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viii Another scientific obstacle lies in the difficulties associated with unsupervised learning.

In addition to the fact that there is no objective measure of performance, the collaborative learning paradigm suffers from the fact that there is no obvious correspondence between the classes formed by the different models. We propose a collaborative clustering architecture allowing all models to improve. We also propose a detailed analysis of this mode of collaboration by studying the effect, at the individual level, of the exchange of information between the different learners.

The approaches proposed in the first two chapters are essentially heuristic and have been implemented in order to address the scientific obstacles identified at the beginning of this work. Nevertheless, we provide a theoretical analysis on the space complexity, some sufficient conditions for the algorithm to finish, and the generalization bounds. 
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Introduction

Cette thèse porte sur l'apprentissage collaboratif. Ce paradigme d'apprentissage est une des nombreuses méthodes ayant vu le jour au cours de ces dernières années afin de tenter d'exploiter le plus efficacement possible le volume croissant de données générées et stockées de par le monde.

Parmi ces nombreuses méthodes, on trouve par exemple l'apprentissage fédéré et le clustering ensembliste. Ces différentes approches ont pour point commun de permettre un calcul distribué et préservant la confidentialité des données traitées. Leur objectif est d'obtenir un modèle entrainé sur des données dispersées sur différents noeuds d'un réseau; ce qui est fait soit en entrainant directement ledit modèle de manière collaborative, soit en cherchant un consensus entre plusieurs participants qui ont été entraînés de manière indépendante.

Ce dernier point constitue la principale différence avec l'apprentissage collaboratif.

En effet, dans ce paradigme, on ne cherche pas à réaliser un consensus. L'objectif est plutôt que chaque apprenant bénéficie des résultats obtenus par ses homologues tout en préservant la confidentialité des données. Pour ce faire, des informations sur les résultats locaux doivent être échangées.

Un des enjeux du domaine est le choix des sites distants avec lesquels collaborer et de l'intensité de la collaboration. Sans précaution particulière, il est tout à fait possible Introduction que les performances locales soient détériorées suite à la collaboration. Nous proposons l'utilisation de l'entropie comme mesure de l'incertitude quant aux prédictions des différents modèles afin de pondérer les sources d'informations.

Nous proposons une implémentation dans le cadre de l'apprentissage supervisé en utilisant des arbres de décision comme modèle de base.

Un autre verrou scientifique réside dans les difficultés liées à l'apprentissage nonsupervisé. Outre le fait qu'il n'existe pas de mesure objective de la performance, le paradigme d'apprentissage collaboratif souffre du fait qu'il n'y ait pas de correspondance évidente entre les classes formées par les différents modèles. Nous proposons une architecture de clustering collaboratif permettant à tous les modèles de s'améliorer. Nous proposons aussi une analyse détaillée de ce mode de collaboration en étudiant l'effet, au niveau individuel, de l'échange d'informations entre les différents apprenants.

Les approches proposées dans les deux premiers chapitres sont essentiellement heuristiques et ont été implémentées dans le but de répondre aux verrous scientifiques identifiés au début de ces travaux. Nous en fournissons néanmoins une analyse théorique portant sur la complexité en espace, sur certaines conditions suffisantes pour que l'algorithme termine, et sur les bornes de généralisation.

Cette thèse est composée de trois parties principales listées ci-après.
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Chapitre 3 : Apprentissage collaboratif non-supervisé This thesis focuses on collaborative learning. This learning paradigm is one of the many methods that have emerged in recent years in an attempt to efficiently exploit the growing volume of data generated and stored around the world.

Among these numerous methods are, for example, federated learning and ensemble clustering. These different approaches have in common that they allow a distributed computation and preserve the confidentiality of the processed data. Their objective is to obtain a trained model on data scattered on different nodes of a network; this is done either by collaboratively training the model directly, or by seeking a consensus between several participants that have been trained in isolation.

In this last point lies the main difference with collaborative learning. Indeed, in collaborative learning, there is no attempt to reach a consensus. Instead, the aim is for each learner to benefit from the results obtained by its counterparts while preserving data confidentiality. To do so, the learners involved in the collaboration process have to exchange information about their local findings.

One of the issues in this area is the choice of remote sites to collaborate with and the intensity of the collaboration. Without special care, it is quite possible that local performance will be degraded as a result of the collaboration. We propose the use of entropy as a measure of uncertainty in the predictions of different models in order to weight the sources of information.

We propose an implementation in the supervised learning framework using decision trees as a an underlying model.

Another scientific obstacle lies in the difficulties associated with unsupervised learning.

In addition to the fact that there is no objective measure of performance, the collaborative learning paradigm suffers from the fact that there is no obvious correspondence between the classes formed by the different models. We propose a collaborative clustering architecture that allows all models to improve.
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This thesis is composed of four main parts listed below.

Overview of the thesis

Chapter 1: Learning from data and learners

In this chapter, we explain the interest of using distributed learning. We review the different distributed learning methods and analyze their properties. We will see that the purpose of most of these methods is to obtain a unique model. This is done either by collaboratively training the model directly, or by seeking a consensus between several participants that have been trained in isolation.

Collaborative learning is an exception in that it does not seek to achieve consensus between local models. Rather, the exchange of information between these models aims at improving each of them. Among the advantages of this learning mode, we can mention the fact that we make fewer assumptions about the distribution (in the probabilistic meaning of the word) of the data. In particular, we do not hypothesize that the data are independent and identically distributed. Each model can still benefit from the information transmitted by the other sites to improve its performance on the local data. Thus, all algorithms, and in particular the best performing ones before the collaboration, can potentially benefit from the collaboration and improve.

Chapter 2: Collaborative random forests

In this chapter, we propose to apply our algorithm in the context of a collaborative learning of decision trees for a classification task. Having a set of views on a dataset, we wish to train a classification tree on each of these views, while trying to benefit from the results obtained by the remote trees.

Chapter 3: Unsupervised collaborative learning

In this chapter, we propose a collaborative clustering algorithm. It is a collaborative learning architecture in which the trained models are clustering algorithms. After a brief history of work in the field, we present the scientific challenges we address.

As we said before, each algorithm can theoretically improve its performance by benefiting from the information sent by its counterparts. However, we observe that in practice, the algorithms with the best initial performance see their scores deteriorate.

We therefore propose a method allowing all algorithms to improve.

Chapter 4: Theoretical guarantees

In this chapter, we provide a theoretical analysis of the collaborative architecture. We derive the complexity in space of the collaboration step. We then provide a termination analysis and show that under mild conditions on the quality criterion, our algorithm has STOP property. We finally provide some generalization bounds.

1 Learning from data and learners:

State of the art 1.1 Introduction

Learning algorithms are trained on increasingly large volumes of data.

Two phenomena have made it possible to train on large volumes:

1. The computing power of computers 2. The ubiquity of data (IoT, social networks...)

Much of this data is stored on personal and portable devices, and often has a confidential nature, which is a barrier to its use for machine learning.

New obstacles have emerged with this ubiquity of data. For example, technical or financial constraints may prevent us from consolidating all the data on the same physical site. In addition, increasing attention is being paid to the protection of data privacy [START_REF]Fundamental Texts On European Private Law[END_REF][START_REF] House | Consumer Data Privacy in a Networked World: A Framework for Protecting Privacy and Promoting Innovation in the Global Digital Economy[END_REF].

In such circumstances, machine learning algorithms must either make do with locally available data, or exchange information in order to benefit at least partially from these remote data. The algorithms will then learn not only from locally available data, but also from results obtained by remote algorithms. Learning is thus realized from data and learners.

The type of information exchanged will depend, in this context, on the way the data is distributed. There are two main types of data partition:

• In the following sections, we focus on the main methods for learning from distributed data.

1.2. Federated learning 13

Federated learning

Federated learning, introduced in 2016 [START_REF] Mcmahan | Communication-efficient learning of deep networks BIBLIOGRAPHY from decentralized data[END_REF], is a centralized machine learning architecture. Its main purpose is to train a global model using data from different devices, also called clients, without them having to disclose private data. This paradigm is particularly useful in a situation where:

• The number of participating clients is very large.

• The data for one client is not representative of the population distribution.

• The amount of local training data varies among clients.

• Bandwidth is limited.

In their paper, the authors attempt to train deep neural networks from decentralized data. They propose the FederatedAveraging algorithm. It is an adaptation of the stochastic gradient descent algorithm. It works according to the following rules. At each iteration, a random fraction of the clients is selected. Each of the selected clients then computes the gradient of the loss function on its local data. Finally, a central server aggregates the induced updates. Since all clients share the same model, they also share the feature space. This is a horizontal learning configuration.

The final model is shared and common to all participants. Moreover, since there are many participants, they have only a marginal influence on the learning process. This paradigm is therefore particularly sensitive to the free rider problem, and the question arises of how to encourage each of them to participate in the learning process.

Furthermore, this uniqueness of the final model implies that the final model will often perform worse than the best models that can be obtained using only local data from a client with large, qualitative data. Thus, customers with the most qualitative data have no incentive to participate in the learning process. Conversely, customers with less qualitative data are incentivized to participate [START_REF] Liu | A Systematic Literature Review on Federated Learning: From A Model Quality Perspective[END_REF].

Chapter 1. Learning from data and learners: State of the art Federated learning has been implemented with a wide variety of algorithms, e.g. neural networks, decision trees and random forests, logistic regression, support vector machines (SVM), etc.

Ensemble clustering

Ensemble clustering is also an approach to mining distributed data to improve the overall performance of a learning algorithm. Unlike federated learning, the process is not iterative. Here, the learning process is divided into two steps. First, each algorithm will use a local dataset and obtain a partition. Then, a central entity will aggregate these intermediate results and combine them to obtain a final clustering.

This approach is related to the ensemble learning methods developed for supervised learning. These methods consist in combining the results of several algorithms, for example by taking a weighted average of their predictions. The best known ensemble methods are Bagging and Boosting [START_REF] Thomas | Ensemble methods in machine learning[END_REF][START_REF] Ludmila | Combining Pattern Classifiers: Methods and Algorithms[END_REF][START_REF] Schapire | Boosting: Foundations and Algorithms[END_REF][START_REF] Zhou | Ensemble Methods: Foundations and Algorithms[END_REF]. Note that their also exist adaptive versions of this paradigm [START_REF] Cevikalp | Local classifier weighting by quadratic programming[END_REF][START_REF] Jacobs | Adaptive mixture of local expert[END_REF][START_REF] Woods | Combination of multiple classifiers using local accuracy estimates[END_REF].

• Strehl and Ghosh [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF] introduced in 2002 the problem of combining several partitions without accessing the original data. They called it ensemble clustering.

The authors choose to represent each partition by a hypergraph whose edges are clusters. They then propose three heuristics to obtain a consensus partition from these hypergraphs

• Topchy, Jain and Punch [START_REF] Topchy | Combining multiple weak clusterings[END_REF] study the properties of the combination of several so called "weak" clusterings. These weak clusterings are either obtained by classical clustering algorithms, but after projection into a lower dimensional subspace, or by partitioning the data by random hyperplane.

1.4. Collaborative learning 15

• Wemmert and Gançarski [START_REF] Wemmert | A multi-view voting method to combine unsupervised classifications[END_REF] introduce an architecture based on a majority voting system. A confusion matrix is first built and allows to associate to each cluster of each algorithm a corresponding cluster in each distant algorithm. In a second step, for each object to be classified, each model will vote for the cluster in which it has classified it locally, and for each corresponding remote cluster.

By taking the cluster that has received the most votes, we obtain a "best class"

for each object if the cluster has obtained a majority of votes. In the case where no cluster has obtained a majority, the object is said to be non-consensual.

This approach to unsupervised learning is the subject of an important literature : [START_REF] Al-Razgan | Weighted clustering ensembles[END_REF][START_REF] Ayad | Cumulative voting consensus method for partitions with variable number of clusters[END_REF][START_REF] Zhang | Solving cluster ensemble problems by bipartite graph partitioning[END_REF][START_REF] Ana | Combining multiple clusterings using evidence accumulation[END_REF][START_REF] Gionis | Clustering aggregation[END_REF][START_REF] Kashef | Cooperative clustering[END_REF][START_REF] Nguyen | Consensus clusterings[END_REF][START_REF] Zhou | Clusterer ensemble[END_REF]. See [START_REF] Vega-Pons | A survey of clustering ensemble algorithms[END_REF] for a review of the said literature, and [START_REF] Kuncheva | Experimental comparison of cluster ensemble methods[END_REF] for an experimental comparison of the different methods.

Collaborative learning

FIGURE (1.
3) Representation of the collaborative learning process. The collaboration step is iterative.
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Most machine learning algorithms assume that data is stored on a single site. However, this paradigm is increasingly challenged by the development of massive data. In this Chapter 1. Learning from data and learners: State of the art context, the volume, distribution and confidentiality of data are the main obstacles to the use of these algorithms. This constraint related to data storage has been the main driver for the development of Distributed data mining research [START_REF] Zeng | Distributed data mining: A survey[END_REF].

In this thesis, we are particularly interested in collaborative clustering algorithms that seek to address the following problem:

Having a collection of databases distributed on several different sites, how to partition each of them considering local data and remote classifications of other collaborating databases without sharing the data itself between the different sites?

On this topic, one of the first works was published by Pedrycz in 2002 : [START_REF] Pedrycz | Collaborative fuzzy clustering[END_REF]. In this seminal paper, Pedrycz proposes a method based on the fuzzy C-means algorithm [START_REF] Bezdek | Pattern Recognition With Fuzzy Objective Function Algorithms[END_REF][START_REF] Dunn | A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters[END_REF]. Since then, many publications have improved this method or proposed new ones: [START_REF] Cornuéjols | Collaborative clustering: Why, when, what and how[END_REF][START_REF] Ghassany | Collaborative generative topographic mapping[END_REF][START_REF] Li | Perspective motion segmentation via collaborative clustering[END_REF][START_REF] Nguyen | Consensus clusterings[END_REF][START_REF] Sublime | Entropy based probabilistic collaborative clustering[END_REF].

The collaborative learning process is divided into two steps:

• Local step: learning algorithms learn on their local data as they would in a classical framework.

• Collaboration step: the collaboration step is often iterative. During this phase, information is exchanged between the different sites and then used by each of them to try to improve their respective models.

It is therefore possible to analyze the different existing collaborative clustering architectures according to the choices made during these different steps.

First of all, during the local step. The various implementations may require identical algorithms on each site ( [START_REF] Ghassany | Collaborative generative topographic mapping[END_REF][START_REF] Pedrycz | Collaborative fuzzy clustering[END_REF]), or on the contrary allow heterogeneous algorithms 1.4. Collaborative learning ( [START_REF] Forestier | Collaborative multistrategical clustering for object-oriented image analysis[END_REF][START_REF] Sublime | Collaborative clustering with heterogeneous algorithms[END_REF]). Additionally, the type of clusters sought by the algorithms can be important. Indeed, one can have mutually exclusive clusters (hard clustering), overlapping clusters (soft clustering), or fuzzy clusters (fuzzy clustering).

The collaboration step starts with an information exchange step. The type of information exchanged depends on the type of data partition that is encountered. We will then see that the intensity of the collaboration between the different databases, once the necessary information has been transmitted by the remote sites, depends on a parameter named collaboration coefficient.

In the rest of this section, we will look at the type of architecture we can encounter in collaborative clustering, and then at the different possible implementations for collaboration.

How to partition the data present on the different nodes

One of the main goals of collaborative clustering is that each site has a local data partition. As mentioned before, these partitions can be constituted :

• of overlapping groups (soft clustering)

• of mutually exclusive groups (hard clustering)

• or fuzzy clustering If we work with exclusive clusters, then we assign each observation to a single cluster.

However, there are situations in which it is natural to assign an individual to several clusters simultaneously, in which case we say that the clusters are non-exclusive. As for fuzzy clustering, it consists in considering that each individual belongs to all the clusters with a certain degree of membership located between 0 (does not belong at all) and 1 (belongs completely). It is generally imposed that the sum of these weights is equal to 1 [START_REF] Tan | Cluster analysis: Basic concepts and algorithms[END_REF].

Chapter 1. Learning from data and learners: State of the art A second question arises: do the different sites work with the same algorithms or not?

Besides the fact that collaborative clustering allows to work on a larger amount of data, it also allows the use of various algorithms. This diversity can be due to the use of radically different algorithms, but also to a difference in the parameters of the same algorithm, or to the initialization of the clusters.

Finally, if in clustering we always look for partitions such that similar individuals are in the same group, and that the groups are as dissimilar as possible, there are several types of clusters [START_REF] Hennig | What are the true clusters? Pattern Recognition Letters[END_REF][START_REF] Tan | Cluster analysis: Basic concepts and algorithms[END_REF]. One example is prototype-based clusters, where each cluster is a set of objects closer to the prototype representing that cluster than to any other prototype. In particular, the prototype can be the average of all the objects belonging to the cluster. There are also methods based on graphs, density, etc.

In [START_REF] Pedrycz | Collaborative fuzzy clustering[END_REF], the author proposes that each site uses the fuzzy c-means algorithm locally [START_REF] Bezdek | Pattern Recognition With Fuzzy Objective Function Algorithms[END_REF][START_REF] Dunn | A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters[END_REF]. The local results are consequently fuzzy partitions. The clusters are based on prototypes, the latter being an average of the individuals belonging to the cluster, weighted by the degree of membership. Many contributions have since sought to improve this algorithm, initially intended for horizontal collaborative clustering and in which the bases had to agree on the number of clusters to search. As an example, we can mention Pedrycz and Rai who, in [START_REF] Pedrycz | Collaborative clustering with the use of fuzzy c-means and its quantification. fuzzy sets and systems 159[END_REF], propose a framework for collaborative clustering in the presence of a different number of clusters on each site.

In [START_REF] Ghassany | Collaborative generative topographic mapping[END_REF][START_REF] Ghassany | Collaborative multiview clustering[END_REF], the authors propose an adaptation of Bishop's Generative Topographic Mapping (GTM) [START_REF] Bishop | Gtm: The generative topographic mapping[END_REF] for collaborative clustering. It is the probabilistic counterpart of Kohonen's self-organizing maps (SOM) [START_REF] Kohonen | Self-Organized Formation of Topologically Correct Feature Maps[END_REF], and is supposed to overcome most of their limitations. This generative model allows to associate to each point of a latent space, a point of a variety of the same dimension in the data space. This method allows in a second step, for a fixed observation, to find the posterior distribution in the latent space, the latter being a grid with a finite number of points, which are themselves 1.4. Collaborative learning prototypes. In other words, we can calculate the contribution (or responsibility) of each prototype to a given observation. This is the probability that a given prototype has generated the observation.

In [START_REF] Ben Bouazza | Collaborative clustering through optimal transport[END_REF], the authors propose an architecture for horizontal collaboration based on the optimal transport theory. We remind that in the case of horizontal collaboration, the sites involved have access the same variables describing different individuals. In the local step, each observation is associated to the prototypes via the solution of the optimal transport problem of the data to the prototypes. At each iteration of the collaboration step, a remote model to cooperate with is chosen. Then the optimization of a new function including a term penalizing the distance between the local and remote prototypes allows the update of the parameters.

Organization of the collaboration

The exchange of information between the different databases is one of the main characteristics of collaborative clustering. In this section, we will see which information should be exchanged depending on the context. Finally, it should be noted that each model is free to weight (or even ignore) information sent by the remote leaners. The way in which one can adjust the impact that the results of a remote site have on the local partition will be studied in a second step.

The information exchanged among the local models:

• information on the membership of the observations to the different clusters;

• information about the prototypes;

• other information on the distribution of the data and on the structures sought by the algorithms.

Chapter 1. Learning from data and learners: State of the art

The information on the membership of individuals to the different clusters is often transmitted via the partition matrix. This of course supposes to agree on the identity of the different individuals. This is why this method is often used in horizontal collaborative clustering [START_REF] Cleuziou | Cofkm : un modèle de clustering flou collaboratif pour les données multi-représentées[END_REF][START_REF] Pedrycz | Collaborative fuzzy clustering[END_REF][START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF][START_REF] Sublime | Entropy based probabilistic collaborative clustering[END_REF]. The exchange of information about prototypes is only useful if the remote prototypes make sense locally. This is why this system is mostly used in vertical collaborative clustering [START_REF] Ghassany | Collaborative generative topographic mapping[END_REF][START_REF] Ghassany | Collaborative multiview clustering[END_REF][START_REF] Pedrycz | Collaborative clustering with the use of fuzzy c-means and its quantification. fuzzy sets and systems 159[END_REF].

Intensity of the collaboration

Once the information has been exchanged among the data sites, each one must decide how it will use that information in order to come up with a new classification. When this choice exists, it is often made by adjusting a parameter called "collaboration coefficient", which is generally a non-negative number. If the collaboration coefficient associated with a remote model equals zero, that means that the corresponding remote model has no effect on our future results. And the higher this coefficient, the higher the effect of the collaboration on our local results. The impact of this coefficient on the result of the collaboration has been studied by Pedrycz [START_REF] Pedrycz | Collaborative fuzzy clustering[END_REF]. To do this, the author Collaborative learning is a distributed, decentralized, and iterative machine learning architecture. It's purpose is to train several experts on different nodes of a network.

However, we want each expert to benefit from information available on the remote data sites, without exchanging the data itself. To do this, information about the local findings of each algorithm is exchanged at each collaboration step, and discrepancy between local and remote findings is penalized. In this process, we identified several scientific obstacles.

First, the impact of remote information on the local results is scaled through a hyperparameter called the collaboration coefficient. For any given learner, there is one collaboration coefficient (or confidence coefficient) associated to each remote counterparts. They represent the way we penalize difference between our local results and results of a particular remote expert. Obviously, we want coefficients associated to well performing remote data sites to be high, and the ones associated to data sites that perform poorly to be low. However, even overall 'good' remote counterparts can perform poorly for some regions of the dataset. Furthermore, their data distribution can be very different from the local one, and impede our ability to perform well. Then how to make sure that the remote algorithms do not hurt our results ?

Next, to our knowledge, there is no way of monitoring information flow during the collaboration process. We propose to summarize the collaboration coefficient associated to each data point into a global confidence coefficient. These coefficients are not set by the user but instead depends on the certainty of the learners about their results.

Finally, we provide theoretical results about stop propoerty and generalization bounds.

Collaborative random forests

In this chapter, we present a collaborative learning architecture for classification algorithms. We assume the existence of a vertically distributed dataset over several sites. We wish to train a learning algorithm on each site. Each algorithm will be trained in a classical way on the local data. Then, during the collaboration step, the models will exchange information about their results and adjust their states accordingly. The goal is that all algorithms will be able to improve their performance following this collaboration step.

The interest of our approach lies in the way it takes into account remote results. As we have seen in the previous chapter, in the case of a vertical collaboration, the algorithms exchange information about their predictions for each individual. This information is usually taken into account through a modification of the objective function, in order to penalize the prediction discrepancies. This has the effect of improving the performance of the algorithms that were the least efficient at the beginning, at the cost of deteriorating the performance of the best algorithms. To overcome this problem,

we propose to weight the information received according to certain criteria.

In the following section, we explain in more detail the framework and what information will be exchanged between the different algorithms. We then discuss the criteria used to weight this information. Finally, we propose to test this architecture using decision trees as basic algorithms.

Chapter 2. Collaborative random forests

Problem set-up

Our goal is to train classification models on different sites, each with a view about a common dataset. The goal of each training algorithm is to obtain a classification of its local data using the results of its remote counterparts without exchanging the data themselves. We assume that each model has a probabilistic classification as output for each input data. In other words, the output of a model is not simply the predicted class for an observation, but a probability distribution over the different classes. For each data x i , i = 1, . . . , N, and each class k ∈ {1, . . . , K}, we call the responsibility of the class k for the individual i, and we note r ik the following value :

r ik ≡ p(y i = k|x i , θ)
where θ is the set of possible parameters of the model.

Then the matrix R = [r i,k ] is such that for all i = 1, . . . , N and all k = 1, . . . , K, we have

r i,k ≥ 0 and ∑ 1≤k≤K r i,k = 1.
It is the content of this matrix that will be exchanged between the different sites.

We propose to use entropy as a criterion to weight the information received.

2.2. Entropy as a measure of uncertainty 25

Entropy as a measure of uncertainty

In this section, we describe the entropy associated with a probability distribution. To do so, we temporarily leave the framework of collaborative learning. In the rest of this section, X denotes a random variable with values in X .

The entropy of a random variable X, denoted H (X) is a measure of the uncertainty associated with this random variable.

It is defined as follows:

H (X) ≡ -∑ x∈X p (X = x) • log p (X = x) (2.1)
If the log is expressed in base two, then the entropy is expressed in bits. It can be shown that the maximum entropy is reached for a uniform distribution:

p(X = x) = 1 |X | , ∀x ∈ X , (2.2) 
where |X | is the cardinal of the set X . And in this case, we have H(X) = log |X |.

Example : the entropy of a Bernoulli distribution.

A random variable X has a Bernoulli distribution of parameter θ ∈ [0, 1] if :

p(X = x) = θ x (1 -θ) 1-x , x ∈ {0, 1} (2.3) 
In other words, X takes value 1 with probability θ and 0 with probability 1θ. The entropy of a Bernoulli distribution of parameter θ according to θ is represented in the figure 2.1. For this relatively simple probability law, the interpretation of entropy as a measure of uncertainty is rather straightforward. When θ = 0 (respectively θ = 1), the random variable X is takes value 0 (resp. 1) with probability 1. The uncertainty about the value taken by a random variable having such a distribution is then minimal. Conversely, when θ = 1/2, then p(X = 0) = p(X = 1) = 1 2 . The random variable has therefore a uniform distribution on {0, 1}, the uncertainty about the value taken is maximal.

All this is in agreement with what can be observed in the figure 2.1.

In the next section, we explain how we use this measure of uncertainty in the collaboration process.

Using entropy as a criterion for collaboration

As a means of measuring uncertainty, entropy provides the beginning of an answer to the question of the weighting of received information. In our framework, the classification of each individual is represented as a probability distribution R i = R i,k : k = 1, . . . , K. We can then use the entropy of this distribution to calculate the uncertainty. We give some examples :

• If R i = (1/3, 1/3, 1/3), then H(R i ) ≈ 1.
58, which is the maximum possible value for three events.

• If R i = (0.01, 0.01, 0.98), then H(R i ) ≈ 0.16, a relatively small value.

• If R i = (0.2, 0.3, 0.5), then H(R i ) ≈ 1.48, so it is a relatively high uncertainty.

The use of entropy can serve several purposes:

• Weighting of the information received for each individual

• Change of classification according to the local certainty

• Change of classification according to the distant certainty This will allow the best algorithms to potentially improve. Indeed, we can assume that the best performing algorithms are those that are the most successful in discriminating individuals. So on average their classifications will likely have a lower entropy. For the well classified individuals, they will keep the same prediction. On the other hand, for individuals where the decision is more difficult, these models will be able to benefit from the remote information to try to improve the classification. An illustration is provided in figure 2.2.

Example with a Gaussian mixture model

A mixture model is a probabilistic model allowing to represent the presence of subgroups in a population [START_REF] Murphy | Mixture models and the em algorithm[END_REF]. For that, we suppose that the distribution of the individuals is in fact a weighted sum of distributions (or components):

p(X) = K ∑ k=1 π k L(θ k ) (2.4)
where K is the number of components, π k is the weight of component k,

∑ k π k = 1,
and θ k is the set of possible parameters of the L distribution. We speak of a Gaussian mixture when each component L is a normal distribution.

For our example, we trained a Gaussian mixture model on the Iris dataset [START_REF] Dua | UCI machine learning repository[END_REF]. This is a dataset describing 150 of these plants, each one described by four attributes (sepal length, sepal width, petal length, petal width). The data are equally divided into three classes (setosa, versicolor, virginica). One of the classes (setosa) is linearly separable from the other two. The latter are not linearly separable.

To set ourselves in a collaborative context, we separate the 4 attributes into two views, represented in figure 2.2.

The first view has the sepal attributes. In this view, two classes overlap, while the third (setosa) is quite distinct from the others. The second view is composed of attributes related to petals. In this view, two classes are relatively close, while the third (setosa) is isolated.

On each view, we trained a three-component Gaussian mixture model. These components are represented by the elliptical contour lines in Figure 2.2. These components give, for each individual i, a probability distribution (R ik ) k representing the probability of belonging to each class. Moreover, for each point of the respective spaces, it is possible to compute such a distribution. Indeed, for a given point, the responsibility of a component is proportional to the product of its weight and its density at this point [START_REF] Murphy | Mixture models and the em algorithm[END_REF]. It is therefore possible to calculate the entropy of our model at each point.

We plot the entropy of our two models in grayscale in Figure 2.2. We see that the data belonging to the setosa class are in areas of low entropy. In other words, both models have little uncertainty about the classification of these individuals. A possible collaboration would therefore probably not cause them to change their predictions for these individuals (if entropy is used as a criterion). The same is not true for the • Individuals whose local prediction is uncertain.

• Individuals whose distant predictions are certain.

The performance of a model can be expected to improve depending on how well the following conditions are met:

• Classification errors tend to occur at the edges of classes and where classes overlap. These regions correspond to regions of higher entropy, and for the observations found there, the model will use more remote information to finetune its predictions. The lower the entropy (and therefore the uncertainty) of the distant information, the more weight it will give to it. This will improve its performance if...

• ...The predictions regarding the observations located in regions of low entropy are generally correct (no systematic bias). These observations are generally located in the center of a cluster or in an isolated cluster.

The optimal way to weight this information is an interesting problem. Many implementations are possible and can be chosen according to the properties sought.

Probabilistic opinion pooling is a field that studies how to combine probabilistic predictions on a set of events (these predictions being provided by experts), and to the study of their properties [START_REF] Dietrich | Probabilistic opinion pooling[END_REF][START_REF] Romeijn | An interpretation of weights in linear opinion pooling[END_REF]. Our topic differs from this field in that we do not seek consensus.

We have chosen a simple implementation respecting the properties listed above. We have also chosen to adopt the same implementation on all sites. However, the choice of the weighting function can be adapted to the objectives of each site. We tested our 2.4. Decisoin trees 31 approach using decision trees as a basic model. In the following section, we briefly recall some notions about decision trees.

Decisoin trees

A decision tree is a structure that, for each input, provides a decision resulting from a of a global set about the same individuals. In this section, we describe the general framework in which our method is applied and explain the method.

Configuration

The goal of collaborative learning is to learn from local data and a set of learners whose data is stored at different sites.

More formally, let the global data set X be distributed among P sites:

X [1] , . . . , X [p] , . . . , X [P] ,
where

X [p] = {x [p] i } N i=1 is a set of N objects and each object x [p] i R d is characterized by d variables (i.e., it is a vector in a d dimensional feature space).
Each data site has access to different features d [p] describing the same individual samples of the overall data set. At each data site, we have a classification algorithm A [p] , p = 1, . . . , P , and each algorithm will attempt to propose a classification of its data X [p] . The process has two steps: a local step and a collaborative step.

Local step

During the local step, each A [p] model is trained using its local dataset X [p] and adjusts its parameters as it would in a non-collaborative setting. Here, the models in question are decision trees. We therefore recursively partition the dataset by choosing at each iteration a variable and a threshold to split the data into two groups, as in figure 2.3. This variable and this threshold are chosen so as to minimize the Gini criterion:

G = 1 -∑ k p 2 k (2.5)
Where p j is the proportion of individuals in a node that belonging to class j.

If the average Gini index of the possible child nodes is higher than the Gini index of the considered node, then we stop partitioning the data and this last node becomes a leaf. The prediction of a leaf is the proportion of individuals belonging to each class on this leaf.

Our method requires that each algorithm produce a responsibility matrix R [p] . This matrix contains the contributions of each component to each observation, R

[p]

i,k = P(Z i = C|X i , θ), where C is the number of classes, Z i ∈ {1, . . . , C} are the components of the model, and the elements of θ are the parameters of the distribution.

Once each model has been trained, we want them to exchange information to improve their performance. This is done in the collaboration step.

Collaboration step

In the collaborative steps, the different algorithms A [p] will exchange information in an attempt to improve their respective classifications. During the learning step, in addition to X [p] , the algorithms also receive additional information, X [p] * . This
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In our case, for each algorithm A

[p] , X [p] * ≡ R -[p]
, where:

R -[p] = {R [q] : q ∈ {1, . . . , P} \ {p}} (2.6)
The set R -[p] contains all the partition matrices of site p's counterparts. In the following, we show how X [p] and X [p] * can be used to try to improve the prediction performance.

Algorithm 1: CoDT algorithm

Local step: for All algorithms T [p] do train T [p] on the data X [p] get local parameters θ [p] and partition matrix R [p] // the array B saves the historical best state for each tree, along with its score

B [p] ← T [p] , Quality(R [p] )
Collaborative step: for All algorithms T [p] do

R [p] (t + 1) ← f R [p] (t), R -[p] (t)
train model starting from new partition R [p] (t + 1) using data X [p] get θ [p] (t+1) and R [p] (t+1)

if Quality R [p] (t+1) is better than R [p] (t) then B [p] ← T [p] , Quality(R [p] (t + 1))
If the score increases and there is no overfitting problem, we then agree to the collaboration. On the other hand if it decreases, we dismiss the collaboration and use the initial results. When accepting the collaboration, a learner updates its internal state and improves its quality criterion; when a learner's quality is compromised by the collaboration, it can decide to skip this collaboration iteration and keep its state unchanged. This does not mean that it cannot improve later in the process. Indeed, the system as a whole might keep evolving, leading to potentially fruitful collaboration in the following iterations.

Fine-tuning step

As mentioned above, each iteration of the collaboration step is followed by an update of the model parameters. In this case, we use decision trees as collaboration models.

These models are defined by a variable and a critical threshold at each node. For the update of the parameters, we only adjust the thresholds according to the remote information received. Algorithm 2 shows how we adjusted the thresholds for each node in the tree using the collaboration results. 

x j ) = N i (x j ) // decision path 4 G(x, δ) = e -(x-δ) 2 σ 2 5 for k = 1, . . . , |dp(x j )| do if x j well classified AND A k (x j ) <= δ x j OR x j misclassified AND A k (x j ) > δ x j then δ x j (t + 1) ← δ x j (t) + ϵ • d td loc (x j ), td coll (x j ) • G(x j , δ j ) else δ x j (t + 1) ← δ x j (t) -ϵ • d(td loc (x j ), td coll (x j )) • G(x j , δ j )
For each individual, we compare:

• the classification obtained by the tree after the local step,

• and the one obtained after the collaboration.
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If they match, then we want to strengthen that decision. If they don't, we want to weaken it. To reinforce (resp. weaken) a decision, we look at the path of the individual in the tree and note all the nodes he passed through. Then, for each of these nodes, we increase (resp. decrease) the difference between the threshold and the value of the tested variable (by changing the threshold). To do this, we proceed as follows:

for each node we test if the example in this node is well or badly classified, if it is well classified and the example associated with this node is less than or equal to the threshold of this same node then we modify the value of the threshold by adding the product of the Jensen -Shannon divergence between the local probability distribution of the example and its probability distribution after the collaboration, a learning rate ϵ and a function inversely depending on the distance between the value of the example and the threshold (for example a Gaussian kernel). This is done for all the individuals.

We then update the other parameters of the tree (class proportion on each node), taking into account the new values of the threshold.

Experimental validation

In this section, we present the results obtained after running our algorithm on several datasets. The datasets used are described in Appendix A.

Results and analysis

The collaborative learning algorithm has been performed on a variety of datasets and the criterion for accepting the collaboration was accuracy improvement. Accuracy is defined as follows: We conducted experiments on several real-world datasets. All datasets were randomly shuffled and divided into several subsets (views) with the same number of features.

precision = 1 n C ∑ k=1 precision k (2.7)
Note that some datasets contain uninformative features. For example, the Waveform dataset has 19 attributes that are all noise attributes, with mean 0 and variance 1.

During the local step, classification trees has been trained using the attributes of each view. Next, we proceeded to the collaboration step using the collaboration framework described in the previous chapter, with the goal of improving each local algorithm by exchanging information based on the prediction matrices found by the learners.

Finally, we measured the accuracy of each algorithm before and after the collaboration.

We reported these results in table 2.1. In these experiments, the classification trees have been able to achieve better results after collaboration.
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Comparison with the catboost benchmark

In this section, we compare the performance of our method with different gradient boosting methods on binary classification tasks.

We use the experimental setup used by the Catboost developers [START_REF] Prokhorenkova | Catboost: unbiased boosting with categorical features[END_REF] to compare their framework with popular gradient boosting libraries: LightGBM, XGBoost, H2O.

They implement two variations of each algorithm:

• Default: each of the algorithms has a set of specific parameters, for which the default values are proposed by their authors. The authors of CatBoost use these values and only decide on the number of trees to train on each dataset.

• Tuned: The hyperparameters are optimized using the Tree-structured Parzen

Estimator [START_REF] Bergstra | Algorithms for hyper-parameter optimization[END_REF].

The authors use cross-validation for model selection. The datasets used in the experiments are described in Appendix A.

Preprocessing

Since the objective of the study is to compare the performance of the algorithms themselves, we do not perform any complex preprocessing (elimination of unbalanced classes, feature selection, etc.).

• For categorical variables, missing values are replaced by a special value, i.e. we treat missing values as a modality in their own right. 

Benchmark

In this section, we present experimental results using the logloss metric for all algorithms and compare them with our method.

In table 2.2, we compare the performance of collaborative classification trees to gradient boosting algorithms. The results were measured by the logloss and the percentage is the metric difference measured against the CatBoost results. We can see that, as with all other approaches, the logloss decrease after the collaborative step and the adjustment of the algorithms' parameters.

Collaborative classification trees have shown comparatively poor performance compared to Gradient Boosting algorithms, when measured in absolute terms. This can be explained by several factors. The first one is that CatBoost is designed for the classification of data represented by categorical features (whence its name). The datasets on which it is tested are mainly made up of categorical data. But our architecture is not well suited for categorical data. Indeed, it is based on small adjusments of the thresholds to try to fit the data distribution. But with e.g. One-hot encoded categorical data, if the threshold is between 0 and 1, making marginal adjustment to it would not change the classification of the observation unless it reaches 0 or 1, and it that case, all observations would fall on the same side of the threshold. In other words, with categorical features, we lack the ability to make small adjustments to the model.

Two other reasons why there is such a performance gap are the number of base models and the data available to each learner. In the proposed collaborative architecture, only a few models are involved in the learning process. While in CatBoost, for example, the default number of base models is 5000. And in the collaborative framework, each Chapter 2. Collaborative random forests base model has access only to a subset of features, whereas in the gradient boosting algorithms, each learner is proveded with the entire set of features.

Nevertheless, performance between the two steps in the collaboration process has been consistently improved. This indicates an increased ability to generalize. 

Conclusion

In this chapter, we have presented a new collaborative learning architecture. This architecture has several advantages.

It brings a reasonable answer to the question of the choice of the collaborator. Indeed, in most collaborative learning architectures, collaboration only takes place between two sites at a time. The selection of the appropriate collaborator is a complex problem to which it is difficult to provide an objective answer, especially in an unsupervised learning framework. We will see in the next chapter that some tracks exist however.

In the architecture we propose, the collaboration is done simultaneously with all the remote sites. Note that this also increases the speed of information propagation between learners.

The incoming information is weighted at the level of each learner. This weighting method allows to simultaneously keep the most reliable predictions and to adapt the 3 Unsupervised collaborative learning

Introduction

Clustering is a common data analysis task. Its objective is to partition observations into homogeneous (low intra-group variability) and distinct (high inter-group variability) groups. There is a large variety of clustering algorithms and most of them require that all data be available simultaneously on the same site [START_REF] Cabanes | A simultaneous two-level clustering algorithm for automatic model selection[END_REF][START_REF] Jain | Data clustering: A review[END_REF]. However, technical, legal, confidentiality or performance reasons may prevent the gathering of data or the exchange of sensitive information.

In the collaborative clustering framework, we have a distributed dataset on different nodes of a network. The objective is to obtain on each node a partition of the local data by using the results obtained on the remote nodes, without exchanging the data themselves [START_REF] Cornuéjols | Collaborative clustering: Why, when, what and how[END_REF][START_REF] Pedrycz | Collaborative fuzzy clustering[END_REF]. This operation is often performed in two steps. First, the local step, during which a clustering algorithm is applied locally and independently on each site. Then the collaborative step, during which sites exchange knowledge in order to try to improve their own results.

Related work

Collaborative clustering research was introduced by Pedrycz in 2002 [START_REF] Pedrycz | Collaborative fuzzy clustering[END_REF]. The author proposed a collaborative version of the Fuzzy C-Means algorithm [START_REF] Bezdek | Pattern Recognition With Fuzzy Objective Function Algorithms[END_REF]. The objective Chapter 3. Unsupervised collaborative learning function of the Fuzzy C-Means algorithm is extended with a second term that penalizes the discrepancy between the partitions.

The SAMARAH method can handle heterogeneous "hard" clustering algorithms [START_REF] Wemmert | A multi-view voting method to combine unsupervised classifications[END_REF].

This method aims at increasing the similarity between clusterings by evaluating and resolving conflicts. In order to compare partitions with possibly different numbers of clusters, a confusion matrix is computed between each pair of algorithms. A consensus is then reached by applying a voting algorithm to these results.

In 2015, Sublime et al. proposed an approach lifting some limitations of previous work: they introduce a framework for collaboration with heterogeneous algorithms. This method has the advantage of not requiring a global confidence coefficient, so the impact of a remote algorithm on local results can be different for each observation.

However, using the hard clustering results to construct the confusion matrices results in some loss of information. Moreover, each algorithm has the same weight in this process. As a result, since no difference is made between a data site with wellseparated clusters, and another with overlapping clusters, this method leaves the possibility for poorly performing algorithms to hamper the results of others.

After proposing collaborative versions of Self Organizing Maps (SOM) and Generative

Topographic Mapping (GTM), Ghassany et al. combined the Fuzzy C-Means and GTM algorithms to obtain a collaborative clustering algorithm [START_REF] Ghassany | Collaborative multiview clustering[END_REF].

In [START_REF] Sublime | Entropy based probabilistic collaborative clustering[END_REF] the authors describe a collaborative framework for model-based clustering algorithms. They define a global likelihood function and attempt to optimize a proxy for this function. This process requires setting a weight parameter between local and external information.

More recently, an automated method for optimizing trust in exchanges was proposed by Sublime et al., and the collaboration involved four different views. The authors achieved good results in detecting noisy views, but the method tends to favor collaboration between very similar views.

Performance metrics in clustering

The task of clustering itself is an ill-defined problem. We have discussed above the objective of clustering, namely to partition a set of elements into homogeneous and distinct groups. In other words, we want similar elements to share the same cluster and dissimilar elements to be in different clusters. But "being in the same cluster" is an equivalence relation and "being similar" is not [START_REF] Cornuéjols | Collaborative clustering: Why, when, what and how[END_REF]. So, if the clusters are not well separated, we will have to find a compromise. Moreover, different numbers of clusters can be considered as this is somehow subjective and it depends on the model chosen and on its parameters [START_REF] Sugar | Finding the number of clusters in a dataset: An information-theoretic approach[END_REF]. Under these conditions it is possible to imagine several equally acceptable solutions. Hence, any index measuring the quality of a partition will favor certain criteria.

There are many indices for measuring clustering quality [START_REF] Ben | Measures of clustering quality: A working set of axioms for clustering[END_REF][START_REF] Desgraupes | Clustering indices[END_REF]. Traditionally, a distinction is made between internal and external indices. Internal validation indices use the data and the obtained partition to compute a score that will depend on the compactness and the separation of the clusters. The external validation indices are used to compare the adequacy between the obtained clustering and an external reference.

We give here the most common internal and external validation indices. In what follows, we assume that the data are represented by a matrix X:

X =       x 1 1 • • • x d 1 . . . . . . x 1 N • • • x d N       (3.1)
where d is the number of features, and N the number of individuals. We denote by 

I k = {i | x i ∈ C k }

Internal validation indices

The Davies-Bouldin Index Let δ k denote the average distance of the points belonging to the cluster C k to the centroid G k of this cluster:

δ k = 1 n k ∑ i∈I k d(x i , G k ) (3.2)
Then δ k is a measure of the compactness (or cohesion) of the cluster k. So we have ) and in general, the smaller the value of δ k the better the clustering.

δ k ∈ [0, +∞
Let ∆ kk ′ denote the distance between the barycenters G k and G k ′ of clusters k and k ′ :

∆ kk ′ = d(G k , G k ′ ) (3.3)
Then ∆ kk ′ tells us how well the clusters are separated. In general, we want this indicator to be high.

For each cluster k, we compute the maximum of the quotient

δ k +δ k ′ ∆ kk ′ for k ̸ = k ′ . The
Davies-Bouldin score S DB is then given by:

S DB = 1 K K ∑ k=1 max k ′ ̸ =k δ k + δ k ′ ∆ kk ′ (3.4) 3.2. Related work 47 
The Davies-Bouldin index is therefore positive and the lower its value, the better the clustering.

The Silhouette Index calculates a "silhouette" coefficient for each point. The average of these coefficients gives the silhouette index of the clustering. Like the Davies-Bouldin index, the silhouette index realizes a comparison between the cohesion of clusters and their separation. The cohesion a(i) for the individual i is given by the following equation:

a(i) = 1 |I k | -1 ∑ j∈I k d(x i , x j ) (3.5)
It is the average distance of the observation x i to the observations of the same cluster.

The separation is given by the following equation:

b(i) = min k ′ ̸ =k 1 |I k ′ | ∑ i ′ ∈I k ′ d(x i , x i ′ ) (3.6)
It is the average distance between the observation x i and the individuals belonging to the closest cluster. The silhouette coefficient s(i) for individual i is given by:

s(i) = a(i) -b(i) max(a(i), b(i)) (3.7)
And the silhouette index by: rather use its normalized version, between 0 and 1 :

S sil = 1 K K ∑ k=1 1 |I k | ∑ i∈I k s(i) (3.8)
NMI(U, V) = 2 • I(U, V) H(U) + H(V) (3.11)
The biases induced by these indices

Internal validation indices are often based on an assumption made about the data distribution. This is in particular the case for the Davies-Bouldin indices and the silhouette index that we discussed above. When describing these indices, we said that we want clusters with a low variance (the elements of the cluster are close to the barycenter) and a high separation (the barycenters are far away). However, as we see in the figure 3.1, natural clusters sometimes do not respect these properties. An option in this case is to use a validation index based on the density [START_REF] Moulavi | Density-based clustering validation[END_REF].
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Choosing a validation index

In the collaboration step of our proposed algorithm, models can accept or reject collaboration depending on how it affects performance. In the case of clustering, this performance can be measured by a validation index. As we have seen, each index has its own biases and it is possible to choose different indices for each model. In our implementation, we have chosen the Davies-Bouldin index because it is often used in the literature. We could have chosen another internal validation index.

Note that an internal validation index would make less sense here. Indeed, this kind of index is used to measure the similarity between two partitions. However, if we want to take advantage of remote information to improve the local model, we do not want to approach the remote partitions, let alone a consensus. External validation indices can still be useful in collaborative clustering. In particular when we want to study the effect of the similarity of the initial partitions on the collaborative process. This work has been done in [START_REF] Parisa Rastin | Impact of Learners' Quality and Diversity in Collaborative Clustering[END_REF]. The authors of this paper are interested in the impact of the quality and diversity of learners on collaborative clustering. They empirically show that the best way to predict whether collaboration will be beneficial or not for a given site is to know its initial performance and the performance of the site with which it collaborates. This performance is measured by the purity of score 1 . The authors show that collaboration with a remote model having a higher purity is likely to improve the local purity. Conversely, collaboration with a remote model having a lower purity index is likely to deteriorate the local purity. In their experiments, Self Organizing Maps (SOMs) [START_REF] Kohonen | Self-Organized Formation of Topologically Correct Feature Maps[END_REF] have been used in both horizontal and vertical collaboration. Their results are reported in the tables 3.1 and 3.2. 1 The purity index is in fact an external validation index, like the ones presented above. But with the difference that the reference partition is made of the "true classes" of observations. In other words, we need a labeled dataset (X, Y) where Y i is the label associated to X i . Suppose that the dataset is composed of K ′ true classes. Then the purity index is: [START_REF] Parisa Rastin | Impact of Learners' Quality and Diversity in Collaborative Clustering[END_REF] for horizontal collaboration.

S pur = 1 N K ∑ k=1 max 1≤k ′ ≤K ′ |C k ∩ C k ′ | (3.
The set R -[p] contains all the remote partition matrices, from the perspective of site p.

In this case, how can we use X [p] and X [p] * to improve each local learner A [p] ?

For the sake of simplicity, we consider two learners: P = 2. At the local step, they produce two partition matrices: R [1] (t) and R [2] (t). In particular, for the sample x i , we have R [START_REF] Al-Razgan | Weighted clustering ensembles[END_REF] i,. and R [START_REF] Alquier | User-friendly introduction to pac-bayes bounds[END_REF] i,. . Thus, the update rule for learner 1 for sample x i is:

R [1] i,. (t + 1) ←-f R [1] i,. (t), R [2] 
i,. (t) (3.14) Where f refers to a generic function.

We want this update rule to depend on the level of certainty of site 1 about its own classification. The higher this level of certainty, the smaller the difference between

R [1]
i,. (t + 1) and R [START_REF] Al-Razgan | Weighted clustering ensembles[END_REF] i,. (t) should be. Conversely, the lower the level of certainty, the more weight will be given to R [START_REF] Alquier | User-friendly introduction to pac-bayes bounds[END_REF] i,. (t). Similarly, the level of certainty of site 2 will be taken into account for its classification: the higher (resp. lower) the certainty of site 2, the more (resp. less) it will influence R [START_REF] Al-Razgan | Weighted clustering ensembles[END_REF] i,. (t + 1).

As mentioned in section 2.2, entropy can be used as a measure of the amount uncertainty associated with a probability distribution.

H(X) = - d ∑ i=1 p(x i ) log 2 p(x i ) (3.15)
Where X is a random variable with possible values {x 1 , . . . , x d }. It follows that the uncertainty for a distribution R i is: Likewise, the β

H(R i,. ) = - K ∑ k=1 R i,k log 2 R i,k ( 
[p]
[q] are vectors of size N. Each element i of β

[p]
[q] is a weight associated with the classification of the i-th observation by the A [q] algorithm. This weight depends positively on the amount of uncertainty carried by the local classification, and negatively on the uncertainty of the remote classification.

Note that the sites only share their partition matrices. Therefore, regardless of the underlying algorithms, as long as they search for the same number of components, the collaboration algorithm remains relevant. However, the models must agree on the identity of the clusters. Our implementation uses the Hungarian algorithm to rearrange the clusters at each site [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF]. In the remainder of this section, we describe the CoLUPI algorithm, and then show how the values of α and β can be used to visualize the flow of information in the collaboration process.

Collaborative learning algorithm Based on the theoretical formalism presented in the previous section, we can design an architecture to collaboratively train multiple models on a distributed dataset. This algorithm uses equation 3.19 to update the parameters of the sites in interaction.

Visualization of the collaboration process

In this section, we focus on the visualization of information flow during collaboration.

As mentioned above, each contributor assigns a weight to each source site (including himself), for each observation. The average of these weights for each remote site gives us the average weight assigned to that site and can be considered as a confidence coefficient, although it is not uniform across observations. If there are P sites, this

Algorithm 3: CoLUPI algorithm

Local step: for all algorithms A [p] do train A [p] on the data X [p] get local parameters θ [p] and partition matrix R [p] end for Collaborative step: repeat for all algorithms A

[p] do R [p] (t + 1) ← f R [p] (t), R -[p] (t)
train model starting from new partition R [p] (t + 1) using data X [p] get θ [p] (t+1) and R [p] (t+1)

if quality R [p] (t+1) is better than quality R [p] (t) then Accept collaboration else θ [p] (t+1) ← θ [p] (t) R [p] (t+1) ← R [p] (t) end if
end for until no algorithm improves for its criterion gives us a P matrix as defined in equation 3.21 which can be considered as a confidence matrix. We represent this matrix as a heatmap for the Wdbc dataset in section 3.5.

C (P×P) =             α [1] β [1] [2] • • • β [1] [P] β [2] [1] α [2] • • • β [2] [P] . . . . . . . . . . . . β [P] [1] β [P] [2] • • • α [P]             (3.21) 
Where

α [p] = 1 N N ∑ i=1 α [p] i , (3.22) 
and

β [p] [q] = 1 N N ∑ i=1 β i [p] [q] . (3.23) 

Implementation examples

The architecture we have presented is model-agnostic. The only condition is that the models provide a probability distribution of belonging to the different classes, in order to be able to use entropy as a criterion for collaboration. We present here two models that can be used as local models for collaboration. First, Gaussian mixture models because they are widely used. And the Generative Topography Mapping (GTM) [START_REF] Bishop | Gtm: The generative topographic mapping[END_REF][START_REF] Bishop | GTM: The Generative Topographic Mapping[END_REF].

It is the probabilistic counterpart of SOM maps [START_REF] Kohonen | Self-Organized Formation of Topologically Correct Feature Maps[END_REF].

Gaussian mixture models

In general, when we use a mixture model, we assume that the distribution of our data is in fact a combination of several underlying distributions. Each observation x i , i ∈ {1, . . . , N} in the dataset comes from one of K basis distributions p k , k ∈ {1, . . . , K}. The probability that the observation i was generated by the component k is p(z i = k) = π k . We write:

p(x i |θ) = K ∑ k=1 π k p k (x i |θ) (3.24)
Where θ is the set of parameters of the model, and the prior probabilities of the

components π k satisfy ∑ K k=1 π k = 1.
A mixture model whose components are all Gaussian vectors is called a Gaussian mixture model. In this case :

p(x i |z i = k, θ) = N (x i |µ k , Σ k ) (3.25) 
Where θ = (θ k ) 1≤k≤K and θ k = (µ k , Σ k ).
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Training a Gaussian mixture model is done by looking for the parameters that achieve the maximum likelihood of the model. It can be shown that in the case where the component to which each individual belongs is known (complete-data), then the problem has an analytical solution and is easy to solve. But often only the observed data is known and in practice we use the Expectation Maximisation (EM) algorithm to approach the optimal parameters [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF].

E-step

Let R ik denote the probability that individual i belongs to class k:

R ik = p(z i = k|x i , θ) (3.26) 
Then applying Bayes' formula:

R ik = p(z i = k) • p(x i |z i = k, θ (t-1) ) ∑ k ′ p(z i = k ′ ) • p(x i |z i = k ′ , θ (t-1) ) = π k • N (x i |θ (t-1) k ) ∑ k ′ π k ′ • N (x i |θ (t-1) k ′ ) (3.27) M-step π k = 1 N ∑ i R ik µ k = ∑ i R ik x i R k Σ k = ∑ i R ik (x i -µ k )(x i -µ k ) ⊤ R k (3.28) Where R k = ∑ i R ik .

Generative Topographic Mapping

Generative Topographic Mapping (GTM) is a probabilistic dimensionality reduction algorithm. Its goal is to learn a low-dimensional manifold that correctly fits the high-dimensional data, often for the purpose of visualization, after projection of the data on the 2-D latent space.

In practice, we fix M basis functions ϕ j (x) and try to fit a D × M matrix W that maximizes the likelihood

L(W, β) = N ∑ n=1 ln 1 K K ∑ i=1 p (t n |x i , W, β) (3.29)
Where t n are the data points, x i the L-dimensional latent points and β the precision of the underlying Gaussian distribution. The parameters of this model are fitted using the EM algorithm. We give both EM steps:

E-step R in (W old , β old ) = p(t n |x i , W old , β old ) ∑ K i ′ =1 p(t n |x ′ i , W old , β old ) M-step Φ ⊤ G old ΦW ⊤ new = Φ ⊤ R old T And 1 
β new = 1 ND N ∑ n=1 K ∑ i=1 R in (W old , β old ) ∥W new ϕ(x i ) -t n ∥ 2 .

Experimental validation

In this section, we present the results obtained after running our algorithm on several datasets. First, we describe the datasets that were used in the experiments, and then 3.5. Experimental validation 61 we present two types of results: performance evaluation and visualization of the collaboration process.

Datasets

• The Breast Cancer Wisconsin (Wdbc) dataset consists of 569 scanned images of a breast mass. It contains 30 real-valued variables describing the cell nuclei present in each image. Each observation is labeled as benign or malignant.

• The Spambase dataset is composed of 57 attributes describing a collection of 4601 spam and non-spam emails.

• The Battalia3 dataset is an artificial dataset describing 2000 exoplanets generated with 27 numerical attributes.

• The MV2 dataset consists of 2000 entries, each described by 6 features. They were randomly generated from the mixture of a noise and four Gaussian components.

• The Isolet (isolated letters) dataset contains 617 variables describing 7797 voice recordings of individuals who have pronounced the name of each letter of the alphabet.

• The Madelon dataset is an artificial dataset containing 4400 rows composing 32 clusters placed on the vertices of a five dimensional hypercube. Then 15 redundant features and 480 unnecessary features (random probes) were added, for a total of 500 attributes.

We split the datasets to achieve a vertical collaborative clustering framework -that is, each data site has access to different variables on the same set of observations.

Results

Co-LUPI based on GTM models

The Co-LUPI algorithm was applied to each of the 6 datasets mentioned in section 3.5.1 using generative topographic maps (GTM).

The criterion for accepting the collaboration was the improvement of the Davies-Bouldin index. This is an internal index, so no prior knowledge of the data structure is required. A second version of the algorithm, RCo-LUPI (Regulazed Collaborative

Learning Using Privileged Information), has been implemented. It includes a new, random initialization of the responsibility matrix at each step, as well as of the collaboration matrix. This technique is often used in unsupervised learning and is intended to reduce the dependence on the initial parameters. The table 3.3 shows that in most cases, RCo-LUPI gave slightly better results than Co-LUPI.

To visualize the dynamics of this process, we can examine the successive confidence matrices of the collaboration step. Figure 3.3 represents such data. The Co-LUPI algorithm was applied to the Wdbc dataset, spread over 18 data sites. It can be seen that not all algorithms benefited from collaboration at every step. In particular, the model learning on data site number 1 did not improve its results until the fifth iteration of the collaboration phase. Furthermore, at iteration number 7, only the second algorithm improved its results. Although this could be interpreted as a sign of an imminent end to the process, three other algorithms benefited from these new findings in the next iteration. Thus, the process ended only after four more iterations.

Comparison with other collaborative approaches

The Co-LUPI and RCo-LUPI algorithms were empirically compared to four recent implementations of collaborative clustering algorithms.

Experimental validation

TABLE (3.3) Experimental results, Davies-Bouldin index -Co-EM:

[61], Co-MV : [START_REF] Ghassany | Collaborative multiview clustering[END_REF], Co-GTM: [START_REF] Ghassany | Collaborative generative topographic mapping[END_REF], Co-SOM: [START_REF] Grozavu | Topological collaborative clustering[END_REF], Co-LUPI, RCo-LUPI To evaluate the performance of our approaches, we use the Friedman test and the Nemenyi test recommended in [START_REF] Demšar | Statistical comparisons of classifiers over multiple data sets[END_REF]. First, the algorithms are ranked according to their performance on each dataset. There are then as many rankings as there are datasets.

Name C o -E M C o -M V C o -G T M C o -S O M C o -L U P I R C o -
Next, the Friedman test is performed to test the null hypothesis that all approaches are equivalent, which assumes that their average rankings are equal. If the null hypothesis is rejected, then the Nemenyi test is performed. If the average ranks difference of two approaches exceeds a given threshold (namely the critical difference (CD)), then it can be concluded that their performances are significantly different. In the Friedman test, we set the significance level at α = 0.05. 

Analysis of the collaboration process

In this section, we analyze the impact of the weighting function on the evolution of classifications. The architecture we proposed requires that each learner has a way to weight the information received. We proposed to use entropy as a criterion in order to take into account the uncertainty related to each prediction. We used a simple function that respected our criteria, we presented it in the equations 3.19 and 3.20.

However, there are many possible choices. We analyze the collaboration process using the implementation proposed in the latter equations and show an alternative using the Kullback Leibler divergence. Step 1 represents learners' predictions after an application of the formula given in equation 3.20 which we report here:

R [p] (t + 1) ←-α [p] •R [p] (t) + ∑ R [q] ∈R -[p] β [p] [q] • R [q] (t)                α [p] = 1 P-1 ∑ R [q] ∈R -[p] H R [q] (t) • 1-H R [p] (t) β [p] [q] = H R [p] (t) • 1 -H R [q] (t)
3.6. Analysis of the collaboration process 67 Then each model adjusted its predictions according to its initial classification, its entropy, and the distant classifications and entropies. We see that the two models with low entropy at the beginning slightly changed their prediction in step 1. The models with less clear-cut predictions changed their predictions to a greater extent. In particular, they now put more weight on the blue and orange groups.

In step 2, all predictions are similar. Note that we just applied the collaboration formula mentioned above several times, thus ignoring the step of adjusting the model parameters after the predictions are adjusted. In practice, after the state represented in step 1, the models would have started from their new partition matrices to adjust the model parameters, and would have obtained new partition matrices before the next iteration.

Despite the above clarification, this fast convergence behavior is still a problem.

In a situation were we are not looking for a consensus, having four quite different predictions achieving one in two steps is troublesome. Indeed, model number 4 excluded the blue group at the beginning. However, as of step 1, it considers it as the most likely group. This behavior seems to go against the objective of collaborative learning, i.e. to privilege a possible local structure. To remedy this, it is possible to penalize too much divergence between local and remote results.

Introduction of a similarity criterion

We used the Kullback-Leibler divergence, which measures the dissimilarity between two distributions. The Kullback-Leibler divergence between two distributions p and q is written as follows:

D KL (p||q) = ∑ x p x log p x q x (3.30)
We therefore want the weight β

[p]

[q] associated with site q to depend negatively on the Kullback Leibler divergence. This means that any proposal that is too far away from Chapter 3. Unsupervised collaborative learning the local structure of the data will be given less weight. We represent a collaboration process using the equation 3.31 to weight the received information. [q] (t)

R [p] (t + 1) ←-α [p] •R [p] (t) + ∑ R [q] ∈R -[p] β [p] [q] D KL R [p] (t)||R
• R [q] (t) (3.31) We see in figure 3.5 that models 2 and 4 fit their parameters with a bias towards distant classifications with a low divergence from their own. Model 2, which was rather agnostic to begin with, adjusts its prediction more towards the blue group (which is the majority among the distant classifications). Model 4, on the other hand, is closer to model 2.

FIGURE (3.5) Evolution of the classification with Kullback Leibler divergence

This focus at the level of the classification of an individual allows us to better understand how the process can be affected by the choice of confidence functions. We then present an analysis of a step of collaboration between Gaussian mixture models.

Chapter 3. Unsupervised collaborative learning local step.

The increase in the Davies-Bouldin index means that models are moving away from a local optimum in the ability to explain the data. And the way in which this increase depends on initial performance may be a sign that poorer performing models are adapting their results more.

The increase in the purity index is a consequence of an exchange of information about the overall structure of the data.

The results for Waveform are rather interesting because sites 3 and 4 have only noise.

Their purity scores are due to the presence of three classes. However, it turns out that the other two models manage to improve their performance after the collaboration.

In other words, the presence of poor performers did not deteriorate the quality of the other learners.

We have seen in the section 3.3 how we can aggregate the weights given to a remote site to obtain a confidence coefficient. The set of these coefficients allows us to represent the information exchanges between learners. We represent these coefficients for the 10 learners trained on the wdbc dataset in the figure 3.6.

We found a correlation between the level of performance of a model and how it weights remote information. The three best performing sites (1, 3, and 4) place little weight on remote sites and thus essentially keep their results intact. In particular, site number 4 places very little weight on remote sites and has high confidence in its own results (cf. line 4 of the heatmap 3.6). The other models give more weight to distant results. Finally, all models benefit from collaboration. 

Conclusion

We presented Co-LUPI and RCo-LUPI, algorithms based on the use of privileged information and probabilities for collaborative clustering. This allows the algorithms to refine the collaboration based on their -and their remote counterparts' -(in)certainty about the classification of each observation, measured by entropy. This updating rule has the advantage of being simple and the collaboration is done with all remote sites at the same time. This avoids the classic problem of choosing the site to collaborate with at each step.

We tested our approach on several datasets in the horizontal collaboration setting, but it is also applicable in the hybrid setting. The results showed an improvement over the state of the art. The framework also provides a way to visualize information flow during the process. It shows interesting behaviors, as algorithms with lower initial performance tend to use more incoming information than others. Moreover, even the algorithms with the best performance after the local step were able to improve during

Theoretical guarantees

So far in this work, we have adopted an empirical approach. We have identified several issues in collaborative clustering and proposed an architecture that addresses them.

We then tested that architecture in several settings and the experiments exhibited some interesting properties. In this chapter we are interested in the theoretical results that can be derived from this collaborative learning architecture. We start with an analysis of the complexity of the proposed algorithm. Then we provide a termination analysis of the algorithm. Finally, we discuss the generalization bounds.

Reminder: the proposed architecture

Let S be a training sample distributed across different nodes of a network. The dataset S can either be labelled or unlabelled:

1. S = {(x i , y i )} n i=1 in the labelled case. Then D denotes the joint distribution of (X, Y).

2. S = {(x k )} n i=1 in the unlabelled case. Then D denotes the distribution of X.

In both cases, we can write S ∼ D n . In a classical setting, all data in X are described by real-valued d-dimensional vectors, i.e. X ⊆ R d . But in the collaborative learning setting, we suppose that the global dataset X is distributed over P data sites:

X [1] , . . . , X [p] , . . . , X [P] , where X [p] = {x [p]
i } n i=1 is a set of n objects. By abuse of notation, we say that each object x

[p]

i ∈ R d is a d-dimensional vector, ignoring that the number of features depends on p.

The collaboration function to update a model's predictions is given in section 3.3.2. This function is applied to each learner's responsibility matrix R [p] (t) in order to compute its temporary collaborated partition matrix R ′[p] (t). The model then adjusts its internal parameters using the new information R ′[p] (t). For instance, if training is done using the EM algorithm, then an M-step is performed first using R ′[p] (t) as the starting responsibility matrix. The so trained expert p may now compute the value of its quality function Q [p] (t + 1) induced by the new hypothesis, and use this value to decide whether to accept the collaboration or not. If the new predictions lead to a quality improvement greater than some threshold ϵ, ie Q

[p] (t + 1) -Q [p] (t) ≥ ϵ,
then the model's parameters are updated. That means that the collaboration iteration was beneficial to the learner. If on the other hand the quality improvement is not sufficient (Q [p] (t + 1) -Q [p] (t) < ϵ), then the model reverts to the state it was in at the beginning of that iteration. The process stops on the first iteration where no model improves more than some threshold ϵ.

One might wonder what are the properties of this algorithm. First, we said that the different data site exchange information during the collaborative step. What is the volume of the information exchanged ? We also said that the process stops whenever no algorithm improve during an iteration of the collaborative step. Is there any guarantee that this criterion will ever be met ? Finally, what can we say about the performance of the models ?

Complexity

The architecture we have proposed is model-agnostic. The time complexity will depend on the models used. On the other hand, the information exchanged is the same whatever the models used. We can therefore calculate the additional space complexity brought by the collaboration. knowing whether there is still progress to be made or not.

Fortunately, we can still say something about the termination property in our setting.

For this, will will use the fact that the quality functions Q [p] are asked to increase throughout the collaboration. Then if each quality function satisfies at least one of the following properties, our algorithm has stop property: 

P 1 : Q is computed
S(n, k) = 1 k! k ∑ i=0 (-1) i k i (k -i) n (4.2)
As a finite set, the image of the set of possible partitions by Q is bounded. Thus, for any given dataset, Q is bounded. Now, we show that if Q is continuous with respect to its input, i.e. the responsibility matrix R, then it is also bounded. First, note that each line of R is a probability distribution of K events. It thus lives in the (K -1)-simplex ∆ K-1 which is compact.

Then R ∈ {∆ K-1 } N which is also a compact set. Thus, as a continuous function on a compact set, Q is bounded (and attains its lower and upper bounds).

It follows that P 1 ⇒ P 3 and P 2 ⇒ P 3 .

We now assume that for all p = 1, . . . , P, Q [p] is bounded. Whether model p tries to minimize or to maximize its quality function, Q [p] (j) j∈N is a monotone sequence.

Then for all p, Q [p] (j) j∈N is a bounded, monotone sequence, and as such, it converges. Thus, ∀ε > 0, ∃j p such that, ∀j ⩾ j p , Q

[p] (j) -Q [p] (j + 1) < ε.
Let ε be the threshold triggering the end of the algorithm, as described in section 4.1, using the fact that Q

[p] (j)
j∈N is convergent and the least integer principle, we can define for each data site p In summary, despite the absence of stop property in the most general case, we were able to prove that under mild hypothesis, our alogorithm eventually terminates. In a nutshell, the proof is based on the fact that the models try to improve their quality functions and that they cannot do so forever1 , provided that each function has any of the properties P 1 , P 2 , or P 3 .

j p = min{j : ∀j ′ ⩾ j, Q [p] (j ′ ) -Q [p] (j ′ + 1) < ε},
Note that here, termination property does not imply convergence to a fixed point.

Indeed, suppose that the successive states (S(t)) t=1,...,T of a model can be represented in a metric space (Θ, d). Then (S(t)) t may oscillate between two regions while ensuring that the sequence (Q(t)) t is growing.

Generalization bounds for supervised collaborative learning

In this section, we focus on the learners' ability to generalize to unseen data. This question is central in machine learning. Answering it allows us to know with a certain level of confidence, to what extent a model has succeeded in adapting to the (unknown) distribution of the data. We focus on one learner of the collaborative architecture and try to provide generalization bounds for that learner.

We consider an input space X and an output space Y. We only consider the case where X = R d , and Y = {-1, 1}. We denote by D the (unknown) distribution of X * Y. We consider a sample S of independent and identically distributed (i.i.d.) pairs

(X 1 , Y 1 ), . . . , (X n , Y n ). Then S ∼ D n . And let H = {h θ | h θ : X → Y, θ ∈ Θ} be
a set of predictors parametrized by θ ∈ Θ. This set is also known as a hypothesis class.

Chapter 4. Theoretical guarantees

We consider a loss function ℓ : Y × Y → [0, +∞), with ℓ(y, y) = 0. Common loss functions are:

• The 0-1 loss: ℓ(y ′ , y) = 1(y ̸ = y ′ )

• The hinge loss: ℓ(y ′ , y) = max(1yy ′ , 0)

• The absolute loss: ℓ(y ′ , y) = |y ′ -y|

• The quadratic loss: ℓ(y ′ , y) = (y ′y) 2

The true risk of a predictor h ∈ H is given by

R D (h) = E D [ℓ(h(X), Y)]. (4.3) 
A good predictor must have a small risk. However, the definition of the true risk involves the data distribution D, which is unknown. Therefore, we cannot compute R(h) and have to fall back to empirical risk:

R D (h) = 1 n n ∑ i=1 ℓ(h(x i ), y i ) (4.4)
Given a hypothesis h ∈ H, one can compute its empirical risk R D (h). But what we truly want to optimize is the true risk, R D . Then, given the empirical risk, what can we say about the value of the true risk? Interestingly enough, even though D is unknown, we can still say something about the difference between R D (h) and R D (h).

These results come in the form of a probability:

P |R D (h) -R D (h)| ≤ ε ≥ 1 -δ (4.5)
There are many papers proposing new bounds. These bounds can be of several types. For instance, the Vapnik-Chervonenkis bounds rely on the concept of VC dimension [START_REF] Vapnik | On the uniform convergence of relative frequencies of events to their probabilities[END_REF][START_REF] Vapnik | Controlling the Generalization Ability of Learning Processes[END_REF]. There are also bounds based on the Rademacher complexity, the uniform stability, or the robustness of the algorithm at hand [START_REF] Bousquet | Stability and generalization[END_REF][START_REF] Devroye | Distribution-free inequalities for the deleted and holdout error estimates[END_REF][START_REF] Koltchinskii | Rademacher processes and bounding the risk of function learning[END_REF][START_REF] Kutin | Almost-everywhere algorithmic stability and generalization error[END_REF][START_REF] Xu | Robustness and Generalization[END_REF].

The kind of bounds that we are mostly interested in is the PAC-Bayes generalization bounds. These bounds have been introduced by Shawe-Taylor and Williamson in [START_REF] Shawe | A pac analysis of a bayesian estimator[END_REF],

and extended by McAllester in [START_REF] Mcallester | Some pac-bayesian theorems[END_REF]. Instead of trying to pinpoint one best hypothesis h * ∈ H, the PAC-Bayes approach will consider that given a prior distribution π on H, one can try to find a posterior distribution ρ such that the aggregated predictor with weights ρ:

h ρ (x) = E θ∼ρ [h θ (x)] (4.6) 
performs well.

The PAC-Bayes generalization bounds can provide results for three kinds of risk:

• the risk of a single draw ĥθ from the posterior: R D ( ĥ), where θ ∼ ρ

• the expected risk of a random hypothesis: E θ∼ρ R D (h)

• the risk of the deterministic aggregated hypothesis: R D (h ρ )

Bounds for all these types of risks can be found in [START_REF] Alquier | User-friendly introduction to pac-bayes bounds[END_REF]. Here, we start by giving a simple bound for E h∼ρ R D (h). This bound is due to Catoni [START_REF] Catoni | A pac-bayesian approach to adaptive classification[END_REF]:

Theorem 1 (Catoni's bound) Let λ > 0, and ∀ε ∈ (0, For a convex loss function (e.g. the hinge loss), the Jensen's inequality gives:

E θ∼ρ [R D (h θ )] ≥ R D (E θ∼ρ [h θ ]) (4.18)
We obtain a generalization bound for the aggregated hypothesis R D (h θ ): ρ is constant with respect to the input. However, in the collaboration scheme we proposed, these weights vary across the input space, depending on the models expertise in the different regions of this space. Indeed, after collaboration step, the prediction aggregation can be written as follows

h * (x) = P ∑ j=1 f j (x) h j (x)
where the functions f j : X → [0, 1] ∈ F , j = 1, . . . , P are not constant in general, and are such that ∑ j f j (x) = 1, ∀x ∈ X .

In the particular case of the heuristic we proposed, f j (x) depends on the entropy of the predictors for the classification of the datapoint x.

We can now define a new hypothesis class G defined by:

G = {g = P • f • h : ( f , h) ∈ F × H}
Now the collaboration step consists in combining the local hypothesis g j , j = 1, . . . , P, chosen to be such that ∑ j f j = 1, with uniform weights: We have h = h * , and h is an aggregated predictor with constant weights across the input space.

h(x
We cannot use the 0-1 loss in this context, because in general the prediction h(x) / ∈ (0, 1). But we can still use the hinge loss, which is convex, so equation 4.19 holds.

This workaround comes at a cost. Indeed, the PAC-Bayes generalization bounds require the prior to have support on the whole hypothesis space. But we increased the size of the hypothesis space. Thus, the term KL(ρ∥π) in the bound will likely be increased. Suppose for example that the prior π is the uniform distribution on G, and that the posterior is uniformly distributed over P hypothesis. Then In this case, the Kullback-Leibler divergence increases with |G|. In general, the larger G, the more elements have low prior probability. This phenomenon increases

KL(ρ∥π).

A first solution would be to use data-dependent priors. The idea is to use part of the dataset to adjust the prior and have more weight on the relevant hypothesis [START_REF] Gintare | Data-dependent pac-bayes priors via differential privacy[END_REF][START_REF] Parrado-Hernández | Pac-bayes bounds with data dependent priors[END_REF][START_REF] Seeger | Pac-bayesian generalisation error bounds for gaussian process classification[END_REF].

A second one would be to look for bounds that apply to the specific case of locally weighted classifiers.

Conclusion

In the chapter, we first provided results about space complexity which, unlike time complexity, does not depend on the models used on each datasite. We also gave 86 Chapter 4. Theoretical guarantees some sufficient conditions for the algorithm to stop, although convergence to a fixed point is not guaranteed. We finally showed how to adapt the proposed architecture for the PAC bayesian generalization bounds to be applicable in our case, at the cost of widening the hypothesis class, which could lead to trivial bounds. One solution would be to limit the size of the new hypothesis class by restricting to some set of weighting functions -e.g. using parametric models, or having a limited number of possible levels of uncertainty. Another approach would be to look for generalization bounds that apply specifically to locally weighted combination of classifiers.

Conclusion and perspectives

We have identified several scientific obstacles and have proposed an architecture to address them. We have used for the first time the collaborative learning paradigm in the supervised framework. The reader will also find in appendix an analysis of some properties of the collaborative function we propose.

The first scientific obstacle to which we propose an answer is the choice of the collaborator. Most often, in the literature, a single remote model is selected at each iteration, and the collaboration then takes place with this model.

The second obstacle on which we have worked is the choice of the intensity of the collaboration. This is the coefficient associated with the penalty of the divergence between two models. Determining a good collaboration coefficient is a complex task, on the one hand because in unsupervised learning the performance of a model is difficult to measure objectively, and on the other hand because this coefficient is global. The implications in terms of the evolution of the classification for each individual are difficult to predict.

Another challenge, related to the two previous ones, is the deterioration of the results by the less performing models. It seems that the use of a global collaboration coefficient is the main reason for this deterioration. Even after selecting the collaborator according to some criterion, if we give the same weight to the distant classifications of all the individuals, then we risk modifying without distiction those who are easy to classify and those for whom the task is more complicated.

Chapter 5. Conclusion and perspectives

The approach we propose allows us to modify the classifications of only some individuals, depending on whether or not they are in a region of expertise. The higher the uncertainty about the classification of an individual, the more we will use external information to decide. In chapter 4, we provided a generalization bound for this algorithm. It required us to consider a wide hypothesis class, leading to potentially loose bounds. A way to tackle this problem would be to come up with ad hoc generalization bounds.

We have seen that one of the limitations of our algorithm is a tendency to homogenize the results. We proposed to introduce a similarity criterion to solve this problem. By using such a criterion, we ensure that the collaboration does not lead to an already excluded track. To further explore this method, we could test it in a configuration where there are two different structures, and where each model has a view highlighting one or the other of these structures. Then the models seeing the same structure should exchange more between them. In this case, we would see groups of sites with high levels of mutual trust, and relatively low levels of trust towards the other sites.

In our proposal, we made two assumptions that we could try to overcome. The first one is that the models trained on each site all have information about the same individuals. The second is that all algorithms search for the same number of clusters.

The former is a very strong hypothesis. Fortunately, it is also the easiest to overcome.

Indeed, we can allow each site to have data on only a subset of the individuals in the database. Then at the time of collaboration, for each individual it would only consider the remote sites that have entries on these individuals. The sum in the equation 3.20, instead of covering all the remote sites, would then cover all the sites with the individuals in question. The normalization constants must be adjusted accordingly.

The second constraint can be droped by allowing each model to search for an arbitrary number of clusters. The next step is to find a correspondence between different
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 215 defines two indices. The first one measures the difference between the classifications obtained on two different sites after collaboration. It decreases with the increase of the collaboration coefficient. The second, on the other hand increases with this coefficient. It consists in comparing locally the difference between the classifications obtained with and without collaboration. Finally, if the collaboration coefficient is often calibrated by the user, some algorithms propose to automatize the tuning process[START_REF] Shen | Collaborative fuzzy clustering algorithm: Some refinements[END_REF][START_REF] Sublime | Optimizing exchange confidence during collaborative clustering[END_REF].In this chapter, we have presented several paradigms for learning from multiple learners. Federated learning is a centralized, distributed, iterative machine learning architecture where clients share a model. At each iteration, clients locally compute an update to the model. The updates are sent to a central server that aggregates the updates and comes up with a new state for the model. This new model is sent back to the clients for the next iteration. Ensemble clustering, on the other hand, is not iterative, although it may be distributed. Here, several models are trained in isolation and a central entity computes a consensus from the results proposed by the models. In both learning paradigms, only one model is eventually trained, making the assumption that it will perform well on all the (possibly different) local data distribution. Collaborative learning relaxes this assumption.

FIGURE ( 2 . 1 )

 21 FIGURE (2.1) Entropy of a Bernoulli distribution of parameter θ, as a function of θ.

2. 3 .

 3 Using entropy as a criterion for collaboration 29 first view for individuals located in the area where the versicolor and virginica classes overlap. All other things being equal, this model would use more information received during the collaboration step to adjust its predictions for the individuals concerned.This applies to fewer individuals for the second model, but it can still improve its predictions for the few individuals for which the classification is still unclear. All this without deteriorating its performance.

FIGURE ( 2 . 2 )

 22 FIGURE (2.2) Entropy and Gaussian components on the Iris dataset

  succession of choices. In machine learning, these models are trained by recursively partitioning the data space. Decision trees are among the most used algorithms because of their intelligibility and generalization capacity. The figures 2.3 and 2.4 are representations of the same decision tree trained on the Iris dataset.

FIGURE ( 2 . 3 )

 23 FIGURE (2.3) Representation of a classification tree trained on theIris dataset

Algorithm 2 :

 2 Update trees after collaboration Input: {T i : i = 1, . . . , P}: Trees after collaboration (T i = (N i )) ; (N i = Dictionary { A, δ }) Labelled data by decisions a f ter collaboration Output: { Ti : i = 1, . . . , P} tuned trees, Ti = ( Ñi ) 1 for i=1,. . . ,P do 2 for j = 1, . . . , |X| do 3 dp(

Chapter 3 .

 3 Unsupervised collaborative learning C k cluster number k, with k = 1, • • • , K. We denote by I k the set of indices i such that the observation x i is in cluster k, and n k = |I k | the number of points assigned to cluster C k .

FIGURE ( 3 . 1 )

 31 FIGURE (3.1) Examples of non-convex clusters. For such clusters, the most common validation indices are not adequate. For concentric circles, the clusters' centroids are very close (weak separation). For interleaving half circles, the observations are relatively far from the cluster centroid. Even worse, the centroid of a cluster is almost in the other cluster.

3 . 16 ) 3 .

 3163 Chapter Unsupervised collaborative learning negatively on the amount of uncertainty carried by the local classification, and positively on the average uncertainty of the remote classifications.

Figure 3 .

 3 FIGURE (3.2) Friedman and Nemenyi test to compare multiple approaches on multiple data sets: Approaches are ranked from left (best) to right (worst)

3. 6 . 65 FIGURE ( 3 . 3 )

 66533 FIGURE (3.3) Information flow during collaboration for the Wdbc dataset. Each row represents a data site and each column the total weight assigned to that source.

FIGURE ( 3 . 4 )

 34 FIGURE (3.4) Evolution of the classification following a collaboration iteration

FIGURE ( 3 . 6 )

 36 FIGURE (3.6) Confidence coefficients of the different models. Each line represents the confidence given by the model in question to all remote models and to itself.

  and j * = max p {j p }.

4. 4 .

 4 Generalization bounds for supervised collaborative learning 79 Then, ∀p ∈ {1, . . . , P}, Q[p] (j * ) -Q[p] (j * + 1) < ε, which is our stopping criterion.
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TABLE ( 2

 ( .1) Performance of random forests before and after collaboration. The score used is the accuracy.

			Random Forest Collaborative RF
	Adult		.785	.800
	Amazon		.943	.943
	Click prediciton	.848	.855
	KDD Appetency	.901	.906
	KDD Churn		.819	.825
	KDD upselling	.840	.852
	KDD 98		.884	.893
	Kick prediction	.838	.850
	Madelon		.663	.678
	Spambase		.856	.856
	Waveform		.696	.726
	Wdbc		.934	.951
	Where		
	precision k =	# individuals correctly assigned to class k # individuals assigned to class k	(2.8)

  Comparison with the catboost benchmark 39 • a test set (X test , y test ) (20%) • and a validation set (X val , y val ) (20%)

	• For numeric variables, missing values are replaced with zeros, and a dummy
	binary feature is added to indicate each individual involved.
	Each dataset was divided into

• a training set (X train , y train ) (60%) 2.7.

TABLE ( 2

 ( .2) Comparison with Gradient Boosting algorithms. The index used is the logloss. The percentages correspond to the rate of change with respect to the best performing model.

		CatBoost	LightGBM	Our method
		Tuned Default Tuned	Default Default Tuned
	Adult	0.270	0.273 1.21%	0.276 2.33%	0.287 6.46%	0.387 43.33%	0.312 15.56%
	Amazon	0.138	0.138 0.29%	0.164 18.80%	0.167 21.38%	.248 79.74%	.217 57.65%
	Click prediction	0.391	0.391 0.06%	0.396 1.39%	0.397 1.69%	0.516 32.01%	0.460 17.74%
	KDD appetency	0.072	0.071 -0.19%	0.072 0.40%	0.075 4.63%	.104 45.56%	.085 18.76%
	KDD churn	0.231	0.232 0.28%	0.232 0.33%	0.236 1.89%	0.343 48.25%	0.273 18.01%
	KDD upselling	0.166	0.167 0.37%	0.167 0.42%	0.171 2.98%	0.298 79.33%	0.269 61.82%
	KDD 98	0.195	0.195 0.07%	0.196 0.56%	0.198 1.91%	0.228 16.95%	0.202 3.84%
	Kick prediction	0.285	0.285 0.05%	0.296 3.82%	0.299 4.91%	0.361 27.05%	0.352 23.55%

TABLE ( 2

 ( .3) Comparison with Gradient Boosting algorithms (continued).

		XGBoost	H2O	Our method
		Tuned	Default Tuned	Default Default Tuned
	Adult	0.275 2.11%	0.280 3.84%	0.275 1.99%	0.276 2.35%	0.387 43.33%	0.312 15.56%
	Amazon	0.163 18.56%	0.165 20.07%	0.163 18.10%	0.170 23.08%	.248 79.74%	.217 57.65%
	Click	0.396	0.398	0.398	0.398	0.516	0.460
	prediction	1.37%	1.73%	1.72%	1.78%	32.01%	17.74%
	KDD	0.072	0.075	0.072	0.074	.104	.085
	appetency	0.35%	4.41%	1.33%	2.86%	45.56%	18.76%
	KDD	0.233	0.234	0.233	0.233	0.343	0.273
	churn	0.80%	1.04%	0.64%	0.69%	48.25%	18.01%
	KDD	0.166	0.169	0.168	0.170	0.298	0.269
	upselling	0.12%	1.57%	1.28%	2.22%	79.33%	61.82%
	KDD 98	0.196 0.52%	0.198 1.69%	0.195 0.37%	0.196 0.72%	0.228 16.95%	0.202 3.84%
	Kick	0.295	0.298	0.295	0.296	0.361	0.352
	prediction	3.47%	4.70%	3.52%	4.06%	27.05%	23.55%

TABLE ( 3

 ( .1) Experimental results of[START_REF] Parisa Rastin | Impact of Learners' Quality and Diversity in Collaborative Clustering[END_REF] for vertical collaboration. SOM 1→2 denotes a collaboration in which the 1 model receives information from the 2 model.

	Dataset	Map	Purity
		SOM 1	69.71
	Waveform	SOM 2 SOM 1→2 74.57 69.87
		SOM 2→1 70.71
		SOM 1	98.85
	Isolet	SOM 2 SOM 1→2 79.54 98.46
		SOM 2→1 98.30
		SOM 1	96.71
	Wdbc	SOM 2 SOM 1→2 96.99 97.87
		SOM 2→1 97.49
		SOM 1	76.26
	SpamBase	SOM 2 SOM 1→2 72.28 70.43
		SOM 2→1 69.78

TABLE ( 4

 ( .1) Execution time of the Co-LUPI algorithm by number of collaborators. The algorithm has been implemented in Python3.8 with no parallelization. OS: Ubuntu 20.04 LTS 64-bit, Processor: Intel® Core™ i9-9900K CPU @ 3.60GHz×16.

			Number of collaborators	
	Name (size)	2	3	5	7	10
	Wdbc (2000)	6.9s ±2.8s	7.93s ±2.6s	13.2s ±3.9s	24.2s ±4.9s	31.7s ±11s
	Spam Base (4601)	25s ±10.8s	52.1s ±30.9s	2min35s ±1min18s	3min20s ±1min35s	6min53s ±3min8s
	Battalia3 (2000)	8.49s ±1.4s	26s ±11.1s	45s ±15.6s	50.5s ±37.4s	2min40s ±1min9s
	MV2 (2000)	13.1s ±5.2s	17.4s ±5.4s	47.9s ±25.5s	1min31s ±27.6s	2min51s ±1min6s
	Isolet (6238)	1min8s ±33s	1min59s ±52.7s	3min28s ±56s	5min58s ±1min32s	12min5s ±4min29s
	Madelon (4400)	33.4s ±52.6s	31s ±29.6s	1min31s ±1min32s	1min51s ±1min18s	2min51s ±59s

  Chapter 4. Theoretical guarantees takes no more values than the number of different possible partitions of n objects into k non-empty subsets. This number of partitions is given by the Stirling number of the second kind S(n, k):

	using a hard clustering
	P 2 : Q is continuous with respect to the responsibility matrix R
	P

3 : Q is bounded

If Q is based on a hard clustering, then given a dataset of size n, it can only take a finite number of values. In particular, if we look for k clusters, the quality function Q

  1), thenP S ∀ρ ∈ P (H), E h∼ρ [R D (h)]Where P S is the probability with respect to the sample [(X 1 , Y 1 ), . . . , (X n , Y n )],P (H) is the set of probability distributions on H, C is such that 0 ≤ ℓ(y ′ , y) ≤ C, and KL is the Kullback-Leibler divergence defined by: Theorem 1 gives a generalization bound for the expected risk of a random hypothesisE θ∼ρ [R D (h)],and from this bound, we can derive a generalization bound for the aggregated hypothesis R D (h ρ ). To do so, we start by introducing the Donsker and Varadhan's representation of the KL divergence.And the supremum on the right hand side is achieved for Proof of Lemma 2. The definition of the KL divergence gives:KL(ρ∥π g ) = -E θ∼ρ [g(θ)] + KL(ρ∥π) + log E θ∼π [e g(θ) ].(4.11)Because KL(•∥•) ≥ 0, and equals 0 if ρ = π g , it follows that π g minimizes-E θ∼ρ [g(θ)] + KL(ρ∥π)(4.12)which is the claim. □Then, plugging this value of g in equations 4.9 and 4.12, we obtain thatρλ (dθ) = π(dθ) e -λR D (h θ ) E ϑ∼π [e -λR D (h ϑ ) ] (4.14)minimizes the following value:λE θ∼ρ [R D (h θ )] + KL(ρ∥π) (4.15)it thence minimizes the right hand side of the bound in theorem 1:E θ∼ρ [R D (h θ )] +

							Chapter 4. Theoretical guarantees
	Now, let	KL(µ∥ν) = ∑ x	log	µ(x) ν(x)	• µ(x)	(4.7)
		g = -λR D (E θ∼ρ [h])	(4.13)
	A proof of the theorem is given in appendix C.
		λC 2 8n	+	KL(ρ∥π) + log 1 ε λ	(4.16)
	ρ = That means that this bound can be minimized and that: dπ g dπ = E θ∼π [e g ] e g	(4.9)
		λC 2 8n	+	ε KL(ρ∥π) + log 1 λ	≥ 1 -ε	(4.17)
		KL(ρ∥π g ) = ∑					π(θ)e g(θ)	ρ(θ)	(4.10)
	Thus,					
		≤ E h∼ρ [R D (h)]+	λC 2 8n		+	KL(ρ∥π) + log 1 ε λ	≥ 1 -ε

Lemma 2 (Donsker-Varadhan representation of the KL divergence) For any measurable, bounded function g : Θ → R, we have:

log E θ∼π [e g(θ) ] = sup ρ∈P (Θ) E θ∼ρ [g(θ)] -KL(ρ∥π) (4.8) θ log ρ(θ) E ϑ∼π [e g(

ϑ) 

]

P S ∀ρ ∈ P (×), E θ∼ρ [R D (h θ )] ≤ inf ρ∈P (Θ) E θ∼ρ [R D (h θ )]+

  P S ∀ρ ∈ P (×), R D (h θ ) Equation 4.[START_REF] Devroye | Distribution-free inequalities for the deleted and holdout error estimates[END_REF] gives a bound for the aggregated predictor, provided that the posterior

	≤ inf ρ∈P (Θ)	E θ∼ρ [R D (h θ )]+	λC 2 8n	+	ε KL(ρ∥π) + log 1 λ	≥ 1 -ε	(4.19)

or more precisely, if they can improve forever, then for any positive value, the magnitude of the improvements will eventually stay below this value.

numbers of clusters. This can be done by using the optimal transport system[START_REF] Villani | Optimal transport -Old and new[END_REF].

Acknowledgements

other predictions. To do this, we use entropy as a measure of uncertainty.

Finally, we implemented this algorithm with decision trees as a base model. We used data sets intended for classification tasks, and observed an improvement in the performance of the algorithms between the local step and the end of the collaboration.

These performances are nevertheless well below the state of the art of gradient boosting. This is explained by the task at hand and the number of trained decision trees.

Chapter 3. Unsupervised collaborative learning

The silhouette index is between -1 and 1 and a higher value indicates a better clustering.

External validation indices

The Rand index measures the similarity between a partition U and a reference partition V. Each pair of elements is assigned to one of the following four categories:

• TP: the elements are assigned to the same clusters in U and in V.

• TN: the elements are assigned to different clusters both in U and V.

• FP: the elements are grouped in U and separated in V.

• FN: the elements are separated in U and grouped in V.

Then the rand index is given by : S rand = TP + TN TP + FP + TN + FN (3.9)

Mutual information is another way to measure the similarity between two partitions [START_REF] Vaithyanathan | Model selection in unsupervised learning with applications to document clustering[END_REF]. Let p U (k) = |Ik| N the probability that an element chosen uniformly at random from partition U belongs to the cluster k, and p UV (k,

N the probability that it belongs to the clusters k and k ′ respectively in the partitions U and V.

Then the mutual information I(U, V) is defined by :

It lies between 0 and min(H(U), H(V)), where mathbbH(U) denotes the entropy induced by the U partition. This measure of similarity is sensitive to the number of clusters, it is possible to increase it by adding clusters. To compensate for this, we

Chapter 3. Unsupervised collaborative learning

The calculation of the purity can be a good indicator of the performance of a clustering model on a dataset (provided that the purity index is not an objective function, cf.

Goodhart's law). However, it is rarely possible to compute it in practice because very often in clustering we do not have labeled data.

The authors therefore choose to use the normalized Rand index as an indicator of diversity between partitions. They test the relation between the diversity of the collaborators and the evolution of the performance after collaboration (always measured by the purity index). They find that for models with a relatively high initial performance, collaboration with a model obtaining a similar score leads to little change in performance after collaboration. While high diversity often leads to performance

degradation. An intermediate level of similarity is more likely to result in successful collaboration.

Theoretical framework and algorithm

In this section, we describe the general framework in which our method is applied, as well as an example of implementation.

General setting

The goal of collaborative learning is to learn from local data and a set of learners whose data is stored at separate sites.

More formally, suppose that the global dataset X is distributed over P sites:

where

It is the average proportion of the majority class for each cluster. This index is sensitive to the number of clusters. In particular, it will be maximal (equal to 1) if we form N clusters composed of only one individual. Finally, note that the reference partition to compute this index must be the set of true classes of the data X. However, clustering algorithms are rarely applied to labeled data sets.

Theoretical framework and algorithm

53

Our study focuses on the horizontal collaborative clustering problem. Thus, each site has access to different features d [p] describing the same individuals. On each site, an algorithm A [p] , p = 1, . . . , P will propose a partition of the local data X [p] . The process has two steps: a local step and a collaborative step.

Collaborative process

Local step In the local step, each algorithm A [p] works on its own dataset X [p] and adjusts its parameters as it would in a non-collaborative setting. In order to exchange their results, the algorithms must have some type of information in common. In our case, the partition computed by each algorithm will be represented as a responsibility matrix R [p] . This matrix contains the contributions of each component to each observation, R

[p]

i,k = P(Z i = k|X i , θ), where K is the number of clusters, Z i ∈ {1, . . . , K} are the components of the model and the elements of θ are its parameters.

Once each model has been trained locally, we want them to exchange these partition matrices with each other to improve their performance. This exchange is done during the collaboration step.

Collaborative step During the collaboration step, the different algorithms A [p] will exchange information in order to improve their respective classification. The resulting clustering will not only be based on the examples X [p] , but also on the additional information X [p] * , which are in fact the remote partition matrices. The local learner thus has access to X [p] and X [p] * , instead of just X [p] , to perform its clustering. In our case, for each algorithm A

, where:

And its normalized version, using the fact that it is positive and its maximum is achieved when X is uniformly distributed:

Then 0 ≤ H(R i,. ) ≤ 1, and

. . , K, this reflects a high uncertainty on the classification of the observation i.

The equation 3.19 gives the rule for updating R [ii] when P algorithms are involved in the collaboration.

where

In these equations, α [p] is a vector of size N. Each element i of α [p] 

Collaboration between Gaussian mixture models

In this section, we present the results obtained after a simple collaboration step without adjustment of the models' parameters. This allows us to have a larger scale view of the changes induced by the simple exchange of information between the models.

We have collaborated Gaussian models on three data sets. We computed before and after collaboration: the purity index on one hand and the Davies-Bouldin index on the other hand. The results are reported in the table 3.4.

We find that the purity index has increased for almost all models. In particular, for the Waveform and Wdbc datasets, all sites have seen their purity index increase. However, the Davies-Bouldin index has increased, which corresponds to a deterioration of the clustering quality. It increases relatively less for the best performing sites after the Chapter 3. Unsupervised collaborative learning the process. Indeed, the flexibility provided by Co-LUPI in weighting incoming information allows algorithms to benefit from globally less efficient counterparts, as the latter may perform better locally.

Several improvements can be made to the proposed algorithm. An optimal transport algorithm could be used to relax the assumption that each algorithm searches for the same number of clusters. It would also be interesting to test it in the hybrid setting,

where different data sites have access to different individuals.

Finally, we provided a detailed analysis of the collaboration process. We concluded that the choice of the weighting function influences the way information flows between data sites. Each data site might have its own way of weighting incoming information,

depending on what it expects from the collaboration.

Chapter 4. Theoretical guarantees

Now our goal is to train a set of machine learning models A [p] , one on each node of the network. Each model will be trained by optimizing a quality function that we denote by Q [p] , be it in the supervised or in the unsupervised setting. This training takes place in two steps:

Local step In the local step, each algorithm A [p] works on its own dataset X [p] and adjusts its parameters as it would in a non-collaborative setting. In order to exchange their results, the algorithms must have some type of information in common. In our case, the partition computed by each algorithm will be represented as a responsibility matrix R [p] . This matrix contains the contributions of each component to each observation, R

[p]

i,k = P(Z i = k|X i , θ), where K is the number of clusters, Z i ∈ {1, . . . , K} are the components of the model and the elements of θ are its parameters.

Once each model has been trained locally, we want them to exchange these partition matrices with each other to improve their performance. This exchange is done during the collaboration step.

Collaborative step During the collaboration step, the different algorithms A [p] will exchange information in order to improve their respective classification. The resulting clustering will not only be based on the examples X [p] , but also on the additional information X [p] * , which are in fact the remote partition matrices. The local learner thus has access to X [p] and X [p] * , instead of just X [p] , to perform its clustering. In our case, for each algorithm A

, where:

The set R -[p] contains all the remote partition matrices, from the perspective of site p. We instead provide thereafter some experimental results on the computation time.

We applied the architecture we proposed to six different datasets using Generative Topographic Mappings, as described in sections 3.4 and 3.5. We observed that for a small number of collaborators (up to 10), the number of collaborators as little impact on the number of iterations, which is often around ten. Table 4.1 summarizes computation time for these experiments.

Termination analysis

At each collaboration iteration, each model shares its results and uses those of its counterparts to updadte its state. As is, there is no guarantee that this algorithm will eventually stop. Indeed, if we consider the sequence of states taken by the entire system, it is easy to imagine it oscillating between some states. Thus, a stopping criterion using, say, the convergence of the models parameters, cannot provide any guarantee that the algorithm stops. Unless the convergence is artificially enforced by some decreasing energy function scaling the updates. The downside of this method for ensuring convergence is that the user is stopping the learning process without 

C Proof of theorem 1

The proof of the theorem is given in [START_REF] Alquier | User-friendly introduction to pac-bayes bounds[END_REF] and [START_REF] Catoni | A pac-bayesian approach to adaptive classification[END_REF]. We report it here with our notations.

We first give two preliminary results: Proof of theorem 1. For any θ ∈ Θ and t > 0, the Hoeffding's inequality applied to Integrate with respect to π and apply Fubini: This ends the proof.