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embrace the word as my new name because it defined negative
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Wild: From Lost to Found on the Pacific Crest Trail
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Abstract

Among the methods for the quantitative study of infectious diseases transmission in host populations,

molecular epidemiology that reconstructs pathogen phylogenies by using pathogen genetic sequences

and mathematical modelling of infectious diseases that fits mechanistic models of disease transmission

to epidemiological data such as case counts are of particular interest to epidemiologists. These two ap-

proaches rely on different data sources whose availability depends on the setting. They also rely on

different concepts and models leading to complementary pictures of disease transmission. The main ob-

jective of this thesis is to better understand how viral infectious diseases such as rabies and COVID-19

circulate in host populations using respectively geolocated and timestamped viral genetic sequences and

detailed epidemiological data at the individual level. The first part of this thesis focuses on rabies, a

neglected tropical zoonosis, that is estimated to cause 59,000 human deaths per year mostly among rural

and poor populations in Africa and Asia. Its causing agent, rabies virus (RABV), mainly circulates in

domestic dog populations. Despite being a vaccine-preventable disease in both humans and dogs, rabies

remains poorly studied and its circulation in dogs poorly understood. First, we reviewed from the litera-

ture all mathematical models and molecular epidemiology studies on dog rabies circulation to synthesize

the contribution of both approaches to the understanding of rabies dynamics in dogs. Then, we described

RABV spread in Cambodia, one of the most affected countries worldwide, using RABV genomes iso-

lated from dogs and Bayesian continuous phylogeography methods. We used Cambodia as a model of

endemic circulation of RABV and exemplified how phylogeography can help characterize circulation in

such context. We found that introductions from foreign countries are not necessary to sustain transmis-

sion in Cambodia. However, these results are conditional on the sampling of the RABV genomes. To

further understand how sampling affects Bayesian phylogeography methods, we performed a simulation

study where we evaluated the performances of three Bayesian discrete phylogeography algorithms under

increasing levels of bias, and tested whether alternative sampling strategies, and integration of incidence

data improve the performances of the algorithms under biased sampling conditions. The second part of

this thesis concentrates on SARS-CoV-2 transmission at one of the smallest population scale, households.

This setting is particularly suitable to detailed follow-up of household members after introduction of a

case, and thus, enables to evaluate how susceptibility and infectivity vary between individuals. First, we

estimated BNT162b2 vaccine effectiveness against infection and against transmission if infected during

the Alpha wave in Israel using a mathematical model of SARS-CoV-2 transmission in partially vacci-

nated households. We further explored how model misspecification in a context of differing contact

patterns between adults and children would impact estimates of relative infectivity and susceptibility of

children compared to adults. Overall, this thesis explores how molecular epidemiology and modelling

contribute to the understanding of infectious diseases transmission at the population level and highlights

the need for data integration.

Keywords: infectious diseases, molecular epidemiology, rabies, household studies, modeling, SARS-

CoV-2.
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Résumé

Parmi les méthodes pour l’étude quantitative de la transmission des maladies infectieuses dans les pop-

ulations, les épidémiologistes ont récemment focalisé leur attention sur l’épidémiologie moléculaire qui

vise à reconstruire la phylogénie des pathogènes en utilisant leurs séquences génétiques, et la modélisa-

tion mathématique des maladies infectieuses qui ajuste des modèles mécanistes de transmission des mal-

adies à des données épidémiologiques telles que le nombre de cas. Ces deux approches se basent sur des

données très différentes dont la disponibilité varie selon le contexte. Les concepts et les modèles qu’elles

utilisent permettent d’explorer des facettes différentes de la transmission des maladies. L’objectif princi-

pal de cette thèse est de mieux comprendre comment les maladies virales comme la rage et la covid-19

circulent dans les populations hôtes en utilisant pour la première des séquences génétiques virales datées

et géolocalisées, et pour la deuxième, des données épidémiologiques à l’échelle individuelle. La pre-

mière partie de cette thèse s’intéresse à la rage, une zoonose tropicale négligée, responsable d’environ

59,000 morts chaque année principalement dans les populations pauvres et rurales d’Afrique et d’Asie.

Son agent étiologique, le virus de la rage (RABV), circule principalement dans les populations canines

domestiques dont les modes de transmission restent peu étudiés et mal compris malgré l’existence de

vaccins efficaces chez l’homme et l’animal. Nous avons tout d’abord synthétisé dans une revue de la

littérature l’apport relatif des modèles mathématiques et de l’épidémiologie moléculaire dans la com-

préhension des dynamiques de la rage chez le chien. Puis, nous avons décrit la circulation endémique de

la rage au Cambodge, un des pays les plus affectés, à partir de génomes de la rage isolés chez le chien

et analysés avec des méthodes de phylogéographie Bayésienne continue. Nous avons montré que les

introductions depuis d’autres pays ne sont pas nécessaires au maintien de la circulation. Toutefois, ces

résultats sont conditionnés par l’échantillonnage des génomes. Pour mieux comprendre leurs impacts

sur les méthodes de phylogéographie Bayésienne, nous avons entrepris une étude de simulation dans

laquelle nous avons comparé les performances de trois algorithmes de phylogéographie discrète face à

un échantillonnage plus ou moins biaisé. Nous avons testé des stratégies d’échantillonnage alternatives

et intégré des données épidémiologiques afin d’atténuer l’effet potentiel des biais d’échantillonnage sur

la performance des trois algorithmes. La deuxième partie de la thèse se concentre sur la transmission

du SARS-CoV-2 dans une des plus petites populations, les ménages. Cette configuration est partic-

ulièrement adaptée au suivi détaillé de l’ensemble des membres du foyer après l’introduction d’un cas

et permet ainsi d’évaluer comment la susceptibilité et l’infectivité varient au niveau individuel. Dans un

premier temps, nous avons estimé l’effectivité vaccinale contre l’infection et la transmission si infecté

pendant la vague de variant Alpha en Israël grâce à un modèle de transmission dans des ménages par-

tiellement vaccinés. Nous avons ensuite exploré comment l’hétérogénéité de contact dans les ménages,

notamment entre les adultes et les enfants, impacte les estimations de l’infectivité et de la susceptibil-

ité relatives des enfants par rapport aux adultes. En conclusion, cette thèse explore les contributions de

l’épidémiologie moléculaire et de la modélisation pour la compréhension de la transmission des maladies

infectieuses à différentes échelles de population et souligne la nécessité d’intégrer les données génétiques

et épidémiologiques.

Mots-clés: maladies infectieuses, épidémiologie moléculaire, rage, études de ménages, modélisation,

SARS-CoV-2.
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General introduction

1. Epidemics of infectious diseases are complex processes that
must be described with models

1.1. What is an epidemic?

1.1.1. Definition

The Centers for Disease Control and Prevention (CDC) defines an epidemic as "an increase, often sud-

den, in the number of cases of a disease above what is normally expected in that population in that area"

(Disease Control and Prevention, 2006). Infectious diseases that are caused by the transmission of harm-

ful organisms called pathogens from infected individuals to uninfected ones can lead to epidemics when

the number of new cases exceeds the baseline number of cases. While the desired baseline level is zero

case, the baseline level corresponds to the observed endemic level in the area under study. Here, endemic

defines any disease that is commonly present within a geographic area (Disease Control and Prevention,

2006). In a stricter acceptation, endemicity characterizes diseases that circulate within a geographic area

without the need for external introductions. In infectious disease epidemiology, epidemic and endemic

circulations are not exclusive types of transmission and should be rather considered as different levels of

transmission.

The transmission process can affect a more or less large population and it can be studied at different

levels of resolution. Four levels of transmission are commonly distinguished depending on the size of the

affected population or the resolution of observation: clusters that are confined to a small community like

a school or a church, outbreaks that affect a larger population in a limited geographic area, epidemics

that are similar to outbreaks but affect larger geographic areas, and pandemics that have spread over

several countries or continents (Disease Control and Prevention, 2006).

Many common diseases are infectious diseases. We can cite strep throat, measles, flu, toxoplasmosis,

eradicated diseases such as smallpox, or the very recent coronavirus disease 2019 (COVID-19). They

are caused by pathogens of different taxonomic origin, more specifically viruses, bacteria, protozoa,

arthropods, helminths, and fungi. In this thesis, we primarily focus on viral diseases and examples of

infectious diseases caused by other taxonomic groups are described for strict illustrative purposes.
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1.1.2. Description of the transmission process

Despite the wide taxonomic diversity of pathogens, they all share the same basic transmission cycle.

First, the pathogen infects its host, then it multiplies within the host, and it eventually propagates to

other hosts (Fig. 1A). This basic transmission cycle applies to diseases with direct transmission such as

airborne, respiratory (droplet), or sexually-transmitted diseases. Other routes of transmission generally

lead to more complex transmission cycles. In the case of zoonoses (diseases that naturally transmit

from animal populations to humans) and a variety of vector-borne diseases, multiple host species are

involved and human is not always an essential link in the transmission cycle. For example, West Nile

virus (WNV) disease is a vector-borne zoonosis that circulates in birds through mosquito bites but it can

also infect mammal hosts among which humans and horses that are dead-ends of transmission (Fig. 1B).

Rabies is another example of viral zoonosis whose causative agent, rabies virus (RABV), circulates in bat

populations, and domestic and wild non-flying carnivores through bites. It can spill over to many other

mammal species including cattle and humans with no further transmission (Fig. 1C). Sometimes, human

is not necessary to pathogen persistence but, once introduced, the pathogen causes large epidemics.

This is the case of Ebola virus that persists in animal reservoirs and leads to self-sustaining chains of

transmission in human. Food and water transmission routes are other types of indirect transmission that

can involve complex food supply systems or multiple host species, respectively.

1.1.3. Determinants of the transmission process

The transmission process is multifactorial. Pathogen, host, and environmental factors influence the

success of transmission by controlling the transmissibility of the pathogen, the contagiousness of the

infector, the susceptibility of exposed individuals, and the environmental stress on the pathogen (Fig. 2).

1.1.3.1. Pathogen determinants

Pathogen characteristics determine its routes of transmission, its ability to spread and to cross species

barriers, and its evolutionary speed (Leung, 2021).

Pathogen molecular composition governs the sites of infection within the organism and the host range

that can be infected. Viruses, for example, are compulsory intracellular parasites and first interact with

host cells through their surface proteins before hijacking the inner cellular machinery to multiply. The

success of this interaction depends on the physicochemical and tridimensional properties of viral surface

proteins. Influenza viruses are a typical example of the impact of molecular composition on host range

as their ecology is primarily driven by the shape and composition of the hemagglutinin antigen (Long

et al., 2019).
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Maintenance 
within terrestrial

carnivores

Lethal infection

Subclinical rabies? Seroconversion? Temporary or 
lasting immunity? 

Circulation within bat 
populations

Spillover infections can 
infect all mammals, 
including humans

Figure 1: Transmission cycle of pathogens. (A) The three minimal steps of the transmission process. First, the
pathogen infects an individual, then multiplies within the individual, and finally is shed into the environment (from
Choisy 2010). (B) Transmission cycle of West Nile virus (WNV). WNV disease is a vector-borne disease affecting
bird populations. Human and horse populations can be infected through mosquito bites but they are dead-end hosts
(from the CDC). (C) Transmission cycle of rabies virus (RABV). Although domestic dogs are the main reservoir
of RABV worldwide, other terrestrial carnivores and bat populations contribute to its circulation. Infections in
humans are due to spillover infections from the animal reservoirs. Similar to WNV, human is a dead-end host of
RABV and cannot naturally transmit the virus (adapted from Fisher et al. 2018).

Pathogen immune escape strategies determine reinfection patterns. Indeed, pathogens are recognized

and fought by the immune system of the host upon infection, ultimately leading to pathogen clearance

and the constitution of an effective immune memory that will prevent reinfection. Most of the vaccine-

preventable childhood diseases (e.g., measles, rubella) induce sterilizing immunity conveying life-long

protection against reinfection. However, many pathogens have developed an arsenal of strategies to es-

cape the immune system and leave no- or short-lived immunity. This way, they can reinfect the same

host leading to very different disease dynamics at the population level compared to pathogens that leave

sterilizing immunity. Rapid evolution, pathogen diversity, and gene expression variability are common

immune escape strategies (Bjørnstad, 2018). RNA viruses are fast-evolving pathogens that can adapt to

the rapid build-up of population immunity during an epidemic, of which influenza viruses constitute a

paradigmatic example. Influenza viruses evade pre-existing immunity in the host population by antigenic

drift (gradual accumulation of mutations in antigens) causing seasonal influenza epidemics and imposing

continuous update of flu vaccines. They are also of pandemic potential because sharpest changes of their

antigens can arise from genome reassortment between different strains (antigenic shifts) inducing cross-

species transmission (Kim et al., 2018). Another consequence of the fast evolution of RNA viruses is
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Pathogen determinants

Molecular composition determines host and tissue ranges

Factors participating in immune escape
• Adaptation to herd immunity by fast evolution
• High genetic diversity (quasispecies) with low or even

non-overlapping antigenic repertoires
• Variable gene expression
• Host tissues colonized by the pathogen

Environmental determinants

Factors affecting survival and persistence of pathogens in 
the environment
• Temperature, humidity, ventilation, airflow etc. 

Factors affecting geographic occurrence and seasonal
dynamics
• Climate impacts vector geographic location for vectorbone

diseases
• Seasonal changes in climatic variables impact seasonal

dynamics of vectorborne and waterborne diseases

Host determinants

Factors affecting host infectivity at the individual level
• Biological characteristics that modulate the immune system responsiveness

(age, sex, underlying pathological condition)
• Pre-existing immunity from past infection or vaccination that diminishes

pathogen shedding in breakthrough infections 

Factors affecting host susceptibility to infection at the individual level
• Host genetics (e.g., receptor glycosylation)
• Biological characteristics that modulate the immune system responsiveness

(age, sex, underlying pathological condition)
• Pre-existing immunity from past infection or vaccination

Factors affecting transmission at the population level
• Herd immunity
• Host behavior, social structure, and age-related mixing patterns

Figure 2: Pathogen, host, and environmental determinants of pathogen transmission. Pathogen, host, and
environmental factors influence the success of the transmission process by affecting the host susceptibility, host
infectivity, and pathogen persistence in the environment (adapted from Leung 2021; Mistry et al. 2021; Ariën et al.
2007).

their presence under diverse genomic variants (quasispecies) within the same host which also contributes

to their fast adaptation (Vignuzzi et al., 2006). Numerous strains of Plasmodium falciparum (causative

agent of malaria) co-circulate while having non-overlapping antigenic repertoires. Such pathogen di-

versity allows repeated infections of the same individual (Gupta et al., 1998). Finally, variable gene

expression of surface proteins enables pathogen to escape the immune system and prevents the host to
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build an effective immune memory as exemplified by Nesseria gonorrhoeae (Stern et al., 1984; Tettelin

et al., 2000). It is important to note that the host tissue range of some pathogens drastically limits the

host immune response. This is the case of RABV that hides from the host immune system by infect-

ing the central nervous system. In such cases, the immune escape strategies based on rapid evolution,

pathogen diversity, and gene expression variability have little impact on transmission dynamics in host

populations.

1.1.3.2. Host determinants

Host characteristics modulate host infectivity and susceptibility at the individual level, as well as

pathogen transmission at the population level (Leung, 2021).

The host immune response plays a critical role in transmission at both the individual and population lev-

els. At the individual level, the host immune system controls infections and modulates disease severity.

Its controlling capacities varies with multiple factors: sex, age (young children and elderly individuals

are typically more susceptible to infections; Brodin and Davis 2017), and underlying disease conditions

(individuals with heart disease or diabetes are more susceptible to severe forms of COVID-19; Sanyaolu

et al. 2020). The immune system also shapes the individual response to vaccines that varies with age.

Pre-existing immunity from past infections or vaccination can also modulate pathogen shedding in in-

fector individuals, and consequently host contagiousness (Leung, 2021). More generally, host genetics

govern susceptibility. For example, glycosylation patterns of host cell receptors determine which hosts

can be infected by SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV; Jones et

al. 2021). At the population level, pre-existing immunity induced by past epidemics or vaccination cam-

paigns conveys indirect protection against transmission to susceptible individuals. This phenomenon

is called herd immunity and determines the magnitude of spread and the shape of the epidemic curve

(Anderson and May, 1985).

Host behavior and social structures are additional factors shaping transmission at the population level

(Buckee et al., 2021). They encompass social contact and age-related mixing patterns, mass gatherings

that may lead to superspreading events, and interactions with wildlife that modulate the risk of zoonotic

emergence.

1.1.3.3. Environmental determinants

Environmental factors influence the survival and persistence of pathogens after their release in the en-

vironment. For example, respiratory pathogens are transmitted through fomites, droplets, or aerosols

whose stability is impacted by temperature, humidity, ventilation, airflow etc. This mechanism explains
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why most respiratory tract infections spread when temperature and humidity are low (Mäkinen et al.,

2009). Environmental factors can also act indirectly on the geographic occurrence of diseases by delim-

iting the geographic range of the animal reservoirs or vector populations (Rocklöv and Dubrow, 2020).

Seasonal changes of environmental variables may lead to seasonal patterns of disease occurrence. For

instance, seasonal rainfalls are associated with cholera outbreaks in sub-Saharan Africa and Southeast

Asia (Emch et al., 2008; Perez-Saez et al., 2022), or more indirectly, they multiply the breeding sites of

insect vectors in turn intensifying the circulation of vector-borne diseases (Rocklöv and Dubrow, 2020).

1.1.4. Epidemics are complex processes

Overall, the transmission process is complex because it is multifactorial but also stochastic, meaning

due to random chance. Indeed, the introduction of a new pathogen in the population does not always

lead to sustained transmission, epidemics can die out by chance. Besides, epidemics of infectious dis-

eases can be explosive contrary to non-communicable diseases, especially when the pathogen is highly

transmissible and the host population is dense with little pre-existing immunity.

1.2. Infectious diseases burden and threats

1.2.1. Burden of infectious diseases

The burden of infectious diseases has greatly changed over the ages. In the pre-modern world, life ex-

pectancy did not exceed 30 years in all regions of the world (Riley, 2005) as half of the children died

from infectious disease before reaching adulthood (Volk and Atkinson, 2013). In parallel, humankind

has been afflicted over the ages by pandemics like the Black Death that killed one third of the European

population and tremendously impacted European geopolitics and history (Herlihy and Cohn, 1997). Dur-

ing the Enlightenment, most western countries experienced a slight but non-negligible increase of life

expectancy thanks to income growth. A sharper increase occurred at the end of the 19th century thanks to

the development of hygiene and sanitation that reduced infectious disease mortality. In the 20th century,

life expectancy continued to increase thanks to the advent of vaccination, antibiotics, nutrition, medical

practices, and health systems that all helped combat infectious diseases (Omran, 2005). Today, most

countries have undergone the health transition: their populations are aging and more at risk of non-

communicable diseases than infectious diseases (Vos et al., 2020). However, global disparities remain,

as some low- and middle-income countries such as Kenya are still majorly affected by infectious diseases

(Vos et al., 2020). Besides, health systems have to fight not only old pathogens like measles but also new

infectious diseases risks: (i) emerging zoonoses that are a new array of infectious diseases of high epi-

demic potential that can spill over from vertebrate reservoirs to human, (ii) multi-resistant "superbugs"

6



General introduction

that are responsible of antimicrobial resistance (AMR), and (iii) the geographic expansion of endemic

diseases such as dengue, malaria, or tuberculosis (Bloom and Cadarette, 2019). Consequently, infectious

diseases are still a major health problem in the world. For instance, lower respiratory tract infections,

diarrheal infections, HIV/AIDS, tuberculosis, and malaria still ranked among the 15 leading causes of

global disability adjusted life years (DALYs) in 2019 (Fig. 3A; Vos et al. 2020) and AMR was a leading

cause of death, notably in low-resource settings (Murray et al., 2022).

A B

Figure 3: Global burden of infectious diseases and global changes increasing their risk (A) Leading 25 causes
of disability-adjusted life years (DALYs) at all ages in the world in 2019 and percentage of total DALYs with its
95% confidence interval. Communicable, maternal, neonatal, and nutritional diseases are colored in red. Non-
communicable diseases are colored in blue, and injuries in green (adapted from Vos et al. 2020). (B) Effects
of global changes on disease emergence, dynamics, and spread (from Baker et al. 2021). Age-related hearing
loss=age-related and other hearing loss.

1.2.2. Infectious diseases threats

Beyond their direct health consequences, infectious diseases pose social and economic risks. New

pathogens of epidemic potential can overwhelm health systems which limit their capacity to deal with

routine health issues as experienced during the COVID-19 pandemic when many non-infected patients

were left on the side of the road (Rosenbaum, 2020). They can also delay biomedical research on other

diseases by concentrating all the investigation efforts and resources as experienced during the COVID-19

pandemic (Rosenbaum, 2020). The fear of novel pathogens may refrain global travel and tourism which

has huge economic implications as experienced by Brazil and Southeast Asian countries during dengue
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peaks (Bärnighausen et al., 2013; Constenla et al., 2015). The protracted circulation of endemic infec-

tious diseases also disrupt productivity and may considerably impact the gross domestic product (GDP).

For example, a 10% reduction in malaria incidence is associated with a 0.3% higher growth of GDP in

(sub)tropical countries (Gallup and Sachs, 2001). The impacts of infectious diseases may go further and

even increase the vulnerability of weak health systems.

The three major infectious risks - emerging zoonoses, AMR, and endemic diseases expansion - will

very likely gain ground due to ongoing demographic, climatic, and technological changes (Fig. 3; Baker

et al. 2021). Demographic and urbanization growth, especially in countries with weak health systems,

favor contagious transmission. Ageing is another critical challenge for infectious disease spread as im-

munosenescence (age-related alterations of the immune system) makes the elderly more susceptible to

infectious diseases (Aw et al., 2007). On top of that, climate change contributes to the geographical

expansion of vector-borne diseases by widening the habitats of disease-carrying vectors, as already oc-

curing for dengue in western Europe (Lazzarini et al., 2020). Climate change, changes in land use, and

intensive livestock farming that aims to satisfy the increasing demand for animal protein modify the

human-animal interactions and increase the risk of zoonotic emergence. Finally, globalization through

human transportation and global trade amplifies the pandemic risk of emerging zoonotic pathogens as

well as antimicrobial resistant pathogens (Fig. 3B; Petersen et al. 2018; Bloom and Cadarette 2019;

Baker et al. 2021).

In this rapidly evolving context, health systems need to adapt and reinforce epidemic preparedness,

disease transmission surveillance, and response to infectious emergencies. Rapid access and analysis of

epidemiological data is crucial to ensure a timely response. In parallel, research and development efforts

are required to better understand disease spread, develop new therapeutics, and design control strategies

to mitigate the impact of epidemics.

1.3. Quantitative approaches to study epidemics of infectious diseases

1.3.1. A modeling approach to integrate the complexity of the transmission process

Epidemics of infectious diseases constitute a growing threat but their dynamics and determinants are

not directly accessible because they are complex processes. Mathematical models, that are simplified

but informative representations of complex systems or processes formalized by equations, can help de-

scribe and anticipate epidemic processes by accounting for multiple determinants of disease spread and

integrating multiple sources of information in a single framework (Keeling and Rohani, 2008).
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1.3.2. Epidemiological modeling for the description of between-host transmission dy-
namics

Epidemiological models were the first mechanistic models of disease transmission, that is to say that

they explicitly describe the transmission process under a set of assumptions. They first aimed at modeling

disease transmission between individuals of the same host population, although they are more and more

used to model within-host transmission. In this section, we will briefly present their history, conceptual

framework, and underlying hypothesis, focusing on between-host transmission models.

1.3.2.1. Compartmental models, a milestone in epidemiological modeling

In their seminal work, Kermack et al. (1927) introduced the basics of the Susceptible-Infectious-Recovered

(SIR) model that was later formalized by Dietz (1967). In this model, the host population is divided into

three compartments: susceptible (not yet exposed to the pathogen), infectious (carry the pathogen and

can spread it), and recovered (have successfully cleared the infection and are protected against reinfec-

tion). Individuals flow from one compartment to the next upon infection (S to I) or recovery (I to R) as

represented in Fig. 4.

S I Racquisition

𝛽
𝑁
𝑆𝐼 𝛾𝐼

susceptible infectious recovered

recovery
with

immunity

transmission

Figure 4: Flow diagram of the Susceptible-Infectious-Recovered (SIR) model. The host population is divided
into three compartments: susceptible (S), infectious (I), and recovered (R) individuals. The total number of indi-
viduals is N. Susceptible individuals acquire infection upon contact with infectious individuals that transmit with
force of infection β . Infectious individuals recover from the disease at rate γ and are protected from reinfection.

In mathematical terms, the model consists in a system of ordinary differential equations (ODEs):

dS
dt

=−β

N
S(t)I(t)

dI
dt

=
β

N
S(t)I(t)− γI(t)

dR
dt

= γI(t)

(1)

Where β is the transmission rate, γ the rate of recovery from infection, S(t), I(t), and R(t) are the state

variables representing the number of individuals as a function of time t in the susceptible, infectious, and
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recovered compartments, respectively, and N = S(t)+ I(t)+R(t) is the total population size. Several

assumptions underlie this model:

• The infectious period 1
γ

is exponentially distributed,

• β and γ do not change over the course of the infection,

• Recovered individuals are immune from reinfection over their lifetime,

• Individuals from the same compartment contact each other at random which is known as homoge-

neous mixing, and

• The transmission rate β is invariant with respect to the population size N which is generally re-

ferred to as frequency-dependent transmission.

Some of these assumptions can be relaxed by adding compartments to account for transient immunity

(Heaney et al., 2020; Hawkes et al., 2021), age-related or spatially heterogeneous contact patterns (Vi-

boud et al., 2006), transmission from animal reservoirs (Allen et al., 2012; Hussaini et al., 2017), vector-

borne transmission (Smith et al., 2012) etc. This modularity provides an ideal flexibility that allows to

adapt the model to very diverse disease natural histories and account for multiple host-related determi-

nants of spread. Most compartmental models make the assumption of frequency-dependent transmission.

Alternatively, one can assume a density-dependent transmission where the transmission rate scales lin-

early with population density.

The analysis of compartmental models provides insights on the transmission process in the system under

study. For simple compartmental models such as the SIR model presented in Fig. 4, analytical solutions

that describe the steady states of the system can be easily derived. Otherwise, numerical integration is

possible. By analyzing the dynamics of the SIR model, Kermack et al. (1927) showed that a pathogen

can invade the host population only if the initial fraction of susceptible individuals S(0) is less than

γ

β
. This threshold effect led to the definition of one of the most important metrics in infectious disease

epidemiology, the reproduction number (R). The basic reproduction number R0 is the average number of

secondary cases arising from the primary case in an entirely susceptible population. In the SIR model, it

is equal to β

γ
, the inverse of the critical threshold (Keeling and Rohani, 2008). Thus, the pathogen spreads

in a fully susceptible host population only if R0 > 1. When part of the host population is protected

against infection, we would rather use the effective reproduction ratio Rt that is the product of the basic

reproduction ratio and the fraction of susceptible individuals at time s(t). In the SIR model, this would

be β

γ
s(t).
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1.3.2.2. From deterministic to stochastic models

The compartmental model presented above is deterministic, hence it overlooks the stochastic nature of

the transmission process. It can be translated, as well as any other compartmental model, in its stochastic

equivalent using discrete Markov chains, continuous-time Markov chains (CTMCs), or stochastic differ-

ential equations (Allen, 2017). Numerical simulations of disease dynamics under these models can be

produced using the Gillespie algorithm or the Euler-Maruyama method (Allen, 2017).

Stochastic models are useful to capture the variability of the epidemic profile notably when disease inci-

dence is low, the population is small, or environmental variables or demographics strongly impact disease

dynamics. In such cases, deterministic models are not a good approximation of disease dynamics because

stochastic fluctuations may lead to disease extinction or introduce variance and covariance that influence

disease transmission (Keeling and Rohani, 2008; Allen, 2017). Stochastic modeling is thus more ap-

propriate when studying disease eradication as incidence is low, disease transmission in households that

are very small populations, or zoonoses, vector-borne and waterborne diseases for which environmental

variability is important (Keeling and Rohani, 2008; Allen, 2017).

1.3.2.3. Individual-based models to integrate heterogeneity at the individual model

Host heterogeneity can be integrated in compartmental models by specifying additional compartments,

that is additional ODEs. However, when multiple layers of heterogeneities are to be accounted for,

model formulation becomes rapidly cumbersome, or may even be limited. Alternatively, individual-

based models (also called agent-based models) describe disease transmission by explicitly modeling the

interactions between a finite number of fully characterized and autonomous individuals. Any attribute,

constant or time-varying, related to social behavior, spatial location, and/or physiological traits govern-

ing susceptibility and contagiousness can be associated to the individuals. Hence, the history of every

individual can be tracked, and at the same time, the impact of individual-level heterogeneity on disease

transmission in a restricted population can be investigated (Willem et al., 2017). This category of models

is very diverse and particularly adapted to the combined study of between- and within-host interactions

and the analysis of targeted interventions such as targeted screening and vaccination in nosocomial in-

fections (Smith et al., 2020). Over the past decade, individual-based models have been more widely used

but important pitfalls subsist concerning calibration methods and goodness-of-fit measures which limits

study reproducibility and affects the quality of inference (Hazelbag et al., 2020).
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1.3.3. Phylodynamics, or epidemiology from the perspective of the pathogen

1.3.3.1. Definition of phylodynamics

Epidemiological models can easily integrate host and environmental determinants which is less the case

for pathogen determinants because these models do not explicitly describe the evolutionary processes

that pathogens undergo during transmission. Indeed, in the specific case of fast-evolving pathogens such

as RNA viruses, evolutionary forces (mutation, migration, selection, and drift) not only shape pathogen

genetic evolution and diversity, but they occur at the same time scale as the transmission process and

can be influenced by it. For example, the genetic bottleneck at transmission shapes the viral diversity

transmitted to other hosts and can be influenced by the seasonal or spatially heterogeneous dynamics

of the host population. In such cases, evolution is measurable and genetic diversity that is informative

about the transmission process (Drummond et al., 2003) can be exploited to investigate the relation-

ship between pathogen evolution and epidemic and immunological processes. Phylodynamics studies

this interplay between evolutionary, epidemiological, immunological, and sometimes even ecological

processes in epidemics by combining quantitative methods from phylogenetics and population genetics

(Grenfell et al., 2004). It is a recent discipline that emerged in the 2000s and has expanded rapidly. It

completes the arsenal of quantitative tools already available for the study of infectious diseases spread

and can be considered, in this sense, as a specific approach of epidemiological modeling. For better

clarity, we refer to the models presented in Section 1.3.2 as epidemiological models as opposed to phy-

lodynamics, and we use the term epidemiology in its widest acceptance by including epidemiological

modeling and phylodynamics.

In the following paragraphs, we outline the basic modeling components of phylodynamics.

1.3.3.2. Substitution models link phylogenies and molecular sequences of pathogens

A phylogeny corresponds to the evolutionary relationships between sampled organisms. It is depicted

as a phylogenetic tree whose external nodes correspond to sampled organisms (here pathogens isolated

from cases), internal nodes correspond to their common ancestors, branches correspond to ancestral

lineages, and branch length corresponds to the level of genetic divergence. Phylogenies are at the basis of

phylodynamic analyses because their shape is an indicator of the underlying epidemic process (Fig. 5A;

Grenfell et al. 2004; Volz et al. 2013).

Nucleotide sequences (DNA and RNA) are a good source of information of phylogenies because they

gradually accumulate substitutions over time due to replication errors during pathogen multiplication

(Lemey et al., 2009b). This means that any two sequences coming from the same ancestor but evolv-
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Figure 5: Phylodynamic models. (A) Rooted molecular phylogenies are estimated from alignments of pathogen
genetic sequences using a nucleotide substitution model. Branch length corresponds to the genetic distance be-
tween an ancestor and its descendant, indicating their phylogenetic proximity. (B) By adding a molecular clock
model to the inference framework, one can calibrate genetic divergence on calendar time, and thereby, date
clade emergence and introduction events. (C) Demographic models stemming from population genetics describe
pathogen population dynamics either backwards-in-time as depicted here for the coalescent model, or forwards-
in-time for the birth-death model. These models allow the reconstruction of pathogen population growth and can
be used to estimate the transmission potential of pathogens. (D) Discrete phylogeography enables to incorporate
spatial heterogeneity and is particularly adapted for the study of human diseases. (E) Continuous phylogeogra-
phy treats geospatial coordinates as continuous variables and models transmission without having to arbitrarily
discretize space. It is particularly insightful when applied to pathogen circulation in animal populations (adapted
from Pybus and Rambaut 2009 and Dellicour et al. 2021a).

ing independently eventually diverge by accumulating different substitutions. Stochastic approaches like

CTMCs allow to model substitutions as random events and account for multiple substitutions per site

(i.e., location in the genetic sequence). In CTMC models, the substitution process is entirely specified

by the Q matrix that contains the instantaneous relative rates of change of each nucleotide along the

sequence. These instantaneous rates depend on the mean instantaneous substitution rate, relative rate pa-

rameters, and nucleotide frequencies (Fig. 6). Depending on the assumptions made on these parameters,

one can specify a wide range of models from the simple Jukes-Cantor 69 model where all instantaneous

substitution rates are equal to the mean instantaneous substitution rate in the Q matrix, to the complex

general-time reversible model (GTR) where all instantaneous substitution rates are different. Importantly,

whatever the parameterization of the Q matrix, all CTMC models share the same underlying assumptions

(Lemey et al., 2009b):

1. Markov property: at any given site in a sequence, the rate of change from base i to base j is
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independent from the base that occupied that site prior base i.

2. Homogeneity: substitution rates are constant over time.

3. Stationarity: the relative frequencies of A, C, G, and T (πA, πC, πG, πT ) are at equilibrium.

Q =

−𝜇 𝑎𝜋! + 𝑏𝜋" + 𝑐𝜋# 𝑎𝜇𝜋! 𝑏𝜇𝜋" 𝑐𝜇𝜋#
𝑔𝜇𝜋$ −𝜇 𝑔𝜋$ + 𝑑𝜋" + 𝑒𝜋# 𝑑𝜇𝜋" 𝑒𝜇𝜋#
ℎ𝜇𝜋$ 𝑖𝜇𝜋% −𝜇 ℎ𝜋$ + 𝑗𝜋! + 𝑓𝜋# 𝑓𝜇𝜋#
𝑗𝜇𝜋$ 𝑘𝜇𝜋% 𝑙𝜇𝜋" −𝜇 𝑖𝜋$ + 𝑘𝜋! + 𝑙𝜋"

𝐴 𝐶 𝐺 𝑇

Figure 6: Instantaneous rate matrix Q from the continuous-time Markov chain (CTMC) model applied to
nucleotide substitution. Q is a square matrix whose entries represent the instantaneous substitution rates from one
nucleotide to another. The instantaneous substitution rates are a function of the mean instantaneous substitution
rate µ , the twelve relative substitution rates a, b, c, d, e, f , g, h, i, j, k, and l, and the four nucleotide frequencies
πA, πC, πG, and πT . Diagonal elements are chosen so that the sum of each row is equal to zero. Rows and columns
follow the order A, C, G, and T (from Lemey et al. 2009b).

1.3.3.3. Dating pathogen phylogenies using molecular clock models

Molecular clock models link genetic divergence with time which allows to scale the branch lengths

of a phylogenetic tree on calendar time (Fig. 5B). The strict molecular clock model, introduced by

Zuckerkandl and Pauling in the 1960s, assumes that nucleotide substitutions accumulate at a roughly

constant rate (evolutionary rate) in the genetic sequences of pathogens (Zuckerkandl and Pauling, 1962;

Zuckerkandl and Pauling, 1965). With this model, one can date the origin of an epidemic or the start of

an infection, but it is restricted to cases where the evolutionary rate is the same among all lineages in the

considered phylogeny although multiple factors are known to modulate it such as the underlying mutation

rate, metabolic rates in a species, generation times, population sizes, or selective pressures (Bromham

and Penny, 2003). Relaxed molecular clock models overcome this limitation by allowing evolutionary

rates to vary through time or among lineages. In the local clock model, the number of rate changes along

the phylogeny is prespecified. In the autocorrelated relaxed clock model, the evolutionary rate along one

branch depends on the evolutionary rate of its ancestral branch. In the uncorrelated relaxed clock model,

the evolutionary rates associated with each branch are independent and identically distributed, generally

following a lognormal or gamma distribution (Ho and Duchêne, 2014).

Once informed by substitution and molecular clock models, pathogen phylogenies are approximatively

a subtree of the whole transmission chain that connects the sampled individuals located at the tips of the

phylogeny. Due to within-host evolution, transmission events in the transmission chain are more recent

than ancestral nodes in the associated time-stamped phylogenetic tree (Plessis and Stadler, 2015).
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1.3.3.4. Pathogen demographic models

In population genetics, the coalescent theory provides a conceptual framework that links population

dynamics of sampled individuals to the topology of their phylogenetic tree (Fig. 5C). The most simple

model is the Kingman coalescent in which the expected time at which two individuals coalesce into their

common ancestor in a discrete and non-overlapping population of size N (the Wright Fisher population)

is N generations going backwards in time (Kingman, 1982). Branch lengths in the phylogenetic tree

thereby reflect pathogen population size: the longer the branches, the larger the population. In the

Kingman coalescent, population size is constant over time, but extensions allow to account for time-

varying dynamics. These refinements are either deterministic (Griffiths et al., 1994) like the exponential

and logistic growth models, or non-parametric models (Pybus et al., 2000; Strimmer and Pybus, 2001;

Drummond et al., 2003; Opgen-Rhein et al., 2005; Minin et al., 2008). In all these extensions, the overall

pathogen population is supposed to be large compared to the number of sampled individuals (tree tips)

and to evolve under neutral evolution. Although these assumptions are generally violated, an effective

population size (Ne) that leads to the coalescent rate of an idealized population of size N can be derived.

Interestingly, Volz et al. (2009) showed that the exponential coalescent model, i.e., a coalescent model

where Ne follows an exponential growth, can be linked to the SIR model by expressing Ne as a function

of the transmission rate and the prevalence. This formulation allows to calculate the reproduction number.

Coalescent models are deterministic and require sampled individuals to represent a small fraction of the

total population. Thus, they are not adapted to model early epidemic dynamics or infection clusters be-

cause pathogen populations are small hence their dynamics are impacted by stochasticity, and sampling

proportions are large (Pybus and Rambaut, 2009). Birth-death approaches on the contrary are stochas-

tic and describe a forward-in-time process particularly adapted to model the start of epidemics (Plessis

and Stadler, 2015). In these models, extant lineages either generate new lineages at birth rate λ , die at

extinction rate µ , or are sampled at sampling rate ψ (Featherstone et al., 2022).

1.3.3.5. Describing spatial dynamics using phylogeography

The demographic models presented above assume that transmission occurs in a homogenous mixing host

population, although host population is often structured due to age-structured contact patterns or spatial

clustering. Phylogeographic approaches aim at filling this gap by modeling spatial diffusion along a

phylogenetic tree between discrete populations (Fig. 5D) or in a continuous space (Fig. 5E).

Discrete phylogeography

There are three major approaches to modeling spatial dynamics between discrete populations: (i) the

structured coalescent model, (ii) the multitype birth-death process, and (iii) the CTMC model. The
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structured coalescent model corresponds to an extension of the coalescent model. It explicitly models

how lineages coalesce within and migrate between subpopulations from present to past. Likewise, the

multitype birth-death process is an extension of the birth-death process where extant lineages generate

a new lineage in their population, generate a new lineage in another population, migrate to another

population, are sampled, or die (Kühnert et al., 2016). Finally, the CTMC treats the geographic location

of pathogens as a neutral trait that evolves just like nucleotides along the phylogenetic tree without

explicitly modeling population demographics (Lemey et al., 2009a).

The applications of discrete phylogeography exceed spatial spread modeling as the discrete populations

can represent different host species (De Maio et al., 2015; Dudas et al., 2018), host social groups (Stadler

and Bonhoeffer, 2013), or host body compartments (Chaillon et al., 2014).

Continuous phylogeography

Continuous phylogeography provides a more realistic representation of the spatial diffusion process be-

cause it does not rely on the pre-specification of the number of discrete locations. In continuous phy-

logeography, pathogens’ geographic coordinates (i.e., latitude and longitude) are continuous traits that

evolve according to a Brownian diffusion process. To overcome the limiting assumption of constant

diffusion rate along the phylogenetic tree, the relaxed random walk model uses the same approach as

the uncorrelated molecular clock model by assuming that the diffusion rates associated with each tree

branch are independent and identically distributed according to a discretized rate distribution (Lemey

et al., 2010).

2. Challenges in estimating key parameters of the transmis-
sion process

Although the development of theoretical models is crucial to the advancement of epidemiology, calibrat-

ing and validating such models with empirical data is necessary to explore the submerged part of the

transmission process and unravel the determinants of spread, estimate key epidemiological parameters,

and thereby inform public health programs. Statistical methods that make the connection between mod-

els and data come in very different flavors. In epidemiology, statistical inference faces a major challenge

related to the imperfect observation of the transmission process. We discuss here how imperfect epi-

demic data are, then we outline the different types of data that can be collected for outbreak evaluation,

and finally, we present the statistical methods developed to overcome these challenges.
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2.1. The transmission process is imperfectly observed

Unlike experimental sciences, epidemiology analyzes real-world data that result from complex processes

occurring in uncontrolled conditions. This leads to two major challenges: (i) observed data are generally

very limited which requires methodological development, and (ii) data collection and interpretation may

be subject to bias.

By essence, the transmission process is never fully observed. The exact time of infection and all the

factors that influence the transmission event are rarely directly observed or measured. Detailed trans-

mission chains obtained by comprehensive contact tracing are an invaluable source of information from

which key epidemiological parameters such as R0 can be derived directly, but they are very difficult to

obtain for most pathogens (Cauchemez et al., 2019). In some cases, like zoonotic pathogens, detailed

transmission chains are not sufficient to characterize the transmission potential of the pathogen in human.

Indeed, zoonotic pathogens stutter to extinction after spillover from the animal reservoir because they are

not yet adapted to human (Lloyd-Smith et al., 2009). They do not cause enough cycles of transmission

in human to allow the calculation of inter-human R0. Nevertheless, Ferguson et al. (2004) demonstrated

that there is a relation between inter-human R0 and the distribution of the size of case clusters. This

way, the authors could estimate the transmission potential of avian H5N1 influenza in human using very

coarse data.

In addition, multiple sources of bias may impact data collection and interpretation (Cauchemez et al.,

2019) generally resulting in under-reporting. During cluster investigation, some cases may be missed

because investigated cases do not remember all their contacts, some of their contacts may not adhere to

the investigation or may test false-negative due to imperfect diagnostic tests. Under-reporting is also an

issue at larger scales like national routine surveillance systems that are rarely exhaustive because they

rely on simple systems that collect a limited amount of information on each case. For example, influenza

surveillance in France relies on a network of primary health-care providers that report weekly numbers

of patients with flu-like illness (Debin et al., 2013). This syndromic surveillance system does not include

all health-care providers and all affected patients do not necessarily seek care, thus only a fraction of the

cases is reported. Models are thus necessary to estimate disease incidence. The extent of under-reporting

also depends on the capacities of the surveillance systems that can vary in space and time (Moon et al.,

2015; Mastin et al., 2017). In parallel, severe cases are more likely to be detected compared to mild,

pauci-symptomatic, and asymptomatic cases leading to a selection bias. The detection of milder cases is

crucial because they generally contribute to disease spread and their under-detection may lead to biased
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forecasts. In the pyramid of severity, hospitalization and death data are generally more robust to under-

detection, although attributing the cause of death is challenging in certain contexts like RABV infections

when molecular testing is not available. Besides, hospitalization and death data do not necessarily reflect

transmission patterns in the general population.

2.2. Data granularity gradient

Various data can be used to inform the transmission process. They range from detailed data at the in-

dividual level in contexts where epidemiological links between cases are more or less known to coarse

data at the population level like aggregated number of cases for which epidemiological links between

cases are generally unknown. Pathogen genetic sequences can be placed at either ends of the data gran-

ularity gradient depending on the way they are collected. When collected in an individual at different

time points of infection, pathogen genetic data correspond to individual-level data. But, when they are

collected in unrelated individuals at large spatial scales, they correspond to population-level data. In

general, epidemiological and genetic data are accompanied with the background characteristics of cases

related to their biology, behavior, and environment (Cori et al., 2017; Polonsky et al., 2019). In the

following paragraphs, we present three types of data, individual-level epidemiological data, population-

level epidemiological data, and pathogen genetic data at the population level, as well as the potential

biases occurring at the collection, generation, and interpretation steps.

2.2.1. Individual-level data

Individual-level data consist in detailed data on cases related to their disease, demographics, behavior,

and environment. In linelist data, each row corresponds to a case, and each column to an individual

characteristic such as age, gender, location, symptom onset, detection date, clinical outcome, diagnostic

test results, recent travel history, recent contacts with animals, dietary habits etc. (Polonsky et al., 2019).

Useful statistics can be derived from linelists, including the case fatality rate (proportion of identified

cases dying from the infection), demographics of the affected population (e.g., age, occupation), and

case delays (e.g., times to hospitalization, recovery, and death). The collection of detailed individual-

level information is feasible when the number of cases is limited like at the start of an epidemic or in

cluster investigation. In other settings, data on uninfected individuals are collected to complete case data

which allows the investigation of infection risk factors. Households are a good example of such setting

in addition to being a great laboratory of disease transmission because the number of contacts is small

and well-defined, and participant adherence is generally high ensuring data completeness (Cauchemez

et al., 2019). When collected longitudinally, individual-level data on cases can inform case delays, viral
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load dynamics that are generally used as a proxy of infectiousness, and antibody response dynamics that

point to long-term protection against reinfection. Overall, individual-level data are highly valuable to

tackle disease transmission dynamics and determinants.

Nevertheless, individual-level data do not directly capture the underlying transmission process, as in-

fection times, sources, and dynamics are not perfectly known. For example, the high level of physical

proximity between household members may hide the exact transmission chain, or another example, the

temporal dynamics of viral load is informed by only few data points per individual. More generally,

the number of participants and data completeness are limiting factors to achieve robust statistical in-

ference and multiplying biological testings or questionnaires may exhaust participants. Consequently,

study designs should find the right balance between data exhaustivity and participant adherence. In par-

allel, individual-level data often rely on molecular tests that are inherently imperfect, meaning that their

sensitivity (true negative rate) and specificity (true positive rate) are lower than 100%. Serological tests

are often subject to cross-reactivity issues, meaning that they not only detect past infections from the

pathogen of interest but also from closely related pathogens. This is the case of many arboviruses (Hozé

et al., 2021a). Finally, observational studies that aim to collect individual-level data are expensive and

require interdisciplinary teams that define the ethical framework of the study, recruit and follow-up par-

ticipants, perform biological tests, and analyze the generated data. That is why, individual-level data are

generally more difficult to collect compared to population-level data.

2.2.2. Population-level data

Population-level data encompass any epidemiological data aggregated at the population level such as

case and death counts, hospital and ICU admissions, seroprevalence, the number of vaccinated indi-

viduals etc. Aggregated data, except seroprevalence data, are generally collected through surveillance

systems at national or regional levels and reflect past and present disease transmission dynamics. Their

sole analysis already provides valuable information on the effective reproduction ratio or the impact of

interventions. Additional data on climate, population mobility, and population behavior can help forecast

(near) future transmission or make predictions under various intervention scenarios. The characteristics

of the surveillance system determine the representativeness and the specificity of the collected data (Dis-

ease Control and Prevention, 2006). For instance, a case definition based on a diagnostic test is more

specific than a case definition based on a set of symptoms, but it poses practical issues and represen-

tativeness is not guaranteed due to testing strategies that can over-represent specific populations and to

testing behavior that varies with social class (Buckee et al., 2021). Furthermore, the representativeness
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of surveillance system data is generally subject to selection bias as severe cases seek more care than mild

cases.

Serosurveys aim to estimate seroprevalence, a measure of herd immunity (Hozé et al., 2021b). When

stratified by age, seroprevalence can indicate the long-term history of pathogen circulation (Hens et

al., 2010). This is particularly insightful in resource-limited countries with weak surveillance systems.

However, there is a risk of misdiagnosis for some diseases due to cross-reactivity (Hozé et al., 2021a).

Recent studies have tried to bridge the gap between individual-level and population-level data by col-

lecting detailed data on a very large number of individuals. For example, digital epidemiology has

capitalized on the rapid growth of digital data, the widespread penetration of mobile phones and internet

and social media usage to collect data on mobility for example, or on symptomatic search queries for

syndromic tracking of influenza-like illnesses (Bansal et al., 2016; Salathé, 2018; Tarkoma et al., 2020).

Digital epidemiology has strongly benefited from the developments of machine learning to efficiently

analyze big data. Similar advancements were made by national surveillance systems that also try to link

individual-level and population-level data. Countries with cutting edge health information systems (e.g.

the UK, Israel) have matched national health registries with demographic databases during the SARS-

CoV-2 pandemic and thereby could analyze transmission in tens of thousands households (Harris et al.,

2021; Shah et al., 2021), unattainable numbers in traditional observational household studies. However,

data granularity in big data remains limited especially when it comes to behavior.

2.2.3. Pathogen genetic sequences

Thanks to the decreasing costs of high-throughput next-generation sequencing, pathogen genetic se-

quences isolated from infected hosts now constitute an abundant source of information on disease spread.

Pathogen genetic sequences are now so affordable that genomic surveillance is more insightful than tra-

ditional surveillance systems in resource-limited countries with weak surveillance capacities (Wilkinson

et al., 2021). In addition, the time scale of data generation and analysis has greatly improved thanks to the

development of genomic surveillance and the increased affordability of portable sequencers (Grubaugh et

al., 2019a) allowing real-time analyses. The SARS-CoV-2 pandemic has led to a paradigm shift in terms

of sampling: the number of sampled sequences increased from a few dozens to a few millions (Hill et al.,

2021), the spatial coverage extended from a few regions or countries to the entire world, and the sampling

strategy shifted from opportunistic to targeted (Hodcroft et al., 2021a). However, these changes mostly

concern viral diseases of pandemic potential as other pathogens like bacteria and protozoa have much

larger genomes which requires more intense sequencing efforts and prevents the democratization of ge-
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nomic surveillance. Besides, during the SARS-CoV-2 pandemic, the global sequencing effort was highly

heterogeneous which was a major issue for the study of cross-country transmission. Sequencing errors

are another potential source of bias (Ma et al., 2019; Stoler and Nekrutenko, 2021). They are a central

consideration at the beginning of an outbreak or when there is an intense sampling over a short time

window because the pathogen did not have time to accumulate mutations. Finally, multiple sequence

alignment tools can be a source of bias when they do not align correctly homologous sites (Bromham

et al., 2018).

2.3. Ethical and scientific considerations related to epidemiological and
genetic data

Epidemiological data should not only be relevant and reliable to appropriately inform models, they should

also follow broader requirements related to ethics and data sharing (Cori et al., 2017). In terms of

ethics, anonymity must be protected while ensuring a sufficient level of details, notably when it comes to

individual-level data. In terms of data sharing, rapid data collection and sharing to the scientific commu-

nity allow independent analyses, each with its own limitations, which fosters results comparison, scien-

tific collaboration, and increases confidence in new findings. Phylodynamics comes from a place where

open science really participated in the advancements of science. Public repositories of genetic sequences

like NCBI GenBank where researchers publish their newly generated data have been used all over the

world for a while now. Originally founded for influenza research, the GISAID Initiative, a public-private

partnership, promotes the sharing of influenza virus and SARS-CoV-2 genomes along with their clinical

and epidemiological data. Nextstrain is a third example. This open-source project that provides access

and tools to analyze pathogen genomes has become a major actor of phylodynamic research for outbreak

response (Hadfield et al., 2018). In epidemiological modeling, open access is less advanced but new tools

like the Our World In Data global database on COVID-19 vaccination have recently emerged during the

SARS-CoV-2 pandemic (Ritchie et al., 2020) paving the way to global epidemiological data sharing.

Contrary to genetic data that are directly curated by researchers, epidemiological data in the Our World

In Data global database are compiled from official sources including health ministries, government re-

ports, and official social media accounts. All these data sharing tools, although impactful, pose practical

challenges related to data quality and completeness. For genetic sequences, impaired processing may

lead to incorrect mutations (Hodcroft et al., 2021a), while for epidemiological data official sources may

not communicate frequently enough or extensively enough about vaccination rollouts or case numbers

(Ritchie et al., 2020).
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2.4. Development of dedicated statistical methods to analyze these data

Epidemiological and genetic data represent the tip of the iceberg, hence parameters of interest (e.g.,

reproduction number, proportion of asymptomatic cases) are rarely directly measurable. Models are

needed to describe how the underlying transmission process results in the observed data, and statistical

methods are needed to fit models to empirical data and estimate model parameters.

2.4.1. Bayesian statistics

Bayesian statistics are popular in epidemiology because they provide a flexible inference framework

that can adapt to complex situations. Contrary to classical statistics, Bayesian statistics treat model

parameters as random variables which explicitly captures parameter uncertainty in estimations. The

most probable range of values of model parameters is estimated by updating existing information on

value ranges with observed evidence. Simply put, in Bayesian statistics we combine what we know with

what we see to update our knowledge. This approach is consistent with the way we think and learn

facilitating result interpretation (Hoekstra et al., 2014).

Bayes’ theorem is the foundation of Bayesian statistics. When a statistical model with parameters θ

is fitted to observed data x, Bayes’ theorem stipulates that the joint posterior probability density of the

model parameters given the data p(θ |x) is a weighted combination of the data likelihood p(x|θ) (joint

probability of the observed data as a function of model parameters) and the joint prior probability density

of model parameters p(θ) that represents prior beliefs on the values that model parameters can take on.

The denominator
∫

θ ′ p(x|θ ′)p(θ ′)dθ ′ in equation 2 corresponds to the total evidence, that is to say the

likelihood marginalized over all parameter values. Its calculation is generally not necessary to evaluate

the posterior (Gilks et al., 1995).

p(θ |x) = p(x|θ)p(θ)∫
θ ′ p(x|θ ′)p(θ ′)dθ ′

(2)

The quantity of data used to inform the model determines the relative importance of the likelihood and

the prior at informing the posterior. While the prior is less influential with more data, its choice remains

important and may even be a pitfall in Bayesian analysis. Whenever possible, prior choice should reflect

real prior information. If such information is not available, one can opt for a prior that does not exert

much influence on the posterior (Kruschke, 2014).
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2.4.2. Markov chain Monte Carlo

In epidemic modeling, models are often too complex to derive the analytical form of the total evidence

preventing the calculation of the posterior distribution. Alternatively, numerical approximation of the

posterior distribution is achievable using Markov chain Monte Carlo (MCMC) methods. These meth-

ods sample from the posterior distribution while exploring as efficiently as possible the parameter space.

The Metropolis-Hastings algorithm (Hastings, 1970) is the most simple and commonly used MCMC

algorithm (Algorithm 1). In a nutshell, the algorithm explores the parameter space using a random walk,

at each iteration a new value of the parameter is proposed xcand based on the previous value x(i−1) using a

proposal distribution q, and the relative change in the posterior density is evaluated to determine whether

xcand is accepted. xcand is always accepted when it leads to a higher posterior density, and it is accepted

with probability α otherwise. This algorithm is stochastic to avoid getting stuck in local maxima, but

it requires some time (burn-in) before converging to the highest density regions. Exploration efficiency

relies on the variance of the proposal distribution which might necessitate some tuning.

Algorithm 1 Metropolis-Hastings algorithm

Initialize x(0) ∼ q(x)
for iteration i = 1,2, ... do

Propose: xcand ∼ q(x(i)|x(i−1))

Acceptance Probability: α(xcand |x(i−1)) = min
{

1, q(x(i−1)|xcand)π(xcand)

q(xcand |x(i−1))π(x(i−1))

}
u∼ Uniform(u;0,1)
if u < α then

Accept the proposal: x(i)← xcand

else
Reject the proposal: x(i)← x(i−1)

end if
end for

Convergence can be assessed visually (chains of parameter values as a function of iteration should look

like white noise), or dedicated metrics such as the effective sample size (ESS) can help assessing con-

vergence. In phylodynamics, convergence is presumed when ESS is higher than 200.

2.4.3. Data augmentation

Models describing the epidemic process sometimes rely on latent variables, variables that are not di-

rectly observable but meaningful such as the infection time. In such cases, the likelihood is convenient

to write with the latent variables but the augmented data posterior p(θ |x,y) can be calculated only if

latent data y are imputed (Tanner and Wong 1987). The Metropolis-Hastings algorithm can be adapted

to sample from the posterior while marginalizing over the augmented data by iterating the two following

steps (Neal and Kypraios, 2015):
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1. Update θ given x and y by sampling from p(θ |x,y)

2. Update y given x and θ by sampling from p(y|x,θ)

The reconstruction of transmission chains in household studies from symptom onsets or molecular tests

is a case study of data augmentation. Indeed, viral respiratory diseases are characterized by short or

even negative serial intervals which makes the reconstruction of transmission chains hazardous. By

augmenting the observed symptom onsets with the unobserved infection dates, one can integrate over

all possible transmission chains and account for observation uncertainty (Cauchemez et al., 2004). Data

augmentation is also applicable in the case of missing or incomplete data.

2.4.4. BEAST: a milestone for phylodynamics

In phylodynamics, the Bayesian framework allows the estimation of past demographics and, if desired,

of past spatial spread from sequence alignments while accounting for phylogenetic uncertainty. The

likelihood of Bayes’ theorem (equation 2) corresponds to the probability of observing the sequence

data given a phylogenetic history that is characterized by the substitution process, tree topology, branch

lengths, and node geographic locations. Depending on the molecular clock, demographic, and spatial

models, the likelihood can take on multiple forms. Let us consider the simplest configuration where

the likelihood decomposes into the substitution model and the tree model (Bromham et al., 2018). The

substitution model is fully specified by the nucleotide substitution parameters, whereas the tree model is

characterized by the tree prior (i.e., the demographic model) and the molecular clock model that are in

turn specified by hyperparameters. This complex multi-layer model structure is known as a hierarchical

model. This is the key mathematical structure that allows the joint inference of epidemiological and

evolutionary processes. Such as any other Bayesian approach, prior choice in terms of prior parameter

distribution, tree prior, and molecular clock model is crucial to achieve unbiased inference (Bromham et

al., 2018). Concerning model choice, model selection procedures are available but not for all models and

their implementation can be very tedious (Baele et al., 2016). During the MCMC procedure, location-

and time-stamped phylogenetic trees are sampled from the tree posterior distribution, and after sampling,

the sampled trees are generally summarized using the maximum clade credibility (mcc) tree. This tree

corresponds to the sampled tree that maximizes the product of the posterior clade probabilities.

Bayesian evolutionary analysis sampling trees (BEAST) is a software package that achieves such

Bayesian phylodynamics inference. It comes in two different flavors, BEAST 1 (Suchard et al., 2018)

and BEAST 2 (Bouckaert et al., 2019), that share the same Metropolis-Hastings MCMC core algorithm

(Drummond and Rambaut, 2007), but BEAST 2 is more modular as it allows the integration of third
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parties extensions. BEAST has gained a lot of popularity since its early development because it can

be used as an all-in-one evolutionary toolbox. It is now an essential tool in outbreak investigation and

response (Plessis and Stadler, 2015; Gardy and Loman, 2018; Hill et al., 2021).

3. Applications and challenges of epidemiological and phylo-
dynamic modeling

Modelling is a means of estimating key epidemiological parameters such as disease transmissibility,

severity, or transmission heterogeneity which cast light on the underlying epidemiological processes.

Beyond allowing the better understanding of transmission dynamics, modeling is also a flexible tool

for scenario comparison, notably when it comes to the evaluation of control strategies, which is a great

source of scientific evidence for public health authorities (Fig. 7; Cauchemez et al. 2019).

Epidemiological and phylodynamic modeling can be used restrospectively to untangle the relative con-

tributions of different drivers of the epidemic process, evaluate the efficacy of past control measures,

and test alternative control and prevention measures. Such retrospective studies are generally held be-

tween outbreak periods which is more suitable to model development and validation. In a prospective

way, modeling assists in the analysis of surveillance data and is a valuable tool for disease emergence

and public health planification through forecasts and comparison of control strategies in hypothetical

scenarios (Fig. 7A).

Here, we describe the prospective and retrospective applications of epidemiological and phylodynamic

modeling to better understand transmission dynamics and guide public decision-making (Fig. 7B). Fi-

nally, we highlight their complementarity and specific challenges.

3.1. Understanding transmission dynamics

3.1.1. Quantifying transmission risk factors at the individual-level

Individual-level data are essential to characterize case heterogeneity and identify factors underlying it.

Pathogen genetic sequences can also be valuable. We present here key epidemiological quantities that

can be estimated at the individual level as well as the design of the studies allowing their estimation.

Case delays related to the natural history of the disease are easily estimated by fitting parametric prob-

ability density functions such as the gamma, Weibull, and lognormal distributions, to interval-censored

data on the timings of symptom onset and exposure. The incubation period (time from infection to

25



General introduction

B

A

Figure 7: Applications of epidemiological and phylodynamic modeling. (A) Epidemiological and phylody-
namic modeling allow to estimate key transmission parameters, link data across scales, explain observed patterns
by unravelling the drivers of spread, predict future trends, and help design control measures (adapted from Lloyd-
Smith et al. 2009). (B) Modelling is a powerful tool for public health by improving scientific understanding and
advice policies. One can design a model to address policy questions. The model structure then relies on the cur-
rent scientific understanding of the transmission process and the available relevant data. The model may require
changes during the model validation and model fit steps. Sensitivity and uncertainty analyses may provide infor-
mation on additional data that could be collected (adapted from Heesterbeek et al. 2015).

symptom onset) is typically estimated by fitting these density functions to individual data on the timing

of exposure and symptom onset. The shape of the distribution gives an insight on individual heterogene-

ity. For example, the incubation period of rabies in dogs is highly variable with a mean of 22 days, but

a non-negligible fraction of cases develop symptoms more than three months after infection (Hampson

et al., 2009). The estimation of the incubation period can also guide the isolation and case management

policies such as during the Monkeypox pandemic in 2022 (Miura et al., 2022). Two other delays are

of particular interest: the serial interval (time between onsets of a case and their infector) derived from

symptom onset data in transmission pairs, and the generation time (time between the dates of infection of
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a case and their infector) that generally requires pre-existing estimates of the incubation period and relies

on household data (Hart et al., 2022) or transmission pairs (Ferretti et al., 2020). These two delays are

key to estimate time-varying reproduction numbers from incidence data (Ganyani et al., 2020). Although

the serial interval may lead to biased estimates compared to the generation time, it is easier to estimate

(Thompson et al., 2019).

Individual heterogeneity may not only concern the timing of the transmission process but also the magni-

tude of transmission. Superspreading events are an extreme case of transmission heterogeneity as they

result from the unusual infection of many individuals by a single case. Detailed epidemiological data

on clusters of cases allow to identify potential superspreading events but pathogen genetic sequences are

much more informative to discriminate multiple independent introductions from within-cluster transmis-

sion, and homogeneous transmission from superspreading. Lemieux et al. (2021) analyzed the SARS-

CoV-2 genomes of all confirmed early cases in Massachusetts between March and May 2020 along with

cases from putative superspreading events. They reveal that one of the first lineages introduced in Mas-

sachusetts is associated with the largest superpreading event at an international business conference and

led to sustained community transmission, circulation in homeless and higher-risk communities, and was

exported internationally. This study exemplifies the role of superspreading events in explosive transmis-

sion that generally require targeted control policies (Lloyd-Smith et al., 2005). The low genetic diversity

that characterizes cluster transmission and that is exploited to unravel superspreading events can also

arise from over-sampling. In this case, it does not reflect epidemiological processes and can play as a

confounding effect of superspreading events (Dearlove et al., 2017).

Finally, the study of age-related heterogeneity of respiratory disease transmission like influenza has

greatly benefited from household transmission modeling. Children are shown to be more susceptible

than adults to influenza infection but they are as infectious as adults (Cauchemez et al., 2004; Cauchemez

et al., 2009; Cauchemez et al., 2014). Even when children have high pre-season haemagglutination-

inhibition antibody titers indicating partial protection from past infections, they are more susceptible

than adults (Cauchemez et al., 2014). These results have been replicated for multiple types of influenza

viruses (seasonal influenza and 2009 pandemic influenza A) as well as in different settings (European

and Asian households) highlighting that children are the entry door of influenza infections in households

(Endo et al., 2019). This supports targeted influenza vaccination campaigns in school-aged individuals.
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3.1.2. Quantifying transmission risk factors at the population-level

3.1.2.1. Dynamics related to the host

Host mobility and contact patterns influence disease spread at the population-level and may drive

disease emergence in new host species or in new geographic areas. Phylodynamics can be used to point

the shaping role of host mobility. For instance, molecular dating suggests that Zika was first introduced

in the Americas when air passenger flows increased from endemic countries that were experiencing

Zika outbreaks at the time (Faria et al., 2016). Phylogeographic techniques have also unraveled the

modes of persistence of Ebola in the three most affected countries, Guinea, Liberia, and Sierra Leone,

during the 2014 West African epidemic (Dudas et al., 2017). Transmission in Sierra Leone resulted

from sustained local transmission after a single introduction, while the Guinean epidemic was fed by

infrequent introductions from Libera and Sierra Leone. Interestingly, Dudas et al. (2017) also showed

that younger populations were drivers of importations. Highlighting differential epidemic dynamics and

drivers of spread is necessary to carry out appropriate control measures.

Metapopulation models explicitly incorporate the spatial structure of the host population which gen-

erally leads to the better understanding of disease spread. For example, the comparison of alternative

metapopulation models of rabies transmission in dogs in Tanzania shows that the distance between vil-

lages is a strong predictor of disease spread whereas village size has little impact (Beyer et al., 2011).

This supports gradual spatial diffusion in Tanzania rather than long-distance introductions suggested by

landscape phylogeography approaches in North Africa (Dellicour et al., 2017). Similarly, age-structured

SIR models parameterized with setting-specific contact patterns such as national contact heterogeneities

are more realistic and better describe disease spread at large spatial scales as shown for influenza (Mistry

et al., 2021).

Understanding the transmission dynamics between different host reservoirs in the context of zoonoses

is necessary to assess the epidemic risk and the most adapted control measure. Depending on their

evolutionary stage, zoonoses lead to either stuttering or sustained transmission in human (Lloyd-Smith et

al., 2009) and discriminating these two categories of transmission is crucial in the context of emergence.

Phylodynamic approaches supported the hypothesis of sustained inter-human transmission following a

single introduction from the animal reservoir during the 2014 West African Ebola epidemic (Gire et al.,

2014), whereas they clearly demonstrated stuttering chains originating from recurrent introductions from

camel populations for MERS-CoV in Saudi Arabia (Dudas et al., 2018). Due to limited data in animal

populations, it is particularly challenging to identify the most important animal reservoirs in disease
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maintenance. Beyer et al. (2011) nevertheless argued using a metapopulation model that dog rabies does

not originate from wildlife but from sustained and low-grade transmission in highly spatially-structured

dog populations. In Iran, the picture is quite different as demonstrated by Dellicour et al. (2019). Using

phylogeography, they showed that multiple viral lineages circulate independently in both domestic dogs

and wildlife reservoirs.

3.1.2.2. Dynamics related to the pathogen

The analysis of pathogen genetic sequences provides valuable information on the role of pathogens’

genetic diversity on their transmission potential, and thereby their epidemic growth. The relative trans-

missibility and virulence of new variants should be rapidly assessed when the first cases arise, such as

during the COVID-19 pandemic, but it is not an easy task. Indeed, the evolutionary theory predicts that

pathogens’ fitness is maximal at intermediate levels of transmissibility and virulence. However, there

is scarce empirical evidence of a trade-off between transmissibility and virulence, besides the drivers of

this trade-off are unknown (Acevedo et al., 2019).

Practically speaking, new variants of SARS-CoV-2 are identified using phylogenetic approaches (Ram-

baut et al., 2020) and their transmissibility is quantified by estimating variant-specific growth rate or

effective reproduction numbers from variant frequency data (Volz et al., 2021; Davies et al., 2021).

These methodologies allowed to identify the repeated emergence of new variants during the pandemic

and monitor their relative transmissibility. Most of them were shown to be more transmissible (Campbell

et al., 2021), but virulence was significantly greater only for the Delta variant.

Other diseases are subject to the emergence of new strains with higher transmissibility. For example,

Wymant et al. (2022) have recently shown that a new subtype-B HIV strain is currently circulating in the

Netherlands. Patients infected with this subtype exhibit higher viral loads and a faster decline of CD4

cells indicative of a greater virulence. Phylodynamic analyses suggest that the new subtype emerged at

the end of the 20th century and is more transmissible compared to other transmission clusters. Similar to

the Delta variant of SARS-CoV-2, the new subtype-B HIV strain is more transmissible and more virulent.

3.1.2.3. Dynamics related to the environment

The incorporation of environmental factors in epidemiological or phylodynamic modeling allows to iden-

tify and sometimes quantify the role of ecological processes on the dynamics of infectious diseases. For

example, cholera is a waterborne bacterial infection generally causing outbreaks after floods or monsoons

in tropical areas. Koelle et al. (2005) have confirmed this climatic forcing by comparing environmental

changes to time-varying transmission rates estimated from a four-decade time-series of cholera cases in
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Bangladesh with a model that accounts for the number of susceptible individuals, immunity decay, and

seasonal transmission. Landscape phylogeography can also unravel key landscape features in infectious

disease circulation. For example, mean annual temperature is strongly and positively associated with

WNV lineage dispersal velocity and variations in viral genetic diversity in the USA (Dellicour et al.,

2020). Counter-intuitively, migratory bird flyways are not identified as correlates of viral spread which

suggests that local mosquito and bird populations play a major role in disease circulation.

3.2. Modelling for public decision-making

3.2.1. Early-warning signals and surveillance

In addition to better understanding the transmission process, modeling can exploit surveillance data to

estimate basic and effective reproduction numbers to inform public health authorities on the current and

near future epidemiological situation.

At the start of an epidemic, R0R0R0 informs on the transmission potential of the disease, in other words,

whether large and explosive outbreaks should be expected, which is highly valuable in a context of high

uncertainty such as disease emergence. During the 2014 West African Ebola outbreak, Althaus (2014)

estimated R0 for Sierra Leone, Guinea, and Liberia, by fitting a simple SEIR model to incidence data. The

maximum likelihood estimate for Sierra Leone was almost twice as high as for the two other countries.

However, the estimation procedure required fixing the average duration of the incubation and infectious

periods to previous estimates from an outbreak in Congo in 1995. Alternatively, birth-death approaches

that rely on pathogen genetic sequences can jointly estimate R0, the incubation period, and the infectious

period. This way, Stadler et al. (2014) have estimated a similar R0, however the median estimate of the

infectious period was not in agreement with other estimates (Team, 2014), and sample size was too small

to estimate the incubation period with high certainty. Overall, both approaches showed that transmission

was more intense in Sierra Leone compared to Guinea and Liberia.

Rapidly after disease introduction, the depletion of susceptible individuals due to past infection or con-

trol measures should be accounted for in the calculation of the reproduction number that becomes the

effective reproduction number ReReRe. Monitoring Re over an epidemic provides evidence of changes in

transmission over time due to changes in pathogen transmissibility, host mobility, or the implementation

of control measures. Bourhy et al. (2016) have quantified the instantaneous Re of dog rabies in an en-

demic African city, Bangui, over more than one decade. Re rarely exceeded the critical value of 1, even

during epidemic waves, indicating no self-sustained transmission and suggesting that control measures
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were effective. This analysis was done retrospectively but Re can be estimated in real-time which can help

planning outbreak response. Indeed, outbreaks usually increase pressure on health systems, especially

on hospitals. Public health authorities can use predictions on the maximal number of beds for outbreak

management to organize patient care in advance without overwhelming the rest of the health system.

Predictions for response planning are particularly useful during pandemic times or in settings with little

care capacities. For example, Andronico et al. (2017) have assessed a few weeks ahead using a compart-

mental model that the Zika outbreak in Martinique would require at most eight intensive care beds and

seven ventilators for individuals with Guillain-Barré syndrome. Re can also be estimated using phylody-

namic modeling. A structured birth-death model fitted to the first Omicron genomes sequenced in South

Africa has allowed the estimation of Re that was up to 3.6 indicating intense community-transmission

and the need for rapid response. This was further supported by continuous phylogeography suggesting

rapid spatial spread (Viana et al., 2022).

The COVID-19 pandemic has facilitated and accelerated the development of two new types of surveil-

lance systems: genomic surveillance and wastewater-based surveillance. Genomic surveillance is

either deployed at the national level (Wilkinson et al., 2021) or targets higher-risk groups like heathcare

workers (HCWs) and patients at hospitals (Meredith et al., 2020). National-level genomic surveillance

allows to follow the emergence of new variants, and targeted genomic surveillance informs clinical,

infection control, and hospital management teams to improve infection-control interventions in hospi-

tal settings (Meredith et al., 2020). However, genomic surveillance like surveillance systems based on

case numbering remains costly. An alternative strategy relies on the monitoring of pathogen genetic

material in wastewater resulting from fecal shedding and reflecting community-level transmission. The

COVID-19 pandemic has really stimulated wastewater-based surveillance as well as the development

of methodologies based on compartmental models (McMahan et al., 2021; Nourbakhsh et al., 2022) or

deconvolution (Huisman et al., 2022a) to robustly estimate Re from wastewater pathogen load.

3.2.2. Evaluating (non)pharmaceutical interventions

When the main drivers of disease spread are known and a transmission model that accurately captures the

epidemic process is available, modeling and more specifically epidemiological modeling can be used to

design and evaluate in silico the potential impact of vaccination and nonpharmaceutical interventions.

Nonpharmaceutical interventions are also known as community mitigation strategies and encompass so-

cial distancing measures (e.g., quarantine, curfews, lockdowns, closure of places where people gather),

travel bans, and combined testing and quarantine measures. Intervention evaluation can be done retro-

31



General introduction

spectively to validate their implementation, or prospectively to guide decision-making.

Predicting the impact of vaccination and designing the best campaign to avoid spread provide incentives

to governments or health authorities to take action, continue their control efforts, or strengthen them,

particularly in the context of neglected tropical diseases. Mancy et al. (2022) reconstructed transmission

chains from contact tracing data in dog populations in Serengeti district, Tanzania, and showed that with

negligible vaccination coverage rabies would very probably circulate 10 to 30 weeks in dog populations

after a single introduction. This argument strongly supports current vaccination efforts. The effect of

vaccination can also be evaluated at the individual level. For example, Tsang et al. (2019) evaluated

direct and indirect vaccine effectiveness against influenza infection in households and showed that even

when other household members are vaccinated the individual benefit of vaccination still stands.

Community-level social distancing interventions have been evaluated worldwide during the COVID-

19 pandemic. Compartmental models are an essential tool to do so. They allowed among others to

quantify the effect of curfew (Andronico et al., 2021), school closures (Flaxman et al., 2020), or age-

stratified lockdowns (Roche et al., 2020). More simple approaches that rely on the estimation of the

instantaneous Re allowed to dissect the most effective control strategies at a time when governments

adapted control interventions on a monthly basis (Davies et al., 2020b; Huisman et al., 2022b). Testing

strategies were also in the radar but studied with more complex tools like agent-based models. For

example, Pullano et al. (2021) showed that most cases were not detected during the first wave of the

pandemic in France, and that detection rates were considerably heterogeneous across regions. Quilty et

al. (2021) investigated the potential beneficial impact of testing to reduce quarantine and highlighted that

decreased test and trace delays and increasing adherence would improve the effectiveness of combined

testing and quarantine measures.

So far, very few studies attempted to use phylodynamics to evaluate nonpharmaceutical interventions.

Dellicour et al. (2018a) developed a methodology to assess the impact of hypothetical interventions using

estimates of a discrete phylogeographic model. This way, they showed that preventing short-distance

transmission would have drastically impeded the geographic expansion and epidemic size of the 2014

West Africa Ebola outbreak. However, these results do not translate easily into real world intervention

measures.

3.3. Complementarity of epidemiological and phylodynamic modeling
In addition to relying on data of different nature, epidemiological and phylodynamic modeling provide

complementary approaches for the study of infectious diseases spread. Phylodynamics opens the door
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to the analysis of pathogen-related drivers of the epidemic process and brings an evolutionary standpoint

to epidemiology. One can estimate viral fitness, study adaptive evolution to the host, and discriminate

local transmission from imports. It also reliably infers transmission routes in cluster investigation, and

thereby, cross-validates transmission chains or even identifies new epidemiological links. However, epi-

demiological modeling remains the tool of choice to perform real-time analyses, forecast epidemics, and

test hypothetical intervention scenarios. Consequently, the evaluation of (non)pharmaceutical interven-

tions to guide decision-making remains more amenable and detailed with epidemiological modeling.

Importantly, the COVID-19 pandemic has illustrated the need for interdisciplinary studies that combine

genetic and epidemiological data analyzed with classical statistical analyses, epidemiological, and phy-

lodynamic modeling to gain broad insights on the drivers and characteristics of the epidemic process

(Viana et al., 2022; Müller et al., 2021).

3.4. Assessing inference bias, a key challenge in epidemiological and phy-
lodynamic modeling

As in any statistical analysis, epidemiological and phylodynamic modeling can be affected by statistical

biases that lead to a difference between the true parameter value and the expected value obtained with the

estimator. Epidemiologists tend to use this term to indicate any phenomenon that leads to a systematic

difference between the true parameter value and the one estimated from the data. These phenomena

can arise at data collection when sampled data do not reflect the underlying epidemic process. This

particular phenomenon is called sampling bias. Statistical biases can also arise at the model specification

level when models do not account for a process that drives epidemic dynamics or are overparameterized,

meaning that they try to estimate many correlated parameters. In this section, we focus on the inference

challenges related to statistical biases in phylogeography and household transmission models.

3.4.1. Potential impact of sampling bias in phylogeography

The availability of pathogen genetic sequences was a limiting factor in phylodynamic analyses for a

long time. Sample collection was mostly opportunistic, relying on existing surveillance systems and

not planned as part of a grounded road map. Opportunistic sampling certainly allows rapid and low

cost data collection and generation, but it also implies a high risk of sampling bias with sequences that

are not reflective of outbreak dynamics (Hill et al., 2021). For example, some areas may be over- or

under-sampled, and in extreme cases, they may even be left unsampled while they experience intense

circulation. In other situations, many samples are available but all of them cannot be sampled due to

limited financial resources as it is still the case for neglected diseases, or there is a known sampling
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bias as this was the case during the COVID-19 pandemic (Hodcroft et al., 2021a). Samples to analyze

should be selected according to a rationale. So far, subsampling strategies used external data such as

incidence (Candido et al., 2020; Lemey et al., 2020) or hospitalization (Dellicour et al., 2021b) data to

guide sample composition. Importantly, subsampling allows to save computational resources as Bayesian

phylogeographic analyses are computationally-demanding and very large data sets do not necessarily

provide more accurate results (Magee and Scotch, 2018).

Some studies have investigated the impact of spatial sampling bias on phylogeographic analyses. In

discrete phylogeography, CTMC has been argued to be sensitive to spatial sampling bias whereas the

structured coalescent model is robust to bias and its performances are maximized when the sample com-

position is even (De Maio et al., 2015). However, there is no comprehensive understanding of how sam-

pling bias acts on discrete phylogeography inference, neither the ways this impact could be mitigated. In

continuous phylogeography, the picture seems more clear. Indeed, Brownian Motion phylogeography is

strongly affected by the lack of sampling in certain areas, but this can be mitigated by adding sequence-

free cases to inform the model (Kalkauskas et al., 2021). On the other hand, the Λ-Fleming-Viot process,

another model of continuous phylogeography that is more rarely used, is robust to spatial sampling bias

but is more adapted to endemic long-term transmission (Kalkauskas et al., 2021).

So far, three strategies have been used to assess or mitigate the impact of sampling bias. First, multiple

models are tested on the same data set and results are compared. This has been particularly implemented

for discrete phylogeographic analyses in which researchers compared CTMC to the structured coalescent

model (Faria et al., 2017; Brynildsrud et al., 2018; Yang et al., 2019; Mavian et al., 2020; Dudas et

al., 2018). The best case scenario is when results across methods are in good agreement (Faria et al.,

2017; Brynildsrud et al., 2018; Yang et al., 2019; Mavian et al., 2020). When this is not the case,

the experimenter expectations may strongly orient model choice. Second, at least one model is tested

on multiple subsamples. However, this approach is feasible only when enough samples are available,

and there is currently no evidence to prefer one subsampling strategy over the others. Third, statistical

methodologies are adapted to account for potential unrepresentative sampling. For example, Chaillon

et al. (2020) corrected the metric of statistical support of migration rates between discrete locations in

CTMC to accomodate for spatial sampling frequency and identify migration rates that participate the

most to the epidemic process and are not just supported due to more intense sampling. In a recent

study, Guindon and De Maio (2021) explicitely modelled the sampling strategy and showed that the

assumptions on the sampling strategy may radically impact the reconstruction of past spatial dynamics.
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In brief, spatial sampling bias is a key challenge in phylogeographic analyses. There is still a need to

better characterize its impact. New methodologies should be developed in parallel to account for the

potential impact of bias.

3.4.2. Model misspecification and overparameterization

3.4.2.1. In discrete phylogeography

The number of parameters to estimate in a discrete phylogeographic analysis exceeds the amount of

information contained in the spatial location of the analyzed sequences that is condensed in a single

observation. In CTMC, n(n− 1) parameters from the asymmetric rate matrix are to be estimated, with

n the number of discrete locations included in the analysis. In the structured coalescent model, n deme

sizes are to be estimated in addition to the n(n− 1) migration rates. There is very low chance that all

migration events occurred in a given sample (Lemey et al., 2009a; Bloomquist et al., 2010). Bayesian

stochastic search variable selection (BSSVS) circumvents this overparameterization issue by associating

an indicator variable that has a Dirac delta distribution (i.e., equals to 0 or 1) to each migration parameter

and by exploring in the MCMC all combinations of parameters that explain the most the diffusion pro-

cess. However, this inference workaround does not necessarily imply correct inference as Gascuel and

Steel (2020) have recently shown that it is not possible to estimate both migration rate parameters and

node locations with the CTMC model.

The structured coalescent model faces another model misspecification challenge, the ghost deme issue

(Ewing and Rodrigo, 2006; Beerli, 2004). Ghost demes are discrete locations that are not specified

in the structured coalescent model despite intervening in the diffusion process. Accounting for ghost

demes when they actually don’t exist and not accounting for them when they actually exist lead to biased

estimations of migration rates. To model spatial diffusion with a structured coalescent model, one should

first make sure that the epidemic occurs in a closed environment and that all discrete locations affected

by the epidemic were sampled. The impact of ghost demes in CTMC has not been tested yet, but would

very certainly lead to biased inference.

In the end, the inference abilities of discrete phylogeographic models are little known and the impact of

model misspecification remains poorly characterized.

3.4.2.2. In models of household transmission

Household transmission models generally hypothesize homogeneous mixing between household con-

tacts (Longini et al., 1988; Cauchemez et al., 2004; Prunas et al., 2022; Dattner et al., 2021) although
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Goeyvaerts et al. (2018) showed that household members do not necessarily contact each other at ran-

dom. So far, there has been no study on the potential impact of misspecification of within household

contact patterns in the estimation of transmission parameters. Furthermore, contact patterns are expected

to vary across settings and contact heterogeneities cannot be easily deduced.
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This thesis aims at better understanding viral disease spread using either highly detailed individual-level

data or coarse pathogen genetic sequences data at large spatial scale that correspond to the two ends

of the data granularity gradient presented in Section 2.2 of the introduction. The objective is not only

to gain insights from empirical data by using adapted quantitative approaches, but also to compare the

evidence that can be drawn from individual-level data and pathogen genetic sequences. Another aim of

this thesis is to investigate in a more theoretical framework the limitations of the quantitative methodolo-

gies used to analyze these data, epidemiological modeling for individual-level data and phylodynamic

approaches for pathogen genetic sequences, notably concerning missing data and sampling bias. These

objectives are addressed by focusing on two case studies of viral diseases: RABV in domestic dog pop-

ulations and SARS-CoV-2 in households. RABV circulation in animal populations has been studied

since the developments of epidemiological modeling to understand its spread and help design effective

control strategies but it remains a neglected tropical disease for which limited resources and data are

available. Dogs are the main reservoir in Africa and Asia but the drivers of RABV spread in these popu-

lations remain poorly characterized. Concerning SARS-CoV-2, it has caused a major pandemic and has

led to massive lockdowns and vaccination campaigns around the world. Its high transmission potential

coupled to its fast evolution necessitated rapid understanding of the drivers of spread and rapid assess-

ment of control strategies. It has led to an unprecedented scientific production in virology, immunology,

epidemiology, evolutionary biology, medical anthropology etc. Although the modes of transmission of

RABV and SARS-CoV-2 differ, similar quantitative analytical tools can be applied to better understand

the drivers of their spread at the individual and population levels. This thesis is divided into five chap-

ters that address specific questions related to the disease (rabies or COVID-19), methodological choice

(phylodynamics or epidemiological modeling), and setting (large spatial scale or individual-level).

First, I review the epidemiological and phylodynamic modeling approaches applied to dog rabies using

the rigorous methodology of a scoping review (Chapter 1). Indeed, the scoping review approach extends

the scientific methodology of systematic reviews for article search, selection, and analysis to a heteroge-

neous scientific production. In this review, I explore the uses of modeling approaches and synthesize their

contributions to the understanding of RABV circulation and control. I highlight their complementarity

in a context of limited resources and potentially very biased sampling, without omitting their limitations,

and I propose future directions to broaden their inputs.
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Second, I reconstruct possible transmission chains from empirical data at the country level to characterize

RABV endemicity in Cambodia (Chapter 2), and at the household level to evaluate COVID-19 vaccine

effectiveness (Chapter 3). In Chapter 2, I analyze a novel RABV genome data set that covers the

whole country by using phylogeographic approaches to assess the role of intra-country transmission

versus external introductions from neighboring countries, compare circulation in Cambodia to other

settings, and investigate the landscape features associated with RABV spread. In Chapter 3, I estimate

the secondary attack rates of SARS-CoV-2 stratified by age, vaccination, and isolation status in Israeli

households. I further apply an epidemiological model to quantify the transmission probability, as well as

vaccine effectiveness against transmission and infection.

Third, I investigate the limitations of phylodynamic (Chapter 4) and epidemiological (Chapter 5) mod-

eling using simulations when the determinants of the epidemic process are unknown. In Chapter 4, I

assess the impact of spatial sampling bias on discrete phylogeographic reconstruction when viral spa-

tial dynamics are unknown. To do so, I simulate RABV epidemics in dog populations in Morocco and

proceed to biased or unbiased sampling. Then, I reconstruct spatial dynamics using different discrete

phylogeographic algorithms before assessing their relative inference performance. I also showcase how

discrete phylogeographic algorithms lead to contrasting results on empirical data sets. In Chapter 5,

I investigate how a major assumption in models of disease transmission in households impacts the in-

ference of transmission heterogeneity at the individual-level. Indeed, household transmission models

generally assume homogeneous mixing between household contacts which is not necessarily true. In

this study, I use simulated epidemics under a heterogeneous mixing scenario to quantify the inference

bias of age-dependent transmission.
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Epidemiological and phylodynamic modeling of dog
rabies

Rabies is a fatal yet vaccine-preventable disease. In the last two decades, domestic dog populations

have been shown to constitute the predominant reservoir of rabies in developing countries, causing 99%

of human rabies cases. Despite substantial control efforts, dog rabies is still widely endemic and is

spreading across previously rabies-free areas. Developing a detailed understanding of dog rabies dy-

namics and the impact of vaccination is essential to optimize existing control strategies and develop new

ones. In this scoping review, we aimed at disentangling the respective contributions of epidemiological

models and phylodynamic approaches to advancing the understanding of rabies dynamics and control

in domestic dog populations. We also addressed the methodological limitations of both approaches and

the remaining issues related to studying rabies spread and how this could be applied to rabies control.

Through a detailed search of the PubMed, Web of Science, and Scopus databases, we identified a to-

tal of n = 59 relevant studies using epidemiological models (n = 30, referred to mathematical models

hereafter), phylodynamic inference (n = 22) and interdisciplinary approaches (n = 7). We found that

despite often relying on scarce rabies epidemiological data, mathematical models investigated multiple

aspects of rabies dynamics and control. These models confirmed the overwhelming efficacy of massive

dog vaccination campaigns in all settings and unraveled the role of dog population structure and frequent

introductions in dog rabies maintenance. Phylodynamic approaches successfully disentangled the evolu-

tionary and environmental determinants of rabies dispersal and consistently reported support for the role

of reintroduction events and human-mediated transportation over long distances in the maintenance of

rabies in endemic areas. Potential biases in data collection still need to be properly accounted for in most

of these analyses. Finally, interdisciplinary studies were determined to provide the most comprehensive

assessments through hypothesis generation and testing. They also represent new avenues, especially

concerning the reconstruction of local transmission chains or clusters through data integration. Despite

advances in rabies knowledge, substantial uncertainty remains regarding the mechanisms of local spread,

the role of wildlife in dog rabies maintenance, and the impact of community behavior on the efficacy of

control strategies including vaccination of dogs. Future integrative approaches that use phylodynamic

analyses and mechanistic models within a single framework could take full advantage of not only viral
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sequences but also additional epidemiological information as well as dog ecology data to refine our un-

derstanding of rabies spread and control. This would represent a significant improvement on past studies

and a promising opportunity for canine rabies research in the frame of the One Health concept that aims

to achieve better public health outcomes through cross-sector collaboration.
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1. Introduction

1.1. Background

Rabies is a viral zoonosis affecting the central nervous system of mammals that is almost always fatal to

humans. Domestic dogs represent the main reservoir of rabies virus (RABV) worldwide. After infection,

that occurs through the bite of an infected animal, RABV travels through the nerves to the spinal cord

and brain. This incubation period lasts on average 3 weeks in dogs (Hampson et al., 2009). Symptoms

appear when RABV reaches the brain and can last up to ten days (Hampson et al., 2009). There are two

classical forms of rabies, furious or paralytic (World Health Organization (WHO), 2018). While dogs

affected by the furious form become aggressive and attack with no trigger, dogs affected by the paralytic

form develop paralysis and have difficulty swallowing leading to hypersalivation.

Dogs are responsible for 99% of human rabies cases (World Health Organization (WHO), 2018). In-

depth understanding of dog ecology and host-pathogen interactions is necessary to characterize rabies

dynamics and design appropriate control measures. Rabies is a vaccine-preventable disease in both

human and canine populations, and dog vaccination is the most cost-effective control measure (Anoth-

aisintawee et al., 2019). Strong evidence is available for the efficacy of dog rabies elimination programs

in endemic areas (Cleaveland and Hampson, 2017; Lembo et al., 2010; Arechiga Ceballos et al., 2014;

Cleaveland et al., 2014; Cleaveland et al., 2018), notably in South America where massive dog vaccina-

tion campaigns in the 1980s alleviated the burden of canine rabies. Regardless, there has been only little

improvement of the global burden since the successes in South America. Dog rabies is still endemic in

Africa, Asia, and the Middle East (Hampson et al., 2015; Mbilo et al., 2021).

In 2015, the World Health Organization (WHO), the Global Alliance for Rabies Control (GARC), the

World Organization for Animal Health (OIE) and the Food and Agriculture Organization of the United

Nations (FAO) launched a comprehensive framework targeting the global elimination of dog-mediated

human rabies by 2030 (World Health Organization (WHO) et al., 2018). Effective One Health inter-

ventions such as the improvement of the current prophylaxis in both humans (Hampson et al., 2019b;

Hampson et al., 2019b) and dogs should enable reaching this goal. Despite valuable efforts in several

endemic countries (Mbilo et al., 2021; World Health Organization (WHO) et al., 2019; Tiembré et al.,

2018), control strategies have not stopped rabies from circulating due to inadequate political, economic,

and social responses. Weak interest from veterinary services, lack of sustainable resources and political

neglect (Welburn et al., 2017) prevent most endemic countries to reach the 70% vaccination coverage
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recommended by the WHO (Mbilo et al., 2021). Moreover, rabies infections continue to spread, no-

tably in previously rabies-free areas in countries such as Indonesia (Townsend et al., 2013b; Dibia et

al., 2015; Mahardika et al., 2014) and the Philippines (Tohma et al., 2014; Tohma et al., 2016). In

this resource-limited context, in-depth knowledge of the mechanisms underlying rabies dynamics (en-

vironmental drivers of spread, impact of dog density, impact of dog behavior, etc.) would be a key

asset to limiting the spread of this vaccine-preventable disease, notably by aiding to design more ef-

fective vaccination campaigns that are robust to resurgence in the long-term. The development of novel

methodologies to better understand rabies epidemiology and transmission dynamics therefore constitutes

a promising avenue of research.

1.2. Objectives

In this scoping review, we focused on the insights of two quantitative approaches applied to the study

of rabies: mathematical modeling of infectious diseases and phylodynamics. The former is a field of

research that exploits epidemiological data to unravel the spread of diseases in populations, assess the

impact of interventions, support policy making, and optimize control strategies. The latter studies the

interactions between epidemiological, immunological, and evolutionary processes from the analysis of

viral genetic sequence data (Volz et al., 2013). Within phylodynamics, phylogeographic inference specif-

ically aims at reconstructing the dispersal history and dynamics of viral lineages in space and time. Here,

we assessed the uses and respective contributions of both approaches, as well as their limitations and the

remaining knowledge gaps concerning rabies dispersal and control in domestic dog populations.

2. Methods

2.1. Search strategy

This review follows the guidelines of the PRISMA-ScR (Preferred Reporting Items for Systematic Re-

views and Meta-Analyses Extension for Scoping Reviews) statement for scoping reviews (Tricco et al.,

2018). In this review, we screened PubMed, Web of Science and Scopus databases on the 2nd of June,

2020 using the following combination of terms [“rabies” AND (“dog” OR “canine”) AND (“modelling”

OR “modeling” OR “phylogeography” OR “phylodynamics”) AND “dynamics”] along with the “all

fields” option and without restriction on publication year. The “all fields” option enabled to apply the

search terms for their appearance in the title, abstract and keywords. Only English-written papers pub-

lished in scientific journals were considered. All data were searched and screened by the same researcher
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(ML). The search strategy identified 65, 94 and 768 publications in PubMed, Web of Science and Scopus

databases respectively, which corresponded to 797 unique records. In addition, references of selected

publications were screened manually, leading to the identification and inclusion of two additional studies

(Coleman and Dye, 1996; Kitala et al., 2002) that were not identified during the searching step. Finally,

the paper of Colombi et al. (Colombi et al., 2020), which was not identified in the databases nor in the

references, was also included (Fig. 8).

Figure 8: PRISMA-ScR Flow Diagram showing the number of identified and selected records along the
multi-stage selection process. Scopus accounted for most of the records as it retrieved 71% (n = 46) of PubMed
records and 79% (n = 74) of Web of Science records.

2.2. Selection of studies

In total, 797 records were included and processed manually in a multi-stage procedure. At each selection

step, a conservative approach was taken to ensure the best sensitivity level. Firstly, studies were selected

based on their title using the following inclusion criteria: mathematical models of dog and human rabies

assessing the impact of control strategies, the risk of rabies importation, the drivers of rabies spread or

models estimating epidemiological parameters, cost-effectiveness studies, phylodynamic studies includ-

ing RABV isolated from dogs, and broad studies on new phylodynamic or mathematical models. Indeed,

rabies has often been used as a model disease in phylodynamics and mathematical modeling, and a refer-

ence to rabies might not appear directly in the title or the abstract. The following exclusion criteria were

used: reviews, studies strictly on wildlife rabies, dog ecology and population dynamics, conservation bi-

ology, and evolutionary analyses for diagnostic purposes. Secondly, studies were selected based on their
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abstract with a refined set of exclusion criteria to exclude statistical analyses of epidemiological data,

cost-effectiveness studies with no focus on rabies dynamics, experimental rabies cross-species transmis-

sion which did not incorporate a modeling aspect and studies on the evolutionary processes of RABV.

Finally, studies went through a full-text reading step to verify that their content matched our selection

criteria. At this step, theoretical models which were not grounded in a specific epidemiological context

were excluded (Fig. 8).

2.3. Data extraction and analysis

Selected studies were classified into three categories based on their methodology: mathematical mod-

els, phylodynamic and interdisciplinary studies. Most phylodynamic studies identified in this review

correspond to phylogeographic analyses, where the main focus is on inferring the spread of a pathogen

over time using location data associated with the available sequence data. The interdisciplinary category

covers studies either integrating epidemiological and genetic data in a unified modeling framework or

mixing modeling approaches with phylodynamics. Data were systematically charted in an Excel spread-

sheet designed to retrieve: i) the main modeling strategy with its assumptions; ii) the data source; iii)

remarks about potential bias of the data in relation to the underlying evolutionary and epidemiological

processes; iv) the qualitative and quantitative results concerning the dynamics of dog rabies; and v) if

performed, the sensitivity analysis determining the robustness of the methodology to parameter values

or potential biases.

3. Results

3.1. General characteristics of selected studies

Our selection procedure identified 59 studies that meet our selection criteria with 30 mathematical models

(Townsend et al., 2013b; Kitala et al., 2002; Coleman and Dye, 1996; Colombi et al., 2020; Zhang et

al., 2012; Fitzpatrick et al., 2012; Beyer et al., 2012; Townsend et al., 2013a; Dürr and Ward, 2015;

Ferguson et al., 2015; Chen et al., 2015; Sparkes et al., 2016; Leung and Davis, 2017; Laager et al.,

2018; Kadowaki et al., 2018; Laager et al., 2019; Wilson-Aggarwal et al., 2019; Beyene et al., 2019;

Abdul Taib et al., 2019; Huang et al., 2019; Hudson et al., 2019a; Brookes et al., 2019; Carroll et al.,

2010; Ortega et al., 2000; Hampson et al., 2007; Zinsstag et al., 2009; Zhang et al., 2011; Beyer et al.,

2011; Hou et al., 2012), 22 phylodynamic studies (Dibia et al., 2015; Tohma et al., 2014; Bourhy et al.,

2008; Lemey et al., 2009a; Talbi et al., 2009; Meng et al., 2011; Hayman et al., 2011; Carnieli et al.,
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2011; Yu et al., 2012; Mollentze et al., 2013; Guo et al., 2013; Carnieli et al., 2013; Horton et al., 2015;

Brunker et al., 2015; Yao et al., 2015; Troupin et al., 2016; Zhang et al., 2017; Ma et al., 2017; Dellicour

et al., 2017; Brunker et al., 2018b; Wang et al., 2019; Dellicour et al., 2019), and 7 interdisciplinary

studies (Tohma et al., 2016; Talbi et al., 2010; Mollentze et al., 2014; Bourhy et al., 2016; Zinsstag et al.,

2017; Cori et al., 2018; Tian et al., 2018), all published between 1996 and 2020 (Fig. 8 and Fig. 9A-

B). Mathematical models were first published followed by phylodynamic and interdisciplinary studies

(Fig. 9B). This timeline can be explained by the recent developments of Bayesian phylodynamic, and

in particular phylogeographic, models in BEAST (Baele et al., 2016; Suchard et al., 2018; Bouckaert et

al., 2019). Africa and Asia are the most studied continents in the three methodological categories, while

China accounts for most of the Asian studies (Fig. 9C). Oceania is not represented in the interdisciplinary

and phylodynamic categories since it is a rabies-free area (Fig. 9A).

3.2. Topics addressed by the studies

Phylodynamic studies are homogeneous in terms of methodologies (essentially phylogeographic studies)

and research goals. They predominantly focus on unraveling the dispersal dynamics of rabies at the

regional and country levels (n = 16; Dibia et al. 2015; Tohma et al. 2014; Bourhy et al. 2008; Lemey

et al. 2009a; Talbi et al. 2009; Meng et al. 2011; Hayman et al. 2011; Carnieli et al. 2011; Yu et al. 2012;

Carnieli et al. 2013; Brunker et al. 2015; Yao et al. 2015; Ma et al. 2017; Dellicour et al. 2017; Wang

et al. 2019; Dellicour et al. 2019). In four of them, the authors deciphered the role of lineage introduction

in rabies maintenance or emergence (Mollentze et al., 2013; Guo et al., 2013; Horton et al., 2015; Zhang

et al., 2017). In recent years, researchers have been trying to identify external factors impacting the

spatial dynamics of RABV spread (n = 5; Brunker et al. 2015; Yao et al. 2015; Dellicour et al. 2017;

Brunker et al. 2018b; Dellicour et al. 2019; Fig. 9D and Table A1). Contrary to phylodynamic studies,

the modeling category gathers a diverse panel of models with aims that cover the implementation of new

mathematical methodologies (n = 2; Hudson et al. 2019b; Ortega et al. 2000), the characterization of

rabies dynamics (n = 11; Zhang et al. 2012; Fitzpatrick et al. 2012; Ferguson et al. 2015; Chen et al.

2015; Abdul Taib et al. 2019; Huang et al. 2019; Brookes et al. 2019; Hampson et al. 2007; Zinsstag

et al. 2009; Zhang et al. 2011; Hou et al. 2012), the identification of factors driving the resurgence or

maintenance of rabies (n = 9; Townsend et al. 2013b; Kitala et al. 2002; Colombi et al. 2020; Sparkes

et al. 2016; Leung and Davis 2017; Laager et al. 2018; Laager et al. 2019; Wilson-Aggarwal et al. 2019;

Hudson et al. 2019a), the assessment of control strategies efficacy (n = 18; Townsend et al. 2013b; Kitala

et al. 2002; Coleman and Dye 1996; Fitzpatrick et al. 2012; Beyer et al. 2012; Townsend et al. 2013a;
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Figure 9: General characteristics of the selected dog rabies studies. (A) Classification of the included publi-
cations with the total number of studies, the publication time span, and the number of publications per continent
of study. Asia and Africa account for up to 78% of the included studies. (B) Number of publications per year
and per methodological category. Mathematical models were the first studies to be published followed by phy-
lodynamic and interdisciplinary studies. (C) Number of publications per country of study. Each publication was
attributed to one or multiple countries based on the origin of the RABV genetic sequences, rabid case data or
dog ecology data. For phylodynamic studies, countries were not considered if their genetic data were included
only in regular phylogenetic tree reconstructions. Similarly, two studies which described rabies dynamics at
the global scale (Bourhy et al., 2008; Troupin et al., 2016) were not considered in this figure. In our collected
records, China accounts for most Asian studies. Spain appears on the map because Ceuta and Melilla, which
are Spanish enclaves in North Africa, are represented in two data sets of RABV genetic sequences (Dellicour
et al., 2017; Talbi et al., 2010). (D) Number of studies per topic and methodological category. The World Bank,
https://datacatalog.worldbank.org/dataset/world-bank-official-boundaries,CC-BY4.0.

Ferguson et al. 2015; Sparkes et al. 2016; Leung and Davis 2017; Laager et al. 2018; Kadowaki et al.

2018; Hudson et al. 2019a; Hudson et al. 2019b; Brookes et al. 2019; Carroll et al. 2010; Zhang et al.

2011; Beyer et al. 2011; Hou et al. 2012), the risk assessment of rabies introduction and the evaluation

of outbreak preparedness in rabies-free areas (n = 3; Dürr and Ward 2015; Kadowaki et al. 2018; Hudson

et al. 2019b), and cost-effectiveness studies (n = 2; Beyene et al. 2019; Zinsstag et al. 2009; Fig. 9D and

Table A1). Finally, interdisciplinary studies mainly focused on rabies dynamics in endemic areas (n = 6;

Tohma et al. 2014; Talbi et al. 2010; Mollentze et al. 2014; Bourhy et al. 2016; Cori et al. 2018; Tian et al.

2018), and the identification of environmental factors influencing rabies spread and maintenance such as

recurrent reintroductions (n = 3; Talbi et al. 2010; Zinsstag et al. 2017; Tian et al. 2018). Two of these

used genetic and epidemiological data of dog rabies in a unified modeling approach (Mollentze et al.,
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2014; Cori et al., 2018), whereas the others analyzed sequences through regular phylogenetic approaches

and completed their analysis with a mathematical model (Talbi et al. 2010; Bourhy et al. 2016; Zinsstag

et al. 2017; Tian et al. 2018; Tohma et al. 2016; Fig. 9D and Table A1).

3.3. Potential sources of bias in the data

Data source (active/passive surveillance), resolution (number and length of RABV sequences, incidence

per country/region, etc.) and representativeness influence the level of evidence of the studies on the

underlying epidemiological and evolutionary processes. In particular, recorded cases collected through

passive surveillance systems are expected to underestimate the disease burden and to be potentially spa-

tiotemporally biased (Hampson et al., 2015; De la Puente-León et al., 2020). Similarly, genetic sequences

collected from publicly available databases such as GenBank often lack precise metadata (e.g., sampling

time and location) and/or are of short length.

In our text corpus of phylodynamic and interdisciplinary studies, passive surveillance systems and Gen-

Bank represent the main sources of RABV genetic sequence data (Tables A2 to A4). By combining these

two data sources, researchers have generally managed to increase the spatiotemporal coverage of their

data set. This however does not guarantee a good representativeness of the epidemic process. Active

surveillance was mostly used to collect dog specimens from animal markets in China (n = 2; Yu et al.

2012; Guo et al. 2013) and thorough contact tracing after biting events in China and Tanzania (n = 2;

Brunker et al. 2015; Zhang et al. 2017). On average, the data sets analyzed in these studies contained 183

sequences spanning from approximatively 3% to 100% of the RABV genome length. Short sequences

containing the N gene constitute the most common type of data. They are less informative than whole

genomes which were only generated and analyzed in recent years across four studies (Brunker et al.

2015; Troupin et al. 2016; Brunker et al. 2018b; Dellicour et al. 2019; Table A2).

In studies from the modeling and interdisciplinary categories, authors generally simulated rabies epi-

demics (n = 24; Tohma et al. 2016; Kitala et al. 2002; Colombi et al. 2020; Beyer et al. 2012; Townsend

et al. 2013a; Dürr and Ward 2015; Ferguson et al. 2015; Chen et al. 2015; Sparkes et al. 2016; Leung

and Davis 2017; Laager et al. 2018; Kadowaki et al. 2018; Wilson-Aggarwal et al. 2019; Abdul Taib

et al. 2019; Hudson et al. 2019b; Hudson et al. 2019a; Brookes et al. 2019; Carroll et al. 2010; Ortega

et al. 2000; Hampson et al. 2007; Zhang et al. 2011; Beyer et al. 2011; Hou et al. 2012; Talbi et al.

2010), and thus predominantly relied on publicly available estimates of the natural history of rabies, dog

demographics and dog ecology (Tables C3 and C4). When models were fitted to incidence data (n =

13; Mollentze et al. 2014; Bourhy et al. 2016; Zinsstag et al. 2017; Cori et al. 2018; Tian et al. 2018;
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Townsend et al. 2013b; Coleman and Dye 1996; Zhang et al. 2012; Fitzpatrick et al. 2012; Laager et al.

2019; Beyene et al. 2019; Huang et al. 2019; Zinsstag et al. 2009), human and/or dog case data from

passive surveillance systems were used, or bite incidence data from thorough active surveillance. In

general, there was a lack of data on dog rabies cases (available in 10 studies; Townsend et al. 2013b;

Coleman and Dye 1996; Zhang et al. 2012; Fitzpatrick et al. 2012; Laager et al. 2019; Zinsstag et al.

2009; Mollentze et al. 2014; Bourhy et al. 2016; Zinsstag et al. 2017; Cori et al. 2018; Tian et al. 2018)

and estimates on dog demographics and ecology integrating the local specificities of host ecology were

available in only seven studies (Fitzpatrick et al., 2012; Laager et al., 2019; Beyene et al., 2019; Huang

et al., 2019; Zinsstag et al., 2009; Zinsstag et al., 2017; Tian et al., 2018). Access to local data is crucial

since differences in rabies spread (Fitzpatrick et al., 2012) and dog carrying capacities (Beyene et al.,

2019) were estimated between areas of the same country. We would expect these differences to be more

pronounced across different countries. To overcome the lack of epidemiological data on dog rabies, one

study used serological data (from vaccination campaigns) to model the dynamics of rabies (Ortega et al.,

2000), and another study (Kadowaki et al., 2018) based its analyses on historical records in Japan from

the 1950s. Similarly, most Australian studies (Dürr and Ward, 2015; Hudson et al., 2019b; Hudson et al.,

2019a; Brookes et al., 2019) took the perspective of dog ecology data since Australia is free of rabies.

This way, the authors explored the impact of dog population structure and dog roaming behavior on

rabies dynamics.

3.4. Description of the models

In studies using phylodynamic approaches, the geographical dispersal of rabies was studied using either

parsimony (n = 4; Bourhy et al. 2008; Talbi et al. 2009; Meng et al. 2011; Yu et al. 2012), Bayesian

discrete phylogeography (n = 18; Dibia et al. 2015; Tohma et al. 2014; Tohma et al. 2016; Lemey et al.

2009a; Hayman et al. 2011; Carnieli et al. 2011; Mollentze et al. 2013; Guo et al. 2013; Horton et al.

2015; Brunker et al. 2015; Yao et al. 2015; Zhang et al. 2017; Ma et al. 2017; Wang et al. 2019; Dellicour

et al. 2019; Talbi et al. 2010; Tian et al. 2018; Brunker et al. 2015), or Bayesian continuous phylogeog-

raphy (n = 6; Carnieli et al. 2013; Dellicour et al. 2017; Brunker et al. 2018b; Dellicour et al. 2019;

Bourhy et al. 2016; Tian et al. 2018; Tables A2 to A4). All Bayesian phylogeographic studies were

carried out in BEAST 1 (Suchard et al., 2018) with discrete trait analysis (DTA) to perform a phylogeo-

graphic reconstruction based on discrete/discretized sampling locations (e.g. provinces or countries) or

with continuous trait analysis to perform a phylogeographic reconstruction based on spatially-explicit

sampling location data (latitude and longitude coordinates). Several methodologies take advantage of
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such phylogeographic inferences to investigate the impact of external factors on the dispersal of viruses:

a generalized linear model (GLM) extension of DTA developed by (Lemey et al., 2014) to test predictors

of dispersal transition frequencies among discrete locations which was implemented by Brunker et al.

(2018b); and post hoc statistical approaches developed by Dellicour et al. (Dellicour et al., 2019; Del-

licour et al., 2016b; Dellicour et al., 2018a) to investigate the impact of environmental factors on the

dispersal velocity, direction, or frequency of viral lineages in continuous phylogeographic frameworks

which were applied in four rabies studies (Dellicour et al., 2017; Brunker et al., 2018b; Dellicour et al.,

2019; Tian et al., 2018). Finally, Zinsstag et al. (2017) were the only authors to implement a birth-death

model in BEAST 2 (Bouckaert et al., 2019) to reconstruct Re along vaccination campaigns and compare

it to estimates obtained with a modeling approach (Table A4).

Compared to phylodynamics, mathematical models display a large diversity of specifications and param-

eterizations. Compartmental models (n = 18; Tohma et al. 2016; Kitala et al. 2002; Coleman and Dye

1996; Zhang et al. 2012; Fitzpatrick et al. 2012; Sparkes et al. 2016; Leung and Davis 2017; Beyene

et al. 2019; Abdul Taib et al. 2019; Huang et al. 2019; Carroll et al. 2010; Ortega et al. 2000; Hampson

et al. 2007; Zinsstag et al. 2009; Zhang et al. 2011; Hou et al. 2012; Zinsstag et al. 2017; Tian et al.

2018) are the most represented models, followed by agent-based (n = 8; Townsend et al. 2013b; Dürr

and Ward 2015; Ferguson et al. 2015; Laager et al. 2018; Kadowaki et al. 2018; Hudson et al. 2019b;

Hudson et al. 2019a; Brookes et al. 2019) and metapopulation (n = 5) models (Colombi et al., 2020;

Beyer et al., 2012; Chen et al., 2015; Laager et al., 2019; Beyer et al., 2011). Other model types such as

network models or branching processes are also represented (Townsend et al. 2013a; Wilson-Aggarwal

et al. 2019; Mollentze et al. 2014; Bourhy et al. 2016; Cori et al. 2018; Tables A3 and A4). The develop-

ment of new dog rabies models builds upon the literature since 15 models out of the 37 identified were

adapted from previously published dog rabies or wildlife rabies models (Tables A3 and A4). This is the

case notably for compartmental models which correspond to the simplest models of rabies dynamics.

Metapopulation, agent-based, and other model types are more complex, in that these approaches often

integrate spatial dynamics of dog rabies (Colombi et al., 2020; Dürr and Ward, 2015; Chen et al., 2015;

Laager et al., 2018; Kadowaki et al., 2018; Laager et al., 2019; Wilson-Aggarwal et al., 2019; Hudson

et al., 2019b; Hudson et al., 2019a; Talbi et al., 2010; Mollentze et al., 2014; Cori et al., 2018).

Population structure can be integrated in any modeling framework under the form of contact heterogene-

ity, age-structured populations, roaming behavior, or individual heterogeneity. In compartmental models,

population structure is integrated either as a set of strata (stray dogs, owned free-roaming dogs, owned
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confined dogs) interacting together (Sparkes et al., 2016), or by specifying a structured next-generation

matrix from which R0 is generally derived (Leung and Davis, 2017). Such models are also referred to as

multi-host models and may integrate other hosts: humans (Chen et al., 2015; Beyene et al., 2019; Ab-

dul Taib et al., 2019; Zinsstag et al., 2009; Zhang et al., 2011; Hou et al., 2012; Juan Zhang et al., 2012),

cattle (Beyene et al., 2019), wildlife (Fitzpatrick et al., 2012; Huang et al., 2019). In agent-based and

network models, population structure is defined at the individual level using spatial kernels (Townsend

et al., 2013b; Colombi et al., 2020; Dürr and Ward, 2015; Ferguson et al., 2015; Kadowaki et al., 2018;

Hudson et al., 2019b), individual contact rates (Dürr and Ward, 2015; Laager et al., 2018; Brookes et al.,

2019), vaccination status (Dürr and Ward, 2015; Kadowaki et al., 2018), life span, infectious period

(Townsend et al., 2013b; Ferguson et al., 2015; Brookes et al., 2019), etc.

3.5. Sensitivity analyses

Sensitivity analyses are commonly used to assess the robustness of inference to both data representative-

ness and model specifications, and to identify the most influential parameters on specific model outputs.

In our text corpus, no sensitivity analyses were found to be carried out in phylodynamic studies which

can be attributed to the relatively small number of sequences analyzed in those studies. In contrast,

sensitivity analyses were commonly performed in mathematical models, either to unravel the key param-

eters influencing rabies dynamics or to verify the robustness of the results to model assumptions. Dog

ecology parameters such as birth rate and carrying capacities are often reported as key parameters on

rabies dynamics predictions although they are not estimated using local data. Transmission rates are also

determinant in model predictions (Table A3). In spatially explicit studies, mobility parameters also have

a strong impact on model inferences. Finally, the impact of under-reporting was tested only in interdis-

ciplinary studies, two of which reported a strong impact of the reporting rate on model inference (Tohma

et al., 2016; Cori et al., 2018) whereas the other two were robust to a change in this parameter (Bourhy

et al. 2016; Zinsstag et al. 2017; Table A4).

3.6. Insights into dog rabies dynamics and its drivers from phylodynamic
and modeling studies

Phylogeographic analyses have aimed to unravel the spatial dynamics of dog rabies at the global and

regional scales and showed that dog RABV lineages cluster spatially at the global scale, except for one

lineage, referred to as the cosmopolitan lineage, which is largely distributed across the world (Bourhy

et al., 2008). At the regional and country scales, there is co-circulation of dog-related lineages, notably in
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China (Meng et al., 2011; Yu et al., 2012; Yao et al., 2015; Zhang et al., 2017; Wang et al., 2019), in the

Middle East (Dellicour et al., 2019; Horton et al., 2015), as well as in Western and Central Africa (Talbi et

al., 2009). However, each lineage exhibits a strong geographical structure. In the case of country-specific

lineages, various studies have suggested that transboundary movements are not a major force of rabies

dispersal (Tohma et al., 2014; Lemey et al., 2009a; Talbi et al., 2009; Mollentze et al., 2013; Guo et al.,

2013; Dellicour et al., 2017). All study categories unraveled the role of human-mediated movements

in rabies spread. Overall, phylogeographic analyses provided evidence for the effect of anthropogenic

factors: major roads are associated with rabies dispersal in North Africa (Talbi et al., 2010), and RABV

lineages tended to preferentially circulate within populated areas in North Africa (Dellicour et al., 2017)

and the Middle East (Dellicour et al., 2019). Other factors are associated with rabies spread in Yunnan

(China, Tables 1 and A6). These results may reflect the intimate link between rabies dynamics, host

ecology and dog-human interactions. Mathematical models highlighted the short length of canine rabies

transmission chains (Mollentze et al., 2014; Cori et al., 2018; Ferguson et al., 2015) and unraveled the

importance of long-range human movements in disease spread (Colombi et al., 2020; Chen et al., 2015).

Finally, interdisciplinary approaches highlighted the crucial role of long-distance transmission events

likely due to humans in rabies dynamics in North Africa (Talbi et al., 2010) and also showed that main

roads act as barriers to dog rabies dispersal in an urban setting in Africa (Laager et al., 2018).
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Chapter 1. Epidemiological and phylodynamic modeling of dog rabies

Phylodynamic studies showed that introduction through infected dog movement is the major force of

rabies spread towards disease-free areas, as Indonesia (Townsend et al., 2013b; Dibia et al., 2015; Ma-

hardika et al., 2014) and the Philippines (Tohma et al., 2014; Tohma et al., 2016) have recently expe-

rienced, and also represents a driver of rabies spread in endemic areas where frequent reintroductions

counteract local rabies elimination after vaccination campaigns (Bourhy et al., 2016; Zinsstag et al.,

2017). In these settings, phylodynamic analysis constitutes a powerful tool to confirm introduction events

(Bourhy et al., 2016; Zinsstag et al., 2017; Talbi et al., 2010; Mollentze et al., 2013; Hayman et al., 2011;

Tohma et al., 2014). Multiple mathematical models have also shown that frequent reintroductions drive

rabies persistence in endemic areas (Ferguson et al., 2015; Laager et al., 2019; Mollentze et al., 2014;

Cori et al., 2018).

Population structure constitutes another driving force of rabies maintenance as explored in simulation

studies integrating dog ecology data in Australian (Dürr and Ward, 2015; Hudson et al., 2019b; Hudson

et al., 2019a; Brookes et al., 2019), Japanese (Kadowaki et al., 2018), Tanzania (Beyer et al., 2012; Beyer

et al., 2011) and Chadian (Laager et al., 2018) settings. Rabies-induced behavioral changes were shown

to contribute to rabies persistence in small dog populations (Brookes et al., 2019) as well as differential

roaming behavior, contact rates between dog strata and the structure of contact networks (Dürr and Ward,

2015; Leung and Davis, 2017; Laager et al., 2018; Kadowaki et al., 2018; Brookes et al., 2019).

The contribution of wildlife to canine rabies spread and maintenance is rarely addressed in phylody-

namic studies because viruses isolated from wildlife specimens often correspond to dog-related lineages

(Tohma et al., 2014; Hayman et al., 2011; Yao et al., 2015; Zhang et al., 2017; Wang et al., 2019) or be-

cause of insufficient sampling efforts when it comes to wildlife (Yu et al. 2012; Table A1). Nevertheless,

specific RABV lineages were shown to circulate both in wildlife and domestic dogs in the Middle East

and Tanzania with complex interspecies transmissions (Horton et al., 2015; Troupin et al., 2016; Brunker

et al., 2018b; Dellicour et al., 2019). A phylodynamic study at the global scale showed that host shifts

from dogs to wildlife with adaptation to the new host were common in RABV history (Troupin et al.,

2016), which may explain why different lineages circulate in dogs and wild foxes in Brazil (Carnieli

et al., 2013), in dogs and ferret badgers in Asia (Huang et al., 2019) and in dogs and mongooses in

South Africa (Troupin et al., 2016) with rare interspecies transmission events. By incorporating direct

interspecies transmission, mathematical modeling studies showed that dog population contributes to sus-

tained rabies circulation in wildlife instead of the other way around (Huang et al., 2019; Fitzpatrick et al.,

2012). Similarly, the proximity to wildlife was shown to not impact rabies spread in dogs in the model
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of Beyer et al. (2012).

Finally, mathematical models and phylodynamics provide convenient estimates of a range of parameters

on rabies dispersal dynamics (lineage dispersal velocities, diffusion coefficients; in Table 1), rabies evo-

lutionary processes and dog ecology. For example, the evolutionary rate was homogeneously estimated

to be between 1× 10−4 and 5× 10−4 substitutions per site per year across RABV genes and lineages,

except for the Asian lineage which is estimated to evolve faster (Fig. 10A). The time to the most recent

common ancestor (TMRCA) is also frequently estimated in phylodynamic studies (Table A2) which is

generally more recent than suggested by historical records. R, the expected number of secondary infec-

tions, is often estimated by fitting case data to mathematical models (Fig. 10B) or by computing its value

based on the choice of parameters value (Table A7). Its estimate ranges from 0.80 to 3.36 according to

the setting but it is generally estimated to be between 1 and 2, corresponding to a low-grade transmis-

sion with frequent stochastic extinctions. Other parameters such as the dog-to-dog transmission rate, the

introduction rate or the dog carrying capacity are also frequently estimated (Table A7).

3.7. Effective control strategies

Interdisciplinary and modeling studies generally assessed the impact of past or potential control strategies

to eliminate dog rabies. The specifications of the explored control strategies depended on the economic

situation of the country in which the study was supposed to be performed, as well as the model type. Dog

vaccination was the most studied control measure (n = 28; Townsend et al. 2013b; Kitala et al. 2002;

Coleman and Dye 1996; Zhang et al. 2012; Fitzpatrick et al. 2012; Beyer et al. 2012; Dürr and Ward

2015; Ferguson et al. 2015; Chen et al. 2015; Sparkes et al. 2016; Leung and Davis 2017; Laager et al.

2018; Kadowaki et al. 2018; Laager et al. 2019; Beyene et al. 2019; Abdul Taib et al. 2019; Huang et al.

2019; Hudson et al. 2019a; Brookes et al. 2019; Carroll et al. 2010; Ortega et al. 2000; Hampson et al.

2007; Zinsstag et al. 2009; Zhang et al. 2011; Beyer et al. 2011; Hou et al. 2012; Zinsstag et al. 2017;

Tian et al. 2018), whereas culling (n = 7; Dürr and Ward 2015; Sparkes et al. 2016; Hudson et al. 2019b;

Carroll et al. 2010; Zinsstag et al. 2009; Zhang et al. 2011; Hou et al. 2012), dog confinement or move-

ment ban (n = 4; Dürr and Ward 2015; Ferguson et al. 2015; Kadowaki et al. 2018; Hudson et al. 2019b),

control of dog birth rate (n = 4; Abdul Taib et al. 2019; Carroll et al. 2010; Zhang et al. 2011; Juan Zhang

et al. 2012) and community behavior (n = 1; Ferguson et al. 2015) were rarely modelled. Culling was

shown to be effective in two compartmental model studies (Carroll et al., 2010; Hou et al., 2012) while

vaccination was generally found to be the most effective strategy. Vaccination coverage strongly depends

on the setting: 90% or complete dog vaccination coverages are recommended in rabies-free areas with
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RABV lineage Reference
Genetic sequences

N
G
Whole genome
N, P, M, G, G-L

A
Global
Global
Africa 2
Africa 2
Arctic, Cosmopolitan, Indian, SEA−1, SEA−2, SEA−3
Brazilian
Asian clade I
Asian clade II
Cosmopolitan, SEA−1, SEA−2, SEA−3
Brazilian
Asian 2
Tanzanian
Global
Global
Africa 1, Africa 2
Arctic, Cosmopolitan, Indian, SEA−1, SEA−2, SEA−3
Chinese
Chinese
Tanzanian
Arctic−like 2, Central Asian 1, SEA−1, SEA−2, SEA−3, SEA−5
Middle East

Bourhy et al., 2008
Bourhy et al., 2008
Talbi et al., 2009
Talbi et al., 2009
Meng et al., 2011
Carnieli et al., 2011a

Yu et al., 2012
Yu et al., 2012
Guo et al., 2013
Carnieli et al., 2013
Tohma et al., 2014
Brunker et al., 2015
Troupin et al., 2016 b

Troupin et al., 2016 b

Bourhy et al., 2016
Zhang et al., 2017
Ma et al., 2017
Ma et al., 2017
Brunker et al., 2018 c

Wang et al., 2019
Dellicour et al., 2019

1e−05 1e−04 1e−03 1e−02

Mean clock rate (subs/site-1.year-1)

B Location Reference
Memphis and Shelby County, USA

Hermosillo, Mexico

Central Java, Indonesia

Kuala Lumpur, Malaysia

Machakos, Kenya

N'Djaména, Chad

Ngorongoro, Tanzania

Serengeti, Tanzania

Bangui, Central African Republic

N'Djaména, Chad

Bangui, Central African Republic

Yunnan, China

Central African Republic, Central African Republic

Coleman et al., 1996 a

Coleman et al., 1996 a

Coleman et al., 1996 a

Coleman et al., 1996 a

Kitala et al., 2002

Zinsstag et al., 2009

Fitzpatrick et al., 2012

Fitzpatrick et al., 2012

Bourhy et al., 2016 b

Zinsstag et al., 2017

Cori et al., 2018

Tian et al., 2018

Colombi et al., 2020

0 1 2 3 4 5
Reproduction ratio

Figure 10: Estimates of the mean evolutionary rate of RABV and the reproduction ratio of canine rabies in
the included studies. (A) Bayesian credibility intervals (mean and 95% Highest Posterior Density, HPD) of the
mean evolutionary rate of canine RABV per genetic sequence and RABV lineage. aThe estimate corresponds to
the upper bound of the 95% HPD. bThe dot corresponds to the median and the interval to the 95% HPD interval.
cThe 95% HPD was not specified in the original publication. (B) Estimates of the reproduction ratio of dog
rabies per control strategy or geographical location. The dot corresponds to the mean and the interval to the 95%
confidence interval unless stated otherwise. aThe interval corresponds to the standard error. bThe authors estimated
the effective reproduction ratio along time. Here, the value range of the median monthly point estimate is depicted.

high surveillance and control capacities whereas lower coverages associated with complementary strate-

gies are recommended in endemic areas (Table 2). Nevertheless, the efficacy of vaccination strategies

is mitigated by new introductions due to neighboring transmission or long-distance movements medi-

ated by humans (Colombi et al., 2020; Townsend et al., 2013a; Ferguson et al., 2015; Laager et al.,

2019; Bourhy et al., 2016; Zinsstag et al., 2017; Knobel et al., 2013), notably in low vaccinated pop-
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ulations (Chen et al., 2015). In this case, reactive vaccination strategies (Townsend et al., 2013b) or

dog movement bans (Colombi et al., 2020) constitute alternative effective measures. However, Ferguson

et al. (2015) evaluated the impact of new introductions in vaccinated areas, and concluded that vaccina-

tion coverages were robust to rabies introduction in their specific setting. Similarly, Beyer et al. (2011)

suggested that the spatial structure of dog population had more impact than rabies introduction on the

efficacy of vaccination campaigns. In terms of vaccination coverage, successful vaccination campaigns

should target homogeneous coverage since hidden pockets of rabies transmission might jeopardize con-

trol efforts (Townsend et al., 2013b; Kitala et al., 2002; Townsend et al., 2013a; Ferguson et al., 2015). In

terms of campaign frequency, the efficacy of pluriannual compared to annual vaccination campaigns is

difficult to evaluate as it results from many factors including the number of vaccination pulses, the time

interval between each pulse, dog birth rate and the introduction rate of infectious animals (Kitala et al.,

2002; Beyer et al., 2012; Carroll et al., 2010).

Table 2: Recommended control strategies in mathematical modeling studies. The efficacy of control strategies
on dog rabies dynamics has been addressed in only a subset of the currently available mathematical modeling
studies. Studies presented in this table compared several control strategies or different dog vaccination coverages
on rabies elimination prospects. The optimal control strategy inherently depends on the epidemiological context
(endemic or introduction in previously rabies-free areas), the setting (local surveillance and vaccination capacities),
the assumptions of the dog rabies model and the control strategies tested by the researchers. Here, we report the
strategies recommended by the authors which include quantitative and qualitative criteria such as the estimated
impact of public awareness on rabid dog detection and management. Three studies (Carroll et al., 2010; Leung and
Davis, 2017; Townsend et al., 2013a) are not grounded in a specific geographical area. Using simulated scenarios,
they test the impact of control strategies according to the time to detection (Townsend et al., 2013a), dog population
structure (Leung and Davis, 2017) and the use of immunocontraceptives (Carroll et al., 2010).

Epidemiological con-
text

Recommended con-
trol strategy

Specificities of the recom-
mended control strategy Location Reference

Introduction in previ-
ously rabies-free areas

Reactive dog vaccina-
tion

Followed by a 2-year moni-
toring period

Townsend
et al. 2013a

Until all targeted dogs are
vaccinated

Northern Peninsula
Area and Elcho Island,
Australia

Dürr and
Ward 2015

90% dog vaccination
coverage

Northern Australia and
New South Wales, Aus-
tralia

Sparkes et
al. 2016

Kubin, Saibai and
Warraber divisions,
Australia

Brookes et
al. 2019

Targeted dog vaccina-
tion campaigns

Vaccination of free-
roaming dogs

Northern Peninsula
Area, Australia

Hudson
et al. 2019a

Integrated approach Mandatory dog vaccination
Ibaraki and Hokkaido
prefectures, Japan

Kadowaki
et al. 2018

Dog owner awareness
Dog registration
Capture of free-roaming
dogs
Quarantine of imported an-
imals

Endemic areas 90% dog vaccination
coverage

Lemuna-bilbilo and
bishoftu districts,
Ethiopia

Beyene
et al. 2019
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Table 2 continued from previous page
75% dog vaccination
coverage Stray dog management Guangdong, China

Hou et al.
2012

Annual vaccination (or
biannual vaccination with a
60% coverage)

Machakos district,
Kenya

Kitala et al.
2002

70% dog vaccination
coverage N’Djaména, Chad

Zinsstag et
al. 2009

Even coverage Bali, Indonesia
Townsend
et al. 2013b

Serengeti and Ngoron-
goro districts, Tanzania

Fitzpatrick
et al. 2012

≥50% dog vaccina-
tion coverage

≥50% fertility control cov-
erage

Carroll
et al. 2010

Sarawak state,
Malaysia

Abdul Taib
et al. 2019

Even dog vaccination
coverage Region IV, Philippines

Ferguson et
al. 2015

Targeted dog vaccina-
tion campaigns

Frequent dog vaccination
campaigns targeting the re-
duction in metapopulation
risk

Serengeti district, Tan-
zania

Beyer et al.
2012

Stray dog vaccination cov-
erage based on dog popula-
tion composition

Leung and
Davis 2017

Vaccination based on social
and roaming behaviors

N’Djaména, Chad
Laager
et al. 2018

Public awareness
Locally reactive interven-
tions
Reporting of 60% of cases
by the surveillance system

Dog population man-
agement Dog vaccination China

Zhang et al.
2012

Public awareness
Massive dog vaccination
campaigns in urban areas

Central African Repub-
lic

Colombi et
al. 2020

Dog movement bans

Dog vaccination China
Zhang et al.
2011

Recent studies (Beyer et al., 2012; Leung and Davis, 2017; Laager et al., 2018; Kadowaki et al., 2018;

Hudson et al., 2019b; Hudson et al., 2019a) proposed targeting at-risk dog populations, such as explorers

and roaming dogs, to improve the efficacy of vaccination campaigns (Table 2). However, the sensitivity

analysis of Laager et al. (2019) showed that population structure did not impact the efficacy of vacci-

nation strategies. There are conflicting results concerning stray dog vaccination which was either less

efficient than owned dog vaccination (Hou et al., 2012) or dependent on population composition (Leung

and Davis, 2017).

Several studies also suggested an impact of dog birth rate reduction on the incidence of rabies (Ab-

dul Taib et al., 2019; Huang et al., 2019; Carroll et al., 2010; Zhang et al., 2011; Kitala et al., 2002;

Zhang et al., 2012). However, the cost and feasibility of dog population management strategies such as

sterilization render this unfeasible in many settings (Taylor et al., 2017b). Dog confinement, which is
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generally spontaneously put in place by local communities during rabies outbreaks, may improve elim-

ination prospects but, when implemented, the level of confinement is not sufficient to reach elimination

(Colombi et al., 2020; Dürr and Ward, 2015; Ferguson et al., 2015). Concerning the rabies burden in

humans, some studies recalled the importance of public awareness (Table 2) and proper PEP coverage

to reduce the number of human cases, even though it does not impact rabies circulation in dogs (Zhang

et al., 2012; Laager et al., 2018; Kadowaki et al., 2018; Huang et al., 2019). All these findings confirmed

and justified the strategic plan that provides a phased, all-inclusive, intersectoral approach to eliminate

human deaths from rabies recently launched by United Against Rabies, in a collaboration between four

partners: WHO, FAO, OIE and GARC (Cleaveland and Hampson, 2017).

4. Discussion

4.1. Insights on rabies epidemiology and control

In this review, we assessed the respective contributions of mathematical modeling and phylodynamics

to the understanding of rabies spread and control in dog populations. Contrary to phylodynamic stud-

ies, mathematical modeling approaches were multi-faceted and mainly addressed the efficacy of control

strategies and, less frequently, the drivers of rabies spread. They revealed the crucial role of frequent

introductions and the potential role of dog population structure in disease dispersal and maintenance, as

well as the overwhelming efficacy of dog vaccination campaigns over other control strategies. Certain

studies also estimated key parameters of rabies dynamics and dog ecology, such as dog birth rate or

dog carrying capacity. On the other hand, phylodynamic studies mostly focused on the description of

viral dynamics at the global, regional, and local scales, and recently tested which environmental factors

are impacting RABV spread. These approaches consistently unraveled the occurrence of long-distance

movements suspected to be human-mediated and confirmed the role of humans in rabies dispersal dy-

namics in Africa and the Middle East. A third kind of studies either combined phylodynamics and

mathematical modeling or presented new models integrating epidemiological and genetic data. In the

former approach, hypotheses on rabies spread were generated and tested in the same epidemiological

context, and thus, confirmed the impact of introductions and human movements in a low-grade transmis-

sion process characterized by small clusters and frequent stochastic extinctions. The latter approaches

aimed at reconstructing local transmission chains or clusters, opening new horizons on data integration

and the study of rabies (Fig. 11). Unfortunately, a large number of endemic countries is still not, or

poorly studied. Data collection and/or model formulation are still needed in Russia, and most of Africa,
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and South-East Asia.

Figure 11: Visual summary of the uses of epidemiological data, environmental data and RABV genetic
sequences for the study of rabies dynamics and control. Epidemiological data, environmental data, RABV
genetic sequences and social sciences data are highlighted in cyan, yellow, pink, and brown, respectively. The
section corresponding to models combining epidemiological data and RABV genetic sequences only is colored
in grey since no study that meets this criterion has been identified using our search strategy. Models and their
contributions to the understanding of rabies spread and control are detailed in the colored tags. Models using
multiple types of data are colored with the intersection color of the corresponding data types. In our text corpus,
few studies combined epidemiological, ecological, and genetic data in a unified framework.
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The limitations of our review should be acknowledged. In preliminary analyses, we noticed a high

variability in record selection according to the combination of search terms, and certainly due to the

ambiguous use of specific terms such as phylodynamics in the literature. Since the studies selected in

this review are mainly in line with previous reviews (Brunker et al., 2018a; Rattanavipapong et al., 2019;

Fisher et al., 2018), we argue that we retrieved a large part of the available studies on rabies dynamics

and control.

4.2. Open questions in rabies epidemiology and control

In this review, we summarized the findings of mathematical modeling and phylodynamics on the factors

that impact rabies spread. Nevertheless, the full picture of rabies epidemiology remains unclear. First,

the role of dog roaming behavior, and dog contact networks in dog rabies spread should be further

investigated. In this review, we identified seven studies (Sparkes et al., 2016; Leung and Davis, 2017;

Laager et al., 2018; Wilson-Aggarwal et al., 2019; Hudson et al., 2019a; Brookes et al., 2019; Carroll

et al., 2010), all situated in Australia and Africa, showing that highly connected dogs or free roaming

dogs participate in a large part in the spread of the disease. By specifically targeting this type of dogs,

vaccination campaigns could be more effective according to Leung and Davis (2017), Laager et al.

(2018), and Hudson et al. (2019a). Yet only one study combined contact data with epidemiological

data (Laager et al., 2018). The ecological and behavioral drivers of rabies circulation in domestic dogs

are still not fully understood. If stray dogs do constitute a major driver of rabies dispersal, this could

have direct implications on the field concerning stray dog population management for example.

Additionally, the role of wildlife and other host species remains unclear (Rupprecht et al., 2019). Even

though the circulation of dog rabies seems predominant in dog populations, there are too few studies

addressing the dynamics of RABV in wildlife and dogs. Furthermore, the interactions between dogs and

other carnivore species are expected to change from location to location. Indeed, the interactions between

dog populations and wild carnivores depend on the abundance of wild populations and the frequency of

contacts between the dog reservoir and wildlife (Fitzpatrick et al., 2012; Huang et al., 2019). Better

understanding the role of wildlife could also have direct implications on local policies such as increasing

public awareness, notably in rural areas or strengthening wildlife surveillance systems for rabies.

At a broader scale, the spatial dynamics of rabies are still poorly understood. Urban areas were first

thought to be hubs of rabies transmission but recent studies have shown that rabies could be eliminated

temporarily at the city-level through mass dog vaccination campaigns (Laager et al., 2019; Bourhy et al.,
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2016; Zinsstag et al., 2017). These case studies suggest that urban areas are not hubs of rabies transmis-

sion but part of the complex spatial heterogeneity of dog ecology and dog movement. By exploring the

dynamics of dog rabies circulation in urban, peri urban and rural areas, rabies research could see an im-

proved understanding of rabies ecology. This could have direct implications on the design of vaccination

campaigns, by prioritizing vaccination campaigns in hubs of rabies transmission, followed by locations

with intermediate and low transmission.

Finally, there is extensive evidence of the efficacy of dog vaccination to control the spread of rabies in

both human and dog populations. We showed in this review that higher coverages are recommended

in rabies-free areas than in endemic areas, however, the practicalities of vaccination campaigns are

rarely addressed. As a neglected tropical disease, rabies control programs are designed and deployed in

resource-limited contexts. Thus, high, and even intermediate vaccination coverages cannot be achieved

at once over a large area. The periodicity, the spatial prioritization, the targeted populations, and the asso-

ciation with other control strategies (dog population management, dog movement ban. . . ) are interesting

modalities that could be tested in models and could substantially improve resource allocation.

4.3. Future directions of mathematical modeling and phylodynamics for
rabies research

There is an evident lack of extensive and adequate databases possibly due to restricted data collection,

data accessibility and/or data analysis capacity in resource-limited settings (“Aiming for elimination of

dog-mediated human rabies cases by 2030” 2016; Hampson et al., 2019a). This constitutes the main

weakness of mathematical modeling and phylodynamic studies that we identified in this review (Ta-

ble 3). Epidemiological and ecological (census data, population structure, contact networks) data are

needed to account for local specificities in terms of modeling interactions between rabies virus (RABV),

dog reservoir, domestic animals, wildlife reservoir and human populations. Similarly, there is a need

for longer RABV genetic sequences and more thorough sampling to discriminate fine-scale migration

events and better characterize the interactions between RABV lineages (Brunker et al., 2015; Brunker

et al., 2018a; Brunker et al., 2020). Improving operational data collection is nevertheless challenging.

Genomic surveillance relies on laboratory infrastructures, supply chains and expertise, all of which are

costly and generally lacking in low- and middle-income countries. New portable sequencing technolo-

gies combined with bioinformatics workflows could accelerate capacity building through portability and

affordability (Brunker et al., 2020; Gigante et al., 2020). In parallel, potential sampling bias effects

should not be overlooked (Ishikawa et al., 2019; Lemey et al., 2009a) since they may hide a part of dis-
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Table 3: Strengths and weaknesses of phylodynamics and mathematical modeling studies identified in this
review for the study of rabies.

Strengths Weaknesses
Phylodynamics • Small data sets and short genetic sequences

• Homogeneous methodology which facilitates the
comparison of rabies dynamics in different areas

• Studies generally remain descriptive in terms of
environmental factors contributing to rabies spread

• Recent advances in phylogeographic models
• Large room to apply other models (such as models
implemented in BEAST 2)
• The potential impact of reporting biases is barely
addressed

Mathematical
modeling

• Diversity of models that explore multiple aspects
of rabies spread

•Mostly simulation studies, models are rarely fitted
to dog rabies data

• Assessment of rabies control strategies efficacy

•Mostly deterministic models with strong assump-
tions (homogeneous mixing of dogs, absence of dog
population structure, absence of individual hetero-
geneity)

• Integration of the waning of vaccine-induced im-
munity

• No direct comparison of rabies dynamics due to
the diversity of models

ease dynamics such as silent spread in deprived rural areas. Additionally, many endemic countries with

high human incidence (Russia, Malaysia, Cambodia, Burma, Niger, Mozambique, etc.) (Hampson et al.,

2015) remain largely unstudied using quantitative approaches. This represents an opportunity for data

collection, rabies dynamics characterization and control strategy optimization. Besides filling knowledge

gaps, improving the availability of epidemiological, ecological, and genetic data offers an opportunity

to strengthen countries’ veterinary surveillance capacities (Welburn et al., 2017) and enhance the impact

assessment of control strategies, two pillars of the 2030 strategic elimination plan.

Other data types such as social sciences data could help identify knowledge gaps and refine control mea-

sures to be tested further using mathematical models. For example, there is little quantitative evidence of

the impact of community response on the efficacy of control measures (Rupprecht et al., 2019), although

it is key to human rabies prevention (Hasanov et al., 2018; Bardosh, 2014) and it is expected to change

over rabies outbreaks and affect rabies dynamics. By bridging the two disciplines, alternative control

strategies that are both effective and adapted to community preferences could be designed (Degeling

et al. 2018; Fig. 11).

Finally, novel methodologies combining genetic, epidemiological, and environmental data in a compre-

hensive analysis framework are promising tools for the rabies field. Indeed, the interdisciplinary studies

identified in this review exploited the complementarity of genetic and epidemiological information to

efficiently generate and test hypotheses on the mechanisms of rabies dynamics (Talbi et al., 2010; Mol-

lentze et al., 2014; Cori et al., 2018; Tian et al., 2018; Tohma et al., 2016), and the limitations of control

strategies (Bourhy et al., 2016; Zinsstag et al., 2017). These new avenues represent a significant im-

provement on past studies and a promising opportunity for canine rabies research in the frame of a One
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Health concept that aims to achieve better public health outcomes through cross-sector collaboration.

4.4. Conclusions

In this review, we highlighted the need for more epidemiological, ecological, and genetic data to better

characterize rabies dynamics and to get practical information on the drivers of disease transmission.

We think that the development of new methodologies integrating genetic and epidemiological data, or

the combined use of mathematical models and phylodynamics, constitutes a promising approach that

could ultimately contribute to the improvement of the efficacy of control measures including vaccination

campaigns and help optimizing the allocation of resources in a context of limited funding.
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Chapter 2

Phylodynamics to characterize RABV endemic cir-
culation in Cambodia

In epidemiology, endemicity characterises sustained pathogen circulation in a geographical area, which

involves a circulation that is not being maintained by external introduction. Because it could potentially

shape the design of public health interventions, there is an interest in fully uncovering the endemic pattern

of a disease. Here, we use a phylogeographic approach to investigate the endemic signature of RABV

circulation in Cambodia. Cambodia is located in one of the most affected regions in the world, but

RABV circulation between and within Southeast Asian countries remains understudied in the area. Our

analyses are based on a new comprehensive data set of 199 RABV genomes collected between 2014 and

2017 as well as previously published Southeast Asian RABV sequences. We show that most Cambodian

sequences belong to a distinct clade that has been circulating almost exclusively in Cambodia. Our

results thus point toward rabies circulation in Cambodia that does not rely on external introductions,

which could have concrete implications in terms of mitigation strategy in the region. More globally, our

study illustrates how phylogeographic investigations can be performed to assess viral endemicity in a

context of relatively limited data.
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1. Introduction

From an epidemiological perspective, endemicity corresponds to the sustained circulation of a pathogen

in a geographical area (Disease Control and Prevention, 2006), implying that it does not need external

introductions. Determining how the circulation of a pathogen is maintained at a local scale can have

direct epidemiological implications on its surveillance and control strategies. For instance, the evaluation

of the origin of dog rabies cases, either due to importations from neighboring areas or due to cryptic local

transmission chains, has been crucial to demonstrate that vaccination campaigns at the city level can

interrupt rabies transmission for several months, as exemplified in N’Djamena (Zinsstag et al., 2017) and

Bangui (Bourhy et al., 2016). In that context, phylogeographic approaches extracting information from

pathogen genomic sequences constitute powerful tools to discriminate importation from local circulation

of viral lineages. Phylogeographic investigations can however be impacted by heterogeneous sampling

effort and sampling bias (De Maio et al., 2015; Kalkauskas et al., 2021; Liu et al., 2022; Layan et al.,

2022), confronting researchers with the challenge being to mitigate or to take into account their effects

on the outcomes and conclusions of those analyses (Faria et al., 2017; Vrancken et al., 2020; Guindon

and De Maio, 2021).

Rabies is a fatal zoonosis affecting mammals with dogs constituting the main reservoir of its causal agent,

the rabies virus (RABV). It has been estimated that dog-related rabies causes approximately 59,000 hu-

man deaths per year worldwide (Hampson et al., 2015) despite the existence of effective dog and human

vaccination, as well as human postexposure prophylaxis (World Health Organization (WHO), 2018).

The global burden mostly affects African and Asian countries where resources are limited to sustain

long-term control efforts. In such contexts, extensive surveillance data are often scarce and molecular

epidemiological approaches can therefore constitute useful and complementary tools to unravel the dy-

namics of viral circulation (Layan et al., 2021). Over the past decade, several studies have explored

the patterns of RABV circulation in diverse endemic settings. While circulation is spatially-clustered

in northern African countries and likely driven by human-mediated dispersal events (Talbi et al., 2010;

Dellicour et al., 2017), multiple viral lineages co-circulate in Iran due to the co-occurrence of dog and

wildlife reservoirs and the geographical location of Iran being at the crossroads of Asian, Middle-East,

and European countries (Dellicour et al., 2019). In Tanzania, RABV circulation is restricted to dogs and

maintained at the local scale by well-interconnected dog populations (Brunker et al., 2018b). The mech-

anisms underlying viral maintenance are context-specific and may involve frequent introductions from

neighboring countries, long-distance human-mediated movements, wildlife reservoirs, sustained trans-
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mission in highly and heterogeneously mixing dog populations, etc. Understanding these mechanisms

could assist countries in prioritizing long-term surveillance efforts or adopting new regulations on dog

trade and movement.

Cambodia has one of the highest dog bite and human rabies incidences in the world (Ly et al., 2009;

Ponsich et al., 2016; Chevalier et al., 2021), with a rabies circulation that remains uncontrolled due to

the lack of a national prevention and surveillance program, which together maintains a cycle of neglect

(Li et al., 2019). Fortunately, Cambodia has integrated the Asian Rabies Control Network (ARACON)

in 2018 (Coetzer et al., 2018), and recent actions by stakeholders of rabies surveillance and control have

been implemented to move towards the elimination goal. For example, a recent study has evaluated

the implementation of a hospital-based dog bite case management (Tazawa et al., 2022). To improve

vaccination accessibility, the Institut Pasteur du Cambodge (IPC) has recently created two additional

vaccination centers in Battambang (2018) and Kampong Cham (2019), specifically targeting poor and

rural populations, and organized a large communication campaign to raise awareness about rabies trans-

mission and prevention (www.pasteur-kh.org/rabies-prevention-centers). IPC has also been

instrumental for the development and promotion of a shortened rabies post exposure regimen that is now

recommended by WHO (Cantaert et al., 2019; Tarantola et al., 2019). Still, several knowledge gaps

persist concerning the epidemiological situation in Cambodia due to the scarcity of epidemiological and

RABV genetic data. To our best knowledge, only one study has described dog-related RABV lineages

in Cambodia (Mey et al., 2016), which mostly belong to the SEA-1 lineage (Troupin et al., 2016) along

with RABV sequences isolated in Thailand, Vietnam, and Laos. This first phylogenetic study suggests

that there is a substantial circulation of dog RABV between Southeast Asian countries.

While rabies is known to sustainably circulate in Cambodia, the importance of external RABV intro-

duction events from surrounding countries as well as the dispersal dynamics of the virus at the country

scale have not yet been investigated. In the present study, we propose to implement and apply phylo-

geographic approaches to characterize those aspects and evaluate the endemicity pattern of RABV in

Cambodia, with the goal to improve our understanding of the important public health burden associated

with rabies in that region. For this purpose, we generate and analyze a new data set of RABV genomes

isolated from infected dogs in Cambodia. Specifically, we aim to exploit this comprehensive data set to

(i) assess the contribution of introduction events from neighboring countries, (ii) evaluate the dynamics

of spatial spread at the country level, (iii) formally compare the dispersal capacity of the virus with other

regions of the World, and (iv) test the impact of key environmental factors on local viral circulation.
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2. Methods

2.1. Samples collection

As part of the rabies surveillance in Cambodia, brain samples from suspected rabid dogs were sent

to the Virology unit at IPC where rabies diagnosis activity has been performed routinely since 1998

(Mey et al., 2016). Dog’s heads were usually referred to the IPC lab from people who were consulting

for post-exposure prophylaxis treatments following animal bite. The animal samples were tested by a

standard direct fluorescent antibody test (DFAT) as previously described (Duong et al., 2016). Positive

brain samples collected from 2012 to 2017 were selected for sequencing as described below. Before

submitting samples for sequencing, all selected samples were tested using a RT-qPCR for detecting

RABV (Dacheux et al., 2016).

2.2. Procedure to select samples to sequence

627 positive brain samples were collected between 2012 and 2017 across Cambodia by the IPC, with the

possibility to sequence 208 of them. At the beginning of this study, all 33 samples collected in 2017 had

already been sequenced, and we subsequently aimed at selecting 2012-2016 samples while maximizing

the spatio-temporal coverage in the perspective of phylogeographic analyses. For this purpose, we im-

plemented a Markov process to select 35 samples per year while maximizing the sum D of great-circle

distances along the edges of a Delaunay triangulation network connecting all selected samples. The algo-

rithm started by selecting all samples along the spatial limits of the minimum convex hull polygon built

around all the samples, as well as a random set of sequences within that polygon. At each iteration i, the

algorithm then changed one selected sample per year, randomly replaced by another sample collected the

same year, and re-computes the sum Di on the resulting Delaunay triangulation network. Similarly to the

SAMOVA algorithm developed by Dupanloup et al. (2002) for population genetic clustering analyses,

the new selection is accepted with probability p = 1 if D increased since the last iteration, and with the

following probability if D did not increase:

p = e(Di−Di−1)SA
(2.1)

where S is the number of iterations performed so far in the process, and A is an arbitrary constant con-

trolling the speed of what is called a "cooling process", here implemented to avoid becoming trapped

at a local optimum (Dupanloup et al., 2002). The Markov process was run for 100,000 iterations, and
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we performed 1,000 independent repetitions of the algorithm starting each time with a different initial

subsampling.

2.3. Full genome sequencing

Total RNA extraction done on brain samples was performed according to Marston et al. (2013) with

modifications. Briefly, brain samples were crushed into 1 ml of TRI Reagent (Sigma). After addition

of 200 µl of chloroform and centrifugation at 12,000 rpm for 15 min at 4°C, the aqueous phase was

collected and added to an equal volume of ethanol 70% before RNA extraction and purification using

RNeasy Mini Kit (Qiagen). Genomic host DNA was depleted from purified RNA by a DNAse I treatment

using the DNA-free Kit (Ambion) and following the manufacturer’s instructions. Depleted RNA was

finally purified using Agencourt RNAclean XP beads (Beckman Coulter) at a ratio of 1:1.8, following

the manufacturer’s instructions and eluted with 20 µl of nuclease-free water.

Genome sequences were obtained using next generation sequencing (NGS) as previously described

(Dacheux et al., 2019; Luo et al., 2021) with minor modifications. After RNA extraction, a ribosomal

RNA depletion step was first carried out with 2-4 µg of RNA and 1 µl of Terminator 5’-Phosphate-

Dependent Exonuclease (Epicentre Biotechnologies), in addition to 2 µl of buffer A and 0.5 µl of

RNAsin Ribonuclease inhibitor (Promega). After being adjusted to 20 µl with nuclease-free water,

the mix was incubated for 1h at 30°C. The depleted RNA was then purified using Agencourt RNAclean

XP beads (Beckman Coulter) at a ratio of 1:1.8, following the manufacturer’s instructions. Reverse

transcription in complementary DNA (cDNA) of purified RNA was then done using the SuperScript III

First-Strand Synthesis SuperMix kit (Invitrogen) according to the manufacturer’s instructions. For this

step, 8 µl of RNA was first incubated at 65°C for 5 min with 1 µl of Annealing Buffer (Invitrogen) and

1 µl of 50 µM of random hexamers (Invitrogen), then placed on ice. The complementary step was per-

formed with the addition of 10 µl of 2X First-Strand Reaction Mix and 2 µl of Superscript III Reverse

transcriptase / RNaseOUT Enzyme Mix for a final volume of 22 µl. The mix was incubated at 25°C for

10 min then at 50°C for 50 min. Finally, inactivation of the enzymes was performed after incubation at

85°C for 5 min. Afterward, double-stranded DNA (dsDNA) was synthesized in a reaction mix containing

20 µl of fresh cDNA, 10x Second-Strand Synthesis Reaction Buffer (New England Biolabs), 3 µl of 10

mM dNTP mix (Invitrogen), 1 µl (10 U) of Escherichia coli DNA ligase (New England Biolabs), 4 µl

(40 U) of E. coli DNA polymerase I (New England Biolabs), 1 µl (5 U) of E. coli RNase H (New Eng-

land Biolabs), and 43 µl of nuclease-free water, after incubation at 16°C for 2 h. The total volume (80

µl) of dsDNA was finally purified for each virus, using a ratio of 1:1.8 of AMPure XP beads (Beckman
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Coulter) following the manufacturer’s instructions. Finally, dsDNA libraries were constructed using the

Illumina Nextera Kit (Illumina), which includes TruSeq Nano kit and TruSeq DNA UD Indexes. After

nine amplification cycles, purified pooled libraries were sequenced on an Illumina NextSeq500 instru-

ment using Flowcell High Output and running paired-end 2x150 cycles. The NGS data were analyzed

using de novo assembly and mapping (both using CLC Assembly Cell, Qiagen) with a dedicated work-

flow built on the Galaxy platform of Institut Pasteur (Troupin et al., 2016; Dacheux et al., 2019). The

quality and the accuracy of the final genome sequences were checked after a final mapping step of the

original cleaned reads and visualized using Tablet (Milne et al., 2013). The partial genome sequences

(11879-11882 nt) of the 199 rabies viruses were submitted to GenBank under the accession numbers

OP515147-OP515345.

2.4. Investigating the signature of endemicity

Sequence alignments were generated with MAFFT v7.467 (Katoh and Standley, 2013). To analyze the

distribution of Cambodian lineages within a global RABV phylogeny, maximum likelihood phylogenetic

inference was performed using the program IQ-TREE v2.0.6 (Minh et al., 2020), with 1,000 bootstrap

replicates and the substitution model (GTR+I+Γ4) selected by the IQ-TREE’s ModelFinder tool. The

discrete phylogeographic analysis used to investigate the signature of endemicity was performed with

the discrete diffusion model (Lemey et al., 2009a) implemented in the software package BEAST 1.10

(Suchard et al., 2018). For this discrete phylogeographic reconstruction aiming at analyzing the introduc-

tion events into Cambodia, we only considered two discrete locations "Cambodia" and "other countries"

- and included all RABV N genes available in GenBank on September 2021 from Indonesia (n = 2),

Laos (n = 22), Malaysia (n = 17), Myanmar (n = 5), Philippines (n = 63), Thailand (n = 8), and Vietnam

(n = 22). For this analysis, we used a constant population size coalescent prior, and we modeled the

branch-specific evolutionary rates according to a relaxed molecular clock with an underlying log-normal

distribution (Drummond et al., 2006), and the nucleotide substitution process according to a GTR+I+Γ4

parameterization (Tavare, 1986). We used the default prior distributions in BEAST 1.10 for the substi-

tution, molecular clock, demographic, and phylogeographic models. The Markov chain Monte-Carlo

(MCMC) algorithm was run for more than 19×107 generations and sampled every 12,000 generations.

We used the program Tracer 1.7 (Rambaut et al., 2018) for assessing the convergence/mixing properties

and calculating effective sampling sizes (ESS), which were all >200 for continuous model parameters.

We then used the program TreeAnnotator 1.10 (Suchard et al., 2018) to obtain a maximum clade credi-

bility (MCC) tree. Patristic distances reported in Fig. 12 were computed with the function "distTips" of
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the R package "adephylo" (Pavoine et al., 2008). We compared the prior and posterior distributions in

Appendix B.

2.5. Spatially-explicit phylogeographic reconstruction

Continuous phylogeographic analyses were performed with the relaxed random walk (RRW) diffusion

model (Lemey et al., 2010; Pybus et al., 2012) implemented in BEAST 1.10 (Suchard et al., 2018)

coupled with the high-performance computing library BEAGLE 3 (Ayres et al., 2019). Branch-specific

evolutionary rates and the nucleotide substitution process were again modeled according to a relaxed

molecular clock with an underlying log-normal distribution and to a GTR+Γ4 parameterization, respec-

tively. We used a gamma distribution to model the among-branch heterogeneity in diffusion velocity, and

a flexible skygrid coalescence model for the tree topology, the latter enabling the inference of changes in

the effective viral population size over time. The Markov chain Monte-Carlo (MCMC) algorithm was run

for 15×107 generations for the analysis based on the full genome data set and for 4×108 generations for

the analysis based on the N gene sequence data set, sampling every 15×104 generations in both cases.

We again used the program Tracer 1.7 to assess the convergence/mixing properties (and to ensure that

ESS values associated with relevant parameters were all >200), as well as the program TreeAnnotator

1.10 to obtain and annotate the MCC tree. We used the R package "seraphim" (Dellicour et al., 2016a)

to extract the spatiotemporal information embedded within posterior trees, to visualize the continuous

phylogeographic reconstructions, and to estimate the weighted lineage dispersal velocity (WLDV), the

latter being defined as follows:

vweighted =
∑

n
i=1 di

∑
n
i=1 ti

(2.2)

where di is the geographic distance traveled along the phylogeny branch, and ti the duration of that

branch, respectively. As detailed in the Results section, we also computed WLDV estimates while con-

sidering increasing cut-off values defining the maximal geographic distance that can be traveled by a

phylogenetic branch to be included in the estimation.

2.6. Landscape phylogeographic analyses

We applied two previously described analytical procedures to investigate the impact of environmental

factors on the dispersal location (Dellicour et al., 2019) and velocity (Dellicour et al., 2017) of viral lin-

eages. Both analytical procedures are based on the comparison between 1,000 spatially-annotated trees
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sampled from the post-burn-in posterior distribution of trees inferred by a continuous phylogeographic

analysis, hereafter referred to as "inferred trees", and the same tree topologies along which we simu-

lated a RRW diffusion process (Dellicour et al., 2020), hereafter referred to as "simulated trees". These

RRW simulations were performed with the "simulatorRRW1" function of the R package "seraphim" and

based on the sampled precision matrix parameters estimated by the phylogeographic analyses (Dellicour

et al., 2018a). For each tree, the RRW simulation started from the position inferred at the root node and

was constrained such that the simulated node positions remained within the study area, which was here

defined by the minimum convex hull built around all node positions, avoiding non-accessible sea areas.

The purpose of these simulations is to obtain spatially-annotated trees corresponding to the trees inferred

by continuous phylogeography but along which we generated a new diffusion process that has not been

impacted by environmental factors.

We first investigated whether viral lineages tended to avoid or preferentially circulate within areas associ-

ated with particular environmental conditions. For this purpose, we extracted and subsequently averaged

the environmental values at the tree node positions to obtain, for each environmental factor, a posterior

distribution of mean environmental values at tree node positions. We then compared values obtained

through inferred trees and their corresponding simulated trees using an approximated Bayes factor (BF)

support (Suchard et al., 2005): BF = pe/(1−pe)
0.5/(1−0.5) . To test if a particular environmental factor e tended to

attract viral lineages, pe was defined as the frequency at which the environmental values from inferred

trees were greater than values from simulated trees; and to test if a particular environmental factor e

tended to repulse viral lineages, pe was defined as the frequency at which the environmental values from

inferred trees were lower than values from simulated trees. We considered BF values > 20 as strong

statistical supports (Kass and Raftery, 1995).

Second, we investigated to what extent viral lineage dispersal velocity was impacted by environmental

factors acting as conductance or resistance factors. For each branch in the inferred and simulated trees we

calculated an "environmental distance" using the path model implemented in the program Circuitscape

(McRae, 2006). This path model is based on circuit theory and allows accommodating uncertainty in

the travel route. An environmental distance was first computed from each environmental raster, and then

from a uniform "null" raster whose cell values are all set to 1. The environmental distance is a spatial

distance that is weighted according to the values of the underlying environmental raster, and therefore

constitutes a proxy for geographical distance when computed on the null raster. Each environmental

variable was considered twice: once as a potential conductance factor that facilitates movement, and once
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as a potential resistance factor that impedes it. For each environmental variable, we also generated and

tested several distinct rasters by transforming the original raster cell values with the following formula:

vt = 1+k(vo/vmax), where vt and vo are the transformed and original cell values, and vmax the maximum

cell value recorded in the raster. The rescaling parameter k here allows the definition and testing of

different strengths of raster cell conductance or resistance, relative to the conductance/resistance of a cell

with a minimum value set to 1, which corresponds to the null raster. For each environmental variable,

we generated three distinct rasters using the following values for rescaling factor k: k = 10, 100, and

1000. For these analyses, we estimated the statistic Q defined as the difference between the coefficient

of determinations obtained (i) when branch durations are regressed against the environmental distances

computed on an environmental, and (ii) when branch durations are regressed against the environmental

distances computed on the null raster. We estimated a Q statistic for each environmental raster and each

of the 1,000 trees sampled from the posterior distribution. An environmental factor was only considered

as potentially explanatory if both its distribution of regression coefficients and its associated distribution

of Q values were positive (Jacquot et al., 2017), i.e. with at least 90% of positive values. In this case, the

statistical support associated with the resulting Q distribution was compared with the corresponding null

distribution of Q values obtained when computing environmental distances for phylogenetic branches of

simulated trees. Similar to the procedure used for the investigation of the impact of environmental factors

on the dispersal locations of viral lineages, the comparison between inferred and simulated distributions

of Q values was formalized by approximating a Bayes factor support.

3. Results

3.1. Samples selection and sequencing

We selected and sequenced 208 RABV specimens from the 627 brain isolates of confirmed infected dog

cases collected by the IPC between 2012 and 2017. To select the samples to sequence, we developed and

applied a Markov process aiming at maximizing the spatio-temporal coverage of the resulting sampling,

thus optimizing it for phylogeographic investigations of the dispersal of viral lineages across the study

area (Fig. B1).The final data set included 199 new full genome sequences as the PCR amplification

or next-generation sequencing (NGS) was unsuccessful for nine specimens. Throughout the study, we

either analyzed this full genome data set or a data set made of all Cambodian RABV nucleoprotein (N)

genes available in GenBank and for which we managed to retrieve GPS coordinates associated with the

sampling location. While the full genome data set offers the best phylogenetic and molecular clock
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signal, the N gene data consists of a larger number of sequences (n = 354) with a broader spatial and

temporal coverage.

3.2. Investigating the endemic signature of RABV circulation in Cambo-
dia

We first conducted a maximum likelihood phylogenetic inference to visualize the position of Cambodian

lineages within an overall RABV phylogeny (Fig. B2). This analysis was based on our data set of

Cambodian N gene sequences as well as a balanced subset of RABV N gene sequences retrieved from

GenBank and collected in all continents. In the resulting tree, Cambodian sequences appear uniquely

related to the Southeast Asian lineages, suggesting that, contrary to Vietnam (Gigante et al., 2020),

neither the Cosmopolitan lineage nor the Chinese lineages circulate in Cambodia (Fig. B2).

We subsequently performed a discrete phylogeographic analysis to delineate Cambodian RABV clades

resulting from a distinct introduction event into the country (Fig. 12). In this analysis, we included all

dog related RABV N genes from Southeast Asian countries (i.e. Indonesia, Laos, Malaysia, Myanmar,

Philippines, Thailand, and Vietnam) available in GenBank, and only considered two discrete locations:

"Cambodia" and "other countries", the latter encompassing all the other Southeast Asian countries. The

vast majority of the Cambodian sequences (351 out of 354) were grouped within a unique large clade also

containing three sequences sampled in Vietnam. We estimated that this clade was introduced in Cambo-

dia around 1971, with a 95% highest posterior density (HPD) ranging from 1963 to 1979 (Fig. 12B-C).

Furthermore, we identified that, within our sampling, only three other Cambodian sequences resulted

from distinct introduction events into the country (Fig. 12B). Our discrete phylogeographic analysis in-

dicated that those three sequences resulted from two different introduction events in Cambodia that did

not seem to have led to substantial onward local transmission (Fig. 12C). These results clearly point

towards an endemic RABV circulation in Cambodia, i.e. a circulation that does not seem maintained or

fueled by external introductions.

As a result of the comprehensive data set of genomic sequences generated in the present study, Cambodia

is oversampled compared to its surrounding countries, which might affect the outcome and conclusions of

the discrete phylogeographic analysis aiming at identifying distinct introduction events. In other words,

the lower number of RABV genomes available for the surrounding countries could potentially lead to

an underestimation of the lineage introductions into Cambodia. In that context, we performed further

investigations to assess if the large clade of Cambodian sequences delineated in the discrete phylogeo-

graphic inference could indeed correspond to a clade reflecting local rabies circulation not or barely fed
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Figure 12: Investigating the endemic signature of RABV circulation in Cambodia. (A) Comparison between
patristic distances (in years) computed on the Maximum clade credibility (MCC) at the inter-countries level (ex-
cluding Cambodia; in gray), at the intra-country level (excluding Cambodia; in orange), and within the main
Cambodian clade (*; in purple). (B) MCC tree obtained from the preliminary discrete phylogeographic inference
based on the N gene sequences and considering only two different discrete locations: "Cambodia" and "other coun-
tries". Tip nodes and phylogeny branches are colored according to their sampling location and inferred ancestral
location, respectively. (*) refers to the main Cambodian clade inferred by the discrete phylogeographic analysis,
whose introduction in Cambodia is estimated to be around 1971 (95% HPD = [1963-1979]). (C) Zoom on one
particular part of the MCC tree corresponding to the terminal branches outside the main Cambodian clade. The
country of origin of sampled sequences are displayed below the tip nodes. (D) Map of log10-transformed human
population density in Cambodia. (E) Sampling map of all N gene sequences used for the discrete phylogeographic
as well as in the subsequent analyses. Comparison between patristic distances computed on the Maximum clade
credibility (MCC) at the inter-countries level (excluding Cambodia; in gray), at the intra-country level (excluding
Cambodia; in orange), and within the main Cambodian clade (*; in purple).

by viral exchanges from neighbouring countries. For this purpose, we visually compared the patristic

distances computed for each pair of sequences coming (i) from the same country (except Cambodia), (ii)

from two different countries (except Cambodia), as well as (iii) for all pairs of sequences belonging to

the major Cambodian clade (Fig. 12A). The purpose of this comparison was to assess if the pairwise pa-

tristic distances computed within the major Cambodian clade corresponded to the range of intra-country

patristic distances computed for the surrounding countries. Our results confirmed that this is the case and

the distribution of inter-countries patristic distance did not overlap with the patristic distances computed

within that clade (Fig. 12A). Interestingly however, we noticed small overlaps between the distribution

of intra-country and inter-countries patristic distances. First, a small proportion of inter-countries patris-

tic distances were lower than 300, which corresponded to a range of distance values mostly computed

for intra-country patristic distances. Second, a small proportion of intra-country patristic distances were

close or higher than 500, this time mostly corresponding to a range of distance values computed for
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inter-countries patristic distances (Fig. 12A). While in the first case it corresponded to pairs of sequences

collected in different countries but relatively close to each other in the phylogenetic tree, in the second

case it corresponded to pairwise patristic distances between samples collected in the same country but

belonging to distinct clades within the tree. In the latter case, it corresponded to pairs of sequences re-

sulting from distinct transmission chains that entered into the country by independent introduction events

from aboard.
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Figure 13: Dispersal and genetic diversity history of RABV lineages in Cambodia, as inferred by a spatially-
explicit phylogeographic analysis jointly performed with a skygrid reconstruction. The analyses were either
based on the full genomes (panels A and C) or on the N genes (panels B and D). (A-B) For both continuous
analyses, we mapped the maximum clade credibility (MCC) tree whose nodes are colored from purple (the time of
the most recent common ancestor, TMRCA) to yellow (most recent sampling time). MCC trees are superimposed
on 80% highest posterior density (HPD) polygons reflecting phylogeographic uncertainty and colored according
to the same time scale. (C-D) Skygrid reconstructions of the recent evolution of the effective size of the viral
population (Ne) based on the full genomes and N genes data sets, respectively. The solid lines correspond to
the median estimates and the surrounding polygons colored according to the time scale of the corresponding
continuous phylogeographic inference correspond to the 95% HPD interval.

3.3. Unravelling the dispersal dynamics of RABV in Cambodia

We performed a continuous phylogeographic inference to analyze the dispersal dynamics of RABV lin-

eages within Cambodia. In this analysis, we only included the Cambodian sequences belonging to the

main Cambodian clade identified by our discrete phylogeographic analysis (Fig. 12B). The continuous

phylogeographic reconstructions obtained from the analysis of full genomes and N genes are presented

in Fig. 13A and 13B respectively. Compared to the full genome data set, the N genes data set covered
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a larger geographical area with more sequences at the Thai border, as well as a larger time period with

sequences isolated between January 1998 and December 2017. For both continuous phylogeographic

analyses, the uncertainty associated with the inference of ancestral locations was reported by overlap-

ping shaded polygons colored according to their temporal occurrence. The same color scale was used

to color the tree nodes according to their time of occurrence (inferred for the internal nodes and corre-

sponding to the collection date for tip nodes). For the N genes data set, the uncertainty polygons were

much smaller and even hidden by the tree nodes reported on the map. The smaller phylogeographic

uncertainty associated with this data set is likely related to the higher number of samples included in

the analysis. Both phylogeographic reconstructions, but the reconstruction based on the N genes in par-

ticular, highlight the Phnom Penh area as a crossroad of RABV lineage circulation. Indeed, most of

the samples collected distantly from the area of Phnom Penh do not seem to be directly connected with

each other within the phylogeny. In other words, those more remote samples seem to arise from distinct

transmission chains emanating from the Phnom Penh area.

Secondly, we used the continuous phylogeographic reconstructions to estimate the weighted dispersal

velocity of RABV lineages within Cambodia: 12.6 km/year (95% HPD = [11.0-14.3]) for the analysis

based on the N genes, but only 6.7 km/year (95% HPD = [6.1-7.4]) for the analysis based on the full

genomes. The fact that the two analyses led to different WLDV estimates despite a similar overall

phylogeographic pattern (Fig. 13A-B), might be due to the wider geographical sampling of the N genes.

Indeed, wider sampling might increase the probability to sample long-distance lineage dispersal events

that, on average, are more likely to include fast dispersal events pulling the WLDV estimate to higher

values (see below for further discussion on this aspect). The phylogeographic inferences were performed

using the skygrid coalescent model (Gill et al., 2013) for the tree prior, which allowed us to get an

estimation of the recent evolution of the effective viral population size. Our skygrid reconstructions

indicated that there was a global increase of the effective RABV population size in the last 25-30 years

(Fig. 13C-D).

3.4. Impact of long-distance lineage dispersal events on the estimation of
dispersal velocity

With the objective to assess whether RABV lineage dispersal was slower in Cambodia relative to other

geographic areas, we compared these estimates with the WLDV estimates previously obtained and re-

ported for other RABV data sets (Fig. 14). As introduced above, we suspected that the spatial extent of a

study area might have an impact on the frequency at which long-distance dispersal events were sampled,
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Figure 14: Comparison of RABV lineage dispersal velocity among different data sets. Specifically, we com-
pare the weighted lineage dispersal velocity estimated for the following data sets: RABV in Cambodia (for both
the full genomes and N genes data sets), northern Africa (Talbi et al., 2010), Tanzania (Brunker et al., 2018b),
Iran (Dellicour et al., 2019), and Yunnan province in China (Tian et al., 2018). (A) Evolution of the weighted
lineage dispersal velocity when increasing the maximal geographic distance used as the cut-off value to select the
lineage dispersal events for the estimation. Solid curves and shaded polygons represent the median and 80% high-
est posterior density (HPD) interval estimates, respectively. (B-D) Weighted lineage dispersal velocity estimates
for different maximal geographic distance cut-off values (50, 100, and 200 km, respectively).

which in turn could affect the dispersal velocity estimate due to a higher probability of long-distance

dispersal events to be associated with a higher dispersal velocity. Under this assumption, such a higher

probability could potentially be explained by two non-exclusive hypotheses. First, short-distance lineage

dispersal events are, on average, more likely to capture local circulation of a transmission chain, which

would involve a higher probability to infer phylogenetic branches associated with a short geographic dis-

tance. Second, long-distance dispersal events could be fast because they were human-mediated, which

has been suspected in the case of RABV dispersal in other regions of the world (Talbi et al., 2010;

Dellicour et al., 2017).

In our comparisons of WLDV estimates, we then tried to take into consideration the spatial extent of the

respective study areas. For this purpose, we implemented a comparative approach in which we estimated

the WLDV metric associated with each data set while increasing a cut-off value defining the maximal

geographic distance that can be traveled by a phylogenetic branch retained for the WLDV estimation

(Fig. 14A). Overall, this analysis confirmed that when progressively increasing this cut-off, we indeed

observe an increase in the WLDV value estimated for a given data set. However, the WLDV estimated

for the full genomes data set barely increased with the cut-off value, which is likely due to the overall

low frequency of long-distance lineage dispersal events inferred for that data set. Our WLDV estimates

for the N genes data set appear however quite close to the estimates obtained for a RABV data set from

Iran (Dellicour et al., 2019), and to some extent to the estimates obtained for a RABV data set from
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northern Africa (Talbi et al., 2010). For these three data sets, WLDV estimates tend to reach a WLDV

plateau roughly ranging from 10 to 15 km/year when the cut-off value reaches 400 km (Fig. 14A; see also

Fig. 14B-D for more direct comparisons based on specific cut-off values). In the light of those results,

the dispersal velocity of RABV lineages does not seem particularly slower (nor faster) in Cambodia as

compared with other regions of the world for which some equivalent estimates are currently available.

3.5. Investigating the impact of environmental factors on RABV dispersal

Finally, we took advantage of the spatially-explicit reconstructions of the dispersal history of RABV lin-

eages in Cambodia to perform landscape phylogeographic analyses, which consisted in investigating the

impact of environmental factors on the dispersal of viral lineages (Dellicour et al., 2018b). Specifically,

we conducted two categories of analyses that aim at testing associations between environmental factors

(Fig. 15) and (i) the dispersal velocity of viral lineages (Dellicour et al., 2017), or (ii) the dispersal lo-

cation of viral lineages (Dellicour et al., 2019). The environmental factors included the main land use

factors occurring in the study area (forests, savannas, grasslands, croplands, water areas), two global cli-

mate variables (mean annual temperature, annual precipitation), elevation, and human population density

(see Table B1 for the source of the environmental data).

The first analyses led to some consistent results obtained when analyzing the full genomes and N genes

data sets: they indicated that RABV lineages tended to avoid circulation in areas associated with rel-

atively higher forest and savanna coverages (Bayes factors [BFs] > 20), and to preferentially circulate

in areas associated with a relatively higher cropland coverage, human population density, and annual

mean temperature (BFs > 20; Table B2). The analyses based on the N genes data set alone also return

some support (BFs > 20) for a tendency of RABV lineages to avoid circulating in areas associated with

relatively higher elevation and annual precipitation (Table B2). On a cautionary note, because their out-

comes are strongly influenced by the sampling effort and pattern, those first analyses are somehow more

a description of the environmental conditions related to the dispersal locations of inferred viral lineages

than an actual test of the impact of those conditions on the dispersal (Dellicour et al., 2019). Consis-

tently between the full genomes and N genes data sets, the second analyses of the dispersal velocity of

viral lineages did not highlight any supported association between the environmental layers tested as ei-

ther conductance or resistance factors and the heterogeneity in the lineage dispersal velocity (Tables B3

and B4).
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Figure 15: Environmental variables tested for their impact on the dispersal dynamic of RABV lineages in
Cambodia. Elevation is reported in meters, mean annual temperature is reported in Celsius degrees, and annual
precipitation is reported in meters per year.

4. Discussion

By quantifying external introductions and assessing their role relative to local transmission, the degree

of endemic circulation of a disease can be determined in a given geographic area. As illustrated in the

present study, phylogeographic approaches allow to objectify to what extent the local circulation of fast-

evolving pathogens such as RNA viruses is fueled by external introduction events. Such approaches have

for instance been broadly applied to tackle similar questions in the context of the COVID-19 pandemic

(Attwood et al., 2022). It is worth noting that modeling approaches that rely on contact tracing data can

also be used to study the role of imported cases to local dynamics, but data collection requires extensive

active surveillance efforts (Lembo et al., 2008; Hampson et al., 2009; Mancy et al., 2022).
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From a public health perspective, continuous RABV circulation in dog populations and frequent human

infections correspond to sufficient criteria to consider the disease endemic in several African and Asian

countries. However, RABV circulation may not solely rely on within-country transmission, and molec-

ular epidemiological studies have shown that RABV often crosses country borders, sometimes likely

driven by human movements (Lemey et al., 2009b; Talbi et al., 2010; Zhang et al., 2017). In addition,

foreign introductions can lead to the local establishment of new lineages resulting in the co-circulation of

multiple independent lineages in the long-term. The Indonesian island Bali exemplifies how rare events

of RABV introductions can lead to the establishment of endemic transmission (Susilawathi et al., 2012).

Foreign introductions could also be a driver of sustained RABV circulation if transmission chains rapidly

go extinct. Indeed, a recent modeling study of contact tracing data in dogs showed that RABV circulates

at a very low level in dog populations in the Serengeti district in Tanzania and most transmission chains

rapidly die out, which would lead to the interruption of transmission without recurrent introductions

from neighboring areas (Mancy et al., 2022). A similar observation was made in Bangui where control

measures successfully eliminated rabies over several months but each time resurged due to introductions

from neighboring areas (Bourhy et al., 2016; Colombi et al., 2020). In brief, the mechanisms of sustained

circulation very likely depend on the geographical scale as well as geographic context of transmission at

which it occurs.

Our results point out that RABV in Cambodia represents a remarkable case of endemicity with presum-

ably very few external introductions feeding the local circulation of the virus. Notably, the vast majority

of the Cambodian sequences analyzed in our study cluster within the same clade that we estimated to be

circulating almost exclusively in Cambodia. This suggests that Cambodia has few exchanges of RABV

lineages with its neighbors, a surprising pattern as Meng et al. (2011) predicted Cambodia to be an impor-

tant source of rabies cases in China, Laos, and Thailand. Their results have however not been replicated

in later studies indicating that they might result from small sample size and/or biased sampling. Further-

more, our sampling does not cover the northeastern region of Cambodia close to Laos and that is home

for a particular dog population mostly used for hunting and relatively isolated from the rest of the country.

We thus cannot exclude undetected introduction events from Laos to this population, and which would

very certainly remain undetected in the rest of the Cambodian dog population. Nevertheless, the limited

number of introduction events contrasts with the epidemiological situation in Vietnam (Nguyen et al.,

2017), Laos (Ahmed et al., 2015), and Thailand (Benjathummarak et al., 2016) where multiple RABV

lineages co-circulate and where some viral lineages are very close to Chinese lineages. It would mean

that in those countries, RABV introductions and maintenance of these introduced lineages was probably
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more frequent and successful. We could also have expected more successful importation events of RABV

from neighboring countries to Cambodia due to dog trade for meat consumption that occurs across the

whole Mekong region (Chevalier et al., 2021; Vu et al., 2021). While we might not have detected intro-

ductions through dog trade because sample collection has not focused on slaughterhouses, traded dogs

are slaughtered and may not contribute to rabies transmission anyway (Chevalier et al., 2021). Finally,

even if we employed a procedure to maximize the spatio-temporal coverage of our sampling, we note

that the resulting selection of RABV samples remains more dense in densely-populated areas, in partic-

ular the area of Phnom Penh, which at least partially reflects a surveillance bias (Fig. 12D-E). While we

cannot discard the hypothesis that a higher number of samples collected near the borders shared with

neighboring countries might have allowed us to identify additional introduction events, we here argue

that if those undetected introduction events had implanted active transmission chains in Cambodia, we

would have likely detected them with the investigations we performed.

Surprisingly, we estimate a lower lineage dispersal velocity from the continuous phylogeographic recon-

struction based on the full genomes compared to the equivalent reconstruction based on the N genes. We

have further investigated this difference by comparing lineage dispersal velocity across multiple studies

that analyzed dog RABV sequences using the same RRW diffusion model (Talbi et al., 2010; Brunker

et al., 2018b; Tian et al., 2018; Dellicour et al., 2019). When the lineage dispersal velocity is estimated

on lineage dispersal events of less than 50 km, estimates appear relatively similar across settings. On the

contrary, lineage dispersal velocity estimates start to differ between data sets when increasing this dis-

tance cut-off value. This pattern suggests that at small spatial scales RABV roughly circulates at the same

pace, which would remain coherent with a viral circulation primarily driven by infected dog movements.

Notably, the vast majority of dogs, even when owned, are free-roaming in Cambodia (Chevalier et al.,

2021) as in other countries (Muinde et al., 2021; Warembourg et al., 2021; De la Puente-Arévalo et al.,

2022; Sparkes et al., 2022). Our results also suggest that at larger spatial scales, it becomes more difficult

to compare the lineage dispersal velocity estimated from different data sets. As introduced above, larger

sampling areas are expected to be associated with higher probabilities to sample long-distance dispersal

events that will, on average, more likely correspond to fast dispersal events than short-distance dispersal

events. Therefore, comparing the lineage dispersal velocity of data sets sampled from study areas of very

different spatial extents might potentially lead to an artifactual conclusion of different dispersal veloc-

ities. Overall, we would thus recommend to use a similar approach based on maximal distance cut-off

values when aiming to compare lineage dispersal velocity statistics estimated from data sets collected

across various spatial scales.
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While our landscape phylogeographic analyses have allowed us to characterize the environmental con-

ditions in which the inferred lineages tended to disperse within Cambodia, they have not led to any sup-

ported evidence that one or several studied environmental factor(s) could partly explain the heterogeneity

in viral lineage dispersal velocity. It could imply that the velocity of RABV dispersal in Cambodia is

at least not drastically shaped by the environmental factors tested in our study, but this could also result

from an insufficient sampling of lineages circulating in some Cambodian regions associated with differ-

ent environmental conditions. In the latter case, insufficient sampling in these areas could, for instance,

limit the statistical power of the tests aiming at detecting an association between the spatial variation

of an environmental factor and the dispersal velocity of viral lineages (Dellicour et al., 2016b). More

generally, phylogeographic approaches are known to be sensitive to sampling bias (De Maio et al., 2015;

Guindon and De Maio, 2021; Kalkauskas et al., 2021; Liu et al., 2022). One way to mitigate the im-

pact of sampling bias on phylogeographic reconstructions is to subsample locations according to local

incidence data. During the COVID-19 pandemic, this kind of subsampling approach has been widely

implemented in the context of phylogeographic analyses targeting SARS-CoV-2 (Dellicour et al., 2021b;

Hodcroft et al., 2021b; Lemey et al., 2021), but it would in our case require the availability of dog rabies

incidence data and sufficient numbers of genomic sequences from each location to subsample from. Un-

fortunately, neither condition was met in the context of the present study. While not based on incidence

data, our samples selection is however based on a procedure implemented as a Markov process trying to

maximize the spatio-temporal coverage of the selected samples to sequence, which corresponds to an op-

timal sampling pattern when aiming to capture the dispersal history of lineages through phylogeographic

inference.

Even though we did not identify external introductions as drivers of RABV circulation in Cambodia,

they remain likely and could still lead to re-importations of active transmission chains as observed in

the neighboring countries. However, considering that dog rabies incidence in Cambodia appears to be

primarily driven by within-country transmission, the deployment of an ambitious rabies control policy

should focus on campaigns of free and regular dog vaccination at the national level (Tarantola et al., 2015;

Sor et al., 2018), promotion of owner awareness (Sor et al., 2018; Chevalier et al., 2021), improvement

of surveillance and diagnostic capabilities (Duong et al., 2016), improved multisectoral collaboration in

a one health approach, and expansion of post-exposure prophylaxis (Li et al., 2019).
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Chapter 3

Impact of vaccination on household transmission of
SARS-CoV-2 in Israel

Several studies have characterized the effectiveness of vaccines against SARS-CoV-2 infections. How-

ever, estimates of their impact on transmissibility remain limited. Here, we evaluated the impact of

isolation and vaccination (7 days after the second dose) on SARS-CoV-2 transmission within Israeli

households. From December 2020 to April 2021, confirmed cases were identified among health-care

workers of the Sheba Medical Centre and their family members. Recruited households were followed

up with repeated PCR for at least 10 days after case confirmation. Data were analyzed using a data aug-

mentation Bayesian framework. A total of 210 households with 215 index cases were enrolled; 269 out

of 667 (40%) susceptible household contacts developed a SARS-CoV-2 infection. Of those, 170 (63%)

developed symptoms. Compared with unvaccinated and unisolated adult/teenager (aged >12 years) con-

tacts, vaccination reduced the risk of infection among unisolated adult/teenager contacts (relative risk

(RR) = 0.21, 95% credible interval (CrI): 0.08, 0.44), and isolation reduced the risk of infection among

unvaccinated adult/teenager (RR = 0.12, 95% CrI: 0.06, 0.21) and child contacts (RR = 0.17, 95% CrI:

0.08, 0.32). Infectivity was reduced in vaccinated cases (RR = 0.25, 95% CrI: 0.06, 0.77). Within house-

holds, vaccination reduces both the risk of infection and of transmission if infected. When contacts were

unvaccinated, isolation also led to important reductions in the risk of transmission.
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1. Introduction

SARS-CoV-2 is a highly transmissible virus that was first detected in Wuhan China in December 2019

(Lu et al., 2020; Izda et al., 2021). It is the cause of COVID-19, which has spread through the world,

leading to a pandemic that had infected at least 250 million people and caused more than 5 million deaths

worldwide by November 10, 2021 (Mathieu et al., 2021). The advent of novel COVID-19 vaccines has

been an important breakthrough in the management of the pandemic. To determine how vaccination

may modify epidemic dynamics, it is essential to estimate its effectiveness with respect to infection,

transmission, and disease severity. Multiple studies have shown that COVID-19 vaccines are effective

at reducing both the risk of infection (Dagan et al., 2021; Tande et al., 2022; Pawlowski et al., 2021;

SE, 2021; Martínez-Baz et al., 2021) and the risk of developing severe symptoms (Dagan et al., 2021;

Martínez-Baz et al., 2021; Haas et al., 2021; Goldberg et al., 2021) in the general population.

Documenting vaccine impact on transmission is more challenging, stemming from the difficulty of thor-

oughly documenting chains of transmission and accounting for the ways different types of contacts may

lead to different risks of transmission (Bi et al., 2020). Households represent the perfect environment

to evaluate factors affecting transmission such as vaccination because the probability of SARS-CoV-2

transmission among household members is high, ranging between 14% and 32% (Madewell et al., 2020;

Lei et al., 2020; Thompson et al., 2021). Beyond the evaluation of vaccine effectiveness, understanding

how vaccines affect household transmission is also important to determine how recommendations should

evolve with vaccines. For example, should isolation precautions be maintained in partially vaccinated

households (World Health Organization (WHO), 2021b)? A number of studies have shown that vaccines

provide indirect protection against household transmission (Shah et al., 2021; Salo et al., 2021; Harris

et al., 2021; Prunas et al., 2022; Gier et al., 2021). However, none of these studies evaluated how isola-

tion affected the outcome, and for some of the studies (Shah et al., 2021; Salo et al., 2021; Harris et al.,

2021; Prunas et al., 2022), the passive nature of surveillance may have led to underestimating household

transmission rates.

During the first months of 2021, Israel underwent its third pandemic wave due to the rise of the Alpha

variant that quickly accounted for 90% of infections (Munitz et al., 2021). Concomitantly, vaccination

was extended to all adults older than age 16 years, making Israel one of the first countries to reach high

vaccination coverage in their population, with 60% of the total population being vaccinated by March

22, 2021 (Mathieu et al., 2021). During this period, we followed SARS-CoV-2 transmission in the

households of 12,518 HCWs of the Sheba Medical Center, the largest medical center in Israel. Here, we
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describe dynamics of transmission in these households and evaluate the impact vaccination and isolation

measures had on these dynamics.

2. Material and Methods

2.1. Study design and study population

All HCWs, regardless of their vaccination status, were required to use an electronic questionnaire to

report daily any COVID-19 related symptom they, or a member of their household, had. SARS-CoV-2

PCR testing was readily available, and HCWs were encouraged to be tested for any mild symptom or

suspected exposures. All HCWs were instructed to notify the infection prevention and control unit if

one of their household members was SARS-CoV-2 positive. All SARS-CoV-2–detected HCWs as well

as those with a positive SARS-CoV-2 household member were immediately contacted as part of the

epidemiologic investigation for contact tracing and were provided with instructions regarding isolation

precautions. All unvaccinated household members (i.e., those that did not receive the 2 vaccine doses

at least 7 days before the detection of the COVID-19 patient) were required to perform 2 PCR tests

in the 10 days after the diagnosis of the positive COVID-19 patient. Vaccinated household members

were encouraged to perform 2 PCR tests during the 10 days after detection. Household members were

not required to test a second time if they had a positive test (Table C1). Unvaccinated HCW contacts

were isolated at home, whereas vaccinated HCWs were instructed to perform a PCR test every day they

reported to the hospital for work.

Between December 31, 2020, and April 26, 2021, the HCWs who were SARS-CoV-2–positive or re-

ported a positive household member were contacted at least 10 days after detection and were offered

enrollment in the study. Those who agreed, and gave their consent, answered a telephone interview.

2.2. Data and sample collection

Data collected during the phone interview included the age and gender of the HCW’s household mem-

bers, their vaccination status, information about prior COVID-19 infections, their COVID-19 PCR test

dates and results, their symptoms (i.e., fever, cough, myalgia, headache, congestion, diarrhea, vomiting,

anosmia, or ageusia), the number of rooms and bathrooms in the household, and the degree to which

isolation precautions were adhered to (Section 2 in Appendix C). At the time of the study, only indi-

viduals 16 years old or older were eligible for vaccination. The household member who had the first
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positive PCR test was defined as the index case. When multiple household members had a positive PCR

test on the same day, they were defined as co-index cases. We defined complete isolation as complete

separation in sleeping and eating between household contacts and index case(s) (i.e., they did not spend

any time in the same room) and whether a separate bathroom was provided for the index case(s). Partial

isolation was defined if one of the above was violated, but masks were continuously used, and eating was

consistently separate.

For HCWs, nasopharyngeal swabs were collected by trained personnel, and reverse-transcriptase quan-

titative PCR analysis was performed using the Allplex 2019-nCov RT-qPCR assay (Seegene Inc., Seoul,

South Korea) and expressed by cycle threshold (Ct). Other household members reported the results of

their COVID-19 test(s) performed by their health-care providers.

2.3. Clinical outcome

Confirmed SARS-CoV-2 infections were defined by a positive PCR test (i.e., with a Ct value lower

than 40). Symptomatic cases were defined as confirmed cases with the presence of at least 1 symptom

from among the following: fever, cough, myalgia, headache, congestion, diarrhea, vomiting, anosmia,

or ageusia. Contacts who reported at least 1 of the above-mentioned symptoms but were not confirmed

because they performed no PCR test (n = 6) or a single test at inclusion (n = 2) were also considered

as symptomatic cases. Asymptomatic cases were defined as confirmed cases who did not report any

symptom over the follow-up period of the household.

2.4. Statistical analysis

We evaluated transmission in households using 2 metrics: the secondary attack rate (SAR), defined as the

proportion of susceptible household contacts that are infected after the index case is detected (Liu et al.,

2020), and the person-to-person probability of transmission, defined as the per-capita probability that an

infected individual transmits to a susceptible household contact. The first metric includes tertiary (i.e.,

household contacts infected by a household member that is not the index case) and community cases

(i.e., household contacts infected in the community) contrary to the second metric. In both cases, we

assumed that individuals who reported past infection of SARS-CoV-2 confirmed by PCR over the year

preceding the detection of the household index case (n = 20) were protected from infection and therefore,

did not count as susceptible household contacts.

Baseline characteristics of the index cases and household contacts were described according to their vac-

cination status. All individuals older than 12 years were considered as adults/teenagers. We calculated
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Figure 16: Flow chart of the households included in our analysis, Ramat Gan, Israel, 2020–2021. HCW,
health-care worker; PCR, polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus
2.

the SAR for different categories of household contacts: unisolated and unvaccinated adults/teenagers,

unisolated and vaccinated adults/teenagers, isolated and unvaccinated adults/teenagers, vaccinated and

isolated adults/teenagers, unisolated children, and isolated children. Here, isolation corresponds to com-

plete or partial isolation between household contacts and the index case. We also defined the SAR of

vaccinated and unvaccinated index cases as the proportion of infected household contacts in households

with vaccinated or unvaccinated index cases, respectively. In a sensitivity analysis, the SAR calculation

was restricted to households in which a single index case was identified (Table C2). We also report the

95% confidence interval of the SAR. We developed a statistical model to evaluate the effect of age, iso-

lation precautions, BNT162b2 vaccination, and household size on SARS-CoV-2 transmission dynamics

in households (Section 4 in Appendix C). The model uses the sequence of symptom onset dates and

positive molecular test dates to estimate the person-to-person risk of transmission within the household

while accounting for the community hazard of infection (i.e., household contacts infected outside the
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household) and the possibility of tertiary transmissions (i.e., household contacts infected by a member

of the household that is not the index case) (Cauchemez et al., 2004). The person-to-person risk of trans-

mission is decomposed into the baseline person-to-person risk of infection depending on household size,

the relative infectivity of the infector depending on their vaccination status (reference group: unvacci-

nated cases), and the relative susceptibility of the infectee depending on their age, isolation behavior,

and vaccination status. The relative susceptibility is estimated separately for unisolated children, iso-

lated children, isolated and unvaccinated adults/teenagers, unisolated and vaccinated adults/teenagers,

and adults/teenagers that are both isolated and vaccinated, considering the group of adults/teenagers that

are unisolated and unvaccinated as the reference group. None of the children were vaccinated at the time

of the study. This formulation accommodates the potential confounding effects between the 3 variables

characterizing household contacts (i.e., being vaccinated, being isolated, or being a child). We assumed

that individuals whose isolation behavior was missing (n = 6) did not comply with isolation precautions.

Model parameters were estimated using Bayesian Markov chain Monte Carlo sampling with data aug-

mentation (Cauchemez et al., 2004) (Section 5 in Appendix C). Data were augmented with the probable

date of infection of confirmed cases. For symptomatic cases, the date of infection was reconstructed

from the date of symptom onset, using the probabilistic distribution of the incubation period (McAloon

et al., 2020). For asymptomatic cases, we assumed that the date of infection could occur up to 10 days

prior to their molecular detection based on a meta-analysis (Cevik et al., 2021).

Since the study was conducted during the vaccine rollout, participants were enrolled at varying stages of

their vaccination process. We assumed that vaccines reach their full effect 7 days after receiving a second

dose (Dagan et al., 2021; Haas et al., 2021; Goldberg et al., 2021). Cases were therefore considered

vaccinated if their symptom onset (or if unknown, the date of their first positive PCR test) occurred ≥ 7

days after the second dose. Similarly, household contacts were considered vaccinated if their exposure

to the index case (starting with symptom onset or, in its absence, from the date of first positive PCR of

the index case) occurred ≥ 7 days after the second dose. In a sensitivity analysis, we investigated how

parameter estimates changed under the assumption that vaccination is effective ≥ 15 days after the first

dose. We also assessed how estimates changed when the analysis was restricted to households in which

all negative contacts had performed at least 1 or 2 PCR tests in the 10 days following the detection of the

index case. In the baseline scenario, we assumed that asymptomatic cases are 40% less infectious than

symptomatic cases based on a meta-analysis (Byambasuren et al., 2020), and we investigated whether

assuming the same level of infectivity in asymptomatic and symptomatic cases modified our estimates.
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Finally, in our baseline analysis, we chose a log-normal with log-mean = 0 and log-standard deviation =

1 prior distribution for the relative infectivity and relative susceptibility parameters and explored smaller

and larger values (log-standard deviation = 0.7 or 2) in a sensitivity analysis.

We compared the observed and expected distributions of the number of cases per household size to assess

the goodness-of-fit of the model (Table C3). We report the posterior median and the 95% credible interval

(CrI) of estimated parameters. We also report the posterior probability that isolated and vaccinated

adult/teenager contacts are less susceptible than vaccinated adult/teenager contacts that do not isolate.

To measure the strength of evidence of a reduced susceptibility in isolated contacts among vaccinated

ones, we report the associated Bayes factor. Here, it directly corresponds to the posterior odds of a

reduced susceptibility in isolated contacts among vaccinated ones. Additional details are available in

Sections 1 to 6 in Appendix C.

2.5. Ethics

The study was approved by the Sheba Medical Center institutional review board committee (approval

#8130-21).

3. Results
All 12,518 HCWs employed by the Sheba Medical Center were eligible to join the study. Between

December 19 and April 28, 2021, 91% of the Sheba Medical Center personnel received both doses of the

BNT162b2 vaccine, and a rapid and significant decrease in newly detected cases was observed among

HCWs.

From December 31, 2020, to April 26, 2021, 276 SARS-CoV-2 cases were identified among HCWs of

the Sheba Medical Center and their household members (Fig. 16). Of these, 212 agreed to participate,

gave their consent, and were enrolled in the study with their household members. Two households

were excluded due to missing vaccination status, dates of PCR test, and/or symptom onset. In total,

we analyzed data from 210 households with 215 index cases, including 4 co-index cases, and their 687

household contacts. The median household size was 4 (interquartile range, 3–5). Mean age was 32 years

among index cases (Table 4) and 27 years among household contacts (Table 5). Age was missing for

5 adult/teenager contacts, and isolation behavior was missing for 6 contacts. There was a slight over-

representation of females among index cases (58%), and 191 index cases (89%) were adults/teenagers,

of whom 15 (8%) were vaccinated. None of the 24 child index cases were vaccinated. Among the 494
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Table 4: Characteristics of the Index Cases According to Age.

Characteristic
Adult/teenager index casesa

(N = 191)

Child index cases

(N = 24)

All index cases

(N = 215)

No. %
Median

(IQR)
No. %

Median

(IQR)
No. %

Median

(IQR)

Median

(IQR)

Male sex 76 40 14 58 90 42

Age, yearsb 36 (14) 6 (4) 32 (16)

Symptom status

Symptomatic 172 90 10 42 182 85

Asymptomatic 19 10 14 58 33 15

Vaccination

Vaccinated 15 8 N/A N/A 15 7

Days from 2nd dose to detection 44 (13 – 59) N/A 44 (13 - 59) 44 (13 - 59)

Abbreviations: IQR, interquartile range; N/A, not applicable.
a Individuals aged >12 years were considered adults/teenagers.
b Values are expressed as mean (standard deviation).

adult/teenager household contacts, 125 (25%) were vaccinated. Of these, 83 (17%) also complied with

isolation precautions. Among the 369 unvaccinated adult/teenager contacts, 259 (70%) isolated during

the study. None of the 193 child household contacts were vaccinated and 47% of them (n = 90) isolated

during the study period (Table 5). In the following, we refer to susceptible contacts (i.e., contacts that

did not report SARS-CoV-2 infection over the preceding year) as contacts.

A total of 269 out of 667 (40%) household contacts developed a SARS-CoV-2 infection. Of those,

170 (63%) developed symptoms (Table 5). The SAR varied with the characteristics of the contacts.

Among the 105 adult/teenager contacts who were unisolated and unvaccinated, 80 (76%) were infected

by SARS-CoV-2 (Table 6). This proportion dropped to 28% (11 out of 40) among those who were

unisolated and vaccinated, 29% (71 out of 245) among those who were isolated but unvaccinated, and

11% (9 out of 83) among those who were isolated and vaccinated; 65% (66 out of 101) of child contacts

who were unisolated got infected by SARS-CoV-2. This proportion declined to 33% (29 out of 87) for

isolated child contacts. The proportion of asymptomatic cases varied from 26% (46 out of 174) among

adult/teenager contact cases to 56% (53 out of 95) among child contact cases (Table 5).

The SAR also varied with the vaccination status of the index case regardless of the contacts’ character-

istics. Among the 622 household contacts whose index case was unvaccinated, 261 (42%) developed a

SARS-CoV-2 infection (Table 6). This proportion dropped to 19% (8 out of 42) among household con-

tacts whose index case was vaccinated. Finally, the SAR was relatively invariant with household size:

31%, 40%, 32%, and 32% for households of size 2, 3, 4, and 5, respectively (Fig. C1).
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Table 5: Characteristics of the Household Contacts According to Age.

Characteristic
Adult/teenager household contactsa

(N = 494)

Child household contacts

(N = 193)

All household contacts

(N = 687)

No. %
Median

(IQR)
No. %

Median

(IQR)
No. %

Median

(IQR)

Male sex 242 49 109 56 351 51

Age, yearsb 36 (17)c 6 (4) 27 (20)

Infection and symptom status

Past infection 16 3 4 2 20 3

Not infected 304 62 94 49 398 58

Symptomatic 127 26 41 21 168 24

Asymptomatic 46 9 53 27 99 14

Symptomatic (missing onset) 1 0 1 1 2 0

Vaccination

Vaccinated 125 25 N/A N/A 125 18

Days from 2nd dose to exposure 23 (14 - 36) N/A 23 (14 - 36)

Isolation

Partial 115 23 32 17 147 21

Complete 227 46 58 30 285 41

Missing 5 1 1 1 6 1

Abbreviation: IQR, interquartile range; N/A, not applicable.
a Individuals aged >12 years were considered adults/teenagers.
b Values are expressed as mean (standard deviation).
c Missing age for 5 adult/teenager contacts.

Our statistical model makes it possible to perform a multivariate analysis of the drivers of SARS-CoV-

2 transmission in households. We estimate that, relative to adult/teenager contacts who were unisolated

and unvaccinated, the relative risk of being infected was 0.21 (95% CrI: 0.08, 0.44) among adult/teenager

household contacts who were vaccinated but unisolated (Fig. 17A, Table C4). It was 0.12 (95% CrI: 0.06,

0.21) among household contacts who did isolate and were unvaccinated, and 0.07 (95% CrI: 0.03, 0.16)

among household contacts who were both isolated and vaccinated. Isolation might reduce the risk of

infection among vaccinated contacts (96% posterior probability, Bayes factor = 23) with a relative risk

of 0.34 (95% CrI: 0.11, 1.14). Relative to adult/teenager contacts who were unisolated and unvaccinated,

the relative risk of infection was 0.50 (95% CrI: 0.32, 0.77) for child contacts that did not isolate, and

0.17 (95% CrI: 0.08, 0.31) for those that did. We estimate that the risk of transmission from vaccinated

cases was 0.25 (95% CrI: 0.06, 0.77) times that of unvaccinated cases (Fig. 17B and Table C4).

Overall, we estimate that, in a household of size 4, the person-to-person probability of SARS-CoV-2

transmission is 61% (95% CrI: 48, 72) between an unvaccinated case and an unvaccinated and unisolated

adult/teenager. This probability drops to 4% (95% CrI: 1, 16) between 2 vaccinated adults/teenagers who

do not follow isolation rules (Fig. 18 and Table C5). The person-to-person probability of transmission
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Table 6: Observed Secondary Attack Rates According to the Type of Contact.

Type No. of infected contacts No. of susceptible contacts
SAR

% 95% CI

Contactsa

Unisolated and unvaccinated adult/teenager 80 105 76 67, 84

Isolated and unvaccinated adult/teenager 71 245 29 23, 35

Unisolated but vaccinated adult/teenager 11 40 28 15, 44

Isolated and vaccinated adult/teenager 9 83 11 5, 20

Unisolated child 66 101 65 55,75

Isolated child 29 87 33 24, 44

Indexb

Vaccinated 8 42 19 9, 34

Unvaccinated 261 622 42 38, 46

Abbreviations: CI, confidence interval; SAR, secondary attack rate.
a Isolation is missing for 1 child contact and for 5 adult contacts.
b The last 2 rows correspond to the SAR among the household contacts of vaccinated (n = 14 households) and unvaccinated

index cases (n = 195 households). One household was excluded from this analysis because its co-index cases did not
have the same vaccination status.

from an unvaccinated case to a child who does not isolate is 37% (95% CrI: 27, 48). This probability

drops to 11% (95% CrI: 3, 31) if the case is vaccinated and to 14% (95% CrI: 7, 25) if the child contact

is isolated.

In general, our estimates of relative susceptibility and relative infectivity were robust to model assump-

tions (Fig. 19). When the analysis was restricted to households in which all contacts performed at least

1 or 3 PCR tests in the 10 days following the recruitment of the index case, the relative susceptibility

of vaccinated adult/teenager contacts who did not isolate was slightly higher compared with the base-

line scenario. It increased from 0.21 (95% CrI: 0.08, 0.44) in the baseline scenario to 0.28 (95% CrI:

0.09, 0.66) in the analysis with at least 1 PCR and 0.32 (95% CrI: 0.09, 0.83) with at least 2 PCR tests

(Table C4). In the alternative scenarios, the number of individuals included was substantially lower, in-

creasing CrIs (Figs. C3 and C4 and Tables C6 to C9). Similarly, the relative susceptibility of vaccinated

adult/teenager contacts who did isolate increased from 0.07 (95% CrI: 0.03, 0.16) in the baseline sce-

nario to 0.12 (95% CrI: 0.04, 0.28) in the analysis with at least 1 PCR, and 0.13 (95% CrI: 0.04, 0.32)

in the one with at least 2 PCR tests. Consequently, the posterior probability that isolated and vaccinated

adult/teenager contacts were less susceptible than vaccinated adult/teenager contacts that did not isolate

dropped from 96% to 88% with 1 PCR and 89% with 2 PCR tests. Still, the statistical support was

high with a Bayes factor equal to 7 and 8, respectively. Relative infectivity and relative susceptibility

were slightly sensitive to their prior distribution (Table C10). When the log-standard deviation increased,
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Figure 17: Estimates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission
parameters within households, Ramat Gan, Israel, 2020–2021. (A) Estimated relative susceptibility of
isolated and unvaccinated adults/teenagers, unisolated but vaccinated adults/teenagers, isolated and vaccinated
adults/teenagers, unisolated children, and isolated children. The reference group is the group of adults/teenagers
that were unisolated and unvaccinated. (B) Estimated relative infectivity of vaccinated cases compared with un-
vaccinated cases. The posterior median and its associated 95% Bayesian credible interval are reported.

estimates were pulled towards lower values.

4. Discussion

We evaluated the impact of BNT162b2 vaccination on case infectivity and the mitigating effect of age,

isolation from the index case, and BNT162b2 vaccination on susceptibility to infection in household

settings. Our approach accounts for infections in the community, potential tertiary infections within

the households, the reduced infectivity of asymptomatic cases, potential misidentification of the index

case(s), and varying follow-up periods between households.

In our analysis, the SAR in unvaccinated adult/teenager contacts who did not isolate was estimated

at around 76%, which is substantially higher than previous estimates obtained in household settings

(Madewell et al., 2020; Lei et al., 2020; Thompson et al., 2021; Harris et al., 2021; Jing et al., 2020;

Li et al., 2021). In meta-analyses (Madewell et al., 2020; Lei et al., 2020; Thompson et al., 2021), the

average SAR ranged between 14% and 32%; however, in some studies, it could be as high as 90% (Lei

et al., 2020). Most of these studies date back to the time when historical lineages were still dominant.

In contrast, our study took place when the Alpha variant represented up to 90% of infections in Israel
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Figure 18: Person-to-person probability of transmission within households according to the characteristics
of the case and of the contact, Ramat Gan, Israel, 2020–2021. Estimated person-to-person probability of
transmission within households of size 4, decomposed by the age, isolation behavior, and vaccination status of
the contact as well as the vaccination status of the case. The posterior median and its associated 95% Bayesian
credible interval are reported.

(Munitz et al., 2021). Our higher estimate could be at least partly explained by the fact that the Alpha

variant is substantially more transmissible than historical lineages (Munitz et al., 2021; Kissler et al.,

2021; Davies et al., 2020b; Volz et al., 2021).

In agreement with previous reports, we found that children are less susceptible to SARS-CoV-2 infections

than adults/teenagers (Madewell et al., 2020; Lei et al., 2020; Thompson et al., 2021; Viner et al., 2021).

We further estimated that, 7 days after their second dose, vaccinated adults/teenagers benefit from a 79%

reduction in the risk of infection compared with unvaccinated adults/teenagers. We show, consistent

with previous studies (Munitz et al., 2021; Pritchard et al., 2021), that BNT162b2 vaccination is highly

effective against infection by the Alpha variant. In general population studies, vaccine effectiveness for

symptomatic infections ranged from 57% 14 days after the first dose (Dagan et al., 2021) to 89% (Dagan

et al., 2021), and 97% 7 days after the second dose (Haas et al., 2021). For asymptomatic infections,

vaccine effectiveness against infection was 79% 10 days after the first dose (Tande et al., 2022) and 94%

14 days after the second dose (SE, 2021). Our estimate of vaccine effectiveness in household settings is

lower than those obtained in the general population. This is consistent with estimates obtained in house-

holds (Prunas et al., 2022; Gier et al., 2021; Pritchard et al., 2021) and might in part be explained by
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Figure 19: Impact of model assumptions on the estimation of the relative susceptibility and relative infec-
tivity parameters, Ramat Gan, Israel, 2020–2021. (A) Estimates of the relative susceptibility of household
contacts for the baseline and sensitivity analysis scenarios. (B) Estimates of the relative infectivity of vaccinated
cases compared with unvaccinated ones for the baseline and sensitivity analysis scenarios. In the baseline scenario
(black circle), we assumed that vaccination was effective from 7 days after the second dose, the relative infectivity
of asymptomatic cases compared with symptomatic cases was equal to 60%, and the log-standard deviation of
the relative infectivity and relative susceptibility prior distributions was equal to 1. Sensitivity analysis scenar-
ios: yellow square, vaccination is effective ≥ 15 days after the dose; orange triangle, 1 polymerase chain reaction
(PCR) test for all negative contacts; red star, 2 PCR tests for all negative contacts; pink diamond, 100% infectiv-
ity of asymptomatic cases; blue inverted triangle, relative parameter prior with log-standard deviation = 0.7; blue
pentagon, relative parameter prior with log-standard deviation = 2. The posterior median and its associated 95%
Bayesian credible interval are reported.

the elevated contact rates in households that may favor transmission. Additionally, studies in the general

population are less suitable to detect all asymptomatic cases compared with the household setting. This

might lead general population studies to overestimate vaccine effectiveness against asymptomatic infec-

tions if vaccinated contacts are less often tested than unvaccinated ones. On another note, we estimate a

vaccine effectiveness against transmission of 75% (95% CrI: 23, 94), which is in line with other studies

in household settings (Harris et al., 2021; Prunas et al., 2022; Gier et al., 2021).

To our knowledge, this is the first study estimating the effect of isolation on SARS-CoV-2 transmission

in households that are partially vaccinated. We showed that isolation precautions markedly reduce the

overall infection risk in both adult/teenager and child contacts even when considering partial physical

distancing measures. We estimated a similar reduction of infection in adult/teenager contacts that were

vaccinated but did not isolate. There was a signal in the data that isolation also benefited vaccinated

individuals, although credible intervals were larger, and further investigations are required to confirm
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this finding.

Our study has several limitations. First, household studies such as ours may be affected by multiple

sources of bias. On the one hand, we may overestimate the SAR if we are more likely to detect house-

holds with multiple cases. On the other hand, we might underestimate it if some asymptomatic, or

paucisymptomatic, cases are missed during follow-up. Second, we estimated an important reduction

of infectivity in vaccinated cases with 2 doses compared with unvaccinated cases as previously shown

(Harris et al., 2021; Prunas et al., 2022; Gier et al., 2021; Regev-Yochay et al., 2021). However, this is

associated with important uncertainty due to the small number of cases (15 vaccinated index cases and 21

vaccinated secondary cases). Thus, more data are needed to reduce the size of credible intervals. Third,

we assumed that vaccination was effective from 7 days after the second dose (or 15 days after the first

dose in our sensitivity analysis; see Table C11). In practice, the effect of the vaccine is likely to be pro-

gressive, which might push down estimates of effectiveness since individuals with early partial protection

would be considered to be unvaccinated. However, excluding households with the early-vaccinated index

cases did not affect our estimates (Fig. C5 and Table C12). The limited number of households does not

make it possible to dissociate early vs. full protection conferred by the vaccine nor to investigate the in-

fectivity of children relative to adults/teenagers. Fourth, testing instructions were different for vaccinated

and unvaccinated household contacts, as well as HCWs and non-HCWs. Most vaccinated contacts were

HCWs at the Sheba Medical Center who complied with testing instructions to go back to work, leading to

high testing rates in vaccinated individuals, with 67% having at least 2 PCR tests and 70% having 1 posi-

tive PCR or at least 2 PCR tests in the 10 days following case detection (Table C1). Among unvaccinated

contacts, 49% had at least 2 PCR tests and 79% had 1 positive PCR or at least 2 PCR tests in the 10 days

following case detection. This higher testing rate is notably due to the high proportion of single positive

tests (30%). These differential testing behaviors and positivity rates between vaccinated, unvaccinated,

HCW, and non-HCW contacts make it difficult to anticipate the directionality of a potential bias. When

restricting our evaluation to households where all negative contacts were tested at least once or twice,

estimates remained relatively similar to the baseline values. In the analysis with at least 2 tests for all

negative contacts, we observed a slight reduction in the point estimate for vaccine effectiveness against

infection that remained difficult to interpret given the very broad credible intervals (17%–91%). Sixth,

the measurement of isolation precautions, vaccination status, and symptoms are based on the declaration

of participants, and thus may be subject to recall bias. More importantly, the measurement of isolation

precautions and vaccination status can be subject to overreporting, as they represent a socially desirable

behavior. The timing and evolution of isolation precautions were not measured, and thus not integrated
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in our model. Nevertheless, our estimate of isolation effectiveness is consistent with a 10-day period of

quarantine in modeling studies (Ashcroft et al., 2021), and our estimates of vaccination effectiveness are

also consistent with the literature as mentioned above. Finally, we estimate vaccine effectiveness against

infection and transmission in a context where the Alpha variant was dominant. These estimates are very

likely to be different for the Delta variant (Eyre et al., 2021) that was first reported in October 2020 and

rapidly became dominant worldwide (World Health Organization (WHO), 2021a).

To conclude, vaccination with 2 doses substantially reduces the risk of transmission and the risk of

infection in households. Isolation from the index case while sleeping and eating provides a high level of

protection to unvaccinated household members, whether they are adults/teenagers or children. Household

contacts of COVID-19 patients should ideally isolate, or at least refrain from significant contact, with

household cases. This may also be the case for vaccinated household members, although larger studies

are required to confirm this finding.
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Chapter 4

Impact and mitigation of sampling bias in discrete
phylogeography

Bayesian phylogeographic inference is a powerful tool in molecular epidemiological studies that enables

reconstructing the origin and subsequent geographic spread of pathogens. Such inference is, however,

potentially affected by geographic sampling bias. Here, we investigated the impact of sampling bias on

the spatiotemporal reconstruction of viral epidemics using Bayesian discrete phylogeographic models

and explored different operational strategies to mitigate this impact. We considered the CTMC model

and two structured coalescent approximations (BASTA and MASCOT). For each approach, we com-

pared the estimated and simulated spatiotemporal histories in biased and unbiased conditions based on

simulated epidemics of RABV in dogs in Morocco. While the reconstructed spatiotemporal histories

were impacted by sampling bias for the three approaches, BASTA and MASCOT reconstructions were

also biased when employing unbiased samples. Increasing the number of analyzed genomes led to more

robust estimates at low sampling bias for CTMC. Alternative sampling strategies that maximize the spa-

tiotemporal coverage greatly improved the inference at intermediate sampling bias for CTMC, and to

a lesser extent, for BASTA and MASCOT. In contrast, allowing for time-varying population sizes in

MASCOT resulted in robust inference. We further applied these approaches to two empirical data sets:

a RABV data set from the Philippines and a SARS-CoV-2 data set describing its early spread across

the world. In conclusion, sampling biases are ubiquitous in phylogeographic analyses but may be ac-

commodated by increasing sample size, balancing spatial and temporal composition in the samples, and

informing structured coalescent models with reliable case count data.
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1. Introduction

Over the past decade, Bayesian discrete phylogeographic inference has greatly benefited viral epidemi-

ological studies in unraveling the origin and subsequent spread of viral epidemics (Faria et al., 2019;

Lemey et al., 2020; Lu et al., 2021), the spatial processes driving viral spread (Müller et al., 2021),

and environmental and human-related factors associated with viral spread (Dudas et al., 2017; He et al.,

2022; Lemey et al., 2014). BEAST is a popular Bayesian phylodynamics software package commonly

used in the analysis of time-stamped viral molecular sequences. It offers different discrete phylogeog-

raphy approaches: a popular and computationally efficient discrete phylogeographic inference approach

that makes use of continuous-time Markov chain (CTMC) modeling (Lemey et al., 2009a), also known

as the discrete trait analysis or DTA, and the structured coalescent model under its exact and approxi-

mated forms (Vaughan et al., 2014; De Maio et al., 2015; Müller et al., 2018). CTMC models migration

between discrete locations in the same way as nucleotide substitutions are modeled. In other words,

geographical locations are modeled as a neutral trait that evolves on top of the tree from the root to the

tips. As such, CTMC modeling does not explicitly model the branching process that gave rise to the

tree. In contrast, the structured coalescent model - which is an extension of the coalescent model to a

structured population - is a tree-generating model that explicitly models how lineages coalesce within

and migrate between subpopulations from present to past. Two computationally efficient approximations

of the structured coalescent model are available in BEAST2: the Bayesian structured coalescent approx-

imation (BASTA) (De Maio et al., 2015) and the marginal approximation of the structured coalescent

(MASCOT) (Müller et al., 2018). Currently, they both assume constant prevalence through time for each

deme/population, while the CTMC approach does not (Lemey et al., 2009a).

Bayesian discrete phylogeography approaches are complementary to mathematical modeling and epi-

demiological studies, and particularly informative when epidemiological data are scarce. In such con-

texts, viral genetic sequences are expected to compensate for the lack of epidemiological data. However,

genetic samples may constitute a biased snapshot of the underlying viral spread, especially when isolated

through passive surveillance systems. The impact of such sampling bias on discrete phylogeographic in-

ference has been discussed and examined ever since. Indeed, CTMC estimates were suspected to be

biased towards the most sampled location (Lemey et al., 2009a) and, later, sampling heterogeneity was

shown to inform the posterior, and more specifically the migration parameters, which is not the case

for BASTA (De Maio et al., 2015). In BASTA, sampling evenness is not informative as such and the

estimated migration rates are more correlated to the true values under simulated biased and unbiased
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conditions compared to CTMC (De Maio et al., 2015). As a result, BASTA has been argued to be more

robust to sampling bias (De Maio et al., 2015). Nevertheless, the structured coalescent model is known

to be sensitive to unsampled locations, known as ghost demes (Beerli, 2004; Ewing and Rodrigo, 2006;

De Maio et al., 2015). In parallel, several studies tested alternative strategies to mitigate the potential

effects of sampling bias, mostly focusing on CTMC as it was shown to be potentially less robust to sam-

pling bias compared to the structured coalescent model. Downsampling that was tested early on but was

limited to large data sets (Yang et al., 2019; Lemey et al., 2014) rapidly became a prerequisite in any

SARS-CoV-2 data analysis study due to the large number of available sequences and the high sampling

heterogeneity between countries (Hodcroft et al., 2021a). However, (Magee and Scotch, 2018) showed

that inference accuracy rapidly plateaus when using up to 25-50% of the sequence data available. Other

studies aimed at improving inference accuracy by integrating additional reliable epidemiological data.

For example, CTMC was extended to incorporate information on the recent migration events using indi-

vidual travel records (Lemey et al., 2020; Hong et al., 2021). More recently, a simulation study focused

on quantifying the impact of sampling bias on the predicted location of internal nodes, the prediction

of migration events that lead to large local spread as well as on the estimation of migration rates in a

maximum likelihood framework (Liu et al., 2022). The authors showed that prediction accuracy actually

depends on multiple factors: the underlying migration rate, the magnitude of sampling bias and the mag-

nitude of traveler sampling. Importantly, they observed a lower relative accuracy with biased samples

and when samples overrepresent travelers. Concerning the structured coalescent model, (Müller et al.,

2019) informed the deme population sizes with reliable case count data from the 2014 Ebola epidemic in

Sierra Leone using MASCOT. This allows modeling time-varying population sizes instead of assuming

constant population sizes over time. Sampling bias is also a concern in continuous phylogeography anal-

yses in which other mitigation approaches were tested. Recently, (Dellicour et al., 2021b) downsampled

SARS-CoV-2 genomic records from New York City based on hospitalisations rather than case counts

to analyze representative samples irrespective of testing effort and strategy, (Kalkauskas et al., 2021)

incorporated sequence-free samples from unsampled areas, and (Guindon and De Maio, 2021) explicitly

modeled sampling strategy in the data likelihood.

Whereas numerous studies tested strategies to deal with sampling bias, the impact of sampling bias

on discrete phylogeographic reconstructions remains insufficiently characterized. Here, we compare the

performance of the different phylogeographic methods using simulated viral epidemics using a stochastic

metapopulation model, based on RABV epidemics in dogs in Morocco. We investigated the impact of

sampling bias on the spatiotemporal reconstruction of these viral epidemics using CTMC, BASTA, and
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MASCOT, with the latter two assuming populations to stay constant over time. Next, we explored

different approaches to mitigate sampling bias, maximizing the spatial and/or temporal coverage of the

sample, and informing the deme sizes under MASCOT with the true (time-varying) case count data per

location. The latter is to test to what degree biases originating from assuming constant population sizes

over time can be mitigated by allowing them to vary over time. Finally, we applied the three algorithms

to two empirical data sets: a data set of RABV sequences isolated in the Philippines islands between

2004 and 2010, and a global data set of SARS-CoV-2 genomes of the early spread of the pandemic.

2. Material and Methods

2.1. Simulation study

2.1.1. Simulation of viral transmission chains using a metapopulation model

In order to address the impact of spatial sampling bias on discrete phylogeographic inference, we per-

formed a detailed simulation study. Sampling bias concerns all diseases, but it is even more challenging

to address in the context of zoonotic diseases for which most of the transmission process is unobserved.

We grounded our study in the context of dog rabies in North Africa where transmission processes are

relatively well-documented. It was notably shown that rabies transmission relies on human movement

over long distances. We simulated rabies epidemics in dog populations according to realistic scenarios

using a stochastic, discrete-time and spatially-explicit model implemented in R using the Rccp package

(Eddelbuettel and Balamuta, 2018). We divided the Moroccan dog population into three or seven subpop-

ulations corresponding to arbitrary regions (see the section below on the parametrization of the mobility

matrix, Fig. D22). We divided each subpopulation into three compartments: susceptible, exposed, and

infectious individuals (Fig. 20A). At each discrete time step, we drew newborns and dead individuals in

the susceptible compartment from Poisson distributions with respective means the birth rate b and the

death rate d. We defined the force of infection Λi,t , i.e. the per-capita rate of infection of susceptible

individuals in region i on day t, as:

Λi,t =
β

Hi

(
Ii,t−1 +∑

j ̸=i
CSν j→iI j,t−1

)
(4.1)

where β is the transmission rate of rabies scaled by Hi, i.e. the human population size in region i, ν j→i

is the per-capita mobility rate of individuals moving from region j to region i, I j,t−1 is the number of
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infectious individuals in region i on day t−1, and CS is a scale factor (see below for more information).

Exhaustive dog census data were not available and it is well known that human-mediated movement

plays a major role in the spread of rabies in North Africa (Talbi et al., 2010; Dellicour et al., 2017), thus

we assumed that dog populations were proportional to human populations (Table D2). We scaled the

rabies transmission rate by population size to ensure that the force of infection is density-independent

as previously documented on rabies (Morters et al., 2013). We used the scale factor CS to monitor the

proportion of inter-region infections. Its value was arbitrarily chosen so that 1% of infection events

occurred between regions, and the basic reproduction ratio is approximately equal to 1.05 within and

between regions. At each time step, we drew the number of newly exposed individuals in each region

from Poisson distributions with a mean specified by the number of susceptible individuals in region i on

day t− 1 (Si,t−1) multiplied by the force of infection in region i on day t (Λi,t). Once an individual e j,t

entered the exposed compartment, it was uniquely identified. The location of its infector was drawn from

a multinomial distribution with the following probabilities:

P(e j,t in f ected by Ii,t−1) =
νi→ jIi,t−1

∑k νk→ jIk,t−1
(4.2)

Once the location of the infector was drawn, the ID of the infector was randomly sampled from the set

of infectors present in the location. All infectious individuals in each region had the same probability of

infection. The incubation period of exposed individuals was drawn from a gamma distribution with shape

2 and rate 11.055 (Hampson et al., 2009) and its infectious period was drawn from a discretized gamma

distribution adapted from (Hampson et al., 2009) so that it could not exceed 15 days (World Health

Organization (WHO), 2018). Finally, the life span was drawn from an exponential distribution with rate

d. If natural death occurred before the end of the incubation or infectious periods, the individual was

removed prematurely. Otherwise, the individual went through the exposed and infectious compartment

before dying from rabies (Table D2).

We initiated all simulations with the introduction of a single index case in Region 3 (Fig. D22). Ac-

cording to (Darkaoui et al., 2017), there are on average 400 confirmed animal cases per year in Morocco

which is certainly an underestimation (Broban et al., 2018). We assumed a 20% reporting rate of dog

cases in Morocco (Taylor et al., 2017a), and thus retained epidemics with at least 60,000 cases over a 20

to 30-year period (Fig. 20C). We analyzed the results for 50 simulations.
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Figure 20: Rabies virus (RABV) epidemic simulation framework. We simulate realistic epidemics by emulat-
ing the scenario of RABV spread in dog populations in Morocco. (A) Metapopulation model of rabies spread in
dogs. In each geographical location j, the dog population is divided into three compartments: susceptible, exposed
but yet not infectious, and infectious individuals. Individuals are born at rate b and die from natural causes at rate γ .
The rate of infection corresponds to the per-capita force of infection λ j,t that aggregates the force of infection from
infectors in location j and all the other locations. Individuals become infectious at rate ε . We identify all infected
individuals and simulate their infector, incubation period, infectious period and date of death. (B) Connectivity
between the seven arbitrary Moroccan regions estimated by the radiation model and estimated dog population size
per region. Curvature indicates flux direction. (C) Example for one simulation of the prevalence (first row) and
cumulative number (second row) of rabid cases per month and location. (D) Graphical illustration of the potential
impact of sampling bias on the reconstruction of the phylogenetic relationships between viral samples over an
epidemic, assuming no intra-host evolution.

2.1.2. Parametrization of the between-region mobility matrix

To avoid computational difficulties and over-parameterization of the different discrete phylogeographic

models, we aggregated the fifteen official Moroccan regions retrieved from the GADM data set (http:

//www.gadm.org) into three or seven locations (in two simulated scenarios, respectively) that are based
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on human demographics and ecological features (Fig. D22). Dog mobility was defined across locations

by fitting a radiation model to a raster of human population distribution (WorldPop, n.d.) using the R

package movement (Golding et al., 2015). In the radiation model, commuting is determined by the job

seeking behavior modeled as an absorption and radiation process (Simini et al., 2012). The average

commuting flux Ti, j from location i to location j with population mi and n j, respectively is:

⟨Ti, j⟩= Ti
min j

(mi + si, j)(mi +n j + si, j)
(4.3)

with si, j the total population in the circle of radius ri, j centred at i (excluding the source and destination

population).

We used a model of human mobility as it has been shown that humans play a major role in dog rabies

spread and maintenance in North Africa, especially across long distances (Talbi et al., 2010; Dellicour

et al., 2017). We preferred the radiation model over the gravity model for two reasons: the radiation

model has been shown to outcompete the gravity model at local and large scales (Simini et al., 2012),

and it presents the advantage of having no free parameter(s). In our study, we inferred the average daily

number of commuters between raster cells of 20 km with more than 1,000 inhabitants per km2. The size

of the cells corresponds approximately to the municipality level, and the density threshold corresponds

to the urban density in Morocco. The number of commuters was then aggregated at the location level.

2.1.3. Evolutionary model of RABV genomes associated with cases

Simulation studies that analyze the accuracy of phylogeographical techniques often use the inference

model as the simulation model (De Maio et al., 2015; Müller et al., 2017; Kalkauskas et al., 2021). Here,

we took an epidemiological perspective by simulating rabies epidemics using a metapopulation model

and by inferring the spatiotemporal history of rabies from RABV sequences and not from phylogenetic

trees. After simulating rabies epidemics as described above, RABV genomes associated with each case

were simulated according to the HKY model (Hasegawa et al., 1985). We simulated in R sequence evo-

lution forwards-in-time along the transmission chains which were used in the same way as a phylogeny.

We opted for a simple evolutionary process in which selection, gene partition, and site heterogeneity were

not considered. Parameter values are listed in Table D2. The genome of the index case is a real canine

rabies genome of 13 kb length isolated in Morocco in 2013 (GenBank Accession Number KF155001.1)

(Marston et al., 2013).
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2.1.4. Sampling schemes of viral sequences

The aim of the study is to determine the impact of sampling bias on phylogeographic inference and how

alternative sampling schemes may mitigate the effects of such sampling bias. To address the former

issue, we sampled either uniformly (uniform) or with a sampling bias favoring viral sequences from

highly populated locations (Regions 3 and 4). In the latter scenario, sequences from Regions 1, 2, 5, 6,

and 7 had a weight equal to one, whereas Regions 3 and 4 had a weight equal to 2.5, 5, 10, 20 or and

50 (biased-2.5, biased-5, biased-10, biased-20, and biased-50, respectively, Fig. 20D). To mitigate the

potential effects of sampling bias, we tested a different setup reproducing a surveillance system. In this

setup, a biobank of 5,000 sequences were drawn from each epidemic with a weight of one for Regions

1, 2, 5, 6, and 7, and a weight of 10 or 20 for Region 3 and 4. Subsets of sequences were sampled from

the biobank either uniformly (uniform surv.), by maximizing the spatial coverage (max per region), or

by maximizing the spatiotemporal coverage (max per region and per year). For all sampling schemes, a

large sample of 500 sequences and a nested sample of 150 sequences were drawn over the entire epidemic

except for the first year, as we assumed that the spread of the virus would remain undetected at the start

of the epidemic as observed in other settings (Townsend et al., 2013b).

2.2. Discrete phylogeographic analysis in BEAST

2.2.1. Generation of BEAST XML files and phylogeography inference set up

Tailored XML template files for the BASTA and MASCOT structured coalescent models, as well as for

the discrete trait analysis (CTMC) model, were edited using the lxml Python package to add sequence

alignments along with their metadata. Bayesian phylogeographic analyses were performed using BEAST

v1.10.5 (Suchard et al., 2018) for the CTMC model (Lemey et al., 2009a), and BEAST v2.6.4 (Bouckaert

et al., 2019) for MASCOT v2.2.1 (Müller et al., 2018) and BASTA v3.0.1 (De Maio et al., 2015), making

use of the BEAGLE library v3.1.1 (Ayres et al., 2012). We assumed an HKY substitution model with

a strict molecular clock. Population dynamics in the CTMC model followed a constant population size

prior. We chose this prior since the model of population dynamics is not expected to impact migration

history inference and the constant population size model is often chosen for the analysis of endemic

diseases. For the BASTA and MASCOT structured coalescent models, all demes were set to have equal

size due to numerical issues leading to a computation time of over 70 hours per million iterations (data

not shown). For both models, asymmetric migration matrices were inferred and BSSVS was used to

avoid over-parametrization. The detailed list of prior distributions is available in Table D3 for each

inference framework.
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If deme sizes are set to be equal in the structured coalescent model but the actual population dynam-

ics vary through time, the model tends to explain population dynamics by migration dynamics. In our

simulations, the incidence changed dramatically over time and location (Fig. 20C), thus the inference

by the structured coalescent model is expected to improve when accounting for time-varying population

dynamics. To test this hypothesis, we used monthly incidence data from our simulations as a predictor of

the deme sizes by using a GLM in MASCOT (Müller et al., 2019). We tested this alternative parametriza-

tion (MASCOT-GLM) in the following conditions: uniform, biased-2.5, biased-5, biased-10, biased-20,

biased-50, uniform surv. 10, and uniform surv. 20.

These different BEAST analyses were run for at least 20 and 40 million steps, and sampled every 2,000

and 4,000 steps for small and large alignments, respectively. In total, 8,800 XML files were run for

this study, for a total of an estimated 1,500 hours of computation on multi-core CPUs across different

computing infrastructures (Table D4).

2.2.2. Analysis of phylogeographic inference output

For each BEAST analysis, adequate mixing was assessed based on the ESS values of the continuous

parameters. We calculated ESS values using a Python function adapted from Tracer v1.7.2 (Rambaut

et al., 2018). When at least one continuous parameter had an ESS value below 200, chains were resumed

to reach at most 120 million iterations. Analyses that exhibited ESS values lower than 200 at this point

were discarded (Tables D5 and D6). Due to the higher computational burden of BASTA, the ESS cut-

off was reduced to 100. We discarded a 10% burn-in in the selected chains. The combined posterior

tree distributions were summarized into MCC trees using TreeAnnotator for BASTA and the CTMC,

and the Python library dendropy (Sukumaran and Holder, 2010) for MASCOT and MASCOT-GLM.

Summary statistics, ESS values, Bayes factors (BFs) on migration rates (Lemey et al., 2009a), root

state probabilities, dates of lineage introduction, and lineage migration counts were calculated in Python

before plotting the results in R using the ggplot2 package (Wickham, 2016).

2.2.3. Performance analysis

To assess the accuracy of the phylogenetic reconstruction, the time to the most recent common ancestor

(TMRCA) of every pair of sampled tips was computed on both the MCC tree and the simulated trans-

mission chain, and these outcomes were subsequently compared using the Pearson correlation coefficient

(Fig. 20A). In addition, we evaluated the impact of sampling bias and alternative sampling strategies on

the estimation of the total migration counts, lineage migration counts, and dates of first lineage introduc-

tion into each sampled location using five metrics:
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• Kendall’s tau correlation: a rank-correlation measure that is less sensitive to outliers compared to

Pearson’s correlation coefficient

τ =
(no. concordant true/simulated value pairs)(no. discordant true/simulated value pairs)(n

2

)
(4.4)

• Calibration

calibration95% =
1
n

n

∑
i=1

1{θi∈HPD95%(Di)} (4.5)

• Mean relative bias

MRB =
1
n

n

∑
i=1

1
θi
(θ̂i−θi) (4.6)

• Mean relative 95% highest posterior density (HPD) width

width95% =
1
n

n

∑
i=1

1
θi
(HPD97.5%(Di)−HPD2.5%(Di)) (4.7)

• Weighted interval score (WIS): a generalization of the absolute error accounting for estimation

uncertainty. We present the formula of the WIS and refer to the original article for further details,

notably on the interval score (Bracher et al., 2021).

WISα{0:K}(F,y) =
1

K +1/2
× (w0×|y−m|+

K

∑
k=1
{wk× ISαk(F,y)}) (4.8)

We denote θi the true value of the parameter, Di the parameter posterior distribution, θ̂i the median

estimate, HPD95% the 95% HPD, K the number of prediction intervals included in the calculation of the

WIS, y the observed outcome by forecast F , m the predictive median on the (1−αk)× 100 prediction

interval, ISαk the interval score on the (1−αk)× 100 prediction interval and wk its weight. The mean

relative bias and the mean relative 95% HPD width are defined when the true value is not zero. However,

the total migration counts and the lineage migration counts for some pairs of locations can be null in

our simulations whereas the algorithms infer a non-null median. These cases were not considered in the

calculation of the mean relative bias and the mean relative 95% HPD width. We reported their numbers

in the caption of the corresponding figures.
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2.3. Data analysis

2.3.1. RABV expansion in the Philippines

We extended our comparative analysis of the CTMC, BASTA, and MASCOT by analyzing a set of

RABV genetic sequences using the three approaches. In total, 233 sequences corresponding to the

RABV glycoprotein gene were sampled in the Philippines from 2004 and 2010 (Saito et al., 2013). In

the original discrete phylogeographic analysis, the authors studied viral spread across 11 out of the 17

Philippines regions and showed that the genetic diversity was highly spatially-structured, notably at the

island level (Tohma et al., 2014). Here, we evaluated spread across the six sampled islands (Luzon,

Catanduanes, Oriental Mindoro, Cebu, Negros Oriental, and Mindanao) to compare the reconstructions

on a highly structured data set and limit the number of demes that considerably slow down BASTA and

MASCOT. We assumed an HKY nucleotide substitution model with an among-site rate heterogeneity

modeled by a discretized gamma distribution (Yang, 1994), and an uncorrelated relaxed molecular clock

with an underlying lognormal distribution (Drummond et al., 2006). For the CTMC, we assumed a

constant size coalescent model for the viral demographics as in the original analysis. For MASCOT and

BASTA, current implementations assume a constant population size model for the viral demographics

within demes. A detailed description of the priors is reported in Table D7. For each algorithm, we

combined three post-burnin independent chains of 50 million iterations each.

2.3.2. The early dynamics of SARS-CoV-2 worldwide spread

Tracking viral disease spread in animal populations faces many challenges, and to our knowledge, no

reliable incidence data are available for zoonoses such as rabies. In this context, MASCOT-GLM cannot

readily be used. We analyzed the early worldwide spread of SARS-CoV-2 to compare the inferences

of the CTMC, BASTA, MASCOT, and MASCOT-GLM. (Lemey et al., 2020) analyzed this data set to

characterize SARS-CoV-2 spread across 44 location states by incorporating individual travel histories of

sampled individuals to help correct for sampling bias and unsampled locations. By using the carefully

obtained results of (Lemey et al., 2020) as a reference, we can evaluate how the four algorithms are

impacted by sampling bias.

The data set comprises 282 SARS-CoV-2 genomic sequences sampled in the five continents from De-

cember 24th, 2019 to March 4th, 2020. We assumed an HKY nucleotide substitution model with a

proportion of invariant sites, an among-site rate heterogeneity modeled by a discretized gamma distribu-

tion, and a strict molecular clock. For the CTMC, we assumed an exponential growth model for the viral

demographics. MASCOT and BASTA assume a constant size model for the viral demes demographics.
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Contrary to the original study, we analyzed migration between six discrete locations: Africa, Americas,

Asia, China, Europe, and Oceania. For MASCOT-GLM, we used the daily number of confirmed cases at

the continent level from Our World In Data (Ritchie et al., 2020), or from the (World Health Organiza-

tion (WHO), n.d.) as a predictor of the deme sizes. The former is referred to as MASCOT-WID, and the

latter as MASCOT-WHO. We smoothed the number of new confirmed cases using a seven-day moving

average. The detailed description of the priors is reported in Table D8. We combined three post-burnin

independent chains of 50 or 100 million iterations for each inference.

3. Results

3.1. Simulation framework

We simulate RABV epidemics across three or seven locations using a stochastic metapopulation model

(Fig. 20A) whose connectivity matrix is parameterized using human population mobility that we es-

timated by fitting the radiation model of (Simini et al., 2012) to human population density data from

(WorldPop, n.d.) (Fig. 20B). As each location is associated to a specific deme/population, we refer to the

two simulation frameworks as the three or seven demes framework for the remainder of the text. We sim-

ulate 50 epidemics that start with the introduction of a single case and lead to at least 60,000 cases over

a 30-year period (Fig. 20C). On top of the transmission chains, we simulate viral genomes for each case

and then subsample starting one year after the introduction of the index case either 150 or 500 sequences

in a biased or unbiased fashion (Fig. 20D). We then perform Bayesian discrete phylogeographic analysis

on the geolocated and time-stamped sequence alignments before comparing the true and reconstructed

evolutionary and migration histories for each discrete phylogeographic approach. Importantly, the vast

majority of samples in the three demes framework contain at least one sequence of each deme which is

not the case for the seven demes framework for which sampling bias often leads to unsampled locations,

also called “ghost” demes.

Robust estimation of the phylogeny and genetic parameters with respect to sampling bias While the

focus of our simulation study is on reconstructing the spatial spread, we first assess the potential impact

of sampling bias on estimating the phylogeny itself, as well as the evolutionary parameters (Fig. 21A).

The phylogeny of the simulated pathogen is not impacted by sampling bias when using CTMC, BASTA,

and MASCOT (Fig. 21A and S1). In addition, the average evolutionary rate (Fig. 21C), the stationary

nucleotide frequencies (Figs. D2 to D5), and the ratio of transition-transversion rates (Fig. D6) are all

well estimated at any level of sampling bias.
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Figure 21: Estimation of genetic and phylogenetic parameters under spatially-biased sampling conditions.
(A) Comparison of the simulated transmission chain and the estimated maximum clade credibility (MCC) tree
topologies. For the estimated and simulated topologies, we computed the total divergence time between every
pair of sampled tips. We compared the two using linear regression. (B) Pearson’s determination coefficient of
the pairwise divergence time between the simulated transmission chain and the MCC tree. (C) Estimation of the
evolutionary rate. Each dot corresponds to the median estimate of the evolutionary rate in one simulation (n = 50
per sampling protocol and sample size).
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3.2. Spatiotemporal history reconstruction in (un)biased conditions

As the inferred spatiotemporal histories of lineages cannot be compared in a unique simple way between

the different approaches, we use four types of summary statistics: (i) the total migration counts - cor-

responding to Markov jumps in the case of CTMC and their equivalent for BASTA and MASCOT -

that account for multiple migration events along the tree branches (Fig. 22), (ii) the lineage migration

counts (Fig. D7), (iii) the lineage introduction dates into the sampled locations (Fig. 23), and (iv) the

root location (Fig. 24). We evaluate the performance of the phylogeographic models using five metrics:

the correlation between true and estimated values, the proportion of estimated parameters for which the

true value is in the 95% highest posterior interval (HPD) that we refer to as the calibration, the mean

relative bias, the mean relative 95% HPD width, and the weighted interval score (WIS). The WIS is a

generalization of the absolute error accounting for estimation uncertainty (Bracher et al., 2021). The

smaller the WIS, the better the inference. It is widely used to evaluate epidemic forecasts and favors

estimates that are slightly biased but with a narrow confidence interval compared to estimates without

bias but very large uncertainty (Bracher et al., 2021).

First, we assess the reconstruction of the spatial process in the absence of sampling bias. In the unbi-

ased/representative (uniform) scenario, CTMC correctly estimates the four types of parameters. Indeed,

the correlation between the true and estimated parameter values is high, and the WIS is close to zero.

BASTA and MASCOT show no correlation for the total migration counts on uniform samples and higher

WIS compared to CTMC (Fig. 22A and E) indicating biased median estimates and higher uncertainty

around the point estimate. The correlation is over 0.5 when we consider the lineage migration counts un-

der the three and seven demes frameworks. This suggests that BASTA and MASCOT only partly recover

the global migration process in the absence of sampling bias (Figs. D7 and D15). Overall, CTMC out-

performs BASTA and MASCOT when the sampling is representative of the true underlying transmission

process, as BASTA and MASCOT only recover the big picture of the migration process.

Secondly, we evaluate how phylogeographic algorithms perform under increasing levels of bias. While

CTMC satisfyingly estimates the total migration counts in the absence of sampling bias, the correlation

and the calibration drop rapidly with bias and the mean relative 95% HPD width tends to decrease sug-

gesting that bias strongly impacts CTMC estimates (Fig. 22A-C). Nevertheless, the WIS and the mean

relative bias remain smaller than those of BASTA and MASCOT, even at high levels of bias. Conse-

quently, CTMC leads to median estimates that are closer to the true values but with 95% HPDs that are

too narrow. It leads to a biased picture of the geographical process with some transition events that are
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Figure 22: Impact and mitigation of spatial bias on the estimation of the total migration counts. (A-E)
Impact of the increasing levels of spatial bias on the correlation, the calibration, the mean relative 95% highest
posterior density (HPD) width, the mean relative bias, and the WIS between the simulated and the estimated total
migration counts. (F-J) Mitigation of the impact of spatial bias on the correlation, the calibration, the mean relative
95% HPD width, the mean relative bias, and the WIS between the simulated and estimated total migration counts
by using alternative sampling strategies. In the left and right columns, samples are drawn from biobanks with an
underlying bias of 10 and 20, respectively. Overall, the algorithms correctly estimate the total migration counts
when the correlation and the calibration are high (close to 1 and 100, respectively) and when the mean relative
95% HPD width, the mean relative bias, and the WIS are close to zero. Finally, the mean relative bias and the
mean relative 95% HPD width are not defined when the true value is null. We removed 612 out of 3,600 and 380
out of 3,600 simulated migration events in the small and large samples, respectively, due to null true values.
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drastically underestimated (Fig. D7). BASTA and MASCOT less accurately estimate the total migration

counts with no correlation between simulated and estimated values. They are also less confident with

an average 95% HPD width that is ten to thirty times higher compared to CTMC. This uncertainty is

exacerbated in large samples analyzed with MASCOT in the seven demes framework, for which almost

30% (87 out of 300) of the chains have low ESS values often due to bimodal structured coalescent pos-

terior density. Additionally, BASTA and MASCOT partly recover the global migration process (lineage

migration counts) even at high levels of bias since correlation and calibration are not impacted by bias

(Fig. D8). When we consider transmission dynamics between three demes, BASTA and MASCOT yield

higher correlation levels than in the seven demes scenario (Figs. D15 and D16). Overall, the WIS indicate

better performance of CTMC over BASTA and MASCOT.

When it comes to the estimation of lineage introduction dates, BASTA seems to outcompete CTMC

and MASCOT under the three demes framework (Fig. D17) but not under the seven demes framework

(Fig. 23A-E). In the three demes framework, the uncertainty around the median estimate remains high

for BASTA and MASCOT, and the correlation and the calibration are barely affected by bias for BASTA,

contrary to CTMC and MASCOT. In the seven demes framework, correlation is low for both BASTA

and MASCOT but not affected by bias. CTMC performs poorly with a sharp decrease in both correlation

and calibration in the three demes framework, and a slighter decrease in the seven demes framework.

It also tends to estimate more ancient lineage introduction dates compared to BASTA and MASCOT in

both frameworks. Of note, samples of 500 sequences displayed a higher correlation than samples of 150

sequences at low and intermediate levels of bias for CTMC (conditions 2.5, 5 and 10 in Fig. 23A and

S8A).

Finally, we analyze the potential impact of sampling bias on root location estimation (Fig. 24A and

S18A). Of note, the location probability of the true root location is very heterogeneous among the 50

simulated epidemics when there is no or little sampling bias, notably for the two approximations of the

structured coalescent model. Root location prediction by CTMC is affected by sampling bias, notably

in the three demes framework (Fig. D18), which is in agreement with previous findings (De Maio et al.,

2015). As for the other parameters, BASTA and MASCOT perform less well compared to CTMC, at any

level of bias. On the other hand, sampling bias moderately worsens their estimates. They also perform

relatively better in the three demes framework.
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Figure 23: Impact and mitigation of spatial bias on the estimation of the lineage introduction dates. (A-D)
Impact of the increasing levels of spatial bias on the correlation, the calibration, the mean relative 95% highest
posterior density (HPD) width, and the mean relative bias between the simulated and the estimated introduction
dates. Uniform samples are representative of the simulated spatiotemporal dynamics of the virus. Samples 2.5,
5, 10, 20 and 50 samples biased towards Regions 3 and 4. Samples 2.5 and 5 correspond to low levels of bias,
samples 10 and 20 to intermediate levels of bias and sample 50 to high levels of bias. E-H: Mitigation of the impact
of spatial bias on the correlation, the calibration, the mean relative 95% HPD width, and the mean relative bias
between the simulated and estimated introduction dates by using alternative sampling strategies. In the left and
right columns, samples are drawn from biobanks with an underlying bias of 10 and 20, respectively.
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Figure 24: Impact and mitigation of spatial bias on the estimation of the root location. (A) Posterior proba-
bility of estimating the true root state for increasing levels of biais. (B-C): Mitigation of the effects of spatial biais
using alternative sampling strategies under a surveillance bias of 10 and 20, respectively. Each dot corresponds to
the median root state posterior probability in one simulation (n = 50 per sampling protocol and sample size).
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3.3. Sample balancing mitigates the impact of sampling bias

We test alternative sampling strategies in order to mitigate the impact of sampling bias. Large and biased

samples of 5,000 sequences that we refer to as biobanks were generated, then discrete phylogeographic

analyses were carried out on subsamples of 150 or 500 sequences, which aimed at reproducing real life

situations. For example, researchers may have access to numerous viral specimens from biobanks but

cannot analyze all of them due to computational limitations, potential underlying biased sampling that

may lead to spurious results, or financial limitations.

Similar to the analyses on systematically biased samples, the estimation of the total migration counts

(Fig. 22F-J), lineage migration counts (Fig. D6.F-J), lineage introduction dates (Fig. 23E-H), and root lo-

cation posterior probabilities (Fig. 24B-C) is strongly impacted in biased subsamples (uniform surv.) for

the three approaches. By maximizing the spatial (region) or the spatiotemporal coverage (region+year),

the correlation of lineage migration counts increased substantially for the CTMC even when the under-

lying sampling bias was high (weight=20, i.e. sequences from oversampled regions are 20 times more

likely to be samples), and to a lesser extent for BASTA and MASCOT. Calibration remained high for

BASTA and MASCOT, as shown earlier (Fig. 22G and Fig. 23F) while it considerably improved for

CTMC. Estimates of the lineage migration counts by BASTA and MASCOT are improved in the region

and region+year conditions compared to the uniform surv. condition, illustrated by a decreased mean

relative 95% HPD width and decreased WIS. Still, performance remained lower than for CTMC. In the

three demes framework, we obtain even stronger improvements in terms of correlation and decreased

mean relative bias for BASTA and MASCOT (Fig. D15). Overall, subsampling strategies that maximize

the spatial or spatiotemporal coverage considerably improved the inference of the geographical spread

by the CTMC, and improved inference under BASTA and MASCOT to a lesser extent.

3.4. True incidence data as a predictor of the time-varying deme sizes
mitigate sampling bias in MASCOT

Due to the lack of statistical power (data not shown), we have forced all deme sizes to be equal in

BASTA and MASCOT and to be constant over time, the latter being currently the default assumption

of both structured coalescent models. This hypothesis is potentially impactful given that deme sizes are

directly related to the migration history in the structured coalescent model (De Maio et al., 2015; Müller

et al., 2018). To relax this assumption and allow for time-varying effective population sizes, we next

use the monthly incidence data from our simulations as a predictor of the deme sizes over time in the

generalized linear model (GLM) extension of MASCOT and denote the resulting model as MASCOT-

122



Chapter 4. Impact and mitigation of sampling bias in discrete phylogeography

GLM. This approach is only available for MASCOT, we can therefore not perform the same analysis for

BASTA.

By accommodating for the time variations of deme sizes, the correlation, mean relative 95% HPD width,

mean relative bias, and WIS are markedly improved with MASCOT-GLM compared to BASTA and

MASCOT for the total migration counts (Fig. 22A-E), lineage migration counts (Fig. D7A-E), and lin-

eage introduction dates (Fig. 23A-E) under biased and unbiased spatial sampling. In the absence of

spatial sampling bias (uniform), the mean relative bias for the total migration counts decreases from

5% for BASTA and MASCOT to -0.2% for MASCOT-GLM (Fig. 22D), and the correlation between

simulated and inferred total migration counts increases approximately from 0.2 to 0.75. Inference per-

formance is improved for all migration parameters even under highly biased sampling conditions. For

example, the mean relative bias of total migration counts remains close to zero for MASCOT-GLM,

while it increases up to 38% for BASTA. In addition to the strong correlation and the low mean relative

bias between simulated and estimated values, the uncertainty around the true value is low compared to

BASTA and MASCOT. We obtain similar results in the biased subsamples of the surveillance sampling

protocols (uniform surv.).

3.5. Analysis of the spread of RABV in the Philippines

As a case study to compare the performance of the three algorithms, we analyze the spread of RABV in

dog populations between six Philippine islands (Luzon, Catanduanes, Oriental Mindoro, Cebu, Negros

Oriental, and Mindanao) using 233 sequences of the RABV glycoprotein gene isolated between 2004

and 2010 (Saito et al., 2013; Tohma et al., 2014). Discrete phylogeography is particularly adapted here

to model transmission in animal populations across an archipelago. In this data set, sampling is highly

heterogeneous across the different islands: Luzon represents up to 65% of the total data set while Oriental

Mindoro is represented only by a single sequence (Fig. D19). This heterogeneity is very unlikely to be

representative of the underlying transmission but rather due to case underreporting outside Luzon.

Previous studies on RABV in the Philippines suggested that although the circulating lineages likely

circulate independently in the main islands (Saito et al., 2013; Tohma et al., 2014), inter-island trans-

mission events can lead to sustained circulation in previously rabies-free islands (Tohma et al., 2016).

Importantly, the patterns of spatial spread were evaluated using the CTMC at a finer spatial scale (Tohma

et al., 2014). Here, the CTMC model also predicts a highly spatially-structured phylogeny with few

migration events between islands. It reconstructs four island-specific clades located in Catanduanes, Lu-

zon, Mindanao, and Negros Oriental with high node and location posterior support (Fig. 25A). BASTA
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and MASCOT also predict the Catanduanes, Mindanao, and Negros Oriental clades with high node and

location posterior support (Fig. 25B-C). However, the migration history of the Luzon clade is more un-

certain with potential intense migrations between Luzon and Oriental Mindoro islands, the most and least

sampled islands, respectively. As shown in the simulations, CTMC might be overconfident compared to

BASTA and MASCOT but the uncertainty of the two approximations of the structured coalescent model

might be related to the pseudo-ghost demes, i.e. locations for which very few sequences are available. As

we don’t have information regarding the number of cases over time, we could not apply MASCOT-GLM

to this data set.
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Figure 25: Maximum clade credibility (MCC) trees and median total migration counts estimated on the
rabies data set. (A-C) MCC trees and median number of total migration counts estimated on the rabies data set
by CTMC, BASTA, and MASCOT, respectively. Branch width is proportional to the maximal ancestral location
probability predicted by the algorithms, and branches are colored by the maximal ancestral location. Posterior
support of the Negros Oriental, Catanduanes, Mindanao, and Luzon island lineages are reported. Pie charts dis-
played at root nodes represent the posterior probability distribution of the root location. Median estimates of the
total migration counts are reported as heatmaps. Gray tiles correspond to transitions associated with a migration
rate that is not statistically supported, i.e., with a Bayes factor lower than 3.
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3.6. Analysis of the early spread of SARS-CoV-2 across the world

In the context of zoonotic diseases, surveillance systems mostly rely on disease monitoring in human

populations. Thus, there are typically no reliable estimates of the number of new cases in wild animal

populations and, depending on the country and the species considered, domestic animal populations.

However, for pathogens infecting the human population, such estimates are typically widely available,

as is the case for SARS-CoV-2 and as has also been shown used previously when studying Dengue virus,

HIV and West Nile virus (Gill et al., 2016; Dellicour et al., 2020).

To compare the phylogeographic reconstructions of the four algorithms tested above, we analyze a data

set of SARS-CoV-2 genomic sequences from the early stage of the pandemic (Lemey et al., 2020). In the

original study, the initial wave of SARS-CoV-2 infections was investigated using a novel travel history-

aware extension of the CTMC model, which we here refer to as CTMC-TRAVEL.

We again use the CTMC model, BASTA and MASCOT as well as MASCOT-GLM to analyze the data

set. MASCOT-GLM is informed using the seven-day moving average of case count data either from Our

World In Data (Ritchie et al., 2020) or from the (World Health Organization (WHO), n.d.). MASCOT-

GLM is then referred to as MASCOT-WID and MASCOT-WHO, respectively (Fig. D20). Due to the low

number of mutations accumulated in the SARS-CoV-2 genome at the start of the pandemic, the posterior

support of internal nodes for each algorithm is low and the tree topology very uncertain (Morel et al.,

2021). Besides, we do not intend to reconstruct the origins of SARS-CoV-2 which in any case cannot be

addressed solely with phylogeographic analyses (Pipes et al., 2021). That is why our comparison focuses

on the posterior support of four clades originally identified by (Lemey et al., 2020): clades A, A.1, B.1,

and B.4. Whereas clades A.1, B.1, and B.4 are predicted with high posterior support by all algorithms,

clade A is predicted with a satisfying posterior support only by CTMC (Fig. D21). In general, CTMC

and MASCOT-WHO predictions are closer to the original predictions than the other algorithms, in terms

of tree topology (Fig. D21.A) and of total migration counts (Fig. 26). As previously shown, BASTA

and MASCOT lead to more uncertain ancestral migration histories with the extreme case of BASTA for

which the posterior evolutionary rate and the structured coalescent density are bimodal. We report two

maximum clade credibility (MCC) trees for BASTA, corresponding to the two modes of the evolutionary

rate and structured coalescent density (Fig. D21.B-C and Fig. D22). The first mode of BASTA infers a

tree topology and a migration history that are similar to CTMC and CTMC-TRAVEL. For example, the

predicted location of the MRCA of the B.4 lineage is China for CTMC-TRAVEL, CTMC, and the 1st

mode of BASTA, whereas it is located in Oceania by MASCOT and the 2nd mode of BASTA (Table D1).
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For the latter two reconstructions, most of the ancestral branches were not inferred to occur in China and,

similarly to the RABV data set, these approaches predict the least sampled locations (Africa and Oceania)

to play a major role in the transmission process.

Figure 26: Posterior distributions of the total migration counts estimated on the SARS-CoV-2 data. Source
locations are displayed by rows and destination locations by columns. For CTMC, BASTA and MASCOT, pos-
terior distributions of the total migration counts with a Bayes factor (BF) < 3 are not depicted but marked as
non-significant (NS). We identify bimodal marginal posterior distributions with a (*) and we report for each pos-
terior distribution the median and 95% HPD. We normalize the width of the violin plots so that the cumulative
density is equal to one.

We next incorporated incidence data from either Our World In Data or the WHO into MASCOT-GLM.

Interestingly, the reconstructions differed strongly between the two data sets for incidence. While
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MASCOT-WID predictions are uncertain with multimodal total migration counts (Fig. 26) and do not

reflect the original spread from China (Fig. D21.E), MASCOT-WHO estimated migration counts that

are close to the estimates of CTMC-TRAVEL (Fig. 26) and its MCC tree is in agreement with the ori-

gin of the pandemic (Fig. D21.E). Importantly, the two data sets differ strongly in how well early cases

are covered (Fig. D20), with the WHO data set being more representative of the incidence over time.

Overall and as also suggested by our simulations, while the structured coalescent model, in principle,

allows to mitigate sampling biases, it can itself be highly biased when the wrong population dynamics

are assumed.

4. Discussion
Sampling bias is a key challenge in phylodynamic inference (Frost et al., 2015), as in discrete phylo-

geography. In its early developments, the evaluation of the impact of sampling bias on Bayesian discrete

phylogeography models was restricted by the availability of whole genomes (Lemey et al., 2009a). The

SARS-CoV-2 pandemic has led to a paradigm shift as genomic surveillance became part of routine

surveillance systems around the world (Hodcroft et al., 2021a). Here, we evaluated the impact of sam-

pling bias on discrete phylogeography inference using simulated and empirical data to provide insightful

knowledge on how sampling bias affects such inference and how it could be mitigated.

4.1. Inference performance in absence of sampling bias

In our simulation study, genetic parameters (i.e., average evolutionary rate, stationary nucleotide fre-

quencies, ratio of transition-transversion rates) are correctly estimated and tree topologies match the

corresponding simulated transmission chains for all approaches. In addition, CTMC leads to high corre-

lation between simulated and estimated spatiotemporal parameters as well as low relative and absolute

error in absence of sampling bias. Overall, CTMC reconstructs the spatiotemporal histories well and its

estimates are more accurate in large samples. BASTA and MASCOT do not correctly infer the spatiotem-

poral parameters in the seven demes framework but correlation between simulated and estimated total

migration counts is slightly improved in the three demes framework while remaining lower than CTMC.

This could result from three different causes. First, we assumed that all deme sizes are equal and constant

over time in BASTA and MASCOT, the former to avoid overparameterization and the latter being the

only available assumption in current implementations. Such a parameterization is more appropriate in

the case of endemic circulation with limited time-varying dynamics such as local extinctions. However,

large variations in time and local extinctions occur in our simulations meaning that we had to assume
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incorrect population dynamics in BASTA and MASCOT. This is confirmed by the better performance

of MASCOT-GLM in uniform samples that accommodates for the true population dynamics. Secondly,

we would expect BASTA and MASCOT to perform better on “even” samples that contain approximately

as many sequences of each sampled location (De Maio et al., 2015). In our simulation study, uniform

sampling does not imply an even representation of sampled locations. Indeed, locations where the virus

has not circulated much are less represented. Such an effect is more pronounced in the seven demes

framework than the three demes framework and we effectively observe poorer performances of BASTA

and MASCOT in the seven demes framework. Finally, the structured coalescent model is known to be

sensitive to ghost demes, i.e. unsampled locations (Beerli, 2004; Ewing and Rodrigo, 2006; De Maio

et al., 2015). As we considered the sampling process to be naive of the number of affected locations,

locations where the virus has not circulated much may remain unsampled. This is true for the seven

demes framework only for which we observe poorer performance of BASTA and MASCOT compared to

the three demes framework. However, the impact of ghost deme inclusion and potential misspecification

on the estimation of the migration patterns remains unclear. While two studies showed that accounting

for ghost demes in the structured coalescent model improves the inference of deme size (Beerli, 2004;

Ewing and Rodrigo, 2006), Ewing and Rodrigo (2006) also showed that adding just a few sequences

from the ghost deme leads to the overestimation of the migration rate.

4.2. Inference performance under sampling bias

We show that CTMC, BASTA, and MASCOT are impacted by spatial sampling bias in different ways.

CTMC performance is dramatically impaired with increasing levels of sampling bias. This is directly

linked to the geographical sampling frequencies that inform the likelihood of CTMC (De Maio et al.,

2015). It also tends to be overconfident, and this overconfidence worsens with stronger sampling bias

as previously shown (De Maio et al., 2015). However, the impact of sampling bias can be mitigated by

either using large samples at low levels of sampling bias or controlling for sampling bias by balancing

sample composition (region and region+year subsamples) at intermediate levels of sampling bias. These

results were well-replicated in a simpler framework of transmission between three locations which rules

out the confounding effect of the simulation complexity and unsampled locations on our results (see

section 4 of the Supplementary Materials).

BASTA and MASCOT do not accurately estimate the total migration counts nor the lineage introduction

dates in biased and unbiased conditions. Nevertheless, the overall migration process evaluated by the

lineage migration counts is relatively well captured with a correlation around 0.5 that is not impacted by
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sampling bias contrary to CTMC in both the three demes and seven demes scenarios. We show that the

approximations of the structured coalescent model are generally less confident than CTMC which is in

agreement with a previous study (De Maio et al., 2015) and their uncertainty around median estimates

increases with sampling bias. We also show that sample composition impacts the inference of BASTA

and MASCOT in the three demes framework since correlation levels are strongly improved and bias and

uncertainty are reduced for all spatiotemporal parameters in “even” samples (region and region+year),

despite the underlying surveillance bias. Still, BASTA and MASCOT estimates display lower correlation

with the simulated values, higher uncertainty and higher relative and absolute bias compared to CTMC.

In the seven demes framework, the results are less clear which may be due to the presence of ghost

demes. Interestingly, BASTA seems to outperform CTMC and MASCOT in the inference of the lineage

introduction dates in the three demes framework. This result was however not replicated in the seven

demes framework.

While structured coalescent methods potentially allow mitigating sampling biases as previously shown

(De Maio et al., 2015), assuming incorrect population dynamics very likely introduces biases. Struc-

tured coalescent models currently assume constant population sizes in all demes, and often require the

additional assumption of equal population sizes to reach convergence and attain proper mixing. When

the true underlying population dynamics are complex with large differences between populations, the

models cannot estimate the population sizes with low uncertainty and compensate for this issue in the

estimation of the migration rates, so ultimately in the migration history. We addressed this issue by

modeling population dynamics more accurately using a GLM approach whenever the required incidence

data to do so were available. Indeed, using incidence data to inform population dynamics in MASCOT

counteracts the impact of sampling bias even at high levels. This result also underlines the fact that loca-

tion sampling frequencies do not inform the structured coalescent model when population dynamics are

known (De Maio et al., 2015). It also shows that the inclusion of ghost demes is not necessary when the

true population dynamics are incorporated in the model. Overall, our results showcase the importance of

considering the assumptions of population dynamics on the ancestral state reconstruction in structured

coalescent model approximations (Table 7).

4.3. Analysis of empirical RABV and SARS-CoV-2 data sets

We further compare the approaches on real data sets of RABV and SARS-CoV-2. As dog case counts

were not available for RABV, we compare only CTMC, BASTA, and MASCOT. CTMC predicts a highly

spatially-structured migration process whereas BASTA and MASCOT predict a non-parsimonious sce-
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nario. We observe similar results for the SARS-CoV-2 data set. As we have set equal deme sizes in

BASTA and MASCOT but a single tip is sampled for Oriental Mindoro in the RABV data set and Africa

in the SARS-CoV-2 data set, the two algorithms compensate for location underrepresentation by esti-

mating high backwards-in-time migration rates to the underrepresented location (Oriental Mindoro and

Africa). Our results are in line with previous studies reporting strong differences between CTMC and the

structured coalescent model on real data sets (De Maio et al., 2015; Dudas et al., 2018). However, there

is also evidence in the literature of a good agreement between the two types of models (Faria et al., 2017;

Brynildsrud et al., 2018; Yang et al., 2019; Mavian et al., 2020). Such similarities can result from sample

composition (at least ten sequences per location in (Yang et al., 2019)), the parameters used for com-

parison (probability of clade ancestral location in (Faria et al., 2017)), prior information (information on

the root location in (Brynildsrud et al., 2018)), or the underlying transmission dynamics. Besides, these

studies focused on the overall migration process which corresponds to the lineage migration counts in

our simulation study and we showed that the overall migration process is roughly estimated at any level

of bias. In brief, we show on real data sets that singletons may be inferred as drivers of the migration

process in an unparsimonious way by structured coalescent model approximations. This result supple-

ments a previous study on the impact of the inclusion of few ghost deme sequences on the inference of

migration rates (Ewing and Rodrigo, 2006), however their impact remains unclear and deserves close

consideration.

Interestingly, the posterior density of the structured coalescent model in BASTA is bimodal for the

SARS-CoV-2 data set. Its major mode corresponds to a past migration history close to CTMC-TRAVEL

and our expectations of SARS-COV-2 spread at the start of the pandemic, whereas the minor mode

corresponds to the non-parsimonious scenario. Such bimodality was not observed for MASCOT in the

SARS-CoV-2 analysis. This difference in estimation is not unexpected since the two structured coa-

lescent model approximations are different. However, it is not clear which characteristics of the two

algorithms would lead to different behaviors. Another possibility relies on the choice of operators that

determine how well the two approximations explore the parameter and tree space in which case MAS-

COT should lead to a bimodal posterior density on the long run.

Table 7: Summary of the simulation study.

CTMC BASTA MASCOT MASCOT-GLM
Model type Continuous-time

Markov chain
Approximation of the
structured coalescent
with equal deme sizes

Approximation of the
structured coalescent
with equal deme sizes

Approximation of the
structured coalescent
with time-varying
deme sizes
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Inference in
unbiased spa-
tial sampling
conditions
Tree topology Correct topology esti-

mated
Correct topology esti-
mated

Correct topology esti-
mated

Correct topology esti-
mated

Migration
parameters

Correct estimation Biased and uncertain
estimates

Biased and uncertain
estimates

Correct estimation

Inference in
biased spa-
tial sampling
conditions
Tree topology Correct topology esti-

mated
Correct topology esti-
mated

Correct topology esti-
mated

Correct topology esti-
mated

Migration
parameters

Biased estimation com-
pared to unbiased sam-
pling conditions

Increased bias and un-
certainty compared to
unbiased sampling con-
ditions

Increased bias and un-
certainty compared to
unbiased sampling con-
ditions

Correct estimation

Alternative
sampling
strategy
Tree topology Correct topology esti-

mated
Correct topology esti-
mated

Correct topology esti-
mated

Correct topology esti-
mated

Migration
parameters

Similar performance as
in unbiased sampling
conditions

Decreased bias and un-
certainty compared to
unbiased sampling con-
ditions

Decreased bias and un-
certainty compared to
unbiased sampling con-
ditions

Correct estimation

Conclusion Sensitive to spatial
sampling bias that
can be reverted using
alternative sampling
strategies

Sensitive to equal deme
size assumption and
ghost demes, performs
better on spatially
balanced samples

Sensitive to equal deme
size assumption and
ghost demes, performs
better on spatially
balanced samples

Robust to bias when in-
formed with exact case
counts

4.4. Practical implications for the analysis of empirical data sets

Computation time is an important consideration in real-life situations. CTMC is a fast algorithm that can

handle many sequences while facing little convergence issues, which made it the predominant approach.

For example, CTMC and its extensions have been extensively used during the SARS-CoV-2 pandemic

(Candido et al., 2020; Dellicour et al., 2021b; Lemey et al., 2020; Perez et al., 2022; Kaleta et al., 2022;

Alteri et al., 2021; Dellicour et al., 2021c; Butera et al., 2021). In general, researchers analyzed large

data sets whose composition was corrected or reflected case counts (Candido et al., 2020; Lemey et al.,

2020) or the number of hospitalizations per geographical location (Dellicour et al., 2021b). According

to our results, even though the pool of available sequences is not representative of the underlying trans-

mission process, CTMC inference should be little impacted when using even subsamples of the available

sequences. However, we did not test sampling strategies based on case counts in our simulations.

With BASTA and MASCOT, computation time can become rapidly cumbersome and even impracti-

cal - also as a result of poor mixing of structured coalescent model parameters - when the number of
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sequences and locations increase. In such cases, these approaches are not able to discriminate which mi-

gration routes are the most important in the migration process leading to bimodal structured coalescent

posterior densities, as observed for MASCOT on large samples of 500 sequences in the seven demes

framework and for BASTA on the SARS-CoV-2 data set. Repeating these problematic analyses with dif-

ferent starting values did not redeem these issues. Other studies have reported similar issues (Richardson

et al., 2018). However, these problematic inferences can potentially be overcome by informing structured

coalescent models with additional covariate data on viral population size dynamics. Indeed, as a result of

adding such data, MASCOT-GLM not only outperformed the other approaches at estimating spatiotem-

poral parameters but also displayed improved mixing as expected with GLM approaches which improves

the computational burden. However, such improvements depend on the availability and informativeness

of the case count data used, notably on the early viral population size dynamics. This is illustrated in our

analysis of the SARS-CoV-2 data for which the addition of WHO data led to improved chain mixing and

past migration inference compared to the Our World in Data data, knowing that the dynamics are rather

similar in the two data sets but they go back to January, 4th 2020 for the WHO data and to January, 23rd

2020 for the Our World in Data data.

4.5. Limitations

We acknowledge several limitations of our study. First, BASTA and MASCOT are expected to perform

better on even samples, a condition that we did not directly test. In the representative (uniform) sam-

ples, location frequencies inform CTMC and thus it would be expected to be favored over BASTA and

MASCOT. Still, we show that MASCOT and BASTA perform better on even (region and region+year)

samples in the three demes framework even if they are derived from biased large biobanks. This result

suggests that BASTA and MASCOT perform better on even samples with no ghost demes. Second, our

subsampling procedure in the simulation analysis could leave some locations unsampled, which can be

considered as an extreme case of sampling bias. While this happened in only a few highly biased sam-

ples in the three demes framework, it is very common in the seven demes framework even in absence

of sampling bias. It is difficult to determine whether the poor performance of MASCOT and BASTA in

absence of bias in the seven demes framework compared to the three demes framework is due to ghost

demes or is simply due to the higher number of locations. Additionally, we cannot rule out that the

effects of sampling bias we observe are due to unsampled locations/unspecified ghost demes rather than

unrepresentative sampling. We did not include unsampled locations as ghost demes in such conditions.

However, this is unlikely to improve migration rate estimation (Ewing and Rodrigo, 2006). Third, the
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impact of sampling bias certainly depends on the underlying overall migration rate as shown by (Liu

et al., 2022), an impact that we did not investigate here.

Another limitation concerns the incorporation of epidemiological data in phylogeographic models. Here,

deme sizes in MASCOT-GLM are informed by case count data but this kind of data may not be readily

available (Grubaugh et al., 2019b) and is known to be often biased due to varying testing effort and

strategy, as well as differential testing behaviors by age (Buckee et al., 2021). It is difficult to predict

how MASCOT-GLM would perform if parameterized with biased case counts, a case that we did not

address in our simulations. The comparison between the WHO and WID cases data, however, suggests

that biased coverage of the true case load could bias such inference. If case count data are not reliable,

one could use hospitalization data instead (Dellicour et al., 2021b). Further, a similar approach is avail-

able under the CTMC framework but we did not test it here. This framework consists in modeling the

migration process with CTMC and the overall population dynamics with the GLM extension (Gill et al.,

2016) of the skygrid coalescent model (Gill et al., 2013). In this extension, case count over all locations

could be used as a predictor of the viral population size over time. Yet, such an approach assumes a

panmictic population and remains rare.

Finally, it is difficult to generalize our results in regards to the number of demes. Our choice of the num-

ber of locations was influenced by the RABV scenario in Morocco. While a scenario with three demes

was doable, the one with seven demes turned out to be difficult to analyze, notably due to computational

burden (Supplementary Materials). More research and development is needed for data sets with a large

number of locations (> 15) and it currently seems unlikely that such analyses are possible at all with

BASTA and MASCOT.

4.6. Perspectives

In conclusion, sampling bias can be tackled at different levels of data generation and analysis in phylo-

geographic analyses: sample constitution, inference model choice, and data integration (e.g. through an

integrated GLM). Other studies also assess the impact of sampling bias in post hoc analyses (Chaillon

et al., 2020; Vrancken et al., 2020) or explicitly model sampling patterns (Guindon and De Maio, 2021).

Although the exploration of the impact of sampling bias has increased over the recent years and more

robust methodologies have been developed, many aspects remain unclear, among which the impact of

unsampled locations, biased epidemiological data incorporation, or the relative performances on even

versus representative samples. Whenever possible, we would advise to opt for an even sampling strategy
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across geographical locations, compare the inferences of the different approaches or compare the infer-

ences over multiple subsamples when analyzing real data sets. These considerations are all the more

important in a world of ever-growing genome sequence generation and concern not only human viral

diseases but also zoonoses and epizooties.
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Chapter 5

Impact of contact heterogeneity on respiratory dis-
eases transmission in households

Households are an ideal setting for the study of respiratory diseases transmission. Modeling studies

of household transmission data have helped characterize the role of children for infections such as in-

fluenza and SARS-CoV-2. However, estimates obtained in these studies may be biased since they do not

account for the heterogeneous nature of household contacts. Here, we quantified the impact of contact

heterogeneity between household members on the estimation of the relative susceptibility and infectivity

of children. We simulated epidemics of SARS-CoV-2-like and influenza-like infections in a synthetic

database of 1,000 households assuming heterogeneous contact levels. Contacts were assumed more fre-

quent in the father-mother pair, followed by the child-mother pair, then the child-child pair, and finally

the child-father pair with the least contact frequency. Child susceptibility and infectivity were then es-

timated while accounting for heterogeneous contacts or not. We showed that the relative susceptibility

of children was under-estimated by approximately 20% in the two disease scenarios. Concerning the

relative infectivity of children, it is underestimated by 20% when children and adults had different in-

fectivity levels. This study shows how in small communities, heterogeneous contact patterns should be

evaluated and accounted for. New household studies collecting both disease and contact data are needed

to cast light on the role of complex contacts on disease transmission and improve the estimation of key

biological parameters.
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1. Introduction

Households constitute an ideal setting for the study of respiratory diseases transmission. These dis-

eases generally transmit through aerosols, a transmission route that is favored in closed indoor spaces

like households, or through droplets during close contacts that are characteristic of contacts between

household members (Tsang et al., 2016; Wang et al., 2021). Household transmission represents a non-

negligible part of respiratory disease transmission, and, in extreme cases like influenza infections, living

with an infected individual is the most important risk factor of infection (Longini et al., 1982). In addi-

tion, the study of respiratory diseases transmission is simplified in households because case contacts are

well-defined which facilitates their follow-up after exposure and the estimation of the secondary attack

rate (SAR), defined as the proportion of susceptible household contacts that are infected after the index

case is detected.

Mathematical models of disease transmission in households have helped characterize the role of chil-

dren (Cauchemez et al., 2004; Cauchemez et al., 2009; Tsang et al., 2019; Endo et al., 2019; Dattner

et al., 2021) and vaccination (Tsang et al., 2019; Prunas et al., 2022) in the dynamics of transmission.

This is generally done by estimating their relative susceptibility and infectivity compared to adults. For

example, child susceptibility was shown to be half adult susceptibility for severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) infections (Davies et al., 2020a; Viner et al., 2021; Dattner et al.,

2021; Franco et al., 2022), and twice as susceptible to influenza infections (Cauchemez et al., 2004;

Cauchemez et al., 2009). The relative infectivity and susceptibility estimated in these studies can be

caused by biological factors (e.g. different levels of viral shedding when infected or different propen-

sity to get infected when exposed), but also by the level of physical contacts in the household (Lordan

et al., 2021). However, so far, household transmission models have always ignored the second source

of heterogeneity, implicitly assuming estimated values were indicative of different biological parameters

between children and adults. To date, only one study has tested the hypothesis of homogeneous mixing

in the household environment that is underlying in all these studies (Goeyvaerts et al., 2018). It con-

cluded that, (i) on average, children have less contacts with their father than with other siblings, (ii) the

overall rate of physical contacts between children decreases with age, and (iii) the magnitude of contacts

decreases with household size. The study shows that the assumption of homogeneous mixing does not

hold in the household environment. As a result, part of the estimated differences between children and

adults in households is expected to be due to different mixing patterns in the household. It is important to

determine by how much the complex mixing patterns in the households may bias estimates of biological
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susceptibility/infectivity that are derived in household studies.

Here, we aim at investigating how heterogeneous contact patterns in households could bias estimates of

respiratory diseases transmission, notably the force of infection between household members, the relative

susceptibility of children compared to adults, and their relative infectivity. We simulate epidemics in

households using realistic contact patterns (Goeyvaerts et al., 2018) and we estimate key transmission

parameters, accounting or not for the heterogeneous nature of the contact patterns.

2. Methods

2.1. Household composition in the simulated data set

We constituted a synthetic database by randomly sampling with replacement 1,000 households from

a subset of the households (n = 225) of the multi-center household study RECOVER (Verberk et al.,

2022). From the RECOVER study, we retained households with two to five household members that

correspond either to heterosexual couples, or to single-parent or hetero-parental two-generation families.

We excluded same-sex couples and homo-parental families because of the lack of estimates in the study

by Goeyvaerts et al. (2018) on contact levels between partners of same-sex couples, and more specifically,

between same-sex parents and their children. From the original household study RECOVER, we kept

two types of information for each household member: (i) whether the individual is the index case, and

(ii) the category of the individual (i.e., mother, father, or child).

2.2. Simulation of household epidemics

2.2.1. In silico follow-up protocol

We assumed that the 1,000 households from the synthetic database were recruited and followed up start-

ing from the symptom onset of the index case, and for up to 20 days. Since our aim is to ascertain how

the misspecification of contact intensity may impact the estimation of transmission rates, we decided to

consider a simple inference context: in the simulated data set we analyze, all cases exhibit symptoms

and testing is perfect.

2.2.2. Force of infection within households

In the simulations, the probability that an individual k in household h gets infected between time t and

time t +dt is:
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Λk(t, t +dt) = 1− exp

(
α×dt + ∑

l∈Ih{ξl<t}

β

n/2
κk,l µs,k µi,l

∫ t+dt

t
f (u−ξl|sl)du

)
(5.1)

where:

• α is the instantaneous hazard of infection in the community.

• l ∈ Ih{ξl < t} correspond to the infected individuals in household h that were infected before time

t, with ξl their infection date.

• β

n/2 models the dependency between the baseline transmission rate β and the household size n.

Here, the baseline transmission rate β corresponds to the transmission rate in heterosexual couples,

when n = 2, κk,l = κmother, f ather = 1, µs,k = µs,adult = 1, and µi, l = µi,adult = 1. See below for the

meaning of the parameters, and the reference categories.

• κk,l is the relative contact rate between recipient k and infector l according to the type of the pair.

We used the mother-father pair as a reference, which means that for this type of pair κk,l = 1. For

the other pairs, we used the odds-ratios estimated by Goeyvaerts et al. (2018) during weekdays.

Mother-child pairs were assumed to be 11% less in contact than mother-father pairs, father-child

pairs 58% less in contact, and pairs of children 24% less in contact.

• µs,k is the relative susceptibility of recipient k according to their age. For adults, µs,adult = 1.

• µi,l is the relative infectivity of infector l according to their age. For adults, µi,adult = 1.

• f (t−ξl|sl) is the density probability function of the generation time conditioned on the incubation

period sl of infector l. Here, the generation time is defined as the distribution of the interval

between the infection time of the infector and the infection time of the recipient. We used the

distribution estimated by Ferretti et al. (2020) for SARS-CoV-2 infections.

If k gets infected between t and t + dt, its exact time of infection ξk is drawn uniformly between t and

t +dt, and its incubation period sk is drawn from a log-normal distribution with log-mean=1.63 and log-

standard deviation=0.5, previously estimated by McAloon et al. (2020) for SARS-CoV-2 infections. If

symptom onset occurs after the end of the follow-up, the individual is not detected. We simulate con-

tinuous times of infection and symptom onset. For realistic reasons, we truncated the time of symptom

onset and kept only the day of symptom onset to perform the inference.

We tested two scenarios. The first one corresponds to a SARS-CoV-2-like scenario, with child sus-
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ceptibility being half adult susceptibility, and 20% less infectious than adults (Table 8). The second

corresponds to an influenza-like scenario with children being twice as susceptible but as infectious as

than adults. For each scenario, the value of the baseline transmission rate in heterosexual couples β was

chosen so that the overall SAR is approximately 37% (Table 8). Finally, we simulated epidemics in the

synthetic household database 100 times for each scenario.

Table 8: Parameter values used in the simulations.

Parameter SARS-CoV-2 Influenza virus
Force of infection in the community α 0.001 0.001
Transmission rate in heterosexual couples β 0.46 0.99
Relative susceptibility of children µs,child 0.5 2
Relative infectivity of children µi,child 0.8 1

2.3. Statistical inference

Statistical inference was performed in a Bayesian framework with data augmentation (Cauchemez et al.,

2004). In the section above, we detailed the model by using adults as the reference. In the inference

model, we used children as a reference because pairs of children were more numerous than pairs of

adults which improved inference. We estimated the hazard of infection in the community α , the force

of infection between two children in a household of size four β

4/2 κchild,child µs,child µi,child , the relative

susceptibility 1/µs,child and relative infectivity 1/µi,child of adults compared to children using a simple

Metropolis-Hastings algorithm. For α , we assumed an exponential prior distribution with parameter

equal to 500 which means that the instantaneous incidence rate is 200/100,000 inhabitants in the pop-

ulation, and for β

4/2 κchild,child µs,child µi,child , we assumed a uniform prior distribution between 0 and 10.

We used a log-normal distribution with log-mean = 0 and log-standard deviation = 1 for 1/µs,child and

1/µi,child .

Infection dates and symptom onset dates were augmented after each parameter iteration. Infection dates

were sampled from the incubation period distribution estimated by McAloon et al. (2020), and the exact

time of symptom onset was sampled uniformly over the observed day of symptom onset.

For each simulation, we launched one Markov chain Monte Carlo (MCMC) chain for 50,000 iterations.

We discarded a burn-in of 5,000 steps and applied a thinning of 20 for the estimation of the posterior

distributions. Convergence was assessed visually and by calculating the effective sample size (ESS)

using the "effectiveSize" function in the "coda" R package for every parameter of every MCMC chain.

ESS values exceeded 500 for all parameters in all chains. The comparison of the prior and posterior
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distributions of model parameters is available in Fig. E1 for the SARS-CoV-2 infection scenario and in

Fig. E2 for the influenza virus infection scenario in Appendix E.

2.4. Comparison of simulated and estimated parameters

The estimates of β , µs,child , and µi,child were compared to the values used in the simulations using two

metrics:

• the mean relative bias defined as MRB = 1
100 ∑

100
i=1

1
θi
(θ̂i−θi);

• and the 95% coverage defined as coverage95% = 1
100 ∑

100
i=1 1{θi∈CrI95%(Di)}.

We denote θi the true value of the parameter, Di the parameter posterior distribution, θ̂i the median

estimate, and CrI95% the 95% credible interval.

3. Results
In the COVID-19 scenario depicted in Fig. 27, the three parameters of within household transmission are

well estimated when the inference model accounts for heterogeneous contact patterns between house-

hold members ("correct" inference model in Fig. 27). The transmission rate in heterosexual couples is

relatively well estimated with a mean relative bias lower than 3% (Fig. 27D) and a 95% coverage of

96% (Fig. 27G). The estimation of child relative susceptibility is also satisfying with a mean relative bias

around -5% (Fig. 27E) and a 95% coverage of 91% (Fig. 27H). Finally, the 20% reduction of child infec-

tivity is well estimated with a mean relative bias of about 4% (Fig. 27F) and a high 95% coverage of 98%

(Fig. 27I). The slight overestimation of the transmission rate in heterosexual couples mirrors the slight

underestimation of child relative susceptibility as the two parameters are negatively correlated. When the

inference model does not account for contact heterogeneity ("incorrect" inference model in Fig. 27), the

estimation of the parameters of within household transmission is largely biased. The transmission rate

is overestimated by 29% and the 95% CrI never contains the true value (Fig. 27D and G). Child relative

susceptibility and child relative infectivity are underestimated by more than 20% (Fig. 27E-F) and their

95% coverage does not exceed 20% (Fig. 27H-I). Given that heterosexual couples have the strongest

level of contact in the simulations, their net transmission rate is higher than the net transmission rate in

pairs of children or between parents and children. When the inference model assumes that all household

members have the same level of contact patterns, it has to compensate for the higher transmission rate in

pairs of adults and the lower transmission rates between children and in parent-child pairs by increasing

the transmission rate in heterosexual couples and reducing the susceptibility and infectivity of children.
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The extent of the bias that we observe results from the values used to model contact heterogeneity in the

simulations.
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Figure 27: Impact of contact patterns on the estimation of within household transmission and children
infectivity and susceptibility in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections.
(A-C) Posterior median estimates of the transmission rate in heterosexual couples, child relative susceptibility,
and child relative infectivity for the correct (heterogeneous mixing) inference model in dark blue (n=100), and the
incorrect (homogeneous) inference model in light orange (n=100). The black horizontal line corresponds to the
true value used in the simulations. (D-F) Relative bias between the posterior median estimate and the true value
for the transmission rate in heterosexual couples, child relative susceptibility, and child relative infectivity. Positive
values indicate overestimation and negative values underestimation. Relative bias is expressed in percentage. (G-
I) 95% coverage of the transmission rate in heterosexual couples, child relative susceptibility, and child relative
infectivity.

We obtain very similar results for the flu scenario presented in Fig. 28. When contact heterogeneity is

accounted for, the transmission rate in heterosexual couple is slightly overestimated by around 3% with a

95% coverage of 91% (Fig. 28D and G). Child relative susceptibility is underestimated by about 5% with

a 95% coverage of 91% (Fig. 28E and H). In contrast, when homogeneous mixing between household
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members is assumed, the transmission rate in heterosexual couples is overestimated by 19% (Fig. 28D)

and child relative susceptibility is underestimated by 18% (Fig. 28E) given that the 95% coverage does

not exceed 40% for both parameters (Fig. 28G-H). Just like in the COVID-19 scenario, estimation bias in

the incorrect inference model results from the compensation of contact heterogeneity in the simulations.

The results for child relative infectivity are less clear in the flu scenario in which adults and children have

the same infectivity levels. Indeed, the parameter is overestimated by 8% with a 95% coverage of 85%

(Fig. 28F and I) with the correct model and it is underestimated by 8% with a 95% coverage of 82% with

the incorrect model (Fig. 28F and I).

4. Discussion
In this study, we showed that the estimates of the child relative susceptibility and child relative infectiv-

ity can be biased when heterogeneous contact patterns between household members are not accounted

for in the inference. When considering the transmission of SARS-CoV-2 or influenza viruses in house-

holds with heterogeneous contacts derived from Goeyvaerts et al. (2018), the incorrect assumption of

homogeneous mixing in the inference model leads to the underestimation of child relative susceptibility

and child relative infectivity by around 20%. This underestimation compensates the lower contact rate

between children and other household members compared to the contact rate in heterosexual couples in

the simulated epidemics (Goeyvaerts et al., 2018). Biased estimates of child relative susceptibility and

child relative infectivity may mislead the parameterization of disease transmission models that are often

used to design intervention measures.

To circumvent this problem, it seems important to integrate information about contact patterns in house-

hold transmission models. Using the results of a household contact survey such as Goeyvaerts et al.

(2018) to inform an observational study in a different country seems problematic since household con-

tact patterns are expected to vary across socioeconomic levels and cultural practices. Ideally, the study

design of household transmission studies should integrate the collection of epidemiological data on trans-

mission and contact data between household members. The behavior of household members may change

when one or multiple members develop symptoms, and it is therefore important to monitor variations in

contact patterns during the study period. In addition, behavioral change upon symptomatic infection may

depend on socioeconomic factors. For instance, physical distancing and self-isolation are not possible in

crowded households (VoPham et al., 2021). Finally, the way contact data are collected may be influen-

tial. Contact surveys may be subject to reporting bias (selective revealing or suppression of information)

because participants may under-report undesirable behaviors like not implementing physical distancing.
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Alternatively, wearable electronic devices that measure close-proximity interactions are highly valuable

in contexts with complex networks and for the study of infectious disease transmission (Starnini et al.,

2017). However, records typically do not exceed a few days due to the limited autonomy of these devices.
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Figure 28: Impact of contact patterns on the estimation of within household transmission, child infectivity,
and child susceptibility in influenza virus infections. (A-C) Posterior median estimates of the transmission rate
in heterosexual couples, child relative susceptibility, and child relative infectivity for the correct (heterogeneous
mixing) inference model in dark blue (n=100), and the incorrect (homogeneous) inference model in light orange
(n=100). The black horizontal line corresponds to the true value used in the simulations. (D-F) Relative bias
between the posterior median estimate and the true value for the transmission rate in heterosexual couples, child
relative susceptibility, and child relative infectivity. Positive values indicate overestimation and negative values
underestimation. Relative bias is expressed in percentage. (G-I) 95% coverage of the transmission rate in hetero-
sexual couples, child relative susceptibility, and child relative infectivity.

Here, we simulated epidemics in households so that around 37% of household contacts get infected. The

choice of this value for the SAR is relatively arbitrary given that estimates from empirical data vary from

a few percents to 45% for the historical variant of SARS-CoV-2 (Madewell et al., 2020), and from 4%

to 45% for influenza viruses (Cauchemez et al., 2009; Lau et al., 2012; Glatman-Freedman et al., 2012;
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Azman et al., 2013). Simulating epidemics with a lower SAR would reduce the number of infected

pairs, and thus, the statistical power to estimate child relative susceptibility and child relative infectivity.

Besides, we made simplistic assumptions in the simulation model assuming that all infected individuals

eventually develop symptoms and testing is perfect which would not have been adapted for the analysis

of empirical data. We also assumed that the risk of infection in the community is the same for adults

and children, although it may vary with age (Cauchemez et al., 2011; Tsang et al., 2019). However,

household studies are not designed to evaluate the risk of infection in the community, notably because

participants are followed up over short time periods, and such studies are generally deployed for the

study of diseases with intense transmission in households. For these reasons, the interpretation of the

hazard of infection in the community should subject to caution, as its estimation is loosely reliable.

In conclusion, the heterogeneous nature of contacts in households is expected to bias estimates of key

parameters that are estimated from household studies, such as the relative susceptibility and infectivity

of children. It is therefore important that these complex household contact patterns are accounted for in

future household studies. Data are scarce and many knowledge gaps remain concerning the changes of

household contact patterns that may occur following infections. Future household transmission studies

should collect that on both disease and contact patterns, raising new challenges related to the study

design, and model development.
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1. Synthesis of the results

1.1. Dog rabies circulation and its control

In Chapter 1, I highlight the main mechanisms underlying rabies circulation in dog populations: small R0

leading to short transmission chains, role of imports from neighboring endemic areas, co-circulation of

viral lineages, and high inter-individual heterogeneity in behavior and transmission. A recent modeling

study analyzing an extensive contact tracing data set has confirmed the intricate role of all these mecha-

nisms in the maintenance of rabies circulation in an African and endemic setting, the Serengeti district in

Tanzania (Mancy et al., 2022). In Chapter 1, I also underline that there is a high variability across settings

related to the role of wildlife, importations, and dog ecology. For example, the Iranian epidemiological

context is underlaid by the co-circulation of independent viral lineages in dogs and wildlife that belong

to very different rabies biogeographical clades (Dellicour et al., 2019). On the other hand, I show in

Chapter 2 that a unique viral clade circulates in dogs, the most important reservoir of rabies in Cambodia

(Ly et al., 2009), with presumably no or few cross-country transmission events. More intriguingly, the

epidemiological situation in Cambodia contrasts with its neighbors where multiple clades, either related

to Chinese lineages (Nguyen et al., 2011), or other Southeast Asian lineages (Ahmed et al., 2015; Ben-

jathummarak et al., 2016) circulate. Besides, (illegal) dog trade, not only for dog meat consumption,

concerns the entire Southeast Asian area (Chevalier et al., 2021) which means that dogs do cross borders

and external introductions very likely occur but do not lead to sustained transmission chains. Parts of ra-

bies transmission dynamics in Cambodia thus remain unclear, notably the role of humans, long-distance

transmission events, and spatial heterogeneity.

The comparison of the contributions of epidemiological and phylodynamic modeling in Chapter 1 points

to the complementarity of the two methodological approaches. Phylodynamics helped unravel large-

scale mechanisms of transmission, while epidemiological modeling focused more on the design and

evaluation of interventions. Nevertheless, using simulations, several epidemiological modeling studies

illustrated how population structure heterogeneity may participate to the maintenance of rabies despite

its low transmissibility (Leung and Davis, 2017; Hudson et al., 2019b; Kadowaki et al., 2018). Recent

efforts to better characterize dog populations in terms of population density (Chevalier et al., 2021;
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Mancy et al., 2022; Thanapongtharm et al., 2021), roaming behavior (Bombara et al., 2017; Wilson-

Aggarwal et al., 2021; Kittisiam et al., 2021), serological status (Velander et al., 2022), and ecological

interactions with humans (Chevalier et al., 2021; Thanapongtharm et al., 2021) constitute a first glimpse

at the individual-level heterogeneity and setting-specific features of dogs. For example, Chevalier et

al. (2021) evaluated in two contrasted Cambodian provinces dog density, age-specific survival rates,

dog ownership determinants, and dog management behavior. Their results are highly valuable for the

development of more realistic models. They also indicate that transmission dynamics may not be solely

governed by dog behavior in Cambodia but also by the ecological interactions between dogs and humans.

Indeed, the vast majority of dogs are owned and owners do trade their dogs on a regular basis but in a

very opportunistic way. Although, this trade mostly occurs at small spatial scales, long-distance trade

can also happen which implies that humans might have mediated the long-distance transmission events

unraveled in Cambodia in Chapter 2, similar to the North African context (Dellicour et al., 2017; Talbi

et al., 2010). More extensive field studies are necessary to fill the gap about dog population structure and

ecology, and set up more realistic models of rabies transmission in dogs

Dog vaccination, a control measure that has been recommended by the WHO for several decades (World

Health Organization (WHO) et al., 2018), is the most effective way of controlling rabies circulation.

However, parenteral vaccination of stray and free-roaming dog populations requires large and skilled

dog-catching teams that are very costly (Yale et al., 2022), thus it is rarely implemented by local au-

thorities despite the importance of these dog populations in RABV circulation (Leung and Davis, 2017;

Hudson et al., 2019b; Kadowaki et al., 2018). The complementary use of oral rabies vaccination (ORV) in

dogs represents a promising avenue to achieve high vaccination coverage in low-resource settings where

the majority of dogs are free-roaming such as in India (Yale et al., 2022) and Cambodia (Chevalier et al.,

2021). Unfortunately, the absence of political engagement and resource mobilization in Cambodia con-

stitute the primary barrier to the implementation of ambitious vaccination policies. As long as rabies is

not a notifiable disease in Cambodia, there will be no wide access to dog vaccination nor frequent vacci-

nation campaigns and, the advancement towards rabies elimination will remain compromised. One way

to promote political engagement is to show that elimination is feasible or at least that the costs to reduce

the number of cases are limited. Our results in Chapter 2 are encouraging in this sense. The relatively

strict endemicity of rabies in Cambodia implies that any well-designed vaccination campaign could ef-

fectively reduce rabies burden in dogs and human on the short term. However, as local transmission is

controlled, re-importations will play a greater role threatening long-term control or elimination. Addi-

tional measures such as legislation on vaccination status at importation could help prevent potentially
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harmful introductions but they pose numerous technical challenges.

In brief, data are necessary at the individual and country levels to better understand setting-specific

dynamics of RABV in dogs and design adapted control strategies in the most cost-efficient way.

1.2. SARS-CoV-2 household dynamics and interventions to control its
transmission

Despite being a close relative of SARS-CoV, SARS-CoV-2 transmits in a very different way (Abdel-

rahman et al., 2020; Cevik et al., 2021) which led to many unknowns and knowledge gaps at the start

of the pandemic at the beginning of 2020. At the time, estimating key transmission parameters at the

individual-level was crucial to assess variations in infectiousness through time by age and symptom

status. Household studies rapidly proved to be valuable and have continued to provide insightful knowl-

edge over the entire pandemic period (Pitzer and Cohen, 2020; Yang and Kenah, 2022). In parallel,

the advent of vaccination gave to public health authorities a means to control circulation while relaxing

social distancing measures. Randomized controlled trials were carried out to evaluate vaccine efficacy

against severe outcome (Baden et al., 2021), and in a lesser extent, against infection (Polack et al., 2020).

However, these vaccine efficacy estimates do not reflect the protective power of vaccination in real life

conditions that are not controlled. Besides, randomized controlled trials are not adapted to evaluate the

effect of vaccines against transmission in breakthrough infections (Lipsitch et al., 2022). Vaccine ef-

fectiveness measures protection in real world conditions and can be estimated in observational studies

such as cohort studies, household studies, case control studies, or with the screening method. At the

time of the study presented in Chapter 3, vaccine effectiveness against infection was already well quan-

tified but evidence about vaccine effectiveness against transmission in breakthrough infections remained

limited. Regev-Yochay et al. (2021) showed that individuals with breakthrough infections display lower

viral loads compared to infected individuals with no prior vaccination. Shah et al. (2021) quantified the

indirect effect of vaccination on the risk of infection in individuals who live with a vaccinated individual.

Finally, Harris et al. (2021) estimated a reduction of the odds of SARS-CoV-2 infection in household

contacts when the index case is vaccinated. In Chapter 3, I estimate that vaccine is effective against

transmission, but a high uncertainty around the point estimate remains. Prunas et al. (2022) estimated

a similar effect with the same order of magnitude, but they also showed that this effect is transient. In-

deed, vaccine effectiveness against transmission in breakthrough infections decreases with time from

vaccination. More than 90 days after the second dose, there is no more protective effect against trans-

mission. Vaccine effectiveness against infection also decreases, but fortunately, vaccine effectiveness

151



General discussion

against severe outcome remains high (Feikin et al., 2022). Vaccine effectiveness against infection and

transmission is transient due to the waning of vaccine-induced immunity, and vaccine effectiveness has

been challenged during the pandemic by the emergence of new SARS-CoV-2 variants. For example, our

results in Chapter 3 are applicable to the Alpha variant that represented more than 95% of the cases in

Israel at the time of the study (Ritchie et al., 2020), but it got rapidly replaced by the Delta variant in June

2021, itself replaced by Omicron in January 2022. Vaccine effectiveness against Delta and Omicron is

lower compared to Alpha (Andrews et al., 2022; Bernal et al., 2021). This reduction is due to vaccine

variant-mismatch because the more recent variants have accumulated mutations in the spike protein, the

main target of vaccine-induced neutralizing antibodies, compared to the ancestral D614G strain used for

vaccine production (Hewins et al., 2022). The adaptive immune evasion of SARS-CoV-2 is one of the

main challenges for the control of disease dynamics on the long-term.

Nonpharmaceutical interventions like social and physical distancing proved to be highly valuable to con-

trol SARS-CoV-2 transmission at the population-level, notably during the pre-vaccine period (Flaxman

et al., 2020; Zhang et al., 2020). The impact of nonpharmaceutical interventions was mainly assessed on

aggregated data and rarely at the individual level, but it is possible that nonpharmaceutical interventions

prevent transmission in the population when implemented by a critical mass of the population without

conveying protection at the individual-level. In addition, the magnitude of the reduction of the infection

risk when an individual isolates has been rarely quantified (Fazio et al., 2021). In Chapter 3, I account

for physical distancing because household contacts were encouraged to isolate from the index case at

enrollment, and not accounting for it would bias our estimates. Besides, social behavior, notably phys-

ical contacts within households, is expected to change upon infection by both the case and its contacts.

Here, I estimate a strong effect of isolation behavior in Israeli households whose effectiveness against

infection is similar to vaccines. Although these results were very promising, they need confirmation.

Unfortunately, Omicron variants have completely replaced the Alpha variant by now, and since they are

much more transmissible than Alpha, physical distancing in closed settings like households will likely

be less effective.

Early on in the pandemic, age disparities in cases were observed. Most cases, especially severe cases,

were adults suggesting that children are less susceptible to SARS-CoV-2 infection. Many studies have

tried to quantify this potential reduction (Viner et al., 2021; Davies et al., 2020a; Zhu et al., 2021;

Chung et al., 2021) by analyzing case notification or ascertainment data. However, lower notifications

in children may result from multiple factors: (i) lower biological susceptibility, (ii) less social mixing,
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and (iii) low case ascertainment of asymptomatic and paucisymptomatic cases that are more prevalent in

children (Lordan et al., 2021). The last two factors may have confounding effects on the estimation of

child susceptibility. Besides, the role of children in the transmission at the population-level has changed

over the pandemic, in particular when adults were vaccinated. After the first vaccination campaign, a

large part of the adult population was vaccinated, thus the proportion of transmission occurring in schools

increased and living with a child constituted a risk factor for infection (Lessler et al., 2021). In our study

presented in Chapter 3, I introduce a parameter for the relative susceptibility of children. Consistent

with the literature, I estimate a lower susceptibility for children. To obtain more robust estimates of

this parameter, it will be important to integrate to these analyses data describing contact rates between

household members. Indeed, I show in Chapter 5 that ignoring contact heterogeneity in households

could bias estimates of child relative susceptibility and infectivity. Some studies have also investigated

the relative infectivity of children compared to adults (Dattner et al., 2021). In Chapter 3, I do not

integrate child relative infectivity because there was not enough statistical power and I wanted to avoid

model overparameterization.

Importantly, most results on SARS-CoV-2 transmission during the pandemic were published as preprints

or peer-reviewed papers and were rapidly outdated due to the emergence of new variants and changes

in priorities. Our estimates covered the Alpha wave in Israel and could not be generalized to the Delta

variant that emerged a few months later at a time when vaccine-induced immunity had already decayed

at the population level. A follow-up study covering the Delta wave in Israel is undergoing.

1.3. RABV and SARS-CoV-2: epidemiological research on different time-
scales

The differing epidemiology of COVID-19 and rabies dictates the time-scale of their research. As under-

lined in Chapter 1, the transmission potential of rabies in dogs is low with an R0 close to one. In contrast,

the high transmissibility of COVID-19 leads to explosive dynamics, known as epidemic waves, which

requires rapid evaluation within a few days or weeks. The short time-scale of SARS-CoV-2 research

also depends on the recurrent emergence of variants with varying transmissibility. New variants should

be identified and tracked in real-time, their transmission potential assessed in a timely manner, and their

level of vaccine escape quantified when they replace the other variants. All of these steps may occur

within a few months as exemplified by the Alpha variant studied in Chapter 3 that circulated in Israel

for eight months only, from December 2020 to July 2021. RABV dynamics in relation to its genetic

diversity are fairly different. As mentioned in Chapter 1, the co-circulation of RABV variants is com-
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mon in rabies-affected countries and, so far, no difference of transmission potential between them has

been shown. In this sense, rabies research spans more on the long-term. Another aspect of rabies and

COVID-19 epidemiology that influences the time-scale of their research is the role of introductions in

their maintenance or geographic expansion. While a few introductions of SARS-CoV-2 are sufficient to

establish self-sustaining local transmission chains (Lemieux et al., 2021), transmission chains resulting

from RABV introductions are short and should be numerous to allow RABV maintenance (Mancy et al.,

2022). Rabies endemicity in Cambodia that I explore in Chapter 2 is a good example. Introductions from

neighboring countries are very likely, but not sufficient in number to compete against the dominant Cam-

bodian clade. Nevertheless, single introductions of rabies may lead in some cases like Bali to sustained

transmission (Townsend et al., 2013b).

Beyond their contrasting epidemiology, COVID-19 and rabies have different research agendas and fi-

nancial resources which also determines the type of data that are collected, the methodological choices,

and the amount of scientific production. Rabies exemplifies the lack of detailed epidemiological data

which is characteristic of neglected tropical diseases, epizooties in developing countries, and zoonoses.

For such diseases, phylodynamics is a powerful approach as it requires little sampling efforts limiting the

costs of data collection and generation. On the other side of the spectrum, studies on SARS-CoV-2 trans-

mission using individual-level data are numerous. They take advantage of national health repositories or

highly detailed follow-up in observational studies. Despite the large number of individual-level studies,

uncertainties remain on the determinants of transmission, notably concerning partial immunity levels in

populations following multiple waves of SARS-CoV-2 variants and more or less targeted vaccination

campaigns.

Epidemiology, data availability, financial resources, and scientific opportunities are different for SARS-

CoV-2 and RABV, but, as vaccine-preventable diseases, they share the same need for the design of

effective vaccination campaigns. In the case of RABV, there is still room for improvement. Most endemic

countries that have implemented regular vaccination campaigns are far from elimination and the design of

national control strategies is restricted by financial constraints. For SARS-CoV-2, long-term transmission

and recurrent emergence of new variants raises new challenges in terms of vaccination production, target

population, and vaccination campaign frequency.
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1.4. Limitations of quantitative tools for the study of infectious diseases
spread

Although some of the quantitative tools have been developed a long time ago and are largely used, their

limitations are not always well-characterized neither known by modelers. In this thesis, I also investigate

the impact of sampling bias and model misspecification on parameter estimation in Chapters 4 and 5.

In Chapter 4, I focus on the impact of sampling bias on discrete phylogeography reconstruction and our

conclusions are less clear-cut than previously thought (De Maio et al., 2015) because none of the three

most popular algorithms outperforms the others nor is robust to sampling bias at the same time. CTMC

modeling is a valid approach, even when spatial sampling is very biased, but it requires careful sensitiv-

ity analyses based on subsamples. Importantly, a recent study by Gascuel and Steel (2020) investigated

identifiability issues in CTMC modeling, suggesting that further work is needed to precisely assess the

limits of parameter identifiability in CTMC. The approximations of the structured coalescent on the other

hand were previously thought to be more robust to spatial sampling bias (De Maio et al., 2015). How-

ever, in our study, they appear to have limited estimation capacities on real-world data. Interestingly, the

addition of unbiased case count data largely improves the performances of one of the approximations of

the structured coalescent model (MASCOT-GLM) that even outperforms CTMC. This work has many

practical implications that go from study design to sensitivity analyses. Indeed, one can either organize

genetic data collection in a way that is representative of the transmission process, prioritize sample size

over representativeness to collect as many sequences as possible, perform sensitivity analyses on sub-

samples that maximize the spatiotemporal coverage, or analyze genetic data collected in an opportunistic

way along with case count data that were collected in the least biased way. In the end, our work high-

lights the importance of testing and discussing the impact of sampling bias, notably on data sets obtained

by opportunistic sampling.

In Chapter 5, I explore how assumptions on mixing patterns in household transmission studies impact

the estimation of age-varying susceptibility and infectivity parameters. This study is particularly rele-

vant for airborne diseases such as flu and COVID-19 whose transmission in confined spaces is primarily

driven by droplets (Lei et al., 2018; Jayaweera et al., 2020). In such settings, successful transmission

depends on case infectivity, contact susceptibility, and contact rate between the infector and the infectee.

I show that not accounting for heterogeneous contact rates between household members leads to biased

infectivity and susceptibility estimates. Our simulation study highlights the importance of collecting

transmission-related data along with household contact data which, to the best of our knowledge, has
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not been implemented yet. Designing such a study raises many practical challenges: should household

follow-up rely rather on detailed testing and symptom onset data, or seroconversion data? Seroconver-

sion data collection being less constraining for household members and less costly, but more challenging

in terms of modeling. Should all household members be surveyed to collect their contacts or only a frac-

tion of them to increase participant adherence? When should household members detail their contacts:

at inclusion or during follow-up? How frequently should household members provide information on

their contacts? etc. Importantly, SARS-CoV-2 is known to be transmitted not only by droplets during

close contacts but also by aerosols (very small pathogen-laden particles in air that can stagnate when

ventilation is low) that allow long-term transmission (Jayaweera et al., 2020). For the time being, models

of SARS-CoV-2 transmission in households assume that droplets are the primary route of transmission

and overlook the potential role of aerosols.

1.5. Comparison of epidemiological and phylodynamic modeling

In this thesis, I use epidemiological modeling on individual-level data of partially observed transmission

chains and phylodynamics on genetic sequences from cases whose link between one another is unknown.

The two types of approaches allow the study of different phenomena: the former models between-host

transmission while the latter models evolutionary processes that shape pathogen genetic diversity. De-

pending on the rate of within-host evolution relative to the timing of transmission, a phylogenetic tree

does not exactly represent a transmission chain, and the pathogen effective population size might not be

simply proportional to case counts. Consequently, the estimates of pathogen dispersal by the two ap-

proaches may not be easily comparable. For example, the comparison of simulated transmission chains

to estimated phylogenetic trees in Chapter 4 is not trivial. Since migration rates estimated by discrete

phylogeography do not correspond to the ones of the mobility matrix used in the simulations, I com-

pare counts of migration and introduction events. Actually, model benchmarking in phylodynamics is

generally done on phylogenetic trees simulated with a coalescent or birth-death model (Gill et al., 2013;

Boskova et al., 2014; De Maio et al., 2015; Müller et al., 2018), rather than alignments of sequences gen-

erated from the simulation of viral genetic sequences along transmission chains themselves simulated

by an epidemiological model like in Chapter 4. This relatively new approach opens a new avenue for

model benchmarking in phylodynamics and allows to test algorithms in more complex situations that are

closer to the analysis of real-world data. Besides, the simulated epidemics of RABV decribed in Chap-

ter 4 could be used to assess the performances of algorithms of maximum likelihood-based ancestral

character reconstruction such as the CTMC models implemented in PastML (Ishikawa et al., 2019) or
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TreeTime (Sagulenko et al., 2018).

In the field of epidemiological modeling, models are often very refined and adapted to a specific con-

text. Until recently, source codes were not systematically in open access but a culture shift is currently

operating, notably under the requirements of scientific journals to foster open science and analysis repro-

ducibility. Besides, new tools such as Odin (FitzJohn and Fischer, 2022) or RStan (Stan Development

Team, 2020) now facilitate inference even for complex epidemiological models. In contrast, phylo-

dynamics relies on more complex and less flexible models and inference is generally performed using

packages like BEAST. In addition to accelerating data analysis and result generation, the use of packages

allows non-experts to apply complex methodologies to their own data sets but this comes at the expense

of potential misuse or misinterpretation. Although the core hypotheses in phylodynamics are quite rigid,

models of population dynamics (Gill et al., 2016) and phylogeographic models (Lemey et al., 2014;

Müller et al., 2019) have been extended to integrate covariates related to demography, mobility, case

counts, climate etc. Inversely, the use of genetic sequences to inform epidemiological models remains

challenging. When it comes to individual-level data, epidemiological modeling is an ideal framework re-

lated because of its flexibility while accounting for individual heterogeneities in phylodynamics requires

the development of new analytical tools.

Still, epidemiological modeling and phylodynamics share common features among which the inference

framework. Indeed, Bayesian statistics are generally preferred over maximum likelihood inference, and

the Metropolis-Hastings MCMC algorithm as exemplified in this thesis is the most widely used infer-

ence algorithm. Furthermore, both approaches can be affected by bias that can occur at the different

stages of the analysis, from data collection and preparation, to model choice and specification, or prior

choice. Simulation studies provide important insights to assess the impact of such biases and identify

the limits of parameter identifiability. In this thesis, simulation studies have helped better characterizing

the impact of sampling bias in discrete phylogeography (Chapter 4) and of incorrect mixing assumption

(Chapter 5). The development of digital tools to collect, store, and share epidemiological and genetic

data have paved the way to big data in epidemiology. This raises new technical challenges related to data

storage, optimization of computational times, and inference approach, as Bayesian inference might be

computationally impractical on very large data sets.
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2. Perspectives

2.1. On SARS-CoV-2 and RABV

Many questions remain regarding RABV spread in dog populations. The role of dog demography, dog

movement, dog social structure, dog ecology, and interactions with humans very likely depends on the

cultural practices that vary across countries, but also within countries. For example, the epidemiology of

rabies in the Northeastern part of Cambodia, close to the Lao and Vietnamese borders, is expected to be

very different from that in the rest of the country because hunting practices, dog density, and relationship

to dogs are extremely different (Chapter 2). Field studies to collect dog behavior and dog ecology data

are key to better understand rabies dynamics and epidemiological data are still needed in most endemic

countries. In parallel, RABV genetic data that are already available on GenBank could be exploited in

large-scale phylogenetic studies to explore dog rabies transmission across countries in a cost-effective

way. This would provide a first overview of the worldwide spread of the virus that should be completed

by the above-mentioned finer-scale studies.

SARS-CoV-2 transmission is now well-characterized although there is room left for studies deepening

knowledge on the impact of the mosaicism of population immunity on SARS-CoV-2 transmission. The

immune profile of individuals against SARS-CoV-2 is now highly heterogeneous within and across coun-

tries because it depends on the biological features of the individuals, their personal infection history, and

the types and number of vaccine doses they received that greatly varies across countries. On top of that,

immunity against SARS-CoV-2 wanes with time from infection or vaccination. Consequently, there is

now no clear reference group to estimate vaccination efficacy and vaccine effectiveness. Besides, epi-

demiological studies that are generally used to evaluate herd immunity at the population level such as

cross-sectional serosurveys are not sufficient to assess the mosaicism of population immunity. The level

of protection at the individual-level should not focus on individual infection and vaccination histories but

on biological correlates like antibody titers. Assessing the quantitative relationship between protection

and biological correlates and using this information to interprete serosurvey results will help assess herd

immunity.

2.2. On methodological approaches

As demonstrated in this thesis, epidemiological modeling is particularly adapted to the integration of

host-related determinants, like susceptibility, infectivity, and behavior. Nevertheless, all modeling frame-

works are not suitable to account for complex host behaviors that vary in space and time. Network mod-
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els constitute a good candidate and have already been used to design infection prevention measures in

hospital settings using a simulation approach (Smith et al., 2020), using contact data recorded by using

proximity sensors. This approach could be extended to households to measure more precisely heteroge-

neous contact patterns.

Contrary to epidemiological modeling, phylodynamics is still a relatively new field in which model

limitations are still to be defined. While phylogeography is highly valuable, the impact of sampling bias

cannot be overlooked and methodological advances that incorporate sampling procedure or uncertainty

concerning sample representativeness are to be developed. Besides, theoretical work has shown that

CTMC fails at estimating state change counts and root location at the same time (Gascuel and Steel,

2020). Similar questions related to parameter identifiability concern the structured coalescent in discrete

phylogeography and the RRW model in continuous phylogeography. Additional data such as case counts

for the structured coalescent model (Chapter 4), or sequence-free cases for the RRW model (Kalkauskas

et al., 2021) were shown to improve phylogeography inference, but they lead to other sampling issues

that also need attention. Another prospect for phylodynamics relates to its predictive power and its use

to evaluate control measure which has been only little explored so far (Dellicour et al., 2020).

As previously underlined, epidemiological modeling and phylodynamics provide complementary in-

sights on the transmission process. That is why, interdisciplinary studies that exploit the potential of

both approaches have emerged, notably for RABV and SARS-CoV-2. We have identified so far two

types of interdisciplinary studies that either propose a new unified modeling framework that integrates

epidemiological and genetic data (Salje et al., 2021) - however, only few approaches currently exist and

they require extensive model testing and validation -, or that combine multiple modeling approaches and

sources of data. In the latter case, investigators benefit from epidemiological modeling, phylodynam-

ics, and basic epidemiological investigation, but tremendous efforts of coordination and communication

between the different fields of expertise might complexify scientific production.

3. Conclusion

In this thesis, I show that quantitative studies in epidemiology encompass a wide range of concepts, tech-

niques, and data. At both ends of the spectrum, we find epidemiological modeling that can incorporate

refined information on disease transmission at the individual level and phylodynamics that makes use

of genetic sequences embedding coarse information on transmission at the population level. The com-

plementary insights of these two approaches help understanding disease transmission and often guide
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decision making, as shown in the context of SARS-CoV-2 and RABV. Ultimately, the development of

modeling frameworks that unify epidemiological and genetic data is an exciting and promising prospect

for epidemiology.
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Appendix A

Supplementary information on the scoping review
All supplementary information presented in this Appendix are also available online at https://mlay

an.github.io/RabiesScopingReview/ and archived on the open-access repository Zenodo (DOI:

10.5281/zenodo.4743553).

1. Supplementary Tables
Table A1: General characteristics of the included studies. Studies 1 to 22 correspond to phylodynamic studies,
studies 23 to 52 correspond to mathematical modeling studies, and studies 53 to 59 correspond to interdisciplinary
studies.

# Study context
New
method-
ology

Study area Temporal
scale

Additional host
species Reference

1 Global dynamics NO World 1969 - 2004
Domestic animals,
wildlife

Bourhy
et al. 2008

2

Dynamics in an en-
demic area; Mainte-
nance of viral epidemic
cycles

YES West Africa 1986 - 2007 -
Lemey
et al. 2009a

3
Dynamics in an en-
demic area

NO West Africa 1986 - 2007 -
Talbi et al.
2009

4
Dynamics in an en-
demic area

NO China 1931 - 2009 -
Meng et al.
2011

5
Dynamics in an en-
demic area

NO Ghana 1979 - 2009
Domestic animals, hu-
mans, wildlife

Hayman et
al. 2011

6
Dynamics in an en-
demic area

NO Brazil 1985 - 2006 -
Carnieli et
al. 2011

7
Dynamics in an en-
demic area; Contribu-
tion of wildlife

NO China 2003 - 2008
Domestic animals,
wildlife

Yu et al.
2012

8
Incursion in a rabies-
free area

NO
KwaZulu Na-
tal Province,
South Africa

1980 - 2011 Humans
Mollentze
et al. 2013

9
Role of lineage incur-
sions

NO China 2003 - 2010
Domestic animals, hu-
mans, wildlife

Guo et al.
2013

10
Lineage dynamics in
dogs and wildlife

NO Brazil 2002 - 2005
Domestic animals, hu-
mans, wildlife

Carnieli et
al. 2013

11
Dynamics in an en-
demic area

NO Philippines 2004 - 2010
Domestic animals,
wildlife

Tohma
et al. 2014

12
Role of lineage in-
cursions; Inference of
clade reservoirs

NO Middle East 1972 - 2014 Wildlife
Horton
et al. 2015

13

Dynamics in an en-
demic area; Identifica-
tion of factors associ-
ated with spread

NO Tanzania 2003 - 2012 -
Brunker et
al. 2015
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Table A1 continued from previous page

14
Dynamics after incur-
sion

NO Indonesia 1997 - 2010 Domestic animals
Dibia et al.
2015

15

Dynamics in an en-
demic area; Identifica-
tion of factors associ-
ated with spread

NO China 1989 - 2012
Domestic animals, hu-
mans, wildlife

Yao et al.
2015

16
Global dynamics of
dogs and wildlife
lineages; Host shifting

NO World 1950 - 2015
Domestic animals, hu-
mans, wildlife

Troupin et
al. 2016

17
Role of lineage incur-
sions; Causes of lineage
displacement

NO Yunnan 1963 - 2013
Domestic animals, hu-
mans, wildlife

Zhang et al.
2017

18
Dynamics after incur-
sion

NO
Shaanxi
province,
China

2009 - 2012 Humans
Ma et al.
2017

19

Dynamics in an en-
demic area; Identifica-
tion of factors associ-
ated with velocity

NO North Africa 2001 - 2008
Domestic animals,
wildlife

Dellicour et
al. 2017

20
Identification of factors
associated with velocity

NO Tanzania 2004 - 2013
Domestic animals,
wildlife

Brunker et
al. 2018b

21
Dynamics in an en-
demic area

NO China 1983 - 2016
Domestic animals, hu-
mans, wildlife

Wang et al.
2019

22

Dynamics in an en-
demic area; Identifica-
tion of factors associ-
ated with dispersal ve-
locity and direction

YES Iran 2008 - 2015 Wildlife
Dellicour et
al. 2019

23
Critical dog vaccination
coverage

NO

Memhis &
Shelby County,
USA; Her-
mosillo, Mex-
ico; Central
Java, Indone-
sia; Kuala
Lumpur,
Malaysia

1948; 1987 -
1988; 1985 -
1986; 1946 -
1953

Dogs
Coleman
and Dye
1996

24 New methodology YES
São Paulo,
Brazil

11 weeks -
Ortega
et al. 2000

25
Role of dog density; Ef-
ficacy of control strate-
gies

NO
Machakos dis-
trict, Kenya

2 years -
Kitala et al.
2002

26
Synchrony of rabies
epidemics

NO East Africa 1971 - 2000 -
Hampson
et al. 2007

27
Dog-human transmis-
sion; Cost-effectiveness
study

NO
N’Djaména,
Chad

2001 - 2006 Humans
Zinsstag et
al. 2009

28
Efficacy of control
strategies

NO Nonea 2 years -
Carroll
et al. 2010

29
Dynamics in an en-
demic area; Efficacy of
control strategies

NO China 1996 - 2010 Humans
Zhang et al.
2011

30
Rabies control with
multiple introduction
sources

NO
Serengeti dis-
trict, Tanzania

2002 - 2007 -
Beyer et al.
2011

31
Dynamics in an en-
demic area; Efficacy of
control strategies

NO
Guangdong,
China

2006 - 2014 Humans
Hou et al.
2012

32 Seasonal dynamics NO China 2004 - 2010 Humans
Zhang et al.
2012
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Table A1 continued from previous page

33
Dynamics in dogs and
wildlife; Efficacy of
control strategies

NO

Serengeti
and Ngoron-
goro districts,
Tanzania

2002 - 2006 Wildlife
Fitzpatrick
et al. 2012

34
Vaccination allocation
strategies

NO
Serengeti dis-
trict, Tanzania

132 months -
Beyer et al.
2012

35
Role of introduction;
Efficacy of control
strategies

NO Bali, Indonesia 2008 - 2010 -
Townsend
et al. 2013b

36
Disease detection; Effi-
cacy of control strate-
gies

NO Nonea - -
Townsend
et al. 2013a

37
Risk assessment of in-
troduction

NO North Australia
End of out-
break

Humans
Dürr and
Ward 2015

38
Dynamics; Efficacy of
control strategies

NO
Region IV,
Philippines

2010 - 2012 -
Ferguson et
al. 2015

39
Dynamics in an
endemic area; Dog-
human transmission

NO
Hebei and Fu-
jian provinces,
China

2004 - 2012 Humans
Chen et al.
2015

40
Population structure;
Efficacy of control
strategies

NO

Northern Aus-
tralia and New
South Wales re-
gions, Australia

300 or 800 days -
Sparkes et
al. 2016

41
Population structure;
Efficacy of control
strategies

NO Nonea 125 years -
Leung and
Davis 2017

42
Individual heterogene-
ity; Efficacy of control
strategies

NO
N’Djaména,
Chad

- -
Laager
et al. 2018

43
Risk assessment of in-
troduction; Efficacy of
control strategies

NO

Ibaraki and
Hokkaido
prefectures,
Japan

End of out-
break

-
Kadowaki
et al. 2018

44 Drivers of resurgence NO
N’Djaména,
Chad

2012 - 2016 Humans
Laager
et al. 2019

45 Contact heterogeneity NO
Mayo-Kebbi
Est region,
Chad

2016 -
Wilson-
Aggarwal
et al. 2019

46
Cost-effectiveness
study of human and
cattle rabies

NO

Lemuna-
Bilbilo and
Bishoftu dis-
tricts, Ethiopia

2013 - 2014 Cattle, humans
Beyene
et al. 2019

47
Dynamics in an en-
demic area

NO
Sarawak state,
Malaysia

2017 - 2019 Humans
Abdul Taib
et al. 2019

48
Dynamics in dogs and
wildlife; Dog-human
transmission

NO
Zheijang
province,
China

2004 - 2017
Chinese ferret badger,
humans

Huang et al.
2019

49
Contact heterogeneity;
Efficacy of control
strategies

NO
Northern Pen-
incula Area,
Australia

End of out-
break

-
Hudson
et al. 2019a

50
Dynamics in a disease-
free area; Efficacy of
control strategies

NO
Torres Strait is-
lands, Australia

3 years -
Brookes et
al. 2019

51
Risk assessment of in-
troduction; Efficacy of
control strategies

YES
Northern
Peninsula Area,
Australia

- Humans
Hudson
et al. 2019b

52
Role of human move-
ment

NO
Central African
Republic

300 years -
Colombi et
al. 2020
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Table A1 continued from previous page

53

Dynamics in an en-
demic area; Identifica-
tion of factors associ-
ated with spread

NO North Africa 2001 - 2008
Domestic animals,
wildlife

Talbi et al.
2010

54
Dynamics in an en-
demic area; Unexhaus-
tive sampling

NO
KwaZulu Na-
tal Province,
South Africa

2010 - 2011 -
Mollentze
et al. 2014

55
Disease detection;
Dynamics in an
archipelago

NO
Tablas and
Luzon Islands,
Philippines

2004 - 2013 -
Tohma
et al. 2016

56
Dynamics in an en-
demic area; Introduc-
tion

NO
Bangui, Central
African Repub-
lic

1986 - 2012 -
Bourhy
et al. 2016

57
Introduction; Efficacy
of control strategies

NO
N’Djaména,
Chad

2012 - 2015 Humans
Zinsstag et
al. 2017

58
Dynamics in an en-
demic area; New
methodology

YES
Bangui, Central
African Repub-
lic

2003 - 2012 -
Cori et al.
2018

59

Dynamics in an en-
demic area; Identifica-
tion of factors associ-
ated with spread

NO
Yunnan
province,
China

2008 - 2015
Humans, non-flying
mammals

Tian et al.
2018

a Simulation study not grounded in a specific geographic area.
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Table A4: Description of the interdisciplinary studies combining phylodynamics and mathematical model-
ing or integrating epidemiological and genetic data. The first part of the table describes the genetic data and
phylodynamic approach of the interdisciplinary studies, while the second part of the table describes the epidemio-
logical data and the epidemiological model.

Phylodynamics
category

Model de-
scription

Software
Genetic se-
quences

Sequence
length
(pb)

Data
source

Parameters in-
ferred

Reference

Bayesian
discrete phylo-
geography

Asymmetric
DTA + BSSVS

BEAST 1
N, P, inter-
genic G-L
(n = 250)

3080 Passive

Markov jumps,
migration
rates, reward-
associated dis-
tances, spread-
associated
landscape fea-
tures, tMRCA

Talbi et al.
2010

Bayesian phy-
lodynamics

Exponential
growth coales-
cent

BEAST 1
intergenic
G-L (n =
176)

760 Passive tMRCA
Mollentze
et al. 2014

Bayesian
discrete phylo-
geography

Symmetric
DTA + BSSVS

BEAST 1
G, P (n =
39)

2463 Passive
Migration
rates, tMRCA

Tohma
et al. 2016

Bayesian con-
tinuous phylo-
geography

Relaxed ran-
dom walk
(lognormal
prior)

BEAST 1

N, P, M, G,
intergenic
G-L (n =
88)

5061 Passive

Nucleotide
substitution
rate, number
of introduc-
tions, tMRCA,
velocity

Bourhy
et al. 2016

Bayesian phy-
lodynamics

Birth-Death BEAST 2 N (n = 29) 1350 Passive Re
Zinsstag et
al. 2017

- - -

N, P, M, G,
intergenic
G-L (n =
151)

5061 Passive -
Cori et al.
2018

Bayesian
discrete phylo-
geography

DTAaand GLM
on the effec-
tive population
sizes

BEAST 1 N (n = 543) 1350 Passive

tMRCA, veloc-
ity, diffusion
coefficients,
velocity-
associated
landscape
features

Tian et al.
2018

Bayesian con-
tinuous phylo-
geography

Relaxed ran-
dom walk
(lognormal
prior)

G (n = 491) 1575
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2. Rabies epidemiological situation and methodologies im-
plemented to study rabies dispersal and control at the con-
tinent level

The situation of North America is not detailed since the study of Coleman and Dye (1996) only estimated

the critical vaccination coverage and R from an epidemic in the Tennessee in the 1940s and an epidemic

in Mexico in the 1980s.

2.1. Africa
Current situation

Endemic

Models

• Large variety with development of multi-host, metapopulation and network models (Laager et al.,

2019; Wilson-Aggarwal et al., 2019; Zinsstag et al., 2009; Kitala et al., 2002; Beyene et al., 2019;

Colombi et al., 2020; Beyer et al., 2011; Fitzpatrick et al., 2012; Townsend et al., 2013a; Hampson

et al., 2007; Beyer et al., 2012; Laager et al., 2018).

• Parsimony, Bayesian discrete and continuous phylogeography (Lemey et al., 2009a; Mollentze

et al., 2013; Brunker et al., 2015; Talbi et al., 2009; Hayman et al., 2011; Brunker et al., 2018b;

Dellicour et al., 2017).

• Interdisciplinary studies (Mollentze et al., 2014; Cori et al., 2018; Talbi et al., 2010; Bourhy et al.,

2016; Zinsstag et al., 2017).

Data

Bite incidence in humans, dog, and human rabies incidence, contact tracing, dog mobility data, dog

census, RABV genetic sequences from dogs, wildlife, and humans.

Modelling aims

• Better understanding of the spatial and temporal dynamics of rabies spread (Zinsstag et al., 2009;

Hampson et al., 2007; Brunker et al., 2015; Talbi et al., 2009; Hayman et al., 2011; Talbi et al.,

2010; Bourhy et al., 2016).

• Identification of environmental factors impacting RABV spread and the main patterns of dispersal

(Colombi et al., 2020; Mollentze et al., 2013; Brunker et al., 2015; Brunker et al., 2018b; Dellicour

et al., 2017; Talbi et al., 2010).

• Role of introductions (Mollentze et al., 2013; Bourhy et al., 2016; Zinsstag et al., 2017), spatial

heterogeneity (Laager et al., 2019; Colombi et al., 2020; Beyer et al., 2011), dog population

structure (Wilson-Aggarwal et al., 2019; Laager et al., 2018) and wildlife (Beyer et al., 2011;

Fitzpatrick et al., 2012) in dog rabies maintenance.

• Feasible and effective control strategies (Zinsstag et al., 2009; Kitala et al., 2002; Beyene et al.,

2019; Beyer et al., 2011; Fitzpatrick et al., 2012; Townsend et al., 2013a; Beyer et al., 2012; Laager

et al., 2018; Zinsstag et al., 2017).
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• Development of new methodologies (Mollentze et al., 2014; Cori et al., 2018). Impact of under-

reporting (Mollentze et al., 2014; Zinsstag et al., 2017; Laager et al., 2019).

Mains findings

Rabies spread was studied at multiple geographical scales (transborder area, country, district, city, neigh-

borhood). Studies at small spatial scales supported that local scale elimination is achievable on the short

term (Laager et al., 2019; Zinsstag et al., 2017; Bourhy et al., 2016), but introduction events participate

in rabies maintenance (Laager et al., 2019; Mollentze et al., 2014; Cori et al., 2018; Beyer et al., 2011)

and impede control efforts (Bourhy et al., 2016; Zinsstag et al., 2017). Rabies was shown to circulate

at low intensity within two cities, Bangui (Bourhy et al., 2016) and N’Djaména (Laager et al., 2019;

Zinsstag et al., 2017; Zinsstag et al., 2009), but connections between urban areas are expected to accen-

tuate rabies spread (Colombi et al., 2020). Indeed, human-mediated movements strongly impact rabies

dispersal within countries in North Africa (Dellicour et al., 2017; Talbi et al., 2010) and the Central

African Republic (Colombi et al., 2020). According to the setting, they may counteract the effects of

control measures.

Spatial and individual heterogeneity were not sufficient to explain rabies maintenance in settings with

low circulation (Laager et al., 2019; Wilson-Aggarwal et al., 2019) and there is no current evidence of

the role of wildlife in the maintenance of rabies (Beyer et al., 2011; Fitzpatrick et al., 2012). At the

continental scale, there are both co-circulating RABV lineages (Lemey et al., 2009a; Brunker et al.,

2015; Talbi et al., 2009; Hayman et al., 2011; Brunker et al., 2018b) and spatial clustering of RABV

lineages (Lemey et al., 2009a; Mollentze et al., 2013; Brunker et al., 2015; Talbi et al., 2009; Brunker

et al., 2018b) which points at the role of human-mediated movements.

The dog vaccination coverage recommended by the WHO (70%) has been generally shown to be suffi-

cient to reach dog rabies elimination (Zinsstag et al., 2009; Kitala et al., 2002; Fitzpatrick et al., 2012),

except in Ethiopia where a 90% vaccination coverage was recommended (Beyene et al., 2019). Vac-

cination strategies targeting at-risk dog populations are more effective (Beyer et al., 2012). The role

of underreporting is not clear (Laager et al., 2019; Zinsstag et al., 2017; Mollentze et al., 2014) but

heterogeneous vaccination coverage is shown to disrupt vaccination (Townsend et al., 2013b).

2.2. Asia
Current situation

• Disease-free in Japan.

• Recent introductions in Indonesia and Philippines.

• Endemic in China and continental South-East Asia.

Models

• Mostly deterministic models implemented to analyze dog rabies in China (Zhang et al., 2012; Hou

et al., 2012; Zhang et al., 2011; Chen et al., 2015; Huang et al., 2019), Malaysia (Coleman and

Dye, 1996; Abdul Taib et al., 2019) and Indonesia (Coleman and Dye, 1996).

• Agent-based models (Townsend et al., 2013b; Kadowaki et al., 2018; Ferguson et al., 2015).
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• Phylogeography (Zhang et al., 2017; Meng et al., 2011; Guo et al., 2013; Wang et al., 2019; Tohma

et al., 2014; Dibia et al., 2015; Ma et al., 2017; Yu et al., 2012; Yao et al., 2015).

• Interdisciplinary studies (Tohma et al., 2016; Tian et al., 2018).

Data

Human rabies cases from passive surveillance, dog rabies cases from active (China) or passive surveil-

lance, contact tracing, dog vaccination data, dog density from surveys, dog movements from household

surveys, historical records of dog rabies epidemics in Osaka and of dog and human censuses, RABV

genetic sequences from dogs, wildlife and humans.

Modelling aims

• Better understanding of the spatial and temporal dynamics of rabies spread (Zhang et al., 2011;

Zhang et al., 2012; Chen et al., 2015; Abdul Taib et al., 2019; Zhang et al., 2017; Meng et al.,

2011; Guo et al., 2013; Wang et al., 2019; Tohma et al., 2014; Dibia et al., 2015; Ma et al., 2017;

Yu et al., 2012; Yao et al., 2015; Tohma et al., 2016; Tian et al., 2018).

• Identification of circulating lineages (Wang et al., 2019; Dibia et al., 2015; Tian et al., 2018) and

environmental factors impacting rabies spread (Yao et al., 2015; Tian et al., 2018).

• Spatiotemporal dynamics and interactions of canine and wildlife RABV lineages (Huang et al.,

2019; Yu et al., 2012).

• Feasible and effective control strategies (Coleman and Dye, 1996; Huang et al., 2019; Ferguson

et al., 2015; Townsend et al., 2013b; Zhang et al., 2011; Hou et al., 2012; Zhang et al., 2012).

• Impact of human-mediated movement (Townsend et al., 2013b; Ferguson et al., 2015) and vacci-

nation coverage (Townsend et al., 2013b) on the efficacy of control strategies.

• Modelling dynamics following an introduction and assessment of the efficacy of current contin-

gency plans (Kadowaki et al., 2018).

• Estimation of the time from introduction to detection according to the value of R (Tohma et al.,

2016).

Main findings

Rabies introductions in the disease-free islands of the Philippines result from single introductions from

neighboring rabies-endemic islands followed by local transmission (Tohma et al., 2014; Tohma et al.,

2016).

At the continental scale, RABV lineages are spatially clustered (Guo et al., 2013; Wang et al., 2019)

but transboundary movements markedly influence rabies spread (Guo et al., 2013). China is endemic

for rabies and multiple RABV lineages co-circulate across the country, notably Asian, Arctic-like and

Cosmopolitan lineages (Meng et al., 2011; Yu et al., 2012; Yao et al., 2015). It is thought to be one of

the main sources of RABV lineages in Asia (Meng et al., 2011; Guo et al., 2013).

A decade after achieving rabies elimination, it resurged in Yunnan and is currently circulating uncon-

trolled. This Chinese province corresponds to a crossroads area where multiple RABV lineages circu-
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late, probably resulting from multiple transboundary movements (Zhang et al., 2017; Tian et al., 2018).

Moreover, rabies dispersal velocity is weakly associated with forest coverage, croplands and accessible

areas (Tian et al., 2018). Whereas human-mediated movement is not statistically associated with rabies

velocity in the Yunnan province (Tian et al., 2018), it is suspected to have played a role in rabies dispersal

in the Shaanxi province (Ma et al., 2017). More studies are needed to unravel the interactions between

RABV, reservoir ecology and humans in Asia.

In general, rabies is estimated to spread at low grade with an R lower than two (Townsend et al., 2013b;

Zhang et al., 2011; Hou et al., 2012; Zhang et al., 2012; Chen et al., 2015; Huang et al., 2019; Abdul Taib

et al., 2019). Occasional long distance migrations which were documented in the Philippines (Tohma

et al., 2016), Indonesia (Dibia et al., 2015) and China (Chen et al., 2015; Yao et al., 2015; Guo et al.,

2013) might contribute to disease persistence.

The role of wildlife has been poorly studied and remains unclear in endemic areas (Huang et al., 2019;

Yu et al., 2012).

Dog vaccination is the most effective strategy (Zhang et al., 2011; Hou et al., 2012; Huang et al., 2019;

Abdul Taib et al., 2019) and may be improved by complementary measures such as domestic and stray

dog management (Zhang et al., 2011; Hou et al., 2012; Zhang et al., 2012), dog confinement (Ferguson

et al., 2015), or increasing public awareness (Zhang et al., 2012; Huang et al., 2019; Kadowaki et al.,

2018). Homogeneous vaccination coverage was shown to yield better elimination prospects (Townsend

et al., 2013a; Chen et al., 2015; Ferguson et al., 2015) which might be due to its robustness to human-

mediated movements (Townsend et al., 2013a). In Japan, Kadowaki et al. (2018) showed that the current

contingency plan is adapted to the rapid detection, control and elimination of rabies after an introduc-

tion. The authors emphasized the benefits of dog owner awareness and the control of stray dogs in the

improvement of the plan (Kadowaki et al., 2018).

The time to detection is also a crucial factor in the success of rabies elimination after introduction. The

faster the disease is detected, the higher the odds of eradicating it (Townsend et al., 2013a). For example,

it’s estimated that the surveillance system detected rabies circulation one year after its introduction in the

Luzon island group in the Philippines (Tohma et al., 2016). This delay would have been greater with a

lower reporting capacity (Tohma et al., 2016).

2.3. Middle East
Current situation

Endemic

Models

Phylogeography (Dellicour et al., 2019; Horton et al., 2015)

Data

RABV genetic sequences from dogs, wildlife, and humans.

Modelling aims
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• Spatiotemporal dynamics and interactions of canine and wildlife RABV lineages (Dellicour et al.,

2019; Horton et al., 2015).

• Identification of circulating lineages and environmental factors impacting rabies spread (Dellicour

et al., 2019).

Main findings

Many lineages circulate that are phylogenetically related to Asian, Arctic/Artic-like, or Cosmopolitan

lineages resulting from sustained circulation in dogs and wildlife after introduction (Dellicour et al.,

2019; Horton et al., 2015). There is a strong spatial segregation of RABV lineages circulating in Iran.

Overall, their spread is not driven by road connectivity, but humans presumably play a role since lineages

tend to disperse towards and remain in highly populated areas. Lineages were less likely to spread

towards grasslands and to occur in areas with barren vegetation. These results may be influenced by

biased sampling towards populated areas however (Dellicour et al., 2019).

Wildlife seems to play a role in rabies maintenance in dog populations (Dellicour et al., 2019; Horton

et al., 2015) but data are not sufficiently available to study host shift and dynamics between reservoirs.

2.4. South America

Current situation

Endemic for bat rabies and localized resurgences of rabies in dogs.

Models

• Fuzzy compartmental model (Ortega et al., 2000).

• Phylogeography (Carnieli et al., 2013; Carnieli et al., 2011).

Data

Serological data and RABV genetic sequences from dogs and wildlife.

Modelling aims

• Implementation of a fuzzy logic approach to model rabies spread (Ortega et al., 2000).

• Spatiotemporal dynamics of wild fox (Carnieli et al., 2013) and dog (Carnieli et al., 2013; Carnieli

et al., 2011) RABV lineages.

Main findings

Despite extensive dog vaccination campaigns, multiple dog-related RABV lineages circulate in Brazil

with a relatively recent common ancestor estimated in the 1950s (Carnieli et al., 2013; Carnieli et al.,

2011). Dog lineages are generally spatially clustered (Carnieli et al., 2013; Carnieli et al., 2011) and

lineages circulating in wild foxes and dogs are phylogenetically and dynamically independent (Carnieli

et al., 2013).
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2.5. Oceania
Current situation

Rabies-free.

Models

• Agent-based models (Dürr and Ward, 2015; Hudson et al., 2019a; Hudson et al., 2019b; Brookes

et al., 2019).

• Compartmental models (Sparkes et al., 2016).

Data

Dog population structure, dog roaming behavior (GPS data, questionnaires/interviews of dog owners),

dog contacts, census data.

Modelling aims

Modelling dynamics following an introduction (Dürr and Ward, 2015; Hudson et al., 2019a; Hudson

et al., 2019b; Brookes et al., 2019; Sparkes et al., 2016) and assessment of the most effective control

strategies (Dürr and Ward, 2015; Hudson et al., 2019a; Brookes et al., 2019; Sparkes et al., 2016).

Main findings

Australian studies focused on rabies spread in remote rural and peri-urban locations where rabies is

expected to be introduced and where surveillance systems might be weakened by the remoteness.

Rabies dynamics are expected to differ between dog categories, such as explorer dogs, roaming dogs

or domestic dogs (Hudson et al., 2019b; Brookes et al., 2019; Sparkes et al., 2016), and consequently

between rural and peri-urban areas (Sparkes et al., 2016).

Reactive vaccination after the detection of rabies introduction is the only beneficial strategy (Dürr and

Ward, 2015; Hudson et al., 2019a; Brookes et al., 2019; Sparkes et al., 2016). A 90% dog vaccination

coverage is recommended to break down rabies spread (Brookes et al., 2019; Sparkes et al., 2016) and

targeting at-risk dogs should enhance vaccination campaigns efficacy (Hudson et al., 2019a; Sparkes

et al., 2016).

191



Appendix A. Supplementary information on the scoping review

3. PRISMA-ScR Checklist
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Appendix B

Supplementary information on dog rabies spread in
Cambodia
R scripts and related files needed to run all the landscape phylogeographic analyses, as well as BEAST

XML files, are all available at https://github.com/sdellicour/rabv_cambodia.
Final random subsampling   −   Dmax = 41846453

Figure B1: Selection of the samples that were sequenced in the context of the present study. Selected samples
and non-selected samples are displayed in purple and grey, respectively. See the Material and Methods section
for the detailed procedure implemented to select the samples to sequence while maximising the spatio-temporal
coverage of available sequences included in continuous phylogeographic inference.
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Z46 Dog 2015-03-23 Cambodia-PreyLieb 10.5880442688086 104.785169005049
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KM366350 Dog 2004-07-30 Cambodia-PhnomPenh-Dangkor-SamrongKrorm-TrapaingThnong 11.569 104.812

KM366202 Dog 2008-10-30 Cambodia-Takeo-Baty-Lumpong-TrapaingKralanh 11.318 104.765

KM366316 Dog 2005-04-16 Cambodia-KgChhnang-KampongTralach-LongVek-PhsarTrach 11.846 104.728

KM366338 Dog 2010-01-16 Cambodia-Kandal-AngSnuol-DamnakAmpil-TrapaingTrach 11.53 104.685

KM366223 Dog 2010-02-24 Cambodia-KgCham-KangMeas-SourKong-PrekKruos 11.982 105.18

KM366317 Dog 2003-01-20 Cambodia-Takeo-Samrounrng-Khvav-Angkonh 11.159 104.708

KM366225 Dog 2011-10-18 Cambodia-PreyVeng-BaPhnom-CheuKach-CheuKach 11.256 105.406

Y204 Dog 2014-10-31 Cambodia-TrapeangTraeunh 11.7090024066936 104.393574780562
W65 Dog 2012-03-25 Cambodia-Thmei 11.7198843156862 104.524361224011

Y209 Dog 2014-11-14 Cambodia-ChheuTealChrum 10.8364212126802 104.530962854915
A103 Dog 2016-09-19 Cambodia-TrapeangPrei 11.2124253644496 104.51026010853S70 Dog 2017-01-12 Cambodia-PhumPreyTear 11.5154881051519 104.840604879767S818 Dog 2017-09-11 Cambodia-PhsarDaekKraom 11.8071225327126 104.770663800872S48 Dog 2017-08-24 Cambodia-TranhVeaeng 11.749960208524 104.424963703635Z163 Dog 2015-11-18 Cambodia-TrapeangPnov 11.9360393720512 104.763530269248
Z65 Dog 2015-05-08 Cambodia-KrangThum 11.4488612706622 104.594778218128

KM366310 Dog 2008-05-29 Cambodia-KgCham-SiemReap-SalaKamroeuk-SlorKram 13.341 103.865
KM366291 Dog 2003-12-22 Cambodia-BanteayMeanchey-ThmorPuok-ThmorPuok-ThmorPuok 13.939 103.058

KM366313 Dog 2004-02-17 Cambodia-KgCham-KangMeas-RokaA-SvaySraneah1 11.855 105.113

KX148251 Dog-Canis-familiaris 1998 Cambodia NA NA

KM366306 Dog 1998-10-26 Cambodia-KampongSpeu-Kangpisey-RokaKaoh-RokaKaoh 11.43 104.692

KM366248 Dog 2006-04-27 Cambodia-Kandal-SaAng-KraingYov-Samrong 11.299 104.957

KM366315 Dog 2006-04-20 Cambodia-Takeo-PreyKabbas-PreyPhdao-PreyKhnhey 11.159 104.873

KM366295 Dog 1999-08-07 Cambodia-KampongSpeu-CbarMorn-CbarMorn-BekChan 11.485 104.491

KM366208 Dog 2004-05-18 Cambodia-PreyVeng-Mesang-SvayChrum-PoTamom 11.375 105.562

KM366305 Dog 2002-05-08 Cambodia-PreyVeng-Sdech-RomChak-ChungRuk 11.163 105.367

KM366232 Dog 2003-12-02 Cambodia-KampongCham-PreyChhor-Lvea-Lvea 11.999 105.019

KM366250 Dog 2003-05-16 Cambodia-Kandal-MukKampoul-RokarKorng1-Peam 11.85 105

KM366312 Dog 2005-11-14 Cambodia-KgThom-Baray-AndoungPo-Chivipheap 12.292 105.152

KM366311 Dog 2007-04-18 Cambodia-Kapot-DangTong-AngkorMeas-SnorToch 10.761 104.399

KM366296 Dog 2007-10-01 Cambodia-KgSpeu-Boset-PoAngkrong-PreyTaphem 11.138 104.662

KM366347 Dog 2005-06-22 Cambodia-PhnomPenh-MeanChey-Nirot-RusseySros 11.53 104.949

KM366219 Dog 2004-07-16 Cambodia-KgSpeu-PhnomSruoch-TrengTrayoeng-Phum3 11.273 104.213

KM366346 Dog 2005-03-24 Cambodia-PhnomPenh-ChamkarMon-Tuolsvayprey1-5 11.559 104.926

KM366252 Dog 1998-09-18 Cambodia-PhnomPenh-TuolKork-PsarDaumKor 11.553 104.906

KM366332 Dog 1998-10-20 Cambodia-Kandal-KienSvay-KampongSvay-KampongSvay 11.418 105.055

KX148253 Dog-Canis-familiaris 1998 Cambodia NA NA

KM366256 Dog 2002-02-18 Cambodia-Kratie-AngSnuol-Snuol-Snuol 12.097 106.46

KM366287 Dog 1998-09-12 Cambodia-KampongCham-TaBongKahmom-Kor-KbalO 11.957 105.719

KM366285 Dog 1998-07-02 Cambodia-KampongCham-SreySanthor-PrekDamboque-Takoy 11.897 105.167

KM366203 Dog 2006-01-02 Cambodia-Battambang-Battambang-OCha-AngdongChenh 13.104 103.174

A51 Dog 2016-05-19 Cambodia-PreyPreahAndoung 11.3898761519057 105.588957520377

Z18 Dog 2015-02-02 Cambodia-Sanlung 11.3435707080265 105.513358471832

X112 Dog 2013-04-29 Cambodia-Kandal 11.3362851790827 105.473362657822

Y228 Dog 2014-12-11 Cambodia-RoungDamrei 11.2572709219306 105.386371692566

Z44 Dog 2015-03-17 Cambodia-SnaeRean 11.3446115757029 105.451995898418

Z59 Dog 2015-04-29 Cambodia-Chek 11.4486207482872 105.517608269954

a109 Dog 2016-09-22 Cambodia-MreamKhangTboung 11.3495002846686 105.672333736296

A96 Dog 2016-08-29 Cambodia-PreyBaSrei 11.1387450561154 105.356460283662

Z121 Dog 2015-08-31 Cambodia-BoengVeaeng 11.5144891447523 105.443031145452

W06 Dog 2012-01-11 Cambodia-KbalDamrei 11.2909567425241 105.439587930347

Z179 Dog 2015-12-21 Cambodia-ChambakChrum 11.3307000397135 105.626801400983

KM366231 Dog 2008-08-21 Cambodia-KgSpeu-Thpong-RongRoeurng-ThmeyDongTung 11.72 104.524

KM366294 Dog 2006-12-25 Cambodia-PhnomPenh-7makara-Mithpheap 11.559 104.899

X186 Dog 2013-08-16 Cambodia-SvayAntorTiMuoy 11.5874913553508 105.422407366143

X295 Dog 2013-12-28 Cambodia-OuKandaolTboung 11.5001299657879 105.441835005408

Z112 Dog 2015-08-12 Cambodia-PouPoat 11.3759179478146 105.524295534045

S53 Dog 2017-12-20 Cambodia-PreyChek 11.3092735104284 105.649139968055

S616 Dog 2017-11-21 Cambodia-PreyChek 11.3092735104284 105.649139968055

S81 Dog 2017-04-19 Cambodia-PreyAndoung 11.1954643239765 105.54451309404

S18 Dog 2017-01-16 Cambodia-AngkSvay 11.021003803905 105.916730018306

Y52 Dog 2014-02-24 Cambodia-BaReach 11.3667679479711 105.480735774568

KM366286 Dog 2011-11-14 Cambodia-KgSpeu-Borseth-SvayRompea-TramSarSar 11.195 104.566

W225 Dog 2012-09-26 Cambodia-PreySralet 11.7233524803802 105.218272929474

A148 Dog 2016-12-14 Cambodia-Kakruos 10.9651587749092 105.86265387825

W37 Dog 2012-02-20 Cambodia-ReaksmeiRumdaoh 12.2432244352537 105.138266962973

X259 Dog 2013-11-05 Cambodia-SampongChey 12.1854423347737 105.129835033526

KM366284 Dog 2011-07-26 Cambodia-Kapot-Dangtung-Torteung-Toch 10.712 104.526

W19 Dog 2012-01-30 Cambodia-VealAmpil 12.3478570753281 105.131882967047

X125 Dog 2013-05-13 Cambodia-VarintTiBei 11.8945073522558 105.133496995627

X274 Dog 2013-11-29 Cambodia-ThmaDa 12.187181908254 105.187114634029

505498260732.501 813987459510.21 raoPgnealK-aidobmaC 40-70-2102 goD261W

KM366308 Dog 2003-07-28 Cambodia-PreyVeng-Pmesang-Chiphuch-Krosaing 11.313 105.513

KM366290 Dog 2001-12-26 Cambodia-KampongCham-Bateay-Bateay-SvayPok 11.995 104.954

236.501 731.11 krolhT-ruoKlrorK-murhCyavS-gneiRyavS-aidobmaC 82-10-4002 goD 203663MK

683.501 752.11 yermadgnoR-monhpgnueohC-monhpaB-gneVyerP-aidobmaC 60-90-0002 goD 572663MK

707.401 855.11 htihcPyerP-ueLgnormaS-eluonsgnA-ladnaK-aidobmaC 61-80-0002 goD 533663MK

821.501 568.11 oaBarKyorhC-raakoR-saeMgnuK-mahCgnopmaK-aidobmaC 52-10-9991 goD 903663MK

AN AN aidobmaC 9991 sirailimaf-sinaC-goD 252841XK

701.501 523.21 lipmAlouT-oalarS-yaraB-mohTgK-aidobmaC 61-20-9002goD 882663MK

939.401 335.11 2vopmArabhC-yehcnaeM-hnePmonhP-aidobmaC 80-20-7002 goD 982663MK

702.501 729.11 korSyessueR-korSyessueR-rohtnaSyerS-mahCgK-aidobmaC 32-20-9002 goD 832663MK

379913512089.401 7261716035048.11 iemhTmaepS-aidobmaC 31-30-3102 goD 37X

527930837208.401 5960137561388.11 voPaT-aidobmaC 11-21-4102 goD 922Y

839437798935.401 2914328856147.11 gnuoDgnarK-aidobmaC 70-30-3102 goD 76X

959881641831.501 2246640828042.21 tueaKyolhK-aidobmaC 90-40-2102 goD 67W

361904393519.401 8968556535788.11 yoPaT-aidobmaC 03-21-4102 goD 742Y

930194463748.401 766441725517.11 lodKgneoB-aidobmaC 30-10-3102 goD 20X

493830474290. 501 9744155133639. 11 
ueLyaPyae R- ai dob ma C 60- 21- 4102 go D 622Y

59375707619. 401 2476629279388. 11 
gnoh C- ai dob ma C 72- 50- 4102 go D 89Y

458273903490. 501 1664662190258. 11 r
Aako R- ai dob ma C 10- 11-

3102 go D 052X

772016880600. 501 527430790819. 11 
gnevh Cgneut S- ai dob ma C 62- 20- 3102 go D 45X

879254127279. 401 8379863333100. 11 i
kkae maS- ai dob ma C 81- 21- 4102 go D 632Y

849725841044. 501 317867917369. 11 
ki hCkeaer P- ai dob ma C 22- 50- 5102 go D 57Z

672247286610. 501 3029093299958. 11 
moar KaevL- ai dob ma C 32- 90- 3102 goD 812X

590724546947. 401 8821120724377. 11 
gnu Rli p mA- ai dob maC 90- 21- 3102 goD 972X

729006163010. 501 7085506278547. 11 
kae MaTk

eaer P- ai dob maC 62- 50- 6102 goD 65A

268399642049. 401 1439795254720. 21 gnueal hTgnaT-
ai dob maC 71- 11-

4102 goD 012Y

469951387560. 501 1297420402158. 11 
mar Pi Tgneo NaTgnaK- ai dob maC 42- 70- 5102 goD 101Z

876466506061. 501 8953662167250. 21 gnuehCeagnar S- ai dob maC 60- 01- 6102 goD 411
A

Y175 Dog 2014-09-11 Cambodia-Sameakki 11.7951864007816 104.978924291398
981303141241. 501 455968203420. 21 i e mhT- ai dob maC 22- 01- 4102 goD 891Y

710116741150. 501 4646248804190. 21 gneoBar P- ai dob maC10- 30- 7102 goD 92S

Y214 Dog 2014-11-19 Cambodia-Skon 12.0537821675092 105.078621803518

Z104 Dog 2015-08-07 Cambodia-VarintTiMuoy 11.903450545177 105.13509000154

KM366229 Dog 2011-05-20 Cambodia-PhnomPenh-Dangkor-ChamChao-Phum4 11.539 104.824

W290 Dog 2012-12-12 Cambodia-DounTao 12.1948933132659 105.106931107614

S02 Dog 2017-05-11 Cambodia-PhumTiPrammuoy 11.9908010986638 105.458875924966

KM366228 Dog 2008-07-04 Cambodia-PhnomPenh-ReusseyKeo-ChroyChangva-2 11.576 104.936

KM366205 Dog 2010-07-17 Cambodia-PreyVeng-Pearaing-KampongPopil-KhsamTbong 11.643 105.159

KM366211 Dog 2010-09-03 Cambodia-KgChhnang-Boribou-PoPeal-KraChy 12.407 104.447

KM366212 Dog 2008-06-14 Cambodia-Kandal-KhsachKandal-PrekAmpil-PrekDaunhem 11.649 104.962

X96 Dog 2013-04-08 Cambodia-Sangkaeub 11.8823474612279 104.896479652139

W53 Dog 2012-03-07 Cambodia-DaeumChrey 11.8451614163288 104.990571132793

Z04 Dog 2015-01-12 Cambodia-Krouch 12.2297833246655 105.14392349146

S50 Dog 2017-03-06Cambodia-BoengTrav 11.9617928801829 105.162921481121

S745 Dog 2017-09-27 Cambodia-BoengTrav 11.9617928801829 105.162921481121

Z119 Dog 2015-08-27 Cambodia-DeiLeu 12.2994854606809 105.669065651994

A121 Dog 2016-10-18 Cambodia-BallangkKhangLech 12.6976754282025 104.906310299888

Z176 Dog 2015-12-16 Cambodia-ChiAok 12.3735645207112 105.093462295924

a106 Dog 2016-09-21 Cambodia-Tumnob 12.815656573305 105.168713915011

X266 Dog 2013-11-12 Cambodia-ChongDoung 12.4562918750064 105.114288203131

Y172 Dog 2014-09-08 Cambodia-Pnov 12.3627387192812 105.096806760004

X246 Dog 2013-10-30 Cambodia-Tras 12.4884101126768 105.139288612322

S718 Dog 2017-11-13 Cambodia-Prasaeur 12.1758541159538 105.321044847548

Z70 Dog 2015-05-18 Cambodia-KnaorDambang 12.0156116059715 105.017767109214

S03 Dog 2017-05-08 Cambodia-Samraong 12.4073056501855 105.089766622185

KM366303 Dog 2007-11-12 Cambodia-SvayRieng-SvayThom-SvayThom-Krangleav 11.002 105.599

KM366304 Dog 2001-05-07 Cambodia-Kandal-Angsnoul-PreyPouch-PreyPouch 11.466 104.718

KM366348 Dog 2006-10-23 Cambodia-PhnomPenh-Russeykeo-Toekthla 11.547 104.888

KM366207 Dog 2007-09-19 Cambodia-Kandal-Ponhieleu-Chhvang-TaAuk 11.688 104.789

KM366253 Dog 2007-05-28 Cambodia-PreyVeng-Baphnom-CheuChach-Trea 11.26 105.424

KM366314 Dog 2009-05-09 Cambodia-BanteayMeanchey-PoiPet-Nimit-Nimit 13.615 102.739

KM
366224 Dog 2000-08-02 Cam

bodia-Takeo-Tram
Kak-TrapaingKragnog-Kdouch 11.236 104.794

KM
366214 Dog 2003-06-16 Cam

bodia-Phnom
Penh-M

eanchey-ChbarAm
povIi 11.537 104.939

KM
366215 Dog 2002-02-10 Cam

bodia-Takeo-PreyKam
bass-PrekPdov-Sayvar 11.162 104.88

KM
366341 Dog 2004-05-27 Cam

bodia-Phnom
Penh-Russeykeo-ChroyChangva-2 11.576 104.936

KM
366272 Dog 2003-12-29 Cam

bodia-KgChhnang-Sam
akiM

eanchey-Svay-Porithikrai 11.833 104.718

KM
366258 Dog 2006-03-20 Cam

bodia-KgCham
-SreySanthor-PrekRum

deng-SvayTanunKor 11.9 105.257

KM
366269 Dog 1999-01-22 Cam

bodia-Kam
pot-BanteayM

eas-Sam
rongLoeu-Tram

SarSar 10.728 104.597

KM
366254 Dog 2009-07-16 Cam

bodia-Phnom
Penh-M

eanChey-BoengTom
pun-Sansam

kosal 11.531 104.911

KM
366262 Dog 2009-02-10 Cam

bodia-Kandal-KandalStoeng-SpeanThm
or-M

eunTra
11.459 104.872

S758 Dog 2017-02-01 Cam
bodia-TaKaevTiPir 11.663703334647 105.070243563884

Y125 Dog 2014-07-15 Cam
bodia-Peam

TaAek 11.5459170906478 105.028953236105

X23 Dog 2013-01-21 Cam
bodia-LveaSaLeu 11.4581365336032 105.184318872054

X199 Dog 2013-08-29 Cam
bodia-M

ondolBei 13.3693751171259 103.868265125168

X01 Dog 2013-01-03 Cam
bodia-PreaekTaTep 11.6301933437933 104.958772620835

X273 Dog 2013-11-29 Cam
bodia-PreaekThaong 11.6284746521627 104.956039077215

W
233 Dog 2012-10-05 Cam

bodia-SvayDam
nak 11.8098161467508 105.044209924367

Y82 Dog 2014-04-17 Cam
bodia-KaohRoka 11.7544550710571 105.005231439673

A90 Dog 2016-08-20 Cam
bodia-Prohut 11.7194545911191 105.240991473918

W
262 Dog 2012-11-13 Cam

bodia-Veal 11.833733354663 105.05973815005

W
277 Dog 2012-11-26 Cam

bodia-TaKay 11.8970218840455 105.166647723467

S09 Dog 2017-08-07 Cam
bodia-Pou 11.7927685569895 105.086174632167

Z76 Dog 2015-05-28 Cam
bodia-RuesseiThlok 11.0577308289795 105.378783747754

Z143 Dog 2015-10-07 Cam
bodia-RuesseiChuor 11.3042230968575 105.451987483634

Z27 Dog 2015-02-25 Cam
bodia-Thm

ei 11.4579941659299 105.431253716703

S681 Dog 2017-12-05 Cam
bodia-TeanPhleung 11.5537906374614 105.629594299416

KM
366227 Dog 2010-07-26 Cam

bodia-SvayRieng-SvayChrum
-Tasok-BoengAndeng 11.528 104.939

Z153 Dog 2015-10-26 Cam
bodia-PreaekTaSa 11.2357876449419 105.286295307114

S43 Dog 2017-01-24 C
am

bodia-ChongAm
pil 11.6637965486434 105.424439899455

Y189 D
og 2014-10-06 C

am
bodia-SnayPoal 11.6612211004964 105.221389580772

Y106 D
og 2014-06-09 C

am
bodia-SvayTeab 11.7204168719254 105.442429692476

X24 D
og 2013-01-23 C

am
bodia-D

am
nakPringLech 11.8399212256578 105.420348898943

W
107 D

og 2012-05-10 C
am

bodia-Kam
pongPopil 11.653259015854 105.141252446793

A85 D
og 2016-08-13 C

am
bodia-TrapeangSkon 11.3248965370897 105.533457713757

KM
366343 D

og 2004-06-09 C
am

bodia-Phnom
Penh-R

usseykeo-C
hroyC

hangva-4 11.591 104.94

S28 D
og 2017-01-30 C

am
bodia-PreySniet 11.6226149074733 105.253466475246

KM
366337 D

og 2009-09-05 C
am

bodia-KgSpeu-Thpong-VealPon-PreyM
ich 11.788 104.609

KM
366204 D

og 2004-09-01 C
am

bodia-Siem
R

eap-Puok-D
oungKeo-KoukPhnao 13.473 103.756

KM
366218 D

og 2003-11-07 C
am

bodia-Kam
pongSpeu-Sam

roungTong-Vorsar-C
ham

bok 11.472 104.566 70
1.

50
1 

59
1.

21
 y

od
K-

ye
h

Cg
nu

eo
dS

- y
er

Pg
nu

eo
h

C-
ma

h
Cg

K-
ai

do
b

ma
C 

40
- 1

1-
11

02
 g

o
D

02
26

63
MK KM

366226 D
og 2001-03-24 C

am
bodia-Phnom

Penh-M
eanC

hey-N
iroude-TaN

gov 11.556 104.851

KM
366209 D

og 2002-05-16 C
am

bodia-U
doorM

eanchey-AnloungVeng-AnloungVeng-TuolKandal 14.229 104.104

KM
366210 D

og 2000-08-06 C
am

bodia-Kam
pongSpeu-Bosed-PorM

uoyR
eal-TaN

uon 11.138 104.55

W
190 D

og 2012-08-06 C
am

bodia-BaBaong 11.3855165373081 105.328460183173

X91 D
og 2013-03-28 C

am
bodia-Boeng 11.3361524907562 105.635573928013

KM
366206 D

og 2004-05-04 C
am

bodia-KgC
hhnang-ToekPhus-KraingSke-PraShet 12.22 104.464

KM
366213 D

og 1998-03-12 C
am

bodia-Kam
pongC

hhnang-Kam
pongTralach-Lonvaek-AnlongTnout 11.891 104.712

A116 D
og 2016-10-08 C

am
bodia-Prasat 11.1479161784892 105.543023250711

Z102 D
og 2015-07-24 C

am
bodia-C

heachThum
 11.9210818667589 105.856334310683

A137 D
og 2016-11-25 C

am
bodia-Veang 11.3246654503027 105.546103096387

S664 D
og 2017-12-15 C

am
bodia-C

hantum
 11.8496181020663 105.637038940725
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Y137 D
og 2014-07-29 C

am
bodia-PreyTbaeng 11.6042766637204 105.511481576715

Z58 D
og 2015-04-28 C

am
bodia-SrahTaO

em
 11.2840872424048 105.653581958747

K
M

366230 D
og 2011-08-02 C

am
bodia-BanteayM

eanchey-P
oipet-P

oipet-P
alelay 13.649 102.57

K
M

366267 D
og 2010-08-21 C

am
bodia-P

hnom
P

enh-D
angkor-C

hom
chao 11.527 104.846

E
U

086210 C
anis-lupus-fam

iliaris 2001 Vietnam
 N

A N
A

K
X

148254 C
anis-lupus-fam

iliaris 2001 Vietnam
 N

A N
A

E
U

086209 C
anis-lupus-fam

iliaris 2001 Vietnam
 N

A N
A

G
U

992307 C
anis-lupus-fam

iliaris 1983 Thailand N
A N

A

E
U

086207 H
om

o-sapiens 1983 Thailand N
A N

A

E
U

086206 H
om

o-sapiens 1983 Thailand N
A N

A

G
Q

303555 H
om

o-sapiens
2009-02-05 Thailand N

A N
A

G
Q

303556 C
anis-lupus-fam

iliaris 2009-01-12 Thailand N
A N

A

K
M

366257 D
og 2006-10-08 C

am
bodia-P

reyVeng-M
esang-C

hhiP
uch-Trork 11.309 105.548

K
M

366270 D
og 2003-11-10 C

am
bodia-K

am
pot-A

ngkorC
hey-Tany-P

ral 10.783 104.665

Y
127 D

og 2014-07-16 C
am

bodia-K
am

pongS
am

buor 13.1271597126024 103.219713226862

K
M

366242 D
og 2001-09-20 C

am
bodia-K

am
pongThom

-K
am

pongS
vay-A

charLeak-A
charLeak 12.725 104.893

K
M

366260 D
og 2002-06-05 C

am
bodia-K

am
pot-A

ngkorC
hey-Tani-R

eussei 10.772 104.684

K
M

366217 D
og 2009-03-25 C

am
bodia-K

ohK
ong-B

otum
sakor-A

ngdongToek-A
ngdongToek 11.191 103.478

K
M

366299 D
og 2009-01-26 C

am
bodia-P

reahV
ihear-K

hcham
S

an-K
hcham

S
an-TorkS

ralao 14.214 104.936

K
M

366301 D
og 2009-08-19 C

am
bodia-K

gC
hhnang-R

oleaP
haA

ir-R
oleaP

haA
ir-P

reyK
hm

er 12.165 104.665

A
B

981677 C
anis-lupus 2012-03-02 Laos-C

ham
pasak N

A N
A

M
N

075931 C
anis-lupus-fam

iliaris 1999 Thailand N
A N

A

A
B

981674 C
anis-lupus 2012-02-17 Laos-C

ham
pasak N

A N
A

A
B

981676 C
anis-lupus 2012-03-07 Laos-V

ientianeC
apital N

A N
A

A
B

981663 D
og-C

anis-fam
iliaris 2011 Laos-C

ham
pasak N

A N
A

A
B

981664 D
og-C

anis-fam
iliaris 2011 Laos-V

ientianeC
apital N

A N
A

A
B

981672 C
anis-lupus 2012-03-07 Laos-V

ientianeC
apital N

A N
A

A
B

981675 C
anis-lupus 2012-03-04 Laos-C

ham
pasak N

A N
A

A
B

981670 C
anis-lupus 2011-02-21 Laos-C

ham
pasak N

A N
A

A
B

981666 C
anis-lupus 2011-11-07 Laos-V

ientianeC
apital N

A N
A

A
B

981665 C
anis-lupus 2011-11-01 Laos-V

ientianeC
apital N

A N
A

A
B

981668 C
anis-lupus 2011-10-02 Laos-V

ientianeC
apital N

A N
A

A
B

981667 C
anis-lupus 2011-09-01 Laos-V

ientianeC
apital N

A N
A

A
B

981673 C
anis-lupus 2012-02-02 Laos-V

ientianeC
apital N

A N
A

A
B

981671 C
anis-lupus 2012-03-12 Laos-V

ientianeC
apital N

A N
A

A
B

981669 C
anis-lupus 2011-06-13 Laos-V

ientianeC
apital N

A N
A

K
X

148256 D
og-C

anis-fam
iliaris 2002

Laos N
A N

A

K
X

148255 D
og-C

anis-fam
iliaris 1999 Laos N

A N
A

E
U

086195 C
anis-lupus-fam

iliaris 2002 Laos N
A N

A

E
U

086193 C
anis-lupus-fam

iliaris 1999 Laos N
A N

A

K
X

148257 D
og-C

anis-fam
iliaris 2002 Laos N

A N
A

K
X

148258 D
og-C

anis-fam
iliaris 2002 Laos N

A N
A

E
U

086194 C
anis-lupus-fam

iliaris 2002 Laos N
A N

A

K
M

366268 D
og 2005-09-07 C

am
bodia-P

hnom
P

enh-M
eanC

hey-P
rekP

ra-O
uA

ndaung1 11.492 104.952
E

U
086170 C

anis-lupus-fam
iliaris 1997 C

am
bodia N

A N
A

M
W

690139 C
anis-lupus-fam

iliaris 2015-08-24 M
alaysia-P

ekanK
akiB

ukit-P
erlis N

A N
A

M
W

690140 C
anis-lupus-fam

iliaris 2015-09-02 M
alaysia-K

angar-P
erlis N

A N
A

M
W

690141 C
anis-lupus-fam

iliaris 2016-03-31 M
alaysia-C

huping-P
erlis N

A N
A

M
W

690154 Felis-catus 2018-11-06 M
alaysia-K

ubangP
asu-K

edah N
A N

A
M

W
690155 C

anis-lupus-fam
iliaris 2018-11-12 M

alaysia-Jitra-K
edah N

A N
A

M
W

690152 C
anis-lupus-fam

iliaris 2018-06-11 M
alaysia-K

angar-P
erlis N

A N
A

M
W

690142 C
anis-lupus-fam

iliaris 2017-02-14 M
alaysia-P

adangTerap-K
edah N

A N
A

K
X

148248 D
og-C

anis-fam
iliaris 1999 M

yanm
ar N

A N
A

E
U

086166 C
anis-lupus-fam

iliaris 1999 M
yanm

ar N
A N

A
E

U
086165 C

anis-lupus-fam
iliaris 1999 M

yanm
ar N

A N
A

K
X

148247 D
og-C

anis-fam
iliaris 1999 M

yanm
ar N

A N
A

E
U

086164 C
anis-lupus-fam

iliaris 1999 M
yanm

ar N
A N

A
E

U
293111 H

um
an-H

om
o-sapiens 1983 Thailand N

A N
A

E
U

086208 H
om

o-sapiens 1983 Thailand N
A N

A
M

N
726848 C

anis-lupus-fam
iliaris 2016 P

hilippines N
A N

A

M
N

726878 C
anis-lupus-fam

iliaris 2018 P
hilippines N

A N
A

M
N

857169 C
anis-lupus-fam

iliaris 2019-05-31 P
hilippines-P

asay N
A N

A

M
N

726839 C
anis-lupus-fam

iliaris 2015 P
hilippines N

A N
A

M
N

726853 C
anis-lupus-fam

iliaris 2012 P
hilippines N

A N
A

M
N

726856 C
anis-lupus-fam

iliaris 2012 P
hilippines N

A N
A

M
N

726861 C
anis-lupus-fam

iliaris 2015 P
hilippines N

A N
A

M
N

726847 C
anis-lupus-fam

iliaris 2017 P
hilippines N

A N
A

M
N

726851 C
anis-lupus-fam

iliaris 2014 P
hilippines N

A N
A

M
N

726882 C
anis-lupus-fam

iliaris 2019 P
hilippines N

A N
A

M
N

726854 C
anis-lupus-fam

iliaris 2015 P
hilippines N

A N
A

M
N

726855 C
anis-lupus-fam

iliaris 2016 P
hilippines N

A N
A

M
N

726881 C
anis-lupus-fam

iliaris 2015 P
hilippines N

A N
A

M
N

726862 C
anis-lupus-fam

iliaris 2013 Philippines N
A N

A

M
N

726873 C
anis-lupus-fam

iliaris 2014 Philippines N
A N

A

M
N

726838 C
anis-lupus-fam

iliaris 2013 Philippines N
A N

A

M
N

726871 C
anis-lupus-fam

iliaris 2013 Philippines N
A N

A

M
N

726836 C
anis-lupus-fam

iliaris 2013 Philippines N
A N

A

M
N

726866 C
anis-lupus-fam

iliaris 2014 Philippines N
A N

A

M
N

726869 Felis-catus 2013 Philippines N
A N

A

M
N

726874 C
anis-lupus-fam

iliaris 2012 Philippines N
A N

A

M
N

726846 C
anis-lupus-fam

iliaris 2015 Philippines N
A N

A

M
N

726858 C
anis-lupus-fam

iliaris 2016 Philippines N
A N

A

M
N

726867 C
anis-lupus-fam

iliaris 2012 Philippines N
A N

A

M
N

726868 C
anis-lupus-fam

iliaris 2016 Philippines N
A N

A

KX148262 D
og-C

anis-fam
iliaris 1994 Philippines N

A N
A

KX148260 D
og-C

anis-fam
iliaris 2004 Philippines N

A N
A

EU
086205 H

om
o-sapiens 2004 Philippines N

A N
A

KX148259 D
og-C

anis-fam
iliaris 1994 Philippines N

A N
A

EU
086200 C

anis-lupus-fam
iliaris 1994 Philippines N

A N
A

LC
550019 C

anis-lupus-fam
iliaris 2019-10-18 Philippines-R

egionIii-Bulacan N
A N

A

LC
550021 C

anis-lupus-fam
iliaris 2019-10-18 Philippines-R

egionIii-Bulacan N
A N

A

LC
550020 C

anis-lupus-fam
iliaris 2019-10-18 Philippines-R

egionIii-Bulacan N
A N

A

LC
550025 C

anis-lupus-fam
iliaris 2019-08-05 Philippines-R

egionIii-Pam
panga N

A N
A

LC
550022 C

anis-lupus-fam
iliaris 2019-10-03 Philippines-R

egionIii-Bulacan N
A N

A

M
N

857170 C
anis-lupus-fam

iliaris 2019-05-27 Philippines-Angono-R
izal N

A N
A

LC
550018 C

anis-lupus-fam
iliaris 2019-10-24 Philippines-R

egionIii-Zam
bales N

A N
A

LC
550027 C

anis-lupus-fam
iliaris 2019-06-21 Philippines-R

egionIii-Pam
panga N

A N
A

M
N

857167 Canis-lupus-fam
iliaris 2019-06-26 Philippines-Caloocan NA N

A

M
N857168 Canis-lupus-fam

iliaris 2019-05-28 Philippines-Q
uezon NA NA

LC550026 Canis-lupus-fam
iliaris 2019-07-05 Philippines-RegionIii-Pam

panga NA NA

LC550024 Canis-lupus-fam
iliaris 2019-08-13 Philippines-RegionIii-Pam

panga NA NA

M
N857171 Feliform

ia 2019-05-06 Philippines-SanM
iguel-Bulacan NA NA

LC550023 Canis-lupus-fam
iliaris 2019-10-03 Philippines-RegionIii-NuevaEcija NA NA

M
N726859 Canis-lupus-fam

iliaris 2015 Philippines NA NA

KX148261 Dog-Canis-fam
iliaris 1994 Philippines NA NA

EU086202 Canis-lupus-fam
iliaris 1994 Philippines NA NA

M
N726842 Canis-lupus-fam

iliaris 2019 Philippines NA NA

M
N726880 Canis-lupus-fam

iliaris 2019 Philippines NA NA

M
N726876 Canis-lupus-fam

iliaris 2018 Philippines NA NA

M
N726852 Canis-lupus-fam

iliaris 2018 Philippines NA NA

M
N726863 Canis-lupus-fam

iliaris 2015 Philippines NA NA

M
N726872 Canis-lupus-fam

iliaris 2017 Philippines NA NA

M
N726879 Canis-lupus-fam

iliaris 2012 Philippines NA NA

M
N726841 Canis-lupus-fam

iliaris 2014 Philippines NA
NA

M
N726870 Canis-lupus-fam

iliaris 2014 Philippines NA NA

EU086201 Canis-lupus-fam
iliaris 1994 Philippines NA NA

KX148263 Dog-Canis-fam
iliaris 1994

Philippines NA NA

EU086203 Hom
o-sapiens 2000 Philippines NA NA

EU086204 Hom
o-sapiens 2001 Philippines NA NA

EU159398 Hom
o-sapiens 1986 China NA NA

EU086184 Cervus-nippon 1993 China NA NA

GU358653 Dog-Canis-fam
iliaris 1994 China-Guangxi NA NA

HQ317918 Hom
o-sapiens 1956 China NA NA

M
W

055214 Canis-lupus-fam
iliaris 2017 Vietnam

-PhuTho NA NA

M
W

055215 Canis-lupus-fam
iliaris 2017 Vietnam

-PhuTho NA NA

MW
055229 Canis-lupus-familiaris 2018 Vietnam-PhuTho NA NA

MW
055230 Canis-lupus-familiaris 2018 Vietnam-PhuTho NA NA

MW
055228 Canis-lupus-familiaris 2017 Vietnam-PhuTho NA NA

MW
055226 Canis-lupus-familiaris 2017 Vietnam-PhuTho NA NA

MW
055227 Canis-lupus-familiaris 2017 Vietnam-PhuTho NA NA

MW
055216 Canis-lupus-familiaris 2017 Vietnam-PhuTho NA NA

MW
055220 Canis-lupus-familiaris 2018 Vietnam-PhuTho NA NA

MW
055223 Canis-lupus-familiaris 2018 Vietnam-PhuTho NA NA

MW
055222 Canis-lupus-familiaris 2018 Vietnam-PhuTho NA NA

MW
055219 Canis-lupus-familiaris 2017 Vietnam-PhuTho NA NA

MW
055221 Canis-lupus-familiaris 2018 Vietnam-PhuTho NA NA

MW
055218 Canis-lupus-familiaris 2017 Vietnam-PhuTho NA NA

MW
055217 Canis-lupus-familiaris 2017 Vietnam-PhuTho NA NA

MW
055225 Canis-lupus-familiaris 2017 Vietnam-PhuTho NA NA

MW
055231 Canis-lupus-familiaris 2018 Vietnam-PhuTho NA NA

MW
055232 Canis-lupus-familiaris 2017 Vietnam-HoaBinh NA NA

MW055233 Canis-lupus-familiaris 2017 Vietnam-PhuTho NA NA

KT932685 Canis-lupus-familiaris 2014-12 China-Yunnan NA NA

JX005943 Homo-sapiens 2010 China-Sichuan NA NA

HQ118104 Canis-lupus-familiaris 1989 China-Anhui NA NA

EU159390 Canis-lupus-familiaris 1998 China NA NA

EU086177 Canis-lupus-familiaris 1987 China NA NA

EU086178 Canis-lupus-familiaris 1969 China NA NA

JN974844 Canis-lupus-familiaris 2007 China NA NA

MG201923 Canis-lupus-familiaris 2003-02-12 China NA NA

EU086175 Canis-lupus-familiaris 1997 China NA NA

KC465373 Homo-sapiens 2012 China NA NA

HQ118109 Canis-lupus-familiaris 2008 China-Zhejiang NA NA

KT894559 Canis-lupus-familiaris 2009 China-Chongqing NA NA

KC465367 Canis-lupus-familiaris 2005 China NA NA

MW690143 Felis-catus 2017-07-07 Malaysia-Serian-Sarawak NA NA

MW690145 Canis-lupus-familiaris 2017-07-13 Malaysia-Serian-Sarawak NA NA

MW690153 Canis-lupus-familiaris 2018-09-25 Malaysia-SriAman-Sarawak NA NA

MW690151 Canis-lupus-familiaris 2018-04-06 Malaysia-KotaSamarahan-Sarawak NA NA

MW690149 Canis-lupus-familiaris 2018-01-17 Malaysia-KotaSamarahan-Sarawak NA NA

MW690148 Canis-lupus-familiaris 2017-12-28 Malaysia-Bau-Sarawak NA NA

MW690147 Canis-lupus-familiaris 2017-09-08 Malaysia-Kuching-Sarawak NA NA

MW690146 Canis-lupus-familiaris 2017-07-13 Malaysia-Serian-Sarawak NA NA

MW690144 Canis-lupus-familiaris 2017-07-11 Malaysia-Serian-Sarawak NA NA

MW690150 Felis-catus 2018-02-02 Malaysia-Kuching-Sarawak NA NA

KX148266 Dog-Canis-familiaris 2003 Indonesia NA NA

EU086192 Canis-lupus-familiaris 2003 Indonesia NA NA

EU159387 Homo-sapiens 1985 China NA NA

EU086185 Homo-sapiens 1992 China NA NA

GU345747 Human-Homo-sapiens 1986 China-Ningxia NA NA

JX987737 Bubalus-bubalis 2003-07-11 Nepal-PokharaRegion NA NA

MK124737 Canis-lupus-familiaris 2017-12-11 China-Xinjiang NA NA

AB570998 Bos-taurus 2006 Mongolia-Zavkhan NA NA

MN642579 Canidae 2019 China-InnerMongolia NA NA

KX148159 Sheep-Ovis-aries 1974 Iran NA NA

KY002901 Vulpes-corsac 2001 Russia-OmskOblast NA NA

MG996457 Canidae 2015 Russia NA NA

MK598347 Vulpes-vulpes 2016 Hungary NA NA

MK598349 Capra-hircus 2017 Hungary NA NA

MF197743 Canidae 2010-08 Poland-LesserPoland NA NA

MK598346 Vulpes-vulpes 2010 Hungary NA NA

MK598361 Vulpes-vulpes 2013 Hungary NA NA

MK598397 Vulpes-vulpes 2014 Hungary NA NA

KX148160 Human-Homo-sapiens 1991 Hungary NA NA

MK598339 Vulpes-vulpes 2007 Hungary NA NA

JF973791 Canidae 1998 Serbia NA NA

JF973804 Canis-lupus-familiaris 2000 Serbia NA NA

MK598344 Vulpes-vulpes 2009 Hungary NA NA

KX148138 Red-fox-Vulpes-vulpes 1993 Hungary NA NA

JN008438 Canidae 1986 BosniaAndHerzegovina NA NA

JF973796 Canidae 1999 BosniaAndHerzegovina NA NA

MK598398 Felis-catus 1996 Hungary NA NA

JF973793 Feliformia 1997 Serbia NA NA

KX148130 Canidae 1994 Slovenia NA NA

FJ424484 Vulpes-vulpes 2008-10 Italy NA NA

KX148128 Red-fox-Vulpes-vulpes 1992 France NA NA

KX148114 Red-fox-Vulpes-vulpes 1995 Poland NA NA

KX148161 Red-fox-Vulpes-vulpes 1972 Serbia NA NA

JF973779 Feliformia 1977 Serbia NA NA

KY860593 Canidae 2010 Turkey NA NA

KY860601 Canidae 2014 Turkey NA NA

KY860589 Canidae 2006 Turkey NA NA

KY860587 Canidae 2001 Turkey NA NA

KY860590 Canidae 2007 Turkey NA NA

KY860612 Canis-lupus-familiaris 1989 Turkey NA NA

DQ837393 Canis-lupus-familiaris 2005 Israel NA NA

KX148166 Dog-Canis-familiaris 1993 Turkey NA NA

DQ837410 Canis-lupus-familiaris 2003 Israel NA NA

DQ837425 Bos-taurus 1998 Jordan NA NA

DQ837435 Canidae 1999 Israel NA NA

DQ837484 Canidae 1995 Israel NA NA

KX148170 Fox-Und. 1990 Oman NA NA

KX148168 Fox-Und. 1987 SaudiArabia NA NA

MN534897 Canidae 2018 Qatar NA NA

MK760709 Canis-lupus-familiaris 2012-10-19 Iran-Mazandaran-Savadkooh NA NA

MK760727 Canidae 2013-12-29 Iran-Fars-Eqlid NA NA

KX148186 Wolf-Canis-pallipes 1984 Iran NA NA

KX148185 Wolf-Canis-pallipes 1996 Iran NA NA

MK760695 Canidae 2011-01-08 Iran-Gilan-Masal NA NA

KY860606 Canidae 2001 Turkey NA NA

KX148190 Jackal-Canis-aureus 1976 Iran NA NA

MK760687 Canis-lupus-familiaris 2009-04-11 Iran-Kurdistan-Gharveh NA NA

KX148189 Dog-Canis-familiaris 1985 Iran NA NA

KX148188 Wolf-Canis-pallipes 1991 Iran NA NA

DQ837441 Bos-taurus 1997 Israel NA NA

DQ837443 Canis-lupus-familiaris 2000 Israel NA NA

KJ957437 Mongoose 2011 Grenada NA NA

MG458319 Herpestidae 2012 Grenada NA NA

KJ957434 Mongoose 2011 Grenada NA NA

KJ957442 Mongoose 2012 Grenada NA NA

KJ957447 Canis-lupus-familiaris 2013-01-17 Grenada NA NA

KJ957444 Mongoose 2012 Grenada NA NA

KJ957445 Mongoose 2012 Grenada NA NA

KJ957446 Canis-lupus-familiaris 2013-01-09 Grenada NA NA

KJ957449 Mongoose 2013 Grenada NA NA

KJ957448 Canis-lupus-familiaris 2013-02-14 Grenada NA NA

KJ957432 Mongoose 2011 Grenada NA NA

KJ957441 Mongoose 2012 Grenada NA NA

MW055110 Canis-lupus-familiaris 2016 Georgia NA NA

MT079910 Canis-lupus-familiaris 2015-04-22 Georgia-ShidaKartli NA NA

MT079955 Bos-taurus 2016-07-20 Georgia-KvemoKartli NA NA

MK760766 Canis-lupus-familiaris 2015-10-04 Iran-Mazandaran-Behshahr NA NA
MK760679 Canis-lupus-familiaris 2008-04-23 Iran-Hamadan-Asadabad NA NA
EU853566 Homo-sapiens 1986 Tunisia NA NA
EU853568 Homo-sapiens 1996 Algeria NA NA
EU853567 Homo-sapiens 1996 Algeria NA NA
KX148197 Dog-Canis-familiaris 2015 Algeria NA NA
KX148193 Dog-Canis-familiaris 2008 Morocco NA NAKX148194 Dog-Canis-familiaris 1989 Morocco NA NAEU851127 Canis-lupus-familiaris 1990 Spain-Melilla NA NAEU851129 Canis-lupus-familiaris 1985 Spain-Melilla NA NAKX148195 Dog-Canis-familiaris 2004 Morocco NA NAKX148196 Dog-Canis-familiaris 1990 Morocco NA NAKF155001 Cow-Bos-taurus 2009 Morocco NA NAEU853570 Homo-sapiens 1991 Morocco NA NAEU853572 Homo-sapiens 1986 Morocco NA NAGQ412744 Canis-lupus-familiaris 1931 China-Beijing NA NA

JN234411 Canis-lupus-familiaris 1931 China NA NA
EU853573 Homo-sapiens 1986 Tunisia NA NA

EU853574 Homo-sapiens 1986 Tunisia NA NA
EU853576 Homo-sapiens 1986 Tunisia NA NA

EU853577 Homo-sapiens 1986 Tunisia NA NA
MK981888 Canis-lupus-familiaris 1993 Tunisia NA NA

EU853578 Homo-sapiens 1986 Tunisia NA NA

EU853579 Homo-sapiens 1986 Tunisia NA NA

MW055123 Ovis-aries 2018 Kenya-Siaya NA NA

EU853581 Canis-lupus-familiaris 1988 Ethiopia NA NA

KX148202 Dog-Canis-familiaris 1995 Gabon NA NA

KT119785 Canis-lupus-familiaris 1996-03-28 Gabon-Libreville NA NA

KT119777 Canis-lupus-familiaris 1989-06-19 Gabon-PortGentil NA NA

KR906774 Canis-lupus-familiaris 2011-09-22 Tanzania-Serengeti NA NA

KR534230 Canis-lupus-familiaris 2010 Tanzania-Serengeti NA NA

DQ900547 Canis-lupus-familiaris 1996-11 Tanzania-Serengeti NA NA

DQ900550 Canis-lupus-familiaris 1997-04 Tanzania-Serengeti NA NA

DQ900568 Crocuta-crocuta 2004-10 Tanzania-Ngorongoro NA NA

AB284510 Canis-lupus-familiaris 1999-10-12 Zambia NA NA

MT454633 Proteles-cristata 2015 SouthAfrica NA NA

MT454640 Otocyon-megalotis 2016 SouthAfrica NA NA

KY553263 Civettictis-civetta 2000 SouthAfrica NA NA

AN AN acirfAhtuoS 1891sneipas-omoH-namuH 301841XK

KT336435 Canis-lupus-familiaris 1993 Zimbabwe NA NA

KT119780 Canis-lupus-familiaris 1992-05-02 CentralAfricanRepublic-Bangui NA NA

KX148210 Human-Homo-sapiens 1998 Madagascar NA NA

JF973781 Bos-taurus 1978 Montenegro NA NA

FJ228496 Mongoose 2006 PuertoRico NA NA

JQ513537 Mongoose 1997 PuertoRico NA NA

JQ513529 Felis-catus 1997 PuertoRico NA NA

JQ513535 Mongoose 1997 PuertoRico NA NA

FJ228497 Mongoose 2006 PuertoRico NA NA

AN AN ociRotreuP 7991 esoognoM 835315QJ

AN AN ociRotreuP 4002 esoognoM 594822JF

AN AN ociRotreuP 6991 esoognoM 825315QJ

AN AN ociRotreuP 7991 esoognoM 435315QJ

AN AN itiaH 8102 sirailimaf-supul-sinaC 921550WM

AN AN ynamreG 2002 sepluv-sepluV 236688UE

AN AN ynamreG 5002 sepluv-sepluV 536688UE

AN AN ynamreG 4002 sepluv-sepluV 436688UE

AN AN ainevolS 2102 eadinaC 316225CK

AN AN ynamreG 1002 sepluv-sepluV 136688UE

AN AN airtsuA 6002 sepluv-sepluV 636688UE

AN AN occoroM 3991 AN 223299UG

AN AN lizarB 5102 sirailimaf-supul-sinaC 001659KM

AN AN lizarB 5102 sirailimaf-supul-sinaC 101659KM

AN AN li zar B 5102 si r aili
maf- supul - si na C 890659K M

AN AN ur eP 5002 snei pas- o mo H 005822JF

AN AN ur eP 4002 eadi na C 105822JF

AN AN abu C 1002 esoogno M 925458YA

AN AN abu C 2002 esoogno M 135458YA

AN AN abuC 1002 esoogno M 435458YA

AN AN abu C 0002 esoogno M 405458YA

AN AN abu C 1002 esoogno M 515458YA

AN AN abu C 1002 esoogno M 525458YA

AN AN abuC 0002 esoogno M 445458YA

AY854545 Mongoose 2000 Cuba NA NA

AN AN abuC 0002 esoogno M 765458YA

AY854574 Mongoose 2001 Cuba NA NA

AY854576 Mongoose 2000 Cuba NA NA

AY854564 Mongoose 2002 Cuba NA NA

AY854561 Mongoose 2002 Cuba NA NA

JF693450 Canis-lupus-familiaris 2007 Colombia NA NA

EU086161 Canis-lupus-familiaris 2004 Colombia NA NA

JF693455 Canis-lupus-familiaris 2000 Colombia NA NA

JF693453 Canis-lupus-familiaris 1995 Colombia NA NA

JF693454 Canis-lupus-familiaris 1995 Colombia NA NA

KT006769 Canis-lupus-familiaris 2013-10-29 Mexico NA NA

MW055107 Canis-lupus-familiaris 2018 Guatemala-Totonicapan NA NA

FJ228518 Canis-lupus-familiaris 2002 Mexico-Chiapas NA NA

KU550103 Homo-sapiens 2014-08-18 CostaRica NA NA

FJ228517 Canis-lupus-familiaris 2001 Honduras NA NA

FJ228522 Bos-taurus 1994 Mexico-Chihuahua NA NA

GU992321 NA 1988 France NA NA

GU992323 NA 1976 France NA NA
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Figure B2: Maximum likelihood tree of worldwide representatives and Cambodian RABV N genes. Tips
are colored by continent, except Cambodian sequences that are colored in dark grey, and by RABV clade that is
determined for each tip with the online RABV genotyping tool RABV-GLUE (http://rabv-glue.cvr.gla.
ac.uk/#/home).
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Table B1: Source of data for each environmental raster.

Original raster Source URL
Elevation raster SRTM (Shuttle Radar Topography Mission) webmap.ornl.gov
Land cover raster IGBP (International Geosphere Biosphere Programme) www.igbp.net
Annual mean temperature WorldClim database, version 2.0 (bioclimatic variable ‘bio1’) worldclim.org
Annual precipitation WorldClim database, version 2.0 (bioclimatic variable ‘bio12’) worldclim.org
Human population density GRUMP (Global Rural-Urban Mapping Project) www.map.ox.ac.uk

Table B2: Investigating the impact of several environmental factors on the dispersal location of RABV
lineages in Cambodia. We report approximated Bayes factor (BF) supports for the association between environ-
mental values and tree node locations. The results are based on 1,000 posterior trees obtained by spatially-explicit
phylogeographic inference. Following Kass and Raftery (1995), we consider a BF value >20 as strong support (in
bold).

Tendency of viral lineages to
avoid circulating within specific

environmental conditions

Tendency of viral lineages to
preferentially circulate within specific

environmental conditions
Environmental factor Full genomes N genes Full genomes N genes

Forest areas >99 >99 0.0 0.0
Savannas >99 >99 0.0 0.0

Grasslands 3.8 3.5 0.3 0.3
Croplands 0.0 0.0 99 >99

Water areas 0.3 0.5 3.7 2.0
Human population density (log10) 0.0 0.0 23.3 >99

Elevation 6.6 44.0 0.2 0.0
Annual mean temperature 0.0 0.0 >99 >99

Annual precipitation 6.0 68.2 0.2 0.0
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Table B3: Investigating the impact of several environmental factors on the dispersal velocity of RABV lin-
eages in Cambodia, based on the analysis of the full genomes data set. The results are based on 1,000 posterior
trees obtained by spatially-explicit phylogeographic inference. R and C indicate if the considered environmental
raster was considered as a resistance (R) or conductance (C) factor, and k is the rescaling parameter used to trans-
form the initial raster (see the text for further detail). For regression coefficients and Q values we report both the
median estimate and the 95% HPD interval. The Bayes factor (BF) supports are only reported when p(Q > 0) is
at least 90%. Following Kass and Raftery (1995), we consider a BF value >20 as strong support for a significant
correlation between the environmental distances and dispersal durations.

Environmental factor k Regression coefficient Q statistic p(Q > 0)p(Q > 0)p(Q > 0) BF
Forest areas (C) 10 0.095 [0.051, 0.132] -0.054 [-0.096, -0.024] 0.00 -

100 0.051 [0.018, 0.091] -0.098 [-0.142, -0.052] 0.00 -
1000 0.027 [0.004, 0.064] -0.122 [-0.164, -0.072] 0.00 -

Forest areas (R) 10 0.118 [0.066, 0.261] -0.031 [-0.083, 0.108] 0.17 -
100 0.029 [0.012, 0.206] -0.118 [-0.161, 0.058] 0.06 -
1000 0.017 [0.001, 0.192] -0.131 [-0.174, 0.041] 0.05 -

Savannas (C) 10 0.122 [0.074, 0.167] -0.025 [-0.065, -0.008] 0.01 -
100 0.071 [0.030, 0.113] -0.078 [-0.126, -0.043] 0.00 -
1000 0.035 [0.007, 0.072] -0.113 [-0.156, -0.069] 0.00 -

Savannas (R) 10 0.107 [0.069, 0.187] -0.043 [-0.066, 0.038] 0.06 -
100 0.009 [0.004, 0.106] -0.138 [-0.179, -0.034] 0.01 -
1000 0.000 [0.000, 0.076] -0.147 [-0.188, -0.060] 0.01 -

Grasslands (C) 10 0.140 [0.093, 0.184] -0.008 [-0.032, 0.003] 0.08 -
100 0.108 [0.063, 0.153] -0.040 [-0.077, -0.012] 0.00 -
1000 0.076 [0.037, 0.118] -0.072 [-0.115, -0.034] 0.00 -

Grasslands (R) 10 0.131 [0.076, 0.189] -0.016 [-0.069, 0.027] 0.10 -
100 0.026 [0.002, 0.106] -0.121 [-0.175, -0.039] 0.01 -
1000 0.001 [0.000, 0.058] -0.146 [-0.189, -0.074] 0.01 -

Croplands (C) 10 0.131 [0.073, 0.288] -0.018 [-0.069, 0.136] 0.27 -
100 0.098 [0.013, 0.350] -0.050 [-0.149, 0.192] 0.13 -
1000 0.088 [0.002, 0.331] -0.061 [-0.163, 0.182] 0.11 -

Croplands (R) 10 0.091 [0.052, 0.134] -0.057 [-0.100, -0.022] 0.00 -
100 0.078 [0.040, 0.121] -0.070 [-0.117, -0.029] 0.00 -
1000 0.076 [0.038, 0.119] -0.072 [-0.121, -0.031] 0.00 -

Water areas (C) 10 0.096 [0.055, 0.145] -0.051 [-0.093, -0.014] 0.00 -
100 0.043 [0.015, 0.088] -0.106 [-0.149, -0.054] 0.00 -
1000 0.028 [0.006, 0.067] -0.122 [-0.165, -0.067] 0.00 -

Water areas (R) 10 0.044 [0.015, 0.104] -0.103 [-0.151, -0.042] 0.00 -
100 0.002 [0.000, 0.032] -0.144 [-0.186, -0.093] 0.00 -
1000 0.002 [0.000, 0.023] -0.146 [-0.186, -0.095] 0.00 -

Human population density (log10, C) 10 0.152 [0.104, 0.195] 0.003 [-0.010, 0.011] 0.74 -
100 0.153 [0.101, 0.205] 0.004 [-0.027, 0.029] 0.61 -
1000 0.137 [0.087, 0.231] -0.013 [-0.056, 0.074] 0.30 -

Human population density (log10, R) 10 0.144 [0.096, 0.188] -0.006 [-0.017, 0.013] 0.17 -
100 0.054 [0.024, 0.099] -0.095 [-0.135, -0.052] 0.00 -
1000 0.011 [0.003, 0.043] -0.137 [-0.177, -0.086] 0.00 -

Elevation (C) 10 0.137 [0.090, 0.178] -0.012 [-0.036, 0.001] 0.03 -
100 0.087 [0.044, 0.136] -0.061 [-0.107, -0.024] 0.00 -
1000 0.046 [0.018, 0.101] -0.101 [-0.148, -0.051] 0.00 -

Elevation (R) 10 0.150 [0.098, 0.207] -0.001 [-0.017, 0.042] 0.46 -
100 0.086 [0.047, 0.201] -0.062 [-0.109, 0.060] 0.06 -
1000 0.046 [0.022, 0.177] -0.101 [-0.147, 0.042] 0.04 -

Annual mean temperature (C) 10 0.153 [0.102, 0.196] 0.002 [-0.001, 0.014] 0.96 3.6
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Table B3 continued from previous page
100 0.153 [0.102, 0.196] 0.003 [0.000, 0.014] 0.96 3.7
1000 0.153 [0.102, 0.196] 0.003 [0.000, 0.014] 0.96 3.7

Annual mean temperature (R) 10 0.150 [0.101, 0.191] -0.001 [-0.005, 0.012] 0.28 -
100 0.150 [0.100, 0.191] -0.001 [-0.005, 0.011] 0.25 -
1000 0.150 [0.100, 0.191] -0.001 [-0.005, 0.011] 0.25 -

Annual precipitation (C) 10 0.133 [0.089, 0.177] -0.016 [-0.037, 0.001] 0.04 -
100 0.127 [0.083, 0.170] -0.022 [-0.046, -0.002] 0.02 -
1000 0.126 [0.082, 0.169] -0.023 [-0.047, -0.002] 0.01 -

Annual precipitation (R) 10 0.145 [0.095, 0.187] -0.006 [-0.021, 0.015] 0.23 -
100 0.139 [0.090, 0.185] -0.012 [-0.031, 0.014] 0.14 -
1000 0.138 [0.089, 0.185] -0.012 [-0.032, 0.013] 0.13 -
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Table B4: Investigating the impact of several environmental factors on the dispersal velocity of RABV lin-
eages in Cambodia, based on the analysis of the full N genes data set. The results are based on 1,000 posterior
trees obtained by spatially-explicit phylogeographic inference. R and C indicate if the considered environmental
raster was considered as a resistance (R) or conductance (C) factor, and k is the rescaling parameter used to trans-
form the initial raster (see the text for further detail). For regression coefficients and Q values we report both the
median estimate and the 95% HPD interval. The Bayes factor (BF) supports are only reported when p(Q > 0) is
at least 90%, which was not the case in the context of the analyses reported in the present table.

Environmental factor k Regression coefficient Q statistic p(Q > 0)p(Q > 0)p(Q > 0) BF
Forest areas (C) 10 0.129 [0.092, 0.173] -0.014 [-0.039, 0.006] 0.10 -

100 0.099 [0.063, 0.142] -0.044 [-0.080, -0.010] 0.00 -
1000 0.069 [0.035, 0.110] -0.075 [-0.115, -0.035] 0.00 -

Forest areas (R) 10 0.092 [0.054, 0.145] -0.050 [-0.089, -0.010] 0.01 -
100 0.023 [0.005, 0.066] -0.118 [-0.163, -0.073] 0.00 -
1000 0.012 [0.001, 0.048] -0.128 [-0.174, -0.084] 0.00 -

Savannas (C) 10 0.152 [0.112, 0.199] 0.009 [-0.012, 0.022] 0.84 -
100 0.120 [0.083, 0.162] -0.023 [-0.057, 0.004] 0.05 -
1000 0.085 [0.051, 0.121] -0.059 [-0.102, -0.022] 0.00 -

Savannas (R) 10 0.049 [0.032, 0.079] -0.094 [-0.124, -0.068] 0.00 -
100 0.004 [0.001, 0.020] -0.138 [-0.182, -0.100] 0.00 -
1000 0.001 [0.000, 0.012] -0.142 [-0.187, -0.103] 0.00 -

Grasslands (C) 10 0.136 [0.099, 0.181] -0.007 [-0.017, 0.001] 0.03 -
100 0.109 [0.072, 0.149] -0.036 [-0.059, -0.014] 0.00 -
1000 0.079 [0.046, 0.119] -0.064 [-0.095, -0.034] 0.00 -

Grasslands (R) 10 0.134 [0.090, 0.182] -0.007 [-0.041, 0.008] 0.16 -
100 0.042 [0.006, 0.096] -0.102 [-0.159, -0.047] 0.00 -
1000 0.005 [0.000, 0.029] -0.137 [-0.182, -0.095] 0.00 -

Croplands (C) 10 0.074 [0.044, 0.115] -0.069 [-0.101, -0.038] 0.00 -
100 0.013 [0.004, 0.046] -0.128 [-0.170, -0.087] 0.00 -
1000 0.001 [0.000, 0.027] -0.140 [-0.187, -0.099] 0.00 -

Croplands (R) 10 0.116 [0.078, 0.163] -0.028 [-0.056, -0.001] 0.02 -
100 0.105 [0.068, 0.150] -0.039 [-0.072, -0.009] 0.01 -
1000 0.103 [0.066, 0.148] -0.042 [-0.075, -0.011] 0.00 -

Water areas (C) 10 0.100 [0.066, 0.141] -0.043 [-0.073, -0.014] 0.00 -
100 0.049 [0.023, 0.082] -0.094 [-0.134, -0.056] 0.00 -
1000 0.030 [0.010, 0.061] -0.112 [-0.153, -0.074] 0.00 -

Water areas (R) 10 0.059 [0.030, 0.102] -0.085 [-0.129, -0.036] 0.00 -
100 0.002 [0.000, 0.026] -0.140 [-0.184, -0.097] 0.00 -
1000 0.001 [0.000, 0.016] -0.142 [-0.187, -0.100] 0.00 -

Human population density (log10, C) 10 0.123 [0.086, 0.167] -0.021 [-0.033, -0.007] 0.00 -
100 0.094 [0.061, 0.140] -0.049 [-0.071, -0.026] 0.00 -
1000 0.070 [0.040, 0.115] -0.073 [-0.104, -0.040] 0.00 -

Human population density (log10, R) 10 0.144 [0.108, 0.190] 0.000 [-0.025, 0.027] 0.51 -
100 0.041 [0.018, 0.083] -0.101 [-0.146, -0.053] 0.00 -
1000 0.018 [0.004, 0.048] -0.124 [-0.171, -0.079] 0.00 -

Elevation (C) 10 0.148 [0.110, 0.193] 0.005 [-0.007, 0.014] 0.81 -
100 0.113 [0.075, 0.153] -0.030 [-0.067, 0.000] 0.03 -
1000 0.063 [0.034, 0.105] -0.080 [-0.123, -0.034] 0.00 -

Elevation (R) 10 0.121 [0.086, 0.162] -0.023 [-0.036, -0.009] 0.00 -
100 0.047 [0.025, 0.081] -0.095 [-0.131, -0.064] 0.00 -
1000 0.022 [0.009, 0.049] -0.120 [-0.158, -0.084] 0.00 -

Annual mean temperature (C) 10 0.142 [0.102, 0.189] -0.001 [-0.006, 0.008] 0.16 -
100 0.142 [0.102, 0.189] -0.002 [-0.006, 0.008] 0.15 -
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Table B4 continued from previous page
1000 0.142 [0.102, 0.189] -0.002 [-0.006, 0.008] 0.15 -

Annual mean temperature (R) 10 0.145 [0.105, 0.192] 0.001 [-0.003, 0.011] 0.75 -
100 0.145 [0.105, 0.192] 0.001 [-0.003, 0.011] 0.76 -
1000 0.145 [0.105, 0.192] 0.001 [-0.003, 0.011] 0.76 -

Annual precipitation (C) 10 0.146 [0.107, 0.192] 0.003 [-0.010, 0.016] 0.69 -
100 0.146 [0.106, 0.190] 0.002 [-0.014, 0.016] 0.61 -
1000 0.146 [0.106, 0.190] 0.002 [-0.014, 0.016] 0.60 -

Annual precipitation (R) 10 0.124 [0.084, 0.167] -0.020 [-0.033, -0.006] 0.01 -
100 0.117 [0.078, 0.159] -0.027 [-0.043, -0.010] 0.01 -
1000 0.116 [0.077, 0.159] -0.028 [-0.044, -0.011] 0.01 -
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Appendix B. Supplementary information on dog rabies spread in Cambodia
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Appendix B. Supplementary information on dog rabies spread in Cambodia
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Appendix B. Supplementary information on dog rabies spread in Cambodia
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Appendix C

Supplementary information on SARS-CoV-2 trans-
mission in Israeli households

All data and codes used to perform the analyses presented in Chapter 3 are available online at https:

//github.com/mlayan/VaccineEffectivenessSheba.

1. Differential testing instructions between vaccinated and
unvaccinated household contacts

Testing instructions were different between household contacts according to their vaccination status and

HCW status. Contacts who had received two vaccine doses at least seven days before detecting the

COVID-19 patient were considered protected and encouraged to perform at least two PCR tests in the

ten days following the detection of the patient. Contacts who did not meet this criterion were required

to perform at least two PCR tests in the ten days following patient detection. If contacts tested positive,

they were not required to perform a second test. Unvaccinated HCW were isolated at home whereas

vaccinated HCW could come to the hospital for work provided a negative PCR test each time they

reported to work.

The proportion of adult/teenager contacts who had at least two PCR tests or one positive PCR test was

79% among unvaccinated contacts and 70% among vaccinated contacts (Table C1). The positivity rate

with one PCR was higher in unvaccinated contacts (30%) compared to vaccinated contacts (3%) but the

proportion of contacts who performed at least two PCR tests was lower among unvaccinated contacts

(49%) compared to vaccinated contacts (67%). When we stratify by HCW status, the proportion of con-

tacts who performed at least two PCR tests is higher in HCW compared to non-HCW among vaccinated

(89% in HCW versus 33% in non-HCW) and unvaccinated (76% in HCW and 45% in non-HCW) con-

tacts. In general, HCW were more tested than the other household contacts but their share was lower in

unvaccinated contacts (12%) compared to vaccinated contacts (61%).

Testing instructions and positivity rates were different between vaccinated contacts, unvaccinated con-

tacts, HCW and non-HCW which makes it difficult to anticipate how vaccine effectiveness would be

impacted. In a sensitivity analysis, we restricted our analysis to households where all negative contacts

performed at least one or two PCR tests. The description of the households is detailed in Sections 8.1

and 8.2.
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Table C1: Number and result of PCR tests performed by adult/teenager household contacts according to
their vaccination status and HCW status. In accordance with the contact categories analyzed in our study,
we report here household members corresponding to the adult/teenager category, i.e., all individuals above 12
years old. Among the 494 adult/teenager household contacts, 16 were considered not susceptible to infection over
follow-up due to past infection over the preceding year, 353 were considered unvaccinated when they received
testing instructions since they had not received two vaccine doses ≥7 days before the detection of the COVID-19
patient, and 125 were considered vaccinated when they received the testing instructions.

Infection in the preceding

year
Unvaccinated

Vaccinated

( ≥7 days after two doses)

Healthcare worker No Yes All No Yes All No Yes All

No test - no (%) 4 (27) 0 (0) 4 (25) 37 (12) 0 (0) 37 (10) 14 (29) 2 (3) 16 (13)

One negative test -

no (%)
8 (53) 1 (100) 9 (56) 38 (12) 0 (0) 38 (11) 17 (35) 4 (5) 21 (17)

One positive test -

no (%)
0 (0) 0 (0) 0 (0) 96 (31) 10 (24) 106 (30) 2 (4) 2 (3) 4 (3)

At least two tests -

no (%)
3 (20) 0 (0) 3 (19) 140 (45) 32 (76) 172 (49) 16 (33) 68 (89) 84 (67)

Total - no 15 1 16 311 42 353 49 76 125

2. Endpoint phone questionnaire to collect household data
At the end of the follow-up, sociodemographic data, household composition characteristics, SARS-CoV-

2 infection-related data, and social distancing behaviors were collected over a phone interview. We

present below the questions translated in English that were asked to the participants.

• Age of the participant

• Sex of the participant

• What is your SARS-CoV-2 immunization status?

• How many people do you share your household with?

◦ How is each of them related to you?

◦ What is their age, sex, and SARS-CoV-2 immunization status (unvaccinated, recovered from

Covid-19, partially vaccinated)?

• Where do you live and how many rooms are there in your house?

◦ How many bathrooms and toilets?

• When was the first case of SARS-CoV-2 in your household diagnosed and who was it?

◦ When did their symptoms begin?

• In the week leading to the index case’s diagnosis, did any household members share a bedroom or

a bathroom with them?

◦ Did any household members dine with them?

◦ Did any household members ride in the car with them?
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• During the index case’s mandated isolation period, did the rest of the household members isolate

from them completely?

◦ Did you still share a bathroom/toilet with them?

• Did you and the rest of your household members undergo PCR and rapid-antigenic testing after

your exposure to the index case?

◦ And if so, how many tests were conducted and on which dates? What were the results?

• Were the rest of the household members symptomatic at any point during the index case’s isolation

period?

3. Secondary attack rates in households in which a single in-
dex case was identified

In the baseline scenario, we calculated the SAR according to the type of contact for all households

regardless of the number of identified index cases. In Table C2, we restricted the calculation of the SAR

to households where a single index case was identified (n = 206). There was barely an impact on the

SAR.

Table C2: Univariate secondary attack rates according to the type of contact or vaccination status of the
index case restricted to households where a single index case was identified.

No. of infected contacts No. of susceptible contacts
SAR

% 95% CI

Contacts

Unisolated and unvaccinated adults/teenagers 77 100 77 66, 85

Isolated and unvaccinated adults/teenagers 71 243 29 24, 35

Unisolated and vaccinated adults/teenagers 11 40 28 15, 44

Isolated and vaccinated adults/teenagers 9 81 11 5, 20

Unisolated children 64 96 67 56, 76

Isolated children 29 86 34 24, 45

Index case

Vaccinated 8 42 19 9, 34

Unvaccinated 256 610 42 38, 46

Abbreviations: CI, confidence interval; SAR, secondary attack rate.

4. Model of SARS-CoV-2 transmission dynamics in house-
holds

4.1. Overview
We developed a statistical model describing SARS-CoV-2 transmission within households that accounts

for tertiary infections (household members infected by a household case who is not the index case),
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infection events in the community, household size, and varying follow up periods between households.

For an individual i in household k, data consist in a vector (ai, si, di, vi, mi, tend) where ai indicates whether

i is an adult/teenager above 12 years old or a child, si is the infection status of individual i (symptomatic

infection, asymptomatic infection or not infected), di is the symptom onset date for symptomatic cases

or the date of the first positive RT-qPCR test for asymptomatic cases, nui is the vaccination status of i,

mi indicates whether i isolated from the index case when applicable, and tend is the end of the follow up

period of household k. For each confirmed case, we augmented their observed data with their unobserved

date of infection. Infection dates were defined as continuous time to ensure the ordering of infection

events within households. Time 0 corresponds to the first infection time in each household. Within

household k, Ik denotes the list of SARS-CoV-2 cases and Sk denotes the list of susceptible individuals.

Susceptible individuals correspond to household contacts that did not report a SARS-CoV-2 infection in

the year preceding the follow-up. Model parameters were estimated in a Bayesian Markov Chain Monte

Carlo (MCMC) framework (Cauchemez et al., 2004).

4.2. Transmission within households
If we consider infector i and infectee j in household k of size n, the instantaneous hazard that i infects j

at time t is:

hi→ j(t) =
β

(n/4)δ
µsus(a j,m j,ν j)µin f (νi)µasymp(si) f (t−ξi|di,si) (C.1)

where:

• β

(n/4)δ
models the dependency between the transmission rate and the household size n. Here, β

corresponds to the transmission rate in households of size 4.

• µsus(a j,m j,ν j) is the relative susceptibility of recipient j according to their age, vaccination status

and isolation status. We define 5 categories of contacts (isolated and unvaccinated adults/teenagers,

unisolated and vaccinated adults/teenagers, isolated and vaccinated adults/teenagers, isolated chil-

dren, unisolated children) that are compared to adults/teenagers who did not isolate and were

unvaccinated. For the reference group, µsus(a j,m j,ν j) = 1.

• µin f (νi) is the relative infectivity of infector i according to its vaccination status.

µin f (νi) =

{
1 if νi = 0

πin f if νi = 1

• µasymp(si) is the relative infectivity of infector i whether i is symptomatic or asymptomatic.

µasymp(si) =

{
1 if si = 1

πasymp if si = 0

In the baseline scenario, we assumed a 40% reduction of the infectivity of asymptomatic cases compared

to symptomatic cases (πasymp = 0.6) as estimated by Byambasuren et al. (2020). In the sensitivity anal-
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ysis, we explored the impact of similar infectivity levels between symptomatic and asymptomatic cases

(πasymp = 1.0) on the estimation of the relative susceptibility and relative infectivity parameters.

f (δt |d,s) is the density of the generation time defined as the distribution of the interval between the

infection time ξi of the infector i and the infection time ξ j of the recipient j conditioned on the symptom

onset or date of detection, and the presence of symptoms of i.

For symptomatic cases, f is derived from the corrected infectivity profile estimated by Ashcroft et al.

(2020), a shifted Γ distribution with shape=97.2, rate=3.7 and shift=25.6. The shift of the distribution

corresponds to the symptom onset of i. According to McAloon et al., 2020, less than 2% of the symp-

tomatic cases develop symptoms over the three days following their infection (McAloon et al., 2020). We

assumed that incubation periods are of 3 days minimum and that the infectious period starts 3 days before

the symptom onset, independent of the duration of the incubation period. For asymptomatic infectors, f

is derived from the same estimate of the infectivity profile so that infectors are infectious starting from 2

days after their infection time and their infectivity peaks approximately 5 days after their infection.

4.3. Instantaneous risk of infection of a household member
The risk of infection of individual j in household k at time ξ is the sum of the hazard of infection within

the community and the hazards of infection by infected household members:

λ j,k(ξ ) = α + ∑
i∈Ik{ξi<ξ}

hi→ j,k(ξ ) (C.2)

where α is the instantaneous risk of infection in the community. It is assumed constant over the follow-up

of households and the entire period of the study.

4.4. Likelihood function
Denote θ the vector of the transmission model parameters. The likelihood of the transmission process

within the household conditional on the first date of infection ξ1 in the household is:

P(ξ |θ) = ∏
i∈I

f (di−ξi) ∏
i∈I−{1}

λi(ξi)e
−
∫ ξi

ξ1
λi(u)du

∏
j∈S

e−
∫ tend

ξ1
λ j(u)du (C.3)

where f (di− ξi) is the density of the incubation period for symptomatic cases or the density of the RT-

qPCR detection period after infection for asymptomatic cases. The distribution of the incubation period

was defined as a truncated log-normal distribution with log-mean=1.63 and log-sd=0.25 as estimated by

McAloon et al., 2020 (McAloon et al., 2020). As previously mentioned, less than 2% of the symptomatic

cases develop symptoms over the three days following their infection according to this distribution. We

assumed that the incubation period lasts at least 3 days and does not exceed 30 days. For the RT-qPCR

detection period, we assumed a Uniform(0,10) distribution.

Household contacts that reported a SARS-CoV-2 infection in the year preceding follow-up (n = 20) were

considered protected from re-infection, and thus, did not contribute to the likelihood of the transmission

process.

255



Appendix C. Supplementary information on SARS-CoV-2 transmission in Israeli households

For the incubation period and the infectivity profile, we used distributions that were estimated on data

from the historical lineages. Over the study period, up to 80% of the infections were caused by the alpha

variant in Israel (Benenson et al., 2021). Yet, there is little knowledge on the mechanisms underlying the

rapid spread of the alpha variant at the individual level. Modelling and phylodynamic studies support

the hypothesis of its higher transmissibility compared to the historical lineages. The results concerning

potentially shorter generation time and longer infectious period are less clear (Volz et al., 2021; Kissler

et al., 2021; Davies et al., 2021). Since participants were not screened for the variants, we assumed that

the infectivity profile and the incubation period remained unchanged between the alpha variant and the

historical lineages.

5. Inference framework
We used a data augmentation MCMC approach to explore the joint posterior distribution of model pa-

rameters and the augmented dates of infection.

5.1. Priors
We choose a Uniform(0,1) prior distribution for the hazard of infection within the community α and

a Uniform(0,5) prior distribution for the per capita transmission rate within households β . For the

dependency between the transmission rate and the household size, the prior distribution for δ was a

Uniform(-3,3) distribution.

For the relative susceptibility of the different categories of contacts µsus and the relative infectivity of

vaccinated cases µin f , a log-normal prior with log-mean=0 and log-sd=1 was used. We investigated the

impact of the log-sd on parameter estimation in a sensitivity analysis (Section 8.3).

5.2. Algorithm
Parameters were updated using a Metropolis-Hastings algorithm.

Data augmentation was performed at each iteration of the MCMC chain. After the update of the param-

eters, the infection times of all COVID-19 cases were updated. For symptomatic cases, the incubation

period was sampled from the distribution mentioned above and the infection date was obtained as the

difference of the symptom onset and the incubation period. For asymptomatic cases, we chose a conser-

vative scenario according to which asymptomatic cases could have been infected up to ten days prior to

their first positive RT-qPCR test independent of the Ct value of the test.

5.3. Implementation
The data augmentation Markov Chain Monte Carlo sampling algorithm was implemented in C++. Chains

were run for 100,000 iterations and one out of 10 iterations were recorded. Marginal posteriors were

sampled from MCMC chains after discarding a burn-in of 10,000 steps. Convergence was inspected

visually.
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6. Model adequacy
To assess the adequation of the model to the data, we performed a simulation study. We simulated from

our household transmission model 2,000 data sets with a structure identical to that of the observed data

(household size, age, vaccination and isolation status of the household members, symptom status of the

index case, proportion of secondary asymptomatic cases, and follow-up period) with parameters equal to

samples from their joint posterior distribution. We compared the observed secondary attack rate (SAR)

to the one expected under the model estimates. There was a good agreement between the observed and

expected SAR for households of size 2 to 5.

Figure C1: Observed and expected secondary attack rates under the model estimates for households of size
2 to 5. Black circles correspond to the observed SAR per household size. The mean and 95% credible interval are
reported.

We also compared the observed and expected distributions of the number of infected individuals per

household size. The observed values fall within the 95% credible interval of the expected values. There

is a good agreement between the observed and expected distributions.
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Table C3: Comparison of the observed and expected distributions of the number of infected individuals for
households of size 2 to 5. The mean and the 95% credible interval are reported.

Household size Distribution
Number of infected individuals per household

1 2 3 4 5

2 Observed 22 10

2 Expected 20.5 (15-26) 11.5 (6-17)

3 Observed 21 9 12

3 Expected 19.2 (14-25) 13.4 (8-19) 9.4 (5-14)

4 Observed 25 9 8 7

4 Expected 21 (14-27) 15.3 (9-22) 8.8 (4-14) 3.9 (1-7)

5 Observed 19 9 10 2 6

5 Expected 12.8 (7-19) 13.2 (8-19) 9.6 (4-15) 6.5 (2-11) 4 (1-8)
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7. Parameter estimates
Table C4 compiles the median and 95% credible interval of the relative susceptibility and relative infec-

tivity estimates that are presented in Figs. 17 and 19, Table C5 compiles the median and 95% credible

interval of the person-to-person probability of transmission presented in Fig. 18, and Fig. C2 depicts the

prior and posterior distributions of model parameters in the baseline analysis. We derive the person-

to-person probability of transmission from the instantaneous risk of transmission from individual i to

individual j presented in equation C.1:

P(i→ j) = 1− exp
(
− β

(n/4)δ
µsus(a j,m j,v j) µin f (vi) µasymp(si)

)
(C.4)

Table C4: Estimates of the relative susceptibility of household contacts and relative infectivity of cases in
the baseline scenario and in the sensitivity analyses. The median and the 95% credible interval are reported. In
the ≥15 days after 1st dose scenario, we assumed that vaccination is effective from 15 days after the 1st injection.
In the 1 PCR test for all contacts and 2 PCR tests for all contacts, we restricted the analysis to the households
where all household members performed at least one or two PCR tests, respectively, in the 10 days following the
detection of the index case. In the 100% infectivity of asymptomatic cases, we assumed that symptomatic and
asymptomatic cases have the same level of infectivity. In the relative susceptibility prior with log-sd=0.7 scenario,
we used a log-sd=0.7 for the prior of the relative susceptibility parameters. In the relative infectivity prior with
log-sd=0.7 scenario, we used a log-sd=0.7 for the prior of the relative infectivity of vaccinated cases compared to
unvaccinated cases parameter. In the baseline scenario, we assumed that vaccination was effective from 7 days
after the 2nd dose, the relative infectivity of asymptomatic cases compared to symptomatic cases was equal to 60%
and the log-sd of the relative infectivity and relative susceptibility prior distributions was equal to 1. The posterior
median and its associated 95% Bayesian credible interval are reported.

Baseline
scenario

≥15 days
after 1st

dose

At least 1
PCR test for
all negative

contacts

At least 2
PCR tests for
all negative

contacts

100%
infectivity of

asymptomatic
cases

Relative
susceptibility

prior and
relative

infectivity
prior with
log-sd=0.7

Relative
susceptibility

prior and
relative

infectivity
prior with
log-sd=2

Relative
susceptibility
Isolated and
unvaccinated

adults/teenagers

0.12
(0.06-0.20)

0.12
(0.06-0.20)

0.10
(0.04-0.21)

0.11
(0.04-0.21)

0.12
(0.06-0.20)

0.16
(0.09-0.25)

0.09
(0.03-0.16)

Unisolated and
vaccinated

adults/teenagers

0.20
(0.08-0.41)

0.16
(0.06-0.35)

0.26
(0.08-0.61)

0.30
(0.09-0.76)

0.19
(0.07-0.37)

0.27
(0.13-0.50)

0.13
(0.02-0.31)

Isolated and
vaccinated

adults/teenagers

0.07
(0.02-0.15)

0.05
(0.02-0.12)

0.11
(0.04-0.25)

0.12
(0.04-0.27)

0.07
(0.02-0.15)

0.11
(0.05-0.21)

0.03
(0-0.08)

Unisolated
children

0.48
(0.31-0.73)

0.44
(0.29-0.69)

0.50
(0.30-0.81)

0.45
(0.26-0.78)

0.45
(0.29-0.69)

0.56
(0.36-0.86)

0.41
(0.26-0.63)

Isolated children 0.16
(0.07-0.30)

0.15
(0.07-0.28)

0.24
(0.10-0.48)

0.23
(0.10-0.45)

0.16
(0.07-0.29)

0.21
(0.11-0.36)

0.11
(0.03-0.23)

Relative
infectivity

Vaccinated case 0.24
(0.06-0.69)

0.29
(0.07-0.77)

0.27
(0.06-0.82)

0.28
(0.07-0.85)

0.21
(0.05-0.62)

0.35
(0.13-0.85)

0.08
(0.01-0.47)
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Table C5: Estimates of the person-to-person transmission probability from vaccinated adult/teenager cases
and unvaccinated cases to the different categories of contacts within a household of size 4. Probabilities are
reported in percentage with their 95% credible interval.

Contact Vaccinated adult/teenager case Unvaccinated case

Unisolated and unvaccinated adults/teenagers 22.2 (6.2-51.6) 65.5 (53.1-76.3)

Isolated and unvaccinated adults/teenagers 2.9 (0.7-9.2) 12.2 (6.3-18.4)

Isolated and vaccinated adults/teenagers 1.6 (0.3-6.2) 7 (2.5-13.9)

Unisolated and vaccinated adults/teenagers 4.7 (1-15.4) 19.1 (7.9-33.5)

Unisolated children 11.3 (2.8-30.2) 39.7 (28.9-50.4)

Isolated children 3.9 (0.8-12.1) 15.6 (7.5-26)
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Figure C2: Prior and posterior distributions of model parameters in the baseline analysis.
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8. Sensitivity analysis

8.1. Households where all contacts performed at least one PCR test in the
ten days following the detection of the index case

In the baseline scenario, household contacts who did not report symptoms and did not perform at least

one PCR test in the ten days following the detection of the index case were considered not infected over

their follow-up (n = 125). In a sensitivity analysis, we verified the robustness of our estimates to this

hypothesis by removing all the households with at least one contact whose outcome was not confirmed

which restricted the analysis to 141 households (Fig. C3). There were 145 index cases, including 4

co-index cases, and 429 household contacts. 410 household contacts were susceptible to SARS-CoV-2

since they did not report any SARS-CoV-2 infection in the preceding year. Among susceptible contacts,

201 (49%) developed a SARS-CoV-2 infection (Table C6). This is slightly higher than the 40% in the

baseline scenario. The characteristics of the index cases and household contacts are relatively similar to

the baseline scenario, except the proportion of contact that is slightly higher in the sensitivity analysis.

This is directly due to the more precise follow-up of household contacts by PCR testing.

Compared to the baseline scenario, the univariate SAR are higher in all contact categories due to the

higher detection of asymptomatic cases (Table C7). The SAR in households with vaccinated index

case(s) is equal to 8% in the sensitivity analysis but there are only 24 household contacts. There is low

statistical power to precisely estimate the reduction of infectivity in vaccinated index cases compared

to unvaccinated index cases which explains why the 95% credible interval is larger in the sensitivity

analysis.
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Figure C3: Flow chart of the households included in the sensitivity analysis where all contacts performed at
least one PCR test in the ten days following the detection of the index case.
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Table C6: Characteristics of the index cases and household contacts according to their age for households
where all contacts had at least one PCR test in the ten days following the detection of the index case.

Adult/teenager index cases

(N = 130)

Child index cases

(N = 15)

All index cases

(N = 145)

Male sex - no. (%) 53 (41) 8 (53) 61 (42)

Age, years - mean (SD) 37 (15) 6 (4) 34 (17)

Cluster size - median (IQR) 2 (1 - 3) 2 (1 - 3.5) 2 (1 - 3)

Symptom status - no. (%)

Symptomatic 117 (90) 6 (40) 123 (85)

Asymptomatic 13 (10) 9 (60) 22 (15)

Vaccination

Vaccinated - no. (%) 10 (8) - 10 (7)

Days from 2nd dose to

detection - median (IQR)
45 (15 - 60) - 45 (15 - 60)

Adult/teenager household contacts

(N = 304)

Child household contacts

(N = 125)

All household contacts

(N = 429)

Male sex - no. (%) 141 (46) 72 (58) 213 (50)

Age, years - mean (SD) 36 (17) 6 (4) 27 (20)

Infection and symptom status -

no. (%)

Past infection 15 (5) 4 (3) 19 (4)

Not infected 161 (53) 48 (38) 209 (49)

Symptomatic 94 (31) 32 (26) 126 (29)

Asymptomatic 33 (11) 41 (33) 74 (17)

Symptomatic (missing onset) 1 (0) 0 (0) 1 (0)

Vaccination

Vaccinated - no. (%) 59 (19) - 59 (14)

Days from 2nd dose to

exposure - median (IQR)
23 (14 - 35) - 23 (14 - 35)

Isolation - no. (%)

Partial 60 (20) 15 (12) 75 (17)

Complete 140 (46) 37 (30) 177 (41)

Missing 2 (1) 0 (0) 2 (0)
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Table C7: Univariate secondary attack rates according to the type of contact restricted to households where
all contacts had at least one PCR test in the ten days following the detection of the index case.

No. of infected

contacts

No. of susceptible

contacts

SAR - %

% 95% CI

Contacts

Unisolated and unvaccinated adults/teenagers 66 81 81 71, 89

Isolated and unvaccinated adults/teenagers 45 147 31 23, 39

Unisolated and vaccinated adults/teenagers 7 19 37 16, 62

Isolated and vaccinated adults/teenagers 8 40 20 9, 36

Unisolated children 52 72 72 60, 82

Isolated children 21 49 43 29, 58

Index

Vaccinated 2 24 8 1, 27

Unvaccinated 199 383 52 47, 57
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8.2. Households where all contacts performed at least two PCR tests in
the ten days following the detection of the index case

We further excluded households where at least one negative household contact did not perform at least

2 PCR tests in the 10 days following the detection of the index case. Here, the analysis is restricted to

130 households (Fig. C4). There were 134 index cases, including 4 co-index cases, and 388 household

contacts, among whom 193 (50%) developed a SARS-CoV-2 infection (Table C8). This is slightly higher

than in the 39% in the baseline scenario. The characteristics of the index cases and household contacts

are relatively similar to the baseline scenario except for the median time from the 2nd dose to detection.

There are less male child index cases and less symptomatic child index cases compared to the baseline

scenario. There are more asymptomatic and symptomatic contact cases compared to the baseline scenario

and the vaccination coverage is lower. Compared to the baseline scenario, the univariate SAR are higher

in all contact categories (Table C9). The SAR in households with vaccinated index case(s) is equal to

10% in the sensitivity analysis but there are only 21 household contacts. There is low statistical power to

precisely estimate the reduction of infectivity in vaccinated index cases compared to unvaccinated index

cases which explains why the 95% credible interval is larger in the sensitivity analysis.
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Figure C4: Flow chart of the households included in the sensitivity analysis where all contacts performed at
least two PCR tests in the ten days following the detection of the index case.
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Table C8: Characteristics of the index cases and household contacts according to their age for households
where all contacts had two PCR tests in the ten days following the detection of the index case.

Adult/teenager index cases

(N = 120)

Child index cases

(N = 14)

All index cases

(N = 134)

Male sex - no. (%) 50 (42) 7 (50) 57 (43)

Age, years - mean (SD) 38 (15) 6 (4) 35 (17)

Cluster size - median (IQR) 2 (1 - 3) 2 (1.25 - 3.75) 2 (1 - 3)

Symptom status - no. (%)

Symptomatic 108 (90) 5 (36) 113 (84)

Asymptomatic 12 (10) 9 (64) 21 (16)

Vaccination

Vaccinated - no. (%) 9 (8) - 9 (7)

Days from 2nd dose to

detection - median (IQR)
46 (13 - 61) - 46 (13 - 61)

Adult/teenager household contacts

(N = 273)

Child household contacts

(N = 115)

All household contacts

(N = 388)

Male sex - no. (%) 126 (46) 67 (58) 193 (50)

Age, years - mean (SD) 35 (17) 6 (4) 27 (19)

Infection and symptom status -

no. (%)

Past infection 8 (3) 2 (2) 10 (3)

Not infected 141 (52) 44 (38) 185 (48)

Symptomatic 91 (33) 28 (24) 119 (31)

Asymptomatic 32 (12) 41 (36) 73 (19)

Symptomatic (missing onset) 1 (0) 0 (0) 1 (0)

Vaccination

Vaccinated - no. (%) 49 (18) - 49 (13)

Days from 2nd dose to

exposure - median (IQR)
24 (14 - 36) - 24 (14 - 36)

Isolation - no. (%)

Partial 53 (19) 11 (10) 64 (16)

Complete 120 (44) 35 (30) 155 (40)

Missing 2 (1) 0 (0) 2 (1)
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Table C9: Univariate secondary attack rates according to the type of contact restricted to households where
all contacts had two PCR tests in the ten days following the detection of the index case.

No. of infected

contacts

No. of susceptible

contacts

SAR

% 95% CI

Contacts

Unisolated and unvaccinated adults/teenagers 66 80 82 72, 90

Isolated and unvaccinated adults/teenagers 43 134 32 24, 41

Unisolated and vaccinated adults/teenagers 6 16 38 15, 65

Isolated and vaccinated adults/teenagers 7 33 21 9, 39

Unisolated children 49 68 72 60, 82

Isolated children 20 45 44 30, 60

Index

Vaccinated 2 21 10 1, 30

Unvaccinated 191 354 54 49, 59
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8.3. Prior distributions of the relative infectivity and relative susceptibil-
ity parameters

The log-sd of the relative susceptibility and relative infectivity parameters modifies the value range that

is likely to be explored. In the baseline scenario, we used a log-sd=1.0 for both the relative infectivity

and relative susceptibility parameters which corresponds to a relatively large 95% interval spanning from

0.14 to 7.1. With log-sd=0.7, the interval considerably shrinks around 1 and with log-sd=2 it spans from

0.02 to 50.4.

Table C10: 2.5% and 97.5% percentiles of the relative infectivity and relative susceptibility prior distribu-
tions.

Log-sd of the prior 2.5% percentile 97.5% percentile

0.7 0.25 3.9

1 0.14 7.1

2 0.02 50.4

8.4. Vaccination definition

8.4.1. Effective vaccination ≥15 days after the 1st dose
In a sensitivity analysis, we tested how a different definition of effective vaccination (≥15 days after

the 1st dose or ≥7 days after the 2nd dose) affects parameter estimates. There are 3 additional vacci-

nated index cases and 16 additional vaccinated adult/teenager contacts in the 1 dose scenario (sensitivity

analysis) compared to the 2 doses scenario (baseline). The 1 dose scenario slightly increases the share

of vaccinated adult/teenager index cases and vaccinated adult/teenager contacts, but it did not impact

parameter estimates (see Fig. 19).

8.4.2. Early vaccination
To determine the impact of early vaccinated cases on our estimates, we restricted the analysis to the

households where the index case was either unvaccinated or infected ≥7days after the 2nd dose (n =

165), i.e., this analysis did not contain households where the index was vaccinated but infected before

the vaccine was considered effective. In this analysis, we excluded 45 households compared to the

baseline scenario. The estimations are represented in Fig. C5 and the values are gathered in Table C12.

Compared to the baseline scenario, the relative susceptibility and relative infectivity parameters were not

impacted.
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Table C11: Vaccination status of the adult/teenager index cases and adult/teenager household contacts ac-
cording to the definition of effective vaccination. Three individuals were exposed to the index case more than
15 days after they received the 1st vaccine dose but did not remember the exact date. Two index cases and three
household contacts were detected or exposed about 15 days after they received the 1st vaccine dose. These individ-
uals were considered as unvaccinated. The remaining 3 household contacts with a missing vaccination date were
vaccinated less than 10 days before their exposure and thus do not verify the definition of effective vaccination.

≥15 days after the 1st dose

(sensitivity analysis)

≥7 days after the 2nd dose

(baseline)

Adult/teenager index cases (N = 191)

Vaccinated - no. (%) 26 (14) 15 (8)

Days from 1st dose to detection - median (IQR) 31 (21 - 67) 44 (13 - 59)

Missing vaccination date - no. (%) 2 (1) 0 (0)

Adult/teenager contacts (N = 494)

Vaccinated - no. (%) 155 (31) 125 (25)

Days from 1st dose to exposure - median (IQR) 40 (29 - 55) 23 (14 - 36)

Missing vaccination date - no. (%) 6 (1) 0 (0)

Figure C5: Estimates of the SARS-CoV-2 transmission parameters within households where the index case
was not early vaccinated. (A) Estimated relative susceptibility of isolated and unvaccinated adults/teenagers,
unisolated and vaccinated adults/teenagers, isolated and vaccinated adults/teenagers, unisolated children, and iso-
lated children versus unisolated and unvaccinated adults/teenagers. (B) Estimated relative infectivity of vaccinated
cases compared to unvaccinated cases. The median estimate and its associated 95% Bayesian credibility interval
are reported.
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Table C12: Estimates of the SARS-CoV-2 transmission parameters within households where the index case
was not early vaccinated. The median and the 95% credible intervals are reported.

Baseline scenario -

median (95% credible

interval)

Household with no early

vaccinated index case -

median (95% credible

interval)

Relative susceptibility

Isolated and unvaccinated adults/teenagers 0.12 (0.06-0.20) 0.16 (0.08-0.27)

Unisolated and vaccinated adults/teenagers 0.20 (0.08-0.41) 0.19 (0.06-0.43)

Isolated and vaccinated adults/teenagers 0.07 (0.02-0.15) 0.08 (0.03-0.19)

Unisolated children 0.48 (0.31-0.73) 0.58 (0.35-0.92)

Isolated children 0.16 (0.07-0.30) 0.21 (0.09-0.39)

Relative infectivity

Vaccinated 0.24 (0.06-0.69) 0.25 (0.06-0.76)
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Appendix D

Supplementary information on sampling bias in dis-
crete phylogeography
All scripts used to simulate epidemics and perform the analyses presented in Chapter 4 are available at

https://github.com/mlayan/Sampling_bias including examples of output files.
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1. Impact and mitigation of bias in the seven demes frame-
work

1.1. Estimation of genetic parameters
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Figure D1: Comparison of the simulated and estimated tree topologies for all sampling conditions and
the four algorithms. Pearson’s determination coefficient of the pairwise divergence time between the simulated
transmission chain and the MCC tree for the systematic bias (A), surveillance bias 10 (B), and surveillance bias 20
(C) sampling conditions.
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Figure D2: Median estimates of base frequency A for all sampling conditions and the four algorithms.
Median estimate of the base frequency of A for the systematic bias (A), surveillance bias 10 (B), and surveillance
bias 20 (C) sampling conditions. The true value of the parameter is represented as the horizontal black line.
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Figure D3: Median estimates of base frequency C for all sampling conditions and the four algorithms.
Median estimate of the base frequency of C for the systematic bias (A), surveillance bias 10 (B), and surveillance
bias 20 (C) sampling conditions. The true value of the parameter is represented as the horizontal black line.
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Figure D4: Median estimates of base frequency G for all sampling conditions and the four algorithms.
Median estimate of the base frequency of G for the systematic bias (A), surveillance bias 10 (B), and surveillance
bias 20 (C) sampling conditions. The true value of the parameter is represented as the horizontal black line.
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Figure D5: Median estimates of base frequency T for all sampling conditions and the four algorithms.
Median estimate of the base frequency of T for the systematic bias (A), surveillance bias 10 (B), and surveillance
bias 20 (C) sampling conditions. The true value of the parameter is represented as the horizontal black line.

278



Appendix D. Supplementary information on sampling bias in discrete phylogeography

150 sequences
500 sequences

uniform 2.5 5 10 20 50

1.6

1.8

2.0

2.2

2.4

1.6

1.8

2.0

2.2

2.4

Tr
an

si
tio

n−
tr

an
sv

er
si

on
 r

at
io

A

150 sequences
500 sequences

uni. surv. region region+year

1.6

1.8

2.0

2.2

2.4

1.6

1.8

2.0

2.2

2.4

Tr
an

si
tio

n−
tr

an
sv

er
si

on
 r

at
io

B

150 sequences
500 sequences

uni. surv. region region+year

1.6

1.8

2.0

2.2

2.4

1.6

1.8

2.0

2.2

2.4

C

CTMC BASTA MASCOT MASCOT−GLM

Figure D6: Median estimates of the transition-transversion ratio for all sampling conditions and the four
algorithms. Median estimate of the transition-transversion ratio κ for the systematic bias (A), surveillance bias
10 (B), and surveillance bias 20 (C) sampling conditions. The true value of the parameter is represented as the
horizontal black line.
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1.2. Total migration counts
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Figure D7: Impact of bias on the estimation of the total migration counts by CTMC. Median estimate of the
base frequency of A for the systematic bias (A), surveillance bias 10 (B), and surveillance bias 20 (C) sampling
conditions. The true value of the parameter is represented as the horizontal black line.

1.3. Lineage migration counts
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Figure D8: Impact and mitigation of spatial bias on the estimation of the lineage migration counts. (A-E)
Impact of the increasing levels of spatial bias on the correlation, the calibration, the mean relative 95% HPD width,
the mean relative bias, and the WIS between the simulated and the estimated lineage migration counts. (F-J)
Mitigation of the impact of spatial bias on the correlation, the calibration, the mean relative 95% HPD width, the
mean relative bias, and the WIS between the simulated and estimated lineage migration counts by using alternative
sampling strategies. The mean relative bias and the mean relative 95% HPD width are not defined when the true
value is null. We removed 65,399 out of 91,434 and 27,629 out of 41,916 simulated migration events in the small
and large samples, respectively, due to true null values.
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2. Impact and mitigation of bias in the three demes frame-
work

2.1. Estimation of genetic parameters
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Figure D9: Median estimates of base frequency A for all sampling conditions and the four algorithms.
Median estimate of the base frequency of A for the systematic bias (A), surveillance bias 10 (B), and surveillance
bias 20 (C) sampling conditions. The true value of the parameter is represented as the horizontal black line.
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Figure D10: Median estimates of base frequency C for all sampling conditions and the four algorithms.
Median estimate of the base frequency of C for the systematic bias (A), surveillance bias 10 (B), and surveillance
bias 20 (C) sampling conditions. The true value of the parameter is represented as the horizontal black line.
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Figure D11: Median estimates of base frequency G for all sampling conditions and the four algorithms.
Median estimate of the base frequency of G for the systematic bias (A), surveillance bias 10 (B), and surveillance
bias 20 (C) sampling conditions. The true value of the parameter is represented as the horizontal black line.
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Figure D12: Median estimates of base frequency T for all sampling conditions and the four algorithms.
Median estimate of the base frequency of T for the systematic bias (A), surveillance bias 10 (B), and surveillance
bias 20 (C) sampling conditions. The true value of the parameter is represented as the horizontal black line.
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Figure D13: Median estimates of the transition-transversion ratio for all sampling conditions and the four
algorithms. Median estimate of the transition-transversion ratio κ for the systematic bias (A), surveillance bias
10 (B), and surveillance bias 20 (C) sampling conditions. The true value of the parameter is represented as the
horizontal black line.
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Figure D14: Median estimates of the evolutionary rate for all sampling conditions and the four algorithms.
Median estimate of the evolutionary rate for the systematic bias (A), surveillance bias 10 (B), and surveillance bias
20 (C) sampling conditions. The true value of the parameter is represented as the horizontal black line.
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Figure D15: Comparison of the simulated and estimated tree topologies for all sampling conditions and
the four algorithms. Pearson’s determination coefficient of the pairwise divergence time between the simulated
transmission chain and the MCC tree for the systematic bias (A), surveillance bias 10 (B), and surveillance bias 20
(C) sampling conditions.
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2.2. Lineage migration counts
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Figure D16: Impact and mitigation of spatial bias on the estimation of the lineage migration counts. (A-E)
Impact of the increasing levels of spatial bias on the correlation, the calibration, the mean relative 95% HPD width,
the mean relative bias, and the WIS between the simulated and the estimated lineage migration counts. (F-J)
Mitigation of the impact of spatial bias on the correlation, the calibration, the mean relative 95% HPD width, the
mean relative bias, and the WIS between the simulated and estimated lineage migration counts by using alternative
sampling strategies. The mean relative bias and the mean relative 95% HPD width are not defined when the true
value is null. We removed 3,126 out of 13,200 and 1,410 out of 9,588 simulated migration events in the small and
large samples, respectively, due to null true values.
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2.3. Total migration counts
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Figure D17: Impact and mitigation of spatial bias on the estimation of the total migration counts. (A-E)
Impact of the increasing levels of spatial bias on the correlation, the calibration, the mean relative 95% HPD
width, the mean relative bias, and the WIS between the simulated and the estimated total migration counts. (F-J)
Mitigation of the impact of spatial bias on the correlation, the calibration, the mean relative 95% HPD width, the
mean relative bias, and the WIS between the simulated and estimated total migration counts by using alternative
sampling strategies. The mean relative bias and the mean relative 95% HPD width are not defined when the true
value is null. We removed 612 out of 3,600 and 380 out of 3,600 simulated migration events in the small and large
samples, respectively, due to true null values.
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2.4. Introduction dates
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Figure D18: Impact and mitigation of spatial bias on the estimation of the introduction dates. (A-D) Impact
of the increasing levels of spatial bias on correlation, calibration, mean relative 95% HPD width, and average
relative error between the simulated and estimated introduction dates. (E-H) Mitigation of the impact of spatial
bias on correlation, calibration, mean relative 95% HPD width, and average relative error between the simulated
and estimated introduction dates by using alternative sampling strategies.
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2.5. Root location
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Figure D19: Impact and mitigation of spatial bias on the estimation of the root location. (A) Decreasing root
state posterior probability with an increasing bias. (B-C) Mitigation of the effects of spatial bias using alternative
sampling strategies with an underlying bias of 10 and 20, respectively. Each dot corresponds to the median root
state posterior probability in one simulation (n = 50 per sampling protocol and sample size).
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3. RABV spread in the Philippines

Figure D20: Sampling location and intensity of the RABV sequences in the Philippines, 2004-2010.
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4. SARS-CoV-2 early spread
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Figure D21: Case count data by continent used to inform MASCOT. (A-B) Case count data from the World
Health Organization and Our World In Data, respectively. We report the moving average over a seven-day window.
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Figure D22: Maximum clade credibility (MCC) tree of SARS-CoV-2 genomes from the early stages of the
pandemic for all the algorithms. (A-F) MCC trees for CTMC, BASTA (1st mode of evolutionary rate), BASTA
(2nd mode of evolutionary rate), MASCOT, MASCOT-WID, and MASCOT-WHO respectively. The posterior
support of lineages A, A1, B1, and B4 that were identified by (Lemey et al., 2020) are reported at the corresponding
nodes when they gather the same sequences as in the original analysis. Lineages A1, B1, and B4 were estimated to
be monophyletic with a high posterior support by all algorithms. However, BASTA, MASCOT, MASCOT-WID,
and MASCOT-WHO did not infer monophyly for lineage A that is why we did not report its posterior supports on
the corresponding MCC trees. Branch width is proportional to the maximal location probability of the parent node.
Nodes and branches are colored by location with maximal probability. The root location probability distribution is
reported in the pie chart.
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Table D1: Predicted lineage location on the SARS-CoV-2 data. We report the predicted locations with maximal
probability of the four SARS-CoV-2 lineages estimated by all algorithms along with their posterior probability. We
did not report the location of lineage A predicted by BASTA, MASCOT, MASCOT-WID, and MASCOT-WHO
because these algorithms did not infer a monophyletic lineage. Location of lineage A1 and B1 is estimated in a
similar fashion by all algorithms. However, lineage B4 was estimated to be located in Oceania by MASCOT and
the 2nd mode of BASTA, whereas it is estimated to be located in China by CTMC-TRAVEL and CTMC. When
we add case count data from Our World In Data and the WHO, the estimated lineage location is China but the
posterior probability for MASCOT-WID is lower than for CTMC-TRAVEL and CTMC.

Lineage A1 Lineage A Lineage B1 Lineage B4
CTMC-TRAVEL Americas (1) China (1) Europe (0.761) China (1)
CTMC Americas (0.995) China (1) Europe (0.998) China (1)
BASTA - 1st mode Americas (0.958) - Europe (0.985) China (0.983)
BASTA - 2nd mode Americas (0.97) - Europe (0.977) Oceania (0.851)
MASCOT Americas (0.994) - Europe (0.993) Oceania (0.781)
MASCOT-WID Americas (0.937) - Europe (0.993) China (0.446)
MASCOT-WHO Americas (0.959) - Europe (0.977) China (0.975)
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Figure D23: Posterior kernel density distribution of the evolutionary rate estimated on the SARS-CoV-2
data set. (A) Posterior kernel density distribution of the evolutionary rate estimated by all algorithms. BASTA
posterior distribution is bimodal with its major mode close to the estimates of CTMC and MASCOT-WID, and the
second mode close to the estimate of MASCOT. (B) Focus on the posterior kernel density distribution of BASTA.
Due to the bimodality of the posterior density distribution, we split in two the tree posterior distribution according
to the value of the evolutionary rate. The major mode corresponds to posterior samples with an evolutionary rate
higher than 11−4 substitution.site−1.year−1 and the minor mode to posterior samples with an evolutionary rate
lower than 10−4 substitution.site−1.year−1.
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5. Simulation framework of RABV epidemics
Table D2: Values of simulation parameters.

Notation Parameter description Value Source
bbb Dog birth rate per day 1/365 Assumption

d Dog death rate per day 1/365 Assumption

βββ Rabies transmission rate 3.2 Assumption

HiHiHi Human population size per region 7 demes WorldPop n.d.
Region 1: 4,917,672
Region 2: 2,208,003
Region 3: 11,913,790
Region 4: 5,773,588
Region 5: 3,431,383
Region 6: 5,023,878
Region 7: 672,319
3 demes
Region 1: 10,557,059
Region 2: 17,687,379
Region 3: 5,696,197

rdrdrd Dog:human ratio 0.1 Assumption

CsCsCs Scaling factor 1.00e-08 Assumption

νi→ jνi→ jνi→ j Contact matrix -
Radiation model (Si-
mini et al., 2012; Gold-
ing et al., 2015)

γγγ Infectious period
Discretized gamma distribution
from 1 to 15 days Γ(3, 1.1)

Hampson et al. 2009

εεε Incubation period Γ(2, 11.055) Hampson et al. 2009

µµµ Mutation rate 2.44e-4 subs.site−1.yr−1 Troupin et al. 2016

κκκ Transition/transversion ratio 2 Assumption

πAπAπA
Base A frequency in the reference
genome

0.2852 Marston et al. 2013

πCπCπC Base C frequency 0.2198 Marston et al. 2013

πGπGπG Base G frequency 0.2313 Marston et al. 2013

πTπTπT Base T frequency 0.2638 Marston et al. 2013
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Figure D24: Partition of Morocco into three and seven arbitrary locations. (A) Partition of Morocco into
seven arbitrary locations. The major results corresponding to this framework are presented in the main text. All
epidemics started by the introduction of a single index case in Region 2. Regions 3 and 4 correspond to over-
sampled locations. (B) Partition of Morocco into three arbitrary locations. The main results corresponding to this
framework are presented exclusively in the Supplementary Materials. All epidemics started by the introduction of
a single index case in Region 1. Region 2 corresponds to the over-sampled location. The gray outlines delineate
the official regions downloaded from GADM and the colors indicate the arbitrary locations.
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6. Bayesian inference

6.1. Simulation study

Table D3: Prior distributions used in the simulation study for the CTMC, BASTA, MASCOT, and
MASCOT-GLM.

Parameter CTMCa BASTA MASCOT
MASCOT-
GLM

HKY substitu-
tion model

Transition-
transversion ratio

Lognormal(1,
1.25)

Lognormal(1,
1.25)

Lognormal(1,
1.25)

Lognormal(1,
1.25)

Base frequencies
Dirichlet(α=1,
sum=1)

Uniform([0:1]) Uniform([0:1]) Uniform([0:1])

Molecular
clock

Clock rate

CTCM Rate
reference
(Ferreira and
Suchard, 2008)

Lognormal(0,
4)

Lognormal(0,
4)

Lognormal(0,
4)

Spatial model Migration rate Exponential(1) Exponential(1) Exponential(1) Exponential(1)

Migration clock
CTMC Rate
reference[7]

- Set to 1 Exponential(1)

Coefficient of migra-
tion predictor (GLM)

- - - Normal(0,1)

Root location fre-
quency (CTMC)

Uniform([0:1]) - - -

Deme population size
(constant over time)

1/Xa Exponential(1) Exponential(1) -

Deme size clock - - - Exponential(1)
Coefficient of deme
size predictor
(CTMC)

- - - Normal(0,1)

Equal deme popula-
tion sizes

- Yes Yes -

BSSVS
Sum of non-zero mi-
gration rates

Poisson(ndemes-
1)

Poisson(ndemes-
1)

Poisson(ndemes-
1)

-

Sum of included pre-
dictors on migration
rates

- - - Poisson(1)

Sum of included pre-
dictors on deme sizes

- - - Poisson(1)

Abbreviations: BSSVS, Bayesian stochastic search variable selection; GLM, Generalized linear mode; HKY model,
Hasegawa, Kishino, and Yano model.

a We used the default priors from BEAUTi v1.10.4.
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Table D4: Indicative number of iterations per hour for the four discrete phylogeographic approaches ac-
cording to the number of demes and genomes. The number of iterations is expressed in millions.

No. of demes No. of genomes CTMC BASTA MASCOT MASCOT-GLM

3 150 14.85 0.67 5.23 2.4
500 2.22 0.21 0.93 0.69

7 150 14.08 0.70 2.4 1.3
500 1.85 0.12 0.32 0.23

Table D5: Number of chains excluded per algorithm for the main analysis on seven demes.

No. of genomes CTMC BASTA MASCOT MASCOT-GLM
150 0 17 6 0
500 0 NA 161 2

Abbreviations: NA, Not applicable.

Table D6: Number of chains excluded per algorithm for the supplementary analysis on three demes.

No. of genomes CTMC BASTA MASCOT MASCOT-GLM
150 0 0 0 0
500 0 NA 2 0

Abbreviations: NA, Not applicable.
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6.2. Analysis of the SARS-CoV-2 data set

Table D7: List of priors used for each discrete phylogeographic approach on the RABV data set.

Parameter CTMC BASTA MASCOT
HKY substitu-
tion model

Transition/transversion
ratio

Lognormal(1, 1.25) Lognormal(1, 1.25) Lognormal(1, 1.25)

Base frequencies Empirical Empirical Empirical
Shape of the gamma
rate of heterogeneity

Exponential(0.5) Exponential(0.5) Exponential(0.5)

Lognormal re-
laxed molecu-
lar clock

Mean CTCM Rate reference
Lognormal(0.001,
1000)

Lognormal(0.001,
1000)

Standard deviation Exponential(1/3) Exponential(1/3) Exponential(1/3)

Spatial model Migration rate Exponential(1) Exponential(1) Exponential(1)
Migration clock CTMC Rate reference - -
Region frequency
(CTMC)

Uniform([0:1]) - -

Deme population size
(constant over time)

Gamma(shape=0.001,
scale=1000)

Exponential(1) Exponential(1)

Regions root frequen-
cies

Uniform([0:1]) - -

Equal deme popula-
tion sizes

- Yes Yes

BSSVS
Sum of non-zero mi-
gration rates

Poisson(5) Poisson(5) Poisson(5)

Abbreviations: BSSVS, Bayesian stochastic search variable selection; HKY model, Hasegawa, Kishino, and Yano model.
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6.3. Analysis of the SARS-CoV-2 data set

Table D8: List of priors used for each discrete phylogeography algorithm on the SARS-CoV-2 data set.

Parameter CTMC BASTA MASCOT
MASCOT-WID
MASCOT-
WHO

HKY substitu-
tion model

Transition/
transversion
ratio

Lognormal(1,
1.25)

Lognormal(1,
1.25)

Lognormal(1,
1.25)

Lognormal(1,
1.25)

Base frequencies Empirical Empirical Empirical Empirical
Proportion of in-
variant

Uniform([0,1]) Uniform([0,1]) Uniform([0,1]) Uniform([0,1])

Shape of the
gamma rate of
heterogeneity

Exponential(0.5) Exponential(0.5) Exponential(0.5) Exponential(0.5)

Strict molecu-
lar clock

Evolutionary rate
CTCM Rate ref-
erence

Lognormal(0, 4) Lognormal(0,4) Lognormal(0,4)

Exponential
growth coales-
cent model

Deme size
Gamma(shape=
0.001,
scale=1000)

- - -

Exponential
growth rate

Laplace(mean=0,
scale=1)

- - -

Spatial model Migration rate Exponential(1) Exponential(1) Exponential(1) -

Migration clock
CTMC Rate ref-
erence

- - -

Region frequency
(CTMC)

Uniform([0:1]) - - -

Regions root fre-
quencies

Uniform([0:1]) - - -

Deme size - Exponential(1) Exponential(1) -
Equal deme popu-
lation sizes

- Yes Yes -

GLM spatial
model

Migration clock - - - Exponential(1)

Migration predic-
tors scaler

- - - Normal(0,1)

Deme size clock - - - Exponential(1)
Deme size predic-
tors scaler

- - - Normal(0,1)

BSSVS
Sum of non-zero
migration rates

Poisson(5) Poisson(5) Poisson(5) -

Sum of non-zero
deme size predic-
tors

- - - Poisson(1)

Sum of non-zero
migration rate
predictors

- - - Poisson(1)

Abbreviations: BSSVS, Bayesian stochastic search variable selection; GLM, Generalized linear model; HKY model,
Hasegawa, Kishino, and Yano model.
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Figure E1: Example of prior and posterior distributions of model parameters for the SARS-CoV-2 infection
scenario. Prior and posterior distributions of model parameters for the SARS-CoV-2 infection scenario. The
examples depicted here correspond to one simulation inferred by the model that accounts for heterogeneous contact
patterns ("correct"), and the model that assumes homogeneous mixing within households ("incorrect"). From left
to right, the panels depict the hazard of infection in the community α , the infection rate in an heterosexual couple

β

4/2 κchild,child µsus,child µin f ,child , the relative susceptibility of adults µsus,adult , and the relative infectivity of adults
µin f ,adult .
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Figure E2: Example of prior and posterior distributions of model parameters for the influenza virus infec-
tion scenario. Prior and posterior distributions of model parameters for the influenza virus infection scenario. The
examples depicted here correspond to one simulation inferred by the model that accounts for heterogeneous con-
tact patterns ("correct"), and the model that assumes homogeneous mixing within households ("incorrect"). From
left to right, the panels depict the hazard of infection in the community α , the infection rate in an heterosexual
couple β

4/2 κchild,child µsus,child µin f ,child , the relative susceptibility of adults µsus,adult , and the relative infectivity of
adults µin f ,adult .
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Résumé étendu en français

1. Introduction
Les épidémies de maladies infectieuses correspondent à l’apparition et à la propagation rapide de mal-

adies contagieuses dans une population. Elles sont causées par des pathogènes, des organismes qui

parasitent un individu hôte pour se multiplier et se transmettre à d’autres individus. Il existe une très

grande diversité de pathogènes qui appartiennent à des groupes taxonomiques aussi divers que les virus,

les bactéries, les protozoaires, les arthropodes ou encore les helminthes.

Le processus de transmission dont les étapes principales d’infection, multiplication et propagation sont

communes à tous les pathogènes dépend de plusieurs facteurs. Tout d’abord, la composition moléculaire

des pathogènes détermine leur spectre d’hôtes. Ensuite, les dynamiques de transmission dans les pop-

ulations hôtes dépendent des mécanismes d’évasion immunitaire déployés par les pathogènes comme

l’évolution rapide de leurs antigènes ou l’expression alternative de gènes. D’autres facteurs liés à l’hôte

interviennent aussi dans le processus de transmission, à savoir l’ensemble des facteurs génétiques qui

contribuent au bon fonctionnement du système immunitaire au niveau individuel, l’immunité de groupe

au niveau populationnel acquise suite à des épidémies passées ou des campagnes de vaccination, ainsi

que la structure sociale et les dynamiques de mobilité de la population hôte. Enfin, des facteurs environ-

nementaux peuvent jouer directement sur la stabilité des pathogènes dans l’environnement ou déterminer

leur occurence spatiale et temporelle de manière indirecte en contrôlant les zones habitables par la popu-

lation hôte. Le processus épidémique est donc multifactoriel mais aussi stochastique, c’est-à-dire que son

succès est soumis à une part d’aléatoire. À cette complexité s’ajoute le caractère potentiellement explosif

du processus épidémique en fonction du potentiel de transmission du pathogène et du niveau d’immunité

pré-existante dans la population hôte. Cette complexité ne peut pas être appréhendée facilement et né-

cessite l’utilisation de modèles mathématiques qui ne sont autres que des représentations simplifiées de

la réalité formalisées sous la forme d’équations.

Une grande variété de modèles a été développée pour décrire le processus épidémique. Nous dis-

tinguerons deux approches qui modélisent le processus de transmission sous deux angles différents

et qui viennent de deux disciplines scientifiques différentes : la modélisation épidémiologique et la

phylodynamique. La modélisation épidémiologique s’appuie sur des modèles mécanistiques de la dy-

namique de transmission inter-hôte. Les plus connus sont les modèles compartimentaux qui se déclinent

sous une forme déterministe et une forme stochastique. Les modèles individus-centrés sont plus com-

plexes mais permettent d’intégrer de multiples couches d’hétérogénéité entre les hôtes. De manière

générale, la modélisation épidémiologique permet de prendre en compte des facteurs liés à l’hôte et à
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l’environnement alors que l’approche phylodynamique modélise le processus de transmission du point

de vue du pathogène. Certains pathogènes évoluent si rapidement que les processus évolutifs de sélec-

tion, dérive génétique, effet fondateur et migration se déroulent sur la même échelle de temps que le

processus épidémique. La phylodynamique tire profit de cette concomitance et modélise l’émergence

de nouveaux variants, l’évolution de la taille de la population de pathogènes, voire même la migration

spatiale des lignées de pathogènes à partir de la phylogénie des pathogènes.

Bien que le développement de modèles théoriques permette de mieux comprendre le processus épidémique,

l’estimation de paramètres clés de la transmission dans un contexte spécifique ne peut se faire que par leur

ajustement à des données empiriques. Ces données ne reflètent que très rarement l’intégralité du proces-

sus de transmission car, d’une part, les chaînes de transmission exactes sont difficilement observables et,

d’autre part, seule une partie des cas sont identifiés. Par ailleurs, plusieurs types de données peuvent être

recueillies, des données sur le cas qui sont détaillées au niveau individuel ou agrégées au niveau popula-

tionnel, et les séquences génétiques des pathogènes, qui ne permettent pas d’accéder aux mêmes facettes

du processus épidémique. En effet, les données individuelles permettent d’évaluer l’hétérogénéité en-

tre les cas et les facteurs d’exposition, les données populationnelles permettent d’appréhender les dy-

namiques de transmission complexes tout comme les séquences génétiques.

L’ajustement des modèles à des données empiriques fait intervenir des méthodes statistiques qui permet-

tent d’estimer les paramètres clés du processus de transmission. Les statistiques Bayésiennes sont partic-

ulièrement adaptées aux données épidémiques car, en plus de leur cadre conceptuel qui permet d’intégrer

explicitement des connaissances à priori dans l’inférence, elles permettent de prendre en compte les in-

certitudes liées aux données manquantes et aux variables non observées et non observables comme la

date d’infection des cas. Dans le cas spécifique de la phylodynamique, l’inférence Bayésienne permet

d’estimer conjointement la phylogénie du pathogène, l’émergence de nouveaux variants, l’évolution de

la taille de sa population et sa dynamique spatiale.

La modélisation épidémiologique et la phylodynamique sont des outils quantitatifs qui permettent de

mieux comprendre les épidémies et d’informer les acteurs de la santé publique. Ces deux approches

permettent d’identifier les déterminants de l’hôte impliqués dans le processus de transmission et de quan-

tifier l’hétérogénéité entre les cas. Par exemple, la modélisation de la transmission dans les ménages a

révélé que les enfants sont deux fois plus susceptibles que les adultes et la phylodynamique a permis

de montrer qu’un événement de super-transmission au Massachusetts a été à l’origine de l’introduction

d’une nouvelle lignée de coronavirus 2 du syndrome respiratoire aigu sévère (SARS-CoV-2) dans l’état

américain. Les deux approches permettent de quantifier les facteurs de risque également à l’échelle de

la population. La phylodynamique permet d’associer la dynamique de transmission à des covariables

environnementales et à la structure spatiale et d’espèce des populations hôtes. La modélisation épidémi-

ologique peut intégrer des données sur la structure spatiale et sociale de la population pour améliorer

le réalisme des modèles. Elle permet également de traquer les dynamiques des variants de pathogènes.

La modélisation en épidémiologie est également un outil considérable pour orienter les décisions de

santé publique. L’analyse des données de surveillance permet de détecter rapidement et en temps réel

une reprise épidémique ou son contrôle par modélisation épidémiologique. La modélisation épidémi-

ologique permet aussi d’évaluer à postériori ou de manière prédictive l’impact des mesures de contrôle.

La phylodynamique est encore peu utilisée en évaluation des interventions et nécessiterait le développe-
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ment de nouvelles méthodes.

Ces exemples de l’utilisation de la modélisation épidémiologique et de la phylodynamique soulignent

leur complémentarité. La modélisation épidémiologique est tout particulièrement adaptée à l’identification

des facteurs individuels et environnementaux qui influent sur le processus épidémique, mais aussi à la

prédiction à court et long terme et enfin à la conception et l’évaluation de mesures de contrôle. La phy-

lodynamique quant à elle permet d’intégrer les déterminant liés aux pathogènes et, en confirmant des

chaînes de transmission, apporte un éclairage sur la contribution de la transmission locale comparée aux

importations. Il est intéressant de noter que la pandémie de la maladie à coronavirus 2019 (COVID-19)

a été marquée par une certaine démocratisation des études interdisciplinaires qui combinent des données

épidémiologiques individuelles et populationnelles à des séquences génétiques, le tout analysé par des

techniques diverses de statistiques classiques, modélisation épidémiologique et/ou phylodynamique.

De nombreux défis subsistent concernant l’utilisation de la modélisation épidemiologique et de la phy-

lodynamique. Ces défis sont liés à la prise en compte des biais d’échantillonnage dans le processus

d’inférence et à la spécification des modèles. Un échantillon est biaisé lorsque sa composition ne reflète

pas la dynamique d’une épidémie. Les biais d’échantillonnage sont particulièrement courant en phylo-

dynamique car l’échantillonnage des séquences de pathogène se fait surtout de manière opportuniste et,

quand il est planifié, des disparités spatiales subsistent. Les modèles de phylogéographie sont connus

pour être sensibles à ces biais mais l’impact de ces biais et les moyens d’en atténuer les effets restent

peu compris. Dans un tout autre registre, l’épidémiologie de la transmission des maladies respiratoires a

largement bénéficié des études de leur transmission dans les ménages. Toutefois, les modèles de trans-

mission dans les ménages font l’hypothèse que l’ensemble des membres du ménage entrent en contact

à la même fréquence. Plusieurs études ont montré que cette hypothèse n’est pas vérifiée ce qui pourrait

biaiser les estimations de susceptibilité et d’infectivité relative des membres du ménage en fonction de

leur âge, sexe etc...

2. Objectifs de la thèse
Cette thèse a pour objectif principal d’explorer les contributions des données épidémiologiques individu-

elles dans les ménages et des séquences génétiques des pathogènes qui se trouvent aux deux extrémités

du spectre de granularité des données dans la compréhension de la transmission des maladies infectieuses

dans les populations. Ces données sont analysées par modélisation épidémiologique et phylodynamique

respectivement. Le deuxième objectif de cette thèse est d’étudier les limites de ces deux approches,

plus précisément, l’impact des biais d’échantillonnage sur les inférences de phylogéographie discrète

et l’impact de contact hétérogènes dans les ménages sur l’estimation des paramètres de susceptibilité

et d’infectivité relative des enfants par rapport aux adultes. Ces objectifs sont traités par le prisme de

deux cas d’étude, le virus de la rage (RABV) et le SARS-CoV-2. La rage est une zoonose (maladie

qui se transmet naturellement de l’animal à l’homme) tropicale négligée dont le réservoir principal sont

les chiens domestiques, responsables de 99% des cas de rage humaine. Un vaccin contre la rage est

disponible chez l’homme et l’animal mais elle reste endémique en Afrique et en Asie ce qui est dû en

partie au manque de moyens financiers et d’implication politique. Par ailleurs, de nombreuses zones

d’ombre subsistent concernant les dynamiques de transmission de la rage chez le chien. À l’opposé, les

moyens qui ont été déployés pendant la pandémie de COVID-19 ont été sans précédent et la production
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scientifique a été particulièrement prolifique. Cette mobilisation s’explique par l’impact considérable de

la pandémie sur les systèmes de santé dans le monde et l’émergence récurrente de nouveaux variants

mettant au défi l’efficacité des vaccins et des interventions non pharmaceutiques.

Dans l’Étude n°1, j’explore les contributions relatives de la modélisation épidémiologique et de la phy-

lodynamique dans la compréhension de la transmission de la rage chez le chien et dans l’évaluation des

stratégies de contrôle. Puis, je mets en pratique des approches de phylodynamique, plus précisément de

phylogéographie, dans l’Étude n°2 afin de mieux caractériser la signature endémique de la rage chez le

chien au Cambodge. Les limites de ces approches face au biais d’échantillonnage sont approfondies dans

l’Étude n°3 par une étude de simulation. Dans l’Étude n°4, je mets également en pratique la modélisa-

tion épidémiologique mais cette fois-ci dans le contexte du SARS-CoV-2 afin d’estimer l’impact de la

vaccination et des mesures de distanciation physique sur la transmission du virus dans les ménages. En-

fin, j’étudie dans l’Étude n°5 comment la mauvaise spécification des contacts dans les ménages modifie

l’estimation de la susceptibilité et de l’infectivité relative des enfants par rapport aux adultes.

3. Étude n°1: Revue exploratoire des études quantitatives de
la transmission de la rage chez le chien

3.1. Contexte
La rage est une maladie fatale mais qui peut être prévenue par un vaccin efficace à 100% chez l’homme

et chez l’animal. La rage est endémique en Afrique et en Asie dont la circulation est maintenue essen-

tiellement par les chiens domestiques. Malgré de nombreux efforts, la situation épidémiologique des

pays d’Afrique et d’Asie ne s’est pas améliorée ce qui est en partie dû à une connaissance partielle des

dynamiques de la rage chez le chien. Dans cette étude, nous explorons les contributions des études quan-

titatives, plus précisément de la modélisation épidémiologique et de la phylodynamique dans la com-

préhension des dynamiques de la rage et dans l’évaluation des mesures de contrôle tout en soulignant les

limites de ces méthodes et en identifiant les questions en suspens.

3.2. Méthodes
Nous avons réalisé une revue de la littérature de l’ensemble des études qui ont appliqué un modèle

épidémiologique ou un modèle de phylodynamique à la transmission de la rage chez le chien. Nous

avons utilisé une méthodologie rigoureuse de revue de la littérature scientifique, empruntée aux revues

systématiques mais adaptée à l’étude d’articles hétérogènes dans un but d’exploration et de synthèse d’un

domaine scientifique. Nous avons identifié sur les bases de données bibliographiques PubMed, Web of

Science et Scopus un total de n=59 études dont n=30 études de modélisation épidémiologique, n=22

études de phylodynamique et n=7 études interdisciplinaires. Nous avons extrait systématiquement les

informations suivantes : (i) l’approche de modélisation principale et ses hypothèses sous-jacentes, (ii) la

source des données, (iii) les remarques sur les biais potentiels dans les données en lien avec les processus

épidémiologiques et évolutifs, (iv) les résultats qualitatifs et quantitatives sur les dynamiques de la rage

et (v) si réalisée, les résultats de l’étude de sensibilité.

314



Appendix F. Résumé étendu en français

3.3. Résultats
Les études de modélisation épidémiologique se concentrent en priorité sur l’évaluation des mesures de

contrôle alors que l’identification des déterminants de la transmission est l’objectif premier des études

de phylodynamique. La modélisation épidémiologique a permis de montrer que la vaccination est la

stratégie de contrôle la plus efficace et doit atteindre une couverture vaccinale élevée dans les régions

indemnes mais à haut risque d’introduction, alors qu’une couverture intermédiaire est suffisante dans

les régions endémiques. La phylodynamique et les études interdisciplinaires ont mis en évidence le rôle

central de l’hétérogénéité spatiale dans le maintien de la circulation de la rage. L’ensemble des méthodes

utilisées sont limitées par la quantité des données et les biais d’échantillonnage sont généralement incon-

nus. De manière intéressante, les études interdisciplinaires donnent un cadre qui permet de formuler et

tester des hypothèses sur les processus de transmission.

3.4. Limites de l’étude
L’identification des articles scientifiques, bien que se basant sur une procédure codifiée, est sensible à la

combinaison de mots-clés utilisée. Puisque les résultats obtenus dans cette revue sont en accord avec les

résultats de revues précédentes, nous pensons que nous n’avons pas manqué d’étude quantitative majeure

sur la transmission de la rage.

3.5. Conclusion
La rage se transmet à bas bruit chez le chien mais est maintenue grâce à une forte hétérogénéité spatiale

et sa dynamique est souvent impactée par l’homme. La modélisation épidémiologique a montré que la

vaccination est la stratégie de contrôle la plus efficace mais il n’y a pas de consensus clair sur la fréquence

des campagnes de vaccination. De nombreux défis restent à relever. En effet, le rôle des populations

animales sauvages, de la structure sociale de la population de chiens domestiques et de leurs interactions

avec l’homme restent peu caractérisés. Des études de terrain sont nécessaires pour recueillir ce type

de données et informer les modèles épidémiologiques et phylodynamiques. Par ailleurs, la situation

épidémiologique est inconnue dans la majorité des pays endémiques d’Asie et d’Afrique.

4. Étude n°2: Caractérisation de la circulation endémique
du virus de la rage par phylodynamique

4.1. Contexte
La phylodynamique est un outil puissant en épidémiologie notamment pour étudier les maladies nég-

ligées ou les zoonoses pour lesquelles le recueil de séquences génétiques du pathogène est moins coûteux

que le recueil de données sur les cas. De plus, la phylogéographie est un outil de choix pour étudier les

dynamiques de transmission entre zones géographiques, et donc l’endémicité d’une maladie dans le sens

d’une circulation intense dans une région non maintenue par des introductions. Le Cambodge est l’un

des pays les plus touchés par la rage canine dans le monde mais sa circulation au sein du Cambodge et en

Asie du Sud-Est reste méconnue. Dans cette étude, nous appliquons des approches de phylogéographie

afin de caractériser l’endémicité de la rage au Cambodge.
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4.2. Méthodes
Afin de mieux comprendre la dynamique de transmission de la rage en Asie du Sud-Est, 199 génomes

de RABV isolés chez des chiens ont été séquencés et analysés conjointement à tous les gènes N de

RABV d’Asie du Sud-Est disponibles sur GenBank. Les dynamiques spatiales entre deux localisations,

le Cambodge d’une part et les autres pays d’Asie du Sud-Est d’autre part, sont reconstruites par phy-

logéographie discrète. Les dynamiques spatiales au sein du Cambodge sont quant à elles décrites par une

analyse en phylogéographie continue des génomes et des gènes N isolés au Cambodge. Ces dynamiques

sont comparées aux estimations par phylogéographie continue des dynamiques d’autres pays. Enfin, les

facteurs du paysage associés à la vélocité des lignées virales ou à la localisation des lignées virales sont

identifiés par phylodynamique du paysage.

4.3. Résultats
Les lignées circulant au Cambodge appartiennent essentiellement au même clade qui circule majori-

tairement au Cambodge et plus minoritairement au Vietnam. La transmission au sein du Cambodge

n’est donc probablement pas maintenue par des introductions depuis les pays voisins ce qui corrobore

l’hypothèse d’endémicité stricte de la rage au Cambodge. Au sein du pays, la région de Phnom Penh

est la zone de transmission la plus active. Même les ancêtres directs des échantillons prélevés aux fron-

tières du Cambodge sont prédits dans la région de Phnom Penh ce qui signifie qu’il y a des événements

de transmission à longue distance. Ces événements à longue distance peuvent être plus rapides que les

événements de transmission à courte distance car médiés par l’homme ; c’est pourquoi les dynamiques

spatiales entre pays doivent être comparées à la même échelle spatiale. La comparaison avec d’autres

pays très affectés par la rage montre que la transmission à petite échelle est similaire donc probablement

médiée par le mouvement des chiens. Enfin, aucun facteur du paysage n’est associé avec la vélocité des

lignées virales ce qui est en faveur de l’hypothèse d’endémicité stricte.

4.4. Limites de l’étude
La principale limite de cette étude concerne les biais d’échantillonnage. En effet, l’effort de séquençage

déployé au Cambodge n’a pas d’équivalent dans les autres pays d’Asie du Sud-Est et la couverture

spatiotemporelle n’est très certainement pas représentative des dynamiques de la rage dans toute l’Asie

du Sud-Est y compris le Cambodge. Ces biais conduiraient à la sous-estimation des mouvements entre le

Cambodge et les autres pays d’Asie du Sud-Est. Par ailleurs, le Nord-Est du Cambodge n’est quasiment

pas échantillonné, une région où les ethnies ont une relation différente au chien et circulent beaucoup au

Laos et au Vietnam. Comme ces ethnies ont peu de relation avec le reste du Cambodge, il est probable que

les lignées virales qui y circulent aient une dynamique différente ce qui ne change pas nos conclusions

sur le reste du Cambodge.

4.5. Conclusion
L’ensemble des techniques de phylogéographie nous a permis de mieux caractériser la transmission de

la rage en Asie du Sud-Est et plus spécifiquement au Cambodge. Elle est marquée par peu de migrations

avec ses voisins, évoluant quasiment en vase clos. Toutefois, les réimportations ne sont pas improbables
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donc la stratégie d’élimination à long-terme ne doit pas se concentrer uniquement sur l’élimination locale

mais investir dans un système de surveillance pour la détection rapide de nouvelles chaînes de transmis-

sion. Par ailleurs, la situation épidémiologique générale de la rage au Cambodge n’est que partiellement

connue (incidence chez l’homme et l’animal). Il en va de même des facteurs contrôlant la transmission

de la rage (rôle de l’homme dans le mouvement des chiens).

5. Étude n°3: Les biais d’échantillonnage en phylogéogra-
phie discrète

5.1. Contexte
L’échantillonnage des séquences génétiques pour une analyse phylodynamique se fait généralement de

manière opportuniste et donc il n’est probablement pas représentatif du processus de transmission sous-

jacent. L’impact de ces biais sur les estimations des modèles de phylogéographie a été discuté très tôt,

notamment en ce qui concerne le modèle de chaîne de Markov en temps continu (CTMC) en phylogéo-

graphie discrète. Le modèle de coalescent structuré et ses approximations (MASCOT et BASTA) ont été

proposés comme alternatives au CTMC car plus robustes face aux biais d’échantillonnage. Toutefois,

les performances des trois algorithmes (CTMC, MASCOT, BASTA) n’ont jamais été comparées sur des

données de séquences génétiques plus ou moins biaisées.

5.2. Méthodes
Pour mieux comprendre l’impact des biais sur les reconstructions phylogéographiques discrètes, nous

avons simulé des épidémies de rage chez le chien au Maroc avec un modèle de métapopulation et nous

avons échantillonné de manière plus ou moins biaisé spatialement les séquences génétiques associées

aux cas de chiens. Nous avons ensuite comparé les dynamiques estimées par les trois algorithmes

de phylogéographie discrète (CTMC, BASTA, MASCOT) aux dynamiques simulées. Plusieurs straté-

gies d’atténuation de l’impact des biais ont été testées : augmenter le nombre de séquences utilisées,

maximiser la couverture spatiale ou spatiotemporelle de l’échantillon, intégrer des données sur le nom-

bre de cas dans MASCOT (MASCOT-GLM). Enfin, tous les algorithmes (CTMC, BASTA, MASCOT,

MASCOT-GLM) ont été testés sur un jeu de données empiriques de la rage aux Philippines et un autre

sur le SARS-CoV-2 dans les premiers mois de la pandémie.

5.3. Résultats
Les performances du modèle de CTMC surpassent celles de BASTA et MASCOT en l’absence de biais,

mais également avec un biais croissant, même si les performances du modèle de CTMC diminuent quand

le biais augmente. Par ailleurs, les performances de BASTA et MASCOT changent peu avec le niveau de

biais. La maximisation de la couverture spatiale ou spatiotemporelle améliore les prédictions de CTMC

et, dans une moindre mesure, de BASTA et MASCOT. Il en va de même quand le nombre de séquences

analysées augmente. L’ajout du nombre de cas dans le modèle de coalescent structuré (MASCOT-GLM)

permet de totalement contrecarrer les biais d’échantillonnage et surpasse le modèle de CTMC. L’analyse
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des jeux de données empiriques montre que lorsqu’une seule séquence génétique est disponible pour

une des zones géographiques étudiées, BASTA et MASCOT reconstruisent une histoire de transmission

spatiale très peu parsimonieuse. Ce problème est évité pour les données empiriques du SARS-CoV-2 en

ajoutant le nombre de cas d’infection par zone géographique.

5.4. Limites de l’étude

Cette étude se focalise sur des biais d’échantillonnage importants qui peuvent conduire dans les échan-

tillons analysés à l’absence de séquences des régions les moins affectées par la rage. Notre étude cu-

mule donc l’impact des biais dus à la non-représentativité spatiale des échantillons et dus à l’absence

de représentants de certaines régions. L’ensemble des analyses a été répliqué dans un contexte où la

transmission a lieu entre trois régions et donc où la majorité des échantillons a des représentants des trois

régions. Les résultats obtenus sont similaires. Enfin, l’analyse des données empiriques ne nous permet

pas de conclure sur l’algorithme qui reconstruit les dynamiques de manière la plus fidèle.

5.5. Conclusion

Les biais d’échantillonnage en phylogéographie sont omniprésents et concernent autant les maladies hu-

maines qu’animales. Toutefois, leur impact peut être atténué ou pris en compte à différents niveaux :

au moment du recueil des données, du choix du modèle d’inférence, et de l’ajout de données épidémi-

ologiques au modèle d’inférence. Nous conseillons aux chercheurs qui souhaitent réaliser une analyse de

phylogéographie discrète d’utiliser une stratégie d’échantillonnage qui maximise la couverture spatiale

et de comparer les reconstructions de plusieurs modèles sur des sous-échantillons différents lorsque cela

est possible.

6. Étude n°4: Évaluation de l’effectivité vaccinale sur la trans-
mission du SARS-CoV-2 dans les ménages

6.1. Contexte

Le recueil de données épidémiologiques individuelles dans les ménages permet d’appréhender la trans-

mission des maladies respiratoires telles que la COVID-19 et de mesurer l’impact de la vaccination. En

décembre 2020, alors qu’un vaccin était disponible et que les campagnes de vaccination en cours de

planification partout dans le monde, un nouveau variant du SARS-CoV-2 a émergé, le variant Alpha.

Il a fallu évaluer rapidement l’efficacité et l’effectivité vaccinale contre les formes sévères, l’infection

et la transmission. Au moment de l’étude, le niveau de preuve concernant l’impact du vaccin contre la

transmission si infecté était faible. Nous avons donc évalué l’effectivité du vaccin contre l’infection et la

transmission, mais aussi l’impact des mesures de distanciation physique dans un contexte de transmission

intra-ménagère.
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6.2. Méthodes
Un total de 210 ménages israéliens a été identifié et suivi par le Sheba Medical Center à Tel Aviv entre

décembre 2020 et avril 2021. Tous les membres du ménage étaient incités à réaliser des tests PCR

pendant les dix jours suivants l’inclusion et des données sur les symptômes, les résultats des tests, le

statut vaccinal et le comportement des individus ont été recueillies. Nous avons analysé ces données

en utilisant un modèle de transmission du SARS-CoV-2 avec augmentation de données. L’effectivité

vaccinale contre l’infection et la transmission, l’effectivité de la distanciation physique contre l’infection

et la susceptibilité relative des enfants par rapport aux adolescents/adultes ont été estimées par inférence

Bayésienne.

6.3. Résultats
Le taux d’attaque secondaire atteint environ 76% dans les ménages israéliens durant la vague Alpha.

Une valeur particulièrement élevée qui serait due à la plus grande transmissibilité du variant Alpha

par rapport au variant historique. L’effectivité vaccinale contre l’infection après deux doses de vac-

cin chez les adolescents/adultes est d’environ 79% et 75% contre la transmission. Toutefois, l’intervalle

de crédibilité pour l’effectivité vaccinale contre la transmission s’étend de 23 à 94%. La distanciation

physique réduit le risque d’infection de 88% chez les adolescents/adultes non vaccinés et réduit encore

le risque d’infection chez les vaccinés. Enfin, les enfants seraient 50% moins susceptibles que les ado-

lescents/adultes.

6.4. Limites de l’étude
La principale limite de l’étude est liée au nombre restreint d’individus ce qui a pour conséquence

l’incertitude élevée autour de l’estimation de l’effectivité vaccinale contre la transmission. Les instruc-

tions concernant la réalisation des tests PCR étaient différentes entre les membres vaccinés et les non-

vaccinés. Toutefois, les estimations sont peu impactées lorsque l’analyse est réduite aux ménages où tous

les individus ont réalisé au moins un voire deux tests PCR durant le suivi. Enfin, l’effet de la distanciation

physique est potentiellement sujet à caution et l’évolution des pratiques n’a pas été intégrée.

6.5. Conclusion
Après deux doses de vaccin, le risque d’infection et de transmission si infecté est considérablement

diminué. La distanciation physique vis-à-vis du premier cas détecté dans le ménage confère une protec-

tion importante autant chez les adolescents/adultes que les enfants. Même si les contacts ménagers sont

vaccinés, ils bénéficieraient d’une meilleure protection contre l’infection en évitant de manger et dormir

avec le cas index. Ce résultat nécessite confirmation.
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7. Étude n°5: Contacts hétérogènes et transmission intra-
ménagère

7.1. Contexte
Dans le cadre des maladies respiratoires telles que la grippe et la COVID-19, les études de ménages

sont idéales pour identifier les facteurs individuels qui influencent le processus de transmission et pour

quantifier leur impact. Les modèles mathématiques de transmission intra-ménagère qui sont utilisés

pour évaluer le rôle des enfants font l’hypothèse que l’ensemble des membres des ménages, parents et

enfants, ont le même niveau de contact. Or, cette hypothèse n’est pas vérifiée par les données empiriques.

Ici, nous explorons dans une étude de simulation comment les contacts hétérogènes dans les ménages

peuvent conduire à une estimation biaisée de la susceptibilité et l’infectivité des enfants par rapport aux

adultes.

7.2. Méthodes
Nous avons simulé des épidémies dans une base de données synthétique de 1,000 ménages dont la com-

position est dérivée d’une étude multicentrique européenne sur la transmission du variant historique du

SARS-CoV-2 dans les ménages. Les taux de contact entre les membres des ménages sont tirés d’une

étude belge qui montre que le couple mère-père a le plus de contacts, suivi du couple mère-enfant,

puis enfant-enfant, et enfant le couple père-enfant. Nous avons testé deux scenarii : un scenario type

COVID-19 où les enfants sont deux fois moins susceptibles et 20% moins infectieux que les adultes, et

un scenario type grippe où les enfants sont deux fois plus susceptibles que les adultes. La susceptibilité

et l’infectivité relatives des enfants par rapport aux adultes sont estimées par inférence Bayésienne et

augmentation de données, soit en faisant l’hypothèse d’homogénéité des contacts, soit en précisant les

niveaux réels d’hétérogénéité de contacts.

7.3. Résultats
Le modèle d’inférence qui prend en compte l’hétérogénéité de contacts entre les membres d’un même

ménage estime correctement la susceptibilité relative et l’infectivité relative des enfants dans le scenario

COVID-19 avec un biais relatif inférieur à 5%. Lorsque les contacts hétérogènes ne sont pas pris en

compte, les deux paramètres sont estimés de 20% environ. Nous obtenu les mêmes résultats concernant

la susceptibilité relative des enfants dans le scenario grippe. Cette sous-estimation compense le niveau

de contact plus faible que les enfants ont avec les autres membres du ménage par rapport au couple

mère-père.

7.4. Limites de l’étude
Le nombre de scenarii testés dans cette étude est relativement limité car nous n’avons exploré que deux

scenarios de susceptibilité et d’infectivité relative des enfants. Par ailleurs, nous avons choisi la valeur

des paramètres dans les simulations de manière à obtenir un taux d’attaque secondaire de 37% ce qui cor-

respond à la fourchette haute des taux d’attaque secondaires estimés dans les ménages pour les infections

au SARS-CoV-2 et aux virus influenza. Pour ces deux types d’infection, les taux d’attaque secondaires

observés varient de quelques pourcents à 45%.

320



Appendix F. Résumé étendu en français

7.5. Conclusion
La nature hétérogène des contacts dans les ménages peut biaiser l’estimation des paramètres clés de

la transmission comme la susceptibilité relative des enfants ou leur infectivité relative. La complexité

des contacts dans les ménages doit donc être prise en compte dans les études futures. Toutefois, de

nombreuses zones d’ombres subsistent concernant le changement des réseaux de contacts à la suite de

l’introduction d’un nouveau cas dans les ménages. Les futures études de ménages devraient inclure non

seulement le recueil de données sur la maladie mais aussi le recueil de données sur les réseaux de contacts

dans les ménages. De telles études qui soulèvent de nouveaux défis quant à leur design et aux méthodes

d’analyse des données.

8. Principaux résultats
Dans cette thèse, je montre la complexité de l’épidémiologie de la rage chez le chien qui dépend de la

région du monde concernée. Alors que dans l’Étude n°1 je montre que de nombreux pays sont marqués

par la co-circulation de lignées de virus de la rage et par de nombreux événements de transmissions entre

pays voisins, la situation du Cambodge présentée dans l’Étude n°2 est marquée par la circulation d’une

seule lignée virale, sans échange notable avec les autres pays. L’écologie des chiens, notamment leur re-

lation à l’homme, est un autre facteur majeur des dynamiques de transmission qui varie très certainement

en fonction des cultures. Peu de données sur les populations de chiens sont actuellement disponibles

or, la meilleure compréhension des dynamiques de la rage à travers le monde nécessite la collecte de

données de terrain sur les populations de chiens. Par exemple, de telles données pourraient améliorer

le réalisme des modèles épidémiologiques de transmission de la rage. Enfin, même si je rappelle dans

l’Étude n°1 que la vaccination des chiens est la mesure de contrôle la plus efficace pour contrôler la

circulation de la rage, les campagnes de vaccination dans leur forme actuelle ne sont pas suffisantes et

pourraient bénéficier du développement de la vaccination orale pour atteindre une couverture vaccinale

plus élevée.

L’épidémiologie de la COVID-19 est très différente de celle de la rage. Son potentiel de transmission

étant plus élevé, sa dynamique de transmission est souvent explosive ce qui nécessite une réponse rapide

et adaptée. Ces exigences contractent le temps de la recherche ce qui n’est pas le cas pour la rage.

La contraction du temps de recherche pour la COVID-19 est accentuée par l’émergence récurrente de

nouveaux variants potentiellement plus transmissibles comme le variant Alpha et de l’impact des intro-

ductions dont un petit nombre suffit à l’établissement de nouvelles chaînes de transmission. Un point

commun entre la COVID-19 et la rage concerne la conception des campagnes de vaccination dont la

fréquence, les populations ciblées et le niveau de couverture doivent être optimisés. La conception de

telles campagnes se base sur des estimations de l’effectivité vaccinale contre l’infection et la transmis-

sion ce que j’ai entrepris dans l’Étude n°4. Malheureusement, ces estimations sont devenues rapidement

obsolètes suite à l’émergence du variant Delta qui a remplacé le variant Alpha en Israël en juillet 2021.

Par ailleurs, des études ultérieures ont montré que l’effectivité vaccinale contre la transmission disparaît

avec le temps. Dans l’Étude n°4, j’ai aussi estimé une susceptibilité plus faible des enfants par rapport

aux adultes ce qui est en accord avec l’ensemble de la littérature. Toutefois, plusieurs facteurs de con-

fusion liés à l’identification des cas dans les études de la littérature pourraient concourir à ce résultat et,

comme démontré dans l’Étude n°5, l’hétérogénéité de contact dans les ménages pourrait aussi jouer un
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rôle. Les futures études de ménages devraient intégrer des données sur les contacts entre les membres des

ménages. Enfin, j’estime dans l’Étude n°4 une forte protection conférée par les mesures de distanciation

physique dans un contexte ménager, même après vaccination. Bien que ces résultats demandent confir-

mation, il est fort probable que la distanciation physique soit moins efficace avec les derniers variants du

SARS-CoV-2, les variants Omicron qui sont bien plus transmissibles que le variant Alpha.

Les agendas de recherche et les moyens investis dans la recherche de la COVID-19 et de la rage sont

très différents, les données individuelles étant largement disponibles pour la première (Étude n°4) alors

que les séquences génétiques de pathogènes restent une source majeure d’information pour la deux-

ième (Études n°1 et 2). Je montre dans cette thèse que ces deux types de données, analysées par des

méthodologies très différentes, sont complémentaires. L’analyse phylodynamique des séquences géné-

tiques de pathogènes permet d’étudier des processus à des échelles spatiales larges (Études n°2 et 3), et

d’intégrer des covariables environnementales (Étude n°2). D’autre part, l’analyse des données individu-

elles grâce à des modèles épidémiologiques est particulièrement adaptée à l’évaluation des mesures de

contrôle et à l’étude de l’hétérogénéité de transmission au niveau individuel (Étude n°4). Par ailleurs,

je montre dans l’Étude n°3 que l’utilisation de modèles épidémiologiques peut servir à étudier les lim-

ites des approches de phylogéographie en prenant en compte des processus complexes comme le biais

d’échantillonnage. Cette approche relativement nouvelle ouvre la voie à l’analyse comparative des mod-

èles de phylogéographie. En effet, une dernière contribution de cette thèse concerne l’investigation des

limites des méthodes quantitatives en épidémiologie des maladies infectieuses. L’Étude n°3 met en exer-

gue l’importance de tester et de discuter l’impact des biais d’échantillonnage en phylogéographie discrète

afin d’augmenter ou de moduler le niveau de preuve concernant les dynamiques spatiales. Les résultats

de l’Étude n°5 préconisent quant à eux le recueil des contacts en même temps que les données liées à la

transmission dans une étude de ménages. De telles études intégrées demandent une réflexion concernant

le mode et la fréquence de recueil des données de contact.

9. Perspectives
De nombreuses questions subsistent concernant l’épidémiologique de la rage et du SARS-CoV-2, ainsi

que sur les limites des méthodes de phylodynamique et de modélisation épidémiologique. Comment

l’écologie des chiens modifie-t-elle la dynamique de la rage ? Comment cette écologie varie-t-elle dans

le monde ? Comment l’hétérogénéité de l’immunité contre le SARS-CoV-2 due aux infections par des

variants successifs et des vaccinations multiples peut-elle être estimée et quel est son impact sur les

dynamiques de la COVID-19 ? Comment les modèles de phylodynamiques peuvent-ils être adaptés

pour tester l’impact de mesures de contrôle ? Comment combiner données épidémiologiques et données

génétiques dans un unique cadre de modélisation pour bénéficier de leur complémentarité ?
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Abstract

Background

Rabies is a fatal yet vaccine-preventable disease. In the last two decades, domestic dog

populations have been shown to constitute the predominant reservoir of rabies in developing

countries, causing 99% of human rabies cases. Despite substantial control efforts, dog

rabies is still widely endemic and is spreading across previously rabies-free areas. Develop-

ing a detailed understanding of dog rabies dynamics and the impact of vaccination is essen-

tial to optimize existing control strategies and developing new ones. In this scoping review,

we aimed at disentangling the respective contributions of mathematical models and phylo-

dynamic approaches to advancing the understanding of rabies dynamics and control in

domestic dog populations. We also addressed the methodological limitations of both

approaches and the remaining issues related to studying rabies spread and how this could

be applied to rabies control.

Methodology/principal findings

We reviewed how mathematical modelling of disease dynamics and phylodynamics have

been developed and used to characterize dog rabies dynamics and control. Through a

detailed search of the PubMed, Web of Science, and Scopus databases, we identified a

total of n = 59 relevant studies using mathematical models (n = 30), phylodynamic inference

(n = 22) and interdisciplinary approaches (n = 7). We found that despite often relying on

scarce rabies epidemiological data, mathematical models investigated multiple aspects of

rabies dynamics and control. These models confirmed the overwhelming efficacy of mas-

sive dog vaccination campaigns in all settings and unraveled the role of dog population

structure and frequent introductions in dog rabies maintenance. Phylodynamic approaches

successfully disentangled the evolutionary and environmental determinants of rabies dis-

persal and consistently reported support for the role of reintroduction events and human-
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mediated transportation over long distances in the maintenance of rabies in endemic areas.

Potential biases in data collection still need to be properly accounted for in most of these

analyses. Finally, interdisciplinary studies were determined to provide the most comprehen-

sive assessments through hypothesis generation and testing. They also represent new ave-

nues, especially concerning the reconstruction of local transmission chains or clusters

through data integration.

Conclusions/significance

Despite advances in rabies knowledge, substantial uncertainty remains regarding the mech-

anisms of local spread, the role of wildlife in dog rabies maintenance, and the impact of com-

munity behavior on the efficacy of control strategies including vaccination of dogs. Future

integrative approaches that use phylodynamic analyses and mechanistic models within a

single framework could take full advantage of not only viral sequences but also additional

epidemiological information as well as dog ecology data to refine our understanding of

rabies spread and control. This would represent a significant improvement on past studies

and a promising opportunity for canine rabies research in the frame of the One Health con-

cept that aims to achieve better public health outcomes through cross-sector collaboration.

Author summary

Rabies is a fatal yet vaccine-preventable zoonotic disease. Domestic dog populations are

known to constitute the predominant reservoir of rabies in developing countries, causing

99% of human rabies cases. Despite valuable efforts to control rabies spread, the last two

decades have seen only a limited reduction in the global rabies disease burden. Dog rabies

is still endemic in Africa, Asia, and the Middle East, in part due to remaining knowledge

gaps on dog rabies dynamics. We conducted an in-depth review of phylodynamic

approaches and mathematical models used to study the spread and control of rabies in

domestic dogs. We identified 59 relevant studies which used mathematical models (30),

phylodynamic approaches (22), or interdisciplinary approaches (7). Our study revealed

that these approaches disentangled different aspects of rabies spread and control. Mathe-

matical models support the role of dog population heterogeneity as a key driver of rabies

spread, and the overwhelming efficacy of dog vaccination campaigns to control rabies.

Phylodynamic studies confirm the role of frequent reintroduction events and human-

mediated transportation over long distances in rabies maintenance. Interdisciplinary

studies represent a powerful tool to generate and test hypotheses on rabies spread. Finally,

we identified new avenues which represent a promising opportunity for canine rabies

research to achieve more impactful public health outcomes.

Introduction

Background

Rabies is a viral zoonosis affecting the central nervous system of mammals that is almost

always fatal to humans. Domestic dogs represent the main reservoir of rabies virus (RABV)

worldwide. They are responsible for 99% of human rabies cases [1]. In-depth understanding of
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dog ecology and host-pathogen interactions is necessary to characterize rabies dynamics and

design appropriate control measures. Rabies is a vaccine-preventable disease in both human

and canine populations, and dog vaccination is the most cost-effective control measure [2].

Strong evidence is available for the efficacy of dog rabies elimination programs in endemic

areas [3–7], notably in South America where massive dog vaccination campaigns in the 1980s

alleviated the burden of canine rabies. Regardless, there has been only little improvement of

the global burden since the successes in South America. Dog rabies is still endemic in Africa,

Asia, and the Middle East [8,9].

In 2015, the World Health Organization (WHO), the Global Alliance for Rabies Control

(GARC), the World Organization for Animal Health (OIE) and the Food and Agriculture

Organization of the United Nations (FAO) launched a comprehensive framework targeting

the global elimination of dog-mediated human rabies by 2030 [10]. Effective One Health inter-

ventions such as the improvement of the current prophylaxis in both humans [11,12] and dogs

should enable reaching this goal.

Despite valuable efforts in several endemic countries [9,13,14], control strategies have not

stopped rabies from circulating due to inadequate political, economic, and social responses.

Weak interest from veterinary services, lack of sustainable resources and political neglect [15]

prevent most endemic countries to reach the 70% vaccination coverage recommended by the

WHO[9]. Moreover, rabies infections continue to spread, notably in previously rabies-free

areas in countries such as Indonesia [16–18] and the Philippines [19,20]. In this resource-lim-

ited context, in-depth knowledge of the mechanisms underlying rabies dynamics (environ-

mental drivers of spread, impact of dog density, impact of dog behavior, etc.) would be a key

asset to limiting the spread of this vaccine-preventable disease, notably by aiding to design

more effective vaccination campaigns that are robust to resurgence in the long-term. The

development of novel methodologies to better understand rabies epidemiology and transmis-

sion dynamics therefore constitutes a promising avenue of research.

Objectives

In this scoping review, we focused on the insights of two quantitative approaches applied to

the study of rabies: mathematical modelling of infectious diseases and phylodynamics. The for-

mer is a field of research that exploits epidemiological data to unravel the spread of diseases in

populations, assess the impact of interventions, support policy making, and optimize control

strategies. The latter studies the interactions between epidemiological, immunological, and

evolutionary processes from the analysis of viral genetic sequence data [21]. Within phylody-

namics, phylogeographic inference specifically aims at reconstructing the dispersal history and

dynamics of viral lineages in space and time. Here, we assessed the uses and respective contri-

butions of both approaches, as well as their limitations and the remaining knowledge gaps con-

cerning rabies dispersal and control in domestic dog populations.

Methods

Search strategy

This review follows the guidelines of the PRISMA-ScR (Preferred Reporting Items for System-

atic Reviews and Meta-Analyses Extension for Scoping Reviews) statement for scoping reviews

[22]. In this review, we screened PubMed, Web of Science and Scopus databases on the 2nd of

June, 2020 using the following combination of terms [“rabies” AND (“dog” OR “canine”)

AND (“modelling” OR “modeling” OR “phylogeography” OR “phylodynamics”) AND

“dynamics”] along with the “all fields” option and without restriction on publication year. The

“all fields” option enabled to apply the search terms for their appearance in the title, abstract
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and keywords. Only English-written papers published in scientific journals were considered.

All data were searched and screened by the same researcher (ML). The search strategy identi-

fied 65, 94 and 768 publications in PubMed, Web of Science and Scopus databases respectively,

which corresponded to 797 unique records. In addition, references of selected publications

were screened manually, leading to the identification and inclusion of two additional studies

[23,24]. Finally, the paper of Colombi et al. [25], which was not identified in the databases nor

in the references, was also included (Fig 1).

Selection of studies

In total, 797 records were included and processed manually in a multi-stage procedure. At

each selection step, a conservative approach was taken to ensure the best sensitivity level.

Firstly, studies were selected based on their title using the following inclusion criteria: mathe-

matical models of dog and human rabies assessing the impact of control strategies, the risk of

rabies importation, the drivers of rabies spread or models estimating epidemiological parame-

ters, cost-effectiveness studies, phylodynamic studies including RABV isolated from dogs, and

broad studies on new phylodynamic or mathematical models. Indeed, rabies has often been

used as a model disease in phylodynamics and mathematical modelling, and a reference to

rabies might not appear directly in the title or the abstract. The following exclusion criteria

were used: reviews, studies strictly on wildlife rabies, dog ecology and population dynamics,

conservation biology, and evolutionary analyses for diagnostic purposes. Secondly, studies

were selected based on their abstract with a refined set of exclusion criteria to exclude statistical

Fig 1. PRISMA-ScR Flow Diagram showing the number of identified and selected records along the multi-stage selection process. Scopus accounted for

most of the records as it retrieved 71% (n = 46) of PubMed records and 79% (n = 74) of Web of Science records.

https://doi.org/10.1371/journal.pntd.0009449.g001
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analyses of epidemiological data, cost-effectiveness studies with no focus on rabies dynamics,

experimental rabies cross-species transmission which did not incorporate a modelling aspect

and studies on the evolutionary processes of RABV. Finally, studies went through a full-text

reading step to verify that their content matched our selection criteria. At this step, theoretical

models which were not grounded in a specific epidemiological context were excluded (Fig 1).

Data extraction and analysis

Selected studies were classified into three categories based on their methodology: mathematical

models, phylodynamic and interdisciplinary studies. Most phylodynamic studies identified in

this review correspond to phylogeographic analyses, where the main focus is on inferring the

spread of a pathogen over time using location data associated with the available sequence data.

The interdisciplinary category covers studies either integrating epidemiological and genetic

data in a unified modelling framework or mixing modelling approaches with phylodynamics.

Data were systematically charted in an Excel spreadsheet designed to retrieve: i) the main

modelling strategy with its assumptions; ii) the data source; iii) remarks about potential bias of

the data in relation to the underlying evolutionary and epidemiological processes; iv) the quali-

tative and quantitative results concerning the dynamics of dog rabies; and v) if performed, the

sensitivity analysis determining the robustness of the methodology to parameter values or

potential biases.

Results

General characteristics of selected studies

Our selection procedure identified 59 studies that meet our selection criteria with 30 mathe-

matical models [16,23–51], 22 phylodynamic studies [17,19,52–71], and 7 interdisciplinary

studies [20,72–77], all published between 1996 and 2020 (Figs 1 and 2A and 2B). Mathematical

models were first published followed by phylodynamic and interdisciplinary studies (Fig 2B).

This timeline can be explained by the recent developments of Bayesian phylodynamic, and in

particular phylogeographic, models in BEAST [78–80]. Africa and Asia are the most studied

continents in the three methodological categories, while China accounts for most of the Asian

studies (Fig 2C). Oceania is not represented in the interdisciplinary and phylodynamic catego-

ries since it is a rabies-free area (Fig 2A).

Topics addressed by the studies

Phylodynamic studies are homogeneous in terms of methodologies (essentially phylogeo-

graphic studies) and research goals. They predominantly focus on unraveling the dispersal

dynamics of rabies at the regional and country levels (n = 16) [17,19,52–58,61,63,64,67,68,

70,71]. In four of them, the authors deciphered the role of lineage introduction in rabies main-

tenance or emergence [59,60,62,66]. In recent years, researchers have been trying to identify

external factors impacting the spatial dynamics of RABV spread (n = 5) [63,64,68,69,71] (Fig

2D and S1 Table). Contrary to phylodynamic studies, the modelling category gathers a diverse

panel of models with aims that cover the implementation of new mathematical methodologies

(n = 2) [42,46], the characterization of rabies dynamics (n = 11) [26,27,31,32,40,41,44,47–

49,51], the identification of factors driving the resurgence or maintenance of rabies (n = 9)

[16,23,25,33–35,37,38,43], the assessment of control strategies efficacy (n = 18) [16,23,24,27–

29,31,33–36,42–45,49–51], the risk assessment of rabies introduction and the evaluation of

outbreak preparedness in rabies-free areas (n = 3) [30,36,42], and cost-effectiveness studies

(n = 2) [39,48] (Fig 2D and S1 Table). Finally, interdisciplinary studies mainly focused on
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rabies dynamics in endemic areas (n = 6) [20,72–74,76,77] and the identification of environ-

mental factors influencing rabies spread and maintenance such as recurrent reintroductions

(n = 3) [72,75,77]. Two of these used genetic and epidemiological data of dog rabies in a uni-

fied modelling approach [73,76], whereas the others analyzed sequences through regular phy-

logenetic approaches and completed their analysis with a mathematical model [20,72,74,75,77]

(Fig 2D and S1 Table).

Potential sources of bias in the data

Data source (active/passive surveillance), resolution (number and length of RABV sequences,

incidence per country/region, etc.) and representativity influence the level of evidence of the

Fig 2. General characteristics of the selected dog rabies studies. (A) Classification of the included publications with the total number of studies, the publication time

span, and the number of publications per continent of study. Asia and Africa account for up to 78% of the included studies. (B) Number of publications per year and per

methodological category. Mathematical models were the first studies to be published followed by phylodynamic and interdisciplinary studies. (C) Number of

publications per country of study. Each publication was attributed to one or multiple countries based on the origin of the RABV genetic sequences, rabid case data or dog

ecology data. For phylodynamic studies, countries were not considered if their genetic data were included only in regular phylogenetic tree reconstructions. Similarly,

two studies which described rabies dynamics at the global scale [52,65] were not considered in this figure. In our collected records, China accounts for most Asian

studies. Spain appears on the map because Ceuta and Melilla, which are Spanish enclaves in North Africa, are represented in two datasets of RABV genetic sequences

[68,72]. (D) Number of studies per topic and methodological category. The World Bank, https://datacatalog.worldbank.org/dataset/world-bank-official-boundaries,

CC-BY 4.0.

https://doi.org/10.1371/journal.pntd.0009449.g002
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studies on the underlying epidemiological and evolutionary processes. In particular, recorded

cases collected through passive surveillance systems are expected to underestimate the disease

burden and to be potentially spatiotemporally biased [8,81]. Similarly, genetic sequences col-

lected from publicly available databases such as GenBank often lack precise metadata (e.g.,

sampling time and location) and/or are of short length.

In our text corpus of phylodynamic and interdisciplinary studies, passive surveillance sys-

tems and GenBank represent the main sources of RABV genetic sequence data (S2–S4 Tables).

By combining these two data sources, researchers have generally managed to increase the spa-

tiotemporal coverage of their dataset. This however does not guarantee a good representativity

of the epidemic process. Active surveillance was mostly used to collect dog specimens from

animal markets in China (n = 2) [58,60] and thorough contact tracing after biting events in

China and Tanzania (n = 2) [63,66]. On average, the datasets analyzed in these studies con-

tained 183 sequences spanning from approximatively 3% to 100% of the RABV genome length.

Short sequences containing the N gene constitute the most common type of data. They are less

informative than whole genomes which were only generated and analyzed in recent years

across four studies [63,65,69,71] (S2 Table).

In studies from the modelling and interdisciplinary categories, authors generally simulated

rabies epidemics (n = 24) [20,23,25,28–36,38,40,42–47,49–51,72], and thus predominantly

relied on publicly available estimates of the natural history of rabies, dog demographics and

dog ecology (S3 and S4 Tables). When models were fitted to incidence data (n = 13)

[16,24,26,27,37,39,41,48,73–77], human and/or dog case data from passive surveillance sys-

tems were used, or bite incidence data from thorough active surveillance. In general, there was

a lack of data on dog rabies cases (available in 10 studies; [16,24,26,27,37,48,73–77]) and esti-

mates on dog demographics and ecology integrating the local specificities of host ecology were

available in only seven studies [27,37,39,41,48,75,77]. Access to local data is crucial since differ-

ences in rabies spread [27] and dog carrying capacities [39] were estimated between areas of

the same country. We would expect these differences to be more pronounced across different

countries. To overcome the lack of epidemiological data on dog rabies, one study used serolog-

ical data (from vaccination campaigns) to model the dynamics of rabies [46], and another

study [36] based its analyses on historical records in Japan from the 1950s. Similarly, most

Australian studies [30,42–44] took the perspective of dog ecology data since Australia is free of

rabies. This way, the authors explored the impact of dog population structure and dog roaming

behavior on rabies dynamics.

Description of the models

In studies using phylodynamic approaches, the geographical dispersal of rabies was studied

using either parsimony (n = 4) [52,54,55,58], Bayesian discrete phylogeography (n = 18)

[17,19,20,53,56,57,59,60,62–64,66,67,70–72,77,82], or Bayesian continuous phylogeography

(n = 6) [61,68,69,71,74,77] (S2–S4 Tables). All Bayesian phylogeographic studies were carried

out in BEAST 1 [79] with discrete trait analysis (DTA) to perform a phylogeographic recon-

struction based on discrete/discretized sampling locations (e.g. provinces or countries) or with

continuous trait analysis to perform a phylogeographic reconstruction based on spatially-

explicit sampling location data (latitude and longitude coordinates). Several methodologies

take advantage of such phylogeographic inferences to investigate the impact of external factors

on the dispersal of viruses: a generalized linear model (GLM) extension of DTA developed by

Lemey et al. [83] to test predictors of dispersal transition frequencies among discrete locations

which was implemented by Brunker et al. [69]; and post hoc statistical approaches developed

by Dellicour et al. [71,84,85] to investigate the impact of environmental factors on the dispersal
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velocity, direction, or frequency of viral lineages in continuous phylogeographic frameworks

which were applied in four rabies studies [68,69,71,77]. Finally, Zinsstag et al. [75] were the

only authors to implement a birth-death model in BEAST 2 [80] to reconstruct the effective

reproduction ratio (R) along vaccination campaigns and compare it to estimates obtained with

a modelling approach (S4 Table).

Compared to phylodynamics, mathematical models display a large diversity of specifica-

tions and parametrizations. Compartmental models (n = 18) [20,23,24,26,27,33,34,39–41,45–

49,51,75,77] are the most represented models, followed by agent-based (n = 8)

[16,30,31,35,36,42–44] and metapopulation (n = 5) [25,28,32,37,50] models. Other model

types such as network models or branching processes are also represented [29,38,73,74,76] (S3

and S4 Tables). The development of new dog rabies models builds upon the literature since 15

models out of the 37 identified were adapted from previously published dog rabies or wildlife

rabies models (S3 and S4 Tables). This is the case notably for compartmental models which

correspond to the simplest models of rabies dynamics. Metapopulation, agent-based, and

other model types are more complex, in that these approaches often integrate spatial dynamics

of dog rabies [25,30,32,35–38,42,43,72,73,76].

Population structure can be integrated in any modelling framework under the form of con-

tact heterogeneity, age-structured populations, roaming behavior, or individual heterogeneity.

In compartmental models, population structure is integrated either as a set of strata (stray

dogs, owned free-roaming dogs, owned confined dogs) interacting together [33], or by specify-

ing a structured next-generation matrix from which R is generally derived [34]. Such models

are also referred to as multi-host models and may integrate other hosts: humans

[32,39,40,48,49,51,86], cattle [39], wildlife [27,41]. In agent-based and network models, popu-

lation structure is defined at the individual level using spatial kernels [16,25,30,31,36,42], indi-

vidual contact rates [30,35,44], vaccination status [30,36], life span, infectious period

[16,31,44], etc.

Sensitivity analyses

Sensitivity analyses are commonly used to assess the robustness of inference to both data

representativity and model specifications, and to identify the most influential parameters on

specific model outputs. In our text corpus, no sensitivity analyses were found to be carried out

in phylodynamic studies which can be attributed to the relatively small number of sequences

analyzed in those studies. In contrast, sensitivity analyses were commonly performed in math-

ematical models, either to unravel the key parameters influencing rabies dynamics or to verify

the robustness of the results to model assumptions. Dog ecology parameters such as birth rate

and carrying capacities are often reported as key parameters on rabies dynamics predictions

although they are not estimated using local data. Transmission rates are also determinant in

model predictions (S3 Table). In spatially explicit studies, mobility parameters also have a

strong impact on model inferences. Finally, the impact of under-reporting was tested only in

interdisciplinary studies, two of which reported a strong impact of the reporting rate on model

inference [20,76] whereas the other two were robust to a change in this parameter [74,75] (S4

Table).

Insights into dog rabies dynamics and its drivers from phylodynamic and

modelling studies

Phylogeographic analyses have aimed to unravel the spatial dynamics of dog rabies at the

global and regional scales and showed that dog RABV lineages cluster spatially at the global

scale, except for one lineage, referred to as the cosmopolitan lineage, which is largely
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distributed across the world [52]. At the regional and country scales, there is co-circulation of

dog-related lineages, notably in China [55,58,64,66,70], in the Middle East [62,71], as well as in

Western and Central Africa [54]. However, each lineage exhibits a strong geographical struc-

ture. In the case of country-specific lineages, various studies have suggested that transbound-

ary movements are not a major force of rabies dispersal [19,53,54,59,60,68]. All study

categories unraveled the role of human-mediated movements in rabies spread. Overall, phylo-

geographic analyses provided evidence for the effect of anthropogenic factors: major roads are

associated with rabies dispersal in North Africa [72], and RABV lineages tended to preferen-

tially circulate within populated areas in North Africa [68] and the Middle East [71]. Other fac-

tors are associated with rabies spread in Yunnan (China, Tables 1 and S5). These results may

reflect the intimate link between rabies dynamics, host ecology and dog-human interactions.

Mathematical models highlighted the short length of canine rabies transmission chains

[31,73,76] and unraveled the importance of long-range human movements in disease spread

[25,32]. Finally, interdisciplinary approaches highlighted the crucial role of long-distance

transmission events likely due to humans in rabies dynamics in North Africa [72] and also

showed that main roads act as barriers to dog rabies dispersal in an urban setting in Africa

[35].

Phylodynamic studies showed that introduction through infected dog movement is the

major force of rabies spread towards disease-free areas, as Indonesia [16–18] and the Philip-

pines [19,20] have recently experienced, and also represents a driver of rabies spread in

endemic areas where frequent reintroductions counteract local rabies elimination after vacci-

nation campaigns [74,75]. In these settings, phylodynamic analysis constitutes a powerful tool

to confirm introduction events [19,56,59,72,74,75]. Multiple mathematical models have also

shown that frequent reintroductions drive rabies persistence in endemic areas [31,37,73,76].

Population structure constitutes another driving force of rabies maintenance as explored in

simulation studies integrating dog ecology data in Australian [30,42–44], Japanese [36], Tanza-

nia [28,50] and Chadian [35] settings. Rabies-induced behavioral changes were shown to con-

tribute to rabies persistence in small dog populations [44] as well as differential roaming

behavior, contact rates between dog strata and the structure of contact networks [30,34–

36,44].

The contribution of wildlife to canine rabies spread and maintenance is rarely addressed in

phylodynamic studies because viruses isolated from wildlife specimens often correspond to

dog-related lineages [19,56,64,66,70] or because of insufficient sampling efforts when it comes

to wildlife [58] (S1 Table). Nevertheless, specific RABV lineages were shown to circulate both

in wildlife and domestic dogs in the Middle East and Tanzania with complex interspecies

transmissions [62,65,69,71]. A phylodynamic study at the global scale showed that host shifts

from dogs to wildlife with adaptation to the new host were common in RABV history [65],

which may explain why different lineages circulate in dogs and wild foxes in Brazil [61], in

dogs and ferret badgers in Asia [65] and in dogs and mongooses in South Africa [65] with rare

interspecies transmission events. By incorporating direct interspecies transmission, mathemat-

ical modeling studies showed that dog population contributes to sustained rabies circulation

in wildlife instead of the other way around [27,41]. Similarly, the proximity to wildlife was

shown to not impact rabies spread in dogs in the model of Beyer et al. [28].

Finally, mathematical models and phylodynamics provide convenient estimates of a range

of parameters on rabies dispersal dynamics (lineage dispersal velocities, diffusion coefficients;

Table 1), rabies evolutionary processes and dog ecology. For example, the evolutionary rate

was homogeneously estimated to be between 1 x 10−4 and 5 x 10−4 substitutions per site per

year across RABV genes and lineages, except for the Asian lineage which is estimated to evolve

faster (Fig 3A). The time to the most recent common ancestor (TMRCA) is also frequently
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Table 1. Estimated parameters in phylodynamic models.

Location Sampling

window

Viral

lineages

RABV

sequence

Migration rate

(migrations.

year-1, 95%

HPD)

Velocitya

(km.year-1,

95% HPD)

Diffusion

coefficient

(km2.year-1,

95% HPD)

Factors facilitating viral

spreadb
Factors impeding

viral spreadb
Reference

Bangui,

Central

African

Republic

1986–2012 Africa 1

Africa 2

N

P

M

G

intergenic

G-L

- v = 0.9 (0.65–

1.2)

- - - Bourhy

et al., 2016

[74]

Serengeti

district,

Tanzania

2004–2013 Africa

1b

Whole-

genome

- v = 4.46

(3.22–5.88)

Coefficient of

variation

M = 3.10

- Dog presence Elevation Rivers Brunker

et al., 2018

[69]

Yunnan

province,

China

2008–2015 SEA-1

SEA-2

SEA-3

N

G

- v = 57.5

(39.2–85.1)

vweighted =

23.4 (2.4–

32.6)

D = 1733

(1082–2928)

Dweighted =

1064 (116–

1638)

Forest coverage (but with

a tendency to spread

towards areas associated

with relatively low forest

coverage)

- Tian et al.,

2018 [77]

North and

Northeast

regions,

Brazil

2002–2005 - N - voverall =

12.88c

vdogs = 30.5c

vcerdocyon thous
= 9.0c

- - - Carnieli

et al., 2013

[61]

Algeria 2001–2008 Africa 1 N

P

intergenic

G-L

- vgreat circle

distances = 26

(18–34)

vroad distances

= 33 (23–43)

- Major roads - Talbi et al.,

2010 [72]

Algeria 2001–2008 Africa 1 N

P

intergenic

G-L

- vwavefront ~

15c
D = 2874

(1900–5420)

Dweighted =

1305 (1086–

1574)

Grasslands

Urban areas

Elevation Dellicour

et al., 2017

[68]

Morocco 2004–2008 Africa 1 N

P

intergenic

G-L

- vgreat circle

distances = 42

(26–58)

vroad distances

= 51 (34–72)

- Major roads - Talbi et al.,

2010 [72]

Morocco 2004–2008 Africa 1 N

P

intergenic

G-L

- vwavefront ~

22c
D = 2874

(1900–5420)

Dweighted =

1305 (1086–

1574)

Grasslands

Urban areas

Elevation Dellicour

et al., 2017

[68]

Iran 2008–2015 - Whole-

genome

- v = 55.5

(38.9–142.4)

vweighted =

18.1 (16.3–

20.8)

D = 2676

(1935–5066)

Dweighted =

1643 (1356–

2325)

(Tendency to spread

towards and preferentially

circulate within accessible

areas associated with

relatively higher human

population density)

(Tendency to avoid

circulating in

barren vegetation

areas and to avoid

spreading towards

grasslands)

Dellicour

et al., 2019

[71]

(Continued)
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estimated in phylodynamic studies (S2 Table) which is generally more recent than suggested

by historical records. R, the expected number of secondary infections, is often estimated by fit-

ting case data to mathematical models (Fig 3B) or by computing its value based on the choice

of parameters value (S6 Table). Its estimate ranges from 0.80 to 3.36 according to the setting

but it is generally estimated to be between 1 and 2, corresponding to a low-grade transmission

with frequent stochastic extinctions. Other parameters such as the dog-to-dog transmission

rate, the introduction rate or the dog carrying capacity are also frequently estimated (S6

Table).

Effective control strategies

Interdisciplinary and modelling studies generally assessed the impact of past or potential con-

trol strategies to eliminate dog rabies. The specifications of the explored control strategies

depended on the economic situation of the country in which the study was supposed to be per-

formed, as well as the model type. Dog vaccination was the most studied control measure

(n = 28) [16,23,24,26–28,30–37,39–41,43–51,75,77], whereas culling (n = 7)

[30,33,42,45,48,49,51], dog confinement or movement ban (n = 4) [30,31,36,42], control of

dog birth rate (n = 4) [40,45,49,86] and community behavior (n = 1) [31] were rarely modelled.

Culling was shown to be effective in two compartmental model studies [45,51] while

Table 1. (Continued)

Location Sampling

window

Viral

lineages

RABV

sequence

Migration rate

(migrations.

year-1, 95%

HPD)

Velocitya

(km.year-1,

95% HPD)

Diffusion

coefficient

(km2.year-1,

95% HPD)

Factors facilitating viral

spreadb
Factors impeding

viral spreadb
Reference

China 1983–2016 Arctic-

like 2

Central

Asian 1

SEA-1

SEA-2

SEA-3

SEA-5

N 5.81e-3 (3.92e-

3–7.77e-3)

- - - - Wang

et al., 2019

[70]

Abbreviations: HPD, Highest Posterior Density; SEA-1, South-East Asia 1; SEA-2, South-East Asia 2; SEA-3, South-East Asia 3.

The sampling window and the spatial scale of the studies are highly variable. Thus, it is not possible to directly compare the velocity and diffusion coefficients amongst

the different study settings.

a Depending on the study, estimates of RABV lineage velocity or diffusivity were obtained by estimating different dispersal statistics. Talbi et al. [72] reconstructed for

each branch of the phylogenetic tree the expected number of migrations between two locations using a discrete phylogeographic model. The authors multiplied these

estimates by the great-circle distance between the two locations, and thus, obtained the expected distance travelled within the time elapsed on each branch. Carnieli et al.

[61], Bourhy et al. [74], Brunker et al. [68], Tian et al. [77], and Dellicour et al. [70] estimated the mean branch velocity using continuous phylogeographic

reconstructions. Finally, Dellicour et al. [67] estimated the temporal evolution of the wavefront velocity that corresponds to the distance between the reconstructed

epidemic origin and the maximal epidemic wavefront. While the mean branch velocity (v) and diffusion coefficient (D) are estimates of the dispersal velocity and of the

diffusion coefficient averaged over all tree branches, respectively, their weighted average counterparts involve a weighting by branch time resulting in lower-variance

estimates [70].

b Depending on the study, the impact of environmental factors on dispersal of viral lineages were investigated using different approaches. Talbi et al. [72] simulated

random or conditional dispersal of RABV in northern Africa along phylogenetic trees reconstructed by phylogeographic inference and compared simulated dispersal

patterns with the observed spread. Brunker et al. [68] parametrized a generalized linear model (GLM) in a discrete phylogeographic framework with resistance distances

derived from landscape data between clusters of rabies cases. Dellicour et al. [67] and Tian et al. [77] assessed which environmental factors are associated with RABV

velocity using continuous phylogeographic inference and post hoc statistical analyses. Dellicour et al. [70] and Tian et al. [77] also identified factors associated with the

direction of spread using phylogeographic reconstructions and subsequent post hoc analyses.

c 95% Highest Posterior Density (HPD) intervals are not specified in the original publications.

https://doi.org/10.1371/journal.pntd.0009449.t001
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vaccination was generally found to be the most effective strategy. Vaccination coverage

strongly depends on the setting: 90% or complete dog vaccination coverages are recommended

Fig 3. Estimates of the mean evolutionary rate of RABV and the reproduction ratio of canine rabies in the included studies. (A)

Bayesian credibility intervals (mean and 95% Highest Posterior Density, HPD) of the mean evolutionary rate of canine RABV per genetic

sequence and RABV lineage. aThe estimate corresponds to the upper bound of the 95% HPD. bThe dot corresponds to the median and

the interval to the 95% HPD interval. cThe 95% HPD was not specified in the original publication. (B) Estimates of the reproduction ratio

of dog rabies per control strategy or geographical location. The dot corresponds to the mean and the interval to the 95% confidence

interval unless stated otherwise. a The interval corresponds to the standard error. b The authors estimated the effective reproduction ratio

along time. Here, the value range of the median monthly point estimate is depicted.

https://doi.org/10.1371/journal.pntd.0009449.g003

PLOS NEGLECTED TROPICAL DISEASES Mathematical modelling and phylodynamics to study dog rabies

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009449 May 27, 2021 12 / 24



in rabies-free areas with high surveillance and control capacities whereas lower coverages asso-

ciated with complementary strategies are recommended in endemic areas (Table 2). Neverthe-

less, the efficacy of vaccination strategies is mitigated by new introductions due to neighboring

transmission or long-distance movements mediated by humans [25,29,31,37,74,75,87], notably

in low vaccinated populations [32]. In this case, reactive vaccination strategies [16] or dog

movement bans [25] constitute alternative effective measures. However, Ferguson et al. [31]

evaluated the impact of new introductions in vaccinated areas, and concluded that vaccination

coverages were robust to rabies introduction in their specific setting. Similarly, Beyer et al. [50]

suggested that the spatial structure of dog population had more impact than rabies introduc-

tion on the efficacy of vaccination campaigns. In terms of vaccination coverage, successful vac-

cination campaigns should target homogenous coverage since hidden pockets of rabies

transmission might jeopardize control efforts [16,23,29,31]. In terms of campaign frequency,

the efficacy of pluriannual compared to annual vaccination campaigns is difficult to evaluate

as it results from many factors including the number of vaccination pulses, the time interval

between each pulse, dog birth rate and the introduction rate of infectious animals [23,28,45].

Recent studies [28,34–36,42,43] proposed targeting at-risk dog populations, such as explor-

ers and roaming dogs, to improve the efficacy of vaccination campaigns (Table 2). However,

the sensitivity analysis of Laager et al. [37] showed that population structure did not impact

the efficacy of vaccination strategies. There are conflicting results concerning stray dog vacci-

nation which was either less efficient than owned dog vaccination [51] or dependent on popu-

lation composition [34].

Several studies also suggested an impact of dog birth rate reduction on the incidence of

rabies [23,26,40,41,45,49]. However, the cost and feasibility of dog population management

strategies such as sterilization render this unfeasible in many settings [88]. Dog confinement,

which is generally spontaneously put in place by local communities during rabies outbreaks,

may improve elimination prospects but, when implemented, the level of confinement is not

sufficient to reach elimination [25,30,31]. Concerning the rabies burden in humans, some

studies recalled the importance of public awareness (Table 2) and proper PEP coverage to

reduce the number of human cases, even though it does not impact rabies circulation in dogs

[26,35,36,41]. All these findings confirmed and justified the strategic plan that provides a

phased, all-inclusive, intersectoral approach to eliminate human deaths from rabies recently

launched by United Against Rabies, in a collaboration between four partners: WHO, FAO,

OIE and GARC [13].

Discussion

Insights on rabies epidemiology and control

In this review, we assessed the respective contributions of mathematical modelling and phylo-

dynamics to the understanding of rabies spread and control in dog populations. Contrary to

phylodynamic studies, mathematical modelling approaches were multi-faceted and mainly

addressed the efficacy of control strategies and, less frequently, the drivers of rabies spread.

They revealed the crucial role of frequent introductions and the potential role of dog popula-

tion structure in disease dispersal and maintenance, as well as the overwhelming efficacy of

dog vaccination campaigns over other control strategies. Certain studies also estimated key

parameters of rabies dynamics and dog ecology, such as dog birth rate or dog carrying capac-

ity. On the other hand, phylodynamic studies mostly focused on the description of viral

dynamics at the global, regional, and local scales, and recently tested which environmental fac-

tors are impacting RABV spread. These approaches consistently unraveled the occurrence of

long-distance movements suspected to be human-mediated and confirmed the role of humans
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Table 2. Recommended control strategies in mathematical modelling studies.

Epidemiological context Recommended control

strategy

Specificities of the recommended control strategie Location Reference

Introduction in previously

rabies-free areas

Reactive dog vaccination Followed by a 2-year monitoring period Townsend et al.,

2013 [29]

Until all targeted dogs are vaccinated Northern Peninsula Area and

Elcho Island, Australia

Dürr et al., 2015

[30]

90% dog vaccination

coverage

Northern Australia and New South

Wales, Australia

Sparkes et al., 2016

[33]

Kubin, Saibai and Warraber

divisions, Australia

Brookes et al., 2019

[44]

Targeted dog vaccination

campaigns

Vaccination of free-roaming dogs Northern Peninsula Area,

Australia

Hudson et al., 2019

[43]

Integrated approach Mandatory dog vaccination

Dog owner awareness

Dog registration,

Capture of free-roaming dogs

Quarantine of imported animals

Ibaraki and Hokkaido prefectures,

Japan

Kadowaki et al.,

2018 [36]

Endemic areas 90% dog vaccination

coverage

Lemuna-bilbilo and bishoftu

districts, Ethiopia

Beyene et al., 2019

[39]

75% dog vaccination

coverage

Stray dog management Guangdong, China Hou et al., 2012

[51]

70% dog vaccination

coverage

Annual vaccination (or biannual vaccination with a

60% coverage)

Machakos district, Kenya Kitala et al., 2002

[23]

N’Djaména, Chad Zinsstag et al., 2009

[48]

Even coverage Bali, Indonesia Townsend et al.,

2013 [16]

Serengeti and Ngorongoro

districts, Tanzania

Fitzpatrick et al.,

2012 [27]

�50% dog vaccination

coverage

� 50% fertility control coverage Carroll et al., 2010

[45]

Sarawak state, Malaysia Taib et al., 2019

[40]

Even dog vaccination

coverage

Region IV, Philippines Ferguson et al.,

2015 [31]

Targeted dog vaccination

campaigns

Frequent dog vaccination campaigns targeting the

reduction in metapopulation risk

Serengeti district, Tanzania Beyer et al., 2012

[28]

Stray dog vaccination coverage based on dog

population composition

Leung et al., 2017

[34]

Vaccination based on social and roaming behaviors

Public awareness

Locally reactive interventions

Reporting of 60% of cases by the surveillance system

N’Djaména, Chad Laager et al., 2018

[35]

Dog population

management

Dog vaccination

Public awareness

China Zhang et al., 2012

[26]

Massive dog vaccination campaigns in urban areas

Dog movement bans

Central African Republic Colombi et al., 2020

[25]

Dog vaccination China Zhang et al., 2011

[49]

The efficacy of control strategies on dog rabies dynamics has been addressed in only a subset of the currently available mathematical modelling studies. Studies

presented in this table compared several control strategies or different dog vaccination coverages on rabies elimination prospects. The optimal control strategy

inherently depends on the epidemiological context (endemic or introduction in previously rabies-free areas), the setting (local surveillance and vaccination capacities),

the assumptions of the dog rabies model and the control strategies tested by the researchers. Here, we report the strategies recommended by the authors which include

quantitative and qualitative criteria such as the estimated impact of public awareness on rabid dog detection and management. Three studies [35,40,51] are not

grounded in a specific geographical area. Using simulated scenarios, they test the impact of control strategies according to the time to detection [35], dog population

structure [40] and the use of immunocontraceptives [51].

https://doi.org/10.1371/journal.pntd.0009449.t002
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in rabies dispersal dynamics in Africa and the Middle East. A third kind of studies either com-

bined phylodynamics and mathematical modelling or presented new models integrating epi-

demiological and genetic data. In the former approach, hypotheses on rabies spread were

generated and tested in the same epidemiological context, and thus, confirmed the impact of

introductions and human movements in a low-grade transmission process characterized by

small clusters and frequent stochastic extinctions. The latter approaches aimed at reconstruct-

ing local transmission chains or clusters, opening new horizons on data integration and the

study of rabies (Fig 4). Unfortunately, a large number of endemic countries is still not, or

poorly studied. Data collection and/or model formulation are still needed in Russia, and most

of Africa, and South-East Asia.

The limitations of our review should be acknowledged. In preliminary analyses, we noticed

a high variability in record selection according to the combination of search terms, and cer-

tainly due to the ambiguous use of specific terms such as phylodynamics in the literature.

Since the studies selected in this review are mainly in line with previous reviews [82,89,90], we

argue that we retrieved a large part of the available studies on rabies dynamics and control.

Open questions in rabies epidemiology and control

In this review, we summarized the findings of mathematical modelling and phylodynamics on

the factors that impact rabies spread. Nevertheless, the full picture of rabies epidemiology

remains unclear. First, the role of dog roaming behavior, and dog contact networks in dog

rabies spread should be further investigated. In this review, we identified seven studies [33–

35,38,42–44], all situated in Australia and Africa, showing that highly connected dogs or free

roaming dogs participate in a large part in the spread of the disease. By specifically targeting

this type of dogs, vaccination campaigns could be more effective according to Leung et al.,

2017 [34], Laager et al., 2018 [35], and Hudson et al., 2019 [43]. Yet only one study combined

contact data with epidemiological data [35]. The ecological and behavioral drivers of rabies cir-

culation in domestic dogs are still not fully understood. If stray dogs do constitute a major

driver of rabies dispersal, this could have direct implications on the field concerning stray dog

population management for example.

Additionally, the role of wildlife and other host species remains unclear [91]. Even though

the circulation of dog rabies seems predominant in dog populations, there are too few studies

addressing the dynamics of RABV in wildlife and dogs. Furthermore, the interactions between

dogs and other carnivore species are expected to change from location to location. Indeed, the

interactions between dog populations and wild carnivores depend on the abundance of wild

populations and the frequency of contacts between the dog reservoir and wildlife [27,41]. Bet-

ter understanding the role of wildlife could also have direct implications on local policies such

as increasing public awareness, notably in rural areas or strengthening wildlife surveillance sys-

tems for rabies.

At a broader scale, the spatial dynamics of rabies are still poorly understood. Urban areas

were first thought to be hubs of rabies transmission but recent studies have shown that rabies

could be eliminated temporarily at the city-level through mass dog vaccination campaigns

[37,74,75]. These case studies suggest that urban areas are not hubs of rabies transmission but

part of the complex spatial heterogeneity of dog ecology and dog movement. By exploring the

dynamics of dog rabies circulation in urban, peri urban and rural areas, rabies research could

see an improved understanding of rabies ecology. This could have direct implications on the

design of vaccination campaigns, by prioritizing vaccination campaigns in hubs of rabies

transmission, followed by locations with intermediate and low transmission.
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Finally, there is extensive evidence of the efficacy of dog vaccination to control the spread

of rabies in both human and dog populations. We showed in this review that higher coverages

Fig 4. Visual summary of the uses of epidemiological data, environmental data and RABV genetic sequences for the

study of rabies dynamics and control. Epidemiological data, environmental data, RABV genetic sequences and social

sciences data are highlighted in cyan, yellow, pink, and brown, respectively. The section corresponding to models

combining epidemiological data and RABV genetic sequences only is colored in grey since no study that meets this

criterion has been identified using our search strategy. Models and their contributions to the understanding of rabies

spread and control are detailed in the colored tags. Models using multiple types of data are colored with the intersection

color of the corresponding data types. In our text corpus, few studies combined epidemiological, ecological, and genetic

data in a unified framework.

https://doi.org/10.1371/journal.pntd.0009449.g004
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are recommended in rabies-free areas than in endemic areas, however, the practicalities of vac-

cination campaigns are rarely addressed. As a neglected tropical disease, rabies control pro-

grams are designed and deployed in resource-limited contexts. Thus, high, and even

intermediate vaccination coverages cannot be achieved at once over a large area. The periodic-

ity, the spatial prioritization, the targeted populations, and the association with other control

strategies (dog population management, dog movement ban. . .) are interesting modalities that

could be tested in models and could substantially improve resource allocation.

Future directions of mathematical modelling and phylodynamics for rabies

research

There is an evident lack of extensive and adequate databases possibly due to restricted data col-

lection, data accessibility and/or data analysis capacity in resource-limited settings [92,93]. This

constitutes the main weakness of mathematical modelling and phylodynamic studies that we

identified in this review (Table 3). Epidemiological and ecological (census data, population

structure, contact networks) data are needed to account for local specificities in terms of model-

ing interactions between rabies virus (RABV), dog reservoir, domestic animals, wildlife reservoir

and human populations. Similarly, there is a need for longer RABV genetic sequences and more

thorough sampling to discriminate fine-scale migration events and better characterize the inter-

actions between RABV lineages [63,82,94]. Improving operational data collection is nevertheless

challenging. Genomic surveillance relies on laboratory infrastructures, supply chains and exper-

tise, all of which are costly and generally lacking in low- and middle-income countries. New por-

table sequencing technologies combined with bioinformatics workflows could accelerate

capacity building through portability and affordability [94,95]. In parallel, potential sampling

bias effects should not be overlooked [53,96] since they may hide a part of disease dynamics

such as silent spread in deprived rural areas. Additionally, many endemic countries with high

human incidence (Russia, Malaysia, Cambodia, Burma, Niger, Mozambique, etc.) [8] remain

largely unstudied using quantitative approaches. This represents an opportunity for data collec-

tion, rabies dynamics characterization and control strategy optimization. Besides filling knowl-

edge gaps, improving the availability of epidemiological, ecological, and genetic data offers an

opportunity to strengthen countries’ veterinary surveillance capacities [15] and enhance the

impact assessment of control strategies, two pillars of the 2030 strategic elimination plan.

Other data types such as social sciences data could help identify knowledge gaps and refine

control measures to be tested further using mathematical models. For example, there is little quan-

titative evidence of the impact of community response on the efficacy of control measures [91],

although it is key to human rabies prevention [97,98] and it is expected to change over rabies out-

breaks and affect rabies dynamics. By bridging the two disciplines, alternative control strategies

that are both effective and adapted to community preferences could be designed [99] (Fig 4).

Table 3. Strengths and weaknesses of phylodynamics and mathematical modelling studies identified in this review for the study of rabies.

Strengths Weaknesses

Phylodynamics • Homogeneous methodology which facilitates the

comparison of rabies dynamics in different areas

• Recent advances in phylogeographical models

• Small datasets and short genetic sequences

• Studies generally remain desriptive in terms of environmental factors contributing

to rabies spread

• Large room to apply other models (such as models implemented in BEAST 2)

• The potential impact of reporting biases is barely addressed

Mathematical

modelling

• Diversity of models that explore multiple aspects of

rabies spread

• Assessment of rabies control strategies efficacy

• Integration of the waning of vaccine-induced immunity

• Mostly simulation studies, models are rarely fitted to dog rabies data

• Mostly deterministic models with strong assumptions (homogeneous mixing of

dogs, absence of dog population structure, absence of individual heterogeneity)

• No direct comparison of rabies dynamics due to the diversity of models

https://doi.org/10.1371/journal.pntd.0009449.t003
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Finally, novel methodologies combining genetic, epidemiological, and environmental data

in a comprehensive analysis framework are promising tools for the rabies field. Indeed, the

interdisciplinary studies identified in this review exploited the complementarity of genetic and

epidemiological information to efficiently generate and test hypotheses on the mechanisms of

rabies dynamics [20,72,73,76,77], and the limitations of control strategies [74,75]. These new

avenues represent a significant improvement on past studies and a promising opportunity for

canine rabies research in the frame of a One Health concept that aims to achieve better public

health outcomes through cross-sector collaboration.

Conclusions

In this review, we highlighted the need for more epidemiological, ecological, and genetic data

to better characterize rabies dynamics and to get practical information on the drivers of disease

transmission. We think that the development of new methodologies integrating genetic and

epidemiological data, or the combined use of mathematical models and phylodynamics, con-

stitutes a promising approach that could ultimately contribute to the improvement of the effi-

cacy of control measures including vaccination campaigns and help optimizing the allocation

of resources in a context of limited funding.
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37. Laager M, Léchenne M, Naissengar K, Mindekem R, Oussiguere A, Zinsstag J, et al. A metapopulation

model of dog rabies transmission in N’Djamena, Chad. J Theor Biol. 2019; 462: 408–417. https://doi.

org/10.1016/j.jtbi.2018.11.027 PMID: 30500602

38. Wilson-Aggarwal JK, Ozella L, Tizzoni M, Cattuto C, Swan GJF, Moundai T, et al. High-resolution con-

tact networks of free-ranging domestic dogs Canis familiaris and implications for transmission of infec-

tion. PLoS Negl Trop Dis. 2019; 13: 1–19. https://doi.org/10.1371/journal.pntd.0007565 PMID:

31306425

39. Beyene TJ, Fitzpatrick MC, Galvani AP, Mourits MCM, Revie CW, Cernicchiaro N, et al. Impact of One-

Health framework on vaccination cost-effectiveness: A case study of rabies in Ethiopia. One Heal.

2019; 8: 100103. https://doi.org/10.1016/j.onehlt.2019.100103 PMID: 31528684

40. Taib NAA, Labadin J, Piau P. Model simulation for the spread of rabies in Sarawak, Malaysia. Int J Adv

Sci Eng Inf Technol. 2019; 9: 1739–1745. https://doi.org/10.18517/ijaseit.9.5.10230

41. Huang J, Ruan S, Shu Y, Wu X. Modeling the Transmission Dynamics of Rabies for Dog, Chinese Fer-

ret Badger and Human Interactions in Zhejiang Province, China. Bull Math Biol. 2019; 81: 939–962.

https://doi.org/10.1007/s11538-018-00537-1 PMID: 30536160
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Several studies have characterized the effectiveness of vaccines against severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infections. However, estimates of their impact on transmissibility remain limited.
Here, we evaluated the impact of isolation and vaccination (7 days after the second dose) on SARS-CoV-2
transmission within Israeli households. From December 2020 to April 2021, confirmed cases were identified
among health-care workers of the Sheba Medical Centre and their family members. Recruited households were
followed up with repeated PCR for at least 10 days after case confirmation. Data were analyzed using a data
augmentation Bayesian framework. A total of 210 households with 215 index cases were enrolled; 269 out of
667 (40%) susceptible household contacts developed a SARS-CoV-2 infection. Of those, 170 (63%) developed
symptoms. Compared with unvaccinated and unisolated adult/teenager (aged >12 years) contacts, vaccination
reduced the risk of infection among unisolated adult/teenager contacts (relative risk (RR) = 0.21, 95% credible
interval (CrI): 0.08, 0.44), and isolation reduced the risk of infection among unvaccinated adult/teenager (RR =
0.12, 95% CrI: 0.06, 0.21) and child contacts (RR = 0.17, 95% CrI: 0.08, 0.32). Infectivity was reduced in vaccinated
cases (RR = 0.25, 95% CrI: 0.06, 0.77). Within households, vaccination reduces both the risk of infection and of
transmission if infected. When contacts were unvaccinated, isolation also led to important reductions in the risk
of transmission.

COVID-19; household; infectious disease transmission; physical distancing; SARS-CoV-2; vaccination; vaccine
effectiveness

Abbreviations: CrI, credible interval; COVID-19, coronavirus disease 2019; HCW, health-care workers; PCR, polymerase chain
reaction; SAR, secondary attack rate; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a highly transmissible virus that was first detected
in Wuhan China in December 2019 (1, 2). It is the cause
of coronavirus disease 2019 (COVID-19), which has spread
through the world, leading to a pandemic that had infected
at least 250 million people and caused more than 5 million
deaths worldwide by November 10, 2021 (3). The advent of
novel coronavirus disease 2019 (COVID-19) vaccines has
been an important breakthrough in the management of the
pandemic. To determine how vaccination may modify epi-
demic dynamics, it is essential to estimate its effectiveness
with respect to infection, transmission, and disease severity.

Multiple studies have shown that COVID-19 vaccines are
effective at reducing both the risk of infection (4–8) and the
risk of developing severe symptoms (4, 8–10) in the general
population.

Documenting vaccine impact on transmission is more
challenging, stemming from the difficulty of thoroughly
documenting chains of transmission and accounting for the
ways different types of contacts may lead to different risks of
transmission (11). Households represent the perfect environ-
ment to evaluate factors affecting transmission such as vacci-
nation because the probability of SARS-CoV-2 transmission
among household members is high, ranging between 14%
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and 32% (12–14). Beyond the evaluation of vaccine ef-
fectiveness, understanding how vaccines affect household
transmission is also important to determine how recommen-
dations should evolve with vaccines. For example, should
isolation precautions be maintained in partially vaccinated
households (15)? A number of studies have shown that
vaccines provide indirect protection against household
transmission (16–20). However, none of these studies
evaluated how isolation affected the outcome, and for some
of the studies (16–19), the passive nature of surveillance may
have led to underestimating household transmission rates.

During the first months of 2021, Israel underwent its third
pandemic wave due to the rise of the Alpha variant that
quickly accounted for 90% of infections (21). Concomi-
tantly, vaccination was extended to all adults older than age
16 years, making Israel one of the first countries to reach
high vaccination coverage in their population, with 60% of
the total population being vaccinated by March 22, 2021 (3).
During this period, we followed SARS-CoV-2 transmission
in the households of 12,518 health-care workers (HCWs)
of the Sheba Medical Center, the largest medical center in
Israel. Here, we describe dynamics of transmission in these
households and evaluate the impact vaccination and isolation
measures had on these dynamics.

METHODS

Study design and study population

All HCWs, regardless of their vaccination status, were
required to use an electronic questionnaire to report daily
any COVID-19 related symptom they, or a member of their
household, had. SARS-CoV-2 polymerase chain reaction
testing (PCR) was readily available, and HCWs were
encouraged to be tested for any mild symptom or suspected
exposures. All HCWs were instructed to notify the infection
prevention and control unit if one of their household
members was SARS-CoV-2 positive. All SARS-CoV-2–
detected HCWs as well as those with a positive SARS-CoV-
2 household member were immediately contacted as part of
the epidemiologic investigation for contact tracing and were
provided with instructions regarding isolation precautions.
All unvaccinated household members (i.e., those that did
not receive the 2 vaccine doses at least 7 days before
the detection of the COVID-19 patient) were required to
perform 2 PCR tests in the 10 days after the diagnosis of the
positive COVID-19 patient. Vaccinated household members
were encouraged to perform 2 PCR tests during the 10 days
after detection. Household members were not required to
test a second time if they had a positive test (Web Table
1 in Web Appendix 1, available at https://doi.org/10.1093/
aje/kwac042). Unvaccinated HCW contacts were isolated at
home, whereas vaccinated HCWs were instructed to perform
a PCR test every day they reported to the hospital for work.

Between December 31, 2020, and April 26, 2021, the
HCWs who were SARS-CoV-2–positive or reported a posi-
tive household member were contacted at least 10 days after
detection and were offered enrollment in the study. Those
who agreed, and gave their consent, answered a telephone
interview.

Data and sample collection

Data collected during the phone interview included the
age and gender of the HCW’s household members, their
vaccination status, information about prior COVID-19 infec-
tions, their COVID-19 PCR test dates and results, their
symptoms (i.e., fever, cough, myalgia, headache, conges-
tion, diarrhea, vomiting, anosmia, or ageusia), the number
of rooms and bathrooms in the household, and the degree to
which isolation precautions were adhered to (Web Appendix
2). At the time of the study, only individuals 16 years old or
older were eligible for vaccination.

The household member who had the first positive PCR
test was defined as the index case. When multiple household
members had a positive PCR test on the same day, they were
defined as co-index cases. We defined complete isolation as
complete separation in sleeping and eating between house-
hold contacts and index case(s) (i.e., they did not spend any
time in the same room) and whether a separate bathroom
was provided for the index case(s). Partial isolation was
defined if one of the above was violated, but masks were
continuously used, and eating was consistently separate.

For HCWs, nasopharyngeal swabs were collected by
trained personnel, and reverse-transcriptase quantitative
PCR analysis was performed using the Allplex 2019-
nCov RT-qPCR assay (Seegene Inc., Seoul, South Korea)
and expressed by cycle threshold (Ct). Other household
members reported the results of their COVID-19 test(s)
performed by their health-care providers.

Clinical outcome

Confirmed SARS-CoV-2 infections were defined by a
positive PCR test (i.e., with a Ct value lower than 40).
Symptomatic cases were defined as confirmed cases with the
presence of at least 1 symptom from among the following:
fever, cough, myalgia, headache, congestion, diarrhea, vom-
iting, anosmia, or ageusia. Contacts who reported at least 1
of the above-mentioned symptoms but were not confirmed
because they performed no PCR test (n = 6) or a single test at
inclusion (n = 2) were also considered as symptomatic cases.
Asymptomatic cases were defined as confirmed cases who
did not report any symptom over the follow-up period of the
household.

Statistical analysis

We evaluated transmission in households using 2 metrics:
the secondary attack rate (SAR), defined as the proportion
of susceptible household contacts that are infected after
the index case is detected (22), and the person-to-person
probability of transmission, defined as the per-capita proba-
bility that an infected individual transmits to a susceptible
household contact. The first metric includes tertiary (i.e.,
household contacts infected by a household member that is
not the index case) and community cases (i.e., household
contacts infected in the community) contrary to the second
metric. In both cases, we assumed that individuals who
reported past infection of SARS-CoV-2 confirmed by PCR
over the year preceding the detection of the household index
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HCWs at the Sheba Medical Center 
(n = 12,518) 

SARS-CoV-2 Cases Identified Among HCWs 
and Their Family Members (n = 276) 

Enrolled Households (n = 212) 
Index cases (n = 217) 
Household contacts (n = 693) 

Final Household Sample (n = 210) 
Index cases (n = 215) 
Household contacts (n = 687) 

Refused to Join the Study (n = 64) 

Excluded Participants (n = 2) 
Missing symptom onset of index 

case, missing vaccination dates, 
and missing second PCR test date 
of household contacts (n = 1) 

Missing vaccination dates and PCR 
test dates (n = 1) 

Figure 1. Flow chart of the households included in our analysis, Ramat Gan, Israel, 2020–2021. HCW, health-care worker; PCR, polymerase
chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

case (n = 20) were protected from infection and therefore,
did not count as susceptible household contacts.

Baseline characteristics of the index cases and household
contacts were described according to their vaccination sta-
tus. All individuals older than 12 years were considered
as adults/teenagers. We calculated the SAR for different
categories of household contacts: unisolated and unvacci-
nated adults/teenagers, unisolated and vaccinated adults/
teenagers, isolated and unvaccinated adults/teenagers, vacci-
nated and isolated adults/teenagers, unisolated children, and
isolated children. Here, isolation corresponds to complete or
partial isolation between household contacts and the index
case. We also defined the SAR of vaccinated and unvac-
cinated index cases as the proportion of infected house-
hold contacts in households with vaccinated or unvaccinated
index cases, respectively. In a sensitivity analysis, the SAR
calculation was restricted to households in which a single
index case was identified (Web Table 2 in Web Appendix
3). We also report the 95% confidence interval of the SAR.

We developed a statistical model to evaluate the effect
of age, isolation precautions, BNT162b2 vaccination, and
household size on SARS-CoV-2 transmission dynamics in
households (Web Appendix 4). The model uses the sequence
of symptom onset dates and positive molecular test dates
to estimate the person-to-person risk of transmission within

the household while accounting for the community hazard
of infection (i.e., household contacts infected outside the
household) and the possibility of tertiary transmissions (i.e.,
household contacts infected by a member of the household
that is not the index case) (23). The person-to-person risk
of transmission is decomposed into the baseline person-
to-person risk of infection depending on household size,
the relative infectivity of the infector depending on their
vaccination status (reference group: unvaccinated cases),
and the relative susceptibility of the infectee depending on
their age, isolation behavior, and vaccination status. The
relative susceptibility is estimated separately for unisolated
children, isolated children, isolated and unvaccinated adult-
s/teenagers, unisolated and vaccinated adults/teenagers, and
adults/teenagers that are both isolated and vaccinated, con-
sidering the group of adults/teenagers that are unisolated and
unvaccinated as the reference group. None of the children
were vaccinated at the time of the study. This formulation
accommodates the potential confounding effects between
the 3 variables characterizing household contacts (i.e., being
vaccinated, being isolated, or being a child). We assumed
that individuals whose isolation behavior was missing (n = 6)
did not comply with isolation precautions.

Model parameters were estimated using Bayesian Markov
chain Monte Carlo sampling with data augmentation (23)
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Vaccination and SARS-CoV-2 Household Transmission 1227

Table 1. Characteristics of the Index Cases According to Age, Ramat Gan, Israel, 2020–2021

Adult/Teenager
Index Casesa (n = 191)

Child Index Cases
(n = 24)

All Index Cases
(n = 215)

Characteristic

No. % Median
(IQR)

No. % Median
(IQR)

No. % Median
(IQR)

Male sex 76 40 14 58 90 42

Age, yearsb 36 (14) 6 (4) 32 (16)

Cluster sizec 2 (1–3) 2 (1–3) 2 (1–3)

Symptom status

Symptomatic 172 90 10 42 182 85

Asymptomatic 19 10 14 58 33 15

Vaccination

Vaccinated 15 8 N/A N/A 15 7

Days from second dose
to detection

44 (13–59) N/A 44 (13–59)

Abbreviation: IQR, interquartile range; N/A, not applicable.
a Individuals aged >12 years were considered adults/teenagers.
b Values are expressed as mean (standard deviation).
c Number of secondary cases among the susceptible contacts of the index case(s).

(Web Appendix 5). Data were augmented with the probable
date of infection of confirmed cases. For symptomatic cases,
the date of infection was reconstructed from the date of
symptom onset, using the probabilistic distribution of the
incubation period (24). For asymptomatic cases, we assumed
that the date of infection could occur up to 10 days prior to
their molecular detection based on a meta-analysis (25).

Since the study was conducted during the vaccine rollout,
participants were enrolled at varying stages of their vaccina-
tion process. We assumed that vaccines reach their full effect
7 days after receiving a second dose (4, 9, 10). Cases were
therefore considered vaccinated if their symptom onset (or if
unknown, the date of their first positive PCR test) occurred
≥7 days after the second dose. Similarly, household contacts
were considered vaccinated if their exposure to the index
case (starting with symptom onset or, in its absence, from
the date of first positive PCR of the index case) occurred ≥7
days after the second dose. In a sensitivity analysis, we inves-
tigated how parameter estimates changed under the assump-
tion that vaccination is effective ≥15 days after the first dose.
We also assessed how estimates changed when the analysis
was restricted to households in which all negative contacts
had performed at least 1 or 2 PCR tests in the 10 days
following the detection of the index case. In the baseline
scenario, we assumed that asymptomatic cases are 40% less
infectious than symptomatic cases based on a meta-analysis
(26), and we investigated whether assuming the same level of
infectivity in asymptomatic and symptomatic cases modified
our estimates. Finally, in our baseline analysis, we chose a
log-normal with log-mean = 0 and log-standard deviation =
1 prior distribution for the relative infectivity and relative
susceptibility parameters and explored smaller and larger
values (log-standard deviation = 0.7 or 2) in a sensitivity
analysis.

We compared the observed and expected distributions
of the number of cases per household size to assess the
goodness-of-fit of the model (Web Table 3 in Web Appendix
6). We report the posterior median and the 95% credi-
ble interval (CrI) of estimated parameters. We also report
the posterior probability that isolated and vaccinated adult/
teenager contacts are less susceptible than vaccinated adult/
teenager contacts that do not isolate. To measure the strength
of evidence of a reduced susceptibility in isolated contacts
among vaccinated ones, we report the associated Bayes
factor. Here, it directly corresponds to the posterior odds of a
reduced susceptibility in isolated contacts among vaccinated
ones. Additional details are available in Web Appendix 1–6.

Ethics

The study was approved by the Sheba Medical Center
institutional review board committee (approval #8130-21).

RESULTS

All 12,518 HCWs employed by the Sheba Medical Center
were eligible to join the study. Between December 19 and
April 28, 2021, 91% of the Sheba Medical Center personnel
received both doses of the BNT162b2 vaccine, and a
rapid and significant decrease in newly detected cases was
observed among HCWs.

From December 31, 2020, to April 26, 2021, 276 SARS-
CoV-2 cases were identified among HCWs of the Sheba
Medical Center and their household members (Figure 1).
Of these, 212 agreed to participate, gave their consent, and
were enrolled in the study with their household members.
Two households were excluded due to missing vaccination
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1228 Layan et al.

Table 2. Characteristics of the Household Contacts According to Age, Ramat Gan, Israel, 2020–2021

Adult/Teenager Household
Contactsa (n = 494)

Child Household Contacts
(n = 193)

All Household Contacts
(n = 687)

Characteristic

No. % Median
(IQR)

No. % Median
(IQR)

No. % Median
(IQR)

Male sex 242 49 109 56 351 51

Age, yearsb 36 (17)c 6 (4) 27 (20)

Infection and symptom
status

Past infection 16 3 4 2 20 3

Not infected 304 62 94 49 398 58

Symptomatic 127 26 41 21 168 24

Asymptomatic 46 9 53 27 99 14

Symptomatic (missing
onset)

1 0 1 1 2 0

Vaccination

Vaccinated 125 25 N/A N/A 125 18

Days from second dose
to exposure

23 (14–36) N/A 23 (14–36)

Isolation

Partial 115 23 32 17 147 21

Complete 227 46 58 30 285 41

Missing 5 1 1 1 6 1

Abbreviation: IQR, interquartile range; N/A, not applicable
a Individuals aged >12 years were considered adults/teenagers.
b Values are expressed as mean (standard deviation).
c Missing age for 5 adult/teenager contacts.

status, dates of PCR test, and/or symptom onset. In total,
we analyzed data from 210 households with 215 index
cases, including 4 co-index cases, and their 687 household
contacts. The median household size was 4 (interquartile
range, 3–5). Mean age was 32 years among index cases
(Table 1) and 27 years among household contacts (Table 2).
Age was missing for 5 adult/teenager contacts, and isolation
behavior was missing for 6 contacts. There was a slight
over-representation of females among index cases (58%),
and 191 index cases (89%) were adults/teenagers, of whom
15 (8%) were vaccinated. None of the 24 child index cases
were vaccinated. Among the 494 adult/teenager household
contacts, 125 (25%) were vaccinated. Of these, 83 (17%)
also complied with isolation precautions. Among the 369
unvaccinated adult/teenager contacts, 259 (70%) isolated
during the study. None of the 193 child household contacts
were vaccinated and 47% of them (n = 90) isolated during
the study period (Table 2). In the following, we refer to
susceptible contacts (i.e., contacts that did not report SARS-
CoV-2 infection over the preceding year) as contacts.

A total of 269 out of 667 (40%) household contacts
developed a SARS-CoV-2 infection. Of those, 170 (63%)
developed symptoms (Table 2). The SAR varied with
the characteristics of the contacts. Among the 105 adult/

teenager contacts who were unisolated and unvaccinated,
80 (76%) were infected by SARS-CoV-2 (Table 3). This
proportion dropped to 28% (11 out of 40) among those who
were unisolated and vaccinated, 29% (71 out of 245) among
those who were isolated but unvaccinated, and 11% (9 out
of 83) among those who were isolated and vaccinated; 65%
(66 out of 101) of child contacts who were unisolated got
infected by SARS-CoV-2. This proportion declined to 33%
(29 out of 87) for isolated child contacts. The proportion of
asymptomatic cases varied from 26% (46 out of 174) among
adult/teenager contact cases to 56% (53 out of 95) among
child contact cases (Table 2).

The SAR also varied with the vaccination status of the
index case regardless of the contacts’ characteristics. Among
the 622 household contacts whose index case was unvac-
cinated, 261 (42%) developed a SARS-CoV-2 infection
(Table 3). This proportion dropped to 19% (8 out of 42)
among household contacts whose index case was vaccinated.
Finally, the SAR was relatively invariant with household
size: 31%, 40%, 32%, and 32% for households of size 2, 3,
4, and 5, respectively (Web Figure 1 in Web Appendix 6).

Our statistical model makes it possible to perform a multi-
variate analysis of the drivers of SARS-CoV-2 transmission
in households. We estimate that, relative to adult/teenager
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Table 3. Observed Secondary Attack Rates According to the Type of Contact, Ramat Gan, Israel, 2020–2021

SAR
Type No. of Infected

Contacts
No. of Susceptible

Contacts
% 95% CI

Contactsa

Unisolated and unvaccinated adult/teenager 80 105 76 67, 84

Isolated and unvaccinated adult/teenager 71 245 29 23, 35

Unisolated but vaccinated adult/teenager 11 40 28 15, 44

Isolated and vaccinated adult/teenager 9 83 11 5, 20

Unisolated child 66 101 65 55,75

Isolated child 29 87 33 24, 44

Indexb

Vaccinated 8 42 19 9, 34

Unvaccinated 261 622 42 38, 46

Abbreviations: CI, confidence interval; SAR, secondary attack rate.
a Isolation is missing for 1 child contact and for 5 adult contacts.
b The last 2 rows correspond to the SAR among the household contacts of vaccinated (n = 14 households) and unvaccinated index cases

(n = 195 households). One household was excluded from this analysis because its co-index cases did not have the same vaccination status.

contacts who were unisolated and unvaccinated, the relative
risk of being infected was 0.21 (95% CrI: 0.08, 0.44) among
adult/teenager household contacts who were vaccinated but
unisolated (Figure 2A, Web Table 4 in Web Appendix 7). It
was 0.12 (95% CrI: 0.06, 0.21) among household contacts
who did isolate and were unvaccinated, and 0.07 (95%
CrI: 0.03, 0.16) among household contacts who were both
isolated and vaccinated. Isolation might reduce the risk of
infection among vaccinated contacts (96% posterior prob-

ability, Bayes factor = 23) with a relative risk of 0.34
(95% CrI: 0.11, 1.14). Relative to adult/teenager contacts
who were unisolated and unvaccinated, the relative risk of
infection was 0.50 (95% CrI: 0.32, 0.77) for child contacts
that did not isolate, and 0.17 (95% CrI: 0.08, 0.31) for
those that did. We estimate that the risk of transmission
from vaccinated cases was 0.25 (95% CrI: 0.06, 0.77) times
that of unvaccinated cases (Figure 2B, Web Table 4 in Web
Appendix 7).
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Figure 2. Estimates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission parameters within households,
Ramat Gan, Israel, 2020–2021. A) Estimated relative susceptibility of isolated and unvaccinated adults/teenagers, unisolated but vaccinated
adults/teenagers, isolated and vaccinated adults/teenagers, unisolated children, and isolated children. The reference group is the group of
adults/teenagers that were unisolated and unvaccinated. B) Estimated relative infectivity of vaccinated cases compared with unvaccinated
cases. The posterior median and its associated 95% Bayesian credible interval are reported.
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Figure 3. Person-to-person probability of transmission within households according to the characteristics of the case and of the contact, Ramat
Gan, Israel, 2020–2021. Estimated person-to-person probability of transmission within households of size 4, decomposed by the age, isolation
behavior, and vaccination status of the contact as well as the vaccination status of the case. The posterior median and its associated 95%
Bayesian credible interval are reported.

Overall, we estimate that, in a household of size 4, the
person-to-person probability of SARS-CoV-2 transmission
is 61% (95% CrI: 48, 72) between an unvaccinated case and
an unvaccinated and unisolated adult/teenager. This proba-
bility drops to 4% (95% CrI: 1, 16) between 2 vaccinated
adults/teenagers who do not follow isolation rules (Figure 3,
Web Table 5 in Web Appendix 7). The person-to-person
probability of transmission from an unvaccinated case to a
child who does not isolate is 37% (95% CrI: 27, 48). This
probability drops to 11% (95% CrI: 3, 31) if the case is
vaccinated and to 14% (95% CrI: 7, 25) if the child contact
is isolated.

In general, our estimates of relative susceptibility and rela-
tive infectivity were robust to model assumptions (Figure 4).
When the analysis was restricted to households in which
all contacts performed at least 1 or 3 PCR tests in the 10
days following the recruitment of the index case, the relative
susceptibility of vaccinated adult/teenager contacts who did
not isolate was slightly higher compared with the baseline
scenario. It increased from 0.21 (95% CrI: 0.08, 0.44) in the
baseline scenario to 0.28 (95% CrI: 0.09, 0.66) in the analy-
sis with at least 1 PCR and 0.32 (95% CrI: 0.09, 0.83) with
at least 2 PCR tests (Web Table 4 in Web Appendix 7). In
the alternative scenarios, the number of individuals included
was substantially lower, increasing CrIs (Web Figures 2

and 3, Web Tables 6–9 in Web Appendix 8). Similarly, the
relative susceptibility of vaccinated adult/teenager contacts
who did isolate increased from 0.07 (95% CrI: 0.03, 0.16)
in the baseline scenario to 0.12 (95% CrI: 0.04, 0.28) in the
analysis with at least 1 PCR, and 0.13 (95% CrI: 0.04, 0.32)
in the one with at least 2 PCR tests. Consequently, the pos-
terior probability that isolated and vaccinated adult/teenager
contacts were less susceptible than vaccinated adult/teenager
contacts that did not isolate dropped from 96% to 88% with
1 PCR and 89% with 2 PCR tests. Still, the statistical support
was high with a Bayes factor equal to 7 and 8, respectively.
Relative infectivity and relative susceptibility were slightly
sensitive to their prior distribution (Web Table 10 in Web
Appendix 8). When the log-standard deviation increased,
estimates were pulled towards lower values.

DISCUSSION

We evaluated the impact of BNT162b2 vaccination on
case infectivity and the mitigating effect of age, isolation
from the index case, and BNT162b2 vaccination on sus-
ceptibility to infection in household settings. Our approach
accounts for infections in the community, potential ter-
tiary infections within the households, the reduced infec-
tivity of asymptomatic cases, potential misidentification of
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Figure 4. Impact of model assumptions on the estimation of the relative susceptibility and relative infectivity parameters, Ramat Gan, Israel,
2020–2021. A) Estimates of the relative susceptibility of household contacts for the baseline and sensitivity analysis scenarios. B) Estimates of
the relative infectivity of vaccinated cases compared with unvaccinated ones for the baseline and sensitivity analysis scenarios. In the baseline
scenario (black circle), we assumed that vaccination was effective from 7 days after the second dose, the relative infectivity of asymptomatic
cases compared with symptomatic cases was equal to 60%, and the log-standard deviation of the relative infectivity and relative susceptibility
prior distributions was equal to 1. Sensitivity analysis scenarios: yellow square, vaccination is effective ≥15 days after the dose; orange triangle,
1 polymerase chain reaction (PCR) test for all negative contacts; red star, 2 PCR tests for all negative contacts; pink diamond, 100% infectivity
of asymptomatic cases; blue inverted triangle, relative parameter prior with log-standard deviation = 0.7; blue pentagon, relative parameter prior
with log-standard deviation = 2. The posterior median and its associated 95% Bayesian credible interval are reported.

the index case(s), and varying follow-up periods between
households.

In our analysis, the SAR in unvaccinated adult/teenager
contacts who did not isolate was estimated at around
76%, which is substantially higher than previous estimates
obtained in household settings (12–14, 18, 27, 28). In meta-
analyses (12–14), the average SAR ranged between 14%
and 32%; however, in some studies, it could be as high as
90% (13). Most of these studies date back to the time when
historical lineages were still dominant. In contrast, our study
took place when the Alpha variant represented up to 90%
of infections in Israel (21). Our higher estimate could be
at least partly explained by the fact that the Alpha variant
is substantially more transmissible than historical lineages
(21, 29–31).

In agreement with previous reports, we found that
children are less susceptible to SARS-CoV-2 infections than
adults/teenagers (12–14, 32). We further estimated that, 7
days after their second dose, vaccinated adults/teenagers
benefit from a 79% reduction in the risk of infection
compared with unvaccinated adults/teenagers. We show,
consistent with previous studies (21, 33), that BNT162b2
vaccination is highly effective against infection by the Alpha
variant. In general population studies, vaccine effectiveness
for symptomatic infections ranged from 57% 14 days after

the first dose (4) to 89% (4), and 97% 7 days after the second
dose (9). For asymptomatic infections, vaccine effectiveness
against infection was 79% 10 days after the first dose (5)
and 94% 14 days after the second dose (7). Our estimate
of vaccine effectiveness in household settings is lower than
those obtained in the general population. This is consistent
with estimates obtained in households (19, 20, 33) and
might in part be explained by the elevated contact rates
in households that may favor transmission. Additionally,
studies in the general population are less suitable to detect all
asymptomatic cases compared with the household setting.
This might lead general population studies to overestimate
vaccine effectiveness against asymptomatic infections if
vaccinated contacts are less often tested than unvaccinated
ones. On another note, we estimate a vaccine effectiveness
against transmission of 75% (95% CrI: 23, 94), which is in
line with other studies in household settings (18–20).

To our knowledge, this is the first study estimating the
effect of isolation on SARS-CoV-2 transmission in house-
holds that are partially vaccinated. We showed that isolation
precautions markedly reduce the overall infection risk in
both adult/teenager and child contacts even when consid-
ering partial physical distancing measures. We estimated a
similar reduction of infection in adult/teenager contacts that
were vaccinated but did not isolate. There was a signal in
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the data that isolation also benefited vaccinated individuals,
although credible intervals were larger, and further investi-
gations are required to confirm this finding.

Our study has several limitations. First, household studies
such as ours may be affected by multiple sources of bias. On
the one hand, we may overestimate the SAR if we are more
likely to detect households with multiple cases. On the other
hand, we might underestimate it if some asymptomatic,
or paucisymptomatic, cases are missed during follow-up.
Second, we estimated an important reduction of infectivity
in vaccinated cases with 2 doses compared with unvac-
cinated cases as previously shown (18–20, 34). However,
this is associated with important uncertainty due to the
small number of cases (15 vaccinated index cases and 21
vaccinated secondary cases). Thus, more data are needed to
reduce the size of credible intervals. Third, we assumed that
vaccination was effective from 7 days after the second dose
(or 15 days after the first dose in our sensitivity analysis; see
Web Table 11 in Web Appendix 8). In practice, the effect
of the vaccine is likely to be progressive, which might push
down estimates of effectiveness since individuals with early
partial protection would be considered to be unvaccinated.
However, excluding households with the early-vaccinated
index cases did not affect our estimates (Web Figure 4 and
Web Table 12 in Web Appendix 8). The limited number
of households does not make it possible to dissociate early
vs. full protection conferred by the vaccine nor to investi-
gate the infectivity of children relative to adults/teenagers.
Fourth, testing instructions were different for vaccinated and
unvaccinated household contacts, as well as HCWs and non-
HCWs. Most vaccinated contacts were HCWs at the Sheba
Medical Center who complied with testing instructions to
go back to work, leading to high testing rates in vaccinated
individuals, with 67% having at least 2 PCR tests and 70%
having 1 positive PCR or at least 2 PCR tests in the 10 days
following case detection (Web Table 1 in Web Appendix 1).
Among unvaccinated contacts, 49% had at least 2 PCR tests
and 79% had 1 positive PCR or at least 2 PCR tests in the
10 days following case detection. This higher testing rate is
notably due to the high proportion of single positive tests
(30%). These differential testing behaviors and positivity
rates between vaccinated, unvaccinated, HCW, and non-
HCW contacts make it difficult to anticipate the direction-
ality of a potential bias. When restricting our evaluation
to households where all negative contacts were tested at
least once or twice, estimates remained relatively similar
to the baseline values. In the analysis with at least 2 tests
for all negative contacts, we observed a slight reduction in
the point estimate for vaccine effectiveness against infection
that remained difficult to interpret given the very broad
credible intervals (17%–91%). Fifth, the measurement of
isolation precautions may be subject to recall bias and/or
overreporting, as they represent a socially desirable behav-
ior. The timing and evolution of isolation precautions were
not measured, and thus not integrated in our model. Never-
theless, our estimate of isolation effectiveness is consistent
with a 10-day period of quarantine in modeling studies (35).
Finally, we estimate vaccine effectiveness against infection
and transmission in a context where the Alpha variant was
dominant. These estimates are very likely to be different for

the Delta variant (36) that was first reported in October 2020
and rapidly became dominant worldwide (37).

To conclude, vaccination with 2 doses substantially
reduces the risk of transmission and the risk of infection in
households. Isolation from the index case while sleeping and
eating provides a high level of protection to unvaccinated
household members, whether they are adults/teenagers
or children. Household contacts of COVID-19 patients
should ideally isolate, or at least refrain from significant
contact, with household cases. This may also be the case for
vaccinated household members, although larger studies are
required to confirm this finding.
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Correction

CORRECTION TO: IMPACT OF BNT162B2 VACCINATION AND ISOLATION ON SARS-COV-2 TRANSMISSION IN
ISRAELI HOUSEHOLDS: AN OBSERVATIONAL STUDY

In the article “Impact of BNT162b2 Vaccination and Iso-
lation on SARS-CoV-2 Transmission in Israeli Households:
An Observational Study” by Layan et al. (1), there was
an error in the code of the Markov chain Monte Carlo
inference model that led to minor errors in the estimates
of transmission parameters. In our analysis, inference is
performed in continuous time. However, in our code, the
probability of infection of detected cases was expressed in
discrete time, 1−exp

(−λ
(
tinfection

))
, instead of continuous

time, λ
(
tinfection

)
. We have now corrected this error.

Table 1 shows a comparison of the uncorrected and cor-
rected median estimates and 95% credible intervals reported
at the end of the abstract and in the last 3 paragraphs of the
results.

Overall, the correction of the inference model code had
only a very minor impact on estimates. It slightly modi-
fied the posterior probabilities that isolated and vaccinated
adult/teenager contacts are less susceptible than are uniso-
lated and vaccinated adult/teenager contacts in the sensitiv-
ity analyses. We reported a posterior probability of 88% with
a Bayes factor (BF) of 7 with 1 polymerase chain reaction
(PCR) test and a posterior probability of 89% with a BF
of 8 with 2 PCR tests, whereas the correct estimates are
90% probability and a BF equal to 9 with 1 PCR test and

a posterior probability of 91% and a BF of 10 with 2 PCR
tests.

Finally, we reported in the discussion that the reduction in
the risk of infection in vaccinated adults/teenagers compared
to that in unvaccinated adults/teenagers was 79% instead of
80% and that the vaccine effectiveness against transmission
was 75% (95% credible interval: 23, 94) instead of 76%
(95% credible interval: 31, 94). We also referred to the broad
credible interval of vaccine effectiveness against infection
that was 17%–91% instead of 24%–91%.

The code published on GitHub has been corrected. The
Web Material detailing all parameters values have been
corrected as well.

The authors regret these errors.

Reference

1. Layan M, Gilboa M, Gonen T, et al. Impact of BNT162b2
vaccination and isolation on SARS-CoV-2 transmission in
Israeli households: an observational study. Am J Epidemiol.
2022;191(7):1224–1234.
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2 Correction

Table 1. Comparison of the Uncorrected and Corrected Median Estimates and 95% Credible Intervals

Parameter Scenario
Uncorrected Corrected

Median 95% CrI Median 95% CrI

Relative susceptibility (reference:
unisolated and unvaccinated
adult/teenager)

Unisolated and vaccinated
adult/teenager

Baseline 0.21 0.08–0.44 0.20 0.08–0.41

1 PCR test 0.28 0.09–0.66 0.26 0.08–0.61

2 PCR tests 0.32 0.09–0.83 0.30 0.09–0.76
Isolated and unvaccinated

adult/teenager
Baseline 0.12 0.06–0.21 0.12 0.06–0.20

1 PCR test 0.12 0.04–0.28 0.11 0.04–0.25

2 PCR tests 0.13 0.04–0.32 0.12 0.04–0.27

Isolated and vaccinated
adult/teenager

Baseline 0.07 0.03–0.16 0.07 0.02–0.15

Unisolated child Baseline 0.50 0.32–0.77 0.48 0.31–0.73

Isolated child Baseline 0.17 0.08–0.32 0.16 0.07–0.30

Relative susceptibility (reference:
unisolated and vaccinated
adult/teenager)

Isolated and vaccinated
adult/teenager

Baseline 0.34 0.11–0.14 0.34 0.10–0.13

Relative infectivity (reference: unisolated
and unvaccinated adult/teenager)

Vaccinated case Baseline 0.25 0.06–0.77 0.25 0.06–0.69

Transmission probabilities, %

Unvaccinated case to unvaccinated and
unisolated adult/teenager

Baseline 61 48–72 66 53–76

Vaccinated case to unisolated and
vaccinated adult/teenager

Baseline 4 1–16 5 1–15

Unvaccinated case to unisolated child Baseline 37 27–48 40 29–50

Vaccinated case to unisolated child Baseline 11 3–31 11 3–30

Unvaccinated case to isolated child Baseline 14 7–25 16 8–26

Abbreviations: CrI, credible interval; PCR, polymerase chain reaction.
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