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Patinet, Stéphane Perrard, Benôıt Semin, Ramiro Godoy-Diana and Tao Liu. Each one
of them was particularly insightful at some point of my thesis. I also thank Juan Cruz for
his insightful work on our side, along with Jean-Gabriel Thiriet. I am particularly grateful
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General introduction

Turbulence is the chaotic motion of a fluid, whose velocity and pressure evolve in a seem-
ingly random manner. This flow motion can be very easily observed in our everyday life:
water in a river, smoke out of a chimney, blowing wind, etc. Turbulent flow contrasts with
laminar flow, a state in which the fluid motion occurs in parallel layers, which are not
disturbing one another. Understanding the conditions in which turbulence appears out
of quiescent flow is both a fundamental and fascinating topic of research, that has driven
physicists for centuries.

1 Some perspectives on transition to turbulence

In the late 19th century, Osborne Reynolds was the first to systematically investigate how
turbulence arises. A flow of water was continuously injected into a long pipe, in such a
way that the flow rate was controlled (or the speed of the fluid at the inlet). Reynolds
instilled colored water at the inlet of the pipe, via a dye located in the center of the
pipe section. Various sketches from Reynolds (1883) are reproduced on Figure 1. By
varying the diameter or the flow speed at the inlet, Reynolds observed that the injected
colored water presented various behaviours: it could align in a regular stripe (Fig. 1a), or
sometimes show swirls at different locations within the pipe (Fig. 1b-d). Reynolds found
that at fixed diameter and viscosity of the fluid, the flow transits from an ordered laminar
state to a disordered turbulent state when the flow rate was increased. This led to the
definition of a single non-dimensional parameter governing the transition, since referred
to as the Reynolds number:

Re =
Ud

ν

Here, U is the characteristic velocity inside the pipe, d is the pipe diameter, and ν is the
viscosity of the fluid.

In the first observations of Reynolds, a particular regime was found within an inter-
mediate range of flow speeds. In this regime, the flow is neither fully laminar nor fully

7



8 General introduction

(a) Laminar

(b, c) Intermittent

(d) Turbulent

Figure 1: Visualisation of the different regimes found by Reynolds (1883). The flow is
from left to right. At low flow speeds (a), the flow is laminar, as visible by the straight
colored streakline, injected at the pipe inlet. With increasing flow speed, the flow shows
incoherent and irregular motions. These propagate gradually throughout the pipe, with a
transitional regime at intermediate flow speeds, where turbulent motions are intermittent
(b, c). Once the flow speed is large enough (d), these swirling motions appear at a short
distance from the pipe inlet, and are present up to the pipe outlet. The sketches are those
drawn by Reynolds (1883).

turbulent, but shows localised turbulent zones, evolving both in space and time. These
are illustrated on Figure 1b and c. One shall bear this regime in mind, since it will be the
main discussion of this thesis. But first, I shall take a few important detours.

The flow within the pipe is a simple experiment of an out-of-equilibrium system: en-
ergy is injected by pressure difference between pipe extemities or imposed flow rate, and
is constantly dissipated by tangential viscous shear. The laminar state is a stationary
solution of this system: it instantaneously dissipates the work due to pressure difference.
This is not true for the turbulent state: the eddies fluctuate in time, and, as a result, their
kinetic energy is not stationary, and dissipation and external work do not instantaneously
compensate.

Following Reynolds experiment, important theories were established so as to explain
how turbulent flows dissipate energy. They involve a hierarchy of turbulent eddies of
different scales, and a cascade of energy between these scales. Major understandings were
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achieved by Richardson, Kolmogorov, Kraichnan... among others. These theories were
based on a particular set of equations describing the conservation laws of fluid motions:
the Navier-Stokes equations.

However, these descriptions of developed turbulence do not explain how turbulence
arises in an initially quiescent flow. This problem is a challenge in many aspects: for
physicists, the rise of turbulence breaks space and time symmetries in multiple ways. For
mechanicians, turbulence enhances mixing but increases dissipation. Knowing when it
appears is a fundamental problem. Lowering or suppressing turbulence is another funda-
mental problem. As for mathematicians, they can view the equations of flow motion as
a dynamical system, whose number of solutions grows infinitely with Reynolds number.
This led to the theory of chaos; and this is an important part of the story.

In the decades following Reynolds experiments, many attempted to find the onset
of turbulence from a direct analysis of the Navier-Stokes equations: Orr, Sommerfeld,
Heisenberg... Their main tool was that of linear stability analysis: under which conditions
does a set of infinitesimal perturbations of the laminar flow becomes unstable? Taylor
(1923) conducted experiments on the flow between concentric rotating cylinders, now
commonly called Taylor–Couette flow. He carried out a linear stability analysis that was
in outstanding agreement with his experimental results. Later, with the insights of Landau
(1944) and Stuart (1958), the influence of non-linearities on the stability of flow equations
led to the development of bifurcation theory : not only the flow can undergo an initial
primary instability, but secondary instabilities can perturb the resulting flow state, via a
series of bifurcations.

A fundamental improvement of bifurcation theory happened with the works of Ruelle
& Takens (1971) and Feigenbaum (1978) on chaos. Chaos theory explained how a finite
number of instabilities could generate complex non-periodic dynamics. This route to
turbulence was confirmed in corotating Taylor-Couette flow by Gollub & Swinney (1975).
Bifurcation theory then became a sanctuarised cornerstone of fluid dynamics.

However, linear stability analysis and bifurcation theory fail in explaining the onset of
turbulence in the pipe experiment. It does so in many other wall-bounded shear flows.
The reason is that transition to turbulence in these flows is subcritical : turbulence exists
in regimes of Re where the laminar flow is linearly stable. This is the case for the regimes
observed by Reynolds (1883) (see Fig. 1) and later by Wygnanski & Champagne (1973),
where Re was typically of order O(103), while it is known from numerical computations
that laminar pipe flow is linearly stable up to Re ∼ 107 (Meseguer & Trefethen, 2003).

In other canonical shear flows such as plane Couette (two parallel plates moving at
opposite speeds) or plane Poiseuille flow (two fixed parallel plates subject to a pressure
difference), the laminar base flow is also stable in the range in Re where turbulence
emerges. In these planar geometries, the route to turbulence is not quite the same as
in pipe flow: once initiated, intermittent turbulence takes the form of laminar-turbulent
structures, which are oblique with respect to the streamwise direction. These oblique
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(a) Taylor-Couette
 flow

(b) Plane Couette flow

Figure 2: (a) Turbulent spiral in a Taylor–Couette flow experiment (Coles & van Atta,
1966). (b) Turbulent–laminar pattern in a plane Couette flow experiment at Re = 358
(Prigent et al., 2003).

structures were first observed by Coles & Von Atta (Coles, 1965; Van Atta, 1966; Coles
& van Atta, 1966) in counter-rotating Taylor-Couette flow (Figure 2a), and by Prigent
et al. (2003) in planar Couette flow (Figure 2b), where they were shown to form patterns.
The emergence of these patterns in plane shear flows, and the nature of the coexistence
of laminar and turbulent phases, will be the subject of this thesis.

The coexistence of both laminar and turbulent states at the same value of the control
parameter, Re, suggests that one can trigger turbulence by perturbing laminar flow with
some finite-amplitude kick. The reason for this is called non-normality : although any
modal perturbation to the laminar flow would exponentially decay, these modes might be
non-orthogonal, and a combination of them can be amplified. This amplification might
be enough to lead to a nonlinear regime, that might itself develop into turbulence (Butler
& Farrell, 1992; Trefethen et al., 1993). But this is another story.

Let us go back to pipe flow. If the flow is perturbed at some specific location in
space, turbulence will develop locally, and might or might not propagate within the pipe.
Wygnanski & Champagne (1973) carried out such an experiment, and their observations
are summarised on Figure 3 (issued from Barkley (2016)). If Re is low enough, the initial
turbulent patch decays with time, after propagating downstream because of the advection
of laminar flow. Once Re increases above a certain threshold, the localised turbulent patch
is both advected downstream, and extends, finally contaminating all the downstream part
of the pipe.

A very insightful analogy was drawn by Pomeau (1986) in terms of reaction-diffusion
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Space → Space → 

T
im

e 
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(a) Low Re (b) High Re

Figure 3: Effect of a localised perturbation in pipe flow. At low Re (a), turbulence is
locally triggered but finally decay, after being advected downstream. At high enough Re,
the initial turbulent patch both travels downstream and increases in size. This is called a
slug.

processes. If two possible states of a generic system are coexisting in space, and separated
by a boundary, this boundary might move with a constant mean speed. The relative sta-
bility of each state can be simply deduced from the value and sign of this velocity: the
stable phase contaminates the metastable one, and with changing the control parameter,
the stable phase might become metastable, so the contamination process is reversed. Hav-
ing in mind recent discoveries on spatio-temporal intermittency (Pomeau & Manneville,
1989), Pomeau envisioned one phase as a collection of non-coherent oscillators, each one
showing a time-intermittent behaviour. Each of these oscillators could then either relax
to its quiescent state or contaminate its neighbours. The turbulent phase would be the
collection of intermittent oscillators, while the laminar phase is the state of relaxed oscil-
lators. The contamination of turbulence into laminar flow was therefore assumed to be a
contact process in the class of Directed Percolation (Hinrichsen, 2000). The reason for this
assumption is that Directed Percolation (DP) is a universal class for non-equilibrium ab-
sorbing processes1. Following Pomeau (1986), simple models exhibiting spatio-temporal
chaos were investigated and entered this universality class (Chaté & Manneville, 1987;
Kaneko, 1985).

It is only in the 2010’s that the vision of Pomeau was experimentally and numerically
confirmed in transition to turbulence (Barkley, 2011; Lemoult et al., 2016; Chantry et al.,
2017; Klotz et al., 2022). However, although Pomeau’s insight was visionary, one has to

1This will be briefly discussed in the next section.
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deviate from his initial analogy to understand how localised turbulence organises close to
the critical point of DP. Barkley (2011, 2016) enlarged the vision of Pomeau with help
of a different analogy, that of excitable media. This resulted in a model which proved to
reproduce the quintessence of transition to turbulence in pipe flow.

2 A brief introduction of phase transition

In the following section, I will shortly introduce the concept of phase transition, that lies
behind Directed Percolation. I will introduce basic concepts that are not essential for un-
derstanding the transition to turbulence, but that will remotely accompany us throughout
this manuscript.

Phase transition is a cooperative phenomenon: a system with many constituents in-
teracting one with another, might exhibit such a collective behavior. When undergoing
a phase transition, a new property or structure is acquired by the system (Kubo et al.,
2012). For example, a gas condenses to the liquid state by compression or cooling, and
a paramagnetic substance becomes ferromagnetic by cooling below some temperature. It
is natural to wonder about the link with transition to turbulence, but the answer to this
question is highly non-trivial. I will very briefly address this here and in part of the thesis,
but this is an active research topic (Barkley, 2016; Goldenfeld & Shih, 2017).

Let us spend a few time on the well-known example of ferromagnets, because it is
particularly illustrative. Ferromagnets are bar magnets and can be found on refrigerator
doors holding up notes. These are permanent magnets. Unlike ferromagnets, paramagnets
are magnetized only in the presence of an externally applied magnetic field. Otherwise,
they do not show spontaneous magnetism, because of the effect of thermal motion that
randomizes the spin orientations of the atoms inside the solid.

When the temperature increases beyond a certain point, called the Curie temperature
Tc, a ferromagnet can no longer maintain its spontaneous magnetization because of these
thermal effects, although it can still respond to an external field. This transition between
ferromagnetic and paramagnetic phases with varying temperature is an example of a
second-order phase transition. If now temperature is kept fixed below Tc, and an external
magnetic field H is applied, the spins will align with H. If H continuously changes from
positive to negative, the sign and value of the magnetisation will change abruptly. This
change is discontinuous, and is an example of a first-order transition.

Both concepts are more formally defined in the thermodynamic limit of an infinite
number of elements in the system (like atoms, particles, or any individual object in the
system, interacting with its neighbours on a short range). A generic definition of first and
second-order phase transition, illustrated on Figure 4, is the following (Goldenfeld, 2018;
Yeomans, 1992):

• In a second-order (or continuous) phase transition, an initially stable state
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First-order 
phase transition

Continuous 
phase transition

Figure 4: Evolution of the free energy (or any relevant thermodynamic potential) for
various values of temperature T and applied magnetic field H, in the magnetic phase
transition. η is the total magnetisation of the system (the order parameter). T decreases
from left to right, H increases from top to bottom. The • indicate the values of η that
minimize the potential. The transition in the right-most column is of first-order, while
that in the central row is of second-order. Figure issued from (Goldenfeld, 2018, p. 143).

loses its stability, and typically divides into multiple stable states, different from
the original one (Fig. 4, blue horizontal arrow). The order parameter (typically the
total magnetisation in the spin system) varies continuously at the transition. The
correlation length, which describes the spatial extent of the fluctuations of the (local)
order parameter about its average, diverges algebraically near the transition point.
The transition point is called a critical point, and the system at this point is very
sensitive to any infinitesimal change in the control parameter: the response function
associated with the order parameter diverges.

• In a first-order phase transition, an initially stable state becomes metastable
when changing the control parameter (Fig. 4, red vertical arrow). The order param-
eter is discontinuous at the transition. The correlation length is always finite. Close
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to the transition point, the system is usually driven by nucleation of the new stable
phase within the old metastable one: the system attempts to nucleate one or more
bubbles of the stable phase until some of them reach some critical size and then
quickly grow, invading all the old phase.

In thermodynamics and equilibrium statistical mechanics, phase transitions correspond
to nonanalytical behaviours in the free energy, as a function of one or more of its ther-
modynamic variables. But in non-equilibrium mechanics, the situation is more rich.
There, second-order phase transitions can take the form of absorbing phase transi-
tions (Henkel et al., 2008): one goes from a fluctuating state to a so-called absorbing
state, which can never be left. Absorbing phase transitions exhibit universal behaviours,
independent of the microscopic details of the system. These are determined by symmetries
and conservation laws, and can be segregated into universality classes.

Directed Percolation is one of such classes. It directly comes from the picture of water
percolating throughout a porous medium, like a piece of cloth or sand. If you imagine
a water filter, fluid infiltrates this piece of cloth and is cleaned of impurities. However,
at some point, the impurities in the water accumulate and clog the pores, so that water
cannot penetrate anymore. This transition from percolation to a state of bottleneck is the
core of Directed Percolation models (Obukhov, 1980; Grassberger, 1981; Janssen, 1981;
Henkel et al., 2008; Täuber, 2014).

Models usually use sites of a lattice to represent the pores of the filter: adjacent sites are
connected by bonds, which are open or closed with a probability p. The value of p controls
the macroscopic permeability of the filter. The connection to intermittent turbulence is
illustrated on Figure 5, issued from the experimental investigation of Lemoult et al. (2016):
turbulence contaminates the absorbing laminar state, and the value of Reynolds number
controls the probability of contamination. Below a certain value Rec (or below some
value pc of the propagation probability) the contamination stops after a sufficiently long
time, and the flow fully laminarises. This is the critical point of the second-order phase
transition.
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Figure 5: Spatio-temporal dynamics in Directed Percolation (a) and in plane Couette
flow (b). The active sites are shown in blue and the absorbing/laminar state is shown
in yellow. Three cases, below, at and above pc are shown. Below the critical point all
sites finally enter the absorbing/laminar state (left panel). Close to the critical point (mid
panel), active sites (turbulence) persist but coexist with large laminar regions. For p > pc
(right panel), active sites fill a large fraction of the domain.

3 Overview of the thesis

This thesis is organised as follows:

Chapters 1 and 2 are devoted to the transitional regime of plane channel flow. Numer-
ical simulations of Navier-Stokes equations are used to study the coexistence of laminar
and turbulent structures near the critical point. The lifetimes of these structures are com-
puted, by classical Monte-Carlo method (Chapter 1) or by a novel rare-event approach
(Chapter 2). Turbulent structures either decay and laminarise, or propagate via self-
replication (a process called splitting). An onset Reynolds number is defined when these
processes balance: above it, turbulence statistically propagates. This value of Re is close
to the critical point of Directed Percolation. The time-scale at which turbulence decays
or splits evolves super-exponentially with Re, and a probabilistic description explaining
this tendency is developed in Chapter 2.



16 General introduction

Chapters 3 and 4 focus on the emergence of laminar-turbulent patterns out of uniform
plane Couette flow. In Chapter 3, we understand the mechanisms by which turbulent
eddies energise patterns, and more particularly their associated large-scale circulation.
We show that this large-scale flow is strongly advective, and this contributes to extracting
energy from the mean shear. In Chapter 4, this energy cycle clarifies the way in which
a pattern wavelength is selected. Via simulations in large domains, we find a transition
from the uniform turbulent state to a regime in which turbulence is punctuated by isolated
intermittent laminar pockets or gaps, whose lifetimes increase with decreasing Re. These
laminar gaps eventually form patterns because of their associated large-scale flow, which
is best energised at some preferred wavelength.

Finally, Chapter 5 proposes a control experiment which suppresses the large-scale cir-
culation associated to laminar-turbulent interfaces in plane Couette flow. As a result, the
flow does not present regular structures, and the transition scenario follows a contamina-
tion process, similar to Pomeau’s vision.



Chapter 1

Statistical transition to turbulence in
plane channel flow

Intermittent turbulent-laminar patterns characterize the transition to turbulence in pipe,
plane Couette and plane channel flows. In this first chapter, we study the time evolution
of turbulent-laminar bands in plane channel flow via direct numerical simulations using
the parallel pseudospectral code ChannelFlow. Simulations are carried out in a narrow
computational domain tilted by 24◦ with respect to the streamwise direction. This spe-
cific numerical domain will be of large importance throughout this manuscript, and is
introduced in Section 1.2. In this numerical configuration, mutual interactions between
bands are studied through their propagation velocities. Energy profiles show that the flow
surrounding isolated turbulent bands returns to the laminar base flow over large distances.
Depending on the Reynolds number, a turbulent band can either decay to laminar flow or
split into two bands. As with past studies of other wall-bounded shear flows, in most cases
survival probabilities are found to be consistent with exponential distributions for both
decay and splitting, indicating that the processes are memoryless. Statistically estimated
mean lifetimes for decay and splitting are plotted as a function of the Reynolds number
and lead to the estimation of a critical Reynolds number Recross ≃ 965, where decay and
splitting lifetimes cross at greater than 106 advective time units. The processes of splitting
and decay are also examined through analysis of their Fourier spectra. The dynamics of
large-scale spectral components seem to statistically follow the same pathway during the
splitting of a turbulent band and may be considered as precursors of splitting.

This chapter is extracted from the article ”Statistical transition to turbulence in plane
channel flow”, published in Physical Review Fluids (2020).

17
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1.1 Introduction

The route to turbulence in many wall-bounded shear flows involves intermittent laminar-
turbulent patterns that evolve on vast space and time scales ((Tuckerman et al., 2020)
and references therein). These states have received much attention over the years, both
because of their intrinsic fascination and also because of their fundamental connection to
critical phenomena associated with the onset of sustained turbulence in subcritical shear
flows. Below a critical Reynolds number, intermittent turbulence exists only transiently
– inevitably reverting to laminar flow, possibly after some very long time. Just above the
critical Reynolds number, turbulence can become sustained in the form of intermittent
laminar-turbulent patterns.

Flow geometry, specifically the number of unconstrained directions, plays an important
role in these patterns. In flows with one unconstrained direction, large-scale turbulent-
laminar intermittency can manifest itself only in that direction. Pipe flow is the classic
example of such a system (Reynolds, 1883), but other examples are variants such as duct
flow (Takeishi et al., 2015) and annular pipe flow (Ishida et al., 2016), and also con-
strained Couette flow between circular cylinders where the height and gap are both much
smaller than the circumference (Lemoult et al., 2016). In terms of large-scale phenom-
ena, these systems are viewed as one dimensional. Turbulent-laminar intermittency takes
the comparatively simple form of localized turbulent patches, commonly referred to as
puffs, interspersed within laminar flow (Darbyshire & Mullin, 1995; Nishi et al., 2008; van
Doorne & Westerweel, 2009). In this case much progress has been made in understanding
the localization of puffs and the critical phenomena associated with them (Hof et al., 2010;
Samanta et al., 2011; Avila et al., 2011; Barkley, 2016; Barkley et al., 2015), including the
scaling associated with one-dimensional directed percolation (Lemoult et al., 2016).

In flow geometries with one confined and two extended directions, turbulent-laminar
intermittency takes a more complex form that is dominated by turbulent bands which
are oriented obliquely to the flow direction. Examples of such flows are Taylor-Couette
flow (Coles & van Atta, 1966; Andereck et al., 1986; Dong, 2009; Meseguer et al., 2009;
Kanazawa, 2018; Berghout et al., 2020; Prigent et al., 2002), plane Couette flow (Prigent
et al., 2002; Duguet et al., 2010), plane channel flow (Tsukahara et al., 2005a; Brethouwer
et al., 2012; Fukudome & Iida, 2012), and a free-slip version of plane Couette flow called
Waleffe flow (Waleffe, 1997; Chantry et al., 2016). In terms of large-scale phenomena,
one views these systems as two dimensional. Understanding the transition scenario in
these systems is complicated by the increased richness of the phenomena they exhibit and
also by the experimental and computational challenges involved in studying systems with
two directions substantially larger than the wall separation. So large are the required
dimensions that only for a truncated model of Waleffe flow has it thus far been possible
to verify that the transition to turbulence is of the universality class of two-dimensional
directed percolation (Chantry et al., 2017).
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Between the one-dimensional and fully two-dimensional cases are the numerically ob-
tainable restrictions of planar flows to long, but narrow, periodic domains tilted with
respect to the flow direction (Barkley & Tuckerman, 2005). These domains restrict tur-
bulent bands to a specified angle. They have only one long spatial direction, thereby
limiting the allowed large-scale variation to one dimension, but they permit flow in the
narrow (band-parallel) direction, flow that is necessary for supporting turbulent bands
in planar shear flows. Such computational domains were originally proposed as minimal
computational units to capture and understand the oblique turbulent bands observed in
planar flows (Barkley & Tuckerman, 2005). Tilted computational domains have subse-
quently been used in numerous studies of transitional wall-bounded flows, notably plane
Couette flow(Barkley & Tuckerman, 2007; Tuckerman & Barkley, 2011; Shi et al., 2013;
Lemoult et al., 2016; Reetz et al., 2019) and plane channel flow (Tuckerman et al., 2014;
Paranjape et al., 2020). Lemoult et al. (Lemoult et al., 2016) showed that in tilted do-
mains plane Couette flow exhibits a transition to sustained turbulence in the directed
percolation universality class. Reetz, Kreilos & Schneider (Reetz et al., 2019) computed a
state resembling a periodic turbulent band in plane Couette flow while Paranjape, Duguet
& Hof (Paranjape et al., 2020) computed localized traveling waves in plane channel flow
as a function of the Reynolds number and the tilt angle. Shi, Avila & Hof (Shi et al.,
2013) used simulations in a tilted domain to measure decay and splitting lifetimes in plane
Couette flow and it is this approach that we apply here to plane channel flow.

We mention two important points concerning the relevance of turbulent bands in narrow
tilted domains to those in plane channel flow in large domains. The first is that a regime
in transitional channel flow has been discovered at Reynolds numbers lower than those
studied here in which turbulent bands elongate at their downstream end while they retract
from their upstream end (Xiong et al., 2015; Kanazawa, 2018; Tao et al., 2018; Xiao &
Song, 2020; Shimizu &Manneville, 2019). Such bands of long but finite length are excluded
in narrow tilted domains. In full two-dimensional domains and at lower Reynolds numbers,
this one-sided regime takes precedence over the transition processes that we will describe
here. The second point is that critical Reynolds numbers obtained in narrow tilted domains
(Shi et al., 2013; Chantry, 2020) have been found to agree closely with transition thresholds
found in the full planar setting (Bottin & Chaté, 1998; Bottin et al., 1998; Duguet et al.,
2010; Chantry et al., 2017) in both plane Couette flow and in stress-free Waleffe flow. We
will return to both of these points in Sec. 1.6.

Here we study the onset of turbulent channel flow in narrow tilted domains. We follow
closely the work of Shi, Avila & Hof (Shi et al., 2013) on plane Couette flow. We are
particularly focused on establishing the time scales and Reynolds numbers associated
with the splitting and decay processes.
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1.2 Numerical procedure and choice of dimensions

Plane channel flow is generated by imposing a mean or bulk velocity Ubulk on flow between
two parallel rigid plates. The length scales are nondimensionalized by the half-gap h
between the plates. Authors differ on the choice of velocity scales for nondimensionalizing
channel flow, but one standard choice, that we adopt here, is to use 3Ubulk/2. This is
equal to the centerline velocity Ucl of the corresponding laminar parabolic flow since

Ubulk =
1

2

∫ +1

−1
Ucl(1− y2)dy =

2

3
Ucl (1.1)

The Reynolds number is then defined to be Re = Uclh/ν = 3Ubulkh/(2ν).

The computational domain used in this study is tilted with respect to the streamwise
direction, as illustrated in Fig. 1.1(b). Its wall-parallel projection is a narrow doubly-
periodic rectangle with the narrow dimension (labelled by the x coordinate) aligned along
the turbulent band. The long dimension of the domain (labelled by the z coordinate) is
orthogonal to the bands, i.e. it is aligned with the pattern wavevector. The relationship
between streamwise-spanwise coordinates and (x, z) coordinates is:

estreamwise = cos θ ex + sin θ ez (1.2a)

espanwise = − sin θ ex + cos θ ez (1.2b)

The wall-normal coordinate is denoted y and is independent of the tilt.

The angle in this study is fixed at θ = 24◦, as has been used extensively in the past.
The tilt angle of the domain imposes a fixed angle on turbulent bands. (Turbulent bands
at larger angles have also been observed in large or tilted domains.) The narrowness
of the computational domain in the x direction prohibits any large-scale variation along
turbulent bands, effectively simulating infinitely long bands. These restrictions of a tilted
domain have both advantages and disadvantages for simulations of transitional turbulence.
We return to this in the discussion.

We have carried out direct numerical simulations (DNS) using the parallelized pseu-
dospectral C++-code ChannelFlow (Gibson, 2012). This code simulates the incompress-
ible Navier-Stokes equations in a periodic channel by employing a Fourier-Chebychev spa-
tial discretization, fourth-order semi-implicit backwards-differentiation time stepping, and
an influence matrix method with Chebyshev tau correction to impose incompressibility
in the primitive-variable formulation. The velocity field is decomposed into a parabolic
base flow and a deviation, U = Ubase + u, where the deviation field u has zero flux.
Simulating in the tilted domain gives velocity components u = (u, v, w) aligned with the
oblique coordinates (x, y, z). All kinetic energies reported here are those of the deviation
from laminar flow 1

2

∫
(u2 + v2 +w2), rather than the turbulent kinetic energy (defined to

be that of the deviation from the mean velocity).
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Figure 1.1: (a) Sketch of the laminar profile. (b) Visualization of turbulent bands in
a 240 × 108 streamwise-spanwise domain at Re = 1000. Colors indicate the streamwise
velocity in the y = −0.8 plane. A superimposed black box illustrates a long-narrow
computational domain, tilted with an angle θ relative to the streamwise direction. (c)
and (d) Structure of a turbulent-laminar pattern computed in a tilted domain at Re =
1200. Plot (c) shows the x component of the velocity in the (x, z) plane at y = −0.8.
The streamwise and spanwise directions are indicated in red. Plot (d) shows streamwise
vorticity in a (y, z) plane with the vertical y scale stretched by a factor of 2. Only the
portion of the computational domain containing the turbulent region is shown in (d). As
seen in (c), on the downstream side of the turbulent region the flow exhibits weak straight
streaks, oriented in the streamwise direction, that slowly diminish as the flow returns
laminar.
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Most of the simulations presented have been carried out in a domain with dimensions
(Lx, Ly, Lz) = (6.6, 2, 100). The numerical resolution is (Nx, Ny, Nz) = (84, 64, 1250),
which both ensures that ∆x = ∆z ≃ 0.08 and that ∆y varies from ∆y = cos(31π/64) =
0.05 at y = 0 to ∆y = 1− cos(π/64) = 0.001 at y = ±1. This resolution has been shown
to be sufficient to simulate small turbulent scales at low Reynolds numbers (Kim et al.
(Kim et al., 1987), Tsukahara et al. for Re = 1370 (Tsukahara et al., 2005a)).

In the Fourier-Chebychev discretization the deviation velocity is expressed as:

u =

Nx/2∑
−Nx/2+1

Nz/2∑
−Nz/2+1

Ny∑
0

ûmx,my ,mze
i(kxmxx+kzmzz)Tmy(y) (1.3)

where kx = 2π/Lx, kz = 2π/Lz, ûmx,my ,mz are the Fourier-Chebyshev coefficients, and
Tmy(y) are the Chebychev polynomials. For brevity, we will refer to mx and mz (rather
than mxkx, mzkz) as wavenumbers.

The structure of a typical turbulent band in this domain is shown on Fig. 1.1. A
series of straight periodic streaks is visible downstream of the turbulent band, whereas
the upstream laminar-turbulent interface is much sharper. Streaks are visible here as
streamwise velocity modulated along the spanwise direction. They are wavy in the core of
the turbulent zone, in accordance with the self-sustaining process of transitional turbulence
(Waleffe, 1997).

Our choice for the standard domain dimensions, (Lx, Ly, Lz) = (6.6, 2, 100), is dictated
as follows: Ly = 2 is fixed by non-dimensionalization. The choice of the short dimension
Lx is dictated by the natural streak wavenumber. In plane Couette flow, this was found
to be approximately Lx,Couette = 10 = 4/ sin 24◦ (Hamilton et al., 1995), and widely
used since (Barkley & Tuckerman, 2005; Shi et al., 2013). Chantry et al. showed that
the correspondence between length scales in plane Couette and plane channel flows is
hPoiseuille ≃ 1.5hCouette (by doubling the Couette height and subtracting the resulting
spurious mid-gap boundary layer (Chantry et al., 2016)). This leads to an optimal short
dimension in a 24◦ box of Lx,Poiseuille = 6.6. (Lx = 6.6 has also been used in (Paranjape
et al., 2020), whereas Lx = 10 was used in (Tuckerman et al., 2014).) Lz = 100 is chosen
to be sufficiently large that periodicity in the z-direction does not have a significant effect
on the turbulent band dynamics, as we will see in the next section.

1.3 Band velocity and interaction length

As in pipe flow (Hof et al., 2010; Samanta et al., 2011; Barkley, 2016), bands in channel
flow interact when sufficiently close and this can affect the quantities we seek to measure.
For example, in a one-dimensional directed percolation model (Shih, 2017, p. 167), the
time scales observed for decay and splitting increase strongly with the inter-band distance,
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while the critical point increases weakly. We wish to choose the length Lz of our domain
to be the minimal distance above which bands can be considered to be isolated.

Unlike their counterparts in plane Couette flow, turbulent bands in plane channel flow
are not stationary relative to the bulk velocity Ubulk. As in pipe flow (Avila et al., 2011;
Barkley et al., 2015), bands move either faster or slower than the bulk velocity, depending
on the Reynolds number (Tuckerman et al., 2014). One important way in which the
interaction between bands manifests itself is by a change in propagation speed.

Figure 1.2 illustrates some of the key issues via spatio-temporal plots of turbulent
bands in a reference frame moving at the bulk velocity. Note that the imposition of
periodic boundary conditions in z leads to interaction across the boundary. Figure 1.2a
illustrates a typical long-lived turbulent band at Re ≲ 1000. The band moves slowly in
the positive z direction, i.e downstream relative to the bulk velocity, and then decays, i.e.
the flow relaminarizes.

Figure 1.2b illustrates a typical band splitting at Re = 1100, for which bands move
upstream relative to the bulk velocity. At t ≃ 13 000 a daughter band emerges from
the downstream side of the parent band, very much like puff splitting observed in pipe
flow (Avila et al., 2011; Shimizu et al., 2014). Following the split, the distance between
bands decreases (from Lz = 100 to Lz/2 = 50), thereby increasing the band interaction, as
can be seen by a change in the propagation velocity following the split. The time range in
Fig. 1.2b is very long and this visually accentuates the speed change. The absolute speed
change following the split is approximately 1% of the bulk velocity. Figure 1.2c presents
a band splitting in a box of size Lz = 50 at Re = 1200 and shows a more pronounced
difference in propagation velocities between the single band and its two offspring. The
quasi-laminar gap separating the two offspring bands is quite narrow and hence the bands
can be assumed to strongly interact. The spatio-temporal diagrams of Fig. 1.2 also show
that the size of turbulent bands increases slightly with Re, and moreover that fluctuations
in the size and propagation speed become greater. Fluctuations are more pronounced on
the downstream side of bands. More quantitatively, we have measured the propagation
speed, Uband, of single turbulent bands over a range of Re in domains of different lengths
Lz, as shown in Fig. 1.3. Periodic boundary conditions in z set the center-to-center in-
teraction distance between bands to the domain length Lz. Single bands were simulated
for up to a total of 70000 time units. Error bars (only shown in case Lz = 100 for clarity)
represent normal-approximated confidence intervals for time-weighted velocity measure-
ments over the multiple simulations comprising the total simulation time. Care was taken
to discard pushing effects due to missed splittings or decays that may deviate the band
from its average velocity. An initial time t0 > 0 was subtracted to eliminate the effect of
the initial conditions (see Sec. 1.4 and 1.5).

We find that the band speed becomes independent of Lz for Lz ≳ 100. The speeds
vary approximately linearly with Re, over the range studied, and remain close to the bulk
velocity: |Uband−Ubulk| is less than 2% of Ubulk. For values of Lz < 100, speeds are shifted



24 1 Statistical transition in channel flow

0 50 100

0

1000

2000

3000

4000

5000

6000

(a)

0 50 100

0

5000

10000

15000

20000

25000

30000

(b)

0 25 50

0

1000

2000

3000

4000

5000

6000

(c)

Figure 1.2: Space-time diagrams of turbulent bands in a frame moving at the bulk
velocity, Ubulk, with (a) Re = 830, Lz = 100, (b) Re = 1100, Lz = 100, (c) Re = 1200,
Lz = 50. Colors show the perturbation energy E = 1

2(u
2+ v2+w2) as a function of z and

t, sampled in the y = −0.8 plane at a arbitrary value of x (yellow: E = 0.1, blue: E = 0).
Average band propagation velocities, relative to Ubulk, and the degree of fluctuations can
be discerned from diagrams. Case (a) is an example of a band moving downstream relative
to Ubulk, which occurs for Re ≲ 1000, and then decaying. In case (b), a single band in
a domain with Lz = 100 splits into two bands, resulting in a pair of bands separated in
z by distance 50 = Lz/2. The change in velocity resulting from a decrease in interaction
distance is evident. Note, however, that the time range covered in the plot is large, which
visually accentuates the effect. Case (c) shows band splitting in a domain of size Lz = 50.
The resulting bands are closely spaced and interact strongly.
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Figure 1.3: Dependence of the band propagation velocity on the Reynolds number and on
the inter-band distance Lz (left axis: z velocity, right axis: streamwise velocity). Normal-
approximated error bars are shown for Lz = 100.
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Figure 1.4: Energy averaged over x, y and t as a function of z, for different Lz, in (a)
linear and (b) logarithmic scales, for a one-band state at Re = 1000
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upwards, and their slopes vary from the slope at higher Lz. Note that bands at Lz = 25
are not sustained for Re ≲ 1050. Values at Lz = 40 are similar to those reported in a
domain of the same size in (Tuckerman et al., 2014); Figure 1.3 shows that this inter-band
separation is too small to be in the asymptotic regime. (In addition, here the streamwise
velocity is defined as vz/ sin θ, i.e. such that its projection in the z direction is the z
velocity, whereas in (Tuckerman et al., 2014) it is defined to be vz sin θ, i.e. the projection
of the z velocity along the streamwise direction.)

The streamwise band speeds observed here compare with what is known for puff speeds
in pipe flow. For Reynolds numbers near where the puff speed equals the bulk velocity, the
speed is given by Up − Ū ≃ −2.4× 10−4(Re− 1995), where Up is the nondimensional puff
speed and Ū = 1 is the nondimensional bulk velocity for pipe flow. (This expression comes
from the data given in supplemental material for Ref. (Avila et al., 2011).) Making a linear
approximation to the data in Fig. 1.3, the streamwise band speeds can be approximated
by (Uband − Ubulk)stream ≃ −1.7× 10−4(Re− 1000). Thus we find that variation of speed
with Reynolds number is of the same magnitude in the two cases, that is the coefficients
−2.4 × 10−4 and −1.7 × 10−4 are comparable. Both coefficients are negative reflecting
that the downstream speed decreases as Reynolds number increases. (The reason for this
is discussed at length for pipe flow in (Barkley et al., 2015; Barkley, 2016).) If one uses 2h
for the length scale and bulk velocity for the velocity scale in channel flow, the coefficient
for channel flow changes slightly to become −1.9 × 10−4. Detailed comparisons beyond
this are not obviously meaningful without a precise way to map the Reynolds numbers
between the two flows.

We also compare the kinetic energy profile in z of stationary single bands at Re = 1000,
calculated in domains with Lz between 50 and 200. Figure 1.4a shows the kinetic energy,
i.e. the deviation from laminar flow, averaged over x, y, and ∆T = 1000, as a function
of z, centered at z = 100. We see a strong peak and width that, except for Lz = 50,
are nearly independent of Lz. The logarithmic representation of Fig. 1.4b highlights the
weak tails of the turbulent bands. Except for Lz = 50, all have an upstream ”shoulder”,
i.e. a change in curvature followed by a plateau. All have a downstream minimum, whose
position depends on Lz: for Lz = 50 and 100, it is located halfway from the peak to its
periodic repetition; for Lz > 100 the ratio of this distance to Lz decreases with increasing
Lz. We doubled the resolution in the z direction, and observed very little effect (< 2%)
on the localization of the minimum.

Localized turbulent regions have been studied in other realizations of wall-bounded
shear flows. For exact computed solutions of plane channel flow, the downstream spatial
decay is observed to be more rapid than the upstream decay (Zammert & Eckhardt, 2014,
2016; Paranjape et al., 2020), as in our case. In plane Couette flow (Barkley & Tuckerman,
2005; Brand & Gibson, 2014), the upstream and downstream spatial decay rates are equal,
by virtue of symmetry, while those of pipe flow show a strong dependence of the upstream
decay rate on Reynolds number (Ritter et al., 2018). Asymmetry between upstream and
downstream spatial decay rates is also seen in turbulent spots in boundary layer flow
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Figure 1.5: Band decay at Re = 830. Plotted is the x velocity in (x, y) planes at
y = −0.8. For clarity the color scale changes over time.

(Marxen & Zaki, 2019) and in Poiseuille-Couette flow (Klotz et al., 2017).

Notwithstanding the long-range weak tails in Fig. 1.4b, we believe that turbulent bands
in domains of at least Lz = 100 can be considered as isolated: the quasi-laminar gap is
sufficiently wide that one band does not substantially affect its neighbor and modify its
velocity.

1.4 Analysis of decay and splitting

1.4.1 Decay

We now focus on the decay and splitting events. Figure 1.5 illustrates a typical decay
event, a turbulent band at Re = 830 that persists as a long-lived metastable state before
abruptly decaying to laminar flow. A visualisation of the x velocity is shown in the
y = −0.8 plane, approximately where the streaks are most intense, at representative times
during the final decay to laminar flow.

States can be quantitatively characterized via their instantaneous (x, z) Fourier spectra.
Figure 1.6 shows an example of such a 2D Fourier spectrum of the x velocity at y = −0.8,
Re = 830, corresponding to the snapshot t = 4850 on Figure 1.5. We observe that
the amplitudes along horizontal lines mx = 0 and mx = ±1 are much larger than the
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Figure 1.6: Example of a (x, z) Fourier spectrum of the x velocity u in the y = −0.8
plane, for a turbulent band at Re = 830. Colors show the modulus of spectral coeffi-
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Figure 1.7: Illustrative Fourier spectra û0,mz and û1,mz (a) before band decay and (b)
in the final relaxation to laminar flow. Re = 830. The black symbols û1,mz with mz

surrounding 35 correspond to streaks while the blue symbols û0,mz at low mz correspond
to large-scale structures. Filled symbols indicate û0,1 and û0,2.
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is considered as complete at tf .
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Figure 1.9: Time evolution of (a) û0,1 and û0,2 and of (b) ||u||2, ||v||2 and ||w||2 during ten
realizations of decay events at Re = 830. Time t∗ and vertical quantities are respectively
translated and scaled to obtain the same final value for each realization. Final decay rates
for û0,1 and û0,2 (a) are −3.6× 10−3 and −5.2× 10−3, respectively.
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others. For brevity, we use ûmx,mz to denote the modulus of the 2D Fourier component
(±mx,∓mz) of the x velocity evaluated at y = −0.8. We recall from Eq. (1.3) thatmx = 1
corresponds to a wavelength of Lx = 6.6, while mz = 1 corresponds to a wavelength of
Lz = 100. The large-scale pattern for a single band is characterized by the x-constant
and z-trigonometric Fourier coefficient û0,1. Streaks are the small-scale spanwise variation
of the streamwise velocity. Here we use the x-trigonometric Fourier coefficients of the
x-velocity as a proxy for streak amplitude:

ûstreaks =
100∑
mz=0

û1,mz

While the x direction of the tilted domain does not correspond to the spanwise direction,
it is clear from Fig. 1.5 that the streaks correspond to x-wavenumber mx = 1. The
velocity in the x direction is not the streamwise velocity, but it has a large projection in
the streamwise direction.

Figure 1.7 illustrates the spectra before decay (ta = 4950) and near at the end of the
decay process (tf = 5700). The final stages of the flow field as it returns to laminar flow
is almost exclusively contained in the û0,1 coefficient corresponding to no x dependence
and trigonometric z dependence on the scale of the simulation domain. Weak streaks are
still discernible, but their amplitudes are 10−3 that of the large-scale flow û0,1. (Note
right-hand scale in Fig. 1.7(b).) This shows that the decay from a turbulent band to
the laminar state results in a large-scale flow structure aligned with, and moving parallel
to, the band. This large-scale flow, although weak and declining during laminarization,
dominates the streak patterns characterizing turbulence.

Figure 1.8 plots the time evolution of spectral quantities and velocity norms. The
life of the band is characterized by small random fluctuations in the spectral quantities
and the velocity norms, especially ûstreaks, which shows the strongest variability. After
time t = ta = 4950, all the signals suddenly undergo exponential decay, with ||u||2 and
û0,1 decaying more slowly than ||w||2, ||v||2 and ûstreaks. Small-scale streaks and rolls
have been shown to have different temporal decay rates in a Couette-Poiseuille quenching
experiment (Liu et al., 2020).

After the decay process begins, the averaged absolute level of the streaks ûstreaks decays
more rapidly than the large-scale component û0,1, resulting in the crossing of ûstreaks and
û0,1 at time t = tb = 5300 in Fig. 1.8a. From this point, the one-band structure becomes
prominent in comparison with the streaks. One sees indeed on the physical slices of Fig.
1.5 that the remaining weak flow consists primarily of an Lz-periodic structure, constant
over x, and moving parallel to the previous band. Band-orthogonal and cross-channel
velocities w and v are negligible in comparison to u, and only show a remaining streaky
pattern.

We now consider how these quantities vary for different decay events. Figure 1.9
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Figure 1.10: Band splitting at Re = 1200. Plotted is the x velocity in (x, y) planes at
y = −0.8.

presents the evolution of spectral quantities and velocity field norms for 10 decay events.
For each realization i, time is translated, t∗ = t − tf,i, so that all realizations end at
the same time: t∗ = 0. Quantities are also normalized to obtain the same final value:
q∗ = min(qf,i) × qi/qf,i. Note that the final time for the simulation tf is dictated by the
criterion ||u||2 < 5× 10−3 and that ||u||2 is dominated by û0,1, which is why both signals
terminate with the same final value for each realization.

The evolution of the spectral component û0,1(t) for the different realizations all even-
tually collapse onto a single curve. The same is true, slightly later, for û0,2(t). These
final phases of the evolution correspond to viscous diffusion; û0,1(t) and û0,2(t) evolve
towards eigenvectors of laminar plane channel flow. The difference between their decay
rates (eigenvalues) is due to differences in their cross-channel dependence.

The norm ||u||2 also behaves in this way, since it is dominated by û0,1, but ||v||2 and
||w||2 do not. These are sums over different spectral components each with its own decay
rate, and the levels of these components differ from one realization to the next, thereby
leading to different decay rates for each realization.

1.4.2 Splitting

A splitting event at Re = 1200 is shown in Fig. 1.10 via the evolution of (x, z) slices
of u, at times from t0 (initial band) to t5. The turbulent band at t1 = 4300 is wider
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Figure 1.11: Evolution of a band while it splits at Re = 1200. (a) Spatiotemporal
diagram of the band. Colors show the turbulent perturbation energy E between 0 (blue)
and 0.1 (yellow). (b, c, d) Time evolution of spectral quantities û0,1 and û0,2 (b), ûstreaks
(c) and the L2-norm ||w||2 (d).
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Figure 1.12: Illustrative Fourier spectra û0,mz and û1,mz (a) before and (b) after band
splitting at Re = 1200. The black symbols û1,mz with mz surrounding 35 correspond to
streaks while the blue symbols û0,mz at low mz correspond to large-scale structures. Filled
symbols indicate û0,1 and û0,2.

than it is at t0 = 3500. At t2 = 4600 one sees the appearance of a gap in the turbulent
region corresponding to the birth of the second band. The parent band continues to move
towards lower z while the child band remains at its position and intensifies from t2 to t5,
smoothly acquiring all the characteristics of the parent band.

Figure 1.11 presents a spatio(z)-temporal diagram of the perturbation energy and traces
the evolution of spectral quantities û0,1 and û0,2 at y = −0.8, which represent a single
or a double banded pattern. The evolution of ûstreaks and of the L2-norm ||w||2 are also
shown. A slight initial drop in the two-band coefficient û0,2 is seen from t = t1 = 4300,
which coincides with the appearance of the second band. A laminar gap opens between
the initial band and its offspring at t = t2 = 4600. Then û0,2 starts to increase whereas
û0,1 decreases, from t = t3 = 5200. The two quantities cross at t = t4 = 5600 and finally
reach plateaus at t = t5 = 6000. This is the time from which the energy of the second band
reaches approximately the same level as that of the first band, as seen from the spatio-
temporal diagram (Fig. 1.11a). The other quantities, ûstreaks and ||w||2, follow slightly
different trends from those of the spectral coefficients, as shown on Fig. 1.11c and 1.11d.
Oscillations in ûstreaks are strong and it is difficult to distinguish trends corresponding to
the band evolution. However, there is a relatively strong increase in the streak intensity
just before t5, when the second band is fully developed. In addition, ||w||2 increases from
t1 to t3 and then reaches a plateau of around 0.06.

The evolution before the splitting shows a missed splitting event between t = 200 and
1000. A weakly turbulent patch detaches from the initial stripe, and quantities û0,1, û0,2,
ûstreaks, and ||w||2 all follow a trend between t = 200 and 600 similar to that between t2
and t3. The birth ceases after t = 1000: û0,2 does not increase sufficiently to cross û0,1,
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and ûstreaks and ||w||2 drop to their previous levels.

Figure 1.12 shows a comparison between Fourier spectra û0,mz and û1,mz before and
after splitting. The decrease in û0,1 and increase in û0,2, already seen in Fig. 1.11b,
appears clearly. In addition, the two-band streak spectrum û1,m shows conspicuous small-
scale oscillations due to the fact that a perfectly Lz/2-periodic field would contain only
even modes.

We now carry out simulations, still at Re = 1200, in a shorter tilted domain of length
Lz = 50 to avoid secondary splittings which would lead to a three-band state. All realiza-
tions of the formation of the second band follow the same sequence of events previously
described. Meanwhile, the three-band component û0,3 can also be monitored to analyze
the interactions between modes 1 and 2 during the splitting.

This evolution is represented in a phase portrait (û0,1, û0,2, û0,3) in Fig. 1.13. The
one-band state is characterized here by an average segment around which the spectral
components show noisy oscillations (state 1) because of the proportionality between the
components. Because the two-band state selects the even components (see Fig. 1.12b),
û0,1 and û0,3 have low values and show no correlation with the prominent û0,2. This
representation shows that large-scale spectral components statistically follow the same
transition path from one to two turbulent bands. This common transition path can be
seen as a low-dimensional projection of the dynamics of band splitting. Such a statistical
pathway for configuration changes in a turbulent fluid system was observed in the case of
barotropic jet nucleation (Bouchet et al., 2019).

1.5 Statistics of band decay and splitting

We now investigate the decay and splitting statistics of single turbulent bands over a range
of Reynolds numbers. The mean lifetime of decay increases with Re, that of splitting
decreases with Re, and hence these lifetimes are equal at some Reynolds number. The
primary goal here is to determine at which Reynolds number value this occurs. The domain
size is fixed at Lz = 100. Since decay and splitting events are effectively statistical, many
realisations are necessary to determine the mean decay and splitting times. Regarding the
evolution of band interactions with Lz (Section 1.3), Lz = 100 was chosen as a compromise
between mitigating the potential effect of interactions on decay and splitting probabilities
and the numerical cost of a statistical study. The effect of inter-band distance on mean
decay and especially on splitting times still remains an open question. To generate large
numbers of initial conditions for these realisations, we start from featureless turbulent flow
at Re = 1500 and reduce Re to an intermediate value in [900, 1050], where a single band
then forms. We continue these simulations and extract snapshots, that are then used as
initial conditions for simulations with Re ∈ [700, 1350].

Each simulation is run with a predefined maximum cut-off time tf = 105. If a decay or
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Figure 1.13: Evolution of spectral quantities during 10 splittings at Re = 1200, in a
domain of length Lz = 50. Each curve represents one simulation, and is colored by û0,1 to
illustrate the transition between a one-band (1) to a two-band state (2).

splitting event occurs before tf , the run is automatically terminated after the event and the
time is recorded. For a decay, the termination criterion is ||u||L2 < 0.005, meaning that
the flow has nearly reached the laminar base flow. For splitting, termination occurs when
two (or more) well-defined turbulent zones (whose x and short-time averaged turbulent
energy exceed 0.005) coexist over more than 2000 time units. We can then estimate the
real time at which the splitting event occurs, defined as the time at which a second laminar
gap appears from the initial band, through careful observations of space-time diagrams.

For a given value of Re, let Nd, N s, and N be the number of decay events, splitting
events, and the total number of runs, respectively. Thus N −Nd −N s is the number of
runs reaching the cut-off time tf without having decayed or split.

We consider first the decay statistics. (The splitting statistics follow similarly.) The
analysis closely follows previous work; see especially (Avila et al., 2010, 2011; Shi et al.,
2013). The decay times at a given Re are sorted in increasing order, giving the sequence
{tdi }1≤i≤Nd . The survival probability that a band has not decayed by time tdi is then
approximated by:

P (tdi ) = P (decay at t ≥ tdi ) = 1− (i− 1)/N. (1.4)

The survival distributions for decay events over a range of Re are plotted on semi-log
axes in Fig. 1.14. The data support exponential form P (tdi ) = exp(−(tdi − td0)/τ

d(Re)),
where τd(Re) is the Reynolds-number-dependent mean lifetime (characteristic time) for
decay and td0 is an offset time, for Re ≥ 750. (The case Re = 730 exhibits deviations from
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Figure 1.14: Survival probability distributions for the decay of a turbulent band, Re ∈
[730, 900].
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Figure 1.15: Survival probability distributions for the splitting of a turbulent band,
Re ∈ [1100, 1350].
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Figure 1.16: Variation of mean decay times (red) and splitting times (black) with
Reynolds number Re. The error bars correspond to 95% confidence intervals. Inset:
ln ln τ s/d versus Re and associated linear fits. The crossing point is at Recross ≈ 965,
τ ≈ 3× 106.

an exponential distribution very similar to those observed in pipe flow at Re = 1700 (Avila
et al., 2010)). These exponential survival distributions are indicative of an effectively
memoryless process, as has been frequently observed for turbulent decay in transitional
flows (Darbyshire & Mullin, 1995; Faisst & Eckhardt, 2004; Hof et al., 2006; Peixinho &
Mullin, 2006; Willis & Kerswell, 2007; Avila et al., 2010).

Quantitatively, the characteristic time τd(Re) is obtained by the following Maximum
Likelihood Estimator (Avila et al., 2010):

τd ≃ 1

N ′d

( ∑
tdi>t

d
0

(tdi − td0) + (N −Nd)(tf − td0)
)

(1.5)

where N
′d is the number of decay events taking place after td0. The offset time td0 is

included to account for the time necessary for the flow to equilibrate following a change
in Re associated with the initial condition, and also the fixed time it takes for the flow to
achieve the termination condition after it commences decay (as seen in Fig. 1.8b). As in
(Avila et al., 2010), we determine the value of td0 by varying it in Eq. (1.5), monitoring
the resulting characteristic time τd, and choosing td0 to be the minimal time for which the
estimate τd no longer depends significantly on td0. We find td0 = 850 is a good value over
the range of Re investigated.

The same procedure has been applied to the splitting events. The splitting times are
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denoted {tsi}1≤i≤Ns , the estimated mean lifetimes are denoted τ s, and the offset time is
denoted ts0. In the case of splitting we find the offset time to be ts0 = 500, except for
Re = 1350, the largest value studied, where ts0 = 800. It should be noted that obtaining
splitting times becomes delicate at Re = 1350 because turbulence spreads in less distinct
bands. The survival distributions for various Re are plotted in Fig. 1.15. As with decay,
these data are again consistent with exponential distributions.

At Re = 900 and Re = 1100, some of the runs reach the cut-off time tf = 105. From a
total simulation time of about 106 time units, we registered only 10 decay events at Re =
900 and 25 splitting events at Re = 1100, immediately showing that the characteristic
lifetimes at these values of Re are on the order of 105 for Re = 900 and 6 × 104 for
Re = 1100. Investigations at Re = 950, 1000 and 1050 were performed, but no events
occurred before 105 time units. Due to the high numerical cost of sampling at these longer
time scales, we did not attempt further investigation between Re = 900 and Re = 1100.
As a result, we observed no case in which both splitting and decay events occurred at
the same Reynolds number, unlike for plane Couette flow (Shi et al., 2013) and pipe flow
(Avila et al., 2011).

Figure 1.16 shows the estimated mean lifetimes τd and τ s as a function of Reynolds
number. For simplicity, the error bars correspond to confidence intervals for censored
data of type II (Lawless, 2002). The decay lifetimes increase rapidly as a function of Re,
while the splitting times decrease rapidly as a function of Re. It is clear from the main
semi-log plot that both dependencies are faster than exponential. While it is not possible
to determine with certainty the functional form of the dependence on Re, the data are
consistent with a double-exponential form, as shown in the inset where the double log
of the lifetimes are plotted as a function of Re. The linear fits indicated in the inset
are plotted as dashed curves in the main figure. From these curves one can estimate the
crossing point to be Recross ≃ 965 with a corresponding time-scale of about 3× 106. The
extrapolation of the data means that these values are only approximate. Nevertheless, we
can be sure that the timescale of the crossing in our case is significantly above the crossing
timescale of about 2×104 found in a similar study of plane Couette flow (Shi et al., 2013),
and it appears to be about a factor of 10 less than the value 2 × 107 found for pipe flow
(Avila et al., 2011).

1.6 Discussion and conclusion

We have studied the behavior of oblique turbulent bands in plane channel flow using narrow
tilted computational domains. Bands in such domains have fixed angle with respect to
the streamwise direction and are effectively infinitely long, with no large-scale variation
along the band. We have measured the propagation velocity of these bands as a function
of Reynolds number and inter-band spacing and found that band speed is affected by band
spacing at distances greater than previously assumed (Tuckerman et al., 2014).
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After long times, bands either decay to laminar flow or else split into two bands. Sur-
vival distributions obtained from many realizations of these events confirm that both
processes are effectively memoryless, with characteristic lifetimes τd(Re) and τ s(Re), re-
spectively. The dependence of these lifetimes on Re is super-exponential and consistent
with a double-exponential scaling. Fitting the data with double-exponential forms, we
estimate that the lifetimes cross at Recross ≃ 965, at about 3 × 106 advective time units.
Below Recross, isolated bands decay at a faster rate than they split, while above Recross,
isolated bands split at a faster rate than they decay. Hence Recross is very close to the
critical point above which turbulence would be sustained in the tilted computational do-
main. Double-exponential scaling is consistent with what has been observed in pipe flow
(Avila et al., 2011). Such scaling is thought to be connected to extreme-value statistics,
as first proposed by Goldenfeld et al. (Goldenfeld et al., 2010) and recently examined
quantitatively for puff decay in pipe flow by Nemoto & Alexakis (Nemoto & Alexakis,
2018, 2021).

The characteristic times τd(Re) and τ s(Re) in plane channel flow are considerably
larger than those for plane Couette flow in a similar computational domain by Shi et
al. (Shi et al., 2013), who found that splitting and decay lifetimes cross at about 2× 104

advective time units. Time scales in plane channel flow are closer to those in pipe flow,
where Avila et al. (Avila et al., 2011) found that lifetimes cross at about 2×107 advective
time units. The higher crossing times in plane channel flow and pipe flow pose a challenge
for determining the exact crossing point. A practical consequence of this higher crossing
time is that near the crossing Reynolds number, the flow has a greater tendency to appear
to be at equilibrium, with neither decay nor splitting events observed over long times.

We also note that turbulent puffs in both pipe flow (Barkley et al., 2015; Song et al.,
2017) and channel flow move slightly faster than the bulk flow for low Re and slightly
slower for high Re; in both flows, the propagation speed becomes equal to Ubulk at a
Reynolds number close to the critical point. It is possible that an explanation will be
found that relates the propagation speed with the critical point.

Our crossover Reynolds number Recross ≃ 965 is close to what Shimizu & Manneville
(Shimizu & Manneville, 2019) called a plausible 2D-DP threshold. These authors car-
ried out channel flow simulations in a large domain and used the 2D-DP power law to
extrapolate the turbulent fraction to zero, leading to a threshold of ReDP = 905 or 984,
depending on how the pressure-driven Reynolds number is converted to a bulk Reynolds
number. (They did not, however, attempt to verify the other critical exponents associ-
ated with 2D-DP since they were unable to extend their data sufficiently close to ReDP;
see paragraph below.) This agreement between the lifetime crossing point obtained in
our narrow tilted domain and the transition threshold obtained in the full planar setting
for plane channel flow corroborates similar findings for plane Couette flow and stress-free
Waleffe flow. Specifically, the decay-splitting lifetime crossing in tilted plane Couette flow
was found by Shi et al. (Shi et al., 2013) to occur at Re ≃ 325. The transition point in
the planar case is not known precisely, but it has been estimated by Bottin et al. (Bottin
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& Chaté, 1998; Bottin et al., 1998) and Duguet et al. (Duguet et al., 2010) to be close
to this value. In a truncated model of Waleffe flow, tilted domain simulations indicate
(Chantry, 2020) that the lifetime crossing point is at Rec ≃ 174. The critical point in a
very large domain was computed accurately by Chantry et al. (Chantry et al., 2017) to be
Rec = 173.80. Heuristically some agreement between the two types of domains could be
expected on the grounds that the onset of sustained turbulence is associated with its sta-
bilization in a modified shear profile (Barkley, 2011, 2016; Song et al., 2017) and a narrow
tilted domain quantitatively captures this process. Nevertheless, the very close agreement
between the thresholds in tilted and planar domains in several flows is not completely
understood.

Shimizu & Manneville (Shimizu & Manneville, 2019) were prevented from approaching
their estimate of ReDP when lowering Re by a transition to what they called the one-sided
regime. Flows in this regime contain bands of long but finite length which grow via the
production of streaks at their stronger downstream heads (Xiong et al., 2015; Kanazawa,
2018; Tao et al., 2018; Xiao & Song, 2020). This regime thus shows a strong asymmetry
between the upstream and downstream directions and therefore has no counterpart in
plane Couette flow; isolated bands in plane Couette flow are transient (Manneville, 2011;
Chantry et al., 2017; Lu et al., 2019). In the one-sided regime, bands eventually all have
the same orientation of about 45◦ from the streamwise direction and do not form a regular
pattern. Since an essential feature of this regime is the long but finite length of the bands,
it cannot be simulated using narrow tilted domains. This can be viewed as a shortcoming
of the tilted domain in capturing the full dynamics of channel flow, but it also has the
advantage of allowing us to study channel flow with the one-sided regime excluded.

We have described the evolution of a band in a narrow tilted domain during a decay
or a splitting event via Fourier spectral decomposition. During a band decay, small-scale
structures, streaks and rolls, are damped more quickly, increasing the relative prominence
of the large-scale flow parallel to (Coles & van Atta, 1966; Barkley & Tuckerman, 2007;
Chantry et al., 2016; Shimizu & Manneville, 2019; Xiao & Song, 2020) or around (Lemoult
et al., 2014; Shimizu & Manneville, 2019; Xiao & Song, 2020; Klotz et al., 2020) a turbulent
patch or band. All of our realizations have the same exponential decay rate at the end of
the process.

Fourier analyses show that large-scale spectral components are correlated throughout
the life of a band, but undergo opposite trends during a splitting event, due to one- and
two-band interactions. By examining several realizations of band splitting, we find that
the first three z-Fourier modes follow approximately the same path during the transition
from one band to two bands. This characterization of the splitting pathway resembles
transitions in other turbulent fluid systems for which rare-event algorithms have been
applied to assess long time scales associated with infrequent events. This has been carried
out in (Bouchet et al., 2019) for barotropic jet dynamics in the atmosphere and in (Rolland,
2018) for a stochastic two-variable model that reproduces transitional turbulence (Barkley,
2016). This strategy will be explored in Chapter 2.



Chapter 2

Extreme events in transitional turbu-
lence

Transitional localised turbulence in shear flows in general, and in channel flow in particu-
lar, is known to either decay to an absorbing laminar state or to proliferate via splitting.
In Chapter 1, the average passage times from one state to the other was computed with
brute Monte-Carlo method, and was shown to depend super-exponentially on the Reynolds
number. In this chapter, we apply a rare event algorithm, the Adaptative Multilevel Split-
ting (AMS), to the deterministic Navier-Stokes equations to study transition paths and
estimate large passage times in channel flow more efficiently than direct simulations. With
help of this strategy, we build a probabilistic description of the decay and replication of
localised turbulence. We especially establish a connection with extreme value distribu-
tions and show that transition between states is mediated by a regime that is self-similar
with the Reynolds number. The super-exponential variation of the passage times is linked
to the Reynolds-number dependence of the parameters of the extreme value distribution.
Finally, motivated by instantons from Large Deviation Theory, we show that decay or
splitting events approach a most-probable pathway.

This chapter is extracted from the article ”Extreme events in transitional shear flow”,
published in the Transactions of the Royal Society A (2022) (Gomé et al., 2022).

2.1 Introduction

The route to turbulence in many wall-bounded shear flows is a spatiotemporal process
that results from the interplay between the tendency for turbulence to decay or for it
to proliferate. Individual decay and proliferation events occur extremely rarely near the
critical Reynolds number for the onset of sustained turbulence, and this makes measur-
ing, let alone understanding the onset of turbulence in these flows both fascinating and

41
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challenging. In this chapter we investigate these rare events.

Figure 2.1 illustrates individual decay and proliferation (splitting) events of interest.
These have been obtained from numerical simulations of pressure-driven flow in a channel.
The spatio-temporal diagrams of figure 2.1 display the evolution of such localised turbulent
bands at two Reynolds numbers. Simulations begin after some initial equilibration time.
It can be seen that the one-band state is metastable – it persists for significant time before
transitioning to another state, either laminar flow, as in the upper panel, or a two-band
state, as in the lower one. The corresponding phase-space picture for the governing Navier-
Stokes equations is sketched in figure 2.2. Trajectories spend a significant time in a region
of phase space associated with a single turbulent band, A, before exiting the region and
going to laminar flow or to the two-band state. Repeated simulations starting from one-
band states (in the region A) show that the exit times are distributed exponentially, so
that decay and splitting events are effectively governed by a memoryless, Poisson process.
See (Faisst & Eckhardt, 2004; Eckhardt et al., 2007; Avila et al., 2010, 2011; Shi et al.,
2013; Gomé et al., 2020) and references therein.

A typical study consists of the following. For each value of the Reynolds number, Re,
a large number of events is generated, from which the mean lifetime is determined by
averaging the lifetimes observed in the sample events. This is the Monte Carlo approach.
The process is repeated for a range of Re to obtain the mean lifetimes to decay τd(Re) and
to split τs(Re). These lifetimes are observed to depend super-exponentially on Reynolds
number as sketched in figure 2.2(b), and are approximated by a double exponential form:
τd(Re) ∼ exp(exp(adRe + bd)) and similarly for τs(Re). (Figure 2.7 discussed below
contains actual measured mean lifetimes for channel flow.) The timescales cross at a
critical value Rec. Below Rec decay events occur more frequently, while above Rec splitting
events occur more frequently. The crossover between these cases is a key mechanism in
the onset of sustained turbulence in wall-bounded shear flow. This crossing point is not,
however, the focus of the present study.

The present study focuses instead on two key issues associated with the rare events
themselves. The first is the efficient numerical computation of mean lifetimes. In shear
flows, τd and τs become extremely large near Rec, making brute force Monte Carlo es-
timation of mean times exceedingly expensive. Hence we turn to a more sophisticated
class of algorithms that sample rare events by advancing ensembles of trajectories, remov-
ing (pruning) unfavourable and duplicating (cloning) favourable ones. In particular, we
will employ the Adaptative Multilevel Splitting (AMS) algorithm proposed by Cérou &
Guyader (Cérou & Guyader, 2007; Cérou et al., 2011, 2019). (This nomenclature of ”split-
ting” in the algorithm is unrelated to the splitting of turbulent bands.) This algorithm
impressively paved the way for quantitative study of low-dimensional stochastic systems,
as pioneered by Rolland & Simonnet (Rolland & Simonnet, 2015), Rolland, Bouchet &
Simonnet (Rolland et al., 2016) or Lestang et al. (Lestang et al., 2018). It was recently ap-
plied to large-dimensional fluid-dynamical systems such as atmospheric dynamics (Bouchet
et al., 2019; Simonnet et al., 2021) and bluff-body flow (Lestang et al., 2020). Rolland
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Figure 2.1: Evolution of turbulence in channel flow at two different Reynolds numbers.
Turbulence is seen as black and is localised to only a portion of space. White corresponds
to laminar (or nearly laminar) flow. The motion of the turbulent patch is seen in a frame
of reference moving with the mean flow in the channel and the system is periodic in spatial
coordinate z. At Re = 870 the localised band of turbulence maintains an approximately
constant width and intensity for a considerable time and then abruptly transitions to
laminar flow in a decay event. At Re = 1150 the localised turbulent band is wider and
noticeably asymmetric. In this case the band splits into two bands. In the vicinity of
Re = 1000, both of these key events become extremely rare and the mean exit time from
the one-band state becomes very large. Results are obtained by a numerical simulation in
an oblique domain represented in Figure 4.1.

(Rolland, 2018) extended the application of this rare-event technique to transitional tur-
bulence, first for transition in a stochastic reduced-order model (Barkley, 2016) of pipe
flow, and then for the collapse of homogeneous turbulence in plane Couette flow (Rolland,
2022).

The second main focus of our study is the origin of the super-exponential dependence
of mean lifetimes on Reynolds number, and in particular the connection to extreme values
of fluctuations within the one-band state. Goldenfeld, Gutenberg & Gioia (Goldenfeld
et al., 2010) proposed a mechanism to account for the super-exponential dependence of
decay lifetimes of Reynolds number. The essential insight is that the decay process is
governed by extreme values and that a linear variation of Reynolds number translates via
extreme value distributions to a super-exponential variation in lifetimes. This mechanism
was investigated and refined by Nemoto & Alexakis (Nemoto & Alexakis, 2018, 2021) in
a numerical study of decay events in pipe flow. We will follow a similar analysis applied
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Figure 2.2: (a) Illustration of the phase space of the Navier-Stokes equations. Time
evolving flow fields u(t) are seen as trajectories. The one-band state corresponds to a re-
gion A in the phase space in which trajectories u(t) spend considerable time before exiting
and transitioning either to laminar flow B0 or to the two-band state B2. The fluctuations
of observables, such as the turbulence fraction, are described by extreme value distribu-
tions. (b) Schematic showing the dependence of mean lifetimes on Reynolds number, Re.
Lifetimes vary super-exponentially with Re, with τd increasing and τs decreasing with Re.
The timescales cross at a critical value Rec. Below Rec, decay occurs more frequently
while above Rec, splitting occurs more frequently.
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to both decay and splitting events in channel flow. Finally, the possible connection to
the large deviation framework is considered through the computation of most-probable
pathways and mean reactive times for rare events.

2.2 Methods

We will now describe two very different types of methods, first, those we use for solving
the Navier-Stokes equations governing channel flow, and second, our implementation of
the AMS algorithm for capturing rare events.

  

Streamwise
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e

x

z

Figure 2.3: Visualisation of a turbulent band in a domain periodic in the streamwise
and spanwise directions (red bounding box) at Re = 1000. Colors show transverse energy
1
2(v

2+w′2) in the plane y = 0.8, from our numerical simulation in a box of size Lx′ = 200,
Lz′ = 120. Illustration of the associated tilted computational domain (black) at angle
θ = 24◦.

2.2.1 Integration of Navier-Stokes equations in a transitional flow unit

The turbulent bands that are the subject of our study are illustrated in figure 4.1. We
impose a mean velocity Ubulk on the flow between the two parallel rigid plates. Lengths
are nondimensionalised by the half-gap h between the plates, velocities by 3Ubulk/2 (which
is the centerline velocity of the parabolic laminar flow with mean velocity Ubulk), and time
by the ratio between them. The Reynolds number is defined to be Re = 3Ubulkh/(2ν).
The non-dimensionalized equations that we simulate are the incompressible Navier-Stokes
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equations

∂U

∂t
+ (U · ∇)U = −∇p+ 1

Re
∇2U (2.1a)

∇ ·U = 0 (2.1b)

Since the bands are found to be oriented obliquely with respect to the streamwise
direction, we use a periodic numerical domain which is tilted with respect to the stream-
wise direction of the flow, shown as the black rectangle in figure 4.1. This is common in
studying turbulent bands (Barkley & Tuckerman, 2005; Tuckerman et al., 2020) and more
specifically those in transitional plane channel flow (Tuckerman et al., 2014; Gomé et al.,
2020; Paranjape et al., 2020). The x direction is chosen to be aligned with a typical tur-
bulent band and the z coordinate to be orthogonal to the band. The relationship between
streamwise-spanwise coordinates (x′, z′) and tilted band-oriented (x, z) coordinates is:

ex′ = cos θ ex + sin θ ez (2.2a)

ez′ = − sin θ ex + cos θ ez (2.2b)

The usual wall-normal coordinate is denoted by y. The field visualised in figure 4.1
comes from an additional simulation we carried out in a domain of size (Lx′ , Ly, Lz′) =
(200, 2, 120) aligned with the streamwise-spanwise coordinates.

Equations (5.2) are completed by rigid boundary conditions in y, periodic boundary
conditions in x and z, and imposed flux 2/3 in the streamwise direction x′ and zero in the
spanwise direction z′:

U(x+ Lx, y, z) = U(x, y, z + Lz) = U(x, y, z) U(x,±1, z) = 0 (2.3a)

1

2

∫ +1

−1
dyU(x, y, z) =

2

3
ex′ =

2

3
(cos θ ex + sin θ ez) (2.3b)

To integrate (5.2) with boundary conditions (2.3), we use the parallelised pseudospectral
C++ code ChannelFlow (Gibson, 2012), which employs a Fourier-Chebychev spatial dis-
cretisation. The velocity field can be decomposed into the stationary laminar parabolic
base flow Ubase = (1 − y2)ex′ and the deviation u ≡ U −Ubase which satisfies the same
equations and boundary conditions as U but with zero flux instead of (2.3b). A Green’s
function method is used to impose the flux in each direction. More specifically, for each
periodic direction, one computes and uses the pressure gradient such that the resulting
flow field will have the desired bulk velocity, e.g. (Pugh & Saffman, 1988; Barkley, 1990).
Throughout our study, we present the deviation u = (u, v, w) so as to highlight the differ-
ence with the dominant laminar flow Ubase and the motion of flow features with respect
to the bulk velocity.
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The angle in this study is fixed at θ = 24◦, as has been used extensively in the past
(Barkley & Tuckerman, 2005; Tuckerman et al., 2014; Gomé et al., 2020). The orientation
of the domain imposes a fixed angle on turbulent bands, and choosing a short length
for the x direction of the domain suppresses any large-scale variation along the bands.
Thus, these simulations effectively capture the dynamics of infinitely long bands that only
interact along their perpendicular direction, preventing complex 2D interactions that are
possible for finite-length bands (Shimizu & Manneville, 2019; Xiao & Song, 2020). In this
way, localised bands in the tilted channel geometry are similar to localised puffs in pipe
flow.

Our domain Ω has dimensions (Lx, Ly, Lz) = (6.6, 2, 100) and a numerical resolution
of (Nx, Ny, Nz) = (84, 64, 1250), exactly as in (Gomé et al., 2020), thus allowing direct
comparison with these prior results. The length Lz = 100 of our tilted domain corre-
sponds to an inter-band distance above which a band is considered as isolated, while the
domain width Lx = 6.6 is used because it corresponds to the natural spacing of streaks
in channel flow in a 24◦ box (Chantry et al., 2016; Gomé et al., 2020). For puffs in pipe
flow, which are similar in many respects to the isolated bands considered here, Nemoto
& Alexakis (Nemoto & Alexakis, 2021) conducted extensive computations showing that
domain length had some effect on mean decay timescales, with L = 50 and L = 100 giving
quantitatively different, but qualitatively similar results. Domain length is expected to
have a quantitative effect on the splitting timescale; our domain length Lz = 100 has been
selected as a compromise between accuracy and computational cost.

A semi-implicit time-stepping scheme is used to progress from u(t) to u(u+ dt), with
time step dt = 1/32 = 0.03125. Trajectories and associated quantities such as turbulence
fraction are sampled at time intervals δt = 32dt = 1. This sampling time is used through-
out for collecting statistics and generating probability distributions. The computation of
solutions of the Navier-Stokes equations discretised in space and time is called, as usual,
direct numerical simulation or DNS.

2.2.2 The Adaptive Multilevel Splitting (AMS) algorithm

Here we present the essence of the AMS algorithm. We follow closely the method orig-
inally described in Cérou et al. (Cérou & Guyader, 2007), although here we consider a
deterministic dynamical system, the Navier-Stokes equations (5.2), whereas Cérou et al.
considered a stochastic process. The AMS algorithm has been applied recently to other
deterministic fluid systems (Lestang et al., 2018, 2020; Rolland, 2022). For the application
of other rare-event algorithms to deterministic systems, see (Wouters & Bouchet, 2016)
and references therein.



48 2 Extreme events in transitional turbulence

Symbol Definition

hA Hypersurface within A, origin of trajectories, in practice one-band state
hS Hypersurface S close to and surrounding A
hB Hypersurface within B, destination of trajectories
hB0 Threshold for decay events in AMS
hB2 Threshold for splitting events in AMS
h0 Entrance of the collapse zone for decays for all Re
h2 Entrance of the collapse zone for splits for all Re
hM Maximal value of Ft at fixed Re
hleft left endpoint of fit between PDF of Ft and Fisher-Tippett distribution
hright right endpoint of fit between PDF of Ft and Fisher-Tippett distribution

Table 2.1: Definitions of designated levels of a turbulent fraction or score function used
throughout Chapter 2

Re 815 830 870 900 950 1000 1050 1100 1150 1200

hA 0.21 0.22 0.24 0.26 0.31 0.34 0.37 0.40 0.43 0.44
hS 0.17 0.18 0.21 0.23 0.27 0.375 0.41 0.44 0.46 0.47
hB0 , hB2 0.0001 0.0001 0.0001 0.0001 0.0001 0.70 0.70 0.70 0.70 0.70
h0, h2 0.22 0.22 0.22 0.22 0.22 0.42 0.431 0.461 0.474 0.483
hM 0.292 0.305 0.344 0.385 0.44 0.635 0.616 0.659 0.677 0.69
hleft 0.13 0.148 0.176 0.207 0.243 0.30 0.32 0.279 0.271 0.326
hright 0.285 0.278 0.307 0.327 0.364 0.42 0.436 0.469 0.501 0.536

Table 2.2: Values of designated levels of a turbulent fraction or score function used
throughout the chapter.

a) Setup

Let A and B be two states visited by trajectories of a dynamical system. More precisely,
A and B are regions in phase space corresponding to particular flow states of interest. We
commonly refer to A and B simply as states. The goal is to produce a large sample of the
rare transitions from A to B. In our case A will always be the one-band state, labelled
as A in Figure 2.2, while B will be either the laminar flow, labelled as B0, or else the
two-band state, labelled as B2 in figure 2.2.

Perhaps the most crucial piece of the AMS algorithm is the specification of a score
function, or reaction coordinate, ϕ, that quantifies transitions from A to B. The score
function ϕ(u) is a real-valued function of the flow field whose gradient is non-zero (at least
everywhere of interest), and such that there exist real values hA and hB, with hA < hB,
such that ϕ(u) < hA implies u ∈ A while ϕ(u) > hB implies u ∈ B. Note that for decay,
the laminar state is a single point in phase space, so we will take B to be a set within its
basin of attraction. Tables 2.1 and 2.2 list the various thresholds of the score function that
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Figure 2.4: Schematic depiction of the AMS algorithm for a transition from A to B.
(a) The initialisation of the algorithm. Contours are shown for the score function ϕ(u)
and a hypersurface S surrounding A. N trajectories are computed starting from random
initial conditions in A that cross S and then either return to A or go to B. (Here N = 3
and no initial trajectories reach B.) (b) First iteration of the algorithm. The trajectory
attaining the smallest maximum score function (here ϕK with K = 1) is killed, and a new
trajectory is cloned from another randomly selected trajectory, resulting in an improved
set of trajectories. The process is then iterated until a sufficient number of trajectories
reach B. Time series (c) and (d) correspond to the trajectories in (a) and (b).
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we will use throughout the chapter. The score function provides a smooth landscape for
quantifying the progress of the transition between A and B, as illustrated in figure 2.4(a).
The algorithm also requires a value hS and associated hypersurface S, close to A, given
by

S = {u | ϕ(u) = hS}.

b) Initialisation

The initialisation step consists of generating a sample ofN trajectories ui(t), i ∈ {1, ... , N},
that start within A, leave A at least as far as S, and then either reach B or, more likely,
return to A. See figure 2.4(a). In practice the N initial conditions ui(0) are obtained by
taking N snapshots, equally spaced in time, from a single trajectory that remains in A
over a long time and thus samples the natural measure of states within A.

The role of the hypersurface S is to ensure that after initialisation, all trajectories in our
sample have ventured from A at least as far as S. Hence the maximum value of the score
function obtained along each trajectory is at least hS . From the point of view of the score
function, all trajectories in our initial sample have made some, possibly small, progress
towards B. Since S is chosen close to A, the initialisation step is not computationally
demanding.

For the initialisation and subsequent iterations, it is necessary to store the trajectories.
In practice we store full flow fields ui(tj) for each trajectory i ∈ {1, ... , N} at sparsely
spaced times tj = j dT , as a compromise between the large CPU times required for
computing trajectories and the large memory needed to store them. The computations
reported here all use a storage interval of dT = 320 dt = 10, which is 10 times the sampling
time δt used to collect statistics on trajectories.

c) Iteration

Iterative step m consists of discarding the K worst-performing trajectories and replacing
them with trajectories obtained by cloning non-discarded trajectories. Specifically, we

compute the maximal value ϕ
(m)
i of the score function along each trajectory and re-order

the trajectories such that

ϕ
(m)
1 ≤ ϕ

(m)
2 ≤ · · · ≤ ϕ

(m)
K ≤ · · · ≤ ϕ

(m)
N .

We discard the K trajectories whose maximal values are lowest, in practice a value K(m) ≥
K because of possible equality of the maxima. Thus, in general we retain trajectories ui
such that ϕ

(m)
i > ϕ

(m)
K . We replace each discarded trajectory uk(t) with a new trajectory

constructed as follows:

1. Choose at random (uniformly) one of the trajectories ul(t) from the set of N −K(m)
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retained trajectories. Overwrite the trajectory uk(t) with the part of the trajectory

ul(t) up to time tclone at which the score function along ul(t) first reaches ϕ
(m)
K ,

i.e. ϕ(ul(t
clone)) = ϕ

(m)
K . See figure 2.4(b). (Due to the discrete sampling of stored

trajectories, in practice we copy trajectories until the score function first exceeds

ϕ
(m)
K .)

2. Modify ul(t
clone) with a low-amplitude multiplicative spectral perturbation as fol-

lows. Let

η(x, y, z) =
∑
mx

∑
mz

∑
my

η̃mx,my ,mzs
|mx|+|my |+|mz |ei(mxkxx+mzkzz)Tmy(y)

where each η̃mx,my ,mz is a vector whose components are uniform random complex
numbers of modulus less than 1, s is a smoothing parameter such that 0 < s <
1, and Tmy is the Chebyshev polynomial of order my. Then the low-amplitude
multiplicative perturbation at the cloning time is

uk(x, y, z, t
clone) = (I + ϵη(x, y, z))ul(x, y, z, t

clone) (2.4)

where ϵ sets the size of the perturbation. The weak random perturbation is nec-
essary to ensure that cloned trajectories do not exactly repeat the path of the
trajectory from which they are cloned. Perturbations are always sufficiently weak
that they leave the score function unchanged to at least four significant digits. Rol-
land (Rolland, 2022) uses a similar approach in applying AMS to turbulence collapse
in Couette flow. The remainder of the trajectory uk(t) for t > tclone is obtained by
simulating the new trajectory until it reaches A or B as before.

Once the K(m) discarded trajectories have been replaced (overwritten), we have a new
set of N trajectories that are superior to the set at the start of the iteration, in the sense
of being closer to reaching B. Specifically, the maximum value of the score function for

each of the new trajectories is now at least ϕ
(m)
K . We increment m and repeat as necessary.

d) Stopping and post processing

Iterations end once the N samples have all reached B. The final number of iterations is
denoted by M . From the resulting trajectories and information gathered during the iter-
ation process, we can construct estimators of relevant statistical quantities. Trajectories
begin in A, pass through S and terminate upon arrival at either A or B. The estimator
of the probability to go from S to B is given by (Cérou & Guyader, 2007):

p̂ =
M∏
m=1

(
1− K(m)

N

)
, (2.5)
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where K(m) is the number of trajectories eliminated at iteration m. The probability of
going from S to A is (1− p̂) and that of going from A to S is 1.

ℬ" # ̂p
TSB

1
TAS

TSA

1 − ̂p

Figure 2.5: Schematic depiction of the data gathered via the AMS algorithm for a
transition from A to B via S. The probability p̂ of transition from S to B is estimated, thus
giving 1− p̂ as the probability for transition from S to A. The sample mean times obtained
for the two transitions are TSB and TSA. From A, all trajectories reach S (probability of
one) and the sample mean time for this transition is TAS . Trajectories begin at A and
make some number of round trips between S and A before possibly reaching B.

The main quantity of interest is the mean first passage time τ from state A to state B.
For this, we will require the sample mean times available from the computations (Cérou
et al., 2011). Let TAS ≡ inf{t > 0, u(t) ∈ S | u(0) ∈ A} and let TAS denote its sample
mean obtained from trajectories whose initial conditions u(0) are selected from a long
simulation lying within A. Because S is close to A, TAS is easily obtained from DNS (or
from the initialisation step of the AMS). Similarly, from the trajectories that cross S and
return to A we can compute TSA, the sample mean time to go from S to A. Finally, from
the N sample paths constructed as part of the AMS we can compute TSB, the sample
mean time to go from S to B.

From these quantities, the estimator for the mean first passage time τ is constructed
as illustrated in figure 2.5. A trajectory going from A to B does so by going from A to
S and back some number of times, n, before finally transitioning from A to S to B. The
probability of such a trajectory is (1− p̂)n p̂ and the mean time for all such trajectories is(
TAS + TSA

)
n+ TAS + TSB. Summing over all possible n yields the estimator for τ :

τ =

∞∑
n=0

(1− p̂)np̂
[(
TAS + TSA

)
n+ TAS + TSB

]
=
(
TAS + TSA

) 1− p̂

p̂
+
(
TAS + TSB

)
. (2.6)

We do not use separate notation for the true mean first passage time and this estimator
of it. In describing the transition dynamics in terms of a Markov chain in figure 2.5, we
rely on standard assumptions of the AMS algorithm, stated by Cérou et al. (Cérou et al.,
2011, p. 12).
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The time TAS + TSA is the mean non-reactive time. This is the mean time for trajec-
tories starting from within A to return to A, conditioned on the fact that they reach S.
Similarly, TAS + TSB is the mean reactive time for trajectories starting from within A to
reach B, conditioned on the fact that they do not return to A. Neither the reactive time
nor the non-reactive time is particularly large. What makes the mean first passage time
large is that on average a trajectory will make many failed attempts to reach B so that
the mean non-reactive time is multiplied by the large factor (1− p̂)/p̂.

2.3 Computing mean passage times in channel flow

2.3.1 Choice of the score function for band decay and splitting

The choice of the score function is critical for the AMS algorithm. In our case we need
functions that quantify the transition progress between the one-band state A and either
the laminar state B0 (decay event) or the two-band state B2 (splitting event). We use
slightly different score functions for decay and splitting.

We introduce the turbulent fraction, Ft, quantifying the proportion of the flow that is
turbulent: Ft = 0 for laminar flow, while Ft = 1 for flow that is turbulent throughout the
channel. For localised turbulent bands, the turbulent fraction is between zero and one.
Specifically we define

e(z) ≡ 1

LxLy

∫ 1

−1

∫ Lx

0

1

2
(v2 +w′2) dx dy, and Ft ≡

1

Lz

∫ Lz

0
H(e(z)− ethresh) dz (2.7)

where H is the Heaviside function. These quantities use the energy contained in the
cross-channel and spanwise velocity components v and w′, which is zero for laminar flow.
Its cross-sectional integral e(z) provides a good characterisation of the turbulence as a
function of z. We define the flow at location z to be turbulent if e(z) exceeds the empirical
threshold ethresh, where ethresh = 1.1 × 10−3. Figure 2.6a presents the typical life of a
decaying band, repeated from figure 2.1, along with the corresponding time series of the
turbulent fraction Ft. Local minima of Ft occur at local contractions of the band, which
are themselves small detours towards the laminar state. Then Ft drops sharply to zero
when the band transitions to the laminar state. In practice, we take ϕ = Ft and replace
< with > (and max with min) as necessary in the algorithm. We define the system to be
in B0 if ϕ < hB0 = 0.0001 independently of Re, since all trajectories attaining this value
of Ft are in the basin of attraction of the laminar state. The value hA is taken as the
most probable value of the score function from a long simulation of the one-band state.
As a result, hA depends on Reynolds number. The level hS is chosen to be approximately
0.8hA. (See also Tables 2.1 and 2.2 for definitions and values of all of these levels.)

We now consider the transition from one to two bands. Unlike for band decay, we have
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Figure 2.6: Evolution of the turbulent band during (a) a decay at Re = 870 and (b)
a split at Re = 1150. Top: Spatio-temporal visualisation. Colors show (v2 + w′2)/2 at
(x = 3.3, y = 0.8) (white: 0, black: 0.001). Bottom: Evolution of the turbulent fraction
Ft (black curves) and of score function ϕ (thin blue curve) defined for splits in (2.8).

found that the turbulent fraction is not an adequate score function for band splitting.
Figure 2.6b illustrates the difficulty. We see that before attaining the two-band state,
multiple attempts to split occur. These deviations from the one-band state are charac-
terised by widening of the initial band, possibly leading to the opening of a laminar gap
between two turbulent regions. The resulting downstream turbulent patch then either
decays, leading to a one-band state, or gains in intensity, ultimately leading to a steady
second turbulent band whose shape and energy level are comparable to those of the initial
band. The problem with using Ft as a score function is that while it captures the widening
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of the single band, it does not select for the intensification of downstream patches that
results in a persistent secondary band. In figure 2.6b, the branching which will eventually
lead to a new band occurs at t ≈ 5400, but it is only at t ≈ 7660 that this band becomes
wider and more intense, acquiring some permanence and stability. It is this latter event
that we will define as the split.

We have constructed an empirical but successful score function ϕ that encompasses the
entire process of band stretching, captured by Ft, as well as separation into multiple bands
and subsequent intensification of downstream bands. As can be seen by comparing the
blue and black curves in figure 2.6b, ϕ does not differ greatly from Ft, but the difference
is crucial for the performance of the AMS algorithm. The score function is given as
follows. Consider the flow to consist of nb turbulent bands, i.e. nb distinct regions in
which e(z) > ethresh, as defined in (2.7). We associate to each turbulent band its width
Wi in z, the laminar gap length Li upstream until the next turbulent band, and finally its
average energy Ei. We consider the mother band to be the band whose upstream laminar
gap is maximal. Its properties are labeled (W1, L1, E1), and the other bands i are ordered
by downstream distance from the mother band. We then define the following empirical
score function for splits:

ϕ = Ft +

nb∑
i=1

li
Lz

(
Ei
Emax

)α
=

1

Lz

nb∑
i=1

[
Wi + li

(
Ei
Emax

)α]
(2.8)

Here, Emax ≡ max
1≤i≤nb

Ei and li ≡
∑i

j=2 Lj is the total laminar gap between band i and

the mother band, which can describe continuously the collapse or splits of multiple child
bands. The exponent α is chosen empirically to balance energy localization and turbulence
spreading. In practice, we use α = 0.5, in order to counteract the decrease in turbulent
fraction usually observed after a split, as shown on figure 2.6b at t = 7500. In this way,
we have enhanced the turbulent fraction by adding a function of band intensity Ei and
of the total laminar distance li to the mother band. In this study, the level hB2 = 0.7 is
found to capture a successful split: the presence of a lasting secondary band whose profile
and intensity are similar to those of the initial band. We take hS ≃ 1.2hA, with hA the
most probable value of (2.8) in the one-band state.

We have introduced a number of numerical parameters that could affect the perfor-
mance and the accuracy of the computations. Of these, the selection of hB2 and ϵ require
the most care. Referring to figure 2.6b one sees that the threshold hB2 must correctly
capture the completion of a splitting event. As with the difficulty in defining a good score
function for splitting, this is a reflection of our lack of good understanding of the splitting
process. As can be seen in figure 2.6a, this issue does not arise for decay since the score
function of the laminar state is known to be zero. Concerning the perturbation size ϵ used
in the cloning, equation (2.4), one would ideally choose this to be small and independent
of Re. In practice we have found it necessary to vary ϵ with Re, and as discussed at the
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end of section 2.32.3.2, the current algorithm applied to decay events sometimes requires
ϵ to be larger than desired. (See the Supplemental Material for further discussion of the
perturbation size ϵ and also the sample size N .)

2.3.2 Simulating rare events with AMS

We have used the AMS algorithm to compute the mean decay and splitting times of
an isolated turbulent band in a channel. These mean times are plotted as a function
of Reynolds number in Figure 2.7, where we also include previous results obtained via
standard Monte Carlo (MC) simulations (Gomé et al., 2020). The AMS results overlap
with the Monte Carlo data, but also substantially extend the range of accessible time
scales. Both the AMS and Monte Carlo results use the same tilted computational domain,
the same spatial resolution, and the same underlying time-stepping code, as described in
section 2.2.2.2.1. This permits direct comparison of the two methods.

Figure 2.7 confirms the super-exponential dependence of the time scales found for
decay and splitting events in wall-bounded shear flows (Avila et al., 2010, 2011; Shi
et al., 2013; Gomé et al., 2020). From fits with τd = exp (exp(ad Re+ bd)) and τs =
exp (exp(as Re+ bs)) in the decay and split regimes, we find Rec ≃ 980 as an improved
estimate of the crossing Reynolds number for this flow configuration. (Previous fits to the
Monte Carlo data gave a crossing Reynolds number of 965.)

We recall a few details from the Monte Carlo computations in (Gomé et al., 2020). The
initial fields for the simulations are taken from snapshots of long-lasting bands simulated at
Re ∈ [900−1050]. The Reynolds number is then changed to the desired value. Decay and
splitting times from the start of the simulation are recorded. From these, the mean times
and associated error bars are obtained (Gomé et al., 2020). The Monte Carlo estimate of
the transition probability p̂MC is computed from the multiple simulations by counting the
number of decays or splits relative to the number of passages through S. Typically N = 40
decay and splitting events are obtained at each Reynolds number. Fewer than N = 40
events were obtained by Monte Carlo at the largest values of τ . With such techniques,
only time scales τ < 105 are currently accessible in practice.

The AMS initial fields are created from long-lasting bands, as in the Monte Carlo
method, except that each initial field is simulated for an additional relaxation time of 500
before commencing the AMS algorithm. The number of trajectories we seek to discard
at each AMS iteration is K = 1. At each value of Re, the AMS algorithm is run NAMS

times, with each realisation computing a sample of N trajectories. Each realisation gives
a value of τ calculated using (2.6), where TAS + TSA is computed by DNS as part of the
initialisation step, TAS+TSB is obtained from the AMS trajectories, and p̂ is obtained via
(2.5). Then the final estimate of τ is obtained by averaging over the NAMS independent
realisations.

Table 2.3 compares estimates of the transition probability p̂ from the Monte Carlo and
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Figure 2.7: Mean decay times (red, magenta) and splitting times (black, purple) of
turbulent bands as a function of Reynolds number, estimated with the Monte Carlo
method (MC, circles) or with the Adaptative Multilevel Splitting (AMS, diamonds).
Error bars give confidence intervals for MC and are computed from multiple real-
izations of the algorithm for AMS. Dashed lines are best fits to double exponential
form using the combined AMS and MC data: τd ≃ exp [exp (3.9× 10−3 Re− 1.09)];
τs ≃ exp [exp (−2.6× 10−3 Re+ 5.27)].

AMS strategies. Both methods yield comparable estimates when Monte Carlo results can
be obtained. We emphasise that lifetimes τ change by orders of magnitude over the range of
Re of interest, so we do not seek more than about one digit of accuracy in their values. The
overall gain in computational speed achieved by the AMS over Monte Carlo is measured
by the total CPU time. One component of this cost is the CPU time per trajectory, for
which the AMS shows a typical improvement of order O(10) and even O(100) for the
low-transition-probability cases we considered; see Re = 1000 in Table 2.4. For higher-
transition-probability cases, AMS does not outperform Monte Carlo because AMS requires
NAMS realisations to compensate for the variability in individual realisations. For low-
transition-probability cases such as Re = 1000, only AMS is capable of inducing the very
rare trajectories which are out of reach for the Monte Carlo method. (See Supplemental
Material for further comparisons.)

The results from AMS show larger variability than those from Monte Carlo, especially
for decay cases, as seen by the error bars on figure 2.7. It is known that the standard
deviation of the estimated probability for AMS will decrease as 1/

√
N (at least in ideal

cases) (Bréhier et al., 2016; Rolland & Simonnet, 2015). For our high-dimensional system,
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Re Monte Carlo (MC) Adaptive Multilevel Splitting (AMS)
N p̂MC τMC ϵ NAMS ×N p̂ τ

870 40 0.081 3.0× 104 5× 10−4 9× 50 0.081 3.6× 104

900 40 0.013 9.3× 104 1× 10−3 7× 50 0.015 8.9× 104

1000 – – – 1× 10−3 3× 50 0.00029 5.5× 106

1150 40 0.047 2.1× 104 1× 10−5 9× 50 0.046 2.2× 104

Table 2.3: Results of Monte Carlo (MC) and AMS (Adaptative Multilevel Splitting). N
is the number of samples for MC or for a single realisation of AMS. For AMS, NAMS is
the number of realisations of the algorithm and ϵ is the perturbation amplitude used in
cloning. The estimated transition probability and mean first passage time obtained by
MC and AMS are p̂MC, τMC and p̂, τ , respectively.

Re Monte Carlo (MC) Adaptive Multilevel Splitting (AMS)
N CPUtraj CPUtot ϵ NAMS ×N CPUtraj CPUtot

870 40 2500 1× 105 5× 10−4 9× 50 360 1.6× 105

900 40 7500 3× 105 1× 10−3 7× 50 330 1.2× 105

1000∗ 40 4× 105 2× 107 1× 10−3 3× 50 1000 1.5× 105

1150 40 5000 2× 105 1× 10−5 9× 50 500 2.2× 105

Table 2.4: Performance of Monte Carlo (MC) and AMS (Adaptative Multilevel Split-
ting). N is the number of samples for MC or for a single realisation of AMS. For AMS,
NAMS is the number of realisations of the algorithm and ϵ is the perturbation amplitude
used in cloning. The estimated CPU time per successful trajectory is given, as well as the
total CPU time (both in processor hours on an HPE SGI 8600 computer). ∗For Re = 1000,
no estimator of the time scale could be achieved by Monte Carlo, so the CPU times are
extrapolated from the AMS estimator τ .

N is restricted by computational costs. Using N larger than 100 is not practical and we
typically use N = 50. We observe that the large variability between different realisations
of the AMS algorithm is associated with variability in the initialisation, especially the
extent to which the initial trajectories are a representative sample.

The amplitude ϵ of the perturbation that we use in cloning trajectories is chosen to
promote separation of the trajectories. The only issue occurs for rare decay (Re ∈ [900−
950]) where the amplitude must be increased (ϵ > 10−2 atRe = 950). In these cases, cloned
trajectories resulting from small-amplitude perturbations separate from one another only
after having reached their minimum Ft value. Hence they do not acquire an improved
score function, causing the algorithm to stagnate. The reason for this is that the duration
of the approach to the minimum of Ft is shorter than the Lyapunov time of the system.
This limitation of our current procedure has been observed in other studies (Lestang et al.,
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2020; Rolland, 2022) and has been addressed in (Rolland, 2022) by anticipating branching.
This technique clones trajectories prior to where one would in the standard algorithm, thus
promoting the separation of trajectories near the minimum of Ft.

2.4 Extreme value description of decay and splitting trajectories

The super-exponential dependence of lifetime of turbulence on Reynolds numbers seen
in figure 2.7 is ubiquitous for decay and splitting events in wall-bounded shear flows,
e.g. (Hof et al., 2008; Avila et al., 2010, 2011; Shi et al., 2013; Gomé et al., 2020).
Goldenfeld, Gutenberg & Gioia (Goldenfeld et al., 2010) have formulated a hypothesis
explaining decays through extreme value theory. The main idea is to associate the decay
of a turbulent patch to the statistical distribution of the largest fluctuation over some
space-time interval. If the maximum amplitude of fluctuations becomes lower than some
threshold, then the multiple fluctuations comprising a turbulent zone will all laminarise.
This connects laminarisation to the distribution of extrema of a set of random variables.
Just as the Central Limit Theorem states that under very general conditions the limit of
the sum of independent and identically distributed random variables is a Gaussian, the
Fisher-Tippett-Gnedenko theorem (Fisher & Tippett, 1928) states that the extrema of a
set of n independent and identically distributed variables should follow a Fisher-Tippett
distribution. Goldenfeld et al. assumed that the decay threshold depends on Re and
approximated that dependence locally as linear. This linear dependence translates into a
super-exponential dependence of the lifetimes on Re via properties of the Fisher-Tippett
distribution.

In a study of the decay of turbulent puffs in pipe flow, Nemoto & Alexakis (Nemoto &
Alexakis, 2021) found that the maximal vorticity over the domain followed a Fréchet distri-
bution, a member of the Fisher-Tippett family. Moreover, they found that the parameters
of this distribution depend linearly on Re over a range of 75 in Re near the critical value
Rec. Similar to the Goldenfeld et al. argument, this linear dependence on parameters
translates to a super-exponential dependence of the lifetimes on Re. Thus, Nemoto &
Alexakis were able to directly relate extreme values to the super-exponential evolution
with Re of the puff decay times in pipe flow. Other quantities related to the distance to
the laminar attractor have been shown to follow the extreme value law (Manneville, 2011;
Shimizu et al., 2019), particularly when a maximal or minimal value is extracted from a
divided time series (Faranda et al., 2014).

Here we explore these ideas for both the decay and splitting of turbulent bands in
channel flow over a substantial range of Re. To do so, we must link the rare events (decay
or split) with some observable that follows an extreme distribution. Rather than speculate
on which variable or combination of variables are mechanistically responsible for driving
decay and splitting events, we choose to focus on Ft for both transitions. Our reasoning is
that turbulence fraction is a useful observable of general interest that is easily obtainable in
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computations and experiments. As we show below, the turbulent fluctuations and reaction
pathways project onto Ft and allow us to analyse the connection between fluctuations and
the rare events. As a practical matter, it is helpful to study distributions of a quantity
that is (or is closely related to) the score function used to obtain rare events.

2.4.1 Probability densities of turbulent fraction

We begin by showing in figure 2.8 the probability density function (PDF) of the turbulent
fraction p(Ft) for a variety of Reynolds numbers. These PDFs have been constructed from
Monte Carlo simulations that start, after initial equilibration time, from the one-band state
A and terminate at the end of a decay or split. The distributions have a clear asymmetry
about their maxima and they have broad tails that depend on Re: the low-Ft tails are
present at lower Re while high-Ft tails are present at higher Re. To our knowledge, this
is the first report of p(Ft) in any transitional shear flow.

We find that the central portions of these PDFs are closely approximated by Fisher-
Tippett distributions. The cumulative distribution function (CDF) of the Fisher-Tippett
(also called Generalized Extreme Value) distribution that we will use is:

P(X ≤ h) = PFT (h) ≡ 1− e−(1+ξ(µ−h)/σ)−1/ξ
(2.9)

where the location µ, scale σ, and shape ξ are fitting parameters. Equation (2.9) is the
CDF for minima of a set of random variables, and it is this form that fits our data. We
fit p(Ft) with the Fisher-Tippett density pFT (h) = dPFT /dh shown as dashed curves on
figure 2.8. (The resemblance of the abbreviation FT for Fisher-Tippett and the notation
Ft for turbulent fraction is coincidental.)

Figure 2.8 shows that the central region near the maximum of each PDF fits well
with the Fisher-Tippett distribution inside a range spanning from hleft to hright. As an
example, these lower and upper bounds of the fit are indicated by colored and white circles
for Re = 830. The quality of the fit is particularly good for Re < 1000 but shows some
noticeable deviations at Re = 1000 and Re = 1050. The fitting parameter values as a
function of the Reynolds number are plotted in figure 2.10a, which will be discussed below.

The turbulence fraction Ft defined in equation (2.7) is not a maximum of a set of in-
dependent quantities (although it includes a Heaviside function which, like the maximum,
is a non-analytic operation). Hence, it is not obvious that Ft should be governed by an
extreme value distribution. Even in the case of vorticity maxima, Nemoto & Alexakis
noted that it is not possible to fully justify Fisher-Tippett distributions since vorticity is
correlated in space and time and hence the maxima are not independent. At present we
do not have a formal justification for the fits used in figure 2.8 other than that the distri-
butions are clearly non-Gaussian and are fit reasonably well with the Fisher-Tippett form.
We hypothesize that the strong spatiotemporal correlations within the localized turbulent
bands play a significant role in the statistics, but we leave this for further investigation.
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Figure 2.8: Probability density function of the turbulent fraction around the one-banded
state A. Dashed lines correspond to fits with a Fisher-Tippett probability density, the
derivative of (2.9). Fits are carried out over intervals [hleft, hright], shown for the case
Re = 830 by colored and white points. Values of hleft and hright are given in table 2.2.

The only way the fits will enter into the analysis that follows is via their parameterisa-
tion. In this regard the fits give us a useful representation of the PDFs in terms of three
parameters depending on Re. It is nevertheless possible that the distributions are of some
other type.

The Nemoto & Alexakis approach requires many numerical simulations of rare events in
order to obtain the tails of probability distributions. Here, the AMS approach is particu-
larly useful as it produces large samples of the rare event trajectories that reach destination
B. From the AMS data one can reconstruct the CDF of any observable X depending on
a field u as follows. Each point on a trajectory u(t) is known to be on a segment from A
to S, from S to A, or from S to B. (See figure 2.5.) Hence the CDF can be decomposed
into a weighted sum of independent CDFs conditioned on the location of u:

P(X ≤ h) =
τAS
τ

P(X ≤ h | CAS) +
τSA
τ

P(X ≤ h | CSA) +
τSB
τ

P(X ≤ h | CSB), (2.10)

where CAS (resp. CSA and CSB) is the conditional event that a field u lies on a trajectory
that goes from A to S (resp. from S to A or to B). The weights are the relative time



62 2 Extreme events in transitional turbulence

spent in each segment, where

τ = τAS + τSA + τSB

=
1

p̂
TAS +

1− p̂

p̂
TSA + TSB.

We refer the reader back to equation (2.6) for the formula for τ in terms of TAS , etc. The
individual CDFs in (2.10) are obtained in the standard way by rank ordering the sample
data and performing a cumulative summation followed by normalisation.

Figure 2.9a shows the CDF P (h) = P(Ft ≤ h) for the low-Re decay cases and figure
2.9b shows its complement, the survival function S(h) ≡ 1 − P (h) ≡ P(Ft ≥ h), for the
high-Re splitting cases. Results from the Monte Carlo simulations are shown as continuous
curves, while those from AMS have been included as dotted curves. It can be seen that the
distribution functions constructed from AMS improve the quality of the tails from Monte
Carlo, particularly in the range 900 ≤ Re ≤ 1100 where Monte Carlo systematically
underestimates the tails associated with rare transitions. (We note, however, that even
with the improvements from the AMS, there remain some sampling effects in the weak
tails.) Dashed curves show the Fisher-Tippett CDFs obtained by fitting the PDFs of Ft
shown in figure 2.8.

2.4.2 Timescales from extreme value distributions

We can now apply the Nemoto & Alexakis approach (Nemoto & Alexakis, 2021) to our
decay and splitting data. The essential idea is to scale the CDFs and obtain forms that
separate into approximately Re-independent portions and Re-dependent portions that
can be fit to Fisher-Tippett distributions. From this it is possible to express the mean
timescales for decay and splitting directly in terms of the parameters of the Fisher-Tippett
distributions.

We will first describe the decay case and afterwards summarise the differences for
the splitting case. Recall that in the decay case the score function for AMS is just the
turbulence fraction and the boundary of the laminar state is hB0 = 0.0001, meaning that
trajectories u(t) that reach the threshold Ft(u) = ϕ(u) = hB0 from above are considered
to have undergone transition to the laminar state. As shown in figure 2.9c, by rescaling
CDFs by their value at the threshold P (hB0), the low-probability tails for different Re
nearly collapse to a common curve. More specifically, we observe that below a value h0,
indicated on the plot, the ratio P (h)/P (hB0) depends only weakly on Re. (Moreover,
some of this dependence is likely due to sampling errors of the low-probability tails.) Flow
fields u such that Ft(u) ∈ [hB0 , h0], called the collapse zone in the following, are in an
intermediate state that can either recover (missed decay) or die (successful decay). This
process is not a strong function of Re. Above h0, the rescaled CDFs depend strongly
on Re, varying by over an order of magnitude over the Re range shown. Significantly,



2.4 Extreme value description of decay and splitting trajectories 63

0 0.1 0.2 0.3 0.4 0.5
10

-6

10
-4

10
-2

10
0

(a)

0.2 0.4 0.6 0.8

10
-4

10
-3

10
-2

10
-1

10
0

(b)

0 0.1 0.2 0.3 0.4 0.5
10

0

10
2

10
4

10
6

(c)

0.2 0.4 0.6 0.8 1
10

-2

10
0

10
2

10
4

10
6

(d)

Figure 2.9: (a) Cumulative distribution function P (h) = P(Ft ≤ h) for band decay
and (b) survival function S(h) ≡ 1 − P (h) ≡ P(Ft ≥ h) for band splitting at values
of Re indicated in the legend. Continuous lines are obtained from Monte Carlo and
dotted lines are from the AMS algorithm. Dashed lines correspond to fits to a Fisher-
Tippett distribution (2.9). (c, d) Distributions from the AMS algorithm rescaled by P (hB0)
and Sϕ(hB2) ≡ 1 − Pϕ(hB2). In the splitting case (d), the range in Ft is rescaled by
hM (Re) = max(Ft). Coloured points in (c) show hleft, the lower bounds of the fit to the
PDF with a Fisher-Tippett density function (see figure 2.8). Similarly the open points in
(d) show the upper bounds hright. Vertical lines show the break-even points defined in the
text.



64 2 Extreme events in transitional turbulence

however, for almost all Re this portion of the CDFs lies within the region that is well fit
by the Fisher-Tippett distribution. Concretely, the coloured points in figure 2.9c indicate
the left-most values of h for each Re for which the Fisher-Tippett fits are good and in
almost all cases, these points are below h0, with the point for Re = 950 slightly above h0.

Following Nemoto & Alexakis, we can connect the CDFs to decay lifetime τd. The
algebraic statement is

τd =
δt

P (hB0)
= δt

P (h0)

P (hB0)

1

P (h0)
≃ δt

P (h0)

P (hB0)︸ ︷︷ ︸
Πd

1

1− e−(1+ξ(µ−h0)/σ)−1/ξ︸ ︷︷ ︸
fd(Re)

, (2.11)

which we will explain in steps.

The first equality can be understood as follows (Nemoto & Alexakis, 2021). Consider
estimating τd by Monte Carlo simulation with Ndecay independent realisations of decay
events. Then τd = Ttotal/Ndecay, where Ttotal is the total combined time to decay for all
realisations. Further letting Ttotal = δt Ntotal, where Ntotal is the total number of sample
points on all trajectories and δt is the sample time, we have τd = δtNtotal/Ndecay. Finally,
from Ndecay simulations that terminate at hB0 , we have P (hB0) = Ndecay/Ntotal, since there
are Ndecay out of Ntotal sample points with Ft ≤ hB0 . In practice we construct P (hB0)
from AMS simulations via (2.10) with a sampling time δt = 1.

The remainder of (2.11) consists of multiplying and dividing by P (h0) and then ap-
plying the previous observations about figure 2.9c to decompose (2.11) into a factor Πd,
that depends only weakly on Re, and 1/P (h0), that depends strongly on Re. Further-
more, we approximate P (h0) by the Fisher-Tippett distribution evaluated at h0. The
Re-dependence of fd ≃ 1/P (h0) is contained in the Re-dependence of the parameters µ,
σ and ξ. We return to this after discussing the splitting case.

In almost all respects the splitting analysis is the same as that of the decay case. The
only important differences comes from the fact that the score function ϕ for splitting (2.8)
is not the turbulence fraction Ft. However, ϕ and Ft are closely related, both in terms of
expression (2.8) and in terms of the values they take during band splitting in figure 2.6b. A
split is deemed to have occurred when ϕ(u(t)) reaches hB2 from below. Hence, analogously
with (2.11), the time scale for splits is related to the survival function of ϕ evaluated at
hB2 :

τs =
δt

P(ϕ > hB2)
=

δt

Sϕ(hB2)
, (2.12)

where Sϕ is the survival function for ϕ. While one could analyse distributions of the
score function ϕ, the turbulence fraction is ubiquitous in this field and the distributions
in figures 2.8 and 2.9b are of general interest. Hence it is preferable to work with these
distributions, even though it will be necessary to rescale the CDF in figure 2.9b using
Sϕ(hB2). This is not as awkward as it may seem since Sϕ(hB2) = Nsplit/Ntotal, by the



2.4 Extreme value description of decay and splitting trajectories 65

same argument as above for decay. Hence, while we write the normalisation in terms of
Sϕ, it is not necessary to have access to this CDF to know the normalisation, which is
determined simply from the number of sample points and the number of splitting cases.
To collapse the CDFs we must also rescale the horizontal axis of figure 2.9b. We rescale
by hM , the maximum value of Ft observed at each Re. This was unnecessary in the decay
case because the minimum value of Ft is achieved at the Re-independent termination value
hB0 .

Figure 2.9d shows the rescaled CDFs for band splitting. We observe that the low
probability tails for different Re collapse well to a common curve h ≥ h2, while for h < h2
the rescaled CDFs depend strongly on Re. Also shown as points in figure 2.9d are the
upper limits for which the curves are well approximated by Fisher-Tippett distributions.
These points are above, or nearly above h2 in all cases. Hence, we can again exploit
this to approximate the splitting time scale in terms of parameters of the Fisher-Tippett
distributions. Starting from (2.12) the algebra is

τs =
δt

Sϕ(hB2)
= δt

S(h2)

Sϕ(hB2)

1

S(h2)
≃ δt

S(h2)

Sϕ(hB2)︸ ︷︷ ︸
Πs

e(1+ξ(µ−h2)/σ)
−1/ξ︸ ︷︷ ︸

fs(Re)

. (2.13)

We thus obtain an approximation for τs as a product of a factor Πs, weakly dependent on
Re, and a factor fs(Re), strongly dependent on Re via the parameters µ, σ, ξ, as well as
h2. Note that h2/hM is constant at the start of the collapse zone, but hM depends on Re,
and hence so does h2. Values of h2 and hM , as well as h0, are given in table 2.2.

Finally, the vertical lines in figures 2.9c and 2.9d indicate the break-even point for
transition events to take place. These have been determined from DNS trajectories that
originate in A as follows. For a given value of h, we compute the fraction of trajectories
attaining Ft = h that successfully transition to B0 or B2, without returning to A. The
value of h for which this fraction is 1/2 is the break-even point. This is conceptually
similar to finding where the committor function for a stochastic process (Vanden-Eijnden
et al., 2006) is equal to 1/2, but here we condition on values of the turbulence fraction
and not points in phase space. At Re = 1050 we have not obtained a sufficient number of
DNS trajectories undergoing transition to B2 to estimate the break-even point, and hence
this case is not included in figure 2.9d. We provide context for these break-even points in
the next section.

2.4.3 Super-exponential scaling

We now explore the connection between the observed super-exponential dependence of
mean lifetimes on Re seen in figure 2.7 and the approximations to the mean lifetime given
in (2.11) and (2.13). We have argued that the dominant dependence of mean lifetimes
on Re is captured by the dependence of the functions fd and fs on Re. These functions
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depend on Re via the Fisher-Tippett parameters µ, σ, and ξ of (2.9) which are shown
in figure 2.10a. The location parameter µ varies linearly with Re, a feature which can
already be seen in the Re-dependence of the maxima in figure 2.8. The Re-dependence of
the scale σ and the shape ξ is less clear; their fluctuations may be due to their sensitivity
to the fitting procedure. Since the quality of the fits in figure 2.8 is not improved by the
inclusion of more simulation data, the fluctuations may indicate that p(Ft) is not exactly
of Fisher-Tippett form even near its maximum.

The parameter ξ plays an essential role in the family of Fisher-Tippett distributions,
dividing them into three categories. Those with ξ > 0 are the Fréchet distributions (also
known as type II extreme value distributions), while ξ < 0 corresponds to Weibull (type
III). Figure 2.10a shows that the central portions of most of the curves in figure 2.8 are
best fit to Weibull distributions (ξ may be positive for Re = 815 and 830, but there is too
much uncertainty in our fits to be sure). The limiting case ξ = 0 is the family of Gumbel
distributions (type I), which will play a role in section 2.5.
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Figure 2.10: (a) Dependence of the three Fisher-Tippett parameters on Re. These have
been obtained by fitting Fisher-Tippett distributions to the numerical PDFs p(Ft) over
ranges hleft ≤ Ft ≤ hright as seen in figure 2.8. (b) Dependence of log log fd (2.11) and
log log fs (2.13) on Re using the parameters from (a). Dashed lines show linear fits.

Figure 2.10b shows log log fd and log log fs from expressions (2.11) and (2.13) as a
function of Re using the numerically obtained parameter values for each Re. Linear fits
show that log log fd ≃ adRe+ bd and log log fs ≃ asRe+ bs over a range of nearly 200 in
Re in each case. Hence both fd and fs depend super-exponentially on Re and are at least
approximately of the form [exp(exp(a Re+ b))]. Given the functional forms of fd and fs
and the complicated dependence of the fitting parameters on Re, the double exponential
dependence on Re is only an approximation. Nevertheless, we clearly observe a faster than
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exponential dependence on Re resulting from modest variation with Re of parameters of
the Fisher-Tippett distribution characterising the fluctuations in the one-band state.

The interpretation of these results comes from the mechanism proposed by Goldenfeld
et al. (Goldenfeld et al., 2010) and subsequently refined by Nemoto and Alexakis (Nemoto
& Alexakis, 2018, 2021). We focus on the decay case, but similar statements apply to
the splitting case. The picture is that the statistics of strong turbulent fluctuations are
governed by extreme value distributions and this gives rise to the strong Re dependence of
the probability P (h0) of states being in the collapse zone h ≤ h0; see figure 2.9c. Note that
most trajectories that enter the collapse zone do not decay directly, but instead return to
the one-band state A. Only when trajectories achieve values of Ft below the break-even
points (shown as vertical lines in the figure) are trajectories more likely to decay than to
return to A. The probability of decay becomes one at hB0 , since this defines the boundary
we have chosen for the laminar state B0, and the rate of ultimate decay is given by P (hB0)
which is much less than P (h0). However, the ratio P (h0)/P (hB0) is nearly independent
of Reynolds number. Hence up to a Re-independent multiplicative factor, the decay rate
is determined from probability P (h0). The reason why the CDFs for different Re collapse
over a range of turbulence fractions, and why this occurs for both decay and splitting
processes, remains unexplained.

We end this section with a few observations and caveats. We observe that PDFs of
Ft are well fit near their maxima by Weibull distributions, at least for most of the Re
range investigated. This is distinctly different from the Fréchet distributions observed by
Nemoto & Alexakis for maximum vorticity in pipe flow (Nemoto & Alexakis, 2021). We
note also that while Ft is a non-smooth function of the flow field, it is not given as an
extremum over any feature of the field.

The purpose of decomposing the mean lifetimes (2.11), 2.13) and using the Fisher-
Tippett parameter fits is not to obtain quantitatively accurate formulas for τd and τs, but
to gain insight into the source of the super-exponential dependence on Re. In this regard
we note that the biggest issue, both quantitative and conceptual, with this approach is
that we rely on the existence of delimiters h0 and h2 that are simultaneously within the
collapse zones and within the range in which the distributions are close to Fisher-Tippett
form. As can be seen in figures 2.9c and 2.9d, this does not hold for 950 ≲ Re ≲ 1050.
This was also observed for puff decay in pipe flow: figure 10(a) in (Nemoto & Alexakis,
2021). This does not invalidate the connection between extreme value statistics and the
super-exponential scaling, but it does mean that there is a gap in using the Fisher-Tippett
approximation at large time scales that at present we do not see how to close.

2.5 Transition pathways

Extreme value theory not only relates the super-exponential scaling of mean lifetimes to
the distribution of fluctuations of the one-band state, it also provides a framework for un-
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derstanding the rare pathways from one state to another. In a previous publication (Gomé
et al., 2020) we observed that the dynamics of band splitting were concentrated around
a most-probable pathway in the phase space of large-scale Fourier coefficients. This mo-
tivates us to explore connections with instantons in the framework of Large Deviation
Theory for systems driven by weak random perturbations. See for example (Touchette,
2011; Grafke et al., 2015; Grafke & Vanden-Eijnden, 2019) and references therein. The
concept is easily illustrated with the following stochastic differential equation

Ẋ = −∇V (X) +
√
εη, (2.14)

where X ∈ Rd, V is a potential, ε is a perturbation strength and η is Gaussian white noise.
We assume that V has two local minima A and B separated by a saddle point and we
consider transitions from A to B. In the weak-noise limit ε → 0, transitions will be rare
and the trajectories associated with these rare events will be concentrated around a most
probable path that connects states A and B. This is the instanton. The dynamics along
the instanton is such as to climb uphill from A to the saddle point under the influence of
weak noise, and then to fall deterministically from the saddle to B.

Examples of instantons in fluid systems are found for shocks in Burgers equations
(Grafke et al., 2013, 2015), and have been predicted and experimentally observed in rogue
waves (Dematteis et al., 2019). The concentration of transition paths around an instan-
ton in a high-dimensional fully turbulent system was first observed by Bouchet et al.
(Bouchet et al., 2019) in a 2D barotropic model of atmospheric dynamics. Schorlepp et
al. (Schorlepp et al., 2021) have used instanton calculus to investigate the most likely
configurations to generate large vorticity or strain within turbulence in the 3D Navier-
Stokes equations. This phenomenology can also apply to deterministic chaos, as in the
solar system (Woillez & Bouchet, 2020). Rolland has discussed instantons specifically in
relation to turbulent-laminar transition, both in a model system (Rolland, 2018) and in
plane Couette flow (Rolland, 2022).

Rare transitions of the type considered here could exhibit instanton-type behaviour
if turbulent fluctuations were to play the role of weak noise. A detailed investigation is
outside the scope of this chapter, but the current interest in the topic and the capacity of
AMS to generate large numbers of rare transitions motivates us to briefly present transition
paths for decays and splits. Examples of each are shown in figure 2.11. By binning samples
from 200 transition paths we construct PDFs and then render isosurfaces of these PDFs
to reveal the reactive tubes where paths concentrate. We include only reactive trajectories
that leave A and terminate at the boundary of B0 or B2 without returning to A.

The coordinates used for the PDF are chosen separately for decay and splitting. For
decay, we show the decay of energy associated with the three velocity components of the
flow, Ex, Ey, Ez

E(x,y,z) ≡
1

LxLyLz

∫
Ω

1

2
(u2, v2, w2)dx.
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Figure 2.11: Joint probability density functions for reactive trajectories going from (a)
A to B0 at Re = 830 (decay events) or (b) from A to B2 at Re = 1150 (splitting events).
(a) Isosurface of p(Ex, Ey, Ez) enclosing 90% of the total probability. (b) Isosurface of
p(û0,1, û0,2, û0,3) enclosing 80% of the total probability. 200 trajectories are computed in
each case.

Figure 2.11(a) shows that the reactive pathway from A to B0 is such that Ey decays most
quickly, followed by Ez, followed by Ex so that the tube of reactive trajectories approaches
B0 almost tangent to the Ex axis. This ordering of decay of energy components has
been reported previously (Gomé et al., 2020; Liu et al., 2021); here the 90% probability
isosurface shows that almost every successful decay trajectory follows a similar path.

For splits, we use coordinates similar to those in (Gomé et al., 2020), the first three z
Fourier components û0,1, û0,2, û0,3 of u, averaged in x and y:

û0,n =
1

LxLz

∫
dy

∣∣∣∣ ∫ dx

∫
dz u(x, y, z)e−2πinz/Lz

∣∣∣∣ .
Figure 2.11(b) shows that the reactive pathway from A to B2 for the case of splits consists
of a highly curved tube. This shape arises from the non-monotonicity of the splitting
trajectories in these coordinates, as seen in (Gomé et al., 2020). While a one-band state
in A is characterized by high û0,1, the magnitude of û0,2 decreases at the beginning of a
split before reaching its ultimate higher value in the two-band state in B2.

The transition pathways can also be described by the distribution of reactive times
TAB. Reactive times have been characterised by Gumbel distributions

pGum(T ) = βe−β(T−α) exp (−e−β(T−α)), (2.15)

rigorously in simple stochastic ODEs in the weak noise limit (Cérou et al., 2013), and
observationally in one-dimensional stochastic PDEs (Rolland et al., 2016; Rolland, 2018)
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and in the decay of uniform turbulence in the Navier-Stokes equations (Rolland, 2022).
We find that the distributions of reactive times TAB0 for decays and TAB2 for splits are
consistent with Gumbel distributions for each Re and hence also with instanton-like be-
haviour. Figure 2.12a illustrates this for Re = 1150, but the relatively small number of
computed reaction trajectories (around 500 for this Re) precludes drawing more definite
conclusions. The mean duration of reactive trajectories and their standard deviation as a
function of Re are shown in figure 2.12b. The mean reactive times TAB vary only modestly
with Re within each of the decay and the splitting regimes, as do the standard deviations
(shown by the error bars).

The results presented in this section were motivated by interest in rare-event pathways
and instantons in particular. We observe that reactive trajectories for both decays and
splits concentrate around a reactive tube in phase space. This suggests that turbulent fluc-
tuations are dominated by the collective behaviour of trajectories along a most-probable
path, which may be an instanton. We observe mild contraction of pathways as we vary
Re and events become rare. (See Supplementary Material.) Such contraction would be
expected if the transitions exhibited instanton-like behavior. At the present time, even
using the AMS algorithm, we have not produced sufficient numbers of independent reac-
tive trajectories at very high transition times to draw definite conclusions and more work
is needed to relate this behaviour to the Large Deviation theory.
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Figure 2.12: (a) Histogram of the reactive times TAB2 at Re = 1150, estimated with
the AMS on N = 500 trajectories. Dashed lines show a fit with a Gumbel distribution
(2.15) with α = 1.9 × 103 and β = 2.7 × 10−3. (b) Mean reactive times TAB0 and TAB2 ,
for different Re, estimated with the AMS. Error bars indicated one standard deviation.
Reactive times are measured from a random point in A to the boundary of B0 or B2.
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2.6 Discussion

Determining – or even defining – the threshold for turbulence in wall-bounded shear flows
has been an important question since Reynolds’ 1883 article (Reynolds, 1883). Over
time it has become clear that transitional turbulence is typically metastable and that
transitions from metastable states play a crucial role in determining the onset of sustained
turbulence (Pomeau, 1986; Bottin & Chaté, 1998; Bottin et al., 1998; Peixinho & Mullin,
2006; Hof et al., 2006; Willis & Kerswell, 2007). The culmination of this realization
was the study of Avila et al. (Avila et al., 2011) that determined the mean lifetimes
for puff decay and puff splitting in pipe flow and showed that these lifetimes cross at a
critical value of the Reynolds number Rec. Although this work involved both numerical
simulations and experiments, it was only through experiments that the very long lifetimes
associated with Rec were accessible. This has driven interest in capturing transitions from
long-lived metastable states in wall-bounded flows via numerical simulations in order to
obtain a clearer theoretical understanding of these events and of their Reynolds number
dependence.

We have used the Adaptive Multilevel Splitting algorithm (Cérou & Guyader, 2007;
Cérou et al., 2011, 2019) to obtain rare events in plane channel flow. We have specifically
analysed transitions from the metastable one-band state to either laminar flow (decay)
or to a two-band state (splitting) in tilted-domain simulations of the 3D Navier-Stokes
equations with 2 × 107 degrees of freedom. Using AMS on this large system we have
been able to obtain mean lifetimes as large as 5 × 106 in advective time units with a
gain in computational efficiency of a factor of up to 100 over the standard Monte Carlo
approach. This has permitted us to access timescales near the lifetime crossing point
for this flow. With the significant number of rare transitions we obtained, we have been
able to construct weak tails in the probability distribution functions for the turbulence
fraction. Exploiting ideas by Goldenfeld, Gutenberg & Gioia (Goldenfeld et al., 2010) and
Nemoto & Alexakis (Nemoto & Alexakis, 2018, 2021), we have been able to link directly
the super-exponential variation of mean lifetimes with Re, for both decay and splitting, to
the distribution of fluctuations in the one-band state. Finally, we have examined briefly
the reaction pathways for decay and splitting.

Without conducting an extensive companion study in a large untilted domain, we
cannot rule out effects of our narrow tilted domain on the transition rates and paths.
However, we can cite comparisons of thresholds in the two types of domains. Shimizu &
Manneville (Shimizu & Manneville, 2019) carried out channel flow simulations in large
domains of size Lx′ × Lz′ = 500 × 250 or 1000 × 500 and obtained a threshold between
Re = 905 and 984 for one of the two regimes they studied. This is quite close to the
crossover at Re ≈ 980 between the decay and splitting times that we have computed here
in a narrow tilted domain via AMS. In plane Couette flow, the threshold for transition
to turbulence was estimated to be Re = 325 by Shi et al. (Shi et al., 2013) as the decay-
splitting lifetime crossing in computations in a narrow tilted domain. This is the same as
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the value estimated experimentally by Bottin et al. (Bottin & Chaté, 1998; Bottin et al.,
1998) and numerically by Duguet et al. (Duguet et al., 2010), in rectangular domains of
size 380× 70 and 800× 356. An experiment in a much larger domain of size 3927× 1500
by Klotz et al. (Klotz et al., 2022) yields Re = 330± 0.5 as the threshold .

Throughout this study we have focused on the turbulence fraction as a scalar observable
of the state of the system, in large part because it is an easily obtainable quantity of
general interest. While turbulence fraction is presumably not a mechanistic driver of
either event, it is a very informative observable that is highly correlated to the distance to
the targeted states. Our analysis of the super-exponential dependence of mean lifetimes
on Re is probabilistic and relies heavily on the observed, but unexplained, collapse of
rescaled distributions of Ft over what we call the collapse zone.

This approach is complementary to the dynamical-systems approach to turbulence
(Eckhardt et al., 2007; Kerswell, 2005; Kawahara et al., 2012; Graham & Floryan, 2021).
It would be useful to connect these approaches and to understand the mechanisms at
work within the collapse zone. A particular question is the role played by saddle points
or edge states (Eckhardt et al., 2007; Schneider et al., 2007; Duguet et al., 2008; Chantry
& Schneider, 2014; Paranjape et al., 2020) in creating behaviour that can be rescaled
and collapse to Re-independent form, because this is a key ingredient in how turbulent
fluctuations are connected to decay and splitting events. While there is much previous
work on decay from a dynamical-systems perspective, there is little to rely upon in the
case of splitting.

Our investigation of reaction pathways demonstrates their concentration in phase space
for both decay and splitting events. We have also observed a Gumbel distribution for the
reaction times. The mild contraction of pathways that we have observed as the transition
probability becomes very low resembles an instanton, but is inconclusive. To better sup-
port this picture, we would need to quantify the level of the fluctuations of the effective
degrees of freedom in the system and how the fluctuation levels depend on the Reynolds
number. Following this, we would need to compare the transition-rate dependence on the
Reynolds number to what would be expected from the level of fluctuations within Large
Deviation theory. This would require us to disentangle the effect of Re on turbulent fluc-
tuations from its effect on the potential term, which itself strongly depends on Reynolds
number as seen by the parameterisation of the PDFs within the one-band state (figures 2.8
and 2.10a). This approach would thus require the computation of the action minimizer in
Large Deviation theory, which is out of the scope of the current study. This fundamental
issue is related to the absence of a second parameter that would independently control
the level of turbulent fluctuations and thereby allow an approach to a low-noise limit. We
note that the states studied here are localised and insensitive to domain length. Hence
domain size, the one parameter other than Re available in the numerical simulations, does
not provide a means to influence the effect of fluctuations on the transitions. We refer
the reader to the important studies of Rolland (Rolland, 2018, 2022) on rare events in
transitional shear flows.
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Finally, while we have succeeded in using the AMS algorithm to compute rare events
in the 3D Navier-Stokes equations represented by O(107) degrees of freedom, the expe-
rience has not been without difficulties. The most notable issues are: (1) the algorithm
sometimes stagnates, making very slow progress toward obtaining trajectories reaching
the target state and (2) the variance in the estimated mean lifetimes associated with the
AMS realisations is large, thus requiring the costly step of running multiple realisations.
The method used here could possibly be improved with the implementation of Antici-
pated AMS (Rolland, 2022). Most importantly, the score function is well known to be
crucial to efficient performance of the algorithm. Finding a score function that targets
successful splitting events has been particularly challenging. Although we have obtained
a serviceable empirical score function based largely upon the turbulence fraction, a more
far-ranging search for appropriate score functions is needed.

2.A Effect of perturbation level and sample size on AMS vari-
ance

Estimating rare events with the AMS (Adaptive Multilevel Splitting) algorithm for a
high-dimensional system such as ours is a trade-off between accuracy of the estimate
and computational cost. It is known from previous studies on low-dimensional systems
(Rolland & Simonnet, 2015; Rolland, 2018) that the variance of the AMS scales with
sample size N like 1/

√
N , and that completely unbiased results depend, among other

things, on the definition of the score function and the number of degrees of freedom.
In (Rolland, 2018) it was shown empirically that |p̂ − p̂MC|/p̂MC scales as 1/N , where p̂
and p̂MC are the transition probabilities estimated by the AMS and MC (Monte Carlo)
methods, respectively

Although a large sample size N is desirable to produce low variance, sample sizes larger
than N = 100 are challenging in terms of computational time and memory in our case.
If smaller sample sizes are used, the accuracy of the estimator can be improved using
multiple AMS realisations. We have verified the evolution of the AMS estimator p̂ for
different values of N and ϵ in Table 2.5 and find that good agreement with p̂MC was
achieved at N = 50. We thus decide to take N = 50 for all Re, and we further average
results over NAMS realisations as listed in the main chapter.

Table 2.5 shows the dependence of the estimator of the transition probability p̂ on ϵ for
Re = 1150. We recall that p̂ varies by orders of magnitude in the relevant range of Re and
hence we seek only one digit of accuracy. By this criterion, p̂ does not depend strongly
on ϵ. We recall that the perturbation amplitude ϵ acts only at the cloning step of the
AMS, through a multiplicative noise term. The choice of ϵ is governed by the following
principles. If the perturbation is too small, the main risk is a low diversity of the clone
samples and thus a stagnation of the iterative process. This issue arises particularly when
the transition probability is very low. Stagnation is a potential explanation for what we
observe in Table 2.5 for ϵ = 10−6, where the deviation from p̂MC slightly increases. The
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ϵ N p̂ |p̂− p̂MC|/p̂MC σ(p̂)

1× 10−5 30 0.0351 0.250 0.0365

1× 10−5 50 0.0456 0.021 0.0197

1× 10−5 100 0.0451 0.032 0.0137

5× 10−6 50 0.0455 0.022 0.0299

1× 10−6 50 0.0487 0.047 0.0085

Table 2.5: Dependence on N and on ϵ of the accuracy of the AMS estimator of the
probability of transition p̂ at Re = 1150, for which p̂MC = 0.047 has been obtained from
Monte Carlo simulations. σ(p̂) is the standard deviation of p̂ from at least NAMS = 5
AMS realisations.

reason for this stagnation is that the time of approach to the maximum of ϕ in each
trajectory is shorter than the Lyapunov time of the system, causing all trajectories to be
unmodified by noise at the maximum. In this case, all of the trajectories end up with the
same values of the maximum, causing the iteration to stall. This could happen even if the
average time to return to A or to reach B2 is larger than the Lyapunov time of the system.
On the other hand, the perturbation should not be so large as to change the statistics
of the trajectories compared to a fully deterministic strategy such as Monte Carlo. The
score function must also remain unchanged at the cloning time, otherwise the trajectory
selection could be altered. For each Re, ϵ is then chosen as the minimal stochastic input
that promotes trajectory diversification and for which the algorithm does not stagnate.

2.B Evolution of reactive tubes with the Reynolds number

Figure 11 of the main chapter illustrates reactive tubes corresponding to decay (at Re =
830) and to splitting (at Re = 1150). The reactive tubes are isosurfaces of the probability
density obtained from reactive trajectories going from A to B0 or B2. Here we investigate
the effect of Re on these reactive tubes. Figures 2.13a and 2.13b compare trajectory
concentration at different Re by showing the contours of the probability density obtained
from reactive trajectories in the phase spaces (Ex, Ez) (for decays) and (û0,1, û0,2) (for
splits). The contours surround 90% of the probability. These plots are 2D projections of
Figure 11.

For decay cases, the reactive tubes seem to contract slightly during the final viscous
phase of the decay process as Re is increased and decay becomes rarer. In the case of
splits, portions of the reactive tubes contract as Re is decreased. These plots indicate
that the reactive trajectories become slightly more concentrated as Re approaches Rec.
However, the range of Re under study is limited. It would be helpful to have data for
decay events at Re > Rec and splits for Re < Rec, both of which are still out of reach in
our computations.
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Figure 2.13: Contours of joint PDFs at different Reynolds numbers (a) of (Ex, Ez) for
trajectories going from A to B0 and (b) of (û0,1, û0,2) for trajectories going from A to B2.
The temporal average during the transient trajectories is subtracted for better comparison,
since sets A and B2 evolve with Re. Contours shown enclose 90% of the total probability
of the joint PDFs.
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2.C Approach to an edge state during decays
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Figure 2.14: Approach to the edge state of Paranjape et al. (Paranjape et al., 2020):
(a) Space-time diagram of the decay of a turbulent band at Re = 900. Colors (white: 0,
black: 0.001) show the local deviation energy at (x = 3.3, y = 0.8). (b) Ey(t) for decay
paths for different Re. Stagnation indicating proximity to an edge state is particularly
noticeable at Re = 900 and 950. Trajectory at Re = 900 corresponds to (a). (c, d)
Visualisation of possible edge state in the (z, x) plane (cross-flow velocity v) and the (z, y)
plane (streamwise velocity u′), corresponding to t = 800 in the space-time plot.

The question of whether a saddle-point effectively separates the phase space between
A and B0 or B2 can be answered by bisection techniques (Schneider et al., 2007; Duguet
et al., 2008), as was done by Paranjape et al. (Paranjape et al., 2020) between one band
and the laminar state. The computation of multiple successful trajectories also helps to
verify the presence of this edge state, that should be statistically approached by reactive
trajectories. We show in Figure 2.14a a typical spatio-temporal diagram in the parameter
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range Re ∈ [900, 950]: during the decay of the band and before its full laminarisation,
the trajectory approaches a state composed of weak straight streaks that differs from the
one-band state. This state is visualised in Fig. 2.14c and 2.14d and resembles the edge
state found by Paranjape et al.. As shown by Fig. 2.14a, this state moves at a velocity that
differs from that of the initial turbulent band, and is approached within a time window of
around 600 time units starting from t = 600. The presence of an edge state is supported
by Figure 2.14b, which shows Ey(t) for decaying trajectories.

Proximity to the edge state is seen for Re = 900 and Re = 950 as approximate stagna-
tion before the viscous decay. The particular case of Re = 900 (red curve in Fig. 2.14b,
and space-time diagram in Fig. 2.14a) exemplifies a characteristic three-step process: a
first departure from the initial one-band state (t ≃ 450), followed by an approach to a
plateau (t ≃ 600) correlated to the appearance of straight streaks (Fig. 2.14a), which
eventually decay exponentially (t ≳ 1000). For Re ≤ 830, the energy decays directly from
the one-band state to the laminar state and the plateau does not appear. The stagnation
phase, which differs from the subsequent exponential decay, confirms the nonlinear nature
of the dynamics in this region, and suggests that we are near the edge state computed by
Paranjape et al. (Paranjape et al., 2020).

Our simulations support the established idea that pathways are statistically mediated
by an underlying edge state when transiting from the one-band state to laminar flow, and
that the system remains longer near the saddle point when the transition probability is
lower (or Re increased: see the longer stagnation phase at Re = 950 than at Re = 900).
The importance of the edge state at higher Re is consistent with the higher concentration
observed on Fig. 2.13a and with the longer reactive times (Fig. 12b).
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Chapter 3

Spectral analysis of transitional shear
turbulence

Low Reynolds number turbulence in wall-bounded shear flows en route to laminar flow
takes the form of localized turbulent structures. In plane shear flows, these appear as
a regular alternation of turbulent and quasi-laminar flow. Both the physical and the
spectral energy balance of a turbulent pattern are computed, and compared to those
of uniform turbulence at low Re. These energy balances show the presence of robust
negative production at large scales, appearing in both pattern and uniform regimes. The
turbulent energy is spectrally redistributed via a strong energy transfer from small to
large scales. In transitional patterns, the mean flow is strongly modulated and is fuelled
by two mechanisms: the absorbing interaction with turbulent fluctuations (via negative
production) and the nonlinear self-interaction of the mean flow. This energetic cycle is
surveyed as uniform turbulence loses its stability, and conserved quantities are found from
the uniform to the patterned state. Signatures of this mechanism fuelling large scales are
also found in the uniform flow at low Re.

Low Reynolds number turbulence in wall-bounded shear flows en route to laminar
flow takes the form of localised turbulent structures. In plane shear flows, these appear
as a regular alternation of turbulent and quasi-laminar flow. Both the physical and the
spectral energy balance of a turbulent-laminar pattern are computed and compared to
those of uniform turbulence at low Re. In the patterned state, the mean flow is strongly
modulated and is fuelled by two mechanisms: primarily, the nonlinear self-interaction of
the mean flow (via mean advection), and, secondly, the extraction of energy from turbulent
fluctuations (via negative production, associated to a strong energy transfer from small to
large scales). These processes are surveyed as uniform turbulence loses its stability. Inverse
energy transfers and negative production are also found in the uniformly turbulent state.

79
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3.1 Introduction

Transitional patterns in plane shear flows arise naturally from uniform turbulence at suf-
ficiently low Reynolds number. These patterns feature a selected orientation of around
≃ 24◦ when they emerge (Prigent et al., 2003; Tsukahara et al., 2005b; Shimizu & Man-
neville, 2019; Kashyap et al., 2020b). When the Reynolds number is further reduced, these
spatio-temporally intermittent structures display important features of non-equilibrium
phase transitions; both experimental and numerical studies have demonstrated their mem-
bership in the directed percolation universality class in the case of plane Couette flow
(Lemoult et al., 2016; Chantry et al., 2017; Klotz et al., 2022).

Oblique patterns consist of turbulent regions or bands alternating with (quasi-) laminar
gaps. An inherent feature of the coexistence of these two phases in planar shear flows
is the large-scale flow along the laminar-turbulent interface. This along-band flow has
been observed in both experimental and numerical configurations (Coles & van Atta,
1966; Barkley & Tuckerman, 2007; Duguet & Schlatter, 2013; Couliou & Monchaux, 2015;
Tuckerman et al., 2020; Klotz et al., 2021), and can be seen as a consequence of the
breaking of spanwise symmetry and incompressibility (Duguet & Schlatter, 2013).

Transitional turbulence presents a separation of scales: flow along the laminar-turbulent
interface paves the large scales, while the streaks and the rolls governed by the self-
sustaining process of turbulence (Hamilton et al., 1995; Waleffe, 1997) are the basic ingre-
dients of the small-scale flow. In channel flow, the streak spacing is commonly found to be
around λ+z ≈ 100 (Kim et al., 1987), whereas it is found to be larger (λ+z ≈ 132) in plane
Couette flow at low-enough Reynolds number (Komminaho et al., 1996; Jiménez, 1998;
Tsukahara et al., 2006). In contrast, the wavelength of the large-scale patterns is much
larger than that of the rolls and streaks, e.g. with a ratio on the order of 20 in patterned
plane Couette flow. This scale separation is visible in the spectral analysis presented by
several authors. We mention Tsukahara et al. (2005b) in channel flow, Tuckerman &
Barkley (2011); Duguet & Schlatter (2013) in Couette flow and Ishida et al. (2017) in
annular pipe flow. However, the exact contribution of the rolls and streaks in energising
the large-scale patterns has never been thoroughly investigated.

In pipe flow, the energy distribution within turbulent structures was measured in the
classic experiments of Wygnanski et al. (Wygnanski & Champagne, 1973; Wygnanski
et al., 1975) and later in numerical simulations by Song et al. (2017). For localised tur-
bulent structures known as puffs, turbulent production P at the upstream side of a puff
is larger than turbulent dissipation ϵ, whereas at the downstream side, dissipation domi-
nates production, as it does throughout regions of quasi-laminar flow in general. No local
balance between P and ϵ is found within the puff. In contrast, in expanding or retracting
turbulent zones, known as slugs, the flow in the turbulent core is locally in equilibrium,
with production balancing dissipation (P ≈ ϵ). Theoretical efforts to model turbulent-
laminar structures in pipe flow are based on these properties of the turbulent production
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and dissipation (?Barkley, 2016).

Spectral energy budgets have been extensively used to quantify energy transfers and
interactions between mean flow and turbulent kinetic energy (TKE) in high Reynolds
number wall-bounded flows. This approach dates from Lumley (1964), who conjectured
that energy is transferred from small to large scales in shear flows as distance from the wall
increases. This concept of inverse energy transfer was later investigated by Domaradzki
et al. (1994); Bolotnov et al. (2010); Lee & Moser (2015); Mizuno (2016); Cho et al. (2018);
Lee & Moser (2019); Kawata & Tsukahara (2021) (and references therein). However, it is
only recently that the spectral energy budget has been computed at low Reτ , in particular
by Symon et al. (2021) in a turbulent channel of minimal size at Reτ = 180 and in
an exact coherent state of channel flow (Park & Graham, 2015). Currently, there is a
lack of understanding of the spectral distribution of energy in transitional wall-bounded
turbulence, especially regarding the role of energy transfers and triad interactions in the
emergence of the large-scale flow.

This chapter is devoted to the relationship between the inhomogeneous mean flow and
turbulent fluctuations in transitional plane Couette flow. These are investigated through
the computation of both physical (§3.4) and spectral (§3.5) energy balances in the regime
where patterns emerge from uniform turbulence. We will survey various energy transfers
as a function of Re in §3.6. In §3.7, turbulent production and non-linear transfers are
analysed at various wall-normal positions. The energy processes reported in this chapter
will be further investigated as a function of the pattern wavelength in chapter 4, where
we will discuss their role in selecting the pattern wavelength.

3.2 Numerical setup

Plane Couette Flow is driven by two parallel rigid plates moving at opposite velocities
±Uwall. Lengths are nondimensionalised by the half-gap h between the plates, velocities
by Uwall, and time by h/Uwall. The Reynolds number is defined to be Re = Uwallh/ν.
We will require one last dimensional quantity, the horizontal mean shear at the walls,
which we denote by U ′

wall. We will use non-dimensional variables throughout. We use
the pseudospectral parallel code Channelflow (?) to simulate the incompressible Navier-
Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u (3.1a)

∇ · u = 0 (3.1b)

in a domain which is periodic in the x and z directions.

Since the bands are found to be oriented obliquely with respect to the streamwise di-
rection, we use a periodic numerical domain which is tilted with respect to the streamwise
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direction of the flow, shown as the oblique rectangle in figure 4.1. This choice was intro-
duced by Barkley & Tuckerman (2005) and has become common in studying turbulent
bands (e.g., ?Paranjape et al., 2020; Tuckerman et al., 2020). The x direction is chosen to
be aligned with a typical turbulent band and the z direction to be orthogonal to the band.
The relationship between streamwise-spanwise coordinates and tilted band-oriented (x, z)
coordinates is:

estrm = cos θ ex + sin θ ez (3.2a)

espan = − sin θ ex + cos θ ez (3.2b)

The usual wall-normal coordinate is denoted by y and the corresponding velocity by v.
The field visualised in figure 4.1 (black box) is obtained by concatenating four times a
field resulting from a simulation in Lstrm = 200, Lspan = 100.

The tilted box effectively reduces the dimensionality of the system by discarding large-
scale variations along the short x direction. This direction is considered homogeneous
over large scales because it is only determined by small turbulent scales, and because the
band is assumed to be infinite in x. The main underlying assumption is the angle of the
pattern. In large non-tilted domains, plane Couette flow shows two statistical orientations
that equilibrate (Prigent et al., 2002; Duguet et al., 2010; Klotz et al., 2022) whereas only
one orientation is permitted by our tilted box.

In our simulations, we fix the angle θ = 24◦, the x domain length Lx = 10, the x
resolution = Lx/Nx = 10/120, and z resolution ∆z = Lz/Nz = 0.08, (similar to that used
by Tsukahara et al. (2006); Barkley & Tuckerman (2007)). We will make extensive use of
two numerical domains, with different domain sizes Lz, shown in figure 4.1.

(1) Minimal Band Units, shown as the red box in figure 4.1, which can accommo-
date a single turbulent band and associated quasi-laminar gap. This effectively
restricts the flow to a perfectly periodic turbulent-laminar pattern of wavelength
λ = Lz. The size Lz governing the periodicity of the pattern and can be mod-
ified. Lz is fixed to Lz = 40, which is an approximation of the natural spacing
of bands observed experimentally and numerically. The effect of size Lz will be
investigated in chapter 4.

(2) Long Slender Boxes, which have a large Lz direction that allows for a large
number of gaps and bands in the system. The blue box in figure 4.1 is an example
of such a domain size with Lz = 240, but a larger size of Lz = 800 will be used
throughout this chapter.

We furthermore introduce the friction Reynolds number:

Reτ =
uτh

ν
, with u2τ = νU ′

wall =
U2
wall

Re

〈
∂ustrm
∂y

(y = ±1)

〉
x,z,t

(3.3)

Note that Reτ =
√
Re in the laminar state. Later we will need the wall-normal coordinate
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Figure 3.1: Visualisation of the numerically simulated flow at Re = 360 and of our
numerical domains. Colors show y velocity at y = 0 (blue: −0.2, white: 0, red: 0.2) in a
domain of size Lstrm = 400, Lspan = 200. Red and blue boxes show a Minimal Band Unit
and a Long Slender Box, respectively.

in wall units y+ = (1− y)Reτ , and similarly for other quantities. In a Minimal Band Unit
at a transitional Reynolds number, the turbulence may be uniform or patterned during
different time periods, i.e. it is temporally as well as spatially intermittent. For this
reason, for each value of Re, we take the time average in (3.3) over a period during which
the flow retains qualitatively the same state. This yields two slightly different values, Reuτ
for a uniform state and Repτ for a patterned state, as presented in table 3.1 for Lz = 40.
In later nondimensionalisations, we will use either Reuτ or Repτ , as appropriate for the flow
state.

This procedure does not take into account the local variability of the wall shear stress
due to spatial intermittency; for this, we would need to omit z-averaging in (3.3) to
produce z-dependent values of Reτ ; see Kashyap et al. (2020b) for a thorough analysis of
fluctuations of Reτ within and outside of turbulent bands.

3.3 Spectra in different configurations

We carried out simulations in a Long Slender Box of size Lz = 800 for various Re, with
the uniform state at Re = 500 as an initial condition. These simulations are shown
via the spatio-temporal diagrams of figure 4.2 for Re = 440 and for Re = 380. With
decreasing Re, the flow shows intermittent gaps (white spots on the figure) that emerge
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Re 400 420 440 460 480 500 550 600 1000

Repτ 29.68 31.09 32.82 34.61 35.90 37.33 - - -
Reuτ 30.65 32.24 33.69 35.08 36.42 37.67 40.66 43.62 66.42

Table 3.1: Values of Reτ for various values of Re in a Minimal Band Unit of size Lz = 40.
Repτ and Reuτ are obtained by averaging over the patterned or uniform state, respectively.
For Re > 500, the patterned state does not occur.
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Figure 3.2: Spatio-temporal visualisations of the emergence of gaps and patterns in a
Long Slender Box with Lz = 800, for (a) Re = 440 and (b) 380. Flow at t = 0 is initiated
from uniform turbulence at Re = 500. Colors show local cross-flow energy (v2 + u2span)/2
at x = Lx/2, y = 0 (white: 0, dark orange: 0.02). (c) Intermittent alternation between
uniform and patterned turbulence at Re = 430 in a Minimal Band Unit of Lz = 40.
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from the turbulent field at seemingly random locations. A gap is defined as a weakened
turbulent structure, or a quasi-laminar zone, surrounded by turbulent flow. A gap is
the opposite of a band, which is a turbulent core surrounded by quasi-laminar flow. In
plane Couette flow, bands are observed at Re ∈ [300, 440] (Prigent et al., 2003; Barkley
& Tuckerman, 2007; Duguet et al., 2010; Shi et al., 2013). Gaps and bands self-organize
into patterns as Re is decreased. This is the situation observed in a Long Slender Box in
figure 3.2b (Re = 380), where a regular alternation of gaps and turbulent bands is visible.
In a Minimal Band Unit, the system is constrained and the distinction between gaps
and patterns is lost. While the system cannot exhibit the spatial intermittency seen in
figure 3.2a, temporal intermittency is possible and is seen as alternations between uniform
turbulence and patterns, as illustrated in figure 3.2c at Re = 430. chapter 4 investigate
extensively the emergence of gap and patterns out of turbulent flow.

We define the total physical energy and total spectral energy of the flow as:

E(y, z) ≡ 1

2
u · u and Ê(y, kz) ≡

1

2
û∗ · û,

where (.) denotes the time and x average and the Fourier transform is taken in the band-
orthogonal direction z:

û(x, y, kz) =
1

Lz

∫ Lz

0
u(x, y, z)e−ikzzdz. (3.4)

Figure 3.3a shows Ê(y = 0, kz) for simulations in a Long Slender Box at different values
ofRe. Here, the average is carried out over a long period of time (t ∈ [100, 5000]). The total
energy spectra show two prominent energy-containing scales: one at small wavenumbers
(around kz = 0.15, i.e. λz ≃ 42) corresponding to the alternation of turbulent bands
and quasi-laminar gaps, and a second one at large wavenumbers (kz ≃ 1.41, λz ≃ 4.45),
which we will denote krolls. This small wavelength corresponds to a spanwise spacing of
λspan = 2π cos θ/krolls = 4.06, which is approximately the idealised periodicity of pairs
of streaks and rolls in Couette flow (Waleffe, 1997), with individual rolls occupying the
height Ly = 2 of the shear layer. In wall units, this peak corresponds to λ+span = 130 at
Re = 430 (Reτ = 31.9). This is not far from the streak spacing of λ+span = 136 measured
by Komminaho et al. (1996) in plane Couette flow at Reτ = 52. For kz > krolls, the
energy decreases with kz up to the resolution scale. The scale separation between the
large-scale gaps and bands and the small-scale streaks and rolls was already observed in
the transitional regime by many authors (Tsukahara et al., 2005b; Tuckerman & Barkley,
2011; Ishida et al., 2016).

The spectrum varies with Reynolds number, but mostly at large scales (low kz): the
large-scale peak is barely visible at Re = 500 and grows in intensity with decreasing
Re, becoming dominant for Re < 440. Meanwhile, the small-scale spectrum is only very
weakly affected by the change in Re.
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(c) Patterned mean flow in a Minimal Band Unit

Figure 3.3: (a) Total energy spectra in a large domain Lz = 800 (black line) at y = 0, for
different Re. The spectra are averaged irrespective of the nature of the state (patterned
or uniform). (b) Total energy spectra (continuous lines) in a Minimal Band Unit of size
Lz = 40. The spectra are individually computed in the uniform turbulence (red) and
patterned states (blue), at Re = 430. (c) Visualisation of the mean flow: colors show
the deviation of the along-band velocity from the laminar base flow U −Ub (top) and the
pressure P (bottom). Streamlines of the mean flow perpendicular to the bands are shown
as grey curves.
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We now turn to the Minimal Band Unit, which has exactly the periodicity of a single
wavelength of the pattern. The flow in this configuration does not have localised gaps like
those which appear in figure 3.2a. The system is instead fluctuates between patterned
and uniform states as seen in figure 3.2c, and each of the two states can be distinguished
and consequently analysed separately. In particular, we can take means for patterned and
uniform states independently. For this reason, the remainder of this chapter will focus on
the Minimal Band Unit with a fixed length of Lz = 40.

The total energy spectrum in a Minimal Band Unit at Re = 430 is presented in fig-
ure 3.3b. Contrary to figure 3.3a, where unconditional averaging mixes uniform turbulence
and localised gaps in the spectrum, here we have conditionally computed the spectrum for
the patterned state (blue line) and the uniform state (red line) separately. As expected,
the spectrum for the uniform state lacks the peak at the pattern scale. The energy of the
streak-roll structures Ê(krolls) is higher in the uniform case than in the patterned case.
This hints at a redistribution of the energy from small scales (near krolls) to large scales
(≪ krolls) when the flow changes from uniform to patterned turbulence. For kz > 2, both
spectra appear to collapse, suggesting that the small-scale turbulent cascade is the same
in both cases.

We now decompose the flow into a mean and fluctuation: u = u + u′, where the
mean flow u(y, z) is computed from an (x, t) average over long time intervals in ei-
ther the patterned or the uniform state in the Minimal Band Unit. The mean flow in
this configuration was studied by Barkley & Tuckerman (2007). The mean flow u =
(U(y, z), V (y, z),W (y, z)) is visualised on figure 3.3c, by showing U − Ub and P (colors)
and plotting the streamlines of (V,W ) (grey lines). (Note that figure 3.3c corrects the er-
roneous pressure displayed in Barkley & Tuckerman (2007, figure 5).) The flow is centered
around the quasi-laminar region, and the total in-plane velocity (V,W ) shows a circulation
around this region of the flow. U − Ub shows two centro-symmetrically related zones of
flow parallel to the band, localised in the upper layer (blue zone) and in the bottom layer
(red zone).

The mean flow u can also be decomposed into Fourier modes:

u(y, z) = u0(y) + 2R
(
u1(y)e

2πiz/Lz
)
+ u>1(y, z) (3.5)

where R denotes real part, u0 ≡ û(y, kz = 0) = (U0(y), 0,W0(y)) is the z-independent
(uniform) component of the mean flow, u1 = û(y, kz = 2π/Lz) is the Fourier coefficient
corresponding to wavelength λz = Lz, and u>1 ≡

∑
kz>2π/Lz

û(y, kz) is the remainder of
the decomposition. (To lighten the notation, we omit the hats on u when subscripts 0, 1,
or > 1 are used to indicate the corresponding Fourier coefficients.) Most of the mean-flow
energy lies in the uniform mode u0, with a few percent in the trigonometric component
u1. The energy in the remaining terms (u>1) is at least two orders of magnitude lower
than that of u1 (Barkley & Tuckerman, 2007).
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Figure 3.4: mean-flow decomposition in two Fourier modes u0 and u1 (4.13), visualised
in the planes y = ±0.47. Colors show turbulent kinetic energy K(y, z): turbulent and
laminar zones are respectively in blue and white.

Mean flow

Fluctuations

Streaks/
rolls

Figure 3.5: Illustration of the most-relevant scales in transitional patterns. The upper
part depicts the mean flow: u0 is the uniform (z-independent) mean shear, illustrated by
the mean streamwise velocity profile, while u1 corresponds to scale λz ∼ 40 and is domi-
nated by the flow along the laminar-turbulent interfaces as illustrated in the streamwise-
spanwise plane. The lower part depicts the fluctuations: scale λz ∼ 40 is illustrated by
the periodic presence and absence of fluctuating cross-flow velocity. The scale kLS is that
below which fluctuations receive energy by non-linear interactions (via T̂nl, eq. (3.14)),
and krolls is the scale of rolls and streaks, illustrated in the spanwise-y plane.
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The decomposition of u into u0 and u1 is illustrated in figure 3.4. The mean flow
and the turbulent kinetic energy K(y, z) ≡ 1

2u
′ · u′ are visualised at planes y = ±0.47.

The most relevant scales involved in the mean flow and the fluctuations are illustrated in
figure 3.5. Mode u0 has a S-shape profile in y with small spanwise component. Mode u1

contains the large-scale flow along laminar-turbulent interfaces.

3.4 Physical balance in a Minimal Band Unit

Before turning to the energy balance in spectral space, we first consider the traditional
turbulent energy decomposition in the physical-space representation (Pope, 2000), as car-
ried out in transitional pipe flow by Wygnanski & Champagne (1973) and Song et al.
(2017) and in bent pipe flow by Rinaldi et al. (2019). We write the balance equation for
the turbulent kinetic energy (TKE), K(y, z), in the physical representation:

∂K

∂t
+ u · ∇K = P − ϵ+ Tnl + Tp + Tv (3.6)

where the production term, dissipation term, and rate of strain are:

P ≡ −u′iu′j
∂ui
∂xj

, ϵ ≡ 2

Re
s′ijs

′
ij , s′ij ≡

1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (3.7)

Subscripts i and j range over {1, 2, 3} (or equivalently {x, y, z}) and we use the Einstein
summation convention. The transfer terms read:

Tnl ≡ −1

2

∂

∂xi
u′iu

′
ju

′
j , Tp ≡ − ∂

∂xi
u′ip

′, Tv ≡
2

Re

∂

∂xi
u′js

′
ij (3.8)

which account respectively for non-linear interactions, work by pressure and viscous dif-
fusion. We also introduce the total transfer T ≡ Tnl + Tp + Tv. This TKE balance is
accompanied by the energy balance of the mean flow, Eu = 1

2u ·u = E −K (Pope, 2000,
eq. 5.131):

∂Eu

∂t
+ u · ∇Eu = −P − ϵ+ Tnl + T p + T v (3.9)

where

ϵ ≡ 2

Re
sijsij , sij ≡

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.10)

and

Tnl ≡ − ∂

∂xi
uju′iu

′
j , T p ≡ − ∂

∂xi
uip and T v ≡

2

Re

∂

∂xi
ujsij (3.11)

In order to emphasise the derivation of (3.6) and (3.9) from the Navier-Stokes equations,
we have retained temporal derivatives, even though these equations described t and x
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averaged quantities. Averaging in time is justified by the fact that turbulent-laminar
banded patterns are statistically steady in plane Couette flow. There is, in fact, some slight
motion of the band position. To gain in precision, we position the pattern at each time
based on the phase of the z-trigonometric Fourier coefficient of the along-band flow at the
mid-plane: zloc(t) = −ϕ(t)Lz/2π, where ϕ(t) = arg ⟨û(x, 0, 2π/Lz, t)⟩x. Temporal averages
are computed with this phase alignment and we consider ∂K/∂t = 0 and ∂E/∂t = 0. The
results in this section are all presented in a frame centered around the quasi-laminar zone.

In figure 3.6a we represent the streamwise mean flow with arrows and the turbulent
kinetic energy K(y, z) by colors. The center of the turbulent region is at z ± 20, while
overhang regions (Lundbladh & Johansson, 1991; Duguet & Schlatter, 2013) are located
around z±10, where the along-band large-scale flow is strongest (see figure 3.3c). Figures
3.6b and 3.6c display the energy budgets of equations (3.6) and (3.9). To better relate
these results to those from pipe flow, we integrate the energy budgets over the upper half
of the domain, where the z component of the mean flow is from left to right. We use
the same symbols P , ϵ, etc. to denote these half-height averages. (The lower half can be
obtained from the upper half by symmetry and should be compared to pipe flow with
the opposite streamwise direction.) All quantities depend strongly on z and it is this
dependence on which we will focus.

Figure 3.6b shows the TKE budget. The energy balance is dominated by production
and dissipation. Unsurprisingly, production is minimal in the quasi-laminar region where
the fluctuations, and hence the Reynolds stresses, are small. The regions where produc-
tion is larger than and smaller than dissipation are indicated in the figure. There are
approximately, but not exactly, centered on peaks and troughs in production. This local
disequilibrium between production and dissipation is accounted for by the transfer terms:
for z ∈ [−10, 0] the advective transfer u · ∇K is negative and of larger intensity than the
fluctuation transfer terms T , so the net transfer is negative. This is compensated for by a
positive transfer that exists in most of the turbulent domain, from z ≃ 6.5 to z ≃ −13. The
spatial flux of energy goes from the turbulent core to the quasi-laminar zone, as schemati-
cally indicated by the grey arrows in figure 3.6b. These results are consistent with those in
a band in plane Poiseuille flow (Brethouwer et al., 2012, Fig. 5) and in a puff in pipe flow
(Song et al., 2017): when entering the turbulent region from upstream to downstream,
P > ϵ first, and then P < ϵ, which signifies a spatial flux of energy from upstream to
downstream. (In the upper half of our Couette domain, increasing z corresponds to going
downstream in a pipe.)

We now look at the energy budget of the mean flow, presented in figure 3.6c, again
centered around the laminar region and integrated over the upper half of the domain.
Unlike pressure-driven channel or pipe flows, the energy is injected into the plane Couette
flow by the imposed motion of the wall, and this is captured by the viscous diffusion term
T v in the mean-flow energy equation. This injection is mostly balanced by dissipation
and production which fuels fluctuations by extracting energy from the mean flow). The
pressure term T p is very weak and non-linear and advective fluxes are non-uniform. The
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Figure 3.6: (a) Mean-flow profiles (streamwise velocity) and TKE, K(y, z) (white: 0,
blue: 0.08), in a turbulent-laminar pattern centered around the laminar gap at z = 0.
(b) TKE and (c) mean-flow energy budgets for Re = 400. Each term is integrated over
the upper half of the domain, y ∈ [0, 1], where advection by the mean flow is towards the
right.
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advective contribution to the mean flow u · ∇Eu behaves in the opposite way as the
contribution of the Reynolds stress Tnl This advection term transfers energy of the mean
flow from laminar regions, where the production P is small, to turbulent regions, where
the production is large.

In the case of pipe flow, Song et al. (2017) reported that the peak in TKE dissipation is
shifted downstream from the peak in the production. Our data in plane Couette flow does
not support a z-shift in the peaks in ϵ and P . Interestingly, we observe a considerable shift
between the peaks in mean-flow dissipation ϵ at z = −15 and production P at z = −20, as
shown in figure 3.6c. Recall that these plots show quantities integrated only over the upper
half of the domain. The shift in mean-flow peaks is consistent with that between mean flow
and turbulent kinetic energy due to the overhang region surrounding localised turbulence,
which we illustrated in figure 3.6a: the upper-half mean flow is mostly dissipated in the
turbulent-to-laminar overhang region, and not in the center of the turbulent band. In
contrast, in the laminar-to-turbulent interface, the mean flow accelerates, as it is energised
by an advective transfer from the laminar region.

3.5 Spectral decomposition

We now analyse the spectral balance of kinetic energy. In shear flows at higher Re, this
analysis leads to a detailed understanding of the energy sources and transfers within the
flow. We refer the reader to Bolotnov et al. (2010); Lee & Moser (2015); Mizuno (2016);
Cho et al. (2018) for studies at higher Reτ , and to Symon et al. (2021) for a minimal
channel study at Reτ = 180. In a similar vein, Lee & Moser (2019) recently computed
two-point correlations in channel flow.

3.5.1 Notation and governing equations

We begin by writing the Reynolds-averaged Navier-Stokes equations and the equation for
fluctuations from the mean:

∂uj
∂t

+ ui
∂uj
∂xi

+
∂

∂xi
u′iu

′
j = − ∂p

∂xj
+

2

Re

∂sij
∂xi

(3.12)

∂u′j
∂t

+ ui
∂u′j
∂xi

+ u′i
∂u′j
∂xi

= −u′i
∂uj
∂xi

+
∂

∂xi
u′iu

′
j −

∂p′

∂xj
+

2

Re

∂s′ij
∂xi

(3.13)

By taking the z Fourier transform of (3.13) and multiplying by û′j
∗
, followed by averaging

over x and t, we obtain a balance equation for the spectral kinetic energy K̂(y, kz) ≡
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1
2 û

′∗ · û′:

∂K̂(y, kz)

∂t︸ ︷︷ ︸
0

+R

û′j∗̂ui∂u′j∂xi

︸ ︷︷ ︸
−Â(y,kz)

= −R

û′j∗̂u′i∂uj∂xi

︸ ︷︷ ︸
Π̂(y,kz)

− 2

Re
ŝ′ij ŝ

′
ij

∗

︸ ︷︷ ︸
D̂(y,kz)

+
2

Re
R
{
∂

∂y
(û′j

∗
ŝ′yj)

}
︸ ︷︷ ︸

T̂v(y,kz)

−R
{
∂

∂y
(û′y

∗
p̂′)

}
︸ ︷︷ ︸

T̂p(y,kz)

−R

û′j∗̂u′i∂u′j∂xi

︸ ︷︷ ︸
T̂nl(y,kz)

(3.14)

where we revert from the general partial derivative ∂/∂xi or subscript i to the wall-normal
coordinate y when this is the only non-zero term.

- Â is an interaction between mean velocity and fluctuations, corresponding to the
spectral version of the advection term u · ∇K;

- Π̂ is the spectral production term, which is an interaction between the mean gra-
dient and fluctuations at scale kz;

- D̂ is the viscous dissipation at mode kz;
- T̂v, T̂p are transfer terms to mode kz due to strain-velocity and pressure-velocity

correlations;
- T̂nl is an inter-scale transfer to mode kz and position y due to triad interactions.

When summed over kz and integrated over y, this term is zero.

The forms of the pressure, viscous diffusion, dissipation and triadic terms are the same
as they would be if the flow were uniform in z. Only advection and production terms, which
contain the inhomogeneous mean flow, do not simplify as in the uniform case, and instead
require a convolution over wavenumbers. In the usual analysis of uniform turbulence in a
non-tilted box (Bolotnov et al., 2010; Cho et al., 2018; Lee & Moser, 2019), u reduces to
(U(y), 0, 0) and û = (U(y), 0, 0) for kz = 0 and is otherwise 0, which simplifies the spectral
balance. In particular, the advection term Â vanishes, because in such cases:

Â(y, kz) = −R

û′j∗U(y)
∂̂u′j
∂x

 = −1

2
R
{
U(y)

∂

∂x
û′j

∗
û′j

}
= 0 (3.15)

(due to x averaging). This is also true in the case of tilted uniform turbulence u =
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(U(y), 0,W (y)):

Â(y, kz) = −R
{
W (y)ikzû′j

∗
û′j

}
= 0 (3.16)

However, this is not true for a patterned mean flow u = (U(y, z), V (y, z),W (y, z)) like the
one shown in figure 3.3c.

We furthermore introduce the balance equation for the spectral energy of the mean
flow Êu ≡ 1

2 û
∗ · û at wavenumber kz:

∂Êu(y, kz)

∂t︸ ︷︷ ︸
0

+R

{
û
∗
j

̂
ui
∂uj
∂xi

}
︸ ︷︷ ︸

−Â(y,kz)

= R

{
∂û

∗
j

∂xi
û′iu

′
j

}
︸ ︷︷ ︸

−Π̂(y,kz)

− 2

Re
ŝij ŝ

∗
ij︸ ︷︷ ︸

D̂(y,kz)

+
2

Re
R
{
∂

∂y
(û

∗
j ŝyj)

}
︸ ︷︷ ︸

T̂ v(y,kz)

−R
{
∂

∂y
û
∗
yp̂

}
︸ ︷︷ ︸

T̂ p(y,kz)

−R
{
∂

∂y
(û

∗
j û

′
yu

′
j)

}
︸ ︷︷ ︸

T̂nl(y,kz)

(3.17)

where:

- Â is a non-linear transfer term for the mean flow. This is a spectral version of the
advection term u · ∇Eu appearing in the mean-flow balance equation (3.9).

- Π̂ is the interaction between Reynolds stress at scale kz and the mean gradient at
scale kz, and hence is a form of production term.

- D̂ is a dissipation term for the mean flow energy;

- T̂ v, T̂ p are transfer terms due to correlations between mean strain and velocity,
and mean pressure and velocity;

- T̂nl is a flux term due to the interactions between the Reynolds stress and the
mean flow.

In the rest of this section, we will focus on y−integrated TKE and mean-flow balance
to characterise the spectral distribution of total energy. As the mean flow u is dominated
by u0 and u1, we write (3.17) in y-integrated form for kz = 0 and kz = 2π/Lz and obtain:

I + Â0 − Π̂0 − D̂0 = 0 and Â1 − Π̂1 − D̂1 = 0 (3.18)

where we have introduced

Π̂0 ≡
∫ 1

−1
Π̂(y, 0) dy and Π̂1 ≡

∫ 1

−1
Π̂

(
y,

2π

Lz

)
dy (3.19)
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with similar definitions for Â0, D̂0, Â1 and D̂1. We have also introduced the total energy
injection due to the action of the walls:

I =
∑
kz

∫ 1

−1
T̂ v(y, kz) dy =

2

Re

∑
kz

û
∗
j (kz) ŝyj(kz)

∣∣∣∣1
−1

(3.20)

This term is non-zero only for mode kz = 0 because the applied wall velocity is uniform,
so that

I =
2

Re
û
∗
j (kz = 0) ŝyj(kz = 0)

∣∣∣∣1
−1

= 2
u2τ
U2
wall

(3.21)

Note that T̂ p and T̂nl integrate to zero, since both uy and the Reynolds stress vanish at
the walls.

Two important comments can be made at this stage. The first one starts from a word
of caution: all terms in (3.17) are not the Fourier transforms of those in (3.9). (This is a
generalisation of the fact that Ê(kz) is defined to be û(kz) · û(kz)/2 and not û · u(kz)/2.)
This means in particular that although energy is injected only in the balance of u0 via
I, the energy is not injected uniformly within the flow, as T v is not uniform in z (see
figure 3.6c). The connection with the physical injection of energy is indeed only through
z averaging:

I =
1

Lz

∫ Lz

0

∫ 1

−1
T v(y, z) dy dz (3.22)

The second comment is about the way in which this injected energy is communicated to
the TKE spectral balance. Contrary to the physical-space version of the energy balance,
where the same production P appears in the TKE (3.6) and the mean flow (3.9) equations,

the spectral production terms appearing in (3.14) and (3.17), Π̂ and Π̂, are different.
However, when summed over kz and integrated over y, these two terms agree, so we can
write the total production Π as:

Π ≡
∑
kz

∫ 1

−1
Π̂(y, kz) dy =

∑
kz

∫ 1

−1
Π̂(y, kz) dy (3.23)

Furthermore, in the physical-space representation,

Π =
1

Lz

∫ Lz

0

∫ 1

−1
P (y, z) dz dy =

1

Lz

∫ Lz

0

∫ 1

−1
ϵ(y, z) dz dy (3.24)

where the last equality follows since all transfer terms integrate to zero. The equivalence
(3.23) is key to understanding how TKE and mean-flow energy are connected. This will
be further developed in section 3.5.2.
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3.5.2 Results for the spectral energy balance

a) TKE balance

We examine the spectral balance of the TKE (3.14), integrated over the cross-channel
direction. This balance is presented for the patterned state in figure 3.7a (Re = 400) and
for the uniform state on figure 3.7c (Re = 500). The transfer terms T̂v and T̂p are not
shown as they integrate to zero. (The y dependence of energy transfer will be discussed
in section 3.7.)

We first focus on the similarities between patterned and uniform states. We observe a
peak in the production and dissipation terms near the energy-containing scale krolls, as we
saw for the total energy in figures 3.3a and 3.3b. At this scale, the non-linear transfer T̂nl
is negative and of large amplitude: scale krolls produces much more than it dissipates, and
the remainder is transferred to other kz. The non-linear transfer becomes positive above
a small-scale wavenumber that we denote . (≃ 3.6 in the patterned state at Re = 400 and
the uniform state at Re = 500.) This positive transfer at small scales is indicative of a
direct energy cascade to small dissipative scales.

The TKE balance for kz < krolls ≃ 1.41 contrasts with that at large kz. First, pro-
duction decreases with decreasing kz and becomes negative for kz < 0.5. This negative
production at large scales appears in both patterned and uniform states. It corresponds to
energy transfer from the fluctuations to the mean flow. The zone of negative production
spans from kz = 0 to kz ≃ 0.47 in both the patterned and uniform cases presented here.
We note that this unusual sign of part of the production term has been also reported by
Symon et al. (2021) in spanwise-constant modes of channel flow in a minimal domain.
Second, energy in the range kz < 0.94 is fuelled by a positive non-linear transfer T̂nl,
which signifies a transfer from small to large scales. This is present in both patterned and
uniform states. We denote the (large) scale at which this transfer becomes positive by kLS
as seen in figures 3.7a, 3.7d and 3.5. In the part of the spectrum kz < kLS , the influx of
energy from smaller scales is mostly balanced by dissipation, while only a relatively small
amount of energy is yielded to the mean flow via negative production.

Now considering the differences between the patterned (figure 3.7a) and uniform states
(figure 3.7c), the advection term Â plays a more significant role in redistributing energy
between scales in the patterned state: it is positive for kz < 1.1 < krolls, negative near
krolls, and negligible for kz > 3. This role is very similar to that of non-linear transfers T̂nl,
but with weaker amplitude. Â is nearly zero in the uniform state. This term should vanish
when the mean flow is strictly uniform in z, see (3.16). This is not exactly the case here,
especially at kz ≃ krolls, and this is probably due to the inexact uniformity of the mean
flow. Other differences are visible between the uniform and patterned states, especially
regarding the shape and intensity of each individual curve: for instance, the behaviour
of T̂nl and D̂ is changed near krolls: these are almost equal in the uniform case while D̂
exceeds T̂nl in the patterned case. The comparison between uniform and patterned states
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(b) Pattern (Re = 400), mean flow
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(c) Uniform (Re = 500), TKE
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(d) Uniform (Re = 500), mean flow

Figure 3.7: (a) Spectral energy budget (3.14) for a pattern at Re = 400, integrated over
y ∈ [−1, 1]. Viscous and pressure transfers are not shown as they integrate to 0. The grey
circles indicate kLS and , which delimit the spectral region where transfer T̂nl is negative.
(b) Spectral energy budget of the mean flow (3.17) integrated over y ∈ [−1, 1], shown for
kz = 0, kz = 2π/Lz and summed over kz > 2π/Lz. (c, d) show the same as (a, b) for a
uniform state at Re = 500.
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will be discussed further in section 3.6.

b) Mean-flow balance

The spectral energy balance of the mean flow (4.15) is presented in figure 3.7b and 3.7d
for both patterned and uniform states. In each case, the three panels correspond, from
left to right, to modes u0, u1 and u>1. In both patterned and uniform cases, u0 is fueled
by the mean strain via injection term I (purple cross). This energy is dissipated (blue

square) and also transferred to the fluctuations via the production Π̂0 (red circle). Note

that Π̂ > 0 corresponds to usual positive production and hence a sink of energy with

respect to the mean flow: production appears as −Π̂ in the mean balance equation (3.17).

For u1 in the patterned state (middle panel of figure 3.7b), the main source of energy

is the advective term Â1, with some energy coming from the negative production Π̂1 < 0.
Thus, the u1 component of the mean flow is fuelled to some extent by a negative transfer
from fluctuations back to mean flow, but the advective contribution dominates. The two
sources are balanced by dissipation. For the uniform state (middle panel of figure 3.7d),
the terms are more than an order of magnitude smaller than in the patterned state, and
the production term has the opposite sign. The remaining scales in the mean spectral
balance kz > 2π/Lz (right panels of figures 3.7b and 3.7d) are very weak compared to the
first two components.

Our results show that the advection term Â plays a crucial role in the mean-flow balance
in the patterned state. Since this term represents a transfer due to non-linearities, its sum

over kz and y vanishes. At Re = 400, we find that Â0 ≃ −9.0 × 10−5, Â1 ≃ 9.4 × 10−5,

and
∑

kz>2π/Lz

∫ 1
−1 Â(y, kz) dy ≃ −4 × 10−6 Hence we have the following approximate

equality:

Â0 ≈ −Â1. (3.25)

Even though the advection is negligible compared with the dominant terms in the u0

balance, it is the dominant source of energy at the pattern scale. In the uniform case,

Â0 ≈ Â1 ≈ 0.

c) Connection between TKE and mean flow

We now investigate the connection between the TKE and mean flow, focusing particularly

on the spectral production terms Π̂ and Π̂. While these production terms take different
forms in the TKE and mean-flow spectral balances (eq. (3.14) and (3.17)), upon integra-
tion over y and summation over kz (equation (3.23)), they give the same total production
Π.
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State Re Π Π̂0 Π̂1 Π̂>0 Π̂<0

Pattern 400 3.71× 10−3 3.77× 10−3 −5.44× 10−5 3.76× 10−3 −5.34× 10−5

Pattern 430 3.82× 10−3 3.87× 10−3 −4.10× 10−5 3.87× 10−3 −5.36× 10−5

Uniform 430 4.14× 10−3 4.14× 10−3 O(10−6) 4.20× 10−3 −6.30× 10−5

Uniform 500 4.12× 10−3 4.11× 10−3 O(10−6) 4.17× 10−3 −5.64× 10−5

Table 3.2: Production terms appearing in the mean flow (3.17) and the TKE (3.14)
balance, as decomposed in (3.26).

We decompose the total production in two ways: first by writing the total TKE produc-
tion Π as a sum of its positive and negative parts, and second by considering the dominant

contributions from u0 and u1 in the mean-flow production Π̂:

Π = Π̂<0 + Π̂>0 ≃ Π̂0 + Π̂1 (3.26)

where:

Π̂>0 ≡
∞∑
kz=0

∫ 1

−1
Π̂(y, kz) dy Θ

(∫ 1

−1
Π̂(y, kz) dy

)
(3.27)

and Π̂<0 ≡
∞∑
kz=0

∫ 1

−1
Π̂(y, kz) dy Θ

(
−
∫ 1

−1
Π̂(kz) dy

)
, (3.28)

where Θ is the Heaviside function. We recall that figure 3.7a shows that
∫ 1
−1 Π̂(y, kz) dy <

0 occurs mostly at large scales. Each term in (3.26) in the patterned and uniform states
is displayed in table 3.2 for various values of Re.

We observe that in the patterned case the positive production is very close to Π̂0 and

the negative production is very close to Π̂1, i.e. Π̂0 ≃ Π̂>0 and Π̂1 ≃ Π̂<0. In the uniform

case, Π̂1 is very small and Π̂0 accounts for essentially all the production, so it is the sum
of the positive and negative parts. In other words:

Π̂0

{
≈ Π̂>0 in patterned state

≈ Π̂>0 +Π<0 in uniform state
Π̂1

{
≈ Π<0 in patterned state

≪ Π<0 in uniform state
(3.29)

This supports an essential connection between the TKE and the mean-flow production
terms: in the patterned state, almost all negative TKE production goes to u1, and almost
all positive TKE production comes from u0; in the uniform state, the negative TKE
production is absorbed by u = u0. (In all cases, the negative production, Π<0, represents
less than 1.5% of Π: −Π<0/Π ≃ 1.46% at Re = 400 and 1.37% at Re = 500.)
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Figure 3.8: Illustration of the mean flow - TKE interaction for (a) the uniformly turbulent

state and (b) the patterned state. In the uniform state, Π̂0 ≈ Π̂<0 + Π̂>0, while in the

patterned state, Π̂0 ≈ Π̂>0 and Π̂1 ≈ Π̂<0.

At this stage, we can draw the following conclusions, illustrated in figures 3.8a and
3.8b:

(1) Most of the energy flows into the mean flow and then to TKE according to
the usual picture from developed shear flows: energy is injected to u0 by viscous
stress, and is transferred to fluctuations via positive production. Energy is mostly
produced at the scale of the energy-containing eddies (here, streaks and rolls)
and is dissipated to the smaller scales through a positive transfer term.

(2) An important modification to this usual picture is the presence of an inverse
transfer of some TKE to large scales via triad interactions T̂nl. This energy
is not entirely dissipated and instead feeds back to the mean flow via negative
production Π̂<0.

(3) Although weak compared to total production Π, this negative production Π̂<0

fuels u1 in the patterned state.

(4) Â1 is the main source of energy of u1: non-linearities of the mean flow play a
stronger role than negative production.

We have defined large scales as those for which the non-linear transfer is negative:
kz < kLS in figures 3.7a and 3.7c. This separates the large and small scales in figure
3.8. Note, however, the scales at which production becomes negative are even larger
kz ≲ 0.5 < kLS in figures 3.7a and 3.7c. We do not distinguish these distinct notions of
large scales in figure 3.8.
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Figure 3.9: Cumulative energy balance (3.30) integrated over y ∈ [−1, 1] in the patterned
case at Re = 400.

We extend these considerations of transfers across scales by considering the quantities

Π̂<k(kz) ≡
∑
k′z<kz

∫ 1

−1
Π̂(y, k′z) dy, D̂<k(kz) ≡

∑
k′z<kz

∫ 1

−1
D̂(y, k′z) dy

Φ̂<k(kz) ≡
∑
k′z<kz

∫ 1

−1
T̂nl(y, k

′
z) dy, Â<k(kz) ≡

∑
k′z<kz

∫ 1

−1
Â(y, k′z) dy (3.30)

These scale-to-scale quantities are shown in figure 3.9. Φ̂<k is the non-linear energy flux
across a wavenumber kz. This integrated picture conveys the presence of a zone of inverse
flux of energy to large scales (Φ̂<k > 0 for kz < 1.88). For kz < O(1), this inverse transfer
is the dominant source and is mostly balanced by dissipation. Starting at kz > O(1),
production comes into play and eventually is the only source.

We emphasise that this strong inverse transfer does not correspond to an inverse cascade
per se because it does not lead to an accumulation of energy towards the largest available
scale in the system. Indeed, simulations in Large Slender Boxes have emphasized the
presence of a small range of energetic large scales, around λz ≃ 40 (figure 3.3a). It is
expected that there is a build-up making energy condense around this finite scale.

3.6 Evolution with Reynolds number

We now address the dependence of the global energy balance on Re. Unlike previous
studies (Tuckerman & Barkley, 2011; Rolland & Manneville, 2011), we do not focus on an
order parameter for the transition between uniform turbulence and patterns, but rather
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compute the Reynolds decomposition for each of the two states through the transition.
Figure 3.10 presents the evolution of several quantities computed in a Minimal Band Unit
of Lz = 40 for the uniform states at higher Re and for the patterned states at lower
Re. For fluctuating bistable cases at intermediate Re (e.g Re = 430, as shown in figure
3.2c), conditional averaging has been carried out over selected time windows during which
the state is either patterned or uniform. To compare across different values of Re, we
will normalise these quantities either by viscous wall units or by global quantities (total
injection I or total production Π).

We start with the evolution of energies with Re and consider the following quanti-
ties: average energy ⟨E⟩+, relative energy of u0 given by ⟨Eu0⟩ / ⟨E⟩ ≡ ⟨u0 · u0/2⟩ / ⟨E⟩,
average TKE ⟨K⟩+, and average dissipation ⟨ϵ⟩+. (Here, ⟨·⟩ denotes a (y, z) average of
the (x, t)-averaged quantities introduced in sections 3.4 and 3.5.) Quantities are defined
in terms of wall units (i.e. normalised by Re u4τ/U

4
wall). As seen in figure 3.10, all of

these quantities change discontinuously when the flow switches from the uniform to the
patterned state as Re is decreased.

Next we consider the terms appearing in the mean balance and show their evolution with
Re. We normalise all terms by injection rate I except for I itself, which we normalise by
wall units and hence plot I+. The injection, dissipation and advection are discontinuous,

with Â1/I undergoing an especially dramatic increase, by a factor of nearly ten, when
going from uniform turbulence to the patterned state. In contrast, Π/I is approximately
continuous through the transition from uniform to patterned states, meaning that at a
given Re the transfer of energy between mean flow and TKE is independent of whether
the flow is uniformly turbulent or patterned. Interestingly, Π/I decreases with decreasing
Re, meaning that relatively less energy is transferred to turbulence when Re is reduced,
and hence more energy is retained by the mean flow at lower Re. While Π/I is continuous
through the transition, the relative portion of negative production is not continuous: the
patterned state shows a smaller −Π̂<0/Π than the uniform state. What this means is
that, surprisingly, the relative influx of energy from turbulence to the mean flow is lower
in the patterned state than in the uniform state.

We now turn to the evolution of transfer terms with Re. For this purpose, we focus
only on the non-linear transfers into large scales at kz < kLS , and into small dissipative
scales at kz >. (See figure 3.7.) We define the total nonlinear transfer to large scales T̂LS
and to small scales T̂SS by

T̂LS =
∑

kz≤kLS

∫ 1

−1
T̂nl dy T̂SS =

∑
kz>kSS

∫ 1

−1
T̂nl dy, (3.31)

We plot the ratio T̂LS/T̂SS in figure 3.10. For the uniform state, relatively more energy is
transferred to large scales as Re decreases. The ratio undergoes a discontinuous drop at
the transition to patterns, where relatively less transfer goes to large scales. We find that
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Figure 3.10: Evolution with Re of various energetic quantities defined throughout the
text (equations (3.20), (4.15), and (3.19)).
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T̂LS/T̂SS ∼ 1 in the patterned state.

Lastly, in the two bottom-right plots of figure 3.10 we focus on the streak/roll scale
krolls. We consider three quantities

Π̂rolls =

∫ 1

−1
Π̂(y, krolls) dy, D̂rolls =

∫ 1

−1
D̂(y, krolls) dy, T̂nl,rolls =

∫ 1

−1
T̂nl(y, krolls) dy

(3.32)
and plot the ratios Π̂rolls/Π and T̂nl,rolls/D̂rolls. We recall that Π̂rolls is the maximum of

Π̂ visible in figure 3.7a and 3.7c. We observe that the plotted ratios are approximately
constant in each of the uniform and patterned states over the Re range considered, but
each ratio exhibits a strong discontinuity at the transition between states. In the uniform
case, T̂nl,rolls/D̂rolls > 1, meaning that at the scale krolls, energy is transferred to other
scales more than it is directly dissipated. This relationship is reversed in the patterned
state. We note that krolls is nearly constant with Re in the range under study.

We summarise our findings: First, most quantities are discontinuous through the transi-
tion. The notable exception is the relative production, for which the uniform and patterned
states at the same Re exhibit the same exchange of energy between mean flow and TKE:

Π

I

∣∣∣
pattern

≈ Π

I

∣∣∣
uniform

(3.33)

Moreover, we find that both negative production Π̂<0 and inverse transfer to large scales
T̂LS are lower in the patterned state than in the uniform states.

It seems counter-intuitive to associate a stronger mean flow u with a reduced fueling
of the mean flow by the fluctuations (via negative production Π̂<0). This is, however,
what we observe in comparing the patterned state to the uniform state at Re = 430 and
440. Referring to figure 3.8, the exchange between u and TKE is more directional in the
patterned state: the negative production is directly transferred to mode u1, whereas it is
diverted into u0 in the uniform state. Furthermore, the patterned state is more balanced

Π̂<0 ≈ Π̂1, Π̂>0 ≈ Π̂0, T̂LS ≈ T̂SS (3.34)

than the uniform state.

The patterned state could be seen as more adapted to an increasingly dissipative en-
vironment when Re decreases: as the mean and fluctuations dissipate more their energy,
they interact less with each other via the production terms and the fluctuations transfer
less of their energy to other scales. Relatively to the amount of injected energy, less en-
ergy goes to turbulent fluctuations and the mean flow is therefore stronger in intensity.
The patterned state diverts this mean-flow energy from the uniform mean flow u0 to the
large-scale flow u1. Whether these energy processes have a role in the transition from
uniform to patterned state is speculative at this stage.
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Figure 3.11: TKE spectral balance (3.14) at different y locations (left: mid-plane, y = 0;
middle: y = 0.63; right: near-wall, y = 0.92). Shown is a patterned case at Re = 400.

3.7 Wall-normal dependence of spectral balance

3.7.1 Energy balance at various y locations

Up to this point, nothing has been said about the location of the energy transfers in the
wall-normal direction and no distinction has been made between near-wall and bulk effects
on the mean flow and turbulent energies. In this section, we present results on the TKE
balance and subsequently the mean-flow balance for the patterned state at Re = 400.

Figure 3.11 shows the spectral TKE balance at different y locations: the mid-plane
(y = 0, y+ = 29.6, left panel), the layer of maximal spectral production Π̂ (y = 0.63,
y+ ≃ 11, middle panel) and the near-wall region (y = 0.92, y+ ≃ 2.4, right panel).

The balance in the near-wall region is simple because it is dominated by viscous effects,
with injection of energy via the rate-of-strain compensated by dissipation. A small portion
of the energy comes from a positive transfer T̂nl. In the plane y = 0.63, the production
term Π̂ is maximal (as will be shown in §3.7.2.). Production peaks at the roll scale krolls,
while the dissipation, viscous diffusion and non-linear transfers are all negative with similar
magnitudes near this scale. Production becomes negative and non-linear transfers positive
at long length scales (small kz), similar to what we showed for y-integrated quantities in
§3.5.2. The spectral balance at the mid-plane is qualitatively similar to that at the plane
y = 0.63, with the notable exception that the viscous diffusion T̂v vanishes due to reflection
symmetry about the midplane. Π̂ and Tnl are smaller in the mid-plane than in the plane
y = 0.63, while D̂ and Â have nearly the same magnitude in both planes.

The y-dependence of the mean-flow energy balance (3.17) is displayed in figure 3.12. In
line with our previous observations on y-integrated quantities (§3.5.2), figure 3.12 reveals
different phenomenology depending on the wavenumber (kz = 0, kz = 2π/Lz or kz >
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Figure 3.12: Evolution of the mean-flow energy balance (3.17) with y, for kz = 0,
kz = 2π/Lz, and summed over kz > 2π/Lz. (Values for y < 0 are obtained by reflection
in y = 0.) Shown is a patterned case at Re = 400.

2π/Lz). The gain in energy in u0 (left panel) due to the viscous transfer term T̂ v is large
near the wall where energy is injected into the flow, whereas the two terms involving the

Reynolds stress, Π̂ and T̂nl, are dominant and in approximate balance at the mid-plane.

Note that while T̂nl integrates to zero, it has a local influence: flow above y = 0.63
transfers energy to flow below.

The balance of u1 (middle panel) presents a complex and interesting behaviour. We

know from §3.4 that when integrated over y, the balance for mode u1 is such that Π̂1 < 0
and that this mode extracts energy from TKE. However, the y-dependence of this term

shows a change in sign: the production is only negative (i.e. −Π̂1 > 0) for −0.6 ≲ y ≲ 0.6.

T̂nl undergoes a change in sign at approximately the same y value, with similar behaviour,

although their y integrals differ (the integral of T̂nl vanishes whereas that of Π̂ is negative).

T̂nl dominates the energy source at y ≃ 0.8. At the wall (y = 1), the energy balance is

between viscous diffusion and dissipation. The advection term Â is always positive.

The situation at kz > 2π/Lz is perhaps of negligible importance because of the small
amplitude of the energy at this scale. However, we note that the balance near the wall (i.e.
0.7 ≲ y ≲ 1) is qualitatively similar to that of mode u1, dominated by viscous diffusion,

dissipation, and triad interaction. In the bulk, energy comes from Π̂ and is diverted
towards the other terms
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3.7.2 Production and non-linear transfers in the (y, kz) plane

Figure 3.13 and 3.14 show, respectively, Π̂+(y, kz) and T̂
+
nl(y, kz) (i.e. Π̂ and T̂nl normalised

by Re u4τ/U
4
wall) for different states and Re ranging from 380 to 1000. We focus on these

terms because of their unusual signs in the balance at large scales (small kz). The zone
of negative production at large scales is encircled by the dashed contour. We note that
negative production spans the range y ∈ [0, 0.8] at low Re, whereas it is more concentrated
between y = 0.6 and 0.9 at Re = 1000. In viscous units, it approximately spans from
y+ = 5 to y+ ≈ 30 at all Re.

The triadic interaction term T̂+
nl is shown on figure 3.14. Inverse transfers are present

from k+z = 0 up to k+z ≈ 0.07 in the patterned cases, and k+z ≈ 0.05 in the uniform case
at Re = 1000 (Reτ = 66.4), i.e. scales smaller than that of rolls and streaks (krolls ≃ 1.41,
k+rolls ≃ 0.04 for Re ≤ 430). However, this small-scale part of the inverse transfer is
localised only near the wall (y+ < 8), while for k+z < 0.02, the inverse transfer concerns
the whole y domain.

We see two caveats that prevent further quantitative comparisons to other studies in
non-tilted domains, for both transitional and non-transitional regimes. First, the impo-
sition of an angle (θ = 24◦) is completely arbitrary for uniform turbulence, and along
with the short domain size Lx, the streak spacing is imposed in our numerical domain. In
Appendix 3.A, we present results in a non-oblique flow unit (Lstrm, Lspan) = (30, 20) to
confirm our observations in the Minimal Band Unit in the non-transitional case Re = 1000
(Reτ = 66.2). Second, the reduction to one dimension can miss the two-dimensionality
of energy transfers: inter-scale transfers can actually be orientational, i.e. they may differ
for wavenumbers (kx, kz) with the same modulus but different orientations. Therefore,
inverse transfers in a one-dimensional spectrum can be misleading as they mix transfers
between different orientations and transfers between different scales |k|.

3.8 Conclusion

Wall-bounded turbulence at low Reynolds numbers is marked by a strong scale separation
between the streak/roll scale of the self-sustaining process that comprises the turbulence,
and the large-scale flow associated with oblique laminar-turbulent patterns. In this chap-
ter, we have computed the spectral energy balances for both the mean flow and the turbu-
lent fluctuations in a Minimal Band Unit, thus revealing the energy transfers connecting
the different scales in transitional plane Couette flow.

As expected, TKE production is maximal at the scale of streaks and rolls, and a direct
cascade sends energy to smaller dissipative scales. However, part of the TKE is also
transferred to large scales via non-linear interaction. At large scales, this energy is partly
sent to the mean flow, via negative production. Negative production has not received
much attention although it has been reported for spanwise-constant modes at Reτ = 180
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(a) Pattern, Re = 400 (Reτ = 29.7)
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(b) Pattern, Re = 430 (Reτ = 31.9)
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(c) Uniform, Re = 430 (Reτ = 33.0)
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(d) Uniform, Re = 1000 (Reτ = 66.4)

Figure 3.13: Visualisations of production Π̂+(y, kz) for different Re and states. The
cross-channel range is from the mid-plane (y = 0, y+ = Reτ , lower axis) to the wall
(y = 1, y+ = 0, upper axis). Dashed line separates positive from negative value for small
kz.
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(a) Pattern, Re = 400 (Reτ = 29.7)
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(b) Pattern, Re = 430 (Reτ = 31.9)
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(c) Uniform, Re = 430 (Reτ = 33.0)
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(d) Uniform, Re = 1000 (Reτ = 66.4)

Figure 3.14: Visualisations of of non-linear transfer T̂nl(y, kz) for different Re and states.
The cross-channel range is from the mid-plane (y = 0, y+ = Reτ , lower axis) to the wall
(y = 1, y+ = 0, upper axis).
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by Symon et al. (2021). We have found negative production at large scales for Reτ ≲ 66,
which, although of weak intensity, plays a role in feeding the inhomogeneous mean flow in
transitional patterns.

The intense large-scale flow along laminar-turbulent bands appears in the single trigono-
metric component of the mean flow u1. The main energy source for u1 is the non-linear

interaction with the uniform component u0 (via the term called Â1 in this chapter). This
interaction is due to the mean advection, which plays a significant role in both spatial and
spectral transfers of mean-flow energy. Interestingly, the u1 component of the mean flow
is also fueled by negative production transferring energy from fluctuations to mean flow.
However, this is only a secondary driver of u1, as negative production accounts for only
approximately 20% of its energy sources (see figure 3.7b).

We have found that the ratio of total TKE dissipation to total energy injection is
continuous through the evolution from uniform turbulence to patterns as Re decreases.
Our results indicate that as the environment becomes more dissipative with decreasing
Re, the energy is reorganised such as to balance large-scale and small-scale transfers and
to direct negative production into large-scale flow u1.

The large scales characterising the transitional regime are probably of a different nature
than large-scale motions observed in uniform shear flows at higher Reτ (Jiménez, 1998;
Smits et al., 2011; ?, and references therein), which are typically streamwise-elongated
modes dictated by inertial effects far from the wall (in the outer zone). To the extent
of our knowledge, large-scale fluctuating motions in fully developed turbulence do not
feed the mean flow via negative production. The inverse transfers from small to large
scales, which we report here in low-Re wall-bounded turbulence, echo those observed at
higher Re (Cimarelli et al., 2013; Mizuno, 2016; Aulery et al., 2017; Cho et al., 2018; Lee &
Moser, 2019; Kawata & Tsukahara, 2021). Understanding the role of these transfers in the
autonomous mechanisms governing wall-bounded turbulence is an active research topic.
In fully developed turbulence, these inverse transfers are weaker than those reported here
in transitional turbulence, and are essentially concentrated near the wall, while we observe
inverse transfers over the whole shear layer that dominate the TKE budget at large scales.

Our analysis of energy budgets does not directly invoke a dynamical mechanism, such
as the self-sustaining process governing wall-bounded turbulence and related mechanisms
describing large scales in developed turbulence (Hwang & Cossu, 2010; Hwang & Bengana,
2016; de Giovanetti et al., 2017; Cho et al., 2018). Further investigations are required
to understand whether the strong inverse transfers and the negative production that we
observed are connected to the non-linear regeneration of rolls in the self-sustaining process.
Note that the energetic imprint of the self-sustaining process in developed wall-bounded
turbulence was recently analysed by Cho et al. (2018) and Kawata & Tsukahara (2021),
the latter emphasising the role of non-linear transfers.

Although the oblique simulation domain is very useful for the study of inter-scale distri-
bution of energy in patterned transitional turbulence, further confirmation via simulations
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(b) Non-linear transfer

Figure 3.15: Production and transfer spectra in a non-tilted domain with (Lstrm, Lspan) =
(30, 20) for Re = 1000 (Reτ = 66).

in large streamwise-spanwise domains is also required: our simulation domain restricts the
flow in a number of ways, such as imposing an orientation as well as a mean streak spacing
due to the restrained short size Lx = 10. These features do not seem to alter the robust
observations that we have made about mean-turbulent interaction and inverse transfers
(see Appendix 3.A). However, it would be beneficial to disentangle the streamwise and
spanwise directions in the energy budget and to compute inter-component transfers, so as
to better understand the role of the self-sustaining process in the generation of transitional
large-scale structures.

In chapter 4, the energy cycle described above will be essential to understand the
selection of a finite wavelength of transitional patterns.

3.A Spectral balance in a streamwise-spanwise domain at Reτ =
66.

The use of a Minimal Band Unit of size (Lx, Lz) = (10, 40) to study Re outside of the
transitional regime can be misleading, mainly because the short size and the tilt angle
impose a strict spacing for the streaks. This is certainly why the production and transfer
spectra shown at Re = 1000 (figures 3.13d and 3.14d) present a sharp peak at kz = 1.41
(k+z = 0.0214, λ+z = 290) along with a tenuous maximum around k+z = 0.05 (λ+z = 126,
λ+span = 138). In a streamwise-spanwise domain of size (Lstrm, Lspan) = (30, 20) and
number of grid-points (Nstrm, Nspan) = (375, 250), the streamwise-averaged spectrum is
computed as a function of spanwise wavenumber kspan on figure 3.15, and presents a peak
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located around k+span = 0.05, λ+span ≃ 130, and no peak below. This is also true for
the transfer spectrum. However, the features observed in a Minimal Band Unit are still
present: negative production for k+span < 0.01 and inverse transfer occupying the whole
shear layer for k+span < 0.02.



Chapter 4

Nucleation and optimal wavelength for
transitional patterns

Low Reynolds number turbulence in wall-bounded shear flows en route to laminar flow
takes the form of oblique localised turbulent structures. These emerge from uniform
turbulence via a spatiotemporal intermittent process in which localised quasi-laminar gaps
randomly nucleate and disappear. For slightly lower Reynolds numbers, periodic and
approximately stationary laminar-turbulent patterns predominate. The statistics of quasi-
laminar regions are analysed in several respects, including the distributions of space and
time scales and their Reynolds number dependence. A smooth, but marked transition
is observed between uniform turbulence and flow with intermittent quasi-laminar gaps,
while the transition from gaps to patterns is more gradual. Wavelength selection in these
patterns is analysed via numerical simulations in oblique domains of various sizes. Lifetime
measurements in a minimal domain demonstrate the existence of a preferred wavelength.
Wavelet transforms are performed on turbulent-laminar patterns, measuring areas and
times over which a given wavelength dominates in a large domain. This leads to the
quantification of the stability of a pattern as a function of wavelength and Reynolds
number. We report that the preferred wavelength maximises the energy and dissipation of
the large-scale flow along laminar-turbulent interfaces. This optimal behaviour is primarily
due to the advective nature of this large-scale flow, while the role of turbulent fluctuations
is secondary in the wavelength selection.

4.1 Introduction

The transition to turbulence in wall-bounded shear flows is characterised by coexisting
turbulent and laminar regions. This phenomenon was first described by Coles & van
Atta (1966) and by Andereck et al. (1986) in Taylor-Couette flow. Later, by constructing

113
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Taylor-Couette and plane Couette experiments with very large aspect ratios, Prigent et al.
(2002, 2003) showed that these coexisting turbulent and laminar regions spontaneously
formed regular patterns with a selected wavelength and orientation that depend system-
atically on Re. These patterns have been simulated numerically and studied intensively
in plane Couette flow (Barkley & Tuckerman, 2005, 2007; Duguet et al., 2010; Rolland &
Manneville, 2011; Tuckerman & Barkley, 2011), plane Poiseuille flow (Tsukahara et al.,
2005b; Tuckerman et al., 2014; Shimizu & Manneville, 2019; Kashyap, 2021), and Taylor-
Couette flow (Meseguer et al., 2009; Dong, 2009; Wang et al., 2022).

In pipe flow, the other canonical wall-bounded shear flow, only the streamwise direction
is long, and transitional turbulence takes the form of flashes (Reynolds, 1883) or puffs
(Wygnanski & Champagne, 1973), which are the one-dimensional analog of bands. In
contrast to bands in planar shear flows, experiments and direct numerical simulations show
that puffs never form regular spatially periodic patterns (Moxey & Barkley, 2010; Avila
& Hof, 2013). Instead, the spacing between them is dictated by short-range interactions
(Hof et al., 2010; Samanta et al., 2011). Puffs have been extensively studied, especially
in the context of the model derived by ??Barkley (2016) from the viewpoint of excitable
media. In this framework, fluctuations from uniform turbulence trigger laminar gaps (i.e.
low-energy holes in the turbulent flow) at random instants and locations in the flow, as has
been seen in direct numerical simulations (DNS) of pipe flow. The bifurcation scenario
giving rise to localised gaps has been investigated by Frishman & Grafke (2022), who
called them anti-puffs. Interestingly, spatially periodic solutions like those observed in
planar shear flows are produced in a centro-symmetric version of the Barkley model (?)

In this chapter, we will show that in plane Couette flow, as in pipe flow, short-lived
localised gaps emerge randomly from uniform turbulence at the highest Reynolds numbers
in the transitional range, which we will see is Re ≈ 470 in the domain which we will study.
The first purpose of this chapter is to investigate these gaps. The emblematic regular
oblique large-scale bands appear at slightly lower Reynolds numbers, which we will see is
Re ≈ 430.

If the localised gaps are disregarded, it is natural to associate the bands with a pattern-
forming instability of the uniform turbulent flow. This was first suggested by Prigent et al.
(2003) and later investigated by Rolland & Manneville (2011). Manneville (2012) and
Kashyap (2021) proposed a Turing mechanism to account for the appearance of patterns
by constructing a reaction-diffusion model based on an extension of the Waleffe (1997)
model of the streak-roll self-sustaining process. ? discovered a sequence of bifurcations
leading to a large-scale steady state that resembles a skeleton for the banded pattern,
arising from tiled copies of the exact Nagata (1990) solutions. The relationship between
these pattern-forming frameworks and local nucleation of gaps is unclear.

The adaptation of classic stability concepts to turbulent flows is a major current re-
search topic (see, e.g., Markeviciute & Kerswell (2022)). At the simplest level, it is always
formally possible to carry out linear stability analysis of a mean flow as in Barkley (2006);
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Bengana et al. (2019). The mean flow of uniformly turbulent plane Couette flow has been
found to be linearly stable (Tuckerman et al., 2010). However, this procedure makes the
drastic simplification of neglecting the Reynolds stress entirely in the stability problem
and hence its interpretation is uncertain. The next level of complexity and accuracy is to
represent the Reynolds stress via a closure model. However, closure models are designed
for high-Reynolds-number fully developped turbulence rather than the weak turbulence
of transitional wall-bounded shear flows. Indeed, a study using the (K,Ω) model yielded
predictions that are completely incompatible with results from full numerical simulation
or experiment (Tuckerman et al., 2010). Another turbulent configuration in which robust
large scales emerge are zonal jets, characteristic of geophysical turbulence. For zonal jets,
a closure model provided by a cumulant expansion (?Tobias & Marston, 2013) has led to
a plausible stability analysis (Parker & Krommes, 2013). Other strategies are possible for
turbulent flows in general: Kashyap et al. (2022) examined the averaged time-dependent
response of uniform turbulence to large-wavelength perturbations and provided evidence
for a linear instability in plane channel flow. They computed a dispersion relation which
is in good agreement with the natural spacing and angle of patterns.

Classic analyses for non-turbulent pattern-forming flows, such as Rayleigh-Bénard con-
vection or Taylor-Couette flow, yield not only a threshold but also a preferred wavelength,
as well as existence and stability ranges for other wavelengths through the Eckhaus in-
stability (Busse, 1981; Ahlers et al., 1986; Riecke & Paap, 1986; Tuckerman & Barkley,
1990; Cross & Greenside, 2009). As the control parameter is varied, this instability causes
spatially periodic states to make transitions to other periodic states whose wavelength is
preferred. Eckhaus instability is also invoked in turbulent zonal jets (Parker & Krommes,
2013).

The second goal of this chapter is to study the regular patterns of transitional plane
Couette flow and to determine the wavelengths at which they can exist and thrive. At
low enough Reynolds numbers, patterns will be shown to destabilise, acquiring a different
wavelength. Using an energy analysis formulated in ?, we associate the selected wavelength
to a maximal dissipation observed for the large-scale flow along the bands.

4.2 Numerical setup

Plane Couette flow consists of two parallel rigid plates moving at different velocities,
here equal and opposite velocities ±Uwall. Lengths are nondimensionalised by the half-
gap h between the plates and velocities by Uwall. The Reynolds number is defined to
be R ≡ Uwallh/ν. We will require one further dimensional quantity that appears in the
friction coefficient – the horizontal mean shear at the walls, which we denote by U ′

wall. We
will use non-dimensional variables throughout, except when specified. We simulate the
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incompressible Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u, (4.1a)

∇ · u = 0, (4.1b)

using the pseudo-spectral parallel code Channelflow (?). Since the bands are found to
be oriented obliquely with respect to the streamwise direction, we use a doubly periodic
numerical domain which is tilted with respect to the streamwise direction of the flow,
shown as the oblique rectangle in figure 4.1. This choice was introduced by Barkley &
Tuckerman (2005) and has become common in studying turbulent bands (Shi et al., 2013;
Lemoult et al., 2016; Paranjape et al., 2020; Tuckerman et al., 2020). The x direction is
chosen to be aligned with a typical turbulent band and the z coordinate to be orthogonal
to the band. The relationship between streamwise-spanwise coordinates and tilted band-
oriented coordinates is:

estrm = cos θ ex + sin θ ez (4.2a)

espan = − sin θ ex + cos θ ez (4.2b)

The usual wall-normal coordinate is denoted by y and the corresponding velocity by v.
Thus the boundary conditions are u(y = ±1) = ±estrm in y and periodic in x and z,
together with a zero-flux constraint on the flow in the x and z directions. The field
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visualised in figure 4.1 comes from an additional simulation we carried out in a domain
of size (Lstrm, Ly, Lspan) = (200, 2, 100) aligned with the streamwise-spanwise directions.
Exploiting the periodic boundary conditions of the simulation, the visualisation shows four
copies of the flow instantaneous field.

The tilted box effectively reduces the dimensionality of the system by discarding large-
scale variation along the short x direction. The flow in this direction is considered to
be statistically homogeneous as it is only dictated by small turbulent scales. In a large
non-tilted domain, bands with opposite orientations coexist (Prigent et al., 2003; Duguet
et al., 2010; Klotz et al., 2022), but only one orientation is permitted in the tilted box.

We will use two types of numerical domains, with different lengths Lz. Both have fixed
resolution ∆z = Lz/Nz = 0.08, along with fixed Lx = 10 (Nx = 120) and θ = 24◦. These
domains are shown in figure 4.1.

(1) Minimal Band Units, an example of which is shown as the dark red box in
figure 4.1. These domains accommodate a single band-gap pair and so are used
to study strictly periodic pattern of imposed wavelength λ = Lz.

(2) Long Slender Boxes, which have a large Lz direction that can accommodate
a large and variable number of gaps and bands in the system. The blue box in
figure 4.1 is an example of such a domain size with Lz = 240, but larger sizes
(Lz = 400 or Lz = 800) will be used in our study.

4.3 Nucleation of laminar gaps

We carry out simulations in a Long Slender Box of size Lz = 800 for various Re with
the uniform turbulent state from a simulation at Re = 500 as an initial condition, a
protocol called a quench. Figure 4.2 displays the resulting spatio-temporal dynamics at
four Reynolds numbers. Plotted is the (z, t) dependence of the cross-flow energy (v2 +
u2span)/2 at (x = Lx/2, y = 0). The cross-flow energy is a useful diagnostic because it
is zero for laminar flow. The choice x = Lx/2 is arbitrary since there is no large-scale
variation of the flow field in the short x direction of the simulation.

Figure 4.2 demonstrates strong space-time intermittency and encapsulates the main
results of this section: the emergence of patterns out of uniform turbulence is a gradual
process. At Re = 500, barely discernible low-energy regions appear randomly within
the turbulent background. At Re = 460 the low-energy regions are more pronounced
and begin to constitute localised, quasi-laminar gaps within the turbulent flow. These
gaps appear sparsely and are not long lived. At Re = 440, clearly demarcated, spatially
localised quasi-laminar gaps are seen. As Re is further decreased, these quasi-laminar gaps
appear more frequently and persist for longer lifetimes. Eventually, the gaps self-organise
into persistent, albeit fluctuating, patterns. The remainder of the section will quantify
this transition to patterns.
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Figure 4.2: Spatio-temporal visualization of pattern formation with Lz = 800, for (a)
Re = 500, (b) Re = 460, (c) 440, (d) 420, (e) 400 and (f) Re = 380. Flow at t = 0
is initiated from uniform turbulence at Re = 500. Color shows local cross-flow energy
(v2 + u2span)/2 at x = Lx/2, y = 0 (white: 0, red: 0.02). At high Re, weak local gaps
appear sparsely. When Re is decreased, spatio-temporally intermittent patterns of finite
spatial extent emerge. These consist of turbulent cores (dark red) and quasi-laminar gaps
(white). For still lower Re, quasi-laminar regions live longer, and patterns are more regular
and steady.
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We consider the x, y-averaged cross-flow energy

e(z, t) ≡ 1

LxLy

∫ 1

−1

∫ Lx

0

1

2
(v2 + u2span)(x, y, z, t) dx dy (4.3)

as a useful diagnostic of quasi-laminar and turbulent zones. The probability density func-
tions (PDFs) of e(z, t) are shown in figure 4.3a for various values of Re. The right tails,
corresponding to high-energy events, are broad and exponential for all Re. The left, low-
energy portions of the PDFs vary qualitatively with Re, unsurprisingly since these portions
correspond to the weak turbulent events comprising the formation of quasi-laminar gaps.
For large Re, the PDFs are maximal around e ≃ 0.007. As Re is decreased, a low-energy
peak emerges at e ≃ 0.002, corresponding to the emergence of long-lived, quasi-laminar
gaps seen in figure 4.2. The peak at e ≃ 0.007 flattens and gradually disappears. An
interesting feature is that the distributions broaden with decreasing Re with both low
energy and high energy events becoming more likely. This reflects a spatial redistribution
of energy that accompanies the formation of quasi-laminar gaps. This is presumably the
effect of turbulent bands extracting energy from the quasi-laminar regions and becoming
more intense. (See figure 6 of ?.)

An intuitive way to characterise the intermittent creation of gaps is to define turbulent
and quasi-laminar regions by thresholding the values of e(z, t). In the following, a region
will be called quasi-laminar if e(z, t) < eturb and turbulent if e(z, t) ≥ eturb. As the PDF
of e(z, t) evolves with Re, we define a Re-dependent threshold as a fraction of its average
value, eturb = 0.75 e. The thresholding is illustrated in figure 4.3b, which is an enlargement
of the flow at Re = 440 that shows turbulent and quasi-laminar zones as white and blue
areas, respectively. Thresholding within a fluctuating turbulent environment can conflate
long-lived quasi-laminar gaps with tiny, short-lived regions where the energy fluctuates
below the threshold eturb. These are seen as the numerous small blue spots in figure 4.3b
that differ from the wider and longer-lived gaps. This deficiency is addressed by examining
the statistics of the spatial and temporal sizes of quasi-laminar gaps.

We present the length distributions of laminar Llam and turbulent zones Lturb in fig-
ures 4.3c and 4.3d at various Reynolds numbers. These distributions have their maxima
at very small lengths, reflecting the large number of small-scale, low-energy regions that
arise due to thresholding the fluctuating turbulent field. As Re is decreased, the PDF
for Llam begins to develop a peak near Llam ≃ 15, corresponding to the scale of the gaps
visible in figure 4.2. The right tails of the distribution are exponential and shift upwards
with decreasing Re. The PDF of Lturb also varies with Re, but in a somewhat different
way. As Re decreases, the likelihood of turbulent length in the range 15 ≲ Lturb ≲ 35
increases above the exponential background, but at least over the range of Re considered,
a maximum does not develop. The distributions at large Lturb appear to be independent
of Re.

It is notable that the laminar-length distributions show the emergence of structure at Re
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Figure 4.3: (a) PDFs of local cross-flow energy e(z, t) defined in (4.3). Maximum at
e ≃ 0.002 appears for Re ≤ 420. (b) Illustration of the thresholding e(z, t) < eturb, of a
laminar-turbulent field at Re = 440 with turbulent regions, e(z, t) > eturb in white and
quasi-laminar regions in blue. Definitions of laminar and turbulent gaps Lgap and Lturb

are illustrated. (c) PDFs of laminar gap widths Llam showing plateaux near 15 appearing
for Re ≤ 440. (d) PDFs of widths of turbulent regions Lturb showing local increase near
20 for Re ≤ 420.
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higher than the turbulent-length distributions. This is particularly visible at Re = 440,
where the distribution of Lturb is indistinguishable from those at higher Re, while the
distribution of Llam is substantially altered. This is entirely consistent with impression
from the visualisation in figure 4.2c that quasi-laminar gaps are emerging in a uniform
turbulent background. Although the distributions of Llam and Lturb behave differently, the
length scale emerging as Re decreases are of the same order of magnitude for both. This
latter aspect is not present in the pipe flow results of Avila & Hof (2013). (See Appendix
4.B for a more detailed comparison.)

Temporal measurements of the gaps are depicted in figure 4.4. Figure 4.4a shows the
procedure by which we define the temporal extents tgap of laminar gaps. For each laminar
gap, i.e. a connected zone in (z, t) satisfying e(z, t) < eturb, we locate its latest and earliest
times and define tgap as the distance between them. Here again, we fix the threshold at
eturb = 0.75 e. Figure 4.4b shows the temporal distribution of quasi-laminar gaps, via
the survival function of their lifetimes. In a similar vein to the spatial gap lengths, two
characteristic behaviours are observed: for small times, many points are distributed near
zero (as a result of frequent fluctuations near the threshold eturb), while for large enough
times, an exponential regime is seen:

P (tgap > t) ≈ e−(t−t0(Re))/τgap(Re) for t > t0(Re) (4.4)

The slope of the exponential tail is extracted at each Re and the resulting characteristic
time-scale τgap is shown in figure 4.4c. The evolution of τgap with Re displays two regimes,
each with nearly exponential dependence on Re, but with very different slopes on the semi-
log plot. For Re ≥ 470, the characteristic lifetimes are τgap = O(102) and vary weakly
with Re. These timescales correspond to the small white events visible in figure 4.2a and
are associated with short-lived, low-energy events on the left tails of the PDFs for e(z, t)
in figure 4.3a. Discounting these events, we refer to such states as uniform turbulence.
For Re < 470, τgap varies rapidly with Re. The abrupt change in slope seen in figure 4.4c
marks the transition between uniform turbulence and the emergence of local gaps as Re
is decreased. We denote by = 470 the Reynolds number at which this transition occurs.
We stress that as far as we have been able to determine, there are no critical phenomenon
associated with this change of behaviour. That is, the transition is smooth and lacks
a true critical point. It is nevertheless evident that the dynamics of quasi-laminar gaps
change significantly in the region of Re = 470 and therefore it is useful to define a reference
Reynolds number marking this change in behaviour.

Note that typical lifetimes of laminar gaps must become infinite by the threshold Re ≃
325 below which turbulence is no longer sustained (Lemoult et al., 2016). (We believe this
to be true even for Re ≲ 380 when the permanent banded regime is attained, although
this is not shown here.) For this reason, we have restricted our study of gap lifetimes to
Re ≳ 380 and we have limited our maximal simulation time to ∼ 104.

To quantify the distinction between localized gaps and patterns, we introduce a variable
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Figure 4.4: (a) Same as figure 4.3b, but illustrating the definition of lifetimes of quasi-
laminar gaps tgap. (b) Survival functions of tgap. After initial steep portions, slopes yield
the characteristic times. (c) Evolution with Re of characteristic time τgap and of ratio of
large to small scale energy eL/S defined by (4.7). Both of these quantities present two
exponential regimes, with the same slopes and a common crossover. (d) Evolution of
friction coefficient Cf with Re, showing three regimes delimited by ≈ 430 and by ≈ 470.
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eL/S as follows. Using the Fourier transform in z,

û(x, y, kz, t) =
1

Lz

∫ Lz

0
u(x, y, z, t)e−ikzz dz , (4.5)

we compute the averaged spectral energy

Ê(y, kz) ≡
1

2
û · û∗, Ê(kz) ≡ ⟨Ê(y, kz)⟩y (4.6)

where the overbar designates an average in x and t. This spectral energy was already
described in Figure 3.3a. We are interested in the ratio of Ê(kz) at large scales (pattern
scale) to small scales (roll-streak scale), as it evolves with Re. For this purpose, we define
the ratio of large-scale to small-scale maximal energy:

eL/S =

max
kz<0.5

Ê(kz)

max
kz≥0.5

Ê(kz)
(4.7)

This quantity is shown as blue squares in figure 4.4c and is highly correlated to τgap. This
correlation is in itself a surprising observation for which we have no explanation.

For Re ≳ 430, we have eL/S < 1, signaling that the dominant peak in the energy
spectrum is at the roll-streak scale, while for Re ≲ 430, the large-scale pattern begins to
dominate the streaks and rolls, as indicated by eL/S > 1 (light blue area on figure 4.4c).
Note that Re = 430 is also the demarcation between unimodal and bimodal PDFs of e(z, t)
in figure 4.3a. The transition from gaps to patterns is smooth. In fact, we do not even
observe a qualitative feature sharply distinguishing gaps and patterns. We nevertheless
find it useful to define a reference Reynolds number associated to patterns starting to
dominate the energy spectrum. This choice has the advantage of yielding a quantitative
criterion, which we estimate as ≈ 430.

In addition to the previous quantitative measures, we also extract the friction coeffi-
cient. This is defined as the ratio of the mean wall shear stress µU ′

wall to the dynamic
pressure ρU2

wall/2, which we write in physical units and then non-dimensional forms as:

Cf ≡
µU ′

wall
1
2ρU

2
wall

=
2ν

hUwall

U ′
wall

Uwall/h
=

2

Re

∂ ⟨ustrm⟩x,z,t
∂y

∣∣∣∣
wall

(4.8)

In (4.8), the dimensional quantities h, ρ, µ, and ν are the half-height, the density, and
dynamic and kinematic viscosities, and Uwall and U

′
wall are the velocity and mean velocity

gradient at the wall. We note that the behavior of Cf in the transitional region has
been investigated by Shimizu & Manneville (2019) and Kashyap et al. (2020b). Our
measurements of Cf are shown in figure 4.4d. We distinguish three regimes. In the
uniform regime Re >= 470, Cf increases with decreasing Re. In the patterned regime
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Re <= 430, Cf decreases with decreasing Re. Between the two, in the localised-gap
regime < Re <, Cf is approximately constant.

The changes in regimes and the distinction between local gaps and patterns can be
further studied by measuring the spatial correlation between quasi-laminar regions within
the flow. We define

Θ(z, t) =

{
1 if e(z, t) < eturb (laminar)

0 otherwise (turbulent)
(4.9)

(this is the quantity shown in blue and white in figures 4.3b and 4.4a.) We then compute
its spatial correlation function:

C(δz) =
⟨Θ(z)Θ(z + δz)⟩z,t − ⟨Θ(z)⟩2z,t

⟨Θ(z)2⟩z,t − ⟨Θ(z)⟩2z,t
. (4.10)

Along with (z, t) averaging, C is also averaged over multiple realisations of the quench
experiment. As Θ is a Heaviside function, C can be understood as the average probability
of finding quasi-laminar flow at a distance δz from other quasi-laminar flow at position z.
The results are presented in figure 4.5a. The comparison between different Re values is
enhanced by plotting tanh(10 C), shown in figure 4.5b. At long range, C approaches zero
with some small fluctuations at Re = 480, a noisy periodicity at Re = 460, and a nearly
periodic behaviour for Re ≤ 420.

In all cases, C initially decreases from one and reaches a first minimum, due to the
minimal possible size of a turbulent zone that suppresses the creation of neighbouring
laminar gaps in the range δz ≲ 30. C has a prominent local maximum δzmax right after
the initial decrease of C, at δzmax ≃ 32 at Re = 480, which increases to δzmax ≃ 41 at
Re = 420. These maxima, shown as coloured circles in figure 4.5b, indicate that gap
nucleation is preferred at distance δzmax from an existing gap. The increase in δzmax and
the subsequent extrema as Re is lowered agrees with the trend of increasing wavelength of
turbulent bands as Re is decreased in the fully banded regime at lower Re (Prigent et al.,
2003; Barkley & Tuckerman, 2005).

Our observations confirm the absence of large-scale modulation in the uniform regime
Re > 470 (as defined in figure 4.4c), but emphasise the presence of (weak) gap interaction
at a finite distance in this regime. This preference is stronger as Re decreases and multiple
gaps appear close to one another. The underlying selection of a finite gap spacing will be
investigated in §4.4 and 4.5.
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Figure 4.5: (a) Gap-to-gap correlation function C(δz) defined by (4.10) for various
values of Re. (b) plotting tanh(10 C(δz)) focuses on the short-range behaviour of C.
The oscillations at Re = 420 are weak at Re = 460 and disappear at Re = 480. The
dots correspond to the first local maximum, indicating the selection of a finite distance
between two local gaps.

4.4 Existence and stability of patterns

In this section, we investigate the existence of a preferred pattern wavelength by using as
a control parameter the length Lz of the Minimal Band Unit. In a Minimal Band Unit,
the system is constrained and the distinction between local gaps and patterns is lost. Lz is
chosen such as to accommodate at most a single turbulent zone and a single quasi-laminar
zone, which due to imposed periodicity, can be viewed as one period of a perfectly periodic
pattern. By varying Lz, we can verify whether a regular pattern of given wavelength Lz
can emerge from uniform turbulence, disregarding the effect of scales larger than Lz or of
competition with wavelengths close to Lz. We refer to these simulations in Minimal Band
Units as existence experiments. Indeed, one of the main advantages of the Minimal Band
Unit is the ability to create patterns of a given angle and wavelength which may not be
stable in a larger domain.

In contrast, in a Long Slender Box, Lz is large enough to accommodate multiple bands
and possibly even patterns of different wavelengths. An initial condition consisting of
a regular pattern of wavelength λ can be constructed by concatenating bands produced
from a Minimal Band Unit of size λ. The stability of such a pattern is studied by allowing
this initial state to evolve via the non-linear Navier-Stokes equations. Both existence and
stability studies can be understood in the framework of the Eckhaus instability (Kramer &
Zimmermann, 1985; Ahlers et al., 1986; Tuckerman & Barkley, 1990; Cross & Greenside,
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2009).

In previous studies of transitional regimes, Barkley & Tuckerman (2005) studied the
evolution of patterns as Lz was increased. In Section 4.4.1, we extend this approach to
multiple sizes of the Minimal Band Unit by comparing lifetimes of patterns that naturally
arise in this constrained geometry. The stability of regular patterns of various wavelengths
will be studied in Long Slender Domains (Lz = 400) in Section 4.4.2.

4.4.1 Temporal intermittency of regular patterns in a short-Lz box

Figure 4.6a shows the formation of a typical pattern in a Minimal Band Unit of size
Lz = 40 and at Re = 440. While the system cannot exhibit the spatial intermittency
seen in figure 4.2c, temporal intermittency is possible and is seen as alternations between
uniform turbulence and patterns. We plot the spanwise velocity at y = 0 and x = Lx/2.
This is a particularly useful measure of the large-scale flow associated with patterns, seen
as red and blue zones surrounding a white quasi-laminar region. The patterned state
spontaneously emerges from uniform turbulence and remains from t ≃ 1500 to t ≃ 3400.
At t ≃ 500, a short-lived quasi-laminar zone appears at z = 10, which can be seen as an
attempt to form a pattern.

The pattern is characterised quantitatively by computing the wavenumber that instan-
taneously maximises the energy of the Fourier mode kz:

λ̂max(t) =
2π

argmax
kz>0

|⟨û(y = 0, kz, t)⟩x|2
, (4.11)

where ⟨û(y = 0, kz, t)⟩x denotes the x average of the z Fourier transform of the mid-plane
velocity. The possible values of λ̂max are integer divisors of Lz, i.e. here 40, 20, 10, etc.
Figure 4.6b presents λ̂max and its short-time average ⟨λ̂max⟩ta with ta = 30 as light and
dark blue curves, respectively. When turbulence is uniform, λ̂max varies rapidly between
its discrete allowed values, while ⟨λ̂max⟩ta fluctuates more gently around 10. The flow
state is deemed to be patterned when its dominant mode is ⟨λ̂max⟩ta = Lz. The long-lived
pattern occurring for 1500 ≤ t ≤ 3400 in figure 4.6a is seen as a plateau of ⟨λ̂max⟩ta in
figure 4.6b. There are other shorter-lived plateaus, notably at for 500 ≤ t ≤ 750. A similar
analysis was carried out by Barkley & Tuckerman (2005); Tuckerman & Barkley (2011)
using the Fourier component corresponding to wavelength Lz of the spanwise mid-gap
velocity.

Figure 4.6c shows the survival function tpat of the pattern lifetimes obtained from

⟨λ̂max⟩ta over long simulation times for various Re. This measurement differs from figure
4.4b, which showed lifetimes of gaps in a Long Slender Box and not regular patterns
obtained in a Minimal Band Unit. Here, the spatio-temporal intermittency reduces to a
temporal problem, since we consider the flow in the Minimal Band Unit to either contain
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Figure 4.6: Pattern lifetimes. (a) Space-time visualization of a metastable pattern in
a Minimal Band Unit with Lz = 40 at Re = 440. Colors show spanwise velocity (blue:
−0.1, white: 0, red: 0.1). (b) Values of the dominant wavelength λ̂max (light blue curve)
and of its short-time average ⟨λ̂max⟩ta (dark blue curve) are shown; see (4.11). A state
is defined to be patterned if λ̂max = Lz. (c) Survival function of lifetimes of laminar-
turbulent patterns in a Minimal Band Unit with Lz = 40 for various Re. The pattern
lifetimes tpat are the lengths of the time intervals during which λ̂max = Lz. (d) Above:
characteristic times τpat extracted from survival functions as a function of Lz and Re.
Below: intermittency factor γpat for the patterned state: the fraction of time spent in the
patterned state.
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a pattern or not. Nevertheless the picture is qualitatively similar. As with figure 4.4b,
in figure 4.6c there are many short-lived patterns due to fluctuations. After t ≃ 200, the
survival functions enter an approximately exponential regime, from which we extract the
characteristic times τpat by taking the inverse of the slope.

We then vary Lz, staying within the Minimal Box regime Lz ≲ 70 in which only one
band can fit. Figure 4.6d (top) shows that τpat presents a broad maximum in Lz whose
strength and position depend on Re: Lz ≃ 42 at Re = 440 and Lz ≃ 50 at Re = 400. This
wavelength corresponds approximately to the natural spacing observed in a Large Slender
Box (figure 4.2). Figure 4.6d (bottom) presents the fraction of time that is spent in a
patterned state, denoted γpat, to reflect that this should be thought of as the intermittency
factor for the patterned state. The dependence of γpat on Lz follows the same trend as
τpat, but less strongly (the scale of the inset is linear, while that for τpat is logarithmic).
For Re = 480, the survival function is nearly the same as for 460 and τpat and γpat are
nearly independent of Lz; this is the situation for uniform turbulence.

These results complement the Ginzburg-Landau description proposed by Prigent et al.
(2003) and Rolland & Manneville (2011). To quantify the bifurcation from featureless to
pattern turbulence, they defined an order parameter and showed that it has a quadratic
maximum at an optimal wavenumber. This is consistent to the approximate quadratic
maximum that we observe in the logarithmic plot of pattern lifetimes, and in the linear
plot of γpat with regard to Lz.

4.4.2 Pattern stability in a large domain

To study the stability of a pattern of wavelength λ, we prepare an initial condition for
a Long Slender Box concatenating repetitions of a single band produced in a Minimal
Band Unit. We add small-amplitude noise to this initial pattern so that the repeated
bands do not all evolve identically. Figures 4.7a and 4.7b show two examples of such
simulations. Depending on the value of Re and of the initial wavelength λ, the pattern
destabilises to either another periodic pattern (figure 4.7a for Re = 400) or to localised
patterns surrounded by patches of featureless turbulence (figure 4.7b for Re = 430).

It can be seen that patterns often occupy only part of the domain. For this reason, we
turn to the wavelet decomposition (Meneveau, 1991; Farge et al., 1992) to quantify patterns
locally. In contrast to a Fourier decomposition, the wavelet decomposition quantifies the
signal as a function of space and scale. From this, we are able to define a local dominant
wavelength, λ̃max(z, t), similar in spirit to λ̂max(t) in (4.11), but now at each space-time
point. (See Appendix 4.A for details.) Figures 4.7c and 4.7d show λ̃max(z, t) obtained
from wavelet analysis of the simulations visualised in figures 4.7a and 4.7b.

We now use the local wavelength λ̃max(z, t) to quantify the stability of an initial wave-
length. We use a domain of length Lz = 400 and we concatenate n = 7 to 13 repetitions of
a single band to produce a pattern with initial wavelength λ(n) ≡ 400/n ≈ 57, 50, 44 . . . 31.
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Figure 4.7: Simulation in a Long Slender Box from a noise-perturbed periodic pattern
with (a) initial λ = 57 at Re = 400 and (b) initial λ = 40 at Re = 430. Colors show
spanwise velocity (red: 0.1, white: 0, blue: −0.1). (c) and (d) show the local dominant
wavelength λ̃max(z, t) determined by wavelet analysis (see Appendix 4.A) corresponding
to the simulations shown in (a) and (b). Color at t = 0 shows the wavelength λ of the
initial condition. (e) shows the wavelet-defined Hλ(t) defined in (4.12), which quantifies
the proportion of the domain which retains initial wavelength λ as a function of time for
cases (a) and (b). Circles indicate the times for (a) and (b) after which Hλ is below the
threshold value Hstab for a sufficiently long time. (f) Ensemble-averaged t̄stab of the decay
time of an imposed pattern of wavelength λ for various values of Re. The relative stability
of a wavelength, whether localised or not, is measured by t̄stab via the wavelet analysis.
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(We have rounded λ to the nearest integer value here and in what follows.) After adding
low-amplitude noise, we run a simulation lasting 5000 time units, compute the wavelet
transform and calculate from it the local wavelengths λ̃max(z, t). We then compute

Hλ(t) =

〈
1

Lz

∫ Lz

0
Θ
(
ϵλ − |λ− λ̃max(z, t)|

)
dz

〉
ta

. (4.12)

The short-time average ⟨·⟩ta is taken over time ta = 30 as before. Θ is the Heaviside

function and ϵλ is a threshold which selects z-values such that λ̃max is closer to λ(n) than
to its two neighboring values λ(n+1) and λ(n−1). Thus, Hλ represents the proportion of
Lz in which we consider the dominant mode λ̃max to be λ. In practice, because patterns
in a Long Slender Box still fluctuate in width, a steady pattern may have Hλ somewhat
less than 1. If Hλ ≪ 1, a pattern of wavelength λ is present in only a very small part of
the flow.

Figure 4.7e shows how wavelet analysis via the Heaviside-like function Hλ(t) quantifies
the relative stability of the pattern in the examples shown in figures 4.7a and 4.7b. The
flow in figure 4.7a at Re = 400 begins with λ = 57, i.e. 7 bands. The red curve in figure
4.7e shows Hλ decaying quickly and roughly monotonically. One additional gap appears
at around t = 2300 and starting from then, Hλ remains low. This corresponds to the
initial wavelength λ = 57 losing its dominance to λ = 40, 44 and 50 in the visualisation of
λ̃max(z, t) in figure 4.7c. By t = 5000, the flow shows 9 bands with a local wavenumber λ
between 40 and 44.

The flow in figure 4.7b at Re = 430 begins with λ = 40, i.e. 10 bands. The blue curve in
figure 4.7e representing Hλ initially decreases and drops fairly suddenly around t ≈ 1000
as several gaps disappear in figure 4.7b. Hλ then fluctuates around a finite value, which
is correlated to the presence of gaps whose local wavelength is the same as the initial λ,
visible as zones where λ̃max = 40 in figure 4.7d. The rest of the flow can be mostly seen
as locally featureless turbulence, where the dominant wavelength is small (λ̃max ≤ 10).
The local patterns fluctuate in width and strength, and Hλ evolves correspondingly after
t = 1000. The final state reached in figure 4.7a at Re = 430 is characterised by the
presence of intermittent local gaps.

The lifetime of an initially imposed pattern wavelength λ is denoted tstab and is defined
as follows: We first define a threshold Hstab ≡ 0.2 (marked by a horizontal dashed line on
figure 4.7e). If Hλ(t) is statistically below Hstab, the imposed pattern will be considered
as unstable. Following this principle, tstab is defined as the first time Hλ is below Hstab,
with two further conditions to dampen the effect of short-term fluctuations. First, Hλ(t)
must be below Hstab for a period of ∆t1 = 100 after tstab. This avoids selecting a local
minimum of little importance. Second, tstab must obey ⟨Hλ(t)⟩t∈[tstab, tstab+∆T2]

< Hstab,
with ∆t2 = 2000, so as to ensure that the final state is on average below Hstab. The
corresponding times in case (a) and (b) are marked respectively by a red and a blue circle
in figure 4.7e.
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Repeating this experiment over multiple realisations of the initial pattern (i.e. different
noise realisations) yields an ensemble-averaged t̄stab. This procedure estimates the time for
an initially regular and dominant wavelength to disappear from the flow domain, regardless
of the way in which it does so and of the final state approached. Figure 4.7f presents the
dependence of tstab on λ for different values of Re. We note that a most-stable wavelength
emerges from the uniform state, at around λ ≃ 40 at Re = 440, similarly to the results
from the existence study on figure 4.6d, which showed a preferred wavelength of around
42 at Re = 440. Consistently with what was observed in Minimal Band Units of different
sizes, the most stable wavelength grows with decreasing Re.

4.4.3 Discussion

Our study of the existence and stability of large-scale modulations of the turbulent flow
is summarised in figure 4.8. This figure resembles the existence and stability diagrams
presented for usual (non-turbulent) hydrodynamic instabilities such as Rayleigh-Bénard
convection and Taylor-Couette flow (Busse, 1981; Ahlers et al., 1986; Cross & Greenside,
2009). In classic systems, instabilities appear with increasing control parameter, while
here gaps and bands emerge from uniform turbulent flow as Re is lowered. Therefore, we
plot the vertical axis in figure 4.8 with decreasing upwards Reynolds.

We recall that the existence study of §4.4.1 culminated in the measurement of γpat(λ,Re),
the fraction of simulation time that is spent in a patterned state, plotted in figure 4.6d.
The parameter values at which γpat(λ,Re) = 0.45 (an arbitrary threshold that covers most
of our data range) are shown as black circles in figure 4.8. The dashed curve is an interpo-
lation of the iso-γpat points and separates two regions, with patterns more likely to exist
above the curve than below. The minimum of this curve is estimated to be λ ≃ 42. This
is a preferred wavelength at which patterns first statistically emerge as Re is decreased
from large values.

The final result of the stability study in section §4.4.2, shown in figure 4.7f, was
tstab(Re, λ), a typical duration over which a pattern initialised with wavelength λ would
persist. The colours in figure 4.8 show tstab. This region also has its minimum at λ ≈ 42.
The pattern existence and stability zones are similar in shape and in their lack of symme-
try with respect to line λ = 42. The transition seen in figures 4.7a and 4.7c from λ = 57
to λ = 44 at Re = 400 corresponds to motion from a light blue to a dark blue area in the
top row of figure 4.8. This change in pattern wavelength resembles the Eckhaus instability
which, in classic hydrodynamics, leads to transitions from unstable wavelengths outside a
stability band, to stable wavelengths inside.

An important result of this section is that wavelength 40–44 is preferred, however
weakly, up to Re = 460, a regime in which no steady patterns are found (see Section
4.3). The presence of a most-probable wavelength confirms the initial results of Prigent
et al. (2003) and those of Rolland & Manneville (2011). This is also consistent with the
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Figure 4.8: Visualisation of the pattern selection in the phase space (λ,Re): black circles
are points γpat(λ,Re) = 0.45, and colors show the stability times tstab. The dashed line is
an illustrative interpolation over the data points (black circles).

instability study of Kashyap et al. (2022) in plane Poiseuille flow. However, contrary to
classic pattern-forming instabilities, the turbulent-laminar pattern does not emerge from
an exactly uniform state, but instead from a state in which local gaps are intermittent, as
established in Section 4.3. In Section 4.5, we will emphasise the importance of the mean
flow in the wavelength selection that we just described.

4.5 Optimisation of the mean flow

This section is devoted to the dependence of various energetic features of the patterned
flow on the domain length Lz of a Minimal Band Unit. We fix the Reynolds number at
Re = 400. In the existence study of §4.4, the wavelength λ ≃ 44 was found to be selected
by patterns. (Recall the upper-most curves corresponding to Re = 400 in figure 4.6d.)
We will show that this wavelength also extremises quantities in the energy balances of the
flow.

4.5.1 Average energies in the patterned state

We first decompose the flow into a mean and fluctuations, u = u + u′, where the mean
is taken over the homogeneous directions x and t. We compute energies of the total flow
⟨E⟩ ≡ ⟨u · u⟩ /2 and of the fluctuations (turbulent kinetic energy) ⟨K⟩ ≡ ⟨u′ · u′⟩ /2,
where ⟨·⟩ is the (x, y, z) average. Figure 4.9a shows these quantities as a function of Lz
for the patterned state at Re = 400. At Lz = 44, ⟨E⟩ is maximal and ⟨K⟩ is minimal. As
a consequence, the mean-flow energy 1

2 ⟨u · u⟩ = ⟨E⟩ − ⟨K⟩ is also maximal at Lz = 44.
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Figure 4.9: Energy analysis for the patterned state at Re = 400 as a function of the
size Lz of a Miniaml Band Unit. (a) Spatially-averaged total energy ⟨E⟩, mean TKE ⟨K⟩
(×5), mean total dissipation ⟨D⟩, mean kinetic dissipation ⟨ϵ⟩ (×3), for the patterned
state at Re = 400 as a function of Lz. (b) Energy in each of the z-Fourier components of
the mean flow (equations (4.13) and (4.14)).

Figure 4.9a additionally shows average dissipation of the total flow ⟨D⟩ ≡
〈
|∇ × u|2

〉
/Re

and average dissipation of turbulent kinetic energy ⟨ϵ⟩ ≡
〈
|∇ × u′|2

〉
/Re, both of which

are minimal at Lz = 44.

The mean flow is further analysed by computing the energy of each spectral component
of the mean flow. For this, the x and t averaged flow u is decomposed into Fourier modes
in z:

u(y, z) = u0(y) + 2R
(
u1(y)e

i2πz/Lz
)
+ u>1(y, z) (4.13)

where u0 is the uniform component of the mean flow, u1 is the trigonometric Fourier
coefficient corresponding to kz = 2π/Lz and u>1 is the remainder of the decomposition,
for kz > 2π/Lz. (We have omitted the hats on the z Fourier components of u.) The
energies of the spectral components relative to the total mean energy are

e0 =
⟨u0 · u0⟩
⟨u · u⟩

, e1 =
⟨u1 · u1⟩
⟨u · u⟩

, e>1 =
⟨u>1 · u>1⟩

⟨u · u⟩
(4.14)

These are presented in figure 4.9b. It can be seen that e0 ≫ e1 > e>1 and also that
all have an extremum at Lz = 44. In particular, Lz = 44 minimizes e0 (e0 = 0.95)
while maximizing the trigonometric component (e1 = 0.025) along with the remaining
components (e>1 ≃ 0.011). Note that for a banded state at Re = 350, Lz = 40, Barkley
& Tuckerman (2007) found that e0 ≈ 0.70, e1 ≈ 0.30 and e>1 ≈ 0.004, consistent with a
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strengthening of the bands as Re is decreased.

4.5.2 Mean flow spectral balance

We now investigate the spectral contributions to the budget of the mean flow u, dominated
by the mean flow’s two main spectral components u0 and u1. The balances can be
expressed as (?, Part 1):

Â0 − Π̂0 − D̂0 + I = 0 for u0 and Â1 − Π̂1 − D̂1 = 0 for u1 (4.15)

where I is the rate of energy injection by the viscous shear, and Π̂0, D̂0 and Â0 stand
for, respectively, production, dissipation and advection (i.e. non-linear interaction) con-
tributions to the energy balance of mode u0 and similarly for u1. These are defined by

I =
2

Re
R
{∫ 1

−1

∂

∂y

(
û
∗
j (kz = 0)ŝyj(kz = 0)

)
dy

}
=

1

Re

(
∂ustrm
∂y

∣∣∣∣
1

+
∂ustrm
∂y

∣∣∣∣
−1

)
(4.16a)

Π̂0 = R

{∫ 1

−1

∂û
∗
j

∂xi
(kz = 0) û′iu

′
j(kz = 0) dy

}
(4.16b)

D̂0 =
2

Re
R
{∫ 1

−1
ŝij(kz = 0) ŝ

∗
ij(kz = 0) dy

}
(4.16c)

Â0 = −R

{∫ 1

−1
û
∗
j (kz = 0)

̂
ui
∂uj
∂xi

(kz = 0) dy

}
(4.16d)

where R denotes the real part. We define Π̂1, D̂1 and Â1 similarly by replacing kz = 0 by
kz = 2π/Lz in (4.16a)-(4.16d).

We recall two main results from chapter 3: first, Â1 ≈ −Â0. This term represents the
energetic transfer between modes u0 and u1 via the self-advection of the mean flow (the

energetic spectral influx from (u ·∇)u). Second, Π̂1 < 0, and this term approximately bal-
ances the negative part of TKE production. This is a feedback from turbulent fluctuations
to the component u1 of the mean flow.

Each term contributing to the balance of u0 and u1 is shown as a function of Lz in

figures 4.10a and 4.10b. We do not show Â0 because Â0 ≈ −Â1.

We obtain the following results:

(1) Production Π̂0, dissipation D̂0 and energy injection I are nearly independent of
Lz, varing by no more than 6% over the range shown. These kz = 0 quantities
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Figure 4.10: Spectral energy balance of the mean flow components (a) u0 and (b) u1.
See equation (4.15).

correspond to uniform fields in z and hence it is unsurprising that they depend
very little on Lz.

(2) The non-linear term Â1 ≈ −Â0, i.e. the transfer from u0 to u1 which is the
principal source of energy of u1, has a maximum at Lz ≃ 44. This is the reason
for which u0 is minimised by Lz ≃ 44 (see figure 4.9b): more energy is transferred
from u0 to u1.

(3) Production Π̂1 increases with Lz and does not show an extremum at Lz ≃ 44

(it instead has a weak maximum at Lz ≃ 50). In all cases, Π̂1 < Â1: the TKE
feedback on the mean flow, although present, is not dominant and not selective.

(4) Dissipation D̂1 accounts for the remaining budget and its extremum at Lz ≃ 44
corresponds to maximal dissipation.

The turbulent kinetic energy balance is also modified with changing Lz. This is pre-
sented in Appendix 4.C. The impact of TKE is however secondary, because the feedback

on the mean flow, via Π̂1, is not the leading term that fuels u1, and does not participate
in maximising the energy of u1 at the preferred wavelength.

4.6 Conclusion and discussion

We have explored the appearance of patterns from uniform turbulence in plane Couette
flow at Re ≤ 500. We used numerical domains of different sizes to quantify the competition
between featureless (or uniform) turbulence and (quasi-) laminar gaps. In Minimal Band
Units, intermittency reduces to a random alternation between two states: uniform or
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patterned. In large slender domains, however, gaps nucleate randomly and locally in
space, and the transition to patterns takes place continuously via the regimes presented in
Section 4.3: the uniform regime in which gaps are rare and short-lived (above Re ≃ 470),
and another regime (Re < 470) in which gaps are more numerous and long-lived. Below
Re ≃ 430, the large-scale spacing of these gaps starts to dominate the energy spectrum,
which is a possible demarcation of the patterned regime. In this latter regime, with further
decreasing in Re, gaps eventually fill the entire flow domain, forming regular patterns. The
distinction between these regimes is observed in both gap lifetime and friction factor.

Spatially isolated gaps were already observed by Prigent et al. (2003), Barkley & Tuck-
erman (2005) and Rolland & Manneville (2011). (See also Manneville (2015, 2017) and
references therein.) Our results confirm that pattern emergence, mediated by randomly-
nucleated gaps, is necessarily more complex than the supercritical Ginzburg-Landau frame-
work initially proposed by Prigent et al. (2003) and later developed by Rolland & Man-
neville (2011). However, this does not preclude linear processes in the appearance of
patterns, such as those reported by Kashyap et al. (2022) from an ensemble-averaged
linear response analysis.

The intermittency between uniform turbulence and gaps that we quantify here in the
range 380 ≲ Re ≲ 500 is not comparable to that between laminar flow and bands present
for 325 ≲ Re ≲ 340. The latter is a continuous phase transition in which the laminar flow
is absorbing: laminar regions cannot spontaneously develop into turbulence and can only
become turbulent by contamination from neighbouring turbulent flow. This is connected
to the existence of a critical point at which the correlation length diverges with a power-
law scaling with Re, as characterised by important past studies (Shi et al., 2013; Chantry
et al., 2017; Lemoult et al., 2016) which showed a connection to directed percolation.
The emergence of gaps from uniform turbulence is of a different nature. Neither uniform
turbulence nor gaps are absorbing states, since gaps can always appear spontaneously and
can also disappear, returning the flow locally to a turbulent state. While the lifetimes of
quasi-laminar gaps do exhibit an abrupt change in behaviour at Re = 470 (figure 4.4c), we
observe no evidence of critical phenomena associated with the emergence of quasi-laminar
gaps from uniform turbulence. Hence, the change in behaviour appears to be in fact
smooth. This is also true in pipe flow where quasi-laminar gaps form, but not patterns
(Avila & Hof, 2013; Frishman & Grafke, 2022).

We used the pattern wavelength as a control parameter, via either the domain size or
the initial condition, to investigate the existence of a preferred pattern wavelength. We
propose that the finite spacing between gaps, visible in both local gaps and patterned
regimes, is selected by the preferred size of their associated large-scale flow. Once gaps
are sufficiently numerous and patterns are established, their average wavelength increases
with decreasing Re, with changes in wavelength in a similar vein to the Eckhaus picture.

The influence of the large-scale flow in wavelength selection is analysed in Section 4.5,
where we carried out a spectral analysis like that in chapter 3 for various sizes of the
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Minimal Band Unit. In particular, we investigated the roles of the turbulent fluctuations
and of the mean flow, which is in turn decomposed into its uniform component u0 and
trigonometric component u1, associated to the large-scale flow along the laminar-turbulent
interface. Our results demonstrate a maximisation of the energy of u1 by the wavelength
naturally preferred by the flow, and this is primarily associated to the advective term
(u · ∇)u in the mean flow equation. This term redistributes energy between modes u0

and u1 and is mostly responsible for energising the large-scale along-band flow. Turbulent
fluctuations are of secondary importance in driving the large-scale flow and do not play a
significant role in the wavelength selection.

This result resonates with certain optimality principles underpinning classical pattern
formation and for which Rayleigh-Bénard convection are a canonical example: ? and
Busse (1981) (and references therein) proposed a principle of maximal heat transport, or
equivalently maximal dissipation, obeyed by convective turbulent solutions. The maximal
dissipation principle, as formulated by Malkus (1956) in shear flows, occurs in other sys-
tems such as von Kármán flow (Ozawa et al., 2001; Mihelich et al., 2017). (This principle
has been somewhat controversial. Disputed by Reynolds & Tiederman (1967) within the
context of stability theory, it was recently revisited with statistical closures by Markevi-
ciute & Kerswell (2022)). In our case, the flow maximises the transport of momentum and
the dissipation of the large-scale flow, analogous to the principles mentioned by Malkus
(1956) and Busse (1981). Explaining this mere observation from a guiding principle re-
mains a tremendous challenge.

It is essential to understand the creation of the large-scale flow around a randomly
emerging laminar hole. The statistics obtained in our tilted configuration must be extended
to large streamwise-spanwise domains, in which short-lived and randomly-nucleated holes
might align in the streamwise direction (Manneville, 2017, Fig. 5), presumably before the
regime of long-lived gaps is attained. Furthermore, a more complete dynamical picture
of gap creation is needed. The excitable model of ? might provide a proper framework,
as it accounts for both the emergence of anti-puffs (Frishman & Grafke, 2022) and of
periodic solutions (?). Connecting this model to the Navier-Stokes equations is, however,
a formidable challenge. Our work emphasises the necessity of including the effects of the
advective large-scale flow to adapt this model to the establishment of the laminar-turbulent
patterns observed in planar shear flows.

4.A Wavelet transform

We introduce the one-dimensional continuous wavelet transform of the velocity u(z, t)
taken along the line (x, y) = (Lx/2, 0):

ũ(z, r, t) = C
−1/2
ψ r−1/2

∫ Lz

0
ψ∗
(
z′ − z

r

)
u(z′, t)dz′ (4.17)
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Here ψ is the Morlet basis function, defined in Fourier space as ψ̂(k) = π−1/4e−(k−kψ)2/2

for k > 0. Its central wavenumber is kψ = 6/∆z, where ∆z is the grid spacing. The

scale factor r is related to wavelength via λ ≃ 2πr/kψ. Cψ ≡
∫
|k|−1|ψ̂(k)|2dk is a

normalization constant. Tildes are used to designate wavelet transformed quantities. The
inverse transform is:

u(z, t) = C
−1/2
ψ

∫ ∞

0

∫ ∞

−∞
r−1/2ψ

(
z − z′

r

)
ũ(z′, r, t)

dz′ dr

r2
(4.18)

The wavelet transform is related to the Fourier transform in z by:

ũ(z, r, t) =
1

2π
C

−1/2
ψ r1/2

∫ ∞

−∞
ψ̂(r kz)û(kz, t)e

ikzzdkz (4.19)

We then define the most energetic instantaneous wavelength as:

λ̃max(z, t) =
2π

kψ
argmax

r
|ũ(z, r, t)|2 (4.20)

The characteristic evolution of λ̃max(z, t) is illustrated in figure 4.11b for the flow case
corresponding to figure 4.11a. Regions in which λ̃max is large (> 10) and dominated by
a single value correspond to the local patterns observed in figure 4.11a. In contrast, in
regions where λ̃max is small (< 10) and fluctuating, the turbulence is locally uniform.

This space-time intermittency of the patterns is quantified by measuring

fL/S =
〈
Θ(λ̃max(z, t)− 10)

〉
z,t

(4.21)

and is shown in figure 4.12 as a function of Re.

4.B Laminar and turbulent distributions in pipe vs Couette flows.

From figures 4.3c and 4.3d of the main text, both distributions of laminar or turbulent
lengths, Llam and Lturb, are exponential for large enough lengths, similarly to pipe (Avila
& Hof, 2013). It is however striking that the distributions of Llam and Lturb have different
shapes for Llam or Lturb > 10 in plane Couette flow: Llam shows a sharper distribution,
whereas Lturb is more broadly distributed. We present on figures 4.13a and 4.13b the
cumulative distributions of Llam and Lturb for a complementary analysis.

We focus on the characteristic length l∗turb or l∗lam for which P (Llam > l∗lam) = P (Lturb >
l∗turb) = 10−2: for example, l∗lam = 15.5 and l∗turb = 26.5 at Re = 440; l∗lam = 23.4 and
l∗turb = 30.3 at Re = 400. We see that l∗turb and l∗lam are of the same order of magnitude.
This differs from the same measurement in pipe flow, carried out by Avila & Hof (2013,
Fig. 2): l∗lam = 6 and l∗turb ≃ 50 at Re = 2800; l∗lam ≃ 17 and l∗turb ≃ 160 at Re = 2500 (as
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Figure 4.11: Space-time visualisation of a quench experiment at Re = 430: (a) spanwise
velocity (blue: −0.2, white: 0, red: 0.2), (b) λ̃max(z, t) defined by (4.20). λ̃max(z, t) (b)
quantifies the presence of local large-scale modulations within the flow. Dark blue zones
where λ̃max(z, t) < 10 correspond to locally featureless turbulence in (a). Large-scale
modulation of gaps at different wavelengths are visible by the green-to-red spots in (b).
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Figure 4.12: Space-time fraction of large to small wavelengths obtained by wavelet
transform. fL/S crosses 0.5 at Re ≃ 427 ≃.
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Figure 4.13: Cumulative distribution of (a) laminar gaps and (b) turbulent zones, for
various Re.

extracted from their figure 2.). This confirms that turbulent and laminar spacings are of
the same order of magnitude in plane Couette flow, contrary to pipe flow.

4.C Turbulent kinetic energy balance for various Lz

In this appendix, we address the balance of turbulent kinetic energy K̂(kz), written here
in a y-integrated form at a specific mode kz (see equation (5.3) of chapter 3 and the
methodology in, e.g., Bolotnov et al. (2010); Lee & Moser (2015); Mizuno (2016); Cho
et al. (2018)):

0 = Π̂− D̂ + Â+ T̂nl (4.22)

where the variables in (4.22) indicate y-integrated quantities:

Π̂(kz) ≡ −R


∫ 1

−1
û′j

∗̂
ui
∂u′j
∂xi

dy

 , D̂(kz) ≡
2

Re

∫ 1

−1
ŝ′ij ŝ

′
ij

∗
dy,

T̂nl(kz) ≡ −R


∫ 1

−1
û′j

∗̂
u′i
∂u′j
∂xi

dy

 , Â(kz) ≡ −R


∫ 1

−1
û′j

∗̂
ui
∂u′j
∂xi

dy

 (4.23)

respectively standing for production, dissipation, triadic interaction and advection terms.
We recall that (·) is an average in (x, t). The y evolution of the energy balance was
analysed in chapter 3.
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Figure 4.14: Evolution of the large-scale TKE balance with Lz (4.24).

Chapter 3 reported robust negative production at large scales, along with inverse non-
linear transfers to large scales. If krolls = 1.41 denotes the scale of rolls and streaks,
this inverse transfer occurs for kz < kLS = 0.94, while a downward transfer occurs for
kz >= 3.6 (We refer the reader to the figure 5 of chapter 3). This spectral organization of
the energy balance will be quantified by the following transfer terms arising from (4.23):

T̂LS =

kLS∑
kz=0

T̂nl(kz), T̂SS =
∞∑
kz=

T̂nl(kz), D̂LS =

kLS∑
kz=0

D̂(kz), ÂLS ≡
kLS∑
kz=0

Â(kz)

(4.24)

T̂LS quantifies transfer to large scales, T̂SS the transfer to small scales, D̂LS the dissipation
at large scales, and ÂLS is a transfer of energy from the mean flow to the large fluctuating
scales.

The variables defined in (4.24) are displayed in figure 4.14 as function of Lz. T̂LS is
minimal at Lz ≃ 44. D̂LS is minimal at Lz ≃ 40. Contrary to T̂LS , T̂SS is relatively
constant with Lz (green dashed line in figure 4.14), with a variation of around 6%. This
demonstrates that transfers to small scales are unchanged with Lz. Large-scale advection
decays with increasing Lz and does not play a role in the wavelength preference. Our
results confirm that the balance at large-scale is minimised around Lz ≃ 44, and that
TKE will play a less important role, compared to that of the mean flow whose energy and
balance are maximised at Lz ≃ 44.
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Chapter 5

Transition to turbulence without large-
scale flow

In chapters 3 and 4, our focus was on the interconnection between mean flow and pattern
emergence in transitional plane shear flows. A large-scale circulation is established as lam-
inar gaps are nucleated out of a uniform turbulent environment. These gaps organise into
patterns with a robust preferred wavelength, mode. We linked this non-linear mean flow
self-interaction to a principle of maximal dissipation, underpinning wavelength selection.
In this chapter, we adopt a different numerical approach to understanding the effect of
large-scale circulation on the problem of transition to turbulence.

5.1 Introduction

Landau (1944) pictured the laminar-turbulent transition in shear flows as a first-order
transition, driven by the competition of two attractors (a laminar and a turbulent attrac-
tor). Later on, Pomeau (1986) connected these two attractors by introducing the notion
of moving fronts, by which one phase expands into the other. Pomeau envisioned this
process as a second-order phase transition belonging to the universality class of Directed
Percolation (Grassberger, 1981; Janssen, 1981), and therefore corrected the initial vision
of Landau. This class of phase transition occurs in systems with short-range interactions,
between a fluctuating phase and an absorbing phase.

Important experimental surveys confirmed Pomeau’s vision in the case of plane Couette
flow (Lemoult et al., 2016; Chantry et al., 2017; Klotz et al., 2022). The universal scaling
of Directed Percolation is valid in many other wall-bounded flows (Takeda et al., 2020),
although deviations can be found in plane channel flow (Shimizu & Manneville, 2019).
Apart from wall-bounded flows, Directed Percolation was also validated in the onset of
turbulence in linearly-damped 2D Kolmogorov flow (Hiruta & Toh, 2020). Despite its suc-
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cess in describing the universal statistical properties of the spatio-temporal intermittency
found in these shear flows, this perspective ignores the details of the turbulent structures,
which themselves remain to be fully understood.

Localised turbulent structures in planar shear flows emerge as oblique patterns (Prigent
et al., 2003; Barkley & Tuckerman, 2007). When these patterns first appear out of uniform
turbulence, their angle is distributed around a specific value of around ±25◦ in Couette and
Poiseuille flows (Duguet et al., 2010; Kashyap et al., 2020b). These patterns are marked
by robust large-scale circulation going along the laminar-turbulence interface (Coles & van
Atta, 1966; Barkley & Tuckerman, 2007; Klotz et al., 2021), which has therefore strong
streamwise and spanwise components, along with a coupled circulation bubble in the
streamwise/cross-flow plane. It is known that coexisting laminar and turbulent phases
automatically induce modulations in the streamwise velocity (Barkley, 2016), but the
large-scale circulation found in shear flows is not fully understood. This large-scale flow
has an strong advective nature, as was pointed out in previous chapters. When turbulent
spots are localised in space, this advective nature has a role in spreading spots throughout
the entire flow domain. This was experimentally assessed by Couliou & Monchaux (2016,
2017), who found that the growth due to large-scale advection was comparable to that
due to nucleation of streaks.

No laminar-turbulent patterns are present in the case of pipe flow. Nor is there any
large-scale circulation like the one observed in previously-mentioned shear flows. In pipe
flow, transitional turbulence takes the form of streamwise-localised puffs. The mean flow
around a puff is restricted to circulations in the streamwise and wall-normal components,
whose shape is toroidal (Wygnanski & Champagne, 1973; Shan et al., 1999; van Doorne
& Westerweel, 2009). Recent studies aimed at connecting the two opposite cases of pipe
and plane shear flows, with the help of annular pipe or annular Couette flows at different
aspect ratios (Ishida et al., 2016, 2017; Kunii et al., 2019; Takeda et al., 2020; Matsukawa
& Tsukahara, 2022). These studies discovered a new type of structure, mediating puffs
and oblique patterns: helical puffs. Furthermore, by artificially increasing the azimuthal
extent of their simulation domain for values larger than 2π, Takeda et al. (2020) managed
to sustain structures of very small spatial extent, similar to puffs. These puff-like structures
were isolated in both streamwise and azimuthal directions and without showing any sign
of obliqueness. This experiment gives significant insights on the impact of symmetries and
mean flow components on the presence of sustained localised turbulence in the transitional
regime. It suggests that a puff does not need periodicity in the azimuthal direction to be
sustained.

One different kind of challenge is to design control strategies so as to delay or modify the
nature of the transition. Among these strategies, we mention the control of the bluntness of
the shear profile (Kühnen et al., 2018; Marensi et al., 2020), the injection of perturbations
at specific locations in the flow (Hof et al., 2010), or the introduction of large-scale spanwise
oscillations in the flow (Quadrio & Sibilla, 2000). These strategies are important from both
practical and theoretical point of views, as they aim at suppressing turbulence and can
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unravel the fundamental ingredients leading to this suppression.

These various perspectives motivate us to envision another kind of experiment, aiming
at directly controlling the mean flow present in transitional shear turbulence. In a numer-
ical simulation of plane Couette flow, we effectively suppress the large-scale circulation
along the laminar-turbulent interfaces. The resulting flow will be referred to as Filtered
plane Couette flow. We study how laminar-turbulent interfaces survive this control oper-
ation, and confirm the role of the circulation on both the appearance of patterns and the
phase transition.

5.2 2C-3D Navier-Stokes equations at large scales.

5.2.1 Formulation

We first consider the traditional Navier-Stokes equations describing the motion of an
incompressible viscous fluid within two planes moving at ±Uwall, with no-slip boundary
conditions at the wall. (x, y, z) denote the usual streamwise, cross-channel and spanwise
coordinates. (Note that this differs from our previous usage throughout this thesis, where
(x, z) denoted tilted coordinates. This choice of notation is retricted to this chapter and
will simplify the discourse.) We introduce the Fourier transform in (x, z),

û(kx, y, kz) =
1

LxLz

∫ Lx

0

∫ Lz

0
u(x, y, z)e−i(kxx+kzz)dx dz. (5.1)

and write the 3D Navier-Stokes equations in a Fourier form, with non-dimensionalisation
of velocity by Uwall, space variables by the plane mid-gap, and time by the advective time:

∂ûj
∂t

+ ∇̂j p̂ = −N̂j +
1

Re
∇̂2ûj (5.2a)

∇̂ · û = 0 (5.2b)

where ∇̂j = (ikx, ∂y, ikz), N̂j =
∂̂uiuj
∂xi

and j = (x, y, z) (the summation on the i coordinate
is implicit). We now modify the 3D Navier-Stokes equations with introducing a pair of
cut-off wavenumbers (Kx,Kz). For kx < Kx and kz < Kz, we introduce the following
2C-3D Navier-Stokes system for the two components (ux, uy):

∂ûj
∂t

+ ∇̂j p̂ = −N̂j +
1

Re
∇̂2ûj for j = x, y (5.3a)

∇̂2D · û = 0 (5.3b)

ûz = 0 (5.3c)
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with ∇̂2D = (ikx, ∂y, 0). The spanwise velocity ûz is imposed at 0 and is not treated as
a variable for (kx, kz) < (Kx,Kz). This treatment is explained in the following section.
For (kx, kz) ≥ (Kx,Kz), the flow will obey 3D Navier-Stokes equations. In this way,
the fundamental mechanisms producing wall-bounded turbulence are still present (and
especially the turbulent self-sustaining process (Waleffe, 1997), if Kx and Kz are low
enough not to alter the dynamics of streaks and rolls).

5.2.2 Numerical set-up

The numerical resolution of 3D Navier-Stokes equations is carried out on ChannelFlow
(Gibson, 2012), which uses a semi-implicit pseudo-spectral method on the primitive vari-
ables, decomposed in Fourier-Chebychev modes. We shortly explain the underlying nu-
merical principles, derived from Canuto et al. (2007). We denote t the current time-step
of an implicit time-stepping algorithm. The non-linear term is handled explicitly by the
numerical right-hand-side

R̂ =
∑
s

αs
dt

û(s)− βsN̂(s), (5.4)

with s being sum over previous timesteps. αs and βs are coefficients depending on the
time-stepping method (We use here an implicit backward differentiation method, but the
following procedure can be expanded to other implicit methods). In 3D Navier-Stokes,
pressure and cross-channel velocity at time-step t are coupled via the following system,
issued from Laplace equation ∇2p = ∇ ·R:

{
(∂2y − k2x − k2z)p̂(t) = ikxR̂x + ∂yR̂y + ikzR̂z

(∂2y − λ)ûy(t) = R̂y − ∂yp
with ûy(±1) = ∂yûy(±1) = 0 (5.5)

with λ = 2/dt + ν(k2x + k2z) accounting for the implicit treatment of the Laplace opera-
tor. This coupled Helmholtz problem is solved via an influence-matrix method. The two
remaining components ûx, ûz are solved by:

(∂2y − λ)ûx(t) = R̂x − ikxp̂, (5.6)

(∂2y − λ)ûz(t) = R̂z − ikz p̂ (5.7)

We now turn to our large-scale 2C-3D problem (5.3). With this numerical set-up, imposing
ûz(kx, kz) = 0 for (kx, kz) < (Kx,Kz) at the beginning of each time-step is not sufficient
for suppressing spanwise velocity. There is indeed a complication in Fourier space, which
comes from the fact that N̂z(kx, kz) is not meant to cancel if triad interactions act on
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spanwise velocity at wavenumbers (kx, kz) < (Kx,Kz). We need to effectively cancel out
this effect on the spanwise evolution equation (5.7). For this, we add to the right-hand
side of (5.7) an instantaneous force to compensate the pressure gradient at all time. This
defines a new right-hand side

R̂′
z = R̂z + F = ikz p̂ (5.8)

and results in a new equation for ûz, in place of (5.7)

(∂2y − λ)ûz(t) = R̂′
z − ikz p̂ = 0 (5.9)

which yields ûz(t) = 0 (since we will initialise ûz at 0). Taking into account the new
right-hand side (5.8), the pressure equation in (5.5) now writes:

(∂2y − k2x)p̂(t) = ikxR̂x + ∂yR̂y (5.10)

This is equivalent to solving ∇2
2D p = ∇2D · R. The influence matrix must be modified

accordingly to solve the coupled Helmholtz problem (p̂, ûy) with the boundary conditions
on ûy and ∂yûy. We note that a related strategy was used by Jiménez & Pinelli (1999);
Jimenez (2022), so as to study the cyclic mechanisms in the turbulence production in
wall-bounded flows.

5.3 Preliminary results in a large streamwise-spanwise domain

We first present visualisations of the filtered flow in a domain of size (Lx = 400, Lz = 200),
with a number of grid points of (Nx = 3336, Nz = 1668). The filtration window used here
is (Kx,Kz) = (0.24, 0.47). The corresponding wavelengths are (Λx,Λz) = (26, 13). The
filtration window is therefore smaller than the typical pattern wavelength in plane Couette
flow, (λx, λz) ≃ (100, 44) (Prigent et al., 2003). The resulting flow is illustrated on Figure
5.1b and compares to plane Couette flow on Figure 5.1a. The large-scale flow at plane
y = 0 is extracted by a Fourier filter and shown by arrows.

The large-scale flow in plane Couette flow is oriented obliquely with the streamwise
direction, aligning with turbulent bands. As a result of the large-scale control on the
spanwise velocity in the filtered case, the obliqueness of the laminar-turbulent structures
is modified. The large-scale flow is still strong at the interface, with only variations of the
streamwise velocity. The left interface of a turbulent zone presents a negative large-scale
streamwise velocity, while that in the right interface is positive.

We extend this observation by presenting multiple instantaneous snapshots in Figure
5.2, at various values of Re. The values of Re are Re = 390 (a), 380 (b) and 360 (c), but
their absolute meaning is of secondary importance. Filtering the large-scale flow indeed
modifies the total dissipation in an unclear manner, and Re can be shifted compared to



148 5 Transition to turbulence without large-scale flow

0 100 200 300 400

0

50

100

150

200

(a)

0 100 200 300 400

0

50

100

150

200

(b)

Figure 5.1: Visualizations of (a) plane Couette flow and (b) Filtered plane Couette flow
in the transitional regime (Re = 360). Colors and arrows respectively show cross-channel
velocity v and in-plane velocity (u,w) at y = 0 (blue: -0.2, white: 0, red: 0.2).
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the natural Couette case. We think that the value of Re in itself, and the comparison
with Re in Couette flow, is not important in understanding the main physical impact
of filtration. A more relevant parameter is instead the relative distance to some critical
Reynolds number Rec, below which turbulence is not statistically sustained. It might be
relevant to study the effect of the filtration window on possibly shifting Rec downwards
or upwards, but this is beyond the scope of this primary analysis.

On Figure 5.2, we see that laminar gaps take the form of streamwise-elongated struc-
tures. For low enough Re, the laminar gaps extend and leave room to localised structures,
one of them being elongated in the streamwise direction (Fig. 5.2c, t=1900). The laminar-
turbulent interface does not show any preferred angle aside from 0, contrary to the natural
Couette case.

5.4 Quenches in a long oblique domain.

We now describe some other qualitative differences between plane Couette flow and Fil-
tered plane Couette flow. These differences are important to better understand the effect
of large-scale filtration on localised turbulence in the transitional regime. For this we
use a slender simulation domain, oblique with the streamwise direction, as introduced by
Barkley & Tuckerman (2005). The angle of such a domain is denoted θ. Many studies
already used such a geometry (Shi et al., 2013; Lemoult et al., 2016), because it simplifies
the complex two-dimensional intermittent behaviour of plane Couette flow by reducing it
into a quasi one-dimensional problem.

However, if localised turbulent structures are known to favour a non-zero angle in plane
Couette flow, this is not true in the filtered case. This is worth an important cautionary
statement: imposing an angulation to the filtered system is fundamentally irrelevant (as
shown on Figure 5.2). However, the oblique configuration can be used for two reasons:
first, it is a reduced system with simplified dynamics, in which simple arguments can be
made. Second, one can draw comparisons with plane Couette bands at the same imposed
angle.

We therefore introduce tilted directions, x′ and z′, related to x and z by the following
trigonometric transformation:

ex = cos θ ex′ + sin θ ez′ (5.11a)

ez = − sin θ ex′ + cos θ ez′ (5.11b)

The angle of the domain with the streamwise direction is fixed at θ = 24◦, the domain
size is Lx′ , Lz′ = (10, 800) and the resolution Nx′ , Nz′ = (84, 6667). The strategy to filter
the large-scale spanwise velocity is comparable to that introduced in Section 5.2.2, with
some specificities due to the trigonometric transformation, which are exposed in Appendix
5.A. The filtration window is (Kx′ ,Kz′) = (0, 0.24). The corresponding wavelength is
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Figure 5.2: Instantaneous visualisations of Filtered plane Couette flow in a streamwise-
spanwise domain of (Lx, Lz) = (400, 200). Shown is cross-flow velocity v (blue: -0.2, white:
0, red: 0.2). Three values of Re are considered.
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lower than that of natural transitional patterns (of around 40). Choosing a filtration
window which compares to that in the non-tilted case of Section 5.3 is complex, because
of the obliqueness of the filtration grid and the discrete values of possible wavenumbers.
Therefore, exact comparisons in terms of Re are difficult to make. The specific values of
Re are however not necessary to understand the physical processes induced by filtration.

We initiate the simulations with a uniformly turbulent flow field, which originates from
a simulation at Re = 500. The Reynolds number is then changed to some desired value.
In plane Couette flow, the uniform flow is known to be unstable for Re < 460, with
intermittent laminar gaps emerging, and self-organising into turbulent-laminar patterns
once Re is decreased. For Re < 340, these patterns live room to isolated turbulent bands,
surrounded by laminar flow. This process is illustrated on the left column of Figure 5.3.
Around Re = Rec ≃ 325, the laminar-turbulent intermittency is known to enter the
Directed Percolation class of continuous phase transitions (Lemoult et al., 2016; Klotz
et al., 2022). Below Rec, turbulent bands will preferentially decay, even after a very long
time, while for 325 < Re < 340, bands will essentially spread into the laminar zone via
a specific process called splitting (Shi et al., 2013): a second band is nucleated from a
mother band, in a self-replicating process.

The right column of Figure 5.3 illustrates the different regimes present in the case of
Filtered plane Couette flow, with varying Re. At high Re (Re ≃ 380), uniform turbu-
lence is destabilised by local nucleations of gaps. When Re is decreased, these gaps are
more numerous and get wider. They give birth to localised turbulent structures. These
structures live up to a point (Re = 360) where they eventually decay.

This process is extremely different from that of plane Couette flow:

(1) We do not observe traces of pattern formation with suppressed spanwise large-
scale flow;

(2) The widths of turbulent zones seem widely distributed as compared to plane
Couette bands;

(3) We do not observe band splitting;
(4) The transition from uniform turbulence to laminar flow happens in a shorter

range in Re compared to plane Couette flow.

5.5 Slugs and splitting

We now carry out a second experiment, which is the counterpart of the quench experiment
described in Section 5.4. Once a local turbulent band is created (e.g, by imposing a
perturbation of finite amplitude), it is known to either expand (via slugs), split, or decay
(Barkley, 2016). We present the results of such a procedure in Figure 5.4, in both plane
Couette flow (a, c, e) and Filtered plane Couette flow (b, d, f).

In the plane Couette case, isolated bands will statistically decay for Re < Rec ≃ 325
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Figure 5.3: Space-time visualization of laminar-turbulent intermittency in an oblique
domain of size (Lx′ = 10, Lz′ = 800) and tilt angle θ = 24◦. Left column: plane Couette
flow; right column: Filtered plane Couette flow (Kx′ = 0,Kz′ = 0.24). Different Reynolds
number are shown in each case. Flow at t = 0 is initiated from uniform turbulence at
Re = 500. Colors show local spanwise velocity uz′(z, t) at x′ = Lx′/2, y = 0 (blue: -0.1,
red: 0.1).
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Band Splitting Slug SlugSlugShort-lived
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Figure 5.4: Space-time visualizations of bands and slugs in an oblique slender domain of
plane Couette flow (a, b, c) and Filtered plane Couette flow (d, e, f) (Kz′ = 0.24). Flow
at t = 0 is initiated from a localised turbulent patch. Colors show local spanwise velocity
uz(z

′, t) at x′ = Lx′/2 and y = 0 (blue: -0.1, red: 0.1). Center plot: Front velocity as
a function of Re, in plane Couette (blue points) and Filtered plane Couette flows (red
points). Solid lines are square-root interpolations of the data points.

(Shi et al., 2013; Lemoult et al., 2016). Around Rec ≃ 325, an isolated band is long-lived
(see Fig. 5.4a at Re = 330). Above Rec, bands can proliferate via self-replication, as shown
in Fig. 5.4b at Re = 340. For Re ≳ 350, slugs start to appear: the localised turbulent
patch expands towards positive and negative z′, by fronts moving at opposite velocities.
This value of Re is denoted Reslug. The slug phase is illustrated on Fig. 5.4c at Re = 380.
Note that up to Re ≃ 440, the slug phase contains laminar-turbulent patterns, as was
already observed by Shi et al. (2013).

The case of Filtered Couette flow shows a different succession of regimes. Isolated
bands do not survive a long time even at Re = 380 (Fig. 5.4d), and localised turbulence
starts to propagate via moving fronts for Re ≳ Reslug ≃ 385, as shown in Fig. 5.4e and f
at Re = 400 and 450. Near Reslug, the individual bands do not spread via self-replication.
They only propagate via front motion.

The average front speed c is presented on the center graph of Figure 5.4 as a function
of Re. Front velocities at the two ends of the turbulent region are symmetric on average.
They are null in the regime where only individual bands exist, for Re < Reslug. The
trend c = f(Re) in Filtered Couette flow contrasts with that of Couette flow: the graph is
shifted towards larger Re as an effect of filtration. Furthermore, the values of the velocities
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differ, slightly: when viewed as a function of Re−Reslug, the front velocity is larger in the
filtered case. We can approximate both cases with a square-root trend: c ∝ (Re−Rec)1/2,
which is consistent with generic bifurcation theory (Pomeau, 1986).

Without the advection of large-scale flow, the mechanism responsible for the velocity
of the front is only the nucleation or annihilation of streaks and rolls at the interface.
Our results suggest that the large-scale circulation along the interface has a tendency to
dampen the front velocity.

Let us once more emphasise that the one-dimensional nature of front motion in this
configuration is idealised. Here, the large-scale circulation is orthogonal to the front mo-
tion, so it is expected that it does not contribute much to the front advection. In real
experiments and simulations in large streamwise-spanwise domains, localised turbulent
spots grow in the two directions, and are associated to quadrupolar-shaped large-scale
flow (Kashyap et al., 2020a). In their experimental study, Couliou & Monchaux (2015)
compared the effect of advection by this large-scale flow to that of streak/rolls nucleation.
They found that large-scale advection stands for a large part of front motion, but this is
because the large-scale flow is two-dimensional, contrary to our simplified case.

5.6 Symmetries of the mean flow

The absence of long-standing isolated bands and self-replication can be explained by the
shape of the mean flow in the filtered configuration. We visualise on Figure 5.5 the mean
flow around a band in both plane Couette and Filtered plane Couette flows. In a tilted
geometry (x′, z′) (we recall that z′ is the long direction of the oblique domain), the mean
flow u is computed from an average in (x′, t) over individual bands, during periods when
the turbulent structure is stationary. This computation is carried out at a value of Re
where turbulent structures are localised and not propagating (Re = 330 in Couette flow
and Re = 380 in Filtered Couette flow).

The mean flow is shown on Figure 5.5 by red and blue colors, representing the along-
band velocity relative to the base flow, ux′ − Ub,x′ . (Ub stands for the laminar pro-
file and Ub,x′ its along-band component). Streamlines in the plane (z′, y) represent the
circulation around the laminar region. We also compute the turbulent kinetic energy
Eturb = 1

2

〈
u′ · u′

〉
y∈[0 1]

, where u′ = u − u, and the average is taken on the upper layer

(blue line). The mean streamwise velocity at y = 0.5, U0.5, is also presented as a red solid
line, with having previously subtracted it from the laminar velocity at this plane, 1/2.
(this is done so as to better visualise the shift between Eturb and U0.5.

In both cases, the mean flow is centro-symmetric around the band center z′ = 0. But
in plane Couette flow, there is no reflection symmetry along planes z′ = 0 or y = 0. The
mean flow in the upper layer is shifted from that in the lower layer. This creates what
Duguet & Schlatter (2013) coined overhang regions: in the boundaries of the turbulent
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(a) (b)

Figure 5.5: Visualisation of the mean flow (top row) in an oblique domain in (a) plane
Couette flow and (b) Filtered plane Couette flow. Colors show the velocity along the
band, U ′ − U ′

b and solid grey lines correspond to streamlines. The bottow row shows
corresponding turbulent kinetic energy Eturb and (Ub − U)y=0.5 = 1/2− U0.5.

zone (e.g. z′ = −80), the turbulent region in the lower layer faces a quasi-laminar flow
in the upper layer. In this region, the mean profile is non-symmetric along plane y = 0.
These overhang regions are connected to the large-scale spanwise circulation, as follows
from incompressibility (Duguet & Schlatter, 2013).

Furthermore, the mean flow in the upper layer is shifted with regard to the kinetic
energy Eturb: from low to high z′, Eturb first increases, by extracting energy from the
laminar flow. As a consequence of this production of turbulent eddies, the total mean flow
decreases in intensity (1/2− U0.5 increases from 0). As a result, turbulent eddies are not
strongly fuelled, compared to the injection from laminar flow, and they start decaying in
energy. Subsequently, the mean flow restores its laminar shape, with some spatial shift.
This latter decaying region is called a refractory region. In this zone, turbulent production
is lower than dissipation (Song et al., 2017).

Contrary to Couette flow, Filtered Couette flow seems to render approximately two
reflection symmetries: along the y = 0 plane, and the z = 0 (band center) plane. The
two regions of positive and negative velocities oppose one another, unlike in plane Couette
flow. This approximately restores the reflection symmetry along plane y = 0 and prohibits
overhang regions. The approximate symmetry along z = 0 is visible when looking at Eturb

and u0.5 as a function of z′. Unlike in Couette flow, there is no robust delay between the
two signals. At the laminar-turbulent interface, u0.5 even increases before Eturb decreases.
As a consequence, there is no refractory zone in the filtered case, and the disequilibrium
between mean flow and turbulent energy is not the same.

The absence of refractory zone explains the absence of long-lived isolated structures
and of band splitting in Filtered Couette flow. The refractory tail indeed creates an
effective buffer zone surrounding each individual band. Neighbouring interaction between
closely-spaced bands happen via this buffer zone (Hof et al., 2010; Barkley, 2016). When
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eddies move across the refractory tail, they have a high probability to decay due to the
absence of energy fueling from fresh laminar flow. In some regimes, these eddies survive
the refractory zone and leave it. Then, once energised by fresh laminar flow, they create
a new band, via splitting.

In the filtered case, there is no refractory zone preventing the localised structure from
expanding downstream. As a consequence, no long-lived isolated band can be sustained:
turbulence will eventually either expand or retract. Moreover, there is no need to overcome
the refractory tail via splitting. In the absence of sustained isolated bands and bands self-
replication in the Filtered Couette case, there is a direct connection to the primary vision
of Pomeau (1986): he envisioned two equilibria, a metastable turbulent state and a stable
laminar state. When Re is sufficiently low, the stable state invades the metastable state
via a laminar-turbulent front. The velocity of such front inverts at the critical point, above
which turbulence contaminates the laminar regions. This picture is only a simplification
of what happens in transitional shear flows (Barkley, 2016), as the situation near the
critical point is more intricate: localised structures are sustained, and can decay or split.
However, the vision of Pomeau (1986) essentially captures our observations in Filtered
plane Couette flow.

We wish to verify the continuous nature of the phase transition in the Filtered Couette
case, by measuring turbulent fraction at equilibrium, denoted Ft. Results in an oblique
domain of size Lz′ = 800 are presented on Figure 5.6 and can be compared to those of
Lemoult et al. (2016). We find a critical Reynolds number Rec ≃ 383 below which Ft = 0.
This value of Re nearly coincides with Reslug ≃ 385 above which the turbulent state starts
to contaminate the laminar state (Fig. 5.4). This points out again a crucial difference with
plane Couette flow, where Rec ̸= Reslug (Rec ≃ 325 and Reslug ≃ 350).

These results are preliminary and not yet conclusive in properly characterising the
nature of the phase transition.

5.7 Discussion

We demonstrate an essential connection between large-scale circulation and the presence of
oblique patterns in transitional shear flows. Annihilating large-scale circulation prevents a
wavelength from being selected in the flow. This is in agreement with the role of along-band
circulation in the selection of a specific wavelength, developed in previous chapters. This
is also in line with the results of Tuckerman & Barkley (2011) and Duguet et al. (2011),
who used a long spanwise, short streamwise simulation domain of plane Couette flow,
which prevents large-scale circulation along the laminar-turbulent interface, and where
this interface can only grow or shrink, without forming patterns. Duguet et al. (2011)
analysed this process as a time-continuous random walk, with two competing events: the
propagation or retraction of the front. In this system, the average front velocity balances
near Re ≃ 325, surprisingly close to the threshold of Directed Percolation (Lemoult et al.,



5.7 Discussion 157

380 385 390 395 400

0

0.2

0.4

0.6

0.8

1

(a)

-3 -2.5 -2 -1.5 -1

-0.3

-0.2

-0.1

0

0.1

0.2

(b)

Figure 5.6: Evolution of equilibrium turbulent fraction Ft with Re in Filtered plane
Couette flow in (a) linear-linear axes and (b) log-log axes (ϵ ≡ Re−Rec

Rec
). The dashed line

shows the theoretical 1D-DP scaling Ft ∼ ϵβ with β = 0.276. Note that convergence is
not achieved yet and the results are inconclusive for proving the obedience to DP.

2016).

Suppressing the large-scale circulation strongly reduces the lifetime of individual lo-
calised turbulent structures. Our control experiment has therefore altered the efficiency
of energy extraction from surrounding laminar flow, and this is due to the shape of the
mean flow resulting from filtration. However, the fundamental mechanisms underlying the
problem of transition to turbulence are not totally altered by this operation. Turbulence
is still spatially and temporally intermittent, with possible expansion of turbulent zones
via slug phases, without the need of large-scale circulation. A crucial difference lies in the
absence of self-replication (splitting) of localised turbulent bands. In plane Couette flow,
this process was essential near the laminar-turbulent critical point (Re ≃ 325), as the slug
phase does not exist in this regime. We therefore confirm the role of the energy refractory
zone in preventing slugs and promoting splitting near the critical Re, and its connection to
large-scale circulation. The second-order nature of the phase transition seems preserved in
our filtered system, in agreement with Pomeau (1986, 2015), but more conclusive results
are needed.

Two seemingly different phenomena, the formation of patterns and the presence of
long-lived isolated turbulence, were suppressed by the filtration experiment. It might be
possible to suppress only one of these phenomena, perhaps by imposing a certain shape of
the large-scale streamwise or wall-normal flow. Furthermore, the filtration scale (Kx,Kz)
is a direct parameter delaying and modifying the transition. It is possible that intermediate
regimes would be found when the filtration length is close to the natural wavelength of
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patterns.

Our filtered system is strikingly similar to the case of bent pipe flow. When curving a
pipe, Rinaldi et al. (2019) demonstrated the presence of only slugs and puffs, without any
trace of puff splitting. The effect of bending the pipe could be to induce a secondary flow
(Dean, 1927) responsible for an assymmetry in the localisation of turbulent energy within
puffs.

Although for now only numerical, our control strategy echoes with various experiments
on annular pipe or Couette flow, in which a variety of states, patterned or isolated, were
found (Ishida et al., 2016, 2017; Kunii et al., 2019; Takeda et al., 2020; Matsukawa &
Tsukahara, 2022). In such experiments, or also in the case of stratified or magnetised
shear flows (Brethouwer et al., 2012), multiple physical effects are at play, and could impact
large-scale circulation and pattern formation. It would be interesting to find cases of planar
shear flows in which these physical effects counter-balance this large-scale circulation.
Inspired by curved pipe flow, a possible strategy could be to slightly incline the two planes
in Couette or Poiseuille flow, which would result in a secondary flow interacting with the
large-scale flow.

5.A Filtration strategy in an oblique numerical domain

In the main text, we have exposed a strategy for filtering Navier-Stokes equations in
a streamwise-spanwise domain. This method has to be adapted in an oblique domain.
This requires using trigonometric prefactors so as to suppress spanwise large-scale flow
in a (x′, z′) coordinate system. There is however a strong caveat of the initial procedure
exposed in Section 5.2.2: the influence matrix resulting from the coupled variables (p̂, ûy)
in the two-component system is not invertible. This is a peculiar case for which we could
not find any reliable solution. We therefore adopt a different strategy. This time, the new
RHS R̂′

z will be forced to zero, instead of forcing it to balance the pressure gradient:

R̂′
z = R̂z + F = 0 (5.12)

The equation for ûz, in place of (5.9), writes:

(∂2y − λ)ûz(t) = R̂′
z − ikz p̂ = −ikz p̂ (5.13)

and pressure is solved by ∇2p = ∇ · R′. This method effectively reduces the large-
scale spanwise flow (it is of order ∼ 10−6 in the filtered case, compared to ∼ 10−1 in
plane Couette flow), without exactly imposing it to be 0. There might be however some
small inconsistencies between the two filtering strategies used in the tilted and non-tilted
geometries. But these do not alter the fundamental differences in the phenomenology of
the transition between Couette and Filtered Couette flow, as presented in the main text.
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2 û) · û along band-orthogonal wavenumber kz′ .

Average is taken over (x′, t). Spectra are shown at y = 0. Blue line: plane Couette flow
at Re = 360; red line: filtered plane Couette flow at Re = 360.

5.B Spectral impact of the filtration

In a tilted numerical domain, we compute the mean energy spectrum 1
2 ⟨û · û⟩x′,t, with

û the z′-Fourier transform of total velocity u. This is presented on Figure 5.7, in plane
Couette flow and Filtered Couette flow, both at Re = 360. The characteristic large-scale
motions in Couette flow are damped out to a constant energy distribution in the filtered
case. As a consequence of filtration, the energy at small scales is increased.
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Conclusion and perspectives

Understanding how chaotic motions emerge out of quiescent flows is a long and adven-
turous path. But this path is nothing but vain. And this is not because the destination
was somehow achieved, but because the route one takes is more important than the des-
tination. I hope that this thesis has illustrated how fruitful this route is. I tried to apply
various methods and concepts issued from other areas of Physics or Mathematics to the
following question: how does turbulence rise in shear flows, and, more specifically, why
does it spontaneously take the form of isolated oblique structures, coexisting with laminar
flow? This thesis is only a small step in some of the many possible pathways that one
could follow when addressing such a important and fascinating problem.

In Chapters 1 and 2, we used numerical simulations of a planar shear flow in a reduced
system effectively imposing the angulation of turbulent bands. This led to a statistical
description of the onset of turbulence, and to a super-exponential scaling of the lifetime
of turbulent structures in the case of plane channel flow. In Chapter 2, a rare-event
strategy was successfully applied to enhance this statistical description, and try to pave
the infinitely large phase space describing our turbulent system. Our methodology was
inherited from statistical mechanics, and precisely from the study of stochastic processes.
Its application to rare transitions in deterministic hydrodynamical systems is important,
both for practical applications and fundamental understandings.

With this toolbox, we could build a probabilistic description of localised shear turbu-
lence, based on the extreme value principle. This led to a quantitative understanding of
the interplay between the distribution within a chaotic attractor, and the probability of
the system to escape this chaotic attractor. This description relies on condensing the infi-
nite degrees of freedom of a turbulent system onto a single, one-dimensional, observable.
This required a coarse-grained description of ”microscopic” turbulent fluctuations, that
we obtained by measuring the spatial extension of an isolated turbulent band.

In this thesis, we viewed each localised turbulent zone as an individual object, sub-
ject to seemingly random fluctuations, and which is constantly fuelled by its environment
(the laminar flow) via energy transfers. This is a mesoscopic description, which averages
out small-scale turbulent interactions. This description was completed in Chapter 3. We
quantified the interactions between small turbulent eddies and the strong large-scale cir-
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culation along laminar-turbulent interfaces. This was carried out in a spectral sense, with
a particular focus on the establishment of patterns out of uniform turbulence. A cyclic
mechanism fueling turbulent-laminar patterns was unravelled.

In Chapter 4, this cycle helped us understand the emergence of a selected wavelength
from a turbulent environment. We found an empirical principle of maximal dissipation,
obeyed by the large-scale flow along laminar-turbulent interfaces. Laminar gaps arise
intermittently and locally in the flow, and create such a large-scale flow by which they
interact, and form patterns as a result of this interaction. To some extent, this is similar
to a jamming process. The crucial role of this large-scale flow in selecting a preferred
angulation was better understood in Chapter 5.

This approach is a small step in understanding the physical principles behind the emer-
gence of some order out of turbulent motion, when dissipation is too strong for wall-
bounded turbulence to sustain homogeneously. The advection by the large-scale flow is
key in optimally distributing the energy within the flow. An important achievement could
be to treat incoherent turbulent fluctuations like thermal fluctuations in near-equilibrium
thermodynamics, potentially with help of the large-deviation theory, and to connect it to
the effective free energy minimised by turbulent-laminar patterns, as the one disclosed in
Chapter 4. But at this stage, this view is purely speculative.

There is another fundamental gap that is not yet bridged: the connection between this
intermediate viewpoint at the scale of puffs or bands, and the macroscopic description
of phase transition, which accurately describes the collective behaviour of localised tur-
bulent structures. One presumably needs another toolkit, maybe issued from statistical
mechanics, so as to connect all these levels of description, from microscopic (streaks and
rolls in wall-bounded turbulence) to macroscopic scales (phase transition), going through
intermediate scales (puffs and bands).
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José Eduardo 2014 Turbulent spots in channel flow: an experimental study.
Eur. Phys. J. E 37 (4), 25.
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Abstract

In planar shear flows, the route to turbulence is paved by coexisting laminar and turbulent
structures. These transitional structures either decay to the absorbing laminar state or
self-replicate via splitting, depending on the Reynolds number. The average passage times
from one state to the other depend super-exponentially on the Reynolds number and lead
to a crossing Reynolds number above which proliferation is more likely than decay. We
apply a rare event algorithm, the Adaptative Multilevel Splitting (AMS), to the determin-
istic Navier-Stokes equations to study transition paths and estimate large passage times
in channel flow, more efficiently than with direct simulations. We build a probabilistic de-
scription of the decay or split of localised turbulence, connected to extreme value theory.
In transitioning from one state to another, the flow visits a regime that is self-similar with
the Reynolds number. Our description connects the super-exponential variation of the
passage times to the Reynolds-number dependence of the parameters of an extreme value
distribution, which quantifies the fluctuations of an isolated structure around its averaged
state.

We furthermore focus on the spontaneous emergence of laminar-turbulent patterns from
uniform plane Couette flow. These patterns are associated to a strong mean flow, whose
energisation mechanisms are unravelled. This large-scale circulation is partly fuelled by
small-scale turbulence, but also extracts energy from the mean shear, via a non-linear
interaction due to mean advection. This energy cycle clarifies the way in which a specific
wavelength is preferred in the flow. Via simulations in domains of various finite sizes,
we associate this preferred wavelength to a stronger energy of the mean circulation, and
to maximised advection and dissipation. In large domains, the uniform turbulent state
leaves room to a regime punctuated by randomly-nucleated isolated laminar gaps. These
laminar gaps eventually form patterns because of their associated large-scale flow, which
is best energised at the preferred wavelength. The effect of this circulation is confirmed by
a filtration experiment, where the large-scale flow is controlled: as a consequence, regular
patterns disappear and the transition scenario is altered.
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Résumé

Dans les écoulements parallèles cisaillés, la turbulence apparait sous forme de bandes lo-
calisées, entourées de zones laminaires. Ces structures turbulentes disparaissent (elles at-
teignent l’état laminaire absorbant) ou se multiplient en fonction du nombre de Reynolds.
Dans l’écoulement de Poiseuille plan, les temps de passage moyen d’un état à l’autre
dépendent super-exponentiellement du nombre de Reynolds. Ils permettent de définir un
nombre de Reynolds critique à partir duquel la prolifération des bandes est plus probable
que leur disparition. Un algorithme d’événements rares, l’Adaptative Multilevel Splitting
(AMS), est utilisé pour étudier les chemins de transition et estimer les longs temps de pas-
sage d’une manière plus efficace que la simulation directe. Nous établissons une connexion
avec la théories des valeurs extrêmes. La variation super-exponentielle des temps de pas-
sage avec le nombre de Reynolds est liée aux paramètres de ces distributions extrêmes,
qui quantifient les fluctuations des bandes turbulentes autour de leur état moyen.

Nous étudions en outre l’émergence de motifs laminaire-turbulents obliques à partir
d’une turbulence uniforme. Ces motifs sont associés à un champ moyen intense, qui est
énergisé par un cycle que nous décrivons. Cet écoulement à large-échelle absorbe une par-
tie de l’énergie turbulente, mais est aussi nourri par le cisaillement moyen, en raison d’une
interaction non-linéaire liée à l’advection moyenne. Ce cycle est étudié en faisant varier
la longueur d’onde du motif, grâce à des simulations numériques dans des domaines de
taille variable. L’énergie de la circulation moyenne, et le terme d’advection qui l’alimente
majoritairement, sont maximisés par la longueur d’onde préferentielle du motif, corre-
spondant à un principe de dissipation maximale du champ moyen. Dans un domaine très
large, des trous laminaires apparaissent aléatoirement de manière intermittente, et quand
le nombre de Reynolds est diminué, s’organisent en des motifs réguliers qui maximisent le
champ moyen associé aux trous. L’effet de cette grande circulation est confirmé par une
expérience de filtration de l’écoulement à grande échelle: les motifs réguliers sont ainsi
supprimés et le processus de transition vers la turbulence est altéré.
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