€0(1,17,Z) . (2.3.14)

The group O(1,17; Z) is generated by:

- A-parameter shifts associated to the addition of a vector A’ to the Wilson line

U amE A
Or=l0 1 0 |, Aey, (2.3.15)
0 —A" liexs

- Factorized duality, which is the generalization of the R — 1/R circle duality, of the form

01 0
Op=|10 0 |, (2.3.16)
00

Ligx16
The transformation of the charges under the action of O, is
|w',n'; ') = ‘w,n — AP +A mal - Alw> : (2.3.17)
The duality generated by Op is the usual T-duality transformation exchanging momentum
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and winding numbers

lw',n'; 7'y = |n,w; Tt . (2.3.18)

Since 7 stays untouched, this duality is possible if I' = I'. Its action on the background fields

can be worked out from the generalized metric (2.3.5).The action of Op transforms it into

S
M =O0pMO, =M= | —Ip2 RY1+1A%)2 (1+1ia%)4], (2.3.19)

—m AT (14 3A%) AN T+ HAA
and thus we get

A 1 A A
Al R=_ - 4 _ 4
R2(1+ 1a2) Ri+ TR R

in agreement with the heterotic Buscher rules for scalars [34]. We get that a background has
R = R for X
Ra=1-5lAF (= R =R, A'=-A) (2.3.20)

Additionally, if 24 € IV, then A’ = —A ~ A, and therefore the background is fully self-dual,
satisfying M = M~! up to discrete transformations.

All the examples of enhancement that we will discuss in Section 2.3.3 except for 2.3.3.8
satisfy the self-duality condition (2.3.20). By performing a A-shift to the Wilson line of 2.3.3.8
we can bring it to the equivalent one A = ((—%)2, (3)s, 08), which satisfies (2.3.20).

For Wilson lines with only one non-zero component, we have that the fixed “points” of
this symmetry correspond actually to lines of non-maximal enhancement symmetry where the
Wilson lines are functions of the radius (A = A(Rs)), and are such that A ~ Ay, with
|Awl? = 201 — R).

2.3.2 Enhancement of SO(32) or Es x Eg symmetry

If we want the condition 7 - A € Z not to select a subset of the possible 7! in the root lattice,

or in other words not to break the SO(32) or Es x Eg gauge symmetry, we have to impose
Aers, (2.3.21)
with
[, =T x Ty for By x Eg or [, =T, =T+, +T. for SO(32).

We restrict to this case now, and leave the discussion of the possible symmetry breakings to
the next section.

Sector 2 contributes states only at radii R* = s?/(2w?). The momentum number of these
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states given in (2.3.3) becomes

1 (s 1 |7 |2
_L(s e A= (11" ¢z 2.3.22
n 2<w+| ]w>+7r w( 5 ) €L (2.3.22)

where in the last equality we have used (2.3.2) and |pr|* = 2.

If A €T, the condition [pf|?> < 2 can only be satisfied for p! = 77 + wA! = 0. Then we
have s* = 2 and the quantization condition is: 1 4 ]|A[*w € Z. One has ;|A|* € Z, and thus
the only way to satisfy it is with w = +1 and 7 = FA which gives two extra states at R = 1,
with momentum number n = £(1 — 3| AJ?).

The condition 0 # |p’|*> < 2 is only possible if A is not in the root lattice. And as it is
required to be in the weight lattice, this possibility arises in the HO theory only, for A € T',
or Ael,. For Ael,,n-A€Zformelyand ;]A> = 1 (mod 1), so the only option is
s = 1, giving extra states with w = 41 at R = 1/4/2. These states enhance SO(32) x U(1) to
SO(34). We present an explicit example of this case in Section 2.3.3.1. For A€ T',, m- A€ ”Z
for # € Ty but now 1[A|* € Z and thus we cannot satisfy the quantization condition (2.3.22)
this way. However 7- A = % (mod 1) for 7 € I'y and thus we recover that for these Wilson lines
there is an enhancement to SO(34) at R = 1//2 as well, by states with w = +1. Note that
A € T, is equivalent by a A-shift with A € 'y to A € I',. As we can see from (2.3.17), by this
shift the winding number remains invariant, while = € I'y gets shifted to 7’ € I',.

We conclude that in circle compactifications with Wilson lines that do not break the original
SO(32) or Eg x Fg groups the pattern of gauge symmetry enhancement is (we give here only

the groups on the left-moving side):
o Fsgx FEgxU(l) > Egx Egx SU(2)at R=1if AcTyg®d Iy
e SO(32) xU(1) = SO(32) x SU(2) at R=1if A €T, or
e« SO(32) xU(1) =» SO(34) at R = % ifAel,or Ael.

In the following figures we show slices of the moduli space. To exhibit the increase in the
number of possible enhancement groups as the radius decreases and more winding numbers
contribute, as well as the symmetries in the Wilson lines, we present figures 2.1, 2.2, 2.3, 2.4
and 2.5 corresponding to compactification on a circle of generic radius R? > 1 and at R? = 1,
R?* = 3 R* = { and R? = 1, respectively.!? The circles in figures 2.3, 2.4 and 2.5 reflect
the dependence on |A|? and invariance under rotations. Two dimensional slices given by one
parameter in the Wilson line and the radial direction are shown in figures 2.6 and 2.7. More
figures of slices of moduli space are given in Appendix A.3.

The first item above corresponds to the red points in figures 2.2b and 2.6b, while the second
and third ones correspond, respectively to the red and green points in figures 2.2a, 2.4a and

2.6a. Note that there are also red points in figure 2.5, but as we will see, these arise in a

9By I we mean I'ig or I's @ I's, according to which heterotic theory one is looking at.
10For the HE theory, the Wilson lines chosen do not break the second Eg factor and therefore we display the
unbroken gauge group corresponding to the circle and first Eg directions. Figure 2.1b can be found in [35].

21



different way as above, by a combination of breaking and enhancement. In the next section we

will show how the enhancement at some of the other special points in the figures arise.

Ay Ay
0 N » b . »
) IO} @, o]
1 o O 1@ a ®
B, @, 9] [0
00 O A 00 ) o A
0 1 2 0 1 2

(a) HO theory (b) HE theory

Figure 2.1: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A% 16 =0, R = Ry with a generic Ry > 1

Ap A
2‘ 2 ® 2‘ * ®

W o} @ Qg
1 [ | L 1@ @ o

o o = O
@ ' o® . ® .,

0 1 2 0 1 2
(a) HO (b) HE theory

Figure 2.2: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A% =0, R=1.

0 1 2 0 1 2

(a) HO theory (b) HE theory

Figure 2.3: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A%+16 =0, R? = 3/4.
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Figure 2.4: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A%16 =0, R?2 = 1/2.

(a) HO theory (b) HE theory

Figure 2.5: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A%16 =0, R? =1/4.

T 02 0.4 0.6 0.8 1.0
(a) HO theory (b) HE theory

Figure 2.6: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A%-16 = 0.
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Figure 2.7: Enhancement groups on the left sector of the heterotic theory on the slice of moduli space
defined by A, R, with Wilson line A’ =

(2.1a to 2.5a) —

—
—
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0.4 0.6 0.8 1.0

(a) HO theory
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(b) HE theory

HE theory:

U(1)3 x SO(12) x Ej

U(1)? x SU(2) x SU(12) x Es
(1)2 x SO(14) x Ej
(

X F7 x Eg

U1
U(1)?

BEOOO

)

)
U(1)? x SO(14) x FEg

SU(

1)? x

~

)
) U(2) x SO(12) x Eg
1) x SU(2) x E7 x Eg
1) x SU(3) x SO(12) x Eg
) (2)
)
)

e e e e e e

U(1) x SU(2) x SO(14) x Es
U(1) x SO(16) x Eg

U(l) x Fg x Eg
SU(3) x E7 x Eg
SU(2) x Eg x Eg

SO(IS) X ES

2.3.3 Enhancement-breaking of gauge symmetry

Whenever the Wilson line is not in the dual root lattice, part or all of the original SO(32) or

Es x Eg symmetry is broken. However, this does not imply that no symmetry enhancement from

the circle direction is possible. The pattern of gauge symmetries can still be rich. We denote

these cases enhancement-breaking of gauge symmetry. This nomenclature can be confusing

however: for specific values of R and A, there is the possibility that the symmetry enhancement

is so large that it restores the original SO(32) or Eg x Eg symmetry, or even leads to a larger

group of rank 17. This means that we can have a maximal enhancement even if the Wilson line

is not in the dual root lattice, either to the groups listed at the end of the previous section, or

to any other simply-laced, semisimple group of rank 17, such as for example SO(18) x E.
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The massless states for an arbitrary Wilson line are the following:

Sector 1 has w = 0 (and thus p! = 7!) and consists of the roots of SO(32) or Eg x Eg
satisfying - A € Z, which form a subgroup H C SO(32) or H C Eg x Eg. We give examples
of Wilson lines preserving U(1) x SU(16) C SO(32), SO(2p) x SO(32 —2p) C SO(32), U(1) x
SU(p) x SO(32—2p) C SO(32), U(1) x SU(9) x SO(16) C Eg x Eg, U(1)> x SU(8) x SU(8) C
Es x Eg, SO(16) x Es C Eg x Eg, SU(2) x E7 x Eg C FEg X Eg in the following sections.

Sector 2 contains states only at radii R? = s?/(2w?). Quantization of momentum gives the
condition (2.3.22).If there are states in this sector, there is an enhancement of H x U(1) to
H x SU(2) (where the SU(2) can be on the circle direction or along some direction mixing
the circle with the heterotic directions) or to a group that is not a product, like for example
enhancement of SO(16) x U(1) to SO(18), as we will show in detail.

On figures 2.6 to 2.11 and A.1 to A.16 sector 1 is represented by the horizontal lines and
sector 2 by the curves.

Now we show explicitly how the groups mentioned in sector 1 get enhanced respectively to
SO(34) at R? = 4; SU(18) at R? = 1; E,11 X SO(32 —2p) at R* =1—&; E,;; x SU(16 — p)
at R* = 1— 5 in the HO theory, and SO(34) at R? = 1g; SU(18) at R? = §; SO(18) x Ey
at R? =1, SU(2) x Es x Eg at R* = 1 in the HE.

- Explicit examples for the HO theory
Here we present some examples of symmetry enhancement-breaking. The roots of SO(32)
are given by
SO(32) :  (&£1,41,0M), (2.3.23)

where underline means all possible permutations of the entries.

2.3.3.1 U(1) x SO(32) — SO(34)
Consider the HO theory compactified on a circle of radius R = 1/v/2 with a Wilson line
A=(1,0,...,0) € I'y,. The states with pr = 0 have left-moving momenta

pL = (w, 7 +6fw), (2.3.24)

where the first entry corresponds to the circle direction. In sector 1, with w = 0, all the
momenta satisfy |7/|* = 2 and 7+ A € Z. The last condition holds for any 7/ € I';, and thus in
this sector one has all the root vectors of SO(32) given in (2.3.23). In sector 2 we have s = 1
and w = +1. Here we get massless states coming from three different sectors of the SO(32)
weight lattice, namely

2.a) |7|* =2, with 7! = +1

pL = (£1,0,+1,0,0,...,0) (2.3.25)

(where the signs are not correlated). These are 60 states with n = 0.
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21) |xf2 = 0,

These are 2 states, which have n = w.
2.c) |n]? = 4, with 7! = 42

pL = (F1,+1,0,...,0). (2.3.27)

Another 2 states with n = —w.

We thus get 64 extra states, which together with the Cartan direction of the circle, enhance
the SO(32) to SO(34). This point in moduli space is illustrated in green in figures 2.4a, 2.6a
and 2.7a. In figure 2.4a the other green points differ from this by a A-shift, while the other green
points in figures 2.6a and 2.7a, that appear at a different radii, will be explained in Section
2.3.4.

2.3.3.2  U(1)? x SU(16) — SU(18)

We now take the Wilson line A = ((i) - —%). In sector 1 (w = 0) we have the roots of SO(32)
that obey:

16
Dorl-rfez. (2.3.28)
I=1

Since the sum cannot be a multiple of 4, it has to vanish. Then we have the roots with two
non-zero entries of opposite signs, that is SU(16). For a generic R this is the gauge group, but
if R? = i we get enhancement to the maximal group SU(18). In this case, the mass formula
(2.3.4) gives

15 16
S (r g (e —w et §) =S ) =2
I=1 I=1

where we defined # = (7, ma, ..., 715, M6 — w). If w is even then 7 is in (0) or (s), but if it is

odd then 7 is in (v) or (¢). We also have the quantization condition:

1) 12 Va2 1,02 . 1)~ 12
il —=1  S|7)" + sw* +wieg—1 7" —1
2| | — 2| | 2 16 — 2| ‘ +%+ﬁ-16€Z (2329)
w w w
For w = 1, — 1%, #7 = 2|#|?> — 1, and the solutions are # = — (1,015) on (v) and & =

— ((%)15, —%) on (C)
For w =2, ;% (7; 4+ 3)* = 0, with unique solution # = — ((%)16).
They all obey the quantization condition, and add up to 66 additional states. Together

with the 240 roots of SU(16), they complete the 306 roots of SU(18).

2.3.3.3 U(1) x SO(2p) x SO(32 —2p) — E, 1 x SO(32 — 2p)

Now we take a Wilson line A = ((1

2)p , 016_p), 2 < p <8, in the HO theory!!.

" Note that p > 8 is equivalent, by a shift A = — ((%)16), top' =16 —p < 8.
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The massless states that survive in sector 1 (w = 0) are those with momentum 7! satisfying
1 &
> rlez. (2.3.30)
213

Then the surviving states have momenta

PL = (0, +1, +1, Op_g, 016—p) — 50(2])) s
— (2.3.31)
pr = (0,0,,+1,+1,014,) —s SO(32 — 2p).

For generic radius there are no states with non-zero winding, and then we get SO(2p) x
SO(32 — 2p). These points are illustrated for p = 2 by the cyan dots in figures 2.1a, 2.2a, 2.4a
and 2.5a; for p = 7, on the horizontal cyan line in figure 2.7a and for other values of p, at
half-integer values of the horizontal lines of the figures in Appendix A.3.

At special values of R some states with non-vanishing winding are massless. For example,
when R* = 1 — £ for p < 8, the U(1) x SO(2p) is enhanced to E,;;. In this case, the mass
formula (2.3.4) is

P 16
Y(m 42+ > m=2-2uw*(1—-p/8) <
I=1 I=p+1

>3

and then if p < 8 the LHS must be smaller than 2. If the m; are half-integer, then the
LHS is always bigger than 2. Consequently, 7; can only take integer values and we need
Y, =58=0,1

For w = 1 the solution must be of the form ((—l)k,Op_k, iﬁ,Olg,_p) and the equation is
solved for every p if = 0. Then we get ((—1)k, Op—k&» Olﬁ_p).

There is an additional constraint because |7|?> must be even, and then k& must be even. The

number of states is equal to the way of choosing the value of the first p components. Choosing
the first p — 1 components, the last one is fixed by the constraint. There are 2 x 2P~ = 27
states with |w| = 1.

For w = 2 we get >¢_,(n; + 1) = p — 6 — 3, which is only possible for p = 6, 7. The RHS
can only take the values 0 or 1. In the first case, all the 7; must be equal to —1. Then we
get the solutions ((—1)7,%) for p =7 and ((—1)g, 010) for p = 6 . The second case is only
possible for p = 7 and § = 0. One of the 7; can take the value 0 (or —2) and the rest must
take the value —1: (—1 +1, (—1)6,()9) for p = 7. In total we have 2 states with |w| = 2 for
p==6and 2 x (18 +14) =64 for p = 7.

For w > 3 the equation cannot be satisfied. Then for p < 6 we get 2P states (all with
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|w| = 1), while for p = 6 and 7 we get 2 and 64 extra states respectively with |w| = 2.

U(1) x SO(4) — SU(2) x SU(3) = E3 (4 extra states
U(1l) x SO(6) — SU(5) = E, (8 extra states

) (2.3.32)
U(1) x SO(10) — Eg (32 extra states
U(1)

)

)

U(1l) x SO(8) — SO(10) = Ej5 (16 extra states)
)

x SO(12) — E; (66 extra states)

)

U(1) x SO(14) — Eg (192 extra states

Recalling that Ey = U(1) x SU(2), this is also valid for p = 1, where we get the enhancement
at R? = %:
U1 =U(1) x SO2) = U(1) x SU(2) = E, (2 extra states) . (2.3.33)

The enhancement group U(1) x SU(2) x SO(30), as any non-maximal enhancement, does not
arise at an isolated point, but at a line, displayed in blue in figure 2.6a.

Applying the statement to p = 8, appears an enhancement from U(1) x SO(16) to Ey at
R = 0. Since FEjy has infinite dimension, we would need infinite massless states with infinitely
many different winding numbers. It is obvious that at R = 0 winding states do not cost any

energy, and thus one can have all the windings. The mass equation is:

i(m +2)=2-3. (2.3.34)

=1
We see that for this value of p the RHS is independent of the winding number. If w = 1 then
T = ((—l)k,08_k,08) is a solution (if & is even). For any other odd value of w we have the

solution: 7 = — <(wz+l>k , (%)8%, Og). These, together with the states with even w, give

infinite massless states.

We can see all these enhancements at the intersections of the lines at A = 1/2 in figures
A.1to A.16 that occur at R> =1 — £.

2.3.3.4 U(1)> x SO(2p) x SU(16 — p) — SU(2) x E,41 x SU(16 — p)
Consider the Wilson line A = <(164_) ,0p>, with 0 <p < T.
P/p
The massless states that survive in sector 1 (w = 0) are those with momentum 7! satisfying

16—p
ﬁ > @l € Z. Then the surviving states have momenta
=1

pL = (07016*p7i17i170p+2> — SO(QP)
N (2.3.35)
pr = (0,1,-1,014-5,0,) — SU(16 —p)

For generic radii there cannot be states with non-zero winding, and then the symmetry
group is SO(2p) x SU(16 — p). This is illustrated in the white spaces of the figures in Appendix
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A3.
There are special values of R where some states with non-vanishing winding are massless.
For example, when R? = 1 — g, the U(1)* x SO(2p) is enhanced to SU(2) X Ej41. To see

this, consider the mass formula (2.3.4)

q 16
> (7 + 47“’)2 + > 7 =2-2w(1—8/q) whereq=16—1p .
I=1 I=q+1
For w # 0, the RHS is smaller than or equal to 16/¢ and then the LHS must be smaller than
2. If the 7; are integer, then we need 1% g1 72 = =0, 1 and it follows that

S (mr 4+ ) = 2~ 2uP(1— 8/g)
=1
For w =1, >9_, (77 + %)2 =16/q — B < 2. If one of the 7/ is different from 0 or —1 then the
LHS is larger than 16/¢. So the solution must be of the form ((—l)k,Olg_p_k,:l:B, Op_l) and
then k = 5 = 0. There are only two states (considering also w = —1) with momentum (0y6).
For w = 2 we get %_, (77 + 8/¢q)*> = —6 + 64/q — 8 which is only possible for ¢ = 9, 10
(p="7,6). If p = 6 then we need 8 = 0, the RHS is 2 and we only have the solution ((—1)19, 0s) .
If p =7 then, for # =0 and S = 1 the RHS takes the values 0 and 1 . The equation for g =0
is impossible to satisfy, and then we get ((—1)9, M) In total we have 2 states with |w| = 2
forp=~6and 2 x (14) =28 for p = 7.
For w > 3 we get >_, (71 +12/¢)*> = 144/q — 16 — 8 < 0. Then for ¢ > 10 (p < 6) there
are 2 states (both with |w| = 1), while for p = 6 and 7 there are 2 and 28 extra |w| = 2 states

respectively.
If the m; are half-integer, then the last p values have to be j:%:

q
Z ) =9 =2 = 2w'(1-8/q) (2.3.36)

For w =1, >9_,(7; + %)2 S < 1 and the 7; can only take the values :I:1 The solutions
are of the form <<§)k , (_%)16—;7—1@’ (i;)p), and the equation implies k = 0. Then, for |w| = 1,

we get the 2 x 2P0 solutions (

2 — w < 0, and then there are no states with

For w = 2 we obtain >1_,(7; + % i

|w| > 1.
In total, for p < 6 we get 2 + 2P %0 states (all of them with |w| = 1), while for p = 6 and 7
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we get 2 and 28 extra states respectively with |w| = 2.

U(1)* = SO(4)
U(1)? =U(1)? x SO(2) — SU(2) x SU(2) x U(1)
U(1)? x SO(4) — SU(2) x SU(2) x SU(3) = SU(2) x E3 (6 extra states

SU(2) x E; (4 extra states)

)

)

U(1)? x SO(6) — SU(2) x SU(5) = SU(2) x E4 (10 extra states)
2) x Es5 (18 extra states)

( )

( )

)

(
SU(2) x Ey (4 extra states
(

(2)
U(1)* x SO(8) — SU(2) x SO(10) = SU(2)
U(1)? x SO(10) — SU(2) x Eg (34 extra states
U(1)? x SO(12) — SU(2) x E; (68 extra states
U(1)? x SO(14) — SU(2) x Eg (158 extra states
At p = 8 we seem to get an enhancement from U(1)? x SO(16) to SU(2) x Ey at R = 0.

All of these enhancements can be seen on the intersections of the red and purple curves of
figures A.9 to A.16 that occur at R2=1— 28

- Explicit examples for the HE theory
The roots of Eg x Eg are

Es x By © (£1,£1,0°0%), (0%, +1,+1,0°) , (2.3.37)

1 1
((ii)g, 0%), (0%, (ii)g) , with even number of + signs

2.3.3.5  U(1)? x SU(9) x SO(16) — SO(34)

Consider the HE theory compactified with Wilson line A = ((%)
we have the roots of Fg x Eg that obey:

5 1,07). In sector 1 (w = 0)

M~

N +2rt+r’ ez (2.3.38)
I=1

This breaks into two conditions, one for each Fg:
7
Nal+2x%ez  and 1’ €Z. (2.3.39)
I=1

For the first condition we have (0) and (s) roots. The (0) roots are vectors of the form
(:I:l, +1, 06). The condition implies that if 73 = 0 then we need opposite signs for the two
non-zero entries. If 7% = £1 then the other non-zero entry must have the same sign. We get
(1, —1, 05, O) and £+ (1, Og, 1). These are 42 + 14 = 56 roots.

The (s) roots are vectors of the form ((ié)s> with an even number of minus signs. The

condition is 7_, 7/ + 57% = 0 mod 6. The absolute value of the LHS can only be 0 or 6. In

the first case one of the first 5 components must have a different sign than the rest, and in the
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second case all the 8 components must have the same sign and we get £+ ((;)6 , —%, —;) and

+ ((%)8) These are 14 + 2 = 16 roots.

In total we have the 56 + 16 = 72 roots of SU(9).

The second condition leaves only the integer roots, and then we have SO(16).

For an arbitrary value of R there cannot be states with non-zero winding, and then the
gauge group is SU(9) x SO(16).

Now we show that when R? = % there is enhancement of the gauge symmetry to SO(34).
The mass formula (2.3.4) is

7 16
Do+ 5 (s + 5+ (ot w) + Y m =2 <2, (2:3.40)
I=1 I1=10

Then Y78 ,, 72 can only take the values 0, 1 or %. In the last case, we also have that (mg+w)? > %,
which means that there are no spinorial roots in the last 8 components. The only possibilities
are: (—w,07) and (—w,07) £ (1,07). The first (second) case requires w to be even (odd).

Defining ## = (my, 7o, . .., 77, —mg — w), we have:

9 2

8
Z Ar+ o2 =2 v LCI" (2.3.41)

but now the condition for the integer vectors is 3-%_, #; odd (even) when w is odd (even); and
for the half-integer vectors we have the (s) conditions if w is odd and the (¢) conditions if w is
even.

The quantization condition is

IT[*=0mod 2 for |w|=1
€Z—{|r*=2mod 4 for |w| =2 (2.3.42)

7] =2mod 6 for |w| =3

glm® —1

w

If w=1, —Y5_, #7 = 3|#7|*> — 2. The minimum value for |#7]? is 1, and in that case we
have 7 = — (&)

|#7|> = 2 can only be achieved for the (s) conjugacy class, and then # = — ((%)E)

|7|> = 3 is for the (v) conjugacy class, —>%_, #; = 7, but this cannot be achieved. The
same happens for greater values of |#]2.

If w=2 -3 ,# = 3|#/]*> — 1. Then |#|* has to be even. The minimum value is 0,
which could be achieved only on (0), and the equation cannot be solved. |#]?> = 2 can only be
achieved for (0) and we get ((—1)2,06). |#]? = 4 has the solution # = — (ﬁ) And for
|#]? = 6 the equation cannot be satisfied.

If w=3, 27_,(# + 3)* = 0, and the only solution is # = ((—%)8). That is 7 =
(( 7, —2,-3 07) + (Os,ﬁ) This has |7|*> = 12, 18 or 24, which do not obey the quant-
ization Condltlon.

If w=4, =¥}, #; = 3|&]* + ;. But this equation cannot be solved for integer |#|2.
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Defining 8 more components for a 16 dimensional 7 such that 79 = mg — w and the rest

equal to the last 7 components of 7, one can write the additional states # for R? = % as

(£1,0¢,+1,07) and (= (§) ,%1,07) for [w| = 1 and + ((1)s,06,05) and as £ ((3, (3)7) , 0s)
for |w| = 2. The former are 256 + 32 = 288 states and the latter 56 + 16 = 72 states. In total
these 360 additional states added to the 184 roots of SU(9) x SO(16) give the 544 roots of
SO(34).

In figure 2.9 we show this maximal enhancement on the intersection between one red, two
yellow and one green curves. The integer states with |w| = 1 and |w| = 2 give the red curve, the
half-integer states with |w| = 1 give the green curve and the ones with |w| = 2 are represented

by the yellow curve. The additional states without winding are those in the yellow line.

@N
B SU(8) x SO(16) x U(1)>
/

E L] (
?% B S0(32) x U(1)

5 [ SO(16) x SO(16) x U(1)
SB) D SU(9) x S0(16) x U(1)
By v W Es x SO(16) x U(1)

: W SU(8) x SO(18) x U(1)

S mEEHE S0BY

?J W Esx SO(18)
0.0§>- . ' . — - ....... . . . . . R

Figure 2.9: HE with Wilson line A7 = ((A)7,1 — A, 1,07)

2.3.3.6 U(1)® x SU(8) x SU(8) — SU(18)
Consider the Wilson line A = <<l)7 3 (1)7 5) in the HE theory.

6)7767\6/7°6
In sector 1 (w = 0) we have the first condition of (2.3.39) for each of the Ejg, then we get
the 144 roots of SU(9) x SU(9). For an arbitrary value of R this is the gauge group.
For R? = é there is enhancement of the gauge symmetry to SU(18). To see this, take the

mass formula (2.3.4)

7 15
S+ 22 4+ (s + 22+ Y (mr + L)+ (mip + )P =2 - 20 <2, (2.3.43)
I=1 1=9
Defining # = (my, 7o, ..., 77, —Tg — W, Tg, M0, - - - , M5, —T16 — W) We have:
16 ,
(A +¥)p=2-—2, (2.3.44)
=1

but now 7 has to be on the conjugacy classes (ss), (vv), (sv) or (vs) if w is odd and on (cc),
(00), (0c), (c0) if w is even.

1
§|7r\2—1

w

e/.

We also have to obey the quantization condition
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If w=1, —>1% #; = 3|#|> — 4 and # is on (vv), (ss), (vs) or (sv). The minimum value
for |#7]? is 2, and in that case (#,4) = — (ﬁ,ﬁ)

|#|? = 3 can only be achieved for the (vs) and (sv) conjugacy classes, and # = — (&, (%)8>,
- ((%)8,&) |7t|?> = 4 is for the (ss) and (vv) conjugacy classes, and # = — ((%)16). %2 =5
is for the (sv) and (vs) conjugacy classes, — 372, #; = 11 which cannot be achieved. The same
happens for greater values of |#|%.

If w =2, 121 = 2|#% + 1 implies (00), (cc), (c0) or (0c). The minimum value for
|77|% is 0, but then the equation cannot be solved.

|#|? = 2 can only be achieved for (00), (Oc) or (c0), but there is no solution.

|%|2 = 4 implies — >}, 47 = 7 and this cannot be achieved. The same happens for greater
values of |#|%.

If w=3, Y% (7 + )* = 0 has only a solution belonging to (ss), namely # = — ((%)16).

It can be shown that all of these states obey the quantization condition. Then, the additional
states for R? = & are + (&,&), + (&,(f) ) and =+ (( )8,1,07> for |[w| =1 and 7 =

((—1)16) for |w| =3 (ﬁ ﬁ) and (i (l) +1 07) for |w| =1 and + (( )2,06,08) and

2 2
+ ((%)16> for |w| = 2. The former are 128 4+ 32 = 160 states and the latter 2 states. In total
these are 162 additional states, which added to the 144 roots of SU(9) x SU(9) give the 306
roots of SU(18).

In figure 2.10 we show this maximal enhancement on the intersection between one red, two
yellow and one green curves. The integer states with |w| = 1 are represented by the red curve,
the half-integer states with |w| = 1 give the yellow curve, the states with |w| = 3 are represented

by the green curve and the additional states with w = 0 give the yellow horizontal line.

?@% SU(8) x SU(8) x U(1)?

] (
B SU16) x U(1)?
. M SO(16) x SO(16) x U(1)
§) O SU(9) x SU(9) x U(1)
[ |
[

ES X ES X U(l)
SU(8) x SU(8) x SU(2) x U(1)

B EECE SUOS)

[

?:\f .—I-D EgXEgXSU(Q)
o.o%ﬁ>> R

0.2 0.4 0.6 0.8 1.0

Figure 2.10: HE with Wilson line A’ = ((A)7,1 — A, (A)7,1 — A)

2.3.3.7 U(1) x SO(16) x Es — SO(18) x Fj

Consider the HE string compactified on a circle of radius R = %, with Wilson line A =
(1,07,08), which is of the form (v0) according to the notation of Appendix A.1 (see (A.1.10)
in particular). This Wilson line leaves the second Eg unbroken, while from the first Fg, the
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surviving states in sector 1 are the ones with integer entries, i.e. those in the first line of (2.3.37).
The group H from sector 1 is then SO(16) x Es and the corresponding points in moduli space
are illustrated by the grey dots in figure 2.1b.

In sector 2 we have states with w = 41 such that s = 1, [pf|> = 1. The surviving states

have the following momenta

prL = (0,£1,£1,05), w =0, |7|*> =2 112 roots

= (£1,0,£1,06), w = £1,|7|* =2, 28 roots

= (+1,£1,07), w==+1,7=0, 2 roots

pL = (£1,F1,0;), w==+1,|7]>*=4, 2roots,
where the first entry corresponds to the circle and the subsequent ones to the 8 directions along
the Cartan of the first Fg factor. The first line contains the states of sector 1. These are the 144

roots of SO(18). This point in moduli space, together with its equivalent ones, are illustrated
by the green dots in figure 2.4b, 2.6b and 2.7b.

2.3.3.8 U(1) x SU(2) x E7 x Es — SU(2) x Eg x Ey

This is an interesting example of enhancement-breaking in the HE theory, where first the Eg
is broken to SU(2) x E; by the Wilson line A = ((i)g : 08> and then enhanced by the circle
direction to SU(2) x FEg.

The Wilson line leaves the second Eg unbroken, while the surviving roots from the first Fg

have 9-momenta
PL = j:(oa 17 _17 06)

pr =+ (0,(3),) (2.3.45)
p = (0.(2),-- (3).)
This, gives 128 roots, which together with the 8 Cartan directions, gives an unbroken gauge

group H = SU(2) x E; C Ex.
Additionally at R = % there are 114 states in sector 2: two with w = +2 and 112 with

w = =1 and momentum
po= (5% (1), (1),)

po= (4.2 (3),.% (1),)

These states give a total of 114 extra states that add up to the previous 136 states, plus the

(2.3.46)

circle direction, adding up to the 251 states of SU(2) x Es. So at R = 5 we get enhancement
to SU(2) x Eg x Eg, which works very differently than the enhancement occurring at R = 1,
mentioned in Section 2.3.2.

In figure 2.11 we present these maximal enhancements for the HE theory, and we also show
a maximal enhancement to SU(3) x E; x Fg. The additional states with w = 0 are represented

by the cyan line and the states with |w| = 1 together with the ones with |w| = 2 are represented
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by the orange curve.

E7 x By x U(1)?
SU(2) x E7 x Eg x U(1)
Eg x Eg x U(1)
B0 SU(2) x Eg x Eg
B+ +0 SU@3) x E7 x Eg

S

R

0.6 0.8 1.0

Figure 2.11: HE with Wilson line A’ = ((A)g, 0g)

2.3.4 Exploring a slice of moduli space

In this section we present a detailed analysis of the slice of moduli space for compactifications

of the heterotic theory on a circle at any radius and Wilson line given by
A= (A1,045) . (2.3.47)

The results of this section are displayed in figure 2.6. Here we present the main ingredients of
the calculations, and leave further details to Appendix A.2.

For this type of Wilson line, the states with w = 0 (sector 1) that survive, are those satisfying
7T1A1 e’Z. (2348)

This preserves all the roots only if A; € Z for the I'ig case, or A; € 27 for the I's @ I'y case.
These correspond to the horizontal orange lines in figure 2.6, where at any generic radius, the
gauge symmetry is U(1) x SO(32), or U(1) X Fg x Eg. If A; is an odd number, then the SO(32)
symmetry is unbroken, but the Fg x Eg is broken to SO(16) x Eg, which is depicted with a
black line at A; = 1 in figure 2.6b.

If A; ¢ Z, then we have just the roots with m; = 0. That is, the 420 roots of SO(30) or the
324 roots of SO(14) x Es. This corresponds to the white regions in figure 2.6.

Now, depending on the value of R, we can have additional states in sector 2, i.e. states with

non-zero winding'? which momenta satisfy |pr,|* = 2 and have a quantized momentum number

12From now on we take w > 0, keeping in mind that for every massless state with w there is also a massless
state with —w.
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on the circle. Then, according to (2.3.2) and (2.3.22), they should obey

7+ wAP =2(1 - w’R?),
1 (2.3.49)
- (1-3*) ez,

The first equation implies R~ > w, and the simplest solution is

= (j:\/m— wA1,015) :

But 7 is in an even lattice, which implies 7 = —2¢q, ¢ € Z. The quantization condition for n
yields
-l 7.

w

so we have only the winding numbers that are divisors of the numbers that can be written as

2¢® — 1, for some integer ¢. In terms of ¢, the Wilson lines are of the form

2q + 2 — 2w?R?
A= " W awq(R) , {w,q, 2‘11_1} €Z. (2.3.50)

If the radius also satisfies R < f < 7, we have additional solutions where some of the

other components of 7 are non-zero, such that

T+ wA = (i\/l —2wZR2, 41, 014) for T'yg,
T+ wA = (i\/l —2w2R2, 41,04, 08) for g ® s .

The quantization conditions are the same as before, but now the Wilson lines have the following
behavior as a function of the radius

2g + 1+ 1 — 20’R?
A, = 21t . P b (R), {wq 2} ez, (2.3.51)

If additionally R < (2v/2w)~! we have yet other possible solutions, but only for the HE

theory, where

T+ wA = (i VI = 8u?R?, (+1)7,0 ) for Tg @ Tg.

The lines and quantization conditions are:

+14+,/t —2uR?
A = 173 4 — (R), {w,q, q(q+1 lez, (2.3.52)

where we used (m)? = |7|* —  and m = — (q + %)

For a given ¢ and w, whenever the Wilson line is of the form a,, in (2.3.50), we get 2
massless states (one for w > 0 and another one for w < 0). If there are no more states, then
we have enhancement to U(1) x SU(2) x SO(30) and U(1) x SU(2) x SO(14) x Es. These
correspond to the blue lines in figure 2.6, where for example in figure 2.6a, the long blue line
going from (R, A;) = (0,4/2) to (1,0) corresponds to a; o = 1/2(1 — R?), while its mirror one
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along the axis Ay =1is a;1 =2 — ao.

For Wilson lines of the form b, , in (2.3.51), we get 60 extra states for the I';g, and 28
for I's @ I's. The former promote the enhancement to U(1) x SO(32), while the latter to
U(1) x SO(16) x Eg, and they correspond respectively to the orange lines in figure 2.6a and
the black lines in figure 2.6b. The largest curved orange line in the former and black line in the
latter going from (0, 0) to (0,2) corresponds to by; = 1 & /1 — 2R2, where the plus sign is for
the upper half of the curve, and the minus sign for the lower half.

Finally, Wilson lines of the form ¢,,, in (2.3.52) give in the HE theory, 2 x 26 = 128 states
(the sign of one of the seven (j:%) is determined by the sign of the other 6 and the sign chosen
for the Wilson line). Note that ¢, ,(R) = boy4(R). It is not hard to show that a Wilson line
that can be written as ¢, ,(R) can always be written as by, ,(R), but the function b can also
have an odd w. Wilson lines b that can also be written as ¢ bring then a total of 284128 = 156
states, which corresponds to the enhancement to U(1) x Eg x Eg in the orange lines of figure
2.6b.

There are only two kinds of intersections between lines, and the points of intersection cor-

respond to points of maximal enhancement (see Appendix A.2 for details):

» between a blue curve a(R) with w; and an orange curve b(R) with ws, where the en-
hancement group is SU(2) x SO(32) (SU(2) x Eg x FEg) in the HO (HE) theory. These

are the red dots of figure 2.6, and arise at

1 2 1 2k
RoA) = |, (gt wR) | = (=, 2 ]
(B, A1) (,/w%+2wg wy 1E2 )) (O C)

for some integer k, with C' = 1,3,9,11, ... are all the integers whose prime divisors are 1
or 3 (mod 8).

 between two blue a(R) with w; and w, and two orange (black) curves b(R) with ws and
wy, where the enhancement group is SO(34) (SO(18) x Es) for the SO(32) (Es x Ej)

theory. These are the green dots of figure 2.6, and arise at'?

1 2 1 k
RaA = e :ti R =\ 7=~ ~ ]
= (e s o) - ()

for some integer k, with C' = 1,5,13,17, ... are all the integers whose prime divisors are
Pythagorean primes.

In Appendix A.2 we give the details of the calculations and also prove that these are the
only possible intersections for this type of Wilson lines. In Appendix A.3 we present other slices

of moduli space given by the radius and Wilson lines determined by a single parameter A.

BWe get additionally R = \/w21+w2 = \/5\/'5124-’11)2.
1 2 3 4
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2.4 Generalized Dynkin Diagram of [’ ;7

As was explained previously, the momentum of the states associated to heterotic strings com-
pactified on a torus lies in an even self-dual lattice. In the case of the circle this is I'y 17. It is
quite simple to obtain all the gauge group and their respective moduli for circle compactific-
ations of both heterotic strings by means of the Generalized Dynkin Diagram (GDD) of this
lattice. We refer to [11] for an introduction to root systems and associated GDDs of Lorentzian
Iy sm+1 lattices. The special case of I'y 17 is discussed in detail in [33] and [13], precisely in
connection to circle compactifications of the heterotic string. It was originally considered by
Vinberg [36]. The reflective part of its group of automorphisms, which is actually the duality
group O(1,17,7) [13], can be encoded in the GDD as we review shortly.

The equivalence of the two heterotic strings on S! is determined by the uniqueness of the
I 17 root lattice. The Generalized Dynkin Diagram (GDD) of I'y 17 is obtained by adding
roots associated with the crosses in the following extension of the SO(32) and Es x Eg Dynkin
diagrams respectively

X

W (2.4.1)

Q—E—O—O—H X X X Q—O—O—O—E—O (2.4.2)

The 17-dimensional moduli space of inequivalent compactifications can be chosen to be delim-
ited by 19 boundaries, each of them associated with one of the nodes of the GDD

19 18
17 E E 16
1 2345 6 7 8 9101112131415 (2.4.3)

A possible fundamental region for the moduli space is determined by the points satisfying
all of the inequalities in Table 2.12

’ Node \ Fund region for I'y4 \ Fund region I's & I'g ‘
1<:<6 A <A A < A
7 A7 < Ag A7 < AS +1
8 Ag < Ag 0.A2>2 - 2R?
9 Ag < Ay Ag < A +1
10<:i<15 A <Ay A <Ay
16 A <1—Asgs Ag < —Aps
17 —Ay < A4 —Ay < Ay
18 ,A42>2 - 2R? 5,4,>0
19 S1(A - 3)?>2—2R? 8 LA,<0

Figure 2.12: Fundamental region for HE and HO in d = 1.
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This defines a 17-dimensional surface resembling a chimney [13]. In I'yg, the first 17 nodes
define walls parallel to the R direction and the last two nodes define hyperspheres which delimit
the bottom of the chimney. In I's®I's, there are 18 walls and only one hypersphere at the bottom
defined by the 8th node. At the borders of the fundamental region, where some equalities are
saturated, the gauge symmetry is enhanced. The enhanced gauge group is obtained by removing
all the nodes of the Generalized Dynkin Diagram except those with saturated inequality. Hence,
the maximally enhanced symmetries saturate all but 2 of the inequalities'®. It can be shown
that all the possible combinations of saturated inequalities produce Dynkin diagrams of the
ADE classification.

Some sections of the bottom of the chimney are represented below in figures A.1 to A.16 by

1
2

line. These are the sections of the hypersphere associated respectively to the nodes 18 and 19

the red curves that intersect the horizontal axis and the purple curves that intersect the A =

in the I'14 case. The absence of purple curves in the first eight figures is related to the fact that
for Wilson lines with more than 7 zeros there are no spinorial roots which makes the inequality
of the 19th node impossible to saturate.

All the possible enhancement groups in S* compactifications can be obtained from the GDDs
[11-13] . Here we list all the possible maximal enhancements for the I'ig and I's & I's theories,
together with the point in the fundamental region that gives that enhancement (p,q € Z,
1<p,q<38)

[\

=

Wilson line

(050 (s527),..,

Gauge group
Eg_p X Eg_q X SU(p+ C])

o) | 8

N | =
SR
Q=
N~—

(_2(6(]+q)7 (2(61(1))74_(1 ’ (;)S—q) 2 — q<2k79 + % SU(9 + q) X E97q
<_i7<i)14a—i) + (015, 1) 4 SU(18)
Os+q5 (3)8— g SO(16 + 29) x Ey_,
(045, 1) 2 SO(34)

Figure 2.13: Maximal enhancements for the HO theory.

Wilson line

Gauge group

(0650 (2), (=2),+050) + (0,1, 1,05) | (5 1) | oy x Foy x SUGp+ )
(=4 (8), (-2),060) + (O =1.1,07) [S(3+1) | SUO+0) x Eary
(=5 (8); (=3):5) + (0. ~1,1.07) : SU(1s)
(087(-§)q708—q> + (07, —1,1,07) 5% SO(16 + 29) x Ey_,
(05, (=4),8) + (0, ~1,1,07) B S0(34)

When p and/or g equal 7 one gets Fy = SU(2) x U(1) and the enhancement is not maximal.

Figure 2.14: Maximal enhancements for the HE theory.

14 Actually, if the group has one or two Es, 3 or 4 nodes have to be removed instead of 2.
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Now we will explain the construction of the GDD in more detail for the HE case. The HO

is analogous an can be read for example in [2].

2.4.1 Embedding of I's d I'g

We will describe the embedding of the HE lattice I's © I's in I'y ;7.

2 8 8 2
47 74

1 2 3 4 5 6 0 ¢Cc o ¢ 5 4 3 201

Figure 2.15: Generalized Dynkin Diagram for the I'; ;7 lattice, with labels showing the embedding of
the extended Dynkin diagrams of Eg + E§. The Kac marks are shown in red.

The GDD is shown in Figure 2.15. It is composed by the extended Dynkin diagrams of Eg
and Ef joined by a central node. The nodes can be specified in terms of the charge vectors
(2.3.9)

Yi = |070;ai708>a Pir = |070;08;Oé;>, 1=1,...,8,
(2.4.4)
Yo = |07 _1a Qo, 08>> Yo = |17 1;08a08>7 Yo = |0 O*/O>

where «; and o] are the simple roots of Eg and Ef, given together with their fundamental
weights in Table 2.1'5. We have also written down the lowest root ag = — Zzzl Krag, and
similarly for f,. The k; and ] are the Kac marks, they are listed on the table and also shown

in red in the Figure 2.15. By definition ko = x{ = 1 and sometimes we will set wy = 0, w{, = 0.

1| R Q; w;

13| (1,-1,0,0,0,0,0,0) | -(-3,4, 3,411 1.5
26| (0,1,-1,0,0,0,0,0) -(0,0,1,1,1,1,1,-5)
315 (0,0,1,-1,0,0,0,0) -(0,0,0,1,1,1,1,-4)
41 4| (0,0,0,1,-1,0,0,0) -(0,0,0,0,1,1,1,-3)
5131 (0,000,1,-1,0,0) -(0,0,0,0,0,1,1,-2)
62 (000001,-1,0) (0,0,0,0,0,0,-1,1)
7| 4| -(1,1,0,0,0,0,0,0) | -(5,3:5:3: 53 5:-5)

8 2 (l l l l l l l l) (0’070703070?072)

0| 1| (0,00,0,001,-1) (0,0,0,0,0,0,0,0)

Table 2.1: Simple roots «;, Kac marks x; and fundamental weights w; of Eg.

150n our convention, o and w/ are given by changing the sign and reflecting the components of «; and w;.
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In [13] (see also [36]), the generators of the duality group O(1,17,7Z) were identified with
Weyl reflections in the lattice. To be more concrete, let us consider the transformations of
the charge vector |Z) about the simple roots of I'; 17 in (2.4.4), denoted collectively |p). Since
(plp) = 2, the Weyl transformation is

|2) = 12) = (¢l Z)|¢) - (2.4.5)

Once |Z') is found, the action on the moduli is deduced by imposing that pr = 0 transforms
into pl, =0,1i.e. n— Ew—7m-A =0 goes into n' — E'w’ — 7’ - A" = 0, where we have defined the
moduli space parameter £ = R? + %A2 as an alternative to R. This is a shortcut to requiring
invariance of the spectrum. For example, writing only the transformed quantities, from the

nodes 1, 0, and C we obtain

ot =mta? =gl = A1 =A4% A% = A, (2.4.6a)
o =n—wH+n —aS 7T =ttt =0T —w => AT=A"—1,A%=A"+1,
E'=E+A"—A*+1, (2.4.6b)

oo w =—-n,n =—w = E = LI?,A’ = 2 (2.4.6¢)
Clearly, (2.4.6a) is a permutation of the first two components of the Wilson line. In general,
the reflections about nodes ¢;, or ¢, i = 1,...,8, induce transformations of the Wilson line A’
which are just elements of the Weyl group of Eg, or E}. In (2.4.6b) we recognize a translation
of A’ by a x 0, which belongs to I's @ I's, combined with a permutation of A” and A%. Finally,
(2.4.6¢) is the generalization of the T-duality R — 1/R when A # 0, already given in Section
2.3.1.

The fundamental region described in Table 2.12 can be rewritten in terms of the simple
roots of I'; 17 in Table 2.1. On the HE case, the inequality for the nodes 1 <1 < 8 on figure
2.15 can be expressed as A - (a; x 0) > 0; for the 0 node it is A - (g x 0) > —1 and for the C
node £ > 1. For the primed nodes it is the same as before but changing (ay x 0) with (0 x a7,).

As explained above, the prescription to obtain a non-Abelian gauge group G, is to delete
19 — r nodes of the GDD such that the remaining ones give the Dynkin diagram of the desired
semisimple Lie Algebra. The total gauge group is G, x U(l)”ﬂd. The Wilson line and the radius
are determined by saturating the inequalities corresponding to the r undeleted nodes. In this
manner one can obtain all the allowed groups and the corresponding moduli. For example,
for maximal enhancement, all but 2 of the inequalities are saturated. The allowed groups of
maximal rank are precisely found by deleting one node in the Eg side and one node in the Ej
side, while the central node C corresponding to £/ = 1 cannot be erased. We note that the
i-th node forming the first Eg will have its inequality saturated only when the Wilson line A is
orthogonal to «;, while the presence of the node 0 implies A - g = —1. From this it is easy to
see that the Wilson lines that give maximal enhancements are:

W w

A= X —= (2.4.7)

/
R R
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with the fundamental weights of Eg given in Table 2.1. As a check, see that the LHS of the

inequalities is

1
A'(OéiX()):%'ai:*éika
R K
8
Wy —1 for 1<Ek<S8
A- X0)=—.1[— v | — ,
(00 % 0) Kk (;Kﬂ]) {0 for k=0

confirming that this Wilson line kills the nodes k and m’ while preserving the rest.

If the Wilson line A and the radius R are supplied, the resulting group can be determined by
checking which boundary conditions are saturated and keeping only the associated nodes in the
GDD. To this end we might need to first bring the given A and R to the fundamental region
by transformations including shifts and Weyl reflections of A in I's @ I's, and the T-duality
(2.4.6¢).

From the GDD we can also determine the automorphisms of the lattice corresponding to
any enhanced gauge group. They are just generated by Weyl reflections (2.4.5) associated to
the surviving nodes. The fixed points of each reflection determine a 16-dimensional hyperplane
in moduli space where the inequality associated to the given node is saturated. The intersection
of r of these hyperplanes gives the (17 — r)-dimensional subspace of moduli space where the
given rank r gauge group is realized (maximal enhancements are realized at a point). This
subspace is invariant under the subgroup of O(1,17,Z) generated by the r Weyl reflections
associated to the surviving nodes.

There are 44 allowed groups with maximal rank » = 17, as can be seen by removing pairs
of nodes from the GDD. They were given in a condensed form in Tables 2.13 and 2.14 and
are shown with more details such as the global structure in Table D.1'®. On the other hand,
there are 1093 forbidden groups with » = 17, which clearly cannot be obtained from the GDD.
One interesting case is the r = 16 enhancement SO(16) x SO(16) x U(1). From the GDD it
is evident that there is only one way of selecting the nodes and it is impossible to add a node
without getting some non-ADE diagram. This group has an expected trivial enhancement to
SO(16) x SO(16) x SU(2), but this is one of the forbidden groups mentioned. It turns out that
the necessary self-dual radius (eq. (2.3.20)) would be equal to 0, which is out of the moduli
space. Another fact is that this is the only non-maximal group that cannot be enhanced. This
is reflected on figure A.8, where the cyan curves do not have any intersection inside the moduli
space!”. In concordance to the previous observation, from this figure one can see that for R = 0
there are indeed intersections. To finish, we mention that the property of this moduli space of
having one non-maximal non-enhanceable point is also shared by the moduli spaces for 72 and

T3 compactifications of heterotic strings [37]. We will revisit this in the following chapters.

0ur method of removing nodes from the GDD only accounts for the algebra associated to the group, on
next chapters we will describe different methods for computing the global part of it.
I7All the other curves of enhancement displayed in this thesis have at least one intersection.
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Chapter 3

Toroidal compactifications as lattice em-
beddings

In the previous chapter, we introduced T¢ compactifications of heterotic strings and focused
on the simplest case, d = 1, finding the 44 allowed gauge groups with maximal rank 17 and the
corresponding moduli. The main objective of this chapter is to generalize this result to any value
of d. To be able to obtain robust results it will be necessary to change the approach followed
in most of the previous chapter (moving around in moduli space) and focus on the lattices that
quantize the momenta. As it is well known, modular invariance requires that the momenta of
the world-sheet fields take values on the even self-dual lattice 'y 4416 [7]. As a consequence, the
allowed gauge groups are such that their even positive definite root lattice can be embedded
there. Thus, they can in principle be found using lattice embedding techniques, in particular
the machinery developed by Nikulin [16], as advocated in [38]. For instance, Theorem 1.12.4
in [16] implies that any ADE group of rank less or equal than (d + 8) can be embedded in
Iy 4116, and is thus realized in compactifications of the heterotic theory on T d.

For d = 2 all allowed gauge groups are known from the work of Shimada and Zhang
who classified all possible ADE types of singular fibers in elliptic K3 surfaces [14,15]. As we
will explain, the classification provides all possible heterotic gauge groups because the lattice
embedding conditions are identical in the K3 and heterotic frameworks. This is consistent with
duality between heterotic on T? and F-theory on K3.

Another problem is to obtain the resulting gauge group for specific moduli. On the last
chapter we addressed this by organizing the left-moving component of the momenta into roots
of an ADE group (see also [31]). However, since this method is cumbersome, it is desirable
to develop a more powerful approach which could also be applied to the question of finding
all possible groups. When d = 1 both problems can be solved using the Generalized Dynkin
Diagram (GDD) associated to the Narain lattice I'y 7.

The generalization of the powerful GDD algorithm to higher dimensional compactifications
clashes with the fact that, unlike O(1,17;Z), the T-duality group O(d,d + 16;Z) is no longer
generated by simple reflections. In the absence of a Dynkin diagram to describe I'g 4416, what
we can do to explore the landscape of heterotic strings on 7%, for generic dimension d > 1, is
to develop alternative methods.

To begin we will revisit Nikulin’s criteria, and apply them to compactifications of the het-
erotic string on 7% The study of embeddings in 'y 4416 will enable us to characterize the

allowed gauge groups in terms of lattice data consisting of the pair (L, T"), where L is the root
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lattice of the group, and T is the dual lattice of the right-moving momenta. Conversely, (L, T")
can be determined from the moduli that originate the group.

We also present other method to examine the toroidal landscape. We focus mainly on
maximal enhancement in 72 compactifications of the HE theory, but the algorithm works in
higher dimensions. In particular, we will obtain all semisimple groups with maximal rank
d + 16, occurring in d = 1,2. Moreover, the moduli in the HO theory can be deduced from
those of the HE theory by making use of an O(d,d + 16) transformation that generalizes the
map constructed in [39] for d = 1.

The idea of this exploration algorithm is to start from a point of maximal enhancement,
i.e. a rank d + 16 group with no U(1) factors, move along lines in moduli space where there is
a breaking to a group with one U(1) factor, and then find all maximal enhancements that can
be reached from the neighborhood of the initial point. We have fully exploited this technique
in d = 2, finding all enhancements reported in [14]. We have also done explorations for d = 3
and 4, in connection to the work explained in Chapter 5.

This chapter is organized as follows. In Section 3.1, we briefly review the basics of het-
erotic compactification on 7% and present a simple method to find the transformation of the
background fields under the action of O(d, d+ 16). We also review the map relating the charge
vectors and moduli of the HE and HO theories on the circle, and formulate it for generic d. In
Section 3.2 we state criteria, based on lattice embedding techniques, that can be used to detect
whether a group is allowed or not. We additionally explain how to translate between heterotic
moduli and lattice data. The notation and essential concepts about lattices that supplement
this section are contained in Appendices B.1 and B.2. Compactifications on 77 are the subject
of Section 3.3. In Section 3.3.1, we present a computational algorithm to obtain the moduli un-
derlying semisimple groups of maximal rank, exploring the neighborhood of points of maximal
enhancement. In Section 3.3.2 we discuss several features of the models appearing in d = 2.
Tables containing all the groups of maximal enhancement in one and two dimensions, and the

points in moduli space where they arise, are presented in Appendix D.1.

3.1 Toroidal compactification of the heterotic string

Now we return to the toroidal compactifications introduced in Section 2.2. On the following we
will derive the transformation rules for the moduli and the map that relates the HE and HO

theories. It will be convenient to define the tensor Fj; given by

1
Eij = Gij + 5142 . Aj + Bij , (311)
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where A4; - A; = Al AJI-. The d(d + 16) parameters of the compactification are the d x d matrix
E;; and the d vectors A!. The momenta 2.2.10 can be expressed as'

1 . .
Pr = ﬁ [nl — El-jw] — - Az:| é*z, (312&)
1 ‘ . .
PL = ﬁ [nz + (2Gij - Ez) w — - Ai} er = \/ﬁwzei + DR, (3-1-2b)
p=n"+ Ajw'. (3.1.2¢)

Recall the mass and level matching equations invariant under O(d,d + 16;Z) (2.2.14a) and
(2.2.14b). In the NS sector the lowest lying states have Np = 3 and their supersymmetric

partners in R have Nz = 0. These states can be massless only if
pr =0, pL®+2(N,—1)=0. (3.1.3)

where the left and right momenta were given in 2.2.10.
Moreover, from (2.2.12) it follows that

pL’ =2w'n; +7-T. (3.1.4)

For generic values of the moduli the only solution is w’ = 0, n; = 0, 7!/ = 0, implying pr, = 0,
and N, =1 in (3.1.3). It gives rise to the gravity multiplet plus gauge multiplets of U(l)d+16.
On the other hand, for special values of the moduli there can exist solutions with N, = 0, and
pr.?2 = 2. The set of pr, then gives the roots of a Lie group G, of rank » < d + 16. In this case

there will be gauge multiplets of a group G, x U<1)d+167r

. The non-Abelian piece G, is in turn
a product of ADE factors of total rank . Our main task for the next sections is to study which
groups can occur and to determine the underlying moduli.

We will mostly work with the HE theory. The results for the HO can be deduced from the

map discussed in Section 3.1.2.

3.1.1 Duality transformations of the moduli

In this section we present a simple way of finding the action of O(d, d+ 16) transformations on
the background fields (G;j, B;j, Al).
We first start by the transformation of the 2d 4+ 16 charge vectors, defined as

|Z) = |w',ng; 7). (3.1.5)

which are just generalizations to 7 of the one introduced in Section 2.4.1 for the circle. The

!We clarify that the momenta can be written as a function of just £ and A since G;; can be written as
3(Eij + Eji — Ai - 4j).
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inner product between charge vectors is computed using the O(d, d + 16) invariant metric

0 1gxa O
n=1|lixa 0 0 |. (3.1.6)
0 0 (SIJ
and is given by
(Z'1Z) = w'n; + nlw' + "'l (3.1.7)

Civen the generators O € O(d, d+ 16; Z) presented in [1]?, the transformation of |Z) = n|Z)

is simply 3
1Z) — 0|Z), (3.1.8)
The transformation of the moduli can be obtained from the transformation of the generalized
metric for the torus. It is generally simpler though to find the transformation of the moduli

using the vielbein £ for the generalized metric. This vielbein can be built using that the left

and right-moving momenta (3.1.2) are
p=_EZ). (3.1.9)
Under O(d, d + 16), the vielbein transforms as
E— EnO'y . (3.1.10)

From this transformation law it follows that the first d rows of n&, which we write as

~ 1 . )
8. = —=¥| B, =67 A7), a=1,...d, (3.1.11)
V2

are O(d, d + 16) vectors. Taking the transpose of (3.1.10) we find
£ = O|&,). (3.1.12)

These vectors also form a negative definite orthonormal set:

~ o~ 1 . - 1 i i
<5a|5b> == iéz*é{) (—QEZ‘J' + Az . AJ) == 561 6{) (_2GU) = _5ab~ (3113)

To get the transformation laws for the moduli under an O(d, d + 16;R) element we simply
construct the vectors |&,), transform them to |£') = O|&,), and extract the transformed
moduli Ej;, Aj. In practice, however, this procedure can be simplified as follows. Construct the
d x (2d + 16) matrix

AE(E; 5 AiI)’ (3.1.14)

with rows labeled A;. These differ from the vectors |&,) in that the factor (1/v/2)é is missing
(cf. eq. (3.1.11)). We may however interpret this as taking & = 1/26°, so that the rows A; can

2This specific content was not included on this thesis.
3For instance, when Bij — Bij + G)Z-j, with ®ij = _@ji € Z, ‘Z> — |’LUl7TL7; + @Z—jwj;wl>.
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also be transformed as O(d,d + 16) vectors, A; — A; = OA;. From the new matrix A’ one
then extracts the moduli with the formula

/ .« . / _l
1,d+1 1,2d

(B —67 A)=—| . A (3.1.15)

/ LIS /
d,d+1 d,2d

where on the right hand side we multiply by minus the inverse of the d x d middle block of A’,
which is the vielbein for the transformed metric e],.

We now proceed to illustrate this method with a pair of examples where we restrict to the
T-duality group O(d,d + 16,7Z). Consider first the case d = 2, and apply the transformation

given by the matrix

1 0 —2A7 0 A
01 0 0 0
Op,=100 1 0 0 |, A€Tg, (3.1.16)
00 0 1 0
0 0 —AL 0 1ygxs

which shifts A; by A;. After transforming the rows of A with O,,, we obtain

A,_(E11+§A2+A1~A1 By =1 0 A1+A1), (3.1.17)

Since the second 2 x 2 block of A remains invariant, minus its inverse, which appears in (3.1.15),
is the identity. The transformed E;; and A; can then be read off from eq. (3.1.17). In terms of
the background fields G;;, Bi2, A;, we see that

1
OA1 : G;J = Gij7 312 == Blg - §A1 . AQ, A/1 = Al + A, A/Q == AQ. (3118)

This result highlights the fact that, generically, a shift of one Wilson line A; by a vector A; € Ty
must be accompanied by a b-field shift B}, = B;; — %Ai - A;. The components of the charge

vector |Z) transform as

1 , : ,
“Nw' TN, ny—ony (£, w—w.  (3.1.19)

Op, : " =l — A, ni — i — oA,

Now let us use this method to obtain the factorized duality Op,, which exchanges n; < w*
in generic dimension d. The action of Op, on the matrix A exchanges the first and the (d+1)th
columns, and so

N . . s
—En 04 -0y Ey En —01 A
(Ez{j 5 Af') = : : L : |, i=2,...,d. (3.1.20)
—Epn 04 —0 By En —64 A4
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After performing this matrix operation, we obtain the transformation rules

1 1 —Fy; 1 —A
E,:< 15 > Ag:< L ) L dj=2..d.  (31.21)
Ein \-Ei EnEj— EnEy Enn \EnAi — En4y

This result generalizes to a factorized duality in an arbitrary direction 6,

1 ’ EGJ B — E;

OD@ : Eée =T 05 — T 1 0 — — , Ez{j _ 00 9 937
Eoo Eyo Ego Eop
A Eon A EaA (3.1.22)
A/ __79’ A/— 06414 0 9’ 2,7 ':1’.,,’d 0
Egg ‘ Eyo J a

in agreement with the heterotic Buscher rules found originally in [40] and discussed also in [34].

3.1.2 The HE < HO map

Due to the uniqueness of the Narain lattices, the HO and HE theories compactified on T share
the same moduli space. For the circle, an explicit map relating the charge lattices of both
theories was given in [33] and the precise relation between the moduli was worked out in [39)].

The O(1,17) transformation relating a basis of vectors of the I's & I's embedding into I'y 17
to another one of the I';4 embedding is given by [33]

Op—so = Or,000p, Op,O_y,, , (3.1.23)
where Oy, O, are shifts of the Wilson line by
Ap=(07,1,-1,07), Ao= (%8,08) , (3.1.24)

Op, is a T-duality in the circle direction, Op, an inversion and Og, a rescaling. Their action on

the charge vectors and moduli is given by

Or: |w,mm) = jw,n+m-A—twA* 71— wA), (R,A) — (R, A+ A),
R A
: : : A _
ODI |UJ,TL77T> - |nawaﬂ->a (Rv ) - <R2 + %sz R2 + 5142) ) (3125)
OP1 : \w, n; 7T> — ’_wv -n; 7T> ’ (R> A) - (Rv —A),
Oq: |w,n;m) — |2w, %n;w}, (R, A) — (%R, %A)
Hence the total transformation (3.1.23) gives
Opao: wW—=2w—2n+21-Ag, n— —2w+2n+7- (Ao —2Ag),

R A—Ag

= vy AT (Ao

+A07
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corresponding to the O(1,17, R) matrix

@E*)O — _2 2 2AE 9 (3.1.27)
2AL AL — 20! 115 — 2M0 ® Ay

where ® is an outer product.
Labeling By = R2 + $AZ and the Wilson line Ag in the HE theory, the transformation
(3.1.26) gives the HO moduli as [39]

AE-AO AE_AE
2B, +1—Ag-Ay) " 2(Es+1— Ay - Ay

(Eo, Ao) = (1 + ] +AO> : (3.1.28)
The map from HO to HE is simply obtained by exchanging (Fo, Ao, Ao) <> (Ex, Ag, Ag).
To extend (3.1.27) from the circle to T, it is sufficient to consider a decomposition of the

Narain lattice of the form
Lgarie=T11@ - &1 &Ts® Tk, (3.1.29)
where the number of I'; ; lattices is d.* We use Og_,0 to transform
Opso: Thi1@®lg®dly — I'ii @, (3.1.30)

choosing I'; ; to be in the direction given by the torus lattice vector ey, without loss of generality.

This brings the Narain lattice into the form
Pigri6=T11®---®T'11 Dl (3.1.31)

It follows that the desired extension is

1i2q— _ 0
@](Edl)O — :H-(Qd—2)><(2d—2) @ @E—)O = ( (2d 2)><(2d 2) ) 5 (3132)
0 @E—>O

which holds provided the ordering |Z) = |w?, ny, ..., w?, ng, w!, ny;7) is used. In practice one
may wish to keep the order in (3.1.5) and rearrange the entries of @g&o instead, which is
reasonable for low values of d.

To get the transformation rules for the moduli, we proceed constructively using the fac-
torized form of Oy, in (3.1.23), and generalizing each intermediate transformation. Each of
the generalized transformation rules can be obtained by the method detailed in Section 3.1.1,
which is valid not only for T-dualities but for generic O(d, d + 16) transformations such as Oy,
(in HE) and Op,.

Let us first take a detailed look at the map ©Og_,o for d = 2. The generalization to ar-

bitrary d is straightforward. Preserving the usual ordering of the components of |Z), namely

'y ;1 is the hyperbolic lattice with Gram matrix (§ ).
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wl, w? ny,ny; ), we write

0o -2 0 Ao — 24y
0 1 0 0 0
o =1 -2 0 2 0 20, , (3.1.33)
0 0 0 1 0
2AL 0 2AL — AL 0 Lygeig — 200 @ Ay

The transformation rules for the quantum numbers are exactly the same as in the d = 1 case
for w',n; and 7, while w? and n, are invariant, as expected.
To work out the map, we proceed by applying the transformations in the RHS of (3.1.23)

in succession. The Wilson line shift in direction 1 acts as

Oy E_)(E11—A'A1+1 Eys

, A=A — A, Ay — A 3.1.34
EQI_A'AQ E22) ' ' ? ? ( )

Note that Fjs is invariant since the b-field is also shifted (see the footnote 3). The factorized

duality acts as

1 1 —E12 A1 E21
Op,: E— — LA o Ay Ay — 2 A 3.1.35
P Ell (EQl det E) ! E 2 2 E ! ( )

and finally Op, and Ogq produce the transformations

E, -E
Op, : E—| " Pl A o =4, Ay Ay, (3.1.36)
_E21 E22
Oy : E— iBu 5B Ao iA, A4 (3.1.37)
(9 %E21 E22 ) 1 2 1 2 2 - L.

Putting all together, we get
*>
Ey Ey A Ao Ay Ey Ay

1 1
i ’ Ao+ Ay Eip Ay —Ag). (3.1.38
Ell - AE . Al + 1 (AE . A2 _ E21) ( 9] 1 12 1 E) ( )
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The map for generic d can be worked out in a similar fashion. The final result reads

Eyn Ei -+ Eg A 1 0 -+ 0 Ao
By Eyy -++ Epq A No-Ay Ep -+ Lay A
En Ep - Eu Ad Ao-Aq Ear -+ Eaa Ag
1
2
1 Ag - Ay — By
. — . (3.1.39
+ o — A A 11 : (Ao Ay En By A AE) ( )

Ag-Ag—En

In the forthcoming sections we will apply the HE-HO map in compactifications to d = 1 and 2

and give some examples for other values of d.

3.2 Embedding in Narain lattices

(1) occur in the

In this section we discuss how to determine which gauge groups G, x U
compactification of perturbative heterotic strings on 7¢. We are mostly interested in heterotic
compactification on T2, which is dual to F-theory compactifications on elliptic K3 surfaces [41].
Not surprisingly, for d = 2 the problem of finding all allowed G, happens to be related to
the classification of possible singular fibers of ADE type in elliptic K3 surfaces. The explicit
solution has been obtained in the K3 framework in [14,15], using Nikulin’s formalism. The
results are expected to hold in the heterotic context too. The reason is that in the K3 context,
the condition on the allowed G, is that its even positive definite root lattice can be embedded
in I'y 13 which is precisely the Narain lattice.

According to Theorem 1.12.4 in [16], any G, of type ADE with r < 10 is allowed for d = 2,
as indeed found in [15]. For larger » more complicated conditions have to be verified as we will
explain shortly. This program has been carried out in [15]. Tt turns out that for r = 11, 12, also
all ADE G, can be embedded in I'y ;5. For » = 13, only 13A; and 11A; + A, are precluded.
Henceforth G, will be denoted by the chain of ADE factors of its algebra. For r = 14, except
8A;+Eg, all other forbidden groups, e.g. 14A;, were predicted to be prohibited because singular
fibers with such G, could not fit in a K3 where the vanishing degree of the discriminant must be
24. For r > 15 there are many more forbidden groups. In particular, there are 1599 ADE groups
of rank 18 [15] but according to the analysis of [14, 15], only 325 are expected to be realized
in compactifications of the heterotic string on 72. A natural question is why some groups are
forbidden. To answer it, we will present some tools that can be applied to decide when a group
is allowed or not. Our purpose is to illustrate the main ideas, not to do a systematic search as
in [14,15] for d = 2.

We will mostly focus on the case of maximal enhancement, i.e. G, with r = d 4+ 16. In
3.2.1, we will first discuss three criteria that can be applied for generic d. We then specialize

to d = 1,2, and in less detail to d = 8. The criteria for groups with r» < 16 + d are presented
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in Appendix B.2.1. The connection of the criteria to heterotic compactifications is addressed
in Section 3.2.2 for generic d and in Section 3.2.3 for d = 1. We refer to [42-44] for short
expositions of the main results of Nikulin’s [16] relevant for our analysis, see also [45-48]. On
Appendix B.1 we introduce the notation and some basic concepts that will be used in the

following.

3.2.1 Embeddings of groups with maximal rank r = d + 16

The problem is to embed a lattice L of signature (0,d + 16) in the even unimodular Narain
lattice I'j 4116. In the heterotic context L is the root lattice of a group of maximal rank arising
upon compactification on 79. Nikulin [16] provides powerful results that serve to determine
whether or not such embedding exists. In particular, adapting respectively Corollary 1.12.3
and Theorem 1.12.4(c) of [16] to the case at hand leads to the criteria

Criterion 1
If ¢(AL) < d then L has a primitive embedding in Iy 4116.

Criterion 2
L has a primitive embedding in Ugqr16 if and only if there exists a lattice T of

signature (0,d) such that (Ar,qr) is isomorphic to (Ar,qr).

Here A; and gqj, are respectively the discriminant group and the quadratic discriminant form
of L, whereas ¢(Ar) is the minimal number of generators of Ay, and analogously for T' (see
Appendix B.1 for details). Since {(Ar) < d, groups with ¢(A) = d could pass criterion 2 which
actually requires d(L) = d(T"). We will shortly explain how the lattice 7" can be determined
when d = 1,2. There could exist more than one T', as found for some groups in [14]. Notice
that in our conventions (0, d) means positive signature.

Now, criteria 1 and 2 cannot be the whole story. We know groups with ¢(A;) > d that can
be realized in heterotic compactifications on 7. For example, when d = 2, heterotic moduli
that give L = 3Eg are known. Hence, there should be an embedding of this L in I'y ;5 even
though ¢(A;) = 3. We also know examples with d = 1. In particular, L = Dy + A; with
((Ar) = 3, would be forbidden by criterion 2 but must admit an embedding in I'; 17 because it
certainly arises in the heterotic string on S'. For d = 1, the 44 groups with maximal rank in
Table 2.13 have ¢(AL) < 3. Only the groups with ¢(A;) =1, e.g. L = 2Eg + A4, could possibly
be allowed by criterion 2. The problem is that criteria 1 and 2 refer to primitive embeddings
and this need not be the case. From the arguments in [14, 15] it transpires that this condition
can be relaxed by demanding that L has an overlattice M which can be embedded primitively
in the Narain lattice. For instance, we know that D has an overlattice given by the even
unimodular HO lattice I';g with trivial discriminant group. Therefore, L = Dy + A; has an
overlattice M = I'yg + Ay with Ay, = Z5 and ¢(Ay;) = 1. The overlattice M could then pass
criterion 2 with an even 1 dimensional lattice T' equal to the A; lattice.

The above arguments lead to a third criterion obtained adapting Theorem 7.1 [15]. It reads
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Criterion 3
L has an embedding in T 4116 if and only if L has an overlattice M with the following
properties:

(i) there exists an even lattice T of signature (0,d) such that (Ar, qr) is isomorphic
to (AM7 QM)7
(i) the sublattice Moo of M coincides with L.

Since L is an overlattice of itself, criterion 2 is a subcase of criterion 3. As explained in Appendix
B.1, for an overlattice M to exist, there must be an isotropic subgroup Hj of A such that
M/L = Hy and |Hp|?> = d(L)/d(M). When criterion 3 is satisfied, d(M) = d(T). We then
obtain the useful relation

d(L) = d(T)|H. . (3.2.1)

We will refer to T" as the complementary lattice in the following.

In the K3 framework, in which d = 2, H}, corresponds to the torsion part of the Mordell-Weil
group, called MW in [14]. It can be checked that all pairs (L, T") in Table 2 of [14], reproduced
in our Table D.2, satisfy the relation (3.2.1). We remark that there could exist more than one
M, as found for some groups in [14].

In the work of Shimada and Zhang [14], the focus is on the classification of all possible
ADE types of singular fibers of eztremal elliptic K3 surfaces. Such a surface, called X, is
characterized by having Picard number, p(X), equal to 20, and finite Mordell-Weil group [42].
In this case the Néron-Severi lattice, NS, and the transcendental lattice, T'x, have signatures
(1,19) and (2, 0) respectively®. The lattice Wx has signature (0, 18) and contains the sublattice
L(XY) of rank 18, where X is the formal sum of the ADE types of singular fibers (determined
by the Kodaira classification). It follows that L(X) must admit an embedding in I'y ;5. Now,
in the heterotic compactification on 72, the semisimple ADE groups of maximal rank 18 that
can occur are such that their root lattice can be embedded in the Narain lattice I'y 5. Thus,
the results of [14] for all possible L(X) translate into all possible maximal enhancements in
the heterotic compactification on T2. Notice that the complementary lattice of criteria 2 and
3 above is related to the transcendental lattice by a change of sign of the Gram metric, i.e.
T = Tx(—1). In Section 3.2.2 we will discuss to greater extent the connection to heterotic
compactifications.

We illustrate below the application of criteria 1,2,3 to the cases d = 1,2. We will also
comment briefly on d = 8. In practice we first try criterion 1. If L passes it, then it is allowed.
If not, we continue with criterion 2. If L satisfies it, we are done, otherwise we apply criterion
3. If L also fails criterion 3 we conclude that L is not allowed. A consistency check is that
if L passes criterion 1 it must also fulfill criterion 3. Let us mention that the steps taken by
Shimada and Zhang to compile their list, cf. section 3 in [14], indicate that they run a computer

program based on the more general criterion 3.

By definition, NSx = HY1(X,R)N H?(X,Z) and has signature (1, p(X) —1). The transcendental lattice is
the orthogonal complement of NSy in H?(X,Z) and has signature (2,20 — p(X)). With the intersection form
of X, the second cohomology group H?(X,Z) is isometric to I'3 19. The Néron-Severi lattice can be decomposed
as NSx =111 ® Wx, where I'y ; is generated by the zero section and the generic fiber. The lattice Wx is the
orthogonal complement of I'; 1 in NSy and has signature (0, p(X) —2). Thus, I'11 & Wx & Tx C I's 9.
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3.2.1.1 d=1

As a warm up we will study the d = 1 case which is simple yet instructive. Moreover, all
allowed groups of maximal enhancement appearing in heterotic compactification on S! were
already listed in Section 2.4. Thus, there are many examples to illustrate the application of the
lattice embedding techniques.

When d = 1 the easy criterion 1 gives no information. When ¢(Ay) = 1 we then apply
criterion 2. In Table 3.1 we give some examples of allowed groups. It is easy to propose the
corresponding 7" because it must be d(7') = d(L) and the (0,1) even lattices are of type A;(m),
defined to be the A; lattice rescaled so that its basis vector has norm u? = 2m. One still has
to check that the discriminant forms do match, more precisely that there is an isomorphism
(Ar,qr) = (Ar,qr). For example, for L = Dy;, Ap is generated by the spinor class with
52 = 1?7 = imod 2, 80 qr, takes values % mod 2, j =0, ...3. This matches the g7 of A;(2) which
takes the same values because (u})? = %. It is more challenging to check L = E; + Ay. For the

1

proposed T, Ar is generated by u} with (u})? = 35, Whereas Ay is generated by wse x w; with

wEs = 3 and w} = 19. To see that ¢, and gr match it suffices to verify that (% + % =+ 2k)

is satisfied by integers j and k, e.g. j =4, k = 8.

L Ap T

2Es + A Z, A
D7 Z, Ay (2)
Eg + Dg Z, Aq(2)
Er + Ay | Zy X 211 = 2y | Ay(11)

Table 3.1: Examples of allowed L with /(A7) = 1, when d = 1.

The allowed groups with maximal enhancement of the form L = Eg+Eq_,+A4,,p=1,...,9,
p # 7, all have ¢(Ar) = 1. Only for p = 8 there is an isotropic subgroup (actually for the Ag
component) but the M, of the associated M is larger than L. Hence, all these groups should
be allowed by criterion 2. We find that the corresponding T is A1<p(pT+1)>, p=1,...,6, and
Ay (Ut — 8,9,

It is straightforward but cumbersome to check exhaustively which of the known groups with
maximal enhancement and ¢(Ay) = 1 satisfy criterion 2, and if not apply criterion 3. In many
cases, e.g. L = E; + Eg + Ay, A = Z30, one can quickly see that an overlattice cannot exist
because there is no isotropic subgroup. Since this L is known to appear, criterion 2 should
allow it, and indeed T'= A;(15) fulfills the conditions.

A neat example with ¢(Ar) = 11is L = Ay7, A = Z15. The candidate T would be A;(9)
but the discriminant forms do not match because there are no integers j and k such that
(% = % + 2k) is satisfied. Fortunately, A;; has an overlattice M associated to the isotropic
subgroup H = Z3, generated by wg with w2 = 4 = 0mod 2. From (3.2.1) we see that d(T") = 2
so it must be 7' = A;. Since d(M) = d(T') also Ayy = Z,. It remains to check that the
discriminant forms of Ay, and A7 coincide. To this end we need to determine the orthogonal
complement H LL of Hy;, in Ay, and restrict q;, to H LL /H . We then look for weights orthogonal

to the generator wg, i.e. weights such that w; - wg = 0 mod 1. Besides wg and wio which belong
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to Hp, ws, wg and w;s are orthogonal. Now, w? = %mod 2, for 1 = 3,9, 15. This confirms that
Ay = 24, with the discriminant form ¢, taking values 0 and % These are the same values
taken by gr. Finally, the root sublattice of M is equal to L because w2 = 4.

We can also study known allowed groups with ¢(A;) > 2 where criterion 3 must be applied.
An example is the group with L = Eg + Ay, A, = Z35 X Z15. There exists an overlattice with
H| = Z3 and it can be shown that criterion 3 is satisfied with 7' = A;(2). For a second example
take L = A1 + Ay + Ay, A = 79 X 73 X 715 = Zg X Z15. The piece L = Ay + Ay, has an
overlattice M with d(M) = 5 so necessarily Ay = Zs. Thus, L has an overlattice M = A; + M,
Ay =7y X 75 = 710 and a candidate T is A;(5). With ¢(A;) = 3 we already discussed how
L = Dqg + A; passes the test. In Table D.1 we give full results.

So far we have discussed groups with maximal enhancement which are known to occur. It is
reassuring that they are allowed by the lattice embedding criteria but our main motivation was
to understand why some groups are forbidden. Let us then finally offer a couple of examples
of forbidden groups. Take L = Ag+ D11, A = Zss. A candidate T is A;(14), but ¢r 2 qr. An
overlattice cannot exist because there is no isotropic subgroup of Ay. Thus, this L fails criteria
2 and 3. A less trivial example is L = 2Dg + Ay, Ap = Z5. In Appendix B.1 we explained that
Dg admits Eg as an overlattice. For L this leads to a full overlattice given by M = 2Eg + A;.
Now Ay, = Z5 and an adequate T would be A;. However, condition (ii) in criterion 3 is not
satisfied. As remarked in Appendix B.1, the root sublattice of 2Eg is not equal to 2Dg. Actually,
L admits also an overlattice M’ = Eg + Dg + Ay with Ay = 73 and £(Ayp) = 3 so there can

be no associated T'. It would be interesting to study more examples of forbidden groups.

3.2.1.2 d=2

When d = 2, criterion 1 implies that lattices with ¢(A) = 1 give allowed groups. In Table 3.2

we present a few examples of this type.

L Af T
Aig Z1g 2, 1, 10]
A+ Eg+Es | Z:xZ5227y5 | 2,1, §]
A+ Ay | Zsx 717275 | [6,3, 10]
As+ Ay | Zgx 7y =27y | [10, 1, 10]
As+Ayn |7 x713527 | 2,1, 46]
Eg + Ao s x 713> 739 | [4,1,10]

Table 3.2: Examples of allowed L with ¢(Ar) = 1, when d = 2. T is denoted by its Gram matrix
(2, uy - ug, ull.

Before considering examples with ¢(A;) = 2 let us describe how to find the lattice T'. To
begin, d(T) is known because it must be equal to d(L) or d(M). Next, the even 2 dimensional
lattices of determinant less than 50 are listed in Table 15.1 of [49], and for larger d(T") they
can be found using the SageMath module on binary quadratic forms [50]. Given T', the pair
(A7, gr) can be deduced as explained in Appendix B.1. We then check if (A7, qr) = (AL, qL).

Criterion 2 must also hold when ¢(Ap) = 1 since in this case the existence of a primitive
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embedding is guaranteed by criterion 1. In Table 3.2 we have shown the corresponding matrices
T. For example, with d(T") = 19 there is only the lattice [2,1,10]. It can be checked that
Arp = 719 and that the values of gr are such that indeed (Ar, gr) is isomorphic to (A, qr) for
L = Ays. For L = Aj+Eg+ Eg we need a T with d(T') = 15. In this case there are two possible
lattices, [2,1,8] and [4, 1, 4], both with A7 = Z;5. It can be checked that only the discriminant
form of the first does match qy.

The allowed L’s are given in Table 2 in [14]. It is a simple task to find A, and ¢(Ayp).
Groups accepted by criterion 2 have ¢(AL) = 2 and MW = [0]. In our language trivial MW
means trivial Hp, i.e. trivial overlattice M = L. There are many examples of this type. In
Table 3.3 we show a few. To find T" we proceed as explained before, looking first for even
lattices of determinant d(7T") = d(L) and Ay = Ay. There might be more than one, the correct
ones must have (Ar,qr) = (Ar,qr). In Table 3.3 we have displayed in red candidates for
T that are discarded because gy is incongruent with ¢;. The incorrect T’s are more or less
obvious. Checking the isomorphism for the correct ones is more laborious. For instance, for
L = Eg + Djg, the distinct values that can appear in g, are in the set {0, %, 1, %} Both T’s

have Ar = Z5 X Zg, but the values of q; can only be matched to the values in the T" with
-l 1,

37 673

L Ap T
2D9 Z4 X Z4 [4, O, 4]
Ay 4 2B, | Zs X Za x L5 2 Zyo X Zo | 4, 2, 6] [2,0,10]
Eo + Dis | Zsx Zs x 2o 2275 x 2o | [4 2, 4] [2.0.0]
A1 + A17 ZQ X Zlg [4, 2, ].0] {2(),18]

Table 3.3: Examples of allowed L with ¢(Ay) = 2, when d = 2. The candidates for T with d(T") = d(L),
but with (Ar,qr) 2 (AL, qr), are displayed in red.

The example L = A; + Ay; is interesting because it also admits an overlattice. Indeed,
in section 3.2.1.1 we saw that L = A7 has an overlattice M with M/L = Z3, A; = Z5 and
qu = {0, %} Thus, the full L has an overlattice M = A; + M with Ay = Z5 x Z5 and
M/L = Z3. Now criterion 3 can be fulfilled with 7" = [2,0,2]. This agrees with results of [14]
for this L.

When ¢(A;) > 3 we can check that the allowed groups pass criterion 3 with the data given
in Table 2 of [14]. One example is L = 3Ag, A;, = Z3. There is an isotropic subgroup Hy = Z
generated by p = w;(1) x wy(2) X wy(3), where w;(a) denotes weights of the a' Ag factor.
Notice that p? = 4 = 0mod 2. From (3.2.1), d(M) = 7 so necessarily Ay; = Z;. Following the
procedure to determine gy, shows that it matches the gy of T' = [2,1,4] which is the unique
even 2-dimensional lattice with d(T") = 7.

Finally we come to forbidden groups. Let us discuss the examples in Table 3.4. In all
three there are no suitable lattices 1. The possible candidates, shown in red, are discarded
because their ¢r does not match q;. We conclude that these groups do not satisfy criterion 2
and continue to check criterion 3. In example 1 we know that Dg has an overlattice Eg so the
full L has an overlattice M = 2Eg + Ay, M/L = Z5 so d(M) = 3, consistent with Ay, = Z3.
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Now ¢y matches the gr of T' = [2, 1, 2] but still criterion 3 fails because Moot # L. In example
2, there is an isotropic subgroup H; = Z, generated by pu = v X wy, where v is the vector
weight of Dy5 and w, is the weight of the 10 of As. Since v? = 1 and w3 = 1, p? = 2. From
(3.2.1), d(M) = 35 = 4. The only possible T" with d(T) = 4 is [2,0,2] and it could be that gy
matches ¢y;. However, M has elements y +nu, y € L, n = 0,1 and since p? = 2, M,oo; # L.
Hence, example 2 does not pass criterion 3. Concerning example 3, it flops criterion 3 because
there is no isotropic subgroup of A;. To see this, first observe that (3.2.1) implies that only
|Hp| = 7 would be consistent with d(M) being an integer. Thus, Hy would have to be Z; and
its generator would have to be a product of weights of the Ag’s, say p = w;(1) x w;(2). However
it is not possible to obtain u? = 0mod 2.

# L Ap T

1 Eg + Dg + A2 ZQ X ZQ X Zg = ZQ X ZG [2 O, 6] [424]
2 D15 + A3 Z4 X Z4 [404]

3 2A6 + EG Z7 X Z7 X Zg = Z7 X 2o [14714]

Table 3.4: Examples of forbidden L when d = 2.

In summary, we have provided several examples where it was relatively simple to apply
by hand the criteria that serve to determine whether a group of maximal rank is allowed or
not. Clearly, to make a full search, or even to check more complicated examples, would require
computer aid.

In Table D.2 we give the subgroups H; and the lattice T for all the allowed L’s found in
the K3 framework [14]. They correspond to all maximal enhancements arising in heterotic

compactifications on T2

3.2.1.3 d=28

The case d = 8 is peculiar because there exists an even unimodular lattice of signature (0, 8),
namely Eg. To see how this enters the analysis, consider L. = 3Eg which has trivial Ay. Since
((AL) = 0, this L easily passes criterion 1. Now, since criterion 2 must also be fulfilled there
has to be an even lattice of signature (0,8) and trivial Ap. This requires d(7') = 1 so T = Es.
This indicates that in the heterotic on T® it is possible to obtain the group 3Eg. Indeed, it can
be found in the HE by setting all the Wilson lines to zero and taking the internal torus with

metric G;; = %G’Zj, where éij is the Cartan matrix of Eg. The antisymmetric field must be

chosen as ~
%Giﬁ 1<,
Bij = _%éija 1> j, . (322)
0, 1=

This is an example of the general type discussed in [11,33] in which p; — pr belongs to the root
lattice of an ADE group of rank d.
A second interesting example is L = 24A;, A; = 7Z3*. Since ((A}) = 24, L fails criterion 1

and criterion 2 as well because ¢(T") < 8. To apply criterion 3 we recall that this L admits an

o7



even unimodular overlattice given by one of the Niemeier lattices, say Ny, with Ny/L = Z3?
(see chapter 16 in [49]). It is also known that the root lattice of Ny and L coincide. Thus, L
fulfills criterion 3 with M = Ny, and T' = Eg. By the same token L = 124, is also allowed by

criterion 3. Niemeier lattices in heterotic compactifications on T® have appeared in [51].

3.2.2 Connection to heterotic compactifications

We have seen that the groups of maximal rank that can be embedded in I'y 4416 are characterized
by an ADE lattice L of rank d+ 16, the isotropic subgroup H; C Ay, the associated overlattice
M and the complementary even lattice T' of rank d, satisfying (Ar,qr) = (Anr,qu). The
isotropic subgroup Hy, is the torsion part of the embedding, in the sense that M/L = Hj. For
an embedding to exist, it must be that d(M) = d(T) = d(L)/|H|?. In the heterotic framework
L is the root lattice of some gauge group with maximal enhancement. We now want to identify
T, which we call the complementary lattice.

There is a natural candidate for an even lattice of rank d, namely the sublattice of I'g 4416,
denoted K, obtained by setting py, = 0. This is

K= {(PR; pL) € Laa+16 || PL = 0}- (3.2.3)

Let us next examine the consequences of setting pr, = 0. First, from (3.1.2c) we find that
p! = 0 implies
= —w'Al. (3.2.4)

Second, imposing p;, = 0 leads to
n; = —U)jEji, (325)

after substituting (3.2.4) in (3.1.2b). From p;, = 0 it further follows that
pr = —V2u'e;. (3.2.6)

Thus, pgr lies in a lattice of rank d as long as all the windings w® are allowed to be different
from zero. Since 7 is a vector in the gauge lattice Y14, the condition (3.2.4) can only be fulfilled
with w® # 0 if the Wilson lines A; are quantized, in the sense that they are given by a vector
in T4, divided by a positive integer. We define the order of the Wilson line A; as the smallest
positive integer N; such that

N;A; € Ti6 (no sum in 7). (3.2.7)

If A; =0, its order is 1. All A; must be quantized so that (3.2.4) does not force some windings
w' to be identically zero. The quantization condition in (3.2.5) is also very restrictive. It clearly
demands the £j; to be rational numbers. Taking into account quantization of the Wilson lines
then requires the 7% metric components Gi; = e;-e; to be rational numbers, which is consistent
with p% being even. From now on we assume that K has rank d.

The constraints on the A; and E;; are compatible with having a gauge group of maximal
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enhancement, which is the case under study. In fact, recall that to this end there must exist
solutions to pr = 0 and pr,? = 2. The former implies the condition n; = Eijw‘j +7-A€”
(eq. (2.2.24)), which can be achieved with quantized A; and rational E;;.

The even lattice K C T'y4116 has signature (d,0) by construction. Applying Nikulin’s
Theorem 1.12.4 in [16], we learn that K admits a primitive embedding in Iy 4+16. It follows
that the orthogonal complement of K in I'g 4416 also admits a primitive embedding in I'g 44 16.
This orthogonal complement is just the sublattice of I'g 4416 defined by pr = 0 which we denote
M, i.e.

M = {(pr;pr) € I'sa+16 || Pr = 0}. (3.2.8)

The name M is appropriate because it is indeed the overlattice of criteria 3 with M, = L.
The reason is that M, is the sublattice of M generated by vectors with pr,2 = 2 and it has
rank (d + 16) by the assumption of maximal enhancement.

So far we have argued that M of signature (0,d + 16) is the orthogonal complement in
Iy.a+16 of K of signature (d,0), and that K as well as M are primitively embedded in I'y 4 16.
In fact, g 4416 is an overlattice of M @ K. We can then apply Lemma 2.4 in [14] to conclude
that there is an isomorphism (A, qnr) = (Ax, —qx). A proof of this lemma is presented in
Appendix B.2.2. Finally, by Nikulin’s Proposition 1.12.1 [16] there exists T" of signature (0, d)
satisfying (Anr, qar) = (Ar, gr). It is obtained by changing the sign of the Gram matrix of K,
ie.

T=K(-1) . (3.2.9)

Summarizing, the two rationality conditions N;A; € T and E;; € Q, guarantee the existence
of the even (0,d) lattice T', which in turn implies the existence of the even (0,d + 16) lattice
M with (Anr, qu) = (Ar, gr). Thus, the rationality conditions are necessary to have maximal
enhancement to a group of rank d + 16. However, these conditions are not sufficient to ensure
that the sub-lattice M.,z has rank d 4+ 16. The additional constraint in criterion 3 is precisely
that the gauge lattice L of rank d + 16 coincides with M.

3.2.2.1 Moduli from lattice data

If we have the set of charge vectors |Z) that generate certain L, it is quite easy to obtain the

associated moduli A; and E;;. To see this, we rewrite the condition for massless states pg = 0
in terms of |Z) and the moduli vectors |A;) = | =67, Ey; ANS

(Ai|Z)=0,i=1,....d (3.2.10)

We have d x (d+ 16) unknowns and d equations for each of the (d+ 16) independent vectors
|Z), which makes it possible to get the moduli solving this system.

For simple Wilson lines there is a basis that is quite useful. For the HE theory, we write
them as:

A= (i%wk) 9 (z i) (32.11)

k=1

6pr? = 2 translates to (Z|Z) = 2 and is satisfied trivially.
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for some rational coefficients 7 and 7, with w the fundamental weights of Fg given in Table
2.1.

If |Z) corresponds to one of the first eight simple roots of the original Eg x Eg symmetry,
|Z) =10,0,0,0; o, 0°), and eq. (3.2.10) is:

8
(Z WUk) oy = =0 (3.2.12)
k=1

If we want most of the original symmetry to be preserved, the Wilson lines should be orthogonal
to most of the roots. That is, most of the v, and 7}, on (3.2.11) are zero. It is quite useful to
write the Wilson lines on this basis, as one can see from the subscripts of the wy that appear
on the A;, which of the original simple roots are killed. We use this basis to express the results

in this chapter.”

3.2.2.2 Lattice data from moduli

Once we know the data (L,T) of the allowed groups G, we still have to determine specific
moduli A; and E;; that give rise to them. Conversely, given A; and E;;, in principle L is
obtained from the solutions of pr = 0, pr,> = 2, which correspond to the roots of G,. On the
other hand, T can be derived directly from the moduli as explained below.

The elements of T" are of the form (3.2.6). Besides, the moduli must comply with the
conditions (3.2.4) and (3.2.5). To make more concrete statements, consider first the case in
which the F;; are integers so that (3.2.6) is satisfied by any w’. Then, a class of allowed values
for the w' are multiples of the Wilson lines orders, namely w* = ¢;N; (no sum over i), with

l; € 7. If we assume that this class exhausts all possibilities, 7" will be generated by a basis
up = V2Nyer, us = V2Nses, ..., ug = V2Ne,, (3.2.13)
where we dropped an irrelevant sign. The Gram matrix of 7" will then be given by
Qij = ui - uj = 2N;N;Gyj = NiNj(Ejj + Eji — Ai - Aj) (3.2.14)

Since this is valid for E;; integers and N;A; € T4, we see that the );; are integers and the
diagonal components are even, as required for an even lattice.
In some cases there might be more admissible values of the winding numbers w’. In general,

the allowed values are sets of integers (M7, My, ..., My) that satisfy

M{Ay + MyAy + -+ MyA; € T , (3215&)
M1E1i+M2EQi+"'+MdEdi S Z, Z: 1,...,d. (3215b)
In this situation a way to proceed is to obtain d solutions (Ml(k), e ,Mék)), k=1,...,d,

"The original reason for using this basis in [2] was as a byproduct of the shift algorithm and some related
techniques.
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linearly independent (with Euclidean metric), such that the vectors
d k
ue =3 vV2MPe, (3.2.16)
=1

generate a lattice with the least volume. For instance, the vectors in (3.2.13) are recovered
when E;; € Z and the only solutions of (3.2.15a) are Mg(k) = Nybgy (no sum over ¢). In the
general case we have to impose the condition of least volume. To be more precise, define the
matrix C' with elements Cyy = M" | i.e. the rows of C are the solutions of (3.2.15). The Gram
matrix of 7" then reads

Qre = up - ug = 2(C G CYyy, (3.2.17)

where we used G;; = e;-¢;. Therefore, det Q = 2%(det C)? det G. Since the determinant of the
torus metric is fixed by the choice of moduli A; and E;;, to obtain the least lattice volume it
suffices to choose C' with least determinant. Hadamard’s inequality then instructs us to choose
d independent solutions (M¥| ... ,Mc(lk)) of (3.2.15) with the least norm. To check that Qs are
integers and the diagonal elements are even, we write G;; = %(EU + Ej; —A; - Aj), and take
into account that the Mi(k) verify (3.2.15). Finally, @ is unique up to the action of GL(d, Z).
For d = 2 we can use the procedure described in section 3, Chapter 15, of [49] to bring @ to
the standard reduced form used in [14].

In the next sections we will discuss systematic methods to determine moduli associated to
groups of maximal enhancement when d = 1 and d = 2. We will then exemplify further how
T computed from the moduli matches the T" from the lattice embedding data. Meanwhile it is
instructive to illustrate the main points in cases with generic d.

For a simple example, consider moduli 4; =0, G;; = %G’ where éij is the Cartan matrix

7R

of an ADE group Gy of rank d, and B;j is given in (3.2.2). The E;; moduli are found to be

%éZjv 1= j)
0, i>j

Therefore, the E;; are either 1, —1 or 0. In this setup the gauge group of the heterotic string on
T? is 2Eg + G, in the HE or Dig + G, in the HO. This example is of the general type in which
all Wilson lines are set to zero and p;, — pr € Ly, where Iy is the root lattice of Gy [11, 33].
From the lattice formalism we find that T = f‘d. From the moduli we obtain the same result
for T' because the basis is given in (3.2.13) with e¢; = %éi and N; = 1.

A second example in the HO on 7% has moduli [11,33]

o 1

V2

It can be shown that the resulting group is Dy, 16. All Wilson lines have order N; = 2. Besides,
E;; = 0;; so that the condition (3.2.15b) does not constrain the M;. For d = 1 we can just
take M; = Ny = 2 so that uy = 2 and T' = A;(2) as we found with the lattice formalism in
Section 3.2.1.1. For d > 2 there are solutions to (3.2.15a) other than Mi(j) = 20;;. For instance,

e 6, Bij=0, A =6 withi<d (3.2.19)

61



Ay £ Ay € I'ig. The Mi(j) can be chosen so that the u; are the roots of Dy. Thus, T' = Dy.
Another important question in the heterotic context is the meaning of the quadratic discrim-
inant form gr. The answer is that the values that p% can take are precisely given by ¢ mod 2.
This follows because pr generically lies in the dual lattice 7*. When T' has basis (3.2.13), it is
easy to see from (3.1.2a) that pr indeed takes values in a lattice generated by u* = ﬁ]\hé*i,
with Gram matrix the inverse of @ in (3.2.14). When there are additional solutions to (3.2.15),

so that the basis for 7" is given by (3.2.16), pg lies in a lattice spanned by
' | RN
ut=—=> C%e", (3.2.20)
V2 ,.;

where C* = C};' and as before Cyy = Mg(k). Thus, v* - u¥ = Q¥ = Q;;', with Q the Gram
matrix in (3.2.17). The fact that gr gives the values of p% is useful to determine the spectrum

of massive states.

3.2.3 Circle compactifications

In this section, we consider again compactifications of the heterotic string on the circle, where
the moduli are the radius R and the 16-dimensional Wilson line A’. The problems of finding

" and the corresponding moduli (R, AT), was solved in

all possible gauge groups G, x U(1)
Section 2.4 by means of the Generalized Dynkin Diagram (GDD) associated to I'y ;7. Here we
will discuss the connection with the lattice embedding formalism.

As mentioned previously, there are 44 different groups of maximal rank that are realized in
heterotic compactification on S*. We collect them in Table D.1 in Appendix D.1, where they
are denoted by its root lattice L. The Table includes the moduli (R, Ag) and (Ro, Ao) in the
HE and HO theories respectively. For both the moduli lie in the fundamental regions defined
in Table 2.12. As explained previously, they can be obtained by just saturating the inequalities
associated with the nodes we are keeping. In the case of the HE it is given by (2.4.7), with an
analogous expression for the HO. Also, the latter can be derived from the map (3.1.28) too.
In all cases Ey, = E5 = 1. By looking at the GDD we deduce that all ADE G, of r < 9 are
allowed, which is consistent with Theorem 1.12.4 in the Nikulin formalism [16]. The diagram
also shows that for » = 10 all ADE G, can appear and that for » = 11 only 11A; is forbidden.

For each maximal group in Table D.1 we also give its discriminant group A;, = L*/L, its
appropriate isotropic subgroup Hy, and its complementary lattice 7. For the lattice T, the
notation Ai(m) is simplified to (m). Besides, d(T) = 2m. It is easy to check that in all cases
d(L) = d(T)|Hp|? holds. For all groups we have verified the isomorphism (A, qr) = (Ar, q7),
which is less trivial when Hj # 1. Some examples were worked out in Section 3.2.1.1.

It is a compelling exercise to deduce the lattice T from the moduli as explained in Section
3.2.2. For d =1 there is only one Wilson line and the simple result (3.2.13) is valid. Thus, T
is generated by

u=+2NR, (3.2.21)

where N is the order of A and we used ¢; = R. The Gram matrix is then Q = 2N2R?* = d(T).
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On the lattice side, T'= A1 (m) with d(T") = 2m. Therefore, it must be that
2N°R® = 2N*(1 — 1A%) =2m,, (3.2.22)

where we used that £ = 1 in all cases of maximal enhancement. It is straightforward to confirm
this relation using the data for m and A in Table D.1. In the HE case the Wilson line Ag is
given in (2.4.7) and the order is /

No= o d’zf‘j& ’:”%) . (3.2.23)
Another interesting question is the relation of generic pr to the complementary lattice 7. In
Section 3.2.2 we argued that in general pr takes values in T%. When d = 1 the proof is rather

simple. Since E = 1, (2.3.1) reduces to

1

PR = ﬁ(n—W—W'A)- (3.2.24)

We now use that A has order N to set m- A = l~/N, [ € 7. Inserting in pr above gives
PR = m, with [ integer. Hence, pg lies in a lattice generated by u*, with u the generator of

T in (3.2.21). We conclude that pg lies on T* and the allowed values of p% are gr mod 2.

3.3 Compactifications on 77

In heterotic compactification on 7% there are 36 real moduli, namely {G11, Gi2, Ga2, Bi2}, plus
two 16-dimensional Wilson lines {A], Al}. The Ty 5 lattice vectors (pg;pr,p’), which depend
on these moduli, are given in (3.1.2). For the purpose of studying enhancement of symmetries
it is actually more appropriate to use as moduli the components E;;, cf. (3.1.1), together with
the A!. Indeed, as we have seen in Section 3.2.2, enhancement requires the Fj; to be rational
numbers and the A; to be quantized in the sense of eq. (3.2.7). In Section 3.3.1 we treat the
problem of determining all gauge groups G, % U(l)lg_r that can appear, and the corresponding
moduli.

The extension of the systematic procedure discussed in Section 2.4 to compactifications on
T? would require the construction of a Generalized Dynkin Diagram for T’ ;5. However, it has
been argued that the even, self-dual lattices of signature (p, ¢) with both p, ¢ > 1 (that is, with
a signature with more that one negative sign), do not possess a system of simple roots and
cannot be described in terms of generators and relations similar to Kac-Moody or Borcherds
algebras [52]. Nevertheless, although the addition of a new Kac-Moody simple root introduces
multiple links and loops in the structure of the quadruple extension of simple Lie algebras,
it was shown in [53] that the “simple-links” structure can be preserved if the extra root is a
Borcherds (imaginary) simple root. In any case, a GDD for I'y 15 is not known and it is not
even clear whether it exists. Hence, we will proceed in a constructive way.

In Section 3.2 we explained that all allowed groups G, X U(1)d+16_7"

in heterotic compac-
tification on 7% can be obtained by lattice embedding techniques. For 72 the full results are

known from the work of Shimada and Zhang who classified all possible ADE types of singular
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fibers in elliptic K3 surfaces [14,15]. The classification translates into all possible heterotic
gauge groups because the lattice embedding conditions are the same in the K3 and heterotic
contexts.

Knowing all allowed groups it remains to compute the corresponding moduli. We will focus
in the HE since the moduli in the HO can be derived from the map elaborated in Section 3.1.2.
We will mostly consider the case of maximal enhancement, i.e. r = 18. As argued in Section
3.2.2, this can occur only if the E;; are rational numbers and the A; are quantized.

In Section 3.3.1 we will develop a procedure in order to obtain all groups of maximal rank.

The results are summarized in Section 3.3.2.

3.3.1 Exploring the moduli space (Neighborhood algorithm)

To tackle the problem of getting all the maximal enhancements on 7T? compactifications, we
pursued different methods: construction of Extended Dynkin diagrams, the Fixed Wilson line
algorithm and the Neighborhood algorithm. Even though each one of them gives different
insights, we will only include in this thesis the latter, which is the one that succeeded in this
task. The former methods can be consulted in [2]. We will apply the algorithm in the HE theory.
The moduli for the Spin(32)/Z, theory will then be determined using the map described in
Section 3.1.2.

The main idea is to find new maximal enhancements that are close to those already found.
More precisely, we start at a point of maximal enhancement where the group Gig, and its 18
simple roots, are known. Then we move along surfaces in moduli space where the symmetry is
broken to Gi7 x U(1). On each of these 18 surfaces Gy7 will have 17 of the 18 original simple
roots. For each surface we collect the candidate extra simple root that would give back an ADE
group of rank 18. For each candidate we compute the moduli, A; and E;

j, by imposing that

the 18 simple roots correspond to states that satisfy the massless conditions®

ny = Enwl + E12w2 + 7 Al, Ng = Eglwl + E22w2 + - AQ s (331&)
7™+ 2w'ng + 2w?ng = 2. (3.3.1b)

We then check that the torus metric Gj; is well defined and finally read the gauge group from

9 We also compute the Gram matrix () corresponding to the moduli, as

the simple roots.
explained in Section 3.2.2.2, giving us the complementary lattice T. We end with a list of
points of maximal enhancement that are on the neighborhood of the original point, i.e. they
are connected through a 17-dimensional enhancement surface. The algorithm can be repeated
to explore regions of the moduli space that are far away from the starting point.

We illustrate the algorithm with an example defined by the starting point A; = Ay = 0,

8Which in practice is done by imposing eq. (3.2.10).
9We developed a routine that takes a base of simple roots and detects if its Dynkin diagram is of ADE type
and, in that case, it identifies the group.
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E;; = ¢;j, where the gauge group is 2A; + 2Eg. The charge vectors of the 18 simple roots are

pj = 10,0,0,0;0;,0%), ¢} = 10,0,0,0;0%0}), j=1,....8,

3.3.2
¢c, = [1,0,1,0;08,0%), e, = [0,1,0,1;08,0%). ( )

They form the DD of Figure 3.1.

8 O 8
c
7 2 7
o
1 2 3 4 5 6 Ci ¢ 5 4 3 2 U

Figure 3.1: Dynkin diagram of 2A; 4 2Eg

Now we want to move along directions that preserve 17 of the 18 simple roots by deleting
one node. Since the DD is symmetric under the interchange of the node [j] with the node [j'],
it suffices to remove one of the nodes [j]. We are then effectively breaking Eg + 2A; by erasing
one node. The nodes C; and Cy are also interchangeable. We choose to always keep C,. There
are thus only 9 inequivalent breakings, obtained by deleting either C; or one of the 8 nodes of
Es. Altogether, the 17 surviving simple roots are the 18 original ones in (3.3.2), except for the
one corresponding to the removed node. Afterwards we add a new node which clearly cannot
be connected to any of the 8 nodes [j'] associated to the second Eg, since the resulting diagram
has to be of type ADE. Hence, only algebras of the form Gig + Eg can arise. For convenience
we ignore the second Eg unless otherwise stated.

To further elaborate on the algorithm we analyze first the case in which the node Cy is
removed. The effect is simply to break Eg + 2A; to Eg + A;. We then add one node, called N,
to its Dynkin diagram. The 2 possibilities for the connections of the new node are displayed in

Figure 3.2. Generically, the charge vector corresponding to N is
on = |w',w? ny,ngywt, L w8, 0%) (3.3.3)

The last 8 components of 7 are zero just because the new node is always disconnected from the
second Eg. The way that N is linked in each of the possible Dynkin diagrams gives 9 conditions
for the 12 unknowns w’, n;, plus the eight non-zero components of 7. We use these conditions
to determine all except 3 of the unknowns. It is convenient, and always possible, to leave w!

and w? undetermined.

1 2 3 4 5 6 N |1 2 3 4 5 6

Figure 3.2: Dynkin diagrams corresponding to the possible ways of adding a node N to the diagram
of Eg + Al.

We just consider all possible values for the 3 unknowns, with a fixed bound for the maximum
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of their absolute values. For computational reasons, this truncation is necessary to avoid
infinitely many possibilities!®. Concretely, we introduce two parameters \; and Ay, which

define the truncation, and consider only states with
W' <A, fngl < Xg, 7T < A (3.3.4)

For this example it is enough to use Ay = 1 and \; = 2. Afterwards, we filter all the candidates
by imposing that ¢y has norm squared 2 and m € T14. In some cases it might occur that,
regardless of the values of A\; and ),, there are actually no solutions with w’,n; € Z and
m € Y.

The case of Eg+2A4, on the left in Figure 3.2, is rather trivial because we are just restoring
the deleted node C;. The algorithm will find charge vectors ¢y which are not necessarily equal
to ¢c,, but at the end of the day all of them should be equivalent to it. When we compute
the moduli we obviously get E;; = d;;, Ai = Az = 0, or some T-dual point. We just restored
the simple root that we removed, thus returning to the original point in the moduli space. In
general, this possibility will occur in all the breakings.

In the less trivial case Eg + Ay, on the right of Figure 3.2, N is linked to Cy. Imposing
(e, |pn) = —1, implies ny = —1 — w?. Considering all the possible values for the 3 unknowns

w', w? and ny, with the bounds in (3.3.4), and filtering by requiring (¢y|@y) = 2, gives the list
11,0,1,-1;0%,0%), |—-1,-1,-1,0;0%0%), |1,-1,1,0;0%,0%), |—1,0,—1,—1;0%0%). (3.3.5)

We next deduce the moduli by demanding that the charge vectors of the full set of 18 simple roots
satisfy the quantization conditions (3.3.1a). This is a well posed problem because in general there are
36 moduli to determine and the 18 simple roots give two equations each. In this case we readily find
A; = 0 and Ap = 0. From ¢¢, we obtain Ej2 = 0 and Ez = 1, whereas from ¢y, n1 = Ejw! and
—2w? — 1 = Eojw;. The 4 elements in the list (3.3.5) solve these equations with Ey; = 1, and Ea;
equal to 1 or —1. It is easy to see that the corresponding Gj; is well defined and that these points are
T-dual to each other.

The algorithm proceeds in the same fashion for all the 9 possible breakings of Eg + 2A;. For a
more fruitful example, let us consider the breaking to A7 + 2A1, obtained by removing the node .
Appending a new node N leads to various possible enhancements. For instance, N can connect only to
s to form Ag + 2A;. With A\; =1 and Ay = 2 in the bounds (3.3.4), we find that the charge vectors

of yn can be one of
| —1,0,1,0; —ws, 0%), |0,—1,0,1;—ws,0%), [1,0,—1,0;—ws,0%), [0,1,0,—1;—ws,0%). (3.3.6)
The moduli are determined as explained before. Taking into account all nodes except N, we arrive at
Eij =65, A1 =mw; x0, Ay =yw x0, (3.3.7)

where (71,72) are some free parameters. The above moduli determine a slice of moduli space with
group SU(8) x SU(2)? x Eg x U(1). Finally imposing the quantization conditions (3.3.1a) to the possible
charge vectors for ¢y, cf. (3.3.6), fixes (v1,72) = (%,0), where underlining means permutations. With

10T his limitation was overcome in subsequent more general versions of the algorithm made for the exploration
of the CHL string, which is the subject of the following chapter (see Section 4.3).
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these values we reach the rank 18 group with algebra Ag + 2A; + Es.

There is a feature of the algorithm than can be explained considering again the enhancement
to Ag + 2A;, but now with Ag formed by connecting ¢y to wg. The algorithm finds the charge
vector |0,0,0,0; —wg, 0%) for py. The moduli are again of the form (3.3.7), but now the quantization
conditions from ¢y imply (y1,v2) = (0,0). Thus, the predicted moduli are A; = Ay =0, E = §;5, and
we know that this point has trivial enhancement to 2Eg+2A1. On the other hand, the Dynkin diagram
that results adding N indicates enhancement to Ag+2A; +Eg. The problem here is that the ¢y, which
has zero winding and momenta, corresponds to a root of Eg. In fact, —wg = ag is the lowest root.
Since the quantization conditions are linear equations, if we replace one of the original simple roots of
2FEg + 2A; with any other root, the moduli that solve the system will be the same, but the other root
is no longer simple. Our prescription to solve it is to classify all the enhancements, originating from
the same starting point, by the resulting moduli. If there is more than one enhancement for the same
moduli we just pick the one with higher dimensional group'!. In this case, we choose 2Eg + 2A; over
Es + Ag + 2A;.

In Table 3.5 we collect the maximal enhancements in the neighborhood of the original point
Ay = A3 = 0, E = §;5, which has Gig = 2Eg + 2A;. The node shown in the first column is removed
from the set in (3.3.2) at the start. The effect is to break Gig to Gg x Eg x U(1), with Gg given in the
second column. Appending a new node then leads to Gyg x Eg, with the various possibilities for Gyg
listed in the third column. To arrive at this list we have only kept the groups of higher dimension as

explained before, and we have used \; = 1 and Ay = 2 in the bounds in (3.3.4).

“rode Go Gio

Cy Es + Ay Es +2A1, Eg+ A2

1 A7 +2A4 Ag+ A1, Ag+2A, Dy

2 |As+As+3A1 Dr+As+ Ay, Ds+As+ A, Ag+ Ax+2A, 2A4 + 2A4
3 |Ay+ Az +2A,Ds+ Ay Ag+2A1, A+ A3+ ALEs+As+ A As+ Ay + A,
4 |Ds+ Ag +2A4 2Ds, D7+ As+ Ay, Er +Ax+ Ay, Ds+As+ Ay

5 E¢ + 3A4 E¢ + D4, Eg + Az + Ay

6 E7 4+ 2A4 E7 + A3, E7 + Ay + Ay

7 Ag 4+ 3A4 Dg + A1, Ag+2A1, Ag+A3+ A1, Ag+ As +2A4

8 D7 + 2A4 Dg+ A1, Dy +As + Ay

Table 3.5: Maximal enhancements Gig + Eg in the neighborhood of A; =0, Ay = 0, E;; = 6,5, found
setting \; = 1 and Ay = 2 in the bounds of (3.3.4).

The Neighborhood algorithm can be iterated and can ramify from a different point of maximal
rank. In particular, in this way we can find the maximal enhancements As + Ag + Ag and 3Ag, which,
as argued in [2], cannot be deduced using the algorithm with fixed Wilson lines. To this end we will
set the bounds (3.3.4) as before. We will see that this is enough to obtain the missing groups, although
a priori there was no guarantee for it. We now start at a point with group Gis = Ag + As + Ay + Eg,
which in turn was found by the algorithm initiating from the point FE;; = 0;;, A1 = 0, A2 = 0
(cf. Table 3.5). Concretely, Gig arises after deleting the node 3 in (3.3.2) and then appending

" This issue can be solved in a more systematic and elegant way with the saturation method described in
Section 4.3.1 (see footnote 10).
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the extra node N with charge vector ¢y = [0, —1, —1,1;w3 — wy, 0%). The corresponding moduli are
Al = —%wg x 0, Ay = %wg x 0, E;j = 6;5. We can now readily apply the algorithm to Gig whose
Dynkin diagram is shown in Figure 3.3.a. All the enhancement points on the neighborhood of this
point can be computed. However, to reach the desired maximal enhancements, the nodes C; and Co will
be maintained during the whole process. Therefore, £;; will remain equal to the identity as we move
through the neighborhood. To proceed we remove the node 1, thereby breaking Gis to Gi7 x U(1),
with Gi7 = Ay + A3 + Ag + A7, as shown in Figure 3.3.b. The neighboring point is on the surface
characterized by A1 = —%wg X ywy, Ag = iwg X yow}. The algorithm then searches for new nodes
that can be consistently added. It finds N with charge vector | — 1, —1,1,0;0%, —w}), which leads to
Az + Ag + Ag, as seen in Figure 3.3.c. The point is (y1,72) = (—%, —%) Luckily, from this point we
can attain 3Ag in a couple of steps. With the algorithm it is easy to see what is needed. As displayed
in Figure 3.3.d, the node 8 is next removed to break the symmetry to 2Ag + A3 + Ao, plus U(1). The
surface is given by Ay = —3ws x (—1wf + p1 (dw] — 5w})), Az = Tws x (—Fwh + po(4w) — 5wf)). The
algorithm then discovers the extra node S, with charge vector | — 1,0, 1, —1; —wg, wg — w}), which has

enhancement to 3Ag, as indicated in Figure 3.3.e. The point is (u1, u2) = (—%, 0).

C1 8 o 8 C1 8 o 8
N Ca 7 N B 7 Ca 7
o—O0—o0 o0—O0——0
1 2 4 5 6

1 2 4 5 6 6 5 4 3 20V 6 5 4 3 2

() (b)

C1 8 8’ Ci 8 o0—o
N Co W 7! N M 7 Co N 7!
0—o0—o0 0—o0—o0 o—o—o—o—I
1 2 4 5 6

6 5 4 3 2

EN|

EN|

(c) (d)

|
EI

1 2 4 5 6 6 5 4" 3 2

Figure 3.3: Dynkin diagrams for the steps leading to the enhancements Az + Ag + Ag (c) and 3Ag (e),
starting from a point with Ag + A + A; + Eg (a). Intermediate stages where the symmetry is broken
are shown in (b) and (d).

In conclusion, we have arrived at A + Ag + Ag and 3Ag. The former has Wilson lines A; =
—(gws x 2w}), Ay = Jws x (—1w}), and complimentary lattice 7' with Gram matrix Q@ = [2,0, 140].
For the latter A; = —%wg X (—%w’l + %wg), Ay = %'LUg X (—%wé), and @ = [2,1,4]. For both, E = 0;;.

For d = 1 and 2, we know that this algorithm is exhaustive. By removing arbitrary roots from
the maximal enhancements we can obtain the non-maximal ones. As mentioned previously, there is
only one case for d = 1 and 2 that is missing, namely 2Dg and 4Dy, respectively. To arrive at these
enhancements we can just use this algorithm but instead of starting with a maximal enhancement, we

start with any non-maximal enhancement of type Gig X U(l)d.
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3.3.2 All maximal rank groups for d = 2

From the results in [14] we infer that there are 359 distinct maximally enhanced heterotic models

on T2, some of which share the same gauge group 2.

The number of distinct maximal rank gauge
groups found is 325 (if we do not take into account the global structure). Using the extended diagram
formalism developed in [2], we are able to obtain the moduli for 331 of these models. The more
powerful computational method described in 3.3.1 allow us to obtain the moduli for the remaining 28
models, as well as alternative moduli for the other 331.

In Table D.2, displayed in Appendix D.1, we show a representative for each of the 359 models in
the Eg x E§ heterotic theory. The data for each point consists of the root lattice L, which gives the
gauge group, the isotropic subgroup Hy,, the complementary lattice 7', and the moduli E;j;, A;, As.
The lattice T' is conveyed by its Gram matrix, computed from the moduli as described in Section
3.2.2.2. Once T is known we can determine the order of Hy using the relation (3.2.1). We can then
check that the appropriate isotropic subgroup of Ay, exists as in the examples worked out in Section
3.2.1.2. In this way we can confirm the results of [14] for the Hj, corresponding to each pair (L, T).

In contrast to the d = 1 case, we do not have an explicit form of the fundamental domain of the
moduli space, which would give us a clear criterion for choosing the moduli. Instead, we have selected
those that have the simplest form. In some cases we present two different sets of moduli, one in which
the Wilson lines are simple but the F;; have non-integer entries, and another where the opposite
happens. As expected from the general arguments of Section 3.2.2, in all cases the FEj; are rational
numbers and the Wilson lines are quantized in the sense of eq. (3.2.1). Moreover, it can be shown
that for every pair (L,T), it is always possible to find Wilson lines such that F;; = d;;. Examples of
this result are # 15 or # 19 in Table D.2. The torus metric and the b-field can be easily derived from
the moduli F;; and A; substituting in Gj; = %(EZ] +E;i —A; - Aj) and By = %(EZ — Ej).

For each model in Table D.2, the moduli in the HO theory can be obtained by using the map
described in Section 3.1.2. We have explicitly verified that the Gram matrices of the lattices L and
T are preserved under this map, which is to be expected from an orthogonal transformation. Some

examples of these transformed HO models are given in Table D.3.

2During this work we lacked a method for computing the overlattice of L. Later, we developed an algorithm
which was used to verify all of the Hy, reported here. This algorithm will be explained in Section 4.3.3.1. By
computing the precise global structure it is possible to distinguish two points both with L = A; +As+ A5+ Ay,
H =75 and T = [10,0,12] but inequivalent generators for H: one is generated by the element k = (1,2,0,5)
and the other by k = (0,0, 3,5), in the notation of Section 4.3.3. This results in 360 distinct models, with two
of them being identified as the same (#61) in Table D.2 of this thesis and Table 2 of [14].
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Chapter 4

Chaudhuri-Hockney-Lykken string

With the motivation to exhaustively explore the landscape of heterotic compactifications with max-
imal supersymmetry now we extend the analysis of the previous chapters to compactifications of the
HE string on T9/Z5 asymmetric orbifolds which realize the so-called CHL string [17,18] (in 10 — d
dimensions with d > 1). This Zy acts by exchanging the two Eg components of the momentum lat-
tice, together with a shift by half a period along one of the compact directions. One of the effects
of this (freely acting) Zs modding is to remove eight of the U(1) gauge bosons from the spectrum,
thereby reducing the rank of the gauge group by eight. The moduli space of the CHL string in 10 —d
dimensions is locally % and world-sheet current algebras can be realized at level 2 or 1.

The momenta of the physical states of the 9-dimensional CHL string belong to the Lorentzian
even self-dual lattice I'; g [19]. At generic points of the moduli space the (left) gauge symmetry is
Abelian, namely U(1)9. In the absence of Wilson lines and for generic values of the radius, some
vector states of the untwisted sector become massless and enhance the gauge group to Eg x U(1).
At the self-dual orbifold radius R = v/2 (taking o/ = 1), two twisted states become massless and a
further enhancement to Eg x SU(2) takes place. Eight other non-Abelian ADE groups of maximal
rank 9 can be found at other special points of the moduli space. All of these groups have world-sheet
current algebras realized at level 2. In Section 4.1 we list these groups, which can be easily obtained
by deleting nodes from the Generalized Dynkin Diagram for I'; g (which is the same as the Dynkin
diagram of the group Ejg), in an analogous way as we did in Section 2.4 for the S compactification.

In less than nine dimensions the lattice of momenta of the physical states (the so-called Mikhailov
lattice) is even but not self-dual [19]. This can be understood by noting that there is an asymmetry
between the possible winding states along the orbifolded direction and those along the remaining
ones, obstructing an automorphism that would make the lattice self-dual. On the other hand, this
asymmetry enriches the pattern of gauge symmetries with respect to those found from the Narain
lattice, and we find in addition gauge groups of BCF type.

As in the case of T compactifications, there does not seem to exist a Generalized Dynkin Diagram
(GDD) from which one can extract all possible enhancements for d > 1. Although many different
GDDs can be constructed, it is uncertain whether they can produce the whole set of enhanced gauge
groups. Hence, we adapt the exploration algorithm that was introduced in Section 3.3.1 for the Narain
lattices to the Mikhailov lattices. We find that, for d = 2, the algorithm generates a list of 61 groups
of maximal enhancement. In this case, the CHL string is a realization of the anomaly free theories
with 16 supercharges and rank 10 gauge groups [54]. We find that the ADE groups arise at level 2
while C groups appear at level 1 (A; also appears at level 1, but A; = C;). Taking into account
that the exploration algorithm produces all possible maximal enhancements in 72 compactifications
strongly indicates that these results exhaust all the possibilities.

Roughly half of the enhanced gauge groups in the CHL string in eight dimensions are multiply
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connected, while the rest are simply connected. Importantly, they are seen to satisfy the condition
derived in [21] for anomaly free 8d A/ = 1 supergravities, a result that can be proven in general also
for T? compactifications [20].

We note that our results for the 8d CHL string extend under T-duality to compactifications of
the HO theory string on tori without vector structure [22], as discovered in [55] and further discussed
in [23]. These theories are also dual to F-theory on K3 with a frozen singularity [22,56], hence it should
be possible to reproduce our results in that context. Similarly, the d = 1 case is dual to M-theory on
the Mébius strip [57,58]. We do not dwell on these dualities here, focusing our attention only on the
(Es x Eg) heterotic side.

The chapter is organized as follows. In Section 4.1 we review the construction of the CHL string
in nine dimensions as an S1/Z5 orbifold of the HE string. We then find all the maximal enhancements
from the Generalized Dynkin Diagram and list them in Table D.4. The T-duality map among the
states of the theory is also checked. The more general setting of the CHL string in D = 10 — d
dimensions (with D < 9) is considered in Section 4.2, where the theory is realized as an orbifold
of heterotic compactifications on 7% In Section 4.3 we explain the methods used in the algorithm
that searches for maximal enhancement points and illustrate them with an explicit example. We then
present the maximal enhancements generated by this procedure in the eight dimensional theory and

collect the final results in Table D.5 with the corresponding explanation in Section 4.3.4.

4.1 The nine-dimensional CHL String

In this section we review the construction of the CHL string in nine dimensions [17] as an S!/Z;
orbifold of the HE string [18] and fix our conventions. We recall the massless spectrum and study the
possible gauge symmetries from the point of view of lattice embeddings. We will see that, as in the

case of the heterotic string on S', this problem is well under control.

4.1.1 Constructing the theory from the heterotic string

In Chapter 2, we considered the HE string with the coordinate z? compactified on a circle of radius
R. We explained that varying R and turning on the Wilson line A on the compact direction we sweep

through the Narain moduli space

0(1,17,R)
MNarain = O(I7.R) /O (1,17,2), (4.1.1)
with the discrete T-duality group O(1,17,Z) determining its global structure. These compactifications
yield theories with gauge group of rank 17 (ignoring the graviphoton). However, the class of nine-
dimensional theories with 16 unbroken supercharges also contains reduced rank theories, with gauge

groups of rank 9 and 1. Those of rank 9 are realized in the CHL string, and have moduli space

1 R)
Mcar = 9 /O (1,9,2), (4.1.2)

as will be made clear at the end of this section.
For our purposes, it is convenient to construct the CHL string as an orbifold of the Eg x Eg heterotic

string following [18]. The orbifold symmetry g = RT consists of the outer automorphism R of the
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Eg x E§ lattice accompanied by a half turn T around the compactification circle, namely
R: Tg,@®Tlg =Ty &g, T: 2°—=2"+7R (4.1.3)

Since 2 ~ 2° + 2R in the parent theory, > = 1 and ¢ defines a freely-acting Z, orbifold.
To find the spectrum of this theory, we start by recalling the components of the internal momentum

of the heterotic string in nine dimensions eq. (2.3.1):

PR = \éR n— (R4 3A%)w —11- 4] , (4.1.4a)
oL = \/;R n+ (R? = A%)w —T1- A], (4.1.4Db)
pf —1l 4 Afw7 (4.1.4c)
where [ =1, ....,16, n € Z is the momentum number on the circle, w € Z is the winding number and

IT € I's ® I'g, with I's = I'gg. The momenta form the unique even self-dual Lorentzian lattice I'y 17
(up to SO(1,17) boosts given by the moduli), with vectors labeled by the quantum numbers w, n, 1.
We use the convention o/ = 1.

On the S1/Z5 orbifold, the Wilson lines are restricted to take the form

A= (a,a), acRS (4.1.5)
Similarly, it is convenient to decompose the heterotic momenta as
= (mqn), mnr els, (4.1.6)

and to define the symmetric and antisymmetric combinations

1
@' 420, o= p0 =), I=1,.8 (4.1.7)

1
by =

Sl

Defining moreover the symmetric combination
p=n+7 €Ty, (4.1.8)

the components (4.1.4) can be written as

pR_\/;R [n—sz—azw—p-a} , (4.1.92)

pL:\/;R [n+R2w—a2w—p'a] =pr+ V2Rw, (4.1.9b)
1

Py = 7 (p+ 2aw) , (4.1.9¢)

p_ = \2(77 -7, (4.1.9d)

and the total internal momentum vector is P = (pr;pr) = (Pr; PL, P+, P—)-
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The orbifold action on the momenta can be written as

9 |pr;pL. P+ p-) = ™ Flpgipr,pi, —p-) (4.1.10)

where the inner product is defined with respect to the metric diag(—1,+1,...,+1). The shift vector
v is constrained by the condition that g has order two. Choosing v— = 0 implies that 2v belongs to
the Narain lattice I'1 17. Besides, the condition that the shift corresponds to the geometric translation

of ° by half a period amounts to ™" = ™ and leads to

1 a? a?
=——|-R——;R— —,2a, 0. 4.1.11
v 2\/§< R, Ru CL, ) ( )

Notice that 2v equals the Narain lattice vector obtained by substituting w = 1,n =0, and 7 =7’ = 0
in the formulae (4.1.9). The lattice vectors can be conveniently traded for states |w,n, 7, ), which

depend on the quantum numbers and transform as
g |lw,n,m, 7'y =™ w,n, ', ), (4.1.12)

for all values of the moduli.
The action of g on the left-moving bosons living on I'g, @ I‘Eé, denoted Y! and Y/ = Y!+8,
I=1,...,8,is the exchange Y <+ Y'! or Y] — +Y/ where
1

V2

The action on the space-time coordinates is just the translation in 2. The corresponding oscillators

Yi=—wl+y"h). (4.1.13)

then transform as
gla) =o', ga'¥) =o', gla*) =, (4.1.14)

where p = 2, ...,9 refers to the space-time transverse coordinates. Notice also that g(al) = 4ol for
the Y oscillators.
In the untwisted sector, the spectrum consists of states of the parent theory invariant under the

orbifold action. The invariant states are superpositions of the form

1
|S0>untwisted = ﬁ (Oé ’U), n,m, 7T/> + (_1)ng(a) |’LU, n, 77/5 7T> > ) (4115)

where « denotes any possible combination of oscillators and g(«) its image under g, given by (4.1.14).

In the twisted sector, the internal chiral bosons Y/ and Y/ satisfy the boundary conditions
Yio+2m)=Y"(0)+Q', Y (o+2r) =Y (o) +Q", (4.1.16)

where @, Q' are arbitrary (fixed) vectors in I's which specify the precise way of exchanging Eg <> E§

[59]. The Y then obey
1

Yi(o +27m) = £Y(o) + 5

QT+ Q" (4.1.17)

S
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and have oscillator expansions

- I
7 « ;
YT +0) = ylo+ 5pl(r+0)+—z > —le o),
\/§ n#0 n
; (4.1.18)

7 o .
Yi(r+0)= %y£ 0o+ —F= E — 8 gis(rho)
’ \/5 1S
SEZ+§

where pi = %(Ql + Q') and yio = %(Ql — @Q'"). The boson corresponding to the compact z”

dimension satisfies
X%o+27) = X(0) + TR+ 21 R = X°(0) + 2w Ruw, (4.1.19)

with @ € Z, and hence w € 7 + %
The twisted states have three distinctive features: they have half-integer winding w, the occupation
numbers of their oscillators can be half-integer or integer valued, and they do not have antisymmetric

momentum p’ . We write them as

’¢>twisted - ‘w7nap> ) (4120)

up to the action of oscillators. Note that upon quantisation the symmetric momentum takes the form
Dy = %(p + 2aw), with p = Q + Q' € T'g, coinciding with the untwisted symmetric momentum in
(4.1.7).

In the NS sector for the right movers (which gives the space-time bosons), the mass and level

matching conditions are

M? = pr’+pr’+2(Ny+Ng)+2a—1, (4.1.21)
0 = pr’—pr°+2(NL— Ng)+2a+1, (4.1.22)
where the zero point energy a is -1 in the untwisted sector, as usual, and —% in the twisted sector, since

the left-moving side part receives contributions from 16 periodic bosons {Yi , X#} (with p labeling the

8 transverse directions) and 8 anti-periodic bosons {Y!}. Concretely,

1 1 1
Otwisted = 16 x Operiodic + 8 % Qanti-periodic = —16 x ﬂ + 8 % @ — _5 . (4123)
It is convenient to define the modified ‘oscillator number’

, % p2  Untwisted

N; = Np +9, 0= (4.1.24)
% Twisted

where p? is an integer (cf. (4.1.9)), and the nine-dimensional momentum

Pr, = (pL,p4), (4.1.25)
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which allows to rewrite the formulas (4.1.21) and (4.1.22) in an O(1,9) covariant form as

M? = P} 4+ p% +2(N}, + Ng) — 3 (4.1.26a)
= %ZTHZ +2(NJ, + Ng) — 3 (4.1.26b)
0= P? —p%i+2(Nj — Ng)—1 (4.1.27a)
= %ZTnZ +2(Nj, — Np)—1. (4.1.27b)

Here we have defined the charge vector
Z =\t,n;p), (4.1.28)

with
{ = 2w, (4.1.29)

and p is defined in (4.1.8). Note that ¢ is always an integer, and is odd (even) for twisted (untwisted)
states. H is the so-called ‘generalized metric’ (cf. (2.3.5))

E?/2  —a? Ea
—a? 2 —2a : (4.1.30)
Ea™ —247 R%2+24"a

1

=

where a is taken to be a row vector and the lower right R? term is implicitly multiplied by 1g so that
H is a 10 x 10 matrix, and

E=R>+a%. (4.1.31)
Finally,  is the O(1,9) metric
01 0
n=11 0 0 (4.1.32)
0 0 1g
The important result
72 =27"nZ =2n + p* €22 (4.1.33)

implies that the charge vectors Z span the even self-dual Lorentzian lattice I'y g ~ I' 1 @ I'y, since
¢,n € Z and p € I's. The correspondence between the states of the theory and the elements of I'1 g
was derived in [19].

It can now be seen that the local structure of the moduli space (4.1.2) is O(1,9,R)/O(9,R) due
to the reduction of the Wilson line from 16 to 8 components and the invariance of eqgs. (4.1.26a)
and (4.1.27a) under O(9,R) rotations of Pr. Furthermore, the automorphism group O(1,9,7Z) of
I'19 corresponds to the T-duality group of the theory, giving the global structure for Mcpr,. The
similarities between Mcpr, and Marain (cf. eq. (4.1.1)) allow to carry out an analysis of the nine-
dimensional CHL string mirroring the one performed for S compactifications in [13] and mentioned
in Section 2.4, namely constructing the fundamental region of the moduli space whose codimension
r < 9 boundaries give enhanced semisimple gauge groups of rank r. This ensures that we are able to

easily find all possible gauge group enhancements in the theory, as we explain shortly.
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4.1.2 Massless vectors

From equations (4.1.26a) and (4.1.27a) we see that the NS sector contains massless states with Np = 1,

pr =0 and

1
5
Of these, untwisted states can have Nz, = 0,1 and twisted states Nz, = 0 (cf. eq. (4.1.24)). For N, =1,

besides the universal gravitational sector, the massless spectrum contains the left Abelian KK gauge

P}=2(1-N};) = N;=01, (4.1.34)

vector
oy ¥ [0)ns (4.1.35)

with 1/_15 , the coefficient of the Laurent expansion of the right-moving fermions, 1 = 2,...,8, and the

2
8 symmetric combinations of the Cartan sector of the heterotic theory that survive the R projection

L7 T+8Y p
—(a +a 0)ns 4.1.36
(el +al i) v 0 (1.1.36)
implying that the gauge group of the theory has rank 9.
For Nj, = 0, the set of massless states depends on the point in moduli space. The pr = 0 condition
reads (cf. eq. (4.1.9a))

with E defined in (4.1.31), while the level matching condition (4.1.27b) becomes a constraint on the
norm of I'y g vectors:
Z?=2n+p* =4(1 - Nj) =4 or 2. (4.1.38)

The states with Z2 = 4 correspond to Nj = 0, and from the definition of N} given in (4.1.24) we
see that this is only possible in the untwisted sector, with 7 = 7. From eq. (4.1.15) we see that such
states could only exist with n even. However, substitution in (4.1.38) gives 20n + p? = 4q + 4% = 4,

2 =1 — ¢ = odd, which is inconsistent since = € I's. In compactifications to lower

with ¢ even, or 7
dimensions, such massless states do appear, and correspond to roots of gauge algebras at level 1, being
long roots for non-ADE algebras (see Section 4.2). On the other hand, states with Z? = 2 are allowed
in this case, and correspond to roots of ADE algebras at level 2. They come both from the twisted

and untwisted sectors (the latter with 7 = 0 or 7’ = 0). We summarize this in Table 4.1.

twisted | untwisted
7 2 2
14 odd even
n | integer integer
P I's I's

Table 4.1: Quantum numbers of the massless states in the twisted and untwisted sector in nine
dimensions. The states must satisfy (4.1.37) to be massless.

At a generic point in the moduli space there are no massless states (twisted or untwisted) other than
(4.1.35)-(4.1.36), since condition (4.1.37) can only be satisfied generically for Z = 0, and therefore
generically the gauge group is U(l)g. Enhanced gauge symmetry appears at special points in the
moduli space, as we will show.

Let us look at the simple situation where a = 0. The massless condition (4.1.37) is trivially satisfied
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for states with £ = n = 0, and the level matching condition (4.1.38) with p? = 2, hence we get the

massless untwisted sates with charge vectors
Z=10,0;p), p*=2. (4.1.39)

These are just the 240 roots of the Eg arising from the symmetric combination of the two Eg’s in the
parent theory. In the twisted sector, since ¢ is odd, eq. (4.1.37) is not satisfied for generic values of the
compactification radius, since R = v/E in this case. The surviving gauge group for a = 0 and generic
R is then Eg x U(1). Interestingly enough, taking R = 1 when a = 0 does not lead to additional states
that enhance the U(1) to SU(2), as occurs in the S! compactification. For this enhancement to occur
we must actually take R = /2, i.e. E = 2, so that equations (4.1.37) and (4.1.38) are solved by

Z =+11,1;0), (4.1.40)

corresponding to two twisted states with winding number m = j:%.

It can be shown that in this example the world-sheet realization of the Eg x SU(2) space-time
gauge symmetry is provided by a Kac-Moody algebra at level k = 2. It is interesting to compare the
radius that gives this enhancement in the orbifold theory with the self-dual radius Ry in the standard
S1 compactification where the enhancement occurs at Rj, = 1 and the gauge group is realized at level

1. They are related as R = vkRy,. For generic Wilson lines this enhancement occurs at
E,=k7'E =1, (4.1.41)

In the following section we show that this is a generic feature: while maximal enhancement in the
heterotic string on S! occurs at £ = 1 and the Kac-Moody algebra is realized at k = 1, in the
nine-dimensional orbifold theory they occur at £ = 2 and k = 2, i.e. both enhancements occur at
Er = 1. This is actually expected from T-duality. We will shortly explain that in the orbifold theory
the self-dual point is £ = 2.

4.1.3 Maximal enhancements from the Generalized Dynkin Dia-

gram

As we have commented in Section 4.1.1, the structure of the moduli space of the nine-dimensional
CHL string, Mcpr, is similar to that of S compactifications of the heterotic string, Myarain (studied
in Chapter 2). In particular, its global structure is given by O(1,9,Z), the group of automorphisms
of a Lorentzian even self-dual lattice. This group is reflexive, meaning that it can be generated by
a finite set of Weyl reflections on the moduli space cover O(1,9,R)/O(9,R), each of which fixes an
hyperplane at the boundary of the fundamental domain. Each one of these reflections is uniquely
associated to a short root quantum state that becomes massless on its fixed hyperplane, such that all
possible enhanced semisimple gauge groups of rank r may be found at their r-fold intersections (for
details see [13]).

The upshot is that given the set of 10 roots corresponding to the boundaries of My, we may
simply impose that some of them satisfy the massless condition (4.1.37) (condition (4.1.38) is satisfied
by construction), so that they become the simple roots of some simply laced gauge algebra. This can
be done neatly by introducing the Generalized Dynkin Diagram (GDD) [11] for the lattice I'; g shown
in Figure 4.1, which is the over-extended Dynkin Diagram for Eg, usually denoted Eig. The roots 1
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through 8 are the simple roots of Eg, and we take them to have the following embedding in I'; g
Z;=10,0;q) , i=1,..,8, (4.1.42)

where the «; are listed in Table 2.1. The root 0 corresponds to the lowest root of Eg with the additional
property that it has n = —1, i.e.
Zy=10,—-1; ) . (4.1.43)

Finally, the root C lies in the hyperbolic sublattice I'1 ; and reads

Zc = [1,1;0). (4.1.44)

O O O O O O o O
2 3 4 5 6 0

1 C

Figure 4.1: Generalized Dynkin Diagram for the lattice I'; 9. The coloring of the nodes 0 and C reflects

the fact the the associated states have non-zero momentum and/or winding, as opposed to the white
nodes.

Analogously to the case of the torus of Section 2.4, maximally enhanced (rank 9) non-Abelian
gauge groups are then found by deleting one node in the GDD such that the remaining nodes form
the Dynkin diagram of an ADE algebra. Imposing the condition (4.1.37) on the roots associated to
the remaining nodes gives rise to 9 constraints on the moduli and defines a singular point (E, a) at the
boundary of the fundamental domain with maximally enhanced gauge group. More generally, deleting
s nodes defines a subvariety of dimension s — 1 with generic semisimple gauge group of rank 10 — s,
given by the remaining Dynkin diagram.

Note that for maximal enhancements the node C cannot be broken, since the remaining diagram
corresponds to the infinite dimensional algebra Eg. This means that all maximal enhancements must
contain this node, and from eq. (4.1.37) this implies that £ = 2. The massless condition then reduces
to

a-p=4~4—n. (4.1.45)

Deletion of the ith node, ¢ = 0, ..., 8, corresponds to the Wilson line

a=—uwi, (4.1.46)
i

with no sum over 4, where w; and k; are respectively the fundamental weight and Kac mark listed in
Table 2.1, similarly to 2.4.7. It is easy to show that this prescription exactly solves eq. (4.1.45) for the
remaining roots Z;.;, while violating the one for Z; since w; - a;/k; ¢ Z, i # 0. In fact, these values for
the Wilson line correspond to those for a shift vector breaking Eg to a maximal regular subgroup [60].
The maximal enhancements are listed in Table D.4, where in all the cases the world-sheet Kac-
Moody algebra is realized at level 2. Moreover, note that the relation (4.1.41) is satisfied in all cases,

since F = 2.
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4.1.4 T-duality

The T-duality group of the nine-dimensional CHL string is O(1,9,7Z), the automorphism group of
I'19. Of particular interest is the Weyl reflection, say T, generated by the root Z, whose action on

the moduli and the quantum numbers ¢, n, p is

4 2
T: E<—>E, a <+ a4

len,  pe—p (4.1.47)
while N} is invariant. Note that this transformation is not inherited from the T-duality group of the
parent theory on S!, although it is analogous to the transformation £ — 1/E found there. In fact,
in the S'/Z5 orbifold some states in the untwisted sector are transformed under T to states in the
twisted sector. Twisted states with £ odd and n even are mapped to untwisted states with £ even and
n odd (cf. Table 4.1), and vice versa. This mixing of the two sectors under T-duality was originally
noted in [19].

It can be shown that the partition function of the S'/Z, orbifold is invariant under T. One can
also see explicitly how the mixing of untwisted and twisted states occurs at the level of the Hilbert
space by taking into account the difference in the ground states and internal oscillators of the two
sectors. As a simple example consider the twisted state with £ = 1, n = 0, p = r, with r a root of
Eg, and no left oscillators. Since T-duality preserves the norms of the momenta p% and Pg, it should
also preserve the value of N} to leave the mass (4.1.26a) unaffected. In this case, N} = %, and so the
transformed untwisted state must have p> = 1 (cf. eq. (4.1.24)). It is not hard to see that it should

take the form )

V2
where the notation is that of eq. (4.1.15).

The mapping is more complicated when oscillators are involved. Consider for instance the set of

(10,1;7,0) = 10,1;0,7)), (4.1.48)

twisted states with charge vector Z = |1,0;0) and N} = 2, i.e. N;, = 3. The allowed combinations of
oscillators along the eight directions I that can act on Z are

of 1o _ef ol _jef o, ol s, LIK=1,...8, (4.1.49)

1
T2 T2 T T2 T2

giving 120 + 64 + 8 = 192 states. Their T-dual untwisted states, labeled by |¢,n; 7, 7’), must have
¢=0,n=1,7" = —7 since p = 0, and they must also add up to 192 states. For the first 120 twisted
states the T-duality is

L) )

1
al 1aJ 1al_<_l’|150;030> A 7(|O,1;7", *T> - ’071;*T7T>)7 (4150)
—1 /2
where r is any of the 120 positive roots of Eg (the other 120 give the same states up to an overall
irrelevant sign). We see that p?2 = 2r2 = 4, hence N 7 =2 as required.

For the remaining states the mapping reads

a{‘r,—lai7,% ‘17 0;0, 0> A 055_7_1C¥£,_1 ‘O, 1;0, O> s
(4.1.51)
aj; _35‘1a0;0’0> A Oé]_ _2|0,1;0,0>.
) 2 )

Here we have used that in the untwisted sector the o oscillators have integer occupation number and

under the orbifold action pick up a minus sign so that the full states are invariant.
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4.2 The CHL string in D dimensions

We now consider the more general setting of the CHL string in D external dimensions, with D < 9.
It is realized as an orbifold of heterotic compactifications on T (with d = 10 — D), where the orbifold
symmetry is again ¢ = RT (cf. eq. (4.1.3)), with T a half-turn around one of the cycles of T¢. We will

choose this cycle to be along x°, while the others remain unaffected.

4.2.1 Extending the nine-dimensional construction

The moduli of the Eg x Eg heterotic string on T% are the torus metric Gj, the antisymmetric tensor
B;; and the Wilson lines A;, where 4,5 = 1,...,d. Again, the Wilson lines have to be invariant under

the R symmetry, which implies that they are of the form A; = (a4, a;). Generalizing (4.1.31), we define

the moduli
Eij = Gij + Bij + a; - aj, (4.2.1)
and the quantum numbers
0= 20", n;, ol =nl + 7', (4.2.2)
where w’ and n; are the winding and momentum numbers along the ith direction and 7!, 7/ are the
same as in (4.1.6). The momenta (4.1.9) are then generalized to
g i) 42.3
pR—ﬁ(n'L_i ij —CLZ-,O>€, (a)
_ Gij — sEij)¥ e = Ly 4
pL—ﬁ(nH—( ij = 3Eij) —arp)e—pR-l-\ﬁ €i, (4.2.3b)
P+ = 1 (,0 + Eiw) (4.2.3c)
+ \/5 (2 9
1
(r—7'), (4.2.3d)

where e; is the vielbein for the torus metric, i.e. e; - ¢; = G5, and é' its inverse.
The construction of the spectrum in Section 4.1 carries over with some differences. Basically, the
1 = 1 direction behaves as in the nine-dimensional case, while the other directions ¢ > 2 behave as in

the usual 7% compactification. In particular, the charge vectors
Z =0 . 0, ng; p) (4.2.4)

have ¢! odd (even) for twisted (untwisted) states, but ¢2,...,¢¢ are always even, while in general,
ni,....,Nqg € Z and p € I's.

The Lorentzian metric (4.1.32) generalizes to

0 14 0
n=|1; 0 0 (4.2.5)
0 0 1g

and, together with the allowed values for the quantum numbers, already suggests that the vectors Z
span the lattice
F(d) ~ Fd,17d71(2) D Fl’g. (426)
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d—1
The (2) at the right of I'y_1 g—1 ~ @T'1,; means that the norm squared of its vectors is scaled by

a factor of 2, in this case due to ¢2,...,¢% always being even. This is in agreement with [19], where
these lattices were initially introduced. We therefore refer to I'(4) in this context as the Mikhailov
lattice. This is the analog of the Narain lattice I'y 4416, but with the important difference that it is
not self-dual (except for the d = 1 case reviewed in Section 4.1).

The left-moving sector of the theory now includes d Abelian KK gauge vectors like (4.1.35), so
that the gauge group is of rank 8 4+ d. A generic point in the moduli space has gauge group U(l)d+8,
but at special points this group is enhanced. The novel feature for d > 1 compactifications is that
states with Z2? = 4 can become massless and certain enhanced gauge groups are not simply laced, as
we now show.

The zero mass and level matching conditions generalizing (4.1.37) and (4.1.38) are

1 .
§Eijfj —n;+a;-p=0, 1=1,...,d, (427)
Z? =2+ p* =4 or 2. (4.2.8)

Let us take for the moment d = 2. An untwisted state with Z? = 4 has n; even and p! = 2x'.
Substituting in (4.2.8) gives 20y + 20?ny + p? = 20%ny + 4q + 47 = 4, with ¢ even, but in contrast
to the situation in d = 1, it can be solved by an appropriate choice of £2 and ng. Indeed, the product
?’ny can be any even number, say 2p with p € Z. Then (4.2.8) reduces to 72 = 1 — g — p, which admits
solutions in I'(y) if p is odd. As before, we have that Z? = 4(1 — N}), which implies N} = 0 and, from
(4.1.24), 7 = 7', then p € T's(2). These states give rise to C,, gauge algebras at level 1, where they
play the role of long roots when n > 2 (C; = A;). For d > 3 there are more possibilities such as B,
and Fy algebras (see [61] for an introduction on this topic). In Table 4.2 we record the values of the
quantum numbers that massless states can have for d > 2, together with the squared length Z2 of the

charge vector.

twisted untwisted
Z? 2 2 4
ot odd even even
n1 | integer | integer | even
Iz even even even
n; | integer | integer | integer
P FS Pg Fg (2)

Table 4.2: Quantum numbers of the massless states in the twisted and untwisted sector. The index
i > 1 corresponds to further compactifications of the nine-dimensional theory. States with Z? = 4 can
only be massless in D < 9 dimensions. The states must satisfy (4.2.7) to be massless.

4.3 Exploring the moduli space

As in T compactifications of the heterotic string, there does not seem to exist a GDD for d > 1
from which one can extract all possible enhancements. One obstruction to obtaining such a GDD
is that the group of automorphisms for the Mikhailov lattice, similarly to the Narain lattice, is not
generated by simple reflections when d > 1. A workaround was found in the previous chapter: we

developed an algorithm for 7% compactifications which, starting from a point py of the moduli space
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corresponding to a (semisimple) gauge group of maximal rank 7., = d + 16, gives a set of new
points of maximal enhancement. Heuristically, it searches for maximal enhancement points which are
connected to py through some variety with generic gauge group of rank 7,4, — 1. In the case of S!
and T2 compactifications, this algorithm was proven to be exhaustive by comparing with previous
results [13,14].

We have modified this algorithm in order to apply it to the CHL compactifications. This is required
by the technicalities of working with Mikhailov lattices as opposed to Narain lattices, specially for
compactifications to spacetime dimensions lower than nine, where non-ADE root lattices appear.

In the following section we explain the methods used in our algorithm and illustrate them with an
explicit example. We explain the final results in Section 4.3.4 and present the maximal enhancements

generated by iterating this procedure in Table D.5.

4.3.1 Exploration algorithm

The purpose of our algorithm is to take as input some point pg of maximal enhancement and return
a list of other such points pg related to py in some specific, controllable way. To this end, it is best
to specify pp not by its moduli, but by its root lattice Ly via some generating matrix (in general, by
generating matrix we mean a matrix whose rows are a basis for some lattice) of simple roots embedded
in the Mikhailov lattice. Both sets of data are equivalent as one can recover one from the other using
equations (4.2.7) and (4.2.8). However, the lattice Ly is more amenable to discrete operations, which
we now describe.

Consider the (10 — d)-dimensional (d > 1) CHL string at a point py in moduli space specified by
a set of d + 8 simple roots with quantum numbers ¢, n; and p. Substituting each one of them in
(4.2.7) gives d real constraints on the d x (d + 8) moduli. It follows that deletion of some simple root
ro defines a d-dimensional subvariety in moduli space which contains pg. Generically, this subvariety
contains many more maximal enhancement points pg, each one corresponding to a distinct simple root
ri replacing rg, i # 9. It is in this sense that the py are neighbors of py. To generate such a root
r, we solve a system of equations stating that r; must have inner product 0,—1 or —2 with all other
roots, its squared length must be 2 or 4 and it must be embedded in the Mikhailov lattice I'(4) in
accordance with Table 4.2.

In order to make sure that the root lattice obtained by replacing ro — . corresponds to the gauge
group Gy at pp, we have to take care of an ambiguity in the relation between the moduli of p; and
the root lattice Ly, = L of G. Even though the embedding of L in I'4) specifies the moduli via the
constraints mentioned above, it is also true that any sublattice L' C L with rank(L’) = rank(L) will
give the same moduli. When we replace ro — r; there is therefore the possibility that the lattice
obtained will not be L but some L’. This ambiguity is eliminated if we implement a procedure, which
we explain below, that takes L’ and returns L by adding the missing roots. This adding of roots will
be referred to as a saturation of L' to L.

To saturate L’ we recall that all of its even overlattices are contained in the dual lattice L'*, so
that in particular L' C L C L'*. Tt suffices then to compute the vectors dual to L', select those which
correspond to roots embedded in I'y) and add them to L’. In practice this is done by iterating an
algorithm which replaces one root vector in the generating matrix for L’ such that det L’ gets smaller
(indicating that L’ has been extended) and is still embedded in I'(z. When all attempts to do this

leave the determinant of the lattice invariant, L’ has been saturated to the true root lattice L at py.
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4.3.2 Example

To illustrate this procedure we first consider an exploration of the neighborhood of the point in moduli
space corresponding to eight dimensional CHL with gauge algebra (A + Az + Dg)2, with the subscript
indicating that the world-sheet Kac-Moody algebra is realized at level 2, given by the moduli

2 0
B = (O 1) ;o ar=(001),  ay=(0°,—

4

I

). (4.3.1)

D=
N[

The root lattice Lo is generated by the rows (¢!, 2 ny,no; p) of the 10 x 12 matrix
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—
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from which the gauge algebra is read by computing its Gram matrix GonGd , with n given in (4.2.5).
Note also that Gy is not a square matrix due to the fact that it gives an embedding of a rank 10 lattice
into the rank 12 lattice I'(5). We have chosen this particular vacuum because, as we explain below, it
neighbors another vacuum with globally non-trivial gauge group.

Starting from Gy, one of the paths that our algorithm will follow is to remove, for example, the
6th row. This breaks (Dg)2 — (2A1 4+ A3)2 and eliminates two real constraints on the moduli (cf. eq.

(4.2.7)), which taking into account the remaining 20 — 2 = 18 constraints read

2
EZ] = (0 y) ) ay = (03,1’, (—.’E>3, 1)7 az = (037y - %7 (% - y)37 %)7 (433)

with the subindex 3 meaning that the quantity is repeated 3 times. In other words, the moduli are
now constrained to a plane (z,y) with generic gauge algebra (3A; 4+ 2A3)2. Our algorithm will now

generate a new simple root « by picking out a solution to the set of equations

(4.3.4)

gO,mnan =km, km€ {07 -1, _2}7 m 7£ 6
a?=N, N € {2,4},

where a = (¢!, n;; p) is constrained to lie in ['(2), meaning that ' ny,ng € Z, ¢? € 2Z and p € T's. One

possible solution with N =4 is
a=f02 2 30000222 -2 (4.3.5)

The new matrix Gy resulting from this exchange of roots (« is now in the 6th row) is seen to generate
the root lattice L; corresponding to the gauge algebra (2A; + 2A3)2 + (C2); and the moduli are fixed

to

20
Eij == (0 5) s a] = (07, 1), a9 = (05, —%, (—%)3, %) (436)
4

To check that L contains all the solutions to equations (4.2.7) and (4.2.8), our algorithm calculates

the generating matrix Gj for the dual lattice Lj:
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1.1 1 1 1 1 1 7
51—5—52 01 015 2 2 32 !
000 0 5 -5-50 0 0 0 0
000 0 0 0O -1 0 0 0 0 O

11 1
000 0 -5-5-50 0 0 0 0
110-30 0 0 0 1 1 1 -1

*_

Gi=1L1,_L_.3 6 0 0 0 1 1 1 -1/ (4.3.7)
22 11 1 3
00 O % 0 0 07%% 117%0
00 O 5 0 0 0—55—5—50
0032 0 0 0 0 -32-3-2-19
1.1 1
|50-5-5 0 0 0 0 0 0 0 —1|

It then constructs generic integer linear combinations of the rows corresponding to roots lying in I'(9)
and adds them to L; by replacing one of the rows of G;. This is done in an exhaustive way, but in
this particular case no such replacement decreases the determinant of G, hence L is saturated. This

means that the gauge algebra at this point in moduli space is indeed (2A; + 2A3)2 + (Ca);.

4.3.3 Matter states and global data

There are two other sets of data of importance that can be obtained by our methods, namely the
matter states in the lowest massive level associated to fundamental representations of the gauge group
G, and the global structure of G, i.e. the fundamental group m1(G). Both of these problems involve
finding overlattices of root lattices which are primitively embedded in the momentum lattice I'(4) or

its dual F’(k 4)> 48 We now explain.

4.3.3.1 Computing the overlattice

By primitively embedded overlattice we mean the intersection of the real span of the root lattice,
L ® R, and the momentum lattice I'(4) in the ambient space R4+84 In terms of the momenta DPL,R
this means all vectors which satisfy the constraint pp = 0 but py, is unconstrained. Generally such
an overlattice M corresponds to an extension of L by a set of fundamental weights {u, x/, ...}, and
the quotient M/L can be put in correspondence with a subgroup K of the center of the universal
cover G of G, denoted Z(G) (cf. Table 4.3). It follows that the overlattice data can be encoded in the
generators {k,k’, ...} of K.

G Z(G)
SU(TL + 1) Z7z+1
Spin(2n + 1), Sp(2n), E7| Zs
Eq Zs
Spin(4n + 2) Z,
Spin(4n) Zy X 2y
Eg, Fy4, Ga 1

Table 4.3: Center Z(G) of compact connected simple groups G.

Computing the weight vectors p; can be done by a slight generalization of the saturation algorithm
described at the end of Section 4.3.1. Indeed, what it basically does is a computation of an overlattice
of L which is also a root lattice. By relaxing this last constraint, the same algorithm can be used to

compute M. Returning to the example of Section 4.3.2, we apply this algorithm and find that L can
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be extended to an overlattice M in I'(7) by adding the weight vector
w=12,2,-1,-2;0,0,-1,0,2,1,1,-3) . (4.3.8)

In other words, the vector u satisfies pgp = 0 (cf. eq. (4.2.7)) with the moduli given in (4.3.6), but is

not in L. Determining the precise K C Z(G) now amounts to determining the element in Z(G) to

which u corresponds. To do this we recall that
Z(G) = Aweight/Aroot (4.3.9)

where Ayeight is the weight lattice, which in particular contains M, and Aot = L. The weight

together with all its L-translations constitutes an equivalence class [u| € Z(G).

In general, for G a semisimple group with s simple factors, Z (G’) is a product of s+t cyclic groups,

Z(G) =2y X -+ X Zp,,,, (4.3.10)

where ¢ is the number of Dy, factors since they contribute each a Zy x Z3 group (see Table 4.3). Any

element of Z(G) can therefore be written as a tuple
k= (ki,....ksyt) (4.3.11)

where k; ~ k; + p;, and the ordering of the k;’s is appropriately specified in each case. In our example,

we have

G =SU(2)* x SU4)? x Sp(2),  Z(G)=73x7%x 7, (4.3.12)

and each central element is of the form
k= (/ﬁ,k’Q,/ﬂg,]ﬂ,]%) mod (2,2,4,4,2). (4.3.13)

To determine which equivalence class k contains the weight vector u, we first note that each possible
k can be put in correspondence with a combination of fundamental weights of G. If for example
one looks at the fundamental weights w; of SU(n), one finds that [w;] = i € Z,, (up to the outer
automorphism of SU(n) which maps ¢ — —i mod n). For Sp(2), the only non-trivial element of the
center contains the weight corresponding to the short simple root (or equivalently the spinor class in

Spin(5) = Sp(2)). Using these facts one finds that the u given in (4.3.8) is contained in
k=(1,1,2,2,1). (4.3.14)

To verify this, one can compute the fundamental weights (labeled by i) w;; of each simple factor
(labeled by j) and check that the vector

w11 + w1 + w32 + w2 + ws 1 (4.3.15)

can be translated by roots in L to the given u. Keep in mind that these calculations are performed
with respect to the particular embedding of L and M in I'(y).

Having determined the explicit form of k = [u] € Z(G), we immediately find that K = Z», since
2k =(2,2,4,4,2) = (0,0,0,0,0), i.e. k is an order 2 element. Moreover, it is uniquely in correspondence

with the fundamental representation (2,2,6,6,4) of G. Indeed, one can explicitly find all the states

85



which form this representation with mass M? = 4. It suffices to construct such a state from the weight
vector (4.3.8) and act on it with the Weyl group of the enhanced gauge group, which is a subset of
the subgroup of T-dualities that leave the moduli invariant. In this way all the states forming the

corresponding representation of G are obtained.

4.3.3.2 Computing the fundamental group

As explained in [20] (see also [19]) the fundamental group of G can be computed as the quotient
MVY/LV, where LV and M"Y are respectively the coroot lattice and the cocharacter lattice of G. For
every G, LV is embedded in the dual Mikhailov lattice T ( 4)(2), where the (2) means that it is also
rescaled by a factor of v/2 to make it even, and M" corresponds to its overlattice primitively embedded
in FZ‘d) (2). In practice this means that to compute the fundamental groups we need to find embeddings
of the lattices LV in the dual Mikhailov lattice and then apply the procedure explained before to get
the respective MV.

Even though the exploration algorithm was designed to find points of maximal symmetry en-
hancement in moduli space, it can be considered on its own as an algorithm for finding embeddings of
lattices into other lattices. For this reason it can be used also to compute all possible root lattices in
I“(" d)(2). This is due to the fact that the data that we manipulate through this algorithm corresponds
to the lattice vectors themselves and not the moduli or the momenta. A point that has to be made
clear however is that the condition for a vector in the lattice to be a root is that it is of norm 2, or
that it is of norm 4 and furthermore has even inner product with all other vectors in the lattice. This
is the statement which generalizes the conditions for massless states shown in Table 4.2 to any basis
for the momentum lattice that we choose. It applies both to I'(4) and FE“d)(Z).

In eight dimensions, for example, we have
F(2) = F1’1(2) D Fl,l ®Es = Fa) (2) = Fl,l D F171(2) D E8(2) . (4316)

We can take as a starting point for the exploration the root lattice of, say, B1g, which can be constructed
by hand and is expected to embed into F’{Q)(Z) since it is the coroot lattice of C;g which embeds into
['(9). After a few steps, the algorithm produces a list of root lattices which correspond exactly to the
coroot lattices of the gauge algebras found by exploring the original lattice I'(3). In particular, we find
the root lattice

L =2A,(2) ® 2A3(2) @ Bo, (4.3.17)

which corresponds to the coroot lattice LY of the model used in the examples of Sections 4.3.2 and
4.3.3.1. One may apply exactly the same procedure of the last section to compute its overlattice and
the subgroup of Z (GV) to which it corresponds, where GV is the simply connected gauge group with
root lattice in (4.3.17). Since this subgroup coincides with M"Y /LV, its generators k; give precisely the
fundamental group 71 (G) C Z(G) ~ Z(GV), which we refer to as H, i.e. G = G/H. In this case, we
find two generators

k=1(0,1,0,2,1), k' =(1,0,2,0,1) (4.3.18)

of order 2, so that H = Zs x Z3, and the gauge group is

SU(2)? x SU(4)? x Spin(5)

G =
ZQXZQ

(4.3.19)
This result is in agreement with that of [20].
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4.3.3.3 Anomaly for center symmetries

It has been shown in [21] that in order for an 8d N = 1 supergravity theory with global gauge group
G = G/H to be consistent, the following condition must be satisfied:

S
Zaéimikf =0 mod1, (4.3.20)
i=1

where G; are the s simple factors in G, ag, are the conformal dimensions of the Kac-Moody rep-
resentations which generate the center [62], m; are free parameters in the supergravity theory and
k = (ki,...,ks) is the generator of H € Z(G). This condition ensures that the H center symmetry is
free of anomalies. In the string theory whose low energy limit corresponds to this supergravity theory,
m; are the levels of the world-sheet current algebra of G;. It can be shown in general that (4.3.20) is
satisfied by construction for all G = G /H obtained from the heterotic string on 72 and the 8d CHL
string [20]. Here we give a brief alternative proof for this fact in the T2 case, and comment briefly on
the CHL case.

The fact that the gauge groups that arise from the Narain lattice I' 15 satisfy (4.3.20) by con-
struction is relatively easy to see. For this we recall that the conformal dimension a4, can be written
as

ag = —% (4.3.21)

where w; is the fundamental weight that generates the center of the group G; and «y is the highest
root, which is a long root. In this case, all possible gauge groups are of ADE type, so that a? =2,
and have m; = 1. We can therefore rewrite (4.3.20) as
s

> (wiki)* =0 mod 2, (4.3.22)

i=1
which is the statement that the weight vector Y7 ; w;k; is even. For ADE groups, the root and coroot
lattices are the same, and since the Narain lattice is also self-dual, the global structure is given by
the overlattice M which embeds primitively into I's 13 and is given by precisely this weight vector
(cf. Sections 4.3.3.1 and 4.3.3.2). It is of course possible that there is more than one weight vectors
involved, in which case the situation is analogous. Since the Narain lattice is even, all overlattices M
must also be even and so the condition (4.3.20) is satisfied by construction.

For the CHL string the situation is more subtle since the Mikhailov lattice is not self dual and
there are symplectic groups. One can understand why groups occurring in this case should satisfy
(4.3.20) by noting that all of them can be constructed from groups arising from the Narain lattice by
a suitable projection [20], and so they must also preserve condition (4.3.20). It is straightforward to

verify that this is the case given the H generators displayed in Table D.6.

4.3.3.4 Globally non-trivial groups of lower rank

So far we have discussed maximally enhanced gauge groups. For non-Abelian groups of lower rank
there are of course many more possibilities. In particular, the list of all possible gauge groups arising

in 72 compactifications of the heterotic string is 3279, of which only 325 are of maximal rank!; this

In this count we are ignoring the global part of the groups.
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was determined by Shimada in [15] from the point of view of elliptic K3 surfaces, and was verified for
heterotic string on 72 as explained in Chapter 3.

An important fact that was noticed in [15] is that all possible gauge groups of rank lower than 18
(the maximal rank in T2 compactifications) which are simply-connected can be obtained from those
of rank 18 which are also simply-connected by deleting nodes in the corresponding Dynkin diagram
(e.g. Apin+1 — A + Ay). For groups with non-trivial fundamental group H, this is not necessarily
true. For example, the gauge group Spin(8)%/(Zy x Z3) cannot be enhanced to a higher rank group,
so that, conversely, it cannot be found by deleting a node as just described. We note that Shimada
has given a set of rules for obtaining such gauge groups (see theorems 2.4-2.7 of [15]), but they do not
correspond to arbitrary node deletion and are rather involved.

Here we will not attempt to repeat this analysis for the CHL string, but instead ask the following
question: what gauge groups with non-trivial H can be obtained by breaking maximally enhanced
groups via node deletion? Given that all maximal enhancements in 9d have trivial H (cf. Table D.4),
we will restrict ourselves to the 8d theory. In this case, there are 29 such groups, 24 with H = Z5 and
5 with H = Zy x Z5 (cf. Table D.5).We record them with their corresponding &’s in Table D.6.

It is easier to find the answer to our question by brute force. Just delete one of the simple
roots in the embedding of the rank 10 root lattice L into the Mikhailov lattice I'(5) and check if the
resulting rank 9 lattice L' C L still has a non-trivial weight overlattice W/ C W. This will give rank 9
semisimple gauge groups with H = Z9 or Zy x Z2 (as there are no other possibilities). Repeating the
same procedure gives groups of rank 8 with the same H, and so on. There is only one non-simply-
connected gauge group of rank 4, namely SU(2)*/Z, and there are none for rank < 3. On the other
hand, all of the 29 rank 10 groups can be broken to the rank 4 one. Analogously, SU(2)"/(Zs x Z5)
is the only gauge group of rank 7 with H = Z x Z3. There are no groups with that H for rank < 6
and all of the five rank 10 groups with that fundamental group can be broken to the rank 7 one. In

Figure 4.2 we present a graph which encodes the breaking patterns that preserve the Z, x Z5.

Figure 4.2: Scheme of how deleting nodes in the Dynkin diagrams of maximally enhanced groups with
H =75 x Z5 leads to gauge groups with lower rank and also with H = Z5 x Z,.
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4.3.4 Results

We collect in Table D.5 the 61 maximally enhanced groups G = G /H that are realized in the eight-
dimensional CHL string, and give the point in moduli space where they arise. ADE groups are realized
at level 2 of the Kac-Moody algebra, while C groups arise at level 1. Our results for the algebras are
in complete agreement with those obtained in [63] from F-theory, which appeared while [3] was being
written.

There are 32 simply connected groups. The rest are of the form G /H with H = Z3 or Zy X Zs.
The fundamental group H is generated in each case by the elements k € Z (G) shown in Table D.6.
Our results are in perfect agreement with those in [20].

Most of the groups shown lie in the subspace of moduli space given by E;; = diag(2,1), and it can
actually be shown that the remaining ones can be mapped to this subspace by applying T-dualities.
This is analogous to the situation in the heterotic string on 7% with E;; = diag(1,1) encountered on
Chapter 3. By performing the necessary T-dualities to realize the enhancement groups at such Ej;,

however, the Wilson lines get much more complicated, and difficult to handle.
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Chapter 5

Orbifolds and singularity freezing

By means of the asymmetric orbifold construction of [64], theories with 16 supercharges but with
gauge symmetry with reduced rank can be obtained. In particular, one finds the so called CHL
string component [17, 18] in 9d, studied in the previous chapter, for which the momentum lattice
was constructed by Mikhailov in [19]. In 8d the story is the same, but in 7d one finds four extra
components (six including the Narain and CHL component). These were constructed together with
their momentum lattices in [23].

In this chapter we extend this work to the six aforementioned components in 7d and 6d. To this
end it is necessary to state precisely how the enhanced symmetry groups can be obtained from the
momentum lattices, which we do by a natural generalization of the case for the CHL string . We see
that the lattice alone is not sufficient to determine the allowed gauge groups, but rather one must
impose a constraint in the embeddings characterized by an integer, which comes from the string theory
but is ad hoc from the point of view of the lattice (see Proposition 3). Implementing this constraint
in our algorithm we obtain a list of maximally enhanced gauge algebras for each component.

On the other hand it is well known that the heterotic string on 7 is dual to M-theory on K3. Gauge
groups with reduced rank are realized in the later when there are so-called partially frozen singularities
on the K3 [23-25]. It is then natural to ask how this mechanism of partial freezing appears in the
heterotic string. We study this problem by exploiting relations between the reduced rank momentum
lattices and the Narain lattice and find a match with the known results in the M-theory side. General
freezing rules involving the topology of the gauge groups are obtained, generalizing the results of [20]
for the 8d CHL string.

It turns out that for d < 4 all the gauge groups of the reduced rank components can be obtained
from those of the Narain component by means of a suitable map. At the level of the algebras this
has been known for a long time, for d = 2, in the dual frame of F-theory on K3, where reduced rank
algebras are obtained by partially “freezing” the singular fibers [22,56]. This situation extends to d = 3
using M-theory on K3 [23-25]. In the heterotic string these results can be reproduced by using lattice
embedding techniques, and in fact one can also see how the full gauge group is “frozen”. For d = 2 this
extension was done in [20], here we generalize these results for d = 3, by exploiting relations between
the reduced rank momentum lattices and the Narain lattice, finding a match with the known results
in the M-theory side. As will be shown later, for d < 3 the map can be naively applied at the algebras
of the enhancements found on the toroidal compactification, giving the algebras associated to the
reduced rank components. In contrast, in d = 4 in order to apply it one must know the fundamental
group of the gauge group explicitly. This is due to the fact that the lattice which corresponds to the
frozen singularity in the heterotic frame is a root lattice for d = 1,2,3 but the weight lattice of a
non-simply-connected group for d = 4. Most remarkably, however, is the fact that the maps seem to

be exactly those which relate the “topologically non-trivial” components of the moduli space of flat
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connections of a non-simply-connected gauge group over T2 (and not 7%) to the “topologically trivial”
component [55,65], although to our awareness an explanation for this is lacking.

As we did before for 9d and 8d compactifications, we have carried out an exploration of the
possible maximally enhanced gauge groups realized in the six components of the moduli space of
heterotic strings with 16 supercharges for 7d and 6d, with the results for 7d being listed in Appendix
D.2 and for 6d in the corresponding tables at [27]!. These results where in turn used to check the
freezing maps we derived.

This chapter is organized as follows. In Section 5.1 we review the construction of rank reduced
heterotic theories in nine to seven dimensions, emphasizing the role of outer automorphisms of the
gauge lattice in the framework of asymmetric orbifolds. Then in Section 5.2 we state the criteria for
gauge groups being realized in the relevant theories in terms of lattice embeddings. In Section 5.3 we
explain how the freezing maps for d = 1 to 4 are constructed for the CHL case, extending them to the
holonomy triples of [23] in 7d and 6d in Section 5.4. Finally, the results obtained with the exploration

algorithm are presented and discussed in Section 5.5.

5.1 Construction of rank reduced theories

In this section we review how rank reduced theories with 16 supercharges are constructed from the
heterotic string in nine to seven dimensions. The idea is to get an intuitive understanding of these
constructions through the manipulation of Dynkin Diagrams, illustrating the asymmetric orbifold con-
struction with an outer automorphism. This complements the more general (and abstract) treatment
in [23]. We go through the CHL string, the Spin(32)/Zs heterotic theory compactification without

vector structure and the Z,,-triples.

5.1.1 CHL string

As we detailed in the previous chapter, the CHL string in 9d can be realized as the HE string com-
pactified on an orbifold of a circle involving the outer automorphism 6 which exchanges both Eg’s and
a half-period shift a along the circle [18]. The resulting target space has an holonomy 6 along the
compact direction which breaks the gauge group Eg x Eg to its diagonal Eg. The shift a obstructs
the recovery of the broken Eg in the twisted sector and so it ensures that the rank of the total gauge
group is reduced.

Since 6 is an outer automorphism of a gauge group, its implementation as an orbifold symmetry
naturally leads to a picture of Dynkin Diagram folding. In the case of the CHL string, one “folds one
Eg into the other”, and finds that the gauge group of the resulting theory is Eg (with an extra U(1)
for arbitrary radius). Turning on a Wilson line does not change this picture since it must break both
Eg’s in the same way, and one then just folds one of the broken groups into the other.

Even though the length of a root is not by itself a meaningful concept, it is helpful to think that
the nodes that get superposed in folding a diagram correspond to shortened roots. The reason is that
this maps naturally to an increase in the level of the associated gauge algebra by a factor equal to the
order of the automorphism 6. In this case, the Eg x Eg at level 1 becomes an Eg at level 2. On the

other hand, connected diagrams containing invariant nodes correspond to algebras at level 1.

'For 6d its exhaustivity was proven in a recent work [26].
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The main idea here is that using the symmetry (a,f) one constructs a vacuum of the heterotic
string with an holonomy that in particular projects out Cartan generator states. Such an holonomy
can not be implemented in the theory by merely turning on Wilson lines, as outer automorphisms are
not connected to the identity element in the gauge group. However, the set of holonomies that can be
obtained by orbifolding the target manifold is larger and includes those of this type. Together with

the diagram folding picture, this story generalizes to the other constructions reviewed below.

5.1.2 Compactification without vector structure

There is a theory dual to the 8d CHL string which is obtained from the Spin(32)/Zs heterotic string
by compactifying it on a T2 without vector structure [22]. The basic idea is that the spectrum of the
10d theory does not contain vector representations of Spin(32), and so one should consider topologies
of the gauge bundle which do not admit such representations. An obstruction of this type is measured
by a mod two cohomology class w5, analogous to the second Stieffel-Whitney class wo which obstructs
spin structure.

This compactification is characterized by the fact that the two holonomies g1, gs on the torus
commute as elements of Spin(32)/Z, but do not commute when lifted to elements of the double cover
Spin(32). In other words, the commutator of these holonomies is lifted to a non-trivial element in
Spin(32) which is identified with the identity upon quotienting by one of the spinor classes in its
center. The lifting Spin(32)/Zs — Spin(32) is therefore obstructed and no vector representations are
allowed.

Two such holonomies can not be put simultaneously on a maximal torus of the gauge group.
Similarly to the CHL string, one of them has to be realized by orbifolding the theory. The difference
in this case is that the 10d gauge group Spin(32)/Zs does not have any outer automorphism. One can
however turn on a Wilson line along one of the compact directions such that from the point of view
of the remaining dimensions the gauge group is actually broken to one which does in fact have an
outer automorphism. Concretely, we turn on a Wilson line A = (18 0%) which breaks Spin(32)/Zs —
Spin(16)2/Z5. This can be represented diagrammatically as

NUUUUUUUUUUUE S cosuU s O

0
T M (5.1.1)

where the white nodes are simple roots and the black nodes represent the fundamental weight which
generates the Zs in each case. We see that the RHS corresponds to a group with outer automorphism
#. Orbifolding the theory by this symmetry and a half period shift along the second compact direction
we obtain a theory with gauge group Spin(16) x U(l)2 (for arbitrary values of the torus metric and
B-field). We note that the fundamental weight gets projected out by the orbifold symmetry, but the
gauge group is Spin(16)/Zs, as can be seen by breaking group #49 in Table D.6.

The commutator of the holonomies chosen is the exponential of
8 8 8 8
A—0(A)=(3",0% —(0%3)=(3".—-3), (5.1.2)

which does not yield the identity in Spin(32) but rather the element which gets identified with it in
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Spin(32)/Zy. This corresponds to the discussion above. More generally one can deform this Wilson
line by adding vectors symmetric in the first and last eight components, i.e. those of the form (4, 9),
as to respect condition (5.1.2). One can also turn on another Wilson line A’ in the second compact
direction such that #(A") = A’, since the product of two holonomies on the same direction should
commute. Together with deformations of the metric and the B-field we reach other points in the
moduli space, which is equivalent to that of the 8d CHL string, where the equivalence is given by
T-duality [23].

5.1.3 Holonomy triples in 7d

The basic idea behind the construction just described can be applied to the heterotic string on a circle
and further compactifying two dimensions on a torus. This comes from the fact that there are various
9d gauge groups analogous to the 10d Spin(32)/Z5. It is enough to consider the following five:

(E; x SU(2))?  (Eg x SU(3))2  (Spin(10) x SU(4))?>  SU(5)*  (SU(2) x SU(3) x SU(6))?

1.

These correspond to breakings of Eg x Eg by a Wilson line A, so that it is most natural to work in

the framework of the HE string. Natural choices for these Wilson lines are, respectively,

(0% =5,5) x (=5,5,0%  (Z2)
(0%, —1% ) x (=2,1%.0%)  (Z3)
A=S(04-1 3)y (=3 1% oy (z) . (5.1.4)
(0%, ="y x (=4, 800%)  (Z5)
(02,-3°.2) x (=5,1°,0%)  (Zo)

The Z,,’s correspond not only to the fundamental group of each broken gauge group but also to the
cyclic group generated by the outer automorphism 6 to be implemented. The name ‘Z,,-triple’ refers
to this group together with the three holonomies consisting of (5.1.4) and the pair analogous to the

one discussed in the previous section, which we now discuss.

5.1.3.1 Zs-triple

Consider first the Zy-triple. From the point of view of the 72 on which the 9d theory is compactified,
the gauge group is (E7 x SU(2))?/Z2, which indeed has an order two outer automorphism, exchanging
the E; x SU(2) factors. However, using this symmetry to orbifold the theory just gives us the CHL
string, as discussed in Section 5.1.1. Consider instead turning on a Wilson line A’ on one of the 7
directions (z!), of the form

A= (0%, —

$.2,0) x (0,-3,3,0%). (5.1.5)

It has the effect of further breaking the gauge group to (Eg x U(1)*)2. From the point of view of the
other T2 direction (22), the gauge group has then an order 2 outer automorphism corresponding to
the symmetry of each Eg¢ diagram. To get a consistent theory (meaning that the partition function is
modular invariant), however, we have to take into account how the orbifold symmetry acts on the 16
internal directions and not only the 12 corresponding to the Eg’s. Fortunately, it is not hard to find

such a consistent automorphism. One just has to take the one corresponding to the symmetry of the
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affine diagram of the original gauge algebra 2E7 + 2A;:

N e
i@ @i (5.1.6)

It can then be shown that, together with an order 2 shift in 22

, one obtains a consistent theory with an
holonomy that breaks 8 Cartan generators, and the gauge group is F4 x F4 at level 1 times U(1)3, for
arbitrary metric and B-field. The former is due to the automorphism having an associated projector
Py =1+ 0 of rank 8. The later comes from the fact that each Eg folds into an F4, where two nodes
are left invariant (cf. discussion in Section 5.1.1). As in the previous construction, we can represent

this breaking diagrammatically:

Looe T Wooate " oos ot

0

B —

0—0=0—0 o—o=0—o (5.1.7)
Let us now consider the commutator of the holonomies along the 72. We find that
g(A") — A" = (0°,1,—1,0) x (0,1,—1,0%), (5.1.8)

which is just the fundamental weight represented as a black node in the above diagram. Its exponential
is a non-trivial element of (E7 x SU(2)?) which gets identified with the identity in the quotient (E; x
SU(2)%)/Z5, mirroring the situation in the compactification without vector structure as expected.
One may also deform the Wilson lines along all directions by adding vectors invariant under 6. This
restriction reduces the degrees of freedom of the theory with respect to the Narain moduli space in
the appropriate way.

Finally we note that here we have obtained a particular gauge group, Fy x F4 X U(l)g, out of the
many possibilities that exist in the moduli space of the theory. The general construction carried out
in [23] leads to a momentum lattice analogous to the Narain lattice, with which we may systematically
explore this moduli space (as we discuss in next section). In this case, the momentum lattice is just
the Mikhailov lattice in 7d and the theory is equivalent to the 7d CHL string. We emphasize that the
Zo-triple does not involve the exchange of the Eg’s (or subgroups thereof), and so strictly speaking
it does not correspond to the CHL string. Indeed, one can construct the CHL string but not the
Zo-triple in 9d. When they exist, they are equivalent by T-duality.

5.1.3.2 Zs-triple

Starting in the Zs-triple we find genuinely new rank-reduced moduli space components with respect
to the 8d case. Here the gauge group from the point of view of the T? is (Eg x SU(3))?/Z3. We turn

on a Wilson line along z! of the form

A= (0%-%,2,1,0)x (0,—%,-2,%,0%. (5.1.9)
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This breaks the gauge group to (SO(8) x U(1)*)2. To get the rank 3 automorphism we again consider

the symmetry of the affine diagram of the original group:

(o) @& & (1)

o ~ (5.1.10)

This descends to the triality of each SO(8) and folds them into Go x Go at level 1. The projector
Py =1+ 60+ 62 is of rank 4, eliminating 12 Cartan generators, and so the resulting gauge group is
Gy x Gg x U(1)? for arbitrary metric and B-field. Again, the orbifold includes an order 3 shift in 2.

The corresponding breaking diagram is

T b 2.

0

—_—

=0 =0 (5.1.11)

The commutator of A’ and 6 is given by
(A") — A = (0%,1,-1,0%) x (0%,1,-1,0%), (5.1.12)

corresponding to the weight represented by the black node in the diagram above, and the story is the
same as before for the Zs-triple. In this case one can deform the three Wilson lines with four degrees
of freedom each, which is the rank of the projector Fy. Together with the nine degrees of freedom
coming from the metric and B-field, the dimension of the moduli space is 21, and its local geometry
is given by the coset

SO(7,3,R)/(SO(7,R) x SO(3,R)). (5.1.13)

In [23] it was proposed that the global structure is given by the automorphism group of the momentum

lattice of the theory, which was determined to be
A3 =T33® Ay @ Ay, (5.1.14)

extending the results for the first two components of the moduli space where the Narain and the
Mikhailov lattice respectively play this role.
5.1.3.3 Z,-triple

For the Z-triple we start with the 9d gauge group (Spin(10) x SU(4))?/Z4 and turn on the Wilson
line

1
Al = g(L=1,=1,-3,3,1,=1,5) x (5,1, -1,-3,3,1,1, 1), (5.1.15)
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which breaks it to SU(3)2 x U(1)'2. The affine diagram of the original group has an order 4 symmetry:

= @E
~ ~ (5.1.16)

The surviving SU(3)’s under the action of A’ correspond to the innermost nodes of the affine Spin(10)’s,
and they get identified under 6 into SU(2) x SU(2) at level 1. The rank of the projector Py =
1+6+6%+63is 2, and so 14 Cartan generators are eliminated. There is again an order 4 shift in 22
in the orbifold symmetry, and we get the gauge group SU(2) x SU(2) x U(l)3 for generic metric and

B-field. The breaking diagram is

o o (5.1.17)

We remark that the roots obtained after the folding have norm 8, this being the reason that the SU(2)’s
are at level 1. This can be understood by noting that the affine diagram for D5 gets folded into a pair
of linked nodes with norms 2 and 8, respectively. Four nodes collapse into one corresponding to a root
with norm smaller by a factor of 4, while two linked nodes fold into one with invariant length. Upon
scaling, the shorter root that gets broken is of norm 2, while the remaining has norm 8.
We find that
0(A") — A = (0%,1,0°,—1) x (1,0%,—1,0%), (5.1.18)

which is the weight in the LHS of the diagram above modulo a translation in the A3 sublattices. The

moduli space is of dimension 15, locally of the form
SO(5,3,R)/(SO(5,R) x SO(3,R)), (5.1.19)

and the momentum lattice is
Ay =T330 A1 @ A;. (5.1.20)

5.1.3.4 75 and Zgs-triples

For the Z5-triple we use Wilson line
1
A= 2(0,-1,-2,3,2,1,0,—1) x (1,0, -1,-2,-3,2,1,0), (5.1.21)
which breaks SU(5)*/Z5 to U(1)'°. The automorphism 6 corresponds to the symmetry
X 2 x 2

(5.1.22)
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and has projector Py = 0. The rank of the gauge group is reduced by a factor of 16 and only the

Cartans coming from the 7% compactification are present. We have that
g(A") — A" = (0%,1,-1,0%) x (0%,1,-1,0?), (5.1.23)

which is the weight associated to the Zs quotient. The moduli space has dimension 9 and is locally of
the form
SO(3,3,R)/(SO(3,R) x SO(3,R)), (5.1.24)

and the momentum lattice is just I's 3.
The story for the Zg-triple is basically the same, the only differences being that the Wilson line
used is

A= L 1,25,7,5,3,1,—1,-3) x (3,1, ~1,-3,—5, 7,5, —1), (5.1.25)

12
the automorphism 6 corresponds to the symmetry of the affine (SU(2) x SU(3) x SU(6))? diagram,

/RN /AR
D e e e O

0(A") — A" =(0,1,-1,0°) x (0°,1,-1,0"). (5.1.27)

and

As in the previous case there are no Wilson line degrees of freedom, and the local and global data for
the moduli space are the same. One should note however that the groups which are realized at level 5
in the Zs-triple are realized in this case at level 6. Indeed, this information is not contained implicitly

in the momentum lattice.

5.2 Momentum lattices

Here we explain the basic machinery of how gauge symmetry groups can be obtained from the mo-
mentum lattices corresponding to certain heterotic string compactifications with 16 supercharges.
These include the Narain lattice for 7" compactifications and the Mikhailov lattice for the CHL string
(which we will revisit as they were already described in Sections 3.2.1 and 4.3.3) and the four extra

momentum lattices for components with further rank reduction obtained in [23].

5.2.1 The Narain construction

It was shown in [7] that the perturbative spectrum of the heterotic string on 7% can be put in
correspondence with an even self-dual Lorentzian lattice I'j 4116 of signature (—d, +d+16). This lattice
is spanned by vectors (pgr;pr, P), where P is the left gauge lattice momentum and py, g are the right
and left internal space momenta.

The only massless states in the spectrum have pr = 0, and those which realize the adjoint rep-
resentation of the gauge algebra g also have P2 + p% = 2. They correspond therefore to a set of
length v/2 vectors in I'y.4+16 spanning a positive definite sublattice L, which is just the root lattice
of g. The question of what gauge algebras can be realized in the theory is then equivalent to the

question of what root lattices L can be embedded in the Narain lattice. Note that this embedding
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has to be such that the intersection of the real span of L with I'j 4416 does not contain a larger root
lattice L', since this would leave out extra states that do form part of the massless spectrum. We
can be more precise about the relation between gauge symmetries and lattice embeddings and in the
way gain more information. As discussed in Section 3.2.2, relaxing the condition P? + p? = 2 while
keeping pr = 0 defines an overlattice M O L corresponding to the weight lattice of the global gauge
group G. In this case, M is such that the intersection of its real span with I'g 4416 is M itself, i.e. it
is primitively embedded in I'g 4416 . The full statement regarding the possibility of some gauge group

G being realized in the heterotic string on 7% is as follows:

Proposition 1. Let G = G/H be some semisimple group of rank r < 16 + d, where G and H are
respectively the universal cover and the fundamental group. G x U(1)Y6F9=" s realized in the heterotic
string on T¢ as a gauge symmetry group if and only if its weight lattice M admits a primitive embedding

in the Narain lattice I'q g116 such that the vectors in M of length V2 are roots.

At the end of the day, the classification of the possible gauge groups that can be obtained in the
heterotic string on 7' turns out to be a (conceptually) simple problem of lattice embeddings. As
explained previously, using the exploration algorithm described in 4.3.1, we have collected a set of
points of maximal enhancement characterized by their root lattices L, i.e. their gauge algebras g. For
each point we compute the weight lattice M and from it the generators of the fundamental group H,

using the methods described in 4.3.3. The results are presented in Section 5.5.

5.2.2 The CHL string and Mikhailov lattice

The analog of the Narain lattice for this theory was constructed by Mikhailov in [19] and can be
written as
L@ =Ta-14-1(2) ®T11 @ Eg, (5.2.1)

where the (2) indicates that I'y_1 41 is scaled by a factor of V2. Depending on the dimension d, this

lattice may be rewritten in different ways using lattice isomorphisms. For d = 3, we have
I'22(2)@T11@Es ~ T33@&Dy@Dy ~ T330F,0F,. (5.2.2)

Here we have used the root lattice isomorphism D4 ~ Fy4 (the corresponding root systems are of course
not isomorphic) to reflect the fact that the ‘canonical’ point in the theory has gauge algebra 2F4 and
not 2Dy, as shown in Section 5.1.3.1.

The relation between lattice embeddings and realizability of gauge groups in the CHL string is
more complicated than for the usual heterotic string on tori. In the latter, the roots of the gauge
algebra correspond to the length /2 vectors in some positive definite lattice A primitively embedded
into I'g 4416. In the CHL string the mass formulas are such that it is also possible for some but not all
vectors of length 2 to give roots. In order for such a vector v to correspond to a root, it must satisfy
the condition that its inner product with all other vectors in the whole Mikhailov lattice is even [19].
In this case we say that v is a level 2 vector (not to be confused with the level of the Kac-Moody
algebra for the gauge group). More generally, a vector v in a lattice A is said to be at embedding level
£ if the product of v with every vector in A is divisible by £.

On the other hand, the statement that the global structure of the gauge group is given by the
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primitively weight overlattice M does not generalize to the case where the momentum lattice is not
self-dual and the gauge algebras are not of ADE type. The problem of obtaining this global data was
studied in detail in [20]. It was shown in particular that the fundamental group 7 (G) of the gauge
group G is given by the quotient of the cocharacter lattice MY and the coroot lattice LY where the
later is embedded in the dual momentum lattice Fikd) and the former is the corresponding overlattice
which is primitively embedded in Ffd).

As explained in Section 4.3.3.2, one strategy to obtain all the possible gauge groups in the theory
is to apply the exploration algorithm described in 4.3.1 to the dual lattice Fz‘ d) (which usually has to be
rescaled to be made even) and compute the lattices L and M the same way as for the Narain lattice,
but dualizing the algebra g — gv at the end. It can be shown that the embedding level condition
for vectors to be roots is the same as for the original lattice I'(g). This was the method employed on
Chapter 4 to obtain the list of gauge groups for the CHL string in 8d.

Having dealt with this subtlety, a statement generalizing proposition 1 for the usual heterotic

string to the CHL string on T¢ can be made as follows:

Proposition 2. Let G = @/H be some semisimple group of rank r < d + 8, where G and H are
respectively the universal cover and the fundamental group. G x U(1)48~" is realized in the CHL
string on T% as a gauge symmetry group if and only if the weight lattice MY of the dual group GV
admits a primitive embedding in the dual Mikhailov lattice F?d)(2) such that the vectors in MV of
length /20 at embedding level £ = 1,2 in F?d)<2) belong to LV.

We see that the embedding level £ plays an important role in the theory, allowing to treat the problem
of finding the possible gauge groups without reference to the string theory itself, as in the case of the
original heterotic string.

Finally let us recall that the simple factors in G have associated Kac-Moody algebras at level
m = 1,2 where 4/m is the squared length of the corresponding longest root. For d = 2 there are only
ADE groups at level 2 and symplectic groups at level 1 (including Sp(1) = SU(2)). For d > 3 there

are more interesting possibilities including Bs and F,4 at level 1.

5.2.3 Momentum lattices from Triples

Let us now turn to the Z,,-triples reviewed in Section 5.1.3. The respective momentum lattices in 7d
are given in Table 5.1, where we also show the rank reduction of the respective gauge groups. Here
again we have chosen to write the lattices in terms of the canonical point groups using the lattice
isomorphisms Dy ~ F4 and Ay >~ Ga. We also record the frozen singularity for each lattice A,,, which
in this context corresponds to the orthogonal complement of the embedding A,, < I's 19. This point
is discussed in more detail in the next section.

It is natural to ask whether we can extend propositions 1 and 2 to these lattices. An obvious

ansatz is the following:
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m A, Q r_
1| T's3®Es®Es 0 0
2 | I'ss®Fs®Fs | Dy®Dy | 8
3 | Is3®Ga®Ge | Eg ®Eg | 12
4 | Ts3@0 A1 @A | E-®E; | 14
5 I's3 Esd Eg | 16
6 F373 Eg ) Eg 16

Table 5.1: Momentum lattices A,, for the moduli spaces of 7d heterotic Z,,-triples. The gauge group
rank for m = 1 is 19, which is just the Narain component. The case m = 2 is dual to but not the same
as the CHL component [23]. €2 is the frozen singularity corresponding to the orthogonal complement of
Am — F3719.

Proposition 3. Let G = G/H be some semisimple group of rank v < T, where G and H are
respectively the universal cover and the fundamental group, and r,, = 19,11,7,5,3,3 respectively for
m=1,..,6. G x U1)¥""™ is realized in the Z,-triple as a gauge symmetry group if and only if the
weight lattice MY of the dual group GV admits a primitive embedding in the dual momentum lattice
A¥ (m) such that the vectors in M of length /20 at embedding level £ = 1,m in AX,(m) belong to LY.

Simple factors are realized at level m = 2m/a%0ng, where aong s a long root in L — A,,.

The key ingredient is that the vectors of length v/2m at embedding level m correspond to mass-
less states and give e.g. long roots for non-ADE gauge groups. This can in fact be explicitly proved in
the particular construction used in [23] to obtain the momentum lattices. This roughly corresponds
to the fact that in this construction there is a rescaling by a factor of \/m involved, such that the
product of long roots, coming from invariant states in the parent theory of the orbifold, with all other
vectors is scaled by a factor of m. We will however confirm this for the general case by showing in
Section 5.4.1 that assuming this ansatz one can reproduce the mechanism of singularity freezing in
the dual M-theory on K3 from the heterotic side.

An extension of the exploration algorithm used for the CHL string to these lattices is straight-
forward and produces the results presented in Section 5.5.2. In Sections 5.3 and 5.4 we will see that
these can be reproduced by applying an appropriate projection map to the Narain component.

It was already noted by Mikhailov in [19] that the momentum lattice for the CHL string is prim-
itively embedded in the Narain lattice such that its orthogonal complement corresponds to the frozen
singularity on the dual F/M-theories on K3 (for d = 2, 3, respectively). This observation was extended
in [23] to the Z,,-triples in 7d. On sections 5.3 and 5.4 we make use of it together with Proposition 3
to determine precisely how the ADE singularities are partially frozen in 7d (usually to give non-ADE
algebras) and recover the known “freezing rules” on the K3 side. We will also derive analogous rules
in 6d. As we will see in Section 5.4.2, Proposition 3 has to be generalized for 6d by permitting the
embedding level to be any divisor of m. This makes a difference only in the non-prime cases m = 4

and m = 6.

5.3 Mapping gauge groups from Narain to CHL

In this section we explain the general method for determining the map which connects the Narain

component with the CHL component and explicitly derive it for d = 1,2,3,4. The case d = 2 was
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first obtained in [20] and the case d = 3 in [4]. Extensions to other rank reduced components are

considered in Section 5.4.

5.3.1 Setup and basic facts

In order to determine the map which applies to the gauge groups of the Narain component of the
moduli space to give those of the rank reduced components we have to relate the way in which these
are obtained in each case from the corresponding momentum lattices. We will illustrate this procedure
using the CHL string, and so the focus is on the Narain lattice I'y and the Mikhailov lattice I'py,

which can be written as

I'v ~Tgq®Eg @ Eg,
(5.3.1)
Py~Ti1a-1(2) &1 ®Es.

Here I'y g ~ @%_, T is the unique even self-dual lattice with signature (+¢, —%). The symbol (2)
denotes a rescaling of the lattice by v/2, hence a rescaling of the Gram matrix by 2. The lattice Eg is
just the lattice generated by the roots of the algebra eg, but for the latter, as well as for the groups,
we will use the symbol Eg when there is no risk of ambiguity. The same applies for any other root
lattice of A-to-G type. We convene in taking the momentum lattices to have signature with mostly
pluses, unless stated otherwise.

For the Narain component of the moduli space one obtains all the possible gauge algebras by
finding embeddings of root lattices L into I'y such that the intersection of L ® R with I'y is an
overlattice M <~ L whose maximal root sublattice is L itself. Here we mean by overlattice any lattice
of the same rank containing the lattice in question. Intersections of real slices such as L ® R with
I'y give lattices which are said to be primitively embedded, in this case in I', hence the embedding
M — T'y is primitive but L — 'y is not unless M = L. By roots we mean vectors v € I'y with norm
v - v = 2, since these are the ones associated to root states in the adjoint representation of the gauge
algebra.

This discussion extends to the CHL component of the moduli space, with the only difference being
that roots are not only vectors with norm 2 but also vectors v with norm 4 satisfying the condition
v-u = 0 mod 2 for all vectors u € T'p; [19]. This last condition is equivalent to the statement
that the coroot vV = %v is in the dual lattice I'};, which is the language used in [20]. Note that
vV -vY =1, hence this condition cannot be satisfied by any vector in the Narain lattice which is even
and self-dual. The same applies to I'y; when d = 1. For d > 2, however, I'js is not self dual and I'},
indeed contains vectors with norm 1. The appearance of non-simply-laced algebras seems therefore
to be intimately connected with the non-self-duality of the momentum lattice for the moduli space
component in question.

These facts allow to obtain the possible gauge algebras g in these moduli space components, but
we are also interested in the full gauge groups G. For this we need to compute the fundamental
group 1(G), which we denote by H. If G is the universal cover of G, then G = G/H. In the
Narain component it suffices to compute the lattice quotient M /L, which gives a finite Abelian group
isomorphic to H due to the self-duality of I'y, as discussed in the previous chapters. For example, if
M = L, then G is simply-connected. For the CHL component one must do a more precise analysis [20],
but the upshot is that H is given by the quotient MY /LY, where LV is the coroot lattice of g embedded
in the dual lattice I'};, and MY its overlattice which embeds primitively into I'},. Clearly, this is a
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generalization of the computation for I'y. In both cases H is a subgroup of the center Z(G), specified
by a set of elements k; € Z(G).

5.3.2 Construction of the map in d=1,2,3

To relate the Narain and the CHL constructions just outlined we require some additional facts. For

d=1,2,3,4, T'j; can be written respectively as [19]

Eg d=1
Dg d=2
Ty~ Fd,d G0N, Q= , (532)
Dy ® Dy d=3
D%(2) d=14
to which we restrict our attention in the following. In each case there is an embedding
FM@Q;)FN, (5.3.3)

where I'y; — I'y and 2 — I'y are primitive. Furthermore, the primitive embedding of €2 into 'y
is unique (up to automorphisms of I'y), so that by constructing any such embedding one may take
its orthogonal complement which by necessity is just I'j;. As we will review, {2 can be interpreted as
the K3 frozen singularity (or singularities) in the dual geometric frame both for 8d and 7d, and so we
will refer to it as the frozen sublattice in the heterotic string context. We also use the terms mapping
(from Narain to reduced rank) and freezing interchangeably.
Consider now a lattice? M’ primitively embedded into I"js, with root sublattice L’. It follows from
(5.3.3) that there is an embedding
MoQ—Ty (5.3.4)

with M’ (but not necessarily M'@®€) primitively embedded into I'y. The intersection (M'@®Q)QRNT x
gives a lattice M primitively embedded into 'y, with root sublattice L. This gives a priori a map
o from a gauge algebra gcpr, in CHL moduli space to another gnarain in Narain moduli space, but
since we are dealing with the full embedding data for each lattice, we can also obtain the fundamental

group of the gauge group and promote this map to one at the level of groups,
2 GCHL = GNarain- (535)

Consider conversely a lattice M primitively embedded into I'y, with root sublattice L, such that

Q is in turn primitively embedded into M (note that primitivity in this case is guaranteed by the fact
that Q < 'y is primitive). It follows that M has a sublattice of the form M’ & €2, where both M’
and {2 are primitively embedded into M. Since the orthogonal complement of 2 in I'y is just 'y, it
follows that M’ is primitively embedded into I'js, and defines a gauge group Gcpr,. This gives a map
¢ ' GNarain = Genr - (5.3.6)

We note however that the embedding €2 < M is not necessarily unique so that this map is generically

2Here we prime the lattice M in the Mikhailov lattice since we will later focus on the map to and not from
the CHL component.
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one-to-many. As we will see, the form of this map has markedly different qualitative features depending

on the value of d. In the following we study explicitly the cases d = 1,2, 3, 4.

5.3.21 d=1

For d =1, we have that I'yy ~T'; ; @ Eg and Q = Eg are even self-dual. Therefore, eq. (5.3.3) can be
replaced by a stronger statement (cf. eq. (5.3.1)),

In this case, the lattice M’ that we consider is a root lattice L', since in nine dimensions all gauge
groups are simply-connected (as shown in Chapter 4). Therefore we have an embedding L' $Eg < T'y.
This embedding 4s primitive, since L' < T'j; is primitive and Eg is unimodular, so there does not
exist an even overlattice of L' ® Eg in I'y. Moreover, L' @ Eg is a root lattice corresponding to a
simply-connected gauge group in Narain moduli space. We see therefore that to every gauge group
Gcpr in the CHL component we can associate another group Gnarain in the Narain component by
some map

¢:  Geurn — GNarain = Genr X Eg, d=1. (5.3.8)

Conversely, consider some root lattice of the form L' @ Eg in I'y. Similarly to the CHL component, all
of the associated groups are simply-connected. Since the primitive embedding of Eg into ' is unique,
it follows that L’ is primitively embedded into Eg ~ I'p;. This means that any gauge group of the
form G x Eg in the Narain component necessarily has G = Gcyr, some group in the CHL component.
At the end of the day, the result is that by taking all gauge groups in the Narain component which
contain an Eg factor and deleting it one obtains all of the gauge groups in the CHL component. If
there are two Eg factors, they are equivalent by an automorphism of I';y, so that there is no ambiguity
in deleting one or the other.

This same result can be obtained in a more concrete way by considering the GDDs for the lattices
'y and T'ps, shown in Figure 5.1. Gauge algebras in the Narain moduli space can be obtained by
deleting two or more nodes of the diagram such that the result is the Dynkin diagram for an ADE root
lattice. The same applies to the CHL component, but the minimum number of nodes one can delete
is one. As we can see, deleting the node 0’ in the GDD for I'y gives the GDD for I'j; accompanied
by an Eg Dynkin diagram, from which it follows that the gauge algebras that can be obtained in each
moduli space component are related as deduced above. As commented, all of the relevant groups are

simply-connected.

8 'y 8’ 8 INY;
7 7 7
1 2 3 4 5 6 0 C o ¢ 5 4 3 2 71 1 2 3 4 5 6 0 C

Figure 5.1: Generalized Dynkin Diagrams for the Narain lattice 'y ~ I'; 17 and the Mikhailov lattice
I'ar ~T'g 1 in nine dimension.
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5.3.2.2 d=2

The map from the Narain to the CHL components of the moduli space for d = 2 was obtained at the
level of the full gauge groups in [20] using more group-theoretical language, and proven explicitly by
projecting the cocharacter lattice, which determines the topology, from I'y to I'p;. Here we briefly
explain how it can be obtained in the framework of this chapter.

In eight dimensions we have I'j; ~ I'y o @ Dg and 2 = Dg. We will consider a lattice M primitively
embedded into I'y, which is the overlattice of a root lattice L, containing in turn a primitively
embedded Dg lattice. This condition restricts L to be of the form

L~Dgn®N, (5.3.9)

where n is some non-negative integer and N is some other ADE lattice. The orthogonal complement
of Dg in L is of the form D,, & N, and has an overlattice M’ primitively embedded into I'p;.

The question is if D, @ N is the maximal root sublattice of M’, according to the definition of
roots in the CHL moduli space. This can indeed be verified for all points of symmetry enhancement.
The subtlety here is that as lattices, D,, and C,, are equivalent. The actual contribution to the gauge
algebra depends on which vectors correspond to massless states, and we find that in this case it is
actually sp,, and not sos,. We therefore write L = C,, & N. We have then a simple rule for mapping
gauge algebras from the Narain component to the CHL component of the moduli space. Just take any
gauge algebra with a Dg,, factor and replace it with C,. Since it is possible to have gauge algebras
with terms Dgy, @ Dgim, with m # n, this map is generically one-to-many. We recover the freezing
rule for F-theory on K3 in the reverse. Indeed, applying these rules to all the possible gauge algebras
in the Narain component gives those in the CHL component (Table D.5).

To promote this map to one at the level of groups we compute the fundamental group of the gauge
group associated to the embeddings L — 'y and L — I'j; using the lattice methods outlined above,
and then see how they are related. We explain how this works by considering a gauge group, obtained

from the Narain lattice, of the form
G=G/H =G x - x Gy x Spin(2n + 16)/H , (5.3.10)

where H is generated by an element k = (ky, ..., ks, 12:) of the center Z (G) The corresponding group
in the CHL string will be of the form

G'=Gy x---xGgxSp(n)/H, (5.3.11)

with H’ generated by the element k' = (ki, ..., ks, k') of the center Z(G'). As can be expected, only
the contribution of the partially frozen factor will change. Indeed the center of Spin(2n+ 16) and that
of Sp(n) are different. For n odd, we have k€7, and k' € Z5, and the projection reads

=k =k mod2 ({0,1,2,3} = {0,1,0,1}) , n =odd. (5.3.12)
For n even, we have k = (12:(1), ];,(2)) € Zo x Z5 and again ke Z4, and the projection reads
k= k' =kEY +k® mod2 ({0,s,¢,v} — {0,1,1,0}) , n =even, (5.3.13)

where {0,s,c,v} = {(0,0),(1,0),(0,1),(1,1)}.
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As a simple example, consider the gauge group Spi;igw) x SU(2)?, whose fundamental group is
generated by only one element k = (s,0,0). Using the rules above, the associated gauge group in the
CHL component is S;—(f) x SU(2)? with k = (1,0,0). If we had the gauge group SO(32) x SU(2)? with
k = (v,0,0), it would map to the simply-connected Sp(8) x SU(2)2. However, SO(2n) factors are not
present in the theory so that this last example does not arise. It’s interesting to note that SO(2n)
would map to the same gauge group as Spin(2n), making the mapping generically many-to-many and
not one-to-many.

Note also that the fundamental group of any two groups connected by this mapping are isomorphic.
This is in accordance with the fact that the topology of the gauge groups in the dual frame of F-theory
on elliptically fibered K3 is given by the torsional part of the Mordell-Weil group [66,67] which can be
obtained from the Weierstrass model for the fibration (see e.g. [68]), as the mechanism of singularity

freezing does not alter the Weierstrass model itself [56].

5.3.23 d=3

In seven dimensions we have Q) = Dy @ Dy. Each Dy factor can be contained in algebras of Dygyyp,
type, in which case the analysis for d = 2 goes through, including the way in which the contribution
of these factors to the fundamental group transform. The difference now is that we have two such
factors transforming simultaneously, e.g. Dy14 ® Dyyiqa — C,, @ Cyp,. This is not the only possibility,
however.

It is also possible for D4 to be primitively embedded into Eg, E7 and Eg. Taking the orthogonal
complement of Dy in each case we obtain the lattices A2(2), 3A; ~ Bz and Dy ~ F4, respectively.
Similarly to the previous case, we can look at the points of symmetry enhancement in the CHL
component and determine that the contributions to the algebra are respectively sus, so; and fq,
hence the use of these lattice isomorphisms. With respect to the gauge group’s topology, we have
that Z(SU(3)) ~ Z(Eg) ~ Z3, Z(Spin(7)) ~ Z(E;) ~ Zy and Z(F,) ~ Z(Es) ~ {0}, and that
the contributions of these factors to the {k;} remain invariant. This means that as for d = 2, the
fundamental group of two gauge groups related by the mapping are isomorphic. As in the previous
case, this coincides at the algebra level with results on the dual geometrical frame’s mechanism of
singularity freezing [23-25], in this case M-theory on K3 with two Dy frozen singularities. We are not
aware of how the fundamental group of the gauge group is encoded in the M-theory compactification,

but it should in any case be invariant under singularity freezing.

5.3.3 Algebra projection

In the previous constructions we have seen that the root system of the CHL gauge algebra corresponds
to a subset of the orthogonal complement lattice of  in the root lattice L’. This algebra is determined
precisely by checking each case algorithmically and the result is seen to correspond to a simple general
rule. Now we give a procedure whose result predicts this algebra directly, mapping the simple roots of
ONarain to those of gopr. This procedure gives the correct results for d = 1,2, 3,4. We will illustrate

it case by case starting with d = 2, which exhibits the non-trivial features that generalize to larger d.

5.3.3.1 d=2
We start by considering a primitive embedding of ) = Dg into I'y ~ I's o @ I'1g, where I'ig is the
weight lattice of Spirzlig?’z). This description makes calculations easier because Dg embeds primitively
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(a) (b)

g i: ag
***** O o—_O—---0

Q1 Qg Q3 Q4 Q5 Qg Q7 3 Bn Qa1 02 3 04 Qa5 Qg Q7 Bi Bo B

Figure 5.2: (a) Primitive embedding of Dg in I'y 13 with simple roots «; extended to Dg,,, by f; (see
egs. (5.3.14) and (5.3.15)). (b) Projection of the roots f3; to the orthogonal complement of Dg gives a
C,, lattice and associated sp,, algebra in the CHL component.

into I'yg but not into Eg & Eg. A particularly simple embedding is

a; =10,0,0,0;071, 1, 1,07 | i=1,..,7,
(5.3.14)
ag =0,0,0,0; —1,—1,0) |

where the first four entries correspond to the I'; » part and the other 16 to I';s. Suppose the associated
gauge algebra is enhanced to Dgi, by adding n simple S, ..., 3, roots forming an A, chain, with
B1 - ar = —1. For example, take

B =10,0,0,0;07%6,1,—-1,087%) | i=1,..,n<8. (5.3.15)

We will take the projection of the roots f; along the space orthogonal to Dg. The roots (s, ..., Bs are

obviously invariant under this projection, but 5 gets projected as
B1 —10,0,0,0;0%, —1,07). (5.3.16)

However, this projection is not in I'y, and so we multiply it by 2 to get a simple root f; =
0,0,0,0;08,—2,07). We see then that the simple roots of the A,, chain get projected into the simple
roots of C,. This construction is represented in Figure 5.2, and applies to any other primitive embed-

ding of Dg since it is unique up to automorphisms of I'y.

5.3.3.2 d=3

For d = 3 we have ) = Dy @ Dy, which has an easily describable primitive embedding into Eg @ Eg,
so we use the basis I'y >~ I'3 3 @ Eg @ Eg. This embedding reads

a1 =10,0,0,0;1,—1,05;0%) | as =10,0,0,0;0,1,—1,0%0%) ,

)
as =10,0,0,0;0%,1,-1,0%0%) , a4 =10,0,0,0;—1,—1,0%08%) ,
(5.3.17)
o =10,0,0,0;0% 1, -1,0°) , oy =10,0,0,0;0%0,1,—1,0%)
)

)

Oéé = |0a07070;08502a 1a _1704> ) Oél = |O70a0a0;08; _17 _1706 .

As in the previous case, we can extend each Dy to D4y, with an A, chain, which gets projected to
the orthogonal complement of §2 as a C,. However, Dy can also be extended to Eg passing through
D5, Eg and E7. This D5 coincides with that of the generic extension D4y, with n = 1, and so it gives

rise to an A;(2) lattice with simple root, say,

A1 =10,0,0,0;0,0,0,0,—2,0%0%) , (5.3.18)
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which arises from projecting |0,0,0,0;0,0,0,1, —1,0%; 0%). Extending D5 to Eg can be done by adding

the root |0,0,0,0; 1°

i35 ,08). Tts projection multiplied by 2 is

By =10,0,0,0;0%,1% 0% , (5.3.19)

and so we see that 3] and ) give rise to an As(2) lattice, as expected. We can further add the roots
0,0,0,0;0% 1,—1,0,0) and |0,0,0,0;0% 1,—1,0), extending Eg to E7 and then Eg. Since these roots
are orthogonal to 2, they are invariant under the projection and we see that they extend As(2) to Bs

and then F4 as predicted.

5.3.3.3 d=4

Here we have 2 = D§(2). This lattice has a root sublattice Ly = 8A; and can be in fact interpreted

as the weight lattice of % with Z, diagonal, i.e. kK = (1,...,1). A suitable primitive embedding of

this lattice into I'y ~ I'y 4 ® Eg @ Eg has simple roots

oy =10,0,0,0;1,—1,05;0%) | oz =10,0,0,0;0,0,1,—1,0%0%) |
as =10,0,0,0;0%,1,-1,0%0% , a4 =10,0,0,0;0°%1,—1;0% ,
. (5.3.20)
as = [0,0,0,0;0% 1, —1,0) ag = [0,0,0,0;0%0,0,1, —1,0%) ,
a7 =10,0,0,0;0%0%,1,-1,0%) , ag=10,0,0,0;0%0°%1,—1) .
The weight vector extending this root lattice to € is just
1 8
w= > a; =10,0,0,0;1,0,1,0,1,0,1,0;1,0,1,0,1,0,1,0) . (5.3.21)
1=1

Requiring orthogonality with the roots is enough to get orthogonality with €2, so we will not worry
about w. However we note that there exists also a primitive embedding of 8A; into ', which should
not be confused with 2.

The first thing to note is that the lattice Lo = 841 can be naively extended in many different ways
but not all of them are allowed extensions of €2 itself. For example, no A; factor can be individually
extended to As with a root orthogonal to the other A; factors. Any attempt to do this is easily
seen to fail. The next logical step is to attach a root to two Aj factors at the same time, e.g. with

0,0,0,0;0,1,—1,0%0%), in this case giving an A3. This vector gets projected to
B=10,0,0,0;1,1,—1,—1,0%08%) , (5.3.22)

and so we have that A3 freezes to® A;(2). This is equivalent to D3 — Cy, and forms part of the more
general rule Do, — C,,, or s02,4+4 — sp,,, in analogy with those we have for d = 2,3. This is depicted

as

aq

***** © —— OO0 (5.3.23)
ar & B Bn B1 B2 D

31t is more precise to say that Az @ 6A; freezes to A1(2), but we are now focusing on the behavior under
projection of sublattices corresponding to simple algebras and not the whole lattice containing 2.
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The next possibility is to attach n — 1 roots to n A factors in pairs such that one gets an Ag,_1
chain. The case Az — A(2) above can be generalized e.g. to A5 — Ag(2) with roots

B1=10,0,0,0;1,1,-1,-1,040% , B2 =10,0,0,0;0% 1,1, -1, —1,0%0%) , (5.3.24)

and more generally we find the rule Ay, 1 — A,_1(2), or suy, — su,, depicted as

51 ﬁnfl
o—0OO—-~0—----- -O0—0O——0 — o—0O—---0 (5.3.25)
aq a2 Qp—1 Qp Bi Bé 1/171

From this rule we can actually get another by simply attaching a root 8, to 8,1, namely Da, — B,,,

Or §04y —7 $02n41,

O ----- — 0—0—---C30
aq a9 Up—1 A an B B ' Bn (5.3.26)

Finally, we can take the particular case n = 4 and attach a root to 83 to get the rule E; — F4, or

e7 — fa,

a1 B1 oag B2 oy
O—C50—0O
B 8 6 Bs B (5320)
B4

In summary we have found the following freezing rules at the level of the algebras:

502n4+4 — 5P,

SUg, — SU,, (5.3 28)
504p —  S02p41

e7 — f4

where both the LHS and RHS algebras are at level 1 (the algebras unaffected by the freezing become
level 2). These rules cannot be applied arbitrarily, however. In order for the LHS algebras to be
reduced to those in the RHS, their roots must be connected with those of €2 as specified in each case

above. Any root of Q left by itself is simply projected out, sus — (0.

5.3.4 Applying the map in d =4

Having seen the possible ways in which subalgebras of a gauge algebra in the Narain component in
six dimensions can be transformed when mapping to the CHL component, we now treat the problem
of when these rules are applicable for a given gauge group G. In the cases d = 1,2, 3 this problem is

trivial because the root lattices associated to €2 are uniquely embedded, so one always knows for any
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gauge group if its weight lattice contains by a simple reading of the algebra. For d = 4, however,
the relevant root lattice is 8A1, which may or may not be associated to ). It is necessary therefore to
check explicitly, for each 8A; sublattice, if it corresponds to €2 or not.

As a simple example let us consider the gauge group Spilzlig?)Q)’ ignoring the extra four U(1) factors
for now. It turns out that the weight lattice of this group contains ) as a sublattice, whose 8A;

sublattice correspond to the yellow nodes in the diagram

16

(5.3.29)

Q] Qg Q3 Q4 Q5 Qg Q7 Qg Qg9 Q10 (11 (12 (13 Q14 Q15

This can be shown explicitly by deleting the white nodes and checking that the weight vector of the
% weight lattice is in the Narain lattice (cf. eq. (5.3.21)). At the level of the algebras, then,
we have that soga goes to s017. This is to be contrasted with the gauge group Spin(32), which is
simply-connected and therefore does not contain € in its weight lattice (which is a root lattice in
this case). From this we learn that the topology of the group dictates what are the allowed freezings.

Furthermore, we can explicitly compute the fundamental group of the gauge groups using the methods

described in Section 4.3.3, which extend to any d, and find that Sphzli(m) gets mapped to Spin(17). In
other words, the element &’ = (1,0) which generates 771(810?7232)) gets mapped to k = 0 in 71 (Spin(17)).

In general, the gauge group to be mapped has more than one non-trivial element in its fundamental

group, which makes things more complicated. Consider for example

SU(2) x SU(4) x SU(4) x Spin(12) x E7

G = 5.3.30
72 % 73 ; ( )

where the Z9 x Z9 consists of
ki = (072707 (LO)?l)a ko = (17072, (1,1),1), ks = (1>2,2, (0,1),0) (5331)

Any pair of these elements, which generate m1(G), corresponds to two vectors which extend the root
lattice L of G to its weight lattice M. They are inequivalent under translations in L. One can then
delete nodes in the Dynkin diagram of L such that the reduced root lattice still has a non-trivial
weight overlattice which might correspond to €2, at which point any other reduction will not contain

weight vectors. In this special case, all such reductions lead to inequivalent embeddings of €2 in M,
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represented by the yellow nodes in the diagrams

Q0
13 a19
i % (5.3.32)
o O0—0O—~0 0—0O—0

a1 Q2 a3 (4 G5 G Q7 Qg Qg 1o (11 (12 Q14 Q15 1 17 18

Q20
13 a19
i % (5.3.33)
o O0—O0C—~0O OO0

a1 2 a3 4 G5 G Q7 Qg Qg (1o (11 (12 Q14 Q15 1 17 18

Q20
13 a19
i % (5.3.34)
o OO0 OO0

Q1 Qg Q3 Q4 Q5 Qg Q7 Qg Qg9 Qo (1] (12 (14 Q15 1g (17 (18

To each of these embeddings corresponds a different way of mapping G to the CHL component.

Using the rules in (5.3.28) and computing the fundamental group in each case we get, respectively,

SU(2) x SU(2) x SU(4) x Spin(7) x Fy

G - - , k=(1,0,2,1,0), (5.3.35)
2
4 2 4) x F
a5 SU(4) x SU(Z) X Sp(4) x Fy 7 k= (2,0,1,0), (5.3.36)
2
2 2 i E
C SU(2) x SU( )Z>< Spin(7) x By k=(0,0,1,1). (5.3.37)
2

The first thing to note is that in the resulting gauge group the fundamental group always reduces by
a factor of Z, (as already happened in the Sphzliggz) — Spin(17) case above). This can be understood
by noting that one is taking the orthogonal complement of €2, which contains weight vectors. These
are also weight vectors in M, equivalent under translations in 8A;, so they can be related to one of
the elements in m(G). For any such weight vector w, we have that 2w € 8A; and so the associated
k € m1(G) generates a Zy. This is precisely the factor which is eliminated in mapping G, corresponding
respectively to ki, k2 and k3 above.

Now we need to know how the remaining k’s get transformed in each case. What we find is that

it suffices to mod every k by the one that is eliminated, call it kq,
k—k mod kg (5.3.38)

and then project it into the center of the resulting gauge group. In the case of a Spin(4n) factor, we
project the modded k contribution to 1 € 71 (Spin(2n + 1)) = Z5 if it is not (0,0). Of course, we also
have that kg — 0 so that this rule applies equally well to all the k’s of 71 (G).

We see then that the only information we require to know how to map a group G to the CHL
component is the embedding of the roots of 2 into the root lattice L of G and its associated kq € m1(G).
In fact, however, these two pieces of data are the same. One can take any k € 71(G) of order 2 in Z(G)

and check if it corresponds to €2 in the following way. For each simple factor in G, if the corresponding
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entry in k is non-zero, its Dynkin diagram should be labeled according to one of the diagrams of
Section 5.3.3.3. The only simple factor which contains more than one order 2 element is Da,, in which
case kp,, = (1,1) corresponds to the diagram (5.3.23) and kp,, = (0, 1), (1,0) correspond to (5.3.26).
Coloring the nodes appropriately lead to those shown in the example above, as one can easily check.
If there are in total eight yellow nodes, this labeling will correspond to an embedding of €2 into M.
With this we can apply the mapping rules to the algebra and to the fundamental group of G.

We verified all of these statements by applying the procedures outlined above to a reasonably
exhaustive list of gauge groups in the Narain component, and checking the results against a list for
the CHL string. In the next section we look at other rank reduced components, where the results are
similarly verified against lists of symmetry enhancements. These lists can be obtained with the same

method as those of the 7d case and can be accessed at [27]. We provide various examples in Appendix

C.

5.4 Other rank reduced components

In this section we extend the freezing procedure explained above to other rank reduced components in
the moduli space of heterotic strings which appear in seven dimensions and below. These correspond

to the holonomy triples constructed in [23] and their torus compactifications.

5.4.1 Freezing map in 7d

As explained in Section 5.1, in seven dimensions there are six connected components in the moduli
space of supersymmetric heterotic strings. They can be obtained as asymmetric orbifolds of the
T3 compactifications at points in the moduli space where the Narain lattice exhibits appropriate
symmetries. These orbifolds are of order 2 to 6, and they correspond to non-trivial holonomy triples
in the target space, hence they are called Z,,-triples with m = 2, ...,6.

For each Z,,-triple, the momentum lattice can be obtained as the orthogonal complement of some
other lattice ). This data was shown in Table 5.1. The Zs-triple is equivalent to the CHL string
treated in Section 5.3.

For the Z3-triple, we have ) = E¢®Eg, which can only be embedded into E, ®E, with p,q = 6,7, 8.

For each E, factor, we have the algebra mapping
g —0, ez —suy, s — g2, (5.4.1)

while the corresponding contribution to any element k£ of the fundamental group is preserved. As
with the m = 2 component, we have that the gauge groups related by the mapping have isomorphic
fundamental groups.

For the Z4-triple, we have 2 = E7 © E7, which embeds only into E, ® E; with p,q = 7,8. For each

E, factor we have the algebra mapping
er >0,  eg— suy. (5.4.2)

The Z5 and Zg-triples both have Q = Eg @ Eg and so the only mapping allowed is eg — (. All
the possible gauge groups involved in this mapping are simply-connected so here again they have

isomorphic fundamental groups, namely trivial ones.
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The full set of rules is summarized in Table 5.2

Algebra | m | Transforms to | Contribution to (2
Dn+4 2 Cn D4
Eni4 2 F, Dy
Ent6 3 G, Eg
Eni7 4 Cn E;
Es 5, 6 0 Esg

Table 5.2: Freezing rules for the simple factors in the gauge groups for 7d. Transformed algebras
appear at level 1 on the rank reduced theory.

where we are using the conventions:
ClEAl,FQEAQ,FgEBg,GlEAl, (543)

The map for the group explained in Section 5.3.2.2 can be directly generalized to all the different
components in the moduli space of 7d theories treated here. Similarly, only the contributions to
the fundamental group coming from the partially frozen factors change. In the 7d CHL string the
rules for going from D, 4 to C,, are equivalent to those for going from D,,;g to C, described above.
For example, we find that (Spin(24)/Z3) x Spin(14) maps to (Sp(8)/Z2) x Sp(3). For the freezing
Estn — F,, (cf. Table 5.2), the center of the gauge group is unaltered and so is the corresponding
contribution to the fundamental group, i.e. k — k' = k. This is also true for the freezing Eg+n, — Gy,
in the m = 3 case.

For m = 5,6, the rule Eg — () has no effect on the fundamental group other than shortening
(K1, .oy ks, l%) to (ki,...,ks). With these generalized freezing rules, one can project the enhancements
in the Narain component of the moduli space to the other five components treated in this chapter to
reproduce the results found with our exploration algorithm.

Like we encountered for the CHL string, these rules agree perfectly with the freezing mechanism
in M-theory on K3 [23,25]. When applied to the enhancements found in the Narain moduli space one
reproduces the results, at the level of the algebras, obtained with the exploration algorithm applied

to the remaining momentum lattices, as expected.

5.4.2 Extension of the freezing map in 6d

Let us now consider the compactifications of the 7d Z,,-triples to 6d with m = 3,4,5,6. Not surpris-

ingly, the mappings that we find here generalize naturally those of the m = 2 case.

5.4.2.1 6d Zs-triple

For m = 3, the momentum lattice is
330T11(3) ®A2® A, (5.4.4)

which can be shown to be the orthogonal complement of a lattice £ in I'y 99 isomorphic to the weight

6
SUZ(S) , with Z3 diagonal. There are two types of root lattices which can be obtained by

lattice of

attaching nodes to the Dynkin diagram of this SU(3)%. First, we have those of the type Az, 1,
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obtained by adding roots between each pair of As’s consecutively. These map to A,,. For example, we
have that Ag — Ao,

o—0O0—C0C—0C—0C—O0C—0—0 E— o—0
oz B a3 4 B, X5 Og Bl B, (5.4.5)

The other possibility is to map Eg to Go,

O—O—i—ﬂé—o — =0 (5.4.6)

a1 Q2§ A3 4 By P

A gauge group G in the Narain component can be mapped to this moduli space if 71 (G) contains an
order 3 element kg such that its entries label exactly 12 nodes in the associated Dynkin diagram, in
a manner completely analogous to the case for the CHL string (see Section 5.3.4). The procedure for

3
mapping all the elements of 71(G) is the same. For example, the gauge group % with 7 generator

k = (1,1,1) maps to G3, and SU(3)? xSU(6)” x Spin(10)

Zg
%Spm(m) with & = (1,1,2). Similarly to the CHL string, the unaltered simple factors correspond

to level 3 algebras and the altered to level 1 ones, so that e.g. the latter has algebra (sus @ sus)1 @

(spingg)s.

with m generator £k = (1,1,1,1,2) maps to

5.4.2.2 6d Z,-triple

For m = 4, the momentum lattice is I's 3 ®1'1,1(4) ® A1 @ A1, whose associated (2 is the weight lattice
of w with Z4 generated by k = (1,1,1,1,1,1). The roots of this lattice can be extended in
particular to Ayg,—1 and Doy 3, the latter with n = 1,2. The algebras are respectively mapped to su,

and sp,,. For example, we have

o—O0O—"0O—OC—0OC—O—0OO0O—O0O—0O—0 —_— o—0O
o oz a3 B Q4 Qs O By, Q7 Qg Qg Bl B, (5.4.7)

aq

— 50 (5.4.8)

o9 a3 B A4 By A5 B By

In the latter case we see that the two A1’s of €2 are used up, so that one cannot extend to Dg and
beyond. The resulting gauge groups have current algebras at level 1, except for the case of A3 which
only involves two frozen A;’s and produces an A; at level 2. Unaffected factors become level 4.

The element kq associated to this mapping is of order 4. In particular this means that 2kq is an
order 2 element, which turns out to be associated to the freezing to the CHL component of the moduli
space. This is reflected in the fact that the frozen sublattice of this moduli space component contains
the one for the CHL component. Indeed, the 2A; part of Lo can be extended to D,, and frozen to
Cp_o, as for the CHL freezing rule. This will be the case if kg has an order 2 contribution to a D,

factor.
U(2)3xSU(4) xSU(8)?
Zs

SU(2)8
Z3

For example, the group S with 71 generator k = (1,1,1,1,1,1) maps to
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with 7 generator k = (1,1,1,1,1,1) and algebra (sus@®sug)1®(sus)2® (su2dsusdsus) 4, showcasing the
possible ways in which current algebra levels can mix; here the mapping is associated to the order four

N . . .. SU(12) xSpin(14)
element 2k ~ (0,0,0,2,2,2). Another interesting example is given by the group SU(3) x Z—4p
with 71 generator k = (0,3, 3), which maps to SU(3)? x Sp(2), with algebra (spy @ su3)1 @ (su3)4; this

involves the freezing rule for D7, producing a simply-connected gauge group.

5.4.2.3 6d Z;g-triples

For m = 5 the momentum lattice is T'3 3T 1(5), whose associated {2 is the weight lattice of SU(5)*/Z5
with Z5 generated by k£ = (1,1,1,1). The only extension allowed here is As,,_1, which maps to A,_1,

generalizing the similar freezings in the previous cases.

f SU(2)2xSU(3)?xSU(6)?
Zg

with Zg generated by (1,1,1,1,1,1). Again, the only allowed freezing here will be from Ag,_; to A,,_1,

For n = 6, we have momentum lattice I's 3I"; 1(6), whose (2 is the weight lattice o

associated to an order 6 element in 7;(G). However, this €2 includes the frozen sublattices of m = 2
and m = 3. Similarly to the m = 4 case including m = 2 freezing rules, here we also have the m = 2

and m = 3 rules which can be realized by two A; factors and two Ao factors, respectively.

5.4.3 Freezing rules in 6d

In 6d, the connected components of moduli space of the heterotic string studied in this chapter have
momentum lattices and corresponding orthogonal complements in I'y 29 (frozen sublattices) as shown
in Table 5.3. Here we have given {2 in terms of its root sublattice Lo and the fundamental group of
the gauge group associated to Q4. The gauge symmetry groups that can be realized in the n = 2,...,6

components can be obtained by applying a set of “freezing rules” to those of the n = 1 one.

n | Momentum Lattice I' | Frozen root lattice Lo | m(Gq)
1 Iy 20 0

2| Ts3®T11(2) @ Dy® Dy 8A, Ly

3 T330T11(3) @A @ Ay 6A, 75

4 | T34 A @A 2A; @ 4A3 Z,4

5 I's5® F1,1(5) 4A, Zs

6 Is5@ T 1(6) 2A1 @ 2A, B 2A4 Zg

Table 5.3: Momentum lattices and corresponding orthogonal complements in I'4 29, given in terms of
their root sublattices and fundamental group of the associated gauge group.

For 7d it is guaranteed that the rules in 5.2 can be applied as long as the contributions to €2 result
in the ones listed in Table 5.1. In contrast, there is a particularity in 6d: to check if one of these
freezings can be done with a certain G, one looks for order n elements kq in 71(G) such that they
define an embedding of Lq into the root lattice L of G. If this is the case, one applies the rules shown
in Table 5.4 according to this embedding, and obtains the fundamental group of the resulting gauge
group G’ by modding the elements of m1(G) by kg and projecting them onto the center of G'.

4The Lg’s correspond to the singularities of K3 x S! orbifolds of order n in the dual M-theory [23].
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Algebra | kg Order of kg | Transforms to | Contribution to 2
Aqn—l n q = 2, 3, 4, 5, 6 An—l nAq_1
Dn+2 v 2 Cn 2A1
D2n S 2 Bn nA1
E~, 1 2 Fy 3A,
Eg 1 3 Go 2A,
D2n+3 1~s 4 Cn nAl + A3

Table 5.4: Freezing rules in 6d for the simple factors in the gauge groups according to the element kq
of the fundamental group associated to the freezing. For all the cases, the longest roots are of length
twice the order of kg. v and s denote the vector and spinor classes of the orthogonal groups.

These transformations also appear in a seemingly unrelated problem, namely in the relation
between the moduli space components of flat bundles over T2 with non-simply-connected structure
group G [55] when G is simply-laced. The transformed group is simply-connected and describes the
so-called topologically non-trivial components of the moduli space for a certain G. In this sense, what
we find in the moduli space of 6d heterotic strings is a generalization to semisimple lie groups with

many factors and more complicated fundamental groups®.

5.5 Classification of gauge groups

The full tables with maximal enhancements and their global data for the Narain components and the
Z,-triples are given in Appendix D.2 for 7d and in the corresponding tables in [27] for 6d. Here we
give tables with the counting of the different gauge symmetries which are realized in each component
in 7d.

5.5.1 Narain Component

As explained before, obtaining the gauge groups for the Narain component is done with a straightfor-
ward extension of the original exploration algorithm developed in Chapter 3. However, here we have
also computed the full global data for each group, giving the explicit generators for the fundamental
groups using the methods in chapter 4 based on [20]. All the maximally enhanced groups in this
component are listed in Table D.7, with the generators of their fundamental groups in Table D.12.

We have for example the gauge group (#421)

SU(8) x SU(8) x Spin(10)
Zx ’

(5.5.1)

where the fundamental group Zg is generated by the element (1,3, 1) of the center Zg x Zg x Z4 of the
universal cover SU(8) x SU(8) x Spin(10).

For each generator we give a sequence of numbers representing the contribution from the center
of each simple factor. In the example just given, the generator is 131. Note that the ordering of the
sequence corresponds to the ordering of the listed ADE type. To properly read the sequence one must
write expressions of the form A3D3 as (A3, Az, Dy, Dy, Dy), assigning each number in the sequence to

each subsequent ADE factor. For Do, factors there are four order two elements in the center denoted

5We are not aware of a treatment of this general problem in the literature.
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v, ¢, s and 1, corresponding to the vector class, spinor classes and the identity, respectively. Note that
in some cases the fundamental group has more than one generator.

For 7d, we list the total number of distinct gauge algebras and distinct gauge groups for different
ranks of the semisimple part in Table 5.5. These have been obtained by deleting nodes in the Dynkin
Diagrams of the maximally enhanced groups, and we assume that this gives all the possibilities, as

discussed in Section 4.3.

Rank| 1  Zo Z22%2 Z3 Z4 723 Zo* 735 Zs Zg Z3% ZoZy Z7 ZoZg Z4? Zsg|Algebras Groups
19 | 652 381 68 51 37 5 1 6 16 3 2 1 2 1 2| 1035 1232
18 | 852 492 89 52 35 9 1 4 10 3 6 1 1 1 1 1180 1557
17 | 827 442 73 39 23 8 1 2 4 2 3 1024 1424
16 | 694 334 47 25 12 4 1 1 1 1 1 1 794 1122
15 | 528 217 24 12 4 2 1 567 788
14 [ 389 128 11 6 1 403 536
13 [272 66 3 2 276 343
12 192 33 1 1 193 227
11 | 128 14 128 142
10 | 8 6 88 94
9 57 2 57 59
8 39 39 40
7 24 24 24
6 16 16 16
5 9 9 9
4 6 6 6
3 3 3 3
2 2 2 2
1 1 1 1
All |4779 2116 316 188 112 29 5 1 13 31 9 12 2 3 2 3| 5845 7625

Table 5.5: Number of algebras and groups of each rank with a certain fundamental group for the
heterotic string on T3. The gauge group with m; = Z3 (cf. eq. (5.5.2)) does not admit further enhance-
ments.

We note that there are many cases in which two gauge groups have isomorphic fundamental groups
with inequivalent inclusions in the center of the universal covering (meaning that they are not related
by outer automorphisms of the group, as is the case e.g. for SO(2n) versus Spin(2n)/Zy for n # 4).
These were not distinguished in Table D.2, where we recorded 339 groups (the ordering goes only up
to 325 because we label them only with the algebra). The inequivalence is taken into account on the
T? table in [27] resulting in 341 different groups.

It is natural to assume that all points of maximal enhancement in moduli space can be reached with
our exploration algorithm, and it is in fact true for the cases d = 1, 2. Non-maximal enhancements can
be obtained from the maximal ones by simply removing an arbitrary number of roots. Remarkably, for
d = 1,2 there are respectively only two gauge groups which can not be obtained in this way, namely
Spin(16)2/Z5 for d = 1 and Spin(8)*/Z2 for d = 2. In d = 3 there is also such gauge group,

~ SU(2)0

= 5.2
G="g (5.5.2)

where the fundamental group is given by

0000000011111111
0000111100001111
0011001100110011 (5.5.3)
0101010101010101
1001011001101001
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Spin(25’d)2d
7(24—d)

2
To obtain them we just use the exploration algorithm starting from an adequate non-maximal gauge

The pattern for all d is . At the level of gauge algebras this was already noted in [37].

group. For 6d this pattern predicts an Abelian symmetry and is irrelevant for our study. Nonetheless,
SU(2)20
z3
by just removing and adding a node to other maximal enhancements. To obtain it with our methods
16
it is necessary to first find % by exploring the neighborhood of some non-maximal enhancement
2
we already have (or alternatively do a trivial compactification of (5.5.2) to 6d). We get all the missing

there is a peculiarity in the 7% moduli space: one maximal enhancement, , cannot be obtained

groups by continuously adding nodes, obtaining sequentially:

SU(2)'6 . SU(2)'6
Z3 z3

SU(2)'8 . SU(2)* N SU(2)%0

x SU(2) —
z3 z3 73

(5.5.4)

5.5.2 Triples

The results for the components of the moduli space with rank reduction are obtained by an extension
of the exploration algorithm taking into account Proposition 3 for 7d and its generalization to 6d where
we accept as levels all the divisors of m for each Z,,-triple. For 7d, the gauge groups are recorded in
tables D.8 to D.11 in Appendix D.2.1, while the generators for the fundamental groups are recorded in
Tables D.13 and D.14 in Appendix D.2.2. For 6d the gauge groups are recorded in the corresponding
tables of [27]. In the case of the Z5 and Zg-triples in 7d, we see that all the gauge groups are simply
connected and so no global data is required to specify them. As explained in Section 5.4, all the gauge
groups for the non-trivial Z,, triples can be obtained from those of the Narain component using a
projection map generalizing the one obtained in [20] for the 8d CHL string (see Tables 5.2 and 5.4).
In Appendix C we give some examples of these freezings in 6d. For 7d, the total number of distinct

gauge algebras and distinct gauge groups are listed in Table 5.6.

Z5 triple Z4 triple
Rank| 1 Zo Z22? Z3 Z4 Z23 Z2* Algebras Groups Rank| 1 Z2 Algebras Groups
11 | 224 143 44 7 3 7 1 407 429 Z5 triple 5 |13 5 16 18
10 | 307 192 51 5 3 8 1 473 567 Rank| 1 75 Z3 Algebras Groups 4 |10 4 11 14
9 |284 161 37 2 2 4 1 372 491 7 141 6 5 50 52 3 16 2 6 8
8 214 101 18 1 1 2 244 337 6 137 5 4 11 16 2 |4 1 4
7 1137 45 5 143 187 5 |24 2 2 o1 ) 1 |2 2 2
6 84 17 1 85 102 7 115 1 1 15 17 All |35 12 39 . 47
5 | 46 4 46 50 3 s 5 5 75 and Zg triples
4 260 1 26 27 B 5 5 5 Rank| 1 Algebras Groups
3 12 12 12 1 5 5 3 |3 3 3
2 |6 6 6 M"Am (1321412 145 188 |2 |2 2 2
1 2 2 2 1 1 1 1
All |1342 664 156 15 9 21 3 1816 2210 All |6 6 6

Table 5.6: Number of algebras and groups of each rank with a certain fundamental group for the
heterotic Zy, Z3, 74, 75 and Zg triples.
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Chapter 6

Conclusions

The main objective of this thesis was to obtain and classify all the gauge groups appearing as sym-
metries of the massless spectrum of the half-maximal supersymmetric compactifications of heterotic
string. We succeeded in this task for theories with 9, 8, 7 and 6 space-time dimensions, with the results
collected in [27] and also on Appendix D for 7 or more dimensions!. With this goal in mind we studied
diverse aspects of the compactified theories, developing techniques and arriving at results serving not
only for answering elementary questions (e.g. what are the relations between these theories?) but also
for treating many unrelated problems. In the following we summarize these results and give possible
directions for future work.

In Chapter 2, after a brief introduction to heterotic string theory, we presented its toroidal com-
pactification and analyzed some generalities. The main goal of this chapter was to understand in an
explicit manner the structure of the moduli spaces, gaining intuition on symmetry enhancements. To
achieve this we quickly restricted to the circle case. The 17-dimensional moduli space of S compacti-
fications, involving the radius of the circle and the 16 components of the Wilson line along the Cartan
directions of the SO(32) or Eg x Eg gauge group, was studied in detail.

We presented the action of the standard T-duality exchanging momentum and winding number,
and studied its fixed points, which are at R? = 1 — %|A[2. At these points, the dual background has
the same radius and opposite Wilson line, A’ = —A. If 24 is in the root lattice, then A’ = —A ~ A
and the full background is self-dual. For Wilson lines with only one non-zero component, as those
explored in Section 2.3.4, the fixed “points” of the T-duality symmetry are not really points, but in
this two-dimensional subspace of moduli space they correspond to lines of non-maximal enhancement
symmetry, where the Wilson line is a function of the radius (A = A(Rgsq)), and is such that A ~ Ay,
with [Agq|? = 2(1 — R2)).

The discussion of the explicit enhancement process was split into compactifications with 7- A € Z
and m- A ¢ Z. Although all the enhancements can be obtained with Wilson lines that are not on
any lattice by appropriately choosing R, the distinction is useful to understand the enhancement
process. When the Wilson line has zero vacuum expectation value, or equivalently when the vacuum
expectation value is on the root lattice I'y, the gauge group of the uncompactified theory is unbroken
at generic radius, and the total gauge group on the external space is U(1)r x (U(1) x SO(32)), or
U(l)gr x (U(1) x Eg x Eg);. At R =1, there are additional states with momentum and winding that
become massless and enhance the U(1)r, to SU(2)r. For other values of Wilson lines and generic
R, the gauge symmetry is determined by the subset of heterotic momenta 7 that have integer inner
product with the Wilson line. In the HO theory, one has the interesting possibility of a Wilson line
that has integer inner product with all m, i.e. a Wilson line in the dual root lattice, but which is not

in the lattice, namely A € T, or A € I'.. These two possibilities lead to an unbroken SO(32) gauge

We left out of this thesis the tables for 6d because they are too long.
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symmetry at any radius, while at R? = % there are extra massless states with non-zero momentum
and/or winding number on the circle, giving a total 17-component left-moving momentum with mixed
circle and chiral heterotic directions which enhance the gauge symmetry to SO(34).

We developed a method for computing and drawing two dimensional slices of the 17-dimensional
moduli space which neatly exhibit the distribution of the enhanced groups. The family of functions
corresponding to each of the curves and the heterotic momentum of the additional massless states can
be obtained from this analysis. While non-maximal enhancement occurs at lines, maximal enhance-
ment occurs at isolated points. More interesting figures arise at smaller radii, and the smaller the
radius, the richer the pattern of enhanced gauge symmetries, as there are more winding numbers that

lead to massless states?

. Moreover, we were able to univocally relate the intersections of the curves
in the figures with the enhanced groups obtained from the Generalized Dynkin Diagram (GDD). An
interesting output of the construction is that, in order to obtain groups that contain SO(32) from the
HE theory or groups that contain Fg x Eg from the HO theory it is necessary to choose a slice where,
for a generic point, the group is SO(16) x SO(16) or a subgroup of it.

From the GDD for the Narain lattice I'1 17, we found all the possible maximal enhancements for
heterotic string on a circle. In particular, we showed that the same enhancements can be achieved in
both heterotic theories (e.g. SO(34) enhancement from the HE string) and explained how to obtain
them.

The emphasis in this thesis has been to study gauge symmetry enhancement in compactifications
of perturbative heterotic string theory for the characterization of the string theory moduli space.
One interesting direction that could be studied is the inclusion of non-perturbative effects, where the
physics of symmetry enhancement plays an important part. In particular, winding heterotic Eg x Ejg
states are related to the dynamics of D-particles in the presence of D8-branes and orientifold planes
in type I’ superstring theory, and have been crucial in the understanding of subtle aspects of the Type
I/heterotic duality [13,35,70,71]. We hope that the methods developed here are useful to analyze
these questions further.

In Chapter 3 we aimed at generalizing the results of Chapter 2 to compactifications to lower
dimensions. To this end, we focused on the lattices that quantize the momenta. At special points
in moduli space, the (d + 16) U(1) symmetries can get enhanced, and we stated lattice embedding
criteria to determine whether a given gauge group is realized or not in a toroidal compactification.
The use of these criteria was explained in several examples.

We also introduced an algorithm to systematically explore the moduli space and applied it to
obtain all the semisimple groups of maximal rank for d = 1 and d = 2, as well as the values of the
corresponding background fields. Specifying the moduli is important for various reasons. First of all,
the vertex operators and the full 1-loop modular invariant partition function of the theory explicitly
depend on the momenta (3.1.2) [7,30]. Besides, the moduli could be relevant in the study of dualities
with other constructions and in phenomenological applications (combining with additional orbifold
actions).

Actually, our results include not only the groups with maximal enhancement, but also groups
G, x UM with » < (16 + d). For d = 1 all possible G, can be deduced from the GDD as
mentioned previously, and for d = 2 they are listed in [15]. A natural question is whether different
G, could arise in other non-chiral string constructions with 16 supercharges. For d = 2, our results

contain the groups with maximal enhancement found in the covariant lattice formulation [72]. It would

2These figures could be useful when interpreting R — 0 as a decompactification limit, where a tower of
massless states appears [69].
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be interesting to know if some other CFT construction could give for instance 8-dimensional theories
with 16 supercharges and an ADE gauge group of rank 18 that is forbidden in the heterotic on 72
(such as Eg x SO(14) x SU(4)). It would also be helpful to understand if a theory with a forbidden
group could suffer from global anomalies as discussed in [73].

Our results show that all maximal enhancements in the heterotic compactification on 72 coincide
with all possible singular fibers of extremal K3 surfaces classified in [14]. This gives relevant inform-
ation for the study of extremal K3 surfaces. Some realizations of these surfaces have been studied in
detail, see [42,74-77] and references therein. In the early days some examples were found by analyzing
F-theory on orbifold limits of K3 [78]. Other examples have been obtained more recently by consider-
ing enhancements at special points in the moduli space of K3 surfaces with Picard number less than
20 [79-81].

In Chapter 4 we have studied heterotic string compactifications that realize the CHL branch of
superstring vacua with 16 supercharges in (10 — d) dimensions, d > 1. Such vacua, characterized by
left-moving gauge group of rank d+ 8, were first obtained in the context of type I strings [82] and later
derived in heterotic strings both in the fermionic [17] and bosonic formalism [18]. We have followed
the latter approach, based on compactification of the HE string on an asymmetric orbifold 7¢/Zs,
which enables a description at any point of the moduli space. In particular, we have focused on the
question of which non-Abelian groups of maximal rank can appear. We have given a complete answer
in d = 1,2 in the form of a list of allowed groups and the corresponding moduli. We know that these
lists are exhaustive, as they can also be obtained from the exhaustive lists of gauge groups for the S*
and T2 compactifications, respectively, by using the rules developed in Chapter 5.

Our analysis relies on the Mikhailov lattice I'z) underlying the T9¢/Z5 asymmetric orbifold. In
analogy with the Narain lattice I'y 4116 associated to heterotic compactification on T¢, the momenta
of all states in the orbifold spectrum lie in I'¢g) and symmetries of the spectrum correspond to auto-
morphisms of the lattice [19]. For our purposes an essential fact is that the root lattice of the resulting
non-Abelian groups must admit an embedding in I'(4), which is even but not self-dual for d > 1. This
last property leads to both simply-laced and non-simply-laced groups realized at Kac-Moody levels 1
or 2. The embedding condition gives a systematic prescription to determine the groups that can arise
or not. Moreover, studying embeddings of the coroot and cocharacter lattices in the dual Mikhailov
lattice allows to determine the global structure of the gauge group [20]. In this way we have proven
that for d = 1 the groups are simply-laced and simply-connected whereas for d = 2 there are also
symplectic and doubly-connected groups.

Our results for the global groups exactly match those obtained in [20], where they were shown to
satisfy the condition for anomaly-free one-form center symmetries [21]. It would be interesting to check
if these results are also consistent with constraints imposed by triviality of cobordism classes [83]. A
partial check was carried out in [20].

As mentioned above, the automorphisms of the Mikhailov lattice are T-dualities of the theory.
As such they restrict the moduli space, and fixed points of discrete transformations are expected to
display gauge symmetry enhancement. Indeed, we have shown that this is the case in d = 1. A striking
feature of the T-duality in d = 1 is that it mixes untwisted and twisted states.

The 8-dimensional CHL string is known to have a dual F-theory description in terms of compac-
tification on a K3 surface with frozen singularities [22,56]. The gauge groups arising in F-theory on
such K3 surfaces were worked out very recently in [63], and agree perfectly with the heterotic groups
of maximal enhancement given in Table D.5, giving yet more support to the exhaustiveness of our

algorithm.
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It is known that for d > 3, superstring vacua with 16 supercharges exhibit a broader pattern of rank
reduction. In particular, in d = 3 there are components with rank 7, 5 and 3 for which an underlying
momentum lattice analogous to I'(4) has been constructed [23]. In Chapter 5 we extended our analysis
to these theories. This was done by finding embeddings of weight lattices into the momentum lattices
constructed in [23], taking into account an extra constraint on the role of the lattice vectors as stated
in Proposition 3, stating the precise criteria for gauge groups being realized in the relevant theories.

Generalizing our previous algorithms we produced the list of maximally enhanced gauge groups
that are realized in the heterotic string in 7d and 6d, encompassing the usual Narain component,
and five other components with rank reduction realized via non-trivial holonomy triples. For 6d we
verified exhaustiveness of these lists in [26] by computing the possible embeddings of rank 20 Lie
algebra lattices on the Niemeier lattices. For 7d, since the explorations are simpler than for 6d, we
conjecture that they are also exhaustive.

Exploiting the relations between the lattices corresponding to different compactifications, we found
the general freezing rules for all these components, generalizing the results of [20] for the 8d CHL
string. We described this map as a projection of the root sublattice of the gauge group in the toroidal
compactification to the orthogonal complement of the singularity associated to each component. For
7d this map does not alter the fundamental group, and we found an explicit match with the mechanism
of singularity freezing in M-theory on K3. For 6d we found a novel feature, since the freezing map
explicitly involves the topology of the gauge groups, in particular acting only on non-simply-connected
ones. This relation is equivalent to that of connected components of the moduli space of flat G-bundles
over T2 with G' non-simply-connected.

The moduli space components that we have studied are not all. In [23] it was shown that there is
at least another component in 6d: a Zo x Zo-quadruple, and an exhaustive list of the components of
the moduli space of heterotic strings in 6d with maximal supersymmetry is not known. However, the
map we have obtained is defined in terms of the fundamental group elements of the gauge groups and
seems to naturally extend to many other cases that may correspond to other moduli space components,
some of which require an M-theory description. This extension was the subject of [26].

On the other hand, the relation between these freezing rules and the problem of non-simply-
connected flat G-bundles over T2 is not clear, as in the heterotic string we are considering bundles
over T%. Tt may be better understood, perhaps, in a dual frame such as F-theory on K3 x T2 where
one can more naturally isolate tori such as the fibers of the K3. As the former problem is rather
involved, it is tantalizing to think that it may play a role in constraining the possible theories with 16
supercharges that can be coupled to gravity (see e.g. [84] for recent results in this direction).

Note that our exploration algorithm can be implemented in arbitrary dimension. A classification
for the gauge groups appearing in less than 6 space-time dimensions was left for future work. An
important open question is if it is possible to find a set of freezing rules for 5 or less dimensions
analogous to the ones appearing in higher dimensions.

Finally, we note that our results serve to test Swampland conjectures [85], which are also easier to
study in high-dimensional theories with a large amount of supersymmetry (see e.g. [21,63,83]). More
generally, it would be very interesting if the methods developed here could be generalized to theories

with less supersymmetry such as [86].
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Appendix A

Supplements to Chapter 2

A.1 Lie algebras and lattices

Modular invariance of the one-loop partition function of the heterotic string implies that the 16-
dimensional internal momenta must take values in an even self-dual Euclidean lattice, I' = I'*, of
dimension 16. There are only two of these: I's @ I's, where I'g is the root lattice of Eg, and I'1g, which
is the root lattice of SO(32) in addition to the (s) or (¢) conjugacy class

s@ls = T, for Eg x Es (A.1.1)
T'ig = Fg + Iy for 80(32)

In this Appendix we summarize some basic notions on these lattices.
Given a Lie algebra g of rank n, taking arbitrary integer linear combinations of root vectors, one
generates an n-dimensional Euclidean lattice I'y, called the root lattice. E.g., for the rank n orthogonal

groups SO(2n), the n component simple root vectors are
(£1,+1,0,...) all other entries zero, (A.1.2)

and all permutations of these. For Ejg, the eight component vectors

(+1,+1,0,0,0,0,0,0) + permutations
(A.1.3)
(:I:%,:I:%,:I:%,:I:%,:I:%,:I:%,:I:%,:I:%) even number of “ - signs

contain the 240 roots, i.e. the 112 root vectors of SO(16) and 128 additional vectors.

Any Lie group G has infinitely many irreducible representations which are characterized by their
weight vectors. Irreducible representations fall into different conjugacy classes, and I'y can be thought
of as the (0) conjugacy class. Two different representations are said to be in the same conjugacy class
if the difference between their weight vectors is a vector of the root lattice.

While Eg has only one conjugacy class, namely (0), the SO(2n) algebras have four inequivalent

conjugacy classes:

o The (0) conjugacy class, i.e. the root lattice, contains vectors of the form

n
(n1,...,nn), n; €Z, Zni:Omon. (A.1.4)
i=1
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o The vector conjugacy class, denoted by (v), contains vectors of the form

(n1,....ng), M €Z, > nij=1mod 2. (A.1.5)
i=1

o The spinor conjugacy class, denoted by (s), contains vectors of the form

1 1 -
(n1+§,...,nn+§)7 n’LEZa ;nlzomOdz’ (A'1'6)
o The (c) conjugacy class contains vectors of the form
1 1 -
(n1+§7-"7nn+§)7 'I’liEZ, ;nl:1m0d2 (A17)

The weight lattice I'y, is formed by all weights of all conjugacy classes including the root lattice
itself. Clearly I'y C I'y,, and for a simply-laced Lie algebra, which roots have squared modulus 2, it

can be shown that I'y = I'y,. Therefore, the weight lattice of Eg contains the weights of the form

I { (na,-ms) (A.1.8)

(m + %, N T %) , S8 | n; = even integer

with n; € Z, is identical to its root lattice, which implies that it is even self-dual. It is also identical
to the SO(16) lattice with the (0) and (s) conjugacy classes

A necessary condition for a self-dual lattice is that it be unimodular. The SO(2n) Lie algebra
lattices are unimodular if they contain two conjugacy classes. The weight lattice of Spin(32)/Zs is
identical to the SO(32) lattice with the (0) and (s) conjugacy classes. It is even self-dual and it’s

vectors are:

Tl . {( (na, .. m10) (A.1.9)

1 1 16 :
ny+3,...,n16 + 5) > i—1 i = even integer

Both the root lattice of Eg x Eg and the weight lattice of Spin(32)/Zy contain 480 vectors of
(length)? = 2 which are the roots of Eg x Eg and SO(32), respectively.

It is convenient to write the conjugacy classes of SO(32) in terms of conjugacy classes of rep-
resentations of SO(16) x SO(16). We denote by (zy) a vector with the first eight components in
the conjugacy class (z) of SO(16) and the last eight in the class (y). = and y can be 0, s, v or c.
We then have 16 conjugacy classes (xy). The SO(32) conjugacy classes correspond to the following
SO(16) x SO(16) pairs

(0) = (00), (v0)
(8) = (s8), (c0) (A.1.10)
(©) = (s0), (e
(v) = (O0), (40)

We have then
T = T8 4+ T = (00), (vv), (s5), (cc)
(A.1.11)
Ps @ Ts =Tsig = (I +175) @ (05 + I5) = (00), (s5), (0s), (50)

123



The dual to the root lattice of SO(32) is
(F(l]ﬁ)* =TIy = (00), (vv), (ss), (cc), (0v), (v0), (sc), (cs). (A.1.12)

We also use the following properties of the lattices
(0s), (s0)
(vv), (cc)
T'y6 N Dsps = (00), (ss) (A.1.13)
(00), (ss)
(ve), (cv)

A.2 Maximal enhancement points for A = (A, 015)

In this Appendix we show how to obtain the maximal enhancement points for the particular case of
Wilson lines with only one non-zero component, treated in Section 2.3.4. We also prove that the only
possible maximal enhancements for Wilson lines with only one non-zero entry are to SU(2) x SO(32),
SO(34), SU(2) x Eg x Eg and SO(18) x Ej.

The maximal enhancement points are those where two or more curves intersect. There are three
types of intersections: Gy, g (R) = Guy,q (R), bwy,q1 (R) = busg,q0 (R) and ay, ¢, (R) = by, 4, (R), that we

treat separately. In the case of I's x I'g, the curves b can in principle have a curve ¢ on top of them.
A.21 aW1,(l1 (R) — aW2,(12 (R)
_ 2 p2 2_
awl?ql(R) _ 2q1£14/2—2wiR 2q;—1 c7

w1 ) w1

(R) _ 2g2%24/2—2w3 R? 2¢2—1 c7z

Qws,q2 wa ) wa

Frway/2 — 202 R2 49 w1\/2 — 2WER2 = 21wy — 2qow1 = C' = 2C € 27. (A.2.2)

The case C' = 0 is trivial, so we must assume C # 0, which leads to

(A.2.1)

imply

2 2 u2\2
p= 2 Reit2w - CT)7 (A.2.3)
Cr BwiwsC"?

5,2 2
Defining N = a qu)wg + ( Zqz)wl +4q1g2 € Z, we can rewrite (A.2.3) as

1—
w1 W
N? =4 -20"R?. (A.2.4)

Since (1 — 2¢?) and w; are odd, N is even. Also, since C’ and R are non-zero we get N2 < 4, which

implies N = 0, then R? = % Then the radius where a curve a with winding w; intersects another
curve a with winding ws is

R™2=w? 4+ wi. (A.2.5)
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The constraint

2,2
witw;y

w2 — ui| =\ 252 = must be a perfect square .

witws
2
If wy = wy = w, then q; = g2 £ 1. The winding must be a divisor of both 2¢? — 1 and 2¢3 — 1, but
these numbers are coprime Vq;. Then the only possible value of w is 1. In conclusion, the only curves
a with the same winding number that intersect are a; 4(R) and aj 4+1(R). And the intersection is on

_ 1
R—ﬁ'

A.2.2 le,(h (R) - bW2,Q2 (R)

2q1+1£14/1—2w? R? 2q1(q1+1
bthl(R) = =, 1(qLtl) Sy

w1 w1

(A.2.6)

2ga+1d2/1-2w3R?  2g5(ga+1)
bwzﬂz (R> = =, €z

w2 w2

In this case,

Frwgy/1 — 203R? 5 w1 — 203R2 = (21 + 1wy — (242 + Dwy = C € Z. (A.2.7)

If C =0, then wy = ws and g1 = ¢qo. f C'#0

2 _ 1 (witwi—C?)?
R® = 55 SuTucT (A.2.8)

Defining N = 2@+, 4 2a(@+l),, (2q1 + 1)(2q2 + 1) € Z, we get

w1 w2

N?=1-2R*C*<1 = N=0, (A.2.9)

2 _ 1
and then R* = 507

winding w; intersects curve b with winding ws is R72 = 2(w? + w3).

Replacing in (A.2.8), C% = w} 4+ w3, and then the radius where curve b with

The constraint
1(2q1 + Dwa — (2g2 + Dwy| = /w? + w3 = wi+ w3 is a perfect square. (A.2.10)

If w; = we = w then |2(q1 + ¢2)| = v2w. The LHS. is integer and the RHS is irrational, then there is
no winding such that by g, (R) = by,q¢, (R).

A23 anan (R‘) - bW2,Q2 (R)

5. 2P0 2
G (R) = V2R 2ol o g (A.2.11)
_ 2 p2
bup.gp(R) = Z2EENZRRR - eledl) ¢ 7 (A.2.12)

Frway/2 — 202 R2 49 wiy/1 — 2W3R? = 2qywy — (22 + Vw1 = C € Z. (A.2.13)

Since w; is always odd, then C' is also odd (in particular it is non-zero). Then

1 (w2 + 2w3 — 02)2
2 1 2 N2 2 R2
R = c? SwiwsC? and —2oac ’ (A.2.14)
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where N = Mu@ — Mwl +q1(2q2 + 1) € Z, and then N = 0 or 1, which give R? = & or

w1 w2
R? = ﬁ From (A.2.14) we obtain C? = w? + 2w} or C? = (w; — w2)? + w3. Then the radii where

a curve a with wi intersects another curve b with wo are:

R2=w?+2w3 or R?=2((w; —wy)*+ w) (A.2.15)

For each case we have one of these constraints:

12q1w2 — (22 + Dwi| = \Jwi +2w3  or [2qrws — (2q2 + 1wy | = \/(wl — wy)? + w3

and then w? +2w3 or (w1 —ws)? +w3 must be a perfect square. If wy = ws = w we get the constraints:
2q1 — (2¢2 + 1)| = V3 or [2¢1 — (2¢2 +1)| =1 (A.2.16)

leaving only the second case, with g3 = q1 or ¢ — 1. The quantization conditions imply that w must
be a divisor of both 2¢? — 1 and 2¢;(q; + 1). But it can be shown that these numbers are coprime,
and then w = 1. The only curves with the same windings that intersect are a;4(R) and by 4(R) or
b1 q—1(R). The intersections are at R = %

Summarizing, we have:
Qi g1 = Owg,ge R™? :w% + w% =C?
buygr = bunge = R =2(w} +w3) = 2C?
(A.2.17)
2 2 2
wy + 2w; = C
Gy gy = Dungy = R = ' 2
2((w1 — wg)? + wd) = 20?

The winding numbers on b can in principle be any positive integer and those on a can only be the

divisors of some number of the form 2¢> — 1, ¢ € Z.

A.2.4 Enhancements to SO(34) or SO(18) x Ej

Here we prove that a., ¢ (R) = Gus,,q,(R) implies that there exist integers ws, g3, ws and g4 such that

Aw1,q1 (R) = buws gs (R) = bw4,q4(R)-
We start with R=2 = w% + w%. If wy > wo, there are integers w3 and wy such that w; = w3 + wy

and wo = w3z — wy, because wy and ws are odd numbers. Then
R™? = wi+ 2wz — w1)? = 2(w? — 2wzw; + wj +w}i) = 2((w1 — w3)* + w3) (A.2.18)

Since R=2 = 2((w; — w4)? + w?) as well, there exist integers ws, wy, g3 and g4 such that Ay g (R) =
bus.g5 (R) = by, ¢ (R). Note that we can always find g3 and g4 because the functions b admit any value
of w.

Replacing w3 = %(wl + wo) and wy = %(wl — wsy) we get
Ay g1 () = Quggo (R) = Quy g, (R) = Gy g0 (R) = by ) /2,95 () = by —wn) /2,00 (1)
Note that we can also write the radius as 2(w3 + w3). We want to satisfy
(V2R)™! = [2q1ws — (23 + Dwn| = 21wy — (2q0 + Dwi| = |(2g3 + Lws — (2q4 + Dws,
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and we have that

(V2R)™

lqrws — ewi| = 2qrws — (g1 + @2)wi| = |2q1ws — (q1 — g2)wi|
= (@1 + @)ws — (1 — g2)ws] .
Then we need to identify ¢1 + g2 =2¢3+ 1,1 —q2 = 2q4 + 1.

We still have to prove that 2¢3(gs + 1) and 2¢4(gs + 1) are divisible by ws and wy, respectively,

which amounts to proving that

2 2
w; is a divisor of 2¢2 — 1 and |qrws — gowy | = |/ 12
Z ! ez = e 2 (A.2.19)

= w; + wq is a divisor of (q; + q2)2 -1
We checked that this is satisfied for the first 300 values of g;.
Then we have that
g (B) = Qugge(R) = b(w1+w2)/27(q1+q271)/2(R) = b(w1fwz)/2,(q1*q2*1)/2(R) :

To prove that by, g, (R) = bu,.q, (R) implies that there exists integers w1, ¢i, wa and ¢o such that
bus.qs(R) = @y g1 (R) = @y go(R), we start with R=2 = 2(w? + w?). Define integers w; and ws such

that ws = (w1 + w9) and wy = % 5(w1 — ws) (we assume wz > wy),
R™? =2((wy —w3)®* +w3) and R 2 =2((wy — w3)? + w?).

But we still need to satisfy the constraint that w; and wy are divisors of 2¢? — 1 and 2¢3 — 1 for two
integers ¢q; and go. With the identifications ¢1 + ¢2 = 2g3 + 1,91 — g2 = 2q4 + 1, we get the correct
radius

U= v2|(2¢3 + Dws — (201 + Vws| = V22q1ws — (2g3 + 1)w],

bws,qa (R> - bw4,tI4 (R) = bws,qg (R) - bw4¢14 (R) - aw3+w4,Q3+q4+1(R) = Quwz—w4,q3—qa (R) .

We still have to prove that 2¢? — 1 and 2¢3 — 1 are divisible by wy and wsg, respectively. This is the

same as proving that

q; is a divisor of 2¢;(q; + 1) and |(2¢3 + 1wy — (2q4 + 1ws| = /w3 + w?

— w3 4 wy is a divisor of 2[(g3 + 1/2) + (qa +1/2))° — 1,

(A.2.20)

which we checked is satisfied.

In conclusion, we have that, for R72 = w? 4+ w3, au, ¢ (R) = Quy.q (R) <

Qwy,q1 (R) = Quo,qo (R) = b(w1+w2)/2,(tI1+Q2*1)/2(R) = b(ﬂ)l*W2)/2,(Q1*Q2*1)/2(R)
= Dy ws)/2,(1+a2—1)/2 () = D(wy —w3)/2,(q1 —g2—1)/2(R) -

The Wilson lines that give this enhancement can be written in four different ways

2 2 2 1 w 2 1 w
ﬂilf}z ﬂing _ BT ppa _Z L /RS
w1 ws w3 W4 Wy

Using that wg = 2135%2 y = $12%2 gg = % and q4 = %, after a few steps, we get
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F4 = =3 = =9 = F1 and then the Wilson lines are

2 2
A = ﬂi—fR A =2 %\@R,
2

T , 2+ X (A2.21)
Ay =BT pp oA =10 L B AR
w3 w3 w4 Wy
From here,
(V2R)™! = F(qwa — quun) € Z (A.2.22)
and then, after a few steps, we can prove that
1 A 2
R V2 Ve L(iw+1) ez, (A.2.23)

Defining integers m = (v/2R)~! and n = A/+/2, all this type of enhancement points are given by

1 n n%+1
A)=——=,— such that Z A.2.24
(R, A1) <m\/§’ m) suc a 5 € ( )
and then
R?= 2,50, 338, 578,1250, 1682, 2738, 3362, 5618, 7442, 8450, 10658, . . . (A.2.25)

These are all of the form 2C? with C an integer with prime divisors congruent to 1 mod 4. That is:
1,5,13,17,25,29,37,41,53,61,65,73,85,89,97,101, 109, . ... Except for the 1, these numbers are all
Pythagorean primes or multiples of them.

We want to see if the b lines considered here can be interposed with a ¢ line. g3 and ¢4 are suitable
for curves b with ws and wy4. For curves ¢ to coincide with them, we need w; even and ql(qﬁl) eZ. If
one of the two curves b has also a curve ¢ then we have an intersection between an a and a ¢ curve.
Analyzing all the possibilities, it can be shown that there are no ¢ curves that intersect with more

than one other curve.

A.2.5 Enhancements to SU(2) x SO(32) or SU(2) x Eg x Eg

The equality ay, g, (R) = by, ¢ (R) arises for two type of radius
R2Z=w?+2w3 or R?=2((w; —wy)®+wi). (A.2.26)

The second type gives R~2 = w? + w% if wy = %, which implies that there is an intersection with
another curve a of winding ws. Then, we restrict to the first type, where R2 is odd for odd w?. Thus
the even R~2 found in the previous section cannot have additional curves a or b on the intersection.

For R~2 = w? + 2w}, the constraints are

2¢%2—1
21w — (2g2 + Dwn| = Jw} +20f, L= ez, 2eletd ez (A.2.27)
The Wilson line can be written as

Ay = 2aEi2Rws ) 4 20241 Ruy (A.2.28)

w1 w2 ’
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and equating them leads to 49 = F; and
R =T (2qw2 — (2¢2 + Dwn) , (A.2.29)

implying that R~! is an odd number. After some algebra, we get

1

= A R(%A2+1) €z, (A.2.30)

and then all this type of enhancement points satisfy

1 2n
RA)=|—,— A.2.31
( ) 1) (m7 m) ( )
for integer m = R~ and n = R721A1, such that
2
2+l g (A.2.32)
m
We obtain
R~ =3,9,11,17,19,27,33,41,43,51,57,59, . .. (A.2.33)

all integer numbers with prime divisors congruent to 1 or 3 (mod 8).
It is not hard to prove that all the curves b that intersect just one curve a are superimposed by a

curve ¢ (in the I's @ I'g case).

A.3 Other slices of moduli space

Here we analyze two-dimensional slices of moduli space given by the radius and one parameter in
the Wilson lines. First we consider the HO theory compactified with Wilson lines of the form Al =
((A)p,016—p). We then show how the Generalized Dynkin Diagrams give us the points of enhancement

located in the fundamental region (in the conventions of Section 2.4).

A.3.1 Slices for the HO theory

The results are summarized in the following figures, after which we present the calculations leading

to them.
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SO(30) x U(1)?

SU(2) x SO(30) x U(1)
B S0(32) xU(1)

SU(2) x SO(32)

S0(34)

0.2 0.4 0.6 0.8 1.0

Figure A.1: HO with Wilson line A’ = (A, 0;5)

[] SU(2)x SO(28) x U(1)?
B SU2) x SU(2) x SO(28) x U(1)
B S0(32) xU(1)
H+E SU@2) xS0(32)
E+E+-l SU@2) xSU3) x SO(28)

0.2 0.4 0.6 0.8 1.0

Figure A.2: HO with Wilson line A7 = ((A)z, 014)

<

HEON[]
n
S)

m+m+m SU
O+m+mE-+m SO(34)
B+ SU@

H+-E SU@

R
0.2 0.4 0.6 0.8 1.0

Figure A.3: HO with Wilson line A’ = ((4)3,013)
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_puN NN

D+ + W+ SO(10) x SO(24)
Bl SU

Figure A.4: HO with Wilson line A’ = ((A)4, 012)

SU(2) x SU(5) x SO(22) x U(1)
SU(6) x SO(22) x U(1)
SO(10) x SO(22) x U(1)
SU(5) x SO(24) x U(1)
SO(32) x U(1)
O+0++W Es x SO(22)
O+O+ml+m SO(34)
B-W-0+E SU®B) x SO(26)
O+@ SO(10) x SO(24)
B+l SU@2) xS0(32)

EEOOMN

[] SU(5) x SO(22) x U(1)?

Figure A.5: HO with Wilson line A’ = ((4)s,011)

2 >

08 SU(6) x SO(20) x U(1)?
SU(2) x SU(6) x SO(20) x U(1)
06 50(12) x S0(20) x U(1)
\ S0(32) x U(1)
B+l SU@2) xS0(32)

D+m+m+E+-E+B Er x SO(20)

_ ol N

0.4

0.2

0.0

Figure A.6: HO with Wilson line A’ = ((A)g, 010)
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[] SU(7) x SO(18) x U(1)*

Figure A.7: HO with Wilson line A7 =

NN

\ -
:
0.2 0.4 0.6 0.

R

1.0

Figure A.8: HO with Wilson line A’ =

132
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0.2 0.4 0.6 0.8 1.0

Figure A.10: HO with Wilson line A? = ((A)10, 0¢)
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Figure A.12: HO with Wilson line A7 = ((A)12, 04)
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Figure A.16: HO with Wilson line A7 = ((A)5)

For Wilson lines of type A = ((A)p ) 016—p) there are families of curves of enhancement paramet-

erized by three integer numbers «, 8 and ¢. Inside each family there are different curves corresponding

to different winding numbers and different integer values for ¢. If R is sufficiently small then w can

be arbitrarily large.

Ay,a,66(R)

2
B) = p(la] - da+ B +45 — 2+ 20R?)

pw

pq+ pE\/p? —p A+ 2wR?)

i
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where we defined:
b= a——= and A= lof—da+p+40—2.
The massless states associated with each family of curves are

m=((a£ (1~ 36))a, (£ 36)pa, £ 16, (£26)15 ) - (A.3.2)

The possible values of the parameters are listed in the following table, with the color we use to

identify them on the figures and the corresponding gauge group.

| Colour | § | 8 |

B

Gauge group

[ Ap—1 X Dig—p
il 0|0 0 Al X Ap_1 X D16—p
] 010 1 Ap X Dlﬁfp
] 010 2 Dp X D16_p
] 01]0 3 Ep X D167p
0 01 0 Ap—l X D17_p
[ | 0]1] 1 D
|| 110 0 Ap,1 X E17,p
] 10| 1 | Digforp=12, Aygforp=13, A5 x Ay forp=14, A5 x Dy forp=15
m 110 2 D
The number of states for each of these curves is given by

2 <‘p|> (32 — 2p)P2(15=P+op16)d (A.3.3)

a

The allowed values for ¢ and w are the ones that satisfy the quantization condition

2
pe”+2ug+ A (A.3.4)
2w

For arbitrary A, we get the 3p? —63p+480 roots of U(1)%2x SU(p) x SO(32—2p). If A is half-integer
we get the 4p% — 64p + 480 roots of U(1) x SO(2p) x SO(32 — 2p), so we can think of them as part of
the family with (6, 3,a) = (0,0,2) and w = 0 which give p? — p additional states. For p = 2 (0,0, 2)
is equivalent to (0,0,0).

If A is integer we get the 480 roots of SO(32) x U(1), so we can think of them as part of
the family with (0, 3,a) = (0,1,1) and w = 0 superimposed with another one of the family with
(6,8,a) = (0,0,2) and w = 0, which give 63p — 3p? = (64p — 4p?) + (p?> — p) additional states. For
p = 16 we only have the (0,0,2). We can classify some of the enhancements by the colors of the curves

that intersect, we list them on the table below:
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’ Colours ‘ Gauge group

" EA | Ay x Dig

| BE | Ar x Ap—1 X Er7—p

O+m Ept1 X Dig—p

m+O Ap X Er7p
H-EE| A2 XA -1 X Dig—p

A.3.2 Relation to Generalized Dynkin Diagrams

Here we show how some of the previous enhancement curves and points can be obtained from the
Generalized Dynkin Diagram in (2.4.3).

For Wilson lines of the form (016—p, (A),) and at any radius, then the inequality —As < A, as
well as all the A; < A;1; inequalities are saturated except for Aj6—, = A17—p. This means that the
gauge group is given by the generalized diagram with all the nodes except for 16, 18, 19 and 16 — p.

Then the diagram that gives the enhancement symmetry is:

17
.—I—Hf—. o — —0 000

1 2 3 4 15-p 17-p 12 13 14 15 (A 3 5)

which corresponds to the A,_1 x Dig_p(xU(1)?) = SU(p) x SO(32 — 2p)(xU(1)?) at a generic value
of A and R. Choosing particular values for them, we can saturate one or more inequalities associated
to the missing nodes. To obtain the horizontal lines we have to pick an arbitrary R, which discards
the nodes 18 and 19. To get the nodes 16 — p or 16 we have only one possibility: A = 0 for the former,
and A = % for the latter. We get, respectively:

17
.—I—W —— —0—0 00

1 2 3 4 16-p 1213 14 15 (A.3.6)
17 I I 16

4. F
1 2 3 4 15-p 17-p 1213 14 15 (A.3.7)

and hence the gauge groups are Dig = SO(32) (xU(1)) and D, x Dig—p = SO(2p) x SO(32 — 2p)
(xU(1)) (blue and cyan lines). Finally, choosing a specific value of R, the inequality associated to the
18th or 19th node (not both at the same time) can be saturated. This gives maximal enhancements. In
the D1g case, the only possibility is to add the 18th node, which gives A; x Dj¢ (intersection between

a blue and a red curve):

® 18
17
O—I—O—Of —— —00 00
1 2 3 4 16-p 1213 14 15 (A.3.8)

In the D, x Dig_, case, one can add the 18th or the 19th node, depending on which part of the
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diagram has less than 8 nodes

19
17 E I 16
4. F

1 2 3 4 15-p 17-p 1213 14 15 (A.3.9)
18
17 I E 16
4' .7
1 2 3 4 15-p 17-p 1213 14 15 (A.3.10)

This accounts for D, x Ej7_, (intersection between a cyan and other curves) and Ep,;1 X Dig—p
(intersection between a cyan and a purple curve).

For R(A) (with arbitrary A) saturating the inequality associated to the 18th node, we obtain
Ay x Ap—1 X Dig—p (red curves):

® 18
17
Q—I—O—% - o —eo oo
1 2 3 4 15-p 17-p 1213 14 15 (A 3 11)
And in particular for A = %, we have
19 ® 18
17
-—o o —eo oo
1 2 3 4 15-p 17-p 121314 15 (A 3 12)

which gives the gauge group A; x Ei7_, x A,_1, considered in Section 2.3.3.4 and seen in the figures
at the intersections between the red and purple curves.
On the other hand, choosing R(A) so that it saturates the inequality associated to the 19th node,

we obtain Ei7_, X Ap,_1 (purple curves):
19
17
Q—E—O—F o o —e oo

Then we can color the dots on the Generalized Dynkin Diagram depending on which curves saturate

their inequality:

19 ? 18
17 16
—— 4.—.—‘—.
1 2 3 4 16-p 12 13 14 15 <A314)

The enhancements corresponding to each curve are obtained by removing all the colored nodes except

the node with that color. The intersections of curves give the group associated to the diagram obtained
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by keeping the nodes with the colors of the involved curves.

Something odd happens for p =1

19 18
17 E ? 16

12345678 9101112131415 (A.3.15)

For generic A and R, this is D15. For A = 1 (cyan dot) we get D16 and if we also take R? = % (red
dot) we get Dj7. If, on the other hand, we take A = 0 (blue dot) then we get Djs and if we also select
R? =1 (red dot) we get A x Dyg. If we only take the appropriate R to have the red dot, then we get
Ay x D15. To compare with figure A.1 we have to take into account that the cyan solutions are not
well defined for p < 2, and then we see them as blue curves.

For p = 15, the equation for the seventeenth node no longer holds, and then we have:

19 18
17 E ? 16

12345678 9101112131415 (A.3.16)

For generic A and R this is Aj4. Selecting a specific R, we can turn on the red and/or the purple
nodes to get Ay X A1q or Dy x A14. Selecting A = % (cyan dot) we obtain Dj5 and for A = 0 both
blue dots are turned on and we get Dig. Only choosing R =1 (red dot) we get A; X Dig.

For p = 16 we have a very different situation:
19 18
17 ? ? 16

12345678 9101112131415 (A.3.17)

For generic A and R this is Aj5. Selecting a specific R, the red and/or the purple nodes are turned on
and we get A1 X Ay or Dy X Aqs. Selecting A = % (cyan dot) we obtain Dig and for A = 0 (orange
dot) we get D1g. Only choosing R =1 (red or purple dot) we get A x Dig.

The enhancements of the curves that correspond to the other colors cannot be obtained with this
construction. On one hand we see from the figures that the Wilson lines that give these curves are not
in the fundamental region in the conventions of Section 2.4. On the other hand, if this region is the
fundamental region, it should contain all the possible enhancement groups, and as such all the curves
with the different colors. However, it is easy to see that using this method, the Wilson lines in the
fundamental region that give the missing enhancement groups are not of the form chosen, with p equal
components and the other zero. For example, to obtain the enhancement A, x D16, corresponding
to the yellow curves, we would need to replace the 15th node with the 16th one (and then add the

18th one), which requires A = 1 — Ay5 which is not within the ansatz chosen for the Wilson lines.
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Appendix B

Supplements to Chapter 3

B.1 Notation and basics concerning lattices

L, even positive definite lattice of rank r

Typically L will be the sum of ADE root lattices. There is a basis formed by roots o; with a? = 2.
The Gram matrix of L has elements o; - ;. It is equal to the Cartan matrix when L is the root lattice

of an ADE group.

d(L), discriminant of L
It is defined to be the determinant of the Gram matrix of L. By assumption d(L) # 0.

L*, dual lattice
Lattice generated by the weights w; defined by w; - a;; = d;;. Clearly L C L*.

Ay, discriminant group
It is defined as Ay, = L*/L, also named Dy, or G, in the literature.
It can be shown that Ay, is a finite Abelian group of order d(L).

Since Eg is unimodular, its discriminant group is trivial. For L = A, Doyy11, Dam, Eg, E7,
Ap = Zn-f—la DLy, 29 X o, 735,75.

¢(Ar), minimal number of generators of Ap,
For example, for L = 2Eg+ Ag, ¢(AL) = 2, because Z3 x Z3 X Z7 ~ Z3Xx Z21. Notice that £(Ap) < r.

qr,, discriminant quadratic form
It is a map qr, : Ay — Q/2Z, z + L — x?>mod?2.

For example for L = A,,, A = Z,41 is generated by the class of the fundamental weight [w].

n N — .2 _ dntl=g) _ 5°n
nt+i’ whereas QL([’U)]]) - w] - n+1 T n+1?

For L = Doy y1, AL = Z4 is generated by the spinor class [s] with g ([s]) = 22t

Thus qr([w1]) = w} = with equalities mod 2.
For Da,,, AL = Z3 x Z3. One 73 is generated by the spinor class [s] with ¢qr([s]) = %, and the
other Zy by the vector class [v] with gz ([v]) = 1.
For Eg, Ar, = Z3 is generated by the fundamental weights of [27] with ¢7.([27])
For E7, A = Z5 is generated by the fundamental weights of [56] with ¢7,([56]) =

[SJ[SSRINEN

T, even positive definite lattice of rank d

It is characterized by the Gram matrix (Q);; = u; - u;, where u; are the basis vectors.
A generic even 1 dimensional lattice, denoted Aj(m), is a multiple by m of the A; lattice. It
is generated by a vector u; with u? = 2m and has discriminant group Za,, in turn generated by
1
(Uf)z = 2m-
We will mostly consider d = 2 and as in [14], represent @ as [u?,u1-ug,u3]. For classification of

even 2-dimensional lattices see chapter 15 in [49], and section 2 in [14] for a short account. @ can
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be brought to Smith normal form diag(si, s2), with positive integer entries. Then Ap = Zg, X Zs,.
Notice that if s; and sg are coprimes then Ar = Zg,5,. We will also need to compute the discriminant
form qr. From Q! we can read off u} - uy, where uj, uj are the basis vectors of the dual lattice 7.
Besides, Q7! gives the €} in terms of ¢;. With this data we can then find the generators of Ar and
derive g7. For example, for T with Q = [2,1,4], A7 &2 Z7; and Q7! = [%, —%, %] The generator of Ap

[
can be taken to be uj which satisfies 7uj = —uj 4+ 2uy € T, and has the lowest norm. Then g7 takes

values @modz j=0,...,6.

Hp, isotropic subgroup of Ap,

Hj C Ay is isotropic if qL’H =0.

For instance, for L = Ag, with Ap, = Zg, the subgroup Hy, = Z3 generated by ws ~ 3w; is isotropic
because qr([ws]) = & =2 = 0mod 2.

Another example is L = Dg, with Ay = Zs x Zo. Now there is an isotropic Hy = Zo generated by
the spinor class with s? = % =2 =0mod2.

An important example is L = Dyg which has an isotropic group Hy = Zo generated by the spinor

weight with s? = 18 = 4 = 0mod 2.

Orthogonal complement
Given a sublattice S of I, S C I', the orthogonal complement of S in I' is defined to be the set
St={xel|zy=0VWy €S}

M, overlattice of L
If L C M and the index [M : L] is finite then M is an overlattice of L. This means that M and L
have the same rank. In fact, [M : L]?> = d(L)/d(M). The index is also denoted by |M/L|.

The important Proposition 1.4.1 of Nikulin states that the set of even overlattices of L corresponds

bijectively with the set of isotropic subgroups of Ay [16]. The overlattice corresponding to Hy can
be constructed as My = {z € L*|[xmod L] € Hp}. (see e.g. proposition « in [44]). This means
that the elements of My are weights that can be written as roots plus generators in Hy. Besides,
the discriminant form gy, is given by the discriminant form gy, restricted to Hi /Hj. Orthogonality
is defined with respect to the bilinear quadratic form by [44]. In practice, y € H Ll if y e Ap and
y - x = integer for all x € Hy. To avoid cluttering we will drop the subscript in My when Hp has
been specified.

As an example, take L = Ag and Hj, = Z3 so that M/L = 73 and d(M) = 3% = 1. Then M has
elements x = y + nws, with y € L and n = 0,1,2. It can be shown that this M is isomorphic to Eg,
which is the unique rank 8 even unimodular lattice.

For L = Dg the overlattice associated to H; = Zo has elements x = y + ns, with y € L and
n = 0,1. This is nothing but Eg, as expected since the overlattice has d(M) = 5% =1.

For L = D4 the overlattice corresponding to Hy = Z, is the even unimodular lattice I';g with
elements x = y + ns, with y € L and n = 0,1. Unimodularity follows from M/L = Zs implying
d(M) = 5% = 1. I'j¢ is the HO lattice.

M.o0t, ToOt sublattice of M

It is the sublattice of M generated by roots, i.e. by vectors of norm 2.

For example, for the overlattice of L = Dyg, Moot = L. For L = Dg this is not the case because
the overlattice Eg has many more roots. This reflects the fact that for Dg the additional element s in

the overlattice has s = 2.

Primitive embedding
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A lattice S is primitively embedded in another lattice I" if S C T" and I'/S is torsion-free.

For example, Ag C Eg but the embedding is not primitive because Eg/Ag = Z3 as explained above.
An example of primitive embedding is As C Eg. Since A3 has rank 3 and Eg is even unimodular,
this follows from Theorem 1.12.4 of Nikulin [16] quoted below. It can then be shown that D5 C Eg is
primitive because Dj is the orthogonal complement of Az in Eg, and also that Eg is an overlattice of
Ds + As.

Nikulin’s Theorem 1.12.4 [16]

Every even lattice of signature (t(_),#(,)) admits a primitive embedding in an even unimodular

lattice of signature (I(_y, 1)), with /() —l(—y = 0mod 8, if

by Slhwyy to Sl tey i) < 5l +io) - (B.1.1)

N

In particular, if < (8 4+ d) then L of signature (0, ) admits a primitive embedding in I'g 4416.

B.2 Complements to Section 3.2

In this appendix we present some additional material for the discussion of the lattice embedding

formalism.

B.2.1 Embeddings of groups with rank » < d 4 16

The problem is now to embed L of signature (0,r), r < d 4+ 16, in the even unimodular Narain lattice

I'i.d+16- In this case there are also three criteria that read

Criterion 1, from Corollary 1.12.3 [16]
If 6(Ar) < 16 4 2d — r then L has an embedding in I'q 44 16.

Criterion 2, from Theorem 1.12.2(c) [16]
L has a primitive embedding in I'q q116 if and only if there exists a lattice T' of signature
(d,d+ 16 — 1) such that (Ar,qr) is isomorphic to (Ar,qr).

Criterion 3, from Theorem 7.1 [15]
L has an embedding in I'g 416 if and only if L has an overlattice M with the following

properties:

(i) there exists an even lattice T' of signature (d,d + 16 — r) such that (Ar, qr) is iso-
morphic to (Anr, qur),

(ii) the sublattice Myoor of M coincides with L.

Recall that Theorem 1.12.4 [16] further implies that when r < (8 + d) there is always a primitive
embedding. The above criteria clearly reduce to those in Section 3.2.1 setting r = d 4+ 16. The lattice

T now has indefinite signature so the application would be more complicated.
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B.2.2 More on the complementary lattice T of signature (0, d)

In Section 3.2.2 we have argued that T'= K(—1). To complete the proof that (Ans, qn) = (A, —qK)
we can use the following theorem of [49]: Let L; and Ly be two sublattices of a unimodular lattice Ls
such that!

Li1® Ly C Ls, L = (L1 ®R)N L, Ly = (Ly ®R)N Ls.

Then the discriminant groups Lj /Ly and L3/ L are isomorphic. The isomorphism is given by y1+L; —
y2 + Lo, where y; € Lj/Ly and y2 € L3/ La, whenever y = y; + y2 generates an isotropic subgroup of
L1 L.

To apply this theorem to our problem we take L1 = M, Ly = K, and L3 = I'g 4416, with K
and M given in (3.2.3) and (3.2.8). We have M ® R = R%¥*16 and K @ R = R%’. Moreover,
RO:4+16 I'ydy16 = M and R%0N 'y av16 = K. It follows that M and K have isomorphic discriminant
groups. It remains to show that they have isomorphic discriminant forms. The Narain lattice I'g 4416 is
generated by the lattice sum M @& K together with some isotropic vectors (glue vectors in the language
of [49]). These vectors are generically of the form y = y; + y2, where y; and y2 are non-trivial vectors
in the discriminant groups of M and K, respectively, and are connected by the discriminant group
isomorphism. Since y must be even, we have y?> = 0 mod 2. Therefore, y? + y2 = 0 mod 2, because
M and K are orthogonal. We thus find 4?2 = —y2 mod 2. This shows that ¢y = —qr, and so T as
defined is the complementary lattice of M.

'L ® R means the set of all points obtained by real linear combinations of the basis vectors of L.
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Appendix C

Supplements to Chapter 5

Examples of freezings

Here we give some examples of freezings of gauge groups in 6d heterotic strings. For simplicity we
use the A-to-G notation for gauge groups. Whenever the length of an A factor is not 2, superscript

indicates half its length.

a) 2A1 + Ay + D7 with H = Z, generated by k = (0,0, 3,3), with center (2,2,12,4) can be frozen to

b) As+ A1 + Eg with H = Zg generated by k = (2,2,2), with center (4,12,3) can be frozen to

c) 3A; 4+ 2A4 + Ag with H = Zj generated by k = (1,1,1,4,4,1), with center (2,2,2,5,5,10) can be

frozen to

d) 2As + 2A5 + Eg with H = 73 generated by k1 = (0,0,2,4,1) and ke = (1,2,0,2,1), with center

ko Singularity L H k Center
(0,0,6,2) 8A1/Z, 2A1 +C5+ A2 | Zy | (0,0,1,3) | (2,2,2,6)
(0,0,9,1) | (2A1 +4A3)/Z, | 2A1 +C3 4+ A3 | 1 (2,2,2,3)

ko Singularity L H k Center
(2,6,0) 8A1/Z Ee+ A2+ A2 | Z3 | (1,0,2) | (3,2,6)
(0,4,1) 6Ay/Z; As+Go+ A3 | Zy | (2,0,2) | (4,1,4)

kq Singularity L H k Center
(1,1,1,0,0,5) | 8Ay/Zy | 2A4+AF | Z5 | (4,4,1) (5,5,5)
(0,0,0,3,3,2) | 4A4/Z5 | 3A1+A% | Zy | (1,1,1,1) | (2,2,2,2)

(3,3,6,6,3) can be frozen to

ko Singularity L H k Center
0,0,2,4,1 6As/Z3 | 2A0 + Go +2A3 | Z3 | (1,1,0,0,0) | (3,3,1,2,2
1
(2,1,2,2,0) | 6Ay/Z5 Eg + 2A3 Z3 | (1,0,0) (3,2,2)
1,2,0,2,1 6A5/Z3 A5+ Gy + A3 | Z3 2,0,0 6,1,2
1
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e) 3A1 + Dip + E7 with H = Z3 generated by k; = (0,0,0,1,0,1) and ks = (1,1,1,0,1,0), with center
(2,2,2,(2,2),2) can be frozen to
kq Singularity L H k Center
(1,1,1,1,1,1) 8A1/ZQ Cs+Fy Zs (1,0) (2,1)
(1,1,1,0,1,0) 8A1/Z, Bs + E7 Zy (1,1) (2,2)
(0,0,0,1,0,1) 8A1/ZQ 3A1 + Bs+Fy | Zo (1,1,1,1,0) (2,2,2,2,1)
f) 2A1 +2A2+ A3+ Ay with H = Z15 generated by k = (1,1,2,2,1,1), with center (2,2, 3,3,4,12) can
be frozen to
ko Singularity L H k Center
(0,0,0,0,2,6) 8A1/Z5 2A1 +2A + A2+ A2 | Z6 | (1,1,2,2,1,1) | (2,2,3,3,2,6)
(0,0,2,2,0,4) 6As/Z3 2A1 + Az + A3 Z, (1,1,1,1) (2,2,4,4)
(1,1,0,0,3,3) (2A1 + 4A3)/24 2A5 + A3 Z3 (2,2,1) (3,3,3)
(0,0,1,1,2,2) | (2A1 + 2A5 +2A5)/Zg 2A; + A2 + AY 7, (1,1,1,1) (2,2,2,2)
g) A1+ 3A5+ Dy with H = Z5 x Zg generated by k1 = (0,0,3,3,(1,1)) and k2 = (0,1,1,2,(0,1))), with
center (2,6,6,6,(2,2)) can be frozen to
ko Singularity L H k Center
(0,0,3,3,(1,1)) 8A1/Z, A+ A5+ Cy +2A% | Zg (0,5,1,1,2) (2,6,2,3,3)
0,(1,0),0,1,1)
0,2,2,4,(0,0 6Ay/7 Ay 4+ Dy + 3A3 73 (0,(1,0),0.1, 2,(2,2),2,2,2
( (0,0)) 2/Z3 1+ Dy 1 2| (0,(0.1),1,0,1) (2,(2,2) )
(0,1,1,2/(0,1)) | (2A;1 4+ 2A2 + 2A5)/Zs A+ Co+ A3 Zs (0,1,1) (2,2,2)
h) 4A; + As+2A7 with H = Zy x Z4 generated by k1 = (0,0,1,1,0,2,2) and ko = (1,1,1,1,0,0,4), with

center (2,2,2,2,3,8,8) can be frozen to

ko Singularity L H k Center
(1,1,1,1,0,0,4) 8A1/Z4 A+ A7 +A3 | 74 (0,2,2) (3,8,4)
0,1,0,1,0,2,2)
0,0,0,0,0,4,4 8A,/7 4A 1 + Ay +2A2 | 72 (0,1,0,1,0,2, 2,2,2,234.4
( ) e R B 000,22 | )
0,0,1,1,0,2,2 2A1 +4A3)/Z4 | 2A1 + Ay +2A% | Zy 1,1,0,0,0 2,2,3,2,2
1

i) 4A14+2A3+42D5 with H = Z5 x Z4 generated by k1 = (0,0,0,0,1,3,1,3) and k2 = (1,1,1,1,0,0, 2, 2),
with center (2,2,2,2,4,4,4,4) can be frozen to

ko Singularity L H k Center
(1,1,1,1,2,2,0,0) 8A,/Z, 2D5 + 2A2 Z4 (1,3,1,1) (4,4,2,2)
(1,1,1,1,0,0,2,2) 8A1/Z, 2A3 +2C3 7,4 (1,3,1,1) (4,4,2,2)
(1,1,1,1,0,0,0,0)
0,0,0,0,2,2,2,2 8A,/Z 4A +2C3 +2A2 | 73 22,222,222
( : /2 VG B 00011,11) | :
(0,0,0,0,1,3,1,3) | (2A1 +4A3)/74 4A1 +2A7 7, (1,1,1,1,0,0) (2,2,2,2,2,2)
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j) BA; + Dy + D5 + Dg with H = Z3 generated by k; = (0,0,0,0,1,(0,1),2,(0,1)),
ky = (0,1,1,1,0,(0,0),2,(1,0))) and ks = (1,0,0,1,0, (1,1),2, (1,1))), with center
(2,2,2,2,2,(2,2),4,(2,2)) can be frozen to

ko Singularity L H k Center
(0,1,1,1,0,1,0)
0,0,0,0,1,(0,1),2,(0,1 8A,/Z 4A1 4+ B3 +Co +C3 | 73 2,2,2,2,2.2
( (0,1),2,(0,1)) 1/Z> 1 FBa GG L 011 10) ( )
0,1,1,0,(0,1
(0,1,1,1,0,(0,0),2,(1,0)) 8A1/Zs 2A1 +B3+ C3 + Dy Z% El 0.1.0 El 1;; (2,2,2,2,(2,2))
0,0,1,2
(0,1,1,1,1,(0,1),0,(1,1)) 8A1/Zs Ai+Cy+Cy+ D5 Z% El 10 2§ (2,2,2,4)
0,1,1,0,0,1
<1705071707(171)727(171)) 8A1/Z2 3A1 +CQ +C3 +C4 Z% El 0.0.1.0 1; (2>232a27272)
0,0,1,1,2
<170a071717(170)707(170)) 8A1/Z2 2A1 +B3 +C2 +D5 Z% El 1.0.0 2; (272727274)
1,0,1,0,2
(1717170707(171)707(071)) 8A1/Z2 2A1 +B3+C2+D5 Z% EO 1.0.1 2; (272727274)
0,1,0,(1,0
(1,1,1,0,1,(1,0),2,(0,0)) 8A1/Z5 A1+ Cy 4+ C3+ Dg Z% El 0.0 EO 1;; (2,2,2,(2,2))
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Appendix D

Tables of gauge groups

D.1  Groups of maximal enhancement in 9d and 8d

In this appendix we present the Tables containing all the groups of maximal enhancement in one and
two dimensions. The list of groups realized in S' compactifications of the heterotic string is displayed
in Table D.1. The groups realized in T2 compactifications of the Eg x E{ heterotic string are shown
in Table D.2. To simplify notation we dropped the primes in the Ef weights. In Table D.3 we give
the realization of some of these groups in the Spin(32)/Zy theory. Tables D.4, D.5 and D.6 contain
the groups for the CHL string in 9d and 8d.

# L Ap H, | T || R} Ag R Ao

1 2Es + A4 Z, 1 (1) 1 0x0 = (w7 + wy)

2 Es +E7 + Ay Zg 1| (3) 8 Fwe x 0 5 | &(we + 2wy)
3 Es + Eg + A3 VAP 1 | (6) 2 Fws X 0 = | §(ws+ 3wy)
4 Es + Do Z, 1 (2) i 0 x fws i twr

5 Es + D5 + Ay 7o 1 | (10) s 1wy x 0 | 5 (wa 4 dwo)
6 Es + Ag Zyo 1| (5) N | L(3wr+wis)
7 Es +Ag + Ay 713 1 (9) 2 Tw7 x 0 5 3w

8 | Eg+Ag+As+ A Zy 1| (21 || & fwy x 0 2 | (w24 6wo)
9 BEs + As + Ay Z3 1 | (15) 3 tws x 0 = | 5(ws+5wo)
10 E7 +E7 + A ZyxZyxZy | Zy | (2) | Jwe X 3we || & (W6 +wio)
11 E7 +Eg + Ay Z3 1| (15) || & | 3ws x3we || 35 | 15(2W5 4+ 3wio)
12 E; + Do Zo x 7y x2Zy | Zs (1) T | 3we x guwh || % FW6

13 E; + D5+ As ZyxZyxZs | Zy | (6) 3wy xFws || 5 | S(wa+2wi)
14 E; 4+ Aqp Zso 1 (11) 2| swex twy || & | 2(3we +2wis)
15 E; +Ag + Ay Zo X Uy x 21 | Zo (5) 1% %w7 X %wg % %Wlo

16 | Er+Ar+As+ Ay | ZoxZgxZg | Zy | (12) | we x we || = (w2 + 3wig)
17 E; 4+ Ag + Ay Zq 1 (35) & | tws X swe || a5 | 75(2ws + Bwio)
18 Eg + E¢ + A5 Z3xZ3xZg | Zs | (3) 2| dwsxdws || & | F(ws+win)
19 E¢ + D11 VAP 1 | (6) | sws x ws || 2 iws

20 E¢ + D5 + Ag Zs, 1| (42) || & | dwaxdws || & | (Bwa+4wy)
21 Es + Ay Z3 x L1 Z5 (2) % %wl X %wg) % %(Wl + wi1)
22 E¢ + Ao + Ay Zgg 1| (33) || B | bwrxiws || & Wi
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23 | Be+As+Ag+ Ay | Z3xZgxZy | Z3 | (9) 1| dwexgws || +(wa 4 2wi1)
24 E¢+ A7+ Ay Z120 1 (60) & twsxtws | & | H(8ws+bwi)
25 Di7 Z, 1| (2 || &5 | swix3ws || 3 w1

26 Dig+ Ay Zo xZoxZy | Zs (1) &= | twr x Lws 1 0

27 Dig+ Az + Ay ZyxZyxZs | Zo | (3) || &5 | sw2xgws || 32 FwWa

28 Dz + Ay Zy 1| (10) || 35 | twsx gws || 2 Fws

29 Dy + Ds ZyxZyxZy | Zy | (2) | jwaxgws || % FW4

30 D5 + Az Zs, 1| (26) || 28 | twgxdwy || 2| 53wy +4wys)
31 D5 + A1 + Ay ZyxZioxZy | Zy | (3) || & | wrx fws || % Twig

32| Ds+Ag+As+ Ay | ZyxZioxZs | Zy | (30) 2| twex twg || & | H(2wa + 3wia)
33 Ds+Ag+ Ay Z1g9 1 (90) % %wg X %w4 15—8 %(4W3 + 5w12)
34 D5 + D5 + A7 ZyxZyxZs | Zy | (4) 1wy xtwy || 2 1(Wa + wia)
35 A7 Zys Zs | (1) Lo by x dwy || 2 3 (W1 +wis)
36 Ase + Ay 73, 1| (A7) || 25 | fwrx 3wy || L twis

37 Ais + AL+ A Zigx Ly x Ly | Zy | (2) | qwrxqwr || 4 W1

38 Auu+Ar+ A Zys x Lg Z3 (5) 2 | twy X gwe || 5% 12wy + wig)
39 A3+ Ay Z7 1 (35) 4—75 %’LU3 X %wl 132—51 ﬁ(3vv3 + 5w1s)
40 | Az +Ay+2Ay | ZuxZgxZy | Zy | (21) || & | fwrxdwsy || 2 2wy

41 A+ AL+ A Zy3 1 | (65) || 2 | twsx qwr || = | 15(4ws+ 5wig)
42 | A +2A042A | ZipxZexZg | Zs | (6) & | fwax Fws | 2 (w2 + wis)
43 | Ao+ AL+ Ax+ Ay Z33 1 | (165) | & | swsx swa || 22 | 55(6ws+5wiy)
44 Ag +2A4 ZygxZsxZs | Zs | (5) Lol twgx tws || & | 2(ws4wis)

Table D.1: Data for allowed groups of maximal rank, d = 1. (Rg, Ag) and (Ro, Ao) are the radius
and Wilson line in the Eg x E§ and Spin(32)/Zs heterotic theory.

# L Hp, T E11E21E22 Ei2 Ay Az
1 6A3 Z4x 24 [4,0,4] 1 0o 1 4 ET (%73#)x(%7¥)
2 2A71 + 4A4 Zs [10,0,10] |[1 1 1 -1 Wi W3 (w1 - 3%) x (w1 - 3%)
3 2A5 + 2A3 4 2A4 1 (60, 0, 60] 1 0 4 5 W5« 6 (%72%) x (%73%)
4 3A1 + 375 ZyxZs | [206 |1 0 1 o0 G s (3gs — 22 x (2 - 31)
5 4Ao + 2A5 Z3 x Z3 [6,0,6] 1 0 1 o0 Y5 x ¥ (%—z%)x(%—z%)
6 As + 3As5 Zy X Z3 [4,0,6] 1 0 1 0 Px s (%—%)x(%—%)
7 2A1 + 2A3 + 2A5 Zy xZo | [12,0,12] 1 0 1 0 7T ("”77—'”74) x (%—Pﬂ%)
8 A1+ 2A5 + Az + 245 Zox2Zz | [6,0,12] |[1 0 1 o0 W w2 (%—21;;5) x (27;’4 —%)
9 2A4 + 2A5 1 [30, 0, 30] 1 0 1 0 =3 x0 0 x 23
10 2As + Ay + 2A5 z; 6,0, 30] 1 0 1 o0 Y5 x %3 (% - 1“25) x (% - 22’5)
11 A1 + A3 4+ Ay + 2A5 Zo [12,0,30] 1 0 1 0 ox 58 (%7%) X (%72%)
12 | A1+ Ag+ 245 + Ay + Ag Z, [24,12,36] || 1 0 1 o W B2 (%—2%) x (31’3 —%)
13 3Ag z, [2,1,4] 1 0 1 o0 T (2%7%) x (2“’%7%)
14 2A1 + 2A5 + 2Ag 1 [42,0, 42] 1 0 1 0 2 %0 0 x 22
15 2A3 + 2A¢g 1 8,028 |1 0 W % xS (w1 = 282) x (% - 552)
16 As + Ay + 2Ag 1 28,7,28] |1 0o 1 o EERT 0 x (% — 5ug
17 2A1 + Ao + 2A4 + Ag 1 (50,20,50] || 1 5 1815 & x 3 (“’7 - 2%) x (“’1 - 3%)
1 01 o0 (%+"”76—5I“—27)x% (ZT?’—wﬁ)x(zT?—%)
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2 1 wa _ 3w6)
18 A1 + A3z +2A4 + Ag 1 [20,0,70] 0 0 02>< ( a4 . 4 .
we w2 wr
10,0, 140] 01 0 - 356) x (52 - &)
T —Zus X(ﬂisws)
19 Ao +2A3 + Ay + Ag 1 [24, 12, 76] 20 20 5 P 4 R 4
o 1.0 + 5 - T) x (T -3
20 | A1 +2A5+ As + Ag + Ag 1 30,0, 84] 0o 1 0 - ) x (- 58
=
21 2A1 + 2A5 + Ag 2 [12,6, 24] 0 1 0 %—%) X (%—%)
22 A1 +2A3 + A5 + Ag z, [4,0,84] 0 1 0 (%7%) x (%—“’T
5 wy 2wg wy 2wg
[18,6,72] 0 -1 7_3)X(T_3)
23 A] + Az + Ag + As + Ag 1 T wy 10wy wy 4wy wo
o 1 0 =+ (21 +ﬁ*721)x(w8*T
[30, 0, 42] 0 1 0 0 x 2
24 Az + As + As + Ag 1 (12,0, 70] 0 1 0 0 x (%72%)
25 4A1 + 247 Zyx 2y | [4,0,4] 0o 1 0 - 35 ) x (2 -3
we w3 5&) we
2 Ay 4 240 Zs [12,0,12] 0 1 0 d ( 3 6 ) x N
1 [24, 0, 24] 0 1 0 wy — g?’) X (%—%)
o1 1 ——3“’6)x ﬂisws)
27 A1 + A3z + 2A7 Zg [2,0,4] 2 4 R 4 ) 4
we 6 2 w3 wr
0 1 0 = T) x (*T += 0+ T)
28 2A1 + 3A3 + A7 Zyx 2y | [4,0,8) 0o 1 o0 o) x (B - %)
29 A +3A3 + Ay z4 (4,0, 24] 01 0 YL (% - 2%)
30 2A2 + Ag + Ag + A7 1 12,0, 120] 0o 1 0 0x (%2 - 252
31 | 2A1 + Az + Az +Ag+ Arg zy [20,0, 24] 0 1 o0 0 x (% 73#)
32 A1+ 2A5 + A7 z, (6,0, 24] 01 0 (wr - 252) x (% - 59)
33 3A1 + Az + As + A7 Zyx73 | [8,0,12] o1 0 w2 - 3o« (-2
34 | AL+As+As+As+ A7 z, 12,0, 24] o 1 o 0x (4 — 238
0 23 5 _ 575) « (ﬂ _ ﬂ)
35 2A1 + Ag + As + Ay Zy [2,0,120] 24 12 6 4 4
o1 0| o) x (b
wi _ ws
36 Mgt Au 4t As+ Ar . 16,0, 120] 0 1 0 o><(22 2)
we wr 6 we
(24, 0, 30] 0 1 o s (T*T) x &6
37 A1 +2A0 + Ag + A7 1 (24,0, 42] 0 1 o0 0 x (“’T3 — 5ug
38 2A1 + A3 + Ag + A7 7, 12,4, 20] o1 0 -ty x (25 - 2
39 As + As + Ag + Ay 1 [4,0,168] 0 1 o TR (’“777 21;’6)
[18, 4, 32] 0o 1 0 ox (8 - %)
40 A1+ Ag+As + A7 1 0 37 _ T w3 we — W3 w4
[2,0,280] 40 ~ 20 5 1 5 1
we Swg Two Twsg 7
0 1 0 2 c )X (_ iz 1 Tt
41 As + Ag + A7 1 16, 4, 22] 0 0 (wl - 3%) x (% - %)
1 1 1 1 zr
42 2A1 + 2Ag (18,0, 18] 0 0 3 SOX 4w2 3wy
Z3 (4,2, 10] 0 1 0 -2 )X(T_ v )
43 A1 +3As + Az + Ag Z3 [12,0,18] 0 1 o0 0 x (% - ZWTL'*)
44 2A1 + 2A4 + Asg 1 [20, 10, 50] 0o 1 0 0x (% - 24t
2
45 3Ao + Ayg + Ag Zs3 [12,3,12] 0 1 o0 2 (% - Tf') x 26
46 | AL +Az+Az+Ag+As 1 [6,0, 180] 0 1 0 0x (% - 4T
47 A1 +2Ao + A5 + Ag Z3 [6,0,18] 0 1 o0 0 x (“’77%)
48 As + As + As + Ag Z5 4,0, 18] 0 1 o w5 (% _ “;5) x 2
49 Al +Aq + A5 + Ag 1 [18,0, 30] 0 1 o0 X0
50 2A1 + Ao + Ag + Ag 1 [18,0,42] 0 1 0 = %0
51 A1+ Az + Ag + Ag 1 (10, 4, 52] 01 o0 (wl - 3’;’3) x (% _ %)
52 Ayq + Ag + Ag 1 (18,9, 22] 0 1 0 0 x (/‘”71—3%)
53 A1+ Ao + Ay + Ag 1 (18,0, 24] 0 1 0 0 x (% - 3’2’6)
3 3
N on, Zs 2,0,2] 0o 1 o0 (w1 - %) x (w1 — %)
1 [10, 0, 10] 0 1 0 0 x =L
55 A1+ Ag + 2A3 + Ag &) [4,0,60] 0 1 o0 L (%7%) x 28
56 2A1 + 2A5 + Az + Ag .2 [6, 0, 60] 0 1 o0 0 x ("”74 —%)
57 A1+ 2A4 + Ag Zs 2,0,10] 0 1 0 0x 0
58 3A1 + Ao + Ay + Ag Zo [20, 10, 20] 0 1 o0 0 x (% — 374)
59 2A1 + Az + Ay + Ag Z5 (10,0, 20] 0 1 o (“172—376) x 0
60 2A1 + Az + As + Ag z, [12,6, 18] 01 0 4 (%73#) x 26
61 A1+ Az + As + Ag Z, 10,0, 12] 01 o (%—2%) % 0
1 [10, 0, 30] 0 1 0 0x 8
62 Ay + As + Ag X 3
Zs (10, 5, 10] 0 1 o s (% %) x &6
63 3A1 + Ag + Ag z, (4,2, 36] 0o 1 o0 - 352) x (-2
64 Al +As + Ag + Ag 1 [10,0, 42] 0 1 0 0 x 2
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65 As + A
3+ Ag + Ag 1 [2,0, 140] 0 1 0 wg w
66 As + A il i -
2+ A7+ Ag 1 e ) >« (T A
> [10,0, 24] 0 1 o0 EEEFE = —
A1 +As 4+ A9 1 [10,0, 18] 0 1 o0 2 w14 )XT TSX(%ffngﬁ)
68 ’ —i-
Alo + Az + 243 1 (24,12, 28 3 %0 0% T
,12, 28] 01 0 (ﬂ _ 31"1) % @6 Zwy _ 2w y
69 AT Aot 2As 1 A " 8 B P ( 5 — 93) X (ﬂ7 2wg
70 [12,0,66] 0 1 o0 w5 wy w e 2
A1 + 284 IR (% - %52) xo
1 (10, 5,30] 0 1 0 Zwa _ L) « w3 334 T
5 3 ( - ”1)
71 Aqo + 2A0 + Ay 1 [6, 3, 84] 0 1 0 w3 o (w3 Swe - 5 ) 0
5 R ) 0x %6
[24,9,24] 0 1 w5 (L -3 :
72 2A1 + Ao+ As T A 0 #x (5 -5 (% - %) x &
ot Azt Ag 1 [2,0,330] 0 1 0 Ty Fo ) <
T 3
73 A1+ Ao+ A3+ Ay 1 [12, 4, 38] 0 1 0 wa '“?3 0x9
s X 5 (w7 —292) x
[20,0,22] 0 1 0 wi o we .
3 X 2 0 x (ﬂ - L“’G)
74 A1+ A0+ Az + Ap 1 (6,0, 66] 0 1 0 w5 W7 . 2
3 X3 S
[18,6,24] 0 1 0 w3 o ¥3 (2 2)X0
6 5 0 x ( - 3—3)
75 Aqg + Az + As 1 [4, 0, 66] 0o 1 0 wg wi Bwg w1 5
3 X (=2 — T) (ﬂ - Y5) x Y6
- [12, 0, 22] 0 1 0 wy . W 2 2 2
6 2A1 + Ao + A 3 X2 ox(’ﬂ,?we)
10 + Ae 1 [12, 2, 26] 0 1 o0 w5 o Wr w 35 -
3 X 1 (% - 55)
7 Ao + A2 + Ag 1 (4, 1,58] 0 1 0 Y3 % (”’3 bwe : 3 N
5 3 § ) ( — 28 z6
(16,5, 16] 0o 1 0 Wi oy W6 " > ol
5 X3 0x (- Te
78 A1+ A1o + A7 1 (2,0, 88] 0 1 0 wy o w3 sy -
5 X 5 ( - 52 3wy
- [10,2, 18] 0 1 o0 w2 w3 - 23 Il 53)
5 —— & X 5 (wr — %52 ) x (ws - 52
10 + Ag 1 [10, 1, 10] 0 1 0 w1 W6 - Rl 2 )
80 AL+ Aqq +3As Zs 6.0.12 3 ) OX(%—g%}s)
- - ,0,12] 0 1 o0 wa o (E _ Swg
1+ A1 +2A2 Zo X Z3 [2,0,12] 0 1 o0 ° s E oy s 0 x %
82 A1+ A =X
11 +2A 6 G
3 Z4 [4,0,6] 0 1 0 wy (w1 _ 3w 90
X = - 46) (ﬂ — w74) w
83 A1l +2A5 + As Z3 4,0, 12] 0 1 o0 wi . @5 . 2 ) "=
3 X3 0x (-8 5)
z
2x23 | @24 01 0 (BT (BT D T
3 6 —= X ==
84 2A1 4+ A1 + As + Ag 24 [6,0,6] 0 1 0 wa o w7 e 5
T X7 St
zy [12,0,12] o 1 o e 3 ( 2 2 ) X0
e Y % X 5 0x ( w2
11 + A i 7)
— 4 Z2 [6,0,20] 0 1 o0 wg o w7 w 73 :
Al + A1+ A2+ Ay 1 [12,0,30 2 . 2 (72_ 1‘1]4)><0
,0,30] 0 1 0 (‘;47%)X2 Fws  dwy
z S
87 2A1 + A1 + As Z3 X Z3 [2,0,4] 0 1 0 wy o w2 - 5 ) %0
T X & ( -2 2
Z3 [6,0,12] 0 1 o0 Wa o W2 — 23 il 32)
88 A1l + A 6 7 6 (w — 102) ( S
89 At Zs (4,0, 6] 01 0 Wiy W5 il 2 s wsz)
Al +A1L+A > 3 OX(E_L)
> o 1 [4,0,42] 0o 1 o w1 ws 2r2
2A1 T A 1 2A 3 3 Ox(“’iiows)
— - 2 1 [12,6,42] 0o 1 0 % « (2w3 Swy i 6
1+ A+ A2 A 2 ) 0x (5 - )
2+ A3 1 6,0,52] 0 1 0 wy o w4 - -
Lo x 24 wy _w
92 271 4+ Ars 4+ As L [2,0, 130] o 1 o o 0 (5 )
=} =T
— [18,8,18] 0O 1 0 w1« ﬂjl4 Sx 0 3
A2 + Az + A - == OX(J_ﬁ)
— 4 1 [6,3,34] 0o 1 0 “’TS» % (u 3“’6) 2 1
_ w
A1+ Aj2 + As 1 [10,2,16] o 1 o w3 e 0x 5
3 zZ3 rd
95 A 5 X7 =5
1o+ A6 1 4 w1l — 7) X 0
(2,1, 46] 0 1 0 ©3 (% _ 3w6) ( 3w§ e
1 wy — 22 ) we
96 A1+ A1z +2A2 1 (6,0,42] 0 1 0 v _ M) « w1 T -
3 I =2
Zy [6,3,12] 0 wo w 2 >0
— — 10 w2 (il _ 3wg
1+ A1z + A Zs [2,0,42] 0o 1 o 0 ™ 2 4 OX%
p VY - ,0, Ty OT
B 6 4
— 3+ A3z Zy [6,2,10] 0 1 0 wa o W7 O; i
Ajz + Az + Ag : - (w7—ﬂ)><0
1 4,0, 42] 0 1 0 (% _ %) « (& 5we) wg >
== — —F —6 6
2,0, 70 : ¢ : X2
100 A1+ A1z +Ag 1 - ) 0 1 0 T 0% 0
8,2,18] 0 1 0 (2T4 w1\, @t Twg  dw
E - -4 1
Zy [2,1,18] 0O 1 0 wy (Llo 3 64 ( 5 2 5 )XO
o1 Ara t As " m 6 2 1 ) (w7 - 152) x X6
— [4,2,22] 0 1 o0 wy w3 3 2
Aqg +2A s 5 0 {wr — 73)
2 Z3 [4,1,4] 0 1 o0 By (& 5w6) >
3 — w
103 2A1 4+ Aqq + Ao Z3 (2,0, 10] 0 1 0 h VAP . Ox %
3 G
— 1 [12,6,18] 0 1 0 (m _ Sﬂ) « Wz w . Xwo
A1+ A1g + Ag 1 [10,0 2 s 4 (73777)X0
— ,0,12] 0 1 0 wy o w2 2
Aiat Aa " 05100 _ 3 S 6 0 x (w7 - ng)
106 3A1 + A5 z — e Tl * ( 1‘;4 _ 1;1) ox (3w4 =
4 [2,0,4] 0 1 o0 Yy w7 55 )
T 2T
107 A1+ Aqs + Ao Z2 [4,0,6] 0 1 o0 (71 3%‘)4 « vz o
3~ 4 )X 3 =
— 1 [10, 2, 10] 0 1 o0 w1 o (2ws3 Swz z X0
A1 + Ag - - 7T) Ox(ﬂiﬂ)
Zs X Zo [2,0,2] 0o 1 o (%_%TG)X(ﬂ_B 6) wes =
109 241 + Arg 1 4,2, 18] 0 1 _1 T, 2 4 o X P
- =
[2,0,34] 0 1 0 oL OT 0% 5
3 4 0x0




€
()

110 Aqg + Ag 1 6,3, 10] 1 0 1 0x 48
i
11 AL+ Arr 1 [4,2,10] 1 0 1 0 x =
Z3 [2,0,2] 1 0 1 0x0
112 Alg 1 [2,1, 10] 1 0 1 0 x =L
113 2A4 + 2Dj5 1 [20, 0, 20] 1 0 1 0 0x T4
114 As + 2A5 + Ds Zs [12,0,12] 1 0 1 0 0 x (% —2%)
115 2A4 + As + D5 1 [20, 0, 30] 1 0 1 O 0x “4
116 | A1+ As + Ag + As +Ds Z, [12,0,200 |1 0o 1 o 0 x (%—3%)
117 A1 +2Ag + D3 1 [14,0, 28] 0 0 0 x (“’73 — 52’5)
118 2A5 + Az + Ag + Ds 1 (12,0, 84] 0 0 0 x (%—2%)
119 | A1 +As + Ay + Ag + Dj 1 [20, 0, 42] 0 0 0x —4
w1 ws
120 As + As + Ag + D 1 (6,0, 84] o 0 OX(Q 52)
w3 we
[12,0, 42] 0 0 0x (% - %8
121 Ay + A7 + 2D5 Z, 12,0, 8] 0 0 0x0
122 | Ay + A2+ Az + A7 + Ds z4 (6,0, 8] 0 0 (% - %2)
123 2A, + A4 + A7 + Ds z, 8,0, 20] 0 0 '1’4) x 0
124 Ag + 2D 1 8, 4, 20] 1 0 1 0 ‘g?’) X 0
12,0, 180] 1 0 1 0 0x0
125 A +A4+Ag+D 1
1+ A+ As+ Ds (18,0, 20] 1 0 1 0 %0
126 As + Ag + D5 1 [12,0, 18] 1 0 1 0 3’;’3) x 0
127 2A5 4+ Ag + Dj 1 [6,0,60] 1 0 1 0 = =L
128 2A1 + Ay + Ag + Ds Zo (2,0, 60] 1 0 1 0 0x0
129 Ay + Az + Ag + Dj .2 8,4, 12] 1 0 1 0 - 2%) X 0
130 A4+ Ag + D5 1 [10, 0, 20] 1 0 1 0 =
131 A1+ A0+ A2 +Ds 1 [14, 4, 20] 10 1 0 0 x (w2 _ 61503)
132 2A1 + A1l + Dj 7, 12,0, 6] 1 0 1 0 0x0
133 A11 + Ay + Dj Zs [6,0,6] 1 0 1 0 L =%
134 AL+ A+ Ds i [2,0,52] 1 0 1 0 06xw0
6,2, 18] 1 0 1 0 T?’) % 0
135 A1 + D5 1 6,2, 10] 0 0 wy — "%)
136 3Dg Zs % [2,0,2] 0 0 x (% —w
137 2A3 + 2Dg Zs x 4,0, 4] 0 0 (% —
138 2A5 4+ 2A4 + Dg 1 [30, 0, 30] 0 0 X (% -
139 2A1 4 2A5 + Dg Zy x [6,0,6] 0 0 x (% _
140 A1 +2A3 + A5 + Dg Zy x [4,0,12] 0 0 (% -
141 Az + Aq + A5 + Dg Zs [4,0,30] 0 0 (% -
142 2Ag + Dg 1 [14,0, 14] 0 0 X (% —
143 Ao + Aq + Ag + Dg 1 [6,0,70] 0 0 — %)
144 A1+ 2A5 4+ A7 4+ Dg 2 [6,0,24] 0 0 - %)
145 As 4+ Ag + A7 4+ Dg Zs [4,0,24] 0 0 e ¥e ) x 28
146 A1 4+ Ay 4+ A7 4+ Dg 2 6,2, 14] 0 0 X (% -
147 Ay + Ag + Dg 1 [4, 2, 46] 0 0 0 x (wg — %)
4,2,1 _ ﬂ)
148 A1 + Az + Ag + Dg Zs 4,2, 16] 0 0 ws 2
s Uy - X
6,0, 10] 0 0 ”26) 0
149 Az + Ag + Dg z, (4,0, 10] 0 0 s 26) x 28
150 A10 + Az + Dg 1 [6, 0, 22] 0 0 _ %)
151 A1+ Aq1 + Dg 2 [4,0,6] 0 0 %) x 0
152 A12 + Dg 1 4,2, 14] 0 0 ws — %4)
153 As + As + D5 + Dg 2 [6,0,12] 0 0 — %)
154 A7 + D5 + Dg &) [4,0,8] 0 0 - %)
0 1 (ﬂ _ ﬂ) ¥
155 2A5 + 2Dy 1 [12,0,12] 2 2 2
0 0 7w2) « 3wg
8 8
156 Ao + 3A3 + Dy Z4 8,4,8] 0 0 (% _ 2%)
157 A1+ Az +2A4 + Dy 1 [10, 0, 60] 0 0 - 4) x 48
158 Ao + Az + Ag 4 Dy 1 (8, 4, 44] 0 0 %) x s
159 A1 + Ay + Ag + Dy 1 4,0, 70] 0 0 wa ws)
160 As + Ag + D7 1 [2,0,84] 0 0 =
161 2A1 + Ay + A7 + Dy Zs [4,0, 24] 0 0 e _ w(;)
162 A1+ As + Ay £ Dy Z4 2,0,8] 0 0 x (wg =
163 2A1 + Ag + D7 Z, 4,0, 10] 0 0 ’UJ6) %0
164 Ao + Ag + Dy 1 [2, 0, 60] 0 0 wg — 74) x =6




165 A1+ A9+ D7y 1 [4,0,22] 1 0 1 0 Sox5e 0 x (% - wﬁ)
3
166 A11 + Dy 24 2,1,2] 10 1 0 ECEED) (ws — %54) x 48
167 A1 + As + D5 + Dy Zy [4,0,12] 1 0 1 0 toxse 0 x (%—wﬁ)
168 As + Dg + D7 zy (2,0, 12] 1 0 1 o0 (wg - “’T) x 56 24 x (% - %)
169 2A7 + 2Dg Z5 x Zo 12,0,2] 1 0 1 0 T (% — wG) (% —wg) x Y6
3
170 2A3 + 2A3 + Dg zy [12,0,12] 1 0 1 o0 SEox 22 8- %) X (% -2
171 2A5 + Dg z, [6,0, 6] 10 1 0 2 x (ws — ) (- %) x%
172 241 + A3 + As + Dg ZyxZs | [2,0,12] |[1 0 1 o0 ) (42 - 248) x 28
173 A1+ A+ As + Dg z, (2,0,30 |[1 0o 1 o0 25 x (% - w) (% -5 ) x4
2
174 2A5 + Ag + Dg 1 [12,6,24] 1 0 1 0 (wg—%) x 45 2o (%—%)
175 A1 4+ As + A7 4+ Dg &) [2,0,24] 1 0 1 0 26 x (%7%) (%75%’6) x 48
176 A1+ Ag + Dg Z; (2,0,10] 1 0 1 0 %x(%—we) (“’Tl—g%)x%
177 2D5 + Dg Zs [4,0,4] 1 0 1 0 ox st 0 x (w5 - %)
178 A1 + Az + Dg + Dg Zy X Zg [2,0,4] 1 0 1 0 "”Tﬁx(%—wﬁ) (%—%)x%ﬁ
179 2Dg 1 [4,0,4] 0 0 £ %0 0 x =8
180 A1 +2A5 + Ay + Dy 1 [12,0,30] 1 0 1 0 28 x (%7%) (%7%) x 26
181 A1 4+ Az 4+ A5 4+ Dg Zy [4,0,12] 1 0 1 0 = (wg—%) (%—%) x 24
182 Aq + As + Do 1 4,0, 30] 1 0 1 0 0x °8 B x0
183 Al + A + Ag + Dg 1 [4,0,42] 1 0 1 0 0x =8 2 x0
3

184 2A1 + A7 + Dg z, [4,0,8] 10 1 0 24 x (ws — %) (% - 242 ) x 2
185 A1 + Ag + Do 1 4,0, 18] 1 0 1 0 0x =°8 L x0
186 Ag + Dg 1 [4,0,10] 1 0 1 0 0x =8 =L x0
187 A4 + D5 + Do 1 [4,0,20] 1 0 1 o0 0 X = L x0
188 2A1 +2A3 + D1 Zy X Zg [4,0,4] 1 0 1 0 X (’”74711;6) (%—%) x 28
189 2A4 4+ Do 1 [10,0, 10] 1 0 1 0 2 x (wg - %) 0x =t
190 A1+ Az + Ag + Dio z; [2,0,20] 10 1 o0 Eox g (sz - 3’1’6) X 0

K 3
191 3A1 + As + Dig Zy X Zy [4,2,4] 1 0 1 0 2o (%—wﬁ) (%—%) x 8
192 Az + A5 + Dig zy [2,0,12] 10 1 0 SEox sE (%72%) X0
193 Ao + Ag + Dig 1 12,0, 42] 1 0 1 0 Y6y L8 (%—5’%) x 0

3

194 Ag + Dio 1 [2,0,18] 1 0 1 0 6ox i (%7%) X0
195 A1+ Ag +Dig + Ds Zy [4,0,6] 1 0 1 0 o (% —we) 0x 58
196 A +Dig + Ds zy [2,0,6] 1 0 1 0 6ox 48 (%7%) X0
197 A1+ Dio + D7 z, [2,0,4] 10 1 0 T (% —we) x0
198 2A5 + A3 + Dyy 1 [12,0,12] 1 0 1 0 Box e (% — 2%) x 0
199 AL+ A2+ Ay +Dyy 1 6,0,20) [[1 0o 1 o 22 x (ws — %) 0x
200 Ao 4+ As +Diq 1 [6,0,12] 1 0 1 0 Box5E (%7%) x 0
201 A1 + Ag + D11 1 (6,2, 10] 1 0 1 o0 T (% — 5}‘3’5) x 0
202 2A1 4+ 2A5 + Dio Zo [6,0, 6] 1 0 1 0 22 x (% wﬁ) 0x 48
203 A + Ay + Az 4+ Dig Zy [4,0, 6] 1 0 1 0 Eox g (%7’“77)x0
204 2A1 + Ayg + Do Z, [4,2,6] 1 0 1 0 7T (%—%) x 0
205 A1 +Dis + Dj Zy [2,0,4] 1 0 1 0 A x =B 0x0
206 Dis + Dg Zo [2,0,2] 1 0 1 0 hox i (’wg — %) x 0
207 A1 +Aq+ D13 1 [2,0,20] 1 0 1 0 3 x B 0x0
208 As + D13 1 [2,0,12] 1 0 1 0 R (w1 — &“TS) X 0
209 D15 + Ds 1 [4,0,4] 1 0 1 0 s U8 (wz - WTS) % 0

=
210 2A5 4+ Dyg 1 [6,0,6] 1 0 1 0 (% - °’g6) x 48 8 x0
211 2A1 + Ay + D1y Zo [2,0,6] 1 0 1 0 2 x =B 0x0
212 A1+ As + Dy Z, 12,0, 4] 1 0 1 0 B2y 28 (w7 - 2‘“72) % 0
213 Ag+Dig 1 [4,2, 6] 1 0 1 0 2 ox (wg — %) 0x 4t
214 A1+ A2 +Dis 1 4,0, 6] 10 1 0 5 x (45— we) 0x %
215 2A1 + Dig Zy [2,0,2] 1 0 1 0 L x =B 0x0

3
216 As 4+ Dig Zy [2,1,2] 1 0 1 0 (% - %) x 48 B x0
217 A1 + D17 1 [2,0,4] 1 0 1 0 < =B 0 x
218 Dig 1 [2,0,2] 1 0 1 -1 =L %0 0x =8
219 3E¢ Z3 [2,1,2] 1 0 1 -1 2 x 22 0% 0
220 2A3 + 2Eg 1 [12,0,12] 1 0 1 0 =2 x 0 0 X =2
221 A1 + Az +2A4 + Eg 1 [20, 0, 30] 1 0 1 0 25 ox &8 0 x (% — 3#)
222 A1 + Ag + 2Eg Z3 [2,0,6] 1 0 1 0 2 x 22 0x0
223 As + 2A5 + Eg Z5 6,0, 6] 10 1 o0 Y5 %3 (% - ”25) x 0
224 2A5 4+ A3 + As + Eg Zs5 [6,0,12] 1 0 1 0 Bx g (%72%) x 0
225 As + Ay + Ag + Eg 1 [12,0, 30] 0 0 2% 0 0 x 25
226 Ag + 2E¢ 1 6,3,12] 10 1 0 “Eox5s (w3 - F”fT‘l) X0
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6,0,84 10 1 0 Y4 o Y5 (ﬂ—ﬂ)xo
227 A1+ A2+ Az + Ag + Eg 1 6. 0. 84] 4 3 2 2
[12,0,42] 1 0 1 0 2 X0 0x 22
228 2A1 + Ay + Ag + Eg 1 [20, 10, 26] 1 0 1 0 “ox5s (’”72 — 3’1’4) x 0
229 As + As + Ag + Eg 1 (18, 3, 18] 1 0 1 0 Y5 x 26 0x(%—5%)
230 A1 4+ As + Ag + Eg 1 (6,0, 42] 1 0 1 0 Bx s 0x(%7%)
231 Al + A4+ A7 + Eg 1 12,0, 120] 1 0 1 0 B x =2 0x0
232 As + A7 + Eg 1 6,0, 24] 1 0 1 0 Wi ¥ (w1 _ &”Ts) 0
233 2A5 + Ag + Eg Zs 16,3, 6] 1 0 1 0 Y5 x (% - E”“TG) 0x Y6
234 2A1 4+ Ay + Ag + Eg Z3 [2,0,18] 1 0 1 0 2 x 2B 0x0
235 A1 + Az + Ag + Eg 1 [12,0, 18] 1 0 1 0 0x oL 5 x0
236 Ay + Ag + Eg 1 [12,3,12] 1 0 1 o0 W5 x 6 0 x (/‘”71—3%)
237 A1 +As + Ag + Eg 1 [12,6, 18] 1 0 1 0 Box gt 0 x (w3 - 5‘:4)
238 Az + Ag + Eg 1 [10,0,12] 1 0 1 0 =L xo0 0 x 22
239 2A1 + Ao + Eg 1 [2,0,66] 1 0 1 0 =2 x L 0x0
240 A1p + Ag + Eg 1 (6,3, 18] 1 0 1 0 2 x (‘“Tl - 3"%) 0x 58
z 2,0,4 1 0 1 O L TS 0x0
241 Ay + A1+ B - 2.9, S o
1 [6,0,12] |[1 0o 1 o [Z (ws - 54) x0
242 Ao + Eg 1 [4,1,10] 1 0 1 0 Sgox gt 0 x (w3 ““’4)
243 Az + Aq + D5 + Eg 1 [12, 0, 20] 1 0 1 0 £ %0 0 x 22
244 Al + Ag + D5 + Eg 1 [2,0,84] 1 0 1 0 Eox =2 0x0
245 A7 + Ds + Eg 1 8,0,12] 1 0 1 0 e 24 (w3 - 5‘:4) X 0
246 D¢ + 2Eg 1 [6,0, 6] 1 0 1 -1 Px5s 0 x ("”TG - %)
247 Ag + Ay + Dg + Eg 1 [6, 0, 30] 1 0 1 0 Poxse 0><(‘“T67“’78)
248 Ag + Dg + Eg 1 [4,2,22] 1 0 1 0 e (wg—T‘*) X 0
249 Ay + Ay + D7 + Eg 1 [4, 0, 30] 1 0 1 0 Poxse 0 x (%711;6)
250 D5 + D7 + Eg 1 [4,0,12] 1 0 1 0 Ex =B 0x 8
251 Ay + Ds + Eg 1 8,2, 8] 10 1 0 (ws — %) x 2 ZI
252 A1 + A + Dg + Eg 1 [6,0,12] 1 0 1 0 %x(%fwﬁ) 0x 48
253 A3z + Dg + Eg 1 [4,0,12] 1 0 1 0 0 X =5 =5 %0
254 A1 + D11 + Eg 1 [2,0,12] 1 0 1 0 B x =B 0x0
255 Di2 + Eg 1 4,2, 4] 1 0 1 0 7T (w3 - 51%4) X0
256 2A5 + 2E7 1 [6,0, 6] 1 0 1 0 =5 x 0 0x =0
257 A1 + Az + 2E7 Zo [2,0,4] 1 0 1 0 6 x I8 0x0
258 A4+ 2E7 1 [4,2,6] 1 0 1 0 (w4 — 4T5 x 0 Lox g
259 Ay +2A3 + Ay + Er Z, 4,0, 20] 1 0 1 o0 T (%73%) % 0
260 2A5 4+ A3 + Ag + Er 1 [12,0,30] 1 0 1 0 2ox5s (%72%) x 0
261 2A3 + As + By z, [4,0,12] 1 0 1 o0 G e (% _ 27;’6) % 0
262 A1 +As + A3 + As + E7 2 [6,0,12] 1 0 1 0 x5 (%—%)xo
263 2A1 + Ayg + As + Br .2 [8,2,8] 1 0 1 0 roxse (%—31’4)x0
264 Ao + Ay + As + E7 1 (6,0, 30] 1 0 1 0 3 x0 0x =28
265 A1 +2A5 + Ag + E7 1 [6,0,42] 1 0 1 0 = %0 0 X =0
266 Ag + As + Ag + E7 1 (4,0, 42] 1 0 1 0 Seox 56 (%75:6) x 0
2,0, 70 1 0 1 0 08 x IS 0x0
267 A1+ Ay + Ag + E7 1 2,0, 70] 135 11)25 w3 Sws
8,2,18) |[1 0o 1 o 5 &6 (%2 -%2) xo
268 As + Ag + E7 1 4, 2, 22] 1 0 1 o0 RN (w1 _ 3“‘T3) X 0
269 2A5 4+ A7 + Er 1 6,0, 24] 1 0 1 o0 (%—5%) x %6 6 %0
270 2A1 + Ay + A7 + Er 2 2,0, 24] 0 0 2 x =L 0 x 0
271 Al + A3+ A7 + Er Zo [4,0,8] 1 0 1 0 Boxus (w772“’T2) x 0
272 Ay + A7 + Eq 1 [6,2,14] 1 0 1 0 2 ox 5B 0 x (w - 4%)
273 Al + As + Ag + E7 1 [6,0, 18] 1 0 1 0 0x oL 5 x0
274 Az + Ag + Er 1 4,018 [[1 0o 1 o ETNT (- 248) xo
275 2A1 + Ag + E7 Zy [2,0,10] 1 0 1 0 6 x L 0x0
z 4,1,4 1 0 1 0 v ﬂ) x 6 W6« o
276 Ay + Ag + Er 2 [4.1,4] (z ! 2 2 X
1 [6, 0, 10] 1 0 1 0 =L X0 0x =8
2,0, 22 1 0 1 0 Tl T8 0x0
277 A1+ Ao +E7 1 2,0,22] 3 w27 e
[6,2,8] 10 1 0 =2ox 2t (w4— TS) X 0
278 A11 + E7 1 14,0, 6] 1 0 1 0 By %5 0 x (w4 4“’5)
279 D4 + 2E7 Zo [2,0,2] 1 0 1 —1 5 x 58 0x0
280 Ao + Ay + D5 + E7 1 (6,0, 20] 1 0 1 0 = %0 0 X =0
281 Al + A5 + D5 + E; Zo [2,0,12] 1 0 1 0 A x =L 0x0
282 Ag + D5 + E7 1 [6, 2, 10] 1 0 1 0 2 x g (wg — MT?’) X 0
283 As + Az + Dg + Er z, [4,0,6] 1 0 1 0 T Ox(%—%)
284 As 4+ Dg + Er Zo [4,2,4] 1 0 1 0 Sox 58 (’wg — %) X 0
285 Ds + Dg + E7 Z4 [2,0,4] 1 0 1 -1 6 x T2 0x0
286 A1+ A3 + D7 + Er z, [4,0,4] 10 1 0 6ox 58 (% 7w6) X0
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287 A4 + D7 + E7 1 [2,0,20] 1 0 1 —1 8 x T 0x0
288 A1 + Az + Dg + Er Zs [2,0,6] 1 0 1 -1 T8 x 2 0x0
289 Ay + Dg + E7 1 [4,0,6] 1 0 1 0 0x °8 5 x0
290 A1 +Djyo + E7 Z3 [2,0,2] 1 0 1 0 5 x =B 0x0
291 D11 + E7 1 [2,0,4] 1 0 1 —1 T8 X =L 0x0
292 Ag + A3 + Eg + E7 1 [6,0,12] 1 0 1 0 = X 0 0x =6
293 A1 + Ay + Eg + E7 1 2,0, 30] 1 0 1 0 2 x =8 0 x 0
294 As + Eg + E7 1 [6,0, 6] 1 0 1 0 B (w474%)><0
295 Ds + Eg + Ex 1 [2,0,12] 1 0 1 -1 5 x =2 0x0
296 2A; + 2Eg 1 [2,0,2] 1 0 1 0 0x0 0x0
297 Ao + 2Eg 1 [2,1,2] 1 0 1 —1 0x0 0x0
208 2A5 + 2A3 + Eg 1 [12,0,12] 1 0 1 0 25 %0 (% - 2’;:5) x 0
299 2A1 + 2A4 + Eg 1 (10,0, 10] 1 0 1 o0 7R (%—?ﬂ#) X0
300 Al +Ax + A3z + Ay + Eg 1 [6, 0, 20] 1 0 1 0 “Axo (’”747%)x0
301 2A5 + Eg 1 [6,0,6] 1 0 1 0 3 %0 (w1 _ MTS) x 0
302 Az + Az + A5 + Bg 1 [6,0,12] 10 1 0 2 x0 (%7%)x0
303 Al + A4+ As + Eg 1 [2,0,30] 1 0 1 0 3% 0 0x0
304 2As + Ag + Fs 1 6,3,12] |[1 0 1 o0 (42 - 258) xo 6 %0
305 2A1 + As + Ag + Eg 1 (2,0, 42] 1 0 1 0 2 %0 0x0
306 A1 + Az + Ag + Eg 1 6,2, 10] 1 0 1 0 ©2 %0 (w7—2%)x0
307 A4 + Ag + Eg 1 [2,1, 18] 1 0 1 -1 0 x 3 0x0
308 Al +As + A7 + Eg 1 [2,0,24] 1 0 1 -1 0 x 2 0x0
309 2A1 + Ag + Eg 1 [2,0,18] 1 0 1 0 L %0 0x0
310 As + Ag + Eg 1 6,3, 6] 1 0 1 o0 (%731’6)><0 w6
311 Al + Ag + Eg 1 [2,0, 10] 1 0 1 0 =L %o 0x0
312 Ao + Eg 1 [2,1,6] 1 0 1 -1 0x 2L 0x0
313 2Ds + Eg 1 [4,0,4] 1 0 1 A x 32 0x — 24
314 Ay + Ay + D5 + Eg 1 [2,0,20] 1 0 1 0 £ %0 0x0
315 As + D5 + Eg 1 [2,0,12] 1 0 1 -1 0x —4 0x0
316 2A5 + Dg + Eg 1 [6,0,6] 1 0 1 0 8 xo0 (%—“’;)xo
317 A4 + Dg + Eg 1 [4,2,6] 10 1 0 (’wgf%) X0 L x0
318 A1 + As + D7 + Eg 1 [4,0,6] 1 0 1 0 (%—ws)xo 8 x0
319 A1 + Dg + Eg 1 [2,0,4] 1 0 1 0 2 x0 0x0
320 Dio + Eg 1 [2,0,2] 1 0 1 -1 0x =8 0x0
321 Al + A3 + Eg + Eg 1 [2,0,12] 1 0 1 0 =5 x 0 0x0
322 Ay + Eg + Eg 1 2,1, 8] 1 0 1 -1 0 x 25 0x0
323 Dy + Eg + Eg 1 [4,2,4] 10 1 0 (%7%)x0 (%7w8)><0
324 Al + As + E7 + Eg 1 [2,0,6] 1 0 1 0 =5 x 0 0x0
325 As + E7 + Eg 1 [2,0,4] 1 0 1 -1 =8 %0 0x0
Table D.2: Data for all allowed groups of maximal rank, for the Eg x E§ heterotic on T2
# L Ein Exn Ex Ep Aq A
3 T T T
1 6A3 1 0 5 1 Z(WG + wio) Z<W2 — We — W10 + Wi4)
T 1 T
2 2A1 +4A, 1 0 1 -7 Z(Wg + W13) w1 + Wi + g(Wg — 3wy — 3W13)
13 3A6 1 0 1 0 %WG %(2W6 — W9 — W15)
21 [ 2A; +2A5+ A6 || 1 0 1 0 | 5Bws+4wir) | 5214wy — 15wy — 6wy + 1dwys)
65 | As+Ag+Ag 1 0 1 0 W6 25 (3wg — 16w1s5)
1 1
177 2D5 + Dg 1 0 1 0 §(W4 + W12) Z(W4 - ng) — Wg — W71
196 | Ay + Dyg + D 1 - 1 0 SWe 0
3 T
219 3E¢ 1 0 1 — 2 Z(Wll + W5) 0
297 Ay + 2Eg 1 0 1 - 1 (w7 + wo) 0
319 | Ay +Dg + Eg 5 0 1 0 3Wo 0

Table D.3: Data for some groups of maximal rank, for the HO theory on T72.
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] 7 | Gauge group root lattice | E \ —a ‘

I Ag 2 [l d b ih )
2 A+ Ay + Ag 2| (00,45, 555 —2)
3 Ay + As 2| (0,0,0,5, 55,5 —3)
4 D5 + Ay 2 | (0,0,0,0,%,%,1,—%)
5 E¢ + A3 2 | (0,0,0,0,0,3,5,—3)
6 E; + Ay 2 | (0,0,0,0,0,0,3,—3)
T At Ay 2| GLLLEL LD
8 Dy 2 | (0,0,0,0,0,0,0,—1)
0 Eg + A, 2] (0,0,0,0,0,0,0,0)

Table D.4: Maximal enhancements in the nine-dimensional CHL string, obtained by deleting the ¢th
node in the GDD shown in Figure 4.1. All groups arise at level 2. The Wilson line is always of the form
a = w;/k; (cf. Table 2.1).

#| L H | E11 E21 E22 E12 al az #| L H | E11 E21 E22 E12 ay az
1| 2A2 +2A3 Zzl 2 0 3 1 e 32| 2A2 + Cg 1] 2 0 1 0 |92 w2
2| 2As5 Zyl 2 o 1 1| B |wT_ 2w 33| A; + A3+ Csg Zsl 2 o 1 o Y3 s
3| 2A1 + A3+ As ZZl 2 o 2 2 0 LT _ s 34| Ayq+ Cg 1|2 o 1 o Y6 (s
4| A1+ A4+ As Zsl 2 o 2 2 0 Tur _ s 35| A; + Ay +Cr 12 o 1 —2| %2 |o
5| 2A2 + Ag 1|2 o 3 I =2 0 36| 2A1 4+ Cg Z2l 2 o 1 o 0 T
6| A1+ Az + Ay Zzl 2 0o 3 2 0 2 37| Az + Cg Z2l 2 -1 1 o 0 2
71 A1+ Ag Z2l 2 o 3 -2 0 L8 38| A1 +Cy 1] 2 o 1 o 0 =
8| A1 +2A5+A4+C1|1| 2 0o 1 o B2 |wa  2ws 39| Cio 12 o 1 —2| % |o
9| A1 +A3+A5+C1 |Za]l 2 0 1 o w8 |Bws w3 40| 2Ds5 Zsl 2 0o 1 -1 0o |
10| Ay +As5+Cy 112 o 1 o0 = 0 41| A4+ C1 + D5 112 o 1 o0 = 0
11| Ay +As+Ag+Cy |1 ] 2 0 1 o0 % 0 42| A1 +A2+Co+D5|Z2] 2 0o 1 o0 wT‘l wT‘l
12| 2A1 + A7+ Cy Zsl 2 0o 1 o Ys (w2 2us 43| A1 +C4 + D5 Zal 2 o 1 o 0o |
13| A1 +Ag+Cy 112 o 1 o T 44| Cs + Ds 112 o 1 -2 = 0
14| Ag+Cy 112 o 1 o o 0 45| A1 + A3+ Dg Zil 2 0 2 2 o |43
15| 2A; +2A3 + C2 72l 2 0o 1 o Ys Y3 _ us 46| Az + Ca + Ds Zal 2 0o 1 2 0o |4
16| A1 +A3+A4+Cs |Z3] 2 0o 1 o0 U;Z % — wq 47| C4 + Dg Zsl 2 o 1 o % %
17| 2A4 + Co 112 0 1 0 |wg— 2# ué?’ 48| A1 +Co + D7 Z2l 2 o 1 o % %
18| 3A1 + A5+ C2 ZZ) 2 o 1 o | & |w2_ 3us 49| 2A; + Dg ZZ) 2 0 1 1|8t wgis
19| Az + A5 +Co Zsl 2 0o 1 2 0 =3 50| C1 +Dg 112 0o 1 o0 8 0
20| Ag + Ag + Cso 112 o 1 2 0 a 51| Ay + Eg 112 o 1 -1 0 Lo
21| Ag+Co 1]2 o 1 -2 0 e 52| A1+ A2 +Ci1+Eg|1] 2 0o 1 o0 2R
22| 2A5 +A3+Cs 112 o 1 o0 =2 2 53| A3+ Ci1 + Eg 112 o 1 o0 L 0
23| A1 +A2+A4+Cs 1] 2 o 1 o % —% 54| A1+ Cs + Eg 112 o 1 o 0 u;f‘
24| Ay + A5 +Cs 1|2 o 1 o ¥ |ur_ 2%e 55| C4+ Eg 12 o 1 —2| % Jo
25| A1+ Ag +Cs 112 o 1 o wT2 wg — T2 56| A1+ As +Er Z2l 2 o 1 -1 0 “'TG
26| 2A1 4+ 2A5 +Cy Zs] 2 0 1 o0 = 2 57| A +C1 + E7 112 o 1 o =5 0
27 A1 +Ao+A3+Cyq |Z2] 2 0 1 o0 w%—% % 58| A1+ Cs + E7 Zal 2 0o 1 o0 0 %
28| 2A1 + A4+ Cy Zol 2 0o 1 o0 1‘32 % 59| Cs + E~ 1 2 0 1 o0 % %
29| Ay +A4+Cs 112 o 1 o 0 2 60| Ay +C1 + Esg 112 o 1 o 0 0
30| A5 +Cs 112 o 1 o %L - %6 =8 61| Cs +Eg 112 o 1 -2 0 0
31| 2A1 4+ As + Cg Zol 2 0o 1 o0 0 %

Table D.5: All groups of maximal enhancement in the 8-dimensional CHL string. The Wilson lines
are given in terms of the fundamental weights of Eg, see Table 2.1. ADE groups arise at level 2 and C
groups at level 1.
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Table D.6: Maximal enhancement groups with non-trivial global structure for the 8-dimensional CHL
string. The k’s are the generators of H. All ADE groups arise at level 2 while C groups arise at level 1.

#| L H k #| L H k
1| 2A5 4+ 2A3 79 00 2 2 28| 2A1 + Ay +Cy 75 1 1 01
2 | 2A5 79 3 3 31| 2A1 + Ay + Cy Zs 01 01
01 0 33| A1+ A3+ C 7z 1 0 1
3| 2A1 + A3+ A;j Zo X 2o ! i 0 2
0 2 36| 2A1 + Cg 79 0 0 1
4| A1 +AL4+ A5 Zo 1 0 3 37| As + Cg Zs 0 1
6| A1 +As+ Ay 75 0 0 4 40| 2Ds5 Zy 2 2
7| A+ Ay Zo 1 5 421 A1+ Ay + Coy + Dy Zo 1 01 2
9| At +As+A5+Cy 79 1 2 3 0 431 A1 + Cy4 + Dy 75 01 2
12| 2A1 + A7+ C Z 1 1 4 0 0 2 (1,1
! ! ! 2 45| A1+ As+ Dg 2o X 2o ( )
1 1 1 0 (0,1)
15| 2A1 + 2A35 + Cy Zo X 7o
1 0 2 0 46| Ao + Co + Dg Zs 0 1 (1,0)
16| A1 + A3+ A4+ Cy 79 1 2 0 1 47| C4 + Dg 75 1 (1 1)
0 0 0 3 1 48| A D 7
18| 3A1 + A5 + Co Zo X 2o 8 1+ G+ Dy 2 112
1 1101 0 0
49| 2A; +D Zy x 7 ’
19] Az + Az + Cs Zs 03 1 b S E R
26| 2A1 +2A5 4+ Cy Zs 1 1 0 0 1 56| A1+ As + Er 75 1 01
27| A1+ A+ A3+ Cy Z, 00 21 58| A1 + Co + Ef Zo 01 1

D.2 Maximal enhancements for 7d

In this appendix we record the maximally enhanced gauge groups realized in the 7d Z,,-triples con-
structed from the heterotic string. The algebras and the fundamental groups are presented in Appendix

D.2.1, while the generators of the fundamental group are presented in Appendix D.2.2. The way in

which the data is encoded is explained in Section 5.5.

D.2.1 Maximally enhanced algebras and fundamental groups
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A1AS
AJAy
A1AZAZA2
AZAZA2
ApASA2
AZA3AS
A3AS
A1AoA%

9 AgAj

10 AJAZAs

11 A2A5A2ZA4A5
12 A2A2A4A5
13 A1ASA4As
14 ASA3AZA5
15 A1A2A3AZA;
16 AZAZA5

17 A2A3A5

18 A1AJA2

19 A2A2A3A2
20 ASA5AZ

21 A3A3A2

22 ASAZAZ

23 A1A2AZA2
24 A3AZ

25 A1AZA4AZ
26 A2A5A4A2
27 ApA3A4A2
28 AgAgA4AZ
29 A1AZAZ
30 ATA3

31 AZAgAS
32 AZAS

33 AZAS

34 A1 AsAS
35 A1AzA}
36 A4A3

37 AyAd

38 A1ASAZA
39 A2AZA3A4A6
40 A3AsA4A6
41 A1A2AZA4Ag
42 AJA4Ag
43 A3ALA2A¢
44 A1AZAZAq
45 A2A3A2 A6
46 A2A3AZAg
47 A1A3Ag

1
2
3
4
5
6
7
8

2
Z4

Z4

Zs

7976

48 A3A5Ag

49 A1AZA3A5A6
50 AZAZA5A¢

51 A2AZAs5A¢

52 AZA2A4A5A¢
53 AZA4A5A¢

54 A1A3A4A5Ag
55 AZA5A¢

56 ASAZAg

57 A1A2AZAg
58 A3AZAg

59 A3A2ZAg

60 ASAZAZ

61 A1ASAZ

62 AZA2A3AZ
63 A3A3AZ

64 A1AZAZ

65 AZA4AL

66 A1AzAgAZ
67 AgA4AZ

68 AZA5AZ

69 ApAsAZ

70 A1 A3

71 A2AZAZA;

72 ASASA;

73 A1A2ASA;
74 AdA;

75 AdA7

76 ASAsA3A4A7
77T A1A2A3AL A,
78 AZAZA4A7
79 A2ZAZA4A;
80 A2 AZA4A7
81 ApAZA4A7
82 AJAZA;

83 AZApA%A;
84 AZA2A;

85 A1A3A2A,
86 ATA3A5A7
87 A2A3A3A5A7
88 A2A3A5A7
89 A1AZA5A7
90 A1AZA5A7
91 ASA4A5A7
92 A1 A2 A4AsA7
93 A1 A2A4A5A7
94 AsA4As A7

Z3

Zs

Zy

Zy
727 4
Zy
Zy
2274
Zs

Z2

95 ATAZA;

96 AZAZA;
97 AAZA;

98 AZAZAgA;
99 A3AgA7
100 A3A3A6A7
101 A1AzA3AgA7
102 AZAgA7
103 A3AgA7
104 A2A4A6A7
105 A2 AsAgAr
106 A1 A5 AgAr
107 A1 A5 AgAr
108 AZA7

109 ASAZ

110 A3 A5 AZ
111 A1 AZAZ
112 A1 AZAZ
113 A2A5AZ2
114 A2A5A2
115 AZAgAZ
116 AZA3AZ
117 AgAgAZ
118 AgAgAZ
119 ApAgAZ2
120 A1 A4AZ2
121 A1 A4AZ
122 A5A2

123 A5 AZ

124 A2A3A5As
125 A3A3As
126 A1AZAZAg
127 A2A3As
128 A2A3Ag
120 A1 A3A4As
130 A2A2A3A4As
131 AZA3A4As
132 A1AZA4As
133 A3A2A;
134 A1 AxA%Ag
135 AgAZAg
136 AZAZA5As
137 A3A5As
138 A3A3A5As
139 A1A2A3AsAsg
140 A1 A2 A3AsAg
141 A2A5As

Zo
z3

Z2

2974
Z4

72
Z2
23
2274
Zg

Z2
Zy

Z2
Z3
Z3

Z2

Z3

Z3
Z3
Z2

Z3

142 A2A4A5As
143 AgAgAsAs
144 AgAgAsAs
145 A1 AZAg
146 A3A2AgAs
147 A1AZAAs
148 A2A3A6As
149 A2 A3AgAs
150 A1 AgAgAs
151 AsAgAs
152 AJA7Asg
153 A2A2A7As
154 AZA7As
155 A1 AgA7As
156 AgA7Asg
157 ASAZ

158 ASAZ

159 A1 Ao A2
160 A1 Az A2
161 AzAZ

162 AzAZ

163 ASAZA3Ag
164 A1ASA3Ag
165 A1ASA3Ag
166 A2A2A2A,
167 AZAZAg
168 A1A3Ag
169 ATA2A4Ag
170 A2AZA4 A
171 A3A4Ag
172 A3A3A4Ag
173 A1 A2 AgA4Ag
174 A1 A2 AgA4Ag
175 A2A4Aq
176 A2A2Aq
177 A2A%Ag
178 A2 A2Ag
179 A3A2A5A9
180 A1AZA5Ag
181 A1AZA5A
182 AZA3A5A0
183 AgA3AsAg
184 AgA3AsAg
185 A1 AgAsAg
186 A1 A4AsAg
187 AZAg

188 AZAg

72

Zo

189 AfAgAs  Z»
190 A2A2A6Ag
191 AZAgAg
192 A1A3AgAg
193 A1A3AsAg
194 A4AgAg
195 A3A7Ag
196 A1A2A7Ag
197 AzA7Ag
198 AZAgAg
199 AsAgAg
200 A1 A2

201 A1 A2

202 A2A2A3A1
203 A3A3A10
204 A1A2A%A10
205 A3Aqg

206 A3A2A4A g

72

Zo

Zs

3[207 A1AZA4 Ao

208 A2A3A4A10
209 A2A3A4A10
210 A1AZA g
211 A2A2A5A10
212 AZA5A40
213 A1A3A5A10
214 A4AsA10
215 A3AgA1g
216 A1A2AgA10
217 AgAgAig
218 A2A7 A1
219 AsArAqg
220 A1AsA1g
221 AgA1g

222 ATAZA 4
223 A2A3A 4,
224 A2A3A11 Zs
225 A3A11 Z3
226 A3A2A3A11 72
227 A3AsA3A 11 Zy
228 A1 AZA3A L
229 A1AZA3A11 Zo
230 A1AZA3A11 Z3

Zg
Z3

231 A1AZA3A 11 Zg
232 A2A2A11 73
233 A2A2A11 24
234 AoA2Aq;

235 AoAZA11 2o

158




236 A2AZA11
237 ATA4 A1

238 A2A2A4A 11

Z4
Z2

239 A2A5A4A11 Z2

240 AZA4A1
241 A2A4A 1

242 A1A3A4A 11

Z3

243 A1A3A4A11 22

244 A2A11
245 ASA5A 1,
246 ASA5A1q

247 A1 A2 AsA11

Z2
Zg

248 A1A2As5A11 Z3

249 A3AsA1q
250 AzA5A1q
251 A3A5A1q
252 A3A5A1q
253 A2AgA1q
254 A2AgA1q
255 AaAgAir
256 A1A7A1q
257 AgAqq

258 ASAZA;,
259 A1A3A 12

260 A%A2A3A12

261 A2A3A15
262 A1A%A1,
263 A3A4A12

264 A1AsA4A 12

265 AgA4A1s
266 A2A5A12
267 AaAsA12
268 A1AgA12
269 A7A12

270 ATA2A13
271 A2AZAq3
272 A2AZA;5
273 ASAq3

274 A3A3A;3

275 A1AsAzAq3

Z2
Z3
Zg

Z3

Z2

Z2

Zs

276 A1AsAsA13 Zo

277 A2Aq3

278 A2A4A13
279 A2A4A13
280 A2AsA1s
281 A1A5A13
282 A1A5Aq3

Z2

Z3

283 AgA1s

284 A3AzA 14
285 A3A2A14
286 A1AZA 14
287 A1AZA 1,
288 AZA3A14
289 AgA3A1y
290 AoAzA1y
291 A1A4A 14
292 AsA1yg

203 ATA1s

294 A2A5A5
295 A2AsA 15
296 A2A2A15
297 A2A15

208 A2A 15

299 A1A3A1s
300 A1A3A1s
301 A1A3A1s
302 A4Aqs

303 A4Aqs

304 A3A16

305 A1A2A16
306 AsAig

307 A2A4;

308 A2A 47

309 AzAy7

310 AzAy7

311 A1Asg

312 Aqg

313 AJDy

314 Ao ASA4Dy
315 A1 ASAZD,
316 A2A3A%Dy
317 A1AA3Dy

318 A2A2A%A5D,

319 A1A3A5Dy

320 A1A2A3A4A5Dy

321 AsAZA5Dy
322 A3A3AZD,
323 A1AZAZD,
324 AA3AZD,
325 A1A4AZD,
326 A3Dy

327 ADy

328 A3AgDy

329 A1 AZA4AgDy

Z3

Z3

Z3

Zy

Zo

72
Z4

Z2

Z3

Z3

7274
Z3

Zolg
Z3

330 A2A3A4AgDy
331 A1AZAgDy
332 A1A3A5A6Da
333 A4A5AgDy4
334 A1A2AZD,
335 A3A2Dy

336 A2A3A7Dy
337 A1AZA3A7Dy
338 A2A2A7Dy
339 A2A2A7Dy
340 A2 A2A7Dy
341 Ao A2A7Dy
342 A2A5A4A7Dy
343 A2A4A7Dy
344 A1A3A4A7Dy
345 A3A5A7Dy
346 A1 A2A5A7Dy
347 AgAs5A7Dy
348 A2 AgA7Dy
349 A2 AgA7Dy
350 A1AZDy

351 A1 ASAgDy
352 A1AsA4AgDy
353 AgAsAgDy
354 A1AgAsDy
355 A2A2A9Dy
356 A1A2A3A9Dy
357 A2A4A9Dy
358 AgAgAgDy
359 A1AsAgDy
360 AgAgDy

361 A1A3A10Dy
362 A2A3A10Dy
363 A1A4A10Dy
364 AsA10Dy

365 A2A2A11Dy
366 AZA11Dy

367 A2A11Dy

368 A1A3A11Dy
369 A1A3A 11Dy
370 AgA11Dy

371 A1A2A12Dy
372 A2A13D4

373 A2A13D4

374 A1A14Dy

375 A15Dy

376 A2A3D?2

Z3
Z2
73
72274
Z2
yn

Zs
73
Zg

Z4
Z2

Zs

Z4
z3

377 A2 A3D3

378 A1A2ZD?

379 A2A7D2

380 A3D}

381 A1A2ZA3Ds
382 A2 A3Ds

383 A2A2A4D5
384 A1A3A4Ds
385 A2A2A%D5
386 A1A2A3A3D5
387 A2A3D5

388 ASA2A5D5
389 A1A2A2ZA;5D;5
390 A2A3A4A5D5
391 ApA3A4A;5Ds
392 A1A2A5D5
393 ATAZDs

394 AZA2Ds

395 A2A2D5

396 A1A3AZDs
397 A4AZDs

398 A4AZDs

399 A1AZA3A6D5
400 A2A2AgDs
401 A2A5A4A6D5
402 A2A4A6Ds
403 A1A3A4AgDs
404 A2A6Ds

405 A1A2A5AgDs
406 A3A5AgDs5
407 A2A2D5

408 A2A2Ds5

409 A3A2A7Ds
410 A2A2A3A7D;5
411 A2A2A3A7D5
412 A2A3A7D5
413 A2A3A7Ds5
414 A1A2A7Ds
415 A3A4A7Ds
416 A1A2A4A7Ds
417 AgA4A7Ds5
418 A2A5A7Ds5
419 A A5A7Ds
420 A1AgA7Ds
421 A2D5

422 A3AgDs

423 A1A2A3A5Ds

2
Z;

2
Z;

4
ZQ
Z4

24

Z4

424 A2A4AgDs
425 Ay A4AgDs
426 A1A5AgDs5
427 AgAsDs
428 A3A2AgDs
429 A1A2A9Ds
430 A1A2A9Ds
431 A2A3A9D5
432 ApA3AgDs
433 A1A4A9D;5
434 A1A4A9D;
435 A5AgDs
436 A5A¢Ds
437 A2A3A10D5
438 AZA10Ds5
439 A1A3A10D5
440 A4A10D5
441 A3A11 D5
442 A3A11D;
443 A1A2A11D5
444 A1A2A11D5
445 A1A2A11D;
446 AgA11D5
447 A3A11Ds5
448 A2A415D5
449 A2A12Ds
450 A1A13D5
451 A1A13D5
452 A14Ds5

453 AZA2D4Ds
454 A3A4D4Ds
455 A1A2A5D4D5
456 A2A3A5D4D5
457 A1A4A5D4D;
458 AZD4Ds
459 A2AD4Ds
460 A1A2A7D4D;
461 A1AgDyDs
462 A2A2A3D2
463 A1 A2A%D2
464 A1 A3A4D2
465 A1A3D2
466 A3A2A5D2
467 A1A3AsD2
468 A4AsD2
469 A1AsAgD2
470 A2A;D2

72
Z4

159




471 A2A7D2
472 Ao A7D2
473 A1AgD2
474 AgD?

475 A2A2D3
476 A4D3

477 D4D3

478 A1A3A%Dg
479 A3A3A4Dg

480 A1A2A3A4Dg

481 A3A4Dg
482 A1A2A2Dg
483 A2 A3A2Dg
484 A3A5Dg

485 A3A3A3A5Dg
486 A1AZA3A5Dg

487 A2A2A5Dg
488 Ao A2A5Dg

489 A2A9A4A5Dg

490 A2A4A5Dg

491 A1A3A4A5Dg

492 A2A5Dg
493 A3A2Dg
494 A1 A2A%Dg
495 A3AZDg
496 A3AZDg
497 A1 A3AgDg
498 A2A3A6Dg
499 A1A2A6Dg

500 A1A2A4A6Ds

501 AgAsAeDs
502 A2A5A6Dg
503 A2A5A6D6
504 A1A2Dg

505 A2A2A7Dg
506 A3A7Dg

507 A3A3A7Dg

508 A1 AxA3A7Dg

509 A2A7Dg
510 A2A7Dg
511 A2A4A7Dg
512 AgAyA7Dg
513 A1A5A7Dg
514 AgA7Dg
515 A1 A2AgDg
516 A2 A3AgDg
517 A1A4AgDg

Z4
Zy

Zs

518 AsAsDg
519 A2A2A9Dg
520 A2A9Dg
521 A2A9Dg
522 A1A3AgDg
523 A4A9Dg
524 AgA9Dg
525 A1A2A10Dg
526 AgA10Dg
527 A2A11Dg
528 A2 A11Dg
529 A2 A11Dg
530 A1A12Dg
531 A13Dg

532 A3A2D4Dg

533 A1A2A2D4Dg
534 A1A3A5D4Dg

535 AgAsD4Dg
536 A2 A7D4Dg
537 AgD4Dg

538 A2A3D3Dg

539 A1AZA3D5Dg
21540 AZAZDsDs

541 A2A4D5Dg

542 A1A3A4D5Dg

543 A2D5Dg
544 A3A5;D5Dg

545 A1A2A5D5D6

546 A3A5Ds5Dg
547 A3 AgDsDg
548 Ay A7DsDg
549 AgD5Dg

550 A1A3D4D5Dg

551 A1 A2D2Dg
552 AfA3D2
553 AZAp A3D2

2|554 AZA3D2

555 A1 A2D2
556 AzA4D2
557 A2A5;D2
558 Ao AsD2
559 A7D2

560 A3D4D2
561 A1AaD4D2
562 A3D4D2
563 A2D5D2
564 AoD5D2

2
Z2

565 A1 D}

566 A1 Az A3D7
567 A3D7

568 A2A3A4D7
569 A1AZA3A4Dy
570 A2A2ZA,D7
571 A2 AZA4D7
572 A7A2AZD7
573 A2A2D7

574 A1A3A2D7
575 A3Dy

576 A2A2A3AsD7 Z
577 A1A2AsD7  Zo
578 A3A4AsD7  Zo
579 A1A2A4A5D7
580 A3A4AsD7
581 A?AZD7

582 AZAZA¢D7
583 A1A2A3A¢D7
584 AZA¢D7

585 A2 A4A¢D7
586 A2A4AgDy7
587 A1As5AgD7
588 AZD7

589 A3A2A7D7
590 A1 AZA7D7
591 A7A3A7D7
592 AZA3A7D7
593 Ao A3A7Dy7
594 Ao A3A7Dy7
595 Ao A3A7Dr7
596 A1A4A7D7
597 AsA7D7

598 A2 A3 AgD7
599 A1A3AgDy
600 A4AsD7

601 A3AgD7

602 A1A2AgD7
603 A1AzAgDr
604 AgAgD7

605 AZA10D7

606 AxA19D7

607 A1A11D7

608 A1A11D7

609 A1A11D7

610 A12D7

611 A3 A2D4D7

z3
Z4
Zy

Z3

Zs

72

Zy

Z2
Z4

Z2

72
Zy

612 A2A4D4D7

613 A1A2A5D4D7 Z
614 ApAgD4D7

615 A1A7D4D7 7o
616 A1A3D5D7

617 A2A3D5D7

618 A1A2A4D5D7
619 A2A;DsD7  Z3
620 ApAsD5D7

621 A1AgDsD7

622 A7D5D7 z3
623 A1A2A3DgD7 72
624 A2DgD~ Zs
625 A2 A4DgD7

626 A1AsDgD7  Zo
627 AgDgD7

628 A1DsDgD7 72
629 DZD7 Z,
630 A1A3D2

631 A2A3D2 Zs
632 Ay A3D2

633 A1 A4D2

634 AsD2

635 A3A2A2ZDs 732
636 A1A2AZDg 7,
637 A2A3Dg z2
638 A2 A3Dg Zs
639 A2A2A3A4Ds Zo
640 A2A3A4Dg

641 A1AZA4Ds 7
642 A1 A2A2Dg

643 AJA2AsDs 732
644 A3A3AsDs 732
645 A1 AsA3A5Ds Zo
646 AZA5Ds Z;
647 A2A4A5Ds  Zo
648 AsAgA5Dg

649 A1AZDg Z,
650 A1AZDs 72
651 A1 AZAgDs

652 A2A3A¢Ds  Z3
653 AgAzAgDs

654 A1AgAgDs

655 AsAgDs

656 A}A7Ds z2
657 A2A2A7Dg  Zo
658 AZA7Dg

659 A2A7Dg
660 A1 A3A7Dg
661 AgA7Dg
662 A1A2AgDsg
663 A2AgDg
664 AyAgDg
665 A1A10Ds
666 A11Dsg

667 A2A2A3D4Dg

668 AZA3D4Ds
669 A1AZD4Dg
670 A2A5D4Dg
671 A2A2D5Dg
672 A3A3D5Ds

673 A1A2A3Ds5Dg

674 A2A4D5Dg
675 A1A5D5Dg
676 A2D4D5Ds
677 A1D2Dg
678 A3A,DgDg
679 A1AZDgDs
680 A2A3DgDs
681 A2A3DgDs
682 A1A4DgDs
683 AsDgDs
684 A1D4DgDs
685 D5DgDs
686 A2 A2D7Ds
687 A2D7Dsg
688 A1A3D7Dg
689 A3D2

690 A1 A,D2
691 A3D2

692 A1 A3A3Dg
693 A3A2Dg
694 A2A2ZA,Dg
695 A3A4Dg

696 A1 AsA3A4Dg

697 A2A2Dg
698 A A3Dgy
699 A1AZA5Dg
700 A2 A3A5Dg
701 A2A3A5Dg
702 A1A4A5Dg
703 A2ZDg

704 A2Dg

705 A2A2A6Dg

Z3
Zo
Zs

72

Z2
z3

Z2

2
ZQ

2
ZZ

Zo

160




706 A2ADg

707 A1A3A6Dg

708 A4AgDg

709 A3A7Dg  Z5
710 A1A2A7Dg

711 A3A7Dg  Zo
712 A2AgDg

713 A2 AgDg

714 A1AgDg

715 A1AgDy  Z2
716 A10Dg

717 A1AsD4Dg 75
718 A1AZD5Dg

719 A1A4D5Dg

720 A5D5Dg

721 D2Dg

722 AZDgDg

723 A1A3DgDg Zo
724 A4DgDg

725 A1A2D7Dg

726 A7DsDy  Z
727 A1D3

728 A3A3D1y  Zo
729 A2A2A3D1g Z2
730 A3AZDy 72
731 A1A2A2D1g Z2
732 A3D1o Zs
733 A3A2A4D1g Z2
734 A1AZA4D1g
735 A2A3A4D1g Z2
736 A2A3A4D1o
737 A1A2D

738 AtAsD1o 73
739 A2 A2A5D1g Z2
740 A1A3AsD1g Zo
741 A1 A3AsD1g Z2
742 A4A5D1g

743 AsAsD1o 7o
744 A3A¢D1g  Zo
745 A1A2A6D1o
746 A3AgD1o

747 A2A7D1o  Zo
748 A2A7D1o

749 A1AgDio

750 AgD1g

751 A1A2ZD4D1g Z2
752 AZA3D4D1g 732

753 A1A4DyD1g Z2
754 AsD4D1g  Zo
755 A2A3D5D1g Zo
756 A2D5D1g
757 A1A3D5D1g Z2
758 A4D5D1g
759 A3DgD1o  Z3
760 A1 A2DeD1o Z2
761 A3DgD1o  Z2
762 A2D7D1g  Zo
763 A2D7D1g
764 A1DsD1g  Zo
765 DgD1g
766 A1AZA3D11
767 A7AZD11  Z
768 A2AZD1q
769 A2A5A4D1q
770 AZA4D1q
771 A1A3A4D11
772 A2D1q
773 A3AsD11 Zo
774 A1 A2 AsD1q
775 A3As D11
776 A2AgD11
777 A2AgD11
778 A1A7D11
779 AgD11
780 A2D4D1q
781 A1A2D5D1q
782 A2DgD11
783 A1D7D11
784 ASAZD1,  Zo
785 A1ASD1o
786 A2 A3A3D12 Zo
787 A2A3D12
788 A2A3D12 7o
789 A1AZD1,  Z
790 A$A4D12  Zo
791 A1A2A4D12
792 A3A4D12 7o
793 A?2AsD12 Zo
794 A2A5D1o
795 A1AgD12
796 A1A2D4D12 Z2
797 A2D5D12  Zo
798 AoDsD12  Zo
799 A1DeD12 7o

800 D7D12
801 A2AZD;3
802 A1A2A3D13
803 A2A4D13
804 AsA4D13
805 A1A5D13
806 AgD13

807 A1DsD13
808 DgD13

809 A3A2D14
810 A1AZD14
811 A1A2D14
812 A2A3D14
813 A2A3D14
814 A1A4D14
815 A1A4D14
816 AsD14

817 A1D4D14
818 DsD14

819 A2A5D;5
820 A2D15

821 A1A3D15
822 A4Dy5

823 A3D1g

824 A1A2D1g
825 A1A2D16
826 A3Dig

827 A2D17

828 AsD17

829 A1D1g

830 D1g

831 A2A,A3Es
832 A2A3Es
833 A1A2AZA4Eq
834 A3A,A%Esg
835 A2A3A2Eq
836 A2 A3A2Eg
837 A1A3Es
838 A3A5Es
839 A1AZA3A5Eq
840 ATA2A5E¢
841 Ao A2A5Eg
842 A2A4A5Eg
843 A1A3A4A5Eg
844 A2A5Esq
845 A3A2Eq
846 A1 A2AZEsg

Z3

Zs

72

Zo

72

Zs

Z3

2
Z3
Z3
Z2

Z3

Zg
Z3

847 A3A2Esg
848 AsAZEsg
849 A3AZEs
850 A3A2E
851 A2AsA3A6Es
852 A2A3A6Eq
853 A1A2AGEs
854 A3A4AGEs
855 A1A2A4AgEg
856 AgA4AcEg
857 A2A5A6Eq
858 AsAsAgEeg
859 A1A2Eq
860 AJA2A7Eq
861 A3A3A7Eg
862 A1A2A3A7Eg
863 A2A4A7Eq
864 AsAyA7Eg
865 A1A5A7Eg
866 A1A5A7Eg
867 AgArEg
868 ATA2AgEq
869 A1AZAgEq
870 A2A3A5Eq
871 AsA3AgEg
872 A2 A3AgEg
873 A1A4AgEg
874 AsAsEg
875 ATAgEs
876 A2A2A9Eg
877 A2A9Es
878 A1A3A9Eg
879 A1A3AgEg
880 A4AgEsg
881 A3A10Es
882 A1A2A10Eg
883 AgA10Es
884 A2A411E¢
885 A2A11E¢
886 A2A11E6
887 A2A11E6
888 AsA11Es
889 AsA11Es
890 A1A12Es
891 A13Eg

892 A1A3D4Esg
893 A1AZA4D4Eg

Zo
Z3
Zg

Z3
Z3

Z3

Zy

Z3

Z3
Zg

Z3

Z3

894 A1 A%ZD4Es
895 AZA5D4Eg
896 A1A3A5;D4Eq
897 A4AsD4Ee
898 A1A2AD4Eg
899 A2A7D4Es
900 A1 AgD4E¢
901 AgD4Eg

902 AA2D5E¢
903 A2A2A4D5Eq
904 A1A3A4D5Eq
905 A2D5E¢q

906 A3AsD5E¢g
907 A3AsD5Eg
908 A?AgD5Eg
909 A2AgD5E¢
910 A1A7D5E¢
911 AsD5Eg

912 A4D4Ds5Eg
913 A1 AsD2Eg
914 A3D2Es

915 A2A3DgEs
916 A1A2DgEg
917 A1A2A4DgEsg
918 A3A4DgEs
919 A2A5DgEs
920 A2A5DgEg
921 A1A¢DgEs
922 A7DgEg

923 A3D5D6Es
924 A2A2D7Eg
925 A1 A2A3D7Eg
926 A2A4D7Eg
927 A2 A4D7Eg
928 A1A5D7Eg
929 A¢DrEg

930 A1D5D7Esg
931 DgD7Eg

932 A2A3DgEs
933 A1A4DsEg
934 AsDsEg

935 D5 DsEg

936 A2A2DgEg
937 A2DgEs

938 A1A3DoEg
939 A4DoEg

940 D4DoEg

Z3
Z2

Z3

Z2

Z2

Z3
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941 A3D10Es
942 A1A2D10Eg
943 A3D1oEs
944 A%?D11E¢
945 AsD11Eg
946 A1D12Eg
947 D13Eg

948 A3AZE2
949 AZA3EZ
950 A1 A2E2
951 AJA4EZ
952 Az A4E2
953 A2A5E2
954 AgAsE2
955 A1 AgEZ
956 A7EZ

957 A1 AoD4E2
958 A3D4E2
959 A2D5E2
960 A1DgE2
961 D7EZ

962 A1 E3

963 A2A2ZAZE,
964 ASA2ZE;
965 A1 AZA3A4E;
966 A2A2A4E;
967 A2 AZA4E;
968 A2A2A%E;
969 AZAZE,
970 A1A3A2E,
971 ATA3A5E;
972 A2AsA3A5E;
973 A2A3A5E;
974 A2A3A5E7
975 A1 AZA5E7
976 ASALA5E;
977 A1A2A4AsEr
978 AsA4A5E7

Z3

Z3
Z3

Z3
Z3

Z3
Zs

Z3

2
ZQ

Z3

Z2
Zo
Zy

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

AsA4A5E7
AZAZE;
ApAZE7
AZA2A6E?
ASAGE7
A1A2A3AGE7
AZAGE7
A2A4AGE7
AsA4AGE7
A1A5AGE7
AZE;
A3A2A7E7
A1AZA7E7
A1AZA7E7
A2A3A7E7
AzA3A7E7
A1A4A7E7
A1A4A7E7
AsA7E7

998 AZA5AsE;
999 AZAgE;

1000 A1 A3AgE7
1001 A4 AsE;

1002 A3 AgE;

1003 A1A2AgEy
1004 A1 A2AgE7
1005 AgAgE;

1006 AgAgE;

1007 A2A10E7
1008 A2A19E7
1009 A1A11E7
1010 A12E7

1011 A1A2A3D4E; Z
1012 A?2A2D4E; 73
1013 A2A4D4E;

1014 A1 A3A4D4E7 Z
1015 A2D4Er
1016 A3A5D4E;

Z3
Z2

72

Z2

72

Zs

Z3

Z2

2
ZQ

1017 A1A2A5DyEr Zo
1018 A3AsD4E7  Zo
1019 A AgD4E7

1020 A1A7D4E7 7o
1021 AsD4E;

1022 A3A2ZDsE7  Zo
1023 A2AA3D5E7 Zo
1024 A2A3D5E7

1025 A1A2DsE;  Zs
1026 A1A2A4DsE7
1027 A3A4D5E7

1028 A2AsDsE;  Z»
1029 A2A5DsE7

1030 A2AsDsE7  Zs
1031 A1AgD5E7

1032 A7DsE;

1033 A1A2D4D5E7 Zo
1034 A2D2E, 7,
1035 A2D2E;

1036 A2A2D6E;  Z»
1037 A3DgEr7

1038 A3A3DgE7r 72
1039 A1A2A3DgE7 Zo
1040 A2DgE- Zy
1041 A2A4D6Er  Z»
1042 A2 A4DgE7

1043 A1AsDgEr  Z»
1044 AgDgE7

1045 AoD4DeE7  Zo
1046 A1DsDgE7  Zo
1047 DZE7 Z,
1048 A1A2D7E;

1049 A2A3D7E;  Z»
1050 A2 A3D7E7

1051 A1A4D7E;

1052 AsD7E;

1053 AsD7E7 zy
1054 A1D4D7E7 7

1055 DsD7E;
1056 A$DgE7
1057 A2A2DsEr
1058 AZDgEr
1059 A1 A3DgE7
1060 A4DsE7
1061 A1 AsDoEr
1062 A3DoE7
1063 A2D1oE7
1064 A2D1oE7
1065 A2D1oE7
1066 A1D11E7
1067 D12E7
1068 A3A3EsE7
1069 A1 A2A3EGE7
1070 AZE¢E7
1071 A2A,E6Er
1072 A2 A4EgE7
1073 A1 AsEeEr
1074 AgEgE7
1075 A2D4EgEr
1076 A1D5EgEr
1077 D¢EgE7
1078 E2E;

1079 A3A,E2
1080 A1 A2E2
1081 A?A3E2
1082 Ap A3E2
1083 Ao A3E2
1084 A1 A4E2
1085 AsE2

1086 A1D4E2
1087 D5 E2

1088 D5 E2

1089 A1 A3AZEs
1090 AZA3Es
1091 A2 A3Es
1092 A3AZA,Eg

2
Z;
Z2

72

Z3

72

Z3

Z2

Zs

1093 A2A2A3A4Es
1094 A2A3A4Es
1095 A1 A2A4Eg
1096 A3A2Es

1097 A1 A2 A2Es
1098 A3A2Es

1099 ASA3A5Es
1100 A1A2A3A5Es
1101 AZA5Es

1102 A2A4A5Es
1103 A2 A4A5Eg
1104 A1 A2Es

1105 A3AsAGEs
1106 A1 A3AgEs
1107 A2A3AgEs
1108 AsA3AgEg
1109 A1A4AGEg
1110 AsAgEs

1111 ATA7Es

1112 A2A5A7Es
1113 A2A7Es

1114 A1 A3A7Eg
1115 A4 A7Es

1116 A3AgEs

1117 A1 A2 AgEsg
1118 AgAsEs

1119 A2AgEs

1120 Az AgEs

1121 A1A10Es
1122 A11Es

1123 A1 ASD4Es
1124 A2A3D4Es
1125 A1A2A4DyEg
1126 A2 AsD4Eg
1127 A1AgD4Es
1128 A2A2D5Eg
1129 A1A2A3D5Eg
1130 A2A4D5Es

Z3

Z3

1131 A2 A4D5Es
1132 A1A5D5Es
1133 A¢DsEs
1134 A1D2Es
1135 A1 A2ZDgEs
1136 A2 A3DgEs
1137 A1A4DgEs
1138 AsDgEs
1139 DsDgEs
1140 A2A,D7Es
1141 A2D~Es
1142 A1 A3D7Eg
1143 A4D7Es
1144 A1 A2DgEs
1145 A2DgEsg
1146 ADoEs
1147 A1D1oEs
1148 D11Es
1149 A3A5E6Es
1150 A2A3E6Es
1151 A A3EgEs
1152 A1 A4EgEs
1153 AsEgEs
1154 A1D4EgEs
1155 DsE¢Es
1156 A2A,E7Esg
1157 AZE7Esg
1158 A1 A3E7Es
1159 A4E7Eg
1160 D4E7Eg
1161 A3E2

1162 A1 AoE2
1163 A3E2

Table D.7: Algebras of maximal rank for the heterotic string on 7°3.
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1 A2A3

2 AgA3

3 A1AZ

4 AZA;

5 A2A2C,

6 ASA4Cy

7 A1AZA5Cy
8 AZA3A5C
9 A1A4A5Cy
10 A2Cq

11 A2A6Cy
12 A1A2A7Cy
13 A1A9Cq
14 A2AZA3C?
15 A1A2A3CE
16 A1A2A4C2
17 A1A2C?
18 AZA2A5C?
19 A1 A3A5C2
20 A4 A5C?
21 A1A2A6C?
22 A2A7C2
23 A2A7C2
24 ApA7C2
25 A1AgC?
26 AgC?

27 A3AZC,
28 A1A2A3C:
29 A1A3A5Co
30 A4A5Ca
31 A2A7Ca
32 AgCy

33 A1AZA5C1Co
34 AZAZC1C
35 A2A4C1Co
36 A1A3A4C1C2
37 A2C1Co
38 A3A5C1Co
39 A1A2A5C1Ca
40 A3A5C1Cy
41 A2A6C1C2
42 A1A7C1Co
43 AgC1C2
44 ATA3C3
45 A2A5A5C3
46 A2A3C3
47 A1A3C3

z3
z3
73
Z2

Z3
z3
YA
YA

[

N

z

N

Z4

Zs
Z2

Zy
Zy

3
Z2
2
ZQ
2
ZQ

2
ZQ

z

N

73
2
ZZ

2
Z2

48 A3A4C3
49 A2A5C3
50 Ao A5C3
51 A7C2

52 A2A%Cs
53 AZA4C3
54 A1A2A5C3
55 AgAgCs
56 A1A7Cs
57 A1A3C1C3
58 A2A3C1C3
59 A1 A2A4C1Cs
60 A2A5C1C3
61 A2A5C1C3
62 A1AgC1C3
63 A7C1C3
64 A1A2A3C2Cs
65 A2C2C3
66 A2A4C2C3
67 A1A5C2C3
68 AgC2C3
69 A1AZC3
70 A2A3C3
71 AaA3C3
72 A1A4C3
73 A5C2

74 A2A2A3Cy
75 AZA3Cy
76 A1A2Cy
77 A2A5Cy
78 A2A2C1Cy
79 A3A3C1Cy
80 A1A2A3C1Cy
81 A2A4C1Cy
82 A1A5C1Cy
83 ASA2C2Cy
84 A1A2C2Cy
85 A2A3C2Cy
86 AaA3C2Cy
87 A1A4C2Cy
88 A5C2Cy
89 A2A5C3Cy
90 A2C3Cy
91 A1A3C5Cy
92 A$C2

93 A1A2C2
94 A3C2

Z3
z3
Z2
Zs
Zy

Z2

z
2
Z;

N

2
Z2

95 A1A5Cs
96 A1A2C1C5
97 A1A4C1Cs
98 A5C1Cs
99 AZC3Cs
100 A1 A3C2Cs
101 A4C2Cs
102 A1A2C3Cs
103 A2C4Cs
104 A1 C2

105 A1A2Cs
106 A2A5Cs
107 A1A4Cs
108 A5Cs

109 A2A5C1Cg
110 A2C1Cg
111 A1A3C1Cg
112 A4C1Ce
113 A3C2Ce
114 A1 A2C2Cg
115 A3C2Cg
116 A2C3Cg
117 A2C5Cg
118 A1C4Cq
119 C5Cs

120 A2Cy

121 A1A2C1Cr
122 A2CCr
123 A1C3Cr
124 A1A5Cs
125 A2C4Cg
126 A2C1Cg
127 A1C2Cs
128 C3Cs

129 A1C1Cy
130 C2Cy

131 A1Co

132 C1Cio

133 A2A3C2Dy

134 A1 A3C1C2Dy

135 A3C3D4
136 A1A2C3Dy
137 A3C3Dy
138 A2C1C4Dy
139 A1C2C4Dy
140 A3D?

141 AZAC%Ds5

Z2

Zs
72

Z2
Z2

Z2

73
73
73
73
Z2
Z2
73
74

Zo

142 A4C%Ds

143 A1A3C2Ds 73
144 A1A9C1CoD5 Zo
145 A2C2Ds 72
146 A2C2Ds5 Zs
147 A1C2C3D5  Zo
148 A2C4Ds 72
149 A1C1C4Ds  Zo
150 C2C4Ds Zy
151 C1CsDs

152 C2DyDs Zs
153 C1 D2 75
154 A2A3Dg z3
155 A1A3C1Dg 73
156 A1A2C3Dg  Zo
157 A3C2Dg z3
158 A1A2CoDg 73
159 A3C2Dg 72
160 A2C1C2Dg  Z32
161 A2C1C2Dg  Z2
162 A1C3Ds 7z
163 A1C1C3Dg  Zo
164 C2C3Ds Zy
165 A1C4Dg 72
166 C1C4Ds Zy
167 A1C1C2D7  Zo
168 C2D7 Zs
169 A2C1Ds z2
170 A1C2Dg Zy
171 A1 C2Dsg 72
172 C1C2Ds Z5
173 C2Dy

174 A4C1Eg

175 A1 A2C2Eq

176 A3C2Eg

177 A2C1C2Eg

178 A1C1C3Es

179 C2C3Eg

180 C1C4Es

181 C5Eg

182 A1A2C1Er 73
183 A2C2E, Z,
184 A C2E7

185 A2CoEr Zy
186 A1C1C2E7  Zo
187 C2E; Z3
188 A1 C3E7 Z2

189 C1CsEy7
190 A1C2Eg
191 C1C2Esg
192 A1 ASF
193 A1 AZA4F,
194 A1 A2ZF,
195 A2ZA5F
196 A1 A3AsF2
197 A4A5F
198 A1 A AgF>
199 A2A7F
200 A1 AgF
201 AgFs

202 AZA%C1F;

203 A2A2A4C1F2
204 A1A3A4C1F2

205 A2C1Fo

206 A3A5C1F2
207 A3AsC1F2
208 A2AC1Fs
209 A2AgC1F2
210 A1A7C1Fy
211 AgC1F

212 A2A3C,F
213 A1 A2ZC,F,

214 A1A2A4CoFs

215 A3A4CoFs
216 AZA5C2F>
217 A3A5CoFs
218 A1AgCoF>
219 A7CoF

220 A2A2C3F,

221 A1A3A3C3Fo

222 AZA4CsFs
223 A3 A4C3F,
224 A1A5C3F,
225 AgC3F2
226 A2A3C4F
227 A1A4C4Fo
228 A5C4F
229 A2A5C5F;
230 A2C5F
231 A1A3C5F,
232 A4C5F
233 A3CgF 2
234 A1A2C6F2
235 A3CgF

Z3

Z3
Z2

Z2

Z2

72

72

Z2

72

236 A2C7F,
237 A2 C7Fo
238 A1CsF
239 CoF2

240 A4C1D4F2
241 C5D4F
242 A4D5F>

243 A1A3C1D5F9

244 A3C1D5F,
245 AC2D5F
246 A1C3D5F
247 C4D5F
248 A3C1DgF3
249 C3DgF2
250 A1C1D7F>
251 CoD7F
252 C1DgF
253 DoFa

254 A1 A2EgF2
255 AsEgF2
256 A2C1EgF2
257 A1C2EgF
258 C3EgF2
259 AsE7Fs
260 A1C1E7F2
261 C2E7F2
262 A1EgF2
263 C1EsF2
264 A3AZF2
265 AZA3F2
266 A1 AZF2
267 ASALF2
268 A3 A4F2
269 AZA5F2
270 Ay A5F2
271 A1 AgF2
272 A7F3

273 A1 AsDyF3
274 A3D4F3
275 A?D5F3
276 A1DgF3
277 D7F2

278 A1E¢F3
279 E7F2

280 A1 AZAF;
281 A2AZF,
282 AZA4F3

Z3

Z3

Zo
z3
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283 A1A3A4F3  Z2[307 AZA4CoF3  Z2|331 A1C3D4Fs  Z3(355 AgFFs 379 A1A5C1Fy [403 A1 A4FoFy

284 A2F; 308 A3 A4CoF3 332 A1A2D5F3  Z2[356 AsDyFoF3 380 AgC1Fs  [404 AsFaFy

285 A3A5F3 Z%[309 A1A5C2F3  Z9[333 A2C1DsF3  Z2|357 A;D5FoF3 381 A1AZCoFy |405 A1D4FoFy

286 A1A2A5F3  Z5[310 AgCaF3 334 AoC1D5F3 358 DgF2F3 382 AgA3CoFy |406 DsFaFy

287 AsA5F3 Z5|311 A1A2C5F3 335 A1C2D5F3 732|359 EgF2F3 383 A1A4CoFy [407 A2AF3Fy

288 AsAgF3 312 A2A3C3F5  Z»[336 C3D5F3 360 ASA,F2 75384 A5CoFy 408 A2F3Fy

289 A1 A7F3 Z5(313 A2A3C3F; 337 A2D6F3 Z-|361 A1 A2F2 385 A2A5C3Fy (409 A1 AsF3Fy

290 AgF3 314 A1 A4C3F3 338 A1C1D6F3  Z2[362 ATA3F2 Z5(386 AZC3Fs  |410 A4F3Fy

291 A3AZC1F3  Z2|315 A5C3F3 339 C2DgF3 Z5|363 Ao A3F? 387 A1A3C3Fy [411 D4F3Fy

292 A2A5A3C1F3 Z2|316 A5C3F3 Z5|340 A1 D7F3 Z5|364 Ao A3F? Z5(388 A4C3Fy4 412 ASF2

293 A2A5C1F3 317 ATC4F3 72(341 C1D7F3 365 A1 A4F2 389 A1A2C4Fy |413 A1 AsF2

204 A1AZC1F3  Z»(318 A2A2C4F3  Z5|342 AsEgF; 366 AsF2 390 A2C5Fy  [414 A3F?2

205 A1A2A4C1F3  |319 AZC4F; 343 A1C1E6F3 367 A1D4F2 75391 A2C5F4

296 A3A4C1F3 320 A1A3C4F3  Z3[344 CoEgF3 368 D5F2 392 A1C6F4

207 A2A5C1F3  Z5(321 A4C4F3 345 A E7F3 Z5|369 D5F2 Z5]393 C7F4

298 A3A5C1F3 322 A1A2C5F;3 346 C1E7F3 370 A1A3F, 394 A1C1D5Fy

209 AsA5C1F3  Z5[323 A3CsF3 347 C1E7F3 Z5)|371 A2A3F4 395 C2D5F4

300 A1A¢C1F3 324 A2CgF3 75]|348 EgF3 372 A1A2A4F4 396 C1DgFa

301 A7C1F3 325 Ay CgF3 349 ASA3FoF3  Z2[373 AsAsFy 397 A1E¢F4

302 A2A2ZC3F3  Z2|326 A2CeFs 75350 A1 A2A3FoF3  |374 A1 AgFa 398 C1EgF4

303 A3CoF3 327 A1C7F3 351 AZFoF3 375 A2AZC1Fy 399 E7Fy4

304 A3A3CoF3  Z2|328 CgF3 352 A2A4FoF3 376 A1A2A3C1Fy  |400 A3AsFoFy

305 A1AsA3CoF3 Z2(329 A1 AoC1D4F3 Z5[353 Ay AsFoF3 377 A2A4C1Fy 401 A2A3FoFy

306 A2CoF5 75330 A2CoD4F3  Z5[354 A;AsFaF3 378 A2 A4C1Fy 402 AsA3FoFy

Table D.8: Algebras of maximal rank for the heterotic Z, triple.
1A3A275|7 A2As  Z3[13 A1Ds 19A2Gy |25 A1DsG1 (31 A2A3G2 [37D5G?  Z2|43 A1DyGz  [49 D4G1Ge
2A2A;5 738 A1A 14 Dy 20 A2A4G1 (26 DsGy 32 AoA3G? Z5[38 A3A2Go |44 D5Go 50 A3G3
3A1A2 |9 A; 15 A1Eg Z3(21 A3A4Gy |27 E6Gy 33A1A4G2  [39A2A3G>  [45 A2A5G1Go |51 A1ALG2
4A3A, |10A1A2Ds  |16E7 22 A1A5G1 (28 A$ALG2 Z5(34 A5G2 40 A2A3Ge  [46 AZG1G2 |52 A5G
5A3A4 |11 A3D4 17A3A3G1  Z2|23A6G1 |29 A1A2G2 (35 A1D4G2 Z5[41 A1A4Go |47 A1A3G1Ge
6 AZA5 Z3[12 A3Ds 18 A1A2A3G1 |24 A2D4G1 |30 A2A3G? Z5(36 D5 G? 42 A5Go 48 A4G1G2
Table D.9: Algebras of maximal rank for the heterotic Z3 triple.
LASA> Z5(3 A2A5 755 A A3 Z5|7 As 9 D5 |11 AZAzA; |13 AjAshg (15 DAy |17 AgAgh2
2A1A3  |4A2As  |6A1A4  [8A1D4Z5[10D5 22|12 AZA; (14 A4nr |16 ASAZ 18 Asn2

Table D.10: Algebras of maximal rank for the heterotic Z, triple. A; denotes to an Ay at level 1.

1A3
2 A1A
3 A3

Table D.11: Algebras of maximal rank for the heterotic Z5 and Zg triples.
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D.2.2 Fundamental group generators

172 A3A3A4Ag
172" A3A3A4A

174 A1AsA3A4Ag

179 A3A3A5A9
179" A3A3A5Ag
181 A1AZA5A9
182 A2A3A5A9
182" A2A35A5A9
184 AgA3As5Ag
186 A1A4A5Ag
188 AZAg

189 ATAgAg
193 A1A3AgAg
195 A3A7Ag
226 ASAsA3A
229 A1A2A3A11
232 A2A2A4,
235 AaA2Aq,
237 ATA4AL
239 ATA2A4A1

4 A2A3A2 Z5 1122200
11 A%AAZA4A5 75 0102203
13 A1A3A4As 7, 102203
14 A3A3A2A5 75 1112003
23 A1A2AZAZ 7, 000233
23" A1A2A2ZAZ 7, 102203
24 AJAZ Zy 00233
26 A?A3A4AZ 7, 002033
26" A2A3A4AZ 7, 110033
28 A2A3A4AZ 7, 02033
34 A1AzAL Zy 02033
50 ATAZA5As 7y 012230
56 ASAZAg Z 011330
59 A3AZAq Zy 2330
76 ASAsAsA4A7 75 0110204
78 AZAZALA7  Zy 110204
81 A2AZALA7;  Z, 02204
82 ATAZA; Z5 1111004
87 ATA2A3A5A7 Z5 010034
87" ATA2A3A5A7 Z5 110204
89 A1AZAsA; 7, 10034
89 A1A3A5A7  Zy 12230
91 A3A4AsA7  Z, 001034
93 A1A2A4A5A7Z; 10034
95 AZAZA; Z> 01034
95" AZAZA~ Zy 11330
100 ASA3A6A7  Zy 011204
103 AZAgA7 Zy 2204
107 A1AsA6A7 7y 1304
112 A1 AZAZ2 Zo 00044
113 A2A3AZ Zy 11204
118 Az AgAZ 7y 0044
121 A1 AyA2 Zy 0044
123 A5 A2 Zs 044
127 AZA3As Zy 112220
138 A3A3A5As 7, 111230
152 ATA7As Zy 111140
163 A3AZA3A9 75 0010025
165 A1ASA3A9  Z, 100025
166 AZA2AZA9 7, 010025
168 A1A3Ag Zy 10025
169 ATA2A4A9 7, 0111005

243 A1A3A4A1;
245 ASA5A1,

250 AsAsA1

254 A2AgA11

270 ATA2Aq3

272 A2AZA3

274 A3A3Aq3

276 A1A2A3A13
279 A2A4Aq3

282 A1AsA13

295 AZAoA 45

298 A2Aq5

300 A1A3Aq5

303 AsA1s

314 AA3A4Dy
320 A1A2A3A4A5Dy
325 A1A4AZD,
328 A3A¢Dy

332 A1 A3A5A6Dy
336 A2A3A;Dy
337 A1A2A3A7Dy
340 AAZA7Dy

72
Z2
Z2
Z2
Zo
Z2
72
Zo
Z2
72
Z2
Z2
Z2
Z2
Z2
Z2
Z2
Z2
Z2
Z2
Zo
Z2
72
Z2
Z2
Z2
Zo
Z2
72
Z2
Z2
72
Z2
Z2
Z2
Z2
Z2
Z2
Z2
Z2
Z2
Z2

342
344
346
347
348
355
356
356/
357
359
359
365
365’
368
370
372
379
389
390
396
396/
396"
398
409
410
413
415
417
418
418’
428
428’
430
431
431’
434
436
441
444
446
451
453

001205
111005
10205
000035
111005
00035
00035
01205
0035
0035
035
011105
1205
11105
011006
00026
11006
0026
001106
11006
0206
01106
206
1106
000107
01007
00107
1007
0107
107
0008
008
008

08
02220s
10203s
0033s
2220s
1230s
110004s
00024s
0024s

ATA2A4A7D4 75 11004s
A1A3A4A7Ds 75 0204s
A1A2A5A7D4 75 10340
AsAsA7Dy 7, 204s
A?AgA7Ds  Z, 1104s
A2AZA9Ds 7, 01005s
A1A2A3A¢gDy 7, 1005s
A1A2A3A9D4 75 10250
AfA4A9Dy 7y  0105s
A1A5A9Ds 75 0350
A1AsA9Dy  Z,  105s
A?AA11Dy Zy  0006s
A3A2A11Dy  Z5 11060
A1A3A11Ds 7, 006s
A4A11Dy Z, 06s
A2A13Dy zZy 0170
AZA;D? Zy  004ss
A1A2A%A5Ds 75 102230
AZA3A4A5D5 Z, 012032
A1A3A2Ds 7, 00332
A1A3AZDs 7, 02330
A1A3AZDs 7, 12032
A4AZDs Zy 0332
A3AZA7Ds 7, 0110042
A?A2A3A7D5 75 110240
AZA3A7Ds 7, 00242
A3A4A7Ds 7, 011042
AsA4A7Ds 7, 2042
ATA5A7Ds 75 01340
AZA5A7Ds 7, 11042
A3A2A9Ds 7, 001052
A3A2A9Ds 75 111050
A1AZA9Ds 7, 10052
AZA3A9Ds 7y 01052
A3A3A9Ds  Z5 01250
A1A4A9Ds 7, 1052
AsAgDs Zs 350
A3A11D5 Zy 01160
A1A2A11Ds 7, 0062
A3A11Ds5 Zs 062
A1A13D5 Zs 170
AZAZD4Ds 7, 0022s2

455 A1A2A5D4D5 7,
457 A1A4AsD4Ds5 7,
458 AZD4Ds Z,
458" A2D4Ds Zs
460 A1A2A7D4Ds 75
461 A1A9D4D5 7,
461’ A1AgD4Ds  Z,
462 A2AZA3D2 7,
466 A2A,AsD2 7,
467 A1A3AsDZ 7,
470 A2A;D? Zs
475 A2A,D3 Zs
477 D4D2 Z,
478 A1A3AZDs 7,
480 A1A2A2A4Dg 7,
481 A3A4Dg Zs
486 A1AZA3A5D6 7,
488 A2AZA5Dg 7,
489 A2A5A4A5D6 7,
491 A1A3A4A5D6 7,
491" A1A3A4A5D6 75
494 A1A9AZDs 7,
495 A3AZDg Z,
495" A3AZDg Zs
495" A3A2Dg Z,
499 A1A2A6Ds 7,
502 A?A5A6Ds  Zo
505 A2A2A7Dg 7,
508 A1A2A3A7Dg 7,
508" A1A2A3A7Dg Z,
509 AZA7Dg Z,
511 A2A4A7Dg 7,
511 A2A4A7D¢  Z,
513 A1A5A7Dg 75
513" A1AsA7Dg 7o
519 A2A3A¢Ds 7,
519" A2A5A9Dg 7,
521 A2AgDg Zs
522 A1A3A9Ds  Z,
522" A1A3A9Dg 7,
522" A1A3AgDg 7o
524 A4Ag9Dg Zs

1003s2
103s2
3302
33s0
004s2
1502
15s0
1100222
010322
12302
11402
110222
5222
100022s
10220s
2220v
00023s
0023s
11003s
0203s
1203v
0033v
033v
203s
2330
1220s
1130s
01004s
0024v
1004s
024v
0104s
1104v
104s
1340
0005s
0105v
005s
005s
105v
1250
05s
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527 A2A11Dg Zs
527" A2A11Dg Zs
529 A2A11Dg Zs
535 A4AsD4Ds  Z,
536 A2A7D4Ds  Z,
537 AgD4Dg Zs

539 A1A2A3D5Dg
542 A1A3A4D5Dg
545 A1 A2A5D5Dg

72
Z2
Z2

006v
1160
06v
03ss
04sv
50s
10022s
1202s
0032s

546 A3AsDsDg 7, 032s
546’ A3AsDsDg 7y 230s
548 A1A7DsDg  Z, 042v
548 A1A7DsDg  Z,  140s
551 A1A2D2Ds  Z, 1022s
554 A2A3D2 Zy 002ss
556 AsA4D32 Zy  20ss
558 A A5D2 Zy  03sv
559 A;D2 Zo 4wy
564 A;D5D3Z Z>  02ss
570 A2AZA4D7 75 112202

576 A2A2A3A5D7 75 010232

577 A1AJAsDr  Zy 10232
577 A1A2AsD7 7, 12230
578 A3A4AsD7 75 111032
581 A2A2Dy Zy 00332
581’ A2AZD7 Zy 11330
589 A3A2A7D7 75011042
591 A?A3A7D7 7, 11042
591’ A2A3A7D7  Z, 11240
594 ApAsA7D7 7, 0242
601 A3AgDy Zo 00152
601’ A3A9D7 Zy 11150
603 A1A2A9D7 7y 1052
608 A1A11D7 Zy 062
611 A3AZD4D7 7, 022s2
613 A1A2AsD4D7 75 103s2
615 A1A7D4D7 7y  04s2
619 A2A5DsD7 7, 01322
622 A7D5D7 Zy 422

623 A1A2A3DeD7 75
624 A2DgD7
626" A1 A;DgD7

Z2
Z2

102s2
22v2
03s2

626 A1AsDgDy
628 A1D5DgD7
629 DZD-

631 A2A3D2
636 A1AZA2Dg
638 AzA3Ds
638’ A2 A3Dg

639 A7A2A3A4Dg

641 A1AZA4Ds

645 A1A2A3A5Dg
645" A1 A2 A3AsDg

646 AZA5Ds
647 A2A4A5Ds
649 A1AZDg
649’ A1AZDg
652 A2A3A6Ds
657 A2A3A7Dg
657 A2A3A7Dg
659 A2A7Dg
660 A1A3A7Dg
660" A1A3A7Ds
661 Ay4A7Ds
663 A2A9Dg
666 A11Ds

668 A2A3D4Dg
671 A2A2D5Ds

673 A1 A2A3D5 D8

674 A2A4DsDg
675 A1A5D5Dsg
675’ A1A5;D5Ds
677 A1DZDsg
679 A1A2DgDs
681 A2A3DgDs
682 A1A4DgDs
683 A5DgDs
685 D5DgDs
686 A2A,D7Dg
688 A1A3D7Dg
690 AqA;D2
700 A2A3A5Dg
704 A2Dg

709 A3A7Dg

Z2
Zo
Z2
72

13v2
12s2
ss2

11222

Z3 00022s

Z2
72
Z2
Z2
72
Zo
Z2
72
Z2
Z2
Z2
Z2
Z2
Z2
Z2
Z2
Z2
Z2
Zo
Z2
72
Zo
Z2
72
Zo
Z2
72
Zo
Z2
72
Zo
Z2
Z2
Zo
Z2
Z2

0022s
0222v
11020s
0220s
1003s
1023v
220s
0103s
033v
103s
1120s
0004s
1104v
004s
004s
024v
04s
015v
6v
002ss
11002s
0022s
1102s
130s
132v
022s
100ss
02vs
10ss
3sv
2vs
1102s
022s
00ss
01232
332
01142

711
715
717
723
726
728
729
731
732
733
735
739
740
740’
740"
743
744
747
751
753
754
755
757
757!
760
760
761
762
764
767
773
784
786
786’
788
789
790
792
793
796
797
797’

AzA7Dg
A1Ag9Dg
A1AsD4Dg
A1A3DgDg
A2DgDyg
A3A3Dyp
A2A2A3D1o
A1A2A2D1,
A3Dio
A3A5A4D1o
A2A3A4D1o
A2A5A5D1g
A1A3A5D10
A1A3A5D10
A1A3A5D10
A4A5D10
A3AgD1g
A2A7Dg
A1A2D4Dio
A1A4D4D1o
AsD4Dig
A2A5D5D1g
A1A3D5D10
A1A3D5D1o
A1A2D6D1o
A1A2DgD1o
A3DgD1o
A2D7Dqg
A1DgD1o
AZAZDy,
A3A5D1y
A3A2D12
AZA5A3D1
A2A5A3D1o
A2A3D12
A1AZD
A3A4D12
A3A4Di12
A2A5D1o
A1A2D4D12
A2D5D1s
A2D5D;o

Z3
72
Z2
Z3
72
Z2
Z3
72
Zs
Zo
Z3
Zs
Z2
Z3
72

Z3
72
Zs
Z3
72
Z2
Z3
72
Z2
Z2

242
152
13s2
12s2
11s2
111000s
01002s
1002s
222v
11100s
0120s
0003s
003s
120s
123v
03s
1110s
114v
100ss
10ss
30s
0102s
102s
120s
00ss
10vs
Oss
012s
1vs
11222
11132
01100s
0002s
1100s
002s
002s
0110s
20s
110s
00ss
002s
110s

798
799
800
809
811
812
815
817
823
825
826
831
840
848
860
861
866
875
879
885
896
899
902
906
916
919
932
941
963
966
972
974
975
975’
975"
976
979
980
980/
990
992
993

A2DsD12
A1DgD12
D7Di2
A3AoD1y
A1AZD1
AZA3Dyy
A1A4D14
A1D4D1g
A3Dq6
A1A2D16
A3Di6
AZA5A3Eg
A2A2A5Eq
A3AZEg
AlA2A7Eg
A3A3A7Eg
A1A5A7Es
AA9Eg
A1A3A9Eg
A%A11Eq
A1A3A5D4Eg
A2A7D4Eg
A?A2DsEg
A3A5D5Eg
A1AZDgEg
A?A5DgEg
A2A3DgEg
A3D1oEsg
A2AZAZE,
AZAZALE,
A2A5A3A5E;
AZA3A5E;
A1AZASE,
A1AZA5E,
A1AZASE,
AJALASE,
AsAsAsE,
AZAZE,
AZAZE;
ASALAE,
A1AZALE,
AZA3ALE,

Z2 02s
Z2 Ovs
Zo 2s
Zy  0010s
Zy 100s
Z> 010s
Zo 10s
Z3 10s
Z> 000s
72 00s
Z2 Os
Z> 1102220
Zy 012230
Zy 2330
Z5 1111040
Z> 011240
Zy 1340
Z> 011150
Z2 1250
Zy 1160
Zy  123s0
Zy  114s0
Zy 112220
Zy 111320
Zy  122s0
Zy 113s0
Zy 112s0
Zy 111s0
72 0100221
Z> 012201
Z> 000231
7o 00231
Zo 00231
Z> 12201
7o 12230
Z5 011031
Z> 2031
Z> 11031
Zy 11330
Z3 001041
Z> 10041
Zy 01041
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993" AZA3A7E7
996 A1A4A7E;
1002 A3AgE;
1002’ A3AgE7
1004 A1AzAgEr
1006 A3AgE7

72
Z2
Z2
72
Z2
Z3

1011 A1A§A3D4E7 Zo
1014 A1A3A4D4E7 75
1017 A1A2A5D4E7 Z2o

1018 AgAsD4E;
1018’ A3AsD4Ey;
1020 A1A7D4E;
1022 A3A2D5E;

Zy
Z2
Z2
72

1023 A2A5A3D5E7 7,

1025 A1A2D5E7
1028 A?A5D5E;
1028’ A2A5D5E7
1030 A2AsDsE7

1033 A1A2D4D5sE7

1034 A2D2E;
1036 AZA2DgE7

1039 A1A2A3DgE7

1040 A3DgE7
1041 A2A4D6E7
1043 A1 AsDgE;
1045 A;DyDgEr
1046 A1DsDgE7
1047 DZE7

1049 A?A3D7E;
1053 AsD7E7
1054 A;D4D7E7
1057 A7A2DsEr
1059 A1A3DsEr
1059’ A1 A3DgE7
1063 A?D1oE7
1065 A2D1oE7
1068 ASA3EgE;
1079 A3AEZ
1081 A2A3E2
1083 AxA3E2

Z2
Z2
Zy
Z2
Z2
Zo
Z2
Z2
72
Z2
Z2
72
Zo
Z3
72
Zo
Z2
72
Z2
Z2
72
Z2
Z2
Z2
Zo
Z2

11240
1041
00051
11150
0051
051
1002s1
120s1
003s1
03s1
2301
1401
1110021
010221
12201
00321
11301
0321
10s21
01221
1100s1
002s1
02s1
110s1
03v1
Oss1
02s1
svl
01221
321
1s21
010s1
10s1
12v1
00s1
0Osl
111201
011011
00211
0211

1086 A1D4E2
1088 D5 E2
1090 AZA3Es
1099 A3A3A5Es
1111 ATA7Es
10 AAZA;
20 A3A3AZ
25 A1AZA4AZ
32 AZA3

32" AZA}

37 A4AS

48 A3AsAg
124 A2A3A3As
A3A3Ag
A1ASA4Ag
A2AZA5Ag
A3A5Asg
A3As5Asg

125
129
136
137
137/
140
144
158
160
162
223
225
230
241
248
251
285
287
290
308
310
351
353
366
394
422
484

A2A4A5Asg
A3AZ
A1AsA2
A3A2
AZASANL
ASA
A1A2A5A L,
A2A4A1
A1A2A5A1
AzAs A1
A3AsA 1,
A1AZAY,
AzAzA14
A2Aq7
AgAq7
A1A3AgD,
A2A5AgDy
AZA11Dy
AZAZD;
A3AgD;
A3A5Dg

A1A2A3A5A8

Z,  Osll
Zs 211
Zs 112220
7, 111230
Z, 111140
Z3 1111002
Zs 011022
Zs 011022
Zs 00222
Zs 11022
Zs 0222
Zs 111120
Z5 0011103
Zs 011103
Zs 011103
Zs 000123
Zs 00123
Zs 11103
Zs 01023
Zs 1023
Zs 00033
Zs 0033
Zs 033
Zs 000114
Zs 00114
Zs 01104
Zs 1104
Zs 0024
Zs 024
Zs 00015
Zs 0015
Zs 105
Zs 006
Zs 06
Zs 011130
Zs 1230
Zs 1140
Zs 11220
Zs 11130
Zs 111120

839 A1A§A3A5E5 Z3

842 A2A4A5Eq
846 A1A2AZEs
849 A3AZEg
868 A3A>AsEq
869 A1A2AgEq
872 AxAsAsEs
886 A2A11Eq
889 A2A11Es
892 A1A3D4Eg
895 A2ZA5D4Eq
948 A3AZEZ
949 AZA3EZ
953 A2A5E2
954 ApAsEZ
962 A1E3

2 ASA4

71 AZAZAZA;
73 A1A2A3A;
74 A3A;

79 AZAZA4A7
110 A3A2A2
119 AsA3A2
227 A3AsA3A14
233 A7AZA1;
233" A7AZAnL
236 A2A2A1;
293 AAq5
206 AZAsAq5
301 A1AsAis
341 AsAZA7Dy
350 A1A2Dy
369 A1AsA11Dy
375 A15Dy
381 A1AZA3Ds
382 A2A4Ds
384 A1A3A4Ds

411 A2A5A3A7D5

414 A1AZADs
414" A1AZA7Ds

011021
Z3 11021
Z3 00221
73 0221
Z3 000131
Z3 00131
73 1031
Z3 0041
Z3 041
730111101
Z3 11201
Z3 0001111
73 11011
Z3 00211
Z3 0211
Z3 0111
Z4 211110
741100112
Z4 002112
74 02112
Z4 111102
Z4 011022
yn 0222
Z4 011013
Z4 00213
74 11013
Zy 0213
Zy 00114
Zy 1104
Zy 024
Zy 0112s
yn 022s
Zy 013s
Z4 4s
741001111
Z4 011112
Z4 111101
Z4 010121
7y 01122
Z4 10121

442 A3A11Ds
445 A1A2A11 D5
447 A3A11Ds
463 A1AzAZD?Z
471 A2A;D?2
472 Ay A7D?2
510 A2A7Ds
566 A1A2ASDy;
567 A3Dr
567" A3D7

592 A2A3A;Dr
595 Ao AgArD7
609 A1A11D7
7 ASA%

8 AjAsA%

9 AzAj

177 A2A2A9
178 AsA2Aq
201 A1A3

19 AZAZA3AZ
21 ASA3AZ
31 AAA3
35 A1AzA3
222 ATAZA1;
224 AZA3A1;
231 A1A3A3AY
246 A3A5A1;
252 AgAsAi;
323 A1A3ZAZD,
326 AZDy4

367 AZA11Dy
395 A3AZDs
845 A3AZEq
850 A3AZEg
887 AZA11Esg
70 A1AS

116 AZA3AZ
421 AZDs

Zy
Z4
Zy
Zy
Z4
Z4
Zy
Zy
Zy
Zy
Zy
Zy
Zy
Zs
Zs
Zs
Zs
Zs
Zs
Zg
Zg
Zg
Zg

00131
1031
132
001111
00211
0211
112v
001111
01111
11112
00121
0121
031
0001122
001122
01122
00114
0114
024
0011255
011255
110255
02255

Zg 00111110

Zg
Zg
Zg
Zg
Zg
Zg
Zg
Zg
Zg
Zg
Zg
Z7
Zs
Zs

1101110
011210
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Table D.12: Groups of maximal rank with non-trivial fundamental group and their generators for the
heterotic string on T3,
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Table D.13: Groups of maximal rank with non-trivial fundamental group and their generators for the

heterotic Z triple.
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Table D.14: Groups of maximal rank with non-trivial fundamental group and their generators for the

heterotic Z3 triple.
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Table D.15: Groups of maximal rank with non-trivial fundamental group and their generators for the

heterotic Z,4 triple.
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Appendix E

Synthese en Francais

Motivation

La théorie des cordes est le cadre le plus développé et le plus prometteur pour étudier la gravité
quantique. De nombreux efforts ont été déployés pour tenter de reproduire le modele standard en
tant que théorie effective a basse énergie d’'un modele de cordes. La premiere corde proposée, la corde
bosonique, ne comprenait que des bosons dans son spectre et prédisait un tachyon, ce qui signalait
une incohérence dans la théorie. Cela a motivé la construction des théories des supercordes de type I
et I, qui ont un spectre supersymétrique sans tachyon et sont formulées en 10 dimensions spatio-
temporelles (ce nombre est fixé par cohérence). Leur limite de basse énergie est la sueergravité dans
10 dimensions.

Deux aspects importants du modeéle standard sont qu’il est formulé en 4 dimensions et qu’il contient
certaines particules avec des symétries de jauge non abéliennes. Une fagon de réduire le nombre de
dimensions de 10 & 4 est de recourir au mécanisme de compactification, c’est-a-dire de faire en sorte que
six de ces dimensions aient une longueur finie (par exemple en les rendant périodiques), en généralisant
la théorie de Kaluza-Klein. Le modéle quadridimensionnel est alors une approximation a basse énergie
d’une théorie plus fondamentale. Lorsqu’on compacte la théorie des cordes de maniere particuliere, les
particules acquierent des symétries de jauge non abéliennes, ce qui fait de ces théories des candidats
plausibles pour décrire notre univers. Alors que dans la théorie de Kaluza-Klein, le momentum dans
la cinquieme dimension est quantifié, dans les compacités de la théorie des cordes, nous avons une
situation similaire, avec le momentum associé aux états des cordes vivant sur un réseau.

Ce qu’on appelle la corde hétérotique combine les théories bosonique et des cordes de type II [6].
Par souci de cohérence, le spectre de basse énergie présente deux symétries de groupe de jauge pos-

‘973#2(32) ou Fg x FEg, définissant deux théories de cordes différentes. Ces cordes hétérotiques

sibles :
possedent également une super-symétrie et vivent dans un espace-temps a 10 dimensions, de sorte
qu’elles peuvent également étre compactées sur différentes géométries [7]. Cette caractéristique était
considérée comme treés prometteuse, puisque les groupes de jauge des deux théories contiennent SO(10)
et SU(5), tandis que Eg contient également Eg, qui sont les symétries des principales théories Grand
Unified. Dans les compactages a des dimensions inférieures, il est assez simple de décomposer les
symétries de jauge originales en leurs sous-groupes. Selon la géométrie de ’espace compact, il est
également possible d’obtenir une amélioration de la symétrie originale, créant ainsi un riche pays-
age de théories avec des groupes de jauge trés divers. La limite de basse énergie de ces théories est
simplement la supergravité couplée au super Yang-Mills avec le groupe de jauge correspondant.

Une question simple que 'on pourrait poser est la suivante : quels sont les groupes de jauge
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possibles qui peuvent étre obtenus a partir de la théorie hétérotique des cordes en moins de 10 dimen-
sions 7 Pouvons-nous les classer 7 Cette question est pertinente d’un point de vue phénoménologique
(construction d’exemples réalistes de notre univers) ; mais elle pourrait étre liée & une énigme plus
profonde : quelles sont les théories possibles qui peuvent étre couplées de maniere cohérente a la
gravité 7

Méme pour des géométries relativement simples, on sait peu de choses sur les groupes de jauge
possibles qui peuvent apparaitre, et encore moins sur les valeurs spéciales des parameétres de la com-
pactification ou ces améliorations se produisent. Ceci nous a motivé a étudier en détail la structure
de lespace de ces parametres (I’espace moduli) et a obtenir une classification compléte des groupes
de jauge possibles pour certains types de géométries.

Puisque les cordes sont des objets étendus, elles peuvent étre enveloppées dans des dimensions
compactes. Ceci donne lieu a une équivalence entre différentes configurations de cordes aprés compac-
tification, connue sous le nom de T-dualité [8].

Il a été démontré que toutes les différentes supercordes sont liées par cette dualité et d’autres, ce qui
conduit a I'idée qu’elles sont des limites distinctes d’une théorie de dimension supérieure appelée M-
théorie [9]. Une forte motivation pour étudier les compactifications toroidales des cordes hétérotiques
est la dualité qu’elles ont avec d’autres théories : 1’hétérotique sur 7 est duale au type ITA sur K3 [10],
I'hétérotique sur T2 est duale & la M-théorie sur K3, tandis que ’hétérotique sur 72 est duale a la
F-théorie sur un K3 a fibres elliptiques. Ce réseau de dualités fournit un cadre pour ’exploration de

différents aspects de la théorie des cordes.

Résultats

L’objectif principal de cette these est de répondre a la question de savoir quelles symétries de jauge
sont autorisées dans les compactifications de cordes hétérotiques sur des géométries qui préservent
toute la supersymétrie. Bien qu’il s’agisse d’une question trés concrete et relativement simple, une
réponse n’était connue que pour les deux cas les plus simples : les compactifications du cercle par la
méthode du Diagramme de Dynkin Généralisé (GDD) [11-13] et, bien qu’indirectement, le 2-torus par
la dualité avec la F-théorie & partir de la classification des types ADE des fibres singulieres dans les
surfaces K3 elliptiques [14,15]. Comme nous l’expliquerons en détail, pour les espaces compacts de plus
grandes dimensions (qui correspondent aux théories effectives de basse énergie de moins de dimensions)
et pour les espaces non géométriques, de nombreuses subtilités apparaissent, transformant 1’objectif
susmentionné en un objectif hautement non trivial. Un probléme connexe que nous aborderons est
I’étude des espaces de moduli correspondants : leur structure, les régions de renforcement de la symétrie
et leur relation avec la T-dualité. Nous adopterons des approches différentes mais complémentaires.
Dans [1] nous avons étudié les compacités sur le cercle du point de vue de l'espace moduli a 17
dimensions défini par les parametres. En résolvant les équations de correspondance de masse et de
niveau en fonction des moduli, nous avons développé une méthode pour cartographier les régions
spéciales ou il y a un renforcement de symétrie vers un groupe non abélien de rang 17, en découvrant
que les renforcements maximaux (c’est-a-dire vers des groupes sans facteurs U(1)) apparaissent sur
les points d’intersection des courbes ou il y a des renforcements non maximaux. Ce point de vue
nous a permis de développer des outils qui sont idéaux pour avoir 'intuition et comprendre ce type
de compactifications mais, méme s’ils prédisent une riche variété de symétries de jauge, il n’a pas été

possible de les obtenir toutes. En nous concentrant sur le fait que les moments du spectre d’états sont
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quantifiés dans le réseau Lorentzien de Narain I'1 17, nous avons pu obtenir la classification compleéte
des améliorations, ainsi que les régions de l’espace modulaire ou elles apparaissent, en utilisant la
méthode GDD.

En [2], nous avons traité le cas des compactifications toroidales de dimensions arbitraires, ol les
modeles réalisés ont également 16 supercharges et les groupes de jauge sont de type ADE (c’est-a-dire
SU(n), SO(2n), E,) et ont un rang 16+d. Nous avons trouvé comment les points de I’espace de moduli
sont reliés par la dualité T et défini la carte reliant les espaces de moduli des théories compactives
Spi%lifﬁ) et Eg x Eg. Pour T avec d > 1, le treillis de momentum I'416+a est toujours pair et auto-duel
mais non Lorentzien, ce qui rend impossible la construction d’'un GDD. Un certain groupe de jauge
apparait dans I’espace moduli si le réseau racine qui lui est associé peut étre intégré dans le réseau de
momentum correspondant (en satisfaisant certaines conditions). Cette fagon de voir le probléme nous
a permis d’énoncer certaines conditions d’apparition de ces groupes en utilisant certains théoremes
de Nikulin [16]. Nous avons effectué une classification exhaustive des groupes de jauge autorisés en
d = 2, trouvant qu’elle correspond exactement a celle obtenue sur la F-théorie duale sur les surfaces
K3 a fibres elliptiques [15], mais donnant aussi les modules définissant la compactification qui réalise
chaque cas. Pour effectuer cette classification, nous avons réalisé un algorithme d’exploration qui
consiste a passer des points singuliers d’enrichissement maximal dans I’espace des moduli & d’autres
via des manipulations de leurs treillis de racines associés de maniere controlée. Cet algorithme a été
amélioré dans des travaux ultérieurs, ce qui nous a permis d’explorer des compacités de T% avec d > 2
et de calculer les données globales précises des groupes de jauge.

Dans [3], nous avons effectué une étude détaillée des compactifications sur des orbifolds spéciaux
T9/Z5 ' (réalisant la corde CHL [17,18]), qui préservent la supersymétrie et présentent des enrichisse-
ments de rang réduit d+ 8. Une particularité est que les groupes de jauge ne sont pas toujours de type
ADE, avec des groupes Sp(n), SO(2n + 1) ou Fy apparaissant dans des régions spéciales. Une autre
caractéristique est que le treillis de momentum n’est pas auto-dual pour d > 1 [19]. Ce dernier point
implique que les criteres énoncés précédemment pour ’encastrement des treillis ne s’appliquent plus.
Cela a nécessité de nombreux changements dans les méthodes développées dans le travail précédent.
Avec une généralisation de notre algorithme d’exploration, nous avons trouvé la liste des symétries de
jauge pour d = 2, 3 et 4 (les améliorations de d = 1 peuvent étre facilement trouvées en utilisant le
GDD associé, qui s’avere étre le diagramme de Dynkin de Ejg). Nous avons calculé la forme précise de
leurs topologies respectives en adaptant nos méthodes a 'aide des résultats de [20], et vérifié qu’elles
satisfont une condition pour les symétries centrales a une forme sans anomalie donnée dans [21].

Pour d = 1 et 2, les seuls rangs possibles connus pour les compacités de cordes hétérotiques
préservant 16 supercharges sont d 4+ 16 et d + 8, & savoir les composantes de Narain et CHL 2. En
revanche, pour d > 3, les possibilités sont plus nombreuses : les triples holonomiques non triviaux
de [23] produisent des vacua de rangs réduits d + 4, d + 2 et d. Nous nous sommes tournés vers ces
constructions dans [4], en adaptant et en appliquant la machinerie déja développée dans les travaux
précédents au cas de d = 3 et en obtenant la liste complete des améliorations maximales. Ces nouveaux
espaces de modulation ont moins de points d’amélioration maximale en raison du rang réduit, mais
dans certains cas ils présentent une variété plus riche de groupes de jauge (par exemple le groupe de
jauge G dans le triplé Z3). La corde hétérotique sur le T2 est duale & la M-théorie sur une surface K3.
Les groupes de jauge de rang réduit sont réalisés dans cette derniére lorsqu’il existe des singularités

partiellement gelées sur la surface K3 [23-25]. En exploitant les techniques d’encastrement des treillis,

1 convient de noter qu’il ne s’agit 1a que d’une notation, car le Z, agit sur le faisceau de jauge.
2En 8d il y a aussi le Z,-triple et les constructions “sans structure vectorielle”, qui sont duales & la CHL [22,23].
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nous avons trouvé les regles de gel explicites qui relient les groupes de jauge sur la composante de Narain
avec ceux apparaissant sur ceux de rang réduit. Nous avons trouvé une correspondance parfaite de ces
regles du coté des cordes hétérotiques avec les résultats connus sur la M-théorie. Une généralisation
de cette analyse a d = 4 a été faite dans [5], ot nous avons a nouveau obtenu la classification complete
des groupes pour tous les Z,,-triples via notre algorithme d’exploration. 3 Nous avons découvert que
le mécanisme de congélation fait intervenir la topologie des groupes de jauge, en agissant sur ceux
et seulement ceux qui ne sont pas simplement connectés. Il est frappant de constater que les regles
de congélation construites coincident avec la carte reliant les composantes de I’espace modulaire des
faisceaux plats de G sur 72 avec G non-simplicitement-connecté.

Nous n’incluons dans la présente these que les listes de groupes de jauge pour les cas d = 1, 2 et 3.
Pour d = 4, nous nous référons a [27], ot nous listons les groupes de jauge maximaux pour ’ensemble
des 16 supercharges préservant les compactages a 6 ou plus de dimensions spatio-temporelles. En
plus des composantes Narain, CHL et triples, beaucoup d’autres sont listées ici. En général, elles ne
correspondent pas a des constructions de cordes hétérotiques. Elles ont été étudiées dans [26], qui est
laissé de coté dans cette these.

Dans le tableau 1.1, nous listons les principales informations concernant chacune des compacités
étudiées. II est notable que le nombre de groupes qui apparaissent sur 7% ou T%/Zy augmente ex-
ponentiellement avec d. De plus, comme prévu, plus de types de groupes sont autorisés lors de la
réduction du rang. Des explorations partielles pour d > 5 présentent le méme comportement expo-
nentiel, mais I’analyse correspondante n’est pas incluse ici. Les regles reliant les groupes de jauge dans

les compactifications toroidales aux théories de rang réduit trouvées sont résumées dans le tableau 1.2.

’ G ‘ d ‘ r ‘ Algebres ‘ Groupes ‘ Information ‘ Types ‘

0 0|16 2 2 DE

St 1117 44 44 ADE
St/z, |19 9 9 CHL ADE

T? 2118 325 341 Dual a la F-théorie sur un K3 ADE
T%/75 | 2 | 10 61 61 CHL/Z,-triple ACDE

T3 3119 1035 1232 Dual & la M-théorie sur un K3 ADE
T3/7, | 3|11 407 429 CHL/Zs-triple ABCDEF
T3/75 | 3| 7 50 52 Zs-triple ADEG
T3/7, | 3| 5 16 18 7 4-triple AD
T3/75 | 3| 3 3 3 Zs-triple A
T3/Z¢ | 3| 3 3 3 Zg-triple A

T* 4 |20 2252 3396 Dual a la ITA sur un K3 ADE
TY)Z, | 4|12 1988 2540 CHL/Z-triple ABCDEF
T/75 | 4| 8 154 202 Z3-triple ADEG
TY/7, | 4] 6 101 127 Z 4-triple ACDE
T75 | 4] 4 11 14 Z5-triple AD
TVZ6 | 4] 4 36 40 Z¢-triple ACG

Table E.1: Géométrie de I'espace de compactification G, nombre de dimensions compactées d, rang r,
nombre d’algebres et de groupes maximaux trouvés et leurs types.

3Pour d = 4 (comme pour d = 1 et 2) nous avons une confirmation récente que nos listes sont exhaustives
grace aux résultats de notre travail trés récent [26], ol tous ces groupes de jauge ont été obtenus a nouveau a
partir des treillis de Niemeier.
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\ d H Algebre \ Ordre \ Il se transforme en
1 Exg 2 0
2 Dn+8 2 Cn
3 Dyia 2 C,
3 | D 2 F,
3 | DR 3 G,
3 Eni7 4 C,
3 Es 5, 6 0
41 Apor | ¢=2,3,4,5,6 A,
4 Do 2 (v) Cy
4 DQn 2 (S) Bn
4 E- 2 Fy
4 Es 3 Go
4 D2n+3 4 (S) Cn

Table E.2: Regles de gel pour les facteurs simples dans les groupes de jauge pour d < 4. Nous utilisons
les conventions C; = Ay, Fo =A,, F3=B3, Gy = A,

Structure de la theése

Cette these est divisée en six chapitres : Le premier est une bréve introduction a la theése. Le chapitre
2 est une introduction a la corde hétérotique et a sa compactification toroidale, avec une analyse
détaillée de la structure de I’espace moduli et de ses améliorations de symétrie pour le cas du cercle
basé sur [1].

Dans le chapitre 3, qui est basé sur [2], nous reprenons les compacités toroidales introduites précé-
demment, en les analysant cette fois du point de vue des encastrements de treillis. Nous introduisons
un algorithme d’exploration que nous utilisons pour classer et donner la liste des améliorations de
symétrie des compacités T2.

Dans le chapitre 4 nous analysons en détail la chaine CHL et ses compactifications, en les con-
struisant & partir de la chaine hétérotique. Nous explorons l’espace moduli et donnons la liste des
améliorations de symétrie de jauge de rang réduit pour neuf et huit dimensions espace-temps. A cette
fin, nous améliorons et généralisons 'algorithme introduit dans le chapitre précédent. Cette partie est
basée sur [3].

Dans le chapitre 5, basé sur [4, 5], nous étudions différentes constructions d’orbitaux en 7 et 6
dimensions spatio-temporelles, obtenant la liste des groupes de jauge qui sont réalisés non seule-
ment sur les composantes Narain et CHL mais aussi sur quatre autres composantes réalisées via des
triples holonomes non triviaux. Enfin, nous construisons les regles générales de congélation reliant les
différentes composantes.

Dans le chapitre 6, nous résumons les conclusions de cette these, tandis qu’a la fin nous incluons
quatre annexes : A, B et C avec les compléments aux deuxiéme, troisiéme et cinquiéme chapitres ; et

D avec les listes des groupes d’enrichissement maximal pour les théories étudiées.
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