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Résumé

Cette thèse porte sur l’apprentissage collaboratif. Ce paradigme d’apprentissage est

une des nombreuses méthodes ayant vu le jour au cours de ces dernières années afin

de tenter d’exploiter le plus efficacement possible le volume croissant de données

générées et stockées de par le monde.

Parmi ces méthodes, on trouve par exemple l’apprentissage fédéré et le clustering

ensembliste. Ces différentes approches ont pour point commun de permettre un

calcul distribué et préservant la confidentialité des données traitées. Leur objectif

est d’obtenir un modèle entrainé sur des données dispersées sur différents noeuds

d’un réseau. Ce qui est fait soit en entrainant directement un modèle partagé par les

différents sites, soit en cherchant un consensus entre plusieurs apprenants entraînés

séparément.

Ce dernier point constitue la principale différence avec l’apprentissage collaboratif.

En effet, dans ce paradigme, on ne cherche pas à réaliser un consensus. L’objectif

est que chaque apprenant bénéficie des résultats obtenus par ses homologues tout en

préservant la confidentialité des données.

Un des enjeux du domaine est le choix des sites distants avec lesquels collaborer

et de l’intensité de la collaboration. Sans précaution particulière, il est tout à fait

possible que les performances locales soient détériorées suite à la collaboration.

Nous proposons l’utilisation de l’entropie comme mesure de l’incertitude quant aux

prédictions des différents modèles afin de pondérer, pour chaque modèle, l’information

qu’il reçoit de ses homologues.
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Nous proposons une implémentation dans le cadre de l’apprentissage supervisé en

utilisant des arbres de décision comme modèle de base.

Un autre verrou scientifique réside dans les difficultés liées à l’apprentissage non-

supervisé. Outre le fait qu’il n’existe pas de mesure objective de la performance,

le paradigme d’apprentissage collaboratif souffre du fait qu’il n’y ait pas de cor-

respondance évidente entre les classes formées par les différents modèles. Nous

proposons une architecture de clustering collaboratif permettant à tous les modèles

de s’améliorer. Nous proposons aussi une analyse détaillée de ce mode de collabora-

tion en étudiant l’effet, au niveau individuel, de l’échange d’informations entre les

différents apprenants.

Les approches proposées dans les deux premiers chapitres sont essentiellement heuris-

tiques et ont été implémentées dans le but de répondre aux verrous scientifiques

identifiés au début de ces travaux. Nous en fournissons néanmoins une analyse

théorique portant sur la complexité en espace, sur certaines conditions suffisantes pour

que l’algorithme termine, et sur les bornes de généralisation.
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Abstract

This thesis focuses on collaborative learning. This machine learning paradigm is one

of the many methods that have emerged in recent years in an attempt to efficiently

mine the growing volume of data generated and stored around the world.

Federated learning and ensemble clustering, e.g., belong to these numerous methods.

These different approaches have in common that they allow distributed computation

and preserve data privacy. Their purpose is to obtain a model trained on data scattered

across different nodes of a network. This is done either by directly training a model

that is shared by the data sites, or by seeking a consensus between several learners

that are trained separately.

This last point is the main difference with collaborative learning. Indeed, in this

paradigm, we do not try to reach a consensus. The objective is that each learner

benefits from the results obtained by his counterparts while preserving data privacy.

One of the issues in this area is the choice of remote sites to collaborate with and

the intensity of the collaboration. Without special care, it is quite possible that local

performance will be degraded as a result of the collaboration. We propose the use of

entropy as a measure of uncertainty in the predictions of different models in order to

weight the sources of information. We also propose a detailed analysis

An experiment was carried out in the framework of supervised learning using decision

trees as an underlying model.
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Another scientific obstacle lies in the difficulties associated with unsupervised learning.

In addition to the fact that there is no objective measure of performance, the collabo-

rative learning paradigm suffers from the fact that there is no obvious correspondence

between the classes formed by the different models. We propose a collaborative

clustering architecture allowing all models to improve. We also propose a detailed

analysis of this mode of collaboration by studying the effect, at the individual level,

of the exchange of information between the different learners.

The approaches proposed in the first two chapters are essentially heuristic and have

been implemented in order to address the scientific obstacles identified at the beginning

of this work. Nevertheless, we provide a theoretical analysis on the space complexity,

some sufficient conditions for the algorithm to finish, and the generalization bounds.
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Forewords

This thesis deals with collaborative learning and was carried out at the Northern Paris

Computer Science Lab (LIPN)1, within the framework of a consortium agreement

called "FACEBOOK grants" between Université Paris-Est Marne la Vallée, CY Cergy

Paris Université, Université Côte d’Azur, and Université Sorbonne Paris Nord2.

The LIPN has been associated with the French National Centre for Scientific Resear

(CNRS) since 1992 and is developing around several axes, in particular in combina-

torics, combinatorial optimization, algorithmics, logics, software engineering, natural

languages and machine learning.

Professor Younès Bennani has directed several theses dealing with unsupervised

learning and in particular with collaborative clustering. The present document is

a continuation of this work and extends the collaborative learning paradigm to the

supervised framework.

1Laboratoire d’Informatique de Paris Nord, LIPN, https://lipn.univ-paris13.fr/en/
home/

2http://www.u-pem.fr/
https://www.cyu.fr/
https://univ-cotedazur.fr/
https://www.univ-paris13.fr/

https://lipn.univ-paris13.fr/en/home/
https://lipn.univ-paris13.fr/en/home/
http://www.u-pem.fr/
https://www.cyu.fr/
https://univ-cotedazur.fr/
https://www.univ-paris13.fr/
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Introduction

Cette thèse porte sur l’apprentissage collaboratif. Ce paradigme d’apprentissage est

une des nombreuses méthodes ayant vu le jour au cours de ces dernières années afin

de tenter d’exploiter le plus efficacement possible le volume croissant de données

générées et stockées de par le monde.

Parmi ces nombreuses méthodes, on trouve par exemple l’apprentissage fédéré et le

clustering ensembliste. Ces différentes approches ont pour point commun de permettre

un calcul distribué et préservant la confidentialité des données traitées. Leur objectif

est d’obtenir un modèle entrainé sur des données dispersées sur différents noeuds

d’un réseau; ce qui est fait soit en entrainant directement ledit modèle de manière

collaborative, soit en cherchant un consensus entre plusieurs participants qui ont été

entraînés de manière indépendante.

Ce dernier point constitue la principale différence avec l’apprentissage collaboratif.

En effet, dans ce paradigme, on ne cherche pas à réaliser un consensus. L’objectif est

plutôt que chaque apprenant bénéficie des résultats obtenus par ses homologues tout

en préservant la confidentialité des données. Pour ce faire, des informations sur les

résultats locaux doivent être échangées.

Un des enjeux du domaine est le choix des sites distants avec lesquels collaborer et de

l’intensité de la collaboration. Sans précaution particulière, il est tout à fait possible
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que les performances locales soient détériorées suite à la collaboration. Nous pro-

posons l’utilisation de l’entropie comme mesure de l’incertitude quant aux prédictions

des différents modèles afin de pondérer les sources d’informations.

Nous proposons une implémentation dans le cadre de l’apprentissage supervisé en

utilisant des arbres de décision comme modèle de base.

Un autre verrou scientifique réside dans les difficultés liées à l’apprentissage non-

supervisé. Outre le fait qu’il n’existe pas de mesure objective de la performance,

le paradigme d’apprentissage collaboratif souffre du fait qu’il n’y ait pas de cor-

respondance évidente entre les classes formées par les différents modèles. Nous

proposons une architecture de clustering collaboratif permettant à tous les modèles

de s’améliorer. Nous proposons aussi une analyse détaillée de ce mode de collabora-

tion en étudiant l’effet, au niveau individuel, de l’échange d’informations entre les

différents apprenants.

Les approches proposées dans les deux premiers chapitres sont essentiellement heuris-

tiques et ont été implémentées dans le but de répondre aux verrous scientifiques

identifiés au début de ces travaux. Nous en fournissons néanmoins une analyse

théorique portant sur la complexité en espace, sur certaines conditions suffisantes pour

que l’algorithme termine, et sur les bornes de généralisation.

Cette thèse est composée de trois parties principales listées ci-après.
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Organisation de la thèse

Chapitre 1 : Apprentissage à partir de données et d’apprenants

Dans ce chapitre, nous expliquons l’intérêt du recours à l’apprentissage distribué.

Nous parcourons les différentes méthodes d’apprentissage distribué et analysons leurs

propriétés. Nous verrons que l’objectif de la plupart de ces méthodes est l’obtention

d’un modèle unique. Que ce soit directement en entrainant ce modèle, ou en cherchant

à réaliser un consensus entre les différents modèles obtenus.

L’apprentissage collaboratif fait alors figure d’exception en ce sens qu’il ne cherche

pas à obtenir un consensus entre les modèles locaux. L’échange d’informations entre

ces modèles vise plutôt à améliorer chacun d’eux. Parmis les avantages que présente

ce mode d’apprentissage, on peut citer le fait que l’on émet moins d’hypothèses sur la

distribution (au sens probabiliste) des données. En particulier, nous ne faisons pas

l’hypothèse que les données sont indépendantes et identiquement distribuées. Chaque

modèle peut tout de même bénéficier des informations transmises par les autres sites

pour améliorer sa performance sur les données locales. Alors tous les algorithmes,

et en particulier les plus performants avant la collaboration, peuvent potentiellement

bénéficier de la collaboration et s’améliorer.

Chapitre 2: Forêts aléatoires collaboratives

Dans ce chapitre, nous nous proposons d’appliquer notre algorithme dans le cadre

d’un apprentissage collaboratif d’arbres de décision pour une tâche de classification.

Disposant d’un ensemble de vues sur un jeu de données, nous souhaitons entrainer

un arbre de classification sur chacune de ces vues, tout en essayant de bénéficier des

résultats obtenus par les arbres distants.
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Chapitre 3 : Apprentissage collaboratif non-supervisé

Dans ce chapitre, nous proposons un algorithme de clustering collaboratif. Il s’agit

d’une architecture d’apprentissage collaboratif dans laquelle les modèles entrainés

sont des algorithmes de clustering. Après un bref historique du travail dans le domaine,

nous présentons les verrous scientifiques auxquels nous répondons.

Comme nous l’avons dit précédemment, chaque algorithme peut théoriquement

améliorer sa performance en bénéficiant des informations envoyées par ses homo-

logues. Nous constatons cependant que, dans la pratique, les algorithmes les plus

performants initiallement voient leurs scores se détériorer. Nous proposons donc une

méthode permettant à tous les algorithmes de s’améliorer.

Chapter 4: Garanties théoriques

Dans ce chapitre, nous apportons une analyse plus théorique de l’architecture de

collaboration proposée. Nous proposons une demonstration du fait que, sous de

faibles hypothèses, notre algorithme termine. Nous discutons enfin des bornes de

généralisation.
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This thesis focuses on collaborative learning. This learning paradigm is one of the

many methods that have emerged in recent years in an attempt to efficiently exploit

the growing volume of data generated and stored around the world.

Among these numerous methods are, for example, federated learning and ensemble

clustering. These different approaches have in common that they allow a distributed

computation and preserve the confidentiality of the processed data. Their objective

is to obtain a trained model on data scattered on different nodes of a network; this is

done either by collaboratively training the model directly, or by seeking a consensus

between several participants that have been trained in isolation.

In this last point lies the main difference with collaborative learning. Indeed, in

collaborative learning, there is no attempt to reach a consensus. Instead, the aim is for

each learner to benefit from the results obtained by its counterparts while preserving

data confidentiality. To do so, the learners involved in the collaboration process have

to exchange information about their local findings.

One of the issues in this area is the choice of remote sites to collaborate with and

the intensity of the collaboration. Without special care, it is quite possible that local

performance will be degraded as a result of the collaboration. We propose the use of

entropy as a measure of uncertainty in the predictions of different models in order to

weight the sources of information.

We propose an implementation in the supervised learning framework using decision

trees as a an underlying model.

Another scientific obstacle lies in the difficulties associated with unsupervised learning.

In addition to the fact that there is no objective measure of performance, the collabo-

rative learning paradigm suffers from the fact that there is no obvious correspondence

between the classes formed by the different models. We propose a collaborative

clustering architecture that allows all models to improve.
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This thesis is composed of four main parts listed below.

Overview of the thesis

Chapter 1: Learning from data and learners

In this chapter, we explain the interest of using distributed learning. We review the

different distributed learning methods and analyze their properties. We will see that

the purpose of most of these methods is to obtain a unique model. This is done either

by collaboratively training the model directly, or by seeking a consensus between

several participants that have been trained in isolation.

Collaborative learning is an exception in that it does not seek to achieve consensus

between local models. Rather, the exchange of information between these models

aims at improving each of them. Among the advantages of this learning mode, we

can mention the fact that we make fewer assumptions about the distribution (in the

probabilistic meaning of the word) of the data. In particular, we do not hypothesize

that the data are independent and identically distributed. Each model can still benefit

from the information transmitted by the other sites to improve its performance on the

local data. Thus, all algorithms, and in particular the best performing ones before the

collaboration, can potentially benefit from the collaboration and improve.

Chapter 2: Collaborative random forests

In this chapter, we propose to apply our algorithm in the context of a collaborative

learning of decision trees for a classification task. Having a set of views on a dataset,

we wish to train a classification tree on each of these views, while trying to benefit

from the results obtained by the remote trees.
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Chapter 3: Unsupervised collaborative learning

In this chapter, we propose a collaborative clustering algorithm. It is a collaborative

learning architecture in which the trained models are clustering algorithms. After a

brief history of work in the field, we present the scientific challenges we address.

As we said before, each algorithm can theoretically improve its performance by

benefiting from the information sent by its counterparts. However, we observe that in

practice, the algorithms with the best initial performance see their scores deteriorate.

We therefore propose a method allowing all algorithms to improve.

Chapter 4: Theoretical guarantees

In this chapter, we provide a theoretical analysis of the collaborative architecture. We

derive the complexity in space of the collaboration step. We then provide a termination

analysis and show that under mild conditions on the quality criterion, our algorithm

has STOP property. We finally provide some generalization bounds.
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1 Learning from data and learners:

State of the art

1.1 Introduction

Learning algorithms are trained on increasingly large volumes of data.

Two phenomena have made it possible to train on large volumes:

1. The computing power of computers

2. The ubiquity of data (IoT, social networks...)

Much of this data is stored on personal and portable devices, and often has a confiden-

tial nature, which is a barrier to its use for machine learning.

New obstacles have emerged with this ubiquity of data. For example, technical or

financial constraints may prevent us from consolidating all the data on the same

physical site. In addition, increasing attention is being paid to the protection of data

privacy [53, 73].

In such circumstances, machine learning algorithms must either make do with locally

available data, or exchange information in order to benefit at least partially from these

remote data. The algorithms will then learn not only from locally available data, but

also from results obtained by remote algorithms. Learning is thus realized from data

and learners.
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The type of information exchanged will depend, in this context, on the way the data is

distributed. There are two main types of data partition:

• Horizontal partition : different individuals are described by the same variables

on the different data sites (cf figure 1.1).

• Vertical partition : the same individuals are described by different variables on

each site (cf figure 1.2).

FIGURE (1.1) Horizontal data partition

FIGURE (1.2) Vertical data partition

In the following sections, we focus on the main methods for learning from distributed

data.
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1.2 Federated learning

Federated learning, introduced in 2016 [45], is a centralized machine learning archi-

tecture. Its main purpose is to train a global model using data from different devices,

also called clients, without them having to disclose private data. This paradigm is

particularly useful in a situation where:

• The number of participating clients is very large.

• The data for one client is not representative of the population distribution.

• The amount of local training data varies among clients.

• Bandwidth is limited.

In their paper, the authors attempt to train deep neural networks from decentralized

data. They propose the FederatedAveraging algorithm. It is an adaptation of the

stochastic gradient descent algorithm. It works according to the following rules. At

each iteration, a random fraction of the clients is selected. Each of the selected clients

then computes the gradient of the loss function on its local data. Finally, a central

server aggregates the induced updates. Since all clients share the same model, they

also share the feature space. This is a horizontal learning configuration.

The final model is shared and common to all participants. Moreover, since there are

many participants, they have only a marginal influence on the learning process. This

paradigm is therefore particularly sensitive to the free rider problem, and the question

arises of how to encourage each of them to participate in the learning process.

Furthermore, this uniqueness of the final model implies that the final model will often

perform worse than the best models that can be obtained using only local data from a

client with large, qualitative data. Thus, customers with the most qualitative data have

no incentive to participate in the learning process. Conversely, customers with less

qualitative data are incentivized to participate [43].
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Federated learning has been implemented with a wide variety of algorithms, e.g.

neural networks, decision trees and random forests, logistic regression, support vector

machines (SVM), etc.

1.3 Ensemble clustering

Ensemble clustering is also an approach to mining distributed data to improve the

overall performance of a learning algorithm. Unlike federated learning, the process is

not iterative. Here, the learning process is divided into two steps. First, each algorithm

will use a local dataset and obtain a partition. Then, a central entity will aggregate

these intermediate results and combine them to obtain a final clustering.

This approach is related to the ensemble learning methods developed for supervised

learning. These methods consist in combining the results of several algorithms, for

example by taking a weighted average of their predictions. The best known ensemble

methods are Bagging and Boosting [21, 40, 56, 77]. Note that their also exist adaptive

versions of this paradigm [13, 33, 74].

• Strehl and Ghosh [60] introduced in 2002 the problem of combining several

partitions without accessing the original data. They called it ensemble clustering.

The authors choose to represent each partition by a hypergraph whose edges

are clusters. They then propose three heuristics to obtain a consensus partition

from these hypergraphs

• Topchy, Jain and Punch [66] study the properties of the combination of several

so called "weak" clusterings. These weak clusterings are either obtained by

classical clustering algorithms, but after projection into a lower dimensional

subspace, or by partitioning the data by random hyperplane.
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• Wemmert and Gançarski [72] introduce an architecture based on a majority

voting system. A confusion matrix is first built and allows to associate to each

cluster of each algorithm a corresponding cluster in each distant algorithm. In a

second step, for each object to be classified, each model will vote for the cluster

in which it has classified it locally, and for each corresponding remote cluster.

By taking the cluster that has received the most votes, we obtain a "best class"

for each object if the cluster has obtained a majority of votes. In the case where

no cluster has obtained a majority, the object is said to be non-consensual.

This approach to unsupervised learning is the subject of an important literature

: [1, 3, 25, 27, 30, 35, 48, 78]. See [70] for a review of the said literature, and [39] for

an experimental comparison of the different methods.

1.4 Collaborative learning

FIGURE (1.3) Representation of the collaborative learning process.
The collaboration step is iterative.

1.4.1 Introduction

Most machine learning algorithms assume that data is stored on a single site. However,

this paradigm is increasingly challenged by the development of massive data. In this
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context, the volume, distribution and confidentiality of data are the main obstacles to

the use of these algorithms. This constraint related to data storage has been the main

driver for the development of Distributed data mining research [76].

In this thesis, we are particularly interested in collaborative clustering algorithms that

seek to address the following problem:

Having a collection of databases distributed on several different sites, how

to partition each of them considering local data and remote classifications

of other collaborating databases without sharing the data itself between

the different sites?

On this topic, one of the first works was published by Pedrycz in 2002 : [50]. In this

seminal paper, Pedrycz proposes a method based on the fuzzy C-means algorithm

[7, 23]. Since then, many publications have improved this method or proposed new

ones: [15, 28, 42, 48, 61].

The collaborative learning process is divided into two steps:

• Local step: learning algorithms learn on their local data as they would in a

classical framework.

• Collaboration step: the collaboration step is often iterative. During this phase,

information is exchanged between the different sites and then used by each of

them to try to improve their respective models.

It is therefore possible to analyze the different existing collaborative clustering archi-

tectures according to the choices made during these different steps.

First of all, during the local step. The various implementations may require identical

algorithms on each site ( [28, 50]), or on the contrary allow heterogeneous algorithms
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( [26, 63]). Additionally, the type of clusters sought by the algorithms can be impor-

tant. Indeed, one can have mutually exclusive clusters (hard clustering), overlapping

clusters (soft clustering), or fuzzy clusters (fuzzy clustering).

The collaboration step starts with an information exchange step. The type of infor-

mation exchanged depends on the type of data partition that is encountered. We will

then see that the intensity of the collaboration between the different databases, once

the necessary information has been transmitted by the remote sites, depends on a

parameter named collaboration coefficient.

In the rest of this section, we will look at the type of architecture we can encounter

in collaborative clustering, and then at the different possible implementations for

collaboration.

1.4.2 How to partition the data present on the different nodes

One of the main goals of collaborative clustering is that each site has a local data

partition. As mentioned before, these partitions can be constituted :

• of overlapping groups (soft clustering)

• of mutually exclusive groups (hard clustering)

• or fuzzy clustering

If we work with exclusive clusters, then we assign each observation to a single cluster.

However, there are situations in which it is natural to assign an individual to several

clusters simultaneously, in which case we say that the clusters are non-exclusive. As

for fuzzy clustering, it consists in considering that each individual belongs to all the

clusters with a certain degree of membership located between 0 (does not belong at

all) and 1 (belongs completely). It is generally imposed that the sum of these weights

is equal to 1 [65].
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A second question arises: do the different sites work with the same algorithms or not?

Besides the fact that collaborative clustering allows to work on a larger amount of

data, it also allows the use of various algorithms. This diversity can be due to the use

of radically different algorithms, but also to a difference in the parameters of the same

algorithm, or to the initialization of the clusters.

Finally, if in clustering we always look for partitions such that similar individuals are

in the same group, and that the groups are as dissimilar as possible, there are several

types of clusters [32,65]. One example is prototype-based clusters, where each cluster

is a set of objects closer to the prototype representing that cluster than to any other

prototype. In particular, the prototype can be the average of all the objects belonging

to the cluster. There are also methods based on graphs, density, etc.

In [50], the author proposes that each site uses the fuzzy c-means algorithm locally

[7, 23]. The local results are consequently fuzzy partitions. The clusters are based

on prototypes, the latter being an average of the individuals belonging to the cluster,

weighted by the degree of membership. Many contributions have since sought to

improve this algorithm, initially intended for horizontal collaborative clustering and

in which the bases had to agree on the number of clusters to search. As an example,

we can mention Pedrycz and Rai who, in [51], propose a framework for collaborative

clustering in the presence of a different number of clusters on each site.

In [28, 29], the authors propose an adaptation of Bishop’s Generative Topographic

Mapping (GTM) [8] for collaborative clustering. It is the probabilistic counterpart of

Kohonen’s self-organizing maps (SOM) [36], and is supposed to overcome most of

their limitations. This generative model allows to associate to each point of a latent

space, a point of a variety of the same dimension in the data space. This method allows

in a second step, for a fixed observation, to find the posterior distribution in the latent

space, the latter being a grid with a finite number of points, which are themselves
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prototypes. In other words, we can calculate the contribution (or responsibility) of

each prototype to a given observation. This is the probability that a given prototype

has generated the observation.

In [4], the authors propose an architecture for horizontal collaboration based on the

optimal transport theory. We remind that in the case of horizontal collaboration, the

sites involved have access the same variables describing different individuals. In

the local step, each observation is associated to the prototypes via the solution of

the optimal transport problem of the data to the prototypes. At each iteration of the

collaboration step, a remote model to cooperate with is chosen. Then the optimization

of a new function including a term penalizing the distance between the local and

remote prototypes allows the update of the parameters.

1.4.3 Organization of the collaboration

The exchange of information between the different databases is one of the main char-

acteristics of collaborative clustering. In this section, we will see which information

should be exchanged depending on the context. Finally, it should be noted that each

model is free to weight (or even ignore) information sent by the remote leaners. The

way in which one can adjust the impact that the results of a remote site have on the

local partition will be studied in a second step.

The information exchanged among the local models:

• information on the membership of the observations to the different clusters;

• information about the prototypes;

• other information on the distribution of the data and on the structures sought by

the algorithms.
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The information on the membership of individuals to the different clusters is often

transmitted via the partition matrix. This of course supposes to agree on the identity

of the different individuals. This is why this method is often used in horizontal

collaborative clustering [14,50,60,61]. The exchange of information about prototypes

is only useful if the remote prototypes make sense locally. This is why this system is

mostly used in vertical collaborative clustering [28, 29, 51].

1.4.4 Intensity of the collaboration

Once the information has been exchanged among the data sites, each one must decide

how it will use that information in order to come up with a new classification. When

this choice exists, it is often made by adjusting a parameter called "collaboration

coefficient", which is generally a non-negative number. If the collaboration coefficient

associated with a remote model equals zero, that means that the corresponding remote

model has no effect on our future results. And the higher this coefficient, the higher

the effect of the collaboration on our local results. The impact of this coefficient on

the result of the collaboration has been studied by Pedrycz [50]. To do this, the author

defines two indices. The first one measures the difference between the classifications

obtained on two different sites after collaboration. It decreases with the increase

of the collaboration coefficient. The second, on the other hand increases with this

coefficient. It consists in comparing locally the difference between the classifications

obtained with and without collaboration. Finally, if the collaboration coefficient

is often calibrated by the user, some algorithms propose to automatize the tuning

process [59, 62].
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1.5 Conclusion

In this chapter, we have presented several paradigms for learning from multiple

learners. Federated learning is a centralized, distributed, iterative machine learning

architecture where clients share a model. At each iteration, clients locally compute

an update to the model. The updates are sent to a central server that aggregates

the updates and comes up with a new state for the model. This new model is sent

back to the clients for the next iteration. Ensemble clustering, on the other hand,

is not iterative, although it may be distributed. Here, several models are trained in

isolation and a central entity computes a consensus from the results proposed by the

models. In both learning paradigms, only one model is eventually trained, making

the assumption that it will perform well on all the (possibly different) local data

distribution. Collaborative learning relaxes this assumption.

Collaborative learning is a distributed, decentralized, and iterative machine learning

architecture. It’s purpose is to train several experts on different nodes of a network.

However, we want each expert to benefit from information available on the remote

data sites, without exchanging the data itself. To do this, information about the local

findings of each algorithm is exchanged at each collaboration step, and discrepancy

between local and remote findings is penalized. In this process, we identified several

scientific obstacles.

First, the impact of remote information on the local results is scaled through a hy-

perparameter called the collaboration coefficient. For any given learner, there is

one collaboration coefficient (or confidence coefficient) associated to each remote

counterparts. They represent the way we penalize difference between our local results

and results of a particular remote expert. Obviously, we want coefficients associated

to well performing remote data sites to be high, and the ones associated to data sites

that perform poorly to be low. However, even overall ’good’ remote counterparts can
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perform poorly for some regions of the dataset. Furthermore, their data distribution

can be very different from the local one, and impede our ability to perform well. Then

how to make sure that the remote algorithms do not hurt our results ?

Next, to our knowledge, there is no way of monitoring information flow during

the collaboration process. We propose to summarize the collaboration coefficient

associated to each data point into a global confidence coefficient. These coefficients

are not set by the user but instead depends on the certainty of the learners about their

results.

Finally, we provide theoretical results about stop propoerty and generalization bounds.
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2 Collaborative random forests

In this chapter, we present a collaborative learning architecture for classification

algorithms. We assume the existence of a vertically distributed dataset over several

sites. We wish to train a learning algorithm on each site. Each algorithm will be trained

in a classical way on the local data. Then, during the collaboration step, the models

will exchange information about their results and adjust their states accordingly. The

goal is that all algorithms will be able to improve their performance following this

collaboration step.

The interest of our approach lies in the way it takes into account remote results. As we

have seen in the previous chapter, in the case of a vertical collaboration, the algorithms

exchange information about their predictions for each individual. This information

is usually taken into account through a modification of the objective function, in

order to penalize the prediction discrepancies. This has the effect of improving the

performance of the algorithms that were the least efficient at the beginning, at the cost

of deteriorating the performance of the best algorithms. To overcome this problem,

we propose to weight the information received according to certain criteria.

In the following section, we explain in more detail the framework and what informa-

tion will be exchanged between the different algorithms. We then discuss the criteria

used to weight this information. Finally, we propose to test this architecture using

decision trees as basic algorithms.
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2.1 Problem set-up

Our goal is to train classification models on different sites, each with a view about a

common dataset. The goal of each training algorithm is to obtain a classification of

its local data using the results of its remote counterparts without exchanging the data

themselves. We assume that each model has a probabilistic classification as output

for each input data. In other words, the output of a model is not simply the predicted

class for an observation, but a probability distribution over the different classes. For

each data xi, i = 1, . . . , N, and each class k ∈ {1, . . . , K}, we call the responsibility

of the class k for the individual i, and we note rik the following value :

rik ≡ p(yi = k|xi, θ)

where θ is the set of possible parameters of the model.

Then the matrix R = [ri,k] is such that for all i = 1, . . . , N and all k = 1, . . . , K, we

have

ri,k ≥ 0

and

∑
1≤k≤K

ri,k = 1.

It is the content of this matrix that will be exchanged between the different sites.

We propose to use entropy as a criterion to weight the information received.
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2.2 Entropy as a measure of uncertainty

In this section, we describe the entropy associated with a probability distribution. To

do so, we temporarily leave the framework of collaborative learning. In the rest of

this section, X denotes a random variable with values in X .

The entropy of a random variable X, denoted H (X) is a measure of the uncertainty

associated with this random variable.

It is defined as follows:

H (X) ≡ − ∑
x∈X

p (X = x) · log p (X = x) (2.1)

If the log is expressed in base two, then the entropy is expressed in bits. It can be

shown that the maximum entropy is reached for a uniform distribution:

p(X = x) =
1
|X | , ∀x ∈ X , (2.2)

where |X | is the cardinal of the set X . And in this case, we have H(X) = log |X |.

2.2.1 Example : the entropy of a Bernoulli distribution.

A random variable X has a Bernoulli distribution of parameter θ ∈ [0, 1] if :

p(X = x) = θx (̇1− θ)1−x, x ∈ {0, 1} (2.3)

In other words, X takes value 1 with probability θ and 0 with probability 1− θ. The

entropy of a Bernoulli distribution of parameter θ according to θ is represented in the

figure 2.1.
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FIGURE (2.1) Entropy of a Bernoulli distribution of parameter θ, as
a function of θ.

For this relatively simple probability law, the interpretation of entropy as a measure of

uncertainty is rather straightforward. When θ = 0 (respectively θ = 1), the random

variable X is takes value 0 (resp. 1) with probability 1. The uncertainty about the value

taken by a random variable having such a distribution is then minimal. Conversely,

when θ = 1/2, then p(X = 0) = p(X = 1) = 1
2 . The random variable has therefore

a uniform distribution on {0, 1}, the uncertainty about the value taken is maximal.

All this is in agreement with what can be observed in the figure 2.1.

In the next section, we explain how we use this measure of uncertainty in the collabo-

ration process.

2.3 Using entropy as a criterion for collaboration

As a means of measuring uncertainty, entropy provides the beginning of an answer

to the question of the weighting of received information. In our framework, the

classification of each individual is represented as a probability distribution Ri =

Ri,k : k = 1, . . . , K. We can then use the entropy of this distribution to calculate the

uncertainty. We give some examples :
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• If Ri = (1/3, 1/3, 1/3), then H(Ri) ≈ 1.58, which is the maximum possible

value for three events.

• If Ri = (0.01, 0.01, 0.98), then H(Ri) ≈ 0.16, a relatively small value.

• If Ri = (0.2, 0.3, 0.5), then H(Ri) ≈ 1.48, so it is a relatively high uncertainty.

The use of entropy can serve several purposes:

• Weighting of the information received for each individual

• Change of classification according to the local certainty

• Change of classification according to the distant certainty

This will allow the best algorithms to potentially improve. Indeed, we can assume that

the best performing algorithms are those that are the most successful in discriminating

individuals. So on average their classifications will likely have a lower entropy. For

the well classified individuals, they will keep the same prediction. On the other hand,

for individuals where the decision is more difficult, these models will be able to benefit

from the remote information to try to improve the classification. An illustration is

provided in figure 2.2.

Example with a Gaussian mixture model

A mixture model is a probabilistic model allowing to represent the presence of

subgroups in a population [47]. For that, we suppose that the distribution of the

individuals is in fact a weighted sum of distributions (or components):

p(X) =
K

∑
k=1

πkL(θk) (2.4)
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where K is the number of components, πk is the weight of component k, ∑k πk = 1,

and θk is the set of possible parameters of the L distribution. We speak of a Gaussian

mixture when each component L is a normal distribution.

For our example, we trained a Gaussian mixture model on the Iris dataset [22]. This

is a dataset describing 150 of these plants, each one described by four attributes (sepal

length, sepal width, petal length, petal width). The data are equally divided into three

classes (setosa, versicolor, virginica). One of the classes (setosa) is linearly separable

from the other two. The latter are not linearly separable.

To set ourselves in a collaborative context, we separate the 4 attributes into two views,

represented in figure 2.2.

The first view has the sepal attributes. In this view, two classes overlap, while the third

(setosa) is quite distinct from the others. The second view is composed of attributes

related to petals. In this view, two classes are relatively close, while the third (setosa)

is isolated.

On each view, we trained a three-component Gaussian mixture model. These compo-

nents are represented by the elliptical contour lines in Figure 2.2. These components

give, for each individual i, a probability distribution (Rik)k representing the probabil-

ity of belonging to each class. Moreover, for each point of the respective spaces, it is

possible to compute such a distribution. Indeed, for a given point, the responsibility

of a component is proportional to the product of its weight and its density at this

point [47]. It is therefore possible to calculate the entropy of our model at each point.

We plot the entropy of our two models in grayscale in Figure 2.2. We see that the

data belonging to the setosa class are in areas of low entropy. In other words, both

models have little uncertainty about the classification of these individuals. A possible

collaboration would therefore probably not cause them to change their predictions

for these individuals (if entropy is used as a criterion). The same is not true for the
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first view for individuals located in the area where the versicolor and virginica classes

overlap. All other things being equal, this model would use more information received

during the collaboration step to adjust its predictions for the individuals concerned.

This applies to fewer individuals for the second model, but it can still improve its

predictions for the few individuals for which the classification is still unclear. All this

without deteriorating its performance.

FIGURE (2.2) Entropy and Gaussian components on the Iris dataset

We have seen in this section how entropy can be used as a criterion to weight the

information received during collaboration. Its interpretation in terms of uncertainty
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related to a distribution allows a given model to give relatively more weight to

incoming information regarding:

• Individuals whose local prediction is uncertain.

• Individuals whose distant predictions are certain.

The performance of a model can be expected to improve depending on how well the

following conditions are met:

• Classification errors tend to occur at the edges of classes and where classes

overlap. These regions correspond to regions of higher entropy, and for the

observations found there, the model will use more remote information to fine-

tune its predictions. The lower the entropy (and therefore the uncertainty) of

the distant information, the more weight it will give to it. This will improve its

performance if...

• ...The predictions regarding the observations located in regions of low entropy

are generally correct (no systematic bias). These observations are generally

located in the center of a cluster or in an isolated cluster.

The optimal way to weight this information is an interesting problem. Many im-

plementations are possible and can be chosen according to the properties sought.

Probabilistic opinion pooling is a field that studies how to combine probabilistic

predictions on a set of events (these predictions being provided by experts), and to the

study of their properties [20, 55]. Our topic differs from this field in that we do not

seek consensus.

We have chosen a simple implementation respecting the properties listed above. We

have also chosen to adopt the same implementation on all sites. However, the choice

of the weighting function can be adapted to the objectives of each site. We tested our
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approach using decision trees as a basic model. In the following section, we briefly

recall some notions about decision trees.

2.4 Decisoin trees

A decision tree is a structure that, for each input, provides a decision resulting from a

succession of choices. In machine learning, these models are trained by recursively

partitioning the data space. Decision trees are among the most used algorithms

because of their intelligibility and generalization capacity. The figures 2.3 and 2.4 are

representations of the same decision tree trained on the Iris dataset.

FIGURE (2.3) Representation of a classification tree trained on the
Iris dataset

2.5 Contribution

One of the challenges of data mining is to exploit data distributed over different

sites. Here, we propose to use collaborative learning to try to address this problem.

This method can handle multi-source data, i.e., multiple sets that represent the same

individuals in different attribute spaces. In other words, each database is a view
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FIGURE (2.4) Partition of the Iris dataset obtained from the classifi-
cation tree represented in figure 2.3

of a global set about the same individuals. In this section, we describe the general

framework in which our method is applied and explain the method.

2.5.1 Configuration

The goal of collaborative learning is to learn from local data and a set of learners

whose data is stored at different sites.

More formally, let the global data set X be distributed among P sites:

X[1], . . . , X[p], . . . , X[P], where X[p] = {x[p]i }
N
i=1 is a set of N objects and each object

x[p]i Rd is characterized by d variables (i.e., it is a vector in a d dimensional feature

space).

Each data site has access to different features d[p] describing the same individual

samples of the overall data set. At each data site, we have a classification algorithm

A[p], p = 1, . . . , P , and each algorithm will attempt to propose a classification of its

data X[p]. The process has two steps: a local step and a collaborative step.
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2.5.2 Local step

During the local step, each A[p] model is trained using its local dataset X[p] and

adjusts its parameters as it would in a non-collaborative setting. Here, the models in

question are decision trees. We therefore recursively partition the dataset by choosing

at each iteration a variable and a threshold to split the data into two groups, as in figure

2.3. This variable and this threshold are chosen so as to minimize the Gini criterion:

G = 1−∑
k

p2
k (2.5)

Where pj is the proportion of individuals in a node that belonging to class j.

If the average Gini index of the possible child nodes is higher than the Gini index of

the considered node, then we stop partitioning the data and this last node becomes a

leaf. The prediction of a leaf is the proportion of individuals belonging to each class

on this leaf.

Our method requires that each algorithm produce a responsibility matrix R[p]. This

matrix contains the contributions of each component to each observation, R[p]
i,k =

P(Zi = C|Xi, θ), where C is the number of classes, Zi ∈ {1, . . . , C} are the

components of the model, and the elements of θ are the parameters of the distribution.

Once each model has been trained, we want them to exchange information to improve

their performance. This is done in the collaboration step.

2.5.3 Collaboration step

In the collaborative steps, the different algorithms A[p] will exchange information

in an attempt to improve their respective classifications. During the learning step,

in addition to X[p], the algorithms also receive additional information, X[p]∗ . This
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additional information is presented in the form of partition matrices R[p]. The local

learner thus has access to X[p] and X[p]∗ , instead of just X[p], to perform its task.

In our case, for each algorithm A[p], X[p]∗ ≡ R−[p], where:

R−[p] = {R[q] : q ∈ {1, . . . , P} \ {p}} (2.6)

The set R−[p] contains all the partition matrices of site p’s counterparts. In the

following, we show how X[p] and X[p]∗ can be used to try to improve the prediction

performance.

Algorithm 1: CoDT algorithm
1 Local step:
2 for All algorithms T [p] do
3 train T [p] on the data X[p]

4 get local parameters θ[p] and partition matrix R[p]

// the array B saves the historical best state for
each tree, along with its score

5 B[p] ←
(
T [p], Quality(R[p])

)
6 Collaborative step:
7 for All algorithms T [p] do
8 R[p](t + 1)← f

(
R[p](t), R−[p](t)

)
9 train model starting from new partition R[p](t + 1) using data X[p]

10 get θ[p](t+1) and R[p](t+1)

11 if Quality
(

R[p](t+1)
)

is better than
(

R[p](t)
)

then

12 B[p] ←
(
T [p], Quality(R[p](t + 1))

)

If the score increases and there is no overfitting problem, we then agree to the

collaboration. On the other hand if it decreases, we dismiss the collaboration and use

the initial results. When accepting the collaboration, a learner updates its internal

state and improves its quality criterion; when a learner’s quality is compromised by

the collaboration, it can decide to skip this collaboration iteration and keep its state
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unchanged. This does not mean that it cannot improve later in the process. Indeed, the

system as a whole might keep evolving, leading to potentially fruitful collaboration in

the following iterations.

2.5.4 Fine-tuning step

As mentioned above, each iteration of the collaboration step is followed by an update

of the model parameters. In this case, we use decision trees as collaboration models.

These models are defined by a variable and a critical threshold at each node. For

the update of the parameters, we only adjust the thresholds according to the remote

information received. Algorithm 2 shows how we adjusted the thresholds for each

node in the tree using the collaboration results.

Algorithm 2: Update trees after collaboration
Input: {Ti : i = 1, . . . , P}: Trees after collaboration (Ti = (Ni)) ;

(Ni = Dictionary { A, δ })
Labelled data by decisions a f ter collaboration

Output: {T̃i : i = 1, . . . , P} tuned trees, T̃i = (Ñi)
1 for i=1,. . . ,P do
2 for j = 1, . . . , |X| do
3 dp(xj) = Ni(xj) // decision path

4 G(x, δ) = e
−(x−δ)2

σ2

5 for k = 1, . . . , |dp(xj)| do
6 if xj well classified AND Ak(xj) <= δxj

7 OR xj misclassified AND Ak(xj) > δxj then
8 δxj(t + 1)← δxj(t) + ϵ · d

(
tdloc(xj), tdcoll(xj)

)
· G(xj, δj)

9 else
10 δxj(t + 1)← δxj(t)− ϵ · d(tdloc(xj), tdcoll(xj)) · G(xj, δj)

For each individual, we compare:

• the classification obtained by the tree after the local step,

• and the one obtained after the collaboration.
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If they match, then we want to strengthen that decision. If they don’t, we want to

weaken it. To reinforce (resp. weaken) a decision, we look at the path of the individual

in the tree and note all the nodes he passed through. Then, for each of these nodes,

we increase (resp. decrease) the difference between the threshold and the value of

the tested variable (by changing the threshold). To do this, we proceed as follows:

for each node we test if the example in this node is well or badly classified, if it is

well classified and the example associated with this node is less than or equal to the

threshold of this same node then we modify the value of the threshold by adding the

product of the Jensen - Shannon divergence between the local probability distribution

of the example and its probability distribution after the collaboration, a learning rate ϵ

and a function inversely depending on the distance between the value of the example

and the threshold (for example a Gaussian kernel). This is done for all the individuals.

We then update the other parameters of the tree (class proportion on each node), taking

into account the new values of the threshold.

2.6 Experimental validation

In this section, we present the results obtained after running our algorithm on several

datasets. The datasets used are described in Appendix A.

2.6.1 Results and analysis

The collaborative learning algorithm has been performed on a variety of datasets and

the criterion for accepting the collaboration was accuracy improvement. Accuracy is

defined as follows:

precision =
1
n

C

∑
k=1

precisionk (2.7)
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TABLE (2.1) Performance of random forests before and after collab-
oration. The score used is the accuracy.

Random Forest Collaborative RF
Adult .785 .800
Amazon .943 .943
Click prediciton .848 .855
KDD Appetency .901 .906
KDD Churn .819 .825
KDD upselling .840 .852
KDD 98 .884 .893
Kick prediction .838 .850
Madelon .663 .678
Spambase .856 .856
Waveform .696 .726
Wdbc .934 .951

Where

precisionk =
# individuals correctly assigned to class k

# individuals assigned to class k
(2.8)

We conducted experiments on several real-world datasets. All datasets were randomly

shuffled and divided into several subsets (views) with the same number of features.

Note that some datasets contain uninformative features. For example, the Waveform

dataset has 19 attributes that are all noise attributes, with mean 0 and variance 1.

During the local step, classification trees has been trained using the attributes of each

view. Next, we proceeded to the collaboration step using the collaboration framework

described in the previous chapter, with the goal of improving each local algorithm by

exchanging information based on the prediction matrices found by the learners.

Finally, we measured the accuracy of each algorithm before and after the collaboration.

We reported these results in table 2.1. In these experiments, the classification trees

have been able to achieve better results after collaboration.
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2.7 Comparison with the catboost benchmark

In this section, we compare the performance of our method with different gradient

boosting methods on binary classification tasks.

We use the experimental setup used by the Catboost developers [52] to compare their

framework with popular gradient boosting libraries: LightGBM, XGBoost, H2O.

They implement two variations of each algorithm:

• Default: each of the algorithms has a set of specific parameters, for which the

default values are proposed by their authors. The authors of CatBoost use these

values and only decide on the number of trees to train on each dataset.

• Tuned: The hyperparameters are optimized using the Tree-structured Parzen

Estimator [6].

The authors use cross-validation for model selection. The datasets used in the experi-

ments are described in Appendix A.

2.7.1 Preprocessing

Since the objective of the study is to compare the performance of the algorithms

themselves, we do not perform any complex preprocessing (elimination of unbalanced

classes, feature selection, etc.).

• For categorical variables, missing values are replaced by a special value, i.e. we

treat missing values as a modality in their own right.

• For numeric variables, missing values are replaced with zeros, and a dummy

binary feature is added to indicate each individual involved.

Each dataset was divided into

• a training set (Xtrain, ytrain) (60%)
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• a test set (Xtest, ytest) (20%)

• and a validation set (Xval, yval) (20%)

2.7.2 Benchmark

In this section, we present experimental results using the logloss metric for all algo-

rithms and compare them with our method.

In table 2.2, we compare the performance of collaborative classification trees to

gradient boosting algorithms. The results were measured by the logloss and the

percentage is the metric difference measured against the CatBoost results. We can see

that, as with all other approaches, the logloss decrease after the collaborative step and

the adjustment of the algorithms’ parameters.

Collaborative classification trees have shown comparatively poor performance com-

pared to Gradient Boosting algorithms, when measured in absolute terms. This can be

explained by several factors. The first one is that CatBoost is designed for the classi-

fication of data represented by categorical features (whence its name). The datasets

on which it is tested are mainly made up of categorical data. But our architecture is

not well suited for categorical data. Indeed, it is based on small adjusments of the

thresholds to try to fit the data distribution. But with e.g. One-hot encoded categorical

data, if the threshold is between 0 and 1, making marginal adjustment to it would not

change the classification of the observation unless it reaches 0 or 1, and it that case,

all observations would fall on the same side of the threshold. In other words, with

categorical features, we lack the ability to make small adjustments to the model.

Two other reasons why there is such a performance gap are the number of base models

and the data available to each learner. In the proposed collaborative architecture, only

a few models are involved in the learning process. While in CatBoost, for example,

the default number of base models is 5000. And in the collaborative framework, each
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base model has access only to a subset of features, whereas in the gradient boosting

algorithms, each learner is proveded with the entire set of features.

Nevertheless, performance between the two steps in the collaboration process has

been consistently improved. This indicates an increased ability to generalize.

TABLE (2.2) Comparison with Gradient Boosting algorithms. The
index used is the logloss. The percentages correspond to the rate of

change with respect to the best performing model.

CatBoost LightGBM Our method
Tuned Default Tuned Default Default Tuned

Adult 0.270 0.273
1.21%

0.276
2.33%

0.287
6.46%

0.387
43.33%

0.312
15.56%

Amazon 0.138 0.138
0.29%

0.164
18.80%

0.167
21.38%

.248
79.74%

.217
57.65%

Click
prediction 0.391 0.391

0.06%
0.396

1.39%
0.397

1.69%
0.516

32.01%
0.460

17.74%
KDD
appetency 0.072

0.071
-0.19%

0.072
0.40%

0.075
4.63%

.104
45.56%

.085
18.76%

KDD
churn 0.231 0.232

0.28%
0.232

0.33%
0.236

1.89%
0.343

48.25%
0.273

18.01%
KDD
upselling 0.166 0.167

0.37%
0.167

0.42%
0.171

2.98%
0.298

79.33%
0.269

61.82%

KDD 98 0.195 0.195
0.07%

0.196
0.56%

0.198
1.91%

0.228
16.95%

0.202
3.84%

Kick
prediction 0.285 0.285

0.05%
0.296

3.82%
0.299

4.91%
0.361

27.05%
0.352

23.55%
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TABLE (2.3) Comparison with Gradient Boosting algorithms (con-
tinued).

XGBoost H2O Our method
Tuned Default Tuned Default Default Tuned

Adult 0.275
2.11%

0.280
3.84%

0.275
1.99%

0.276
2.35%

0.387
43.33%

0.312
15.56%

Amazon 0.163
18.56%

0.165
20.07%

0.163
18.10%

0.170
23.08%

.248
79.74%

.217
57.65%

Click
prediction

0.396
1.37%

0.398
1.73%

0.398
1.72%

0.398
1.78%

0.516
32.01%

0.460
17.74%

KDD
appetency

0.072
0.35%

0.075
4.41%

0.072
1.33%

0.074
2.86%

.104
45.56%

.085
18.76%

KDD
churn

0.233
0.80%

0.234
1.04%

0.233
0.64%

0.233
0.69%

0.343
48.25%

0.273
18.01%

KDD
upselling

0.166
0.12%

0.169
1.57%

0.168
1.28%

0.170
2.22%

0.298
79.33%

0.269
61.82%

KDD 98 0.196
0.52%

0.198
1.69%

0.195
0.37%

0.196
0.72%

0.228
16.95%

0.202
3.84%

Kick
prediction

0.295
3.47%

0.298
4.70%

0.295
3.52%

0.296
4.06%

0.361
27.05%

0.352
23.55%

2.8 Conclusion

In this chapter, we have presented a new collaborative learning architecture. This

architecture has several advantages.

It brings a reasonable answer to the question of the choice of the collaborator. Indeed,

in most collaborative learning architectures, collaboration only takes place between

two sites at a time. The selection of the appropriate collaborator is a complex problem

to which it is difficult to provide an objective answer, especially in an unsupervised

learning framework. We will see in the next chapter that some tracks exist however.

In the architecture we propose, the collaboration is done simultaneously with all

the remote sites. Note that this also increases the speed of information propagation

between learners.

The incoming information is weighted at the level of each learner. This weighting

method allows to simultaneously keep the most reliable predictions and to adapt the
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other predictions. To do this, we use entropy as a measure of uncertainty.

Finally, we implemented this algorithm with decision trees as a base model. We

used data sets intended for classification tasks, and observed an improvement in the

performance of the algorithms between the local step and the end of the collaboration.

These performances are nevertheless well below the state of the art of gradient

boosting. This is explained by the task at hand and the number of trained decision

trees.
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3 Unsupervised collaborative learning

3.1 Introduction

Clustering is a common data analysis task. Its objective is to partition observations into

homogeneous (low intra-group variability) and distinct (high inter-group variability)

groups. There is a large variety of clustering algorithms and most of them require

that all data be available simultaneously on the same site [11, 34]. However, technical,

legal, confidentiality or performance reasons may prevent the gathering of data or the

exchange of sensitive information.

In the collaborative clustering framework, we have a distributed dataset on different

nodes of a network. The objective is to obtain on each node a partition of the local

data by using the results obtained on the remote nodes, without exchanging the data

themselves [15, 50]. This operation is often performed in two steps. First, the local

step, during which a clustering algorithm is applied locally and independently on each

site. Then the collaborative step, during which sites exchange knowledge in order to

try to improve their own results.

3.2 Related work

Collaborative clustering research was introduced by Pedrycz in 2002 [50]. The author

proposed a collaborative version of the Fuzzy C-Means algorithm [7]. The objective
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function of the Fuzzy C-Means algorithm is extended with a second term that penalizes

the discrepancy between the partitions.

The SAMARAH method can handle heterogeneous "hard" clustering algorithms [72].

This method aims at increasing the similarity between clusterings by evaluating and

resolving conflicts. In order to compare partitions with possibly different numbers

of clusters, a confusion matrix is computed between each pair of algorithms. A

consensus is then reached by applying a voting algorithm to these results.

In 2015, Sublime et al. proposed an approach lifting some limitations of previous

work: they introduce a framework for collaboration with heterogeneous algorithms.

This method has the advantage of not requiring a global confidence coefficient, so the

impact of a remote algorithm on local results can be different for each observation.

However, using the hard clustering results to construct the confusion matrices results

in some loss of information. Moreover, each algorithm has the same weight in this

process. As a result, since no difference is made between a data site with well-

separated clusters, and another with overlapping clusters, this method leaves the

possibility for poorly performing algorithms to hamper the results of others.

After proposing collaborative versions of Self Organizing Maps (SOM) and Generative

Topographic Mapping (GTM), Ghassany et al. combined the Fuzzy C-Means and

GTM algorithms to obtain a collaborative clustering algorithm [29].

In [61] the authors describe a collaborative framework for model-based clustering

algorithms. They define a global likelihood function and attempt to optimize a proxy

for this function. This process requires setting a weight parameter between local and

external information.

More recently, an automated method for optimizing trust in exchanges was pro-

posed by Sublime et al., and the collaboration involved four different views. The
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authors achieved good results in detecting noisy views, but the method tends to favor

collaboration between very similar views.

3.2.1 Performance metrics in clustering

The task of clustering itself is an ill-defined problem. We have discussed above the

objective of clustering, namely to partition a set of elements into homogeneous and

distinct groups. In other words, we want similar elements to share the same cluster

and dissimilar elements to be in different clusters. But "being in the same cluster"

is an equivalence relation and "being similar" is not [15]. So, if the clusters are not

well separated, we will have to find a compromise. Moreover, different numbers of

clusters can be considered as this is somehow subjective and it depends on the model

chosen and on its parameters [64]. Under these conditions it is possible to imagine

several equally acceptable solutions. Hence, any index measuring the quality of a

partition will favor certain criteria.

There are many indices for measuring clustering quality [5, 18]. Traditionally, a

distinction is made between internal and external indices. Internal validation indices

use the data and the obtained partition to compute a score that will depend on the

compactness and the separation of the clusters. The external validation indices are used

to compare the adequacy between the obtained clustering and an external reference.

We give here the most common internal and external validation indices. In what

follows, we assume that the data are represented by a matrix X:

X =


x1

1 · · · xd
1

...
...

x1
N · · · xd

N

 (3.1)

where d is the number of features, and N the number of individuals. We denote by
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Ck cluster number k, with k = 1, · · · , K. We denote by Ik the set of indices i such

that the observation xi is in cluster k, and nk = |Ik| the number of points assigned to

cluster Ck.

Ik = {i | xi ∈ Ck}

Internal validation indices

The Davies-Bouldin Index Let δk denote the average distance of the points belong-

ing to the cluster Ck to the centroid Gk of this cluster:

δk =
1
nk

∑
i∈Ik

d(xi, Gk) (3.2)

Then δk is a measure of the compactness (or cohesion) of the cluster k. So we have

δk ∈ [0,+∞) and in general, the smaller the value of δk the better the clustering.

Let ∆kk′ denote the distance between the barycenters Gk and Gk′ of clusters k and k′:

∆kk′ = d(Gk, Gk′) (3.3)

Then ∆kk′ tells us how well the clusters are separated. In general, we want this

indicator to be high.

For each cluster k, we compute the maximum of the quotient δk+δk′
∆kk′

for k ̸= k′. The

Davies-Bouldin score SDB is then given by:

SDB =
1
K

K

∑
k=1

max
k′ ̸=k

(
δk + δk′

∆kk′

)
(3.4)
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The Davies-Bouldin index is therefore positive and the lower its value, the better the

clustering.

The Silhouette Index calculates a "silhouette" coefficient for each point. The

average of these coefficients gives the silhouette index of the clustering. Like the

Davies-Bouldin index, the silhouette index realizes a comparison between the cohesion

of clusters and their separation. The cohesion a(i) for the individual i is given by the

following equation:

a(i) =
1

|Ik| − 1 ∑
j∈Ik

d(xi, xj) (3.5)

It is the average distance of the observation xi to the observations of the same cluster.

The separation is given by the following equation:

b(i) = min
k′ ̸=k

1
|Ik′ | ∑

i′∈Ik′

d(xi, xi′) (3.6)

It is the average distance between the observation xi and the individuals belonging to

the closest cluster.

The silhouette coefficient s(i) for individual i is given by:

s(i) =
a(i)− b(i)

max(a(i), b(i))
(3.7)

And the silhouette index by:

Ssil =
1
K

K

∑
k=1

1
|Ik| ∑

i∈Ik

s(i) (3.8)
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The silhouette index is between −1 and 1 and a higher value indicates a better

clustering.

External validation indices

The Rand index measures the similarity between a partition U and a reference

partition V. Each pair of elements is assigned to one of the following four categories:

• TP: the elements are assigned to the same clusters in U and in V.

• TN: the elements are assigned to different clusters both in U and V.

• FP: the elements are grouped in U and separated in V.

• FN: the elements are separated in U and grouped in V.

Then the rand index is given by :

Srand =
TP + TN

TP + FP + TN + FN
(3.9)

Mutual information is another way to measure the similarity between two partitions

[67]. Let pU(k) =
|Ik|
N the probability that an element chosen uniformly at random

from partition U belongs to the cluster k, and pUV(k, k′) = |Ck∩Ck′ |
N the probability

that it belongs to the clusters k and k′ respectively in the partitions U and V.

Then the mutual information I(U, V) is defined by :

I(U, V) =
K1

∑
k=1

K2

∑
k′=1

pUV(k, k′) log
pUV(k, k′)

pU(k)pV(k′)
(3.10)

It lies between 0 and min(H(U), H(V)), where mathbbH(U) denotes the entropy

induced by the U partition. This measure of similarity is sensitive to the number of

clusters, it is possible to increase it by adding clusters. To compensate for this, we
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FIGURE (3.1) Examples of non-convex clusters. For such clusters,
the most common validation indices are not adequate. For concentric
circles, the clusters’ centroids are very close (weak separation). For
interleaving half circles, the observations are relatively far from the
cluster centroid. Even worse, the centroid of a cluster is almost in the

other cluster.

rather use its normalized version, between 0 and 1 :

NMI(U, V) =
2 · I(U, V)

H(U) + H(V)
(3.11)

The biases induced by these indices

Internal validation indices are often based on an assumption made about the data

distribution. This is in particular the case for the Davies-Bouldin indices and the

silhouette index that we discussed above. When describing these indices, we said

that we want clusters with a low variance (the elements of the cluster are close to the

barycenter) and a high separation (the barycenters are far away). However, as we see

in the figure 3.1, natural clusters sometimes do not respect these properties. An option

in this case is to use a validation index based on the density [46].



50 Chapter 3. Unsupervised collaborative learning

Choosing a validation index

In the collaboration step of our proposed algorithm, models can accept or reject

collaboration depending on how it affects performance. In the case of clustering, this

performance can be measured by a validation index. As we have seen, each index has

its own biases and it is possible to choose different indices for each model. In our

implementation, we have chosen the Davies-Bouldin index because it is often used in

the literature. We could have chosen another internal validation index.

Note that an internal validation index would make less sense here. Indeed, this kind of

index is used to measure the similarity between two partitions. However, if we want

to take advantage of remote information to improve the local model, we do not want

to approach the remote partitions, let alone a consensus. External validation indices

can still be useful in collaborative clustering. In particular when we want to study the

effect of the similarity of the initial partitions on the collaborative process. This work

has been done in [54]. The authors of this paper are interested in the impact of the

quality and diversity of learners on collaborative clustering. They empirically show

that the best way to predict whether collaboration will be beneficial or not for a given

site is to know its initial performance and the performance of the site with which it

collaborates. This performance is measured by the purity of score 1. The authors show

that collaboration with a remote model having a higher purity is likely to improve

the local purity. Conversely, collaboration with a remote model having a lower purity

index is likely to deteriorate the local purity. In their experiments, Self Organizing

Maps (SOMs) [36] have been used in both horizontal and vertical collaboration. Their

results are reported in the tables 3.1 and 3.2.

1The purity index is in fact an external validation index, like the ones presented above. But with the
difference that the reference partition is made of the "true classes" of observations. In other words,
we need a labeled dataset (X, Y) where Yi is the label associated to Xi. Suppose that the dataset is
composed of K′ true classes. Then the purity index is:

Spur =
1
N

K

∑
k=1

max
1≤k′≤K′

|Ck ∩ Ck′ | (3.12)
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Dataset Map Purity

Waveform

SOM1 86.54
SOM2 39.5
SOM1→2 73.24
SOM2→1 58.34

Isolet

SOM1 80.79
SOM2 93.27
SOM1→2 81.46
SOM2→1 92.87

Wdbc

SOM1 94.02
SOM2 96.49
SOM1→2 95.23
SOM2→1 96.57

SpamBase

SOM1 80.57
SOM2 84.95
SOM1→2 82.84
SOM2→1 83.79

TABLE (3.1) Experimental results of [54] for vertical collaboration.
SOM1→2 denotes a collaboration in which the 1 model receives infor-

mation from the 2 model.

Dataset Map Purity

Waveform

SOM1 69.71
SOM2 69.87
SOM1→2 74.57
SOM2→1 70.71

Isolet

SOM1 98.85
SOM2 98.46
SOM1→2 79.54
SOM2→1 98.30

Wdbc

SOM1 96.71
SOM2 97.87
SOM1→2 96.99
SOM2→1 97.49

SpamBase

SOM1 76.26
SOM2 70.43
SOM1→2 72.28
SOM2→1 69.78

TABLE (3.2) Experimental results of [54] for horizontal collabora-
tion.
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The calculation of the purity can be a good indicator of the performance of a clustering

model on a dataset (provided that the purity index is not an objective function, cf.

Goodhart’s law). However, it is rarely possible to compute it in practice because very

often in clustering we do not have labeled data.

The authors therefore choose to use the normalized Rand index as an indicator of

diversity between partitions. They test the relation between the diversity of the collab-

orators and the evolution of the performance after collaboration (always measured

by the purity index). They find that for models with a relatively high initial perfor-

mance, collaboration with a model obtaining a similar score leads to little change

in performance after collaboration. While high diversity often leads to performance

degradation. An intermediate level of similarity is more likely to result in successful

collaboration.

3.3 Theoretical framework and algorithm

In this section, we describe the general framework in which our method is applied, as

well as an example of implementation.

3.3.1 General setting

The goal of collaborative learning is to learn from local data and a set of learners

whose data is stored at separate sites.

More formally, suppose that the global dataset X is distributed over P sites:

X[1], . . . , X[p], . . . , X[P], where X[p] = {x[p]i }
N
i=1 is a set of N objects and each object

x[p]i ∈ Rd is a d dimensional vector.

It is the average proportion of the majority class for each cluster. This index is sensitive to the
number of clusters. In particular, it will be maximal (equal to 1) if we form N clusters composed of
only one individual. Finally, note that the reference partition to compute this index must be the set of
true classes of the data X. However, clustering algorithms are rarely applied to labeled data sets.
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Our study focuses on the horizontal collaborative clustering problem. Thus, each site

has access to different features d[p] describing the same individuals. On each site,

an algorithm A[p], p = 1, . . . , P will propose a partition of the local data X[p]. The

process has two steps: a local step and a collaborative step.

3.3.2 Collaborative process

Local step In the local step, each algorithm A[p] works on its own dataset X[p] and

adjusts its parameters as it would in a non-collaborative setting. In order to exchange

their results, the algorithms must have some type of information in common. In our

case, the partition computed by each algorithm will be represented as a responsibility

matrix R[p]. This matrix contains the contributions of each component to each

observation, R[p]
i,k = P(Zi = k|Xi, θ), where K is the number of clusters, Zi ∈

{1, . . . , K} are the components of the model and the elements of θ are its parameters.

Once each model has been trained locally, we want them to exchange these partition

matrices with each other to improve their performance. This exchange is done during

the collaboration step.

Collaborative step During the collaboration step, the different algorithms A[p] will

exchange information in order to improve their respective classification. The resulting

clustering will not only be based on the examples X[p], but also on the additional

information X[p]∗ , which are in fact the remote partition matrices. The local learner

thus has access to X[p] and X[p]∗ , instead of just X[p], to perform its clustering. In our

case, for each algorithm A[p], X[p]∗ ≡ R−[p], where:

R−[p] = {R[q] : q ∈ {1, . . . , P} \ {p}} (3.13)
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The set R−[p] contains all the remote partition matrices, from the perspective of site p.

In this case, how can we use X[p] and X[p]∗ to improve each local learner A[p]?

For the sake of simplicity, we consider two learners: P = 2. At the local step, they

produce two partition matrices: R[1](t) and R[2](t). In particular, for the sample xi,

we have R[1]
i,. and R[2]

i,. . Thus, the update rule for learner 1 for sample xi is:

R[1]
i,. (t + 1)←− f

(
R[1]

i,. (t), R[2]
i,. (t)

)
(3.14)

Where f refers to a generic function.

We want this update rule to depend on the level of certainty of site 1 about its own

classification. The higher this level of certainty, the smaller the difference between

R[1]
i,. (t + 1) and R[1]

i,. (t) should be. Conversely, the lower the level of certainty, the

more weight will be given to R[2]
i,. (t). Similarly, the level of certainty of site 2 will be

taken into account for its classification: the higher (resp. lower) the certainty of site 2,

the more (resp. less) it will influence R[1]
i,. (t + 1).

As mentioned in section 2.2, entropy can be used as a measure of the amount uncer-

tainty associated with a probability distribution.

H(X) = −
d

∑
i=1

p(xi) log2 p(xi) (3.15)

Where X is a random variable with possible values {x1, . . . , xd}. It follows that the

uncertainty for a distribution Ri is:

H(Ri,.) = −
K

∑
k=1

Ri,k log2 Ri,k (3.16)
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And its normalized version, using the fact that it is positive and its maximum is

achieved when X is uniformly distributed:

H(Ri,.) =
H(Ri,.)

log2(K)
(3.17)

H(Ri,.) =
H(Ri,.)

log2(K)
(3.18)

Then 0 ≤ H(Ri,.) ≤ 1, and

• H(Ri,.) ≈ 0⇒ Ri,. ≈ 1Zi=k pour k ∈ 1, . . . , K, this represents a high level of

confidence in the classification of observation i.

• H(Ri,.) ≈ 1⇒ Ri,. ≈ 1
K ∀k ∈ 1, . . . , K, this reflects a high uncertainty on the

classification of the observation i.

The equation 3.19 gives the rule for updating R[ii] when P algorithms are involved in

the collaboration.

R[p](t + 1)←− α[p] ·R[p](t) + ∑
R[q]∈R−[p]

β
[p]
[q] · R

[q](t) (3.19)

where


α[p]=

(
1

P−1 ∑
R[q]∈R−[p]

H
(
R[q](t)

))
·
(
1−H

(
R[p](t)

))

β
[p]
[q] = H

(
R[p](t)

)
·
(

1−H
(

R[q](t)
)) (3.20)

In these equations, α[p] is a vector of size N. Each element i of α[p] is a weight

associated with the local classification of the i-th observation. This weight depends
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negatively on the amount of uncertainty carried by the local classification, and posi-

tively on the average uncertainty of the remote classifications.

Likewise, the β
[p]
[q] are vectors of size N. Each element i of β

[p]
[q] is a weight associated

with the classification of the i-th observation by the A[q] algorithm. This weight

depends positively on the amount of uncertainty carried by the local classification,

and negatively on the uncertainty of the remote classification.

Note that the sites only share their partition matrices. Therefore, regardless of the

underlying algorithms, as long as they search for the same number of components,

the collaboration algorithm remains relevant. However, the models must agree on the

identity of the clusters. Our implementation uses the Hungarian algorithm to rearrange

the clusters at each site [38]. In the remainder of this section, we describe the CoLUPI

algorithm, and then show how the values of α and β can be used to visualize the flow

of information in the collaboration process.

Collaborative learning algorithm Based on the theoretical formalism presented in

the previous section, we can design an architecture to collaboratively train multiple

models on a distributed dataset. This algorithm uses equation 3.19 to update the

parameters of the sites in interaction.

3.3.3 Visualization of the collaboration process

In this section, we focus on the visualization of information flow during collabora-

tion.

As mentioned above, each contributor assigns a weight to each source site (including

himself), for each observation. The average of these weights for each remote site

gives us the average weight assigned to that site and can be considered as a confidence

coefficient, although it is not uniform across observations. If there are P sites, this
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Algorithm 3: CoLUPI algorithm
Local step:
for all algorithms A[p] do

train A[p] on the data X[p]

get local parameters θ[p] and partition matrix R[p]

end for
Collaborative step:
repeat

for all algorithms A[p] do
R[p](t + 1)← f

(
R[p](t), R−[p](t)

)
train model starting from new partition R[p](t + 1) using data X[p]

get θ[p](t+1) and R[p](t+1)
if quality

(
R[p](t+1)

)
is better than quality

(
R[p](t)

)
then

Accept collaboration
else

θ[p](t+1)← θ[p](t)
R[p](t+1)← R[p](t)

end if
end for

until no algorithm improves for its criterion

gives us a P matrix as defined in equation 3.21 which can be considered as a confidence

matrix. We represent this matrix as a heatmap for the Wdbc dataset in section 3.5.

C(P×P) =



α[1] β
[1]
[2] · · · β

[1]
[P]

β
[2]
[1] α[2] · · · β

[2]
[P]

...
... . . . ...

β
[P]
[1] β

[P]
[2] · · · α[P]


(3.21)

Where

α[p] =
1
N

N

∑
i=1

α
[p]
i , (3.22)

and

β
[p]
[q] =

1
N

N

∑
i=1

βi
[p]
[q] . (3.23)
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3.4 Implementation examples

The architecture we have presented is model-agnostic. The only condition is that the

models provide a probability distribution of belonging to the different classes, in order

to be able to use entropy as a criterion for collaboration. We present here two models

that can be used as local models for collaboration. First, Gaussian mixture models

because they are widely used. And the Generative Topography Mapping (GTM) [8,9].

It is the probabilistic counterpart of SOM maps [36].

3.4.1 Gaussian mixture models

In general, when we use a mixture model, we assume that the distribution of our

data is in fact a combination of several underlying distributions. Each observation

xi, i ∈ {1, . . . , N} in the dataset comes from one of K basis distributions pk, k ∈

{1, . . . , K}. The probability that the observation i was generated by the component k

is p(zi = k) = πk. We write:

p(xi|θ) =
K

∑
k=1

πk pk(xi|θ) (3.24)

Where θ is the set of parameters of the model, and the prior probabilities of the

components πk satisfy ∑K
k=1 πk = 1.

A mixture model whose components are all Gaussian vectors is called a Gaussian

mixture model. In this case :

p(xi|zi = k, θ) = N (xi|µk, Σk) (3.25)

Where θ = (θk)1≤k≤K and θk = (µk, Σk).
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Training a Gaussian mixture model is done by looking for the parameters that achieve

the maximum likelihood of the model. It can be shown that in the case where the

component to which each individual belongs is known (complete-data), then the

problem has an analytical solution and is easy to solve. But often only the observed

data is known and in practice we use the Expectation Maximisation (EM) algorithm

to approach the optimal parameters [16].

E-step

LetRik denote the probability that individual i belongs to class k:

Rik = p(zi = k|xi, θ) (3.26)

Then applying Bayes’ formula:

Rik =
p(zi = k) · p(xi|zi = k, θ(t−1))

∑k′ p(zi = k′) · p(xi|zi = k′, θ(t−1))

=
πk · N (xi|θ

(t−1)
k )

∑k′ πk′ · N (xi|θ
(t−1)
k′ )

(3.27)

M-step

πk =
1
N ∑

i
Rik

µk =
∑iRikxi

Rk

Σk =
∑iRik(xi − µk)(xi − µk)

⊤

Rk

(3.28)

WhereRk = ∑iRik.
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3.4.2 Generative Topographic Mapping

Generative Topographic Mapping (GTM) is a probabilistic dimensionality reduction

algorithm. Its goal is to learn a low-dimensional manifold that correctly fits the

high-dimensional data, often for the purpose of visualization, after projection of the

data on the 2-D latent space.

In practice, we fix M basis functions ϕj(x) and try to fit a D × M matrix W that

maximizes the likelihood

L(W, β) =
N

∑
n=1

ln

{
1
K

K

∑
i=1

p (tn|xi, W, β)

}
(3.29)

Where tn are the data points, xi the L-dimensional latent points and β the precision of

the underlying Gaussian distribution. The parameters of this model are fitted using

the EM algorithm. We give both EM steps:

E-step

Rin(Wold, βold) =
p(tn|xi, Wold, βold)

∑K
i′=1 p(tn|x′i, Wold, βold)

M-step

Φ⊤GoldΦW⊤new = Φ⊤RoldT

And
1

βnew
=

1
ND

N

∑
n=1

K

∑
i=1

Rin(Wold, βold) ∥Wnewϕ(xi)− tn∥2 .

3.5 Experimental validation

In this section, we present the results obtained after running our algorithm on several

datasets. First, we describe the datasets that were used in the experiments, and then
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we present two types of results: performance evaluation and visualization of the

collaboration process.

3.5.1 Datasets

• The Breast Cancer Wisconsin (Wdbc) dataset consists of 569 scanned images

of a breast mass. It contains 30 real-valued variables describing the cell nuclei

present in each image. Each observation is labeled as benign or malignant.

• The Spambase dataset is composed of 57 attributes describing a collection of

4601 spam and non-spam emails.

• The Battalia3 dataset is an artificial dataset describing 2000 exoplanets gener-

ated with 27 numerical attributes.

• The MV2 dataset consists of 2000 entries, each described by 6 features. They

were randomly generated from the mixture of a noise and four Gaussian com-

ponents.

• The Isolet (isolated letters) dataset contains 617 variables describing 7797 voice

recordings of individuals who have pronounced the name of each letter of the

alphabet.

• The Madelon dataset is an artificial dataset containing 4400 rows composing

32 clusters placed on the vertices of a five dimensional hypercube. Then 15

redundant features and 480 unnecessary features (random probes) were added,

for a total of 500 attributes.

We split the datasets to achieve a vertical collaborative clustering framework - that is,

each data site has access to different variables on the same set of observations.
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3.5.2 Results

Co-LUPI based on GTM models

The Co-LUPI algorithm was applied to each of the 6 datasets mentioned in section

3.5.1 using generative topographic maps (GTM).

The criterion for accepting the collaboration was the improvement of the Davies-

Bouldin index. This is an internal index, so no prior knowledge of the data structure

is required. A second version of the algorithm, RCo-LUPI (Regulazed Collaborative

Learning Using Privileged Information), has been implemented. It includes a new,

random initialization of the responsibility matrix at each step, as well as of the

collaboration matrix. This technique is often used in unsupervised learning and is

intended to reduce the dependence on the initial parameters. The table 3.3 shows that

in most cases, RCo-LUPI gave slightly better results than Co-LUPI.

To visualize the dynamics of this process, we can examine the successive confidence

matrices of the collaboration step. Figure 3.3 represents such data. The Co-LUPI

algorithm was applied to the Wdbc dataset, spread over 18 data sites. It can be

seen that not all algorithms benefited from collaboration at every step. In particular,

the model learning on data site number 1 did not improve its results until the fifth

iteration of the collaboration phase. Furthermore, at iteration number 7, only the

second algorithm improved its results. Although this could be interpreted as a sign

of an imminent end to the process, three other algorithms benefited from these new

findings in the next iteration. Thus, the process ended only after four more iterations.

3.5.3 Comparison with other collaborative approaches

The Co-LUPI and RCo-LUPI algorithms were empirically compared to four recent

implementations of collaborative clustering algorithms.
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TABLE (3.3) Experimental results, Davies-Bouldin index - Co-EM:
[61], Co-MV : [29], Co-GTM: [28], Co-SOM: [31], Co-LUPI, RCo-

LUPI

Name Co-E
M

Co-M
V

Co-G
TM

Co-S
OM

Co-L
UPI

RCo-L
UPI

Wdbc 0.85 0.97 0.9 0.84 0.78 0.69

Spam Base 0.94 1.27 0.92 0.87 0.42 0.59

Battalia3 2.43 2.83 2.68 2.51 1.47 1.37

MV2 1.34 1.34 1.61 1.44 0.86 0.85

Isolet – – – – 1.33 1.31

Madelon – – – – 0.87 0.82

To evaluate the performance of our approaches, we use the Friedman test and the

Nemenyi test recommended in [17]. First, the algorithms are ranked according to their

performance on each dataset. There are then as many rankings as there are datasets.

Next, the Friedman test is performed to test the null hypothesis that all approaches are

equivalent, which assumes that their average rankings are equal. If the null hypothesis

is rejected, then the Nemenyi test is performed. If the average ranks difference of two

approaches exceeds a given threshold (namely the critical difference (CD)), then it

can be concluded that their performances are significantly different. In the Friedman

test, we set the significance level at α = 0.05. Figure 3.2 shows a critical diagram

representing the average ranks of the algorithms. The methods are ordered from left

(best) to right (worst) and a horizontal line connects groups of algorithms that are

not significantly different (for significance level α = 5%). As shown in figure 3.2,

Co-LUPI and RCo-LUPI seem to obtain some improvement over the other proposed

techniques. But the results are not sufficient to conclude that there is a statistically

significant improvement. This can be explained by the small number of datasets and
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FIGURE (3.2) Friedman and Nemenyi test to compare multiple ap-
proaches on multiple data sets: Approaches are ranked from left (best)

to right (worst)

by the fact that the Nemenyi test only considers the performance of the algorithms

through their rank, without taking into account the actual value of the performance

index.

3.6 Analysis of the collaboration process

In this section, we analyze the impact of the weighting function on the evolution of

classifications. The architecture we proposed requires that each learner has a way to

weight the information received. We proposed to use entropy as a criterion in order

to take into account the uncertainty related to each prediction. We used a simple

function that respected our criteria, we presented it in the equations 3.19 and 3.20.

However, there are many possible choices. We analyze the collaboration process using

the implementation proposed in the latter equations and show an alternative using the

Kullback Leibler divergence.
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FIGURE (3.3) Information flow during collaboration for the Wdbc
dataset. Each row represents a data site and each column the total

weight assigned to that source.
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3.6.1 Simple use of entropy

In order to analyze the impact of the weighting function, we consider four learners

seeking to classify a single individual among three categories. We represent their

predictions at each step in the process in Figure 3.4. Step 0 represents the initial

predictions of each site for the individual in question. Each bar represents a proba-

bility distribution among the three possible classes. The first learner considers the

observation to belong to the blue class with high probability. The second learner has a

rather uniform distribution. The third learner predicts that the observation belongs

to the orange class. Finally, the fourth learner considers equiprobable the green and

orange classes.

FIGURE (3.4) Evolution of the classification following a collabora-
tion iteration

Step 1 represents learners’ predictions after an application of the formula given in

equation 3.20 which we report here:

R[p](t + 1)←− α[p] ·R[p](t) + ∑
R[q]∈R−[p]

β
[p]
[q] · R

[q](t)


α[p]=

(
1

P−1 ∑
R[q]∈R−[p]

H
(
R[q](t)

))
·
(
1−H

(
R[p](t)

))

β
[p]
[q] = H

(
R[p](t)

)
·
(

1−H
(

R[q](t)
))
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Then each model adjusted its predictions according to its initial classification, its

entropy, and the distant classifications and entropies. We see that the two models

with low entropy at the beginning slightly changed their prediction in step 1. The

models with less clear-cut predictions changed their predictions to a greater extent. In

particular, they now put more weight on the blue and orange groups.

In step 2, all predictions are similar. Note that we just applied the collaboration

formula mentioned above several times, thus ignoring the step of adjusting the model

parameters after the predictions are adjusted. In practice, after the state represented in

step 1, the models would have started from their new partition matrices to adjust the

model parameters, and would have obtained new partition matrices before the next

iteration.

Despite the above clarification, this fast convergence behavior is still a problem.

In a situation were we are not looking for a consensus, having four quite different

predictions achieving one in two steps is troublesome. Indeed, model number 4

excluded the blue group at the beginning. However, as of step 1, it considers it as the

most likely group. This behavior seems to go against the objective of collaborative

learning, i.e. to privilege a possible local structure. To remedy this, it is possible to

penalize too much divergence between local and remote results.

3.6.2 Introduction of a similarity criterion

We used the Kullback-Leibler divergence, which measures the dissimilarity between

two distributions. The Kullback-Leibler divergence between two distributions p and q

is written as follows:

DKL(p||q) = ∑
x

px log
px

qx
(3.30)

We therefore want the weight β
[p]
[q] associated with site q to depend negatively on the

Kullback Leibler divergence. This means that any proposal that is too far away from
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the local structure of the data will be given less weight. We represent a collaboration

process using the equation 3.31 to weight the received information.

R[p](t + 1)←− α[p] ·R[p](t) + ∑
R[q]∈R−[p]

β
[p]
[q]

DKL
(

R[p](t)||R[q](t)
) · R[q](t) (3.31)

We see in figure 3.5 that models 2 and 4 fit their parameters with a bias towards distant

classifications with a low divergence from their own. Model 2, which was rather

agnostic to begin with, adjusts its prediction more towards the blue group (which is

the majority among the distant classifications). Model 4, on the other hand, is closer

to model 2.

FIGURE (3.5) Evolution of the classification with Kullback Leibler
divergence

This focus at the level of the classification of an individual allows us to better under-

stand how the process can be affected by the choice of confidence functions. We then

present an analysis of a step of collaboration between Gaussian mixture models.
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Purity Davies-Bouldin

Name
Input

variables Local Collaboration Local Collaboration

Iris [0,1] .733 .92 .718 1.34
[2,3] .947 .92 .563 0.60

Waveform [0-9] .774 .810 1.81 1.98
[10-19] .806 .811 1.77 1.92
[20-29] .341 .780 2.54 37.12
[30-39] .347 .785 3.52 32.22

Wdbc [0,10,20] .919 .930 1.02 1.13
[1,11,21] .627 .868 1.40 2.73
[2,12,22] .898 .923 1.10 1.12
[3,13,23] .916 .930 1.09 1.11
[4,14,24] .627 .866 1.14 2.91
[5,15,25] .757 .920 1.13 2.24
[6,16,26] .798 .919 1.13 1.79
[7,17,27] .682 .902 1.15 1.97
[8,18,28] .633 .896 1.18 3.32
[9,19,29] .627 .779 1.19 3.76

TABLE (3.4) Experimental results of the Collaborative Gaussian
Mixture Models (CoGMM) algorithm on a few data sets. For each site,

we display the purity and the Davies-Bouldin index.

3.6.3 Collaboration between Gaussian mixture models

In this section, we present the results obtained after a simple collaboration step without

adjustment of the models’ parameters. This allows us to have a larger scale view of

the changes induced by the simple exchange of information between the models.

We have collaborated Gaussian models on three data sets. We computed before and

after collaboration: the purity index on one hand and the Davies-Bouldin index on the

other hand. The results are reported in the table 3.4.

We find that the purity index has increased for almost all models. In particular, for the

Waveform and Wdbc datasets, all sites have seen their purity index increase. However,

the Davies-Bouldin index has increased, which corresponds to a deterioration of the

clustering quality. It increases relatively less for the best performing sites after the
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local step.

The increase in the Davies-Bouldin index means that models are moving away from a

local optimum in the ability to explain the data. And the way in which this increase

depends on initial performance may be a sign that poorer performing models are

adapting their results more.

The increase in the purity index is a consequence of an exchange of information about

the overall structure of the data.

The results for Waveform are rather interesting because sites 3 and 4 have only noise.

Their purity scores are due to the presence of three classes. However, it turns out that

the other two models manage to improve their performance after the collaboration.

In other words, the presence of poor performers did not deteriorate the quality of the

other learners.

We have seen in the section 3.3 how we can aggregate the weights given to a remote

site to obtain a confidence coefficient. The set of these coefficients allows us to

represent the information exchanges between learners. We represent these coefficients

for the 10 learners trained on the wdbc dataset in the figure 3.6.

We found a correlation between the level of performance of a model and how it

weights remote information. The three best performing sites (1, 3, and 4) place little

weight on remote sites and thus essentially keep their results intact. In particular, site

number 4 places very little weight on remote sites and has high confidence in its own

results (cf. line 4 of the heatmap 3.6). The other models give more weight to distant

results. Finally, all models benefit from collaboration.
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FIGURE (3.6) Confidence coefficients of the different models. Each
line represents the confidence given by the model in question to all

remote models and to itself.

3.7 Conclusion

We presented Co-LUPI and RCo-LUPI, algorithms based on the use of privileged

information and probabilities for collaborative clustering. This allows the algorithms

to refine the collaboration based on their - and their remote counterparts’ - (in)certainty

about the classification of each observation, measured by entropy. This updating rule

has the advantage of being simple and the collaboration is done with all remote sites

at the same time. This avoids the classic problem of choosing the site to collaborate

with at each step.

We tested our approach on several datasets in the horizontal collaboration setting, but

it is also applicable in the hybrid setting. The results showed an improvement over

the state of the art. The framework also provides a way to visualize information flow

during the process. It shows interesting behaviors, as algorithms with lower initial

performance tend to use more incoming information than others. Moreover, even the

algorithms with the best performance after the local step were able to improve during
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the process. Indeed, the flexibility provided by Co-LUPI in weighting incoming

information allows algorithms to benefit from globally less efficient counterparts, as

the latter may perform better locally.

Several improvements can be made to the proposed algorithm. An optimal transport

algorithm could be used to relax the assumption that each algorithm searches for the

same number of clusters. It would also be interesting to test it in the hybrid setting,

where different data sites have access to different individuals.

Finally, we provided a detailed analysis of the collaboration process. We concluded

that the choice of the weighting function influences the way information flows between

data sites. Each data site might have its own way of weighting incoming information,

depending on what it expects from the collaboration.
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4 Theoretical guarantees

So far in this work, we have adopted an empirical approach. We have identified several

issues in collaborative clustering and proposed an architecture that addresses them.

We then tested that architecture in several settings and the experiments exhibited some

interesting properties. In this chapter we are interested in the theoretical results that

can be derived from this collaborative learning architecture. We start with an analysis

of the complexity of the proposed algorithm. Then we provide a termination analysis

of the algorithm. Finally, we discuss the generalization bounds.

4.1 Reminder: the proposed architecture

Let S be a training sample distributed across different nodes of a network. The dataset

S can either be labelled or unlabelled:

1. S = {(xi, yi)}n
i=1 in the labelled case. Then D denotes the joint distribution of

(X, Y).

2. S = {(xk)}n
i=1 in the unlabelled case. Then D denotes the distribution of X.

In both cases, we can write S ∼ Dn. In a classical setting, all data in X are described

by real-valued d-dimensional vectors, i.e. X ⊆ Rd. But in the collaborative learning

setting, we suppose that the global dataset X is distributed over P data sites:

X[1], . . . , X[p], . . . , X[P], where X[p] = {x[p]i }
n
i=1 is a set of n objects. By abuse of

notation, we say that each object x[p]i ∈ Rd is a d-dimensional vector, ignoring that

the number of features depends on p.
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Now our goal is to train a set of machine learning models A[p], one on each node of

the network. Each model will be trained by optimizing a quality function that we

denote by Q[p], be it in the supervised or in the unsupervised setting. This training

takes place in two steps:

Local step In the local step, each algorithm A[p] works on its own dataset X[p] and

adjusts its parameters as it would in a non-collaborative setting. In order to exchange

their results, the algorithms must have some type of information in common. In our

case, the partition computed by each algorithm will be represented as a responsibility

matrix R[p]. This matrix contains the contributions of each component to each

observation, R[p]
i,k = P(Zi = k|Xi, θ), where K is the number of clusters, Zi ∈

{1, . . . , K} are the components of the model and the elements of θ are its parameters.

Once each model has been trained locally, we want them to exchange these partition

matrices with each other to improve their performance. This exchange is done during

the collaboration step.

Collaborative step During the collaboration step, the different algorithms A[p] will

exchange information in order to improve their respective classification. The resulting

clustering will not only be based on the examples X[p], but also on the additional

information X[p]∗ , which are in fact the remote partition matrices. The local learner

thus has access to X[p] and X[p]∗ , instead of just X[p], to perform its clustering. In our

case, for each algorithm A[p], X[p]∗ ≡ R−[p], where:

R−[p] = {R[q] : q ∈ {1, . . . , P} \ {p}} (4.1)

The set R−[p] contains all the remote partition matrices, from the perspective of site p.
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The collaboration function to update a model’s predictions is given in section 3.3.2.

This function is applied to each learner’s responsibility matrix R[p](t) in order to

compute its temporary collaborated partition matrix R′[p](t). The model then adjusts

its internal parameters using the new information R′[p](t). For instance, if training is

done using the EM algorithm, then an M-step is performed first using R′[p](t) as the

starting responsibility matrix. The so trained expert p may now compute the value

of its quality function Q[p](t + 1) induced by the new hypothesis, and use this value

to decide whether to accept the collaboration or not. If the new predictions lead to

a quality improvement greater than some threshold ϵ, ie Q[p](t + 1)−Q[p](t) ≥ ϵ,

then the model’s parameters are updated. That means that the collaboration iteration

was beneficial to the learner. If on the other hand the quality improvement is not

sufficient (Q[p](t + 1)−Q[p](t) < ϵ), then the model reverts to the state it was in at

the beginning of that iteration. The process stops on the first iteration where no model

improves more than some threshold ϵ.

One might wonder what are the properties of this algorithm. First, we said that

the different data site exchange information during the collaborative step. What

is the volume of the information exchanged ? We also said that the process stops

whenever no algorithm improve during an iteration of the collaborative step. Is there

any guarantee that this criterion will ever be met ? Finally, what can we say about the

performance of the models ?

4.2 Complexity

The architecture we have proposed is model-agnostic. The time complexity will

depend on the models used. On the other hand, the information exchanged is the same

whatever the models used. We can therefore calculate the additional space complexity

brought by the collaboration.
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Each model outputs a responsibility matrix of size N × K. And sends it to the P− 1

remote counterparts. This result in a space complexity for one collaboration iteration

in O(NKP2), where K is the number of classes.

This space complexity does not account for the number of iterations in the collab-

oration process. That is the number of iterations performed before the first step

where no model improves. It seems difficult to provide a theoretical analysis of this

phenomenon, as it depends on many factors. The distribution of the data, the way it

is distributed across the nodes, the number of learners involved, the quality function

used, the epsilon hyper-parameter, are examples of factors that have an impact on the

number of iterations.

We instead provide thereafter some experimental results on the computation time.

We applied the architecture we proposed to six different datasets using Generative

Topographic Mappings, as described in sections 3.4 and 3.5. We observed that for

a small number of collaborators (up to 10), the number of collaborators as little

impact on the number of iterations, which is often around ten. Table 4.1 summarizes

computation time for these experiments.

4.3 Termination analysis

At each collaboration iteration, each model shares its results and uses those of its

counterparts to updadte its state. As is, there is no guarantee that this algorithm will

eventually stop. Indeed, if we consider the sequence of states taken by the entire

system, it is easy to imagine it oscillating between some states. Thus, a stopping

criterion using, say, the convergence of the models parameters, cannot provide any

guarantee that the algorithm stops. Unless the convergence is artificially enforced by

some decreasing energy function scaling the updates. The downside of this method

for ensuring convergence is that the user is stopping the learning process without
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TABLE (4.1) Execution time of the Co-LUPI algorithm by number of
collaborators. The algorithm has been implemented in Python3.8 with
no parallelization. OS: Ubuntu 20.04 LTS 64-bit, Processor: Intel®

Core™ i9-9900K CPU @ 3.60GHz×16.

Number of collaborators

Name (size) 2 3 5 7 10

Wdbc (2000)
6.9s
±2.8s

7.93s
±2.6s

13.2s
±3.9s

24.2s
±4.9s

31.7s
±11s

Spam Base (4601)
25s
±10.8s

52.1s
±30.9s

2min35s
±1min18s

3min20s
±1min35s

6min53s
±3min8s

Battalia3 (2000)
8.49s
±1.4s

26s
±11.1s

45s
±15.6s

50.5s
±37.4s

2min40s
±1min9s

MV2 (2000)
13.1s
±5.2s

17.4s
±5.4s

47.9s
±25.5s

1min31s
±27.6s

2min51s
±1min6s

Isolet (6238)
1min8s
±33s

1min59s
±52.7s

3min28s
±56s

5min58s
±1min32s

12min5s
±4min29s

Madelon (4400)
33.4s
±52.6s

31s
±29.6s

1min31s
±1min32s

1min51s
±1min18s

2min51s
±59s

knowing whether there is still progress to be made or not.

Fortunately, we can still say something about the termination property in our setting.

For this, will will use the fact that the quality functions Q[p] are asked to increase

throughout the collaboration. Then if each quality function satisfies at least one of the

following properties, our algorithm has stop property:

P1: Q is computed using a hard clustering

P2: Q is continuous with respect to the responsibility matrix R

P3: Q is bounded

If Q is based on a hard clustering, then given a dataset of size n, it can only take a

finite number of values. In particular, if we look for k clusters, the quality function Q
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takes no more values than the number of different possible partitions of n objects into

k non-empty subsets. This number of partitions is given by the Stirling number of the

second kind S(n, k):

S(n, k) =
1
k!

k

∑
i=0

(−1)i
(

k
i

)
(k− i)n (4.2)

As a finite set, the image of the set of possible partitions by Q is bounded. Thus, for

any given dataset, Q is bounded.

Now, we show that if Q is continuous with respect to its input, i.e. the responsibility

matrix R, then it is also bounded. First, note that each line of R is a probability

distribution of K events. It thus lives in the (K− 1)-simplex ∆K−1 which is compact.

Then R ∈ {∆K−1}N which is also a compact set. Thus, as a continuous function on a

compact set, Q is bounded (and attains its lower and upper bounds).

It follows that P1 ⇒ P3 and P2 ⇒ P3.

We now assume that for all p = 1, . . . , P, Q[p] is bounded. Whether model p tries to

minimize or to maximize its quality function,
(

Q[p](j)
)

j∈N
is a monotone sequence.

Then for all p,
(

Q[p](j)
)

j∈N
is a bounded, monotone sequence, and as such, it

converges. Thus, ∀ε > 0, ∃jp such that, ∀j ⩾ jp,
∣∣∣Q[p](j)−Q[p](j + 1)

∣∣∣ < ε.

Let ε be the threshold triggering the end of the algorithm, as described in section 4.1,

using the fact that
(

Q[p](j)
)

j∈N
is convergent and the least integer principle, we can

define for each data site p

jp = min{j : ∀j′ ⩾ j,
∣∣∣Q[p](j′)−Q[p](j′ + 1)

∣∣∣ < ε},

and

j∗ = max
p
{jp}.
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Then, ∀p ∈ {1, . . . , P},
∣∣∣Q[p](j∗)−Q[p](j∗ + 1)

∣∣∣ < ε, which is our stopping

criterion.

In summary, despite the absence of stop property in the most general case, we were

able to prove that under mild hypothesis, our alogorithm eventually terminates. In

a nutshell, the proof is based on the fact that the models try to improve their quality

functions and that they cannot do so forever1, provided that each function has any of

the properties P1, P2, or P3.

Note that here, termination property does not imply convergence to a fixed point.

Indeed, suppose that the successive states (S(t))t=1,...,T of a model can be represented

in a metric space (Θ, d). Then (S(t))t may oscillate between two regions while

ensuring that the sequence (Q(t))t is growing.

4.4 Generalization bounds for supervised collaborative

learning

In this section, we focus on the learners’ ability to generalize to unseen data. This

question is central in machine learning. Answering it allows us to know with a certain

level of confidence, to what extent a model has succeeded in adapting to the (unknown)

distribution of the data. We focus on one learner of the collaborative architecture and

try to provide generalization bounds for that learner.

We consider an input space X and an output space Y . We only consider the case

where X = Rd, and Y = {−1, 1}. We denote by D the (unknown) distribution of

X ∗Y . We consider a sample S of independent and identically distributed (i.i.d.) pairs

(X1, Y1), . . . , (Xn, Yn). Then S ∼ Dn. And letH = {hθ | hθ : X → Y , θ ∈ Θ} be

a set of predictors parametrized by θ ∈ Θ. This set is also known as a hypothesis class.

1or more precisely, if they can improve forever, then for any positive value, the magnitude of the
improvements will eventually stay below this value.
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We consider a loss function ℓ : Y × Y → [0,+∞), with ℓ(y, y) = 0. Common loss

functions are:

• The 0-1 loss: ℓ(y′, y) = 1(y ̸= y′)

• The hinge loss: ℓ(y′, y) = max(1− yy′, 0)

• The absolute loss: ℓ(y′, y) = |y′ − y|

• The quadratic loss: ℓ(y′, y) = (y′ − y)2

The true risk of a predictor h ∈ H is given by

RD(h) = ED[ℓ(h(X), Y)]. (4.3)

A good predictor must have a small risk. However, the definition of the true risk

involves the data distribution D, which is unknown. Therefore, we cannot compute

R(h) and have to fall back to empirical risk:

RD̂(h) =
1
n

n

∑
i=1

ℓ(h(xi), yi) (4.4)

Given a hypothesis h ∈ H, one can compute its empirical risk RD̂(h). But what

we truly want to optimize is the true risk, RD. Then, given the empirical risk, what

can we say about the value of the true risk? Interestingly enough, even though D is

unknown, we can still say something about the difference between RD̂(h) and RD(h).

These results come in the form of a probability:

P
(
|RD̂(h)− RD(h)| ≤ ε

)
≥ 1− δ (4.5)

There are many papers proposing new bounds. These bounds can be of several

types. For instance, the Vapnik-Chervonenkis bounds rely on the concept of VC
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dimension [68, 69]. There are also bounds based on the Rademacher complexity, the

uniform stability, or the robustness of the algorithm at hand [10, 19, 37, 41, 75].

The kind of bounds that we are mostly interested in is the PAC-Bayes generalization

bounds. These bounds have been introduced by Shawe-Taylor and Williamson in [58],

and extended by McAllester in [44]. Instead of trying to pinpoint one best hypothesis

h∗ ∈ H, the PAC-Bayes approach will consider that given a prior distribution π on

H, one can try to find a posterior distribution ρ such that the aggregated predictor

with weights ρ:

hρ(x) = Eθ∼ρ[hθ(x)] (4.6)

performs well.

The PAC-Bayes generalization bounds can provide results for three kinds of risk:

• the risk of a single draw ĥθ from the posterior: RD(ĥ), where θ ∼ ρ

• the expected risk of a random hypothesis: Eθ∼ρRD(h)

• the risk of the deterministic aggregated hypothesis: RD(hρ)

Bounds for all these types of risks can be found in [2]. Here, we start by giving a

simple bound for Eh∼ρRD(h). This bound is due to Catoni [12]:

Theorem 1 (Catoni’s bound) Let λ > 0, and ∀ε ∈ (0, 1), then

PS

(
∀ρ ∈ P(H), Eh∼ρ[RD(h)]

≤ Eh∼ρ[RD̂(h)]+
λC2

8n
+

KL(ρ∥π) + log 1
ε

λ

)
≥ 1− ε

Where PS is the probability with respect to the sample [(X1, Y1), . . . , (Xn, Yn)],

P(H) is the set of probability distributions onH, C is such that 0 ≤ ℓ(y′, y) ≤ C,

and KL is the Kullback-Leibler divergence defined by:
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KL(µ∥ν) = ∑
x

log
(

µ(x)
ν(x)

)
· µ(x) (4.7)

A proof of the theorem is given in appendix C.

Theorem 1 gives a generalization bound for the expected risk of a random hypothesis

Eθ∼ρ[RD(h)], and from this bound, we can derive a generalization bound for the

aggregated hypothesis RD(hρ). To do so, we start by introducing the Donsker and

Varadhan’s representation of the KL divergence.

Lemma 2 (Donsker-Varadhan representation of the KL divergence) For any

measurable, bounded function g : Θ→ R, we have:

log Eθ∼π[eg(θ)] = sup
ρ∈P(Θ)

[
Eθ∼ρ[g(θ)]− KL(ρ∥π)

]
(4.8)

And the supremum on the right hand side is achieved for

ρ =
dπg

dπ
=

eg

Eθ∼π[eg]
(4.9)

Proof of Lemma 2. The definition of the KL divergence gives:

KL(ρ∥πg) = ∑
θ

log

(
ρ(θ)Eϑ∼π[eg(ϑ)]

π(θ)eg(θ)

)
ρ(θ) (4.10)

Thus,

KL(ρ∥πg) = −Eθ∼ρ[g(θ)] + KL(ρ∥π) + log Eθ∼π[eg(θ)]. (4.11)

Because KL(·∥·) ≥ 0, and equals 0 if ρ = πg, it follows that πg minimizes

−Eθ∼ρ[g(θ)] + KL(ρ∥π) (4.12)
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which is the claim. □

Now, let

g = −λRD̂(Eθ∼ρ[h]) (4.13)

Then, plugging this value of g in equations 4.9 and 4.12, we obtain that

ρ̂λ(dθ) =
π(dθ) e−λRD̂(hθ)

Eϑ∼π[e−λRD̂(hϑ)]
(4.14)

minimizes the following value:

λEθ∼ρ[RD̂(hθ)] + KL(ρ∥π) (4.15)

it thence minimizes the right hand side of the bound in theorem 1:

Eθ∼ρ[RD̂(hθ)] +
λC2

8n
+

KL(ρ∥π) + log 1
ε

λ
(4.16)

That means that this bound can be minimized and that:

PS

(
∀ρ ∈ P(×), Eθ∼ρ[RD(hθ)]

≤ inf
ρ∈P(Θ)

[
Eθ∼ρ[RD̂(hθ)]+

λC2

8n
+

KL(ρ∥π) + log 1
ε

λ

])
≥ 1− ε

(4.17)

For a convex loss function (e.g. the hinge loss), the Jensen’s inequality gives:

Eθ∼ρ[RD(hθ)] ≥ RD(Eθ∼ρ[hθ]) (4.18)

We obtain a generalization bound for the aggregated hypothesis RD(hθ):
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PS

(
∀ρ ∈ P(×), RD(hθ)

≤ inf
ρ∈P(Θ)

[
Eθ∼ρ[RD̂(hθ)]+

λC2

8n
+

KL(ρ∥π) + log 1
ε

λ

])
≥ 1− ε

(4.19)

Equation 4.19 gives a bound for the aggregated predictor, provided that the posterior

ρ is constant with respect to the input. However, in the collaboration scheme we

proposed, these weights vary across the input space, depending on the models expertise

in the different regions of this space. Indeed, after collaboration step, the prediction

aggregation can be written as follows

h∗(x) =
P

∑
j=1

f j(x) hj(x)

where the functions f j : X → [0, 1] ∈ F , j = 1, . . . , P are not constant in general,

and are such that ∑j f j(x) = 1, ∀x ∈ X .

In the particular case of the heuristic we proposed, f j(x) depends on the entropy of

the predictors for the classification of the datapoint x.

We can now define a new hypothesis class G defined by:

G = {g = P · f · h : ( f , h) ∈ F ×H}

Now the collaboration step consists in combining the local hypothesis gj, j = 1, . . . , P,

chosen to be such that ∑j f j = 1, with uniform weights:

h̃(x) =
1
P

P

∑
j=1

gj(x) (4.20)
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then,

h̃(x) =
1
P

P

∑
j=1

P · f j(x) · hj(x) (4.21)

We have h̃ = h∗, and h̃ is an aggregated predictor with constant weights across the

input space.

We cannot use the 0-1 loss in this context, because in general the prediction h̃(x) /∈

(0, 1). But we can still use the hinge loss, which is convex, so equation 4.19 holds.

This workaround comes at a cost. Indeed, the PAC-Bayes generalization bounds

require the prior to have support on the whole hypothesis space. But we increased

the size of the hypothesis space. Thus, the term KL(ρ∥π) in the bound will likely be

increased. Suppose for example that the prior π is the uniform distribution on G, and

that the posterior is uniformly distributed over P hypothesis. Then

KL(ρ∥π) =
P

∑
j=1

1
P

log
(
|G|
P

)
. (4.22)

In this case, the Kullback-Leibler divergence increases with |G|. In general, the

larger G, the more elements have low prior probability. This phenomenon increases

KL(ρ∥π).

A first solution would be to use data-dependent priors. The idea is to use part of the

dataset to adjust the prior and have more weight on the relevant hypothesis [24,49,57].

A second one would be to look for bounds that apply to the specific case of locally

weighted classifiers.

4.5 Conclusion

In the chapter, we first provided results about space complexity which, unlike time

complexity, does not depend on the models used on each datasite. We also gave
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some sufficient conditions for the algorithm to stop, although convergence to a fixed

point is not guaranteed. We finally showed how to adapt the proposed architecture

for the PAC bayesian generalization bounds to be applicable in our case, at the cost

of widening the hypothesis class, which could lead to trivial bounds. One solution

would be to limit the size of the new hypothesis class by restricting to some set of

weighting functions – e.g. using parametric models, or having a limited number of

possible levels of uncertainty. Another approach would be to look for generalization

bounds that apply specifically to locally weighted combination of classifiers.
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5 Conclusion and perspectives

We have identified several scientific obstacles and have proposed an architecture to

address them. We have used for the first time the collaborative learning paradigm in

the supervised framework. The reader will also find in appendix an analysis of some

properties of the collaborative function we propose.

The first scientific obstacle to which we propose an answer is the choice of the

collaborator. Most often, in the literature, a single remote model is selected at each

iteration, and the collaboration then takes place with this model.

The second obstacle on which we have worked is the choice of the intensity of the

collaboration. This is the coefficient associated with the penalty of the divergence

between two models. Determining a good collaboration coefficient is a complex

task, on the one hand because in unsupervised learning the performance of a model

is difficult to measure objectively, and on the other hand because this coefficient

is global. The implications in terms of the evolution of the classification for each

individual are difficult to predict.

Another challenge, related to the two previous ones, is the deterioration of the results

by the less performing models. It seems that the use of a global collaboration coeffi-

cient is the main reason for this deterioration. Even after selecting the collaborator

according to some criterion, if we give the same weight to the distant classifications

of all the individuals, then we risk modifying without distiction those who are easy to

classify and those for whom the task is more complicated.
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The approach we propose allows us to modify the classifications of only some indi-

viduals, depending on whether or not they are in a region of expertise. The higher the

uncertainty about the classification of an individual, the more we will use external

information to decide. In chapter 4, we provided a generalization bound for this algo-

rithm. It required us to consider a wide hypothesis class, leading to potentially loose

bounds. A way to tackle this problem would be to come up with ad hoc generalization

bounds.

We have seen that one of the limitations of our algorithm is a tendency to homogenize

the results. We proposed to introduce a similarity criterion to solve this problem. By

using such a criterion, we ensure that the collaboration does not lead to an already

excluded track. To further explore this method, we could test it in a configuration

where there are two different structures, and where each model has a view highlighting

one or the other of these structures. Then the models seeing the same structure should

exchange more between them. In this case, we would see groups of sites with high

levels of mutual trust, and relatively low levels of trust towards the other sites.

In our proposal, we made two assumptions that we could try to overcome. The

first one is that the models trained on each site all have information about the same

individuals. The second is that all algorithms search for the same number of clusters.

The former is a very strong hypothesis. Fortunately, it is also the easiest to overcome.

Indeed, we can allow each site to have data on only a subset of the individuals in the

database. Then at the time of collaboration, for each individual it would only consider

the remote sites that have entries on these individuals. The sum in the equation

3.20, instead of covering all the remote sites, would then cover all the sites with the

individuals in question. The normalization constants must be adjusted accordingly.

The second constraint can be droped by allowing each model to search for an arbitrary

number of clusters. The next step is to find a correspondence between different
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numbers of clusters. This can be done by using the optimal transport system [71].
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A Datasets

Dataset name Samples Features Description

adult 48842 15 Prediction task is to determine whether a

person makes over 50K a year. Extraction

was done by Barry Becker from the 1994

Census database. A set of reasonably clean

records was extracted using the following

conditions: (AAGE>16) and (AGI>100)

and (AFNLWGT>1) and (HRSWK>0)

amazon 32769 10 Data from the Kaggle Amazon Employee

challenge.

click 399482 12 This data is derived from the 2012 KDD

Cup. The data is subsampled to 1% of

the original number of instances, downsam-

pling the majority class (click=0) so that the

target feature is reasonably balanced (5 to

1). The data is about advertisements shown

alongside search results in a search engine,

and whether or not people clicked on these

ads. The task is to build the best possible

model to predict whether a user will click

on a given ad.
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Dataset name Samples Features Description

internet 10108 69 Binarized version of the original data set.

The multi-class target feature is converted

to a two-class nominal target feature by re-

labeling the majority class as positive (’P’)

and all others as negative (’N’). Originally

converted by Quan Sun.

iris 150 4 This dataset contains 150 instances of iris

flowers described by 4 attributes (sepal

length, sepal width, petal length, petal

width). The data are equally divided into

three classes (setosa, versicolor, virginica).

One of the classes (setosa) is linearly sep-

arable from the other two. The latter are

not linearly separable.

kdd98 191260 479 Dataset KDD98 challenge. The goal is to

estimate the return from a direct mailing in

order to maximize donation profits. This

dataset represents problem of binary clas-

sification - whether there was a response

to mailing. The data is subsampled to 50%

of the original number of instances.

kddchurn 50000 231 Small version of KDD 2009 Cup data.

kick 72983 36 Data from "Don’t Get Kicked!" Kaggle

challenge.

spam base 4601 57 Spam and non-spam e-mails.
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Dataset name Samples Features Description

waveform 5000 40 5000 instances with 40 attributes each. 21

of them are informative and the latter 19

are all noise. There are 3 classes of waves

and each class is a combination of 2 of 3

base waves.

wdbc 569 30 The Breast Cancer Wisconsin (Diagnostic)

(WDBC) dataset consists in 569 digitized

images of a breast mass. There are 30 real-

valued input variables describing the cell

nuclei present in each image. Each obser-

vation is labelled as benign or malignant.

wine 178 13 Wine data is the results of a chemical anal-

ysis of wines grown in the same region in

Italy but derived from three different culti-

vars. The analysis determined the quanti-

ties of 13 constituents found in each of the

three types of wines.

appetency 50000 231 Small version of KDD 2009 Cup data.

upsel 50000 231 Small version of KDD 2009 Cup data.
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International Conferences
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C Proof of theorem 1

The proof of the theorem is given in [2] and [12]. We report it here with our notations.

We first give two preliminary results:

Lemma 3 (Hoeffding’s inequality) Let U1, . . . , Un be independent random vari-

ables taking values in an interval [a, b]. then ∀t > 0

E
[
et ∑n

i=1(Ui−E(Ui))
]
≤ e

nt2(b−a)2
8 (C.1)

Lemma 4 (Donsker-Varadhan representation of the KL divergence) For any

measurable, bounded function g : Θ→ R, we have:

log Eθ∼π[eg(θ)] = sup
ρ∈P(Θ)

[
E[g(θ)]− KL(ρ∥π)

]
(C.2)

Proof of theorem 1. For any θ ∈ Θ and t > 0, the Hoeffding’s inequality applied to

Ui = E[ℓ(h(xi), yi)]− ℓ(h(xi), yi) yields:

ES[etn[R(h)−R̂(h)]] ≤ e
nt2C2

8 (C.3)

let t = λ
n

ES[eλ[R(h)−R̂(h)]] ≤ e
λ2C2

8n (C.4)
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Integrate with respect to π and apply Fubini:

ESEθ∼π[eλ[R(h)−R̂(h)]] ≤ e
λ2C2

8n (C.5)

Now we apply lemma 4:

ES[e
supρ∈P(Θ) λEθ∼ρ[R(h)−R̂(h)]−KL(ρ∥π)− λ2C2

8n ] ≤ 1 (C.6)

And use the Chernoff bound with s > 0:

PS[ sup
ρ∼P(Θ)

λE[R(h)− R̂(h)]− KL(ρ∥π)− λ2C2

8n
> s] ≤ e−s (C.7)

Finally, write ϵ = e−s, and rearrange the terms:

PS

[
∃ρ ∈ P(Θ) : Eθ∼ρ[R(h)] > Eθ∼ρ[R̂(h)] +

λC2

8n
+

KL(ρ∥π) + log 1
ϵ

λ

]
≤ ϵ

(C.8)

This ends the proof.



99

Bibliography

[1] Muna Al-Razgan and Carlotta Domeniconi. Weighted clustering ensembles. In

SDM, 04 2006.

[2] Pierre Alquier. User-friendly introduction to pac-bayes bounds, 2021.

[3] Hanan Ayad and Mohamed S. Kamel. Cumulative voting consensus method

for partitions with variable number of clusters. IEEE transactions on pattern

analysis and machine intelligence, 30:160–73, 02 2008.

[4] Fatima-Ezzahraa Ben Bouazza, Guenael Cabanes, Younès Bennani, and Ab-

delfettah Touzani. Collaborative clustering through optimal transport. In In-

ternational Conference on Artificial Neural Networks, pages –. Springer, In

press.

[5] Shai Ben-David and Margareta Ackerman. Measures of clustering quality: A

working set of axioms for clustering. In D. Koller, D. Schuurmans, Y. Bengio,

and L. Bottou, editors, Advances in Neural Information Processing Systems,

volume 21. Curran Associates, Inc., 2009.

[6] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms

for hyper-parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett,

F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems, volume 24. Curran Associates, Inc., 2011.



100 BIBLIOGRAPHY

[7] James Bezdek. Pattern Recognition With Fuzzy Objective Function Algorithms.

Kluwer Academic Publishers, 01 1981.

[8] Christopher Bishop, Markus Svensen, and Christopher Williams. Gtm: The

generative topographic mapping. Neural Computation, 10:215–234, 05 1997.

[9] Christopher M. Bishop, Markus Svensén, and Christopher K. I. Williams. GTM:

The Generative Topographic Mapping. Neural Computation, 10(1):215–234, 01

1998.

[10] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of

Machine Learning Research, 2:499–526, 06 2002.

[11] Guénaël Cabanes and Younès Bennani. A simultaneous two-level clustering

algorithm for automatic model selection. In Sixth International Conference on

Machine Learning and Applications (ICMLA 2007), pages 316–321, 12 2007.

[12] Olivier Catoni. A pac-bayesian approach to adaptive classification, 2003.

[13] Hakan Cevikalp and Robi Polikar. Local classifier weighting by quadratic

programming. IEEE Transactions on Neural Networks, 19:1832–1838, 2008.

[14] Guillaume Cleuziou, Matthieu Exbrayat, Lionel Martin, and Jacques-Henri

Sublemontier. Cofkm : un modèle de clustering flou collaboratif pour les

données multi-représentées. In é-EGC Apprentissage Statistique et Fouille de

données, 05 2009.

[15] Antoine Cornuéjols, Cédric Wemmert, Pierre Gancarski, and Younès Bennani.

Collaborative clustering: Why, when, what and how. Information Fusion, 39, 04

2017.

[16] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), 39(1):1–38, 1977.



BIBLIOGRAPHY 101

[17] Janez Demšar. Statistical comparisons of classifiers over multiple data sets.

Journal of Machine Learning Research, 7(1):1–30, 2006.

[18] Bernard Desgraupes. Clustering indices. University of Paris Ouest-Lab Modal’X,

1:34, 2017.

[19] L. Devroye and T. Wagner. Distribution-free inequalities for the deleted and

holdout error estimates. IEEE Transactions on Information Theory, 25(2):202–

207, March 1979.

[20] Franz Dietrich and Christian List. Probabilistic opinion pooling. In Oxford

Handbook of Probability and Philosophy, page forthcoming. Oxford University

Press, 2016.

[21] Thomas G. Dietterich. Ensemble methods in machine learning. In Multiple

Classifier Systems, pages 1–15, Berlin, Heidelberg, 2000. Springer Berlin Hei-

delberg.

[22] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[23] J. C. Dunn. A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters. Journal of Cybernetics, 3(3):32–57, 1973.

[24] Gintare Karolina Dziugaite and Daniel M. Roy. Data-dependent pac-bayes priors

via differential privacy. In Proceedings of the 32nd International Conference on

Neural Information Processing Systems, NIPS’18, page 8440–8450, Red Hook,

NY, USA, 2018. Curran Associates Inc.

[25] Xiaoli Zhang Fern and Carla E. Brodley. Solving cluster ensemble problems by

bipartite graph partitioning. In Proceedings of the Twenty-First International

Conference on Machine Learning, ICML ’04, page 36, New York, NY, USA,

2004. Association for Computing Machinery.



102 BIBLIOGRAPHY

[26] Germain Forestier, Cédric Wemmert, and Pierre Gancarski. Collaborative multi-

strategical clustering for object-oriented image analysis, 10 2018.

[27] Ana L.N. Fred and Anil K. Jain. Combining multiple clusterings using evidence

accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(6):835–850, 2005.

[28] Mohamad Ghassany, Nistor Grozavu, and Younès Bennani. Collaborative

generative topographic mapping. In Neural Information Processing, volume

7664, pages 591–598, 11 2012.

[29] Mohamad Ghassany, Nistor Grozavu, and Younès Bennani. Collaborative multi-

view clustering. In The 2013 International Joint Conference on Neural Networks

(IJCNN), pages 1–8, 08 2013.

[30] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clustering aggrega-

tion. TKDD, 1, 03 2007.

[31] Nistor Grozavu and Younès Bennani. Topological collaborative clustering. Aust.

J. Intell. Inf. Process. Syst., 12, 2010.

[32] Christian Hennig. What are the true clusters? Pattern Recognition Letters,

64:53–62, 2015. Philosophical Aspects of Pattern Recognition.

[33] Robert Jacobs, Michael Jordan, Steven Nowlan, and Geoffrey Hinton. Adaptive

mixture of local expert. Neural Computation, 3:78–88, 02 1991.

[34] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM

Comput. Surv., 31(3):264–323, sep 1999.

[35] Rasha Kashef and Mohamed S. Kamel. Cooperative clustering. Pattern Recog-

nition, 43:2315–2329, 06 2010.



BIBLIOGRAPHY 103

[36] Teuvo Kohonen. Self-Organized Formation of Topologically Correct Feature

Maps, page 509–521. MIT Press, Cambridge, MA, USA, 1988.

[37] Vladimir Koltchinskii and Dmitry Panchenko. Rademacher processes and

bounding the risk of function learning, 2004.

[38] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2(1-2):83–97, 1955.

[39] L.I. Kuncheva, S.T. Hadjitodorov, and L.P. Todorova. Experimental compar-

ison of cluster ensemble methods. In 2006 9th International Conference on

Information Fusion, pages 1–7, 2006.

[40] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.

Wiley-Interscience, USA, 2004.

[41] Samuel Kutin and Partha Niyogi. Almost-everywhere algorithmic stability and

generalization error. In UAI, 2002.

[42] Zhuwen Li, Jiaming Guo, Loong-Fah Cheong, and Steven Zhou. Perspective

motion segmentation via collaborative clustering. In 2013 IEEE International

Conference on Computer Vision, pages 1369–1376, 12 2013.

[43] Yi Liu, Li Zhang, Ning Ge, and Guanghao Li. A Systematic Literature Review

on Federated Learning: From A Model Quality Perspective. arXiv:2012.01973

[cs], December 2020. arXiv: 2012.01973.

[44] David A. McAllester. Some pac-bayesian theorems. In Proceedings of the

Eleventh Annual Conference on Computational Learning Theory, COLT’ 98,

page 230–234, New York, NY, USA, 1998. Association for Computing Machin-

ery.

[45] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. Communication-efficient learning of deep networks



104 BIBLIOGRAPHY

from decentralized data, 2017.

[46] Davoud Moulavi, Pablo A. Jaskowiak, Ricardo J. G. B. Campello, Arthur Zimek,

and Jörg Sander. Density-based clustering validation. In SDM, 2014.

[47] Kevin P. Murphy. Mixture models and the em algorithm. In Machine learning: a

probabilistic perspective, chapter 11. MIT Press, Cambridge, Mass. [u.a.], 2013.

[48] Nam Nguyen and Rich Caruana. Consensus clusterings. In Seventh IEEE

International Conference on Data Mining (ICDM 2007), pages 607 – 612, 11

2007.

[49] Emilio Parrado-Hernández, Amiran Ambroladze, John Shawe-Taylor, and Shil-

iang Sun. Pac-bayes bounds with data dependent priors. Journal of Machine

Learning Research, 13(112):3507–3531, 2012.

[50] Witold Pedrycz. Collaborative fuzzy clustering. Pattern Recognit. Lett., 23:1675–

1686, 2002.

[51] Witold Pedrycz and Partab Rai. Rai, p.: Collaborative clustering with the use of

fuzzy c-means and its quantification. fuzzy sets and systems 159(18), 2399-2427.

Fuzzy Sets and Systems, 159:2399–2427, 09 2008.

[52] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika

Dorogush, and Andrey Gulin. Catboost: unbiased boosting with categorical

features, 2019.

[53] Oliver Radley-Gardner, Hugh Beale, and Reinhard Zimmermann, editors. Fun-

damental Texts On European Private Law. Hart Publishing, 2016.

[54] Parisa Rastin, Basarab Matei, Guénaël Cabanes, Nistor Grozavu, and Younès

Bennani. Impact of Learners’ Quality and Diversity in Collaborative Clustering.

Journal of Artificial Intelligence and Soft Computing Research, 9(2):149–165,

April 2019.



BIBLIOGRAPHY 105

[55] Jan-Willem Romeijn. An interpretation of weights in linear opinion pooling.

Episteme, page 1–15, 2020.

[56] Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms.

The MIT Press, 2012.

[57] Matthias Seeger. Pac-bayesian generalisation error bounds for gaussian process

classification. J. Mach. Learn. Res., 3(null):233–269, mar 2003.

[58] John Shawe-Taylor and Robert C. Williamson. A pac analysis of a bayesian

estimator. In Proceedings of the Tenth Annual Conference on Computational

Learning Theory, COLT ’97, page 2–9, New York, NY, USA, 1997. Association

for Computing Machinery.

[59] Yinghua Shen and Witold Pedrycz. Collaborative fuzzy clustering algorithm:

Some refinements. International Journal of Approximate Reasoning, 86:41–61,

2017.

[60] Alexander Strehl and Joydeep Ghosh. Cluster ensembles - a knowledge reuse

framework for combining multiple partitions. Journal of Machine Learning

Research, 3:583–617, 01 2002.

[61] Jeremie Sublime, Basarab Matei, Guénaël Cabanes, Nistor Grozavu, Younès

Bennani, and Antoine Cornuéjols. Entropy based probabilistic collaborative

clustering. Pattern Recognition, 72:144–157, 12 2017.

[62] Jeremie Sublime, Denis Maurel, Nistor Grozavu, Basarab Matei, and Younès

Bennani. Optimizing exchange confidence during collaborative clustering. In

2018 International Joint Conference on Neural Networks (IJCNN), 07 2018.

[63] Jérémie Sublime, Nistor Grozavu, Younès Bennani, and Antoine Cornuéjols.

Collaborative clustering with heterogeneous algorithms. Proceedings of the

International Joint Conference on Neural Networks, 2015-Septe, 2015.



106 BIBLIOGRAPHY

[64] Catherine A. Sugar and Gareth M. James. Finding the number of clusters in a

dataset: An information-theoretic approach. Journal of the American Statistical

Association, 98(463):750–763, 2003.

[65] P.N. Tan, Michael Steinbach, and Vipin Kumar. Cluster analysis: Basic concepts

and algorithms. Introduction to Data Mining, pages 487–568, 01 2005.

[66] A. Topchy, Arjun Jain, and William Punch. Combining multiple weak clusterings.

In Third IEEE International Conference on Data Mining, pages 331– 338, 12

2003.

[67] Shivakumar Vaithyanathan and Byron Dom. Model selection in unsupervised

learning with applications to document clustering. In Proceedings of the Six-

teenth International Conference on Machine Learning, ICML ’99, page 433–443,

San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[68] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of rela-

tive frequencies of events to their probabilities. Theory of Probability and its

Applications, 16(2):264–280, 1971.

[69] Vladimir N. Vapnik. Controlling the Generalization Ability of Learning Pro-

cesses, pages 93–122. Springer New York, New York, NY, 2000.

[70] Sandro Vega-Pons and José Ruiz-Shulcloper. A survey of clustering ensemble

algorithms. IJPRAI, 25:337–372, 05 2011.

[71] Cédric Villani. Optimal transport – Old and new, volume 338, pages xxii+973.

Springer Berlin Heidelberg, 01 2008.

[72] Cédric Wemmert and Pierre Gançarski. A multi-view voting method to com-

bine unsupervised classifications. In 2nd IASTED International Conference on

Artificial Intelligence and Applications, pages 447–452, 09 2002.



BIBLIOGRAPHY 107

[73] White House Report. Consumer Data Privacy in a Networked World: A Frame-

work for Protecting Privacy and Promoting Innovation in the Global Digital

Economy. Journal of Privacy and Confidentiality, March 2013.

[74] K. Woods, W.P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers

using local accuracy estimates. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19(4):405–410, 1997.

[75] Huan Xu and Shie Mannor. Robustness and Generalization. arXiv:1005.2243

[cs], May 2010. arXiv: 1005.2243.

[76] Li Zeng, Ling Li, Lian Duan, Kevin Lu, Zhongzhi Shi, Maoguang Wang, Wen-

juan Wu, and Ping Luo. Distributed data mining: A survey. Information

Technology and Management, 13, 12 2012.

[77] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman &;

Hall/CRC, 1st edition, 2012.

[78] Zhi-Hua Zhou and Wei Tang. Clusterer ensemble. Knowl. Based Syst., 19:77–83,

2006.


	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Forewords
	Introduction
	Learning from data and learners: State of the art
	Introduction
	Federated learning
	Ensemble clustering
	Collaborative learning
	Introduction
	How to partition the data present on the different nodes
	Organization of the collaboration
	Intensity of the collaboration

	Conclusion

	Collaborative random forests
	Problem set-up
	Entropy as a measure of uncertainty
	Example : the entropy of a Bernoulli distribution.

	Using entropy as a criterion for collaboration
	Decisoin trees
	Contribution
	Configuration
	Local step
	Collaboration step
	Fine-tuning step

	Experimental validation
	Results and analysis

	Comparison with the catboost benchmark
	Preprocessing
	Benchmark

	Conclusion

	Unsupervised collaborative learning
	Introduction
	Related work
	Performance metrics in clustering

	Theoretical framework and algorithm
	General setting
	Collaborative process
	Visualization of the collaboration process

	Implementation examples
	Gaussian mixture models
	Generative Topographic Mapping

	Experimental validation
	Datasets
	Results
	Comparison with other collaborative approaches

	Analysis of the collaboration process
	Simple use of entropy
	Introduction of a similarity criterion
	Collaboration between Gaussian mixture models

	Conclusion

	Theoretical guarantees
	Reminder: the proposed architecture
	Complexity
	Termination analysis
	Generalization bounds for supervised collaborative learning
	Conclusion

	Conclusion and perspectives
	Datasets
	Publications
	Proof of theorem 1

